MATHEMATICAL LOGIC
APPLIED TO THE |
SEMANTICS OF COMPUTER PROGRAMS

‘by
Edward Anthony Ashcroft -

- Ph.D. Thesis
submitted to the

Faculty of Enginéering

- University of London

June 1970

Abstract:

A definition of the semantics of a programming language is considered
t0 be some method of formally descriﬁing the computations of programs
written in that language. For such a definition to be mofe satisfactory
than an actual interpreter of compiler, its formal aspects must give
iﬁ certain advantages such as generality or descriptive ability. 1In
‘addition, it is desirable that formal proofs of correctness of compilers
or properties of programé be possible using such a definition.

‘New techniques for proving properties of programs have been
developed from initial work by Floyd. These techniques relate programs
to formulae of mathematicai logic.

- To allow such proof techniques to be used directly from the formal
definitions of programs, we consider defining the semantics of programs
by formulae df méthematical logic.v We develop criteria which can
reasonably be said to ensure tha£ such definitions are intuitively
tadequatet.

It is then shown that such adequate definitions are closely related
to the formulae used in the logical proof techniques. Such'definitions
can therefore be used to prove various properties of the programs they
define.

Two examples are given of such definitions. Firstly‘rfor a functional
language, like a restricted form of Lisp. Secondly for a large subset of
Algol 60; ‘Wifh this latfer definition it méy be possible to prove

properties of practical Algol programs.

Contents

Section 1: Introduction - « o o o ¢ o o+ o 0 eo o 0 4. . b

Section 2: Iogical Program Definition « . .+ +. . . 8
Adequate logical program definition « 8
A diversion into model theory« .« « o « o o o . o 11

Relationship between logical program definitions

and formalizations of partial correctness 16

Section 3: Logicél Language Definition . « ¢ ¢« ¢« ¢ « ¢ ¢« « & 25 .
Adequate logical language definition« « 26
Example: one-level language .« « « ¢ « o o o ¢ o o & o o 27

. Definitions by verification conditions and

relationship to logical language definitions 36
Section 4: Functional PrOgrams « « o « + o o o o o o o o o« L9

Section 5: Algol-like Programs « « « « o « o « o = o o o o = Th
The simple 1angUage « « « « o o« o o o o o o s o o o o o s 15

Extensions to the simple languvage e e e e e 92
Acknowledgments . o « & 4 ¢ 4 e 0 v 0 4 e s e e e e e e e e 129

References « + « ¢ o v 4 o v v o e e v o ¢« 4 o0 4 4 4 e ... 130

Section 1: INTRODUCTION

The usual method of specifying the semantigs of a high-level
prograrming language 1s by a programming manuval. 'However, in cases
where deftailed knowledge is réquired of the execution of involved or
unusual programs, such manuals are‘frequéntly inadequate. The classic
examplé of such a situation is of course wﬂen a compilgr is to be written
for the language in question. So it was not long after the development
of the first high level languages that the need was felt for some more
rigorous description of the semantics of programming languages than
> gould be supplied by natural language texts.

One of the first steps in this direction was made by McCarthy [12]
with his definition of Micro-Algol. The definition took the form of
an abstract interpreter, and most of the subsequent work in language
definition has gone into the development of interpreter definitions,
for exaﬁpleg_the PL/I definition‘[6]. Thus these definitions are able,
in principle, to answer the question: '"What is the result of executing
this program for these input data?" Since this question can also be
answered by actual interpreters (or compilers), the abstract interpreteré
must have other useful properties such as generality, and descriptive-
5bility, and be formal enough to allow proofs of properties of programs
or of the correctness of compilers.

However, even for the very simple Algol-like lénguages, such
interpreter definitions did not lend themselves to simple proofs of the

correctness of compilers [13, 14] or of properﬁies of programs.

- An alternative approach was that of Landin [5] who took)\-calculus
as a model programming languvage, and defined othér languages by mapping
their programs into \-expressions. This could be called a compiler
definition approach. In common with all such approaches, it suffers
from the drawback that the intuitive meaning of the more complicated
constructions in the original language is obscured by the translation,
or else such constructions are just not allowed. However, with recent
work on models of A-calculus by Scott [17, 18], it is anticipated that there
will be renewed intereét in compiler definitions.

A third approach was proposed by Floyd [4], namely that of a
definition using logic. .In that paper he presented a method of proving
the partial corréctness (q.v) of a program based on the 'verification
conditions' of the various statements in the program. The rules for
obtaining the verification conditions for the various statements
constituted a 'semantic definition' of the programmingllanguage; and it
was desirable that the verification>conditions so obtained had certain
properties ('consistency' and 'completeness') related to the usual
intuitive notions about the execution of the statements concerned.

This approach thus gives a definition specifically designed for proving
properties of programs. |

The method of proving partial correétness was taken up, and made
more formal, by Manna [7] but the verification conditions, now expressed
as a formuia in predicate calculus, were no longer considered as embodying
the éemantics of the program. Instead the formula was shown to be.related
to an intefpreter definition of the semantics of the program. As the
formalization of partial correctness has been extended to more complicated

systems [8, 9, 11, 2] it has become more and more difficult to give an

interpreter definition for each system and rigorously establish its:.
relatioﬁship with the pfedicate calculus formula. Instead an intuitive
description of the seﬁantics has been given, with an informal argument
to exhibit the desired relationship to the predicate caleulus formula.
However, the last step, of calling the formula itself a semantic
definition, has not been made, even though it has been shown by Manna ‘
[10] that a formula formalizing partial correctness of programs can
be used to formalize all the usual properties of programs such as
termination, equivalence, etc.

As a variant of_the logical approach, Bﬁrstall.[3] has recently
given a description of the semantics of a large subset of Algol in
" first order logic. From the formula embodying the semantics one can
A derive, using the rules of logic, a sequence of séntences describing
the computation of the program. As a definition of semantics this is
intuitively more appealing than a set of verification conditiohs, simply
because of its similarity to an interpreter definition. It also has
the gdvantages of descriptive ability and it can be used to prove
properties of programs.

& In this work we develop the notion of intuitively 'adequate!
logical definitions of programs and languages, namely those of an
;nterpreter-like nature. Burstall's definition will be seen to be
tadequate' in this sense. We also show that logical program definitions
are closely related to Manna's formalizations of partial correctness
and therefore can be used to prove properties of programs. In addition,
for the type of langw ges considered by Floyd, we show that language
definitions by complete and consistent verification conditions are

adequate logical language definitions in our sense.

6

We then give examples of language definitions, first for a
functional language, and then for a large subset of Algol. The
definitions in both cases can be used to obtain formalizations of
partial correctness of programs.

Throughout this work we assume some familiari’l;y with elementary
first order mathematical logic. Standard notation is us_ed for logical
connectives, quantifiers, etc. as in, for example, *Introduction to

Mathematical Logic' by E. Mendelson.

Section 2: LOGICAL PROGRAM DEFINITION

Adequacy of a logical program definition

It seems clear that for a definition of semantics of a program to be

generally acceptable it must be an interpreter; for any given input, the

definition must specify the result, if any, of executing the program.

Moreover, it must do this in as mechanical a way as possible. For a
definition written in first-order logic, this suggests that the definition
should take the form of a set of axioms, and that the result of the
program should be derivable from the axioms in as mechanical a manner
as possible, e.g. using a mechanical theorem prover.

The combinagtion of definitional axioms + theorem—provér Will.then

act like program + interpreter. The main difference will be that the

theorem-prover will 'compute® with expressions formed from symbols representing

the constants and primitive operations of the program, whereas the interpreter

~deals with real data. ®Since the interpreter must make decisions based

on its data at various points in the computation using the primitive
tests of the program, the same feature will be necessary in the theorem-
piover. To give the theorem-prover this ability, it could be given
additional axioms that specify the domain of dats, and the primitive
operations and tests, sufficiently for it to be able to deduce the truth
sr falsity of any tsst when applied fo symboiic expressions rspresenting
data objects. ‘Alternatively, it could bs considered to be interactive,

interrogating the foutside world' whenever it needed to make such a test.

g

.In either case, if we consider the domain of data and the primitive
tests and operations on it as a ‘*relational structure!, c9i/sa,y, ‘then

this method of deduction we will call d-relative deduction, and denote

& : &
it by }— . For proper axioms K, }— denotes d-relative deduction
K .
from X .

For any term Te constructed from symbols representing the
constants and basic operations of a program (called a constant term),
the structure ¢ will determine an associated value in ‘JI (the

domain of &) , which will be dencted by sir.1 .

With this notabion, we can state the requirements for a semantic
definition to be intuitively adequate.

A program P& , which requires values for n inputs and gives m

oubtput values, can be considered as a partial function Pb: |&

i.e., for inputs & = (45...8)¢ lo|™ , Py(t) denotes the output

1" - Jsf™

values, if any.
+ . R
The relation AP on |=9|n m » called the graph of P& » is simply
&

the relation defined by Pb y i.e., for ¢ = (gl...gm) el&lm

Py(E) =t = Ay (650) -

The aim of the axioms + theorem-prover (T.P) system is simply %o

specify this relation A,
' 3

, .

' f/Most of the constants, functions and tests in & will correspond to
symbols occurring in programs. However, some may be implicit in
prograems, such as ‘the operations for updating and referencing arrays.

To supply input values Eél&in torﬁhe éxiomér;‘T;P system,.ﬁhere
are constants (kl"°k&9 _k in the definitional axioms, and we expand
the structure J to;a structure 8i . That is, constants k are
assigned values ¢ by this expanded structure.

In order éo indicate when the result PJ(g) of the program has been
derived, the axioms contain a distinguished nim-ary predicate symbol,

@ say, which is not interpreted by & .
For clarity, a set of axioms W , constituﬁing a definition of PJ s

will therefore be written as WP(k,¢) f/.
We can now state the following definition:

A) ~ The logical program definition condition

W?(k,¢)~ is an adequate logical definition of Py if it

satisfies the following condition:

veels|®, veels" :

Ap (&;¢) Aif aﬁd.oﬁiyiif
4

there exist constant terms (Tl,...,T Y =1
m

o | o
s.t. Jd[1) =¢ and f—k B(x,T)
W, (k, §)

i.e., @(k,T) is derived exactly in the case where 7 denotes the

’result'of the program for'input' £ .

* — :
—77We shall call the symbols denoting the constants and basic operations

and tests of P& the 'formal basis'! of P& . Note that & is a

structure just for the formal basis symbols. In general, apart from
the formal basis symbols, the extra constants k and the predicate ¢ P
WP(k,¢) may contain other constant, function and predicate symbols,

and variables.

10

We are goiﬁg to relate adequéfe logical definitions to formaliéations
of partial correctness (Manna) and to consistent and complete fverification
conditions' (Floyd). To do this, the concept of d-relative deduction must»
be related to g-relative validity. This is the purpose of the following

subsection.

A’diversion'into model theory

As for programs, we shall call the constant, function and predicate
symbols, to ﬁhich a structure & assigns meaning, the formal basis of & .
Any closed well-formed-formula (first-order), constructed from the formal
Basis symbols together with individual variables, will be true or |
false for & in the usual way.f/

- Any w.f.f. ' constructed from symbols of some basis, together
with variables, is said to be'zglig, denocted }:F 5 1f the closure
of T' is true in all structures for the basis symbols.

If a wff I contains textrat symbols {2} not in the formal basis
of some structure & , then an *expansion of § to include {g} ! is a

structure identical to & except that it also assigns meaning to the

extra symbols in {2} . Then I is said to be d-relative valid, denoted
= , if its closure is true in all expansions of & to include {3z} .

Analogously to Godel's Completeness Theorem, we would like to show that

Ij} ® va r .

—/ ?ome familiarity with first order logic and elementary model theory
is assumed. The notation used in this subsection is that used in
Schoenfield [6].

Unfortunately this does not hold for general " . However, it

will be shown below that it holds for most T of interest.

For any structure & with formal basis L (of constant, function,
prediCate symbols, and equality) we can define a substructure I3 such
that |3| is the smallest subset of I&l containing the elements
corresponding to the constants of I , which is closed under the operafions
corresponding to the functions of T . That is, |38] contains just those

elements of |9| that correspond to terms in the formal basis symbols.

The restricted form of the completeness theorem for Jd-relative

logic can be stated.

d-relative Completeness Theorem

*
For any existential formular/ A containing only predicate symbols

that are not in the formal basis of &

f? A e g A .

Proof.

=> Let & Dbe over the formal basis L , and the extra predicate

'symbols in A be {R} . Denote by D!'(8) the set of variable free

formulas in I that are true in 4 .
Clearly from the intuitive description of J-relative deduction

given previously,

f/ An existential formula is a closed formula that contains only
existential quantifiers when put in prenex normal form.

4 .
l—— A e l—— A
D' (8)
& [= A by Godel C_ompletenesé Theorem.
D*(4) -

Since every expansion of & +to include {R} must be a model of

D'(8) , trivially

|—“9A'=> 2a .

<= With the notation of the first half of the proof, assume
Fad a .
D' (%)
Then there is some structure ¢ which is a ﬁodel of D"(J) B
‘but in which A is not true. Since A is closed, and existential,
the universaly formila — A is true in c .

We shall show that the substructure e of ¢ 1is isomorphic to

an expansion of & , and hence contradicts the above assumption. First

we define a bijective mapping ¢: lél - IZQI . By definition, every
element 1 of [él is the value in € of some term T, constructed

from the basis symbols of ¢ . Note that T, is also constructed

from the basis symbols of & , since we have introduced no extra function

symbols or constants.

We define @(i) = cs&['ri] for all ie|e| . Now for elements

ipiy of & \
¢(il) = ¢(i2) = [Ti =7; 1is a formula in D'(8)]
1 2 :

. mapping $ is injective.

¥
—/ A universal formula is closed.

13

~Since every element of |3] is the value in § of some term
constructed from the basis symbols, the mapping ¢ is surjective.

Hence
i) p is bijective.

It remains to check that the structure on |é| is the same as an
expansion of the structure on |3] .
For n-ary function symbol f in the formal basis of & ,

let £, and 9 denote the corresponding functions in ¢ and & .

(& ,
Then for elements i ...i e|G| , corresponding to Lerms T, .1,
n i i
» 1 n
¢(f@(il,...’ii)) = ¢(c[f(Ti)""Ii)])
n 1 n
= J.[:f('ri PRRRPL)]
1 n

I

£(B(11)s - sp(3)) 5 dees,

ii) For all function symbols f in the formal basis of &,

and elements 1 i, of |@|

l’
¢(f@(il’”"in)) = f@(¢(il):'°f:¢(in)) .

Then for every n-ary predicate symbol p in the formal basis of &
(i.e., not in {R})
- -) - 0} '
Pa(ll,-..,ln) & [p('ril,...,'rin) is in D'(9)]

o py(Blip)s e B5) -

1k

R

Also for every n-ary predicate symbol p in {P} we expand I

(to 3') +to include {R} in such a way that

R (ipeei) e Py (B(i), .- ,p8())

. iii1) For every predicate symbol p in the formal basis of &
Pé(ilJ"'Jin) Ao P@: (¢(il)1"')¢(in))

by i) ii) and iii1) & dis isomorphic to an expansion of & .
Now by the Los'-Tarki theorem (Schoenfield, § 5.2), every universal

formula that is true ih some structure 2 is true in all substructures
*
of & -/

S —A is true in & and,by the isomorphism, also in some
expansion of § . But by assumption, A is true in all
expansions of & .

.. Contradiction.

Q.E.D.

The fbllo'wing corollary is obvious.

Corollary. If X is a universal formula, and A is an existential

formula and both contain only predicate symbols that are not basis
symbols o%‘ d
g 38
FA o &
K X
With this result we can now relate logical program definitions to

formalizations of partial correctness.

y A non-universal formula, e.g. ®xA(x) , may be true in & by virtue
of some element of |¢| that is not in |&] .

15

The relationship bebween logical program definitions and formalizations

of partial correctness.

Partial correctness

For a given relation V¥ between inputs and outputs, a program is

said to be partially correct with respect to (w.r.t.) V¥ if, for all
terminating computations, the inputs and corresponding outputs satisfy V.

More formally, for program Ib as before, with input gel&ln

+
-and relation V¥ on]&]n m :

Pb(g) is partially correct w.r.t. V¥ if and only if

'VCeI&l‘“:[APJ(e,;)' 5 WLOD .

Let UP(k,Q) be a (second-order) formuls with ntm -ary predicate
. - : *
symbol 6 and constants (kl...kn)= k Dbeing the only free ~/ symbols
not included in the formal basis of J§ . UP(k,Q) is said to formalize

. . : +
partial correctness of P, if for all relations V¥ on lJIn m and all

J
inputs gel&ln :

gV
kO

' *%
UP(k,Q) true in 4§27 & Pb(g) is partially correct w.r.t. V ,——/

ive., vee|s|® , W on [T

Up(k,6) true in LY & Vee|s|™: [APJ(e,;) = V(& t)] -

* .
—/VAs a. second~order formula, .UP(k,G) mey contain bound occurrences

of predicate symbols not inclu@éd in the formal basis of I .

o :
—-/ Note that UP must formaliZe the partial correctness of P without

introducing any new sorts of data such as 'stacks' or 'states'; only
structure 4 is used. ’

16

It has been shown by Manna [10] that such a formula UP can be
used to formalize all the regularly observed properties of programs:
-correctness, termination, egquivalence, etc.

