APPRCXIAATE SOLUTIONS OF CERTAIN
 SHALLOW SHELL PROBLEMS

by
Kenneth Comninos Michael

Volune 1

A thesis submitted for the degree of Doctor of Philosophy in the Faculty of Engineering of the University of London

Concrete Structures and Technology, Civil Engineering Department, Imperial College of Science and Technology, London.

ABSTRACT

The numerical solutions for the shallow doubly curved shells presented in this thesis are based on the shallow curved plate theory.

Thin shells of constant thickness and rectangular plan-form and subject to uniformly distributed nomal loading are considered.

The solution methods include the Rayleigh-Ritz, Galerkin and Lagrangian multiplier methods. These are referred to as indirect methods in this thesis. The method of lines, in which the derivatives in one direction are replaced by finite difference expressions, is also discussed.

Various approximating functions are considered in conjunction with the indirect methods.

Initially the indirect methods and approximating functions are applied to translational shall problens with Levy-type solutions. In this way the indirect solutions are compared with available exact solutions.

The indirect methods are then extended to translational shells with claraped, hinged or normal slide (1) conditions on any two opposite boundaries. Several numerical examples are given and the convergence
of the solutions discussed. An overall equilibrium check is presented. In a similar manner, the indirect methods are applied to ruled surface hyperbolic paraboloids with clornped, hinged, normal slide (1), nornal gable or normal slide (2) conditions on any two opposite boundaries. Several numerical examples are again given and the solutions discussed. An overall equilibrium check is presented. The behaviour of the shell is then studied by varying certain nondimensional parameters.

The method of lines is applied to translational and ruled surface shells with two opposite boundaries clamped and the remaining two sither clamped or free. A system of linear firsi order ardinary differomial equations with constant coefficients is obtained and is solved using the matrix progression method. The numerical difficulties encountered are discussed. In order to reduce the accumulation of rouncloff errors the shell is segmented. A stiffness method is then used to restore equilibrium at the segment junctions. Nurierical examples are presented. Wherever possible comparisons are made with other avaiiable solutions.

ACKMOWLEDGEMENTS

The work described in this thesis was carried out in the Civil Engineering Department of Imperial College. The author is grateful to Professor A.L.L. Baker for the opportunity to undertake this research.

The author is greatly indebted to his supervisor, Dr. J. Munro, for his guidance, encouragement and support given at all times.

The interest shown by Ar. J. C. deC. Henderson is gratefully acknowledged.

The author is grateful for the assistance given by his colleagues, Dr. D. A. Gunasekera, Mr. E.A.W. Maunder and Ar. A. G. Samartin.

The research work was carried out during the tenure of a Commonwealth Scholarship, for which the author is grateful to the Commonwealth Scholarship Commission in the United Kingdom.

The author is grateful to the Commissioner of the Main Roads Deparment, Western Australia, for the granting of special leave.

The encourgement and support shown by Mr. J. ©. Marsh of the :tain :loads Departnent is also gratefully acknowledged.

All the computations in this thesis have been carriod out on the Aflos computer at the University of London Institute of Computer Science The author wishes to thank the staff of the Institute for their comoperation and: generous allocation of computing time.

Thà tabulated Rayleigh functions used in this thesis wera provided by Dr. $\$ \mathbf{\$}$, Kuo, Director of the Computing Centre, University of New Hampshifa, to whom the author expresses his appreciation.

The author thanks Mrs. S.A. Thomas for her painstaking typing of the manuscripts

CONTENTS

VOLUME 1

Page
ABSTRACT 2
ACKNOWLEDGEMENTS 4
NOTATION 13
CHAPTER 1. INTRODUCTION 23
1.1 A Brief Review 23
1.2 Scope of Research 26
CHAPTER 2. SHALLOW CURVED PLATE THEORY 27
2.1 Assumptions and Geomstry of 27 the Shell kiiddle Surface
2.1.1 Simplified Geometry of the 32
Shell Middle Surface
2.2 Vectorial Treatment of Shell 36 Equations
2.2.1 Shell Equations in Terms of 39 the Displacement wad the Peher Stress-resulfant Function 6
2.2.2 Shell Equations in Terms of 40 the Displacements u_{1}, v_{2} and w
Page
2.2.3 Shell Equations in Terms of Four 42 Actions ($\mathrm{n}_{22}, \mathrm{n}_{12}, \mathrm{r}_{2}, \mathrm{~m}_{22}$) and Four Displacements ($\left.u_{2}, u_{1}, w, e\right)$
2.3 Variational Treatment of Shell Equations 47
CHAPTER 3. SOLUTIONS METHODS 57
3.1 Indirect Methods and Approximating 57 Functions
3.1.1 Rayleigh-Pitz Method 58
3.1.2 Galerkin iAethod 59
3.1.3 Lagrangian Multiplier Method 60
3.1.4 Approximaring Functions 64
3.2 Method of Linss 67
CHAPTER 4. APPLICATION OF THE INDIRECT 70 METHODS TO TIANSLATIOMAL Shells Vith levy-type solutions
4.1 Non-Dinensional Form of Equations 70
4.1.1 Aodification for the Lagrangian 77 Multiplier Method
4.2 Boundary Conditions 84
4.3 Reduction to a System of Linear 84 Algebraic Equations
4.3.1 Modification for the Lagrangian 85
Multipliar Method
-3 -
Page
4.4 Convergence Study of the Approximating 88 Functions
4.4.1 Numerical Examples 88
4.4.2 Discussion 90
4.4.3 Some Notes on Functions IC, ID 93 and IF
4.5 Discussion of the Computer Frograms 97
CHAPTER 5. FURTHER APPLICATION OF THE 98 molrect methods to trans- LATIONAL SHELLS
5.1 Non-Dinensional Form of Equations 98
5.1.1 Modifieation for the Lagrangian 103 Multiplier Method
5.2 Boundary Conditions and Approximaring 109 Functions
5.3 Reduction to a System of Linear Algebraic 110 Equations
5.4 Overall Equilibrium Check 118
5.5 Convergence Study of the Approximating 124 Functions
5.5.1 Numerical Examples 124
5.5.2 Discustion 125
5.6 Comparison wish other Available 128 Solutions

Page

5.7 Further Solutions - Variation of Shell 131 Pararneters
5.7.1 Discussion 132
5.8 Discussion of the Computer Prograns 138
CHAPTER 6. APPLICATION OF THE INDIRECT 140 METHODS TO RULED SURFACE SHELLS
6.1 Non-Dimensional Form of Equations 142
6.1.1 Modification for the Lagrangian 147 Multiplier Method
6.2 Boundary Condifions and Approximating 151 Functions
6.3 Reduction to a System of Linear 152 Algebraic Equations
6.4 Overall Equilibrium Check 156
6.5 Convergence Study of the Approximoting 162 Functions
6.5.1 Mumerical Examples 163
6.5.2 Discussion 164
6.6 Comparison with other Availoble 167 Solutions
6.7 Further Solurions - Variation of Shell 172 Parameters
6.7.1 Discussion 172
Page
6.8 Discussion of the Computer Progranns 177
CHAPTER 7. APPLICATION OF THE METHOD OF 180 LINES TO TRANSLATIONAL AND ruled surface shells
7.1 Form of Equations 180
7.2 Boundary Conditions 183
7.3 Finite Difference Formulae 184
7.4 Reduction to a System of Linear First 184 Order Ordinary Differential Equations with Constant Coefficients
7.5 Integration of Equations (7.34) using the 191 Marrix Progression Method
7.5.1 General Solution 191
7.5.2 Direct Application of the 194 Eoundary Conditions at $\beta_{2}=\mathrm{O}, 1$ in Equations (7.35)
7.5.3 Direct Application of the Boundary 195
Conditions of $\beta_{2}=\mathrm{O}$ and the Symmetry Conditions about $\beta_{2}=0.5$ in Equations (7.33)
7.5.4 Solution which Segments the Path 197 of Integrotion - Stiffness Method
7.6 Detormination of Displacements, Stress- 209 resultants and Stress-couples
7.7 Some notos on the Numerieal 211 Computations
7.7.1 The $\underline{\mathcal{G}}\left(\beta_{2}\right)$ Matrix 211
7.7.2 The Pariticular Solution ${\underset{F}{ }}^{(p)}=-A^{-1} Z$ 212
7.7.3 Singularity in the Matrix $G_{12}\left(\beta_{2}\right)$ for 212 Ruled Suríace Shells
7.7.4 Roundoff Errors in the Solution 213
7.7.5 The Determination of $\underset{F}{ }$ along $\boldsymbol{\beta}_{2}$ 214
7.8 Translational Shells 215
7.3.1 Convergence Study - Numerical 215 Examples
7.3.2 Comparison with other Available 217 Solutions
7.3.3 Comparative Study of Different 217 Boundary Conditions
7.9 Ruled Surface Shells 218
7.9.1 Convergence Study - Numerical 219 Examples
7.9.2 Comparison with other Available 220 Solutions
7.9.3 Comparative Study of Different 221 Boundary Conditions
7.10 Discussion of the Computer Programs 222
Chapter 8. Closure 224

Page

REFERENCES 220

APPENDIX 1. RAYLEIGH FUNCTIONS238
APPENDIX 2. IATEGRATION FORMALAE 242
volume 2
ficures 250
TABLES 291

NOTATION

In the following the subscripts \mathbf{i} and \mathbf{j} range over the values 1 and 2.

General	
$\left(x_{1}, x_{2}, z\right)$	Right handed orthogonal cartesian system of axes
($\left.\bar{i}, \bar{i}_{2}, \bar{i}\right)$	Unit vectors in the x_{1}, x_{2} and z directions
	respectively
$\bar{P} \cong \bar{P}\left(\alpha_{1}, \alpha_{2}\right)$	The position vector of a point P measured in the $\left(x_{1}, x_{2}, z\right)$ refarence frame
$\left(a_{1}, \alpha_{2}\right)$	Curvilinear co-ordinates of the shell middle surface
γ	Co-ordinate measured normal to the (α_{1}, α_{2}) set
ds^{2}	The metric of the surface
A_{11}, A_{12}, A_{22}	The coefficients of the first fundanental quadratic
	form
$K_{i i}$	The undeforned curvatures of the shell middle
	surface.
$K_{1} \cdot K_{2}$	Principal curvatures

$$
\begin{array}{ll}
K_{G}=K_{1} K_{2} & \text { Gaussian curvature } \\
c=\frac{K_{1}}{K_{2}} &
\end{array}
$$

Plan lengths of the shell in the a_{1} and a_{2} directions respectively

Defined for translational shells in figure 2.4 Defined for ruled surface shells in figure 2.5
$\rho_{1}=\frac{a_{1}}{T_{1}}$
$\beta_{2}=\frac{\alpha_{2}}{T_{2}}$
x_{i}, z
Loading pressures in the α_{i} and γ directions respectively

Components of the middle surface displacement (referred to as "displacements")

Thickness of the shell
Poisson's ratio
Young ${ }^{2} \mathrm{~s}$ modulus of elasticity
$\left(\varepsilon_{i j}\right)_{r}\left(\varepsilon_{i j}\right) \gamma \quad$ Components of strain on the middle and γ surfaces respectively.
$\left(\sigma_{i i}\right)_{i}\left(\sigma_{i j}\right)_{\gamma} \quad$ Components of stress on the middle and γ
surfaces respectively
$\left.S_{i i}\right]=1, i=i \quad$ Kronecker delta
$\left.\begin{array}{l}\boldsymbol{e}_{i \mathrm{i}}=\varepsilon_{i \mathrm{i}} \\ k_{i j}=-w_{\mathbf{i j}}\end{array}\right\} \quad$ Strain resultants
$n_{i j}$
q_{i}
r_{i}
$m_{i j}$
$K=\frac{E h}{\left(1-\nu^{2}\right)}$
$D=\frac{E h^{3}}{12\left(1-\nu^{2}\right)}$

Membrane stress-resultants

Shear stress-resultants

Kirchhoff shear stress-resultants

Stress-couples

$$
\nabla^{2} \equiv \frac{\partial^{2}}{\partial a_{1}^{2}}+\frac{\partial^{2}}{\partial a_{2}^{2}}
$$

$$
\nabla^{4} \cong \nabla^{2} \nabla^{2}
$$

$$
\nabla_{R}^{2} \equiv K_{22} \frac{\partial^{2}}{\partial \alpha_{1}^{2}}-2 K_{12} \frac{\partial^{2}}{\partial a_{1} \partial a_{2}}+K_{11} \frac{\partial^{2}}{\partial a_{2}^{2}}
$$

$$
\operatorname{col}\{\quad \text { Denotes a column matrix }
$$

$$
1
$$

The unit matrix

Indirect Methods

$T_{1}=\frac{I_{1}}{i}$

Non-zero positive integer

$$
\bar{r}=\frac{T_{1}}{T_{2}}
$$

$$
r=\frac{I_{1}}{T_{2}}
$$

$$
\bar{u}_{i}, \bar{w} \quad \text { Non-dinensional forms of } u_{i} \text { and } w \text { respectively }
$$

$$
\bar{n}_{i j}, \bar{q}_{i}, \bar{r}_{i}, \bar{m}_{i j} \quad \text { Non-dimensional forms of } n_{i j}, q_{i}, r_{i} \text { and } m_{i j}
$$ respectively

$$
\left.\begin{array}{l}
\bar{\rho}_{T}=\frac{h}{T_{1}} \cdot \frac{1}{K_{2} T_{1}}=-\frac{1}{B \bar{r}} \cdot \frac{h}{T_{1}} \cdot \frac{I_{2}}{f_{2}} \\
\rho_{T}=\frac{h}{T_{1}} \cdot \frac{1}{K_{2} I_{1}}=-\frac{1}{\mathcal{B}_{r}} \cdot \frac{h}{T_{1}} \cdot \frac{I_{2}}{f_{2}}
\end{array}\right\} \begin{aligned}
& \text { Non -dimensional } \\
& \text { shell parameters for } \\
& \text { translostional shells }
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\rho_{R}=\frac{h}{T_{1}} \cdot \frac{1}{K_{12} T_{1}} & =\frac{h}{T_{1}} \cdot \frac{I_{2}}{f} \\
& =-\frac{1}{2} \cdot \frac{h}{T_{1}} \cdot \frac{I_{2}}{\bar{f}}
\end{array}\right\} \begin{aligned}
& \text { i.lon-dimensional shell } \\
& \text { parameter for ruled } \\
& \text { surface shells }
\end{aligned}
$$

$\bar{z}_{0}=\frac{z_{0}\left(1-\nu^{2}\right)}{\operatorname{ch}_{2}}$	where Z_{0} is a constant
$\bar{z}=\frac{z\left(1-\nu^{2}\right)}{\omega K_{2}}$	or $\frac{Z\left(1-\nu^{2}\right)}{K_{12}}$
$\lambda_{m}, \bar{\lambda}_{m}$	Lagrangian multipliers
$\lambda_{i n}^{e}{ }^{e} \bar{\lambda}_{m}^{e}$	Constants associated with the Lagrangian multipliers
L_{1}^{e}, L_{2}^{e}	Sets of independent functions
Q	Nomnal reactive force at a corner of the shell and is positive when acting in the $(-\gamma)$ direction
E_{1}, E_{2}, E_{3}	Errors in equilibrium for one quarier of the shell
$\bar{E}_{1}, \bar{E}_{2}, \bar{E}_{3}$	Non-dimensional forms of E_{1}, E_{2} and E_{3} respectively
m, n, e	Positive infegers
$\bar{\bigcirc}$	M lon-dinansional form of Q

Method of Lines

$$
\begin{aligned}
& \theta=w_{1} \\
& \underline{Y}=\operatorname{col}\left\{n_{22} \cdot n_{12} m_{22} r_{2} u_{2} u_{1} \theta w\right\}(8 \times 1) \text { Matrix } \\
& \underline{I}=\operatorname{col}\left\{\cdot \cdot \cdot Z_{2} \cdot \cdot \cdot \cdot\right\}(8 \times 1) \text { Matrix }
\end{aligned}
$$

$$
N \quad \text { The region bounded by } \beta_{1}=0 \text { and } \beta_{1}=1 \text { is }
$$ divided into 2 N equal divisions by the lines

$$
\beta_{1}^{k}(k=0,1,2, \ldots, 2 N)
$$

$$
a=\frac{1}{2 N}
$$

$$
y^{k} \quad \text { Denotes the value of a displacement, stress- }
$$

$$
\text { resultant or stress-couple along the line } \beta_{1}^{k}
$$

$$
\underline{y}=\operatorname{col}\left\{\begin{array}{llll}
y^{1} & y^{2} & \left.\ldots . y^{k} \ldots \ldots y^{N}\right\}(N \times 1) \text { Matrix } .
\end{array}\right.
$$

$$
z^{k} \quad \text { Uniformly distributed normal loading along the }
$$

$$
\text { line } \beta_{1}^{k}
$$

$$
\underline{Z}=\operatorname{col}\left\{\begin{array}{llll}
z^{1} & z^{2} & \ldots & \left.z^{k} \ldots \ldots z^{N}\right\}(N \times 1) \text { Matrix }
\end{array}\right.
$$

$$
\underline{x}=x\left(\beta_{2}\right)=\operatorname{col}\left\{\begin{array}{llll}
\underline{n}_{22}, & \underline{n}_{12}, & \underline{m}_{2} \prime & \underline{r}_{2}
\end{array}\right\} \quad \text { Actions } \begin{aligned}
& (4 \mathrm{~N} \times 1) \\
& \text { Matrix }
\end{aligned}
$$

$$
\begin{aligned}
& \underline{U} \equiv \underline{U}\left(\beta_{2}\right)=\operatorname{col}\left\{\underline{u}_{2}, \underline{u_{1}}, \underline{\theta}, \underline{w}\right\} \quad \text { Displacements }(4 N \times 1) \text { Matrix } \\
& F \equiv \underline{F}\left(\beta_{2}\right)=\operatorname{col}\{\underset{\sim}{x}, \underline{U}\} \quad(8 N \times 1) \text { Matrix } \\
& \underline{\underline{U}}=\operatorname{col}\left\{\cdot \cdot \cdot I_{2} \underline{\underline{L}} \cdot \vec{e} \cdot\right\}(8 N \times 1) \text { Matrix }
\end{aligned}
$$

A Matrix defined by equations (7.33)
$\underline{F}^{(p)}=-\underline{A}^{-1} \underline{\underline{Z}}=\operatorname{col}\left\{\underline{x}^{(p)}, \underline{U}^{(p)}\right\} \quad$ The particular solution
$\underline{x}^{(p)}=\operatorname{col}\left\{\underline{n}_{22}^{(p)}, \underline{n}_{12}^{(p)}, \underline{m}_{22}^{(p)}, \underline{m}_{2}^{(p)}\right\} \quad(4 N \times 1)$ Matrix
$\underline{U}^{(p)}=\operatorname{col}\left\{\underline{u}^{(p)}, \underline{u}^{(p)}, \underline{e}^{(p)}, \underline{w}^{(p)}\right\}(\langle N \times 1)$ Matrix
$\underline{G}\left(\rho_{2}\right)=e^{-A_{2}} \quad$ The distribution or transfer matrix $\quad(8 \mathrm{~N} \times 8 \mathrm{~N})$
$G_{i j}\left(\beta_{2}\right) \quad$ Submatrices of $\underline{G}\left(\beta_{2}\right) \quad(4 N \times 4 N)$
$F_{q} \equiv E_{B_{2}=q}$
$\underline{C} \equiv \underline{C}\left(\beta_{2}\right)=\underline{E} \underline{F}^{(p)}$
$\bar{X}_{1}^{m}, \bar{X}_{2}^{m} \quad$ Actions at edges 1 and 2 of segment m
$\underline{\bar{U}}_{1}^{\mathrm{n}}, \underline{\bar{U}}_{2}^{m} \quad$ Displacements at edges 1 and 2 of segment m

CHAPTER 1

INTRODUCTION

This thesis is concerned with the numerical solution of the shallow curved plate equations. In the following a brief review of some of the references noted will precede a discussion on the scope of the research.

1.1 A Brief Review

The shallow cylindrical shell equations have been derived by Donnell ${ }^{(1),(2) *}$ for shell buckling problems. Jenkins ${ }^{(3)}$ presented the stiffiness (displacement) matrix method for transversely continuous shell and edge beam problems using a Levy-type solution of the Donnell equations. Extended Levy methods of solution have been used by Newnan ${ }^{(4)}, \mathrm{Lu}{ }^{(5)}$ and Gunasekera ${ }^{(6)}$. Chuang and Veletsos ${ }^{(7)}$ have

[^0]used the Rayleigh-Ritz and Lagrangian multiplior methods and also a finite difference technique. Several types of approximating functions are considered by Chuang and Volotsos but only with Levy-type solutions.

For the case of translational shells the equations for the shallow curved plate theory are obrainable from the work of Marguerre ${ }^{(3)}$ and of Vlasov ${ }^{(9)}$. Navier-type solutions have been discussed by Ambartsumyan and by Flugge and Conrad ${ }^{(11)}$ and Levy-type solutions by Bouma ${ }^{(12)}$ and by Apeland ${ }^{(13)}$. The extonded Levy method has been discussed by Ansah ${ }^{(14)}$ and by Gunasckera ${ }^{(6)}$. Noor and Veletsos ${ }^{(15)}$ extended the work of Chuang and Veleisos ${ }^{(7)}$ to translational shells. Further suggested solution procoduros have used a variational mathod $(16),(17)$ a finito difference ${ }^{(13)}$ techniquo and a discrate alemens technique ${ }^{(19)}$.

For the case of ruled surface hyperbolic paraboloid shells, it has been shown that the Mevier and Levy-iype solutions corrospond to unrcalistic boundary conditions ${ }^{(2 \mathrm{O})}$. However such solutions are of inferest and hove been discussed by Apeland and Popov (21),(22). Variational methods have been suggosted by Tottenhan (23), (24) and by Cheity ${ }^{(25),(26)}$. Further suggested solution procedures have used a finite difference techniqua ${ }^{(27)}{ }^{(20)}$, a discrape clement technique ${ }^{(19)}$, an extended Levy method ${ }^{(29),(8)}$ and a finite element method ${ }^{(30),(31)}$. Various
approximate methods have been suggested for this problein $(32),(33),(34),(35)$.
In this thesis the Rayleigh-Ritz, Galerkin and Lagrangian multiplier methods (referred to as "indirect methods" in this thesis) will be used. A useful review of these and other indirect methods is given by Finlayson and Scriven ${ }^{(36)}$. This reference includes an extensive bibliography.

Use will also be made of Rayleigh functions ${ }^{(37)}$, which hove been applied to shell problems by Vlasov $^{(9)}$, Oniashvilli ${ }^{(38)}$, Morice ${ }^{(39)}$ and by Munro ${ }^{(35)}$.

Considaration will also be given to the method of lines in which, for two dimensional problems, the derivatives in one direction are replaced by finite difference expressions. Smirnov ${ }^{(4 \mathrm{O})}$ attributes the mothod to Rothe ${ }^{(41)}$. The nethod was later applied by Hartree ${ }^{(42)}$, Slobodyansky ${ }^{(43)}$ and by Faddeyeva ${ }^{(44)}$. The latter two references are discussed by Mikhlin ${ }^{(45)}$. A further description of the method is given by Berezin and Zhidkov ${ }^{(46)}$. Jenkins and Toitenhamn ${ }^{(\$ 7)}$ applied the method of lines to doubly curved shells, but did not present any numerical results. Chetty ${ }^{(25)}$ applied this method to ruled surface hyperbolic paraboloids and presented solutions for two set's of conditions on all boundaries (viz., clamped and nomal goble condifions).

However, Chetty ${ }^{(25)}$ made no study of the convergence of the solution as the number of lines varied.

1.2 Scope of Research

The scope of the research will be to:
(a) apply indirect methods (Raylaigh-Ritz, Galerkin and Lagrangian multiplier methods) in conjunction with various approximating functions to translational shells for which on exact solution is possible,*
(b) apply the indirect methods and approximating functions to translational shells with various:boundory conditions for which an exact solution is not possible,
(c) apply the indirect methods and approximating functions to ruled surface shells with various boundary conditions,
(d) study the behoviour of iranslational and ruled surface shells as certain non-dimensional parameters are varied,
(e) apply the method of lines to translational and ruled surface shells.
*This exact solution is obtainable from a Levy-type solution.

CHAPTER 2

SHALLOW CURVED PLATE THEORY

In this chapter assumptions in addition to those made in the classical theory of thin shells will be first discussed. The required shell equations will be then derived vectorially and variationally. In the vectorial treatment, the fundamental varidoles are directed quantities (displacements and forces) and in the variational treatment, the fundamental quantities are scalars (potential energy).

2.1 Assumptions and Geometry of the Shell Middle Surface

Let $\left(x_{1}, x_{2}, z\right)$ be a right handed orthogonal cartesian system of axes and let \bar{i}_{1}, \bar{i}_{2} and \bar{i} be unit vectors in x_{1}, x_{2} and z directions respectively (figure 2.1).

Let \bar{P} be the position vector of a point P measured in the (x_{1}, x_{2}, z) reference frame and let it be a function of two parameters α_{1} and α_{2}. As α_{1} and α_{2} vary a surface is described. Let this represent the middie surface of the shell.

The curve described when one parameter is varied while the other is kept constant is a parometric curve.

In parametric form:

$$
\begin{align*}
& x_{1} \equiv x_{1}\left(\alpha_{1}, \alpha_{2}\right) \tag{2,1}\\
& x_{2} \equiv x_{2}\left(\alpha_{1}, \alpha_{2}\right) \tag{2.2}\\
& z \equiv z\left(\alpha_{1}, \alpha_{2}\right) \tag{2.3}
\end{align*}
$$

Then the position vector $\overrightarrow{\mathrm{P}}$ is given by:

$$
\begin{equation*}
. \bar{p}=x_{1} \bar{i}_{1}+x_{2} \bar{i}_{2}+z \bar{i} \tag{2,4}
\end{equation*}
$$

Using comma notation to reprecent partial differentiotion with respect to α_{1} or α_{2}, the partial derivatives of \bar{p} are given bys

$$
\begin{align*}
& \vec{P}_{1}=x_{1,1} \bar{i}_{1}+x_{2,1} \bar{i}_{2}+z_{, 1} \bar{i} \tag{2.5}\\
& \bar{P}_{, 2}=x_{1,2} \bar{i}_{1}+x_{2,2} \bar{i}_{2}+z_{r} \bar{i}^{\bar{i}} \tag{2.6}
\end{align*}
$$

Let the magnitude of the vectors \bar{P}_{11} and \bar{P}_{2} be A_{11} and A_{22} respectively.

The first fundamental quadratic form of the surface is given by (figure 2.2):

$$
\begin{equation*}
d s^{2}=d \bar{P}: d \bar{P}=A_{11}^{2} d a_{1}^{2}+2 A_{12} d a_{1} d a_{2}+A_{22}^{2} d a_{2}^{2} \tag{2.7}
\end{equation*}
$$

where A_{11}, A_{22} and A_{12} are termed the coefficients of the first fundamental quadratic form and are defined by:

$$
\begin{align*}
& A_{11}^{2}=\bar{P}_{1} \cdot i \vec{P}_{\prime 1}=\left(x_{1,1}\right)^{2}+\left(x_{2,1}\right)^{2}+\left(z_{, 1}\right)^{2} \tag{2,3}\\
& A_{22}^{2}=\bar{P}_{12} \cdot \bar{P}_{12}=\left(x_{1,2}\right)^{2}+\left(x_{2,2}\right)^{2}+\left(z_{r 2}\right)^{2} \tag{2.9}\\
& A_{12}=\bar{P}_{1} \cdot \bar{P}_{\prime 2}=A_{11} A_{22} \cos X= \\
&=\left(x_{1,1}\right)\left(x_{1,2}\right)+\left(x_{2,1}\right)\left(x_{2,2}\right)+\left(z_{, 1}\right)\left(z_{, 2}\right) \tag{2.10}
\end{align*}
$$

The quantity ds^{2} is termed the metric of the surface.
Consider, for example, the middle surface of the circular cylindrical shell of radius R given in figure 2.3.

Then

$$
\begin{align*}
& x_{1}=\alpha_{1} \tag{2.11}\\
& x_{2}=R \sin \left(\frac{I_{2}}{2 R}\right)-R \sin \left(\frac{I_{2}-2 \alpha_{2}}{2 R}\right) \tag{2.12}\\
& z=R \cos \left(\frac{I_{2}}{2 R}\right)-R \cos \left(\frac{I_{2}-2 \alpha_{2}}{2 R}\right) \tag{2.13}
\end{align*}
$$

Substituting equations (2.11), (2.12) and (2.13) into equations (2.8), (2.9) and (2.10) yields:

$$
\begin{align*}
& A_{11}^{2}=1 \tag{2.14}\\
& A_{22}^{2}=1 \tag{2.15}\\
& A_{12}=0 \tag{2.16}
\end{align*}
$$

If the parameters chosen were α_{1} and \varnothing (figure 2.3) then

$$
\begin{align*}
& A_{11}^{2}=1 \tag{2,17}\\
& A_{22}^{2}=R^{2} \tag{2.18}\\
& A_{12}=0 \tag{2.19}
\end{align*}
$$

Surfaces which have zero Gaussian curvature, such as the cylindrical surface in the above example, are developoble surfaces and are isometric to a plane. ${ }^{(48)}$ For such surfaces an $\left(\alpha_{1}, \alpha_{2}\right)$ set exists such that A_{11} and \hat{A}_{22} are constants and A_{12} is zero. For other surfaces this is not the cose. (49)

For surfaces which are not isometric to a plane the curved plate approximation consists of taking $A_{12}=0$ and A_{11} and A_{22} as constants, which, in particular, may be taken as unity.

Then equation (2.7) becomes:

$$
d s^{2}=\mathrm{di}-\mathrm{d}{ }_{1}^{2}+d a_{2}^{2}
$$

The shallow shell static approximation can be stated as:

$$
\begin{equation*}
K_{i j}{ }^{[r s} \ll n_{p q} \tag{2.21a}
\end{equation*}
$$

where $K_{i j}$ is the undefonned curvature of the middle surface, $m_{r s}$ is a stress-couple, $n_{p q}$ is a stress-resultant; and $i_{i}, i_{1}, q_{,} r_{\mu}$ s range over the values 1 and 2. The quantities $m_{r s}$ and $n_{p q}$ will be defined in section (2.2).

The shallow shell kinematic approximation can be stated as: ${ }^{(50)}$

$$
\begin{equation*}
\gamma_{i j} \ll 1 \tag{2,2lb}
\end{equation*}
$$

where γ is measured in the direction normal to the $\left(a_{1}, a_{2}\right)$ set (refer to sections 2.1.1 and 2.2.).

When the shallow shell approximations are made in conjunction with the geometric simplifications of the curved plate approximations the shallow curved plate theory results.

This thesis will be restricted to shallow curved plates which are thin, of constant thickness and rectangular planaform.

The loading will be static and all problems will be linearised. Linearisation will be achieved by assuming:
(a) linearly elastic consfitutive relations
(b) small (infinitesimal) displacements
(c) linearised strain-displacement relations.

2.1.1 Simplified Geornetry of the Shell. Middle Surface

In this section the shell types used in this thesis will be discussed in conjunction with the curved plate approximations

Let the middle surface of the shell, in terms of the reference frame $\left(x_{1}, x_{2}, z\right)$ be defined by:

$$
\begin{equation*}
z=\frac{1}{2} a_{1} x_{1}^{2}+\frac{1}{2} a_{2} x_{2}^{2}+a_{3} x_{1} x_{2}+a_{4} x_{1}+a_{5} x_{2}+a_{6} \tag{2.22}
\end{equation*}
$$

where $a_{i}(i=1,2, \ldots, 6)$ are constants.
Let the $\left(\alpha_{1}, \alpha_{2}\right)$ set be dafined by the intersection of the $x_{1}=$ constant and $x_{2}=$ constant planes with the middle surface of the shell and let γ be mutually orthogonal to the $\left(\alpha_{1}, \alpha_{2}\right)$ set.

Within the limits of the curved plate approximations:
(a) the $\left(\alpha_{1}, \alpha_{2}\right)$ set is sensibly orthogonal
and (b) the products of the slopes, $\frac{\partial z}{\partial x_{1}} \quad \because \quad$ and $\quad \frac{\partial z}{\partial x_{2}}$, of the undeformed middle surface of the shell are negligible compored with unity.

From (b) and equation (2.22) the undeformad curvatures of the shell middle surface are constant and given by:

$$
\begin{align*}
& K_{11} \simeq \frac{\partial^{2} z}{\partial x_{1}^{2}}=a_{1} \tag{2.23}\\
& K_{12} \simeq \frac{\partial^{2} z}{\partial x_{1} \partial x_{2}}=a_{3} \tag{2.24}\\
& K_{22} \simeq \frac{\partial^{2} z}{\partial x_{2}^{2}}=a_{2} \tag{2.25}
\end{align*}
$$

K_{11} is the undeformed curvature of the α_{1} line, K_{22} is the undeformed curvature of the α_{2} line and K_{12} is the undeformed twist of the middle surface.

The shells considered are classified under translational and ruled surface shells.

1 Translational Shells (figure 2.4):

When $a_{3}=O$, equation (2.22) defines a translational shell.
Let K_{1} and K_{2} be the principal curvatures and let K_{G} denote the Gaussian curvature.

Then

$$
K_{G}=K_{1} K_{2}
$$

Within the curved plate approximations $K_{1} \simeq K_{11}$ and $K_{2} \simeq K_{22}$.
Then the equation of the middle surface of a translational shell is given by:

$$
\begin{gather*}
z=\frac{K_{2}}{2}\left[c\left(x_{1}{ }^{2}-I_{1} x_{1}\right)+\left(x_{2}{ }^{2}-I_{2} x_{2}\right)\right] \tag{2,26}\\
c=\frac{K_{1}}{K_{2}} \tag{2.27}\\
K_{1}=-\frac{8 f_{1}}{I_{1}^{2}} \tag{2.28}\\
K_{2}=-\frac{8 r_{2}}{1_{2}^{2}} \tag{2.29}
\end{gather*}
$$

where f_{1}, f_{2}, I_{1} and I_{2} are defined in figure 2.4.
Translational shells may be further classified according to their Gaussian curvature into:
(a) elliptic paraboloids for which $\mathrm{K}_{\mathrm{G}}>0$
(b) hyperbolic paraboloids for which $\mathrm{K}_{\mathrm{G}}<0$
and (c) parabolic cylinders for which $K_{G}=0$.

Note that with a circular cylinder it is not necessary to resort to the geometric simplifications of the curved plate opproximations (refer to the example considered in section 2.1).

II Ruled Surface Shells (figure 2.5):
This classification follows when $K_{11}=0=K_{22}$ and $K_{12} \neq 0$.
Such shells will be referred to as "ruled surface hyperbolic paraboloid shells" or simply "ruled surface shells".

In figure 2.5 two altemative definitions for the equation of the middle surface are given.

In figure 2.5a the equation of the middle surface is given by:

$$
\begin{equation*}
z=K_{12} x_{1} x_{2} \tag{2,3O}
\end{equation*}
$$

where $\quad K_{12}=\frac{f}{T_{12}}$
and where f, I_{1} and I_{2} are defined in figure 2.5a. This form is only symmetric about one diagonal.

In figure 2.5b the equation of the middle surface is given by:
$z=K_{12}\left(-\frac{I_{2} x_{1}}{2}-\frac{I_{1} x_{2}}{2}+x_{1} x_{2}\right)$
where $\quad \mathrm{K}_{12}=-\frac{2 \overline{\mathrm{~F}}}{T_{1} T_{2}}$
where $\bar{f}\left(=-\frac{f}{2}\right), I_{1}$ and I_{2} are defined in figure 2.5b. This form is symmetric about either diagonal, and will be used in conjunction with the overall equilibrium check in section 6.4.
(9)

Vlasov ${ }^{(9)}$ considers that the simplifications made are such that the theory is sufficiently accurate if the maximum (rise/length) ratio does not exceed $\frac{1}{5}$.

2.2 Vectorial Treatment of Shell Equations

Consider a differential element of the shell (figure 2.60 and 2.6b).
Using the Einstein summation convention, the equations of equilibrium for a shallow curved plate are:

$$
\begin{align*}
& n_{i j}{ }^{\prime}+x_{i}=0 \tag{2.34}\\
& k_{i j} n_{i j}+q_{i, i}+z=0 \tag{2.35}\\
& m_{i i, i}-q_{i}=0 \tag{2,36}
\end{align*}
$$

where $n_{i j}$ and q_{i} will be termed stress-resultants, $m_{i j}$ will be termed stress-couples, $K_{i j}$ are the undeformed curvatures of the shell middle surface, X_{i} and Z are the loading pressures in the α_{i} and y directions
respectively and \mathbf{i} and \mathbf{j} range over the values $\mathbf{1}$ and 2. Comma notation is used to represent partial differentiation.

The components of strain on the middle surface are given by:

$$
\begin{equation*}
\varepsilon_{i i}=\frac{1}{2}\left(u_{i, i}+u_{i, i}-2 K_{i j} w\right) \tag{2,37}
\end{equation*}
$$

where v_{i} and w are the middle surface displacement components (hereafter referred to as "displacenents"). After neglecting $\gamma^{K}{ }_{11}$ and $\gamma \mathrm{K}_{22}$ compared with unity (Love's first approximation), the components of strain on the γ surface (figure 2.7) of the shell are given by:

$$
\begin{equation*}
\left(\varepsilon_{i j}\right)_{\gamma}=\varepsilon_{i j}-\gamma w_{i j} \tag{2.38}
\end{equation*}
$$

Again, after neglecting $\gamma^{K}{ }_{11}$ and γK_{22} compared with unity and ossuming the middle and centroidal surfaces to coincide (figure 2.8$)_{r}^{(3),(2 O)}$ the stress-resultants $n_{i j}$ and the stress-couples $m_{i j}$ are defined by:

$$
\begin{align*}
& n_{i j}=\int_{-\frac{h}{2}}^{+\frac{h}{2}}\left(\sigma_{i j}\right)_{\gamma} d \gamma \tag{2.39}\\
& m_{i j}=\int_{-\frac{h}{2}}^{+\frac{h}{2}} \gamma\left(\sigma_{i j}\right)_{\gamma}^{d \gamma} \tag{2.4O}
\end{align*}
$$

where h is the shell thickness and $\left(\sigma_{i j}\right)$ are the components of stress on the γ surface.

The constitutive relations are:

$$
\begin{equation*}
\sigma_{i j}=\frac{E}{\left(1-\nu^{2}\right)}\left[(1-\nu) \varepsilon_{i j}+\nu \delta_{i i} \varepsilon_{p p}\right] \tag{2.41}
\end{equation*}
$$

where E is Young's modulus of elasticity of the shell material, is Poisson's ratio and $\delta_{i j}$ is the Kronecker delta.

