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ABSTRACT

An explanétion is presented of the shrinkage process
in unidirectional fibre composites which leads to thermal
self-straining and successful predictions on the nature of
the stresses are méde.

A finite element method is used to investigate the
shrinkage and ahesive stresses in uniaxial fibre composites
for various fibre spacings. It is shown that the magnitude
of the shrinkage stresseé depends on the Young's Modulus
of the matrix and the thermal coefficients of expansion of
both matrix and fibre. The transverse stresses are compre-
ssive for most fibre spacings increasing with decreasing
fibfe spacing, except for very close spacings when tensile
stressés develop from within the central region of the matrixe.
| Plané and axisymmetric finite element idealisations
simulating the conditions in the axial direction of fibres,
and as used by other investigators to study the response of
composites to external forces, were found to be inadequate
and unsuccessful for the simulation of thermal shrinkage
in real composites.

A photothermoelastic technique has been developed to
study the restrained shrinkage in the composites for both
continuous and discontinuous fibres using a hot-setting epoxy
resin as matrix and aluminium rods as fibres. The results
for the caseof the continuous fibres aéree well with the
numerical results. A triaxial state of compression is found

to exist in thhe discontinuity and initial high shear stresses



at the tip bf the fibre ends were sufficient to initiate
cracks when the fibre spacing was close.

The effect of the initial stresses in composites is to
increase the compogite strength in compression and in tension
for continuous and discontinuous fibre composites respectively.
It should be possible to control the manufacture of composites
for high performance applications by optimising the spgcing
of the fibres so as to avoid initial tensile stresses which

would precipitate cracks.



ACKNOWLEDGEMENTS

The course of investigation reported herein was initially
suggeéted to me by Dr. W. G, Wood., I wish to express my
sincere thanks for his keen supervision, encouragement and
discussion during the various phases of the research.

My thanks also go to the technical sﬁaff of the Mechanical
Engineering Department and other departments of the College
for their help in the acquisition and preparation of materials.
In particular, I express my app;eciation to Mr. A. Dowden
(Students!' Workshop) for his inﬁerest and ;dvice and to
Mr. S. P. May (ex-student) for his devoted assistance in the
preparation of the photoelastic modéls during the summer of
1968.

A It has been a great asset to work among friendly colleagues
of various backgrounds: J. P. Bindon (South Africal), P. E. J. Fish
(Rhodesia), D. Je. Hayes (U.K.), M. O. Khan (Pakistan) and
N. C. Remediqs (Kenya).

Lastly, I feel much indebted to the Unibersity of Science

and Technology, Kumasi, Ghana, who sponsored me in the

United Kingdom.,

N.K.A.



CONTENTS

NOTATION
INTRODUCTION
1. Fibre Reinforcement
2. Materials For Composites
3. Production Methods for Composites
4, Literature Survey
Se Shrinkaée Stress Studies

CHAPTER 1: MECHANICS OF SHRINKAGE

1.1
1.2

1.3

Introduction
The Interference Model

Effect of Constraint in Axial Direction

CHAPTER 2: THE FINITE ELEMENT METHOD

2.1

2.2 .

2.3
2.

N
0 U N

2.
2

2.8

CHAPTER 3:

Introduction
Displacement Functions 7
Derivation of the Element Characteristics
General Remarks

Computational Procedure

.Application to Present Work

Boundary Conditions
Accuracy

FINITE ELEMENT ANALYSTIS OF CONTINUOUS FIBRES

3.1
3.2
3.3

3.4

Introduction
Composite Materials
Composite Systems Investigated

Computed Results

22
22
23
26

27
27
28
29
32
32

33

35
36

39
39
39

41

45



CHAPTER 4: SHRINKAGE .STRESSES AROUND A DISCONTINUQOUS FIBRE

4.1 Introduction

4.2 Discontinuous Fibre Composite Models
4.3 Model for Thermal Shrinkage Analysis
4.4 Results

4.5 Relationship of Results to Real Composite

CHAPTER 5: PHOTO-VISCOELASTIC BEHAVIOUR OF BIREFRINGENT

MATERTALS
5.1 The Basic Principles of Photoelasticity
5.2 Photoelastic Methods
5.3 Photothermoelasticity
5.4 Viscoelastic Behaviour of ﬁigh Polymers
5.5 Time-Temperature Superposition Principle

5.6 Temperature-Stress-Optical Relationship

CHAPTER 6: EXPERIMENTAL WORK

6.1 The Photothermoelastic Technique
6.2 Shrinkage and Adhesive Studies
6.3 Calibration Tests

6.4 Creep Tests

CHAPTER 7: ANALYSTS OF EXPERIMENTAIL. DATA

7.1 Introduction

7.2 Planes of Symmetry

~

Page
52
52
52
54
55
57

59.
61
62
63
68
68

71
71
73
84

88

89
89

90

7.3 ©Extension of Lame-Maxwell Equations in Three~Dimensions 91

7.4 Shear Difference Method

92



7.5 Analysis of Photoelastic Data
7.6 Accuracy
7.7 Results
7.8 Comparison with Plane Model
~ DISCUSSION
1. Experimental Techniques
2. Resﬁlts
3. Effect of Externally Applied Load
4. General
CONCLUSIONS
REFERENCES
FIGURES
APPENDIX I

APPENDIX IT

APPENDIX TTIT

FINITE ELEMENT PROGRAM

Page
94

101
101

103

104

104

- 109

115

117

120

‘_123

130

192

194

199

201



€1

COMMONLY US ED NOTATTION®*

subscript for matrix; packing factor
subscript for fibre

coefficient of thermal expansion
Poisson's ratio

Young's Modulus

volume fraction

direct stress

shear streés

strain

*Other symbols are defined in text.
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INTRODUCTTION

#

The qﬁest for new structural materials to meet the demands
‘of the present and developing trend of technology has stimulated
a lot of interest and research in composite materials over the
past decade. Although the use of composite materials is an old
art (e.g. straw in bricks, reinforced cohcrete), the need to
understand the mechanics of their reinforcing action is
comparatively a very new but growing pre—océupation of structural
and materials scientists and engineers. Progress and interest
in this field of activity have been spurred on by the advent of
manufactured fibres having unusually high levels of strength
and stiffness. |

A great deal of attention has been given to the problem of
the stress distribution of fibre-reinforced composite materials
under various loading conditions and fibre geometry. However,
most practical composite materials are formed at elevated
temperatures; in addition, during use, they may be subjected
to temperature variations such as in aerospace applications.
The use of reinforced concrete in étnuctures exposed to thermal
gradients such as nuclear reactor shields, high temperature
ducts, etc. are other examples. The differences in thermal
expansions of the component materials may give rise to internal
stresses Qhose magnitudes can be extremely large and often

detrimental.



Consider, for example, a composite in which boron'fibres
aré,formed into a nickel alloy matrix at 500°C. If we assume
for simplicity that the thermal self-straining is wholly
elastic when the composite is cooled to atmbspheric temperature

wé find that stresses of the order of the strength of the
'strongest nickel alloys are produced. Little attention has
béen given to this problem in the past even though its presence
has long been recognised; only the simplest picture of thermal
stress distribution has been available. It is clear, however,
that an accurate picture of thermal self straining is necessary
before reasons for fibre,‘matr%x or interface failure can be
understood more fully.

The purpose of the present work is to explain the
mechanics of thermal self—straiﬁing in composite materials
employing continuous unidirectional fibres and to provide
finite element and photoelastic analyses for a wide range of
fibre spacing. Since many of the high strength fibres are
likely to be available only as short discontinuous filaments,
or whiskers; the thermal self-straining effects in the fibre

discontinuities havealso been investigated.

1. FIBRE REINFORCEMENT

The mechanics of fibre reinforcement is well understood
and has been treated at length in various experimental and
analytical ways elsewhere (1) (2) (3) (4). An enormous

literature covers both micro and macro-analytical methods.

¢



The general view of fibre-reinforcement is that an
otﬁerwise brittle but very strong phase is embedded in a
weaker and ductile phase or matrix which acts as a load
transmitter between the fibres. In order for the matrix to
transfer load effectively, it must have a sufficiently high
adhesive and linterfacial shear strength either through a
chemical or mechanical adhésion or a combination of the two.
In addition the matrix fulfils the function of (i) bonding
the fibres together and protecting their surfaces from damage
which could lead. to loss of strength and (ii) separating the
fibres to prevent crack propagétion across the composite
entirely in the brittle phase. The strength of the composite
depends upon the envircnment in which it is to be used and
factors like temperature, humidity, the presence of corrosive
elements are of great importance.

Both the matrix cohesive shear strength and the inte;—
facial shear strength must be adequate to the designed service
conditions of the composite. An elevated tempefature
application Qill genefally reduce the interfacial shear strength
to a greater extent or at a faster rate than the matrix cohesive
shear strength. It is therefore necessary to investigate
the effect of temperature on the matrix and its interface to
obtain fundamental information which would lead to improved
load transfer characteristics thereby resulting in efficient

and optimum use of composite materials.
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' High strength fibres are available in one of the
following forms:
(i) Glass fibres,
(ii) Ceramic fibres,
(iii) Polymeric fibreé
(iv) Metal wires, and
(v) Whiskers
Whiskers possess the highest strengths approaching the
theoretical strength of the crystal (5). These include
graphite whiskers,sapphire whiskers (Al203} and the. carbides
and borides of most hard metals. An account of these materials
may be found in references (6) (7) (8); Coleman (9) has reviewed
the methods of their preparation. Due to the present form of
their preparation, they are availéble mainly in the form of
short fibres; their cost of production is very high. Metal
wires which have been used for reinforcement include stainless
steel wires, tungsten wires and platinum wires usually
manufactured by conventional drawing or extrusion methods.
Glass fibres and polymeric fibres are -cheap and easy to produce
in the form of continuous filaments. All theée materials,
especially the oxides, carbides and silicates, maintain their
high strength éroperties at elevated temperétures and it is
in these high temperature fields of application that their
potential lies. The matrix may either be a metal, e.g. copper,
aluminium, silver, or resin although in a few instances a ceramic

matrix may be employed.



3.  PRODUCTION METHODS FOR COMPOSITES

The fabrication of fibres into a matrix presents many
problems. Promineht among these are the problems of surface
wetting to achieve a consistent and effective bond and the
tendency of fibres to alloy with the matrix in the case of
metallic fibres - the oxide fibres being by comparison
chemically inert. In addition, the processing temperature must
not be so high és to lead to structural changes in the'fiﬁre
and an assoclated reduction in strength. Petrasek and Weeton (10
observed these effects in their study of copper alloy composites
reinforced with tungsten wire.

Different methods are available for the preparation of
composite materials. These include pdwder—metallurgical
methods, liquid infiltration methods, hot-pressing and hot-
rolling processes. Details of thése operations may be found
in references (5) and (6). In all these operations, control
of the operating pressure and temperatﬁfe is neceséary to
ensure fibre/matrix coherence - and integ?ity and maximum
composite strength. For example, using stainless steel wires
iﬁ an aluminium matrix, Cratchley (11) carried out soaking
experiments to determine an appropriate pressing temperature.
Again, Cratchley and Baker (12) have studied the effect of
temperature and pressure on silica/aluminium composites by
hot pressing fibres which had been previously coated with the
matrix at different pressures and temperatures iﬁ a mould. At
all pressing temperatures the curve of pressure versus fracfion

of theoretical composite strength achieved, showed a maximum,

the peak value of which was dependent upon temperature.



4. LITERATURE SURVEY

.The anisotropy of the single crystals of most materials
and the differencés-bétween the bulk physical properties of
the components of compound solids readily cause internal
self-compensated stress systems to develop round such centres
as crystals or components of the compound structure. The
problem of thermal shock resulting in cracks or failure is
well known to the ceramicis%; quench hardening of steels is
also an old craft. All these processes involve the use of
materials which are both structurally and crystallographically

inhomogeneous and anisotropic.

(i) Ahaiytiééi Work

The first published serious analytical consideration of
the problem of thermal self—straiﬁing in compound materials
appears to be by Ldsz1d in 1942 (13). He called the resulting
stresses "%essellated stresses'". Using different "tessellated"
units in the form of a lamellar slab, compound cylindrical and
spheroidal units, and elasticity theéry, he calculated the
sfresses in these various units resulting from (i) a uniform
temperature drop, (ii) a phase transformation at constant
temperature resulting in a volumetric change A and (iii)
entrainment of spherical gas cavities. He.then attempted the
explanation of the hardening of steels based on the results of
.the calculations considering the hérdened matefrial as. cylinders
of x-martensite needles embedded in a matrix of austenite.

The effect of "tessellated stresses" on other phenomenon related
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to steel and cast irons such as yielding, graphitation, fatigue,
magnetisation etc. were also examined.

Florence and Goodier (14) first recognised that localised
thermal strésses appear when an otherwise uniform flow of heat
is disturbed by cavities or inclusions with different thermal
and elastic properties from those of the surrounding matrix.
Dundurs and Zienkiewicz (15) investigated the stresses in the
vicinity of a long cylindriéal elastic rod embedded in an
elastic material subjected to a uniform temperature gradient
in a direction transverse to the axis of the bar. Their
solution is based on an Airy stress function which was obtained
by the superposition of a "zero-stress" solution on a second
éolution introduced in order to cancel the multivalued and |
discontinuous displacements arising from the first solution.

The same problem has also been solved in a direct way by
Tauchert (16) using a displacement function derived by
Sternﬁerg and McDowell (17).

The first serious consideration of thermal shrinkage stresss
in fibre reinforced composites of any consequence was by
Outﬁat;r (12). In deriving a mathematical relationship for
the tensile modulus of elasticity 9f unidirectionally reinforced
plastics, he took into account shrinkage stresses as providing
the necessary frictional restraint at the interface to maintain

the composite strength after delamination.

(i1) Experimental Work

Early experimental work on thermal shrinkage stresses in

composites involved the use of strain gauges to measure the



prgssuré on the surface of a spheroidal glass bulb immersed in
a curing resin (19). As the curing and cooling proceeded the
strain gaﬁge readings were recorded and ffom a previous
calibration of the gauge for temperature the pressure due
purely to the resin shrinkage effect, was evaluated. Haslett
and McGarry (20) and Daniel (21) all used photoelastic methods
to study the shrinkage stress in small diameter E-glass fibres
surrounded by a resin matriﬁ. Using multiple fibres they
found that the axial stresses (along the length of the fibres)
diminish rapidly as the spacing between fibres decreases.

Also using various assumptions anq simplifications Hasleft

and McGarry attempted an ahalyticél solution for the shrinkage
étresses. They found that the sense of the resin stress
tensile or compressive, depended upon the spacing of the fibres,
but this cohclusion depended on the assumptions made.

Daniel and Durelli (22) have studied the photoelastic
fr%nges resulting from the shrinkage of resin around both
single and multiple disc inclusions in a plate. They found
that the number of fringes decreased appreciably (up to 60%)
with time after cooling to room temperature due to stress
relaxation in the viscoelastic resin. In all these experiments
it was found that the level of the fringes and hence of stress
increased with increasing curing temperatufe; the: - stress
distribution was independent of the curing cycle and size of the
.inclusion but depended on the geometrical arrangement of the )
inclusions. 1In another work (23), Daniel and Durelli attempted

béth to explain and simulate the shrinkage process by inserting



slightly.oversized glass discs into holes in a sheet of urethane
rubber. The stress distribution resulting from such an inter-
ference model was obtained.

. More recently, Marloff and Daniel (24) have used three-
dimensional stress-freezing techniques to determine the
stress distributions in the matrix of unidirectionally fibre
reinforced composite model subjected to both shrinkage and
normal transverse loading. .Koufopoulos and Theocaris (25) have
also used photoelastic methods to study the effect of the
elastic moduli of both matrix and inclusion on the stress
distribution. By the use of unplasticized epoxy as inclusion
and plasticized epoxy as matrix it was féund that for a single
disc in an infinte matrix, the magnitude of the stresses at
the interface during the period of cooling depended only on
(i) the constant elastic modulus.of the inclusion and (ii)
the instantaneous value of the matrix elastic modulusj; it was
independent of the amount of shrinkage of the matrix. However,
for a square array of closely packed discs the stress distribu-
tion was found to depend on both the elastic moduli and the
amouht of shrinkage.

In all the above-experimental studies temperature cycles
were involved and consequently the elastic properties of the
viscoelastic birefringent material did not remain~c§nstant.

