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ABSTRACT 

The thesis is in two main parts, both concerned with the choice 

between several alternative models for the description of data in 

the presence of random variation. 

In Part 1 the models specifying the expected value of each 

observation do not contain adjustable parameters. A procedure is 

developed for testing whether all the models describe the data 

equally well. Under the customary assumptions about the normal 

distribution of errors, the test statistic has the F distribution. 

A more general problem, that of deciding which of two or 

more distributions best describe the data, is considered in Part 2. 

The method followed is to combine the separate distributions into 

one distribution of which they are special cases and to test hypotheses 

about the parameters of combination. Examples are given of appli-

cations to problems involving continuous, discrete and binary data. 

' Asymptotic results are obtained and compared, for finite samples, 

with results obtained by simulation. 

The supplementary Part 3 contains reprints of four papers, 

two written with co-authors, which deal with topics in operational 

research and the design and analysis of experiments. 
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INTRODUCTION 

The theory of estimation and of testing hypotheses about 

the values of the parameter's in a model of known form is well 

established. The problem of determining which model describes the 

data adequately has, in comparison, received less attention. If 

there is only one model it is meaningful to calculate some measure 

of the agreement between the model and the data. An example is 

the X2  test of goodness of fit. With two or more models a value of 

X 2  could be calculated from the fit of each model. But, since these 

values are not independent, the interpretation of the results may not 

be clear. An alternative approach is to base the choice between 

models on some function of all the models and the data. It is the 

purpose of the thesis to study this idea in greater detail. 

The simplest case of choice between models is when the 

models do not contain adjustable parameters to be estimated from 

the data. This problem is discussed in Part 1, where a statistic 

is developed for testing whether all the models describe the data 

equally well. 

The more important and general case of models containing 

adjustable parameters is the subject of the weightier Part Z. Here 

the approach is to combine the models into one model of which the 
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components are special cases. This brings the problem within the 

scope of standard statistical techniques so that inferences about the 

parameters of combination can be made in the usual way. 
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PART 1 

THE CHOICE BETWEEN PREDICTION FORMULAE 

One situation in which models without adjustable para-

meters occur is as a result of simplifying assumptions in engineering 

calculations. For each experiment there may be several predictions 

of the outcome, depending upon the particular assumptions made. 

This example may be helpful in understanding Part I. 



Biometrika (1969), 56, 2, p. 337 
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A test for discriminating between models 
BY ANTHONY C. ATKINSON 

Imperial College 

SID/MARY 

Suppose that two or more theoretical formulae are available for predicting the value of a 
single valued observable response. A method is described for testing whether each formula 
describes the data equally well. The method is compared with other tests. 

1. INTRODUCTION 

Scientific experiments are sometimes performed to compare alternative theoretical 
models. We consider those situations in which there is a single measurable response and the 
models do not contain adjustable parameters. Given a set of experimental results we want 
to test whether the formulae differ in predictive power. 

It is important to distinguish at least three questions which arise, even if there are only 
two models. One or more of the questions may be relevant in any particular application. 
The questions are: 

(i) Assuming that one of the models is true, what is the evidence provided by the data as 
to which is the true one? The Bayesian analysis of Box & Hill (1967) assumes this question. 

(ii) If one model is already in use as a predictor, is there any evidence of a departure from 
it in the direction of a second model ? This statement of the problem, which is not symmetrical 
in the models, is similar to that which arises in the tests of separate families of hypotheses 
suggested by Cox (1961, 1962). 

(iii) Is there any evidence that the models give significantly different fits to the data? 
Although this paper describes one method of answering the second question, we are 

chiefly concerned with answering the third. One test of the hypothesis that all the models 
fit the data equally well would be to test the homogeneity of the estimates of error variance 
obtained from the sum of squared deviations between the observations and each model. But, 
since these estimates are not independent, a simple test of this kind is not appropriate. 

Another test, based on regression, has been suggested by Williams (1959 a, pp. 81-9). This 
and related work are described in §§ 3 and 4, after the necessary nomenclature has been 
established. 

2. NOMENCLATURE 

The data consist of a set of N observations. For every observation there is an estimate of 
the response from each of p rival formulae or models. Let the observed response for the jth 
experiment be yj. Then 	 yi  = 	ei , 	 (2-1) 

where i is the true unknown value of the response and the errors ei  are assumed normally 
and independently distributed with zero mean and variance cr2. 

The prediction of the jth observation from the ith model is A. The p x N matrix of these 
predictions is called F'. 
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N 

C = 	=1 fikfki) Write 
k=1 

and let 	 C-1  = {a15}. 	 (2.2) 

For conciseness we often write, for example, 

N 

j=1 Y jfij = 
	 (2.3) 

We shall be interested in linear combinations of the models. The average model .7 is 
defined by 

fj = ; ( iii+f2J+ +irk 	 (2.4) 

For convenience, the sum of squared deviations about this model is denoted by 

N 
( 17-F)2  = E (115-15)2. 	 (2.5) 

Another linear combination of the models can be found by treating the observations as 
the dependent variable and the predictions as independent variables in a multiple regression 
analysis. The model so obtained is called f and the fitted coefficients are represented by the 
p x 1 vector .h 

A third model f * is formed by regression on the models subject to the restriction that the 
regression coefficients sum to unity. Let J be a p x 1 vector of ones and let B* = {bn be the 
vector of fitted coefficients. Then 

J'B* = 	b7 =1. 	 (2.6) 

The sum of squared deviations about this model is ( YF*)2. By analogy, the sum of 
squared deviations about the ith model is called ( Y.Fi)2. 

3. TWO TESTS FOR TWO MODELS 
The two tests described in this section are mentioned by Williams. Both are concerned 

with the choice between two models. Hoel (1947) answers the second question of § 1, whether 
there is evidence of a departure from fi  in the direction of f2. Williams & Kloot (1953) are 
concerned with the third question, whether each formula provides an equally good pre-
diction. As would be expected, these two formulations lead to different test statistics. 

3-1. Hoel's test 
Hoel develops a likelihood ratio test for the hypothesis 

H0 : 	= f i;  

against the alternative 	 = fv• 	 (3.1-1) 

The t test which results is that if 

E(Y 	) -12) V(AT  - 1)  
V{Z (Y 	-.T1)2 E(A. -f2)2-  {Z(Y 	(A -f2)}9 < -12z,  

(3.1-2) 
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Ho  will be rejected at the significance level a. Squaring the left-hand side of (3.1-2) and 
rearranging the terms we may write the test statistic as 

(N 1) (1711)2 ("*)2  ( y_y*)2 (3.1-3) 

where F* represents the linear combination of the models found by regression when the 
coefficients are constrained to sum to one. The test is thus a comparison of the sum of 
squares of y about f1  with the sum of squares aboutf* using the residual sum of squares from 
the constrained regression as an estimate of error. 

If the test is significant it does not necessarily follow that the original formula should be 
replaced by the alternative. The rejection of the hypothesis is in the direction of f2. The 
original formula A.  could be the better of the two, although both formulae are significantly 
worse than some linear combination of the two. 

All the tests described in this paper have the same form as Hoel's test. They are F tests 
of the form ( YFA)2 —  ( YFB)2  

( YFB)2  

suitably adjusted for degrees of freedom, where ( YFA  )2  is the sum of squares about some 
hypothesized formula and ( YFB)2  is about some ' best ' formula found by regression. 

3-2. A test of Williams and Kloot 
Hoel's statistic tests whether f1  should be replaced by a linear combination of the formulae. 

In contrast, the test of Williams & Kloot (1953) is symmetric in the two formulae. They 
test whether one model provides a significantly better fit to the data than does the other. 
Hoel's test would be appropriate iff, were in use for prediction and it was desired to decide 
whether the prediction could be improved by including f2  in the calculations. Williams & 
Kloot's test is appropriate if neither formula is currently in use and it is required to choose 
between them for the future. The goodness of fit in this test is measured by the difference in 
the sums of squared deviations of the observations from the two models. 

Consider 	YFI)2 —(YF2)2  = 	— Ef2 — 2Ey(fi—f2). 	 (3.24) 

This is a linear function of the observations with variance 4o-2Z(fl  —f2)2. The test compares 

{( yFi)2 _ yp-,2)212 {EY(fi —f2) — EEfi Ef2)}2  
—f2)2 	E(fi —f2)2  

with an estimate of the variance of the observations. 
If this estimate is not available, for example, from replication, an estimate may instead be 

based on the residual sum of squares from the regression of the observations on the pre-
dictions. Williams & Kloot use ( YF*)2  because they are concerned with choosing between 
two formulae for interpolation in series of correlated observations. Only linear combinations 
of the formulae in which the coefficients sum to unity will allow for non-zero mean and 
trend in the observations. The use of ( YF*)2  is therefore necessary in this application. 

This test statistic is intuitively appealing. The sum of squared deviations of each formula 
is an obvious measure of how well the observations are described. By considering the 
difference of the two sums a direct comparison is made between the formulae and an answer 
obtained to the third question of § 1. Whether, if the two formulae do differ significantly 

(3.1-4) 

(3.2-2) 
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the better formula provides an adequate explanation of the data is another question which 
is to be answered separately, perhaps by a further statistical test. 

The use of ( EF*)2  for estimating error is dictated by the special situation which Williams 
& Kloot are considering. In the absence of special conditions an estimate based on ( YP)2  is 
to be preferred, for f * is a special case off. If ( YF*)2  is a good estimator of the error variance, 
so will ( YP)2  be. The converse does not hold. 

The proposed statistic for general use is thus (3.2.2) divided by (YP)2  and suitably 
adjusted for degrees of freedom. In § 6 we show that both this statistic and that of Williams 
& Kloot are of the form of (3.1.4). 

4. WTLLTAMS'S TEST FOR MANY MODELS 
In section 5.9 of his book, Williams describes a test of the homogeneity of the sums of 

squared residuals designed to determine whether all the models fit the data equally well. 
This test is derived from one of Wilks's (1946), who considered a sample x from a p-variate 
normal population. The likelihood ratio test was of the hypotheses that (i) the variances of 
the xi  are equal and (ii) the covariance of ; and ; are equal (i +j). 

As Williams states: `...Wilks's test, or any other test of homogeneity of variances, is not 
strictly applicable here, since the different sums of squares are not actually variance 
estimates'. Williams therefore uses the analogy only to suggest a suitable form of statistic. 

Wilks's criterion, apart from factors independent of y, reduces to the ratio ( ITF*)21( yp)2. 
The suggested test statistic is N _p + (yp)2 - (yF*)2 

p — 1 	(YF*)2 	• 	 (4.1) 

This F ratio tests whether the average formulafgives a significantly worse fit to the data 
than the constrained least squares formula f*, once again using ( YF*)2  as an estimate of 
error. The divisors for the mean squares result from the facts that f contains no adjustable 
parameters and f*  contains (p — 1) parameters. 

To calculate this quantity from the data we have 
( yp)2 _ ( yF*)2 = ( yp)2 _ ( yp)2 _ {( yp*)2 _ ( yp)2},  

YF*)2  -(Y_P)2  = 	B*)' C(P - B*) 	 (4.3) 

and (Plackett, 1960, pp. 52-3) 

-B* = C-1J(J1C-1J)-1(J'P- 1), 	 (4.4) 

(4.2) 

whence 

(y7)2— (YE*)2  

= --2 J'F' Y + - J'CJ + Y'FC-1F'Y - 	- 1) (J'C-1J)-1  (J'C-1•F' - 1). (4.5) 212 

Two objections may be made to this test. The general use of ( YF*)2  as an estimate of error 
has already been discussed in § 3.2. The other point is that the usefulness of the average 
formula as a predictor is normally not of interest. 

A more appealing test would be based on the differences in the sums of squared deviations 
of the formulae from the observations, as was the test of Williams & Kloot for two models. 
It is to such a test that we now turn. 
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5. THE TILDE TEST 

The test we propose involves a comparison of the sums of squared deviations of the 
formulae from the observations. These quantities are intuitively a good measure of the 
adequacy of the various formulae. Only if they are all equal is the non-centrality parameter 
of the distribution of the statistic zero. Then all the formulae describe the data equally well, 
or equally badly. Whether the data are adequately described could be the subject of a further 
statistical test. Or it could depend on other considerations. One formula might be better than 
the rest and quite adequate for preliminary forecasts even though it did not fit the data to 
within experimental error. 

The test involves another linear combination of the models, which we denote by/. As it is 
convenient to have a name for this test, we call it after the swung dash or tilde used to 
distinguish it. For the reasons given in § 3.2, ( YP)2  is used as an estimate of error. The test 
is of the form given in (3.1.4). 

We require linear combinations of the models which lie equally far from each model in the 
sense of sums of squares. Then we have 

E(fi  -f)2  = 1 (for all i). 	 (5.1) 

A geometrical argument may help to explain the basis of the test. Suppose, for example, 
there are three formulae. Then in the N-dimensional space of the observations the formulae 
define a triangle. The minimum value of 1, say 10, occurs when f is the intersection of the 
perpendicular bisectors of the sides of the triangle. Larger values of 1 generate the line 
through the point of intersection perpendicular to the plane of the triangle. 

There are p parameters in I. For a given value of 1, the relationships in (5.1) define all 
of these. 

Let 	 T = {zyfi - i-EB} 	 (5.2) 

and let the numerator of the test statistic be 8, where 

	

= (yp)2 _ (y p)2. 	 (5.3) 

We find that value of 1 which minimizes ( YP)2  by differentiation with respect to 1 and 
setting the derivative equal to zero. Geometrically, for three models, this is the value of 1 
appropriate to the foot of the perpendicular from the observations on to the line defined 
above. Substitution in (5.3) yields 

S = T'{C-1  - C-1.1(Ji C-1J)-1  .1' C-1} T. 	 (5.4) 

We now consider the expected value of (5.4) under the hypothesis of equality of the sums 
of squared deviations between each model and the true response. This hypothesis may be 
written Ho: E(v -f i )2  = / (i = 1, 2, ...,p) 	 (5.5) 

Or 	 - 2Evfi  = k (i= 1, 2, ...,p). 	 (5.6) 

Then from (5.2) we have 

	

T = F'e- iJk, 	 (5.7) 

where e is the vector of errors. Substitution in (5.4) gives 

	

E(S) = E[e/F{C-1-C-1J(J'C-1J)-1 J1C-1}F' e]- 	 (5.8) 
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Since the errors are independent, (5.8) becomes 

P P =1 k=1 
p E(S) = .2 	co  au k  

aij 
1:=1 =-1 

By the definition of an inverse 

} E aik  E ajk  
(5.9) 

From (5.10) we obtain 

11 	(i = 
Cik akj k=1 	0 (otherwise). 

E(S) = (1) -1)(72- 

(5.10) 

(5.11) 

We have assumed that the errors are normally and independently distributed. Under the 
null hypothesis the numerator of the test statistic will have a central x2  distribution on 
(p — 1) degrees of freedom, however well or badly the models fit the data. Unless special 
circumstances, such as those of § 3.2, suggest otherwise, we take ( YP)2  to be an estimate of 
error. Then the tilde test, which is the ratio 

N—p(Y.P)2 —(YP)2  
p — 1 	(EP)2 	' 

can be tested by the F distribution with (p — 1) and (N — p) degrees of freedom. 
We now compare this test with that of Williams when there are two rival models. 

6. WTT.LTAMS'S AND THE TILDE TESTS FOR TWO MODELS 

We adopt a geometrical approach to the form of the two tests when there are only two 
rival models. 

The models and the observations define the points F1, F2  and Y in N-dimensional space. 
All linear combinations of the two models lie in the plane containing the origin, F1  and F2. 
The foot of the perpendicular from Y to the plane is P. The average model F lies half-way 
between Fi  and 4 The constrained model F* is the point on the line through Fi  and F2  
nearest to Y. Therefore PF* is perpendicular to .F1F2. The line through P perpendicular to 
F1F2  is the locus of models with equal sums of squared residuals about the two formulae. 
The point on this line nearest to Y, and so to F, is P. Therefore PP is perpendicular to PP. 
These relationships are shown in Figure 1. 

It follows that ( EFT yF*)2 = (RF*)2 = (pp)2 = (yp-)2_(yip)2. 	 (6.1) 

Thus the numerators of the two tests are identical when there are only two models. This is 
not, however, true for greater numbers of formulae. 

It can be shown that (6.1) reduces to (3.2.2), the numerator of Williams & Kloot's test. 
Thus the numerators of all three tests are identical when there are only two models. Further-
more, since both tests associated with Williams use ( Y.F*)2  as an estimate of error, they are 
identical and so Williams & Kloot's test is of the form of (3.1.4). 

Although Williams's test and the tilde test have the same numerator, the estimate of 
error in the denominator is different. For the reason given in § 3.2, the tilde test seems 
preferable. 

(5.12) 
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7. THE TESTS TINDER ALTERNATIVE HYPOTHESES 

The denominators of both tests are estimates of error. In considering the properties of the 
tests we assume that some satisfactory and appropriate estimate is available from replication 
or as a residual from regression. We consider only the numerators of the tests. 

In comparing two test statistics for the same hypothesis it is customary to select the test 
which has the greater power against some alternative of interest. In the present case this is 
not possible as the two tests are concerned with different hypotheses. The choice between the 
tests must therefore depend on the relative importance of the adequacy of the average 
model and the differences in the sums of squared deviations. 

Fig. 1. Geometrical interpretation of Williams's and the tilde tests for two models. The origin 
is not shown. The vector of observations is Y; the models under comparison are F1, F2 ; their 
average is rand PP is the line in the plane of F1, F2  equidistant from F1  and F2. 

It is, however, of interest to look at the values of the tests under departures from the null 
hypotheses. 

Suppose for Williams's test that the true model is f*. Then 

= FB* and J'B* = 1. 	 (7.1) 

Substitution for Y in (4.5) yields, after taking expectations, 

E{(YF)2  — (YF*)2} = (B* — P C(B* 
 P 

 B[e'F{C-1— C-4 J(J1C-1J)-1 JV -3}F'e]. 

(7.2) 
22 
	

Biom. 56 
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From (5.8) it follows that 

E{(YF)2 —(YF*)2} = (B* — p )'  C(B* 	+ (p —1) o-2. 	(7.3) 

For the non-centrality parameter to be zero each regression coefficient must have a value 
of 1/p. The test measures how far the parameters depart from this value. 

For the tilde test let 
(77 —.fi)2  = 4 (i = 2, ---,P) 

and 	 L = 	 (74) 

Then, by comparison with (5.7), we have 

T = F'e— —2 --2 ' 
Jk 	 (7-5) 

whence 	E{( yp )2 _ (yp)2} = 	0'2  1{V{C-1— C1-1J(eliC-1J)-1  Jia-1} L]. 	(7.6) 

Since the value of k does not enter this non-centrality parameter, it is a quadratic form 
in the differences among the 4. For two formulae (7.6) reduces to 

Et( yp)2_ yp)2} = 0.2+ ,1 1(71.  /12)2. 	 (7.7) 

For Williams's test let m = br 	= 2 — bt, by definition. Then (7.3) becomes 

	

E{( 17F)2  — (YF*)2} = c2+ 9n2E(f1 
	 (7.8) 

From the results of § 6 these two expressions are identical. The relationship between m 
and the differences amongst the 4 is thus 

	

(11:12)2  = 4{Z(fl —f2)2}2- 	 (7.9) 

8. A NUMERICAL EXAMPLE 

As an example of the use of the proposed test we reanalyse a set of data given by Williams 
(1959a, p. 87). This consists of 33 readings of the failing loads of columns of silver quandong 
with predictions from three formulae for each reading. These results are summarized in 
Table 1. 

