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Abstract: 

A definition of the semantics of a programming language is considered 

to be some method of formally describing the computations of programs 

written in that language. For such a definition to be more satisfactory 

than an actual interpreter or compiler, its formal aspects must give 

it certain advantages such as generality or descriptive ability. In 

addition, it is desirable that formal proofs of correctness of compilers 

or properties of programs be possible using such a definition. 

New techniques for proving properties of programs have been 

developed from initial work by Floyd. These techniques relate programs 

to formulae of mathematical logic. 

To allow such proof techniques to be used directly from the formal 

definitions of programs, we consider defining the semantics of programs 

by formulae of mathematical logic. We develop criteria which can 

reasonably be said to ensure that such definitions are intuitively 

,adequate'. 

It is then shown that such adequate definitions are closely related 

to the formulae used in the logical proof techniques. Such definitions 

can therefore be used to prove various properties of the programs they 

define. 

Two examples are given of such definitions. Firstly for a functional 

language, like a restricted form of Lisp. Secondly for a large subset of 

Algol 60. With this latter definition it may be possible to prove 

properties of practical Algol programs. 
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Section 1: INTRODUCTION 

The usual method of specifying the semantics of a high-level 

programming language is by a programming manual. However, in cases 

where detailed knowledge is required of the execution of involved or 

unusual programs, such manuals are frequently inadequate. The classic 

example of such a situation is of course when a compiler is to be written 

for the language in question. So it was not long after the development 

of the first high level languages that the need was felt for some more 

rigorous description of the semantics of programming languages than 

could be supplied by natural language texts. 

One of the first steps in this direction was made by McCarthy [12] 

with his definition of Micro-Algol. The definition took the form of 

an abstract interpreter, and most of the subsequent work in language 

definition has gone into the development of interpreter definitions, 

for example, the PL/I definition [ 6]. Thus these definitions are able, 

in principle, to answer the question: "What is the result of executing 

this program for these input data?" Since this question can also be 

answered by actual interpreters (or compilers), the abstract interpreters 

must have other useful properties such as generality, and descriptive 

ability, and be formal enough to allow proofs of properties of programs 

or of the correctness of compilers. 

However, even for the very simple Algol-like languages, such 

interpreter definitions did not lend themselves to simple proofs of the 

correctness of compilers [13, 14] or of properties of programs. 



An alternative approach was that of Landin [5 ] who took A.-calculus 

as a model programming language, and defined other languages by mapping 

their programs into X-expressions. This could be called a compiler 

definition approach. In common with all such approaches, it suffers 

from the drawback that the intuitive meaning of the more complicated 

constructions in the original language is obscured by the translation, 

or else such constructions are just not allowed. However, with recent 

work on models of X-calculus by Scott [17, 18], it is anticipated that there 

will be renewed interest in compiler definitions. 

A third approach was proposed by Floyd [4], namely that of a 

definition using logic. In that paper he presented a method of proving 

the partial correctness (q.v) of a program based on the 'verification 

conditions' of the various statements in the program. The rules for 

obtaining the verification conditions for the various statements 

constituted a 'semantic definition' of the programming language; and it 

was desirable that the verification conditions so obtained had certain 

properties ('consistency' and 'completeness') related to the usual 

intuitive notions about the execution of the statements concerned. 

This approach thus gives a definition specifically designed for proving 

properties of programs. 

The method of proving partial correctness was taken up, and made 

more formal, by Manna [7 ] but the verification conditions, now expressed 

as a formula in predicate calculus, were no longer considered as embodying 

the semantics of the program. Instead the formula was shown to be related 

to an interpreter definition of the semantics of the program. As the 

formalization of partial correctness has been extended to more complicated 

systems [8, 9, 11, 2] it has become more and more difficult to give an 
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interpreter definition for each system and rigorously establish its 

relationship with the predicate calculus formula. Instead an intuitive 

description of the semantics has been given, with an informal argument 

to exhibit the desired relationship to the predicate calculus formula. 

However, the last step, of calling the formula itself a semantic 

definition, has not been made, even though it has been shown by Manna 

[10] that a formula formalizing partial correctness of programs can 

be used to formalize all the usual properties of programs such as 

termination, equivalence, etc. 

As a variant of the logical approach, Burstall [3] has recently 

given a description of the semantics of a large subset of Algol in 

first order logic. From the formula embodying the semantics one can 

derive, using the rules of logic, a sequence of sentences describing 

the computation of the program. As a definition of semantics this is 

intuitively more appealing than a set of verification conditions, simply 

because of its similarity to an interpreter definition. It also has 

the advantages of descriptive ability and it can be used to prove 

properties of programs. 

In this work we develop the notion of intuitively 'adequate' 

logical definitions of programs and languages, namely those of an 

interpreter-like nature. Burstall's definition will be seen to be 

'adequate' in this sense. We also show that logical program definitions 

are closely related to Manna's formalizations of partial correctness 

and therefore can be used to prove properties of programs. In addition, 

for the type of langulges considered by Floyd, we show that language 

definitions by complete and consistent verification conditions are 

adequate logical language definitions in our sense. 
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We then give examples of language definitions, first for a 

functional language, and then for a large subset of Algol. The 

definitions in both cases can be used'to obtain formalizations of 

partial correctness of programs. 

Throughout this work we assume some familiarity with elementary 

first order mathematical logic. Standard notation is used for logical 

connectives, quantifiers, etc. as in, for example, 'Introduction to 

Mathematical Logic' by E. Mendelson. 
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Section 2: LOGICAL PROGRAM DEFINITION 

Adequacy of a logical program definition 

It seems clear that for a definition of semantics of a program to be 

generally acceptable it must be an interpreter; for any given input, the 

definition must specify the result, if any, of executing the program. 

Moreover, it must do this in as mechanical a way as possible. For a 

definition written in first-order logic, this suggests that the definition 

should take the form of a set of axioms, and that the result of the 

program should be derivable from the axioms in as mechanical a manner 

as possible, e.g. using a mechanical theorem prover. 

The combination of definitional axioms + theorem-prover will then 

act like program + interpreter. The main difference will be that the 

theorem-prover will 'compute' with expressions formed from symbols representing 

the constants and primitive operations of the program, whereas the interpreter 

deals with real data. Since the interpreter must make decisions based 

on its data at various points in the computation using the primitive 

tests of the program, the same feature will be necessary in the theorem- 

prover. To give the theorem-prover this ability, it could be given 

additional axioms that specify the domain of data, and the primitive 

operations and tests, sufficiently for it to be able to deduce the truth 

or falsity of any test when applied to symbolic expressions representing 

data objects. Alternatively, it could be considered to be interactive, 

interrogating the 'outside world' whenever it needed to make such a test. 
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n+m 
SI 	, called the graph of P 

(tl—tm) E  

The relation Aps  on 

the relation defined by P , i.e., for 

is simply 

In either case, if we consider the domain of data and the primitive 

tests and operations on it as a 'relational structure', j-J say, then 

this method of deduction we will call 4-relative deduction, and denote 

it by F . For proper axioms K 
	

F denotes 4-relative deduction 
K 

from K . 

For any term is  constructed from symbols representing the 

constants and basic operations of a program (called a constant term), 

the structure 6 will determine an associated value in IJI (the 

domain of 4) , which will be denoted by J[Tc] 

With this notation, we can state the requirements for a semantic 

definition to be intuitively adequate. 

A program P , which requires values for n inputs and gives m 

output values, can be considered as a partial function P6: 1c9I n 	Ic9I m  

i.e., for inputs 	= 	€1,9111 	P (0 denotes the output 

values, if any. 

20,94) = 5 a App,0 

The aim of the axioms + theorem-prover (T.P) system is simply to 

specify this relation Ap  . 

77 
Most of the constants, functions and tests in 4 will correspond to 
symbols occurring in programs. However, some may be implicit in 
programs, such as the operations for updating and referencing arrays. 
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To supply input values k 1,91 to the axioms + T.P system, there 

are constants (k1...kn) = k in the definitional axioms, and we expand 

the structure J to a structure Sk 
. That is, constants k are 

assigned values E by this expanded structure. 

In order to indicate when the result P (E) of the program has been 

derived, the axioms contain a distinguished n+m-ary predicate symbol, 

0 say, which is not interpreted by J . 

For clarity, a set of axioms W , constituting a definition of P
s 

will therefore be written as Wp(k
' 

!/ 
 

We can now state the following definition: 

A) The logical program definition condition 

Wp  (k 0) is an adequate logical definition of P if it 

satisfies the following condition: 

VE 	n , Vg e ISIm  

Ap  (Elt) if and only if 

there exist constant terms (Tr • • •„1-- 
	

T 

s.t. S[T) = 	and. 
e9 k 	0(k,T)  
W (k 0) 
P 

   

i.e., 0(k,T) is derived exactly in the case where T denotes the 

result of the program for input 	• 

We shall call the symbols denoting the constants and basic operations 
and tests of P the 'formal basis' of P . Note that 9 is a 

structure just for the formal basis symbols. In general, apart from 
the formal basis symbols, the extra constants k and the predicate 0 
W (0) may contain other constant, function and predicate symbols, 

and variables. 
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We are going to relate adequate logical definitions to formalizations 

of partial correctness (Manna) and to consistent and complete 'verification 

conditions' (Floyd). To do this, the concept of J-relative deduction must 

be related to S-relative validity. This is the purpose of the following 

subsection. 

A diversion into model theory 

As for programs, we shall call the constant, function and predicate 

symbols, to which a structure J assigns meaning, the formal basis of J 

Any closed well-formed-formula (first-order), constructed from the formal 

basis symbols together with individual variables, will be true or 

false for S in the usual way. 

Any w.f.f. r constructed from symbols of some basis, together 

with variables, is said to be valid, denoted r r , if the closure 

of r is true in all structures for the basis symbols. 

If a wff r contains 'extra' symbols (El not in the formal basis 

of some structure J , then an 'expansion of S to include (Ej ' is a 

structure identical to J except that it also assigns meaning to the 

extra symbols in 
,c9 
1=1" , if its closure is true in all expansions of J to include 

Analogously to Coders Completeness Theorem, we would like to show that 

kr 4,,  F r . 

!/ Some familiarity with first order logic and elementary model theory 
is assumed. The notation used in this subsection is that used in 
Schoenfield [6 I. 
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Unfortunately this does not hold for general r . However, it 

will be shown below that it holds for most r of interest. 

For any structure J with formal basis L (of constant, function, 

predicate symbols, and equality) we can define a substructure 3 such 

that 151 is the smallest subset of le91 containing the elements 

corresponding to the constants of L , which is closed under the operations 

corresponding to the functions of L . That is, 131  contains just those 

elements of 1,91 that correspond to terms in the formal basis symbols. 

The restricted form of the completeness theorem for S-relative 

logic can be stated. 

31-relative Completeness Theorem 

For any existential formula—/
*/  

A containing only predicate symbols  

that are not in the formal basis of e9 

12-9  A 0 - I=` A 
	

• 

Proof. 

=> Let 9 be over the formal basis L , and the extra predicate 

symbols in A be (R) . Denote by D'(31) the set of variable free 

	

formulas in L that are true in 	. 

Clearly from the intuitive description of J-relative deduction 

given previously, 
• 

An existential formula is a closed formula that contains only 
existential quantifiers when put in prenex normal form. 
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A a  + A 
Di(J) 

‘g, k A by Godel Completeness Theorem. 
W(J) 

Since every expansion of 5 to include 	must be a model of 

D t  G9) , trivially 

J 
A 
	1.- A . 

<= 	With the notation of the first half of the proof, assume 

F A  4 I=A 
DT (0) 

Then there is some structure 	which is a model of Ir(J) 

but in which A is not true. Since A is closed, and existential, 

the universal—' formula 	A is true in C, . 

We shall show that the substructure 	of C, is isomorphic to 

an expansion of 3 , and hence contradicts the above assumption. First 

we define a bijective mapping 0: 1,1 	. By definition, every 

element i of 1c1 isthevalueinC,ofsometerm.r.constructed 

f 	 also constructed 1 

from the basis symbols of 0 , since we have introduced no extra function 

symbols or constants. 

• We define 0(i) = 	for all i E 1C1  . Now for elements 

il'i2 of  lal 

0(1]) = 0(12) 	Ti = T. 	is a formula in D'(0)] 
12 

i1 = i2 

mapping 0 is injective. 
... 

2(-/ A universal formula is closed. 
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Since every element of 101 is the value in s of some term 

constructed from the basis syMbols„ the mapping 0 is surjective. 

Hence 

i) 	0 is bijective. 

It remains to check that the structure on ICI is the same as an 

expansion of the structure on 101 . 

For n-ary function symbol f in the formal basis of 0 , 

let f, and f denote the corresponding functions in 0 and e9 

Then for elements i
1ncle!;1 , corresponding to terms 	. ...I . 

1
1n 

0(fo(i,...,ii )) = co(C4 f(Ti  
n 	1 	n 

= c9[f(T 	)] 

1 

= f19(0(i1),...,0(in)) 

For all function symbols f in the formal basis of a." 

and elements 	of P.7.,1 

0(i;5(i1,—,in)) = f5(0(il),—,0(in)) • 

Then for every n-ary predicate symbol p in the formal basis of e9 
• 

(i.e., not.  in DR1) 

47> [P(T• ;•• 	
- ) 
	is 3.1  n 

in D' (e9)] 

ps(0(ii) , • • • ,0(in) 	• 



Also for every n-ary predicate symbol p in f1,1 we expand 3 

(to 3') to include [R} in such a way that 

• • •,in) <=> pc-9, (gia.), • • •,93(in)) 

iii) For every predicate symbol p in the formal basis of 

Pc;(13., • • • in) 4*  Ps-i 	- • •,0(in)) 

by i) ii) and iii) C. is isomorphic to an expansion of 3 . 

Now by the Los'-Tarki theorem(8dhOenfield, § 5.2), every universal 

formula that is true in some structure C. is true in all substructures

of C. / 

-I A is true in C and,by the isomorphism, also in some 

expansion of 3 . But by assumption, A is true in all 

expansions of 3 . 

:.Contradiction. 

Q.E.D. 

The following corollary is obvious. 

Corollary. If K is a universal formula, and A is an existential 

formula and both contain only predicate symbols that are not basis 

symbols of „9 : 

• 

csi 	,c9 
A 	A 

K 	K 

With this result we can now relate logical program definitions to 

formalizations of partial correctness. 

*/ 
-J A non-universal formula, e.g. 5[xA(x) may be true in C. by virtue 

of some element of m that is not in w . 



The relationship between logical program definitions and formalizations  

of partial correctness. 

Partial correctness  

For a given relation i  between inputs and outputs, a program is 

said to be partially correct with respect to (w.r.t.). It  if, for all 

terminating computations, the inputs and corresponding outputs satisfy *. 

More formally, for program Ps  as before, with input Elc.91n  

and relation * on IS1n+m  • 

P (0 is partially correct w.r.t. * if and only if 

vt€1.91m :tApc9(,t) 	 • 

Let U (k,9) be a (second-order) formula with n+m -ary predicate 

*/ 
symbol 9 and constants (k1...kn)= k being the only free -J symbols 

not included in the formal basis of S . U (k,G) is said to formalize 

partial correctness of 
PS 

if for all relations * on IJI
n+m and all 

inputs teISIn  : 

U
p
(k9) true in sk‘GV a P 

 

is partially correct w.r.t. 

Vt€14111 	V4r on Isin+m 

  

UP 	ke (k G) true in St*  a vt I Im: [A c9( ,t) a *a,t)] • 

2Y As a second-order formula, Up(k,9) may contain bound occurrences 

of predicate symbols not included in the formal basis of J 

II/ Note that U must formalize the partial correctness of P without 
introducing any new sorts of data such as 'stacks' or 'states'; only 
structure 61 is used. 



It has been shown by Manna [10] that such a formula U can be 

used to formalize all the regularly observed properties of programs: 

correctness, termination, equivalence, etc. 

During the computation of Pc9(0 the only elements of 101 

that can be calculated, and thus affect the computation, are those 

corresponding to terms constructed from the basis symbols of 0 and k . 

Therefore, if we consider the substructure St  : the computation of P 

on substructure t.9t  is identical to the computation on 0 , and 

therefore P--() = P 	. 

k 

Hence if IT represents the relation * restricted to 

then 

P C9  is partially correct w.r.t. * 

P--(0 is partially correct w.r.t. 	. 
cSit  

An equivalent condition for UP  0) to be a formalization of 

partial correctness of P is: 

VtEISI and V' on 

UP' 
(k 9) true in k 9 	Vt€ISTI m : [App/t) *(t,t)] • 

17 
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Logical program definition  

Let (first-order) formula Wp(k„93) be an adequate logical 

definition of P ; then WP(k10) satisfies condition A) which we 

repeat below. 

) 
	

nele 

	

Ap (,t) a 3z 	"I'm)  

s.t. S(T) t and 	
WP(k19) 

, 	
, 0(k)T) 

Since W (k,93) satisfies A) if and only if the closure of W (k,O) satisfies 

A), we can assume in the rest of this section that Wp(k,O) is closed. 

