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Abstract         . 

The common practice is to design chemical processes and their control systems in sequence. 

However, process design and control share important decisions, and when the process design 

is fixed there is little room left to improve the control performance. These observations 

suggest process design and control should be integrated.  

The conventional framework for integrated design and control is to optimize the process, its 

control structure, and controllers, simultaneously. However, there are numerical as well as 

conceptual complexities associated with optimization of controllers. This research proposes 

integrated design and control based on perfect control. In the proposed optimization 

framework, an inversely controlled process model replaces the models of process and its 

controllers. Although the process and its control structure are optimized simultaneously, the 

complexities associated with controllers are disentangled from the problem formulation.  

The thesis starts with introduction of the relevant concepts and review of literature in 

Chapters 1 and 2. Then, in Chapter 3, the steady-state and dynamic formulations of the 

proposed framework are presented. A steady-state inversely controlled process model 

achieves a higher degree of complexity reduction and ensures regulatory steady-state 

operability. However, at the price of higher modelling efforts, a dynamic inversely controlled 

process model ensures functional controllability as well. The proposed steady-state and 

dynamic optimization frameworks are demonstrated using several case studies. The proposed 

steady-state framework was applied for optimal control structure selection of a distillation 

train in Chapter 4 and integrated design and control of a reactive distillation column in 

Chapter 5. The proposed dynamic optimization framework was applied for the case of two 

heat-integrated series reactors in Chapter 6. The proposed optimization frameworks were 

successful in establishing the trade-off between control and process objectives. Finally, the 

thesis concludes with discussions, critical evaluation of the research and suggestions for 

future research in Chapter 7.  

  



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  3 

 

 

 

 

 

Declaration of originality 

The author declares that the present thesis reports the results of his 

own research and that all else is appropriately referenced. In addition, 

the presented materials are not submitted elsewhere for another 

degree. 

 

 

 

 

 

 

 

 

 

 

 

 

  



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  4 

 

Acknowledgement  

Firstly, I would like to thank my advisor Professor Nina Thornhill for her kind academic 

advice and academic mentorship. Special thanks go to Professor Nilay Shah, my 

collaborating academic, for his kind supports and encouragements. In addition, I am grateful 

to my former advisors, Professor Davood Rashtchian and Dr. Mahmoud Reza Pishvaie for 

their academic advice and supports. During my PhD studies, I had the opportunities to attend 

several courses and lectures by Professor Stratos Pistikopoulos, Professor Constantinos 

Pantelides and other researchers at Centre for Process Systems Engineering (CPSE), for 

which I am thankful. Furthermore, I would like to thank the members of Centre for Process 

Systems Engineering (CPSE) and the Department of Chemical Engineering, Imperial College 

London, for their hospitality.  

During my PhD studies, I had the opportunities to present and discuss my research with 

Professor John Perkins (BIS), Professor Ignacio Grossmann (Carnegie Mellon University), 

Professor Christos Georgakis (Tufts University) and Dr Richard Burkett (previously BP). I 

am grateful for their kind and motivating advice. I am also thankful to the members of Center 

for Advanced Process Decision-making (CAPD) at Carnegie Mellon University for providing 

the opportunities for me to attend several short courses in optimization and control.  

I gratefully acknowledge partial financial supports from the 2010 and 2011 ISA Educational 

Foundation scholarships, the Burkett Scholarship and the Ure bursary award of the 

Department of Chemical Engineering, Imperial College London.  

Finally and most importantly, I would like to thank my family for their love and supports all 

through my life. I am forever indebted to them... 

  



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  5 

 

Table of contents 

Thesis title......................................................................................................................... 1 

Abstract.............................................................................................................................. 2 

Table of contents................................................................................................................ 5 

List of figures .................................................................................................................... 12 

List of snips... .................................................................................................................... 17 

List of panels...................................................................................................................... 18 

List of tables ...................................................................................................................... 19 

Chapter 1 | Introduction ................................................................................................. 21 

1.1. Introduction................................................................................................................. 21 

1.2. Introduction to the research........................................................................................ 23 

1.2.1. Basic concepts................................................................................................. 23 

1.2.2. Plant-wide versus unit-wise visions................................................................ 25 

1.2.3. Integrated design and control versus sequential design and control……....... 26 

1.2.4. The conventional problem statement for integrated design and 

control....................................................................................................................... 30 

1.2.5. Integrated design and control based on perfect control.................................. 33 

1.2.6. Research aims and objectives......................................................................... 37 

1.2.7. Research novelty claims and contributions.................................................... 37 

1.3. Introduction to the thesis............................................................................................ 39 

1.3.1. Introduction to Chapter 2: Background and context....................................... 39 

1.3.2. Introduction to Chapter 3: An optimization framework using an inversely 

controlled process model.......................................................................................... 39 

1.3.3. Introduction to Chapter 4: Optimal selection of control structures using a 

steady-state inversely controlled process model....................................................... 40 

1.3.4. Introduction to Chapter 5: Integrated design and control using a steady-

state inversely controlled process model.................................................................. 40 

1.3.5. Introduction to Chapter 6: Integrated design and control using a dynamic 

inversely controlled process model........................................................................... 40 

1.3.6. Introduction to Chapter 7: Discussions and suggestions for future 

research..................................................................................................................... 41 

1.4. Conclusion……..................................................................................................... 41 

Chapter 2 | Background and context............................................................................. 43 

2.1. Introduction................................................................................................................. 43 

2.2. Incentives for integrated design and control............................................................... 44 

 



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  6 

 

2.3. Industrial perspective................................................................................................ 45 

2.4. Overview of research in the field.............................................................................. 46 

2.5. Modelling techniques................................................................................................ 49 

2.5.1. Modelling from first principles..................................................................... 50 

2.5.2. Linear models............................................................................................... 51 

2.5.3.Model reduction techniques........................................................................... 52 

2.5.4. The importance of modelling from first principles....................................... 53 

2.6. Process insights and heuristics: decomposition techniques for complexity 

reduction.......................................................................................................................... 54 

2.6.1. Complexity reduction based on process components: a unit-wise 

approach.................................................................................................................. 55 

2.6.2. Complexity reduction based on temporal decomposition............................. 56 

2.6.3. Complexity reduction based on prioritization of control objectives............. 56 

2.6.4. Complexity reduction based on the production rate and the inventory 

control systems........................................................................................................ 58 

2.6.5. Complexity reduction based on causality analysis........................................ 60 

2.7. Control design: controllers........................................................................................ 61 

2.7.1. Degree of decentralization: spatial................................................................ 62 

2.7.2. Degree of decentralization: temporal............................................................ 64 

2.7.3. Conventional multi-loop controllers............................................................. 66 

2.7.4. Model predictive controllers......................................................................... 66 

2.8. Control design: control structures............................................................................. 68 

2.8.1. Control structure reconfiguration.................................................................. 68 

2.8.2. Degree of freedom analysis........................................................................... 70 

2.8.3. Manipulated variables (MVs) ...................................................................... 72 

2.8.4. Controlled variables (CVs) .......................................................................... 73 

2.8.4.1. Conventional methods for selection of controlled variables............ 74 

2.8.4.2. Setpoint policy.................................................................................. 75 

2.8.4.2.1. Static setpoint policy........................................................... 76 

2.8.4.2.2. Dynamic setpoint policy...................................................... 79 

2.9. Controllability measures........................................................................................... 80 

2.9.1. Flexibility, operability, switchability and controllability.............................. 80 

2.9.2. Causes of control imperfection..................................................................... 83 

 

 

  



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  7 

 

2.9.2.1. Interactions between control loops..................................................... 83 

2.9.2.2. Manipulated variable constraints and the effects of 

disturbances...................................................................................................... 84 

2.9.2.3. Delays, right-half-plane zero, and non-minimum-phase 

behaviour.......................................................................................................... 85 

2.9.2.4. Model uncertainties............................................................................. 86 

2.9.2.5. Multi-objective optimization methods based on controllability 

measures........................................................................................................... 86 

2.10. Methods based on passivity/dissipativity................................................................. 87 

2.11. Multi-objective optimization methods to incorporate controllability measures into 

the process design.............................................................................................................. 88 

2.12. Methods based on model reduction and robust control measures............................. 89 

2.13. Methods based on analysing nonlinear behaviour of chemical processes................ 91 

2.14. Geometric operability analysis.................................................................................. 93 

2.15. Steady-state and dynamic flexibility optimization.................................................... 96 

2.16. Economic optimization based on minimization of the economic losses associated 

with back-off from active constraints................................................................................ 100 

2.17. Simultaneous optimization of a process and its controllers............................. 101 

2.18. Mathematical optimization   ..................................................................................... 104 

2.18.1. MINLP solution algorithms........................................................................... 104 

2.18.2. Dynamic optimization................................................................................... 107 

2.18.3. Global optimization....................................................................................... 108 

2.18.4. Optimization with implicit constraints: Simulation-optimization 

programming............................................................................................................. 111 

2.18.6. Multi-criteria decision-making...................................................................... 112 

2.19. Conclusion…............................................................................................................. 115 

Chapter 3 | An optimization framework using an inversely controlled process 

model.................................................................................................................................. 118 

3.1. Introduction.................................................................................................................. 118 

3.2. Mathematical formulation of conventional integrated design and control, Problem 

1  ........................................................................................................................................ 120 

3.3. Applying an inversely controlled process model for integrated design and control 

(proposed framework) ....................................................................................................... 122 

3.4. A steady-state inversely controlled process model for optimal selection of control 

structures............................................................................................................................. 125 

 

  



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  8 

 

3.5. A steady-state inversely controlled process model for integrated design and 

control................................................................................................................................. 127 

3.6. A dynamic inversely controlled process model for integrated design and 

control................................................................................................................................. 128 

3.7. Steady-state operability versus functional controllability........................................... 129 

3.7.1. Regulatory steady-state operability................................................................. 130 

3.7.2. Functional controllability…………................................................................ 130 

3.8. Conclusion................................................................................................................... 133 

Chapter 4 | Optimal selection of control structures using a steady-state inversely 

controlled process model.................................................................................................. 134 

4.1. Introduction.................................................................................................................. 134 

4.2. Multi-objective function and goal programming......................................................... 135 

4.3. Engineering insights and heuristics: dynamic degrees of freedom and design of 

inventory control systems................................................................................................... 138 

4.4. Case study: optimal control structure selection for a distillation train................... 139 

4.4.1. Process description of pyrolysis gasoline hydrogenation (PGH) plant........ 139 

4.4.2. Optimization variables................................................................................... 140 

4.4.3. Optimization constraints................................................................................ 141 

4.4.3.1. Constraints regarding the available degrees of freedom and the 

implications of inventory control systems....................................................... 141 

4.4.3.2. Constraints regarding inferential temperature control......................... 143 

4.4.3.3. Constraints regarding disturbance scenarios..................................... 143 

4.4.3.4. Instances of goal programming objective function............................ 145 

4.5. Implementation software tools ................................................................................... 148 

4.5.1. Simulation-optimization programming .......................................................... 148 

4.5.2. Constructing a steady-state inversely controlled process model.................... 149 

4.5.3. Simulation-optimization information flow...................................................... 150 

4.6. Results of the case study.............................................................................................. 151 

4.7. Discussions.................................................................................................................. 159 

4.7.1. Optimized control structure versus base case.................................................. 159 

4.7.2. Sensitivity analyses........................................................................................ 161 

4.7.2.1. Sensitivity analyses with respect to the 5% disturbance 

scenarios.......................................................................................................... 161 

4.7.2.2. Sensitivity analyses with respect to the 10% and 20% disturbance 

scenarios…...................................................................................................... 162 

4.8. Conclusion................................................................................................................... 162 

 



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  9 

 

Chapter 5 | Integrated design and control using a steady-state inversely controlled 

process model.................................................................................................................... 164 

5.1. Introduction........................................................................................................ 164 

5.2. Multi-objective function and goal programming.................................................... 165 

5.3. Engineering insights and heuristics: dynamic degrees of freedom and design of 

inventory control systems................................................................................................... 167 

5.4. Case study: Integrated design and control of an ETBE reactive distillation 

column......................................................................................................................... 168 

5.4.1. Process description......................................................................................... 170 

5.4.2. Optimization constraints.................................................................................. 171 

5.4.2.1. Available degrees of freedom and the implications of inventory 

control systems................................................................................................. 171 

5.4.2.2. Constraints regarding disturbance scenarios..................................... 172 

5.4.2.3. Constraints regarding perfect control.................................................. 173 

5.4.2.4. Constraints regarding first principles modelling................................ 175 

5.4.3. Optimization variables................................................................................... 176 

5.4.4. Multi-objective function for integrated design and control of an ETBE 

reactive distillation column........................................................................................ 178 

5.5. Implementation software tools ............................................................................ 181 

5.6. Treatment of the convergence failure of the equation solver ..................................... 183 

5.7. Comparisons between modelling approaches based on kinetic correlations and the 

assumption of equilibrium reaction.................................................................................... 185 

5.8. Results of the case study....................................................................................... 186 

5.9. Discussions........................................................................................................... 193 

5.9.1. Discussion of the optimization results............................................................. 193 

5.9.2. Discussion of Total Annual Profit (TAP) maximization............................... 194 

5.9.3. The results for the comparisons between modelling approaches based on 

the kinetic correlations and the assumption of chemical equilibrium....................... 195 

5.10. Conclusion........................................................................................................... 195 

Chapter 6 | Integrated design and control using a dynamic inversely controlled 

process model.................................................................................................................. 196 

6.1. Introduction......................................................................................................... 196 

 

  



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  10 

 

6.2. Multi-objective function and weighting factors.......................................................... 197 

6.3. Solution strategies for dynamic optimization.............................................................. 198 

6.3.1. Dynamic optimization based on the sequential integration strategy............... 198 

6.3.2. Dynamic optimization based on the full discretization strategy...................... 201 

6.4. Case study for the conventional integrated design and control optimization 

framework........................................................................................................................... 203 

6.5. Application of the proposed integrated design and control framework using a 

dynamic inversely controlled process model................................................................. 207 

6.5.1. Amendments to the original case study........................................................ 207 

6.5.2. Inversely controlled process model for the case of two series reactors......... 209 

6.5.3. Feasibility constraints...................................................................................... 210 

6.5.4. Multi-objective function for integrated design and control of the two series 

reactors....................................................................................................................... 212 

6.5.5. Post-optimization analysis: Designing actual controller................................ 215 

6.6. Implementation tools and considerations.................................................................... 216 

6.7. Results of the case study.............................................................................................. 218 

6.8. Discussions.................................................................................................................. 224 

6.8.1. The results of the proposed dynamic optimization framework....................... 224 

6.8.2. Uncontrollable process structures.................................................................... 225 

6.8.4. The implications of competing process and control objectives....................... 226 

6.8.3. Discussions of post-optimization studies......................................................... 227 

6.11. Conclusion................................................................................................................. 228 

Chapter 7 | Summary, discussions and suggestions for future research..................... 230 

7.1. Research summary....................................................................................................... 231 

7.2. Physical implications of an inversely controlled process model................................. 232 

7.2.1. Index reduction................................................................................................ 232 

7.2.2. Limiting factors of controllability.................................................................... 234 

7.3. Critical evaluation of research..................................................................................... 235 

7.4. Suggestions for future research directions................................................................... 239 

7.4.1. Detailed design of controllers with emphasize on the cases with limited 

controllability............................................................................................................. 239 

7.4.2. Degree of centralization................................................................................. 239 

7.4.3. Inversely controlled process model within the context of self-optimizing 

control........................................................................................................................ 240 

7.4.4. Incorporating into commercial software tools................................................ 240 

 

 



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  11 

 

7.4.5. Developing surrogate inversely controlled process model from rigorous 

simulations............................................................................................................... 241 

Bibliography...................................................................................................................... 243 

Appendix A. Fortran code (used in Chapter 5) ............................................................ 266 

 

 

  



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  12 

 

List of figures  
Figure 1.1.a: The temperature control loop for a heat exchanger...................................... 24 

Figure 1.1.b: The block diagram for the temperature control loop around heat 

exchanger shown in Figure 1.1.a. .................................................................. 24 

Figure 1.2. Luyben's (1996) solution for the Tennessee Eastman problem. ..................... 25 

Figure 1.3. The heat exchanger is used for heat recovery from the reactor effluent......... 26 

Figure 1.4.a: A bypass stream is added to the reactant effluent stream ............................ 27 

Figure 1.4.b: A bypass stream is added to the reactor feed stream ................................... 27 

Figure 1.5.a. A heat exchanger is added on the reactor effluent stream and before the 

pre-heater ....................................................................................................... 28 

Figure 1.5.b. A heat exchanger is added on the reactor effluent stream and after the 

pre-heater........................................................................................................ 28 

Figure 1.5.c. A heat exchanger is added on the reactor feed stream and after the pre-

heater............................................................................................................... 28 

Figure 1.5.d. A heat exchanger is added on the reactor feed stream and before the pre-

heater............................................................................................................... 28 

Figure 1.6. The key problems and sub-problem involved in the conventional integrated 

design and control........................................................................................... 33 

Figure 1.7. The key problems and sub-problem involved in the proposed integrated 

design and control........................................................................................... 36 

Figure 2.1. Overview of research in the field.................................................................... 47 

Figure 2.2. The inflows are used for design of the inventory control systems on the 

upstream of the throughput manipulation point. However, the outflows are 

used on the downstream of this point............................................................. 59 

Figure 2.3. Ethylene glycol flowsheet: (1) Feed tank, (2) preheater, (3) reactor, (4) 

evaporator, (5) light end columns, (6) mono ethylene glycol column, (7) 

higher glycol recovery, (Rawlings and Stewart 2008). .................................. 63 

Figure 2.4. Hierarchy of conventional multi-loop and MPC structures are shown at the 

left and right respectively. (adapted from Qin and Badgwell 2003).............. 65 

Figure 2.5. Automation pyramid (adapted from Harjunkoski et al. 2009) ......................... 65 

Figure 2.6. The block diagram representation of an MPC system: estimator, target 

calculator, regulator, (Rawlings 2000)............................................................ 67 

Figure 2.7. Different configurations of a control structure, (Froisy 1994)........................ 69 

 

  



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  13 

 

Figure 2.8. Setpoint policies; the methods for static and dynamic setpoint policies are 

shown by the red envelopes. The other classification is according to 

optimality and feasibility criteria, shown by the grey envelopes, (Chachuat, 

et al. 2009) ............................................................................................................... 76 

Figure 2.9. Maintaining the setpoints at constant values results in economic loss 

(distance between the re-optimized curve and the actual curve) due to a 

disturbance. However, the associated costs strongly depend on the selected 

controlled variable. (Skogestad 2000b).......................................................... 77 

Figure 2.10. The algorithm for flexibility optimization, adapted from (Sakizlis, et al 

2004)............................................................................................................... 99 

Figure 2.11. Optimal steady-state and dynamic economic solutions adapted from 

Kookos and Perkins (2004)............................................................................. 101 

Figure 2.12. Different MINLP algorithms represented as a combination of NLP and M-

MILP subproblems, (adapted from Grossmann 2002) ................................... 105 

Figure 2.13. The concept of constructing the convex under-estimator for a non-convex 

function, adapted from Grossmann and Biegler (2004) ................................. 111 

Figure 2.14. The feasible region and Pareto front for a bi-objective optimization 

problem........................................................................................................... 113 

Figure 2.15. Goal programming; a) correct choices of the target levels, b) unbalanced, 

sub-optimal solution due to incorrect choices of the target levels.................. 114 

Figure 3.1. The conventional optimization framework for integrated design and control 

of chemical processes. .................................................................................... 121 

Figure 3.2. The proposed optimization framework for integrated design and control 

using an inversely controlled process model................................................. 124 

Figure 3.3. The proposed optimization framework for optimal selection of control 

structures using a steady-state inversely controlled process model................ 126 

Figure 3.4. The proposed optimization framework for integrated design and control 

using a steady-state inversely controlled process model……….................... 128 

Figure 4.1. PGH plant; the framed part of the flowsheet is selected for the case 

study................................................................................................................ 139 

Figure 4.2a. The temperature profiles of the depentanizer column for the base case 

design.............................................................................................................. 147 

Figure 4.2b. The temperature profiles of the dehexanizer column for the base case 

design.............................................................................................................. 147 

Figure 4.2c. The temperature profiles of rerun the column for the base case 

design.............................................................................................................. 147 

Figure 4.3. The base-case control structure....................................................................... 148 

Figure 4.4. Information flow of the simulation-optimization programming. ................... 150 

 

  



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  14 

 

Figure 4.5. The selected controlled variables using the proposed optimization 

framework (dotted circles), and the inventory controlled variables (solid 

squares) .......................................................................................................... 154 

Figure 4.6. The control structure for the distillation train of the PGH process (Tray-

numbering is bottom-up) ................................................................................ 154 

Figure 4.7a. The temperature profiles of depentanizer column for the base-case control 

structure........................................................................................................... 155 

Figure 4.7b. The temperature profiles of dehexanizer column for the base-case control 

structure........................................................................................................... 155 

Figure 4.7c. The temperature profiles of rerun column for the base-case control 

structure........................................................................................................... 155 

Figure 4.8a. The temperature profiles of depentanizer column for 5% 

disturbances..................................................................................................... 156 

Figure 4.8b. The temperature profiles of dehexanizer column for 5% 

disturbances..................................................................................................... 156 

Figure 4.8c. The temperature profiles of rerun column for 5% 

disturbances..................................................................................................... 156 

Figure 4.9a. The temperature profiles of depentanizer column for 10% 

disturbances..................................................................................................... 157 

Figure 4.9b. The temperature profiles of dehexanizer column for 10% 

disturbances..................................................................................................... 157 

Figure 4.9c. The temperature profiles of rerun column for 10% 

disturbances..................................................................................................... 157 

Figure 4.10a. The temperature profiles of depentanizer column for 20% 

disturbances..................................................................................................... 158 

Figure 4.10b. The temperature profiles of dehexanizer column for 20% 

disturbances..................................................................................................... 158 

Figure 4.10c. The temperature profiles of rerun column for 20% 

disturbances..................................................................................................... 158 

Figure 5.1. Process flow diagram of ETBE reactive distillation column. ........................ 171 

Figure 5.2. The manipulated variables in an ETBE reactive distillation shown by 

control valves.................................................................................................. 171 

Figure 5.3. Information flow of the simulation-optimization programming. ................... 181 

Figure 5.4. Optimized process and control structures of the ETBE reactive distillation 

column............................................................................................................. 189 

 

  



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  15 

 

Figure 5.5a. Temperature profiles of the ETBE reactive distillation column for nine 

disturbance scenarios...................................................................................... 190 

Figure 5.5b. ETBE composition profiles of the ETBE reactive distillation column for 

nine disturbance scenarios.............................................................................. 190 

Figure 5.5c. Ethanol composition profiles of the ETBE reactive distillation column for 

nine disturbance scenarios.............................................................................. 190 

Figure 5.5d. Isobutene composition profiles of the ETBE reactive distillation column 

for nine disturbance scenarios......................................................................... 190 

Figure 5.5e. N-butene composition profiles of the ETBE reactive distillation column 

for nine disturbance scenarios. ....................................................................... 190 

Figure 5.6a. Temperature profiles of the ETBE reactive distillation column for nine 

disturbance scenarios. This figure is the result of TAP maximization........... 191 

Figure 5.6b. ETBE composition profiles of the ETBE reactive distillation column for 

nine disturbance scenarios. This figure is the result of TAP 

maximization................................................................................................... 191 

Figure 5.6c. Ethanol composition profiles of the ETBE reactive distillation column for 

nine disturbance scenarios. This figure is the result of TAP 

maximization................................................................................................... 191 

Figure 5.6d. Isobutene composition profiles of the ETBE reactive distillation column 

for nine disturbance scenarios. This figure is the result of TAP 

maximization................................................................................................... 191 

Figure 5.6e. N-butene composition profiles of the ETBE reactive distillation column 

for nine disturbance scenarios. This figure is the result of TAP 

maximization................................................................................................... 191 

Figure 5.7a. The temperature profiles calculated based on the kinetic correlations (blue 

circles) and the equilibrium reaction assumption (red squares)….................. 192 

Figure 5.7b. The composition profiles of ETBE calculated based on the kinetic 

correlations (blue circles) and the equilibrium reaction assumption (red 

squares)........................................................................................................... 192 

Figure 5.7c. The composition profiles of ethanol calculated based on the kinetic 

correlations (blue circles) and the equilibrium reaction assumption (red 

squares)…....................................................................................................... 192 

Figure 5.7d. The composition profiles of isobutene calculated based on the kinetic 

correlations (blue circles) and the equilibrium reaction assumption (red 

squares)........................................................................................................... 192 

Figure 5.7e. The composition profiles of n-butene calculated based on the kinetic 

correlations (blue circles) and the equilibrium reaction assumption (red 

squares)…....................................................................................................... 192 

 

  



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  16 

 

Figure 6.1. The sequential solution strategy for integrated design and control 

framework....................................................................................................... 200 

Figures 6.2. Different process structures: a) co-current heat exchange b) counter-

current heat exchange ..................................................................................... 203 

Figure 6.3. The variations of the controlled variable (  ) with the manipulated variable 

(  ) ................................................................................................................. 211 

Figure 6.4. The time trajectories of the flow rate of the cooling water as the 

manipulated variable      for two identical disturbances with reverse 

directions. The lower trajectory is infeasible.................................................. 211 

Figures 6.5. Results for the best solution (Structure 6 in Table 6.5) based on perfect 

control. The time trajectories of a) the feed temperature as the manipulated 

variable, b) the temperature of the first reactor as the controlled variable 

(overlaid on each other), c) the composition in the second reactor. 

Disturbance scenarios were described in Section 6.5.1.................................. 222 

Figures 6.6. The variations of the temperature of the first reactor with the flow rate of 

the cooling water, for a) the co-current structure, b) the counter-current 

structure........................................................................................................... 222 

Figure 6.7. The Pareto front for the multi-objective function (6-23) based on the results 

in Table 6.6..................................................................................................... 223 

Figure 6.8. The variations of the composition of the second reactor with the feed 

temperature for the co-current structure.......................................................... 223 

Figures. 6.9. Results of the first set of post-optimization studies. Trajectories of a) the 

feed temperature as the manipulated variable, b) the temperature of the first 

reactor as the controlled variable, c) the composition in the second reactor, 

for the best solution (Structure 6 in Table 6.5) using an optimized PI 

controller. Disturbances scenarios are described in Section 6.5.1.................. 223 

Figures. 6.10. Results of post-optimization analyses. Trajectories of a) the feed 

temperature as the manipulated variable, b) the temperature of the first 

reactor as the controlled variable, c) the composition in the second reactor, 

using an optimized PI controller. The disturbances are step functions from 

       to      (dotted line) and        to      (solid line) 

corresponding to case 5 and case 6 of (Flores-Tlacuahuac and Biegler 

2007) respectively........................................................................................... 223 

 

  



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  17 

 

List of snips  
Snip 2.1.1. Research in the field: Decomposition techniques for complexity reduction 

(Figure 2.1 revisited)....................................................................................... 54 

Snip 2.1.2. Research in the field: Controllers (Figure 2.1 revisited)................................. 61 

Snip 2.1.3. Research in the field: Control structures (Figure 2.1 revisited)...................... 67 

Snip 2.1.4. Research in the field: Controllability measures (Figure 2.1 revisited)............ 80 

Snip 2.1.5. Research in the field: Methods based on passivity/dissipativity (Figure 2.1 

revisited)......................................................................................................... 87 

Snip 2.1.6. Research in the field: Multi-objective optimization to incorporate 

controllability measures into the process design (Figure 2.1 

revisited)......................................................................................................... 89 

Snip 2.1.7. Research in the field: Methods based on model reduction and robust control 

measures (Figure 2.1 revisited). ..................................................................... 90 

Snip 2.1.8. Research in the field: Methods based on analysing nonlinear behaviour of 

chemical processes (Figure 2.1 revisited)....................................................... 91 

Snip 2.1.9. Research in the field: Geometric operability analysis (Figure 2.1 

revisited)......................................................................................................... 93 

Snip 2.1.10. Research in the field: Steady-state and dynamic flexibility optimization 

(Figure 2.1 revisited)....................................................................................... 96 

Snip 2.1.11. Research in the field: Minimization of the economic losses associated with 

back-off from active constraints (Figure 2.1 revisited). ................................. 100 

Snip 2.1.12. Research in the field: Simultaneous optimization of the process and its 

controllers (Figure 2.1 revisited)..................................................................... 101 

  



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  18 

 

List of panels 
Panel 7.1. The problem statement the research aims and objectives (from Chapter 1) 

and the proposed framework for integrated design and control (from 

Chapter 3) ....................................................................................................... 236 

  



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  19 

 

List of tables 
Table 4.1. Objective functions for steady-state control structure selection ........................ 135 

Table 4.2. List of the optimization variables for the PGH case study. ............................... 141 

Table 4.3. Feed composition................................................................................................ 144 

Table 4.4. The target values for the quality of products. .................................................... 146 

Table 4.5. The nominal values of the manipulated variables, i.e., the targets for the 

second objective of Table 4.1............................................................................ 146 

Table 4.6. Economic data for calculating the fourth objective of Table 4.1........................ 146 

Table 4.7. The average of optimal values of the objective functions.................................. 152 

Table 4.8. The control structures selected for the three distillation columns, as the results 

of optimizations and sensitivity analyses.......................................................... 153 

Table 5.1. Objective functions for steady-state integrated design and control.................... 165 

Table 5.2. Disturbance scenarios:      changes in molar fractions of isobutene and n-

butene  .............................................................................................................. 173 

Table 5.3. Candidate controlled and manipulated variables for the ETBE reactive 

distillation according to equations (5-6a, b)...................................................... 175 

Table 5.4. Optimization variables;      represents the ratio   
         

             for 

disturbance scenario  .      represents the ratio   
             

  
               for disturbance scenario  ...................................................... 177 

Table 5.5.Economic data for calculating Total Annual Profit (Equation 7a-c)................... 180 

Table 5.6. The value of objective functions......................................................................... 186 

Table 5.7. Optimal values of the optimization variables using the proposed optimization 

framework......................................................................................................... 187 

Table 5.8. Optimal values of the optimization variables for the optimization of 

                          discussed in Section  5.4.4................................ 188 

Table 6.1. Comparison of the characteristics of two solution strategies for dynamic 

optimization....................................................................................................... 202 

Table 6.2 The parameters and the values of the variables at the base case scenario…..... 206 

Table 6.3 The correspondence of the two solution strategies with case study 

formulation........................................................................................................ 208 

Table 6.4 The correspondence of the two solution strategies with case study 

formulation........................................................................................................ 210 

Table 6.5.  The results of optimization for different process and control structures using 

the sequential integration strategy..................................................................... 219 

Table 6.6. The results of optimization for different weighting factors (       ) in the 

multi-objective function using the full discretization strategy.......................... 220 

 



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  20 

 

Table 6.7. The results of optimization for different process and control structures 

enumerated by full discretization strategy...................................................... 221 

Table 6.8. The results of the first set of post-optimization studies: designing a PI 

controller for the best structures of Table 6.5................................................. 221 

Table 6.9. The results of the second set of post-optimization studies: designing a PI 

controller for the best solution and comparison with the results of Flores-

Tlacuahuac and Biegler (2007) ...................................................................... 222 

  



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1 | Introduction 

 

1.1. Introduction  

The title of this thesis is Integrated Design and Control with a Focus on Control Structures. 

The purpose of this chapter is to introduce the topic of research and to explain why it is 

important. This chapter will also introduce the thesis and the organization of the presented 

materials.  

1 
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The current industrial practice for design of chemical processes and their control systems is 

sequential in that control design is deferred until process is designed (Sakizlis, et al. 2010, 

Downs and Skogestad 2011). However, design of a process and design of its control system 

share important decisions. When the process design is fixed, there are limited opportunities 

left to improve the control performance. Furthermore, there are conflicts and competitions 

between control and process objectives, (Luyben 2004). Therefore, many researchers (e.g., 

Luyben 2004; Sakizlis, et al. 2004; Seferlis and Georgiadis 2004; Klatt and Marquardt 2008) 

have suggested that design and control should be integrated.  

The integrated design and control is also known as simultaneous process and control design 

or co-design. In integrated design and control, the structural and parametric decisions 

regarding process and its control system are decided simultaneously, leading to economic 

benefits and improvements in the control performance.  

This chapter is organized as follows. The subsequent sections will introduce the PhD research 

title, Integrated Design and Control with a Focus on Control Structures in more detail and 

will justify the research directions. The discussions start with introducing the basic concepts. 

Then, there is a discussion about whether the unit-wise vision is sufficient or a plant-wide 

approach is needed. The necessities for integrated design and control are explained, and the 

important properties of the problem are concluded. The statements of the key problems and 

sub-problems involved in integrated design and control are presented and the complexities 

associated with optimization of controllers are explained. These discussions enable proposing 

a new framework for integrated design and control which will be formulated and 

demonstrated in the next chapters. This chapter also presents the research aims and objectives 

and explains the research contributions. Finally, this chapter introduces the thesis 

organization. The aim is to explain links between the research objectives and the layout of the 

thesis. 
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1.2. Introduction to the research 

The subsequent subsections introduce the research and justify its direction. The aim is to 

provide an overview of the research, its motivations and contributions. 

1.2.1. Basic concepts 

Generally, a typical chemical plant includes thousands of process variables. The aim of plant-

wide control structure selection is to select manipulated variables and controlled variables 

from all candidate process variables. Then, controllers are designed, which close the loop 

between these variables. Manipulated variables (MV) are employed by controllers for 

inserting the control action into the process. The examples of manipulated variables are the 

flows of process or utility fluids at a rate determined by the opening of a control valve, or 

electrical power supply empowering and adjusting the speed of rotors or connecting 

/disconnecting switches. Controlled variables (CV) are those variables, which are fed back to 

inform controllers of the state of the process. They may be directly measurable or may need 

to be inferred from other measured variables. Examples of controlled variables are flowrates, 

temperatures, pressures, and compositions of process streams. The desired value of a 

controlled variable is called setpoint. In the control community, manipulated variables and 

controlled variables are sometimes called input and output variables respectively and process 

variables other than inputs and outputs are called state variables. This terminology is 

originally from state-space presentation of systems. 

Figure 1.1.a shows a heat exchanger and its control loop. The aim is to control the 

temperature of the hot process stream (i.e., the controlled variable) using the cooling medium 

(i.e., the manipulated variable). The temperature of the hot stream is measured and fed back 

to the controller. Based on a comparison between the actual and the desired values of the 

controlled variable, the controller actuates the control valve by changing its opening. The 

control algorithm might be a proportional plus integral control law, implemented in the 

process control computer. The block diagram representation of this single control loop is 

shown in Figure 1.1.b.  
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Figure 1.1.a: The temperature control loop for a heat exchanger. 

 

 
Figure 1.1.b: The block diagram for the temperature control loop around heat exchanger shown in 

Figure 1.1.a. 

 

As another example, the red envelope in Figure 1.2 shows a condenser, a separator, and a 

control loop. This figure shows a benchmark problem (Tennessee-Eastman by Downs, and 

Vogel, 1993) that also has been worked by many other researchers (e.g., Luyben 1996). The 

letters LC indicate that the control loop is a level controller. In this control structure, the flow 

of the cooling medium to the condenser is being manipulated in order to control the level of 

the separator. As the condensation rate changes, the amount of the liquid entering the vessel 

will change, which in turn, will affect the level of the liquid hold-up. An alternative strategy 

is to control the liquid level using the flow of the outlet stream of the separator and to use the 

condensation rate for another purpose (e.g. controlling the pressure of the gaseous recycle 

loop). 

The rationale behind a control structure is called control strategy or control philosophy. It is 

the strategy that is adapted to control several items of process equipment together. For 

example, shown in the blue envelope in Figure 1.2, the throughput is being controlled using 

the product flow at the bottom of the stripper. The reasoning for this strategy is that 

minimizing the variations of this flow is critical for operation of the downstream processes. 
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The typical objectives of a control structure are (i) maintaining optimal operation (ii) meeting 

the constraints of equipment, (iii) regulating and stabilizing the disturbed conditions, and (iv) 

tracking the changes of the setpoints.  

 

 
Figure 1.2. Luyben's (1996) solution for the Tennessee Eastman problem. 

1.2.2. Plant-wide versus unit-wise visions 

The design of a process and its control system can be considered either plant-wide or unit-

wise. The implications of these two approaches are profound, for example: 

The motivating example below demonstrates how the control structure of an individual unit 

operation may be inappropriate in the context of plant-wide control. 
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 The superposition of individual process units and control loops does not necessarily 

form a consistent and unified process and control system.  

 The optimality of the designs for individual unit operations does not ensure the 

optimal plant-wide design. 

 In general, individual process units and their control loops are not independent and 

interact with each other through mass and energy flows, and control signals. For 

example, the interaction between individual control loops can be quantified using 

relative gain arrays (RGAs), as will be discussed in Chapter 2. 
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Figure 1.3. The heat exchanger is used for heat recovery from the reactor effluent. 

 

Figures 1.1.a showed a heat exchanger as an individual unit operation. There is one 

manipulated variable that can be adjusted independently. Figure 1.3 shows the same heat 

exchanger in a process. It is a common practice to use a heat exchanger for energy recovery 

from the reactor effluent. The heat exchanger preheats the reactor feed by bringing it into 

contact with the reactor effluent. However, in the new energy-efficient scheme (assuming the 

feed as a disturbance) there is no independent manipulated variable because the flows of the 

hot stream and the cold stream are the same at the steady state, and this structure is not 

controllable. In the next section, this example is used for explaining interdependency of 

process design and control design.   

1.2.3. Integrated design and control versus sequential design and 

control 

The current industrial practice is to firstly design a process, and then design a control system 

for that process, which suggests a sequential strategy. However, design of a process and 

design of its control system share important decisions. This section employs the example of 

Figure 1.3 to illustrate the interactions between process design and control. As discussed 

earlier, the heat-integrated reactor, shown in Figure 1.3, is rendered uncontrollable. There are 

two options to resolve the uncontrollability issue. A bypass stream (Figures 1.4.a, b) can 

partially resolve the loss of controllability. However, if a stronger control action is needed, an 
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auxiliary heat exchanger should be embedded in the flowsheet, as shown in Figures 1.5.a, b, 

c, d.  

In addition to selection between a bypass stream and an auxiliary heat exchanger, there are 

still other structural decisions to be made. The new manipulated variable (shown by a control 

valve in Figures 1.4 and 1.5) could be used to control a controlled variable. There are four 

and five candidate controlled variables for the structures with the bypass and the auxiliary 

heat exchanger respectively. They are shown using temperature indicators (TIs) in Figures 

1.4 and 1.5. Depending on the philosophy of the control, the designer may have preferences 

for each alternative process and control structure. If the suppression of undesirable reactions 

is the main challenge, the designer may choose to control the temperature of the reactor 

effluent and prefer the structures in which the control action is directly inserted to this stream 

(Figures 1.4.a and 1.5.a, b). However, if maintaining the reactor temperature is an active 

constraint, the designer may decide to control this variable and select those structures in 

which the control action is directly inserted to the reactor feed (Figures 1.4.b and 1.5.c, d). 

Depending on the temperature of the available utility resources, the designer may locate the 

new heat exchanger before or after the pre-heater in order to minimize the energy 

requirements. This is because the temperature difference between the heat-exchanging 

streams is a design variable and affect the required heat transfer area. If the new control 

action is not sufficient or if there are several constraints and criteria needed to be satisfied 

simultaneously, then the designer may choose to combine these structures.  

  

Figure 1.4.a: A bypass stream is added to the 

reactant effluent stream 

Figure 1.4.b: A bypass stream is added to the 

reactor feed stream 
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Figure 1.5.a. A heat exchanger is added on 

the reactor effluent stream and before the 

pre-heater 

Figure 1.5.c. A heat exchanger is added on the reactor feed 

stream and after the pre-heater 

 

 

Figure 1.5.b. A heat exchanger is added on 

the reactor effluent stream and after the 

pre-heater 

Figure 1.5.d. A heat exchanger is added on the reactor feed 

stream and before the pre-heater 
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In addition to the structural decisions described above, capturing the effects of parametric 

decisions on the economic and control performances is challenging. The value of bypass 

flowrate (i.e., split ratio) depends on the heat exchange area in the pre-heater and the 

expected range of the variations in the feed flowrate. In addition, the designer need to decide 

whether the auxiliary heat exchanger will be used during normal (steady-state) operations or 

its application is limited to transient and disturbed conditions. This decision influences the 

sizes of both the pre-heater and the auxiliary heat exchanger. Furthermore, different 

phenomena in the process may behave at different temporal and spatial scales. For instance, 

the reactions may act at very different time scales than material inventories. Failure to 

consider these interactions may result in economic losses, as well as safety concerns (e.g., 

runaway reactions).  

In summary, several interesting conclusions can be derived from the above motivating 

example: 

Further complications arise from the implementation issues and the directions of 

developments in process and control technologies: 

 Increase in energy prices, incentives for waste minimization and safety concerns 

encourage process integration and reduction of in-plant inventories. However, the 

new processes are difficult to control and vulnerable to disturbances. This is 

because in such processes, disturbances propagate in several paths and smaller 

inventories are less likely to tolerate disturbing conditions. 

 Design and control of a chemical process share important structural and parametric 

decisions. A systematic framework is needed in order to establish a trade-off 

between the process and control objectives.   

 The problem features combinatorial characteristics, i.e., the number of alternative 

solutions increases with the size of the process and becomes intractable. A 

systematic framework is needed in order to generate alternative designs and screen 

them.  

 In many cases, the structural and parametric decisions are highly interdependent.  

 The involved problems have multi-scale nature.  



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  30 

 

 The development of control systems is encouraged by industry, demanding for 

simplicity and conceivability of the process design and operation procedures. 

However, in practice new control technologies feature more complexities. Any 

future development should be toward conceptual and numerical complexity 

reductions.   

The next section represents the above problem in a more systematic way, by investigating the 

involved subproblems and their interrelations, with some hints about the direction of research 

in the present thesis.  

1.2.4. The conventional problem statement for integrated design and 

control 

In this section firstly, the conventional problem statement for integrated design and control is 

presented. This problem includes other sub-problems namely process design, control 

structure selection, controllability analysis, and controller design, which are also explained in 

this section. The phrase conventional integrated design and control is used because in the 

next section, a new problem statement will be presented in which for the sake of numerical 

and conceptual complexity reductions, controller design is separated from the conventional 

problem. It is notable that the presented problem statements are to some extent qualitative, 

and the mathematical notations are not presented in order to avoid unnecessary details. The 

mathematical formulations will be presented later in Chapter 3.  

Problem 1: Integrated design and control (conventional) 

Given the specifications of the feedstocks and the products, the desired throughputs 

and the expected disturbance scenarios, design a process, its control structure and 

the controllers, which are optimal with respect to the economic and control 

performance criteria and satisfy all the technical, safety and environmental 

constraints. Furthermore, ensure that the solution is controllable. 

Problem 1 is the most general problem statement and implies that all the elements of the 

problem be addressed simultaneously. In practice, often Problem 1 is decomposed into 

Subproblems 1 to 4 below, and is solved in sequence. The statements of the subproblems 

within Problem 1 are as follows.  
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Subproblem 1: Process design 

Given the specifications of the feedstocks and the products, in addition to the 

desired throughputs, it is intended to design a process which is optimal with respect 

to the economic criteria and satisfies all the technical, safety and environmental 

constraints. 

Subproblem 2: Control structure selection 

Given the detailed process design, the specifications of the feedstocks and the 

products, the desired throughputs and the expected disturbance scenarios, it is 

intended to select the manipulated variables, and the controlled variables, which are 

optimal with respect to the economic and control performance criteria, and satisfy 

all the technical, safety and environmental constraints.  

Subproblem 3: Controllability analysis 

Given the detailed process design, the specifications of the feedstocks and the 

products, the desired throughputs and the expected disturbance scenarios, the 

manipulated variables and the controlled variables, it is intended to evaluate whether 

it is possible at all to maintain the controlled variables at their setpoints by adjusting 

the manipulated variables and at the same time satisfy all the technical, safety and 

environmental constraints. 

Subproblem 4: Controller design 

Given the detailed process design, the specifications of the feedstocks and the 

products, the desired throughputs, the expected disturbance scenarios, the 

manipulated variables and the controlled variables, it is intended to decide the 

degree of centralization (and in the case of a decentralized control system, 

paring/partitioning between the manipulated and controlled variables), and to design 

the controllers (i.e., decisions about the control law and its parameters), which are 

optimal with respect to the economic and control performance criteria and satisfy all 

the technical, safety and environmental constraints. 

 



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  32 

 

Notice that the setpoints and nominal values of the manipulated variables are not within the 

design decisions of Subproblem 2, Control structure selection. This is because these variables 

are decided and fixed in Subproblem 1, process design. For instance, if a linear control valve 

is designed to pass the flowrate of   when it is 50% open, it is not possible to assign the 

nominal value of    to this valve because in that case it would saturate and would be fully 

opened, which means the loss of control action. Similarly, if the nominal flowrate of this 

control valve is set to a value corresponding to 25% opening, then the capability of this 

control valve for addressing the disturbances below its nominal value is halved. Similar 

argument can be made for controlled variables. The setpoints of controlled variables are 

constrained by their corresponding physical systems. For instance, the temperature of a 

reboiler is constrained to the physical properties of the boiling fluid, physical dimension of 

the reboiler, and even more importantly to the heating media. Therefore, if its setpoint is 

designed to be   , it is not possible to increase the temperature to   . These observations 

suggest that the sequential approach in which the process design is fixed in advance may 

result in suboptimal solutions compared to the problem of integrated design and control in 

which the shared decision variables of these subproblems are decided simultaneously.  

Nevertheless, the problem of control structure selection is  an important industrial problem, 

because the number of old processes which are being re-engineered and new control 

structures are selected for them are even more than the new processes which are being built 

from scratch.  