The methods of analysis of experimentally observed fringe
patterns assoclated with such transient and steady state
thermal stress fields is termed PHOTOTHERMOELASTICITY. In

studies relating to composite materials, the fring patterns



result from the restgaint to shrinkage offered by the
iﬁclusions. It is imperative in such work to investigate
the variations of the physical properties such as the
modulus of elasticity, E, the coefficient of thermal
expansion « and the matérial ffinge value f over the

appropriate femperature rangde.

(iii) Numerical Methods

Up to the present time all numerical work on fibre-reinforc-
materials has been concentrated on the elastic and elastic/
plastic response of composites to externally imposed forces.

The applicability of numerical methods to stress analysis of
this kind depends largely on the fact that complex solid
composite systems can be idealised e.g. to conform to either
plane stress (or plane strain) or axisymmetric models. This

is a major simplification but the results are useful towards
the uﬁderStanding and interpretation of composite behaviour

End lead to better design and production techniques.

. . Numerical methods include (i) point-matching techniques (26
(85), (ii) finite difference methods (28) and (iii) finite
elemerit methods (29) (30) (4). In their various forms these
methods have been successfully applied to the study of stresses

in fibre-reinforced composites.

5. SHRINKAGE STRESS STUDIES

In the present work, the finite element method is used
to study the shrinkage and adhesive stresses in various

composite systems. The stresses in the transverse plane of
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hexagonally arranged unidirectional fibre composites are
investigated. The validity of simulating thermal shrinkage
around fibre discontinuities ﬁsing plane and axisymmetric
models is also examined. A photothermoelastic method has
been developed and is uéed to analyse both continuous and
discontinuoﬁs fibre composites. In the first chapter, a
more comprehensive and realistic view of the shrinkage
mechanism -leading to a prediction of the nature of the
shrinkage stresses to be expected, is expounded. Thié
explanation of the shrinkage ﬁechanism should supercede
the interference model view presented by Durelli#and Daniel (23).
Chapters 2-4 deal with the finite element analyses start-

ing with the presentation of the basic theory behind the
method in Chapter 2. 1In Chapter 5-7 the experimental
techniques and results are presented. The photo-viscoelastic
properties of birefringent materials are reviewed in Chapter 5
and i£ is hoped that this will lead to a better understanding
and appreciation of the various steps involved in the
photothermoelastic technique which follows in Chapter 6.

| Finally in the last section, a discussion of the experi-
mental technique both on its own merits and in the 1light of
" related work by other investigators, is conducted. The
relevance of the findings both experimental and numxrical to
precfical composites is also discussed.

A paper based on part'of~the work reported herein has

been accepted for publication in the Journal of Strain-Analysis.



CHAPTER 1

MECHANICS OF SHRINKAGE

1.1 INTRODUCTION

The .shrinkage stresses for a single plane disc or
continuous fibre embeaded in a matrix, assuming elastic
considerations, can be easily derived using the well-known
Lam€ type equations. Assuming parfect bonding, the radial and
tangential stresses developed at the interface of a single plane

disc* are given by:

AT(e_—a . )E
o m £'"m

rye = (v )+ (1-V JE_/E_ (1.1)

where o is the linear thermal expansion coefficient, V the
Poisson's ratio, E Young's modulus and AT the temperature change;
the subscripts m and f refer to ﬁatrix and fibre respectively.

A much more complex state of stress arises in multiple
fibre composites and the spacing of the fibres is important in
" determining the nature of the stresses.  Fibre reinforced
materials tend to an arrangement in which any fibre is surrounded
by six other fibres equally spaced about it - namely a hexagonal
arrangement, as in figurel-1. In'addition, the coefficient of
thermal expansion of the matrix material is generally larger

than that of the fibre. Haslett and McGarry (20)have presented

*For the case of a continuous fibre at points removed
from its ends, plane strain conditions may be assumed.
Equation (i) still holds for the stresses but the
constants have to be meodified thus:

o = o(1+Vv

E = E/1-vy -
v

V =

1—-v
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a simple extension of fhe single fibre analysis to widely
spaced multiple fibres and this predicts compressive radial
stresses at the interface when the composite is cooled.

_ However, Outwater (18) has pointed out that when the fibres

are bapked tightly se that they lie in continuous line contact
with each other, the tricorn of matrix material enclosed by

any three fibres, figurel:-24, will tend to shrink away from the
.fibres on cooling and produce tensiie stresses at.the interface.

It is evident that the possibility of debonding, and beyond
this, whether any surface tractien between fibre and matrix will
be available after debonding, is intimately connected with the
- sign and magnitude of the shrinkage stresses at the interface.
Experimental studies by Bromtman and McGarry (31) support this.
They found that the bond strength of fibre reinforced plastics
tested in compression depended upon the temperature at which
the composite had been cured. _

Daniel and Durelli (23) attempted to simulate the shrinkage
problem by inserting oversize glass discs into a hexagonal array
of holes in a sheet of urethane rubber. They subsequently
analysed the stress system produced by the interference photo-
elastically. The two stress systems, namely the one resulting
from thermal shrinkage and that produced by the interference, are
not however, strietly analogeous because the compatibility
conditions of’the true shrinkage system are violated by the
interference model. This difference is discussed in the next
section of this chapter.

1.2 THE INTERFERENCE MODEL

Consider a solid block of material with parallel holes in
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a hexagonal array, figure 1. If the block is cooled a
contraction will take place such that holes of size D become
size d and this will be irrespective of thg spacing of the
h&les. Let us examine the effect of inserting rods of
diameter d, (d, > d) in the holes for various spacings.

a) Large Spacing

If the holes aré spaced well apart, the effect is largely
one of each rod being .surrounded by a tube of matrix,
independently of all the others. The effect of the tricorn in
figurel-2e will be very slight and there will be 1little shear
along the interface in this case because each unit is almost
purely axi-symmetric. Thﬁs Haslett and McGarry's (20)model
of axi-symmetric unit suffices here and purely radial compressive

stresses appear at the interface.

b) Small spacing

| All practical fibre-reinforced materials employ closely
spaced fibres and to obtain a cléar picture of the mechanics
of interaction, we shall discuss first the limiting case where
the fibres almost touch.

(1) Case of fibres almost touching

Here, the insertion of the rods would cause unequal
stretching of each tricorn unit, figurel-2a, the material at
the corners of the tricorn being stretched most and gaps would
appear between the fibres and the matrix. This cannot occur
in the real shrinkage system because interfacial adhesion is
presumed fully established before cooling takes place and this
is maintained throughout the shrinkage process. The adhesion

thus provides radial restraint on the matrix as long as the



- 25 .

bond remains intact. In addition, adhesion implies a
compatibility condition in the circumferential direction
around each fibre and shear stresses are éstablished to
control the unequal stretching of the tricorn which augment
the tensions at the points of the tricorns, figurel.2b. The
Daniel-Durelli model is therefore inadequate for representing
both radial - and circumferential stresses due to shrinkage.

(ii) case of fibreé'éﬁécing slighti?;gféa£é£>£hah (i)

Consider now the case where the holes are close enough
to influence one another as the rods are inserted but are
spaced a little further apart than before, figuréb2c. Figurel:
2d shows a simplified stress system in the matrix element
which may be useful in the following discussion;

The forces T will increase as the fibre spacing is
increased and as a larger area of matrix material becomes
involved and there will be a condition when T will be large

enough relative to the inside tricorn stress 0.

o » to establish

contact all along the rod-to-matrix interface. A slightly
smaller spacing than this would, in the interference model
produce a gap at the points C which face the spaces between
adjacent fibres. Consequently, fhe radial stress-distribution-
in the real thermal shrinkage system might be expected to
change from compression to tension in order to maintain
compatibility ‘as shown along the top edge of the matrix elemgnt
in figurel2d. wider spacings will lead to a decreasing effect
from the tricorn, and when the fibres are well spaéed apart,
the single element axisymmetric model previously discussed

becomes valid.



- 26 -

Daniel and Durelli(?23) Eested interference models with
different hole spacings and did not report any gaps between
the matrix and discs. We may conclude that the cpritical
-spacing below which the interface stresses becomes in part
tensile, is less than'ﬁhe smallest spacing which ﬁhey studied.
Packing densities which give spacings §f this order are common
in practice and even in composites where the fibre volume
fraction is smaller than this irregular spacing due to thé
method of manufacture may result in groups of fibres in very
close proximity.

1.3 EFFECT OF CONSTRAINT IN AXTAL DIRECTION

The effects of shrinkage in the axial direction on the
transverse stress distribution must also be examined. In the
actual shrinkage system since o, > O there will be an axial
tension in the matrix and an axial compression in the fibres.
Thus we must examine here the effect of an axial pull on our
original block with holes. In this case there will be a
latéral contraction so that all the hole§ will shrink in sizeg
in addition, all the fibres will expand laterally. The effects
of both of these will be to increase the radial compression at
the inﬁerface.'

| The predictions on the stress distribution within the
matrix made here, have been tested using both experimental

and numerical methodé, for most real fibre reinforced composites.
The methods employed and the results obtained from them will be

the main subject of the ensuing chapters.



THE FINITE ELEMENT METHOD

2.1 INTRODUCTION

| The development of the fiﬁite elemenf method of structural
and continuum analysis was ofiginally pionéered in the
aircraft industry. It stemmed from the need to provide a
~method that would give sufficiently accurate séructural

data to be adequate for subsequent dynamic and aerocelastic
énalyses of complex aircraft structures. The experimental
‘stress analyses of complex models is both expensive and time
consuming; added to this, obsolescence and changes in design
are not uncommon in the ‘aircraft industry. These considerations,
together with the advent and continuing development of digital
COmﬁuters, led engineers to develop analytical methods for

the solution of complex structufes.

Eséentially, in formulating the finite element method,
standard sfruétural analysis procedures are generalised; the
stresses and displacements in two- and three-dimensional
structures are also calculated by the same procedures.

Any structural system may be considered as consisting
- of separate components interconnected at a number of nodal
points - e.g. for a jointed frame structure, the joints may
"be conveniently taken as nodes. However, for an elastic
continuum, there exiéts an infinite number of such nodes. In
the finite element method, a continuum may be approximated
by an assemblage of suitably chosen geometrical elemeﬁts
(e.ge. triangles, quadrilaterals, tetrahedra etc.) interconnected

at a discrete number of points lying on their boundaries.
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The determination 'of the displacements of these nodal points
when the structure is subsequently deformed, is the central-:
core of the method. Since the elements are assumed to be
interconnected only at a limited number of nodal points, the
relevant elastic characteristics 6f an element are represented
by the relétionship between the forces applied to the nodal
points and‘the resulting displacements expressed as the
FLEXIBILITY OR STIFFNESS of the &lement.

‘ It must be pointed out that whilst some approximation is
involed in the discretisation of the structure, its subsequent
mathematical analysis is exact; Equilibrium and compatibility
conditions must be satisfied in each element. The analysis can
" be approached either by the force or the displacement method as
in conventional structural analysis. However, it has been found
that in general, the displacement method provides simpler formu-
lation and computer programming work For complex structures (32).
In, the preéent work, this approach has been followed.

\

2.2 DISPLACEMENT FUNCTIONS

In deriving the stress-strain relationship of an eleﬁent,
first,. a displacement function hés to be chosen to define
uniquely the state of strain within an element in terms of its
nodal displacements, and such as to ensure compatibility of
deformation of adjaéent elements. For triangular plane stress
elements linearly varying displacements in two orthogénal
directions would produce compatible deformation patterns. In
this case straight 1lines in the‘body will remain so after

deformation and contact between boundaries will be maintained.



This displacement function also implies constantcy of strains
within an element and therefore in regions where the strains
vary rapidly, smaller size elements would be required to give

more accurate resultse.

The characteristics of a "finite element" may be derived
by rigorous methods of structural analysis as by the use of
energy principles. Zienkiewicz (33) has presented a direct
physical approacﬁﬁand this is féllowed here.

(1) General Structural Reiéfibnships

If the forces actiﬁg at the nodes of an element e within
a structure, is represented by a matrix {F}e, and the
corresponding nodal displacements by {867, then if the element

is Hookean in behaviour,
F1° = [KI981° + 12« G (2.1

{F}S represehts'thanbdal forces reéuired to balance any
distributed loads acting on the element, e.g. body forces; jF}S
the nodal forces requirgd to balance any initial strains, e.g.
caused by temperature change, initial lack of fit etc.,

-without any rigid body movement. The first term represents
forces resulting frém the nodal displacements and the matrix [x]1€
in the stiffness matrix. |

Similarly, the stresses &ff at any point in the element

may be expressed by the relationship:
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{8}e=[sje{5}e+{o'}§+{0j}8 (2.2

where the matrix [SJ® is the element stress matrix. [aﬂg and
[oﬂSAare the stresses resulting from distributed loads and
initial strains respectively.

(ii) Displacement Relationships

‘Figure 2.la is a triangular mesh drawn in a Cartesian
Coordinate system and ‘i, j, m are the nodes of a typical
element e. The displacements at any point in the element may

be expressed generally as:

d;
| S
HEGeom} = INTPBYS = [ - Ny, Npoeel] i e (2.3

The elements of N are in general‘functions of position chosen so
as to obtain app;opriate nodal displacements.
(iii) Strains |

The strains {¢1° at any point can be expreésed in “terms of

the nodal displacements as:
{G} ¢ = [B]iﬁie : (2.4

where [B] is derived from the displacement functions and also
expressed in terms of the coordinate of the nodal points.
(iv) Stresses

Denoting any initial strains by temperature changes, Shrink-
age etc. by {Eole and assuming elastic behaviour, the stresses

within an element can be written as:



(o1 ® = [DI({e} © - ety ... BRI (2.5)

where [D] is the elasticity matrix containing. the relevant
- material properties.

(v) Nodal Forces .

The nodal forces, {F}e, must be made statically equivaient
'to the actua; boundary stresses and distributed loads. To do
'this, the priqciple of virtual work may be resorted to. If
virtual displacements are imposed on the nodes, the external
and internal work done by the various forces and stresses must be

equal. When this 1s done a final expression of the form:

1

{\:F'}e = ([[B]T[D][B]dv){f)}e ~ J[B]T[D]{c-o? dv - J[N]T{/p\]dv ...... (2.6)

is arrived at, after integrating'over the volume of element.
Comparing the form of equation 2.6 with that of equation

2.1, the stiffness matrix is readily recognised as:

+

'[];]e = I[B]T[DJ[BJdv* . (2.7

~ )

the nodal forces due to distributed loads are:

{F} S‘ = -J[N]T{P}dv e e e e e e (2.7

and those due to initial strains are:

{Fig = —J‘[B]T[D].{EO} AV e (2.7c

* See Appendix I
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2.4 GENERAL REMARKS

(i) In the above direct derivation of the characteristics of
the finite element, distributed stresses on the element
~ boundaries were replaced by equivalent static loads at the
nodes. The validitiy of this'may‘however be established by a
more rigourous procedure by minimising the total potential energy
of the system, e.g. see Appendix I; the finite element procedure
is therefore ldentical with the-Ritz method (34).

(ii) Since the equivalent forces are concentrated at the nodes,
equilibrium conditions are satisfied in the overall sense only.
This would give rise to local stress concentrations -and
equilibrium within each eiement and - on its boundary would be
violated. \

(ii%) It has been shown that for fully compatible displacement
functions, the straih energy of the idealised structure is
always below that of the exact solution (35). Thus the results

of the analysis represent a lower Dbound. solution.

2.5 COMPUTATIONAL PROCEDURE

(i) Evaluation of Stiffnesses

The first step in thé analyéis is to evaluate the stiffness
properties [kx] of the iqdividual elements using the relationship
equation 2.7a in a convenient coordinate system, e.g. as in
figure 2.1a. The maérix [x] is square, the size of which depends
oﬂ the number of degrees of freedom of the element. For example,
in a plane stress pfoblem of triangular elements, the total '

number of degrees of freedom of the element is six, (two
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component displacements for each of three nodes), resulting
in a 6 x 6 matrixe. The individual element stiffness contributing
to each nodal point are then superimposed to obtain the total

assemblage nodal stiffness matrix [K].

(ii) Solution of Eguilibrium Equations

- The next sStep is the formulation amd solution of the

equilibrium equations. The equilibrium equations may be-

" expressed in the form:

(F} = [K]{5) (2.8

The solution of the equations in the program used in this work
is achieved by the Gauss-S@idel iteration procedure which is a

systematic relaxation technique starting with.any known or

_ assumed values of nodal displacements. The basis of the method

is given in Appendix (III).

(iii) Stresses and Stféins

'With the nodal point displacements evaluated, direct

substitution into equations 2.4 and 2.5 gives the strains and

stresses respectively.