Introducing the strain-resultants $\mathbf{e}_{\mathbf{i j}}$ and $k_{i j}$ defined by:

$$
\begin{align*}
& \mathbf{e}_{\mathrm{ij}}=\varepsilon_{\mathrm{ij}} \tag{2,42}\\
& \mathrm{k}_{\mathrm{ij}}=-\mathrm{w}_{\mathbf{r} i \mathrm{i}} \tag{2.43}
\end{align*}
$$

then, from equations (2.37) to (2.43) inclusive, the stress-resultants, $n_{i j}{ }^{\prime}$ and the stress couples, $m_{i j}$, can be expressed in the following form:

$$
\begin{align*}
& n_{i j}=K\left[(1-\nu) e_{i j}+\nu \delta_{i j} e_{p p}\right] \tag{2.44}\\
& m_{i j}=D\left[(1-\nu) k_{i j}+\nu \delta_{i j} k_{p p}\right] \tag{2.45}
\end{align*}
$$

where

$$
\begin{equation*}
K=\frac{E h}{\left(1-\nu^{2}\right)} \tag{2.46}
\end{equation*}
$$

$$
\begin{equation*}
D=\frac{\varepsilon^{3}}{12\left(1-\nu^{2}\right)} \tag{2.47}
\end{equation*}
$$

In the following the forns of the shell equations referred to in this thesis will be derived.
2.2.1. Shell Equations in Terms of the Displacement wand

$$
\text { the Fücher Stress-Resultant Function } \phi
$$

The Pücher stress-resultant function is defined bys

$$
\begin{align*}
& n_{11}=\phi_{r_{22}}-\int x_{1} d a_{1} \tag{2.48}\\
& n_{12}=-\phi_{12} \tag{2.49}\\
& n_{22}=\phi_{11}-\int x_{2} d a_{2} \tag{2.50}
\end{align*}
$$

The equations of equilibrium (2.34), (2.35) and (2.36), after eliminating q_{i} and substituting for $n_{i j}$ and $n_{i j}$ by equations (2.43), (2.45), (2.48), (2.49) and (2.50), reduce to the single equation:
$D \nabla^{4} w-\nabla_{R}^{4} \phi=Z-K_{11} \int x_{1} d \alpha_{1}-K_{22} \int x_{2} d \alpha_{2}$
where

$$
\begin{aligned}
& \nabla^{4} \equiv \nabla^{2} \nabla^{2} \\
& \nabla^{2} \equiv \frac{\partial^{2}}{\partial \alpha_{1}^{2}}+\frac{\partial^{2}}{\partial \alpha_{2}^{2}} \\
& \nabla_{R}^{2} \equiv K_{22} \frac{\partial^{2}}{\partial a_{1}^{2}}-2 K_{12} \frac{\partial^{2}}{\partial a_{1} \partial a_{2}}+K_{11} \frac{\partial^{2}}{\partial a_{2}^{2}}
\end{aligned}
$$

The second equation linking w and ϕ is obtained from the compatibility equation:

$$
\begin{equation*}
\varepsilon_{11,22}-2 \varepsilon_{12,12}+\varepsilon_{22,11}=-\epsilon_{h} \nabla_{R^{w}}^{2} \tag{2,52}
\end{equation*}
$$

which, from equations (2.42), (2.44), (2.48), (2.49) and (2.50), yields
$\nabla^{4} 6+E h \nabla_{R}^{2} w=\frac{\partial^{2}}{\partial \alpha_{2}^{2}} \int x_{1} d \alpha_{1}+\frac{\partial^{2}}{\partial \alpha_{1}^{2}} \int x_{2} d \alpha_{2}-$

$$
\begin{equation*}
-\nu\left(\frac{\partial \kappa_{1}}{\partial \alpha_{1}}+\frac{\partial \kappa_{2}}{\partial \alpha_{2}}\right) \tag{2.53}
\end{equation*}
$$

2.2.2. Shell Equations in Terms of the Displacements U_{1}, U_{2} and w

Equations (2.34) and (2.35), after substituting for q_{i} from equation (2.36) expressing $n_{i j}$ and $m_{i j}$ in terms of the displacements u_{1}, u_{2} and w
from equations (2.37), (2.42), (2.43), (2.44) and (2.45), yield the required equations, which in matrix form are:

$$
\left[\begin{array}{lll}
L_{11} & L_{12} & L_{13} \tag{2.54}\\
L_{21} & L_{22} & L_{23} \\
L_{31} & L_{32} & L_{33}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
-w
\end{array}\right]+\frac{\left(1-\nu^{2}\right)}{E h}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

where

$$
\begin{aligned}
& L_{11}=\left[\frac{\partial^{2}}{\partial \alpha_{1}{ }^{2}}+\frac{(1-\nu)}{2} \frac{\partial^{2}}{\partial \alpha_{2}{ }^{2}}\right] \\
& L_{12}=\left[\frac{(1+\nu)}{2} \frac{\partial^{2}}{\partial \alpha_{1} \partial \alpha_{2}}\right]=L_{21} \\
& L_{13}=\left[(1-\nu) K_{12} \frac{\partial}{\partial \alpha_{2}}+\left(K_{11}+\nu K_{22}\right) \frac{\partial}{\partial \alpha_{1}}\right]=L_{31} \\
& L_{22}=\left[\frac{(1-\nu)}{2} \frac{\partial^{2}}{\partial \alpha_{1}^{2}}+\frac{\partial^{2}}{\partial \alpha_{2}^{2}}\right] \\
& L_{23}=\left[(1-\nu) K_{12} \frac{\partial}{\partial \alpha_{1}}+\left(K_{22}+\nu K_{11}\right) \frac{\partial}{\partial \alpha_{2}}\right]=L_{32}
\end{aligned}
$$

$$
L_{33}=\left[\frac{h^{2}}{12} \nabla^{4}+K_{11}^{2}+2(1-\nu) K_{12}^{2}+2 \nu K_{11} K_{22}+K_{22}^{2}\right]
$$

2.2.3 Shell Equations in Terms of Four Actions $\left(n_{22}, n_{12}, r_{2}, m_{22}\right)$
and Four Displacements $\left(u_{2}, u, w, \theta\right)$
The form of the equations derived in this section will be used in conjunction with the method of lines (Chapter 7), as discussed by Jenkins and Tottenham.

The equations of equilibrium (2.34), (2.35) and (2.36) when written out in full are:

$$
\begin{align*}
& n_{11,1}+n_{12,2}+K_{1}=0 \tag{2.55}\\
& n_{12,1}+n_{22,2}+x_{2}=0 \tag{2.56}\\
& K_{11} n_{11}+2 K_{12} n_{12}+n_{22} K_{22}+q_{1,1}+q_{2,2}+z=0 \tag{2.57}\\
& m_{11,1}+n_{12,2}-q_{1}=0 \tag{2.58}\\
& m_{12,1}+m_{22,2}-q_{2}=0 \tag{2.59}
\end{align*}
$$

The Kirchhoff shears are given by:

$$
\begin{align*}
& r_{1}=q_{1}+m_{12,2} \tag{2.60}\\
& r_{2}=q_{2}+m_{12,1} \tag{2.61}
\end{align*}
$$

Equations (2,44) and (2,45) when written out in full ares

$$
\begin{align*}
& n_{11}=\frac{E h}{\left(1-\nu^{2}\right)}\left[u_{1,1}+\nu u_{2,2}-\left(K_{11}+\nu K_{22}\right) w_{1}\right] \tag{2.62}\\
& n_{22}=\frac{E h}{\left(1-\nu^{2}\right)}\left[u_{2,2}+\nu u_{1,1}-\left(K_{22}+\nu K_{11}\right) w\right] \tag{2,63}\\
& n_{12}=\frac{E h}{2(1+\nu)}\left[u_{1,2}+u_{2,1}-2 K_{12} w\right] \tag{2.64}\\
& m_{11}=\frac{-E h^{3}}{12\left(1-\nu^{2}\right)}\left[w_{r 11}+\nu w_{\prime}, 22\right] \tag{2,65}\\
& m_{22}=\frac{-E h^{3}}{12\left(1-\nu^{2}\right)}\left[w_{\prime 2}+\nu w_{\prime 1}\right] \tag{2.66}\\
& m_{12}=-\frac{E h^{3}}{12(1+\nu)}\left[w_{1} 12\right] \tag{2.67}
\end{align*}
$$

From equations (2.62), (2.63), (2.65) and (2.66) the following are obtained:

$$
\begin{align*}
& n_{11}-\nu n_{22}=\operatorname{ch}\left(u_{1,1}-K_{11} w\right) \tag{2.68}\\
& n_{22}-\nu n_{11}=\operatorname{ch}\left(u_{2,2}-K_{22} w\right) \tag{2.67}
\end{align*}
$$

$$
\begin{align*}
& m_{11}-\nu m_{22}=-\frac{E h^{3}}{12}(w, 11) \tag{2,70}\\
& m_{22}-\nu m_{11}=-\frac{E h^{3}}{12}(w, 22) \tag{2.71}
\end{align*}
$$

From equations (2.55) and (2.68) the following is obtained

$$
\begin{equation*}
n_{12,2}+\nu n_{22,1}+\operatorname{Sh}\left(u_{1,11}-K_{11} w_{p}\right)+x_{1}=0 \tag{2.72}
\end{equation*}
$$

Defining

$$
\begin{equation*}
\theta=w_{2} \tag{2.73}
\end{equation*}
$$

then equations (2.58), (2.61) and (2.67) yield the following:

$$
\begin{equation*}
m_{22,2}-r_{2}-\frac{E h^{3}}{6(1+\nu)}{ }^{\theta} 11=0 \tag{2.74}
\end{equation*}
$$

From equations (2.57), (2.58), (2.61), (2.68) and (2.70), the following equation is obtained:

$$
\begin{align*}
r_{2,2} & +2 K_{12} n_{12}+\left(K_{22}+\nu K_{11}\right) n_{22}+\nu m_{22,11}+ \\
& +E h K_{11} u_{1,1}-E h K_{11}{ }^{2} w-\frac{E h^{3}}{12} w_{r 111}+Z=0 \tag{2.75}
\end{align*}
$$

The required equations are given by (2.56), (2.63), (2.64), (2.66), (2.72),
(2.73), (2.74) and (2.75), and can be arranged in the following matrix forms

where

$$
\begin{aligned}
& A_{12}=\frac{\partial}{\partial \alpha_{1}}=A_{65} \\
& A_{21}=\nu \frac{\partial}{\partial \alpha_{1}}=A_{56} \\
& A_{26}=E h \frac{\partial^{2}}{\partial a_{1}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& A_{28}=- \text { EcK }_{11} \frac{\partial}{\partial a_{1}}=-A_{46} \\
& A_{34}=-1=A_{37} \\
& A_{37}=-\frac{E h^{3}}{8(1+\nu)} \frac{\partial^{2}}{\partial a_{i}{ }^{2}} \\
& A_{41}=\left(K_{22}+V K_{11}\right)=-A_{58} \\
& A_{42}=2 K_{12}=-A_{60} \\
& A_{43}=\nu \frac{\partial^{2}}{\partial a_{1}^{2}}=A_{78} \\
& A_{48}=\left[-E K_{11}^{2}-\frac{E h^{3}}{12} \frac{\partial^{4}}{\partial \alpha_{1}^{4}}\right]^{*} \\
& A_{51}=-\frac{\left(1-\nu^{2}\right)}{E h} \\
& A_{62}=-\frac{2(1+\nu)}{E h}
\end{aligned}
$$

*Jenkins and Tottenham ${ }^{(47)}$ neglected the term ELK ${ }_{11}{ }^{2}$ as being small.
This term has been retained in equations $(2,76)$, which is consistent with the other shell equations derived.

$$
A_{73}=\frac{12\left(1-\nu^{2}\right)}{E^{3}}
$$

or, more compactly:

$$
\begin{aligned}
\underline{Y}_{2} & +\underline{A} \underline{Y}+\underline{L}=0 \\
\text { where } \underline{Y} & =\operatorname{col}\left\{n_{22} n^{n} 12^{m} 22^{r_{2} u_{2} u_{1}} \theta_{w}\right\} \\
\underline{L} & =\operatorname{col}\left\{X_{2} x_{1}, Z \ldots\right\}
\end{aligned}
$$

2.3 Variational Treatment of Shell Equations

In the following, the tern "kinematically admissible displacements" means displacements which satisfy the internal compatibility conditions and the kinematic conditions on that part of the surface where displacements are prescribed; the term "statically admissible stresses" means stresses which satisfy the internal equilibrium conditions and the equilibrium conditions on that part of the surface where external forces are prescribed.

In studying the equilibrium of an elastic system, two principles* may be applied:

[^1](a) the principle of ininimum total potential energy, in which variations with respect to kinematically admissible displacements are considered
(b) the principle of minimum complementary energy; in which variations with respect to statically admissible stresses are considered.

Generally, if kinematically admissible displacements are assumed, the equilibrium conditions are violated, and if statically admissible stresses are assumed, the compatibility conditions are violated. However, it follows from (a) above that stable equilibrium corresponds to those kinematically admissible displacements for which the total potential energy is a minimum, and from (b) that the satisfaction of the compatibility conditione corresponds to those statically admissible stresses for which the complementary energy is a mininum.

For the application of these two principles, suitoble kinematically admissible displacements and statically admissible stresses must be found. For (a), intemal compatibility is satisfied by selecting displacements which are continuous. However, for (b), internal equilibrium must be established by selecting stresses which satisfy the equations of equilibrium. Since these equations are differential equations such stresses are not always
easy to find. Further, the displacement approach offers a more direct formulation for the boundary conditions of the problem.

In view of the foregoing; only principle (a) will be considered. Further the assumptions made in section (2.1) relating to thin elastic shallow curved plates will still apply. The displacements considered will be small and kinematically adinissible.* Similarly, the variations in the displacements (or the Evitual displacements") will be small and kinematically admissible and will vanish wherever the displacements are prescribed.

For the problem under consideration, the total potential energy, V, of the deformed shell (rectangular plan-form) is the sum of:
(i) the potential energy of elastic deformation (strain energy), V_{0}, given by:

$$
\begin{equation*}
v_{0}=\frac{1}{2} \int_{0}^{1} \int_{0}^{l_{2}} \int_{-\frac{h}{2}}^{+\frac{h}{2}}\left(\sigma_{i i}\right)_{\gamma}\left(\varepsilon_{i j}\right)_{\gamma}^{d a_{1} d a_{2} d \gamma} \tag{2.78}
\end{equation*}
$$

* It is sometimes useful to relax the prescribed kinematic conditions. This will be discussed further in conjunction with the Lagrangian multiplier method in section (3.1.3).
where i and i range over the values 1 and $2 ;\left(\sigma_{i j}\right)_{\gamma}$ and $\left(\varepsilon_{i j}\right)_{\gamma}$ are respectively the stress and strain components on the γ surface of the shell (figure 2.7), and γK_{11} and γK_{22} are considered small compared with unity,
(ii) the potential energy of the surface loads, V_{1}, given by:

$$
\begin{equation*}
v_{1}=-\int_{0}^{1} \int_{0}^{I_{2}}\left(x_{i} u_{i}+Z w\right) d a_{1} d \alpha_{2} \tag{2.79}
\end{equation*}
$$

where X_{i} and Z are respectively the surface loads corresponding to, but independent of, the displacements u_{i} and w,
and (iii) the potential energy of the applied boundary loads, $\mathrm{V}_{\mathbf{2}}$, given by:

$$
\begin{equation*}
v_{2}=\sum_{n} v_{2}^{n} \tag{2.80}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{2}^{n}=-\int_{0}^{l_{i}} F_{m} v_{i} d a_{i} \tag{2,81}
\end{equation*}
$$

and where, for each boundary n, F_{m} is the applied boundary load corresponding to, but independent of, the boundary displacement \mathbf{v}_{m} *

[^2]Then it follows that

$$
\begin{equation*}
v=v_{0}+v_{1}+v_{2} \tag{2,82}
\end{equation*}
$$

From equations $(2,38),(2.39) ;(2.40) ;(2.42) ;(2.43)$ and (2.78) the following is obtained:

$$
\begin{equation*}
v_{0}=\frac{1}{2} \int_{0}^{1} \int_{0}^{1}\left(n_{i j} e_{i j}+m_{i j} k_{i j}\right) d a_{1} d a_{2} \tag{2.83}
\end{equation*}
$$

Substituting for $n_{i j}, m_{i j}$ and $k_{i j}$ by equations (2.44), (2.45) and (2.43) respectively, equation $(2,83)$ becomes:

$$
\begin{align*}
v_{0}= & \frac{1}{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{2} \frac{E h}{\left(1-\nu^{2}\right)}\left[e_{11}^{2}+2(1-\nu) e_{12}^{2}+e_{22}^{2}+2 \nu e_{11} e_{22}\right] \\
& \left.+\frac{E h^{3}}{12\left(1-\nu^{2}\right)}\left[w_{\prime}^{\prime}{ }_{11}^{2}+2(1-\nu) w_{\prime 12}^{2}+w_{\prime 22}^{2}+2 \nu w_{11} w_{\prime}{ }^{w_{r 2}}\right]\right\} d_{1} d \alpha_{2} \tag{2,84}
\end{align*}
$$

Equation (2.30) can be written in the form (figure 2.6):

$$
\begin{align*}
& v_{2}=-\left[\int_{0}^{2}\left(N_{11} u_{1}+N_{12} u_{2}+Q_{1} w-M_{11} w_{1}-M_{12} w_{1}\right)^{\prime} d_{2}\right]_{a_{1}=0}^{a_{1}=l_{1}} \\
& -\left[\int_{0}^{1}\left(N_{12 u_{1}}^{u_{1}}+N_{22 u_{2}}+Q_{2} w-M_{12} w_{1}-M_{22^{\prime} w_{2}}\right) d \alpha_{1}\right]_{\alpha_{2}=0}^{a_{2}=l_{2}}=0 \tag{2.85}
\end{align*}
$$

where $N_{11}, N_{12}, N_{22}, Q_{1}, Q_{2}, M_{11}, M_{12}$ and M_{22} are the applied boundary loads and u_{1}, u_{1} or $u_{2}, u_{2} ; w, w,\left(w_{f}\right) ;\left(w_{f}\right)$ or $\left(w_{1}\right)$, and ($w, 2$) are the corresponding displacements respectively. The minus signs in the terms containing M_{11}, M_{12} and M_{22} in equation (2.35) are due to the \quad sign conventions adopted for $M_{1 j}$ and the corresponding slopes.

From equations (2.79), (2.32), (2.84) and (2.35), the total potential energy of the deformed shell becomes:

$$
\begin{align*}
& V=\frac{1}{2} \int_{0}^{1} \int_{0}^{1}\left\{\frac{E h}{\left(1-\nu^{2}\right)}\left[e_{11}^{2}+2(1-\nu) e_{12}^{2}+e_{22}^{2}+2 \nu e_{11} e_{12}\right]+\right. \\
& \left.+\frac{E h^{3}}{12\left(1-\nu^{2}\right)}\left[w_{r}^{2}+2(1-\nu) w_{r_{12}}^{2}+w_{r}^{2}+2 \nu w_{r} 11_{r} w_{r 2}\right]\right\} d a_{1} d \alpha_{2}- \\
& -\int_{0}^{1} \int_{0}^{l_{2}}\left(x_{1} u_{1}+x_{2} u_{2}+Z w\right) d a_{1} d \alpha_{2}- \\
& -\left[\int_{0}^{1}\left(N_{12} u_{1}+N_{22} u_{2}+Q_{2} w-M_{12} w_{1}-M_{22} w_{r 2}\right) d a_{1}\right]_{a_{2}=0}^{a_{2}=l_{2}} \\
& -\left[\int_{0}^{1}\left(N_{11} u_{1}+N_{12} u_{2}+Q_{1} w-M_{11} w_{1}-M_{12} w_{1}\right) d a_{2}\right]_{a_{1}=0}^{a_{1}=1} \tag{2.86}
\end{align*}
$$

For stable equilibrium; the total potential energy of the deformed shell is a minimum and therefore assumes a stationary value,

$$
\begin{equation*}
\text { i.e. } \quad \delta V=0 \tag{2;87}
\end{equation*}
$$

which, with equation (2.86), yields:

$$
\begin{align*}
& \int_{0}^{l_{1}} \int_{0}^{L_{2}}\left\{\frac { \epsilon _ { h } } { (1 - \nu ^ { 2 }) } \left[e_{11}{ }^{\delta e_{11}}+2(1-\nu) e_{12} \delta_{12}+e_{22}{ }^{\delta e_{22}}+\nu e_{11} \delta e_{22}+\right.\right. \\
& \left.+\nu e_{22}{ }^{\delta e} 11\right]+\frac{E h^{3}}{12\left(1-\nu^{2}\right)}\left[w_{r} 11^{\delta w_{r}} 11+2(1-\nu) w_{r} 12^{\delta w_{r}} 12+\right. \\
& \left.\left.w_{r 22}{ }^{\delta w_{r}} 22+\nu w_{1} 1^{\delta w_{r}} 22+\nu w_{r} 2^{\delta w_{r}} 11\right]\right\} d a_{1} d_{2}- \\
& -\int_{0}^{1} \int_{0}^{l_{2}}\left(\varkappa_{1} \delta u_{1}+x_{2} \delta u_{2}+Z \delta w\right) d a_{1} d a_{2}- \\
& -\left[\int_{0}^{I_{2}}\left(N_{11} \delta \omega_{1}+N_{12} \delta \omega_{2}+Q_{1} \delta w-M_{11} \delta w_{1}-M_{12} \delta w_{r_{2}}\right) d \alpha_{2}\right]_{a_{1}=0}^{a_{1}=1} \\
& -\left[\int_{0}^{I_{1}}\left(N_{12} \delta u_{1}+M_{22} \delta u_{2}+Q_{2} \delta w_{1}-M_{12} \delta w_{1}-M_{22} \delta w_{1}\right)^{\prime d \alpha_{1}}\right]_{a_{2}=0}^{\alpha_{2}=I_{2}}=0 \tag{2.88}
\end{align*}
$$

Using equations (2.44) and (2.45), equation (2.38) becomes:

$$
\begin{align*}
& \int_{0}^{1} \int_{0}^{l_{2}}\left[\left(n_{11} \delta e_{11}+2 n_{12} \delta e_{12}+n_{22} \delta e_{22}\right)-\left(m_{11} \delta w_{111}+\right.\right. \\
& \left.\left.+2 m_{12}{ }^{\delta w_{1}} 12+m_{22} \delta w_{22}\right)\right] d a_{1} d a_{2}- \\
& =\int_{0}^{l_{1}} \int_{0}^{l_{2}}\left(x_{1} \delta u_{1}+x_{2} \delta u_{2}+z \delta w\right) d a_{1} d a_{2}- \\
& -\left[\int_{0}^{1}\left(N_{11} \delta u_{1}+N_{12} \delta u_{2}+Q_{1} \delta w_{1}-M_{11} \delta w_{1}-M_{12} \delta w_{2}\right) d a_{2}\right]_{a_{1}=0}^{a_{1}=1} 1 \\
& -\left[\int_{0}^{1}\left(N_{12} \delta u_{1}+N_{22} \delta u_{2}+a_{2} \delta w_{12}-M_{12} \delta w_{1}-M_{22} \delta w_{r}\right) d a_{1}\right]_{a_{2}=0}^{a_{1}=1} 2=0 \tag{2.89}
\end{align*}
$$

Using equations (2.37), (2.42), (2.43), (2.44) and (2.45), and the relations given in table 2.1, equation (2.89) becomes:

$$
\begin{aligned}
& \frac{-E h}{\left(1-\nu^{2}\right)} \int_{0}^{l_{1}} \int_{0}^{L_{2}}\left\{\left[L_{11} u_{1}+L_{12} u_{2}-L_{13} w+\frac{x_{1}\left(i-\nu^{2}\right)}{t_{h}}\right] \delta u_{1}+\right. \\
& +\left[L_{21} u_{1}+L_{22} u_{2}-L_{23} w+\frac{{\check{x_{2}}}_{2}\left(i-v^{2}\right)}{E h}\right] \delta u_{2}+ \\
& \left.+\left[L_{21} u_{1}+L_{22} u_{2}-L_{23} w+\frac{Z\left(1-\nu^{2}\right)}{E}\right] \delta w\right\} d a_{1} d a_{2}+ \\
& +\left\{\int_{0}^{l_{2}}\left[\left(n_{11}-N_{11}\right) \delta u_{1}+\left(n_{12}-N_{12}\right) \delta u_{2}-\left(m_{11}-M_{11}\right) \delta w_{11}+\left(r_{1}-R_{1}\right) \delta w_{1}\right] d a_{2}\right\}_{a_{1}=0}^{a_{1}=1_{1}}+ \\
& +\left\{\int_{0}^{1}\left[\left(n_{22}-N_{22}\right) \delta u_{2}+\left(n_{12}-N_{12}\right) \delta u_{1}-\left(m_{22}-M_{22}\right) \delta w_{1_{2}}+\left(r_{2}-R_{2}\right) \delta w_{1}\right] d a_{1}\right]_{2}^{\alpha_{2}=l_{2}}= \\
& -\left\{\left[2\left(m_{12}-M_{12}\right) \delta w\right]_{a_{1}=0}^{a_{1}=1}\right\}_{a_{2}=0}^{a_{2}=l_{2}}=0
\end{aligned}
$$

where

$$
\begin{align*}
& R_{1}=Q_{1}+M_{12,2} \tag{2.91}\\
& R_{2}=Q_{2}+M_{12,1} \tag{2,92}
\end{align*}
$$

and where the partial differential operators $L_{i j}\left(i_{1} i=1,2,3\right)$ are defined by equations (2,54).

Equation (2.90) yields directly the three equations of equilibrium together with the four boundary conditions (static or kinematic) which need to be specified along each boundary.

For either of the principles discussed in this section, the boundary conditions are subdivided into:
(i) Those which are essential for the application of the principle (the "essential ${ }^{(52),(53)}$ or ${ }^{(i m p o s e d " ~}{ }^{(54)}$ boundary conditions)
and (ii) those which are realised by virtue of the principle itself (the "additional ${ }^{(52)}$ natural $^{(1)}{ }^{(54)}$ or ${ }^{\text {suppressible }}{ }^{(53)}$ boundary conditions).

Only the principle of iminimum total potential energy is considered in this thesis. For this problem the kinematic boundary conditions are termed the "imposed" boundary conditions and the static boundary conditions are termed the "natural" boundary conditions.

ChAPTER 3

SOLUTION METHODS

This thesis is mainly concerned with the application of indirect methods (Rayleigh-Riiz, Galerkin and Lagrangian multiplier methods) in conjunction with various types of approximating functions: However, consideration is also given to the method of lines in which the derivatives in one direction are replaced by finite difference expressions.

3.1 Indirect Methods and Approximating Functions

In this thesis, solution methods will be reforred to as "indirect methods" when the functions in the series representation for the dependent variables do not satisfy the partial differential equations and all boundary conditions term-by-term. Solution methods will be referred to as "direct methods" when the functions do satisfy the partial differential equations and all boundary conditions term-by-tem (e.g. Navier and Levy-type solutions).

In the following, the temn "kinematically admissible functions" means functions which are continuous and differentiable and which satisfy the imposed boundary conditions where proscribed.

3.1.1 Rayleigh-Ritz Mathod

The variational equation (2.90) forms the basis of the iayleigh-Ritz method used in this thesis for the solution of thin shallow curved plates.

In this approach, the displacements are considered in the following series form:

$$
\begin{align*}
& u_{1}=\sum_{m} \sum_{n} a_{m n} u_{1}^{m}\left(a_{1}\right) u_{1}^{n}\left(a_{2}\right) \tag{3.1}\\
& u_{2}=\sum_{m} \sum_{n} b_{m n} u_{2}^{m}\left(a_{1}\right) u_{2}^{n}\left(a_{2}\right) \tag{3.2}\\
& w=\sum_{m} \sum_{n} c_{m n} w_{m}\left(a_{1}\right) w_{n}\left(\alpha_{2}\right) \tag{3.3}
\end{align*}
$$

where $u_{1}^{m}, U_{1}^{n}, u_{2}^{m}, U_{2}^{n}, w_{m}$ and W_{n} represent independent set of kinematically admissible functions, $a_{m n}, b_{m n}$ and $c_{m n}$ are arbitrary constants to be determined, and m and n are positive integers.

The displacement variations may be selected in the following forms:

$$
\begin{align*}
& \delta u_{1}=\sum_{m} \sum_{n} u_{1}^{m}\left(a_{1}\right) u_{1}^{n}\left(a_{2}\right) \delta a_{m n} \tag{3.4}\\
& \delta u_{2}=\sum_{m} \sum_{n} u_{2}^{n n}\left(\alpha_{1}\right) u_{2}^{n}\left(\alpha_{2}\right) \delta b_{m n} \tag{3.5}\\
& \delta w=\sum_{m} \sum_{n} w_{m}\left(\alpha_{1}\right) w_{n}\left(\alpha_{2}\right) \delta c_{m n} \tag{3.6}
\end{align*}
$$

where $\delta a_{m n}, \delta b_{m n}$ and $\delta c_{m n}$ are arbitrary variations in the constants $a_{m n}, b_{m n}$ and $c_{m n}$ respectively.

Substituting equations (3.1) to (3.6) inclusive into equations (2.90), integrating the resulting expressions and noting that $\delta a_{m n}{ }^{\delta} b_{m n}$ and $\delta c_{m n}$ are abitrary, yields a set of simultaneous linear equations in terms of the constants $a_{m n}, b_{m n}$ and $c_{m n}$ i By using truncated series, the problem is reduced from one with infinite degrees of freedom to one with finite degrees of freedom.

Equations (3.1), (3.2) and (3.3) represent a family of kinematically admissible displacements and the Rayleigh-Ritz method attempts to find those constants $\left(a_{m n}, b_{m n}, c_{m n}\right)$ for which the equilibriun conditions within the shell and on its boundaries are satisfied.

From equation (2.90) it follows that, when a kinematic boundary condition is prescribed, the corresponding boundary integral vanishes. When a static boundary condition is prescribed, and is not satisfied by the chosen functions, the corresponding boundary integral remains. The Rayleigh-Ritz method will seek out this ${ }^{\text {n }}$ natural ${ }^{\text {n }}$ boundary condition.

3.1.2 Galerkin Method

If the functions given in equations (3.1), (3.2) and (3.3) are chosen such that all the boundary conditions, static and kinematic, are satisfied,
then all the boundary integrals in equation (2.90) vanish and the Calerkin equations are obtained.

The Galerkin method has a wider application than the Rayleigh(51),(55),(56)

Ritw method, since it is not restricted to variational problems. However, the Galerkin and Rayleigh-Ritz methods become equivalent when:
(a) applied to variational problems associated with quidratic functionals (as in this thesis)
and (b) the kinematically admissible functions given in equations (3.1), (3.2) and (3.3) satisfy, in addition, the static boundary conditions where they are presrribed.

3.1.3 Lagrangian Multiplier Method

It is sometimes useful to relax the kinematic boundary conditions by selecting functions which are not kinematically admissible. Use can then be made of the Lagrangian multiplier method, in which the kinematic boundary conditions violated are applied as constraint conditions.

Suppose the kinematic boundary condition

$$
\begin{equation*}
u_{1}\left(\alpha_{1}, 0\right)=0 \tag{3.7}
\end{equation*}
$$

is prescribed and that the corresponding functions given in equation (3.1) are chosen such that this condition is not satisfied.

The Lagrangian multiplier method introduces another variable $\lambda_{1}\left(\alpha_{1}\right)$, the Lagrangian multiplier, such that

$$
\begin{equation*}
\delta V+\int_{0}^{1} \lambda_{1}\left(\alpha_{1}\right) \delta u_{1}\left(\alpha_{1}, o\right) d \alpha_{1}=0 \tag{3,8}
\end{equation*}
$$

where V is the total potential energy of the deformed shell given by equation (2.86). The corresponding constraint condition is given by equation (3.7).

Substituting the series given by equation (3.1) for u_{j} in equations (3.0) and (3.7) yields respectivaly:

$$
\begin{align*}
& \delta V+\int_{0}^{1} \lambda_{1}\left(\alpha_{1}\right) U_{1}^{m}\left(\alpha_{1}\right) U_{1}^{n}(o) d a_{1} \delta a_{m n}=0 \tag{3.9}\\
& a_{m n} u_{1}^{m}\left(a_{1}\right) U_{1}^{n}(o)=0 \tag{3.10}
\end{align*}
$$

where the Einstein summation convention is used.
The Lagrangian multiplier method conveniently reduces the constrained variational problem to one of free variation. Note that the series for u_{1} no longer vanishes term-by-term on the boundary $\left(a_{2}=0\right)$, but is replaced by the condition that the series as a whole vanishes (equation
3.10). The Lagrangian multiplier has a physical meaning - it is the generalised reactive force associated with the corresponding constraint condition. The Rayleigh-Ritz method may be considered as a particular case of the Lagrangian multiplier method with all multipliers set to zero. The multiplier $\lambda_{1}\left(\alpha_{1}\right)$ is a general function of α_{1} and cannof readily be determined in this form. However, $\lambda_{1}\left(a_{1}\right)$ can be expressed as the following series:

$$
\begin{equation*}
\lambda_{1}\left(\alpha_{1}\right)=\sum_{k} \lambda_{1}^{k} L_{1}^{k}\left(\alpha_{1}\right) \tag{3.11}
\end{equation*}
$$

where $L_{1}^{k}\left(a_{1}\right)$ represents a set of independent functions, λ_{1}^{k} are constants and k is a positive integer.

Substitution of equation (3.11) into (3.9) yields:
$\delta V+\int_{0}^{1} \lambda_{1}^{k} L_{1}^{k}\left(\alpha_{1}\right) u_{1}^{m}\left(\alpha_{1}\right) U_{1}^{n}(0) d \alpha_{1} \delta a_{m n}=0$

The constraint condition (3.10) can be rearranged in the form:

$$
\begin{equation*}
\left[a_{i m n} U_{1}^{n}(0)\right] u_{1}^{m}\left(a_{1}\right)=0 \tag{3.13}
\end{equation*}
$$

Since each $u_{1}^{m}\left(a_{1}\right)$ is indepencient, then for all a_{1} the following condition holds:

$$
\begin{equation*}
a_{m n} U_{1}^{n}(0)=0 \tag{3.14}
\end{equation*}
$$

Assuming that the same number, S (say), of functions are chosen for $u_{1}^{m}\left(\alpha_{1}\right)$ and $L_{1}^{k}\left(a_{1}\right)$, then equations (3 24 and (3.14) introduce an additional S unknowns, λ_{1}^{k}, together with an additional S equations given by equation (3.14). The problem can now be conveniently solved.

Similar remarks apply to any other prescribed kinematic condition which may be violated.

In particular, functions $L_{1}^{k}\left(a_{1}\right)$ and $u_{1}^{m}\left(a_{1}\right)$ may represent the same set of orthogonal functions. Then equations (3.12) and (3.14) become:

$$
\begin{align*}
& \delta V+g \lambda_{1}^{m} U_{1}^{n}(0) \delta a_{m n}=0 \tag{3.15}\\
& a_{m n} U_{1}^{n}(0)=0 \tag{3.16}
\end{align*}
$$

since:

$$
\begin{aligned}
\int_{0}^{1} u_{1}^{k} u_{1}^{m} d a_{1} & =g(\text { say }), \quad \text { if } m=k \\
& =0, \quad \text { if } m \neq k .
\end{aligned}
$$

Application of the Lagrangian multiplier method in this way will provide, in general, two values for the generalised reactive force associated with the prescribed constraint condition. These are given by:
(a) the displacemant derivatives
and (b) the Lagrangian multiplier.
Ideally, they should be the same, but generally they will be different. In particular, the displacement functions could be chosen such that (a) was zero, e.g. as for a cosine or sine series.

It will be demonstrated in subsequent chapters, that the Lagrangian mulfiplier gives a better estimate of the generalised reactive force than the corresponding displacement derivative.

3.1.4 Approximating Functions

The selection of suitable approximating functions is the essential feature of the indirect methods discussed in this chapter. Such functions may be simple or complicated and nead not be orthogonal, although this latter property is very useful and convenient. The derivatives of the functions should be well defined since the stress-resultants and stresscouples are dependent on them. A physical insight into the problem at hand greatly assists the choice of suitable functions, which may possibly lead to a rapid convergence of the solution.

The functions to be studied in this thesis are classified in table 3.1. The origin is located at one corner of the shell (figures 2.4 and 2.5). Of the functions tabulated only IA, IB, IIA and IIE are orthogonal. Class I Functions

Functions IC were used by Chuang and Veletsos ${ }^{(7)}$ in the variational solution of a shallow cylindrical shell. These functions were later appliad to doubly curved shallow shells by Noor and Veletsos (15) these references included the function $\left(1-2 \beta_{i}\right)$ in this set. The reason for omitting this function will be discussed in the next chapter in conjunction with the numerical results.

Functions ID were also considered by Chuang and Veletsos. (7)

Functions IE were originally proposed by Filonenko-Boroditch,
who referred to them as "almost orthogonal" functions. These functions have been used to represent the displacement w by Buziarova, ${ }^{(58)}$ for the bending solution of a clamped plate, and by Noor and Veletsos, (15) for the bending solution of a clomped shell. Although these functions satisfy the clamped boundary conditions on w, they satisfy the additional conditions that the normal and Kirchhoff shears vanish on the boundary. This will undoubtedly affect the boundary value of the moment.
functions IF have been obtained by modifying functions IE such that the normal and Kirchhoff shears no longer vanish. Note that the shape of the corresponding cosina and sine functions of IF are similar and numerical difficulties could be introduced as more terms are taken in the series.

Class II Functions

Rayleigh functions are functions of the type:

$$
\begin{align*}
F_{m} \equiv F_{m}\left(\beta_{i}\right)=A_{m} \sin a_{m} n^{3} i & +B_{m} \sinh a_{m}^{3} i+C_{m} \cos a_{m} \beta_{i}+ \\
& +\cosh a_{m} \beta_{i} \tag{3.17}
\end{align*}
$$

and have been tabulated in detail in references (9) and (60) up to $m=4$ and $m=5$ respectively.

The Rayleigh functions used in this thesis were provided by Kuo, who has calculated them out to $\mathrm{m}=27$.

Further details of Raylaigh functions are given in ppendix I.
Functions $I B$ will be used only to represent displacement u_{1}. They (7)
were also used by Chuang and Veletsos to represent displacements u_{1}, u_{2} and w for a cylindrical shell with free boundaries at $\alpha_{2}=0, I_{2}$. The Rayleigh-Ritz method was used. Deep thin inextensible gables were
assumed at $\alpha_{1}=0,1$ such that a Levy-type solution was possible (refer to chapter 4 for a description of these terms). Their results showed poior convergence. However, these functions have been incorrectly used with \mathbf{w}. It can be shown that the natural boundary condition $r_{2}\left(\alpha_{1}, 0\right)=O$ for a free boundary becomes, on using functions IIB and the series form for w given by equation (3.3), $W_{n, 2}(0)=0$. Similarly the natural boundary condition $m_{22}\left(\alpha_{1}, o\right)=0$ for $\nu=0$ reduces to $W_{n, 22}(0)=0$, which is identically satisfied by functions IIB. The coupling of these two conditions is valid only for the constant 1 of functions IIB. However, in general, the coupling of these conditions seems to invite difficulties.

3.2 Method of Lines

Equations (2.76) form the basis of the method of lines used in this thesis for the solution of shallow curved plates.

In this method, the derivatives in one direction (α_{1} in this thesis) are replaced by finite difference expressions. In this way equations (2.76) are reduced to a system of linear first order ordinary differential equations with constant coefficients.

