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ABSTRACT

The numerical solutions for the shallow doubly curved shells
presented in this thesis are based on the shallow curved plate theory,

Thin shells of constant thickness and rectangular plan=-form and
subject to uniformly éisfribufed notmal loading are considered,

The solution methods include the Rayleigh-Ritz, Galerkin and
Lagrangian multiplier methods,  These are referred to as indirect methods
in this thesis.  The method of lines, in which the derivatives in one
direction are replaced by finite difference expressions, is also discussed,

Various approximating functions are considered in conjunction with
the indirect methods,

Initially the indirect methods and approximating functions are
applied to translational shell problems with Levy=type solutions, In
this way the indirect solutions are compared with availdble exact
solutions,

The indirect methods are then extended to translational shells with
claraped, hinged or normal slide (1) conditions on any two opposite

boundaries,  Several numerical examples are given and the convergence
p



&2

of the solutions discussed,  /in overall equilibrium check is presented,
In a similar manner, the indirect methods are applied to ruled

surface hyperbolic paraboloids with clamped, hinged, normal slide (1),
normal gable or normal slide (2) conditions on any two opposite
boundaries.  Several numerical examples are again given and the
solutions discussed,  An overall equilibrium check is presented,

| The behaviour of the shell is then studied by varying certain non=-
dimensional parameters,

The method of lines is applied to translational and ruled surface
shells with two opposite boundaries clamped and the remﬁining two either
clamped or free, A system of linear first order ardinary differontial
equations with constant coefficients is obtained and is solved using the
matrix progression method,  The numerical difficulties encountered are
discussad, In order to reduce the accumulation of roundoff errors the
shell is segmented, A stiffness method is then used to restore equilibrium
at the segment junctions, MNumerical examples are presented,

VWherever possible comparisons are made with other avaiiable

solutions,
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NOTATION

In the following tha subscripts i and | range over the values 1

and 2,

General

("1 "‘2'2)

A.' 1 'A'IZ'A22

Right handed orthogonal cartesian system of axes

Unit vectors in the Xyr %y and z directions

respectively

The position vector of a point P measured in

the (x.l ,xz,z) reference frame

Curvilinear co-ordinates of the shell middle surface
Co-ordinate measured normal to the (a.' ,az) set
The metric of tha surface

The coefficients of the first fundamental quadratic
form

The undeformed curvatures of the shell middle
surface,

Principal curvatures



K(‘ = KIKZ
]
Ky
l'l'|2
f.',fz
£,
! 1
a
2
[ =
2 - T
X, 7
i
U W
h
vV
£
(EAE,D,
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Caussian curvature

Plan lengths of the shell in the ay and a,
directions respectively
Defined for translational shells in figure 2,4

Definad for ruled surface shells in figure 2,5

Loading pressures in the a, and y directions
respectively

Components of the middle surface displacement
(referred to as ®displacements®)

Thickness of the shell

Poisson's ratio

Young®s modulus of clasticity
g b4

Components of strain on the middle and y surfaces

respectively,
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(O'ii'):(a’}i) y Components of stress on the middle and y
surfacss respectively
=1 ‘ i:i
Sii Kronecker delta
=0, i¥]

Strain resultants

kii = -w,..
nii Membrane stress-resultants
q; Shear stress~resultants
r. Kirchhoff shear stress-resultants
mii Stress~couples
. Fh
(\ = 2

(1-v7)

EhS

D —

 120-v)
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'] Plicher stress-resultant function
2 2
V2 = ._3_2. + _.?_2.
da da
1 2
vé = y2y2
viz «k —Taz - XK E____a,z, R
R 22 . 12 da 1N 2
301 172 3(!2

col { } Denotes a column matrix

I ; The unif matrix
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Indirect Mathods

Potential energy of clastic deformation (strain

o
energy)

VI Potential energy of the surface loads

V2 Potential energy of the applied boundary loads

V= Vo + Vl + V2 Total potential energy of the deformed shell

Nii’Qi ,Mii Applied boundary loads

R] = Q.l + :!\]2'2

n -

Ry Q2 + M]z']

80.‘, 802, Sw Displacement variations (or the ®virtual displacements®)

u;n ,u;“,wm Independent sets of kinematically admissible

u™ Ul W functions (unless otherwise stated)

1772’ 'n

m
mn

Sa
m’

a,b,c
" "m' Tm

b Arbitrary constants
;€
mn’ “mn
& , & Arbitrary variations in the constants a_, b and
m T m m’ “m
c respectively
s &, & Arbitrary variations in the constants a_ , b and
mn’ "~ mn mn’ “mn

respectivel
mn P ye



The number of approximating functions
_h
i
Non-zero positive integer
T
o
2
w Non=-dimensional forms of u. and w respectively
’ai’F ';'i Mon~dimansional forms of nii' qir 7 and mii
respectively
ho 1 1 hoo b
= = m—, . T Non~dimensional
T] :<2T] 3r Tl 2
shell parameters for
_ h 1.1 h —1_2- translestional shells
"I !\ZI' Or l] f2
|
= -h ] - h 2 iJon-dimensional shell
'l]_- v AR T 1 '

I paraincter for ruled

1
21 ho 2
2 'T]‘ * T surface shells
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where Zo is a constant

or
£ KIZ
Lagrangian multipliers

Constants associated with the Lagrangian

mulﬁpliefs
Sets of independent functions

MNomnal reactive force at a comer of the shell
and is positive when acting in the (~y) direction
Errors in equilibrium for one quarter of the shell

T ¢ - -
Non-dimensional forms o E] ’ E2 and C3

respectively
Positive infegers

iHon=dimansional form of Q
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The region bounded by Bl = O and 13] =1is

col { Ry Mg Mgg Ty Uy Uy S W } (8 x 1) Matrix

col{ . . _le', . . ,} (8 x 1) Matrix

divided into 2N equal divisions by the lines

glk (k = 0’1’2'.ol12N)

Denotes the value of a displacement, stress-

resultant or stress-couple along thz line ‘SI

co' { y] yz [ X NN N J y!< L ALY yh! } (N x ]) Mo?rix

col {Z] Z.?‘ cevee Z,k veeee ZN } (N x 1) Matrix

X(

B

"2

)

Uniformly distributed normal loading along thz

k

line {3]

ol {ypr Myr My 1y }

Actions

(4N x 1)
Matrix
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u = g(pz) = col { Ypr Ypr e, w } Risplacements (4Nx1) Matrix
P2 E@) = cd {_ZS: L } (BN x 1) Motrix

Z = col { e e e IZZ s e e e } (8N x 1) Matrix

é Matrix defined by equations (7 .33)

F(P) = o é-] Z = col { E(P)' H(P)} The particular solution

_)S(p) = col {!122([9)’ EIZ(P)I m22(P)’ LZ(P) } (4N X ]) Matrix

_L;'(p) = col { (p) e(p) (p) } (4N x 1) Matrix

c(f 2) = e~é92 The distribution or transfer matrix (8N x 8N)
_"ii(ﬁz) Submatrices of _(%({32) (4N x 4N)

= Ios

X.;“ , X; Actions at edges 1 and 2 of segment m

U, Displacaments at edges 1 and 2 of segment m
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o= ol { X g;”} © (8N x 1) Matrix

=m _ SvALL m o

£2 = col { :52 ' EZ (8N x 1) Matrix

M Nurabar of segments into which the shell is
divided

T = om

b Length of the segment in the ﬁz direction

_§m Stiffness matrix of the segment m

xom , xom Clamped edge solution at edges 1 and 2 of

segment m respectively

fn

Asseimbled stiffness matrix of the shall,
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CHAPTER 1
INTRODUCTION

This thesis is concerned with the numerical solution of the shallow
curved plate equations, In the following a brief review of some of
the references noted will precede a discussion on the scope of the

research,

1.1 A Brief Review

The shallow cylindrical shell equations have been derived by

Donnell(])' (2) (3)

* for shell buckling problems,  Jenkins'™’ presented the

stiffness (displacement) matrix method for transversely continuous shell
and edge beam problems using a Levy~type solution of the Donnell

equations,  Extended Levy methods of solution have been used by

@ L © )

and Gunasekera'’, Chuang and Veletsos" ’ have

Newman

* These numbers correspond to references given at the end of this

thesis,



- 2% -

used the Rayleigh-Ritz and Lagrangian multiplior methods and also a
finite differonce technique,  Scveral types of approximating functions
are considered by Chudng and Velotsos but only with Lovy-typo solutions,

For tho casc of translational shells the cquations for the shallow

(3)

curved plate theory are obtainable from the work of arguerre’™ and of

(%) (10)

Navier-type solutions have been discussed by Ambartsumyan
(12) and

Viasov

and by Flugge and Conrad(”) and Levy-type solutions by Bouma

by Apeland(.'a). The oxtended Levy method has beon discussed by

(15)

/\nsoh(m) and by Gunasckera(6). Noor and Veletsos extended the

@)

to translational shells,  Further
16,07)

(19

technique and a discrete clement technique™ ™7,

work of Chuang and Vcletsos

suggested solution proceduras have used a variational method

(12)

finite difference
For the case of ruled surface hyperbolic parcboloid shells, it has boen

shown that the Mavier and Lovy=-type solutions corrospond to unrcalistic

(20)

boundary conditions . However such solutions arc of interest and

(21, (22)

have been discussed by Apcland and Popo « Varictional methods

have been suggested by Toffenhan1(23)' (24) and by Cheﬂy(zs)' (26).
further suggested solution procedures have used a finite difference

(27), (28), a discrete clement fechnique(lg)
od(SO)'(3”.

tochnique , an extended lovy

method (29),(6)

and a finite element meth Various
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approximate methods have been suggested fér this problem(32)’ (33),(34), (35).

In this thesis the Rayleigh-Ritz, Calerkin and Lagrangian multiplier
methods (referred to as ®indirect methods® in this thesis) will be used,

A useful review of these and other indirect methods is given by

(36),

Finlayson and Scriven This reference includes an extensive

bibliography.
37)

Use will also be made of Rayleigh funcﬁons( , which have been

applied to shell problems by Vlusov(9), Onioshvilli(Be), Morice(39) and
by MunrolS>),

Consideration will also be given to the mathod of lines in which,
for two dimensional problems, the derivatives im one direction are

(40)

attributes the
(42)

replaced by finite difference expressions,  Smimov
method to Rofhe(m). The method was later applied by Hartree

Slobodyansky(43) and by Faddeyeva(M). The latter two references are

discussed by Mikhlin(%). A further description of the method is given

(46) )

by Berezin and Zhidkov' ',  Jenkins and Tottenham applied the

method of lines to doubly curved shells, but did not present any

(25)

numerical results,  Chetty applied this method to ruled surface
hyperbolic parcboloids and presented solutions for two sefs of conditions

on all boundaries (viz., clamped and normal gable conditions).



However, Chetty

(25)

made no study of the convergence of the solution

as the number of lines varied,

1.2

(a)

(b)

(c)

(d)

(e)

Scope of Research

The scope of the research will be tos

apply indirect methods (Rayleigh=Ritz, Calerkin and Lagrangian
multiplier methods) in conjunction with various approximating
functions to translational shells for which an exact solution is
possible,*

apply the indirect methods and approximating functions to trans-
lational shells with variouws:boundary conditions for which an exact .
solution is not possible,

apply the indirect methods and approximating functions to ruled
surface shells with various boundary conditions,

study the behaviour of translational and ruled surface shells as
certain non-dimensional parameters are varied,

apply the method of lines to translational and ruled surface shells,

*This exact solution is obtainable from a Levy-type solution,



CHAPTER 2
SHALLOW CURVED PLATE THEORY

In this chéprer assumptions in addition to those made in the
classical theory of thin shells will be first discussed, The required shell
equations will be then derived vactorially and variationally, In the
vectorial treatment, the fundamental varicbles are directed quantities
(displacements and forces) and in the variational treatment, the funda=-

mental quantities are scalars (potential energy).

2.1 Assumptions and Geometry of the Shell Middle Surface

Let (x.' ,x2,z) be a right handed orthogonal cartesian system of mms
and Iet-i.', i-2 and |- be unit vectors in Xyr %o and 2z directions
respectively (figure 2,1).

Let P be the position vector of a point P measured in the (x‘ ,xz,z)
reference frame and let it be a function of two parameters a and Gpe
As a, and a, vary a surface is described,  Let this represent the middie
surface of the shell,

The curve described when one parameter is varied while the other

is kept constant is a parometric curve,
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In parametric forms:

X, = x2(°l ,az) (2.2)
z = z(cxl ,az) (2,3)

Then the position vector T is given by:

P o= x, T+x .i-z

it X iyt 2 2.4)

Using comma notation to represent partial differentiation with respect

o a, or a,, the partial derivatives of P are given bys
3,1 = x'l,]i'l + x2,|i2 + z,li (2..5)
15,2 = x'l,Zi'l + x2'2i2 * Zpg) (2.6)

Let the magnitude of tha vectors -'F,.‘ and -F'Z be A” and A22
respectively,

The first fundomental quodratic form of the surfoce .is given by
(Figure 2,2):

d32

s . A2 . 2 2,2
dP:dP = A"da.l + 2A12dald°2 A22d°2 (2.7)
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where A”, 2 and A 12 o termed the coefficients of the first funda-

mental quadratic form and are defined bys:

A” = Pli‘Pll = (xl -l) +(X2 l) +(Z ) (2.8)
AZ = BB, = (x. )+ (ke )2+ (2,.) (2.9)
22 = Fry*Pry 1,2 2,2 2 .
Arg = PryePry = Aphg, cos X =

("1,1""1,2’ + ("2,1)("2,2) + (2,1)(2'2) (2.10)

The quantity ds2 is termed the metric of the suiface,
Consider, for example, the middle surface of the circular

cylindrical shell of radius R given in figure 2,3,

Then
Xy = @ (2.11)
| - 2a
X, = R sin (T) - R sin (—-2——) (2.12)
I -2
z = R cos (izﬁ') - R cos -—-—-2-5-,-:2? (2.13)

Substituting equations (2,11), (2.12) and (2.13) into equations (2.8),

(2.9) oand (2,10) yields:
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An = 1 (2.14)
2 _

A22 = ] (2.15)
AIZ = (25]6)

and £ (figure 2,3) then

If the parameters chosen were a

1

Af, = 1 (2.17)
22 = @ (2.18)
A= © (2.19)

Surfaces which have zero Gaussian curvature, such as the cylindrical
surface in the above example, are developcble surfaces and are isometric to
a plcne.(48) For such surfaces an (a] ,az) set exists such that Al'l and
A22 are constants and Al 9 is zero, For other surfaces this is not the
case.(49)

For surfaces which are not isometric to a plane the curved plate

approximation consists of taking 'A‘]2 =0 and A, and A22 as constants,

11
which, in particular, may be taken as unity,

Then equation (2.7) becomess
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ds2 = dalz + dazz (2.20)

The shallow shell static approximation can be stated as:

Kii m << npq (2.21q)

where Kii is the undeformed curvature of the middle surface, m is a
stress=couple, npq is a stress-resultant, and irjsPeQeras range over the
values 1 and 2, The quantities m  and "oq will be defined in
section (2,2).

(50)

The shallow shell kinematic opproximation can be stated as:

yl(ii << 1 (2,21b)

where y is measured in the direction normal to the (c.!.I '°2) set (refer to
sections 2,1,1 and 2,2,).

When the shallow shell approximations are made in conjunction
with the geometric simplifications of the curved plate approximations
the shallow curved plate theory resuhs.(35)'(50)

This thesis will be restricted to shallow curved plates which are
thin, of constant thickness and rectangular plan~form,

The loading will be static and all problems will be linearised,

Linearisation will be achieved by assumings
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(0) lineorly. elastic constitutive relations
(b) small (infinitesimal) displacements

() linearised strain-displacement relations,

2.1.1 Simplified Ceometry of the Shell Middle Surface

In this section the shell types used in this thesis will be discussed
in conjunction with the curved plate approximation;
Let the middle surface of the shell, in terms of the reference

frame (xl ,xz,z) be defined bys
z=%ax2+%ax2+axx +a,x, +ax, +a (2.22)
i 2%2 P12 T %% T %% T % .

where o, Gi=1,2,...,6) are constants,

Let the (al,ag) set be dafined by the intersection of the Xy =
constant and x, = constant planes with the middle surface of the shell
and let y be mutually orthogonal to the (a' ,02) set,

Within the limits of the curved plate approximations:

(a) the (c:xl ,02) set is sensibly orthogonal

and (b) the products of the slopes, 2z and 0z , of
ax] . ax2

the undeformed middle surface of the shell are negligible compared with

unity,
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From (b) and equation (2,22) the undeformed curvatures of the shell

middle surface are constant and given by :

< 2322 .. 2.29)
1 —axf 1 re s

~ 02 _
K.'2 ¥ = sz = a, (2.24)

Kyy ™ -"’—"-2 = o (2.25)
o,

K” is the undeformed curvature of the a, line, K22 is the
undeformed curvature of the a, line and K.'2 is the undeformed twist

of the middle surface.

The shells considered are classified under translational and ruled

surface shells,

i Translational Shells (figure 2,4):

When ay = O, equation (2,22) defines a translational shell,

Let Kl and K? be the principal curvatures and let Kg denote the

Gaussian curvature,



Then

= KK

Ke 12

Within the curved plate approximations K'I = !\" and K2 = K22,

Then the equation of the middle surface of a translational shell is

given by:
_ SN2 2]
z = -5 [c(x.l |.|x.|) + (x2 |2x2) (2,26)
K,l
where c= —K—- (2.27)
2
8f.|
K] = "—l-z (2.28)
1
8{"2
K2 = = ';’2‘ (2.29)
2

where f.', f2, l, and |2 are defined in figure 2.4,

1

Translational shells may be further classified according to their

Gaussian curvature intos
(o) elliptic paraboloids for which KG >0

(b) hyperbolic paraboloids for which K .. < O

G
and (c) parabolic cylinders for which KG =0,
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Note that with a circular cylinder it is not necessary to resort to the
geometric simplifications of the curved plate approximations (refer to the

example considered in section 2,1),

il Ruled Surface Shells (figure 2,5):

This clossification follows when K" =Q0= K22 and K'2 # O,

Such shells will be referred to as ®ruled surface hyperbolic
paraboloid shells® or simply ®ruled surface shells®.

In figure 2.5 two altemnative definitions for the equation of the

middle surface are given,

In figure 2.5a the equation of the middle surface is given by:

2 = Kxx (2.30)
where K = ek (2.31)
12~ T .

and where f, I] and I2 are defined in figure 2,5a,  This form is only
symmetric about one diagonal,

In figure 2.5b the equation of the middle surface is given by:

I f,x
- 21 172
z = KIZ(- 7 - 3 + x]xz) (2.32)
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‘ ¥
where K.'2 = --IT';- (2.33)

where f(= - -fz-), I] and. I2 are defined in figure 2,5b,  This form is
symmetric about either diagonal, and will be used in conjunction with
the overall equilibrium check in section 6.4,

Vlosov(q)considers that the simplifications inade are such that the

theory is sufficiently accurate if the maximum (rise/length) ratio does

not exceed -;- .

2.2 Vectorial Treatment of Shell Equations

Consider a differential element of the shell (figure 2,68 and 2,6b).

Using the Einstein summation convention, the equations of aquilibrium

for a shallow curved plate are:

nii'i + )(i = O (2.34)
Kiinii + % ; +Z=0 (2,35)

e . ~q. =0 2,36
m'hl q ( )

where nii and q, will be termed stress~resultants, i will be termed
stress~couples, Kii are the undeformed curvatures of the shell middle

surface, X. and Z are the loading pressures in the a, and y directions
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respectively and i and j range over the values 1 and 2, Comma
notation is used to represent partial differentiation,

The components of strain on the middle surface are given by:

eii = Ho, P+ u o ?'Kiiw) (2.37)

2!

where u, and w are the middle surface displacement components (here~

after referred to as Yisplacements),  After neglecting yK” and yK,,

compared with unity (Love's first approximation), the components of

strain on the y surface (figure 2,7) of the shell are given by:
.e - . = P 2.38
(€, = g5 -ww (2.38)

Again, after neglecting yK" and yK22 compared with unity and

assuming the middle and centroidal surfaces to coincide (figure 2.8)(,3-) /(20)

the stress-resultants nii and the stress-couples mii are defined by:

h
3
= a-. 2.39
nii ( ”)ydy ( )
_h
)
h
t3
. = -) d 2.40
s Y( OTI)Y Y ( )

L]
N o



- 38 ~

where h is the shell thickness and (a‘i'i)y are the components of stress
on the y surface.

The constitutive relations aret

e = 1-2)E.. + B, 2,41
T (- &, Y & € (2.41)
where £ is Young's modulus of elasticity of the shell material, is

Poisson’s ratio and sii is the Kronecker delta,

Introducing the strain-resultants eii and kii defined by:

eii = g i (2.42)

|<ii = -w,ii (2.43)

then, from equations (2,37) to (2,43) inclusive, the stress-resultants, nii'

and the stress couples, mii' can be expressed in the following form:

ne = K [('I-)J)eii + vsiiepp] (2.44)
m = ) [(l--\»’)kii + v siikpp] (2.45)
where
_  th
K = - (2,46)
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3
p = Eh (2.47)

1201-v?)

In the following the forms of the shell equations referred to in

this thesis will be derived,

2,2,1,  Shell Equations in Terms of the Displacement w and

the FUcher Stress-Resultant Function £

The Picher stress-resultant function is defined bys

Ny = ;{,22 - J‘dea] (2.48)
Mg = Brpy (2.49)
Ny = Bryq - Ixzdaz (2.50)

The equations of equilibrium (2.34), (2.35) and (2.36), dfter eliminating
9; and substituting for mii and nii by equations (2,43), (2.45), (2.49),

(2,49) and (2.50), reduce to the single equations

4 4, _ .,
DV 'w =~ VR;{ = Z = !\” J.deal - KZ"’J deaz (2.51)

where



540_

o4 = ¢2 2
o2 = 2 , o
- 3 2
vZ = k Gl - —-?-2-—+:< i
R 22 2 “™2 Ba.ca n 2
aa] 172 aa2

The second equation linking w and g is obtained from the compati-

bility equations

[ - 2€

_ 2

12,127 €21 R

which, from equations (2,42), (2.44), (2.48), (2.49) and (2,50), yields

V4g{ + EhV2w= a?- X, da, + 62 X da, =
R ';—2' NI T T %
o da
2 1
oX 3
_ ;1 2
Ve ) (2.53)

2.2,2,  Shell Equations in Terms of the Displacements Upr Yy

ond w

Equations (2.34) and (2,35), after substituting for q; from equation

(2.36) expressing n,. and mii in terms of the displacements Uyr Yy ond w

fi
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from equations (2,37), (2.42), (2.43), (2.44) and (2.45), yield the

required equations, which in matrix form are:

_ 4 - - - o
Ly Y2 ha Yy X 0

' L 0-vh X = ol .54
by L by ) T | % .
L. 3 -w |z o
Rl 1 = | €]

where

2 2
[ o a-») 2

by = \: 5 * 7 a"a“i]
2

aal
L = [(l+v) 2> ] -
12 2 da.da LZI
1%%
- [(1-y):< B K YR )| =L
L3 12 Ta, " 2 e, 3
- [(l-v) o’ , & ]
Ly2 7 3% 3
oa oa,
1 7
- [(I-V)K 2 i VK )= | =L
L 12 5a 22 " 32

1 2
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[——- V7 + K + 2(1-v).<]2 + ZvKn 92 + {\22 ]

2.2,3 Shell Equations in Terms of Four Actions (n

22°™27"27M97)

and Four Displacements (UZ’U'I W,8)

The form of the equations derived in this section will be used in
conjunction with the method of lines (Chapter 7), os discussed by Jenkins
and Toffenham.(47)

The equations of equilibrium (2,34), (2.35) and (2.36) when written

out in full are:

n.”,.I + n]2,2 + X] = 0O (2.55)
PR + n22'2 + )(2 = 0 (2.56)

Knnn + 2!\]2n]2 + "22K22 + q],‘ + q2,2 +7Z=0 (2.57)

™1, + g9~ % = (@) (2,59)

+m -

2,2 %

m

12,1 ¢ (2,59)

The Kirchhoff shears are given by:

r, = q.I +m]2'2 (2-60)

q2 + m'IZ,] (2.61)



- 43 -

Equations (2,44) and (2,45) when written out in full ares

From

obtained:

n

1

22

- Vnzz =

- V¥Yn

- N T |
- (]_vz) [U"‘ v 02,2 (K“ + \}'<22)W~d (2.62)
e [" PVt Kyt VR ] 2,69
(-y% L 22 1,17 Y22 1w A
= . th v +u - %K w] (2 64)
Y L1,2 7 20 12 5
3 ~
_ _~fh -
C-v)) MATRER LN (2,65)
md T -
- 1200-y 2) L.w'22 + Vw,” a (2.66)
- iiEiha ) ] (2.67)
12(1 +V [“"12 .

equations (2,62), (2.63), (2.65) and (2,66) the following are

Eh(u w) (2.63)

RENT

- K

2 = KogW) (2.69)

iy = Fhlyy
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.3
|  Fh
Myt Yy F = (W) (2,70)
- o= - N (Wons) (2.71)
My = ¥V My 15 Wig ‘

From equations (2,55) and (2,68) the following is obtained

g gtV n '+Eh(u w',I) + X, = O (2,72)

12, 22, 1,1 " 5 1

Defining

e = Wig (2.73)

-

then equations (2.59), (2.61) and (2,67) yield the following:

3
Eh _
My2,2" "2~ FEYY oy = © 2.74)

rrom equations (2,57), (2,58), (2.61), (2.68) and (2.70), the following

equation is obtained :

b/
r2’2 + .KIzn‘2 + (K22 + VY K")n22 + YV m22’” +
+ ERK EhK, > & +72=0 (2.75)
1" "™ Y T Yo = .

