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Abstract 

 

The first part of this thesis is devoted to the synthesis, purification and application of a series 

of indenopyrazine based polymers for their use in optoelectronic devices. The work focuses 

on the effect of alternating chain length on the degree of polymerisation, optical and charge 

carrier properties 

The next section studies the copolymerisation of indenopyrazine with dithiophene 

benzothiadiazole acceptor units and the effect substituents have on the planarity of the 

polymer backbone and the delocalisation of molecular orbitals and solar cell performance. 

The final part of this thesis investigates indenopyrazine based polymers as charge carrier 

materials in p-type transistors and probes the effect p-dopants have on the energy levels, 

charge carrier mobility and optical properties. The second part is the synthesis of the novel 

alkylidene-indenopyrazine monomer and probes the introduction of enforced planarity and 

finally the synthesis towards the novel the semiconductor indenopyrazinedithiophene.  
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General Introduction and Band Theory 

Organic semiconductors are materials that are based primarily on the element carbon. Due to 

the electronic configuration, when chains of carbon are bound in alternating single and 

double bonds they are said to be conjugated and it is possible to transfer charge. It is the sp2 

hybridisation present in carbon that leaves a single unpaired electron in the pz orbital that 

gives carbon its semiconducting properties (Figure 1).1  

 

Figure 1. Hybridisation of atomic orbitals in carbon 

In a multi-centered carbon chain the pz orbital residing on each atomic centre can either be in 

phase or out of phase with respect to its neighbouring pz orbital and they delocalise to form 

molecular orbitals. Ethene (Figure 2) consists of two configurations of the pz orbitals, the 

lower energy in-phase configuration and the higher energy out of phase molecular orbital. 

Based on molecular orbital theory, the lowest energy orbitals fill first to produce one bonding 

and one anti bonding orbital.  As the number of carbons in the backbone is extended, the 

possible configurations of the pz orbitals increase. For butadiene (Figure 2) there are 4 

possible configurations and the four available pz electrons fill the lowest energy molecular 

orbitals. The orbital configuration increases in complexity as more carbon and heteroatoms 

are introduced into the system, building up complex molecular orbitals which form part of the 



14 

 

fundamentals of charge carrying materials in organic electronic applications such as lasers,2 

OLEDs,3,4 transistors5 and solar cells.6   

 

 

Figure 2. pz Orbital configurations for ethene (left), butadiene (middle) and benzene 

Benzene which consists of 6 sp2 carbon atoms bound in a ring structure has 6 unpaired pz 

electrons, filling the molecular orbitals as shown in Figure 2.  The highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) and the 

associated energy gap between the filled bonding and unfilled anti-bonding orbitals is the 

origin of what is commonly referred to as the band gap.  Only the 3 lowest energy molecular 

orbitals are filled with electron pairs and the 3 higher energy molecular orbitals are left 

unoccupied.7    

As the conjugation length of the molecule increases more delocalised electrons are in the 

system; this results in the HOMO energy level increasing and the LUMO decreasing.8  

However, eventually the change in the energy levels saturates and the addition of further 

monomer units do not influence the band gap. The value that this saturation occurs is 
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commonly known as the effective conjugation length where additional repeat units do not 

greatly affect the optoelectronic properties, although physical properties such as solution 

viscosity have expected to show strong dependent on molecular weight.   

For the majority of semiconductor active layers, the material will not be in its ground state.  

The semiconductor will need to support and sustain excitations, and in charge carrying 

applications these excitations must be mobile.  When an electron is removed from the HOMO 

or added to the LUMO a radical ion is created.  These radical ions are termed hole or electron 

polarons and they are the charge carrying species within organic semiconductors.  Following 

the addition or removal of an electron in the semiconductor, there is a redistribution of charge 

to minimise the energy.  The redistribution of charge results in a change of bond angles, bond 

length and nuclear position (Figure 3) and is known as the reorganisation energy. 

 

Figure 3. Benzoidal and quinoidal structures in poly(p-phenylene vinylene) (PPV). 

These reorganisations occur in order to reduce the overall energy of the system.  The new 

energy levels for the hole and electron polarons appear within the HOMO-LUMO band gap.  

The combined entity of lattice distortion and charge move through the material together.  

When a hole and electron polaron meet, a strong coulombic binding results in a release of 

energy, the exciton binding energy (Eb) (Figure 4) and an exciton is formed.  
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An exciton is a coulombically bound state of an electron and a hole.  Under the band-picture 

for inorganic semiconductors, it consists of an electron in the conduction band and a hole in 

the valence band.  For organic semiconductors an exciton consists of an electron in the 

LUMO bound to a hole in the HOMO.  The electron-hole pair resides very closely together 

on the molecular chain, but its wavefunction extends over a few repeat units.10  If Eb > kT 

then the exciton will be stable to dissociation.  If Eb < kT then the electron and hole will 

easily dissociate into free charge carriers.  Apart from the combination of electron and hole 

polarons by electrical excitation, excitons can be also generated by optical excitation 

(Figure 5).   

 

Figure 5. Optical and electrical formation of excitons. 

Figure 4. (Top line) Energy level diagram for hole and electron polaron is compared to the neutral molecule.   

(Bottom line) Formation of a singlet exciton from a hole and electron polaron. 
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In semiconductors, due to the effect of disorder in the chains there is an energy range of 

excitons that are generated and the energy states can be described as having a Gaussian 

distribution. Due to the excitons being mobile they diffuse to a region on the chain that will 

have a smaller energy gap (Figure 6).   

 

 

Charge Transport 

Charge transport is important for the design of almost all polymer active layers in organic 

electronics.  There are two main methods of charge transport, intrachain transport along the 

chain and interchain or intrachain hoping transport.11 On top of these 3 methods the transport 

of charges is different for holes and electrons.10  The simultaneous transport of holes and 

electrons, ambipolar transport, is not easily achieved and presently most reported materials 

are hole transporting.  Electron transport or n-channel devices are constantly improving in 

efficiency. A suggested reason for the disparity lies with electron trapping sites.12 For 

example oxygen, with its strong electronegativity attracts electrons and is almost ever present 

in the form of water. There are methods of eliminating water from devices such as vacuum 

treatment but for large scale, low cost production not rigorously understood this can be 

expensive.13  One design principle for overcoming electron trap sites is the lowering of the 

Figure 6. Gaussian distribution of HOMO LUMO energy levels. 
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polymer LUMO energy level. Semiconductors that have an electron affinity greater than 4 eV 

are generally regarded as air-stable, as the resulting radical anion is generally sufficiently 

stable not to interact with hydroxyl groups. Polymers that contain nitrogen in a conjugated 

fused ring system have been shown to have potential as good electron transporting materials, 

for example, poly(phenylquinoxaline) which was one of the first reported (Figure 7).14  

 

Figure 7. Poly(phenylquinoxaline) 

These polymers have a high electron affinity which is beneficial for efficient electron 

injection and for raising the barrier to oxidation.  A second suggestion for the difference in 

mobilities of holes and electrons is associated with the orbitals in which they reside and 

transport between.15  Hole transport is associated with the HOMO and electron transport is 

associated with the LUMO.  In many cases, LUMO orbitals are known to be more localised 

than HOMO orbitals as has been shown by DFT methods.16  It can be more difficult to ensure 

good overlap of localised LUMOs on adjacent polymer backbones versus more delocalised 

systems, which can reduce the rate of charge hopping. The wavefunction of the electron or 

hole polaron is affected by an applied electric field and the polaron travels along the chain 

under the influence of the electric field.  For intrachain transport, the mobility is heavily 

dependent on the orientation of the polymer.  If the polymer is crystalline and not aligned 

with the electric field then for the polaron to contribute to intrachain transport it has to first 

hop onto a neighbouring chain.11  This is different for the case of amorphous polymers as 

there will be little order within the polymeric system.  The transport is also affected by lattice 

vibrations which scatter polarons and reduce charge carrier mobility.  
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Hopping is much more prevalent when considering transport mechanisms due to the 

disordered nature of the materials that are involved.  Hopping (quantum tunnelling) is the 

process by which polarons transfer from one chain to the adjacent chain (interchain), or in 

highly disordered, amorphous systems that contain polymers kinks, the charge can transfer to 

another part of the same chain without travelling along it.  For non-conjugated polymers such 

as poly(vinyl carbazole) (Figure 8) it will be exclusively a hopping transport mechanism that 

contributes to the charge carrier mobility.17   

 

Figure 8. Poly(vinyl carbazole)  

Hopping transport gives rise to lower mobilities than intrachain transport.11 One factor that 

reduces hopping transport is the need to overcome the activation energy. If the charge does 

have enough energy to hop then there is also the factor of distance it has to travel to the 

adjacent polymer chain and the energy levels of the hopping sites involved.18   

Conjugated Systems Design 

Organic semiconductors in transistors have the general requirements of being solution 

processable, stable at ambient conditions and possessing high charge carrier mobility. 

Fluorene and poly(aryl amine) co-polymers were some of the first semiconductors to 

demonstrate their ease of processability and ambient stability but they lacked the structural 

order to obtain high charge carrier mobilities.19  PTAA has been shown to have a mobility of 

4 x 10-3 cm2 V-1 s-1 despite lacking a crystalline nature and an ionisation potential of 5.2 eV.20  

To improve mobility, most approaches have concentrated upon an improvement in chain 

rigidity by the inclusion of fused aromatic co-monomers.21 Control of the macroscopic 

properties is also important, and has been nicely demonstrated in the liquid crystalline co-
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polymer of fluorene and bithiophene (F8T2).11 Here annealing in the liquid crystalline phase 

was shown to improve mobility up to 0.01 - 0.02 cm2 V-1 s-1.11 These results were particularly 

interesting because the alternative polymeric system at the time (P3HT) had its high 

mobilities attributed to the high degree of π – π stacking present. The F82T system however 

had alkyl chains that were perpendicular to the polymer backbone, thus hindering close π – π 

stacking and the high mobility was attributed to high intrachain mobilities.11 More recently 

two trends can be observed in efforts to improve charge carrier mobility, firstly by extending 

the backbone conjugation through the use of extended fused aromatic units; these units often 

contain solubilising sidechains on bridging atoms. In addition  dipole – dipole interactions 

between conjugated polymers chains have been suggested to promote close contacts and 

enhance mobility, as exemplified by one of the present leading co-monomers 

diketopyrrolopyrrole.22-23  

Organic semiconductors used in OPVs can be split into two categories. The first are small 

molecules which are mainly processed using thermal evaporation in a high vacuum 

environment. The second category is solution processable organic polymers. With their 

associated weak van der Waals interactions it enables them to be deposited via large area, 

low-cost solution techniques.24  Some of the earliest materials used for polymer solar cells 

were discovered by Wudl et al.. Wudl was one of the first to work on MEH-PPV and also 

invented one of the most important fullerene derivates, PCBM.25-26 It was Yu et al. that first 

blended them together to produced a polymer solar cell with a significant PCE.27 Further 

improvements were limited by the narrow absorption ranges and low hole mobilities for this 

class of polymer. Soluble thiophenes such as P3HT became very popular due to their higher 

hole mobility and broader spectral coverage producing cells with a PCE of 4-5 %.28–30 Fast 

forward 10 years and some of the current state of the art polymers are produced by Yu et al. 

and based on the now popular benzodithiophene unit.31–33 It was the industry demands of 
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low-cost, high through-put production that ushered in the current wave of polymer-based 

organic semiconductors. Two of the three methods of polymerisation described below, allow 

for the creation of alternating copolymers. The combination of molecular orbitals from two 

types of monomers into an alternating A-B type structure results in the formation of new 

polymer molecular orbitals and energy levels. 

 

Figure 9. Schematic energy levels of monomer (Ma) and monomer (Mb) and the resulting low band gap of the 

polymer (P)  

Combining both electron poor and electron rich monomers create what is often called a 

push-pull copolymer. These push-pull alternating copolymers have been favoured for use as 

the active layer in solar cells because their band gap can be readily tuned by choice of 

appropriate donor and acceptor monomers.  F8BT is an example which involves the co-

polymerisation of 9,9-dioctylfluorene and benzo[2,1,3]thiadiazole.  The fluorene unit can be 

considered to act as the donor due to its relatively high electron density, distributed evenly 

across the monomer unit.  As a result, the homopolymer, poly(9,9-dioctylfluorene) possesses 

a large band gap and emits light towards the blue end of the spectrum.  In contrast, 

benzothiadiazole is strongly electron accepting. Copolymerisation with 9,9-dioctylfluorene 

results in hybridisation of the molecular orbitals as shown in Figure 9, and a significant 

reduction in the band gap. As a result F8BT emits in the green region of the spectrum.  
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The use of electron withdrawing and donating substituents and heterocycles are the chemist’s 

primary way of controlling the band gap and the localisation of electron density in the 

backbone. The localisation of electron density and presence of electron withdrawing 

substituents also has an effect on the charge transport. The greater the number of electron 

withdrawing groups present, the lower the HOMO will be and the more difficult it will be to 

oxidise the polymer i.e. inject a hole. However, increasing the numbering of electron 

withdrawing substituents will result in a lowering of the LUMO level, facilitating the 

injection of electrons. This will typically improve electron mobility by reducing the number 

of trap sites that are present whilst simultaneously reducing the barrier to injection of 

electrons.   

Polymerisation Techniques 

There are a range of different polymerisation techniques that can be employed for the 

synthesis of conjugated polymers. It is important to choose the appropriate polymerisation 

technique to achieve high yields and high molecular weight polymers. A brief overview of 

the three main polymerisation techniques used in this work will now be covered. 

Yamamoto polymerisation 

Yamamoto polymerisation is a nickel (0) catalysed carbon – carbon coupling reaction of 

aromatic bis(triflates) or more commonly dihaloaromatic species.34 It is commonly used to 

produce either homopolymers or random co-polymers from mixtures of two or more 

dihalogenated monomers. 

 

Figure 10. Fluorenes (a) and phenylenes (b). 
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Typically a nickel precatalyst is used such as Nickel(0) bis(cyclooctadiene) [Ni(COD)2] in 

the presence of 2,2’-bipyridine, which is the effective ligand.  The nickel is in the Ni(0) 

oxidation state and has two vacant electron sites that makes the metal ideal for oxidative 

addition reactions.  The reactions mechanism begins with the oxidative addition of the 

halogenated species. 

 

Scheme 1. Yamamoto reaction cycle 

The oxidative addition of an aryl halide to a Ni(0) complex forms a stable 18 electron square 

planar Ni(II) complex.  The next step in the mechanism is a metathesis step of two of the 

Ni(II) complexes to exchange ligands.  There is no change in the net oxidation state. The 16 

electron diaryl Ni(II) complexes are well suited for reductive elimination to complete the 

catalytic cycle by forming the aryl-aryl bond. The reaction does consume half the nickel in 

the form Ni(II)X2 and for this reason Nickel (0) is typically added in stoichiometric 

quantities, a major drawback for large scale polymerisation. Modifications have been 

developed in which a reductant such a metallic zinc is added to reduce the Ni(II)X2 back to 

Ni(0) in situ.  Another drawback of the reaction is the necessity to perform the reaction in a 

high boiling aprotic solvent like DMF. Such solvents are usually poor solvents for aromatic 

polymers.34  
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Suzuki polymerisation 

The Suzuki cross-coupling of an aryl halide with an organoboron reagent has been 

extensively used for the preparation of many conjugated polymers. It is particularly useful for 

the synthesis of polyfluorene or polyphenyl based materials, but has been less utilised in the 

preparation of electron rich polymers based on thiophene.24 One of the issues is that the use 

of electron rich thienyl boronic acids or esters can lead to deboronation of the monomers or 

growing polymer chain during the polymerisation, limiting molecular weight. Therefore, the 

organoboron-containing monomer should preferentially be on a non-thiophene if possible. A 

second complication with the Suzuki polymerisation is the requirement for a base to activate 

the boronic ester/acid for cross-coupling. Many of the commonly used bases are aqueous thus 

this can lead to two-phase reaction media, and require the addition phase transfer catalysts to 

facilitate mixing. The solubility of the growing polymer can be a problem in such two phase 

mixtures. An early reported issue with Suzuki polymerisations was the end-capping of the 

growing polymer chain via the transfer of aryl groups from the phosphine ligands that are 

used in the polymerisation process. This can be suppressed by the use of more bulky ligands 

like tri(o-tolyl)phosphine or by the use of ligand-free catalysts.35 

The mechanism is a three step process. The first step is the oxidative addition of palladium 

(0) into a carbon-halogen bond. Prior to the transmetallation addition, a base displaces the 

halogen on the palladium (II) species to create a more controlled reaction route for the 

boronic ester.  

L2PdR’X + NaOH → L2PdR’OH + NaX 

The organoboron can then react after being activated by a Lewis base as it increases the rate 

of reaction due to its relatively low electropositivity. Finally reductive elimination occurs and 

the new C-C bond is formed. 
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Scheme 2. Suzuki polymerisation catalytic cycle 

One of the main advantages of using Suzuki coupling is the use of boronic ester monomers 

that are air stable and can be purified via flash chromatography. Also for large scale 

synthesis, the boronic esters are largely low in toxicity.  

Stille polymerisation 

Stille coupling is a simplified version of Suzuki coupling. The cross-coupling involves three 

steps as shown in Scheme 3. The first is the oxidative addition of the aryl halide, followed by 

the transmetallation and finally the reductive elimination.  The primary drawback of 

large-scale Stille reactions are the large amounts of organostannanes as they are highly toxic. 

Despite the toxicity of tin they are still widely used as they react with a wide variety of 

functional groups. 
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Scheme 3. Stille polymerisation catalytic cycle 

There are two different type of polymer chain growth. All of the above mentioned 

polymerization techniques are a step growth mechanism. Step growth mechanisms involve 

monomers reacting with one another or any size oligomers or polymer and a high percentage 

conversion is needed in order to obtain high molecular weight polymers.  Additionally with 

the step growth mechanism there is a rapid loss of monomer. Chain growth is the other 

mechanism and involves monomers reacting with an active centre of the growing chain.  

With step growth mechanism control of the molecular weights can be achieved by using an 

imbalance of monomer to selectively obtain low molecular weights.36  

Carothers Equation  

The above-mentioned condensation reactions take place as a one pot synthesis consisting of 

monomers, catalyst, solvent and ligands.  The key components from a mathematical 

consideration however, are the monomers and the growing polymer chain.  To judge how 

successful a polymerisation reaction is a number of different properties are assessed. Firstly 

the effectiveness of a polymerisation reaction can be judged on the extent of the reaction, ρ, 
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yield. This is the ratio of the number of monomers that have reacted and the number of 

monomers present at the start of the reaction and given by the equation 

Equation 1 

𝜌(𝑡) =  
𝑛0 − 𝑛(𝑡)

𝑛0
 

Where n(t) is the number of monomers that are yet to react and n0 is the number of monomers 

present at time t = 0.  The degree of polymerisation is important as it relates to the polymer 

molecular weight by the total possible length of polymer divided by the number of unreacted 

monomers. 

Equation 2 

𝑋𝑛(𝑡) =  
𝑛0

𝑛 (𝑡)
 

For the degree of polymerisation to be very high the number of monomers left in the reaction 

mixture has to be low. Combing the two equations give 

Equation 3 

𝑋𝑛(𝑡) =  
1

1 − 𝜌(𝑡)
 

This is the Carothers equations and the important factor is that polymers do not form except 

at very high conversions in step polymerisations.  This equation however only gives an 

average of the polymer chains lengths. For example if half the monomers have reacted, 

X = 2, but that does not means that the reaction mixture now consists of a mixture of dimers 

and monomers. It is only an average; specifically, it is the number average degree of 

polymerisation. 

Equation 4 

𝑀𝑛 =  
∑ 𝑛𝑖𝑀𝑖

∞
𝑖−1

∑ 𝑛𝑖
∞
𝑖=1

 



28 

 

Where Mn is the molar mass of the chain with a polymerisation index of ni.  The final 

parameter that is vital to assessing a polymer is weight average molecular weight as it gives 

an understanding of the dispersity of a polymer sample i.e. a distribution of the molar masses 

of the polymer chains. The weight average molecular weight is given by 

Equation 5 

𝑀𝑤 =  ∑ 𝜔𝑖𝑀𝑖

∞

𝑖=1

 

Where ω is given by Equation 6. 

Equation 6 

𝜔𝑖 =  
𝑛𝑖𝑀𝑖

∑ 𝑛𝑖𝑀𝑖
∞
𝑖−1

 

Combining the Equation 5 and Equation 6 gives Equation 7 

Equation 7 

𝑀𝜔 =  
∑ 𝑛𝑖

∞
𝑖=1 𝑀𝑖

2

∑ 𝑛𝑖
∞
𝑖=1 𝑀𝑖

 

The dispersity index of a polymer sample is therefore define as Mn / Mω.  
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Introduction 

There are many reasons why organic semiconductors and their photophysical properties are 

relevant to optically pumped lasers. Firstly, organic semiconductors can have high molar 

absorption coefficients which result in light being absorbed very readily.  For example, a thin 

film of 100 nm thickness of a typical conjugated polymer such as P3HT would absorb 90 % 

of the light incident upon it at the maximum absorption wavelength. This gives rise to light 

being absorbed over a very short path length which is a necessary requirement for achieving 

optical gain and stimulated emission.  Both of these attributes have been discussed in 

Tessler’s work on lasing using conjugated polymer films of poly(p-phenylenevinylene).1 A 

third reason why organic semiconductors are well suited for use as laser materials is because 

their fluorescence spectra are broad and readily tuned, via a variety of synthetic 

modifications. Finally, a broad fluorescence spectrum allows for short pulse generation and 

broad-band optical amplification.  

For lasers and organic light emitting diodes, materials that emit light efficiently are highly 

desired. The photoluminescence quantum efficiency (PLQE) describes quantitatively the 

efficiency of light emission.  The PLQE is defined as the ratio of number of photons emitted 

from a sample over the number of photons that are absorbed (Equation 8).  

Equation 8.  

𝑃𝐿𝑄𝐸 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑒𝑚𝑖𝑡𝑡𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑
 

The measurement of photoluminescence efficiencies in thin film is different to that in 

solution. Thin films are difficult to quantify due to a series of optical problems that can 

influence the measurements, many of which can be overcome by methods suggested by de 

Mello et al using an integrating sphere.2  Considerable work has focussed upon controlling 

PLQE, which at a fundamental level is related to the control and understanding of 
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intermolecular interactions.  In the solid state or in concentrated solutions, organic 

semiconducting polymer chains can interact with adjacent polymer chains leading to the 

formation of aggregates, dimers or excimers which can quench light emission.3  Organic 

semiconductors are used almost exclusively in the solid state in practical applications. 

Therefore a common approach to avoid quenching of emission in the solid state involves 

increasing the spacing between the light emitting units to prevent solid state quenching. With 

conjugated polymers this is commonly achieved by using long bulky side chains, which offer 

the dual properties of conferring solubility whilst keeping the polymers chains apart. 

Optical gain is the most important requirement for the realisation of an organic 

semiconducting laser.4  Optical gain describes the amplification of an optical signal directly 

without the need for conversion to an electrical signal as an intermediate. Using a simplified 

two level electronic system, when a photon is incident on an organic semiconductor, provided 

the photon is of sufficient energy, it causes an electron to be promoted from the lower 𝐒𝟎  to 

the excited 𝐒𝟏  energy level. This is the process commonly known as absorption.  When a 

photon is incident on a material that is already in an excited state, it can stimulate the electron 

in the excited state, without being absorbed, to fall from the higher 𝐒𝟏  energy level to the 

ground 𝐒𝟎  energy level and cause the emission of a second photon (Figure 11). 
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Figure 11. Optical absorption (left). Stimulated emission (right) 

In optically pumped lasers this process is referred to as stimulated emission. It was Einstein 

who first proposed this idea based on thermodynamic considerations.  The key fact is that the 

photon that is emitted on stimulated relaxation from the excited 𝐒𝟏  to the lower energy 𝐒𝟎  

level has the same frequency, phase and direction as that of the incident photon. Therefore, 

the emission of this additional photon means that there has been amplification of the incident 

photon. For the case of organic semiconductors, as light travels further through the medium, 

there is stimulated emission of an exponentially increasing number of photons and so for 

small signals, the intensity, I(z), increases exponentially with distance and can be expressed 

by Equation 9,5 where g is the wavelength dependent gain coefficient of the medium and z is 

the distance the light travels through the medium.   