As for partial correctness, AP  (,g) can only be true for 

and cg[T] = t for constant terms T implies teleZlin. Therefore, 

we can equivalently restrict t to 1ST. Also if the logical k 

system includes equality we can give an equivalent but more concise 

condition. 

m: 

c9t kh 
a I— • • 1/3(k,h) .1 

W 	0) WP  (k, 

h = (h ...hm) are constant symbols not in the formal basis of 4 . 

18 
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If Wp(k,0) is a universal formula, with only predicate symbols 0 

and q = (q1,...,q0) that are not in the formal basis of J , by the 

J-relative completeness theorem, A') is equivalent to 

vtele vokm 

c7c k kh o(  ic 11) <r> A( ,t) 	-1  
W (k,0) 

i.e., 	VWJIn 	Vtc14 711  1 

VOMWF(k.,0) 	0(k, h) ] true in cSikh 
t 
	

(1) 

4.5 Aps(tpt) 

Note that W
P  must define P without introducing any new sorts of data such 

as 'stacks' or 'states'; only structure 	is used. Now (1) is equivalent to 

IftelSin 	V4r over 17k in+m 

:[Apcsi(,t) 	g) 

 

 

<r> Vx[VO[HqWp(k,0) 	0(k„x)] 	g(k,X)] true in 

Comparing this with the definition of partial correctness, we get: 

For 	Celhki m ' 	̀Si
kh is the same as 

4̀k b. , i.e., cgt  expanded 

to include assignment of t to h . 

:1211 
X 	 • • •' X n) • 
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Correspondence Theorem 1 

For first order, universal formula Wp(k,O) with extra predicates 

q not in the formal basis of J . 

Wp(k,O) is a logical definition of P if and only if Up(k,G) 

is a formalization of partial correctness of P 	where 

Up(k,G) is Vx[VO[Wp(k10) D 0(k,x)] D Ilf(k,X) ] . 

In practice Wp(k4) may have logical properties which give a 

neater formulation of the correspondence theorem. In particular, 

we can define conditions for 'monotonicity' and 'continuity' of 

such formulae in a way similar to Park [15]. 

i) Wp(k,O) is said to be monotone if, for all structures J and 

all relations al* on IS1n+m  and all WSIn  1  

ncieSil m  :[cr(,0 	lra,t)] 

implies  

SqWp(k,O) true in Sko SqWp(k„0) true in Sko  . 

ii) Wp(k,O) is said to be 'quasi-decreasing' (after Tarski [19]), 

if for all structures S and 	and all sets 	of relations 

over I3111+111  

aqWp(k,O) true in 	for all *c* 

aciwp(k 0) true in Sk0  

20 



where 

nif(,t) 4* v*4 : *alt) 

In a similar way, definitions can be given for 'quasi-increasing', 

but since this is implied by monotonicity, we need not consider it. 

However, defining 'continuous' as 'quasi-increasing and quasi-decreasing' 

(as in Tarski), if Wp(k,0) satisfies i) - ii) it is monotone and 

continuous. 

Lemma:  If Wp(k„0) is monotone and continuous, for all structures 

and Vtekin  , V' on IJI
n+m • 

YX[VO[aVp(k,O) D 0(k,x))n G(k,x)] true in eSt  
kG 

0 34Wp(k,0) true in 

.Proof 

=> 	equivalent to 

V4-19(klx) D gO[aqWp(k,0). A 0(k,x))] true in „a . 

i.e., Vt€1,91111 : 	on 1,91nEm [HqWp(k,0) true in k 

and --t lita,)]] • 

For the symbols of W (k,0) , apart from 
	k and 0. 

21 



;. Let 71 be the set of -relations (ii) whose existence is guaranteed 

by the above formula for each telJim  for which 	Ilf(t/t) 

Hence: 

1) 	For each member lit  of .11  gqffp(k,0) is true in c.9k, . 

ii) It has the property 

vt Elsl n  :[ nt( t) 	it 	t) 

because this is equivalent to 

vt€1.91m : 	: 1(t,t) 	*a,t)) • 

This is trivially true for all t s.t. 	, and for all 

s.t. 	iffa,t) 	it is true because 	T1.(t„t) and 'Lei' 

From continuity (quasi-increasing) and 1): 

HqWp(k, 0) true in c9kt 	. 

Thus, by monotonicity and ii) 

aqWp(k,0) true in 4113  , i.e., R.H.S. 

22 



Trivial since for 'neje , nE191111  and all * on 1,91n+m  

gqw k.,0) true in ,91V16  and VO[g4Wp(k,0) D 0(k,h)] true in kh 

clearly imply Ira, t) . 

Q.E.D. 

Noticing that any formula formalizing partial correctness must be 

both monotone and continuous, from the above result we immediately get 

a stronger version of the correspondence theorem: 

Correspondence Theorem 2. 

For first-order universal formula WP 
 (k 0) with extra predicates 

0 and Q not in the formal basis of e9 : 

WP  (k 0) is logical definition of Ps 
and is monotone 

and continuous if and only if 94ffp(k,0) is a formalization 

of partial correctness of Pcsi  . 

It is interesting that to date all formalizations of partial 

correctness for programs in various languages have been of the form 

gqWp(k10) . Thus they are all logical definitions of the programs in 

question. In fact, it is reasonable to Claim that the reasoning 

behind the construction of such formulae was to reflect the execution 

of the programs. 

It also happens that current logical definitions reflect not just 

the results of computations but the computations themselves. They are 

23 



therefore even more closely related to their programs than is strictly 

'adequate' as can be seen by considering adequate definitions of two 

equivalent programs. According to the previous input-output-orientated 

definition of 'adequate', a logical definition of one is 'adequate' as 

a logical definition of the other. (This also is true for formalizations 

of partial correctness.) Therefore logical definitions which describe 

the computations of programs, are more than just logical definitions of 

the programs: they describe the 'inner workings' of the programs, the 

execution of the various pieces from which programs are constructed. 

Such definitions will be seen to follow from 'adequate' logical definitions 

of the semantics of programming languages, which will be considered in 

the next section. 



Section 3: LOGICAL LANGUAGE DEFINITION 

Logical definition of programming languages  

We can say that the purpose of a semantic definition of a programming 

language is to specify the meaning of programs written in that language. 

Therefore if 4L  is a logical definition of language L , then given 

any program P in L , AL  should specify its definition Wp(k,O) 

in some way. The simplest way of doing this for arbitrary program P 

is to have 6i,  specify a definition yk,O) that is related to the 

computations of P-1 
*/ 

in the following way. 

For any definition Wp(k,O) , the formula 0(k1T) is 

(J-relatively) deduced from W (k,O) exactly when the computation 

of PM terminates with a result AT] . We can consider formula 

0(k1T) as describing a 'situation' in the computation of P(g) , 

namely the situation at the end of the computation. Generalizing this, 

we can imagine other formulae describing intermediate situations in the 

computation. If these formulae are deduced as intermediate steps in the 

/ 
deduction of 0(k„T) and no others**, then the deduction is said to 

describe the computation. By suitable choice of what constitutes a 

'situation' it is possible to specify Wp(k,O) for any P , i.e., gilie 

a definition of the language L . All that is required is that the 

operation.of each basic construct in the program P corresponds to 

421 This is not the only solution: AI,  could find a simpler program 

equivalent to P , and then produce the definition of this program. 
This is the practical method used for formalizing the partial 
correctness of parallel programs in Ashcroft and Manna [2 ]. 

i.e.; if a formula is deduced of the type that describes situations, 
then the corresponding situation must occur in the computation. 

25 



going from one situation to another. Wp(k'0) need only describe the 

changes in situations produced by the operations of these constructs; 

formulae describing successive situations will then be deducible from 

formulae describing earlier situations, and eventually the final 

situation description 0(k,T) will be deduced. 

(All this presupposes that the infinite number of possible situations 

can be adequately described by logical formulae. We avoid equating 

'situations' with 'states' simply because in complicated languages, 

the 'state' may contain an arbitrary amount of information and may 

be difficult to describe with a single formula without introducing 

new sorts of data such as stacks. A 'situation' will in general 

concern itself with some aspect of the current state, perhaps relating 

it to previous situations.-1  This will become clear in later sections 

where definitions of such complicated languages are given.) 

We therefore give the following criteria for an 'adequate' logical 

language definition LI  

B) The logical language definition conditions  

i) 61  must specify a logical definition Wp(k,O) for any 

program P . 

ii) Each Wp(k,O) produced must describe the computations of P 

i.e., 

.i) there are certain types of formulae that can be interpreted 

as describing situations in a computation, and 

For example, in a multi-level language, it is possible to take a 
'situation' as being that part of the state directly affecting the 
computation at the current level. The inaccessible information at 
higher levels (e.g. the values of variables temporarily out of scope) 
will be contained in already deduced formulae describing previous 
situations. These formulae can be drawn upon later when it is 
necessary to describe situations when the computation has returned to 
these higher levels. 
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ii) from W (k,O) we can (6k  relatively)deduce exactly 

these formulae describing the situations that occur in 

computation of Pc9(0 . 

The way such a definition is realized may vary. For example, 

Burstall [ 3] takes AL  as being a set of axioms, and also expresses 

P as axioms, in such a way that the formulae, describing the situations 

in computations of P , are deducible from the axioms. Clearly, 

is a language definition according to the above criteria. In this work 

we are going to take 61,  as an algorithm mapping constructs in a program 

into formulae describing the effects of these constructs on the general 

situations that can occur in computations of the program. If we also 

include a formula specifying the initial situation, the actual situations 

occurring in the computation will be deducible from these formulae. 

We shall illustrate these ideas of program definitions which 

describe computations using a simple one-level langulge and show how such 

a definition W (k,O) relates to a 'Floyd' definition using complete 

and consistent verification conditions. In the process, we shall 

develop sufficient conditions on language definitions that are intuitively 

verifiable. In succeeding sections these conditions will be extended, 

and definitions given of more complicated languages. 

One-level-language definition 

A one-level language is one in which the computations of the various 

parts statements') of the program are disjoint (no statement contains 
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another statement). Hence any computation of a program P simply 

consists of a concatenation of subcomputations of statements. In 

this simple language it is possible and natural to take a situation 

as being the whole state at the end of one subcomputation and the 

beginning of the next, i.e., when execution is at a point in the 

program 'between statements'. A description of such a situation 

consists of the particular point in the program, and the corresponding 

values of the program variables. This description is achieved by a 

formula 0e(Ti...Tn) . 0e 
identifies the point e in the program, 

and 	denote the values of the variables at this point. 

The successor situation of a given situation is easily described 

in terms of the effect of executing the next statement. 

We shall show how a logical definition Wp(k,0) of program P 

can be made up from such descriptions of the effects on situations of 

the various statements in P . 

Let program P with n variables consist of a flowchart constructed 

from a set C of statements, each statement having a certain number of 

entrances and exits, together with one START and one HALT statement. 

For simplicity we will assume that a join-point is considered as a 

type of statement, so that every edge in the program is the exit 

of one statement and the entrance to another. We associate with 

each edge e a unique n-ary predicate symbol 0e  , associating 

the special predicate symbols 00  and 0 with the edges leading 

from the START statement and to the HALT statement respectively. 



t) Aij, c 

The intention is that Oe(Ti...Tn) is 4-derivable from Wp(k,O) 

exactly when the computation of P for input eicstin  reaches edge 

with values 4I[T1],...,J1Prn] for the program variables. We will 

show that Wp(k,O) has this property if it consists of a set 

[O (k)} U [14 
c 
 IcEc

P 
 ) of axioms, where each formula W is related to 

the execution of statement c in a way to be explained below. 

First we describe execution of c . 

For any statement c with p entrances and q exits as shown, 

Act Ac , the graph of c is a px q matrix of 2n-ary relations Ac  , 

	

1 <i<:p, 1<j<q, such that 	n / Vte101n 

anycomputationenteringcata.with 

	

variables values 	leaves c by exit p. 

with variable values t . 

• 

1 <i p we associate a relation *a.  on 141n  with 

entrance a. ,.calleci all imputconditionfor ce. ., -then for all 1 <j < q • 

we define the relation *c  on 
14  In by  
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Vt€141n  : 

c. (t) 	atelSi n  [1frala) and 

and or 

or [Iva  a) and tiPci(,t)] • 
4 

If we put Ira  = (era  —*a  ) , each IVe  is called the output condition 
1 p 

for pi  corresponding to 	. They have the property that for all 

inputs to c where the variable values satisfy bra  , the variable 

*c =(*c ' '1Ve )  
1 	q 

We shall usually denote *c by Iraqic 1  because of the similarity 
j 

 

to matrix multiplication. (This is the reason tic  is considered as 
4 

a matrix.) 

We can now give conditions on We which ensure that W (k,O) 

describes the computations of P . We first give rather restrictive 

conditions which we later relax. 

Definition of P (restricted)  

Wp(k,0) = (0e(k)) U (Welc€Cp) 

where for c as before: 
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0 —.0 10 ...0 , and no other symbols not in the basis of 	• 

I) W is a first order formula containing predicate symbols m  (., q ...m  

a1 Q
P 

p1 	q  

e 	 C 'c. 
1 

We therefore denote We by We  (0040) where 

= (0a,...0ap) and Op = 
	• 

II) For 1.  <i<p, 1<j<q and t, ,jEISIn 

E  
AVs(1160 	

hg 	Op (g) 

Oa (h),Wc(0a,0p) 

III"orrelation"—cm 	
, and Ira  cti  

age  We  (93a)c6f3) is true in 
*a *a •Acs  
jOa  Op 

The predicate symbols 	are unique to We  

Constants 	= (111...hn) and g = (gi...gn) are not in the basis 

of cg . 

For any first order formula A , A denotes the closure of A . 
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That is, there exist relations for qc  such that 'reading' 

Wc(Oallop) makes sense if we precede it by 'for all sets of computations 

of 	c' and read 0a. 
 (T1 

 ...T
n
) as 'one computation enters c by ai 

1 
with valuesTl.Tn  

.. 	1  and read 0 (r 3:.  n 
.T ) as 'one computation . 

PO 
Pa  leavescby.with values Ti...Tn   r. 

In order to show that from W (k,0) we can (SE-relatively) deduce 

exactly the successive situations in the computation of 10(E) , it is 

necessary to indicate just which situations actually occur in Pa) 
Ap 

This is the purpose of the 'minimal' relations la' on 161'n. Each µ: in 

is defined to be true for exactly those n-tuples of variable values 

for which the computation P(0 reaches edge e . (For the initial and 

final edges, the relations are µ0  and µ respectively.) These relations 

µ clearly have the important property that for any statement c 

in P as before: 

for Va  = (11 	..Va  ) al 	p 
and (p. 

131
...v

Pq
) 

E 	E p = p. 
13 	a cc9  

We can now prove the following proposition: 
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Proposition 1. For 

 

wp(k4) = f00(k) U {we  (Oct, 00) I c cc pi 

where each We satisfies the conditions I), II), and III). 

vWsln , vtE179Iin : 

JEt kh 

°e(h) 4=>  4(0 • 
W (k„ 0) 

Proof 

> Since D'(J1g) is true in all expansions of 

c9H. 
LHS 	1= 	0e(h) 

wp(k,0) 

V93e[gelci;ip(k,0) D 0e(h)1 true in cSlichq 

where0e , ac  denote all the extra predicate 

symbols 0e , qc  in Wp(k,O) • 

Now by condition III), and the property of the minimal predicates 

mentioned previously: 

gqc iT,c (0a,  0) is true for 

33 



E
M Also Ilo 	is clearly true. 

E t µ .„. 	..... 
:. aleWp(k.,0) is true in jk b. 0. e 

 

E t p, 
Hence 16!(h) is true in A -khOe  ' 

i.e., Pe(t)  • 

RHS means that the computation of P(0 reaches edge e with 

variable values t . It is clear from condition II) that, starting 

with 0e(k) we can trace each step in the computation with 

deductions from some Wc(0a/O) • 

Eventually 	1-1c11 	0 (h) 
W (k,0) e  

Q.E.D. 

We see that W (k10) describes the computations of P in the desired way. 

An obvious corollary to this proposition is 

Et 

0(h) 0 
W (11,0) 

Since P (t) pAp a/0 
	

W (k,0) is almost a logical definition 

of P 
	

To conform with the previous definition of program definitions, 

we simply add to Wp(k10) the axiom 

0(x) D Of  (k,x) 

Then the resulting formula Wi,(k,0') will be a logical definition of P . 
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Note that by describing situations in terms of elements of 1,91 

and by not allowing the formulae We  to introduce new sorts of data 

to describe the executions of statements, we have obtained a definition 

which itself does not introduce new sorts of data. 

Since the only occurrence of 0' in WT(k„0') is in the axiom 

000 :) 0' (k,x) 
	

ra'(k,0') is clearly monotone. Also, from the 

previous proposition, if Sgel-lp( k, 0) is true in some expansion of 

nt to include 0e , then, for all e , the relation assigned to 0e 
... 

includes ut • Also, one such expansion is that which assigns 11t 
 

' e  

to 
0
e ' It follows that Wl

P
(k,0') is quasi-decreasing, and 

therefore continuous. 

Hence, by Correspondence Theorem 2, Zaei3;a(k,0') is a 

formalization of partial correctness of P 1  if inii
P(k„0') is universal. 

A logical definition of this one-level language would simply be a 

specification of formulae We  for all possible statements c in 

the language. 

