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ABSTRACT 

The numerical solutions for the shallow doubly curved shells 

presented in this thesis are based on the shallow curved plate theory. 

Thin shells of constant thickness and rectangular plan-form and 

subject to uniformly distributed normal loading are considered. 

The solution methods include the Rayleigh-Ritz, Galerkin and 

Lagrangian multiplier methods. 	These are referred to as indirect methods 

in this thesis. 	The method of lines, in which the derivatives in one 

direction are replaced by finite difference expressions, is also discussed. 

Various approximating functions are considered in conjunction with 

the indirect methods. 

Initially the indirect methods and approximating functions are 

applied to translational shell problems with Levy-type solutions. 	In 

this way the indirect solutions are compared with available exact 

solutions. 

The indirect methods are then extended to translational shells with 

clamped, hinged or normal slide (1) conditions on any two opposite 

boundaries. 	Several numerical examples are given and the convergence 



*". 

of the solutions discussed. 	An overall equilibrium check is presented. 

In a similar manner, the indirect methods are applied to ruled 

surface hyperbolic paraboloids with clamped, hinged, normal slide (1), 

normal gable or normal slide (2) conditions on any two opposite 

boundaries. 	Several numerical examples are again given and the 

solutions discussed. 	An overall equilibrium check is presented. 

The behaviour of the shell is then studied by varying certain non- 

dimensional parameters. 

The method of lines is applied to translational and ruled surface 

shells with two opposite boundaries clamped and the remaining two either 

clamped or free. 	A system of linear first order ordinary differential 

equations with constant coefficients is obtained and is solved using the 

matrix progression method. 	The numerical difficulties encountered are 

discussed. 	In order to reduce the accumulation of roundoff errors the 

shell is segmented. 	A stiffness method is then used to restore equilibrium 

at the segment junctions. 	Numerical examples are presented. 

Wherever possible comparisons are made with other available 

solutions. 
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NOTATION 

In the following the subscripts i and j range over the values 1 

and 2. 

General 

(x1 ,x2,z) 
	

Right handed orthogonal cartesian system of axes 

24) 

	
Unit vectors in the x1, x

2 
and z directions 

respectively 

5  :4  15(a1 ,a2) 	 The position vector of a point P measured in 

the (xi,x2,z) reference frame 

(al  ,a7) 	 Curvilinear co-ordinates of the shell middle surface 

y 	 Co-ordinate measured normal to the (a1'a2)  set 

ds
2 	

The metric of the surface 

A111  12'A22 

K
l'

K
2  

The coefficients of the first fundamental quadratic 

form 

The undeformed curvatures of the shell middle 

surface. 

Principal curvatures 
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K
G 

= K
1
K

2 

K
1  

Gaussian curvature 

 

K
2 

  

1
1'

1
2 	 Plan lengths of the shell in the a

l 
and a

2 

directions respectively 

ff
2 	

Defined for translational shells in figure 2.4 

f,T 	 Defined for ruled surface shells in figure 2.5 
al  

Pi  r 

a2  

'
3
2 

= 

X., Z 	 Loading pressures in the ai  and y directions 

respectively 

u.,w 	 Components of the middle surface displacement 

(referred to as °displacements') 

Thickness of the shell 

V 	 Poisson's ratio 

Young's modulus of elasticity 

1 
(E..).(E.1 .)Y 	Components of strain on the middle and y surfaces 

'1  

respectively. 



(47.),(cr..) 
it 	Y 

Components of stress on the middle and y 

surfaces respectively 

= 1, i=i 
S.. 

 
Kroneckar delta 

0.. =-1  
Ii 6ii 

Strain resultants 

k.. = -w,.. 

Membrane stress-resultants 

qi 
	 Shear stress-resultants 

r. 	 Kirchhoff shear stress-resultants 

m.. 	 Stress-couples 

Eh 

12(1-V 2) 
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Maher stress-resultant function 

2 - 	a2 a2  = -r 

aa24  

4 V' ei V2 V 2 

col { 
	

Denotes a column matrix 

The unit matrix 
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Indirect Methods  

	

Vo 	 Potential energy of elastic deformation (strain 

energy) 

	

V1 
	

Potential energy of the surface loads 

	

V
2 	 Potential energy of the applied boundary loads 

V = V + V
1 

+ V
2 

Total potential energy of the deformed shell 

	

If 	I 	If Applied boundary loads 

R
1  

P2  

= 

= 

Q1 

02 

+ 	PA
12,2 

+ 	M
12,1 

Sul, Sul, Sw 

m m 
u 	,W 

1 	M 

Un  Un  
1' 2' n 

am, b
in

, c
m  

amn, b
mn

, c
mn  

Displacement variations (or the 'virtual displacements) 

Independent sets of kinematically admissible 

functions (unless otherwise stated) 

Arbitrary constants 

} 

Sang, 6bm, Sc
m 	

Arbitrary variations in the constants am, b and 

C
m 

respectively 

6amn, Eiamn,  6c
mn 

Arbitrary variations in the constants a
mn

,  bmn and 

cmn respectively. 



1)T 
• K T 

2 1 

h 	1 1 	h 	12 = ••••• ••••••••••••• 	

. 

• f
2 3 r 	Ti 

h 	1 	 1 	h 
1
2 

PT 	1 1  • F
2 1  T = 	 Cr • r

1 • f2 
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S 	 The number of approximating functions 

T= 
1

1 

Non-zero positive integer 

1 r 
2 

Udif W 
	

Non-dimensional forms of u. and w respectively 

II 	I 

	 Non-dimensional forms of n.if., q., r.t 
 and m.. 

respectively 

	

h 	1 

	

P 
= " 1" 	 = 

h 	
12 

• 'T.  

	

1 	12 1 	1 

= 1 h 
12 

2 •r-- 

Non-dimensional 

shell parameters for 

translastional shells 

Non-dimensional shell 

parameter for ruled 

surFace shells 
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Z
0

(1- V
2

) 
Zo = 	 where Z

o 
is a constant E K

2 

z 

	

Z(1-1)
2 

 ) 	 Z(1- V2) 

	

Eh K
2 
	or 

12 

Lagrangian multipliers 

Constants associated with the Lagrangian 

multipliers 

L, 1.?, 
1 z 

Sets of independent functions 

0 	 Normal reactive force at a corner of the shell 

and is positive when acting in the (-y) direction 

E1 , E2, E3 	 Errors in equilibrium for one quarter of the shell 

71' 72' ; 	
Non-dimensional forms of E1, E

2 
 and E

3 

respectively 

m, n, e 	 Positive integers 

Non-dimensional form of a 
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Method of Lines 

4? = w,
2 

Y 	= 	
col { n22- n12 m22 r2 u

2 u1 G w } (8x 1) Matrix 

I 	= 	col
' 	. Z 

2 
. • • „ 1 (8 x 1) Matrix 

'  

N 	1 	 The region bounded by p1  = 0 and p1  = 1 is 

	

k i 	 divided into 2N equal divisions by the lines 
°1 

pl
k  (k = o,1,2,...,2N) 

1 a = 

Denotes the value of a displacement, stress-

resultant or stress-couple along the line pi  

	

col { y1 y2 
  Y

N (N x 1) Matrix 

Uniformly distributed normal loading along the 

line 131  

Z = col 	Z1 	9 7 	 	 ZN 	(N x 1) Matrix 

••• X(32) = cot 
{ 222' 212' D22' .1.2 

Actions (4N x 1) 
Matrix 

2N 

Ic 
y 

Z
k 
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=- 	u(P2) = col ti12 , al, 8, w 	Displacements (4N x 1) Matrix 

F = 	F(32) = col { X, U 	(ON x 1) Matrix 

• = col { • I
2Z • 	 } (ON x 1) Matrix • • 

A 
	

Matrix defined by equations (7.33) 

F-(3)  = - A 1 -2" = col { )0), u(P) 	The particular solution 

X(P)  = cot { n
22

(13)
1 

2.12(P)
/m22(

13)
'

r
2

(3) 	(4N x 1) Matrix 

U(P)  = col { u2(P), u1(P), dP), w(P) 	(4N x 1) Matrix 

G
(3

2)  = 
	2 	The distribution or transfer matrix 	(8N x 8N) 

G..it(82 ) 
	

Submatrices of G(32) 	(4N x 4N) 

-q 	,22q  

C = C(I32) =  F(p) 

Actions at edges 1 and 2 of segment m 

Displacements at edges 1 and 2 of segment m 
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— 
F
- 1- 

= col X 	U 	(8N x 1) Matrix 
— 1

r11 

 

—m 
F

2 
= col { 7m

2 
 Dm } 
	

(8N x 1) Matrix 
—2 

M 	 Number of segments into which the shell is 

divided 

G(b) 

b 	 Length of the segment in the f12  direction 

Sm 	 Stiffness matrix of the segment m 

-5zo 	wom 
1 m 
	 Clamped edge solution at edges 1 and 2 of 

segment m respectively 

S 	 Assembled stiffness matrix of the shell. 
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CHAPTER 1 

INTRODUCTION 

This thesis is concerned with the numerical solution of the shallow 

curved plate equations. 	In the following a brief review of some of 

the references noted will precede a discussion on the scope of the 

research, 

1.1 A Brief Review  

The shallow cylindrical shell equations have been derived by 

Donnell(1)'(2)* for shell buckling problems, 	Jenkins(3)  presented the 

stiffness (displacement) matrix method for transversely continuous shell 

and edge beam problems using a Levy-type solution of the Donnell 

equations. 	Extended Levy methods of solution have been used by 

Newman
(4)

, Lu
(5) 

and Gunasekera
(6)

. Chuang and VeletsosV) have 

* These numbers correspond to references given at the end of this 

thesis. 
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used the Rayleigh-Rift and Lagrangian multiplier methods and also a 

finite difference technique. 	Several types of approximating functions 

are considered by Chuang and Veletsos but only with Levy-type solutions. 

For the case of translational shells the equations for the shallow 

curved plate theory are obtainable from the work of Marguerre(3) and of 

VIasov(9). 	Navier-type solutions have been discussed by Ambartsurnyan(10) 

and by Flugge and Conrad(11)  and Levy-type solutions by Bouma(12)  and 

by Apeland(13). 	The extended Levy method has been discussed by 

Ansah(14)  and by Gunasekera(6). 	Noor and Veletsos(15) extended the 

work of Chuang and Veletsos(7) to translational shells. 	Further 

suggested solution procedures have used a variational mothod(16)1(17), a 

finite difference(13) technique and a discrete element technique(19). 

For the case of ruled surface hyperbolic paraboloid shells, it has been 

shown that the Navier and Levy-type solutions correspond to unrealistic 

boundary conditions(20). 	However such solutions are of interest and 

have been discussed by Apeland and Popov(21),(22) Variational methods 

have been suggested by Tottenham(23),(24) and by Chetty(25),(26) 

Further suggested solution procedures have used a finite difference 

technique(27),(20),  a discrete element technique(19), an extended Levy 

method(29),(6) and a finite element method(30),(31) 	Various 
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approximate methods have been suggested for this problein
(32),(33),(34),(35) 

In this thesis the Rayleigh-Ritz, Galorkin and Lagrangian multiplier 

methods (referred to as "indirect methods" in this thesis) will be used. 

A useful review of these and other indirect methods is given by 

Finlayson and Scriven(36). 	This reference includes an extensive 

bibliography. 

Use will also be made of Rayleigh functions(37), which have been 

applied to shell problems by Vlasov(9), Oniashvilli(38), Morice(39)  and 

by ,Munro(35). 

Consideration will also be given to the method of lines in which, 

for two dimensional problems, the derivatives 	ane direction are 

replaced by finite difference expressions. 	Smimov(4°)  attributes the 

method to Rothe(41) 	The method was later applied by Hartree
(42), 

Slobodyansky(43)  and by Faddeyeva(44). The latter two references are 

discussed by Machlin(45). 	A further description of the method is given 

by Berezin and Zhidkov(46). 	Jenkins and Tottenham(47)  applied the 

method of lines to doubly curved shells, but did not present any 

numerical results. 	Chetty
(25) applied this method to ruled surface 

hyperbolic paraboloids and presented solutions for two sets of conditions 

on all boundaries (viz., clamped and normal gable conditions). 
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However, Chetty(25) made no study of the convergence of the solution 

as the number of lines varied. 

1.2 Scope of Research 

The scope of the research will be to: 

(a) apply indirect methods (Rayleigh-Ritz, Galorkin and Lagrangian 

multiplier methods) in conjunction with various approximating 

functions to translational shells for which an exact solution is 

possible, * 

(b) apply the indirect methods and approximating functions to trans-

lational shells with variowboundary conditions for which an exact 

solution is not possible, 

(c) apply the indirect methods and approximating functions to ruled 

surface shells with various boundary conditions, 

(d) study the behaviour of translational and ruled surface shells as 

certain non-dimensional parameters are varied, 

(e) apply the method of lines to translational and ruled surface shells. 

*This exact solution is obtainable from a Levy-type solution. 
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SHALLOW CURVED PLATE THEORY 

In this chapter assumptions in addition to those made in the 

classical theory of thin shells will be first discussed. 	The required shell 

equations will be then derived vectorially and variationally. 	In the 

vectorial treatment, the fundamental variables are directed quantities 

(displacements and forces) and in the variational treatment, the funda-

mental quantities are scalars (potential energy). 

2.1 Assumptions and Geometry of the Shell Middle Surface 

Let (xx
2'

z) be a right handed orthogonal cartesian system of axes 

and let i 
1,i2 

and j be unit vectors in x1
, x2  and z directions 

respectively (figure 2.1). 

Let P be the position vector of a point P measured in the (x1 ,x2,z) 

reference frame and let it be a function of two parameters a1  and a2. 

As al 
and a

2 
vary a surface is described, 	Let this represent the middle 

surface of the shell. 

The curve described when one parameter is varied while the other 

is kept constant is a parametric curve. 
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In parametric form: 

x1 (a1 e:12) 
	

(2.1) 

)(2 
	x2(a1'a2) 
	

(2.2) 

z 	z(a1,a2) 
	

(2.3) 

Then the position vector is is given byt 

• 7 = x1 T1+ x2 T2 + z i 
	 (2.4) 

Using exmlytna -natation to represent partial differentiation with respect 

to al  or a2, the partial derivatives of 7 are given by, 

= x1,1T1 + x2'IT2 + z,1T 
	

(2.5) 

7'2 = x1,2T1 + x2,2T2 + z,21. 
	

(2.6) 

Let the magnitude of th3 vectors 7,1  and 7'2  be A11  and A22 

respectively. 

The first fundamental quadratic form of the surface is given by 

(figure 2.2)1 

ds2 = Ad;  = da da + A2 da2 
2 22 2 (2.7) 
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where A
ll,  A22 and  A12 are termed the coefficients of the first funda-

mental quadratic form and are defined by: 

2 
Al 1 = 

A2
2  = 

A
12 

'1  

15  
'2.'2 

7,145,2 

= 

= 

	

(x1 '1)2  + (x2'1)2 	

)2 

(x
1,2

)2 
+ (x2,2)

2 
+ (2'2)

2 

A11 x'22cos 
,X 	= 

(2.8) 

(2.9) 

= (x7,1)(x1,2) + (x2,1)(x2,2) + (z,i)(z,2) 	(2.10) 

The quantity ds2  is termed the metric of the surface. 

Consider, for example, the middle surface of the circular 

cylindrical shell of radius R given in figure 2.3. 

Then 

x1  = al  

1 2 	 1 2 - 2a2 x2 = R sin (711.) - R sin (-2rr--) 

1
2 	 1 2 - 2a2 z = R cos (4) - R cos (---TH 

(2.11) 

(2.12) 

(2.13) 

Substituting equations (2.11), (2.12) and (2.13) into equations (2.8), 

(2.9) and (2.10) yields: 
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A2 = 1 	 (2.14) 
11 

A2
2 
 = 1 	 (2.15) 

A
12 

= () 	 (2,16) 

If the parameters chosen were a
1 

and X (figure 2,3) then 

A2 = 1 	 (2.17) 
11 

2 A.22 = P.2 	 (2.18) 

A
12 

= 0 	 (2.19) 

Surfaces which have zero Gaussian curvature, such as the cylindrical 

surface in the above example, are developable surfaces and are isometric to 

a plane (48)  For such surfaces an (a1,a2
) set exists such that A11 and 

A22 are constants and A
12 is zero. 	For other surfaces this is not the 

case. 
(49) 
 

For surfaces which are not isometric to a plane the curved plate 

approximation consists of taking Ai2  = 0 and A11  and A22  as constants, 

which, in particular, may be taken as unity. 

Then equation (2.7) becomes: 
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ds2  = da12  + da22 	 (2.20) 

The shallow shell static approximation can be stated as: 

Kij mrs < < npq 	 (2.21a) 

where K.. is the undeformed curvature of the middle surface, mrs is a 

stress-couple, n
Pq 

 is a stress-resultant and id„p,q.r,,s range over the 

values 1 and 2. 	The quantities mrs and n
Pq 

 will be defined in 

section (2.2). 

The shallow shell kinematic approximation can be stated as:(50) 

yK.. < < 1 
	

(2.21b) 

where y is measured in the direction normal to the (a1'a2)  set (refer to 

sections 2.1.1 and 2.2.). 

Men the shallow shell approximations are made in conjunction 

with the geometric simplifications of the curved plate approximations 

the shallow curved plate theory results 
(35),(50) 

This thesis will be restricted to shallow curved plates which are 

thin, of constant thickness and rectangular plan-form. 

The loading will be static and all problems will be linearised. 

Linearisation will be achieved by assuming: 
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(a) linearly elastic constitutive relations 

(b) small (infinitesimal) displacements 

(c) linearised strain-displacement relations. 

2.1.1 	Simplified Geometry of the Shell Middle Surface  

In this section the shell types used in this thesis will be discussed 

in conjunction with the curved plate approximations 

Let the middle surface of the shell, in terms of the reference 

frame (x1,x2,z) be defined by: 

z 	= 	a1x12  +la
2
x
2  2  + a3x1x2  + a4x1  +a_x

2 
 +a 6 	(2.22) 

where a. (i = 1,2,...,6) are constants. 

Let the (a1 ,02) set be defined by the intersection of the x1  = 

constant and x2  = constant planes with the middle surface of the shell 

and let y be mutually orthogonal to the (a1,02) set. 

Within the limits of the curved plate approximations: 

(a) the (a1'a2)  set is sensibly orthogonal 

az 
and (b) the products of the slopes, axal 	 , of 

2 

the undeformed middle surface of the shell are negligible compared with 

unity. 
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From (b) and equation (2.22) the undeformed curvatures of the shell 

middle surface are constant and given by: 

K11 (2.23) 

2 
K 	u 	= a3  ax1 ex2 	3 

a2z a2z K22 	---fax 	a2 
2 

 

(2.24) 

(2.25) 

K11 is the undeformed curvature of the al  line, K22 is the 

undeformed curvature of the a- line and K12  is the undeformed twist 

of the middle surface. 

The shells considered are classified under translational and ruled 

surface shells. 

I 	Translational Shells (figure 2.4): 

When a3  = 0, equation (2.22) defines a translational shell. 

Let Ki  and K2  be the principal curvatures and let KG  denote the 

Gaussian curvature. 



Then 

KG = K
1 

K
2 

	

Within the curved plate approximations K1 	K11 and K2 •-='- K22* 

Then the equation of the middle surface of a translational shell is 

given by: 

z 
K

2 

	

2 [c(x12  - 11x1) + (x22  - 12x2)] 	(2.26) 

where 
K1  c = (2.27) K2 

8f1  
K1 = 	 (2.28) 

1 

K2 

 = 8f2 	
(2.29) 

2 

where f1,  f2, 11 and 12 are defined in figure 2.4. 

Translational shells may be further classified according to their 

Gaussian curvature into: 

(a) elliptic paraboloids for which KG  > 0 

(b) hyperbolic paraboloids for which KG  < 0 

and (c) parabolic cylinders for which KG  = 0 
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Note that with a circular cylinder it is not necessary to resort to the 

geometric simplifications of the curved plate approximations (refer to the 

example considered in section 2.1). 

tl 	Ruled Surface Shells (figure 2.5): 

This classification follows when K11  = 0 = K22  and K12  X 0, 

Such shells will be referred to as "ruled surface hyperbolic 

paraboloid shells" or simply "ruled surface shells". 

In figure 2.5 two alternative definitions for the equation of the 

middle surface are given. 

In figure 2.5a the equation of the middle surface is given by: 

z = K x x- 12 1 z (2.30) 

where 	K12 = Ti 12 
(2.31) 

and where f, 1 and 12  are defined in figure 2.5a. 	This form is only 

symmetric about one diagonal. 

In figure 2.5b the equation of the middle surface is given by: 

z = K12(-  2 

11x2 - 
2 "lx2)  (2.32) 
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2t 
where 	K 	= - -

12 	T 1 2 
(2.33) 

where 1-(= - 	and 12  are defined in figure 2.5b. 	This form is 

symmetric about either diagonal, and will be used in conjunction with 

the overall equilibrium check in section 6.4. 

Vlasov(9)considers that the simplifications made are such that the 

theory is sufficiently accurate if the maximum (rise/length) ratio does 

1 not exceed 3  . 

2.2 Vectorial Treatment of Shell Equations 

Consider a differential element of the shell (figure 2.60 and Mb). 

Using the Einstein summation convention, the equations of equilibrium 

for a shallow curved plate are: 

n..1.
1 
 + X. = 0 

+Z=0 If If 	I,I 

m... q I =0 
1 1,1  

(2.34) 

(2.35) 

(2.36) 

where n.. and q. will be termed stress-resultants, m.. will be termed If 	I 	 'I 

stress-couples, K..
II  are the undeforrned curvatures of the shell middle 

surface, X.e 
 and Z are the loading pressures in the a.

1 
 and y directions 



h 
2 

m.. 
11 

h 
2 

(2.40) y( Y 
1 

07.) dy 
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respectively and i and j range over the values 1 and 2. Comma 

notation is used to represent partial differentiation. 

The components of strain on the middle surface are given by: 

= 	. + u. . - 2K..w) 	 (2.37) 
1,1 	1,1 	II 

where u. and w are the middle surface displacement components (here- 

	

after referred to as 4lisplacements1)„ 	After neglecting yKii  and 1K22 

compared with unity (Love's first approximation), the components of 

strain on the y surface (figure 2.7) of the shell are given by: 

(E..) 
Y E (2.38) 

Again, after neglecting yK11  and yK22  compared with unity and 

(3),(20) assuming the middle and centroidal surfaces to coincide (figure 2.8), 

the stress-resultants n.•  and the stress-couples m.. are defined by: et 

4- — 
2 

n„„ = 0:.) Y dy 
it  

(2.39) 

2 
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where h is the shell thickness and ( cr.)
Y 

 are the components of stress 

On the y surface, 

The Constitutive relations are: 

• = ti 
E 

[ (1".V) Eli 

5ii EPP 
(2,41) 

 

  

	

where 3 is Young's modulus of elasticity of the shell material, 	is 

Poisson's ratio and S.. is the Kronecker delta. 

Introducing the strain-resultants e.. and k.. defined by: 

e.. = E. 	 (2.42) 

k.. = -w,.. 	 (2.43) 

then, from equations (2.37) 

and the stress couples, m.., 
ri 

to (2.43) inclusive, the stress-resultants, n.., 

can be expressed in the following form: 

n.. 

m.. 

where 

= 

= 

K 

D 

[(1-11)e.. 

[(1-1,1)k.. 

K = 

+ 

+ 

E11 

6..e 
1 1 PPJ  

6..k 
II PP] 

(2.44) 

(2.45) 

(2.46) 
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E D - h3 
 

12(1-V2) 
(2.47) 

In the following the forms of the shell equations referred to in 

this thesis will be derived. 

2.2.1. 	Shell Equations in Terms of the Displacement w and  

the Richer Stress-Resultant Function X 

The Ftcher stress-resultant function is defined by, 

nil 
 = "22 - 	Xidai 	 (2.48) 

n12 = 4112 	 (2.49) 

n22 = 
	X

2
da2 	 (2.50) 

The equations of equilibrium (2.34), (2.35) and (2.36), after eliminating 

qi  and substituting for m. and n. by equations (2.43), (2.45), (2.48), 

(2,49) and (2.50), reduce to the single equation: 

D V 4w - V 4X = Z - K
ll 

X
1
da

l 
- K

22 
X2da2 
	(2.51) 

where 
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V4  

2 - a a - v = 
2 

,  

aa1 	aa 

- 	32 	 a2 	 a2 
V R = K 	 2K 22 	- 	12 aalaa2 

+ K11 aa 	 aa2 1 

The second equation linlcing w and is obtained from the compati- 

bility equations 

11,22 	12,12 	22,11 - 	 = - Eh V 2w 	(2.52) 

which, from equations (2.42), (2.44), (2.48), (2.49) and (2.50), yields 

4 	 a2 
V yS + Eh V 2w = 	Xida, + a 	

2 da2  - R aa2  

axi ax2  
+ aa  aai  (2.53) 

2.2.2. 	Shell Equations in Terms of the Displacements 01, 07  

and w 

Equations (2.34) and (2.35), after substituting for qi  from equation 

(2.36) expressing nii  and m.. in terms of the displacements u1, 02  and w 
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from equations (2.37), (2.42), (2.43), (2.44) and (2.45), yield the 

required equations, which in matrix form are: 

LI1 

121 

131 

where 

L12 

122 

132 

113 

123 

133 

1,1  

-w 

/MEP* 

1 

X2 

ea. 