The sequential approach to address the above subproblems is unfortunate, because many 

important decisions are shared between Subproblems 1 to 4. For example as shown by 

aforementioned examples, when the process design is fixed, there are limited opportunities to 

improve the control performance and controllability. These observations suggest that process 

design and control should be integrated and Subproblem 1 to 4 must be addressed 

simultaneously, (as shown in Figure 1.6). However, there are several conceptual as well as 

numerical difficulties in the simultaneous approach, which are associated with Subproblem 4, 

i.e. design of controllers. The next section discusses the motivations for separating controller 

design (Subproblem 4) from the conventional integrated design and control (Problem 1) and 

proposes to solve a new integrated design and control problem, (Problem 2).  
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Figure 1.6. The key problems and subproblem involved in the conventional integrated design and 

control. 

 

1.2.5. Integrated design and control based on perfect control  

Unfortunately, the conventional integrated design and control problem (Problem 1) suffers 

from the curse of dimensionality, i.e. the combinations of alternative design decisions 

increases sharply with the size of the problem and becomes intractable. A part of this 

combinatorial characteristic should be attributed to the design of controllers (Subproblem 4). 

Design of controllers needs decisions on pairing/partitioning of manipulated and controlled 

variables (i.e. the degree of centralization), the type of controllers (e.g. feedback, feed-

forward, or model-based), and the controller parameters. 

In addition to the numerical complexity issues, there are other concerns about including 

controllers in the problem formulation. Morari (1983) was among the earliest researchers 

who recognised the challenging issues posed by the modelling of controllers in a dynamic 

simulation:  
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―…It is generally necessary that controllers are included in the model. This often leads to 

arbitrary decisions about the control structure and also requires the engineer to tune these 

controllers interactively during the simulation, a very time consuming task. The modelled 

control systems are only those which are based on the experience (or ingenuity!) of the 

engineer doing the work. It is then impossible to distinguish if an observed poor performance 

is caused by some inherent plant characteristic or rather by the unfortunate choice of the 

control system by the engineer.” 

The complexities associated with controllers have been the concerns of other researchers too. 

Perkins and his students introduced the idea of minimizing economic losses associated with 

back-off from active constraints, as a tool for selecting optimal control structures. The early 

versions of their methodology were based on frequency domain analysis and perfect control 

(Narraway and Perkins 1993; Heath, et al. 2000). Later, they extended their methodology by 

including a generalized formulation for the controllers. However, the proposed formulation 

was limited to linear time invariant output feedback controllers and did not include the 

majority of the important classes of nonlinear and model-based controllers, (Kookos and 

Perkins 2004). 

Other researchers also encountered similar difficulties. For example, since static relative gain 

arrays (RGAs) do not consider dynamic information, dynamic relative gain arrays (DRGAs) 

were introduced. However, calculating the denominator of a dynamic relative gain array 

(DRGA) requires detailed design of controllers and “since the DRGA is most valuable for 

screening alternate control system designs, the requirement of an extensive controller design 

tends to defeat the utility of these methods.”, (McAvoy, et al. 2003). 

Furthermore, the design of controllers at the process design stage is of limited practicality. 

This is because there is no general agreement between researchers on the criteria for selection 

of the controller type. Some researchers (Luyben 2004; Skogestad 2009) emphasize 

simplicity and robustness of the conventional multi-loop control systems and criticize the 

reliability and costs of modern types. On the other side of this discussion, other researchers 

(Stephanopoulos, and Ng 2000; Rawlings and Stewart 2008) argue the economic advantages 

of model-based control systems and their systematic approach for handling constraint 

violations. In addition, they criticize the economic disadvantages of the constant-setpoint 

policy in decentralized control systems. Furthermore, in practice, advanced controllers (e.g. 

MPCs) are designed using commercial packages, often during process commissioning stages 
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(Sakizlis, et al. 2010; Qin and Badgwell 2003), which may not be available at the process 

design stages. 

To cut through these arguments, this research proposes a new optimization framework for 

integrated design and control, based on perfect control. The implication of perfect control is 

that the best achievable control performance can be determined by the inverse solution of the 

process model, (Garcia and Morari1982; Morari and Zafiriou 1989; Yuan, et al. 2011), in 

which manipulated variables taking account of disturbances such that the controlled variables 

are precisely at their specified setpoints. This is a well-known concept that has resulted in 

development of a class of controllers which use the inverse of the process model as an 

internal element, (Skogestad and Postlethwaite 2005). Furthermore, based on this concept, a 

variety of controllability measures has been developed in order to quantify the causes of 

control imperfection, as discussed by Yuan, at al. (2011). However, no attempt has been 

made to incorporate the concept of perfect control into integrated design and control using 

first principles modelling. This research addresses this opportunity and proposes a 

methodology in which Subproblem 4 is removed from the formulation of Problem 1, but still 

the process and its control structure are optimized simultaneously and their controllability is 

ensured. Therefore, in this research, Problem 1 is distinguished as conventional integrated 

design and control, and a new problem statement is proposed:   

Problem 2: Integrated design and control (proposed) 

Given the specifications of the feedstocks and the products, the desired throughputs 

and the expected disturbance scenarios, it is intended to design a process, and its 

control structure, which are optimal with respect to the economic and control 

performance criteria and satisfy all the technical, safety and environmental constraints. 

Furthermore, ensure that the designed process and its control structure are controllable. 

Figure 1.7 compares the two key problems, i.e., the conventional and proposed integrated 

design and control problems. While the conventional framework for integrated design and 

control (Problem 1) considers all Subproblems 1 to 4, simultaneously, in the proposed 

integrated design and control (Problem 2), the complexities associated with controllers are 

removed from the problem formulation and the design of controllers (Subproblem 4) is 

delegated to control practitioners. 
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The proposed framework for integrated design and control (Problem 2) makes no assumption 

about the controllers. However, it provides a benchmark for the best achievable control 

performance. It is left for the control engineer to devise practical controllers which most 

closely meets the benchmark performance, from the range of controller types available to him 

or her. Such a design philosophy is consistent with the current industrial practice developed 

over the last 20 years (Jelali 2006; Qin 1998) in which the fitness for the purpose of a control 

loop is assessed against the best achievable performance. 

 

 

Figure 1.7. The key problems and subproblem involved in the proposed integrated design and control 
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1.2.6. Research aims and objectives 

This research aims at developing a new framework for addressing Problem 2. The developed 

framework will feature the following characteristics:  

1.2.7. Research novelty claims and contributions 

The novelty claim of present research is to develop a new optimization framework for 

addressing Problem 2 that features the characteristics mentioned in the research aims (last 

section). The results of this research are published or under review/preparation as follows: 

1. A systematic approach 

The developed framework systematically generates and screen alternative 

decisions regarding process and its control structure based on economic and 

control performance criteria.  

2. Complexity reduction 

The developed framework reduces the problem complexities. 

3. Controllability 

The developed framework should be able to ensure some desirable properties of 

the process and its control structure such as steady-state operability or functional 

controllability.   

4. First principles modelling 

The developed framework can be implement using first principles models and is 

not necessarily limited to any simplifying assumption.  

 

 Sharifzadeh M., Thornhill N.F., (2012a). Optimal selection of control structures 

using a steady-state inversely controlled process model. Computers & Chemical 

Engineering, 38, 126-138. DOI: 10.1016/j.compchemeng.2011.12.007. 

 Sharifzadeh M., Thornhill N.F., (2012b). Integrated design and control using a 

dynamic inversely controlled process model, accepted for publication at 

Computers & Chemical Engineering. DOI: 10.1016/j.compchemeng.2012.08.009. 

 Two other papers under review and preparation/submission.  
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In addition, research was presented in the following conferences and meetings: 

It should be emphasized that although the proposed methods make use of optimization 

algorithms and solvers, developing a new optimization algorithm is not within the novelty 

claims of this research. The author attempted to present the formulations in such a way that 

they can be conveniently addressed using available modelling and optimization tools. 

Disclaimer: The models used in present research are for demonstration purpose only and 

were not validated using actual plant data.  

 Sharifzadeh, M., Thornhill, N.F., (2011). Optimal controlled variable selection 

using a nonlinear simulation-optimization framework. 21st European 

Symposium on Computer Aided Process Engineering, May 21- June 1, Porto 

Carras, Greece. Book series: Computer-Aided Chemical Engineering, 29, 597-

601. 

 Sharifzadeh, M., (2012). Integrated design and control with a focus on control 

structures. Oral presentation at Departmental Symposium, 30
th

 March 2012, 

Department of Chemical Engineering, Imperial College London. 
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1.3. Introduction to the thesis 

This section introduces the PhD thesis. As discussed earlier, the aim of this thesis is 

developing a new optimization framework for integrated design and control. To this end 

firstly, the research activities in the field are reviewed in Chapter 2 and the merits and 

limitations of each method are explained. Then, in chapter 3, a new optimization framework 

for integrated design and control is proposed, which is based on the concept of perfect 

control. Several steady-state and dynamic versions of the proposed framework are 

demonstrated using the case studies of Chapters 4, 5 and 6, for optimal selection of control 

structures and integrated design and control. Chapter 7 discusses the implications of perfect 

control and presents a critical evaluation of the research, as well as suggestions for future 

research.  

The layout of the thesis is explained in more detail in the following subsections. It is intended 

to justify the organization of the thesis as well as illustrating the interrelations of the 

presented materials.  

1.3.1. Introduction to Chapter 2: Background and context  

Chapter 2 reviews the relevant research activities in the field. Different methods for 

addressing the problem and subproblems of Section 1.2.4 are discussed. As will be seen, 

these methods can be classified into the methods for sequential design and control, and the 

methods for integrated design and control. The aim is to put research in the context and 

provide a solid background for the proposed methodology in the next chapters.  

1.3.2. Introduction to Chapter 3: An optimization framework using an 

inversely controlled process model 

Chapter 3 presents the theory of the present research. The mathematical formulation of the 

proposed optimization framework for integrated design and control (Problem 2) is developed 

by modifying the mathematical formulation of the conventional optimization framework 

(Problem 1). In conventional integrated design and control, a model is used which is the 

combination of the process and controllers models. In the new framework for integrated 

design and control, the combined process-controller model is replaced by an inversely 

controlled process model. Here, the treatment is based on the notion of perfect control. 

Several steady-state and dynamic versions of the proposed optimization framework will be 
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formulated for optimal selection of control structures and integrated design and control. 

Finally, this chapter explains that the application of a steady-state inversely controlled 

process model ensures regulatory steady-state operability, and the application of a dynamic 

inversely controlled process model ensures functional controllability. The proposed 

frameworks in Chapter 3 will be demonstrated using three case studies in the subsequent 

Chapters 4, 5 and 6.  

1.3.3. Introduction to Chapter 4: Optimal selection of control structures 

using a steady-state inversely controlled process model 

Chapter 4 illustrates the application of a steady-state inversely controlled process model for 

optimal selection of control structures (Sub-problem 2) by studying a distillation train. The 

mathematical formulation of the problem is presented and the implementation considerations 

and optimization programming are explained. Finally, the results are presented and discussed. 

1.3.4. Introduction to Chapter 5: Integrated design and control using a 

steady-state inversely controlled process model 

Chapter 5 illustrates the application of a steady-state inversely controlled process model for 

integrated design and control (Problem 2). This chapter extends the results from the previous 

chapter by including the structural and parametric process variables. The mathematical 

formulation of the problem is presented and the methodology is illustrated by studying the 

case of a reactive distillation column. The applied software tools are explained and the results 

are discussed. 

1.3.5. Introduction to Chapter 6: Integrated design and control using a 

dynamic inversely controlled process model 

Chapter 6 extends the results from the last chapters by applying a dynamic analysis and 

considering transient conditions. This chapter illustrates the application of a dynamic 

inversely controlled process model for integrated design and control (Problem 2) of two 

series reactors. Two solution strategies are applied. They are dynamic optimization based on 

(i) sequential integration and (ii) full discretization. The first solution strategy is the classic 

strategy for dynamic optimization in which discrete variables are enumerated and continuous 

sub-problems are optimized. However, the first strategy is limited to problems in which the 

number of the discrete variables is small and enumeration of continuous sub-problems is 
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possible. For this reason, the second strategy is presented in which all the time-dependent 

variables are discretized and the underlying discretized formulation is posed as a mixed 

integer nonlinear programming (MINLP) problem. As explained earlier, there are often 

competitions and conflicts between process objectives and control objectives. The other 

advantage of the second strategy is that its execution time is shorter. This provides the 

opportunity to explore the trade-off between these competing objectives by constructing a 

Pareto front as will be discussed. Finally, several post-optimization analyses are performed 

and a PI controller is designed for the optimized process and control structure. This will 

provide the opportunity for comparison of the proposed and conventional optimization 

frameworks.    

1.3.6. Introduction to Chapter 7: Discussions and suggestions for future 

research 

Chapter 7 provides the discussions and comparisons of the methods presented in the thesis. 

Since, the dynamic formulation may include high index differential algebraic equations, the 

implications of the index of a dynamic inversely controlled process model for disturbance 

rejection and setpoint tracking are explained. In addition, the implications of the causes of 

control imperfection for the proposed optimization framework are discussed. The discussions 

go on with critical evaluation of the research contributions and achievements. Finally, 

Chapter 7 provides suggestions for the future research directions.  

1.4. Conclusion 

This chapter presented an introduction to the research title as well as the thesis. It was 

discussed that due to the interactions between individual unit operations, and their 

implications for feasibility and optimality of process operation, a plant-wide approach to 

process design and control is required. Furthermore, it was explained that the problems of 

process design and control design share important decisions and should be integrated. 

Nevertheless, the integrated problem is highly complex and may become intractable.  

This chapter identified that a part of these complexities and combinatorial features of 

integrated design and control should be attributed to the controller design. The design of 

controllers requires decision-making regarding the type of controllers, pairing/partitioning of 

manipulated and controlled variables, and tuning the parameters of controllers. In addition, 

controllability is the inherent property of the process and does not depend on the controller 
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design, and should be considered independently. Finally, the modern control systems are 

designed during the commissioning stages and using commercial packages which may not be 

available during the process design stage. Therefore, this chapter proposed a new 

optimization framework for integrated design and control based on the notion of perfect 

control. In the new framework, the process and its control structure are optimized 

simultaneously, while design of controllers are disentangles and delegated to control 

practitioners.  

The discussions in this chapter justified the research directions and will provide opportunities 

for further developments and contributions as will be presented in Chapter 3 and will be 

demonstrated using the case studies in Chapters 4, 5 and 6. In addition to introducing the 

research title, this chapter also introduced the thesis structure. The organizations of the 

presented materials were explained, and the merits of the each contribution were highlighted.  
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Chapter 2 | Background and context 

 

2.1.     Introduction 

This chapter presents a thematic review of the relevant topics for process design and control. 

Firstly, the industrial perspective and the incentives for integrated design and control are 

discussed. Then, an overview of research in the field is presented. There are two categories of 

the methods. The methods in the first category have a sequential approach in which the 

process is designed first, and then the design of its control system is decided. In the second 

category, however, the process design and control are to some extent integrated. Since most 

of the methods in both categories employ a model in their analyses, different methods for 

modelling chemical processes are reviewed first and their relationships to the problem of 

integrated design and control are established.  

Then, the review starts by exploring the methods in the first category. The methods based on 

applying engineering insights in order to decompose the problem into smaller sub-problems 

are reviewed. Controllers and control structures are also discussed, and the causes of 

imperfect control are explained. The methods based on passivity analysis are also discussed 

briefly.   

2 



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  44 

 

The methods in the second category, however, consider the interactions between process 

design and control. The geometric methods for operability analysis, the multi-objective 

optimization methods based on controllability measures, the methods using robust control 

measures, the methods for steady-state and dynamic flexibility optimization, the methods 

based on minimization of the economic losses associated with back-off from active 

constraints and simultaneous process and controller optimization are reviewed and discussed. 

Finally, the chapter briefly reviews the solution algorithms for the optimization-based 

methods. These discussions serve as the introductions to the next chapter where the theory of 

research is presented.  

2.2. Incentives for integrated design and control 

The common perception is that steady-state economy dominates profitability of a chemical 

process, (Downs and Skogestad 2011). However, there is no guarantee that optimizing a 

process based on a steady-state economic criterion will also ensure desirable controllability 

properties. In fact, Luyben (2004) recognized that in many processes steady-state process 

economic objectives and dynamic control performance objectives are inherently competing 

and conflicting. He mentioned that in order to achieve a high energy efficiency, 

thermodynamically reversible processes are favourable. This is because in these processes no 

entropy is created (i.e., no energy wasted) and therefore, the required energy is minimized. 

Such an economic optimal process employs very negligible driving forces, i.e., small 

temperature, pressure, and concentration differences. However, these driving forces are 

crucial for control systems to be able to reject disturbances or switch between steady states. 

The examples of situations in which process and control objectives compete and conflict are, 

(Luyben 2004): 

1. Sizing a small control valve, as the resulted small pressure drop improves energy 

efficiencies due to the reduction in the power requirements of compressors and 

pumps, but at the same time increases the likelihood of valve saturation and loss of 

control action. 

2. Designing a small heat transfer area, which reduces the required capital costs but at 

the same time implies that at normal operating conditions, a lager temperature 

difference is used, and a small potential temperature difference is reserved for 

disturbed operating conditions.   
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These observations encouraged process systems engineers to integrate process design and 

control, because isolated decision-making for process design and control design would result 

in, if not infeasible, a sub-optimal solution. Reviews of the research activities regarding 

integrated design and control is presented by Sakizlis, et al. (2004), Seferlis and Georgiadis 

(2004), Ricardez-Sandoval, et al. (2009a) , Yuan et al. (2011) and Yuan et al. (2012).  

2.3. Industrial perspective 

Due to depletion of worldwide energy resources, stringent safety regulations, and 

environmental concerns, new chemical processes tend to employ less in-plant inventories, 

and a higher degree of material and energy integrations. In addition, they feature higher 

yields incorporating recycle streams in complex flowsheets. These processes operate closer to 

operational constraints (Luyben 2004), and produce a larger variety of products with different 

specifications. Furthermore, due to current economic climate and high costs of building new 

facilities, optimization and retrofit of old processes in order to produce new products add to 

the problem complexities, (Downs and Skogestad 2011).  

Downs and Skogestad (2011) emphasized that despite the large variety of methods developed 

for designing plant-wide control systems, the industry has conservatively maintained its 

traditional practice to design control systems for individual unit operations. For example, in 

Eastman Chemical Company, the procedure for designing a control system is still to set the 

throughput by the feed flowrate and then design the control systems for individual units, 

sequentially. This is because unit-wise control systems are simple and understandable to 

3. Designing large reflux and boil-up ratios in distillation columns, which may imply 

a higher energy requirement, but will act better in the presence of disturbances. 

4. Designing a limiting reactant; in the case of a reaction with two reactants, steady-

state economy favours the reactants to be fed equimolar to maximize the reaction 

rate and minimize the reactor volume, hence reduce the costs. However, if the 

reaction is exothermic, the high inventories of the reactants increase the risk of a 

runaway reaction. Designing for a limiting reactant will self-regulate the process, as 

the limiting reactant will deplete in the case of a runaway reaction. However, such a 

design requires a larger reactor and a larger recycle stream to return unreacted 

materials and therefore increases the capital investment and the operating costs.  
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operators and plant engineers, and any malfunctioning unit operation can be treated without a 

need for intervention of control experts, (Downs and Skogestad 2011).  

Page Buckley (1964) was among the pioneer industrial engineers who recognized the 

importance of integrated design and control. He achieved this integration by transferring to 

Design Division of DuPont’s Engineering department and coordinating the efforts of process 

and instrumentation engineers. However, despite the long history of integrated design and 

control, there are several practical barriers to commercialize the integrated approach: 

3. In addition, control engineers and process engineers usually have different mindsets 

and for cultural reasons it is difficult to encourage the integrated approach, (Downs 

and Skogestad 2011).  

4. Industrial incentives for simplicity and conceivability of control systems discourage 

the application of highly complex control systems such as real-time optimizations, 

(Downs and Skogestad 2011).    

Therefore, systematic methodologies are needed that capture the interactions between process 

design and control and be able to manage the conceptual as well as numerical complexities of 

the problem.   

2.4. Overview of research in the field 

The subsequent sections present a thematic review of the relevant topics for process design 

and control. The hierarchical tree in Figure 2.1 gives an overview of research in the field, and 

serves as a roadmap for this chapter. It consists of two main branches. The left branch has a 

sequential/iterative approach in which Subproblems regarding control structure selection 

(Subproblem 2), controllability analysis (Subproblem 3), and controller design (Subproblem 

4) are solved in sequence and after the process design (Subproblem 1) is fixed. However, the 

methods in the right branch have a simultaneous approach in which process design and 

control (Problems 1) are integrated to some extents.  

1. Developing rigorous models and controllability analysis during the design stage can 

be time-consuming and expensive and requires a high level of expertise, (Chachuat 

2010; Downs and Skogestad 2011). 

2. Economic objectives and control objectives are incommensurable and establishing 

sensible links between business derivers and control objectives is an elusive task, 

(Edgar 2004).  
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Figure 2.1. Overview of research in the field 
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Since different methods for process modelling have had crucial roles in developments of the 

methods in Figure 2.1, different types of process models are reviewed first. The sequential 

approach (left branch in Figure 2.1) consists of a variety of methods which address the key 

sub-problems of Section 1.2.4 in sequence. The review starts with the methods based on 

process insights and heuristics, developed over decades of engineering practice, which enable 

conceptual as well as temporal and spatial decomposition of the problem. Moreover, 

understanding the elements of control systems is crucial. The reviews of controllers and 

control structures are presented in this chapter. The focus is on the degree of centralization, 

the economic implication of set-point policies and self-optimizing control, in addition to the 

desired properties of controlled and manipulated variables. The causes of control 

imperfection also limit process controllability. They are (1) interactions between control 

loops for decentralized controllers, (2) constraints on the manipulated variables, (3) model 

uncertainties and disturbance scenarios, (4) right-half-plane zeros, and (5) time delays. Based 

on the causes of control imperfection, a variety of methods is developed, which characterize 

process controllability from different perspectives. Different definitions of operability, 

flexibility, and controllability are presented and methods for quantification of control 

imperfection are reviewed briefly. In parallel, as will be discussed, the methods based on 

passivity/dissipativity investigate the interactions of individual control systems and 

controllability of the whole network. 

The disadvantage of the methods in the sequential approach is that they consider only 

individual subproblems of Section 1.2.4 (control structure selection, controllability analysis 

and controller design) and do not consider the interactions between them. Some of the 

sequential methods have a qualitative approach and some others have yes/no or 

evaluation/ranking attitudes. However, controllability characteristics are the inherent 

properties of the process and depend on the structural and parametric process variables as 

well. The incentives to integrate controllability and control performance criteria into process 

design have motivated new studies which are shown on the right branch of Figure 2.1. One 

way forward is to employ multi-objective optimization and incorporate controllability 

measures into an economic multi-objective function. Other researchers focused on reducing 

the first principles model of a process to a linear model and applying the measures that 

conventionally are used for robust control. In addition, the process model can be applied in 

order to map the available inputs into the output space and determine if the process operation 

remains feasible, which resulted in the geometrical methods for operability analysis. 
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Alternatively, flexibility analysis can be conducted using optimization. The early versions of 

flexibility optimization were based on a steady-state formulation and identifies whether for a 

range of the values of uncertain variables, the process operation is feasible or not. This 

formulation had no implication for the control system. Later, flexibility optimization was 

extended to consider the transient conditions using a dynamic formulation. Other researchers 

suggested economic optimization of the losses associated with disturbances. These losses 

were formulated in terms of the required back-off from active constraints to ensure a feasible 

operation. In addition, advancement of computational tools and optimization algorithms 

encouraged the researchers to optimize the process and controllers simultaneously. However, 

the resulted mathematical formulation is very large and limited to a certain type of 

controllers.   

2.5. Modelling techniques  

This section provides an overview of the modelling techniques used by the control 

community. With some exceptions in the heuristic methods, all the methods shown by the 

end nodes of the hierarchical tree in Figure 2.1 use process modelling for understanding the 

underlying physical and chemical phenomena. The aim is to explain the characteristics of 

different modelling approaches and establish their relationships to the problem of integrated 

design and control. The applied models can be classified according to:  

Different combinations of the abovementioned properties result in different modelling 

approaches. The most common approaches are linear dynamic models, discrete time models, 

stochastic linear models, input-output models, distributed models, and first principles models, 

(Rawlings and Mayne 2008). It is crucial to understand the implications of the modelling 

approaches. This is because if a model has a poor relationship to the original underlying 

physical and chemical phenomena, its application for integrated design and control is of 

1. Source of information: empirical or from first principles,  

2. Mathematical presentation: linear or nonlinear, 

3. The treatment of time-dependent variables; discretized or continuous,  

4. Importance of transient conditions: steady state or dynamic,  

5. Spatial details: lumped or distributed, and 

6. Degree of uncertainty: deterministic or stochastic.  
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limited practicality. In the following subsection, different modelling approaches are reviewed 

and the importance of first principles modelling is emphasized. 

2.5.1. Modelling from first principles  

First principles models are based on the constitutive and phenomenological laws such as 

mass and heat balances, laws of thermodynamics, reaction kinetics and heat, mass and 

momentum transfer phenomena. Often the first principles models can be represented 

accurately enough by the following differential algebraic formulation: 

      

  
                                                                                                                       

                                                                                                                               

                                                                                                                                          

In above,        is the vector of state variables,        is the vector of manipulated variables, 

       is the vector of controlled variables, and   represents the time. In addition,      is the 

vector of differential equations, and      is the vector of algebraic equations.    is the vector 

of the values for state variables at the initial time   .  

If in addition to time, other variations such as spatial variations or particle size distributions 

are also important, the resulted formulation may involve partial differential equations. For 

example, a multi-component mixture including a chemical reaction and convection can be 

represented as (Rawlings and Mayne 2008): 

    

  
                                                                                                                    

in which,    represents concentration,    is the velocity, and    is the reaction rate of 

component  . The operator   in (2-2) is defined as: 

       
 

  
    

 

  
    

 

  
   

where   ,    and    are unit vectors.  

By increasing interests in nanotechnology and molecular systems engineering, a variety of 

models for describing the random behaviour of molecular systems has evolved. However, the 

focus of control theory is mostly macroscopic properties of chemical processes in which 

systems of small numbers of molecules are not considered.  
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2.5.2. Linear models 

Due to numerical difficulties and motivated by solid linear control theories, linearization of 

equations (2-1) is often performed and the corresponding linear model is used instead. 

However, the resulted reduced model is only valid locally and around the linearization point. 

The most general time-varying linear dynamic model is represented as: 

      

  
                                                                                                               

                                                                                                                       

                                                                                                                                          

The time-invariant equivalent formulation of (2-3) can be derived by making  ,  ,   and   

constant. In addition, the stochastic equivalent formulation of (2-3) is 

      

  
                                                                                                

                                                                                                              

                                                                                                                                          

where       is the vector of random variables acting on the state transitions and       is the 

vector of random variables acting on the measurable output variables. In the context of 

control theory, these random variables represent the unmodelled behaviour of the 

environment, i.e., disturbances.  

The discretized version of formulation (2-3) is of interest when the measurable output 

variables are sampled at discrete times: 

                                                                                                                    

                                                                                                                          

                                                                                                                                          

where   is a nonnegative integer number. If the internal structure of a system is unimportant 

or not completely understood, input-output modelling can be used instead. Such a model can 

also be the result of system identification in which inputs are manipulated and a linear model 

is developed based on the measured outputs. In such an input-output approach, the process 

internal elements are considered as a black box. The input-output representation of 

formulation (2-3) using the notations of Laplace transform, can be represented as: 

 ̅         ̅                                                                                                                           
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The formulation (2-6) can be derived directly from state space representation (2-3) as 

follows: 

                                                                                                                              

Different methods in Laplace domain, z domain and frequency domain are developed based 

on the properties of linear models, which their details are available in literature (e.g. 

Ogunnaike and Ray 1994; Skogestad and Postlethwaite 2005). 

2.5.3. Model reduction techniques 

Mathematical models in chemical and petroleum engineering consist of thousands of 

algebraic and differential equations. Simultaneous solution of all these equations may pose a 

numerical challenge. The other motivations for reducing the mathematical models are for 

storage and retrieval of the optimal solutions, getting insights about the model structure, and 

degree of freedom analysis. Marquardt (2001) presented a review of the conventional 

methods for model reduction. In general, these methods can be classified into two categories, 

i.e. model simplification and model-order reduction.  

Model simplification can be performed by linearization (Antoulas et al. 2000) around a 

nominal operating point, or simplifying kinetic and/or physical property models and 

approximation of model equations with simpler functional (e.g., explicit) expressions 

(Dormeanu 2009). The other simplifying method is model lumping (Ranzi et al. 2001) in 

which thermodynamic models and components are simplified to lumped species and pseudo-

phases. However, this type of model reduction may introduce more complexities to the 

functional expressions in the remaining equations, (Dormeanu et al. 2009). 

Model-order reduction methods can be classified into linear and nonlinear methods. The 

linear methods can be classified into projection-based and non-projection-based methods. 

The projection-based methods decompose the original space    (of dimension  ) into the 

reduced space    (of dimension k) and the residue space    (of dimension    ). Krylov-

subspace or momentum matching methods, balanced realization-based methods and proper 

orthogonal decomposition (POD)-based methods are in this category (Skogestad and 

Postlethwaite, 2005; Antoulas et al. 2000; Rathinam and Petzold, 2003; Penzl, 2006). In the 

non-projection methods, the states of the approximate model have no connection to the 

original model states. The examples of techniques in this category are Hankel optimal model 

reduction method, and singular perturbation method (Mäkilä, 1991; Marquardt, 2001). 
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Each of the above methods has advantages and disadvantages. For example, the Krylov-

subspace-based methods can be applied for a high-order system, but they have robustness, 

stability and efficiency issues (Bai, 2002). In the case of balanced realization methods, very 

low-rank approximations are possible and will result in accurate low-order models. However, 

the solution requires dense computations and can be carried out only for low-dimension (a 

few hundreds of equations) models (Antoulas, et al. 2000). The proper orthogonal 

decomposition (POD)-based methods strongly depend on the initial excitation, but these 

methods can be applied for high-complexity systems. The nonlinear methods are mostly the 

extended application of linear methods to nonlinear models, using linearization of model 

nonlinearities. As a result, the reduced model is only valid locally. The methods based on the 

application of neural networks (Prasad and Bequette, 2003) or hybrid models (Nagy and 

Braatz 2007; Nagy et al. 2010) are the other class of the nonlinear methods. However, the 

resulted reduced model can be even more difficult to solve than the original model, 

(Marquardt, 2001). 

Since the philosophy behind all these techniques is to eliminate those state variables or their 

derivatives (i.e., balanced truncation or balanced residualization) which have the minimum 

effects on the input-output behaviour of systems, most of these methods destroy the structure 

of the problem and result in the loss of physical significance of the model parameters and 

variables. Moreover, understanding the effects of the uncertainties on the precision of the 

reduced model is another challenge, (Nagy and Braatz 2007). In addition, an important 

drawback of model reduction approaches such as balanced covariance matrices and proper 

orthogonal decomposition is that they only reduce the number of differential variables and 

not algebraic variable, which are not efficient because often the algebraic variables 

outnumber the differential variables. 

2.5.4. The importance of modelling from first principles  

As discussed earlier, it is crucial that the applied model for integrated design and control 

establishes strong links to the physical and chemical properties of the process and is able to 

give rigorous evaluations of the control performance criteria as well as process objectives. 

Therefore, despite the numeral easing, the methods which destroy the internal structure of the 

underlying first principles models (such as abovementioned model reduction techniques) or 

the methods which are only locally valid (e.g. linearization methods) are not appropriate for 

integrated design and control. This is one of the reasons that most  of the methods developed 
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on the left branch of Figure 2.1 can only be used in sequence (i.e., after process design fixes 

nominal operating point) and have yes/no or evaluation/ranking attitudes. By contrast, most 

of the methods on the right branch of Figure 2.1 have strong links to the underlying first 

principles models. 

2.6. Process insights and heuristics: decomposition techniques 

for complexity reduction 

The following subsections discuss the methods in the first node of the left branch in Snip 

2.1.1 (Figure 2.1 revisited) which concerns decomposition techniques for complexity 

reduction.  

 
Snip1 2.1.1. Research in the field: Decomposition techniques for complexity reduction, (Figure 2.1 

revisited). 

 

The fact that the subproblem of process design needs to be resolved and decomposed into 

more manageable subproblems is not new in the area of process systems engineering. For 

example, Douglas (1988) presented a hierarchical view of a plant to make the problem of 

process design tractable. The methodology of Douglas employs different resolutions of the 

plant details, for example evaluation of the interactions of the plant and surroundings and 

then evaluation of the interactions of process components with each other inside the plant and 

so on. The same is true for the control design and many authors suggested a hierarchical 

approach or a decomposition technique in order to reduce the problem complexities.  

The focus here is on control structures. Control structures feature different complexities. 

They have multi-scale multi-layer structures and work in different time scales. While 

                                                 
1 In this thesis, snips refer to small pieces of figures which are revisited to facilitate the discussion.   
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business planning is performed in the time scale of days and weeks, the regulatory control 

layer which stabilizes the process, acts in seconds. In addition, control structures have 

different objectives, such as stabilizing controlled variables, avoiding technical limitations, 

respecting environmental and safety constraints, and following the optimal economic 

operation. Furthermore, the problem complexities increase with the process efficiency and 

integration, because in highly integrated processes, there are significant interactions between 

different parts of the process. For example, the propagation of disturbances in a highly 

integrated process is not only along the main production path, but also through recycle 

streams and/or between process streams which exchange materials and energy, (Luyben et al, 

1999). These complicated characteristics require a systematic approach for complexity 

reduction. Therefore, handling the problem complexities is the key characteristic of the 

desirable methodology. A variety of decomposition techniques is developed over the decades 

of engineering practice, as discussed in the following. 

2.6.1. Complexity reduction based on process components: a unit-wise 

approach 

The early attempts to reduce the complexities of control structures involved design of control 

structures for individual unit operations such as heat exchangers, reactors, and distillation 

columns and then interconnecting them in order to develop the overall plant-wide control 

structure. Here, engineering insights have to be employed to resolve the conflicts (e.g. two 

control valves on the same stream) that arise by adding individual control structures. The 

inspiration for this approach is that comprehensive knowledge and experiences are available 

for controlling the major unit operations. 

A criticism about the unit-wise approach is that combining the optimal control structures of 

individual unit operations does not guarantee the optimality of the overall plant-wide control 

structure. In addition, the heuristic methods used for eliminating the conflicts become more 

and more complicated and inapplicable as the number of process components increases, 

(Kookos 2001; Ng 1997). 

Although combining unit-wise control structures ignores the plant-wide effects, still this 

method has wide applications. The reason for its popularity is the simplicity of the developed 

control structures, which makes them more conceivable to the operation people. Downs and 

Skogestad (2011) also attributed this practice to the ―overriding issues of reliable operation‖. 
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Control design for special unit operations has been the subject of academic and industrial 

research, (Ward, et al. 2007; Ward, et al. 2010; Skogestad 1988, 2007).  

2.6.2. Complexity reduction based on temporal decomposition 

Temporal decomposition is another strategy in order to reduce complexities of control 

structures. It employs differences in the time scales in which the control structure is 

performing. 

Buckley (1964) recognized that control systems have a high frequency control layer for 

quantity control (material balance) and a low frequency control layer for quality control (e.g. 

specifications of products). As another example, it is well-known that in multi-loop 

traditional control systems, interactive loops with a significant difference in their time 

constant may demonstrate a decoupled performance, and can operate separately, (Ogunnaike 

and Ray 1994). 

In addition, Morari (1980a; 1980b; 1980c) categorized process control objectives into 

regulatory and optimizing objectives. Those control systems which are responsible for 

regulation of the process, handle fast disturbances that have a zero expected value in long-

term. However, longstanding disturbances with significant economic effects are treated by 

optimizing control systems.  

2.6.3. Complexity reduction based on prioritization of control objectives 

Several researchers have attempted to reduce the complexities of the problem by prioritizing 

control objectives in order to decompose control structures into smaller parts, so each part 

pursues an individual objective. 

McAvoy (1994) suggested considering the overall mass balance through control of the 

flowrates, first. Then, the energy balance must be regulated by controlling temperatures and 

pressures. Later, the product quality and component mass balances are considered. Finally, 

the remaining degrees of freedom and setpoints of the regulatory control layer are employed 

for optimizing the operational costs.  

The tiered framework approach suggested by Price, et al. (1993, 1994) firstly meet the targets 

of the overall inventory and throughput regulations, then product specifications are treated, 

later operational constraints are considered, leaving the optimal operation to be the last target. 

They called their methodology a ―direct descendant‖ of Buckley’s method. 
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Ponton and Laing (1993) recommended developing the control structure for controlling the 

flowrates of products and feed first. Then, recycle flow must be regulated and the 

compositions of intermediate streams should be treated. Energy and temperature stabilization 

are the next targets and finally inventory control will be addressed. 

Luyben, et al. (1997) suggested a framework for control structure selection in which firstly 

the decisions regarding control of the production flowrate are made. Secondly, the product 

quality specifications and constraint satisfaction must be considered. Then, inventory control 

is designed. It must be checked that the overall mass balance will be met for all the 

components. Finally, the remaining manipulated variables are assigned for optimizing the 

economic objective. 

Larsson and Skogestad (2000) and Skogestad (2004a) developed an iterative top-

down/bottom-up algorithm for control structure selection. The design approach in the top-

down direction is steady-state economic analysis such as meeting the operational objectives, 

optimizing the process variables for important disturbances and determining active 

constraints such as throughput/efficiency constraints. However, the bottom-up design is 

concerned with dynamic issues such as designing the control structure for the regulatory 

layer, paring/partitioning the manipulated and controlled variables, and designing the 

supervisory control layer.  

Luyben (1996) presented a survey of the control structures developed for the Tennessee 

Eastman problem. He discussed the pros and cons of his own solution in addition to a list of 

other schemes such as those presented by Lyman and Georgakis (1995), McAvoy and Ye 

(1994), and Ricker (1996). Luyben (1996)  argued that different control structures developed 

for the Tennessee Eastman problem are the results of different rankings of the control 

objectives: ―…diversity of structures is a very nice example of one of the basic process 

control principles that says that the “best” control structure depends on the control 

objectives‖.  

As discussed also by Edgar (2004), in evolution of the above methods, the priorities of the 

objectives have been reversed. In the former approaches, the control system was simply a tool 

to achieve the predetermined goals of production, which were set in the process design stage. 

The operation personnel did not think of the control system as an optimization tool to 

improve profitability of the process. Therefore, economic optimization had the lowest 

priority. However nowadays, business planning of process industries has become online and 



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  58 

 

much less limited by the early decisions at the design stage. Consequently, the new control 

systems have also inputs from economic parameters and translate them into operational 

decisions. This has encouraged designers to consider the highest priority to economic 

objectives and the roles of other control tasks (e.g. inventory control in the next section) are 

to realize the targeted economic objectives.   

2.6.4. Complexity reduction based on the production rate and the 

inventory control systems 

Since inventory control systems have a dynamic nature and do not appear in a steady-state 

analysis, they need to be treated separately. Therefore, inventory control has received special 

attentions in literature. The following discussions about inventory control and dynamic 

degrees of freedom are also of interest to the steady-state methods of Chapters 4 and 5 as will 

be discussed later.  

The process mass inventories refer to the gaseous, liquid, and solid materials accumulated 

within the process. Inventory control has a priority in control structure design, because many 

instability modes such as emptying/overflowing of a vessel or flooding/weeping of a 

distillation column are related to inconsistency or failure of inventory control systems. In 

addition, modern process plants tend to have less material inventories due to efficiency, 

safety, and environmental considerations, which makes the control of their inventories more 

challenging. Therefore, developing general rules that enable design of inventory control 

systems without the aid of costly rigorous dynamic models would be highly desirable. The 

necessity of developing a consistent and efficient plant-wide inventory control structure has 

led to a range of heuristics and judgement-based methods. In the following, a brief review of 

these methods is presented.  

Buckley (1964) emphasized the requirement for consistency of the flow controls, upstream 

and downstream of the throughput manipulation point (TMP). He suggested that in order to 

develop a consistent control structure, flows must be controlled in the opposite direction at 

the upstream of the throughput manipulation point and in the same direction at the 

downstream of this point.  
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Figure 2.2. The inflows are used for design of the inventory control systems on the upstream of the 

throughput manipulation point. However, the outflows are used on the downstream of this point. 

 

Later,  Price, et al. (1993, 1994) emphasized the existence of a primary path from the feed to 

the product in most chemical processes. They suggested that the inventory control should be 

designed in the direction of the flow if the feed flowrate is chosen to be the throughput 

manipulation point, and in the opposite direction of the flow if the product flowrate is chosen 

as the throughput manipulation point and in general radiates from the throughput 

manipulation point. This requirement is shown in Figure 2.2 for a series of liquid inventories 

with throughput located inside the process. 

Luyben and his coworkers (Luyben 1993a,b,c; Tyreus and Luyben 1993; Luyben 1994; 

Luyben, M. L., and Luyben, W. L., 1995) in a series of articles, using examples of reaction-

separation processes, explained how reaction kinetics and economic factors might result in 

different control structures. They concluded a general rule that a flow control must be 

included in each recycle stream. Luyben, et al. (1997) recommended one flow control in the 

liquid recycle loop, but setting gas recycle at the maximum circulation rate. It is notable that 

the effects of recycle streams are not limited to material inventories, and energy inventories 

are also important. Luyben, et al. (1999) using the example of an exothermic reactor, showed 

that positive feedback of energy could lead to the loss of control action and may pose the risk 

of runaway reactions.  

Aske and Skogestad (2009a,b) investigated the consistency requirements for inventory 

control systems. Their suggested rules can be summarized to firstly assign an inflow or 

outflow controller to each inventory and secondly to check whether inventory of each 

component is consistently regulated by at least a degree of freedom or a chemical reaction. 
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Each phase inventory also needed to be controlled by the inflow or outflow or via phase 

change. 

Recent studies (Skogestad 2004a; Aske 2009a,b,c; Downs and Skogestad 2011) focus on the 

relation of inventory control and profitability. Chemical processes can be classified according 

to which constraints become active earlier, during economic optimization: (i) throughput 

constraints or (ii) efficiency constraints. In the case of new plants, economic objectives are 

often driven by optimizing the efficiencies regarding reaction yields, waste treatment 

requirements, and energy consumptions. Therefore, after the optimal production rate is 

reached, any change in the throughput will result in economic losses and is treated as a 

disturbance. Conversely, when there are economic incentives to increase the production rate, 

for example because of high demand or high price of the products, the throughput constraints 

become active before the efficiency constraints. Therefore, in the second scenario, the 

process operation will be constrained by the throughput bottleneck. The instances of these 

capacity constraints at the bottleneck are limitations in the liquid flow to a vessel, the 

pressure difference of a distillation column or the temperature constraint of a reactor. 

While dynamic degrees of freedom are assumed to have less economic importance, it has 

been shown that they are critical when process economy is constrained by the maximum 

throughput. In this case, the loss of process throughput can be avoided by temporary 

reduction in the in-plant material inventory. Aske (2009c) studied two cases of a coordinated 

MPC and a ratio control structure to show how dynamic degrees of freedom (which 

apparently have no steady-state economic significance) can be employed to increase the 

economic profitability.  

2.6.5. Complexity reduction based on causality analysis 

Causality analysis using graph theory is a recently developed mathematical tool, which 

reduces the first principles model to a signed directed graph (SDG). Signed directed graphs 

are directed graphs, which represent the causal relationship between variables of a system. 

Often a sign or a weighting factor is added to an arc to represent of the direction or the 

intensity of that causality relation. The advantage of this methodology is that it extracts only 

the necessary data for the process modelling and makes the model interrogation easier than 

the equivalent first principles model.  

Application of this method for fault detection in process industries has gained great interests. 

Maurya, et al.  (2003a, 2003b, 2004) presented the review, including detailed evaluations of 
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the advantages and disadvantages of the application of these graphs for representation of 

dynamic models. Yim, et al. (2006) and Thambirajah, et al. (2009) applied the methods of 

signed directed graphs and connectivity matrices to extract causality relation from process 

topology. Then, they used these data for evaluation of the performance of control loops and 

disturbance propagation. Also transfer entropy is applied by Bauer (2007, 2004) as a 

probabilistic tool to extract causal relationship between process variables from plant data.  

Hangos and Tuza (2001) applied the signed directed graphs for developing an optimal control 

structure selection in a decentralized control system. They demonstrated a one to one 

correspondence between linearized state space model and the weighted digraph. They use a 

method based on maximum weight matching for determining the best control structure.  

2.7. Control design: controllers 

This section discusses the different types of controllers. The corresponding node in the 

hierarchical tree of Figure 2.1 is shown in Snip 2.1.2. Temporal and spatial decentralizations 

of controllers are discussed. In addition, conventional multi-loop controllers and their 

counterparts, i.e., model predictive controllers are described. This section will provide 

supporting arguments for the following sections where the properties of control structures, 

implications of setpoint policies and interactions between control loops are discussed. 

 

 
Snip 2.1.2. Research in the field: Controllers, (Figure 2.1 revisited). 
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2.7.1. Degree of decentralization: spatial  

The degree of centralization can be defined as the level of independence of individual 

controllers within a control structure. Rawlings and Stewart (2008) classified the control 

structures into four groups: 

3. Communication-based control structures in which each distributed controller 

employs a model for its sub-process and an interaction model for communicating 

with other sub-systems. However, the distributed controllers have their own 

objective functions. The disadvantage of communication-based structures is that 

controllers with individual objective functions may compete rather than cooperate 

with each other and make the whole system unstable.  

The decision regarding the degree of centralization significantly influences the design of 

control structures. In conventional multi-loop control systems (examples of decentralized 

controllers), the designer examines the alternative pairings between manipulated variables 

and controlled variables, often based on analysis of the interactions between corresponding 

control loops. However, in model predictive control (MPC) systems (examples of centralized 

controllers) these interactions are of no concern, because all manipulated and controlled 

variables are interconnected to each other through the control algorithm.  