During the computation of Ib(g) » the only elements of | 9]
that can be calculated, and thus affect the computation, are those
corresponding to terms constructed from the basis symbols of & and k .
Therefore, if we cbnside; the substructure ;E : the computation of P

on substructure Ji is identical to the computation on § , and

therefore 1;——(&) =P, (&) .

Hence if V¥ represents the relation ¥ restricted to | iln+m ,

then

P&(E) is partially correct w.r.t. V
© P—E(g) is partially correct w.r.t. V¥ .
4
k
. An equivalent condition for UP(§,¢) to be a formslization of

partial correctness of P 1is:

‘vee|d| and ¥V on | i|n+m

EV o ype]ob|™: Lag (£:8) = ¥(E:0)] -

U?(k,@) true in 8, o

17

Logical program definition

Let (first-order) formula W?(k,¢) be an adequate logical
definition of P ; then W?(k,¢) satisfies condition A) which we

repeat below.

A veels|t , veels|™ :

I
—
L

|
-
-
L
~

AP(g,C) e Hr =
8 ot
s.t. 8(t) =t and TR
WP(k’¢)
Since WP(k,¢) satisfies A) if and only if the closure of WP(k,¢) satisfies

A), we can assume in the rest of this section that W?(k,¢) is closed.

As for partial correctness, AP (g,;) can only be true for §€l3§|m,
3
. m
and &[1] = { for constant terms T dimplies ge[Ji[. Therefore,

Eom
we can equivalently restrict { to |J§| + Also if the logical

system includes equality we can give an equivalent but more concise

condition.

ar) veelsl”, vee|op|™:

| st
(£,8) @ dn)
APJ__’ " (¢)¢ .

Wk,

*
¥ h = (hl...hm) are constant symbols not in the formal basis of @& .

18

If WP(k,¢) is a universal formula, with only predicate symbols ¢
and q = (ql,...,qj) that are not in the formal basis of & , by the

d-relative completeness theorem, A') is equivalent to

veelal® , veelsf”

—

I&ig B(1c,1) o Y
= - k,h) &)

WP(k’¢) APJ g

ie., veels|™ , wte lsl

V¢[HqWP(k,¢) o #(k,h)] true in I

Tue

)

T

) €, .
p (6:0)

Note that WP must define P without introducing any new sorts of data such

£

as 'stacks' or 'states'; only structure & is used. Now (1) is equivalent to

vee|g|® , Vv over le|n+m

veelsE " [Aff’ﬁ) = ¥(&:t)]

o Wx[VPlEL(H) o 1)] 5 0(kx)] true in &f{ xx/

Comparing this with the definition of partial correctness, we get:

—/ For ge|& | JEE is the same as Jig , i.e., Ji expanded

to include assignment of ¢ to h .

17

.,xm).

19

Correspondence Theorem 1 }

For first order, universal formula W?(k,¢) with extra predicates

q not in the formal basis of & .

d

is a formalization of partial correctness of P& s wWhere

Wy(k,$) is a logical definition of P if and only if UL (k,0)
U (50) is vx[vAlEQHL(k,$) o $(kx)] D ¥(kx)] .

In practice 'W?(k;¢) may have logical properties which give a
neater formulation of the correspondence theorem. In particular,
we can define conditions for 'monotonicity' and 'continuity® of

such formulae in a way similar to Park {15].

i) WP(k,¢) is said to be monotone if, for all structures & and

all relations o,V on ‘&|n+m

and all ge]&ln 5
vee|s|™ lo(e,8) = ¥(E,t)]

E[qWP(k,¢) true in ai; = '.E[qWP(k,¢) true in aig .

ii) WP(k,¢) is said to be 'quasi-decreasing' (after Tarski [191]),

if for all structures & and Vee|d|® and all sets ¥ of relations

over |&ln+m

E[qWP(k,¢) true in aig for all VeV

= HqW?(k,¢) true in Ji@?

20

where

e tefl”

(e, t) « Vel : v(E,)

In & similar way, definitions can be given for 'quasi-increasing',
but since this is implied by monotonicity, we need not consider it.

However, defining fcontinuous'! as 'quasi-increasin and quasi-decreasing'
, ———————————————

(as in Tarski), if wP(k,yS) satisfies i) - ii) it is monotone and

continuous.

: *
Lemma: IT WP(k,¢) is monotone and continuous, for all structures & ¥

o

and vVte|s|™ , Vv on |9

VX[V¢[HqWP(k,¢) o #(x,x)]> 0(k,x)] true in Jig

® HqWP(k,¢)_ true in Jig .

.Proof
=> 'L.H.S. equivalent to

vx[—0(k,x) D E¢[qup(k)¢)' A= ¢(k’x) 1} true in &lgig "

. | £
i.ce., vg.e[&[m: [— w(Est) = &, on || ™™ (g, (k,p) true in 9 5;

¥ For the symbols of WP(k,¢) , epart from g , k and § .

.

21

Let ﬂ be the set of relations {Tk} whose existence is guaranteed

by the above formula for each ¢te|d|™ for which — ¥(&,t)

Hence:

. &
i) For each member ﬂg of T, HqW?(k,¢) is true in 3y

ii) n’ﬁ has the ﬁroperty
veelo|™ [nT(E, €) = (k8]
because this is equivalent to
veels|™ = [vmel - n(E,L) = W(E,L)] .

This is trivially true for all { s.t. V(¢,¢) , and for all ¢

s.b. V(g) , it is true because — ﬂc(g,g) and ﬂteﬂ .

From continuity (quasi-increasing) and i):

.2,

. 3
HqWP(k,¢) vtArue in 8.
Thus, by monotonicity and ii)

.] .
'\Hq_WP(k,¢) true m c9§¢] lae-, RoHoSc

22

ln+m .

<= Trivial since for Vée‘&ln s VgelJlm and all ¥ on |8 :
ﬂqWP(k,@’ true in Jig and v¢[zqu(k,¢) > ¢(k,h)] true in
clearly imply V(&,¢)

Q.E.D.

Noticing that any formula formalizing partial correctness must be
" both monotone and continuous, from the above result we immediately get

a stronger version of the correspondence theorem:

Correspondence Theorem 2.

For first-order universal formula WP(k’¢) with extra predicates

$ and q , not in the formal basis of & :

'WP(k,¢) is logical definition of Pg

and continuous if and only if HqWP(k,¢) is a formalization

and is monotone

of partigl correctness of Pb .
It is interesting.thaﬁ to date all formalizations of partial
correctness for programs in various languages have been of the form
| EqWP(k,¢) . Thus they are all logical definitions of the programs in
question. 1In fact, it is reasonable to claim that the reasoning
behind the construction of such formulae was to‘reflect the execution
of the programs.
It also ﬁappens that current logical definitions reflect not just

the results of computations but the computations themselves. They are

23

%%

e

R St ol

therefore even more cloéely related to their programs than is strictly
fadequate' as can be seen by considering adequate definitions of two
equivalent programs. ;According to the previous input~output—orientéfed
definition of 'adequate', a logical definition of one is tadequate' as

a logical definition of the other. (This also is true for formalizations

-of partial correctness.) Therefore logical definitions which describe

the computations of programs, are more than just logical definitions of
the programs: +they describe the 'inner workings' of the programs, the
execution of the various pieces from which programs are constructed.

Such definitions wiil be seen to follow from 'adequate' logical definitions
of the semantics of programming languages, which will be considered in

the next section.

2k

Section 3: LOGICAL LANGUAGE DEFINITION

Togical definition of programming languages

We can say that the purpose of a semantic definition of a programming
language is to specify the meaning of programs written in that language.
Therefore if AL is a logical definition of language L , then given
any progrém P in L, AL should specify its definition W?(k,¢)
in some way. The simplest way of doing this for arbitrary program P
is to have A, specify a definition WP(k,¢) that is related to the-
computations of P f/ in the following way.

For any definition WP(k,¢) , the formula @(k,7) is
(Ji-relatively) deduced from WP(k,¢) exactly when the computation
of P(E) terminates with a result Ji[T] . - We can consider formula
@(kx,7) as describing a 'situatioﬁ' in the computation of P(&) ,
namely the situation at the end of the computation. Generalizing this,
we can imagine other formulae describing intermediate situations in the
computation. If these formulae are deduced as intermediate steps-in the
deduction of ¢(k,1) » and no othersfi[then the deduction is said to
describe the computation. By suitable choice of what constitutes a
Tgituation® it is possible to specify WP(k,¢)' for any P, i.e., give
g definition of thé 1anguage L . All that is required is that the

operation . of each basic construct in the program P corresponds to

- .
—/ This is not the only solution: AL could find a simpler program

equi#élent to P, and then produce the definition of this program.
" This is the practical method used for formalizing the partial
correctness of parallel programs in Ashcroft and Mamna [2].

*¥
——/ i.e., if a formula is deduced of the type that describes situations,
. then the corresponding situation must occur in the computation.

25

going from one situation to another. WP(k,¢) need only describe the
changes in situations produced by the operations of these constructs;
formulae describing successive situations will then be deducible from
formulae describing earlier situations, and eventually the final
situation description @(k,r) will be deduced. |

(A1l this presupposes that the infiniﬁe mmber of possibie situations
can be adequately described by logiéal formulae. We avoid equating
*situations' with 'states’ simpiy because in complicated languages,
the 'state' may contain an arbitrary amount of information and may
be difficult to descriﬁe with a single formula without introducing
new sorts of data such as stacks. A *situation' will in general
concern itself with some aspect of the current state, perhaps relating
it to previous siﬁuations.f/ This will become clear in later sections
. where definiﬁions.ofysuch complicated languages are given.)
We therefore give the folloﬁing criteria for an 'adequate' logical

language definition AL)

B) The logical language definition conditions

i) A must specify a logical definition WP(k,¢) for any
program P . |
ii) Each WP(k,¢) produced must describé the computations of P,
je.e.,
i) there are‘certaiﬁ types of formulae théf can be interpreted

as describing situations in a computabtion, and

f/ For example, in a multi-level language, it is possible to take a
t*situation' as being that part of the state directly affecting the
campubation at the current level. The jnaccessible information at

“higher levels (e.g. the values of variables temporarily out of scope)
will be contained in already deduced formulae describing previous
situations. These formulae can be drawn upon later when it is
necessary to describe situations when the computation has returned to
these higher levels. '

26

ii) from WP(k,¢) we can (Jk—rélatively) deduce exactly
these formulae describing the situations that occur in

computation of PJ(g) .

The way such a definition is realized may vary. For example,
Burstall [3] takes AL as being‘a_set of axioms, and also expresses
P as gxioms, in such a way that the formulae, describing the situations
in computations of P, are‘deducible from the axioms. Clearly, AI
is & language definition according to the above criteria. In this work
we are going to take AI as an algorifhm mapping constructs in a program
into formulae describing the effects of these constructs on the general
situations that can occur in computations of the program. If we also

" include a formula specifying the initial situatioﬁ, the actual situations
occurring in the computation will be deducible from these formulae.

We shall illustrate these ideas of program definitions which
describe computations using a simple one-level langwmge and show how such
a definition - W?(k,¢) relates to a fFloyd! definition using coﬁplete
and consistenf verification conditions. In the process, we shall
devélop sufficient conditions on language definitions that are intuitively
verifiable. In succeeding sections these conditions will be extended,

and definitions given of more complicated languages.

Oneélevel-language definition

A one-level language is one in which the computations of the various

parts (*statements') of the program are disjoint (no statement contains

27

another statement). Hence any computation df a program P simply
consists of é concatenation of subcomputations of statements. In

this simple language it is possible and natural to take a situation

as being the whole state at the end of one subcomputation and the
beginning of the next, i.e., when execution is at a point in the
program 'between.statements’. A description of such a situation
consists of the particﬁlar point in the program, and the corresponding
values of the program variables. This description is achieved by a
formula ¢e(rl...1n) . ¢e identifies the point e in the program,
and TyeeeTy denote the values of the variables at this péint.

The successor situation of a given situation is easily described
in ferms of the effect of executing the next statement.

" We shall show ﬁow a logical definition WP(k,¢) of program P
can be made up from such descriptions of the effects on situations of
-the various statements in P .

Let program P with n variables consist of a flowchart constructed
from a set CP of statements, each statement having a certain number of
‘ehtfances and exits, together with one START and one HALT statement.
For simplicify we will assume that a joihfpoint is consldered as a
type of statement, so that every edge.in the program is the exit
of oﬁe statement and the entrance to ancther. We associate with
each edge e & unique n-ary predicate symbol ¢e , associating
the speéial predicate symbols ¢o and ¢ with the edges leading

from the START statement and to the HALT statement respectively.

28

The intention is that ¢e('rl...'rn) is c915{-6.e:r'ivvable from WP(k,¢)
exactly when the computation of P for input gelJln reaches édge e
with values &i[r l] yeee ,Ji['rn] for the program variables. We will
show that WP(k,¢) has this property if it consists of a set |

g ()3 U {WclceQP } of axioms, where each formula W, is related to
the execution of statement ¢ in a way to be explained below.

First we describe execution of ¢ .

For any statement ¢ with p entrances and g exits as shown,

Ac& » the graph of ¢ is a pxq mabtrix of 2n-ary relations Acij P
4
1<i<p, 1<J<q, suchthat Vee|s|®, vee|s|®

Aza-(g st) © any computation entering ¢ at di with
;9 .
‘variables values & leaves c¢ Dby exit BJ.

with variable values { .

|| e

NEE B

If, forall 1 <3i<p we associate a relation '\lfa on]&In with

-

. 1
entrance Ozi 5 .called an input condition for o, then for all 1< j<gq

we define the relation ¥, on \Jln by

J

29

vee|s|” :

v (0) o mels|M: v, (6) and AJ(EL)]
3 1 &

or [, (¢) and A9(e,t)]
2 &

or [, (£) and 2I(&,0)]
P C

Ifweput V¥V, = (¥, ...¥), each V¥ is called the output condition
(04 (04 [0/ C.
1 P J .
for ,’;3j -corresponding to V¥ o They have the property that for all

inputs to ¢ where the variable values satisfy wd » the variable
values on output préeisel;y satisfy the output conditions WV, =(¥_ ...V,) .
We shall usually denocte wc by ¥ oz.Ac& , because of the similarity
to matrix multiplication. (This is the reason ‘Ac is considered as
a matrix.) s
We can now give conditions on W, which ensure that WP(k, @)

describes the computations of P . We first give rather restrictive

conditions which we later relax.

Definition of P (restricted)

Wo(k,9) = (6, ()} U W, |eecy)

where, for c¢ as before:

30

I) W iS avfirst order formula containing predicate symbols qc(; a,

¢ -8, ,¢ﬁ'l...¢ﬁ

1 b q
We therefore denote W, by Wc(¢a’¢ﬁ) where

, and no other symbols not in the basis of & .

,¢a = (¢O‘1

...qu) and ¢ﬁ f (¢ﬁl...¢ﬁq? .

IT) For 1<i<p, 1l<j<aq and ‘§-:Vﬂ€|.-9|n:
i |
- & *¥%
e - B o (&
S ORNCE R

III) For relations Y, on 8|, i<p, and = (g eV
' i 1 P
,ﬂ'a’lfa':‘\.c. -)H(-*/
Tq W is t ; e
a. W, (¢a’¢ﬁ) is true in %a ¢5

* :
i) The predicate symbols q, are unique to Wc .

x4/ . :
Constants h = (hl.. .hn) and g = (gl. . gn) are nqt in the basis
of & .

%% ~ o
—-——/ For any first order formula A, A denoctes the closure of A ..

31

That is, there exist reiations for d, such that 'reading’
Wc(¢a’¢5) makes sense if we precede it by 'for all sets of computations

of ¢' and read ¢o¢ ('rl...'rn) as ‘one computation enters ¢ by ozi
i
e ' ' -
with values Ty...T }a.nd read ¢5j ('rl...'rn) as ‘'one computation
3 1
leaves ¢ by 6;] with values ToeeeTy e

In order to show that from WP(k, @) we can (Jf{—relafcively) deduce
exactly the successive situations in the computation of P(&) , it is

necessary to indicate jus’c' which situations actually occur in P(g) .
g

e

This is the purpose of the 'minimal' relations ;;.g on [Jln. ‘Fach p° in a‘g

is defined to be true for exactly those n-tuples of variable values

for which the computation P(&) reaches edge e . (For the initial and
3 3

o respectively.) These relations

fin'a..;Lvedges, the relations are p> and

ﬁé clearly have the important property that for any statement ¢

in P as before:

for “fx = (ug‘l”‘“gp) and pé: (pg‘ﬁl...péq)
3 3
Hp = HOC'AC&

We can now prove the following proposition:

32

i~

—

Pfoposi‘b ion 1. For

WP(k,jé) = {B, (0} U {1, (f,8,) [eeCcy)

where each W, satisfies the conditions I), II), and IIT).

V§e|=9|n P Vgel&iln:

gt

kh

F o) o ui(t) -
W, (%,)

Proof
=> Since D'(Jgg) is true in all expansions of 6¢
| kh | Jh

&
s s |= g ()
W (k,)

e, V;Be[ﬂﬁcﬁP(k,QS) - ¢e(h)] true in ‘91§d€1

where ¢e , ac denote all the extra predicate

symbols ¢e)4, in- WP'(k,¢) .