O 

O 

O 

(2.54) 

[_a_72 
L11 aa 

a2  
aa2 

I (1+V) 	a2 1 112 	2 	acriaa2 	121 

113 	= [ (1- )K12 aa2 
+ (K 	22II + 	) 

al a 	= 131 

a2 
122 L 2 

(1-v) a2  
J aal 	aa2  2  

a L23  = [ (1—v)K 	a  + (K22 + 	K11)  as 	= 132 12 aa1 	 2  
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= 
 [

2 
33 	12 	

2 — V 4  + K11 + 20 	12 - v)K 2 + 2v K11K22  + K
22 

2.2.3 Shell Equations in Terms of Four Actions  (n22,n...1Z,r-,m22  ) - 

and your Displacements  (u2,u1 ,w,G) 

The form of the equations derived in this section will be used in 

conjunction with the method of lines (Chapter 7), as discussed by Jenkins 

and Tottenham (47) 

The equations of equilibrium (2.34), (2.35) and (2.36) when written 

out in full are: 

n11 /1  + n12,2 + 	= 
	

(2.55) 

n
12,1 

+ n
22,2 

+ X
2 

= 0 
	

(2.56) 

(2.57) Kiinii + 2K12n12 + n22K
22 + q1,1 q2,2 Z  = 

m11,1 + m12,2 - q1 = 	 (2.58) 

m12,1 + n122,2 q2 = 0 	 (2.59) 

The Kirchhoff shears are given by: 

r1 = q1 rn12,2 

r2 (2.61) 
= (12 4. n112,1 

(2.60) 
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Equations (2,44) and (2,45) when written out in full are: 

nil  Eh 	r  
0-92) 

+ V  U212  v K22)"' (2.62) 

 

[ii _ ui 	(K22  + 	K)w(2,63) v")  

Eh 
"12 
	 (2.64) -RiTI1 [01,2 + u2,1 2K12w1 

-F.113 
m11 [w'11 	w'22] 12(1-V ) 

(2.65) 

-Eh3 
m22 Lv422 12(1-V ) 

  

 

(2.66) 

  

 

Eh3 

12(1 +y 

  

m12 [w112 (2.67) 

   

From equations (2.62), (2.63), (2.65) and (2.66) the following are 

obtained: 

"11 - V n22 = Eh(uii 	K11w) 
	

(2.63) 

n22  - V nil 	Eh(u2,2  - IC,72w) 
	

(2.69) 

n22  



Eh3 
mil - v  m22 = - Jr(w,11) 

Eh 
m22 - 	m11 = 	v̀/122' 

(2.70) 

(2.71) 

From equations (2.55) and (2,68) the following is obtained 

nI2,2 V n22,1 + 14(u1,11 - Kl1w.,1)  + X1 
	 (2.72) 

Defining 

G = w12 
	 (2.73) 

then equations (2.59), (2.61) and (2.67) yield the following: 

Eh3 a., 
m22,2 - r2 0 	 (2.74) 

From equations (2.57), (2.58), (2.61), (2.68) and (2.70), the following 

equation is obtained: 

r2,2 	2K12n12 + (K72 + .91(11)1/22 + V m22,11 + 

2 	Eh 	
'1111 

3 
+ EhK11u1,1 - EhK11 	12 w - 	w 	+ Z = 0 	(2.75) 

The required equations are given by (2.56), (2.63), (2.64), (2.66), (2.72), 



(2.73); (2.74) and (2;75) and can be arranged in the following matrik 

formi 

• 

A
21 

A
41 

A
51 

Al2 

A
42 

• 

A62 

• 

• 

• 

A73 

• 

• 

. 

A43  

• 

. 

• 

• 

A65 

. 

• 

A26 

46 

A
56 

• 

A37 

• 

• 

' 

• 

A28 

• 

A48 

A58 

A68 

A78 

n22 

n12  

m22 

r2 

u2 

ul  

X2 

X i 

• 

=0 

(2.76) 

. • • A37 • 
•••••••• 

where 

A
l2 

= 
aa1 

 — 
A

65 

A
21 	

,11  a 	A56 - a ai 

A
26 

= Eh 	7 
as 

1 ai 

n22 

m22 
a 

as 2 r2 

u2 

ul  

w w 	• 

a2 
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a A28 = -EhK  1 aa1 

= 
-A46 

07  A34• 	= A  

A37 
Eh3 	a2 

- 	a-7 

A41 = (K22 +v K11) = -A58 

A42 = 2K12 = -A68 

a2 
A43  = v  ---2  = A713 

aal 

- A 	= [-EhK 2  - 211
3 

a
4 1 

 * 48 	11 Tr --4j aal  

A 	= - (1-1/
2
) 51  

A  = 2(1+V) 
62 

*Jenkins  and TottenhamW)neglected the term MIK112  
 

as being small. 

This term has been retained in equations (2,76), which is consistent with 

the other shell equations derived. 
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73 - 
12(1- V 2)  

A  Eh3  

or, more compactly: 

Y,2  + Ay + L = o - 	— - 

where Y = col t n22n12m22r2u2u1Qw  

L = col { X2X1  6 Z • • • } 

(2.77) 

2.3 Variational Treatment of Shell Equations  

In the following, the term 'kinematically admissible displacements' 

means displacements which satisfy the internal compatibility conditions and 

the kinematic conditions on that part of the surface where displacements 

are prescribed; the term 'statically admissible stresses' means stresses 

which satisfy the internal equilibrium conditions and the equilibrium con-

ditions on that part of the surface where external forces are prescribed. 

In studying the equilibrium of an elastic system, two principles* may 

be applied: 

*These are, respectively, particular cases of two general principles 

applicable to any mechanical system in equilibrium viz.: 

(a) the principle of virtual displacements 

(b) the principle of virtual changes in the stressed state. 
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(a) the principle of minimum total potential energy, in which 

variations with respect to kinematically admissible displacements 

are considered 

(b) the principle of minimum complementary energy, hi which 

variations with respect to statically admissible stresses are 

CMS idered. 

Generally, if kinematically admissible displacements are assumed, 

the equilibrium conditions are violated, and if statically admissible stresses 

are assumed, the compatibility conditions are violated. 	However, it 

follows from (a) above that stable equilibrium corresponds to those kine-

matically admissible displacements for which the total potential energy is 

a minimum, and from (b) that the satisfaction of the compatibility 

condition corresponds to those statically admissible stresses for which the 

complementary energy is a minimum. (51) 

For the application of these two principles, suitable kinematically 

admissible displacements and statically admissible stresses must be found. 

For (a), internal compatibility is satisfied by selecting displacements which 

are continuous. 	However, for (b), internal equilibrium must be established 

by selecting stresses which satisfy the equations of equilibrium. 	Since 

these equations are differential equations such stresses are not always 



V = 
0 

 

o o h 
(2.78) el.i.)ydalda2dy 
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easy to find. Further, the displacement approach offers a more direct 

formulation for the boundary conditions of the problem. 

In view of the foregoing, only principle (a) will be considered. 

Further the assumptions made in section (2.1) relating io thin elastic 

shallow curved plates will still apply. 	The displacements considered will 

be small and kinematically admissible.* 	Similarly, the variations in the 

displacements (or the 'virtual displacements') will be small and kinematically 

admissible and will vanish wherever the displacements are prescribed. 

For the problem under consideration, the total potential energy, V , 

of the deformed shell (rectangular plan-form) is the sum of: 

(i) 	the potential energy of elastic deformation (strain energy), Vo, given 

byt 

* 	It is sometimes useful to relax the prescribed kinematic conditions. 

This will be discussed further in conjunction with the Lagrangian multiplier 

method in section (3.1.3). 
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where i and 1 range over the values I and 2, ( (7.)
Y 
 and (6..) y are 

respectively the stress and strain components on the y surface of the shell 

(figure 2.7), and yK11  and yi(n  are considered small compared with unity, 

(ii) the potential energy of the surface loads, V1 , given by: 

V
1 	 (Xiui  + Zw) daida2 	 (2.79) 

0 0 

where X. and Z are respectively the surface loads corresponding to, but 

independent of, the displacements uf  and w, 

and (iii) the potential energy of the applied boundary loads, V2, given 

by: 

 

V
2 

= E V
2
n  (2.80) 

where 
I. 

V2n  = - 	F
m  vm  da. 

0 
(2.81) 

and where, for each boundary n, Fm  is the applied boundary load 

corresponding to, but independent of, the boundary displacement vm. 

*When the boundary is flexible, Fm  is dependent on vm  and in the subse-

quent integrations the relationship between F
m and v

m must be considered. 
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Then it follows that 

V = V + V +V20 	1  (2.82) 

From equations (2.38), (2.39), (2.40), (2,42), (2,43) and (24,70) 

the following is obtained: 

I1 	2 

Vo 

  

(n..e + m..ki.)da.da2 I 
(2.83) 

0 0 

  

Substituting for  n.., m.. and k.. by equations (2.44), (2.45) and (2.43) 

respectively, equation (2.83) becomes: 

 

1

11 1/2 	Eh  

J 0  t(1-v2) 

  

V0  [ el  , 2 i  + 2(1- Ae 2  + 22 	e + 7V e 12 	2ll 22 

 

  

3 Eh 	 2 
12(1-V2) 	2(1-Y)w?.12 + w'22 2v W111w'22 dalda2 (2.e4) 

 

Equation (2.80) can be written in the form (figure 2.6): 

[112 
(N11u1 + NI u2 Q1  w - M11w,1 Ml2w17.)da2 

01=11  

ai=o 
= 

  

I1  

(N u +N u +Qw-M w - 	w )da 12 1 	22 2 	2 	12 '1 M  22 '2 1 02=12  = 0 (2.05) 
o 
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where N
11,  N12, N22, Q1' 

0
2' M11 ,  M12 

and  M
22 

are the applied 

boundary loads and 01 , ui  or 02, 02, w, w, (w,i), (w,1) or (w,2),and 

(w,2) are the corresponding displacements respectively. 	The minus signs 

in the terms containing Mil, 	 and iV122  in equation (2.85) are due 

to the 	sign conventions adopted for Mit  and the corresponding 

slopes. 

From equations (2,79), (2.82), (2.84) and (2.35), the total potential 

energy of the deformed shell becomes: 

V = Eh 	el 
(1-V ) 

[2 + 2(1- V le2 	e2 	ve ' 12 + 22 + 	11e12 

+ Eh3 

12(1-9 ) 
[w211 + 2(1-V )w712 + w2'22 + 2V w'11'22  w 	}da1  da2  - 

(X1u1  + X7u2  + Zw)daida2  

0 0 

 

a2=I2 

a2 z-o 
(N12u1 

+ N
22u2 + Q2w M12w'1 M22w'2)da1 

  

 

1 

7(N
11

u1 + N12u7 + Q1w M11w,1 - M12w,2)da2 

 

  

 

(2.86) 

   

   

   

0 0 
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For Stable eqUilibriUm the total potential energy of the deformed 

shell Is a minimum end therefore assumes a stationary value, 

',ea  SV i= 0 

Which, with equation (2.06) yieldit 

f 1 r  2{  
Eh 

I 	j eilSell 	2(1-V )43128°12 
o o 	1) (1- ) 

(2.07) 

   

+ v e22  Se V  
Eh3 

12(1- V 2) 
+ 2(1-1)w* 2Sw,i2  4- 

   

   

w1228w'22 + V w' 118w' 22 + V w'228w1  1 1 	daida2  - 

11  	I I 2 
(X1Su1 + X2E4)2 + 7.5w)da1da2 - 

a1=11  
1\4125w,2)da2 

ai=o 

0 	 02=0 

0 0 
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Using equations (2.44) and (2.45), equation (2.08) becomes: 

[(n116e11  + 2n12-Se 12 + "228e22) (m11 '11 
0 0 

 

+ 2m126w'12 + m226w'22 dalda2 
ON 

(X16u1 + X26u2 + Z6w)dalda2 
0 0 

 

Using equations (2.37), (2.42), (2.43), (2.44) and (2.45), and the 

relations given in table 2.1, equation (2.89) becomes: 

/2 

Li 0 	 l also 



Ll 
 u 

r Eh 

) 

)(1(1=Y2) 
12u2 - 113w  + 	Eli 	Sul + 

121°1 +122 2 - 

X -.1)2) 2(1  

lui  + 1.22u2  Z(1-A1 	da do - 123 	 1 z 
w  +  

where 

=01 + M12,2 
(2.91) 

[12 
(2.92) = 0 + M '2 	12,1 

- 55 - 

la2=12 
(r2-12ilalf 

jar 

{}
a2142 

- 	2(m12-NA12)6: all=1  1 	Ilt 0 	 (2.90) 

	

— a1=43 	a2=°  

IND 

0 
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and where the partial differential operators 1.. (i,j = 1,2,3) are defined 

by equations (2.54). 

Equation (2.90) yields directly the three equations of equilibrium 

together with the four boundary conditions (static or kinematic) which 

need to be specified along each boundary. 

For either of the principles discussed in this section, the boundary 

conditions are subdivided intos 

(i) 	Those which are essential for the application of the 
3) 

principle (the "essential
102),( 5 o 	

(54)
r "imposed" 	boundary 

conditions) 

and (ii) 	those which are realised by virtue of the principle itself (the 
(52) 

'additional', 	naturals 
(54)
, 	or *suppressible'(53) boundary 

conditions). 

Only the principle of minimum total potential energy is considered in 

this thesis. 	For this problem the kinematic boundary conditions are termed 

the 'imposed' boundary conditions and the static boundary conditions are 

termed the 'natural' boundary conditions. 
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CHAPTER 3 

SOLUTION METHODS 

This thesis is mainly concerned with the application of indirect 

methods (Rayleigh-Ritz, Galerkin and Lagrangian multiplier methods) in 

conjunction with various types of approximating functions. 	However, 

consideration is also given to the method of lines in which the derivatives 

in one direction are replaced by finite difference expressions. 

3.1 Indirect Methods and Approximating Functions  

In this thesis, solution methods will be referred to as 'indirect 

methods° when the functions in the series representation for the 

dependent variables do not satisfy the partial differential equations 

and all boundary conditions term-by-term. 	Solution methods will be 

referred to as "direct methods' when the functions do satisfy the 

partial differential equations and all boundary conditions term-by-term 

(e.g. Navier and Levy-type solutions). 

In the following,, the term "kinematically admissible functions' 

means functions which are continuous and differentiable and which 

satisfy the imposed boundary conditions where prescribed. 



u2 

i>7 	 

m 	n 
w 

u1m(a1)Ui (a2)6amn  

6u2 	 u2 (a )U2 (a )813 	'm n 	1  2 mn 

Sw 

	

	 >  wm(a
1)Wn(a2)8cmn m n 

sul  
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3.1.1 Rayleigh-Ritz Mothod  

The variational equation (2.90) forms the basis of the Rayleigh-Ritz 

method used in this thesis for the solution of thin shallow curved plates. 

In this approach, the displacements are considered in the following 

series form: 

u1  m(a1  )U1 (a2) (3.1) 

b mn2  u 111(a12  )Un(a2  ) (3.2) 

cmnwm(al)Wn(a2)  (3.3) 

U1 m where u1 U1' u2 112  wm and Wn represent 	independent sets of 

kinematically admissible functions, amn,  bmn and  cmn are arbitrary 

constants to be determined, and m and n are positive integers. 

The displacement variations may be selected in the following forms: 

E amn m n 
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where 6amn,  &
ran 

and  &
ran 

are arbitrary variations in the constants 

a
mn,  bmn and  c

mn respectively. 

Substituting equations (3.1) to (3.6) inclusive into equations (2.90), 

integrating the resulting expressions and noting that Saran,  86 
 mn  and  6cmn 

are arbitrary, yields a set of simultaneous linear equations in terms of the 

constants a 
mn 

 , b 
mn 

 and  c
mn

6 	By using truncated series, the problem is 

reduced from one with infinite degrees of freedom to one with finite 

degrees of freedom. 

Equations (3.1), (3.2) and (3,3) represent a family of kinematically 

admissible displacements and the Rayleigh-Ritz method attempts to find 

those constants (a
mn

, b
mn

,  cmn
) for which the equilibrium conditions 

within the shell and on its boundaries are satisfied. 

From equation (2.90) it follows that, when a kinematic boundary 

condition is prescribed, the corresponding boundary integral vanishes. 

When a static boundary condition is prescribed, and is not satisfied by the 

chosen functions, the corresponding boundary integral remains. 	The 

Rayleigh-Ritz method will seek out this °natural° boundary condition. 

3.1.2 Galerkin Method  

If the functions given in equations (3.1), (3.2) and (3.3) are chosen 

such that all the boundary conditions, static and kinematic, are satisfied, 
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then all the boundary integrals in equation (2.90) vanish and the 

Galerkin equations are obtained. 

The Galerkin method has a wider application than the Rayleigh- 
00,05),(56) 

Ritz method, since it is not restricted to variational problems. 	However, 

the Galerkin and Rayleigh-Ritz methods become equivalent when: 

(a) applied to variational problems associated with quadratic 

functionals (as in this thesis) 

and (b) the kinematically admissible functions given in equations (3.1), 

(3.2) and (3.3) satisfy, in addition, the static boundary con-

ditions where they are prescribed. 

3.1.3 	Lagrangian Multiplier Method  

It is sometimes useful to relax the kinematic boundary conditions by 

selecting functions which are not kinematically admissible. 	Use can then 

(54) 
be made of the Lagrangian multiplier method, in which the kinematic 

boundary conditions violated are applied as constraint conditions. 

Suppose the kinematic boundary condition 

u1(a110) = 0 	 (3.7) 

is prescribed and that the corresponding functions given in equation (3.1) 

are chosen such that this condition is not satisfied, 



	

Xl(al 	)U1n(a)da1 6amn 

	

a mn  u1  m(a1 1  
)U 

n
(o) 	= 	0 

= 0 

1
1  

6V + 

0 
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The Lagrangian multiplier method introduces another variable 

)1/41 (a1 ), the Lagrangian multiplier, such that 

I
1 

SV + 	(ai  )Sui  (al  ,o)dai  = 0 	 (3.8) 

where V is the total potential energy of the deformed shell given by 

equation (2.86). 	The corresponding constraint condition is given by 

equation (3.7). 

Substituting the series given by equation (3.1) for u in equations 

(3,0 and (3,7) yields respectively: 

where the Einstein summation convention is used, 

The Lagrangian multiplier method conveniently reduces the constrained 

variational problem to one of free variation. 	Note that the series for 

ui  no longer vanishes term-by-term on the boundary (a2  o), but is 

replaced by the condition that the series as a whole vanishes (equation 
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3.10). 	The Lagrangian multiplier has a physical meaning - it is the 

generalised reactive force associated with the corresponding constraint 

condition. 	The Rayleigh-Ritz method may be considered as a particular 

case of the Lagrangian multiplier method with all multipliers set to zero. 

The multiplier 31(a1) is a general function of a1  and cannot readily 

be determined in this form. 	However, Xi(a1) can be expressed as the 

following series: 

\-1  k k i(ai) = 	Xi (ai) 

where 1 (al) represents a set of independent functions, 

and k is a positive integer. 

(3.11) 

are constants 

Substitution of equation (3.11) into (3.9) yields: 

 1 

SV + X.(L11< (a1)u1(ai)1.111/(o)dal  Satin 	= 	O (3.12) 

0 

The constraint condition (3,10) can be rearranged in the form: 

[aainU](o)1 uim(ai) 	= 	0 (3.13) 

Since each um(a1  ) is independent, then for all a1 the following condition 1  

holds: 
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a
mn 1(o) 

 = 0 	
(3.14) 

Assuming that the same number, S (say), of functions are chosen for 

u
1 

(a
l
) and Lk (a

1 
 ) then equations (3i and (3.14) introduce an additional 1  

S unknowns, Xi  , together with an additional S equations given by 

equation (3.14). 	The problem can now be conveniently solved. 

Similar remarks apply to any other prescribed kinematic condition 

which may be violated. 

In particular, functions L
I 

(a
l
) and u

1 
(a

1
) may represent the same 

set of orthogonal functions. 	Then equations (3.12) and (3.14) become: 

SV + gAinU1n(o)Samn  = 0 	 (3.15) 

a
rrin 1 

Un(o) = 0 
	

(3.16) 

since: 

11  

u
k m 

ui  dal  

  

  

= g (say), if m = k 

     

0 , 	if m # k 



Application of the Lagrangian multiplier method in this way will 

provide, in general, two values for the generalised reactive force 

associated with the prescribed constraint condition. 	These are given by: 

(a) the displacement derivatives 

and (b) the Lagrangian multiplier. 

Ideally, they should be the sarne, but generally they will be different. 

In particular, the displacement functions could be Chosen such that (a) 

was zero, e.g. as for a cosine or sine series. 

It will be demonstrated in subsequent chapters, that the Lagrangian 

multiplier gives a better estimate of the generalised reactive force than 

the corresponding displacement derivative. 

3.1.4 Approximating Functions  

The selection of suitable approximating functions is the essential 

feature of the indirect methods discussed in this chapter. 	Seth functions 

may be simple or complicated and need not be orthogonal, although this 

latter property is very useful and convenient. 	The derivatives of the 

functions should be well defined since the stress-resultants and stress- 

couples are dependent on them. 	A physical insight into the problem at 

hand greatly assists the choice of suitable functions, which may possibly 

lead to a rapid convergence of the solution. 



The functions to be studied in this thesis are classified in table 3.1. 

The origin is located at one corner of the shell (figures 2.4 and 2.5). 

Of the functions tabulated only IA, 113, IIA and IIB are orthogonal. 

Class I Functions  

Functions IC were used by Chuang and Veletsof7)  in the variational 

solution of a shallow cylindrical shell. 	These functions were later 

applied to doubly curved shallow shells by moor and Veletsos.
( 15) 

 Both 

these references included the function (1-28i) in this set. 	The reason 

for omitting this function will be discussed in the next chapter in conjunction 

with the numerical results. 

Functions ID were also considered by Chuang and Veletsos.(7) 

Functions 1E were originally proposed by Filonenko-Boroditch,
(57) 

who referred to them as 'almost orthogonal' functions. 	These functions 

( 58) 
have been used to represent the displacement w by Buziarova, for the 

bending solution of a clamped plate, and by Moor and Veletsos, (1  for the 

bending solution of a clamped shell. 	Although these functions satisfy 

the clamped boundary conditions on w, they satisfy the additional conditions 

that the normal and Kirchhoff shears vanish on the boundary. 	This will 

undoubtedly affect the boundary value of the moment. 
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Functions IF have been obtained by modifying functions IE such 

that the normal and Kirchhoff shears no longer vanish. 	Note that the 

shape of the corresponding cosine and sine functions of IF are similar 

and numerical difficulties could be introduced as more terms are taken 

in the series. 

Class II Functions  

Rayleigh functions are functions of the type: 

F 	= F (n. 	m ) = Asin a 3. + sinh a 3. + C cos a 0. + m 	m 	 m. 	m 	m' 	m 	m' i  

+ cosh a O. 
m' i  (3.17) 

and have been tabulated in detail in references (9) and (60) up to 

m = 4 and m = 5 respectively. 

The Rayleigh functions used in this thesis were provided by Kuo,
(59) 

who has calculated them out torn = 27. 

Further details of Rayleigh functions are given in .'ppendix I. 

Functions 1113 will be used only to represent displacement u
1* 	

They 

(7) 
were also used by Chuang and Veletsos to represent displacements u1, 

u2  and w for a cylindrical shell with free boundaries at a2  = 0,12. 

The Rayleigh-Ritz method was used. 	Deep thin inextensible gables were 
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assumed at a
l 

= 0/1 1 such that a Levy-type solution was possible 

(refer to chapter 4 for a description of these terms). 	Their results 

showed pcior convergence. 	However, these functioni have been in- 

correctly used with w. 	It can be shown that the natural boundary 

condition 
r2(al' 

o) = 0 for a free boundary becomes, on using functions 

IIB and the series form for w given by equation (3.3)
, 
 1 

n,2
(o) = 0. 

Similarly the natural boundary condition m22(ai,o) = 0 for 1) = 0 

reduces to W
n,22

(o) = 0, which is identically satisfied by functions IIB. 

The coupling of these two conditions is valid only for the constant 1 of 

functions IIB. 	However, in general, the coupling of these conditions 

seems to invite difficulties, 

3.2 Method of Lines  

Equations (2.76) form the basis of the method of lines used in this 

thesis for the solution of shallow curved plates. 

In this method, the derivatives in one direction (a
l 

in this thesis) 

are replaced by finite difference expressions. 	in this way equations 

(2.76) are reduced to a system of linear first order ordinary differential 

equations with constant coefficients. 

Thus the boundary value problem may be considered as an equivalent 

initial value problem in which four of the dependent variables are 
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specified by the initial boundary conditions. 	The initial values of 

the remaining four dependent variables must be determined such that the 

final faur boundary conditions are satisfied. 

Integration of this system of first order ordinary differential 

equations is the immediate problc mi 	The matrix progression method
(61),(62) 

offers a convenient and systematic approach for the numerical solution of 

these differential equations. 	The application of this numerical procedure 

in conjunction with the method of lines has been discussed in detail by 

Jenkins and Tottenham,(47)  who give several illustrative examples. 	However, 

no numerical results are presented. 

The matrix progression method is similar in principle to the transfer 

matrix method. 
(63) 

Due to the limited number of significant figures used in practice, 

the integration of such problems may introduce serious roundoff errors. 

This problem may be overcome by segmenting the path of integration.(64) 

The influence coefficients for each segment are then determined by 

integration and the solution obtained by restoring equilibrium and/or 

compatability. 

A further way to overcome this numerical problem is to 'bring up 
(65), (66) 

the initial boundary'. 	This idea is used with the matrix progression 
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method. 	In this approach the integration path is divided into steps. 

The boundary conditions are then brought up for each step, in such a 

form that they may be used as the initial boundary for the next step. 

This procedure continues until the final boundary is reached, where the 

known boundary conditions are applied. 	The solution at this final 

boundary is then obtained. 	The solution at each step follows by back 

substitution. 

In this thesis (Chapter 7) the matrix progression method will be used. 

Whenever necessary the integration path will be segmented. 	A stiffness 

approach will be proposed, in which the stiffness matrix for each segment 

can be obtained from the transfer (or distribution) matrix (refer to 

Chapter 7). 	The assembled stiffness matrix for the shell will be in tri- 

diagonal form, which is readily solved by partitioning. 
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CHAPTER 4 

APPLICATION OF THE INDIRECT METHODS TO TRANSLATIONAL 

SHELLS WITH LEVY-TYPE SOLUTIONS 

In this chapter, the proposed indirect methods will be applied to 

shell problems whose exact solutions are known. In this way the con-

vergence of various types of approximating functions may be studied. 

4.1 Non-Dimensional Form of Equations  

Levy-type solutions are available for shallow translational curved 

plates of rectangular plan-form (figure 2.4) supported on two opposite 

edges by normally►-located deep thin inextensible gables (defined in 

Table 4.3). 