Thus the boundary value problem may be considered as an equivalent initial value problem in which four of the dependent variables are
specified by the initial boundary conditions. The initial values of the remaining four dependent variables must be detemined such that the final four boundary conditions are satisfied:

Integration of this system of first order ordinary differential equations is the immediate problem. The matrix progression method offers a convenient and systematic approach for the numerical solution of these differential equations. The application of this numerical procedure in conjunction with the method of lines has been discussed in detail by Jenkins and Totrenham, ${ }^{(47)}$ who give several illustrative examples. However, no numerical results are presented.

The matrix progression method is similar in principle to the transfer matrix method. (63)

Due to the limited numbar of significant figures used in practice, the integration of such problems may introduce serious roundoff errors. This problem may be overcome by segmenting the path of integration. The influence coafficients for each segment are then determined by integration and the solution obtained by restoring equilibrium and/or compatability.

A further way to overcome this numerical problem is to "bring up the initial boundary ${ }^{(65)}$)(${ }^{(66)}$ This idea is used with the matrix progression
method. In this approach the integration path is divided into steps. The boundary conditions are then brought up for each step, in such a form that they may be used as the initial boundary for the next step. This procedure continues until the final boundary is reached, where the known boundary conditions are applied. The solution at this final boundary is then obtained. The solution at each step follows by back substitution.

In this thesis (Chapter 7) the matrix progression method will be used. Whenever necessary the integration path will be segmented. A. stiffness approach will be proposed, in which the stiffness matrix for each segment can be obtained from the transfor (or distribution) matrix (rofer to Chapter 7). The assembled stiffness matrix for the shell will be in tridiagonal form, which is readily solved by partitioning.

CHAPTER 4

application of the indirect methods to translational SHELLS WITH LEVY-TYPE SOLUTIONS

In this chapter, the proposed indirect methods will be applied to shell problems whose exact solutions are known. In this way the convergence of various types of approxinating functions may be studiad.

4.1 Non-Dimensional Form of Equations

Levy-type solutions are available for shallow translational curved plates of rectangular plan-form (figure 2.4) supported on two opposite edges by normally-locoted deep thin inextensible gables (defined in Toble 4.3).

For convenience a loading function will be selected such that a one-term Levy expansion provides the required exact solution. Normal gables will be assumed at $\alpha_{1}=0,1_{1}$.

The selected loading is

$$
\begin{align*}
& x_{1}=0=x_{2} \tag{4,1}\\
& z=z_{0} \sin i \pi \beta_{1} \tag{4,2}
\end{align*}
$$

where:

$$
Z_{0} \text { is a constant }
$$

i is a non-zero positive integer

$$
\begin{equation*}
\beta_{1}=\frac{\alpha_{1}}{T_{1}} \tag{4,3}
\end{equation*}
$$

The applied boundary loads will be assumed to be zero.
The Levy solution procedure implies displacement distributions of the type:*

$$
\begin{align*}
& u_{1}=T_{1} U_{1}\left(\beta_{2}\right) \cos i \pi \beta_{1} \tag{4.4}\\
& u_{2}=I_{2} u_{2}\left(\beta_{2}\right) \sin i \pi \beta_{1} \tag{4.5}\\
& w=\frac{1}{K_{2}} W\left(\beta_{2}\right) \sin i \pi \beta_{1} \tag{4.6}
\end{align*}
$$

where the origin is located in one comer of the shell as shown in figure 2.4, and
*The functions $U_{1}\left(\beta_{2}\right), U_{2}\left(\beta_{2}\right)$ and $W\left(\beta_{2}\right)$ should be more correctly written as $U_{1}^{i}\left(\beta_{2}\right), U_{2}^{i}\left(\beta_{2}\right)$ and $W^{i}\left(\beta_{2}\right)$. However, to avoid confusion with other functions, the i superscript is dropped from this notation. This does not offect the subsequent deviations in any way.

$$
\begin{align*}
& T_{1}=\frac{I_{1}}{i} \tag{4.7}\\
& \beta_{2}=\frac{\alpha_{2}}{T_{2}} \tag{4.3}
\end{align*}
$$

For convenience, the functions U_{j}, U_{2} and W in equations (4.4), (4.5) and (4.6) have been non-dimensionalised.

In the indirect procedure, the functions U_{1}, U_{2} and W will be approximated by the following truncoted series:

$$
\begin{align*}
& u_{1}=\sum_{m} a_{m} u_{1}^{m} \tag{4.9}\\
& u_{2}=\sum_{m} b_{m} u_{2}^{m} \tag{4.10}\\
& w=\sum_{m} c_{m} w_{m} \tag{4.11}
\end{align*}
$$

where a_{m}, b_{m} and c_{m} are constants to be determined, $U_{1}{ }^{m}, U_{2}^{m}$ and W_{m} represent sets of independent kinematically admissible functions and m is a positive integer.

The corresponding displacement variations may be selected in the following forms:

$$
\begin{align*}
& \delta u_{1}=T_{1} \sum_{m} u_{1}^{m} \cos i \pi \beta_{1} \delta a_{m} \tag{4.12}\\
& \delta u_{2}=I_{2} \sum_{m} u_{2}^{m} \sin i \pi \beta_{1} \delta b_{m} \tag{4.13}\\
& \delta w=\frac{1}{k_{2}} \sum_{m} W_{m} \sin i \pi \beta_{1} \delta c_{m} \tag{4.14}
\end{align*}
$$

where $\delta a_{m}, \delta b_{m}$ and δc_{m} are arbitrary variations in the constants a_{m}, b_{m} and c_{m} respectively.

For the special case being considered the variational equation (2.90)
ofter:*
(a) setting the applied boundary loads to zero,
(b) non-dimensionalising the co-ordinates to the $\left(\beta_{1}, \beta_{2}\right)$ set defined by equarions (4.3) and (4.8),
(c) setting K_{12} to zero and replacing K_{11} and K_{22} by K_{1} and K_{2} respectively,
(d) substitution of equations (4.1), (4.2), (4.4), (4.5), (4.6), (4.7), (4.9), (4.10), (4.11), (4.12), (4.13) and (4.14), and
*The boundary integrals at $a_{1}=0, I_{1}$ automatically vanish since all boundary conditions are satisfied there (Table 4.3).
(e) integrating the equations with respect to β_{1},
reduces to the following three independent equations, since $\delta a_{m^{\prime}} \delta_{m}$ and δc_{m} are arbitrary:
$\int_{0}^{1}\left[\pi a_{i} U_{1}^{i}-\frac{(1-\nu)}{2} \bar{r}^{2} a_{i} U_{1,22}^{i}-\frac{(1+\nu)}{2} \pi b_{k} U_{2,2}^{k}+\right.$
$\left.+(c+\nu) \pi c_{p} W_{p}\right] U_{1}^{m} d \beta_{2}-2 \bar{r}^{-} \bar{n}_{12}(o) U_{1}^{\prime n}(0)=0$
$\int_{0}^{1}\left[\frac{(1+\nu)}{2} \pi a_{i} U_{1,2}^{i}+\frac{(1-\nu)}{2 \bar{r}^{-2}} \pi^{2} b_{k} u_{2}^{k}-b_{k} U_{2,22}^{k}+\right.$
$\left.+(1+\nu c) c_{p} W_{p, 2}\right] \quad U_{2}^{m} d \beta_{2}-2 \bar{n}_{22}(0) U_{2}^{m(1)}(0)=0$
$\int_{0}^{1}\left[(c+\nu) \pi a_{i} U_{1}^{i}-(1+\nu c)_{k} U_{2,2}^{k}+\frac{\bar{p}_{T}^{2}}{12}\left(\pi^{4} c_{p} W_{p}-\right.\right.$

$$
\left.-2 \bar{r}^{-2} \pi^{2} c_{p} W_{p, 22}+\bar{r}^{-4} c_{p} W_{p, 2222}\right)+\left(1+2 \nu c+c^{2} c_{p} W_{p}-\right.
$$

$$
\begin{equation*}
\left.-\bar{Z}_{0}\right] W_{m} d \beta_{2}+2 \bar{r}^{-2} \bar{m}_{22}(0) W_{m, 2}(0)-2 \bar{r}_{2}(0) W_{m}(0)=0 \tag{4.17}
\end{equation*}
$$

where

$$
\begin{gather*}
\bar{r}=\frac{\bar{T}_{1}}{T_{2}} \tag{4.18}\\
\vec{\rho}_{T}=\frac{h}{T_{1}} \cdot \frac{1}{K_{2} T_{1}}=-\frac{1}{s-\bar{r}}\left(\frac{h}{T_{1}}\right)\left(\frac{I_{2}}{F_{2}}\right) \quad \text { (4.19) } \tag{4.19}\\
c=\frac{K_{1}}{K_{2}} \\
\bar{Z}_{0}=\frac{Z_{0}\left(1-\nu^{2}\right)}{E h R_{2}} \tag{4.21}\\
i, k, m, p \text { are positive integers and } \bar{n}_{12!} \bar{n}_{22 \prime}^{\prime} \bar{m}_{22} \text { and } \bar{r}_{2} \text { are, }
\end{gather*}
$$ in this case, functions of β_{2} only and are the non-dimensional forms (given in Table 4.1) of $n_{12},{ }^{n} 22^{\prime}{ }^{r_{22}}$ and r_{2} respectively. In equations (4.15), (4.16), (4.17) and Table 4.1 the Einstein summation convention is adopted and comma notation is used to represent differentiation with respect to β_{2}.

In deriving expressions for the boundary integrals, the boundary conditions were assuned symmetric about $\beta_{2}=0.5$. If this were not the case equations (4.15), (4.16) and (4.17) would be modified in the following way:
replace $\left[-2 \bar{r} \bar{n}_{12}(0) U_{1}^{m}(0)\right]$ by
by $\left[\bar{r} \bar{n}_{12}\left(\beta_{2}\right) \cup_{1}^{m}\left(\beta_{2}\right)\right]_{\beta_{2}=0}^{\beta_{2}=1}$
replace $\left[-2 \bar{n}_{22}(o) U_{2}^{m}(0)\right] \quad$ by $\quad\left[\bar{n}_{22}\left(\beta_{2}\right) U_{2}^{m}\left(\beta_{2}\right)\right]_{\beta_{2}=0}^{\beta_{2}=1}$
replace

$$
\left[-2 \bar{r} \bar{r}_{2}(o) W_{m}(0)\right]
$$

$$
\text { by }\left[\bar{r}^{r} \bar{r}_{2}\left(\beta_{2}\right) W_{m}\left(\beta_{2}\right)\right]_{\beta_{2}=0}^{\beta_{2}=1}
$$

replace $\left[+2 \tilde{r}^{2} m_{22}(0) W_{m, 2}(0)\right]$ by $\left[-\bar{r}^{2} m_{22}\left(\beta_{2}\right) W_{m, 2}\left(\beta_{2}\right)\right]_{\beta_{2}=0}^{\beta_{2}=1}$

It is evident from the foregoing that the problem is specified through the non-dimensional parameters $\bar{\rho}_{\Gamma} c_{p} \bar{r}$ and ν 。*

With $\bar{Z}_{0}=1$ equations (4.15), (4.16) and (4.17) are the equations used for the solutions presented in this chapter.

The actual values of the displacements, stress-resultants and stresscouples, for any loading of the type given by equation (4.2), are obtained from the non-dimensional fonns given in Table 4.1 by the factors given in Table 4.2.
*The single parameter $\bar{\rho}_{\top}$ could have been replaced by the separate parameters $\left(\frac{h}{T_{1}}\right)$ and $\left(\frac{l_{2}}{f_{2}}\right)$. However, the use of $\bar{\rho}_{T}$ covers a wider
range of shells.

Equations (4.15), (4.16) and (4.17) are the Galerkin equations modified by expressions corresponding to the relevant boundary integrals in equation (2.90).

4.1.1 Modification for the Lagrangian Multiplier Method

In this section only homogeneous kinematic boundary conditions will be considered.

For the problem considered here, a maximum of four homogeneous kinematic condifions may be prescribed along $a_{2}=0$ and $a_{2}=I_{2}$, viz.:

$$
\begin{align*}
& u_{1}=0 \tag{4.22}\\
& u_{2}=0 \tag{4.23}\\
& w=0 \tag{4.24}\\
& w_{1_{2}}=0 \tag{4.25}
\end{align*}
$$

Assume that the conditions given by equations (4.22) to (4.25) inclusive are now applied as constraint conditions.

Then following the procedure described in section (3.1.3) and assuming that the boundary conditions are symmetric about the axis $\alpha_{2}=\frac{1_{2}}{2}$, the variational equation (2.90) is modified to:

Left hand side of equation (2.9O) +

$$
\begin{align*}
& +2 \int_{0}^{1} \lambda_{1}\left(\alpha_{1}\right) \delta u_{1}\left(\alpha_{1}, o\right) d \alpha_{1}+ \\
& +2 \int_{0}^{1} 1 \lambda_{2}\left(\alpha_{1}\right) \varepsilon_{2}\left(\alpha_{1}, o\right) d \alpha_{1}+ \\
& +2 \int_{0}^{1} \lambda_{3}\left(\alpha_{1}\right) \delta w_{1}\left(\alpha_{1}, o\right) d \alpha_{1}+ \\
& +2 \int_{0}^{1} \lambda_{4}\left(\alpha_{1}\right) \delta w_{1_{2}}\left(\alpha_{1}, o\right) d \alpha_{1}=0 \tag{4.26}
\end{align*}
$$

where $\lambda_{1}\left(\alpha_{1}\right), \lambda_{2}\left(\alpha_{1}\right), \lambda_{3}\left(\alpha_{1}\right)$ and $\lambda_{4}\left(\alpha_{1}\right)$ are the Lagrangian multipliers corresponding to the displacements u_{1}, u_{2}, w and (w_{\prime}). respectively. The constraint conditions are:

$$
\begin{align*}
& u_{1}\left(\alpha_{1}, 0\right)=0 \tag{4.27}\\
& u_{2}\left(\alpha_{1}, 0\right)=0 \tag{4.28}\\
& w_{\left(\alpha_{1}, 0\right)}=0 \tag{4,29}\\
& w_{1}\left(\alpha_{1}, 0\right)=0 \tag{4.30}
\end{align*}
$$

Equations (4.26) to (4.30) inclusive completely define the problem. Expressing, for this special problem, :

$$
\begin{align*}
& \lambda_{1}\left(\alpha_{1}\right)=\sum_{i} \lambda_{1}^{i} \cos i \pi \alpha_{1} \tag{4.31}\\
& \lambda_{2}\left(\alpha_{1}\right)=\sum_{i} \lambda_{2}^{i} \sin i \pi \alpha_{1} \tag{4.32}\\
& \lambda_{3}\left(\alpha_{1}\right)=\sum_{i}^{i} \lambda_{3}^{i} \sin i \pi \alpha_{1} \tag{4.33}\\
& \lambda_{4}\left(\alpha_{1}\right)=\sum_{i} \lambda_{4}^{i} \sin i \pi \alpha_{1} \tag{4,34}
\end{align*}
$$

where $\lambda_{1}^{i}, \lambda_{2}^{i}, \lambda_{3}^{i}$ and λ_{4}^{i} are constants and i is a non-zero positive integer, and proceeding as in sections (4.1) and (3.1.3), equations (4.26) to (4.30) inclusive reduce to the following :

Left hand side of equation (4.15) $+2 \bar{r} \bar{\lambda}_{1} U_{1}^{m}(0)=0$

Left hand side of equation (4.16) $+2 \lambda_{2} U_{2}^{m}(0)=0$

Left hand side of equation (4.17) $+2 \bar{r} \bar{X}_{3} W_{r n}(0)+$

$$
\begin{equation*}
+2 \bar{r}^{-2} \bar{\lambda}_{4} W_{\mathrm{m}, 2}(0)=0 \tag{4.37}
\end{equation*}
$$

$a_{i} U_{j}^{i}(0)=0$

$$
\begin{align*}
& b_{k} U_{2}^{k}(0)=0 \tag{4.39}\\
& c_{p} W_{p}(0)=0 \tag{4.4O}\\
& c_{p} W_{p, 2}(0)=0 \tag{4.41}
\end{align*}
$$

where

$$
\begin{align*}
& \bar{\lambda}_{1}=\frac{\left(1-\nu^{2}\right)}{E h} \lambda_{1} \tag{4.42}\\
& \bar{\lambda}_{2}=\frac{\left(1-\nu^{2}\right)}{E h} \lambda_{2} \tag{4.43}\\
& \bar{\lambda}_{3}=\frac{\left(1-\nu^{2}\right)}{E h K_{2} T_{1}} \lambda_{3} \tag{4,44}\\
& \bar{\lambda}_{4}=\frac{\left(1-\nu^{2}\right)}{E h K_{2} T_{1}^{2}} \lambda_{4} \tag{4.45}
\end{align*}
$$

and the i superscript is dropped from the notation.

$$
\text { With } \bar{Z}_{0}=1 \text { equations (4.35) to (4.41) inclusive are the equations }
$$

used in conjunction with the Lagrangian multiplier method.
As before the non-dimensional and actual values of the displacement, stress-resultants and stress-couples are obtained from Tables (4.1) and (4.2) respectively.

Interpretation of the Lagrangian multipliers

The Lagrangian multipliers provide the generalised reactive force associated with the corresponding constraint condition.

Then for the symmetric case considered:

$$
\begin{align*}
& n_{12}\left(\alpha_{1}, 0\right)=\lambda_{1}\left(\alpha_{1}\right) \tag{4.46}\\
& n_{22}\left(\alpha_{1}, 0\right)=\lambda_{2}\left(\alpha_{1}\right) \tag{4.47}\\
& r_{2}\left(\alpha_{1}, o\right)=\lambda_{3}\left(\alpha_{1}\right) \tag{4.48}\\
& m_{22}\left(\alpha_{1}, 0\right)=-\lambda_{4}\left(\alpha_{1}\right) \tag{4.49}
\end{align*}
$$

where the minus sign in equation (4.49) is due to the sign conventions adopted for m_{22} and ($w_{r_{2}}$).

In non-dimensional form, equations (4.46) to (4.49) reduce to:

$$
\begin{array}{ll}
\bar{n}_{12}(0) & =\bar{\lambda}_{1} \\
\bar{n}_{22}(0) & =\bar{\lambda}_{2} \\
\bar{r}_{2}(0) & =\bar{\lambda}_{3} \\
\bar{m}_{22}(0) & =-\bar{\lambda}_{4} \tag{4.53}
\end{array}
$$

(4.5O)

Alternative expressions for $\bar{n}_{11}(0), \bar{m}_{11}(0), \bar{q}_{1}(0), \bar{q}_{2}(0)$ and $\bar{r}_{1}(0)$ will now be derived.

The following expressions are obtained from Table 4.1:

$$
\begin{align*}
& \bar{n}_{11}-\nu \bar{n}_{22}=-\pi\left(1-\nu^{2}\right) a_{m} U_{1}^{m}-c\left(1-\nu^{2}\right)_{c_{p}} W_{p} \tag{4.54}\\
& \bar{m}_{11} \sim \nu \bar{m}_{22}=\frac{\rho_{T}^{2}}{12} n^{2}\left(1-\nu^{2}\right) c_{p} W_{p} \tag{4,55}\\
& \bar{q}_{1}=\frac{-p_{T}^{2}}{12}\left[-\pi_{p}^{3} c_{p} W_{p}+\bar{r}^{2} c_{p} W_{p, 22}\right] \tag{4.56}\\
& \bar{q}_{2}=\bar{r}_{2}-\frac{\bar{\rho}_{T}}{12} \bar{r}_{p}^{2}(1-\nu) c_{p} W_{p, 2} \tag{4.57}\\
& \bar{r}_{1}=\frac{-\bar{p}_{T}^{2}}{12}\left[-\pi_{p}^{3} c_{p} W_{p}+\bar{r}_{n}^{2}(2-\nu) c_{p} W_{p, 22}\right] \tag{4.58}\\
& \bar{r}_{c_{p}} W_{p, 22}=\frac{-12}{\bar{\rho}_{T}^{2}} \bar{m}_{22}+\nu n^{2} c_{p} W_{p} \tag{4.59}
\end{align*}
$$

Substituting equation (4.59) into equations (4.56) and (4.58) and rearranging equations (4.54) and (4.55) yields:

$$
\begin{align*}
& \bar{n}_{11}=-\pi\left(1-\nu^{2}\right) a_{m} U_{1}^{m}-c\left(1-\nu^{2}\right) c_{p} W_{p}+\nu \bar{n}_{22} \tag{4.60}\\
& \bar{m}_{11}=\frac{\bar{\rho}_{T}^{2}}{12} \pi^{2}\left(1-\nu^{2}\right)_{c_{p}} W_{p}+\nu \bar{m}_{22} \tag{4.61}
\end{align*}
$$

$$
\begin{align*}
& \bar{q}_{1}=\frac{\bar{\rho}_{T}^{2}}{12} \pi^{3}(1-\nu) c_{p} W_{p}+\pi \bar{m}_{22} \tag{4,62}\\
& \bar{r}_{1}=\frac{\bar{\rho}_{T}^{2}}{12} \pi^{3}(1-\nu)^{2} c_{p} W_{p}+\pi(2-\nu) \bar{m}_{22} \tag{4.63}
\end{align*}
$$

At the boundary $\beta_{2}=0$, equations (4.60), (4.61), (4.62), (4.63) and (4.57), after substitution of equations (4.50), (4.51), (4.52) and (4.53), become:

$$
\begin{align*}
& \bar{n}_{11}(0)=-\pi\left(1-\nu^{2}\right)_{a_{m}} U_{1}^{m}(0)-c\left(1-\nu^{2}\right)_{c_{p}} W_{p}(0)+\nu \bar{\lambda}_{2} \tag{4.64}\\
& \bar{m}_{11}(0)=\frac{\bar{\rho}_{T}^{2}}{12} \pi^{2}\left(1-\nu^{2}\right)_{p} W_{p}(0)-\nu \bar{\lambda}_{4} \tag{4.65}\\
& \bar{q}_{1}(0)=\frac{\bar{\rho}_{T}^{2}}{12} \pi^{3}(1-\nu) c_{p} W_{p}(0)-\pi \bar{\lambda}_{4} \tag{4.66}\\
& \bar{r}_{1}(0)=\frac{\bar{\rho}_{T}^{2}}{12} \pi^{3}(1-\nu)^{2} c_{p} W_{p}(0)-\pi(2-\nu) \bar{\lambda}_{4} \tag{4.67}\\
& \bar{q}_{2}(0)=\frac{-\bar{\rho}_{T}^{2}}{12} \bar{r}^{2}{ }^{2}(1-\nu)_{p} W_{p, 2}(0)+\bar{\lambda}_{3} \tag{4.68}
\end{align*}
$$

Equations (4.50) to (4.53) inclusive and (4.64) to (4.68) inclusive provide alternative* boundary values to those based on the displacement
*As discussed in section (3.1.3), the values based on the Lagrangian multipliers are generally different from the corresponding values based on the displacement derivatives.
derivatives.
The actual values are obtained as before from Table 4.2.
This matter will be discussed further in sections (4.4) in confunction with numerital examples.

4.2 Boundary Conditions

The boundary conditions to be considered in this chapter are given in Table 4.3.

Only boundary condifions which are symmetric doout $\beta_{2}=0.5$ are considered.

Normal slide (1) is so numbered to distinguish if from normal slide (2), a boundary condition which will be introduced in Chapter 6.

The approximating functions chosen to specify a particular boundary condition are discussed in section (4.4).

4.3 Reduction to a System of Linear Algebraic Equations

For a particular set af approximating functions, equations (4.15), (4.16) and (4.17), with $\bar{Z}_{0}=1$, reduce, on integration, to a system of linear algebraic equations which in matrix form are:

$$
\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \tag{4.69}\\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]\left[\begin{array}{l}
\underline{a} \\
\underline{b} \\
\underline{c}
\end{array}\right]+\left[\begin{array}{l}
\underline{Q} \\
\underline{C} \\
\underline{g}
\end{array}\right]=\left[\begin{array}{l}
\underline{O} \\
0 \\
\underline{O}
\end{array}\right]
$$

or, more compactly:

$$
\begin{equation*}
\mathrm{A} \underline{\bar{a}}+\underline{\bar{g}}=\underline{0} \tag{4.70}
\end{equation*}
$$

where $\quad \underline{\bar{a}}=\operatorname{col}\left\{\begin{array}{lll}\underline{a} & \underline{b} & \underline{c}\end{array}\right\}$

$$
\underline{\overline{\mathbf{g}}}=\operatorname{col}\{\underline{0} \underline{\underline{0}} \underline{\underline{\mathbf{g}}}\}
$$

Typical elements of the submatrices in equation (4.69) are given in Table 4.4. The relevant integration formulae are given in Appendix 2.
4.3.1 Modification for the Lagrangian Multiplier Method
i) When the Lagrangian multiplier method is applied, the modified form given by equations (4.35) to (4:41) inclusive is used. These equations may also be reduced to a system of linear algebraic equations which in matrix form are:
where:
typical elements of the submatrices $A_{i j}(i, i=1,2,3), \underline{a}, \underline{b}, \underline{c}$ and \underline{g} are, os before, given in Table 4.4,

$$
\bar{\lambda}_{1}, \bar{\lambda}_{2}, \bar{\lambda}_{3} \text { and } \bar{\lambda}_{4} \text { are osastants, }
$$

and typical elements of the column matrices ${\underset{1}{1}}^{r}, \underline{d}_{2}, d_{3}$ and ${\underset{d}{4}}$ are respectively given by:

$$
\begin{equation*}
d_{m}^{l}=\quad U_{1}^{m}(0) \tag{4.72}
\end{equation*}
$$

$$
\begin{array}{ll}
d_{m}^{2} & =U_{2}^{m}(0) \\
d_{m}^{3} & =W_{m}(0) \\
d_{m}^{4} & =W_{m, 2}(0) \tag{4.75}
\end{array}
$$

If there are less than four imposed boundary conditions, equations (4.71) are adjusted accordingly.

If S is the number of functions chasen to repesent each of U_{1}, U_{2} and $W_{\text {r }}$ * then each submatrix $A_{i j}$ is of order $(S \times S)$ and each column matrix $\underline{a}, \underline{b}, \underline{c}, \underline{d}_{1}, \underline{d}_{2},{\underset{\sim}{d}}^{d}$ and \underline{d}_{4} is of order ($S \times 1$). Then there are 35 constants to be determined by equations (4.69) and (3S +4) constants to be detemined by equations (4.71).

The solution of equations (4.71) form the basis of the numerical results presented in this chapter. When no Lagrangian multipliers are used these equations reduce to equations (4.69).
*It is not essential to adopt the same value of S for each of U_{1}, U_{2} and W.

4.4 Convergence Siudy of the Approximating Functions

In this section the approximating functions given in table 3.1 will be applied to particular numerical examples. In the computer programs developed, provision is made for the symmetry of the problem by choosing the functions given in table 3.1 such that:
(a) U_{1}^{m}, W_{m} are symmetric functions about $\beta_{2}=0.5$
(b) U_{2}^{m} is an antimetric function about $\beta_{2}=0.5$

The Levy-type solutions given in this chapter were obtained from computer programs developed at Imperial College by Gunasekera ${ }^{(6)}$ and by Samartin ${ }^{\text {(49) }}$.

4.4.1 Numerical Examples

The examples and the corresponding approximating functions to be studied are given in table 4.5. The boundary conditions are defined in table 4.3. Details of the approximating functions are given in table 3.1.

For all examples, the shell parameters \bar{p}_{T}, \bar{r} and $\mathcal{\nu}$ will be set at the following values:

$$
\begin{aligned}
\bar{\rho}_{T} & =0.0152920 \\
\bar{r} & =1.0 \\
\nu & =0.25
\end{aligned}
$$

The value for c is either -0.5 or +0.5 (refer to Table 4.5).
With $c=-0.5$ the above parameters correspond to an example (15)
discussed by Noor and Veletsos using a w- $\boldsymbol{6}$ formulation.
The results are presented in Tables 4.7 to 4.17 inclusive and figures 4.1 to 4.6 inclusive. The tabulated results* have been reproduced from the computer program output and, to avoid confusion, the notation used in the program and the corresponding notation used in this thesis are given in Table 4.6.

The exact values are given in Tables 4.18 to 4.21 inclusive.
Displacements, stress-resultants and stress couples are presented in non-dimensional form (Table 4.1). The actual values are obtainable from the expressions given in Table 4.2.

Whenever the Lagrangian multiplier method is used, the boundary value based on the multiplier is quoted separately from the corresponding value based on the displacement derivative. These latter values are rabulated under the caption ${ }^{\text {a }}$ Values of.....".
S is the number of functions used to represent each of U_{1}, U_{2} and W, due allowance being made for the symmetry of the problem in the selection of these functions.

[^3]
4.4.2 Discussion

(a) Example A: Clamped at $\beta_{2}=0.1$

The exact values are given in Tables 4,18a and 4.18b.
(i) Examples AI, A2 and A3: Refer to Tables 4.7, 4.8 and 4.9a and figures 4.1 and 4.2.

These three examples differ by the functions chosen for W_{m} (refer to Table 4.5). The most rapid convergence of moments (stress-couples), normal shears (stress-resultants) and displacement \mathbf{w} was obtained in example A2. Good convergence was also obtained in example A3 while the convergence in example Al was somewhat slower.

It has been previously noted (section 3.1.4) that the functions $\mathbb{E}_{\text {, }}$ which are used to represent W in example Al impose the additional boundary conditions of zero nomal shear and zero Kirchhoff shear and this undoubtedly contributed to the slower convergence observed for this case.

The convergence of \bar{n}_{11} and \bar{n}_{22} was good, whereas \bar{n}_{12} converged very slowly on the boundary.
(ii) Examples $A 3, A 4, A 5$ and $A 6$: Refer to Tables 4.9 to 4.12 inclusive and figures 4.3, 4.4 and 4.5.

These examples differ by the functions chosen for U_{1}^{m} (refer to Table 4.5). The Lagrangian multiplier method has been used in examples $A 4, A 5$ and $A 6$ in an attempt to improve the convergence of \bar{n}_{12} on the boundary. In figures 4.3 and 4.4 (examples $A 4, A 5$ and A6), the value of \bar{n}_{12} on the boundary is based on the Lagrangian multiplier: $\mathrm{c}=-0.5$: The convergence of $\overline{\mathrm{n}}_{12}$ on the boundary was greatly improved in each of examples $A 4, A 5$ and $A G$, with $A 4$ showing the most rapid convergence. The solution for $\stackrel{\rightharpoonup}{n}_{12}$ within the shell converged rapidly in example AA but inore slowly in examples A5 and A6.

Figure 4.5 illustrates the good convergence of \bar{n}_{11} and \bar{n}_{22} $\mathrm{c}=+0.5: \quad \mathrm{A}$ complete set of results for A 3 is given in Table 4.96. Only results for $\bar{u}_{1}, \bar{n}_{11}$, and \bar{n}_{12} are given for $A 4, A 5$ and $A \delta$. The remaining results are similar to example $A 3$.

In this case the magnitude of \bar{n}_{12} is greater than for $c=-0.5$. The convergence of \bar{n}_{12} on the boundary was again slow in example $A 3$, but better within the shell. Use of the Lagrangian multiplier method again improved the boundary convergence of $\bar{n}_{12 *}$

In each example the Lagrangian multiplier provided a better estimate of the boundary value of \bar{n}_{12} than the corresponding displacement derivative.
(iii) Example A7: Refer to Table 4.13 and figure 4.6 .

The boundary value of $\bar{q}_{2}\left(=\bar{r}_{2}\right.$ for the clamped boundary conditions considered) based on the Lagrangian multiplier is very close to the exact solution after 6 functions. However, the corresponding value based on the displacement derivative is zero. This extreme difference is reflected in the slow convergence of the moments and nomal shears; The solution is generally comparable with example A1.
(iv) Example A3: Refer to Table 4. 14.

The solution generally converged rapidly. The boundary values based on the Lagrangian multipliers were very nearly exact after 6 functions. The corresponding values based on the displacement derivatives also compared closely with the exact values.
(b) Example B: Free at $\beta_{2}=0,1$

The results and corresponding exact values are given in Tables 4.15 and 4.19 respectively.

The solution generally converged rapidly, with the (natural) boundary condifions for a free edge being approximately fulfilled. (c) Example C: Hinged of $\beta_{2}=0,1$

The results and corresponding exact values are given in Tables 4.16 and 4.20 respectively.

The boundary values of $\bar{n}_{11}, \bar{n}_{12}$ and \bar{n}_{22} converged slowly. These values could be improved by choosing functions which vialafe the boundary conditions on u_{1} and u_{2} and applying the Lagrangian multiplier method (as in examples $A 4, A 5$ and $A B$). The values within the shell show better convergence.

The displacements, moinents and normal shear \bar{q}_{1} show good convergence, but \bar{q}_{2} on the boundary is slowly convergent.
(d) Example D: Nomal Slide (1) at $\beta_{2}=0,1$

The results and corresponding exact values are given in Tables 4.17 and 4.21 respectively.

The convergence of the solution is generally good. Again \bar{n}_{12} on the boundary is slow to converge.
4.4.3 Some Notes on Functions IC, ID and IF (a) Functions IC

As S becomes large these functions may infroduce numerical difficulties in the solution.

The set IC contains the constant unity and also a half-range Fourier series. However, unity itself can be represented by this Fourier series. Such a representation becomes better as S increases. Then it was not unexpected that some difficuliy may be realised with these functions.

In order to investigate this problem two solutions were obtained for any problem associated with these functions (examples $A 4, A 9$ and B) using:
(i) an unscaled matrix A
(ii) a scaled matrix A, such that the diagonal elements are made unity.

Matrix A is defined by equations (4.70).
If the equations are well-conditioned scaling should not offect the solution.*

A maximum number of 10 functions was considered.
To four significant figures, the values of the displacements, stressresultants and stress-couples were the same in (i) and (ii). However, the solution constants associated with functions IC were completely different for values of $S \geq 10$, although the solution for displacements, etc., was virtually the same.

Whenever functions $\mathbb{I C}$ were used, the solution converged rapidly. Due to this rapid convergence, the difficulties discussed above and

[^4]associated with a large number of terms of this series, were minimised, This investigation indicates, however, that some caution should be exercised in using these functions.

References (7) and (15) both included ($1-2 \beta_{2}$) in set IC. However, because of the similarity of this function with $\cos \pi \beta_{2}$, and to avoid possible further difficulties, this function was excluded from this set. (b) Functions ID

Arguments similar to those used in the obove discussion of functions IC apply to this set also. However, these functions were used only with displacenent u_{1} (example A5), in conjunction with the Lagrangian multiplier method. Accordingly, the corresponding constraint condition (equation 4.38) reduces to the condition that the constant (say a_{0}) associated with the constant unity* in set ID is zero. In example A5, this constant is set to zero before solving the system of linear algebraic equations. When used in this way, no difficulty was observed with these functions.

[^5]The condition that a_{0} is zero may appear trivial, but the Lagrangian multiplier mainfains this condition, and effectively gives a good estimate of the boundary value of the corresponding action (refer to example A5).

Functions \mathbb{D}, in conjunction with the Lagrangian multiplier method, may be effectively used to improve a particular stress-resultant, which is slowly convergent on the boundary but satisfactory elsewhere. (Refer to example A 5 for $c=+0.5$).
(c) Functions IF

In section (3.1.4) it was noted that difficulties with these functions could arise ${ }_{r}$ due to the similarity of the corresponding forms of the cosine and sine sets.

Operations on the matrix A described above in (a) were again carried out. Only example A2 is affected.

For values of S up to 10 , the values of displacement w, moments and normal shears were, to four significant figures, the same in cases (i) and (ii) described in (a) above. for values of S greater than 10 , same of the values, particularly the normal shears, differed in the third, and sometimes the second, significant figure.

However, due to the repid convorgenee observed with sot IF (example A2), it was not necessary to consider a larga number of terms and the diffieulties wore minimisod. It is apparent that those functions should bo usad with caution.

4.5 Discussion of the Computer Programs

A soparate computar progran was developad for each of the examplos given in table 4.5.

The approximating functions wore selected in accordance with the symmetry of the problem (section 4.4). The same valuo of S for each of U_{1}, U_{2} and W was considared.

Input, and therefore output, was in non-dimensional form. The output was arranged in tabular form and has been reproduced in tables 4.7 to 4.21 inclusive.

Further dotails of the computer programs are ovailable at imperial Collega.

The computer prograns wore written in EXCHLF Autocode for the University of London Atlas computer. ${ }^{(70),(71)}$

CHAPTER 5

FURTHER APPLICATION OF THE INDIRECT METHODS
 tO TRANSLATIONAL SHELLS

In this chapter the proposed indirect methods will be applied to translational shells (figure 2.4) which are unsuitable for Levy-type solutions.

Only unifornly distributed normal loading (Z) will be considered.
5.1 Non-Dimensional Form of Equations

Let the displacement distributions assume the following forms:

$$
\begin{align*}
& u_{1}=1_{1} \sum_{m} \sum_{n} a_{m n} u_{1}^{m}\left(\beta_{1}\right) u_{1}^{n}\left(\beta_{2}\right) \tag{5.1}\\
& u_{2}=I_{2} \sum_{m} \sum_{n} b_{m n} u_{2}^{m}\left(\beta_{1}\right) u_{2}^{n}\left(\beta_{2}\right) \tag{5.2}\\
& w=\frac{1}{K_{2}} \sum_{m} \sum_{n} c_{m n} w_{m}\left(\beta_{1}\right) w_{n}\left(\beta_{2}\right) \tag{5.3}
\end{align*}
$$

where $\quad \beta_{1}=\frac{a_{1}}{T_{1}}$

$$
\begin{equation*}
\beta_{2}=\frac{a_{2}}{T_{2}} \tag{5.5}
\end{equation*}
$$

$a_{m n}, b_{m n}$ and $c_{m n}$ are constants to be determined,
$u_{1}^{m}, U_{2}^{m}, w_{m}, U_{1}^{n}, U_{2}^{n}$ and W_{n} represent sets of independent
kinematically admissible functions,
and m and n are positive integers.
The corresponding displacement variations may be selected in the following forms:

$$
\begin{align*}
& \left.\delta u_{1}=I_{1} \sum_{m} \sum_{n} u_{1}^{m}\left(\beta_{1}\right) u_{1}^{n} \beta_{2}\right) \delta a_{m n} \tag{5.6}\\
& \delta u_{2}=I_{2} \sum_{m} \sum_{n} u_{2}^{m}\left(\beta_{1}\right) u_{2}^{n}\left(\beta_{2}\right) \delta b_{i n n} \tag{5.7}\\
& \delta w=\frac{1}{k_{2}} \sum_{m} \sum_{n} w_{m}\left(\beta_{1}\right) w_{n}\left(\beta_{2}\right) \delta c_{m n} \tag{5.8}
\end{align*}
$$

where $\delta a_{m n^{\prime}} \delta b_{m n}$ and $\delta c_{m n}$ are arbitrary variations in the constants $a_{m n}$, $b_{m n}$ and $c_{m n}$ respectively.