The required equations are given by (2.56), (2,63), (2.64), (2.68), (2.72),
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(2.73); (2.74) and (2,75), and can be arranged in the following matrix

forms

n22 . /‘\12 » é . ¢ . . ﬂ22' ; 2

N I L TR VY I i

m22 . -o 1] A34 ® [ ] A37 » m22 ]
6 7 |=
By |2 | " Ap A Pz o - Ao Mgl (FZFS

(2,76)

Uy A51 . . . . A56 . ASB 02 .

“1 . Agg o o Pes o o Aggl|Y .

e * [ ) A73 [ ] [ ] ] L ] %8 e [ ]

w . . [ . . [ A . w Y

. - L 87 JPUSY oy . J . -J
where

Alg = %, " g5
= a —1 A
A21 “"55]‘ /\‘56
2
_ 3
Ay = Eh —
a



Ay = -Eh!<”-£-]- = Ay,
Ay = -1 = Ay
A o B
Ay = R+ VKD = -Ag
Al = gy = -Agg

2

3 4
_ 2 B 3+
A = [-EhK" - Fa]
1
h o _=Yh
51 —Eh
A = o2+Y)
62 —Eh

(47)

* Jenkins and Tottenhom  "neglected the term EhiC,.” as being Smdll;

11

This term has been retained in equations (2,76), which is consistent with

the other shell equations derived,
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IZ(I-VZ)

Agg = ——3—

Eh

or, more compactlys

Y.y

where Y = ool { nygmismproyui 0w |

o {35z )

2,3 Variational Treatment of Shell Equations

+ AY .j._|: = O (2.77)

I—
[i]

In the following, the term ®kinematically admissible displacements®
means displacements which satisfy the internal compatibility conditions and
the kinematic conditions on that part of the surface where displacements
are prescribed; the term "statically admissible stresses® means stresses
which satisfy the internal equilibrium conditions and the equilibrium con~
ditions on that part of the surface where extemnal forces are prescribed,

In studying the equilibrium of an elastic system, two principles* may

be applied:

*These are, respectively, particular cases of two general principles
applicable to any mechanical system in equilibrium, viz,:
(a) the principle of virtual displacements

(b) the principle of virtual changes in the stressed state,
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(@) the principle of minimum total potential energy, ‘i'n which
variations with respect to kinematically admissible displacements
are considered

(b) the principle of minimum complémentary energy; in which
variations with respect to statically admissible stresses are
considered,

Generally, if kinematically admissible displacements are assumed;
the equilibrium conditions are violated, and if statically admissible stresses
are assumed, the compatibility conditions are violated,  However, it
follows from (o) above that stable equilibrium corresponds to those kine-
matically admissible displacements for which the total potential energy is
a minimum, and from (b) that the satisfaction of the compatibility
conditiors corresponds to those statically admissible stresses for which the
complementary energy is a minimum.(sn

For the application of these two principles, suitable kinematically
admissible displacements and statically admissible stresses must be found,
For (a), internal compatibility is satisfied by selecting displacements which
are continvous, However, for (b), internal equilibrium must be established
by selecting stresses which satisfy the equations of equilibrium.  Since

these equations are differential equations such stresses are not always
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_easy to find, Further, the displacement approach offers a more direct
fomulation for the boundary coﬁdiﬁons of the problem.

. In vi;w of ‘fhé foregoing; only principle (a) will be considered,
Further the assumptions made in section (2.1) telating to thin alastic
shallow curved plates will still apply, The displacements considered will
be small and kinematically admissible,*  Similarly, the variations in the
displacements (or the ®virtual displacements®) will be small and kinematically
admissible and will vanish wherever the displacements are prescribed,

‘For the problem under consideration, the total potential energy, V ,

of the deformed shell (rectangular plan-form) is the sum ofs

(i) the potential energy of elastic deformation (strain energy), Vo, given

by:
h
+
Il I2 2
Vo = } (0%)7( Eii)ydaldazdy (2,78)
o Yo J_ h
2

* [t is sometimes useful to relax the prescribed kinematic conditions,
This will be discussed further in conjunction with the Lagrangian multiplier

method in section (3.1.3),
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where i and j rdangé over the values 1 and 2, (G'i‘i)y and (éii) y are
respectively the stress and strain components on the y surface of the shell

(Figure 2.7), and yK" and yK22 are considered small compared with unity,

(ii) the potential energy of the surface loads, V., given by:
]

ll l2
Vl = - (Xiui + Zw) dcxlda2 (2.79)

o o

where X. and Z are respectively the surface loads corresponding to, but
independent of, the displacements v, and w,
and (iii) the potential energy of the applied boundary loads, V2, given

by:

v, = sz“ (2.80)
o .

where

2 mm
°

v," Fv t:lc:i (2.81)

and where, for each boundary n, Fm is the applied boundary load

*

corresponding to, but independent of, the boundary displacement Ve

*When the boundary is flexible, Fm is dependent on Vo and in the subse~

quent integrations the relationship between F ond v, must be considered,
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Then it follows that

vV = VO + V,l + V2 (2‘82)

From equations (2,38), (2.39), (2.40); (2,42); (2.43) and (2,78)

the following is obtained:

RER
v =1 (niieﬁ +miik"i)dc|.'d<:l2 (2.83)

o 0

Substituting for nii ’ mii ond kii by equations (2,44), (2.45) and (2,43)

respectively, equation (2.83) becomes:

bl _
_ Fh 2 2 2
Vo = 1 {(]_vz) e1 + 201 )I)e]2 + &gy + 2y e”ezzJ
oVo

3
Eh 2 2 2
+ ——7-2(1 y wrl; + 2(I-V)w,‘2 + Wigo + ZVW,”w,zz }dalduz (2.94}

Equation (2.80) con be written in the form (figure 2.6):

|2 =
V2 = - (Nllu‘ + l\!‘z + QIW - MI ]W’I - zwlz)don
' ' a,=0

o

|
L 3
- (N0, + Nogtty + Qo = Moo = Mg, o), =0 (2.85)

o Aq.=0
2
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n’ 12: n’ :\/\'2 and M22 are the applied

boundary loads and Upr Uy OF Ugy Ugs Wy W, (w,.l),' (W,.I) or (w,z),and

where N 22, Q Q M
(w,2) dre the corresponding displacements respectively,  The minus signs
in the terms containing M", MIZ and M22 in equation (2,85) are due
to the . sign conventions adopted for M" and the corresponding
slopes. |

From equations (2,79), (2.82), (2.84) and (2,35), the total potential

energy of the deformed shell becomes:

11l
_ Eh 2 2 2 |
vV = 3 5= e * 2(]-V)e]2 +egy + 2\)e"e12 +
o (1-¥%
o]
+ th° 2 4 2(1-v) 2 +w2 + 2vw da,da, -
20-v3 | Wiz T Wepp Y22 19%2

112
(Xlul + quz + Zw)dcs,'dc:2 -

] cxz-l2
J (N 121 + N22 2 + sz - M'IZW"I - M22w,2)d¢::I
o a,=o

7 a,=l,
- (N Yt ”12 + Q.lw M”w,.' - :A.lzw,z)da (2.86)
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For stable equilibrium, the fotal potential energy of thé deformed
shell is @ minimum and therefore assumes a stationary value,
i.e, & = O (2.57)

which, with equation (2, 86), yieldss

11k
B .
vl | it F A1V dergBory +epglenyt VeyyBeyy *
o] o
PY ey o | M A ety ¢

Wogg8Wron * V Wr 1 8W,9p +V wipobwyyy| b dayda, -

I, al
- J- (XISUI + )(2802 + Z&N)ddlddz -

Q Q

LR 12

o] a.=o

2 b
- (N 80y + NooBu, & Qubw = My Sw,y = M oBw, M,

! -
1 412—|2

- (NnSu‘ + i\1228u2 + Q28w M'IZ&N Mzz&r\r,z)dc::l = O (288)

(~] , 623’0
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Using equations (2.44) and (2.45), equation (2,58) becomes:

h

g
[("nsen + 2ngp809 + nppbeyy) = (my Sw,gy +
[o] [}

+ 2m]28w,12 + m228w,22):] da]daz -

102
r J f (XISU.' + )(28u2 + ZSw)dc:.lda2 -
[+] [+]
l2 , a.|=|l
- (N”sul + N8, + Q6w = M, 6w, - Mo 8w, ,)da,, -
o a.=0
1
h 0=l
- (N80, + Npy8u, + Qydw = M, 8w,y = ,\!\228w,2)da' =0 (2.89)
o az=o

Using equations (2,37), (2.42), (2.43), (2.44) and (2.45), and the

relations given in table 2,1, equation (2.89) becomes:
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B (1= V)
. &)
by Flagvp bWt _HT"'] B, *+

i ;
+ u, + Uy = w + Z(1-y') Sw da.da, +
Lty + Lgtip = Logw + ——— 199,

. 1
{ J (g =NydBuy + (ngy=Nyply = (my =ty Jowey + ('I'Rl)ﬂ "“r} +

a,=o
1

=1
U l%z 2 + (yy=N Y60 = (et Yoy + (rym '{Z)&} ,}2 2 _
ap=0

a'=|i az'llz
{ [Z(m 2)8“] ' } = O (2.90)
ap Ja,%o

R1 Ql + M

where

12,2 .91

Ry = Q, + M'z'! (2:92)
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and where the partial differential operators .Lii (1,i = 1,2,3) are defined
by equations (2,54).

Equation (2,90) yields directly the three equations of equilibrium
together with the four boundary conditions (static or kinematic) which
need to be specified along each boundary,

For either of the principles discussed in this section, the boundary
conditions are subdivided intos

(i) Those which are essential for the application of the

BUD ur ot boundary

principle (the ®essentiol
conditions)
and (i) those which are realised by virtue of the principle itself (the
'additional'(,sz) ® hatural® ,(54)01' ® suppressible® 53)boundary
conditions),
Only the principle of minimum total potential energy is considered in
this thesis, For this problem the kinematic boundary conditions are termed
the ®imposed® boundary conditions and the static boundary conditions are

termed the ®natural® boundary conditions,
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C{'LA- PTER 3

SOLUTICN METHODS

This thesis is mainly concerned with the dpplication of indirect
mathods (Rayleigh-Ritz, Calerkin and Lograngian multiplicr methods) in
conjunction with various types of approximating functions;  However,
consideration is also given to the method of lines in which the derivatives

in one direction are replaced by finite difference expressions,

3.1 Indirsct Methods and Approximating Functions

In this thesis, solution methods will be referred to as "indirect
methods® when the functions in the series representation for the
dependent variagbles do not satisfy the partial differential equations
and all boundary conditions term-by-term,  Solution methods will be
referred to as "direct methods? when the functions do satisfy the
partial differential equations and all boundary conditions term-by=term
(e.g. Mavier and Levy-typa solutions).

In the following,. the term "kinematically admissible functions®
means functions which are continuous and differentiable and which

satisfy the imposed boundary conditions where prescribed,
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3.1.1 Rayleigh=Ritz ‘athod

The variational equation (2.90) forms the basis of the Rayleigh-Ritz
method used in this thesis for the solutiqn of thin shallow curved plates,

In this approach, the displacements are considered in the following
serics form:

NG
u = Z Lamnur(a])ur(az) 3.1
n

m

vy = Z Z b u, (e )U(a,) (3.2)
m n
w o= Zm Zcmnwm(a])wn(az) (3.3)

;n ’ U.'n ’ u; ’ U; ;W and Wn represent indepandent sefs of

kinematically admissible functions, @, b and ¢__ are arbitrary
mn’ “mn mn

where u

constants to be determined, and m and n are positive integers,

The displacement variations may be selected in the following forms:

_ S m n

Su.' = z - vy (a])U] (uz)Samn (3.4)
_ E n n

8u2 = s Zn u, (a])Uz(oz)Sbmn (3.5)

< .
Lm-' Zn: wm(a'l )wn(a.'l)scmn (3.6)

Sw
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whare &a_ , 8 and 8c__ are arbitrary variations in the constants
mn’ " mn mn
Q bmn and €nn respectively,

Substituting equations (3,1) to (3,6) inclusive into equations (2.90),
integrating the resulting expressions and noting that &:mn' Sbmn and Scmn
are arbitrary, yields a set of simultaneous linear equations in terms of the
constants a n bmn and € By using truncated series, the problem is
reduced from one with infinite degrees of freedom to one with finite
degrees of freedom,

Equations (3.1), (3.2) and (3,3) represent a family of kinematically
admissible displacements and the Rayleigh-Ritz method attempts to find
those constants (@, b, ¢ ) for which the equilibrium conditions

mn’ “mn’ “mn
within the shell and on its boundaries are satisfiad.

From equation (2,90) it follows that, when a kinematic boundary
condition is prescribed, the corresponding boundary integral vanishes.
Whan a static boundary condition is prescribed, and is not satisfied by the
chosen functions, the corresponding boundary integral remains,  The

Rayleigh=Ritz method will seek out this ® natural® boundary condition,

3.1.2 Galerkin Method

If the functions given in equations (3.1), (3.2) and (3.3) are chosen

such that all the boundary conditions, static and kinematic, are satisfied,
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then all the boundary integrals in equation (2,90) vanish and the
Calerkin equations are obtained,

The Galerkin method has o wider application than the Rayleigh-

, (51),(55),(56)

Rite method, since it is not resiricted to variational problems, However,
the Galerkin and Rayleigh-Ritz methods become equivalent when:

(a) applied to variational problems associated with quadratic

functionals (as in this thesis)

and (b) the kinematically admissible functions given in equations (3.1),

(3.2) and (3.3) satisfy, in addition, the static boundary con-

ditions where they are preseribed,

3.1.3  Lagrangian Multiplier Method

It is sometimes useful to relax the kinematic boundary conditions by
selecting functions which are not kinematically admissible,  Use can then
be made of the Lagrangian multiplier method,54)in which the kinematic
boundary conditions violated are applied as constraint conditions,

Suppose the kinematic boundary condition

u](u] ,0) = C (3.7)

is prescribed and that the corresponding functions given in equation (3.1)

are chosen such that this condition is not satisfied,
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The Lagrangian multiplier method introduces another variable

}\l(al)’ the Lagrangion multiplizr, such that
I'l
&V + A (o)8u (@, ,0Mda, = O (3.8)
o
where V is the total potential energy of the deformed shell given by
equation (2.86)., The corresponding constraint condition is given by
equation (3.7).
Substituting the series given by equation (3.1) for uy in equations
3.8) and (3,7) yields respectively:
I

1
m n _
8V + )\.l(ct.l)u] (ctl)U.l (o)du]Samn = O (3.9)
o
amnulm(u])U]n(o) = @) (3.10)

where the Einstein summation convention is used,

The Lagrangian multiplier method conveniently reduces the constrained
variational problem to one of free variation, Note that the series for
u, no longer vanishes term-by~term on the boundary (a2=o), but is

1

replaced by the condition that the series as a whole vanishes (equation
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3.10). The Lograngian multiplier has a physical meaning ~ it is the
genoralised reactive force associated with the corresponding constraint
condition,  The Rayleigh-Ritz method may be considered as a particular
case of the Lagrangian multiplier method with all multipliers set to zero,

The multiplier k](a.l) is a géneral function of a, and cannot readily

1

be determined in this form, However, )\](a]) can be expressed as the

following series:
Na) = 2 WK @11
1o = NG ‘

where L:‘ (u]) represents a set of independent functions, ?\:< are constants
and k is a positive integer,
Substitution of equation (3.11) into (3.9) yields:

|
1

k k m n _ "
&V + )\] L.' (a])u] (u')U] (o)da]&:mn = O (3.12)

o

The constraint condition (3,10) can bz rzarranged in the form:
n m
[oan, (o)] uy (a]) = O (3.13)

Since each u]m (a]) is indepencent, then for all a, the following condition

1
holds:
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uan;'(é) = O (3.14)

Assuming that the same number, S (say), of functions are chosen for
ulm (dI:) and L.:< (a]), then equations (3J2 and (3,14) introduce an additional
S unknowns, )\.lk + together with an additional S equations given by
equation (3.14), The problem can now be conveniently solved,

Similar remarks apply to any other prescribed kinemati¢ condition
which may be violated,

In particular, functions L:<(°'I) and u.;n (a.') may represent the some

set of orthogonal functions, Then equations (3.12) and (3.14) become:

sV + gX.lmU:(o)Samn = O (3.15)
n —
uan,, o) = O (3.16)
since:
I'I
k .
uy u;nda] = g(ay), ifm = k
°

= C, ifm # k.
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Application of the Lagrangian multiplier method in this way will
provide, in general, two values for the generalised reactive force
associated with the prescAribed constraint condition, These are given by:

(a) the displacement derivatives
and (b) the Lagrangian multiplier,

Ideally, they should be the some, but generally they will be different,
In particular, the displacement functions could be ¢hosen such that (a)
was zero, e.g. as for a cosine or sine series,

It will be demonstrated in subsequent chapters, that the Lagrangian
multiplier gives a better estimate of the generalised reactive force than

the corresponding displacement derivative,

3.1.4 Approximating Functions

The selection of suitable approximating functions is the essential
feature of the indirect methods discussed in this chapter,  Such functions
may be simple or complicated and nead not be orthogonal, although this
latter property is very useful and convenient, The derivatives of the
functions should be well defined since the stress-resultants and stress~
couples are dependent on them, A physical insight into the problem at
hand greatly assists the choice of suitable functions, which may possibly

lead to a rapid convergence of the solution,
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The functions to be studied in this thesis are classified in table 3.1,
The origin is located at one corner of the shell (fFigures 2.4 and 2.5).
Of the functions tabulated only 1A, 1B, 1A and |12 are orthogonal.

Class 1 Functions

Functions IC were used by Chuang and Velefsog ) in the variational
solution of a shallow cylindrical shell, These functions were later
appliad to doubly curved shallow shells by Moor and Velefsos(.ls) Both
these references included the function (l-2f3;) in this set, The reason
for omitting this function will be discussed in the next chapter in ¢onjunction
with the numerical results,

Functions ID were also considered by Chuang and Veletsos,

Functions IE were originally proposed by Filonenko-Boroditch ,(57)
who referred to them as ®alinost orthogonal® functions,  These functions
have been used to represent the displacement w by Buziarova, 8for the
bending solution of a clamped plate, and by Noor and Veletsos,(lsgor the
bending solution of a clamped shell.  Although these functions satisfy
the clamped boundary conditions on w, they satisfy the additional conditions

that the normal and Kirchhoff shears vanish on the boundary.,  This will

undoubtedly affect the boundory value of the moment,
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Functions IF have been ohtained by modifying functions IE such
that the normal and Kirchhoff shears no longer vanish,' Note that the
shape of the corresponding cosine and sine functions of [ are similar
and numerical difficulties could be introduced as more terms are taken
in tha series,

Class 1l Functions

Rayleigh functions are functions of the type:

F = F(B)=Asinag 3 +Bsinha3 +C cosal +
m m'i m Ml om m"i m mi

+ cosh a_8, (3.17)
m”i

and have been tabulated in detail in references (?) and (60) up to
m = 4 and m = 5 respectively,
The Rayleigh functions used in this thesis were provided by Kuo, (59)
who has calculated them out to m = 27,
Further details of Rayleigh functions are given in /ppendix |,
Functions 118 will be used only to represent displacement Uy They
werz also usad by Chuang and Velefsos(7)fo represent displacements Ugs

Uy and w for a cylindrical shell with free boundaries at ay = O'IT

The Rayleigh~Ritz method was used, Deep thin inextensible gables were
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assumed of ay = O’l] such that a Levy-type solution was possible

(refer to chapter 4 for a description of these terms).  Their results
showed pdo\r convergenca; However, these function$ have been in-
correctly used with w, It can be shown that the natural boundary
condition rz(u],o) = O for a free boundary becomes, on using functions
lIB and the series form for w given by equation (3.3), Wn,z(°’ = QC,
Similarly the natural boundary condition m22(crl 0)=0for Y =0
reduces to Wn,22(°) = O, which is identially satisfied by functions [IB,
The coupling of these two conditions is valid only for the constant 1 of

functions [IB,  However, in general, the coupling of these conditions

seems to invite difficultias,

3.2 Method of Lines

Equations (2,76) form the basis of the method of lines used in this
thesis for the solution of shallow curved plates,

In this method, the derivatives in one direction (a.l in this thesis)
are replaced by finite difference expressions, In this way equations
(2.76) are reduced to a system of linear first order ordinary differential
equations with constant coefficients,

Thus the boundary value problem may be considered as an equivalent

initial value problem in which four of the dependent variables are



specified by the initial boundary conditions, The initial values of
the remaining four dependent variables must be determined such that the
finol four boundary conditions are satisfied,

integration of this system of first order ordinary differential
equations is the immedidte problem;  The matrix progression mefhod(6])' (62)
offers a convenient and systematic approach for the numerical solution of
these differential equations,  The application of this numerical procedure
in conjunction with the method of linas has been discussed in detail by
Jenkins and Totl'enham,(47)who give several illustrative examples,  However,
no numerical results are presented,

The matrix progression method is similar in principle to the transfer
matrix mefhod.(63)

Due to the limited numbar of significant figures usad in practice,
the integration of such problems may introduce serious roundoff errors,
This problem may be owvercome by segmenting the path of integration. 64
The influence coafficients for ecach segment are then determined by
integration and the solution obtained by restoring equilibrium and/or
compatability,

A further way to overcome this numerical problem is to ®bring up

(65),(66)

the initial boundary®., This idea is used with the mairix progression
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method.  In this approach the integration path is divided into steps,
The boundary conditions are then brought up for zach step, in such a
form that they may be used os the initial boundary for -fhe next step,
This procedure continues until tha final boundary is reached, where the
known boundary conditions are applied, The solution at this final
boundary is then obtained.  The solution at each step follows by back
substitution,

In this thesis (Chapter 7) the matrix progression method will be used,
Whenever necessary the integration path will be segmented, A stiffness
approach will be proposed, in which the stiffness matrix for each segment
can be obtained from the transfer (or distribution) matrix (refer to
Chapter 7).,  The assembled stiffness matrix for the shell will be in tri-

diagonal form, which is readily solved by partitioning.
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CHAPTER 4

APPLICATION OF THE INDIRECT METHODS TO TRANSLATIONAL
SHELLS WITH LEVY-TYPE SOLUTIOMS

in this chapter, the proposed indirect methods will be applied to
shell problems whose exact solutions are known, In this way the con=

vergence of various types of approximating functions may be studied,

4,1 Non=Dimensional Form of Equations

Levy~type solutions are available for shallow translational curved
plates of rectangular pion-fonn (figure 2.4) supported on two opposite
edges by normally-locoted’ deep thin inextensible gables (defined in
Table 4,3),

For convenience a loading function will be selected such that a
one-term Levy expansion provides the required exact solution,  Normal

gables will be assumed ot a, = O, |

L 1*

The selected loading is
¥ = 0 = X, | 4.1)

Z = Z sinn, (4.2)
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vhere:
Zo is a constant
i is a non-zero positive integer
Y
1

The applied boundary loads will be assumed to be zero,

The Levy solution procedure implies displacement distributions of

the types*
u; = Tl U](ﬂz)- cos jmf, (4.4)
u, = |2U2(,82) sin in’ﬂl (4.5)
w = -I%-z- W(ﬂz) sin jwB, 4.6)

where the origin is located in one comer of the shell as shown in

figure 2,4, and

*The functions Ul(ﬁz), UZ('BZ) and W(BZ) should be more correctly
written os U]i(BZ), Uzi(ﬁz) and Wi(ﬂz). However, to avoid confusion
with other functions, the j superscript is dropped from this notation,

This does not affect the subsequent deviations in any way,
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1
]

y —_ (4.7)

For convenience, the functions Ui' U2 and W in equations (4.4), (4.5)

and (4.6) have been non-dimensionalised,

In the indirect procedure, the functions U], u, and W will be

approximated by the following truncated series:

u, = Zamul"' (4.9)
m

u, = meuz'“ (4.10)
m

wo = Zcmwm @.1m
m

where a , b and c_ are constants to be determined, U m' U.™ and
m’ m m ] 2

Wm represent sets of independent kinematically admissible functions and

m is a positive integer,

The corresponding displacement variations may be selected in the

following forms:



—3 m H

Su] T'I Z U.’ cos jwf, 8a_ (4.12)

s, = 1, g u; sin jnB, & _ 4.13)
1 .