Equation 9.  

𝐼(𝑧) =  𝐼(𝑧 = 0)exp (𝑔𝑧) 

For a particular transition the cross-section for absorption and stimulated emission are equal. 

In order to obtain more stimulated emission than absorption at a particular wavelength, a 

greater number of species need to be present in the excited state than in the ground state i.e. 

population inversion. It is the product of the population inversion density, N, and stimulated 

emission cross-section, σ that gives the gain coefficient as described by Equation 10. 
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Equation 10. 

𝑔 = 𝜎𝑁 

In the simple 𝐒𝟎  and 𝐒𝟏  energy level diagram of Figure 11, population inversion cannot be 

practically achieved.  However due to each energy level in organic semiconductors 

possessing additional sub vibrational energy levels, this population inversion can be achieved 

as depicted in Figure 12 due to the relative rates of the transitions that are involved. 

 

A four-level system is analogous to the vibronic levels within the 𝐒𝟎  - 𝐒𝟏 model.  When a 

photon possessing an energy that is greater than the energy required for the promotion from 

the ground state to the lowest excited state, the electron can go into the higher energy first 

vibronic level 𝐒𝟏
𝟏 of the 𝐒𝟏 . This is represented by the transition 1 and is equivalent to 

absorption.  From this excited vibronic state of the 𝐒𝟏  level the electron rapidly relaxes down 

to the 𝐒𝟏
𝟎 level through a process of vibrational cooling depicted by transition 2. From this 

lowest energy singlet state, emission and lasing are able to take place (transition 3) resulting 

in relaxation to the vibrational excited ground state of 𝐒𝟎
𝟏  and emission of light.  The electron 

can also decay through a series of non-radiative pathways, which is a loss mechanism. Finally 

there is the rapid transition from the excited vibronic ground state 𝐒𝟎
𝟏 to the 𝐒𝟎

𝟎 with the 

Figure 12. Four level energy diagram absorption transition (1) emission transitions (3) and two thermal relaxation 

transitions 2 and 4. 
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excess energy being dissipated as vibronic and thermal relaxation. It is the rapid transition of 

2 and 4 that allow for the creation of a population inversion between the 𝐒𝟎
𝟏  and the 𝐒𝟏

𝟎 for a 

very low rate of excitation. In this scenario it can be said the threshold for lasing is low. 

Relaxation can also take place from the 𝐒𝟏
𝟎 to the ground state of the 𝐒𝟎  causing emission of 

a photon of a higher energy than transition 3.    

The vibrational relaxation of the excited state to 𝐒𝟎
𝟏  gives rise to a photon emission that is of 

a lower energy than that of the photon absorbed, and contributes to the overall Stokes shift of 

a particular polymer. Another factor that gives rise to a shift to a longer wavelength of 

emission, is the distribution of effective conjugation chain lengths within a polymeric system. 

Promotion to the singlet state on one polymer chain does not necessarily result in emission 

from the excited state of that particular chain. The excited state can transfer to a neighbouring 

polymer chain which has a lower excited state energy level. This is more prevalent in the 

solid state where closer packing is generally observed and interchain transfer is more 

probable.   

The larger the shift in emission wavelength the better suited the material is for use in lasing 

because it reduces the self-absorption at the lasing wavelength.  Attempts have been made to 

increase the separation between absorption and emission by blending two different materials 

with varying band gaps.6,7 Another related way of separating the emission from absorption is 

to use copolymers consisting of a donor (wider band gap) and an acceptor (narrower band 

gap) moiety (Figure 13). 8,9 Here absorption would occur from the delocalised HOMO and 

then the exciton would transfer to the localised acceptor and emit.  
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Figure 13. PCDTBT  

There are a number of different approaches to improving optical gain.  One is to dilute the 

material in a polymer matrix in order to enhance the luminescence efficiency by preventing 

quenching.10 For conventional polymers like poly(3-hexylthiophene), dilution of the polymer 

in a matrix in order to enhance their luminescence dramatically reduces their charge carrier 

mobility, and a low charge carrier mobility limits the thickness of films that can be used.11,12 

An alternative approach to polymer dilution  recognizes that effective charge carrier transport 

can result from a mixture of high interchain mobility and the existence of a set of preferential 

interchain hopping sites that connect otherwise relatively isolated neighbouring chains.13  

There are two main approaches to studying gain in organic semiconducting materials. The 

first is transient absorption spectroscopy. This involves a sample being excited by a short 

pulse pump to generate excited species. This is followed by a time delayed probe pulse in 

order to measure the change in the transmission due to the presence of the generated excited 

species. The alternative approach is amplified spontaneous emission which involves 

producing a slab waveguide of the organic semiconductor. The edge of the sample is excited 

with a pulse laser beam and studying the light that is emitted from the semiconductor the 

amount of stimulated emission that is emitted can be calculated.    

There are a range of different materials that are interesting in terms of their luminescent 

properties and can be considered attractive in terms of their feasibility to be used in lasers.  

This can be classified into four groups and are depicted in Figure 14. The first group of note 

are small molecules such as anthracene (Figure 14, a) and tris (8-hydroxyquinoline) 
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aluminium (Figure 14, b) which have previously been used as active layers in green 

OLEDs.14 Originally the work focused on single crystals, however handling and growing 

these proved to be problematic. It was the discovery of electroluminescence in evaporated 

thin films of small molecules that attracted a great deal of attention.15 The second group are 

conjugated dendrimers (Figure 14, e).16 This consist of a core chromophore which defines the 

optical properties such as the wavelength of the light emitted. The core is surrounded by 

dendrons and at the end of these dendrons are the surface groups that offer solubility. The 

third type are spiro—compounds (Figure 14, f).17 These consist of a pair of conjugated 

oligomers coupled to each other via a spiro linkage. Such an orthogonal arrangement can 

suppress molecular stacking in the solid state. 

 

Figure 14. Classes of current popular materials: (a) Anthracene; (b), Tris-(8-hydroxyquinoline)aluminium; (c) 

poly(9,9--di-n-octylfluorenyl-2,7-diyl); (d) poly(p-phenylene vinylene); (e) bis(fluorene) cored first generation 

dendrimer and (f) spiro linked oligomer. 

The fourth and final group are conjugated polymers. They are more linear than the branched 

dendrimer molecules and their synthesis is typically easier than the spiro molecules. Two 
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polymers that have been studied extensively are poly(dialkylfluorenes) (Figure 14 c) and 

poly(phenylene vinylene) (Figure 14 d). 

Polyfluorene has attracted considerable attention due to its high photoluminescence and 

liquid crystalline behaviour.18 Considerable work has combined polyfluorenes with other 

monomers such as the work by Theander et al who investigated the combination of 

polyfluorene with 2-methoxy-5-(2’ethyl-hexyloxy)-p-phenylenevinylene (MEH-PV).19 The 

combination of a small amount of narrow band gap and wide band gap polymers allowed for 

the majority of the absorption to occur on the high energy polyfluorene and then transfer via 

Förster transfer to the low energy section.20  

Typically there is a trade off with designing organic semiconductors for lasing between 

achieving a high charge carrier mobility and efficient light emission. High carrier mobility is 

broadly achieved by having rigid and planar chains that promote π-stacking.  A high degree 

of crystallinity helps to remove defects and aids the stacking of chains assisting inter-chain 

charge transport. For efficient optoelectronic behaviour chromophores need to avoid 

interference with their environment and with each other via interchain effects. Amorphous 

materials have the advantage of not having grain boundaries, avoiding light scattering. 

However amorphous materials tend to have lower charge carrier mobilities. Bradley et al 

demonstrated an interesting approach to overcome this dilemma, demonstrating simultaneous 

optimisation of charge carrier mobility and optical gain in semiconducting polymer films of 

poly(dialkylfluorenes) with the introduction of a limited number of hopping sites between 

relatively isolated polyfluorene chains (Figure 15). This approach led to polymer films with 

mobilities in the order of 10-2 cm2 V-1s-1 and excellent light-emission characteristics.13 In their 

study they used a series of polymers consisting of the 9,9-di-n-octylfluorene copolymerised 

with 9,9-di-1-methyl-4-butyl-fluorene. They produced a range of polymers that had 

alternating short and long chains (Figure 15). The presence of the short-chain containing 
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fluorene monomers was suggested to allow close intermolecular contacts at limited points 

along the polymer backbone, where two short chain monomers on adjacent polymer chains 

were in close contact. These sites facilitated charge transport at a limited number of sites, 

such that overall luminescence efficiency was not substantially influenced. Such an approach 

appears attractive for the development of electrically pumped organic lasers. It is important to 

be able to inject sufficient charge into the structure to reach the electron density lasing 

threshold, and therefore high mobility materials with high luminescence efficiency are 

required. 

 

Figure 15. Series of Polyfluorene containing polymers reported by Bradley et al.13 
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Aims 

Building on the work reported on the alternating fluorene systems, the aim of this study was 

to synthesise a series of novel polymers with improved charge carrier mobility whilst still 

retaining their strong photoluminescence characteristics. In particular we also desired to 

improve the electron transport of the target polymers. Our approach was to extend the 

conjugation length of the polymer by the incorporation of rigid, extended aromatics instead of 

fluorene. Here the expectation was that the reduced conformational disorder might improve 

charge transport.  A second design criterion was to incorporate electron deficient groups in 

order to modify the LUMO of the polymer and facilitate electron injection and perhaps 

improve electron transport. Therefore we believed indenopyrazine (Figure 16) was an 

interesting co-monomer target. Previous computational studies by Jung et al21 had 

investigated the difference between indenofluorene and indenopyrazine.  DFT simulations of 

the two small molecules found that there was a predicted reduction in the band gap on 

replacing the central benzo unit with pyrazine.21   This reduction in the band gap occurs 

because the LUMO is stabilised by a greater amount with respect to the HOMO on changing 

from the benzo to pyrazine unit.  The nitrogen atoms plays a key role in the stabilisation of 

the LUMO.  Figure 16 shows the calculated energy orbitals for the HOMO and LUMO of 

indenofluorene and indenopyrazine. It can be seen that the size of the lobes on the nitrogen 

atom on indenopyrazine are much larger in the LUMO than the HOMO. Based on 

quantitative atomic contributions, the contribution of the nitrogen to the HOMO is 2.17% 

whereas for the LUMO the nitrogen contributes 35.26%.  Therefore the nitrogen is 

introducing more stabilisation of the LUMO than the HOMO resulting in a smaller HOMO-

LUMO band gap for indenopyrazine than indenofluorene. 



43 

 

Table 1. Percentage contribution of the nitrogen atom to the HOMO and LUMO of the indenopyrazine ring21 

 HOMO contribution (%) LUMO contribution (%) 

Indenopyrazine 2.17 35.26 

 

 

 

 

Similar to the work of Bradley et al, we planned to maximise mobility whilst trying to 

maintain adequate levels of PLQE by the copolymerisation of both a short alkyl chain (C3H7) 

and a long alkyl chain (C8H17) fluorene, with a branched short chain (C1C4H11) and long 

chain (C8H17) indenopyrazine to produce a full complement of short and long chain 

alternating copolymers. For the indenopyrazine, a short branched alkyl chain was used in 

order to be able to draw comparisons with the short branched chain of the fluorene stated 

Figure 16. The potential energy surface, HOMO and LUMO levels of indenofluorene (IF) on the left and 

indenopyrazine (IP) on the right. Modified from reference.21 
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studies.13 A series of the homo indenopyrazine polymers with branched-C1C4, branched-C2C6 

and straight-C8 alkyl chains were also synthesised and their physical properties recorded 

(Figure 17). 

 

Figure 17. Target polymers of indenopyrazine and copolymers of indenopyrazine with fluorene. 

Octyl and 1-methylbutyl alkyl chains were chosen for use in the indenopyrazine-fluorene 

series as it was predicted that the combination of short and long alkyl chains would promote 

packing between polymer chains whilst not compromising on solubility (Figure 18). 

Furthermore they were the same two alkyl chains used in the previous study, allowing for a 

comparison of results. The 2-ethylhexyl side chain was also chosen for use in later work 

when the indenopyrazine monomer was to be copolymerised with an electron-withdrawing 

accepting unit, whereby the resultant polymers were to be tested for use as active layers in 

solar cells.  Ethylhexyl side chains have been shown to be some of the most successful in 

solar cell performance.22 
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Figure 18. Difference in packing due to side chain length 
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Synthesis and Characterisation of Indenopyrazine monomers and homo-

polymers 

The synthesis of the target materials is shown in Scheme 4. The synthesis of monomer 1 was 

performed via a modified literature procedure.23,24 The first modification was made to the 

initial step. In the original procedure, dry hydrochloric acid was bubbled through a benzene 

solution of the 5-bromoindanone in the presence of iso-pentylnitrite at 40°C. We found that 

stirring a toluene solution of 5-bromoindanone, iso-pentylnitrite and concentrated 

hydrochloric acid solution at 40°C gave a slightly improved yield (from 77 % to 80 %), but, 

more importantly, it allowed the reaction to be performed on a much larger scale without any 

special precautions. Formation of the dihydrodiindenopyrazine by the reduction of 5-bromo-

2,3-dihydro-2-(hydroxyimino)inden-1-one in the presence of ammonia proceeded smoothly 

over 3 days to give a reasonable yield of product (61%). Due to poor solubility, this was 

washed and used without further purification.  

For the alkylation of the dihydrodiindenopyrazine, the original literature procedure which 

utilised DMSO as the reaction solvent was also modified to facilitate purification. 

Dihydrodiindenopyrazine and the respective alkyl bromide and a phase transfer agent 

(tetrabutylammonium bromide) were dissolved in carefully degassed toluene and degassed 

sodium hydroxide solution was added. The resultant two-phase mixture was refluxed under 

argon in the absence of light for 3 days to afford the tetralkylated indenopyrazines 1-3. We 

found stringent exclusion of oxygen was necessary to prevent undesired oxidation of the 

bridged benzylic positions.  Following purification by column chromatography yields of the 

straight chain octyl derivative 1 were good (80%), with a slightly lower yield for the 

branched 2-ethylhexyl derivative 3 (62%), probably due to the fact that 1 was a crystalline 

solid, whereas 3 was a colourless oil. For the short chain derivative 2, a much lower yield of 

30% was obtained, possibly due to an increased tendency for 1-bromo-2-methylbutane to 
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undergo undesired elimination reactions to 2-methyl-but-1-ene in the presence of base. It was 

believed that 1-bromo-2-methylbutane may have a higher tendency to undergo elimination 

than 1-bromo-2-ethylhexane due to the reduced steric crowding around the hydrogen β to the 

Br for the former over the latter. 

Scheme 4. Synthesis of Indenopyrazine monomer 1, 2, 3 and the corresponding homo polymers IP-C8, IP-C1C4 and 

IP-C2C6. 
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For monomers 1-3 an extra purification step was performed, based on previous work by 

Meijer et al.25   

Prior to their study, the emission from polyfluorenes, was described as exhibiting a narrow 

emission band accompanied by a broad red-shifted emission contribution,26 with the broad 

red shifted emission being attributed to the bulk properties of polyfluorene. Many attempts 

were made such as block copolymerisation,27 dendronisation28 and end-capping29 to alter 

these bulk properties and a conclusion was drawn that intermolecular interactions dominate 

the bulk material properties.  However, List et al. demonstrated that many of the emissive 

characteristics can be reproduced by incorporating a keto defect into the polymer backbone.30     

Meijer worked on a series of oligo- and polyfluorenes and studied their photoluminescence 

properties. They proposed an extra purification step to remove any partially alkylated 

fluorene present, since they have an acidic hydrogen present that leads to defects in the final 

polymer. Stirring the monomer materials in the presence of a base in anhydrous hexane 

would react with any partially alkylated fluorene due to the acidity of the bridgehead protons 

and therefore become insoluble salts. The resulting salt could be simply removed by filtration 

through a short silica column.  They concluded that the origin of the broad red-shifted 

emission band was due to on-chain defects and that the removal of the occurrence of this 

rapid on-chain diffusion is a route to improving performance.31   

 

Scheme 5. Purification of octyl indenopyrazine monomer 

Following the procedure previously performed by Meijer et al, 1-3 were dissolved in dry 

THF and stirred with potassium tert-butoxide to react with any trace amounts of mono, di or 
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tri-alkylated products that had an acidic hydrogen present to form the potassium salt.  

Subsequent removal of THF under high vacuum, and dissolution of the product in dry hexane 

allowed the insoluble potassium salt to be removed via vacuum filtration. In all cases about 

85 % of the purified material was recovered, with the main loss being due to transfer issues. 

However, in all cases 1H NMR showed there was no difference in the spectra before and after 

this step. 

For 2,8-dibromo-6,6,12,12-tetra-2-methylbutyl-6-12-dihydro-diindeno[1,2-b,1’,2’-e]pyrazine 

it was possible to grow and isolate a crystal from a dilute solution of the monomer in hexane 

(approx. 1 mg/10 mL), for which a crystal structure was isolated (Figure 19).  It clearly 

demonstrates the planar backbone of the five fused rings and perpendicular orientation of the 

branched alkyl chains with respect to that backbone.    

 

 

  

 

 

Figure 19. Left: Crystal structure of 2,8-dibromo-6,6,12,12-tetramethylbutyl-6-12-dihydro-diindeno[1,2-b,1’,2’-

e]pyrazine showing the orientation of the alkyl chains in relation to the monomer backbone. All the hydrogens have 

been removed except for the tertiary hydrogen present on each of the 4 alkyl side chains. Right: Packing of individual 

indenopyrazine molecules (side chains removed for clarity). Crystal data for 1: C38H50Br2N2, M = 694.62, 

orthorhombic, P212121 (no. 19), a = 8.6592(2), b = 19.8570(5), c = 20.3443(6) Å, V = 3498.12(16) Å3, Z = 4, Dc = 1.319 g 

cm–3, μ(Mo-Kα) = 2.345 mm–1, T = 173 K, pale yellow tablets, Oxford Diffraction Xcalibur 3 diffractometer; 11825 

independent measured reflections (Rint = 0.0397), F2 refinement.43 R1(obs) = 0.0556, wR2(all) = 0.1350, 7662 

independent observed absorption-corrected reflections [|Fo| > 4σ(|Fo|), 2θmax = 65°], 413 parameters. The absolute 

structure of 1 was determined by a combination of R-factor tests [R1
+ = 0.0556, R1

– = 0.0697] and by use of the Flack 

parameter [x+ = 0.000(11)]. 
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The three homo polymerisations were carried out under Yamamoto polymerisation conditions 

in sealed microwave vials and the results are recorded in Table 2. A thoroughly degassed 

solution of indenopyrazine monomer in a DMF/toluene was added to 2.2 equivalents of 

Ni(COD)2, 2,2’bipyridine, and 1,5-cyclooctadiene in DMF/toluene and the reaction was 

heated to 80 °C for 72 hr. A mixed solvent system of toluene and DMF was utilised, since the 

Ni catalyst requires a polar, aprotic solvent like DMF to be present. However the polymer is 

poorly soluble in DMF, so a co-solvent of toluene was added to help the growing polymer 

remain in solution. The Yamamoto polymerisation has previously been shown to be quite 

sensitive to the ratio of the solvent, so we utilised a 1:1 ratio as a compromise between 

reactivity of the catalyst and solubility of the polymer. After an initial 1 hour of heating, a 

colour change from dark green to a much lighter luminescent green/blue was observed. The 

polymerisations were carried out for 3 days to ensure a high molecular weight was achieved 

because of the step growth method of polymerisation. The resulting polymers were 

precipitated into methanol and low molecular weight impurities and catalyst residues 

removed by extraction (Soxhlet) with methanol and acetone. The polymer was then extracted 

into hexane followed by chloroform, concentrated, re-dissolved in chlorobenzene and 

precipitated into cold methanol. This yielded the resulting polymers as bright yellow fibres.  

Table 2. Yield, molecular number (Mn), molecular weight (Mw), polydispersity index (PDI) and the degree of 

polymerisation (DP) for the three homo polymers 

Polymer Yield (%) Mn/kg/mol Mw/kg/mol PDI D.P1 

IP-C8 42 37 82 2.2 52 

IP-C1C4 12 8 14 1.8 14 

IP-C2C6 40 42 52 1.2 59 
1 Degree of polymerisation is based on Mn divided by molecular weight of repeat unit  

 

The yields were calculated based on the fraction of the soxhlet extraction where the majority 

of the polymer resided.  For IP-C8 and IP-C2C6 this was the hexane fraction.  Chloroform 

extraction of these two polymers was performed but only trace amounts of polymer were 
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recovered containing similar molecular weights to the previous hexane fractions. The high 

solubility in hexane is probably due to the high alkyl chain density on the polymer backbone. 

For IP-C1C4 the majority of the polymer was soluble in the acetone fraction.  This difference 

in solubility can be attributed to the difference in length of polymer and alkyl chains. 

IP-C1C4, having the shortest of alkyl chains, was likely to have been the first to precipitate 

out of solution during the polymerisation due to poor solubility in the reaction solvent. This 

low molecular weight then resulted in solubility in acetone.  The repeat units in IP-C2C6 and 

IP-C8 both possess longer alkyl chains than that of the repeat unit in IP-C1C4.  

The degree of polymerisation was calculated to take into account the different length and 

weight of the alkyl chains. This was done by dividing the molecular number of each polymer 

by the molecular weight of the repeating unit.  The straight chain IP-C8 had the largest 

degree of polymerisation with an average of 52 repeat units.  The branched polymers of 

IP-C1C4 had a lower degree of polymerisation 14 repeat units. The larger degree of 

polymerisation of IP-C8 and IP-C2C6 can be attributed to the solubility of the polymers in 

solution during polymerisation. IP-C2C6 had a bimodal distribution of molecular weights 

which can be attributed to the increased solubility due to side-chain effects.  

 

Optical Properties and Energy Levels 

The wavelengths of the absorption and emission maxima are an important property of 

semiconducting polymers with regards to achieving amplified spontaneous emission. The 

UV-Vis absorption of IP-C8, IP-C2C6 and IP-C1C4, in both solution and spun-cast thin 

film were recorded and are displayed in Figure 20 and summarised in Table 3. The UV-Vis 

graph of IP-C8 has an absorbance maximum in chloroform of 450 nm and in the solid state 

had a very similar absorption at 451 nm.  The small change in the position of the absorbance 

maximum suggests little order in the solid state. There is also a slight shoulder around 420 
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nm for both the solution and thin film spectra, and the intensity of this peak increases slightly 

upon film formation.    

The solution UV-Vis spectrum of IP-C2C6 is similar to that of IP-C8 having an absorption 

maximum at 452 nm. This value is very similar to the reported emission of IP-C2C6 on glass 

449 nm32, and a slightly more pronounced lower wavelength shoulder. This is to be expected 

because electronically the alkyl chains only contribute a very small amount to the overall 

energy levels of the final polymer. Upon film formation, there is again very little change to 

the absorption spectra, with the absorption maximum occurring at 449 nm, a slight 

hypsochromic shift compared to solution, and the shoulder peak becoming more pronounced 

upon film formation for this polymer. 

The solution and thin film UV-Vis spectrum of IP-C1C4 were recorded but the film quality 

was very poor due to the low molecular weight nature of the polymer. This gave rise to the 

large comparative absorbance of the glass, probably due to scattering. The absorption 

maximum for IP-C1C4 is 440 nm which is blue-shifted by 10 nm compared to both IP-C8 

and IP-C2C6 and can be attributed to the low molecular weight of the polymer. The solid 

state spectrum appears considerably different to the other polymers, with an appreciable 

broadening of the absorption and the appearance of a new longer wavelength shoulder. This 

could perhaps be indicative of some intramolecular ordering in the thin film. In addition, the 

indenopyrazine polymer show a high molar extinction coefficient of 59 000 M-1 cm-1 and 57 

100 M-1 cm-1 at 450 nm (Table 3). 

Variable temperature solution UV-Vis spectroscopy was also performed in order to 

investigate the formation of any solution aggregates. In all cases, the increased temperature 

simply resulted in a reduction in absorption intensity, related to the thermal expansion of the 

solvent, rather than any change of shape, suggesting that the polymers do not form aggregates 
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in solution which is in agreement with IP-C2C6 having a bimodal distribution of molecular 

weights rather than forming aggregates. As expected, IP-C8, IP-C1C4 and IP-C2C6 all 

exhibit a large optical band gap of 2.60, 2.81 and 2.58 eV respectively based upon the onset 

of absorption in thin film.   