In the following derivation only the boundary integrals corresponding to n_{11} and n_{22} will be retained. In all other cases the boundary integrals will be assumed to vanish by virtue of the chosen functions.

Then the variational equation (2.90) after:
(a) setting X_{1}, K_{2} and the applied boundary loads to zero,
(b) non-dimensionalising the co-ordinates to the $\left(\beta_{1}, \beta_{2}\right)$ set defined by equations (5.4) and (5.5),
(c) setting K_{12} to zero and replacing K_{11} and K_{22} by K_{1} and K_{2} respectively, and
(d) substitution of equations (5.1), (5.2), (5.3), (5.6), (5.7) and (5.8),
reduces to the following three independent equations, since $\delta a_{m n}, \delta b_{m n}$ and $\delta c_{m n}$ are arbitrary:

$$
\begin{align*}
& \int_{0}^{1} \int_{0}^{1}\left[-a_{i j} u_{1,11}^{i} u_{1}^{i}-\frac{(1-\nu)}{2} r^{2} a_{i j} u_{1}^{i} u_{1,22}^{i}-\frac{(1+\nu)}{2} b_{k 1} u_{2,1}^{k} u_{2,2}^{l}+\right. \\
& \left.+(c+\nu) c_{p q} w_{p, 1} w_{q}\right] u_{1}^{m} U_{1}^{n} d \beta_{1} d \beta_{2}-2 \int_{0}^{1} \bar{n}_{11}\left(0, \beta_{2}\right) u_{1}^{m}(0) u_{1}^{n} d \beta_{2}=0 \tag{5.9}
\end{align*}
$$

$$
\begin{align*}
& \int_{0}^{1} \int_{0}^{1}\left[-\frac{(1+\nu)}{2} a_{i i_{1,1}}^{u} u_{1,2}^{i}-b_{k l} u_{2}^{k} u_{2,22}^{l}-\frac{(1-\nu)}{2 r^{2}} b_{k l^{u}}^{u_{2,11}^{k}} u_{2}^{1}+\right. \\
& \left.+(1+\nu c) c_{p q} w W_{q, 2}\right] u_{2}^{m} u_{2}^{n} d \beta_{1} d \beta_{2}-2 \int_{0}^{1} \bar{n}_{22}\left(\beta_{1}, o\right) u_{2}^{m} u_{2}^{n}(o) d \beta_{1}=0 \tag{5.10}
\end{align*}
$$

$$
\begin{align*}
& \int_{0}^{1} \int_{0}^{1}\left[-(c+\nu) a_{i i} u_{1,1}^{i} u_{1}^{i}-(1+\nu c) b_{k l} u_{2}^{k} u_{2,2}^{1}+\frac{\rho_{T}}{12}\left(c_{p q} w_{p, 1111} W_{q}+\right.\right. \\
& \left.+2 r^{2} c_{p q} w_{p, 11} W_{q, 22}+r^{4} c_{p q} w_{p} W_{q, 2222}\right)+\left(1+2 \nu c+c^{2}\right) c_{p q} w_{p} W_{q}- \\
& -\bar{Z}] w_{m} W_{n} d \beta_{1} d \beta_{2}=0 \\
& \text { where } \tag{5.11}\\
& \qquad r=\frac{1}{T_{2}} \tag{5.12}\\
& \rho_{T}=\frac{h}{T_{1}} \cdot \frac{1}{K_{2} 1}=-\frac{1}{Q_{r}} \frac{h}{T_{1}} \cdot \frac{I_{2}}{F_{2}} \tag{5.13}\\
& c=\frac{K_{1}}{K_{2}} \tag{5.14}\\
& \bar{Z}=\frac{Z\left(1-\nu^{2}\right)}{E h K_{2}} \tag{5.15}
\end{align*}
$$

i, i, k, l, m, n, p, q are positive integers and \bar{n}_{11} and \bar{n}_{22} are functions of β_{1} and β_{2} and are the non-dirnensional forns (given in Table 5.1) of n_{11} and n_{22} respectively. In equations (5.9), (5.10), (5.11) and Table 5.1, the Einstein summation convention is adopted and comma notation is used to represent differentiation with respect to β_{1} and β_{2}.

In deriving expressions for the boundary integrals, the boundary conditions were assumed symmetric about $\beta_{1}=0.5$ and $\beta_{2}=0.5$. If this were not the case equations (5.9), (5.10) and (5.11) would be modified in the following way:

$$
\begin{aligned}
\text { replace } & {\left[-2 \int_{0}^{1} \bar{n}_{11}\left(o_{1} \beta_{2}\right) u_{1}^{m}(0) U_{1}^{n} d \beta_{2}\right] \text { by } } \\
& {\left[+\int_{0}^{1} \bar{n}_{11}\left(\beta_{1}, \beta_{2}\right) u_{1}^{m}\left(\beta_{1}\right) U_{1}^{n} d \beta_{2}\right]_{\beta_{1}=c}^{\beta_{1}=1} } \\
\text { replace } \quad & {\left[-2 \int_{0}^{\left.\bar{n}_{22}\left(\beta_{1}, o\right) u_{2}^{m} U_{2}^{n}(o) d \beta_{1}\right]}\right. \text { by }} \\
& {\left[+\int_{0}^{\left.\bar{n}_{22}\left(\beta_{1}, \beta_{2}\right) u_{2}^{m} U_{2}^{n}\left(\beta_{2}\right) d \beta_{1}\right] \beta_{2}=1} \beta_{\beta_{2}=0}^{1}\right.}
\end{aligned}
$$

It is evident from the foregoing that the problem is specified through the non-dinensional parameters $p_{T^{r}} c, r$ and ν.*
*As noted in section (4.1) the separate parameters $\left(\frac{h}{T_{1}}\right)$ and $\left(\frac{T_{2}}{f_{2}}\right)$ could have been considered in place of the single parameter ${ }^{\text {P }} \mathrm{T}$.

With $\bar{\Sigma}=1$ equations (5.9), (5.10) and (5.11) are the equations used for the solutions presented in this chapter.

The actual values of the displacements, stress-resultants and stress-couples for any unifornly distributed nomnal loading Z are obtained from the non-dimensional forms given in Table 5.1 by the factors given in Table 5.2.

Equations (5.9), (5.10) and (5.11) are the Galerkin equations modified by expressions corresponding to the relevant boundary integrals in equation ($\mathbf{R}_{2}, 90$).

5.1.1 Modification for the Lagrangian Multiplier Method

In this section only the following homogeneous kinematic conditions will be considered:

$$
\begin{align*}
& u_{1}=0 \text { at } \alpha_{1}=0,1 \tag{5.18}\\
& u_{2}=0 \text { at } \alpha_{2}=0,1_{2} \tag{5.17}\\
& w=0 \text { at }\left(a_{1}, \alpha_{2}\right)=(0,0),(1,0),\left(0,1_{2}\right)_{r}\left(1,1_{2}\right) \tag{5.18}
\end{align*}
$$

Assume that the condirions given by equations (5.16), (5.17) and (5.18) are now applied as constraint conditions.

Then following the procedure described in section (3.1.3) and
assuming that the boundary conditions are symmetric about $\alpha_{1}=0.5 I_{1}$ and $a_{2}=0.5 \mathrm{I}_{2}$, the variational equation (2.90) is modified to:

Left hand side of equarion (2:90) +

$$
\begin{align*}
& +2 \int_{0}^{1} \lambda_{1}\left(\alpha_{2}\right) \delta u_{1}\left(0, a_{2}\right) d a_{2}+ \\
& +2 \int_{0}^{1} \lambda_{2}\left(a_{1}\right) v_{2}\left(\alpha_{1}, o\right) d a_{1}+ \\
& +4 \lambda_{3} \delta w(0,0)=0 \tag{5.19}
\end{align*}
$$

where $\lambda_{1}\left(\alpha_{2}\right), \lambda_{2}\left(\alpha_{1}\right)$ and λ_{3} (a constant) are the Lagrangian multipliers corresponding to the displacements u_{1}, u_{2} and w respectively.

The constraint conditions are:

$$
\begin{align*}
& u_{1}\left(0, a_{2}\right)=0 \tag{5.20}\\
& u_{2}\left(a_{1}, 0\right)=0 \tag{5.21}\\
& w(0,0)=0 \tag{5.22}
\end{align*}
$$

Equations (5.1\%) to (5.22) inclusive completely define the problem.

Expressing

$$
\begin{align*}
& \lambda_{1}\left(a_{2}\right)=\sum_{e} \lambda_{1}^{e} L_{1}^{e}\left(a_{2}\right) \tag{5.23}\\
& \lambda_{2}\left(a_{1}\right)=\sum_{\theta} \lambda_{2}^{e} L_{2}^{e}\left(a_{1}\right) \tag{5.24}
\end{align*}
$$

where λ_{1}^{e} and λ_{2}^{e} are constants,

$$
\begin{aligned}
& L_{1}^{e}\left(\alpha_{2}\right) \text { and } L_{2}^{e}\left(\alpha_{1}\right) \text { represent sets of independent } \\
& \quad \text { functions, }
\end{aligned}
$$

and e is a positive integer,
and proceeding as in sections (5.1) and (3.1.3), equations (5.19) to (5.22) inclusive reduce to the following:

Left hand side of equation (5.9) $+2 \bar{\lambda}_{1}^{e} u_{1}^{m}(0) \int_{0}^{1} L_{1}^{e} U_{1}^{n} d \beta_{2}=0$

Left hand side of equation $(5.10)+2 \bar{\lambda}_{2}^{e} U_{2}^{n}(0) \int_{0}^{1} L_{2}^{e} u_{2}^{i n} d \beta_{1}=0$

Left hand side of equations $(5.11)+4 \pi_{3} w_{m}(0) W_{n}(0)=0$

$$
\begin{align*}
& a_{i j} u_{1}^{i}(0)=0 \tag{5,28}\\
& b_{k 1} U_{2}^{I}(0)=0 \tag{5.29}\\
& c_{p q} w_{p}(0) W_{q}(0)=0 \tag{5.30}
\end{align*}
$$

where

$$
\begin{align*}
& \bar{\lambda}_{1}^{e}=\frac{\left(1-\nu^{2}\right)}{E h} \lambda_{1}^{e} \tag{5.31}\\
& \bar{\lambda}_{2}^{e}=\frac{\left(1-\nu^{2}\right)}{E h} \lambda_{2}^{e} \tag{5.32}\\
& \bar{\lambda}_{3}=\frac{\left(1-\nu^{2}\right)}{\operatorname{GK} T_{2} 1_{2}} \lambda_{3} \tag{5.33}
\end{align*}
$$

With $\bar{Z}=1$ equations (5.25) to (5.30) inclusive are the equations used
in conjunction with the Lagrangian multiplier method
As before the non-dimensional and actual values of the displacements, stress-resultants and stress-couples are obtained from tables 5.1 and 5.2 respectively.

Interpretation of the Lagrangian multipliers
The Lagrangian multipliers provide the generalised reactive force associated with the corresponding constraint condition.

$$
\text { - } 107 \text { - }
$$

Then for the symmetric case considered:

$$
\begin{align*}
& n_{11}\left(0, \alpha_{2}\right)=\lambda_{1}\left(\alpha_{2}\right) \tag{5.34}\\
& n_{22}\left(\alpha_{1}, o\right)=\lambda_{2}\left(\alpha_{1}\right) \tag{5.35}\\
& Q(0,0)=\lambda_{3} \tag{5.36}
\end{align*}
$$

where Q is the nomal reactive force of a corner of the shell and is positive when acting in the $(-\gamma)$ direction.

In non-dimensional forn equations (5.34), (5.35) and (5.36)
reduce to:

$$
\begin{align*}
& \bar{n}_{11}\left(0, \beta_{2}\right)=\bar{\lambda}_{1}\left(\beta_{2}\right)=\sum_{e} \bar{\lambda}_{1}^{e} L_{1}^{e}\left(\beta_{2}\right) \tag{5.37}\\
& \bar{n}_{22}\left(\beta_{1}, 0\right)=\bar{\lambda}_{2}\left(\beta_{1}\right)=\sum_{e} \bar{\lambda}_{2}^{e_{2}^{e}}\left(\beta_{1}\right) \tag{5.38}\\
& \overline{\sigma_{0}}(0,0)=\bar{\lambda}_{3} \tag{5,39}
\end{align*}
$$

Alternative expressions for $\bar{n}_{22}\left(0, \beta_{2}\right)$ and $\bar{n}_{11}\left(\beta_{1}, 0\right)$ will now be derived.

From table 5.1, the following expressions are obtained:

$$
\begin{align*}
& \bar{n}_{22}-\nu \bar{n}_{11}=\left(1-\nu^{2}\right)_{i j} u_{2}^{i} u_{2,2}^{i}-\left(1-\nu^{2}\right) c_{p q} w_{p}^{w} W_{q}^{w} \tag{5.40}\\
& \bar{n}_{11}-\nu \bar{n}_{22}=\left(1-\nu^{2}\right)_{m n} u_{1,1}^{m} u_{1}^{n}-c\left(1-\nu^{2}\right) c_{p q} w_{p}^{w} \tag{5.41}
\end{align*}
$$

At the boundary $\beta_{1}=0$, equation (5.40), after substitution of equation (5.37) becones:

$$
\begin{equation*}
\bar{n}_{22}\left(o, \beta_{2}\right)=\left(1-\nu^{2}\right) b_{i j} u_{2}^{i}(o) u_{2,2}^{i}-\left(1-\nu^{2}\right) c_{p q} w_{p}(o) W_{q}+\nu \bar{\lambda}_{1}\left(\beta_{2}\right) \tag{5,42}
\end{equation*}
$$

At the boundary $\beta_{2}=0$, equation (5.41), after substitution of equation (5.38) becomes:

$$
\begin{equation*}
\bar{n}_{11}\left(\beta_{1}, 0\right)=\left(1-\nu \nu^{2}\right) a_{m n} u_{1,1}^{m} U_{1}^{n}(0)-c\left(1-\nu^{2}\right) c_{p q} w_{p} W_{q}(0)+\nu \lambda_{2}\left(\beta_{1}\right) \tag{5.43}
\end{equation*}
$$

Equations (5.37), (5.38), (5.39), (5.42) and (5.43) provide alternative* boundary values to those based on the displacement derivatives. The actual values are obtained, as before, from table 5.2.

This matter will be discussed further in section (5.5) in conjunction with numerical examples.
*As discussed in section (3.1.3), the values based on the Lagrangian multipliers are generally different from the corresponding values based on the displacement derivatives.

5.2 Boundary Conditions and Approximating Functions

The boundary condirions to be considered in this chapter are given in table 5.3.

Only boundary conditions which are symmetric about $\beta_{1}=0.5$
and $\beta_{2}=0.5$ are considered.
In chapter 4 various types of approximating functions were considered. In view of these results and subsequent discussion, the functions chosen to specify a particular boundary condifion are given in table 5.4. Details of the approximating functions are given in table 3.1.

In table 5.4 two separate sets of functions are associated with each boundary condition:
(a) functions which satisfy all the boundary conditions
(b) functions which violate the condition $u_{1}\left(0, a_{2}\right)=0$ or $u_{2}\left(a_{1}, o\right)=O$ but satisfy the rernaining conditions on a boundary.*

[^6]Case (b) is considered in conjunction with the Lagrangian multiplier method.

Any combination of the boundary conditions given in table 5.4 may be specified.
5.3 Reduction to a System of Linear Algebraic Equations

For a particular set of approximating functions, equations (5.9), (5.10) and (5.11), with $\bar{Z}=1$, reduce, on integration, to a system of linear algebraic equations, which in matrix form are:

$$
\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \tag{5.44}\\
A_{21} & \underline{A}_{22} & A_{23} \\
\underline{A}_{31} & A_{32} & A_{33}
\end{array}\right]\left[\begin{array}{l}
\underline{a} \\
\underline{b} \\
\underline{c}
\end{array}\right]+\left[\begin{array}{l}
\underline{o} \\
\underline{o} \\
\underline{g}
\end{array}\right]=\left[\begin{array}{l}
\underline{0} \\
\underline{O} \\
\underline{o}
\end{array}\right]
$$

or, more compactly:

$$
\begin{equation*}
\underline{A} \overline{\underline{a}}+\underline{\bar{g}}=\underline{0} \tag{5.45}
\end{equation*}
$$

where

$$
\begin{aligned}
& \underline{\underline{a}}=\operatorname{col}\left\{\begin{array}{lll}
\underline{a} & \underline{b} & \underline{c}
\end{array}\right\} \\
& \underline{\underline{g}}=\operatorname{col}\{\underline{\underline{c}} \underline{\underline{O}} \underline{\underline{g}}\}
\end{aligned}
$$

Typical elements of the submatrices in equations (5.44) are given in table 5.5a.* The relevant integration formulae are given in Appendix 2.

Since the notation used in defining the submatrices in table 5.5a is a departure from the usual matrix notation, typical examples will be given to illustrate the pattern of the matrices.

In table 5.5a typical elements of ${\underset{A}{12}}$ and \underline{b} were given as $a_{\mathrm{m} n, \mathrm{kl}}^{12}$ and $b_{k l, 1}$ respectively. Assuming, for example that m, n, k and I each range over the values 1 and 2, then the respective matrix patterns are:

$$
A_{12}=\left[\begin{array}{llll}
a_{11,11}^{12} & a_{11,12}^{12} & a_{11,21}^{12} & a_{11,22}^{12} \\
a_{12,11}^{12} & a_{12,12}^{12} & a_{12,21}^{12} & a_{12,22}^{12} \\
a_{21,11}^{12} & a_{21,12}^{12} & a_{21,21}^{12} & a_{21,22}^{12} \\
a_{22,11}^{12} & a_{22,12}^{12} & a_{22,21}^{12} & a_{22,22}^{12}
\end{array}\right]
$$

*The comma notation used in deffining a typical natrix alsmont in tables 5.5a and 5.5b (o.g. $a_{\mathrm{mn}, \mathrm{if}}^{11}$) does not represent differentiation. However, the comma notation usad in the expremian corresponding to a typical element represents difforentiation with respect to β_{1} and β_{2}

$$
\underline{b}=\operatorname{col}\left\{b_{11} b_{12} b_{21} \quad b_{22}\right\}
$$

Similarly for the orher submatrices in table 5.5a.
5.3.1 Modification for the Lagrangian Multiplier Method

When the Lagrangian multiplier method is applied, the modified form given by equations (5.25) to (5.30) inclusive is used. These equations may also be reduced to a system of linear algebraic equations, which in matrix fonm are:

Typical elements of the submatrices ${\underset{A}{i j}}(i, i=1,2,3), \underline{a}, \underline{b}, \underline{c}$ and \underline{g} are, as before, given in table 5.5a. Typical elements of the remaining
subinatrices in equations (5.46) are given in table 5.5b.
The matrix notation used in table 5.50 will be illustrated by typical examples.

In table $5.5 b$ typical elements of $D_{1}, D_{3}, D_{4}, d_{3}$ and $\bar{\lambda}_{1}$ were given as $\left(d_{m n, e}^{1}\right),\left(d_{i, i j}^{3}\right),\left(d_{k, k l}^{4}\right),\left(d_{m n, 1}^{5}\right)$ and $\bar{\lambda}_{i}^{e}$ respectively. Assuming, for example that n, n, i, i, k, I and e range over the values 1 and 2 , then the respective matrix patterns are:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\underline{D}_{1} & {\left[\begin{array}{ll}
d_{11,1}^{1} & d_{11,2}^{1} \\
d_{12,1}^{1} & d_{12,2}^{1} \\
d_{21,1}^{1} & d_{21,2}^{1} \\
d_{22,1}^{1} & d_{22,2}^{1}
\end{array}\right]} \\
\underline{D}_{3}= \\
{\left[\begin{array}{llll}
d_{1,11}^{3} & \cdot & d_{1,21}^{3} & \cdot \\
\cdot & d_{2,12}^{3} & \cdot & d_{2,22}^{3}
\end{array}\right]} \\
\underline{D}_{4}=\left[\begin{array}{lll}
d_{1,11}^{4} & d_{1,12}^{4} & \cdot \\
\cdot & \cdot & d_{2,21}^{4}
\end{array}\right] & d_{2,22}^{4}
\end{array}\right]}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\underline{d}_{5}=\operatorname{col}\left\{\begin{array}{llll}
d_{11}^{5} & d_{12}^{5} & d_{21}^{5} & d_{22}^{5}
\end{array}\right\} \\
\overline{\bar{\lambda}}_{1}=\operatorname{col}\left\{\bar{\lambda}_{1}^{1}\right. \\
\bar{\lambda}_{1}^{2}
\end{array}\right\}
$$

Similarly for the other submatrices defined in table 5.5b. It has been established that the Lagrangian multipliers $\lambda_{1}\left(a_{2}\right)$ and $\lambda_{2}\left(a_{1}\right)$ provide alternative values for $n_{11}\left(0, a_{2}\right)$ and $n_{22}\left(a_{1}, o\right)$ respectively (refer to section 5.1.1). Then the functions L_{1}^{e} and L_{2}^{e} should be chosen such that the condition on n_{11} or n_{22} in the corner of the shell is satisfied. A suitable set of functions is IA (refer to table 5.4), which correctly satisfies the zero condition on n_{11} or n_{22} in the comer of the shell for all combinations of the boundary conditions considered.

For the boundary conditions and approximating functions considered in this chapter (table 5.4):

$$
\begin{align*}
& L_{1}^{e}=U_{1}^{e} \tag{5.47}\\
& L_{2}^{e}=u_{2}^{e} \tag{5.48}
\end{align*}
$$

which, on substitution in the expressions for typical elements of D_{1} and D_{2} given in table 5.4b, yields respectively:

$$
\begin{gather*}
-115- \\
d_{m n, e}^{1}=2 u_{1}^{m}(0) \int_{0}^{1} u_{1}^{e} u_{1}^{n} d \beta_{2} \tag{5.49}\\
d_{m n, e}^{2}=2 u_{2}^{n}(o) \int_{0}^{1} u_{2}^{e} u_{2}^{m} d \beta_{1} \tag{5.50}
\end{gather*}
$$

Since the functions chosen for $U_{1}^{e}, U_{1}^{n}, u_{2}^{e}$ and u_{2}^{m} are, in fact, sine functions, then the non-zero alements of \underline{D}_{1} and \underline{D}_{2}, aiter integrating the expressions in equations (5.49) and (5.50) are respectively:

$$
\begin{align*}
& d_{m n, n}^{1}=u_{1}^{i n}(0) \tag{5.51}\\
& d_{m n, m}^{2}=u_{2}^{n}(0) \tag{5,52}
\end{align*}
$$

Hence

$$
\begin{align*}
& \underline{D}_{1}=\underline{D}_{3}^{\top} \tag{5.53}\\
& \underline{D}_{2}=\underline{D}_{4}^{\top} \tag{5.54}
\end{align*}
$$

If S is the number of functions chosen to represent each of the displacements ${ }^{u_{1}}, u_{2}$ and w in each of the directions β_{1} and β_{2},* then the order of * I is not essential io adopt the same value of S for each displacement.
the respective submatrices is tabulated below:

Submatrix	Order
$\underline{A}_{i i}(i, i=1,2,3)$	$s^{2} \times s^{2}$
$\underline{D}_{1}, \underline{D}_{2}$	$s^{2} \times s$
$\underline{D}_{3}, \underline{D}_{4}$	$s \times s^{2}$
$\underline{a}, \underline{b}, \underline{c}, \underline{g_{2}} \underline{d}_{5}, \underline{d}_{6}$	$s^{2} \times 1$
$\bar{\lambda}_{1}, \underline{\lambda}_{2}$	$s \times 1$
$\bar{\lambda}_{3}$	1×1

Then there are 35^{2} constants to be determined by equations (5.44) and $\left(3 S^{2}+2 S+1\right)$ constants to be determined by equations (5.46). However, since funcrions ID have been chosen to be used in conjunction with the Lagrangian mulfiplier method, the number of constonts to be determined by equations (5,46) moy be reduced . For the symmerric problem chosen here, functions ID for u_{1}^{i} (say) are:
$\left(1-2 \beta_{1}\right), \sin 2 \pi \beta_{1}, \sin 4 \pi \beta_{1}, \sin \delta \pi \beta_{1}, \ldots \ldots, \sin 2 i \pi \beta_{1}, \ldots \ldots$
where $i=1,2,3, \ldots \ldots,(S-1)$ and function $\left(1-2 \beta_{1}\right)$ corresponds to $i=0$.

Sulastituting these functions in the constraint condition given by equation (5.23) yields:

$$
\begin{equation*}
a_{0 i}=0 \tag{5.55}
\end{equation*}
$$

where

$$
i=1,2,3, \ldots \ldots, s
$$

The S constants given by equation (5.55) are set to zero before solving equations (5.46). In this way the number of constants has been reduced by S. A similar argument applies to the constraint condition given by equation (5.29).

A further advantage in following the procedure outlined above is that it avoids any numerical difficulties that may arise when using functions ID. (This matter was discussed in detail in section 4.4.2).

The solution of equarions (5.46) forms the basis of the numerical results presented in this chapter. When no Logrengian multipliers are used these equations reduce to equations (5.44).

5.4 Overall Equilibrium Check

In chapter 4, the numerical results were compared with available exact solutions: In the problems considered in this chapter, no such exact results are available. It is therefore necessary to apply some ched on the solution.

Since the indirect methods discussed in this thesis attempt to satisfy equilibrium, a suitable check is one of overall equilibrium.
5.4.1. Geometry and Assumptions

From figure (2.4) the equation of the middle surface of a translational shell is given by:

$$
\begin{equation*}
z=\frac{K_{2}}{2}\left[c\left(x_{1}^{2}-I_{1} x_{1}\right)+\left(x_{2}^{2}-I_{2} x_{2}\right)\right] \tag{5.56}
\end{equation*}
$$

where $\quad K_{2}=-\frac{8 f_{2}}{\mathrm{l}_{2}^{2}}$

The siopes of the middle surface in the x_{1} and x_{2} directions are respectively:

$$
\begin{align*}
& z_{1}=\frac{K_{2}}{2}\left[c\left(2 x_{1}-I_{1}\right)\right] \tag{5.58}\\
& z_{r_{2}}=\frac{K_{2}}{2}\left[2 x_{2}-I_{2}\right] \tag{5.59}
\end{align*}
$$

Substitution for K_{2} given by equation (5.57) in equations (5.58) and (5.59) yields:

$$
\begin{align*}
& z_{1}=4 \mathrm{cr} \frac{f_{2}}{T_{2}}\left(1-\frac{2 x_{1}}{T_{1}}\right) \tag{5.60}\\
& z_{, 2}=4 \frac{f_{2}}{T_{2}}\left(1-\frac{2 x_{2}}{T_{2}}\right) \tag{5.61}
\end{align*}
$$

The assumptions relating to the shallow curved plate theory (chapter 2) imply that the products of the slopes z_{1}, and z_{1} may be neglected as small compared with unity.

Similarly it may be assumed that

$$
\begin{gather*}
z_{i}(i=1 \operatorname{or} 2) \simeq \tan \theta_{i} \simeq \sin \theta_{i} \simeq \theta_{i} \tag{5.62}\\
\cos \theta_{i} \simeq 1.0 \tag{5.63}
\end{gather*}
$$

Within the limits of the curved plate approximation $\frac{x_{1}}{T_{1}}$ and $\frac{x_{2}}{T_{2}}$ may be replaced by β_{1} and 3_{2} respectively and equations (5.60) and (5.61) become:

$$
\begin{align*}
& z_{1}=4 \mathrm{cr} \frac{f_{2}}{2}\left(1-2 \beta_{1}\right) \tag{5.64}\\
& z_{r_{2}}=4 \frac{f_{2}}{r_{2}}\left(1-2 \beta_{2}\right) \tag{5.65}
\end{align*}
$$

5.4.2. Resolution of the Load and Stress-Resultants in the

$$
\text { Directions } x_{1}, x_{2} \text { and } z_{6}
$$

Since the loading and boundary conditions are symmetric about $\beta_{1}=0.5$ and $\beta_{2}=0.5$, only one quarter of the shell need be considered (figure 5.1).

Let E_{1}, E_{2} and E_{3} be the errors in equilibrium for one quarter of the shell (figure 5.1) measured positive in the directions x_{1}, x_{2} and z respectively.

Then resolving the load and stress resultants in the directions x_{1}, x_{2} and z respectively and allowing for the assumptions previously made, i.e. ignoring terms containing products of slopes of the middle surface and assuming that the relations given by equations (5.62) and (5.63) hold, yields the following three oquations respectively:

$$
\begin{align*}
E_{1}= & \int_{0}^{\frac{1}{2}}\left[-n_{12}\left(a_{1}, 0\right)+q_{2}\left(a_{1}, o\right)\left(z_{1}\right)_{x_{2}=0}\right] d \alpha_{1}+ \\
& +\int_{0}^{\frac{I_{2}}{2}}\left[-n_{11}\left(0, a_{2}\right)+n_{11}\left(\frac{1}{2}, \alpha_{2}\right)+q_{1}\left(0, a_{2}\right)\left(z_{1}\right)_{x_{1}=0}\right] d \alpha_{2}- \\
& -\int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} Z\left(z_{1}\right) d \alpha_{1} d a_{2}+Q\left(z_{1}\right)_{x_{1}=0} \tag{5.66}
\end{align*}
$$

$$
\begin{align*}
& E_{2}=\int_{0}^{\frac{1}{2}}\left[-n_{22}\left(\alpha_{1}, o\right)+n_{22}\left(\alpha_{1}, \frac{l_{2}}{2}\right)+q_{2}\left(\alpha_{1}, o\right)\left(z_{2}\right)_{x_{2}}=0\right] d \alpha_{1}+ \\
& +\int_{0}^{\frac{1_{2}}{2}}\left[-n_{12}\left(0, \alpha_{2}\right)+q_{1}\left(0, \alpha_{2}\right)\left(z_{2}\right) x_{j}=0\right] d a_{2}- \\
& -\int_{0}^{\frac{1}{2}} \int_{0}^{\frac{I_{2}}{2}} Z\left(z_{2}\right) d \alpha_{1} d a_{2}+Q\left(z_{r_{2}}\right)_{x_{1}}=0 \\
& E_{3}=-\int_{0}^{\frac{1}{2}}\left[n_{22}\left(\alpha_{1}, 0\right)\left(z_{r 2}\right)_{x_{2}=0}+n_{12}\left(\alpha_{1}, 0\right)\left(z_{1}\right)_{x_{2}=0}+q_{2}\left(\alpha_{1}, 0\right)\right] d a_{1}- \\
& -\int_{0}^{\frac{I_{2}}{2}}\left[n_{11}\left(0, \alpha_{2}\right)\left(z_{r}\right)_{x_{1}=0}+n_{12}\left(0, \alpha_{2}\right)\left(z_{r}\right)_{x_{1}=0}+q_{1}\left(0, a_{2}\right)\right] d \alpha_{2}- \\
& -Q+\int_{0}^{\frac{1}{2}} \int_{0}^{\frac{I_{2}}{2}} \pi \mathrm{~d} \alpha_{1} d \alpha_{?} \tag{5.68}
\end{align*}
$$

From table 5.4 and equations (5.4) and (5.5) the following are obtained:

$$
\begin{aligned}
n_{i j} & =\frac{Z}{K_{2}} \bar{n}_{i j}=-\frac{Z I_{2}^{2}}{8 f_{2}} \bar{n}_{i j} \\
q_{i} & =Z I_{1} \bar{q}_{i} \\
Q & =Z I_{1} I_{2} \bar{Q} \\
d a_{i} & =I_{i} d \beta_{i} \text { (not summed) }
\end{aligned}
$$

where i and i range over the values 1 and 2. Substituting for $n_{i j}$ " q_{i}, Q and d_{i} by the above expressions and for $\left(z_{f}\right)$ and $\left(z_{2}\right)$ by equations (5.64) and (5.65) in equations (5.66), (5.67) and (5.68) yields:

$$
\begin{align*}
& E_{1}=Z I_{1} I_{2}\left(E_{1}\right) \tag{5.69}\\
& E_{2}=Z I_{1} I_{2}\left(E_{2}\right) \tag{5.70}\\
& E_{3}=Z I_{1} I_{2}\left(E_{3}\right) \tag{5.71}
\end{align*}
$$

where the non-dimensional forms \bar{E}_{1}, \bar{E}_{2} and \bar{E}_{3} are given by:

$$
\begin{align*}
& E_{1}=\frac{1}{8} \cdot\left(\frac{1}{f_{2}} \int_{0}^{\frac{1}{2}}\left[\bar{n}_{12}\left(\beta_{1}, 0\right)+32 \operatorname{cr}^{2}\left(\frac{f_{2}}{T_{2}}\right)^{2} \bar{q}_{2}\left(\beta_{1}, 0\right)\left(1-2 \beta_{1}\right)\right] d \beta_{1}+\right. \\
& +\frac{1}{B}\left(\frac{1}{f_{2}}\right) \int_{0}^{\frac{1}{2}}\left[\frac{1}{r} \bar{n}_{11}\left(0, \beta_{2}\right)-\frac{1}{r} \bar{n}_{11}\left(0.5, \beta_{2}\right)+32 \operatorname{cr}\left(\frac{f_{2}}{2}\right)^{2} \bar{q}_{1}\left(0, \beta_{2}\right)\right] d \beta_{2}+ \\
& +4 \operatorname{cr}\left(\frac{f_{2}}{T_{2}}\right) Q-\frac{1}{2} \operatorname{cr}\left(\frac{f_{2}}{T_{2}}\right) \tag{5.72}
\end{align*}
$$

$$
\begin{align*}
& \bar{E}_{2}=\frac{1}{8}\left(\frac{1}{F_{2}}\right) \cdot \int_{0}^{\frac{1}{2}}\left[\bar{n}_{22}\left(\beta_{1}, 0\right)-\bar{n}_{22}\left({ }_{1}, 0.5\right)+32 r\left(\frac{f_{2}}{T_{2}}\right)^{2} \bar{q}_{2}\left(\beta_{1}, 0\right)\right] d \beta_{1}+ \\
& +\frac{1}{3}\left(\frac{1}{f_{2}}\right) \int_{0}^{\frac{1}{2}}\left[\frac{1}{r} \bar{n}_{12}\left(0, \beta_{2}\right)+32\left(\frac{f_{2}}{2}\right)^{2} \bar{q}_{1}\left(0, \beta_{2}\right)\left(1-2 \beta_{2}\right)\right] d \beta_{2}+ \\
& +4\left(\frac{f_{2}}{2}\right) \sigma-\frac{1}{2} \cdot\left(\frac{f_{2}}{T_{2}}\right) \tag{5.73}\\
& \bar{E}_{3}=\frac{1}{2} \int_{0}^{\frac{1}{2}}\left[\bar{n}_{22}\left(\beta_{1}, o\right)+\operatorname{ren}_{12}\left(\beta_{1}, o\right)\left(1-2 \beta_{1}\right)-2 r \bar{q}_{2}(\beta, 0)\right] d \beta_{1}+ \\
& +\frac{1}{2} \int_{0}^{\frac{1}{2}}\left[c \bar{n}_{11}\left(0, \beta_{2}\right)+\frac{1}{r} \cdot \bar{n}_{12}\left(0, \beta_{2}\right)\left(1-2 \beta_{2}\right)-2 \bar{q}_{1}\left(0, \beta_{2}\right)\right] d \beta_{2}- \\
& \text { - } \overline{0}+0.25 \tag{5.74}
\end{align*}
$$

Equations (5.72), (5.73) and (5.74) are the equations used to check overall equilibrium for a shallow curved plate. E_{1}, E_{2} and E_{3} are the errors in equilibrium expressed as a factor of ($\mathrm{ZI}_{1} \mathrm{I}_{2}$) and measured positive in the directions x_{1}, x_{2} and z respectively.

For the overall equilibrium check it is necessary to define a further parameter $\left(\frac{2}{F_{2}}\right)$, which is a measure of the shallowness of the shell. to determine E_{1} and \bar{E}_{2}. Note that \bar{E}_{3} is independent of $\left(\frac{I_{2}}{f_{2}}\right)$.

5.5 Convergence Study of the Approximating Functions

In this section combinations of the boundary conditions given in table 5.4 will be applied to particular numerical examples. In the computer progrom developed, provision is mode for the symmetry of the problem by choosing the functions given in table 5.4 euch that:
(a) $\quad u_{2}^{m}, w_{m}, \underline{L}_{\underline{e}}^{e}$ are symmetric functions about $\beta_{1}=0.5$
(b) $\quad u_{1}^{m}$ is an antimetric function about $\beta_{1}=0.5$
(c) $\quad U_{1}^{n}, W_{n}, L_{1}^{e}$ are symmetric functions about $\beta_{2}=0.5$
(d) $\quad U_{2}^{n}$ is an ontimetric function about $\beta_{2}=0.5$

5.5.1. Nunerical Examples

The examples to be studied are given in table 5.6. The corresponding results* are presented in tables 5.7 to 5.12 inclusive and

[^7]figures $5.2 a, 5.2 b$ and 5.2c.
Displacements, stress-resultants and stress-couples are presented in non-dimensional form (adable 5.1). The actual values are obtainable from the expressions given in table 5.2.

In tables 5.7 to 5.12 inclusive the values marked with an asterisk (*) are based on the Lagrangian multipliers and the corresponding values in brackets are based on the displacement derivatives.

In the overall equilibrium check, E_{1} and E_{2} are presented in their non-dimensional forms \bar{E}_{1} and \bar{E}_{2}, whilst E_{3} is expressed as a percentage error $\left(*=400 \bar{E}_{3}\right)$.*
S is the number of functions used to represent each displacement in each of the directions β_{1} and β_{2}, due allowance being made for the symmetry of the problem in the selection of these functions. 5.5.2. Discussion

The convergence of the displacements was good for all combinations of the boundary conditions considered i.e. clamped, hinged and normal slide (1).

[^8]When a hinged boundary was used, the convergence of n_{11} (or n_{22}) along this boundary was slow, but satisfactory within the shell (note example 5.2A). This was reflected in the large errors in the overall equilibrium check. Application of the Lagrangian multiplier method in coniunction with functions ID (case (b) in table 5.4) greatly improved the boundary value of n_{11} (or n_{22}) and reduced the errors in equilibrium (compare example 5.2B with example 5.2A). The boundary value of n_{11} (or n_{22}) based on the Lagrangian multiplier again provided a more accurate estimate than the corresponding value based on the displacement derivative (refer to section 4.4.2 where this matter was discussed.in detail). It was previously noted (saction 4.4.2) that functions ID when used in the manner described in this thesis may be effective in improving a particular stress-resultant, which is slowly convergent on the boundary but satisfactory elsewhere. The examples studied in this section are a further illustration of this.

With clamped and nomal slide (1) boundaries, the convergence of the membrane stress-resultants was good and, although provision was made in the computer program, it was unnecessary to apply the Lagrangian multiplier method (case (b) in table 5.4).

When normal slides (1) were considered along all boundaries (example 5.3, table 5.9 , figures $5.2 \mathrm{a}, 5.2 \mathrm{~b}$ and 5.2 c), the moments (stress-couples) were generally very small except in the region of the corners where convergence was slow. In this example the Lagrangion multiplier gave the normal reaction in the corner. Example 5.3, in some respects, is similar to excmple $A 7$ in section (4.4.2). In example $A 7$ functions IB were used to represent W_{m} and the Lagrangian multiplier method applied in conjunction with the constraint condition $\mathrm{W}_{\mathrm{m}}=0$ at $\beta_{2}=0,1$. The boundary moment in this case was very slowly convergent (note, in particular, figure 4.6). For comparison, the solution for a shell with the same parameters but with all edges clamped, is also given in figures 5.2a, 5.2b and 5.2c.