Sw = -‘-<—2- 2“: Wm sin |trpI Scm (4.14)

where 8a , & and &¢_ are arbitrary variations in the constants a_,
m’ T m m m

bm and n respectively,
For the special case being considered the variational equation (2,90)

ofters*

(a) setting the applied boundary loads to zero,

(b) non-dimensionalising the co-ordinates to the (pl,-j?}z) set defined
by equations (4.3) and (4.8),

(c) setting K., to zero and replacing K,, and K,, by K, and K,
respectively,

(d) SUbSﬁ"Uﬁon Of eqUOfionS (4.])’ (4.2)' (4u4)l (405)1 (406)3 (407)1
4.9), (4.10), (4.11), (4.12), (4.13) and (4,14), ond

*The boundary integrals at a, = O, lI automatically vanish since all

boundary conditions are satisfied there (Table 4,3).
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(e) integrating the equations with respect to ﬁl’
reduces to the following three independenf equations, since Sam, Sbm

and Scm are arbitrary:

J[ 2 i _ (- V) rZGU; (m/) b

1,22~ k72,2

+ (c+V)rrchp] ur'ds, - 27 A E)'E) = © (4.15)
+v) i (1=y) k
J 5 T, Ul 2 +—2— b U ka;,ZZ +
o)
+ (1t vele W ] Uj'ds, = 2f,0)Ujl0) = O (4.16)

! -2
. P
i T ,4 _
J [(c-i-v)naiu.‘ - (1+vC)bkd;,2 + e W

(o]

-2
- 2r nchW + r4c W

2
0,22 2) + (142v ¢ +¢ )chP -

p,222

- 2. .. -
- zo] W dB, + 27 mppl0lW (o) = 27 FylW. 0} = O (4,17)
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where
.
ro= (4.18)
Y
- h 7 1 hy R
Py -_-T_.,..__.‘__ = -—_—(-?-)(—f—-) (4.19)
] K2"I Sr 1 2
e = ?l_ (4,20
2
_ z (- vh
Zo = __.Emz;- (4.2')

i, k, m, p are positive integers and 512_'- 522, 522 and ;2 are,
in this case, functions of By only and are the non-dimensional forms
(given in Table 4,1) of Rigr Nogs Moy and s respectively,  In equations
(4.15), (4.16), (4.17) and Table 4,1 the Cinstein sumination convention
s adopted and comma notation is used to represent differentiation with
respect to ‘82'

In deriving expressions for the boundary integrals, the boundary
conditions were assumed symmetric about {32 = 0,5, [ this were not

the case equations (4.15), (4.16) and (4,17) would be modified in the

following way:
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replace -2r 'r-\lz(o)Ulm (o)] by [r n Z(Bz)lfn(ﬂz)]

B8,=1
replace [-ZEZZ(O)U; (o) ] by [EZZ(BZ)U; (52):] BZ—
=
- — 8=

replace [-Zr r2(o)Wm(o)] by [r rz(.Bz)V\’m(ﬁz)] 320
} 2=

-2 ) ﬁ =]
roplace [ 427 "’22(°)Wm,2(°)] R BV, 26, | 32=o
B

It is evident from the foregoing that the problem is specified through
the non-dimensional parameters pT, c, rand V ."

With 7 = 1 equations (4.15), (4.16) and (4.17) are the equations

used for the solutions presented in this chapter,

The actual values of the displacements, stress-resultants and stress-
couples, for any loading of the type given by equation (4.2), are obtained
from the non-dimensional forms given in Table 4,1 by the factors given

in Table 4.2,

[ 2

*The single parameter 51. could have been replaced by the separate

parameters (-_h-) and (—f-z-). However, the use of ';T covers a wider

ll 2

ranée of shells,
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Equations (4.15), (4.16) and (4.17) are the Galerkin equations
modified by expressions corresponding to the relevant boundary integrals

in equation (2,90),

4,1.1 Modification for the Lagrangian Multiplier Method

In this section only homogeneous kinematic boundary conditions will
be considered,

For the problem considered here, a maximum of four homogeneous

kinematic conditions may be prescribed along a, = O and a, = l2, viz,s
uy = & (4.22)
U, = O (4.23)
w = G (4.24)
W, = C (4.25)

Assume that the conditions given by equations (4,22) to (4.25) inclusive
are now applied as constraint conditions,

Then following the procedure described in section (3.1.3) and

|
assuming that the boundary conditions are symmetric about the axis a, =-§2- ’

the variational equation (2,90) is modified to:
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Left hand side of equation (2.90) +
'\l.'

+ 2 )\l(a])&}u](a1 ,O)dd.' +

Yo

-\ll
+ 2 )yz(cr‘)c'iuz(ml ,o)dct.| +

‘o

'\|l

+2 }b(al)ﬁw(a] ,O)dd' +

o

nll

+ 2 )\4(a])8w,2(a.l ,o)da] = O (4.26)

Yo

where )\‘(a.'), )\Z(a]), )b(a]) and ?\4(01.,) are the Lagrangian multipliers
corresponding to the displacements Uyr Ugr W and (w,z), respectively,

The constraint conditions are:

U](G] ,O) = O (4027)
uz(u] ,0 = O (4.25)
w(a' 0 = 0 (4.29)

WI,(GIIO) = 0O (4.30)
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Equations (4.26) to (4.30) iriclusive completely define the problem,

Expressing, for this special problem, :

)\] (uI)

2—‘)\!! cos irm.l (4.3i)
i

Z )\|2 sin irruI (4.32)

)\Z(al)

)\3(al) = 2__{ )\i3 sin iﬂ'cx.l (4.33)
|

)\4(01) = Z ?\i4 sin in'a] (4,34)
|

where )\;, )\zi, )é:md )‘til are constants and i is a non-zero positive
integer, and proceeding as in sections (4.i) and (3,1,3), equations

(4.26) to (4.,30) inclusive reduce to the Fo"owing s
Left hand side of equation (4,15) + 2r -X]U;n(o) = O (4.35)
Left hand side of equation (4,15) + zxzug‘(o) = 0 (4.36)
Left hand side of equation (4.17) + ZF&V\’In(o) +

-2
+ 2 W ,2(0) = O (4.37)

m,

aiU:(o) = 0 (4.38)
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bk Ug (o) = O (4.39)
chp(O) = C (4.40)
chVp'z(o) = @) (4.41)
where
b M- -
_ (0-v)
.XZ = g Xz (4.43)
%, = _(l:..‘i_z)__ M (4.44)
Ehu(zl.'
X = a-vh N (4.45)
4 ehi,T,> 7 )

and the | superscript is dropped from the notation,

With 7_0 = 1 equatiions (4,35) io (4,41) inclusive are the equations

used in conjunction with the Lagrangian multiplier method,

As before the non-dimensional and actual values of the displacement,

stress-resultants and stress-couples are obtained from Tables (4.1) and (4,2)

respectively,
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Interpretation of the Lagrangian multipliers

The Lagrangian multipliers provide the generalised reactive force
associated with the corresponding constraint condition,

Then for the symmetric case considered:

nolag0) = Nlwy) (4.46)
nyplays0) = Afay) (4.47)
rz(q] +0) = Mlay) (4.45)
Myp(ayr0) = —Ma,) (4.49)
where the minus sign in equation (4.49) is due to the sign

conventions adopted for My and (w,z).

In non-dimensional form, equations (4.46) to (4.49) reduce to:

;‘2(0) = X] (4.50)
;-122(0) = XZ (4.51)
Fz(o) = 'X3 (4.52)

Mays(0) = =% (4.53)
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Alternative expressions for 5"(0), 5”(0), a](O), az(o) and F](o) will
now be derived,

The following expressions are obtained from Table 4,1:

- - _ 2 m _yl

Ny = Vny, = -n(;- v )amU.' S ERY )chp (4.54)

- - _ T 2 2

My~ v m222 = 45 ® (1= v )chP (4.55)
~p

- T 3 -2

T i [- n cpwp +r ﬂchP’ZZJ (4.56)

-2

9 = T =73 §] v)c:p.’\.’!:”2 , (4,57)
Bl 5

= 1 [.3 =% (- J 8

Fy vl chp +r n(2 V)chp’Zz (4.58)

Pew =25 s yiew (4.59)

P p,22 5T§ 22 PP

Substituting equation (4.59) into equations (4,.56) and (4,56) and

rearranging equations (4.54) and (4.55) yields:

(4.60)

- _ 2 in g2 -
n = =-n{1-V )a:amUl - (1= Vv )chp + Vv Mo

n

-2

- _ Pt 2 2 -
My == " (1-v )c:pWp + Vv Mooy (4.61)
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-2
q =--TPT 3-V)e W +nm (4.62)
q 75 ° cp o T Mgy .
5 2
- _ T 3, 2 -
My == °® (1-v) chp + n(Z-V)mzz (4.63)

At the boundary [32 = O, equations (4,60), (4,61), (4.62), (4.563)

and (4.57), dfter substitution of equations (4.50), (4,51), (4.52) and (4.53),

becomes:
- - 2 n 2
n"(o) = en(l-V )omU.' (o) = (1-V )cPWP(o) + VY Xz (4.64)
-2
m,.(0) = P1 n2(1-V2)c W)~ vA (4.65)
-2
a (o) = —‘-’T— n3(1-V)c W (o) = A (4.66)
1 12 P p 4 .
52 3
:](o) = -T;— (l—V)Zchp(o) - n(Z-V)T\4 (4.67)
-2
'()--pT P o2(-v)e W (o) + (4.68)
q,0) = —5—r ¥ -y cp 'p,2° 'Xs .

Equations (4,50) to (4,53) inclusive and (4.64) to (4.68) inclusive

provide altemmative* boundary values to those based on the displacement

*As discussed . in section (3,1,3), the vdlues based on the Lagrangian
multipliers are generdlly different from the corresponding values based on

the displacement derivatives,



derivatives, |
The actual values are obtained ‘as before from Table 4,2,
This matter will be discussed further in sections (4.4) in conjunction

with numerical examples,

4,2 Boundary Conditions

The boundary conditions to be considered in this chapter are given
in Table 4.3.
Only boundary conditions which are symmetric about 532 = 0,5
are considered,
Normal slide (1) is so numbered to distinguish it from normal
slide (2), a boundary condition which will be introduced in Chapter 6,
The opproximating functions chosen to specify a particular boundary

condition are discussed in section (4.4),

4.3 Reduction to o System of Linear Algebraic Equations

For ‘a particular set of approximating functions, equations (4.15),
(4,16) and (4.17), with 20 = 1, readuse, on integration, fo a system

of linear algebraic equations which in mairix form ares
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2n L2 By = 2 2
2 By Lo Bt e TR 4.69)
A L3 L e g e
- ~ L. - - S
or, more compactly:
/_Q_ ; + a = 9 (4.70)

where §=co|{glo_g}

lat
1

col c o g}

Typical elements of the submatrices in equation (4,69) are given in

Table 4,4, The relevant integration formulae are given in Appendix 2,

4,.3.1 Modification for the Lagrangian Multiplier Method

When the Lagrangion multiplier method is applied, the modified
form given by equations (4,35) to (4.41) inclusive is used,  These
equations may also be reduced to a system of linear algebraic equations

which in matrix form are:
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_ﬁll Ly 293 2 . . el [-]
Br By By o W, . b ‘
L A3 By . 2rdy 2rd, < g
g,T . . . . . . N+ =0 (4.71)
. QZT . . . . . 'Xz .
R %l
R 7 |-
where:

typical elements of the submatrices -A-'-ii(i'i =1,2,3), a, b, c ond g are,

as before, given in Table 4,4,

7\.', 7\2, —};3 and 7:4 are oonstants,

and typical elements of the column matrices d,, __42, d 3 and _c_!4 are

respectively given by ¢

d = u;“(o) (4.72)



2 - m
4> = Uy'(o) (4.73)
a3 = W (o) (4.74)
) m ¢
¢ - W_ (o) (4.75)
m m,2 ‘

If there are less than four imposed boundary conditions, equations
(4.71) are adjusted accordingly,

If S is the number of functions chosen to repesent cach of U], U2
and W,* then each submatrix ﬁ'l is of order (SxS) and each column
mafrix a, b, ¢, é’l' -c-‘-Z' 93 and _c_i4 is of order (8 x 1), Then there
are 35S constants to be determined by equations (4,69) and (35 +4)

constants to be determined by equations (4.71),

The solution of equations (4.71) form the basis of the numerical

results presented in this chapter, When no Lagrangian multipliers are

used these equations reduce to equations (4,69),

*It is not essential to adopt the same value of S for each of U'I' U2 and W,
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4,4  Convergence Study of the Approximating Functions

In this section the approximating functions given in table 3,1 will be
applied to particular numerical examples.  In the computer programs
developed, provision is made for the symmetry of the problem by choosing

the functions given in table 3,1 such thate
(a) U;n ¢+ W_ are symmotric functions about 52 = Q.5

(b) U; is an antimetric function about 3, = G,5

2

The Levy=type solutions given in this chopter were obtained from

(6)

computer programs developed ot Imperial College by Gunasckera'™” and by

(49)

Samartin .

4.4.1 Numerical Examples

The examples and the corresponding approximating functions to be studied
are given in table 4,5, The boundary conditions are defined in table 4,3,
Details of the approximating functions are given in table 3,1,

For all examples, the shell parameters 5.'., r and VY will be set af

the following valuess

G, 0152920

ot
-]
il

-t
]
o)
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The value for ¢ is either =0,5 or +C,5 (refer to Table 4.5).

With ¢ = - O,5 the above parameters correspond to an example
discussed by Moor and Veletsos 5using a w - g formulation,

The results are presented in Tables 4,7 o 4,17 inclusive and
figures 4,1 to 4,6 inclusive, The tabulated results* have been repro-
duced from the computer program output and, to avoid confusion, the
notation used in the program and the corresponding notation used in this
thesis are given in Table 4.6,

The exact values are given in Tables 4,18 to 4,21 inclusive,

Displacements, stress-resultants and stress couples are presented in
non-dimensional form (Table 4.1), The actual values are obtainable
from the expressions given in Table 4,2,

Whenever the Lagrangian multiplier method is used, the boundary
value based on the multiplier is quoted separately from the corresponding
value based on the displacement derivative, These latter values are
tobulated under the caption *Values of,....%,

S is the number of functions used to represent each of U'I' U2
and W, due allowance being inade for the symmetry of the problem in the

selection of these functions,

*The results in the tables are presented in floating point notation, e.g.

3.481, -5 means 3,481 x 10-5.
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4,4,2 Discussion

(a) Example A: Clamped at B, = O.1

The exact values are gfven in Tables 4,18a and 4,18b,

(i) Examples Al, A2 and A3:  Refer to Tables 4,7, 4.8 and 4,%9a

and figures 4,1 and 4,2,

These three examples differ by the functions chosen for wo (refer
to Teble 4.5), ~The most rapid convergence of moments (stress~couples),
normal chears (stress-resultants) cmcj displacement w wos obtained in
example A2, " Good convergence was also obtained in example A3 while
the convergence in example Al was somewhat slower,

It has been previously noted (section 3.1.4) that the functions IE,
which are used to represent W in example Al impose the additional
boundary conditions of zero nomnal shear and zero Kirchhoff shear and
this undoubtedly contributed to the slower convergence observed for this
case,

The convergence of 'r-;" and 522 was good, whereas 512 converged

very slowly on the boundary,

(ii) Examples A3, A4, A5 and Ab: Refer to Tables 4,9 to 4,12

inclusive and figures 4.3, 4,4 and 4,5,
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These examples differ by the functions chosen for U.;" (refer to
Table 4,5). The Lagrangian multiplier method hos been used in
examples A4, A5 and A6 in an attempt to improve the convergence of
;.'2 on the boundary, In figures 4.3 and 4.4 (examples A4, A5 and AS),
the value of 512 on the boundary is based on the Lagrangian mull’ip“erk
c=- 0,5 The convergence of ;12 on the boundary was greatly
improved in each of exanples Ad, A5 and A5, with A4 showing the most
rapid convergence, The solution for ;‘2 within the shell converged
rapidly in example A4 but nore sbwly in examples A5 and A6,

Figure 4,5 illustrates the good convergence of E” and ;22.
c=+ 0,5 A complete set of results for A3 is given in Table 4,9,
“and n

Only results for G‘l’ n are given for A4, A5 and A6,

1’ 12
The remaining results are similar to example A3,

In this case the magnitude of 512 is greater than for ¢ = - 0.5,
The convergence of ;,'2 on the boundary was again slow in example A3,
but better within the shell, Use of the Lagrangian multiplier method
again improved the boundary convergence of 512.

In each example the Lagrangian multiplier provided a better estimate

of the boundary value of 312 than the corresponding displacement

derivative,
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(iii) Example A7: Refer to Table 4.13 and figure 4,6,

The boundufy value of 62 (= FZ for the clamped boundary conditions
con;idered) based on the Lagrangian multiplier is very close to the exact
solution afi'er 6 functions, Mowever, the corresponding value based on
the displacement derivative is zero, This extreme difference is reflected
in the slow convergence of the moments and normal shears; The solution

is generally comparable with example Al,

(iv) Example A3:  Refer to Table 4,14,

The solution generally converged rapidly, The boundary values
based on the Lagrangian multipliers were very nearly exact after 6 functions,
The corresponding values based on the displacement derivatives also
compared closely with the exact values,

(b) Example B: Free at ‘32 = 0,1

The results and corresponding exact values are given in Tables 4,15
and 4,19 respectively,

The solution generally converged rapidly, with the (natural)
boundary conditions for a free edge being approximately fulfilled,

(c) _Example C: Hinged ot (32 = 0,1

The results and corresponding exact values are given in Tables

4,16 and 4,20 respectively,
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The boundary values of 3" ’ 5.‘2 and 322 converged slowly,
These values could be improved by choosing functions which violate the

boundary conditions on u, and uy and applying the Lagrangian multiplier

1
method (as in examples A4, A5 and A4), The values within the shell
show better convergence,

The displacements, momments and normal shear a'l show good conver-

gence, but 62 on the boundary is slowly convergent,

(d) Example D: Normal Slide (1) ot !32 = 0,1

The results and corresponding exact values are given in Tables 4,17
and 4,21 respectively,

The convergence of the solution is generally good, Again n g Oon

1

the boundary is slow to converge,

4,4,3 Some Notes on Functions IC, ID and IF

(@) Functions IC

As S becomes large these functions may introduce numerical
difficulties in the solution,
The set IC contains the constant unity and also a half~range Fourier
series, However, unity itself can be represented by this Fourier series,
c

Such a representation becomes better as S increases, Then it wos not

unexpected that some difficulty may be realised with these functions,
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In order to investigate this problem two ;olufions were obtained
for any problem associated with these functions (examples A4, AS and B)
using: |

(i) an unscaled matrix A

(it) a scaled matrix A, such that the diagonal elements are

made unity,
Matrix A is defined by equations (4,70).

If the equations are well-conditioned scaling should not affect the
solution, *

A maximum number of 16 functions was considered,

To four significant figures, the values of the displacements, stress-
resultants and stress~couples were the same in (i) and (ii), However,
the solution constants associated with functions IC were completely
different for values of S > 10, although the solution for displacements,
efc,, was virtually the same,

Whenever functions IC were used, the solution converged ropidly,

Due to this rapid convergence, the difficulties discussed above and

*To effectively study the stability of the solution of a set of equations,
the effect on the solution of small perturbations of some of the matrix

element values should be considered,
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associated with a large nuimber of terms of this series, were minimised,
This investigation indicates, however, that some caution should be exercised
in using these functions,

References (7) and (15) both included (]-2{32) in set IC, However,
because of the similarity of this function with cos nBy, and to avoid
possible further difficulties, this function was excluded from this set,

(b) Functions ID

Arguments similar to those used in the dhove discussion of functions
IC opply to this set also. However, these functions were used only with
displacement vy (example AS5), in conjunction with the Lagrangian
multiplier method,  Accordingly, the corresponding constraint condition
(equation 4.38) reduces to the condition that the constant (say oo)
associated with the constant unity* in set ID is zero, In example A5,
this constant is set to zero before solving the system of linear algebraic
equations, When used in this way, no difficulty was observed with these

functions,

*This opplies when the foading and boundary conditions are symmetric
about §32 = 0,5, [ this is not the case, and if Uy = Q ot 532 = 0,1,
it follows that the constants associated with unity ond (1-2{32) in set

ID are both zero,
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The condition that a, is zero may appear trivial, but the
Lagrangian multiplier maintains this condition, ond effectively gives a
good estimate of the boundary value of the corresponding action (refer to
example A5),

Functions ID, in conjunction with the Lagrangian multiplier method,
may be effectively used to improve a particular stress-resultant, which
is slowly convergent on the boundary but satisfactory elsewhere,  (Refer
to example A5 for ¢ = + O,5).

{c) Functions IF

In section (3.1.4) it was noted that difficulties with these functions
could arise, due to the similarity of the corresponding forms of the
cosine and sine sefs,

Operations on the matrix A described above in (a) were again
carried out,  Only example A2 is affected,

For values of S up to 10, the values of displacement w, moments
and nommal shears -were, to four significant figures, the same in cases
(i) and (ii) described in (a) dbove. For values of S greater than 10,
some of the values, particularly the nomal shears, differed in the third,

ond sometimes the second, significant figure,
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However, due to the ropid convergence observed with sot IF
(example A2), it was not nccessary fo consider a large number of torms
and the difficultics were minimisad. It is apparent that those functions

should bo used with caution.,

4,5 Discussion of the Computer Programs

A scparate computer program was develdpod for cach of the examplos
given in table 4,5,

The approximating functions wore selected in accordance with the
symmotry of the problem (soction 4.4).  The same valuo of § for each
of U.', U2 and W was considored,

Input, and therefore output, was in non-dimensional form, The
output was arranged in tabular form and has been roproduced in tables 4,7
to 4,21 inclusive,

Further details of the computer programs are available ot Imperial
Collaga. (69)
The computer programs wore written in EXCHLF Autocode for the

University of London Atlas computer.ao)' 71)
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CHAPTER 5

FURTHER APPLICATIOCN CF THE INDIRECT METHODS

TC TRAMSLATIONAL SHELLS

In this chapter the proposed. indirect methods will be applied to
translational shells (figure 2.4) which are unsuitable for Levy-type
solutions,

Cnly uniformly distributed normal loading (Z) will be considered.