Table 1. Uncorrected sums of squares and products for Williams's data 

.f1 /2 13 Y 

A 1.929219 1.771904 2.008474 1.958492 
f2 - 1.628134 1.843793 1.798355 
f3 - 2.092331 2.039330 
y - - - F989298 
Yrf x 106  1,533 20,722 2,969 - 

The last row of Table 1 gives the sums of squared deviations from the three formulae 
multiplied by 106. From this information it seems evident that the second formula is very 
much poorer than the other two. 

The total sum of squares of the observations may be broken into three parts; the regression 
sum of squares due to the equidistant formula (with 1 degree of freedom and the numerator 
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and denominator of the tilde test. The results of calculating this F ratio, equation (5.12), are 
given as an analysis of variance in Table 2. The value of 1432 is very strong evidence indeed 
that the three formulae do not fit the data equally well. 

Table 2. Analysis of variance for three models 

	

Source 	 D.P. 	SS ( x 106 ) 	MS ( x 106 ) 

Difference between formulae 
(yp)2 _ (yP)a 	 2 	65,886 	32,943 

	1,432 

	

Residual (Y.PA')z 	 30 	 690.0 	 23.00 

The analysis based on Williams's test gives a mean square residual of 30.36 and an F ratio 
of 29-61. This suggests that the tilde test is more sensitive for detecting differences between 
the formulae. 

The large value of the test statistic is obviously due to the inadequacy of the second 
formula. We can now repeat the analysis to see whether the other two formulae fit the data 
equally well. The value of ( YP)2  — ( YP)2, formula (3.2.2), is 112.02 x 10-6, giving an F value 
of 4.17 on 1 and 30 degrees of freedom. This is, to 3 significant figures, the 5 % value of F. 
The conclusion is that there is some quite strong, but not overwhelming, evidence that 
formula 1 describes the data better than formula 3. 

In order to perform these calculations it was necessary to work to 10 significant figures. 
This is not surprising when we consider the form of the matrix F'F, which consists of sums 
of squares and products which are expected to be very similar. It does suggest that numerical 
problems may arise in evaluating the test statistic for large numbers of alternative formulae 
and that consideration should be given to reducing the ill-conditioning of the matrix before 
inversion is attempted, for example by the addition and subtraction of rows and columns one 
from another. 

In this analysis of Williams's data we have considered only whether the experimental 
results are consistent with the hypothesis of equidistance of the three models. This is, of 
course, but a part of the complete analysis. As was mentioned in § 5, even if the models were 
equidistant from the data, all models might be unsatisfactory. A full analysis would there-
fore include a test of the adequacy of one or more of the models in describing the observations. 

9. HOTELLING'S TEST FOR MODELS WITH PARAMETERS 
The tests described here have been concerned with models which do not contain parameters 

to be estimated from the data. In this section the tilde test is compared with a test developed 
by Hotelling (1940) for the comparison of regression variables. Hotelling's test is discussed 
by Healy (1955) and identically in the book and paper by Williams (1959a, b). 

There are n observations on a dependent variable y. Associated with each observation 
there are p regressor variables xl, x2, ..., x p. It is desired to choose only one of these variables 
for use as a predictor. The statistic proposed by Hotelling tests whether there is any evidence 
that the regressor variables differ in predictive power. 

The test depends on the fact that the regression sum of squares associated with each x is 
the square of a linear function of y 

Let 
21  = VIE(Xi 

     

  

i = , • • -,P)- (9-1) 

  

22-2 
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Then ; is the square root of the regression sum of squares due to xi . Let the elements of the 
inverse of the sample correlation matrix be rij. Then the test statistic is 

(p p )2 
ruzi  

If the y's are normally and independently distributed, this sum of squares with (p — 1) 
degrees of freedom provides a criterion for testing the reality of the differences amongst the 

Hotelling suggests using the residual from multivariate regression on all the variables 
as an estimate of error, thus obtaining an F ratio on (p — 1) and (N — p —1) degrees of 
freedom. 

This test statistic depends upon the zi, functions of the regression sums of squares linear 
in y and on the inverse of the correlation matrix of the x's. Now consider the tilde test. 
Equation (5.4) may be written as 

P P 
( .73 	73  

aii i i
) 2  

S = E E 	i=1  (9.3) P i=1 j=1 

Here the aii  are the elements of the inverse of the matrix F'F and 

ELI t i  = Eyf i — —2 	(i =1, 2, ..., p) (9.4) 

is a function, linear in y, of the sum of squares explained by the ith formula. 
From equations (9.2) and (9.3) it can be seen that Hotelling's test and the tilde test are 

similar in form. Both contain a function of the sum of squares explained by each model 
which is linear in y and the inverse of a matrix which depends on the relationship between the 
different models. In Hotelling's test only the angles between the models are of interest as 
the presence of adjustable parameters allows for scaling. Here the correlation matrix is 
appropriate, whereas, in the tilde test, both scale and direction are important. Finally, both 
tests use the residual sum of squares from an unconstrained regression on all the models as 
an estimate of error. It is therefore reasonable to consider the tilde test as the analogue of 
notching's test in the absence of adjustable parameters. 

I am grateful to Professor D. R. Cox for his guidance of my work on this topic. This 
research was supported by an IBM Fellowship. 
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PART 2  

A GENERAL METHOD FOR DISCRIMINATING 

BETWEEN MODELS 

1. INTRODUCTION 

1.1. The Problem  

The probability density ,function (p.d.f. ) of an observed 

random vector Y (Y1, 	Yn) is unknown. A set of p. d. f. Is 

f (y, Ai ), 	, f (y, ) is under consideration for the description 
P 1 	 —P 

of the data. What inferences can be drawn as to which, if any, of 

the models are adequate? 

In this general formulation of the problem no restriction 

is placed on the form of the separate p. d. f.'s nor on the associated 

vectors of parameters. The values of none, 'some or all of the 

parameters may be specified, the values of the remainder requiring 

estimation from the data. Attention is, however, confined to those 

situations in which each experiment results in a single valued obser-

vation. We also assume that numerical information on the prior 
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probabilities of each model and on the joint prior distribution-of 

the parameters is not available, so that it is not possible to use 

BayesT s Theorem. 

In many, but not all, cases we consider situations in which 

there are only two alternative models. If these both belong to the 

same family of distributions, the problem is one to which the .Neyman-

Pearson theory of hypothesis testing applies. Alternatively the 

models may belong to separate families in the sense that for any 

parameter value QI 0  , the p. d. f. 11  (x,110) cannot be approximated 

arbitrarily closely by f2(x, Q2). An example is when the alternatives 

are the exponential and the log normal distributions. A theory of 

hypothesis testing for separate families has been developed by Cox 

(1961, 1962). 

As an alternative to these tests, Cox suggests combining 

the two hypotheses in a general model of which they would both be 

special cases. The p. d. f. could, 'for example, be taken as propor-

tional to.  

lx f 	(y, 	) 	-{f (X, 	).} 1-X  I 	2 —2 

and inferences about X made in the usual way. It is the purpose 
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of the present part to examine this idea in greater detail. 

1. 2. Some General Remarks  

The customary, and often satisfactory, way of deciding 

which models are adequate is to treat each model in isolation, ana-

lysing the residuals or computing some measure of fit such as )(2  

for each alternative. With only one model the value of g2  has a 

clear interpretation. But, with several models, the calculated values 

of g2  will not be independent. ,Any conclusions should take account 

of this, although, in extreme cases, the correct conclusion will be 

clear. 

A closely related alternative for two models is to calculate 

the ratio of maximized likelihoods. But, if the models belong to 

separate parametric families, the interpretation of this quantity is 

not always unambiguous. If one model contains more adjustable 

parameters than the other, the likelihood ratio will be biased in its 

favour. Thus, in using the ratio, the difference in the number of 

parameters needs to be considered. On,  a more formal level, it 

is not possible to interpret the ratio in terms of the chi-squared 

distribution. 

Such difficulties recommend the study of the properties of 



combinations of distributions. An alternative to the exponential 

combination (1. 1) is the mixture distribution 

f1  (x, 01  ) 	(1-X) f22) 
	

(1. 2) 

One disadvantage of this linear combination is that, for X less than 

zero or greater than one s  it can lead to negative probabilities. For 

discrete distributions with a finite number of classes, the exponential 

combination cannot lead to such anomalies, although, for some con-

tinuous distributions, not all values of X are admissible. Since the 

exponential combination is additive in log likelihoods, it also has the 

advantage of greater mathematical convenience for many frequently 

occurring distributions. 

1. 3. Plan of the Second Part 

Although in particular applications there may be other methods 

of combination which are physically meaningful, we shall be concerned 

only with combinations of the general form of (1. 1). In the next 

section we consider some properties of the combined p. d. f.. There- 

after we are concerned with making i,T4ferences about X. Testing 

the hypothesis that the value of X is zero or one is equivalent.  to 

testing for departures from one model in the direction of the other. 

The hypothesis X = 1/2  implies that both models are equidistant from 
	• • 

the data, where distances are measured in the manner appropriate 
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to the definition of the combined p. d. f. In this special sense, the 

hypothesis implies that both models fit the data equally well. 

In the first two examples of the use of the method, both the 

component and combined p. d. f. I s are normal and the resulting tests 

are based on the F distribution. Usually the resulting distributions 

are not so tractable. In § 4 the test is based on the asymptotic 

distribution of the likelihood ratio. In general this involves the simul-

taneous estimation of the values of X and the parameters of the com-

ponent distributions which maximize the likelihood. A test statistic 

involving reduced computation is developed in 5 and applied in the 

following section to two component p. d. f.'sbelonging to separate 

families. The resulting statistic is shown to be asymptotically equi-

valent to Cox's test of separate families of hypotheses. §7 is devoted 

to examining the small sample differences between the two tests. The 

two final applications of the procedure are to a test of the,hypothesis 

that X = 
1
/2  and to the analysis of binary data. 
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2. THE EXPONENTIAL CLASS OF DISTRIBUTIONS 

The general form of the combined p. d. f. is proportional to 

 

X. 
1 

fit, .12 i ).] 	• 

 

 

(2. 1) 

In order for (2. 1) to have the properties of a density, a 

normalizing constant has to be introduced. Thus, for the combination 

of two models we write 

f Q i )i x1  if2 (y,  _2 ) }x2 
(2, 2) fx(y) 	 )x, 

S{f 1 (a,i)1 )3 	f 	22 )1 L'az 

where, for discrete variables, the integration in the denominator is 

replaced by a summation. 

In many cases this form of the model contains redundant 

parameters. For two models three distinct situations can occur: 

1. Both Al and X2 can be estimated. 

2. Only one of the Vs can be estimated, either because (2.2) reduces 

to the form given in j 1, or because one of the Vs is re-

dundant. 

3. Neither X can be estimated. The combined p. d. f. in this case has 

only one general form and two special cases corresponding to the 

constituent distributions. 

Which of these three possibilities occurs depends both upon 



- 14 - 

the form of the distributions being combined and on whether the values 
• 

of the parameters are specified or are to be estimated. 

To examine this point further we consider the general expon-

ential class of distributions, reserving the more usual word family 

to describe p. d. f. = s differing only in the values of the parameters. 

For simplicity we discuss only the case in which the variables y. are 
 

independently and identically distributed, the constituent distributions 

each containing one parameter O.. We write 

1.(y., A. ) = expi.A.3.(8.3. )B.3.(y.) + C.(8.) + D.(y.j
)} . 	(2'. 3) 

Raising this p. d. f. to the power Xi  results in multiplication of the 

exponent by Xi. Because of the normalizing factor in the denominator 

of (2. 2), the combined p. d. f. is not a function of Ci(gi). 

For, some of the more frequently encountered distributions 

of the exponential class, D.(y.) is zero. Such distributions are repro-j 

ductive with respect to exponentiation. If in such cases X.. A.(8.) can 
3. 	3. 

take on all the values which A.(8.) can, then it is not possible to 1 I. 

estimate X.. But if D.(y.) is not zero or if the value of A. is specified, 
J 

then X. may be estimated. Examples of distributions which are repro-
]. 

ductive with respect to exponentiation are, for continuous variables, 

the normal and the exponential, for discrete variables the geometric 

and for quantal response data, the logistic. Problems involving all 
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these distributions are considered in the following sections. 

As an example of the ideas discussed in this section we look 

at the problem given by Cox (1962) of determining whether a set 9f • 

observations comes from the Poisson or geometric distributions. We 

have for the component p. d. f.'s 

e- a 
aY  

yi• 

PY  and 	f2(y, g2) - 
(1+13)y+1  

 

(2.4) 

These may be rewritten in the exponential class form as 

 

f l  (y, 01 ) = exp - 	y log a - log (y!) 

  

  

f2(y, 02) = exp 	log (ifp  ) - log(1+13) . { 	 } 	 (2.5) 

For the Poisson distribution, D (y) is non zero, so that X i  

can be estimated. For the geometric distribution D2  (y) is zero and, 

if p is only constrained to be non-negative, 

A2(02) = log (i+r3  

can take any real value. Therefore X2 cannot be estimated. The 

• (2.6) 

combined p. d. f. can be written as 

f (y,- = 	co 

YY 

 

i=o 	(ii. ) 
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For X = 1 this reduces to the Poisson distribution and for X = 0 to 

the geometric. In order for X2  to be estimable it is necessary that 

values of both ao and po should be specified. An example of testing 

a hypothesis about the value of X for this combined p. d. f. is given 

8. 
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3. SOME NORMAL THEORY LINEAR MODELS 

The combined p. d. f. is of interest as a means of making 

inferences about the adequacy of the component models by testing 

hypotheses about the values of the X's. In this section we consider 

two examples in which both the component and combined distributions 

are normal. Although it is not possible to obtain estimates of the X's, 

it is possible to test some hypotheses aboutt,vealues of the parameters. 

3.1. The Selection of Regression Variables  

Suppose that there are two sets of regression variables. In 

practice these sets may be overlapping and both contain many variables. 

For simplicity we suppose that there are only two variables x1  and x2. 

The component p. d. f. s are normal, means blx1 and b2.  x2  and with 

common variance cy-2: If we write 

b
l 

X
1 	

b
2 

X
2 , 	CT 

a 

C 	
c2 = and "V - 

Xl+X2 1 	Al + X2 	2 X1 + X2 

the combined p. d. f. (2. 2) becomes 

1 (y - c lx l c2x2)2} f x  (y, 1) exp [- 
-G 2  

(3.1.1) 

(3. 1. 2) 

which is the regression of y on x1  and x2. 

The hypothesis that regression on x 1  alone is 8.dequate is the 

same as the hypothesis X2  = 0. From (3. 1. 1) the likelihood ratio 

test of this hypothesis compares the difference in the sum of squares 
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due to regression on x1 alone and on both x1 and x
2  with some suitable 

estimate of error. Use of the combined p. d. f. thus leads to the 

standard regression procedure. Owing to overparameterization it is 

not possible to develop a test of equidistance from the two models 

expressed as the hypothesis X1  = X. 

3.2. The Choice of a Prediction Formula  

Suppose that, from theoretical considerations or some other 

source, p formulae are available for predicting the value of a random 

variable. As a result of n observations it is desired to test whether 

the formulae vary in predictive power. This situation has been dis= 

cussed by Williams (1959, pp. 83-9) and by Atkinson (1969). 

It is assumed that the observations are independently and 

constant 
normally distributed with/variance . There are p component p. d. f. T s 

{-
(Y.-f .) a  

	

1 	J fi(yi ) a exp 	- -i- 	0.2i J 	i = 1,2, . . . , p 	(3.2.1) 

where f. is the prediction of the ,respo nse for the jth experiment from 
iJ 

the ith formula. Writing 

 

P • 
= X. / 	x. , 

3. 
(3.2.2) 

     

1=1 

 

whenCe 

    

= 1 , 
. 1 	• 

(3.2.3) 

     

  

1=1 
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and 	2  = 0-2  / 	Xi 
	 (3. 2. 4) 

i=1 

the combined p. d. f. is 

f X  (y j ) exp  - T. 2 (y j  - E 	f..)2  
ij 

1 

i=1 

The mean of this normal distribution is a linear combination of the 

predictions with coefficients summing to unity. 

Under the null hypothesis that each formula provides an 

equally good explanation of the data, all the Vs have the same valtie. 

The likelihood ratio test of this hypothesis is a comparison' of the 

difference in the residual sum of squares about the combined p. d. f. 

(3. 2. 5) when all the Vs are identical and when they are free to vary. 

The latter quantity is found by regressing the observations on the 

predictions subject, from (3. 2. 3), to the constraint that the regression 

coefficients sum to unity. Let the resulting linear combination of the 

predictors be fx.. The required sum of squares can be written as 

(YFx)2 = (y•
J
-fx.)2. 

J 
(3. 2. 6) 

j=1 

From (3. 2. 2) 	, under the null hypothesis, all the }Q s 

have the value 1/p. The mean of the combined p. d. f. is therefore 

(3. 2. 5) 



-20- 

- 1 
f. = — 
J p 

p 

>  f ij 
i=1 

(3. 2. 7) 

where f. is the average predicted response for the jth observation. 

The sum of squared residuals about this model is written as 

n 

(YF)2  = 	. - .)2 . 	 (3. 2. 8) 

j=1 

If 	2  is to lbe estimated from the data, the likelihood ratio 

test of the hypothesis that all the X's have the same value leads to the 

statistic 

n-p+1 (YP)2  - (YFx )2  (3. 2. 9) 
P-1 	(YF

x
) 2  

which, under the null hypothesis, has the F distribution on p-1 and n-p+1 

degrees of freedom. 

This test statistic was derived by Williams by analogy with 

a test developed by Wilks for testing hypotheses about p-variate normal 

distributions. The present derivation provides a maximum likelihood 

basis for the statistic. 

If there are only two models the combined p. d. f. (3. 2. 5) 

may be rewritten as 

1 
fX. (y.) a exp 	—2 	. -Xf1j  - (1-X) f - (3. 2.10) 
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a one parameter model of the form suggested in 8 1. With two 

models we can test not only whether each model fits the data equally 

well (X = 
1
/2), but also whether there is evidence of a departure from 

one model in the direction of the other. To test the hypothesis X = 1, 

that the first model is adequate, we have the test statistic 

 

(n-1) (YF1 )2  - (YFX)2  
(3.2.11) 

  

(YFx) 2  

 

where 

 

n 

  

(YF 
	2 	 (y3 	f

la  )
2 
	

(3.2.12) 

i=1  

is the sum of squared residuals about the first model. 

This test statistic was originally derived by Hoel (1947) 

and obtained in the form of (3.2. 11) by Atkinson. It tests whether 

there is a linear combination of the two formulae, with coefficients 

summing to unity, which provides a significantly better fit to the data 

than does the first formula. Similarly the test' of X = 0 is equivalent 

to testing whether there are departures from the second formula. 

Both of these test statistics are asymmetrical in the formulae. If 

it were required to test whether the formulae fitted the data equally 

well, Williams's test of X = 
1
/2  would be appropriate. 
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4. DATING THE WORKS OF PLATO 

4.1. Introduction  

In the preceding section it was not possible to estimate the 

values of the X's because of•the overparameterization of the combined 

p. d. f.. It was, however, possible to obtain test statistics with a 

known and tabulated distribution. In this section we consider an 

example involving the combination of two p. d. f. is where both Xi  and 

X2 can be estimated. But, in order to test hypotheses about these 

parameters,it is necessary to use the asymptotic distribution of the 

log ratio of maximized likelihoods. 

The example concerns a problem in the chronology of Plato's 

works which was discussed by Cox and Brandwood (1959), whose 

general approach we follow. The problem is that between writing the 

Republic (R) and the Laws (L), Plato wrote several shorter dialogues, 

the order of five of these being uncertain. The works in question are 

the Critias (C), Philebus (F), Politicus (P), Sophist (S) and Timaeus 

(T). 