Now by condition III), and the property of the minimal predicates

mentioned previously:

, ¢t
- b, b
ﬁchc(¢a’¢f3) is true for &¢Z¢z

33

Also uf’(g) is clearly true.
g
kh¢e :
£ ¢ 0
kh¢e ?

J ﬂacﬁp(k,;é) is true in &

Hence ;ZSi(h) is true in 4

S.ee, ui@).

<= RHS means that the computation of P(&) reaches edge e with
variable values ¢ . It is clear from condition II) that, ‘starting
with ¢e(k) ; We can trace each step in the computation with
~ deductions from some Wc(ﬁa,ﬁﬁ)
EC

| Eventuall; ¢ (h)
e k () ©

Q.E.D.
We see that WP(k,¢) describes the computations of P in the desired way.

An obvious corollary to this proposition is

§§

p(r) o ufe) .
F Uﬁ¢) w{€

Since (g) & A.P (E,t) W (k,¢) is almost & logical definition

. --Qf‘ P . To conform w:.th the prev:.ous deflnltlon of program deflnltlons,

we s:_mply add to vg}(k,;é) the axiom

4 ¢(X) 2 ¢'(k,x)

- Then the resulting formula WI',(k,;lS') wili be a logical definition of - P .

3L

Note that by descfibing situations'inlferms of elements of ||
and by not allowing the formulae Wc to introduce new sorts of data
to describe the executions of statemenfs, we have obtéined a definition
which itself does not introduce new sorts of data.

Since the only occurrence of @' in W'(k,$') is in the axiom
¢(x):3A¢'(k,x) s W'(k,f') is clearly monotone. Also, from the

previous proposition, if HacWP(k’¢) is true in some expansion of

&i to include ~¢e , then, for all e , the relation assigned to ¢e
includes ui . Also, one such expansion is that which assigns ;g

~

to ¢e.' It follows that ﬁé(k,¢') is quasi-decreasing, and
therefore continuous. _
Hence, by Correspondence Theorem 2, Hacﬂ¢éﬁ%(k,¢') is a

formalization of partial correctness of P& , if ﬁ%(k,¢') is universal.

- A logical definition of this one-level language would simply be a
.specification of formulae Wc ‘for all possible statements ¢ in
the language.

It is possible to relax the first condition on the formulae Wc s

namely that restrictiﬁg the extra symbols to the symbols ¢e and ac . However,

before we do this we can show how this restricted definition is related

to one using (similarly restricted) 'verification conditions!'.

35

Definition by 'verification conditions'

Floyd [4] proposed a method o-f language definition for simple
- one-level programs using 'verification conditions' for each statement.
For statement c as before, the verification condition Vc is a test

on relations V¢ =V _ ...V and V_ =V, ...V (on |8|") associated
L B B, By

with the entrances and exits of ¢ , i.e., Vc(\lfa,\lfB) is true or false.

Vc is said to be consistent if, for all \1fo£,\lfB , as above
*
AVRAREE SRV GIERAGE 7

(hat is, if '\Iia ‘and \IJB satisfy v, » there is no input to ¢ satisfying
¥, for which the output does not satisfy \JIB).

v, is said to be complete if, for a.]_"L \Va,\lfB
LTty = atels|® A () mma vt

(that is, if \]fa and \IJB do not satisfy V_ , there is some input

to c satisfying V, for which the output does not satisfy \lfB)

*/ PU.’G’Gi.I.lg, Wc = Wa'Ac& E \yc(g) = \IIB(Q) .is an abbreviation of Vi, -
1<i 'Sq:\lfci(’;) =¥ (§) .

i
%/ Putting \lfc = \lfa-Ac&) wc(f;) and — Wﬁ(g) is ‘an abbreviation of HEi ,

1<iga ¥ (1) e oy ()
‘ i i

36

bo Welalliea, O = O] = V) -

A set of complete and consistent verification conditions for

program PJ is said to be a semantic definition ofA PJ . If the
verification conditions can be expressed as formulae, then we shall
show how such formulae are related to the logical definition WP(k, @)
we have just considered.. |
Assume that V, can be expressed as a first order formula Y o

with just predicate symbols g, , ¢oz v not in the
Y 5

/SR,
o‘p, P1 5q

basis of & . That is, if we de’r;o-pe Y, by Yc(¢a,¢ﬁ) as usual,
| vov,
5 ¥ in o & B X
Vc(‘{fo:’wﬁ) « [chYc(féa:fsz) true in <9¢a¢6] .
We will show that the formulae Y, are closely related to the
- formulae W e because consistency and completeness are exactly

equivalent to conditions II and III (given previously), plus monot"onicity.

The definition of monotonicity for Yc(¢a,¢ﬁ) is:

For all & , g-vectors of relations \Ifl and \If2 on |<9|n ‘and

P P

p-vector of relations ¥, on I&In‘ :

n, .1 2
wels]® (D) = V3]

implies
: 1 2
Y oY
) B - 5 . . L3 a 5
ﬁchc(¢a,¢5)> true in &¢a¢ﬁ = EqCYc(ySa,ySa) true in &¢a¢ﬁ .
%/ q, =(qcl."'qc.) are unique to Y, .

—/ Note that Yc must express Vc- without introducing any new sorts of

~data such as 'states' or 'stacks'; only structure & is used.

37

.Theorem 1. For universal formula Yc’ representing verification condition VC 5

YC satisfies II and IIT and is monotone « VC is consistent and

complete.
Proof
=>
Condition IIT is

\lflliA

V‘Il/a on 'lJIn : 'HqCY (¢a’¢5) true in 3¢ ¢ °s

Hence by monotonocity

W, on Jo|”, vee|s|”

B
(v A, (&) = ¥ (£)] = [Fa_¥_(B,8,) t "'w"‘wﬁ]'
. = = g Y) rue in &
ozc=9g Bg et p ¢a¢5 ’
i.€., VC is complete.
Condition II is

for 1<i<p, 1<i<as; b&telsgl”

o5 6
13(&.,0 k g

G
0, c(¢a,¢> ¢

Since DA' (&ﬁé) is true in ali expansions of Jﬁg ’
95 g
At = Cne By (g))
I %&(h) 1Yo (P Be)

i.e.,

B0 = Ve Py, () 0 T (Folg) 2 fp () wre in o

58

2

or equivalently,

n

1<igp, 1<i<a, VW o |87 vetelo|”

A3(¢,0)] v (&) anc [5q ¥, (8,8 truem ﬂ“%] = ¥, (4)]
ey’ a7 == e Vs ¢0ﬁ¢8 B;
re-arranging,

1<i<ps 1<3<a, Wip¥ on |9, viejs|?

aq,Y,(f,,8,) true in 3%‘%; [zee]s]|™ : (v (&) ‘a.nd 2,01 v, (6)]
Hete\arPp ¢oc;3 C oy c&’ By ?

. that is,

Vo
Hchc(¢a’¢B) true in <9¢

(0

¥
P o vtela|®: v A - ¥]
g = Vel Lok (©) =% (©

. Vc is consistent.

If V, is complete, since wa-Ac&('\g) :_wa-Ac&(;)-

| YoV A
Hq, Y, (Bppfg) true in &¢: o‘%c&

il.e., Yc satisfies III.
Now for all ‘Jfl,‘lfg

if vge|;|n=w;(c> RAG)

on |8]", and Vg on |o}”

1=

, : Vo ¥
and Hq Y (f @) true in ‘9% ¢

™

)

w

29

then, by consistency,

elal™ Lih, (0 = BO]

vcelcs:l“:waﬂc&(;) AN

then by completeness

™ o

¥
2

g~

chYc(¢a,¢B) true in &

vy

o Yc is monotone.

If Vé is consistent for some structure ¢ , then it must be
consistent on all substructures of ¢ containing the constants.
This is because the daﬁain of such substructure &' must be closed
under the functions of & , and so the computétions in 4 of ¢
for inputs from [J'I must be identical to the computations

in & for the same inputs.

- _ @ cg

on |J|n P Vg,gelJln

‘Now if Vé is consistent, the definition of V¥ -A.c gives:

~for 1<i<p, 1<j<a,; wa,wﬁ

o ‘L'a‘”ﬁ | ij
Hq, Y, (PsPg) truein % o ° [wai(g) and A¢&(§,§) = wﬁj(z)] .

™

3

From the above argument, we can restrict the structure to Jh .

Then

. . n | B
1<i<p, 1<i<a, veels] , vielag] Wy ¥y on |3

.) A RV
Ai:"g(g,c) = [(8)and (A Y (f,fp) true in % ¢Z¢§] = wﬁj(;)] ;

that is: Vée|s|™ , VCelsgin

£ .
g

t5m]

E2E0) > VoWl 00 8 T (Bp) > F (6)] omue 50

Then since Yc is universal, we can use the corollary of the

d-relative completeness theorem:

vee|s|” , vie |<9§ln
;
y % e
aHen - b C
S ¢a (0),¥, (B Pe)

Since Aia(g,g) is false for all gﬁl&h‘
4

VE:CElJln

uer
R v

e, t) :h ()
A »G) =
s o, (05, G By) ¢

i.e}, Yc satisfies condition II.

Q-E.D.

We therefore see that verification conditions, originally considered
by Floyd as being semantic definitions of programs, do in fact give us
definitions of programs in our sense. However, we have been quite

restrictive in requiring that the verification conditions be expressible

b1

by first-order formulae with no extra symbols except‘for the predicate
symbols §_ and q, -

We can loosen this requirement, and still show the relationship
to logical definition. But we must first loosen the requirements on

the formulae Wc comprising such definitions.

Definition of P - (general)

We will loosen the conditions on the formulae Wc by allowing
extra function and constant symbéls to appear in them.‘ The purpose
of these symbols will be to allow the construction of expréssions
other than those representing the data objects manipulated by programs.
- The new sorts of data objects thus introduced will be conceptual
entities useful for‘déscribing fhe execution of programs, e.g. stacks,
program Eounters, tables, etec.

" There will therefore be some extension of |§| which includes all
the desired new data objects. We can consider fhe operatiohs and
relations of & +to be extended arbitrarily to cover these extra objects.
The resuiting extended structure we will denote by 3 - The extra
function, predicate aﬁd constant symbols (which we will denote by
F, Q and ,B) will be required to correépond to parficular qpefations
and relations on |g] and elements of [g] respectivel&. ‘There will
therefore be an expansion g of g, to include F,Q and B,

: % .
that assigns the appropriate meanings.~/ (The operations may, for example,

¥
—/ The formal basis symbols of ' will consist of the basis symbols
of & and F, Q and B .

ho

be 'pushing' and 'popping' operafions, or table look-ups. The
relations may be tésts for empty stacks or tables.) The formula
WP(k,¢) must restrict the meanings of the symbols F , @ and B
sufficiently to essentia]iy specify g' . We assume therefore

that WP(k,QS) contains a seti of axioms ¢ for this purpose. Then,
if |

H(8) = (9,d} U B lecc)

the following conditions on the formulae Wc also comprise conditions
on ¢ .

Ia) Wc is a first-order formula containing only predicate symbols

qc,¢a:l...¢%,¢ﬁl...¢B not in the basis of §' . We denote

W, by wc(¢a’¢6) as before.

Tla) For 1<i<p, 1<j<a, Vitels”

¢
& ¢B@)-

Aij(gy ;) =
S (0),W, (BpBe),a T

RN
Q b‘cotm

IITa) For relations \Jfa , on |<9|n

. R
HqCWc(yja)ng) true in g ¢Z C;SB s 'f/

That is, with the desired meaning of the extra symbols F , @ and B ,

"thére exist relations for s such that reading Wc(¢a’¢[3) makes sense

if we precede it by 'for all sets of computations of c¢ ', and read
. t . : . t
¢ai('rl. LT) as one computation enters ¢ by @ with values T,...t ', and

read ,525& ('ri 'rr'l) as 'one computation leaves c by ﬁj with values Ti"f'Tr; t.
J

* 3
-—/ \Ifa is extended to ¢ by making it false for any arguments not in |&|n .

¥3

Proposition 2. For

WL (k8) = {8,(5),a} U W (B8 [ecCp)

where each W, satisfies Ia), ITa), and IIIa),

veelol™ , veelsp)”

£¢
kh

:9
- o B (m) & pi(e)
P 2

Proof
Since D' (&g §) is true in all expansions of any extension of

§§ s specifically g“

hk kh ’
K 3
F; 5. m) b . (x)
h = = h
1y 9) e W)

= V¢ ['Efq (k,¢) D¢ (h)] true in all

expans:.ons of g §¢
= V@e[ﬁa P(k,¢) - ¢ (h)] true in g'gg .

Using this result, the proof of this proposition is identical to the
proof of Proposition 1, with & replaced by g'

Q.E.D.

Then, as before, we immediately get that

W8 = {3,00,28() 3 1 (50} U W, Fpfy) leccy)

is a logical definition of P 9

Note that since it introduces new sorts of data, there is no
- way in which Wé(k,;ﬁ') can be related to a formalization of partial

correctness.
In practice, condition ITa) is satisfied by separate conditions

on WC and ¢ , as follows:
ITe i) 1<i<p, 1<j<a, Vviitels]”
l

N 'y '
A9 = F ¢ () .
0y ¢a (CRACH AR

ITa ii) For all formulas A
! 8
Fa e Fa
a

© If we have axioms ¢ satisfying ITa ii), then we can show how a
semantic definition of P wusing (general) verification conditions is

related to the above definition WP(k, B) .

Definition by verification conditions - (general)

Given structure g* for the extra symbols F , @ and B, as
above, we can loosen the conditions on the formulae Yc representing

the verification conditions Vc . We allow Yc to be a first order '

45

formula containing the extra symbols F , @ and B as well as

predicate symbols qc,¢a,¢B H and-require that de,wa on IJIn

. Y,V
3 in ot 2By ¥
Vo (b ¥g) @ [Ea Y (ff,) truein g ¢a¢51' (1)
Theorem 2. For universal formula Y, representing verification

condition V, , and axioms & satisfying ITa ii):

Y, satisfies ITa) and ITTa) and is monotone

o VE is consistent and complete.

-Proof
Noting'that the only difference in the way ‘Yc represents V, 1is the
replacement of g' for ¢ , we can follow the proof of Theorem 1 to

get:

Y, satisfies IV and ITTa) and is monotone

e V, is consistent and complete,

-Where condition IV is

3 |
AIJ(E,';) = I"' ¢B (g) .
R} J

*

L6

(Note that IIIa) is like IIT with § replaced by ¢' .) Then from
condition ITa ii) on &,

condition IV is identical to condition ITa).

Q.E.D.

We have not allowed completely general second-order formulas when
‘representing verification conditions, but we have been sufficiently general
to claim that a definition by verification conditions is usually a

logical definition in our sense.

Conclusion

. The exémple of a one-level language has illustrated how program
definitions can be built up from subformulae describing the effects of
. .constructs in the program. The essential properties of the subformulae

are -

i) They can copy the effect of execubtion of the construct by
d-relative deduction.

ii) They make sense for all sets of computations when ¢e(Tl...Tn)

is read as 'one computation is at edge e with values TyeeoT, r,

?hese are properties which can be easily verified from intuitive :
knowledge of the execution of cpnstructs. These principles can be
extendedléo more complicéted, multi-level lénguages, as will be done-

in later sections. The justification for the 'adequacy' of the formulae
produced will be based on intuitive argumenfé éoncerning the above two

properties.

k7

This example has alsé shown how Floyd's verification conditions

are strongly related to logical definitions of the type we are

considering.

We havé also seen how the eguivalence of logioal definition with
formalization of partial correcnness does not hold for definitions than
introduce new sorts‘of data. Since we can formaliée all properties
of programs in terms of partial correctness (Manna [10]), it is
desirable that this eguivalence holds whenever possible. Therefore,
the logical definitions given later go to great pains to avoid
introducing new sorts of data. |

One method of logical definition which does introduce such new
sorts of data is that of Burstall [3]. His definition of Algol is
tadequate! since it has properties similar to.those above. However,
since it.introduces extra function symbols, it is not equivalent to

a formaliz&tion of partial correctness, and new techniques have to be

‘used to prove properties the programs so defined. His method has the

great advantage that it describes the execution of programs using
concepts familiar in programming. It therefore seems capable of
tackling many practical programming languageé, and is a good meta-
programming language. |

In the following two sections we give definitions of a functional
language and of a subset of Algol. The logical definitions of programs

so produced are also formalizations of partial correctness, and can be

used to prove properties such as termination and correctness, where

appropriate.

Section 4: FUNCTIONAL PROGRAMS

In this section we are going to give a logical definition of a
functional language. This type of language is eésentially multi-level
and is simple enough to illustrate the definitional techniques for
dealing with multi-level computation. In the next section we will
combine the one-level and multi-level techniques in a definition of a

~large subset of Algol.

Syntax of Functional Programs

A functional prdgram Pcg

'specified'! functions, with FO as the 'initial fnnction'. A function

consists of a set {FO...FN} of

is specified in terms of the other specified functions and basic
- functions (functions in &). The basic functions we will call constant

funétions, and the specified functions we will call function variables.