5.1 Non=Dimensional Form of Equations

Let the displacement distributions assume the following forms:

1 h Z Z °mn”lm(51)uln(52’ (5.1)

[=4
n

_ m n
v, = l2 ; menuz ({3.I)U2 (;’32) (5.2)
_ 1
wo = T<—2- g Z‘:cmnwm(gl)wn(gz) (5.3)
%
where {3.' = T (5.4)
1
{32 = 102 (5.5)
2
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a ,b and ¢ _ are constants to be determined,
mn’ “mn mn

n

\’ U,; and Wn represent sets of independent

m. m

Up's Ygs Wy U
kinematically admissible fungtions,

and m and n are positive integers,

The corresponding displacement variations may be selected in the

following forms:

NTST m n
by = h& Z vy BV B)3a (5.6)
_ m n (5.7)
buy = 'sz: Zn uy (B))U, B8,
- —_ l n
wo = -K'; Zrn: Enj wm(gi)w,n(‘sz)‘)cmn (5-8)

where 8a_ , 8b and S§c __ are arbitrary variations in the constants a_ ,
mn’ T mn mn mn
bmn and Con respectively,

In the following derivation only the boundary integrals corresponding
to nyy and Moo will be retained, In all other cases the boundary
integrals will be assumed to vanish by virtue of the chosen functions,

Then the variational equation (2,90) ofter:

(a) setting X., )(2 and the applied boundary loads to zero,

1
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(b) non-dimensionalising the co-ordinates to the (§3] ,32) set defined
by equations (5.4) and (5.5),

(c)  setting K,p to zero and replacing K.' and | 1\22 by K, and K,
respectively, and

(d) substitution of equations (5.1), (5.2), (5.3), (5.9), (5.7) and
(5.8),

reduces to the following three independent equations, since &:mn’ &

mn

and & are arbitrarys

J'

]
J [-a ui Ui--(-"-:-ﬂrzc:..uiui -Mb u'< U' +

ij 1,11 2 ij 11,22 2 ki"2,1 72,2
o Jo
1
+ (ct v)c w ,I\Aq] v U 43 d32 j ”(o,,2 o)V dﬁz =0 (5.9
o

1
(]+y) of Ul o b k! (1-y) |
J J %i1,1%,2 = B2 Y2,22 _Tbkl 2, 11Uy *

o

1
+ (1+vc)cpquw 2 del 2J ;22(ﬁl,o)u2n1U2r‘(o)d§3] =0 (5.10)

o
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1 Al 2
['(C'*'V)a Ui Ui - (1+vch ukUl + i (c w w o+
ij 1,171 k1"2-2,2 " 12 Ypq p,N1 g

(o] (o]

2 4 2
+ 2r cpqu’.an'22 +r °pq‘”qu,2222) + (142 vete )cpqw W -

P q
- z] w W ds.ds, = O (5.11)
L
where ro= (5.12)
2
_h 1 _ 1k h 5.13)
T T T CR®RI- T ST T .
| 21 1 "2
K,
c = -R—- (5.]4)
2
e 2
7 = ‘é‘,‘,”) (5.15)
l\,)

i, i» k, I, m, n, p, q are positive integers and ;” and ;22
are functions of ;3] and {32 and are the non-dimensional forms (given in
Table 5,1) of % and Pos respectively,  In equations (5.9), (5.10),
(5.11) and Table 5,1, the Finstein summation convention is adopted and
comma notation is used to represent differentiation with respect to {3]

and 32.
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In deriving expressions for the boundary integrals, the boundary
conditions were assumed symmetric about B] = 0.5 and Bz =05, |If
this were not the case equations (5.9), (5.10) and (5,11) would be

modified in the followving ways

1
reploee [—-Zj‘ ;”(o,,ﬁz)u'm (o)U.:‘ dﬁz] by

[o]
1 3,=1
- m n
[*_f My By By BY, df’z]
o 3,=C
1
1
replace [—2 fnn(3 o)umUn(o)dBJ b
22\ 79 F 0¥ y
[o]
3=
[+ ]5 3.,8. 67U (8. )5 iz
223y 7305 Uy (3y 1’1]
o {32=O

It is evident from the foregoing that the problem is specified

through the non~dimensional parameters Ppr Cr ¥ and VvV *

|
*As noted in section (4.1) the separate parameters (h) and (-2) could
T fa

have been considered in place of the single parameter Pye
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With Z = 1 equations (5.9), (5.10) and (5.11) are the equations

used for the solutions presented in this chapter,

The actual values of the displacements, stress=-resultants and
stress=couples for any uniforaly distributed nomal loading Z are obtained
from the non-dimensional forms given in Table 5.1 by the factors given in
Table 5.2.

Equations (5,9), (5.1C) and (5,11) are the Galerkin equations
modified by expressions corresponding o the relevant boundary integrals

in equation (R.90).

5.1.1 Modification for the Lagrangion Multiplier Method

In this section only the following homogeneous kinematic conditions

will be considereds

uy = C  at a = o, I'l (5.16)
u, = C at ay = C, |2 (5.17)
w=0Q at (q] laz) = (Qlo)l(l]10)1(01'2)1(']l|2) (5.15)

Assume that the conditions given by equations (5,18), (5.17) and
(5.18) are now applied as constraint conditions,

Then following the procedure described in section (3.1.3) and
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assuming that the boundary conditions are symmetric about ay = C.5 Il

and ay = Q.5 12, the voriational equation (2,9C) is modified to:
Left hand side of equaiion (2:90) +

[
2
+ ZJ )\1(cxz)x'iul(o,c:t;!)dcx2 +

o

l'l
+ 2 j‘ )\z(al)?fuz(al ,o)dc:.I +

o
+4 Xsﬁw(o,o) = O (5.19)

where kl (az), )\z(a]) and ), (a constant) are the Lagrongian multipliers
corresponding to the displacements Upr Uy and w respectively.

The constraint conditions are:

uy (o ,cx?) = O (5.20)
uz(a,' 0 = O (5.21)
wlo,0) = O (5.22)

Equations (5.19) to (5.22) inclusive completely define the problem,
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£xpressing

Niay) = Z Nl a,) (5.23)

e

Z MLy ai) (5.24)

e

My

where 7\1e and :\; are constants,

e e .
Ll (az) and Lz(al) represent sets of independent
functions,

and e is g positive integer,

and proceeding as in sections (5,1) and (3,1.3), equations (5.19) to
(5.22) inclusive reduce to the following:
171772

1
Left hand side of equation (5.9) + 27:1%;“(0) J Leulgs. = ©  (5.25)
(o]

1

Left hand side of equation (5.10) + ZX;U; (o) J L§u£ndi3] = 0O (5.,26)
o

Left hand side of equations (5.11) + 47\'3wm(o)Wn(o) = 0O (5.27)
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oiiu.:(o) = O (5.28)

kaU;(o) = ©° (5.29)

cpqu(o)Wq(o) = O (5.30)
where e = (- vz) 2E (5.31)

N TTETA .

e _ (1- v2) e

5 = )\2 (5.32)

= _  (1- vz)

L Bl 7o et (5.33)

With Z = 1 equations (5.25) to (5.30) inclusive are the equations used

in conjunction with the Lagrangian multiplier method

As before the non-diinensional and actual values of the displace=
ments, stress=resultants and stress~couples are obtained from tables 5,1

and 5,2 respectively.

Interpretation of the Lagrangian multipliers

The Lagrangian multipliers provide the generalised reactive force

associated with the corresponding constraint condition,
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Then for the symmetric case considered:

n, ,,(o ,uz) = 7\l (az) (5.34)
n22(a.' ,0) = :\2(011.| ) (5.35)
Q(o,0) = )\3 (5.36)

where Q@ is the normal reactive force at a corner of the shell and is
positive when acting in the (~y) direction,

In non~dimensional form equations (5.34), (5.35) and (5.36)

raduce fo:

Z WLy 6,) (5.37)

e

ngL;(ﬁ,) (5.39)

By = ) =2

Qo0) =} (5.39)

Alternative expressions for ;22(0,‘32) and 'ﬁ”({-ll ,0) will now be
derived, |

From table 5,1, the following expressions are obtained:
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Ry =¥ " (1-v )b 02 2 9= - (1-V )cpqu\"\q (5.40)
mee =V = (=YD o™ U" - c1-9Ye w W (5.41)
11 22 mn 1,171 pg p 9 ‘

At the boundary 8, = O, equation (5,40), dfter substitution of

equation (5,37) becomes:
- = (1.2 i i _oy?
nzz(o,ﬁz) = (1-V )biiUZ(O)UZ,Z (- )cpqu(o)Wq +1/X|(£32) (5.42)

At the boundary 53? = G, equation (5.41), ofter substitution of

equation (5,38) becomes:

n..(B,,0) = (1-V )a (o) - <(1- V)c wW(o)+v B,) (5.43)
111 l'll 1

Equations (5.37), (5.38), (5.39), (5.42) and (5.43) provide alternative*

boundary values to those based on the displacement derivatives, The

actual values are obtained, as before, from table 5,2,
This matter will be discussed further in section (5.3) in conjunction

with numerical examples,

*£s discussed in section (3.1.3), the values based on the Lagrangian
multipliers are generally different from the corresponding values based

on the displacement derivatives,
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5.2 Boundary Conditions and Approximating Functions

The boundary conditions to be considered in this chapter are given

in table 5.3,

Only boundary conditions which are symmetric about ,3] = G.5

and ﬂz = 0.5 are considered,

In chapter 4 various types of approximating functions were con-
sidered, In view of these results and subsequent discussion, the functions
chosen to specify a parficular boundary condition are given in table 5,4,
Details of the approximating functions are given in table 3,1,

In table 5.4 two separate sets of functions are associated with
each boundary condition:

(a) functions which satisfy all the boundary conditions

(b) functions which violate the condition uI(o,aZ) = 0O

or u2(a.| ,0) = O but satisfy the remaining conditions on

a boundary, *

*Cnly when normaal slides (1) are considered along all boundaries, is the
constraint condition w(o,0) = O considered in conjunction with the

Lagrangian multiplier method,
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Case (b) is considered in conjunction with the Lagrangian multiplier

method,

Any combination of the boundary conditions given in table 5.4

may be specified,

5,3  Reduction to a System of Linear Algebraic Equations

For a particular set of approximating functions, equations (5.9),
(5.10) and (5.11), with Z = 1, reduce, on integration, to a system of

linear algebraic equations, which in matrix form ares

pow— — o — — —— pme -

A Ly L3 a e o
S By Apg bl+lo|=|& (5.44)
S L2 S| =] |2 |2
or, more compactly:
A a + g = O (5.45)
where E = col { a b f.}

é‘—' col{g_

1O
Ia
——
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Typical elements of the submatrices in equations (5.44) are given
in table 5.,50,* The relevant integration formulae are given in
Appendix 2,

Since the notafion used in defining the submatrices in table 5.50
is a deporture from the usual matrix notation, typical examples will be
given to illustrate the pattem of the matrices,

In table 5.5a typical elements of A 2 and b were given as

12

%an, ki and bk|,| respectively,  Assuming, for exanple that m, n, k

and | each range over the values 1 and 2, then the respective matrix

patterns are:

IR IR TN - SN ¢
L iz i i
A = g2 g2 o2 o
212 12,11 “12,12 Y1z, %z,
12 12 12 12

Y1, %21,12 %a,21 %21,22

012 012 c112 o2
22,11 22,12 722,21 22,22

— —

*The comma notation used in defining a typical matrix clomont in tobles
5.5a and 5,5b (c.9. al;ln ii) does not ropresent differentiation,  Howover,
I

the comma notation usad in the expremian corresponding fo a typical

clement represents differentiation with respect to ;3] and 3,
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b= el [by by by by }
Similarly for the other submatrices in tdble 5,5a,

5.3,1 Modification for the Lagrangian Multiplier Method

When the Lagrangian wultiplier method is applied, the modified
form given by equations (5.25) to (5,3C) inclusive is used, These
equations may also be reduced to a system of linear algebraic equations,

which in matrix form ares

_ﬁn Ao B B . 11 17,1

Bv Ly B3 - B b .

By B9 B3 - - G < .12 ..
A T
. 5 . . .. » .
L ' g‘T’ ] ) © Ll“’_i |

Typical elements of the submatrices f\‘ii G.i=1,2,3), a, b, c and g are,

as before, given in takble 5,50, Typical elements of the remaining
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submatrices in equations (5.46) are given in table 5,5b,
The matrix notation used in table 5.5b will be illustrated by
typical examples,

In table 5.5b typical elements of D, d, and Z’I were

Dy By d
), (d?,ii), (dﬁ'kl), « o q) and Y respoctively.

. 1
iven d
9 o ( mn,e
Assuming, for example that wm, n, i, i, k, | and e range over the values

1 and 2, then the respective matrix patterns ares

1 !
91,1 9,2
1 )
di2,1 912,2
b = J J
1 92,2
1 1
d d
7
2 ‘2,2 ]
3
du - Y
93 =
& &L
. 2,12 2,22
[ 4 4 B
dn % - .
= 4 4
d d
. . 221 9,22
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Q.
il

5 5 5 5
ds col {dn diz 9y dzz}

Nos o (N X

Similarly for the other submatrices defined in table 5,5b.

It has been established that the Lagrangian multipliers X,(az)
and )\Z(q.') provide alternative values for n”(o,az) and n22(al,o)
respectively (refer to section 5,1,1), Then the functions LIe and Lze
should be chosen such that the condition on Ryp OF Ny in the comer of
the shell is satisfied, A suitable set of functions is IA (refer to table
5.4), which correctly satisfies the zero condition on nyq OF Moy in the
comer of the shell for all combinations of the‘ boundary conditions considered,

For the boundary conditions and approximating functions considered

in this chopter (table 5,4):

L; = u; (5.45)

which, on substitution in the expressions for typical elements of 2 and

92 given in table 5.4b, yields respectively:
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1
1 m e, n,.
. dmn,e 2u] (o) J‘ U.' U'I d§32 (5.49)
o
1
2 " n e m
dmn,e = 2U2 (o) J‘ Uy U, d[3.I (5.50)
o

Since the functions chosen for Ule ’ U.;‘ ’ u2e and uén are, in fact, sine

functions, then the non-zero elements of D, and 92, after integrating

the expressions in equations (5.49) and (5.50) are respectively:

1 _ ta
dmn,n =y (o) (5.51)
& = U (5.52)
mn,m 2 o
Hence
_ T
9' = 93 (5.53)
_ T
22 = _{_}4 (5 . 54)

If S is the number of functions chosen fo represent each of the displacements

uys Yy and w in each of the directions ﬁ.' and 3,,* then the order of

*It is not essential to adopt the same value of S for each displacement,
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the respective submatrices is tabulated below:

Submatrix Crder

Az (i =1,2,3) 52 x §2
2

2', 22 S xS

o2

93, I_).4 SxS

2

21&1212:9_5196 " x 1

N, :XZ S x 1

7\3 1 x 1

Then there are 352 constants fo be determined by equations (5.44) and
(352 + 25 + 1) constants to be determined by equations (5,46)..

However, since functions ID have been chosen to be used in
conjunction with the Lagrangion multiplier method, the number of constonts
fo be determined by equations (5,46) may be reduced , For the

symmetric problem chosen here, functions ID for u.; (say) are:.
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(1-2:‘3]), sin 211,8.', sin 41131, sin 611;3.', vibees SIN 2irr('3.',.....
where i = 1,2,3,.....,(5~1) and function (1-253]) corresponds to i = O,

Substituting these functions in the constraint condition given by equation

(5.28) yields:

aoi = O (5.55)

where i =1,2,3,.0000,S.

The S cc;:nsi‘anfs given by equation (5.55) are set to zero before
solving equations (5.46). In this way the number of constants has been
reduced by S, A similar argument applies to the constraint condition
given by equation (5.29).

A further advantage in following the procedure outlined cbove is
that it avoids any numerical difficulties that may arise when using
functions ID,  (This matter was discussed in detail in section 4,4.2).

The solution of equations (5,46) forms the basis of the numericdl

results presented in this chapter, When no Logrengian wultipliers are

used these equations reduce to equations (5,44),
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5.4  Overall Equilibrium Check

In chapter 4, the numerical fesuifs were. compared with available
exact solutions, In the problems considered in this chapter, no such
exact results are available, [t is therefore necessary to apply some
chek on the solution,

Since the indirect methods discussed in this thesis attempt to
satisfy equilibrium, a suitable check is one of overall equilibrium,

5.4.1, Geometry and Assumptions

From figure (2.4) the equation of the middle surface of a trans-
lational shell is given by:

K

z = =% [c(x.'z - L)t (2 - lzxz)] (5.56)
8,
where K.z = -—f: (5.57)

The s'opes of the middle surface in the % and Xo directions are respec-

tively:
Ky
2, = = [c(Zx' - I])] (5.58)
K
2,y = —:,_-2- [2:(2 - |2] (5.59)
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Substitution for K, given by equation (5.57) in equations (5.58) and

(5.59) yields:

FZ 2x.|
z,l = 4ch— (1 -—l—) (5.60)
2 1
F 2*2)
IS ‘

The assumptions relating to the shallow curved plate theory
(chapter 2) imply that the products of the slopes 24 and z,, may be
neglected as small compared with unity,

Similarly it may be assumed that

zr; (i=1or2) = tan Gi & sin Gi = Qi (5.62)
cos Qi % 1.0 (5.63)
x X

Within the limits of the curved plate approximation -'l and -'-Z may be
1 2

replaced by B] and 532 respectively and equations (5,6C) and (5,61)

become:

f
2,y = 4crr2- (1 - 28)) (5.64)
2

f

I
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5.4.2. Resolution of the load and Stress-Resultants in the

Directions Xyr Xy and z,

Since the loading and boundary conditions are symmetric about

3

(Figure 5.1),

= 0.5 and 8

n = 0.5, only one quarter of the shell need be considered

Let E., E, ond E

| 3

of the shell (figure 5.1) measured positive in the directions Xyr Xo and z

be the errors in equilibrium for one quarter

respectively,
Then resolving the load and stress resultonts in the directions X
X and z respectively and cllowing for the assumptions previously made,
i.e. ignoring terms containing products of slopes of the middle surface and
assuming that the relations given by equations (5.62) and (5.63) hold,
yields the following three equations respectively:
I

1
7
By = ['"12("1 o) + q2(a'l'°)(z’l)x2=o] day +
[+]
2
2 |
!
* ['“n‘°'°‘2) oty “2’*"1‘°'°2)(z'1)x]=o] day -
(]
h [ )
- 2| 2
. ) Z(z,])da]daz + Q(z'l)x]‘:o (5.66)

3

X2
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h

2
|
_ 2
Ey = [ “Nglay0) + nyylay, =) + qz(“1'°)(z'2)x2=o] day +
(o]
12
2 | |
+ [- n."z(o,az) + ql(o'aZ)(z'Z)xi%] clnr2 -
v o0
ek
7|2
- .J Z(z,z)do:]clcx2 +Q(z'2)x'=o (5.67)
(o] (o] =0
*2
h
7
By = - [ Ry2(y 0) (”z)xfo * “12(°'1'°)(z'1)x2=o * q2(°l’°):l day —
(o]
)
2
il ["n(°'“z’(z'1)x]=o * “12(°'°'2’(z'2)x]=o * "1‘°’°‘2’] da, -
[o]
hooh
7 |72
- Q4+ Zda]da.z (5.68)
(o] [o)

From table 5.4 and equations (5.4) and (5.5) the following are

obtained:
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n, = —Zh, = - i'-;i n
i 'T<_2 i by i
q = Zhe

Q = zallz'c'-i

da, = |idf3i (not suramed)

where i and | range over the values 1 and 2,  Substituting for nii ’
q;r Q and dc:i by the above expressions and for (z,]) and (z,2) by

equations (5.64) and (5.65) in equations (5,66), (5.67) and (5.68)

yields:
E, = ZI‘IZ(E1) (5.69)
E, = ZIIIZ(E'Z) (5.70)
E, = ZL1(E) (5.71)

where the non-dimensional forms TE'], -E-Z and ES are given by:

3

| f, 2

, = %.(f—:)J [;‘Z(B],o)+ 32cr2(123) az(ﬁ],o)(l-ZB])] dp, +
o

il

¥
t i, 2
1,2 1- 1- 2y -
+ 5 (":-;) J [-r-n"(o,,ﬁz) - =n,(0.5, 32) + 326"(]-;) q,(o,.ﬁz)] dg, +

(o]

2 f2
+ 4cr(-|;-)§- - %cr('r;) (5.72)
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m

I2 b f, 2
) ;2—) [ 75(8,00) = 08y, 0.5) +32r<1-) a(8;,0)| dB, +

o

[en)
o

3
I f 2
12 J [ nyplo,B,) + 32 (T_) a;(e,8,)(1- 2!3,)] df, +

o

f fy
+ 4(];)6 - ’lf.(-rz—) (5.73)

ml
|

}
2

o

}
+%J Ly sty + 25 500,8,01-28,) - Z3y(0,8,)] B, -
o

- Q + 0.25 (5.74)

Equations (5.72), (5.73) and (5.74) are the equations used to check
overall equilibrium for a shallow curved plate. -El' EZ and ES are the
errors in equilibrium expressed as a factor of (ZIIIZ) and measured

positive in the directions X1s Xo and z respectivaly,
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For the overall equilibrium check it is necessary to define a
I
further parameter (?2)’ which is a measure of the shallowness of the shell,
2

l
-

to determine E] and FZ' Note that -E'3 is independent of (?-22-) .

3.5  Convergence Study of the Approximating Functions

In this section combinations of the boundary conditions given in
table 5,4 will be applied to particular numerical examples. In the
computer program developed, provision is made for the symmetry of the

problem by choosing the functions given in table 5,4 such that:
(a) u; r W Lze are symmetric functions about {3] = 0.5

b) o

y = 0,5

is an antimetric function ecbout B

1

(c) U.r ’ Wn ’ L.T are syminetric functions about (32 = 0,5

(d) U;' is an antimetric function cbout 8, = 0,5
2 2

5.5.1. Numerical Examples

The examples to be studied are given in table 5,6, The corres-

ponding results* are presented in tables 5,7 to 5.12 inclusive and

*The results in the tables are presented in floating point notation

e.g. 1.234, +3 means 1,234 x 103
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figures 5,2a, 5.2b and 5.2c¢c.

Displacements, stress-resultants and stress~couples are presented
in non~dimensional form (table 5.1), The actual values are obtainable
from the expressions given in table 5,2,

In tables 5,7 to 5,12 inclusive the values marked with an asterisk
(*) are based on the Lagrangian multipliers and the corresponding values
in brackets are based on the displacement derivatives.

In the overall equilibrium check, EI and E2 are presented in
their non~dimensional forms El and EZ' whilst E3 is expressed as @
percentage error (%400 f3).*

S is the number of functions used to represent each displacement

in each of the directions 8, aond 8,, due allowance being made for the

1 v2’

symmetry of the problem in the selection of these functions,

5.5,2, Discussion

The convergence of the displacements was good for all combinations
of the boundary conditions considered i.e. clomped, hinged and normal

slide (1).