With other combinations of clamped, hinged and nomal slides (1), the moments were generally converging satisfactorily.

Normal shears (stress-resultants) on the boundary were generally slowly convergent, which undoubtedly contributed to the errors in equilibrium, particularly if the shears were of a significant magnitude.

5.6 Comparison with Other Available Solutions

Example 5.7: Consider an elliptic paraboloid with the following data:

$$
\begin{aligned}
& r=1.0 \\
& P_{\mathrm{T}}=0.0152928 \\
& c=0.5 \\
& \nu=0.25
\end{aligned}
$$

and boundary conditions:

$$
\text { clamped at } a_{1}=0, I_{1} \text { and } a_{2}=0, I_{2}
$$

The convergence of this solution was studied in example 5.1.
This example was also solved by Noor and Veletsos, (15) using a Rayleigh-Ritz analysis and a modified finite difference technique. A comparison is given in table 5.13 and figures 5.3 a and 5.3 b . The solutions show good agreement.

In the Rayleigh-Ritz analysis used in reference (15), a w- 6 formulation is used and functions IE and IC have been chosen to represent respectively w and ϕ in each of the directions β_{1} and β_{2}. Note that the boundory values of the moments so obtained, are smaller than for the other solutions (table 5.13, figure 5.3a). If has been previously noted (section 3.1.4), that the functions IE impose the additional boundary
conditions of zero nornal shear and zero Kirchhoff shear, and this undoubtedly is reflected in the slower convergence of the boundary moments observed for this case (refer also to example Al in section 4.4.2).

Example 5.8: Consider a cylinder with the following data:

$$
\begin{aligned}
& \mathrm{I}_{1}=600 \mathrm{in} . \quad I_{2}=497.4 \mathrm{in}_{0}^{*} \quad h=4 \mathrm{in} . \\
& K_{1}=0 \quad K_{2}=1.8519,-3 \mathrm{in}^{-1} \\
& E=3.0,+6 \mathrm{lbs} / \mathrm{in}^{2} \quad \nu=0 \quad Z=0.555 \mathrm{lbs} / \mathrm{in}^{2}
\end{aligned}
$$

and boundary conditions:

$$
\text { clamped at } \alpha_{1}=0,1_{1} \text { and } a_{2}=0,1_{2}
$$

This example was also solved by Gunasekera ${ }^{(6)}$ and by $L^{(5)}$, using an extended Levy inethod of solution. The solution is compared with that given by Gunasekera in table 5.14.

The solution for m_{11} on the boundary is less than that given by Gunasekera by approximately 10%. Otherwise the solutions show good agreement.
*This is the arc length corresponding to a plan length of 880 inches. In the shallow curved plate theory discussed in this thesis, no distinction is made between the arc length and the plan length. However, in order to compare the indirect solutions of this thesis with other available solutions it is sometimes necessary to use the are length.

Example 5.9: Consider a hyperbolic paraboloid with the following data:

$$
\begin{aligned}
& I_{1}=51.32 \mathrm{ft}^{*} * \quad \mathrm{~L}_{2}=61.59 \mathrm{ft}{ }^{*} \quad \mathrm{~h}=2.5 \mathrm{in} . \\
& K_{1}=-1.5385,-2 \mathrm{ft}^{-1} \quad K_{2}=1.2821,-2 \mathrm{ft}^{-1} \\
& E=4.5,+8 \mathrm{lbs} / \mathrm{ft}^{2} \quad \boldsymbol{V}=0.15 \quad Z=50 \mathrm{lbs} / \mathrm{ft}^{2}
\end{aligned}
$$

and boundary conditions:
hinged $a+a_{1}=0,1_{1}$ and $a_{2}=0,1_{2}$.
(6)

This example was solved by Gunasekera** and a comparison is given in table 5.15.

Note that the Lagrangian multiplier method is used in an attempt to improve the boundary values of n_{11} and n_{22}. Functions corresponding to case (b) in table 5.4 are used.
*These are arc lengths corresponding to the plan lengths 50 ft . and 60 ft . respectively.
**The results presented by Gunasekera were at $\frac{1}{3}$ th points. The results presented here are at $\frac{1}{10}$ th points. This example was re-run for this latter output using Gunasekera's computer program.

The solutions generally show good agreement. Note the good agreement of the boundary values of n_{11} and n_{22} based on the Lagrangian multipliers with those given by Gunasekera.

5.7 Further Solutions - Variation of the Shell Parameters

The non-dimensional form of equations (5.9), (5.10) and (5.11) shows that the translational shell is completely defined by the parameters r, Pr, c and ν. Such a representation pemits the behaviour of translational shells to be conveniently studied by the variation of these parameters.

The examples considered and the particular parameter being varied are given in table 5.16. The corresponding results are given in tables 5.17 to 5.22 inclusive.

All results are presented in non-dimensional form (table 5.1), the actual values being obtained from the expressions given in table 5.2.

The Lagrangian multiplier method is used in example 5.14 (case (b) in table 5.4). In this case the boundary values of \bar{n}_{11} given in table 5.21 are based on the Lagrangian multiplier.

$$
S=3 \text { has been chosen in each of these examples. }
$$

5.7.1 Discussion

Variation of ρ_{T} : The parameter ρ_{T}, defined by equation (5.13), varies with shell thickness and shallowness. This thesis is concerned with the study of thin shallow shells and ρ_{T} should be interpreted accordingly. The thin flat plate is recovered from $\rho_{T}=\infty$.

For comparison the following flat plate solutions for $r=1$ and $\nu=0.15$ are given*:
(i) all boundaries clamped:

$$
\begin{aligned}
& \bar{w}(0.5,0.5)=1.265,-3 \\
& \bar{m}_{11}(0,0.5)=-5.084,-2 \\
& \bar{m}_{11}(0.5,0.5)=2.021-2
\end{aligned}
$$

(ii) all boundaries hinged (simply supported):

$$
\begin{aligned}
& \bar{w}(0.5,0.5)=4.062,-3 \\
& \overline{\operatorname{F}}_{11}(0.5,0.5)=4.234,-2
\end{aligned}
$$

*These values are in non-dimensional form and were obtained from the computer program developed by using a very large value of ρ_{T}. The actual values follow from table 5.2. $S=8$ was again adopted.
(iii) all boundaries with normal slides:

$$
\begin{array}{ll}
\bar{w}(0.5,0.5) & =5.771,-3 \\
\bar{w}(0,0.5) & =4.323,-3 \\
\bar{m}_{11}(0,0) & =-2.322,-1^{*} \\
\bar{m}_{11}(0,0.5) & =-1.956,-2 \\
\bar{m}_{11}(0.5,0.5) & =3.159,-2 \\
\bar{G} & =2.500,-1
\end{array}
$$

As the shell becomes shallower, i.e. as ρ_{T} increases, tables $5.17,5.19$ and 5.20 show that \bar{w}, \bar{m}_{11} and $\overline{\mathrm{Q}}$ (example 5.15 only) also increase, slowly approaching the solution for a thin flat plate. When $\rho_{\mathrm{T}}=0.03$, which corresponds to the values $\left(\frac{h}{T_{1}}\right)=\frac{1}{100}$ and $\left(\frac{2}{f_{2}}\right)=-24$, the solution for the shell, although very shallow, is still very different from the corresponding flat plate solution.

On the other hand, \bar{n}_{11} decreases very slowly with increasing shallowness and is still of significant value even for a vary shallow shell ($\rho_{\mathrm{T}}=0.10$), particularly in example 5.15. Similarly \bar{n}_{12} is decreasing slowly with increasing shallowess, but it is of smaller magnitude than $\bar{n}_{11^{*}}$.
*This value is slowly convergent.

Similar remarks apply to increasing thickness, which also coresponds to an increasing ρ_{T}, but any comments are restricted to thin shells.*

Note that only the effect on the non-dinensional values has been considered. The actual values follow from table 4.2, which gives:

$$
\begin{aligned}
& w=\frac{12 Z I_{1}\left(1-\nu^{2}\right)}{E}\left(\frac{I_{1}}{h}\right)^{3} \bar{w} \\
& { }_{n}=Z I_{1}\left(-\frac{1}{8 r} \cdot \frac{I_{2}}{f_{2}}\right) \bar{n}_{11}=\frac{Z 1_{1}^{2}}{h}\left(\rho_{T} \bar{n}_{11}\right)
\end{aligned}
$$

Then if increasing ρ_{T} is interpreted as increasing shallowness the effect on the actual stress-resultant n_{11} is dependent on $\left(\rho_{T} \bar{n}_{11}\right)$. Referring to
*VIasov (page 337, reference 9) restricts thin shells to the range:

$$
\begin{equation*}
h\left|K_{\max }\right| \leq \frac{1}{30} \tag{a}
\end{equation*}
$$

where $\left|K_{\max }\right|$ is, numerically, the maximum undeformed curvature.
If $\left|K_{2}\right|>\left|K_{1}\right|$, then (a) becomes:

$$
\left(\frac{h}{T_{1}}\right)\left(\left|\frac{f_{2}}{T_{2}}\right|\right) \leq \frac{1}{240 r}
$$

and if $\left|K_{1}\right|>\left|K_{2}\right|$ then (a) becomes:

$$
\left(\frac{h}{T_{1}}\right)\left(\left|\frac{f_{2}}{T_{2}^{\prime}}\right|\right) \leq \frac{1}{240 r|c|}
$$

the tables, it will be noted that the product ($\rho_{T} \bar{n}_{11}$) increases with increasing P_{T}. However, beyond the range considered here, the product begins to decrease with increasing ρ_{T} and approaches zero as ρ_{T} becomes very liarge.

If increasing $P_{\boldsymbol{T}}$ is interpreted as increasing thickness, but restricted to thin shells, the effect on the actual displacement w is dependent on $\left(\frac{1}{h}\right)^{3} \bar{w}$.

The non-dimensional presentation of the tables given in this section covers, very compactly, the solutions for a wide range of thin shallow shells.

Variation of c: Only the case with all boundaries clamped is considered and the results are presented in table 5.18.

Since ρ_{\top} remains constant, the variation of c represents, in effect, the variation of K_{1} with all other data fixed.

As c increases from -2. O to +2.0 :
(a) \bar{w} and \bar{m}_{11} initially increase, reaching their maximum values, within the limits of the results presented here, at $c=O$ after which they begln to decrease.
(b) \bar{m}_{22} initially increases, reaching its maximum value at $\mathrm{c}=-0.5$, after which it begins to decrease.
(c) \bar{n}_{11} changes sign, reaching its maximum positive value at $c=-1.0$, and its maximum negarive value at $c=+1.0$.
(d) $\overline{\mathrm{n}}_{22}$ initially increases, reaching its maximum value when $\mathrm{c}=\mathrm{O}$, after which it begins to decrease.
(e) \bar{n}_{12} changes sign, reaching its maximum positive value when $c=-2.0$ and its maximum negative value when $c=0.5$.

Variation of r: Cnly the case with all boundaries clamped is considered.
The results are presented in table 5.19.
Since P_{T} remains constant, the variation of r represents, in effect, the variation of I_{2} with all other data fixed.

As r increases from 0.5 to 5.0 :
(a) the maximum value of \bar{w} along $\beta_{1}=0.5$ increases, reaching its highest valua, within the limits of the results presented here, at $r=2.0$, after which it begins to decreaseg the location of this maximum value moves towards the centre of the shell.
(b) the maximum value of $\overline{\mathrm{w}}$ along $\beta_{2}=0.5$ increases, reaching its highest value at $r=2.0$, after which it begins to decrease; the location of this maximum value moves away from the centre of the shell.
(c) the maxinum value of \bar{m}_{11} along the boundary $\beta_{1}=0$ increases, reaching its highest value at $r=3.0$, after which it begins to decrease; the location of this maximum value moves towards the centre of the boundary.
(d) \bar{m}_{22} along the boundary $\beta_{2}=0$ increases, the location of its maximum value remaining unchanged.
(e) \bar{n}_{11} along the boundary $\beta_{1}=0$ decreases, whilst along $\beta_{2}=0.5$ it increases reaching a maximum of $r=2.0$, ofter which it begins to decrease.
(f) $\quad \bar{n}_{22}$ along $\beta_{1}=0.5$ decreases, whilst along the boundary $\beta_{2}=0$ it initially increases, reaching a maximum at $r=1.0$, after which it begins to decrease.

Variation of ν : Only the case with all boundaries clamped is considered. The results are presented in table 5.20.

As ν increases from O to 0.30 :
(a) $\overline{\mathbf{w}}$ decreases
(b) the inagnitude of \bar{m}_{11} generally decreases
(c) \bar{n}_{11} increases slightly
(d) \bar{n}_{12} decreases.

The actual displacement w is given by (table 5.2):

- 133 -

$$
w=\frac{\mathrm{ZI}}{1}{ }_{\mathrm{D}}^{4} \bar{w}=\frac{12 \mathrm{ZI}_{1}^{4}}{E h^{3}}\left(1-\nu^{2}\right) \bar{w}
$$

which also decreases with increasing ν.

5.8 Discussion of the Computer Programs

The single computer progrem developed for translational shells is limited to uniformly distributed normal loading and to boundary conditions which are symmetric about $\beta_{1}=0.5$ and $\beta_{2}=0.5$. However, any symmetric combination of clamped, hinged or nomal slide (1) boundary conditions (table 5.4) may be specified. Provision is also made to apply the Lagrangian multiplier method in conjunction with $u_{1}=O$ (along $\beta_{1}=0,1$) or $u_{2}=O$ (along $\beta_{2}=0,1$) for each of the boundary conditions specified (refer to case (b) in table 5.4).

The approximating functions are salected in accordance with the symmetry of the problem (section 5.5). The same value of S for each displacement in each of the directions β_{1} and β_{2} is considered.

Input, and therefore output, could be either in non-dimensional form or in terms of the actual dimensions.

In order to economise on computer storage, the system of linear algebraic equations was solved by partitioning the equations into their
submatrix form (equations 5.4A). Note that when the modified form given by equations (5.46) was used, the 5 constants given by equation (5.55) were pre-set to zero and the equations rearranged in the form given by equations (5.44).

Further details of the computer prograns are avaiable at Imperial

(69)
 College.

The computer programs were written in EXCHLF Autocode (70),(71) for the University of London Atlas Computer.

CHAPPTER 6

APPLICATION OF THE INDIRECT METHODS TO RULED
 SUREACE SHELLS

In this chapter the proposed indirect methods will be applied to ruled sürface hyperbolic paraboloid shells (figure 2.5), for which no exact solutions are available.

Only uniformly distributed normal loading (Z) will be considered.
A $u_{1}{ }^{-u_{2}}{ }^{-w}$ formulation will be used after a short discussion of its merits in comparison with a w-b formulation.

The Galerkin equations, in terms of w and γ are:

$$
\begin{aligned}
& \int_{0}^{l_{1}} \int_{0}^{l_{?}}\left[D \nabla^{A} w+2 K_{1} 2^{\sigma_{1}} 12-z\right] S w d \alpha_{1} d a_{2}=0 \\
& \int_{0}^{l_{1}} \int_{0}^{l_{2}}\left[\nabla^{4} \phi-2 E h K_{1} 2^{w} \cdot 12\right] \text { s } \phi d a_{1} d a_{?}=0
\end{aligned}
$$

In the Galerkin method the functions for w and \wp must be chosen such that all boundary conditions are satisfied.

The first of these equations can be derived from the principle of minimum total potential energy and the second from the principle of minimum complenentary energy (refer to section 2.3). Note that the fucher stress-resultant function, ϕ, autornatically satisfies the relevant equations of equilibrium. \% variational treatnent along these lines is given in reference 15.

Consider the case when the shell is supported on all boundaries by nornal gables (Table 6.3), which correspond to the boundary conditions $w=0=m_{11}$ and $u_{2}=0=n_{11}$ at $\alpha_{1}=0,1_{1}$ and $w=0=n_{22}$ and $u_{1}=0=n_{22}$ at $a_{2}=0, l_{2}$. In terns of w and ϕ, the boundary conditions become $w=0=w_{11}$ and $\phi=0=\phi_{11}$ at $\alpha_{1}=0,1_{1}$ and $w=0=w_{12}$ and $\phi=0=\phi_{22}$ at $\alpha_{2}=0, I_{2}$. The obvious functions for w and $\phi_{\text {, }}$ which will satisfy all the boundary conditions, are sine functions (IA in Table 3.1) such that w is symnetric and ϕ antimetric about the centre of the rectangular plan-form.

The application of these functions yielded results which compared unfavourably with other available solutions. (19), The use of the Picher stressresultant function, in this case, inhibits the selection of an approxinating function which sinultaneously yields realistic distributions of the corresponding three stress-resultants i.e. n_{11}, n_{22} and n_{12}.

The $\mathrm{u}_{1}-\mathrm{u}_{2}-\mathrm{w}$ for:aularion allows greater freedom in the distribution of the membrane stress-resultants and a more direct formulation for the boundary conditions. A suirable form for these equations follows.
S.1 Mon-Dinensional Borin of Equations

Let the displacement distributions assume the following forms:

$$
\begin{align*}
& u_{1}=1_{1} \sum_{n} \sum_{n} a_{a n} u_{1}^{n}\left(3_{1}\right) u_{1}^{n}\left(3_{2}\right) \tag{6.1}\\
& u_{2}=I_{2} \sum_{n} \sum_{n} b_{n n} u_{2}^{m}\left(3_{1}\right) u_{2}^{n}\left(3_{2}\right) \tag{6.2}\\
& w=\frac{1}{K_{12}} \sum_{n=1} \sum_{n} c_{i n n} w_{m}\left(3_{1}\right) w_{n}\left(?_{2}\right) \tag{0.3}
\end{align*}
$$

where

$$
\begin{align*}
& 3_{1}=\frac{a_{1}}{T_{1}} \tag{6}\\
& 3_{2}=\frac{a_{2}}{T_{2}} \tag{6.5}
\end{align*}
$$

$a_{m n^{\prime}} b_{m n}$ and $c_{m n}$ are constants to be determined, $u_{1}^{n}, u_{2}^{n}, w_{m}, u_{1}^{n}$, U_{2}^{n} and W_{n} represent sets of independent kinematically admissible functions,
and in and n are positive integers.
The corresponding displacement variations may be selected in the following forms:

$$
\begin{align*}
& \varepsilon u_{1}=1, \sum_{i n} \sum_{n} u_{1}^{m}\left(\sigma_{1}\right) u_{1}^{n}\left(\beta_{2}\right) K a_{m n} \tag{6.5}\\
& s_{u_{2}}=I_{2} \sum_{i n} \sum_{n} u_{2}^{i n}\left(3_{1}\right) u_{2}^{n}\left(3_{2}\right) s s_{m n} \tag{6.7}\\
& \delta w=\frac{1}{{ }_{N}^{1} 12} \sum_{m} \sum_{n} w_{m}\left(3_{1}\right) w_{n}\left(3_{2}\right) \delta c_{m n} \tag{6.8}
\end{align*}
$$

where $\delta a_{m n}, \delta b_{i m n}$ and $\delta c_{i n n}$ are arbitrary variations in the constants $a_{i n n}, b_{m n}$ and $c_{i n n}$ respectively.

In the following derivation only the boundary integrals corresponding to ${ }^{12}$ will be retained. In all other cases the boundary integrals will ha assumed to vanish by virtue of the chosen functions.

Then the variational equation (2.20) after:
(a) setting $x_{1}, 久_{2}$ and the applied boundary loads to zero,
(b) non-dimensionalising the co-ordinates to the $\left(3_{1}, 3_{2}\right)$ set defined by equations (5.4) and (6.5),
(c) setting K_{11} and $K_{2 ?}$ to zero,
and (d) substitution of equations (6.1), (6.7), (6.3), (6.6), (6.7) and (5.5),
reduces to the following shree independent equations, since samn t_{mn} and δc_{inn} are arbitrery:

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1}\left[-a_{i i} u_{1,11}^{i} u_{1}^{i}-\frac{(1-\nu)}{2} r^{2} a_{i j} u_{1}^{i} u_{1,22}^{i}-\frac{(1+\nu)}{2} b_{k 1} u_{2,1}^{k} u_{2,2}^{i}+\right. \\
& \left.+r(1-\nu) c_{p q} w_{p}{ }^{n} q_{\rho},\right] \quad u_{1}^{m} u_{1}^{n} d \beta_{1} d \beta_{2}-2 r \int_{0}^{1} \bar{n}_{12}\left(\beta_{1}, o\right) u_{1}^{i n} U_{1}^{n}(o) d \beta_{1}=c \quad(6, \varphi)
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{(1-\nu)}{r} e_{p q} w_{p, 1} W_{q}\right] u_{2}^{n} U_{2}^{n} d \beta_{1} d 3_{2}-\frac{2}{r} \int_{0}^{1} \bar{n}_{12}\left(0,3_{2}\right) U_{2}^{m}(0) U_{2}^{n} d \beta_{2}=O(S, 1 C)
\end{aligned}
$$

$$
\begin{align*}
& \left.+2 r^{2} c_{p q} w_{p, 11}{ }_{q}{ }_{q, 22}+{ }^{\frac{4}{2}} c_{p q} w_{p} W_{q, 2222}\right)+2(1-\nu)_{c_{p q}} w_{p} W_{q}- \\
& -\bar{Z}] w_{: n} W_{n} d^{3} 1^{d} 3_{n}=c \tag{6.11}
\end{align*}
$$

where $r=\frac{I_{1}}{T_{2}}$

$$
\begin{align*}
& \rho_{R}=\frac{h}{T_{1}} \cdot \frac{1}{R_{12} T_{1}}=\frac{h}{T_{1}} \cdot \frac{l_{2}}{f}=-\frac{1}{\partial} \frac{h}{T_{1}} \cdot \frac{l_{2}}{\frac{1}{f}} \tag{5.13}\\
& \bar{z}=\frac{7\left(1-\nu^{2}\right)}{h} \tag{6.14}
\end{align*}
$$

$i, i, k, 1, n, n, p, q$ are positive integers and \bar{n}_{12} is a funcrion of β_{1} and 3_{2} and is the non-dimensional form (given in Table s.1) of $n 12$. In equations (6.9), (6.10), (6.11) and table (5.1), the Einstein sumnation convention is adopted and comma notation is used to represent differentiation with respect to 3_{1} and β_{2}.

In deriving expressions for the boundary integrals, the boundary conditions were assumed symmetric about $3_{1}=0.0$ and $\beta_{2}=0.5$. If this were not the case equations (6.9), (0.10) and (6.11) would be modifiad in the following way:
replace $\left[-2 r \int_{0}^{1} \bar{n}_{12}\left(\beta_{1}, o\right) u_{1}^{m} u_{1}^{n}(o) d \beta_{1}\right]$ by

$$
\left[+r \int_{0}^{1} \bar{n}_{12}\left(\beta_{1}, \beta_{2}\right) u_{1}^{m} u_{1}^{n}\left(\beta_{2}\right) d \beta_{1}\right]_{\beta_{2}=0}^{\beta_{2}=1}
$$

replace $-\left[-\frac{2}{r} \int_{0}^{1} \bar{n}_{12}\left(0, \beta_{2}\right) \cup_{?}^{n}(0) U_{2}^{n} d_{3}\right] \quad$ by

It is evident from the foregoing that the problem is specified through the non-dimensional paransters ?, ${ }^{2}$ and $\nu .{ }^{*}$

With $\bar{z}=1$ equations $(6.9),(6.1 C)$ and (6.11 are the equations used for the solurions presanted in this chapter.

The actual yalues of the displacements, stress-resultants and stresscouples, for any uniforaly distributed nomal loading Z, are obtained from the non-dimansional forms given in table 6.1 by the factors given in rable 6.2.

Equations (6.9), (6.1) and (6.11) are the Galerkin equations inodified by expressions corresponding to the relevant boundary integrals in equation (2.90).
*The single parameter ${ }^{2}$, could have been replaced by the separate parameters $\left(\frac{h}{1}\right)$ and $\left(\frac{?}{f}\right)$. However, the use of ? $?$ covers a wider range of shells.

6.1.1 Modification for the Lagrangian Multiplier Mathod

In this secrion only the following homogeneous kinematic conditions will be considered:

$$
\begin{align*}
& u_{1}=6 \quad \text { at } \quad a_{2}=0, I_{2} \tag{3.15}\\
& u_{2}=0 \quad \text { at } \quad a_{1}=0, I_{1} \tag{6.16}\\
& w=6 \text { at }(0,16) \\
& \left(\alpha_{1}, \alpha_{2}\right)=(0,0),\left(I_{1}, 0\right),\left(0,1_{2}\right),\left(1,1_{2}\right)
\end{align*}
$$

Assume that the conditions given by equations (3.15), (3.16) and (6.17) are now applied as constraint condifions.

Then the following procedure described in section (3.1.3) and assuning that the houndary conditions are symmetric about $\alpha_{1}=0.5 \mathrm{I}_{1}$ and $a_{2}=C_{.5} I_{2}$, the variational equation (2.9C) is modified to: Left hand side of equation (2.90) +

$$
\begin{align*}
& +2 \int_{0}^{1} \lambda_{1}\left(\alpha_{1}\right) \delta u_{1}\left(\alpha_{1}, o\right) d a_{1}+ \\
& +2 \int_{0}^{l_{2}} \lambda_{2}\left(\alpha_{7}\right) \delta u_{2}\left(0, \alpha_{7}\right) d a_{2}+ \\
& +4 \lambda_{3} \delta w(0,0)=0 \tag{6.18}
\end{align*}
$$

where $\lambda_{1}\left(\alpha_{1}\right), \lambda_{2}\left(\alpha_{2}\right)$ and i_{3} (a constant) are the Lagrangian multipliers corresponding to the displacements u_{1}, u_{2} and w respectively. The constraint conditions are:

$$
\begin{align*}
& u_{1}\left(\alpha_{1}, 0\right)=0 \tag{6.19}\\
& u_{2}\left(0, \alpha_{2}\right)=0 \tag{6.20}\\
& w(0,0)=0 \tag{6.21}
\end{align*}
$$

Equations (6.16) to (0.21) inclusive cornpletely define the problem. Expressing

$$
\begin{align*}
& \lambda_{1}\left(a_{1}\right)=\sum_{e} \lambda_{1}^{e} L_{1}^{e}\left(a_{1}\right) \tag{6.?2}\\
& \lambda_{2}\left(a_{2}\right)=\sum_{e} \lambda_{2}^{e} L_{2}^{e}\left(a_{2}\right) \tag{6.23}
\end{align*}
$$

where λ_{1}^{e} and $\lambda_{?}^{e}$ are constanis
$L_{1}^{e}\left(\alpha_{1}\right)$ and $L_{2}^{e}\left(\alpha_{2}\right)$ represent sets of independヨnt functions,
and a is a posifive integer, and proceeding as in sections (6.1) and (3.1.3), aquations (5.16) to (6,21) inclusive reduce to the following:

Left hand side of equation (0.9) $+2 r \bar{\lambda}_{1}^{e} U_{1}^{n}(0) \int_{0}^{1} 4_{1}^{e} u_{1}^{n d \beta_{1}}=0$
Left hand side of equation (6.10) $+\frac{2}{r} \frac{a_{2}^{e} u_{2}^{n}}{2}(0) \int_{0}^{1} 1_{2}^{e} U_{2}^{n} d 3_{2}=0$

Leff hand side of equarion (0.11) $+4 \bar{\lambda}_{3} w_{r n}(0) W_{n}(0)=0$
$a_{i j} u_{i}^{i}(0)=0$
$b_{k l} v_{2}^{k}(0)=0$

$$
\begin{equation*}
c_{p q} w_{p}(0) q_{q}(0)=0 \tag{3.29}
\end{equation*}
$$

where $\quad \bar{\lambda}_{1}^{e}=\left(\frac{1-\nu^{\lambda}}{\partial h}\right) \lambda_{1}^{e}$
$\left.\Sigma_{2}^{e}=\frac{1-\nu^{2}}{h}\right) \lambda_{2}^{e}$

$$
\begin{equation*}
\bar{\lambda}_{3}=\frac{\left(1-\nu^{2}\right)}{\sigma_{12} T_{1} 1_{2}} \lambda_{3} \tag{6.31}
\end{equation*}
$$

With $\bar{Z}=1$ equations (5.24) to (6.29) inclusive are the equations used in conjunction with the Lagrangian multiplier methoc.

As before the non-dinensional and actual values of the displacements, stress-resultants and stress-couples are obtained from tables 6.1 and 6.2 respectively.

Interpretation of the Lagrangian multipliers

The Lagrangion multipliers provide the generalised reactive force associated with the corresponding constraint condition.

Then for the symatric case considered:

$$
\begin{align*}
& n_{12}\left(\alpha_{1}, 0\right)=\lambda_{1}\left(a_{1}\right) \tag{6,33}\\
& n_{12}\left(0, \alpha_{2}\right)=\lambda_{2}\left(a_{2}\right) \tag{5.34}\\
& \rho_{(0,0)}=\lambda_{3} \tag{5.35}
\end{align*}
$$

where Q is the nomal ractive force at a corner of the shall and is positive when acting in the $(-\gamma)$ direction.

In the non-dimensional forn equations (6.33), (6.34) and (6.33) reduce to:

$$
\begin{align*}
& \bar{n}_{12}\left(\beta_{1}, 0\right)=\tau_{1}\left(\beta_{1}\right)=\sum_{0} \lambda_{1}^{e} L_{1}^{e}\left(\beta_{1}\right) \tag{0.36}\\
& \bar{n}_{12}\left(0, \beta_{2}\right)=\Gamma_{2}\left(\xi_{2}\right)=\sum_{e} \lambda_{2}^{a} L_{2}^{e}\left(\beta_{2}\right) \tag{6,3}\\
& \bar{\sigma}(0,0)=\lambda_{3} \tag{6.30}
\end{align*}
$$

Equations (5.36), (3.3) and (6.30) provide alfernative* boundary values to those based on the displacement derivarives. The actual values are obtained as before from table 6.2.

This natter will be discussed further in section ('.5) in conjunction with numerical examples.

6.2 Boundary Conditions and Approximating Functions

The boundary condifions to be considered in this chapter are given in table 6.3.

Only boundary condirions which are symnetric about $\beta=0.5$ and $\beta_{2}=0.5$ are considerad.

For the reasons given in section (5.2), the functions chosen to specify a particular boundary condition are given in table 6.4. Details of the approximating funcrions are given in table 3.1.

In table is. 4 two separate sets of fuactions are associated with the hinged and noraal gaible boundary conditions:
*As discussed in section (3.1.3), the values based on the Lagrangian multipliers are generally different from the corresponding values based on the displacement derivatives.
(a) functions which satisify all the boundary conditions
(b) functions which violate the conditions $u_{1}\left(\alpha_{1}, o\right)=0$ or $u_{2}\left(0, \alpha_{2}\right)=C$. but satisfy the remaining conditions on a boundary.* Case (b) is considered in conjunction with the Lagrangian multiplier method.

Any combination of the boundary condirions given in table 5. 4 may be specified.

6.3 Reduction to a System of Linear Algebraic Equations

For a particular set of approximating functions, equations (6.9),
(6.1 I) and (6.11), with $\bar{Z}=1$, reduce on integration to a system of linear alge?raic equations, which in inatrix form are:
*Cnly when norinal slicles (1 or 2) are considered along all boundaries, is the constraint condition $w(0,0)=\mathrm{C}$ considered in conjunction with the Lagrangian multiplier method.
or, more cornpactly:

$$
\begin{align*}
& \underline{A} \underline{\bar{a}}+\underline{\bar{g}}=\underline{0} \tag{6.40}\\
& \overline{\underline{a}}=\operatorname{col}\{\underline{a} \underline{b} \underline{c}\} \\
& \overline{\underline{g}}=\operatorname{col}\{\underline{o} \underline{o} \underline{\underline{g}}\}
\end{align*}
$$

where $\quad \bar{a}=\operatorname{col}\left\{\begin{array}{lll}\underline{a} & \underline{b} & \underline{c}\}\end{array}\right.$

Typical elements of the subnatrices in equation (o. 0.39) are given in rable 6.5a.* The relevant integration fomulae are given in Appendix?. The examples given in section (5.3) to illustrate the matrix notation adopted are equally applicable here.
6.3.1 Modificarion for the Lagrangian Multiplier Method

When the Lagrangian multiplier nethod is applied, the modified form given by equations (0.24) to (0.29) inclusive is used. These equations may also be reduced to a syste: of linear algebraic equations which in inatrix form are:

[^9]

Typical elaments of the submatrices $A_{i j}(i, i=1,2,3), \underline{a}, \underline{b}, \underline{c}$ and g are, as before, given in iable 6.5(a). Typical alements of the remaining suimatrices in equations (6.41) are given in table 6.5(b).

The examples given in section (5.3 .1) to illustrate the inatrix notation adopted are equally applicable here.

The Lagrangian multiplier method is considered only in conjunction
with a hinged or normal gable boundary (iahle i. 亻⿱)
It has been established that the Lagrangian multipliers provide alternative values for n_{12} on the boundary (refer to section 6.1.1). Then the functions L_{1}^{e} and L_{2}^{e} should be chosen such that the condition on n_{12} in the comer of the shell is satisfied. In Toble 6.4 there is a choice of functions (A or If) for L_{1}^{e} and L_{2}^{a} when hinged boundaries are
considered. If the boundaries $\beta_{1}=0,1$ (say) are hinged and the boundaries $\beta_{2}=0,1$ are either:
(i) cla:aped, hinged, normal slides (1)
or (ii) normal gables, normal slides (2)
then the functions chosen for L_{2}^{e} will be A for (i) and if for (ii), satisfying correctly the zero and non-zero condifions on n_{12} in the comer of the shell respectively. Similarly for L_{1}^{e} by considering hinged boundaries at $3_{2}=0,1$.

If S is the number of functions chosen to represent each of the displacenents u_{1}, u_{2} and w in each of the directions β_{1} and β_{2}, then the order of the submatrices in equations (6.39) and (6.41) are identical to those given for translational shells in secrion (3,3.1). Also the subsequent remarks made in section (5, 3.1) about functions ID, when used in conjunction with the lagrangian multiplier method, are equally applicable here.

The solution of equations (3.41) forms the basis of the numerical
results presented in this chapter. When no Lagrangian multipliers are used these equations reduce to equations (6.39).

6.4 Overall Equilibrium Sheck

6.A.1 Geometry and Assumptions

In figure 2.5 two equations, defining the iniddle surface of a ruled surface hyperholic paraboloid shell, were given. The surface in figure 2.56 is symmetric abour either diagonal whersas the surface in figure 2. 5a is not. Since, in later derivations, only one-quarter of the shell will be considered, the surface defined by figure 2.5 will be adopted. From figure ?.5t the aquation of the middle surface is given by:

$$
\begin{align*}
& z=K_{12}\left(-\frac{1}{2} I_{2} x_{1}-\frac{1}{2} I_{1} x_{2}+x_{1} x_{2}\right) \tag{6,42}\\
& \text { where } \quad K_{12}=-\frac{? \vec{f}}{T_{1} l_{2}} \tag{6.43}
\end{align*}
$$

The slopes of the middle suriace in the x_{1} and x_{2} directions ara respectively:

$$
\begin{align*}
& z_{1}=k_{12}\left(-\frac{l_{2}}{2}+x_{2}\right) \\
& z_{r_{2}}=k_{12}\left(-\frac{l_{1}}{2}+x_{1}\right) \tag{6.45}
\end{align*}
$$

Sulstituring for K_{12} given by equation (6.45) in equations (6.44) and (6.45) yields:

$$
\begin{align*}
& z_{1}=\frac{1}{r} \frac{\bar{f}}{T_{2}}\left(1-\frac{2 x_{2}}{T_{2}}\right) \tag{6.46}\\
& z_{\prime_{2}}=\frac{\bar{F}}{T_{2}}\left(1-\frac{3 x_{1}}{T_{1}}\right) \tag{6.47}
\end{align*}
$$

The assurnptions relating to the shallow curved plate theory (Chapter 2) imply that the products of the slopes z_{1} and $z_{\prime 2}$ inay be neglected as sinall compared with unity.

Jimilarly it nay be assumed that:

$$
\begin{gather*}
z_{i}(i=1 \text { or } 2) \simeq \operatorname{san} \theta_{i} \simeq \sin \theta_{i} \simeq \theta_{i} \tag{6.43}\\
\cos \theta_{i} \simeq 1.0 \tag{0.49}
\end{gather*}
$$

Within the limits of the curvad plate approximation $\frac{x_{1}}{T_{1}}$ and $\frac{x_{2}}{T_{2}}$ may be replaced by 3_{1} and i_{2} respectively and equations (3.43) and (5.47) become:

$$
\begin{align*}
& z_{r_{1}}=\frac{1}{r} \cdot \frac{\bar{\gamma}}{T_{2}}\left(1-2 r_{2}\right) \tag{0.50}\\
& z_{r_{2}}=\frac{\bar{F}}{T_{2}}\left(1-2 \hat{\beta}_{1}\right) \tag{5.51}
\end{align*}
$$

6.A. 2 Resolution of the Load and Stress-Resuliants in the

Directions x_{1}, x_{2} and z
Since the loading and boundary condifions are symmeiric about $3_{1}=0.5$ and $\beta_{2}=0.5$, only one quarter of the shell need be considered (figure 6.1).

Let Ξ_{1}, ε_{2} and E_{3} be the errors in equilibrium for one quarter of the shell (figure $\mathrm{J}_{0} 1$) measured positive in the direcrions x_{1}, x_{2} and z respectively.