It is possible to relax the first condition on the formulae We , 

namely that restricting the extra symbols to the symbols 0e  and qc . However, 

before we do this we can show how this restricted definition is related 

to one using (similarly restricted) 'verification conditions'. 
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Definition by 'verification conditions'  

Floyd [1.] proposed a method of language definition for simple 

one-level programs using 'verification conditions' for each statement. 

For statement c as before, the verification condition Vc  is a test 

on relations *a = *a ...*a and * = * ...* 	(on 	) associated 
1 p 	P P1 Pq 

with the entrances and exits of c , i.e., Vc(*a,*p) is true or false. 

Vc 
is said to be consistent if, for all * 1* , as above 

vc(*al*p) 	incisti n  : t*a•Acc9(0 

(that is, if la  and Irp satisfy Vc  , there is no input to c satisfying 

*ci  for which the output does not satisfy Irp). 

Vc  is said to be complete if, for all *a,Iffi,  

Vc(*cx,*p) 	9111  :[*ce•Ac(t) and --ovpg)] 

(that is, if *141x  and *,
P 
 do not satisfy VC , there is some input 

to c satisfying *a  for which the output does not satisfy 

!/ Putting 'c = 	(n c 	c 
c.9 

1 < i < q :* (t) 	* (t) • ci 	pi  

I!' Putting *c  = *a  .Ac ' *c(n and 

1 <i q 	g 	
Pi

) and —1  * (t) • c.  

(t) is an abbreviation of si 

* (t) is an abbreviation of Vi - 
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i.e., 	Inelc91n:[*a'Acc9(C) 	*p(C)] 	Ve(*ce*p) 

A set of complete and consistent verification conditions for 

program P is said to be a semantic definition of P . If the 

verification conditions can be expressed as formulae, then we shall 

show how such formulae are related to the logical definition Wp(k,O) 

we have just considered. 

Assume that 	can be expressed as a first order formula Yc 

with just predicate symbols q
c  0 ...0a '013 ...0 --1Y not in the a 1 p 1q 

basis of 9  . That is, if we denote 7c  by Yc(0a10p) as usual, 

Vc(ircel lfp) <=> [aqcic(0a100.) true in Jma mP] 	 
f3  

We will show that the formulae Yc are closely related to the 

formulae We because consistency and completeness are exactly 

equivalent to conditions II and III (given previously), plus monotonicity. 

The definition of monotonicity for Yc(0.4,3) is: 

For all 4 , q-vectors of relations *1  and *2 on 

p-vector of relations *a  on 161In. 

'sin  and 

 

VWc.91n:[*3p-(C ) 	*
2
(n] 

implies  

   

. *a*
1  
f3  

24jc(0c4,015) true in Sm m 	aqcYc(0&013) true in 
reerf3 

q
c =.(qc ...qc ) are unique to Yc . 1 

--/ Note that Y must express Vc without introducing any new sorts of 

data such as 'states' or 'stacks'; only structure S is used. 

37 



Theorem 1. For universal formula ye, representing verification condition Vc, 

-c satisfies II and III and is monotone a Vc is consistent and 

complete. 

Proof 

=> 

Condition III is 

1,01 	.Ac  
on Isin  acicyc(coa„0(3) true in ,grA 	49  • 

ra  

Hence by monotonocity 

VIVoc,Vlirp.  on 141n  , .qc14111  : 

[*ct 'Ac  (t) a Irp(t) 	[acleYe (001,00, 
4 

true in 0  0t3r- a  

i•e•„ 	is complete. 

Condition II is 

for 1<i<p, 1<j<q; ,E1,9111  

cSt 
Ali( 	l-hg  
c4 	Ox(h),Y 

0 (g) • 
0a'0 ) 

Since D' ) 	is true in all expansions of 4gh 
t 

h g 	 g 

A ij CS  

4gt 

0a.(h),Ye(93c4)013) 

Alc-j( t) =4' YqcV0aV013[0ai(h) A Ye  (0a, 0p) 	 9̀11 g (g)] true in `Rh 1  
4 
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or equivalently, 

l<i<p, 1<j <q, V*0,,V*(3  on I Sin  ; 	c IS in  

a..+  
Aic-ja'n 	Cila (0 and [Hqjc  Oa/00) true in 	00 ] *p.(c)] 

rar p 

re-arranging, 

1 < 1 < p , 1 < j < q , V*ce,*13  on ISIn 	VtelSin  

EatcYc(0a,Op) true in Soae [neiSin: *lot (t) and A.V1(a,g)] 	*p (t)]  1 a r3 	i  

that is, 

acicYc(oceop) 
, 

true in 
SO 0 
a 	vWSIn : [IPa'Ac (t) 	*

Pi 
 (t)] 

a p  

Vc is consistent. 

• <= 

If Vc  is complete, since ac (t) *,*Ac  (t) 

HqcYc(0a„00) true in 
* * -A 

c993

a 	es 

a p 

i.e., Yc satisfies III. 

, 
Now for all *

1
, *2 on le and *a on 'S I 

r1 

is 13 

if VtelSin:4(t) 4g)] 

and EqcYc(0a,013) true in 
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then, by consistency, 

VW9 I n  N'Ac  g) *f31(t)] 

vWc9in:[1fa'Ac (t) 	4,(t)] c9   

then by completeness 

gcicYc(°a'Op ) true in 

c 
is monotone. 

If VC is consistent for some structure .9 , then it must be 

consistent on all substructures of eg containing the constants. 

This is because the domain of such substructure e9' must be closed 

under the functions of e9 , and so the computations in e9' of c 

for inputs from 1,9'1 must be identical to the computations 

in J for the same inputs. 

Now if rc is consistent, the definition of Ilria.A
C 

gives: 

for 1<i<p, 1<j <q, V* ,* on 161
n 	

veic9l n  

irryA 
aqcYc  (0a,00) true in c9ni—  or 	[1Va  ( ) and Ali a, n 	g)] 

rot  vp 	 c4 	Pi 

From the above argument, we can restrict the structure to e9! 

Then 

n 
1<i<p 	1<j <q 	Irc1c9In 	Vtel6h  1 , V* ,*p  on 

• 

c7! 



-I:
--
4 8  

Aii  g, 	Pitai(g) and. [aqcYc  (00e, O) true in .h  ocx  013'1 	*pi  (g) 2 

that is: 	VkiSin 	Vtc141)12  

Aii( VqcWaVyki(h) A Ye(001,0f3) Op, (g)  true in 'g 
i 
  

Then since Ye 
is universal, we can use the corollary of the 

S-relative completeness theorem: 

Vtcle VWS!In  

R̀h g 
Aija/n 	OA  (g) Oa. 

01) Ye  (006, Op) 

Since Aii(g,t) is false for all Vis!In  

-11 g 
OA  (g) 

ccg 	Oa  (h)/Yc ce p ) Pi 
i
.  

i.e., Yc satisfies condition II. 

Q .E .D . 

We therefore see that verification conditions originally considered 

by Floyd as being semantic definitions of programs, do in fact give us 

definitions of programs in our sense. However, we have been quite 

restrictive in requiring that the verification conditions be expressible 



by first-order formulae with no extra symbols except for the predicate 

symbols 0e 
and q

c 
. 

We can loosen this requirement, and still show the relationship 

to logical definition. But we must first loosen the requirements on 

the formulae W
e comprising such definitions. 

Definition of P - (general)  

We will loosen the conditions on the formulae We by allowing 

extra function and constant symbols to appear in them. The purpose 

of these symbols will be to allow the construction of expressions 

other than those representing the data objects manipulated by programs. 

The new sorts of data objects thus introduced will be conceptual 

entities useful for describing the execution of programs, e.g. stacks, 

program counters, tables, etc. 

There will therefore be some extension of ISI  which includes all 

the desired new data objects. We can consider the operations and 

relations of e9 to be extended arbitrarily to cover these extra objects. 

The resulting extended structure we will denote by ; . The extra 

function, predicate and constant symbols (which we will denote by 

F Q and B) will be required to correspond to particular operations 

and relations on 1,91 and elements of 181 respectively. There will 

therefore be an expansion 	of g to include F , Q and B 

that assigns the appropriate meanings.-' (The operations may, for example, 

-2Y The formal basis symbols of p' will consist of the basis symbols 
of e9 and F Q and B . 
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be 'pushing' and 'popping' operations, or table look-ups. The 

relations may be tests for empty stacks or tables.) The formula 

W (k,O) must restrict the meanings of the symbols F , CI and B 

sufficiently to essentially specify pt 	We assume therefore 

that W (k/O) contains a set of axioms a for this purpose. Then, 

if 

wp(k,0) = fq0(k),61 U NelcECI,1 

the following conditions on the formulae We  also comprise conditions 

on Q . 

Ia) 	We is a first-order formula containing only predicate symbols 

qc,Oce  —4a  'Op 	 'Op
q not in the basis of (9' . We denote 

1 p 1 
We 	by W c  (0 0p  ) as before. 

iia) For 1 <i <p 	1<j <q 	Ir,tel<91n  

ij. 	Atg Ac  Wt.) 	r 	 OR (g) • 
0,„i(h),wc  0a4),C7 -J 

Ma) For relations *a  , on 

gq-cc,c(0ci,013) true in 
iirct  • Acs  

oct  op  
That is, with the desired meaning of the extra symbols F 	and B 

there exist relations for qc  such that reading Wc(0,40e0p) makes sense 

if we precede it by 'for all sets of computations of c ', and read 

0cjr1...Tdas'onecomputationenterscbya.with values 1...zn  ', and 
1 

read 0(T'...T') as 'one computation leaves cloy pi  with values 
. .1 n 

f30 
*/ 
-3 1/106  is extended to St by making it false for any arguments not in ISI

n  . 
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Proposition 2. For 

WP  (k 0) {00(k),6} U tw,(0a,Oro)leccp) , 

where each We satisfies Ia), hIa), and IIIa)„ 

.ne i c9 in 

k h 

W (k,0) 
0,(h) a µe(t) • 

P 

Proof 

Since 	 k D'(e9Eh 
 ) is true in all expansions of any extension of 

e9h  E k , 	k specifically gE h  , 

4̀k h k h 	k h 
F- 	0 (h) 	0 (h) 
wp(k10) e 	WP'  (k 0) e  

110eiSacyk10) 0e(h)] true in all 

expansions of kh 

. A 

	

Wet aCiWp(ky 0) 	0e(h) ] true in st tn . • 

Using this result the proof of this proposition is identical to the 

proof of Proposition 1, with 9 replaced by (9 ,  . 

Then, as before, we immediately get that 

4 

Q .E .D . 



• WI, ( k, 0 ) = qo  ( 	(x) 	01 (k, 	U tW Oce193  (3) I eC p) 

is a logical definition of P . 

Note that since it introduces new sorts of data, there is no 

way in which Wi)(k,01) can be related to a formalization of partial 

correctness. 

In practice, condition IIa) is satisfied by separate conditions 

on We and a, as follows: 

IIai) 	1<i<p, 1<j <q, 

k 
t  
h 

Aij(,t) 	1-  e 
0a  (h) /we  (Oce,  0) i   

I I n  

(g) 	• 

IIa ii) For all formulas A 

at  r A <4,  I- A 
Q 

If we have axioms c?' satisfying IIa ii), then we can show how a 

semantic definition of P using (general) verification conditions is 

related to the above definition WP'  (k 0) . 

Definition by verification conditions - (general)  

Given structure y for the extra symbols F , Q and B , as 

above, we can loosen the conditions on the formulae Ye representing 

the verification conditions V.c . We allow Ye 
to be a first order 
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formula containing the extra symbols F Q and B as well as 

predicate symbols qe,0a,013  ; and require that V*_, u * 	on 1,9In  

13  vc(Iliceirp) a [alje(OaY0p) true in seda d  I. !! 	(1) 
Pa Pp 

Theorem 2. For universal formula 'Y , representing verification 

   

condition V , and axioms Q satisfying IIa ii): 

Ye satisfies IIa) and IIIa) and is monotone 

a VC is consistent and complete. 

-Proof 

Noting that the only difference in the way: Fe  represents Vc  is the 

replacement of p' for 	we can follow the proof of Theorem 1 to 

get: 

Yc satisfies IV and IIIa) and is monotone 

a Vc is consistent and complete, 

where condition IV is 

1 <i<:p, 1<j <q, VE,geke 

P T 
 
h- g 

Alj  
e

ayt) 	1-  c 
s 	0a.  (h),Y(0a4p) 

(g) 

-J 	*a  ,*0  are extended to 

not in Ic9In 

by making them false for all arguments 
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(Note that IIIa) is like III with 0 replaced by (9,  .) Then from 

condition IIa ii) on 7 , 

condition IV is identical to condition IIa). 

Q.E.D. 

We have not allowed completely general second-order formulas when 

representing verification conditions, but we have been sufficiently general 

to claim that a definition by verification conditions is usually a 

logical definition in our sense. 

Conclusion 

. The example of a one-level language has illustrated how program 

definitions can be built up from subformulae describing the effects of 

• .constructs in the program. The essential properties of the subformulae 

are. 

i) They can copy the effect of execution of the construct by 

4-relative deduction. 

ii) They make sense for all sets of computations when Oe(T1...Tn) 

is read as 'one computation is at edge e with values T1. ..Tn  2 
 
• 

These are properties which can be easily verified from intuitive 

knowledge of the execution of constructs. These principles can be 

extended to more complicated, multi-level languages, as will be done 

in later sections. The justification for the 'adequacy' of the formulae 

produced will be based on intuitive arguments concerning the above two 

properties. 
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This example has also shown how Floyd's verification conditions 

are strongly related to logical definitions of the type we are 

considering. 

We have also seen how the equivalence of logical definition with 

formalization of partial correctness does not hold for definitions that 

introduce new sorts of data. Since we can formalize all properties 

of programs in terms of partial correctness (Manna [10]), it is 

desirable that this equivalence holds whenever possible. Therefore, 

the logical definitions given later go to great pains to avoid 

introducing new sorts of data. 

One method of logical definition which does introduce such new 

sorts of data is that of Burstall [3]. His definition of Algol is 

?adequate' since it has properties similar to those above. However, 

since it introduces extra function symbols, it is not equivalent to 

a formalization of partial correctness, and new techniques have to be 

used to prove properties the programs so defined. His method has the 

great advantage that it describes the execution of programs using 

concepts familiar in programming. It therefore seems capable of 

tackling many practical programming languages, and is a good meta- 

programming language. 

In the following two sections we give definitions of a functional 

language and of a subset of Algol. The logical definitions of programs 

so produced are also formalizations of partial correctness, and can be 

used to prove properties such as termination and correctness, where 

appropriate. 
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Section 4: FUNCTIONAL PROGRAMS 

In this section we are going to give a logical definition of a 

functional language. This type of language is essentially multi-level 

and is simple enough to illustrate the definitional techniques for 

dealing with multi-level computation. In the next section we will 

combine the one-level and multi-level techniques in a definition of a 

large subset of Algol. 

Syntax of Functional Programs  

A functional program Ps  consists of a set fF0...Fm) of 

*specified' functions, with F0  as the 'initial fnnction'. A function 

is specified in terms of the other specified functions and basic 

functions (functions in S ). The basic functions we will call constant 

functions and the specified functions we will call function variables. 

A function variable F. is 'specified' by an expression (specification) 

of the form 

F.(x ,...,xn ) <= T. 
1 

or by an expression of the form 

x 	) 
1 	' n. 

F.
1
(x
1 	' 
,... x

n. 	u. 
1 

) <= 	(x
1 
 ...xn

1 	
1. 

) 	T. 
1 	1 
(X
1 
 ...X

n 
 ) : 

1  
1  

• 

n. 	..xn
x-, T .

1 
 ( ...x ) 

1 	
1 	

m1  
m. 	. 

1 n. 
1 
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where each T(x
1
...x

n ) is a term, and each 7(xl/
...xn ) is a 

propositional term: 

A term T(x1,1  xn 
 ) is a term in the normal sense constructed 

from the basis symbols of 	together with the function variables 

Fo...Fi and (at most) the variables11 	n 	We will denote 
1 

the constants and function symbols in the basis of 	by indexed 

letter b's , and indexed letter f's respectively. Hence, examples 

of terms are 

F0(fl(xlIb2),b3) 

fls(  x11x21391131)  

f2(Fl(Fl(f1(x1)))1x2)  

A variable-free term is a term without variables. A simple term is a 

term without function variables. A constant term is a term with 

neither variables nor function variables. 

A propositional term 

following forms: 

11(x n.
) 

1 1 
is an expression of one of the 

i) P.j(T1  (x1  ...xn.)„...„Tn 
 (x
1 
 ...x

n 
 )) 

.  1 	0 	1 

where P.
0 
 is some predicate symbol in the basis of 61 

and Ti...Tn.  are simple terms. 

ii) -, 	...,xn ) 
where Tr1)TT2 are 

propositional terms. 
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Note that a propositional term is a quantifier-free formula in 

	

the basis symbols of 	, with free variables. For 	an assignment of 

values from 141 to the variables x1„...,xn. 
, such a propositional 

term is true or false in 0 . We stipulate that the propositional 

terms in a specification must be mutually exclusive, i.e., there is 

no assignment of values to the variables for which two such propositional 

terms are simultaneously true in 0 . 

