
MATHEMAT ICAL LOG IC

APPLIED TO THE

SEMANTICS OF COMPUTER PROGRAMS

by

Edward Anthony Ashcroft

Ph. D. Thesis
submitted to the

Faculty of Engineering

University of London

June 1970

Abstract:

A definition of the semantics of a programming language is considered

to be some method of formally describing the computations of programs

written in that language. For such a definition to be more satisfactory

than an actual interpreter or compiler, its formal aspects must give

it certain advantages such as generality or descriptive ability. In

addition, it is desirable that formal proofs of correctness of compilers

or properties of programs be possible using such a definition.

New techniques for proving properties of programs have been

developed from initial work by Floyd. These techniques relate programs

to formulae of mathematical logic.

To allow such proof techniques to be used directly from the formal

definitions of programs, we consider defining the semantics of programs

by formulae of mathematical logic. We develop criteria which can

reasonably be said to ensure that such definitions are intuitively

,adequate'.

It is then shown that such adequate definitions are closely related

to the formulae used in the logical proof techniques. Such definitions

can therefore be used to prove various properties of the programs they

define.

Two examples are given of such definitions. Firstly for a functional

language, like a restricted form of Lisp. Secondly for a large subset of

Algol 60. With this latter definition it may be possible to prove

properties of practical Algol programs.

Contents

Section 1: Introduction

Section 2: Logical Program Definition 	

Adequate logical program definition
	

8

A diversion into model theory
	11

Relationship between logical program definitions

and formalizations of partial correctness 	16

Section 3: Logical Language Definition 	25

Adequate logical language definition 	26

Example: one-level language 	27

Definitions by verification conditions and

relationship to logical language definitions

Section 4: Functional Programs

Section 5: Algol-like Programs 	

The simple language 	

Extensions to the simple language 	

Acknowledgments

References 	130

36

19

74

75

92

129

3

Section 1: INTRODUCTION

The usual method of specifying the semantics of a high-level

programming language is by a programming manual. However, in cases

where detailed knowledge is required of the execution of involved or

unusual programs, such manuals are frequently inadequate. The classic

example of such a situation is of course when a compiler is to be written

for the language in question. So it was not long after the development

of the first high level languages that the need was felt for some more

rigorous description of the semantics of programming languages than

could be supplied by natural language texts.

One of the first steps in this direction was made by McCarthy [12]

with his definition of Micro-Algol. The definition took the form of

an abstract interpreter, and most of the subsequent work in language

definition has gone into the development of interpreter definitions,

for example, the PL/I definition [6]. Thus these definitions are able,

in principle, to answer the question: "What is the result of executing

this program for these input data?" Since this question can also be

answered by actual interpreters (or compilers), the abstract interpreters

must have other useful properties such as generality, and descriptive

ability, and be formal enough to allow proofs of properties of programs

or of the correctness of compilers.

However, even for the very simple Algol-like languages, such

interpreter definitions did not lend themselves to simple proofs of the

correctness of compilers [13, 14] or of properties of programs.

An alternative approach was that of Landin [5] who took A.-calculus

as a model programming language, and defined other languages by mapping

their programs into X-expressions. This could be called a compiler

definition approach. In common with all such approaches, it suffers

from the drawback that the intuitive meaning of the more complicated

constructions in the original language is obscured by the translation,

or else such constructions are just not allowed. However, with recent

work on models of X-calculus by Scott [17, 18], it is anticipated that there

will be renewed interest in compiler definitions.

A third approach was proposed by Floyd [4], namely that of a

definition using logic. In that paper he presented a method of proving

the partial correctness (q.v) of a program based on the 'verification

conditions' of the various statements in the program. The rules for

obtaining the verification conditions for the various statements

constituted a 'semantic definition' of the programming language; and it

was desirable that the verification conditions so obtained had certain

properties ('consistency' and 'completeness') related to the usual

intuitive notions about the execution of the statements concerned.

This approach thus gives a definition specifically designed for proving

properties of programs.

The method of proving partial correctness was taken up, and made

more formal, by Manna [7] but the verification conditions, now expressed

as a formula in predicate calculus, were no longer considered as embodying

the semantics of the program. Instead the formula was shown to be related

to an interpreter definition of the semantics of the program. As the

formalization of partial correctness has been extended to more complicated

systems [8, 9, 11, 2] it has become more and more difficult to give an

5

interpreter definition for each system and rigorously establish its

relationship with the predicate calculus formula. Instead an intuitive

description of the semantics has been given, with an informal argument

to exhibit the desired relationship to the predicate calculus formula.

However, the last step, of calling the formula itself a semantic

definition, has not been made, even though it has been shown by Manna

[10] that a formula formalizing partial correctness of programs can

be used to formalize all the usual properties of programs such as

termination, equivalence, etc.

As a variant of the logical approach, Burstall [3] has recently

given a description of the semantics of a large subset of Algol in

first order logic. From the formula embodying the semantics one can

derive, using the rules of logic, a sequence of sentences describing

the computation of the program. As a definition of semantics this is

intuitively more appealing than a set of verification conditions, simply

because of its similarity to an interpreter definition. It also has

the advantages of descriptive ability and it can be used to prove

properties of programs.

In this work we develop the notion of intuitively 'adequate'

logical definitions of programs and languages, namely those of an

interpreter-like nature. Burstall's definition will be seen to be

'adequate' in this sense. We also show that logical program definitions

are closely related to Manna's formalizations of partial correctness

and therefore can be used to prove properties of programs. In addition,

for the type of langulges considered by Floyd, we show that language

definitions by complete and consistent verification conditions are

adequate logical language definitions in our sense.

6

We then give examples of language definitions, first for a

functional language, and then for a large subset of Algol. The

definitions in both cases can be used'to obtain formalizations of

partial correctness of programs.

Throughout this work we assume some familiarity with elementary

first order mathematical logic. Standard notation is used for logical

connectives, quantifiers, etc. as in, for example, 'Introduction to

Mathematical Logic' by E. Mendelson.

7

Section 2: LOGICAL PROGRAM DEFINITION

Adequacy of a logical program definition

It seems clear that for a definition of semantics of a program to be

generally acceptable it must be an interpreter; for any given input, the

definition must specify the result, if any, of executing the program.

Moreover, it must do this in as mechanical a way as possible. For a

definition written in first-order logic, this suggests that the definition

should take the form of a set of axioms, and that the result of the

program should be derivable from the axioms in as mechanical a manner

as possible, e.g. using a mechanical theorem prover.

The combination of definitional axioms + theorem-prover will then

act like program + interpreter. The main difference will be that the

theorem-prover will 'compute' with expressions formed from symbols representing

the constants and primitive operations of the program, whereas the interpreter

deals with real data. Since the interpreter must make decisions based

on its data at various points in the computation using the primitive

tests of the program, the same feature will be necessary in the theorem-

prover. To give the theorem-prover this ability, it could be given

additional axioms that specify the domain of data, and the primitive

operations and tests, sufficiently for it to be able to deduce the truth

or falsity of any test when applied to symbolic expressions representing

data objects. Alternatively, it could be considered to be interactive,

interrogating the 'outside world' whenever it needed to make such a test.

8

n+m
SI 	, called the graph of P

(tl—tm) E

The relation Aps on

the relation defined by P , i.e., for

is simply

In either case, if we consider the domain of data and the primitive

tests and operations on it as a 'relational structure', j-J say, then

this method of deduction we will call 4-relative deduction, and denote

it by F . For proper axioms K
	

F denotes 4-relative deduction
K

from K .

For any term is constructed from symbols representing the

constants and basic operations of a program (called a constant term),

the structure 6 will determine an associated value in IJI (the

domain of 4) , which will be denoted by J[Tc]

With this notation, we can state the requirements for a semantic

definition to be intuitively adequate.

A program P , which requires values for n inputs and gives m

output values, can be considered as a partial function P6: 1c9I n 	Ic9I m

i.e., for inputs 	= 	€1,9111 	P (0 denotes the output

values, if any.

20,94) = 5 a App,0

The aim of the axioms + theorem-prover (T.P) system is simply to

specify this relation Ap .

77
Most of the constants, functions and tests in 4 will correspond to
symbols occurring in programs. However, some may be implicit in
programs, such as the operations for updating and referencing arrays.

9

To supply input values k 1,91 to the axioms + T.P system, there

are constants (k1...kn) = k in the definitional axioms, and we expand

the structure J to a structure Sk
. That is, constants k are

assigned values E by this expanded structure.

In order to indicate when the result P (E) of the program has been

derived, the axioms contain a distinguished n+m-ary predicate symbol,

0 say, which is not interpreted by J .

For clarity, a set of axioms W , constituting a definition of P
s

will therefore be written as Wp(k
'

!/

We can now state the following definition:

A) The logical program definition condition

Wp (k 0) is an adequate logical definition of P if it

satisfies the following condition:

VE 	n , Vg e ISIm

Ap (Elt) if and only if

there exist constant terms (Tr • • •„1--
	

T

s.t. S[T) = 	and.
e9 k 	0(k,T)
W (k 0)
P

i.e., 0(k,T) is derived exactly in the case where T denotes the

result of the program for input 	•

We shall call the symbols denoting the constants and basic operations
and tests of P the 'formal basis' of P . Note that 9 is a

structure just for the formal basis symbols. In general, apart from
the formal basis symbols, the extra constants k and the predicate 0
W (0) may contain other constant, function and predicate symbols,

and variables.

10

We are going to relate adequate logical definitions to formalizations

of partial correctness (Manna) and to consistent and complete 'verification

conditions' (Floyd). To do this, the concept of J-relative deduction must

be related to S-relative validity. This is the purpose of the following

subsection.

A diversion into model theory

As for programs, we shall call the constant, function and predicate

symbols, to which a structure J assigns meaning, the formal basis of J

Any closed well-formed-formula (first-order), constructed from the formal

basis symbols together with individual variables, will be true or

false for S in the usual way.

Any w.f.f. r constructed from symbols of some basis, together

with variables, is said to be valid, denoted r r , if the closure

of r is true in all structures for the basis symbols.

If a wff r contains 'extra' symbols (El not in the formal basis

of some structure J , then an 'expansion of S to include (Ej ' is a

structure identical to J except that it also assigns meaning to the

extra symbols in
,c9
1=1" , if its closure is true in all expansions of J to include

Analogously to Coders Completeness Theorem, we would like to show that

kr 4,, F r .

!/ Some familiarity with first order logic and elementary model theory
is assumed. The notation used in this subsection is that used in
Schoenfield [6 I.

11

(El • Then r is said to be S-relative valid, denoted

(El

Unfortunately this does not hold for general r . However, it

will be shown below that it holds for most r of interest.

For any structure J with formal basis L (of constant, function,

predicate symbols, and equality) we can define a substructure 3 such

that 151 is the smallest subset of le91 containing the elements

corresponding to the constants of L , which is closed under the operations

corresponding to the functions of L . That is, 131 contains just those

elements of 1,91 that correspond to terms in the formal basis symbols.

The restricted form of the completeness theorem for S-relative

logic can be stated.

31-relative Completeness Theorem

For any existential formula—/
*/

A containing only predicate symbols

that are not in the formal basis of e9

12-9 A 0 - I=` A
	

•

Proof.

=> Let 9 be over the formal basis L , and the extra predicate

symbols in A be (R) . Denote by D'(31) the set of variable free

	

formulas in L that are true in 	.

Clearly from the intuitive description of J-relative deduction

given previously,
•

An existential formula is a closed formula that contains only
existential quantifiers when put in prenex normal form.

12

A a + A
Di(J)

‘g, k A by Godel Completeness Theorem.
W(J)

Since every expansion of 5 to include 	must be a model of

D t G9) , trivially

J
A
	1.- A .

<= 	With the notation of the first half of the proof, assume

F A 4 I=A
DT (0)

Then there is some structure 	which is a model of Ir(J)

but in which A is not true. Since A is closed, and existential,

the universal—' formula 	A is true in C, .

We shall show that the substructure 	of C, is isomorphic to

an expansion of 3 , and hence contradicts the above assumption. First

we define a bijective mapping 0: 1,1 	. By definition, every

element i of 1c1 isthevalueinC,ofsometerm.r.constructed

f 	 also constructed 1

from the basis symbols of 0 , since we have introduced no extra function

symbols or constants.

• We define 0(i) = 	for all i E 1C1 . Now for elements

il'i2 of lal

0(1]) = 0(12) 	Ti = T. 	is a formula in D'(0)]
12

i1 = i2

mapping 0 is injective.
...

2(-/ A universal formula is closed.

13

Since every element of 101 is the value in s of some term

constructed from the basis syMbols„ the mapping 0 is surjective.

Hence

i) 	0 is bijective.

It remains to check that the structure on ICI is the same as an

expansion of the structure on 101 .

For n-ary function symbol f in the formal basis of 0 ,

let f, and f denote the corresponding functions in 0 and e9

Then for elements i
1ncle!;1 , corresponding to terms I .

1
1n

0(fo(i,...,ii)) = co(C4 f(Ti
n 	1 	n

= c9[f(T)]

1

= f19(0(i1),...,0(in))

For all function symbols f in the formal basis of a."

and elements 	of P.7.,1

0(i;5(i1,—,in)) = f5(0(il),—,0(in)) •

Then for every n-ary predicate symbol p in the formal basis of e9
•

(i.e., not. in DR1)

47> [P(T• ;•• 	
-)
	is 3.1 n

in D' (e9)]

ps(0(ii) , • • • ,0(in) 	•

Also for every n-ary predicate symbol p in f1,1 we expand 3

(to 3') to include [R} in such a way that

• • •,in) <=> pc-9, (gia.), • • •,93(in))

iii) For every predicate symbol p in the formal basis of

Pc;(13., • • • in) 4* Ps-i 	- • •,0(in))

by i) ii) and iii) C. is isomorphic to an expansion of 3 .

Now by the Los'-Tarki theorem(8dhOenfield, § 5.2), every universal

formula that is true in some structure C. is true in all substructures

of C. /

-I A is true in C and,by the isomorphism, also in some

expansion of 3 . But by assumption, A is true in all

expansions of 3 .

:.Contradiction.

Q.E.D.

The following corollary is obvious.

Corollary. If K is a universal formula, and A is an existential

formula and both contain only predicate symbols that are not basis

symbols of „9 :

•

csi 	,c9
A 	A

K 	K

With this result we can now relate logical program definitions to

formalizations of partial correctness.

*/
-J A non-universal formula, e.g. 5[xA(x) may be true in C. by virtue

of some element of m that is not in w .

The relationship between logical program definitions and formalizations

of partial correctness.

Partial correctness

For a given relation i between inputs and outputs, a program is

said to be partially correct with respect to (w.r.t.). It if, for all

terminating computations, the inputs and corresponding outputs satisfy *.

More formally, for program Ps as before, with input Elc.91n

and relation * on IS1n+m •

P (0 is partially correct w.r.t. * if and only if

vt€1.91m :tApc9(,t) 	 •

Let U (k,9) be a (second-order) formula with n+m -ary predicate

*/
symbol 9 and constants (k1...kn)= k being the only free -J symbols

not included in the formal basis of S . U (k,G) is said to formalize

partial correctness of
PS

if for all relations * on IJI
n+m and all

inputs teISIn :

U
p
(k9) true in sk‘GV a P

is partially correct w.r.t.

Vt€14111 	V4r on Isin+m

UP 	ke (k G) true in St* a vt I Im: [A c9(,t) a *a,t)] •

2Y As a second-order formula, Up(k,9) may contain bound occurrences

of predicate symbols not included in the formal basis of J

II/ Note that U must formalize the partial correctness of P without
introducing any new sorts of data such as 'stacks' or 'states'; only
structure 61 is used.

It has been shown by Manna [10] that such a formula U can be

used to formalize all the regularly observed properties of programs:

correctness, termination, equivalence, etc.

During the computation of Pc9(0 the only elements of 101

that can be calculated, and thus affect the computation, are those

corresponding to terms constructed from the basis symbols of 0 and k .

Therefore, if we consider the substructure St : the computation of P

on substructure t.9t is identical to the computation on 0 , and

therefore P--() = P 	.

k

Hence if IT represents the relation * restricted to

then

P C9 is partially correct w.r.t. *

P--(0 is partially correct w.r.t. 	.
cSit

An equivalent condition for UP 0) to be a formalization of

partial correctness of P is:

VtEISI and V' on

UP'
(k 9) true in k 9 	Vt€ISTI m : [App/t) *(t,t)] •

17

17I n+m k

Logical program definition

Let (first-order) formula Wp(k„93) be an adequate logical

definition of P ; then WP(k10) satisfies condition A) which we

repeat below.