In an attempt to order these seven works, philologists have 

studied the distribution of long and short syllables at the ends of the 

sentences. Only the last five syllables are counted, the sentence 

endings thus being broken up into 32 classes. The statistical problem 
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is to use these observed frequencies to order the works in decreasing 

affinity with R and increasing affinity with L. Provided Plato's 

literary style changed monotonically with time, the resultant ordering 

of the works will be an estimate of the order in which they were 

written. 

4. 2. Theory 

We assume that the frequency distribution of sentence endings 

is multinomial with 32 classes and that the probabilities associated 

with each class for the reference populations R and L are known 

without error. Let these probabilities for the ith class be Q. and 2. • 

respectively. We take the combined probability as 
X
1 

X2 Q. 	 jZ 
i 

Xi 32 

AX1 
X 
2  

i=1 

The log likelihood of the observations is, ignoring a constant term, 

32 

n
i 

log Q 	, 	 (4. 2. 2) 
Xi 

i=1 

where n. is the observed number of sentences having an ending in the 

ith class for the particular shorter work. 

To date the work we obtain estimates of X1  and X2  by maximizing 

i= 1,2,...,32. 	 (4.2.1) 

L= 
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(4.2.2). This approach differs from that of Cox and Brandwood who 

considered only the one parameter family formed by the constraint 

X1 + X2 = 1. They thus forced the combined probability to lie on the 

line in A space through the two reference populations. Use of the 

two parameter form enables us to determine whether one or both of .  

the reference populations are irrelevant. 

A further difference is that instead of estimating the value 

of the parameter directly, they used a sufficient statistic, which is 

equivalent to working with a monotone function of X. 

To test hypotheses about the values of the X's we use the 

likelihood ratio test. Let the likelihood contain p parameters, the 

values of 1.) of which are specified by the hypothesis under test. Call 

the ratio of the restricted to the overall maxima of the likelihood I. 

This will have a value less than unity. If, as in the example of this 

section, the exact distribution of 1 is unknown, we use the result 

that, under the null hypothesis, -2 log 1 is asymptotically distributed 

as )(2  on \-) degrees of freedom (Kendall and Stuart, 1961, pp. 230-1). 

4.3. Results 

We first test whether the reduced model used by Cox and 

Brandwood provides an adequate explanation of the data. In this model 

the combined probability is 



o 1-X iX 
- 

Xi 32 

2_ Q 1-X X 
- 

i=1 

(4.3.1) 
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Table 1 

• Maximum likelihood estimates of the parameters in this 

model and the full model (4.2.1) are given in Table 1. The last column 

is minus twice the log likelihood ratio which, under the hypothesis 

A l  + X.2  = 1,would be distributed as ;el.. The results indicate very 

strongly that the works are not adequately described by being assumed 

to lie between R and L. In fact the results suggest that R is irrelevant 

and that the only meaningful ranking is in order of similarity to L. 

For the data on which this analysis is based see Table 1 of Cox and 

Brandwood. 

To test the hypothesis that the works are not related to R, 

the likelihood was maximized with A
l equal to .zero. The resulting 

estimates of X
2 are given in Table 2. These are close to the estimates, 

Table 2 

for the two parameter model given in Table 1. Comparing the likelihoods 

for these two maximizations, the value of )e2  on five degrees of freedom 

is 4.51. This is in excellent agreement with the hypothesis that it 
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is only possible to order the works in order of similarity to L. 

4.4. Discussion  

The assessment of the importance of these results must be 

left to those with greater knowledge of Greek philosophy. We con-

sider only the statistical aspects of the analysis. 

In order to place a work with reference to L and R it is 

necessary that the parent distributions are distinguishable and that 

neither is uniform. For suppose that Qi  = Q, all i. Then in (4. 2. 1) 

0
Xi would not depend on 9 or X and the only possible ordering is in 

similarity to the second population. Thus, for good discrimination, 

we require distributions with high, or low, frequencies for different 

classes. 	 • 

If all 32 sentence endings had the same probability of occur-

rence, the average frequency would be 3. 1250 0. In the reference 

populations only 4 classes of ending occur with frequencies greater 

than 60/0 and none with less than 1  
/2 0/0. Of these four, three are 

in L. The frequencies in these classes for the reference populations 

and the shorter works are given in Table 3. 

Table 3 

These frequencies appear to explain 1-,-Jost of the observed 
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features of the data. The only class in R with a high frequency occurs 

with a low frequency in the other six works. As a result Al  would be 

expected to be near zero, and. R will be irrelevant as a reference 

population. The endings that occur with a high frequency in L occur 

with near average frequency in R. In S, C, P and F these endings 

occur with increasing frequency, whereas in T they occur at frequencies 

very near the average. The value of X2  for T is therefore also near 

zero. The fact that the ordering we have obtained of R, T, S, C, P, F, L 

is the same as that obtained by Cox and Brandwood is explained by the 

fact that most of the frequencies in R fluctuate closely about the value 

of 3. 125°/o. Including R in the analysis does not appreciably alter 

the values of the Q for the various classes. Xi 
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5. AN ALTERNATIVE TEST STATISTIC 

5.1. The Need for a Simpler Test  

In order to use the log likelihood ratio as a test statistic it 

is necessary to perform two maximizations of the likelihood, one 

overall and one under the hypothesis being tested. In the analysis of 

the data from Plato's works with two parameters and a discrete dis-

tribution with 32 classes, the arithmetic involved in the maximizations 

was not too heavy. But consider testing hypotheses about the values 

of the Xi s in a combined p. d. f. of the form of (2.2) in which both 

component distributions contain a vector of parameters requiring 

estimation. The calculation of maximum likelihood estimates of X1 

and X2 would involve a multivariable function maximization with, ex- - 

cept in fortunate cases, a complicated numerical integration at each 

point at which the function is evaluated. Even with powerful computing 

facilities, such a problem could be formidable. We therefore consider 

an alternative to the maximum likelihood ratio test which involves 

appreciably less computation. 

5.2. An Asymptotically Normal Test Statistic 

The parameters of the combined p. d. f. (2. 2) are divisible 

into a vector X about which it is desired to test some hypothesis and 

a vector Q related to the parameters of the component p. d. f. is. The 
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values of these parameters are not specified by the hypothesis to be 

tested and they are therefore nuisance parameters. 

In the remaining sections of the paper we shall be concerned 

with combinations of two distributions which only contain one parameter 

X. An asymptotically normal statistic for testing hypotheses about 

the value of a single parameter in the presence of nuisance parameters 

was suggested by Bartlett (1953) and, independently, by Neyman (1959). 

For ease of exposition we assume that L, the log likelihood of the 

observations, contains only the scalar nuisance parameter Q. 

2L 	 aL Let I = - E (- xa ) , Iiz = - E ( 
C)
Dex

) 

and 122 
2L 

(ga, 
.‘ 

(5.2.1) 

where the derivatives are evaluated and expectations calculated under 

the null hypothesis, using any locally ..Jr_ consistent estimate of 

(Neyman, 1959). The proposed test statistic is 

I 
T = 	- 12 	L 

(5.2.2) 122 
I12

2 

I al 1 122 

This is the derivative of the log likelihood with respect to the parameter 

of interest adjusted for regression on the partial derivative with 

respect to the nuisance parameter, all divided by the appropriate 
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standard error. The adjustment for regression ensures that the 

alkowa.CL4 
statistic is asymptotically unbiased for all aelq-mi-849-i-bae estimates of 

0. Under the null hypothesis the statistic will be asymptotically 

distributed with the standard normal distribution. 

In most applications we shall use maximum likelihood estimates 

of the nuisance parameter. Using the value of 0 which maximizes' L 

as a function of both 0 and \provides a test which is asymptotically 

equivalent to the ) 2  test based on the likelihood ratio, and involves as 

much computation. An alternative is to use the maximum likelihood 

estimate of 0 under the null hypothesis.. If this is that X is zero or 

one, we are concerned only with the component distributions, not 

with the combination. One result of using this estimate of 0 is that 

the calculated value of the second term of the numerator of (5. 2. 2) is 

zero. 

In '6 8 we test the hypothesis X = 
1
/2. The calculation of the 

maximum likelihood estimate of the nuisance parameter under this 

null hypothesis is usually not trivial. We therefore make use of the 

broader class of estimates which are locally sin.- consistent. For 

discussion of this idea and of optimality properties of the test proce-

dure see Neyman (1959). 

The extension of the method to a vector ofM nuisance para-

meters is straightforward. The numerator of the statistic is the 
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t -E (OA. Q . 

and 	XI X = 
1 

(5. Z. 3) 
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multiple regression of 	?•I X on the set of partial derivatives 

i = 1,2 ..... FR. To calculate the regression coefficients 

we write 

= {- E (
C)
-

X 
	21' 

6 0. ) 

when, in the standard notation of regression analysis, the vector of 

coefficients is (XT X)
-1 

X'Y. Forth = 1 this reduces to the statistic 

given in (5. 2. 2). 

A further extension of the theory of these tests is to cases 

in which there is a vector of parameters X. Instead of the asymptotically 

normal statistic (5. 2. 2), the test statistic has an asymptotic X2  dis- 

tribution. Since in what follows we are only concerned with examples 

in which X is scalar, we do not here develop the theory of such tests. 



, 	s( 
f x  (y) = 	

f f 	lx 1 
g tY' )i1--k 

f 	1 
f (z, E)1 	g (z, 2)
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6. TESTS OF SEPARATE FAMILIES 

Having obtained a convenient form of test statistic, we now 

apply the results of § 5 to tests of hypotheses about constituent p. d. f. 

which belong to separate families. 

We assume that the observations are independently and 

identically distributed. Let the two constituent p. d. f. is be f(y, a) 

and g (y, 2). The combined p. d. f. is of the one parameter form • 

„ (6. 1) 

We are interested in testing the hypothesis X = 1. That is, we are 

testing for departures from the first model in the direction of the 

second. For ease of exposition we assume that a 4- f3 are scalar 

parameters. 

The log likelihood of 'one observation is 

L 	X log f(y, a) + (1-X) log g(y,f3) 

- log S {f(z,a)IX  tfg (y, R))}1-X dz• 	 (6.2) 

To form the test statistic we differentiate (6. 2) with respect to the 

parameters a, p and X. First, we introduce the notation of Cox (1962) 

and let 
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• k 

F. = log f(y, a) , 	F. 
1, a 	a = 	log f(y, 

1_ 

G. = log g (y, (3) , 	F = log f (z, ) etc. (6. 3) 

with 5H(z) f(z, a)dz = Ea  (H) . 	 (6.4) 

Then on the usual assumption that differentiation with respect to the 

parameters commutes with integration we obtain, upon evaluation at 

= 1, 

3 L - Fi 	1 - G. - Ea  (F-G) (6. 5) 

 

L 
a 	

F
i, a 

and 	- 0 . 

(6. 6) 

(6. 7) 

If Va and Ca stand for variance and covariance under the null 

hypothesis, as Ea 
stands for expectation in (6.4), substitution in (5. 2. 2) 

and summation over the sample yields the test statistic 

G. 	E (F.-G)  C (F-G, Fa) 
	 F. 

IL. 	 3. 

	

V (F ) 	,a a a 

—C 2(F-G,F 
a 	a.  

Va(F ) 

n 

T = 

1=1 

n a(F-G) - 

(6. 8) 

To use (6. 8) it is necessary to estimate a and f3 under the 

null hypothesis X = 1. The estimate of a is the customary maximum 

likelihood estimator a satisfying 
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F A = 0 • 	 (6. 9) 

i=1 

The estimate of p is not determined by the theory of 5, 

for, when X = 1, the likelihood is independent of (3. Substitution of any 

preassigned value of f3 in (6. 8) yields a statistic which is asymptotically 

standard normal. But the purpose of the statistic is to test for depar-

tures from the first distribution in the direction of the second. We 

therefore use as an estimate of f3 that value which best describes the 

data under the null hypothesis. This quantity, f3ce, is the limit to 

A 
which p converges when the null hypothesis is true, where f3 is the 

maximum likelihood estimate when ). = 0. Since a is estimated, we 

replace this value by flA, in calculating the test statistic. From.  (6. 9) 

we can write the numerator of (6. 8) in an obvious extension of our 

notation as n 

T 	 7i(f3& = 	FF. ) - G. (pa) - EA[F( i. ) G(f3a) 1 	1 	a 
i=1 

(6. 10) 

 

This expression is of order n-. in probability. ., 

As written in (6. 8) the test statistic is identical with that 

developed by Cox (1962) for tests of separate families of hypotheses. 

A 
But Cox defines G. as log g(y,f3). The numerator of his test statistic 

is thus 



by considering the difference 

n  

T(i3 z ) — 	((3‘) = ci5G.( 	— G cp,) i a 
i=1 
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n 

T(13) = 
	

13F.(aA) - G.( 	- a  {F (a) - G(13.c) 	. 	(6.11 

i=1 

Under the null hypothesis, the statistic with (6. 10) as numerator 

would have zero expectation if the true value of a were known. Cox's 

statistic has this property only asymptotically as 13 -> j3.A. If the value 

of a is estimated both statistics will be biased, but the bias of T(PA) 

will be the less. That the two are asymptotically equivalent is shown 

A 
Expanding G.(f3A) in a Taylor's series about f3, (6.12) becomes a 

n 
A 

a 	 a 
i=1 

(6.12 

1 	A  - 	
(Pa.-  13)

2 
 

n 
A. 

Gi  (f3) 

1=1 

(6.1 

A 
By the definition of the maximum likelihood estimate p, the first 

term of (6. 13) is zero. We also have the asyMptotic result that 

A 
var (() - 

 

(6. 1 

so that the second term of (6. 13) is of order 1 in probability. Since 

the two numerators are of order in in probability, their asymptotic 
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equivalence is demonstrated. In the next section we consider the 

small sample differences between the two statistics. 

We have so far developed a test for departures from f(y, a) 

in the direction of g(y, f3) by considering the hypothesis X = 1. A 

test of the hypothesis X = 0 is developed in an entirely analogous way, 

with the roles of the two distributions being interchanged. 

There are two main generalizations of (6. 8). If the obser- 

vations are not identically distributed, the argument proceeds in a 

similar way to give equation 18 of Cox (1962). The other main genera- 

lization is if a is a vector parameter: the previous argument applies 

unaltered if .2 is a vector. 

We suppose for simplicity that the observations are identically 

distributed. The test statistic involves the multiple regression of 

(6. 5) on the set of p partial differentials of the form of (6. 6) where p 

is the number of nuisance parameters. Let 

F. 

  

f
log f(y,L).}- (6.15) a. - p a. 

3 

be the elements of the 1 x p vector X.. If we retain the convention 

in which subscript its refer to observed quantities, we have, by 

analogy with (5.2.3-) that 

X'X= 	(F , F ) 
"j 
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and 	XTY = 	C (F-G, 	) a 	a. j 

• The numerator of the test statistic is now written as 

n 
-1 

F.-G.-E (F-G) - X. (X1 X) X'Y 1 1 a 	i 

(6.16) 

(6.17) 

i=1 

with variance 

n flVa(F-G) - Y`X (X'X)-1  X'Y3 . 	 (6. 18) 

Note that (6. 17) is the correct version of equation (20) of 

Cox (1962) which is missing some terms. In the applications in the 

paper, the correct form has however been employed. 

It would be possible, in principle, to write down the general 

test statistic when a is a vector and the observations are not identically 

distributed. This results in even more rebarbative notation, whilst 

involving no new ideas. We proceed instead to an example of the use 

of the test statistic. 
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7. THE EXPONENTIAL DISTRIBUTION VERSUS THE LOG NORMAL 

DISTRIBUTION 

7. 1. Theory 

The purposes of this section are twofold: firstly to give 

an example of the use of the test statistic and secondly to study the 

small sample properties of the two forms which arose in the previous 

section. As an example we test the hypothesis that the distribution 

is exponential against the alternative that it is log normal. Thus we 

have 

f (y, a) = —
1 
 e 

-37a 
a (7. 1. 1) 

and 	g (y, .E) - 	1/2 exp 
y (2TrP2 )1  

(log y-31 )2  

212 
(7. 1. 2) 

For a full discussion of this problem see Cox (1962) and 

Jackscin (1968). The estimates of the parameters that will be required 

are n 	 n 
y 	1 . a ) P1 n 

i=1 	 i=1 

log yi  

 

n 
A 1 

and 13
2 

=
-
-
n 	(log yi  -)2 

i=1 

 

(7. 1. 3) 

We defined 2A as the limit to which 2 converged under the null hypothesis. 

Thus 
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pi, = E(log y) log a + 0u(1) 

and 	132, a  = Va(log y) 	I (1 ) 
	

(7. 1. 4) 

where ‘,91"(x) -  	etc. For tabulation of these functions and 

recurrence relationships see Abramowitz and Stegun (1965, § 6). 

Consider first the numerator of the test statistic (6. 8). _.If 

we do not specify which estimate of .2 we employ we can write 

T(Li) _ 2E'  i(&) - Gi  (E) - 	tF (ti) G(13a)]] 

. n 
(7. 1. 5) 

1 	Pz 	1 
= 	- j3i,  + 2 log (-7—) + 

1j2, nan 

n 

i=1 

(log yi-131)2  

2132  
• 7. 1. 6) 

• This expression does not involve the value of S'e directly because the 

exponential distribution is reproductive with respect to exponentiation. 

The asymptotic variance of (7. 1. 6) is 

,,,(1)  
n_ 	2 	t (1) • 	4 t4)1 (1):} 

0. 2834 

—13 	A ÷ (Pi  —P i  , ,ce) 2,a 

(7. 

, 	(7. 

1. 

1. 

7)  

8)  

n 

If we estimate 2 by .2a  we obtain 

1 	 1 
— Tz (f3(cd = 	-P 	A + 	„ n 	 1 	1,a 	y 0. )  

whereas, following Cox, the test statistic is 

7 
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1 	A 
I  T T  (I% = 1 -P1, A + 2  1°g 	

2 

) 
P2, A , a 

(7. 1. 9) 

To test the hypothesis that the observations are a random 

sample from the exponential distribution we compare the ratio of 

(7. 1. 8) or (7. 1. 9) to the square root of (7. 1. 7) with the standard 

normal distribution. Large negative values of the statistic are evidence 

of a departure from the null hypothesis in the direction of the log 

normal alternative. 

To compare the two forms of the test statistic it is convenient 

to rewrite them at greater length -as 

and 

A 

1 	 1 - 4P(1) 	(P1-131/0`l )  A  
—T` (13A)= P -P 	A  .1- I (1) 	+ 	q.). (1) n a 1 1,a 

A 
1 	A 	A 	1 	132 '. l'P T 	) I 
n- T`(13)=131-P1, «+2log 1+ 	*i)' (1) 

(7.1.10) 

(7.1.11) 

Since x > log (I+x), (7. 1. 10) is never less than (7. 1. 11), as 

would be expected from the general comparison Of the two alternatives 

given in (6. 13).. We have already shown that, in general, the two are 

asymptotically equivalent. In this example we have that both expres-

sions are of order (1//n) in probability, except for the last term of 

(7.1.10) which is of order (1/n). Under the null hypothesis we also 

have that 132 tends to 1)1 (1)— Then, for large n, we have approximately 

that 
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log (7.1.12) 

so that the two forms of the statistic are asymptotically equivalent. 

7. 2. Empirical Results 

A 
The small sample distribution of Cox's statistic T(P) was 

studied by Jackson (1968) empirically, by simulation on a computer; 

and analytically by study of higher terms in the Taylor's series expan-

sion of the statistic about (a, Ea). To compare the two forms of the 

statistic we use only the empirical method of simulation. 