A function variable Fi is 'specified' by an expression (specification)

of the form

n,

Fi(xl""’xni) = Ti(xl,...,x l)

or by an éxpression of the form

(Xl"'xn.) -1y (Xl"'xn.) s
i 1

Fi(xl""’xn{) <= m ;

i 1

uA (Xl"'xn.) - T, (Xl"'xn.)
m; i Tmy i

49

where each T(xll..xn) is a term, and each n(xl,...,xn) is a
. i : i
propositional term:

A term T(xi?...,xn) is a term in the normal sense constructed
from the basis symbols of & together with the funbtion variables

Fy.--Fy and (at most) the variables x -ee3¥ .+ We will denote -

1’ .
i
the constants and function symbols in the basis of ¢ by indexed

letter D's , and indexed letter f's respectively. Hence, examples

of terms are
FO(fl(Xl’ b2) ’b3)
fl(xl,xz,xh,bl)

£, (7 (7 (£1(x)))5%,)

A variable-free term is a term without variables. A simple term is a

'term without function variables. A constént term is a term with

neither variables nor function variables.

A propositional term n(xl,...,xn) is an expression of one of the
i

- following forms:

i) Pj(Tl(Xl"'Xn.)’""Tn.(xl"'xn.))
i i - i

where Pj is some predicate symbol in the basis of ¢,

and TyeeeT, are simple terms.

J
. Y
i) = nl(#lf...,xni)
where nl,ﬂ2 are
L iii) [nl(xl...xn) A ng(xl...xn)1

i i o propositional terms.
R A AT

i i J

50

Note that a propositional term is a quantifier-free formula in
the basis symbols of & , with free variables. For an assigmment of

values from |8] to the variables Xy5+-0%, , such a propositional
. i
term is true or false in & . We stipulate that the propositional

terms in a specification must be mutually exclusive, i.e., there is
no asgignment of values to the variables for which two such propositional
terms are simultaneously true in & .

Examples of propositional terms are
Pl(xl)
[P (x) A By(xy fe(x5,b1))]
[Py () V By(x)] A B (8 (xp%0),0))]
Example. of functional programs are
1) Py = 1K)
where Fo(xl) <= Pl(xl’be) > L
| S By (x5 Py) = £y (20, F (£5(%150))) “
ii) P, = {Fé,Fl}
jz_v_lr_lgllg‘ FO(Xl’XQ)' <= [*'_PJT(X.'L’XE) /\. PQ(XQ’Xl)] by s
[Bp(pr%) A Bp(f (x5 5%;) 1 = Fy (g T (%))

— Pe(fl(xe)bE):Xl) - Fl(xl,xe)

51

If + |8] consists of the integers, and

1 2
and
Pl(xl,xz) ‘means X, =X,
Pa(xl,xa) means .xl > %,
and
fl(xl,x2) means X, ¥ X, (multiplication)
fe(xl,'xe) means X, -X,
f5(xl,x2) means xl/x2 (integer division)
then we may re-write Pl and P2 in the more usual way:
s 3
i) P, = {Fo}
- LY
where Fo(xl) =% =0 - 1,
- * -
X, £0 x) *¥Fo (%, 1)
and
ii) 132& = {FO, Fl}
where Fo{xl,xe} <= %, >%) A X, # X, 20

52

Fl(xl,XE) <= X2 =0-=1

X, £ 0~ (xl*I«‘l(xl—l,xg-l))/x2

Semantics of Functional Programs

An intuitive description of the semantics of functional programs

will be given, which will be used later to justify a logical definition.

a) For input.s Epseeesty e|s| 5 the program P&. invokes' or 'calls'
the initial function varia‘gle F0 with arguments gl, . ..,gn . When
computation of FO , called with 51’ . .,gn E terminates Wi’gh a value
§e|$9| , this is the result of prégram Py ?‘or inpub Ei5...0f -

o
b) The computation of a function variable F:.L called with arguments

'nl, ,T\n elcsll is determined by its specification as follows:
i : '

i) For specification

Fi(xl’ LY .,Xni) <= Ti(xl, .. o,xni)

the (variable free) term 'ri('nl,...,'nn) * is cbmputed.
. i

ii) For specification

(xl...xn.),

F, (xl, . .,xn.) <= Trl(xl, .,xn.) - T
i . i 1 . 1.

1

u (xl...;cn') - Ty (xl...xn.)
m, i my

¥
—7, For the purpose of describing computations we could add to the symbols
of & a name i° for each element iel&l . Then strictly we would

~say that 'ri('rli,. ..,ﬂg) is computed. However, we feel no confusion |

will arise if we refer té 'rl(nl'nnl) .

53

{

there will be at most one propositional term . true in & fo_r

'nl, .o ’T'n assigned to the variables. If thereais no such propositional
term, the; the comput_at‘ion of Fi , called with T]l...'nn. » 1s suspended.
(A suspended computation never terminates with a value.):L Otherwise,

if propositional term “i.(ﬂl”"’“n.) is true in & , then (variable-

| free) term Ti.(ﬂl’ .. .,'nni) is compgted.

In both cases i) and ii), if the computation of the term terminates

with a value, then the computation of F, called with T,...T
terminates with this value. :
¢) A variable free term T is computed as follows. If T 1is a
constant term, then computation of T terminates immediately with the
value d[t] .

Otherwise, T must contain one. or more subterms of the form

sT.) , where T....T_ . are constant terms (i.e., these
n, 1 n,

[ERRE
J J

are the smallest non-simple subbterms of T) . For all such subterms,

F.l{t
J(

like Fj(Tl""’Tn.) , we call Fj ‘wi.th arguments Q[Tl],...,a['rn.] .
When computation o% any of these subterms terminates with a value, Jwe
replace the subterm in = bSr this value. As soon as any new non-simple
subterms are produced, they are computed in the same manner, and the

/
process continues until all non-simple subterms have been removed, and

the computation terminates with a value.

For example, compﬁtation of term

proceeds as follows:

54

I) F, is called with “1"9[f2_(112)] and

F, is called with J[fl(ﬂl,be)] and

| Ezl is called with ﬂ2

II) When F

10 cglled with J[fl(ﬂl,be)] ,» berminates with §1

and F, , called with T, , terminates with ¢,

2 2

F, is called vith 3[f2(gl,g2)] .

TIII) When F. , called with &[fg(gl,;E)] , terminates wifch t3

.and F

5 2 called with Th s &[fE(HE)] terminates with Ly

FO is called with ch’§5 .

IV) When Fy 5 célled with Ch’§5 , terminates with §5

computation of 7 terminates with ;5 .

Thié completes the.description of the computation of functional
programs. We call such programs 'multi-level'! because the computafions
of parts of the program (function variables) contain the computations
of other parts of the program (other function variables).

There are clearly two ways in which the computation of some term
could fail to terminate. Either the computation proceeds forever,
calling ever more function variaﬁles, or else some function variable is
called with arguments for which its computation is suspended. The |
situations are intrinsically different, in that the latter can be

detected during compubtation; it is intended to be an error condition.

29

The description of computation clearly conforms with the usual '
intuitive meaning of the execution of functional programs. We will
not give examples of computations, but merely remark that for functional

programs P | and P, given previously:
l& 2& :

i) For any non-negative integer input n , computation of Pl
3

terninates with result n! -

ii) For any non-negative integer inputs n,m , computation
. . . nt
of Pecg terminates with result nCIIl = m .

Logical Definition of Functional Programs

With each function variable specification o ‘we associate
an axiom W . as illustrated by the following examples. The construction

. . . . :
of W_ should be clear if qu(-rl...'rn) is read as F, is called

i
. ; . .
with 'rl,...,'rni t, and Q‘Fi(Tl""’Tni’Tnfl) is read as F, » called
with Ty ...,Tni s terminates with vglue Tni+l 'y, and EFi(Tl,”.,Tni)'
is read as ‘computation of Fi , called with 'rl...'rn s> 1s suspended'.
i

i) o Fl(xl,xe,}%) <= fl(xl’fE(XE’XB))

Wcr : qFl(Xl’XE’X5) o) Q,Fe(xl~,x2,x5,fl(xl,fe(xe,x5)))

ii) o : Fl(xl’XQ’XE) <= nll(xi,xe,x5) - fl(xl’fE(XE’X5)) s
ﬂle(xl’x5) - F5(Xl)

- for propositional terms my ,my .
1 "2

56

iii) o :

iv) o s

: qFl(xl’XE’xﬁ)) {[11 (xl’XQ’X5) DQ (xl,x2,x5, (xl,f (x2,x5)))]

A [nl (xl,x5) > {qF () A [Q (xl,z) >
Q‘Fl(xl’ X5 X5: Zl)]}]

= nll(xl’XE’x5) A= TTl (x ,x5)]DE (XJ_’XQ’X5) 11

Fl(xl:xg:x5) <= ﬂil(xl,XE’X5) . F (x) >

my (Froxg) = S (Fa(F5 (5 (%)), %5))

: qFl(2) 5) = {[TT (l) 2,x5)3{qF5(xl)

A [QF5(’_‘1’ 21) =g, (rppXp %507]-}] |
Aty (o) > g (£105%))
o (1 (530%2):7) 25 (3751 A
[QF5(f1(X1’ %) 2%5) A %, (72775 %)
20 (55, () 11

A L= Tl'll(,XE,X)/\"'1 m (x 5)]DEF1(X X5 5)]} .

F5(X1,X2) <= FO(FO(X:L,fE(XE))’Fl(fl(Fl(fl(xl,bE))’FE(XQ)))) .

Note that the term in this example is the one used previously to

-illustrate computations of terms.

o7

W, qFB(xi,xe) > {qFO(Xl:fé<Xe>> Nag (£100,50)) Mg (xp)

A [[QFl(fl(xlsz), z4) A QFz(Xz’Zg)]DqFl(fl(zl, z,))]

A [[QFl(fl(xl,bg), z,) /\QFE(XQ; Zp) AQ‘Fl(fl(Zl’ Zp) 123)
N g (8 (05),2) 2 o (225)]

A LRy (£ Geyp)52) A QFQ(XE: 2) A (1(2125),25)

A Q.FO(XJ_: f2 (X2) ’ Zu) A Q’FO(le-’ 235 ZS)] DQF5 (Xl’XE’ ZS) 11 .

The method of construction of W(J for all o -should be apparent
from these examples. An algorithm for constructing W o could be given,
but it would tend to obscure the intuitive meaning behind the construction.
 With any program P 9

= {FO...FN} , where each F, has specification
: *
o, , Wwe associate the set of axioms W (k,QF) ¥ defined by

i P o

| (it) = fap (- ok,)3 U g [F5epg] -

(We shall in the future denote (W IFieP J} by W 5 +) We prove later that
i

W, (k,Q,) is a logical definition of P_ .
P F, 3

¥
*/ k = (kl, ook) are constant symbols.
o .

58

Examples

i) Wy, (kl’Q‘F) 4is as follows (the axioms are separated by semicolons) :
1 0 .

qFO(kl)_; |
qFO(xl) > {{P, (x;,p,) o Q‘FO(Xl’bl)]
A = Pl(xl,be) -
{qFO‘(fQ(xl,bl)) A
[Q‘Fo(fe(xl’bl) »23) D Q‘FO(Xl’ £, (xy529)) 131

ii) WPE(kl’kE’Q‘FO) is as follows:

qFO(kl,kgjs |
a (y5%;) 2 {1 B (%) A Bylp%y)] 2 G (ym0y)]
A= 32(x2,xl) A Pe(fl(xg,bj),xl)] :3/
{qFl(Xl’fE(Xl’xe)) A
| [QFl(xl, £, (xy5%,)52,)
QFO(XSL’ %,079) 131
A [— Pe(fl(xe,bB),xl) >
| {qFl(xl’xe) A
[Q,Fl(xl,xg, z,) D
QFO(X;,_:XQ: z5) 131 |
A Tl Pl(xl,xe) N Py(%,5%4)]

29

A By(fy (x5 b5),%) 1 2 EFO(XJ.’XE) 11 ;
O, (F10%2) > {[P;L(Xe’bé) > QFl}(xl’Xe’bl)]
A [P:L(xe’be) -
lag, (25 1), 25 (1)) A
Lag (£500y521)5 Bl 0) %) 2
QFl<xl;x2, £,(8) (7)) 13]

To prové that WP(k,QFO) is a logical definition of Py, we
proceed similarly to fhe case .of the one-level language in the previous
section. However, because of the mul'ti—level na:tu:fe of computations,
the conditions that W 5 must satisfy cannot be stated for each W o,
sepa:rately. Before we can state the conditions we must looi: more :

closely at some properties of mul'ti-l_evel computation.

If a function variable F, occurs in a term in Ui , and for

'computation of Fi , called with arguments gl...gn , this term is

i
computed, causing F,j‘ to be called with arguments 'nl...‘r[n s then

J
‘we say that
‘F'j is called with MyeeeMy at the top level of
J
.. .
Fi called with g_l. ..gni .
- e.g. For

F3 (xl) <% F2 (f2 (xl))

(a) F, is called with £, at the top level of F

o calle@ with gl H

1

(b) F, is called with £.(f,(t,)) during the computation of F
2 2VT1Vl 1

called with gl » but is not so called at the top level;
(e) If F, called with gl terminates with ;l , and

F, called with fg(fl(gl)) terminates with - ¢, ,

2
then F, is called with fl(§2’ gl) at the top level of

Fl called with gl .

61

We can now define a relation < on terminating compubtations of

function variables, as follows:

i) o, = Fi(xl. . .xn'i) <= 'ri(xl. . .xni)

where T, is a simple term.
There is no terminating computation X such that

X c[F; called with gl...gni], for any gl...gni .

ii) o, = Fi(xl'“xn.) <=y (xl...xn.) -y (xl...xn.) 5
i 1 i 1 i

U (xl...xn‘)—"ri (Xl'”xn.)
my i m, i

where for arguments gl...gn. 3 ni.(gl...gn_) is true
i J i
and 'rij (xl...xni) is a smple term.

There is no terminating computation X such that

X c:[Fi called with gl..f.gni] .

iii) TIn all other cases, if Fy " is called with My---M, &t the top
i J
level of Fi called with gl. . .gn s and Fi called with E’l' ook

. n.
1

i
terminates, then

[Fj called with 1. .'.‘nnj] c [Fi called with gl.‘..g
clearly must terminate.)

ni]

(Fj 'called with ..M,

J

We can extend this relati on to suitably defined parts of computations

\
of function variables as follows.

If F, is called with {....t at the top level of F, called
J 1 n, i

2

with gl. . .gﬁi 5 'bhen the computation of Fi called with gl. . .gni

62

up to the point where Fj is called with ‘31 "'Cn. . at the top level,

: dJ
is ca;led a part of the computation of F:.L called with gl. ..gni ..
We will refer to this part as
up to Fj called with gl. Y I

n. n.
i dJ

Note that all parts.of computations (terminating or non-terminating)

'F; called with gi...g

are Tinite.
We extend the relation < to cover parts of computations by
noting that i) and ii) above hold also for parts of computations X .-

We also add the extra cases:

iv) A1l parts of F; called with gl...gnic[Fi called with gl...gni].

' v) If Fj is called at the top level of F, this is because o,
contains a term with subterm Fj('rl...'rn) . Now for any Fy

Cif F_ is called with nl...nnk at the top level of F, called

"k
With gl...gnv , and the occurrence of Fk in questioﬁ is in one
i
of the terms 71....T 5 then
1 n.
' dJ
r-a) [F, called with Ty .ﬂnk]

c [Fi called with E‘l

i
b) [Fi ‘called with ,...& up to F, called with Ty]
c [Fi called with gl....gni up to Fj called with _§1'“5

This completes the definition of the relation < on terminating.

computations and p>arts of computations.

63

...gn' up to Fj called with 51”'§n.]

The transitive closure & of this rela,’cion.)—e/ is the non-reflexive
partial ordering v}hich simply reflects the containment of one terminating
computation, or part of computation, in another, due to the mul’ci—ievel |
nature of computations. We have made this ordering explicit .‘bo allow

its use in a later inductive argument.

In the rest of this section we use the following convention:

n n.
) = tels| T ; (61...81’1.) e |d| 1

o 1

n

(gl.-. 'g

. n
Tels| ®

i
I

(;l---cnj) telal < (-1,)

w7els]

k = (kl...kno) sh = (hl.-..hnj) ,d = (dl...dni) B = (gl...gnk) and e

are constant symbols.
We can now give the conditions that we wish Wc to satisfy.

1) If F, is called with { at the top level of F. called with 5

and for all F

X
{[Fi called with & up to Fy_ called with M)
c [F, called with 5 up %o F, called with (]
51
Sig .
= | . 9 (&)
' q, (&),W k
Fi o)

* ¥
—/ relation < is defined by
*
i) XcyYy=Xcy
* % *
ij) XCcY and YczZz=>X5Z.

6l

and for all Fy ot

{[F}'{ called with 1 (and terminating with p)]

C[Fi called with & wup to Fj called with ¢]}

M
Jge .
= i_ " Q’F (g,¢e)
q.F g)JWO- k
then
5 ¢
dan
~ Ay (B)
i

II) If F, called with & terminates with 7

and for all Fk :

{ir, called with M1

5 called with & up to F

k
c [Fi called with 8]}

£

-
=> . 4 (8)
~ F
i [e)

- and for all F ot
{[Fk called with 1T (and terminating with p)]

c [Fi called with 5]}

oM
Ige .

=> i_ o QF (gs€)
qu(g),WCI k

65

1II)

then

5 ¥

F%ie
_ . Q (d,e)

1

For all W& e » reading Wc' makes sense if we precede it by

o .
'for all seis of computationslof F, !, and qF‘(Tl..;Tn-) is
read as 'in one compubation, Fj is called Wigh Tl...gn.' s
and QF-(Tl...Tn.,Ti.+l) is read as ‘'in one computa;tion,J
Fj s cglled withJ Tye++T, » berminates with value 7 . ',
and EF.(Tl.,.Tn.) is reaé as 'in one computation, coiputation
of 'Fj , called %ith Tl...Tn‘ » 1is suspended!