However, neither an entirely decentralized control structure nor a fully centralized one is 

desirable, and it is often favourable to employ some degree of decentralization which locates 

the control structure between these two extremes. The reason is that while a pure 

decentralized control structure does not necessarily ensures an optimal operation, there are 

1. Centralized control structures in which a centralized controller employs a single 

objective function and a single model of the whole system for decision-making,  

2. Decentralized control structures in which the controllers are distributed and the 

interactions between subsystems are totally ignored,  

4. Cooperative control structures in which the distributed subsystems employ an 

objective function for the whole system, and the predictions of each controller are 

available to other controllers. The improvement is not in awareness of the local 

controllers from each other, but in the same objective function that is employed by 

all of them. This framework is plant-wide stable with no offset and by convergence 

of the control calculations provides centralized optimal decision. 
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many concerns regarding computational load, reliability, and the cost of implementation and 

maintenance of a large-scale centralized control structure.  

Rawlings and Stewart (2008) also discussed that a fully connected communication strategy is 

unnecessary at least with respect to plant stability. However, the penalty of reducing 

communications is the synchronization of state calculations. In addition, reduction in 

communication between local MPCs causes problems in the systems with recycle streams 

(e.g. systems 1 and 2 in Figure 2.3), because it requires iterative calculation or one subsystem 

must do the calculations for the others. Therefore, a hybrid communication strategy is 

needed, in which a total communication scheme is considered for each recycle loop and a 

reduced communication scheme is considered for the rest of the process, (Rawlings and 

Stewart 2008). More details on the hierarchical and temporal coordination of distributed 

MPCs can be found in (Scattolini, 2009). 

 

 

Figure 2.3. Ethylene glycol flowsheet: (1) Feed tank, (2) preheater, (3) reactor, (4) evaporator, (5) 

light end columns, (6) mono ethylene glycol column, (7) higher glycol recovery, (Rawlings and 

Stewart 2008). 
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2.7.2. Degree of decentralization: temporal 

The above classification suggests a spatial decentralization. However, decentralization of 

controllers can be temporal, as shown in Figure 2.4 (adapted from Qin and Badgwell 2003). 

In the shown control structures, the decision-making process is decentralized vertically (top-

down) through different time scales from days and weeks in the highest optimizing layer to 

seconds in the lower regulating layer. While the left structure shows a decentralized control 

structure, the right structure suggests a higher degree of centralization.  

The top layer often employs a steady-state optimization for determining the setpoints. This 

information will be sent to the localized optimizers which may employ more detailed models 

and run more frequently. Detailed information will be sent to the constraint control system 

which is responsible for moving the process from one constrained steady-state to another one 

while minimizing the violation of the constraints. In the right control structure, a model 

predictive controller is responsible for constraint handling, while in the left control structure, 

a combination of PIDs, lead-lag (L/L) blocks and logic-based elements are responsible for 

constraint handling. The regulatory layer which runs at much higher frequency, is responsible 

for maintaining the controlled variables at their setpoints, (Qin and Badgwell 2003).  

Figure 2.5 adapted from Harjunkoski et al. (2009) shows the control system in a broader 

context which conforms to the automation paradigm. The lowest layer is responsible for 

process control including regulatory control systems, as well as monitoring and fault 

diagnosing systems. The middle layer is responsible for production scheduling, quality 

assurance and more advanced control algorithms. On the top layer, the long-term production 

strategies are decides and the whole supply-chain including feedstock procurements, product 

warehousing, distributions and sales are coordinated. More details on automation can be 

found in ANSI/ISA-95 (2000, 2001, and 2005) standards which provide guidelines for the 

communication and information exchange between different sections of an enterprise and are 

not in the scope of the present research. 
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Figure 2.4. Hierarchy of conventional multi-loop and MPC structures are shown at the left and right 

respectively. (adapted from Qin and Badgwell 2003). 

 

Figure 2.5. Automation pyramid (adapted from Harjunkoski et al. 2009) 
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2.7.3. Conventional multi-loop controllers 

Chemical processes have some characteristics which make their control difficult. For 

example, when Qin and Badgwell (2003) were explaining the reasons for little impact of the 

linear quadratic Gaussian (LQG)-based technologies in process industries (despite their 

success in electronics and aerospace areas), they emphasized that chemical processes are 

nonlinear, constrained, and multivariable systems and their behaviours change over the time 

(e.g. ageing of catalysts). By contrast, conventional multi-loop controllers are proved to be 

efficient in controlling chemical processes. They have reliable operations and are 

understandable to operation people, (Downs and Skogestad 2011). In addition, there are 

efficient methods for off-line or on-line determination of their tuning parameters. 

However, conventional multi-loop controllers have a significant drawback; leaving setpoints 

at constant values is a poor economic policy, because disturbances and the changes in 

economic parameters can change the desirable setpoints and even in some cases (e.g. moving 

bottleneck) require control structure reconfiguration, (Downs and Skogestad 2011). The 

treatment of economic losses due to constant setpoint policy will be discussed later in this 

chapter. 

2.7.4. Model predictive controllers   

This section discusses model predictive controllers (MPCs) briefly. A detailed review of the 

common MPC technologies and their characteristics is presented by Qin and Badgwell, 

(2003).  

The concept is shown in Figure 2.6 adapted from Rawlings, (2000). The estimator block 

enquires the statuses and values of the manipulated and controlled variables and then using a 

model estimates the unmeasured states. Then, the target calculator calculates the target values 

of the manipulated and controlled variables. Finally, this information is used by a dynamic 

model (shown by the regulator block) to bring the process from the current state to the 

targeted state. The outcomes of these calculations are the decisions regarding adjustment of 

the manipulated variables. Richalet, et al. (1978) emphasized that the economic advantages of 

model predictive control systems derive from manipulation of the setpoints, which allows to 

operate closer to active constraints, and should not be merely attributed to application of the 

dynamic model used for minimizing the variations of the controlled variables (i.e. control 

error). 
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Figure 2.6. The block diagram representation of an MPC system: estimator, target calculator, 

regulator, (Rawlings 2000). 

 

The capability for systematic constraint handling is another important advantage of MPC 

systems over multi-loop control systems. The modern MPC systems apply three types of 

constraint-handling methods. They are hard, soft and setpoint approximation constraint-

handling methods. The hard constraints are those which are not allowed to be violated such as 

the constraints on the maximum, minimum, and the rate of the changes of manipulated 

variables. The soft constraints (e.g. the constraints on the controlled variables) are permitted 

to be violated to some extent and their violations will be minimized by penalizing the 

objective function. Another way of handling soft constraints is the setpoint approximation 

method. In this method, a setpoint is assigned to a soft constraint and the deviations on both 

sides of the constraint are penalized. However, the penalty weights are assigned dynamically 

so the penalty function becomes significant only when the constraint is likely to be violated, 

(Qin and Badgwell 2003). 

 
Snip 2.1.3. Research in the field: Control structures, (Figure 2.1 revisited). 
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2.8. Control design: control structures 

This section discusses control structures. The corresponding node in the hierarchical tree of 

Figure 2.1 is shown in Snip 2.1.3. A control structure consists of controlled variables (CVs) 

and manipulated variables (MVs). Manipulated variables, also known as process inputs, are 

selected from the available degrees of freedom with desired properties for performing  

control actions. Controlled variables are those process variables which are selected to be 

maintained constant at their desired setpoints (or trajectories) by controllers. If direct 

measurement of a controlled variable is not possible then its value must be inferred or 

estimated from other process variables, (Qin and Badgwell 2003). These inferential 

controlled variables together with direct controlled variables are known as the measured 

variables. Selection of manipulated variables is the subject of degree of freedom analysis, as 

will be discussed later. However, selection of controlled variables should be conducted based 

on the process profitability.  

The following subsections explore the characteristics of control structures and desirable 

properties of manipulated variables and controlled variables. The methods for degree of 

freedom analysis are reviewed and the implications of controlled variables and setpoint 

policy for process profitability are also discussed. 

2.8.1. Control structure reconfiguration  

A comparison between the populations of manipulated variables and controlled variables 

provides insights about feasibility of the control problem. Figure 2.7, adapted from Froisy 

(1994), depicts the alternative scenarios. In the design stage, the population of manipulated 

variables often exceeds the population of controlled variables and the plant control structure 

is underdetermined (right-hand side of Figure 2.7). In this case, extra manipulated variables 

are available for economic optimization. During the process operation, the population of the 

manipulated variables may decrease for example because of activation of constraints, 

saturation of control valves, or failures of control signals, which make the control structure 

over-determined (left-hand side of Figure 2.7), and consequently the control problem 

becomes infeasible. The middle control problem in Figure 2.7 represents a square problem 

with a deterministic solution. All these three scenarios may happen in the same control 

system. However, still the control system is expected to perform the best possible control 

action.  
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Figure 2.7. Different configurations of a control structure, (Froisy 1994). 

 

For the case of conventional multi-loop control structures, drastic changes in economic 

parameters may enforce control structure reconfiguration. These scenarios are mostly 

concerned with the movements in active constraints. An example of necessary control 

reconfiguration is when the inventory control structure and throughput manipulation point 

must be reconfigured due to the movement of  economic bottleneck(s),  (Aske 2009c).  

However, MPC systems are subject to dynamic changes in the dimension of the control 

problem during control execution. The reason is that the manipulated and controlled variables 

may disappear due to valve saturations, signal failures, or operator interventions in each 

control execution and return on the next one. These changes sometimes make the control 

configuration underdetermined and therefore perfect control (i.e., maintaining controlled 

variables at their desired values) would be infeasible. However, it is still desirable to have the 

best possible control action through the remaining manipulated variables. Unfortunately, 

depending on the size of the system, it may not be possible to evaluate all of the alternative 

subspaces of a control problem at the design stage. Therefore, MPC systems have an online 

monitoring agent that is responsible for subproblem conditioning. The strategy is to meet the 

control objectives based on their priorities, (Qin and Badgwell 2003). In MPC systems in 

order to avoid saturation of the manipulated variables, their nominal values are treated as 

additional controlled variables with low priorities. In addition, when a manipulated variable 

disappears from the control structure (e.g. because of operator intervention), it may be treated 

as a measured disturbance. Similarly, saturated valves are treated as one-directional 

manipulated variables. By contrast to manipulated variables, when a controlled variable is 
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lost for instance because of signal failure or delay in measurements, the practical approach is 

to use the predicted value for it. However, if the faulty situation persists for an unreasonable 

number of execution steps, in some MPC algorithms the contribution of the missing 

controlled variable will be omitted from the objective function, (Qin and Badgwell 2003). 

2.8.2. Degree of freedom analysis 

Konada and Rangaiah (2012) presented a recent review of the methods for degree of freedom 

(DOF) analysis. Degrees of freedom can be evaluated as: 

                                                                           

However, in the context of control engineering, external variables such as disturbances also 

need to be considered, (Stephanopoulos 2003): 

                                                                    

                                                                                             

In which      stands for control degrees of freedom and concerns the number of 

manipulated variables. The above approach has been applied by Seider, et al (2010) for a 

number of processes. However, for large processes, counting all the equations and variables 

may not be practical and is prone to mistakes. In addition, the focus of      is mostly 

extensive variables. This is because manipulated variables are in principle defined as the 

flowrates of energy and materials (e.g., control valve openings, pump speeds, electricity 

streams). Therefore, researchers tried to develop methodologies which do not require first 

principles modelling and still are able to accurately determine the available degrees of 

freedom. Dixon (1972) introduced the notion of boundary variables. These are the variables 

which cross the predefined boundaries of a system. Furthermore, steady-state control degrees 

of freedom,       , were distinguished from dynamic control degrees of freedom.  

                                                                                                                           

                                                                                                                          

      represents boundary equations and     represents boundary variables.    is the number 

of independent holdups. Equation (2-10b) suggests that        is a subset of     . Later, 

Pham (1994) introduced the concept of output control degrees of freedom: 

           ∑       
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where   is the number of circuits (a circuit is a set of streams connected inside the process),  

  is the number of stream split,   is the number of phases in the output stream of a circuit,   

is the number of influential variables (e.g. a control valve),   is the number of energy 

streams,    is the number of phase constraints. The focus of Pham’s method was the 

operational degrees of freedom that are the variables available for control when the process is 

built and is in operation. Konada and Rangaiah (2012) showed that Pham’s method may 

result in wrong results because it assumes that the place of control valves are known in 

advance. However, Pham’s method was a step forward because it recognized that in order to 

evaluate the correct number of degrees of freedom, it is not necessary to write all the 

equations. In an independent study, Ponton (1994) derived the general equations: 

                                                                                                           

                                                                                                                         

where    is the number of inlet material streams,    is the number of outlet material streams, 

   is the number of energy streams and   is the number of phases. An interesting result from 

(2-12b) is that      is independent of the number of phases. This is because in practice each 

phase is associated with an outlet stream and is considered implicitly. However, equation (2-

12b) is of limited practicality because it is not possible to manipulate all streams 

simultaneously. This issue has been addressed by Konda, et al. (2006) and Vasudevan, et al. 

(2008) who recently proposed and examined a method which is flowsheet-oriented, and 

requires only the information of process flow diagrams and general knowledge of important 

unit operations. The idea is to identify the streams that are redundant or restrained from being 

manipulated. Then, this number can be subtracted from the overall number of streams to 

identify the available degrees of freedom. They argued that the restraining streams are mostly 

the characteristics of individual unit operations and not the process flowsheet and therefore, 

once they are calculated, they can be used in any complicated process flowsheet. They 

proposed the following correlation: 

              ∑               

             

 

                                                    

In above,          is the total number of material and energy streams,             is the 

number of streams that cannot be controlled, and            is the number of streams that are 

not efficient to be manipulated (e.g., a material stream with small pressure drop). They 

further classified restraining streams based on the units with and without material holdups. 
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The number of restraining streams is equal to total independent and overall mass balances in 

units without holdups. This is because each mass balance imposes a constraint and reduces 

one degree of freedom. However, in the case of unit operations with material inventories, 

there is additional flexibility and all the streams can be manipulated provided that not all of 

them are used for controlling extensive variables. Therefore, the number of restraining 

streams is equal to the number of independent material balances which are not associated 

with any mass inventory. Since the number of restraining streams is the inherent 

characteristics of a unit operation and is constant regardless of the flowsheet configuration, 

Konda, et al. (2006) presented a table for the restraining variables of major unit operations. 

They also demonstrated their method for distillation columns and several complex 

flowsheets. Example of redundant streams in a distillation column is the stream connecting 

the column top to the condenser, the stream returning vapours from reboiler to the column 

and the column bottom sump which is sending liquids to the reboiler. They showed that in 

(total or partial reflux) distillation columns with total number of twelve streams, the number 

of restrained streams is three and the number of redundant streams is three and therefore the 

number of control degrees of freedom,      , based on equation (2-13) is  

                                                                                                                      

Details of their methods and analyses can be found in Konda, et al. (2006) or Konada and 

Rangaiah (2012). 

2.8.3. Manipulated variables (MVs) 

Manipulated variables are those degrees of freedom which are used for inserting the control 

action to the system. Although the degree of freedom is defined as the difference between the 

number of the variables and the number of the equations in the mathematical model, one must 

be careful, because each model represents the actual system in a range of scales and 

consequently resolution of the model may mislead the designer, (Stephanopoulos 1984). For 

instance, the molecular simulation cannot be used for degree of freedom analysis of a control 

system. In practice, degrees of freedom are interpreted from the number of manipulation 

devices (e.g. valves, electrical or mechanical equipment) which are able to modify the mass 

or energy flows into or from the process efficiently and consistently.  

The manipulated variables can be classified into two categories of steady-state and dynamic 

degrees of freedom. Manipulated variables used for controlling material inventories are in the 

category of dynamic degrees of freedom (Skogestad 2004a). The steady state degrees of 
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freedom affect the ultimate state of the process and have more economic significance than 

dynamic degrees of freedom. 

The desired properties of manipulated variables are to be (i) consistent with each other, (ii) 

far from saturation, (iii) reliable. Two manipulated variables may be inconsistent when they 

cannot be adjusted simultaneously. The example of inconsistency is when two control valves 

adjust the flowrate of the same material stream. Reliability is defined as the probability of 

failure to perform the desired action. Reliability of manipulated variables is important  

because it is not desirable to select a manipulated variable which is likely to fail for example 

due to corrosion or erosion.  

If the available degrees of freedom are not sufficient to meet the controllability requirements, 

there are some limited opportunities for adding degrees of freedom to the process for example 

by inserting bypass streams, heat exchangers or buffer tanks into the process flowsheet, 

(Skogestad 2004a). As discussed earlier, dynamic degree of freedom and inventory control 

can influence the economic profitability, when the throughput is an active constraint and 

limits the process profitability, (Aske 2009c). 

2.8.4. Controlled variables (CVs) 

Selection of controlled variables is more complicated compared to manipulated variables. 

This is because controlled variables can be categorized based on two different tasks. Firstly, 

these variables are responsible for detection of disturbances and stabilizing the process within 

its feasible operational boundaries. Secondly, selection of controlled variables and their 

setpoints provide opportunities to optimize profitability. The first category of controlled 

variables is selected for treatment of instability modes such as snowball effects (i.e., an 

instability mode concerned with materials inventories inside a recycle loop), or 

emptying/overflowing liquid holdups. The second category of controlled variables should be 

selected employing economic analysis.  

In the subsequent sections, the conventional methods for selection of controlled variables are 

discussed and the effects of controlled variables and their setpoints on process profitability 

are explained. Here, the focus is on optimizing controlled variables. 
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2.8.4.1. Conventional methods for selection of controlled variables 

The controlled variables can be selected by engineering insights and heuristics, especially 

when the control structure is developed for a single unit operation. In addition, controllability 

measures, to be discussed later, can be applied for selecting controlled variables. For 

instance, Luyben (2005; 2006) listed five methods for selecting the location of the 

temperature sensors (measured variables) within a distillation column, i.e., controlling the 

temperature of which tray inferentially ensures the desired compositions of the product 

streams. They are:  

The other common approach for selection of controlled variables, in particular for 

decentralized control systems is to minimize the interactions between control loops using 

relative gain arrays (RGAs), as will be discussed later in this chapter. However, none of the 

abovementioned methods ensures minimum economic losses in the presence of disturbances. 

The subsequent sections explain that optimal selection of controlled variables can ensure 

profitability.  

1. Slope criterion. In this method, a tray is selected, which has the largest temperature 

difference, compared to the neighbour trays.   

2. Sensitivity criterion. In this method, a tray is selected, which its temperature 

changes the most for a change in a manipulated variable. 

3. Singular value decomposition (SVD) criterion. This method is based on calculating 

the process gain matrix and its singular values as described by Moor, (1992). 

4. Invariant temperature criterion. In this method, a tray is selected which its 

temperature does not change when the feed composition is changed and the 

compositions of the products are fixed.   

5. Minimum product variability criterion. In this method, a tray is selected which if 

maintained constant results in least variability in the compositions of the products.   
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2.8.4.2. Setpoint policy 

When a control structure is designed for a process, the objectives for controlling that process 

such as stabilizing, safety concerns, environmental constraints, and profitability will be 

translated to maintaining a specific set of controlled variables at their setpoints. However, 

some of targets of the abovementioned objectives may need to be updated after the design 

stage. This can be due to disturbances, the changes in environmental or safety policies, the 

changes in the specifications of products or feedstocks, or even because of changing the 

process model over time (e.g. ageing of catalysts). The ability of the control structure to keep 

pace with these changes is crucial for feasibility and profitability of that process.  

As will be discussed in the subsequent subsections and shown in Figure 2.8 adapted from 

Chachuat, et al. (2009), two strategies are possible for ensuring process feasibility and 

profitability. They are (i) static setpoint policy: off-line optimization and (ii) dynamic 

setpoint policy: on-line optimization. These are shown by red vertical envelopes in Figure 

2.8. The methods for dynamic setpoint policy may apply two approaches. In the first 

approach, the measurements are used to update the model parameters (shown by model 

parameter adaptation) and in the second approach, the measurements are used for updating 

modifier terms which are added to the objective function of the online optimizer, (shown by 

modifier adaptation).  

The other classification, shown by grey horizontal envelopes, is according to (a) feasibility 

and (b) optimality criteria. Chachuat, et al. (2008) showed that the results of variational 

analysis in the presence of small parametric errors conform to the common sense that 

feasibility is of a higher priority than optimality. The references in the figure highlight the 

active researchers in the area. The dynamic and static setpoint policies are discussed in the 

subsequent subsections.  
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Figure 2.8. Setpoint policies; the methods for static and dynamic setpoint policies are shown by the 

red envelopes. The other classification is according to optimality and feasibility criteria, shown by the 

grey envelopes, (Chachuat, et al. 2009). 

 

2.8.4.2.1. Static setpoint policy 

The motivation for the static setpoint policy is that, while the costs of the development and 

maintenance of a model-based online optimizer are relatively high, selection of the controlled 

variables that guarantee a feasible and near optimal operation is by no means trivial. Static 

setpoint policy has a direct relation to the optimal selection of controlled variables. In this 

approach, online optimization of setpoints is substituted by maintaining optimal controlled 

variables constant. This approach is also consistent with the culture of industrial practitioners 

who would like to counteract model mismatches and the effects of disturbances by feedback 

control, (Chachuat, et al. 2009). Similarly, Engell (2007) emphasized that feedback control is 

indispensable for handling uncertainties during design stage and for utilizing the full capacity 

of equipment.  
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Morari, et al. (1980a) introduced the idea of optimal selection of controlled variables: 

“In attempting to synthesize a feedback optimizing control structure, our main objective is to 

translate the economic objective into process control objectives. In other words we want to 

find a function c of the process variables [...] which when held constant, leads automatically 

to the optimal adjustment of the manipulated variables, and with it, the optimal operating 

conditions.”  

Later, researchers (e.g. Skogestad 2000a, 2000b, 2004b; Kariwala 2007) investigated the 

possibility of optimal selection of controlled variables. Figure 2.9, adapted from Skogestad 

(2000b), shows that the costs (i.e. the losses or decreases in profitability) associated with 

disturbances, are not the same for two different controlled variables. These controlled 

variables were maintained constant at their corresponding setpoints and the corresponding 

losses are compared to the scenario in which the objective function is re-optimized.  

As can be seen from the figure, in the presence of disturbance  , the loss associated with 

maintaining      at its setpoint is significantly lower than     . This observation suggests that 

selection of controlled variables can be employed as a method for off-line optimization of 

process profitability.    

 

 

Figure 2.9. Maintaining the setpoints at constant values results in economic loss (distance between the 

re-optimized curve and the actual curve) due to a disturbance. However, the associated costs strongly 

depend on the selected controlled variable, (Skogestad 2000b). 
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Optimal controlled variables can be selected using brute-force optimization and direct 

calculations of the losses for different sets of controlled variables. Halvorsen, et al. (2003) 

presented a local method for optimal selection of controlled variables based on maximization 

of the minimum singular value. In that method, it was assumed that the setpoint error of 

different controlled variables (i.e., the difference between the selected setpoint and the re-

optimized setpoint) are independent of each other, which does not often hold. Later, Alstad, 

et al. (2009) showed that an optimal linear combination of controlled variables is more likely 

to minimize the losses. This local method, called null space method, is based on the idea that 

the setpoints of optimal controlled variables must be insensitive to disturbances. This method 

ignores the measurement error. The work of Alstad, et al. (2009) also extends the 

methodology to the cases in which measurements are in excess or are fewer than the available 

inputs and the expected disturbances. The above methods are based on a quadratic objective 

function and linearization of the model. Therefore, the results are local and must be checked 

by a nonlinear model. 

Kariwala (2007) proposed a computationally efficient method using singular value 

decomposition and Eigen-values for selection of optimal controlled variables. Later, this 

method was extended (Kariwala, et al. 2008) to use average losses instead of worst-case 

losses. The justification for using average losses instead of worst-case losses is that the latter 

may not happen frequently and would result in unreasonable loss of the control performance. 

Kariwala, et al. (2008) also showed that minimization of average losses also had already 

minimized worst-case losses and was superior when the actual disturbance differs 

significantly from the average value. 

Although maintaining controlled variables or a linear combination of them is convenient, 

there is no guarantee that the optimal operation is reached by the convergence. The reason is 

that in the presence of disturbances, the gradient of the cost function may changes from zero. 

In addition, the gradient of the cost function may have a nonzero value for a constrained 

solution. Therefore, Cao, (2005) suggested that the sensitivity of the reduced gradient 

function to disturbances and implementation errors is a reliable method for selection of 

controlled variables. Alternatively, some researchers chose to directly control the elements of 

the necessary condition for optimality. It can be shown (Chachuat, et al. 2009) that by 

determining the set of active constraints, the elements of the necessary condition for 

optimality can be decomposed into two categories. The first category ensure that the process 
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operation remains feasible (i.e., constraints are satisfied). The second category ensures an 

optimal operation (i.e., reduced gradient is equal to zero).  

However, the main difficulty associated with the methods based on static setpoint policy, is 

that active constraints may change. The methods for constraint handling proposed by 

researchers are split-range control (for the constraints on manipulated variables), parametric 

programming, cascade control approach, and explicit constraint handling. Details of these 

methods can be found in literature (e.g., Umara, et al. 2012). 

2.8.4.2.2. Dynamic setpoint policy 

The methods in the second category (shown by the left red envelope in Figure 2.8) apply an 

online optimizer to update the setpoints. The main challenge in the application of online 

optimizing control systems is the inability to develop accurate and reliable models with a 

manageable degree of complexity and uncertainty. The reason is that online optimization 

using an inaccurate model may result in a suboptimal or even infeasible operation, (Chachuat, 

et al. 2009). The two main approaches are (i) the methods for model parameter adaptation, in 

which the available measurements are used to refine the process model parameters; then this 

model is used for optimization, (Chen and Joseph, 1987; Marlin and Hrymak, 1997), and (ii) 

the methods for modifier adaptation in which modifier terms are added to the objective 

function and constrains and these modifiers are updated using available measurements, 

(Forbes and Marlin, 1994; Gao and Engell, 2005; Roberts, 1979; Tatjewski, 2002). The 

details and comparison of these methods are available in literature, (e.g., Chachuat, et al. 

2009).   

Recently, integration of economic optimizing layer and lower regulatory control layers 

(Figure 2.4) has been the focus of several research activities. The motivation for this 

integration is that operating the optimization layer intermittently, and at a slow sampling rate 

may incur economic penalties. In the new integrated scheme, referred to as the direct 

approach, the available degrees of freedom are directly used to optimize an economic 

objective function, over a prediction horizon and using a nonlinear rigorous process model. 

The review of these methods can be found in literature, (e.g., Engell, 2007, Kadam and 

Marquardt, 2007). 
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2.9. Controllability measures  

Significant research activities have been devoted to understanding the controllability 

characteristics of chemical processes. In this section, firstly the definitions of operability and 

controllability are presented. Later the limiting factors of controllability are reviewed. The 

corresponding nodes in the hierarchical tree of Figure 2.1 are shown in Snip 2.1.4. They are 

discussed in the following subsections. 

 

 
Snip 2.1.4. Research in the field: Controllability measures, (Figure 2.1 revisited). 

 

2.9.1. Flexibility, operability, switchability and controllability  

The operability of a chemical process strongly depends on its operational mode, i.e. whether 

it deals with a constant load, or the load is time-dependent. A continuous operation implies 

that the process spends most of its life cycle within a narrow envelope of steady states. 

Therefore, the control task is posed as regulation (i.e., disturbance rejection). By contrast, 

shutdowns, start-ups, and the operations of semi-continuous or periodic processes involve 

transient conditions along the desired time trajectories, and servo control is needed, 

(Pedersen, Jørgensen, and Skogestad 1999). 

Operability is defined as the ability of input (manipulated) variables to meet the desired 

steady-state and dynamic performance criteria defined in the design stage, in the presence of 

expected  disturbances, without violating any constraint, (Georgakis, et al. 2004). The 

mathematical descriptions of dynamic operability and steady-state operability are presented 

in Section 2.14. The implication of steady-state operability for the methods proposed in this 

research will be discussed in Chapter 3. 
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Flexibility is defined as the ability to achieve a feasible operation over a range of 

uncertainties, (Dimitriadis and Pistikopoulos 1995). The mathematical programming of 

steady-state and dynamic flexibility optimizations are presented in Section 2.15. 

Switchability is define as the ability to move between operating points, (Pedersen, Jørgensen, 

and Skogestad 1999). 

A comparison between the definitions of operability and flexibility reveals some similarities 

and some differences. Both criteria emphasize the importance of ensuring a feasible operation 

by avoiding constraint violation. However, the criteria for flexibility also include the 

uncertainties in the model parameters, while in evaluating operability the focus is on 

disturbance scenarios.  

In addition, a variety of qualitative and quantitative definitions is available in literature for 

controllability, which reflects the experience of researchers. From the early studies, Ziegler, 

Nichols
 
and Rochester (1942) suggested that their proposed test for finding tuning parameters 

can be used for classification of processes. Morari (1983) introduced the term resiliency that 

includes both switchability and controllability and is defined as the ability to move smoothly 

and rapidly between operating conditions and to effectively reject disturbances. He 

recognized that controllability is the inherent property of the process and does not depend on 

the controller design.  

Kalman (1960) introduced the concept of state controllability. A state   is controllable, if for 

an initial condition          and a final state   , there exist a manipulated variable       

and a final time    ,       , such that         . In other words, the state controllability 

is the ability to bring the system from the initial state to the final state in a finite time.  

Another important concept is input-output controllability. It is the ability to maintain the 

controlled variables     , within their desired bounds or displacements from their setpoints  , 

in the presence of unknown but bounded disturbances  , using the available manipulated 

variables  , (Skogestad and Postlethwaite 2005). 

A process is functionally controllable if for the desired trajectories of the output 

variables,     , defined for    , there exist some trajectories of the input variables,     , 

defined for    , which generates the desired controlled variables from the initial states 

     , (Rosenbrock 1970).  
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In is notable that functional controllability depends on the structural properties of the system, 

i.e., a system that is functionally controllable with respect to a particular set of controlled 

variables may be rendered uncontrollable for another set, (similar to the situation for 

structural identifiability). Furthermore, functional controllability is defined with respect to a 

set of the desired trajectories of controlled variables. Therefore, a system may be functional 

controllable for a set of controlled variable trajectories and become uncontrollable for another 

set. Furthermore, functional controllability has a clear relationship with perfect control, i.e., 

the controlled variables are maintained constant at their setpoints (or the desired trajectories) 

and the manipulated variables are adjusted accordingly, which is also recognized by other 

researchers. For example, Russel and Perkins (1987) applied the concept of functional 

controllability and process inversion for discussing the causes of control imperfection in 

linear systems. The necessary and sufficient condition for functional controllability and the 

characteristics of the desired controlled variable trajectories will be discussed later in Chapter 

3. 

In addition, a comparison between the definitions of different controllability criteria suggests 

that functional controllability is more constraining compared to input-output controllability. 

This is because for a system to be functionally controllable the controlled variables should 

take the values of the desired trajectories. Therefore, their values are necessarily bounded, 

and the system features input-output controllability. However, the reverse is not true, because 

in the case of input-output controllability, although the system is required to have bounded 

outputs, it is not necessarily capable of following a certain desired trajectories of the 

controlled variables.  

Functional controllability and input-output controllability concern only manipulated and 

controlled variables. On the other hand, state controllability additionally considers the initial 

and final conditions of the internal states. However, there is not a requirement for the 

controlled variables to follow a certain set of trajectories and a system which is state 

controllable may not be functionally controllable. However, a state controllable system has 

bounded inputs and outputs and is input-output controllable. Finally it is notable that a system 

which is functional or input-output controllable is not necessarily capable of ensuring certain 

initial and final values for the internal states because functional controllability and input-

output controllability do not consider internal states. Therefore, functional controllability and 

input-output controllability do not ensure state controllability. 
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2.9.2. Causes of control imperfection 

Early studies in this research field had an evaluation attitude, i.e. “if the process is 

controllable at all?” Later, the viewpoint of these studies evolved to address the question of 

“how controllable the process is?”, (Downs and Skogestad 2011). Several measures were 

introduced based on understanding of what limits process controllability. Moaveni and 

Khaki-Sedigh (2009) presented a recent review of these methods.  

The idea is to apply the controllability measures iteratively in the process design stage in 

order to screen and eliminate solutions with undesirable properties. The limiting factors of 

process controllability can be classified as: 

A variety of methods for quantifications of these deficiencies is available in literature, which 

with exception of few, all of them rely on linear models, as discussed in the following.  

2.9.2.1. Interactions between control loops 

Bristol (1966) introduced relative gain arrays (RGAs) as the measure for the interactions 

between control loops, which has received significant industrial and academic attentions and 

is applied for pairing controlled and manipulated variables. An element of a relative gain 

array,         , represents the ratio of the open loop gain from the manipulated variable   to 

the controlled variable  , in which all the control loops are open, to the closed-loop gain in 

which all control loops, except the loop     , are perfectly controlled (Ogunnaike and Ray 

1994):  

     

 
   

   
⁄                

 
   

   
⁄                                                             

                              

Since then, the Bristol’s method has been extended by many researchers in order to capture 

the different characteristics of the interactions in decentralized control structures. Since static 

RGA methods do not consider dynamic information, dynamic relative gain arrays (DRGAs) 

1. Interactions between control loops,  

2. Manipulated variable constraints,  

3. Delays and right-half-plane zeros,  

4. Model uncertainties, and  

5. Effects of disturbances.  

http://www.google.co.uk/search?tbo=p&tbm=bks&q=inauthor:%22B.+Moaveni%22
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were introduced, in which transfer functions replace steady-state gains. The numerator is 

open loop transfer function but denominator is perfectly controlled for all frequencies. The 

DRGAs rely on a priori decision about the type of controllers (McAvoy, et al. 2003). The 

applications of RGA methods are not limited to single-input single-output (SISO) control 

systems. Manousiouthakis and Nikolaou (1989) introduced static nonlinear block relative 

gain arrays (NBGA) and dynamic nonlinear block relative gain arrays (DNBGA) as measures 

for the interactions between different blocks of a decentralized control structure. 

Another relevant criterion is the integrity of a decentralized control structure, which ensures 

that system remains stable while individual control loops are brought in and out. Niederlinski 

(1971) presented the integrity measure as: 

            
∏        

   
⁄                                                                                                  

where           is the transfer matrix of a process. It is proved that if under closed loop 

condition the Niederlinski Index is negative, (    ), the multi-loop control structure will 

be unstable for all values of the controller tuning parameters. This result is necessary and 

sufficient for      systems. However, for higher order systems it is a sufficient condition, 

i.e., if      , the system will be unstable, (Ogunnaike and Ray 1994) 

It is notable that the interactions between control loops limit controllability of decentralized 

control systems and is not of concern for centralized control systems, (Ogunnaike and Ray 

1994).  

2.9.2.2. Manipulated variable constraints and the effects of 

disturbances 

The effects of manipulated variable constraints can be measured using the methods for 

singular value decomposition (SVD). Consider the linear transfer function model below: 

                                                                                                                    

The gain matrix,  , should be firstly scaled as                 in which    and    are 

output and input scaling vectors respectively. The importance of input scaling is sometimes 

neglected. However, Hori and Skogestad (2008) showed that for ill-conditioned processes 

such as distillation columns, input scaling is crucial. Then, the scaled gain matrix,       , is 

decomposed into the products of two rotational matrices and a diagonal matrix of singular 

values. The smallest and largest singular values (     and      respectively) and their ratio 
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(called condition number,   ) have implications for the constraints on the manipulated 

variables and hence process controllability. The singular value decomposition method relies 

on the property that the bounds on the reproducible output region depend on the minimum 

and maximum singular values and their ratio, (Cao, Biss and Perkins 1996):  

       ‖     ‖  ‖     ‖         ‖     ‖                                                    

                                                                                                                                     

Therefore, it is desirable that      and      have large values to minimize the influence of 

manipulated variable constraints. However, the ratio of them, i.e., the condition number 

(CN), is also important because large   implies strong dependency of output amplitude on the 

direction of input amplitude (Morari and Zafiriou 1989), therefore,   close to one is desirable. 

Furthermore, a large minimum singular value,     , is desirable because it ensures that larger 

disturbances can be handled by the manipulated variables. In other words, the magnitudes of 

the disturbances that can be rejected depend on the manipulated variable constraints.   

2.9.2.3. Delays, right-half-plane zero, and non-minimum-phase 

behaviour 

Delays, right-half-plane zeros, and non-minimum phase behaviours have implications for 

closed loop performances, as discussed in the following. 

Holt and Morari (1985) showed that in a multi-variable closed loop system, the minimum 

bound on the settling time for a controlled variable   is           , where     is time delay 

in the numerator of element     in the transfer function matrix,     . In addition, based on 

functional controllability, Perkins and Wong (1985) characterized a multi-variable system 

based on parameter     , which is the period that must be waited before the output trajectory 

can be specified independently, otherwise perfect control is not achievable. This period is 

bounded by the smallest and largest time delays in the process transfer function.  

When process model is inverted, right-half-plane zeros become poles. It is well understood 

that right-half-plane zeros cannot be moved by any feedback controller and similar to time 

delays, they are the characteristics of the process (Yuan, et al. 2011). In particular, right-half-

plane zeros limit the control performance of feedback controllers, (Skogestad and 

Postlewaithe 2005).  

Zero dynamics are defined to be the internal dynamics of a nonlinear system when the 

deviations of the controlled variables (process outputs) are maintained at zero using the 
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manipulated variables (process inputs). Unstable zero dynamics are the nonlinear analogues 

of right-half-plane zeros, and imply instability of process inversion, called non-minimum 

phase behaviour (Isidori 1989, Slotine 1991). The effects of input multiplicity on degrading 

switchability due to non-minimum phase behaviour are also studies by Kuhlmann and Bogle 

(2001; 2004).  

2.9.2.4. Model uncertainties 

Skogestad and Morari (1987) studied the effects of model uncertainties on control 

performances. Uncertainties in the process model require that the actual controller be detuned 

and hence degrade the control performance. In the case that the relative errors of transfer 

matrix elements are independent and have similar magnitude bounds, they concluded that the 

relative gain array can be an indicator of closed loop sensitivity to uncertainties. Other 

contributions to quantify the effects of uncertainties, which are not limited to linear models, 

have been made by optimization-based methods, namely back-off (Narraway and Perkins 

1991) and flexibility optimization (Swaney and Grossmann 1985) methods, as will be 

discussed later in this chapter.  

2.9.2.5. Multi-objective optimization methods based on controllability 

measures 

One of disadvantages of controllability measures is that each measure only considers a single 

cause of control imperfection. To address this issue, Cao and Yang (2004) proposed a multi-

objective framework based on linear matrix inequalities (LMIs), which considers different 

controllability measures such as control error and control input effort.  

The other issue about methods based on controllability measures is that enumeration and 

evaluation of all possible alternative solutions can lead to an intractable problem. In order to 

overcome this difficulty, researchers (Cao and Kariwala 2008; Kariwala and Cao 2009, 

2010a, 2010b) proposed an optimization framework based on a bi-directional branch and 

bound algorithm for screening alternative solutions, in which the nodes that do not lead to the 

optimal solution are eliminated faster and a smaller number of nodes need to be evaluated. 
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2.10. Methods based on passivity/dissipativity  

The focus of the methods based on passivity/dissipativity analysis, is stability of 

decentralized control systems. The corresponding node in the hierarchical tree of Figure 2.1 

is shown in Snip 2.1.5.  

 
 

Snip 2.1.5. Research in the field: Methods based on passivity/dissipativity, (Figure 2.1 revisited). 

 

A comprehensive review of the methods for passivity analysis is presented in a book written 

by Bao and Lee (2007), for which a review is also provided by Ydstie, (2010). By definition, 

a dissipative system cannot deliver energy more than stored in it. This can be formulated by 

the following equation: 

              ∫  
  

  

 (         )                                                                            

in which,  (         ) is energy supply rate (energy/time), and        is the stored 

energy at time  . The above correlation is called dissipation inequality.       can be any 

generalized energy function and  (         ) can be any abstract power function. In the 

following, three functions for energy supply rate are discussed, (Rojas, et al. 2009).  

A system is called passive if  (         )            . Then, for            : 

 ∫  
  

  

                                                                                                                       

where     is the gain. Therefore by choosing an appropriate value for  , any passive 

system can be controlled using proportional controllers. Furthermore, it is possible to prove 

that two passive systems connected by feedback control are also passive. The other systems 

of interest are input feedforward passive (IFP) systems in which: 

 (         )                                                                                      
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and output feedback passive (OFP) systems in which: 

 (         )                                                                                       

A nonlinear input feedforward passive system is minimum phase (i.e., it has stable zero 

dynamics) and an output feedback passive system has bounded gains (i.e., it is input-output 

stable). If the dissipative inequality holds but with     or     , then it is in shortage of 

IFP or OFP, respectively. The shortage of IFP (or OFP) of a subsystem can be compensated 

with the excess of IFP (or OFP) of another subsystem in the same process network. 

These properties serve as the foundations for studying stability of process networks and 

evaluation of controllability of decentralized and block-decentralized multivariable systems. 

The methodology is also extended to analyse the system integrity, i.e. whether the system 

remains stable if a control loop fails, and what back-up control loops are required in order to 

design a fault tolerant system. The advantage of passivity methods is that their 

representations are not limited to linear models. However, the required modelling efforts have 

limited their application to small problems, (Yuan, et al. 2011). Furthermore, the focus of 

these methods is feasibility rather than optimality of operation and control. However, 

establishing a trade-off between competing control and process objectives is the key 

requirement for integrated design and control. In addition, these methods are based on input-

output representation of subsystems of a process network and ignore the underlying first 

principles that link these inputs and outputs, which suggests an iterative approach to the 

problem of integrated design and control.  

2.11. Multi-objective optimization methods to incorporate 

controllability measures into the process design 

The methods using controllability measures suffer from several disadvantages. They have a 

yes/no attitude and each of these measures only concerns a certain limiting factor of 

controllability and at most can be used for highlighting the situations in which process 

controllability is lost. Acknowledging these limitations, some research activities have focused 

on defining multi-objective criteria to incorporate controllability measures into the process 

design. The corresponding node in the hierarchical tree of Figure 2.1 is shown in Snip 2.1.6.  
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Snip 2.1.6. Research in the field: Multi-objective optimization to incorporate controllability measures 

into the process design, (Figure 2.1 revisited). 

 

Luyben and Floudas (1994) employed a multi-objective function for incorporating 

controllability measures and economic objectives. The economic objectives such as capital 

costs and operating costs were calculated using a steady-state model while bounds on 

controllability objectives were calculated using measures such as relative gain array, 

minimum singular value, condition number, and disturbance condition number. The resulting 

MINLP formulation was solved using generalized benders decomposition (GBD) algorithm. 

Similarly, Chacon-Mondragon and Himmelblau (1996) proposed a bi-objective optimization 

in which costs and flexibility were optimized simultaneously. Later, Alhammad and 

Romagnoli (2004) proposed an optimization framework in which process economy, 

controllability and environmental measures were incorporated into a multi-objective function.  

2.12. Methods based on model reduction and robust control 

measures 

In order to reduce the numerical complexities of underlying mixed integer nonlinear dynamic 

optimization problem, Douglas and co-workers proposed a method based on model reduction 

(Chawanku, et al. 2005; Ricardez-Sandoval, et al, 2008, 2009a, 2009b). The corresponding 

node in the hierarchical tree of Figure 2.1 is shown in Snip 2.1.7.  
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Snip 2.1.7. Research in the field: Methods based on model reduction and robust control measures, 

(Figure 2.1 revisited). 

 

The idea is to perform process identification on the nonlinear first principles model. The 

results of identification are a linear model and a model for uncertainties, which represents the 

difference between the full nonlinear model and the linear model. Then, the measures 

commonly used in robust control (e.g., structured singular value) are used to estimate the 

bounds on process variables and to evaluate flexibility, stability and controllability of the 

process. These bounds give evaluations of the worst variability and violations of constraints. 

For this reason, this methodology is termed bound worst-case approach. The advantage of 

bound worst-case approach is that the application of the reduced model avoids the 

requirement of computationally expensive dynamic optimization. The disadvantage of this 

method is that it is based on a worst-case scenario which is not necessarily the most common 

scenario, and the method could be too conservative resulting in unnecessarily degradation of 

the objective function. To overcome this difficulty, Ricardez-Sandoval, et. al, (2011) 

suggested to calculate the worst disturbance scenario using structured singular value but the 

process variability should be calculated using a closed loop first principles model, resulting in 

a less conservative solution. They called the new method hybrid worst-case approach, 

because in the new method both linear and first principles models are involved.  

Malcolm, et al. (2007), Moon, et al. (2011), and Patel, et al. (2008) pursued similar idea. 

However, they decomposed the problem into a bi-level optimization, in which control design 

was performed using a reduced (adaptive state-space) model, and process design was 

performed using the original first principles model. The linear state-space model was used for 

deciding control action in each optimization iteration, in order to disentangle the numerical 

complexities of feedback control. Malcolm, et al. (2007) applied sequential least square 

method for identification of the state-space model. Their method employed three layers 
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(identifier/observer/regulator) at the control optimization level. In addition, the process 

optimization level consisted of two optimization loops for steady-state and dynamic 

flexibility tests. The justification is that if the steady-state process operation is infeasible, 

further investigation of dynamic flexibility is not needed. Patel, et al. (2008) applied similar 

idea with modified linear quadratic regulator (mLQR). The applied mLQR method 

incorporated an additional penalty term on the movement of the manipulated variables in 

order to add integrating action to the controller. They considered the corners of a hyper-

rectangular disturbance space rather than dynamic flexibility test.  

The advantage of the aforementioned methods is that the linear model benefits from 

analytical solutions and the computationally expensive dynamic nonlinear optimization is 

avoided. The disadvantage of these methods is that due to application of a linear model, the 

solution is local. In addition, in the case of highly nonlinear processes, application of 

nonlinear identification and observation methods may further augment the required 

computation expenses, (Yuan 2012).  