2.6 APPLICATION TO PRESENT WORK

The present problem under investigation is the shrinkage
and adhesive stresses in fibre reinforced composites. The
fibres are assumed to be loﬁg.and continuous making the
assumption of plane strain conditions valid. They are also

considered to be in the form of either an infinite hexagoﬁal or

triangular array within the matrix. Figure 1.1 shows the cross-

section of such a composite with seven fibres.
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A uniform temperature change (as far as fabrication stresses
are concerned this is usually a drop) is imposed on the system
and it is required to evaluate the resuléing stresses due to
the differential shrinkage assuming complete adhesion between
iﬁterface. The material properties of the components of the

A3

composites are assumed to remain constant over the whole

temperature range considered.

. (1) Thermal loads

~In general, if any elastiq body is subjected to a change
in température, st;éins are set up within it. For an isotropic 
homogeneous body these strains will also be isotropic. For thé
case of plane stress or plane strain there would be no shear

strains and the initial strain matrixzfe(f in a Cartesian

Coordinate system is:

GXO AT ‘
TEO}"Eyo = o { AT (2.9:
Loy 0

fof the plaﬁe stress case where & is the coefficient of thermal

eﬁpansion, AT the change in temperature, and'x;y the shear strain
It\can be easily shown that-for the case of plane strain,

due to tﬁé pregence of a third stress component 6; perpendi?ular

to the:x-y plane, the initial strain matrix modifies to:

A .
{eoj = (1+v)a{;£} ' (2.9
0 :

where V is the Poisson's ratio.
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The thermal strains induced in a homogeneous isotropic body
do not produce any stresses if the body is not subject to any

constraints. However, for a composite body, the differences in

- the thermal expansion coefficients of the component materials,

would tend to establish mutual constraints setting up a system
of internally self-equilibrating forces.-

In the finite element analysis, assuming all nodal points

to be completely restrained, the equivalent nodal forces due .to

the temperature change in the elements, are calculated from

‘equation 2.7c. In order to eliminate these forces the system

is analysed for nodal point loads which are equal in magnitude

but opposite in sign to these restraining forces. The final

(self-strained) thermal stress distribution is the sum of

Astresses due to these thermal loads and the initial stresses in

the externally restrained system, as given by equéfion 205

"2«.7 BOUNDARY CONDITIONS

The hexagonal arrangement of the fibres giﬁes rise to a
multifold symmetry. Any triangle such as OAB in figure (1.1)
would therefore contain all the required informafion. It is
fherefore only necessary to iséléte such a 'unit' for analysis
by imﬁosiﬂg the correct boundary conditions on it.

The boundary lines OA, AB and OB, being lines of symmetry,
do not transmit any shear stresses. Also in the resulting
deformation due to the thermél strains, the geometrical shape
of the triangle OAB is preserved. Referring to figure 2.1b the

boundary conditions are as follows:



.

Point 0 is fixed with respect to the whole system, i.e.
no movement of the nodal point at 0 is permitted,
Displacement of all other nodes are therefore obtained

relative to this reference point O.

7
The nodal points on OA are allowed to move only in the.
x—direction, i.e. Mo shearing is permitted across OA ,
the nodal point forces having only components normal to

I

this boundarye.

Along AB, the nodal points are free to move in both the x-

directions and y-directions with the x-displacements being

-

made equal to that at point A, and

On OB, the nodal points are free to slide along OB, and the

-

nodal point forces must act perpendicular to this boundarye.

The iteration procedure is effectively a relaxation

procedure (34), the final correct displacements worked out will

correspond to those that would impart a condition of minimum

potential energy to the system.

2.8 ACCURACY

Tnaccuracies 'in the finite element method, generally arise

from:



(i) the discretisation of the continuum into a mesh of

elements,

(ii) the representation of the loading conditions and

boundary restrictions, and

(iii) the convergence of the iterative solution of the

equilibrium equations.

As mentioned earlier.due to the choice of. wlinear
displacement functions and hence constant strains in the
elements, the size of the elements 1s governed by the strain
gradienté within the actual system under study. The storage
capacity of ‘the Imperial College IBM 7094 computer used in this
énalysis, limited the mesh size to about 400 elements. ﬁowever,
at the time of writing, new computing facilities are available
using.the much larger and faster CDC 6600 computer. This is
capab;e of dealiné with é mesh size of up to over 2000 elements.

On examination of the equations giving the thermal loads at
the noaes, lece equatioﬁ 2.7c and 2.9 it would appear at first
sight that all nodal points are effectively loaded thus giving
rise to several regions of local stress concenfrations and
affecting the general accuracy of the results. waever, when

summations are taken at each node over all the elements acconﬁngto

ﬁgpe‘A'lﬁlO the only loads remaining in the mesh, are those at

the boundaries and at the interface nodes. Thus mesh

refinement would be mandatory not only in the region of the
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interfabe for the two reascns of high strain gradient and nodal
forces, but also at the boundaries where elements are supposed
to be free of shear stresses. With the limitation imposed by
the size of the computer on the number of elements, this was
difficult to acha@ve if enough small elements were concentrated
in the regions of greatest gradient. The result was that the
final solution gave shear stresses in the boundary elements thoug
of small orders compared with the direct stresses. Therefore,
in plotting the stress distribution along the boundary lines,
stresses in adjoining elements were averaged. .

The rate of convergence of the iteration procedure was
found to depénd not so much on the mesh size as the regularity
of the mesh, the type of boundary constfaints and the order of
operations along the boundaries. In general using an over-
relaxétion factor of 1.95 (see Appendix III) convergence was
obtained after about 500-800 cycles depending on the particular
mesh.

The compu£er programme employed in this investiggtion has
been developed from one by Wilson (36). The various formulations
involved are given in Appendix II and a Fortran Programme Listing

is.-provided at the end of this thesis.



CHAPTER 3

FINITE ELEMENT ANALYSIS OF CONTINUOUS FIBRES

Both analytical and experimental studies in the stress
distributions in'multifibre composites under external loads
have been.succe§sfully conducted (28), (37), (38). The
finite element method makes possible the study of stress
distributions in composite materials under various loading
;ccnditions and for different fibre volume fractions (V.).

In addition to providing a numerical check on the validity

of the postulates on the shrinkage mechanism made in chapter
1 the finite element method also affofds a means of
studying shrinkage stresses in various practical fibre-matrix
‘combinations and to determine the effect of their elastic
properties on the stress distribution., With the knowledge of
these initial stresses, the effect of any externally applied

stresses can be more fully appreciated.

3.2 COMPOSITE MATERTALS

The varibus composite systems studied fall into three

main groups as follows:
(1) The first group is the commonest and‘perha?s best-

known category of practicaI'composite materials employing
long glass fibres in a plastic matrix. Here, a relatively
weak, brittle and low density métrix is strengthened‘by a
much strénger fibre, usually glas§; stronger fibres e.g.
carbon fibres are also being used to achieve high strength
- to weight ratios for aero-engine components as recently

announced by Rolls-Royce Ltd. (England).



(ii) The second dgroup of composités use very strong fibres
in the form of whiskers €.dg. carbon, iron, sapphire whiskers
which are potentiélly very strong - the strength in some cases
approaching tﬁeir theoretical crystal strength (39). These
have high melting points with usable strengths at elevated
temperatures in excess of those sustained by the available
high temperature alloys. They @e brittle and fracturé without
any plastic deformation and have small thermal expansion
éoefficients. The metal whiskers, e.g. iron, though initially
- strong, tend to lose strength due to the introduction of .
dislocations (6 ); the oxide thskers, e.g. sapphire (ALl,03),
in addition to being free from dislocations are less chemically
reactive, the main problem being the difficulty in achieving
effective bonding with the matrix. Sapphire/silver composites
have provided useful experimental models for the study of
whisker reinforced composites (41). The growth and properties
of whiskegs have been extensively reviewed by Coleman (9 ).
'(iii) The third category of composites have metal wires

(e.g. strainless steel wire, tungsten wire etc.) as fibres in

a ductile metal matrix. However, metal wires lose strengéh
very rapidly at elevated temperatures and are prone to alloying
with the'matrix’thus causing fﬁrther deterioration in strength.
The relative ease of manufacture of the wires and incorporation
into the matrix makes them éttractive; tungsten-copper composite
have been extensively used'téAobtain fundamental information

on the mechanics of fibre-reinforcement (42), (43).



Most of these composites are formed by either hot pressing
or direct infiltration methods both of which involve operations
at temperatures above the ambient. It is therefore obvious that
initial stresses resulting from thermal self-straining have to
be properly appraised because thelr presence will directly
influence tﬁe failure charaéteristics of the composite under
external load.

3.3 COMPOSITE SYSTEMS INVESTIGATED

Various fibre volume fractions (V.) were considered -
ffom the limiting case where the fibres lie in continuous
contact with each other (Vf = 0.907) to very wide fibre
spacing, (Vf = 0.179). Table 3.1 gives the list of the

various packing factors 'm'*, and the corresponding values

of Vf**.
PACKING FACTOR _FIBRE VOLUME FRACTION

(m) : v
2 .907
2.08 .838
2.125 .804
2.5 ' .580
3 .404
4.5 T 179

Table 3.1: Packing factors and fibre volume fractions

*'m'. has been defined as.:.
dlstance between adjacent flbre centres (a)
fibre radius (@)

**Vf = 2n/m%f3




Table 3.2 gives a list of materials from which the
composite systemg which will be discussed were selected,
their designated symbols and elastic properties. Table 3.3
shows the composite systems studied and their derived
properties.

The ;ritical fibre volume fraction (V_) in Table 3.3
is that volume which must be exceeded or equalled for fibre
strengthening of the composite to be achieved and the
expression for it has been derived elsewhere, e.g. reference
- (6). With this amount of reinforcement, the strength of
the composite exceeds the ultimate tensile strength of the
matrix. The exXpression applies to continuous fibres and
assumes no alteration in the work-hardeing characteristics
of the matrix due to the presence of the fibres at small
«values of Vf. It has also been derived assuming that all the
fibres break in a given cross section. However, in all the
material systems studied, only the Al1/ARL system was below

'VC for m = 4.5 which was the widest spacing studied.



MATERIAL* | SYMBOL | YOUNG'S MODULUS EXPANSION POISSON'S | ULTIMATE
(E) x 106psi COEFFICIENT RATTIO TENSILE
(a)x107°/°C STRENGTH
u(lb/m?2)
Glass fibre GL 10 8.5 .22 500,000
Boron fibre| - B 55 ) .213 350,000‘
Sapphire A1.0 74 8 2 2,200,000
Whisker- 273 : ’ i
Graphite c o8 1.6 .16 9,800,000
Whisker
Araldite ARL 0.46 63 .35 10,000
Copper Cu’ 18 17 . 343 60,000
Steel Fe 30 13 .29 575,000
Silver As S 11 19.1 .367 30,000
Tungsten W 50 4.5 .28 420,000
Aluminium Al 10 24 .33 42,000

Table 3.2: Materlals and Properties

*The material properties have been obtained mainly from references (g),
(40), (7).

(44),
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FIBRE (f) Eﬁ E _ v o+
MATRIX (m)**. E, £ m | %*m~%f c
e e e T T :
Al '
GL :
ARL 20 9.5 44,5 .02
B__ 110 54.5 57 03
ARL g .
GL
YNl 1 0 15.5 .084
Fe '
e 3 20 11 .073
0 2.78 | 32 12.5 .143
]%- 3.27 | 68 11.4 .058
e
A1,0,
= 6.7 63 11.1 .014
g‘ .

Table 3.3: Composite systems and derived properties

* Vv

** The suffix

factor.

lm|

is the minimum volume of fibre necessary for
strengthening to be achieved and it is given
approximately by the expression VC =

Uemy/ Y(E)

refers here to matrix and must
not be confused with 'm' when used as packing
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3.4 COMPUTED RESULTS

Following the arguments in Chapter 1, a hexagonal
packing arrangemeﬁt of the fibres was adopted; they were
also regarded as long and continuous in an infinte array.
The computer programming procedure has been.described in
Chapter 2. Figure 3.1 shows a typiéal mesh used in the
analysis; Table 3.4 shows the different mesh sizes for

each packing factor m.

m Number of Number of
Elements Boundary nodes
2 ' 310 : 62
2.08 : 339 . - 55
2.125 - 310 - 46
2.5 364 44
3 386 48
4.5 343 . | 57

Table 3,4: Mesh sizes

Convergence of the solution was obtained in each case
after about 500 cycles of iteration and the computing time
on the IBM 7094 (at Imperial College) was around two minutes.
On the CDC 6600 (at University Coilege) the time was reduced
to about thirty-five secondé using.on all occasions an over-—
relaxation factor of 1.95; .Plane strain conditions have

been assumed in all cases.



3.5 RESULTS

The stress distributions within the matrix and along
selected lines of symmetry have been plotted. Figure 3.2 shows
these lines - namely ox, oz, and.the poiﬁfs A, B, and C which
will be constantly referred to in the rest of'the work. oX
is the line of centres of adjacent fibres ang/fs inclined at
30° to oXx; B and C lie on the inteffaces along ox and o'z
respectively and A is the isotropic point as will be seen from a
later Chapter. . 6 - is the angular displacement along the
iqterface measured from ox; all the compufed results correspond

to a uniform temperature drop of 50°c.

(1) Stress distribution along ox

Figures 3.3a-3e show the radial stress distribution on
oX within the matrix, for various fibre volume fractions and
composite systems. The following observations can be made
from the graphs*.

a) .For all the composite systems the radial stress

distribution on ox'is nearly uniform for densely-packed

fibres and the stresses are all compressive. For the
- closely
case oOf the/packed fibres i.e. m = 2.08, these stresses
slightly decrease from o to the interface and vice versa,
- packing )
for all other/factors. For the widely spaced fibres, the

radial stresses tend to follow a Lamé-type distribution

as would be expected, seé Figure 3.3e.

* On some of the graphs, not all the composite systems
have been represented. This is purely to avoid over-
crowding the graphs. However the general trend of the
stresses 1s always evident.
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b) The C/Fe system which has the largest values of
Young's Modulus both for the matrix and fibre, produced
the highest stresses at all points along ox for all fibre
volume concentrationstlwhilst the A1/ARL, GL/ARL and B/ARL
systems having the least value of Young's Modulus for
their matrices, also showed the least level of stresses.
If therefore seems that the level of the stresses mainly
depends only on the propérties of the matrix and not those
.of the fibres. Thus all the Araldite systems which have
fibres with their Modulii an order of magnitude different
(B(55), A1,GL(10)), all give the same order of stresses.
The same form of distribution is exhibited by the GL/Al
and Fe/Al systems having fhe commoﬁ matrix aluminium.
Also, the A1203/Ag system shows similar order of stressés
to the Al-matrix system éince Ag has almost the same
values of modulus and thermal expénsion coefficient as Al.
In the light of the above observations; the radial stresées
at the interface 'B' were plotted against the matrix moduli
for each packing factor as shown in Figure 3.4a. A linear
relationship tﬁus existé between the radial stresses and the
Young'é Modulii of the matrices. The curve for the case of
m = 2 has been drawn using the contact stresses within the
-fibres. Figure 3.4b shows the varilation of the interfacial
radial stress at B with the.reciprocal of the thermal expansion
\cqefficient. Here, there is no linear relationship but the
points al} lie on & curve for each spacing, the stresses-

increasing with 1/am. In figure 3.4c, the variation of -the



radial stress at B, with the defived parameters (Ef—Em);
ocm/ocf and (am—af)'is shown plotted for different fibre
spacings, for the composite systems all having Araldite
as matfix. A linear relationship is exhibited in all cases.
No sensible relationship was however found between the stresses
and the ratio of the Young's Modulii (Ef/Em).

The variation of the interfacial radial stress at Bwith m 5
shown in Figure 3.6a for the different composite systems.
The shapes of the curves however apply to any point along
oX. From these curves, stresses within the matrix for all
the composite systems increase sharply from around m = 2 to
their maximum values at a value of m between 2.2 and 2.25.
Beyond this value, the stresses decrease, at first sharply
up to m = 2.5; thereafter they gradually tend to the stress

distribution for a single fibre configuration.

(ii) Stress distribution along o'z

The variation of radial stresses in o'z is shown 1n
Figures 3.5a-5f. Here, the spacing of the fibres and the
Young's Modulus of the matrix material, are significant in
‘determining both the sense and magnitude of the stresses.

a)- Closely-packed fibres

Figure 3.5a shows the curves for the different systems
for the case of the fibres lying in continuous contact i.ea

m 2. All the stresses are tensile evefywhere along o'z

increasing from the interface to a maximum at the isotropic
point A, at the centre of the tricorn. These stresses are

very sensitive to slight changes in the spacing of the fibres.