*This check was not incorporated in the computer program and the
integrations in equations (5,72), (5.73) and (5.74) were performed

numerically using Simpson®s rule,
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When a hinged boundary was used, the convergence of N (or
n22) along this boundary was slow, but satisfactory within the shell (note
example 5.2A), This wos reflected in the large errors in the overall
equilibrium check.  Application of the Lagrangian multiplier method in
conjunction with functions ID (case (b) in table 5,4) greatly improved the
boundary value of 27 (or n22) and reduced the errors in equilibrium
(compare example 5.2B-with example 5,24). The boundary value of "
(or n22) based on the Lagrangian multiplier again provided a more accurate
estimate than the corresponding value based on the displacement derivative
(refer to section 4,4,2 where this matter was discussed,in detail), It
was previously noted (section 4.4,.2) that functions ID when used in the
manner described in this thesis may be effective in improving a particular
stress=resultant, which is slowly convergent on the boundary but satisfactory
elsewhere, The examples studied in this section are a further illustration
of this,

With clamped and normal slide (1) boundaries, the convergence
of the membrane stress-resultants was good and, although provision was

made in the computer program, it was unnecessary to apply the Lagrongian

multiplier method (case (b) in table 5.4),
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When normal slides (1) were considered along all boundaries
{(example 5.3, table 5,9, figures 5.2a, 5.2b and 5.2c), the moments
(stress=couples) were generally very small except in the region of the
corners where convergence was slow, In this example the Lagrangion
multiplier gave the normal reaction in the corner,  Example 5,3, in some
respects, is similar to example A7 in section (4.4.2). In exomple A7
functions IB were used to represent Wm ond the Lagrangian multiplier
method applied in conjunction with the constraint condition Wm = QO at
,82 = O,1, The boundary moment in this case was very slowly convergent
{(note, in particular, figure 4,6), For comparison, the solution for a
shell with the same parameters but with all edges clamped, is also given
in figures 5,20, 5.2b and 5.2¢c,

With other combinations of clamped, hinged and nomal slides (1),
the moments were generally converging satisfactorily,

Mormal shears (stress~resultants) on the boundary were generally
slowly convergent, which undoubtedly contributed to the errors in

equilibrium, particularly if the shears were of a significant mognitude.
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5.6  Comparison with Other Available Solutions

Example 5,7:  Consider an elliptic paraboloid with the following data:

r = 1,0
Pr = C,0152926
c = 05
Y= 0,25

and boundary conditions:

clamped ot a, = O,I.l and ay = o, 32.

The convergence of this solution was studied in example 5.1,

This example was also solved by Noor and Veletsos( Is)using a
Rayleigh-Ritz analysis and a wodified finite difference technique, A
comparison is given in table 5,13 and figures 5,30 and 5,3b, The
solutions show good agreement,

In the Rayleigh=Ritz analysis used in reference (15), aw - 4
formulation is used and functions IE and IC have been chosen to represent
respectively w and £ in each of the directions 8, and 8,.  Note that
the boundory values of the moments so obtained, are smaller than for the

other solutions (table 5,13 , figure 5.3a), It has been previously noted

(section 3,1.4), that the functions I€ impose the additional boundary
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conditions of zero normal shear and zero Kirchhoff shear, and this
undoubtedly is reflected in the slower convergence of the boundary

moments observed for this case (refer also to example Al in section 4,4,2).

Example 5.8:  Consider a cylinder with the following data:

|.| = 600 in. l? = 497.4 in* h = 4in,
K, = O K, = 1.8519, =3 in )
E = 3,0, 4 Ibs/in> V=0 Z = 0.555 Ibs/in”

and boundary conditionss
clamped at a, = O,l.| and a, = O"Z'
(5)

This example was also solved by Gunasekem(é)and by v ', using
an extended Levy inethod of solution, The solution is compared with
that given by Gunasekera in table 5,14,

The solution for iy, on the boundary is less than that given by
Gunasekera by approximately 10%, Otherwise the solutions show good

agreement,

*This is the arc length corresponding to a plan length of 480 inches,
In the shallow curved plate theory discussed in this thesis, no distinction
is made between the arc length and the plan length, However, in
order to compare the indirect solutions of this thesis with other available

solutions it is sometimes necessary to use the arc length,
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Example 5,9: Consider a hyperbolic paraboloid with the following datas

1, = 51,32 0 L, =659 f*  h=2.50n,
K, = 15385, -3 f] K, = 1.2821, =2 f!
E = 4.5, + 8 Iby/R2 V=0.15  Z =50 Ibs/it?

and boundary conditionss

hinged at a, = O,l, and a, = o,l

1 1 2°

This example was solved by Gunasekera** and a comparison is
given in table 5,15,

MNote that the Lagrangian multiplier method is used in an attempt
to improve the boundary values of n,. and Mg Functions corresponding

1

to case (b) in table 5,4 are used,

*These are arc lengths corresponding to the plan lengths 50 ft, and 60 ft,
respectively,

**The results presented by Gunasekera were at -;;fh points.  The results
presented here are at -T%fh points,  This example was re-run for this

latter output using Gunasekera®s computer program,
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The solutions generally show good agreement, Note the good

agreement of the boundary values of n,. and Ny based on the

n

Lagrangian multipliers with those given by Gunasckera,

5.7 Further Solutions = Variation of the Shell Parameters

The non-dimensional form of equations (5.9), (5.10) and (5,11)
shows that the translational shell is completely defined by the parameters
ry Pys © and V ., Such a representation permits the behaviour of
translational shells to be conveniently studied by the variation of these
parameters,

The examples considered and the particular parameter baing
varied are given in table 5,16, The corresponding results are given
in tables 5,17 to 5,22 inclusive,

All results are presented in non-dimensional form (fable 5.1),
the actual values being obtained from the expressions given in table 5.2,

The Lagrangian multiplier method is used in example 5.14 (case

(b) in table 5.4). In this case the boundary values of n 1 given in

1

table 5.21 are based on the Lagrangian mulfiplier.

S = 8 has been chosen in each of these examples.
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5.7.1 Discussion

Variation of Pr* The parameter Py defined by equation (5.13),
varies with shell thickness and shallowness,  This thesis is concerned
with the study of thin shallow shells and PT should be interpreted accordingly,
The thin flat plate is recovered from Py = .

For comparison the following flat plate solutions for r = 1 and

VY = 0,15 are given*:

(i) all boundaries clamped:

w(0.5, 0.5) = 1,265, =3
E”(o, 0.5 = ~5,084, =2
5”(0.5, 0.5) = 2.021 -2

(ii)  all boundaries hinged (simply supported):

w(0.5, 0.5) 4.062, =3

4,234, =2

il

E, 1(0.5, 0.5)

*These values are in non-dimensional form and were obtained from the
computer pragram developed by using a very large value of Py The

actual values follow from table 5.2, S = 8 was again adopted.
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(iii)  all boundaries with normal slides:

w (0.5, C.5) = 5.771, -3
w (O, 0.5) = 4,323, -3
;”(0,0) = 2,322, -1*
(0, 0.5 = 195, -2
my (0.5, 0.5) = 3,159, =2
Q = 2.500, ~1

As the shell becomes shallower, i.e, as Py increases, tables

5.17, 5.19 and 5,20 show that w, m,, and @ (example 5.15 only)

n

also increase. slowly approaching the solution for a thin flat plafe.

V\I/hen pr = C.03, which corresponds to the values (]—) = _.56 and
(;—) = =24, the solution for the shell, although very shcllow, is still

2
very different from the corresponding flat plate solution,

On the other hand, .r;” decreases very slowly with increasing
shallowness and is still of significant value even for a very shallow shell

(pT = Q,10), particularly in example 5.15.  Similarly 512 is decreasing

slowly with increasing shallowness, but it is of smaller magnitude than ;”..

*This value is slowly convergent,.
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Similar remarks apply to increasing thickness, which also corres-
ponds to an increasing py, but any comments are restricted to thin shells,*
Note that only the effect on the non~dimensional values has been

considered,  The actual values follow from table 4,2, which gives:

12 le(l-vz) I3

= Iy =
o= s T
1 - ay
ST Lol 2 ot L il e B

Then if increasing Py is inferpreted os increasing shallowness the effeet on

the actual stress~resultant L is dependent on (PT;'I'I)' Referring to

*Viasov (page 337, reference 2 ) restricts thin shells to the range:

h ‘Kmox, < -;—5 (a)

where ‘Kmox is, numerically, the maximum undeformed curvature,

K , then (a) becomes:

If [K2| >

1

f
h 2 1
T Il;’ ) 2 mov

and if lK]‘ > l K2 i then (a) becomes:

f
hyl| 2 ]
(T;)(‘]; ) < 2407+ | c|
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the tables, it will be noted that the product (p.l.;”) increases with
increusing Py However, beyond the range considered here, the product
begins to decrease with increasing et and approaches zéro as g becomes
very large.

I increasing py is interpreted as increasing thickness, but
restricted to thin shells, the effect on the actual displacement w is
dependent on (-"3—)3;; .

The non-dimensional presentation of the tables given in this section
covers, very compactly, the solutions for a wide range of thin shallow

shells,

Variation of c:  Only the case with all boundaries clamped is con-

sidered and the results are presented in table 5,18,
Since Pt reimains constant, the variation of ¢ represents, in effect,
the variation of K.I with all other data fixed,
As ¢ increases from -2,0 to +2,0:
(a) w and 5” initially increase, reaching their maximum values,
within the limits of the results presented here, at ¢ = O after
which they begin to decrease,

b) 522 initially increases, reaching its maximum valuve at ¢ = =0O,5,

ofter which it begins to decrease,
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31

(c) n changes sign, reaching its maximum positive value of ¢ = ~-1,C,
and its maximum negative value ot ¢ = +1,0,

(d) ;22 iniﬁdily increases, ret;;hing its maximum value when ¢ = 0,
after which it begins to decrease,

(e) 5]2 changes sign, reaching its maximum positive value when

¢ = =2,0 and its maximum negative value when ¢ = 0,5,

Variation of r1  Cnly the case with all boundaries clamped is considered,

The results are presented in table 5,19,
Since Py remains constant, the variation of r represents, in effect,

the variation of l2 with dll other data fixed,
As r increases from O,5 to 5,0:

(o) the maximum value of w along 'Bl = Q,5 increases, reaching its
highest value, within the limits of the results presenied here, at
r = 2.0, dfter which it begins to decrease; the location of
this maximum value moves towards the cenire of the shell,

() the maximum value of w along {32 = 0.5 increases, reaching its
highest value at r = 2,0, ofter which it begins to decrease;
the location of this maximum value moves away from the centre

of the shell.
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(c) the maximum value of 5" along the boundary ‘BI = O increases,
reaching its highest value at r = 3,0, after which it begins to
decrease;, the location of this maximum value moves towards
the centre of the boundary,

(d) -5122 along the boundary [32 = O increcses, the location of its
maximum value remaining unchanged,

(e) 'r'i.” along the boundary {3' = O decreases, whilst along 52 = 0,5
it increases reaching a maximum at r = 2,C, dofter which it
begins to decrease,

() ;22 along ﬁ] = 0,5 decreases, whilst along the boundary 532 =0
it initially increases, reaching a maximum at r = 1,0, after
which it begins to decrease.

Variation of v :  Only the case with all boundaries clamped is

considered,  The results are presented in table 5,20,
As YV increases from O to O,30:
(a) w decreases

b) the magnitude of m,. generally decreases

11
(c) F\” increases slightly

(d) ;,2 decrecses,

The actual displacement w is given by (table 5,2):
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713 12z
- 1 = _ 1 2, -
W =W = 3 (1 =-v)w
Eh

which also dacreasas with increasing ) .

5.8 Discussion of the Computer Programs

The single computer program developed for translational shells is
limited to uniformly distributed normal loading and to boundary conditions
which are symmetric about !3'.] = 0,5 and [32 = 0,5, However, any
symmetric combination of clamped, hinged or normal slide (1) boundary
conditions (table 5.4) may be specified, Provision is also made to apply
the Lagrangian multiplier method in conjunction with Uy = O (along
=0O,1)oru

8 = O (along By = 0O, 1) for cach of the boundary cone

1 2
ditions specified (refer to case (b) in table 5,4).

The approximating functions ara salected in accordance with the
symmetry of the problem (seetion 5,5), The same value of S for sach
displacement in each of the dirzctions 9] and ,82 is considered,

Input, and therefore output, could be either in non-dimensional
form or in terms of the actual dimensions,

In order to economise on computer storage, the system of linear

algebraic equations was solved by pertitioning the equations into their
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submatrix form (equations 5.44), Note that when the modified form
given by equations (5.45) was used, the S constonts given by equation
(5.55) were pre-set to zero and the equations rearranged in the form
given by equations (5.44),
Further details of the computer programs are avaikble at Imperial
College.(éq)
The computer prograins were written in EXCHLF Aufocode(7o)’ @n

for the University of London Atlas Computer,
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CHAPTER 6

APPLICATICN CF THE INDIRECT METHODS TC RULED

SURFACE SHELLS

In this chapter the proposed indirect methods will be applied to
ruled surface hyperbolic paraboloid shells (Figure 2.5), for which no exact
solutions are available,

Only uniformly distributed normal loading (Z) will be considered,

A Uy=UyW formulation will be used after a short discussion of its
merits in comparison with a w=g formulation,

The Galerkin equations, in terms of w and £ ares
ol . _
J [D T + 2K, B - z_’ swdayda, = O

2 -~
4 _
LV 4 - 2EhK]2w,]2] Eﬁda]daz = O

In the Galerkin method the functions for w and 8 must be chosen such

that all boundary conditions are satisfied.
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The first of these equations can be derived fron the principle of
minimum total potential energy and the second from the principle of
minimum complementary energy (refer to section 2,3). iMote that the
POcher stress-resultant function, g, automatically satisfies the relevant
equations of equilibrium. 7 variational treoiment along these lines is
given in reference 15,

Consider the case whan the shell is supported on all boundaries by
nornal gables (Table 6,3), which correspond to the boundary conditions

= = ! = = = 1 = =
w=o0=m,, anc u, =0 =n,, ot a, o, l.and w=o ngcnd

1

U} =0 =n,, ata, =o, lg' In terms of w and 4, the boundary conditions

! = o= =g = = =g =
bacome w = 0 = w,; and =0 ;5,.” ata, =0, |, and w =0 Wroo

1 1

and § =0 = p’,?,, at a, = o, l,. The obvious functions for w and £,

which will satisfy oll the houndary conditions, are sine functions (IA in
Table 3,1) such that w is synmetric and g antimetric cbout the centre of

the rectangular plan-form,

The application of these functions yielded results which compared

) ) . (19),(25) .
unfavourably with other available solutions.  The use of the PUicher stress-

resultant function, in this cosz, inhibits the selection of an approximating
function which simultaneously yields realistic distributions of the corresponding

three 'stress-resultants i.e. n and n

117 " 12 °
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The U =UsW foraularion allows greater freedom in the distribution

of the membrane stress—resultants and a more direct formulation for the

boundary conditions. A suitable form for these equations follows,

5.1 Mon=Dimensional form of Equations

Let the displacement distributions assume the following forms:

= LY n,.
vy =4 Zn ch'mn”l (30, (35) ©.n

L m ] n { 25
2 = ':zzn ;__.:"e-an"z(xﬁ)uzoz’ (6.2)

c
l

1 y
v = T Z __.Jcmnwm(:a'l )“A;n(?)’)) (6.3)
12 m n -
where
a B
a
? -

n

; mom
a ,b and c__ are constants to he determined, u,, u,, w_, U,
mn’ Tmn mn 1 2 m” 1

Y

o

and Wn represent sats of independent kinematically admissible functions,
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and m and n are positive integers,
The corresponding displacemant variations may bhe selected in the

following forms:

T"? m n
fu, = 2 (3 3,)¢ :
fuy = L 22 e (GG (6.5)
m n
Eu? - |2 ZZU;(:}])U;(;}Q)Somn (6.7)
n n
'l S B |
i %»zﬁwm(gl’v“n‘f’z‘5°fnn (6.8

where Samn' Sbmn and Scmn a-ra arbitrary voriations in the constants
a7 bmn and € n respectively,
In the following derivetion only the boundary integrals corresponding
o n., will be retained, In all other cases the houndary integrals will
he assumed to vanish by virtue of the chosen functions,
Then the variational equation (2,2C) after:
(@)  setting Xyr¥y and the applied boundary loads io zero,
(b)  non=dimensionalising the co-ordinates to the (31,32) set defined by
equations (5.4) and (5.5),

(¢) setting KH and X,, to zero,
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and (d) substitution of equations (6,1}, (5.2), (6.3), (6.6), (6.7) and
(6.5,,

reduces to the following three independent 2quations, since Sa_

B’omn and &:mn are arbitrary:

ol oyl 0=W 2 i vy, k|

J {:' i TR ) D D AT o R W St e WA R T
o o

22

[
m n ' o
+ r{1- V)cpqu\’\’q’z] ™ Uldﬂlda -.-I 17(31,°)” (o)d.a = C (6,9)
o]

R
~ (1+») (. k,,l a-»), kI
J ‘{ 7 %1 YL T Bt T T Pt Y
. |

o

| 1

(1-¥) 2 e e

+-T-cpqu']wq] ?u d'3‘d3 -2 nl7(o,3?)u (o)u"ds O (6.1C)
o

1 2
PRI BE T v) ol 42z
J J [r(l V)aiiulU"2 bkl 2,1 2 +-—,’-(cpq p,ll" q

oo

, '
L W 1 W
+ 2 cpqu,'ll Wi 2 +re w w 2222 + 21 V)cpquf‘fq

-7 \ 3_d* =
/:] w Wdddy, = C G
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where rE7 (6.12)
2

|
h h h .2
pn = . - (5.13)
S R T [

7(1-v9)

Z = T (6.14)
M2

i, isr k, I, m, n, p, q are positive infegers and n 9 is a function

12

of S] and 3? and is the non~dimensional forn (given in Table 5,1) of nyge

In equations (5.%), (5,103}, (6.11) and table (5.1), the Einstein
summation convention is adopted and comma notation is used to represent

differentiation with respect to 3, and 3o e

1
In deriving expressions for the houndary integrals, the boundary

conditions were assumed sy-ametric about 3, = C,5 ond {32 = C.5, f

1

this were not the case equations (6.9}, (6.1C) and (4.11) would be

modified in the following way:

1 -
replace [- ZrJ E] 2(‘;3.l ,o)u!.;1 U]n (o)d,ﬂlj by

o

! 8,=1
-, m, .n e
l:* My Y, ‘ﬁ?.’d?!:}

2
o BZZ:O



- 146 -

1
o 2 r - o n n [}
replace “ - n]2(°"b?_)02 (o)Uzd;Bz] by
_ ‘Jo |
1 ,:'-}]=1
1 - A LI
[” FJ "2ty '92)”2(*31)%""2]
o ;3.|=C.

It is evident from the foregoing that the problem is specified through
the non-dimensional paranaters »,, r and v ,*
(AN

With Z = 1 equations (6.9), (5.1C) and (6,11 arz the equations

used for the soluiions prasented in this chapter,

The actual values of the displacements, siress~resultants and stress-
couples, for any unifornly distributed normal loading Z, are obtained
from the non-dimansional forms given in table 6,1 by the factors given
in table 5,2, |

Tquations (5.9), (£.1:7) and (4.11) are the Galarkin equations
modifiad by expressions corresponding to the relevant houndary integrals

in equation (2.90).

*The single parameter 2., could have been replaced by the separate

[
:

h 2 .
paraaeters (T) and (_F_" However, the use of o, covers a wider
] Y

range of shells,
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6.1.1 Modification for the Lograngian Multiplier iMathod

In this section only the following homogeneous kinematic conditions -

will he considered:

uy = ¢ at a, = <, I? (5.15)
uy = ¢ a o = G, (6.16)
w = O at (a],az) = (O'O)'(Il'O)'(o"z)'('ll2) (5.17)

Assume that the conditions given by equations (5.15), (5.16) and
(6.17) are now applied as constraint conditions,
Then the following procedure describad in section (3.1.3) and

assuning that the houndary conditions are symmetric chout a = C.5 ll

and a, = C,5 1,, the variational equation (2.9C) is modified to:

ane % X

o

Left hand side of equation (2,9C) +

h

2 A |
+ 2 )\I(a])w1(a1,o)c.a] +
Yo
pl
+ 2 }\,;(a7)5u?(o,a.,)c1ao +
U — s - Y Sm
o

+ 47\3 &wlo,0) = C (5.18)
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whera )\](a]) R :\9(0(7) and 7, (o constant) are the Lagrangian multipliers
< KA J
corresponding to the displacements Uyr Uy and w respectively,

The constraint conditions ares

u‘(a],o) = (6.19)
u,,(o,u?) = C (6.20)
wlo,0) = © 5.21)

Zquations (6.1¢) 1o (5,21) inclusive completely define the problem,

xpressing

I

CH Zx‘;Lf(a‘) (6.22)
e

-

2k () (6.23)

N\

)\7(07) =

- - N

where )\.T and ?\g are casianis
L:(a.l) and| Lg(a,_,) represent sets of independant functions,

and 2 is a positive inieger,
and proceeding as in sections (6.1) and (3,1,3), aquations (5,13) fo

(5.21) inclusive reduce to the following:
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1
4]
Left hand side of equation (5.9) + zr'Xful"(o) L;"uf;‘d,l =0  (3.24)
“o
Al
') oo
Laft hand side of equation (5,1C) + .;-‘Afu;(o) Lgu,;dsz =0 (5.2)
v o]
Left hand side of equation (5,11) + 4'X3wm(o)\!‘.’n(o) = 0O (4.25)
o U]'(o) = O (6.27)
) lk( ) = O ({ s
Okl J2 o = )¢ 200
c w{oW oy = C (5.29)
PAP  q
e 1-V* | e "
l)
% o= (6.31)
2 2 .
(1=
b T (6.32)
- i e B

With Z =1 equations (9,24) to (5.29) inclusive are the equations used

in conjunction with the Lagrangian multiplier method,

/s before the non-dinensional and actual values of the displacements,

stress-resultants and stress-couples are obtained from tables 6.1 and 4,2

respectively,
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Interpretation of the Lograngian multipliers

The Lagrangion multipliers provide the generalised reactive force
associated with the corresponding constraint condition,

Then for the symmetric case considered:

nn(a.l ,0) = 7\1(01) (6.3%)
n 2(0 ’ az) = )\2(02) (5.34)
C(o,0) = )\.3 (5.35)

where @ is the nornal reactive force at a comer of the shall and is
positive when acting in the (-y) direction,
In the non-dimensional form squations (5.33), (5.34) ond (6.35)

reduce to:

;.'2(:3‘ 0) = 71(;3]) ZX';L?(SI) (6.36)
]

nyplordy) = Fol5y)

Z"\flf,(s,,) (6.37)
T2

Clo,0) = X3 (6.3
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Equations (3.36), {5.57) and (6.33) provide altemative* boundary

values to those based on the displacement derivatives, The actual values

are obtained as hefore from table 5.2,
This matter will be discussed further in section (5,5) in conjunction

with numerical examples.