Examples of propositional terms are 

Pl(xl)  

[Pl(xl) A 12(x2,f2(x3,b1))] 

{-1[P1(xl) V P2(x2)] A Pli-(f1(xl'xd'b4)]  • 

Example of functional programs are 

P1  = (F 1 
4 

where F0(xl) <= P1(x1,b2) bl  

P1(x1Ib2) f/(x1,F0(f2(x1,b1))) 

2 = (F0,F1) 

where F0(x1,x2) <= 	P1(x1,x2) A P2(x2,x1)] 2 , 

	

P2(x2'x1) A 12(f1(x2'/33)'x1)) 	F1(x1If2(x1'x2)) 1  

	

-1 P2( fl(x2'b3)  ' xl) 	Fl(xl'x2) 



F1(x1,x2) <= P1(x2,b2) b1 

(x b ) 	f 	(x ,F (f (x 12'2 	311121 

If  IS' consists of the integers, and 

b 	is 1 ; b2 is 0 5 • b3  is 2 ; 

P1(xl,x2) means x1 = x2 

P2(x1,x2) means x1 

fi(xi,x2) means x1*x2 (multiplication) 

f2(xllx2) means x1  -x 2 

f3(xi,x2) means xi/ x2  (integer division) 

then we may re-write PI and P 	in the more usual way: 2 

i)  1 

where 	F0(xi) <= xi  = 0 	1 , 

x1 	0 	x1  *F0  (x1-1) 

and. 

ii) P2 

where 	F(x 	 x2x)<= 	>x Ax 0 11  2 	1 	2 	1 

2*x2  > xi  A x2  k 

	

2*x2 	Fl(ca.,x2 ) 
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F1(x1/x2) <= x2 = 0 1 , 

x2 0 ( *Fi(x1-11x2-1))/x2  . 

Semantics of Functional Programs  

An intuitive description of the semantics of functional programs 

will be given, which will be used later to justify a logical definition. 

a) For inputs 1,...,tn elc91 , the program P61 
 'invokes' or 'calls' 

o 
the initial function variable F0  with arguments t ... tn  . When 1 0 
computation of F0  , called with t1

,... t /  terminates with a value o 
te1,1 , this is the result of program Ps  for input 1.,...,til  . 

o 
b) The computation of a function variable Fi  called with arguments 

111,—/TI E IS! is determined by its specification as follows: 

i) For specification 

F.(X1,...,Xn ) <= T x 	x )1/ 	n. 1 

the (variable free) term Ti(111/—/TIn) 	
is computed. 

i 
 

ii) For specification 

F (x ...,x n ) 
1/ 	n. 	rT1(x1/  • • "xn.) -4 Ti xl•  • •xn )/  1 	1 	1 

Tri (xl•  • •xn.)(xl•  • •xn.)  m. 	m. 1 	1 1 

. For the purpose of describing computations we could add to the symbols 

of j a name ic)  for each element ic101 . Then strictly we would 

say that T (11 ... T1
n  
° ) 
. 

will arise if we refer to 

is computed. However, we feel no confusion 

Ti(1111-11 i)  
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n 
) • 
. 	' 
0 

are the smallest 

where T
1
...Tn. 

0 
non-simple subterms of T) . For all such subterms, 

are constant terms (i.e., these 

there will be at most one propositional term T1, true in 9 for 
-"j 

111,...,11 assigned to the variables. If there is no such propositional 
i 

term, then the computation of F. , called with 
711-71n. 

 , is suspended. 
1 

(A suspended computation never terminates with a value.) Otherwise, 

if propositional term 

free) term T 

3 
In both cases i) 

rri.(111,...,11n.) is true in J , then (variable-7  
0 
) is computed. " 

and ii), if the computation of the term terminates 

withavaaue'thenthecomputationofF.called with 11...11n.  

terminates with this value. 

c) A variable free term T is computed as follows. If T is a 

constant term, then computation of T terminates immediately with the 

value J[T] . 

Otherwise, T must contain one or more subterms of the form 

like F.j  (T1  ,...„Tn.) 	we call Fj with arguments J[T
1],...,AT

n.
] 

0 	 0 
When computation of any of these subterms terminates with a value, we 

replace the subterm in T by this value. As soon as any new non-simple 

subterms are produced, they are computed in the same 

process continues until all non-simple subterm6 have 

the computation terminates with a value. 

For example, computation of term 

Fo(F0(1,f2(11)),F1(fl(Fl(f1(111,b2)) 

proceeds as follows: 

manner, and the 

been removed, and 
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I) F0 
 is called with 1„9[f2(112)] and 

F is called with 
1 	4Ef1(1111b2)3 and 

F2  is called with 112 

II) When F1 called with Af1(1,b2)] terminates with fl 

and 	F2 / called with T12  terminates with t2 

F1 is called with c4[f2( tIf t2)  • 

III) When F1  , called with gf2(t1,f2)] terminates with t3  

.and F0  , called with Ml, 	c9[f2(M2)] terminates with t4 

F0 is called with tt 1-1-/ D3 

III) When F0  , called with ti4.,t3  , terminates with t5  

computation of T terminates with t5  . 

This completes the description of the computation of functional 

programs. We call such programs 'multi-level' because the computations 

of parts of the program (function variables) contain the computations 

of other parts of the program (other function variables). 

There are clearly two ways in which the computation of some term 

could fail to terminate. Either the computation proceeds forever, 

calling ever more function variables, or else some function variable is 

called with arguments for which its computation is suspended. The 

situations are intrinsically different, in that the latter can be 

detected during computation; it is intended to be an error condition. 
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The description of computation clearly conforms with the usual 

intuitive meaning of the execution of functional programs. We will 

not give examples of computations, but merely remark that for functional 

programs P 	and P2 given previously: 

i) For any non-negative integer input n computation of P 

terminates with result nt 

ii) For any non-negative integer inputs n,m , computation 

of P2 terminates with result C - 	 n m 	mt(n-m): 

Logical Definition of Functional Programs  

With each function variable specification a we associate 

an axiom Wa as illustrated by the following examples. The construction 

ofwashouldbeclear if isreadastF.is called 

with T 1,...)Tn ', and Qp.(Til...,Tn.,Tn.+1) is read as 'F. , called 
1 	1 	1 1 

with I1,..'
,T

n. , terminates with value Tn.-t-1 — l, and EF.(T11...,Tn.) 
1 	 3. 	a_ 	1 

is read as 'computation of Fi  , called with T1...T
n. 

, is suspended'. 
a_ 

i) a : Fi(xl,x2,x3) <= fi(xl,f2(x21x3)) 

Wa : a -F1(xl'x2/x3) 7) 2(xl'x2'x3'fl(xl'f2(x2'x3)))  

ii) a : Fl(xi,x2,x3) <= ni (xl,x2,x3) 	fi(xl,f2(x2,x5))  

vi  (xl,x3) F3(xl) 
2 

for propositional terms 
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QF (xl'x2'x3'z1)]/1  1 

A [L-1 ul
1 

 (xv x2,x3) A-1  rri2 (xi,x3)]=DEF.(xl,x2,x3)]1 • 

iii) 6 : F1(xi,x2,x3) 
	

(xl'x2'x3) -4.113(xl)  

u1 
2(xl,x3) -4 f2(F2(F3(f1(xl'x2))'x3))  

W 	: qF
1
(x1,x2,x3) 	Un-11 (x1

,x2,x3) D (q.
F3

(x1) 

A 
{QF3  (xl/z1)"QT1  (xl'x2'xY z1)]1]  

A [Tr1 	xO D  (qp  (fi(xv  x2) ) A 
2 	3 

[Q (f (x ,x„),z2)DqF  (z2,x0] A F3 	1 .e 2 

[Q7
3 (f1(x1' x2)  ' z2) QF2(z2'x3' z3)  

IDQF (xl,x2,x3,f2(z3))1)] 

A
"Li 

(x,,x2,x3) 	rr1 
2 	1' 
(xl,x3)]Da„1 

 "L 
(Xi  X2) X3) 

ct : 3(x1,x2) <= F0 (F01'f22' )) F1  (f1  (F1  (f1 (x1' b2' )) F22)))) . 

Note that the term in this example is the one used previously to 

illustrate computations of terms. 
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A [ tQFl(f1(x1,b2), z1) A QF 
2 
 (x2, z2) A QF 1(fi(za., z2) ,z ) 

A QF  (x1  f2  (x3) s z11-' ) D 9.F  (z)3 z3) ] 
0 

A HQ 1 (f112 )„ z1  ) AQ
F2 

(x2  ,z2  ) AQ 
1
(f1  (z1  ,z2  ),z3  ) F 	 F 

A Q
F0 	

f2  (x2) zit ) A QF 
0 
 (z4, 

 -1  z
.5 ) ] DQF

3 	
z5) ] . 

The method of construction of W for all a should be apparent 

from these examples. An algorithm for constructing Wa  could be given, 

but it would tend to obscure the intuitive meaning behind the construction. 

With any program P4  . (F0...%) , where each Fi  has specification 

we associate the set of axioms WP  (k,Q,  ) 1/ defined by 
0 

W (kA ) = Fo 
0 	1 

(k1...k 1  )) U [Wa.iFiEPs) . 

(We shall  in the future denote CIJa.  IF.EP 3 by Wa .) We prove later that 2. 

Wp(k,QF  ) is a logical definition of Ps  . 
0 

= (k1,...,k1  ) are constant symbols. 
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Examples  

i) W
P1

(k1AF 	is as follows (the axioms are separated by semicolons): 
0 

qF (k1);  0 

qF (Xi) D t[Pi(X32b2) D 	(xi/bin  0 	 0 
A [-I P(xl,b2)D 

IcIF0(f2(xl'ip1)) A 

1QF (f2(x11131)1z1) 	(x1Ifl(xl'z1))])]  0 	 0 
A 	Pl(x1,132) A P/(xi,b2)] D EF0(x1)]) ; 

ii) Wp2(k1,k2AF0)  is as follows: 

ciF0(kllk2);  

/r0 
(x,,x2) D 	Pi(xilx2) A P2(x2;x1)]n 

r0
(x1,x2lb2)] 

A 	P2(x21x1) A P2(fi(x2,b3),x1)] 

(xl'f2(xlIx2)) A  1 
z1) D  

QF (x1Jx2/z1)111 0 

P2(fl(x2,b3),x1)  

IcIF1(xlIx2) A  

[(̀IF1(x1'x2' z2)  

QF (x1/ x2' z2)  0 
A ft-1k 11(x1,x2) A 1,2(x2,x1)] 

A -4 -1  P2(x21x1) A P (flex 1 	1) 
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gFl(xl,x2) 	P1 (x2' b2) Q71.(xr x2' bl)  

A E-) Pi(x2„b2) D 

(qF  (f2(xl,b1),f2(x2, 
1 

A 

N l(f2(Xl,b1);f2((2,b1),Z1) 

QF  (xl,x2,f3(fl(xl,z1),x2))]1] 
1 

A [PI Pi(x2,b2) A Pl(x2,b2)] Z EF1(xl,x2)13 

To prove that Wp(k,QF  ) is a logical definition of Pc9  we 
0 

proceed similarly to the case of the one-level language in the previous 

section. However, because of the multi-level nature of computations, 

the conditions that Wa 
must satisfy cannot be stated for each Wa. 

separately. Before we can state the conditions we must look more 

closely at some properties of multi-level computation. 
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IfafunctionvariableF.
0 
 occurs in a term in Cl. , and for 

computation of Fi  , called with arguments El...En.  , this term is 
1 

computed, causing F,.
0 
 to be called with arguments 111...11n 	then 

we say that 

'F. is called with 711...1 at the top level of 

Fi  called withE,...En.  
1 

e.g. For 

F1(x1) <= F2(f1(F3(f1(x)),F2(x))) 

F3(x1) <= F2(f2(x1)) 

F2 is called with E at the top level of F1  called with 

F2 is called with f2(f1(E1)) during the computation of F 

called with E
1  but is not so called at the top level; 

If F2  called with El  terminates with fl  and 

F2 called with f2(fl(E1)) terminates with t2  

then F2 is called with f1(g2,t1) at the top level of 

Fl  called with El  . 
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We can now define a relation c on terminating computations of 

function variables, as follows: 

i) a. = F.(x1n  ...x - ) <= T.(x1  ...xn  ) 1 	. 	1 	. 1 	1 

Where 'T is a simple term. 

There is no terminating computation X such that 

	

X c[F.1  called with 	for any 
1 

ii) a. = F.(x1 
 ...x

n  ) 
	7. (x1 

 ...xn  ) 	
1 
(X
1 
 ...x

n1
) 

1 	1  
• 

	

Tri 	(x ...xn. ) 	T 	(X . "X ) 

m. 1. 3.
m. 

1 n. 

where for arguments y..tn. ' 
7i.( 

 
1 	3 

and 	T. (X
1 
 ...X

n 
 ) is a simple term. 
. 

3 	1 

) is true 

There is no terminating computation X such that 

X c[Fi  called with 	] 

iii) In all other cases, if Fi  is called with 11...Ti 	at the top 

level of F. called with1n. and F. called with
1n. 1 	 1 1 	 1 

terminates, then 

[Fj  called with 	] c [Fi  called with t 

(Fj  *called with 111...Ti 	clearly must terminate.) 

We can extend this relation to suitably defined parts of computations 

of function variables as follows. 

If F. is called with tl.. I.I.  at the top level of F. called 
a 	 1 

with 	with 	..t 
1—  3a. ' 	 1 	1. 	n. " 

1 	 I 
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up to the point where F. is called with 	.at the top level, 
0 

is called a part of the computation of F. called with E1...En. 1 

We will refer to this part as 

,Fi calledwithEl...En. uptoF.called with ti...tn.'. 

Note that all parts of computations (terminating or non-terminating) 

are finite. 

We extend the relation c to cover parts of computations by 

noting that i) and ii) above hold also for parts of computations X 

We also add the extra cases: 

iv) 	All parts of F. called with
ni 
 c:[F. called with

1...En.]. 

If F.
0 
 is called at the top level of F. , this is because a. 

contains a term with subterm F.(T1  ...In 
 ) . Now for any F

k 
0 

if Fk is called with 111.. 	at the top level of F. called 

with E1... n.  , and the occurrence of Fk  in question is in one 

of the terms T1...Tn.  , then 

- a) [Fk  called with 	I k 
c [F. called with 	up to F. called with tl...tnj] 

b) [F. called with El—% up to Fk  called 

c [Fi  called with 1
. ..E 	up to P. called with ti...tn.]. 

i  
0 

This completes the definition of the relation c on terminating 

computations and parts of computations. 
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The transitive closure c of this relation-' is the non-reflexive 

partial ordering which simply reflects the containment of one terminating 

computation, or part of computation, in another, due to the multi-level 

nature of computations. We have made this ordering explicit to allow 

its use in a later inductive argument. 

In the rest of this section we use the following convention: 

n. 
E ...E11 )=E491 °;(51...511.)= 8E1611 1  ; 

(t1.- no) 

	n. 	 n, 
; (111•••Tl) 	TIElc91 " nk  

11)7E141 ; 

k = (k1...k1  ) ,h = (h1...hn.)„d = (d1...dn.) , g = (g1...gn  ) and e 

are constant symbols. 

We can now give the conditions that we wish ficy  to satisfy. 

If F. is called with t at the top level of F. called with 5 

and for all F
k 

f [Fi  called with S up to Fk  called with 11] 

c [F. called with S up to F. called with t]l 

5'11 c9dg 
F ( ) q

F.
(d.),T4 	kct 

-4Y relation c is defined by 

i) X c Y => X c Y 

ii) X c Y and Y c Z .=> X D Z 
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and for all Fk : 

t[ 
	

called with Ti (and. terminating with pa)] 

c [ F 5.  called with 5 up to F. called with 

11  
g e 

F 
qFk 

	
QFk(g'e)  

then 
5 t c9d h 

„qF 
(h)  

F (d),W cr 

II) If Fi  called. with 8 terminates with y 

and for all Fk : 

([Fi  called with 6 up to Fk  called with 

[Fi  called with 5] 

d g 
=> 

q 	w F. (d), a F (g) 

and. for all Fk  • • 

{[Fk called with TI (and terminating with 

c [Fi  called with 5] 

TIP,  
g e 

"IF 	*" 7  
k tn.) 	

Fk(g, e) Q 
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then 

Q
F
(d,e) 

III) For all W &6  , reading Wai  makes sense if we precede it by • al   

'for all sets of computations of F. ', and q
F (t.1

...T
n
) is 

J 	J 
readas'inonecomputation1 F.

J 
 is called with T

1
...T

n
' , 

J 
and QF (1-1...Tn.,Ti.+2) is read as 'in one computation, 

J 	J J 
F.,  called with T,...Tn.  , terminates with value T

n.+1
1 1 

 J 	J 	 J 
and EF.(T1...Tn  ) is read as 'in one computation, computation 

J 	j 
of F. , called with T1...Tn. , is suspended' . J 	

J 

These conditions have been given in a form in which it is readily 

seen that W
a 

satisfies them. The required consequences of these 

conditions can be stated much more concisely than the conditions 

themselves. 

Since there can be no infinitely descending chains of terminating 

computations ordered by c , we can immediately get more concise forms 

of I and II by induction (on the partially ordered set). 