Let u be a uniformly distributed random variable between 0 

and 1. Then y = -log u will have the exponential distribution (7.'1.1) 

with a = 1. To calculate the test statistics we calculate the estimates 

of the parameters from the relationships (7.1.3). The results of 

simulations for five different sample sizes are summarized as the 

first four moments of the distributions of the two statistics in Table 4. 

Table 4 

The most striking feature of these results is that the approach 

to asymptotic normality is disappointingly slow. The sampling moments 

of T(P) are in good agreement with those calculated by Jackson, who 

also studied the test of X = 0, the log normal null hypothesis. The 

test statistic for that case also approached normality gradually. 
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The results of Table 4 do not help in choosing between the 

two statistics. T(f3&) is unbiased, as is expected from 6 6, and is 

also preferable on the basis of variance. But the large values of the 

higher moments offset this - 	 are.nce. The histograms of'the results 

of 1000 simulations for n = 20 showed that the distribution of T(f3) was 

slightly skewed, whereas that of T(13A ) was virtually symmetrical and 

centred about the origin, with a few outlying high values. T(f3,a) is 

thus preferable apart from the outliers which are caused by values .  

of y near zero giving large values of p
2. These enter T(f3A) directly 

A 
whereas in (7. 1. 9) for T (f3) they occur as log f3 and so will have 

less effect on the value of the statistic. 

The sensitivity of the test statistics to small values of y 

follows from the form of the two distributions, the exponential being 

a maximum at the origin whereas the log normal goes to zero. It 

is however often an undesirable feature, as these very small values 

are liable to relatively large recording errors. This sensitivity 

also places very stringent requirements on the randomnumber gen-

erator used in these simufations, for values of u very close to one 

will have a disproportionate effect on the values of the statistics. 

Because of the lack of bias and the shape of the distribution, 

T(13& is to be preferred. In order to justify this preference it is 

necessary that the small sample properties of the two statistics be 
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studied for examples less critically dependent on a small subset of 

the observations. 



C
X
(y, log y! ) 

T = - 	logy'. 	n Ex(log y! ) 	
V 	)2_Y n EX 

(y) 
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Cx  (y, logy! ) 2  
In 	V (log y') 	 • 

V (y) X 

1/2 
 (8.2) 
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8. A TEST OF EQUIDISTANCE 

The tests of the previous section were designed to detect 

departures from one distribution in the direction of an alternative. 

We now consider the choice between two distributions which enter 

the test symmetrically. That is, we test the hypothesis X = 
1
/2. As 

an example we take as the constituent distributions the Poisson and 

the geometrical. The combined distribution f
X (y, 0) is given in 

(2. 6) • 

We define 
CO 

E 	H(y)1, = 	H(Y) f (y, 

y=o 

with similar definitions for variances and covariances. Proceeding 

as before we obtain the test statistic 

For testing the hypotheses X = 1 and X = 0, 8.2) reduces to the forms 

given by Cox (1962). 

To test the hypothesis X = 1/
2  we calculate expectations etc. 

from (8. 1) with X = 
1
/2, employing some suitable estimate of the 

nuisance parameter y. We could find this by maximizing the likelihood 

of the observations under the null hypothesis. In general, although 
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not in this case, the computation involved would be appreciable. An 

alternative is to use some locally consistent estimate which is easier 

to calculate. 

The simplest of such estimates is to assume that the value 

of the paramorar varies linearly with X, to estimate the parameter 

when X is zero and one, and to interpolate to give an estimate for 

other values of X. For the general combined p. d. f. (6. 1) this procedure 

is not possible, for the value of the likelihood does not depend on E 

-when X = 1. But in the' combined distribution of (2. 6), y is clearly• 

defined for both X = 0 and X = 1. In fact we have the estimates 

= 1 : Poisson : Y1 = y 

and 

A 
X = 0 : Geometric: yo = 

1+y 
(8.3) 

We therefore take as our estimate of y for some specified 

value of X 

A 
= X ;)

1 + (1-X) ;o . (8.4) 

As a numerical example we consider the simulated data 

given by Cox in his Table 2. There are 30 observations with ~y. = 26 
A 

and 	log y. = 5.950. The estimates of the parameters are yi = 0.8667 

and yo = 0.4643. For testing the hypothesis X = 1/2 we take the 
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average of these values, 0. 6655, as the estimate of 	For comparison 

the maximum likelihood estimate has the value 0. 6568 indicating that, 

for this example, the value of the parameter varies almost linearly 

with X, a result which was c. 	by estimation for a series of 

values of X. 

Given these values of X and y the quantities required for 

evaluation of (8. 2) can be calculated without difficulty as the series 

converge quite rapidly. The results of these calculations for X = 0 

and 1 as well as 
1
/2  are given in Table 5. There are some differences 

between these values and those given by Cox, although the general 

inferences remain unchanged. 

Table 5 

These results indicate that there is some evidence of departure 

from the hypothesis X. = 
1
/2  in the direction of the Poisson distribution, 

which agrees with the conclusions reached by Cox. In fact, the maxi- 

mum of the likelihood as a function of Y  and X lies on the far side of 

the Poisson distribution, away from the geometric. This is because, 

for these data, the expected numbers of zeroes and observations 

greater than two are both less for the fitted Poisson distribution than 

for the fitted geometric. The observed frequencies deviate from the 

Poisson estimates in the same way. 
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There are two features of this application which are of 

importance to the theory of these tests. One is the use of the estimate 

of y defined by (8. 4). If a combined ;.-noclel is such that 	the nuisance 

,parameters are estimable for X c... 	zero or one then linear 

1

inter- 

polation may provide satisfactory estimates for testing X = /2. The. 
• 

other feature is that the value of the test statistic appears to vary 
• 

linearly with X. We consider this point further in ..E1 9. 2. 
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9. QUANTAL RESPONSES 

9. 1. Theory 

In this section we consider the simplifications which occur 

when the observations take only the values 0 or 1 (Cox, 1962). 

At k levels of a variable x., often called the dose level, n. 
1 1 

experiments are performed. Of these U. are successful and therefore 

n. - U. fail. The observed number of success is distributed binomially 1 	1 

with index n.. The purpose of the experiment is to determine the 

relationship between the dose level and the parameter of the binomial 

distribution. 

We assume that there are two component models assigning 

probabilities 0. and 5Z. to success at dose level x.. In general these 

probabilities will also depend on vectors of nuisance parameters a and 

We take as the combined probability 

o 	
)

Xi Q
i

X y!
i
1-X

+(l-Q.
x 	1-X 
(14i) 

(9.1.1) 

Because the observations have only two possible values the integral 

in the denominator of the general combined p. d. f. (2. 2) reduces to 

the summation of (9. 1. 1). Calculation of maximum likelihood estimates 

of X, a and .2.  is thus greatly simplified and an example is given in 

J 9. Z. But first we develop the appropriate asymptotically normal 

test statistic. 
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It is convenient to consider the proportion of successes rather 

than the absolute number. Let 

P..= 	. 	 (9. I. 2) 

The log likelihood of the observations is 

L = 	n. -t F. logXi 	
(1-P.)log(1-0 	 (9. 1. 3) 

Differentiating with respect to X we obtain the quantity 

=
a L 

X 

, 0./(1-0.) 
ni(pi_oxi) 	) 	 (9. 1. 4) 

This is the sum of the differences between the observed and 

predicted proportions of successes weighted by the number of obser-

vations and the log odds ratio from the component probabilities. It 

forms the basis for an intuitively appealing test statistic. 

We require to adjust (9. 1. 4) for regression on the partial 

derivatives of the log likelihood with respect to the parameters of 

0. and 5Z.. 
1 	1 Let these be the scalar quantities a and p. Then 

L = X 
n.(P.1-0Xi. )0i 

 ' 
1  
0.(1-0.) 
1 	1 

(9. 1. 5) a 

and a is = (1-X 
n.(P.-0 Xi  ) i  (9. 1. 6) 

  

where 0.1  and similarly for crS.T . 

For testing the hypotheses X = 0 or 1, one or the other of 

these quantities will equal zero. Otherwise, in calculating the value 
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of the statistic, the constants X, and 1-X cancel and can be ignored. 

Because of the binary nature of the response, the calculation 

of variances and covariances •is greatly simplified. To calculate the 

covariance of two quantities Q and R which have the values Q
o and R  

when y = 0 and 	and R.J.  when y = 1 we have 

(Q, R) = Xi. (1-0Xi. ) (Q1 
 -Q o ) (R

1 
 -R 

o
) 	 (9. 1. 7) 

These results are sufficient for the construction of the statistic for 

testing the hypothesis that X has some specified value. In the special 

case when X = 1 we have that Q. = G. and the general results given 
„ 

here reduce to those of Cox (1962). 

If X = 1, the maximum likelihood equation for estimating a 

(9. 1.5) becomes 
A A 

n. (P.-0.) 
1 1 1  1 
(1-u.) 

1 	1 
0 	 (9. 1. 8) 

ss, 
In 0 7 we estimated p

a 	
findingby 	 the expected value of p when the 

true distribution was f(y, a). The analogous estimate in this example 

is found by replacing the observations in the maximum likelihood 

equation 	 hen if SA. is the al 

probability under the alternative model when 13 = PA we have a 
A 

n.(0. -) 
1 1 ai al = 0 (9.1.9) SA. (1-SA.) 

CY1 

as the relationship defining PA. 
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9.2. One and Two Hit Models  

We compare the test statistic derived from (9. 1. 4) with the 

asymptotic distribution of the likelihood ratio for testing hypotheses 

about X. We also study the dependence of the value of the statistic 

and of the estimates of the nuisance parameters on X. 

Suppose we have the alternative models 

and 

-ax. 
G. = 1 - e 	1  
1 

	

f3x. 	Px • 
= 1-e 	1 - 13x. e 	1 

The one hit model (9. 2. 1) represents the hypothesis that the probability 

of success depends upon the number of units receiving one or more 

impulses, whereas in (9. 2. 2) two or more impulses are required. 

Maximum likelihood estimates of a and 13 at various values 

of X for some data (Pereira and Kelly, 1957) are given in Table 6. 

Table 6 

An obvious feature of these results is that a and 13 do not 

vary linearly with X, •so that linear interpolation in parameter estimates, 

as in g 8, is not possible. As X —> 1 we have, from (9. 1. 6) that 13 

must satisfy 

n. , 
L.—• Is!5i.  (1 -p;) 

= 0 . 	 (9. 2. 3) 
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This is satisfied by p 	0 as X. —> 1 in such a way that the combined 

probability (9. 1. 1) remains defined. The solution of (9. 1. 9) for j3A 

gives a value of 0. 915. For X near 1 the probabilities Si  are small 

adjustments to the fitted Gi  which reduce the lack of fit. The value 

of f3 as X —> 0 reflects this, whereas PA  provides the best fit of the 
a 

second model to the estimates from the first. 

The overall maximum of the likelihood is when X = 0. 755. 

The differences in log likelihbod and the squared values of the test 

statistic are given in Table 6. Although these values do not agree 

closely, the conclusions to be drawn from the two tests are similar, 

namely that there is evidence of departure from the two hit model in 

the direction of the one hit model and no evidence of departure in the 

reverse direction. Linear interpolation in T for X = 1/2  gives a value 

of 0.833 which agrees closely with the value of X2  found by maximizing 

the likelihood. 

Further evidence of the linear dependence of T on X comes 

from the value of X for which T is zero. This 	756, nearly identical 

with the value of 0. 755 found by maximizing the likelihood. The 

implication is that, in the neighbourhood of the maximum, the likelihood 

is sufficiently, regular to be represented by a quadratic in X. Under 

this condition the values of the statistic at X = 0 and 1 may be expected 

to be sufficient for X. 
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9. 3. The Logistic Null Hypothesis  

One of the models more frequently used in the analysis of 

binary data is the logistic response curve in which 

exp ((xi-p.)/7 
G. 	  l+exp 

(9. 3. 1) 

We consider the test of the hypothesis X = 1 when the alternative 

specifies that the probability is 

We obtain maximum likelihood estimates of the nuisance 

parameters H. and 	by substitution in (9. 1. 5) which yields the 

relationships 

2.  xi. (P. - 0.) = 0 

and 	n. x. (P. 	Q) = 0 . 	 (9. 3. 2) 

	

1 1 1 	1 

Using the estimates H. and T the statistic (9. 1. 4) reduces to 

V 	- Zni  (P - ai) log { 	- 	J. 	 (9. 3. 3) 

The probabilities 0. do not enter this expression in the log odds ratio 

because the logistic model is reproductive with respect to exponen-

tiation. 

Now suppose that there are only 3 dose levels x i , x2  and x3. 

Whatever the alternative, the combined probability (9. 1. 1) contains 

at least three adjustable parameters X, p. and 	. It is thus possible 

to describe the data exactly and to obtain estimates of the combined 
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probabilities identical with the oaserved values of the P.. These 

estimates maximize the value of the likelihood. Using the log likeli-

hood ratio test of c) 4 we would compare this maximum value with 

the maximized value of the likelihood under the logistic null hypothesis. 

The asymptotically normal test of 3 5 is an approximation to this test, 

so that, from (9. 3. 3), the most powerful test of the logistic model 

against any alternative is 

T' = 	(Pi  - ti) 	log (Pi/(1-Pi
)J 
 , 

provided that there are only 3 dose levels. 	Now let 

(9. 3. 4)  

P
i (9. 3. 5)  Zi  = log (1 _1). ) 

when the test statistic may be written 

T''= 	n. 	(P. 	- .0.) Z. 	. 

	

1 	1 (9. 3. 6)  

The maximum likelihood equations (9. 3. 2) yield, upon rearrangement, 
A 	 A 

n1 (P1 -01 ) 	
n

2 
 (P

2 
 -0

2  ) 
	n3(P3-03) 

(9. 3. 7) 

(9. 3. 8) 

x3  - x1  x2 	x3 	 xl 	x2 

An alternative form of the test statistic is therefore 

T' a (x2-x3 ) Z1 	(x3-x1 ) Z2 	(x1-x2) Z3  . 

This is identical with a statistic given by Chambers and Cox (1967) 

for testing the goodness of fit of the logistic model. If there are only 
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three dose levels this statistic is essentially unique. For a greater 

number of dose levels, the form of the statistic must depend upon the 

particular alternative against which the logistic model is tested. 
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10. DISCUSSION 

The results obtained above demonstrate the usefulness of 

considering the properties of exponential combinations of p. d. f. Ts. 

What are the properties of other methods of combination? 

Two general points in the theory of tests for separate families 

require further investigation. 

1. Is the conclusion of 8 7 that T((3A  ) is preferable to T (P) justified? 

2. Establishment of conditions under which the value of the test statistic 

varies linearly with X. 

We have said nothing about the design of experiments to 

discriminate between models. This raises the problem of design 

in the presence of nuisance parameters. Other extensions would be 

to the study of time series and to multivariate problems. Finally, 

use of the combined p. d. f. may overcome the difficulty in the Bayesian 

analysis of problems of this kind in which prior probabilities have to 

be assigned to the models and prior distributions to the parameters. 
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TABLE 1 

Comparison of two parameter model and reduced model for dating 

5 works of Plato. 

Work 

X1 

Full Model 

X 

Reduced Model 

X 

-2 log 1 

T -0.046 0.057 0.250 93. 48).-Kx 

S 	-0.032 0.244 0.392 74.92xxx- 

C +0.089 0.291 0.404 7.72104. 

P -0.160 0.680 0.764 25.4 8 XXX 

F -0. 095 0.921 0.949 4. 29x 

Percentage points of )(21  

5o/0 
 3.84 x 

1°/o 6. 63 xx 

O. 1°/o 10. 83 xxx 
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TABLE 2 

Test of the irrelevance of R. in describing the 5 works. 

Work 

S 

T

C 

P 

F 

x2 
0. 055 

0. 241 

0. 301 

0. 649 

0. 897 

-2 log 1 

0. 241 

O. 135 

O. 174 

2. 804 

1. 151 

TABLE 3 

Percentage Distributions of Selected Sentence Endings 

Type of Ending 	R 	T 	S 	C 	P 	F 	L 

- (..) U U - 	4.6 	3.3 	2.3 	6.0 	4.0 	6.5 	8.8 

- U - (./ - 	6.4 	3. 0 	2. 1 	1. 3 , 	1. 8 	2. 8 	2.4 

U -- U- 	4.8 3.0 4.6 	5.3 	4.5 	5.3 	8.2 

- - - U - 	 4.1 	3.8 4.7 	2.0`6.8 	9.0 	8.8 
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TABLE 4 

Moments of the empirical distributions of the two statistics for 

testing the exponential distribution against the log normal 

n 

20 	T($) 

T(f36,) 

50 	T(f3) 

T QV 

Mean 

-0.411 

0.063 

-0. 269 

0. 058 

Variance 

0.706 

0.816 

, 	0. 863 

0. 942 

1.  

0.105 

2.200 

0.469 

0. 991 

13 

3. 758 

16. 3_04 

3. 261 

4. 535 

100 T(1i) -0.256 0.900 0.542 3. 968 

T (IV -0. 032 O. 934  1. 046 5. 465 

150 T (13
A 

 ) -O. 169 0. 861 0.461 3. 734 

T (j3c,;d 0. 020 0. 989 1. 212 7. 345 

250 T(f3) -0.104 0.925 0.369 3. 228 

T (13.L,) 0. 048 0. 955 0. 797 4. 159 

The results for n ='20 are based on 1000 trials, the rest 

from 500 trials. 
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TABLE 5 

Tests of the Poisson and Geometric Distributions 

X EX  (lny:) CX (y, lny! ) Vx (y) Vx (lny: ) 
- 

T 

0 0.394 1.309 1.618 1.363 1.948 

112 0. 301 0. 697 1. 131 O. 580 I. 318 

1 O. 233 O. 441 O. 867 O. 321 0. 606 

X = 0 is the geometric distribution and X = 1 the Poisson 
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TABLE 6 

One and Two Hit Binary Responses 

x a j3 T T 2  -2 log 1 

1 0.413 (0. 915) -0.795 0.633 0.868 

0. 755 0.508 0. 556 

0.5 0.531 0. 752 0.833x  0.694x  0. 632 

0 (0.403) 0. 905 2. 461 6. 057 4. 930 

The parameter estimates in parentheses are a^ and p,a,. The asterisked 

value of T for X = 
1
/2  is calculated by interpolation. The overall 

maximum of the likelihood is given by X = 0. 755. 
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PART 3 

OTHER PUBLICATIONS 

These notes give the background to the writing of the 

four papers which follow. 

1. 'The Design of Experiments for Parameter Estimations  is a 

generalization of a dissertation submitted for the Diploma of 

Imperial College in statistics. The work was supervised by Dr. 

W. G. Hunter. 

2. 'A Mathematical Basis for the Selection of Research Project' 

resulted from two years' work on operations research in the 

American chemical industry. Dr. Bobis, my group leader, 

was responsible for initiating the work and obtaining the co-operation 

and interest of the users of the method. The development of the 

model was a joint undertaking, in which I provided the mathematical 

formulation and the programming. Owing to iroblems with company 

clearance the published paper does not contain any numerical 

examples. 

3. 'The Use of Residuals as a Concomitant Variable' was intended 

to form part of this thesis, but was abandoned as the problem was 

not suitable for longer treatment. 
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4. 	The purpose of I  ConstrLned Maximisation and the Design of 

Experiments' is purely didactic. I hope it may help to reduce the 

amount of time spent searching over grids to find the maximum of 

functions. 
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This paper is concerned with the design of experiments to estimate the parameters 
in a model of known form, which may be nonlinear in the parameters. This problem 
was discussed in detail by Box and Lucas for the case where N, the number of experi-
ments, is equal to p, the number of parameters. The present work is an extension to 
cases where N is greater than p. Conditions are established under which, when the 
number of experiments is a multiple of the number of parameters, replication of the 
best design for p experiments is an optimal design for N experiments. Several chemical 
examples are discussed; in each instance, the best design consists of simply repeating 
points of the original design for p experiments. An example is also mentioned where 
the best design does not consist of such replication. 