)
	

nele

	

Ap (,t) a 3z 	"I'm)

s.t. S(T) t and 	
WP(k19)

, 	
, 0(k)T)

Since W (k,93) satisfies A) if and only if the closure of W (k,O) satisfies

A), we can assume in the rest of this section that Wp(k,O) is closed.

As for partial correctness, AP (,g) can only be true for

and cg[T] = t for constant terms T implies teleZlin. Therefore,

we can equivalently restrict t to 1ST. Also if the logical k

system includes equality we can give an equivalent but more concise

condition.

m:

c9t kh
a I— • • 1/3(k,h) .1

W 	0) WP (k,

h = (h ...hm) are constant symbols not in the formal basis of 4 .

18

•

If Wp(k,0) is a universal formula, with only predicate symbols 0

and q = (q1,...,q0) that are not in the formal basis of J , by the

J-relative completeness theorem, A') is equivalent to

vtele vokm

c7c k kh o(ic 11) <r> A(,t) 	-1
W (k,0)

i.e., 	VWJIn 	Vtc14 711 1

VOMWF(k.,0) 	0(k, h)] true in cSikh
t
	

(1)

4.5 Aps(tpt)

Note that W
P must define P without introducing any new sorts of data such

as 'stacks' or 'states'; only structure 	is used. Now (1) is equivalent to

IftelSin 	V4r over 17k in+m

:[Apcsi(,t) 	g)

<r> Vx[VO[HqWp(k,0) 	0(k„x)] 	g(k,X)] true in

Comparing this with the definition of partial correctness, we get:

For 	Celhki m ' 	̀Si
kh is the same as

4̀k b. , i.e., cgt expanded

to include assignment of t to h .

:1211
X 	 • • •' X n) •

19

Correspondence Theorem 1

For first order, universal formula Wp(k,O) with extra predicates

q not in the formal basis of J .

Wp(k,O) is a logical definition of P if and only if Up(k,G)

is a formalization of partial correctness of P 	where

Up(k,G) is Vx[VO[Wp(k10) D 0(k,x)] D Ilf(k,X)] .

In practice Wp(k4) may have logical properties which give a

neater formulation of the correspondence theorem. In particular,

we can define conditions for 'monotonicity' and 'continuity' of

such formulae in a way similar to Park [15].

i) Wp(k,O) is said to be monotone if, for all structures J and

all relations al* on IS1n+m and all WSIn 1

ncieSil m :[cr(,0 	lra,t)]

implies

SqWp(k,O) true in Sko SqWp(k„0) true in Sko .

ii) Wp(k,O) is said to be 'quasi-decreasing' (after Tarski [19]),

if for all structures S and 	and all sets 	of relations

over I3111+111

aqWp(k,O) true in 	for all *c*

aciwp(k 0) true in Sk0

20

where

nif(,t) 4* v*4 : *alt)

In a similar way, definitions can be given for 'quasi-increasing',

but since this is implied by monotonicity, we need not consider it.

However, defining 'continuous' as 'quasi-increasing and quasi-decreasing'

(as in Tarski), if Wp(k,0) satisfies i) - ii) it is monotone and

continuous.

Lemma: If Wp(k„0) is monotone and continuous, for all structures

and Vtekin , V' on IJI
n+m •

YX[VO[aVp(k,O) D 0(k,x))n G(k,x)] true in eSt
kG

0 34Wp(k,0) true in

.Proof

=> 	equivalent to

V4-19(klx) D gO[aqWp(k,0). A 0(k,x))] true in „a .

i.e., Vt€1,91111 : 	on 1,91nEm [HqWp(k,0) true in k

and --t lita,)]] •

For the symbols of W (k,0) , apart from
	k and 0.

21

;. Let 71 be the set of -relations (ii) whose existence is guaranteed

by the above formula for each telJim for which 	Ilf(t/t)

Hence:

1) 	For each member lit of .11 gqffp(k,0) is true in c.9k, .

ii) It has the property

vt Elsl n :[nt(t) 	it 	t)

because this is equivalent to

vt€1.91m : 	: 1(t,t) 	*a,t)) •

This is trivially true for all t s.t. 	, and for all

s.t. 	iffa,t) 	it is true because 	T1.(t„t) and 'Lei'

From continuity (quasi-increasing) and 1):

HqWp(k, 0) true in c9kt 	.

Thus, by monotonicity and ii)

aqWp(k,0) true in 4113 , i.e., R.H.S.

22

Trivial since for 'neje , nE191111 and all * on 1,91n+m

gqw k.,0) true in ,91V16 and VO[g4Wp(k,0) D 0(k,h)] true in kh

clearly imply Ira, t) .

Q.E.D.

Noticing that any formula formalizing partial correctness must be

both monotone and continuous, from the above result we immediately get

a stronger version of the correspondence theorem:

Correspondence Theorem 2.

For first-order universal formula WP
 (k 0) with extra predicates

0 and Q not in the formal basis of e9 :

WP (k 0) is logical definition of Ps
and is monotone

and continuous if and only if 94ffp(k,0) is a formalization

of partial correctness of Pcsi .

It is interesting that to date all formalizations of partial

correctness for programs in various languages have been of the form

gqWp(k10) . Thus they are all logical definitions of the programs in

question. In fact, it is reasonable to Claim that the reasoning

behind the construction of such formulae was to reflect the execution

of the programs.

It also happens that current logical definitions reflect not just

the results of computations but the computations themselves. They are

23

therefore even more closely related to their programs than is strictly

'adequate' as can be seen by considering adequate definitions of two

equivalent programs. According to the previous input-output-orientated

definition of 'adequate', a logical definition of one is 'adequate' as

a logical definition of the other. (This also is true for formalizations

of partial correctness.) Therefore logical definitions which describe

the computations of programs, are more than just logical definitions of

the programs: they describe the 'inner workings' of the programs, the

execution of the various pieces from which programs are constructed.

Such definitions will be seen to follow from 'adequate' logical definitions

of the semantics of programming languages, which will be considered in

the next section.

Section 3: LOGICAL LANGUAGE DEFINITION

Logical definition of programming languages

We can say that the purpose of a semantic definition of a programming

language is to specify the meaning of programs written in that language.

Therefore if 4L is a logical definition of language L , then given

any program P in L , AL should specify its definition Wp(k,O)

in some way. The simplest way of doing this for arbitrary program P

is to have 6i, specify a definition yk,O) that is related to the

computations of P-1
*/

in the following way.

For any definition Wp(k,O) , the formula 0(k1T) is

(J-relatively) deduced from W (k,O) exactly when the computation

of PM terminates with a result AT] . We can consider formula

0(k1T) as describing a 'situation' in the computation of P(g) ,

namely the situation at the end of the computation. Generalizing this,

we can imagine other formulae describing intermediate situations in the

computation. If these formulae are deduced as intermediate steps in the

/
deduction of 0(k„T) and no others**, then the deduction is said to

describe the computation. By suitable choice of what constitutes a

'situation' it is possible to specify Wp(k,O) for any P , i.e., gilie

a definition of the language L . All that is required is that the

operation.of each basic construct in the program P corresponds to

421 This is not the only solution: AI, could find a simpler program

equivalent to P , and then produce the definition of this program.
This is the practical method used for formalizing the partial
correctness of parallel programs in Ashcroft and Manna [2].

i.e.; if a formula is deduced of the type that describes situations,
then the corresponding situation must occur in the computation.

25

going from one situation to another. Wp(k'0) need only describe the

changes in situations produced by the operations of these constructs;

formulae describing successive situations will then be deducible from

formulae describing earlier situations, and eventually the final

situation description 0(k,T) will be deduced.

(All this presupposes that the infinite number of possible situations

can be adequately described by logical formulae. We avoid equating

'situations' with 'states' simply because in complicated languages,

the 'state' may contain an arbitrary amount of information and may

be difficult to describe with a single formula without introducing

new sorts of data such as stacks. A 'situation' will in general

concern itself with some aspect of the current state, perhaps relating

it to previous situations.-1 This will become clear in later sections

where definitions of such complicated languages are given.)

We therefore give the following criteria for an 'adequate' logical

language definition LI

B) The logical language definition conditions

i) 61 must specify a logical definition Wp(k,O) for any

program P .

ii) Each Wp(k,O) produced must describe the computations of P

i.e.,

.i) there are certain types of formulae that can be interpreted

as describing situations in a computation, and

For example, in a multi-level language, it is possible to take a
'situation' as being that part of the state directly affecting the
computation at the current level. The inaccessible information at
higher levels (e.g. the values of variables temporarily out of scope)
will be contained in already deduced formulae describing previous
situations. These formulae can be drawn upon later when it is
necessary to describe situations when the computation has returned to
these higher levels.

26

ii) from W (k,O) we can (6k relatively)deduce exactly

these formulae describing the situations that occur in

computation of Pc9(0 .

The way such a definition is realized may vary. For example,

Burstall [3] takes AL as being a set of axioms, and also expresses

P as axioms, in such a way that the formulae, describing the situations

in computations of P , are deducible from the axioms. Clearly,

is a language definition according to the above criteria. In this work

we are going to take 61, as an algorithm mapping constructs in a program

into formulae describing the effects of these constructs on the general

situations that can occur in computations of the program. If we also

include a formula specifying the initial situation, the actual situations

occurring in the computation will be deducible from these formulae.

We shall illustrate these ideas of program definitions which

describe computations using a simple one-level langulge and show how such

a definition W (k,O) relates to a 'Floyd' definition using complete

and consistent verification conditions. In the process, we shall

develop sufficient conditions on language definitions that are intuitively

verifiable. In succeeding sections these conditions will be extended,

and definitions given of more complicated languages.

One-level-language definition

A one-level language is one in which the computations of the various

parts statements') of the program are disjoint (no statement contains

27

another statement). Hence any computation of a program P simply

consists of a concatenation of subcomputations of statements. In

this simple language it is possible and natural to take a situation

as being the whole state at the end of one subcomputation and the

beginning of the next, i.e., when execution is at a point in the

program 'between statements'. A description of such a situation

consists of the particular point in the program, and the corresponding

values of the program variables. This description is achieved by a

formula 0e(Ti...Tn) . 0e
identifies the point e in the program,

and 	denote the values of the variables at this point.

The successor situation of a given situation is easily described

in terms of the effect of executing the next statement.

We shall show how a logical definition Wp(k,0) of program P

can be made up from such descriptions of the effects on situations of

the various statements in P .

Let program P with n variables consist of a flowchart constructed

from a set C of statements, each statement having a certain number of

entrances and exits, together with one START and one HALT statement.

For simplicity we will assume that a join-point is considered as a

type of statement, so that every edge in the program is the exit

of one statement and the entrance to another. We associate with

each edge e a unique n-ary predicate symbol 0e , associating

the special predicate symbols 00 and 0 with the edges leading

from the START statement and to the HALT statement respectively.

t) Aij, c

The intention is that Oe(Ti...Tn) is 4-derivable from Wp(k,O)

exactly when the computation of P for input eicstin reaches edge

with values 4I[T1],...,J1Prn] for the program variables. We will

show that Wp(k,O) has this property if it consists of a set

[O (k)} U [14
c
 IcEc

P
) of axioms, where each formula W is related to

the execution of statement c in a way to be explained below.

First we describe execution of c .

For any statement c with p entrances and q exits as shown,

Act Ac , the graph of c is a px q matrix of 2n-ary relations Ac ,

	

1 <i<:p, 1<j<q, such that 	n / Vte101n

anycomputationenteringcata.with

	

variables values 	leaves c by exit p.

with variable values t .

•

1 <i p we associate a relation *a. on 141n with

entrance a. ,.calleci all imputconditionfor ce. ., -then for all 1 <j < q •

we define the relation *c on
14 In by

29

If, for all

Vt€141n :

c. (t) 	atelSi n [1frala) and

and or

or [Iva a) and tiPci(,t)] •
4

If we put Ira = (era —*a) , each IVe is called the output condition
1 p

for pi corresponding to 	. They have the property that for all

inputs to c where the variable values satisfy bra , the variable

*c =(*c ' '1Ve)
1 	q

We shall usually denote *c by Iraqic 1 because of the similarity
j

to matrix multiplication. (This is the reason tic is considered as
4

a matrix.)

We can now give conditions on We which ensure that W (k,O)

describes the computations of P . We first give rather restrictive

conditions which we later relax.

Definition of P (restricted)

Wp(k,0) = (0e(k)) U (Welc€Cp)

where for c as before:

30

values on output precisely satisfy the output conditions

0 —.0 10 ...0 , and no other symbols not in the basis of 	•

I) W is a first order formula containing predicate symbols m (., q ...m

a1 Q
P

p1 	q

e 	 C 'c.
1

We therefore denote We by We (0040) where

= (0a,...0ap) and Op =
	•

II) For 1. <i<p, 1<j<q and t, ,jEISIn

E
AVs(1160 	

hg 	Op (g)

Oa (h),Wc(0a,0p)

III"orrelation"—cm 	
, and Ira cti

age We (93a)c6f3) is true in
*a *a •Acs
jOa Op

The predicate symbols 	are unique to We

Constants 	= (111...hn) and g = (gi...gn) are not in the basis

of cg .

For any first order formula A , A denotes the closure of A .

31

That is, there exist relations for qc such that 'reading'

Wc(Oallop) makes sense if we precede it by 'for all sets of computations

of 	c' and read 0a.
 (T1

 ...T
n
) as 'one computation enters c by ai

1
with valuesTl.Tn

.. 	1 and read 0 (r 3:. n
.T) as 'one computation .

PO
Pa leavescby.with values Ti...Tn r.

In order to show that from W (k,0) we can (SE-relatively) deduce

exactly the successive situations in the computation of 10(E) , it is

necessary to indicate just which situations actually occur in Pa)
Ap

This is the purpose of the 'minimal' relations la' on 161'n. Each µ: in

is defined to be true for exactly those n-tuples of variable values

for which the computation P(0 reaches edge e . (For the initial and

final edges, the relations are µ0 and µ respectively.) These relations

µ clearly have the important property that for any statement c

in P as before:

for Va = (11 	..Va) al 	p
and (p.

131
...v

Pq
)

E 	E p = p.
13 	a cc9

We can now prove the following proposition:

32

Proposition 1. For

wp(k4) = f00(k) U {we (Oct, 00) I c cc pi

where each We satisfies the conditions I), II), and III).

vWsln , vtE179Iin :

JEt kh

°e(h) 4=> 4(0 •
W (k„ 0)

Proof

> Since D'(J1g) is true in all expansions of

c9H.
LHS 	1= 	0e(h)

wp(k,0)

V93e[gelci;ip(k,0) D 0e(h)1 true in cSlichq

where0e , ac denote all the extra predicate

symbols 0e , qc in Wp(k,O) •

Now by condition III), and the property of the minimal predicates

mentioned previously:

gqc iT,c (0a, 0) is true for

33

E
M Also Ilo 	is clearly true.

E t µ .„.
:. aleWp(k.,0) is true in jk b. 0. e

E t p,
Hence 16!(h) is true in A -khOe '

i.e., Pe(t) •

RHS means that the computation of P(0 reaches edge e with

variable values t . It is clear from condition II) that, starting

with 0e(k) we can trace each step in the computation with

deductions from some Wc(0a/O) •

Eventually 	1-1c11 	0 (h)
W (k,0) e

Q.E.D.

We see that W (k10) describes the computations of P in the desired way.

An obvious corollary to this proposition is

Et

0(h) 0
W (11,0)

Since P (t) pAp a/0
	

W (k,0) is almost a logical definition

of P
	

To conform with the previous definition of program definitions,

we simply add to Wp(k10) the axiom

0(x) D Of (k,x)

Then the resulting formula Wi,(k,0') will be a logical definition of P .

311-

Note that by describing situations in terms of elements of 1,91

and by not allowing the formulae We to introduce new sorts of data

to describe the executions of statements, we have obtained a definition

which itself does not introduce new sorts of data.

Since the only occurrence of 0' in WT(k„0') is in the axiom

000 :) 0' (k,x)
	

ra'(k,0') is clearly monotone. Also, from the

previous proposition, if Sgel-lp(k, 0) is true in some expansion of

nt to include 0e , then, for all e , the relation assigned to 0e
...

includes ut • Also, one such expansion is that which assigns 11t

' e

to
0
e ' It follows that Wl

P
(k,0') is quasi-decreasing, and

therefore continuous.