 

 

Figure 20. UV-Vis absorption spectrum of IP-C8, IP-C2C6 and IP-C1C4 (bottom left) in chloroform and thin film. 
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Table 3. Optical and energy level data for IP-C8, IP-C1C4 and IP-C2C6.  

 max(nm) (M-1 cm-1) onset(nm)   

Polymer Solution Film Film I.P.(eV)1 LUMO (eV)2 Eg
opt (eV) 

IP-C8 450 (59 500) 451 476 - 6.0 - 3.4 2.6 

IP-C1C4 441 425 501 N/A N/A 2.8 

IP-C2C6 452 (57 100) 449 479 - 6.0 - 3.4 2.6 
1Ionisation potential recorded via PESa 
2 LUMO calculated based on onset of absorption  

 

The spectra were recorded in chlorobenzene and thin films spun from a 5 mg/mL solution of 

polymer in chlorobenzene. The ionisation potential was measured via photoelectron 

spectroscopy in air (error ±0.05 eV). The LUMO was estimated by subtraction of the optical 

band gap from the measured HOMO level. The optical band gap was estimated from the 

onset of absorption in the thin film.  IP-C8 and IP-C2C6 had very similar low lying HOMO 

energy levels of -5.97 eV and -6.02 eV respectively, which are identical within the error of 

the measurements (± 0.05 eV). The low lying HOMO levels can be attributed to the 

electronic structure of the indenopyrazine repeat unit which is comprised of fully aromatic 

benzene and pyrazine units. We were not able to perform measurements on the C1C4 

polymer due to the difficulties in forming homogenous films.  

The photoluminescence spectra of IP-C8 and IP-C2C6 were recorded in chloroform solution 

of varying concentrations as well as thin films (Figure 11). We were not able to record a 

consistent PL spectrum of IP-C1C4 due to poor film quality, which produced inconsistent 

results.  
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The concentration dependent photoluminescence spectroscopy for both the IP-C8 and 

IP-C2C6 showed similar results; concentrations ranging from 10-4-10-7 M were made up in 

chloroform. For dilute solutions, as the concentration increased from 10-7 to 10-6 M and 

finally 10-5 M, the emission intensity also increased with clear vibronic structure and well 

resolved peak maxima at 469 nm, 499 nm and 541 nm respectively. Increasing the 

concentration further did not correspond to an increase in emission intensity, but rather a 

decrease. For solutions of concentration of 10-4 M the emission intensity decreases with the 

primary  𝐒𝟏
𝟎 to 𝐒𝟎

𝟎 transition shifting to a longer wavelength of 475 nm. This reduction in 

emission intensity can be attributed to the increase in chromophore density and the resulting 

quenching of emission.  

Figure 21. Solution photoluminescence spectroscopy of both IP-C8 (top left) and IP-C2C6 (top right). The lower 

graph shows both IP-C8 and IP-C2C6 in thin film. 
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In the solid state IP-C8 displayed clear vibronic structure with peaks at 470 nm, 498 nm and 

538 nm, the Stokes shift in emission was 19 nm. These three emission peaks can be attributed 

to emission from the excited level of 𝐒𝟏
𝟎, to the 𝐒𝟎

𝟐, 𝐒𝟎
𝟏 and 𝐒𝟎

𝟎 vibronic levels.  The 𝐒𝟏
𝟎 → 𝐒𝟎

𝟎 

has the greatest intensity of emission followed by 𝐒𝟏
𝟎 → 𝐒𝟎

𝟏 and then a weak broad emission 

for the 𝐒𝟏
𝟎 → 𝐒𝟎

𝟐. IPC2C6 exhibits a vastly different emission in the solid state compared to 

that of IP-C8.  IP-C2C6 had the first emission peak maxima at 458 nm which corresponds to 

a 9 nm Stokes shift and exhibited 3 further broad emission speaks at 488 nm, 507 nm and 

538 nm. Unlike IP-C8 which has decreasing emission intensity as wavelength increases, the 

emission intensity increases. This is uncharacteristic of polymers and points to the suggestion 

that IP-C2C6 is aggregating in the solid state and emission from the ecxiplex occurs. Neither 

polymer observed emission at 700 nm, characteristic of a keto defect.33  

Table 4. Wavelength at with the 1st, 2nd and 3rd peak maxima occur for IP-C8 and IP-C2C6 in thin film spun from 

chlorobenzene.  

Polymer Emission 

Onset 

(nm) 

1st peak 

Emission 

Max 

(nm) 

2nd peak 

Emission 

Max 

(nm) 

3nd peak 

Emission 

Max 

(nm) 

4th peak 

Emission 

Max 

(nm) 

Stokes 

Shift (nm) 

IP-C8 442 470 498 538 N/A 19 

IP-C2C6 432 458 488 507 538 9 

 

 

Differential Scanning Calorimetry  

The varying of the structure of alkyl chains alters how polymers align in the solid state. IP-

C8 and IP-C2C6 were subjected to differential scanning calorimetry between -40 and 300°C 

in order to assess if they possessed any crystalline features.  
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Table 5. Melting and crystallisation data of IP-C8 and IP-C2C6 

Polymer IP-C8 IP-C2C6 

Melt Onset Temperature (°C) 217 219 

Melt Peak Temperature (°C) 238 224 

Crystallisation Onset Temperature (°C) 183 205 

Crystallisation Peak Temperature (°C) 177 201 

Supercooling (°C) 33 14 

Enthalpy of melting (J/g) 3 2 

Enthalpy of Crystallisation (J/g) 2 2 

 

Both polymers exhibited a degree of crystallinity. IP-C8 had a melting onset at 217 °C and a 

crystallisation onset at 183 °C, with a small enthalpy of fusion for both transitions. IP-C2C6 

showed a similar melting onset at a temperature of 219 °C with a crystallisation onset at 

205 °C. The difference between melting and crystallisation onset is referred to as 

supercooling.  The small supercooling value for IP-C2C6 suggests it could be liquid 

crystalline in nature. Similar liquid crystal phase transitions have been observed in many 

polyfluorene derivatives. 

Figure 22. Second full cycle of the DSC of IP-C8 (left) IP-C2C6 (right). The scans were run between the temperatures 

of -40°C and 300°C. The peak at 50°C was a known defect in the machine. 
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Conclusion 

From the studies of the homopolymers it can be concluded that the inclusion of n-octyl side 

chains affords highly soluble polymers with good molecular weight and little tendency to 

aggregate, either in solution or in the solid state. The incorporation of branched alkyl side 

chains has a significant effect on the properties of the polymer, with C1C4 branched chains 

being insufficient to afford soluble polymers of high molecular weight. 

  



59 

 

Synthesis and Characterisation of Indenopyrazine - Fluorene Copolymers  

Aims 

Based on the previous work by Bradley et al a series of 4 co-polymers comprised of 

indenopyrazine and fluorene were designed and synthesised to combine alternating short and 

long alkyl chains and observe the effect on the polymerisation, absorption, emission, 

crystallinity, bulk mobility and amplified spontaneous emission. 

The four monomers investigated were: a short branched 1-methyl butyl indenopyrazine; a 

longer straight octly chain indenopyrazine; a short propyl fluorene and longer octyl fluorene 

unit (Scheme 6). This combination produced a series of fours copolymers: the short chain 

indenopyrazine – short chain fluorene, IP-C1C4-F3; the short chain indenopyrazine – long 

chain fluorene, IP-C1C4-F8; the long chain indenopyrazine – short chain fluorene, IP-C8-F3 

and the long chain indenopyrazine – long chain fluorene, IP-C8-F8. A short branched 

indenopyrazine unit was used rather than an indenopyrazine containing a straight short chain 

to offer the balance of short chain length whilst not compromising the solubility of the 

resultant polymers.  The design principle of alternating short and long alkyl chains was to 

observe how the physical properties were affected by the proposed increase in interdigitation 

in the solid state. This desired increase in interdigitation was proposed to increase effective 

hoping between chains when compared to both IP-C1C4-F3 and IP-C8-F8.  Having a 

greater number of efficient hopping sites should, therefore, improve the charge carrier 

mobility of the polymers. It was hoped that maintaining a distance between adjacent 

backbones would not result in a compromise in photoluminescence quenching which affects 

the ability of a polymer thin film to achieve optical gain and amplified spontaneous emission. 
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Scheme 6. Two indenopyrazine units combined with the two fluorene units to give the series of 4 polymers. C8 = 

C8H17, C3 = C3H7. C1C4 = CH3C4H8. 

Synthesis 

The four polymers were all synthesised via standard Suzuki coupling. Equimolar amounts of 

the two monomers, indenopyrazine and fluorene were weighed into a microwave vial 

equipped with a small stirrer bar.  Under a heavy flow of argon, degassed toluene was added 

along with 2 drops of Aliquot 336, tetrakis(triphenylphosphine)palladium(0) (1.3 % eqv) and 

1 M K2CO3(aq).    The reaction was heated to 120°C for 3 days. The resulting reactions were 

precipitated into cold methanol and long weight oligomers and catalyst residues were 

extracted using methanol and acetone.  The polymers were extracted into hexane and after 

removal of the solvent, dissolved in chloroform. Palladium residues were removed by 

washing with sodium diethyldithiocarbonate34  After extraction and washing, the final 

polymers were obtained by precipitation into methanol as bright green/yellow fibres.   
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Table 6. Physical properties of the IP-F series. All the results were obtained based on the soxhlet fraction which 

contained the majority of the polymer. In all four cases this was the hexane fraction. 

Polymer Yield % Mn/kg/mol Mw/kg/mol PDI DP1 

IP-C1C4-F3 43 12 19 1.6 14 

IP-C1C4-F8 50 37 82 2.2 38 

IP-C8-F3 44 12 22 1.8 12 

IP-C8-F8 56 22 48 2.2 20 
1 Degree of polymerisation based on Mn 

 

The results of the polymerisations indicate that the inclusion of the short chain fluorene 

moiety had the greatest influence on the overall molecular weight, by both number and 

weight average. This can be attributed to the degree of solubility that is lost on shortening the 

alkyl chains on the fluorene and the resultant polymers precipitating out of solution 

preventing any further growth in chain length. Comparing the two F3 containing polymers 

there is little difference in the Mn between IP-C1C4-F3 and IP-C8-F3. From the earlier 

results on the homo indenopyrazine polymers it was expected that the increased solubility 

that the IP-C8 co-monomer offered compared to IP-C1C4 would be sufficient to promote 

polymer solubility. The fact that it wasn’t, suggests that the F3 unit dictated polymer 

solubility.   The two polymers IP-C1C4-F3 and IP-C8-F3 both had molecular numbers of 

half of that of their F8 containing counterparts.  Nevertheless the F3 containing polymers 

consisted of an average of over 10 repeat units. Although GPC is known to overestimate 

molecular weight, the fact that the repeat unit contains two aromatic monomers containing 

five individual phenyl rings suggests that these weights are still sufficient to reach the 

effective conjugation length.35,36,37  Therefore we expect that for the majority of physical 

analyses the molecular weight differences would not have a significant affect. The two F8 

containing polymers had a slightly larger PDI. This again can be attributed to the difference 

in solubility between the F8 and F3 moieties and the latter’s tendency to precipitate out of 

solution during polymerisation, limiting the polydispersity.  The yields of all the polymers 
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were high despite the problems encountered with the poor solubility of the of the 

homopolymer IP-C1C4. 

Optical Properties and Energy Levels 

The UV-Vis and photoluminescence spectra of the IP-F series were recorded to observe the 

effect varying the alkyl chains would have on the position of the absorption maximum in both 

solution and thin film. All spectra were recorded in dilute solution with their concentration 

adjusted to give an absorption value between 0.2 - 0.6. The UV-Vis spectroscopy results are 

presented in Figure 23 and summarised in Table 7.     

 

 

 

The UV-Vis spectroscopy data shows that all four co-polymers exhibit a similar max
 in the 

solid state at 435 nm.  IPC1C4-F3 and IPC8-F8, the polymers containing short – short or 

long – long alkyl chains exhibit a small bathochromic shift of approximately 1 nm when 

Figure 23. Solution and thin film UV-Vis absorption spectrum for the series of polymers IP-C1C4-F3, IP-C1C4-F8, 

IP-C8-F3 and IP-C8-F8. 
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going from solution to film.  IP-C1C4-F8 and IP-C8-F3, the two polymers containing a 

mixture of the short and long alkyl chains, undergo a slight hypsochromic shift of 1-3 nm on 

going from solution to film. They all exhibit a very similar onset at 456 nm. This onset 

corresponds to an optical band gap of 2.72 eV.  

Table 7. Optoelectronic results for IP-F series. 

  max(nm)  onset(nm)    

Polymer Solution Film  Film IP (eV)1 LUMO (eV) Eg
opt (eV) 2 

IPC1C4-F3 435 434 454 5.86 - 3.14 2.73 

IPC1C4-F8 432 435 453 5.87 - 3.14 2.72 

IPC8-F3 435 434 454 5.89 - 3.17 2.73 

IPC8-F8 435 436 454 5.87 - 3.13 2.73 
1 IP was estimated via PESa 

2 the optical band gap was estimated by the onset of absorption. 

 

The introduction of fluorene into the polymer backbone raises both the HOMO and LUMO 

energy levels closer to vacuum with respect to that of the homo indenopyrazine polymers.  

The HOMO energy level rose by approximately 0.15 eV and the LUMO by 0.2 eV. This is 

because fluorene is slightly more electron rich than indenopyrazine. The increase in the band 

gap also results in the absorption maxima blue-shifting to a shorter wavelength by 

approximately 20 nm.   

 

 

 

Figure 24. Thin film UV Vis-PL spectra on glass (left). Excitation intensity (right). 
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The emission spectra in the solid state for IP-C1C4-F3 IP-C1C4-F8, IP-C8-F3 and IP-C8-

F8 shown in Figure 24 were measured via an integrating sphere. The absorption spectra are 

also included to show the corresponding Stokes shift. As can be seen from Figure 24 all four 

polymers exhibit clear and well resolved vibronic structure with peaks at 470 nm, 490 nm and 

525 nm in the emission spectra. The right hand graph is a plot of the emission peak intensity 

against wavelength, corrected for film thickness. It can be seen clearly that IP-C1C4-F3, IP-

C1C4-F8 and IP-C8-F8 have similar emission intensities. IP-C8-F3 has a much lower 

intensity. 

Table 8. Photoluminescence spectroscopy results of the series of IP-F polymers 

Polymer Emission 

Onset (nm) 

1st peak  

Max (nm) 

2nd peak 

Max  (nm) 

3nd peak 

Max (nm) 

Stokes Shift 

(nm) 

IP-C1C4-F3 431 455 479 N/A 24 

IPC1C4-F8 427 455 484 N/A 29 

IPC8-F3 439 455 485 520 14 

IPC8-F8 434 455 483 521 21 

 

IP-C1C4-F3, IP-C1C4-F8 and IPC8-F8 all exhibit a larger Stokes shift than the 

corresponding HOMO polymer IP-C8, which can be related to the reduction in rigidity of the 

backbone of all three polymer versus IP-C8. IPC8-F3 has, however, a smaller Stokes shift 

although we note that the weak and rather broad emission affords a larger error in 

determining the maxima.  IP-C1C4-F3, IP-C1C4-F8 and IPC8-F8 all have similar 

transitions which can be attributed to the 𝐒𝟏
𝟎 → 𝐒𝟎

𝟎 at 455 nm,  𝐒𝟏
𝟎 → 𝐒𝟎

𝟏 at 480 nm and a 

broad emission for the 𝐒𝟏
𝟎 → 𝐒𝟎

𝟐 at 520 nm.   
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A correlation that appears to be present in the polymer series is the relationship between alkyl 

chain density and photon counts per second.  The right hand graph in Figure 24 shows the 

polymer exhibiting the greatest number of photons counts per second as IP-C1C4-F3 which 

has the lowest density of carbons on the alkyl chains per repeat unit in the series. As the 

number of carbons on the alkyl chains increase per repeat unit, the intensity or number of 

photon counts per second decreases. An anomaly arises with IP-C8-F3 which has a far 

reduced intensity than the other three polymers. This can be attributed to the fact that IP-C8-

F3 shows far lower absorption intensity (Figure 25) possibly due to film roughness.  

Differential Scanning Calorimetry   

The four polymers were studied using differential scanning calorimetry (DSC) to observe if 

the alternating long and short alkyl chains had an effect on the thermal behaviour of the 

polymers. The samples were prepared by dissolving a known amount of polymer in 

chlorobenzene and drop casting it into a DSC pan. The pan was then stored under argon 

overnight in order to remove the solvent. Due to the nature of the polymer this method of 

sample preparation was preferred because it produced samples which had uniform contact 

with the base of the DSC pan.  

Figure 25. Non normalised absorption coefficients 
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The DSCs of the four samples show that IP-C1C4-F3 and IP-C8-F8 are featureless between 

the ranges of -50°C – 300°C. IP-C8-F3 and IP-C1C4-F8, however, show semi-crystalline 

characteristics. On heating, the melt onset of IP-C8-F3 occurs at 259.0°C and IP-C1C4-F8 

at 260.7°C. The second feature being a crystallisation on cooling and having an onset at 

226.8°C and 216.7°C respectively. These features appear only on the polymers that contain 

alternating short and long alkyl chains and not on the polymers which contain either all short 

or all long chains. This date supports the theory that the combinations of alternating long and 

short chains allows the polymers to interdigitate, resulting in a more ordered structured. The 

enthalpies of melting were similar (2.1 J/g and 1.9°C IP-C8-F3 and IP-C1C4-F8 

respectively), and that of crystallisation was 4.2 J/g and 3.8 J/g. 

 

 

 
Figure 26. DSC of the series of the IP-F co-polymers. All 4 graphs are of the 1st cycle. Endo up/Exo down 
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Table 9. Comparison of thermal behaviour of IP-C8-F3 and IP-C1C4-F8 (first cycle) 

Polymer IP-C8-F3 IP-C1C4-F8 

Melt Onset Temperature (°C) 259.0 260.8 

Melt Peak Temperature (°C) 277.5 277.8 

Enthalpy of Melting (J/g) 2.1 1.9 

Crystallisation Onset Temperature (°C) 226.8 216.7 

Crystallisation Peak Temperature (°C) 213.6 204.2 

Enthalpy of Crystallisation (J/g) 4.2 3.8 

Difference in Onset Temperatures (°C) 32.2 44.1 

 

In the second and third cycles of the DSC, the previously mentioned features in IP-C8-F3 

and IP-C1C4-F8 were no longer present. There was no change in the thermal behaviour of 

IP-C1C4-F3 and IP-C8-F8. The change in behaviour on the second and third cycle might 

suggest that the initial endotherms were related to a thin film phase formed from solution that 

is not reformed upon thermal cycling.  

Amplified Spontaneous Emission 

Organic semiconductors are believed to be suitable for use in lasers because they absorb light 

strongly and do so over a short distance.  As stimulated emission is closely related to 

absorption this results in strong gain possibilities.  One of the requirements of a laser material 

is that it emits light efficiently. The photoluminescence quantum efficiency (PLQE) is 

defined as the ratio of the number of photons emitted over the number of incident photons 

absorbed.  The four copolymers were optically characterised in the form of thin films spin-

coated on glass.  Figure 27 shows the combined absorption, photoluminescence and amplified 

spontaneous emission (ASE) spectra. The thin film samples were prepared via spin coating 

on glass from toluene.  
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The ASE spectra were measured by spinning thin films of the respective polymers from a 

toluene solution of 20 mg / mL onto a quartz substrate. The film thicknesses were 117.5 nm, 

107 nm, 183nm and 70 nm. Each film was optically excited by a laser light source at 355 nm 

and the emission intensity recorded. The photoluminescence quantum efficiency was 

recorded for all four of the polymers and the results are tabulated in Table 10.  IP-C8-F8 has 

the highest recorded PLQE of the samples tested, with an efficiency of 25.7 %. Factors that 

limit the PLQE in the solid state include the formation of dimers, aggregates and excimers, 

all of which can quench emission.  With IP-C8-F8 consisting of long alkyl chains throughout 

the backbone, IP-C8-F8 will potentially exhibit the largest spacing between polymer chains 

and therefore be the least likely to form dimers or excimers, and is the least likely to undergo 

Figure 27.  Amplified spontaneous emission of IP-C1C4-F3, IP-C1C4-F8 and IP-C8-F8. The films were spun at 

20 mg/mL  
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emission quenching. The next highest PLQE is from the combination of the two short chains, 

IP-C1C4-F3 with a PLQE of 15.2 %. This is interesting because it would be expected that 

having a combination of the two shortest chains would lead to the closest packing in the solid 

state and therefore potentially the largest amount of emission quenching. We believe 

therefore that the branched side chain may help suppress solid state packing. IP-C1C4-F8 

and IPC8-F3 have lower PLQE values of 13.6 % and 11.6 % respectively.  This is in 

agreement with earlier results from the differential scanning calorimetry where peaks 

representing melting and crystallisation were observed suggesting that having the 

combination of alternating long and short alkyl chains do allow the polymer chains to 

interdigitate and order somewhat in the solid state. Even though this causes a reduction in the 

PLQE, for optimum lasing conditions the system requires a balance of PLQE and charge 

carrier mobility.  So while the interdigitation is the likely cause in the reduction of the PLQE, 

it is predicted that this interdigitation leads to closer chain packing. 

Table 10. The maximum absorption coefficient, the PLQE, the wavelength at which ASE occurs and the full width 

half maximum of the narrowed emission.   

Polymer IPC1C4-

F3 

IPC1C4-

F8 

IPC8-

F3 

IPC8-

F8 

Maximum absorption coefficient, (105
 cm-1) 2.5 2.5 1.7 2.3 

Photoluminescence quantum efficiency, (%)  15.2 13.6 11.4 25.7 

ASE wavelength λASE (nm) 489 488 - 485 

FWHM narrowed emission (nm) 5 5 - 5 

 

In three of the four polymers, gain was observed via amplified spontaneous emission. 

IPC8-F3 was not able to undergo amplified spontaneous emission and this can be attributed 

the low absorption coefficient of the polymer. The ASE was measured by spinning thin films 

of IP-C8-F3, IP-C1C4-F3, IPC1C4-F8 and IPC8-F8 from a toluene solution of 20 mg / mL 

onto a quartz substrate. Each film was optically excited by a laser light source (355 nm) and 

the emission intensity recorded. Above the pumping intensity required to induce gain a 
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spectral change was observed in the emission of IP-C1C4-F3, IP-C1C4-F8 and IP-C8-F8. 

Light at the peak of the gain spectrum was amplified more than other light, giving a 

spectrally narrowed emission.   

Compared to the previously published data on the alternating polyfluorene series the 

observed maximum absorption coefficients for IP-C1C4-F3 and IP-C1C4-F8 were greater at 

2.5 x 105 (cm-1) than for PFO (2.1 x 105 (cm-1)) which was comparable to IP-C8-F8.13  IP-

C1C4-F3 and IP-C1C4-F8 however, had a lower maximum absorption coefficient than the 

50/50 F8-F5 alternating polyfluorene. The lower absorption coefficient can be attributed to 

chain density with PFO and IP-C8-F8 > IP-C1C4-F3 and IP-C1C4-F8 > 50/50 F8-F5. The 

highest PLQE measured was for IP-C8F8 which gave a quantum efficiency of 25.7 %. 

Disappointingly this was half the value of that recorded for pure PFO. The alternating PFO 

had a PLQE efficiency as high as 60%.  The amplified spontaneous emission wavelength was 

red shifted by approximately 30 nm compared to the polyfluorene series. This is due to the 

red-shifted absorption of indenopyrazines compared to polyfluorenes.13   

 

Current Density – Voltage 

The current density – voltage characteristics of the four polymers were recorded via the 

steady state current – voltage (J-V) measurement and the transient space charge limited dark 

injection in order to obtain the bulk mobility of the charges.   The main difference between 

the dark injection method and the space charge limited current measurement is that dark 

injection is a transient measurement and JV is steady state. Despite attempted electrode 

modification, reliable results for the steady state current – voltage and space charge limited 

dark injection measurements were not able to be recorded due to the depth of the HOMO 

resulting in poor charge injection. Times of flight measurements were also attempted but due 
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to the poor absorption at 355 nm wavelength, a tight packet of charges was not able to be 

formed thus producing unreliable data. 