1. OUTLINE OF THE PROBLEM 

We shall be concerned with the design of experiments to estimate the param-
eters in a model of known form when there is a single measurable response for 
each set of experimental conditions. As an example, suppose an experimenter 
is studying a system in which a raw material A reacts to form a product B 
which, in turn, decomposes to give a substance C. An experiment consists of 
measuring n, the amount of B present, after the reaction has proceeded for a 
time ti  . For each experiment this is the only response which is observed. If 
further it is known that both reactions are irreversible and first-order and that 
initially at time = 0 there is one unit of A present, none of B, and none of C, 
then the relationship between the response 77 and the time, will be of the form 

= ei 
0, 

02 
exP 	02Ei) — 	exp (— ()it)} 	 (1.1) 

—  
where 0, and 02  are the rate constants of the two steps of the reaction which 
could be represented schematically as 

A 	B 114 C. 
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The problem we are considering is: at what times should measurements of 77 

be taken in order to obtain estimates of the parameters 0, and 02  which are as 
precise as possible? 

In general the model, which need not be linear in either the parameters or 
the variables, may be written as 

= f(t, 0) 
	

(1.2) 

where 

= the true value of the measured response y, 
= the vector of k controllable variables (t, , E2 , • ' • , EL), 

0 •-= the vector of p parameters (0, , B2  , • • • , 

The program of N experiments may be represented by the N X k design 
matrix D = (LI. The ith member of the uth row of this matrix gives the level 
of the ith variable for the uth experiment. Frequently the values which the 
variables can take will be restricted by physical constraints on the system. 
Obviously in the example above, for instance, negative values of have no 
physical meaning. The subspace of the k-dimensional a;•-space defined by the 
constraints will be known as the region of operability R(E). Outside this region 
experiments cannot be performed. 

2. THE DESIGN CRITERION 

The approach we shall use in designing experiments in nonlinear situations 
is that of Box and Lucas (5). In their paper, they examine applications of the 
method to several models (including the preceding example) when the number 
of experiments equals the number of parameters; that is, when N = p. In Sec-
tion 3 the method is applied to two examples when N is greater than p. In the 
present section, the logic of the design criterion is presented, followed by a 
simple example of its application. 

The particular nonlinear functions which we shall consider arise from develop-
ing models based on chemical kinetics. In such situations, it is usual for the 
experimenter to have some idea of the values of the parameters before the experi-
ment commences. This is also, of course, generally true in fields other than 
chemical kinetics. We assume that the response function is approximately 
linear in 0 near these preliminary estimates 0°, that is, that it can be expanded 
to a Taylor's series in (0 — 0°) to give 

=-:-- f(t, 0°) + 'Eel(, 0) 
aei 

Now let 

z = {z,j = 	, 0) — 	0°)I, 

X = {x,,,} — 	ao*  af(„ , 0)  

B = R.} ={8; — 0°}. 

0?). 
	 (2.1) 

0.4° 

(2.2) 

(2.3) 

(2.4) 



and 

E(Yu 	n)(Yr 	n.) = {Cr2  
U =4  . 

U V 
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The subscript u designates the run number, u = 1, 2, - • • , N. Under these 
conditions the experimental results can be reduced to the matrix form Z 	XB. 

The problem is therefore transformed to that of finding the most efficient 
design in the X-space to estimate the vector of coefficients B in a linear model, 
where X is an N X p matrix of partial derivatives of the response. Each xi,, 
will, in general, be a function of the vector of the preliminary estimates of the 
parameters 0°  and also of the vector of process variables t. . The vector 0°  
may represent initial estimates of the parameters available before any data 
are obtained from the current investigation, or it could be composed of the 
current best estimates of the parameters (say, least squares estimates) based 
on some data that have already been collected. 

Due to experimental error, the measured response of the uth experiment 
will not be 77u  the true response but rather y. where 

Yu = 	eu • (2.5) 

Assuming that the errors have zero mean, are independent and have constant 
variance, 

E(Yu) = n. = f(, 

Under these conditions if the model is in fact linear in the parameters it is 
known that the least squares estimates 6 resulting from minimizing the sum 
of squares 

{Yu — f( 	 0)}2 	 (2.6) 

have the variance-covariance matrix (X' X)-'Q2. If, further, the errors are 
normally distributed, the boundary of a region with confidence coefficient 1 — a 
in the space of parameters is formed by the values of 0 which satisfy the rela-
tionship 

(0 — 6)'X'X(0 — 6) = epFa (p, v) 	 (2.7) 

where Fa  (p, v) is the a percent point of the F-distribution with p and v degrees 
of freedom and 82  is an independent estimate of the error variance cr2  based 
on v degrees of freedom. The boundary of such a region is hyper-ellipsoidal, 
the volume of the hyper-ellipsoid depending upon the value of the determinant 
I X' Xl. For given values of F a (p, v) and s, the volume will decrease as the value 
of the determinant increases. In the nonlinear case these results are approxi-
mately true, the accuracy depending upon the degree of nonlinearity of the 
function. 

If it be assumed that the values of all the parameters are of equal interest 
to the experimenter, a reasonable design criterion is that it should minimize 
the volume of the confidence region for the estimates of the parameters. This 
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is achieved exactly if the model is linear and approximately if the model is 
nonlinear by choosing the experiments to maximize 1X'XI. This criterion is 
directly related to Wilks' generalized variance. 

The design criterion is, therefore, to find that set of N experimental condi-
tions which maximizes AN where 

E 	E x,„x,„ • • • E 

E xi.x,„ E xiux2Y 	• E xiux„„ (2.8) 

	

N 	N 	 N 

E Xralts E Xvig2ta • • • E u 

	

u-1 	u-1 	 u..I 

Because of the nature of the partial derivatives and the constraints on the 
variables which define the region of operability R (k) , not all values of x" will 
be attainable. Those values which are available for experimentation will be 
said to define the attainable region R(x), a subspace of the p-dimensional X-
space. The design problem then becomes that of selecting N points in R(x) 
which maximize AN . 

For the special case where the number of experiments is equal to the number 
of parameters, X is a square p X p matrix and 1X/X1 = 1X12  where 

x11 	x21 	• • • 	X pi 

	

X11.4 x2u 	Xpu 
	 (2.9) 

XI, X2, • • • X„ 

In the p-dimensional X-space, the value of this determinant is proportional 
to the volume of the simplex formed by the origin and the p experimental 
points. Thus, an optimal design will be one for which the volume of the simplex 
is maximized. It follows, then, that for an N = p design to be optimal, the p 
experimental points must lie on the boundary of R(x).  

In some cases, more than one set of experimental conditions may give the 
same value for the determinant. If this happens, the sets of experimental designs 
will be considered equally good, regardless of the shapes of the approximate 
confidence regions to which they give rise. 

2.1. A Linear Example 
In order to illustrate the use of the design criterion and the geometrical 

interpretation of the determinant, a simple linear model will be considered. 
Suppose that 

TI = 01E1 + 02E2 (2.10) 

1 X 1 = 

QN = IX,Xi = 
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with the restrictions that 

0 < t, < 1 and 0 < < 1. 

The region of operability R(E) is therefore the unit square, sides parallel to the 
axes, with one corner at the origin. 

Applying the design criterion, we obtain 

and 

.62 = 

X2 

1.1.2 

1121 

= — 00 i  

an  
= a 02 

t122511

1t

21 

E1.222 

s. 
42 

12t22 

,E222 

(2.11) 

(2.12) 

(2.13) 

In the linear case, preliminary estimates of the parameters are not needed 
because the xi's and hence the determinant A are not functions of the O's. 
In this case, the X-space and 5-space are identical. From the geometrical 
interpretation of the determinant when N = p, the optimal design for two experi-
ments consists of two points in R(x) which, together with the origin, form a 
triangle of greatest area. These points must be somewhere on the boundary of 
R (x). For this example, there are an infinity of designs giving the same maximum 
value of the determinant, namely one experiment at (x1  , x2 ) = (0, 1) and the 
other anywhere between and including (1, 0) and (1, 1) or one at (1, 0) and the 
other anywhere between and including (0, 1) and (1, 1). All these designs give 
a value of 02  equal to one. 

2.2. The General Design Procedure 
If, as was not the case for the preceding example, the model is nonlinear, it 

is necessary to have preliminary estimates of the parameters in order to apply 
the design criterion. If the estimates upon which the design is based are poor, 
the design may be inefficient, the robustness of the criterion to poor estimates 
depending upon the particular model being studied. Hence, in most cases in 
order to obtain the maximum information per experiment, p experiments could 
be performed, from which the parameters could be re-estimated. Thereafter, 
the experiments could be designed one at a time, using the current best estimates 
of the parameters, which could be recalculated after each experiment. This 
sequential procedure has been discussed elsewhere (4). 

In what follows it will be assumed that N experiments, where N is no less 
than p and may be greater than p, are to be designed on the basis of the pre-
liminary estimates 0°. The results are not analyzed until all N runs have been 
performed. Although ordinarily one would like to proceed sequentially and 
analyze the results as they are obtained so that all available information would 
be used in designing the next experiment, there are situations in which this is 
not feasible. In other words, it may be inefficient to go to the computer after 
each experiment to re-estimate the parameter values and determine the best 
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settings for the experimental variables for the next experiment. In situations 
of this kind, it will be reasonable to design experiments more than one at a time 
at each stage. For example, many practical examples exist where N runs can 
conveniently be made in one day and the computer can then be used overnight 
to provide new estimates for the parameters. In these circumstances, the com-
puter could also be used to find the optimal set of new design points for further 
runs, perhaps to be performed the following day. There are situations, then, in 
which it is the best policy to design experiments in groups of N > p, the case 
we discuss in this paper. 

3. APPLICATION OF THE DESIGN CRITERION 

3.1. Two Consecutive First-Order Reactions—Model 1 
In order to illustrate the use of the design criterion in a nonlinear situation, 

we return to the first example we mentioned, one that was studied in considerable 
detail by Box and Lucas (5). The model describes the amount of B present 
after the reaction A —* B 	C had been underway for some time i, . Suppose 
that the preliminary estimates of the parameters are 0°, = 0.7 and 02 = 0.2. 
Then 

1 .4{exp 	— exp ( —0 5t1)}, 	 (3.1) 

x, = 00, = (0.8 + 1.,%) exp 	— 0.8 exp (-0.2E0, 	(3.2) 

a X2 = 	= (2.8 — 1.4E) exp (-0.2E1) — 2.8 exp (-0.7E,). 	(3.3) ao 

These three functions of Ei  are plotted by Box and Lucas. 
Using a computer function maximization routine, the optimal design for 

two experiments was found to consist of terminating the reaction at times of 
1.23 and 6.86 units, giving a value of 0.6568 for the determinant A2 . In order 
to appreciate the design situation, it is profitable to consider the X-space as 
shown in Figure 1. For any value of t i  the values of x1  and x2  are fixed, so that 
R(x) is a curved line. The points of the optimal design, shown by heavy dots 
labelled 1 and 2, together with the origin, form the triangle of maximum area 
within R(x). 

Since there is only one controllable variable, the value of the determinant 
for N experiments is a function of only N variables, the times at which the runs 
are terminated. The optimal designs for various numbers of experiments from 
3 to 20 were also found using a computer function maximization routine. The 
results are shown in Table 1. In each case, the optimal design was found to 
consist of experiments solely at those two times which form the optimal design 
for two experiments. When N was even, equal numbers of experiments at each 
point maximized the value of the determinant. For odd N an extra experiment 
at either of the two sets of conditions gave the same maximal value of the 
determinant. These results were checked by performing the maximization 
starting from a variety of randomly chosen points. 



N AN = 1.23 ti 	6.86 

Number of experiments at 

1 

(2) 
2 
[32) 

3 
5 

10 

1 
(21) 

2 

(32) 
3 
5 

10 

0.6568 
1.3135 

2.6271 
3.9406 

5.9110 
16.4193 
65.6774 

2 
3 

4 
5 

6 
10 
20 
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0.4 

0.3 

0.2 

0.1 

FIGURE 1 
R(x) for Model 1. Heavy dots indicate the optimal design, dashes indicate values of 

3.2. The Catalytic Dehydration of Hexyl Alcohol—Model 2 

The result that the optimal design for N = np (n = 2, 3, 4, • • .) experiments 
consists of n replications of the best design for p experiments was obtained 
with a second nonlinear model. 

TABLE 1 
Optimal design for up to 20 experiments for Model 1 
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The rate n of catalytic dehydration of certain tertiary and long chain primary 
alcohols to an olefin and water can be written as 

030,6  
— 1 ± 	+ 02E2 

(3.4) 

where 
= the partial pressure of alcohol, 

t2 = the partial pressure of olefin, 
0, = the adsorption equilibrium constant for alcohol, 
02  = the adsorption equilibrium constant for olefin, 
03  = the effective reaction rate constant. 

This model was used elsewhere (4) in an example illustrating a sequential design 
procedure. 

Each experiment involves setting values of the partial pressures ti  and t2 
and observing the rate n. Since there are three parameters in the model, R(x) 
is three-dimensional and finding the optimal design for three experiments 
involves a search in nine dimensions. To facilitate visual presentation of the 
results and to better appreciate their significance, we decided to proceed as if 

XI  

0.06 

0.05 

0.04 

0.03 

0.02 

0.01 

X2 
-0.005 	 -0.01 

FIGURE 2 
R(x) for Model 2, the catalytic dehydration of hexyl alcohol. The conditions for the 

optimal design are shown by the heavy dots. 
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the value of 03 were known, and experiments were to be performed for the 
estimation of 0, and 02 • 

Following reference (4), we take as our initial values of the parameters 
0, = 2.9, 02  = 12.2 and 03 (known) = 0.69 with the following constraints 
defining R(): 0 < < 3 and 0 < t2 < 3. Then 

2.00%  
— 1 + 2.9Zi 	12.23 

0.69M1 ± 12.2W 

22  — (1 + 2.91, + 12 .%)2.  

For these parameter values, the resulting R(x) is shown plotted in Figure 2. 
Loci of constant Zz  are straight lines passing through the origin, whereas loci 
of constant, are curved. The optimal design for two experiments, shown by 
heavy dots in the figure, was found to correspond to the following conditions: 

Experiment 	 2 

(1) 0.3448 	0 
(2) 3.0 	0.7951 

These gave a value of 5.6903 X 10-7  for A2 . From Figure 2, it can be seen that 
these conditions define the triangle of maximum area within R(x) when one 
corner of the triangle is the origin. 

The conditions for optimal designs for up to 10 experiments are presented 
in Table 2. Here N = np (n = 2, 3, 4, 5). In each case the optimal design again 
consists of repeating the two conditions of the optimal design for two experiments. 

TABLE 2 
Optimal design for up to 10 experiments for Model 2 

x, (1 + 2.9%, + 12 .2t2)2  

(3.5) 

(3.6) 

(3.7) 

Number of experiments at 
conditions 

N AN X 107  (2) (1) 

	

2 
	

1 

	

3 
	1 

	

4 
	

2 

	

5 
	

(2) 
(3)  

	

10 
	

5 

where the settings of the process variables for the experi-
mental conditions are 

Condition 	 t2 
(1) 0.3448 	0 
(2) 3.0 	 0.7951 

2 
2 

(2) 
5 

5.69 
11.4 
22.8 
34.1 

142.3 
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4. CONDITIONS FOR REPLICATION 

From the preceding examples, it seems that the optimal design for N = np 
experiments, n = 2, 3, - • • , may always consist of replications of the optimal 
design for p experiments. This conclusion has also been suggested by Behnken 
(1) in connection with a model arising in the study of copolymerization. 

In this section we shall show by a counterexample that replication of an 
optimal p-point does not always give the best N > p design, and then proceed 
to establish conditions on R(x) under which replicated designs are optimal. 

4.1. A Counterexample 
For the linear model 

n = (U, + 0212 	 (4.1) 

with the constraints that both controllable variables have values between zero 
and unity, the attainable region R(x) is a unit square. One of the many opti-
mal designs, all of which give a value of one for A2 , consists of experiments 
at points (x1  , x2 ) = (0, 1) and (1, 0), that is, at unity on each of the coordinate 
axes. The corresponding X matrix is 

X = [1  (4.2) 
LO 1  

X'X = [1 0].  (4.3) 

We now consider two alternative designs for six experiments. For the first 
design the preceding design is replicated three times; thus 

X'X 	 (4.4) [3 0 

0 31 
whence 

A, ------ IX`X I = 9. 

For the second design, an experiment is also performed at the point (xi  , x,) = 
(1, 1). The X matrix for these three experiments is 

x= 

and 

X'X = 

Repeating this design once gives six 

X'X = 

2 	11.  

1 	2 

experiments 
[4 2] 

2 4 

(4.5) 

(4.6) 

in all for which 

(4.7) 

0 1 
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and 
Dg  = 12. 

In this case, the first design for six experiments is clearly poorer although it 
does consist of replications of an optimal design for two experiments. In the 
next section we establish conditions on R(x) for replication to provide optimal 
designs. 

4.2. A Criterion for Replication 
In Section 2 we mentioned that when N = p, X is a square p X p matrix 

and Ai, = I X'XI = XL2, where the uth row of X consists of the co-ordinates 
of the uth experiment in the p-dimensional X-space. Now suppose that the 
conditions for the uth experiment were altered as follows. A new X matrix is 
formed by deleting the uth row and adding one other, the (p ± 1)th. Denote 
the determinant of this matrix by 	. The determinant of the original 
matrix would, under this scheme, be denoted by 3„,_(„1)  . We shall use this 
nomenclature to state two theorems, the proofs of which are given in the ap-
pendix. 

Theorem 1. A necessary condition for the optimality of a p-point design is 
that it shall consist of points on R (x) such that R (x) does not lie outside the 
p-dimensional parallelepiped defined by the p pairs of planes 

52p+1,--u 	4611,7 	u= 1  2, • • • p• 	 (4.8) 
The uth of these pairs of planes passes through the points u and u' (the reflection 
of u in the origin) and is parallel to the plane defined by the origin and the 
remaining (p — 1) experimental points. 

Theorem 2. A sufficient condition for the optimal design for N = np ex-
periments, n = 2, 3, • • • , to consist solely to replications of p points which 
are optimal for N = p is that R (x) be contained by the p-ellipsoid E, the locus 
of points (p 	1) satisfying the relationship 

E 	Ap• 	 (4.9) 
4-1 

The p-ellipsoid E, a transformation of the unit p-sphere centered at the origin, 
passes through the p experimental points, at each of which the equation of the 
tangent plane to E is given by Equation 4.8. 

When E is transformed so that it becomes the unit p-sphere ED , the p points 
defining ET  are a rotation of the simplex consisting of points at unity on the 
p axes. In terms of the weighing designs discussed by Hotelling (6) and Mood 
(7), such a design is equivalent to weighing p objects one at a time on a spring 
balance. These designs are also related to the first-order rotatable designs 
described by Box (2). 

Consider the first-order polynomial which may be written as 

77 = 01 	E 04, 
	 (4.10) 
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x, = — an 	, 
ao,= 

(4.11) 

ao 
877 = 2, • • • gy p, 	 (4.12) 

, 

The optimal design for p experiments consists of points at the vertices of an 
orthogonal simplex in the p-dimensional X-space. Alternatively, since x1  = 1 
for all design points, the design can also be considered as forming a simplex 
in p — 1 dimensional space. The optimal design will form a regular simplex 
in p — 1 dimensions. 