2.13. Methods based on analysing nonlinear behaviour of 

chemical processes 

Chemical processes may demonstrate nonlinear behaviour in term of steady-state 

multiplicity. The corresponding node in the hierarchical tree of Figure 2.1 is shown in Snip 

2.1.8. 

 
Snip 2.1.8. Research in the field: Methods based on analysing nonlinear behaviour of chemical 

processes, (Figure 2.1 revisited). 
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In order to determine steady-state multiplicities, the mathematical model of the process 

should be condensed into an algebraic equation (Silva-Beard and Flores-Tlacuahuac, 1999): 

                                                                                                                                         

where   is the state variables and   is the vector of design parameters. Then the necessary 

condition of input-multiplicity is given by the implicit function theorem (Poston and Stewart 

1996): 

        
       

  
                                                                                                           

in which    . Therefore, the maximum number of multiplicity points,  , is given by: 

        

   
              

          

     
                                                                            

Similarly, the necessary condition for output-multiplicity is given by: 

       
       

  
                                                                                                            

Then, isolas, i.e., the points where isolated solutions originate and disappear, can be found 

by: 

        
       

  
  

       

  
                                                                                   

In the following, several interesting results for integration of process design and control are 

reviewed. Silva-Beard and Flores-Tlacuahuac (1999) studied the regions of nonlinear 

behaviour of a free-radical CSTR polymerization reactor using continuation algorithm and 

global multiplicity diagrams. They showed that closed loop control in the optimal point of 

operation could be difficult because steady-state multiplicities would introduce positive zeros 

into the transfer function and limit the speed of closed loop control. Pavan Kumar and 

Kaistha (2008a, b) showed, depending on the control structure, input steady-state multiplicity 

might cause state transition and wrong control action in a generic ideal reactive distillation 

column. They recommended a three-point temperature control structure for addressing large 

deviations in the throughput. The effects of input multiplicity on degrading switchability due 

to non-minimum phase behaviour are also studied by Kuhlmann and Bogle (2001; 2004). 

Kiss, et al. (2002, 2003, 2007) studied the effects of recycle streams on product selectivity 

and steady-state multiplicity of a reactor-separator process. They identified two types of 

inventory control; self-regulatory inventory control in which the reactants are fed according 
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to stoichiometry of reactions and is characterized by a minimum reactor volume required to 

avoid snowball effects, and regulation by feedback inventory control in which the inventories 

of the reactants are controlled by manipulating fresh feed. They argued that although the 

latter method is more difficult to implement, it eliminates the risk of instability and state 

multiplicity.  

The early methods for analysing the nonlinear behaviour of chemical process rely extensively 

on the analytical solution of the process model. Marquardt and Mönnigmann (2005) applied 

the underlying theory for synthesis rather than analysis. They defined a critical manifold as 

the stability boundary which separates the design parameter space of feasible steady states 

from unstable oscillatory states. Then, an operational point should back-off from the critical 

manifolds in order to ensure a safe operation due to uncertainties and disturbances. A signal 

function was applied for testing if the manifold is crossed. This function enabled identifying 

unknown critical manifolds. Then, the constraints for maintaining distance from these new 

critical manifolds were added and the optimization was repeated until no new critical 

manifold is found. This method has been successfully applied to the systems consisting of 

hundreds of equations.   

2.14. Geometric operability analysis  

The definition of operability was mentioned earlier in Section 2.9.1. The geometric measures 

for steady-state and dynamic operability were introduced in order to quantify the area in 

which the process remains operable, (Vinson and Georgakis 2000; Uztürk and Georgakis 

2002) The corresponding node in the hierarchical tree of Figure 2.1 is shown in Snip 2.1.9 

and is discussed in the following.  

 
Snip 2.1.9. Research in the field: Geometric operability analysis, (Figure 2.1 revisited). 
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The discussion is based on the following state-space representation of the process model 

(Georgakis, et al. 2004): 

          ̇                                                                                                              

                                                                                                                                

                ̇      ̇                                                                                                             

                ̇      ̇                                                                                                       

In the above,       is the vector of state variables,        is the vector of input 

(manipulated) variables,        is the vector of disturbance variables, and        is the 

vector of output (controlled) variables. The method for steady-state operability analysis 

utilizes a steady-state process model that maps process inputs to process outputs. The process 

inputs are able to take the values in the available input set      . Using the process model 

and    , it is possible to calculate the achievable output set      . Notice that     is a 

function of   and   . A comparison between the desired output set       and the achievable 

output set       can be quantified as the operability index     :  

   
          

      
                                                                                                              

where   is a measure of the size of each set, e.g., in a two-dimensional space, it represents the 

area and in a three-dimensional space, it represents the volume, (Georgakis and Li 2010). 

However, there are different definitions for operability index depending on whether the 

setpoints are constant or they are controlled in intervals (i.e., equivalent to setpoint tracking).  

The achievable output set (   ) can be calculated for a given available input set (   ) and by 

fixing disturbances at their nominal values   . Then a comparison between the desired 

output set (   ) and the achievable output set (   ) leads to quantification of the steady-

state servo-operability index, as follows: 

     
               

      
                                                                                             

in which  

         { |    ̇     ̇                                                                   

Similarly the regulatory steady-state operability index will be:  

     
 (            )

 (        )
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in which the desired input set is defined as: 

         { |    ̇     ̇                                                                   

where      is the expected disturbance space. Later this method was developed to include 

dynamic operability (Uztürk and Georgakis 2002; Georgakis, et al. 2003). The set of values 

over which inputs can move is called dynamic available input space (    ). The dynamic 

desired operating space (     ) is a function of desired output set (   ), expected 

disturbance space (   ) and the maximum allowable response time   
  as follows:  

      {          |        
                                                              

Similarly, the dynamic achievable operating space (     ) is defined as  

      {          |        
                                                

  
  is the minimum time that is required for optimal control and its value can be calculated 

using dynamic optimization, (Georgakis, et al. 2003). In order to define the dynamic 

operability two other spaces are needed: 

   {       |                                                                                               

   {       |   
     

                                                                           

Then 

    
     

     
                                                                                                                              

The first operating space,   , is the combination of the setpoints (   ) and disturbances 

(   ). The second space,     is the projection of intersection of       and      , and 

represents the operating space that can be achieved. Therefore, the dynamic operability 

index represents the fraction of operating space that can be achieved by the available inputs 

during the desirable response time. More details on these methods can be found in 

(Georgakis, et al. 2004). 

It is notable that in the case of input multiplicity, additional interior points of      also need 

to be imaged in order to calculate the complete boundaries of     , (Subramanian and 

Georgakis 2001). The geometric methods for operability analysis are nonlinear and multi-

variable. However, they have no implication for the regulatory control structure or inventory 

control systems, (Vinson and Georgakis 2000). In addition, the problem suffers from the 

curse of dimensionality, i.e., the dimensions of the abovementioned sets increase sharply and 

the problem becomes intractable. To overcome this difficulty, Georgakis and Li (2010) 
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introduced a method based on the techniques used in design of experience (Montgomery 

2005) which selects a finite number of points to perform the input-output mapping.  

2.15. Steady-state and dynamic flexibility optimization  

A variety of methods for steady-state and dynamic flexibility optimization has been proposed 

by the researchers (e.g., Swaney and Grossman 1985a; Grossmann and Floudas 1987; 

Dimitriadis and Pistikopoulos 1995). The corresponding node in the hierarchical tree of 

Figure 2.1 is shown in Snip 2.1.10 and is discussed in the following.  

 

Snip 2.1.10. Research in the field: Steady-state and dynamic flexibility optimization, (Figure 2.1 

revisited). 

The steady-state process model can be represented by the following equations, (Dimitriadis 

and Pistikopoulos 1995): 

                                                                                                                                    

                                                                                                                                    

    { |                                                                                                             

    { |                                                                                                               

where     {       {  . In above,   is the vector of the state variables,   is the vector the 

control (input) variables,   is the vector of the uncertain parameters,   is the vector of the 

design variables. The design variables are decided during the process design stage and remain 

unchanged during the process operation. In the above set of equations, the state variables can 

be eliminated between equations (2-38) and (2-39), resulting in the following concise 

representation of the process model: 

                                                                                                        

As shown by Halemane and Grossman (1983), for evaluating the steady-state flexibility the 

following optimization problem need to be solved: 
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where   is the index of inequalities of equation (2-42). If       , the design is feasible for 

all     , otherwise a set of critical values for uncertain parameters    is determined which 

causes the worst violation of constraints.   

Swaney and Grossman (1985a), proposed a scalar flexibility index,   , in order to quantify 

the area in which the process operation remains feasible, under uncertain conditions. 

                                                                                                              

Subject to  

                                                         

                     

     { |                                           

In above    is the nominal value of uncertain parameters. In addition,     and     are the 

expected deviations from this value. The implication of the above formulation is that   is the 

largest scaled deviation of the uncertain parameters that can be accommodated by the process 

before the operation is rendered infeasible. In addition, Swaney and Grossman, (1985a) 

showed that under certain convexity conditions, the causes of infeasibility lie on the vertices 

of the uncertainty space and the problem simplifies to identifying the active constraints 

whose intersections limit feasible operation.   

The early versions of flexibility optimization employed a steady-state formulation. The 

optimization variables were process design parameters and process inputs which could be 

optimized to compensate the losses associated with realization of uncertainties. The steady-

state version of flexibility analysis did not have any implication for control design and do not 

consider transient states. However, in some important applications such as batch processes, 

shutdown and start-up procedures, disturbance rejection, or product changeover, the dynamic 

operability of the process is of vital importance. Therefore, Dimitriadis and Pistikopoulos 

(1995) extended this method to consider dynamic process optimization under time-varying 

uncertainties. In the dynamic formulation, the following system consisting of ordinary 

differential equations was considered to describe the process model: 

     ̇                                                                                                  

                                                                                                                      

  
     (   (  )  (  )  (  )   )                                                                
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Compared to the steady-state formulation, in the above states, inputs and uncertain 

parameters are time-dependent. The constraints       and    
      represent path and point 

constraints respectively. Then, the dynamic flexibility can be tested by solving the following 

optimization problem: 

                                                                                     

Subject to  

     ̇                                                                                                   

     {    |                                                                                                  

     {    |                                                                                                    

where   is the maximum time over which the flexibility of the dynamic system is 

considered. Similar to steady-state test, if      , the system is flexible. Otherwise, at 

least for one     , there is no control action which can make the process operation feasible 

over the considered time horizon.  

Similar to the steady-state case, the dynamic operability index problem can be formulated as 

follows: 

                                                                                                           

Subject to  

                                                                                

     ̇                                                                                             

                     

       {    |                                                          

     {    |                             

It is notable that dynamic flexibility optimization can be used as an outer optimization loop in 

order to ensure that process operation remains feasible over the range of uncertain 

parameters.  
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Figure 2.10. The algorithm for flexibility optimization, adapted from (Sakizlis, et al 2004). 

 

The concept is shown in Figure 2.10, (adapted from Sakizlis, et al. 2004). In this method, 

firstly multi-period optimization is performed for an initial set of uncertain scenarios. This 

gives intermediate values for the design variables. Then, a feasibility test (another 

optimization) is performed in which the design variables are fixed and the violations of the 

constraints are maximized using the uncertain parameters. This gives a critical scenario of the 

uncertain parameters with worst violation of constraints. The current set of the uncertain 

scenarios is updated and the two optimization problems are solved iteratively, until the 

second optimization fails to find a realization of the uncertain parameters, which violates the 

constraints and therefore, the design is feasible for the whole range of uncertain parameters. 
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2.16. Economic optimization based on minimization of the 

economic losses associated with back-off from active 

constraints 

Perkins (Narraway, et al. 1991; Narraway and Perkins 1993) proposed a method based on 

minimization of economic penalties associated with back-off from active constraints. The 

corresponding node in the hierarchical tree of Figure 2.1 is shown in Snip 2.1.11. 

 
Snip 2.1.11. Research in the field: Minimization of the economic losses associated with back-off from 

active constraints, (Figure 2.1 revisited). 

 

The importance of this contribution was the recognition and integration of economic 

objectives into the problem formulation. The idea is shown in Figure 2.11. In many 

processes, the optimal steady-state economic solution lies on the intersection of constraints. 

However, these constraints may be violated due to disturbances. Therefore, in order to ensure 

a safe and feasible operation, the nominal operating point must be moved away from the 

active constraints. Minimization of economic penalties associated with back-off from active 

constraints leads to identification of the optimal dynamic economic solution, shown in Figure 

2.11.  

The early versions of the back-off method were based on frequency analysis and perfect 

control (Narraway, et al. 1991; Narraway and Perkins 1993). Later, this method was extended 

to time domain by considering decentralized (Heath, et al. 2000) and centralized (Kookos and 

Perkins 2001) proportional integral controllers. They also developed a general formulation 

which included any linear time-invariant output feedback controller, (Kookos and Perkins 

2004). 
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Figure 2.11. Optimal steady-state and dynamic economic solutions adapted from Kookos and Perkins 

(2004) 

 

2.17. Simultaneous optimization of a process and its controllers 

The simultaneous approach to integrated design and control employs a stochastic mixed 

integer nonlinear dynamic formulation to optimize a superstructure of the process, its control 

structure and controllers. However, solving the resulted mathematical formulation can be a 

formidable task. The corresponding node in the hierarchical tree of Figure 2.1 is shown in 

Snip 2.1.12.  

 

 
Snip 2.1.12. Research in the field: Simultaneous optimization of the process and its controllers, 

(Figure 2.1 revisited). 
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Since the underlying mathematical formulation for simultaneous optimization of a process 

and its controllers may result in large-scale MIDO problems, several research activities were 

devoted to develop new solution strategies in order to reduce the computational costs.  

Samsatli, et al. (1998) proposed an smooth approximation of binary variables to reformulate 

the MIDO problem using continues variables, as follows: 

  
 

 
        {                                                                                                            

Here   is a large number, then     when     and     when    . However, the 

proposed approximating function results in errors when    , because      . 

Several research activities investigated decomposition of the problem into a primal 

subproblem and a master subproblem, with of the aim of reducing the computational costs. In 

all these methods, the primal subproblem is performed in a reduced space in which the binary 

variables are fixed. The primal subproblem gives an upper bound on the solution. However, 

as discussed in the following, different methods are used to formulate the master subproblem 

which determines the new realizations for the binary variables and gives lower bound on the 

solution. These two subproblems are solved iteratively until the difference of the upper and 

lower bounds lies within the desirable tolerance. Avraam, et al. (1998, 1999) and Sharif, et al. 

(1998) applied linearization to construct an MILP master subproblem which was solved using 

outer approximation (OA) method. By comparison, Mohideen, et al. (1997), Schweiger and 

Floudas, (1997) and Bansal, et al. (2000a, 2003) applied dual information and generalized 

benders decomposition (GBD) algorithm (Geoffrion 1972) to construct the master 

subproblem. The former method based on outer approximation requires less evaluation of the 

primal subproblem because its master subproblem gives tighter lower bounds. However, the 

application of outer approximation algorithms required that the binary variables appear 

linearly and separated in the objective function and constraints. It is notable that new OA 

algorithms (e.g., applied by the recent versions of DICOPT) are extened to overcome this 

deficiency. 

The method of full discretization based on orthogonal collocation was also applied by 

Cervantes and Biegler (2000b; 2002), and Flores-Tlacuahuac and Biegler (2005; 2007; 2008). 

Flores-Tlacuahuac and Biegler (2007) also studied the effects of the convexities of the 

problem formulation on the results. In that study, firstly the problem formulation was 

presented using generalized disjunctive programming (GDP) method (Biegler, et al. 1997) 
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and then it was translated into several equivalent mixed integer formulations such as Big M, 

disaggregation or nonconvex formulations. 

From the application point of view, these methods are applied to a number of case studies: a 

double effect distillation column (Bansal, et al. 2000b), a high purity distillation column 

(Ross, et al. 2001), and a multi-component distillation column (Bansal, et al. 2002). Later, 

Sakizlis, et al. (2003; 2004) and Khajuria and Pistikopoulos (2010) extended this method by 

including multi-parametric model predictive controllers. Asteasuain, et al. (2006) studeid 

simultaneouse process and control system design of styrene polymerization CSTR reactor. 

They considered a superstructure of feedback and forward controllers, and the optimization 

included the determination of optimal initial and final steady states and the time trajectories 

between them. Recently, Terrazas-Moreno, et al. (2008) studied a methyl-methacrylate 

continuous polymerization reactor. In this research, the design decisions (equipment size and 

steady-state operating conditions), the scheduling decisions (grade productions sequence, 

cycle duration, production quantities, inventory levels) and the optimal control decisions 

(grade transition time and profile) were made simultaneously. Different methods for solving 

MINLP and MIDO problems will be discussed next. 
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2.18. Mathematical optimization    

This section reviews the relevant methods for addressing optimization-based algorithms of 

the last sections. The features of interest are the methods for solving MINLP problems, the 

methods for dynamic optimization, the methods for global optimization, simulation-

optimization programming, and multi-criteria decision-making.  

2.18.1. MINLP solution algorithms  

As discussed earlier, in design and control of chemical processes, two categories of variables 

are involved, structural variables and parametric variables. Structural variables are discrete 

and are represented as binary or integer variables. If the latter take large values, often it is 

approximated as a continuous variable, (Biegler and Grossmann 2004). The main MINLP 

algorithms can be explained using four subproblems. They are: 

Subproblem NLP 1: the relaxation subproblem.  

In this subproblem, the discrete variables are relaxed to have non-integer values. In general, 

the solution of Subproblem NLP1 results in non-integer values for discrete variables and 

gives a lower bound on the objective function of the main MINLP problem. 

Subproblem NLP2: the subproblem with fixed discrete variables.  

The solution of this subproblem gives an upper bound on the objective function of the main 

MINLP problem. 

Subproblem NLPF: the feasibility subproblem with fixed discrete variables.  

The Subproblem NLPF can be thought as minimization of infeasibilities of the corresponding 

NLP2 subproblem. 

Subproblem M-MILP: the cutting planes subproblem 

The Subproblem M-MILP exploits the convexity of the objective function and the 

constraints, as they are replaced by the corresponding supporting hyper-planes. Due to the 

convexity of the feasible region, these hyper-planes are outer approximations of the nonlinear 

feasible region. Subproblem M-MILP may include linearization of all the constraints or only 

the violated constraints. The hyper-planes in Subproblem M-MILP provide new values for 

discrete variables, and a non-decreasing lower bound for the objective function. In other 

words, Subproblem M-MILP over estimates the feasible region and underestimates the 

objective function.  
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The mathematical formulation of the above subproblems can be found in (Grossmann 2002). 

The main MINLP algorithms are branch and bound (BB), outer approximation (OA),  

generalized benders decomposition (GBD), and extended cutting planes (ECP) which can be 

explained using the above sub-problems NPL1, NP2, NLPF, and M-MILP, as explained in 

the following, and shown in Figure 2.12, (adapted from Grossmann 2002).   

 
Figure 2.12. Different MINLP algorithms represented as a combination of NLP and M-MILP 

subproblems, (adapted from Grossmann 2002). 
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enumerated. The relaxed Subproblem NLP1 gives a lower bound for the subproblems in the 
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Outer approximation (OA) 

In outer approximation algorithm, NLP2 (subproblem with fixed discrete variables) and M-

MILP (subproblem with cutting planes) are solved iteratively. If the solution of NLP2 is 

feasible, it is used for constructing the cutting planes in M-MILP. Otherwise, the feasibility 

Subproblem, NLPF, is solved to generate the corresponding feasible solution. NLP2 and M-

MILP subproblems give the upper and lower bounds respectively. The iterations continue 

until the difference of the lower and upper bounds lies within the allowable tolerance.  

Generalized Benders decomposition (GBD) 

Generalized benders decomposition (GBD) is similar to outer approximation (OA) in that 

subproblems M-MILP and NLP2 are solved iteratively. However, in GBD only active 

constraints are linearized for constructing the cutting planes.  

Extended cutting planes (ECP) 

The extended cutting planes algorithm does not require the abovementioned NLP sub-

problems. M-MILP Subproblem is solved iteratively by adding the linearization of the most 

violated constraints. The algorithm converges when the violation of constraints lies within the 

allowable tolerance.   

The algorithms based on branch and bound are only attractive when NLP subproblems are 

not computationally expensive or when due to the small dimension of discrete variables, the 

number of NLP subproblems is small. In general, outer approximation (OA) methods 

converge in fewer iterations. It can be shown that in extreme when the objective function and 

the constraints are linear, OA finds the solution in one iteration. In fact, as explained by 

Grossmann (2002), the M-MILP Subproblem does not even need to be solved to optimality. 

The generalized benders decomposition (GBD) algorithm can be thought as a special case of 

OA algorithm. Since the lower bounds of the GBD algorithm are weaker than OA algorithms, 

a larger number of iterations is required. For the case of extended cutting planes (ECP), since 

the discrete and continuous variables are treated simultaneously, a larger number of iterations 

is required. There are other variants and extensions of the above-mentioned algorithms such 

as branch and cut, LP/NLP branch and bound, and so on, which are not the focus of this 

discussion. The interested reader may refer to literature, (e.g., Biegler and Grossmann 2004). 

In general, branch and bound methods perform well when relaxation of MINLP is tight. 

Outer approximation methods are better when the NLP subproblems are computationally 
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expensive. GDB methods are more favourable for problems with a large number of discrete 

variables and ECP methods are preferred for linear problems, (Biegler and Grossmann 2004). 

The off-shelf commercial solvers for mixed integer nonlinear problems are available within 

modelling systems such as GAMS and AMPL. The common computer codes for nonlinearly 

constrained MINLPs are DICOPT, SBB, α-ECP and BARON. DICOPT is developed by 

Viswanathan and Grossmann (1990) at Carnegie Mellon University, based on OA. According 

to the recent manual of software, the algorithm is extended to include integer variables which 

appear nonlinearly in the problem formulation, (DICOPT documentation 2012). BARON is 

developed by Sahinidis (1996) and implements a global optimization method. This solver is 

based on a branch and reduce algorithm. SBB applies a branch and bound method and α-ECP 

is based on an extended cutting plane method. Comparison of these algorithms is not the 

focus of this research. DICOPT and SBB are used in Chapter 6 for optimization of the 

discretized formulation of a MIDO problem. All these methods are based on the assumption 

of convexity of the objective function and constraints and may converge to a local solution in 

the presence of non-convexities. The methods for global optimization will be discussed later.  

2.18.2. Dynamic optimization 

In general, the solution algorithms for dynamic optimization problems can be classified into 

variational, sequential, full discretization and multiple-shooting methods. These methods are 

discussed in the following.  

The variational methods use the first order optimality necessary conditions based on 

Pontryagin’s Maximum Principle (Cervantes and Biegler 2000a). The resulted formulation 

conforms to a boundary value problem which can be solved using methods such as single 

shooting, and invariant embedding. If the analytical solution is found, these methods have the 

advantage that the solution is achieved in the original infinite dimensional space. However, 

analytical solution is often not possible and numerical solution features combinatorial 

characteristics in the presence of constraints. Therefore, the application of variational 

methods is limited to small problems.  

In the sequential integration methods, also called partial discretization or control vector 

parameterization, only the control input variables (i.e., manipulated variables) are 

discretized. When initial conditions, time-independent variables and the parameters of the 

input variables are fixed, the resulted differential algebraic equations (DAEs) can be solved 

using a DAE solver. This produces the required objective function and gradients for an NLP 
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solver. The NLP solver determines the optimal values for the time-independent variables and 

the parameters of the control inputs. The special feature of sequential methods is that it 

generates a feasible solution in each iteration, (Biegler and Grossmann 2004).  

In full discretization methods, also called simultaneous methods, all time-dependent variables 

are discretized which results in a large-scale nonlinear problem. The main technique for 

discretization is collocation based on finite elements, in which the profiles of the time-

dependent variables are approximated by a family of polynomials. These methods follow an 

infeasible path and the differential algebraic equations are solved at the optimum point, only. 

Therefore, the execution time is significantly shorter than the sequential method. The full 

discretization methods are advantageous when state variables are (path) constrained or 

unstable modes exists, (Biegler and Grossmann 2004). In addition, the control input 

(manipulated) variables are discretized at the same level of accuracy as the state variables and 

the output (controlled) variables. However, the reformulated discretized problem could be 

very large which requires careful initialization of the optimization algorithm.  

A method that should be categorized between the two extremes of the sequential methods and 

the full discretization methods, is called multiple shooting. In this method, the time horizon is 

divided into several stages and in each stage a partial discretization problem, based on 

sequential approach is solved. The continuities between stages are established using 

additional equality constraints. The main advantage of the multiple-shooting methods over 

the sequential methods is that the (path) constraints on state variables can be imposed at the 

points between stages.  

2.18.3. Global optimization 

The motivation for the research into global optimization is that the nonlinear optimization 

methods do not guarantee to find the global solution in the case of non-convex problems. The 

methods for global optimization can be classified into stochastic methods and deterministic 

methods. The stochastic optimization methods, often apply an algorithm in analogy to 

physical systems (e.g. evolution in genetic algorithm) in order to generate trial points which 

approach an equilibrium point. The common examples of stochastic optimization methods are 

genetic, simulated annealing, and Tabu search algorithms. Stochastic optimization methods 

are widely applied in chemical engineering. For example Low and Sorensen, (2003a-b, 

2005), and Wongrat, and Younes (2011) applied genetic algorithms and Exler, et al. (2008) 

applied Tabu Search for mixed integer dynamic optimization. Furthermore, these methods do 
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not require calculation of gradients and can be applied for simulation-optimization 

programming. Genetic algorithm (GA) is an important derivative free algorithms which is 

discussed in the following, briefly.  

The main characteristic of GA is that it mimics the process of natural evolution. GA employs 

a population of solutions for optimization and applies two main operators for improving the 

fitness (i.e., the value of the objective function) of individual solutions. The first operator 

combines two individuals (parents) to create a new individual (offspring). This operation is 

called crossover. The other operation for improving the fitness of individuals is to randomly 

change their characteristics. The corresponding operator is called mutation. Mutation has an 

exploration attitude that is, it explores new areas in the search space (i.e., the space in which 

optimization variables are defined). However, crossover has an interpolative attitude, as it 

tries to combine the best characteristics of the current individuals to create a better individual 

in the next generation. Both mutation and crossover operations may have destructive effects, 

because an offspring may not be as good as its parents. In order to avoid increasing the value 

of the objective function, the best individual of each population is copies directly to the next 

generation, which is known as elitism. In this research, MATLAB
®

 GA Toolbox is applied in 

Chapters 4 and 5. More details about genetic algorithm are available in literature (e.g., Edgar, 

et al. 2001; Mitchell, M. 1998).  

Recently, a variety of methods for deterministic global optimization is proposed by 

researchers. In summary, the main idea is to use convex envelopes or under-estimators in 

order to construct the equivalent lower bounding convex problem. Consider the following 

mixed integer programming (MIP) problem:  

                                                                                                                                        

Subject to  

                         

In which   and   are continuous and discrete variables respectively. In addition,        and 

       are generally non-convex. The equivalent lower bounding mixed integer 

programming (LBMIP) problem has the general form of: 

        ̅                                                                                                                             

Subject to  

 ̅                        



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  110 

 

where,  ̅ and  ̅, are valid convex under-estimator,  ̅             and  ̅        holds if 

        . As discussed by Grossmann and Biegler (2004), the differences between the 

methods for deterministic global optimization are based on the way that the above lower 

bounding problem is constructed and the way that branching is performed on discrete and 

continuous variables. The spatial tree enumeration can be done for both continuous and 

discrete variables. Alternatively, the spatial branch and bound can be performed on 

continuous variables and the resulted LBMIP can be solved by conventional MIP methods at 

each node. Branching on continuous variables is performed by diving the feasible region, and 

comparing the upper and lower bound for fathoming each sub-region, (Figure 2.13).The sub-

region which contains the global optimal solution is found by eliminating the sub-regions 

which are proved not to contained the global optimal solution. Finally, some methods branch 

on discrete variables of LBMIP problem and switch on spatial branch and bound on the nodes 

where feasible values for discrete variables are found. For constructing the under-estimator 

some special structures such as bilinear, linear fractional, or concave separable structures may 

be assumed for continuous variables. Alternatively, in some methods a quadratic large term is 

added to the original function. Nevertheless, in all these methods the quality of the under-

estimator depends on the method for tightening the upper and lower bounds. The details of 

these methods and the way that the convex envelopes and under-estimators are constructed 

are reviewed by Grossmann and Biegler (2004), Tawarmalani and Sahinidis (2004), and 

Floudas, et al. (2005). Recently researchers have extended the global optimization methods 

for dynamic optimization. Barton and Lee, (2004) solved MIDO problems with embedded 

linear time-varying dynamic systems to global optimality. Later Chachuat, et al. (2005; 2006) 

proposed a decomposition method based on outer approximation, which is able to address a 

wider range of problems with embedded ordinary differential equations (ODEs) without 

enumerating the discrete variables.  
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Figure 2.13. The concept of constructing the convex under-estimator for a non-convex function, 

adapted from Grossmann and Biegler (2004).    

 

2.18.4. Optimization with implicit constraints: Simulation-optimization 

programming 

The simulation-optimization programming techniques (which will be used in Chapters 4 and 

5) conform to optimization with implicit constraints and have proved efficient in process 

optimization using simulators (Sharifzadeh et al, 2011; Caballero et al 2007; Odjo et al, 

2011). In simulation-optimization programming, the simulator has an input-output black-box 

relationship to the optimizer. Optimization is performed in the outer loop and the simulation 

is solved in the inner loop. The advantage of this method is that it provides an opportunity to 

apply off-the-shelf simulation software tools with advanced thermodynamic property 

packages. In addition, the number of optimization variables is limited to the required 

specifications of the simulation program, (i.e., the variables which should be specified 

independently to run the simulator). For fixed values of the optimization variables, the 

equation solver of the simulator is able to calculate the remaining variables. By convergence 

of the equation solver, the value of the objective function is evaluated and reported to the 

optimizer. The disadvantage of this method is that evaluation of the objective function is 

computationally expensive and time-consuming because for each evaluation, the equation 

solver needs to converge.  
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2.18.5. Multi-criteria decision-making 

As discussed by many researchers, (e.g., Luyben 2004; Alhammadi and Romagnoli 2004), 

there are conflicts and competitions between control and process objectives. The requirement 

to establish a trade-off between these objectives conforms to the concept of multi-criteria 

decision-making (MCDM) (also known as multi-objective programming). If the objectives 

were not competing with each other, optimizing them separately would result in the overall 

optimal solution. However, in the case of competing and conflicting objectives, all the 

objectives need to be optimized, simultaneously.  

The mathematical formulation of multi-objective optimization can be presented as: 

    {                                                                                                                 

Subject to:                                             

          

            

           

in which    is an objective function. The variables   and   are discrete and continuous 

respectively and     represents the total number of objectives. The notations       and 

        represent equality and inequality constraints respectively. In addition,    and    are the 

feasible domains of the discrete and continuous variables respectively.  

Figure 2.14 (adapted from Jones and Tamiz 2010) shows the concept for a bi-objective 

function. The feasible region is the area in which it is possible to satisfy the constraints. 

Outside this region, the constraints are violated. Some points in the feasible region feature a 

better fitness regarding the objective functions. The solution of a multi-objective optimization 

problem is not unique, and is a set of Pareto optimal solutions. A Pareto optimal (also called 

Pareto efficient) solution is a non-inferior solution (i.e., not inside the feasible region, as 

shown in Figure 2.14) for which no other feasible solution exists, which can improve the 

value of an objective without sacrificing the other objectives. The Pareto front (also called 

Pareto frontier) is the set of all Pareto optimal solutions. In Figure 2.14, by moving a Pareto 

optimal solution on the Pareto front to the right and left, the values of the first and second 

objective function improves respectively. At the same time by improving the value of an 

objective function, the value of the other objective function deteriorates. 
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Figure 2.14. The feasible region and Pareto front for a bi-objective optimization problem. 

 

One way of constructing a Pareto front is to calculate an aggregated objective value by 

assigning weighting factors,    , to different objectives,   . Then, by varying the ratios of the 

weighing factors, the Pareto front is constructed. 

                     ∑          

 

   

                                                                               

The main disadvantage of the above approach is that it is computationally expensive. The 

alternative approach is to use goal programming. In goal programming, for each objective, a 

target level is assigned and the deviation from that target is minimized. Since, meeting the 

goals as closely as possible is the main aim of goal programming, the underlying philosophy 

of goal programming is satisfying and sufficiency of the achieved levels of the targets. The 

extensive and recent discussions of the methods for goal programming are presented by Jones 

and Tamiz (2010).  

It is notable that constraints are interpreted differently from goals and their deviational 

variables. Unmet constraints render the solution infeasible and unimplementable. However, a 

nonzero deviational variable can represent a feasible or even a Pareto optimal solution, as 

shown in Figure 2.15a. In fact, for conflicting and competing objectives, a solution by which 

all the goals are achieved and all the deviational variables are zero is often infeasible, and 

nonzero deviational variables represent the level of disagreement between competing 

objectives. Therefore, goal programming aims at establishing a trade-off between the 

achieved levels of goals, by finding reasonable values for deviational variables.  
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Figure 2.15. Goal programming; a) correct choices of the target levels, b) unbalanced, sub-optimal 

solution due to incorrect choices of the target levels. 

 

Figures 2.15 show the concept; two target levels are specified for the two objective functions 

and the corresponding deviational variable    and    are minimized. These figures also 

reveal the importance of the target values. In Figure 2.15a, target levels are set optimistically 

and the ideal solution is infeasible, but the goal program found a Pareto optimal solution. In 

Figure 2.15b, pessimistic choices of the target values resulted in an inferior suboptimal 

solution. Jones and Tamiz (2010) argued that if the goals are set optimistically, goal 

programming and optimization coincide. However, if the goals are set pessimistically, the 

solution of goal programming could be sub-optimal (as shown in Figure 2.15b), i.e., another 

feasible solution exists that improves at least one of the objectives without worsening the 

other objectives.  

The other important aspect of goal programming is that in most cases, it is not sufficient to 

solely rely on the average of deviational variables for constructing the aggregated objective: 

     
 

 
∑           

       

 

   

                                                                                            

If balancing between the achieved level of goals is also important, a min-max metric (also 

known as Chebyshev distance metric) is added, in which the worst level of the achieved goals 

is also minimized. This method is known as efficiency-equity trade-off method (Gonzales-

Pachon and Romero, 1999): 
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It is notable that the method of weighting factor may not explore the entire Pareto front in the 

case of non-convexities. Other alternatives for constructing Pareto fronts are evolutionary and 

Ɛ-constraint methods. The details of these methods are available in literature (e.g., 

Alhammadi and Romagnoli 2004). Comparison of these methods is not the focus of the 

present research.  

2.19. Conclusion 

In this chapter, a thematic review of literature regarding process design and control was 

presented. Figure 2.1 gave a snapshot of research in the field. The main approaches for 

process design and control can be classified into sequential methods and integrated design 

and control methods. The sequential methods have a yes/no attitude to the problem while the 

integrated design and control methods incorporate some aspects of control design into the 

process design. All the above methods use mathematical modelling. However, the methods 

using first principles modelling are more successful in integrating design and control.  

Due to high dimensionality of the problem, a variety of methods addresses the problem by 

decomposing it to several smaller subproblems. Decomposition can be based on individual 

unit operations, different time-scales, prioritization of control objectives, or heuristics for the 

design of inventory control systems.  

This chapter also reviewed the characteristics and desired properties of the elements of 

control systems. Spatial and temporal decentralizations of control systems were explained 

and conventional multi-loop controllers and centralized model predictive controllers were 

discussed. This chapter also discussed the desirable properties of manipulated and controlled 

variables. The economic implications of static and dynamic setpoint policies were discussed 

and the importance of selection of controlled variables for process profitability was 

emphasized.  

The causes of control imperfection, also limit process controllability. Different definitions for 

operability, flexibility, and controllability were presented and the causes of control 

imperfection namely the interactions between control loops, delays and right-half-plane 

zeros, manipulated variable constraints and model uncertainties were discussed in this 

chapter. Moreover, it was explained that the methods based on passivity, exploit the process 

model to evaluate the stability and integrity of decentralized control structures.  
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Then, the discussions moved to the methods in which process design and control are 

integrated to some extents. A category of optimization-based methods uses a multi-objective 

function for screening alternative solutions. This also provides the opportunity for 

incorporating controllability measures into economic optimization. These methods were 

reviewed in this chapter.  

A variety of methods is devoted to flexibility analysis, i.e., whether for a range of uncertain 

scenarios, the process operation remains feasible. As discussed in this chapter, the 

optimization methods for steady-state and dynamic operability analyses are developed by 

researchers. In addition, it is possible to evaluate the feasibility of the process operation by 

mapping the bounds of the input variables into the output spaces. This idea resulted in the 

geometric methods for operability analysis. 

It was also discussed that minimizing the economic losses associated with disturbances, in 

terms of back-off from active constraints, can be applied as an economic measure for 

integrated design and control.  

By development of computational capabilities, some researchers optimized the process and 

its controllers simultaneously. However, the underlying formulation features combinatorial 

nature and is limited to smaller problems. In addition as discussed in the first chapter, due to 

conceptual complexity issues, including controllers in the optimization is of limited 

practicality. 

The comparisons between the methods on the right branch of Figure 2.1 are illustrative. All 

these methods try to establish criteria for evaluating and screening the performances of 

alternative decisions in designing process and control systems. Some methods employ the 

controllability measures, and incorporate them into a multi-objective function. In the methods 

based on model reduction, robust control measures were used instead. In the methods for 

analysing the nonlinear behaviour of chemical processes, the aim is to avoid undesirable 

characteristics such as steady-state multiplicity. The geometric methods for operability 

analysis are trying to ensure that for all disturbance scenarios, the desired outputs are 

achievable, using available inputs. Similarly, the methods for flexibility optimization, try to 

evaluate and quantify the effects of uncertain parameters on feasibility of process operation. 

In some research, the decision-making criterion is the economic losses associated with retreat 

from active constraints. Finally, the methods for simultaneous optimization of process and its 
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controllers measure directly the controller error and incorporate it to a multi-objective 

function.  

Furthermore, investigating the evolution path of the methods for integrated design and 

control suggests that the methods which have a direct link to the underlying first principles 

are more successful in integrating process design and control. This is the reason that almost 

all of the methods on the right branch of Figure 2.1 are nonlinear. Furthermore, simultaneous 

optimization of process and controllers pose a tough challenge for the current optimization 

methods, and requires efficient complexity reduction methods. The requirement for 

complexity reduction should address both numerical and conceptual complexities, in terms of 

the required computational costs, reliability of the solution and the desirable properties such 

as controllability, operability and flexibility. Finally, as discussed in this chapter, the problem 

of integrated design and control need to address the interactions between competing and 

conflicting process design and control objectives. Therefore, the desirable method should 

feature multi-criteria decision-making capabilities in order to be able to establish a trade-off 

between different objectives. 

The presented materials in this chapter will serve as basis for theoretical developments in the 

next chapter, which present a new optimization framework for integrated design and control. 
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Chapter 3 | An optimization framework using an 

inversely controlled process model 

 

3.1. Introduction 

The conventional approach for integrated design and control is to optimize a combined model 

of the process and its controllers. However, as discussed earlier, optimizing controllers poses 

conceptual as well as numerical challenges. This chapter introduces a new optimization 

framework using an inversely controlled process model, in which the model of controllers is 

replaced by perfect control equations. The complexities associated with controllers are 

removed from the problem formulation, while the process and its control structure are still 

optimized, simultaneously. This chapter presents the steady-state as well as the dynamic 

mathematical formulations of the proposed optimization framework for optimal control 

structure selection and integrated design and control.  

 

3 
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In the subsequent sections, firstly the mathematical formulation of the new optimization 

framework for integrated design and control (Problem 2) is developed as the mathematical 

formulation of the conventional optimization framework (Problem 1) is modified and perfect 

control equations are included. These modifications enable formulation and proposition of a 

new optimization framework using an inversely controlled process model. Two versions of 

the proposed optimization framework are presented for steady-state and dynamic analyses. 

These optimization frameworks will be applied to three case studies in the subsequent 

Chapters 4, 5, and 6. They are: 

 Problem 2.stst: Integrated design and control using a steady-state inversely 

controlled process model will be studied on the case of a reactive distillation 

column in Chapter 5. 

 Problem 2.dyn: Integrated design and control using a dynamic inversely controlled 

process model will be studied on the case of two heat-integrated series reactors in 

Chapter 6. 

This chapter presents the mathematical formulations of the above problems and subproblem 

and serves as the theoretical basis for the subsequent chapters in which the proposed 

frameworks will be applied to several cased studies.  

The statements of the conventional framework for integrated design and control (Problem 1) 

and the proposed framework for integrated design and control (Problem 2) were presented in 

Chapter 1. Furthermore, the motivations for numerical and conceptual complexity reductions 

by separating the controller design were discussed in that chapter. In the subsequent sections, 

firstly the mathematical formulation of the conventional integrated design and control 

framework is presented. Then, this formulation is modified and the mathematical formulation 

for the new optimization framework based on perfect control is developed. 

 Subproblem 2.stst: Optimal selection of control structures using a steady-state 

inversely controlled process model will be studied on the case of a distillation train 

in Chapter 4. 
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3.2. Mathematical formulation of conventional integrated 

design and control, Problem 1 

The conventional approach to integrated design and control can be formulated as a stochastic 

mixed integer dynamic optimization problem as follows: 

     {   [                    ]}                                                                                    

Subject to:                    

   ̇                                     

                                   

                                   

   ̇                                               

                                        

           

In above,      is the vector of process differential variables,      is the vector of process 

algebraic variables,      is the vector of candidate manipulated variables,      is the vector 

of candidate controlled variables,   is the vector of process parameters,      is the vector of 

control differential variables,      is the vector of control algebraic variables,   is the vector 

of control parameters,       is the vector of disturbance parameters.   is the index of 

disturbance scenario.    is the vector of structural process variables.     and     are the 

vectors of structural variables for selection of controlled and manipulated variables 

respectively. While   ,     and     are vectors of integer variables, the rest of the variables 

are continuous.  

In addition,        is the vector of process differential equations,        is the vector of 

process algebraic equations,        is the vector of inequality constraints,        is the 

vector of control differential equations,        is the vector of control algebraic equations,  

        is the vector of equations for disturbances. The expected value  {   of the objective 

function        should be minimized.  

The above mathematical formulation applies a combined modelling approach in which the 

models of the process and its controllers are included and linked together. This combined 

model includes optimization variables which are structural (integer) or parametric 
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(continuous). While structural decisions concern choices between alterative process 

configurations and alternative control structures, the parametric decisions concern the values 

of process variables such as flows, temperatures or pressures, the design parameters of 

process equipment and also controller parameters.  

The concept of the conventional optimization framework for integrated design and control is 

shown in Figure 3.1. It shows the trial values of the optimization variables being exported by 

the optimization algorithm to the combined process-controller model. By setting the values of 

the optimization variables, the combined model is fixed and its performance is tested against 

different disturbance scenarios. Then the values of the objective function and the violations of 

constraints are reported to the optimization algorithm. The optimization algorithm evaluates 

the termination criteria and decides on improvement of the optimization variables. 

 

Figure 3.1. The conventional optimization framework for integrated design and control of chemical 

processes. 

 

A comparison between the mathematical formulation,            and the graphical 

representation in Figure 3.1 is illustrative. The constraints              and      represent the 

process model. The constraints     , and      represent the controller models. The equality 

constraints         represent disturbance scenario  .       disturbance variables, represent 

those exogenous variables over which we have no control, (Ogunnaike and Ray, 1994). The 

examples of disturbances include the fluctuations in immediate upstream processes, sudden 

changes in the ambient conditions or measurement noises. The disturbance scenarios can be 

extracted from plant operating data. In addition, in Chapter 2, it was explained that the 

flexibility analysis method or the methods base on model reduction and robust control can be 
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used to identify the worst disturbance scenario. In this research, it is assumed that expected 

disturbance scenarios are known in advance. As shown in Figure 3.1, disturbances affect the 

process model, and therefore,      appear in the arguments of the constraints representing the 

process model. Then, the effects of the disturbances are detected by the controllers through 

the controlled variables and are counteracted by adjusting the manipulated variables. For each 

disturbance scenario, a value for the objective function is calculated      . Therefore, the 

multi-objective function depends on the expected disturbance scenarios. The optimization 

variables are the structural process variables    (such as process configuration), the structural 

variables     and     for selection of controlled and manipulated variables, the process 

parameters   (such as the size of process equipment, nominal operating conditions), the 

controller parameters   (such as gain and integral constants in a proportional integral 

controller) and the optimal trajectories of the manipulated variables,     . The overall 

objective value is calculated for all disturbances and then reported to the optimization 

algorithm for decision-making.  

3.3. Applying an inversely controlled process model for 

integrated design and control (proposed framework) 

The aim of this section is to remove the complexities associated with controllers from the 

conventional optimization framework presented in the last section. The modification is firstly 

explained by considering the troublesome element in Figure 3.1, i.e., the controller model. 

Then, the mathematical formulation of Problem 1 is modified to include perfect control 

equations and to eliminate the need for modelling controllers.  

In order to disentangle the design of controllers, their algebraic and differential equations           

(       and        ) must be replaced by perfect control equations which ensure that the 

selected controlled variables are maintained at their desired values:  

                                                                                                                                      

                                                                                                                                     

where       is the selected controlled variable and             is the corresponding setpoint. 

However,        represents the manipulated variable which is not selected and             is 

the corresponding nominal value. The implication of equation        is that if a 

manipulated variable is not selected, it will be left unadjusted at its nominal value.  
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In principle,             , can be time-dependent. However, in optimization of a continuous 

process it would normally be constant, equivalent to disturbance rejection which is the focus 

of this research.  