Conclusion 

The use of alternating short and long chain copolymers produced some promising results, 

with ASE results showing amplification of the 𝐒𝟏
𝟎 → 𝐒𝟎

𝟏 transition and a FWHM narrowing of 

emission to 5 nm. However due to the low PLQE, further optimisation is required before the 

materials are suitable for use in an optical laser. The depth of the HOMO level being close to 

5.8 eV proved to be problematic for the majority of the charge carrier measurements. 

However the electron affinity of the polymer was increased compared to PFO, from 2.85 eV 

of PFO to 3.14 eV. 
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Synthesis and Characterisation of Indenopyrazine-Triarylamine polymers 

Triarylamine semiconducting polymers have been shown to have excellent stability in air.38 

Zhang et al reported on the incorporation of fluorene and indenofluorene into triarylamine 

copolymers (Figure 28).39  The incorporation of these fused aromatics increased the charge 

carrier mobility of triarylamine polymers by an order of magnitude whilst retaining their air 

stability.  Planar conjugated aromatic repeat units in polymer backbones have been shown to 

promote highly ordered microstructures and extensive π stacking conformations.40  

 

Figure 28. Structures of fluorene and indenofluorene copolymerised with triarylamine. 

 

With the substitution of an indenopyrazine unit in place of an indenofluorene it was proposed 

that the stability offered by the pyrazine would lower the LUMO, promoting electron 

injection. In addition the lone pair of electrons on the central pyrazine unit might be able to 

interact with Lewis acids and transition metals for potential use in organic sensing devices. It 

was also predicted that the combination of the electron rich triarylamine and indenopyrazine 

would result in a higher HOMO compared to the indenopyrazine – fluorene series discussed 

earlier. The higher lying HOMO should reduce the barrier to injection previously seen for the 

indenopyrazine – fluorene series and thereby facilitate measurement of the mobility. 
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Synthesis 

The polymer was synthesised via a Suzuki coupling of dibromoindenopyrazine and the 

diboronic ester of 4-bromo-N-(4-bromophenyl)-N-(2,4-dimethylphenyl)benzenamine, 

following the conditions previously reported for the indenofluorene-TAA polymer. Here only 

the octyl substituted indenopyrazine was used to ensure good solubility of the resultant 

polymer. The resulting polymer was precipitated into methanol and low molecular weight 

impurities and catalyst residues removed by extraction (Soxhlet) with methanol and acetone. 

The polymer was then extracted into hexane followed by chloroform. Palladium residues 

were removed by washing with sodium diethyldithiocarbonate34  After extraction and 

washing, the final polymer was obtained by precipitation into methanol from hot 

chlorobenzene as bright green/yellow fibres. 

 

Scheme 7. Suzuki copolymerisation of indenopyrazine C8 monomer with the diboronic ester triarylamine 

The physical properties of the isolated polymer IP-C8-TAA are displayed in Table 11. The 

reaction gave a polymer consisting of 18 repeat units. IP-C8-TAA was highly soluble in 

hexane and chloroform and had a yield of 48%. 

Table 11. Yield, molecular number, molecular weight, PD and the degree of polymerisation for the triarylamine 

based polymer.  

Polymer Yield (%) Mn/kg.mol-1 Mw/kg.mol-1 PDI DP 

IP-C8-TAA 48 20 38 1.9 18 
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As IP-C8-TAA was synthesised in a relatively large amount it allowed for a significant 

fraction to be purified by preparative gel permeation chromatography (GPC), to test if the 

removal of low molecular weight undefined impurities would have a beneficial impact on 

performance.  Previous studies in the literature have suggested that minor impurities present 

can have a significant impact on performance for solar cell donor polymers41. Running a test 

sample of 1 mg through the GPC with the UV detector set at two different wavelengths 

showed a clear low molecular weight impurity that had an enhanced absorption at 300 nm 

compared to the bulk of the polymer. 

 

Figure 29. UV output from the GPC. The black line corresponds to the 300 nm wavelength. The pink line 

corresponds to the reading at 400 nm. 

 

In order to probe this observed peak more closely, a solution of 100 mg of IP-C8-TAA in 

chlorobenzene was prepared and filtered through a 0.4 micron PFTE filter. The solution was 

split into three portions. The first was not passed through the GPC machine and was simply 

concentrated under reduced pressure as the blank. The second fraction was passed through 

the GPC and the whole sample was collected for 25 minutes to observe the effects of a simple 

pass through the machine. The third fraction was injected and collected until 20 minutes to 

avoid collecting the materials responsible for the increase in UV absorption, after which time 
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the collection vial was changed. After concentration the molecular weight of all three 

fractions, as measured on an analytical GPC was identical except for a slight reduction in PDI 

for the final sample from 1.9 to 1.7.  

Optical Properties and Energy Levels 

The solution and thin film UV-Vis spectra are shown in Figure 30 . 

 

 

  

Table 12. Optoelectronic properties of IP-C8-TAA 

 max(nm) max(nm) onset(nm)   

Polymer solution Film Film HOMO 

(eV) 

LUMO 

(eV) 

(Eg
opt) 

IP-C8-TAA 441 447 480 -5.49 -2.69 2.80 

 

Figure 30 shows that IP-C8-TAA has a similar absorption profile to the previous IP-F series.  

IP-C8-TAA had an absorption maximum at 441 nm.  In the solid state the absorption was 

bathochromically shifted to 447 nm, perhaps due to some planarization of the polymer 

backbone in the solid state.  

In the solid state there was no noticeable difference in the absorption profile of the three 

fractions. A change did occur however, in the emission profile of the three fractions. The 

third purified sample produced an increase in emission intensity by an order of magnitude 

Figure 30. Solution and thin film absorption spectra of IP-C8-TAA. The solutions were made up in chloroform and 

the thin films were spun from chloroform on glass. The graph on the right is the photoluminescence spectroscopy 

for the three IPC8_TAA samples spun on quartz from 20 mg/mL chlorobenzene solution. The excitation wavelength 

was at 355 nm. 
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(corrected for thickness). This can be attributed to removal of impurities that were present in 

the original sample. The PLQE of all the samples were also measured in an integrating sphere 

but all three of them had less than 5% PLQE efficiency and so we were unsuitable to record 

ASE spectra.  

The HOMO energy levels were measured via PESA, the value of the HOMO energy level of 

the copolymer was 5.49 eV. This is higher than both the homo of indenopyrazine and the 

copolymers with fluorene, as a result of the electron rich triarylamine co-monomer. We also 

note that the inclusion of this co-monomer means that the backbone is no longer fully 

conjugated, since the sp3 N bridge acts as a conjugation blocker.  

Current – Voltage Measurements 

Due to the higher energy level of the HOMO IP-C8-TAA it was put forward that there would 

now be a lower barrier to injection and that a bulk hole mobility could be recorded.  

 

 

Diodes were fabricated using Au and ITO electrodes. Effective injection of holes was 

achieved. This can be ascribed to the raising of the HOMO energy level by 0.5 eV compared 

to that of IP-C8 which enables an ohmic contact. The magnitude of the current density was 1 

x 10-5 mA/cm2. However the measurement of current density does not give enough 

Figure 22. Current versus voltage measurement of IP-C8-TAA in a diode configuration with ITO and MoO3 modified 

Au electrodes. 
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information to accurately estimate mobility.42 With the prior knowledge of the HOMO level 

being at 5.49 eV, then it can be said that the contact of the semiconductor with the electrode 

is ohmic and assuming a perfect insulator with an electric field independent mobility, the 

Mott-Gurney equation estimates the mobility to be 1.1 x 10-3 cm2/V s. This is a similar order 

of magnitude to the previously reported indenofluorene-triarylamine polymers which had a 

corresponding mobility of 3.8 x 10-2 cm2/V s.39 

Dark Injection 

A second measurement of the bulk mobility of holes in IP-C8-TAA was carried out via space 

charge limited dark injection. Both the charges however, are generated electrically in contrast 

to time of flight measurements where the charges are generated by a laser pulse. 

 
Figure 23. Space charge limited charge injection of IP-C8-TAA. 
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In contrast to the low HOMO polymer, charges were able to be injected efficiently through 

the MoO3 modified Au electrode and the bulk mobility via dark injection was recorded to be 

4 x 10 -3 cm2V-1s-1, which is in agreement with the previous current – voltage measurement. 

Time of Flight  

The third measurement of hole mobility was a time of flight measurement.  The three 

fractions of the IPC8-TAA were all attempted to be recorded but the only sample that had a 

measureable time of flight was the sample that had the low molecular weight impurities. 

The time of flight mobility was calculated to be 8.53 x 10-4 cm2/V.s. This is of the same order 

of magnitude of homo polytriarylamine polymers. In the previous work by Zhang et al. the 

incorporation of fluorene and indenofluorene increased the OFET mobility by an order of 

magnitude, but the bulk mobility was not measured.39  Possible reasons why the bulk 

mobility did not increase could be attributed to the HOMO energy level of the polymer being 

lower than that of the TAA. Therefore more trap sites are present lowering the mobility of the 

holes.  

 

  

Figure 24. Time of flight transient for IP-C8-TAA. The polymer was deposited on MnO/Au electrode. It is a highly 

dispersive transient on a ln-ln plot at 20 V. 
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Conclusion 

In conclusion amplified spontaneous emission was observed in the series of alternating 

copolymers of indenopyrazine and fluorene. It was seen that the introduction of the 

alternating long and short alkyl chains did introduce a degree of interdigitation. This 

interdigitation however, compromised the resulting PLQE and in one case comprised it to 

such an extent that no ASE was observable. The interdigitation was supposed to give an 

increased mobility to compensate for the loss in PLQE but due to the resulting low lying 

levels of the HOMO no recordable mobility was able to be observed.   

The copolymerisation of a triarylamine unit with indenopyrazine proved to raise the HOMO 

by a sufficient amount as to achieve hole injection and obtain a value for the hole mobility of 

the indenopyrazine based polymers. No ASE measurements were able to be recorded due to 

the less than 5% PLQE of IP-TAA-C8. 

The series of homo indenopyrazine polymers offered more insight into the effect that the 

alkyl side chain had on the polymerisation and their physical properties. Both IP-C1C4 and 

IP-C2C6 were prevented from obtaining as large molecular weights as IP-C8 due to the 

tendency to form aggregates. A similar scenario was also observed in the IP-F series with the 

short F3 containing polymers being restricted due to solubility issues. Future work would be 

to try a combination of statistical copolymer of IP and F now a greater understanding of 

solubility has been realised. 

In order to realise an organic laser a compromise still needs to be found of chain length, 

energy levels and mobility whilst maintaining acceptable levels of solubility for the ability to 

be solution processed. 
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– Acceptor Copolymers Based on Indenopyrazine  
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Introduction 

Solar energy is one of the abundant sources of renewable energy and one of the most 

promising ways to tackle today’s energy crisis. Current photovoltaic technology is dominated 

by inorganic materials with their high associated manufacturing, material and energy costs. 

These high costs limit the potential to be used for widescale energy generation without 

substantial government subsidies and also limits competition due to the high barriers to entry 

into the market.1  Organic photovoltaics (OPV) are one of the leaders in low-cost 

photovoltaic solutions. OPV are based on organic semiconductors and one of the major 

differences between OPV and their silicon counterparts is the nature of the light harvesting. 

Organic semiconductors generate tightly bound excitons due to their low dielectric constant.  

The binding energy of the exciton is large and can be up to 1 eV.2  This large binding energy 

prevents the exciton dissociating via an electric field into the corresponding electron and 

hole.  This high binding energy however, is useful as previously seen for achieving high 

electroluminescence efficiency in OLED applications since the exciton does not dissociate in 

the presence of an electric field, which is a non-radiative decay pathway. 
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Figure 31. Energy level diagram depicting charge generation, separation and collection. 
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The operation of an OPV cell (Figure 31) involves the generation of free charge carries from 

an incident photon. As seen in the previous chapter, an incident photon of sufficient energy 

can cause promotion of an electron from the HOMO to the LUMO. In the previously 

mentioned system this generated electron – hole pair would then recombine and emit light. In 

order to extract energy, rather than light emission, charge separation of the associated 

electron-hole pair has to occur. The generated exciton migrates to the donor/acceptor 

interface where the difference in energy between the LUMO of the donor and the LUMO of 

the acceptor is the driving force for charge separation. Once the charges separate they then 

have to migrate towards the associated electrodes to be extracted in order to do work. 

A number of features are fundamental to device physics and are often used to define the 

performance of a cell other than just the overall efficiency.  The open circuit voltage is 

related to the difference in energy between the HOMO level of the donor and the LUMO 

level of the acceptor minus the energy associated with the exciton binding energy and this is 

the maximum voltage which can be extracted from a cell.3  The short circuit current is the 

amount of current generated at zero voltage, and is related to the amount of photons absorbed 

from the solar spectrum.  The external quantum efficiency is the ratio between the collected 

photogenerated charges and the number of incident photons, very much like the PLQE as 

mentioned in the previous chapter. The external quantum efficiency is made up of four 

efficiencies being absorption, exciton diffusion, charge separation and charge collection.   

Morphology is another crucial factor in bulk heterojunction solar cells. The preferred 

morphology is a bicontinuous interpenetration structure of donor and acceptor domains. The 

domain size is also important because if the domains are too large then the generated bound 

excitons are unable to diffuse to an interface where charge separation can occur. The typical 

diffusion length of an exciton  is 5-10 nm, so the ideal domain sizes would be approximately 

twice the exciton diffusion length.3   
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Many donor and acceptor studies have been investigated and there are numerous reviews.3–6  

In the context of this work the 4-7 bis(thiophene-2-yl)benzothia-diazole  (dTBT) unit has 

been widely studied (Figure 32) and it was first copolymerised with both thiophene and 

benzothiadiazole by Sonar et al. via Stille and Suzuki coupling routes respectively.7 Blends 

with PC70BM (A) produced the highest power conversion efficiency of 2.54%, with a 

polymer of number average molecular weight of 31 kg.mol-1. Four polymers consisting of 

dTBT and fluorene gave a range of molecular weight polymers with E having the highest at 

175 kg.mol-1 and F the lowest at 6 kg.mol-1.  The highest performing polymer for the series 

of four in a cell blended with PC70BM was C with an overall conversion efficiency of 3.1 %.  

G had a modest molecular number of 17 kg.mol-1 and when blended with PC61BM produced 

a conversion efficient of 2.0 %.  The final two polymers H and I had very similar molecular 

weights of Mn of 24 kg.mol-1 with the indenofluorene polymer slightly outperforming the 

fluorene derivative by 0.2 % with a PCE of 2.6%.      

Table 13. Mn/Mw, HOMO/LUMO, Voc, Jsc and PCE data. A) 1:4 PC70BM. B) 1:4 PC70BM. C) – F) 1:3 PC70BM G) 

PC61Bm 1:4. H) PC71BM 1:2 J) PC71BM 1:2. 

Polymer Mn/Mw 

kg.mol-1 

HOMO 

(eV) 

LUMO 

(eV) 

Voc 

(V) 

Jsc 

(mA/cm2) 

FF PCE 

(%) 

A 8.4/11.5 - 5.4 - 3.6 0.73 4.80 0.30 1.1 

B 31.1/56.1 - 5.2 - 3.2 0.86 7.27 0.41 2.5 

C 77.1/130.5 - 5.5 - 3.5 0.97 6.70 0.47 3.1 

D 175.0/318.0 - 5.6 - 3.6 1.06 4.90 0.41 2.2 

E 10.6/13.4 - 5.4 - 3.4 0.98 6.30 0.48 2.8 

F 6.2/14.0 - 5.5 - 3.6 0.94 6.20 0.46 2.7 

G 13.0/27.0 -5.6 - 3.7 0.97 4.86 0.43 2.1 

H 23.3/40.2 - 5.4 - 3.6 0.87 6.02 0.44 2.3 

I 25.5/43.2 - 5.5 - 3.7 0.90 6.12 0.48 2.6 
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Figure 32. dTBT Copolymers. Poly[4,7-bis(3-dodecylthiophene-2-yl) benzothia-diazole-co-benzothiadiazole] (A)7, 

poly[4,7-bis(3-dodecylthiophene-2-yl) benzothia-diazole-co-thiophene] (B)7, C,8 D,8 E,8 F, G9, H10 and I.10 

 

Aims 

The aim of this work was the synthesis of a range of push – pull copolymers based upon 

indenopyrazine as the donor, and acceptors consisting of a range of dTBT units. As discussed 

above indenofluorene based polymers copolymerised with dTBT produce devices with a high 

Voc close to 1 V. With the substitution of an indenopyrazine we aim to stabilize the LUMO 

level in order to broaden with wavelength of light absorbed, and hopefully improve the 

photocurrent of the devices. A range of different dTBT units were investigated, in which the 
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flanking thiophenes were kept identical, but the central BT unit was modified with a variety 

of substituents (Figure 33). 

 

Figure 33. Chemical structure of the proposed 4 co polymers of the IP-dTBT series. 

These four substituents were chosen because they offered a comparison of varying solubility, 

electronegativity and atomic sizes. The unsubstituted IP-dTBT would have the smallest 

group on the BT unit consisting of a hydrogen atom. The fluorine containing IP-dTBT-F 

would be similar to IP-dTBT in structure as the substituents are similar in size (hydrogen has 

a van der Waals radius of 1.2Ȧ whereas fluorine has a radius of 1.35Ȧ), however, the fluorine 

atom is the most electronegative element (fluorine has an electronegativity rating of 4.0 on 

the Pauling scale compared to hydrogen at 2.2) thus influencing the polymer electronic and 

physical properties. The incorporation of an alkoxy chain in IP-dTBT- OC8H17 is expected 

to increase solubility and also contains an oxygen substituent which acts as a an electron 

donor into the conjugated system.11 The final polymer IP-dTBT-SC12H25 contains a thioalkyl 

group which is expected to offer  a similar solubility profile compared to the alkoxy side, but 

the increased size of the sulphur compared to the oxygen as well as its differing donating 

ability may result in some changes in performance. All four polymers will be compared and 

contrasted, and their performance in organic solar cells assessed. 
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Synthesis  

The synthesis of monomer 2,8-bis-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6,6,12,12-

tetraoctyl-6,12-dihydrodiindeno[1,2-b:1’,2’-e]pyrazine was performed as explained in 

chapter 2. The four co monomers were synthesised according to literature procedures.12–14  

 

Scheme 8. Synthesis of the four polymers in the IP-dTBT series. 

All four polymers were synthesised via palladium catalysed Suzuki coupling. The monomers 

were heated in toluene in the presence of the phase transfer agent aliquot 336™, Pd(PPh3)4 

and aqueous K2CO3 as the base. The polymerisation proceeded slowly and was heated at 105 

°C for 3 days. The polymers were purified by soxhlet extraction with methanol, acetone and 

hexane to remove low molecular oligomers and catalyst residues. The remaining polymer 
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was dissolved into chloroform  and stirred with aqueous sodium diethyldithiocarbamate at 

50 °C for 3 hours to remove palladium residues.15 After work-up, the final polymers were 

precipitated from the minimum amount of hot chlorobenzene into methanol.  All four 

polymers were isolated as dark red fibres in good yields (Table 14).  

Table 14.  Polymer yields and molecular weight data. Molecular weights were determined by GPC against 

polystyrene standards 

Polymer Yield (%) Mn (kDa) Mw (kDa) PDI DP1 

IP-dTBT 68 40 81 2.1 39 

IP-dTBT-F 59 37 66 1.8 35 

IP-dTBT-OC8H17 63 78 105 1.3 61 

IP-dTBT-SC12H25 61 77 120 1.6 54 
1Degree of polymerisation is based on the number average molecular weight. 

 

The molecular weights of all polymers were measured by gel permeation chromatography in 

chlorobenzene at 80 °C against polystyrene standards. The four polymerisations all produced 

reasonably high molecular weights with comparable polydispersity.  The Mn was lower for 

both IP-dTBT and IP-dTBT-F in comparison to IP-dTBT-OC8H17 and IP-dTBT-SC12H25. 

The fluorinated polymer has a slightly lower degree of polymerisation, which we attribute to 

the lower solubility of this polymer in comparison to the other three. This could limit the 

molecular weight by precipitation of the growing polymer chain from solution during the 

polymerisation process. Nevertheless in all cases the degree of polymerisation appears 

sufficiently high to allow for a reasonable comparison of the properties of each polymer. 

Optical data and Energy Levels 

The UV-Vis absorption spectra of the series of four polymers were recorded in order to 

obtain an understanding of the optical band gap and their optical behaviour in the solid state. 

The optical band gap is a key parameter on the operation of a solar cell,16 and was measured 

here by at the point that the absorption and emission spectra overlap in the solid state. 

Chlorobenzene solutions and spin cast thin films were investigated to observe if there was 
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any change in the absorption spectrum on going from solution to film. The results can be seen 

in Figure 34 and summarised in Table 15.  

The UV-Vis absorption spectra show that varying the substituents on the benzothiadiazole 

acceptor unit had a pronounced effect on the absorption maximum in both thin film and 

solution.  The solution samples were dissolved in chlorobenzene and the thin films were spun 

from a solutin of 5mg/mL in chlorobenzene on to glass at a spin rate of 1000 rpm for 1 

minute.  When no substituent was present on the benzothiadiazole unit, IP-dTBT, the 

absorption spectrum in solution has two major feature peaks.  The higher energy absorption 

at the shorter wavelength of 420 nm can be attributed to the π – π* transition, compared to the 

longer wavelength absorption at 531 nm which is often attributed to a charge transfer 

transition from the π orbital of the delocalised HOMO to the localised LUMO of the 

benzothiadiazole.14  When the absorption of IP-dTBT was recorded in the solid state, a 

Figure 34. Absorption spectra of polymer IP-dTBT (A), IP-dTBT-F(B), IP-dTBT-OR (C) and IP-dTBT-SR (D)  
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bathochromic shift of both peaks was observed with the new maxima at 426 nm and 549 nm 

respectively.  The red-shift in absorption can be attributed to an increase in polymer planarity 

and molecular ordering in the solid state resulting. The increase in backbone planarity results 

in better π – π overlap along the backbone, and therefore a smaller band gap.  

Comparing IP-dTBT with F-dTBT (F)17 and IF-dTBT (G)17, all three show separate peaks 

relating to the π-π* transition and ICT transition.  The λmax in the solid state of F-dTBT was 

red-shifted 15 nm with respect to IP-dTBT, whilst IF-dTBT had a similar absorption that 

was blue-shifted by 4 nm.  It was also interesting to note that whilst IP-dTBT and F-dTBT 

had absorptions where the ICT was more intense than the π-π* transition, IF-dTBT was the 

opposite with a more intense π-π* transition. 

Table 15. Optical and energetic properties. The HOMO was measured via PESA. 

 max (nm) 

solution

max (nm) 

film 

onset (nm) 

Polymer π- π* CT π- π* CT Film HOMO  

(eV) 

±0.05 

LUMO1 

(eV) 

Eg
opt 2 

(eV)  

IP-dTBT 420 531 426 549 629 - 5.64 - 3.53 2.11 

IP-dTBT-F 417 535 420 554 608 - 5.68 - 3.58 2.10 

IP-dTBT-OR 431 523 434 547 594 - 5.62 - 3.55 2.07 

IP-dTBT-SR 425 484 426 496 592 - 5.79 - 3.77 2.02 
1 LUMO was calculated taking the HOMO plus the Eg

opt 
2 Eg

opt was taken as the intersect of absorption and emission in the solid state. 