Then resolving the load and stress-resultants in the directions x_{1}, x_{2} and z and allowing for the assumptions previously made, i.e. ignoring temas containing products of slopes of the nicidle surface and assuming that the relations given by equations (0.46) and $(6,49)$ hold, yields the following three equations respectively:

$$
\begin{align*}
& E_{1}=\int_{0}^{\frac{1}{2}}\left[-n_{12}\left(a_{1}, o\right)+n_{12}\left(a_{1}, \frac{l_{1}}{2}\right)+q_{2}\left(\alpha_{1}, 0\right)\left(z_{1}\right)_{x_{2}=0}\right] d a_{1}+ \\
& +\int_{0}^{\frac{1}{2}}\left[-n_{11}\left(0, \alpha_{2}\right)+q_{1}\left(0, a_{2}\right)\left(z_{1}\right)_{\left.x_{1}=0\right] d a_{2}-}^{\int_{0}^{1} \frac{1}{2} \int_{0}^{\frac{2}{2}} Z\left(z_{1}\right) k a_{1} d a_{2}+C\left(z_{1}\right)_{x_{1}=0}} \begin{array}{l}
x_{2}=0
\end{array}\right.
\end{align*}
$$

$$
\begin{align*}
& E_{2}=\int_{0}^{l_{1}} \frac{1}{2}\left[-n_{22}\left(\alpha_{1}, o\right) d \alpha_{1}+q_{2}\left(\alpha_{1}, 0\right)\left(z_{2}\right)_{x_{2}=0}\right] d \alpha_{1}+ \\
& +\int_{0}^{\frac{l_{2}}{2}}\left[-n_{12}\left(0, a_{2}\right)+n_{12}\left(\frac{l_{2}}{2}, a_{2}\right)+q_{1}\left(0, a_{2}\right)\left(z_{2}\right) x_{1}=0\right] d a_{2}- \\
& -\int_{0}^{\frac{1}{2}} \int_{0}^{1_{2}} \frac{2}{2} Z\left(z_{2,7}\right) d \alpha_{1} d \alpha_{2}-C\left(z_{, 2}\right)_{x_{1}}=0 \\
& s_{3}=-\int_{0}^{\frac{1}{2}}\left[n_{12}\left(\alpha_{1}, o\right)\left(z_{1}\right)_{x_{2}=0}+n_{22}\left(\alpha_{1}, 0\right)\left(z_{2},\right)_{x_{2}}=0+q_{2}\left(\alpha_{1}, 0\right)\right] d a_{1}- \\
& \left.-\int_{0}^{\frac{1}{2}}\left[n_{12}\left(0, \alpha_{2}\right)\left(z_{2}\right)_{x_{1}=0}+n_{11}\left(0, \alpha_{2}\right)\left(z_{1}\right)\right)_{x_{1}=0}+q_{1}\left(0, \alpha_{2}\right)\right] d a_{2}- \\
& -0+\int_{0}^{\frac{1}{2}} \int_{0}^{\frac{l_{2}}{2}} z d \alpha_{1} d \alpha_{2} \tag{6.54}
\end{align*}
$$

From Table 0.4 and equations (6.4) and (6.5) the following are obtained:

$$
\begin{aligned}
& n_{i j}=\frac{Z}{K_{12}} \bar{n}_{i j}=-\frac{\bar{Z} I_{2}}{2 \bar{f}} \bar{n}_{i j} \\
& q_{i}=Z_{1} \bar{q}_{i} \\
& Q=Z I_{12} \bar{Z} \\
& d a_{i}=I_{i} d_{i} \text { (noi summed) }
\end{aligned}
$$

where i and i range over the values 1 and 2. Substituting for $n_{i j}{ }^{\text {e }}$ q_{i}, Q and $d \alpha_{i}$ by the hove expressions and for $\left(z_{i}\right)$ and $\left(z_{i}\right)$ by equations (6.50) and (6.51) in equations (6.52), (6.53) and (6.54) yields:

$$
\begin{align*}
& E_{1}=Z I_{1} I_{2}\left(E_{1}\right) \tag{0.35}\\
& E_{2}=Z I_{1} I_{2}\left(E_{2}\right) \tag{3.56}\\
& E_{3}=Z I_{1} I_{2}\left(E_{3}\right) \tag{6.57}
\end{align*}
$$

where the non-dinensional forms $\bar{E}_{1},{ }_{2}$ and $\overline{3}_{3}$ are given by:

$$
\begin{align*}
& \text { - } 161 \text { - } \\
& E_{1}=\int_{0}^{\frac{1}{2}}\left[\frac{r}{2}\left(\frac{1}{F}\right)\left\{\bar{n}_{12}\left(\beta_{1}, 0\right)-\bar{n}_{12}\left(\beta_{1}, \sigma_{0}\right)\right\}+\right. \\
& +\left(\frac{7}{T_{2}}-q_{2}(3,0)\right] d \theta_{1}+ \\
& +\int_{0}^{\frac{1}{2}}\left[\frac{1}{2}\left(\frac{l_{2}}{\xi}\right) \bar{n}_{11}\left(0, \beta_{2}\right)+\frac{1}{r}{\underset{F}{2}}_{F_{2}}^{q_{1}}\left(0, \beta_{2}\right)\left(1-2 \beta_{2}\right)\right] d \beta_{2}+ \\
& +\frac{1}{r} \cdot\left(\frac{T_{2}}{T_{2}}\right) \overline{\mathrm{C}}-\frac{1}{8 r}\left(\underset{{\underset{2}{2}}^{F}}{\underset{\sim}{7}} .\right. \tag{6.5i}\\
& E_{2}=\int_{0}^{\frac{1}{2}}\left[\frac{r}{2}\left(\frac{I_{2}}{7} \bar{n}_{22}\left(\beta_{1}, 0\right)+r\left(\frac{F}{T_{2}}\right) \bar{q}_{2}\left(\beta_{1}, 0\right)\left(1-2 \beta_{1}\right)\right] d \beta_{1}+\right. \\
& +\int_{0}^{\frac{1}{2}}\left[\frac{1}{2}\left(\frac{l_{2}}{7}\right)\left\{\bar{n}_{12}\left(0, \beta_{2}\right)-\bar{n}_{12}\left(0.5, \beta_{2}\right)\right\}+\left(\frac{\bar{T}}{2}\right) \bar{q}_{1}\left(0, \beta_{2}\right)\right] d \beta_{2}+ \\
& +\left(\frac{7}{T_{2}}\right) \bar{?}-\frac{1}{8}\left(\frac{7}{T_{2}}\right) \tag{6.59}
\end{align*}
$$

$$
\begin{align*}
& E_{3}=\frac{1}{2} \int_{0}^{\frac{1}{2}}\left[\bar{n}_{12}\left(\beta_{1}, o\right)+r \bar{n}_{22}\left(\beta_{1}, o\right)\left(1-2 \beta_{1}\right)-2 r \bar{q}_{2}\left(\beta_{1}, 0\right)\right] d \beta_{1}+ \\
& +\frac{1}{2} \int_{0}^{\frac{1}{2}}\left[\bar{n}_{12}\left(0, \beta_{2}\right)+\frac{1}{r} \bar{n}_{11}\left(0, \beta_{2}\right)\left(1-2 \beta_{2}\right)-2 \bar{q}_{1}\left(0,3_{2}\right)\right] d_{2}- \\
& -\overline{\mathrm{T}}+0.25 \tag{6.60}
\end{align*}
$$

Equations (5.50), (0.59) and (1.60) are the equations used to check overall equilibriurn for a shallow curved plate. E_{1}, E_{2} and E_{2} are the errors in equilibrium expressed as a factor of $\left(Z_{1} 1_{2}\right)$ and measured positive in the directions x_{1}, x_{2} and z respectively.

For the overall equilibrium check it is necessary to define a further parameter $\left(\frac{I_{2}}{f}\right)$, which is a measure of the shallowness of the shell, to determine \bar{F}_{1} and \bar{B}_{2} Mote that E_{8} is independent of $\left(\frac{2}{f}\right)$

5.5 Convergence Study of the Approximating unctions

In this section combinations of the boundary conditions given in Table 6.4 will be applied to particular numerical examples. In the cornputer program developed, provision is made for the symmetry of the problem by choosing the functions given in Table 6.4 such that:
(a) $u_{1}^{m}, w_{i n}, L_{1}^{Q}$ are symnetric functions about $\beta_{1}=0.5$
(b) $U_{2}^{i n}$ is an antinetric function about $3_{1}=Q_{0}$
(c) $U_{2}^{n}, U_{n}, L_{2}^{e}$ are symmetric functions aboui $?_{2}=0.5$
(d) U_{1}^{n} is an anfimsiric function about $\beta_{2}=0.5$. 6.5.1 Alumerical Examples

The examples to be síudied are given in table 6.6. The corresponding results* are presented in talles 6.7 to 6.18 inclusive and figures $0 . ?$ to 5.5 inclusive.

Displacements, siress-resultants and stress-couples are presented in non-dinensional form (table 6.1). The aciual values are obtainable from the expressions given in taile 6.2.

In tobles 6.7 to 6.18 inclusive, the values manked with an asterisk (*) are hased on the Lagrangian multipliers and the corresponding values in brackets are based on the displacement derivatives.

[^10]In the overall equilibriun check, E_{1} and E_{2} are presented in thair non-dimensional foras \bar{E}_{1} and E_{2}, whilsi E_{3} is expressed as a percentage error $\left(=40 \mathrm{E}_{3}\right)$.
S is the number of functions used to represent each displacement in each of the directions β_{1} and β_{2}, due allowance being made for the symnetry of the problen in the selection of these runctions.

6.5.2 Discussion

The convergence of the displacenents was good for all combinations of the boundary conditions considered i.e. clamped, hinged, normal slide (1), nomal gable or nornal slide (2).

When hinged or nomal gable boundaries were used, the convergence of \bar{n}_{12} along these boundaries was slow, but satisfactory within the shell (note, in particular, examples 5.2A and 5.3A). Application of the Lagrangian multiplier nethod in conjunction with functions ID (case (b) in Table 6.4) iaproved the boundary value of \bar{n}_{12} and reduced the errors in equilibrium (compare exermples 6.20 and 5.30 with examples 5.2 A and
*This check was noi incorporated in the computer program and the integrations in equations ($6 . \%$), (6.59) and (3.60) were perforned nu:nerically using Simpson's rule.
6.3A respectively). Mote, however, that the errors \vec{T}_{1} and \vec{Z}_{2} in example 6.35 are of opposite sign and are of similar magnitude to exariple 6.3A. The houndary value of \bar{n}_{12} based on the Lagrangian multiplier again provided a more accurate estimate than the corresponding value based on the displacement derivative (refer to sections 4.A.2 and 5.5.2 where this matter was also discussed).

As an alternative to example 6.3B functions $\mathbb{I C}$ were considered in place of functions ID in Table 8.4 for a normal goble boundary. A separate computer progran was written for this case and only a maxiinum of $S=6$ was considered.* The resulis are presented in figure a.2 and compared with excraples 6.3A and 0.30 . These results illustrate the gooci agreement obtained for \bar{n}_{12} using either functions IC or ID in coniunction with the Lagrangian multiplier :nethod. However, the solution for \bar{n}_{12} in excinple $\sigma_{2} 3 \mathrm{~A}$ shows poor agreenent with the other solutions on the boundary, but good agreement within the shell.

[^11]$=166-$
Functions in again illusitate that, when used with the Lagrangian inultiplier nethod in the inanner described in this thesis, they effectively inprove the boundary value of a particular siress resultant, which is slowly convergent on the boundary, but sarisfactory elsewhere.

With clamped, normal slide (1) or nonnal slide (2) boundaries the convergence of \bar{n}_{12} was good. Also \bar{n}_{11} and \bar{n}_{22} generally showed good convergence for all combinations of the boundary conditions considered.

When nomal slides (1 or ?) were considered along alf boundaries (examples 6.4, 6.3 and 6.13) the noments in the region of the comers were very slowly convergeni (note figures 6.3, 5.4 and 6.5). This effect was also noted with exanple 5.3 (see Table 5 .4) and the renarks nade in section 5.5.2 in reference to this example are also relevant here.

With all othar combinctions of the boundary conditions considered, the monents were generally converging satisfiactorily.

Nomal shears on the boundary were generally slowly convergent which undoubtedly contributed to the arrors in equilibrium, particularly if the sheart were of a significant magnitude.

Note the fon of the solution in examples $6.7,6.10$ and 6.11, where $\bar{u}_{1}, \bar{n}_{11}, \bar{n}_{2,},{ }^{\prime \prime} \bar{n}_{12}$ and \bar{q}_{2} are zero ihroughour the shell and
$\bar{w}_{,}{\overline{u_{2}}}_{2}, \bar{m}_{22}, \bar{m}_{11}$ and \bar{q}_{1} are constant in the β_{2} dirsction i.e. in the direction of the nomal slide (2) boundaries. Noie also that examples B.1Ci and 6.11 yielded idenfical results. For nornal slide (2) boundaries at $\beta_{2}=0,1$ functions B were chosen for U_{2}^{n} and W_{n} and functions IA for U_{1}^{n} (Table : \% 4). Of these, only the first function i.e. the constant function, of U_{2}^{n} and W_{n} had any effect on the solution. The displacement, stress-resul tant and stress-couple distributions were therefore reduced to a singlo series, which converged rapidly. Hote that the solutions of these examples are very similar to a membrane solution where $\bar{n}_{12}=-.5$ and \bar{n}_{11} and \bar{n}_{22} are zero throughout the shell.

6. Comparison with Other Available Solutions

Example 6.14. Consider c shell with the following data:

$$
\begin{aligned}
& I_{1}=12.92 \mathrm{in}, \quad I_{2}=12.92 \mathrm{in} . \quad h=0.25 \mathrm{in}, \\
& K_{12}=-3.1247,-2 \mathrm{in}^{-1} \quad \nu=0.39 \\
& E=5.0,+5 \mathrm{lis} / \mathrm{in}^{2} \quad Z=1 \mathrm{l}: / \mathrm{in}^{2}
\end{aligned}
$$

and boundary condifions:
clamped at $a_{1}=C, I_{1}$ and $a_{2}=O_{1} I_{2}$. This data corresponds to the following shell paraineters:

$$
\begin{gathered}
r=1.0 \quad \nu=0.39 \\
\rho_{R}=-0.0479256
\end{gathered}
$$

The convergence of this solution was studied in example 6.1.
(25)
(6)

This example was also solved by Chatty and 'by Cunasekera and a comparison is given in figures 6.6a and 6.6b.

The solutions show good agreeinent.

Example 6.15. Consider a shell with the following clara:

$$
\begin{array}{ll}
\mathrm{I}_{1}=360 \mathrm{in} . \quad \mathrm{I}_{2}=360 \mathrm{in} . & h=2.5 \mathrm{in} \\
K_{12}=-1.1111,-3 \mathrm{in}^{-1} & \nu=6.16 \\
Y=3.0,6 \mathrm{l} \mathrm{~s} / \mathrm{in}^{2} & Z=50 \mathrm{lbs} / \mathrm{ft}^{2}
\end{array}
$$

and boundary conditions
normal gables at $\alpha_{1}=0, I_{1}$ and $a_{2}=0, I_{2}$. This data corresponds to the following shell parameters:

$$
\begin{gathered}
r=1.0 \quad \nu=0.16 \\
\rho_{R}=-0.01730 \mathrm{C} .
\end{gathered}
$$

The convergence of this solution was studied in examples 6.3A and 6.3B.

This example was also solved by Chetry ${ }^{(25)}$ ond bri. Matroz and Schnobrich ${ }^{(19)}$ and a comparison is given in figure 5.7.

Hote that the results corresponding to example $0.3 B$ are presentec: in figure 6.7. This example uses functions in conjunction with the Lagrangian multiplier neitod (case (b) in Table 6. 4). For comparison, a furiher solution for n_{12} is given using functions IC in place of functions ID (refer to section 6.5.2) and figure 6.2).

The solutions generally show satisfactory agreement. However, it should be noted that the boundary value of n_{12} is somewhat different froin the solutions given in the references. The convergence study in example 6.38 showed that the application of the Lagrangian multiplier nethod reduced the error in vertical equilibrium, and that the boundary value of n_{12} using either functions IC or V was viriually the same (refer to figure 3.?).

Example 5.16. Consider a shell with the following data:

$$
\begin{array}{ll}
\mathrm{I}_{1}=80 \mathrm{fH} . \quad \mathrm{I}_{2}=60 \mathrm{ft} & h=0.35 \mathrm{fr} \\
K_{12}=5.0,-3 \mathrm{ft}_{0}^{-1} & \nu=0.15 \\
E=4.5,+8 \mathrm{los} / \mathrm{ft}^{2} & Z=50 \mathrm{~Hz} / \mathrm{ft}^{2}
\end{array}
$$

and boundary conditions

$$
\begin{aligned}
& \text { hinged }^{*} \text { at } a_{1}=0, I_{1} \\
& \text { clamped at } a_{2}=0, I_{2}
\end{aligned}
$$

This exampla was also solved by Gunasekera** ${ }^{(\dot{)}}$ and a comparison is given in Table \%.1\%.

The solutions for the displacenent w and the mornents show satisfactory agreement. The solutions for the membrane strass-resultants show satisfactory agreement near the central region of the shell but poorer agreenent near the corner. Mote, in particular, that n_{11} and n_{22} in the comer should, by virtue of the boundary conditions, be zero.
*The Lagrangian multiplier method was used with this boundary condition, i.e. case (b) in Table s.s.
**The results presented by Gunasakera were at $\frac{1}{6}$ th points. The results presented in Tablas 3.19 and 5.20 are at $\frac{1}{10}$ th points. Examples 6. 1 s and 6.17 were re-run for this latter output using Gunasekera's computer progran.

Example 6.17. Consider a shell with the following data:

$$
\begin{aligned}
& I_{1}=50 \mathrm{ft} . \quad I_{2}=50 \mathrm{ft} . \quad h=0.25 \\
& K_{12}=-3 . C,-3 \mathrm{ft}^{-1} \quad \nu=0.15 \\
& E=4.5,+3 \mathrm{Bb} / \mathrm{Ht}^{2} \quad Z=5 \mathrm{C} \mathrm{lbs} / \mathrm{At} \text { ? }
\end{aligned}
$$

and the boundary conditions:

$$
\text { hinged* at } a_{1}=C, I_{1} \text { and } a_{2}=C, I_{2}
$$

This example was also solved by Cunasekera ${ }^{(6)}$ and a comparison is given in Toble 6.20.

The solutions for n 1 ?' except near the corner of the shell, show good agreeinent. However, the solutions for n_{11} are quite different. Sinilarly the solutions for w differ. Hote, in particular, that n_{11} and n_{22} in the comer should, by virtue of the boundary conditions, be zero. Note also that a sinilar comparison was made when considering translational shalls viz., example 5.9 in section 5.6 . In this case

[^12]similar functions were uset! and the solutions generally showed good agreement.
6. 7 Further Solutions - Variation of the Shell Paraneters

The non-dimensional forn of equations (6.9), (5.10) and (6.11) shows that the ruled surface hyperbolic paraboloid is complately defined by the paraneters r, p_{n} and ν. Such a representation pernits the behaviour of ruled surface shells to be conveniently studied by the variation of these parameters.

The exaraplas considered and the particular paraneter being varied are given in Table s.21. The corresponding resulfs are given in Tables 8.22 to 5.27 inclusive.

All results are presented in non-dinensional form (Table 6.1), the actual values being obrained from the expressions given in Table 6.2.

The Lagrangian multiplier method is used in examples $\% .10,6.1 \%$, 3.20 and 6.22 (case (6) in Talle 5.4). In these cases the boundary values of \bar{n}_{12} given in the corresponding tables are based on the Lagrangian aulfiplier,

$$
S=\varepsilon \text { has bsen chosen in each of these excmples. }
$$

6.7.1 Discussion

Variation of $\rho_{R}: \quad$ The paraneter $\rho_{R^{\prime}}$, defined by equation (6.13), varies with shell thicknass and shallowness. This thesis is concerned with the study of thin shallow shells and $?_{\text {? }}$ should be interpreted accordingly. The thin flat plate is recovered from $?_{R}=\infty$.

For comparison, flat plate solutions for $r=1$ and $\nu=C, 15$ and for all boundaries clanped, simply supported and normal slides are given in section 5.7.1.

As the shell becornes shallower, i.e. as ρ_{R} increases, Tables 6.22, $5.25,6.26$ and 5.27 show that \bar{w}, \bar{m}_{11} and $\overline{\mathrm{T}}$ (exainple 6.23 only) increase also, approaching the solution for a thin flat plate at a faster rate than for the elliptic paraboloids (translational shells) considered in examples $5.10,5.14$ and 5.15 . For exanple, if $\rho_{2}=0.10$ which corresponds to the values $\left(\frac{h}{T_{1}}\right)=\frac{1}{1 C O}$ and $\left(\frac{l_{2}}{7}\right)=-2 C$, the values for \bar{w} and \bar{m}_{11} vary from approximately 11% for example $\delta_{0} 23$ to approximately 45% for exarnple 6.21 of the corresponding flat plate solution. For a similar value of $\left(\frac{I_{2}}{T_{2}}\right)$ in examples $5.10,5.14$ and 5.15 to the
value of $\left(\frac{I_{2}}{f}\right.$) above (for $O_{T}=0.03$ say), the corresponding variation is approximately 10% of the above (refer to Tables 5.17, 5.21 and 5.22). On the other hand \bar{n}_{12} decreases slowly with increasing shallowness and is still of significant value when the shell is very shallow, In the steeper range $\left.\rho_{R}=0.01\right)$ the values of \bar{n}_{12} are very close to the membrane solution ($\bar{n}_{12}=-$. $\overline{5}$), particularly when normal slides (2) are on all boundaries (Table 6.27). Similarly \bar{n}_{11} decreases with increasing shallowness.

Similar remarks apply to increasing thickness which also corresponds to an increasing p_{1}, but any comments are restricted to thin shells.* *The note on thin shells in section 5.7 may be extended, such that:

$$
h\left|K_{12}\right| \leq \frac{1}{35}
$$

Since $\left|K_{12}\right|=\left|\frac{27}{T_{1} I_{2}}\right|$ (figure 2.56), this becomes

$$
\left(\frac{h_{1}}{T_{1}}\right)\left(\left|\frac{f}{T_{2}}\right|\right) \leq \frac{1}{60}
$$

Wote that only the effect on the non-dinensional values has been considered. The actual values follow from Table 6.2, which gives:

$$
\begin{aligned}
& w=\frac{12 z I_{1}\left(1-\nu^{2}\right)}{E}\left(\frac{I_{1}}{h}\right)^{3} \bar{w} \\
& n_{12}=Z I_{1}\left(-\frac{\partial \bar{f}}{T_{1}}\right) \bar{n}_{12}=\frac{Z I_{1}^{2}}{h}\left(\rho_{2} \bar{n}_{12}\right)
\end{aligned}
$$

Then if increasing ρ_{Ω} is interpreted as incraasing shallowness, the effeci on the actual stress-resultant n_{12} is dependent on $\left(\rho_{R} \bar{n}_{12}\right)$. It will be noted that if all boundaries are clanped (example 3.21) the product $\left(\rho_{R} \bar{n}_{12}\right)$ begins to decrecse ietween $\rho_{R}=0.10$ and 0.20 . For the other exariples ($5.15,6.22$ and 6.23), the produci $\left(0_{2} \overline{\mathrm{n}} 12\right.$) increases with increasing ? llowever, beyond the range considered here, this product begins to decrease with increasing $?_{R}$ and approaches zero as P becomes vary large.

If increasing P_{2} is interpreted as increasing thickness, but restricted to thin shells, the effect on the actual displace:nent w is dependent on $\left(\frac{1}{h}\right)^{3} \bar{w}$.

The non-dimensional presentation of the iables given in this section covers, very compactly, the solutions for a wide range of thin shallow shells.

Variation of r: Cinly the case with normal gables along all boundarics is considered. The results are presonted in table 6,23.

Since ρ_{R} remains constant, the variation of reprosents, in offect, the variation of I_{2} with all other data fixed.

As r increases from 0.5 to 5.0 :
(a) the value of \bar{w} at the centre of the shell increases, reaching its maximum value, within the limits of the results presonted here, at $r=1.5$, after which it begins to decrease,
(b) the maximum value of \bar{m}_{11} along $\beta_{2}=0.5$ increases, reaching its highest value of $r=3.0$, after which it begins to decrease; the location of this maximum value moves away from the centre of the shell,
(c) the maximum value of \bar{m}_{22} along $\rho_{1}=0.5$ increases, raching its highost value at $r=3.0$, after which it begins to decrease; the location of this maximum value moves towards the centre of the shell.
(d) \bar{n}_{12} generally decreases.

Variation of ν : Only the case with normal gables along all boundaries is considered. The results are presented in table 6.24.

As ν increases from O to 0.30 :
(a) $\overline{\mathbf{w}}$ increases
(b) $\overline{T B}_{11}$ increases
(c) the effect on \bar{n}_{12} is small but variable, increasing at sonne points and decreasing at others.
(d) \bar{n}_{11} increases.

The actual displacement w is given by (Table 6.2):

$$
w=\frac{Z 1_{1}^{4}}{D} \bar{w}=\frac{12 Z 1_{1}^{4}}{[]^{3}}\left(1-\nu^{2}\right) \bar{w}
$$

which, from Tahle i.24, also increases with increasing ν.
It should be noted that in this example, increasing ν has the opposite effect on \bar{w} and \bar{x}_{11} than for the elliptic paraboloid considered in exarnple 5.13 (Table 5.?O).

6.0 Discussion of tho Computer Prograns

The single computar progran developed for ruled surface hyperbolic paraboloid shells is liaited to unifomly distributed normal loading and to boundary conditions which are symatric doout $\rho_{1}=0.5$ and $P_{2}=0.5$. However, eny symnetric combination of clamped, hinged,
normal gable, normal slide (1) or normal slide (2) boundary conditions (Table 6.4) may be specified. Provision is also made to apply the Lagrangian multiplier method i conjunction with $u_{1}=\sigma$ (along $\beta_{2}=0,1$) or $u_{2}=O$ (along $\beta_{1}=0,1$) for hinged and nonial gdble boundaries (refer to case (b) in Table 6.4).

The approximating functions are selected in accordance with the syminetry of the problem (section 6.5). The same value of 5 for each displacement in aach of the directions β_{1} and β_{2} is considered.
input, and therefore output, could be either in non-dinensional form or in terns of the actual dimensions.

In order to economise on computer storage, the system of linear alge! braic equations was solved by partitioning the equations into their subinatrix form (equations 6.39). Wore that when the modified form given by equations (6.41) was used, the equations were rearranged in the form given by equarions (6.39), in the manner discussed in section (5.0).

A separate progran was written for the solution of example 6.3A. For this special case a fixed value of $r=1$ was chosen, so that allowance could be inade for symmetry in the solution for the constants $\underline{a}, \underline{b}$ and c, i.e. $a_{i j}=b_{i i}$ and $c_{p q}=c_{q p}$. The equations were again

$$
-179 \text { - }
$$

solved by partitioning. In this way a larger value of S could be considered.

Further details of the computer prograns are ovailable at Imperial (69)

College.
The computer prograns ware written in TCltr Autocode for the
University of London Atlas Dornputer.

CHAPTER 7

APPLICATION OF THE METHOD CF LINES TO translational aid ruled suriace shells

A brief discussion of the method of lines was given in section (3.2).
In the following, aquations (2.76) will be reduced to a system of linear first order ordinary differential equations with constant coefficients. The co-ordinates will be non-dimensionalised. All other quantities will retain their dimensional form.

Cnly unifonaly distributed nornal loading (Z) will be considered.
7.1 Form of Equations

After non-dinensionalising the co-ordinates such that

$$
\begin{align*}
& \beta_{1}=\frac{\alpha_{1}}{\Gamma_{1}} \tag{7.1}\\
& \beta_{2}=\frac{a_{2}}{T_{2}} \tag{7.2}
\end{align*}
$$

and setting x_{1} and x_{2} io zero, equations (2.76) becone:
where $\quad A_{12}=\frac{1}{r} \cdot \frac{\partial}{\partial \beta_{1}}=A_{65}$

$$
A_{21}=\frac{\nu}{r} \cdot \frac{\partial}{\partial \beta_{1}}=A_{56}
$$

$$
A_{26}=\frac{E h}{r T_{1}} \frac{\partial^{2}}{\partial \beta_{1}^{2}}
$$

$$
A_{28}=-\frac{E h K_{11}}{r} \frac{\partial}{\partial \beta_{1}}=-A_{46}
$$

$$
A_{34}=-I_{2}=A_{87}
$$

$$
\begin{aligned}
& \text { - } 182 \text { - } \\
& A_{37}=-\frac{E h^{3}}{b(1+\nu) r_{1}} \frac{\partial^{2}}{\partial \beta_{1}{ }^{2}} \\
& A_{41}=\left(K_{22}+\nu K_{11}\right)_{2}=-A_{58} \\
& A_{42}=2 K_{12} 1_{2}=-A_{68} \\
& A_{43}=\frac{\nu}{r_{1}} \frac{\partial^{2}}{\partial \beta_{1}^{2}}=A_{73} \\
& A_{48}=\left[-E K_{11}{ }^{2} I_{2}-\frac{E h^{3}}{12 r I_{1}{ }^{3}} \frac{\partial^{4}}{\partial \beta_{1}{ }^{4}}\right] \\
& A_{51}=-\frac{\left(1-\nu^{2}\right)_{2}}{h^{h}} \\
& A_{62}=\frac{-2(1+\nu))_{2}}{6 h} \\
& A_{73}=\frac{12\left(1-\nu^{2}\right) I_{2}}{E h^{3}} \\
& r=\frac{I_{1}}{T_{2}} \\
& \theta=\frac{\partial w}{\partial \alpha_{2}}
\end{aligned}
$$

or more compactly,

$$
\begin{equation*}
\underline{Y}_{\prime} 2+\underline{A} \underline{Y}+\underline{I}=\underline{0} \tag{7.4}
\end{equation*}
$$

where $\underline{Y}=\operatorname{col}\left\{n_{22} n_{12}{ }^{m} 222^{r} u_{2} u_{1} \in w\right\}$

$$
\underline{L}=\operatorname{col}\left\{\cdot ., \mathrm{ZI}_{2} \ldots \cdot\right\}
$$

and comma notation is used to represent partial differentiation with respect to β_{2}.

The equations corresponding to the translational shell are obtained by setting K_{12} to zero and replacing K_{11} and K_{22} by K_{1} and K_{2} respectively.

The equations corresponding to the ruled surface shell are obtained by setting K_{11} and K_{22} to zero.

In the following, when reference is made to a shell, either a translational shell or a ruled surface shell is implied.

7.2 Boundary Conditions

Only boundary condirions which are symmetric about $\beta_{1}=0.5$ and $\beta_{2}=0.5$ will be considered.

Throughout this chapter the boundary conditions at $\beta_{1}=0,1$ will be assumed clamped $\left(u_{1}=0=u_{2}, w=0=w_{1}\right)$.

The boundary condifions at $\beta_{2}=0,1$ will be either free $\left(n_{22}=0=n_{12}, m_{22}=0=r_{2}\right)$ or clamped ($\left.u_{1}=0=u_{2}, w=0=\theta\right)$.

7.3 Finite Difference Fonnulae

Since either translational or ruled surface shells will be considered, the solution will be symmetric about $\beta_{1}=0.5$ and $\beta_{2}=0.5$.

Then only forward and central difference expressions will be required for the derivatives.

Let y represent the variable whose derivative is required.
The 5-point central and forward difference expressions for the derivatives of y used in this chapter are given in table 7.1. Only an equal width, a, beiween poinis has been considered. These expressions refain the same order of differences and were obtained by application of Taylor's theorem. ${ }^{(67)}$

Note that some of the forward differences have been given in terns of a fictitious point (-1).
7.4 Reduction to a System of Linear First Order Crdinary

Differential Equations with Constant Coefficients
Let the region of the shell (translational or ruled surface) bounded by $\beta_{1}=0$ and $\beta_{1}=1$ be divided into $2 N$ equal divisions by the lines
$\beta_{1}{ }^{0}, \beta_{1}{ }^{1} \ldots, \beta_{1}^{k}, \ldots, 3_{1}^{2 N}$, which are in the same direction as β_{2}
(figure 7.1). The boundaries $\beta_{1}=0$ and $\beta_{1}=1$ correspond respectively to the lines β_{1}° and $\beta_{1}^{2 N}$.

Let the notation y^{k}, where y represents a displacement, stressresultant or stress-couple, denote the value of y along the line β_{1}^{k}. Because of symmetry only the region bounded by $\beta_{1}=0$ and $\beta_{1}=0.5$ is considered i.e. the lines $\rho_{1}^{0}, \beta_{1}^{1}, \ldots, \beta_{1}^{k}, \ldots, \beta_{1}^{N}$.

Only the derivatives with respect to β_{1} in equations (2.76) will be replaced by the corresponding finite difference expressions.

Since the boundary $B_{1}=C$ is clamped and using comma notation to represent differentiation with respect to β_{1} or β_{2} :

$$
\begin{align*}
& u_{1}^{0}=0=u_{2}^{0} \tag{7.5}\\
& w^{0}=0=w_{1}^{0} \tag{7.6}
\end{align*}
$$

Then it follows that:

$$
\begin{align*}
& \theta^{0}=0=e_{1}^{0} \tag{7.7}\\
& u_{1,2}^{0}=0=u_{2,2}^{0} \tag{7.8}\\
& w_{r 22}^{0}=c=w_{122}^{0} \tag{7.9}
\end{align*}
$$

Equations (7.5) to (7.9) inclusive and equations (2.63), (2.64), (2.66) and (2.61) yield the following:

$$
\mathrm{n}_{22}^{o}=\frac{\nu \mathrm{ch}}{I_{1}\left(1-\nu^{2}\right)} u_{1,1}^{0}
$$

$$
\begin{equation*}
{ }_{n_{12}^{\circ}}^{o}=\frac{E h}{21_{1}(1+\nu)} u_{2,1}^{\circ} \tag{7.11}
\end{equation*}
$$

$$
m_{22}^{o}=\frac{-\nu E h^{3}}{\left.12\left(1-\nu^{2}\right)\right)_{1}^{2}} w_{11}^{0}
$$

$$
\begin{equation*}
r_{2}^{0}=\frac{-\operatorname{th}^{3}(2-\nu)}{12\left(1-\nu^{2}\right) 1_{1}{ }^{2}} \theta_{r_{11}}^{0} \tag{7.13}
\end{equation*}
$$

Using the formulae given in table 7.1, finite difference expressions for the derivatives in equations (7.10) to (7.13) inclusive will be obtained. From equation (7.6) and table 7.1:

$$
w_{1}^{0}=0=\frac{1}{12 a}\left[-3 w^{-1}+18 w^{1}-6 w^{2}+w^{3}\right]
$$

which gives:

$$
\begin{equation*}
w^{-1}=6 w^{1}-2 w^{2}+\frac{1}{3} w^{3} \tag{7.14}
\end{equation*}
$$

Similarly from equation (7.7) and table 7.1:

$$
\begin{equation*}
\theta^{-1}=6 \theta^{1}-2 \theta^{2}+\frac{1}{3} \theta^{3} \tag{7.15}
\end{equation*}
$$

From table 7.1 and equations (7.5), (7.6), (7.7), (7.14) and (7.15) the required derivatives are obtained:

$$
\begin{align*}
& u_{1,1}^{0}=\frac{1}{12 a}\left(48 u_{1}^{1}-36 u_{1}^{2}+16 u_{1}^{3}-3 u_{1}^{4}\right) \tag{7.16}\\
& u_{2,1}^{0}=\frac{1}{12 a}\left(48 u_{2}^{1}-36 u_{2}^{2}+16 u_{2}^{3}-3 u_{2}^{4}\right) \\
& w_{111}^{0}=\frac{1}{18 a^{2}}\left(103 w_{1}-27 w_{2}+4 w_{3}\right) \tag{7.18}\\
& \theta_{111}^{0}=\frac{1}{18 a^{2}}\left(108 \theta_{1}-27 \theta_{2}+4 \theta_{3}\right) \tag{7.19}
\end{align*}
$$

Then the actions at $\beta_{1}=0$ are given by equations (7.10) to (7.13) inclusive, where the derivarives are defined by equations (7.16) to (7.19) inclusive.

The solution for the dependent variables along the line β_{1}^{0} is therefore known and the equations need only be applied along the lines $\beta_{1}^{1}, \beta_{1}^{2}, \ldots, \beta_{1}^{k}, \ldots, \beta_{1}^{N}$, where line β_{1}^{N} corresponds to $\beta_{1}=0.5$.

Note that in deriving the finite difference expressions given by equations (7.13) and (7.19) use was made of a fictitious line β_{1}^{-1} in the forward difference expressions. In this way a more accurate represenfation for the derivatives near the boundary is possible. The values of w and Θ along this fictitious line are given by equations (7.14) and (7.15). Such values are not available for u_{1} and u_{2} for the clamped conditions considered and less accurate forward difference expressions are used for the derivatives of u_{1} and u_{2} near the boundary.

In a similar manner, finite difference expressions for the derivatives with respect to β_{1} in equations (7.4) can be obtained.

Let the column matrices $\underline{n}_{22}, \underline{n}_{12}, \underline{m}_{22}, \underline{r}_{2}, \underline{\underline{u}}_{2}, \underline{u}_{1}, \underline{\theta}, \underline{w}$ and \underline{Z} be defined by:

$$
\begin{align*}
& \underline{n}_{22}=\operatorname{col}\left\{\begin{array}{llllll}
n_{22}^{1} & n_{22}^{2} & \ldots & n_{22}^{k} & \ldots & n_{22}^{N}
\end{array}\right\} \\
& \underline{n}_{12}= \tag{7.21}\\
& \operatorname{l}_{22}= \tag{7.22}
\end{align*}
$$

$$
\begin{align*}
& \underline{u}_{2}=\operatorname{col}\left\{\begin{array}{llllll}
u_{2}^{1} & u_{2}^{2} & \ldots & u_{2}^{k} & \ldots & u_{2}^{N}
\end{array}\right\} \tag{7.24}\\
& \underline{u}_{1}=\operatorname{col}\left\{\begin{array}{llllll}
1 & u_{1}^{2} & \ldots & u_{1}^{k} & \ldots & u_{1}^{N}
\end{array}\right\} \tag{7.25}
\end{align*}
$$

$$
\begin{equation*}
\theta=\operatorname{col}\left\{\theta^{1} \theta^{2} \ldots \theta^{k} \ldots \theta^{N}\right\} \tag{7.26}
\end{equation*}
$$

$$
\begin{equation*}
\underline{w}=\operatorname{col}\left\{w^{1} w^{2} \ldots w^{k} \ldots w^{N}\right\} \tag{7.27}
\end{equation*}
$$

$$
\begin{equation*}
\underline{Z} \quad=\operatorname{col}\left\{z^{1} z^{2} \ldots z^{k} \ldots z^{N}\right\} \tag{7.28}
\end{equation*}
$$

where Z^{k} is the line load corresponding to line k. For the clamped conditions of $\beta_{1}=0,1$, equarions (7.3), after: (a) substitution of the relevant finite difference expressions for the derivatives with respect to β_{1}, and
(b) substituting for $n_{22}^{0}, n_{12}^{0}, m_{22}^{\circ}$ and r_{2}°, whenever necessary, by equations (7.10) to (7.13),
reduce to a system of linear first order ordinary differential equations with constant coefficients, which in matrix form are:

- 190 -
where the elements of the non-zero submatrices $A_{i j}\left(i_{i} i=1,2,3, \ldots, 8\right)$ are defined by the expressions given in table 7.2 for the lines $\beta_{1}^{1}, \beta_{1}^{2}$ and $\beta_{1}^{k}(k \geq 3)$.