For convenience a loading function will be selected such that a 

one-term Levy expansion provides the required exact solution. Normal 

gables will be assumed at a1  = 0, 11. 

The selected loading is 

"1 
= 0 = X2 
	 (4.1) 

Z = Z0  sin t  frpi 	 (4.2) 
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where: 

Zo 
is a constant 

i is a non-zero positive integer 

a, 
Pi  = 1

1 

	 (4.3) 

The applied boundary loads will be assumed to be zero. 

The Levy solution procedure implies displacement distributions of 

the type:* 

u
1 

= T1 u032) cos Doi  (4.4) 

u
2 

= I2U2(p2) sin i rcfli  (4.5) 

w 
:2  

1 (4.6) W(p2) sin i Trpi  7-2 

where the origin is located in one corner of the shell as shown in 

figure 2.4, and 

*The functions Ui(p2), U2(p2) and W(p2) should be more correctly 

written as U1 1 (032), U21(P2) and W1 (p2). 	However, to avoid confusion 

with other functions, the i superscript is dropped from this notation. 

This does not affect the subsequent deviations in any way. 
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(4.7) 

(4.3) 2 82   TT 

For convenience, the functions U1, U2  and W in equations (4.4), (4.5) 

and (4.6) have been non-dienensionalised. 

In the indirect procedure, the functions U1, U2  and W will be 

approximated by the following truncated series: 

U1 	= 	am  LI1 	 (4.9) 
m 

(4.10) 

c W 	 (4.11) 
m in 

where am , bm  and cm are constants to be determined,  Ul
m
`  Ulm and 

Wm represent sets of independent kinematically admissible functions and 

m is a positive integer. 

The corresponding displacement variations may be selected in the 

following forms: 

U2 = 7IbmU2m  



I m 	. 
cos  n.'61 Sam 1 m 

U2 sin j Ir8
1  Sbm  

m 

Sul  

Su
l 

Sw vvm sin '101 Sc
m 
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where Sa , Sb and Se are arbitrary variations in the constants a, 
m m m 	 m 

bm  and c
m 

respectively. 

For the special case being considered the variational equation (2.90) 

after:* 

(a) setting the applied boundary loads to zero, 

(b) non-dimensional ising the co-ordinates to the (21 ,p2) set defined 

by equations (4.3) and (4.8), 

(c) setting K12  to zero and replacing Ki  and K22  by K1  and K2  

respectively, 

(d) substitution of equations (4.1), (4.2), (4.4), (4.5), (4.6), (4.7), 

(4.9), (4.10), (4.11), (4.12), (4.13) and (4.14), 	and 

*The boundary integrals at a1  = 0, 11  automatically vanish since all 

boundary conditions are satisfied there (Table 4.3). 



J. 1 

I 1 

0 

0 
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(e) 
	

integrating the equations with respect to PI, 

reduces to the following three independent equations, since Sam, Sb m 
and Scm are arbitrary: 

E
2a.0 "i  - (1-1i)  r -2aU i 

	
(i+V) 	b Uk  

	

1 1 	2 	i 1,22 	2 n  k 2,2 + 

+ (c+ V )wcplitfp1 	 (4.15) Ulrici!32 - 2  ;;12(°)Ulm(o)  = 

	

[
WV) 	(1-11) 2, "k --r— GI s  2  -r 	ok 	1.4 122  + 

2r 

+ (l+vc)cp Vpt1,2  ti2 ' m 	- 2;222  (o)Um(o) = 0 e2   (4.16) 

f1  

0 
[(c+ Any; (14-lickuk . 2,2 1- 

PT 	4 
12 (n. W  - 

„ 
	-2 

p p 

_2 2 	-4 
- 2r g cpWp,22 + r cpWp,2222)  + (1+2v c +c2)cpWp - 

-2 
- 7 	W dp2  +- 	m  r 	(OW ,2  - 2 7 2(o)Wm(o) = 0 	(4.17) o m  
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where 

r (4.16) 

PT  
h 	1 = 	 1 	

(
h 
-)(1

2
7) 

T1 K21 	T 2 
(4.19) 

EC 1 
2 

(4.20 

2. 
	

Zo(1- V2) 
	

(4.21) 
2 

k, m, p are positive integers and n12'22' m22 and r2 are' 

in this case, functions of p2 only and are the non-dimensional forms 

(given in Table 4.1) of n12,  n22, ra22 and r2 respectively. 	In equations 

(4.15), (4.16), (4.17) and Table 4.1 the Einstein summation convention 

?s adopted and comma notation is used to represent differentiation with 

respect to 32. 

In deriving expressions for the boundary integrals, the boundary 

conditions were assumed symmetric about 132 = 0.5. 	If this were not 

the case equations (4.15), (4.16) and (4.17) would be modified in the 

following way: 



"1202)ui(IY] P2=1  
P2=° 

13  L n22‘132/U2m‘ki  ,,2=1  2 0 

[772(82)1  m(132)] 
82

=1 

2 
3 =0 
'  

=1 
[42m22(132)Wm,2

(8
2)1 2 

8 
' 2 0  
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replace ni2(o)Uim(o)] 	by 

replace [-27'22(o)u2m(°)  by 

replace 

replace 

[-27 72(owm(01 

[+27 2 m22(°)W  P))] 

by 

by 

It is evident from the foregoing that the problem is specified through 

the non-dimensional parameters pr 
c, r and V ,* 

With 7 = 1 equations (4.15), (4.16) and (407) are the equations  

used for the solutions presented in this chapter. 

The actual values of the displacements, stress-resultants and stress-

couples, for any loading of the type given by equation (4.2), are obtained 

from the non-dimensional forms given in Table 4.1 by the factors given 

in Table 4.2. 

*The single parameter 5.1. could have been replaced by the separate 

parameters (--) and (,..11-2  ). 	However, the use of 5.T. covers a wider 
T1 	2 

range of shells. 
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Equations (4.15), (4.16) and (4.17) are the Galerkin equations 

modified by expresCons corresponding to the relevant boundary integrals 

in equation (2.90). 

4.1.1 	Modification for the Lagrangian Multiplier Method  

In this section only homogeneous kinematic boundary conditions will 

be considered. 

For the problem considered here, a maximum of four homogeneous 

kinematic conditions may be prescribed along a2  = 0 and 02  = 12, viz.: 

u
l  

= 0 (4.22) 

02 
= 0 (4.23) 

w = 0 (4.24) 

w,
2 

= 0 (4.25) 

Assume that the conditions given by equations (4.22) to (4.25) inclusive 

are now applied as constraint conditions. 

Then following the procedure described in section (3,1.3) and 
1
2 

assuming that the boundary conditions are symmetric about the axis a =— 
2 2 

the variational equation (2.90) is modified to: 
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Left hand side of equation (2.90) + 

+ 	2 
 j

1 
A1(a1)6u1(a1 ,o)da1  

0 

+ 	2 
 f

1 
X,2(a1)6u2(a

1
,o)da

1  

1 
+ 2 	yai)8w(a1  ,o)dai  

1 
+ 2 	yai)8w,2(a1,o)da1  = 0 	 (4.26) 

0 

where Al(ai), )2(a1), X3(a1) and X4(a1) are the Lagrangian multipliers 

corresponding to the displacements ul, u2, w and (w,2). respectively. 

The constraint conditions are: 

(4.27) 

(4.28) 

(4.29) 

(4,30) 

0 
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Equations (4.26) to (4.30) inclusive completely define the problem. 

Expressing, for this special problem, : 

	

,i  cos j nal 
	 (4.31) 

	

sin • 
I gal 
	 (4.32) 

	

sin j nal 	 (4.33) 

X
4

(al) 	, X14  sin j nal 	 (4.34) 

where 	X,3  and XI are constants and j is a non-zero positive 

integer, and proceeding as in sections (4.1) and (3.1.3), equations 

(4.26) to (4.30) inclusive reduce to the following : 

Left hand side of equation (4.15) + 2 r uim(o) = 0 	(4.35) 

Left hand side of equation (4.16) + 2 T2U2(o) = 0 	(4.36) 

Left hand side of equation (4.17) + 2 r 73Wm(o) + 

- — 
+ 2 r X4Wm,2

(o) = 0 	(4.37) 

a.Ui(o) 	
= 

	

0 	 (4.38) 
1 
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bk U2 (o) 	= 	0 	 (4.39) 

c 
P  WP 

 (o) 	= 	C 	 (4.40) 

c 
P
W (o) = 	0 	 (4.41) 

P.2  

where 

(1 	 (4.42) 

(1- V 
2), 

= 	
(4.43) 

r T 	
(4.44) 

Eh 
‘2 1 

(1- V 
2

) 
"4 	 (4.45) 

Eh K
2
T1' 

and the j superscript is dropped from the notation. 

With Z = 1 equations (4.35) to (4.41) inclusive are the equations  

used in conjunction with the Lograngian multiplier method.  

As before the non-dimensional and actual values of the displacement, 

stress-resultants and stress-couples are obtained from Tables (4.1) and (4.2) 

respectively. 
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Interpretation of the Lagrangian multipliers 

The Lagrangian multipliers provide the generalised reactive force 

associated with the corresponding constraint condition. 

Then for the symmetric case considered: 

= 	)‘1(al)  

"22(a1'°)  = (al)  

r (a 0) 2 1' 	%PT)  

mn(ai  ,o) = —X4  (a1  ) 

(4.46) 

(4.47) 

(4.48) 

(4.49) 

where the minus sign in equation (4.49) is due to the 	sign 

conventions adopted for m22  and (w,2). 

In non-dimensional form, equations (4.46) to (4.44) reduce to: 

Tti  
;12(°)  

7122(°)  

7  2(0)  

m22(o) 	- 3i4 

(4.50) 

(4.51) 

(4.52) 

(4.53) 
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Alternative expressions for ;17(o), r7ii  (Or q1 (o), q2(o) and 71(o) will 

now be derived. 

The following expressions are obtained from Table 4.1: 

nil - v n22  = 	v2)amuim 	,v2)cpwp  

-2 

mi 
▪ v mn  = P

l2
T tr2(1- V2)cpWp  

 

-P1
2 

= —Tr 	ff3cpWp  + 7.2rrcpwp,22 

 

q1 

 

   

-2 
PT 2, 

-12  re 0- vx  
P p,2 

- 2 
"PT 	 -2 

= 	[-Ir3c W + r n(2- V)cpWp,22  
P P 

q2 = r2  

✓1 
 

-2 
✓ 

cP p,Z4 

_-12 — 
2- m22 + V Tr

2
cP P W 

PT 

(4.54) 

(4.55) 

(4.56) 

(4.57) 

(4,58) 

(4.59) 

Substituting equation (4.59) into equations (4.56) and (4,58) and 

rearranging equations (4.54) and (4.55) yields: 

n11 	= 	
2 rn Ulm c(1- V 2)c W + 	; 

p p 	22 

-2 
PT 2 2 

mi 	= 	n 	v )cpWp  + V 7122 

(4,60) 

(4.61) 
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-2 
PT 

;1 	;7- Tr
3 
 cl-AcpWp sr m  22 	 (4.62) 

-2 

(4.63) = 	Tr3(1-1))2c 	+ a(2-107122 r  1 	12 	P P 

At the boundary p2  = 0, equations (4.60), (4.61), (4.62), (4.63) 

and (4.57), after substitution of equations (4.50), (4.51), (4.52) and (4.53), 

become: 

= 	-Tr(1- V2)am  Ulln(0) ••• 	V2)CpWp(o) + 117% 	(4.64) 

-2 
PT 2 

m1- 1(0 	122 	
2 

 IT (1—  V )C 
P 

W p(o) 	y14 

- 2 
PT 

= Tr- Tr (1--V)cpWp(o) - n14  

51.2  r ▪ 1(o) 12 	sr3 
 (1-V)

2 
 c W (o) - Tr(2-V)I4  = 
P P 

q2(o) = 

-2 
- PT - 2 

r. 
	

(1-V )cpwp,2(o) + 

(4.65) 

(4.66) 

(4.67) 

(4.68) 

Equations (4.50) to (4.53) inclusive and (4.64) to (4.68) inclusive  

provide alternative* boundary values to those based on the displacement 

*As discussed in section (3.1.3), the values based on the Lagrangian 

multipliers are generally different from the corresponding values based on 

the displacement derivatives. 
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derivatives. 

The actual values are obtained 'as before from Table 4.2. 

This matter will be discussed further in sections (4.4) in conjunction 

with numerical examples. 

4.2 Boundary Conditions  

The boundary conditions to be considered in this chapter are given 

in Table 4.3. 

Only boundary conditions which are symmetric about p2  = 0.5 

are considered. 

Normal slide (1) is so numbered to distinguish it from normal 

slide (2), a boundary condition which will be introduced in Chapter 6. 

The approximating functions chosen to specify a particular boundary 

condition are discussed in section (4.4). 

4.3 Reduction to a System of Linear Algebraic Equations  

For 'a particular set of approximating functions, equations (4.15), 

(4.16) and (4.17), with To  = 1, v.duse, on integration, to a system 

of linear algebraic equations which in matrix form are: 



r_ A  i, A  —12  

A  —21 

-31 A32 
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A  —13 

±22 2̀3 

33 

a 

b 

•••01 

0 

C 

9 

mow 

0 
MINIM 

0 

0 
11•1•1=1 

(4.69) 

or, more compactly: 

A 	a 

 

0 	 (4.70) 

where 	a = COI { a b 

g = col { 0 0 
4.••• MI= 

} 
} 

 

Typical elements of the submatrices in equation (4.69) are given in 

Table 4.4. 	The relevant integration formulae are given in Appendix 2. 

4.3.1 Modification for the Lagrangian Multiplier Method  

When the Lagrangian multiplier method is applied, the modified 

form given by equations (4.35) to (4.41) inclusive is used. 	These 

equations may also be reduced to a system of linear algebraic equations 

which in matrix form are: 



as before, given in Table 4.4, 

),1 , 72, 7. and 74  are constants, 

and typical elements of the column matrices d 

respectively given by : 

d 1  
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ww•••• wommil 

A 	A 	2 r d 
-11 -12 -13 	 1 

A A 	 c12  -21 -22 -23 	 2  • 

A 	A 	A 	 --- -31 --32 -33 	 2rd 3 - 'frd

dT 

-4 

-1 	 . 	• 	• 

• • 	• 

• • 	d„ • • 	• 	• 

d„ 

a 

MEP 

71 

72 

• . 

g 

= 0 (4.71) 

where: 

typical elements of the submatrices A..(i4 = 1,2,3), a, b, c and g are, 
••••• 	 •MI 

3 and d are 4 

( 4 . 7 2) 
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din 	 u  rn to%  (4.73) 
2 

d 
 

W
m

(o) 	 (4.74) 

d̀
4 

Wm ,2(0) 	
(4.75) 

If there are less than four imposed boundary conditions, equations 

(4.71) are adjusted accordingly. 

If S is the number of functions chosen to repesent each of U1 , U2  

and W,* then each submatrix A.. is of order (S x 5) and each column 

matrix a, b, c , di, d2, 51.3  and I1 is of order (S x 1). 	Then there 

are 3S constants to be determined by equations (4.69) and (35 +4) 

constants to be determined by equations (4.71). 

The solution of equations (4.71) form the basis of the numerical 

results presented in this chapter. 	When no Lagrangian multipliers are  

used these equations reduce to equations (4.69). 

*It is not essential to adopt the same value of S for each of U1 , U2  and W. 



4.4 Convergence Study of the Approximating Functions  

In this section the approximating functions given in table 3.1 will be 

applied to particular numerical examples. 	In the computer programs 

developed, provision is made for the symmetry of the problem by choosing 

the functions given in table 3.1 such that: 

(a) U1 Wm are symmetric functions about 32  = 0.5 

(b) U2  is an antimetric function about p2 = 0.5 

The Levy-type solutions given in this chapter were obtained from 

computer programs developed at Imperial College by Gunasekera(6) and by 

Scrmartin(49). 

4.4.1 Numerical Examples  

The examples and the corresponding approximating functions to be studied 

are given in table 4.5. 	The boundary conditions are defined in table 4.3. 

Details of the approximating functions are given in table 3.1. 

For all examples, the shell parameters oT'  r and V will be set at '  

the following values: 

OM 

P- I = 0.0152920 

r = 1.0 

= 0.25 
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The value for c is either -0.5 or +0.5 (refer to Table 4.5). 

With c = - 0.5 the above parameters correspond to an example 

(15) 
discussed by Moor and Veletsos using a w 	formulation. 

The results are presented in Tables 4.7 to 4.17 inclusive and 

figures 4.1 to 4.6 inclusive, 	The tabulated results* have been repro-

duced from the computer program output and, to avoid confusion, the 

notation used in the program and the corresponding notation used in this 

thesis are given in Table 4.6. 

The exact values are given in Tables 4.18 to 4.21 inclusive. 

Displacements, stress-resultants and stress couples are presented in 

non-dimensional form (Table 4.1). 	The actual values are obtainable 

from the expressions given in Table 4.2. 

Whenever the Lagrangian multiplier method is used, the boundary 

value based on the multiplier is quoted separately from the corresponding 

value based on the displacement derivative. 	These latter values are 

tabulated under the caption 'Values of 	•  

S is the number of functions used to represent each of U1, U
2 

and W, due allowance being made for the symmetry of the problem in the 

selection of these functions. 

*The results in the tables are presented in floating point notation, e.g. 

3.481, -5 means 3.481 x 10-5. 
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4.4.2 Discussion  

(a) Bcample A: Clamped at f32  t= 0,1 

The exact values are given in Tables 4.18a and 4.18b. 

(i) Examples Al, A2 and A3: 	Refer to Tables 4.7, 4.8 and 4.9a 

and figures 4.1 and 4.2. 

These three examples differ by the functions chosen for Wm 
(refer 

to Table 4.5). The most rapid convergence of moments (stress-couples), 

normal shears (stress-resultants) and displacement w was obtained in 

example A2. Good convergence was also obtained in example A3 while 

the convergence in example Al was somewhat slower. 

It has been previously noted (section 3.1.4) that the functions 1E, 

which are used to represent W in example Al impose the additional 

boundary conditions of zero normal shear and zero Kirchhoff shear and 

this undoubtedly contributed to the slower convergence observed for this 

case. 

The convergence of nil  and n22  was good, whereas n12  converged 

very slowly on the boundary. 

(ii) Examples A3, A4, A5 and A6: Refer to. Tables 4,9 to 4.12 

inclusive and figures 4.3, 4.4 and 4.5., 
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These examples differ by the functions chosen for U
m 

(refer to 

Table 4.5). 	The Lagrangian multiplier method has been used in 

examples A4, A5 and A6 in an attempt to improve the convergence of 

nit on the boundary. In figures 4.3 and 4.4 (examples A4, AS and A6), 

the value of n12 on the boundary is based on the Lagrangian 

c = - 0.5: 	The convergence of n12 
on the boundary was greatly 

improved in each of examples A4, AS and A6, with A4 showing the most 

rapid convergence. 	The solution for n12  within the shell converged 

rapidly in example A4 but more sbwly in examples 08.5 and A6. 

Figure 4.5 illustrates the good convergence of nil  and n22• 

c = + 0.5: 	A complete set of results for A3 is given in Table 4.9b. 

Only results for J
1' 

;
11' 
	and n12 

are given for A4, A5 and A6. 

The remaining results are similar to example A3. 

In this case the magnitude of n12 
is greater than for c = - 0.5. 

The convergence of n12  on the boundary was again slow in example A3, 

but better within the shell. 	Use of the Lagrangian multiplier method 

again improved the boundary convergence of n12. 

In each example the Lagrangian multiplier provided a better estimate 

of the boundary value of n12 than the corresponding displacement 

derivative. 
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(iii) Example A7: 	Refer to Table 4.13 and figure 4.6. 

The boundary value of q2  (= 72  for the clamped boundary conditions 

considered) based on the Lagrangian multiplier is very close to the exact 

solution after 6 functions, 	However, the corresponding value based on 

the displacement derivative is zero. 	This extreme difference is reflected 

in the slow convergence of the moments and normal shears; The solution 

is generally comparable with example Al. 

(iv) Example AO: Refer to Table 4.14. 

The solution generally converged rapidly. 	The boundary values 

based on the Lagrangian multipliers were very nearly exact after 6 functions. 

The corresponding values based on the displacement derivatives also 

compared closely with the exact values, 

(b) Example B: Free at P2  = 0,1 

The results and corresponding exact values are given in Tables 4.15 

and 4.19 respectively. 

The solution generally converged rapidly, with the (natural) 

boundary conditions for a free edge being approximately fulfilled. 

(c) Example C: Hinged at P2  = 0,1 

The results and corresponding exact values are given in Tables 

4.16 and 4.20 respectively. 
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.. 	-  
The boundary values of n1' n12 and  n22 converged slowly. 

These values could be improved by choosing functions which violate the 

boundary conditions on 01 and u2 and applying the Lagrangian multiplier 

method (as in examples A4, A5 and AO. The values within the shell 

show better convergence. 
_ 

The displacements, moments and normal shear q show good conver- 

gence,
- 

 but q2 on the boundary is slowly convergent. 

(d) 	Example D: Normal Slide (1) at p2  = 0,1 

The results and corresponding exact values are given in Tables 4.17 

and 4.21 respectively. 

The convergence of the solution is generally good. Again n12 on 

the boundary is slow to converge. 

4.4.3 Some Notes on Functions IC, ID and IF  

(a) 	Functions IC  

As S becomes large these functions may introduce numerical 

difficulties in the solution. 

The set IC contains the constant unity and also a half-range Fourier 

series. 	However, unity itself can be represented by this Fourier series. 

Such a representation becomes better as S increases. 	Then it was not 

unexpected that some difficulty may be realised with these functions. 
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In order to investigate this problem two solutions were obtained 

for any problem associated with these functions (examples A4, AG and B) 

using: 

(0 
	

an unscaled matrix A 

(ii) 
	

a scaled matrix A, such that the diagonal elements are 

made unity. 

Matrix A is defined by equations (4.70). 

If the equations are well-conditioned scaling should not affect the 

solution.* 

A maximum number of 16 functions was considered. 

To four significant figures, the values of the displacements, stress- 

resultants and stress-couples were the same in (i) and (ii). 	However, 

the solution constants associated with functions IC were completely 

different for values of S > 10, although the solution for displacements, 

etc., was virtually the same. 

Whenever functions IC were used, the solution converged rapidly. 

Due to this rapid convergence, the difficulties discussed above and 

*To effectively study the stability of the solution of a set of equations, 

the effect on the solution of small perturbations of some of the matrix 

element values should be considered. 
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associated with a large number of terms of this series, were minimised. 

This investigation indicates, however, that some caution should be exercised 

in using these functions, 

References ( 7) and (15) both included (1-2f32) in set IC. 	However, 

because of the similarity of this function with cos np2' and to avoid 

possible further difficulties, this function was excluded from this set. 

(b) 	Functions ID  

Arguments similar to those used in the above discustion of functions 

IC apply to this set also. 	However, these functions were used only with 

displacement u
1 

(example AS), in conjunction with the Lagrangian 

multiplier method. 	Accordingly, the corresponding constraint condition 

(equation 4.38) reduces to the condition that the constant (say ad 

associated with the constant unity* in set ID is zero, 	In example A5, 

this constant is set to zero before solving the system of linear algebraic 

equations. 	When used in this way, no difficulty was observed with these 

functions. 

*This applies when the loading and boundary conditions are symmetric 

about 82  = 0.5. 	If this is not the case, and if u1  = 0 at f32  = 0,1, 

it follows that the constants associated with unity and (1-282) in set 

ID are both zero. 
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The condition that a
o 

is zero may appear trivial, but the 

Lograngian multiplier maintains this condition, and effectively gives a 

good estimate of the boundary value of the corresponding action (refer to 

example A5). 

Functions ID, Pn conjunction with the Lagrangian multiplier method, 

may be effectively used to improve a particular stress-resultant, which 

is slowly convergent on the boundary but satisfactory elsewhere. (Refer 

to example A5 for c = + 0.5). 

(c) 	Functions IF  

In section (3.1.4) it was noted that difficulties with these functions 

could arise, due to the similarity of the corresponding forms of the 

cosine and sine sets. 

Operations on the matrix A described above in (a) were again 

carried out. Only example A2 is affected. 

For values of S up to 10, the values of displacement w, moments 

and normal shears were, to four significant figures, the same in cases 

(i) and (ii) described in (a) above. 	For values of S greater than 10, 

some of the values, particularly the normal shears, differed in the third, 

and sometimes the second, significant figure. 
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However, due to the rapid convergence observed with sot IF 

(example A2), it was not necessary to consider a large number of terms 

and the difficulties were minimised. 	It is apparent that those functions 

should bo used with caution. 

4.5 Discussion of the Computer Programs  

A separate computer program was developed for each of the examples 

given in table 4.5. 

The approximating functions were selected in accordance with the 

symmetry of the problem (section 4.4). The same value of S for each 

of U1, U
2 

and W was considered. 

Input, and therefore output, was in non-dimensional form. 	The 

output was arranged in tabular form and has boon reproduced in tables 4.7 

to 4.21 inclusive. 

Further details of the computer programs are available at Imperial 

Col lege.
(69) 

The computer programs were written in D<CHLF Autocode for the 

University of London Atlas computer (70),(71) 
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CHAPTER 5 

FURTHER APPLICATION OF THE INDIRECT METHODS 

TO TRANSLATIONAL SHELLS 

In this chapter the proposed indirect methods will be applied to 

translational shells (figure 2.4) which are unsuitable for Levy-type 

solutions. 

Only uniformly distributed normal loading (Z) will be considered. 

5.1 	Non-Dimensional Form of Equations  

Let the displacement distributions assume the following forms: 

u1 	= 11 E 	 a mn u1  ni(1 1 3 )Un(f32  ) m n 
(5.1) 

where 

(5.2) 

(5.3) 

(5.4) 

(5.5) 



Sul  = 	 uppi)Uitf32)Samn  
n 

Su
l 

w (3 )W (3 ) 6c mn  	m ' 1 n ' 2 mn 
1 

2 
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a
mn

,  b
mn and  cmn are constants to be determined, 

m . 	m u 	
u2 wre  U1 

Un and W
n 

represent sets of independent 
1 	2  

kinematically admissible functions, 

and 	m and n are positive integers. 