As the spacing is slightly increased to m = 2.08, Figure

3.5b, the composite system with Araldite as matrix continue

to show tensile stresses whilst in all the other systems

the stresses have become compresive. The compressive stresses
are maximum at the.interface decreasing to a minimum at the
isotropic point. Thus algebraically, the mode of wvariation

of the radial stresses is the same for all fibre spacings.

For m = 2.125, Figure 3.5c, the variation of the stresses for
the Araldite systems is only partly tensile, beginning with
tension at the centre of the tricorn and changing at about
half way aléng o'z to compression. The value of m at which
the stresses change from tensile to compressive can be obtained
from Figure 3.6b which shows the variation of radial stresses
at the centre of the tricorn A, for the different composite

systems.

b) Widely-spaced fibres

Fér widely—spaced fibres and for all the composi£e systems
" the stress variation along o'z is similar to that on ox
previously ekamined; the-streSSes are compressive and increase
‘as the fibres become more closely packed, the peak compressive
stress‘fof each spacing occurring'at the interface C. However,
the distribution changes rapidly aé the spacing is reduced
below m = 2.5 for the soft ARL matrix composite systems.

(iii) Stress Distribution Along Interface - O8-direction

The variation of radial stresses along the fibre/matrix
interface is shown in Figures 3.7a-7c. The radial stresse;
have been plotted against the angular distance 8 along the

interface.



- 50 -

Figures 3.7a-7b show the stress distributions along the
interface for m = 2 and m = 2.08 respectively, showing
part-compressive stresses even for m = 2, At first sight this
would seem to conflict with our explanation of the shrinkage
mechanism, that because of the difference between the

coefficients of thermal expansion (a_ > a ), the matrix

f
material must be in tension when the fibres touch. Certainly
the major part of the matrix material experiences radial
tension in these circumstances, but in order for adjacent
fibres to remain in equilibrium under the radial tensile,
stresses from the matrix, the fibres must press on one another
and if a thin strip of matrix material separates them at the
closest points it must be in compression. The stress distri-
bution is similar to that shown in Figure 1.2d. The thinner
the strip of material separatiné the fibres, the more uniform
the compression within it. In the limit when the fibres touch
(m = 2) thé radial stresses at 8 = 0 gecomes the compressive
stress in the ‘fibre along the line of contact.

Figures‘3.8a—8b show the general distribution of radial
tensile and compressive stresses within the matrix for both
stiff and soft matrix materials for closely spaced fibres.

The tensile stresses originate from the centre of the tricorn

and the compressive gtresses within the vicinity of the contact
points of the fibres are confined to only a small area as explai%
above. It is also clear thaf the softer matrix has a far

greater tendency to develop tensile stresses whilst the stiffer

matrix produces the type of compressive stresses as described

above even when the fibres touch.
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As the fibre spacing increases, the interfacial radial
stresées everywhere become compressive for all the composite
systems, and tend to be uniform. In Figure 3.7c the two
extreme cases, namely C/Fe and AL/ARL are shown for packing

factors equal to 2.125 and 4.5

The significance of these results in relation to composite

materials will be discussed later.
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CHAPTER 4

SHRINKAGE STRESSES AROQUND A DISCONTINUQUS FIBRE

4.1 INTRODUCTION

In the last chapter, the shrinkage'stresses in a solid
composite having cylindrical continuous fibres were investi-
gated. However; since many fibres are available in the form
of short fibres, it is important also to study the shrinkage
behaviour of discontinuous fibre composites.

Both the theoretical and experiméntal analyses of contin-
uous fibre composites are relatively easy to achieve since they
can be successfully idealised and made amenable to elastic
ahalysis or simulated closely in experiments. Cox (ﬁ.) has
provided an analysis of a single fibre in an inémimgmatrix
using a strength of materials approach; experimental work has
also been carried out by Tyson and Davies (3 ) and Schuster
and Scala (45), providing information on the shear tractions
on the fibres.

4,2 DISCONTINUQUS FIBRE COMPOSITE MODELS

Iremonger and Wood (4 ), (38) and Owen et al (30) have
all used both two-dimensional photoelastic and finite element‘
models to study the stresses around fibre discontinuities of
yatkﬁm;sizes'and for different fibre volume concentrations,
in both the elastic and elastic-plastic regions. 1In all these
cases, the effect of neighbouring fibres adjacent to the
discontinuity was also examined. Hdwever, practical fibres
invariably have circular cross—-sections and are all completely

surrounded by the matrix materialj; plane models used in the
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above investigations and simulating the longitudinal section
of thé real composite inherently overlook this fact. It is
obvious, therefore, that whilst such analyses may yield.valuable
information towards a better understanding of fibre-reinforcement
the models adopted for the studies are only convenient approXi-
mations to the real composite. If we consider, for instance,
the effect of compression in the axial direction of thé fibres
in the two cases of the plane model and the real composite,
the response to the load would be different. For the composite,
the 'holes' occupied by the fibres would tend to increase in
diameter due to the Poisson's ratio effect to a greater extent
than the diametral expansion of the fibres since V., >Vg¢
generally, thus resulting in the establishment of transverse
tension to maintain interfacial coherence. Various analytical
expressions for the transverséfradial stress developed at
the interface, have been derived by Islinger et al (46) and
Mooney and McGarry (47) for both single and multifibre
composites. Ebert and Gadd ( 7 ) have exﬁended the analysis
into the plastic yielding using as the model a composite with
a central soft core surrounded by a rigid cylindrical case.

In the case of the plane model, the reverse effect would
take place since the matrix lying between adjacent fibres
would expand laterally against the fibres which also expand
to augment the compressive effects. Herein lies the major
inadequacy of the plane model simulafion. However, in real
composites, most of the load (>80%) is borne by the fibres,
the matrix serving merely as a binder and shear force

transmitting medium. Under these conditions the Poisson's



ratio effect in the matrix may be negligible. It is therefore
necessary that in the simulated plane models Ve and'vm should
be approximately equal and the ratio Ef/Em should be ﬁigh to
realise this. However, it has been shown that the effects

due to Ve and Vi alone are negligible 629) in plane models.

4.3 MODEL FOR THERMAL SHRINKAGE ANALYSIS

The object was to study the shrinkage stresses around a
discontinuity in a multifibre composite. From the foregoing,
it was felt that a better idealisation of the composite ought
to be considered. It was argued that in that part of the
matrix lying directly between the ends of the fibres in a
discontinuity, axisymmetric conditions’would prevail to a good
approximation. Figure 4.1 shows the longitudinal cross-section
and plan view of such a model. It is composed of a central
long cylindrical fibre with a central discontinuity and
surrounded by the matrix material which is 'in turn surrounded
by a ring of material assigned the elastic properties derived
from the rule of mixtures for the composite. The outermost
ring of material is the same as the matrix. The problem is
therefore that of shrinkage stresses in concentric cylinders
with a central discontinuous core. The analytical solution
of such a préblem (without the discontinuity) has been proposed
by Gatewood (48) using Complex Variabile analysis.

It is readily recognised that the shrinkage mechanics in
the propsed axisymmetric model is different from those of réal

composites. In addition since most investigations have been
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conducted on the plane model to advantage, it was felt that
this (the plane model) should be adopted even if only to maKe
a comparison of results possible. Note that the longitudinal
section for the axisymmetric model in figure 4.1 serves also
as the plane model. For the finite eiement analysis, due

to symmetry, only one quarter of the plate (Figure 4.1) was
‘considered. The point o was fixed and nodal points along ox
and oy permitted to slide only along their respective axes,
all other nodal points being allowed to move freely. The
number of elements of the mesh employed was 966 (528 nodes),
permitting all necessary mesh refinement in the appropriate
regions. Thé University College computer CDC 6600 was used
for the analysis. Computing time was jﬁst over one minute
after 500 cycles of iterations, using as before, an over-
relaxation factor of 1.95. Two composite systems were studied -
namely C/Fe and AL/ARL, the two extreme cases in Chapter 3.
Packing factors of m = 4.5 and 2.5 and diséontinuitiés %f= 1

and 2 were investigated for each syétem.

4.4 RESULTS
The stress distributions for both the C/Fe and Al/ARL
~systems were similar and the plots are mainly shown for the

C/Fe system. The stress levels were of course different, the

C/Fe syétem giving higher stresses.

& _ length of gap (6)
~ radius of fibre (p)

©



(i) Axial Stresses

Figure 4.2a shows the axial stresses in the plane model,
in the centre line of the longitudinal section starting from
the centre of the discontinuity in the matrix, i.e. along
oy in Figure 4.1. These stresses are £ensile in the matrix
and rapidly decrease, changing to compressive in the fibre.
Perfect continuity of stress from matrix to fibre is exhibited
in all cases. The magnitude of the compressive stresses in
the fibres increases to a maximum constant value a few gap-
lengths along the fibre. The axial stress magnitudes are
influence@ more by the size of/the discontinuity than by
fibre proximity or spacing for the two fibre spacings investi-
gated. -

(ii) Radial Stresses on ox (Figure 4.1)

N

Stérting from the interface at the outer fibre along ox'fig.7
the\étress distributions in the direction perpendicular to
the axis of the fibre for both the C/Fe and Al/ARL systems
have been plotted up to o’, the centre of the discontinuity,
Figure 4.2b. These stresses are all positive and increase
along ox’ from the intérface. For the sam; discontinuity -
higher stresses ére obtained with increasing fibre spacing
but the stresses are nearly the same at the interface for the
same spacing.

In Figure 4.2c, both the plane and axisymmetric stress
distributions for m = 4.5 and & = 4 for the Al/ARL systems

have been shown for comparison, the axisymmetric case giving

much lower stresses.
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(iii) Shear Stresses

The interfacial shear stresses along the central
dis~ ntinuous fibre starting from the tip of the discontinuity
in <:rection oy (Figure 4.1), are shown plotted in Figure 4.2d.
For both fibre spacings, the tip maximum shear stresses are
the same for all discontinuities; however, the shorter the
discontinuity and the closer the fibres the slightly longer
the distance along the fibre over which shear stresses persist.

They all fall to zero in just over one fibre width.

4.5 RELATIONSHIP OF RESULTS TO REAL COMPOSITES

., The plane model adopted in the analysis excludes circum-
ferential stresses which arise in real composites from the >
fact that the fibres are completely surrounded. Instead, the
‘central fibre is bounded on either side completely by othe£
fibfes; the matrix is thus in effect surrounded by a fibre
material which is the reverse of conditions in a real composite.
In the_shriﬁkage process, the shrinkage of the matrix material
at the outer fibre interface would be greater than that of the
fibre (am > af) and hence interfacial tension would be
required to mainfain adhesion. This is equally true of the
axisymmetric model in which the inner cylindrical matrix
(Figure 4.71) would tend to shrink inwards, away from the
internediate material. The effect of the differential contrac-
tion is therefore to establish tensions and not compression as
explainednin Chapter 1, for all fibre spacings. This is borne
out by the results. The results therefore pertain more to

the particular geometry of the models than to real composites.
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A more realistic simulation of fibre discontinuity is
by a three-dimensional discretisation of the finite element
method, This would however require a large total number of
elements to achieve a reasonable physical approximation. The
feasibility of this is limited by the storage capacity and
speed of the computer, and this was the main reason for not
using this approach.

An experimental simulation of fibre discontinuity will

be presented in the ensuing chapters using photoelastic methods.
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CHAPTER 5

PHOTO-VISCOELASTIC BEHAVIOUR OF

BIREFRINGENT MATERTIALS

5.1 The Pasic Principles of Photoslasticity

When a ray of light enters a transparent isotropic
medium, it suffers a change in.velocity. The ratio of the
&elocity in vacuo to that in the medium ié the refractive index
of the medium and it is independent of the direction of propa—.
gation Qnd state of polarisation of the ray.

‘ In anisotropic transparent media, such as strained or drawn
high poiymers the behaviour is more complicated. In general a
single ray entering such a material is propagated as twof
separate orthOgonélly polarised components travellihg withj
different velocities, each parallel to a direction of secondary
principal stress in the plane of the wavefront. Both the
, Qelocities and the state of polarisation vary with the direction
'of propagation.  This phenomenon is known as double refraction
and the body is said to be birefringent. The principles of
photoelasticity are based on this property of double refraction
exhibited by most polymeric materials and glasses.

For polarised light of a given wavelength incident normaily
in a plate under plane stress conditions the velocities of the
component rays V., V, are eéch proportional to the Magnitﬁde of,
the principal stresses 6&,0’, lying in their planes of vibration,

leea:
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oo o and v, o O,

v 19 2 2 .

1

Thus on emergiﬁg from the photoelastic medium the two components
will have suffered a relative change of phase or RELATIVE
RETARDATIONfsuch that xm(vi—vz)t,where t 1s the length of the
path of the ray through the medium. (This will be the thickness
of the medium for normally incident light).

Since (v -v,) is broportional to (G&—Gé) we can say that
X = C(O,~0,)t (5.1
where C is a constant for a given material at a given temperature
and is known as the STRESS-OPTIC COEFFICIENT.

On vieﬁing the emergent ray through another polaroid materizal
(usually called ANALYSER), with its transmission axis perpendicul'

to the initial plane of vibration (i.e. axis of the POLARISER)

only the components of those two waves wﬁich are parallel to the
ANALYSER transmission axis can be observed. When the value of X
is such that the ray components for the analyser are out of phase
by m radians, mutual extinction will occur, producing zero light
intensity at every point in the medium having a similar'value of
principal stress difference (6,-0,). The loci of such points
form fringe patterns calied ISOCHROMATICS. A complete analysis,
may be found in most texts on photoelasticity, e.g. reference (52
Photoelasticityithus éffords a difect means of obtaining the
distribution of the principal stress differences in a stressed
plate optically. There exists‘another‘parameter which can also'

be optically measured, the ISOCLINIC. This is the locus of all

points in the plhte at which the directions of principal stresses
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are parallel to the axes of the polariser and analyser. From
such loci, stress trajectories within the plate can be

graphically plotted.

By makiﬁg models of structures or components out of suitable
birefringent materials and subjecting them to the required pode
of loading, the resulting stress distribution can be conveniently
obtained. In the main, photoelastic methods fall into two groups

of analyses:
(i) two-dimensional analysis and
(ii) three-dimensional analysis.

The first method,bf definition, is employed in the study
of plane modelsg (plane stress) elastically loaded for short
periods to avoid creeping of the materials. . |

The second method is applicable to three-dimensional models
made from polymeric materials and depends on the changes that
occur in the molecular chains of the polymer at elevated
temperatures. When loaded at a particular temperature known as
the CRITICAL TEMPERATURE, the exact value of which depends on the
composition of the'particular polymer, the material deforms
considerably almost instantaneously, with consequent sharp
reduction in the value of its modulus. After unloading at that

temperature, there is complete recovery without much delay. If
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however, the loads are maintained whilst the specimen is cooled
to room temperature, the deformation and optical effects
produced at thé critical temperature are retained on removal
of the load. Hence the method is described as the FROZEN STRESS
TECHNIQUE. To explain this behaviour.of the birefringent materia
at the elevated temperature, a descriptive theory has been
postulated in which the material is assumed to have two phases
simultaneously having different properties, see eege ref. (50
The ratio 6f relative retardation produced in the podel to
the load applied is actually much gpeater in the frozen stress
than in a model at ordinary room temperature. The linear
relationship, however, between the load and the stresé—optical
effects is retained for a wide range of loads so that the stress
distribution may be.determined from such a model. Also, the
frozen stress pattern remains unaltered when the model ié cut

or drilled with care.

5.3 Photothermoelasticity

Comparatively, more recently, a new technique of photoelasti
analysis is increasingly being employed in thefmal stress
problems (53) (54) (55). This method has been termed
PHOTOTHERMOELASTICITY. The problem may be a purely thermal
stress problem due to a non-uniform temperature distribution or
stress resulting fﬁom differential shrinkage as in composite
structural systems. In this method, also, both two and three-
dimensional approaches are possible. This method differs from th

conventional methods outlined above, both in the mode of loading

and in the nature of the resulting jgsochromatic fringes. In the
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conventional methods loading is externally applied whilst in
the photothermoelastic approach, advantage is taken of the
thermal loads induced as a‘result of any temperature gradients
or the differential shrinkage ¢f the components of a composite
material due to a uniform temperatiire change. This technique
will be examined in a greater detail in the next chapter.