In the computer program developed, allowance is made for symmetry about $\beta_{1}=0.5$ by adjusting matrices $A_{i j}$ for the following conditions:
(a) for translational shells:

$$
\begin{array}{ll}
n_{22}, m_{22}, r_{2}, u_{2}, S, w & \text { are symmetric about } \rho_{1}=0.5 \\
n_{12}, u_{1} & \text { are ontimetric about } \rho_{1}=0.5
\end{array}
$$

(b) for ruled surface shells:

$$
\begin{align*}
& { }^{n_{12}}, m_{22}, r_{2}, u_{1}, \theta, w \text { are symmetric about } \beta_{1}=0.5 \\
& { }^{n} 22^{\prime} u_{2} \quad \text { are antimetric about } \xi_{1}=0.5 \\
& \text { Let } \underline{x} \equiv \underline{X}\left(\beta_{2}\right)=\operatorname{col}\left\{\underline{n}_{22}, \underline{n}_{12}, \underline{m}_{22}, \underline{r}_{2}\right\} \quad \text { (7.30) } \\
& \underline{U} \equiv \underline{U}\left(\beta_{2}\right)=\operatorname{col}\left\{\underline{u}_{2}, \underline{u}_{1}, \underline{\theta}, \underline{w}\right\} \quad \text { (7.31) } \\
& \underline{F} \equiv \underline{F}\left(\beta_{2}\right)=\operatorname{col}\{\underline{x}, \underline{U}\} \tag{7.32}\\
& z=\operatorname{col}\left\{. . . I_{2} \underline{z} \cdot . \cdot\right\} \tag{7.33}
\end{align*}
$$

then equations (7.29) can be written in the form

$$
\begin{equation*}
E_{1}+\underline{A} E+\bar{Z}=\underline{O} \tag{7.34}
\end{equation*}
$$

Note that \underline{E} and $\underline{\bar{Z}}$ are ($3 N \times 1$) matrices and A is an ($2 N \times 3 N$) matrix.
7.5 Integration of Equations (7.34) Using the Matrix Progression

Method
7.5.1 General Solution

Since the coefficients of A and \underline{Z} are constant, the general solution of equations (7.34) can be written in the following form:

$$
\begin{equation*}
E=\underline{G}\left(\beta_{2}\right)\left(F_{-0}-\underline{F}^{(p)}+\underline{F}^{(\alpha)}\right. \tag{7.3}
\end{equation*}
$$

where

$$
\begin{align*}
& \underline{G}\left(\beta_{2}\right)=e^{-A \beta_{2}} \tag{7.36}\\
& \underline{F}^{(p)}=-A^{-1} \underline{\underline{I}} \tag{7.37}
\end{align*}
$$

and where the following notation has been adopteds

$$
\begin{equation*}
\left.\underline{F}_{q} \equiv E\right|_{\beta_{2}=q} \tag{7.38}
\end{equation*}
$$

The matrix $\mathrm{C}\left(\mathrm{\beta}_{2}\right)$ is referred to as the ${ }^{\text {distribution ma.trix }}{ }^{(65)}$ in the matrix progression mathod. It is also referred to as a ${ }^{\text {a }}$ transfer marrix ${ }^{(63)}{ }_{\text {and }}$ can be detemined by the following series, which always converges: ${ }^{(68)}$

$$
Q\left(\beta_{2}\right)=1-A_{2}+\frac{A^{2} \beta_{2}^{2}}{2!}-\frac{A^{3} \beta_{2}^{3}}{3!}+\frac{A^{4} \beta_{2}^{4}}{4!} \cdots(7.39)
$$

where 1 is the unit matrix.
$\underline{F}^{(p)}$ is the particular solution and is constant for the constant loading selected.

Let $\underline{F}^{(p)}$ be partitioned in the following way:

$$
\begin{equation*}
\underline{F}^{(p)}=\operatorname{col}\left\{\underline{x}^{(p)}, \underline{U}^{(p)}\right\} \tag{7.40}
\end{equation*}
$$

where $\underline{x}^{(p)}=\operatorname{col}\left\{\underline{n}_{22}^{(p)} \underline{n}_{12}^{(p)}, \underline{m}_{22}^{(p)}, \underline{-}_{2}^{(p)}\right\}$

$$
\begin{equation*}
\underline{u}^{(p)}=\operatorname{col}\left\{\underline{u}_{2}^{(p)}, \underline{u}_{1}^{(p)}, \underline{e}^{(p)}, \underline{w}^{(p)}\right\} \tag{7.42}
\end{equation*}
$$

The notation $\mathrm{n}_{22}^{\mathrm{k}(\mathrm{p})}$ will denote the particular solution for n_{22} along the line β_{1}^{k}. Similarly for the other dependent variables.

$$
\begin{align*}
& \text { Let } \underline{C} \equiv \underline{C}\left(\beta_{2}\right)=\underline{F}-\underline{F}^{(p)} \tag{7.43}\\
& \text { and } \underset{O}{C}=\underline{F}_{0}-\underline{F}^{(p)} \tag{7.44}
\end{align*}
$$

then equation (7.35) may be written in the following form:

$$
\begin{equation*}
\underline{C}=G\left(\beta_{2}\right) C_{0} \tag{7.45}
\end{equation*}
$$

Equation (7.45) will be userul in determining the final solution at intervals along β_{2} (refer to section 7.7.5).

The boundary conditions at $\beta_{2}=0,1$ will determine $\underset{-0}{ }$, i.e. the initial values of the dependent variables.

For the symmetric problem considered ${\underset{\sim}{-}}$ can be determined in the following ways:
(i) direct application of the boundary conditions at $\beta_{2}=0,1$ in. equation (7.35)
(ii) direct application of the boundary conditions af $\beta_{2}=0$ and the symmetry conditions about $\beta_{2}=0.5$ in equation (7.35)
(iii) application of a stiffness mathod which segments the path of integration.

In the following each of these approaches will be discussed in conjunction with the boundary conditions:
(a) clamped at $\beta_{2}=0,1$
and
(b) free at $\beta_{2}=0,1$.

It will be convenient to partition $\mathrm{G}\left(\beta_{2}\right)$ in the following woy:

$$
\underline{G}\left(\beta_{2}\right)=\left[\begin{array}{ll}
G_{11}\left(\beta_{2}\right) & G_{12}\left(\beta_{2}\right) \tag{7.46}\\
G_{21}\left(\beta_{2}\right) & G_{22}\left(\beta_{2}\right)
\end{array}\right]^{*}
$$

7.5.2 Direct Application of the Boundary Conditions at $\beta_{2}=0,1$
in Equation (7.35)
(a) Clamped at $\beta_{2}=0,1$

The conditions to be satisfied are:

$$
\begin{align*}
& u_{0}=0 \tag{7.47}\\
& \underline{u}_{1}=0 \tag{7.48}
\end{align*}
$$

[^13]which on application to equation (7.35) yields
(b) Free at $\beta_{2}=0,1$

The conditions to be satisfied are:

$$
\begin{align*}
& x_{0}=\underline{o} \tag{7.50}\\
& \underline{x}_{1}=\underline{0} \tag{7.51}
\end{align*}
$$

which on application to equation (7.35) yields:

$$
\underline{F}_{0}=\left[\begin{array}{l}
\underline{x}_{0} \\
\underline{U}_{0}
\end{array}\right]=\left[\begin{array}{c}
\underline{0} \\
\underline{G}_{12}^{-1}(1)\left[G_{1}(1)-\underline{1}\right] \underline{\dot{x}}^{(p)}+\underline{u}^{(p)}
\end{array}\right] \text { (7.52) }
$$

7.5.3 Direct Application of the Boundary Conditions at $\beta_{2}=0$ and the Symmetry Conditions about $\beta_{2}=0.5$ in Equation (7.35)
The symmetry conditions about $\beta_{2}=0.5$ are given by

$$
\begin{equation*}
\underline{J F}_{0.5}=\underline{O} \tag{7.53}
\end{equation*}
$$

where \underline{J} is a $(4 N \times 3 N)$ matrix and is given by:

for translational shells, and by:

for ruled surface shells.
Each submatrix of $\underset{J}{ }$ is of order ($N \times N$). $\underline{1}$ is the unit matrix.
(a) Clamped at $\beta_{2}=0,1$

The conditions to be satisfied are:

$$
\begin{equation*}
\underline{U}_{0}=\underline{O}=\underline{J} \underline{F}_{0.5} \tag{7.56}
\end{equation*}
$$

Let $H, a(4 N \times 8 N)$ matrix, be defined by:

$$
\begin{equation*}
\underline{H}=\underline{J} \underline{G}(O .5)=\left[\underline{H}_{1}, \underline{H}_{2}\right] \tag{7.57}
\end{equation*}
$$

where ${\underset{1}{1}}$ and ${\underset{2}{2}}_{2}$ are ($4 N \times 4 N$) matrices. Application of the
conditions given by equation (7.56) to equation (7.35) yields

$$
\underset{-}{F}=\left[\begin{array}{l}
\underline{x}_{0} \tag{7.5®}\\
\underline{U}
\end{array}\right]=\left[\begin{array}{c}
\underline{H}_{1}^{-1}\left[\underline{H}_{2} \underline{U}^{(p)}-\underline{\mathrm{F}}^{(p)}\right]+\underline{x}^{(p)} \\
\cdots \underline{0}
\end{array}\right]
$$

(b) Free af $\beta_{2}=0,1$

The conditions to be satisfied are:

$$
\begin{equation*}
\underline{x}_{0}=\underline{c}=\underline{J} \underline{F}_{0.5} \tag{7.59}
\end{equation*}
$$

which on application to equation (7.35) yields:

$$
\underline{E}_{0}=\left[\begin{array}{l}
\underline{x}_{0} \\
\underline{U}
\end{array}\right]=\left[\begin{array}{c}
\underline{0} \\
\underline{H}_{2}^{-1}\left[\underline{H}_{1} \underline{x}^{(p)}-\underline{J}^{(p)}\right]+\underline{U}^{(p)}
\end{array}\right] \text { (7.60) }
$$

7.5.4 Solution which Segments the Path of Integration -

Stiffness Meithod
As discussed in section (3.2), a solution which segments the path of integration may become necessary when roundoff errors become significant.

Let the region bounded by $\beta_{2}=0$ and $\beta_{2}=1$ be divided into A segments by lines which are in the same direction as β_{9} (figure 7.2).

These lines will be referred to as segment lines and will be numbered $0,1,2, \ldots \ldots, m, \ldots \ldots, M$. Segment lines 0 and M are the boundaries $\beta_{2}=0$ and $\beta_{2}=1$ respectively.

Consider one such segment, m, bounded by the segment lines $\beta_{2}=d$ and $\beta_{2}=d+b$ which will be referred to as ${ }^{9}$ edges 1 and 2^{a} respectively. (Figure 7.3).

Let \bar{X}_{1}^{m} and $\overline{\underline{X}}_{2}^{m}$ represent the actions, and \underline{U}_{1}^{m} and \underline{U}_{2}^{m} the displacements at edges 1 and 2 of segment m respectively (figure 7.4), and let these be defined by:

$$
\begin{align*}
& \bar{x}_{1}^{m}=\operatorname{col}\left\{\underline{n}_{22}, \underline{n}_{12}, \underline{m}_{22}, \underline{r}_{2}\right\}_{1}^{m} \tag{7.61}\\
& \underline{\bar{x}}_{2}^{m}=\operatorname{col}\left\{\underline{n}_{22^{\prime}} \underline{n}_{12}, \underline{m}_{22^{\prime}} \underline{\mathrm{r}}_{2}\right\}_{2}^{m} \tag{7.62}\\
& \underline{\bar{U}}_{1}^{m}=\operatorname{col}\left\{\underline{u}_{2}, \underline{u}_{1}, \underline{\theta}^{m}, \underline{w}\right\}_{1}^{m} \tag{7.63}\\
& \underline{\bar{U}}_{2}^{m}=\operatorname{col}\left\{\underline{u}_{2}, \underline{u}_{1}, \underline{\theta}^{\prime} \underline{w}\right\}_{2}^{m} \tag{7.64}
\end{align*}
$$

Note that in this section the superscript refers to the segment and not to an individual line as discussed in section (7.4).

Defining

$$
\begin{align*}
& \bar{F}_{-1}^{m}=\operatorname{col}\left\{\bar{X}_{1}^{m}, \bar{U}_{1}^{m}\right\} \tag{7.65}\\
& {\underset{-}{F}}_{-2}^{m}=\operatorname{col}\left\{\bar{\Sigma}_{2}^{m}, \underline{U}_{2}^{m}\right\} \tag{7.66}\\
& \text { and } \quad \overline{\overline{\mathrm{C}}}=\underline{\underline{\mathrm{C}}}(\mathrm{~b}) \tag{7.67}
\end{align*}
$$

then, from equation (7.35), the solution for segment m is given by:

$$
\begin{equation*}
\overline{\underline{F}}_{2}^{m}=\bar{G}\left[\bar{E}_{1}^{m}-\underline{F}^{(p)}\right]+{\underset{F}{F}}^{(p)} \tag{7.68}
\end{equation*}
$$

The particular solution $E^{(p)}$ is constant across the segment for the constant loading selected (equation 7.38).

Stiffness Matrix of a Segmant
With the load set to zero equation $(7: 68)$ becomes: :

$$
\begin{equation*}
\overline{\underline{F}}_{2}^{m}=\overline{\bar{G}} \overline{\underline{F}}_{1}^{m} \tag{7.69}
\end{equation*}
$$

Let S_{-m} be the stiffness matrix of the segment in and let its partitioned form be:

$$
\underline{s}^{\prime n}=\left[\begin{array}{ll}
\underline{s}_{11}^{m} & \underline{s}_{12}^{m} \\
\underline{s}_{21}^{m} & \underline{s}_{22}^{m}
\end{array}\right]
$$

where the order of each submarrix $\frac{S}{-i j}_{\mathrm{m}}^{\text {is }}(4 N \times 4 N)$.
Then, by definition, $s_{i j}^{m}(i, i=1,2)$ are the actions \bar{X}_{i}^{m} produced by unit displacements \bar{U}_{i}^{m} with all oiler displacements zero.

Equation (7.69) is written in the form:

$$
\left[\begin{array}{l}
\bar{x}_{2}^{m} \tag{7.71}\\
\bar{u}_{2}^{m}
\end{array}\right]=\left[\begin{array}{ll}
\overline{\bar{G}}_{11} & \bar{G}_{12} \\
\overline{\bar{G}}_{21} & \overline{\underline{G}}_{22}
\end{array}\right]\left[\begin{array}{l}
\bar{x}_{1}^{m} \\
\overline{\bar{u}}_{1}^{m}
\end{array}\right]
$$

With $\underline{\mathrm{G}}_{1}^{m}=1$ and $\underline{\mathrm{U}}_{2}^{\mathrm{m}}=$ © , equation (7.71) becomes:

$$
\left[\begin{array}{l}
\overline{\bar{x}}_{2}^{m} \tag{7.72}\\
\underline{o}
\end{array}\right]=\left[\begin{array}{ll}
\overline{\bar{G}}_{11} & \bar{G}_{12} \\
\overline{\bar{G}}_{21} & \overline{\underline{G}}_{22}
\end{array}\right]\left[\begin{array}{l}
\underline{\bar{x}}_{1}^{m} \\
\underline{1}
\end{array}\right]
$$

from which:

$$
\begin{align*}
& \bar{X}_{1}^{m}=-\left(\overline{\mathrm{G}}_{21}\right)^{-1} \overline{\mathrm{G}}_{22}=\underline{S}_{11}^{m} \text { by definition } \tag{7.73}\\
& \underline{x}_{2}^{m}=-\overline{\mathrm{C}}_{11}\left(\overline{\mathrm{G}}_{21}\right)^{-1} \overline{\mathrm{G}}_{22}+\overline{\mathrm{G}}_{12}=\underline{S}_{-21}^{m} \text { by definition } \tag{7.74}
\end{align*}
$$

With $\bar{U}_{-2}^{m}=1$ and $\bar{U}_{1}^{\mathrm{m}}=\underline{0}$, equation (7.71) becomes:

$$
\begin{gather*}
-201- \\
{\left[\begin{array}{l}
\overline{\underline{x}}_{2}^{m} \\
\underline{1}
\end{array}\right]=\left[\begin{array}{ll}
\overline{\underline{G}}_{11} & \overline{\mathrm{G}}_{12} \\
\overline{\mathrm{G}}_{-21} & \overline{\mathrm{c}}_{22}
\end{array}\right]\left[\begin{array}{c}
\overline{\mathrm{x}}_{1}^{m} \\
\underline{0}
\end{array}\right]} \tag{7.75}
\end{gather*}
$$

from which:
$\underline{\bar{X}}_{1}^{m}=\left(\underline{\bar{G}}_{21}\right)^{-1}=\underline{-}_{12}^{\mathrm{m}}$ by definition
$\underline{\bar{x}}_{2}^{m}=\overline{\underline{G}}_{11}\left(\overline{\underline{G}}_{21}\right)^{-1}=\underline{s}_{22}^{m}$ by definition
Then the stiffness matrix of the segment \underline{S}^{m} is given by:

$$
\underline{s}^{m}=\left[\begin{array}{ll}
-\left(\overline{\mathcal{G}}_{21}\right)^{-1} \overline{\mathrm{G}}_{22} & \left(\underline{\bar{G}}_{21}\right)^{-1} \\
-\overline{\mathrm{G}}_{11}\left(\overline{\mathrm{G}}_{21}\right)^{-1} \underline{\mathrm{G}}_{22}+\overline{\mathrm{G}}_{12} & \overline{\mathrm{G}}_{11}\left(\overline{\mathrm{G}}_{21}\right)^{-1}
\end{array}\right] \text { (7.73) }
$$

Segment Clamped Edge Solution for the Loading $\overline{\underline{Z}}$
Let $\underline{x}_{1}^{\text {om }}$ and $\bar{x}_{2}^{\text {om }}$ represent the actions corresponding to the clamped edge* solution for the loading \bar{Z} at edges 1 and 2 of segment m respectively and let these be defined by:

* The term "clamped edge" implies that the edges 1 and 2 of a segment are clamped.

$$
\begin{align*}
& \underline{x}_{1}^{\text {om }}=\operatorname{col}\left\{\underline{n}_{22}, \underline{n}_{12}, \underline{m}_{22}, \underline{r}_{2}\right\}_{1}^{o m} \tag{7.79}\\
& \underline{x}_{2}^{\text {om }}=\operatorname{col}\left\{\underline{n}_{22}, \underline{n}_{12}, \underline{m}_{22}, \underline{r}_{2}\right\}_{2}^{\text {om }} \tag{7.80}
\end{align*}
$$

where the superscripk o denotes the clamped edge solution.
The solution for $\bar{X}_{1}^{o m}$ and $\bar{X}_{2}^{o m}$ corresponds respectively to the solution for \bar{X}_{1}^{m} and \bar{X}_{2}^{m} from equation (7.68) with $\underline{U}_{1}^{m}=\underline{O}=\underline{U}_{2}^{m}$ and is given by:

$$
\begin{align*}
& \bar{x}_{1}^{o m}=\overline{\bar{G}}_{21}^{-1}\left[\overline{\bar{G}}_{22}-1\right] \underline{U}^{(p)}+\underline{x}^{(p)} \tag{7.31}\\
& \bar{x}_{2}^{\text {om }}=\overline{\mathcal{G}}_{11} \overline{\underline{G}}_{21}^{-1}\left[\overline{\underline{G}}_{22}-1\right] \underline{U}^{(p)}-\overline{\underline{G}}_{22} \underline{U}^{(p)}+\underline{x}^{(p)} \tag{7.82}
\end{align*}
$$

Another way of obtaining this clamped edge solution is to apply the stifiness matrix of the segment. The particular solution actions are $\underline{x}^{(p)}$ and the particular solution displacements are $\underline{U}^{(p)}$ (equation 7.40).

To reduce the displacements at edges 1 and 2 of the segment to zero, displacements $-\underline{U}^{(p)}$ are applied. In this way the clamped edge solution is obtained in the following form:

$$
\left[\begin{array}{l}
\underline{x}_{1}^{o m} \tag{7.83}\\
\underline{x}_{2}^{o m}
\end{array}\right]=\left[\begin{array}{ll}
\underline{s}_{11}^{m} & \underline{s}_{12}^{m} \\
\underline{s}_{21}^{m} & \underline{s}_{22}^{m}
\end{array}\right]\left[\begin{array}{l}
-\underline{-1}^{(p)} \\
-\underline{U}^{(p)}
\end{array}\right]+\left[\begin{array}{l}
\underline{x}^{(p)} \\
\underline{x}^{(p)}
\end{array}\right]
$$

Substituting for $\underline{S}_{-\mathrm{ij}}^{\mathrm{m}}$ from equation (7.78) in equation (7.83) yields solutions for $\bar{X}_{1}^{\text {om }}$ and $\bar{X}_{2}^{\text {om }}$ which are identical to those given by (7.81) and (7.82).

Assembled Stiffness Matrix for the Shell
Let the M segments which subdivide the region bounded by $\beta_{2}=0$ and $\beta_{2}=1$ (figure 7.2) be numbered $1,2,3, \ldots \ldots, m_{, \ldots, M}$ (figure 7.5a).

Let $U_{-}, U_{1}, \underline{U}_{2}, \ldots f, d, U_{A}$ represent respectively the displacements at the segment junctions $C, 1,2, \ldots, \ldots, M$ (figure 7.5a). The elements of \underline{U} are given by equation (7.31).

The sign convention adopred for the actions and displacements at each iunction is given in figure 7.5 b .

The sign convention adopted for the actions and displacements for each segment is given in figure 7.4.

Assembling the segments into the original shell form, yields equations of equilibrium at the junctions, which in matrix form are (figure 7.6):

$$
\begin{aligned}
& \text { - 204- }
\end{aligned}
$$

Let

Then equation (7.84) becomes

$$
\begin{equation*}
\underline{S} \underline{U}+\underline{B}=\underline{O} \tag{7.36}
\end{equation*}
$$

where \underline{S} is the assembled stiffness matrix for the shell.
Each submatrix of \underline{S} is of order ($4 \mathrm{~N} \times 4 \mathrm{~N}$) and therefore \underline{S} is of order $[4 N(M+1) \times 4 N(M+1)]$.

Solution of Equations (7.84) by Tri-diagonalisation

The assembled stiffness matrix $\underset{\sim}{\mathbf{S}}$ partitions directly into a tridiagonal submatrix form, i:ed into a diagonal submatrix, a superdiagonal submatrix and a subdiagonal submatrix. This form is convenient for solution by an elimination process.

Let

$$
\begin{align*}
& \underline{S}_{0}=-\underline{s}_{11}^{1} * \tag{7.87}\\
& s_{-m}=\left(\underline{S}_{22}^{m}-\underline{s}_{-11}^{m+1}\right) \tag{7.88}\\
& \underline{S}_{M}=\underline{s}_{22}^{M} * \tag{7,39}
\end{align*}
$$

where $m=1,2,3, \ldots \ldots,(1-1)$.

[^14]Then, from equation (7.64), the equations of equilibrium at junctions 0 and 1 are respectivaly:

$$
\begin{align*}
& \underline{S}_{0} \underline{U}_{0}-\underline{S}_{12}^{1} \underline{U}_{1}+\underline{B}_{0}=\underline{0} \tag{7.90}\\
& \underline{s}_{21}^{1} \underline{U}_{0}+\underline{S}_{1} \underline{U}_{1}-\underline{S}_{12}^{2} \underline{U}_{2}+\underline{B}_{1}=\underline{0} \tag{7.91}
\end{align*}
$$

Eliminating \underline{U}_{-}from equations (7.90) and (7.91) yields:*.

$$
\begin{equation*}
\bar{S}_{1} \underline{U}_{1}-\underline{s}_{12}^{2} \underline{U}_{2}+\overline{\bar{E}}_{1}=0 \tag{7.92}
\end{equation*}
$$

where

$$
\begin{align*}
& \underline{\bar{s}}_{1}=\underline{s}_{1}+\underline{s}_{-21}^{1} \underline{s}_{-1}^{-1} \underline{s}_{12}^{1} \tag{7.93}
\end{align*}
$$

Note that equation (7.2) is of the same form as equation (7.90).
From equation (7.24), the equation of equilibrium at junction 2 is:

$$
\begin{equation*}
\underline{s}_{21}^{2} \underline{u}_{1}+\underline{s}_{22} \underline{u}_{2}-\underline{s}_{12}^{3} \underline{u}_{3}+\underline{B}_{2}=0 \tag{7.95}
\end{equation*}
$$

*This assumes that \underline{U}_{0}^{U} is not apecified. If any of the displacements of ${\underset{\sim}{0}}^{0}$ are specified, equations (7.90) and (7.91) should be adjusted accordingly. . For a clanped boundary ($\mathrm{U}_{-\mathrm{O}}=\underline{\mathrm{C}}$), the elimination procedure would commence at junction 1.

Eliminating \underline{U}_{1} froin equations (7.92) and (7.95) yields:

$$
\begin{equation*}
\bar{S}_{22} \underline{U}_{-2}-\underline{s}_{-12}^{3} \underline{U}_{3}+\bar{B}_{-2}=0 \tag{7.96}
\end{equation*}
$$

where

$$
\begin{align*}
& \bar{S}_{22}=\underline{S}_{22}+\underline{s}_{21}^{2} \bar{S}_{11}^{-1} \underline{S}_{12}^{2} \tag{7.97}\\
& \bar{E}_{2}=\underline{E}_{2}-S_{21}^{2} \bar{S}_{11}^{-1} \overline{\mathrm{~B}}_{1} \tag{7.98}
\end{align*}
$$

In general, the following expression is obtained:

$$
\begin{equation*}
\bar{S}_{n} U_{m}-\underline{S}_{-12}^{m+1} U_{m+1}+\underset{-m}{\overline{5}}=\underline{O} \tag{7.99}
\end{equation*}
$$

where:

$$
\begin{align*}
& \underset{-m}{\bar{s}}=\underset{-m}{s}+{\underset{-21}{m}}_{S_{-m-1}^{m}}^{S_{-12}^{m}} \tag{7.100}\\
& \bar{B}_{m}=\underline{C}_{n}-\underline{S}_{-21}^{m} \bar{S}_{m-1}^{-1} \bar{B}_{m-1} \tag{7.101}\\
& \text { and } n=1,2,3, \ldots,(1-1) \text {. }
\end{align*}
$$

Proceeding in this way, the equilibrium equation af junction M, i.e. $\beta_{2}=1$, becomes:

$$
\begin{equation*}
\bar{S}_{1} U_{M}+\bar{B}_{M}=0 \tag{7.102}
\end{equation*}
$$

where \bar{S}_{M} and \bar{B}_{M} are respectively given by equations (7.100) and (7.101) with m replaced by 1.

Then

$$
\begin{equation*}
\underline{U}_{M}=-\bar{S}_{i A}^{-1} \overline{\underline{B}}_{\hat{A}} * \tag{7.103}
\end{equation*}
$$

From equation (7.99) the following is obtained by replacing m by ($\mathrm{m}-1$):

The displacements $\underline{U}_{A-1}, \underline{U}_{M-2}, \ldots, \underline{U}_{0}$ are than obtained from equation (7.1O4) by back substitution.
 of order (4iv $\times 1$), are detemined during the application of equation (7.99) in the elimination procedure. In the compuier program, these matrices are stored and used in the back substitution procedure.

In the computer progran developed, provision is made for a solution using either 4 or 3 equal segments, i.e. $M=4$ or 3 . Then the stiffness matrix for each segrnent is the same. Also for the symmetric problems considered, the elimination procedure is terminated at $\beta_{2}=0.5$ by
*This assumes that \underline{U}_{M} is not epecified, If any of the displacements of U_{M} are specified, equarion (7.103) should be adjusted accordingly. For a clanped boundary $\left(\underline{U}_{M}=\underline{O}\right)$, tha elimination procedure would be terminated at junction (in-1).
allowing for the following symastry conditions;
(a) for translational shells:
(i) \underline{u}_{2} and \supseteq are anfinetric about $\beta_{2}=0.5$

$$
\text { i.e. } \underline{u}_{2}=\underline{0}=\underline{\theta} \text { of } \beta_{2}=0.5
$$

(ii) \underline{u}_{1} and \underline{w} ara symmetric about $\beta_{2}=0.5$.
(b) for ruled surface shells:
(i) \underline{u}_{1} and 9 are animetric about $\beta_{2}=0.5$

$$
\text { i.e. } \underline{u}_{1}=\underline{Q}=\underline{\underline{e}} \text { ar } \beta_{2}=0.5
$$

(ii) \underline{u}_{2} and \underline{w} are symnetric about $\beta_{2}=0.5$.

7.6 Determination of D'isplacernents, Siress-resulian's and Sirress-couples

The values of the dependent variables for the lines $1,2, \ldots, N$ along β_{2} are given by equation (7.35) or the alternative form given by equation (7.45) (refer to section 7.7.5).

The boundary values of the dependent variables are given by equations (7.10) to 7.13) inclusive and (7.16) to (7.19) inclusive.

If remains to determine suitable expressions for $n_{11}, m_{11}, m_{12} q_{1}$, q_{2} and r_{1}.

Equations (2.58), (2.60), (2.61), (2.65), (2.66), (2.67), (2.68) and (2.70), after non-dimensionalising the co-ordinates, yield the following:

$$
\begin{align*}
& { }_{n 11}=F h\left(\frac{1}{1_{1}} u_{1,1}-k_{11} w\right)+\nu n_{22} \tag{7.105}\\
& n_{11}=\frac{-\mathrm{ch}^{3}}{121_{1}{ }^{2}} w_{11}+\nu m_{22} \tag{7.106}\\
& n_{12}=\frac{-F_{h}^{3}}{12(1+\nu) F_{1}} \theta_{1} \tag{7.107}\\
& q_{1}=\frac{-E h^{3}}{12(1+\nu) l_{1}{ }^{3}} w_{111}+\frac{1}{l_{1}} m_{22,1} \tag{7.108}\\
& q_{2}=r_{2}-\frac{t^{3}}{12(1+\nu))_{1}^{2}}{ }^{\theta_{r}} 11 \tag{7.109}\\
& r_{1}=\frac{-\operatorname{sh}^{3}(1-\nu)}{12(1+\nu) 1_{1}^{3}} w_{1} 111+\frac{(2-\nu)}{1_{1}} m_{22,1} \tag{7.110}
\end{align*}
$$

where comma notation is used to represent partial differentiation with respect to β_{1}.

Using the finits difference formulae given in table 7.1 and allowing for the clamped conditions ai $\beta_{2}=0,1$, as discussed in section (7.4), the required finite difference expressions are obtained for equation (7.105) to (7.11C) inclusive. Datails are given in table 7.3 for the lines 0,1 and k, where $k \geq 2$.

In the computer progran developed allowance is made for symmetry about $\beta_{1}=0.5$ in the expressions given in toble 7.3.

7.7 Some Notes on the Numerical Computations

7.7.1 The $G\left(\beta_{2}\right)$ Matrix
(a) $\underline{G}\left(\beta_{2}\right)$ is deternined from the series given by equation (7.39). However, for beiter accuracy, particularly for a large number of terns, $\mathrm{C}\left(\mathrm{B}_{2}\right)$ is best computed from:

$$
\underline{G}\left(\beta_{2}\right)=1-\underline{A} \beta_{2}\left(1-\frac{A \beta_{2}}{2}\left(1-\frac{A B_{2}}{3}\left(1-\frac{A B_{2}}{4}\left(\ldots-\frac{A B_{2}}{n-1}\left(1-\frac{A \beta_{2}}{n}(\ldots . .)\right)\right.\right.\right.\right.
$$

(a) A useful property of $G\left(\beta_{2}\right)$ is:

$$
\begin{equation*}
\underline{G}(a) \cdot \underline{G}(b)=\underline{G}(a+b) \tag{7.112}
\end{equation*}
$$

In the computer progran $\underline{Q}\left(\frac{1}{16}\right)$ is deterained and $\Theta\left(\beta_{2}\right)$, for other values of β_{2} (multiples of $\frac{1}{16}$), is obtained by application of equation (7.112). By detemining $\subseteq\left(\beta_{2}\right)$ in this way, fewer tems in the series ars required.

In the computer progran, the solution far $\underline{F}^{(p)}$ is detarmined by partitianing the A marrix into its submatrices given by equation (7.29). However, far the symmetric case considerad, A_{12} is singular for ruled suriace shells and $\hat{A}_{6.5}$ is singular for iranslatianal shelis (refer to rable 7.2). In the partitioning procedure the particular solution ${\underset{U}{2}}_{k(p)}^{\text {is obtained by }}$ inverting $\left[A_{12} A_{62}^{-1} A_{65}-A_{15}\right]$, which, referring above and to table 7.2, is singular for both shell sypes. However, because of symmetry and since $\mathrm{F}^{(p)}$ is constant, the value of $\mathrm{u}_{2}^{N(p)}$ i.e. at $\beta_{2}=0.5$, is zero.* Adiusting the above matrix accordingly eliminates the singularity. Wore that ${\underset{F}{F}}_{(p)}$ is independent of \mathbf{I}_{2}.
7.7.3 Singularity in the Matrix $\mathrm{G}_{12}\left(\beta_{2}\right)$ for Ruled Surface Shells

For the symmetric case considered the matrix $\underline{G}_{12}\left(\beta_{2}\right)$ for-ruled surface shalls is singular.

Then the solution for free conditions at $\beta_{2}=0,1$, whichever approach is used (seciion 7.5.2, 7.5.3 or 7.5.4), is not possible.
*For translatianal shalls, $u_{2}^{k(p)}$, because of symmeiry, is zero along all lines $k . \quad(k=1,2,3, \ldots, \ldots)$.

However, because of symmetry, $\mathrm{u}_{2}^{\mathrm{N}}$ is zero for ruled surface shells. By modifying the matrices accordingly, the singularity is removed.

7.7.4 Roundoff Errors in the Solution

In order to investigate any accumulation of errors the solution for each of the methods given in sections (7.5.2), (7.5.3) and (7.5.4) was defermined from $\beta_{2}=0$ to $\beta_{2}=1$. In this way the effect of any errors on the symmetry in the solution could be observed.

When applying the conditions at $\beta_{2}=1$ (section 7.5.2), the roundoff errors for a shell with $N=4$ and $r=1$ were only slight. However, with $r=1$, increasing N yielded very serious errors and distorted the solution, particularly at $\beta_{2}=1$. On the other hand, increasing r (>1 only) with N constant, reduced the roundoff errors. Similarly for application of the conditions at $\beta_{2}=0.5$ (section 7.5.3).

Segmenting the path of infegration (section 7.5.4), which, in effect, uses a value of $r>1$, greatly improved the solution.

To investigate this matter further, solutions ware obtained for different values of $\left(\frac{N}{r}\right)$ using the approach given in section (7.5.2). It was noted that when $\left(\frac{N}{r}\right)$ was less than 3 the errors, if any, were very small. For values of $\left(\frac{\mathrm{N}}{\mathrm{r}}\right)$ greater than 4 , the errors were very serious and completely
distorted the solution at $\beta_{2}=1$. For values of $\left(\frac{i v}{r}\right)$ between 3 and 4, there was some evidence of errors.

However, these values of $\left(\frac{N}{r}\right)$ are only a guide and more specific values would require further investigation.

Chetty ${ }^{(25)}$ applied the nethod of lines to ruled surface shells using $N=5$ and $r=1$ only and nofed that errors were accumulating. To overcome this problem Chetty suggested using a computer which handled more significant digits. This is undoubtedly beneficial but a :nore satisfactory approach would be to segment the path of integration.
7.7.5 The Determination of E along β_{2}

Let the interval $\beta_{2}=0$ to $\beta_{2}=1$ be divided into equal divisions of width e .

Then, using the property given by equation (7.112), equation (7.45) can be expressed as the following recurrence relation:

$$
\begin{equation*}
\underline{C}_{n+1}=\underline{G}^{(e)} \underline{C}_{n} \tag{7.113}
\end{equation*}
$$

where n represents a point along β_{2}.
Ethen follows from equation (7.43). Equation (7.113) is useful for the deternination of the solution at constant intervals along β_{2}.
7.8 Translational Shells

In this section numerical examples will be given for translational shells.

The solutions will be presented for $N=4,6,2$ or 10 . Since $r=1$ in each example considered, the solution is obrained by segmenting the path of integration (section 7.5.3). Four segments (i.e. $M=4$) are used when $N=4$ and eight segments (i.e. $M=8$) are used when $N=6,3$ or 10.

All results are presented in floating point notation and in ft. lb . units unless otherwise stated.
7.8.1 Convergence Study - Numerical Examples

Example 7.1: Consider an elliptic paraboloid with the following data:

$$
\begin{aligned}
& \mathrm{I}_{1}=50 \mathrm{ft} \quad \mathrm{I}_{2}=50 \mathrm{ft}, \quad h=0.25 \mathrm{ft} \\
& \mathrm{~K}_{1}=1.0,-2 \mathrm{ft}^{-1} \quad \mathrm{~K}_{2}=1.0,-2 \mathrm{ft}^{-1} \\
& E=4.5,+3 \mathrm{lb} / \mathrm{ft}^{2} \quad V=0.15 \quad Z=50 \mathrm{lb} / \mathrm{ft}^{2}
\end{aligned}
$$

and boundary conditions:
clamped ar $a_{1}=0, I_{1}$ and $a_{2}=0, I_{2}$.

The results are presented in tables 7.4a and 7.4b.
It will be noted from table $7.4 a$ that n_{11} along the boundary $\beta_{1}=0$ and u_{1} are slowly convergent. Otherwise the solution is generally converging satisfactorily.

In table $7.4 b$ the results corresponding to $N=3$ are presented for $\beta_{1}=0.5$ and $\beta_{2}=0.5$. Because of symmerry $w_{1} n_{22}$ and m_{22} at $\beta_{1}=0.5$ should be the same as $w_{1} n_{11}$ and m_{11} at $\beta_{2}=0.5$. This provides a check on the solution. It will be noted from table 7.46 that, except for n_{11} at $\beta_{1}=0$, there is generally good agreement.

These results show that the finite difference representation of n_{11} at the boundary $\beta_{1}=0$ is poor (refer to equation (7.105) and table 7.3).

This could be inproved by adopting a closer specing of the lines adjacent to the boundary.

Example 7.2. Data as for example 7.1 but with boundary conditions:

$$
\begin{aligned}
& \text { clomped at } \alpha_{1}=0, l_{1} \\
& \text { free at } \alpha_{2}=0, l_{2} .
\end{aligned}
$$

The results are presented in tobles 7.5 a and 7.51 , and figure 7.7 .
It will be noted from table $7.5 a$ and figure 7.7 that n_{11} along $\beta_{1}=0$ is again slowly convergent.

Note that the corner* values of $\mathrm{m}_{11},{ }^{n_{12}}$ and q_{1} are also slowly convergent. The remainder of the solution is converging satisfactorily.

For reference, a detailed solution for $\beta_{1}=0.5$ and $\beta_{2}=0.5$ is given in table 7.5b. This solution corresponds to $\mathrm{N}=0$.

7.8.2 Comparison With Other Available Solutions

Example 7.3. The shell in example 7.1 was solved using the computer program described in chapter 5. Functions corresponding to case (a) in table 5.4 were used. Also $\mathrm{S}=3$ was adopted.

A cornparison with the line solution using 3 segments (i.e. $M=8$) and $N=6$ is made in figure 7.3 for $\beta_{1}=0.5$. The solutions show good agreement.

7.2.3 Compararive Study of Different Boundary Conditions

Example 7.4. Data as for example 7.1 but with boundary conditions:

$$
\text { clamped af } a_{1}=0,1_{1}
$$

and (i) clamped at $\alpha_{2}=0, I_{2}$
(ii) free at $\alpha_{2}=0, l_{2}$

[^15](iii) normal slide (1) at $a_{2}=0,1_{2}$.