 

With the introduction of the electron withdrawing fluorine onto the polymer backbone it was 

observed that the HOMO and LUMO energy levels of IP-dTBT-F deepened slightly with 

respect to that of IP-dTBT. The change was minor and within the error of the PESA 

measurements, but appears reasonable that the fluorine would withdraw electron density from 

the polymer backbone stabilising both energy levels. The major absorption peaks of IP-

dTBT-F in solution were 417 and 535 nm, and 420 nm and 554 nm in the thin film i.e. very 

little change with respect to the non-fluorinated analogue. There was also the emergence of a 
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small shoulder in UV spectra at 525 nm. This shoulder is suggestive of aggregation arising 

from strong polymer chain packing in the solid state. The shift upon film formation in the π – 

π* transition peak is 3 nm, and 19 nm for the charge transfer transition peak. There is also a 

change in the relative intensities of the two absorption peaks compared to IP-dTBT, with the 

charge transfer transition becoming more prominent. The presence of the fluorine and its 

associated increase in electronegativity will likely cause the LUMO to be lower in energy and 

more localised on the acceptor unit leading to the minor red shift in the charge transfer band. 

The relative increase in absorption could be ascribed to an increase in the overlap of the 

wavefunctions of the initial and final states and is discussed in more detail in the density 

functional theory calculations.   

Introducing the alkoxy side chain resulted in a slight increase of the ionisation potential of 

IP-dTBT-OC8H17 with respect to the parent polymer. Although oxygen is electronegative the 

overall effect is an increase in the ionisation potential , due to the mesomeric donation of the 

oxygen lone pairs of electrons. The peaks assigned to the π – π* transition in both solution 

and thin film were bathochromically shifted at 431 nm and 434 nm with respect to IP-dTBT 

and IP-dTBT-F.   The peaks associated with the ICT absorption are hypsochromically 

shifted to 523 nm and 547 nm with respect to IP-dTBT and IP-dTBT-F.   

 

Figure 35. The peak maxima for both solution (left) and film (right) of the π – π* transition and the ICT 

absorption 
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In the case of the thioalkyl substituted polymer, the π – π* transition peak was observed at 

425 nm in solution, very similar to that of the IP-dTBT.  However the ICT absorption peak is 

greatly blue shifted to 500 nm. A similar situation arises with the absorption when the 

polymer is in the solid state, a similar π – π* absorption and a blue-shifted charge transfer is 

observed. The ratio of the strength of absorptions for IP-dTBT-SC12H25 is the opposite of the 

three IP-dTBT polymers. The intensity of the ICT absorption is greatly reduced compared to 

the absorption of the π-π* transition. The weak ICT absorption could be attributed to the 

presence of the large sulphur atom on the BT unit, which causes a greater amount of twisting 

along the backbone between the BT and thiophene units. This twisting leads towards poor 

wavefunction overlap between the initial and final states resulting in a weak absorption being 

observed.   

The ionisation potential of IP-dTBT was recorded to be -5.64 eV.  From ionisation potentials 

estimated via PESA there is a small lowering of the HOMO level to -5.68 eV for 

IP-dTBT-F, but this difference is within the error of the technique (±0.05 eV), so it is 

difficult to make any conclusive interpretation of the effect of the electron withdrawing 

fluorine. IP-dTBT-SC12H25 had the largest ionisation potential at -5.79 eV, whilst IP-dTBT- 

OC8H17 had an ionisation potential close to that of IP-dTBT and IP-dTBT-F at -5.62 eV. In 

agreement with the literature the S-R containing polymer had the highest ionisation potential 

with a difference of ≈ 0.2 eV.14   

Density Functional Theory 

In order to probe the effect of the substituents on the backbone polymer conformation, 

computational models of trimers (i.e. three repeat units of the polymer chain) of the four 

polymers were calculated. In order to minimise the computational requirements, the actual 

sidechains were replaced with simple methyl groups. Calculations were run using DFT 
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methods, with Guassian 09 and a B3LYP/6-31G(*) basis set.  All calculations were allowed 

to relax to an energy minimum from a variety of molecular conformations (i.e. thiophenes 

either cis or trans to the BT unit) and the lowest energy confomers are shown. A theoretical 

value for the HOMO was able to be predicted from calculation.  

 

The results of the IP-dTBT calculation demonstrated that a partially twisted backbone was 

predicted (Figure 36). Along the backbone twisting occurs in two places. Using Figure 36 as 

a reference and measurements based around the central trimer, the first torsion angle twist is 

between the IP - T (plane of atoms 2 – 5) and has a value of 23°. The second torsion angle is 

between T – BT (plane of atoms 5 – 8) and in this case is smaller than the first angle with a 

value of 7.9°. Although we observed some twisting, it does not seem to strongly affect the 

delocalisation of the HOMO molecular orbital, which is distributed evenly along the full 

length of the conjugated backbone. In contrast the LUMO is more localised, however, being 

concentrated around the dTBT unit with only a slight presence across the indenopyrazine 

unit. 

Figure 36. DFT calculation of IP-dTBT (top), HOMO orbitals (middle) and LUMO orbitals (bottom) 
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Figure 37. Chemical structure of the IP-dTBT frame work highlighting the atoms and subsequent torsion angles that 

are relevant.  

Figure 38 shows the calculated structure of IP-dTBT-F and its associated HOMO and 

LUMO molecular orbital distributions.  The introduction of the fluorine onto the BT unit 

appears to planarise the backbone with respect to the unsubstituted IP-dTBT. There is a 

reduction in the IP-T (atoms 2-5) torsion angle to 21.4’ and a similar reduction to 3.7° of the 

T-BT (atoms 5-8) torsion angle.  We believe this is due to  an electronic interaction between 

fluorine and sulphur which promotes planarisation.18 The change in conformation correlates 

with the difference seen in the relative intensity of the charge transfer absorption and the 

wavefunction overlap of the initial and final states.  The distribution of the HOMO is 

relatively unchanged on the addition of F, but there is a slight concentration of the LUMO 

towards the BT unit. This slight concentration can be attributed to the greater 

electronegativity of the fluorine atom.  
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Table 16. Theoretical energy levels and predicted torsion angles of the four IP-DTBT polymers. 

Polymer HOMO (eV) LUMO(eV) Band gap (eV) Torsion IP-

T 

Torsion T-

BT 

IP-dTBT - 4.96 - 2.77 2.19 23.0° 7.0° 

IP-dTBT-F - 5.05 - 2.85 2.20 21.4° 3.7° 

IP-dTBT-OC8H17 - 4.88 - 2.63 2.25 23.2° 9.9° 

IP-dTBT-SC12H25 - 5.12 - 2.77 2.35 25.1° 54.9°  

 

Figure 39 shows the  DFT calculation of IP-DTBT-OC8H17 . The calculation shows the 

twisting between the IP-T was almost the same as IP-dTBT at 23.0°, but there was an 

increase in the torsion angle between T-BT. This increase can be attributed to the relative 

size of the oxygen atom and its steric interaction with the thiophene substituent. Once again 

the HOMO molecular orbital was distributed evenly along the polymer backbone. The central 

LUMO was less localised on the BT unit compared to the parent polymer, and was 

Figure 38. DFT calculation of IP-dTBT-F (top), HOMO orbitals (middle) and LUMO orbitals (bottom) 
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distributed over the adjacent aromatic units, likely due to the inductively withdrawing effects 

of the oxygen. 

 

 

The calculated minimum energy geometry of IP-dTBT-SC12H25 is shown in Figure 40. Here 

we observe substantial differences to the alkoxy polymer with respect to the twisting of the 

dTBT unit. Thus whilst the IP-T backbone twist remained relatively comparable to the three 

other polymers, the torsion angle between T-BT was very large at 54.9°.  

 

 

The large twisting was in agreement with the data recorded from UV-Vis spectroscopy.  The 

spectra were dramatically different to the other three polymers. The charge transfer peak was 

Figure 39. DFT Calculation of IP-DTBT- OC8H17 (top), HOMO orbitals (middle) and LUMO orbitals (bottom). 

Figure 40.  DFT Calculated minimum geometry of of IP-dTBT- SC12H25. 
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considerably lower than the π – π* transition. This suggests that there was poor wavefunction 

overlap between the initial and excited states of IP-dTBT-SC12H25. The thioalkyl substituent 

clearly caused a large deviation from backbone planarity around the electron accepting BT 

unit, reducing conjugation between the BT and the adjacent thiophene units and likely 

localising the LUMO on the BT.19 The calculated value of the ionisation potential is in 

agreement with the trend observed from the PESA measurements being ≈ 0.15 eV higher. 

 

 

Figure 41 IP-DTBT- SC12H25 (top), HOMO orbitals (middle) and LUMO orbitals (bottom). 

Due to the large twisting along the backbone the distribution of the HOMO orbital is greatly 

disrupted compared to the other three polymers in the series.  The HOMO resides almost 

solely on the indenopyrazine unit whilst the calculated LUMO is confined to the BT unit.  

This is in agreement with the UV-Vis absorption spectra where we predict poor wavefunction 

overlap between the inital and final state of the HOMO and LUMO.  
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Photoluminescence Spectroscopy 

The photoluminescence emissions were recorded for the four polymers in order to study the 

effects of varying the BT substituents on the emission wavelength. The crossover of the 

absorption and emission spectra was used to calculated the optical band gap. Films on glass 

were prepared by spin-coating from 5 mg / mL solutions in chlorobenzene. The UV and PL 

were recorded at room temperature.   

 

 

 

 

Table 17. Optical absorption and emissiotn for thin films of . 

Polymer Absorption max(nm) Emission max(nm) Δλ (nm) 

IP-dTBT 426 / 549 632 101 

IP-dTBT-F 420 / 554 644 109 

IP-dTBT-OC8H17  434 / 547 678 155 

IP-dTBT-SC12H25 426 / 496 700 204 

 

Figure 11. UV-Vis and PL spectra of the four IP-dTBT polymers. 
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The polymers did not exhibit a clear vibronic structure of emission as was seen in the 

indenopyrazine – fluorene series from chapter 2. This suggests that there was a wide range of 

emission wavelengths and not one dominant electronic transition. However  all four polymers 

exhibit a large difference in the absorption and emission maximum. For IP-dTBT the 

emission maximum was 632 nm, corresponding to a  Stokes shift of 101 nm.  This large 

Stokes shift can be attributed to the difference in structure of the ground state and excited 

state structure of the polymer. IF-dTBT had an emission maximum bathochromically shifted 

with a λmax of 613 nm with a smaller band gap of 1.97 eV.17 This is in agreement with the 

proposed lowering on the LUMO of indenopyrazine polymers compared to indenofluorene 

because the first absorption peak at 420 nm (IP-dTBT) is smaller in energy that the 

associated absorption of the indenofluorene unit of 402 nm.  

The emission wavelength was progressively red-shifted for the alkoxy and thioalkyl 

substituted polymers, and therefore the Stokes shift was progressively increased up to 204 nm 

for IP-dTBT-SC12H25. The large Stokes shift in the case of the of the thioalkyl substituted 

polymer can be ascribed to the large difference in geometry between the twisted ground state, 

and the more planar excited state, in analogy with that observed with carbazole polymers.14 
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Differential Scanning Calorimetry  

Differential scanning calorimetry measurements were performed on all polymers. No melt or 

crystallisation peaks were observed on any of the 3 cycles. This suggests that all the polymers 

are amorphous between the temperature range of 50°C and 300°C.  

 

 

 

 

We note that attempts to fabricate field effect transistors from all polymers were 

unsuccessful. We ascribe this to the large injection barrier for injecting charge from the gold 

electrodes, due to the large ionisation potential of the polymers. 

Photovoltaic devices 

The photovoltaic properties of the four IP-dTBT polymers were investigated in blends with 

PC70BM (1:4) and the polymer concentration was 10 mg/mL. Devices were fabricated by 

Figure 42. Differential scanning calorogrmas of of IP-dTBT (top left), IP-dTBT-F (top right), IP-dTBT-OR (bottom 

left) and IP-dTBT-SR (bottom left).  All four are of the first cycle in the temperature range of 0-250 °C with a heating 

rate of 10°C/min 
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spin coating blends of the polymer from chlorobenzene, with an architecture of 

glass/ITO/PEDOT/active layer/Ca/Al. 

 

Figure 43. J-V curve of the four polymers in the IP-dTBT series with a device architecture of 

ITO/PEDOT:PSS/IPdTBT active layer/PC71BM 

From Figure 43 it can be seen that all four polymers have a similar Voc close to 1 V with 

IP-dTBT-OC8H17 having the highest. The cell voltages measured do not track well with the 

measured ionisation potentials. This probably relates to the fact that the cells were not well 

optimised with little effort being put into optimisation. Thus different blend ratios or solvent 

additives were not investigated. Unfortunately the measurements were performed by a 

collaborator and further optimisation would likely improve performance.  Nevertheless we 

can clearly observe that high voltage is obtained in all cases, which may be useful for some 

applications. It is difficult to make many conclusions about the structure-property 

relationships due to the fact that all cells perform rather badly. 

Table 18. Photovoltaic device parameters for blends with PC71BM. Polymer:PC71BM ratio is 1:4 in all cases. 

Polymer Jsc (mA/cm2) Voc (V) Fill Factor PCE (%) 

IP-dTBT 3.12 0.97 0.42 1.27 

IP-dTBT-F 0.33 0.84 0.34 0.09 

IP-dTBT-OC8H17 1.11 1.02 0.46 0.52 

IP-dTBT-SC12H25 0.64 0.86 0.36 0.2 
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Conclusion 

Four novel indenopyrazine polymers were synthesised in order to investigate the effects of 

both indenopyrazine incorporation, and also the nature of the substituent of on the 

benzothiadiazole co-monomer. We found that that the incorporation of indenopyrazine 

instead of indenofluorene resulted in a slight blue shift in optical band gap. Tuning of the the 

benzothiadiazole substituents had a large influence on the optoelectronic properties, as a 

result of both electronic and geometrical effects. It was found that the introduction of large 

bulky substituents close to the polymer backbone greatly increased the degree of backbone 

twisting. Smaller substituents such as fluorine did not perturb backbone planarity, but 

resulted in a lowering of both the HOMO and LUMO. The fluorine also had a negative effect 

on the degree of polymerisation with its inclusion causing a reduction in chain length. 

Inclusion of thioalkyl sidechains resulted in polymers with a very large degree of backbone 

twisting. This degree of twisting had a negative effect on the overall OPV performance but it 

did produce a polymer that had a large Stoke shift of over 200 nm which could potentially be 

interesting in for use in applications where self-absorption should be minimised. 
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Introduction 

Organic field effect transistors (OFETs) have become one of the leading technological 

applications of organic semiconductors.1   It is the combination of their ability to be solution 

processed with good ambient stability and the constant improvements in charge carrier 

mobility that has led them to rival their inorganic counterparts.2   

There are many different transistor designs for inorganic semiconductors but only the field 

effect transistors are popular within the field of organic electronic devices and the four 

general architectures are displayed in Figure 44. All are composed of an active organic 

semiconductor layer that links the source and drain electrodes. The gate electrode is separated 

from the active layer by a dielectric layer, commonly silicon dioxide. The most frequently 

used architecture is the bottom gate – bottom contact as these devices can come prefabricated 

with only the active layer requiring deposition for testing.    

 

Figure 44. Structures of transistors (semiconductor = blue, dielectric = red, grey = electrodes) clockwise from top 

right. Top gate – top contact; bottom gate – bottom contact; bottom gate – top contact and top gate – bottom contact.  

When a voltage is applied to the gate electrode it creates an electric field across the dielectric 

and in doing so attracts the charger carriers to the semiconductor – dielectric interface 

allowing current to flow from source to drain (Figure 45, b).  Charge transport occurs when 

either an electron is in the LUMO or a hole is in the HOMO of the organic semiconductor.  

There are two ways of achieving this: one is through chemical doping but the more common 
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alternative is through the gate electrode.  Applying a potential in the gate changes the energy 

level of the carriers with respect to the HOMO and LUMO.   

Through the use of the applied voltages transistors are effectively on/off switches for electric 

circuits.  A potential difference is used between the source and the drain to control the 

amount of current that can flow when the gate electrode is on. When no voltage is applied to 

the gate, ideally no current should flow from the source to drain (Ioff). As the voltage is 

slowly increased at the gate a greater number of charges accumulate until a current is able to 

flow from source to drain. This is termed the turn on voltage and it is desirable to have a high 

ratio of Ion/Ioff. Increasing the potential difference between the source and the drain (VSD) 

increases the amount of current that flows from the source to the drain. Initially the increase 

in VSD is proportional to the increase in ISD and this is termed the linear region when 

analysing transistor performance (Figure 45a). Eventually an increase in VSD no longer gives 

a proportional increase in ISD and the device is starting to reach the saturation point. 

 

 

Doping 

Doping was first shown to have an influence over carrier concentration in the halogen doped 

system of polyacetylene.3  Doping is currently used in the thermally evaporated realm of 

OLEDs and they benefit from lower operating voltages, enhancement of lifetime and 

Figure 45. (a) typical current – voltage curve (b) the accumulation of positive charges at the semiconductor – 

dielectric  
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reduction of the device’s sensitivity to the electroded work function.4  The challenges in 

moving from the thermally evaporated OLEDs to the solution processed organic transistors 

are the associated complications of solubility of the dopant, adduct and organic 

semiconductor as well as controlling the spatial distribution of the dopant throughout the 

film. Commonly used dopant molecules for p-type semiconductors are molecules with a high 

electron affinity. There is a formal charge transfer from the p-type organic semiconductor to 

the dopant.5  Work by Leo et al demonstrated that tetrafluoro-tetracyano-quinodimethane 

(F4TCNQ) was a good p-doping material in diodes. Devices were fabricated by co-

sublimation with a phthalocyanine derivative.6,7 F4TCNQ was used because it could act as a 

strong electron acceptor with an electron affinity of -5.2 eV.  The electron affinity (LUMO) 

of -5.2 eV matches very well with the ionisation potential of a wide range of organic 

semiconductors.7  The F4TCNQ works as a dopant by forming a charge-transfer complex 

with the undoped semiconductor where there is a formal charge transfer from the HOMO of 

the organic semiconductor to the LUMO of the dopant (Figure 46).  There are two 

approaches to forming the charge transfer complex. The first is to match the LUMO of the 

dopant to the ionisation potential of the polymer, p-doping, or to match the ionisation 

potential of the dopant with the electron affinity of the polymer, n-doping. When solution 

processing dopants however, problems can arise with the co-solubility of the dopant, the 

semiconductor and the charge transfer complex.  To further the work of charge transfer 

complexes, additional study is required to further lower the electron affinity of the dopant (to 

below -5.7 eV for IP-T based polymers) in order to enable electrons to transfer from the 

HOMO of the semiconductor to the electron accepting dopant. 
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Figure 46. Formal transfer of integer charge and structure of p-dopant F4TNCQ 

Work by Salzmann el al has suggested that instead of the need to form an integer charge 

transfer complex, the formation of an intermolecular complex can also p-dope organic 

semiconductors (Figure 47).8   Salzmann used a verity of dopants to demonstrate the overlap 

of the frontier molecular orbitals between the dopant and the organic semiconductor and the 

formation of an intermolecular complex (Figure 48). 

 

Figure 47. Mixing of HOMO of semiconductor with LUMO of dopant to form new hybrid orbitals (red).  

Welch et al was able to demonstrate with small molecules, the interaction of lone pairs of 

electrons in the π–conjugated systems with Lewis acids.9  Welch significantly adjusted the 

optoelectronic properties of the organic semiconductor by the formation of the Lewis acid-

base complex.  The electron accepting Lewis acid was used to withdraw π electron density 

away from the backbone and form a new set of hybrid orbitals, in doing so reducing the band 

gap.   
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Figure 48. Structures of 18, 2a-d8 and 39. 

 

Aims 

The aim of this work is to synthesis a range of organic semiconductors with the specific 

intention for use as hole transporting materials and to study the affect of doping that the 

Lewis acid tris(pentafluorophenyl)borane (BCF) has on device performance. 

 

Figure 49. Target structures and BCF dopant 
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Indenofluorene has been heavily investigated as an OFET material due to its ambient air 

stability and easy of processability.10–12 Previous work by Friend et al. produced a series of 

copolymers of indenofluorene with bithiophene and terthiophene (Figure 50).13 They 

produced polymers of good molecular weights (20 kg/mol) with a modest hole mobility of 

1.1 x 10-4 cm2 V-1 s-1. Their analysis of the HOMO – LUMO levels was performed via cyclic 

voltammetry and a HOMO value was established of 5.55 ± 0.05 eV. The reduction potential 

was not observable via cyclic voltammetry leading the authors to suggest that the two 

polymers would be more suited to hole rather than electron transport because of the high 

barriers to charge injection. They also showed that the number of the interspacing thiophene 

units influenced the chain packing, with the terthiophene copolymer displaying a higher 

degree of interchain order and a well-defined fibrillar morphology.  A co-polymer of 

indenofluorene with thieno[3,2-b]thiophene has been reported with high molecular weights of 

45 kg/mol, but a rather poor solubility (Figure 50).14 This polymer afforded transistors with 

an order of magnitude higher mobility at 0.006 cm2 V-1 s-1.  

 

Figure 50. Structures of indenofluorene copolymerised with 2T, 3T and TT.  

Building on this work the two polymers IP-T and IP-TT were designed and synthesised, 

with the co-monomers chosen because of their simplicity and to allow for comparison with 

previously made polymers.  BCF was chosen as a dopant because of its strong Lewis acidity, 
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its resistance to air and moisture and the stability towards the boron – carbon bond.  Due to 

its empty pz orbital it can readily accept a lone pair of electrons.15  

Synthesis of IP –T and IP – TT 

The synthesis and purification of 2,8-dibromo-6,6,12,12-tetraoctyldiindeno[1,2-b:1,2-

e]pyrazine was explained in Chapter 2. Both polymers were synthesised via palladium 

catalysed Stille coupling (Scheme 9). The monomers were heated in chlorobenzene in the 

presence of the Pd(dba)2 and tri(o-tolyl)phosphine. The polymerisation proceeded rapidly via 

microwave assisted heating and were purified by soxhlet extraction with methanol, acetone 

and hexane to remove low molecular oligomers and catalyst residues. The remaining polymer 

was dissolved into chloroform  and stirred with aqueous sodium diethyldithiocarbamate at 

50 °C for 3 h to remove palladium residues.16 After work-up, the final polymers were 

precipitated from the minimum amount of hot chlorobenzene into methanol.   Both polymers 

were isolated as dark yellow fibres in good yields as tabulated in Table 19.  

 

Scheme 9. Synthetic route to polymerisation of IP-T and IP-TT 

Table 19. Polymer and molecular weight data 

Polymer Yield mg (%) Mn (kg/mol) Mw (kg/mol) PDI DP1 

IP-T 125 (69 %) 23 53 2.3 28 

IP-TT 94 (48%) 20 42 2.1 23 
1Degree of polymerisation is based on Mn. 
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The molecular weights of the polymers were measured by gel permeation chromatography in 

chlorobenzene at 80 °C against polystyrene standards. The polymerisations both produced 

reasonably high molecular weights with comparable polydispersity.  The Mn was lower for 

IP-TT compared to IP-T which we relate to the lower solubility the thieno[3,2-b]thiophene 

repeat unit compared to thiophene. This could limit the molecular weight by precipitation of 

the growing polymer chain from solution during the polymerisation process. Nevertheless in 

all cases the degree of polymerisation appears sufficiently high to allow for a reasonable 

comparison of the properties of each polymer. Similar work on the IF-2T and IF-3T series, 

which were also synthesised by Stille coupling produced polymers of similar molecular 

weight (20 kg/mol).13  We note that differential scanning calorimetry of the two polymers 

gave no evidence of crystallinity between the temperature range 50 – 300 °C.    

Optical data and Energy Levels 

The UV-Vis absorption spectra of the two polymers were recorded in order to obtain an 

understanding of the optical band gap and observe the difference in optical behaviour in the 

solid state. The results can be seen in Figure 51 and summarised in Table 20. 
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Figure 51. The UV-Vis spectra of IP-T and IP-TT in both solution (chlorobenzene) and as thin films . 
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Table 20. Optical and energetic properties of IP-T and IP-TT.  

 max(nm) onset(nm)   

Polymer Solution Film Film I.P. 