Hence, by Correspondence Theorem 2, Zaei3;a(k,0') is a

formalization of partial correctness of P 1 if inii
P(k„0') is universal.

A logical definition of this one-level language would simply be a

specification of formulae We for all possible statements c in

the language.

It is possible to relax the first condition on the formulae We ,

namely that restricting the extra symbols to the symbols 0e and qc . However,

before we do this we can show how this restricted definition is related

to one using (similarly restricted) 'verification conditions'.

35

Definition by 'verification conditions'

Floyd [1.] proposed a method of language definition for simple

one-level programs using 'verification conditions' for each statement.

For statement c as before, the verification condition Vc is a test

on relations *a = *a ...*a and * = * ...* 	(on) associated
1 p 	P P1 Pq

with the entrances and exits of c , i.e., Vc(*a,*p) is true or false.

Vc
is said to be consistent if, for all * 1* , as above

vc(*al*p) 	incisti n : t*a•Acc9(0

(that is, if la and Irp satisfy Vc , there is no input to c satisfying

*ci for which the output does not satisfy Irp).

Vc is said to be complete if, for all *a,Iffi,

Vc(*cx,*p) 	9111 :[*ce•Ac(t) and --ovpg)]

(that is, if *141x and *,
P
 do not satisfy VC , there is some input

to c satisfying *a for which the output does not satisfy

!/ Putting 'c = 	(n c 	c
c.9

1 < i < q :* (t) 	* (t) • ci 	pi

I!' Putting *c = *a .Ac ' *c(n and

1 <i q 	g 	
Pi

) and —1 * (t) • c.

(t) is an abbreviation of si

* (t) is an abbreviation of Vi -

36

i.e., 	Inelc91n:[*a'Acc9(C) 	*p(C)] 	Ve(*ce*p)

A set of complete and consistent verification conditions for

program P is said to be a semantic definition of P . If the

verification conditions can be expressed as formulae, then we shall

show how such formulae are related to the logical definition Wp(k,O)

we have just considered.

Assume that 	can be expressed as a first order formula Yc

with just predicate symbols q
c 0 ...0a '013 ...0 --1Y not in the a 1 p 1q

basis of 9 . That is, if we denote 7c by Yc(0a10p) as usual,

Vc(ircel lfp) <=> [aqcic(0a100.) true in Jma mP] 	
f3

We will show that the formulae Yc are closely related to the

formulae We because consistency and completeness are exactly

equivalent to conditions II and III (given previously), plus monotonicity.

The definition of monotonicity for Yc(0.4,3) is:

For all 4 , q-vectors of relations *1 and *2 on

p-vector of relations *a on 161In.

'sin and

VWc.91n:[*3p-(C) 	*
2
(n]

implies

. *a*
1
f3

24jc(0c4,015) true in Sm m 	aqcYc(0&013) true in
reerf3

q
c =.(qc ...qc) are unique to Yc . 1

--/ Note that Y must express Vc without introducing any new sorts of

data such as 'states' or 'stacks'; only structure S is used.

37

Theorem 1. For universal formula ye, representing verification condition Vc,

-c satisfies II and III and is monotone a Vc is consistent and

complete.

Proof

=>

Condition III is

1,01 	.Ac
on Isin acicyc(coa„0(3) true in ,grA 	49 •

ra

Hence by monotonocity

VIVoc,Vlirp. on 141n , .qc14111 :

[*ct 'Ac (t) a Irp(t) 	[acleYe (001,00,
4

true in 0 0t3r- a

i•e•„ 	is complete.

Condition II is

for 1<i<p, 1<j<q; ,E1,9111

cSt
Ali(l-hg
c4 	Ox(h),Y

0 (g) •
0a'0)

Since D') 	is true in all expansions of 4gh
t

h g 	 g

A ij CS

4gt

0a.(h),Ye(93c4)013)

Alc-j(t) =4' YqcV0aV013[0ai(h) A Ye (0a, 0p) 	 9̀11 g (g)] true in `Rh 1
4

38

or equivalently,

l<i<p, 1<j <q, V*0,,V*(3 on I Sin ; 	c IS in

a..+
Aic-ja'n 	Cila (0 and [Hqjc Oa/00) true in 	00] *p.(c)]

rar p

re-arranging,

1 < 1 < p , 1 < j < q , V*ce,*13 on ISIn 	VtelSin

EatcYc(0a,Op) true in Soae [neiSin: *lot (t) and A.V1(a,g)] 	*p (t)] 1 a r3 	i

that is,

acicYc(oceop)
,

true in
SO 0
a 	vWSIn : [IPa'Ac (t) 	*

Pi
 (t)]

a p

Vc is consistent.

• <=

If Vc is complete, since ac (t) *,*Ac (t)

HqcYc(0a„00) true in
* * -A

c993

a 	es

a p

i.e., Yc satisfies III.

,
Now for all *

1
, *2 on le and *a on 'S I

r1

is 13

if VtelSin:4(t) 4g)]

and EqcYc(0a,013) true in

39

then, by consistency,

VW9 I n N'Ac g) *f31(t)]

vWc9in:[1fa'Ac (t) 	4,(t)] c9

then by completeness

gcicYc(°a'Op) true in

c
is monotone.

If VC is consistent for some structure .9 , then it must be

consistent on all substructures of eg containing the constants.

This is because the domain of such substructure e9' must be closed

under the functions of e9 , and so the computations in e9' of c

for inputs from 1,9'1 must be identical to the computations

in J for the same inputs.

Now if rc is consistent, the definition of Ilria.A
C

gives:

for 1<i<p, 1<j <q, V* ,* on 161
n 	

veic9l n

irryA
aqcYc (0a,00) true in c9ni— or 	[1Va () and Ali a, n 	g)]

rot vp 	 c4 	Pi

From the above argument, we can restrict the structure to e9!

Then

n
1<i<p 	1<j <q 	Irc1c9In 	Vtel6h 1 , V* ,*p on

•

c7!

-I:
--
4 8

Aii g, 	Pitai(g) and. [aqcYc (00e, O) true in .h ocx 013'1 	*pi (g) 2

that is: 	VkiSin 	Vtc141)12

Aii(VqcWaVyki(h) A Ye(001,0f3) Op, (g) true in 'g
i

Then since Ye
is universal, we can use the corollary of the

S-relative completeness theorem:

Vtcle VWS!In

R̀h g
Aija/n 	OA (g) Oa.

01) Ye (006, Op)

Since Aii(g,t) is false for all Vis!In

-11 g
OA (g)

ccg 	Oa (h)/Yc ce p) Pi
i
.

i.e., Yc satisfies condition II.

Q .E .D .

We therefore see that verification conditions originally considered

by Floyd as being semantic definitions of programs, do in fact give us

definitions of programs in our sense. However, we have been quite

restrictive in requiring that the verification conditions be expressible

by first-order formulae with no extra symbols except for the predicate

symbols 0e
and q

c
.

We can loosen this requirement, and still show the relationship

to logical definition. But we must first loosen the requirements on

the formulae W
e comprising such definitions.

Definition of P - (general)

We will loosen the conditions on the formulae We by allowing

extra function and constant symbols to appear in them. The purpose

of these symbols will be to allow the construction of expressions

other than those representing the data objects manipulated by programs.

The new sorts of data objects thus introduced will be conceptual

entities useful for describing the execution of programs, e.g. stacks,

program counters, tables, etc.

There will therefore be some extension of ISI which includes all

the desired new data objects. We can consider the operations and

relations of e9 to be extended arbitrarily to cover these extra objects.

The resulting extended structure we will denote by ; . The extra

function, predicate and constant symbols (which we will denote by

F Q and B) will be required to correspond to particular operations

and relations on 1,91 and elements of 181 respectively. There will

therefore be an expansion 	of g to include F , Q and B

that assigns the appropriate meanings.-' (The operations may, for example,

-2Y The formal basis symbols of p' will consist of the basis symbols
of e9 and F Q and B .

1+2

be 'pushing' and 'popping' operations, or table look-ups. The

relations may be tests for empty stacks or tables.) The formula

W (k,O) must restrict the meanings of the symbols F , CI and B

sufficiently to essentially specify pt 	We assume therefore

that W (k/O) contains a set of axioms a for this purpose. Then,

if

wp(k,0) = fq0(k),61 U NelcECI,1

the following conditions on the formulae We also comprise conditions

on Q .

Ia) 	We is a first-order formula containing only predicate symbols

qc,Oce —4a 'Op 	 'Op
q not in the basis of (9' . We denote

1 p 1
We 	by W c (0 0p) as before.

iia) For 1 <i <p 	1<j <q 	Ir,tel<91n

ij. 	Atg Ac Wt.) 	r 	 OR (g) •
0,„i(h),wc 0a4),C7 -J

Ma) For relations *a , on

gq-cc,c(0ci,013) true in
iirct • Acs

oct op
That is, with the desired meaning of the extra symbols F 	and B

there exist relations for qc such that reading Wc(0,40e0p) makes sense

if we precede it by 'for all sets of computations of c ', and read

0cjr1...Tdas'onecomputationenterscbya.with values 1...zn ', and
1

read 0(T'...T') as 'one computation leaves cloy pi with values
. .1 n

f30
*/
-3 1/106 is extended to St by making it false for any arguments not in ISI

n .

It-3

Proposition 2. For

WP (k 0) {00(k),6} U tw,(0a,Oro)leccp) ,

where each We satisfies Ia), hIa), and IIIa)„

.ne i c9 in

k h

W (k,0)
0,(h) a µe(t) •

P

Proof

Since 	 k D'(e9Eh
) is true in all expansions of any extension of

e9h E k , 	k specifically gE h ,

4̀k h k h 	k h
F- 	0 (h) 	0 (h)
wp(k10) e 	WP' (k 0) e

110eiSacyk10) 0e(h)] true in all

expansions of kh

. A

	

Wet aCiWp(ky 0) 	0e(h)] true in st tn . •

Using this result the proof of this proposition is identical to the

proof of Proposition 1, with 9 replaced by (9 , .

Then, as before, we immediately get that

4

Q .E .D .

• WI, (k, 0) = qo ((x) 	01 (k, 	U tW Oce193 (3) I eC p)

is a logical definition of P .

Note that since it introduces new sorts of data, there is no

way in which Wi)(k,01) can be related to a formalization of partial

correctness.

In practice, condition IIa) is satisfied by separate conditions

on We and a, as follows:

IIai) 	1<i<p, 1<j <q,

k
t
h

Aij(,t) 	1- e
0a (h) /we (Oce, 0) i

I I n

(g) 	•

IIa ii) For all formulas A

at r A <4, I- A
Q

If we have axioms c?' satisfying IIa ii), then we can show how a

semantic definition of P using (general) verification conditions is

related to the above definition WP' (k 0) .

Definition by verification conditions - (general)

Given structure y for the extra symbols F , Q and B , as

above, we can loosen the conditions on the formulae Ye representing

the verification conditions V.c . We allow Ye
to be a first order

1+5

formula containing the extra symbols F Q and B as well as

predicate symbols qe,0a,013 ; and require that V*_, u * 	on 1,9In

13 vc(Iliceirp) a [alje(OaY0p) true in seda d I. !! 	(1)
Pa Pp

Theorem 2. For universal formula 'Y , representing verification

condition V , and axioms Q satisfying IIa ii):

Ye satisfies IIa) and IIIa) and is monotone

a VC is consistent and complete.

-Proof

Noting that the only difference in the way: Fe represents Vc is the

replacement of p' for 	we can follow the proof of Theorem 1 to

get:

Yc satisfies IV and IIIa) and is monotone

a Vc is consistent and complete,

where condition IV is

1 <i<:p, 1<j <q, VE,geke

P T

h- g

Alj
e

ayt) 	1- c
s 	0a. (h),Y(0a4p)

(g)

-J 	*a ,*0 are extended to

not in Ic9In

by making them false for all arguments

116

(Note that IIIa) is like III with 0 replaced by (9, .) Then from

condition IIa ii) on 7 ,

condition IV is identical to condition IIa).

Q.E.D.

We have not allowed completely general second-order formulas when

representing verification conditions, but we have been sufficiently general

to claim that a definition by verification conditions is usually a

logical definition in our sense.

Conclusion

. The example of a one-level language has illustrated how program

definitions can be built up from subformulae describing the effects of

• .constructs in the program. The essential properties of the subformulae

are.

i) They can copy the effect of execution of the construct by

4-relative deduction.

ii) They make sense for all sets of computations when Oe(T1...Tn)

is read as 'one computation is at edge e with values T1. ..Tn 2

•

These are properties which can be easily verified from intuitive

knowledge of the execution of constructs. These principles can be

extended to more complicated, multi-level languages, as will be done

in later sections. The justification for the 'adequacy' of the formulae

produced will be based on intuitive arguments concerning the above two

properties.

11-7

This example has also shown how Floyd's verification conditions

are strongly related to logical definitions of the type we are

considering.

We have also seen how the equivalence of logical definition with

formalization of partial correctness does not hold for definitions that

introduce new sorts of data. Since we can formalize all properties

of programs in terms of partial correctness (Manna [10]), it is

desirable that this equivalence holds whenever possible. Therefore,

the logical definitions given later go to great pains to avoid

introducing new sorts of data.

One method of logical definition which does introduce such new

sorts of data is that of Burstall [3]. His definition of Algol is

?adequate' since it has properties similar to those above. However,

since it introduces extra function symbols, it is not equivalent to

a formalization of partial correctness, and new techniques have to be

used to prove properties the programs so defined. His method has the

great advantage that it describes the execution of programs using

concepts familiar in programming. It therefore seems capable of

tackling many practical programming languages, and is a good meta-

programming language.

In the following two sections we give definitions of a functional

language and of a subset of Algol. The logical definitions of programs

so produced are also formalizations of partial correctness, and can be

used to prove properties such as termination and correctness, where

appropriate.

11-8

Section 4: FUNCTIONAL PROGRAMS

In this section we are going to give a logical definition of a

functional language. This type of language is essentially multi-level

and is simple enough to illustrate the definitional techniques for

dealing with multi-level computation. In the next section we will

combine the one-level and multi-level techniques in a definition of a

large subset of Algol.

Syntax of Functional Programs

A functional program Ps consists of a set fF0...Fm) of

*specified' functions, with F0 as the 'initial fnnction'. A function

is specified in terms of the other specified functions and basic

functions (functions in S). The basic functions we will call constant

functions and the specified functions we will call function variables.

A function variable F. is 'specified' by an expression (specification)

of the form

F.(x ,...,xn) <= T.
1

or by an expression of the form

x)
1 	' n.

F.
1
(x
1 	'
,... x

n. 	u.
1

) <= 	(x
1
 ...xn

1 	
1.

) 	T.
1 	1
(X
1
 ...X

n
) :

1
1

•

n. 	..xn
x-, T .

1
 (...x)

1 	
1 	

m1
m. 	.

1 n.
1

49

where each T(x
1
...x

n) is a term, and each 7(xl/
...xn) is a

propositional term:

A term T(x1,1 xn
) is a term in the normal sense constructed

from the basis symbols of 	together with the function variables

Fo...Fi and (at most) the variables11 	n 	We will denote
1

the constants and function symbols in the basis of 	by indexed

letter b's , and indexed letter f's respectively. Hence, examples

of terms are

F0(fl(xlIb2),b3)

fls(x11x21391131)

f2(Fl(Fl(f1(x1)))1x2)

A variable-free term is a term without variables. A simple term is a

term without function variables. A constant term is a term with

neither variables nor function variables.

A propositional term

following forms:

11(x n.
)

1 1
is an expression of one of the

i) P.j(T1 (x1 ...xn.)„...„Tn
 (x
1
 ...x

n
))

. 1 	0 	1

where P.
0
 is some predicate symbol in the basis of 61

and Ti...Tn. are simple terms.

ii) -, 	...,xn)
where Tr1)TT2 are

propositional terms.

50

Note that a propositional term is a quantifier-free formula in

	

the basis symbols of 	, with free variables. For 	an assignment of

values from 141 to the variables x1„...,xn.
, such a propositional

term is true or false in 0 . We stipulate that the propositional

terms in a specification must be mutually exclusive, i.e., there is

no assignment of values to the variables for which two such propositional

terms are simultaneously true in 0 .