, 3 :

These conditions have been given in a form in which it is readily

seen that ﬁ& satisfies them. The required consequences of these

conditions can be stated much more concisely than the conditions

themselves.

Since there can be no infinitely descending chains of terminating

*
computations ordered by < , we can immediately get more concise forms

of I and II by induction (on the partially ordered set).

If Fj is called with { at the top level of F, called with

then
5 ¢
Jan
l— »~ q-F (h) .

66

ITa) If F, called with & terminates with 7

tﬁen
87
*?de
Q (d’ e) .
~ F,
qF (d))wo_ 1

i

The required consequence of ITT comes from considering the minimal

relations as in the previous section. If for & = (&....t we
1 n,

define the sets of minimal relations p°,v> and &° such that

i) for ug eﬁg ’ ué (¢) if and only if F, is called with ¢
J J

in computation of P

9 for inputs ¢ .

ii) for v% e%g s v% (¢,7) if and only if Fj is called
J J
with ¢ in computation of PJ for input £ , and terminates

with value 7y .
and iii) for e%, etf e%, (¢) if and only if computation of F, ,

called with ¢ in computation of P& for inputs ¢ ,

is suspended.

By choosing just those computations of Fi that occur in computation

of PJ for inputs & , condition IIT implies that
, " : _ ~E AE

ITIa) for all W eW , W is true in %
. o, o o5 g

~
€

O <
= uve

where a ; Q@ and B denoté all the predicate symbols dp >
-
QF and EF respectively.
J J ‘

We can now prove the following proposition.

67

Proposition 3. For WP(k,Q,F) = {qF (x)} U ﬁc’ where ﬁc satisfies
T o - "o
I, IT, and III

i) Fi is called with & in the computation of P 9 for inputs ¢

£S
Sk a

& g, (@)
ey) s
(o]

1) F, is called with & in the computation of P, for inputs & ,

and terminates with value

Ed
|:9kd e
& QU (d,e) .
WP(k:QFO) i
. Proof
i)
=>

- IHS => Fi must be called at the top level of some other function
variable, which in turn must have been called at the top level of ancther,
and so on back to FO called with £ . Hence by repeated use of Ia),

£Ed
kd

Wy (50)

4
qF. (d‘) .
1

68

RES = |- ap (d)

£d

=> VqVQVE[WP(k,QF) o qu(d)] true in I7 o .

O

By ITIa), for all wciewc , W"i

Therefore WP(k,QFO) is true in g

v»%_ (8)

is true in J“‘

4
q

E ot

B

<>

; and lb%‘ (g) -
[o]

f:5))

g

m2

d Q

=i»

i.e., Fi is called with & in the computation of P, for

dinputs & .

i1)

EB

e
IHS = d
g wsa,) T)

(o}

then by IIa)

. &%
.Jkde

Q. (4,
I;’P(_k:QF') Fi(‘ e)

(o]

69

d

by i)

As for the second half of i)

RHS => v;i (8,u)
i

[

i.e., Fi is called with & in computation of Pcg for inputs ¢ ,

_and terminates with p .

Q.E.D.

We see that WP(k’-QF) describes the compubtations of: Py in the
. o
desired way.

An immediate corollary is

Corollary

Eu
CS}ke
- Qg (k;e) & computation of P, for inpubts ¢ +terminates

Wo(lQy) o ?
o with result p .

Hence vWP(k,QF) is a logical definition of P .
o

The closure of WP(k’QF) is a universal formula and contains

_ o}
only extra predicate symbols. However, H&H@EﬁWP(k,QF) is not a

o
formalization of partial correctness of P, since it is not necessarily

B

monotone. However, if we add an axiom, defining “Wl')(k,QS) as the closure |
of

WP(k’QF) U {Q'F (kJX) > ¢(k:x)} p)
o] [e]

then - Wl‘)(k,¢) is still a logical definition of P 97 and is clearly monotone.

70

' , n.-f;'l
By the Corollary above, for any set ¥ of relations on IJI +
Vel : [ﬂaﬂéﬁwi,(k,gzﬁ) is true in ai%’]

. |
= vytels] ©, vuels| : [vl'i’. (E,p) = N¥(E,p)]
. 0 ’

By condition IIIa)

. §ﬁ§ '\3§ 8t \)l%,
Wi)(k,¢) is true in ak 54 8 ¢°

by monotonicity
AN A R . grfq‘f
t
HqHQHEWP(k,¢) is true in 8/ 8
wi,(k,gzi) is continuous.

Hence H&HQHEW%,(I{,@ is a formalization of partial correctness of P 9

This means that Wi)(k,¢) can be used to formalize all the usual
properties c;f P 97 (including propertie's concerning the detection of
error conditions, see Ashcroft [1]).

| Manna and Pnueliv [11] have formalized the partial correctness ‘of
programs very similar to the functional programs considered here. The
- work was done about the same time as the work presented in this
- section, but independently. The relationship between the two

approaches is worth considering.

71 a o

Relationship to the Work of Manna and Pnueli

The functional programs c.onsidered by Manna and Phueli are
slightly different from those considered here, but the ;érinc'iples
of computation are basically the same. The differencé between ;che
two methods lies. in the formulae or axioms used to describe programs.

Basically, Manna and Pnueli associate a single predicate symbol, QF"
‘ i
say, with each function variable, while here we associate two symbols

U and. A . If, in the axioms given in this section, all the

formulae qn ('rl...'rn) were replaced by T (true) and the axioms
i

were then simplified, the result would be the formulae of Manna and

. R . . s
Pnueli. The reason is that QFi('rl...'r ’Tni+l) has the intuitive

n.
1

meaning 'F, , called with T T, » terminates with T .

17 Th.
1

whereas Qy ('rl...'r 3Ty +l) has the intuitive meaning 'F, , called
i i ’

n,
with arguments Tl"':'LTni such that qu('rl...'rni) , terminates with
'Tni'?l ', That is QFi(Tl“'Tni-l-l) = qu(Tl.'. .'rni) A QF"i(Tl...'rni_l?l)
Clearly putting qF.(Tl"'Tn) =T, makes Qp become identical
to Qf‘i , and it islnqt surprising that the s;'L.mplified axioms are
identical to the Manna and Prnueli formulae. |

Considering the Manna-Pnueli formulae as logical definitions,
(which they are, by Correspondence Theorem 2) We> find that théy do not
desc;ribe computations in the same way. The relevant, second part of
Proposition 3 holds only in the forward direction: it is possible |

to deduce the situations occurring in a computation, but not all

the formulae deduced describe situations that occur.

T2

Accordihg to theicriteria given'in the previous section, the specification
of the Mannaanueli formulae would not constitute a logical dgfinition
of the functional language .
However, the Manna-Pnueli formula are simpler than the axioms
given here, and in general théy give shorter proofs 6f properties of

programs.

Conclusion

A method of defining multi-level programs has been-given, and the
conditions that the axioms Qf such a definition must satisfy have been
given in a form that enables such axioms to be chécked intuitively.

These conditions can be merged with the conditions for one-level
language definitions in a simple way, as will be shown in the next
section. Using these new conditions we will develop a logical definition

of a large subset of Algol.

1>

~.

Section 5: ALGOL-LIKE PROGRAMS

.~ .

In this'section we are going to develop a logical definition 5f
large subset of Algol 60. The features in the language will be.added
successi&ely to a simple language that includes s%atements and specified
functions (called procedures). At each stage the required modificétions
~will be given that have to be made to the.sﬁnple language definition.

The final language will have most of the features of Algol 60,
including many types of statements -- assignment, conditional, Jjump,
while, blogk and non-type procedures -- using expressions containing
type-procedures, including bbolean and array procedures.

The language will not_have the fcall by name! feature, nor will
it allow labei and procedure parameters. However, ‘'side effects! of
procedure calls will be possible by the use of non;local variables.

There will be no inpub-output qpe?ations as such; programs will have
certain 'input-variables' which are given values at the start of a'
computation, and certain of the variables in the program will be
designated as output variables, whose values at the end of the computation
are to be considered to be the results of the computation. |

Despite these restrictions, the language will be quite a good
~dpproximation to Algol 60.

The logical definition of this language can also be used to formalize
partial correctness of programé, and therefore can be used for fofmalizing
many other properties of programs.

Tn the rest of this section we assume spmé familiarity with the

constructs of Algoi 60. This will allow informal descriptions of programs.

Th

The Simple Language

We~start with a simple languégg in which a program is a seguence
of statements: assignment{ condition, and jump statements. Variaﬁles
are not 'tyjed', and there are no arrays. In thesé respects, the
language is similar to the flowchart languages éonsidered by Manna
and Floyd. However; in the assignment statements we allow the use of
procedures. A progrém‘therefore includes é set of simple procedure
declarations.

Each such'declaration consists of a list of formal parameters,
followed by a declaration of>local variables, followed by a sequence of
statements (the frocedure body). The name of a procedure is ﬁsed like a

variable in the body of the procedure on the left hand sides of assignment

.‘statemenﬁs, to hold the result of the procedure call. We restrict the

scope rules so that the only other variables that can occur in procedure

bodies are the locally declared variables, and the formal parameters of

‘the procedure. There can therefore be no reference to non-local variables

declared outside the procedure declaration. In a similar way there can be
no jump statements within a procedure body whose destinations are labelled
statements outside the procedure declaration; |

A program consists of a list of iﬁput variables, followed by
procedure declarations and a declaration of local variables, followed
by a sequence of statements (the program body), followed by an indication
of the output variables. The variables that can occur in the body of'the
program are the input variables and the local variableé.

A program P therefore looks as follows (véfiables are indicated

by indexed letters X , Y and Z):

(¢

program P(Xl,---:Xh)3
. D
begin

decl Z_,...52
— "1 m
P

Erocedure Fl(Yll""’Yln)3
1

begin

decl_Zli,...,Z l;

(statement);

.
..

(statement)

end.;

procedure Fj(le,.--:Y.)3

begin

decl Zjl""’ im 5

(statement);

(statement)
end
(statement);

(statement);

{statement)

outgut(Xai,...,Xa')

end.

We consider outgut(Xa -e X,

1 n

{

specification of nP input-variablés

mp local program variables

ny formal parameter of Fy

ml local varlables of Fl

body of F)- Variables allowed:

"zlml and Fl.

Y Y

]J_,...’ J_no,z:lj_,..

nj formal parameters of Fj

mj local variables of Fj

body of Fj' Variables allowed:

le,...,Yjpj,zjl,...,zjmj and Fj‘

body of program. Variables
allowed: Xl,...,Xn ,Zl,...,zm .
Y Y

specification of no.output variables,

.‘,X ’Z ’.OI,Z -
n 1 m
D D

taken from Xl"

) 1o be a statement, but such statements

can only appear at the end of program bodies.

76

The various other tybes of statements are as follows:

i) Null statement.

null

ii)} Assigmment statement.
X, :=7
i
where T is a term as defined in theé previous section (with

procedure names instead of function variables).

iii) Conditional statement.
Af m then (statement) else (statement)
where mw 1is a propositional term as defined in the prévious
section (i.e., no procedure names). The 'else (statement)®

part is optional when omitting it does not introduce ambiguity.

iv)> Jump statement.
goto L.1
where Li is a label. Any statement can be preceded by one or
more labels, each followed by a colon. In any procedure or
program body, any label occurring in a jump statement occurs

exactly once labelling a statement.

To simplify the later logical definition we stipulate that the
last statement in the sequence forming a procedure body is null.
We can now give an example of a program. The statements have been

numbered for later reference. The numbers are not part of the program.

7

program sort(list);
begln
decl result;
procedure merge(sortlist,atom);
begin
(8) if — null(sortllst) A lessP(atom,car(SOrtllst))
then (9) merge := cons(car(sortllst),merge(cdr(shortllst),atom))
else (10) merge := cons(a‘tom, sortlist);
(il) null
end
(1) result .= NIL;
(2) L: if null(list) then (3) go to out;
(4) result := merge(result,car(list));
(5) 1ist := cdr(list);
(6) go to I;

(7) out: output(result)

end

|J| consists of atoms and lists of atoms. The lisp functions and
predicates have their usual meanings, and 'lessp' is some relation that

totally orders the atoms.

Execution of programs

The execution of these simple programs conforms with the usual

Algol meaning, with the following restrictions:
i) On calling a procedure, the parameters are passed by value only.

Together with the scope restrictions given previously, this means
that calling a procedure produces no side effects. Hence in the

evaluation of terms, e.g. fl(Tl,Te) ; it does not matter which subterm

78

T or T is evaluated first. However, we will allow side effects

1 .2
later, so we will Stipulate that

ii) Terms are evaluated left to right, i.e., T before T, .

In most sensible programs, the value of a variable is not used before
the variable has been assigned a value by an assignment statement.
However, when a variable is declared it must have some value, and we

stipulate that

iii) the initial value must be the same for all declared variables(‘
This holds for the name of a procedure used to return the
value of the procedure (i.e., this value will be returned by
any call of a‘frocedure in which no statement is executed
that assigns a value to the name of the procedure). We
assume this special value corresponds té a special constant B

in the basis symbols of J .

We do not intend to give a description of the execution of programs,

but to simplify the later logical definition we assume

a) There is a known ébrrespondence between variables occurring
in statements and their first occurrences in parameter lists
or variable declarations. This means that there is no
difficulty in renaming all variables in the program without
changing its computations.

b) There is a known correspondence between labels occurring in
jump statements and the statements that are the destinations

of the Jumps .

79

¢) - Every statement has a 'successor' statement, defined as

fol;ows:

i) For statements comprising the sequence of statements that
is a procedure or program body, the ‘successor statement
is simply the next statement in the sequence. For the

last statement in the sequence, i.e., null or oubput, the

successor will be denoted by ¢ .
ii) For statements contained in other statements (in this
case, in conditional statements) the successor statement

is the successor of the smallest containing statement.

We will not give examples of computations, but merely remark that
the above program 'sort® sorts 1lists according to the relation 'lessp!

on the elements of the lists.

Logical definition of the simple language

We intend to amalgamate the two previous definition techniques,
for the one-level language and for functional programs, into a definition
of the simple language. This means introducing three types of predicate

symbols: ¢c , indicating that computation has reached statement o ,

dp s Indicating the call of procedure Fi , and QF , indicating that
i i

Fi is called and reburns a value. The symbols g and QF are
, i i

n,-ary and ni+1-ary -as in the previous section. For ¢0 s where

.

.statement ¢ is in the body of procedure F, {the program P} , we
' *
define the numbers o' =n.{n_} and G"=(m+m.+D{@.+m)}—L
' itp i 1 P P
Then @$_ is o'+0" ~ary. o" is the number of variables in scope
for o , and in fact we can map these variables into the integers 1
to o" according to the order of their first occurrences in parameter

lists or declarations, e.g. for

program Prg(foo,baz);
begin
decl A,B,C;
procedure F(D,E);
begin
decl G;
015 055 055EEll
end
a),3
O3
output (B,C)
end

in the program body,

cﬁ =2, GK =5, and the variables are ordered

foo, baz, A, B, C;
in the body of F ,

=2, o' =4, and the variables are ordered

1]
2 2

F, D, E, G

* . B
¥/ As in the previous outline of a program, n, is the number of formal

parameters of Fi » and m is the number of locally declared variables.

81

M g Y wwmep g b s s e

With the program P itself we.associa5e7§redicate symbols
- + - .
ap (ny-ary) end @, (n,+n, -27y)

We are going to construct formulas using these predicate symbols,
and the construction of these formulas will be more obvious if the

symbols are considered to have the following meanings:

g (Tl,;..,Tn) means 'procedure Fi is called with arguments
i i .

T S S

" n,
i

. . .

QFi(Tl,...,Tni,Tni+l) means 'procedure F. is called with

arguments Tl...Tn and terminates with value =t LI

. n,+1
. i i
¢c(t1""’tc"T1’""Tc") means ‘'computation reaches statement o .
(in some procedure {program} body) with variable values
Tyee Ton when the proéedure {program} was called with

arguments f{inputs} t....t_, .

1 o!

The formulas are constructed as follows.

We assume that Xi‘ represents the i~-th variable in the ordering for

-a particular procedure declaration or program.

I) Wi£h~each statement o whose successor is Iy and o5 £e, we

associate a formula V% :

i) Null statement:

0:~- null

Wyt- ¢U(yi?°"’y6"xl""’x6") :)¢62(yl"."ybé’xl""’xﬁa)

82

11)

Assignment statement: Wy is best illustrated by

examples
a) O:- 'Xj = :t‘l(Xi, fl(bl,)[k))

Wy 2- ¢c(y1"'yg*’xl""’xc") o
¢02(yl’...’ygé’xl’.‘.’Xj-l’fl(xi’fl(bl,)ik)),.",xd")
' 2
b) o:i- Xj 1= Fl(Xi,fE(Xj))

W= ¢U(yl, eesVgrsKys e ..,xd") o

[QFl(xi’fE(xj)’Zl) '_').