(eV)1 

LUMO 

(eV)2 

Eg
opt (eV) 

IP-T 487 492 515 5.78 -3.38 2.40 

IP-TT 495 498 525 5.82 -3.46 2.36 
1Ionisation potential was measured by PESa 

2 LUMO was estimated from the onset of absorption  

 

The solution samples were dissolved in chlorobenzene and the thin films were spun from a 

solution of 5mg/mL in chlorobenzene on to glass at a spin rate of 1000rpm for 1 minute.  The 

absorption of IP-TT was slightly bathochromically shifted by 8 nm in both film and solution 

compared to IP-T and the optical band gap, estimated from the onset of absorption was 

slightly smaller.  This can be attributed to the presence of the more electron rich thieno[3,2-

b]thiophene unit compared to thiophene. The measured ionisation potentials via PESA are 

similar, within the error limits of the measurement (±0.05 eV). Comparing the absorption 

spectra of IP-T and IP-TT with the reported for IF-2T and IF-3T, the absorption spectra of 

the pyrazine containing polymers are red-shifted by approximately 30 nm. IF-2T has a 

similar band gap of 2.38 eV whilst IF-3T has a reduced band gap of 2.10 eV.  It is difficult to 

compare the ionisation potentials, since the IP based polymers were measured by cyclic 

voltammetry versus photon electron spectroscopy in the current case. However according to 

the reported values, the ionisation potential of the IP based polymers were increased by 0.2 

eV in comparison to the IF polymer, which would be in agreement with the presence of the 

electron withdrawing pyrazine.    

Transistor and doping 

IP-T and IP-TT were tested as p-type materials for use in OFETs. As well as being tested as 

pristine charge carrying semiconductors they were also doped using the strong Lewis acid 

BCF in order to observe if there was an improvement in charge carrier mobility. Devices 
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were fabricated in a bottom contact/top gate architecture on glass substrates using an Au 

source-drain electrodes and CYTOP™ as a dielectric. The Au electrodes were treated with 

pentafluorobenzene thiol (PFBT) SAM to increase the work function. The polymers were 

dissolved in chlorobenzene (5 mg/ml) and spin cast at 2000 rpm from a hot solution for 60 s 

before being annealed at 160 °C for 30 min and cooled slowly to room temperature.   

 

  

Figure 52. Transfer (left) and output characteristics (right) of IP-T. Device dimensions W = 1000 μm L = 40 μm 

The initial performance of both IP-T and IP-TT was very poor, and the devices displayed 

substantial deviations from the expected behaviour (Figure 52). Devices could only be 

operated under very high gate voltages, and under these conditions substantial leakage 

currents are expected through the dielectric, contributing to an overestimation of the charge 

carrier mobility. We believe the reason transistors of IP-T and IP-TT require such high 

operating voltages is because they both possess very high ionisation potentials and so the 
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contact resistance between the electrode and semiconductor is very high leading to injection 

problems.  Therefore no meaningful charge carrier mobilities were extracted. 

In order to reduce the injection barrier we incorporated the dopant BCF into the film. Based 

on the previous work by Bazan et al.17 The polymer was dissolved in chlorobenzene (10 mM) 

and mixed with different amounts of BCF solution (10 mM in chlorobenzene). Extra solvent 

was added to each solution to keep the concentration of the polymer constant, which was 6.67 

mM. Bottom contact/top gate devices were then fabricated on glass substrates using Au 

source-drain electrodes and CYTOP dielectric. Au electrodes were treated with 

pentafluorobenzene thiol (PFBT) SAM to increase the work function. The solution was spin 

cast at 2000 rpm for 60 s. The channel width and length of the transistors are 1000 µm and 30 

µm, respectively. Mobility was extracted from the slope of ID
1/2 vs. VG. 

 

Figure 53. Absorption spectra of IP-T varying concentration of BCF. 

The UV-Vis spectra of IP-T with varying concentration of BCF spun on glass are shown in 

Figure 53. The un-doped film has a λmax at 495 nm with a strong shoulder around 450 nm and 

λonset of 515 nm.  BCF is known to show no absorption in the wavelength range of 400 – 800 

nm and this was confirmed experimentally.   For the blend films, as the concentration of BCF 

increases there is a noticeable reduction in the intensity of λmax and the emergence of a new 
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peak at longer wavelength. This new peak absorbs at 590 nm with a  λonset of 640 nm.  The 

emergence of this new peak is consistent with the formation of a complex between the 

pyrazine lone pair and the BCF. Such a complex would be expected to withdraw electron 

density from the pyrazine, resulting in the formation of zwitterionic type complex with BCF 

and therefore a lower energy charge transfer type band.  We also note the isosbestic point at 

520 nm, which suggests two separate species exist in the film, the uncomplexed and the 

complexed polymer chains. 

Transistors of IP-T/BCF were fabricated under identical conditions and the performance is 

summarised in Table 21 and Figure 54. The addition of BCF has a significant impact on 

device performance. Most importantly the turn-on voltage shifts to more positive values with 

even small amounts present. Since the formation of the polymer.BCF complex would be 

expected to make the polymer harder to oxidise i.e. more difficult to inject holes in a 

transistor devices, we suspect that the reduction in the apparent injection barrier may be due 

to interfacial dipole effects or perhaps due to trap filling. More investigation is needed in this 

area. Gratifyingly the charge carrier mobility increases at low loadings of BCF, peaking at 

0.039 cm2 V-1 s-1 with 0.05 equivalents before dropping at higher loading. The on/off ratio 

remains reasonable at these loadings. 

Table 21. Mobility and operating voltages of different concentrations of BCF in IP-T 

eq. of BCF µ (cm2V-1s-1) Von (V) VTh (V) on/off ratio 

0 0.0063 -54 -68 53 

0.01 0.016 -35 -47 2.3×102 

0.04 0.028 -23 -45 6.4×102 

0.05 0.039 -20 -37 2.0×103 

0.10 0.016 -31 -47 4.4×102 

0.20 0.012 -16 -34 8.3×102 

0.40 0.0039 -16 -28 6.2×102 

0.50 5.6×10-4 -14 -24 72 
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Figure 54. The transfer characteristics of IP-T  

Plotting the λmax absorption intensity, the absorption intensity at 590 nm and the hole mobility 

against the concentration of BCF dopant added, shows the increase in mobility reaches a 

maximum prior to the emergence of the strong absorption at 590 and before the intensity of 

the initial peak falls (Figure 55). At higher concentration of BCF we believe the formation of 

BCF clusters hinders the charge transport as the polymer chain become saturated. 

 

Figure 55.  λmax Absorption intensity, the absorption intensity at 590 nm and the hole mobility against concentration 

of BCF dopant added 

 

IP-TT was also doped with the same concentration range of BCF and the hole mobility 

recorded. The UV-vis absorption profile is shown in Figure 56. Very much like changes seen 

in the absorption profile of IP-T, there is a reduction in the absorption at λmax as the 

-60 -50 -40 -30 -20 -10 0 10

1E-10

1E-9

1E-8

1E-7

1E-6

-60 -50 -40 -30 -20 -10 0 10

0.0

0.2

0.4

0.6

0.8

 

 

I D
 /
 A

V
G
 / V

V
D
 = -60 V

        eq. of BCF

 0.01

 0.04

 0.05

 0.10

 0.20

 0.40

 0.50

I D
 s

a
t1

/2
 /
1
0

3
A

1
/2

0

0.01

0.02

0.03

0.04

0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5

Absortpion intensity at
487 nm

Absorption intensity at
590 nm

mobility



122 

 

concentration of BCF increases. Likewise, there is the emergence of a new absorption peak 

with a λonset of 675 nm.   

 

Figure 56. Absorption spectra of IP-TT varying concentration of BCF. 

 

Figure 57. The transfer characteristics of IP-TT 

The transistor results show a similar trend as for IP-T. As the initial concentration of BCF 

increases there is a substantial shift in the onset towards positive voltages, and a large 

increase in the hole mobility. Again the mobility peaks at 0.05 equivalents of BCF, before 
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dropping at high loadings. The maximum hole mobility is an order of magnitude greater for 

IP-TT than IP-T at 0.43 cm2/V.s. 

Table 22. Mobility and operating voltages of different concentrations of BCF in IP-TT. 

eq. of BCF µ (cm2V-1s-1) Von (V) VTh (V) on/off ratio 

0 0.019 -70 -97 9.1×102 

0.01 0.24 -41 -90 1.5×104 

0.02 0.19 -52 -95 1.3×104 

0.04 0.25 -48 -93 1.4×104 

0.05 0.43 -43 -94 3.7×104 

0.20 0.16 -38 -79 3.8×104 

0.40 0.019 -38 -57 5.4×103 

0.50 0.0071 -22 -57 2.1×102 

 

In both cases there appears to be a sharp fall in the peak intensity of the λmax at BCF 

concentration 0.01 eq.  

 

Figure 58. λmax Absorption intensity, the absorption intensity at 610 nm and the hole mobility against concentration 

of BCF dopant added 

Comparing these results to the previous work by Bazan et al, who studied the polymer series 

poly[(4,4-di2-ethylhexyldithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(1,4-pyridyl)] (DTS-Py) 

(Figure 59) and doping with BCF they observed similar tendencies for an increase in 

mobility up to dopant concentration of 0.02 eqv.17  
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Figure 59. Structure of DTS-Py. 

At the optimum doping levels of 0.02 eq they observed an increase of two orders of 

magnitude in bulk charge carrier mobility from 3.2 x 10-5 cm2 V-1 s-1 to 2.5 x 10-3 cm2 V-1 s-1. 

For both IP-T and IP-TT we observed  optimum doping levels that were double that of DTS-

Py at 0.05 eqv and resulted in an increases of an order of magnitude in hole mobility.  They 

also invested the temperature dependence in hole only diode devices, which enabled them to 

calculate the activation energy for each system. It was found that the 0.02 eqv doping levels 

resulted in a 90 meV decrease in activation energy. 

Conclusion 

Indenopyrazine – thiophene and indenopyrazine - thienothiophene polymers were 

investigated for use as active layers in organic transistors. Hole injection was achieved under 

high voltages to obtain mobilities of 0.0063 cm2V-1s-1 and 0.019 cm2V-1s-1 respectively. Use 

of BCF dopant increased the charge carrier mobility whilst also reducing the operating 

voltages with the optimum doping level determined to be 0.05 eq of BCF. Addition of the 

dopant saw improved mobilities of 0.039 cm2 V-1 s-1and 0.43 cm2 V-1 s-1 respectively.  We 

believe this is the first demonstration of BCF doping in a transistor device. Additional work 

could involve testing a verity of different dopants and investigating if the number of doping 

sites per repeat unit affects the quantity of dopant required to achieve maximum gains in 

mobility. 
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Alkylidene Indenopyrazine 

Alkylidene based indenofluorene at the time of writing have not yet been published, but the 

analogous work done by Heeney et al 18 on the fluorene system has shown that changing the 

sp3 carbon at the 9 position of fluorene to an sp2 C – C double bone planarizes the backbone, 

which causes a red shift in the absorption spectra. The field effect mobilities were also 

measured and in the order of 10-4 cm2 V-1 s-1.18 (Figure 60) 

 

Figure 60. Structures of polyfluorene and poly-alkylidene-fluorene 

Computational studies of both polymers by Salaneck et al suggested that both polymers 

should have identical ionisation potentials. However the experimentally observed value was 

0.4 eV lower for C8PAF (as measured by UPS). The authors rationalised these differences to 

solid state packing effects, which were more pronounced for C8PAF.19 The aim of this work 

is to synthesise alkylidene-indenopyrazine to produce a polymer that has a higher HOMO 

energy level and function as a hole transporting material.  

 

Figure 61. Target alkylidene indenopyrazine 
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Synthesis of alkylidene indenopyrazine  

The synthesis of the target polymer is shown in Scheme 10 and is based upon the route 

developed to C8PAF. Here the key step was the formation of a ketene dithioacetal and 

subsequent nucleophilic displacement of the thiol groups with a Grignard reagent in the 

presence of a copper catalyst. 

The dihydrodiindenopyrazine building block 3 was prepared as reported in previous chapters. 

The dihydrodiindenopyrazine anion was formed via reaction with the non-nucleophilic strong 

base sodium tert-butoxide in DMSO. The formation of a ketene dithioacetal by condensation 

of the dihydrodiindenopyrazine anion with carbon disulfide was followed by the in situ 

alkylation of the resulting diketene dithiolate anion with methyl iodide to give the 

dimethylated thioacetal as a red solid in a good yield of 80 %. The reaction of the 

dimethylated thioacetal with 4.4 eqv of Grignard reagent at -5°C in THF in the presence of a 

catalytic amount of Kuchi’s salt gave the product as a yellow oil. Purification via filtration 

through celite and subsequent column chromatography over silica (eluent hexane) with an 

aluminium oxide plug yielded a yellow solid in a moderate yield of 30 %.   

 

Scheme 10. Synthesis of alkylidene indenopyrazine 
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The homopolymerisation was carried out under Yamamoto polymerisation conditions in 

sealed microwave vial and the results are recorded in Table 23. After an initial 1 hour of 

heating, a colour change from dark green to a much lighter luminescent green/blue was 

observed. The polymerisation was carried out for 72 h to ensure a high molecular weight was 

achieved because of the step growth method of polymerisation. The resulting polymer was 

precipitated into methanol and low molecular weight impurities and catalyst residues 

removed by extraction (Soxhlet) with methanol and acetone. The polymer was then extracted 

into hexane, concentrated, re-dissolved in chlorobenzene and precipitated into cold methanol 

to yield the resulting polymer as yellow fibres.  

 

Scheme 11. Synthesis of poly alkylidene indenopyrazine 

 

Table 23. Physical properties of AIP  

Polymer Yield (%) Mn/kg/mol Mw/kg/mol PDI Degree Polymerisation1 

AIP-C8 34 22 48 2.2 30 
1 Degree of polymerisation is based on Mn divided by molecular weight of repeat unit 

 

A large portion of the polymer was removed in the acetone washing of the soxhlet due to its 

low molecular weight.  Like IP-C8 the polymer was very soluble in hexane and had a high 

degree of polymerisation.   
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Optical properties and Energy levels 

 

Figure 62. Absorption spectroscopy of AIP 

Table 24. Optical and energetic properties of AIP. 

 max(nm) (M-1 cm-1) onset(nm)   

Polymer Solution Film Film I.P. (eV) LUMO (eV) Eg
opt (eV) 

AIP-C8 441 441 468 5.75 3.11 2.64 

 

The ionisation potential energy of AIP-C8 was measured by PESA as 5.75 eV. In 

comparison to IP-C8, the introduction of the alkylidene decreases the ionisation potential by 

0.25 eV.  The optical band gaps are very similar, and if the LUMO energy is estimated by 

subtracting the optical gap from the ionisation potential, then AIP-C8 has higher lying 

LUMO of 3.11 eV compared to 3.37 eV of IP-C8. 

The main premise of the introduction of the alkylidene side chain was in order to induce more 

planarity in the backbone and therefore raise the HOMO energy level. This was achieved 

with raising the HOMO by 0.25 eV, however when the materials were tested as hole 

transporting materials no charge injection was observed. 

Conclusion 

The synthesis of novel alkylidene indenofluorene homopolymer was demonstrated and the 

desired increase in HOMO energy was achieved, increasing from the deep – 6.00 eV of IP-

C8 to – 5.75 eV. Despite the raising of the HOMO however, charge injection was still not 
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achievable. Future co-polymerisation with thiophene and thienothiophene should raise the 

HOMO further and with increased planarization of the backbone high mobilities should be 

achieved.  

Towards the synthesis of IPDT 

Indacenodithiophene (IDT) has been heavily studied but it was Zhang et al. who first 

copolymerised it with thienothiophene producing excellent hole mobilities in the order of 

0.15 cm2 V-1 s-1. Comparing IDT-TT with IF-TT the degree of polymerisation was slightly 

higher (64 kg/mol). The polymer was amorphous in the solid state with a HOMO energy 

level of -5.4 eV. The introduction of the terminal thiophene make the monomer more electron 

rich and therefore raises the HOMO closer to the vacuum level.20     

 

Figure 63. Structure of poly(indacenodithiophene) 

The aim of this work was to synthesise the pyrazine analogue of IDT. Having already 

observed the benefits of indenopyrazine compared to indenofluorene we predicted that IDPz 

would observe a similar reduction in the LUMO energy level whilst simultaneously raising 

the HOMO energy level to produce conditions favourable to both hole and electron charge 

injection whilst still maintaining the excellent optical properties previously observed for 

indenopyrazine. 
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Synthesis 

 

Scheme 12. Synthesis of target monomer IPDT 

 

The synthesis of the target materials is shown in Scheme 12. The synthesis of 1 was 

performed via a literature procedure.21 Under an argon atmosphere, 3-(3-thienyl)-2-propenoic 

acid was dissolved in isopropanol. Ammonium formate and Pd-C were then added in one 

portion and the reaction stirred at 40°C for 24 h. Small scale reactions proceeded in good 

yield. On scaling up of the reaction care had to be taken on the addition of Pd-C to prevent 

excessive heat and the subsequent evolution of hydrogen gas. The reaction gave a good yield 

of 83.6% and experimental data was in accordance with literature.21  
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The next step was the intramolecular Friedal-Crafts acylation to form the cyclic ketone.  

Various conditions were investigated including direct ring closure of the carboxylic acid in 

the presence of dehydrating acids like conc. H2SO4 or poyl(phosphonic) acid without success. 

However the reaction of the acid chloride was found to be most promising. Therefore 3-

(thien-3-yl)propanoic acid was dissolved in dry diethyl ether and thionyl chloride added. The 

reaction was heated to 50 °C for 3.5 h and on cooling the solvent was removed under reduced 

pressure.  The acid chloride was used immediately. Dissolving in dichloromethane it was 

transferred to a solution of AlCl3 in dry dichloromethane. The reaction was stirred at room 

temperature for 5 h before being quenched with HCl/ice water obtaining a final yield of 41%. 

The subsequent formation of the oxime was performed via the formation of the enolate and 

addition of amyl nitrite. In previous work on the benzo analogue the formation of the enolate 

was evident because of the formation of a partially soluble white precipitate. With the 

thiophene analogue 4,5-dihydro-6H-cyclopenta[b]thiophen-6-one there was no evidence of 

precipitate formation on the addition of the acid.  A low rate of enolate formation was 

proposed as a factor to the low reaction yield, currently below 10 %. Optimum conditions 

were found to be cold addition of concentrated acid followed by warming to room 

temperature overnight.  

Formation of 4,9-dihydro-s-indenopyrazine[1,2-b:5,6-b']-dithiophene by the reduction of 4,-

dihydro-6H-cyclopenta[b]thiophene-2-one-3-oxime in the presence of ammonia proceeded 

over 3 days to give a poor yield of product. Purification was hampered by poor solubility and 

the crude product was therefore used in the next alkylation step. However no product could 

be isolated. 

Overall despite over 24 months work towards the target material, the low yields and 

difficulties with purification meant the synthesis was unsuccessful.  Although a promising 
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route to the cyclic ketone has been found, the rest of the synthesis route remains problematic.  

Future work should concentrate upon alternative routes. 

Conclusion  

Based on the success of IDT and the high mobilities it has achieved and combining that with 

the order of magnitude improvement in mobility observed in the doping of IP-TT the 

potential for a doped IDPT-TT system would take the device performance well above that of 

commercially available silicon. The difficulty arises in finding a convenient synthetic route to 

obtain the monomers. Due to the incurred solubility issues observed one such approach 

would be to attempt to alkylate the initial 3-(thien-3-yl)propanoic acid in order to make the 

products more soluble in common organic solvents.  There were two other routes that were 

proposed but initial steps in synthesis were problematic. 
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General Experimental 

Unless otherwise stated, all reactions were conducted under argon, using an argon filled dual 

manifold and standard Schlenk line techniques. All solvents and reagents were obtained from 

commercial sources (Aldrich, Acros, Thermo Fisher, VWR and Fluorochem) and used as 

received. Flash column chromatography was performed on Merck Kieselgel 60 (230-400 

mesh) silica.  Analytical thin layer chromatography (TLC) was performed on pre-coated 0.25 

mm thick Merck 5715 Kieselgel 60 F254 silica gel plates and observed under 254 nm or 366 

nm ultraviolet light. 1H NMR spectra were measured on a Bruker Av-400 (400 MHz) 

instrument and 13C{1H} NMR were measured on a Bruker Av-400 (101 MHz). Chemical 

shifts are reported in ppm, relative to the residual protons in the deuterated solvents. All 

spectra were analysed using MestreNova v5.3 software, from MestreLab. UV-Vis spectra 

were recorded at 298 K on a UV-1601 Shimadzu UV-Vis spectrometer. Solution UV-Vis 

spectra were carried out in chloroform solutions at concentrations of ~10-6 M. Thin films of 

polymers were spin coated from chlorobenzene solutions with a concentration of 5 mg/mL, 

on a Laurell spin coater at 1000 rpm for 1 min. Photoelectron spectroscopy in air (PESA) 

measurements were made using a Riken Keiki AC-II at CSIRO Materials Science and 

Engineering, Australia. Electrospray (ESI) mass spectrometry was performed with a Thermo 

Electron Corporation DSQII mass spectrometer. Electron Ionization (EI) mass spectrometry 

was performed on a Micromass Autospec Premier instrument. Elemental Analyses were 

determined by Mr. Stephen Boyer at London Metropolitan University, North Campus, 

Holloway Road, London, N7. GPC data was collected using an Agilent Technologies 1200 

series instrument, with two mixed B columns, in series, at 80 °C and using chlorobenzene as 

the eluent, at a flow rate of 1 mL/min. The instrument was calibrated using narrow 

polydispersity polystyrene standards. Devices were fabricated on ITO-coated glass substrates 

were cleaned with acetone and isopropyl alcohol, followed by drying and oxygen plasma 
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treatment. A 30 nm layer of PEDOT:PSS (AI4083) was spin-coated onto the plasma-treated 

ITO substrate and annealed at 150 °C for 30 min. An active layer consisting of 1:3 blend of 

polymer (10 mg/mL) and PC71BM (30 mg/mL, Solenne) dissolved in o-dichlorobenzene (o-

DCB) was spin-coated on the PEDOT:PSS layer and then Ca (30 nm)/Al (100 nm) cathode 

was finally deposited by thermal evaporation under high vacuum (10-6 mbar) through a 

shadow mask. The pixel size, defined by the spatial overlap of the ITO anode and Ca/Al 

cathode, was 0.045 cm2. The device characteristics were obtained using a xenon lamp at 

AM1.5 solar illumination (Oriel Instruments). 

  

 

Synthesis of 5-bromo-2,3-dihydro-2-(hydroxyimino)inden-1-one 

 

To a solution of 5-bromo-indanone (17.48 g, 82.80 mmol) in toluene (250 mL) was added 2 

M HCl (30 mL).  The solution was stirred at room temperature for 30 min before isoamyl 

nitrate (13.35 mL, 99.40 mmol) was added drop wise over 45 min. The reaction was warmed 

to 40°C and stirred overnight at that temperature.  The reaction was cooled to room 

temperature, filtered and the solid washed with MeOH (100 mL). The product was collected 

and slurried in diethyl ether, and then filtered to obtain the product as an off-white solid. 

Yield = 16.08 g, 81%. Mpt. 202°C (Lit = 204°C1). MS (GCMS, EI+): 160.0, 162.0 (M+). 1H 

NMR (400 MHz, CDCl3) δ (ppm): 12.72 (s, 1H), 7.92 (s, 1H), 7.70 (s, 2H), 3.80 (s, 2H).  
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Synthesis of 2,8-dibromo-6,12-dihydrodiindeno[1,2-b:1,2-e]pyrazine 

 

5-Bromo-2,3-dihydro-2-(hydroxyimino)inden-1-one (16.08 g, 67.00 mmol) and sodium 

dithionate (14.00 g, 80.40 mmol) were dissolved in ethanol (125 mL) and degassed.  

Ammonia solution (125 mL, 28%) was added under argon and the solution stirred for 72 hr in 

the absence of light.  Water (100 mL) was then added and the mixture heated to reflux in air 

for 24 hr.  The resulting solution was cooled to room temperature, filtered, rinsed with 

methanol and diethyl ether and dried to obtain the product as an orange solid. Yield = 8.32 g, 

61 %. MS (GCMS, EI+):=  414.0 (M+). 1H NMR (400 MHz, CDCl3) δ (ppm): 8.01 (d, J = 8.4 

Hz, 2H), 7.82 (d, J = 1.4 Hz, 2H), 7.67 (dd, J = 8.4, 1.4 Hz, 2H), 4.06 (s, 4H).  