Examples of propositional terms are

Pl(xl)

[Pl(xl) A 12(x2,f2(x3,b1))]

{-1[P1(xl) V P2(x2)] A Pli-(f1(xl'xd'b4)] •

Example of functional programs are

P1 = (F 1
4

where F0(xl) <= P1(x1,b2) bl

P1(x1Ib2) f/(x1,F0(f2(x1,b1)))

2 = (F0,F1)

where F0(x1,x2) <= 	P1(x1,x2) A P2(x2,x1)] 2 ,

	

P2(x2'x1) A 12(f1(x2'/33)'x1)) 	F1(x1If2(x1'x2)) 1

	

-1 P2(fl(x2'b3) ' xl) 	Fl(xl'x2)

F1(x1,x2) <= P1(x2,b2) b1

(x b) 	f 	(x ,F (f (x 12'2 	311121

If IS' consists of the integers, and

b 	is 1 ; b2 is 0 5 • b3 is 2 ;

P1(xl,x2) means x1 = x2

P2(x1,x2) means x1

fi(xi,x2) means x1*x2 (multiplication)

f2(xllx2) means x1 -x 2

f3(xi,x2) means xi/ x2 (integer division)

then we may re-write PI and P 	in the more usual way: 2

i) 1

where 	F0(xi) <= xi = 0 	1 ,

x1 	0 	x1 *F0 (x1-1)

and.

ii) P2

where 	F(x 	 x2x)<= 	>x Ax 0 11 2 	1 	2 	1

2*x2 > xi A x2 k

	

2*x2 	Fl(ca.,x2)

52

and.

and.

and

F1(x1/x2) <= x2 = 0 1 ,

x2 0 (*Fi(x1-11x2-1))/x2 .

Semantics of Functional Programs

An intuitive description of the semantics of functional programs

will be given, which will be used later to justify a logical definition.

a) For inputs 1,...,tn elc91 , the program P61
 'invokes' or 'calls'

o
the initial function variable F0 with arguments t ... tn . When 1 0
computation of F0 , called with t1

,... t / terminates with a value o
te1,1 , this is the result of program Ps for input 1.,...,til .

o
b) The computation of a function variable Fi called with arguments

111,—/TI E IS! is determined by its specification as follows:

i) For specification

F.(X1,...,Xn) <= T x 	x)1/ 	n. 1

the (variable free) term Ti(111/—/TIn) 	
is computed.

i

ii) For specification

F (x ...,x n)
1/ 	n. 	rT1(x1/ • • "xn.) -4 Ti xl• • •xn)/ 1 	1 	1

Tri (xl• • •xn.)(xl• • •xn.) m. 	m. 1 	1 1

. For the purpose of describing computations we could add to the symbols

of j a name ic) for each element ic101 . Then strictly we would

say that T (11 ... T1
n
°)
.

will arise if we refer to

is computed. However, we feel no confusion

Ti(1111-11 i)

53

411

n
) •
. 	'
0

are the smallest

where T
1
...Tn.

0
non-simple subterms of T) . For all such subterms,

are constant terms (i.e., these

there will be at most one propositional term T1, true in 9 for
-"j

111,...,11 assigned to the variables. If there is no such propositional
i

term, then the computation of F. , called with
711-71n.

 , is suspended.
1

(A suspended computation never terminates with a value.) Otherwise,

if propositional term

free) term T

3
In both cases i)

rri.(111,...,11n.) is true in J , then (variable-7
0
) is computed. "

and ii), if the computation of the term terminates

withavaaue'thenthecomputationofF.called with 11...11n.

terminates with this value.

c) A variable free term T is computed as follows. If T is a

constant term, then computation of T terminates immediately with the

value J[T] .

Otherwise, T must contain one or more subterms of the form

like F.j (T1 ,...„Tn.) 	we call Fj with arguments J[T
1],...,AT

n.
]

0 	 0
When computation of any of these subterms terminates with a value, we

replace the subterm in T by this value. As soon as any new non-simple

subterms are produced, they are computed in the same

process continues until all non-simple subterm6 have

the computation terminates with a value.

For example, computation of term

Fo(F0(1,f2(11)),F1(fl(Fl(f1(111,b2))

proceeds as follows:

manner, and the

been removed, and

54

I) F0
 is called with 1„9[f2(112)] and

F is called with
1 	4Ef1(1111b2)3 and

F2 is called with 112

II) When F1 called with Af1(1,b2)] terminates with fl

and 	F2 / called with T12 terminates with t2

F1 is called with c4[f2(tIf t2) •

III) When F1 , called with gf2(t1,f2)] terminates with t3

.and F0 , called with Ml, 	c9[f2(M2)] terminates with t4

F0 is called with tt 1-1-/ D3

III) When F0 , called with ti4.,t3 , terminates with t5

computation of T terminates with t5 .

This completes the description of the computation of functional

programs. We call such programs 'multi-level' because the computations

of parts of the program (function variables) contain the computations

of other parts of the program (other function variables).

There are clearly two ways in which the computation of some term

could fail to terminate. Either the computation proceeds forever,

calling ever more function variables, or else some function variable is

called with arguments for which its computation is suspended. The

situations are intrinsically different, in that the latter can be

detected during computation; it is intended to be an error condition.

55

The description of computation clearly conforms with the usual

intuitive meaning of the execution of functional programs. We will

not give examples of computations, but merely remark that for functional

programs P 	and P2 given previously:

i) For any non-negative integer input n computation of P

terminates with result nt

ii) For any non-negative integer inputs n,m , computation

of P2 terminates with result C - 	 n m 	mt(n-m):

Logical Definition of Functional Programs

With each function variable specification a we associate

an axiom Wa as illustrated by the following examples. The construction

ofwashouldbeclear if isreadastF.is called

with T 1,...)Tn ', and Qp.(Til...,Tn.,Tn.+1) is read as 'F. , called
1 	1 	1 1

with I1,..'
,T

n. , terminates with value Tn.-t-1 — l, and EF.(T11...,Tn.)
1 	 3. 	a_ 	1

is read as 'computation of Fi , called with T1...T
n.

, is suspended'.
a_

i) a : Fi(xl,x2,x3) <= fi(xl,f2(x21x3))

Wa : a -F1(xl'x2/x3) 7) 2(xl'x2'x3'fl(xl'f2(x2'x3)))

ii) a : Fl(xi,x2,x3) <= ni (xl,x2,x3) 	fi(xl,f2(x2,x5))

vi (xl,x3) F3(xl)
2

for propositional terms

56

QF (xl'x2'x3'z1)]/1 1

A [L-1 ul
1

 (xv x2,x3) A-1 rri2 (xi,x3)]=DEF.(xl,x2,x3)]1 •

iii) 6 : F1(xi,x2,x3)
	

(xl'x2'x3) -4.113(xl)

u1
2(xl,x3) -4 f2(F2(F3(f1(xl'x2))'x3))

W 	: qF
1
(x1,x2,x3) 	Un-11 (x1

,x2,x3) D (q.
F3

(x1)

A
{QF3 (xl/z1)"QT1 (xl'x2'xY z1)]1]

A [Tr1 	xO D (qp (fi(xv x2)) A
2 	3

[Q (f (x ,x„),z2)DqF (z2,x0] A F3 	1 .e 2

[Q7
3 (f1(x1' x2) ' z2) QF2(z2'x3' z3)

IDQF (xl,x2,x3,f2(z3))1)]

A
"Li

(x,,x2,x3) 	rr1
2 	1'
(xl,x3)]Da„1

 "L
(Xi X2) X3)

ct : 3(x1,x2) <= F0 (F01'f22')) F1 (f1 (F1 (f1 (x1' b2')) F22)))) .

Note that the term in this example is the one used previously to

illustrate computations of terms.

57

A [tQFl(f1(x1,b2), z1) A QF
2
 (x2, z2) A QF 1(fi(za., z2) ,z)

A QF (x1 f2 (x3) s z11-') D 9.F (z)3 z3)]
0

A HQ 1 (f112)„ z1) AQ
F2

(x2 ,z2) AQ
1
(f1 (z1 ,z2),z3) F 	 F

A Q
F0 	

f2 (x2) zit) A QF
0
 (z4,

 -1 z
.5)] DQF

3 	
z5)] .

The method of construction of W for all a should be apparent

from these examples. An algorithm for constructing Wa could be given,

but it would tend to obscure the intuitive meaning behind the construction.

With any program P4 . (F0...%) , where each Fi has specification

we associate the set of axioms WP (k,Q,) 1/ defined by
0

W (kA) = Fo
0 	1

(k1...k 1)) U [Wa.iFiEPs) .

(We shall in the future denote CIJa. IF.EP 3 by Wa .) We prove later that 2.

Wp(k,QF) is a logical definition of Ps .
0

= (k1,...,k1) are constant symbols.

58

Examples

i) W
P1

(k1AF 	is as follows (the axioms are separated by semicolons):
0

qF (k1); 0

qF (Xi) D t[Pi(X32b2) D 	(xi/bin 0 	 0
A [-I P(xl,b2)D

IcIF0(f2(xl'ip1)) A

1QF (f2(x11131)1z1) 	(x1Ifl(xl'z1))])] 0 	 0
A 	Pl(x1,132) A P/(xi,b2)] D EF0(x1)]) ;

ii) Wp2(k1,k2AF0) is as follows:

ciF0(kllk2);

/r0
(x,,x2) D 	Pi(xilx2) A P2(x2;x1)]n

r0
(x1,x2lb2)]

A 	P2(x21x1) A P2(fi(x2,b3),x1)]

(xl'f2(xlIx2)) A 1
z1) D

QF (x1Jx2/z1)111 0

P2(fl(x2,b3),x1)

IcIF1(xlIx2) A

[(̀IF1(x1'x2' z2)

QF (x1/ x2' z2) 0
A ft-1k 11(x1,x2) A 1,2(x2,x1)]

A -4 -1 P2(x21x1) A P (flex 1 	1)

59

A

gFl(xl,x2) 	P1 (x2' b2) Q71.(xr x2' bl)

A E-) Pi(x2„b2) D

(qF (f2(xl,b1),f2(x2,
1

A

N l(f2(Xl,b1);f2((2,b1),Z1)

QF (xl,x2,f3(fl(xl,z1),x2))]1]
1

A [PI Pi(x2,b2) A Pl(x2,b2)] Z EF1(xl,x2)13

To prove that Wp(k,QF) is a logical definition of Pc9 we
0

proceed similarly to the case of the one-level language in the previous

section. However, because of the multi-level nature of computations,

the conditions that Wa
must satisfy cannot be stated for each Wa.

separately. Before we can state the conditions we must look more

closely at some properties of multi-level computation.

6o

IfafunctionvariableF.
0
 occurs in a term in Cl. , and for

computation of Fi , called with arguments El...En. , this term is
1

computed, causing F,.
0
 to be called with arguments 111...11n 	then

we say that

'F. is called with 711...1 at the top level of

Fi called withE,...En.
1

e.g. For

F1(x1) <= F2(f1(F3(f1(x)),F2(x)))

F3(x1) <= F2(f2(x1))

F2 is called with E at the top level of F1 called with

F2 is called with f2(f1(E1)) during the computation of F

called with E
1 but is not so called at the top level;

If F2 called with El terminates with fl and

F2 called with f2(fl(E1)) terminates with t2

then F2 is called with f1(g2,t1) at the top level of

Fl called with El .

61

We can now define a relation c on terminating computations of

function variables, as follows:

i) a. = F.(x1n ...x -) <= T.(x1 ...xn) 1 	. 	1 	. 1 	1

Where 'T is a simple term.

There is no terminating computation X such that

	

X c[F.1 called with 	for any
1

ii) a. = F.(x1
 ...x

n)
	7. (x1

 ...xn) 	
1
(X
1
 ...x

n1
)

1 	1
•

	

Tri 	(x ...xn.) 	T 	(X . "X)

m. 1. 3.
m.

1 n.

where for arguments y..tn. '
7i.(

1 	3

and 	T. (X
1
 ...X

n
) is a simple term.
.

3 	1

) is true

There is no terminating computation X such that

X c[Fi called with]

iii) In all other cases, if Fi is called with 11...Ti 	at the top

level of F. called with1n. and F. called with
1n. 1 	 1 1 	 1

terminates, then

[Fj called with] c [Fi called with t

(Fj *called with 111...Ti 	clearly must terminate.)

We can extend this relation to suitably defined parts of computations

of function variables as follows.

If F. is called with tl.. I.I. at the top level of F. called
a 	 1

with 	with 	..t
1— 3a. ' 	 1 	1. 	n. "

1 	 I

62

up to the point where F. is called with 	.at the top level,
0

is called a part of the computation of F. called with E1...En. 1

We will refer to this part as

,Fi calledwithEl...En. uptoF.called with ti...tn.'.

Note that all parts of computations (terminating or non-terminating)

are finite.

We extend the relation c to cover parts of computations by

noting that i) and ii) above hold also for parts of computations X

We also add the extra cases:

iv) 	All parts of F. called with
ni
 c:[F. called with

1...En.].

If F.
0
 is called at the top level of F. , this is because a.

contains a term with subterm F.(T1 ...In
) . Now for any F

k
0

if Fk is called with 111.. 	at the top level of F. called

with E1... n. , and the occurrence of Fk in question is in one

of the terms T1...Tn. , then

- a) [Fk called with 	I k
c [F. called with 	up to F. called with tl...tnj]

b) [F. called with El—% up to Fk called

c [Fi called with 1
. ..E 	up to P. called with ti...tn.].

i
0

This completes the definition of the relation c on terminating

computations and parts of computations.

63

The transitive closure c of this relation-' is the non-reflexive

partial ordering which simply reflects the containment of one terminating

computation, or part of computation, in another, due to the multi-level

nature of computations. We have made this ordering explicit to allow

its use in a later inductive argument.

In the rest of this section we use the following convention:

n.
E ...E11)=E491 °;(51...511.)= 8E1611 1 ;

(t1.- no)

	n. 	 n,
; (111•••Tl) 	TIElc91 " nk

11)7E141 ;

k = (k1...k1) ,h = (h1...hn.)„d = (d1...dn.) , g = (g1...gn) and e

are constant symbols.

We can now give the conditions that we wish ficy to satisfy.

If F. is called with t at the top level of F. called with 5

and for all F
k

f [Fi called with S up to Fk called with 11]

c [F. called with S up to F. called with t]l

5'11 c9dg
F () q

F.
(d.),T4 	kct

-4Y relation c is defined by

i) X c Y => X c Y

ii) X c Y and Y c Z .=> X D Z

61

and for all Fk :

t[
	

called with Ti (and. terminating with pa)]

c [F 5. called with 5 up to F. called with

11
g e

F
qFk

	
QFk(g'e)

then
5 t c9d h

„qF
(h)

F (d),W cr

II) If Fi called. with 8 terminates with y

and for all Fk :

([Fi called with 6 up to Fk called with

[Fi called with 5]

d g
=>

q 	w F. (d), a F (g)

and. for all Fk • •

{[Fk called with TI (and terminating with

c [Fi called with 5]

TIP,
g e

"IF 	*" 7
k tn.) 	

Fk(g, e) Q

65

then

Q
F
(d,e)

III) For all W &6 , reading Wai makes sense if we precede it by • al

'for all sets of computations of F. ', and q
F (t.1

...T
n
) is

J 	J
readas'inonecomputation1 F.

J
 is called with T

1
...T

n
' ,

J
and QF (1-1...Tn.,Ti.+2) is read as 'in one computation,

J 	J J
F., called with T,...Tn. , terminates with value T

n.+1
1 1

 J 	J 	 J
and EF.(T1...Tn) is read as 'in one computation, computation

J 	j
of F. , called with T1...Tn. , is suspended' . J 	

J

These conditions have been given in a form in which it is readily

seen that W
a

satisfies them. The required consequences of these

conditions can be stated much more concisely than the conditions

themselves.

Since there can be no infinitely descending chains of terminating

computations ordered by c , we can immediately get more concise forms

of I and II by induction (on the partially ordered set).

Ia) 	If F.
J
 is called with t at the top level of Fi called with 5

then

c9d h

ciF1.0.)c7 ciFj(h)

a -

66

IIa) If Fi called with s terminates with y

then

y
e

(d., e)
9F (d)

(A.10- 	
2.

The required consequence of III comes from considering the minimal

relations as in the previous section.

define the sets of minimal relations

If for
Ag Ag

.L , V

=) we
A

and E such that

i) forg
EP

A g '

	PT ‘ti
g I \

	

PF. 	if and only if

	

0 	i
in computation of P

J
 for inputs 	.

F.
0

is called with

vF
0 	0

Eve 	g , 	vF (t/Y) if and only if' F.
0
 is called

t in computation of P for input 	, and terminates

•

ii) for

with

with value

g -g and iii)for e
F

C

0
called with

eg
F (0 if and only
0
	if computation of F.