Ia) 	If F.
J 
 is called with t at the top level of Fi  called with 5 

then 

c9d h 

ciF1.0.)c7  ciFj( h)  

a  - 
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IIa) If Fi  called with s terminates with y 

then 

y 
e 

(d., e) 
9F (d) 

(A.10- 	
2. 

The required consequence of III comes from considering the minimal 

relations as in the previous section. 

define the sets of minimal relations 

If for 
Ag Ag 

.L , V 

= 	) we  
A 

and E such that 

i) forg
EP 

A  g ' 

	PT ‘ti  
g I \ 

	

PF. 	if and only if 

	

0 	i 
in computation of P

J 
 for inputs 	. 

F. 
0 

is called with 

vF 
0 	0 

Eve 	g , 	vF (t/Y) if and only if' F.
0 
 is called 

t in computation of P for input 	, and terminates 

• 

ii) for 

with 

with value 

g -g and iii)for e
F

C 

0 
called with  

eg
F  (0 if and only 
0 
	if computation of F. 

0 
in computation of Ps  for inputs g ; 

is suspended. 

By choosing just those computations of Fi  that occur in computation 

of P for inputs 	, condition III implies that 

. • 
IIIa) for all W ew 

. 	CY 
W 	is true in 

A  g •S g g 

CSIPA A 

q Q E 

where q , a and t denote all the predicate symbols F. 
Cl 

QF. and E
F respectively. 
0 

We can now prove the following proposition. 
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Proposition 3.  For W
P
(k,Q

Fo
) = [(1

Fo
(k)) U 

a 
where W

a 
satisfies 

II, and III 

i) F. is called with 5 in the computation of P for inputs 

J 5 
kd 

a 
ciF (a)  

o 

• WP(k,QF

) 1 

F. is called with 5 in the computation of P
e9  for inputs 	, 

and terminates with value µ 

µ 
c9

k d e 
a 1- 	0/7  (d,e) 

o 
WP(kQe ) 

Proof 

i) 

=> 

LHS => F. must be called at the top level of some other function 

variable, which in turn must have been called at the top level of another, 

and so on back to Fo called with 

J!. d 

Wp(k,QF  
o • 

. Hence by repeated use of Ia), 

(a) 
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RHS => 

	

kd 	qF. (d) 

	

W (k 	) P F 
0 

=> Vqlti[WP(k,QF ) D qF. (d) ] true in 4 d  5 
o • 

By IIIa for all W Q  Efi 	Wa. is true in cr. ". E • and 111, (E) • - 	 q  

Therefore WP  (k QF  ) is true in t [I V E 
61k El. 4 

i.e., F. is called with S in the computation of Pc9  for 

inputs 	. 

=> 

c9k 
LHS => 

WP(k'QFo
) 
 qF. (d) 
	

by i) 

then by IIa) 

c0 
kd e 

1"- 
W (k„Q P Fo 

QF  (d, e) 
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As for the second half of i) 

RHS => %)F  (5,µ) 

i.e., F. is called with S in computation of P
e9 
 for inputs 

.and terminates with µ . 

Q.E.D. 

We see that W(k,Q
F ) describes the computations of. P in the 
o 

 

desired way. 

An immediate corollary is 

Corollary  

k e 

(k1Q ) (1110 
P Fo 

a computation of P for inputs 	terminates 

with result µ . 

Hence WP(kQF ) is a logical definition of P
e9 
 . 

o  

The closure of Wp(k,Q ) is a universal formula and contains 
xo  

only extra predicate symbols. However, aciaitydEWp(k,QF  ) is not a 

formalization of partial correctness of P since it is not necessarily 

monotone. However, if we add an axiom, defining Wl(k,0) as the closure 

of 

WP( QF ) U (QF (k,x) D 0(k,x)j 
0 	0 

then WT
P
(k 0) is still a logical definition of P , and is clearly monotone. 



By the Corollary above, for any set iV of relations on.  

V*4 : [SaAdyk10) is true in  sigh ] 

=> IrtelS1no 	VµEISI : 	(dlp) => 

By condition IIIa) 

n.41 
ISI 1 

t at ;,t 	vt 
w, (k,0) is true in c9 	F0 

k 	t 

by monotonicity 

A A 	 nif acialmv(k,0) is true in c.4 
k 

• P • Wt(k 0) is continuous. •  

Hence aaH4EPTVP(k 0) 
is a formalization of partial correctness of 

This means that Wi
P
(k 0) can be used to formalize all the usual 

properties of P , (including properties concerning the detection of 

error conditions, see Ashcroft [1 ]). 

Manna and Pnueli [11] have formalized the partial correctness of 

programs very similar to the functional programs considered here. The 

work was done about the same time as the work presented in this 

section;  but independently. The relationship between the two 

approaches is worth considering. 
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Relationship to the Work of Manna and Pnueli  

The functional programs considered by Manna and Pnueli are 

slightly different from those considered here, but the principles 

of computation are basically the same. The difference between the 

two methods lies in the formulae or axioms used to describe programs. 

Basically, Manna and Pnueli associate a single predicate symbol, Q. 

say, with each function variable, while here we associate two symbols 

qF. 
and  Q

F. 
. If, in the axioms given in this section, all the 

formulae c1F.(T1—Tn) 
 were replaced by T (true) and the axioms 

were then simplified, the result would be the formulae of Manna and 

Pnueli. The reason is that Qp.eci. ..Tn.'Tn.+1) 
 has the intuitive 

I 	a. 	a. 
meaning 'F. , called with T

1' 
. .T

n. 
, terminates with Tn

.+1
1
1 1 

1 	 0 
whereas Q1,.(1.1.....,Tn has the intuitive meaning 'F. , called a 

1 	I 	a. 
with arguments T

l'
..T

n. 
such that q

F. 
 (T
1 
 ...T n ' ) 	terminates with 

1 	1 	1 
T
n.+1 	

That is QF.(T,...Tn.+1)= qp (T,...Tn.) A Qp.(Ti...Tn+1) 
1 

Clearly putting qF (T,...Tn) F--- T , makes QT.  become identical 
1 	1 

to Qp , and it is not surprising that the simplified axioms are 
i 

identical to the Manna and Pnueli formulae. 

Considering the Manna-Pnueli formulae as logical definitions, 

(which they are, by Correspondence Theorem 2) we find that they do not 

describe computations in the same way. The relevant, second part of 

Proposition 3 holds only in the forward direction: it is possible 

to deduce the situations occurring in a computation, but not all 

the formulae deduced describe situations that occur. 



According to the criteria given in the previous section, the specification 

of the Manna-Pnueli formulae would not constitute a logical definition 

of the functional language. 

However, the Manna-Pnueli formula are simpler than the axioms 

given here, and in general they give shorter proofs of properties of 

programs. 

Conclusion 

A method of defining multi-level programs has been given, and the 

conditions that the axioms of such a definition must satisfy have been 

given in a form that enables such axioms to be checked intuitively. 

These conditions can be merged with the conditions for one-level 

language definitions in a simple way, as will be shown in the next 

section. Using these new conditions we will develop a logical definition 

of a large subset of Algol. 

73 



Section 5: ALGOL LIKE PROGRAMS 

In this section we are going to develop a logical definition of 

large subset of Algol 60. The features in the language will be added 

successively to a simple language that includes statements and specified 

functions (called procedures). At each stage the required modifications 

will be given that have to be made to the simple language definition. 

The final language will have most of the features of Algol 60, 

including many types of statements -- assignment, conditional, jump, 

while, block and non-type procedures -- using expressions containing 

type-procedures, including boolean and array procedures. 

The language will not have the 'call by name' feature, nor will 

it allow label and procedure parameters. However, 'side effects' of 

procedure calls will be possible by the use of non-local variables. 

There will be no input-output operations as such; programs will have 

certain 'input-variables' which are given values at the start of a 

computation, and certain of the variables in the program will be 

designated as output variables, whose values at the end of the computation 

are to be considered to be the results of the computation. 

Despite these restrictions, the language will be quite a good 

approximation to Algol 60. 

The logical definition of this language can also be used to formalize 

partial correctness of programs, and therefore can be used for formalizing 

many other properties of programs. 

In the rest of this section we assume some familiarity with the 

constructs of Algol 6o. This will allow informal descriptions of programs. 



The Simple Language 

We start with a simple language in which a program is a sequence 

of statements: assignment, condition, and jump statements. Variables 

are not 'typed', and there are no arrays. In these respects, the 

language is similar to the flowchart languages considered by Manna 

and Floyd. However, in the assignment statements we allow the use of 

procedures. A program therefore includes a set of simple procedure 

declarations. 

Each such declaration consists of a list of formal parameters, 

followed by a declaration of local variables, followed by a sequence of 

statements (the procedure body). The name of a procedure is used like a 

variable in the body of the procedure on the left hand sides of assignment 

statements, to hold the result of the procedure call. We restrict the 

scope rules so that the only other variables that can occur in procedure 

bodies are the locally declared variables, and the formal parameters of 

the procedure. There can therefore be no reference to non-local variables 

declared outside the procedure declaration. In a similar way there can be 

no jump statements within a procedure body whose destinations are labelled 

statements outside the procedure declaration. 

A program consists of a list of input variables, followed by 

procedure declarations and a declaration of local variables, followed 

by a sequence of statements (the program body), followed by an indication 

of the output variables. The variables that can occur in the body of the 

program are the input variables and the local variables. 

A program P therefore looks as follows (variables are indicated 

by indexed letters X , Y and Z ): 

75 



m1 local 

[ body of F1. 

Yll" lno,  Zll' ,Zim 	Fl. 
1 

Y 	...and 

variables of F1  

Variables allowed: 

program P(X1,...„Xn  ); 

begin  

  

specification of n
p input-variables 

 

decl Z1,...,Zm 

procedure F1  (Y11, 

begin  

• • 

1 

P 
local program variables 

n1 formal parameter of F1 

        

decl Z 	Z • 11' 	' Im ' 1 
(statement); 

• 

(statement) 

end.; 

Procedure F j 01 	jn. 

begin 

decl Z 	Z  
• 
• j11 	jm.'  

n. formal parameters of F. 

m. local variables of F. 

) 
n  

(statement); 

(statement) 

end 

(statement); 

(statement); 

• 
(statement) 

output(X 
al 

end.  

body of F.. Variables allowed: 

Y. ,Z ,...,Z. 	and F.. j1' 	jn. jl 	jm. 

body of program. Variables 

allowed: X1'...,Xn ,Z1,...,Zi 
P 	P 

(specifiCation of no  output variables, 

taken from X1,...,Xn  ,Z1,...,Zin  . 
P 	P 

We consider output(Xa ...Xa ) to be a statement, but such statements 
1 	no 

 

can only appear at the end of program bodies. 



The various-  other types of statements are as follows: 

Null statement. 

null 

ii) Assignment statement. 

=X. : T 
1 

where T is a term as defined in the previous section (with 

procedure names instead of function variables). 

iii) Conditional statement. 

if n then (statement) else (statement) 

where y is a propositional term as defined in the previous 

section (i.e., no procedure names). The 'else (statement)' 

part is optional when omitting it does not introduce ambiguity. 

Jump statement. 

goto L. 

where L. is a label. Any statement can be preceded by one or 

more labels, each followed by a colon. In any procedure or 

program body, any label occurring in a jump statement occurs 

exactly once labelling a statement. 

To simplify the later logical definition we stipulate that the 

last statement in the sequence forming a procedure body is null. 

We can now give an example of a program. The statements have been 

numbered for later reference. The numbers are not part of the program. 
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program sort(list); 

begin  

decl result; 

procedure merge(sortlist,atom); 

begin 

(8) if null(sortlist) A lessp(atom„car(sortlist)) 

then (9) merge := cons(car(sortlist),merge(cdr(shortlist),atom)) 

else (10) merge := cons(atom,sortlist); 

(11) null 

end 

(1) result := NIL; 

(2) L: if null(list) then (3) go to out; 

(1.) result := merge(result,car(list)); 

(5) list := cdr(list); 

(6) go to L; 

(7) out: output(result) 

end 

141 consists of atoms and lists of atoms. The lisp functions and 

predicates have their usual meanings, and 'lessp' is some relation that 

totally orders the atoms. 

Execution of programs  

The execution of these simple programs conforms with the usual 

Algol meaning, with the following restrictions: 

i) On calling a procedure, the parameters are passed by value only. 

Together with the scope restrictions given previously, this means 

that calling a procedure produces no side effects. Hence in the 

evaluation of terms, e.g. fi(r1,T2) it does not matter which subterm 



T
1 

or T
2 

is evaluated first. However, we will allow side effects 

later, so we will stipulate that 

Terms are evaluated left to right, i.e., T
1 

before T
2 
. 

In most sensible programs, the value of a variable is not used before 

the variable has been assigned a value by an assignment statement. 

HOwever, when a variable is declared it must have some value, and we 

stipulate that 

iii) the initial value must be the same for all declared variables. 

This holds for the name of a procedure used to return the 

value of the procedure (i.e., this value will be returned by 

any call of a procedure in which no statement is executed 

that assigns a value to the name of the procedure). We 

assume this special value corresponds to a special constant p 

in the basis symbols of J . 

We do not intend to give a description of the execution of programs, 

but to simplify the later logical definition we assume 

a) There is a known correspondence between variables occurring 

in statements and their first occurrences in parameter lists 

or variable declarations. This means that there is no 

difficulty in renaming all variables in the program without 

changing its computations. 

b) There is a known correspondence between labels occurring in 

jump statements and the statements that are the destinations 

of the jumps. 
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Every statement has a 'successor' statement, defined as 

follows: 

i) For statements comprising the sequence of statements that 

is a procedure or program body, the successor statement 

is simply the next statement in the sequence. For the 

last statement in the sequence, i.e., null or output, the 

successor will be denoted by c 

ii) For statements contained in other statements (in this 

case, in conditional statements) the successor statement 

is the successor of the smallest containing statement. 

We will not give examples of computations, but merely remark that 

the above program 'sort' sorts lists according to the relation 'lessp' 

on the elements of the lists. 

Logical definition of the simple language 

We intend to amalgamate the two previous definition techniques, 

for the one-level language and for functional programs, into a definition 

of the simple language. This means introducing three types of predicate 

symbols: 0a , indicating that computation has reached statement a , 

qp.  indicating the call of procedure Fi  , and QF.  , indicating that 

F. is called and returns a value. The symbols qF 
 and QF  are 

n.-ary and n.+1-ary as in the previous section. For 0a where 



statement a is in the body of procedure Fi  (the program P] , we 

define the numbers a' = n.fn p 	1 3 and a" = (n. -Fm.1  +1) [(nP 
 -1-m 
P 
 )3 g 

1  

Then 0 is a' +a' -ary. a" is the number of variables in scope 

for a , and in fact we can map these variables into the integers 1 

to a" according to the order of their first occurrences in parameter 

lists or declarations, e.g. for 

program Prg(foO,baz); 

begin  

decl 

procedure F(D,E); 

begin  

decl G; 

al; a2; c3;  null 

end 

a4;  
a5;  

output(B,C) 

end 

in the program body, 

ait  = 2 , art  = 5 , and the variables are ordered 

foo, baz, A, B, C; 

in the body of F 1  

• 

a2 	, 2 	2a" = 4 	and the variables are ordered 

F, DI  E, G 

As in the previous outline of a program, ni  is the number of formal 

parametersofF.„andm.is the number of locally declared variables. 1 - 
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With the program P itself we associate predicate symbols 

qp 	(np-ary) and QL., (np  +no 
 -ary) . 

We are going to construct formulas using these predicate symbols, 

and the construction of these formulas will be more obvious if the 

symbols are considered to have the following meanings: 

ql,.(T...,T..„)means'procedureF.is called' 	with arguments 
2 	,..,, 

TI ."Tn. t  " 	. 1 

Qp.(T1,...,Tn.,Tn.+1) means 'procedure Fi  is called with 
2 	2 . 2 

arguments Tl...Tn  and terminates with value T
n.+1 

'. 
2 	 2 

Oci (ti,“")tat,T11•••71.0.0 means 'computation reaches statement a 

(in some procedure (program) body) with variable values 

TI....Ta" when the procedure (program} was called with 

arguments (inputs) t1..,ta, 

The formulas are constructed as follows. 

We assume that X. represents the i-th variable in the ordering for 

.a particular procedure declaration or program.' 

With each statement a whose successor is a2 , and v
2  e , we 

associate a folmula W : a 

i) 	Null  statement: 

a:- null 

Oci (Yv • • • Y0_,;x1; • • •;x0.1t) 
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ii) Assignment statement: We  is best illustrated by 

examples 

a) c : - - Xi  : 	fi(brXk) ) 

Wa:-  00.(Y1'“Yat,X1,'"IXan) 

b) a:- X .:= F1  (X.,f2j  (X.)) 