In general, there will be several alternatives for perfect control because it is possible to select 

different sets of controlled variables and manipulated variables. In addition, perfect control 

equations consume degrees of freedom and their consistency with the available degrees of 

freedom must be ensured. These considerations can be formulated using mixed integer 

nonlinear programming:  

     {   [                                     ]}                                              

subject to:                           

   ̇                                     

                                    

                                   

           

     (                 )                                     

         (                )                        

                 

In above, the mathematical notations are similar to Problem 1. In addition, the controller 

differential and algebraic equations (i.e.,        and        ) are replaced by perfect 

control equations. The perfect control equations are shown by the dotted envelope.       and 

      are  the binary variables which indicate whether a controlled variable or a manipulated 

variable is selected respectively. The multiplier of the manipulated variables in the second to 

the last equation encloses the complement of the corresponding binary variables, i.e.    

      . The implication is that if a manipulated variable is not selected, it is left at its nominal 

value, while the required value of the selected manipulated variables are calculated. The last 

set of constraints,      , are the results of degree of freedom analysis and represent the 

constraints needed to ensure that the selected manipulated and controlled variables are 

consistent. Examples of these constraints and the required analysis are presented in Section 

4.4.3.1 and Section 5.4.2.1. The options for a controlled variable or a manipulated variable 

are represented by      and      respectively. Notice that in the proposed framework using a 
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dynamic inversely controlled process model, the setpoints of the controlled variables are the 

optimization variables, compared to the conventional framework in which the trajectories of 

manipulated variables are optimized. It is also important to note that in both conventional and 

proposed optimization framework, the results strongly depend on the expected disturbances. 

Figure 3.2 shows the concept. The model of controllers is replaced with equations 

representing perfect control, which enable the directions of the information flows to be 

reversed from the controlled variables (CVs) to the manipulated variables (MVs). 

Firstly, the optimization algorithm decides the trial values of the parametric and structural 

optimization variables. These variables include the design parameters of process equipment 

and the operating conditions such as temperatures, pressures and flowrates as well as the 

process structure and the control structure. Then, the fitness of these trial values must be 

tested against disturbance scenarios. In an inversely controlled process model, the values of 

the controlled variables are maintained constant by the perfect control equations while the 

time trajectories of the manipulated variables are adjusted in order to reject the disturbances. 

Then, the values of the objective function and the violations of constraints are evaluated and 

reported to the optimization algorithm. The optimization algorithm evaluates the termination 

criteria and decides on improvement of the optimization variables. 

The following sections develop and discuss several variants of Problem 2 in which steady-

state and dynamic inversely controlled process models are applied for optimal selection of 

control structures and integrated design and control.   

 

Figure 3.2. The proposed optimization framework for integrated design and control using an inversely 

controlled process model 
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3.4. A steady-state inversely controlled process model for 

optimal selection of control structures  

The problem statement for optimal selection of control structures was presented in Section 

1.2.4. The mathematical formulation for optimal selection of control structures using a 

steady-state inversely controlled process model (Subproblem 2.stst) can be derived directly 

from the formulation of Problem 2. Due to the steady-state assumption, the time 

dependencies of the variables are ignored and the time-derivatives are set equal to zero. 

Therefore, the mathematical formulation of Subproblem 2.stst consists of only algebraic 

equations (AEs). Since the control structure is being decided, different controlled variables or 

manipulated variables may be selected during optimization search, which represent different 

perfect controls. Therefore, each candidate control structure generates a different set of AEs. 

In addition, a set of constraints should be implemented in order to ensure that the selected 

degrees of freedom are consistent. Therefore, the mathematical formulation of the proposed 

steady-state optimization framework for optimal selection of control structures can be 

presented as follows: 

      {                                                                                                                    

subject to:                                            

               

              

        

     (              )                                     

         (             )                        

                 

The notation Subproblem 2.stst refers to a subproblem (proposed control structure selection) 

within a larger problem (proposed integrated design and control) using a steady-state 

inversely controlled process model. Since, the steady-state assumption implies that the time-

derivatives are equal to zero, the differential equations (i.e.,  [ ]) in Problem 2 become 

algebraic equations in Subproblem 2.stst and their union with other algebraic equations (i.e., 

 [ ]) is represented by    [
   
   

]. Similarly, the new vector of algebraic variables is    
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[
   
   

]. The complexity reduction described above limited the optimization variables to the 

structural (integer) control variables        and        . All the continuous variables are implied 

in the optimization constraints. The above formulation can be addressed using the methods 

for mixed integer nonlinear programming (MINLP).  

The equality constraints in Subproblem 2.stst represent a time-independent mathematical 

model in which the values of the manipulated variables are calculated from the desired values 

(i.e., setpoints) of the controlled variables, hence the process model is inverted.  

Figure 3.3 shows the concept of the steady-state inversely controlled process model for 

optimal selection of control structures. The information flow is similar to Figure 3.2. 

However, the optimization variables are limited to structural control variables (i.e. selection 

of manipulated and controlled variables) as discussed earlier. 

 In the new framework, the controlled variables, the expected disturbance scenarios, and the 

manipulated variables used to reject the disturbances are the primary decisions that need to be 

considered. Later in this chapter, it will be discussed that the application of a steady-state 

inversely controlled process model ensures regulatory steady-state operability.  

The application of the proposed optimization framework of Subproblem 2.ststs, shown in 

Figure 3.3, will be demonstrated using a case study of a distillation train, in Chapter 4. The 

optimization programming and employed software tools will be explained and the results will 

be discussed.   

 

Figure 3.3. The proposed optimization framework for optimal selection of control structures using a 

steady-state inversely controlled process model 
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3.5. A steady-state inversely controlled process model for 

integrated design and control  

This section now extends the formulation of the last section to enable design of the process in 

addition to selection of the control structure. Similar to the last section, the application of a 

steady-state inversely controlled process model limits the constraints to algebraic equations 

(AEs). However, both the process and its control structure are being optimized 

simultaneously. The problem has a mixed integer nonlinear programming (MINLP) 

formulation, as follows: 

     {   [                                    ]}                                                      

subject to:                                        

                    

                   

        

      (              )                                     

         (             )                         

                 

The notation Problem 2.stst implies that Problem 2 (the proposed integrated design and 

control) is presented using a steady-state formulation. The other mathematical notations are 

the same as the last problems and subproblem. 

The concept is shown in Figure 3.4. The information flow is similar to Figure 3.3. However, 

the optimization variables include also the structural and parametric process variables.  

In the new steady-state framework for integrated design and control, the process 

configuration and design, the controlled variables, the expected disturbance scenarios, and the 

manipulated variables used to reject the disturbances are the primary decisions that need to be 

considered. The application of the proposed optimization framework of Problem 2.stst will be 

demonstrated using a case study of a reactive distillation column, in Chapter 5. 
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Figure 3.4. The proposed optimization framework for integrated design and control using a steady-

state inversely controlled process model. 

 

3.6. A dynamic inversely controlled process model for 

integrated design and control  

The mathematical formulation for integrated design and control using a dynamic inversely 

controlled process model, Problem 2.dyn, is identical to the mathematical formulation of 

Problem 2: 

                                                                                                                        

Therefore, Problem 2.dyn consists of differential algebraic equations (DAEs). Since both 

structural and parametric variables of the process and its control structure are being 

optimized, the problem conforms to a nonlinear mixed integer dynamic optimization (MIDO) 

problem. 

The concept was shown in Figure 3.2 and the information flow of the proposed dynamic 

optimization framework for integrated design and control was discussed in Section 3.3. 

Compared to the last section, the formulation of Problem 2.dyn requires higher modelling and 

computational efforts because this formulation consists of differential algebraic equations. 

However, as will be discussed in Chapter 7, the application of a dynamic inversely controlled 

process model ensures that the controlled variables are maintained at their desired trajectories 

while the manipulated variables are adjusted accordingly, which conforms to the notion of 
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functional controllability, (Rosenbrock 1970). Furthermore, incorporating functional 

controllability into the optimization framework for integrated design and control will ensure 

that such transient trajectories are optimal with respect to the process and control objectives.  

In the proposed dynamic framework for integrated design and control, the process 

configuration and design, selection of controlled variables, the expected disturbance 

scenarios, and the manipulated variables used to reject the disturbances are the primary 

decisions that need to be considered. The application of the proposed optimization framework 

of Problem 2.dyn will be demonstrated using a case study of two series reactors in Chapter 7. 

The optimization programming will be explained and the results will be discussed. 

3.7. Steady-state operability versus functional controllability 

This chapter proposed a steady-state inversely controlled process models that consists of a set 

of nonlinear algebraic equations in which process inversion is made by fixing the controlled 

variables at their setpoints and calculating the required values of the manipulated variables 

for disturbance rejection. In addition, a dynamic inversely controlled process model was 

proposed that consists of a set of differential algebraic equations (DAEs), in which perfect 

control equations replace the model of controllers. In the dynamic inversely controlled 

process model, the controlled variables are maintained constant by the perfect control 

equations, while the time trajectories of the manipulated variables are adjusted in order to 

perfectly reject the disturbances.   

However, there is a trade-off between the precision of controllability analysis and the 

required modelling efforts and computational expenses of the two steady-state and dynamic 

formulations. While a steady-state inversely controlled process model features a higher 

degree of complexity reduction, the efforts of developing a dynamic inversely controlled 

process model are rewarded by a higher confidence about process controllability. The 

differences of the two modelling approaches can be explained based on regulatory steady-

state operability and functional controllability as follows.  
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3.7.1. Regulatory steady-state operability  

As discussed in Chapter 2, the regulatory steady-state operability index is: 

     
 (            )

 (        )
                                                                                                

in which desired input set,         , is defined as: 

         { |    ̇     ̇                                                                   

In equation (2-17),     represents the available input set which are the values that the process 

inputs are able to take and     represents the expected disturbance space. 

A comparison between the information flow in the proposed steady-state framework and the 

above definition of regulatory steady-state operability is illustrative. Figure 3.3 showed the 

information flow of the steady-state framework. In each iteration of the optimization 

framework, for each disturbance         and the nominal setpoints   , the desired input 

set          is calculated by the steady-state inversely controlled process model. If no 

constraint on the input (manipulated) variables is violated, the whole set of           will be 

achievable and this set is identical with    . Therefore, the regulatory steady-state operability 

will be equal to one. Otherwise, if any constraint on input variables is violated, the proposed 

optimization framework will encounter an infeasible solution and will be redirected to the 

feasible solutions for which the regulatory steady-state operability is equal to one.  

3.7.2. Functional controllability 

The following discussion concerns the implications of a dynamic inversely controlled process 

model for functional controllability of the solution. The discussion is mostly based on the 

results from Hirschorn, (1979). The relevance to the present research is to identify when the 

process inversion is possible and what characteristics the desired output trajectories should 

have to ensure functional controllability. It is notable that functional controllability has other 

names such as right-invertibility
2
, output realizability, output controllability, and functional 

reproducibility, (Skogestad and Postlethwaite 2005; Singh 1982a-c). Consider the state-space 

representation below: 

                                                 
2 Notice that right and left invertibility are identical for a square system (Daoutidis and Kravaris, 

1991). 
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       (    )       (    )                                                              

      (    ) 

In above      is the vector of state variables,      is the vector of input variables,      is the 

vector of output variables,   is a connected real analytical manifold. Here, the definition of 

functional controllability is restate from Chapter 2:  

Definition: A process is functionally controllable if for the desired trajectories of the 

output variables,     , defined for    , there exist some trajectories of the input 

variables,     , defined for    , which generates the desired controlled variables 

from the initial states      , (Rosenbrock 1970).  

According to the above definition, a dynamic system features functional controllability if it is 

invertible, (see also Hirschorn, 1979; Singh, 1982a-c; Daoutidis and Kravaris, 1991). A 

system is called invertible, if for an initial state    , and distinct inputs      , different 

outputs                       are calculated. Therefore, in principle, the required values 

of the inputs can be calculated from the desired values of the outputs, (Daoutidis and 

Kravaris, 1991). In order to present the necessary and sufficient condition for invertibility of 

a nonlinear dynamic system, the concept of relative order needs to be defined.  

Definition: The relative order of Nonlinear System (1) is   such that      
      (  )    

where    is a component of output mapping   and     is Lie bracket operator.  

Theorem 3.1: Nonlinear System (1) is invertible if and only if    . 

The proof is provided by Hirschorn, (1979). 

Theorem 3.2: Consider Nonlinear System (1) with relative order  . If    ,          , 

then         such that          , if and only if                   

          for            . 

The proof is provided by Hirschorn, (1979). 

The definition of the rlative order,  , should be interpreted as the least number of times that 

an output need to be differentiated before an explicit relation to the manipulated variable can 

be generated. Therfore, Theorem 3.1 has an intuitive implication and that is the process 

model is invertible if and only if an explicit relationsship between the selcted inputs and the 

selcted outputs exists. It was explained earlier that a dynamic inversely controlled process 

model is constructed as the controller model is subtituted by the perfect control equations. 

The impliciation of Theorem 3.1 for the proposed integrated design and control framework is 
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that it has a feasible solution if and only if the ouptuts corresponding to the included perfect 

control equations have a finite relative order with respect to the selected inputs.  

Theorem 3.2 is known as functional controllability conditions in the context of nonlinear 

control (McLellan 1994) and implies that in order for function      to be selected as the 

desired ouput trajectory, its initial value and the initial values of its first      derivitives 

should be equal to the corresponding values of the outputs trajectories. In this research, the 

problem of disturbance rejection (i.e., setpoints are constant) was studied in which          

 . The implication is that since for disturbance rejection the controlled variables remain 

constant at their setpoints (i.e.,         ), the functional controllability conditions in 

Theorem 3.2 will be always satisfied. Therefore, the application of a dynamic inversely 

controlled process model for disturbance rejection ensures functional controllability.  

For linear systems, the above necessary and sufficient condition of functional controllability 

translates into the requirement that the process transfer matrix must feature full row rank, 

(Skogestad and Postlethwaite 2005). However, unlike linear systems, the invertibility of 

nonlinear systems depends on the initial states too, (Hirschorn, 1979). Since, in a dynamic 

inversely controlled process model, the required values of the inputs are calculated from the 

desired values of the outputs, the initial conditions depend on the disturbance scenarios. In 

other words, the solution is functionally controllable for the selected disturbance scenarios 

and may or may not be controllable for other disturbances.  

It is notable that the concept of relative order has been also applied by researchers (Daoutidis 

and Kravaris, 1992b) for control structure selection as a measure of sluggishness of initial 

response and influence of the manipulated variables on the controlled variables,. 
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3.8. Conclusion 

In this chapter, a new optimization framework using an inversely controlled process model 

was proposed. It was discussed that the proposed steady-state framework consists of 

nonlinear algebraic equations. The process inversion is performed by fixing the selected 

controlled variables or unselected manipulated variables at their setpoints and nominal 

values, respectively. However, the mathematical formulation of the proposed dynamic 

framework consists of algebraic-differential equations. Here, the process inversion is 

performed as perfect control equations replace the model of controllers. The outlined method 

will address the need for disentangling the numerical and conceptual complexities associated 

with controllers from the problem formulation. Several variants of the proposed optimization 

framework were formulated and discussed. They are: 

 Subproblem 2.stst: Optimal control structure selection using a steady-state 

inversely controlled process model 

 Problem 2.stst: Integrated design and control using a steady-state inversely 

controlled process model 

 Problem 2.dyn: Integrated design and control using a dynamic inversely controlled 

process model 

The mathematical formulation for optimization of the above problems and subproblem were 

presented and the achieved levels of complexity reduction were explained. It was shown that 

while the proposed steady-state framework ensures regulatory steady-state operability, a 

higher confidence regarding controllability can be gained by applying a dynamic inversely 

controlled process model, which ensures that solution features also functional controllability. 

The application of the proposed optimization frameworks will be later demonstrated using the 

case studies in Chapters 4, 5, and 6.  
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Chapter 4 | Optimal selection of control structures 

using a steady-state inversely controlled 

process model 

4.1. Introduction 

Profitability of chemical processes strongly depends on their control systems. The design of a 

control system includes selection of controlled and manipulated variables, known as control 

structure selection. Systematic generation and screening alternative control structures require 

optimization. However, the size of such an optimization problem is much larger when 

controllers and their parameters are included and it rapidly becomes intractable.  

With the aim of complexity reduction, Chapter 3 proposed an optimization framework for 

optimal selection of control structures using a steady-state inversely controlled process 

model. The mathematical formulation of the proposed framework and its characteristics were 

4 
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presented and discussed in Chapter 3. In the present chapter, this framework is applied to the 

case of a distillation train. A goal-driven multi-objective function is formulated to establish 

the trade-off between the competing objectives for control structure selection. It is also 

discussed that inventory control systems do not appear in a steady-state model and should be 

addressed separately. Then, the process description of the case study is presented and the 

optimization variables and constraints are discussed. The optimization programming and the 

employed software tools are also explained. Finally, the results are presented and discussed 

and the sensitivity of the solution is evaluated. 

4.2. Multi-objective function and goal programming 

As discussed earlier, there are alternative perfect control systems because it is possible to 

choose alternative sets of manipulated and controlled variables. Establishing the criteria for 

selection between these alternatives is an elusive task. In this chapter, a multi-objective 

function based on goal programming is applied. The proposed objective functions are listed 

in Table 4.1.  

Table 4.1. 

Objective functions for steady-state control structure selection 

     = the deviations in the quality and quantity of products 

     = the deviations in the manipulated variables 

     = the deviations in the state variables  

     = the economic losses due to disturbances 

 

The first objective,      , should be included when the quality (e.g., composition, conversion 

extent) of the products are being inferentially controlled by other measurements (e.g. 

inferential temperature control in a distillation column). This objective concerns feasibility of 

process operation, because low quality products are not marketable. Therefore, it has the 

highest priority.  

The second objective,      , aims at minimizing the changes in manipulated variables. The 

suppression of the excessive changes in manipulated variables is desirable: 
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The second objective has a lower priority compared to the first and fourth objectives. 

The third objective,      , is considered to make the intermediate state variables which are 

not controlled directly, insensitive to the disturbances. If the consequences of the disturbances 

on the state variables are less, the transition time needed to move from the initial steady state 

(before the disturbance) to the final steady state (after the disturbance) is shorter. However, in 

practice, it is not possible to consider all the state variables and the choice of the states for 

this objective function is subjective. An example of this objective is the changes in the 

temperature profile of a distillation column when flow or composition of the feed is 

disturbed. The third objective has a lower priority compared to other objectives. 

The fourth objective,     , concerns the steady-state economic losses, i.e. decrease in 

profitability due to the disturbances. There is a similarity between this objective and the 

notion of self-optimizing control. As discussed in Chapter 2, the implication of self-

optimizing control is that maintaining optimal controlled variables at their setpoints should 

minimize the economic losses in the presence of disturbances. This objective has a higher 

priority than the second and third objectives.  

In chapter 3, it was explained that the solutions of multi-objective optimization is a set of 

Pareto optimal solutions which are located on a Pareto front. Since constructing a Pareto front 

is computationally expensive, in this chapter a goal programming multi-objective function is 

formulated. In goal programming, each objective function is given a goal or a target value. 

 To preserve control action from saturation; this is because if excessive changes of 

manipulated variables are allowed for the expected disturbances, unexpected 

disturbances and uncertain conditions will influence the process even more and may 

result in the loss of control action (e.g., valve saturation).  

 To minimize the consumption of the resources associated with manipulated 

variables; excessive utilization of manipulated variables incurs maintenance costs 

and may affect reliability of the process. 

 To reduce the interactions between controllers; this is because changes in a 

manipulated variable does not solely affect the associated controlled variable, but 

also may influence the other process variables and may invoke other control loops, 

(Qin and Badgwell 2003; McAvoy 1999). Nevertheless, if the required changes in 

the manipulated variables are lessened, consequently the required time for 

disturbance rejection will be reduced. 
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The deviations from these target values are used to construct the aggregated objective value 

to be minimized as follows: 

   (
 

 
∑   (           

      )

 

   

        {  (           
      )})    

                                                                                                                                          

where   is the index of disturbances and    is the weighting factor of the objective function, 

      . These weighting factors are needed because, the four objective functions of Table 4.1 

are not equally important, and higher weights should be given to the first and fourth 

objectives. The values of     depends on the problem and sometimes it is needed to refine 

them during the optimization. Therefore, the goal programming method applied in this thesis 

can be thought as a method for scaling and identifying the appropriate weights for the multi-

objective function. 

Selection of target values for the objective functions of Table 4.1 is straightforward because 

these targets have ideally the values of zero: 

     
                                                                                                           

The target values of zero imply an optimistic ideal solution which is infeasible, i.e., it is not 

possible to ensure the quality and quantity of products, maintain the controlled variables 

constant, do not change the manipulated variables and incur no economic penalty. However, 

as discussed in Chapter 2, the advantage of the optimistic targets for goals is that the 

optimized solution will be Pareto optimal and not an inferior sub-optimal solution.  

The aggregated objective,     , is calculated for each disturbance scenario,  . Then, the 

expected value of the aggregated objective for different disturbance scenarios must be 

minimized. This expected value can be constructed by summing up the objective values 

weighted by the likelihood of each disturbance scenario,    , (Sahinidis 2004): 

     ∑             

  

   

                                                                                               

subject to:                                           
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     (              )                                      

         (             )                         

                 

The notation Subproblem 2.stst.gp refers to the steady-state formulation of the proposed 

control structure selection with a goal programming multi-objective function. The 

optimization variables are structural variables (i.e.,     and    ). All the continuous 

variables are implicit and included in the constraints which can be handled using an algebraic 

equation solver as will be discussed later.  

4.3. Engineering insights and heuristics: dynamic degrees of 

freedom and design of inventory control systems 

Since liquid hold-ups and gas inventories do not appear in a steady-state model, these 

variables must be considered separately. The application of a steady-state inversely controlled 

process model decomposes the subproblem of control structure selection into two smaller 

subproblems. One subproblem addresses the task of designing inventory controls, and the 

other subproblem optimizes the rest of the control structure. A question may arise about 

whether these subproblems can be addressed independently. The answer is to some extent 

negative. The reason is that the candidate manipulated variables are shared between steady-

state controlled variables and inventory controlled variables. Therefore, the set of candidate 

steady-state controlled variables must be arranged in such a way that if the optimization 

algorithm selects any of them, the required manipulated variables is available and none of 

inventory controlled variables is left uncontrolled. Otherwise, the infeasible solution must be 

forbidden from the set of candidate controlled variables and the optimization program should 

be run again. Therefore, in this chapter (and later in Chapter 5) the available manipulated 

variables are analysed before optimization to ensure the consistency of the optimization 

formulation.  
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4.4. Case study: optimal control structure selection for a 

distillation train 

In this chapter, the proposed optimization framework is applied to the case of a distillation 

train. The aim of the subsequent subsection is to map the case study into the proposed steady-

state optimization framework. In the subsequent sections, the process description is 

presented. The optimization variables are explained and the optimization constraints are 

discussed.  

4.4.1. Process description of pyrolysis gasoline hydrogenation (PGH) 

plant 

The process description for the overall olefin process is available in literature (e.g., 

Kroschwitz and Seidel 2004). A section of this process concerns the treatment of pyrolysis 

gasoline from which the case study of this chapter is selected. This part of the process is 

called pyrolysis gasoline hydrogenation (PGH) section and is shown in Figure 4.1.  

 

 
Figure 4.1. PGH plant; the framed part of the flowsheet is selected for the case study. 
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In olefin processes, the products of the cracking reactions of liquid feedstocks include a blend 

with properties very similar to gasoline. The disadvantage of this product is that the dissolved 

light olefins are highly reactive with the risk of polymerization stored untreated. Therefore, 

this blend must be saturated by hydrogenation reactions. The reaction conditions are 24bar 

and 140
o
C. The incondensable components that mostly consist of hydrogen are separated in a 

series of two separator drums which are operated in hot and cold conditions. The overhead 

vapours of the first separator are cooled using an air-cooler and a cooling water heat-

exchanger in order to minimize the hydrocarbon losses in the fuel gas stream. Then, the 

condensates from the bottom of these two separator drums will be resolved in a distillation 

train into    ,    ,   
  and heavy-ends products. In this chapter, this distillation train is studied 

and its schematic is shown by the dotted envelope on the right hand side of Figure 4.1.  

The first distillation column is depentanizer column. This column has a partial reflux 

configuration and the gaseous overhead product is mostly hydrogen. The main product is the 

   cut, and is withdrawn as the side stream. The bottom stream is fed to dehexanizer column. 

The    cut is produced in the top of dehexanizer column and the bottom stream is fed to rerun 

column which is operated under vacuum conditions. This column resolves its feed to   
  and 

heavy-ends streams. 

4.4.2. Optimization variables  

As discussed earlier, the new optimization framework limits the optimization variables to 

structural variables     and     regarding selection of controlled and manipulated variables. 

Table 4.2 lists the optimization variables. The rational choice of these candidate variables is 

based on the available measurements. The index         represents depentanizer, 

dehexanizer and rerun columns respectively. The notation             refers to the 

temperature of tray number   in the column number  . The notation          refers to a 

flowrate in column   . The notations         represent reflux, distillate, bottom, and side 

streams respectively.    refers to a reboiler heat duty. These notations also hold for flow 

ratios, for example            represents the ratio of bottom flowrate to feed flowrate in 

dehexanizer column.         and    are candidate manipulated variables and the rest of 

variables in Table 4.2 are candidate controlled variables.  
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Table 4.2.  

List of the optimization variables for the PGH case study.  

 

              a binary variable which 

represents selection of the 

temperature of a tray as a controlled 

variable 

            : a binary variable which represents 

selection of a flow, a flow-ratio or a heat duty as a 

controlled variable 

Depentanizer:    {                          } 
                                

  

                                                       

Dehexanizer:    {                          } 
                                

  

                                            

Rerun:    {                          } 
                                

  

                                            

4.4.3. Optimization constraints 

The following subsections explain the optimization constraints regarding the available 

degrees of freedom, inferential temperature control and disturbance scenarios.  

4.4.3.1. Constraints regarding the available degrees of freedom and the 

implications of inventory control systems 

In the present case study, the first distillation column (depentanizer) is a partial reflux column 

with a side stream and the second (dehexanizer) and third (rerun) distillation columns are 

total reflux columns (Figure 4.1). In Chapter 2, the methods for inventory control and degree 

of freedom analysis were reviewed. In addition, using a flowsheet-oriented method (Konda, 

et al. 2006), it was shown that the number of control degrees of freedom for a total reflux or a 

partial reflux distillation column is six. However, for the case of the first distillation column, 

due to the side stream, there is an extra degree of freedom. Substituting in equation (2-13): 

                                                                                                                       

In addition, since the feed of the distillation train is assumed as the disturbance source and the 

inventory control is designed in the direction of flows, one degree of freedom is consumed in 

each distillation column by the feed and the degrees of freedom for the first, second and third 

distillation columns are six, five, and five, respectively. In the following, the constraints 

required for consistency of the manipulated variables are introduced to the problem 

formulation.  

In the first distillation column, due to the presence of the incondensable components, the 



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  142 

 

application of a partial condenser is inevitable. The flow of the overhead vapour is used for 

controlling the column pressure representing the vapour inventory. The condenser duty is 

used for the overhead liquid inventory. These are the common engineering practices. 

Controlling the overhead and bottom liquid inventories, and the column pressure consume 

three manipulated variables, and three manipulated variables are left for steady-state 

optimization of the control structure of the first column: 

                                                       
     

 
 
  

     
 
 

 

  
     

 
 

  
     

 
 
  

     
 
 

         
                                                                          

The column bottom inventory can be controlled by adjusting either the reboiler duty or the 

bottom flowrate of the first column: 

                 
                                                                                                                

The second (dehexanizer) and third (rerun) distillation columns are total reflux columns and 

there are five potential manipulated variables in each of them. Controlling the overhead and 

bottom liquid inventories, and the column pressure consume three manipulated variables, and 

two manipulated variables are left for steady-state optimization of the control structures:  

                                                                         

                              
                                                         

                                                              

                                          
                                       

The following constraints ensure that either reflux or distillate will be available for 

controlling the overhead mass inventory of the second and third columns:  

                                                                                                                                  

                                                                                                                                  

The following constraints ensure that either reboiler or bottom flowrate will be available 

for controlling the bottom mass inventory:  

                 
                                                                                                               

                 
                                                                                                                

Constraints (4-4a to h) ensure that the selected manipulated variables for each distillation 

column are consistent. 
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4.4.3.2. Constraints regarding inferential temperature control  

With the liquid levels and column pressure under closed loop control, a distillation column is 

still unstable due to composition drift (Hori and Skogestad 2007; Skogestad 2007). Ideally, 

composition should be measured and controlled directly. However, composition 

measurements can be expensive and slow. An alternative is to design inferential temperature 

controllers, (Luyben 2006). The idea behind this strategy is that the changes in the selected 

temperature controlled variables should represent the changes in the composition of the 

products. The instability issues make the composition or inferential temperature control a top 

priority. Therefore, in this case study, a set of constraints ensured the selection of at least a 

temperature as a controlled variable in each column: 

                                                                                           

                                                                                           

                                                                                           

The implication of selecting at least one temperature as a controlled variable by including 

constraints (4-5a to c) is to maintain the energy balance of the column. The setpoint of such a 

temperature controlled variable influence the products composition.  

4.4.3.3. Constraints regarding disturbance scenarios  

The feed stream to depentanizer column is assumed a disturbance. Table 4.3 presents the feed 

composition and flowrate. The feed can be represented as the mixture of four cuts of 

hydrocarbons:   ,   ,   
  and heavy-ends cuts, shown in the last column of this table. In each 

disturbance scenario, the amount of each of these cuts in the feed stream is changed by    . 

The combinations of these changes result in sixteen disturbance scenarios, which represent 

the operational region. These disturbance scenarios are assumed equally likely. Later in a set 

of sensitivity analyses, the scenarios in which disturbances are increased to 10% and 20% 

will be studied too.  
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Table 4.3.  

Feed composition  

# Component  Mass flowrate (kg/h) Group 

1 Hydrogen 5 Flue gas 

2 Isobutene 6 C5 cut 

3 Isobutane 1 C5 cut 

4 1-Butane 33 C5 cut 

5 n-Butane 8 C5 cut 

6 Cyclopentene 398 C5 cut 

7 Cyclopentane 538 C5 cut 

8 Isopentene 265 C5 cut 

9 Isopentane 52 C5 cut 

10 1-Pentene 431 C5 cut 

11 n-Pentene 388 C5 cut 

12 ME-cyclopentene 252 C6 cut 

13 Cyclohexane 112 C6 cut 

14 1-hexene 100 C6 cut 

15 n-Hexane 70 C6 cut 

16 Benzene 6240 C6 cut 

17 ME-cyclohexene 39 C7 cut 

18 ME-cyclohexane 8 C7 cut 

19 Toluene 1898 C7 cut 

20 ET-Benzene 1136 Heavy ends 

21 P-Xylene 83 Heavy ends 

22 M-Xylene 182 Heavy ends 

23 O-Xylene 109 Heavy ends 

24 C9+ 860 Heavy ends 

  
13214 Total 
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4.4.3.4. Instances of goal programming objective function 

In Subproblem 2, control structure selection, the process design is fixed and the role of 

control system is to realize the targets set at the process design stage (Subproblem 1). These 

targets include the process profitability and quality of the products and the nominal operating 

conditions. In the following, the base-case design (i.e., the result of Subproblem 1) is 

presented. In addition, the instances of goal programming multi-objective function (4-1) and 

their target values are discussed.  

The instance of the first objective function in Table 4.1 is the quality of the products 

expressed in terms of their average molecular weights and standard densities. The target 

values for this objective are reported in Table 4.4 for each product. The instances of the 

second objective function in Table 4.1 are condenser duty, reboiler duty and reflux rate. The 

nominal values for these manipulated variables are reported in Table 4.5. The instances of the 

third objective function in Table 4.1 are chosen to be the temperatures of the trays. The 

targets (i.e., setpoints of temperature trays) for this objective are reported in Figures 4.2a-c. 

The fourth objective concerns the economic losses due to disturbances. The net profit is 

defined as: 

                                                                                                    

The economic losses were defined in term of decrease in                            The 

economic data used for calculating the economic objective function are shown in Table 4.6. 

The prices of the products were quoted from a petrochemical company in 2008. The utility 

costs were from Ulrich (2006). The TAP was calculated to be 6.67×10
6 
($.year 

-1
) for the base 

case design. The values of   , the weighting factors of the goal programming objective 

function (4-1) were      ,       ,      ,       .  

The control structure of the base case design is shown in Figure 4.3. In this research, this 

control structure is presented for demonstrating the benefits that may be gained by the 

proposed optimization framework. The result of imposing the 5% disturbances, discussed in 

the last section, to the base-case control structure will be presented and discussed later in this 

chapter. Please notice that in the figures of this chapter, the first tray corresponds to the 

reboiler and the last tray is the condenser.  
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Table 4.4.  

The target values for the quality of products. 

 MWaverage Standard density (kg.m-3) 

C5 Cut 70.047 685 

C6 Cut 78.467 864 

C7 Cut 89.939 869 

Heavy Ends 136.673 747 

 

 

 
Table 4.5.  

The nominal values of the manipulated variables, i.e., the targets for the second objective of Table 

4.1.  

Manipulated variable Nominal design value  

Condenser  heat  duty (Depentanizer column) -5.792×106 kJ/h 

Condenser  heat  duty (Dehexanizer column) -4.727×106 kJ/h 

Condenser  heat  duty (Rerun column) -3.121×106 kJ/h 

Reboiler heat  duty (Depentanizer column) 6.217×106 kJ/h 

Reboiler heat  duty (Dehexanizer column) 3.981×106 kJ/h 

Reboiler  heat  duty (Rerun column) 2.401×106 kJ/h 

Reflux rate (Depentanizer column) 1.34×104 kg/h 

Reflux rate (Dehexanizer column) 7.77×103 kg/h 

Reflux rate (Rerun column) 2.51×103 kg/h 

 

 

 
Table 4.6.  

Economic data for calculating the fourth objective of Table 4.1.  

C5cut ($.kg-1) 0.36 

C6cut ($.kg-1) 0.39 

C7cut ($.kg-1) 0.4 

heavy end ($.kg-1) 0.424 

Medium Pressure (MP) Steam (P=15.5 bar, T=464 K) ($.kg-1) 0.0078 

Cooling Water (P=7 bar, Tsupply=30 oC) ($.m-3) 0.03398 
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Figure 4.2a. The temperature profiles of the depentanizer column for the base case design 

 
Figure 4.2b. The temperature profiles of the dehexanizer column for the base case design 

 
Figure 4.2c. The temperature profiles of rerun the column for the base case design 
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Figure 4.3. The base-case control structure 

 

4.5. Implementation software tools  

The following sections explain the employed simulation and optimization software tools. 

Constructing a steady-state inversely controlled process model is discussed and information 

flow within the optimization framework is illustrated 

4.5.1. Simulation-optimization programming  

In Chapter 2, it was explained that simulation-optimization programming conforms to 

optimization with implicit constraints. Simulation was performed using Aspen-HYSYS
®

 and 

the optimization algorithm was Genetic Algorithm (GA
®

) toolbox of MATLAB
®

. The two 

software tools were integrated using COM
®

 automation interface. The mathematical 

modelling was performed using the distillation block of the Aspen-HYSYS simulator. The 

underlying equations can be found in Aspen-HYSYS (document 2009a). The pyrolysis 

gasoline was estimated by    real components. The modified Peng-Robinson equation of 

state was employed for thermodynamic calculations (Aspen-HYSYS document 2009b). In 

the case that the simulation solver failed to converge, the objective function was set to a value 

ten times larger than an ordinary objective value. There were sixteen disturbance scenarios. 

Therefore, for each function recall (i.e., one evaluation of the objective function) the 
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simulation program needed to be executed sixteen times. This normally took around 5-7 

minutes. That was significantly longer for solutions for which the simulation solver failed to 

converge. There were twenty individuals in each population, and between 30-50 generations 

were needed to find a reasonable solution. The simulation run was around a week. The author 

observation was that in a good evolution, the diversity of the population should be maintained 

until the midway, i.e., 20
th

 -30
th

 generations. If the individuals become similar in few 

generations, the solution was assumed pre-matured and the optimization procedure was 

restarted. In this research in order to generate a good initial population, firstly, the 

optimization procedure was performed from random populations (generated by the GA 

Toolbox) several times for a few generations and then, the best individuals were combined to 

generate a good initial population. The accuracy of the results depends on the applied 

modelling and optimization methods. The developed model featured a high degree of rigour 

because the built-in distillation blocks and the high fidelity property package from the 

simulator library were used for modelling. Furthermore, Genetic Algorithm is a stochastic 

optimization method based on a population of solutions and is less likely to become 

entrapped in local optima. However, the stochastic optimization methods do not construct any 

proof that the solution is globally optimal.  

4.5.2. Constructing a steady-state inversely controlled process model  

The distillation block in Aspen-HYSYS provides the option for defining column 

specifications. These are the specifications that the equation-solver tries to meet during 

simulation. The number of these specifications is the difference between the number of 

unknown variables and the number of equations in the simulation. In this case study, in order 

to construct a steady-state inversely controlled process model, all the candidate controlled 

and manipulated variables in Table 4.2 were defined as the deactivated column specifications. 

For each specification, a desired value was set according to the operating conditions of the 

base-case process. Activating and deactivating these specifications provided the opportunity 

to add and remove perfect control equations and to construct the corresponding steady-state 

inversely controlled process models.  
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4.5.3. Simulation-optimization information flow 

Figure 4.4 shows the information flow of the simulation-optimization program. The block on 

the left is GA and the block on the right is Aspen-HYSYS simulator. The middle block is an 

m-file coded in MATLAB, which integrates the two software tools.  

 

Figure 4.4. Information flow of the simulation-optimization programming. 

The steps in each optimization iteration are as follows: 

Step 1. The GA decides on the values of the optimization variables (Table 4.2). 

Step 2. The integrating code receives the values of the optimization variables, activates the 

corresponding column specifications, and constructs the corresponding steady-

state inversely controlled process model as described earlier. 

Step 3. The trial values of the optimization variables must be benchmarked against the 

expected disturbance scenarios. The integrating code imposes the disturbances to 

the inversely controlled process model by changing the feed flowrate and 

composition.  

Step 4. By convergence of the simulator for each disturbance scenario, the corresponding 

values of the objective functions (shown in Table 4.1) are calculated and the 

aggregated value of the multi-objective function (equation 4-1) is constructed. 

Since the disturbances are assumed equally likely, the expected value of the multi-

objective function is the average of them, which is reported to the GA. 

Step 5. The GA evaluates the termination criteria and decides on improving the 

optimization variables. 
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4.6. Results of the case study 

This section presents the results. Firstly, the effects of the 5% disturbance scenarios are 

evaluated on the base-case design (explained in Sections 4.4.3.3 and 4.4.3.4). Then, the 

results of the proposed optimization framework with respect to the 5% disturbance scenarios 

are presented and compared to the base-case design. The aim was to establish the benefits 

that can be gained from the proposed optimization framework. Finally, two sets of sensitivity 

analyses were performed. The first set of sensitivity analyses includes controlling one tray up 

and down and excluding the reflux of the last column from the controlled variable options. In 

the second set, the results of the proposed framework for larger disturbances (10% and 20%) 

are presented. The results are presented in tables and figures in this section and then 

discussed in the next section. They are:  

 

 

 Table 4.7 shows the objective values for the abovementioned optimizations and 

sensitivity analyses. 

 Table 4.8 shows the selected controlled and manipulated variables for the 

abovementioned optimizations and sensitivity analyses. 

 Figure 4.5 shows the selected controlled and manipulated variables with respect to the 

5% disturbance scenarios. 

 Figure 4.6 shows a decentralized control structure for the results with respect to the 

5% disturbance scenarios. 

 Figures 4.7 show the results for the base case control structure. 

 Figures 4.8 show the results with respect to the 5% disturbance scenarios. 

 Figures 4.9 show the results with respect to the 10% disturbance scenarios. 

 Figures 4.10 show the results with respect to the 20% disturbance scenarios.  
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Table 4.7.  

The optimal values of the objective functions. 

 Average 

changes in 

product 

molecular 

weight [%] 

Average 

changes in 

the product 

density [%] 

Average 

changes in 

manipulated 

variables 

[%] 

Average 

changes in 

the 

tempreature 

of trays [oC] 

Average 

changes in 

net profit 

[%] 

Aggregated 

Objective 

Function 

5% Disturbances 0.450 0.353 1.474 0.177 -0.041 11.331 

Base case 2.368 1.045 0.728 1.169 -0.223 51.486 

No reflux (5%) 0.430 0.342 1.562 0.171 -0.043 11.387 

(+1) Tray 0.415 0.336 1.478 0.194 -0.045 11.724 

(-1) Tray 0.457 0.353 1.445 0.178 -0.046 11.853 

10% Disturbances 0.525 0.349 2.893 0.338 -0.062 16.796 

20% Disturbances 0.629 0.324 6.367 0.662 -0.104 28.118 
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Table 4.8.  

The control structures selected for the three distillation columns, as the results of optimizations 

and sensitivity analyses  

 
First (Depentanizer) 

Column 

Second (Dehexanizer) 

Column 
Third (Rerun) column 

Type of the 

controlled 

variable 

All 

structures 

Column pressure Column pressure Column pressure Inventory 

Overhead liquid level Overhead liquid level Overhead liquid level Inventory 

Bottom liquid level Bottom liquid level Bottom liquid level Inventory 

Base case 

Temperature of the 42nd tray Temperature of the reboiler Temperature of the 12th tray Steady-state 

Condenser cooling duty Reflux flowrate Reflux flowrate Steady-state 

Temperature of the reboiler none none Steady-state 

5% 

Disturbances 

Temperature of the 45th tray Temperature of the 24th tray Temperature of the 6th tray Steady-state 

Temperature of the 33rd tray Reflux/Feed flow ratio Reflux flowrate Steady-state 

Temperature of the 10th tray none none Steady-state 

10% 

Disturbances 

Temperature of the 45th tray Temperature of the 21th tray Temperature of the 5th tray Steady-state 

Temperature of the 33rd tray Reflux/Feed flow ratio Reflux flowrate Steady-state 

Temperature of the 10th tray none none Steady-state 

20% 

Disturbances 

Temperature of the 44th tray Temperature of the 19th tray Temperature of the 5th tray Steady-state 

Temperature of the 31st tray Reflux/Feed flow ratio Reflux flowrate Steady-state 

Temperature of the 10th tray none none Steady-state 

No reflux 

(5%) 

Temperature of the 45th tray Temperature of the 24th tray Temperature of the 5th tray Steady-state 

Temperature of the 33rd tray Reflux/Feed flow ratio Reflux/Feed flow ratio Steady-state 

Temperature of the 11th tray none none Steady-state 

(+1) Tray 

(5%) 

Temperature of the 46th tray Temperature of the 25th tray Temperature of the 7th tray Steady-state 

Temperature of the 34th tray Reflux/Feed flow ratio Reflux flowrate Steady-state 

Temperature of the 11th tray none none Steady-state 

(-1) Tray 

(5%) 

Temperature of the 44th tray Temperature of the 24th tray Temperature of the 5th tray Steady-state 

Temperature of the 32nd tray Reflux/Feed flow ratio Reflux flowrate Steady-state 

Temperature of the 9th tray none none Steady-state 
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Figure 4.5. The selected controlled variables using the proposed optimization framework (dotted 

circles), and the inventory controlled variables (solid squares) 

 

 
Figure 4.6. The control structure for the distillation train of the PGH process (Tray-numbering is 

bottom-up) 
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Figure 4.7a. The temperature profiles of depentanizer column for the base-case control structure. 

 
Figure 4.7b. The temperature profiles of dehexanizer column for the base-case control structure. 

 
Figure 4.7c. The temperature profiles of rerun column for the base-case control structure 
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Figure 4.8a. The temperature profiles of depentanizer column for 5% disturbances 

 
Figure 4.8b. The temperature profiles of dehexanizer column for 5% disturbances  

 
Figure 4.8c. The temperature profiles of rerun column for 5% disturbances 
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Figure 4.9a. The temperature profiles of depentanizer column for 10% disturbances 

 
Figure 4.9b. The temperature profiles of dehexanizer column for 10% disturbances 

 
Figure 4.9c. The temperature profiles of rerun column for 10% disturbances 
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Figure 4.10a. The temperature profiles of depentanizer column for 20% disturbances 

 
Figure 4.10b. The temperature profiles of dehexanizer column for 20% disturbances 

 
Figure 4.10c. The temperature profiles of rerun column for 20% disturbances 
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4.7. Discussions 

This section discusses the results. In the first part of the discussions, the optimized control 

structure is compared to the base-case control structure. Then, in the second part of the 

discussions, the results of the sensitivity analyses are evaluated and discussed.  

4.7.1. Optimized control structure versus base-case control structure 

Table 4.7 showed the values of the objective functions for the optimized control structure 

(with respect to the 5% disturbance scenarios) and the base-case (unoptimized) control 

structure. The targets for optimization were that all the deviations should be ideally zero. 

Although the objective functions are competing and conflicting, the optimal solution exhibits 

the desirable properties. For the expected disturbance scenarios, the economic losses are 

minimized, while the manipulated variables are preserved from excessive movements. In 

addition, the product specifications are met and the minor changes in the average 

temperatures indicate short trajectories between different steady states and hence the process 

is insensitive to disturbances. These results demonstrate a good trade-off between different 

competing objective functions. This table also showed improvements over the base-case. For 

instance, less economic losses are incurred in the optimized control structure (-0.041% 

compared to -0.223%) and the quality of the products (in terms of the changes in the average 

densities and molecular weights) are inferentially controlled better. The average value of the 

changes in the temperature profiles is also less in the optimized control structure. However, 

the manipulated variables are varied more in the optimized control structure. 

Table 4.8 presents the selected manipulated and controlled variables. The controlled variables 

associated with inventory designs are presented in the top three rows and are the same for all 

the control structures. The rows immediately after the inventory controls are the control 

structure for the base-case design. Then, the results of optimization with respect to the 5% 

disturbance scenarios are presented. The rest of results report sensitivity analyses and will be 

discussed later.  