0
in computation of Ps for inputs g ;

is suspended.

By choosing just those computations of Fi that occur in computation

of P for inputs 	, condition III implies that

. •
IIIa) for all W ew

. 	CY
W 	is true in

A g •S g g

CSIPA A

q Q E

where q , a and t denote all the predicate symbols F.
Cl

QF. and E
F respectively.
0

We can now prove the following proposition.

67

Proposition 3. For W
P
(k,Q

Fo
) = [(1

Fo
(k)) U

a
where W

a
satisfies

II, and III

i) F. is called with 5 in the computation of P for inputs

J 5
kd

a
ciF (a)

o

• WP(k,QF

) 1

F. is called with 5 in the computation of P
e9 for inputs 	,

and terminates with value µ

µ
c9

k d e
a 1- 	0/7 (d,e)

o
WP(kQe)

Proof

i)

=>

LHS => F. must be called at the top level of some other function

variable, which in turn must have been called at the top level of another,

and so on back to Fo called with

J!. d

Wp(k,QF
o •

. Hence by repeated use of Ia),

(a)

68

RHS =>

	

kd 	qF. (d)

	

W (k) P F
0

=> Vqlti[WP(k,QF) D qF. (d)] true in 4 d 5
o •

By IIIa for all W Q Efi 	Wa. is true in cr. ". E • and 111, (E) • - 	 q

Therefore WP (k QF) is true in t [I V E
61k El. 4

i.e., F. is called with S in the computation of Pc9 for

inputs 	.

=>

c9k
LHS =>

WP(k'QFo
)
 qF. (d)
	

by i)

then by IIa)

c0
kd e

1"-
W (k„Q P Fo

QF (d, e)

69

As for the second half of i)

RHS => %)F (5,µ)

i.e., F. is called with S in computation of P
e9
 for inputs

.and terminates with µ .

Q.E.D.

We see that W(k,Q
F) describes the computations of. P in the
o

desired way.

An immediate corollary is

Corollary

k e

(k1Q) (1110
P Fo

a computation of P for inputs 	terminates

with result µ .

Hence WP(kQF) is a logical definition of P
e9
 .

o

The closure of Wp(k,Q) is a universal formula and contains
xo

only extra predicate symbols. However, aciaitydEWp(k,QF) is not a

formalization of partial correctness of P since it is not necessarily

monotone. However, if we add an axiom, defining Wl(k,0) as the closure

of

WP(QF) U (QF (k,x) D 0(k,x)j
0 	0

then WT
P
(k 0) is still a logical definition of P , and is clearly monotone.

By the Corollary above, for any set iV of relations on.

V*4 : [SaAdyk10) is true in sigh]

=> IrtelS1no 	VµEISI : 	(dlp) =>

By condition IIIa)

n.41
ISI 1

t at ;,t 	vt
w, (k,0) is true in c9 	F0

k 	t

by monotonicity

A A 	 nif acialmv(k,0) is true in c.4
k

• P • Wt(k 0) is continuous. •

Hence aaH4EPTVP(k 0)
is a formalization of partial correctness of

This means that Wi
P
(k 0) can be used to formalize all the usual

properties of P , (including properties concerning the detection of

error conditions, see Ashcroft [1]).

Manna and Pnueli [11] have formalized the partial correctness of

programs very similar to the functional programs considered here. The

work was done about the same time as the work presented in this

section; but independently. The relationship between the two

approaches is worth considering.

71

Relationship to the Work of Manna and Pnueli

The functional programs considered by Manna and Pnueli are

slightly different from those considered here, but the principles

of computation are basically the same. The difference between the

two methods lies in the formulae or axioms used to describe programs.

Basically, Manna and Pnueli associate a single predicate symbol, Q.

say, with each function variable, while here we associate two symbols

qF.
and Q

F.
. If, in the axioms given in this section, all the

formulae c1F.(T1—Tn)
 were replaced by T (true) and the axioms

were then simplified, the result would be the formulae of Manna and

Pnueli. The reason is that Qp.eci. ..Tn.'Tn.+1)
 has the intuitive

I 	a. 	a.
meaning 'F. , called with T

1'
. .T

n.
, terminates with Tn

.+1
1
1 1

1 	 0
whereas Q1,.(1.1.....,Tn has the intuitive meaning 'F. , called a

1 	I 	a.
with arguments T

l'
..T

n.
such that q

F.
 (T
1
 ...T n ') 	terminates with

1 	1 	1
T
n.+1 	

That is QF.(T,...Tn.+1)= qp (T,...Tn.) A Qp.(Ti...Tn+1)
1

Clearly putting qF (T,...Tn) F--- T , makes QT. become identical
1 	1

to Qp , and it is not surprising that the simplified axioms are
i

identical to the Manna and Pnueli formulae.

Considering the Manna-Pnueli formulae as logical definitions,

(which they are, by Correspondence Theorem 2) we find that they do not

describe computations in the same way. The relevant, second part of

Proposition 3 holds only in the forward direction: it is possible

to deduce the situations occurring in a computation, but not all

the formulae deduced describe situations that occur.

According to the criteria given in the previous section, the specification

of the Manna-Pnueli formulae would not constitute a logical definition

of the functional language.

However, the Manna-Pnueli formula are simpler than the axioms

given here, and in general they give shorter proofs of properties of

programs.

Conclusion

A method of defining multi-level programs has been given, and the

conditions that the axioms of such a definition must satisfy have been

given in a form that enables such axioms to be checked intuitively.

These conditions can be merged with the conditions for one-level

language definitions in a simple way, as will be shown in the next

section. Using these new conditions we will develop a logical definition

of a large subset of Algol.

73

Section 5: ALGOL LIKE PROGRAMS

In this section we are going to develop a logical definition of

large subset of Algol 60. The features in the language will be added

successively to a simple language that includes statements and specified

functions (called procedures). At each stage the required modifications

will be given that have to be made to the simple language definition.

The final language will have most of the features of Algol 60,

including many types of statements -- assignment, conditional, jump,

while, block and non-type procedures -- using expressions containing

type-procedures, including boolean and array procedures.

The language will not have the 'call by name' feature, nor will

it allow label and procedure parameters. However, 'side effects' of

procedure calls will be possible by the use of non-local variables.

There will be no input-output operations as such; programs will have

certain 'input-variables' which are given values at the start of a

computation, and certain of the variables in the program will be

designated as output variables, whose values at the end of the computation

are to be considered to be the results of the computation.

Despite these restrictions, the language will be quite a good

approximation to Algol 60.

The logical definition of this language can also be used to formalize

partial correctness of programs, and therefore can be used for formalizing

many other properties of programs.

In the rest of this section we assume some familiarity with the

constructs of Algol 6o. This will allow informal descriptions of programs.

The Simple Language

We start with a simple language in which a program is a sequence

of statements: assignment, condition, and jump statements. Variables

are not 'typed', and there are no arrays. In these respects, the

language is similar to the flowchart languages considered by Manna

and Floyd. However, in the assignment statements we allow the use of

procedures. A program therefore includes a set of simple procedure

declarations.

Each such declaration consists of a list of formal parameters,

followed by a declaration of local variables, followed by a sequence of

statements (the procedure body). The name of a procedure is used like a

variable in the body of the procedure on the left hand sides of assignment

statements, to hold the result of the procedure call. We restrict the

scope rules so that the only other variables that can occur in procedure

bodies are the locally declared variables, and the formal parameters of

the procedure. There can therefore be no reference to non-local variables

declared outside the procedure declaration. In a similar way there can be

no jump statements within a procedure body whose destinations are labelled

statements outside the procedure declaration.

A program consists of a list of input variables, followed by

procedure declarations and a declaration of local variables, followed

by a sequence of statements (the program body), followed by an indication

of the output variables. The variables that can occur in the body of the

program are the input variables and the local variables.

A program P therefore looks as follows (variables are indicated

by indexed letters X , Y and Z):

75

m1 local

[body of F1.

Yll" lno, Zll' ,Zim 	Fl.
1

Y 	...and

variables of F1

Variables allowed:

program P(X1,...„Xn);

begin

specification of n
p input-variables

decl Z1,...,Zm

procedure F1 (Y11,

begin

• •

1

P
local program variables

n1 formal parameter of F1

decl Z 	Z • 11' 	' Im ' 1
(statement);

•

(statement)

end.;

Procedure F j 01 	jn.

begin

decl Z 	Z
•
• j11 	jm.'

n. formal parameters of F.

m. local variables of F.

)
n

(statement);

(statement)

end

(statement);

(statement);

•
(statement)

output(X
al

end.

body of F.. Variables allowed:

Y. ,Z ,...,Z. 	and F.. j1' 	jn. jl 	jm.

body of program. Variables

allowed: X1'...,Xn ,Z1,...,Zi
P 	P

(specifiCation of no output variables,

taken from X1,...,Xn ,Z1,...,Zin .
P 	P

We consider output(Xa ...Xa) to be a statement, but such statements
1 	no

can only appear at the end of program bodies.

The various- other types of statements are as follows:

Null statement.

null

ii) Assignment statement.

=X. : T
1

where T is a term as defined in the previous section (with

procedure names instead of function variables).

iii) Conditional statement.

if n then (statement) else (statement)

where y is a propositional term as defined in the previous

section (i.e., no procedure names). The 'else (statement)'

part is optional when omitting it does not introduce ambiguity.

Jump statement.

goto L.

where L. is a label. Any statement can be preceded by one or

more labels, each followed by a colon. In any procedure or

program body, any label occurring in a jump statement occurs

exactly once labelling a statement.

To simplify the later logical definition we stipulate that the

last statement in the sequence forming a procedure body is null.

We can now give an example of a program. The statements have been

numbered for later reference. The numbers are not part of the program.

77

program sort(list);

begin

decl result;

procedure merge(sortlist,atom);

begin

(8) if null(sortlist) A lessp(atom„car(sortlist))

then (9) merge := cons(car(sortlist),merge(cdr(shortlist),atom))

else (10) merge := cons(atom,sortlist);

(11) null

end

(1) result := NIL;

(2) L: if null(list) then (3) go to out;

(1.) result := merge(result,car(list));

(5) list := cdr(list);

(6) go to L;

(7) out: output(result)

end

141 consists of atoms and lists of atoms. The lisp functions and

predicates have their usual meanings, and 'lessp' is some relation that

totally orders the atoms.

Execution of programs

The execution of these simple programs conforms with the usual

Algol meaning, with the following restrictions:

i) On calling a procedure, the parameters are passed by value only.

Together with the scope restrictions given previously, this means

that calling a procedure produces no side effects. Hence in the

evaluation of terms, e.g. fi(r1,T2) it does not matter which subterm

T
1

or T
2

is evaluated first. However, we will allow side effects

later, so we will stipulate that

Terms are evaluated left to right, i.e., T
1

before T
2
.

In most sensible programs, the value of a variable is not used before

the variable has been assigned a value by an assignment statement.

HOwever, when a variable is declared it must have some value, and we

stipulate that

iii) the initial value must be the same for all declared variables.

This holds for the name of a procedure used to return the

value of the procedure (i.e., this value will be returned by

any call of a procedure in which no statement is executed

that assigns a value to the name of the procedure). We

assume this special value corresponds to a special constant p

in the basis symbols of J .

We do not intend to give a description of the execution of programs,

but to simplify the later logical definition we assume

a) There is a known correspondence between variables occurring

in statements and their first occurrences in parameter lists

or variable declarations. This means that there is no

difficulty in renaming all variables in the program without

changing its computations.

b) There is a known correspondence between labels occurring in

jump statements and the statements that are the destinations

of the jumps.

79

Every statement has a 'successor' statement, defined as

follows:

i) For statements comprising the sequence of statements that

is a procedure or program body, the successor statement

is simply the next statement in the sequence. For the

last statement in the sequence, i.e., null or output, the

successor will be denoted by c

ii) For statements contained in other statements (in this

case, in conditional statements) the successor statement

is the successor of the smallest containing statement.

We will not give examples of computations, but merely remark that

the above program 'sort' sorts lists according to the relation 'lessp'

on the elements of the lists.

Logical definition of the simple language

We intend to amalgamate the two previous definition techniques,

for the one-level language and for functional programs, into a definition

of the simple language. This means introducing three types of predicate

symbols: 0a , indicating that computation has reached statement a ,

qp. indicating the call of procedure Fi , and QF. , indicating that

F. is called and returns a value. The symbols qF
 and QF are

n.-ary and n.+1-ary as in the previous section. For 0a where

statement a is in the body of procedure Fi (the program P] , we

define the numbers a' = n.fn p 	1 3 and a" = (n. -Fm.1 +1) [(nP
 -1-m
P
)3 g

1

Then 0 is a' +a' -ary. a" is the number of variables in scope

for a , and in fact we can map these variables into the integers 1

to a" according to the order of their first occurrences in parameter

lists or declarations, e.g. for

program Prg(foO,baz);

begin

decl

procedure F(D,E);

begin

decl G;

al; a2; c3; null

end

a4;
a5;

output(B,C)

end

in the program body,

ait = 2 , art = 5 , and the variables are ordered

foo, baz, A, B, C;

in the body of F 1

•

a2 	, 2 	2a" = 4 	and the variables are ordered

F, DI E, G

As in the previous outline of a program, ni is the number of formal

parametersofF.„andm.is the number of locally declared variables. 1 -

81

With the program P itself we associate predicate symbols

qp 	(np-ary) and QL., (np +no
 -ary) .

We are going to construct formulas using these predicate symbols,

and the construction of these formulas will be more obvious if the

symbols are considered to have the following meanings:

ql,.(T...,T..„)means'procedureF.is called' 	with arguments
2 	,..,,

TI ."Tn. t " 	. 1

Qp.(T1,...,Tn.,Tn.+1) means 'procedure Fi is called with
2 	2 . 2

arguments Tl...Tn and terminates with value T
n.+1

'.
2 	 2

Oci (ti,“")tat,T11•••71.0.0 means 'computation reaches statement a

(in some procedure (program) body) with variable values

TI....Ta" when the procedure (program} was called with

arguments (inputs) t1..,ta,

The formulas are constructed as follows.

We assume that X. represents the i-th variable in the ordering for

.a particular procedure declaration or program.'

With each statement a whose successor is a2 , and v
2 e , we

associate a folmula W : a

i) 	Null statement:

a:- null

Oci (Yv • • • Y0_,;x1; • • •;x0.1t)

82

(Y3_;•• •;Yo.,;).ci; • ••;xo)
2 	2

ii) Assignment statement: We is best illustrated by

examples

a) c : - - Xi : 	fi(brXk))

Wa:- 00.(Y1'“Yat,X1,'"IXan)

b) a:- X .:= F1 (X.,f2j (X.))

We: 00-(Y1,'"/Yaf,X1,'",Xatt)

fq, (x
"L
„f2(xi)) A

(x” f2(xi) zi) D
-°"3_

Ocr 	(Yi, • • • , 	t , xi, • - • xi _32 	• • • , xo.„)

	

2 	2 	 2

c)a:- Xi := fi(Fi(F (Xi) , F2 (Xi)) F2 (Xid)

We:- r6cr (Y1, • • • , Ycy Xi, • • • X0 it)

(xi) A
2

(x z) D 2 1 1

[q, (x.) A
2
	 (x.,z)

2 2

IcIF1(zl'z2) A

	

EQ, 	(z.12 z2) z3) Fl

IciF2 (xk) A

[Q'F'2(xk'

0a
2

 (Y1• • •Ycy
2 x

j.,•• •,xi 	fi(z3, zit),•••,xa„
2

)B1)B 	•

83

This example illustrates the leftto-right rule for evaluating

terms.

The construction of Wa for all assignment statements

should be obvious from these examples,

iii) Conditional statements

a) 	a:- if Tr(X ,...,X) then e0 else e1
131 	I3j

where e0, a1 are statements, and Tr(X13 ,...,X) • 1 	Pj

is a propositional term (Kn EtK1,...Ixd, i = 1...j)
1-'2.

We:- 0 (Y 	U
I •..xa" D

if Tr(x,„) then Oa (y,...y„,,x,...x,n)
w Pl 	 0 	o

else Oa (y,...y,„x,...xa")
1 	wl 	1

a:- if Tr(X) then a
o P1 	Pi

0
a(Y1—Ya"xl—xa") D

if 11(x 1...,x) then 0 (y
pl 	o 0

.x e„) a” 0

else 0a2(y1,. ..,ya,,x,, ...,.x) a.
2 	2

2/4 For formulas, if P then A else B means HP D Al A [--IPDB]] .