The corresponding displacement variations may be selected in the 

following forms: 

where Sa
mn

,  61,
mn 

and Sc 	are arbitrary variations in the constants a
mn

, 
mn 

b
mn 

and  c
mn respectively. 

In the following derivation only the boundary integrals corresponding 

to n
11 

and n
22 

will be retained. 	In all other cases the boundary 

integrals will be assumed to vanish by virtue of the chosen functions. 

Then the variational equation (2.90) after: 

(a) 	setting Xi, X2  and the applied boundary loads to zero, 
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(b) non-dimensionalising the co-ordinates to the (31, 2  ) set defined 

by equations (5.4) and (5.5), 

(c) setting K12  to zero and replacing K11  and K22 by K1 and K
2  

respectively, 	and 

(d) substitution of equations (5.1), (5.2), (5.3), 5.6) (5.7) and 

(5.8), 

reduces to the following three independent equations, since Samn, Sbmn 

and 6cmn are arbitrary; 

1 	j1 

0 

+ (c+ 

u 1,11 L 	

u 

0 

Ac pq 
w

p,1 
wq] 

(1- v) 	iU j 	- (1+ V) b  r2a..0  uk 

2  di3 

2,2 

= 0 

+ 

(5.9) 

1 	2 	1 

umundl1  dp2  -  2 
1 	1 	'

B2 

	

1,22 	2 	kl2,1 

1

1 

	

;11 	' (o, 	)u1 
 ni(o)U1 

o 

ji 
I-- (") a. ui  Ui  - b uk UI 	- (1-11)  T-- 	k 	"I  + 
L 	2 	1,1 1,2 	kl 2 2,22 uklu2,11 2r 

1 

+ (1+ V c)cpqw
p

W
q,2 

u2  Ud31
d3

2 
- 2 	;

22
(31

,o)u U
2
n(o)d3

1 
= 0 (5.10) 

0 0 



K1  c 

 

K
2 

7  = 	Z(1- v 2) 

K2 
E 
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1 r

1 	

2 

ir 
i 	j[-(c+V)a.u i  Ui - (1+vc)bkl  u2 kU2,2  

I  + PT  I 
IT `cpqwp,1111Wq + 1,1 1 

0 0 

+ 2r2c
wp,11 	 pq p q,2222 

	

W
q,22 

+ r4c w W 	) + (1+2Vc+c
2)c w W - pq  

IN P 9 

	

- 21 wm  Wn  dB1 ' 
d3

2 
 = 0 
	

(5.11) 

where 

h 	1 	 1 h 
1
2 

PT = -1---  • 17  --1 = - Tr T-  ' f 
\2 1 	 1 	2 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

i, 1, k, I, m, n, p, q are positive integers and n11 
 and  71

22 

are functions of tli  and 32  and are the non-dimensional forms (given in 

Table 5.1) of nil  and n29  respectively. 	In equations (5.9), (5.10), 

(5.11) and Table 5.1, the Einstein summation convention is adopted and 

comma notation is used to represent differentiation with respect to 31  
and 32. 
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In deriving expressions for the boundary integrals, the boundary 

conditions were assumed symmetric about 	= 0.5 and f32  = 0.5. 	If 

this were not the case equations (5.9), (5.10) and (5.11) would be 

modified in the following way: 

1 

replece E-2 ;1  1  (o, P2)1Jim(o)Uindp21 by 

	

p1 	 P 
[+ 	"11(31 iP2)ui(Yuind132J 

0
1
=c• 

1 

replace 	;22  1  ,0 u2mU2n(o)dPi 	by 

0 

i
'2 =1 

[+ 	n2P1' Vu2m U
2 

(P2)dP1] 

	

o 	 f3 
2
=0 

'  

It is evident from the foregoing that the problem is specified 

through the non-dimensional parameters pi., c, r and v .* 

1
2 *As noted in section (4.1) the separate parameters (4.) and (—f ) could 

1 	2 

have been considered in place of the single parameter .o.r. 
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With 7 = 1 equations (5.9), (5.10) and (5.11) are the equations 

used for the solutions presented in this chapter. 

The actual values of the displacements, stress-resultants and 

stress-couples for any uniformly distributed normal loading Z are obtained 

from the non-dimensional forms given in Table 5.1 by the factors given in 

Table 5.2. 

Equations (5.9), (.5.10) and (5.11) are the Galerkin equations 

modified by expressions corresponding to the relevant boundary integrals 

in equation (2.90). 

5.1.1 	Modification for the Lagrangian Multiplier Method 

In this section only the following homogeneous kinematic conditions 

will be considered: 

u
l 	

0 at a1 
	

0, 1
1 	

(5.16) 

1,2  = 0 at a2  = 0, 12 	 (5.17) 

w = 0 at (a1 ,a2) = (a, o), (I 1,o), (0,12),(11 ,12) 	 (MO 

Assume that the conditions given by equations (5.16), (5.17) and 

(5.18) are now applied as constraint conditions. 

Then following the procedure described in section (3.1.3) and 
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assuming that the boundary conditions are symmetric about al  = 0.5 11  

and a
2 

= 0.5 1
2' 

the variational equation (2.90) is modified to: 

Left hand side of equation (2.90) + 

1 

+ 2 	(a2)13ui  (o , a2)da2  + 

0 

1
1 

+ 2 	
)%2(a1);51)2(a1 

+ 	4 N3Sw(o,o) 	= 	0 	 (5.19) 

where X1(02), 2(a1 ) and 	(a constant) are the Lagrangian multipliers 

corresponding to the displacements ul , 
u2 

and w respectively. 

The constraint conditions are: 

u1 (o,a2) = 0 (5.20) 

u2(ai  ,o) = 0 (5.21) 

w(o,o) = 0 (5.22) 

Equations (5.19) to (5.22) inclusive completely define the problem. 



Left hand side of equation (5.1 0) + 27p2(o) L2
e 

 u2 
m  df31 = 0 (5.26) - 	'  

11 

0 
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Expressing 

(a2) = 

Ya1)  

XieLi(a2) (5.23) 

N;L;(ai) 	 (5.24) 

where lie  and X2 are constants, 

Le1  (a7) and Lf(z a1  ) represent sets of independent 

functions, 

and 	e is a positive integer, 

and proceeding as in sections (5.1) and (3.1.3), equations (5.19) to 

(5.22) inclusive reduce to the following: 

1 
Left hand side of equation (5.9) + 2Tru1(o) 	LrUindf32  = O 	(5.25) 

Left hand side of equations (5.11) + 473wm(o)Wn(o) = 0 	(5.27) 
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a..0 
i
(o) 	 0 

II 1 

bkl U
1
(o) 	= 	0 

c w (o)W (o) = 0 
Pei P 

—e 	(1- 1/
2
) „e 

7‘1 = 

(1- V2) 	e 

(1- 2
)  

Ehl<
2

1
1

1
2 
 :3 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

With Z = 1 equations (5.25) to (5.30) inclusive are the equations used  

in conjunction with the Lagrangian multiplier method  

As before the non-dimensional and actual values of the displace-

ments, stress-resultants and stress-couples are obtained from tables 5.1 

and 5.2 respectively. 

Interpretation of the Lagrangian multipliers  

The Lagrangian multipliers provide the generalised reactive force 

associated with the corresponding constraint condition. 
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Then for the symmetric case considered: 

ni i(o,a2) 	= 	N1(a2) 	 (5.34) 

n22(al'°)  = N(al) 	 (5.35) 

Q(o,o) 	 (5.36) 

where Q is the normal reactive force at a corner of the shell and is 

positive when acting in the (-y) direction. 

In non-dimensional form equations (5.34), (5.35) and (5.36) 

reduce to: 

"l 	f3 1(o ' 2)  = 11(  2)  = 7111eLle(132) 	(5.37) 
e 

7/22(P1'°)  = 72(31)  = > IIVL;(f31) 	(5.30) 
e 

74°,0) 	= 73 	 (5,39) 

Alternative expressions for n_--4E(o  p2  ) and n11  (3 o) will now be '11  

derived. 

From table 5.1, the following expressions are obtained: 



- 108 - 

••• 	 = 	v2 	ut 2 (1_1) 2)cpciwpwq 

n 	V 7'22 11 	
= (1- V2)amnuirill

1   Ur11 	c(1- )12)cpciwpWq  

(5.40) 

(5.41) 

At the boundary 81  = 0, equation (5.40), after substitution of 

equation (5.37) becomes: 

n22(°'!32)  = (1- V2)biju
2
(°)14,2 (1-V2)cpqwp(°)Wq +Y X1(/32) 

	
(5,42) 

At the boundary C32  = 0, equation (5.41), after substitution of 

equation (5.38) becomes: 

n1103
1'

o) = (1-V 2)amn 1
m 
,1 1 

u 	Un(o) - c(1- V )c
Ix! 

w 
 P q(o) + V 7t2(P1) 	(5.43) 

Equations (5.37), (5.38) (5.39), (5.42) and (5.43) provide alternative* 

boundary values to those based on the displacement derivatives. The 

actual values are obtained, as before, from table 5.2. 

This matter will be discussed further in section (5.5) in conjunction 

with numerical examples. 

*As discussed in section (3.1.3), the values based on the Lagrangian 

multipliers are generally different from the corresponding values based 

on the displacement derivatives. 
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5.2 	Boundary Conditions and Approximating Functions  

The boundary conditions to be considered in this chapter are given 

in table 5.3. 

Only boundary conditions which are symmetric about 131  = 0.5 

and 132  = 0.5 are considered. 

In chapter 4 various types of approximating functions were con- 

sidered. 	In view of these results and subsequent discussion, the functions 

chosen to specify a particular boundary condition are given in table 5.4. 

Details of the approximating functions are given in table 3.1. 

In table •5.4 two separate sets of functions are associated with 

each boundary condition: 

(a) functions which satisfy all the boundary conditions 

(b) functions which violate the condition u1(o,a2) sa 0 

or u2(a1`o) = 0 but satisfy the remaining conditions on 

a boundary.* 

*Only when normal slides (1) are considered along all boundaries, is the 

constraint condition w(o,o) = 0 considered in conjunction with the 

Lagrangian multiplier method, 
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Case (b) is considered in conjunction with the Lagrangian multiplier 

method. 

Any combination of the boundary conditions given in table 5.4 

may be specified. 

5.3 	Reduction to a System of Linear Algebraic Equations  

For a particular set of approximating functions, equations (5.9), 

(5.10) and (5.11), with 7 = 1, reduce, on integration, to a system of 

linear algebraic equations, which in matrix form are: 

or, 

A 	A 	A 
—11 	—12 	—13 

A 	A 	A 
—21 	—22 	—23 

••• 

9 

..111M.• 

a 

b 

MM. 

0 
•••••• 

0 

9 

0 

0 

0 

0 
‘.- 

(5,44) 

(5.45) 

A 	A 	A 
--31 	--32 	—33—  

more compactly: 

A 	a 

where 	a col a 	2.) 

9 = col { 



Typical elements of the submatrices in equations (5.44) are given 

in table 5.5a,* 	The relevant integration formulae are given in 

Appendix 2. 

Since the notation used in defining the submatrices in table 5.5a 

is a departure from the usual :matrix notation, typical examples will be 

given to illustrate the pattern of the matrices. 

In table 5,5a typical elements of A12  and b were given as 

a 1 and bk11 respectively. Assuming, for example that m, n, k mn
2 

, k1  

and I each range over the values 1 and 2, then the respective matrix 

patterns are: 

A 	= 12 

••••••••.1. 

12 
a11,11 

12 
'312,11 

12 
a  21,11 

[ 12 
022,11 

12 
011,12 

12 
012,12 

12 
a21,12 

12 
°22,12 

012 
11,21 

12 
012,21 

12 
a21,21 

12 
a22,21 

12 
a11,22 

12 
a12,22 

12 
G21 , 22 

12 
022,22 

••••••• 

*The comma notation used in egifining atypical matrix ehmont in tables 

5.5a and 5.56 (e.g. d1 	) does not represent differentiation. 	However, 
mn, ij  

the comma notation used in the expresim corresponding to a typical 

element represents differentiation with respect to pi  and 37 



A
11 - 

A
12 - A13 D 

A A A 
2 21 22 3 • -2 

• 

A 
-31 	

A 
32 -33 	 • -5 

-3 
	

• 
	• 

-4 

clT  -0 

• 	• 	• 

• 	• 	. 

1.1M. 	 ••••• 

• 

= 0 (5.46) 

71„ 
C.) 
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= 	col f b 	b 	6 	
b22} 11 	12 	21  

Similarly for the other submatrices in table 5.5a. 

5.3.1 Modification for the Lagrangian Multiplier Method 

When the Lagrangian multiplier method is applied, the modified 

form given by equations (5.25) to (5.30) inclusive is used. 	These 

equations may also be reduced to a system of linear algebraic equations, 

which in matrix form are: 

Typical elements of the subrnatrices A.. (i,j = 1,2,3), a, b, c and g are, 

as before, given in table 5.5a. 	Typical elements of the remaining 
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subrnatrices in equations (5.46) are given in table 5.5b. 

The matrix notation used in table 5.511 will be illustrated by 

typical examples. 

In table 5.5b typical elements of D1 , 23, 24, d5  and 	were 

given as (di n,e), (cl? .), (dk,ki), mno) and n  respectively. m 

Assuming, for example that in, n, i, I, k, I and e range over the values 

1 and 2, then the respective matrix patterns are: 

_
di d1 

	

11,1 	11,2 

d1 d1 

	

12,1 	12,2 

D = 
—1 d1 d1 

	

21,1 	21,2 

d1 d1 

	

22,1 	22,2 

—3 

—4 

d3 
1,11 

• 

4 d1,11 

• 

3 d2,12 

d4 
1,12 

d3 
1,21 

• 

• 

4 d2,21 

---$ 

3 d2,22 

• 

4 d2,22 



5 	d5  
d21 	22 

} 
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5 col 

col { 

1 51 
5  

d12 

-7,12 

Similarly for the other submatrices defined in table 5,5b, 

It has been established that the Lagrangian multipliers Al(a2) 

and X2(a1 ) provide alternative values for ni i(o,a2) and n22(ai ,o) 

respectively (refer to section 5,1,1). 	Then the functions Li  and L2  
e 

should be chosen such that the condition on n
11 

or n
22 

in the corner of 

the shell is satisfied. 	A suitable set of functions is IA (refer to table 

5.4), which correctly satisfies the zero condition on n
11 

or n
22 

in the 

corner of the shell for all combinations of the boundary conditions considered. 

For the boundary conditions and approximating functions considered 

in this chapter (table 5.4): 

L
l
e  

e  L
22  

= 

= 

Ue  
1 

u e  

(5.47) 

(5.48) 

which, on substitution in the expressions for typical elements of D
1 
 and 

D
2 
 given in table 5,4b, yields respectively: 

— 
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1 

d
1 

• 2u1  (o)f UeUndp 
mn,e 	 1 	1 1 2 

(5.49) 

d2 
mn,e 

1 

▪ 2U2(0) U2e02C1131  

0 
(5.50) 

e n e 
Since the functions chosen for U

1' 
U
1' 

u
2 

and u2  are, in fact, sine 

functions, then the non-zero elements of D1 
	— 

and D
2' 

 after integrating 

the expressions in equations (5.49) and (5.50) are respectively: 

d
mn,n 

 u
1  
In(o) 	 (5.51) 

2 
dmn,m 

= U
2 

 (o) 	 (5.52) 

Hence 

1 	
= 	 (5.53) 

2 
= D T 	 (5.54) 

— 	 4 

If S is the number of functions chosen to represent each of the displacements 
••••••••=110•• 

u
1
, u

2 
and w in each of the directions pi and !32,* then the order of 

*It is not essential to adopt the same value of S for each displacement. 
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the respective submatrices is tabulated below: 

Submatrix Order 

A_
11 

(i,i = 1,2,3) 
— 

- 	- D1' D2 

- 	-4 D3' D 

a,b,c,g,45,16 

X2 

7,3  

S2 
x S 

S
2 

x S 

S x S
2 

S
2 

x 1 

S 	x 

1 	x 

1 

1 

Then there are 3S2 constants to be determined by equations (5.44) and 

(3S2  + 2S + 1) constants to be determined by equations (5.46). 

However, since functions ID have been chosen to be used in 

conjunction with the Lagrangian multiplier method, the number of constants 

to be determined by equations (5,46) may be reduced „ For the 

symmetric problem chosen here, functions ID for u (say) are: 
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(1-281), sin 2u31, sin 4:r81, sin 6:r81, ....., sin 2irri31, 	 

where i = 1,2,3, 	 ,(S-1) and function (1-231) corresponds to i = 0. 

Substituting these functions in the constraint condition given by equation 

(5.28) yields: 

a
Of 
. 	= 	0 	 (5.55) 

where 	j = 1,2,3„S. 

The S constants given by equation (5.55) are set to zero before 

solving equations (5.46). 	In this way the number of constants has been 

reduced by S. 	A similar argument applies to the constraint condition 

given by equation (5.29). 

A further advantage in following the procedure outlined above is 

that it avoids any numerical difficulties that may arise when using 

functions ID. 	(This matter was discussed in detail in section 4.4.2). 

The solution of equations (5.46) forms the basis of the numerical 

results presented in this chapter. 	When no Logrengian multipliers are 

used these equations reduce to equations (5.44). 



K2  
z'i = —r Lc(2x, - 

K
2 

z,2 = 2 

(5.58) 

(5.59) 
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5.4 	Overall Equilibrium Check  

In chapter 4, the numerical results were compared with available 

exact solutions. 	In the problems considered in this chapter, no such 

exact results are available. 	It is therefore necessary to apply some 

chedc on the solution, 

Since the indirect methods discussed in this thesis attempt to 

satisfy equilibrium, a suitable check is one of overall equilibrium. 

5.4.1. Geometry and Assumptions  

From figure (2.4) the equation of the middle surface of a trans-

lational shell is given by: 

 

z 
K

2 [".211 	11x1)+  (x22 12x2)] (5.56) 

(5.57) 

 

2 

where 

   

8f7  

 

   

1
2 
2 

 

The copes of the middle surface in the x
1 

and x
2 

directions are respec-

tively: 
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Substitution for K2 given by equation (5.57) in equations (5.58) and 

(5.59) yields: 

f
21 z, 	= 4cr 	(1 - 
2 

2 	2x2 
z,2 = 4T-0 -,) 

2 	1 9 

(5.60) 

(5.61) 

The assumptions relating to the shallow curved plate theory 

(chapter 2) imply that the products of the slopes z,1  and z,2  may be 

neglected as small compared with unity. 

Similarly it may be assumed that 

	

z,. (i = Lor 2) =1.- tan G. Te sin G. := G. 	(5.62) 

cos G. 24  1.0 
	

(5.63) 

	

xi 	 2  
r  

	

Within the limits of the curved plate approximation T- 	and 	may be 

	

1 	2 

replaced by :31  and 32  respectively and equations (5.60) and (5.61) 

become: 

z, 1 
f 

= 4cr 	- 260 
2 

(5.64) 

f2 z,2 = 4 r (1 - 26 ) ' 2 2 
(5.65) 
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5.4.2. Resolution of the Load and Stress-Resultants in the 

Directions xl'  x2  and z. 

Since the loading and boundary conditions are symmetric about 

f,31  = 0.5 and f32  = 0.5, only one quarter of the shell need be considered 

(figure 5.1). 

Let E1, E2 and E3 be the errors in equilibrium for one quarter 

of the shell (figure 5.1) measured positive in the directions x1, x2 and z 

respectively. 

Then resolving the load and stress resultants in the directions x 

x2 and z respectively and allowing for the assumptions previously made, 

i.e. ignoring terms containing products of slopes of the middle surface and 

assuming that the relations given by equations (5.62) and (5.63) hold, 

yields the following three equations respectively: 

[ -n12(ci1 1°)  + c12(a1  ,o)(z,,) _ 	dal  + 
x -2 °  

E1 

	Jr 

0 

12 
17 

(5.66) 



12 

n 

0 

Ii  

ow 

I 7 

0 

12 
2 

C3 

1
1 	n 

1
2 

2 	2 

0 
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7 
[ -n22(a1 ,o) + 	, 

31' 	' 
1 

-2 	 n22
v2%  

c12(al'°)(zi2)x2=-0] dal 
+ 

0 

o, a2) + qi(o ,a2)(z 2 dal  

1
1 	

1
2 

21 2 

0 0 

  

Z(z,2)daida2  +0(z,2)
x1 

=0  

xr2  

(5.67) 

 

00 

Zdalda? 
0 0 

From table 5.4 and equations (5.4) and (5.5) the following are 

obtained: 

(5.68) 



(r2) 	[1.; (0.Q ) 
2 112 

1 
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n.. = Z n.. = 
11\2 

qi 
	Z11;1'1 

= ZI1 I2 

da. 	Ldp. (not summed) 

where i and j range over the values 1 and 2. 

qi , 0 and dai  by the above expressions and for 

NIB 

ZI 2 
2 

8f
2 

n.. 

Substituting for nii, 

(z,1 ) and (z,2) by 

equations (5.64) and (5.65) in equations (5.66), (5.67) and (5.68) 

yields: 

E
1 	= Z11 12

(E
1 

) 
	

(5.69) 

E2 = Z11
12M-2) 
	

(5.70) 

E3 = Z11 12a3) 
	

(5.71) 

where the non-dimensional forms if1' ; and E
3 

are given by: 

I 
f  = -g  '.(T4 	[712(31 ,0) + 32cr2(r-2 ) q2( 1 10)(1-2fy]  df31  + 

2 	 2 

f7  2 
1 n 

 - 
11 - - 	(0.5, 82) + 32cr(r) q1 (o,132)] dp2  + 

r 2 

f2 	f2  
+ 4cr(r - lar(r) 

2 	 2 
(5.72) 
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f7  2 

= .144-) 	[ 2 	 0.5) + 32ry) ;207 ,4 n22(131'0)  - ;22°1' 2 

1
2 

11 	 f
2 2- 

+ r "12  (o 82) + 32 (1--) qi(o,P2)(1-2137)] dp2  + 
2 	 2 

f 	f2  
+ 4(r)u t.(1—) 

2 	2 
(5.73) 

["22(81'°) 4' '11.'1201,0M-2y - 2rii2(81,o)] d81 

+ + 	 f1 	 i3- 
z z 	r 	n12(°''8 2)(12  - 2) 	1(o p 2  d 

- C71 + 0.25 	 (5.74) 

Equations (5.72), (5.73) and (5.74) are the equations used to check 

overall equilibrium for a shallow curved plate. Tv  E2  and -E3  are the 

errors in equilibrium expressed as a factor of (Z11 12) and measured 

positive in the directions x1 , x2  and z respectively. 

1 

T3 
0 
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For the overall equilibrium check it is necessary to define a  

further parameter (r2  ),  which is a measure of the shallowness of the shell, 
7 

to determine E1 and 2' 

5.5 	Convergence Study of the Approximating Functions  

In this section combinations of the boundary conditions given in 

table 5.4 will be applied to particular numerical examples. 	In the 

computer program developed, provision is made for the symmetry of the 

problem by choosing the functions given in table 5.4 such that: 

(a) u2 wm, L2e  are symmetric functions about 81 = 0.5 

(b)u m  is an antimetric function about 81  = 0.5 1 	 e  

(c) Un 
Wn'  L

e are symmetric functions about 82 = 0.5 1  

(d) U2 is an antimetric function about 82 = 0.5 

5.5.1. Numerical Examples  

The examples to be studied are given in table 5.6. 	The corres-

ponding results* are presented in tables 5.7 to 5.12 inclusive and 

*The results in the tablet are presented in floating point notation 

e.g. 1.234, +3 means 1.234 x 103 

12 Note that  E3  is independent of (r) 
2 
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figures 5.2a, 5.2b and 5.2c. 

Displacements, stress-resultants and stress-couples are presented 

in non-dimensional form (table 5.1). 	The actual values are obtainable 

from the expressions given in table 5.2. 

In tables 5.7 to 5.12 inclusive the values marked with an asterisk 

(*) are based on the Lagrangian multipliers and the corresponding values 

in brackets are based on the displacement derivatives. 

In the overall equilibrium check ,  E
1 

and E
2 

are presented in 

their non-dimensional forms El and E2, whilst E
3 

is expressed as a 

percentage error (-10'400 .9.* 
S is the number of functions used to represent each displacement 

in each of the directions pi  and ;32, due allowance being made for the 

symmetry of the problem in the selection of these functions. 

5.5.2. Discussion  

The convergence of the displacements was good for all combinations 

of the boundary conditions considered i.e. clamped, hinged and normal 

slide (1). 

*This check was not incorporated in the computer program and the 

integrations in equations (5.72), (5,73) and (5.74) were performed 

numerically using Simpson's rule. 
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When a hinged boundary was used, the convergence of n
11 (or 

n22) along this boundary was slow, but satisfactory within the shell (note 

example 5.2A). 	This was reflected in the large errors in the overall 

equilibrium check. 	Application of the Lagrangian multiplier method in 

conjunction with functions ID (case (b) in table 5.4) greatly improved the 

boundary value of n
11 

(or n
22

) and reduced the errors in equilibrium 

(compare example 5.2B with example 5.2A). The boundary value of ni  

(or n22) based on the Lagrangian multiplier again provided a more accurate 

estimate than the corresponding value based on the displacement derivative 

(refer to section 4,4,2 where this matter was discussed. in detail). 	It 

was previously noted (section 4.4.2) that functions ID when used in the 

manner described in this thesis may be effective in improving a particular 

stress-resultant, which is slowly convergent on the boundary but satisfactory 

elsewhere. 	The examples studied in this section are a further illustration 

of this. 