We: 00-(Y1,'"/Yaf,X1,'",Xatt) 

fq, (x
"L
„f2(xi)) A 

(x” f2(xi) zi) D 
-°"3_ 

Ocr 	(Yi, • • • , 	t , xi, • - • xi  _32 	• • • , xo.„ ) 

	

2 	2 	 2 

c)a:-   Xi  := fi(Fi(F (Xi) , F2  (Xi  ) ) F2  (Xid ) 

We:- r6cr  (Y1, • • • , Ycy  Xi, • • • X0  it) 

(xi) A 
2 

(x z ) D 2  1 1 

[q, (x.) A 
2 
	 (x.,z ) 

2  2 

IcIF1(zl'z2) A 

	

EQ, 	(z.12 z2) z3)  Fl 

IciF2 (xk) A  

[Q'F'2(xk' 

0a 
2 

 (Y1• • •Ycy 
2  x

j.,•• •,xi 	fi(z3, zit),•••,xa„
2

)B1)B 	• 
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This example illustrates the leftto-right rule for evaluating 

terms. 

The construction of Wa for all assignment statements 

should be obvious from these examples, 

iii) Conditional statements 

a) 	a:- if Tr(X ,...,X ) then  e0  else  e1 
131 	I3j 

where e0, a1  are statements, and Tr(X13  ,...,X ) • 1 	Pj 

is a propositional term (Kn  EtK1,...Ixd, i = 1...j) 
1-'2. 

We:- 0 (Y 	U
I •..xa" D 

if Tr(x,„ 	) then Oa  (y,...y„,,x,...x,n) 
w Pl 	 0 	o  

else Oa  (y,...y,„x,...xa") 
1 	wl 	1 

a:-  if Tr(X 	) then a
o P1 	Pi 

0
a(Y1—Ya"xl—xa")  D  

if 11(x 1...,x ) then 0 (y 
pl 	o 0 

.x e„) a” 0 

else 0a2(y1,.  ..,ya,,x,, ...,.x ) a. 
2 	2 

2/4  For formulas, if P then A else B means HP D Al A [--IPDB]] . 
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'iv) Jump statements 

a:- goto L. 

where label L. corresponds to statement a1 

W :- a  0a(y1...ya,,x1...xan) 

015  (y,...y al 
  

II) For statement a whose successor is E , there are two cases to 

consider: 

i) if a is the last statement in the body of procedure Fi  , 

i.e., null, then with this procedure declaration we associate 

the axioms 

[qF.(y1n.)D O a  0(  ,Yi,...,Yn  

0a(Y-1"."Y-a,,x1,—"xan) QF (Y1.—Yn 'xl)/  

where c0  is the first statement in the body of Fi 	(Note 

that 	= c  t = /a.1  .) 0 	.  

ii) if a is the last statement in the program P i.e., 

output(X ...Xa  ) , where Xa.  e(X1  ...Xa" } 	= i 1 n
o al no  

then with the program we associate the axioms 

WP:- f ( P. 	) D 0a0(Y1,--,Yn  

00.(Y1! • • 	-..,xu) DP(Y1,---,Ynp'xal..-  /ca  )3 
no 

where a0  is the first statement in the body of P . 

(Note that at
0 
 = at = n .) 

85 



III) We then define the set of axioms Wp(k,Q2  '11  as 

[qp(k),W) U Nola in iq U pw_ IF, in P} . 

For example, Wp(k,Q1) for the program 'sort' is given below. 

Statements are referred to by the numbers in the example, and 

procedure 'merge' is referred to as F . Axioms are separated 

by semi-colons. 

Wp(k,Qp):- qp(k1); 

gP(Y1)  01(YVYV P);  

°7 ( y1' xV x2) q.e(Yi! x2 )  ; 

0 (y
1 
 ,x
1  ,x2  ) D 0 (y1  ,x1  ,NIL); 1   

02(yilx,,x2) 	if null(xl) then 03(y,,x1,x2) 

else 04(y,,x1,x2) 

°3(Y1f x.If x2 ) 07 (Yr xV x2 )  ; 

04(yi,x1,x2) D (qp(x2, car (xi) ) A 

(x2,car(x1), 	Os (Y3! 	za.)  ; 

05(y,,x1,x2) 06(yrcdr(x1),x2); 

C66(Y1'xl'x2) 02(Y1'xl'x2); 

..kn ) are constant symbols. 
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CIF (Yr Y2) D (Y1' y2,  P' Y1' Y2)  ; 

Y2' Xi' X2' X3) D Q'F (YI' Y2' xl)  ; 

08(Yr y2' x3.! x2' x3) 
 
D if —I  null(x2) A lessp (x3, car (x2) ) 

then 09  (yi, y2, xi, x2,  x3) 

else 010  (yi, y2, xi, x2, x3) ; 

09 (Y1' Y2' xr x2' x3) 
 
D tqF(cdr(x2),x3) A 

[Qv(Cdr (X2) Xy Z2) D 

C611(Y1' Y2' cons (car (xi) , z2) x2, x3) n 

010 (Y1' Y2'x1,x2' x3) 
 
D 011(y1, y2, cons (x2, xi) , x2, x3) ; 

These axioms can clearly be simplified so that Wp(k,q) becomes 

qP  (k1  ) • ' 

cIP(Y1) 	113 2 (Y1' Y1'11111)  ; 

02  (yi, xi, x2) Dif nuLl(xl)  

then Qp(yi, x2) 

else NI, (x2, car (xi) ) A 

[QT(x2' car (xl)  ' zl) D  

9i2 (Y1' car (xl) zl)  ; 



qF(Xi,X2) 	if null(xi) A lessp(x2lcar(x1)) 

then (qp(cdr(x1),x2) A 

[Q./Car (X1) ;3C2' z2) D  

QF(xl,x2„cons(car(x1),z2))11 

else QF(x1,x2'
cons(x

2'  x1 
 )). 

Clearly the construction of Wp(k,QI) uses the techniques 

developed for both the one-level language and for functional programs. 

We will not go through the proof that Wp(k,Qp) is a logical definition 

of P that describes computations of p 	since it is similar to 

previous proofs, only longer. We will simply give the conditions that 

WP(k,(1P) satisfies and state the relevant proposition. 

Any computation of a procedure or program body consists of a 

sequence of computations of statements from the procedure or program 

body. When we talk of computations of such statements, the 'next' 

statement is the statement (in the same procedure or program body) whose 

computation follows the computation of the statement considered. This 

is not always the same as the successor statement, for example for jump 

statements or conditional statements. 

The conditions on 

W = tWla in 11 U DJF  IF.cP) i  

are as follows. 
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If for computation of statement a , for variable values 

(111---Tn) = 1 the next statement a1  is reached with variable 

then for all 5 = (d1..01„)EIsi 

values (111...µ_
u
") 
l 
	

at 

dgh 
1-; 	Ocr d 
Pa(d,g),wp 	1

( ,h) 
 

II) If for computation of statement a , for variable values (1...1'15") = , 

procedure F. is called (at the top level, i.e., CY contains Fi) 

with arguments ( i,...,tn.) 

then for all 8 = (8 ---)6at)ciSlat  

d gh   

(h)  pa. ( a.)  , wp  

III) If computation of Fi  called with 	) = , reaches statement a 

in the body of Fi  with variable values (I-1'1a") = 

then 

`'h g 
k 	0 (h,g) 
qF.(h) CAT 	

a 
P 3. 

IV) If computation of F. called with1—n  ) = t terminates with y 

then 
_ot 

e 

q (h)A 
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• 
V) 	For all'statements a in procedure F.

0 
 (program 11 	We makes 

sense if we precede it by 'for all sets of computations of a ' 

and we read - q
F.
(T
1
...T

n
) as 

	

1 	1 
'in one computation, F. is called with T

1.. .T11.. t / 
3. 

Q
F.
(T
1
...T

n.
IT
n.+1) is.  read as 1 	a. 1 

'in one computation, F. is called with T1...1-
n. 

and terminates 1 1 
With Tn+1 

00..(t1,...,ta,,T1,...,Tau) is read as 

linonecomputation,whichisin.thecomputationofF.
0 
 {13} for 

arguments {inputs} t1a' 	a. is computed for variable 

values 

For all procedures Fi  in P , WF  makes sense if we precede 

itbylforallsetsofccunputationsofF.tand the predicate 

symbols are read as in V) above. 

It is clear that WP  satisfies the above conditions (conditions I-IV 

require induction on lengths of computations as in the previous section, 

but are quite straightforward). From these conditions we can prove the 

following proposition. 

Proposition ii.  If Wp(k,(1.e) satisfies I -VI: in computation of P 

for inputs 
(1... n ) = ' 
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a) statement a in the prograM\ 

body is executed for variable 

values 	.Ti) = 

F. is called with 

(81...8n.) = 8 

c) F. is called with 

(81-8n.) = 8 and 

i) 	statement a in the 

body of Fi  is 

executed for variable  

k• g 
a) 1- 	0a(kv g) 

W (kIct ) P P 

Sk d 
b) qv  (d) 

WP -P (k ) "ui 

c)  

if and 	Jt 8 11  k d g 
only if 	i) Oa  (d, g) 

Wp(k,Qp) 

values (1...%.) 

computation of Fi  

terminates with y 

jt 5  
k d e 

ii) 
W
P 
 (k1Q...) Fi 

d) computation of P terminates 

with output values 

(µ1...
µn) = P 

k• h 
F 	, 	Q

P 
 (k,h) 

W kk,Q P P 
I 

• 

Proof is similar to the proofs of the previous three propositions. 
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We see that WP 
 (k,Q

P 
 ) is a logical definition of P and it 

describes the computations of P in the desired way. 

It can also be easily shown, as in the previous section, that 

Wp(k,Qp) is both monotone and continuous, and therefore aQiip(kly 

is a formalization of partial correctness (where Q denotes all the 

extra predicate symbols except Qy  , and V1p(k,Qp) is the closure 

of ck,Qp) ). We can therefore use TykA2) to formalize properties 

of P such as termination, correctness, etc. 

We can now add extra features to the language and modify WP(k,q ) 

accordingly. It is clear that after each modification, WP  still 

satisfies I-VI (possibly modified slightly) and so Wp(k,Qp) still 

is a logical definition. 

Extensions of the Simple Language 

1. While statements  

We add statements of the form 

a:- while  7 do a 1 

where n is a propositional term, and a1 is a statement. 

Let the successor of a be a2 
 • 
' 



Wa:-  0a(Y]:"Yal,X1'—xan) 

	

if 7 then 0c 	u 	-I-  

	

l 	I 
else 0a 

(y1...ya',x1...xa") 

	

2 	2 	2 

and we stipulate that the successor of al  is a . 

2. 	Conditional expressions  

We modify the definition of assignment statements by allowing 

expressions on the right hand sides. 

An expression is a term or is of the form 

if 7 then  T
1 

else T
2 

where T
1'  T2 

 are expressions)  and Tr is a propositional 

term. 

We will illustrate the construction of Wa by examples as before -- 

the successor of a is a2 
. 

a:- X. := if 7(X, ...X„ ) then f2(Fl(fi(Xi)),Xk) 
Pl Pk 

else F2(Xi,Xj)  

Wa:- Yja(Y1...Yaf'Xi...X0-")  

if 7(x...x ) 
°J. 	°k 

then (c1F1(f1(xi)) A  

[Q.„ (f,(xi),z1) DOcr 	...yailx,...xj_l,f2(zilxk) ..Ixa")]) 
1'1 -L 	2 	2 	2 

else (11 (x.,x.) A F2 	j 

[Q
F2
(x.
1
,xj.' z2  ) ...,xj_,,z2...xa,)]) 

2 	2 
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ii) 	Xi  := F (if Trr  then b1  else fi(Fi(Xi)), 

if Tr2  then X j  else if Tr3  then Fi(Xk) 

else b2) 

Wa:- 06 (y1. • .y , x1. • .x0 „) 

if 7., then if 11,1
c 
 then 

[qF  (bi,xi ) A 
2 

[Q, 	(b,,xj, z1) 200_  (y, .ya  , xi, . . . x j  _1, zl, . , x0.0 ] ) 
'2 ' 	u2 	2 	 2 

else if 73  then  

(q, (x,
"

) A 
1 

(xk' z2)  1 
[q, (bIl z2) A 

[972(br Z2' z3)  °O.2Y1' 2 
... a.)]}]} 

2 
else [q, (b,,b2) A 

1 -I- 

N, (b„ b2, z4) D 

	

°O* (Yi* "Ya 	" Xj -11 Z4. 2 	2 
else (q (x.) A Fl  

	

[QF 	
j  

(x.,z5) 	D 

if Tr2  then 

	

Ccip (fi(z 	) 

[QF 	(fi(z5) Ix j, z6) D 

..02) ]) 

06 (Yr • • • ,Y0. xi, • • • xi 	z6, • " xo. it) 13 
2 	2 	 2 
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else if Tr
3 
 then 

(gFi(x d A  

[C1F1(Xle Z7)  

(ci 1(fi(z5),z7) A 

[QT1(fl(z5)5 z7 z8)  

Oa (Yi• • •Yar'xi'•••'xi-r z8,— "xa") 3331  
2 	2 	2 

else tql,
1 
(f/(z5),b2) A 

[q
p1 
(fl(z5),b2,z9) D 

Oa 
2 
(Ylr- 	

2
,Yat ,X1,-•,Xj_1,Z9,—Xau)])13 • 

The construction of We 
is clearly lengthy but straightforward. 

3. 	Modification of propositional terms  

We are going to allow general expressions in propositional terms 

instead of simple terms and allow if then else as a logical connective. 

This means introducing procedure calls, the if then else construction 

and a left to right evaluation rule for the generalized propositional 

terms own as propositional expressions). We shall give examples 

of W. for conditional statements formed with such propositional 

expressions. The formulae for while statements are similar. 

i) 	v : 	if [P.(F,(X.)) A 	j P.(F1  (Xk 	al 

	

))] then 	else a2 

95 



11T (xi) A  1 

[Qr (x.' Z1)  

if P.0  (z1  ) then 

[qF (xk)  A  1 
[Q._
FlK 

(x_ l z2) D 

if —1  P.J  (z,e) then 

Oa  (Yi• • •Ycrt ,X22 • • •)X 0 
1 	1 	crl 

else Oa  (yi...ya ,,x1,...,x")11 
2 	2 	02 

else Oa 
2 
 (y/...ya22„xl...xa")]) 

ii) 	a:- if if p -L then [Pk(Fi(Xj)) V Pk(f2.(Fi(Xk))) 

else Pp Pk (Xk) then bi  else x.) 

then al else a 

wa:-  

(q,„ (x.) A 
111 

[Q, 	(x., z ) 

	

F1 	1 

if P.(z,-L.)  then 

(q (x.) A Fi  j 

	

[ 	(X . z2) 0'  
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if P (z ) then 0 	tlx,...x0,) 
1 k 	2 	— cr 1 ...y ci1 J_ 

else tqF (xk) A 
1 

~QFl(xk,z3) =3 

if 11(fi(z3)) then Oal(yi...y:0.11x1...xaT) 

else Oci (ya....ya„xl...x(0)]1]) 
2 	2 	2 

else if Fk(xk) then 

   

.x a„) a” 1 
if P.

a 
(b1) then 0 (Y ---Y cr 	1 	a t 1 	1 

else 0(12(y1...N,x1...x0.1 ) 

p.(x.) then Ocy1(y,...y.01,x1...xan) 
1 

Oa 
22 
(Y1---Ya,,x1-. 

2 
an)11 

else if 

else 

4. Blocks  

We allow blocks as a new type of statement. 

.A.bg.ock is a sequence of statements, preceded (optionally) by 

local variable and procedure declarations. The last statement in the 

:sequence is null. 

e.g. 	begin  

decl Xl...Xi; 

procedure Fl(Y1...Y6); 

begin  

end; 

(statement); 

'(statement); 

null 

end 
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We generalize procedure declarations so that they each consist of a 

formal parameter list followed by a block. 

Clearly blocks and procedure declarations can now be nested to 

any depth, and the scope rules get more complicated. We still do not 

allow reference to non-local variables in procedure bodies, so that 

the variables in scope for any particular statement are simply all the 

variables declared in enclosing blocks out to the smallest enclosing 

procedure declaration [or the program itself} plus the formal parameters 

and name [input variables} of this procedure {program}. 

e.g. for program F(X1); 

begin  

decl X2'  • 

procedure Fl(X3); 

begin  

decl X • ' 
procedure F2(X5); 

begin  

decl• x6, 
a • 

a2' • 

begin 

decl x7; 

a3' • 
begin  

decl• X8, 

null 

end; 

null 

end; 

a5; 

null 

end; 

a• 6' 



begin  

decl• X9, 

a
7-  
; 

null 

end; 

null 

end; 

cf8;  
output(X2)  

end 

we give the variables in scope (in correct order) for statements 

of P as follows: 

al' a2 : X5, X • 6' 

a 	: I  3 	F2, X 5  X6, X7; 

: F21 X5, X6, X7, X8; • 

a5  : F2, X5,  X X6;  • 

06 : F1,X X • 5' 4' 

a
7 

X3, X4/ Xg; 

a8 : X1, X2. 

The formulae W are based on the fact that " is the number 

of variables in scope for a . Therefore we have to.redefine a ,  and 

a,  = (number of formal parameters of the smallest procedure 

declaration enclosing a ), 

and 

a" = 1+a,  (number of local variables declared in blocks, 

within this procedUre declaration, enclosing a ). 
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If a,  is not enclosed by a procedure declaration, a' is the number 

of input variables and a" = + (number of local variables declared 

in blocks enclosing a ). 