84

'iv) Jump statements

a:- goto L.

where label L. corresponds to statement a1

W :- a 0a(y1...ya,,x1...xan)

015 (y,...y al

II) For statement a whose successor is E , there are two cases to

consider:

i) if a is the last statement in the body of procedure Fi ,

i.e., null, then with this procedure declaration we associate

the axioms

[qF.(y1n.)D O a 0(,Yi,...,Yn

0a(Y-1"."Y-a,,x1,—"xan) QF (Y1.—Yn 'xl)/

where c0 is the first statement in the body of Fi 	(Note

that 	= c t = /a.1 .) 0 	.

ii) if a is the last statement in the program P i.e.,

output(X ...Xa) , where Xa. e(X1 ...Xa" } 	= i 1 n
o al no

then with the program we associate the axioms

WP:- f (P.) D 0a0(Y1,--,Yn

00.(Y1! • • 	-..,xu) DP(Y1,---,Ynp'xal..- /ca)3
no

where a0 is the first statement in the body of P .

(Note that at
0
 = at = n .)

85

III) We then define the set of axioms Wp(k,Q2 '11 as

[qp(k),W) U Nola in iq U pw_ IF, in P} .

For example, Wp(k,Q1) for the program 'sort' is given below.

Statements are referred to by the numbers in the example, and

procedure 'merge' is referred to as F . Axioms are separated

by semi-colons.

Wp(k,Qp):- qp(k1);

gP(Y1) 01(YVYV P);

°7 (y1' xV x2) q.e(Yi! x2) ;

0 (y
1
 ,x
1 ,x2) D 0 (y1 ,x1 ,NIL); 1

02(yilx,,x2) 	if null(xl) then 03(y,,x1,x2)

else 04(y,,x1,x2)

°3(Y1f x.If x2) 07 (Yr xV x2) ;

04(yi,x1,x2) D (qp(x2, car (xi)) A

(x2,car(x1), 	Os (Y3! 	za.) ;

05(y,,x1,x2) 06(yrcdr(x1),x2);

C66(Y1'xl'x2) 02(Y1'xl'x2);

..kn) are constant symbols.

86

CIF (Yr Y2) D (Y1' y2, P' Y1' Y2) ;

Y2' Xi' X2' X3) D Q'F (YI' Y2' xl) ;

08(Yr y2' x3.! x2' x3)

D if —I null(x2) A lessp (x3, car (x2))

then 09 (yi, y2, xi, x2, x3)

else 010 (yi, y2, xi, x2, x3) ;

09 (Y1' Y2' xr x2' x3)

D tqF(cdr(x2),x3) A

[Qv(Cdr (X2) Xy Z2) D

C611(Y1' Y2' cons (car (xi) , z2) x2, x3) n

010 (Y1' Y2'x1,x2' x3)

D 011(y1, y2, cons (x2, xi) , x2, x3) ;

These axioms can clearly be simplified so that Wp(k,q) becomes

qP (k1) • '

cIP(Y1) 	113 2 (Y1' Y1'11111) ;

02 (yi, xi, x2) Dif nuLl(xl)

then Qp(yi, x2)

else NI, (x2, car (xi)) A

[QT(x2' car (xl) ' zl) D

9i2 (Y1' car (xl) zl) ;

qF(Xi,X2) 	if null(xi) A lessp(x2lcar(x1))

then (qp(cdr(x1),x2) A

[Q./Car (X1) ;3C2' z2) D

QF(xl,x2„cons(car(x1),z2))11

else QF(x1,x2'
cons(x

2' x1
)).

Clearly the construction of Wp(k,QI) uses the techniques

developed for both the one-level language and for functional programs.

We will not go through the proof that Wp(k,Qp) is a logical definition

of P that describes computations of p 	since it is similar to

previous proofs, only longer. We will simply give the conditions that

WP(k,(1P) satisfies and state the relevant proposition.

Any computation of a procedure or program body consists of a

sequence of computations of statements from the procedure or program

body. When we talk of computations of such statements, the 'next'

statement is the statement (in the same procedure or program body) whose

computation follows the computation of the statement considered. This

is not always the same as the successor statement, for example for jump

statements or conditional statements.

The conditions on

W = tWla in 11 U DJF IF.cP) i

are as follows.

88

If for computation of statement a , for variable values

(111---Tn) = 1 the next statement a1 is reached with variable

then for all 5 = (d1..01„)EIsi

values (111...µ_
u
")
l
	

at

dgh
1-; 	Ocr d
Pa(d,g),wp 	1

(,h)

II) If for computation of statement a , for variable values (1...1'15") = ,

procedure F. is called (at the top level, i.e., CY contains Fi)

with arguments (i,...,tn.)

then for all 8 = (8 ---)6at)ciSlat

d gh

(h) pa. (a.) , wp

III) If computation of Fi called with) = , reaches statement a

in the body of Fi with variable values (I-1'1a") =

then

`'h g
k 	0 (h,g)
qF.(h) CAT 	

a
P 3.

IV) If computation of F. called with1—n) = t terminates with y

then
_ot

e

q (h)A

89

•
V) 	For all'statements a in procedure F.

0
 (program 11 	We makes

sense if we precede it by 'for all sets of computations of a '

and we read - q
F.
(T
1
...T

n
) as

	

1 	1
'in one computation, F. is called with T

1.. .T11.. t /
3.

Q
F.
(T
1
...T

n.
IT
n.+1) is. read as 1 	a. 1

'in one computation, F. is called with T1...1-
n.

and terminates 1 1
With Tn+1

00..(t1,...,ta,,T1,...,Tau) is read as

linonecomputation,whichisin.thecomputationofF.
0
 {13} for

arguments {inputs} t1a' 	a. is computed for variable

values

For all procedures Fi in P , WF makes sense if we precede

itbylforallsetsofccunputationsofF.tand the predicate

symbols are read as in V) above.

It is clear that WP satisfies the above conditions (conditions I-IV

require induction on lengths of computations as in the previous section,

but are quite straightforward). From these conditions we can prove the

following proposition.

Proposition ii. If Wp(k,(1.e) satisfies I -VI: in computation of P

for inputs
(1... n) = '

90

a) statement a in the prograM\

body is executed for variable

values 	.Ti) =

F. is called with

(81...8n.) = 8

c) F. is called with

(81-8n.) = 8 and

i) 	statement a in the

body of Fi is

executed for variable

k• g
a) 1- 	0a(kv g)

W (kIct) P P

Sk d
b) qv (d)

WP -P (k) "ui

c)

if and 	Jt 8 11 k d g
only if 	i) Oa (d, g)

Wp(k,Qp)

values (1...%.)

computation of Fi

terminates with y

jt 5
k d e

ii)
W
P
 (k1Q...) Fi

d) computation of P terminates

with output values

(µ1...
µn) = P

k• h
F 	, 	Q

P
 (k,h)

W kk,Q P P
I

•

Proof is similar to the proofs of the previous three propositions.

91

We see that WP
 (k,Q

P
) is a logical definition of P and it

describes the computations of P in the desired way.

It can also be easily shown, as in the previous section, that

Wp(k,Qp) is both monotone and continuous, and therefore aQiip(kly

is a formalization of partial correctness (where Q denotes all the

extra predicate symbols except Qy , and V1p(k,Qp) is the closure

of ck,Qp)). We can therefore use TykA2) to formalize properties

of P such as termination, correctness, etc.

We can now add extra features to the language and modify WP(k,q)

accordingly. It is clear that after each modification, WP still

satisfies I-VI (possibly modified slightly) and so Wp(k,Qp) still

is a logical definition.

Extensions of the Simple Language

1. While statements

We add statements of the form

a:- while 7 do a 1

where n is a propositional term, and a1 is a statement.

Let the successor of a be a2
 •
'

Wa:- 0a(Y]:"Yal,X1'—xan)

	

if 7 then 0c 	u 	-I-

	

l 	I
else 0a

(y1...ya',x1...xa")

	

2 	2 	2

and we stipulate that the successor of al is a .

2. 	Conditional expressions

We modify the definition of assignment statements by allowing

expressions on the right hand sides.

An expression is a term or is of the form

if 7 then T
1

else T
2

where T
1' T2

 are expressions) and Tr is a propositional

term.

We will illustrate the construction of Wa by examples as before --

the successor of a is a2
.

a:- X. := if 7(X, ...X„) then f2(Fl(fi(Xi)),Xk)
Pl Pk

else F2(Xi,Xj)

Wa:- Yja(Y1...Yaf'Xi...X0-")

if 7(x...x)
°J. 	°k

then (c1F1(f1(xi)) A

[Q.„ (f,(xi),z1) DOcr 	...yailx,...xj_l,f2(zilxk) ..Ixa")])
1'1 -L 	2 	2 	2

else (11 (x.,x.) A F2 	j

[Q
F2
(x.
1
,xj.' z2) ...,xj_,,z2...xa,)])

2 	2

93

ii) 	Xi := F (if Trr then b1 else fi(Fi(Xi)),

if Tr2 then X j else if Tr3 then Fi(Xk)

else b2)

Wa:- 06 (y1. • .y , x1. • .x0 „)

if 7., then if 11,1
c
 then

[qF (bi,xi) A
2

[Q, 	(b,,xj, z1) 200_ (y, .ya , xi, . . . x j _1, zl, . , x0.0])
'2 ' 	u2 	2 	 2

else if 73 then

(q, (x,
"

) A
1

(xk' z2) 1
[q, (bIl z2) A

[972(br Z2' z3) °O.2Y1' 2
... a.)]}]}

2
else [q, (b,,b2) A

1 -I-

N, (b„ b2, z4) D

	

°O* (Yi* "Ya 	" Xj -11 Z4. 2 	2
else (q (x.) A Fl

	

[QF 	
j

(x.,z5) 	D

if Tr2 then

	

Ccip (fi(z)

[QF 	(fi(z5) Ix j, z6) D

..02)])

06 (Yr • • • ,Y0. xi, • • • xi 	z6, • " xo. it) 13
2 	2 	 2

94-

else if Tr
3
 then

(gFi(x d A

[C1F1(Xle Z7)

(ci 1(fi(z5),z7) A

[QT1(fl(z5)5 z7 z8)

Oa (Yi• • •Yar'xi'•••'xi-r z8,— "xa") 3331
2 	2 	2

else tql,
1
(f/(z5),b2) A

[q
p1
(fl(z5),b2,z9) D

Oa
2
(Ylr- 	

2
,Yat ,X1,-•,Xj_1,Z9,—Xau)])13 •

The construction of We
is clearly lengthy but straightforward.

3. 	Modification of propositional terms

We are going to allow general expressions in propositional terms

instead of simple terms and allow if then else as a logical connective.

This means introducing procedure calls, the if then else construction

and a left to right evaluation rule for the generalized propositional

terms own as propositional expressions). We shall give examples

of W. for conditional statements formed with such propositional

expressions. The formulae for while statements are similar.

i) 	v : 	if [P.(F,(X.)) A 	j P.(F1 (Xk 	al

	

))] then 	else a2

95

11T (xi) A 1

[Qr (x.' Z1)

if P.0 (z1) then

[qF (xk) A 1
[Q._
FlK

(x_ l z2) D

if —1 P.J (z,e) then

Oa (Yi• • •Ycrt ,X22 • • •)X 0
1 	1 	crl

else Oa (yi...ya ,,x1,...,x")11
2 	2 	02

else Oa
2
 (y/...ya22„xl...xa")])

ii) 	a:- if if p -L then [Pk(Fi(Xj)) V Pk(f2.(Fi(Xk)))

else Pp Pk (Xk) then bi else x.)

then al else a

wa:-

(q,„ (x.) A
111

[Q, 	(x., z)

	

F1 	1

if P.(z,-L.) then

(q (x.) A Fi j

	

[(X . z2) 0'

96

if P (z) then 0 	tlx,...x0,)
1 k 	2 	— cr 1 ...y ci1 J_

else tqF (xk) A
1

~QFl(xk,z3) =3

if 11(fi(z3)) then Oal(yi...y:0.11x1...xaT)

else Oci (ya....ya„xl...x(0)]1])
2 	2 	2

else if Fk(xk) then

.x a„) a” 1
if P.

a
(b1) then 0 (Y ---Y cr 	1 	a t 1 	1

else 0(12(y1...N,x1...x0.1)

p.(x.) then Ocy1(y,...y.01,x1...xan)
1

Oa
22
(Y1---Ya,,x1-.

2
an)11

else if

else

4. Blocks

We allow blocks as a new type of statement.

.A.bg.ock is a sequence of statements, preceded (optionally) by

local variable and procedure declarations. The last statement in the

:sequence is null.

e.g. 	begin

decl Xl...Xi;

procedure Fl(Y1...Y6);

begin

end;

(statement);

'(statement);

null

end

97

We generalize procedure declarations so that they each consist of a

formal parameter list followed by a block.

Clearly blocks and procedure declarations can now be nested to

any depth, and the scope rules get more complicated. We still do not

allow reference to non-local variables in procedure bodies, so that

the variables in scope for any particular statement are simply all the

variables declared in enclosing blocks out to the smallest enclosing

procedure declaration [or the program itself} plus the formal parameters

and name [input variables} of this procedure {program}.

e.g. for program F(X1);

begin

decl X2' •

procedure Fl(X3);

begin

decl X • '
procedure F2(X5);

begin

decl• x6,
a •

a2' •

begin

decl x7;

a3' •
begin

decl• X8,

null

end;

null

end;

a5;

null

end;

a• 6'

begin

decl• X9,

a
7-
;

null

end;

null

end;

cf8;
output(X2)

end

we give the variables in scope (in correct order) for statements

of P as follows:

al' a2 : X5, X • 6'

a 	: I 3 	F2, X 5 X6, X7;

: F21 X5, X6, X7, X8; •

a5 : F2, X5, X X6; •

06 : F1,X X • 5' 4'

a
7

X3, X4/ Xg;

a8 : X1, X2.

The formulae W are based on the fact that " is the number

of variables in scope for a . Therefore we have to.redefine a , and

a, = (number of formal parameters of the smallest procedure

declaration enclosing a),

and

a" = 1+a, (number of local variables declared in blocks,

within this procedUre declaration, enclosing a).

99

c"

If a, is not enclosed by a procedure declaration, a' is the number

of input variables and a" = + (number of local variables declared

in blocks enclosing a).

The modifications of the definitional axioms are then quite simple.

Let a be the block

begin

decl X ,...,X ;
131 	Pi

procedure

00

a
1

end

i.e., a0 is the first statement and a, (i.e., null) is the last

statement, and let the successor of a be a2 . We simply define

the successor of 5
1

to be a2 and associate with a the axiom

W 	0 (y 	y x ...x) a' 	l' 	al' 1 	a" (Y1-..Yafpxv.--,xan/0,-",P)

j times

(Note that cr"0 = a" j by definition)

For any statement of in a which causes execution to leave a

(i.e., a. is a
1 or is a jump statement), the axiom Wa. will show

that the values of the j local variables are lost on leaving a .

This is because for the statement of that is reached, a? is at least

j less than of , and it is the rightmost argument values (corresponding

to the local variables) that are dropped.

e.g. for the following fragment of a program

100

procedure F1 (X2)* '

begin

decl• x3,
some of the axioms are as follows:

Wa :- C6o 2 (Y1' x1' x2' x3' xi) D 2

C6a (Yi'xi'x2'x3'x413)

We 	0 (y ,x ,x ,x ,x, o 	o4 1 1 2 3 4,x)

0a8(Yi'xi'x2,x3,x4)

We :-
0_ (y,,x,,x2,x3,x4,x5) =3

5 	
o5

Oa (Yi'xi'x2'x3)

w
a6 	

00.
6
(y,,x1,x2,x3,x4,x5)

Oa
7
(Yi'xi'x2'x3'xi)

(The procedure name F
1 corresponds

L:

begin

decl X47;

a2
	begin

decl X5;

N:
•
•
•

goto M;

05 	
goto L;

•

null

cr7

a
8

end

K:

M:

to x1 .)

null

• end

.null

end

101

5. 	'Side-effects'

We allow statements in procedure bodies to use non-local variables,

i.e., the variables declared in blocks enclosing the procedure declaration,

and the formal parameter and procedure names of other procedure

declarations that enclose the one in question.

ThismeansthataprocedureF.is a function not just of ni

arguments, but of ni+gi arguments, where gi is the number of

non-local, or 'global', variables to which Fi has access. For any Fi

g. is a fixed number, namely the number of input variables plus the i

number of variables and formal parameters (and procedure names) in

blocks and procedure declarations enclosing the declaration of F.