4.3. Linear Model Example 
Before applying the preceding results to some nonlinear models, we shall 

apply them to the linear model, Equation 4.1, mentioned earlier. 
The equation of E was defined as the locus of points satisfying the relationsip 

E= AD • (4.13) 
141 

When p = 2 this may be written as 

X11 	x21 
2 

x12 	x22 
2 

x11 	x21 
2 

(4.14) 
X13 	X23 X13 	X23 X12 	X22 

where the point (x13x23) lies on E. Multiplying out, we obtain 

(x 21x2)43 	(x11 	 42)43 — 2(xi1x21 4- x12x22)x13x23 

(x11x22 — x12x202  (4.15) 

which is the equation of an ellipse centered at the origin. 
One of the possible optimal designs for the linear model consists of experiments 

at the points (x1 , x2) = (0, 1) and (1, 0). Substituting these values in the equa-
tion for E gives 

x2, + x22  = 1 	 (4.16) 

as the boundary within which R(x) must lie for the conditions of Theorem 2 
to be satisfied. As can be seen in Figure 3(a) the point (x1  , x2 ) = (1, 1) lies 
outside this boundary, so the conditions are not satisfied. We have already 
shown by example that replications of this design do not yield an optimal 
design (Section 4.1). 

If we suppose instead that the design consisted of experiments at the points 
(1, 0) and (1, 1), then the equation of E becomes 

xi + 24 — 2x1x2  = 1. 

Again, part of R(x) lies outside E as can be seen in Figure 3(b) and, although 
this design is optimal for two experiments, replications of it are not optimal 
for any even number of experiments. 
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(a) 	 (b) 

FIGURE 3 
The ellipse E for two designs for the linear model 77  = 8, , ± 02E2. 

5. APPLICATION OF RESULTS TO NONLINEAR MODELS 

5.1. Two Consecutive Irreversible First-Order Reactions—Modell 

As a first example, we return to the first model discussed in this paper. The 
model describes the amount of an intermediate product resulting from an 
irreversible first-order reaction, this product itself being subject to first-order 
decay. The optimal design consists of experiments at times of 1.23 and 6.86 
units. The corresponding values of x, and x2  are: 

Experiment, xi  X2 
1 1.23 0.4406 —0.3405 
2 6.86 —0.1174 —1.7485 

The equation of E is therefore 

4.8324 + 0.21164 — 0.1682x1x2  = 1. 

The ellipse E is shown plotted together with R(x) in Figure 4. It can be seen 
that R(x) is contained by E so that, as a result of the second theorem, optimal 
designs for an even number of experiments must consist of replications of the 
two-point design. We have already shown by example that this is so. (Table 1). 

5.2. The Catalytic Dehydration of Hexyl Alcohol—Model 2 

It was shown in Section 3 that the optimal two-run design for two-parameter 
Model 2 (Equation 3.5) consists of the following experiments: 

Experiment 	 XI 	 X2 

1 0.3448 0 0.0595 0 
2 3.0 0.7951 0.0588 —0.0127 

The attainable region R(x) for this model is plotted in Figure 2. In Figure 
5 the boundary of R (x) is shown together with E, by which it is contained. 
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0.4 

0.3 

0.2 

0.I 

-0.1 

FIGURE 4 
R(x) and E for Model 1. 

This is in agreement with Theorem 2 and the results of the searches for optimal 
designs given in Table 2. 

5.3. Two Other Nonlinear Models 

Our results were applied to two further nonlinear models occurring in the 
literature. One is that developed by Behnken (1) in his study of binary co-
polymers formed from monomers of differing activities. The other, a first-order 
decay model with rate a function of temperature, is described by Box and Lucas, 
who show R(x) in their Figure 4. In both cases R(x) is contained by E and the 
optimal design for np experiments was found by computer search as before 
to consist of n replications of the optimal design for p experiments. 

6. AN ITERATIVE APPROACH TO THE OPTIMAL DESIGN 

With the preceding examples, the main part of this paper is complete. In 
this section we describe an iteration leading to the optimal design for p experi-
ments. 
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Since there are k controllable variables, the value of the design criterion for p 
experiments is a function of p X k variables. If p and k are not both small, 
identification of an optimal design can prove difficult. The iteration which we 
suggest replaces the search in p X k dimensions with a series of optimizations 
in k dimensions. 

The optimal design consists of a set of points which form a simplex of maxi- 
mum volume within R(x). If p 	1 of the points are fixed, finding conditions 
for the remaining experiment which maximize di, requires an optimization in 
only k dimensions. Once this point has been fixed, finding the best conditions 
for another point cannot lead to a smaller value of the determinant and will 
usually lead to a greater one. The process is repeated for each of the design 
points and then continued until the optimal design is achieved. 

For this iteration to succeed, it is necessary that the boundary of R(x) be 
reasonably well behaved. For each of the four models studied, the boundary 

X I  

FIGURE 5 
The boundary of R(x) and E for Model 2. 
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is well behaved. Even in cases where R(x) is poorly behaved, selecting starting 
conditions at random and repeating the process several times should lead to a 
good design. 

As an example of this method, we once again consider the example of two 
successive first-order reactions, A 	B 	C. Suppose, as shown in Figure 6, 
that the first guess of an experimental point was at a time of 30 units. Then 
the best conditions for a second experiment would be at a time of 1.17. Geo-
metrically, this is the point where the tangent to R(x) is parallel to the vector 
from the origin to the first point. The second iteration finds the best condition 
for a second experiment when one is performed at a time of 1.17. This at 6.85 
units. The third iteration gave a design consisting of experiments at times of 
1.23 and 6.85 units, which is close to the optimal design. The results for this 
and another series of iterations are shown in Table 3. In both cases the optimal 
design was achieved in three iterations. 

The rate of convergence will depend upon the shape of the boundary of R(x). 
If R (x) were triangular, only two iterations would be needed, whereas if R(x) 

6.85 

FIGURE 6 
An iterative approach to the optimal design for Model 1. 

Pairs of similarly dashed lines are parallel. 



t11 	 t12 As 

1.17 	30.0* 
1.17* 	6.85 
1.23 	6.85* 

0.0019 
0.6551 
0.6568 

Case 1 

2.0* 	6.96 
1.23 	6.96* 
1.23* 	6.86 

0.4841 
0.6565 
0.6568 

Case 2 
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TABLE 3 
Iterative approach to the optimal design for two experiments for Model .1 

* In each step in the iteration, the asterisked value was kept constant, and the value of Ei  
which gave the optimal design in combination with the fixed value was calculated. 

approximated E, convergence would be much slower. However, in the latter 
case, if convergence were not completely achieved, the designs would only be 
fractionally less efficient than the optimal design. 

7. CONCLUSIONS 

We have discussed the situation in which experiments are to be performed to 
estimate the p parameters in a model of known form. We have assumed that 
a given number of experiments are to be run before any results are available 
for analysis. Under these conditions we have given a necessary condition for 
the optimality of a p-point design and established a sufficient condition for 
replication of the optimal p-point design to be optimal for N = np experiments. 

A result of some practical importance that suggests itself on the basis of this 
work is that in many cases in order to select the best N > p experiments it 
will be sufficient simply to find the best set of p experiments, the optimal design 
consisting of replications of these p experiments. The function A, then, needs 
to be maximized in only p X k dimensions instead of N X k dimensions. In 
some circumstances this reduction in the number of dimensions may represent 
considerable savings. An iterative search procedure for finding the best set 
of p experiments has been presented. 

APPENDIX 

Proofs of Theorems. 
Theorem 1. A necessary condition for the optimality of a p-point design 

is that it shall consist of points on R(x) such that R(x) does not lie outside the 
p-dimensional parallelepiped defined by the p pairs of planes 

= A„, 	u = 1, 2, • • • , p. 	 (A.1) 

Proof. When N = p, the value of the design criterion A„ = X12  is propor-
tional to the square of the volume of the simplex formed by the origin and the 
p experimental points in the X-space. Disregarding, for the moment, any restric-
tions on the conditions of experimentation due to the boundary of R(x), con- 
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sider the locus of points (p ± 1) such that experimenting at the original p 
points is as good as experimenting at the set with the point u replaced by the 
point (p + 1). Using the nomenclature of Section 4.2, the locus of the point 
(p 	1) will be given by those values satisfying the relationship 

= 	= 
	 (A.2) 

The locus will be such that the volumes of the simplexes formed by the two 
sets of points will be equal and will consist of the pair of planes through the 
point u and its reflection in the origin, parallel to the plane defined by the origin 
and the other (p — 1) points. If R(x) is such that, for some u, it lies in part 
outside this pair of planes, then the squares of the value of the determinant 
formed by a point in that part of R(x), the other (p — 1) points and the origin 
will be greater than A„ , and so the original p points cannot form an optimal 
design. 

Theorem 2. A sufficient condition for the optimal design for N = np ex-
periments, n = 2, 3, • • • , to consist solely of replications of p points which are 
optimal for N = p is that R(x) be contained by the p-ellipsoid E defined by 
Equation 4.9. 

Proof. When the number of experiments is greater than the number of 
parameters, the design criterion AN  has a geometrical interpretation (8). The 
determinant AN  is equal to the sum of the squares of the values of the 
N!/p! (N — p)! determinants formed by taking the N rows of X p at a time, 
where the absolute value of each determinant is again proportional to the volume 
in the X-space of the simplex formed by the origin and p of the experimental 
points. Since our object is to maximize the value of AN , it follows that any 
optimal design must consist of points on the boundary of R(x). 

Now consider a design for p + 1 experiments. The matrix X is (p + 1) X p. 
The determinant A„.,., will equal the sum of p 	1 terms, each of which will be 
the square of the determinant of the p X p matrix formed by removing one 
row from X. Thus we have 

D+1 
Ap+i 	E (52„+,._.• 	 (A.3) t.1 

Suppose that the first p experiments are fixed, giving a value of A, for the 
determinant. Repeating any one of these points will give a value of 20, for 
A„i  . Then the locus of points (p ± 1) which, together with the original design, 
give the same value of the determinant as replicating one of the original points 
is given by those values satisfying 

r+1 

	

E 62„.1._. = 2A, 	 (A.4) 

or, since A, = (5„2 4.,._ („+,)  , 

u-i 
(592+1._u  = 

Qy 
	 (A..5) 

which is the equation of E. Comparison of Equations A.5 and A.1 shows that 
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E is contained by the pairs of planes, which touch E only at the points u and u'. 
Therefore, the set of p points defining E is such that the tangent to the hyper-
ellipsoid at each point is parallel to the plane defined by the origin and the 
other p — 1 points. These points then form a set of conjugate points, and the 
volume of the simplex formed by them and the origin is a simplex of maximum 
volume of this kind within E. This proves that, when R(x) is contained by E, 
the design is an optimal design for N = p experiments. 

When E is transformed so that it becomes a p-sphere Er, Rr(x) the trans-
formed R(x) will be contained by ET , the transformed E, and the p points 
defining ET  will be the vertices of an orthogonal simplex, the p-dimensional 
analogue of a right-angled triangle. The problem is thus reduced to that of 
designing experiments within a p-sphere. It has been shown by Box and Hunter 
(3) that, for a given N, any design consisting of points on a sphere at the vertices 
of the regular solids in any combination and in any absolute or relative orienta-
tion will have the same maximum value for the determinant AN  , provided 
N can be so divided. Points at the vertices of the orthogonal simplex are members 
of this class, so that when N = np, replication of this design will give an optimal 
design. If R D  (x) lies inside ET  at all points other than the p defining ET  (and 
hence if R(x) lies inside E at all points other than the p defining E), then the 
optimal design will consist of replications of these p points. The proof is thus 
complete. 
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A Mathematical Basis for the Selection 
of Research Projects 

ANTHONY C. ATKINSON AND ARTHUR H. BOBIS 

Abstract—A method is presented for determining the money to 
be spent on product oriented research programs. The method is 
used by American Cyanamid's Organic Chemicals Division. 

INTRODUCTION 
URING the past few years many articles have 
appeared describing mathematical models in-
tended for use in evaluating research projects. 

These can be broadly separated into two categories: 
simple models that treat the process of research as if it 
were static, and complex models that deal with research 
as a dynamic problem. In reviewing this literature, 
Baker and Pound [11 state that the simple models 
ignore what is perhaps the essential aspect of the prob-
lem and are, therefore, of questionable utility, while the 
more complicated models require so much information 
that their usefulness can never truly be tested. With this 
paper, we are adding to the proliferation of methods and 
models. But we believe we have chosen a course that 
avoids the previous inadequacies and that, while dealing 
with the real problem, treats it in such away as to en-
courage use of the method. The justification for our 
belief is that the model has been developed in consul-
tation with groups of researchers, and that management 
finds the results helpful in evaluating and planning re-
search efforts. Our point of departure for this work was 
the paper by Hess [21. 

The purpose of this paper is to describe the mathe-
matics on which the model is based. By mathematics we 
mean both the algebra and the philosophy that led to the 
particular algebraic formulation. The description is in 
five parts: 

1) the probability model 
2) commercial information 
3) the rate of expenditure 
4) optimization 
5) simulation. 

An Appendix describes the distribution used to fit data. 
In building a mathematical model of the research 

process, we have had to make use of estimates of such 
quantities as the probability that a project will succeed. 
Although there is no means of checking such a number, 
and also no "frequentist" interpretation of such probabil- 
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ities, we have handled subjective probabilities as though 
they described recurring events. Also, no attention has 
been given to problems arising from optimistic or pessi-
mistic estimations of such quantities as sales. We have 
worked on the assumption that decisions have to be 
made, usually on inadequate data, and that they will be 
Made intuitively on the data, whatever its quality. Any-
thing that can be done to quantify the bases for these 
decisions and to demonstrate the logical consequences of 
the assumptions is a step in the right direction. 

Twice a year the research managers in the American 
Cyanamid Company's Organic Chemicals Division col-
lect data of the kind described in this paper and submit 
it for analysis. This is done at the time budgets are 
being prepared and again when we are reviewing the 
results of these expenditures. The computer evaluation, 
which is an allocation of research funds across the 
several projects, is used as a guide for the eventual 
budget. The analysis often points out shortcomings in the 
information. At this point the necessary modifications 
are made and the procedure repeated until there is 
general agreement that the analysis is based on the best, 
possible information. Although the computer allocation 
and the eventual budget need not be identical, serious 
departures between the two must be examined. 

As will be shown, the model is general; there is nothing 
that is specific to the needs of the American Cyanamid's 
Organic Chemicals Division, nor is its use restricted to 
the chemical industry. It has been formulated so that it 
can be applied to those research projects whose objective 
is either the invention of new products or modification of 
existing products that are sufficiently well defined that 
sales and selling price are estimatable. 

The model as described limits the projects that are 
considered to those where technical success or failure will 
be determined within the ensuing five years. It has been 
our experience that in the product-oriented research 
projects that have been considered, few have been 
eliminated from the analysis on this basis.. 

The analysis that is described is based on accumulated 
net profits over the next 11 years. This choice is arbitrary 
and some other basis could have been chosen. Another 
choice would have been to calculate the returns from 
each project over the product's expected life. The choice 
of 11 years has proven satisfactory. Returns beyond the 
eleventh year are subject to increasing variation, while 
discounting'severely reduces the revenue. The choice of a 
shorter basis would, it is felt., unduly penalize the long-
range project. 

ID 



B si  
[1 	exp ("Y — (3.1.) (7) 

ATKINSON AND BOBIS : SELECTION OF RESEARCH PROJECTS 	 3 

I. THE PROBABILITY MODEL 

The distribution of the cost of completing a project is 
defined by the least, most likely, and greatest expected 
costs of completion, Rxi , Rx2 , and Rx3 . These are the 
24. percent. mode and 971 percent points of the distribu-
tion. By completion we mean that the project has reached 
a stage where it is either manifestly a failure, or where 
it is bound to succeed, perhaps given some further ex-
penditure. In the absence of any information to the 
contrary, the distribution of the cost would be expected 
to be normal: For convenience, we have used the similarly 
shaped logistic distribution With a transformation to 
allow for skewness. The probability C that the project 
will be completed for an expenditure no greater than X 
is given by 

C = 1/[1 	exp (a — X6)]. 	(1) 

The method used for obtaining the constants a, a and 
,3 from Rxi , Rx9, and Rx3  is described in the Appendix. 

Although (1) gives the probability of completion as 
a continuous function of the research expenditure, we 
have chosen to consider the expenditure as occurring as 
a series of annual budgets xi, up to a maximum of 5. 
Let the total research expenditure through year i be Xi. 
Then, 

Xi = E x; . 	 (2) 
i =1 

Rewriting (1), the probability of completion by the 
end of the ith year Ci  becomes 

C, = f1(X,) 
	

(3) 
and the probability of completion in the ith year ci  is 
given by 

ci  = Ci  — Ci _i  = 	— 	 (4) 
with Co  = 0. 

The completion can result either in a success or a 
failure. The overall probability of success, given project 
completion P8, is calculated by multiplying together the 
probabilities of technical, legal, engineering, and com-
mercial success, since failure in any one of these areas 
leads to failure for the project. These probabilities refer, 
respectively, to the event that we can make a satisfactory 
product in the laboratory, that the route will not be 
blocked by competitive patents, and that the process 
can be scaled up. The last probability, that of a com-
mercial success, refers to the chances that we shall be 
able to sell the product that has been specified. 

The probability of success in year i, pi, is the prob-
ability of completion in that year scaled by the overall 
probability of success. Using, as before, capital letters 
to denote cumulative probabilities, and small letters to 
denote annual probabilities, we have 

pi  = Ps Ci 	 (5) 

P, = Ps Ci. 	 (6) 

The probability that the project fails in year i is, there-
fore, ci  — pi  = (1 — Ps)ci , and that it is not completed 
by the end of year i is 1 — Ci. This is the probability 
that research expenditure will be required in succeeding 
years. The situation is illustrated in Fig. 1. 

II. COMMERCIAL INFORMATION 
The return from the investment in research comes from 

sales of the product; we do not consider the possibility of 
licensing agreements, nor attempt to give any monetary-
value to the increased knowledge and expertise that may 
result from a project, even an unsuccessful one. 

The sales estimates we require are those in the first, 
sixth, and eleventh years, assuming that sales could 
begin on January 1 of year 1. Call these estimates E1 , 
B2 , and E j. New product sales in general follow an S-
shaped curve, which may be conveniently represented by 
the cumulative of the logistic distribution, suitably 
scaled. Let s;  be the sales in year j. Then, 

Or 

si = f2(i) 	 (8) 

where B is the asymptotic value toward which the sales 
• tend. The values of the constants are 

B — E2(E,E2 E2E3  — 2E,E3 ) 
(E; — E1E3)  

— E2)] 5 = 0.2 In r E'(13  LE2(B — E3) 

[(B  -y= In E2)1 65. E2 JJ 

For this model to apply, it is mathematically necessary 
that .N./(E1E3) < E2 < E3. Otherwise, the preceding 
equations involve the logarithms of negative numbers. 
Physically, this implies that the sales must not dip by the 
end of the period, nor must they increase too rapidly 
between the sixth and eleventh years. 

Equation (7) gives the sales for any year, assuming 
that they start at the beginning of the first year. Start-
ing later will not only cause the sales to lag behind but, 
in a competitive market, could cause the ultimate market 
share to be reduced. This is estimated from E4, the sales 
for year 11 assuming that the product is not available 
until the beginning of year 6. Each year's delay will 
cause the ultimate sales B to be reduced by a factor k; 
so that after five years 

k5 = 4  • 	 (12) 2 

Sales in the jth year, when the first year of sales is i, 
are from (8) and (12) given by 

si  = 	 + 1). 	 (13) 

(9)  

(10)  
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Fig. 1. The probabilities of success, failure, and of continuing research as a function of total research expenditure. 