The base-case control structure was reported earlier in Figure 4.3, and where the base case 

design was reported. Figure 4.5 reports the results of optimization with respect to the 5% 

disturbance scenarios. In this figure, the available manipulated variables are shown using 

control valve symbols. The controlled variables selected by the optimization algorithm are 

shown using dotted circles. The liquid (level) and vapour (pressure) inventory controlled 
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variables are shown using the solid squares. These are the results of the optimization 

framework in conjunction with the heuristics for inventory control.  

As discussed earlier, in the proposed framework, the detailed control design is delegated to 

process control practitioners. The optimized control structure in this case study could be 

directly used in a multivariable control system. However, if a multi-loop control system is 

being designed, an appropriate pairing method such as RGA or process insights (Skogestad 

2007; Luyben 2006) can be employed. An example of a possible multi-loop control structure 

is shown in Figure 4.6. Here, the controlled variables and the available manipulated variables 

are paired using the process insights. 

Figure 4.8a shows the temperature profiles of the first distillation column for the sixteen 

disturbance scenarios. Since three temperature controlled variables are selected in this 

column, the temperature profiles are very similar in this column. The temperature profiles in 

the second and third distillation columns are shown in Figures 4.8b and c, which demonstrate 

a satisfactory control of temperature (and inferentially compositions) over the range of the 

expected disturbances. 

The comparisons between the optimized control structure and the base-case control structure 

reveals the benefits that can be gained by the proposed optimization framework. The key 

differences are in the first column, as the heat duty of condenser, the temperature of the side 

stream and the temperature of the reboiler are being controlled in the base-case control 

structure. By contrast, three inside temperatures corresponding to three columns trays are 

being controlled in the optimized control structure. This strategy resulted in significant 

improvements of the performance of the optimized control structure, which can be 

investigated by comparing Figure 4.7a and Figure 4.8a. The main advantage of the optimized 

control structure is that it minimizes the losses of the products from the overhead purge 

stream, in the first column. In addition, the optimized control structure remains operable 

while the base-case control structure would lose its control action in some certain disturbance 

scenarios. It is shown in Figure 4.7a that for some disturbance scenarios, the base-case design 

requires such a low temperatures that is not achievable using cooling water. This would show 

itself as saturation of the control valve of the condenser (i.e., fully open) and the loss of the 

valuable products from overhead stream.   

The difference between the two structures is less pronounced in the second and third 

columns. The optimized control structure of the second column uses the reflux/feed ratio 



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  161 

 

compared to the reflux flowrate in the base-case control structure. In addition, the 

temperature of a tray is controlled in the optimized control structure, but the reboiler 

temperature is controlled in the base case. A comparison of Figure 4.7b with Figure 4.8b 

demonstrates the superior performance of the optimized control structure because the product 

is withdrawn from the column overhead and this part of column is less affected by 

disturbances in the optimized control structure. The control structures of the last column only 

differ in the number of the temperature tray and both control structures address the 

disturbances very well.  

The values of the objective functions of the base-case control structure are compared to the 

optimized control structure in Table 4.7. In all objectives, the optimized control structure 

performs better. However, the optimized control structure manipulates the input variables 

more.  

4.7.2. Sensitivity analyses 

In this research, two sets of sensitivity analyses were performed, as discussed in the 

following. The first set of sensitivity analyses was with respect to the 5% disturbance 

scenarios. The second set of sensitivity analyses was with respect to the 10% and 20% 

disturbance scenarios. 

4.7.2.1. Sensitivity analyses with respect to the 5% disturbance 

scenarios  

It was explained earlier that the optimizer chose to fix a manipulated variable (i.e., the reflux 

flowrate) in the last column. In the first sensitivity analysis, the option of the reflux flowrate 

was excluded and the control structure was re-optimized. Table 4.8 shows that the solution of 

re-optimization was very similar as the ratio of the reflux flowrate to the feed flowrate was 

selected in the new optimization. The temperature tray also has moved down to the fifth tray. 

The values of the objective functions are slightly larger, but acceptable. The other sensitivity 

analyses were to move only the temperature controlled variables, one tray up and down. The 

results are reported in Table 4.7, which suggest that the solution is not very sensitive. In all 

these sensitivity analyses, the values of the multi-objective function remained acceptably in 

the 5% vicinity of the optimal solution. Furthermore, all the new solutions showed significant 

improvements over the base-case control structure. The temperature profiles of these analyses 

were very similar to figures 4.8 and are not shown in this thesis. 
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4.7.2.2. Sensitivity analyses with respect to the 10% and 20% 

disturbance scenarios  

In the second part of the sensitivity analyses, the optimization was performed with respect to 

the 10% and 20% disturbance scenarios. The results of these analyses are reported in Tables 

4.7 and 4.8, and are shown graphically in Figures 4.9 and 4.10. A comparison between the 

objective values of these scenarios with the previous results (i.e., with respect to the 5% 

disturbance scenarios) suggests that the economic objective function has strong functionality 

of the disturbances. In addition, the manipulated variables are varied more to reject the larger 

disturbances. Likewise, the variations in the intermediate states (chosen to be the column 

temperature profiles) are significantly more in these scenarios, as shown in Figures 4.9 and 

4.10. However, Table 4.7 suggests that the optimizer was successful in controlling the quality 

of the products in terms of the average molecular weights and densities.  

Table 4.8 shows that the control structures of the first column are the same in the 5% and 

10% disturbance scenarios. However, the temperature trays in the second and third columns 

have changed slightly. The changes in the optimal control structure with respect to the 20% 

disturbance scenarios are more significant and most of the temperature trays are moved a few 

trays away. The most sensitive controlled variable is the temperature tray in the second 

column and as can be seen from Table 4.8, this temperature tray has moved more than others, 

when the system encountered larger disturbances. However, the product of this column is 

extracted from the top, and as shown in Figures 4.8b, 4.9b and 4.10b, the top part of the 

column is controlled tightly in all scenarios. In summary, these observations suggest that the 

optimal control structures and their corresponding profitability strongly depend on the 

considered disturbance scenarios.  

4.8. Conclusion 

This chapter presented a new optimization framework for optimal selection of control 

structures. It makes use of the notions of perfect control and inversion of the process model. 

The advantage of this optimization framework is that it postpones the design of controllers 

and reduces the size of the problem significantly, thus the proposed methodology is scalable 

and practical for larger industrial cases. The proposed framework decomposes the problem 

into two subproblems. One subproblem concerns steady-state control structure. The other 

subproblem addresses the design of inventory control systems.  
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The proposed optimization framework was demonstrated for a distillation train. The 

optimization framework was programmed using simulation-optimization. The optimization 

variables and constraints were presented and the applied software tools were explained. The 

results showed a very good trade-off between the objectives. The comparisons of the 

optimized and the base-case control structures showed that the optimized control structure 

performed better in terms of profitability and control objectives. Finally, the results of 

sensitivity analyses suggested that the optimal control structure and its profitability strongly 

depend on the considered disturbance scenarios.  
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Chapter 5 | Integrated design and control using a 

steady-state inversely controlled process 

model 

5.1. Introduction 

The current industrial practice is to design a chemical process and its control system in 

sequence. However, the sequential approach is unfortunate because when the process design 

is fixed, there is little room left to improve the control performance. Therefore, design and 

control should be integrated. Nevertheless, the integrated problem is highly complex.  

This chapter extends the method of the last chapter by applying the proposed steady-state 

optimization framework for integrated design and control. In the new framework, the 

complexities associated with controllers are removed from the problem formulation, but the 

process and its control structure are still optimized simultaneously.  

5 
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The problem statement and the mathematical formulation of the proposed framework were 

presented in Chapter 3. In the subsequent sections, firstly similar to the last chapter, a goal-

driven multi-objective function is proposed in order to establish the trade-off between process 

and control objectives. Similarly, it is also discussed that inventory control systems do not 

appear in a steady-state model and should be addressed separately. Then, the proposed 

optimization framework is demonstrated for an ETBE reactive distillation column. The 

process description is presented. In addition, the optimization variables and constraints are 

discussed. Optimization programming and the employed software tools are explained and the 

results are presented and discussed. As will be seen, the proposed optimization framework is 

successful in establishing the trade-off between control and process objectives.  

5.2. Multi-objective function and goal programming 

As discussed earlier, the problem of integrated design and control involves competing and 

conflicting objectives which require multi-criteria decision-making. In this section, a goal 

programming multi-objective function is proposed for integrated design and control. The 

implications of the objective functions are explained and the choices of the target values for 

these objectives are justified.  

The objective functions proposed for the case study of this chapter are shown in Table 5.1. 

They are similar to the objectives considered in the last chapter (Table 4.1), as discussed in 

the following.  

 

Table 5.1. 

Objective functions for steady-state integrated design and control 

     = the deviations in the quality and quantity of products 

     = the deviations in the manipulated variables 

     = the deviations in the state variables  

     = the economic losses due to disturbances 

 

The first objective,      , concerns the quality and quantity of products that are inferentially 

controlled. The second objective,     , concerns the movements of manipulated variables. 

Excessive and frequent changes in manipulated variables are not desirable because they may 

invoke interactions between control loops and exhaust control valves. The third 

objective,     , concerns the intermediate state variables, in order to make them insensitive 
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to disturbances. The fourth objective,     , ensures that the economic losses associated with 

disturbances will be minimized. The instances of the proposed objective functions for the 

case of an ETBE reactive distillation will be discussed later in this chapter. 

The difficulty associated with multi-objective optimization of integrated design and control is 

that the different economic and control performance objectives are incommensurable, i.e. it is 

difficult to aggregate their values as a single objective value. This chapter applies the goal 

programming method, as discussed earlier in Chapter 2.  

In goal programming, each objective function is given a goal or target value. The deviations 

from these target values are used to construct an aggregated objective value as follows: 

   (
 

 
∑   (           

      )

 

   

        {  (           
      )})    

                                                                                                                                          

where   is the index of disturbances.    is the weighting factor of each objective function. 

This is because, the four objective functions of Table 5.1 are not equally important, and a 

higher weight should be given to the first and fourth objectives. The actual values of     

depends on the problem and sometimes it is needed to retune them during the optimization. 

Goal programming of the first three objectives in Table 5.1 pose no difficulty because ideally 

the deviations in the quality and quantity of products, the changes in manipulated variables 

and the deviations in the state variables must be minimized toward zero. These targets will 

ensure tight control of the process. However, for the fourth objective in Table 5.1, 

minimizing the economic losses from a nominal operational point does not necessarily ensure 

optimal profitability. The reason is that in an integrated design and control framework, the 

nominal operating point is to be optimized itself. This suggests that a target is needed for 

optimal profitability. This target can be determined by maximizing 

                          , as will be explained later. The deviations of all objective 

functions from their target values are minimized toward zero: 

             
                                                                                                      

Then, the expected value of the aggregated objective values for different disturbance 

scenarios must be minimized. In this research, it is assumed that the disturbances are known 

in advance. This expected value can be constructed by summing up the objective values 

weighted by the likelihood of each disturbance scenario,    , (Sahinidis, 2004): 
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The notation Problem 2.stst.gp refers to the steady-state formulation of the proposed 

integrated design and control framework using a goal driven multi-objective function. Other 

mathematical notations were explained in Chapter 3. Addressing Problem 2.stst.gp, using 

simulation-optimization programming will be demonstrated for a reactive distillation column, 

later in this chapter. 

5.3. Engineering insights and heuristics: dynamic degrees of 

freedom and design of inventory control systems 

In the last chapter, it was explained that since dynamic degrees of freedom do not appear in a 

steady-state model, design of inventory control systems is not included in the proposed 

steady-state optimization framework and need to be considered separately. The task of 

designing inventory control systems can be addressed using heuristics and engineering 

insights developed over the decades of engineering practice. The implications of dynamic 

degrees of freedom for the case of the reactive distillation column are discussed later in this 

chapter. 
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5.4. Case study: Integrated design and control of an ETBE 

reactive distillation column 

Reactive distillations are the leading technologies for process intensification. The application 

of these processes is motivated by significant reductions in the required capital and operating 

costs compared to the conventional reaction-separation processes. Furthermore, reactive 

distillations have significant advantages when conversion is thermodynamically limited by 

chemical equilibrium. The reason is that continuous removal of the products drives the 

overall conversion to completion. Other benefits include reduced downstream processing and 

higher energy efficiency due to utilization of reaction heat for evaporation of the liquid phase, 

(Sharma, 2010).  

To date, a variety of methods for process design and control of reactive distillations has been 

proposed, which can be classified mainly into two categories, i.e., they have either a 

sequential approach or an integrated approach.  

In the first category, sequential approach, the process is designed first, and then its control 

structure and controllers are decided. Similar to non-reactive distillation columns, several 

research activities have focused on developing graphical tools and short-cut methods in order 

to decide the number of stages in different sections of a reactive distillation column, optimal 

feed tray, and reflux ratio, (Barbosa and Doherty, 1988; Dragomir and Jobson, 2005; Carrera-

 odr guez, et al. 2011). These methods assume equilibrium conditions and mostly concern 

single-feed columns.  

A more rigorous approach, however, is based on optimization. Cardoso, et al. (2000) 

proposed a variant of simulated annealing (SA) algorithm for optimization of an ethylene 

glycol reactive distillation. Jackson and Grossmann (2001) proposed a method based on 

disjunctive programming for two case studies: metathesis reaction of 2-pentene and 

production of ethylene glycol. Disjunctive programming provides a unique logic-based 

formulation of the problem, which can be translated to an MINLP formulation using several 

methods (e.g., big M or variable disaggregation) with different implications for convexity of 

the problem formulation, (see also Biegler, et al. 1997).  

Lee, et al. (2010) studied heat integration of hydrolysis of methyl acetate. They concluded 

that a multi-effect distillation (in which feed is split between two smaller reactive distillation 

columns with different pressures) improves process economy compared to a design without 
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heat integration, while the internally integrated design is less attractive due to high costs of 

compression.  

Ramzan, et al. (2010) studied steady-state multiplicity of an ETBE reactive distillation using 

simulation and a lab-scale fixed bed column. They used steady-state analysis to identify input 

and output multiplicities and the optimal operating region.  

Sneesby, et al. (1999) studied the design of a nine-tray single-feed ETBE reactive distillation 

column. They assumed equilibrium reactions for each tray. Later, Al-Arfaj and Luyben 

(2002) and Luyben and Yu (2008) extended the case study of Sneesby, et al. (1999) by 

considering a double-feed configuration, and modelling the reaction kinetics. They studied 

the dynamic performances of several control structures in the presence of different 

disturbances.  

Researchers have reported difficulties in finding constant tuning parameters of proportional 

integral controllers for controlling ETBE reactive distillation columns. Sneesby, et al. (2000) 

proposed a multi-objective controller which allows online tracking of different operational 

modes (the constraints on the purity of the products or the constraints on the reaction 

conversion). Researchers have also proposed a model gain-scheduling controller (Bisowarno, 

et al. 2003) and a pattern-based predictive controller, (Tian, et al. 2003). Khaledi and Young 

(2005) studied the control of ETBE reactive distillation using a 2×2 model predictive 

controller. The purity of the product and conversion were being controlled. They assumed 

chemical equilibrium conditions. All the above methods are examples of the sequential 

approach in which firstly, the process is designed and then, its control structure and 

controllers are designed.  

Recently, a new approach, integrated design and control, has gained the interests of 

researchers. Georgiadis, et al. (2002) applied dynamic optimization for an MTBE reactive 

distillation. They compared sequential and integrated approaches and demonstrated strong 

interactions between process design and control. Panjwani, et al. (2005) considered integrated 

design and control of an ethyl acetate reactive distillation column. They developed two 

superstructures; a superstructure for the process, which determines the optimal process 

design, and a superstructure for the control design, in which control structure and tuning 

parameters of proportional integral (PI) controllers were optimized. Miranda, et al. (2008) 

proposed dynamic optimization of an ETBE reactive distillation column. They considered 

only continuous variables. They took an optimal control approach in which instead of 
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considering controllers, the (open loop) time trajectories of manipulated variables were 

optimized in order to reject disturbances. Although their proposed method ensures that 

process constraints are not violated during transient condition, selection of the control 

structure and designing the controllers were not included in their formulation.  

In this chapter, the proposed optimization framework for integrated design and control using 

a steady-state inversely controlled process model is applied to the case of an ETBE reactive 

distillation column. In the subsequent sections, firstly the process description is presented. 

Then. the optimization variables and constraints are explained and the instances of the goal 

programming objectives and their target values for the case of an ETBE reactive distillation 

column are discussed. Later, the implemented software tools for simulation-optimization are 

explained. In this case study, a comparison is also made between the modelling approaches 

based on the kinetic correlations and assuming chemical equilibrium conditions. That part of 

the study will take the opportunity to sort out a problem identified by other authors (Al-Arfaj 

and Luyben 2002) for the sake of completeness. Finally, the results are presented and 

discussed. 

5.4.1.  Process description  

There is an increasing demand for Ethyl Tert-Butyl Ether (ETBE), as a gasoline oxygenate 

and octane enhancer, and it is replacing Methyl Tert-Butyl Ether (MTBE) due to 

environmental concerns of the latter. In addition, ETBE is produced from reaction of 

isobutene and ethanol, and hence is semi-renewable: 

                                                                                           

This reaction is equilibrium limited (only       at     ) and the application of reactive 

distillations offers significant advantages because continuous removal of the product drives 

the overall conversion to completion, (Al-Arfaj and Luyben, 2002). The process flow 

diagram of an ETBE reactive distillation column is shown in Figure 5.1. The C4s feed stream 

is a mixture of isobutene and n-butene. N-butene is an inert and does not participate in the 

reaction. The distillate is mainly n-butene and the bottom stream is mainly ETBE. If the 

reactants are not fed according to the stoichiometry of the reaction, the excess ethanol leaves 

the column in the bottom stream.  
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Figure 5.1. Process flow diagram of ETBE 

reactive distillation column. 

 

Figure 5.2. The manipulated variables in an ETBE 

reactive distillation shown by control valves 

5.4.2. Optimization constraints  

Optimization constraints can be classified into the constraints regarding (1) degrees of 

freedom, (2) disturbance scenarios, (3) perfect control, and (4) first principles modelling. 

These constraints are discussed in the following.  

5.4.2.1. Available degrees of freedom and the implications of inventory 

control systems 

In Chapter 2, based on the flowsheet-oriented method of Konda, et al. (2006), it was 

explained that a distillation column with total reflux has six degrees of freedom. In ETBE 

reactive distillation column, there are two feed streams, and the control degree of freedom is:  

                                                                                                                       

However, one of these degrees of freedom is consumed by the C4s feed which is the 

throughput manipulation point, and is dictated by the upstream process. Therefore, the 

remaining control degree of freedom is six. These degrees of freedom are shown by control 

valves in Figure 5.2. 
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It was explained earlier that the application of a steady-state inversely controlled process 

model decomposes the subproblem of control structure selection into two smaller sub-

problems. One sub-problem concerns inventory control systems, and the other sub-problem is 

addressed using steady-state optimization. The aim of the following analysis is to establish 

the available degrees of freedom for the steady-state optimization. 

There are three material inventories, i.e., two liquid inventories at the column ends, in 

addition to the column vapour inventory. These inventories consume three degrees of 

freedom. The engineering practice is to control the column pressure (representing the vapour 

inventory) using the cooling duty of the condenser. The overhead liquid inventory can be 

controlled using either the reflux flowrate or the distillate flowrate. The bottom liquid 

inventory can be controlled using either the reboiler duty or the bottom flowrate. In order to 

incorporate these insights into the proposed optimization framework, the following 

constraints are considered: 

                                                                                                                                       

                                                                                                                                       

where,             are the structural variables for selection of distillation flowrate, reflux 

flowrate, boil-up flowrate, and bottom rate as the manipulated variables, respectively.   

5.4.2.2. Constraints regarding disturbance scenarios  

In this research, it is assumed that disturbances are known in advance. The C4s feed stream to 

the ETBE reactive distillation column is the source of disturbances. As mentioned by Al-

Arfaj and Luyben (2002), it is less likely to have control over the flowrate or composition of 

the C4s feed. However, the ethanol feed is delivered from storage and its flowrate can be 

adjusted as a manipulated variable.  

The C4s feed is a mixture of isobutene and n-butene. Luyben and Yu, (2008) considered two 

disturbance scenarios, 1) changes in the flowrate or 2) changes in the composition. They 

mentioned that the latter is a more difficult scenario. In the present case study, both 

disturbances in the flowrate of the C4s feed and its composition are considered 

simultaneously. In each disturbance scenario, the mass flowrate of each of the components in 

the feed stream is changed by     . The combinations of these changes result in nine 

disturbance scenarios which represent the operational conditions (Table 5.2). These 

disturbance scenarios are equally likely. 
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Table 5.2.  

Disturbance scenarios:      changes in molar fractions of isobutene and n-butene   

Disturbance 

Scenario 

Isobutene (molar 

fraction) 

Isobutene 

(kmol.h-1) 

N-butene  (molar 

fraction) 

N-butene  

(kmol.h-1) 

1st 0.9 636.12 0.9 954.18 

2nd 0.9 636.12 1 1060.20 

3th 0.9 636.12 1.1 1166.22 

4th 1 706.80 0.9 954.180 

5th 1 706.80 1 1060.20 

6th 1 706.80 1.1 1166.22 

7th 1.1 777.48 0.9 954.18 

8th 1.1 777.48 1 1060.20 

9th 1.1 777.48 1.1 1166.22 

 

5.4.2.3. Constraints regarding perfect control 

The proposed integrated design and control framework, Problem 2.stst.gp, includes two sets 

of perfect control equality constraints for selection of controlled and manipulated variables: 

                                                                                                                             

                                                                                                                  

                                                                                                                         

      and       are binary variables, which indicate whether a controlled variable or a 

manipulated variable is selected respectively.      ensures that the selected controlled 

variables and manipulated variables are consistent. 

Here, two strategies are possible in order to satisfy these constraints. One is to meet these 

constraints in each iteration of optimization. This strategy was chosen in the last chapter. An 

alternative strategy is to relax the perfect control constraints during the optimization and the 

objective function of                   is penalized according to the violations of these 

constraints as follows: 
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In above,     is the number of disturbance scenarios,     is the number of the selected 

controlled variables and     is the number of the selected manipulated variables. In this case 

study, the above penalty function was implemented by the sortrows command of MATLAB
®

. 

This command sorted the candidate controlled and manipulated variables according to the 

violations of their corresponding constraints. Then, the three candidates (because      ) 

with the minimum constraint violations were selected and the value of the penalty function 

was calculated according to them. By convergence of the optimization algorithm, the penalty 

function will approach to zero. The weighting factors of the penalty function were gradually 

and iterative increased until the variation in the selected controlled variables felt below 0.01 

K for the temperature controlled variables and below 1 kg.h
-1

 for the flow controlled 

variables. The implication is that three perfect control constraints are satisfied by equation 5-

7a. These constraints correspond to the selected manipulated and controlled variables.  

In the new formulation, unlike the formulation of the last chapter, the choices of the 

simulation specifications are not limited to the selected controlled and manipulated variables. 

This formulation is advantageous especially when the convergence of the inversely controlled 

process model is poor or the total number of candidate controlled and manipulated variables 

is large. The reason is that in the new formulation, these variables appear in the objective 

function, while in the formulation of the last chapter, an optimization variable should be 

considered for each candidate controlled or manipulated variable and the size of the 

optimization problem grew sharply. Table 5.3 lists the candidate controlled and manipulated 

variables for the case of an ETBE distillation column. In Table 5.3, the notations         

represent reflux, distillate, boil-up and bottom streams respectively. The notation 

   represents the temperature of the tray   and    refers to the heat duty of the reboiler.  
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Table 5.3. 

Candidate controlled and manipulated variables for the ETBE reactive distillation according to 

equations (5-6a, b). 

Candidate variables to be selected as controlled 

variables (   equation 5-6a) 

                

 

 
 
 

 
 
 

 
 

 

    
 

 

     
  

 

 
 
 

 
 

 

    
 

 

     
  

 

 
 

 

    
 

 

     
 

Candidate variables to be selected as manipulated 

variables (   in equation 5-6b) 

           

 

5.4.2.4. Constraints regarding first principles modelling  

The first principles modelling was perform using Aspen Plus
® 

and according to the guidelines 

by Luyben and Yu, (2008). The components were defined from the Aspen databank. The 

UNIFAC property package was used for liquid phase analysis and the Peng-Robinson 

property package was applied for vapour phase analysis. The Radfrac distillation model with 

total reflux was used and the option for the solver was set to strongly non-ideal liquid. The 

underlying equations of these models (i.e., Radfrac, Peng-Robinson, UNIFAC) can be found 

in Aspen-Plus document, (2009a,b). 

Since the kinetic correlations (Al-Arfaj and Luyben, 2002; Luyben and Yu, 2008) include 

activity terms, it is not possible to use default forms, and the kinetic correlations were given 

to software using a Fortran subroutine. Luyben and Yu, (2008) provided the original 

FORTRAN code. Unfortunately, due to the changes in the way that Aspen Plus uses the 

memory, that code is outdated for Aspen Plus 2006 and later versions. The updated code, 

based on the guidelines from Solution (121621) by AspenTech support website, is provided 

in Appendix A. More detail about applied simulation-optimization programming will be 

presented later in this chapter.  
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5.4.3. Optimization variables 

Optimization variables are listed in Table 5.4. They can be classified into 1) process 

parametric variables, 2) process structural variables, 3) control parametric variables, and 4) 

control structural variables. The numbers of the stages in each distillation section and the 

stage of the feeds are the process structural variables. The amount of the catalyst on each 

stage and the column pressure are process parametric variables. As will be discussed later in 

this chapter, due to difficulties with convergence of the solver, two new sets of optimization 

variables are introduced. They are      which represents the molar ratio of the ethanol feed 

flowrate to the bottom product flowrate, and      which represents the molar ratio of the 

ethanol feed flowrate to the isobutene flowrate in the C4s feed. Therefore, the control 

parametric variables are reflux ratios,      and     . The control structural decisions are not 

shown in Table 5.4. They are implied in the penalty functions 5-5a, b. By convergence of the 

optimization algorithm, the values of three terms (equal to the number of steady-state degrees 

of freedom) in this penalty function will be very close to zero. These three terms correspond 

to three variables in Table 5.3 and determine which three candidate controlled or manipulated 

variables are selected. The process structural and parametric variables, as well as the control 

structural variables are the same for all disturbance scenarios. The control parametric 

variables are different for each disturbance scenario and are subscripted by the corresponding 

disturbance scenario,   in Table 5.4. 
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Table 5.4.  

Optimization variables;      represents the ratio   
         

             for disturbance 

scenario  .      represents the ratio   
               

               for disturbance scenario  . 

Optimization variable Description Optimization variable Description 

Number of rectifying 

stages* 

Process structural 

variable 
                 Control parametric 

variable 

Number of reactive 

stages 

Process structural 

variable 
                 Control parametric 

variable 

Number of stripping 

stages 

Process structural 

variable 
                 Control parametric 

variable 

ethanol feed stage Process structural 

variable 
                 Control parametric 

variable 

C4s feed stage Process structural 

variable 
                 Control parametric 

variable 

Column Pressure (atm) Process parametric 

variable 
                 Control parametric 

variable 

Catalyst hold-up (kg) Process parametric 

variable 
                 Control parametric 

variable 

       Control parametric 

variable 
                 Control parametric 

variable 

       Control parametric 

variable 
       Control parametric 

variable 

       Control parametric 

variable 
       Control parametric 

variable 

       Control parametric 

variable 
       Parametric control 

variable 

       Control parametric 

variable 
       Control parametric 

variable 

       Control parametric 

variable 
       Control parametric 

variable 

       Control parametric 

variable 
       Control parametric 

variable 

       Control parametric 

variable 
       Control parametric 

variable 

       Control parametric 

variable 
       Control parametric 

variable 

                 Control parametric 

variable 
       Control parametric 

variable 

* In this Chapter, the first stage is condenser, and the last stage is reboiler. For example, the thirteenth stage is 

the twelfth tray. 

 



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  178 

 

5.4.4. Multi-objective function for integrated design and control of an 

ETBE reactive distillation column 
Section 5.2 explained goal programming for multi-objective optimization of integrated design 

and control. This section explains the instances of the objective functions in Table 5.1 for the 

ETBE reactive distillation column. All these objectives are measured in terms of their 

deviations from their target values due to disturbance scenarios, which should ideally be zero.  

The instances of the first objective are the purity of the ETBE (bottom) product stream (99% 

mass fraction of ETBE) and the purity of the overhead product stream (less than 2% mass 

fraction of isobutene). The target of 99% was chosen for ETBE in order to ensure that the 

solution will have at least the purity of 98% for all disturbances and the product will be 

marketable.  

There are six manipulated variables in the ETBE reactive distillation, as shown in Figure 5.2. 

Since in this case study, disturbances included the changes in the feed flowrate, three of these 

manipulated variables (i.e., the ethanol feed, the overhead product and the bottom product) 

must change to be consistent with the stoichiometry of the reaction and hence their changes 

are necessary for perfect control and are not penalized. Therefore, the variations of the 

remaining manipulated variables, (i.e., the reboiler and condenser duties and the reflux 

flowrate) are the instances of the second objective function.  

The variations in the composition of all four components (i.e., isobutene, n-butene, ethanol, 

and ETBE) all through the distillation column are the instances of the third objective.  

As mentioned earlier, in order to generate a goal for the economic objective, 

                         was maximized in advance: 

                                                                                 

                                                                        

                                                                                                                              

The economic losses are defined as the decrease in                              

        . Therefore, the decrease in                     compared to        is the 

instance of the fourth objective value in Table 5.1.  

In order to evaluate        , an initial optimization was performed. In this optimization, the 

economic objective function (5-8a) was maximized. This optimization was performed with 
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respect to the nine disturbances in Table 5.2. The results of this optimization showed that 

               $.yr
-1

. This optimization does not consider the second and third 

objectives of Table 5.1. Therefore, a comparison of this optimization and the main 

optimization can demonstrate the effects of the second and third objectives, as will be 

discussed in the results. 

The aim of the above optimization was to generate a target for the fourth objective function 

(Table 5.1) in the main optimization framework. However, during the main optimization, the 

author noticed that this target is not strong enough and economic losses, due to disturbances, 

are unreasonable. Furthermore, as discussed in Chapter 2, optimistic targets for goals are 

preferred to the pessimistic targets, because the later may result in an inferior solution. In 

addition, the case study has a nonlinear and nonconvex formulation which increases the 

likelihood of a local solution. For these reasons, the target value of the fourth objective was 

set optimistically to the value of         $.yr
-1

 which gave a higher priority to the 

economic objective and enhanced the likelihood of achieving a Pareto optimal solution.  

The values of   , the weighting factors of the goal programming objective function (5-1) 

were selected to be       ,     ,       ,       for            in Table 5.1.  

Table 5.5 lists the economic parameters and the sizing correlations used in this case study. 

Required information for the prices of the products, utilities and feedstocks were from ICIS 

pricing (2011), Ulrich (2006) and Al-Arfaj and Luyben (2002). The required capital costs 

were calculated by sizing the distillation column and its heat exchangers. The required energy 

costs were calculated from the heating and cooling duties of the reactive distillation column. 

The reference year was 2010, and prices from Ulrich, (2006) and Al-Arfaj and Luyben, 

(2002) were updated using Chemical Engineering Plant Cost Index (CE PCI) and Marshall & 

Swift Equipment Cost Index (M&S ECI) from Chemical Engineering magazine, (2011).  

Different disturbances require different operating and capital costs. Since the disturbances are 

assumed equally likely, the average of the operating costs are considered. However, because 

equipment should remain operable at all disturbances, the highest capital costs are 

considered.  
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Table 5.5. 

Economic data for calculating Total Annual Profit (Equations 5-8a and b) 

 
Economic 

parameters 
Reference 

C4 Feed ($.kmol-1) 29.65 
ICIS pricing 

(2011) 

ethanol  ($.kmol-1) 39.67 
ICIS pricing 

(2011) 

ETBE ($.kmol-1) 118.25 
ICIS pricing 

(2011) 

Amberlyst 15 (Catalyst) ($.kg-1) 10.16 
Al-Arfaj and 

Luyben  (2002) 

Low Pressure (LP) Steam (P=9.4 bar, T=451.7 

K) ($.kg-1) 
0.0019 Ulrich (2006) 

Cooling Water (P=7 bar, Tsupply=30 oC) 

($.m-3) 
0.0414 Ulrich (2006) 

 
Sizing correlations 

and parameters 
Reference 

Capital costs of heat exchangers (     in m2)              
Al-Arfaj and 

Luyben  (2002) 

Heat transfer coefficient (condenser) (kW.K-

1m-2) 
0.852 

Al-Arfaj and 

Luyben  (2002) 

Heat transfer coefficient (reboiler) 

 (kW.K-1m-2) 
0.568 

Al-Arfaj and 

Luyben  (2002) 

Capital cost of column Vessel  

([ ]=m; [ ]=m) 
                  

Al-Arfaj and 

Luyben  (2002) 

Payback period (years) 3 
Al-Arfaj and 

Luyben  (2002) 
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5.5. Implementation software tools  

In Chapter 2, it was discussed that the simulation program acts as the implicit constraints of 

optimization. In the case study of this chapter, simulation was performed using Aspen-Plus
®

 

and optimization was performed by Genetic Algorithm (GA) Toolbox of MATLAB. 

Unfortunately, due to technical difficulties it was not possible to link MATLAB
®

 directly to 

Aspen-Plus
®

. Therefore, MATLAB
®

 was firstly linked to Microsoft Excel VBA
®

 and then 

VBA
®

 was linked to Aspen-Plus
®

. All integrations were based on Microsoft COM
®

 

automation interface. The optimization algorithm was the Genetic Algorithm (GA) Toolbox 

of MATLAB. The GA’s settings were set to defaults. The details of optimization software 

can be found in the MATLAB documentation (2012). 

Figure 5.3 shows the information flow of simulation-optimization program. The left-hand 

side block and the right-hand side block are Genetic Algorithm (GA) Toolbox of MATLAB 

and Aspen-Plus
®

 simulator respectively. The middle block comprises of an m.file coded in 

MATLAB and an Excel VBA code, which integrates the two software tools.  

 

 

 
Figure 5.3. Information flow of the simulation-optimization programming. 

Setting the value of optimization variables 

The value of the 

multi--objective 

function

Imposing disturbance scenario 

The values

of the 

optimization 

variables

The required 

information for 

evaluating the 

objective functionsm.file

code 

Steady-state inversely 

controlled process model

(Aspen-Plus simulation)

Genetic  Algorithm

(MATLAB GA 

Toolbox)

VBA 

code 
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The steps in each optimization iteration are as follows: 

Step 1. The GA decides on the values of the optimization variables, (Table 5.4). 

Step 2. The integrating code receives the values of the optimization variables, and set them 

in the simulation program. 

Step 3. The integrating code evaluates the performance of the trial values of the 

optimization variables against the expected disturbance scenarios. These 

disturbances are imposed by changing the flowrate and the composition of the C4s 

feed, as described earlier. 

Step 4. For each disturbance scenario, the corresponding values of the objective functions 

(Table 5.1) are evaluated. Then, the aggregated value of the multi-objective 

function (5-1) is constructed and penalized by the penalty functions (5-7). Since 

the disturbances are assumed equally likely, the expected value of the aggregated 

objective values is their average value which is reported to the GA. 

Step 5. The GA evaluates the termination criteria and decides on improving the 

optimization variables. 

In each simulation run, a simulation file was opened, run, and closed without saving. Since 

nine disturbance scenarios were considered, for each function recall (i.e., one evaluation of 

the objective function) the simulation was run nine times. The required time for each function 

recall was 4-5 minutes, which in the problematic cases when the solver had problems with 

convergence was significantly more. Each generation of the optimization algorithm had 

twenty individuals, and the optimization needed up to fifty generations. Therefore, each 

optimization run needed about one week. In addition, in order to refine the penalty functions 

and weighting factors, the optimization procedure needed to be interrupted and/or reiterated a 

few times. The results should be reproducible if the same version of the solver (i.e., Aspen 

V7.1) with exactly the same specifications (reported in Section 5.4.2.4.) is used. However, 

the genetic algorithm as a stochastic optimization method does not construct any proof for 

global optimality of the solution.  
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5.6. Treatment of the convergence failure of the equation solver  
It was explained previously that the formulation of integrated design and control, using a 

steady-state inversely controlled process model, consists of algebraic equations (AEs), only. 

The AEs system is shown by inversely controlled process model (right hand-side inner block) 

in Figure 5.3 and was simulated using Aspen Plus
®

. If the values of a sufficient number of 

variables (equal to the difference between the number of unknown variables and the number 

of equations) for an AEs system are known, the values of the rest of the variables can be 

calculated. As discussed earlier, the advantage of including perfect control equations in the 

penalty functions (5-7) is that there is no need to consider an optimization variable for each 

candidate controlled or manipulated variable. Therefore, this formulation provides the 

opportunity to choose those simulation specifications which are more likely to ensure 

convergence of the simulation program, as discussed in the following.  

The author encountered difficulties in simulation-optimization of the case study as the 

simulation was frequently diverging. Failure of the simulator solver was also reported by 

Luyben and Yu, (2008), when they were investigating the effects of the design parameters: 

“Convergence issues and frequent Fortran system errors severely limited this investigation.” 

In the present study, the author’s observations suggested that there were two types of solver 

failures. Since the solver is principally a nonlinear equation solver, its success depends on a 

close starting point. Strategies such as setting the solver for the maximum possible iterations, 

or automated re-initialization of the solver greatly improved this type of failure. However, the 

second type of failure was be due to infeasible trial values for the optimization variables. 

Unfortunately, this type of failure is not informative and the solver does not inform the 

optimizer about the degree of infeasibility. One resolution is to cruelly penalize the objective 

function for simulation failure. The risk is that the optimizer may converge to an easy local 

optimum. In this study, two instances for the second type of failure were identified and 

resolved, as discussed in the following.  

The first instance was due to a reflux value that is not appropriate to remove products and 

introduce fresh feeds to the reactive stages. In that instance, reflux was changed by      , 

      and     . At the same time, a penalty value was added to the objective function. 

This strategy ensured that the value of the objective function reflected some fitness of the 

diverging solution, while the ultimate solution was feasible and converging.  
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The second instance of simulation failure was due to inconsistency with the reaction 

stoichiometry. Equation 5-3 suggests that for a kmol of isobutene in the feed, only a kmol of 

ethanol participate in the reaction and any extra ethanol would degrade the purity of the 

ETBE product. This analysis suggests that the value of      and      (in equations 5-7a, b 

below) should be tightly bounded around unity in order to maintain molar balance of the 

column:  

  
             

                                                                                                                

  
                   

                                                                                                     

where    
               is molar flowrate of isobutene in the C4s feed for disturbance  , 

  
            is the molar flowrate of the ethanol feed for disturbance  ,   

       is the molar 

flowrate of the bottom stream for disturbance  . In this research, the above constraints were 

added to the simulation-optimization framework.   
           and   

      , were selected as 

the column specifications, and their values were calculated using the trial values of      and 

     from the optimization algorithm. The bounds on these variables were            

           . This strategy ensured that eighteen optimization variables in Table 5.4 are 

almost near their optimal values and the solver would not diverge due to inconsistency with 

the reaction stoichiometry.  

In the present study, the application of the abovementioned strategies brought all simulations 

into convergence. In each iteration of the inner-loop simulation, the status of the solver was 

checked and the objective functions were only evaluated after simulation convergence. 
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5.7. Comparisons between modelling approaches based on 

kinetic correlations and the assumption of equilibrium 

reaction 

As mentioned earlier, researchers considered two approaches for modelling ETBE reactive 

distillation columns. These are modelling based on kinetic correlations (applied by Luyben 

and Yu, 2008; Bisowarno, et al. 2003; Miranda, et al. 2008) and modelling based on the 

assumption of chemical equilibrium (Sneesby 2000; Khaledi and Young, 2005). Since 

assuming chemical equilibrium implies that the residence time is large enough to maximize 

the conversion, it is expected that the results of the second modelling approach feature a 

higher overall conversion. However, Luyben and Yu (2008) (Page 236, top paragraph) 

reported an unexpected result when they compared the above two models. They reported that: 

 ―the conversion dropped to less than 50%, and the concentration of the both reactants in the 

entire reaction zone were quite high. We are at a loss to explain these results.‖ 

This study took the opportunity to sort out a problem identified by these authors for the sake 

of completeness. Fortunately, the updated code presented in Appendix A is able to provide 

the comparison accurately. The discussion of the comparison between the two modelling 

approaches will be provided later in Discussion Section. In this comparison, the number of 

rectifying stages was  ; the number of reactive stages was   ; the number of stripping stages 

was  ; the ethanol feed stage was  ; the C4s feed stage was   ; the reflux ratio was  ; the 

column pressure was     atm and the  pressure drop was      atm.tray
-1

; the catalyst holdup 

of each tray was      kg; the ethanol feed flowrate was     (kmol.h
-1

); the bottom product 

flowrate was     (kmol.h
-1

); the C4s feed consisted of       (kmol.h
-1

) isobutene and 

       (kmol.h
-1

) n-butene. The calculation of the equilibrium reaction was based on 

minimization of Gibbs free energies.  
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5.8. Results of the case study 

This section reports the results. They are: 

The abovementioned figures and tables are explained in Discussion Section. 

 

Table 5.6. 

The value of objective functions 

 Average purity of the 

ETBE product (mass 

fraction) 

Average 

changes in 

manipulated 

variables 

Average changes in 

intermediate 

compositions 

                         

[$.yr-1] 

Proposed 

optimization 

framework 

0.9866 4.37% 13.52% 2.864×108 

    

maximization 

0.9878 6.14% 16.11% 2.9×108 

 

  

 Table 5.6 reports the optimal values of the objective functions.  

 Table 5.7 reports the optimal values of the structural and parametric process and control 

variables.  

 Table 5.8 reports the results of optimization of                        .  

 Figure 5.4 presents the optimized process and control structures. 

 Figures 5.5a, b, c, d and e present the results of the proposed optimization framework. 

These are the profiles of the temperature, ETBE, ethanol, isobutene, and n-butene 

composition respectively. Each figure presents the profiles corresponding to the nine 

disturbance scenarios, shown in Table 5.2.  

 Figures 5.6a, b, c, d and e present the results of maximization of 

                         . These are the profiles of the temperature, ETBE, ethanol, 

isobutene, and n-butene composition respectively. Each figure presents the profiles 

corresponding to the nine disturbance scenarios, shown in Table 5.2.  

 Figures 5.7a, b, c, d and e present the comparisons of the two modelling approaches 

based on the kinetic correlations and chemical equilibrium respectively. The method for 

this comparison was described in Section 5.7. These parts of the results are not a part of 

optimization.   
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Table 5.7.  

Optimal values of the optimization variables using the proposed optimization framework.  

Optimization variables Optimal value Optimization variables Optimal value 

Number of rectifying stages 2                 [-] 6.88 

Number of reactive stages 16                 [-] 6.23 

Number of stripping stages 4                 [-] 6.35 

ethanol feed stage 7                 [-] 6.12 

C4s feed stage 20                 [-] 6.23 

Column Pressure (atm) 6.44                 [-] 5.75 

Catalyst hold-up (kg) 1078.5                 [-] 6.51 

                  [-] 6.51 

    
       (kmol.h-1) 626.81                 [-] 6.56 

    
       (kmol.h-1) 627.74     

             (kmol.h-1) 640.56 

    
       (kmol.h-1) 618.02     

             (kmol.h-1) 638.89 

    
       (kmol.h-1) 703.20     

             (kmol.h-1) 628.79 

    
       (kmol.h-1) 697.86     

             (kmol.h-1) 717.56 

    
       (kmol.h-1) 693.44     

             (kmol.h-1) 712.14 

    
       (kmol.h-1) 776.78     

             (kmol.h-1) 706.78 

    
       (kmol.h-1) 765.24     

             (kmol.h-1) 787.83 

    
       (kmol.h-1) 755.13     

             (kmol.h-1) 780.91 

      
             (kmol.h-1) 771.18 

Controlled variable (1) Stage 2 

temperature 

Setpoint (1) (K) 332.8 

Controlled variable (2) Stage 13 

temperature 

Setpoint (2) (K) 335.6 

Controlled variable (3) The ratio of 

ethanol feed and 

ETBE product 

Setpoint (3)  

[-] = (kg.s-1).(kg.s-1)-1 

2.15 
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Table 5.8.  

Optimal values of the optimization variables for maximization of                           

discussed in Section  5.4.4.  

Optimization variables Optimal value Optimization variables Optimal value 

Number of rectifying stages 2                 [-] 5.6905 

Number of reactive stages 15                 [-] 4.5109 

Number of stripping stages 4                 [-] 5.0095 

ethanol feed stage 7                 [-] 4.7982 

C4s feed stage 17                 [-] 4.5517 

Column Pressure (atm) 6.75                 [-] 4.2993 

Catalyst hold-up (kg) 1101                 [-] 5.1610 

                  [-] 4.7358 

    
       (kmol.h-1) 623.41                 [-] 4.4798 

    
       (kmol.h-1) 621.02     

             (kmol.h-1) 630.98 

    
       (kmol.h-1) 620.94     

             (kmol.h-1) 628.56 

    
       (kmol.h-1) 697.94     

             (kmol.h-1) 628.49 

    
       (kmol.h-1) 702.69     

             (kmol.h-1) 700.34 

    
       (kmol.h-1) 690.17     

             (kmol.h-1) 709.22 

    
       (kmol.h-1) 771.78     

             (kmol.h-1) 698.32 

    
       (kmol.h-1) 771.34     

             (kmol.h-1) 781.16 

    
       (kmol.h-1) 770.68     

             (kmol.h-1) 780.71 

      
             (kmol.h-1) 771.98 
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Figure 5.4. Optimized process and control structures of the ETBE reactive distillation column 
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Figure 5.5a. Temperature profiles of the ETBE 

reactive distillation column for nine disturbance 

scenarios. This figure is the result of the proposed 

integrated design and control.  