Cases (i) and (ii) correspond to examples 7.1 and 7.2 respectively. Case (iii) is obtained froin the computer program described in chapter 5 using $S=8$ and functions corresponding to case (a) in table 5.4.

A comparison is made in figures 7.9 a and $7.9 b$ for w, n_{22} and m_{22} These results show that the normal slide (1) boundary is comparatively stiff. The value of m_{22} at $\beta_{1}=0.5$ is virtually zero for normal slide (1) boundaries.
7.9 Ruled Surface Shells

In this section numerical examples will be given for ruled surface shells.

As in section (7.3), the solutions are obtained by segmenting the path of integration (section 7.5.3). Four segments (i.e. $M=4$) are used when $N=4$ and eight segments (i.e. $M=8$) are used when $M=6,8$ or 10.

All results are presented in floating point notarion and in ft, lb units unless otherwise stared.

7.9.1 Convergence Study - Numerical Examples

Example 7.5: Consider a ruled surface hyperbolic paraboloid with the following data:

$$
\begin{aligned}
& \mathrm{I}_{1}=37.50 \mathrm{ft} \quad \mathrm{I}_{2}=37.50 \mathrm{ft} . \quad h=0.25 \mathrm{ft} \\
& K_{12}=+4.444,-3 \mathrm{ft}^{-1} \quad \nu=0.15 \\
& E=4.5,+8 \mathrm{lbs} / \mathrm{ft}^{2} \quad Z=50 \mathrm{lbs} / \mathrm{ft}^{2}
\end{aligned}
$$

and boundary conditions:

$$
\text { clamped at } a_{1}=0, l_{1} \text { and } a_{2}=0, I_{2}
$$

The results are presented in tables $7.6 a$ and 7.66 respectively.
It will be noted from table 7.6a the the solution is converging satisfactorily even along the clamped boundary $\beta_{1}=0$.

In table 7.6 b the resulis corresponding to $\mathrm{N}=\hat{\mathrm{S}}$ are presented for $\beta_{1}=0.5$ and $\beta_{2}=0.5$.

Because of symmetry w, n_{12} and m_{22} at $\beta_{1}=0.5$ should be the same as w, n_{12} and m_{11} ai $\beta_{2}=0.5$. This provides a check on the solurion. It will be noted frosi table 7.6 b that there is generally good agreement.

Example 7.6: Data as for example 7.5 but with boundary conditions:

$$
\begin{aligned}
& \text { clamped at } a_{1}=0, l_{1} \\
& \text { free at } a_{2}=0, l_{2}
\end{aligned}
$$

The results are presented in tables 7.7a and 7.7b, and figures 7.10a and 7.1Cb, from which it will be noted that the solution is, in general, converging satisfactorily.

For reference, α detailed solution for $\beta_{1}=0.5$ and $\beta_{2}=0.5$ is given in table 7.7b. This solution corresponds to $N=$.

7.9.2 Comparison with Other Available Solutions

Example 7.7: Consider a ruled surface hyperbolic paraboloid with the following data:

$$
\begin{aligned}
& I_{1}=12.92 \mathrm{in} . \quad I_{2}=12.92 \mathrm{in} . \quad h=0.25 \mathrm{in} . \\
& K_{12}=-3.1247,-2 \mathrm{in}_{0}^{-1} \quad \nu=0.39 \\
& E=5,+5 \mathrm{~B} / \mathrm{in}^{2} \\
& z=1 \mathrm{k} . / \mathrm{in}^{2}
\end{aligned}
$$

and boundary conditions:

$$
\text { clamped af } \alpha_{1}=0, l_{1} \text { and } \alpha_{2}=0, I_{2} .
$$

This example was also solved by Chetty ${ }^{(25)}$, using a :nixed KantorovitchGalerkin procedure and by Cunasekera ${ }^{(6)}$, using an extended Levy procedure.

A comparison with the line solution using \mathcal{B} segments (i.e. $M=8$) and $N=8$ is made in table 7.3 , from which it will be noted that there is good agreement.

7.9.3 Comparative Study of Different Boundary Conditions

Example 7.2: Dara as for example 7.5 but with boundary conditions: clamped at $a_{1}=0,1_{1}$
and (i) clanaped ai $\alpha_{2}=0, I_{2}$
(ii) free of $\alpha_{2}=0, I_{2}$
(iii) normal slide (1) or $a_{2}=0,1_{2}$
(iv) nomal slide (2) af $\mathrm{C}_{2}=0, \mathrm{I}_{2}$

Cases (i) and (ii) correspond to examples 7.5 and 7.6 respectively.
Cases (iii) and (iv) are obtained from the computer program described in chaprer 6 using $S=3$ and functions corresponding to case (a) in table 6.4.
*Gunasekera used a slightly different value for K_{12} : The particular resulis presented in rable 7.3 were obtained from Gunasekera's computer program using the above value of K_{12}

A comparison is made in figures 7.11a and 7.11b for w, n_{12} and $m_{22^{\circ}}$
Note that the difference between (iii) and (iv) is that normal slide
(1) has $u_{2}=O$ at $\alpha_{2}=0,1$ and nomal slide (2) has $n_{22}=0$ at $a_{2}=0,11_{2}$. However, the results show that both normal slide (1) and normal slide (2) are comparatively stiff, with a small value for m_{22} at $\beta_{1}=0.5$ and almost the membrane solution for n_{12}

7.10 Discussion of the Computer Programs

A single computer program was developed to solve either translational or ruled surface shells. The program is limited to clamped conditions at $\beta_{1}=0,1$ and to either clamped or free conditions at $\beta_{2}=0,1$. Only uniformly distributed normal loading (Z) is considered.

A minimurn value of $\mathrm{N}=4$ is considered.
The solution can be determined in any one of the following ways:
(a) application of the boundary conditions at $\beta_{2}=\Omega_{1} 1$ (section 7.5.2),
(b) application of the boundary conditions at $\beta_{2}=0$ and the symmetry conditions at $\beta_{2}=0.5$ (section 7.5.3),
(c) segmenting the path of integration into 4 or 9 equal segments (i.e. $M=4$ or 8) and terninating the tri-diagonal elimination procedure at $\beta_{2}=0.5$ (section 7.5.4).

Further relevant comments have been made in section (7.7).
Further details of the program are available at imperial College.
The program was written in EXCHLF Autocode $(7 \mathrm{O}),(71)$ for the University of London Arlas computer.

CHAPTER 9

CLOSURE

The use of a Lavy-rype solution was convenient for studying the application of the indirect methads (Rayleigh-Rizz, Galenkin and Lagrangian multiplier methods) in conjunction with various approximating funcrions (fables 3.1 and 4.5). This study showed that:
(i) the Rayleigh functions (IIA)* for clamped boundaries were converging satisfactorily
(ii) the Filonenko-Soroditch functions (IE) were somewhat slower to converge than functions IIA
(iii) functions IF, obtained by modifying functions \mathbb{E}, converged rapidly but could cause numerical difficulties (refer to seciion 4.4.3)
(iv) the mixed cosine and sine set (IC), whenever used, converged rapidly but could also cause numerical difficulties (refer to section 4.4.3)

[^16](v) using sine functions (i) the mernbrane stress-resultants at a hinged boundary were slowly convergent
(vi) the Lagrangian multiplier method was effective in inproving the slow convergence of a boundary action
(vii) functions ID, used in conjunction with the Lagrangian multiplier method, were effective in improving a particular stress-resultant which was slowly convergent on the boundary but satisfactory within the shell.

Application of the indirect methods to franslational shells with combinations of clarnped, hinged or nornal slide (1) conditions on two opposis boundaries showed that, using the functions given in table 5.4:
(i) n_{11} (or n_{22}) at a hinged boundary was slowly convergent and was effectively improved using the Lagrangian multiplier method in conjunction with funcrions ID
(ii) the moments near the comer of a shell with normal slides (1) on all boundaries were slowly convergent
(iii) the normal shaars were slowly convergent.

Otherwise the solutions were converging satisfaciorily for all combinations of the boundary conditions considered.

Application of the indirect methods to ruled surface shells with combinations of clamped, hinged, nornal slide (1), normal gable or normal
slide (2) conditions on two opposite boundaries showed that, using the functions given in table 6.4:
(i) n_{12} at a hinged or normal gable boundary was slowly convergent and was effectively improved using the Lagrangian inultiplier method in conjunction with functions ID
(ii) the moments near the corner of a shell with normal slides (1 or 2) on all boundaries were slowly convergent
(iii) the normal shears wers slowly convergent.

Otherwise the solutions were converging satisfactorily for all combinations of the boundary conditions considered.

For all casas considered, the Lagrangian multiplier yielded a more accurate estimate of a boundary action than the corresponding displacement derivative. However, the solution adjacent to the shell boundary is based on these derivarives and, depending on the selected approximating funcrions, could be less satisfactory.

Varying the non-dimensional shell parameters showed that, for translational and ruled surface shells:
(i) the normal displacement and the moments increased with increasing shallowness, slowly approaching the solution for a thin flat plate
(ii) the membrane stress-resuliants decreased slowly with increasing shallowness.

For ruled surface shalls in the steeper range, the solution for n_{12} is similar to the membrane solution. Further points are discussed in sections (5.7.1) and (6.7.1).

The method of lines was applied to translational and ruled surface shells for clamped conditions at $\alpha_{1}=0,1$ and clamped or free conditions at $\alpha_{2}=0,1_{2}$. This analysis showed that:
(i) for translational shells n_{11} at $\alpha_{1}=0$ was slowly convergent due to the inaccuracy of the finite difference representation for the derivatives of u_{1} at the boundary; otherwise the solution was converging satisfactorily.
(ii) for ruled surface shells the solutions were converging satisfactorily
(iii) roundoff errors became significant and at times distorted the solution as the ratio $\left(\frac{N}{r}\right)$ increased much beyond 3
(iv) the roundoff errors were offset by segmenting the shell and restoring equilibrium at the segmeni junctions using a stiffness method. The slow convergence of n_{11} ai $\alpha_{1}=0$ observed with translational shalls could be improved by adopting a closer spacing of the lines adjacent to the boundary. This would lead to a more accurate finite difference representation for the derivativos of u_{1}.

REFERENCES

1. Donnell, L.H., "Stability of Thin-walled Tubes under Torsion" N.A.C.A., No.479, 1933.
2. Donnell, L.H., "A New Theory for the Buckling of Thin Cylinders under Axial Compression and Bending." Transactions A.S.M E, Vol.56, 1934.
3. Jenkins, R.S., "Theory and Design of Cylindrical Shell Structures." Cve Arup and Partners, London, 1947.
4. Newnan, W.M., "Shear Failure Mechanisns of Cylindrical Concrete Shells. Th.D. Thesis, University of New South Wales, 1965.
5. Lu, Zung-An., "Stresses in Continuous Cylindrical Shells." Fh.D. Dissertation, Universily of California, 1964.
6. Gunasekera, D.A., "Numerical Analysis of Thin Shells." Ph.D. Thesis, University of London, 1967.
7. Chuang, K.P. and Veleisos, A.S., "A Study of Two Approximate Methods of Analysing Cylindrical Shell Roofs." University of Illinois, Structural Research Series No. 258, 1962.
8. Marguerre, K., Z Zur Theorie der Gekrummten Plarte Grosser Formanderung. ${ }^{\text {E }}$ Proceedings, 5th international Congress for Applied Mechanics, Cambridge, Mass., 1938.
9. Vlasov, V.Z., General Theory of Shells and its Applications in Engineering." N.A.S.A., N64-19803, 1964. (English translation of 1949 Russian edition.)
10. Ambartsumyan, S.A., On the Calculation of Shallow Shells." N.A.C.A., T.M.1425. (English translation from Prikladnaya Marematika i Mekhanika, Vol.II, 1947.)
11. Flugge, W. and Conrad, D.A., A Note on the Calculation of Shallow Shells. Journal of the Applied Mechanics Division, ASME, December 1939.
12. Bouma, A.L., Some Applications of the Bending Theory Regarding Doubly-curved Shells." International Union of Theoretical and Applied :hechanics. Proceedings, Symposium on the Theory of Thin Elastic Shells, Eelft, 1959.
13. Apeland, K., 'Stress Analysis of Translational Shells! Journel of the Engineering Mechanics Division, A.S.C.E., February, 1961 and August, 1962.
14. Ansah, A.A., Elastic :nalysis of Elliptic Paraboloids." Proceedings, Institution of Civil Engineers, Vol.37, May, 1967.
15. Noor, A.K. and Veleisos, A.S., A Study of Doubly Curved Shallow Shells." University of Illinois, Structural Research Series No. 274, 1563.
16. Aass, A., "An Investigation into the Linear, Elostic Behaviour of Thin, Shallow Elliptic Paraboloid Shells with a Rectangular Base, Subjected to Static Loads. "Ph.D. Thesis, University of Southampton, 1964.
17. Tottenham, H., "Approxinate Solutions to Shell Problems." Proceedings of the Second Symposium on Concrete Shell Roof Construction, Cslo, 1957.
18. Padilla, J.A. and Schnobrich, W. C., Analysis of Shallow Doubly Curved Shells Supporied by Elastic Edge Members." University of Illinois, Structural Research Series No. $31 \mathrm{C}, 1966$.
19. Mohraz, B. and Schnobrich, W.C., "The Analysis of Shallow Shell Structures by a Discrete Element System." University of Illinois, Structural Ressarch Series No.3O4, 1966.
20. Munro, J., "The Linear Analysis of Thin Shallow Shells." Proceedings, Institution of Civil Engineers, Vol.19, July, 1961.
21. Apeland, K. and Popov, E.P., "Analysis of Bending Stresses in Translational Shells.* International Colloquium on Simplified Calculation Methods, Brussels, 1961.
22. Apeland, K., On the Analysis of Bending Stresses in Shallow Hyperbolic Paraboloid Shells." Proceedings, World Conference on Shell Structures, San Francisco, California, 1962.
23. Tottenham, H., "The Analysis of Stresses in Anticlostic Surfaces, ${ }^{*}$ Department of Civil Engineering Report $C E / 4 / 65$, University of Southampton.
24. Tottenham, H., A Further Note on Approximate Solutions to Shell Problems." Research Report E/RR/4, The Timber Development Association, London, 1958.
25. Chetty, S.M.K., An Investigation into Linear Analysis of Hyperbalic Paraboloid Shells." Ph.D. Thesis, University of Southampton, 1961.
26. Chetty, S.M.K. and Tottenham, H., An Investigation into the Bending Analysis of Hyperbolic Paraboloid Shells." Indian Concrete Joumal, July, 1964.
27. Das Gupta, N.C., "Using Finite Difference Equations to Find the Stresses in Hypar Shells." Civil Engineering and Public Works ?eview, February, 1951.
28. Brebbia, C., An Experinental and Theoretical Investigation into Hyperbolic Paraboloid Shells with Particular Reference to Edge Effects." Department of Civil Engineering Report CE/2/60, University of Southampton.
29. Duddeck, H., "Die Biegerheorie der Flachen Pardboloid Schale

30. Segun, K.A., ${ }^{\text {a }}$ Timber Hyperbolic Paraboloid Shells Supported on Flexible Edge :lembers." Ph.D. Thesis, University of London, 1966.
31. Connor, J.J. and Brebbia, C., ${ }^{\text {Ntiffness Matrix for a Shallow }}$ Rectangular Shell Element." Journal of the Engineering Mechanics Division, fSCE, Vol.93, No.EM5, October, 1967.
32. Loof, H.W., Eenvoudige Formules voor de Buigingstoringen in Hypparschalen, die volgens Beschriivenden ziin Eegrensd." Rapport 8-61-3-hr-1, Steven Laboratorium, Delff, 1961.
33. Gerard, F.A., "The Anclysis of Hyperbolic Paraboloidal Shell Roofs." Transactions, Engineering Institute of Canada, Vol.3, No.1, April, 1959.
34. Bleich, H.H. and Salvaciori, M.G., Bending Moments on Shell Boundaries." Journal of the Structural Division, ASCE, October, 1959.
35. Munro, J., "An Analytical and Experimental Investigation of the Stress Distribution in Reinforced Concrete Shell Roofs with Particular Reference to Longitudinal Continuity. ${ }^{\text {E }}$ Ph.D. Thesis, University of London, 1963.
36. Finlayson, B.A. and Scriven, L. E., "The Mlathod of Weighted Residuals - a Review. ${ }^{\text {I }}$ Applied Mechanics Reviews, Vol.19, No.9, September 1966.
37. Rayleigh, J.W.S., "The Theory of Sound. Vol.1, First American Edition, Dover Publications, 1945.
38. Cniashvilli, O.D., "Soine Dynamic Problems of the Theory of Shells. ${ }^{\text {a }}$ Press of the Academy of Sciences of U.S.S.R., Bloscow, 1957 (in Russian). Translated into English and published by Morris D. Friedman, Inc., New Newton 55, Mass., 1959.
39. Morice, P.C., E An Approximate Solution to the Problem of Longitudinally Continuous Shells." Magazine of Concrete Research, August 196.

4O. Smirnov, V.I., "A Course of Higher Mathematics"; Vol,IV, International Series of Monographs in Pure and Applied Mathernatics, Vol.61, Pergamon Pross, 1964 (English translation of 1959 Russian edition).
41. Rothe, E., "Zweidimensionale Parabolische Randwertaufgaben als Crenzfall Eindimensionaler Randwertaufgaben." Math, Annal.Bd. 102, Heft 4/5, 1929.
42. Hartree, D., A Method for the Aumerical or Mechanical Solution of Certain Types of Partial Differential Equations." Proceedings, Royal Society (A), Vol.161, P.353, 1937.
43. Slobodyansky, M.G., A Method of Approximate Integration of Partial Differential Equations and its application to Problems in
 Vol.3, No.1, p.75, 1939. (In Russian with an English summary.)
44. Foddeyeva, V.N., "The Application of the :hethod of Straight Lines to Certain Eoundary Value Problems." Trudy. Matematich. Instituta in. V.A. Steklova, Vol.23, p.73, 1949 (English translation by CEGB Information Services, London C.E. Trans.4OC(4).
45. Mikhlin, S.G., Variarional Methods in Mathematical Physics." International Series of Monographs in Pure and Applied Mathematics, Vol.50, Pergamon Press, 1954. (English transiation of 1957 Russian edition.)
45. Berezin, I.S. and Zhidkov, N.P., "Computing Methods", Vol.2, Pargamon Press, 1965 (English translation of original Russian edition).
47. Jenkins, R.S., and Totrenham, H., ${ }^{\text {a }}$ The Solution of Shell Problems by the Matrix Progression Method." Proceedings, World Conference on Shell Structures, San Francisco, California, 1962.
40. Wardle, K.L., "Differenfial Geometry." Library of Mathematics, Rouilledge and Kegan Paul Lid., London.
49. Samartin Cuiroga, A.iz. and Munro, J., Mynamic Analysis of Translational Shells. ${ }^{\text {. }}$ CST Report 67/2, Civil Engineering Departinent, Imperial College of Science and Technology, October, 1967. .
50. Munro, J., Shell and Folded Plate Structures: Chapter X of - Reinforced Concrete Engineering" edited by Professor Boris Bresler. To be published by McGraw-itill.
51. Sokolnikoff, I. S., Nathematical Theory of Elasticity. (Second edition), McGrow-Hill, 1956.
52. Crandall, S.H., Engineering Analysis: HcGraw-iHill, 1956.
53. Collaiz, L., "The Numerical Treatment of Differential Equations." Springer-Verlag, 126\% (English translation of second German edition).
54. Lanczos, C., The Variational Principles of Mechanics." University of Toronto Press, 1949.
55. Duncan, W.J., Ealerkin's Method in Mechanics and Differential Equations. R. and M. 1798, August, 1937.
56. Duncan, W.J., "The Principles of Galekin's Method." R. and ih. 1840, September, 1830.
57. Filonenko-Boroditch, M. M., On a System of Functions and its Applications in the Theory of Elasticity. Prikladnaya Matematika i Mekhanika, Vol.10, 1946 (in Russian with English s ummary).
58. Buziarova, Yu. M., "Eending of Rectangular Plates." Issledovaniya Po Teorii Soorughenii, No.10, Moscow, 1961 (in Russian).
59. Kuo, S.S., (private communication).
60. Young, D. and Felgar, R.P., "Tables of Characteristic Functions Representing Normal :hodes of Vibration of a Beam." University of Texas, Engineering Research Series No.44, 1949.
61. Tottenham, H., A New Method for the Structural Analysis of Thin Walled Spatial Structures. Research Report No.E/RR/3, Timber Development Association, London, 1953.
32. Totrenham, H., Matrix Progression Method, Structural Problems in Nuclear Reactor Engineering (Chapter 7), Pergarion Press, 1962.
63. Pestel, E.C. and Leckie, F.A., Matrix Methods in Elostomechanics." McGrow-Hill, 1963.
64. Goldberg, J. E., Bogdanoff, J.L., and Alspaugh, D.W., Modes and Frequencies of Pressurised Conical Shells, Journal of Aircraft, Vol.1, No.6, November, 1264.
85. Tottenham, H., Discussion, Journal of Structural Division, ASCE, Vol.92, No.ST5, Ociober, 1960, p. 360.
66. Falkenberg, J.C., An Analytical Investigation into the Structural Dehaviour of Cylindrical Shell Buttress Dams, with Special Reference to the Lse of Energy Methods for Shell Analysis. ${ }^{*}$ Ph.D. Thesis, University of Southampton, 1966.
67. Fox, L., "The Numerical Solution of Two-Point Boundary Problems in Ordinary Differential Equations. Oxiord University Press, 1957.
68. Frazer, R.A., Duncan, W.J. and Collar, A. R., Elementary Matricas." Cambridge University Press, 1957.
69. Michael, K.C., CST Report in preparation, Civil Engineering Department, Imperial College of Science and Technology, London. 70. Nixon, W.L.B., "The CHLF Autocode Handbook." University of London Instiùute of Cornputer Science, March, 1965. *The EXCHLF Extension of CHLF Autocode." September, 1965.
71. Nixon, W.L.D., The EXCHLF Autocode Mandbook ${ }^{\text { }}$, University of London Institute of Computer Science, 1967.

APPENDIX

RAYLEIGH FUNCTIONS

Rayleigh functions ${ }^{(35)_{r}(37)}$ are derived from the engineering theory of free undamped transverse vibrations of a uniform slender beam and are of the form:

$$
\begin{gather*}
F_{m} \equiv F_{m}\left(\beta_{i}\right)=A_{m} \sin a_{m} \beta_{i}+B_{m} \sinh a_{m} \beta_{i}+C_{m} \cos a_{m} \beta_{i}+ \\
 \tag{1}\\
+\cosh a_{m} \beta_{i}
\end{gather*}
$$

where A_{m}, B_{m}, C_{m} and a_{m} are constants,* m is a non-zero positive integer and i can have the value 1 or 2. The constants are determined by the two boundary conditions specified at each of $\beta_{i}=0$ and $\beta_{i}=1$.

The derivatives of F_{m} are given by:

$$
\begin{gather*}
F_{m}^{s}=a_{m}\left[A_{i n} \cos a_{m} \beta_{i}+\beta_{m} \cosh a_{m} \beta_{i}-C_{m} \sin a_{m} \beta_{i}+\sinh a_{m} \beta_{i}\right]= \\
=a_{m} \varrho_{i n} \tag{2}
\end{gather*}
$$

*In equation (1) the function has been divided throughout by a constant associated with cosh $a_{m} \beta_{i}\left(s a y D_{m}\right)$. This is permissible only when D_{m} is non-zero.

$$
\begin{align*}
& \text { - 239 - } \\
& F_{m}^{18}=a_{m}^{2}\left[-A_{m} \sin a_{m} \beta_{i}+B_{m} \sinh a_{m} \beta_{i}-C_{i n} \cos a_{m} \beta_{i}+\right. \\
& \left.+\cosh a_{m}{ }^{3} i\right]=a_{m}{ }^{2} \phi_{m} \tag{3}\\
& F_{m}^{111}=a_{m}^{3}\left[-A_{m} \cos a_{m} \beta_{i}+B_{m} \cosh a_{m} \beta_{i}+C_{m} \sin a_{m} \beta_{i}+\right. \\
& \left.+\sinh a_{m} \beta_{i}\right]=a_{m}^{3} X_{m} \tag{4}\\
& F_{m}^{\sin }=a_{m}^{4}\left[A_{m} \sin a_{m} i_{i}+G_{m} \sinh a_{m} \beta_{i}+C_{m} \cos a_{m} \beta_{i}+\right. \\
& \left.+\cosh a_{m} B_{i}\right]=a_{m}^{4} F_{m} \tag{5}
\end{align*}
$$

where a prime denotes differentiation. Note that a summation is not implied in equations (2) to (5) inclusive.

Two sets of boundary conditions will be considered and will be referred to as the:
(a) clomped-clamped case
(b) free-free case
(a) Clamped-Clamped Case

The boundary conditions sarisfied of $\beta_{i}=O_{p} 1$ ares

$$
\begin{equation*}
\mathrm{F}_{\mathrm{m}}=0=\frac{\mathrm{m}}{\mathrm{~m}} \tag{6}
\end{equation*}
$$

and the Rayleigh function reduces to:
$F_{i n}=\cosh \alpha_{m} \beta_{i}-\cos \alpha_{m} \beta_{i}-A_{m}\left(\sinh a_{m} \beta_{i}-\sin \alpha_{m} \beta_{i}\right)$
where a_{m} and A_{m} are obtained from the relations:

$$
\begin{align*}
\cosh a_{m} \cos a_{m} & =1 \tag{8}\\
A_{m}=\frac{\sinh a_{m}+\sin a_{m}}{\cosh a_{m}-\cos a_{m}} & =\frac{\cosh a_{m}-\cos a_{m}}{\sinh a_{m}-\sin a_{m}} \tag{9}
\end{align*}
$$

As in incraases solution for these constants by equations (8) and (9) involves small differences of large numbers, causing considerable numerical difficulty. A method discussed by Rayleigh (page 277 in reference (37)) could help to overcome this problem.

The values of $a_{m}, A_{m}, F_{m}, \theta_{m}, \phi_{m}$ and X_{m} used in this thesis were provided by Kuo ${ }^{(59)}$ for values of m up to 27. These have been reproduced, for odd values of m only, in toble A1.1 for a_{m} and A_{m} and in table A1. 2 for $F_{\mathrm{m}^{\prime}} \doteq_{\mathrm{m}^{\prime}} \phi_{\mathrm{m}}$ and X_{in}. Note that table A1. 2 has been reproduced from the computer program, in which these values hove been tabulated.
(b) Free-Free Case

The boundary conditions satisfied at $\beta_{i}=0,1$ are:

$$
\begin{equation*}
F_{m}^{\prime \prime \prime}=0=m_{m}^{\prime \prime \prime} \tag{10}
\end{equation*}
$$

The Rayleigh function for this case is the same as the second derivative of the Rayleigh function for the clamped-clamped case.

Then

$$
\begin{equation*}
F_{m} \text { (free-free case) }=\phi_{m} \text { (clamped-clamped case) } \tag{11}
\end{equation*}
$$

For both cases (a) and (b) the Rayleigh functions are orthogonal functions

$$
\text { i.e. } \quad \begin{align*}
\quad \int_{0}^{1} F_{m} F_{n} d \beta_{i} & \neq 0 \quad \text { for } m=n \tag{12a}\\
& =0 \text { for } m \neq n \tag{12b}
\end{align*}
$$

Refer to the integration formulae given in Appendix 2.

APPENDIX 2

INTEGRATION FORMULAE

In the following formulae, F_{m} denotes a Rayleigh function. The functions Θ_{m}, ϕ_{m} and X_{m} and the constant a_{m} are defined in Appendix 1 .
f_{n} denotes a Rayleigh function which satisfies different boundary conditions to \bar{F}_{m}. The functions $\bar{\theta}_{n}, \bar{\phi}_{n}$ and $\bar{\lambda}_{n}$ and the constant \bar{a}_{n} are defined in the same way as $\ominus_{\mathrm{m}^{\prime}} \oint_{\mathrm{m}}, X_{\mathrm{m}}$ and a_{m} respectively.

The integer i can have the value 1 or 2 .

The integration formulae used in this thesis can be summarised in the following way:

$$
\begin{align*}
\int_{0}^{1} \sin m \pi \beta_{i} \cos n \pi \beta_{i} d \beta_{i} & =+\frac{2 m}{\pi\left(n^{2}-n^{2}\right)}, \text { for }|m-n| \text { odd } \tag{1a}\\
& =0, \quad \text { for }|m-n| \text { even } \tag{1b}\\
& \begin{aligned}
\int_{0}^{1} \sin m \pi \beta_{i} \sin n \pi \beta_{i} d \beta_{i} & =+\frac{1}{2}, \quad \text { for } m=n \\
& =0, \quad \text { for } m \neq n
\end{aligned}
\end{align*}
$$

$$
\begin{align*}
& \int_{0}^{1} \cos m \pi \beta_{i} \cos n \pi \beta_{i} d \beta_{i}=+1, \text { for } m=n=0 \tag{Ba}\\
& =+\frac{1}{2}, \text { for } m=n>0 \tag{Bb}\\
& =0, \text { for } m \neq n \tag{3c}\\
& \int_{0}^{1} F_{m} V_{n} d \beta_{i}^{*}=\frac{1}{4 a_{m}}\left[3_{i n} \chi_{i n}-\phi_{m} e_{m}\right]_{\beta_{i}=0}^{\beta_{i}=1}+ \\
& +\frac{1}{4}\left[F_{m}^{2}-2 \theta_{m m} X_{m}+\phi_{i n}^{2}\right]_{\beta_{i}=1} \text {, for } m=n
\end{align*}
$$

*For derivations of these expressions see references (35) and (37)

$$
\begin{align*}
& =\frac{1}{\left(a_{m}^{4}-a_{n}^{4}\right)}\left[a_{m}^{3} X_{m} F_{n}-a_{m}^{2} a_{n} \phi_{m} \theta_{n}+\right. \\
& \left.+a_{m} a_{n}^{2} \Theta_{m} \phi_{n}-a_{n}^{3} F_{m} X_{n}\right]_{\beta_{i}=0}^{\beta_{i}=1} \text {, for } m \neq n \\
& \int_{0}^{1} F_{i n}^{1} F_{n} d \beta_{i}=0, \text { for } m=n \tag{3a}\\
& =\frac{a_{m}}{\left(a_{m}^{4}-a_{n}^{4}\right)}\left[q_{n}^{3} F_{m} F_{n}-a_{m}^{2} a_{n} X_{m} \theta_{n}+\right. \\
& \left.+a_{m} a_{n}^{2} b_{m} \phi_{n}-a_{n}^{3} e_{m} X_{n}\right]_{\beta_{i}=0}^{\beta_{i}=1} \text {, for } m \neq n \tag{8b}\\
& \int_{0}^{1} F_{m}^{11} F_{n} d \beta_{i}=\left[a_{m} \sigma_{m} F_{m}\right]_{\beta_{i}=0}^{\beta_{i}=1}-\frac{a_{m}}{4}\left[39_{m} F_{m}-X_{m} \sigma_{m}\right]_{\beta_{i}=0}^{\beta_{i}=1}- \\
& -\frac{a_{m}^{2}}{4}\left[\theta_{m}^{2}+X_{m}^{2}\right]_{\beta_{i}=1} \text {, for } m=n \tag{9a}\\
& =\frac{a_{m}^{2}}{\left(a_{m}^{4}-a_{m}^{4}\right)}\left[a_{m}^{3} \theta_{m}^{7}-a_{m}^{2} a_{n} F_{m} \theta_{n}+\right. \\
& \left.+a_{m} a_{n}^{2} x_{m} \phi_{n}-a_{n}^{3} \phi_{n} x_{n}\right]_{\beta_{i}=0}^{\beta_{i}=1} \text {, for } m \neq n \tag{9b}
\end{align*}
$$

$$
\begin{gather*}
\int_{0}^{1} F_{m} \xi_{n} d \beta_{i}=\frac{1}{\left(a_{m}^{4}-\bar{a}_{n}^{-}\right)}\left[a_{m}^{3} x_{m} \xi_{n}-a_{m}^{2} a_{n} \sigma_{m} \bar{Q}_{n}+\right. \\
\left.+a_{m} \bar{a}_{n}^{2} \theta_{m} \bar{\phi}_{n}-a_{n} \overline{3}_{m} Z_{n}\right]_{\beta_{i}=0}^{\beta_{i}=1} \tag{10}
\end{gather*}
$$

$$
\begin{gather*}
\int_{0}^{1} F_{m} f_{n} d \beta_{i}=\frac{a_{m}}{\left(a_{m}^{4}-a_{n}^{4}\right)}\left[a_{m}^{3} F_{m} f_{n}-a_{m}^{2} a_{n} x_{m} \bar{\theta}_{n}+\right. \\
\left.+a_{m} a_{n}^{2} \phi_{m} \bar{\beta}_{n}-a_{n}^{-3} \theta_{m} \bar{x}_{n}\right]_{\beta_{i}=0}^{\beta_{i}=1} \tag{11}\\
\int_{0}^{1}\left(1-2 \beta_{i}\right) F_{m}^{d \beta_{i}}=\frac{1}{a_{m}^{2}}\left[a_{m} X_{m}-2 \beta_{i} a_{m} X_{m}+2 \phi_{m}\right]_{\beta_{i}=0}^{\beta_{i}=1} \tag{12}
\end{gather*}
$$

where a prime denotes differentiation and i can have the value 1 or 2 . Note that equations (5a), (5b) (6a) and (6b) are particular cases of equation (12), when i_{n} denotes a trigometric function. Also equation (1a) is a particular case of equation (10). However, in equations (10) and (11) a_{m} must bedifferent from \bar{a}_{n}.

When F_{m} is the Rayleigh function corresponding to the ctampedclamped case (refer to Appendix 1) and f_{n} is, in particular, a trigonometric function, the following are obtained:

$$
\begin{align*}
& \int_{0}^{1} F_{n} F_{n} d \beta_{i}=1, \text { for } m=n \\
& =0, \text { for } n \neq n \\
& \int_{0}^{1} F_{m}^{112} F_{n} d \beta_{i}=\left(2 a_{m} A_{m}-a_{m}^{2} A_{m}^{2}\right), \text { for } m=n \tag{14a}\\
& \begin{array}{l}
=\frac{8 a_{m}^{2} a_{n}^{2}}{\left(a_{m}^{4}-a_{n}^{4}\right)}\left[a_{m} A_{m}-a_{n} A_{n}\right], \\
\quad \text { for } m \neq n \\
|m-n| \text { even (14b) }
\end{array} \\
& \begin{array}{l}
=\frac{8 a_{m}^{2} a_{n}^{2}}{\left(a_{m}^{4}-a_{n}^{4}\right)}\left[a_{m} A_{m}-a_{n} A_{n}\right], \\
\quad \text { for } m \neq n \\
|m-n| \text { even (14b) }
\end{array} \\
& \begin{array}{l}
=\frac{8 a_{m}^{2} a_{n}^{2}}{\left(a_{m}^{4}-a_{n}^{4}\right)}\left[a_{m} A_{m}-a_{n} A_{n}\right], \\
\quad \text { for } m \neq n \\
|m-n| \text { even (14b) }
\end{array} \\
& \begin{array}{l}
=\frac{8 a_{m}^{2} a_{n}^{2}}{\left(a_{m}^{4}-a_{n}^{4}\right)}\left[a_{m} A_{m}-a_{n} A_{n}\right], \\
\quad \text { for } m \neq n \\
|m-n| \text { even (14b) }
\end{array} \\
& \int_{0}^{1} F_{p} \cos q \pi \beta_{i} d \beta_{i}=\frac{4 A_{p}}{a_{p}}, \text { for } q=0 \tag{15a}\\
& =\frac{4 a^{3} p^{2}}{\left(a_{p}^{4}-q^{4} \pi^{4}\right)}, \quad \text { for } q=2,4,6, \ldots \tag{15b}\\
& \int_{0}^{1} F_{p} \sin k \pi \beta_{i} d \beta_{i}=\frac{4 a_{p}^{2} k \pi}{\left(a_{p}^{4}-k^{4} \pi^{4}\right)}, \text { for } k=1,3,5, \ldots \tag{16a}
\end{align*}
$$

$$
\int_{0}^{1} p_{p}^{1} \sin i \pi 3_{i}^{d} 3_{i}=\frac{-4 j \pi a_{p}^{3} p_{p}}{\left(a_{p}^{4}-i^{4} \pi^{4}\right)}, \text { for } i=2,4,6, \ldots
$$

$$
\text { where } \begin{aligned}
\mathrm{m}, \mathrm{n} & =1,2,3, \ldots \ldots \\
p & =1,3,5, \ldots \ldots
\end{aligned}
$$

[^0]: * These numbers correspond to references given at the end of this thesis.

[^1]: *These are, respectively, particular cases of two general principles applicable to any mechanical system in equilibrium, viz.
 (a) the principle of virtual displacements
 (b) the principle of virtual changes in the stressed state.

[^2]: *When the boundary is flexible, F_{m} is dependent on v_{m} and in the subsequent integrations the relationship between F_{m} and v_{m} must be considered.

[^3]: *The results in the tables are presented in floating point notation, e.g. $3.481,-5$ means 3.481×10^{-5}.

[^4]: *To effectively study the stability of the solution of a set of equations, the effect on the solution of small perturbations of some of the matrix element values should be considered.

[^5]: *This applies when the loading and boundary conditions are symmetric about $\beta_{2}=0.5$. If this is not the case, and if $u_{1}=0$ at $\beta_{2}=0,1$, it follows that the constants associated with unity and $\left(1-2, \beta_{2}\right)$ in set ID are both zero.

[^6]: *Only when normal slides (1) are considered along all boundaries, is the constraint condition $w(0,0)=0$ considered in conjunction with the Lagrangian multiplier method.

[^7]: *The results in the tables are presented in floating point notation e.g. $1.234,+3$ means 1.234×10^{3}

[^8]: *This check was not incorporated in the computer program and the integrations in equations (5.72), (5.73) and (5.74) were performed numerically using Simpson's rule.

[^9]: *The comna notation user! in dstining a typical natrix ctanont in tablus 6.5 c and 6.5 b (0.9. $a_{i n n, i j}^{11}$) dous not reprosent difforontiation. Howovar, the comma notation usad in the expression corrosponding to a rypical olomont represonts difforentiation with respect to $;_{1}$ and 3_{2} "

[^10]: *The results in the tables are presented in floating point notation, e.g. 1.234, +3 means 1.234×10^{3}.

[^11]: *No numerical difficulties were observed when using these functions for this maximum value of S. Refer to section 4. 4.2 where this matter was discussed in detail.

[^12]: *The Lagrangian multiplier method was used with these boundary conditions i.e. case (B) in Tabla 3.4.

[^13]: *Each submatrix $G_{i j}\left(\beta_{2}\right)(i, i=1,2)$ is of order $(4 N \times 4 N)$.

[^14]: *A flexible beam of $B_{2}=0$ can be handled by adding to $\underset{-0}{ }$ the beam stiffness corresponding to U_{-0}.

 Similarly ${\underset{S}{A}}$ can be modified for a beam at $\beta_{2}=1$.

[^15]: *These values should be interpreted as being ai a point very close to the comer, but on the clamped boundary $\left(\beta_{1}=0\right)$.

[^16]: *The functions have been classified in table 3.1