With clamped and normal slide (1) boundaries, the convergence 

of the membrane stress-resultants was good and, although provision was 

made in the computer program, it was unnecessary to apply the Lagrangian 

multiplier method (case (b) in table 5,4). 
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When normal slides (1) were considered along all boundaries 

(example 5.3, table 5.9, figures 5.20, 5.2b and 5.2c), the moments 

(stress-couples) were generally very small except in the region of the 

corners where convergence was slow. 	in this example the Lagrangian 

multiplier gave the normal reaction in the corner. 	Example 5.3, in some 

respects, is similar to example A7 in section (4.4.2). 	In example A7 

functions 1B were used to represent Wm  and the Lagrangian multiplier 

method applied in conjunction with the constraint condition Wm 
= 0 at 

02  = 0,1. The boundary moment in this case was very slowly convergent 

(note, in particular, figure 4.6). 	For comparison, the solution for a 

shell with the same parameters but with all edges clamped, is also given 

in figures 5.2a, 5.2b and 5.2c. 

With other combinations of clamped, hinged and normal slides (1), 

the moments were generally converging satisfactorily, 

Normal shears (stress-resultants) on the boundary were generally 

slowly convergent, which undoubtedly contributed to the errors in 

equilibrium, particularly if the shears were of a significant magnitude. 
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5.6 	Comparison with Other Available Solutions 

Example 5.7: 	Consider an elliptic paraboloid with the following data: 

= 	1.O r 

pT  = 0.0152928 

c = 0.5 

= 0.25 

and boundary conditions: 

clamped at al  = 0,11  and a2  = 0, 12. 

The convergence of this solution was studied in example 5.1. 
(15) 

This example was also solved by Noor and Veletsos , using a 

Rayleigh-Ritz analysis and a modified finite difference technique. 	A 

comparison is given in table 5.13 and figures 5.3a and 5.3b. 	The 

solutions show good agreement. 

In the Rayleigh-Ritz analysis used in reference (15), a w - 

formulation is used and functions IE and IC have been chosen to represent 

respectively w and p in each of the directions pi  and 82. 	Note that 

the boundary values of the moments so obtained, are smaller than for the 

other solutions (table 5.13 , figure 5.3a). 	It has been previously noted 

(section 3.1.4), that the functions IE impose the additional boundary 
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conditions of zero normal shear and zero Kirchhoff shear, and this 

undoubtedly is reflected in the slower convergence of the boundary 

moments observed for this case (refer also to example Al in section 4.4.2). 

Example 5.8: 	Consider a cylinder with the following data: 

I
1 = 600 in. 	1 2 = 497,4 in.* 	h = 4 in. 

K
1 

= 0 	 K2 = 1.8519, -3 in 1  

E = 3.0, +6 lbs/in2 	V = 0 	Z = 0.555 lbs/in2  

and boundary conditions: 

clamped at al  = 0,11  and a2  = 0,12. 

This example was also solved by Gunasekera
(6)0

nd by Lu
(5) 

 using 

an extended Levy method of solution. The solution is compared with 

that given by Gunasekera in table 5,14, 

The solution for in
11 on the boundary is less than that given by 

Gunasekera by approximately 10%. Otherwise the solutions show good 

agreement. 

*This is the arc length corresponding to a plan length of 480 inches. 

In the shallow curved plate theory discussed in this thesis, no distinction 

is made between the arc length and the plan length. 	However, in 

order to compare the indirect solutions of this thesis with other available 

solutions it is sometimes necessary to use the arc length. 
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Example 5.9: Consider a hyperbolic paraboloid with the following data: 

11  = 51.32 ft.* 	L2 = 61.59 ft.* 	h = 2.5 in. 

K = -10 	1 385, —1 ft 	K2 = 1.2021, -2 ft -1 
1 

E = 4.5, + 8 lbsift2 	V= 0.15 	Z = 50 lbs/ft2  

and boundary conditions: 

hinged at al  = 0,11  and 02  = 0,12  

6 
This example was solved by Gunaseke

(
ra
)  

** and a comparison is 

given in table 5.15. 

Note that the Lagrangian multiplier method is used in an attempt 

to improve the boundary values of__ ni and n22.  
to case (b) in table 5.4 are used. 

Functions corresponding 

*These are arc lengths corresponding to the plan lengths 50 ft. and 60 ft. 

respectively. 

1 **The results presented by Gunasekera were at .gth points. 

1 presented here are at Toth points. 	This example was re-run for this 

latter output using Gunasekera's computer program. 

The results 
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The solutions generally show good agreement. 	Note the good 

agreement of the boundary values of n11  and n22  based on the 

Lagrangian multipliers with those given by Gunasekera. 

5.7 	Further Solutions - Variation of the Shell Parameters  

The non-dimensional form of equations (5.9), (5.10) and (5.11) 

shows that the translational shell is completely defined by the parameters 

r, p.r, c and V , 	Such a representation permits the behaviour of 

translational shells to be conveniently studied by the variation of these 

parameters. 

The examples considered and the particular parameter being 

varied are given in table 5.16. 	The corresponding results are given 

in tables 5.17 to 5.22 inclusive. 

All results are presented in non-dimensional form (table 5.1), 

the actual values being obtained from the expressions given in table 5,2, 

The Lagrangian multiplier method is used in example 5.14 (case 

(b) in table 5.4). 	In this case the boundary values of nil  given in 

table 5.21 are based on the Lagrangian multiplier. 

S = 8 has been chosen in each of these examples. 
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5.7.1 Discussion  

Variation of  pi.: The parameter pi., defined by equation (5.13), 

varies with shell thickness and shallowness. 	This thesis is concerned 

with the study of thin shallow shells and pl. should be interpreted accordingly. 

The thin flat plate is recovered from pi. = co. 

For comparison the following flat plate solutions for r = 1 and 

V = 0.15 are given*: 

(0 
	

all boundaries clamped: 

;7(0.5, 0.5) 	= 	1.265, -3 

;11(0, 0.5) 	= 	-5.084, -2 

7111(0.5, 0.5) = 	2.021 -2 

(ii) 	all boundaries hinged (simply supported): 

74(0.5, 0.5) = 	4.062, -3 

mi 1(0.5, 0.5) = 	4.234, -2 

*These values are in non-dimensional form and were obtained from the 

computer prcgram developed by using a very large value of p.r. The 

actual values follow from table 5.2. S = 8 was again adopted. 
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(Hi) 	all boundaries with normal slides: 

ZA.r.  (0.5, 0.5) 

(0, 0.5) 

mi 1(0,0) 

m11(0, 
0'5)  

mi  (0.5, 0.5) 

= 

= 

= 

= 

5.771, 

4.323, 

-2.322, 

-1.956, 

3.159, 

-3 

-3 

-1* 

-2 

-2 

2.500, -1 

As the shell becomes shallower, i.e. as p1. increases, tables 

5.17, 5.19 and 5.20 show that -yr, ;11 and -07 (example 5.15 only) 

also increase, slowly approaching the solution for a thin flat plate. 

When pi. = 0.03, which corresponds to the values (r-) = 100
1  	

and  
1 2 	 1 1 

(f-) = -24, the solution for the shell, although very shallow, is still 
2 

very different from the corresponding flat plate solution. 

On the other hand, nu  decreases very slowly with increasing 

shallowness and is still of significant value even for a very shallow shell 

= 0.10), particularly in example 5.15. 	Similarly n12  is decreasing 

slowly with increasing shallowness, but it is of smaller magnitude than n11* 

*This value is slowly convergent..  
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Similar remarks apply to increasing thickness, which also corres-

ponds to an increasing pT' 
but any comments are restricted to thin shells.* 

Note that only the effect on the non-dimensional values has been 

considered. 	The actual values follow from table 4.2, which gives: 

w = 
12 ZI1  (1-11

2
) II  3_ 

(-g-) w 

1 	/2
712 

n11 = Z11 (.-  8r • 	); 	 1  (PT 	 ; 11 ) 
f2 	11  

Then if increasing p.r  is interpreted as increasing shallowness the effect on 

the actual stress-resultant nll is dependent on (pTn11). 	Referring to 

*V1asov (page 337, reference 9) restricts thin shells to the range: 

Kmaxj

e 1  
-= 30 	 (a) 

where 
1  Km" 

is, numerically, the maximum undeformed curvature. 

If 	1 K2  I > I K11 , then (a) becomes: 

,h 	
f
21 	 1 r" ri 	221:57 

1 	2 

and if K
2 I then (a) becomes: 

(11)(113. ) <240 
1  

1 	k 	— 	r icl 
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the tables, it will be noted that the product (p.rni i) increases with 

increasing pr 	However, beyond the range considered here, the product 

begins to decrease with increasing pi. and approaches zero as p1. becomes 

very large. 

If increasing p1. is interpreted as increasing thickness, but 

restricted to thin shells, the effect on the actual displacement w is 
1
1  3—  dependent on (-0 w 

The non-dimensional presentation of the tables given in this section 

covers, very compactly, the solutions for a wide range of thin shallow 

shells. 

Variation of c: 	Only the case with all boundaries clamped is con-

sidered and the results are presented in table 5.18. 

Since pT  remains constant, the variation of c represents, in effect, 

the variation of K
1 

with all other data fixed. 

As c increases from -2.0 to +2.0: 

w and m
11 

initially increase, reaching their maximum values, 

within the limits of the results presented here, at c = 0 after 

which they begin to decrease. 

• m
22 

initially increases, reaching its maximum value at c = -0.5, 

after which it begins to decrease. 

(a)  

(b)  
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(c) n
11 changes sign, reaching its maximum positive value at c = -1.0, 

and its maximum negative value at c = +1.0. 

(d) n22 initially increases, reaching its maximum value when c = 0, 

after which it begins to decrease. 

(e) n12 changes sign, reaching its maximum positive value when 

c = -2.0 and its maximum negative value when c = U.S. 

Variation of r: 	Only the case with all boundaries clamped is considered. 

The results are presented in table 5.19. 

Since pi. remains constant, the variation of r represents, in effect, 

the variation of 12 with all other data fixed. 

As r increases from 0.5 to 5.0: 

(a) the maximum value of w along p1  = 0.5 increases, reaching its 

highest value, within the limits of the results presented here, at 

r = 2.0, after which it begins to decrease; the location of 

this maximum value moves towards the centre of the shell. 

(b) the maximum value of w along (3
2 

= 0.5 increases, reaching its 

highest value at r = 2.0, after which it begins to decrease; 

the location of this maximum value moves away from the centre 

of the shell. 
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(c) the maximum value of m11 along the boundary p1 = 0 increases, 

reaching its highest value at r = 3.0, after which it begins to 

decrease:, the location of this maximum value moves towards 

the centre of the boundary. 

(d) m22 along the boundary 132 = 0 increases, the location of its 

maximum value remaining unchanged. 

(e) n11 along the boundary pi  = 0 decreases, whilst along 132  = 0.5 

it increases reaching a maximum at r = 2.0, after which it 

begins to decrease. 

(f) n22 along 131 = 0.5 decreases, whilst along the boundary 132  = 0 

it initially increases, reaching a maximum at r = 1.0, after 

which it begins to decrease. 

Variation of v : 	Only the case with all boundaries clamped is 

considered. 	The results are presented in table 5.20. 

As v increases from 0 to 0,30: 

(a) w decreases 

(b) the magnitude of m11  generally decreases 

(c) n11 increases slightly 

(d) ;12 decreases. 

The actual displacement w is given by (table 5.2): 
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W = 
ZIP   12 ZI, — 	i /1  ... .1)  2); 

D w  = ' Eh3 

which also decreases with increasing V . 

5.8 Discussion of the Computer Programs  

The single computer program developed for translational shells is 

limited to uniformly distributed normal loading and to boundary conditions 

which are symmetric about p 1  = 0.5 and j32  = 0.5. However, any 

symmetric combination of clamped, hinged or normal slide (1) boundary 

conditions (table 5.4) may be specified. 	Provision is also made to apply 

the Lagrangian multiplier method in conjunction with u1  = 0 (along 

pi  = 0,1) or u2  = 0 (along p2  = 0,1) for each of the boundary con- 

ditions specified (refer to case (b) in table 5.4). 

The approximating functions are selected in accordance with the 

symmetry of the problem (section 5.5). The same value of S for each 

displacement in each of the directions pi  and r,32  is considered. 

Input, and therefore output, could be either in non-dimensional 

form or in terms of the actual dimensions. 

In order to economise on computer storage, the system of linear 

algebraic equations was solved by partitioning the equations into their 
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submatrix form (equations 5.44). 	Note that when the modified form 

given by equations (5.46) was used, the S constants given by equation 

(5.55) were pre-set to zero and the equations rearranged in the form 

given by equations (5,44). 

Further details of the computer programs are avAble at Imperial 

College. 
(69) 

The computer programs were written in EXCHLF Autocode(70),(71) 

for the University of London Atlas Computer. 
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CHAPTER 6 

APPLICATION OF THE INDIRECT METHODS TO RULED 

SURFACE SHELLS 

In this chapter the proposed indirect methods will be applied to 

ruled surface hyperbolic paraboloid shells (figure 2.5), for which no exact 

solutions are available. 

Only uniformly distributed normal loading (Z) will be considered. 

A u
1-u2-w formulation will be used after a short discussion of its 

merits in comparison with a w-X formulation. 

The Galerkin equations, in terms of w and X ares 

f
t  

J o  Jo 

1 .12 

J o  o 

[D \7
4

w + 2K ..11S 	 5wda da 
lz '12 	 1 2 

= 0 

[ 4  V X - 2EhK12w, 
12] *alda2 	

0 

In the Galerkin method the functions for w and X must be chosen such 

that all boundary conditions are satisfied. 



- 141- - 

The first of these equations can be derived from the principle of 

minimum total potential energy and the second from the principle of 

minimum complementary energy (refer to section 2.3). 	Note that the 

;Scher stress-resultant function, A, automatically satisfies the relevant 

equations of equilibrium. 	variational treatment along these lines is 

given in reference 15. 

Consider the case when the shell is supported on all boundaries by 

normal gables (Table 6.3), which correspond to the boundary conditions 

w = o = m
11 

and u
2 

= o = n
11 

at a
l 

= o, 1
1 

and w = o = m
29 

and 

ui  = o = 	at 	= o, 	In terms of w and 	the boundary conditions 

become w = = '
NI 1 and  = = 	1 at  al 

=o, 1
1 

and w = o = w
'22 

and 	= o = 42,7  at al  = o, I). 	The obvious functions for w and if, 

which will satisfy all the boundary conditions, are sine functions (IA in 

Table 3.1) such that w is symmetric and iS antialetric about the centre of 

the rectangular plan-form. 

The application of these functions yielded results which compared 

(19),(25) 
unfavourably with other available solutions. 	The use of the Richer stress- 

resultant function, in this case, inhibits the selection of an approximating 

function which simultaneously yields realistic distributions of the corresponding 

three 'stress-resultants i.e. n
11' 

n
2? 

and  n
12 
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The u
1
-u2-w for iulation allows greater Freedom in the distribution 

of the membrane stress-resultants and a more direct formulation for the 

boundary conditions. 	A suitable form For these equations follows. 

6.1 Mon-Dimensional ;:on-ii of Equations  

Let the displacement distributions assume the following forms: 

where 

a 1;(3 )11'1(3 
n 

U
1 
 -7-* 	 :eln 1 ' 1 	1 ' 2 

u7 ra 	
v.) 

n
u

n  

n  
cmnwm(11

)W
n
(
•2

) 

a?  
31  = 

:11 

1 w 	K1 

(6.1) 

(6.2) 

(6.3) 

(b.4) 

(6.5) 

m 
bmn and  cmn are constants to be determined, u1  u2  , wm, 111

n
, 

U? and Wn 
represent sets of independent kinematically admissible functions, 



- 143 - 

and m and n are positive integers. 

The corresponding displacement variations may be selected in the 

following forms: 

1 	 0'11(3 ) fl(3 
1 	 1 '1 1 '2 n 

(6.6) 

(6.7) 

(6.0) 

u 	'KJ
n

(3 )8!) 
	 9 ' 1 	' 	mn 

6w = 	
l• 7 	)V1,  (3 18c 

K
19 	

• 	
m

1 	
n

1 
	.1 	n ' 2 	inn 

where Sa
mn

,  6b
mn 

and Sc 	are arbitrary variations in the constants 
rein 

a
mn

,  b
ran 

and  c
‘nn 

respectively. 

In the following derivation only the boundary integrals corresponding 

to n
12 

will be retained. 	In all other cases the boundary integrals will 

he assumed to vanish by virtue of the chosen functions. 

Then the variational equation (2,9C) after: 

(a) setting XI ,X2  and the. applied boundary loads to zero, 

(b) non-dimensionalising the co-ordinates to the (3
1'  p2  ) set defined by 

equations (6.4) and (5.3), 

(c) setting K
11 

and 	to zero, 



- 144 - 

and {d) substitution of equations (6.1), (6.2), (6.3), (6.6), (6.7) and 

MS), 

reduces to the following three independent equations, since Samn, 

Mriin and Scnin are arbitrary: 

 

Uf  - (1- 11)  r2a ui  Ui 	- (1+11  b 	U/  + if 1,11 1 	ii 1 1,22 --T.-  kl 	2,2 

11 

+ r(1- Ac w IA' 1 umUnd3 da - 2r 	; (3 o)umUn(o)d3 = C (6.9) pq p q,2 	1 1 ' 1 '2 	12 ' 1, 	1 1 	' 1 
o 

sl 1 (i+  
r  
c 	 • 

0 0 	
2 

 

k I 	- (1-Y) 	uk Ul + a..ui 	t) 	- b u U  it 1,1 1,2 	kl 	2,22 	
2r

2 	kl 2,11 2 

1 

cpciwp, 1  Wcj u2111.12ndf3, 1d:3,7  -. 72 ;19(o, ,32)ulm(o)U3dP2  j 	 = C (6.1C) 

0 

ff 00 

[-r(1-1)a 	(/-1)  ii 1 1"). 'klu?.,1 U TT pqwp,1111Wq 

+ 2r-cpciwp,1 
1 

‘Alq,22  + r'cpciwpWci, 2222) + 2(1- V )cpciwpiNg  - 

-1 wmWndd3
2. 

= 
	

(6.11) 



r =T; 	 (6.12)  where 
11  
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h . 1_ h 	12 

191

1 h  

	

r T 	7,)•.• 
  f 

 

(6.13) 

1(1- ) 
717 12 

 

(6.14) 

 

k, I, gin, n, p, q are positive integers and n12 is a function 

of pi  and 32  and is the non-dimensional form (given in Table 6.1) of n12. 

In equations (6.A, (6.1( ), (6.11) and table (5.1), the Einstein 

summation convention is adopted and comma notation is used to represent 

differentiation with respect to 31  and 37  . 

In deriving expressions for the boundary integrals, the boundary 

conditions were assumed syametric about 	= 0.-: and 132  = 0.5. 	If 

this were not the case equations (6.9), (6.1C) and (6.11) would be 

modified in the following way: 

1 

replace 	[- 7r 	ri19 '11  1 1 o)urlUn(o)d3 1 	by 

[4- 

1 

r n 

 

3 3 )urnUn(f3 ' 	1 	2. 
0 
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1 
n 	(o 3

" 
)u (0) U,)  0,7  j  12  

0 

 

replace - y 

  

  

1 	 3
1  =1 

	

. 2  .. 1 	.. 	f 1 	i I 1 	1 il ii I n  All 

	

[ i 7 	ni,,,,,ii  ,,,2..u2k;1..-,,,ii-'7] I 

o 	
1 

-% -..,- ) 	. 

It is evident from the foregoing that the problem is specified through 

the non-dimensional parameters 2,, r and .1) .* 

With 	= 1 equations (6.9), (MC) and (6.11 are the equations  

used for the solutions presented in this chapter. 

The actual values of the displacements, stress-resultants and stress-

couples, for any uniformly distributed normal loading Z, are obtained 

from the non-dimensional forms given in table 6.1 by the factors given 

in table 6.2. 

'Equations (I.9), (1.1 ) and (_x.11) are the Galerkin equations 

modified by expressions corresponding to the relevant boundary integrals 

in equation (2.90). 

*The single parameter 2„ could have been replaced !)y the separate 

parameters (-r-) and (t). 	However, the use of 7,, covers a wider 
1 

range of shells. 
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6.1.1 Modification for the Lagrangian Multiplier Method  

In this section only the following homogeneous kinematic conditions 

will he considered: 

u
l 

= 	at 	a = 	1 	(5.15) 

U2  = 

w = 	at (ai,a,) = (0,0),(11,0),(0,12),(1117) 	(6.17) 

Assume that the conditions given by equations (6.15), (6.16) and 

(6.17) are now applied as constraint conditions. 

Then the following procedure described in section (3.1.1 and 

assuming that the boundary conditions are symmetric about  a
l = 0.5 11 

and a2  = ('.5 11, the variational equation (2.90) is modified to: ...........  

Left hand side of equation (2.9C) + 

ril 
xi (a

l )6u1(al 
 °)da

l 

+ 2 

O 

+ 4 	6w(o,o) = G 	 (6.18) 
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where hl  (al  9(5) and ,3  (a constant) are the Lagrangian multipliers 

corresponding to the displacements u1, u, and w respectively. 

The constraint conditions are: 

ul(a1'o) 	 (6.19) 

u2(o/a2) = G 	 (6.20) 

w(o,o) = 0 	 (6.21) 

quations (406) to (3.21) inclusive completely define the problem. 

Expressing 

)11(al) 	/ she   1 Le(a1  ) (6.22) 
e 

)5(a2) 	
____ > ,N7e1.2e 2  

(a ) 	 (6.23)  

A2  where X.7 and ),2 are ccrtstants 

Le(a1  ) and Lle(ctl) represent sets of independent functions, 1  

and 	e is a positive integer, 

and proceeding as in sections (6.1) and (3.1.3), equations (6.1,J) to 

(5.21) inclusive reduce to the following: 
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Left hand side of equation (6.9) + 2r7eUn(o) 	Leu1  ac131  = 0 (6.24) 1 1 	1  

1  7  -e 
22 Left hand side of equation 0.10) + - X u (o 	ti L,,nd:37  = 0 r 

0 

Left hand side of equation (6.11) + 47Lw (01.1,1 (o) = 0 ra 	n 

a.. 	11i  (o) 

bkl u2(o) 

c 
P9 

 w 
P

(o)!A! (o) 

where 

ce 

= 

= 

= 

1- V' 

Q 

0 

C 

e 

7 

(6,17) 

(6.20 

(5.29) 

(6.30) 

(6.31) 

(6.32) 

2 

(1 
I 12 1 2 '43 

(."-;.23) 

(6.26) 

with Z = 1 equations (6.24) to (6.29) inclusive are the equations used  

in conjunction with the Lagrangian multiplier method. 

As before the non-cli-nensional and actual values of the displacements, 

stress-resultants and stress-couples are obtained from tables 6.1 and 6.2 

respectively. 
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Interpretation of the Lagrangian multipliers  

The Lagrangian multipliers provide the generalised reactive force 

associated with the corresponding constraint condition. 

Then for the symmetric case considered: 

ni2(ai  ,o) = (al) (6.33) 

n
12

(o
'
a2) = ?2(02) (6.34) 

0.(o,o) = )+3  (6.35) 

where 0 is the nopnal reactive force at a corner of the shell and is 

positive when acting in the (-y) direction. 

In the non-dimensional form equations (6.33), (6.34) and (6.35) 

reduce to: 

;;no o) = 7.101) 
= 	> Te  Le(')

1 
 ) 1 1 '  0 

(6.36) 

n (o ) 
12 1r2 

 

(6.37) 

  

U(o, o) = 	 (6.3G) 
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Equations (S.3M, (6.:;7) and (6.30 provide alternative* boundary 

values to those based on the displacement derivatives. 	The actual values 

are obtained as before from table 6.2. 

This matter will be discussed further in section (6.5) in conjunction 

with numerical examples. 

6.2 Boundary Conditions and Approximating Functions  

The boundary conditions to be considered in this chapter are given 

in table 6.3. 

ly boundary conditions which are symmetric about f3 = 0.5 

and 	= 0.5 are considered. 

For the reasons given in section (5.2), the functions chosen to 

specify a particular boundary condition are given in table 6.4. 	Details 

of the approximating ;unctions are given in table M. 

In table 6.4 two separate sets of functions are associated with the 

hinged and nor nal gable boundary conditions: 

*As discussed in section (3.1.3), the values based on the Lagrangian 

multipliers are generally different from the corresponding values based on 

the displacement derivatives. 



0 a /.; 
—19  

C L:21 +, (6.3A 
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(a) functions which satisfy all the boundary conditions 

(b) functions which violate the conditions ui(ai,o) = C or 

u(o'a2) 	C. tiut satisfy the remaining conditions on a boundary.* 

Case (b) is considered in conjunction with the Lagrangian multiplier 

method. 

Any combination of the boundary conditions given in table .5,4 

may be specified. 

6.8 Reduction to a System of Linear Algebraic Equations  

or a particular set of approximating functions, equations (6.9), 

(5.1C) and (601), with 7 = 1, reduce on intogratias 	to a system 

of linear alge'lrctic equations, which in matrix form are: 

*Cnly when normal slides (1 or 2) are considered along all boundaries, 

is the constraint condition w(o,o) = C considered in conjunction with 

the Lagrangian multiplier method. 
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or, more compactly: 

A a + g = 0 	 (6.40) 

where 	a = col a b 

9 { = col o o — _ 

Typical elements of the su'.,matrices in equation (6.39) are given in 

table 6.5a.* The relevant integration formulae are given in Appendix 2. 

The examples given in section (5.3) to illustrate the matrix 

notation adopted are equally applicable here, 

6.3.1 	'Aodification for the Lagrangion Multiplier Method  

When the Lagrangian multiplier method is applied, the modified form 

given by equations (6.24) to (6.29) inclusive is used. 	These equations 

may also be reduced to a system of linear algebraic equations which in 

matrix form are: 

*The comma notation user! in d_4"ining a typical matrix ckraent in 'tables 

6.5o and 6.5b 	g. all ..) does not represent differentiation. 	However, 

the comma notation used in the expression corresponding to a typical 

elc_Imunt represents differentiation with respect to ;31  and 

) 

} 
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A —11 

A —21 

-31 

D, 

. 

• 

A —12 

2 A2 —93 

-33 

• 

• 

o„ • 

. 

—2 

• 

. 

. 

. 

• 

dr 

. 

. 

. 

a 

m.• 

WNW 

• 

= C (6.41) 262:12 

. 