Figure 5.5b. ETBE composition profiles of the 

ETBE reactive distillation column for nine 

disturbance scenarios. This figure is the result of 

the proposed integrated design and control. 

  

Figure 5.5c. Ethanol composition profiles of the 

ETBE reactive distillation column for nine 

disturbance scenarios. This figure is the result of 

the proposed integrated design and control. 

Figure 5.5d. Isobutene composition profiles of 

the ETBE reactive distillation column for nine 

disturbance scenarios. This figure is the result of 

the proposed integrated design and control. 

 

 

Figure 5.5e. N-butene composition profiles of the 

ETBE reactive distillation column for nine 

disturbance scenarios. This figure is the result of 

the proposed integrated design and control. 
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Figure 5.6a. Temperature profiles of the ETBE 

reactive distillation column for nine disturbance 

scenarios. This figure is the result of TAP 

maximization. 

 

Figure 5.6b. ETBE composition profiles of the 

ETBE reactive distillation column for nine 

disturbance scenarios. This figure is the result of 

TAP maximization. 

 

Figure 5.6c. Ethanol composition profiles of the 

ETBE reactive distillation column for nine 

disturbance scenarios. This figure is the result of 

TAP maximization. 

 

Figure 5.6d. Isobutene composition profiles of the 

ETBE reactive distillation column for nine 

disturbance scenarios. This figure is the result of 

TAP maximization. 

 

Figure 5.6e. N-butene composition profiles of the 

ETBE reactive distillation column for nine 

disturbance scenarios. This figure is the result of 

TAP maximization. 
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Figure 5.7a. The temperature profiles 

calculated based on the kinetic correlations 

(blue circles) and the equilibrium reaction 

assumption (red squares). 

Figure 5.7b. The composition profiles of ETBE 

calculated based on the kinetic correlations 

(blue circles) and the equilibrium reaction 

assumption (red squares). 

  

Figure 5.7c. The composition profiles of 

ethanol calculated based on the kinetic 

correlations (blue circles) and the equilibrium 

reaction assumption (red squares). 

Figure 5.7d. The composition profiles of 

isobutene calculated based on the kinetic 

correlations (blue circles) and the equilibrium 

reaction assumption (red squares). 

 

 

Figure 5.7e. The composition profiles of n-

butene calculated based on the kinetic 

correlations (blue circles) and the equilibrium 

reaction assumption (red squares). 
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5.9. Discussions 

This section presents the discussions of the optimization results and the comparisons between 

two modelling approaches based on the kinetic correlations and the assumption of chemical 

equilibrium.  

5.9.1. Discussion of the optimization results 

Table 5.6 reported the optimal values of the objective functions. It illustrates that a good 

trade-off is established between the different objective functions. The optimized process and 

its control structure were successful in maintaining the purity of the products while the 

economic losses are minimized. In addition, the changes in the manipulated variables are 

suppressed. Although the value of 13.5% is reported for the variations of the internal states, 

as shown in Figure 5.5c, most of these variations are related to ethanol and are limited to the 

area of C4s feed entrance where disturbances were imposed to the column. The rest of the 

process remains controlled tightly.  

Figure 5.4 presented the optimized process and control structural variables. In a double-feed 

reactive distillation, the common practice is to feed the heavy (i.e., ethanol) and the light 

reactants (i.e., isobutene) above and below the reactive section respectively (e.g., Figure 5.1). 

Then, as the heavy reactant travels to the bottom and the light reactant travels to the top, they 

react and are converted to the product. However, in the optimized process, the optimizer 

chose to expand the reactive section and to feed the heavy reactant in the middle of the 

reactive section. Therefore, the reactive trays above the light feed entrance are responsible for 

both separation and reaction and these two phenomena are highly integrated. In addition, the 

optimizer chose to feed the C4s in the stripping section. This decision has a stripping effect in 

that the light components (isobutene and n-butene) carry the heavy unreacted component 

(ethanol) back to the reactive section. As shown in Table 5.7, the optimizer also chose high 

reflux ratios. This decision implies increasing the liquid hold-ups in the overhead and bottom 

accumulators and on the trays. Therefore, the optimized reactive distillation column is 

insensitive to disturbances. 

The structural control decisions are to select (1) the temperature of the first tray, (2) the 

temperature of the twelve tray and (3) the ratio of the ethanol feed to the ETBE product as the 

controlled variables. The first two controlled variables are responsible for the quality of the 

ETBE and C4s products. Figures 5.5b, c, d and e show that the control structure was 
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successful in tightly controlling the compositions of the components. However, in addition to 

quality control, a controlled variable should ensure that the ethanol and the C4s feed are 

supplied according to the reaction stoichiometry (equation 5-3). For this requirement, Luyben 

and Yu, (2008) suggested a cascade control structure in which the ratio of the two feeds was 

controlled and a composition analyser calculates the setpoint of this ratio controller. In the 

present study, the optimizer chose an alternative control structure which does not need a 

composition analyser. In the optimized control structure, the ratio of the mass flowrates of the 

ethanol feed to the ETBE product is controlled. This structure is consistent with the 

stoichiometry, because in order to produce one kmol of the ETBE product, one kmol of the 

ethanol feed should be consumed. Therefore, for a desired purity of the ETBE product the 

ratio of the mass flowrates of the ethanol feed and the ETBE product remains almost 

constant. 

5.9.2. Discussion of                           maximization 

The aim of TAP maximization was to estimate the target of the fourth objective function in 

Table 5.1, which is economic. However, it is interesting to compare the result of this 

optimization with the result of the proposed integrated design and control framework.  

A comparison between Table 5.8 and 5.7 suggest that the main difference between the two 

design is that the result of the proposed integrated design and control framework has one 

more reactive tray and the feed entry is three trays lower. In the solution of integrated design 

and control, higher reflux ratios are applied to increase the holdup of the materials and make 

the process less sensitive to the disturbances. In addition, the comparisons between the 

compositions and temperature profiles of the two solutions (Figures 5.5 and 5.6) suggest that 

the integrated design and control was more successful in regulating the compositions and the 

temperature of the internal trays. This should be attributed to the third objective in Table 5.1. 

Furthermore, as shown in Table 5.6, the result of the proposed optimization framework varies 

the manipulated variables 29% less than the solution of TAP maximization. This suggests 

that the excessive variations of the manipulated variables can be constrained without 

compromising the control quality.  
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5.9.3. The results for the comparisons between modelling approaches 

based on the kinetic correlations and the assumption of chemical 

equilibrium 

Figures 5.6a- e provide the opportunity for the comparisons between modelling based on the 

kinetic correlations and modelling based on the assumption of chemical equilibrium. It is 

expected that the overall conversion will be higher for the chemical equilibrium assumption, 

because in this case it is assumed that the residence times are large enough that the reaction 

conversions are maximized.  

Figures 5.6b to e show that, for the same operating conditions, the purity of the products at 

the column ends are about 3% higher for the model based on chemical equilibrium. Since the 

reaction is exothermic and the model based on chemical equilibrium predicts higher 

conversions, the temperature profile of this model is also higher than the temperature profile 

of the model based on the kinetic correlations, as shown in Figure 5.6a. These observations 

suggest that simplifying the reaction model by assuming chemical equilibrium may result in 

too optimistic design decisions.  

5.10. Conclusion 

This chapter demonstrated the application of the proposed integrated design and control 

framework using a steady-state inversely controlled process model. This framework 

contributes to the aim of complexity reduction by removing controller design from the 

problem. Moreover, it ensures that the solution features steady-state operability. A multi-

objective function based on goal programming is applied to establish the trade-off between 

process and control objectives.  

The proposed optimization framework was demonstrated for the case of an ETBE reactive 

distillation column. The instances of the process and control objectives for this case study 

were explained and their target values were justified. The optimization constraints regarding 

first principles modelling, disturbances and perfect control equations were explained and the 

insights about the reaction stoichiometry were applied in order to improve the convergence of 

the simulator solver. The implementation software tools were also explained. 

The results demonstrated that the proposed optimization framework was able to establish a 

trade-off between the process and control objectives. The optimized solution addressed the 

disturbances efficiently while the economic losses were minimized. 
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Chapter 6 | Integrated design and control using a 

dynamic inversely controlled process 

model  

6.1. Introduction 

Ignoring the interactions between process design and process control may result in economic 

penalties as well as safety and environmental concerns. Therefore, it is recommended that 

design and control should be integrated.  

In Chapter 1, it was discussed that integrated design and control benefits, if controller design 

is separated from the problem formulation. With the aim of complexity reduction and based 

on the perfect control assumption, several optimization frameworks were developed in 

Chapter 3. In these frameworks, the combined controller-process model was replaced by an 

inversely controlled process model. The steady-state versions of the new optimization 

framework were applied in Chapters 4 and 5. The present chapter extends the steady-state 

methods of the last two chapters by applying a dynamic inversely controlled process model. 

In applying a steady-state inversely controlled process model, it was assumed that control is 

instantaneous and therefore, the effects of transient conditions were not considered. While a 

steady-state inversely controlled process model only ensures steady-state operability, more 

information can be gained as the proposed dynamic framework also ensures functional 

controllability. 

6 
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The problem statement and mathematical formulations of the proposed framework using a 

dynamic inversely controlled process model were presented in Chapters 1 and 3. In the 

subsequent sections, firstly, a multi-objective function is formulated. Then, the proposed 

optimization framework for integrated design and control is demonstrated for two heat-

integrated series reactors. The mathematical formulation of the original case study is 

presented and modified in order to construct the corresponding dynamic inversely controlled 

process model. Two solution strategies are applied for the optimization. They are dynamic 

optimization based on sequential integration and dynamic optimization base on full 

discretization. While the first solution strategy is more appropriate for problems with a small 

number of integer variables, in the second solution strategy, time-dependent variables are 

discretized and the problem formulation is translated into a mixed integer nonlinear 

formulation. Finally, the results are presented and discussed. 

6.2. Multi-objective function and weighting factors 

As suggested by other researchers (Luyben 2004; Alhammadi and Romagnoli 2004), the 

problem of integrated design and control involves competing and conflicting objectives. The 

concept of multi-criteria decision–making was discussed in Chapter 2. It was explained that 

the solutions of multi-objective optimization form a Pareto front which can be constructed by 

assigning weights,     , to different objectives, as follows: 

                                                                                            

where    is the aggregated objective value for disturbance  . In addition,  

                       and                        are the measures of the fitness of process 

and control designs respectively. Instances of these measures are given later in this chapter. 

In this research, it is assumed that the expected disturbance scenarios are known in advance 

and the stochastic optimization Problem 2.dyn is addressed as multi-period optimization. The 

value of the objective function is constructed by adding individual objective functions for 

different disturbance scenarios weighted by the likelihood of each disturbance scenario, 

(Sahinidis 2004).   

 {       ∑                                 

  

   

                                                                                      

where  {   represents the expected value of the objective function       and    is the 

likelihood of the disturbance scenario  .  
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6.3. Solution strategies for dynamic optimization 

The solution strategies for dynamic optimization were reviewed in Chapter 2. This section 

applies two parallel solution strategies to address Problem 2.dyn. The first solution strategy is 

based on sequential integration. This strategy is the classic method for dynamic optimization 

and is appropriate for problems with a small number of integer variables. The second solution 

strategy is based on full discretization of time-dependent variables. In this approach, the 

problem is transformed to mixed integer nonlinear optimization.  

6.3.1. Dynamic optimization based on the sequential integration 

strategy 

Sequential integration is the classic strategy for dynamic optimization. If the sequential 

integration strategy is applied to the conventional integrated design and control framework 

(Problem 1), then input variables,       are discretized by the parameters that determine the 

optimal time trajectories. However in the proposed optimization framework, due to process 

model inversion, the controlled variables,     , (outputs of the conventional problem) are 

discretized instead based on the desired setpoints, i.e.,            . Similarly, if a manipulated 

variable,    , is not selected, this variable is discretized using its nominal value,            . 

By these discretizations,               can be represented as the following nonlinear 

dynamic optimization problem: 

   ∑    (                                     )

  

   

                                                

subject to:                               

   ̇                                     

                                    

                                   

           

     (                 )    

         (                )    
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The notation Problem 2.dyn.si refers to the dynamic formulation of the proposed integrated 

design and control using the sequential integration strategy. In Problem 2.dyn.si, the 

optimization variables (i.e., the arguments of the objective function) are all time-independent. 

The structural variables (               ) are enumerated and the corresponding continuous 

optimization subproblems are solved by a nonlinear optimization solver in the outer loop and 

a differential algebraic equation (DAE) solver in the inner loop. 

Without loss of generality, it is assumed that Problem 2.dyn.si represents an index-1 DAE 

system (if not, then index reduction should be performed). The consistent initial conditions of 

this problem are calculated by solving the following set of algebraic equations which 

effectively represents the equivalent steady-state inversely controlled process model: 

 [ ̇                                       ]                                             

                                         

                                        

            

     (                  )    

         (                 )    

 (           )        

 ̇       

The last equation ensures that the initial state is steady. These equations are shown in the left-

hand block in the bottom of Figure 6.1 and are explained in the following.  

The concept is shown in Figure 6.1. In the sequential integration strategy, an embedded DAE 

solver provides objective function information to a nonlinear optimization solver. The 

integration of the DAE system must be initialized from a feasible steady-state condition. A 

steady-state inversely controlled process model (the lower left envelope in Figure 6.1) is used 

to determine the initial steady state for each disturbance scenario. The details of a steady-state 

inversely controlled process model were discussed in Chapter 3. If no feasible steady state 

can be found, the algebraic equation (AE) solver reports a failure to the nonlinear 

optimization algorithm in order to change the values of the optimization variables, either by 

reducing the step size or by adding an incremental random number to the current solution. 

The implication is that if the initial and/or final steady-states are not feasible for a trial 



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  200 

 

solution, it is inevitably functionally uncontrollable, and need not to be considered for further 

evaluations.     

The steps in each optimization iteration are as follows: 

Step 1. The nonlinear optimization algorithm specifies the values of the optimization 

variables. 

Step 2. The initial steady state is calculated by the algebraic equation solver (AE) using the 

steady-state inversely controlled process model. If the initial steady state is not 

feasible, return to Step 1. 

Step 3. The values of the initial steady state and optimization variables are delivered to the 

dynamic inversely controlled process model. The disturbances are imposed and 

the sequential integration gives the time trajectories for the manipulated variables 

and the remaining state variables. The values of the objective functions are 

calculated and reported to the optimizer.  

Step 4. Based on the values of the objective function and the violations of the constraints, 

the optimization algorithm makes decisions regarding termination of the 

optimization cycle or improving the values of the optimization variables. 

 
Figure 6.1. The sequential solution strategy for integrated design and control framework. 
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6.3.2. Dynamic optimization based on the full discretization strategy 

The second solution strategy is based on full discretization using the Radau collocation 

method. In the full discretization strategy, the time horizon is divided into    finite elements. 

The time-dependent differential and algebraic variables are discretized and the DAE system 

is solved at the collocation points. The continuity of the time trajectories across the element 

boundaries are enforced by introducing continuity equations. After full discretization, the 

mixed integer (nonlinear) dynamic optimization (MIDO) problem is transformed into a large 

mixed integer nonlinear programming (MINLP) problem. The Details of the full 

discretization strategy can be found in (Biegler 2010). The discretized version of Problem 

2.dyn is as follows: 

   ∑     (                                                       )

  

   

                  

Subject to:                                   

                              

                               

                              

          

     (             )    

         (            )    

                     

where                  and    are the collocation optimization variables. The notation 

Problem 2.dyn.fd refers to the dynamic formulation of the proposed integrated design and 

control framework based on the full discretization strategy. The other notations are similar to 

Problem 2.dyn and were explained in Chapter 3. In Problem 2.dyn.fd, the optimizer estimates 

the time trajectories of the time-dependent variables, by determining the optimal values of the 

collocation variables. In this solution strategy, the continuity equations in addition to the 

differential and algebraic equations at the initial steady state ensure consistent initialization of 

the integrated design and control framework. The model inversion is performed by including 

perfect control equations in the optimization constraints.  
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Table 6.1 compares the two solution strategies and summarizes the discussions. The 

sequential integration solution strategy is based on enumeration of the structural variables and 

is limited to the cases in which the number of alternative structural decisions is small. For 

instance, it was efficiently applied to the case study of Section 6.4, in which there are only 

three binary variables (eight alternative structures). However, full discretization solution 

strategy is significantly more powerful when the number of alternative structural decisions is 

large or the problem needs to be solved several times (e.g., for constructing a Pareto front). In 

this chapter, the full discretization strategy was applied to study the trade-off between 

different competing objectives in the multi-objective function (6-23).  

 

Table 6.1.  

Comparison of the characteristics of two solution strategies for dynamic optimization.  

Solution strategy Sequential integration Full discretization 

Intermediate optimization path Feasible  Infeasible  

Optimization variables Structural and parametric 

process variables, structural 

control variables, the nominal 

values of the manipulated 

variables which are not selected 

and the setpoints of controlled 

variables 

Structural and parametric process 

variables, structural control 

variables, the setpoints of 

controlled variables, the nominal 

values of the manipulated 

variables which are not selected 

and the collocation variables 

Number of optimization 

variables 

small  large 

Optimization algorithm  Each structure is enumerated as 

an NLP problem. The DAE 

solver provides the values of the 

objective function and 

constraint violations  to the NLP 

optimizer  

The dynamic optimization 

problem is discretized and 

translated to a large-scale MINLP 

problem.  

Method for model inversion Discretization of output 

(controlled) variables rather 

than input (manipulated) 

variables 

Adding perfect control constraints 

to the problem formulation 

Initialization method  Initial states are calculated using 

a steady-state inversely 

controlled process model. 

Continuity equations at initial 

points ensure consistent 

initialization 
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6.4. Case study for the conventional integrated design and 

control optimization framework  

Flores-Tlacuahuac and Biegler (2007) studied integrated design and control of two series 

reactors. The alternative process structures for these series reactors are shown in Figures 6.2a 

and b. The cooling media may flow in either co-current or counter-current configurations. 

Their study is an example of the conventional optimization framework for integrated design 

and control in which a combined process-controller model is optimized. The mathematical 

formulation of their study is presented in this section. In the next section, this mathematical 

formulation will be modified and adapted to the new optimization framework using a 

dynamic inversely controlled process model. In this chapter, any mention of the original case 

study refers to the work of Flores-Tlacuahuac and Biegler (2007). 

 

 

 

Figures 6.2. Different process structures: a) co-current heat exchange b) counter-current heat 

exchange. 

The process model of the two series reactors is presented by equations (6-3) to (6-12). The 

model of the controllers is presented by equations (6-13) to (6-16). The definitions of the 

variables and their values at the base-case design are reported in Table 6.2, from (Flores-

Tlacuahuac and Biegler 2007). The mass and energy balances for the first reactor are: 

   

  
 

     

  
                                                                                                                      

   

  
 

     

  
                                                                                                  

The energy balance for the cooling jacket of the first reactor is:  
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The mass and energy balances for the second reactor are:  

   

  
 

     

  
                                                                                                                      

   

  
 

     

  
                                                                                                  

The energy balance for the cooling jacket of the second reactor is:  

    

  
 

   
      

   
                                                                                                     

The parameters in equations (6-3) to (6-8) are: 

   
  

 
         

  

 
    

   

     
     

   

     
    

    
   

  
          

   

  
     

   

        
       

   

        
  

    
   

   
    

The following kinetic correlations represent the reaction rates: 

        
  

   
⁄                                                                                                                     

        
  

   
⁄                                                                                                                    

The decision regarding the process structure is represented by the binary variable    in the 

equations (6-11) and (6-12):  

   
         (    )                                                                                                        

   
         (    )                                                                                                        

{
                                                                  

                                                                
 

The equations for the controller model are: 
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The controller equations will be replaced in the new optimization framework by perfect 

control equations in Section 6.5.2. The tuning parameters of the controller,    and    , are 

optimization variables  in the conventional framework. Binary variable     selects between 

candidate manipulated variables, which are the flowrate of the cooling water,    , or the 

temperature of the feed,    . Binary variable     selects between the candidate controlled 

variables, which are the temperature of the first reactor,   , or the temperature of the second 

reactor,   . In the original case study presented by Flores-Tlacuahuac and Biegler (2007), the 

following objective function based on an integral-square-error measure, was applied:  

       
 

      
 ∫ (              )

 
   

      

 

                     {                                        

where   is the index of the selected controlled variable. 
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Table 6.2  

The parameters and the values of the variables at the base case scenario 

Parameter Description Value* Unit * Value SI Unit 

  Volumetric feed flowrate     L.s-1          m3.s-1 

   Feed stream temperature    
oC     K 

   Feed Stream concentration     mol.L-1     kmol.m-3 

   Volume of the first reactor     L     m3 

   Volume of the second 

reactor 
    L     m3 

   Cooling water flowrate   L.s-1        m3.s-1 

    Cooling water feed stream 

temperature 
   

oC     K 

    Volume of the cooling 

jacket of the first reactor 
    L     m3 

    Volume of the cooling 

jacket of the second 

reactor 

    L     m3 

  Activation energy      kcal.mol-1         J.kmol-1 

   Pre-exponential factor      s-1      s-1 

  Ideal gas constant         kcal.mol-1.K-1          J.kmol-1.K-1 

  Products density     g.L-1     kg.m-3 

   Product heat capacity          kcal.g-1.C-1        J.kg-1.C-1 

    Heat of reaction     kcal.mol-1           J.kmol-1 

   Cooling water density      g.L-1      kg.m-3 

    Cooling water heat 

capacity 
      kcal.g-1.C-1         J.kg-1.K-1 

  Heat transfer area     cm2      m2 

  Heat transfer coefficient         kcal.s-1.cm-2.C-1         J.s-1.m-2.K-1 

* Values by Flores-Tlacuahuac and Biegler (2007). 
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6.5. Application of the proposed integrated design and control 

framework using a dynamic inversely controlled process 

model 

This section applies the proposed integrated design and control framework to the case study. 

It gives some necessary extensions to the case study, and formulates the corresponding 

dynamic inversely controlled process model. Other topics include explaining feasibility 

constraints, a method for making comparison between the combined process-controller model 

and the inversely controlled process model, a discussion about the multi-objective function 

and explanation of the implementation software tools.  

6.5.1. Amendments to the original case study 

Flores-Tlacuahuac and Biegler (2007) considered a fixed value for the heat transfer area 

           of each cooling jacket. However, it is usual to scale the heat transfer area of a 

cooling jacket with reactor volume by: 

        
                                                                                                                         

Therefore, equation (6-18) is added to the original case study and its coefficient is calculated 

from the base-case design shown in Table 6.2, resulting in         cm
2
.L

(-2/3)
. The base 

case design requires a heat transfer area that is much smaller than the surface area of the 

reactor. Such a configuration would have to be realized in practice by a jacket that makes 

only partial contact with the reactor walls. 

Flores-Tlacuahuac and Biegler (2007) suggested 50% and 200% of the base case design as 

the lower and upper bounds for the optimization values. The upper and lower bounds for the 

optimization variables in this research were 50% and 300%. The reason is that for some 

specific structures the heat transfer is thermodynamically limited by the maximum allowable 

temperature of the cooling water exiting the process, which is 80
o
C. The bound on the 

optimization variables are shown in Table 6.3.  
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Table 6.3 

The correspondence of the two solution strategies with case study formulation  

Lower 

bound 
Variable 

Upper 

bound 

Lower 

bound 
Variable 

Upper 

bound 

0.900      (m3) 2.700 400       (K) 500 

0.050          (m3) 0.300 298.15   (K) 450 

400             (K) 500 298.15            
      

    (K) 380 

0.55    (kmol.m-3) 0.65 -0.01         (kmol.s-1) 0 

0       (kmol.m-3) 0.65 0    (m
3.s-1) 0.01 

 

Flores-Tlacuahuac and Biegler (2007) assumed that the two series reactors and their cooling 

jackets are identical. This restrictive assumption is relaxed in the present study in order to 

provide extra degrees of freedom for integrated design and control. 

Flores-Tlacuahuac and Biegler (2007) assumed the disturbance to be the feed composition. 

They evaluated several disturbances in the range         kmol.m
-3

 to         kmol.m
-3

 

with different time constants. In this research a step disturbance from         kmol.m
-3

 to 

        kmol.m
-3

 is considered. This disturbance covers all the operational regions 

explored by the disturbances in the original case study (Flores-Tlacuahuac and Biegler 2007). 

However, due to nonlinearity of the process, the direction of the disturbance is also 

important. Therefore, another disturbance with the same magnitude but the reverse direction 

from         kmol.m
-3

 to         kmol.m
-3

 is also considered. It is assumed that these 

disturbances are equally likely.  
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6.5.2. Inversely controlled process model for the case of two series 

reactors 

This section discusses replacement of the controller model with the perfect control equations 

and inverting the process model. Here, the perfect control equations (6-20) and (6-21) will 

replace the controller model equations (6-12) to (6-16) of the conventional integrated design 

and control framework. 

The structural control decision regarding selection of the controlled variable is represented by 

the binary variable     as follows: 

                                                                                            

{
                                                                  
                                                                  

                                             

The structural control decision regarding selection of the manipulated variable is represented 

by the binary variable     as follows: 

                                                                                   

{
                                                                   
                                                                   

                                     

These equations ensure that when a manipulated variable is not selected, it is left constant at 

its nominal value. However, the selected manipulated variable is free and its required value 

for disturbance rejection is calculated by the dynamic inversely controlled process model.  

The author checked the index of the above DAE formulation of the dynamic inversely 

controlled process model, consisting of equations (6-3) to (6-12), (6-19), and (6-20), with 

Aspen Custom Modeller and it is 2. However as discussed by Pantelides (1988), consistent 

initialization of a DAE system requires the index of the DAE system to be one. In order to 

reduce the index of this DAE set, equation (6-19) is differentiated and replaced by: 

   

   

  
        

   

  
                                                                                                    

{
                         

                         
                                                                                                             

{
                                                         
                                                         

                                                     

The author checked the index of the new formulation with Aspen Custom Modeller and it is 

one. Furthermore, in Chapter 3, the functional controllability conditions were discussed and it 



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  210 

 

was explained that these conditions always hold for disturbance rejection in which setpoints 

are constant.  

In conclusion, the mathematical formulation of the proposed optimization framework consists 

of equations (6-3) to (6-12), (6-20), and (6-21). Table 6.4 matches the case study formulation 

with the problem formulations 2.dyn.si and 2.dyn.fd.  

 

Table 6.4 

The correspondence of the two solution strategies with case study formulation  

Solution strategy Sequential integration Full discretization 

Enumeration variables            none 

Time-independent 

optimization variables 
                                       

                          

Time-dependent 

optimization variables 

DAE solver variables: 

         

          

           
      

    

           

Discretization variables: 

1) differential collocation variables:  

                                       

2) algebraic collocation variables: 

                                
         

    

                    

Differential constraints:      Equations (6-3) to (6-8) Equations (6-3) to (6-8) 

Algebraic constraints:        Equations (6-9) to (6-12), (6-20) 

and (6- 21) 

Equations (6-9) to (6-12), (6-20) and 

(6- 21) 

Note: The multi-objective function of the case study in the new framework is explained in Section 6.5.4. 

 

6.5.3. Feasibility constraints 

The concept of testing feasibility of initial and final steady states is illustrated in Figure 6.3 

schematically. This graph shows the variations of a controlled variable (temperature of the 

second reactor) with the changes in a manipulated variable (cooling water flowrate) at 

different steady states. The lower profile represents the steady states before the disturbance 

occurrence (       ) and the upper profile represents the steady states after the disturbance 

occurrence (        ). For a given setpoint value, the length of the corresponding 

horizontal tie line (dashed line) represents the required change in the manipulated variable in 

order to maintain the controlled variable constant. A setpoint for the controlled variable is 

feasible if such a horizontal tie-line exists.  
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Figure 6.3. The variations of the controlled 

variable (  ) with the manipulated variable (  ) 

 

 

 
Figure 6.4. The time trajectories of the 

flowrate of the cooling water as the 

manipulated variable      for two identical 

disturbances with reverse directions. The 

lower trajectory is infeasible. 

 

The feasibility of initial and ultimate steady states does not ensure that the transient states are 

also feasible. Figure 6.4 shows the time trajectories of the cooling flowrate due to two step 

disturbances: (i)         kmol.m
-3

 to         kmol.m
-3

 and (ii)         kmol.m
-3

 to  

        kmol.m
-3

. In this example, the volumes of the reactors were        m3
, and all 

other process variables are at their base-case values (Table 6.2). Figure 6.4 reveals that 

although the initial states and final states are feasible, the intermediate states can be 

infeasible, as shown by the shaded area. The physical reason is saturation of the control valve 

and the loss of control action. In this research, path constraints took care of such 

infeasibilities. Moreover, Figure 6.4 shows that due to the nonlinearities of the process 

model, two disturbances with opposite directions do not result in symmetrical time 

trajectories. This is the reason that another disturbance with the opposite direction is also 

considered in the case study. 

400

420

440

460

480

500

520

0.000 0.500 1.000

T
em

p
er

at
u

re
 o

f 
th

e 
se

co
n

d
 r

ea
ct

o
r 

(K
) 

 (
C

V
) 

The flowrate of the cooling water (m3.s-1) (MV) 

-0.0001

-0.00005

0

0.00005

0.0001

0.00015

0.0002

0 200 400 600 800 1000

T
h

e 
fl

o
w

ra
te

 o
f 

th
e 

co
o

li
n

g
 w

at
er

 (
m

3
.s

-1
) 

 (
M

V
) 

Time (s)  

Initial steady state C
f
=0.55 

Required changes in MV 

Final steady state C
f
=0.65 

𝐶𝑉𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡   

𝐶𝑉𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡   



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  212 

 

6.5.4. Multi-objective function for integrated design and control of the 

two series reactors  

In the original case study by Flores-Tlacuahuac and Biegler (2007), the objective function 

was equation (6-17). This objective function is not appropriate for the proposed integrated 

design and control framework for two reasons. Firstly, it does not include any term for 

process objectives (e.g., required capital investment). Therefore, this objective function 

contradicts with the aim of integrated design and control to establish a trade-off between 

control and process objectives. Secondly, minimizing the controller error (i.e., difference in 

the actual and desired values of the controlled variable) is not the concern of perfect control 

because due to satisfaction of perfect control equations, the integral of the square of 

controller errors (represented by     ) is already equal to zero: 

       
 

      
 ∫ (              )

 
     

      

 

                   {                                 

where   is the index of the selected controlled variable. However, in the present case study, 

the temperature is being controlled to inferentially control the composition of the second 

reactor. The difference between the actual and desired compositions of the second reactor 

gives a rigorous measure of success of the inferential control strategy. This measure was 

included in the new multi-objective function, and is discussed in the following, along with 

other competing objectives. In this research, the following multi-objective function is 

considered in order to capture the trade-off between the involved control and process 

objectives: 
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   ∑    
     

                                                                                                                        

          
                      

                    

                                         

                                         

       ∫ |             |    
      

  

                                                                 

       ∫  (
|            |

         
)                                                    

      

  

 

       ∑   

 

   

                                                                                                

       ∑     

 

   

                                                                                             

where, s is the index for disturbance scenario. The terms of the multi-objective function (6-

23) represent two different categories of the objectives for integrated design and control; the 

first category concerns the control objectives and the second category concerns the process 

objectives. In the first category, there are two control objectives. The first one,     , 

measures the success in controlling the concentration of the second reactor inferentially by 

controlling the temperature of either the first or the second reactor. In the original case study, 

the aim of integrated design and control was to maximize the conversion. Therefore, 

           is set to be zero in this research to minimize the loss of the reactant. The weighting 

factor of the first objective,   , can be interpreted as the costs of the lost reactant over the 

simulation time. The second objective,     , measures the costs of the control action. This 

variable is scaled by its nominal value because different manipulated variables may have 

different dimensions. The physical implication of this objective is that when the disturbances 

are imposed, maintaining the controlled variable at its setpoint should require minimum of 

the changes in the manipulated variable (Qin and Badgwell 2003; McAvoy 1999). The 

weighting factor of the second objective,   , can be interpreted as the cost of changing the 

manipulated variable over the simulation time. The third and the fourth objective functions 

     and      are the process objectives, and represent the required capital investment for 
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purchasing the reactors and their cooling jackets. Their weighting factors have the dimension 

of cost per unit of volume. 

Both categories of the process and control objectives have economic implications and their 

relative importance (i.e.,         ) depends on how frequently the process is subject to 

disturbance scenarios. If the process spends most of its time at relatively close steady states, 

the process objectives are dominant. However, if the process is prone to frequent and 

significant disturbances, the control objectives play a significant role in minimizing the losses 

associated with disturbances.  

It is notable that the optimal values of the optimization variables depend on the ratios of the 

weighting factors which reflect the importance of the corresponding objectives. If all the 

weighting factors are multiplied by a constant positive value, the value of the multi-objective 

function will change but the optimal values of the optimization variables will remain 

unchanged. In the absence of any data for the case study, in order to explore the trade-off 

between the process and control objectives some simplifying assumptions are made and the 

weighting factors    are fixed and then the trade-off between the process and control 

objectives are explored by changing the ratio of     [-] and     [-].  

In this research,      kmol
-1

.m
3
.s

-1
 and         s-1

 give an estimate of the relative 

importance of the first and second control objectives. In addition,      m
-3 

and        

m
-3 

suggest that the cooling jackets are 50% more expensive than the reactors, because they 

are more prone to thermal shocks, and have higher manufacturing costs due to their shape, 

size and hydraulic considerations. In order to explore the trade-off between the control 

objectives and the process objectives the ratio between their corresponding weighting factors, 

    and    , are changed and optimization is performed for a variety of weighting 

factors    
  {  , and    

  {                              . These values 

correspond to a domain where the control objectives and the process objectives compete with 

each other. Outside this domain, one of the objectives is dominant, and there is no 

competition. The results of the multi-objective optimization are presented in Table 6.6. The 

Pareto front is constructed by plotting the competing process and control objectives against 

each other, and is shown in Figure 6.7. The physical implications of the trade-off between 

process and control objectives are discussed in Section 6.8.3.  

The final time of the dynamic simulation, i.e.,         in equation (6-23) can be included in the 

optimization variables, with the aim of minimizing the disturbance rejection time. In that 



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  215 

 

case, additional constraints are needed to ensure that the final state of the system is 

steady     ⁄    . These constraints would add additional nonlinearity to the problem. In 

this research, the value of              s was considered, which was large enough that most 

of intermediate solutions reached their final steady states. However, the integral terms in the 

objective function (6-23) encouraged minimization of the transition time between steady 

states and the effective time for the system to move from the initial steady state to the final 

steady state was significantly less than        as shown by the graphs in Results Section (i.e.,  

Figure 6.5a-c). The choice of the number of time-intervals determines the precision of the 

simulation and was specified using pre-optimization analysis. The resolution of the time 

horizon for sequential integration was chosen using pre-optimization analyses. In these 

analyses, the resolution of the time horizon was reduced gradually, until the objective 

function become insensitive and only changes in the fourth decimal digit. Finer resolutions of 

the time horizon would increase computational expenses unreasonably. For sequential 

solution strategy, the integration step size was   s. For the full discretization strategy, the 

length of the finite elements was   sec. A Radau polynomial of order     was applied in 

this research. Since in full discretization strategy, the constraints are imposed at the 

collocation points, these choices imply that the constraints are satisfied about every  sec. It 

was assumed that the disturbances have equal likelihood (            . Both solution 

strategies were initialized from different starting points in order to avoid local minimums.  

6.5.5. Post-optimization analysis: Designing actual controller 

After integrated design and control of the case study using the proposed optimization 

framework, two sets of post-optimization analyses were performed. In these analyses, given 

the optimized process and its control structure, a PI controller was modelled and its tuning 

parameters were optimized. Such an optimization task has a significantly reduced size 

because the optimization variables only consist of continuous tuning parameters of the 

controller. The objective function of this optimization was equation (6-17) which concerns 

only the controller error. 

In the first set of post-optimization studies, a PI controller is designed for the best solutions of 

the proposed framework (Structures 1, 2, 6 in Table 6.5). The aim was to investigate if 

including controllers would change the best structure. 
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In the second set of post-optimization studies, a PI controller is designed for the best solution 

of the proposed framework (Structures 6 in Table 6.5) against two disturbance scenarios 

corresponding to the fifth and sixth cases of the results of Flores-Tlacuahuac and Biegler 

(2007). In addition, similar bounds on the optimization variables were imposed (i.e.,   

       and         ). The aim was to provide the opportunity to compare the results 

of the proposed optimization framework using the dynamic inversely controlled process 

model and the conventional optimization framework using the combined process-controller 

model. 

The results of the abovementioned post-optimization studies are reported in Tables 6.8 and 

6.9 and discussed in Discussions Section.  

6.6. Implementation tools and considerations  

As explained earlier, two solution strategies were implemented in this study. The first 

solution strategy was dynamic optimization based on sequential integration. The embedded 

algebraic equation (AE) solver and the embedded differential algebraic equation (DAE) 

solver in Figure 6.1 were both implemented in Aspen Custom Modeller (ACM
®

), which was 

invoked in the steady-state and dynamic modes respectively. The optimization algorithm was 

a nonlinear gradient-based solver which was coded in the Microsoft Excel VBA
®

 

environment. The two software tools were linked using Microsoft COM
®

 automation 

interface. The required programming techniques can be found in the software documentation, 

(Aspen Custom Modeler documentation 2004). At each optimization iteration, the nonlinear 

optimization solver decided on the values of the optimization variables (   ,     ,    ,       

and               or             ). These variables were exported to the AE solver which 

calculated the initial states required by DAE solver. Then, the DAE solver starts from the 

initial states and integrates through the time. The objective value for the current optimization 

variables was calculated from the results of the dynamic simulation and was reported to the 

nonlinear optimization solver in order to evaluate the termination criteria and to decide for 

improving the values of the optimization variables. The number of the optimization variables 

was five in addition to three enumeration variables. The simulation time of each optimization 

iteration was about   s and the execution time was in the order of hours for each 

enumeration. The sequential strategy was applied to the objective function (6-23) only for 

weighting factors                  due to its long execution time. 
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The second solution strategy was a large MINLP optimization implemented in General 

Algebraic Modeling System (GAMS
®

). A comparison between different MINLP solvers is 

not the focus of this research but is presented by Flores-Tlacuahuac and Biegler (2007). In 

this research, the MINLP solvers were DICOPT and SBB (similar to Flores-Tlacuahuac and 

Biegler 2007). The total number of optimization variables for two disturbance scenarios was 

7673 of which only three variables are binary and the rest are continuous. The bounds on the 

optimization variables were reported in Table 6.3. As discussed by Biegler (2010), the 

advantage of application of Radau polynomials is that the collocation variables can have the 

same bounds as the corresponding variables. The execution time depends on the starting 

point. The optimization algorithm was initialized from several different starting points to 

avoid local optimums. These starting points were the lower bounds, the upper bounds and the 

average of the lower and upper bounds of the optimization variables. As will be seen in  

Results Section, the optimal values of three optimization variables (i.e.,                   ) 

are located at their bounds. The initializations from the opposite bounds often converged to a 

local solution or even did not converged at all. The execution time was less than one hour. 

The execution time of the full discretization strategy was significantly lower compared to the 

sequential strategy for two reasons. Firstly, the optimization solver and dynamic model were 

implemented using the same program. Secondly, while the full discretization strategy 

traversed an infeasible optimization path, the sequential optimization strategy only examined 

feasible solutions. The execution time of full discretization provided the opportunity to 

examine the objective function (6-23) for a variety of weighting factors,     and    , as 

shown in Table 6.6 and discussed in Section 6.8.3. 

The post-optimization analyses (described in Section 6.5.5) were implemented using the 

built-in optimizer of gPROMS. There were only two optimization variables (i.e., the 

parameters of the PI controller) and the execution time was few minutes. The starting points 

were chosen from the upper bounds, lower bounds and the middle of the optimization 

bounds.  
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6.7. Results of the case study 

This section presents the results. They are: 

 Table 6.5 reports the enumeration results using the sequential integration strategy. 

Each column represents a specific process and control structure. All results are 

reported for the weighting factors                 in the multi-objective 

function (6-23).  

 Table 6.6 presents the results using the full discretization strategy with different 

combinations of weighting factors,     and    , in the multi-objective function (6-

23). This table provides the opportunity to explore the trade-off between the 

control objectives and the process objectives as will be explained in Discussion 

Section. 

 Full discretization can also be used to enumerate different structures. The results 

of enumeration using this method is presented for a combination of weighting 

factors (               ) in Table 6.7.  

 Table 6.8 reports the results of the first set of post-optimization studies. In this 

part of the analyses, a PI controller was designed for the best structures of Table 

6.5. 

 Table 6.9 reports the results of the second set of post-optimization studies. In this 

part of the analyses, a PI controller was designed for the best structure of Table 

6.5 and its tuning parameters were optimized against the disturbance scenarios in 

the fifth and sixth cases studied by Flores-Tlacuahuac and Biegler (2007). The 

aim was to provide the opportunity for a comparison between the conventional 

framework and the proposed framework.  

 Figures 6.5a-c are the time trajectories of the optimal solution, corresponding to 

structure 6 in Table 6.5. 

 Figures 6.6a and b explain the uncontrollable structures in Table 6.5. These are 

the structures in which the flowrate of the cooling water was selected as the 

manipulated variable and the temperature of the first reactor was selected as the 

controlled variable. 

 Figure 6.7 shows the Pareto front for the multi-objective function (6-23). 

 Figure 6.8 shows the effects of the feed temperature on the product composition.  
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 Figures 6.9 are the time trajectories of the best solution in Table 6.8, regarding the 

first set of post-optimization studies. 

 Figures 6.10 are the time trajectories of the best solutions in Table 6.9, regarding 

the second set of post-optimization studies. 

 

 

Table 6.5.   

The results of optimization for different process and control structures using the sequential integration 

strategy. 

 

Structure

1: 

Counter-

current 

      

Structure

2: 

Counter-

current 

      

Structure

3: 

Counter-

current 

      

Structure

4: 

Counter-

current 

      

Structure

5: 

Co-

current 

      

Structure 

6: 

Co- 

current 

      

Structure

7: 

Co-

current  

      

Structure

8: 

Co- 

current  

      

Multi-objective 

value 

3.9402 3.8650 - - 5.3060 3.855 - - 

    1 1 1 1 1 1 1 1 

    10-3 10-3 10-3 10-3 10-3 10-3 10-3 10-3 

Constraints 

violation 

No No Yes(2) Yes(1) No No Yes(2) Yes(1) 

   0 0 0 0 1 1 1 1 

    0 1 0 1 0 1 0 1 

    0 0 1 1 0 0 1 1 

   (m
3) 2.283 0.971 - - 2.297 0.968 - - 

   (m
3) 1.206 0.782 - - 1.686 0.780 - - 

    (m3) 0.050 0.050 - - 0.050 0.050 - - 

    (m3) 0.050 0.050 - - 0.050 0.050 - - 

           (K) 474.9 500 - - 470.2 500 - - 

   represents the structural decision for the process structure:      counter-current and      co-current.     

represents the structural decision for controlled variable selection:      , i.e.,    is CV and       , i.e.,     is 

CV.     represents the structural decision for manipulated variable selection:      , i.e.,    is MV and 

       i.e.,    is MV. (1) Inversion of the process is not possible (See also Figures 6.6a and b.). (2) The 

maximum allowable temperature of the cooling water leaving the process is violated. 
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Table 6.6.  

The results of optimization for different weighting factors (       ) in the multi-objective function 

using the full discretization strategy. 

 Structure:   

Co-current 

      

Structure:    

Co-current 

      

Structure:    

Co-current 

      

Structure:   

Co-current 

      

Structure:   

Co-current 

      

Multi-objective 

value 

1.0147 3.8553 6.8721 9.1727 14.4241 

Control objectives 1.00915 1.9527 3.0588 3.8637 3.9241 

Process objectives 5550 1902.6 1271.1 1061.8 1050 

    1 1 1 1 1 

    10-6 10-3 3×10-3 5×10-3 10-2 

Constraints 

violation 

No No No No No 

   1 1 1 1 1 

    1 1 1 1 1 

    0 0 0 0 0 

   (m
3) 2.700 0.970 0.571 0.450 0.450 

   (m
3) 2.700 0.783 0.551 0.462 0.450 

    (m3) 0.050 0.050 0.050 0.050 0.050 

    (m3) 0.050 0.050 0.050 0.050 0.050 

           (K) 500 500 500 500 500 
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Table 6.7.   

The results of optimization for different process and control structures enumerated by full 

discretization strategy. 

 

Structure

1: 

Counter-

current 

      

Structure

2: 

Counter-

current 

      

Structure

3: 

Counter-

current 

      

Structure

4: 

Counter-

current 

      

Structure

5: 

Co-

current 

      

Structur

6: 

Co- 

current 

      

Structure

7: 

Co-

current  

      

Structure

8: 

Co- 

current  

      

Multi-objective 

value 
1.0958 1.0251 - - 1.0558 1.0147 - - 

    1 1 1 1 1 1 1 1 

    10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-6 

Constraints 

violation 
No No Yes(1) Yes(1) No No Yes(1) Yes(1) 

   0 0 0 0 1 1 1 1 

    0 1 0 1 0 1 0 1 

    0 0 1 1 0 0 1 1 

   (m
3) 2.700 2.700 - - 2.694 2.700 - - 

   (m
3) 2.700 2.700 - - 2.700 2.700 - - 

    (m3) 0.050 0.050 - - 0.050 0.050 - - 

    (m3) 0.050 0.050 - - 0.050 0.050 - - 

           (K) 458.086 500 - - 461.421 500 - - 

(1) The optimization did not converge to a feasible solution  

 

 

Table 6.8.  

The results of the first set of post-optimization studies: designing a PI controller for the best structures 

of Table 6.5 

Disturbance Process and control structure       
Objective function of 

Equation (6-17) 

Described in Section 6.5.1 Structure 1 in Table 6.5 500 0 8.98×10-3 

Described in Section 6.5.1 Structure 2 in Table 6.5 500 500 2.6154×10-7 

Described in Section 6.5.1 Structure 6 in Table 6.5 500 500 2.6074×10-7 
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Table 6.9.  