In general, the isochromatics resulting from this approach
will be due to a combination of frozen stress and creep effects
and elastic stresses depending on the creep and thermo-viscoelasbd
properties of the birefringent materials used in the test. This
technique has been employed in thié investigation and to
interpret the results correctly, &n understanding of the

behaviour of binefringent materials is imperative.

The response of polymeric materials to any form of
loading is, in general, highly time and temperature dependent.
At very short loading periods, the material.exhibits a Hookean
elasticity, the ratio of stress to strain being constant and
independent of time. At longer loading periods this ratio
does depend on time; the strains may become large, but they are
recoverable if the load is removed. This is called delayed

or retarded elasticity*. At still longer times, some of the

*Also known as HIGH ELASTICITY
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strain may become irrecoverable showing that the material
has deformed in part like a liquid rather than a solid, this

is called flow. (56) (57) (58).

(i) Cféep.ChafaCtefisfiéé

From the foregoing, in a creep test at constant stress and

temperature, the strain, ¢ , may be generally expressed as:
e (£) = e, + e, (4) + e3(4) RREEEETEE - (S.Za)

the parametersce, €jeee. are measured at time t. is the part
?

€
1
corresponding to the instantaneous elasticity and hence is
independent of t; az(t) and e3(t) are the delayed and flow
deformations respectively. 63(t) is assumed to depend on the

time according to Newton's law for viscous liquids. Hence

equation 5 .2a may be expressed as:
e (£) = &) + ey(k) + B/ eeeenennns (5.2b)

where N has the dimensions of viscosity. Figure 5.1la shows the
type of creep curve which would be obtained with a specimen
which obeys these assumptions. At very shoft times, the
deformation under load consists only of the instantaneous

elastic deformation €93 it then behaves like a hard solid. Later
there is a region of transition in which the high elastic

deformation develops, and the compliancé*of the material changes.

** Ratio of strain at any time to stress.
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to that of a soft solid.' This transition region  covers several
decades of time. The flow term t/m may have some effect during
the high elastic deformation; at very long times this term may
become dominant and the material then béhaves like a very

viscous liquid, figure 5.1a.

(ii) Strain recovery

A strain recovery experiment may follow a creep test. The
stress is removed and while the specimen recovers, the strain
is measured as a function of time. On removal of the stress
there is assuﬁed to be instantaneous recovery, corresponding
to the instaﬁtaneous deformation & - Then_there is delayed
elastic recovery which corresponds to eé’ If there is complete
recovery, then there has been no viscous flow e« It may be
difficult, however, to distinguish between flow and very
delayed elasticitye.

(iii) Stress relaxation

In a stress relaxation test, the strain‘é, is held constant
and the stress and modulus become functions of time. Fiqure
5.1b shows the type of curve thaf may be obtained in a relaxation
experiment. The initial stress is high corresponding to an
instantaneous elastic response. The stress then falls as
delayed elasticity takes place and if there is no flow, the
modulus eventually falls to a constant finite value corresponding
to that of a soft solid. If flow occurs, the modulus and stress

‘eventually decreases to zero.
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The above behaviour may be expressed by an equation in

terms'of the modulus at zero time G(O) as:
G(t) = G(o)"GE(t) cc-oovcoo.o (5.38.)

where Go(t) is a function describing the change in modulus
caused by the delayed elastic response. Alternatively, the
eﬁuation may be written in terms of the modulus at infinite

time G(m) as:
!
G(t) = G(OG)+GE(1:) cecessoensese (5.3b)

If viscous flow occurs G = 0.

(o)
Comparison of the two curves in figures 5.71la-1b, shows that
stress relaxation and creep follows a similar course and are

found to be identical in the hard and soft regions. 1In the

hard region G(o) = 1/€i and in the soft region:
G((x) = 1/[61 +e(w)] o0 e0 00 s (5.3C)

if there is no flow. However, in the transition region, the
experiments give results, which though similar, are not identical
It is found that the centre of the transition region does not
occur at the same time in creep'and stress relaxation.experiments

(iv) Effect of Temperature

The properties‘of high polymers wvary greatly according to

the temperature at which they are tested. At sufficiently low
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témperatures all plastics are hard with Young's Modulus in the
region of 0.3 - 1.0 x 10%1p/in®. This state of the plastic is
referred to as the GLASSY STATE.
In general, any linear polymer* can, depending on its
temperature, exist in each of the following states:
(i) the glassy state,
(ii) the retarded highly elastic or leathery state,
(iii) the instantaneous highly elastic or rubbery state, and
(iv) the viscous state.
The d.asssy state corresponds with the lowest temperature
range and the viscous with the highesé. These states roughly
correspond to those demarcated in the creep and relaxation

behaviour. For a cross linked polymer**, viscous flow should

be prevented by the permanent character of the molecular

network structure, exéept at exceptionally high temperatures.

The widths and temperature ranges over which any particular

polymer exhibits these different types of behaviour and their

general positions on the temperature scale depend upon the

chemical and physical structure of its molecules. The temperatur

of the transition for state (i) to state (ii) is called the
GLASS TRANSITION TEMPERATURE. Although the elastic modulus,
viscosity, density and other physical properties decrease only

slowly with increasing temperature in the glassy state, at the

* A linear polymer is one which has continuous
unbranched molecular repeat unlts in its
network structure (58).

** A polymer with network formed by the linking
together of previously formed polymer molecules
via boded chemical structures, e.g. vulcanised
rubber. '
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transition temperature these quantities fall quite drastically

over a narrow temperature range.

5.5 TIME-TEMPERATURE SUPERPOSITTON PRINCIPLE

It has been observed by many experimenters (5g5) (57)
(58), that the curves which represent the viscoelastic
behaviour of a single polymer sample, determined at several
different temperatures, are similar in shape when plottedﬂ
against a logarithmic time base, log t. These curves can be
exactly superimposed by simply shifting them along the log t
axis. This is known as the TIME-TEMPERATURE SUPERPOSITION
PRINCIPLE and it applies to curves of stress relaxation, creep
and their allied derivatives. Thus one MASTER curve can be
drawn from a series of tests at_different temperatures for

creep or relaxatione.

5.6 TEMPERATURE-STRESS-OPTTICAL RELATTONSHIP

Hitherto we have discussed the mechanical behaviour of
birefringent:materials. However, from the standpoint of the
photoelastic investigation, the most important behavioural
aspect. of the material, is its oﬁtical response during the
various mechanical states. This 1s required for an accurate
interpretation of thg fringes present in a model which may
pass through any of these wvarious states.

A simple éheory of the photo-elastic properties of
molecular hetworks of long chains of random links, hés been

developed by Crawford, and Kolsky (59) and Treolar (60),
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transition temperature these quantities fall quite drastically .

over a narrow temperature range.

5.5 TIME-TEMPERATURE SUPERPOSITION PRINCIPLE

It has been observed by many experimenters (56) (57)
(58), that the curves which represent the viscoelastic
behaviour of a single polymer sample, determined at several
different temperatures, are similaf in shape when plottedﬂ
against a logarithmic time base, log t. These curves can be
exactly superimposed by simply shifting them along the log t
axiS. This is known as the TIMS-TEMPERATURE SUPERPOSITION
PRINCIPLE ana it applies to curves of stress relaxation, creep
and their allied derivatives. Thus oné MASTER curve can be
drawn from a series of tests at different temperatures for

creep or relaxation.

5.6 TEMPERATURE-STRESS—OPTICAL RELATIONSHIP

Hitherto we have discussed the mechanical behaviour of
birefringent‘materials. However, from the standpoint of the
photoelastic investigation, the most important behavioural
aspect of the material, is its optical response during the
various mechanical states. This is required for an accurate
interpretation of the fringes present in a model which may
pass through any of these various states.

A simple %heory of the photo-elastic properties of
molecular networks of long chains of random links, has been

developed by Crawford, and Kolsky (59) and Treolar (60),



- 69 -

from the kinetic theory of rubber-like elasticity. This theory
predicts that at constant temperature, the difference between
any two of the three principal refractive indices of a
network in pure homogeneous strain is proportional to the
difference in the two corresponding stresses. The constant
of proportiohality or stress optical coefficient is approximately
inversely proportional to the absolute temperature and is;indep—
endent of the degree of cross-linking of the network.
Experimental verification of the above theory has been
obtained (61) for natural rubber and gutta-percha. In
particﬁlér, it was shown that the stréss optical cceoefficient
is constant during creep and has the same value as for elastic
equilibrium. In the same work it was found that the constant
'for amorphous cross-linked polythene and polymethylene,
measured in their rubbery state (elevated temperatures),
decreased markedly with increasing de@ree of cross-linking.
This decrease can be accounted for on the basis of the theory
of the phofo—elastic properties of short chain molécular
nethrks put forward by Treolar.' |
P. S. Theocaris (57) has carried out a series of creep
‘and relaxation tests over a limited time interval, on both
hot and cold-setting Araldite epoxy resins, and at temperatures
up to the rubbery state. The characteristic mechanical and
optical viscoelastic properties were derived from these testss
it was established from these tests that:
fi) The values of the stress-optical coefficient éﬁd the

strain-optical coefficient are identical in creep and relaxation

for various temperatures. Their corresponding master curves are



coincident and therefore the variation of birefrihgence
follows the same law in creep as in relaxation.

(ii) The creep compliance master curves and the relaxation
modulus master curves can be represented by functions which are
the reciprocals of one another at any time. This shows the
validity of the relationship established earlier in equations
(ii) - (vi). -
The significance of (i) will be appreciated in the next chap

“ter on the experimental work which was conducted over a wide

temperature range from the glassy state up to the transition.



"CHAPTER 6

EXPERIMENTAL WORK

v
6.1 THE PHO?@HERMOELASTIC TECHNIQUE
., If an unrestrained homogeneous isotropic elastic body
undergoes a uniform temperature change, then the state of
strain produced in the material is everywhere isotropic.

The expression for the strain €m is,

where TO and T are the initial and final temperatures of

the body and o the linear coefficient of thermal expansion;

a may either be a constant or a function of the temperature.
This thermal strain does not give rise to any stresses since
thé displacements are uniform and unimpeded. However if thé
body is subjected to any constraints or thermal gradients,
stresses will be iqduced in it. If the thérmal configurations
of a‘structure are simulated by a model made from a suitable
birefringent material; the resulting stress distribution can
successfully be studied ﬁhotoeléstically. Three different
kinds of thermal stress problems can be envisaged.

(i) Thermal stresses due to steady-state temperature gradients

This represents a class of problems in classical thermo;
elagticity and essentially conventional two-dimensional photo-
elastic techniques are employed except that the loading is
thermal rather than mechanical. Such problems have been
investigated (53) in order to verify the photothermoelastic

method since exact solutions are available for certain



configurations, e.g. a long beam subjected Eo a steady-state
parabolic temperature distribution. Some three-dimensional
modele, e.g. the long cireular thick~walled cylinder, have
been successfully studied by this method.

(ii) Transient Thermoelastic Problems

A sudden non-uniform temperature change applied to a body,
produces stresses. In this case, the temperature distribution
in the body and the associated etrains and stresses all vary
with time. By suitable instrumentation the isochroma tics
associated with the changing stresses can be obtained at
desired intervals, (50).

(1ii) Restrained Shrinkage Problems

Y

The third class of thermal stress problems is encountered
in bonded composite structures, e.g. reinforced solids and
soiid propellant grains for rockets. By comparisoh with the
above types of problems (i)‘and (ii), these are the simplest
to simulate experimentally., K However they form an important
and érowing field of stress analysis by photothermoelastic
techniques. When the bonded composite structure experiences
any uniform temperature ehange, stresses are developed in it
" due to the aifferenéial expansion and also the differences in
the elastic eonstants of the componengg materials. Thus by
bonding a birefringent material to a second material, either
5y‘casting against it or by applying a suitable adhesive, the
change in or development of birefringence with temperature may

be observed. This method of analysis has been adopted in

the present investigation which is presented below. .
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6.2 SHRINKAGE AND ADHESIVE STUDIES

The restrained shrinkage method has been used by many
experimenters e.g Durelli et al (55) (62) for different

shrinkage problems. The behaviour of birefringent materials,

as described in the previous chapter, makes a preliminary study
of the model materials to be used in any tests under varying
temperature configurations imperative. In addition, in order
to eliminate extraneous stress producing effects, during the
experiment, certain characteristics are desirable in any
material chosen for the tests,

(i) Desirable Properties of Test Materials

In the present study, which consists basically of casting
a resin around metallic rods at an elevated temperature, the
following qualities would have to be fulfilled by the test
materialss:

" a) A hot-setting material with negligible or mild
exothermic reaction during gelation. This is important
in order to avoid an undesirable rise in temperature
within the model as this might be non—uniférmly distributed
ahd give rise to stresses. With excessive exotherm,
volumetric distortion might take place as Well as £he
entrainment of air bubbles; This last factor is also
influenced by the fluidity of the casting resin.

b) A negligible polymerisation shrinkage of the resin
system is required so as to avoid stresses not purely due
to thermal shrinkage which is mainly the consequence of

moelcular rearrangement; the geometrical distortions e.ge.
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buckling produced by this kind of shrinkage in large
plate models, for instance, can affect the thermal stress
distributions.

c) Good bonding between the component materials is
desirable since compatibility is a necessary condition

of the shrinkage process as explained in Chapter 1. This
should alsé leave the interface bond undisturbed on .
cutting the model into slices for photoelastic analysis.
d) The resin should possess a reasonabiy high figure

of merit, Q, defined as Q =/E/f = n/e¢ where E is the
Young's Modulus, f the material fringe constant, n, the
number of fringes and ¢ the strain. Hence Q is a measure
of the fringe seﬂgitivity of the material in response to

strain.

(ii)_ Preliminary studies of resin systemnms

For the reasons stated above a preliminary study of the
currently available photoelastic materials was carried out for
the selection of the material best suited to the tests.

a) BAKELITE SR9098 + ACCELERATOR Q17448 + CATALYST

Q17447 (SUPPLIED BY BAKELITE LTD.) This is a polyester

resin in 1iqu1d form and can be cured at various temp-

eratures. When tested, it exhibited excessive polymerisa-

tion éhrinkage,even.oh a macroscopic scale. A 4 in. thick
> plate casting with a circular glass inclusion produced

a severely buckled plate. The material also became soft

at slightly elevated temperatures.



L) ARALDITE MY753 + H v922 (SUPPLIED BY CIBA LTD.)

This is a liquid cold setting resin and can be cured at
various temperatures from room temperature upwards to -
abbut 100°c. It produced excessive exotherm with
increasing casting temperature and size of casting and
proved to be most unsuitable. However it had the
advantage fhat since it can be cast and cured at various
temperatures, the level of residual stresses and hence
isochromatics resulting from a composite casting could be

controlled by curing at a selected temperature.

c) ARALDITE CT200 + HT901 (SUPPLIED BY CIBA LTD.)

This resin is solid and melts at 120°C and may be cured
successfully at 110°¢ - 150°C. When tested, 1t produced
negligible polymerisation shrinkage and exotherm. Repeated
tests with thermocouples located at the centre of a large
mould in the form of a qylindrical vessel of the same
dimensions as the mould to be employed in the main
experiment (4.3 in. diameter and 7 in. long), showed

that .there was practically no exotherm at curing temp-
eratures of 110°C - 120°C. The resin poured easily at
120°C without Erapping any aif bubbles. Tts pot iife was
found to be about 2 - 3 hours at 110°C and solidification
was cémplete after 5 - 7 hours. This meant that enough -
time would be available for the mould and its contents

to attain a uniform cure tempemture of the oven before
the onset of polymerisation. This system has a high-'
figure of merit and is widely used in this country and

rd

elsewhere for three—dimensional photoelastic work (63) (64).

It was thercefore adopted for the tests.



(iii) Choice of Fibre Material

"Because of its excellent bonding with Araldite and its
tranépapency, glass rods (E-glass) were first considered
for the tests. However thelr unsuitability was soon diécovered
when on cooling the cast mould down to room temperature,
repeéted cracking of fibres and matrix was experienced; the
whole matrix and fibres cracked rather drastically. Other
alternative materials therefore had to be considered.