• 
4111.•.• 

Typical elements of the submatrices A.. (i,1 = 1,2,3), a, b, c and 

g are, as before, given in table 6.5(a). 	Typical elements of the 

remaining submatrices in equations (6.41) are given in table 6.5(b). 

The exanples given in section (5.3.1) to illustrate the matrix 

notation adopted are equally applicable here. 

The Lagrangian ,multiplier method is considered only in conjunction 

with a hinged or normal gable boundary (table 6.4). 

It has been established that the Lagrangian multipliers provide 

alternative values for n12 on the boundary (refer to section 6.1.1). 

Then the functions Le, and L; should be chosen such that the condition 

on n12 in the corner of the shell is satisfied. 	In Table 6.4 there is a 

choice of functions (IA: or In) for Lel and I.,e)  when hinged boundaries are 



- 15.5 - 

considered. 	If the boundaries pi  = 0,1 (say) are hinged and the 

boundaries p, = 	1 are either: 

(i) 	clanged, hinged, normal slides (1) 

or 	(ii) normal gables, normal slides (2) 

then the functions chosen for 14 will be IA for (i) and 11 for (ii), 

satisfying correctly the zero and non-zero conditions on n
12 

in the corner 

of the shell respectively. 	Similarly for I.le  by considering hinged 

boundaries at 3 = 0,1. 

If S is the number of functions chosen to represent each of the 

displacements ul, u7  and w in each of the directions Pi  and ,3,), then 

the order of the submatrices in equations (6.39) and (6.41) are identical 

to those given for translational shells in section (:'x.3.1). 	Also the 

subsequent remarks made in section (543.1) about functions ID, when used 

in conjunction with the Lagrangian multiplier method, are equally 

applicable here. 

The solution of eguwions (5.41) forms the basis of the numerical 

results presented in this chapter. 	When no Lagrangian multipliers are 

used these equations reduce to equations (•x.39). 
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6.4 Overall Equilibrium `;heck  

6.4.1 Geometry and Assumptions  

In figure 2.5 two equations, defining the middle surface of a ruled 

surface hyperbolic paraboloid shell, were given. 	The surface in figure 

2.513 is symmetric about either diagonal whereas the surface in figure 

2.5a is not. 	Since, in later derivations, only one-quarter of the shell 

will he considered, the surface defined by Figure 2.51. will be adopted. 

From figure 2.5b the equation of the middle surface is given by: 

z = :( (-.1-1x - 1 1 	+ 
11  2  2 1 	2  x-7  X1X2'  

(6.42) 

where "12 

 

(6.43) 

 

The slopes of the middle surface in the x1 and x directions are 

respectively: 

z, 	= K 	+ x ) 	 0,44 1 12 9 1 

1 z,2 	12 + x.1 ) 	 (6.45) 

Substituting for Ki,, given ..)y equation (6.47) in equations (6.44) and 

(6.45) yields: 



z, 

z,2  = 

7 r (1  2 
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2x2 (6.46) 

(6.47) 

- 2. 

Ix1 
T-(1  2 ) 1 1 

The assumptions relating to the shallow curved plate theory 

(chapter 2) imply that the products of the slopes z,1  and z,2  may be 

neglected as small compared with unity. 

Similarly it may be assumed that: 

	

z,. (i = 1 or 2) =  an fi. 	sin 8. 2-"' Q. 	(6.43) 

	

cos E;). = 1.0 
	

(6,49) 

Within the limits of the curved plate approximation 	and -1,-= may 
1 

be replaced by 3
1  and 	respectively and equations (5.45) and (5.47) '  

become: 

z,1 
 = 1 ."1—(1 	2 1  ) 

2 
(6,50) 

z,2  = TO - 2f1i) 
2 

(6.51) 



f 
1 2 

0 

6.4.2 Resolution of the Load and Stress-Resultants in the 

Directions x1, x
2 

and z 

Since the loading and boundary conditions are symmetric about 

= 0.5 and P2  = '.5, only one quarter of the shell need be con-

sidered (figure 6 . 1). 

Let 21, 	and 23  be the errors in equilibrium for one quarter of 

the shell (figure 5. 1 ) measured positive in the directions x1, x
2 and z 

respectively. 

Then resolving the load and stress-resultants in the directions 

x1, x,, and z and allowing for the assumptions previously made, i.e. 

ignoring terms containing products of slopes of the middle surface and 

assuming that the relations given by equations (6,43) and (6.49) hold, 

yields the following three equations respectively: 

F1  
1 
2 1 

+ ) + q2(a7 ,0)(z,1)x2,01 
dal  [-n12(a1,o) 	n12(a1, 	9 

0 

[-n1 	) + q 	)(z, 11 	' 
a
2 	1 ' a1 	l )x 	dal 

 
1 

2. 

o o 

21z, i)dai 	
°(z'l)x.r-43 

x2 1  

(6.52) 
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-"22(a1 '41a1 (12(al '°)(zi9)x2 	dal + 

 

11  

 

•• 

 

0 

En12(o,a2) + 1 12 n12v-1- , '2)  + qi(o,a2)(z,2)
x1 

] dal  - 
0 

(6.53) 

xf° 
11  

- 	n (a 0)(7 ) L 12 1' 	x2=0 

ni i(o,a2)(z,i )
)1 

3  
0 

12 
+ q1(o,a2)] dal  - 

(6.54) 

rom Tcble 6.4 and equations (6.4) and (6.5) the following are 

obtained: 



- 160 - 

- Z . 1- Z1 I 7 - 
:n.. = -7.-- n.. = - -,...-.. n. 

it 	0,12 	q 	I 	II f- 

Z 11 qi qi  

dai  = 1.0. (not summed) 

where i and range over the values 1 and 1 	Substituting For nil, 

qi,C. and dai  by the d3ove expressions and for (z,1) and (a,2) by 

equations (6.50) and (6.51) in equations (6.52), (6.51 and (6.54) 

yields: 

E1  = ZI1 I2(1) 

E2 = Z1
1

1
2
(

2
) 

E3 = 7.11
1
2
(3) 

tr where the non-dimensional form 'Prs 	and 	are given by: 

(6.55) 

(6.56) 

(6.57) 
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r 1? 
2 T { 111201'°)  -1;1,01, (2..5)1 

0 

7- , trxwi31,01 cla1  + •  

Co.50 

7.7  (! vo) r(r4;i10 1  ,0)(1-231)1 dPi  + 

  

  

.1,312(0,0i342) 	 .1;121r05, ) • 2 

 

  

(6.59) 
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= z 

2 

n12 - (3 o) + r n22- (3  o)(1-2 31  ) - 2r q- ,(21  ,o)] dp1  ' 	'  
t- 

  

0 

1 2 
1 " 

+ 	 [ n17(o,p,„) + r  —n1 	f31)(1-2,) 2q-1(od2)] cI32  - 

- 	+ 0.25 	 (MO) 

1quations (MO, (M) and (6.60) are the equations used to check 

overall equilibrium for a shallow curved plate. -El , 77  and 7- are 

the errors in equilibrium expressed as a factor of (Z1112) and measured 

positive in the directions xl , x2  and z respectively. 

;:or the overall equilibrium check it is necessary to define a  

further parameter (—) ,  which is a measure of the shallowness of the  

f 	 1 shell, to determine  77  and 7 	i !ate that 	is independent of () 
f 

6.5 Convergence Study of the Approximating unctions  

In this section covthinations of the boundary conditions given in 

Table 6.4 will be applied to particular nuoerical examples. 	In the 

computer program developed, provision is made for the symmetry of the 

problem by choosing the functions given in Table 6.4 such that: 
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(a) 	u 
m
' wm' 1 Le  are symmetric functions about 01 = 0.5 1  

(h) 	
iii 

u
2 

is an antimetric function about pi 	c.%5 

(c) un 	, If. are symmetric functions about 0) / n  

(d) 	U is an antimetric function about 13, = 0.5 . 

6.5.1 	Numerical r5canip I es  

The examples to be studied are given in table 6.S. The cones- 

ponding results* are presented in tables 6.7 to 6.18 inclusive and 

figures 6.2 to 6.5 inclusive, 

Displacements, stress-resultants and stress-couples are presented in 

non-dimensional form (table 6.1). 	The actual values are obtainable 

from the expressions given in table 5.2. 

In tables 6.7 to 6.16 inclusive, the values marked with an asterisk 

(*) are based on the Lagrangian multipliers and the corresponding values 

in brackets are [rased on the displacement derivatives. 

*The results in the tables are presented in floating point notation, 

e.g. 1.234, +3 means 1.234 x 103. 
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In the overall equilibrium check, Ei  and E,, are presented in 

their non-dimensional forms i; and if
2' 

 whilst 	is expressed as a 
L  

percentage error (= 4C.1C L3). 
3 

S is the number of functions used to represent each displacement 

in each of the directions pi  and Pr  due allowance being made for the 

symmetry of the problem in the selection of these functions. 

6.5.2 Discussion  

The convergence of the displacements was good for all combinations 

of the boundary conditions considered i.e. clamped, hinged, normal 

slide (1), normal gable or normal slide (2). 

When hinged or normal gable boundaries were used, the convergence 

of n
12 

along these boundaries was slow, but satisfactory within the shell 

(note, in particular, examples 6.2A and 613A). Application of the 

Lagrangian multiplier method in conjunction with functions ID (case (b) 

in Table 6.4) improved the boundary value of n
12 

 and reduced the errors 

in equilibrium (compare examples 6.2[ and 6.3) with examples 6.2A and 

*This check was not incorporated in the computer program and the 

integrations in equations (6.5'.1, (6.59) and (6.60 were performed 

numerically using Simpson's rule. 
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6.3A respectively). 	Note, however, that the errors ':'•1  and Z. in 

example 6.3D are of opposite sign and are of similar magnitude to 

example 6.3A. The boundary value of n
12 based on the Lagrangian 

multiplier again provided a more accurate estimate than the corresponding 

value based on the displacement derivative (refer to sections 4.4.2 and 

5.5.2 where this matter was also discussed). 

As an alternative to example 6.3B functions IC were considered 

in place of functions ID in Table 6.4 for a normal gable boundary. 

A separate computer program was written for this case and only a 

maximum of S = 6 was considered.* The results are presented in figure 

6.2 and compared with examples 6.3A and 6.3D. These results 

illustrate the good agreement obtained for n12 using either functions IC 

or ID in conjunction with the lagrangian multiplier method. 	However, 

the solution far n1? in example 6.3A shows poor agreement with the 

other solutions on the boundary, but good agreement within the shell. 

*No numerical difficulties were observed when using these functions for 

this maximum value of S. 	Igor to section 4.4.2 where this matter 

was discussed in detail. 
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Functions IF) again illustrate that, when used with the Lagrangian 

multiplier method in the manner described in this thesis, they 

effectively improve the boundary value of a particular stress resultant, 

which is slowly convergent on the boundary, but satisfactory elsewhere. 

With clamped, normal slide (1) or normal slide (2) boundaries the 

convergence of n
12 

was good. Also n
11 

and n
22 

generally showed good 

convergence for all combinations of the boundary conditions considered. 

When normal slides (1 or 1) were considered along all boundaries 

(examples 6.4, 6.3 and 6.1:1) the moments in the region of the corners 

were very slowly convergent (note figures 6.3, 5.4 and 6.5). 	This 

effect was also noted with example 5.3 (see Table 5,4) and the remarks 

made in section 5.5.2 in reference to this example are also relevant 

here. 

With all other combinations of the boundary conditions considered, 

the moments were generally converging satisfactorily. 

Normal shears on the boundary were generally slowly convergent 

which undoubtedly contributed to the errors in equilibrium, particularly 

if the shears were of a significant magnitude. 

:-tote the form of the solution in examples 6.7, 6.10 and 6.11, 

•••• 

where u-
1' -n11' 

n 	
"12 

 and q2  are zero throughout the shell and 
1 
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w, u2, ran, mil  and qi  are constant in the ;39  direction i.e. in the 

direction of the nornal slide (2) boundaries. 	Note also that examples 

6.1C and 6.11 yielded identical results. 	For normal slide (2) 

boundaries at 132  = 	functions Ili were chosen for L 2  and Wn and 
'  

Functions IA for LP (Table 15.4). 	Of these, only the first function i.e. 
1 

the constant Function, of ti; and Wn hod any effect on the solution. 

The displacement, stress-resul tent and stress-couple distributions were 

therefore reduced to a single series, which converged rapidly. 	Note 

that the solutions of these examples are very similar to a membrane 

solution where n12 	.5 and ;11 and -n91 are zero throughout the 

shell. 

6.6 Comparison with C;ther Available Solutions  

ra:imple 6.14. 	Consider a shell with the following data: 

11 = 12.92 in. 	= 11.92 in, 	h = 0.25 in. 

1:12 = -3.1247, 2  in-1 	lJ = 1).39 

= 	+5 lbs/in" 	 = 1 Ib/in 

and boundary conditions: 
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clamped at al  = C, I1  and a2  = 0, 12. This data corresponds 

to the following shell parameters: 

r 	1.0 	 = 0.39 

PR = 
	0•0475'258 

The convergence of this solution was studied in example 6.1. 
(25) 	 (6) 

This example was also solved by Chatty and by Gunasekera 

and a comparison is given in Figures Ma and 6.6b. 

The solutions show good agreement 

Bcartyle 6.15. 	Consider a shell with the following data: 

1
1  

= 360 in. 	1 2 = 	360 in. 	h = 	2.5 in 

K
12 - 1.1111, -3 in = C.16 

7 = 0.‘", 	+6 1!)s/in' Z 	= 50 lbs/ft2 

and boundary conditions* 

normal gables at al  = 0, Il  and a2  = C, 1,,„ 	This data corres- 

ponds to the following shell parameters: 

r = 1.0 	 V = 0.16 

- 0.01736C3. 
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The convergence of this solution was studied in examples 6,3A and 

This example was also solved by Chetty(25) and by.: Makroz and 

Schnobrich 
(19)

and a comparison is given in figure 6,7. 

Note that the results corresponding to example 6,3B are presented 

in figure 6.7. 	Ibis example uses functions ID in conjunction with 

the Lagrangian multiplier nethod (case (b) in Table 6,4). 	For 

comparison, a further solution for n17  is given using functions IC in 

place of functions ID (refer to section 6.5.2) and figure 6.2). 

The solutions generally show satisfactory agreement. 	However, it 

should be noted that the boundary value of n19 is somewhat different 

from the solutions given in the references. 	The convergence study in 

example 6.3n showed that the application of the Lagrangian multiplier 

eiethod reduced the error in vertical equilibrium, and that the boundary 

value of n12 using either functions IC or ID was virtually the same 

(refer to figure 6.2). 

!sample 6.16, 	Consider a shell with the following data: 
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= 	ft. 	1
2 	

= 
1 
'12 = 	.5.0, -0 ft.-1  

E 	= 	4.5, +8 Ibs/f1 

60 ft. h 

.11  

7 

= 

= 

= 	0.25 ft. 

0.15 

50 lbs/ft2  

and boundary conditions 

hinged* at a
l 

= 	1
1 

clamped at ci," = 0, 1 2  

This exanple was also solved by Gunasekera**(6)and a comparison 

is given in Table 5.19. 

The solutions for the displacement w and the moments show satis- 

factory agreement. 	The solutions for the membrane stress-resultants show 

satisfactory agreement near the central region of the shell but poorer 

agreement near the corner. 	Note, in particular, that nil  and n22  in 

the corner should, by virtue of the boundary conditions, be zero. 

*The Lagrangian multiplier method was used with this boundary condition, 

i.e. case (13) in Table 

**The results presented by Gunasekera were at 1  T-th points. 	The results 

presented in Tablas 5.19 and 5. 2C. are at 	 h points. 	Examples 

5.15 and 5.17 were re-run for this latter output using Gunasekera's 

computer program. 
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5ca•nple 6.17. 	Consider a shell with the following data: 

I 1  = 50 ft • 	 = .50 ft. 	h = C:. 25 

K
12 

= -1 j. 	-3 ft-1 	 V = C.15 

= 4.5, + lbsift2 
	

Z = 5C Ibs/ft2  

and the boundary conditions: 

hinged* at a = C,I 	and a2  = C ,1 
11 2 

This example was also solved by Cunasekera
(6) 

and a comparison 

is given in Table 6.70. 

The solutions for n12, except near the corner of the shell, show 

good agreement. 	However, the solutions for n11 are quite different. 

Similarly the solutions for w differ. 	Note, in particular, that n
11 

and 

n21 in the corner should, ky virtue of the boundary conditions, be zero. 

Note also that a similar comparison was made when considering 

translational shells viz., example 5.9 in section 5.5. 	In this case 

*The Lagrangian multiplier method was used with these boundary 

conditions i.e. case (b) in Table 6.4. 
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similar functions were used and the solutions generally showed good 

agreement. 

6.7 	further Solutions - Variation of the Shell Para-rioters 

The non-dimensional form of equations (6.9), 0.10) and (6.11) 

shows that the ruled surface hyperbolic paraboloid is completely defined 

by the parameters r, p, and V 	Such a representation permits 

the behaviour of ruled surface shells to be conveniently studied by the 

variation of these parameters. 

The exa vies considered and the particular parameter being 

varied are given in Table 5.11. 	The corresponding results are given 

in Tables 6.22 to 6.V inclusive. 

All results are presented in non-dimensional form (Table 5.1), the 

actual values being obtained from the expressions given in Table 6.2. 

The Lagrangian ,flultiplier method is used in examples 6.12, 

5.2C-• and 6.22 (case (b) in Table 6.4). 	!n these cases the boundary 

values of n
19 

given in the corresponding tables are based on the 

Lagrangian 

S = 2 has been chosen in each of these examples. 
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6.7.1 	Discussion 

Variation of p„: The parameter 	defined by equation (6.13), varies 

with shell thickness and shallowness. 	This thesis is concerned with 

the study of thin shallow shells and .31  should be interpreted accordingly. 

The thin flat plate is recovered from ;31  = co . 

For comparison, flat plate solutions for r = 1 and V = C.15 

and for all boundaries clamped, simply supported and normal slides are 

given in section 5.7.1. 

As the shell becomes shallower, i.e,, as p, increases, Tables 6.22, 

6.25, 6.26 and -f,27 show that v-7, 77,11  and 77 (example 6.23 only) 

increase also, approaching the solution for a thin flat plate at a faster 

rate than for the elliptic paraboloids (translational shells) considered in 

examples 5.10, 5.14 and 5,15. 	For example, if p:, = 0.1(' which 
1
1 1 corresponds to the values (-r=) = 1-(7.75  and 	= -20, the values 

1 	 1 

for w and m
11 

vary from approximately 11A for example 6.23 to approxi-

mately 45% for example 6.21 of the corresponding flat plate solution. 

11  
For a similar value of (r-) in examples 5.10, 5.14 and .5,15 to the 
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1 2 
value of (--) cbove (for 	= 	say), the corresponding variation 

is approximately 1 C% of the above (refer to Tables 5.17, 5.21 and 5.22). 

Cn the other hand n
12 

decreases slowly with increasing shallowness 

and is still of significant value when the shell is very shallow„ 	In the 

steeper range (a, = 0.01) the values of nit  are very close to the 

membrane solution (n
12 

= -(%5), particularly when normal slides (2) are 

on all boundaries (Table 6.27). 	Similarly n
11 

decreases with increasing 

shallowness. 

Similar remarks apply to increasing thickness which also corresponds 

to an increasing R„ but any comments are restricted to thin shells.* 

*The note on thin shells in section 5,7 may be extended, such that: 

 

I 
1K

12 4
0 1 
- 3( 

(figure 2,5b), this becomes 
1 2 

Since ' I' i.12 	- 
I - 
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Note that only the effect on the non-dimensional values has been 

considered. 	The actual values follow from Table 6.2, which gives: 

12 Z 11(1 - V 2) 11  3 
w 	 w 

_ 

!:: 

Z1 
2r 	 / - 7.1 (- n12 	

n ' 12 = -7-
1 
 17 nA a 12I  

1 2 

Then if increasing 7„ is interpreted as increasing shallowness, the effect 

on the actual stress-resultant n1,2 is dependent on (2Rn12). 	It will be 

noted that if all boundaries are clamped (example 6.21) the product 

(,) 7117) begins to decrease between p rz  = 0.10 and 0.20. 	For the 

other examples (6.1C,, 6.22 and 6.23), the product (r) n
12 

 ) increases 
'   

with increasing 2.. 	Nowever, beyond the range considered here, this 

product begins to decrease with increasing 3. and approaches zero as 
• 

2, becomes very large. 
11 

IF increasing ,), is interpreted as increasing thickness, but restricted 

to thin shells, the effect on the actual displacement w is dependent on 

1 1  3— 
(7) w . 

The non-diensional presentation of the tables given in this 

section covers, very compactly, the solutions for a wide range of thin 

shallow shells. 

2 . 
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Variation of r 	Only the case with normal gables along all 

boundaries is considered. 	The results are presented in table 6.23. 

Since pp  remains constant, the variation of r represents, in effect, 

the variation of 1
2 with all other data fixed. 

As r increases from 0.5 to 5.0: 

(a) 	the value of —w at the centre of the shell increases, reaching its 

maximum value, within the limits of the results presented here, 

at r = 1.5, after which it begins to decrease, 

(3) 	the maximum value of m
11 

along 22 = 0.5 increases, reaching 

its highest value at r = 3.0, after which it begins to decrease; 

the location of this maximum value moves away from the centre 

of the shell, 

(c) the maximum value of m22 
along p1 = 0.5 increases, reaching 

its highest value at r = 3.0, after which it begins to decrease; 

the location of this maximum value moves towards the centre of 

the shall. 

(d) n12 generally decreases. 

Variation of V 	Only the case with normal gables along all 

boundaries is considered. 	The results are presented in table 6.24. 
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I's V increases Frota 0 to 0,30: 

(a) w increases 

(b) rill 
increases 

(c) the effect on n12 is small but variable, increasing at some 

points and decreasing at others, 

(d) n11 increases, 

The actual displacement w is given by (Table 6.2): 

W 
ZI 

4 
1 w = 

l'7Z1 - 1 	 2 — 
(1 y)w 

113 D 

which, from Td-le 6.24, also increases with increasing V . 

It should he noted that in this example, increasing V has the 

opposite effect on w and X11 than for the elliptic paraboloid considered 

in example 5.13 (Table '3.20). 

Discussion of the Computer Programs 

The single computer program developed for ruled surface hyperbolic 

paraboloid shells is limited to uniformly distributed normal loading and 

to boundary conditions which are syglnetric about 0
1 
 = 0.5 and 

(32  = 0.5. 	;:owever, any symmetric combination of clamped, hinged, 
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normal gable, normal slide (1) or normal slide (2) boundary conditions 

(Table 6.4) may be specified. 	Provision is also made to apply the 

Lagrangian multiplier method i conjunction with u1  = 	(along P2  = 0,1) 

or u2 
= 0 (along 3 = 0,1) for hinged and normal gable boundaries , 

(refer to case (b) in Table 6.4). 

The approximating functions are selected in accordance with the 

symmetry of the problem (section i.5). 	The same value of S for each 

displacement in each of the directions pi  and p2  is considered. 

Input, and therefore output, could be either in non-dimensional 

form or in terns of the actual dimensions. 

In order to economise on computer storage, the system of linear 

algebraic equations was solved by partitioning the equations into their 

submatrix form (equations 6.39). 	;lote that when the modified form 

given by equations (6.41) was used, the equations were rearranged in the 

Form given by equations ('.39), in the manner discussed in section MO). 

A separate program was written for the solution of example 6.3A. 

For this special case a fixed value of r = 1 was chosen, so that 

allowance could be made For symmetry in the solution for the constants 

a, b and c, i.e. a.. = b.. and c = c 	The equations were again 
ft 	 Pq 	qp 
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solved by partitioning. 	In this way a larger value of S could be 

considered. 

Further details of the computer programs are available at Imperial 

College (69) 
(70),(71) 

The computer programs were written in T.:CHLF Autocode for the 

University of London Atlas Computer. 



- 180 - 

CHAPTER 7 

APPLICATION OF THE METHOD OF LINES TO 

TRANSLATIONAL 	RULED SURFACE SHELLS 

A brief discussion of the method of lines was given in section (3.2). 

In the following, equations (2.76) will be reduced to a system of 

linear first order ordinary differential equations with constant coefficients. 

The co-ordinates will be non-dimensionalised. 	All other quantities will 

retain their dimensional form. 

Only uniformly distributed normal loading (Z) will be considered. 

7.1 	Form of Equations  

After non-dimensional ising the co-ordinates such that 

a1  
' 

P1 (7.1) 

2 
= 

I2 
	 (7.2) 

and setting Xi  and X
2 to zero, equations (2.76) become: 



a 

n22 

n12 

m22 

r2 
apt 

u2 

ul  

w 

"22 

n12 

m22 

r2 

u2 

ul  

w 

1
2
Z 

(7.3) 
• 

• 

• 

• 

Eh a2 
A

26 
= Tr 	 -7 1 n 

EhK11 	a 
r 
	

a31 
A

28 
= = - A46 
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. A
62 • • A05 . • A

68 

. • A73 . • • ' A70 

• • . • . • A37 ' 

• x°12 
	• 

A
21 • 	

• ▪ • 
A2

6 • 
A

28 

• • 
	 A

34 • • 
A37 • 

A
41 

A
42 

A43 • 	A44 • A
48 

A
51 
	

A36 • 
A58 

where A
lt 

= 
r • api = A

65 

A 	= y a = A 
21 r • app 	56 

A
34 

= -1
2 

= 
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Eh3  a2 
A

37 = 	60+ 1
api2 

A
42 

= 2K
12

1
2.- 

= -A63 

a
2 

A
43 	rl 	= A73 api  

A
48 

=
11

21 	Eh3 

2 

 

12 r13 
 

1 

A.
51 

= _ 0- V2
)1?  

Eh 

-2(1+V )12  
A 

62 

12(1- 92)1
2 

A73 - 	Eh3 

11  
r 

aw G = aa2 

or, more compactly, 



' 2 
Y +AY+T. = 0 	 (7.4) — 	— — 

where 	
= cal  { n22n12m22r2u2u1 Q w  

L = col 	. 	Z12• • • 

and comma notation is used to represent partial differentiation with 

respect to !32. 