6,2 Boundary Tonditions and Approximating Functions

The boundary condifions to be considered in this chopter are given

in table 4.3,

“

Cinly boundary conditions which are symmetric about !3’ = O,

and !32 = Q.5 are considerad,

For the reasons given in section (5.2), the functions chosen to
specify a particular Loundary condition are given in table 6.4,  Details
of the approxinating functions are given in table 3,1,

In table 3,4 two separate sets of fumetlons are associated with the

14
P

hinged and noraal gable houndary conditionss

*As discussed in section (2.1.3), the values based on the Lagrangian
multipliers are generally different from the corresponding values based on

the displacement derivatives,



(@) functions which satisfy all the boundary conditions
(b)Y  funetions which violate the conditions u](a] 0 = Cor
uz(o,az) = (. Lut sciisfy the remaining conditions on a boundary,*
Case (b) is considered in conjunction with the Lagrangian multiplier
method,
Any combination of the houndary conditions given in table 5,4

may be specified,

6,8 Reduction fo a System of Linear Algebraic Squations

For a particular set of approxiwating functions, equations (6,9),
(5.1C) and (6,11}, with Z = 1, reduca on integrofiom - fo a system

of linear algehraic equations, which in matrix form are:

_ 7 1T
A fo A 7
Sn S e a = S
Loy Lon Lo P x 2 =1 L (6.2
Ny fn Ze| L= 2] |e
- B S U N S

*Cnly when nornal slides (1 or 2) are considered along all boundaries,
is the constraini condition w(o,0) = C considered in conjunction with

the Lagrangian multiplier method,
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or, more corpactlys
/-\ é + _a- = 9 (6.40)

where

ot
[}
0
e
P
=]
|
o
)

§=C°'{3 ° g}

Typical elements of the submatrices in equation (6,39) are given in
teble 6,5a,* The relevant integration foraulae are given in Appendix 2,
The examples given in section (5.3) to illustraie the matrix

notation adopted are equally applicable here,

6.3,1  “lodification for the Lagrangian Aultiplier Method

When the Lagrangian multiplier method is applied, the modified form
given by equations (5.24) to (6.29) inclusive is used, These equations
may also be reduced to a syste:a of linaar algebraic equations which in

matrix form ares

*The comwa notaiion user! in d:fining o typical matrix cloracnt in “teblos

n

N, 1

6.5¢ and 6.5b (c.g. © ) doos not reprosont difforontiotion,  Howaver,
the coama notation usad in the exprossion corrosponding to a typical

clement represonts difforentiotion with respecet to ;}] and 3,.



A. A. A T 7«1 .7
L S B By e g .
Doy Agy By - By b .

Ay A B - . g5

o
N

g P=_C_J_ (5.41)

'QS . ° . . . Z] [
. 24 . . . . =2 .
- Y d E 3 [ ] -xfi -
L] -
b - L - L -

Typical elaments of the submatrices -/iii (i,i = 1,2,3), a, b, ¢ and
g are, as before, given in table 6.5(a). Typical elements of the
remaining submatrices in equations (5,41) are given in table 6,5(b).

The exaaples given in section (5.3,1) to illustrate the matrix
notation adopted are equally applicable here,

The Lagrangian wultiplier method is considered only in conjunction

with a hinged or normal gable boundary (iahle 5.4).

It has been esiablished that the Lagrangian multipliers provide
alternative values for Ny, on the houndary (refer to section ,1,1),
Then the functions L? and L; should be chosen such that the condition
on ny, in the comer of the shell is satisfied, In Table 5,4 there is a

e

choice of functions (1% or I?) for Ll and Lf; when hinged boundaries are
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considerec?. If the boundaries !3] = 0,1 (say) are hinged and the
boundaries By = ;1 are either:

(i) claaped, hinged, normal slides (1)
or (ii) nonnal gables, normal slides (2)
then the functions chosen vor Lg will b2 1A for (i} and ID for (ii),
satisfying correctly the zero and non-zero conditions on N9 in the comer
of the shell respectively,  Similarly for L‘; by considering hinged
houndaries at 3,;, = C,1.

IF S is the number of functions chosen to represent each of the
displacements uys Yy and w in each of the directions !3] and ;32, then
the order of the subinatrices in equations (5,2Y) and (6.41) are identical
to those given for translational shells in section (5.3,1), Also the
subsequent remarks made in section (5:3.1) ahout functions 1D, when used
in conjunction with the Lagrangian wultiplier method, are equally

applicable here,

The solution of equaiions (3.41) forms the basis of the numerical

results presented in this chapter,  When no lLagrangian multipliers are

used these equations reduce to equations (5,29).
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8.4 Qverall Zquilibrium Theck

6.4,1 Geometry and Assumptions

In figure 2,5 two equations, defining the iddle surface of o ruled
_surface hyperbolic parcholoid shell, were given, The surface in figure
2,5b is symmetric aboui either diagonal wharzas the surface in figure
2.5a is not., Since, in later derivations, only one-quarter of the shell
will be considerad, the surface defined by figure 2,5k will be adopted,

From figure 2,55 the equation of the middle surface is given by:

z = | 12(- % sz1 -1 llx2 + x]xz) (6,42)
v ---.hF >
where :‘..'2 T - -r'-';—- (6.4v)

The slopes of the middle surface in the x, and x,, directions are

1
respectively:
[') .
2,y = Kpplg +x,) (5.44)
ll
2,2 = K]g(- -,-.3— + X]) (6.45)

Sul:stituting for K]? given hy esquation (5.47%) in equations (5.44) and

(6.45) yields:
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17 )
ZI-' = -I:. T;(] = '1—) (6046)
7 >4
212 Tz—'(] - i] ) (6-47)

The assumptions relating to the shallow curved plate theory
(Thapter 2) imply that the products of the slopes Zry and z,, way be
neglected as small compared with unity,

Similarly it may be assumed that:

zy, (i=1or?2 = tan Gi ¥ sin @i = @i (6.43)
cos Gi = 1,0 : (5.49)
Within the linits of the curvad plat hnation <L and -2
i e s of # ad plote opproximation and ma
ithin the limi e curvad plate approxim T'r T-,_— Yy
be replaced by ;’3] and 3, respectively and equations (:3,43) and (5.47)
Liecomes
ki o o o
Z,.I = '}' . -]— (] - 2,’7) (O":J\"‘.)
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6.,4.2 esolution of the Load and Stress-Resuliants in the

Directions Xy Xy and z

Since the loading anc boundary conditions are symmetric about

’3.' = 0.5 and 3, = .5, only one quarter of the shell need be con-

sidered (figure 5,1).

Let 5], %, and I, be the errors in equilibrium for one quarter of

the shell (figure 4,1) mecsured positive in the directions Xyr Xy and z

respectively,

Then resolving the load and stress-resultants in the directions

Xyr X, and z and allowing for the assumptions previously made, i.e.

ignoring temas containing products of slopes of the middle surface and

assuming that the relations given by equations (5,.43) and (5,49) hold,

yields the following three equations respectively:

5 |

- 2 1
- ['“12‘“1'°’ Fapglapr) * qz(“1'°’(z'1)xg=o] day +

2
-
[—n”(o,az) + q](o,ag)(z,.l)x]____o:’ da, -
o
hopls
R TR @ s
| !.(z,.' a]daz + ~.(z,.|)x]=° (5.52)
o~ o

X2=O
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|
1

} 2

2 T J ['“zz(“|'°’d°'l * q2(°1’°)(z'2)"2=°] oy *

o

|§ |
2
* [raformy) + myplg s o) + q|(°'°2’(z'z)x‘=o] dary =

o
L ely

- J_EJ 2 Z(z,z)daldaz - (—7‘.(2,2)x = (6.53)
o o x;=o

h
Z
:3 = . \[ [nlg(dl ;0)(211)"2:0 + nz,z(al ,0)(2'2)’(7:0 + qg(al ,o)] dql -

o

l
2
2
- J [nlz(olug)(ZIz)x':.o + n" ](olag)(zll)xl% + q‘(o'az)] ddz -

(o]
-0+ J J" Z daydo, (6.54)
o o

“rom Teble 6,4 and equations (6.4) and (5.5) the following are

obtaineds



_oz = Ay
n S ep—_— N, T = = n
i Ryg i 9T ij
% = Zhq
Q = ztllgtﬁ‘
da, = |id{-3i (not summed)

where i and | range over the values 1 and 2 ,  Substituting for "ii'
q;+ G and da, by the dhove expressions and for (z,,) and (z,?) by

equations (6.5C) and (5,51) in equations (56,52), (5.53) and (6.54)

yieldss
E, = ZLLE) (6.55)
E, = ZIIIZ(EZE (6.55)
Ey = ZIIIZ(E3) (6.57)

. . - = - .
where the non-diinensional forms et and . are given bys
-~ L%
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J [2( T { naa(3yr0) = (8, O )} +
+ (]-F; -2(.53] ,o)] dg, +

% | -
2= 1 . ¥.- ‘
+ J [%(;_-)n”(o,sg) + ;ﬁ?ql(o.ﬁz)(!-%z)] di, +

e

(6.5%)

(6.59)
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Al
2
Es = % £;]2(?'1 Io) +r ;22(.3-' lo’(]-z.%]) - 2r a?(?’] lo’] d'&l +
o]
"3
- o 1= - - 2 %
" J ["12(°'?"2) (e 3)(1-23,) - 3q1(°"’2’] di, -
0
- Q + 025 (5.60)

Equations (5.58), (5.59) and (5.6C) are the equations used to check

overall equililiriusa for a shallow curved plate, By By and Z,
kA o

the errors in equilibrium expressed as a factor of (Z1.1,) and measured

ll2
positive in the directions Rys %o and z respectively.

“or the overall equilibrium check it is necessary to define a

P)
further parameter (~) , which is a measure of the shallowness of the

|
shell, to determine ,TE'.' and %,, Ilote that E, is independent of (-—2-)
r- < ‘f‘

5.5 Convergence Study of the Approximating Cunctions

In this section combinations of the boundary conditions given in
Table 6.4 will be applied o particular nuinerical exainples,  In the
cornputer program developed, provision is made for the symmetry of the

problem by choosing the functions given in Table 4.4 such thats
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(=) un.;, W L‘; are symmetric functions about B, = C.5

is an antimetric function about 3, = .5

) %) 1

N D

’ e . .
(c) U';, \:,-rn, L? are syametric functions about ;‘3’

()

—

is an antimairic function dbout 5, = 5,

<a

6.5.1  Mumerical xanples

The examples to be studied are given in tdble 6.5, The corres-
ponding results* are presented in tables 6,7 to 4,18 inclusive and
figures 6.2 to 6.5 inclusive,

Displacements, siress~resultonts and stress-couples are presented in
non~dimmensional form (table $.1). The aciual values are obtainable
from the expressions given in table 5,2,

In tables 6.7 to 6,18 inclusive, the values marked with an asterisk
(*) are hased on the Lagrangion multipliers and the corresponding values

in brackets are l:ased on the displacement derivatives,

*The results in the tables are presented in floating point notation,

e.g. 1.234, +3 means 1,234 x 103.
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In the overall equiliriun check, E; and £, are presented in

1

and 'E—z, whilst ES is expressed as a

their non=dimensional forms E]

percentage error (= 40:(C ), *
Lo
S is the number of functions used to represent each displacement

in each of the directions ;E.B,I and ;32,

symmetry of the problen in the selection of these functions,

due allowance hzing made for the

6.5,2 Discussion

The convergence of the displacenents wes good for all combinations
~of the boundary conditions considered i,e. clamped, hinged, nomal
slide (1), nomal gable or nomaal slide (2).

When hinged or nomnal gable boundaries were used, the convergence
of ;]2 along these houndaries was slow, but satisfactory within the shell
(note, in particular, exanples 5,27 and 5,3A),  /Application of the
Lagrangian multiplier raethod in conjunction with functions ID (case (b)

in Table 4,4) improved the boundary value of n,., and reduced the errors

12

S

in equilibrium (compare exanples 5,28 and 5,30 with examples 46.2A and

*This check was not incorporated in the computer program ond the
integrations in equations (5,5%), (6.5%) and (5.6C) were performed

numerically using Simpson®s rule,
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ey

6,34 respectively), DMote, however, that the errors '.' and f? in
exanple 6,30 are of opposite sign and are of similar magnitude to

example 6,3A,  The houndary value of n o based on the Lagrangian

12
muliiplier again provided o more accurate estimate than the corresponding
value based on tha displacement derivative (refer to sections 4,4,2 and
5.5.2 where this matter was also discussed),

As an adlternative to example 6,38 functions IC were considered
in place of functions ID in Table 6,4 for a nonnal gable boundary,
A separate computer program was written for this case and only a
maximuin of $ = & was considered,*  The results are presented in figure
6.2 and compared with exanples 6.3A ond 6,30,  These results
illustrate the gooc! agreemant obtained for ‘512 using either functions IC
or ID in conjunction with the Lagrangion multiplier method,  lowever,

the solution for n,, in excinple 3,3A shows poor agreement with the

12

other solutions on the boundary, hut good agreement within the shell,

*Jo numerical difficulties were observed when using these functions for
this maximwm value of S,  efer to section 4,4,2 where this matter

was discussed in detail,
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Functions I again illusirate that, when used with the Lagrangian
multiplier maethod in the manner described in this thesis, they
effectively improve the boundary value of a particular stress resultant,
which is slowly convergent on the boundary, but satisfastory zlsewhera,

With clamped, nomnal slide (1) or nonnal slide (2) boundaries the
convergence of ;]2 was good,  Also ;.” and ;22 generally showed good
convergence for all combinations of the boundary conditions considered,

Vthen nomal slides (1 or 2) were considered along all boundaries
(exomples 6,4, 6.3 and 6,13) the wmoments in the ragion of the corners
were very slowly convergent (note figures 6,3, 4,4 and 4,3).,  This
offect was also noizd with exawple 5,3 (see Table 5.4) and the remarks
made in section 5,5,2 in reference to this example are also relevant
here,

With all othar combinations of the boundary conditions considered,
the moments were generally converging satisfactorily,

Normal shears on the boundary were generally slowly convergent
which undoubtedly contribuied to the errors in equilibrium, particularly
if the shears wero of a significant magnitude,

Mote the fora of the solution in examples 4,7, 3,10 and 6,11,

whero G] ’ E”, ;,‘,,,, ;]2 and E,) are zero throughout the shell and
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w, Ugr ;522, 5” and 51 ara constant in the ,82 dirsction i.e, in the
direction of the noraal slide (2) boundaries, Mote also that examples
5,1C and 6,11 yielded identical results, ?or normal slide (2)
boundaries at By = 3,1 functions IB were chosen for LPZ and Wn and
functions 1A for Lﬂl (Table 5,4). Of these, only the first function i.e,
the constant function, of u‘; and W_ hod any effect on the solution,
Tha displacement, stress-resul tant and stress-couple distributions were
therafore reduced to a singlo series, which converged rapidly. i-lote
that the solutions of these examples are very similar fo a membrane

solution where ;]9 == .5 and .r;’ and r-r,),, are zero throughout the

1
shell,

Hs% Comparison with Cther Available Solutions

“xample 6,14,  Consider o shell with the following datas

I, = 12,92 in, I, = 12,92 in, h

1

‘A
-g
=]
L]

G

= =3.1247, <2 i) V=

L

o

Kl2

2 2
E = 5,0, +5 ts/in 1 I5/in™

™
]

and houndary conditions:
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clamped at a; = C, l,’ ond a, = G, ".)' This data corresponds

to the following shell paraneterss

r = 1,0 _ YV = (.39

PR = - 0, 0479256

The convergence of this solution was studied in example 6.1,
(25) (6)
This example was also solved by Chetty and by Cunasekera

and a comparison is given in figures 6.6a and 6,4b,

The solutions show good agreement .

xaaple 5,15, Consider a shell with the following data:

l.l = 360 in, I? = 360 in, h = 2,5i0n
Kip = = 11111, =3 il V= .16

‘ 2 2
T = 3,7, +6 lhe/in” Z = 50 lbs/ft

and oundary conditionss
normal gables at ay = o, 'l and ay = G, lg. This data corres=
ponds fo the following shell parameters:
r = 1,0 Y= 0,16

pp = = O,01736C3,
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The convergence of this soluiion wos studied in examples 6,3A and
6.3B.

This example was also solved by Chei‘fy(zs) ond by. Mohraz and
Schnobrichl and a comparison is given in figure 3,7,

ote that the resulis corresponding to example 5,33 are presented
in figure 8,7, This example uses functions I in conjunction with
the Lagrangion wultiplier :neihod (cose (b) in Table 6,4), For
comparison, a furiher solution for 1o is given using functions IC in
place of functions ID (refer to section 4.5.2) and figure 6,2).

The solutions generally show satisfactory agreement,  However, it
should be noted that the houndary value of o is somewhat different
from the solutions given in the references,  The convergence study in
exanple 6,30 showed) thai the application of the Lagrongian multiplier
wethod reduced the error in vertical equilibrium, and that the boundary

value of o using either funciions IC or IZ wus virtually the same

(refer to figura 5.2).

Exanple 5,15, Zonsider a shell with the following datas




|, = 8Cf, 1, = 80#,  h = 0%,
<1y = 5.0, =3 £, Y= C.15

2
5 = 4.5, +8 lbs/ft- Z = 50 Ibs/ft>

and houndary conditions
hinged* at a, = o, |
clanped at a, = O, |

r

This example was also solved by Gunasekera**(o)and a comparison
is given in Table 4,19,

The solutions for the displacement w and the moments show satis-
factory ogreement,  The solutions for the membrane stress—resultants show
satisfactory agreement near the central ragion of the shell but poorer
agreement near the cornzr,  Mote, in particular, that n . and Ly in

n

the corner should, by virtue of the boundary conditions, be zero,

*The Lagrangian multiplier method was used with this boundary condition,
i.e. case (b) in Tahle 5.4,

**The results presented by Gunasekera were at ;-#h points,  The results

—
10

5,15 and 8,17 were re-run for this latter output using Gunasekera's

presented in Tablas 5,19 an<t 5,20 are at th points.  Examples

compufer progran,
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Exanple 6,17, Consider a shell with the following data:

Il = 5C ft, I, = 5C ft, h=7,25
) -1 S
= wi; O, =3 = (.
Kyg = =5.C, =3 ft V=15
[4) 2 . 2
E = 4,5, + 2 Ihs/ft Z = 5C lbs/fi

and the Boundary conditionss

hinged* at o, =C, ., and a,=C, |

1 1 2 2°
. (6) .

This exanple was also solved by Gunasekera  and a comparison
is given in Toble 6,203,

The solutions for nyqr @xcept near the corner of the shell, show
good agreement, Ilowever, the solutions for nyy ore quite different,
Similarly the solutions for w differ, Ilote, in particular, that " and
nyy in the comer should, 'y virtue of the Loundary conditions, be zero,

Nota also that a similar comparison was made when considering

translational shells viz,, sxample 5.9 in section 5.5, In this case

*The Lagrangian multiplier method was used with these boundary

conditions i,e. case (b) in Table 45,4,
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similar functions werz use:! and the solutions generally showed good

agreement,

5,7 Further Solutions -~ Variation of the Shell Paraneters

The non-di:nensional form of equations (6.9), (5.1C*) and (6.11)
shows that the ruled surface hyperbolic paralioloid is completely defined
by the parameters r, p,ond Vo, Such a represeniation permits
the behaviour of ruled surface shells to be conveniently studied by the
variation of these parometers.

The exanples considered and the particular parameter being
varied are given in Table 5,21,  The corresponding results are given
in Tables 5,22 to 5.27 inclusive.

All rasults are presented in non-dimensional foria (Table 4,1), the
actual values being obtained from the expressions given in Table 6,2,

The Lagrangion multiplier method is used in exaaples 5,15, 46,19,
5,2 and 5,22 (casz (B) in Table 5.4), In these cases the boundary
values of ;]2 given in the corresponding tables are h:ased on the
Lagrangian multiplier,

S = C has been choszn in each of these examples,



6.7.1 Discussion

Variation of Pyt The parameter Por defined by equation (6.13), varies
with shell thicknass and shallowness,  This thesis is concemed with

the study of thin shallow shells ond 2a should be interpreted accordingly,
The thin flat plate is recovered from op = ®@.

For comparison, flat plate solutions for r =1 and V = (15
and for oll boundaries clawped, simply supported and normal slides are
given in section 5,7,1,

As the shell becomes shallower, i.e, as o increases, Tables 6,22,
5,25, 6.26 and 4,%7 show that w, 5” and T (exanple 4,23 only)
increase olso, approaching the solution for a thin flat plate ot o faster
rate than for the elliptic pardboloids (translational shells) considered in
exanples 5,1C, 5.14 ond 5,15, For exanple, if Dy = G 1C which
corresponds to the values (Tl‘l-) = -T-:Tﬁ- and (E_-::-) = =2C, the values

~!

for w ond ;H vary from approximately 114 for example 6,23 to approxi-
A

mately 459 for example 4,21 of the cormresponding flat plate solution,

|
9
For a similar value of (=) in examples 5,1C, 5,14 and 5,15 to the
A p
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|
valve of (-?_i) ahove (for Py = 3,03 say), the corresponding variation

is approximately 10% of the above (refer to Tables 5,17, 5.21 and 5,22),

Cn the other hand n,, decreases slowly with increasing shallownass

12
and is still of significant value when the shell is very shallow, In the

steeper rangz (p, = O,C1) the values of n o are very close to the

1

membrane solution (n,,, = ~(2,5), particularly when normal slides (2) are

12

on all boundaries (Table 5,27),  Similarly n,, decreases with increcsing

11
shallowness.,
Similar remarks apply to increasing thickness which also corresponds

to an increasing 5, but any coranents are restricted to thin shells,*
-\

*The note on thin shells in section 5.7 may be extended, such that:

" 1
h {\12‘ < T
”
Since XK = (figure 2.8b), this becomes
12 I] | 5 ’
h [ 1
(=) ( ) € ==
'TT 'lj.; - B0
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Mote that only the affect on the non-dimensional values has been

considered, The actual values follow from Table 4,2, which gives:

2zZL0-vY L3
" v

w = = (

iz
712

. Ty - 1, -

Mg = At T]T,,‘) Mg = )
Then if increasing Pn is interpreted as incraasing shallowness, the effect
on the actual stress-resultant Ny s dependent on (’)R;lz). C ot willl be
noted that if all boundaries are clamped (example 5,21) the product
(;.)R;.'?_) begins to decrecse between P = 0.10 and 0,20, For the
other exaraples (5,15, 6,22 and 4,23), the product (92512) increases
with increasing P lowever, bayond the range considered here, this
product begins to decrease with increasing 2 and approaches zero as
pR becomes vary large,

If increasing >, is interpreted as increasing thickness, but restricted

to thin shells, the effect on the actual displacement w is dependent on

The non-dimensioncal presentation of the tdbles given in this
section covers, very compactly, the solutions for o wide range of thin

shallow shells, -
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Variation of r Cnly the casc with normal gables along all

boundarics is considered,  The rosults are presented in table 6,23,

Since p, romains constant, the variation of r roprosents, in coffect,

R

the variation of I2 with all other data fixed,
As r increases from C,5 to 5,0:

(a) the value of w at the centre of the shell increases, rcaching its
maximum value, within the limits of the results presented here,
at r = 1,5, after which it begins to decrease,

(b) the maximum value of E” along ;32 =}O.5 increases, reaching
its highest value at r = 3,0, aofter which it begins to decrcase;
the location of this maximum value moves away from the centre
of the shell,

(c) the maximum valuz of Mo along 8, = O.5 incrcoses, rcaching
2 .

1
its highest value at r = 3,0, after which it begins to decreaso;
the location of this maximum value moves towards the centrc of

the shall,

(d) ;]2 generally decreoscs,

Variation of ¥V :  Only the case with normal gebles along all

boundaries is considered, The results are presented in table 6,24,
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As VYV incresses froimn C to O,30:

() w increases

(h) ra,, increases

11

(c) the effect on ;], is small but variable, increasing at some

points and decreasing at others,

() nyy increasss,

The actual displacement w is given by (Table 4,2):

4 : 4

0714

ZI] 1..le
D

w o= 5 (l-vz)\'&
FE’
iy ]

z
it

which, from Td-le 5.24, also increases with increasing V .

It should be noted that in this example, increasing V has the

opposite effect on w and ;-5”

in exanple 5,13 (To:le 5,20).

than for the elliptic pardboloid considered

5.0 Discussion of the Computer Programs

The single computer program developed for ruled surface hyperbolic
paraboloid shells is limited to uniformly distributed normal loading and

to boundary conditions which are symmetric dbout 5, = C.5 ond

1

p = 0.5, ilowever, any symmetric combination of clamped, hinged,
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normal gable, normal slide (1) or normal slide (2) boundary conditions
(Teble 6.4) may be specified.  Provision is also made to apply the
Lagrangian multiplier method i conjunction with uy = C* (along ﬁz = O,1)
or u, = O (along B.' = ,1) for hinged and nonaal gdble boundaries

(refer to case (b) in Table 4.4).