After tests with steel, copper, and aluminium (alloyed) rods,
the last was selected for its ease of cutting; lightness, good '
bonding with Araldite, cheapness and availability.- However,
initially some difficulty was experienced in obtaining a good
bond which would not break during the cutting process. Even
careful ‘and thorough abrasion and cleaning agents* could not
improVelthis. Aluminium is highly chemically reactive; when
exposed to the atmosphere, it quickly forms a protectiVe
thin coating of its oxide which prevents its further degradation.
The higher the time and temperature of exposure, the thicker
the oxide film formed and the more difficult it is to bond
effectively with Araldite.. |

it is normal in most casting procedures to heat the mould
to the same temperature as the molten resin before pouring so
as to avoid distortions due to non-uniform temperature distri-

bution. It was discovered that by pouring the Araldite into

*e.g. ethylene tetrachloride, acetone, etc.
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the mould whilst the latter was still cold (room temperature),
the ?ods having just been assembled after cleaning, the bond

was considerably improved. Since the material gels over a

long period, and as aluminium is an excellent heat cohductor,r
the rods and vessel would soon attain the oven temperature.
Adhesion was further ensured mechanically by cutting short
shallow and narrow slots along the sides of the rods far
removed from the regiohs of interest. The stress concentrations
produced by these slots would be highly localised and would
have no effect on the overall fringe patterns. The particular

aluminium alloy selected was BSS/ELC supplied in 4 in. diameter

rode.

(iv) Properties of Araldite CT200 + HT901

The manufactures of this resin (CIBA Ltd. of Daxford,
Cambridge) have extensive data on the mechanical and electrical
properties. of the material. (63).

Up to the glass transition temperature, 105-116C, the
ﬁaterial behaves in a brittle manner when tested over a
relatively shoft period.. The values of the Young's Modulus
and the thermal coefficient of expansion remain practica}ly
. constaht over this £emperature range. However, like all
polymeric materials, it has a tendency to creep over a period
of time.

»  The room temperature elastic fringe constant was obtained
from a compression specimen and the frozen stress constant
from tension specimens at 120°C the critical temperature.

Table 6.1 gives the various properties of the araldite and



PROFPERTY ARALDITE* ALUMINIUM.*.
(E) 6 > .
Young's Modulus, x 10~ 1b/in 0. 46 10
. (a) 6 o
Expansion coefficient, x 107 /°C 63 24
(v)
Poisson's Ratio ' : 0.35 0.33
(fe)
Material Fringe Value, 1b/in%/in/ 55.5 -
fringe ’ i
(fr)
Frozen stress gringe value, 1.438 -
1b/in“/in/fringe
(Ef)
Effective Young's Modulus for 5 2150 -
frozen fringes, 1lb/in
(Tc)
Critical Temperature C 120 -
(Tg) o :
Glass Transition Temperature, C 105-110 -

Table 6.1: Mechanical and Photelastic Properties of Araldite
CT200 and Aluminium (EIC) :

*Averaged from sample tests

*From "The Properties of Aluminium and its Alloys'";
The Aluminium Development Assoc1atlon° Infor-
mation Bulletin No.Z2.



aluminium. The resin/hardener weight ratio used here and in
all subsequent tests, was in the recommended proportions of
100 parts to 30.

(v) Casting of Models ' -

The geometﬁical arrangement of the fibres adopted in.
the tests‘waé that of a hexagon for reasons aiready mentioned.
Fortunately this arrangement has several planes of symmetry,
~thus simplifying the photelastic analysis which will be presented
in the next chapter. Three different packing factors (m = 4.5,
3, 2.5), see Figure 1.1 corresponding to fibre vo}ume fractioné
of 0.179, 0.403 aﬂd 0.580 were studied for both continuous and
discontinuocus fibres.

A base for each model was made from a disc of Araldite
1 in. thick, drilled for the required spacing and treated
with release agent to prevent adhesion to main model. ‘The
disc located the seven aluminium rods accurately as the
Araldite was cast around them in a cylinder about 7 ins. high
énd.about 4} ins in diameter, also treated with release agent.
Casting wag carried out at 120°C followed by sixteen hours
of furing at 1100C, the mould finally being slowly cooled to
room temperature (20°C) at a rate of 2°C per hour. .

For each packing factor, three different lengths of
discontinuity were studied, namely % in., 1 in and % in.

These various configurations are tabulated below in Table 6.2.
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m LENGTH OF GAP

4.5 0 #in | 4 in | % in
3 0 4 in | 4 in | 2 in
2.5 0 +in| 2+ in | 2 in
2 * 0 - - -

Table 6.2 Fibre Geometry and Discontinuity

For m = 2 i.e. the case where fibres lie in continuous line
awntact with each other, one model was obtained. The discon-
tinuity in the central fibre was.achieved by screwing the
upper.portion of the central rod into a bar made of Araldite
which had been’accurately drilled to be éupported by the two
" extreme rods in a straight line as shown.in Figure 6.1. The
use of Araldite as support for both the base and the upper
rods.was necessary'so that relative moveﬁent of the matrix
would not take place; this would—otherwise Change the true
'stress distribution due to the presence of the rods alone.

(vi) Cutting the Slices ~

' In the case of the models cast around glass rods,
transverse slices were cut using a large\diameter diamond
wheel cutter at high speed (24,000 RPM) and very slow feed, -

the model and wheel being profusely supplied with liquid coolant.

*No useful information was obtained for this.



- 81 -

Three different available workshop machines were
considefed for slicing the Aluminium/Araldite model which
Q;ﬂdnot be cut on the diamond wheel since the rather soft
aluminium would tend to clog the diamend wheel and damage
it. These were (i) a milling machine, (ii) a band saw and
(iii) a power saw. Trial cuts were made with these machines
to evaluate thelr suitability.

a) Milling Machine This is a horizontal milling

machine with a wheel cutter. Whilst this produced excellent
surface finish, it was found to exert too much force on the
specimen during cutting. Also the size of the specimen was
too large to enable a complete cut to be made through the
model in one traverse of the machine bed. The cuts therefore
had to be taken in bits requiring the model to be turned round
with possible consequent mal-alignment. This procedure of
cutting prbved to be rather slow and cumbersoﬁe and repeatedly
gave brokén bonds due to the excessive force of the machine.

| b) Band Saw This proved to be the quickest way of
cutting the slices. However the saw bench had no feeding
or ciamping mechanism and these had to be done by hand.
Added-fo this, the continuous mo&ement of the saw and its
small thickness produced excessive heat by friction which
was noteasy to eliminate even by prodigious supply of coolant
which again had to be done manually. Surface finish was poor

and this method proved most unsuited to the work.



c) Power Saw

The,powgr saw haé a rigid hacksaw blade of dimensions
14 in. x 2 in. x 0,10 in. x 10 t.p.i.; it also has an
adjustable dashpot mechanism which controls the depth of
cut per stroke and hence the pressure exerted on the specimen.
It has facilities for clamping the model and an automatic
coolant supply system. By setting the dial on the dashpot to
give minimum pressure, this.machine proved to be the best
suited to the workj; the finish was fairly good.

One specimen was cast without any inclusions and sliced
up on the machine. On examination the slices were found to
show negligible birefrinéence. This was broof that (1) the
cﬁtting process did not introduce any extraneous stresses
into the slices and (ii) the residual stresses from the
restrained shrinkage (i.e. with the aluminium inclusions)
were practically all due to differential shriﬁkage.

(vii) Polishing of Slices

Initially it was decided to improve the finish of the
cut slices by fly-cutting both faces. Tﬁere was difficulty,
however, in getting them uniformly clamped on the machine
bed and the slightest flutter of the specimen produced non-
uniform cutting. Otherwise the finish obtained in this manner
was excellent. In the énd; careful polishihg with sandpaper
by hand proved to be a quick and satisfactory method.

(viii) Slicing Planes

For each model geometry slices were cut as follows:
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a) SLICE T — a transverse slice from the mid-section of
the model,

b) SLICE IT

a meridional slice through the centre of three
rods in a straight line,

c) SLICE IIT - a meridional slice through the central rod

and at $0° to SLICE II,

d) SLICE IV

a meridional slice through any two adjacent
rods surréunding the central rod.

Figure 6.2 shows the various planes in which the above slices
are located in the model. The thickness of the slices was
about 0.1 in. Figures 6.3a - 33 show typical isochromatic
patterns associated with the different slices.

(ix) Check fé¢r Infinite Fibre Array Simulation

The seven-rod arrangement in the models 1is supposed to
yield the same stress distribution around the cehtral fibre
as for an infinite hexagonal array of these fibregin an
Araldite matrix. To check the validity of this, one model
with m = 3 with nineteen rods was cast. Figure 6.4b. shows
the isochromatics in a%transverse = ction, SLICE I,which are
practically of the same form and distribution as those from

the seven-rod model, figure 6.4a.

(x) Recording of Photoelastic Data

Frozen stress tests on Araldite (65) have shown that the
level of the frozen stress isochromatics slightly decreases
from fhe Value.immediately after freezing, over a period of
tina. However, the initial value is found to be attained
" again after a further period of time. In most conventional

th;ee—dimensionél photoelastic work, therefore, the practice



- 84 -

is to wait for the stabilisation of the fringes before record-
ing them. However, in the present tests, the presence of elastic
stresses in the models would give rise tg stress relaxations
and hence irretrievable loss of fringes with the passage of
time. Figure 6.3f shows the isochromatics for m = 3. (& = 2 in.
immediately after cutting the slice. The isochromatics from:
the same slice recorded after six months' storage at room
temperature, are shown in fiéure 6.5 and there is a reduction
in the level of. fringes. |

The procedure adopted, therefore, was to carry out the
various stages of the tests from the casting stage to the
photographic recording of data, in rapid éuccession. A sodium
'ménochromatic light source was used to record the isochromatics
and é white light source for the isoclinics. By a suitable
combination of lenses, magnificationg of up to 4 were obtained

and accuracy of data improved considerably.

6.3 CALIBRATION TESTS

Having obtained the isochromatics, we now have to
investigate their nature and assign ﬁeaningful stress values
to them. In conventional two- or three-dimensional analysis
this is a simple matter. However, in the present case, since
the fringes developed gradually over a tempefature-range from

around the critical, various tests have to be carried out to

evaluate the effective frihge cdnstant for the models.

(1) Elastic and Frozen Fringes
To determine the nature of the isochromatics in the

specimens, . the metal comﬁonenﬁ of the slices from both transverse
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and meridional planes (SLICES I and II) were carefully
removed and the resulting isochromatics examined. Figures
6.6a - 6b show the fringes from such slices; figures 6.7a -
b show plots of the total fringes and residual fringes along
particular lines. These show that:

(1) both the released and residual fringe patterns are of

the same form throughout the material, and
(ii) they occur in approximately equal numbers.

The problem of calibration therefore resolves itself into
the determination of the relationship between fringe order and
strain for that part of the combosite isochromatic fringe
' systém which is released when the constraints are broken and
that part which remains, bearing in mind that creep might occur
in the experiments.

(ii) Dog-bone Tests

Tests‘were performed on a dog-bone specimen , Figure
6.8, of the form fecommended by Sampson (66). In these tests,
| specimens were cast in an aluminium mould and subjected to
the same curing and cooling cycle as the models. Adhesion
was obtainéd at.all points except anng the shank of the
specimen where the two side pieces were treated with release
agent and removed before the specimen and its mould were
cooled in the oven at the same rate as the models. By
sultable arrangement of a polariscope and camera the isochromatic
in the dog-bone specimen wére photographed at various temp-

eratures during cooling, Figure 6.9.
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The‘fringe ofder in the shank obtained from separate
tests 1s plotted against temperature in Figure 6.10. The
results are clearly reproducible and yieldad a single ‘
straight lihe and therefore one calibration constant for the
témperature range.

The bonds at the ends of the dog bone specimens were broken
at intervals from O=5 days after cooling to room temperature.
All the speiiﬁéns were free of isochromatics, Figure 6.11a-11b,
showing that/ﬁgsidual shrinkage séress was phrely elastic.

Allowing for both differential thermal effects and the
elasticity of the sides of the mould, an expression for the
rate of appearance of fringes with temperature can easily be
obtained as follows:

The strain e in the shank of the dog bone due to the

S1

free differential contraction of the shank and the ends of

the mould is:

(ag = @ )T counnnnnnn (6.1)

e
m

s1 ~
where a. and a - are the thermal coefficients of linear exXpansion
of the aluminium and araldite respectively and T the temperature.

Considering the constraint of the sides of the mould, if
egm is the total strain in the shank and €qp the gtrain in
the sideé, then for equilibrium,

eSZEfAf = eSTAmEm EEEEEEEENR] (6.2)
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. where Af, Am are the total cross-sectional areas of the
sides of mould and shank reépectively and Ef, Em,the respective
Young's Modulii.

- From equation (6.2):

A E
e = m_m - e
s2 EfAf ST
Al so - eST = e51 o+ eSZ
AmEm
= (o.—a_J)T + . e
f "m AfEf sT
Em m
— -— — — | —
- (af CLm)T/(1 Ef . Af) e @ ®» @ @ o0 e (603)

The stress Og in the shank is given by,

[}

where N is the number of fringes in the shank and F the material

elastic fringe value of the Araldite.

Em(af—am)T

Hence NF = cecocas (6.4)
) B An
(1l-=—= . —)
£ Bg

Substituting the appropriate values from Table 6.1 into

equation (6.4), we obtain:



- 88 -

dN  (0.46 x 10%) x (24-63) x 1076
aT = 0.46 _ (.25
55.5(1 — 2248 5 L 122
--0.31

This value compares with that obtained from Figure 6.10
i.e.~0.306., It is clear therefore, that the usual photoelastic
constants are directly applicable to the elastic part of the

shrinkage process.

6.4 Creep Tests

To determine the nature of the frozeh finges, a series
of short-time creep tests were carried out on tensile specimens
at various temperatures up to the critical, 120°C. Lines were
scribed on the specimens and any permanent strains measured
‘on a projection microscoépe to an accuracy of * 0.00001 in.
The time for the duration of the creep tests at each tempera-
ture was two hours, the same as the cooling rate in the models.

Except at temperatures greater than about 100°C no
permanent fringes or strains were obtained. Tests above 100°C
gave the normal frozen stress fringe value of 1,438 p.é.i./
fringe/in.

With the two calibration values established, it is possible
to separate the elastic from the frozen stress systems and
analyse each separately. The complete separation of the stresses

will be the subject of the next chapter.
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CHAPTER 7

ANALYSTIS OF EXPERIMENTAL DATA

7.1 INTRODUCTION --

Generally, the optical-data as recorded, by themselves,
dp not directly give the separgte stresses. This is because
different states of stress with different principal magnitudes
but all differing by an arbitrary isotropic éystem, produce
equal photelastic effects. |

On free boundaries, however, since the direct stress in
the direction of tﬁe normal to the sufface is known to be
zero, the magpitude éna direction of the boundary stress lying
in a plane parallel to the tangent plane 'at a point in the
éurface2 is directly given by the value of the fringe order
and isoclinﬁ:respectiVely)for normgl incidence in fhe plane.

In separating the stressés in two-dimenionsal photoelastic
models, a number of methods.may be resorted to. These methods,
are in thé main:

(i)' Mechanical methods, e.g. lateral extension and grid
measurements yielding values of strain in thé surface of the
plate, . .

Lil) A relaxation numerical method based on the Laplace

ol 92

=x2 + -é--iz)(o'1 +'62) = 0, for'generalised blane

Equation (
streés conditions,
.(1i1i) The oblique incidence method devised by Drucker (67),

(iv) Interferometric methods for determining isophaics i.e.

locus of points having the same principal stress sum (S5, + C,),
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(v) Step by step integration methods, e.g. the shear
difference method and the method based on the LaméLMaxweli
Equilibrium Equations.

Defails of these methods may be found in standard texts
on photoelasticity, e.g. references (44), (51), (67). of
the above methods only (v), i.e. the integration method is
applicable to the.separation of stresses in three dimensions
from frozen stress models. Essentially this is an extension
of the governing equilibrium equations in three-dimensions.
Thus, in general, in order to separaté'the three principal
stresses, P, Q, Ry from photoeléstic data 'at a point in the
body, ﬁwo orthogonai planes containing thle point would be
required. When the body contains planes of symmetry the

procedure for obtaining the required data becomes simpler.

7.2 PLANES OF SYMMETRY

The normal to a plane of symmetry at any point in the

‘ plane is a principal axis at the point. "Hence a slice cut
from any such plane would give the principal stress differences
(P-Q) say, and their directioﬂs at any point in the plane.

The other principal stress difference (P-R) say,‘at any point
may be found by cutting a slice orthognal to the first and
whose mid-plane passes through the poiﬁt. To do this for
several points in the plane would entail a lot of labour.