 

Synthesis of 2,8-dibromo-6,6,12,12-tetraoctyldiindeno[1,2-b:1,2-e]pyrazine 

 

2,8-Dibromo-6,12-dihydrodiindeno[1,2-b:1,2-e]pyrazine (2.00 g, 4.85 mmol), 

tetrabutylammonium bromide (0.08 g, 0.24 mmol) and 1-bromooctane (4.12 g, 21.30 mmol) 

were dissolved in toluene (50 mL) and thoroughly degassed. A solution of thoroughly 

degassed sodium hydroxide (1.94 g, 48.50 mmol) in water (50 mL) was added and the 

reaction mixture refluxed for 48 h in the absence of light. The solution was allowed to cool to 

room temperature and most of the toluene was removed under reduced pressure. The 

remaining aqueous emulsion was extracted with chloroform. The chloroform extracts were 

combined,  dried (MgSO4), filtered and concentrated under reduced pressure to afford the 
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crude product. Purification via column chromatography over silica (eluent: hexane) afforded 

the product as a white solid. Yield = 2.59 g, 72%. Mpt  100 – 101 °C. MS (GCMS, EI+): 

862.3 (M+). 1H NMR (400 MHz, CDCl3) δ (ppm): 7.97 (d, J = 6.9 Hz, 2H), 7.59 (s, 2H), 7.57 

(d, 6.9 Hz, 2H), 2.26 (t, J = 12.7, 4H), 1.98 (t, J = 12.7, 4H), 1.06-1.24 (m, 48H), 0.81 (t, J = 

7.3Hz, 12H). 

 

Synthesis of 2,8-dibromo-6,6,12,12-tetra-2-methylbutyldiindeno[1,2-b:1,2-

e]pyrazine 

 

2,8-Dibromo-6,12-dihydrodiindeno[1,2-b:1,2-e]pyrazine (4.00 g, 9.60 mmol), 

tetrabutylammonium bromide (0.16 g, 0.96 mmol) and 1-bromo-2-methylbutane (6.63 g, 

42.24 mmol) were dissolved in toluene (100 mL) and thoroughly degassed. A solution of 

thoroughly degassed sodium hydroxide (3.84 g, 96.00 mmol) in water (100 mL) was added 

and the reaction mixture refluxed for 48 hr in the absence of light. The solution was allowed 

to cool to room temperature and most of the toluene was removed under reduced pressure. 

The remaining aqueous emulsion was extracted with chloroform. The chloroform extracts 

were combined,  dried (MgSO4), filtered and concentrated under reduced pressure to afford 

the crude product. Purification via column chromatography over silica (eluent hexane) 

afforded the product as a white solid. Yield = 1.82 g, 32 %. Mpt.  196 – 197 °C. MS (GCMS, 

EI+): = 694.4 (M+). Anal. Calcd. for (C38H50Br2N2): C, 65.71; H, 7.26; N, 4.03. Found: C, 

65.80; H, 7.36; N, 4.14. 1H NMR (400 MHz, CDCl3) δ (ppm): 7.99 (d, J = 8.0 Hz, 2H), 

7.62 (m, 4H), 2.45 (dd, J = 13.8, 5.0 Hz, 2H), 2.24 (dd, J = 13.8, 8.2 Hz, 2H), 2.07 (dd, J = 
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13.9, 3.5, 2H), 1.86 (dd, J = 13.8, 5.8 Hz, 2H), 0.99-0.40 (m, 30H), 0.20-0.15 (m, 6H). 13C 

NMR (101 MHz, CDCl3) δ: 163.38, 152.42, 130.73, 127.19, 123.13, 122.54, 52.87, 46.34, 

46.10, 31.04, 30.86, 30.60, 30.10, 21.04, 20.44, 11.04, 10.41.  

 

Synthesis of 2,8-dibromo-6,6,12,12-tetraethylhexyldiindeno[1,2-b:1,2-e]pyrazine 

 

2,8-Dibromo-6,12-dihydrodiindeno[1,2-b:1,2-e]pyrazine (4.00 g, 9.60 mmol), 

tetrabutylammonium bromide (0.16 g, 0.96 mmol) and 1-bromo-2-ethyl-hexane (9.38 g, 

48.30 mmol) were dissolved in toluene (100 mL) and thoroughly degassed. A solution of 

thoroughly degassed sodium hydroxide (3.84 g, 96.00 mmol) in water (100 mL) was added 

and the reaction mixture refluxed for 48 hr in the absence of light. The solution was allowed 

to cool to room temperature and most of the toluene was removed under reduced pressure. 

The remaining aqueous emulsion was extracted with chloroform. The chloroform extracts 

were combined, dried (MgSO4), filtered and concentrated under reduced pressure to afford 

the crude product. Purification via column chromatography over silica (eluent hexane) 

afforded the product as a colourless oil. Yield = 2.20 g, 52%. Mpt = 20 - 21°C; MS (GCMS, 

EI+):  862.0 (M+); Anal. calcd. for (C50H74Br2N2): C, 69.59; H, 8.64; N, 3.25. Found: C, 

69.51; H, 8.66; N, 3.15. 1H NMR (400 MHz, CDCl3) δ (ppm): 7.92 (d, J = 8.1, 2H), 7.62 (s, 

2H), 7.56 (d, J = 8.1, 2H), 2.32 (m, 4H), 1.91 (m, 4H), 1.27 (m, 4H) 0.95 – 0.42 (m, 62H). 

13C NMR (101 MHz, CDCl3) δ: 162.95, 152.50, 151.68, 137,62, 130.57, 125.99, 123.40, 

122.50, 53.23, 38.61, 32.72, 28.70, 30.02, 29.57, 23.79, 22.67, 13.89.  
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General procedure for salt wash purification 

 

The monomer (200 mg) was dissolved in dry THF (50 mL). 1 M Potassium tert-butoxide 

(4.5 mL in THF) was added dropwise and the reaction stirred for 15 min. THF was removed 

under reduced pressure and the remaining precipitate was dissolved in dry hexane (25 mL).  

Filtration through alumina and subsequent removal of the hexane under reduced pressure 

yielded the purified product. This was repeated twice for each monomer.  

 

Synthesis of poly(6,6,12,12-tetraoctyldiindeno[1,2-b:1,2-e]pyrazine) 

 

A thoroughly degassed solution of 2,8-dibromo-6,6,12,12-tetraoctyldiindeno[1,2-b:1,2-

e]pyrazine (0.20 g, 0.24 mmol) in toluene (0.5 mL) and DMF (0.5 mL) was added to a 

degassed solution of Ni(COD)2 (0.15g, 5.30 mmol), 2,2’-bipyridine (0.08 g, 0.53 mmol) and 

1,5-cyclooctadiene (0.06 mL, 0.53 mmol) in toluene (2 mL) and DMF (2 mL) under an inert 

atmosphere in a sealed microwave vial.  The combined solution was heated to 85 oC for 72 h. 

The resulting solution was poured into cold methanol, filtered and the polymer extracted 

(soxhlet) with methanol, acetone, hexane and chloroform. The chloroform fraction was 

concentrated under reduced pressure and dissolved in chloroform/water solution (100 mL/100 
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mL). Sodium diethyldithiocarbamate trihydrate (0.50 g) was added and the solution was 

stirred vigorously at 50 °C for 3 h.  The chloroform solution was washed with water, dried 

(MgSO4), concentrated and precipitated from chlorobenzene into cold methanol to yield the 

polymer as bright yellow fibres. Yield = 86 mg, 42 %. GPC: Mn = 37 000 Da, PDI = 2.2 

1H NMR (400 MHz, CDCl3) δ (ppm): 8.26 (s, 2H), 7.85-7.79 (m, 4H), 2.38 (b, 4H), 2.16 (b, 

4H), 1.60-1.49 (b, 40H), 1.13 (b, 8H), 0.82 (m, 12H). 

 

Synthesis of poly(6,6,12,12-tetramethylbutyldiindeno[1,2-b:1,2-e]pyrazine) 

 

A thoroughly degassed solution of 2,8-dibromo-6,6,12,12-tetramethylbutyldiindeno[1,2-

b:1,2-e]pyrazine (0.20 g, 0.28 mmol) in toluene (1.3 mL) and DMF (1.3 mL) was added to a 

degassed solution of Ni(COD)2 (0.18 g, 0.63 mmol), 2,2’-bipyridine (0.01 g, 0.63 mmol) and 

1,5-cyclooctadiene (0.07 mL, 0.63 mmol) in toluene (2 mL) and DMF (2 mL) under an inert 

atmosphere in a sealed microwave vial.  The combined solution was heated to 85 oC for 72 h. 

The resulting solution was poured into cold methanol, filtered and the polymer extracted   

(soxhlet) with methanol, acetone, hexane and chloroform. The chloroform fraction was 

concentrated under reduced pressure and dissolved in chloroform/water solution 

(100 mL/100 mL).  Sodium diethyldithiocarbamate trihydrate (0.5 g) was added and the 

solution was stirred vigorously at 50 °C for 3 h. The chloroform solution was washed with 

water, dried over MgSO4, concentrated and precipitated from chlorobenzene into cold 

methanol to yield the polymer as bright yellow fibres. Yield = 19 mg, 12 %. GPC: 

Mn = 8 000 Da, PDI = 1.8 
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1H NMR (400 MHz, CDCl3) δ (ppm): 8.32 (s, 2H), 7.75 (m, 4H), 2.50 (b, 4H), 2.04 (b, 4H), 

1.50 (b, 12H), 1.00 (m, 12H), 0.72 (t, 12H), 

 

Synthesis of poly(6,6,12,12-tetra-2-ethylhexylldiindeno[1,2-b:1,2-e]pyrazine) 

 

A thoroughly degassed solution of 2,8-dibromo-6,6,12,12-tetraethylhexyldiindeno[1,2-b:1,2-

e]pyrazine (0.20 g, 0.23 mmol) in toluene (0.5 mL) and DMF (0.5 mL) was added to a 

degassed solution of Ni(COD) (0.14 g, 5.10 mmol), 2,2’bipyridine (0.08 g, 0.51 mmol) and 

1,5- cyclooctadiene (0.06 mL, 0.51 mmol) in toluene (2 mL) and DMF (2 mL) under an inert 

atmosphere in a sealed microwave vial.  The combined solution was heated to 85 oC for 72 h. 

The resulting solution was poured into cold methanol, filtered and the polymer extracted 

(soxhlet) with methanol, acetone, hexane and chloroform. The chloroform fraction was 

concentrated under reduced pressure and dissolved in chloroform/water solution (100 mL/100 

mL). Sodium diethyldithiocarbamate trihydrate (0.50 g) was added and the solution was 

stirred vigorously at 50°C for 3 hr. The chloroform solution was washed with water, dried 

over MgSO4, concentrated and precipitated from chlorobenzene into cold methanol to yield 

polymer as bright yellow fibres. Yield = 82 mg, 40%. GPC: Mn = 16 000 Da, PDI = 1.5.  

1H NMR (400 MHz, CDCl3) δ (ppm): 8.36 (s, 2H), 7.79 (m, 4H), 2.56 (b, 4H), 2.11 (b, 4H), 

1.50 (b, 36H), 1.00 (b, 12H), 0.72 (m, 12H). 
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Synthesis of poly(6,6,12,12-tetraoctyldiindeno[1,2-b:1,2-e]pyrazine-co-9-9-

dipropylfluorene) 

 

2,8-Dibromo-6,6,12,12-tetraoctyldiindeno[1,2-b:1,2-e]pyrazine (0.20 g, 0.23 mmol), 9,9-di-

n-propyl-2,7-bis-(1,3,2-dioxaborolan-2-yl)fluorene (0.13 g, 0.23 mmol),  dry toluene (4 mL) 

and aliquot 336 (2 drops) were placed in a microwave vial and thoroughly degassed.  

Pd(PPh3)4 (4 mg, 1.3 eq) was added quickly and finally degassed 1 M K2CO3 (aq)  (1 mL) 

was added in one portion. The reaction mixture was further degassed for 15 min before being 

heated in an oil bath to 110 °C for 48 h. The resulting solution was poured into cold 

methanol, filtered into a soxhlet thimble and then extracted (soxhlet) using methanol, 

acetone, hexane and chloroform. The chloroform fraction was concentrated under reduced 

pressure and subsequently dissolved in chloroform/water solution (100 mL/100 mL) and 

sodium diethyldithiocarbamate trihydrate (0.50 g) was added. The solution was stirred 

vigorously at 50 °C for 3 h. After allowing to cool to room temperature the chloroform 

solution was washed with water, dried (MgSO4), concentrated and precipitated from 

chlorobenzene into cold methanol to yield the polymer as bright yellow fibres.  Yield = 

87 mg, 44 %. GPC: Mn = 12 000 Da, PDI = 1.8. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.25 

(d, J = 8.1 Hz,  2H), 7.90 (d, J = 8.1 Hz, 2H), 7.82 (d, J = 8.1 Hz, 2H), 7.78 - 7.74 (b, 6H), 

2.49 - 2.31 (b, 4H), 2.25 - 2.03 (b, 8H), 1.12 (m, 38H), 0.99 – 0.88 (b, 8H), 0.82 (m, 24H). 
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Synthesis of poly(6,6,12,12-tetraoctyldiindeno[1,2-b:1,2-e]pyrazine-co- 9-9-

dioctylfluorene) 

 

2,8-Dibromo-6,6,12,12-tetraoctyldiindeno[1,2-b:1,2-e]pyrazine (0.20 g, 0.23 mmol), 9,9-di-

n-octyl-2,7-bis-(1,3,2-dioxaborolan-2-yl)fluorene (0.16g, 0.23 mmol)  dry toluene (4 mL) and 

aliquot 336 (2 drops) were placed in a microwave vial and thoroughly degassed.  Pd(PPh3)4 

(4 mg, 1.3 eq.) was added quickly and finally degassed 1 M K2CO3 (aq)  (1 mL) was added in 

one portion. The reaction mixture was further degassed for 15 min before being heated to 

110 °C for 48 h. The resulting solution was poured into cold methanol, filtered into a soxhlet 

thimble and then extracted (soxhlet) using methanol, acetone, hexane and chloroform. The 

chloroform fraction was concentrated under reduced pressure and subsequently dissolved in 

chloroform/water solution (100 mL/100 mL) and sodium diethyldithiocarbamate trihydrate 

(0.50 g) was added. The solution was stirred vigorously at 50 °C for 3 h. After allowing to 

cool to room temperature the chloroform solution was washed with water, dried (MgSO4), 

concentrated and precipitated from chlorobenzene into cold methanol to yield the polymer as 

bright yellow/green fibres.  Yield = 125mg, 56 %. GPC: Mn = 22 000 Da, PDI = 2.2. 1H 

NMR (400 MHz, CDCl3) δ (ppm): 8.22 (d, J = 8.1 Hz, 2H), 7.89 (d, J = 8.1 Hz, 2H), 7.82 – 

7.67 (m, 8H), 2.45 - 2.32 (b, 4H), 2.23 - 2.02 (b, 8H), 1.17 - 1.12 (m, 70H), 0.84 (m, 24H). 
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Synthesis of poly(6,6,12,12-tetramethylbutyldiindeno[1,2-b:1,2-e]pyrazine-co-9-9 

dipropylylfluorene) 

 

2,8-Dibromo-6,6,12,12-tetramethylbutyldiindeno[1,2-b:1,2-e]pyrazine (0.20 g, 0.29 mmol), 

9,9-di-n-propyl-2,7-bis-(1,3,2-dioxaborolan-2-yl)fluorene (0.12 g, 0.29 mmol)  dry toluene 

(4 mL) and aliquot 336 (2 drops) were placed in a microwave vial and thoroughly degassed.  

Pd(PPh3)4 (4 mg, 1.3 eq.) was added quickly and finally degassed 1 M K2CO3 (aq)  (1 mL) 

was added in one portion. The reaction mixture was further degassed for 15 min before being 

heated to 110 °C for 48 h. The resulting solution was poured into cold methanol, filtered into 

a soxhlet thimble and then extracted (soxhlet) using methanol, acetone, hexane and 

chloroform. The chloroform fraction was concentrated under reduced pressure and 

subsequently dissolved in chloroform/water solution (100 mL/100 mL) and sodium 

diethyldithiocarbamate trihydrate (0.50 g) was added. The solution stirred vigorously at 

50 °C for 3 h. After cooling to room temperature the chloroform solution was washed with 

water, dried (MgSO4), concentrated and precipitated from chlorobenzene into cold methanol 

to yield the polymer as bright yellow/green fibres.  Yield = 69 mg, 43 %. GPC : Mn = 12 000 

Da, PDI = 1.6. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.27 (b, 4H), 7.88 (b, 2H), 7.79 (b, 4H), 

7.70 (b, 2H), 2.20-2.02 (b, 12H) 1.50 (b, 14H), 0.90 (b, 8H), 0.70 (m, 12H), 0.57 - 0.49 (m, 

12H). 
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Synthesis of poly(6,6,12,12-tetramethylbutyldiindeno[1,2-b:1,2-e]pyrazine-co-9-9 

dioctylfluorene) 

 

2,8-Dibromo-6,6,12,12-tetramethylbutyldiindeno[1,2-b:1,2-e]pyrazine (0.20 g, 0.29 mmol), 

9,9-di-n-octyl-2,7-bis-(1,3,2-dioxaborolan-2-yl)fluorene (0.16 g, 0.29 mmol)  dry toluene 

(4 mL) and aliquot 336 (2 drops) were placed in a microwave vial and thoroughly degassed.  

Pd(PPh3)4 (4 mg, 1.3 eq.) was added quickly and finally degassed 1 M K2CO3 (aq)  (1 mL) 

was added in one portion. The reaction mixture was further degassed for 15 min before being 

heated to 110 °C for 48 h. The resulting solution was poured into cold methanol, filtered into 

a soxhlet thimble and then extracted using methanol, acetone, hexane and chloroform. The 

chloroform fraction was concentrated under reduced pressure and subsequently dissolved in 

chloroform/water solution (100 mL/100 mL) and sodium diethyldithiocarbamate trihydrate 

(0.5 g) was added. The solution was stirred vigorously at 50 °C for 3 h. After allowing to cool 

to room temperature the chloroform solution was washed with water, dried (MgSO4), 

concentrated and precipitated from chlorobenzene into cold methanol to yield the polymer as 

bright yellow/green fibres.  Yield = 92 mg, 50 %. GPC : Mn = 37 000 Da, PDI = 2.0. 1H 

NMR (400 MHz, CDCl3) δ (ppm): 8.25 (b, 2H), 7.91 (b, 2H), 7.80 (b, 4H), 7.71 (b, 4H), 

2.59 - 2.16 (b, 12H) 1.16 (b, 24H), 0.84 (b, 12H), 0.73 (m, 12H), 0.49 (m, 12H). 
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Synthesis of (4-4,4,5,5-tetramethyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)-N-(2,4-dimethyl-phenyl)benzenamine 

 

To a solution of (4-4,4,5,5-tetramethyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-N-

(2,4-dimethyl-phenyl)benzenamine (2.00g, 4.63 mmol) in dry THF (50 mL) at -78oC was 

added n-butyllithium (4.00 mL of a 2.5 M solution in hexane, 10.00 mmol) dropwise over 

20 min.  The solution stirred at -78 °C for 30 min before 2-isopropoxy-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane (2.50 g, 14.00 mmol) was added in one portion. The reaction warmed to 

room temperature overnight and was quenched with water followed by extraction with 

CH2Cl2. The organic layers were combined, dried (MgSO4), filtered and concentrated under 

reduced pressure. The crude product was purified via column chromatography over silica 

(eluent: hexane:DCM 1:1) and recrystallised from methanol. Yield = 1.65 g, 68 %. Mpt. = 

221 - 222°C. MS (GCMS, EI) 525.0 (M+).   1H NMR (400 MHz, CDCl3) δ (ppm): 7.66 (d, 

J = 8.5 Hz, 4H), 7.08 (s, 1H), 7.02 (m, 2H), 6.98 (d, J = 8.5 Hz, 4H), 2.37 (s, 3H), 1.98 (s, 

3H), 1.35 (s, 24H). 13C NMR (101 MHz, CDCl3) δ: 149.56, 148.61, 138.02, 136.39, 135.81, 

132.41, 129.59, 128.19, 122.92, 120.41, 117.24, 109.32, 83.51, 28.52, 24.84, 21.03, 18.30. 
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Synthesis of poly-6,6,12,12-tetraoctyldiindeno[1,2-b:1,2-e]pyrazine-co-4-phenyl-

N-(2,4-dimethyl-phenyl)benzenamine  

 

2,8-Dibromo-6,6,12,12-tetraoctyldiindeno[1,2-b:1,2-e]pyrazine (0.20 g, 0.23 mmol), (4-

4,4,5,5-tetramethyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-N-(2,4-dimethyl-

phenyl)benzenamine (0.12 g, 0.23 mmol),  dry toluene (4 mL) and aliquot 336 (2 drops) were 

placed in a microwave vial and thoroughly degassed.  Pd(PPh3)4 (4 mg, 1.3 eq.) was added 

quickly and finally degassed 1 M K2CO3 (aq)  (1 mL) was added in one portion. The reaction 

mixture was further degassed for 15 min and then heated to reflux in an oil bath for 48 h. The 

reaction was cooled, poured into cold methanol, filtered into a soxhlet thimble and extracted 

with methanol, acetone, hexane and chloroform. The chloroform fraction was concentrated 

under reduced pressure and subsequently dissolved in chloroform/water solution (100 

mL/100 mL) and sodium diethyldithiocarbamate trihydrate (0.50 g) was added. The solution 

was stirred vigorously at 50 °C for 3 h. After allowing to cool to room temperature the 

chloroform solution was washed with water, dried (MgSO4), concentrated and precipitated 

from chlorobenzene into cold methanol to yield the polymer as bright yellow/green fibres. 

Yield = 96 mg, 48 %. GPC : Mn = 20 000 Da, PDI = 1.5. 1H NMR (400 MHz, CDCl3) δ 

(ppm): 8.17 (b, 2H), 7.75 – 7.47 (b, 9H), 7.18 – 7.07 (b, 6H), 2.42 (s, 3H), 2.34 (b, 4H), 

2.15 (s, 3H), 2.09 (b, 4H), 1.34 (m, 8H), 1.24-1.02 (b, 44H), 0.80 (t, 12H). 
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Synthesis of poly-6,6,12,12-tetramethylbutyldiindeno[1,2-b:1,2-e]pyrazine-co-4-

phenyl-N-(2,4-dimethyl-phenyl)benzenamine 

 

2,8-Dibromo-6,6,12,12-tetramethylbutyldiindeno[1,2-b:1,2-e]pyrazine (0.20 g, 0.28 mmol), 

(4-4,4,5,5-tetramethyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-N-(2,4-dimethyl-

phenyl)benzenamine (0.15 g, 0.28 mmol), dry toluene (4 mL) and aliquot 336 (2 drops) were 

placed in a microwave vial and thoroughly degassed.  Pd(PPh3)4 (4 mg, 1.3 eq.) was added 

quickly and finally degassed 1 M K2CO3 (aq)  (1 mL) was added in one portion. The reaction 

mixture was further degassed for 15 min and then heated to reflux in an oil bath for 48 h. The 

reaction was cooled, poured into cold methanol, filtered into a soxhlet thimble and extracted 

(soxhlet) with methanol, acetone, hexane and chloroform. The chloroform fraction was 

concentrated under reduced pressure and subsequently dissolved in chloroform/water solution 

(100 mL/100 mL) and sodium diethyldithiocarbamate trihydrate (0.50 g) was added. The 

solution was stirred vigorously at 50 °C for 3 h. After allowing to cool to room temperature 

the chloroform solution was washed with water, dried (MgSO4), concentrated and 

precipitated from chlorobenzene into cold methanol to yield the polymer as bright 

yellow/green fibres.  Yield = 63 mg, 38 %. GPC ; Mn = 8 000 Da, PDI = 1.8. 1H NMR 

(400 MHz, CDCl3) δ (ppm): 8.16 (d, J = 8.2 Hz, 2H), 7.75 (m, 2H), 7.68 (b, 4H), 7.59 (d, J = 

8.2 Hz, 2H), 7.19 (m, 6H), 7.12 (b, 1H), 2.50 (b, 2H), 2.42 (s, 3H), 2.29 (b, 2H), 2.16 (s, 3H), 

2.09 (m, 2H), 1.95 (m, 2H), 1.71 (m, 4H), 1.44 - 1.35 (b, 8H), 0.95 (m, 12H), 0.66 (m, 12H),  
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Synthesis of 2,8-bis-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6,6,12,12-

tetraoctyl-6,12-dihydrodiindeno[1,2-b:1’,2’-e]pyrazine 

 

To a solution of 2,8-dibromo-6,6,12,12-tetraoctyldiindeno[1,2-b:1,2-e]pyrazine (1.56 g, 

1.81 mmol) in dry THF (40 mL) at -78°C was added n-butyllithium (4.53 mL, 1.6M in 

hexane, 7.24 mmol) dropwise over 20 min and the solution stirred for 2 h at -78 °C. 2-

Isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.85 mL, 9.05 mmol) was added in one 

portion and the solution warmed to room temperature overnight. The reaction was quenched 

with water and extracted with chloroform. The organic layers were combined, dried 

(MgSO4), filtered and the solvent removed under reduced pressure. The crude product was 

recrystallised from hot hexane to afford a white solid. Yield = 0.59 g, 34 %. Mpt. 144 - 

145°C. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.11(d, J= 7.6 Hz, 2H), 7.91 (d, J= 7.6Hz, 2H), 

7.86 (s, 2H), 2.34-2.23 (m, 4H), 2.10-2.00 (m, 4H), 1.43 (s, 24H), 1.20-1.10 (m, 48H), 0.80 

(t, 12H). 13C NMR (101 MHz, CDCl3) δ (ppm): 164.62, 152.33, 148.54, 142.29, 135.90, 

130.10, 120.34, 84.83, 54.10, 38.99, 32.82, 30.81, 30.01, 29.76, 25.60, 24.92, 23.18, 14.59.   