The modifications of the definitional axioms are then quite simple. 

Let a be the block 

begin  

decl X ,...,X ; 
131 	Pi 

procedure  

00 

a
1 

end 

i.e., a0  is the first statement and a, (i.e., null) is the last 

statement, and let the successor of a be a2  . We simply define 

the successor of 5
1 

to be a2  and associate with a the axiom 

W 	0 (y 	y x ...x ) a' 	l' 	al' 1 	a" (Y1-..Yafpxv.--,xan/0,-",P) 

j times 

(Note that cr"0  = a" j by definition) 

For any statement of  in a which causes execution to leave a 

(i.e., a. is a
1 or is a jump statement), the axiom Wa. will show 

that the values of the j local variables are lost on leaving a . 

This is because for the statement of  that is reached, a? is at least 

j less than of , and it is the rightmost argument values (corresponding 

to the local variables) that are dropped. 

e.g. for the following fragment of a program 
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procedure F1  (X2  )* ' 

begin  

decl• x3, 
some of the axioms are as follows: 

Wa :- C6o 2 (Y1' x1' x2' x3' xi) D 2 

C6a (Yi'xi'x2'x3'x413)  

We 	0 (y ,x ,x ,x ,x, o 	o4  1 1 2 3 4,x  ) 

0a8(Yi'xi'x2,x3,x4)  

We :- 
0_  (y,,x,,x2,x3,x4,x5) =3 

5 	
o5 

Oa (Yi'xi'x2'x3)  

w
a6 	

00. 
6
(y,,x1,x2,x3,x4,x5) 

Oa
7
(Yi'xi'x2'x3'xi)  

(The procedure name F
1 corresponds 

L: 

begin 

decl X47; 

a2 
	begin 

decl X5; 

N: 
• 
• 
• 

goto M; 

05 	 
goto L; 

• 

null 

cr7 

a
8 

 

end 

K: 

M: 

to x1 .) 

  

  

null 

• end 

.null 

end 
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5. 	'Side-effects'  

We allow statements in procedure bodies to use non-local variables, 

i.e., the variables declared in blocks enclosing the procedure declaration, 

and the formal parameter and procedure names of other procedure 

declarations that enclose the one in question. 

ThismeansthataprocedureF.is a function not just of ni  

arguments, but of ni+gi  arguments, where gi  is the number of 

non-local, or 'global', variables to which Fi  has access. For any Fi  

g. is a fixed number, namely the number of input variables plus the i  

number of variables and formal parameters (and procedure names) in 

blocks and procedure declarations enclosing the declaration of F. 

In fact there is a mapping of these gi  global variables into the 

integers 1 to gi  according to the order of their first occurrences 

in parameter lists and variable declarations. A given variable is mapped  

into the SAME number by the appropriate orderings for all the procedures  

that have this variable as a global. That is, we can assign each 

variable and procedure name a number, and whenever this variable or 

procedure name is a global of a procedure, its position in the ordering 

of globals is just this number. 

The effect of F. is no longer limited to returning a single 

value, but it may now change any of the gi  global variables. 

We must therefore adjust the number of argument places 

of the predicate symbols qF.  and Qp  which have to describe the 

effect of F. ; qF.  becomes g.+n. - ary and QF. 
becomes 

g.+n.+g.+l -ary. 
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For 0a we redefine a' and a" . If the smallest procedure 

.declarationenclosingaisthatofF. I then we put a' = g.+na.  . . 

.Then, as before, a" = 1+a' +( number of variables declared in blocks 

containing c , contained in the declaration of 1) 	If there is 

no such procedure declaration enclosing a , then at and a" are 

not altered. In both cases ocr  is c t + a" -ary. 

This definition of a" ensures that the number of variables that 

can appear in a is a" and the order of appearance of these variables 

In parameter lists and declarations maps them into the integers 1 to a" 

The modifications to Wp(k,Qp) to deal with side effects are 

as follows: 

a) 	The axioms Wa are defined exactly as before (using the new 

definitions of at and a" ) except for statements that include 

procedure symbols (procedure calls). The method of construction 

of Wa for these latter statements can easily be inferred from 

the following example, which was used previously in the original 

specification of Wa  : 

a:- Xj  := fl(F1(F2(Xi),F2(Xj)),F2(X0) 

Note that both gl  and g2  (for F1  and F2) must be 

less than or equal to a" because of the scope rules. We 

assume j > gl  ›. g2  . 
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W 

IcIF2(xl"'"
xg2

/xi) A  

(x .x /xv 

	

1 	g2 i/  11"'"v1 2 

	

[41 (v 	v 	,x.) A F2  11/ .1  1g2-  

1°2  	 (v12! ../ • 	v1g2/ xj/ v21' ...,v2, ,z2
) 

tq (v2  ,... 
Fl 1  

EQF (v21".  1 

(cIF2(v31" 

NT 2(v31/  

0 (Y l' a2 1 

,v2g2,xg2+1...x,z1,z2) A gl 

"v2,,.625'/x,-2+I- 6x--1 -L./z-"z2.°731/ 3)D  

. V3g2, xk) A 

• • • , v3g2„ xk, via  • • • v1g2, Zid 

• Ya2  v1-1-1/ 	vii-g2/ v3g2+1' ' .v3g1/ xg1+1/  ' 

xj.a,f1(z3,Z4),...,x0.011)1M1 
2 

The construction is lengthy but the ideas behind it are quite simple. 

The construction of W is unaffected. 

The construction of WF. 1 
statement on the body of 

statement, then 

is as follows: if ao is the first 

F. , and al (i.e., null) is the last 

WF' -- (qF 1 

,z1) 

.y g.+n.  
1 1 

...Y 43,Y 	...Y g+1 gi 

.Y ,x 	) 0 ( 	, ...x )1 

	

a' 	1•  ''x 1  a"' D  -F. Ỳ1'''Yg.+n. 1 	.+1 

	

1 	1 	1 1
x 	

gl 
(Note that g.+n.1  = a0 

  a
1  '
t ) 

1  

The reason why this construction of WF_  works is that if a 1 
statement calls a procedure Fi  , then the gi  globals of Fi  
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are exactly the first gi  variables for the statement in question 

(by the property of the ordering, mentioned previously). 

6. Non-type procedures  

We can now allow, as types of statement, procedures which do not 

return values. The effect of these 'non-type procedures' is purely-

on their global variables. The differences in programs are 

i) We distinguish between the declarations of the two types of procedure by 

calling the non-type procedures routines. A routine declaration is 

Simply 

routine R.(X ...X 	); 
1 pi  pn.  

(block>; 

ii) In the body of a routine declaration, the name of the routine cannot 

be used like a variable. (This will require slight, but trivial, 

modificationsofthedefinitioneg..) 

iii) Routines are called by statements of the form 

Ri(Ti...Tn  ) 	where T1.n are expressions. 

The modifications of the axioms are minor. As mentioned already, a 

Slight but obvious modification is needed in the definition ofgi  . so 

that routine names are not counted as variables in the way the procedure 

names are. Apart from this we need only consider the routine statements 

themselves and the routine declarations: 

a) 	We shall consider only a very elementary routine statement. The 

treatment when more complicated expressions are included is similar 

105 



(but more complicated). 

a:- R.(Xct  ...Xan.
) 	and the successor of a is a2 

1 1 

Wa:- 0a(yi...ya,,X1...Xa”) 

[gR (X1...Xg'Xa --xcc .
) A 

1 	1 1 n1  
[Q„, (x,...x,.1xa  ...xa  ,v,...v 11. 

(xi 
1 	51 1 n. 	gi 1 

0a(y1...ya"v1...v .,x g. 	a
2+1,...,x  2 	g 	u)11 . 

2 	1 3. 

b) 	If a0  and a1 are the first and last statements in the body 

of R. then 1 

(Y1...Y) =3  1 1 

Oa (Y1—Yg.4.n.IY1—Yg.+n '13-43)P  0 	1 1 	1 i 

Oa  (y1...yai,x1...xau) 	QR  (yi...yg 411 lxi...x )1 • 
1 	1 	1 	i 	1 1 	gi 

7. 	Data Types  

The addition of data types to the language is more than a simple 

modification of the computing systemi it implies a partition of the 

data space 'SI , and the existence of certain 'type-conversion' functions 

which do not appear explicitly in programs. We will therefore start by 

considering 61 . 

gt is suitable for basing a multi-typed language on if there are 

.special subsets Ai,A2,... of IS'  , possibly infinite in number, 

and not necessarily disjoint. Equivalently there are unary 
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relations .ni,n2,..; on 1,91 characterizing these subsets; 

and they correspond to unary predicate symbols in the basis 

of c.9 which we shall denote by 	Ti,T2... 

ii) for each subset Ai  a function 	1,41 Ai, such that for 

all Ee.A. 	= . The corresponding function symbol 

in the basis of c9 we shall denote by hi  . 

iii) a special element from each subset Al  , corresponding to a constant 

symbol in the basis of c9 which we shall denote by pi  . 

This means that 9 is a model of the following axioms: 

Ti(hi(x)) 

Ti(x) hi(x) = x 

Ti(pi) 

for all i  such that A. c J I . 

ThesetsA.will be identified with the various types of data 

manipulated by programs, e.g. integer, real, complex, etc. The special 

element from each set is the initial value assigned to variables of the 

corresponding type, and the function *i is a type-4conversion function. 
The latter will be applied during execution of programs to ensure that 

variables of a given type only get assigned values of that type, and 

that procedures get called only with appropriate types of arguments. 

Other type conversions during the evaluation of expressions will 

occur automatically because the functions corresponding to function 

symbols in programs must be total on Ic9I . For example, if the subset 
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AN  of 1,91 consists of the integers, the function corresponding to 

the function symbol 	may perform addition on AN  but must also 

be defined for arguments of other types. Hence in specifying its 

operation for other types of arguments we can introduce any type conversion 

rules we wish. We have therefore shifted the bulk of the type conversion 

into specification of 9 , and need not consider it further. 

The changes made in programs by the addition of types is as follows: 

i) When variables are declared, their type must be specified. This 

is done using the predicate symbols Ti  , by replacing declarations 

of the form 

decl X,Y,Z; 

by, for example 

T1  X; 

T1  Y Z• 

ii) The types of formal parameters and input variables must be 

declared similarly, and the type of result a procedure returns 

must be specified. e.g. 

a) 	instead of 

procedure F.(X , 1 

we might have 

T3  procedure 11.(T4  LI  .L T  2 

instead of 

program P(X
3
,X ,X1  )- ' 
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we might have 

program P(T1  X3,T3  X „Th  x1); 

and c) instead of 

routine Ri(X
1
,X2„X20); 

we might have 

procedure Ri(Ti  X11114  X2,T3  X10); 

(i.e., to conform with Algol notation we revert to using the 

word procedure for routines, now that the declarations indicate no 

value is returned.) 

If Tl'2'.•  T 	. are in fact 'integer', 'real' ... the similarity to Algol 

is apparent. 

The modifications of the axioms W are again very simple. 

The axioms for a given program are almost thoSe that would be 

produced if the program were changed slightly as follows. 

i) Assignment statement 

X. : = T 
0 

where X.
0 
 is declared of type T. , is changed to 

X. 	:= h
i 
 (T) . 

Procedure or routine call 

Fi(T1...Tn.) 
1 

wheretheformalparametersofF.are declared of types 

Ta ,...,T
an.

, is changed to 
1 

Fi(ha
a.  
(T1),h (T )) 
1 • 

...,ha n. n. 	1 1 
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The only other modifications of the axioms involves assigning 

the correct types of initial values. 

e.g. for T3  procedure F.2(T2  X1  ,T3  X2  ). ' 

begin 

T1  X4  

T2  X6; 

c0;  

null 

end. 

WF. includes the axiom 
1 

qF.1 	2  (Y 	g11 ) =3  i 	.2  

Oa (Y1' —"Yg...4-n.5Y15  "Ya."P3/Yg.-1-1—  'Yg.-1-n.113l"P11132) 1  . 0 	n. 	'2 	a_ 

and similarly for routines and blocks. 

8. 	Boolean Procedures  

In our treatment of data types we have been completely general, and 

assumed no properties of the types of data considered. However, there 

are some type of data which influence the syntax of programs, for 

example, 'boolean' data. Boolean variables are considered to hold 

'truth values', and it is desirable to allow statements of the form 

X. := r 

where Xi  is a boolean variable and r is a propositional expression. 
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Using such variables it is possible to declare procedures returning 

values of type 'boolean', and it is desirable to allow such boolean 

procedures to be used in place of predicates in propositional expressions. 

Clearly the values of boolean variables are not really truth and 

falsity, but some values that can be interpreted as truth and falsity. 

Therefore if Is I includes a set of boolean values, e.g. Ao  , then 

there is a special relation X characterizing the 'true' elements of 
AO 

The predicate symbol corresponding to this relation we shall denote 

by G . We shall also assume two special elements of AD  corresponding 

to constants T and 	only the first of which satisfies X . That 

is, gl satisfies the axiom 

T0  (T) A T0  (5) A G(T) A G(5) . 

If there is such a data type in 	, then we can use boolean variables 

and boolean procedures in the way mentioned, and also use the constants 

T and y and any boolean variable as propositional expressions (in 

assignments to boolean variables, and in other propositional expressions).  

The axioms fi are then exactly as they would be if the program 

were changed as follows. 

i) Wherever an expression T is used where a propositional expression 

is appropriate (using the original definitions of expressions and 

proppsitional expressions) 	is replaced by G(T) . 

ii) Wherever a propositional expression  it is used where an expression 

is appropriate, u is replaced by if u then T else  y . 

The program then conforms with the original syntax, and WP  can , 

be constructed. 
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Arrays  

Another type of data that influences the syntax of programs is 

arrays. If a program contains a variable X. whose value is an 

n-dimensional array, then we would like to allow expressions of the 

form X.[T, ...,T
n] , and statements of the form 

Xi[1.1" --"Tn]  := Tn+1 

where Tl—Tn+1  are expressions. We shall allow such expressions and 

statements by showing that they are simply shorthand forms of other 

expressions and statements of types we have already considered. 
A 

The axioms W are then constructed from the program with these 

other expressions and statements replacing the array constructions. 

To represent these constructions as normal expressions and 

statements we require the arrays to be objects defined as follows. 

We consider an n-dimensional array to be a family of data objects 

indexed by certain n-tuples of other objects (for generality we do not 

assume the index-objects are integers). The simplest situation is where 

the elements of the n-tuples are independent, i.e., the index set is the 

cartesian product of n sets of data objects. Only this situation will 

be considered here. Thus an n-dimensional array2-.7:11  with index set 

B1xB2x ...xBn consists of a family of objects b, ,b ...b 3  / -1  a2  an  

In normal Algol programs, B1...Bn  are finite sets (of integers) 

that are determined during the computation of the program (prior to 

allocation of the array variable). If subsequently there is an attempt 

to use an index not from B1  x ...xBn then either the program fails, 

e.g. for exceeding array bounds, or perhaps some conversion is made to 
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give an index within bounds, e.g. when a real number is used as an 

index. If we wish to keep Bl...Bn as general sets of data objects, 

it is difficult to incorporate the feature of array bounds into the 

language, and even harder to give a logical definition. 

We are therefore going to assume that the sets B1...Bh  are sets 

of data types, e.g. A ...A . Then if there is an attempt to use an 

	

71 	7n 
index not from A X A X ... xA , it is converted by using the 

	

71 72 	7n  
functions ir  ...*

Yn 
. Then, for example, an integer-index array has 

71  
no bounds on the integers that can be used as indices. 

We are also going to assume that all the objects in a given array 

are of-one type. An array variable declaration is therefore of the 

form 

Ti  array Xl  [Tk n 1  T., T ] 

indicating the variable X1  is to take as values families of objects 

from Ai  , and all the families will have index set Ak  x Ah  x Ag  . 

Since arrays are data objects, we might consider the set of all 

arrays to form a data type Aa  , with predicate symbol Ta  . But 

then Ta  could be used in array declarations, 

e.g. T.  array X2[Ta] , 

so that one index of X2 would be X2 itself. Such circularity will 

lead to paradoxes. It can be removed by letting there be many types of 

array. For instance, the type of Xi  above we could denote by 

. This type could then be used in other array declarations, T(klh,g,i) 

and no circularity would result. 

e.g. T(1 . 
,3  
.) array X3j  [T.' T(k,h,gli )] 

would be of type T 	namely a two-dimensional array , 



worie_dijnerisional arramindexedivelementsof1"and by three-

dimensionalarraysofelEmentsofA.,indexed by elements of Ak 
Ah and Ag  . 

*/ 
Such objects are difficult to implement or understand and in 

practice we would restrict ourselves to simple arrays, neither indexed . 

by nor containing other arrays. However, we shall continue for a while 

to consider the geneml case. 

For array objects to be used in programs as the values of array 

variables, 9 must contain two functions 

A . X •• • xA 	xA 	A 
) 71 	7i-1 (71-7i) 7i 

and 

a
(71--- ) 

: A_ x...xA
71 

 xA 	A 
(71  ---Y-) 	(Y1. --Y.) 

for each setA(y...7) 	corresponding to function syMbols(7---Yi) 1  i 	
1  

and a 
-(71-7i)  • 
These functions are defined as follows: for  b.EA

7 
 , • j = 1...i 

 

	

0 	• 
and SEA 

K(7 	...7.)(b 	'b  i-l'b ...b. 1 	1 1-1 

(i.e., the element of 	indexed by (b11  
,...,b.