The equations corresponding to the translational shell are obtained 

by setting K12  to zero and replacing K11  and 6(
22 

 by K
1 
 and K7  

respectively. 

The equations corresponding to the ruled surface shell are obtained 

by setting K11  and K72  to zero. 

In the following, when reference is made to a shell, either a 

translational shell or a ruled surface shell is implied. 

7.2 	Boundary Conditions  

Only boundary conditions which are symmetric about pi  = 0.5 

and f32  = 0.5 will be considered. 

Throughout this chapter the boundary conditions at pi  = 0,1 will 

be assumed clamped (ui  = o = u2, w = o = w,1). 
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The boundary conditions at P2  = 0,1 will be either free 

(n22 = o = n12' m22 = o = r2) or clamped (u1 = o = u2' w = o = G). 

7.3 	Finite Difference Formulae  

Since either translational or ruled surface shells will be considered, 

the solution will be symmetric about pi  = 0.5 and P2  = 0.5. 

Then only forward and central difference expressions will be required 

for the derivatives. 

Let y represent the variable whose derivative is required. 

The 5-point central and forward difference expressions for the 

derivatives of y used in this chapter are given in table 7.1. 	Only an 

equal width, a, between points has been considered. 	These expressions 

retain the same order of differences and were obtained by application 

of Taylor's theorem. (7)  

Note that some of the forward differences have been given in 

terms of a fictitious point (-1). 

7.4 	Reduction to a System of Linear First Order Ordinary  

Differential Equations with Constant Coefficients 

Let the region of the shell (translational or ruled surface) bounded 

by 	= 0 and 31  = 1 be divided into 2N equal divisions by the lines 
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2 N Pi 	611,...,31  ,...,:31  , which are in the same direction as 32 
(figure 7.1). 	The boundaries 31

= 0 and pi  = 1 correspond respectively 

to the lines Pi°  and 6i2 N. 

Let the notation yk, where y represents a displacement, stress- 

resultant or stress-couple, denote the value of y along the line pik e 

Because of symmetry only the region bounded by pi  = o and Bi  = 0.5 

o 1 is considered i.e. the lines pi  ,pi 	 . 

Only the derivatives with respect to pi  in equations (2.76) will 

be replaced by the corresponding finite difference expressions. 

Since the boundary pi  = 0 is clamped and using comma notation 

to represent differentiation with respect to pi  or 1,32: 

uo = 0 = uo 
1 	 2 

wo = 0 = w/1 

Then it Follows that: 

(7.5) 

(7.6) 

—o = 0 = 2 	 (7.7) 

uo = 0 = u2,2 	 (7.8) 1,2 

wo = C = w'222 (7.9) ,22 



- 186 - 

Equations (7.5) to (7.9) inclusive and equations (2.63), (2.64), 

(2.66) and (2.61) yield the following: 

ric) 	 V Eh 	o 
22 	 2  	u1 1  

1 1  (1-V ) 

o _  Eh  o 
n12 - 211(1+V) 02

'
1 

o _- V Ell') o 
m22 - 12(1- V 2)11 2 W'11 

-Eh3
(2-V) 	o r2 12(1-V2

)11 
2 	o'11 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

Using the formica given in table 7.1, finite difference expressions 

for the derivatives in equations (7.10) to (7.13) inclusive will be obtained. 

From equation (7.6) and table 7.1: 

1 w, • = 	0 = 	
12a 

[-3w 1 + 18w1 -6w2 + w3] 
1 

which gives: 

(7.14) 
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Similarly from equation (7.7) and table 7.1: 

G 1 = 2 1 
3 
 3 681 - 24; + - (7.15) 

From table 7.1 and equations (7.5), (7.6), (7.7), (7.14) and (7.15) the 

required derivatives are obtained: 

U1,1 = 	12a 	1 	1 	1 	1 (48u1  - 36u2  + 16u3  - 3u4) 

u2,1 	12a 2,1 	12a 42 - 	2 	2
o 	1 r = 	 36u2 	

2 + 16u3 - 3u4) '  

o1 
will 	

,, 
- 
	- 2. (10ow1  - 27w2 + 4w3) 

18a 

G'o 	
--1-2" k 

, 
11 	 1088  - 274D2 

+ 44;13) 
18a 	1 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

Then the actions at pi  = 0 are given by equations (7.10) to (7.13) 

inclusive, where the derivatives are defined by equations (7.16) to (7.19) 

inclusive. 

The solution for the dependent variables along the line 41 is 

therefore known and the equations need only be applied along the lines 

1 2 	 Ni 	 1\1 , where line Pi  corresponds to pi  = 0.5. 
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Note that in deriving the finite difference expressions given by 

- equations (7.13) and (7.19) use was made of a fictitious line pi1  in 

	

the forward difference expressions. 	In this way a more accurate represen- 

	

tation for the derivatives near the boundary is possible. 	The values of 

w and 8 along this fictitious line are given by equations (7.14) and (7.15). 

Such values are not available for u1 and u2 for the clamped conditions 

considered and less accurate forward difference expressions are used for the 

derivatives of u1 and u2 near the boundary. 

In a similar manner, finite difference expressions for the derivatives 

with respect to f31  in equations (7.4) can be obtained. 

Let the column matrices 222,G, w and 
212' IT-22' L2' 12' 

Z be defined by: 

1 2 n 	= 22 	col { n,22  n22 	n22 	nN22 	(7.20) 

n12 	= 	col f 1 	2 	k (7.21) 
12 	 in12 n12 ". n12 mnlN2 } 

{ m22 	= 	col (7.22) k 	N 1 
m22 m22 "' m22 "• m22 J . 1  

	

1 1 2 	k 	N 1 r 	= 	col 	 (7.23) ••• —2 	r2 r2 	r2 ••• r2 ) 
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w 

Z = 

col { v9 

col 

col 

col 

col 

2 
• • • 

	

9 	u2 

2 

	

v1 	u1  

	

IG1 	82 	••• 

	

f wi 	w2 
••• 

2:1 Z2 

u
1  

wk 

••• 	2N 

ui  

QN} 

••• wN  

•• 	ZN  

••• (7.26) 

(7.24) 

(7.25) 

(7.27) 

(7.28) 

where Z
k 

is the line load corresponding to line k. 

For the clamped conditions at pi  = 0,1, equations (7.3), after: 

(a) substitution of the relevant finite difference expressions for the 

derivatives with respect to pi, and 

(b) substituting for non, n72, en; and r;, whenever necessary, by 

equations (7.10) to (7.13), 

reduce to a system of linear first order ordinary differential equations 

with constant coefficients, which in matrix form are: 
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A 	A ' —12 ' • —15 ' 

• • -/--26 • A23 

• . 

AA • —46 • —48 

222 

L/12 

222 

12 

• 

• 

I
2 

 Z 

A21 • 

. 	• 	• 

A A 
41 — 

A
42 —43 

X12 

222 

L2 

A 	A 
51 • • • • —56 • 	 • 

U 	 • A 
—62 	

A 
• --65 • • -68 u1 • 

• • A • 	• • r8 	 • • • 

• • 	• . •187  • MEM 
••••16 • ••••• 

where the elements of the non-zero submatrices A.• (i,j = 1,2,3,...,6) 

are defined by the expressions given in table 7.2 for the lines 131i, 13.1 

and 131  (k > 3). 

In the computer program developed, allowance is made for 

symmetry about pi  = 0.5 by adjusting matrices Ai, for the following 

conditions: 

(a) 	for translational shells: 

n22' m22' r2, u2, 	w are symmetric about 	= 0.5 

"1 2 ' u1 
	 are anti metric about pi  = 0.5 

d 
d32 

= 0 

(7.29) 
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(b) 	for ruled surface shells: 

n12, .,m72, r2, u1,  Q, w are symmetric about pi  = 0.5 

n22' u2 	 are antimetric about Pi  = 0.5 

Let X 7-4  (132) = col{ 
	

(7.30) 
222' 2:12' 222' L2 1 

U .s u(til) = col { 112' L21' ila , w 1 	(7 . 31 ) - 

F ; 1:02) = 001  { x 1 LI } 	 (7.32) 

col { 	. . I2Z • 	.} 	(7.33) 

then equations (7.29) can be written in the form 

F
'2 

+ A F + Z = 0 
- 	 - (7.34) 

Note that F and Z are (3N x 1) matrices and A is an (8N x ON) 

matrix. 

7.5 	Integration of Equations (7.34) Using the Matrix Progression 

Method 

7.5.1 General Solution  

Since the coefficients of A and Z are constant, the general 

solution of equations (7.34) can be written in the following form: 
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F = G(62)(43 	r.:(13)) 4. F(a) 
	

(7.35) 

where 

G(¢2) 

F(P) 

-A p2  
= a  

= -A 1  Z  

(7.36) 

(7.37) 

(7.38) 

and where the following notation has been adopted: 

F = F 
-41 	 1321 

The matrix C(32) is referred to as the 'distribution matrix'()  

	

in the matrix progression method. 	It is also referred to as a 'transfer 

matrix"(63and can be determined by the following series, which always 

converges: (68)  

A2 8 	A 2 2 	3 3 	4 4 , 	p 
GM)) = I - AS -I- 	- 	+ 2 21  

•••• 	2 	2! 	3. )  

where I is the unit matrix, 
MM. 

F(I))  is the particular solution and is constant for the constant 

loading selected. 

Let F(P)  be partitioned in the following way: 

F(P) = co 	X(P), (10 	 (7.40) 
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where v(I))  = col { n(P)  n(13) 	(13)  r(19 2  — 	-22' -12' Z22' 

U(P)  = col 1 u(2)
'  u

(13), 4P(13)
'  w

(p)  
- 	 1   

(7.41) 

(7.42) 

The notation n
22
k(p)  will denote the particular solution for n

22 
along the 

line 131. 	Similarly for the other dependent variables. 

Let C a' C(132) = F - F(p) 

and C = F - F(P)  -o -o - 

then equation (7.35) may be written in the following form: 

C = Cii37)S0  

(7.43) 

(7.44) 

(7.45) 

Equation (7.45) will be useful in determining the final solution at 

intervals along 132  (refer to section 7.7.5). 

The boundary conditions at 132  = 0,1 will determine fo, i.e. 

the initial values of the dependent variables. 

For the symmetric problem considered F 0  can be determined in 

the following ways: 

(i) 	direct application of the boundary conditions at 132  = 0,1 in 

equation (7.35) 
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(ii) direct application of the boundary conditions at p2 = 0 and 

the symmetry conditions about P2  = 0.5 in equation (7.35) 

(iii) application of a stiffness method which segments the path of 

integration. 

In the following each of these approaches will be discussed in 

conjunction with the boundary conditions: 

(a) clamped at P2  = 0,1 

and 	(b) free 	at p2  = 0,1 . 

It will be convenient to partition G(j32) in the following way: 

* 

G(132)  = 
[ G11(132) 	G12(32)  

G21( 2) 	G (6 ) 22 2 

(7.46) 

  

7.5.2 Direct Application of the Boundary Conditions at P2  = 0,1 

in Equation (7.35)  

(a) Clamped at 02  = 0,1 

The conditions to be satisfied are: 

U -o = 

U1  = 0 

(7.47) 

(7.48) 

*Each submatrix Gii(P2)(i,j = 1,2) is of order (4N x 4N). 
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which on application to equation (7.35) yields 

r 
G2103  L22m 

-o 
U 	 0 

.1100 

U(p) + (p) 
.11•In 

(7.49) 

(b) Free at  p2  = 0,1 

The conditions 

X —o 

to be satisfied are: 

= 0 

= 0 NEMO 

(7.50) 

(7.51) Xl  =Ee 

which on application to equation (7.35) yields: 

F = -o 

 

0 

,(1) - 	x(P) 
(7.52) 

    

      

      

7.5.3 Direct Application of the Boundary Conditions at 132  = 0 

and the Symmetry Conditions about 132  = 0.5 in Equation (7.35) 

The symmetry conditions about 132  = 0.5 are given by 

J 	= 0 (7.53) 

where J is a (4N x 3N) matrix and is given by: 



• 

• 

• 

• • 	• 

• • 	. 

• • 	• 

• I 	• 
MI111. 

. 	• 	 I 

a . a 	• 

. 	• 	• 
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'NM! 	 4•11 ,,  

J= 

for translational shells, and by: 

-, I • 	 • 	 • 	 • 	 • 	 • 
••• 

. 	• 	• 	I 	• 	• 	• 	• imp 

• • 
MN 

(7.54) 

(7.55) 

	

. 	. 	4. 	. 	• 	• 	I 	• ... 

	

.1•11MM. 	 mont•• 

for ruled surface shells. 

	

Each submatrix of J is of order (N x N). 	I is the unit matrix. 

(a) Clamped at  p2 = 0,1 

The conditions to be satisfied are: 

-o U = 0 = j  F0.5 

Let H, a (4N x SN) matrix, be defined by: 

= J G(0.5) = [-1 ' —2 11 	1-1] 

where H1  and H2  are (4N x 4N) matrices. Application of the 

(7.56) 

(7.57) 



_ r - 
-0 

-o 

-o 
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conditions given by equation (7.56) to equation (7,35) yields 
__ 

X 	H-1  [11 U(P)  - J F(P1 + X(P)  -o 	—1 —2- 
(7.5C) F 

U 	 0 

(b) Free at  132  = 0,1 

The conditions to be satisfied are: 

X -0 = 0 = J F,„ .5 
which on application to equation (7.35) yields: 

•••••• 	4•1I. 	 •••=m, 

(7.59) 

0 

{11 X(P)  - J F(P1 + U(P) 2 —1— - 

(7.60) 

7.5.4 Solution which Segments the Path of Integration -  

Stiffness Method  

As discussed in section (3.2), a solution which segments the path 

of integration may become necessary when roundoff errors become 

significant. 

Let the region bounded by p2  = 0 and 132  = 1 be divided into 

M segments by lines which are in the same direction as 131 (figure 7.2). 
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These lines will be referred to as segment lines and will be numbered 

o,1,2, 	,m. 	,M. 	Segment lines o and M are the boundaries 

32  = 0 and 32  = 1 respectively. 

Consider one such segment, m, bounded by the segment lines 

32  = d and 32  = d + b which will be referred to as °edges 1 and 2' 

respectively. 	(Figure 7.3). 
m —m 	 —m —m Let X and ?...(2  represent the actions, and U and U2  the 1 	 1 

displacements at edges 1 and 2 of segment m respectively (figure 7.4), 

and let these be defined by: 

m 
3-( m  = col 1 	1222' 249' 222' r2 	 (7.6 1) .1 1 

m 
Rm  = col 2 	{ 222' r2-19' 222' r2 	 (7.62) 

/ 2 

} 
Om  = col u2'  ul , G, w 	 (7.63) 1 	{ 	 m  — 	— 1 

m  U2na { (22' al, G = col 	 , w } 2 	 (7.64) - 2 

Note that in this section the superscript refers to the segment 

and not to an individual line as discussed in section (7.4). 
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Defining 

= 	7 F 	
1 ' 

- col { m  Ur
1  } 
	 (7.65) - 1 	 —  

E2 = col { 71, 122 } 	 (7.66) 

and -C-: = 6(6) 	 (7.67) 

then, from equation (7.35), the solution for segment m is given by: 

2 
m 

F 	= -_-q [fin - F(P)] + F(P) 	 (7,6C) 

The particular solution F(p) is constant across the segment for the constant 

loading selected (equation 7,38). 

Stiffness Matrix of a Segment 

With the load set to zero equation (7,68) becomes: 

- m 	
= G m 
	

(7.69) 

Let S be the stiffness matrix of the segment m and let its -m 

partitioned form be: 

S m  

	

-11 	 12 
Sm 

	

m 	en 

	

S21 	-22 

(7.701 

  



Um  

AN* 

-,m 
-2 

m 
-2 

•••••••• 

    

-11 212 

=-21 222 

 

m•F 

(7.72) 

    

    

0 
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where the order of each submatrix S. is (4N x 4N). 

Then, by definition, S. (i,j = 1,2) are the actions R.m produced -rj 
by unit displacements 0.ni  with all other displacements zero. 

Equation (7.69) is written in the form: 

•=1•1•1. 

-r-5. 	6 
=:11 -12 

(7.71) 

_721 222 

With ti = 1 and Om  = 0 equation (7.71) becomes: -1 - -2 

from which: 

1 
22 = S11 	by definition 	(7.73) 

gm 	= 	 11 (62 	-= 
-17

2 2 + 1 2 = s 111 by definition 	(7.74) -2 	- 	-21 

With rim2  = I and um = 0 , equation (7.71) becomes: - - -1 - 
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—11 	—12 

rz; 	C —21 —22 

from which: 

'gm  = 	)-1  = Sin 	by definition 
—1 	21 	—12 

m T.0 	= G (G71  ) 	= Sm  by definition 2 	 22 

-2 

Then the stiffness matrix of the segment Sm  is given by: 

—21 — 07 22 

gm  
(7.75) 

(7.76) 

(7.77) 

(7.73) Sm 

6 (6- 116 + 6 	6 (6 11  11 21 	 22 	—12 —11 —21 

Segment Clamped Edge Solution for the Loading 2  

Let em  and )Im  represent the actions corresponding to the 

clamped edge* solution for the loading Z at edges 1 and 2 of segment m 

respectively and let these be defined by: 

* The term 'clamped edge" implies that the edges 1 and 2 of a segment 

are clamped. 

• ...,•••:•::14 
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„om 	col 
{ 1222' '212' 222' 

om 
X2

col  { 2221 r212' 222' 

L2 

om 

1 

om 

2 

(7,79) 

.112 
(7.80) 

  

where the superscript o denotes the clamped edge solution. 

-o m -om The solution for X, and X, corresponds respectively to the 
1 

-m 
solution for gm  and r 	 1 from equation (7.68) with U = 0 = U and 

1 	 2 	 - - -2  

is given by: 

7-, OM 	- 

	

= G 	- I] U(p)  + X(13)  
-21 -22 

31" = 	 - 	u(o)  - 
-11-21 22 - - 

(7.31) 

2
U(13)  + X(P) 	(7.82) - — 

Another way of obtaining this clamped edge solution is to apply the 

stiffness matrix of the segment. 	The particulbr solution actions are 

X(13)  and the particular solution displacements are U(13)  (equation 7.40). 

To reduce the displacements at edges 1 and 2 of the segment to zero, 

displacements -U(13)  are applied. 	In this way the clamped edge solution 

is obtained in the following form: 

       

A
om  

X-om 
-2 

 

S m  Sm  
-11 -12 

m m  S 	S 
-21 -22 

- r 

 

  

-do 

 

(7.33) 

AY= 	,11•11,  
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Substituting for ST from equation (7.78) in equation (7.83) yields 

solutions for 71  " and rni  2 which are identical to those given by (7.81) 

and (7.82). 

Assembled Stiffness Matrix for the Shell  

Let the M segments which subdivide the region bounded by 132  = 0 

and 132  = 1 (figure 7,2) be numbered 1,2,3, ‘ ‘.,m,....,NI (figure 7.5a). 

Let yo, U1 , 122,. i  . , 14,A  represent respectively the displacements 

at the segment junctions 0,1,2„M (figure 7.5a). The elements 

of U are given by equation (7.31). 

The sign convention adopted for the actions and displacements at 

each junction is given in figure 7,5b. 

The sign convention adopted for the actions and displacements for 

each segment is given in figure 7.4. 

Assembling the segments into the original shell form, yields 

equations of equilibrium at the junctions, which in matrix form are 

(figure 7.6): 



=0 

-X —01 
-1 

-o2 -X  -o3 
-2 -1 

441•••••••••••••••••••• 

Xom  X 	)  2 -1 

m.•••••••••••••••••\ mis 

0 M 
—2 

U -o 

4,) 

2 

U —in 

..••• 11•• 

-AA 
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—1 
-S 1 	-S-11 	- 1 

12 

S 1 	(S  1 -S  2 ) 	-S 2 
-21 	 22 -11 	-12 

2  ic c  1 S•=21 `z122 
3 
 -7=43 2 

•••••••••••••=a••••••••••••••••••••••••••••••=r.wen••• 

• 

• S m  Sm+1) -Sm+1  21 	-22 -11 	-12 

MihImeamommea•••••••••••••••••••••••••••••••••.•••••••••••14••••••=••••••=01•11m••••••••••••••••••••••• 

S21 	.122 - 

U 

ul  

U2 

••••••••• 

••••••••• 

-M 

B -o 
1701 -/, 
•••101 

Let 

B = 
-
B
2 

1•1111M•M 

(7,85) and ti = 

B -In 
•••••••• 
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Then equation (7.84) becomes 

S U + B = 0 
	

(7.86) 

where S is the assembled stiffness matrix for the shell, 

Each submatrix of S is of order (4N x 4N) and therefore S is of 

order [4N(NI+1) x 4N(Mq 

Solution of Equations (7.84) by Tri-diagonalisation  

The assembled stiffness matrix S partitions directly into a tri- - 

diagonal submatrix form, ihe4 into a diagonal submatrix, a superdiagonal 

submatrix and a subdiagonal submatrix. 	This form is convenient for 

solution by an elimination process. 

Let 

1 
1 

S
o 

= -S 	 (7,87) 
- 	-1 

(S72 	41) 	
(7,88) 

St~A
(7,39) 

= =22 

where m = 1,2,3, 	 ,(M-1). 

*A flexible beam at 02 = 0 can be handled by adding to So the beam 

stiffness corresponding to U. 

Similarly S14 can be modified for a beam at p2 = 1 
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Then, from equation (7.04), the equations of equilibrium at junctions 

0 and 1 are respectively: .  

S U 	S1
1 
 U + 	= 0 -0 -o 	-2 -1 	-o 	- 

• 
Si 	+ S U - S2 U + 	= 
-21 -o 	-1 -1 	-12 -2 -1 	- 

(7.90) 

(7.91) 

Eliminating 
o 
 from equations (7.90) and (7.91) yields:* 

1 
u

1 	2 
- s2 

2 	 (7.92) -1 - 

where 

1 -1 1 =S+S S S 

	

1 	-1 -21 -o -12 

1 	-1 = B -S S B 

	

-1 	-1 -21 -0 -0 

(7.93) 

(7.94) 

Note that equation (7.92) is of the same form as equation (7.90). 

From equation (7.C4), the equation of equilibrium at junction 2 is: 

21  U1 	- 
+ S

22 2 	-  S12 
U
4 - +2 = 
	 (7.95) -  

*This assumes that U is not vocified. If any of the displacements of U 
o 	 -o 

are specified, equations (7,90) and (7.91) should be adjusted accordingly. 

For a clamped boundary (U = C), the elimination procedure would 
-o - 

commence at junction 1. 
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Eliminating U1  from equations (7.92) and (7.95) yields: 

22  U2 
 - S

12 2 
U + 2 = 0 	 (7,96) 

-- - 	 - 

where 

= 	S 	+ S 2 --1 2 S S -22 	-22 	-21 -11 -12 
(7,97) 

52 
= 

2 
2 - S S 

-21 -11 -1 
(7.98) 

In general , the following expression is obtained: 

U 	SrT)+1 U 	+ 	= 0 	 (7.99) 
-Ill -12 -m+1 -m 

where: 

= s 	+ s 3 -1  sr' 	 (7.100) -m 	 m -21 -m-1 -12 

T3 	= 	S m -S- 	TT 	 V.101) -m 	-..T1 -21 -m-1 -411- 1 

and = 

Proceeding in this way, the equilibrium equation at ;unction M, 

. a. P2  = 1, becomes: 

U, + T'7 = 0 
A -IA 	-4A 	 (7.102) 
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where 3 and 7 are respectively given by equations (7.100) and -1\A 

(7.101) with rn replaced by M. 

Then 

U= -1`A -S. - 
 ,

1 
 * --A (7.103) 

From equation (7,99) the following is obtained by replacing m by (m-1): 

= —1 m 	--1 U 	S -m- 	-in-1 S -12 - U • m 	S-m-1 -m-1 (7,104) 

The displacements 	 Uo  are than obtained from 
- 

equation (7.104) by back substitution. 

The matrices
- 	

S'
n 	

of order (4N x 4N), and §-1  
1 

	

-m-1 -12 	 -m-1 -m-1 

are determined during the application of equation (7,99) 

in the elimination procedure. 	In the computer program, these matrices 

are stored and used in the back substitution procedure. 

In the computer program developed, provision is made for a solution 

using either 4 or 3 equal segments, i.e. 'A = 4 or O. 	Then the stiffness 

matrix for each segment is the same. 	Also for the symmetric problems 

considered, the elimination procedure is terminated at 131, = 0.5 by 

*This assumes that Um  is not specitied. If any of the displacements of y 4  
are specified, equation (7,103) should be adjusted accordingly. 	For a 

clamped boundary (U, 1  = 0), the elimination procedure would be 

terminated at junction C11-1). 

of order (4N x 1), 
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allowing for the Following symmetry conditions; 

(a) for translational shells: 

0) 
	u2 

 and 9 are antimetric about 132  = C.5 

Le. u2  = 0 = 	at 132  = 0,5 

(ii) u1  and w are symmetric about 32 = 0.5. 

(b) for ruled surface shells: 

(i) ul  and 9 are antimetric about 32  = 0.5 

i.e. ul  = 	= Q at 22  = 0.5 

(ii) t12  and w are symmetric about 22  = 0.5. 

7.6 	Determination of Displacements Stress-resultants and Stress-couples  

The values of the dependent variables for the lines 	 along 

22  are given by equation (7.35) or the alternative form given by equation 

(7.45) (refer to section 7.7.5). 

The f,oundary values of the dependent variables are given by equations 

(7.10) to 7.13) inclusive and (7.16) to (7.19) inclusive. 

It remains to determine suitable expressions for n11, m11, m12' q1' 

q7  and r1. 