The approximating functions are selected in accordonce with the
symmetry of the problem (section 5,5), The same value of S for each
displacement in sach of the directions le and ,82 is considered,

input, and therefore output, could be either in non-dimensional
form or in tenns of the actual dimensions,

In order to economise on computer storage, the system of linear
algebraic equations was solved by partitioning the equations into their
subiatrix form (equations 3,39), Mlote that when the modified form
given by equations (5.41) was used, the equations were rearranged in the
form given by equations (5.32), in the manner discussed in section (5,7),

A separate program wos written for the solution of example 6,34,
For this special case a fixad valve of r = 1 was chosen, so that
allowance could be nade for symmetry in the solution for the constants

g, band ¢, iie. a. =h,. and cpq = cqp' The equations were again
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solved by partitioning.  In this way a larger value of $ could be

considered.

Further details of the computer programs are available af Imperial
69
College.( )
7o), 71)

The computer programns were written in T{CHLE Autocode  for the

Lniversity of London Atlas Joraputer,
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CHAPTER 7

APPLICATICN CF THE METHOD CF LINES TO

TRAMSLATIONAL AMD RULED SURFACE SHELLS

A brief discussion of tha meathod of lines was given in saction (3.2).

In the following, aquations (2.76) will be reduced to a system of
tinear first order ordinary differential equations with constant coefficiants,
The co-ordinates will bz non-dimensionalised.,  All other quantities will
retain their dimensional form,

Cnly uniforaly distributed normal loading (7) will be considered,

7.1 Form of EZquations

After non-dimensionalising the co-ordinates such that

31 = -']— (7.”
Ga

,(3 = = (7.2)
2 l2

and setting X, and )(2 to zero, equations (2,76) becomes

1
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_ °
% SV 32

Ag = Koy + wiyly = -Ag

A = 2K 0. = -A

42 122 68
2
= Y 8
Agg = T w2 Arn
1
3 4
Eh ]
/\ = [—Ehl\ l ~
43 n 2 l2”]3 “54
1
/. - - (]'vz)l
51 £
-2(1+v)l;,
A = -
62 h
2
A7 ) 12(1- % )12
3 Eh3
ok
2
ow
e = W
da,

or, more compactly,



Y

YrptAYH

1=l
1]

o] 7.4)

where Y = col { "22”12“’22’2”2”19 w }
E = co' { ) - ] 2'2. ® * L] }

and comma notation is used io represent partial differentiation with

respect fo Bz.

The equations corresponding to the translational shell are obtained

by setting K.|2 to zero and replacing K., and !(22 by K, and K2

N 1

respectively,
The equations corrssponding to the ruled surface shell are obtained

by setting K., and K 2 to zero,

1 2
In the following, whan reference is made to a shell, either a

translational shell or a ruled surface shell is implied,

7.2  Boundary Conditions

Only boundary conditions which are symmetric about 8, = C.5
and 552 = Q.5 will be considered,
Throughout this chapter the boundary conditions af ,3.' = C,1 will

be assumed clamped (u.l =0=uy W=o= W,]).
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The boundary conditions at 8, = O,1 will be cither free

2
(n22 =0 = nn, m22 =0 = r2) or clamped (u' =90 = u2’ w=o0=0),

7.3 Finite Difference Fomwulae

Since either translational or ruled surface shells will be considered,
the solution will be symmetric about 531 = Q.5 and ,82 = G,5,

Then only forward and central difference expressions will be required
for the derivatives,

Let y represent the variable whose derivative is required,

The 5-point central and forward difference expressions for the
derivatives of y used in this chapter are given in table 7,1,  Only an
equal width, a, between poinfs has been considered,  These expressions
retain the same order of differences and were obtained by application
of Taylor's theorem.(&)

Mote that some of the forward differences have been given in

teras of a fictitious point (-1).

7.4 Reduction to a Systemn of Lincar First Order Crdinary

Differential Fquations with Constant Coefficients

Let the region of the shell (translational or ruled surface) bounded

by §3] = C and 3, = 1 he divided into 2] cqual divisions by the lines

1
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. N
3101 5]1,...,?».:(}...,53]2! 3, which are in the same direction as 8,
(figure 7,1).  The boundaries ;’3] = O and 33] = 1 correspond respectively

to the lines {5: 2N

and ﬁ] .

Let the notation yk, whare y represents a displacement, stress-
resultant or stress-couple, denote the valuc of y along the line B.'k.

Because of symmetry only the region bounded by ,B] = O and ;3] = G,5
is considered i,e, the lines 6;,311,...,3.:(,....,?)]N .

Cnly the derivatives with respact to 8, in equations (2,76) will

be replaced by the corresponding finite difference expressions.

Since the boundary 8, = C is clamped and using comma notation

1
to represent differentiation with respect to ﬁ’ or {32:
°o _ _ o
uy = C = Uy (7.5)
wS = O = w?] 7.6)
Then it follows that:
e = 0 = &) 7.7)
o - N = o Iy
Uy g = 0 Uy o 7.8)
o _ - .0
Vigy = C Wr 900 7.9)
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Equations (7.5) to (7.9) inclusive and equations (2.63), (2.64),

(2.66) and (2.61) yield the following:

o e B e 7.10)
l]('l-v ) ’
o th o
n = m——————— | } (7.]])
12 2|.|(1+V) 2,1
o -V Eh3 (o)
m = w, 7.12)
22 12(1-)»§)|]2 "
° = '%S(Z-V) ° 7.13)
2 n °

12(1-v2)|]2

Using the formulae given in table 7,1, finite difference expressions
for the derivatives in equations (7,10) to (7.13) inclusive will be obtainad.

rrom equation (7.6) and table 7,1:
- o 2 3
w?] = c = %—5[-3w]+low]-6w +w]
which gives:

-1 ow! - 2w + L3 (7.14)

w
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Similarly from equation (7.7) and table 7.1

{7.15)

From table 7.1 and equations (7.5), (7.6), (7.7), (7.14) and (7.15) the

required derivatives are obtainad:

9§, = 7o (80] - 3602 + 163 - 3uT) 7.16)

vy = -32- (43uy - 3602 + 1603 - 3ug) 7.17)

w?” = ]8 (IC Wy 27w2 + 4w3) (7.18)
0

&y = —E%?( 030, - 7O, + 46,) 7.19)

Then the actions at ,61 = C are given by equations (7,10) to (7,13)

inclusive, where the derivatives are defined by equations (7,16) to (7.19)
inclusive,

The solution for the dependent variables along the line 53‘; is
therefore known and the equations nzed only be applied along the lines

B:, %;-..,B],...,,:\] , whare line [3] corresponds to P'I = 0O,5.
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Mote that in deriving the finite difference expressions given by
equations (7.13) and (7.19) use was made of a fictitious line 58;] in
the forward difference expressions, In this way a more accurate represen=
tation for the derivatives near the boundary is possible.,  The values of
w and © along this fictitious line are given by equations (7.14) and (7,15).
Such values are not available for uy and u, for the clamped conditions
considered and less accurate forward difference expressions are used for the
derivatives of uy and u, near the boundary,

In a similar manner, finite difference expressions for the derivatives
with respect to B.I in equations (7.4) can be obtained,

Let the column matrices n22, n‘z, m22, rz, 02, u], o, w anci

Z be definad by:

) « N
ny = ol {ny g ey} €.20)
) 2k )
mp = oo {rrp g e g eeny v.2)
k N
my = ool {my 0l ey ey} 0.22)

0 = col {r; rg cer r!; vee r;! } (7.23)
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Yy = col{u,, Up ees

Y = col {u.} u? oid

e - w{ee?..
_ { 1 2

-Vi - co' W w qo‘

z = o {ztZ? ...

k , N}
u;\!}

_gk . GN}

Kk N}
w [ X N ) w

al

where Zk is the line load corresponding to line k,

For the clamped conditions ot B

= Q,1, equations (7.3), after:

(7.24)

(7.25)

(7.26)

7.27)

(7.28)

(a) substitution of the relevant finite difference expressions for the

derivatives with respect to !31, ond

b) substituting for n22' nn, m?2

equations (7,10) to (7.13),

o
and fo s whenaver nacessory, by

reduce to a system of linear first order ordinary differential equations

with constant coefficients, which in matrix form ores



Alm

Q.
e

where the clements of the non-zaero submatrices ﬁ'l (i,

._{-.\_]2.
_'f\_z]. .
)
Bgy L4p B3 -
Ag o . .
C Ay .
. o A

f\-26 *

- Ly
A -
Ase

- Ay

— = ]
oo .
M2 .
M .
L R YA B
L)) .
] .
0 °
w
o T d e e
= 11213100-08)

arz defined by the expressions given in table 7,2 for the lines B: ‘ B:‘Z

and ,BI; k > 3),

In the computer progran developed, allowance is made for

symmetry about 53] = 0,5 by odjusting matrices éﬁ for the following

conditionss

(a)

for translational shellss

Noar Magr Tor Ugs &, w are symmetric about 31 = 0.5

M2r Y%

are antimetric about ﬁl =C.5

8]

7.29)
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b) for ruled surface shellss

Nigr Mons Tor Uy, S, w are symmetric about ff»] = 0,5

are antimetric about 8, = O.5

22" V2 1
ot X = X(B) = ool {myps My My 1} 7.30)
U= u@) = col {32. Yr 8w .31)
FEE0) = ool {_)_(_ , g} 7.32)
z = col{. - Lzl } (7.33)

then equations (7.2%) can be written in the form
Fig tAE + Z = O 7.34)
MNote that F and z are (8N x 1) matrices ond Ads an (BN x SN)

matrix,

7.5 Integration of Equations (7.34) Using the Matrix Progression

Mathod

7.5.1 General Solution

Since the cocfficients of A and Z are constant, the general

solution of cquations (7.34) can be written in the following form:



= - -_-(p (o)
E o= GE)E, < FP)+F 7.%5)
where
A 32
GBy) = e (7.36)
-z v.3)
and where the following notation has been adopted:
£ = F .38)
—-q - ?32=€| 4

The matrix g('82) is referred to as the ®distribution matrix'(és)
in the matrix progression mothod, It is also referred to as a ®transfer
matrix®©Mnd can bo determined by the following series, which always

convergess (68)

-'-2 922 ;'0.‘_3323 _é4$24
) = L=ty b—r— - +gr 0.

where | is the unit motrix,

E(P) is the particular solution and is constant for the constant
loading selected.

Let (p) be partitioned in the following way:



- 193 -

where _)s(p) = col { (ng, n(pz), m(gz), (p) 7.41)
VL. { (g)’ ng)’ e, _vg(P)} 7.42)
k(p)

The notation Nyo will denote the particular solution for Y along the

line {3;< o Similarly for the other dependent variables,
et C 2 C(B) = E- £ .43)

and S-:o = -Fo - F(P) (7.44)

C = o) (7.45)

Equation (7.45) will be useful in determining the final solution at
intervals along 8 (refer to section 7,7.5).

The boundary conditions at 5—)2 = 0,1 will determine fo P -
the initial values of the dependent variables,
| For the symmetric problem considered -Eo can be determined in
the following ways:
i) direct application of the boundary conditions at {32 =O,1 in

equation (7,35)
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(i7) direct application of the boundary conditions at 532 = O and
the symmetry conditions about [32 = 0.5 in equation (7,35)
(ii1)  opplication of a stiffnecss mathod which segments the path of

integration,

In the following each of these approaches will ba discussed in
conjunction with the boundary conditions:
(o) clamped at 8, =0,

and (b3 free at 62

It will be convenient to partition §(§32) in the following way:

=0,1.

Sl Gl
o) = 7.46)

7.5.2 Direct Application of the Boundary Conditions at ;32 = C,1

in Equation (7,35)

(a) Clamped ot [32 = O,1
The conditions to be satisfied are:
u = o 7.47)

u =2 (7.48)

*Each submatrix Gii(gZ)(i'i = 1,2) is of order (4N x 4N),
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which on application to equation (7,35) yields

YA | -1 - (P) (P)
%, S [Sp - 1] UP 4 X
F, = = 7 .49)
U O
-o | —
(b) Free at 52 =Q,1
The conditions to be satisfied ares
X =0 7.50)
-)S'l = O 7 .51)
which on application to equation (7,35) yields:
X O
- - )
F = = : o 052
= u sl a.a) - 1] %@+ @ 1(7
| -12 g] -] - -

7.5,3 Direct Application of the Boundary Conditions at Bz =0

and the Symmetry Conditions about 52 = 0,5 in Equation {7,35)

The symmetry conditions about ;32 = 0,5 are given by

JEL. . = O 7.53)

- — :.5 —

¢

where J is a (4N x 3N) matrix and is given by:



r_. ' L J * L ] [ ] * ..-
. . . _l_ . . . .
= (7.54)
L ] - * [ ] L ] L] -I e

. . . . ]
L ] - - I ® [ ] * -«
)= - 7.55)
[ [ ] L] [ ] [ ] l [ L ]
L ] L] [ ) - L ] [ .' [

for ruled surfaca shells,

Each submatrix of J is of order (N x M), | is the unit matrix,

(a) Clamped at BZ = 0,1

" The conditions to be satisfied ares

U =0 = JFy; 7.56)

Let H, a (4N x 8N) matrix, be defined by:
Ho= 1005 = [H, H] 7.57)

where ]_-l_.l and H, are (4N x 4N) matrices,  Application of the
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conditions given by equation (7.56) to equation (7,35) yields

v (p) ( (p)
5| |4 [** U - 4 £P) P
Eo = = (7.58)
U O
—o —

(b) Free at (32 = Q0,1

The conditions to be satisfied are:

X, = C = JFq5; 7.59)

which on application to equation (7.35) yiclds:

1T _
o [¢]
Fo= = 7.60)
-0
™ (p) (p)
4| | [ - a4 P

7.5.4 Solution which SngCmenfs the Path of lnfggiuﬁon -

Stiffness Meathod

As discussed in section (3.2), a solution which segments the path
of integration may become necessary when roundoff errors become
significont,

Let the region bounded by 32 = O and 8, = 1 be divided into

"2

*A segments by lines which are in the same direction as B‘ (figure 7,2).
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These lines will be referred to as segment lines and will be numbered
0,1,2,c0ceesMpucecars™M, Segment lines o and M are the boundaries
B3y = O and 3y = 1 respectively,

Consider one such segment, m, bounded by the segment lines

B, =d and {32 =d + b which will be referred to as "edges 1 and 2"

respectively,  (Figure 7.3),

T}

Let X;n and z; represent the actions, and y_] and g;' the

displacements at edges 1 and 2 of segment m tespectively (figure 7.4),

and let these be defined by:

: m

—-m _

-)S'l = col {222, Ngr Mogr Iy } : (7.61)

X" = col " (7.62)

Ly T °° {222' D127 D227 L2 } ) .

—m m

-m m

Uy = col {uy vy, 8w 1 7.64)
2

Note that in this section the superscript refers to the segment

and not to an individual line as discussed in section (7.4).
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Dafining
= el {27, O 7.65)

Fy = col {:;“ U, } (7.66)

and _2: = C(b) (7.67)

then, from equation (7.35), the solution fér segment m is given by:

AR R B .60

The particular solution E(P) is constant across the segment for the constant

loading selected (equation 7,38).

Stiffness Matrix of a_Segmant

With the load set to zero equation (7.68) becomes: .

-m m
F ; (7.69)

(ol
| -nl

Let Em be the stiffness matrix of the segment m and let its

partitioned form be:

n m
3 Sp

"= 7.7¢)
-— S m Sm
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where the order of each submatrix S':rl_' is (4N x 4N),
Then, by definiﬁon, (| .l = 1,2) are the actions X produced
by unit displacements L__Jim with uII ofher displacements zero,

Equation (7,49) is written in the forms

o v s

% S S| | &
= z.71)
—=m = ~m
2] |5 S |4
With E;n = | and g; = C, equation (7.71) becomes:
— - — 1 preme ————
—m m
% 91 S| | &
= 7.72)
=1 ER-inE
Sy nad — -
fromn whichs
%™ _ M .
X, (( ) _22 §” by definition 7.73)
X" = (€ L-: +G.= sO by definition 7.74)
-2 —'I'l —71 =22 =12 =21 ‘

With g;' =1 ond g;*n = O , equation (7.71) becomes:



—m — — -—m
% S S| L
= _ (7.75)
RN
from which:
X" = (c}z])" = Sy by definition 7.76)
T(-m _ = = ~1 - m ! . ege
Xy = 9"(§21) = §_22 by definition (7.77)
Then the stiffness matrix of the segment _S_m is given bys:
— == =] = = -1
-C) " Gy ]
Em = (7.73)
= = - .
|GG Gt G Gi&y)

gegment Clamped Edge Solution for the Loading Z

Let 2__-(_.:’ ™ and Z; ™ represent the actions corresponding to the

clomped edge* solui'ion_for the loading Z at adges 1 and 2 of segment m

respactively and let these be defined by:

* The term "clomped edge® implies that the edges 1 and 2 of a Segmenr

are clamped.
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om
wom
Ry = ool { ngpe nppr map 1 } ] .79
om
om _
Ro" = ol { mpr mype mpe 1 }2 ¢.80)

where the superseript o denotes the clamped edge solution,

The solution for X: ™ and z; m corresponds respectively to the
solution for X

X and g’_; from equation (7.68) with g;n =0= y—-;n and
is given by:
X" = G (G- 1)U ¢ P 0.3
wom _ = =-1T= ._ ®_az
R < R Eail- P

P) + ﬁ(P) (7.82)

Another way of obtaining this clamped edge solution is to apply the
stifiness matrix of the segment,

The poarticular solution actions are
E(p) ond the particular solutfon displacements are _Ll(p) (equation 7,40),

To reduce the displacements at edges 1 and 2 of the segment to zero,
displacements -Q(P)

are applied.

In this way the clamped edge solution
is obtained in the following form:

—or?!q B m m_ __ pT [~ (pﬂ
T sn s, |-Y X
= + (7 .83)
—om m m . (p) Ap)
%] 2o 22 B
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Substituting for E::' from equation (7.78) in equation (7,83) yields

solutions for Z;) ™ and z;m which are identical to those given by (7.81)
and (7.82),

Assembled Stiffness Matrix for the Shell

Let the M segments which subdivide the region bounded by B8, = C

2
and ,82 = 1 (figure 7,2) ba numbered 1,2,3,:14,M;00..,M (figure 7,50},

Let l_go, g', 22,.33.;,%‘/\ represent respectively the displacements
at the segment junctions C,1,2,.....,M (figure 7,5a), The elements
of U are given by equation (7,31),

The sign convention adopted for the actions and displacements ot
each junction is given in figure 7,5b,

The sign convention adopted for the actions and displacements for
each segment is given in figure 7.4,

Assembling the segments into the original shell form, yielc':ls

equations of equilibrium at the junctions, which in matrix form are

(figure 7,6):
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1 1 ol
S 3 . 3 Y% %
1 1 .2 2 <ol w02
S Gorsyy) 5, - v % %5
2 2 .3 3 <02 =03
- 3 B3y g - 1t 2%
——u— O = 9
m m_ ) m+l zom —o(m+1 )ﬂ .
. c 3 Gdn) Sy | Y| (2R
- (7.84)
A M =7 o
3 3 Y X,
_ d L 4 U .
Let
B - xo! K
-0 -} -0
wol_ =02
E] -2:.2 3 21
— - 702_ 03 = _ = o
B Eg Lo T and U = 92 (7.85)
B oM ﬁo(mﬂ) l'—"r.‘t
- -2 -~
=o
EN R =N
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Then equation (7,84) becomes

3

1Cl

+_§ =9 (7.86)

where S is the assembled stiffness matrix for the shell,
Each submatrix of § is of order (4N x 4N) and therefore S is of

order [4N(M+'I) x 4N(M+lﬂ .

Solptiph of Equations (7.84) by Tri-diogonalisation

The cs;e.embled stiffness matrix S partitions directly into a tri=
diagonal submatrix form, i.eq into a diagonal submatrix, a superdiagonal
submatrix and a subdiagonal submatrix,  This form is convenient for

solution by an elimination process.

Let
" *
% =3 @.%)
5= (5 - ST 7.88)
S 7 S 7.5

Where m = ],2,3,..;-.,("\>‘1-])'

*A flexible beam at 8, = O can bz hondled by adding fo -S-o the beam

2
stiffness corresponding to yo .

Similarly S,, can be modified for a beam at B,=1.
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Then, from equation (7,04), the equations of equilibrium at junctions

O and 1 are respectively:.

u,+8 =0 7.21)

SU - S5 U + 8 = O 7.92)

whare

- _ 1 -1 .1 -
3 T 435 3 v.%3)
B =8 -s sTg 7.94)

MNote that equation (7,92) is of the same form as equation (7.90), .

From equation (7.24), tha equation of equilibrium at junction 2 is: -

2 3 B
Sop Y F S Y - S, U+l = C 7.93)

*This ossumes that l_Jo is not tpéciﬁed. If any of the displacements of l_Jo
are spacified, equations (7,90) and (7.91) should be adjusted accordingly. .
For a clamped boundary (l_Jo = C), the elimination procedure would

commence at junction 1,
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Eliminating U, from equations (7,92) and (7,95) yields:

-1

5.0 - S U +8 = O (7.96)

22T 2123t B T2 .
whare

T = 2 =-1.2

..5.22 = .5.22 + §.2'| E]] _5_12 7.97)

- _ _ 2 = -1= '

By = 5% - 53344 (7.98)

In general , the following expression is obtained:

§‘“ ym B E'|2 9m+'l * -{}m = 0 7.99)
wheres

T - =1 m

S = Sat 53 515k 7.100)

-— _ o m __‘ -

B = B S5y Saet B @.101)

Ond M= ],2’3,....’(\‘.4.-1).
Proceeding in this way, the equilibrium equation at junction ™,

i.e, ,32 = 1, hecomes:

1l

+ B, = O 7.1C2)

<
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whare -S_"R_”,\ and EA are respectively given by equations (7,1CC) and
(7.101) with m replaced by i,

Then

Uy = Sa By * 7.103)

_,\I‘

From equation (7.99) the following is obtained by replacing m by (m-1):

u . =351 g¢" y -3 3 7.104)

=m-1 =m~1 =12 =m ~m=1 —m=1

The displacements 2\/{_1 ’ 95\/\-2' ceeaes 90 are than obtained from
aquation (7.104) by back substitution,
::1‘_] é.ié , of order (4N x 4NJ), and S
of order (4 x 1), are determined during the application of equation (7,.99)

1§ )

The mairices
= m=1 -m-1

in the elimination procedure, In the computer program, these matrices
are stored and used in the back substitution procedure.

In the computer program developed, provision is made for a solution
using either 4 or 8 gﬂl_{g!_ segaents, i.e, "M =4 or 8, Then the stiffness
matrix for each segment is the same, Also for the symietric proklems

considersd, the elimination procedure is terminated at 8, = O.5 by

*This assumes that U, isnot specified, If any of the displacements of .l..JM
are specified, equation (7,103) should be adjusted accordingly. For a
clanped boundary (U,, = O), thz elimination procedure would be

terminated at junction (“4-1),
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allowing for the following symmstry conditionss -

(a) for translational shells:

() v, and 2 are antimatric about 32 = C. S5

-2

i.2, 9_2==9 =§afﬁ2=0.5

”~

(if) Y and w arz symmetric about ["32 = 0,5,

(b) for ruled surface shells:

(i) u, and £ are aniimetric about :32 = 0,5

-1
e, u, =C = 8 ai'§2=0.5

(i) v, and w are symmatric about 532 = 0,5,

7.6 Determination of Diisplacements, Stress-resultants and Stress=couples

The values of the dependent variables for the lines 1,2,...,MN along

8, ara given by esquation (7.35) or the alternative form given by equation
; g Y eq Y eq

2
(7.453) (refer to saction 7.7,5).