-1  ) ) and 

'(71-7i
)(b 

 1 	1' 

-2/ although the type hierarchy of arrays is intriguingly similar to the 
type hierarchy of computable functions of Scott [ ], especially 
considering arrays as functions from index sets into elements of the 
arrays. 



where 	is the family of objects (in A 
7i  

that element .7-r, 	is b. . 1...b.  1-1 

identical to F., except 

These are McCarthy's [12] state-vector functions, generalized to 

an arbitrary number of dimensions of indices of arbitrary type. Using 

these functions we can clearly express the constructs 

X.[r ..T ] n 
and. 

X.[T1  . . . T n] := T n+1 j  

as follows. For array variable X. , declared of type Ti„, .-
7
n
+1) 1 ‘1   

Xj[Ti...Tn] 

in some expression is shorthand for 

(h 
71 
(T
1 
 ),...,h

7n 
(T 
nJ  
),X.) c

(71
.--7n+1)  • 

and statement 

X.[T
1 
 ,...„T

n
]

n+1 

is shorthand for 

Xj := a 
(71— "Yn+1)(h71

(T1)1...
h7n+lern+  

Hence for any program P we can construct W using these function 

symbols et, 	and a
(7 -..7-) ‘il 	1 

Once again we have defined a construct in the language by shifting 

most of the task into the specification of .9 . Now if .9 has certain 

simple properties, and programs are restricted in certain ways it is 

possible to give complete axioms r for the at_ 	and 
/3. /II 	K(Y1---7i) 

functions, so that the task of specifying .9 simply involves finding 

a model of these axioms P . Better still, if So  is .9 restricted 

to the non-array data types, then we can 00-relatively deduce from 
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Wi,(k,Q1),r exactly the situations we can S-relatively deduce from 

yk,Q2) . So adding arrays to the language based on So  simply means 

that r is added to the logical definition, and programs are converted 

to use the c 
Yr—

Yi and a 
71-7

i functions explicitly. 

The restrictions on S are: 

i) 	The family of objects in A 	comprising the initial value 
7i 

of array variables of type 	
/ ) 

Tr_ 	, has all 
/1. 	1 

its elements equal to Y
i 
 • 

ii) The objects denoted by the constant symbols101. 	cannot be 

arrays. 

iii) The only functions in S mapping into arrays are the type change 

functions * 	and the functions a 
(71-7i) 	...Y) 1 

	and 

K(Y1-Yi)  

The restrictions 	and iii) on .9 imply that the only expressions 

in programs that can have arrays as values are 

a) Xj  where X. is an array variable, 

b) F.(T
1 
 ...T 

n. 
) where F. is an array procedure, 
1. 

.  

and c) X
k
[T
1
...T

n] where Xk is an array array; 

and in all cases the type of array produced is known from the declarations. 

It is therefore possible to require the following restrictions on programs: 

iv) In expressions of the form 

f.(1.1 
 ...T 

n
) 

none of the expressions 1...Tn 
are array valued. 

In expressions of the form 

Fi(Ti...Tn.) , 

n6 

r3.(yl-v) 



-the j-th formal par'ameter of Fi is declared to be an array 

of a certain type if and only if the expression T. has as 

value an array of this type. 

vi) In statements of the form 

X. := T 

T is an expression whose value is an array of a certain type 

if and only if X. is declared to be an array variable of this 

type. 

vii) No array variable can be declared to have arrays as either 

indices or elements, i.e., no higher type arrays. 

viii) Input variables cannot be arrays. 

No predicate symbol in a program is applied to an expression 

that has an array as value. 

These restrictions ensure that in the computations of programs, 

no type-conversion is performed from or into arrays. Therefore the 

functions h 	need not be introduced when constructing 14a . (71-7i)  
Then, in the symbolic computation performed by ak-relative deduction from 

Wp(k,Q2) the terms representing array and non-array data objects will 

be of certain forms, as defined below. 

A simple-type term is one of the following forms 

b. 
1 	simple type constants 

• Pi  

ii) 	k. input value 
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f.(T
1 
 ...T 

n
) 

h.(T1 
 ...T 

n
) 

where T 1  ...Tn 
 are simple-type terms. 

(h (T 	(r. ),T) 
c(71-71) Y1 1 	Yi-1 1-1  

where Tl''1 
.T.-1 are simple-type terms and" T is a 

-term. 
T('71-7i)  

• 
Simple-type terms denote non-array objects. A simple-type term that does 

not contain c 
(7 ---7) 1 

symbols is called a non-array term. 

A 
 T(7 7 )

-t erm is one of the following forms: 
1' • '1)  

array type constant 
13(71-.-Yi) 

a(yj.....yi)(hyl(r1),
71
(Ti),T) 

where T ...T. are simple-type terms and T is a T 1 	1 	 (7 --.7-)
-term. 

1 

T(71...7i)-terms denote array objects of type T(71...yi)  . 

Restriction ix) implies that in 4-relative deduction from W
P  (k QP  ) 

we need only know the truth or falsity of predicates applied to 

simple-type terms. We shall give a set of axioms I' such that for every 

simple type term T we can (,.9
0k-relativel,y) deduce from r a formula 

T = TI where 	is some non-array term denoting the same value as T . 

Since non-array terms are constructed from the basis symbols of ,90  

(c9 restricted to non-array data objects) then we can deduce all situations 

from Wp (k1QF  ),r relative to c9
ok 

 . 

r is therefore the required set of axioms describing the addition 

of arrays to the language based on ,90  
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The axioms r are: 

A 	
7 c 

IJ1 1 
71 	 a 

for all y1  ...y. s.t. 

I: T1  TT V ... T.-1 VT1-1  D V ' 1  

(T ,... T. 	, c(y,...yi) 1 	' 11 a  (yi...yi)(Ti"."TI-1/Ti/T))  

= c(y1  ...y.)(T11—"Ti-l'T)  • 

II: c, 
lY ---7. 

,...,T. ,,a, 	(Tv • - •/Ti_v"ri.,T)) l7 ---Yi  

III: c (71  ...7 .)('''""T i-liP(71...yi) 

where t1,1121-2,T,...„-r. are simple-type terms and T is a 

-term. 
T(71-7i)  

These axioms are simply generalizations of those for McCarthy's 

c and a functions. 

It is easy to prove the following property of r by_ induction 

on T . 

Completeness of I'  : 

For all simple-type terms T , and non-array terms TI : 

J
ok 
• At N I- 	T = Tt  44. cykkT) = r 

Hence r can be used in the desired way to add arrays to structure Jo  . 
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10. Jumps out of procedure bodies  

This final extension of the Simple Language is also the most 

difficult to incorporate into the logical definition. 

We allow the labels in jump statements within procedure bodies to 

refer to statements in blocks enclosing the procedure declarations. 

The variables in scope for these latter statements will be included 

in the globals of the jump statements. In fact, if statement a is 

the destination of jump statement al  , then the variables in scope 

for a will be exactly the first a" of the a" globals of a1 
. 

1 

Therefore, at first sight, it appears that the formula Wal , 

for the jump statement, 

i.e., 	
°a (Y1-76"xl—xan)  
1 	1 	1 

06(Y1"*Yat'XI:"X6tt) 

will already adequately deal with such jumps out of procedures. 

However, variables yl...ya, in the first part of Wa  represent 
1 	1 

the values of the globals and actual parameters when the smallest procedure 

enclosing a1 
was last called (we shall call these the 'called-values' 

of al  ). Since a is not within this procedure, yl...ya, do not 

represent the called values for the subsequent computation of a . 

Therefore We 
does not follow the computation of a1 

in the required way. 
1 

 

Now the called values of a statement do not affect the computation 

of the statement; they are only used in the logical definition where they 

are merely passed on from one statement to the next until the computation 

of the procedure is completed. In a similar way, Wa  could be modified 
1 

to copewithjumpsoutofproceduresifforeachstatementa.there were 
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0 
another set of a. values, taken from variable values at previous 

points in the computation, which we shall call the 'historical-values' 

of the statement. These values are to be passed on (by the formulae) 

from statement to statement until some jump statement al  is reached. 

At this point we would require that the historical values contain 

the called values of destination a . In fact, if the first a' of 

the historical values of a1 are the called values of a we might 

define Wa to be 
1 

w1...wa0,y1...ya',x1...x,) 7)0a(w1
....via ,x1...x al( 

	1 	1 	1 

0 
However, a itself will have a 	historical values which Wa 1 

must supply from the historical values of al  . So if 

i) the first a°  historical values of a1 are the historical values 

of a , and 

ii) the next a' historical values are the called values of a 

we can define Wa to be 
1 

0
a1 
(w1

a 
0,y

1 
 ...y

a Ix1  ...xa  ) 
1 	1 	1 

0 (W 	0,W 	5 ....71ftra0+0., X1 oX
a" 
) 

1 a  +1 

In fact it is possible to find historical values with just the 

properties mentioned. 

If the smallest procedure declaration enclosing a statement is 

forprocedureF.,then we say that the statement is at the top level 

of Fi . We stipulate that all statements at the top level of F. 

have the same historical values (because we assume that from any such 
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statement it is possible to get to any of the jump statements that jump ,  

outof- F-1  ). 

With each procedure F. we associate the set of statements (Ei) 

which is the union of 

1) The set of all statements outside F. that are the destinations 1 

of statements within F. . 
1 

ii) {E3  .} for all procedures F. called within F. that are not 

declared within F. . 1 

Now, if Fj  is the smallest procedure containing a statement in 

(EI  .) then it immediately follows that the historical and called values 

ofthe'statementsatthetoplevelofF.
J 
 contain just the historical 

and called values of statements in fEil (any statement in (Eil 

outsideF.mustbein [Ed) ). That is, the historical values of 

statements at the top level of Fi  are just the historical and called 

valuesofstatementsatthetoplevelofF.,whereF.is the smallest 

procedurecontainingastatementin. {El} . (This relation between 

F. and F.
0 
 will be denoted by R(F.,F.) .) 

0 
This is sufficient to specify the number a of historical values 

for any statement a . In addition, it implies that the historical 

values of 
	

(at the top level of Fk) can be ordered as follows: 

the historical values of statements at top level of Fh  (in 

order) followed by the called values of statements at top level 

of F
h 

where R(Fk,Fh) . 

Then if a1 is in (Ek) , the first a
0
1 historical values of a 

are the historical values of a1 , and the next a
,
1 
 historical values 

of a are the called values of a . 
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°a . 

This property of the-ordering is just what we need to modify the 

logical definition. 

We increase the argument places of the various predicate symbols 

as follows: 

For statement a , 0a is a a°  +co + a" -ary predicate symbol. 

ForprocedureF1  .,wedefineannmbere.so that e. = a for any •1  
statement a at the top level of Fi  . Then qF  is a 

e.3.+g3.3_  +n. -ary predicate symbol. As before, QF,  is a gi+ni+gi+1 -ary 

predicate symbol. 

We then modify the formulae Wa  and W
F. 

as follows: 

i) 	If a is a jump out of a procedure, to statement al  , then 

Wa : 	00, (W.7  . 	. .ya, 	. ocry  „) D 

0a 	(W
1 

 • • .W
a 

 o ,w 
l a l 

+1, • • ../w0.04.a , ,X1.  • ocan) 
1 	1 1 	1 

For other statements, Wa  is modified by 

a) adding variable symbols w• • -w 1 a onto all subformulae of 

the form 

0a.(t1...t T ...T ) 
a!' 1 	a? 

giving 

b) adding to all subformulae of the form 

qF.(T1"'Tg.+n•) 
0 	• 
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the first e. variable symbols in the list 

wl...waoy,...ya, 

giving either 

qF 	 “We 'Ti...Tg 

or 

q 	v F. 1 	a '-1—Ya"Tl—Tg.+n. 

iii) If a0  and a1 (i.e., null) are the first and last statements 

in F.1  then 

WF :- 
2. 

(w1...we.
,y1...y

g.+n•) 
1 	 1 1 

0a0 	1... w 0.0,Y1-..Ya.4.n./Yi-..3rg ,P,Yg.4.1, 
0 	-1 

°a (wl'''w°'Yl—Ya"xl—xan)  1 	al 	1 	1 

Q (Y1 Y.g.-En. xl.  -.. 	, 	.. xg.+1)) 1 

00 	a. 
0 

	

(e. = a = a1 	and 	g.-1-11. = a0 	1 
= a' .) 

The construction of 1:1 should become clear from the following 

example„(for simplicity we have dropped the data types). 

2.(2  If a -is at the top level of the smallest procedure enclosing a 
0 

statement in (Ejl then e
i 
 = 6 +cr y  , otherwise ej  . <: a 0. 
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program  13(Xi,X2,X3);*  

begin  

decl x4,; 
)(5 

procedure  F6(X7,X8); 

begin 

decl x9; 

procedure  F (K ,X ); 10 11 12 

begin 

al; 

F10 := F6(X7'X12);  

goto L; 

goto M; 

null 

end; 

6; 
• 

cr —L:F6 := F1o(x4'x3);  
cr8 	goto  N; 

-- null 

end; 

cam; 

all --- M:  X2 := F6(X4,X2); 

N:  a12;  

a
13 7-- output(X4,X2) 

end. 



Here 

[E6) = 61l' 612 

(E10)  = (avail) u (Ed = (a7"a11'a12) 
 

• 

Hence 
0 	0 	0 

10 = 611  = 612  = 613 = 0 ; 

0 e6  -- a b  - = ag  = a8  = 7 	a6 = al7  = a,  = a,9  = 7 

0 0 0 0 
cr5 

0 

	

el° = al  a2 = 0.3 = cr 4  = 
	
= 3 + 7 = 10 . 

The various formulae are as follows: 

	

(9.P(Y1"Y2'Y.3) 	°610  (YrY2'Y31Y1'37.2'37.3'P'°' 

936 

	

	(Y1,Y2'Y3"x1" • • •' X5 ) 	G1/2)(Yil  Y2"37.3'xii-lx2))  13 

Wa :-  0 	(Y1, Y2,  Y3, xi, • • • x5) 
ll all 

(clm (Y,,Y2,Y3,xly • • -/x5,x4,x2) A 
'r  6 	-I- 

[QF6  (xi., • • • , x5, x4, x2, 	• • • , v5, z1) D 

Oa (Y1,Y2,Y3,1t1'z1,1/"3,vlev5)]] 12 

W
F6
:-  (9.F6(w1,w2'w3a1,.. 	) D 

00 	 .7 
6
(w1, w2, 	Y32 • • • 	• • • .2 Y5,13, Y6, Y7,13) 

(wl'w2/1'13' Y1' • • • Y7' xl/ • • ' x9)  
9 

gr6  (Y1' ' ')Y7)xl" 'x6) 3  
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_ 	( xr • • • ; x9) 
7 
(q(w ,w ,w ,y , ...,y ,x , 	x x x)A 

F10  1 2 3 1 	7 1 	9' 	3 

[QF 	(xi„ . , X9, X4, X3, 	. .v9, z1) D 

10 

00.8  (wi; w2; w3; Y1, • - • ; Y7; vi; • • • ; v5; z1; • • v9) 11 

0  (w w w v 0.8 	1' 2' 3' - l' • • • Y7' xi' • *x D  
12 (w1- , w w3 2' ' x1, • • • ,x5 ) 

WF10 2  - [CIF
10 

(W1' • • • W10" Yr • • • Y11)  

93Cr
1 

(Wr • • • W10' 
Y1

,•  • • Yll'  Y1'  • • • Y9'  Y1 Y11)  

r6a 
5 
(w1 • •w10' y1' * • ' Y11' 	• • ' x12)  

QF 	(Yr • • • ; 	xi; • • • ; xio) ) 
10 

Wa2
: —  Ocr 2  (wl' • • • ' w10' 3r1' • • Yll' x1' • • x12)  

(qF6(wi,w2,w3, 	, x5, x7, x12) A 

, x5, x7;  x32;vl, . . . ; v5, z1) D 

0 	; • • 	 • • • v a 	(w 1 	• 'w10'3r1' • • • ' Yll' V  1 	5' x 6. .x9, zl, xn, x12) ] 1 

Ocr• 3 
(w1, • w10' Y1' • • • ' y11' x1' • • ' x12)  

00'
7 

(wl'w2'w3'w1' • "w10' xr • • • ' x9)  

	

°a- (WV • w10' 	• •Y  xi, • . . x12) 

(w 0. 	1, w2, w3, _ x _22  • • • , x5) 
Ll_ 
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Conclusion 

We have now developed a logical definition of a language with 

many of the features of Algol. This logical definition can also be used 

as a formalization of partial correctness, and therefore it can be used 

to formalize many properties of Algol programs. The definition has 

not yet been put to this use for any programs of interest, and it 

remains to be seen whether it can be used in practice for this purpose. 

The axioms Wp(k,Q1) produced fora program of any complexity will be 

numerous and complicated, but if the program itself forms self-contained 

sections, (e.g. procedures) then the axioms also will form self-contained 

groups, which can be used to prove properties of the sections. With 

practice, the definition could become a useful tool for practical program 

verification. 
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