Due to the necessity of test marketing and building 
a plant, the year in which sales start will be later than 
the year in which research succeeds by some number of 
years L. For sales starting the year after the research 
success, L = 1. Then s2, sales in year j following a re-
search success in year i are, from (13), 

	

si i  = 1072(j — n), 	 (14) 
where 

n = 	L — 1. 	 (15) 
We have assumed that the selling price in year j, Qi , 

varies linearly with time. The relationship is defined by 
the selling prices in the first and eleventh years. The 
manufacturing cost Mi  may be similarly defined, or 
may be calculated from the selling price, if one of the 
research objectives is to achieve a given profit on sales. 
In this latter case, the desired profit on sales, is given by 

	

M = Q i  (1 — W). 	 (16) 
The final expenses to be considered are overheads and 

selling costs H, which are a constant fraction of the 
sales revenue. With this information we are now able 
to calculate Gi3, the money accruing to the company 
from sales in year j as a result of a research success in 
year i. 

	

= sii [Q ;(1 — H) — Ili,][ 
	1-1 

	

(1 	D) 	(17) 

where D is the discount factor. 

Summing (17) over the lifetime of the product gives 
the payoff from a success in year i. 

Gi  = E Gin 	 (18) 
i•-s+L 

where N is the last year in which sales are considered— 
usually, but not necessarily, year 11. 

The expected payoff G is, from (5) and (18), 

5 

G = E 	 (19) 
.-1 

To calculate the expected profit from the project, the 
research costs must be deducted from this figure. The 
budgeted amount will be spent only if the project has 
not been completed. The probability of this event in year 
i is (1 — Ci  - 1). If the project is a success, some amount 
of money will have to be spent each year in defensive 
work to keep the product up to date and competitive. 
The probability that the project is successful by year i 
is Pi  _ 1. The expected research expenditure in year i, 

is therefore 

Ri ----- (1 	+ Pi-10 
	

< 5 (20) 

R. = PA5 
	 i > 5. (21) 

Summing and discounting, the expected discounted re-
search expenditure for the project R is 

R;= E Ri[  1  
(1  + 

1 i-1 	

(22) 
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Fig. 2. Associa.ting probability of success with levels of sales using the model. 

The expected profit of the project in year 1 dollars, V, 
is the difference between the expected payoff and the 
research expenditure 

V = G — R. 	 (23) 
The value of _1', the expected return from the project., 
depends, as we have shown, on the commercial informa-
tion, the amount of money spent on the research project, 
and the way in which that money is spent. over time. 

III. RATE OF EXPENDITURE 
The methOd by which probabilities are related to the 

various sales curves is illustrated in Fig. 2. Here, two 
.sales curves, one starting in 1968 and the other in 1969, 
are shown on the left-hand side of the figure. The prob-
abilities of success associated with different levels of 
spending are shown on the right-hand side. It is by ex-
penditures of $100 000 in each of 1968 and 1969 that the 
probabilities P1  and (P2 — P1) of following the 1968 
and 1969 curves- result. It is assumed that, in this case, 
commercialization commences with success. The penalty 
for succeeding late is shown to be severe, and considera-
tion should be given to accelerating the rate of research 
spending. A ,S200 000 expenditure in a single year could 
be considered but, although the total quantity is the 
same, this may not be as effective as spending the money 
over a two-year period. The probability of success as-
sociated. with a single large expenditure will, of course, 
be greater than P1  and cannot be greater than Po. The 
value of this probability is the subject of this section. 
• Increasing the expenditure of research funds at the be-
ginning of the project will result in an increased prob-
ability of success in the initial years and so lead to an 
increased value of V. However, too great an expenditure 
could result in the wastage inherent in a crash program. 
We have, therefore, defined the quantity yi„ the efficient 
research expenditure for year 1. 

If we let zi  be the effective research expenditure for 
year i, we have from (3) 

Ci = fi(zi) 	 (24) 

with 

zi  = 	 > 	Ei < 1 
(25) 

zi 	1ri 	 if xi  < yi . 

For expenditures greater than y ,  (25) guarantees that 
there will be a gradual decrease in the efficiency with 
which incremental expenditures above yi  are used. It 
remains to determine reasonable values fore,. 

As the project proceeds, the value of q should increase, 
for increased knowledge will lead to more efficient use of 
extra resources. When the total effective research ex-
penditure equals the greatest cost of completing the 
project Rx3 , we have set C'1  equal to 1. Initially, the ratio 
of the efficient expenditure for the first year yi to Rx3  is 
a measure of how well defined the project is. The smaller 
this ratio, the less the amount. of the program that will be 
completed in the first year. The value of ci  is set equal 
to this ratio for the first year and increased in subsequent 
years with the total effective expenditure. We have 

it, = R.z3  
and 

(di; 	zi-i)  e;  = 	 = 2, • • 5. (27) 1i x3  

Finally, the amount spent in one year will affect the 
amount that can be spent efficiently in the next. If no 
money is spent., some effort in the succeeding year will be 
devoted to training staff. If the rate of expenditure is 
increased above m j  an increased number of trained 
people will be available for the succeeding year. Let ?f i° 
be the original estimate of the efficient expenditure in 
year Then, if we write 

1 
2/1.1  ± ;5 	— 1 )1 

we have a relationship that allow s for increasing and 
decreasing y j, depending upon the expenditure in the pre-
ceding year. 

The mechanism just described penalizes expenditures 
above the efficient level to the greatest extent at the early 
stages of the project. It is felt that at this point the 
additional money is usually spent on parallel exploration 
and part of it must, by definition, be wasted. Accelerat-
ing the program in the latter stages is apt to be accom-
plished by carrying out. definitive and necessary aspects 
of the research in parallel. In justification, the allocations 
suggested by this method, although different from those 
Made bymanagement, do seem reasonable. 

(26) 

(28) 
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by introducing the slack variable XL ,. In W space the 
constraint is 

.r.+1 
biw;--= T'. 	 (34) 

i-1 

This defines an ellipsoid in L + 1 dimensions on the sur-
face of which all possible allocations must lie. Making 
the further substitution 

2 	biw2, 
T' 

the constraint becomes 
\--s 2 1.-/ 

IV. OPTIMIZATION 

We have described a mechanism for calculating the 
expected profit from any pattern of research expendi-
tures. In determining an optimum allocation, we maxi-
mize the expected return V from a set of L projects, sub-
ject to some budgetary constraint T. 

The budget for a department may be represented by 
the L by 5 matrix X, where the kth row is the money 
budgeted for project k and the ith column is the money 
that will be spent on each project in year i if the project 
has not been completed. Formally, the optimization con-
sists of finding 

(35)  

(36)  

sup V = sup E 
XET 	XET k-1 

The constraint is that the total expected research ex-
penditure for year i should be no greater than some 
amount Ti. Then from (20) , the constraint is that 

R„ 	[(1 — 	 < Ti. 	(30) 
k-1 	k=1 

This is a formidable optimization problem, not only 
because of the number of variables, but because the 
linear constraint on the budgets in year i depends upon 
and varies with the expenditures in preceding years. We 
have attacked this problem using an iterative scheme in 
which the annual budget across all projects is optimized 
year by year and the process repeated until no further 
improvement is noticed. Apart from the reduction in the 
number of variables in each optimization from 5 L to L, 
the coefficients of the xi, in (30) are constant for the 
optimization, depending as they do only on expenditures 
in earlier years. In this iterative scheme, the constraint 
may now be written as 

(1 — c„,;_oxk., < 	1:, Pk,i-isbk. 	(31) 
k-1 	 Ic=1 

The latter term on the right-hand side is the amount of 
money that is already committed to fixed research costs 
as a result of success in preceding years. For a particular 
year, the quantity on the right-hand side depends only 
on expenditure in preceding years and, in the iterative 
scheme, is therefore constant. The constraint is thus of 
the form 

E bixi  < T' 	 (32) 
k-1 

with, since the xi  cannot be negative, the L additional 
constraints 

xi  > 0 	i = 1, 2, • • • , L. (33) 

These constraints define a simplex in L dimensions 
within which all possible allocations must lie. The con-
straints (33) can be dispensed with and (32) made a 
strict equality by making the transformation w = xi  and  

where each n'.! must therefore lie between 0 and 1. Writing 

cos' 0, 

n2 = sin' 01  cost  02  

(37) 
L-1 

t7L = COS2a II  sine 0, 

sin` 0, 

the constraint (36) will be satisfied for any valueS of the 
The optimal budget may, therefore, be found by an 

unconstrained optimization in 0 space. 
The results of these optimizations, using the mecha-

nism developed in Section III for the effect of the rate of 
expenditure, give, for the research programs studied, sig-
nificantly increased expected returns. This is usually 
achieved by increasing expenditure on the more profit-
able projects at the expense of dropping some of the less 
profitable. The usual research policy seems to be to 
spread limited resources over too many alternatives, 
with the result that only a very few projects are com-
pleted early enough to make a real impact on the market. 

V. SIMULATION 
The numbers used in the calculation of the payoff are 

estimates and are subject to error. It is, therefore, 
meaningful to obtain ranges about these estimates. The 
numbers so obtained define the distribution of the vari-
able as the cost of completing the project is defined by 
the Rxt . 

With point estimates replaced by distributions, the 
values of the payoff used in calculating the expected 
return are obtained by simulation. The distribution of 
each variable is randomly and independently sampled to 
establish a particular case and the payoff calculated for 
that case. The average value of the payoff obtained by 
repeating this process many times is an unbiased esti-
mate of the expected value of the payoff. 

The predicted sales in year II are E3. Let the range 
about this value be E5 and E6. The distribution of year 
11 sales will be given by (1) with the values of the 
constants calculated from E5, E, and E5. To sample 

(29) 
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Fig. 3. The distribution of return for a typical project. 

from this distribution let U be a random variable uni-
formly distributed between 0 and 1. Then E', the cor-
responding value of year 11 sales, is given by 

E, 	[(a + log U — log [1 — 	(38) 

The percentage uncertainty of the sales estimate will 
increase with time. Let 

(E' —  Fs = 

	

	 (39) 10E3  
Then the value of the simulated sales in year j will be 

E', 	E i [1 	(j — 1)Fs]. 	(40) 
Similar methods are used to establish values of the other 
variables for the particular case. The calculation of the 
payoff is then as described in Section II. 

The values so obtained lead to the calculation of the 
expected value of the project. In order to describe the 
project fully, we need to know the probability of success 
and failure in each year and the monetary value of each 
event. This information is presented as a histogram, see 
Fig. 3, showing the frequency distribution of the return. 
This is built up by a two-stage simulation. 

In the first stage, we sample to find out whether the 
project succeeded or failed, and in which year. Recalling 
that the overall probability of success is Ps, letting U 
again be a random number between 0 and 1, and remem-
bering that if the project is not completed by the end  

of year 5 it is counted as a failure, we have the following 
distribution of events: 

0 < U < P, 	 success in year 1 
P i _, < U < P i 	success in year i 

P5 < U < Ps 	failure after five years 

Ps ± C i _,(1 — Ps) < U 

	

< Ps + C ;(1 — Ps) 	failure in year i 
Ps + Cr 5(1 — Ps) < U <1 failure after five years. 

(41) 
If the project fails, the return is a loss of the research 

money. Let M be the simulated return for this case. Then 

1  

	

R: = E x ; 	 (42) ,_, 	+ D)i • 
If the project suceeds, the second stage of the simulation 
is to calculate the payoff for success in year i in the manner 
described at the beginning of this section. Let this payoff 
be Then 

R: = Gf — 

- r 

	

s-1,1 [(1 ± 	
(4 3) D)  

i-i 10. + D) 
N  
_, 1 ]i-1 

x- 
1  ]i- 

The distribution of the M, usually 500 in number, is 
presented as a histogram. Typically, as is shown in Fig. 3, 



F(x) — [1 	exp (a — 13x)j 
1 (44) 
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the histogram is bimodal, the left-hand peak representing 
failure and the right-hand success. The greater the prob-
ability of success, the greater is the area of the right-hand 
peak. For more profitable projects, this peak is further to 
the right. Projects that may succeed in several years and 
those in which the estimates of the variables are imprecise 
result in a more diffused right-hand peak. The combination 
of graphical output and optimization results in a powerful 
tool, both for describing the outcome of a given pattern of 
expenditure and for determining what that pattern should 
be. 

We do, however, have to admit that there is one 
que'stion we have not been able to answer; that is, what 
is an optimal allocation of research funds? The approach 
we have taken is to maximize the expected profit from 
the program. In the absence of any other criterion, this is 
not an unreasonable choice. Indeed, if the program were 
repeated infinitely, it would be the best choice of strat-
egy. The program is performed only once, however. If a 
project fails, a loss will be sustained. It is possible that 
conditions could arise under which, however great the 
expected value of a program, the possible losses are too 
large and not likely to be tolerated. It is allocation under 
this kind of constraint that we have not considered. 

APPENDIX 
THE LOGISTIC DISTRIBUTION 

The logistic distribution is a continuous probability 
function with cdf 

and pdf 

exp (a — Ox)  
1(x) — [1 + exp (a — Ox)]2  

for all x. 

It is symmetrical about a/ft, with variance v2/3/32. In 
shape it is similar to the normal distribution, but with 
more probability in the tails. 

To represent a skewed distribution, suppose u = xci has 
the logistic distribution. The distribution of x has the 
cdf 

1  F(x) [1 	exp (a — f3x4)]  

When a is greater than 1, the distribution is skewed to 
the left and, for a less than 1, to the right. As a ap-
proaches 0, the logarithmic transformation is appropriate. 
When a is a noninteger, the distribution is not defined 
for negative values of x. Since all the variables with 
which we are dealing are definitely positive, this restric-
tion is not harmful. 

The estimates to which the distribution is to be fitted 
are the mode x2  and some lower and upper percentile 
points x1  and x3. Taking these as 21 percent and 971 
percent, we have 

0.025 — 	1 	(47) [1 	exp (a — 04)] 

0.975 — [1 ± exp (a — 04] 
Rearranging leads to the relationships 

a — 	In 39 

a — 13x; = -In 39. 

For a given value of a, these relationships can be solved 
for a and / 3'. The problem is to find that value of a for 
which x., is the mode of the distribution. At this point, 
the slope of the pdf is 0. 

Differentiating the cdf (46) twice with respect to x 
gives the slope of the pdf. Solving (49) and (50) leads to 
values of a and From these the slope at x2  can be cal-
culated. As a function of a, this is similar in shape, 
although opposite in sign, to the slope of the pdf as a 
function of x. Too great a value of a results in a positive 
slope, too small in a negative one. Whether a is greater 
or less than 1 depends on whether x2  is to the right or 
left of the midrange. The method of finding a consists in 
calculating the slope at x2  for a equal to 1, and then 
taking steps in a in the relevant direction until the sign 
of the slope changes. Linear interpolation gives an ap-
proximate value of a that is used as a starting value for 
Newton's method. 
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The use of residuals as a concomitant variable 
BY ANTHONY C. ATKINSON 

Imperial College 

SUMMARY 
Suppose that there is correlation between the yields of successive or adjacent experimental 

units. An estimator of treatment effects using the residuals of adjacent plots as a concomi-
tant variable is investigated. It is shown to be very close to the maximum likelihood estimator 
when the errors form a first-order autoregressive series. 

I. INTRODUCTION 
In the analysis of experimental data it is quite commonly assumed that observations on 

successive or adjacent units have independent errors. In randomized experiments this 
assumption is justified by the randomization. But sometimes an analysis making explicit 
allowance for correlation between adjacent units will be valuable, either because higher pre-
cision can be obtained, or because non-randomized data are under analysis. 

One procedure for allowing for correlation is to introduce a specific model for the error 
variability, for example, a first-order autoregressive process where the units are arranged 
in time or along a line. Williams (1952) suggested appropriate designs for this case and 
developed the method of analysis. 

Another, apparently quite different, method (Papadakis, 1937; Bartlett, 1938) proceeds 
as follows. The yield of each unit is corrected for the mean effect over all units receiving the 
same treatment. The average of the corrected yields of adjacent units is then used as a con-
comitant variable in the analysis of covariance. No explicit probability model is assumed in 
forming the adjusted estimate of the treatment effects. The conditions under which the 
estimates of precision so obtained are meaningful seem never to have been defined. 

The object of the present paper is to consider Papadakis's procedure in more detail and, 
in particular, to show its connexion with the analysis based on an autoregressive process. 
Variation is considered in only one dimension, although the method was originally proposed 
for spatial variation in two dimensions. 

2. MAXIMUM LIKELIHOOD SOLUTION 
There are p treatments. Let the ith plot receive treatment s, the effect of which is as. If 

the observations are denoted by yo, yl , ...,yN  then the model of the process is of the form 

yi = 	as, 	 (2.1) 

where ui  is the error component. We assume that the ui's have geometrically decreasing 
correlations and can therefore be represented by the first-order autoregressive series 

uz = 
	 (2.2) 

where (pi < 1 and the ei  are normally and independently distributed with zero mean and 
3 	 Biom. 56 
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variance o2. Assuming that the process is stationary, we have that 

var (yi) = cr2/(1 _p2) = 4. 	 (2.3) 

Maximum likelihood estimates of the as  are given by Williams, whose nomenclature is 
used in the present paper. In this section we give some of his results which will be used 
later. 

The maximum likelihood equations obtained by Williams do not have an explicit solu-
tion. In order to proceed it is necessary to make some stipulations about the design. 

Attention is confined to experiments consisting of m blocks each containing the p treat-
ments once. This structure is appealing in that it guards against confounding the effects of 
the treatments with any long-range trends. The blocks have no significance either physically 
or for the analysis. They are solely an algebraic convenience in establishing the design. 

Even within this class there are a large number of possible designs. Williams defines as a 
type II design one in which (a) no treatment occurs next to itself, and (b) each treatment 
occurs equally often next to every other treatment. 

Such designs simplify the analysis. They also have the property that the variance of the 
estimate of treatment differences obtained by averaging over the relevant treatments does 
not vary too greatly over different pairs of treatments. An example of such a design for 
p = 9 and m = 4 is 

(123456789) (246813579) (369471582) (591483726). 

The parentheses divide the blocks. In order for the adjacency property to be satisfied, it 
is necessary to think of the design as circular, so that, in the present example, treatments 1 
and 6 do occur together. 

Given the structure of a type II design, Williams's maximum likelihood solutions 
simplify to some extent. Although there is not an explicit solution for the treatment effects, 
the equations reduce to one in only one variable A the value of which can readily be found 
by iteration on a computer. The resultant maximum likelihood estimator of as  is 

2  p  N 
(1  +P2) E Yi—P 	+ 

a TV 	fil=s 	[i-1-1 ] ----s 	
4„, _ 	

(2-4) s 	 • 
m (1+ p2 +  2P  p-1 

The square bracket round a subscript is to be read as 'the treatment applied to the ith 
plot'. Thus 

[L.-Eu=8 

denotes the sum of those yi  adjacent to a plot receiving treatment s. The third sum in the 
numerator of (2.4) is over all observations. This third term cancels in estimating treatment 
differences. 

Williams finds the variance of this estimator by differentiating the likelihood equation 
twice and inverting the resultant matrix to give, amongst other results, 

12  
var (alv — 	

20' 
ar) = 	 (2.5) 

TY/ 1 + p2 2p 
p-1 1 

Having presented these results and having discussed briefly the choice of a design, we are 
now in a position to apply Papadakis's method to the first-order autoregressive scheme. 