To avoid this, the method of obliéue incidence may be employed

using the first slice alone, e.g. see reference (68).
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7.3 EXTENSION OF LAMé—MAXWELL EQUATIONS IN THREE-

DIMENSTIONS

' Equations of equilibrium at a point, of the Lame-Maxwell
type, have been formulated in three-dimensions (69). In
.general, none of the three lines of principal stress passing
through any boint is a plane curve and the application of -
these equations to a step-by-step integration procedure is
impracticable since this would involve the determination of
principal stress directions for several points lying in
different planes.

However, for a plane of symmetry, it is known that a
line of prinéipal stress is a.plane curve and from equilibrium

considerations, the differential equation can be derived as:

-QE+_P__Q+_R:.£‘ COS(X.:O e e s vecaaoce ) (7.1)

95 05 p3
~d5 1is the increment of length alond the P line of
stress p4r Do P3 the radii of curvature of the P-, Q—; and
R- stress trajectories at the point and « is generally the
inclination of p; to the P-stress trajectory, as shown in
Figure 7.1. .

The two systems which permit an easy evaluation of these

parameters are:

(i) the case of an axisymmetric stress distribution.
In this case, the R-stress trajectories are circles with their
centres on the axis of symmetry; any plane which contains the

axis of symmetry is also a plane of symmetry.
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(ii) The case where the P-stress trajectory is the
intersection of two planes of symmetry. Here a is zero a£
all points and equation (7.1) reduces to:

ap P—Q+E-::E‘= O ” o o & 00 (22)

o5 " pp  p3

o

7.4 SHEAR DIFFERENCE METHOD

The shear differepcé method in two-dimensional analysis,
has also been extended to three-dimensional problems (70).
This method is general and may be used to determine the six
components of stress along any line in an arbitarily loaded
body.

Using the stress system shown in Figure 7.2a and neglgct-
ing body forces, theeuilibrium equation in tﬁe X-direction is:

dC BTX BTZX

X Y% - ' '
ax + ay 4 az -—-O e e sccece (7'3)

In figures 7.2b-2c an arbitarily chosen line in the solid
body has been aligned with the X-axis. ﬁpon integration

of equation (7.3), the stress at any point k is given by:

K J .
_ ’ oT oT
d}{(I() - O’X(A)— _—E dX - Z2X dX .-00000(704)
A oY A 9% .
where g,y 1s the stress at an initial point A which would
in most cases coincide with the boundary where at least one

oT oT
stress would be completely known. —L£ and azx may be

oy



determined in the same manner as in two-dimensional problems,
e.g. reference (50), from the two slices containing the line
of integration from the XZ and XY planes respectively.

Replacing the integrals by summations, equation (7.4)

becomes:
AT — AT ’
_ N Dlyx o o\ zx
UX(K) = OX(A) Z Ay AX L Az AX eswovees | (7.5)

A . . A

3

The summations can be evaluated graphically. From Mohr's

Circle or other considerations,

]

(G&_dy)K [(p-q)(Cos Zg)K]xy = Fln,(Cos Zg)Kjxy,

>

.....(706)

I

(0,70, = [(p=q)y(Cos 20,1 = Fln(Cos 20), 1 ,
where xy and xz denote values obtained from the XY and XZ
planes respectively, ¢, the isoclinic parameter, F the model
fringe value aﬁd n the fringe order, all meésurements
referring to the point K.

Having thus obtained the five stress components, namely
o]

Yy’
by the method of oblique incidence from either slice. For

C.

x? ¢

z’Txy’ Ty ? the last component, Tyz, may be obtalned
details of the application of the oblique incidence method,
see for example, reference (68). It may be mentioned that
this method is subject to serious inaccuracies for regions of

high shear stress gradients,
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7.5 ANALYSIS OF PHOTOELASTIC DATA

The three-dimensional methods of stress separation
outlined above, are applicable only to frozen stress models
in which the fringe pattern in the body is unéltered on
cutting out the slices. 1In our.present models, however,
there are both frozen and elastic fringes in the slices. The
number of elastic ffinges within the model changes slighfly
upon cutting the sliceg due.to the relief of the stresses in
the orthogonal direction to the plane of the slice.

Tests as conducted in the previous chapter, showed that
the residual elastic fringe distribution has the same form
as the frozen fringés in the slices. Thus by analysing the
frozen stress fringes separately, andvknowing the boundary
conditions in the various planes of -the sliceé for both the
elastic and frozen fringes, we can evaluate a correction
factor for the elastic portion of the isochromatic fringe
system to obtain the true distribution in the model. We
shall proceed to show how this was achieved.

(i) Continuous Rods

The numerical effort involved in general three-dimensional
separation of stresses was reduced in the present work since
the hexagonal arrangement of the rods allowed for the existence
. of several planes of symmetry. The isochromatics associated
with the'various slices are shown in Figure 6.3; the isalinics
and stress trajectories are shown in Figures 7.3a—36; The
'lines of interest are HJ and DB (Figure 7.3a,3b), HJ is the

intersection of the planes of.SLICES II and IV and DB that
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.0f the planes of SLICES I and II. HJ and DB are stress
trajectories and they coincide with isoclinic parameters.,

(ii) Boundary Stresses (Initial Conditions)

Since the model was not subjected to any‘constraints on
iﬁ;boundary, the normal component of stress everywhere on the
boundary is zero. > In the transverse slice, SLICE I, the '
outermost dark fringe at the edge of the disc represents an
isotropic* region. Hence if Q, R, is the stress system in
this slice, R = Q = 0 around the edge. This region extends

up to the point M, Figure 7.3a.

On the top and bo£tom_edges of the meridional slice,
SLICE ITI, since theiaxiai stress P is zero, the fringe orders

at these edges give directly the values of the Q-stress.

(iii) Integration in Transverse Plahe

Starting from the point M in the transverse plane, SLICE I,
Figure 7.3a, the integration was carried out in stages along
MA, AD and DB as follows:

a) Analysis Along MA

MA is the intersection of the two planes of symmetry, -
i.e. SLICES I and III. The stress trajectories for SLICE III,
were foﬁnd to be straight lines except in a small regioﬂ close
to the ends of the rods. This state of affairs also applies

. to SLICE IV and is due to plane strain conditionst Hence

*an isotropic point or region is a region of zero
order of fringe and is characterised by a constant
dark field ( in white light) during the plotting
of isoclinics; all the isoclinic parameters pass
through this point or region. ‘
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.along MA the Lame-Maxwell equation i.e. equation (7.2)
reduces to:

°Q  O=R _
S

\

since p, is . =R and p4 can be obtained from SLICE I only
and the procedure effectively reduces to a two-dimensional
type of analysis.:

b) Analysis along AD (Figure 7.3d)

The integration here is similar to that along MA
réquiring only the transverse slice. The initial conditions
are the values obtained ét A previously.

It may be observed that in the transverse slice, since
the axial elastic stress P has been released by cutting, the
elastic residua} stress system Qe and Re approximate to a
plane stress system. Similar plane stress conditions can be
said to exist at the bottom and top edges of the model where
the axial component of stress is zero. Indeed in the vicinity
of H, Figure 7.3b, the stress trajectories are straight lines
indicating.that this‘state of plane stress extends over a
finite thickness. Hdwever, due to the release of the R-stress
in SLICE II, the value of the elastic stressxgiven by the
apparent fringe order would differ from the true plane stress
elastic fringe order at H as obtained from the analysis in
the transverse plane. '

c) Correction for Elastic Fringes

The frozen fringes have been shown previously to have
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-the same form of distribution as the residual elastic fringes,
see Figures 6.7a-7b; they also represent the elastic stress
distribution in thé model. Thus if fg is the(true elastic
fringe order and.ff* the frozen fringe order at a pbint in
'£he model, then fe = cf_; where ¢ is a constant factor. At H

A\ £

fe = fé(D)

where fé(D) is the residual elastic fringe order at D in the
transverse plane corresponding to the stress in direction DB,

l.e. the Q-stress.

-

fé(D) ]

flence, ¢ = F (0

e

. x £
e fem)

and £

£

feo)  Ir
ff(H) 2

where fT ~ is the total number of apparent fringes at the

point since ff = fT/2‘

Having determined the correction factor for the elastic

fringes, the integration is next switched into SLICE II along

?

HJ and JX, Figure 7.3b.

*f. is always the true frozen fringe order in both
sfice and model.



- 98 -

(d) Analysis along HJ

Using the correction factor for the elastic fringes,
the integration is carried out along HJ using the Lame-Maxwell
equation and noting that 1/p, = 0 from SLICE IV. The equation

here reduces to:

-

oP  P-Q
2.2 9

Q is known at H. From the stress trajectories and isochromatic
~ patterns it can be seen that the P- and Q-stress attain
terminal constant values in regions away from the edge indicat-
ing plane strain conﬁitions. v

(e) Analysis along DB

Again after correcting the elastic fringes as described
above the integration is conducted along DB in the transverse
slice, Figure 7.3a, using as the initial value, the Q-stress

at H obtained previously. The relevant equation in this case

is:
29, &R _ ‘
where pq is measured from the transverse slice; 1/p2 = 0 from

the meridional SLICE II.

(ii) Analysis of Discontinuous Rods:

(a) Isochromatic Patterns

Figures 6.3a-3y show typical isochromatic patterns for

various fibre spacings and discontinuity from different plaﬂes



‘within the model. The following observations may be made‘
about the fringe patterns:

(i) In SLICE II, Figures 6.3e-3f, the fringes show
the same mode and level of distribution as fog the éontinuoﬁs
fibre in regions removed from those containing the discontin-
uity since the middle rod is long enough to establish plane
strain conditions ( parallel isochromatics) some way up its
length. |

(ii) The position of the two isotropic points in SLICE
- IT are reversed depending on the length of the discontinuity
and the packing factor m. These points lie either on the
tansverse line of symmetry or on the central axis, Figures
6;3e—3f. For most of the models the two pointé lay on the
transverse line of symmetry. .

(1iii) The slices from the mid-transverse plane éhow (Fig.&
isotropic regions which increass in area with increasing _
length of discontinuity. Thfg ?eggggig%g?ogﬁmgigg}égngéSﬁ%ggetry
in the proposed numerical computational model earlier.

For the purposes of the analysis, the main interest was
the stress distribution in the discontinuity along the.twp

lines of symmetry ox' and o'z!, Figure 7.4

(b) Isoclinics and Isostatics

: Figure 7.3¢-3d show typical isoclinics and isostatics
in SLICE II for discontinuous fibres. Notice that the set
of stress trajectories does not ¢hange as we pass through the

~isotropic point.
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’From the observations made about the fringe paftern,
thé same fringe correction factor was adopted as for the
" respective cases of the continuous rods and the analysis
conducted systematically starting from the edée E along
EL, Figure 7.3C.

(c) Analysis along EL

Using the corrected fringe orders the integration was
carried out as in the case of the continuous rods, by either
the Lamé-Maxwell equations or the shear différence method,
depending on the nature of the stress trajectory along EL.

For example, in Figure 7.3d (m=3, &=% in.), EL does not

N

remain coincident with a stress trajectory along the

whole length and the shear difference method was'adbptedb

13

(d) Analysis along LK (Figure 7.3¢)

HavingAarrived at the point I, the analysis was-switched
over along OLK using data from both the transverse and the
meridional slice (SLICE II). OLK is coincident with the
zero isoclinic for all the models and hence the LaméLMaxwell
equations were adopted for analysis.

(e) Analysis along KG (Figure 7.3c)

Using data from SLICES IT and III the analysis was per-—
formed along KG which was also coincident with the zero

isoclinice.
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7.6 ACCURACY

In all the models except those for m = 2.5, very clear
and sharp isoclinics were obtained. In the case of the
models fog}giS, cracks persistently appeared ét the tips of
the rods in the discontinuity. On examination of the solid
model, the crack was found to extend around the circumﬁerehce
of the rod in the form of a cone within the gap. Both the -
isochromatics and isoclinics were therefore distorted and
no accurate data could be obtained from them, figure 6.39g.

The main source of inaccuracies was in the measurement

of radii of curvatures of the stress trajectories. This is

to be expected in any photoelastic work. N

7.7 RESULTS

(i) Continuous Fibres

Figure 7;5 shows the distribution of computed radial
stresses in the transverse section of the matrix along the
two lines of symmetry; the separéted radial stresses from
the photoelastic analysis along the line OX in Figure 3.2
are shown as points for comparison. The computed and
exﬁerimental values have béen assumed equal at the interface,
(x/X) = 1.0. The variation of one distribution from the
other is within the limits.of experimental and analytical

error throughout the range.

(ii) Discontinuous Fibres

Referring to Figure 7.4, the three stress components

P, Q, and R are shown plotted in Figures 7.6-7.7, for the
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two packing factors m = 3 and m = 4.5 and for &/p = 1, 2 and 3.

(a) Stresses along ox' (Figure 7.4)

The axial stresses Px, all start with tension at the
intéfface 0 at the inside of one of the outer fibres and
change to compression which increases up to a maximum at the
centre of the gap (x'/X') = 1, Figure 7.6a. For each value
of m the stresses at the interface (x'/X' = 0) are the same
for all gaps and as the diséontinuity decreases the stresses
increase and the point along ox' at which the change to
compression occurs moves towards the interface. As the fibre-
spacing increases, the axial tensile stresses extend over a
wider region. _ \

The circumferential stresses Rx' behave in a similar
manner to the axial stresses Px' starting with tension of
approximately the same magnitude at the‘interface and changing
to compressioﬁ, Figure 7.6b-6c. However the corresponding
points of change along ox' occur at shorter distances from 0.
Tﬂe radial stresses Qx' have thelir maximum compressive values
at the interface and decrease to a uniform compressive value
about midway along ox'; from this point onwards, the radial\
and circumferential stresses have équal uniform‘ﬁalues as
shown by the isotropic regions in the photoelastic Sliées'

from the transverse section, e€.g. figure 6.3b.

(b) Stresses along o'z' (Figure 7.4)

The axial stress distributions on o'z', Pz} are shown
in Figure 7.7a. These are all compressive and almost

uniform, the magnitude of the 'stresses increasing as the
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fibres.become closeiy spéced and as the discontinuity decreases.
As would be expected, both the radial and tircumferential.
stresses on o'z' have the same values for the same fibre
geom?try indicating conditions of axial symmetry, Figure 7.7b.

(iii) Shear Stress (%) along Discontinuous Fibre (Figure 7.4)

Starting from the tip of the discontinuity, the shear stress
(7) along the discontinuous fibre have been plotted in figures
7.8a=-8b for both packing factors and for each discontinuity.
The shear stresses are high at the tip and fall to zero é few
fibre-widths along the fibre. -The smaller the fibre spacing
and discontinuity the larger the shear stresses, and the longer
the distance along the fibre over which they fall to zero for

a particular fibre spacing.

7.8 .COMPARISON WITH PLANE MODEL -

| The results obtained for thé experimental model clearly
prove the validity of the objections raised about thé plane
madélo At this point doubts may be raised about the usefulness
of plane model in other work related to composite studies
previously mentioned. It should be remembered that the shrinkage
system is an internally self-equilibrating system requifing a
precise éimulation of the shrinkage process. In the other
-types of work where external loaas are specified,.the internal
mode of constraints are automatically satisfied to a good
approximation of the real system in accordance with the
St. Venant's principle, as long as the Ef/Em ratio is

sufficiently large.
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DI SCUSSTION

1, EXPERIMENTAL TECHNIQUES

The photothermoelastic technique of stress analysis is
being extensively emploYed in a variety of thérmal shrinkage
problems. Two distinct applications have emerged:

(i) A comparative study of shrinkage stresses in bonded
structures to evaluate the best design shape of the structure
(55) (g2) (51) (509). In this, a suitable calibration factor

may be.derived, based for instance, on’the known value of the
strain at a region removed from the bonded interface and the
associated fringe number for the material. Fringe concentra—
tion factors can thus be measured for different geohetrical

: cbnfigurations to obtain the shape which gives the least

stress concentration.

tii) The second approach is to obtain a satisfactory célibration
of the fringes in terms of stresé’folbe used subsequently in
ﬁetermining the absolute magnitudes of the separate stresses

in either a two- or three-dimensional ponded structure. The
main difficulty in this, is in the calibration procedure and

the relief of stresses when slices are cut from three—dimensiQnal
models as mentioned in an earlier chapter. | |

/

(a) Calibration Procedure

Sampson (66) has suggested a.method of éalibrating the
fringes from the dog-bone tests also employed in the present
work. In this method a factor 'C' was introduced into
equation (6.4) to account for the lack of perfect restraint
in the dog-bone system (and indeed for any other shrinkage

system) thus:



N *
%T: Ef A e oo e v e . (Dii)
F(i_m [ m).
Ef Af

used -
was proposed to be/in the interpretation of the fringes in

a restrained shrinkage model. In this expressicn, P-g
is the stress difference at a point, E, the Young's Modulﬁs,
N the fringe order in'the model, N the fringe order in the
shank of the dog-bone and A the free thermal differential’
contraction strain.