B (FyseresTigsXqseoesX, 232 5000y%)]}
0‘2 1 0'2 1 J-1""1 0"2

S R N X A ERCRIBRRY
Woi- B (vq5 .‘..A,yg,,'xl, ceesXon) D
{qFE(xi) A
{QFE(xi,zl') >
{qu(xj) A
9y (x3525) = |
{qFl(zl: z5) A
lap (z2,975)
{qFE(Xk) A
[QFE(xk, z)) >

o @0 FgpFpsmoy g (g2 2D IIS -

83

iii)

~.

This example il;ustrates fhe 1eft§to-right fule for evaluating

terms.

The construction of 'WU for all assignment statements

should be obvious from these examples,

Conditional statements

Bl,...,XBj) then % else o,

are statements, and n(X

a) o:- if n(X

where 60,61 Bl,.

..,Xﬁ.)

J

is a propositional term (XB e{Xl,...,XU"}, i=21...3)

i

W_:- ¢q(yl,...,y6,,xl...x6") D

if m(x ceeyX then (Yo eeo X, ...X
, *

else B (¥, veeVorsXqoeoX o)

- Ul 1 Ul 1 ql.
b o:- if X ceesX then o
W= ‘¢U(yl...y6,,xl... 0") D

» if (X, seeesX,) then @ (¥oseees ¥ 15X 00X)
Bl ﬁj — 0¥l g 1 %

else ¢U (yi’°"’y6é’xl""’x6")
2 .

2

*
¥/ For formulas, if P then A else B means [[PD A] A [4PDB]]

8l

iv) Jump statements

q:- goto Li

where label Li corresponds to statement Gl

Wo_:" ¢0_(yl--- c',Xl...Xc") :)
B (FoeeaVo 3% eox)
Gl 1 oi 1 Gl ‘

IT) TFor stabement o whose successor is € , there are two cases to

consider:

i) if o is the last statement in the body of procedure Fs 5
i.e., null, then with this procedure declaration we associate

the axioms

‘WF.:- {qF.(yl’""yn.) D¢U (yl:'-~:Yn-:B:yl:-":yn_:B”'B):_
i i i 0 i i

¢G(yi’""yb”xl"'f’xo"):D QFi(yl...yhi,xl)}

0

'bha.t>0(') =0t =1').:.L -)

where o, 1is the first statement in the body of Fi . (Note

ii) if o is the last statement in the program P , i.e.,

oul.‘c,Egl:(Xal...X.Ot:n) , where Xaietxl"' Gnl s 1= l...no.,

o
then with the program we associate the axioms

WP:- {qP(yl‘--ynp) > ¢0’O(yl"”’yn IRATRARRF R sBeeB)>

Y Y

B (Fyp - o esTguoXysweesXon) D Qplyys vy 5%, -+ o%,)}
- p 1 n

where Sy is the first statement in the body of P .

(Note that of =o' = n)

1
0 p

85

-

i ; . */
III) We then define the set of axioms WP(k,Q,P) as
{ap(x),Wp} U B o in P} U {WFilFi in P} .

For example, WP(k’QP) for the program 'sort' is given below.
Statements are referred to by the numbers in the example, and
procedure *merge’ is referred to as F . Axioms are separated

by semi-colons.

Wo(k,Qp) :- ap(ky);

ap(vy) @ B, (3157758);5
Bo(yys%y0%,) D Qplyys%,)s3
By (v15%y5%p) D B, (vy5%,,NIL) 5
Bo(v1%15%,) 2 Af null(x;) then y(yy,x;,%,)

else §),(vpx3,%p)
Bs(rys1%,) D B (v %15%0) 5 |
B (315 5%0) D lap(ncaz(e) A

(g g can(ay),2) © Bolyy 7)) 133

Bs(ypixy,m,) D Belyyrodrla;),xy)s |

¢6(yl’ Xl’ X2) > ¢2 (yl’ Xl’ X2) H

¥
X k= @cl. -k) are constant symbols.
b

86

Q’ll(yl’yé’xl’XE’xﬁ)) Q’F(yl’yE’xl);
¢8(y1’y2’x1’X2’X3) o if — null(xe) A 1essp(x3,car(x2))
then. ¢9(yl, yg’xl’ Xé; XB)
else ¢lo (yl) yz) Xl) x2, XB) ;
¢9(yl)y23xlﬁx2)x3) o {qF(Cdr(Xz),XB) A
[0g(ear(xy),%57,)
By (7157 cons (ear(x,) 5 7,) 5555) 1]

¢lo(yl’y25XlJX2’x5) > ¢:L-L(y15y25 cons (Xz’xl)’XQ’XB);
These axioms can clearly be simplified so that WP(k,Q,P) becomes

ap(ky)
ap(¥) 2 ¢2(y1,&l,NIL);
¢2(Y1:X1:X2) D if null(xl)
then Q,(yy5%,)
else {qn(x,,car(x;)) A
[QF(xé, car(xl),zl) 5

¢2(yl’ Cdr(xl) 2 Zl) 133

87

U AT S

QF(XI?XE) :)if-ﬂ null(xl) A lessP(xe,car(xl))
then {q(cdr(x),x,) A |
[QF(Cdr(Xl)’XQ’ZE):D

Qp(y5 %5 cons (car(x, ,2,)) 13

else QF(xl,xe;cons(xe,xl));

Clearly the construction of WP(k,QP) uses the techniques

developed for both the one-level language and for functional programs.

‘We will not go through the proof that WP(k,QP) is a logical definition

of Pcg that describes computations of Pcg s since it is similar to

_previous proofs, only longer. We will simply give the conditions that

WP(k’QP) .satisfies and state the relevant proposition.

Any computation of a procedure or program bod& consists of a
sequence of computations of statements from the procedure or program
body. When we talk of computations of such statements, the 'next!
statement is fhe statement (in the same procedure or program body) whose
computation follows the computation of the statement considered. This
is not always the same as the successor statement, for example for jump
statements or conditional statements.

The conditions on
-~

Wy, = {WUIU in P} U {WFilFieP}

are as follows.

88

I)

I1)

IIT)

IV)V

If for ¢omputation of statement o , for variable values

(nl°"ﬂgn) = 7| the next statement 9y is reached with variable

values (ul...poi) =y

’ [0}
then for all B = (dl...db,)eJ&l
BN p
e
. (&;h) .

If for computation of statement o , for variable values (nl...ﬂan) =1

procedure Fi is called (at the top level, i.e., o contains Fi)

with arguments (§l,...,§n) =t
i

t
then for all § = (51,...,60,)e|3|°

EXY:
kdgh (1)
q. .
¢0‘<d’ g) :ﬁ Fi

If computation of F, called with (gl...;) = , reaches statement ¢

in the body of .Fi with variable values (nl ﬂgn) =1

then
3
I"- ~ ¢O-(h:g)
q‘F.(h)’WP

If computation of Fi called with (;1...gn) = ¢ terminates with v
: i

then

&
F . Qp (h,e) .

J

V) For all statements ¢ in procedure Fj {program P} , W, makes
sense if we precede it by 'for all sets of computations of o !
and we read qu(Tl...Tn.) as
'in one computation, Fi is called with Tl...Tn ',

QFi(Tl"'Tn.’Tni+l) is read as

'in one computation, Fi is called with Tl"'Tn and terminates

with Tni+l ',
¢ci(tl,...,tc,,wl,...,Tc") is read as
'in one computation, which is in the computation of Fj {P} for

arguments {inputs} tys--esty, 5 05 is computed for variable
values Tl"‘”Tc" t.
Vi) For all procedures Fi in P, WF makes sense if we precede

it by 'for all sets of computations of Fi ' and the predicate

symbols are read as in V) above.

It is clear that WP satisfies the above conditions (conditions I-IV
require induction on lengths of computations as in the previous section,
but are quite straightforward). From these conditions we can prove the

following proposition.

Proposition 4. If WP(k,QP) satisfies I -VI: in computation of P

for inputs (gl...gn) =¢,
b

b)

d)

'Fi is called with

statement o in the program\

body -is executed for variable

values ('nl...‘rb,,). = 1

Fi is called with

_(51...511.) =8
. 1

(61...6) =8 and

n.

1
i) statement o in the >

body of Fi is

executed for variable

values ('ql...’nc,,) =1
ii) computation of F;

terminates with vy

computation of P terminates

with output values

.(”‘l' ' '“’no) e)

91

Proof is similar to the proofs of the previous three propositions.

We see that WP(k,Q,P) is a logical definition of Py and it

describes the computations of P& in the desired way.

- It can also be g@sily shown, as in the previous section, that
W?(k,QP) is both monotone and continuocus, and therefore HQﬁP(k,QI)
is a formalization of partial correctness (where Q denotes all the
extra predicate symbols except Qé , and WP(k,QP) is the closure
of Wf(k,QT)). We can therefore use WP(k,QP) to formalize properties
of P such as termination, correctness, etc.

We can now add exfra features to the language and modify WP(k,Qf)

accordingly. It is clear that after each modification, ﬁP still
satisfies I ~VI (poss';bly modified slightly) and so WP(k,Q,P) still |

is a logical definition.

Extensions of the Simple Language

1. While statements

We add statements of the form

G:- while m do Ul

where T ‘is-a proposiﬁional term, and 79 is a statement.

.Let the successor of ¢ be 62 H

92

Wi ¢G(yi,.. TS SRR c") -
i—i 1T then ¢ (y L] .A. ,X . s 0 ')
_ cl 1 ci 1 ci

else B (Yqeeed gsXqeneX)
_— 02 1 92 1 qa

and we stipulate that the successor of cl is o .

2. Conditional expressions

We modify the definition of assignment statements by allowing
expressions on the right hand sides.
An expression is a term or is of the form
Af m then T, else Ty

‘where 7T

12T, are expressions, and 1 1is a propositional

term.
We will illustrate the construction of Wc by examples as before --

+the successor of ¢ is 62 .

i) o:- X, := if n(X

3 "'XB) then :E‘Q(Fl(fl(xi)),xk)

By k

else FQ(Xi, xj)

W:- ¢G(yi...y6,,xl...xcn)':

)

if m(x, ...x
Py By
then {qFl(fl(xi)) A
[QF (fl(xi)’zl) D¢O‘ (yl"'yqt’xl"' j_lJfE(Zl)xk))"")xo-n)]}
1 2 2 2
else {ng(xi’Xj) A
[Q (%.5%.52,) DB (Fyee eV ysXqseeesX, 25Zhee.X)1} &
7, *17%5 %2 o, Y1 Yop™a 3-17%2" oy

95

W -
g

~

X, := Fe(_J:g ™. then b else fl(Fl(Xj))’_

if w, then X. else if w then Fl(Xk)

2 J 3
else b

N
~¢c(y1' VgraKye .xc,,))

if m, then if m, then

1 2

{qu (bl} XJ-) A

[QFe(bl,xj,zl) D¢62('Y1' R AP PRRIYE NEPLIVED .,xc,,) 13
2 2
else if s then

{qFl(xk) A
[QFl(xk,ze) >
‘{qF_e(bl: zp) A
(3, (b7 25) D%E(yl,...,the,xl..,‘xj_l,z3... IR
else {qFl(bl:be) A
[Q‘Fl(bl’be’ zik) o)
¢céyl' - Gé’xl’ PXs g%y .cg) 13
s1se fog (<)) A |

[QFl(XJ-: Z5) D

if TI'2‘ then

fap, (£ (25)5x) A

[QFl(fl(55) :Xj: Z6) D

B (Fas oo osVarsXasenesXe 13225 000s%)]}
0y¥1 o4’ "L j-12°6 a3

oL

else if m

)

then

{qu(Xk) A

[Q'Fl(xk’ 27) >
{qFl(fl(ZE)JZ'?) A
[QFl(fi(ZE)’Z7’28) 2

¢02(y1"'yﬁé’xl’""xj—l’z8’""ng)]}]}

else {q‘Fl(fl(ZE)’bQ) A

¢ (0¥ 3% sev 03X, 4525000 X n)]}]} .
0'2 1’ Ué 1 Jj-1""9 02

The construction of W is clearly lengthy but straightforward.

3. Modification of propositional terms

.We are going to allow general expressions in propositional terms
instead of simple terms and allow if then else as a logical comnective.
Thié means introducing procedure calls, the if then else construction
and a left to right evaluation rule for the generalized propositional
terms fmown as propositionalvexpressions). We shall give examples
of WU for conditiohal statements formed with such propositional

expressions. The formulae for while,statements_are similar.

i) o:- if [Pj(Fl(Xj)) A = Py (Fl(Xk)v)] then o, else o,

95

WO.:- ¢0.(Y1; --':Yo.g)le "-:Xo-n) =
{as (x) A
Fl J’
if P.(z;) then
lap () A
1
[QFl(JCK,Zg) 3
if - Pj(zg) then
¢0 ('yl... ci’xl"“’xcz'i)

1

else - (yi...y 23Xy eeesX)1}
—_— 02 1 oé 1 95

else B (¥yee oV (sXqens ,',)]}
— 0, 1 0’2‘ 1 95

1) oin 12 12 2y (k) then [R(Fy(x,)) v (5 (3 (1))

-‘elsevPJ. (if Pk(Xk) then b, else Xj)

then crl else 02’

W= ¢U(y1"' gra%qe e U") o
{a, (=) A
Fl i’
[QF (xi,zl) -
1
- if Pj(’zl) then
lap (x5) A

1
[QFl(XJ 2 Z2) =2

96

if Pv(z) then @ (¥q++ ¥ 19X eeeX _y)
k2-—-—cll O'll Gl

i&? {qFl(xk) A
[Q,Fl()LKJZB) o

if P (f (z5)) then §_ (yi .. ci’xl"'xqf)

else B (¥yee oY gsXq---X_n) 1313
oL "é L%
else if Pk(xk).gggg

if P,j(bl) then ¢c (yl....yci,xl... cIi,)

else ¢ (v. - 3K s X)
s 1 qé 1 qg

else if Pj(xj) then ¢0 (yl... qi’xl"'xﬁi)

-else¢ (yl--- ce.:x G")]}

L. Blocks

We allow ﬁlocks as a new type of statement.

A block_is a sequence of statements, preceded (optionally) by
local variable and procedure declarafions, The last statement in the

.sequence is null.

o e.g. begin
decl X .o X, 33

Erocedur F (Y e Y Y3

begin

end;
(statement);

' {statement) 3
mll

end
97

We geﬂeralize procedure declarations so that the& each consist of a
formal parameter list followed by a block.

Clearly'blocks and procedure declarations cén now be nested to
any depth, and the scope rules get more complicated. We still do not
allow reference to nbn—local variables in procedure bodies, so that
the variables in scope for any parﬁicular statement are simply all the
variables declared in enclosing blocks out.to the smallest encloéing'
pfocedure declaration {or the program itself} plus the formal parameters

and name {input variables} of this procedure {program}.

e.g. for program P(Xl);

begin
_d:e_c_]_.XE;
procedure Fl(X3)5
begin
decl th
procedure FE(X5);
begin
decl Xg3
0,3
003
begin
decl X ;
03
decl Xg3
o)
null
' end;
null
end;
- %3
null
end;
66;k

-begin
decl X
A°'7 H
null

93

end;
null
end;
og3
output (Xz)

end

we give the variables in scope (in correct order) for statements

of P as fol_lows:

Gl’ 02 : Fz, X5, X6;
03 : FE’ X5, X6’ X7;
O-J-F H Feg X5, X6, X7, X8§
05 : F2, X5, X6;
9¢ : Fl, X5, Xh;
07 : Fl, X5, Xh, X9;
68 : Xl’ Xz.

The formlae ﬁP are based on the fact that o¢" is the number

‘of variables in scope for ¢ . Therefore we have to redefine ¢! and o" :

ot (number of formal parameters of the smallest procedure

declaration enclosing o),
~and
¢" = 1+0'+ (number of local varisbles declared in blocks,

within this procedure declaration, enclosing o).

- 99

If o. is not enclosed by a procedure declaration, o' is the number
of input variables and ¢" = o'+ (number of local variables declared

in blocks enclosing o).

The modifications of the definitional axioms are then quite simple.

Tet o be the block

begin
decl X 503X 3
Bl} > Bj >
procedure .
o
°1
end

i.e., 0oy is the first statement and o, (i.e., null) is the last

statement, and let the successor of o be o We simply define

2 .

the successor of Gl to be Ty 5 and associate with ¢ +the axiom

WO':_ ¢0(yl’ AR TEES R 0") = ¢O-O(yl° s VgerXgs e s XnsBse e -B)
S,

j times
Note that o =o"+j , by definition)
0

For any statement o in ¢ ’which causes execution to leave ©
(i.e., o, is o) or is a jump statement), the axiom Wy will show
that.the.yalﬁes of the> Jj Ilocal variablés.are lost on l:aving g .

This is because for the statement cj that is reached, o¢" is at léast
J less than cg » and it.is the rightmost argument valueS'(correqunding

. to the local variables) that are dropped.

e.g. for the following fragment of a program

100

procedure Fl(Xa) 3

begin

some of the axioms are as follows:
Wy - P (790%qs%ps%55%),)
2 2
. ~¢q§(yl,xl,x2,x3,xu,ﬁ)

W t- ¢Gh(yl,xl,x2,x3,xh,x5) D
¢08Fyl’x1’xé’x5’xh)

D ¢65(yl,xl,x2,x5,xh,x5))
¢ol(3’1’x1’x2’x3)

WG6:- ¢G6(yl,xl,x2,x5,xh,x5))

¢0.7 (yl, Xl’ X2J XB} Xh)

(The procedure name F, corresponds

to Xq)

101

;5, 1Sjde-effects’

We'éllqw statements in proceauie bodies to use non-local variables,
i.e., the variables declared in blocks enclosing the procedure declaration,
and the formal parameter and procedure names of other procedure
declarations that enclose the one in question.

| This means that a procedure Fi is a function not just of n,
arguments, but of ni+-gi arguments, where 85 is the numberrof
non-local, oi *global'®, variables to which Fi has access. For any Fi 5
g; is a fixed number, namely the number of input variables plus the
number of variables and formal parameters (and procedure names) in
blocks and procedure declarations enclosing the declaration of Fi .