 

Synthesis of IP-DTBT-H 
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To a thoroughly degassed solution of toluene (4 mL) and aliquot 336 (2 drops) was added 

2,8-dibromo-6,6,12,12-tetraoctyldiindeno[1,2-b:1,2-e]pyrazine (0.15 g, 0.16 mmol), 4,7-

bis(5-bromothiophen-2-yl)benzo[c]-[1,2,5]thiadiazole (0.07 g, 0.16 mmol) and Pd(PPh3)4 

(2.7 mg, 1.25 eq.). 1 M K2CO3 (aq) (1 mL) were added in one portion and the reaction was 

heated in an oil bath to 105 °C for 72 h, after which the reaction was poured into cold 

methanol, filtered through a soxhlet thimble and extracted (soxhlet) with methanol, acetone 

and hexane. The polymer was then dried under vacuum and dissolved in chloroform/water 

(100 mL/100 mL). Sodium diethyldithiocarbamate trihydrate (0.50 g) was added and the 

solution was stirred vigorously at 50 °C for 3 h. The chloroform solution was washed with 

water, dried (MgSO4), concentrated and precipitated from chlorobenzene into cold methanol 

to yield the polymer as a dark red fibre. Yield = 112 mg, 68 %. GPC : Mn 40 000 Da, PDI = 

2.1.  1H NMR (400 MHz, CDCl3) δ (ppm): 8.23 (s, 2H), 8.16 (d, J = 7.5 Hz, 2H), 8.02 (s, 

2H), 7.87 (d, J = 7.5 Hz, 2H), 7.82 (s, 2H), 7.62 (s, 2H), 2.44 - 230 (b, 4H), 2.17 – 2.06 (b, 

4H), 1.20 – 1.01 (b, 48H), 0.81 (t, J = 6.7 Hz, 12H). 

 

Synthesis of IP-DTBT-F 

 

To a thoroughly degassed solution of toluene (4 mL) and aliquot 336 (2 drops) was added 

2,8-dibromo-6,6,12,12-tetraoctyldiindeno[1,2-b:1,2-e]pyrazine (0.15 g, 0.16 mmol), 4,7-

bis(5-bromothiophen-2-yl)benzo[c]-[1,2,5]5,6-difluorothiadiazole (0.08 g, 0.16 mmol) and 

Pd(PPh3)4 (2.7 mg, 1.25 eqv). 1 M K2CO3 (aq) (1 mL) was added in one portion and the 

reaction was heated in an oil bath to 105 °C for 72 hr, after which the reaction was poured 
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into cold methanol, filtered through a soxhlet thimble and extracted (soxhlet) with methanol, 

acetone and hexane. The polymer was then dried under vacuum and dissolved in 

chloroform/water (100 mL/100 mL). Sodium diethyldithiocarbamate trihydrate (0.50 g) was 

added and the solution was stirred vigorously at 50°C for 3 hr. The chloroform solution was 

washed with water, dried (MgSO4), concentrated and precipitated from chlorobenzene into 

cold methanol to yield the polymer as a dark red fibre. Yield = 100 mg, 59 %. GPC : Mn = 37 

000 Da, PDI = 1.8. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.37 (b, 2H), 8.15 (b, 2H), 7.98 (b, 

2H), 7.87 (b, 2H) 7.70 (b, 2H), 7.63 (b, 2H), 2.52 (b, 2H), 2.35 (b, 4H), 2.13 (m, 4H), 1.99 

(m, 2H), 1.83 (m, 2H), 1.76 (m, 2H), 1.48-1.27 (b, 40H), 0.87 (t, 12 H) 

 

Synthesis of IP-DTBT-OC8H17 

 

To a thoroughly degassed solution of toluene (4 mL) and aliquot 336 (2 drops) was added 

2,8-dibromo-6,6,12,12-tetraoctyldiindeno[1,2-b:1,2-e]pyrazine (0.15 g, 0.16 mmol),  4,7-

bis(5-bromothiophen-2-yl)benzo[c]-[1,2,5]5,6-2-octyloxythiadiazole (0.11 g, 0.16 mmol) and 

Pd(PPh3)4 (2.7 mg, 1.25 eq.). 1M K2CO3 (aq) (1 mL) was added in one portion and the 

reaction was heated to 105 °C for 72 h, after which the reaction was poured into cold 

methanol, filtered through a soxhlet thimble and extracted (soxhlet) with methanol, acetone 

and hexane. The polymer was then dried under vacuum and dissolved in chloroform/water 

(100 mL/100 mL). Sodium diethyldithiocarbamate trihydrate (0.50 g) was added and the 

solution was stirred vigorously at 50 °C for 3 h. The chloroform solution was washed with 

water, dried (MgSO4), concentrated and precipitated from chlorobenzene into cold methanol 
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to yield the polymer as a red fibre. Yield = 130 mg, 63 %. GPC : Mn = 78 000 Da, PDI = 1.3. 

1H NMR (400 MHz, CDCl3) δ (ppm): 8.57 (b, 2H), 8.14 (m, 2H), 7.80 (b, 2H), 7.70 (b, 4H), 

4.23 (b, 4H), 2.49 (b, 4H), 2.35 (m, 4H), 2.10-2.02 (m, 48H), 1.48 (b, 18H), 1.31 (t, 12H), 

1.10 (t, 12H). 

 

Synthesis of IP-DTBT-SC12H25 

 

To a thoroughly degassed solution of toluene (4 mL) and aliquot 336 (2 drops) was added 

2,8-dibromo-6,6,12,12-tetraoctyldiindeno[1,2-b:1,2-e]pyrazine (0.15 g, 0.16 mmol),  4,7-

bis(5-bromothiophen-2-yl)benzo[c]-[1,2,5]5,6–dodecylthiothiadiazole (0.13 g, 0.16 mmol) 

and Pd(PPh3)4 (2.7 mg, 1.25 eq.). 1 M K2CO3 (aq) (1 mL) was added in one portion and the 

reaction heated to 105 °C for 72 h, after which the reaction was poured into cold methanol, 

filtered through a soxhlet thimble and extracted (soxhlet) with methanol, acetone and hexane. 

The polymer was then dried under vacuum and dissolved in chloroform/water (100 mL/100 

mL). Sodium diethyldithiocarbamate trihydrate (0.50 g) was added and the solution was 

stirred vigorously at 50 °C for 3 h. The chloroform solution was washed with water, dried 

(MgSO4), concentrated and precipitated from chlorobenzene into cold methanol to yield the 

polymer as a red fibre. Yield = 140 mg, 61 %. GPC : Mn = 77 000 Da, PDI = 1.6. 1H NMR 

(400 MHz, CDCl3) δ (ppm): 8.17 (b, 2H), 7.98 (b, 2H), 7.77 (b, 2H) 7.71-7.57 (b, 4H), 2.87 

(m, 4H), 2.45 (b, 2H), 2.33 (m, 2H), 2.08 (m, 2H), 1.98 (s, 2H), 1.76 (m, 2H), 1.56 (m, 3H), 

1.48 (b, 34H), 1.33-1.10 (b, 44H), 0.88-0.79 (m, 24H). 
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Synthesis of 2,8-dibromo-6,12-bis(methylsulfanyl) methylene diindeno [1,2-b:1,2-

e]pyrazine 

 

Sodium tert-butoxide (2.02 g, 21.26 mmol) was added in portions to a stirred solution of 2,8-

dibromo-6,12-dihydrodiindeno[1,2-b:1,2-e]pyrazine (2.00 g, 4.84 mmol) in anhydrous 

DMSO (40 mL) at room temperature. CS2 (0.80 g, 10.62 mmol) was added via a syringe and 

the reaction mixture stirred for 20 min. MeI (3.02 g, 21.26 mmol) was added drop wise over 

5 min and stirring continued for 4 h. The reaction was quenched into a mixture of ice water 

(500 mL) and concentrated ammonia (25 mL). The resulting precipitate was filtered, rinsed 

with water and dried under vacuum to afford a dark crimson solid. Recrystallisation from hot 

hexane gave the product as red needles. Yield = 2.43g, 80 %; Mpt. = 165 - 166°C. MS 

(GCMS, EI): 620.8 (M-H)+. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.81 (d, J = 1.8 Hz, 2H), 

8.01 (d, J = 7.9 Hz, 2H), 7.56 (dd, J = 7.9, 1.8 Hz, 2H), 2.78 (s, 12H). 13C NMR (101 MHz, 

CDCl3) δ 183.84, 173.36, 160.18, 148.71, 137.78, 127.85, 114.18, 113.80, 104.10, 103.98, 

43.60. 

 

Synthesis of 2,8-dibromo-6,12-(1’-octylnonylidene)diindeno[1,2-b:1,2-e]pyrazine 
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To a solution of 2,8-dibromo-6,12-bis(methylsulfanyl) methylene diindeno [1,2-b:1,2-

e]pyrazine (0.40 g, 0.64 mmol) in anhydrous THF (100 mL) at -5 °C was added dilithium 

tetrachlorocuprate (7 mg, 0.03 mmol) and octylmagnesium bromide (1.40 mL of 2 M solution 

in diethyl ether, 2.81 mmol). The solution was stirred for 4 h at -5°C and quenched with 10% 

sodium hydroxide solution (100 mL). The precipitates were removed by filtration through 

celite and washed with ethyl acetate. The organic layer was washed with 10% sodium 

hydroxide (aq) (100 mL), brine (100 mL), dried (MgSO4), filtered and concentrated under 

vacuum. The resulting oil was purified by passing through a column of silica with a basic 

alumina plug (eluent: petroleum spirit).  Recrystallisation from hexane yielded yellow 

needles. Yield = 0.20 g, 36 %. Mpt. 102 – 103 °C. 1H NMR (400 MHz, CDCl3) δ (ppm): 7.98 

(d, J = 1.4 Hz, 2H), 7.96 (d, J = 8.1 Hz, 2H), 7.56 (dd, J = 8.1, 1.4 Hz, 2H), 3.47 (t, J = 7.9 

Hz, 4H), 2.82 (t, J = 7.9 Hz 4H), 1.77 (m, 4H), 1.70 (m, 4H) 1.60 (m, 8H) 1.49-1.28 (m, 32H) 

0.94- 0.88 (m, 12H). 13C NMR (101 MHz, CDCl3) δ 170.84, 144.73, 136.43, 129.80, 127.57, 

119.46, 116.06, 107.86, 86.65, 42.98, 31.93, 30.57, 29.70, 29.44, 29.43, 29.29, 22.67, 14.14. 

 

Synthesis of 2,8-dibromo-6,12-(1’-(2’’-ethylhexyl)-2’-ethylheptyl-

idene)diindeno[1,2-b:1,2-e]pyrazine 

 

To a solution of 2,8-dibromo-6,12-bis(methylsulfanyl) methylene diindeno [1,2-b:1,2-

e]pyrazine (0.40 g, 0.64 mmol) in dry THF (100 mL) at -5 °C was added lithium 

tetrachlorocuprate (7 mg, 0.03 mmol) and 1-ethyl-2-hexyl magnesium bromide (1.40 mL of 
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2 M solution in diethyl ether, 2.81 mmol). The solution was stirred for 4 h at -5°C and 

quenched with 10% sodium hydroxide solution (100 mL). The precipitates were removed by 

filtration through celite and washed with ethyl acetate. The organic layer was washed with 

10% sodium hydroxide (aq) (100 mL), brine (100 mL), dried  (MgSO4), filtered and 

concentrated under vacuum. The residue was filtered through a silica plug (3 x 3 x 3 cm) 

consisting of a thin layer of basic alumina (1 x 3 x 3 cm) on top (eluent: petroleum spirit 40-

60). After concentration the product was recrystallised from hexane yielding a yellow solid. 

Yield = 0.16 g, 30 %. Mpt. = 86 – 87 °C. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.13 (d, J = 1. 

2 Hz, 2H) 7.98 (d, J = 8.1 Hz, 2H) 7.57 (dd, J = 8.1, 1.2 Hz, 2H), 3.66 (m, 4H), 2.87 (m, 4H), 

1.95 (m, 4H), 1.87 (m, 4H), 1.46 – 1.25 (m, 28H), 0.96 - 0.82 (m, 24H). 13C NMR (101 MHz, 

CDCl3) δ 171.68, 144.65, 139.87, 133.78, 127.56, 118.00, 118.41, 108.94, 85.60, 40.77, 

31.72, 31.44, 31.30, 30.48, 30.47, 30.46, 21.22, 14.84. 

 

Synthesis of Poly(6,12-(1’-octylnonylidene)diindeno[1,2-b:1,2-e]pyrazine - AIP 

 

A thoroughly degassed solution of 2,8-dibromo-6,12-(1’-octylnonylidenediindeno[1,2-b:1,2-

e]pyrazine (0.20 g, 0.24 mmol)  in toluene (0.5 mL) and DMF (0.5 mL) was added to a 

degassed solution of Ni(COD)2 (0.15 g, 0.53 mmol), 2,2’-bipyridine (0.08 g, 0.53 mmol) and 

1,5-cyclooctadiene (0.06 mL, 0.53 mmol) in toluene (2 mL) and DMF (2 mL) in a sealed 

microwave vial.  The combined solution was heated to 85 oC for 72 h. The resulting solution 

was poured into cold methanol and subsequent soxhlet extraction with methanol, acetone, 

hexane and chloroform. The chloroform fraction was concentrated under reduced pressure 
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and dissolved in chloroform/water solution (100 mL/100 mL). Sodium 

diethyldithiocarbamate trihydrate (0.50 g) was added and the solution was stirred vigorously 

at 50 °C for 3 h. The chloroform solution was washed with water, dried (MgSO4), 

concentrated and precipitated from chlorobenzene into cold methanol to yield the polymer as 

bright yellow fibres. Yield = 56 mg, 34 %. GPC : Mn = 22 000 Da, PDI = 2.2. 1H NMR (400 

MHz, CDCl3) δ (ppm): 8.26 (b, 4H), 7.77 (b, 2H), 3.04 (b, 4H), 2.11 (b, 4H), 1.95 (b, 4H), 

1.43-1.23 (b, 44H), 0.87 (t, 12H). 

 

Synthesis of poly(6,6,12,12-tetraoctylldiindeno[1,2-b:1,2-e]pyrazine-co-2,5-

thiophene) - IP-T 

 

2,8-Dibromo-6,6,12,12-tetraoctyldiindeno[1,2-b:1,2-e]pyrazine (0.20 g, 0.23 mmol), 2,5-bis-

(trimethylstannyl)thiophene (0.10 g, 0.23 mmol), Pd(dba)2 (4.2 mg, 2 % eq.) and P(o-tolyl)3 

(5.6 mg, 0.02 mmol) were added to a microwave vial. Dry chlorobenzene (4 mL) was added 

and the mixture headed under microwave irradiation for 5 min at 100 °C, 5 min at 120 °C, 10 

min at 160 °C and 20 min at 180 °C. After cooling to 50 °C the resulting solution was poured 

into cold acidic methanol (MeOH 100mL/ HCl 5 mL), filtered into a soxhlet thimble and 

extracted (soxhlet) using methanol, acetone and hexane. The remaining polymer was 

removed from the thimble, dried and dissolved in chloroform/water solution (100 mL/100 

mL) and sodium diethyldithiocarbamate trihydrate (0.50 g) was added. The solution was 

stirred vigorously at 50 °C for 3 h. The chloroform solution was washed with water, dried 

(MgSO4), concentrated and precipitated from chlorobenzene into cold methanol to yield the 

polymer as dark red fibres. Yield = 125 mg, 69 %. GPC: Mn = 23 000 Da, PDI = 2.3. 1H 
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NMR (400 MHz, CDCl3) δ (ppm): 8.15 (d, J = 7.6 Hz,  2H), 7.81 (d, J = 7.6 Hz, 2H), 7.76 (s, 

2H), 7.53 (b, 2H), 2.43 - 2.27 (b, 4H), 2.19 - 2.01 (b, 4H), 1.20 - 1.10 (b, 48H) 0.81 (t, J = 6.6 

Hz,  12H). 

 

Synthesis of poly(6,6,12,12-tetramethylbutyldiindeno[1,2-b:1,2-e]pyrazine-co-2,5-

thieno[3,2-b]thiophene) – IP-TT 

 

2,8-Dibromo-6,6,12,12-tetraoctyldiindeno[1,2-b:1,2-e]pyrazine (0.2 g, 0.23 mmol), 2,5-

bis(trimethylstannyl)thieno[3,2-b]thiophene (0.11 g, 0.23 mmol), Pd(dba)2 (4.2 mg, 

0.005 mmol) and P(o-tolyl)3 (5.6 mg, 0.02 mmol) were added to a microwave vial. Dry 

chlorobenzene (4 mL) was added and the mixture heated under microwave irradiation for 5 

min at 100 °C, 5 min at 120 °C, 10 min at 160 °C and 20 min at 180 °C. After cooling to 50 

°C the resulting solution was poured into cold acidic methanol (MeOH 100mL/ HCl 5 mL), 

filtered into a soxhlet thimble and extracted (soxhlet) using methanol, acetone and hexane. 

The remaining polymer was removed from the thimble, dried under vacuum and dissolved in 

chloroform/water solution (100 mL/100 mL) and sodium diethyldithiocarbamate trihydrate 

(0.50 g) was added. The solution was stirred vigorously at 50 °C for 3 h. The chloroform 

solution was washed with water, dried (MgSO4), concentrated and precipitated from 

chlorobenzene into cold methanol to yield the polymer as dark red fibres. Yield = 94 mg, 48 

%. GPC: Mn = 20 000 Da, PDI = 2.1. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.16 (b, 2H), 

7.75 - 7.70 (b, 6H), 2.43 - 2.27 (b, 4H), 2.17 - 2.01 (b, 4H), 1.20 - 1.10 (b, 48H), 0.81 (t, J = 

7.2 Hz, 12H). 
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Synthesis of 3-(thien-3-yl)propanoic acid 

 

3-(3-Thienyl)acrylic acid (9.74 g, 63.2 mmol) and ammonium formate (11.95 g, 189.50 

mmol) were dissolved in isopropanol (200 mL). Palladium on carbon (5.74 g, 10 % wt) was 

added portion-wise and the reaction heated to reflux overnight. The resulting solution was 

cooled to room temperature, filtered through celite and rinsed with isopropanol. The solvent 

was removed under vacuum to obtain a white solid. Yield = 8.25 g, 83.6 %. Mpt. 61 – 62 °C 

(lit = 62 – 63 °C2).  1H NMR (400 MHz, CDCl3) δ (ppm): 7.30 (dd, J = 4.4, 2.4 Hz, 1H), 7.02 

(m, 1H), 6.97 (dd, J = 4.4, 2.4 Hz, 1H), 3.01 (t, J = 7.7 Hz, 2H), 2.72 (t, J = 7.7 Hz, 2H). 

 

Synthesis of 4,5-dihydro-6H-cyclopenta[b]thiophen-6-one 

 

To a solution of 3-(thien-3-yl)propanoic acid (10.91 g, 69.80 mmol)  in dry ether (100 mL) 

was added thionyl chloride (15.6 mL, 216 mmol) dropwise at room temperature.  The 

reaction was heated to reflux for 3 h. After cooling, the ether was removed under reduced 

pressure.  The resulting acid chloride was dissolved in dry CS2 (50 mL) and transferred into a 

dropping funnel. The funnel was attached to a 3-neck flask that was previously charged with 

a suspension of AlCl3 (9.30 g, 69.80 mmol) and dry CS2 (100 mL). The acid chloride was 

added dropwise over 1 h at room temperature and the reaction stirred at room temperature 

overnight and then refluxed for 2 h.  The resulting solution was poured into concentrated 

HCl/ice water (30 mL/ 200 mL) and extracted with DCM (3 x 50 mL), dried over MgSO4, 
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filtered and concentrated under reduced pressure to afford the product as a brown solid, 

which was purified via column chromatography over silica (eluent: hexane/diethyl ether). 

Yield = 3.95 g, 41 %. Mpt. = 89 – 90 °C (lit mpt. 90 - 91°C)3. MS (GCMS, EI) 137.0 (M-H)+. 

1H NMR (400 MHz, CDCl3) δ (ppm): 7.91 (d, J = 4.9 Hz, 1H), 7.06 (d, J = 4.9 Hz, 1H), 

3.09-2.99 (m, 4H). 13C NMR (101 MHz, CDCl3) δ: 197.17, 168.84, 142.99. 142.54, 124.87, 

40.13, 22.87  

 

Synthesis of 4,-dihydro-6H-cyclopenta[b]thiophene-2-one-3-oxime 

 

To a solution of 4,5-dihydro-6H-cyclopenta[b]thiophen-6-one (4.50 g, 32.6 mmol) in toluene 

(50 mL) at 0°C was added concentrated HCl (4 mL). The solution was stirred at 0°C for 30 

min before isoamylnitrate (5.2 mL, 39 mmol) was added drop wise and the reaction warmed 

to room temperature overnight.  The resulting suspension was filtered, washed with ether and 

dried to obtain a crude brown solid. The solid was triturated with hot diethyl ether to obtain 

the product as an off-white solid. Yield = 1.52 g, 28 %. Mpt. = 177 - 178°C.MS (GCMS, EI): 

166.9 (M+).  1H NMR (400 MHz, CDCl3) δ (ppm): 8.12 (d, J = 4.9 Hz, 1H), 7.31 (d, J = 4.9 

Hz, 1H), 3.62 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 198.63, 178.27, 160.79, 142.96, 

142.43, 125.22, 36.00. 
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Synthesis of 4,9-dihydro-s-indenopyrazine[1,2-b:5,6-b']-dithiophene 

 

4,5-Dihydro-6H-cyclopenta[b]thiophene-2-one-3-oxime (1.95 g, 11.6 mmol) and sodium 

dithionate (5.90 g, 34.80 mmol) were dissolved in ethanol (30 mL) and degassed.  Ammonia 

solution (30 mL, 28%) was added under argon and the solution stirred for 72 hr in the 

absence of light.  Water (100 mL) was added and the reaction heated to reflux in air for 24 hr.  

The solution was cooled to room temperature, filtered, rinsing with methanol and diethyl 

ether to obtain the crude product. MS. (GCMS, EI): 268.0 (M+). 1H NMR (400 MHz, DMSO) 

δ (ppm): 7.63 (m, 2H), 6.90 (m, 2H), 4.31 (m, 4H). 
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