12(1-1-1/)1 3 willl I m22,1 
1 

r1  -Eh
3
(1-V) 	(2-V) 
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Equations (2.58), (2.60), (2.61), (2.65), (2.66), (2.67),. (2.68) and 

(2.70), after non-dimensionatising the co-ordinates, yield the following: 

nil  

Ml7  

Eh(4 7- u1,1  - 11 w) + 

-a)3 

2 will + V m22 121
1  

- Eh 
12(1+V)11  

n22 	 (7.105) 

(7.106) 

(7.107) 

3 -Eh 	 1 w, + m 111 	1 1 	22,1 12(1+1))11  

f.sh 3  q2 	r2 
12(1+101 

2 
G 

 '11 
1 

(7.108) 

(7.109) 

(7.110) 

where comma notation is used to represent partial differentiation with 

respect to P1. 
Using the finite difference formulae given in table 7.1 and allowing 

for the clamped conditions at 	= = 0,1, as discussed in section (7.4), 

the required finite difference expressions are obtained for equation (7.105) 

to (7.110) inclusive. 	Details are given in table 7.3 for the lines 0,1 

and k, where k > 2. 
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In the computer program .developed allowance is made for symmetry 

about pi  = 0.5 in the expressions given in table 7.3. 

7.7 Some Notes on the Numerical Computations  

7.7.1 The  c(p2) Matrix 

(a) G(P2) is determined from the series given by equation (7.39). 

However, for better accuracy, particularly for a large number of terms, 

C(13,..
L
) is best computed from: 

2t.f32 	 AP 	A(3
2 	- G(132) = 	- A P2 0 	- 	(1. ---4-(•••• 	n-i 	

2 (....)) 3 

(7.111) 

(b) A useful property of G(1,32) is: 

0(a). (b) = G (a + 5) 	 (7.112) 

1  In the computer progro-a G(-
16

) is determined and G(9
2 
 ) for other 

- 	 - '  

values of (32 (multiples of —), is obtained by application of equation 6 

(7.112). 	By determining C(132) in this way, fewer terms in the series 

are required. 
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7.7.2 The Particular Solution 	= - A 1  
•1=•• 	•INIM 

In the computer program, the solution for F(p) is determined by 

partitioning the A matrix into its submatrices given by equation (7.29). 

However, for the symmetric case considered, A 12  is singular for ruled surface 

shells and 	5 A 	is singular for translational shells (refer to table 7.2). --6 

In the partitioning procedure the particular solution u2
(p)  is obtained by 

inverting D12 ..6.21 12,45  - 2‘.151 , which, referring above and to table 

7.2, is singular for both shell types. 	However, because of symmetry and 

since F(P)  is constant, the value of u (13)  i.e. at P2  = 0.5, is zero.* 
2 

Adiusting the above matrix accordingly eliminates the singularity. 

Note that F(13)  is independent of I
. 

7.7.3 Singularity in the l'itatrix G12(P2) for Ruled Surface Shells  

For the srnmetric case considered the matrix G12(P2) for. ruled surface 

shells is singular. 

Then the solution for free conditions at f32  = 0,1, whichever 

approach is used (section 7.5.2, 7.5.3 or 7.5.4), is not possible. 

*For translational shells, u2
k(p) 

 , because of symmetry, is zero along all 

lines lc. 	(k = 
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However, because of symmetry, u2 is zero for ruled surface shells. 

By modifying the matrices accordingly, the singularity is removed. 

7.7.4 Roundoff Errors in the Solution  

In order to investigate any accumilation of errors the solution for 

each of the methods given in sections (7.5.2), (7.5.3) and (7.5.4) was 

determined from p2  = o to (32  = 1. 	In this way the effect of any errors 

on the symmetry in the solution could be observed. 

When applying the conditions at P2  = 1 (section 7.5.2), the roundoff 

errors for a shell with N = 4 and r = 1 were only slight. 	However, 

with r = 1, increasing N yielded very serious errors and distorted the 

solution, particularly at p2  = 1. 	On the other hand, increasing r (> 1 only) 

with N constant, reduced the roundoff errors. 	Similarly for application 

of the conditions at p2  = 0,5 (section 7.5.3). 

Segmenting the path of integration (section 7.5.4), which, in effect, 

uses a value of r > 1, greatly improved the solution. 

To investigate this matter further, solutions were obtained for different 

values of (N) using the approach given in section (7.5.2). 	It was noted 

that when (—) was less than 3 the errors, if any, were very small. 	For 

values of (—) greater than 4, the errors were very serious and completely 
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distorted the solution at P2  = 1. 
	For values of (-4 between 3 and 4, there 

was some evidence of errors. 

However, these values of NI (-4 are only a guide and more specific 

values would require further investigation. 

Chetty
(25) 

applied the method of lines to ruled surface shells using 

N = 5 and r = 1 only and noted that errors were accumulating. To over- 

come this problem Chetty suggested using a computer which handled more 

significant digits. 	This is undoubtedly beneficial but a more satisfactory 

approach would be to segment the path of integration. 

7.7.5 The Determination of F along (32  

Let the interval 42  = 0 to (32  = 1 be divided into equal divisions 

of width e. 

Then, using the property given by equation (7.112), equation (7.45) 

can be expressed as the following recurrence relation: 

C= G(e) C 
—n+1 - -n 

(7.113) 

where n represents a point along 32. 

F then follows from equation (7,43). 	Equation (7.113) is useful for the 

determination of the solution at constant intervals along 132. . 
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7.0 Translational Shells 

In this section numerical examples will be given for translational 

shells. 

The solutions will be presented for N = 4,6,3 or 10. 	Since r = 1 

in each example considered, the solution is obtained by segmenting the 

path of integration (section 7.5.3), 	Four segments (i.e. M = 4) are used 

when N = 4 and eight segments (i.e. M = 0) are used when N = 6, 8 or 

10. 

All results are presented in floating point notation and in ft„lb. units 

unless otherwise stated, 

7.8.1 Convergence Study - Numerical Examples  

Example_ 7.1: 	Consider an elliptic paraboloid with the following data: 

I
1 
 = 50 ft. 	 1

2 
= 50 ft. = 0.25 ft. 

K
1 

= 1.0, -2 ft-1 = 1.0, -2 ft 1  

E = 4.5, +3 lb/ft2  1J = 0.15 	7 = 50 lb/ft2  

and boundary conditions: 

clamped at al = 011 1 
and a

2 
= 0,12  
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The results are presented in tables 7.4a and 7.413. 

It will be noted from table 7.4a that nil  along the boundary pi  = o 

and u
1 

are slowly convergent. 	Otherwise the solution is generally 

converging satisfactorily. 

In table 7.4b the results corresponding to N = 3 are presented for 

31  = 0.5 and p2  = 0.5. Because of symmetry w, n22  and m22  at 

pi  = 0.5 should be the same as w, ni i  and 
m11 

 at P2  = 0.5. This 

provides a check on the solution. 	It will be noted from table 7.4b that, 

except for nil  at pi  = 0, there is generally good agreement. 

These results show that the finite difference representation of n11 
at 

the boundary pi  = C) is poor (refer to equation (7.105) and table 7.3), 

This could be improved by adopting a closer spacing of the lines 

adjacent to the boundary. 

Example 7.2. 	Data as for example 7,1 but with boundary conditions: 

clamped at al  = 0,11  

free 	at a2  = 0,12. 

The results are presented in tables 7.5a and 7.5b, and figure 7,7, 

It will be noted from table 7.5a and figure 7.7 that ni i  along 131  = 0 

is again slowly convergent. 
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Note that the comer* values of m
11' 

n
12 

and q
1 

are also slowly 

convergent o 	The remainder of the solution is converging satisfactorily. 

For reference, a detailed solution for B1  = 0.5 and p
2 

= 0.5 is given 
a  

in table 7.5b. 	This solution corresponds to N = C. 

7.8.2 Comparison With Other Available Solutions  

Example 7.3. 	The shell in example 7.1 was solved using the computer 

program described in chapter 5. 	Functions corresponding to case (a) in 

table 5.4 were used. Also S = 3 was adopted. 

A comparison with the line solution using 8 segments (i.e. M = 

and N = C is made in figure 7.3 for 1 = C.S. The solutions show good 

agreement. 

7.8.3 Comparative Study of Different Goundary Conditions  

Example 7.4. Data as for example 7.1 but with boundary conditions: 

clamped at al = o I 1 

and (i) 	clamped at a2  = o,l, 

(ii) free 	at a2  = 0,l2  

*These values should be interpreted as being at a point very close to 

the corner, but on the clamped boundary (f3
1 

= 0). 
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(iii) normal slide (1) at a2 = 0'12' 

Cases (i) and (ii) correspond to examples 7.1 and 7.2 respectively. 

Case (iii) is obtained from the computer program described in chapter 5 

using S = 8 and functions corresponding to case (a) in table 5.4. 

A comparison is made in figures 7.9a and 7.9b for w, n22 and m22' 

These results show that the normal slide (1) boundary is comparatively 

stiff. 	The value of m22  at pi  = 0.5 is virtually zero for normal slide 

(1) boundaries. 

7.9 Med Surface Shells 

In this section numerical examples will be given for ruled surface 

shells. 

As in section (7.8), the solutions are obtained by segmenting the 

path of integration (section 7.5.3). 	Four segments (i.e. M = 4) are used 

when N = 4 and eight segments (i.e. M = 8) are used 'when N = 6, 0 or 

10, 

All results are presented in floating point notation and in ft.lb units 

unless otherwise stated, 

• ' 
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7.9.1 Convergence Study - Numerical Examples  

Example 7.5: 	Consider a ruled surface hyperbolic paraboloid with the 

following data: 

I
1 
 = 37.50 ft. 	 1

2 
= 37.50 ft. 	h = 0.25 ft; 

1<12 
= +4.441, -3 ft.-1 = 0.15 

= 4.5, +3 lbs/ft2 	 Z = 50 lbsift2. 

and boundary conditions: 

clamped at a
l 

= o,11  and a
2 

= 0
1

1
2* 

The results are presented in tables 7.60 and 7.6b respectively. 

It will he noted from table 7,6a the the solution is converging satis- 

factorily even along the clamped boundary Pi  = 0. 

In table 7.6b the results corresponding to N = 13 are presented for 

= 0.5 and ',32  = 0,5, 

Because of symmetry w, n12  and m22  at 	= 0.5 should be the 

same as w, n
12 

and m
11 	' 

at 0 = 0.5. 	This provides a check on the 

solution. 	It will be noted from table 7.6b that there is generally good 

agreement. 

Example 7.6: 	Data as for example 7.5 but with boundary conditions: 
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clamped at al  = o,11  

free 	at 02  = 0,12  

The results are presented in tables 7.7a and 7.7b, and figures 7.10a and 

7.1Cb, from which it will be noted that the solution is, in general, 

converging satisfactorily. 

For reference, a detailed solution for f31  = 0.5 and 132  = 0.5 is 

given in table 7.7b. 	This solution corresponds to N = 

7.9.2 Comparison with Other Available Solutions  

Example 7.7: 	Consider a ruled surface hyperbolic paraboloid with the 

following data: 

I
1 

= 12.92 in. 	I
2 

= 12.92 in. 	h = 0.25 in. 

K
12 

= -3
'
1247

' 
-2 in„-1 V = 0.39 

E 	= 5, + 5 lb/in2 Z = 1 lb./in2  

and boundary conditions: 

clamped at al 
= 0

1
1
1 

and a
2 

=  0,12. 
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This example was also solved by Chetty
(25), using a mixed Kantorovitch-

GaJerkin procedure and by Gunasekera
(6)

*, using an extended Levy 

procedure. 

A comparison with the line solution using C segments (i.e. M = 3) 

and N = 8 is made in table 7.'3, from which it will be noted that there is 

good agreement. 

7.9.3 Comparative Study of Different Dounda Conditions  

Example 7.3: Data as for example 7.5 but with boundary conditions: 

clamped at 	= 0,11  

and (i) 	clamped at a
7 

= 0,1
2 

(ii) free 	at a
2 

= 0,12  

(iii) normal slide (1) at a
2 

= 0
'

1
2 

(iv) normal slide (2) at a2  = 0,12  

Cates (i) and (ii) correspond to examples 7.5 and 7.6 respectively. 

Cases (iii) and (iv) are obtained from the computer program described in 

chapter 6 using S = C and functions corresponding to case (a) in table 6.4. 

*Gunasekera used a slightly different value for k12•  e particular 

results presented in table 7,f3 were obtained from Gunasekera's computer 

program using the above value of 1:12' 
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A comparison is made in figures 7.11a and 7.11b for w, n
12 

and m
22* 

Note that the difference between (iii) and (iv) is that normal slide 

(1) has u2  = 0 at a2  = 0,12  and normal slide (2) has n22  = 0 at 

a2  = 0,12. 	However, the results show that both normal slide (1) and 

normal slide (2) are comparatively stiff, with a small value for m
22 

at 

p1 = 0.5 and almost the membrane solution for n
12

. 

7.10 Discussion of the Computer Programs  

A single computer program was developed to solve either translational 

or ruled surface shells. 	The program is limited to clamped conditions at 

= 0,1 and to either clamped or free conditions at 132  = 0,1. 	Only 

uniformly distributed normal loading (Z) is considered. 

A minimum value of N = 4 is considered. 

The solution can be determined in any one of the following ways: 

(a) application of the boundary conditions at 132  = 0,1 (section 7.5.2), 

(b) application of the boundary conditions at ci9  = 0 and the symmetry 

conditions at 132  = 0.5 (section 7.5.3), 

(c) segmenting the path of integration into 4 or equal segments 

(i.e. hi = 4 or 8) and terminating the tri-diagonal elimination 

procedure at f32  = 0.5 (section 7.5.4). 
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Further relevant comments have been made in section (7,7). 

Further details of the program are available at Imperial College,(69) 

The program was written in EXCHLF Autocode(70 )/ (71)  for the 

University of London Atlas computer. 
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CI-I!. PIER 

CLOS WE 

The use of a Levy-type solution was convenient for studying the 

application of the indirect methods (Rayleigh-Ritz, GalerItin and 

Lagrangian multiplier methods) in conjunction with various approximating 

Functions (tables 3.1 and 4.5). 	This study showed that: 

(i) the Rayleigh functions (IIA)* for clamped boundaries were converging 

satisfactorily 

(ii) the Filonenko-roroditch functions (1E) were somewkt slower to 

converge than functions 114 

(iii) functions IF, obtained by modifying functions 1E, converged rapidly 

but could cause nuinerical difficulties (refer to section 4.4.3) 

(iv) the mixed cosine and sine set (1C), whenever used, converged 

rapidly but could also cause numerical difficulties (refer to section 

4.4.3) 

*The functions have been classified in table 3.1 
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(v) using sine functions (IA) the membrane stress-resultants at a hinged 

boundary were slowly convergent 

(vi) the Lagrangian multiplier method was effective in improving the slow 

convergence of a boundary action 

(vii) functions ID, used in conjunction with the Lagrangian multiplier 

method, were effective in improving a particular stress-resultant which 

was slowly convergent on the boundary but satisfactory within the 

shell, 

Application of the indirect methods to translational shells with com- 

binations of clamped, hinged or normal slide (1) conditions on two opposite 

boundaries showed that, using the functions given in table 5.4: 

n
11 

(or  n
22

) at a hinged boundary was slowly convergent and was 

effectively improved using the Lagrangian multiplier method in 

conjunction with 	functions ID 

(ii) the moments near the corner of a shell with normal slides (1) on all 

boundaries were slowly convergent 

(iii) the normal shears were slowly convergent. 

otherwise the solutions were converging satisfactorily for all combinations 

of the boundary conditions considered. 

Application of the indirect methods to ruled surface shells with 

combinations of clamped, hinged, normal slide (1), normal gable or normal 
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slide (2) conditions on two opposite boundaries showed that, using the 

functions given in table 6.4: 

(i) n
12 

at a hinged or normal gable boundary was ilo'Afly convergent 

and was effectively improved using the Lagrangian multiplier method 

in conjunction with functions IF) 

(ii) the moments near the corner of a shell with normal slides (1 or 2) 

on all boundaries were slowly convergent 

(iii) the normal shears were slowly convergent. 

Otherwise the solutions were converging satisfactorily for all combinations 

of the boundary conditions considered. 

For all cases considered, the Lagrangian multiplier yielded a more 

accurate estimate of a boundary action than the corresponding displacement 

derivative. 	However, the solution adjacent to the shell boundary is 

based on these derivatives and, depending on the selected approximating 

Wit functions, could be Wit satisfactory. 

Varying the non-dimensional shell parameters showed that, for trans-

lational and ruled surface shells: 

(i) the normal displacement and the moments increased with increasing 

shallowness, slowly approaching the solution for a thin flat plate 

(ii) the membrane stress-resultants decreased slowly with increasing 

shallowness. 
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For ruled surface shells in the steeper range, the solution for n
12 is 

similar to the membrane solution. 	Further points are discussed in sections 

(5.7.1) and (6.7.1). 

The method of lines was applied to translational and ruled surface 

shells for clamped conditions at a
l 

= 0,1
1 and domed or free conditions 

at a
2 

= 0,12. 
	

This analysis showed that: 

0) 	for translational shells n
11 

at a
l 

= C was slowly convergent due to 

the inaccuracy of the finite difference representation for the 

derivatives of u
1 

at the boundary; otherwise the solution was con-

verging satisfactorily. 

(ii) for ruled surface shells the solutions were converging satisfactorily 

(iii) roundoff errors became significant and at times distorted the solution 

as the ratio (--) increased much beyond 3 

(iv) the roundoff errors were offset by segmenting the shell and restoring 

equilibrium at the segment junctions using a stiffness method. 

The slow convergence of n
11 

at a
l 

= 0 observed with translational shells 

could be improved by adopting a closer spacing of the lines adjacent to the 

boundary. 	This would lead to a more accurate finite difference 

representation for the derivatives of u1. 
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APPENDIX I 

RAYLEIGH FUNCTIONS 

Rayleigh functions(35)'(37)  are derived from the engineering theory 

of free undamped transverse vibrations of a uniform slender beam and are 

of the form: 

F
m 	Fm  (0)t  = Am sin a m' 1 8. + Gm 	' sinh a 0. + C cos am + 

m 

+ cosh a O. m' 

where AB , C and am are constants,* m is a non-zero positive integer m m m 

and i can have the value 1 or 2. 	The constants are determined by the 

two boundary conditions specified at each of pi  = 0 and Pi  = 1. 

The derivatives of F m are given by: 

P = a rA cos a p. + B cosh a (3. 	(3 C sin a . + sinh a O. 
rn 	m 	m 	m 	 m I 	n 	171 	 m' I 

= a Q._ m .m (2) 

*In equation (1) the function has been divided throughout by a constant 

associated with cosh amp. (say Dm). 	This is permissible only when Dm 

is non-zero. 

(1) 
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F" rn 

F" m 

= 

= 

= 

a 2  
m 

a
m

3 

4" a m 

m m' 

[-A 	sin a 	3.  + 	sinh m 	in' I 

+ cosh a 3.1 in' 

-A 	coscos a 8. + [1 	cosh 
m 

	

+ sinh a 	6. 
ms 

EA 	sin a '3. + B 	sinh m 	 Ell 

+ cosh a 3.] 

ampi 	C 	cos a 	+ m. 

= a 2sf m m 

a 	+ C 	sin a 	+ m' 	m 	m' u  

=a 3A m m 

a 3. + C 	cos a 	+ m' u 	m 	1 

= a 4F m m 

(3) 

(4) 

(5) 

where a prime denotes differentiation. 	Note that a summation is not 

implied in equations (2) to (5) inclusive. 

Two sets of boundary conditions will be considered and will be 

referred to as the: 

(a) clamped-clamped case 

(b) free-free case 

(a) 	Clamped-Clamped Case  

The boundary conditions satisfied at O. = 0,1 arcs 

F = 0 = F' m  
m 

(6) 

and the Rayleigh function reduces to: 
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F = cosh a p. - cos a 3. - Am(sinh a 3. - sin a B.) 	(7) m M 	I 	 M I 	 171 I 	 in ' i 

where a
m and A

m 
are obtained from the relations: 

cosh a cos a 	= 1 	 (8) 
ITI 	 CYl 

	

sinh a + sin a
m 	cosh am - cos a 

 A
m 

— (9) cosh am - cos a 	sinh am 
- sin am 

As m increases solution for these constants by equations (8) and (9) involves 

small differences of large numbers, causing considerable numerical difficulty. 

A method discussed by Rayleigh (page 277 in reference (37)) could help 

to overcome this problem. 

	

The values of a ,A ,F 	, 	and S used in this thesis 
M M 171 M 

 ul 
 

	

were provided by Kuo (59)  for values of m up to 27. 	These have 

been reproduced, for odd values of m only, in table A1.1 for am  and Am  

and in table A1.2 for F ,
m 

 , 
m 

 and ,X • 	Note that table A1.2 

has been reproduced From the computer program, in which these values 

have been tabulated, 



- 241 - 

(b) Free-Free Case  

The boundary conditions satisfied at Pi = 0,1 are: 

Ise 
F" = 0 = Frri m (10) 

The Rayleigh function for this case is the same as the second derivative 

of the Rayleigh function for the c lamped-clamped case. 

Then 

Fm(free-free case) = 	(clamped-clamped case) 	(11) 

For both cases (a) and (b) the Rayleigh functions are orthogonal 

functions 

1 
i.e. 	 F 	/ 	for m = n m n 

= 0 form n 

Refer to the integration forriulaa given in Appendix 2. 



0 

11 
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APPENDIX 2 

INTEGRATION i:OR.MULAE 

In the following formulae, Fm  denotes a Rayleigh function, 	The 

functions 9 , 	and )( and the constant a are defined in Appendix 1. 
m m 	rel 	 m  

f
n 

denotes a Rayleigh function which satisfies different boundary 

conditions to F 	The functions Q
n
, -;4

n 
and iXn and the constant a

n 
are 

m 

defined in the same way as 	,
m 

 , 1m  and a
m 

respectively. 

The integer i can have the value 1 or 2. 

The integration formulae used in this thesis can be summarised in the 

following way: 

Zsin in ip. cos n pidpi 	2 
2 	

, for I m-nl odd 	(la) 
TT (m-n

2
) 

0, 	 for I rn-n I even 	(lb) 

sin m Tr Pi  sin n f3idPi  = 	 for m = n 	 (2a) 

0, 	for m n 	 (2b) 

11 

O 
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1 

cos rn TO;  cos n sr pidpi 	+ 1, form=n=o 	(3a) 

= 	1, for m = n > o 	(3b) 

= 0, for m # n 	(3c) 

/1 

(1-213.)2d fli  + — (4) 

(1-21 	rn ) sin 	= + 	, for m even . 	
2 
;a If 	

(5a) 

	

0, for m odd 	 (5b) 

J1 

	

(1-20.) cos rn rr3. 	 for m odd 	 Oa) 
' (m 70- o 

= 0, for m even 	 (6b) 

	

1 	 Pi=1 

	

d'3. 	17- [3F 	- Q 

	

rn n '1 	ik 	ITU po i=o 

F
I 
 ,2 

2Q 
 x

in 
4. 

r-M 
 21 , for m = n 	(7a) 

	

-47 L m 	rd 	j 

*Jor derivations of these expressions see references (35) and (37) 

0 

11 

0 

6.=1 
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	 Ea 3,X F - a a 	+ 4. (a 4 m - an j 	
m m n 	2 

m rf m n 

3 + a a2G d ton 	n - an VII 
P=0 i   

for m n 	 (7b) 

11 

J 	FIF c16. = 0 , for m n 
rn n t 

o
  

(8a) 

4 

a
m  

4 tam 
 F 

Fn 
 - a

m 
2 a

rf 
 X G 

n 
 + 

a 	
mm 

(am A 
- I 

6.=1 
+ a a2,6 	- a 34; X 	, for m n 	 (8b) 

m  n m n 	n tri frO 

1 711  j.

-  
3.=C; ton i = [a c; F 	ili=1  

m m it] 1 	F df3. 

o ' 1 
a  2 

a 2 

a 4 
m  

[am 
3 	

n Wit„` n am2a  nFmn + 
( m  m 

- a 

3  + a a2,X IS 	 for m n 	 (9b) 
mnmn pro 

a 
m [3G

m
Fin - ini] 

Pi=1 

Pr° 
ME 

4 

- 4 [8 - + ,X 	, for m = n 
m m 	

(9a) 
=1 ' 1 

2 	2 
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1F f d(3 	1  [a3m m 	
2- X f *- a aiG+ m n 

	

	 n 	m rf m n (a 4 - a4) 

- 3c 	• B.=1 
+ a a -2Q 	- m n if( n 	a ijn] 

J1 

F' f d3„ 	
a 	

[a
3F f 	

?- a a ,X 4 + m n 	 mmn mnmn (a 4 - 
o 171 an 

+ a a 2ftf 7 m n 	n 

p.=1 
- .4:11,3'9rrini pro 

	

1 2 
	

p.=1= 
(1-2P,i)Fmdpi  = 	[am,Xm  - 2pian.eXm  + 2ftfm] 	 (12) 

o a
111 	

13.=0 

where a prime denotes differentiation and i can have the value 1 or 2. 

Note that equations (5a), (5b), (6a) and (6b) are particular cases of 

	

equation (12), when fn 	denotes a trigometric function. 	Also equation 

(la) is a particular case of equation (10). 	However, in equations (10) 

and (11) am must be different from an. 

When Fm is the Rayleigh function corresponding to the clamped-

clamped case (refer to Appendix 1) and fn is, in particular, a trigono-

metric function, the Following are obtained; 

(10) 
pro 



  

(°9[) • • "c'el = J03 
d 'dp~gu >i up .1 , 

 

n)
ZD7  

 

  

• •19'eZ = b Jol 

o = b Joj I 
d 

!dp-i dub soo 

0 
d 

I 

 

ppo fu-Lu 

U Joj '0 

U0A0 U.4.1.5 

U 	LL1 JOJ [ U VU 
D ". 

LU 
V D] 

LU 
( 0 ". 	o) 

U LU 
1D8 

Z0 Z 

1111 LU 	LU U.1 	I U U.1 
'(ZZ - V DZ) = 'SP 

01 

Lti 104 10 = 

U = U.1 .101 = •OP 
,u LI, 

  

- 9PZ - 
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—411/03A 
F' sin i rr (U4 

 — 
P 

4) 
= 	 , for j = 2,4,6,... 	(161a) 

p rr 

m,n 	= 1 f 2,31 	 

p = 1,3,5, 	 
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