In fact there is a mapping of these gi global variables into the

integers 1 to gi according to the order of their first occurrences

in parameter lists and variable declarations. A given variable is mapped

into the SAME number by the appropriate orderings for all the procedures

that have this variable as a global. That is, we can assign each

variable and procedure name a number, and whenever this variable or

procedure name is a global of a procedure, its position in the ordering

of globals is just this number.

The effect of F. is no longer limited to returning a single

value, but it may now change any of the gi global variables.

We must therefore adjust the number of argument places

of the predicate symbols qF. and Qp which have to describe the

effect of F. ; qF. becomes g.+n. - ary and QF.
becomes

g.+n.+g.+l -ary.

102

For 0a we redefine a' and a" . If the smallest procedure

.declarationenclosingaisthatofF. I then we put a' = g.+na. . .

.Then, as before, a" = 1+a' +(number of variables declared in blocks

containing c , contained in the declaration of 1) 	If there is

no such procedure declaration enclosing a , then at and a" are

not altered. In both cases ocr is c t + a" -ary.

This definition of a" ensures that the number of variables that

can appear in a is a" and the order of appearance of these variables

In parameter lists and declarations maps them into the integers 1 to a"

The modifications to Wp(k,Qp) to deal with side effects are

as follows:

a) 	The axioms Wa are defined exactly as before (using the new

definitions of at and a") except for statements that include

procedure symbols (procedure calls). The method of construction

of Wa for these latter statements can easily be inferred from

the following example, which was used previously in the original

specification of Wa :

a:- Xj := fl(F1(F2(Xi),F2(Xj)),F2(X0)

Note that both gl and g2 (for F1 and F2) must be

less than or equal to a" because of the scope rules. We

assume j > gl ›. g2 .

103

W

IcIF2(xl"'"
xg2

/xi) A

(x .x /xv

	

1 	g2 i/ 11"'"v1 2

	

[41 (v 	v 	,x.) A F2 11/ .1 1g2-

1°2 	 (v12! ../ • 	v1g2/ xj/ v21' ...,v2, ,z2
)

tq (v2 ,...
Fl 1

EQF (v21". 1

(cIF2(v31"

NT 2(v31/

0 (Y l' a2 1

,v2g2,xg2+1...x,z1,z2) A gl

"v2,,.625'/x,-2+I- 6x--1 -L./z-"z2.°731/ 3)D

. V3g2, xk) A

• • • , v3g2„ xk, via • • • v1g2, Zid

• Ya2 v1-1-1/ 	vii-g2/ v3g2+1' ' .v3g1/ xg1+1/ '

xj.a,f1(z3,Z4),...,x0.011)1M1
2

The construction is lengthy but the ideas behind it are quite simple.

The construction of W is unaffected.

The construction of WF. 1
statement on the body of

statement, then

is as follows: if ao is the first

F. , and al (i.e., null) is the last

WF' -- (qF 1

,z1)

.y g.+n.
1 1

...Y 43,Y 	...Y g+1 gi

.Y ,x) 0 (, ...x)1

	

a' 	1• ''x 1 a"' D -F. Ỳ1'''Yg.+n. 1 	.+1

	

1 	1 	1 1
x 	

gl
(Note that g.+n.1 = a0

 a
1 '
t)

1

The reason why this construction of WF_ works is that if a 1
statement calls a procedure Fi , then the gi globals of Fi

104

are exactly the first gi variables for the statement in question

(by the property of the ordering, mentioned previously).

6. Non-type procedures

We can now allow, as types of statement, procedures which do not

return values. The effect of these 'non-type procedures' is purely-

on their global variables. The differences in programs are

i) We distinguish between the declarations of the two types of procedure by

calling the non-type procedures routines. A routine declaration is

Simply

routine R.(X ...X);
1 pi pn.

(block>;

ii) In the body of a routine declaration, the name of the routine cannot

be used like a variable. (This will require slight, but trivial,

modificationsofthedefinitioneg..)

iii) Routines are called by statements of the form

Ri(Ti...Tn) 	where T1.n are expressions.

The modifications of the axioms are minor. As mentioned already, a

Slight but obvious modification is needed in the definition ofgi . so

that routine names are not counted as variables in the way the procedure

names are. Apart from this we need only consider the routine statements

themselves and the routine declarations:

a) 	We shall consider only a very elementary routine statement. The

treatment when more complicated expressions are included is similar

105

(but more complicated).

a:- R.(Xct ...Xan.
) 	and the successor of a is a2

1 1

Wa:- 0a(yi...ya,,X1...Xa”)

[gR (X1...Xg'Xa --xcc .
) A

1 	1 1 n1
[Q„, (x,...x,.1xa ...xa ,v,...v 11.

(xi
1 	51 1 n. 	gi 1

0a(y1...ya"v1...v .,x g. 	a
2+1,...,x 2 	g 	u)11 .

2 	1 3.

b) 	If a0 and a1 are the first and last statements in the body

of R. then 1

(Y1...Y) =3 1 1

Oa (Y1—Yg.4.n.IY1—Yg.+n '13-43)P 0 	1 1 	1 i

Oa (y1...yai,x1...xau) 	QR (yi...yg 411 lxi...x)1 •
1 	1 	1 	i 	1 1 	gi

7. 	Data Types

The addition of data types to the language is more than a simple

modification of the computing systemi it implies a partition of the

data space 'SI , and the existence of certain 'type-conversion' functions

which do not appear explicitly in programs. We will therefore start by

considering 61 .

gt is suitable for basing a multi-typed language on if there are

.special subsets Ai,A2,... of IS' , possibly infinite in number,

and not necessarily disjoint. Equivalently there are unary

106

relations .ni,n2,..; on 1,91 characterizing these subsets;

and they correspond to unary predicate symbols in the basis

of c.9 which we shall denote by 	Ti,T2...

ii) for each subset Ai a function 	1,41 Ai, such that for

all Ee.A. 	= . The corresponding function symbol

in the basis of c9 we shall denote by hi .

iii) a special element from each subset Al , corresponding to a constant

symbol in the basis of c9 which we shall denote by pi .

This means that 9 is a model of the following axioms:

Ti(hi(x))

Ti(x) hi(x) = x

Ti(pi)

for all i such that A. c J I .

ThesetsA.will be identified with the various types of data

manipulated by programs, e.g. integer, real, complex, etc. The special

element from each set is the initial value assigned to variables of the

corresponding type, and the function *i is a type-4conversion function.
The latter will be applied during execution of programs to ensure that

variables of a given type only get assigned values of that type, and

that procedures get called only with appropriate types of arguments.

Other type conversions during the evaluation of expressions will

occur automatically because the functions corresponding to function

symbols in programs must be total on Ic9I . For example, if the subset

107

AN of 1,91 consists of the integers, the function corresponding to

the function symbol 	may perform addition on AN but must also

be defined for arguments of other types. Hence in specifying its

operation for other types of arguments we can introduce any type conversion

rules we wish. We have therefore shifted the bulk of the type conversion

into specification of 9 , and need not consider it further.

The changes made in programs by the addition of types is as follows:

i) When variables are declared, their type must be specified. This

is done using the predicate symbols Ti , by replacing declarations

of the form

decl X,Y,Z;

by, for example

T1 X;

T1 Y Z•

ii) The types of formal parameters and input variables must be

declared similarly, and the type of result a procedure returns

must be specified. e.g.

a) 	instead of

procedure F.(X , 1

we might have

T3 procedure 11.(T4 LI .L T 2

instead of

program P(X
3
,X ,X1)- '

108

we might have

program P(T1 X3,T3 X „Th x1);

and c) instead of

routine Ri(X
1
,X2„X20);

we might have

procedure Ri(Ti X11114 X2,T3 X10);

(i.e., to conform with Algol notation we revert to using the

word procedure for routines, now that the declarations indicate no

value is returned.)

If Tl'2'.• T 	. are in fact 'integer', 'real' ... the similarity to Algol

is apparent.

The modifications of the axioms W are again very simple.

The axioms for a given program are almost thoSe that would be

produced if the program were changed slightly as follows.

i) Assignment statement

X. : = T
0

where X.
0
 is declared of type T. , is changed to

X. 	:= h
i
 (T) .

Procedure or routine call

Fi(T1...Tn.)
1

wheretheformalparametersofF.are declared of types

Ta ,...,T
an.

, is changed to
1

Fi(ha
a.
(T1),h (T))
1 •

...,ha n. n. 	1 1

109

The only other modifications of the axioms involves assigning

the correct types of initial values.

e.g. for T3 procedure F.2(T2 X1 ,T3 X2). '

begin

T1 X4

T2 X6;

c0;

null

end.

WF. includes the axiom
1

qF.1 	2 (Y 	g11) =3 i 	.2

Oa (Y1' —"Yg...4-n.5Y15 "Ya."P3/Yg.-1-1— 'Yg.-1-n.113l"P11132) 1 . 0 	n. 	'2 	a_

and similarly for routines and blocks.

8. 	Boolean Procedures

In our treatment of data types we have been completely general, and

assumed no properties of the types of data considered. However, there

are some type of data which influence the syntax of programs, for

example, 'boolean' data. Boolean variables are considered to hold

'truth values', and it is desirable to allow statements of the form

X. := r

where Xi is a boolean variable and r is a propositional expression.

110

Using such variables it is possible to declare procedures returning

values of type 'boolean', and it is desirable to allow such boolean

procedures to be used in place of predicates in propositional expressions.

Clearly the values of boolean variables are not really truth and

falsity, but some values that can be interpreted as truth and falsity.

Therefore if Is I includes a set of boolean values, e.g. Ao , then

there is a special relation X characterizing the 'true' elements of
AO

The predicate symbol corresponding to this relation we shall denote

by G . We shall also assume two special elements of AD corresponding

to constants T and 	only the first of which satisfies X . That

is, gl satisfies the axiom

T0 (T) A T0 (5) A G(T) A G(5) .

If there is such a data type in 	, then we can use boolean variables

and boolean procedures in the way mentioned, and also use the constants

T and y and any boolean variable as propositional expressions (in

assignments to boolean variables, and in other propositional expressions).

The axioms fi are then exactly as they would be if the program

were changed as follows.

i) Wherever an expression T is used where a propositional expression

is appropriate (using the original definitions of expressions and

proppsitional expressions) 	is replaced by G(T) .

ii) Wherever a propositional expression it is used where an expression

is appropriate, u is replaced by if u then T else y .

The program then conforms with the original syntax, and WP can ,

be constructed.

111

Arrays

Another type of data that influences the syntax of programs is

arrays. If a program contains a variable X. whose value is an

n-dimensional array, then we would like to allow expressions of the

form X.[T, ...,T
n] , and statements of the form

Xi[1.1" --"Tn] := Tn+1

where Tl—Tn+1 are expressions. We shall allow such expressions and

statements by showing that they are simply shorthand forms of other

expressions and statements of types we have already considered.
A

The axioms W are then constructed from the program with these

other expressions and statements replacing the array constructions.

To represent these constructions as normal expressions and

statements we require the arrays to be objects defined as follows.

We consider an n-dimensional array to be a family of data objects

indexed by certain n-tuples of other objects (for generality we do not

assume the index-objects are integers). The simplest situation is where

the elements of the n-tuples are independent, i.e., the index set is the

cartesian product of n sets of data objects. Only this situation will

be considered here. Thus an n-dimensional array2-.7:11 with index set

B1xB2x ...xBn consists of a family of objects b, ,b ...b 3 / -1 a2 an

In normal Algol programs, B1...Bn are finite sets (of integers)

that are determined during the computation of the program (prior to

allocation of the array variable). If subsequently there is an attempt

to use an index not from B1 x ...xBn then either the program fails,

e.g. for exceeding array bounds, or perhaps some conversion is made to

112

b
a.

eB
i , i = 1...n .

.1

give an index within bounds, e.g. when a real number is used as an

index. If we wish to keep Bl...Bn as general sets of data objects,

it is difficult to incorporate the feature of array bounds into the

language, and even harder to give a logical definition.

We are therefore going to assume that the sets B1...Bh are sets

of data types, e.g. A ...A . Then if there is an attempt to use an

	

71 	7n
index not from A X A X ... xA , it is converted by using the

	

71 72 	7n
functions ir ...*

Yn
. Then, for example, an integer-index array has

71
no bounds on the integers that can be used as indices.

We are also going to assume that all the objects in a given array

are of-one type. An array variable declaration is therefore of the

form

Ti array Xl [Tk n 1 T., T]

indicating the variable X1 is to take as values families of objects

from Ai , and all the families will have index set Ak x Ah x Ag .

Since arrays are data objects, we might consider the set of all

arrays to form a data type Aa , with predicate symbol Ta . But

then Ta could be used in array declarations,

e.g. T. array X2[Ta] ,

so that one index of X2 would be X2 itself. Such circularity will

lead to paradoxes. It can be removed by letting there be many types of

array. For instance, the type of Xi above we could denote by

. This type could then be used in other array declarations, T(klh,g,i)

and no circularity would result.

e.g. T(1 .
,3
.) array X3j [T.' T(k,h,gli)]

would be of type T 	namely a two-dimensional array ,

worie_dijnerisional arramindexedivelementsof1"and by three-

dimensionalarraysofelEmentsofA.,indexed by elements of Ak
Ah and Ag .

*/
Such objects are difficult to implement or understand and in

practice we would restrict ourselves to simple arrays, neither indexed .

by nor containing other arrays. However, we shall continue for a while

to consider the geneml case.

For array objects to be used in programs as the values of array

variables, 9 must contain two functions

A . X •• • xA 	xA 	A
) 71 	7i-1 (71-7i) 7i

and

a
(71---)

: A_ x...xA
71

 xA 	A
(71 ---Y-) 	(Y1. --Y.)

for each setA(y...7) 	corresponding to function syMbols(7---Yi) 1 i 	
1

and a
-(71-7i) •
These functions are defined as follows: for b.EA

7
 , • j = 1...i

	

0 	•
and SEA

K(7 	...7.)(b 	'b i-l'b ...b. 1 	1 1-1

(i.e., the element of 	indexed by (b11
,...,b.

-1)) and

'(71-7i
)(b

 1 	1'

-2/ although the type hierarchy of arrays is intriguingly similar to the
type hierarchy of computable functions of Scott [], especially
considering arrays as functions from index sets into elements of the
arrays.

where 	is the family of objects (in A
7i

that element .7-r, 	is b. . 1...b. 1-1

identical to F., except

These are McCarthy's [12] state-vector functions, generalized to

an arbitrary number of dimensions of indices of arbitrary type. Using

these functions we can clearly express the constructs

X.[r ..T] n
and.

X.[T1 . . . T n] := T n+1 j

as follows. For array variable X. , declared of type Ti„, .-
7
n
+1) 1 ‘1

Xj[Ti...Tn]

in some expression is shorthand for

(h
71
(T
1
),...,h

7n
(T
nJ
),X.) c

(71
.--7n+1) •

and statement

X.[T
1
 ,...„T

n
]

n+1

is shorthand for

Xj := a
(71— "Yn+1)(h71

(T1)1...
h7n+lern+

Hence for any program P we can construct W using these function

symbols et, 	and a
(7 -..7-) ‘il 	1

Once again we have defined a construct in the language by shifting

most of the task into the specification of .9 . Now if .9 has certain

simple properties, and programs are restricted in certain ways it is

possible to give complete axioms r for the at_ 	and
/3. /II 	K(Y1---7i)

functions, so that the task of specifying .9 simply involves finding

a model of these axioms P . Better still, if So is .9 restricted

to the non-array data types, then we can 00-relatively deduce from

115

Wi,(k,Q1),r exactly the situations we can S-relatively deduce from

yk,Q2) . So adding arrays to the language based on So simply means

that r is added to the logical definition, and programs are converted

to use the c
Yr—

Yi and a
71-7

i functions explicitly.

The restrictions on S are:

i) 	The family of objects in A 	comprising the initial value
7i

of array variables of type 	
/)

Tr_ 	, has all
/1. 	1

its elements equal to Y
i
 •

ii) The objects denoted by the constant symbols101. 	cannot be

arrays.

iii) The only functions in S mapping into arrays are the type change

functions * 	and the functions a
(71-7i) 	...Y) 1

	and

K(Y1-Yi)

The restrictions 	and iii) on .9 imply that the only expressions

in programs that can have arrays as values are

a) Xj where X. is an array variable,

b) F.(T
1
 ...T

n.
) where F. is an array procedure,
1.

.

and c) X
k
[T
1
...T

n] where Xk is an array array;

and in all cases the type of array produced is known from the declarations.