In fact there is a mapping of these g; global variables into the

integers 1 to g according to the order of their first occurrences

in parameter lists and variable declarations. A given variable is mappedb

jinto the SAME number by the appropriate orderings for all the procedures

that have this variable as a global. That is, we can assign eaéh
variable and procedure name a number, and whenever this vafiable or
procedure name is a global of.a pfocedure, its position in the ordering
of globals is just this number.

The effect of Fi is no longer limited to returning a single
vélue, but it may now change agy of the gi global variables.

We must therefore adjust the number of argument places
of the predicate symbols U and .QF. which have to describe the

' i i

+n, - ‘
Fo becomes g.+n, -ary and QF. becomes

effect of Fi F}
i i

+n +g.+1 -ary.
g;*nyte tl —ary

102

~

-

For ¢ ; We redefine o' and o" . If the smallest procedure

declaration encl_osing o 1is that of Fi 3 fhen we put o' = gi+ni .
Then, as before, o¢" = 1+0'+(number of variables declared in blocks
containing o , contained in the declaration of Fi) . If there is

no such procedure declaratior enclosing ¢ , then q" and o" are
not altered. In both cases §_ is o'+o" -ary.
| This definition of o" ensures that the number of variables that
can appear in ¢ is .c" » and the order of appearance of these variables
in parameter lists and declarations maps them into the integers 1 to o" .
The modifications to WP(k,Q,P) to deal with side effects are
as follows: |
a) The axioms W , are defined exactly as before (using the new
definitions of ‘o' and o") except for statements that include
prbcedure sym‘bols (procedure calls). The method of construction
of W . for these latter statements can easily be inferred from
‘the following example, which was used previously in the original
specification of W P
g:- xj 1= fl(Fl(Fe(Xi),Fe(Xj)),Fe(Xk)) .
Note that both g, and g, (for Fl and ~F2) must be
;gss +than or equal to or"' because of the ls_cope rules. We

assume J > g > 8y -

105

W-U:— ¢U(yl-”° c"xl""’xc") =

{an (X 5.00x 5%) A
F2 1 gy 1

[Q’F2(xl"'x 2,x 12]J.""’vlg2’zl))

{q (Vyqoeees Vo 5X.)} A : B
F2 11 g2 J , . .
[Q’FE(VZIJ.’ cees 1g2’xj’v2l’ . ..,v2g2, z2))

| {qFl(VEl.’ ...,v2g2,xg 41" ..xgl, Zs z2) A

Q. (vyosee- 1o Xy 38158V seeesVa 5%,) D
F el " Vg g1t Ry M1 P27 B 3g,7 "

{qF2<V3i: . -:V5g2: Xk) A
[QFQ(VBl’ . "Y5g2’xk’ URER .vh'gE, Z)—L))

¢02<yl’""yc’e’vhl’""vltg2’v5g2 ...v5g:L gt
?Cj_l’f1<z5:zh/:'--:x n)]}]}]}]}

The construction is lengthy but the ideas behind it are guite simple.
b) The construction of W, is unaffected.

-c) The construction of We is as follows: if 0, 1s the first
3 . .

statement on the body of F, , and 0y (i.e., null) is the last

statement, then

Wp i- {qF‘(yl---yg_Jrn_) -
1 1 1 1

B (yieeey sV Y. 2BsY coy B...B)
+ 2 H 2
9% "1 eyl e gi+1

i 80y
B (oY s X enaX) = (y ...y | sXo...x)1 .
o Wt Tor Ty Fen) 2 Ry e Vg g oy Xl
=g! =g .
(Note that g;tn, = ol =o!)

The reason why this construction of W, works is that if a

i .
"statement calls a procedure Fi » then the gi globals of Fi

10k

are exactly the first 8; variables for the statement in question

(by the property of the ordering, mentioned previously) .

6. Non-type procedures

We can now allow, as types of statement, procedures which do not
return values. Thé effect of these *non-type procedures! is purely

on their global variables. The differences in programs are

i) We distinguish between the declarations of the two types of procedure by
calling the non-type procedures routines. A routine Qeclaration is
simply

routine R.(X_ ...X,)3
=i\, "B,
{block);

i

ii) - In the body of a routine declaration, the name of the routine cannot
be used like a variable. (This will require slight, but trivial,

modifications of the definition of g; .)

iii) Routines are called by statements of the form

Ri(Tl-..Tni) s where Tl...Tni are expressions.

The modifications of the axioms are minor. As mentioned already, a
slight but obvious modification is needed in the definition of g » SO
that routine names are not counted as variables in the way the procedure
naﬁes are. Apart from this we need only consider the routine statements

themselves and the routine declarations:

a) We shall consider only a very elementary routine statemént. The

treatment when more complicated expressions are included is similar

105

(but more complicated).

Oz~ R_i(xa .;.Xa) and the successor of o is o

1 n.
1
WU:— ¢U(yl-o. G"Xl... U") D

{qRi(xl"'Xgi’Xa ceeX) A

L n:.L
[(XieeeX 43X ceeX sVaeeoV_) D
QR:.L 1 gi al Otni 1 gi

¢ ('y vos g3V V_ X geeae X n)]} .
02 1 02 1 g8 gi+l _02

b) If o, and o, are the first and last statements in the body

0] 1
of R, then
1

WR.:‘- {qR. (yl' "yg..*.n.)
1 1 i 1

o

B (yy-e-y sVq e oV, oy 2Be+-B)s -
Op "1 Tegtny Tl Tegtmy

¢. (y"oa- ,X +aeX ")D (y cocy ’X oo e X)} .
6y "L oyl oy R, Y1t Vg 1 gy

7. . Daba Types
The addition of data types to the language is more than a simple

modification of the computing system; it implies a partition of the

data space lJ] , and the existence of certain 'type-conversion' functions
which do not appear explicitly in programs. We will therefore start by
considering & .

8 is suitable for basing a mulbti-typed language‘ on if there are

i) . special subsets A_,A of]J] » possibly infinite in number,

l 2’.‘.‘

and not necessarily disjoint. Equivalently there are unary

106

relations .mp,m on |8| characterizing these subsets;

PYREL
and they correspond to unary predicate symbols in the basis

of & which we shall denote by Tl’Te“' .

ii) for each subset A, , a function V, : ls] - A;, such that for
all geA; \}ri(tE) =t . The corresponding function symbol

in the basis of & we shall denocte by hi .

iii) a special element from each subset Ai » corresponding to a constant

symbol in the basis of & which we shall denocte by 51 .

- This means that & is a model of the following axioms:

T, (0, ()

'4Ti(x) 5h,(x) = x

for all i such that Aig.|J| .

The sets Ai will be identified with the various types of data

manipulated by programs, e.g. integer, real, complex, etc. The specié,l
element from each set is the initial value assigned to variaﬁles of the |
corresponding type, and the function ﬂfi is a type-conversion function.
The latter will be applied during execution of programs to ensure that
variables of a given type only get assigned values of that 'bype,» and
fhat procedures get called only with appropriate types of arguments.
C’cher type conversions during the evaluatvion of expressions will

occur aubtomatically because the functions corr_es;ponding to function

" symbols in programs must be total on I&l . For example, if the subset

107

~.

AN of IJI consists of the integers, the function .corresponding to

the function sym;bol + may perfohn addition on AN » but must also

be defined for arguments of other types. Hence in specifying its

operation for other types of arguments we can in'tz;éduce any type conv/ersion
rules we wish. vWe have therefore shifted the bulk of the type conversion
into specification 'of d , and need not consider it further. |

The changes made -in programs by the addition of types is as follows:

i) When variables are declared, their type must be specified. This
is done using the_predica’ce symbols Ti , by replacing declarations
6f the form
decl X,Y,Z;
" by, for ekample-

Tl X3

— 1

ii) The types of formal parameters and input variables must be

declared similarly, and the type of result a pi'ocedure returns

must be specified. e.g.

a) instead of

procedure F; (Xl, Xps X5) H

we might have -
5 procedure Fl(T__)-l» Xl’_T_E_ XE’XB)
b) instead of

program P(X5, XS’XZL) ;

108

we might have
program P(T 5,T5 XS;T)_l_ Xl);
and c) instead of
routine Ri(X]_’XQ’XlO);
we might have
Eroced e R, (Tl l’Th X, 5 lO)’

(i;e., to conform With Algol notation we revert to using the

word procedure for routines, now that the declarations indicate no

value is returned.)

If Tp,Th,...

is apparent.

-~

The modifications of the axioms W, are again very simple.

The axioms for a given program are almost those that would be

- produced if the program were chariged slightly as follows.

i) Assignment statement

X, =7
d

" where X,j is declared of type Ti » 1s changed to

" Xy = hi('r) .

ii) Procedure or routine call

Fy (Tl. . .Tni)
where the formal parameters of Fi are declared of types

Ta ,...,Ta » 1is changed to
1 n,

Fi(h ('rl).,,h (t

o‘l K o‘n. oy

1

) -

are in fact 'integer', ‘real’ ... the similarity to Algol

The only other modifications of the axioms involves assigning

the correct types of initial values.

e.g. for T3 procedure Fi(TZ Xl’T3 XZ) 3

begin

_I;J: Xh’XS;

3

end

WF - includes the axiom

¢ (y 10y 3V s eesY _ 2BV ey 1B, ,B ’B))
9L gytns "L g D Tggtl TgytngTT1TLTR

and similarly for routines and blocks.

8. Boolean Procedures

In our treatment of data types we have been completely general, and
assumed no properties of the types of data considered. However, there

are some type of data which influence the syntax of programs, for

example, 'boolean' data. Boolean variables are considered to hold

*truth values', and it is desirable to allow statements of the form

X, :=
5 T

-where Xi " is a boolean variable and m is a propositional expression.

110

Using such variabies it is possible to declare procedures returﬁing

values of type 'boolean’, and it is desirable to allow such boolean

procedures to ‘be used in place of predicates in propositional expressions;
Clearly the values of boolean variables are not really truth andv

falsity, but some values that can be interpreted as truth and falsity.

ihei‘efore it |<9l includes a set of boolean values, e.g. AO s then |

there is a special relation X characterizing the ‘true! elements of AO .

The predicate symbol cotresponding to this relation we shall dencte

by .G . We shall also assume two s;éecial elements of AO » corresponding

to constants T and %, only’the first of which satisfies X . That .

is, & satisfies the axiom
Ty (T) A To(F) A &(T) A= &(F) .

If there is Such a data type .in d , then we can use boolean variables

and boolean procedures in the way mentioned, and also use the constants

T and ¥ and any boolean variable as propositional expressions (in
‘assignments to boolean variables, and in other propositional expressiens) .

The axioms W

p are then exactly as they would be if the program

were changed as follows.

i) Wherever an expression 7 1is used where a propositional expression
is appropriate (using the original definitions of expressions and

propositional expressions) T is replaced by G(t) .

ii) Wherever a propositional expression 7 is used where an expression

is appropriate, m is replaced by if w then T else & .

The program then conforms with the origina.l syntax, and WP can .

be constructed.

111

9. Arrays

Another type of data that influences the syn‘bax‘of programs is
arrays. IT g progr&n- contains a variable Xi whoée value is an
n-dimensional array, then we would like to allow expressions of the
form Xi['rl,...,'rn] , and statements of the form

Xi['rl,...,'rn] =T g 0

where Tl"'Tn+l

statements by showing that “bhey are simply shorthand forms of other

are expressions. We shall allow such expressions and

expressions and statements of types we have already considered.

The axioms ﬁP are then constructed from the fprogram with these
other expressions and statements replacing the array constructioﬁs.

| To represent these constructions as normal expressions and
statements we require the arrays ‘Eo be objects defined as follows.

We consider an n-dimensional array to be a family of data objects
indexed by certain n-tuples of othe:;' objects (for genei-ality we do not
assume the index-objects are integers). The simplest situation 'is where
the elements of the n-tuples are independent, i.e., the index set is the
cartesian product of n sets of data objects. Only this situation will

be considered here. Thus an n-—dimensionél array Eh with index set

B:LXBEX «ee X B consists of a family of objects {Eb ,b ...b }s
%D % %

bdieBi , i=21l...n .-

In n'c;nﬁal Algol programs, .Bl. --B are finite sets (of integers)
that are determined during the computation of the program (prior to
allocation of the array variable). If subsequently there is an atbempt
to use an .:'Lndex npt from le cee xBn then either the program fails,

o CeBe for exceeding array bounds, or perhaps scme conversion is made to

112

give an index within bounds, e.g. when a real number is used as an
index.. If we wish to keep B:L..’.Br1 as general sets of data objects,
it is difficﬁlt to incorporate the featurev of array bounds into the
language, and even harder to give a logical definition.

We are therefore going to assume that the sets B,...B are sets

of data types, e.g. Ay ...A7 . Then if there is an attempt to use an

. 1 n
index not from A XA X...XA , it is converted by using the
7y 7 4% ,
functions \Lry . ..\Lry .. Then, for example, an integer-index arrsy has
1 n

no bounds on the integers that can be used as indices.

We are alsb going to assume that all the objects in a given array
are of-one type. An array variable declaration is therefozg of the
form

Tpermay Xyl Ty Tl
_indicat:fmg the variable Xl is to take as .values fa.milieé of objects
from A, , and all the femilies will have index set A X By XA, -

Since arr;ays are data objects, we might consider the set of all
| arrays to form a data type Aa s With predicate symbol Ta . But
then TOt could be used in array d.eclarations‘, |

e.g. EM X2[Ta] ’
so that one index bf X2 would be X2 itseif. Such circularity will
lead to paradoxes. It can be removed by letting there be many types of
a.rray. For instance, the tyjpe of Xl above we could denote by
T‘(k,h, g 1) This type could then be used in other arfay declarations,
and no circularity would result.

e, . .y array X, |T., T .
g T(l’J)_____X 5['_‘]: gkﬁth:_]_-l_])

would be of type T ' namely a two-dimensional array

* (3 (51,8, 1), (£,9))

133

(of one-dimensional arrays) indexed by elements of Aj and by ”chree-—
dimensional arrays of elements of Ai ; indexed by elements of Ak 3
Ah @d Ag' . ‘

Such objects are difficult to implement or unders’cand:)-e/ and in
pracﬁice we would restrict ourselves to simple arrays, neither indexed.
by nor containing other arrays. However, we shall con”éinu,e for a while
10 consider the general case. |

For array objects ’t;o be used in programs as the values of array

variables, d must contain two functions

K T A X.oo XA XA - A
(71' . '7i) 71 7i_l (71‘ . '7]-_) 7]..
and
a, t A X...XA XA - A
(rpeee7)” 774 Vs (qeee?) T (rgee7y)
for each set A s corresponding to function symbols e
(7-4474) (7qeee72)
. 1 i _ 1 i
and a . :
(79+4475) |
These functions are defined as follows: for bJ,eAy- s J =21.a0i,
and FeA
(71"'7]'_)

K (boseeesb, ,E) =F
(71...7i) 1 -7 7 Toy..uby o

(i.e., the element of E indexed by (by;...,b, ;)) and

yled (b.yeeesb ,E) = Bt
.(71...7i) 1 i

¥

—/ although the type hierarchy of arrays is intriguingly similar to the
type hierarchy of computable functions of Scott [], especially
considering arrays as functions from index sets into elements of the
arrays. ‘ , .

11k

~
~.

where - E' is the family 6f objects (in Ay.) identical to & except -
. i ’

that element A;% ... is bi .
1 i-1

These are McCarthy's [12] state-vector functions, generalized to
an arbitrary number of dimensions of indices of arbitrary type. Using
these functions we can clearly express the constructs

‘Xj[Tl.;.Tn]ﬁ
and

Xj[T ...Tn] =T

1 n+l

as follows. For array variable X. , declared of type' T,: - 3
. J (71' . ‘7n+l)
Xj[Tl...Tn]
in some expression is shorthand for

'0(71' Teg) (hyl('rl), .- ”hyn(Tn)’XJ‘)

and statement

xﬁ[Tl""’Tn]_:= Toel

is shorthand for

X.

= g ' h (t.),...,h T _),X.) .
Xty) (55

Tnel
Hence for any program P we can construct ﬁP using these function

symbols C() and a

Yqoer?s (71...7i) : |
Once again we have defined a construct in the language by shifting

most of the task into the specification of 4 . Now if & has certain
siﬁple properties, and programs are restricted in certain ways it is

possible to give complete axioms [for the o and K(

(71' . '7i)
functions, so that the task of_specifying 4 simply involves finding

Yyeee?s)

.a model of these axioms I . Better still, if JO is & restricted

to the non-array data types, then we can &oérelatively deduce from

415

WP(k,Q,P),I‘ exactly the situations we can Jd-relatively deduce from
WP(k,QP) . So adding é.rra.ys to the language based on 3, simply mgéans
that T is added to the logical definition, and programs are converted

to use the ¢ and a functions explicitly.