The houndary values of the dependent variables are given by equations
(7.10) to 7.13) inclusive and (7,16) to (7.19) inclusive,

It remains to determine suitable expressions for Nyyr M1y Mygr Oy r

9% and rye
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Equations (2,58), (2.60), (2.61), (2.65), (2.68), (2.67), (2.68) aond

(2.70), after non-dimensionalising the co-ordinatas, yield the following:

ny = Eh(jl-;- U p - Ky e Vi, (7,105)
-,’5]13 .
My = ]2]12 LN + szz (7.1006)
..F_h3
Ty = m]-e,l (7.107)
3
9 - ';'z'(f_b;';;'s' W * T:" 22,1 (7.108)
3
9% = 1 _WGI]] 7.109)
-°(1-v) (2-¥) 10)
" ]2(,+V)|13 ‘"’m*‘l‘]—‘“zz,l .

where comma notation is used to represent partial differentiation with
respect fo ,ﬂ].
Using the finit2 difference formulae given in table 7,1 and allowing
for the clamped conditions at By = Q,1, as discussed in section (7.4),
the required finite difference expressions are obtained for zquation (7.105)

to (7.11Q) inclusive, Datails are given in table 7,3 for the lines Q,1

and k, where k > 2,
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In the computer program.developed allowance is made for symmetry

about ,B‘ = (.5 in the expressions given in table 7.3,

7.7 Some Notes on the Numerical Computations

7.7,1 The (_%(}32) Matrix
(a) 9(!32) is determined from the series given by equation (7.39),
Howaver, for better accuracy, particularly for a large number of tenns,

C(Bz) is best compuied froms

By 2% 8% . 8 25
CB) = L-AB (1l -5~ (-5~ L -—5 (s - (-—~(000D)
7.0
() A useful property of 9({32) ise
G(a).G(h) = Cla+1h) 7.112)

In the computer program C( ) is determined and C(B ), for other
values of-Bz (multiples of "-6‘): is obtained by application of equation
(7.112), By determining & (')2) in this way, fewer termns in the series

ara required.
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7.7.2 The Particular Soluhon :.(p) A-]Z
@)

In the computer program, the solution far F

is determined by
partitianing the A mairix into its submatrices given by equation (7.29).
Howaver, far the symmetric case considerad, A 12 is singular for ruled surface
shells and £65 is singular for translatianal shells (refer to table 7.2).

In the partitioning procedure the particular solution u;(P) is obtained by
inverting /\.l2 i\é; -{-\?65 _.’ 5| - which, referring above and fo table

7.2, is singular for both shell types.  However, because of symmeiry and
N(p)

(p) is constant, the value of Uy

since © i.e, at 92 = Q,5, is zero,*
Adiusting the above matrix accordingly eliminates the singularity,

Mote that F "(P) is independent of |2'

7.7,3 Singularity in the Matrix 912(,32) for Ruled Surface Shells

For the symmetric case considered the matrix (._3.‘2(_32) for~ruled surface
shalls is singular,

Then the solution for free conditions at 8 By = = 0,1, whichever
approach is used (section 7,5,2, 7,5.3 or 7,5.4), is not possibla,

- k -
*For translatianal shalls, uz(p), because of symmeiry, is zero along all

lines k. (k = ](273"0001N)0
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N .
However, because of symmetry, u, is zero for ruled surface shells,

By modifying the matrices accordingly, the singularity is removed.

7.7.4 Roundoff Errors in the Solution

In order to investigate any accunulation of errors the solution for
each of the mathods given in sections {7.5,2), (7.5.3) and (7.5.4) was
determined from 8, = O to'8, =1. In this way the effect of any errors
on the symmetry in the solution could be observed,

When applying the conditions at {32 = 1 (section 7,5,2), the roun;loff
errors for a shell with M = 4 and r = 1 were only slight, However,
with r = 1, increasing N yielded very serious errors and distorted the
solution, particularly at [32 =1, On the other hand, increasing r (> 1 only)
with M constant, reduced the roundoff errors,  Similarly for application
of the conditions at BZ = Q.5 (section 7.5.3).

Segmenting the path of integration (section 7.5.4), which, in effect,
uses a value of r > 1, greatly improved the solution,

To investigate this matter further, solutions were obtained for different
values of (-I:—]) using the approach given in section (7.5.2). It was noted
that when (23—) was less than 3 the errors, if any, were very small,  For

N .
values of (T) greater than 4, the errors were very serious and completely
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distorted the solution at Bz =1, For values of (-g) between 3 and 4, there
was some evidence of errors,

However, these values of (l\ri) are only a guide and more specific
values would require further investigation,

(25) applied the method of lines to ruled surface shells using

Chetty
N =25 and r = 1 only and noted that errors were accumulating,. To over-
come this problem Chetty suggested using a computer which handled more

significant digits,  This is undoubtedly beneficial but a more satisfactory

approach would be to segment the path of integration,

7.7.5 The Determination of F along [32

Let the interval 8, = Q to 8y =1 be divided into equal divisions
of width e,
Then, using the property given by equation (7,112), equation (7.45)

can be expressed as the following recurrence relation:

Copy = Gl C, 7.113)

whera n represents a point along 8,.

F than follows from equation (7,43), Equation (7.113) is useful for the

determination of the solution at constant intervals along B,.
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7.2  Translational Shells

In this section numerical examples will ba given for translational
shells.

The solutions will be presented for N = 4,6,2 or 10, Since r = 1
in each example considered, the solution is obtained by segmenting the
path of integration (section 7,5.3)., Four segments (i.e, M = 4) are used
when N = 4 and eight segments (i,e., M = 8) are used when N =6, G or
10,

Al results are presented in floating point notation and in ft.lb, units

unless otherwise stated,

7,8.1 Convergence Study - Numerical Fxamples

xemple 7.1,  Consider an elliptic paraboloid with the following data:

|.| = 50 ft, '2 = 50 ft, h = 0,25 ft,

K, = 1.0, -2 w1k L

2 1,0, =2 ft

E = 4.5, +8 /M V= 0.15 7 = 50 Ib/f

and boundary conditions::

clamped at a, = o,l, and a, = o,l

1 2°
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The results are presented |‘n. tables 7,4a and 7,4b,

It will be noted from table 7.4a that "y along the vboundary By = O
and u, are slowly convergent, Otherwise the solution is generally
converging satisfactorily,

In table 7.4b the results corresponding to N = 8 are presented for
;’3,' = 0,5 and Bz = 0.5, Because of symmetry w, Moy and m,, at
8

= 0O,5 should be the same as w, and m,, af [32 = 0,5, This

1 "1
provides a check on the solution. It will be noted from table 7,4b that,
except for nyq ot B] = O, theé is generally good agreement,
Thesg results show that the finite difference representation of nyq ot
the boundary 53] = O is poor (refer to equation (7,105) and table 7.3),
This could be improved Ey adopting a closer speeing of the lines
adjacent to the boundary,
Example 7.2, Data os for example 7,1 but with boundary conditions:

clamped at a, = o,l

1 1

free at ay = o,l2.

The results are presented in tables 7,50 and 7,5b, and figure 7.7,

It will be noted from table 7.5a and figure 7,7 that ny along [3.' =C

1

is again slowly convergent,
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Note that the comer* values of Myr Mo and qy are also slowly
convergent, The remainder of the solution is converging satisfactorily,
ror reference, a detailed solution for !3.' = 0.5 and 32 = 0,5 is given

in table 7.5b.  This solution correspoﬁds to N = 8,

7.6,2 Comparison With Other Available Solutions

Example 7.3,  The shell in example 7,1 was solved using the computer
program described in chapter 5,  Functions corresponding to case {a) in
table 5.4 were used, Also S = 8 was adopted,

A comaparison with the line solution using 2 segments (i,e. M = &)
and N = 8 is made in figure 7,3 for Bl = 0,5, The solutions show good

agreement,

7.8,3 Comparative Study of Different Doundary Conditions

Example 7,4, Data as for example 7.1 but with boundary conditions:

clamped af o, = o,

1 1

and (i) clomped ot a, = o,|2

(ii) free at oy = o,l2

*These values should be intempreted os being ai a point very close to

the comer, but on the clamped houndary ({31 = 0),



- 218 -

(iti) normal slide (1) at ay = 0,|2..

Cases (i) and (ii) correspond to examples 7.1 and 7.2 respectively.
Case (iii) is obtained from the computer program described in chapter 5

using S = 8 and functions corresponding to case (a) in table 5.4,

2°

These results show that the normal slide (1) boundary is comparatively

A comparison is made in figures 7,9a and 7,9 for w, Noo and m

stiff.  The value of m,, at B, = 0.5 is virtually zero for normal slide

(1) boundaries.

7.9 Ruled Surface Shells

In this section numerical examples will be given for ruled surface
shells,

As in section (7,3), the solutions are obtained by segmenting the
path of integration (section 7,5,3). Four segments (i.e, M = 4) are used
when M = 4 and eight segments (i.e. M = 8) are used when M =6, & or
10,

All results are presented in floating point notation and in ft,Ib units

unless otherwise stated,
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7,9.1 Convergence Study - Numerical xanples

Example 7,5:  Consider a ruled surface hyperbolic paraboloid with the

following data;

| = .50 &, L, = .50 f. h =0.25 i,
Kyp = 4,004, =3 fr,"] V= 0,15

- o2 2
E = 4.5, 48 Ibs/it Z = 50 Ibs/f

and boundary conditions:

and a, = °’l2'

clomped at «, = o,l

1 1

The results are presented in tables 7,60 and 7,6b respectively,

It will he noted from tdble 7.6a the the solution is converging satis-
factorily even along the clamped boundary {3] = Q.

in table 7,6b the resulis corresponding to ™ = § are presented for
!3] = C.5 and {32 = C,5,

Because of symmeiry w, N1y and Moy at ;'3] = 0,5 should be the

same as w, LI and Ul at !39 = C,5. This provides a check on the
solution, It will be noted from tdble 7,6b that there is generally good

agreemant,

Exarple 7.6:  Data os for example 7,5 but with boundary conditions:
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clamped at a, = o,l

1 1

free at a, = o,l2

The results are presented in tables 7,7a and 7,7b, and figures 7,10a and
7.1Ch, from which it will be noted that the solution is, in general,
converging satisfactorily,

.

For reference, a detailed solution for {3] = 0,5 and 'P"Z =G5 is

given in table 7,7b,  This solution corresponds to N = i,

7.9.2 Comparison with Other Available Solutions

Example 7.7:  Consider a ruled surface hyperbolic paraboloid with the

following datas

I.l = 12.92 in, I2 = 12.92 in, h = 025 in,
Kyp = =3.1247, -2 in,”] V= 0%
E = 5,45 i:o/in2 zZ =1 l!:»./in2

and boundary conditionss

clamped at a, = o,l, and a, = °’|2'

1 1
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This example was also solved by Cheﬂy(za), using a mixed Kantorovitch=

Calerkin procedure and by G’unasekera(é)*, using an extended Levy
procedure,

A comparison with the linz solution using 5 segments (i,e, M = 8)
and N = 8 is made in table 7,3, from which it will be noted that there is
good agreement,

7.9.3 Comparative Study of Different Boundary Conditions

Example 7,8: Data os for example 7.5 but with boundary conditions:

clamped ot a, = o,,l.l

|

and (i) clamped af a, = o,l2
(i) free ot a, = o,l2
(iif)  normal slide (1) o a, = o,I2
(iv) nommal slide (2) of Gy = o,lz
Cates (i) and (ii) correspond to examples 7.5 and 7,6 respectively,
Cases (iii) and (iv) are obtained from the compu%‘er program described in

chapter 6 using S = 2 and functions corresponding to case (a) in table 6.4,

*Gunaseckera used o slightly different value for K'I2" The particular
resulis presented in fable 7,3 were obtained from Gunasekera®s computer

program using the dbove value of K.l 9°
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A comparison is made in figures 7.11a and 7,11b for w, o and Moo
Note that the difference between (iif) and (iv) is that normal slide

(1) has u, = O at a, = °"2 and normal slide (2) has Nyo = O at

2
a, = o,|2. However, the results show that both normal slide (1) and
normal slide (2) are comparatively stiff, with a small value for m,, at

ﬁ.l = 0.5 and almost the membrane solution for Nyge

7 .10 Discussion of the Computer Programs

A single computer program wos developed to solve either translational
or ruled surface shells,  The program is limited to clamped conditions at

B, = O,1 and to either clamped or free conditions at 52 = Q,1, OCnly

1
uniformly distributed normal loading (Z) is considered,
A minimum value of N = 4 is considered,
The solution can be determined in any one of the following ways:
(a) application of the boundary conditions at (32 = 0,1 (section 7.5.2),
(b)  application of the boundary conditions at 3, = O and the symmetry
conditions at ,62 = 0,5 (section 7,5.3),
(c)  segmenting the path of infegration into 4 or & equal segments

(i.e. M = 4 or 8) and teminating the tri=diagonal elimination

procedure at 8, = 0.5 (section 7.5.4).



Further relevant comments have been made in section (7.7).
Further details of the program are available at Imperial College.(ég)
The program was written in EXCHLF /-\utocodeao)’ “1) for the

University of London Atlas computer,



CH.PTER 2

CLOSURE

The use of a Levy-type solution was convenient for studying the
application of the indirect methods (Rayleigh-Ritz, Galerkin and
Lagrongian multiplier methods) in conjunction with various aﬁproximaﬁng
functions (tables 3,1 and 4,5).,  This study showed thais
(i}  #he Rayleigh functions (liA)* for clamped boundaries were converging
satisfactorily
(ii) the Filonenko=oroditch functions (I£) were somewhat slower to
converge than functions HA

(ii1) functions IF, ohtained by modifying functions IE, converged rapidly
but could cause numerical difficulties (refar to seciion 4,4.3)

(iv) the mixed eosine and sine set (IC), whenaver used, converged

rapidly but could also couse numerical difficulties (refer to section

4,4.3)

*The functions have been classifiad in table 3,1
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(v) using sine functions (1) the membrane stress-resultants at a hinged
boundary were slowly convergent

(vi) the Lagrangian multiplier method was effective in iimproving the slow
convergence of a bouncary action

(vii) functions ID, used in conjunction with the Lagrangian multiplier
method, were effective in improving a particular stress=resultant which
was slowly convergent on the boundary but satisfactory within the
shell,

Application of the indiract methods to translational shells with com=
binations of clamped, hinged or normal slide (1) conditions on two opposit=
boundarias showed that, using the functions given in table 5,4:

(or n

(i

g 22) at a hingad boundary was slowly convergent and was
effectively improved using the Lagrangian multiplier method in
conjunction with funetions ID

(i) the morents near the comer of a shell with normal slides (1) on all
boundaries were slowly convergent

(iii) the normal shears were slowly convergent,

Citherwise the solutions were converging satisfaciorily for all combinations

of the boundary conditions considered.

Application of the indirect methods to ruled surface shells with

combinations of clamped, hinged, normal slide (1), normal gable or normal
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slide (2) conditions on two opposite boundaries showed that, using the
functions given in table 6,4:

(i)

ny, at @ hinged or normal gdble boundary was slowly convergent
and was effectively improved using the Lagrangian multiplier method

in conjunction with functions D
(ii) the moments near the corner of a shell with normal slides (1 or 2)

on all boundarias were slowly convergent
(iii) the normal shears were slowly convergent,

Ctherwise the solutions were converging satisfactorily for all combinations
of the boundary conditions considered,

For all cases considered, the Lagrangian multiplier yielded a more
accurate estimate of a boundary action than the corresponding displacement
derivative,  However, the solution adjacent to the shell boundary is
based on these derivatives and, depending on the selected approximating
functions, could be h‘fss satisfactory,

Varying the non-dimensional shell parameters showed! that, for trans-
lational and ruled surface shellss
(i)  the normal displacement and the moments increased with increasing
shallowness, slowly approaching the solution for a thin flat plate

(i1} the membrane stress-resuliants decreased slowly with increasing

shallowness,
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For ruled surface shells in the steeper range, the solution for n,, is

12

L

similar to the membrane solution,  Further points are discussed in sections

(5.7.1) and (6.7.1).

The method of lines was applied to translational and ruled surface
shells for clamped conditions at ay = o,l] and clamped or free conditions
at a, = o,|2. This analysis showed that:

(i) for translational shzlls " at a, = C was slowly convergent due to
the inaccuracy of the finite difference representation for the
derivatives of uy at the boundary; otherwise the solution was con-
verging satisfactorily.

(i1)  for ruled surface shells the solutions were converging satisfactorily

(i7i) roundoff errors hecame significant and at times distorted the solution
as the ratio (%i-) increased much beyond 3

(iv) the roundoff errors were offset by segmenting the shell and restoring
equilibrium ot the sagmeni junctions using a stiffness method,

The slow convergence of " af a; = G observed with translational shalls

could be improved by adopting a closer spacing of the linas adjacent to the

boundary,  This would lead {0 a more accurate finite difference

representation for the derivaiives of uye
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APPENDIX |

RAYLEIGH FUMCTIONMS

(35),(37)

Rayleigh functions are derived from the enginecering theory

of free undamped transverse vibrations of a uniform slender beam and are

of the form:
+B sinha B +C cosap +
m mi m m'l
+ cosh amﬁi (1)

where A , B , C and a_ are constants,* m is a non~zero positive integer
m’ "m’ Tm m

and i can have the value 1 or 2, The constants are determined by the

two boundary conditions specified at each of {Si = O and Bi =1,

The derivatives of Fm are given bys

P = a [/—\ cosa B.+B cosha 8 - C sinafi.+sinha;'3.] =
m m| m m' i m ' i m'i mi

=a & (2)

*In equatiori 1) fhe -funcfion has been divided throughout by a constant

associated with cosh amﬁi (say Dm). This is pemmissible only when Dm

is non-zero.
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&
'

F":qz[-A sina 8, +5 sinhaB. ~-C_ cosa B +
m m m m"i m m'i m M i
+ cosh a 3 =a 2!‘ (3)
] m “m
Fm=a3EA cosa B +B cosha B +C sina 3 +
m m m m"i m m"i m m*i
+ sinh a 8 =aq 3)‘ (4)
m'i m " m
P11 PN q4[A sina 8, +0 sinhaB +C_ cosa B, +
m m m m*i ) m"i m M
4
+cosha B3| =a F (5)
i m m

where a prime denotes differentiation.  Note that a summation is not
implied in equations (2) to (5) inclusive,

Two sets of boundary conditions will be considered and will be
referred to as thes

(a) clamped=clamped case

(b) free~free case

() Clompad-Clamped Case

The boundary conditions satisfied at {3i = C,1 aret

Fo= 0 = f 6)

m

and the Rayleigh function reduces to:



- 240 -

s cosh a B. - cos amBi - Am(SiNh a B. - sin C'mB;) @)

whera a and Am are obtainad from the relations:

cosha cosa = 1 (8)
m m
sinh a + sin . cosh o = cosd
A - 1) ] 5 _— . . ] (9)
m cosh a =~ cos a sinh a = sin a
m m m m

As m incraases solution for these constants by equations (8) and (9) involves
small differences of large numbers, causing considerable numerical difficulty,
A method discussed by Rayleigh (page 277 in reference (37)) could help
to overcome this problem,

The values of a s Am, PR ﬁm and )(m used in this thesis

(59)

were provided by Kuo for values of m up to 27, These have
been reproduced, for odd values of m only, in tdble Al,1 for a_ and Am
and in table A1,2 for F , & , 4 and X . Note that table Al,2

m’ “m’ Tm m

has been reproduced from the computer program, in which these values

have been tabulated,
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b) Free~Free Case

The boundary conditions satisfied at ﬁi = O,1 ares

M = O = fm (10)
m

The Rayleigh function for this case is the same as the second derivative

of the Rayleigh function for the clamped~clomped case,

Then
Fm(Free-Free case) = )51 (clamped=-clamped case) (1)
For both cases (a) and (b) the Rayleigh functions are orthogonal

functions

mn '

1
i.e. J FFA3.ACQC form=n (12q)

= O form#n (12b)

Refer to the integration fornulae given in Appendix 2,



- 242 ~
APPENDIX 2
IMTEGRATION FORMULAE

In the following formulde, Fm denotes a Rayleigh function, The
functions Qm, ﬁm and )(m and the constant a are defined in Appendix 1,

fn denotes a Rayleigh function which satisfies different boundary
conditions to Frn' The functions én ’ zn and in and the constant .C-In are
defined in the same way as e "m’ )(m and a_ respectively.

The integer i can have the value 1 or 2,

The integration formulae used in this thesis can be summarised in the

following way:

1
. 2m
J sin maf, cos nwddd, = + ——F——, for |m-n| odd (1a)
i P (m2=n?)

o
= {3, for |m-n| even (1b)

]
sin mﬂ‘8|. sin nnﬁidgi = +1, form=n (20)

o

i

O, form#n (2b)
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1
J cos mﬂ'z’ii cos nﬂ,Bidﬁi = 4+ 1, form=n=o (3a)
o
= +%, form=n>o0 (3b)
= O, form#n (3c)
1
2 - 1
J (1-28.)d8, = +3 (4)
o
1
J (1-2§3i) sin m rr.Bi = + -2;—1- , for m even (5q)
o
= (O, for m odd (5b)
i
4
(1-2§3i) cos mrr?)i = ——'—T , for m odd (6a)
()
o
= (G, for m even (6b)
" =S > * 1 re IBi:I
'-m"ndBi - Ta [3’}fm -4 mgm] ~ *
o m ;'3;=(./

+-]ZI:F2-29 +;{2 , form=n (7a)
ml g

H mm
s i=]

*Zor derivations of these exprassions see references (35) and (37)



- 204 -

[ -azar({@-i-
m mn mAm n

+a a2@ - a3f= ]gi:l for m7‘n (7b)
mn rz,!n n’r.'/(n ’ [
8.=0
F'FdB, = O, form=n (8a)
mon i
a 3
= (GZ_GZ) ‘m -mrn-a °r2( .9 +
n

+ amar;'zgf m"n - af@n J(r] 3i=0 , for m 74 n (8b)

=1 n = = ! - __rl
i mrndpx [c‘n‘;mi m] 3.=C 4 [ nfm]
s ’
2
4 2, 42
- __.Z' [Gn; + }(m‘ , form=n (9a)
B
02
<
= L a"® F -a“arF
(@” - 4) m n m n
al alﬂ
2 3 LI Y %)
+aman)(mﬁn - an;{n Y IS , form #n (
i=
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1
= -
J\ mfndpl 3 25 [ m m n " %m rf‘ men *
-2 - ) .Bi=l
- a“F
+a a anﬁn an."jn] 520 (10)
i

j] : )
3 2-

Ffdp, = i [aFf-u“a)(§+

mn 1 - o mn m nmn

(o] (aln - un

i o o 8
+aa$3 - 5o R ] o (1)
%

(o]

‘ L 5,1
(l'zgi)Fmd's i = _a—n%— [unfm - 2i3iurr/(m ¥ 2’!“"] 8:=0 (12

where a prime denotes differentiation and i can have the value 1 or 2,
Note that equations (5a), (5b), (6a) and (46b) are particular cases of
equation (12), when fn denotes a trigometric function.  Also equation
(1a) is a particular case of equation (10),  Howaver, in equations (10)
and (11) a must bedifferent from En.

When Fm is the Rayleigh function corresponding to the clamped-
clamped case (refer to Appendix 1) and fn is, in particular, a trigono~-

metric function, the following are obtaineds
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1
J FFdB, = 1, form=n (13q)
mnti
o
= O, for m 74 n (13b)
]
j ME G = (20 A - a’A?), form=n (14a)
S mn i mm  mom
o
80'3'(:"
= . 7 04) [amAm - ann] , form 74 n
m n m=-n | even (14b)
= O, form # n
\m-n odd (14c)
1
J ? ) cos quBdp, = fg_'\e. , forq=o (15a)
o p
oy
= y 4) , forq=2,4,6,... , (15b)
(@ - qm
p
] 405 kn
f sinknBdp. = , fork=1,3,5,... (16q)
o P 't (a: - k4rr4)
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1
o

where - wm,n = 1,2,3,.0...

P = 1,3,5u0...
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