It is therefore possible to require the following restrictions on programs:

iv) In expressions of the form

f.(1.1
 ...T

n
)

none of the expressions 1...Tn
are array valued.

In expressions of the form

Fi(Ti...Tn.) ,

n6

r3.(yl-v)

-the j-th formal par'ameter of Fi is declared to be an array

of a certain type if and only if the expression T. has as

value an array of this type.

vi) In statements of the form

X. := T

T is an expression whose value is an array of a certain type

if and only if X. is declared to be an array variable of this

type.

vii) No array variable can be declared to have arrays as either

indices or elements, i.e., no higher type arrays.

viii) Input variables cannot be arrays.

No predicate symbol in a program is applied to an expression

that has an array as value.

These restrictions ensure that in the computations of programs,

no type-conversion is performed from or into arrays. Therefore the

functions h 	need not be introduced when constructing 14a . (71-7i)
Then, in the symbolic computation performed by ak-relative deduction from

Wp(k,Q2) the terms representing array and non-array data objects will

be of certain forms, as defined below.

A simple-type term is one of the following forms

b.
1 	simple type constants

• Pi

ii) 	k. input value

117

f.(T
1
 ...T

n
)

h.(T1
 ...T

n
)

where T 1 ...Tn
 are simple-type terms.

(h (T 	(r.),T)
c(71-71) Y1 1 	Yi-1 1-1

where Tl''1
.T.-1 are simple-type terms and" T is a

-term.
T('71-7i)

•
Simple-type terms denote non-array objects. A simple-type term that does

not contain c
(7 ---7) 1

symbols is called a non-array term.

A
 T(7 7)

-t erm is one of the following forms:
1' • '1)

array type constant
13(71-.-Yi)

a(yj.....yi)(hyl(r1),
71
(Ti),T)

where T ...T. are simple-type terms and T is a T 1 	1 	 (7 --.7-)
-term.

1

T(71...7i)-terms denote array objects of type T(71...yi) .

Restriction ix) implies that in 4-relative deduction from W
P (k QP)

we need only know the truth or falsity of predicates applied to

simple-type terms. We shall give a set of axioms I' such that for every

simple type term T we can (,.9
0k-relativel,y) deduce from r a formula

T = TI where 	is some non-array term denoting the same value as T .

Since non-array terms are constructed from the basis symbols of ,90

(c9 restricted to non-array data objects) then we can deduce all situations

from Wp (k1QF),r relative to c9
ok

 .

r is therefore the required set of axioms describing the addition

of arrays to the language based on ,90

118

The axioms r are:

A 	
7 c

IJ1 1
71 	 a

for all y1 ...y. s.t.

I: T1 TT V ... T.-1 VT1-1 D V ' 1

(T ,... T. 	, c(y,...yi) 1 	' 11 a (yi...yi)(Ti"."TI-1/Ti/T))

= c(y1 ...y.)(T11—"Ti-l'T) •

II: c,
lY ---7.

,...,T. ,,a, 	(Tv • - •/Ti_v"ri.,T)) l7 ---Yi

III: c (71 ...7 .)('''""T i-liP(71...yi)

where t1,1121-2,T,...„-r. are simple-type terms and T is a

-term.
T(71-7i)

These axioms are simply generalizations of those for McCarthy's

c and a functions.

It is easy to prove the following property of r by_ induction

on T .

Completeness of I' :

For all simple-type terms T , and non-array terms TI :

J
ok
• At N I- 	T = Tt 44. cykkT) = r

Hence r can be used in the desired way to add arrays to structure Jo .

119

10. Jumps out of procedure bodies

This final extension of the Simple Language is also the most

difficult to incorporate into the logical definition.

We allow the labels in jump statements within procedure bodies to

refer to statements in blocks enclosing the procedure declarations.

The variables in scope for these latter statements will be included

in the globals of the jump statements. In fact, if statement a is

the destination of jump statement al , then the variables in scope

for a will be exactly the first a" of the a" globals of a1
.

1

Therefore, at first sight, it appears that the formula Wal ,

for the jump statement,

i.e., 	
°a (Y1-76"xl—xan)
1 	1 	1

06(Y1"*Yat'XI:"X6tt)

will already adequately deal with such jumps out of procedures.

However, variables yl...ya, in the first part of Wa represent
1 	1

the values of the globals and actual parameters when the smallest procedure

enclosing a1
was last called (we shall call these the 'called-values'

of al). Since a is not within this procedure, yl...ya, do not

represent the called values for the subsequent computation of a .

Therefore We
does not follow the computation of a1

in the required way.
1

Now the called values of a statement do not affect the computation

of the statement; they are only used in the logical definition where they

are merely passed on from one statement to the next until the computation

of the procedure is completed. In a similar way, Wa could be modified
1

to copewithjumpsoutofproceduresifforeachstatementa.there were

120

0
another set of a. values, taken from variable values at previous

points in the computation, which we shall call the 'historical-values'

of the statement. These values are to be passed on (by the formulae)

from statement to statement until some jump statement al is reached.

At this point we would require that the historical values contain

the called values of destination a . In fact, if the first a' of

the historical values of a1 are the called values of a we might

define Wa to be
1

w1...wa0,y1...ya',x1...x,) 7)0a(w1
....via ,x1...x al(

	1 	1 	1

0
However, a itself will have a 	historical values which Wa 1

must supply from the historical values of al . So if

i) the first a° historical values of a1 are the historical values

of a , and

ii) the next a' historical values are the called values of a

we can define Wa to be
1

0
a1
(w1

a
0,y

1
 ...y

a Ix1 ...xa)
1 	1 	1

0 (W 	0,W 	571ftra0+0., X1 oX
a"
)

1 a +1

In fact it is possible to find historical values with just the

properties mentioned.

If the smallest procedure declaration enclosing a statement is

forprocedureF.,then we say that the statement is at the top level

of Fi . We stipulate that all statements at the top level of F.

have the same historical values (because we assume that from any such

121

statement it is possible to get to any of the jump statements that jump ,

outof- F-1).

With each procedure F. we associate the set of statements (Ei)

which is the union of

1) The set of all statements outside F. that are the destinations 1

of statements within F. .
1

ii) {E3 .} for all procedures F. called within F. that are not

declared within F. . 1

Now, if Fj is the smallest procedure containing a statement in

(EI .) then it immediately follows that the historical and called values

ofthe'statementsatthetoplevelofF.
J
 contain just the historical

and called values of statements in fEil (any statement in (Eil

outsideF.mustbein [Ed)). That is, the historical values of

statements at the top level of Fi are just the historical and called

valuesofstatementsatthetoplevelofF.,whereF.is the smallest

procedurecontainingastatementin. {El} . (This relation between

F. and F.
0
 will be denoted by R(F.,F.) .)

0
This is sufficient to specify the number a of historical values

for any statement a . In addition, it implies that the historical

values of
	

(at the top level of Fk) can be ordered as follows:

the historical values of statements at top level of Fh (in

order) followed by the called values of statements at top level

of F
h

where R(Fk,Fh) .

Then if a1 is in (Ek) , the first a
0
1 historical values of a

are the historical values of a1 , and the next a
,
1
 historical values

of a are the called values of a .

122

°a .

This property of the-ordering is just what we need to modify the

logical definition.

We increase the argument places of the various predicate symbols

as follows:

For statement a , 0a is a a° +co + a" -ary predicate symbol.

ForprocedureF1 .,wedefineannmbere.so that e. = a for any •1
statement a at the top level of Fi . Then qF is a

e.3.+g3.3_ +n. -ary predicate symbol. As before, QF, is a gi+ni+gi+1 -ary

predicate symbol.

We then modify the formulae Wa and W
F.

as follows:

i) 	If a is a jump out of a procedure, to statement al , then

Wa : 	00, (W.7 . 	. .ya, 	. ocry „) D

0a 	(W
1

 • • .W
a

 o ,w
l a l

+1, • • ../w0.04.a , ,X1. • ocan)
1 	1 1 	1

For other statements, Wa is modified by

a) adding variable symbols w• • -w 1 a onto all subformulae of

the form

0a.(t1...t T ...T)
a!' 1 	a?

giving

b) adding to all subformulae of the form

qF.(T1"'Tg.+n•)
0 	•

123

the first e. variable symbols in the list

wl...waoy,...ya,

giving either

qF 	 “We 'Ti...Tg

or

q 	v F. 1 	a '-1—Ya"Tl—Tg.+n.

iii) If a0 and a1 (i.e., null) are the first and last statements

in F.1 then

WF :-
2.

(w1...we.
,y1...y

g.+n•)
1 	 1 1

0a0 	1... w 0.0,Y1-..Ya.4.n./Yi-..3rg ,P,Yg.4.1,
0 	-1

°a (wl'''w°'Yl—Ya"xl—xan) 1 	al 	1 	1

Q (Y1 Y.g.-En. xl. -.. 	, 	.. xg.+1)) 1

00 	a.
0

	

(e. = a = a1 	and 	g.-1-11. = a0 	1
= a' .)

The construction of 1:1 should become clear from the following

example„(for simplicity we have dropped the data types).

2.(2 If a -is at the top level of the smallest procedure enclosing a
0

statement in (Ejl then e
i
 = 6 +cr y , otherwise ej . <: a 0.

224

program 13(Xi,X2,X3);*

begin

decl x4,;
)(5

procedure F6(X7,X8);

begin

decl x9;

procedure F (K ,X); 10 11 12

begin

al;

F10 := F6(X7'X12);

goto L;

goto M;

null

end;

6;
•

cr —L:F6 := F1o(x4'x3);
cr8 	goto N;

-- null

end;

cam;

all --- M: X2 := F6(X4,X2);

N: a12;

a
13 7-- output(X4,X2)

end.

Here

[E6) = 61l' 612

(E10) = (avail) u (Ed = (a7"a11'a12)

•

Hence
0 	0 	0

10 = 611 = 612 = 613 = 0 ;

0 e6 -- a b - = ag = a8 = 7 	a6 = al7 = a, = a,9 = 7

0 0 0 0
cr5

0

	

el° = al a2 = 0.3 = cr 4 =
	
= 3 + 7 = 10 .

The various formulae are as follows:

	

(9.P(Y1"Y2'Y.3) 	°610 (YrY2'Y31Y1'37.2'37.3'P'°'

936

	

	(Y1,Y2'Y3"x1" • • •' X5) 	G1/2)(Yil Y2"37.3'xii-lx2)) 13

Wa :- 0 	(Y1, Y2, Y3, xi, • • • x5)
ll all

(clm (Y,,Y2,Y3,xly • • -/x5,x4,x2) A
'r 6 	-I-

[QF6 (xi., • • • , x5, x4, x2, 	• • • , v5, z1) D

Oa (Y1,Y2,Y3,1t1'z1,1/"3,vlev5)]] 12

W
F6
:- (9.F6(w1,w2'w3a1,..) D

00 	 .7
6
(w1, w2, 	Y32 • • • 	• • • .2 Y5,13, Y6, Y7,13)

(wl'w2/1'13' Y1' • • • Y7' xl/ • • ' x9)
9

gr6 (Y1' ' ')Y7)xl" 'x6) 3

126

_ 	(xr • • • ; x9)
7
(q(w ,w ,w ,y , ...,y ,x , 	x x x)A

F10 1 2 3 1 	7 1 	9' 	3

[QF 	(xi„ . , X9, X4, X3, 	. .v9, z1) D

10

00.8 (wi; w2; w3; Y1, • - • ; Y7; vi; • • • ; v5; z1; • • v9) 11

0 (w w w v 0.8 	1' 2' 3' - l' • • • Y7' xi' • *x D
12 (w1- , w w3 2' ' x1, • • • ,x5)

WF10 2 - [CIF
10

(W1' • • • W10" Yr • • • Y11)

93Cr
1

(Wr • • • W10'
Y1

,• • • Yll' Y1' • • • Y9' Y1 Y11)

r6a
5
(w1 • •w10' y1' * • ' Y11' 	• • ' x12)

QF 	(Yr • • • ; 	xi; • • • ; xio))
10

Wa2
: — Ocr 2 (wl' • • • ' w10' 3r1' • • Yll' x1' • • x12)

(qF6(wi,w2,w3, 	, x5, x7, x12) A

, x5, x7; x32;vl, . . . ; v5, z1) D

0 	; • • 	 • • • v a 	(w 1 	• 'w10'3r1' • • • ' Yll' V 1 	5' x 6. .x9, zl, xn, x12)] 1

Ocr• 3
(w1, • w10' Y1' • • • ' y11' x1' • • ' x12)

00'
7

(wl'w2'w3'w1' • "w10' xr • • • ' x9)

	

°a- (WV • w10' 	• •Y xi, • . . x12)

(w 0. 	1, w2, w3, _ x _22 • • • , x5)
Ll_

127

Conclusion

We have now developed a logical definition of a language with

many of the features of Algol. This logical definition can also be used

as a formalization of partial correctness, and therefore it can be used

to formalize many properties of Algol programs. The definition has

not yet been put to this use for any programs of interest, and it

remains to be seen whether it can be used in practice for this purpose.

The axioms Wp(k,Q1) produced fora program of any complexity will be

numerous and complicated, but if the program itself forms self-contained

sections, (e.g. procedures) then the axioms also will form self-contained

groups, which can be used to prove properties of the sections. With

practice, the definition could become a useful tool for practical program

verification.

128

Acknowledgments

I am indebted to Dr. J. J. Florentin, of Imperial College, for

introducing me to the subject of language definition, and for

supervising the work presented here. His interest and encouragement

were invaluable.

I would also like to thank Mr. C. D. Allen, of IBM Hursley, for

many stimulating discussions.

Finally, I would like to thank Mrs. Phyllis Winkler, for

magnificently accomplishing the unenviable task of typing this thesis.

129

References

[1] E. A. Ashcroft. 'Functional Programs as Axiomatic Theories.'

C.C.A. Report No. 9. Centre for Computing and Automation,

Imperial College, London.

[2] E. A. Ashcroft and Z. Manna. 'Formalization of Properties of

Parallel Programs.' Artificial Intelligence Memo 110.

Stanford University.

[3] R. M. Burstall. 'Formal description of program structure and

semantics in first order logic.' Machine Intelligence 5.
Edinburgh University Press. 1969.

[4] R. W. Floyd. 'Assigning Meaning to Programs.' Proc. of Symposia

in Applied Math., Am. Math. Soc, 19 (1967), 19-32.

[5] P. J. Landin. 'A Correspondence Between ALGOL and Church's

Lambda-Notation.' Comm. A.C.M., Vol. 8. Feb-March 1965.

[6] P. Lucas, et al. 'Informal Introduction to the Abstract Syntax

and Interpretation of WI.' IBM Technical Report TR.25.083.

[7] Z. Manna. 'Termination of Algorithms.' Ph.D. Thesis. Carnegie.

Mellon University. Pittsburgh.

[8] 	 'The Correctness of Programs.' Journal of Computer and

System Sciences, Vol. 3. May 1969.

[9] 	 The Correctness of Non-deterministic Programs.'

Artificial Intelligence Journal. Vol. 1, No. 1.

[10] 	 'Mathematical Theory of Partial Correctness.' To appear

in Symposium on the Semantics of Algorithmic Languages.

Engeler, Ed.) Springer Verlag. 1970.

and A. Pnueli. 'Formalization of Properties of Functional

Programs.' To appear in J.A.C.M. (July 1970)

[12 J. McCarthy. 'A Formal Description of a Subset of Algol.' Formal

Language Description Languages for Computer Programming. 1966.

130

[13] 	-and J. A: Painter. 'Correctness of a Compiler for

Arithmetic Expressions.' Proc. of a Symposium in Applied

Math. Vol. 19 - Math. Aspects of Computer Science. 1967.

[14] J. A. Painter. 'Semantic Correctness of a Compiler for an

Algol-like Language.' Ph.D. Thesis. Artificial Intelligence

Memo 44. Stanford University.

[15] D. Park. 'Fixpoint Induction and Proofs of Program Properties.'

Machine Intelligence 5. Edinburgh University Press. 1969.

[16] J. R. Schoenfield. Mathematical Logic. Addison-Wesley Co. 1967.

[17] D. Scott. 'A Type-theoretical Alternative to CUCH,ISWILMIOWHY.'

Unpublished paper.

[18] 	 'Models of the X-calculus.' Unpublished paper.

[19] A. Tarski. 'A Lattice-theoretical Fixpoint Theorem and its

Applications.' Pacific Journal of Maths. 5. 285-309.

131

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131