= ( xiy;)1(E 4). 	 (3.4) where 
1=1 	i=1 
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3. THE PAPADAKIS ESTIMATOR IN THE ELRST-ORDER CASE 

The corrected yield of the ith plot receiving treatment s is y2 , where 

= Yi — (lim) E Yi. 
[il=s 

The concomitant variable xi  is the average of the adjacent corrected yields, i.e. 

xi = 	 (3.2) 

If we denote by ar the Papadakis estimator of the effect of treatment s, then 

A 
,s ,( E Yi — 0  E 	 E Yi)}, 

g 	Hi =  8 	 [1:±11=8 

(3.1) 

(3.3) 

For a type II design each treatment except s occurs c times next to treatment s, where 
c = 2m/(p — 1). Therefore 

N 
= —1  {(1 	 E y• 	E Y-±„, , E Y.i • 	 (3.5) 

m 	P — ]= [i8 	- [i±1]=s 	i=1 

The expectation of ft  is found by using a large sample approximation to xi. Also we take 
the expectation of the ratio to be the ratio of the expectations. Thus 

	

E(') = 2p/(1 +p2). 	 (3.6) 

Substitution of this value in (3.5) gives 

, 	N 

m 
= 	[(I + (

1  + P 2 )(13  —1 )) EiE]-= sY  i  1  + P 2  [i±Eu=8 Yi+  (1  -FP2) (
p 

 2)-1) iE=IYii 	
(3.7) 

 

Comparison of (3.7) with the maximum likelihood estimator given in (2.4) shows that the 
two are very similar. If p has its expected value the first term of ar is the first-order poly-
nomial approximation to the first term of ar-. For small p the other two terms are nearly 
identical. For p near one, the denominator of the terms in the Papadakis estimator is too 
small by 1/(p — 1). The differences in the two estimators will thus be greatest for a small 
number of treatments. 

In estimating treatment differences the discrepancy between the estimators is reduced 
because the third term of (3.7) cancels to give 

e-ar=-m w ft 	)(EN- E yi)--( E N —  E Yi)). 
P — 1 	[,:]=8 	[ii=i 	2  [i±1]=8 	Ei±11=E 

We have shown that the two estimators are nearly identical. We now consider their 
variances. 

3-2 

(3.8) 
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4. VARIANCE OF THE PAPADAKIS ESTIMATOR 

The estimator of treatment differences (3.8) contains fi multiplied by a combination of 
the observations which is pure error. To find the variance of this product we expand in a 
Taylor's series and consider the variance of the expansion. Since the expectation of the error 
term is zero, we obtain only one term, the product of the variance of the error and the square 
of the expectation of U. We thus proceed treating A as having its expected value. 

Let 

Then 	 var (zi) = 1  p2  

and 	 cov z5
) = — var (zi) (i = j ± 1), 

0 otherwise. 

tvar (zi) (i = j), 
Also 	 cov (zi, y5 ) = 

0 otherwise. 
Rewriting (3.8) we have 

fl  — at = -1f E zi—  E zi 	, ( E yi  — 	1/i)),  
rtil =S 	[ t] =t 	P — 	[i]=s 	[i]=t 

whence var (ar — at  = pl 	2cr2 	1  — fl  + 1  ( 	 E 	E Yir• 	(4.6) m(1 ±p2  ( 

	

) 	m2 ‘.73  1 \ 	
tit=s 	tit =t 

The variance of the maximum likelihood estimator is given in (2.5). Comparison of these 
two variances shows that the first terms are related in the same way as the first terms of the 
estimators. The second term of (4.6) is a small multiplier times the variance of the crude 
estimator obtained by averaging over the relevant observations. The variances of the two 
esitmators are thus nearly equal, that of the Papadakis estimator being slightly the larger. 

These results were checked by simulation, good agreement with theory being obtained. 
For the 9-treatment design of § 2 with a value for p of 0.8 the variance of the Papadakis 
estimate was 4% greater than that of the maximum likelihood estimate. Both variances 
were less than half the variance of the crude estimate. 

5. THE RESIDUAL SUM OF SQUARES 

An estimate of the error in the estimates obtained by Papadakis's method is based on the 
residual sum of squares after correction for the covariance. In this section we investigate 
the expectation of this quantity and its relationship with the calculated variance of the 
treatment differences. Only if the two are nearly the same will significance tests using the 
residual sum of squares as an estimate of error be meaningful. 

We denote by R the residual sum of squares where 

1 	/3  1 	1 	2 

	

R= E E tzi  -- Ez•+—  	E y, 	 E yi)) • 	(5.1) 
s=1 	=8 	M [i]=s 	M 	 P - i+ s 

In this 	 E yi  and E  yi  
[J1=[i±1] 	i+s 

denote respectively sums over plots receiving the same treatment as i 1 and i —1, and 
a sum over observations not receiving treatment s. 

zi = yi ifl(Yi+3. + Yi-i) • (4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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The terms in round brackets in (5.1) contain no plots which have received treatment 8. 

From (4.4) the expectation of R is therefore the sum of the expectations of the square of the 
terms in zi  and of the terms in round brackets. This second square involves treatments 
received by plots next but one to each other. 

Williams defines as a type III design one in which every treatment occurs not only 
adjacent to but also next but one to every other treatment c times. He gives examples for 
up to five treatments. There is no reason why such designs should not exist for larger 
numbers of factors, although the one given here for 9 treatments does not quite meet this 
requirement. 

If we assume the design does meet this requirement, we obtain 

E(R) — 13(m—  1)  Cr2  P(P  3)/32  E E ( E 	NY) • 	(5.2) 1 I-1,2 	2m(p — 1)2 	til=3 	i=1 

The expression inside the expectation operator is the sum of squares of the treatment 
means. Its value depends not only on the parameters of the system but also on the particular 
design. 

For an analysis without a concomitant variable when the observations are independent 
E(R) = p(m — 1)0'2  

and 	 var (c4 — = 2621m, 

where as is the crude estimate obtained by averaging. 
Thus V, the estimated variance of the treatment differences, has expectation 

E (V) = m(1+ p2)  + mP 	— 31  {m(pfl— 	1))
2 
 E LEI  (risyir—p— (Ely.)

2 
 }, 

2,2 	 p 	 1 N  

whereas the value of the variance of treatment differences, averaged over all pairs of 
treatments, is 

20.2 	 2 	p 	 1 	\ 2 
ave {var (af ar)} = mo. p2)  I p 	1) +23 _2  1  {m(pfl_ 1))  E 	( 	 E ) 1. 

	

[IA= s 	P i=i 
(5.6) 

The first term of the estimated variance is greater by a small amount than the corre-
sponding term of the theoretical variance. The second term is also greater if, approximately, 
p2  is greater than 2m. Even for small p (for example, 4), the number of replicates when the 
inequality is not satisfied will be so large that the effect of the second term in each expression 
is negligible. Thus any confidence statement about the treatment differences using the 
residual sum of squares as an estimate of error will always be conservative. 

The amount by which the estimated variance is an overestimate is shown by the results 
of 500 simulations given in Table 1. The 9-parameter model was used with p equal to 0.8. 

Table 1. Comparison of the variance of a treatment contrast with the variance 
estimated from the residual sum of squares 

Variance of 	Estimated 
estimate 	variance 

Theoretical* 	0.2858 	0.3818 
Simulation 	0.3000 	0.3689 

* Calculated from (5.6) and (5.5). 

(5.3) 

(5.4) 

(5.5) 
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The estimated variance from the residual sum of squares is about 20 % too high. No way 
of correcting for this suggests itself. The estimated variance provided by standard covari-
ance analysis is even greater than that estimated from (5.5). 

6. THE NULL CASE 

When there is correlation between adjacent units, the adjusted estimate of the earlier 
sections will have smaller variance than the crude unadjusted estimate. If, however, there is 
no real correlation present, the unadjusted estimates will be better. We therefore need to 
consider the loss of precision arising from the inappropriate use of the adjusted estimates. 

Let p = 0 and let adjustments be made using some value /30 . Then from (3.8) we require 
the expectation of 

t( 	Yi — 	N)2  (1 	
O1)

2 +/18 4 	N —  E N) 
1 

— [i]=s fil=t 	 p— 	[i±11=s 

	

—flo (1
— fie -) ( E Yi — 	N) E yi — 	yi)}• 

— 	Eii=s 	[i]=t 	Ii111=8 	ii±11=i 

Since the yi  are independent we obtain 

2cr2 	2 p(p— 3)1 var (as ar) = — 1  	 (6.2) m 	p — 1] 	2 f • 

We now calculate the variance of the estimate of ft. From (3.4) we have, approximately, 
that 

N 	
2 4E ViVi+1) 

/ 

var (fi) 	N  1=1  

E(
ZY? +EYVi-f-2) i=1 	i=1 

(6.3) 

For a type III design the second term in the denominator is zero. The numerator contains 
the fourth moments of normally distributed random variables with zero mean, expressions 
for which are given by Parzen (1962, p. 93). Simplification yields 

var (fi) N km— 
m 
 1) r 

\2 1  2(p
—i

) — 2 
(6-4) 

(p)
I
j ,   

20.2 [ 	2 	m  \2 p(p  3) ri 	 (p :1)) )] .  (6.5) whence 	var (ar — ar) —nt  1  -EN m _ 1) (p —1)2  t m(p 

Five hundred simulations were performed with p equal to zero when p = 4 and in = 6. 
The results are given in Table 2. 

Table 2. Comparison of variance of adjusted and unadjusted estimates in 
the absence of correlation 

Variance of estimate 
Percentage 

Unadjusted 	Adjusted 	increase 
Theoretical 	0.3333 	0.3472 	4.1 
Simulated 	0.3402 	0.3636 	6.9 

2 

(6.1) 
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With fewer replications of each treatment, the increase in variance would be greater. But 
these results do strongly suggest that little increase in variance results from using the 
adjusted estimates in the absence of correlation between plot yields. 

7. AN ASSUMED VALUE OF fi 
Instead of estimating 13 from the data we could assume .a priori that it has the value /30  

and form the adjusted estimates using this value. The variance of this estimator is the 
expectation of (6.1). 

The results of calculations of this quantity for treatments 5 and 8 of the 9-factor design 
are shown in Table 3. The quantity tabulated is the ratio of the variance usingflo to make:the 
adjustments to the variance using the )6 appropriate to the particular value of p. 

Table 3. Ratio of the variance of the Papadakis estimator using a preassigned value 130  for the 
regression coefficient to the variance using the expected value 

\P 0 0.2 0.4 0.6 0.8 0.9 1.0 
flo\ 
0 1 1.065 1.258 1.619 2.252 2.666 2.996 
0.3 1.038 1.002 1.071 1.235 1.526 1.713 1.356 
0.5 1.106 1.008 1.010 1.079 1.211 1.294 1.182 
0.7 1.207 1.053 1.001 1.001 1.029 1.048 1.060 
0.8 1.270 1.090 1.016 0.992 0.989 0.989 0.989 
0.9 1.342 1.136 1.043 1.003 0.983 0.974 0.969 
0.99 1.414 1.186 1.080 1.030 1.006 0.998 0.995 

For some values of to, the ratio of variances is slightly less than unity. This arises because 
the Papadakis estimator is not the minimum variance estimator. 

As the value of /30  increases, the ratio of variances for p equal to zero increases, whereas 
the ratio for p equals one decreases. For a value of i80  of 0.6156 these ratios are equal with 
an increase in variance of just under 16 %. Thus the variance of the estimator is insensitive 
to the value used for the regression coefficient in calculating the adjusted estimates. Even 
if fl0  is far from the true value of f3, the method will provide estimates with variance less than 
that of the crude estimate, provided some correlation is present. 

8. DESIGN AND ANALYSIS 

To compare the maximum likelihood and Papadakis estimators, we have assumed that 
the design has the property that each treatment occurs equally often next to every other 
treatment. We now compare the two estimators for other designs. 

The maximum likelihood equation given by Williams for the estimate of a treatment 
effect is 

	

aL 	 w 

	

-- 	(1+P2) E (Yi - as )- P E (h-  ari)) = 0 . 

	

[i1=8aae 	 [1±1]=8 
(8.1) 

For a type II design the last term simplifies as it does in the derivation of equation (3.5). 
For other designs a set of p simultaneous equations similar to (8.1) have to be solved for 
each value of p, the correct value of which is found by iteration. 
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We replace p by its expected value. Then (8.1) may be rewritten as 

a'= 	Yi , 	P  2 E (yi — afl)) • m 	-s 	+P-  u± -8 

This set of equations could be solved either by matrix inversion or by iteration using as 
starting values the crude estimates obtained by averaging. Denote these estimates by a;. 
Then the expression for the Papadakis estimator given in (3.3) may be rewritten as 

as = 
—1 

{ 	P (yi — KO} • m [ t) 	1
+p2 [i± 11=s 

(8.3) 

Thus the Papadakis estimator is a first approximation to the maximum likelihood 
estimator, regardless of the design. The two estimators will have very similar values. 

The design furthest from Williams's type II design is the systematic one in which each 
treatment always occurs next to the same two treatments. An exact solution of the maxi-
mum likelihood equations is that the estimator is equal to the crude estimator. Similarly for 
the Papadakis estimator no correction by covariance is possible and equation (8.3) again 
reduces to the crude estimate. 

For type II designs we have already shown that the variances of the two estimators are 
nearly the same. For a systematic design they are identical. Since the estimators are so 
close in form, it is reasonable to assume that the variances are similar for all designs. No 
analytical expressions have been obtained for these variances. To investigate the depend-
ence of variance on design we concentrate on the Papadakis estimator which, unlike the 
maximum likelihood estimator, is readily calculable. 

Intermediate between the type II and systematic designs is the randomized block design 
subject to the restriction that no treatment occurs next to itself. Five hundred simulations 
with p = 0.8 for a 9-treatment design in four blocks gave an empirical variance for the 
treatment contrast of 0-3831. For a comparable type II design the Papadakis estimator 
had a variance of 0.3000 and the crude estimator a variance of 0-6168. 

These results suggest that, of all randomized block designs, type II designs yield minimum 
variance estimates. They are therefore the preferred designs of this class. For other random-
ized block designs a significant increase in precision can be obtained by using either the 
maximum likelihood or Papadakis estimators. Appreciable reduction in computation 
results from employing the latter method of analysis. 

9. CONCLUSIONS 
The method suggested by Papadakis of using residuals of adjacent plots as concomitant 

variables has been applied to the analysis of results from a time series, when the underlying 
process is first-order autoregressive. We have shown that the properties of this estimator are 
very close to those of the maximum likelihood estimator. When the observations are in fact 
independent, using this method does not lead to a great increase in the variance of the 
estimator, whereas failure to take account of the structure of the errors results in consider-
able loss of precision. For other designs the Papadakis estimator, unlike the maximum 
likelihood estimator, is readily calculable and yields estimates of greater precision than 
those obtained by averaging over the relevant treatments. It is thus reasonable to suggest 

(8.2) 



The use of residuals as a concomitant variable 	 41 

that the method be considered whenever ordering of the observations in time or space has 
some meaning. 

The method was originally suggested for the two-dimensional case of the results from 
field trials. Unfortunately, the extension of our results to this case is not obvious. 

I am grateful to Professor D. R. Cox for his guidance of my work on this topic. This 
research was supported by an IBM Fellowship. 
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SUMMARY 

M. J. Box has shown how transformations may be used to eliminate constraints in 
maximisation problems. This technique is described with reference to the design of 
experiments. 

The February 1968 issue of Technometrics contained two papers in which the 
problem of maximising (or minimising) a function of several variables arose, 
where the values of the variables were subject to constraints. It is the purpose of 
this note to call attention to the use of transformations whereby certain forms 
of such constraints can be eliminated. 

The method was suggested by M. J. Box [1]. His paper does not seem to be 
well known to statisticians. It is hoped that what follows will serve to publicise 
this useful technique. With one exception, all the transformations in the present 
paper are given by Box. 

The paper by Hill, Hunter and Wichern [5] is an example of this situation in 
the context of the design of experiments. The constraints on the process vari-
ables time and temperature define a region of operability. The design problem 
is to find the maximum in this region of a function of the process variables called 
the design criterion. 

For one or two variables the maximum may easily be found by searching over 
a grid. For more variables, however, this process rapidly becomes inefficient. 
In an unconstrained problem recourse would be made to one of the well estab-
lished hill climbing programmes such as that of Powell [8]. Use of such a pro-
cedure when constraints are present may well result in the location of a maximum 
outside the region of operability. In such a situation the use of transformations 
may allow us to employ the power of the hill climbing technique whilst ensuring 
that the solution obtained does not violate any of the constraints. 

As the simplest example, suppose we have a variable xi  which is required to 
be non negative. Then if we write xi  = e„ an unconstrained search over all 
values of yi  is equivalent to a constrained search for xi  . 

The next simplest problem arises in the design of experiments in regression 
situations. See, for example, Clark [2]. Here each variable is subject to the con-
straint —1 < xi  < 1, and the design criterion is to maximise the value of the 

Received May 1968. 
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determinant IX'XI, where X is the design matrix. In this case we let 

xi  = sin y i • 	 (1) 

For all values of yi  , the constraint will be satisfied. The existence of multiple 
solutions in Y space does not cause any problems, provided the maximising 
routine does not take such large steps that it jumps from peak to peak of the 
function. 

The commonest form of constraint is where xi  lies between two values, i.e. 
Xmi„ < < Xma, . Here we write 

xi = 	(Xma. — Xmi.) sin 2yi . 	 (2) 

This ldnd of constraint was considered by Jennrich and Sampson [6] in their 
paper on non-linear least squares. One method of handling the boundary re-
striction is to find the overall minimum using the Gauss-Newton method. If this 
minimum lies outside the constraints, the foot of the perpendicular from the 
minimum to the constraint surface is taken as the least squares estimate of the 
parameters. In their figure 1 they show how this procedure may be inappro-
priate. This problem could be overcome by using the transformation given in 
equation (2). Although it could lead to increased computation in the calculation 
of the partial differentials of the sum of squares surface, it would enable the 
Gauss-Newton method to be used in constrained problems. 

A different system of constraints arises in the problem of designing experi-
ments for mixtures as discussed, amongst others, by Gorman and Hinman [4]. 
In this case we have n 1 components. Let the amount of the ith component, 
for example the weight fraction, be xi  . Then the problem is to maximise some 
design criterion subject to the constraints 

xi  > 0 	i = 1, 2, • • • , n 	1 

n+1 
E xa = 1. a_, 

Here, since the weight fractions must sum to unity, there are only n independent 
variables. If we write 

xi  = sin2  yl  
i-1 

xi  = sin2  y;  II cos2  yi 	i = 2, 3, • • • , n 
i-1 

x.+1 = II cos2  ya 	 (4) 
i -1 

an unconstrained search in n dimensional Y space will result in a search in that 
part of X space in which the constraints are satisfied. 

Even when it is not possible to eliminate all the constraints, it is still advan-
tageous to use transformations to eliminate as many as possible. In the design 
problem for mixtures considered by McLean and Anderson [7] the amounts of 
the components are not only subject to constraints of the form given in (3) but 
also have to lie between upper and lower limits. It has been suggested by Gor-
man [3] that their resultant extreme vertices designs can, under unfavourable 

(3) 
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conditions, lead to the clustering of design points in the factor space. It does 
not seem possible to find any combination of transformations which will allow 
the investigation of the optimality of these designs in an unconstrained space. 
One approach would be to use the transformation given in equation (4) to ensure 
that all combinations considered do form a mixture, and then to penalise the 
design criterion if any of the constraints on the quantities of individual compo-
nents are violated. The penalty function should not be such as to introduce 
any discontinuities into the surface. It might, for example, be proportional to 
the square of the amount by which the constraint is violated. 

In this note we have drawn attention to the potential use of transformations 
coupled with a hill climbing technique to solve problems in the design of experi-
ments. For a more detailed discussion of optimization methods and examples 
of the use of transformations the reader is referred to the paper by Box. 
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