710473 710073

The restrictions on & are:

i) The family of 6bjec‘bs in A7 , comprising the initial value
. i
' , of array variables of type T has all
6(71"'7i) 4 yp ("‘7i) ?
its elements equal to 57 .
i

73

..« cannot be

ii) The objects denoted by the constant symbols bl

arrays.

iij) The only functions in J mapping into arrays are the type change

functions ¥ and the functions « and
(71"'7i) . (

71"'7i)

“rgeeery)

The restrictions ii) and iii) on & imply that the only expressions

in programs that can have arrays as values are
a) Xj where Xj is an array variable,

* b) Fi('rl. “Tni). where F, is an array procedure,

and c) Xk['rl...'rn] where X, 1is an array array;

k
and in all cases the type of array produced is Jnown from the declarations.

Tt is therefore possible to require the folldwing restrictions on programs:

iv) In expressions of the form
fi('rl...'rn) s

none of the expressions T... .7, @are array valued.

1
"~ v) In expressions of the form

Fi('rl. . .'rni) s

vi)

vii)

viii)

ix)

the j-th formal parameter of Fi is declared to be an array
of a certain type if and only if the expression Tj has as

value an array of this type.

In statements of the form
X, =171
J ,

T is an expression whose value is an array of a certain type

if and only if Xj is declared to be an array variable of this

type.

‘No array variable can be declared to have arrays as either

indices or elements, i.e., no higher type arrays.
Input variableé cannot be arrays.

No predicate symbol in a program is applied to an expression

that has an array as value.

These restrictions ensure that in the computations of programs,

no type-conversion is performed from or into arrays. Therefore the

functions h

Then,

need not be introduced when constructing W .
(7++73) o

in the symbolic computation performed by Ji—relative deduction from

Wé(k,QP) , the terms represemting array and non-array data objects will

be of certain forms, as defined below.

A simple-type term is one of the following forms

b.
* simple type constants

. B.

ii).

1

ki inpﬁt value

117

i‘i('rl. . .'rn)

iii where . 1T " are simple-type terms.
h (T....T_) 1 n
1Yl n
iV) C(s) (h (T), .o ,hyi-l('ri_l),'r)
vhere Tqe-eT;_q aTE simple-type terms and T is &
T -term.
(71' . ’71)

Simple-'type terms denote non-array objects. A simple-type term that does

not contain c (symbols is called a non-array term.

7yeeo73)

4 7 -term is one of the following forms:
(71. . .71)—— :

array type constant
Plyyoeny;) BFFEY Type constan

ii) a.(yl. . ‘7j__) (hyl(Tl)’ .. "h')'i(Ti)’T)

where Ty-eT, are simple~type terms and T is a T(

T ~terms denote array objects of type T
(79++74) ¥ 05d o RS Ry ey

Restriction ix) implies that in %—rela‘bive deduction from WP(k,QP)

we need only know the truth or falsity of predicates applied to

simple-type terms. Wé shall give a set of axioms I’ such that fqr every

simple t&;pe term T we can (JO i—rela‘bively) deduce from I’ a formula

T =1' where T' is some non-array term denoting the same value as 4r‘ .

Sipce non-array terms are constructed from the basis symbols of :90

(8 restricted to non-array data objects), then we can deducé all situations

from W (k,Q),I' relative to Joi.
' is therefore the required set of axioms describing the addition

of arrays to the lahguage based on ‘90 .

118

| The axioms I' are: | fo;‘éll Yyee?3 .s;‘b.
'A71,“"A.7i c |9 »
I: 'rl;éTJ'_V...\/_'ri_l;é'r:!L_lD
0(71‘ . '71) (-tl, .o "Ti-l’a(yl. . .71) ('ri, .. "T:"L-l’Ti’T))

= c(71' . .71) ('rl, .. .,-ri_l,'r) .

c(71' . '71) ('rl, .. "Ti—l’a(yl- . ‘7;1) (Tl,- .- .,'ri_l,'ri,-r)) =T,

I1:

II1: o (ToseeesT, 1B) =B
(71...71) 1 i-1 (71...71) 73

where Tl,-ri,'re,'ré,...,'ri are simple-type terms and T 1is a
T ~term.
(71' hd '71)
These axioms are simply generalizations of those for MeCarthy's
¢ and a functions.
It is easy to prove the following property of I' by induction

on T .

Completeness of T :

For all simple-type terms T , and non-array terms T' :

£
d .
-~ ok : .
AREERR IR

Hence I' can be used in the desired way to add arrays to structure '90 .

10. Jumps out of procedure bodies

This final exténsion of the Simple Language is also the most
difficult to incorporate into the logical definitioﬁ.

We allow the labels in jump statements within procedure bodies to
refer to stafements in blocks enclosing the procedure declarations.
The variables in scope for these latter statements will be included
- in the globals of the Jjump Stateménts. In:fact, if statement o is

the destination of jump statement o, , then the variables in scope

1

for o will be exactly the first o" of the ci globals of oy -

Therefore, at first sight, it appears that the formula WU s
1
for the jump statement, '

iae-’ ¢ (y ;--y ',X “en ")D
o 1 o1 1 o’

¢o—(yl' b o—t’le o . 0'")

7

will already adequately deal with such jumps out of procedures.

However, variables y. ...y, in the first part of W represent
1 91 oq
the values of the globals and actual parameters when the smallest procedure

enclbsing 0, Wwas last called (we shall call these the fcalled-values'

of o4). Since o is not within this procedure, Ve Vg do not

represent the called values for the subsequent computation of o .

Tﬁerefore Wbl does not follow the computation of cl in the required Way.
Now the called values of a statement do not affect the computation

of the statement; they are only used in the logical'definition where they

.are merely passed on from one statement to the next until the computatioh

of the procedure is completed. In a similar way, W couid be modified

| | 1
- to cope with jumps out of procedures if for each statement o, there were

120

. o) . S
another set of cri values, taken from variable values at previous

points in the compufation, which we shall call the 'historical~values':
of the stat'en.ient. These values are to be passed oﬁ (by the formulae) |
from statement to statement until some jump statement 9 is reached.
At this point we would reqﬁiré that the historical valﬁes contain

 the called values of destination o . In fact, if the first o' of

‘the historical values of 0, are the called values of 0 we might

1

define W to be
9

B (W oo W 0y YaeeaV ysXqeeeX) DB (WyeeaW_ %X 00X) o
99 1 oy 1 o1 1 o7 o'l ol o

(=] R
However, o itself will have © historical values which Wcr
' 1
"must supply from the historical values of- oy - So if :
i) the first o historical values of crl are the historical values

of o, and
ii) the next o' historical values are the called values of ¢

we can define W to be
9

B (WyeeaW gy FqeesTogsXaessX y) D
O‘l 1 o 1 O’l 1 O‘l

D AW, ee W gsW O ces,W Ko esoX
¢°(1 ®’ 0 +17 " 7 e%+0t’ L cr")

In fact it is possible to find historical values with just the
properties mentioned.

If the smallest procedure declaration enclosing a statement ié
for procedure Fi s> Tthen we say that the sfatement is at the top level
of Fi‘. We stipulate that all statements at the top‘level of -Fi

" have the same historical values (because we assume that from any such

121

statement it is possible to get to any of the jump statements that jump
out of F,).
1 -

With each procedure F, we associate the set of statements {Zi}
which is the union of
i) The set of all statements outside F, that are the destinations

of statements within Fi .
ii) {Ej} for all procedures Fj called within F, that are not

Vdeclared within Ei .

Now, if Fj is the smallest jrocedure containing a statement in
{zi} > then it immediately follows that the historical and called values
of the statements at the top level of Fj contain just the historical
“and called values of statements in {zi} (any statement in {Ei}
- oubside Fj must be in {Zj}). That is, the historical values of
stgtements at the top level of Fi are just the historical and called
values of statements at the top level of Fj » Where Fj is the sméllest
procedure containing a statement in {Zi} . (Thié relation between
F, end F, will be denoted by R(F;,F,) .)

This is sufficient to specify the mumber o of historical values
for any statement ¢ . In addition, it implies that the historical

values of o (at the top level of F can be ordered as follows:

»

the historical values of statements at top level of Fh (in

order) followed by the called values of statements at top level

-

of Fh)

vhere R(F,F,) .
(o]

, is in _{Zk} ; the first o, historical values of o

 are the historical values Qf c

Then if o

1 and the next qi historical values

of @ are the called values of d

1°

122

~

This property of the-ordering is -just what we néedAto modify the
- Jogical definition. .
We increase the argument places of the various predicate symbols
' as follows: |

For statement o , ¢c isa o +c;_+ o" -ary pr.edicate symbol.
For pré&edure Fi , we define a number e; so that e, = o° for any
statement» ¢ at the top level of F; . Then U is a
ei+gi+ni -ary predicate symbol. As before, QF. lis a gifni+gi+l -a?& :
predicate symbol. '

We then modify the formulae W& and WF as follows:
: i

i) If o is a jump out of a procedure, to statement ci , then

WO_:" ¢U(Wl...w&o,,yl..‘ O_I,Xl.-o 0_"))

¢ (W -onWO,WO ,---,WO ',X e ")
,Ul 1 0y cl+l clfcl 1 Gl

ii) For other statements, W ; is modified by

a) adding variable symbols Wi...W&o onto all subformulae of
i
the form
¢c.(tl"'tc£’Tl"’Tc?)
i i i

giving

¢U.(Wl;..wbg,tl...tc,,fl...TG") 3
i i i i

b) adding to all subformulae of the form

qF.(Tl...T
J .

)
tn,
gJ d

123

the first e variable symbols in the list

ch . .Wo'oyl. . gt

giving either
qF.(Wi"'We.’Tl'"Tg.+n.)
dJ dJ d d
or
¥

q_FJ.(Wloa'WO_O ,yl... G',Tl...Tg,+n_ .

iii) If o, and o, (i.e., null) are the first and last statement
in F. , then
l .
Wo - {qu(Wi"°we sYyeee¥ .+n.):3

i i 85 i

¢ (w -‘--Wo:y-”y PR Y - P 2eeesyY
O L og L gty ttl e T g g;*n

B (Wi Wo,y ...& 2K oo X) D
fo‘l 1 gy l 0’1 1 0‘:L

QF.(yl"’yg.+n.’x1"'xg.+1)}
i _ i i i
= o = ° = | J— t
(e1 0p =0, end gsm, =0} =0 .)

S

The construction of W_ should become clear from the following

P
ekample,(fbr simplicity we have dropped the data types).

% ~ : :
) If o —-is at the top level of the smallest procedure enclosing a

statement in {zj} then e ;:Gp'+6' » otherwise ejig d; .

124

program P(X_.'L, X5 X5) 3

begin
et 5, 75
procedure F6(X7’X8);
begin
decl Xg3
_'Qbrocedure Flo(}liu,xlgh
begin
03
Og ~mmm=m=- Fio = Fg(XpXyp)s
0'3 -------- goto L;
g1+ -------- éo’co M;
. | :
‘05 -------- gul.l
end;

125

Here
{26} = {611’612}
(230} = (5520933 U {5} = {0,01,01,)

Hence

-

The various formulae are as follows:

Wp:- {ngyl,ye:y5) = ¢Ullo(yl,ye,yyyl,ye,yyﬁ;ﬁ),
¢Gl3(yl.:y'2,y5,xl, ceea %) D QoYY Vaa Xy X))]
Vo i o (pTpvpms e %)
o fog, (722 9r755%, X) A
[Q‘Fé(xi’ .. "XS’XlL’Xe’Vl’ .o .,vs, Zl) >
¢"'1l2 (315300 ¥3 V15235 V3 v, v5) 1

W

F6:- {qF6(Wl’W2’W3’yl’ .o -,y7) D

¢0-6(Wi:W2,W5: TR -,y7, SRR LT B;y6:y7)3) ¥
¢0- (Wl’WQ’WB’ Yq2e- -:y7:xl) ve -:X9) D,

9
QF6(yl, . .,y,?’xl. . -X6)}

126

~.

Vo £ Fo (s, ooy, i)

{qFlo(Wl’WE’W5’yl’ seerTgrXys e "X9’X)+’X5) A

[Q,Flo(xl, .. .,x9,x AR .v9, zl) -

¢68(wl,w2?w5,yl, .. .,y,(,v 5o .,vs, Zys e .,v9) 1}

r

,X ,...,x)

¢ (W5 2:W5:Yl:---:y7’xl---x9) s ¢ (3

W 1= gy (Wes ey Wy sFaseesYaa) D
P10 P10 10771 1

¢61(Wl’ X .’WlO’yl’ .o "yll’yl’) -’yg’ B’le’yll))
¢c (Wl. YL STRRETS ARFEIPRE "XlE))

5

QFlO(yl" .. "yll’xl’ .o "XlO) }

W - ¢c (Wl, seay lo,yl,o- ’yJ_l’Xl’ ..,Xle) oD

{qF (Wl’ 5:X ’ '“’XB’XY’XlQ) A
[Q,F-6(xl, Pee s X XKy g Uy e e es Vi zl) -

¢05(W1"' s lO’yl"”’,yll’vl’“"VS’X6'“X9’Zl’X1_1’X12)]}

¢03(Wl’ RV Y ZFERRVS SEPE PR "Xl2) -

¢07(W15W2,W3,W1l.’ .o -,Wlo’xl, o -’X9)

-. ¢0')+(wl’ o ey lo’yl...y]_]_’ -Q’Xle) oD -

X

5)

B (W Wy Wy Ky ee
0,4 L2751

127

Conclusion

We have now déveloped a logical definition of a language with
many of the features 6f Algol. This logical definition can also be used
#s a formalizagtion of partial correctness, and thgrefore it can be used
to formalize many properties bf Algol programs. The definition has
not yet been put to this use for an& programs of interest, and it
remains to be seen whether it can be used in practice for this purpose.
The axioms WP(k,QP) produced for a program of any complexity will be
.numerous and complicated, but if the program itself forms self-contained
sections, (e.g. procedures) then the axioms also will form self-contained
groups, which can be used to prove properties of the sections. With
-practice, the definition could become a useful tool for practical program

verification.

128

Acknowledgmeﬁts

I am indebted to Dr. J. J. Florentin, of Imperial College, for
introducing me to the subject of language definition, and for
-supervising the work preSentea here. His interest and encouragement

were invaluable.

I would also like to thank Mr. C. D. Allen, of IBM Hursley, for

many stimulating discussions.
Finally, T would like to thank Mrs. Phyllis Winkler, for

magniﬁicently accomplishing the unenviable task of typing this thesis.

129

(&N

(2]

(31

(k]

5]

[6].

[7]

[8]

9]

[10]

[11]

[12]

References

E. A. Asheroft. !'Funcbional Programs as Axiomatic Theories.*
' C.C.A. Report No. 9. Centre for C.ompu'bing and Automation,
Imperial College, London. '

E. A. Ashcroft and Z. Manna. ‘!Formalization of Proper_ties of
Parallel Programs.' Artificial Intelligence Memo 110.
Stanford University. _ ' .

R. M. Burstall. ‘'Formal description of program structure and
semantics in first order logic.' Machine Intelligence 5.
Edinburgh University Press. 1969.

R. W. Floyd. ' 'Assigning Meaning to Programs.' ZProc. of Symposia
in Applied Math., Am. Math. Soc, 19 (1967), 19-32.

P. J. Landin. 'A Correspondence Between ALGOL and Church's
Lambda-Notation.' Comm. A.C.M., Vol. 8. Feb-March 1965.

P. Lucas, et al. ‘'Informal Introduction to the Abstract Sy-n‘cax
and Interpretation of PL/I.' IBM Technical Report TR.25.083.

Z. Manna. ‘'Termination of Algorithms.' Ph.D. Thesis. Carnegie

Mellon University. Pittsburgh.

'The Correctness of Programs.' Journal of Computer and
System Sciences, Vol. 3. May 1969.
'The Correctness of Non-deterministic Programs.'

Artificial Intelligence Journal. Vol. 1, No. 1.

*Mathematical Theofy of Partial Correctness.' To appear
in Symposium on the Semantics of Algorithmic Languages.
.(E. Engeler, Ed.) Springer Verlag. 1970.

and A. Poueli. 'Formalization of Proper‘bies of Functional
Programs.!' To appear in J.A.C.M. (July 1970)

J. McCarthy. ‘A Formal Description of a Subset of Algol.! Formal

language Description Languages for Computer Programming. 1966.

130

[13] . .and J. A: Painter. ‘Correctness of a Compiler for
Arithmetic Expressions.! Proc. of a Symposium in Applied
Math. Vol. 19 - Math. Aspects of Computer Science. 1967.

[14] J. A. Painter. ‘'Semantic Correctness of a Compiler for an
Algol-like Language.' Ph.D. Thesis. Artificial Intelligence
Memo 4h. Stanford University. ' :

[15] D. Park. 'Fi@oin‘t Induction and Proofs of Program Properties.!
Machine Intelligence 5. Edinburgh University Press. 1969.

[16] J. R. Schoenfield. Mathematical Logic. Addison-Wesley Co. 1967.

[17] D. Scott. 'A Type-theoretical Alternative o CUCH,TSWIM,OWHY.'
Unpublished paper. '

[18] N 'Models of the X-calculus.' Unpublished paper.

[19] -A. Tarski. ‘A Lattice-theoretical Fixpoint Theorem and its
Applications.' Pacific Journal of Maths. 5. 285-309.

{

131

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131