The results of the second set of post-optimization studies: designing a PI controller for the best 

solution and comparison with the results of Flores-Tlacuahuac and Biegler (2007) 

Disturbance Process and control structure       
Objective function of 

Equation (6-17) 

Step function from 

  =0.6 to   =0.55 
Structure 6 in Table 6.5 500 500 3.2489×10-8 

Step function from 

  =0.6 to   =0.55 
Case 5 in Table 5 of (Flores-

Tlacuahuac and Biegler 2007) 
500 500 0.0009 

Step function from 

  =0.6 to   =0.65 
Structure 6 in Table 6.5 500 500 3.2491×10-8 

Step function from 

  =0.6 to   =0.65 
Case 6 in Table 5 of (Flores-

Tlacuahuac and Biegler 2007) 
356 500 0.0025 

 

 

 

Figures 6.5. Results for the best solution (Structure 6 in Table 6.5) based on perfect control. The time 

trajectories of a) the feed temperature as the manipulated variable, b) the temperature of the first 

reactor as the controlled variable (overlaid on each other), c) the composition in the second reactor. 

Disturbance scenarios were described in Section 6.5.1. 

 

 

 

Figures 6.6. The variations of the temperature of the first reactor with the flowrate of the cooling 

water, for a) the co-current structure, b) the counter-current structure. 
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Figure 6.7. The Pareto front for the multi-

objective function (6-23) based on the 

results in Table 6.6. 

 

Figure 6.8. The variations of the 

composition of the second reactor with the 

feed temperature for the co-current structure. 

 

 

Figures. 6.9. Results of the first set of post-optimization studies. Trajectories of a) the feed 

temperature as the manipulated variable, b) the temperature of the first reactor as the controlled 

variable, c) the composition in the second reactor, for the best solution (Structure 6 in Table 6.5) using 

an optimized PI controller. Disturbances scenarios are described in Section 6.5.1. 

 

Figures. 6.10. Results of post-optimization analyses. Trajectories of a) the feed temperature as the 

manipulated variable, b) the temperature of the first reactor as the controlled variable, c) the 

composition in the second reactor, using an optimized PI controller. The disturbances are step 

functions from        to      (dotted line) and        to      (solid line) corresponding to case 5 

and case 6 of (Flores-Tlacuahuac and Biegler 2007) respectively. 
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6.8. Discussions 

In this section, the results of the proposed integrated design and control framework using the 

dynamic inversely controlled process model are explained and  compared with the results of 

the conventional optimization from Flores-Tlacuahuac and Biegler (2007). The aim is to 

establish the advantages of the proposed method over the conventional one. The cases in 

which inversion of the process model was not possible (the blank columns in Table 6.5) are 

explained and justified. In addition, the trade-off between the process and control objective 

are discussed. The last part of this section discusses the results of post-optimization analyses.   

6.8.1. The results of the proposed dynamic optimization framework 

Table 6.5 and Table 6.6 show the results of the sequential integration and full discretization 

solution strategies respectively. The third column of Table 6.6 has the same combination of 

the weighting factors and is equivalent to Table 6.5. The results of the two solution strategies 

are in good agreement within the error tolerance of the two solution strategies. Table 6.6 is 

used for illustrating the relative importance of the control and process objectives and is 

discussed in Section 6.8.3.  

Table 6.5 shows the enumeration results using the sequential strategy. The best process and 

control structure is the sixth structure in which the temperature of the first reactor,    , is the 

controlled variable and the feed temperature,   , is the manipulated variable. The process 

structure is co-current. A close objective value is also achieved by the structure 2 which has a 

similar control structure but counter-current process structure. In general, counter-current 

heat-exchangers are preferred to co-current heat-exchangers. This is because in a counter-

current structure the temperature difference which is the driving force for heat transfer, is 

kept alive. However, in the present case study, reaction heat enhances the temperature 

differences and maintains the driving force. Therefore, the counter-current structure is not 

necessarily dominant. In addition, the co-current structure has the desirable feature that the 

effects of the disturbances in the process side (reactor) and the utility side (cooling water) 

move in the same direction and leave the system together. However, in the counter-current 

structure, disturbances in the process and utility sides move in the opposite directions and 

remain in the process for a longer period.  

The optimal trajectories of the feed temperature (i.e., the manipulated variable) are shown in 

Figure 6.5a. They show the fast and smooth responses to the disturbances. The optimal 
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trajectories of the temperature of the first reactor (i.e. the controlled variable) are shown in 

Figure 6.5b. These temperature trajectories are two straight lines which are overlaid on each 

other and imply perfect control. The optimal trajectories of the composition of the second 

reactor are shown in Figure 6.5c. Features of the interest are high conversion and very small 

changes caused by the disturbances, as shown by the small scale of the vertical axis in Figure 

6.5c. 

A comparison between different structures reveals that the feed temperature is a more 

effective manipulated variable than the flowrate of the cooling water, although it is more 

difficult to be implemented. This is because several structures with cooling water as the 

manipulated variable (i.e., Structures 4 and 8) are uncontrollable. Table 6.5 also shows that in 

most structures the volumes of the cooling jackets are at their lower bounds because 

designing a large hold-up for the cooling jackets reduces their dynamic performances. The 

setpoints of the selected controlled variable in most cases are increased from the base-case 

design in order to make the process insensitive to the disturbances, which is explained in the 

next section.  

It is notable that the full discretization strategy can also be used for enumeration of structures. 

Table 6.7 shows the results of enumeration using this method for a combination of weighting 

factors (               ). However, when the solver does not converge, the failure is 

not informative and it is not clear whether the process inversion is not possible or other 

constraints are violated. Notice that the weighting factors of the objective functions gave 

more priority to the control objectives and therefore, the upper bounds of the reactor volumes 

are active. 

6.8.2. Uncontrollable process structures  

During optimization, two uncontrollable structures were detected. In those structures, the 

flowrate of the cooling water was the manipulated variable and the temperature of the first 

reactor was the controlled variable. These uncontrollability issues manifested themselves as 

the failure of the integrator of the DAE solver. These observations can be explained by the 

test, presented in Section 6.5.3.  

Figure 6.6a shows two steady-state analyses which demonstrate the variations of the 

temperature of the first reactor with the flowrate of the cooling water. The cooling water 

flows in a co-current structure. One profile is calculated for         kmol.m
-3

, and the 
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other profile is for         kmol.m
-3

. Other process variables are at their nominal values 

(Table 6.2). A setpoint for the controlled variable is feasible if the corresponding horizontal 

tie-line connects the two profiles . Unfortunately, such a horizontal tie-line does not exist and 

the process inversion is not possible. Similar results are shown in Figure 6.6b for the counter-

current process structure of the same control structure.   

6.8.3. The implications of competing process and control objectives 

Table 6.6 reports optimal solutions for a variety of the combinations of the weighting factors 

in the multi-objective functions (6-23). For simplicity, the first weighting factor is maintained 

constant at      , while the second weighting factor,   , is changed from      to      

which are the two extremes where the control objectives and the process objectives dominant 

respectively. For          the upper bounds of the reactor volumes are active and the 

optimizer chose to use the largest possible reactors, because the large reactors are less 

sensible to the disturbances in the feed composition. On the other extreme, for         ,  

the lower bounds of  the reactor volumes are active and the control objectives are sacrificed 

in order to minimize the required capital investments. The optimal solutions for larger values 

of     are not shown because the objective functions become severely insensitive to control 

objectives and multiple solutions with a similar objective value were detected. The concept is 

shown in Figure 6.7. The horizontal axis and the vertical axis show the control objectives and 

the process objectives respectively. The designs corresponding to the points below the Pareto 

front are infeasible solutions. The designs corresponding to the points above the Pareto front 

are not optimal. The Pareto front illustrates the trade-off between the two objectives as 

improving the control objectives requires degrading the process objectives, and vice versa, 

which correspond to moving to left and right on the Pareto front respectively.  

Table 6.6 also reveals that the process and the control objectives did not compete for the 

volume of the cooling jackets and the setpoint for the selected controlled variable. The lower 

bounds are active, because for smaller cooling jackets, less capital investment is required and 

at the same time, the response time of a cooling jacket with a smaller hold-up is shorter, 

hence the process and control objectives point to the same direction. In addition, as discussed 

earlier, a high temperature setpoint for the controlled variables makes the process insensitive 

to disturbances, while this does not impose any burden to the process objectives (as they are 

defined in this research) and therefore the upper bound for the temperature setpoint  is  active 

in all optimal solutions.  
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6.8.4. Discussions of post-optimization studies 

As explained in Section 6.5.5, two sets of post-optimization studies were performed. In the 

first set of post-optimization studies, PI controllers are designed for the best structures of 

Table 6.5. The aim was to investigate if designing a controller changes the best solution. The 

results are reported in Table 6.8. This table shows that Structure 6 is still the best solution. 

The time trajectories of this structure are shown in Figures 6.9.The very small controller error 

in Table 6.8 and the small scale of Figure 6.9b suggest that for the present case study, the PI 

controller was able to closely approach the perfect control performance.  

In the second set of post-optimization studies, in order to provide the opportunity for 

comparing the new optimization framework proposed in this research and the conventional 

framework studied by Flores-Tlacuahuac and Biegler (2007), an actual controller was 

designed for the best solution (Structure 6 in Table 6.5). Table 6.9 shows the results of the 

second set of post-optimization studies. These are equivalent to the fifth and sixth cases 

studied by Flores-Tlacuahuac and Biegler (2007). The results are also shown graphically in 

Figures 6.10. The small value of the objective function shows that perfect control is closely 

approached by the PI controller. Similar observations can be made from Fig. 9b which shows 

that the value of the controlled variable is maintained almost constant, (notice the very small 

scale of the vertical axis).  

Another comparison can be made, based on the criteria of inferential control. Controlling the 

first reactor temperature inferentially aims at controlling the composition of the unconverted 

reactant in the second reactor and must indirectly attenuate its variations under disturbed 

conditions. In the conventional optimization framework, for a change of      kmol.m
-3

 in the 

feed composition, the composition of the second reactor varies in the range of         

kmol.m
-3

 (Fig. 10 of Flores-Tlacuahuac and Biegler 2007). The variation in the product 

composition is    of the variation in the feed composition. However, in the new integrated 

design and control framework, for the same changes in the feed composition, the composition 

of the second reactor varies by        kmol.m
-3

 (Shown in Fig. 6.10c). Here, the attenuation 

of the disturbances is about twenty times greater than the conventional method. However, the 

superior performance of the new integrated design and control framework should be 

attributed to the term,    , in the objective function (6-23) which explicitly considers the task 

of inferential control. Figure 6.8 provides the explanation. This figure shows the variation of 

the second reactor composition with the feed temperature. The top profile is when the feed 
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composition is         kmol.m
-3

 and the bottom profile is when the feed composition is 

        kmol.m
-3

. Other process variables are at their nominal values (Table 6.2). The area 

between these two profiles is the operating region. This figure reveals that by increasing the 

feed temperature, the composition of the second reactor becomes insensitive to the 

disturbances in the feed composition, resulting in a tighter control and greater attenuation. 

Since the new framework was successful in recognizing the effects of the feed temperature 

(i.e., the nominal value of the manipulated variable), it chose a higher feed temperature 

(about    K higher than the results of Flores-Tlacuahuac and Biegler 2007). These 

observations suggest that the controller error (equation 6-17 considered by Flores-Tlacuahuac 

and Biegler 2007) may have misled the conventional optimization framework to a local 

solution.  

Finally, as well as producing a well-optimized process and control structure, the new 

integrated design and control framework has achieved a reduction in the complexity of the 

problem because the differential and algebraic equations of the controller model are replaced 

by a set of explicit algebraic perfect control equations. Here, equations (6-13) to (6-16) are 

replaced by equations (6-20, 6-21), which reduces the number of equations. In addition, due 

to absence of the controller tuning parameters, the number of the optimization variables is 

less in the proposed framework (e.g., from 10 to 8 in the small example of this chapter), 

which in large-scale industrial problems can be an important advantage. 

6.9. Conclusion  

This chapter presented a dynamic optimization framework for integrated design and control 

based on perfect control. In this framework, instead of the combined model of the process 

and its controllers, the equivalent dynamic inversely controlled process model is applied. The 

treatment is based on the notion of functional controllability in which the process inputs (the 

required values of the manipulated variables) are generated from the process outputs (the 

desired values of the controlled variables) by inversion of the dynamic process model.  

The proposed methodology was demonstrated using the case of two heat-integrated series 

reactors, which was previously studies by Flores-Tlacuahuac and Biegler (2007). Two 

solution strategies were applied for dynamic optimization. The first solution strategy was 

based on sequential integration. In this strategy, all alternative process and control structures 

were enumerated. Each enumeration was posed as a nonlinear dynamic optimization problem 
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in which a differential algebraic equation (DAE) solver provided information of the objective 

function and constraints to the nonlinear optimizer. In the sequential integration strategy, 

model inversion was performed by discretizing the process outputs rather than the process 

inputs and initial states were calculated using the equivalent steady-state inversely controlled 

process model. The second solution strategy was based on full discretization of the time-

dependent variables. In this solution strategy, the problem was posed as a large-scale MINLP 

problem. Model inversion was performed by including perfect control equations in the 

optimization constraints and initialization was performed using the continuity equations. 

Since the second solution strategy allowed the violations of the constraints in intermediate 

solutions, it was not limited to a feasible optimization path and its execution time was 

significantly shorter. In addition, the proposed framework utilized a multi-objective function 

to explore the trade-off between the involved process and control objectives. 

The results demonstrated that the proposed optimization framework benefited from the 

conceptual as well as numerical complexity reductions. This framework was able to explain 

the implications of the competing process and control objectives and to establish the trade-off 

between them by constructing the corresponding Pareto front. Furthermore, while the 

proposed optimization framework did not make any assumption regarding controllers, it 

provided the benchmarks for the best performance that the controllers might achieve as the 

guidelines for control practitioners. The last part of this chapter performed two sets of post-

optimization analyses. In these analyses, a PI controller was designed for the optimal process 

and control structure (i.e., the results of the proposed optimization framework).  In the first 

set of the post-optimization analyses, a PI controller was designed for the best three solutions 

of the proposed framework. The results of these analyses showed that the optimal structure 

remains the same even after controller design. In the second set of post-optimization 

analyses, the controller parameters were optimized with respect to the disturbances scenarios 

considered in the fifth and sixth cases of (Tlacuahuac and Biegler 2007). The aim was to 

provide the opportunity for comparison between the proposed and conventional frameworks. 

The results of these analyses suggested that considering only the controller error might not be 

sufficient to establish the trade-off between process design and control.  

 

 



Integrated Design and Control with a Focus on Control Structures |  

 

Centre for Process Systems Engineering (CPSE), Imperial College London |  230 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 7 | Summary, discussions and suggestions 

for future research  

Introduction 

In this chapter, the summary of the research is presented. In addition, for the case of a 

dynamic inversely controlled process model, the model inversion may result in a 

mathematical formulation which consists of high index differential algebraic equations 

(DAEs). The implications of the high index formulation for setpoint tracking and disturbance 

rejection are discussed in this chapter. This chapter also explains the causes of imperfect 

control. These are the inherent characteristics of the process, which limit controllability. 

Furthermore, this chapter provides the critical evaluations of the research achievements, and 

summarizes the advantages and disadvantages of the proposed methods. The discussion is 

based on the research aims and objectives proposed in the first chapter. The final section of 

this chapter suggests the future research directions for further contributions in the field of 

integrated design and control.    

7 
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7.1. Research summary  

Design and control of chemical processes share important decisions. If the process design is 

fixed there is little room left for improving the control performance. Furthermore, the process 

and control objectives are incommensurable and competing. A systematic framework is 

needed to integrate design and control. Such a framework should feature several desirable 

characteristics. It should be able to systematically generate and screen alternative process and 

control designs. In addition, it should be able to manage the problem complexities and ensure 

that the solution features the desirable properties such as operability or controllability. 

Finally, the proposed framework for integrated design and control should be able to establish 

direct links to the underlying chemical and physical phenomena based on first principles 

modelling. 

The conventional approach for integrated design and control is to simultaneously optimize 

the process and its controllers. However, optimizing controllers poses conceptual as well as 

numerical difficulties. Firstly, the size of the problem is several orders of magnitude larger if 

controllers are included in the problem formulation. Secondly, controllability is the inherent 

property of the process and its control structure and does not depend on the design of 

controllers. Finally, the modern control systems are designed during commissioning stages 

and using commercial packages which may not be available when the process is being 

designed. Therefore, an important aim of this thesis was to disentangle the complexities of 

controllers from integrated design and control. 

This research proposed an optimization framework for integrated design and control based on 

the concept of perfect control by introducing an inversely controlled process model. In an 

inversely controlled process model, the model of controllers is replaced by perfect control 

equations. The controlled variables are maintained constant at their setpoints by the perfect 

control equations and the required values of the manipulated variables are calculated for 

rejecting disturbances, hence, the process model is inverted. Then, by optimizing the 

structural and parametric variables of the inversely controlled process model, the alternative 

combinations of decisions for process and control design are generated and screened.  
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In addition, an inversely controlled process model is developed directly from the process 

model and therefore can be presented by first principles modelling and is not limited by any 

simplification such as linearization or input-output model reduction.  

In the proposed optimization framework, although the process and its control structure are 

optimized simultaneously, the design of controllers is separated and delegated to a control 

practitioner. Furthermore, the proposed optimization framework provides the benchmarks for 

the best performance that can be achieved.  

In the present research, the proposed optimization framework was presented in two versions 

using steady-state and dynamic formulations. The steady-state framework was applied for 

optimal control structure selection of a distillation train in Chapter 4 and for integrated design 

and control of a reactive distillation column in Chapter 5. In these case studies, the trade-offs 

between process and control objectives were established using goal programming. In Chapter 

6, the proposed dynamic optimization framework was applied to the case of two series 

reactors. The trade-off between the process and control objective was established by 

constructing a Pareto front.  

7.2. Physical implications of an inversely controlled process 

model 

This section investigates the physical implications of the index of a dynamic inversely 

controlled process model and the causes of imperfect control for the proposed integrated 

design and control.  

7.2.1. Index reduction  

The following discussion about the index of differential algebraic equations (DAEs) concerns 

dynamic inversely controlled process models, only.  

Inversion of a dynamic model may result in high index differential algebraic equations 

(DAEs). The index of a set of DAEs is defined as the number of differentiations that is 

required in order to convert that set of DAEs to the equivalent set of ordinary differential 

equations (ODEs). High index DAEs are not exclusive to inverse dynamic models and they 

appear frequently in the modelling of chemical processes. Examples of chemical processes 

with high index models include multiphase reactors, absorption/distillation columns with 

phase equilibrium, process networks with a negligible pressure drop, and reactors with slow 
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and fast reactions, (Kumar and Daoutidis 1996). Furthermore, as discussed by Feehery and 

Barton (1996) activation/deactivation path constraints may cause fluctuations in the index 

over the time horizon.  

Pantelides, (Pantelides, et al. 1988a; Pantelides 1988b) proposed an index reduction method 

which detects structurally high-index DAEs and returns the necessary set of equations for the 

consistent initialization. However, this method only provides a lower bound on the index, and 

the resulting system may be over determined. The method of dummy derivatives (Mattsson 

and Soderlind, 1993) uses the method of Pantelides as a pre-processing step and then makes 

the resulted over-determined system fully determined by introducing additional variables. In 

this method, for each additional equation derived by the pre-processing method, one time 

derivative is substituted by an algebraic variable. The resulting DAE system will have at most 

index of one. The index reduction does not pose any numerical limitation on the application 

of the proposed optimization framework because there are efficient index reduction 

algorithms, which are also built into commercial software tools. Aspen Custom Modeler 

(ACM) is able to detect high index formulations and provides assistance in index reduction. 

gPROMS is able to systematically generate the equivalent low index formulation. 

Furthermore, the full discretization strategy for dynamic optimization is robust to high-index 

DAEs (Flores-Tlacuahuac and Biegler 2007; Biegler 2010). A comparison between different 

methods for index reduction is not the focus of present research and this research makes use 

of the results of these methods and tools. However, it is pertinent to investigate the physical 

implications of the high index formulation, which is discussed in the following.  

McLellan (1994) showed that the index of a nonlinear inversion problem is equal to     

where   is the relative order of the process. The relative order is defined as the minimum 

number of times that a controlled variable should be differentiated in order to generate an 

explicit relationship between that controlled variable and a manipulated variable. However, 

nonlinear inversion has physical implications as well, which are the hidden constraints that 

impose additional requirements for consistent initialization. As discussed in Chapter 3, the 

functional controllability conditions require that in a DAE system with relative order of  , the 

actual and desired values of the controlled variable and its first     time derivatives must 

be equal at the initial condition. The physical implication is that there must be no jump in the 

process behaviour in order to match the perfect control trajectories. Explaining the 

implication of these requirements for consistent initialization benefits from differentiating 
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between setpoint tracking and disturbance rejection. In the case of setpoint tracking, the 

value of a controlled variable is changed from the initial state to the final state. For a 

consistent initialization, the actual and desired values of the first     time derivatives of the 

controlled variable have to be equal to some non-zero values. In practice, it is very difficult to 

measure the time derivative of a controlled variable accurately. Therefore, perfect setpoint 

tracking is of limited application. However, for disturbance rejection, the time derivatives of 

the controlled variables are all zero because the controlled variables are maintained constant, 

and therefore, index reduction poses no limitation on perfect disturbance rejection. The 

present thesis focused on the disturbance rejection in which the index of a dynamic inversely 

controlled process model does not limit its application.  

7.2.2. Limiting factors of controllability  

Chapter 2 discussed the causes of control imperfection. The limiting factors of controllability 

are the interactions between control loops, the constraints on the manipulated variables, 

model uncertainties, time delays, and right-half-plane zeros. Fortunately, none of these 

concerns limits the application of the proposed optimization frameworks, as discussed in the 

following. 

The interactions between control loops are the concern of decentralized control systems. As 

explained earlier, the proposed steady-state and dynamic optimization frameworks do not 

make any presumption regarding the controllers and their pairing/partitioning. However, the 

best achievable control performance, determined by the proposed optimization frameworks, 

can be used later to decide on the degree of decentralization for the controllers. 

Manipulated variables and their constraints are explicitly included in the optimization 

formulations and their multi-objective functions (Subproblem 2.stst, Problem 2.stst, and 

Problem 2.dyn, discussed in Chapter 4, 5, and 6 respectively) and are addressed 

systematically by the optimizer.  

In this research, it was assumed that disturbances are known in advance. However, if it is not 

the case or there are uncertainties involved in the model parameters, the methods for steady-

state flexibility analysis (Swaney and Grossmann 1985) and dynamic flexibility analysis 

(Dimitriadis and Pistikopoulos 1995) can be applied to explore the effects of uncertain 

parameters and identify the critical disturbance scenarios which can be combined with the 

proposed modelling approaches in this thesis. 
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The application of perfect control to processes with time delays needs more care, because 

handling time delays using process inversion requires prediction. For instance, Perkins and 

Wong (1985) showed that for a multi-variable linear system the period that must be waited 

before the time trajectories of the controlled variables can be specified independently, is 

bounded by the smallest and largest time delays in the process transfer function. The 

advantage of the proposed methodology is that it does not make any presumption regarding 

the controller type and the results of optimization can be applied in order to decide about the 

elements of the control law (i.e., predictive or feedforward) which should be included to 

approach perfect control. For example, a feedforward controller would achieve a higher 

performance in a system with long delays because it is informed earlier of the disturbances 

compared to a feedback controller. 

Right-half-plane zeros in process inversion become poles. It is well understood that right-

half-plane zeros cannot be moved by any feedback controller and similar to time delays, 

right-half-plane zeros are the characteristics of the process, (Yuan, et al. 2011). Unstable zero 

dynamics are the nonlinear analogues of right-half-plane zeros, and imply instability of the 

process inversion, called non-minimum phase behaviour (Slotine and Li 1991). The 

advantage of incorporating inversion of the process model in the optimization framework is 

that if inversion is not possible for a candidate solution, the constraints are violated which 

directs the optimization algorithm towards other candidates that do make the process 

controllable. Therefore, the optimal solution of the proposed integrated design and control 

framework features functional controllability for all expected disturbance scenarios. 

7.3. Critical evaluation of research 

Panel 7.1 recapitulates the research aims, the problem statement, and the proposed 

optimization framework based on perfect control. The aim of this research was to address the 

problem of integrated design and control (Problem 2) considering the criteria shown in this 

panel. The present research achieved these objectives by proposing an optimization 

framework based on perfect control. In the following potential advantages and disadvantages 

of the proposed method are discussed. 
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Panel 7.1.  

The problem statement, the research aims and objectives (from Chapter 1) and the 

proposed framework for integrated design and control (from Chapter 3). 

Problem 2: Integrated design and control (proposed) 

Given the specifications of the feedstocks and the products, the desired 

throughputs and the expected disturbance scenarios, it is intended to design a 

process, and its control structure, which are optimal with respect to economic and 

control performance criteria and satisfy all technical, safety and environmental 

constraints. Furthermore, ensure that the designed process and its control 

structure are controllable. 

The characteristic of the proposed framework for integrated design and control: 

1. A systematic approach 

The developed framework systematically generates and screen alternative 

decisions regarding process and its control structure based on economic and 

control performance criteria.  

 

2. Complexity reduction 

The developed framework reduces the problem complexities. 

 

3. Controllability 

The developed framework should be able to ensure some desirable properties of 

the process and its control structure such as steady-state operability or functional 

controllability.   

 

4. First principles modelling 

The developed framework can be implement using first principles models and is 

not necessarily limited to any simplifying assumption.  

 

 
Figure 3.2. The proposed integrated design and control framework using the inversely controlled 

process model 
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The proposed optimization framework provides the opportunity for systematic decision-

making regarding all alternative process designs and control structure selections. This is done 

by embedding an inversely controlled process model in the optimization framework, as 

shown in Panel 7.1. The decision-making regarding the structural and parametric process and 

control variables of the inversely controlled process model provides the opportunity to 

systematically generate alternative combinations of the decisions for process design and 

control structure selection and evaluate their performances against disturbance scenarios. In 

addition as discussed earlier, the present study contributes to the aim of numerical as well as 

conceptual complexity reduction by separating the design of controllers from the problem.  

The justification for numerical complexity reduction is that the proposed optimization 

framework for integrated design and control (Problem 2, Section 1.2.5) is smaller and does 

not include the model of controllers. In addition, the required modelling efforts remain at the 

same level required for process modelling. However, in the proposed framework, the process 

and its control structure are still decided simultaneously and controllability of the solution is 

ensured. Furthermore, the proposed framework provides a benchmark for the best achievable 

control performance and delegates the detailed controller design (Subproblem 4, Section 

1.2.4) to control practitioners.    

In addition, the justification for conceptual complexity reduction is that often, modern control 

systems are designed during commissioning stages using commercial packages which may 

not be available when the process is being designed. Moreover, controllability is the inherent 

characteristic of the process and its control structure and does not depend on the design of 

controllers.  

A high degree of numerical complexity reduction is achieved by the application of a steady-

state inversely controlled process model (applied in Chapters 4, and 5), because its 

mathematical formulation consists of only algebraic equations. The steady-state assumption 

implies that control is instantaneous and the transient states are not considered. Therefore, the 

proposed steady-state framework ensures steady-state operability. However, at the price of 

higher modelling efforts, further information can be gained regarding functional 

controllability using a dynamic inversely controlled process model which also ensures that 

the solution stays controllable during the transition states.   

Finally, the proposed optimization framework does not require simplifying the mathematical 

model of the process and can be applied based on first principles modelling.  
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Perfect control is an important approximation, which could lead to different strategies 

compared to the conventional integrated design and control framework. This is because in the 

proposed optimization framework, the problem of integrated design and control is divided 

into two subproblems, and therefore, the solution in principle could be suboptimal compared 

to the conventional framework where all the subproblems are addressed simultaneously. 

However, in the conventional optimization framework, the controller type is parameterized in 

advance and the type of controllers is pre-selected. By comparison, the solution of the 

proposed optimization framework is independent of the controller type and is based on the 

best control performance that can be achieved.  

It is noteworthy, that the proposed optimization framework can also be used for analysis as 

well. In such an approach, the best solutions are screened by the proposed optimization 

framework and will be considered for controller design. Such an approach was demonstrated 

for the case of two heat-integrated series reactors in Chapter 6.  

Finally, in some processes multiple inputs can stabilize the process at a given set-point. While 

this multiplicity is due to the nonlinearity of the process model (which in turn leads to 

nonconvex optimization problems), the fact that all candidate inputs will lead to different 

performance raises a number of issues. If the considered process features such a nonlinear 

behaviour, then the methods discussed in Section 2.13 should be applied to evaluate the 

nonlinear behaviour of the optimal solution. It is notable that input-output multiplicity is not 

the exclusive property of the proposed optimization framework and may happen in the 

conventional framework and other nonlinear methods as well. 
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7.4. Suggestions for future research directions 

This thesis proposed a new optimization framework, based on the concept of perfect control. 

The author suggests five areas for further investigations.  

7.4.1. Detailed design of controllers with emphasize on the cases with 

limited controllability 

It was discussed earlier that the results of the proposed methodology provide a benchmark for 

design of the controllers. The author suggests detailed design of controllers using the 

provided benchmark as a potential area of further contribution. In particular, it should be 

investigated that in the presence of the limiting factors of controllability, which type of 

controllers (e.g., feedback, feedforward, or model-based) is more capable of approaching 

perfect control. It can be done by developing a superstructure of controllers which enables 

decisions regarding alternative control laws and their parameters. Such a superstructure has a 

reduced dimension as the process and its control structure are already designed by the 

proposed optimization framework. The outcome can be a set of qualitative guidelines that for 

example in the case of a process with some specific characteristics (e.g. delays) the 

controllers should employ some advantageous elements (e.g., feedforward) as well as 

quantification of the controller performance compared to perfect control. Therefore, it is 

predicted that the results of the proposed methodology will be helpful in deduction of the 

desirable properties of the controllers.  

7.4.2. Degree of centralization 

The temporal and spatial decentralization of controllers were discussed in Chapter 2. The 

author suggests that the proposed optimization based on the perfect control assumption can 

be extended for decision-making regarding the degree of centralization.  

In principle, perfect control of the decentralized elements of a process does not ensure perfect 

control of the whole centralized system. This is because in the centralized control structure all 

the manipulated variables are employed simultaneously, while in the decentralized control 

system, fewer manipulated variables are available to each controller. Therefore, it is 

suggested that an inversely controlled process model is developed for the fully centralized 

scenario in which the whole process is perfectly controlled, as well as the decentralized 

scenarios in which individual sections of the process are controlled perfectly but are not 
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controlled together. Such a method will be able to identify the best achievable control 

performance of a candidate set of decentralized controllers. Then a comparison between this 

performance and the ideal scenario in which all controllers are centralized, provides the 

opportunity for decision-making regarding the degree of decentralization and screening 

candidate configurations. Here the trade-off is between the performance deteriorations 

associated with decentralization and the costs of developing a fully centralized control 

system. 

7.4.3. Inversely controlled process model within the context of self-

optimizing control 

In Chapter 2, the methods for self-optimizing control were discussed. In self-optimizing 

control, the economic objectives are translated to the task of maintaining a set of controlled 

variables at their setpoints. It was also discussed, that although maintaining the measurements 

constant is convenient, it does not ensure economic optimality in many cases. Therefore, it 

was suggested that a combination of the measurements could be controlled or even some 

researchers chose to directly control the gradient of the economic objective function. Similar 

approach can be applied using an inversely controlled process model. In such a framework, 

model inversion is performed with respect to a combination of the controlled variables or 

directly with respects to the economic objective function. The inputs of such a framework are 

the manipulated variables and the setpoints of the controlled variables. Another relevant 

perspective is to include the measurement noise and the effects of fast-acting disturbances 

which would require back-off from the active constraints. 

7.4.4. Incorporating into commercial software tools 

As discussed also by other researchers (e.g., Klatt and Marquardt, 2009), the evolving 

computational technologies have changed the perceptions of process systems engineers of 

their problem-solving capabilities. It is expected that if a problem (e.g., synthesis of a process 

or control system) is presented in its formal statement, the problem-solving strategy can be 

reformulated into an algorithmic procedure and solved by the means of computer 

programming tools. Such tools for computer-aided design assist designer to accelerate the 

process of decision-making and to enhance the fidelity of the results based on rigorous 
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analysis. Examples of these programs are the simulation software tools by AspenTech
3
 (e.g. 

Aspen Plus and Aspen HYSYS), PSE
4
 (gPROMS) and MathWorks

5
 (e.g. Simulink).  

The author suggests that the modelling approach proposed in this research can be 

incorporated as a built-in module into these software tools. Then, after the process is 

modelled, the software tool provides the option to the designer to evaluate the control 

performance of the designed process using an automated procedure in which the 

corresponding inversely controlled process model is constructed. Then it is possible to 

evaluate the best achievable control performance against a portfolio of disturbances. Such a 

program may exploit the flowsheet interconnectivity to shortlist the candidate controlled and 

manipulated variables. However, the key step in automating the proposed methodology is to 

systematically consider the physical implications (discussed earlier in this chapter) of perfect 

control, and to translate them into programming procedures. Furthermore, ideally such a 

software tool should be able also to provide the option for optimization of the constructed 

inversely controlled process model, and to facilitate the application of the proposed 

framework for integrated design and control. 

The abovementioned built-in modules would enhance the computational capabilities, 

available to the industrial practitioners, in order to efficiently consider the controllability 

characteristics of the process at the early stages of process design. 

7.4.5. Developing surrogate inversely controlled process model from 

rigorous simulations 

As mentioned in Chapter 2, since most of conventional optimization techniques require first 

and second derivatives, derivative free optimization algorithms need to be applied. Another 

similar area of potential contribution is developing surrogate models from simulations 

(Cozad, et al. 2011). In such a framework, a surrogate models is constructed and its 

parameters are optimized against the maximum error between the rigorous simulation and the 

lean surrogate model. The advantage is that the new surrogate model provides cheap 

evaluations of the gradients and can be optimized using standard optimization algorithms. 

The author suggests that surrogate model should be developed directly for the inversely 

controlled process model. Then, such a low complexity accurate model will provide 

                                                 
3 Web address: http://www.aspentech.com/ 
4 Web address: http://www.psenterprise.com/gproms/  
5 Web address: http://www.mathworks.co.uk/  

http://www.aspentech.com/
http://www.psenterprise.com/gproms/
http://www.mathworks.co.uk/
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opportunity to apply the methodology of this thesis to larger industrial examples.  
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Appendix A. Fortran code (used in Chapter 5) 

The original Fortran code was adapted from Luyben and Yu, (2008). In the following, blue 

highlights are the new codes added by the author and yellow highlights are the old codes 

removed in order to update the old FORTRAN code according to Solution (121621) by 

Aspen Technology. 

New code: 

      SUBROUTINE RAETBELB (NSTAGE, NCOMP,   NR,     NRL,     NRV, 

     2                     T,      TLIQ,    TVAP,   P,       VF, 

     3                     F,      X,       Y,      IDX,     NBOPST, 

     4                     KDIAG,  STOIC,   IHLBAS, HLDLIQ,  TIMLIQ, 

     5                     IHVBAS, HLDVAP,  TIMVAP, NINT,    INT, 

     6                     NREAL,  REAL,    RATES,  RATEL,   RATEV, 

     7                     NINTB,  INTB,    NREALB, REALB,   NIWORK, 

     8                     IWORK,  NWORK,   WORK) 

      IMPLICIT NONE 

      INTEGER NCOMP,  NR,      NRL,     NRV,    NINT,   

     +        NINTB,  NREALB,  NIWORK,  NWORK,  N_COMP 

      INTEGER K_ETOH, K_IC4,   K_NC4,   K_ETBE  

      PARAMETER (K_ETOH=1) 

      PARAMETER (K_IC4=2) 

      PARAMETER (K_NC4=3) 

      PARAMETER (K_ETBE=4) 

      PARAMETER (N_COMP=4) 

      INTEGER IDX(NCOMP),   NBOPST(6),      INT(NINT),   

     +        INTB(NINTB),  IWORK(NIWORK),  NSTAGE, 

     +        KDIAG,        IHLBAS,         IHVBAS,     NREAL,  KPHI, 

     +        KER,          L_GAMMA,        J 

      REAL*8 X(NCOMP,3),       Y(NCOMP), 

     +       STOIC(NCOMP,NR),  RATES(NCOMP), 

     +       RATEL(NRL),       RATEV(NRV), 

     +       REALB(NREALB),    WORK(NWORK),   B(1),   T,      

     +       TLIQ,             TVAP,          P,      VF,   F    

      REAL*8 HLDLIQ,    TIMLIQ,    HLDVAP,    TIMVAP,    TZERO, 

     +       FT 

      REAL*8 DLOG 

      INTEGER IMISS, IDBG 

      REAL*8 REAL(NREAL), RMISS, C1, C2, C3,  

     +       C4,   C5,   C6,      DKA,    DKR, 

     +       Q,    RATE, RATNET,  KETBE,  KA,  KRATE 

             REAL*8 PHI(N_COMP) 

             REAL*8 DPHI(N_COMP) 

             REAL*8 ACTIV(N_COMP) 

#include "ppexec_user.cmn" 

      EQUIVALENCE (RMISS, USER_RUMISS) 

      EQUIVALENCE (IMISS, USER_IUMISS) 
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#include "dms_maxwrt.cmn" 

#include "dms_lclist.cmn"  

      INTEGER DMS_ALIPOFF3 

#include "dms_plex.cmn" 

      EQUIVALENCE(B(1),IB(1)) 

      DATA IDBG/0/ 

 9010 FORMAT(1X,3(G13.6,1X)) 

 9000 FORMAT('fugly failed at T=',G12.5,'P=',G12.5,'ker=',I4) 

 9020 FORMAT('compo',I3,'mole-frac',G12.5,'activity=',G12.5) 

 9030 FORMAT('stage=',I4,'spec-rate=',G12.5,'net-rate=',G12.5) 

C 

C     BEGIN EXECUTABLE CODE 

      KETBE=DEXP(10.387D0+4060.59D0/T-2.89055D0*DLOG(T)-0.0191544D0*T+ 

     &   5.28586D-5*T**2-5.32977D-8*T**3) 

      KA=DEXP(-1.0707D0+1323.1D0/T) 

      KRATE=(2.0606D12*DEXP(-60.4D3/8.314D0/T)) 

      IF(IDBG.GE.1)THEN 

        WRITE(MAXWRT_MAXBUF(1),9010) FT,DKA,DKR 

        CALL DMS_WRTTRM(1) 

      ENDIF 

      KPHI=1 

C     fugacity coefficient of components in the mixture  

      CALL PPMON_FUGLY(T,P,X(1,1) 

     +     , Y, NCOMP, IDX, NBOPST, KDIAG, KPHI, PHI, DPHI, KER) 

      IF(KER.NE.0)THEN 

        WRITE(MAXWRT_MAXBUF(1),9000) T,P,KER 

        CALL DMS_WRTTRM(1) 

      ENDIF 

C     NEW 

      L_GAMMA=DMS_ALIPOFF3(24) 

      DO J=1,NCOMP 

        ACTIV(J)=dexp(B(L_GAMMA+LCLIST_LBLCLIST+J))*X(J,1) 

      END DO  

      IF(IDBG.GE.1)THEN 

       DO J=1,NCOMP 

         WRITE(MAXWRT_MAXBUF(1),9020) J,X(J,1),ACTIV(J) 

         CALL DMS_WRTTRM(1) 

       END DO 

      ENDIF 

      RATE=REALB(1)*KRATE*(ACTIV(K_ETOH))**2.d0* 

     &     (ACTIV(K_IC4)-ACTIV(K_ETBE)/KETBE/ACTIV(K_ETOH)) 

      RATE=(RATE/(1.D0+KA*ACTIV(K_ETOH))**3.d0)/1.d3 

      RATES(K_IC4)=-RATE 

      RATES(K_ETOH)=-RATE 

      RATES(K_ETBE)=RATE 

      RATES(K_NC4)=0.D+00 

      IF (IDBG.GE.1)THEN 

         WRITE(MAXWRT_MAXBUF(1),9030) NSTAGE,RATE,RATNET 

         CALL DMS_WRTTRM(1) 
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      ENDIF 

      RETURN 

#undef P_MAX3 

      END 

Outdated Fortran code by Luyben and Yu (2008): 

      SUBROUTINE RAETBELB (NSTAGE, NCOMP,   NR,     NRL,     NRV, 

     2                     T,      TLIQ,    TVAP,   P,       VF, 

     3                     F,      X,       Y,      IDX,     NBOPST, 

     4                     KDIAG,  STOIC,   IHLBAS, HLDLIQ,  TIMLIQ, 

     5                     IHVBAS, HLDVAP,  TIMVAP, NINT,    INT, 

     6                     NREAL,  REAL,    RATES,  RATEL,   RATEV, 

     7                     NINTB,  INTB,    NREALB, REALB,   NIWORK, 

     8                     IWORK,  NWORK,   WORK) 

      IMPLICIT NONE 

      INTEGER NCOMP,  NR,      NRL,     NRV,    NINT,   

     +        NINTB,  NREALB,  NIWORK,  NWORK,  N_COMP 

      INTEGER K_ETOH, K_IC4,   K_NC4,   K_ETBE  

      PARAMETER (K_ETOH=1) 

      PARAMETER (K_IC4=2) 

      PARAMETER (K_NC4=3) 

      PARAMETER (K_ETBE=4) 

      PARAMETER (N_COMP=4) 

      INTEGER IDX(NCOMP),   NBOPST(6),      INT(NINT),   

     +        INTB(NINTB),  IWORK(NIWORK),  NSTAGE, 

     +        KDIAG,        IHLBAS,         IHVBAS,     NREAL,  KPHI, 

     +        KER,          L_GAMMA,        J 

      REAL*8 X(NCOMP,3),       Y(NCOMP), 

     +       STOIC(NCOMP,NR),  RATES(NCOMP), 

     +       RATEL(NRL),       RATEV(NRV), 

     +       REALB(NREALB),    WORK(NWORK),   B(1),   T,      

     +       TLIQ,             TVAP,          P,      VF,   F    

      REAL*8 HLDLIQ,    TIMLIQ,    HLDVAP,    TIMVAP,    TZERO, 

     +       FT 

      REAL*8 DLOG 

      INTEGER IMISS, IDBG 

      REAL*8 REAL(NREAL), RMISS, C1, C2, C3,  

     +       C4,   C5,   C6,      DKA,    DKR, 

     +       Q,    RATE, RATNET,  KETBE,  KA,  KRATE 

             REAL*8 PHI(N_COMP) 

             REAL*8 DPHI(N_COMP) 

             REAL*8 ACTIV(N_COMP) 

#include "ppexec_user.cmn" 

      EQUIVALENCE (RMISS, USER_RUMISS) 

      EQUIVALENCE (IMISS, USER_IUMISS) 

#include "dms_maxwrt.cmn" 

#include "dms_ipoff3.cmn" 

#include "dms_plex.cmn" 

      EQUIVALENCE (B(1),IB(1)) 
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      DATA IDBG/0/ 

 9010 FORMAT(1X,3(G13.6,1X)) 

 9000 FORMAT('fugly failed at T=',G12.5,'P=',G12.5,'ker=',I4) 

 9020 FORMAT('compo',I3,'mole-frac',G12.5,'activity=',G12.5) 

 9030 FORMAT('stage=',I4,'spec-rate=',G12.5,'net-rate=',G12.5) 

C 

C     BEGIN EXECUTABLE CODE 

      KETBE=DEXP(10.387D0+4060.59D0/T-2.89055D0*DLOG(T)-0.0191544D0*T+ 

     &   5.28586D-5*T**2-5.32977D-8*T**3) 

      KA=DEXP(-1.0707D0+1323.1D0/T) 

      KRATE=(2.0606D12*DEXP(-60.4D3/8.314D0/T)) 

      IF(IDBG.GE.1)THEN 

        WRITE(MAXWRT_MAXBUF(1),9010) FT,DKA,DKR 

        CALL DMS_WRTTRM(1) 

      ENDIF 

      KPHI=1 

C     fugacity coefficient of components in the mixture  

      CALL PPMON_FUGLY(T,P,X(1,1) 

     +     , Y, NCOMP, IDX, NBOPST, KDIAG, KPHI, PHI, DPHI, KER) 

      IF(KER.NE.0)THEN 

        WRITE(MAXWRT_MAXBUF(1),9000) T,P,KER 

        CALL DMS_WRTTRM(1) 

      ENDIF 

      L_GAMMA=IPOFF3_IPOFF3(24) 

      DO J=1,NCOMP 

        ACTIV(J)=DEXP(B(L_GAMMA+J))*X(J,1) 

      END DO 

      IF(IDBG.GE.1)THEN 

       DO J=1,NCOMP 

         WRITE(MAXWRT_MAXBUF(1),9020) J,X(J,1),ACTIV(J) 

         CALL DMS_WRTTRM(1) 

       END DO 

      ENDIF 

      RATE=REALB(1)*KRATE*(ACTIV(K_ETOH))**2.d0* 

     &     (ACTIV(K_IC4)-ACTIV(K_ETBE)/KETBE/ACTIV(K_ETOH)) 

      RATE=(RATE/(1.D0+KA*ACTIV(K_ETOH))**3.d0)/1.d3 

      RATES(K_IC4)=-RATE 

      RATES(K_ETOH)=-RATE 

      RATES(K_ETBE)=RATE 

      RATES(K_NC4)=0.D+00 

      IF (IDBG.GE.1)THEN 

         WRITE(MAXWRT_MAXBUF(1),9030) NSTAGE,RATE,RATNET 

         CALL DMS_WRTTRM(1) 

      ENDIF 

      RETURN 

#undef P_MAX3 

      END 
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