In subsequently applying this dimenéiéniess form of the
principal stress difference to a three-dimensional model,
Sampson failed to account for the stresses relieved due to
the slicing although as has been presehtly revealed; their
effect is not negligible. In evaluating the constant c,
Sampson used the frozen stress constants of the material
since on removing the specimen from its mould, it became
apparent that the source of the fringes was predominantly
of the frozen type. Further, the sue of this coefficient
as suggested, contradicts a previous stipulation.ﬁhat the
rmodel (in this case the dog-bone specimen ) and prototype
must be geometrically similar, since otherwise the value of
C would be different in anoﬁher system of restraint. Such

" a coefficient is therefore valueless and provided the nature

*In his derivation, Sampson neglected the effect of
the restraint of the sides of the mould. His expression
was: dN  CEp(oaf—-an)

dT — T
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of the fringes in a deg-bone has been detérmined, the fringe
-orders found for any other similar elastic system must applye.
Note that in the present investigation, the dog-bone
tests were conducted to ascertain the nature éf the fringes
shrinkage :
resulting from the differential thermal/in the material used
for the photoelastic analysis. By substituting the elastic
constants into the expression equation (6.4), the value of
dN/dT was the same as thg experimentally measured value.
Hence it was concluded that the elastic fringes in the
subsequent analysis of the model must be assigned the same
stress value as that obtained from a conventional elastic
calibration test. Further, the creep tests established both
the constancy of the properties over the . temperature range,

and the nature of the frozen-in fringes.

(b) Viscoelastic Effects

Data on the temperature and gtrain—rate dependence of
the properties of Araldite are not available. It is however
known that a complex relationship exists between the mechanical
and optical responses and the time-temperature-load hi;tory
of polymeric materials at temperatures below the critical in
a manner as previously described in an early chapter. |

The question may be raised as to why the photoelastic
data in the slices were not recorded after the elastic fringes
had stabilised. The dog-bone calibration tests had established
beyond doubt that the elastic part of the fringes in the model
was wholly attributable to elastic effects and since the

problem was essentially one of residual stress measurement in
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an abéolute sense, the instantaneous elastic modulus was tbe
most significant property. Also in- -the finite element method
viscoelastic effects of the plastic were not taken into
account, the matrix material (for the ARL systémsj being
considered as perfectly Hookean over the whole temperaturé
range. Furthermore, the dissimilarity in elastic propertieé
and elastic behaﬁiour of the compoﬁent materials, in particular
the Poisson's ratios, would not make for accurate comparison
between photelastic results recorded after delayed elastic
response, and the numerical results. To minimise any changes
Wifh time all slices were cut and the photoelastic dafa
obtained from them as soon as the casting, curing and cooling
cycle was complete. - |

(c) Plane Strain Model

The choice of Qlane strain models for the experimental
investigation was (i) to eliminate the effect of 'pinching?
and'(ii) to enable the method to be extended to the study
of stresses near discontinuities once it was established for
continuous fibres. 'Pinching' is the shrinkage effect in
the direction perpendicular to the plane of the plate (plane
stress model) at the interface thus creating a three-dimensional
state of stress, see for example reference (55). " The effect
is that the photoelastic patterns exhibit slightly less fringes
near the interface than if the whole field were truly two-
dimensional.

In elasticity problems if certain conditions are sétisfied,

all the in-plane stresses are the same for the same boundary



- 108 -

conditions in both plane stress and plane strain. These
coﬂditions are (72):
(1) the problem must be linear,
(1ii) 1loads must be specified in terms of boundary stresses

(first boundary value problem) and, |
(1iii) the body is simply connected, or a multip1y¥connected

body with £he loads on each closed portion of the boundary

in equilibrium.

The shrinkage problem, however, does not satisfy condition
(ii) since it is a mixed boundary Qalue probleﬁ, i.e. the
regtraints at the bonded boundaries are given in terms of
displacements. To obtain an éxact correspondence of‘the plane
stress and plane strain solutiéns, the elas£ic consﬁants must
be modified. This is done by a simultaneous solution of two
modified forms of the general expression of Hooke's law (75).
Clearly in all practical unidirectionalvfibre composite
materials, the conditions away from the boundaries will be
those of plane strain so that the models chosen for this analysis
should provide data which correspond to the actual conditions.
(d) Accuracy
Within the limits of experimentallerror, and,‘in particular

errors associated with the graphical integration in the photo-
elastic separétion of the stresses, there is good agrgement
between‘the stress distributions obtained by the two methods
for continuous fibres, Figure 7.5. It has been previously
established that in the restrained shrinkage method the‘total

fringe order in the model represents the elastic stress

\
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distribution and the fringes remaining in the slices after the
load is broken and the fibres are removed, are wholly |
attributable to the deformations imposed on the primary bond
structure of the-résin (57, (66 )., These frozen ffinges are
fully representative ( as in any other photoeiésticity work
‘using frozen stress techniques) of the elastic stress distribu-
tion in the composite so that the sum of tﬁe two sets of fringes
(elastic and frozen) also represents a purely elastic stress
distribution in the composite. Because of this, the comparigﬁn
of the photelastic results with the purely elastic solution
given by the finite element method, is justified even though

the properties of the ARALDITE matrix do not remain constant
over the range of temperature drop considered. The correspond-
ing.temperature drop for computation assuming purely elastic
conditions which is chosen to apply in the numerical procedure
wéuld be different from the 90°C used in the experiments because
the experimental shrinkage system comprises both elastic and
frozen stress behaviour. It was found that this temperature

drop was about 50°¢.

. 2. RESULTS

(i) Matrix Stresses and Elastic Properties

It is evident from the results of the finite element
analyses for continuous fibres in Chapter 3 that the shrinkage
stresses resulting from a\temperature change in a composite
: materiél can be large. For a given random set of composite

systems, the most significant factor which determines the
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magnitude of the matrik shrihkage stresses is the Value‘of
itsYoung's Modulus; high matrix values of Young's Modulus
produce correspondingly high stresses, whilst the Young's
Modulus of the fibre is not significant. Howeﬁer; for a
given matrix material, the stresses were found to be
" directly proportional to the following parameters:
(i) the difference between the coefficients of thermal

),’

. expansion of fibre and matrix, (am—af
(ii) the ratio of the coefficients of thermal expansion,

a /os and

(iii) the difference between the Young's Modulii of matrix
and fibre, (E.~E ).

No dependence on the ratio Et/Em was found.

(ii) Tensile Stresses in Matrix

The results also show thaﬁ in most composite materials,
tﬁere exists a mixture of tensile and compréssive stresses in
thé principal directions, as a result of a temperature change.
The state of the stress depends on the fibre density. For
most fibre épacings the radial stresses are mainly compressive
except for very dense packing of the fibres when tensile
stresses occur in the centre of the tricorn, Figuré 1.2.

The development of tensile stresses within the matrix
has been explained in Chapter 1 (d.V.), using an 'interference!'
model, and the results prové the validity of the shrinkage
mechanism as postulated. With decreasing fibre spaciﬁg tensile
: stresées are established to maintain the adhesion between matrix

and fibre. The less stiff the matrix material the greater the
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tendency for tensile stresses to develop. It is clear from
thé interference model £hat this is a factor of the difference
between the shrinkage coefficients (Aa), the greater the value
of Aa the greater the tendency for the interfefenéé gaps to
appear as in Figure 1.2a. Thus the Araldite composite systems
(Ao ~ 50 x 1Oh6/OC) showed tensile stresses in the tricorn for
m= 2, 2+08 and 2+125 whilst the rest of the systems (A¢ ~ 12
pd 10?6/OC) gave tension only for the one case of maximum fibre
density, naﬁely m= 2.

(iii) Radial Compression in Matrix

For all fibre spacings, the radial stresses remain
compressive along a line joining the centres of any two adjacenﬁ
fibres and the stresses increase, the closer the fibres are
packed. The variation of the radial stresses at the interface
B, (and at any pdint on oX iQ‘Figure 3.2) with fibre spacing
is shown iﬁ'Figure 3.6a. For all composite.systems, thé
compfessivg radial stress increases sharply from its value at
m = 2 to a maximum at m = 2.25; thereafter it decreases
gradually to an asymptotic value corresponding to the single
fibre analysis.

| Measured round the interface, the radial stre;ses remain
nearly constant for widel& spaced fibres when they approximate
to the case of a single fibre, but they change from compressive
to tensile for closely packed fibres. Assuming symmetri;al
packipg the change is cyclic, occurring six times for a
-_hexagonal packing and four times for a square arrangement. The
tangential stresses were found to be positive along the inter-
face and beyond into a larger part of the matrix for all fibre

\
spacings as postulated even though the radial stresses change
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along the same path. The radial and tangential stresses at A,
(Figure 3.2) were found to be approximately equal in magnitude
and had the same sense since A is an isotropic-poiht.

(iv) PFibre Stresses

The fibres were found approximately to be in a state
of uniform biaxial compression for most spécings except £hose
small enough to produce radial tensile stresses within the
matrix up to the interface. In the latter case, depending
on the spacing, the fibre stresses became tensile in the
appropriate regions as shown in Figures 3.8a-8b. Figure D.é
shows the isochromatic patterns in a slice from the transverse
section of a Glass/Araldite modél; it shows a uniform isochro-
matic field in the glass, thus confirming the numerical results
from the finite element analysis. Further, examination of
the computed results showed tﬁat along any fadial‘line, the
" radial stre;ses vary continuously throuéhout matrix and fibre
'whilst a sharp discontinuity at the interface occured in the
tangential stresses. This is because at the interface radial
stresses must be the same for equilibrium whilst in the
.taﬁgential direction cOmpatibilit? conditions require eduality
of strains. . '

(v) Discontinuous Fibres

For the reasons of combuter—ﬁodel inadequacy already
discussed in Chapter 4 and froﬁ the consequent di;g;epanéies
in results from the numerical and photoelastic anal&ses of the
ghrinkage stresses around discontinuities, attention here will

be confined mainly to the results from the photoelastic work.
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These results are the more realistic and pertinent to real
coﬁposite materials.

For the case of continuous fibres embedded in a matrix,
the axial stress within the matrix is fensile és e#plained
earlier, and this was found to be the case iﬁ the photoelastic
‘analysis. The magnitude of the axial stress increased with-
decreasing fibre spacing. However in the neighbourhood of a
discontinuity, since the fibres are in both radial and axial
compression resulting from shrinkage as e%plained in Chapter 1,
the matrix materialAlying in the gap directly between the ends
. of the fibres ﬁust also be in ;ompreséion. The matrix mateiial
inthe gap behaves more.and more like a'piece of fibre as the
gap becomes shorter so that axial stresses in the matrix become
‘more uniform and compressive as those in the fibre.

The axial and tangential stresses at the interface were
found to be approximately equal. The lengtﬁ of the discontinuity
(60) beyond which the axial stress in the centre of the gap
vanishes may be obtained from Figure D.1l. For ﬁ/; 4.5 the value
of 60 is about.two fibre diameters and for m = 3,60 is about
two and a half fibre diameters.. ‘

An isotropic state'of.stress<in the transversé plane
in the region around the centre of the discontinuity and lying
Yetween the enas of the fibres, was found to exist for both
fibre spacings and all the discontinuities. This region.is
therefore ih a state of triaxial compression which eliminates
the possibility of crack initiation. The radial and circum-

ferential stresses in the isotropic region attain their minimum '
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constant values at a certain value of 65 1f & is increased
bey@nd this value, the stresses are unchanged. A£ this point
and beyond, the preéence of the gap has no effect on the
stress distribution as the fibre end may be regarded as
isolated from each other, without any interacting effects;

The magnitude of the shear stress at the tip of the.
discontinuous fibre (measured along the side), increases with
both’decreasing fibre spacing and discdntinﬁity. As reported
earlier on, persistent cracking of the brittle.Aréldite
matrix occurred when Ehe fibres Were packed closely together
(m = 2.5), Figure 6.3g. In this case the crack developed in
a manner as shown in figure D.3 around the sharp tip‘of the

]

fibre along a line inclined at about 30° - 45° to the horizontal
and spreading ouf into the matrix in the form of a cone.
Examination of the isochromatics around the tip of the fibre,
Figurés 6.3e-3g, . shows that the line of maximum shear stress

in the matrix, coincides with the line of the crack.

Baker and Cratchley ( 74 and Ham and Place( 75) have
performed fatigue tests on silica-reinforced aluminium and
tungsten-reinforces copper composités,‘respectively, and
" observed tre formation of cracks near a fibre end ét about
45°C to the axis oflthe fibre. Initial shear stresses would
éggravate the situation and any fatigue, creep or crack tests
on composites should take due cognizance of thelr presence for
a more correct interpretation of results. For insfance, in the
test by Ham and Place, the forming temperature of the composite

was 1100—12000C, enough to create extremely high shrinkage

stresses.
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3. EFFECT OF EXTERNALLY APPLTIED ILOAD

The shrinkage stresses initially established in a
composite material as a result of its fabrication method, would
influence the behaviour of the composite under'a subsequent
éxternal loading. If we consider for instance, the effect of
‘a tensile load applied in the axial direction of the fibreé,
then for continuous fibres and in regions removed from fibre

in discontinuous fibres, ’
discontinuities,/this would augment the initial axial tensile
stresses in the matrix, thus precipitating matrix failure
earlier whilst fibre failure would be delayed since the fibres are.
initially in compression. The compréssive strength of the
composite as a whole is therefore enhanced.

The existence of residual coméressive stresses in
discontinuities will improve the composite strength in tension.
Tests on discontinuqéifibre tungsten/COpper composites have
been made by Kelly and Tyson (43) to determine the shear
.étrength (1) of the matrix at various elevated temperatures,

It was found that pull-out experiments on the composites
yielded values of 7 higher by a factor of two or three than
the values of & calculated from composite strength theory.
This was partially attributed to good bonding between fibre
"and matrix. Again in compression tests on the strength of
single glass fibres embedded in a resin matrix, Broutm;n and
McGarry (31) found'that the bond strength increased with

the cure temperature up to an optimum temperature above which

the strength fell. Clearly these findings are inextricably

linked with the residual stresses which in turn improve the
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bond strength of the composite by offering a radial or
axial constraint on the fibres.

The effect of axial load on the transverse radial stress
has already been pointed out. The effect of én aﬁial compression
for instance is to create radialitension at the interface due
" to the unequal lateral expansions of fibre and matrix. _Initial
radial compression would therefore be desirable. However since
the fibres take a far greater share of the load it 'is not
likely that the lateral free expansion of the fibres would
exceed that of the matrix and thus augment any'initial com-
pressive stresses. Thﬁs ip a situation where a composite
may be subjected to excessive compressive loading, higher fibre
volume concentrations would be'required to ensure initial radial
tensions in the matrix to prevent the incidence of cracks.

One instance in which the presence of residual stresses
is desirable is when interfacial delamination occurs before
composite fallure, Here, radial compression in the matrix
would provide a frictional bond necessary for composite
strength to be maintained. This is more significant in a non-
ductile matrix as in glass/plastic composites and this has
been pointed out by Outwater (18). When.delamination éccurs
-then the fibre/matrix integrity is determined solely by the
frictionai restraint at the interface, and this is. a direct
function of the interfacial radial compression initiqlly existing

in the matrix.
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GENERAL

In the computer anal;‘;s of the wvarious composite systems,
perfect.adhesion was implicitly assumed. However, in some
practical fibre/matrix combinations, the achievement of
interfacial coherence presents great difficulties and this
'has been the subject of several investigations, Coupled
with this is the surface degeneration of some flbres at elevated
témpératures. However most éf the systems studied can be
realised in practice, e.g. see ref. (6),

The results from the computer analysis shoﬁ'that for most
practical fibre reinforced materials there is likely to be é
mixture of both compressive and tensile radial stresses within
thé matrix due to shrinkage if the composite is formed af a
temperature above the ambient. This is also the case if the
composite is formed at the ambient temperature and subsequently
'subjected to a temperature rise, except that the sign of the
stresses is reversed. The closer the spacing of the fibres and
the softer the matrix material, the larger the area in-tension,
the tensile region developing first from within the tricorn as
postulated and gradually spreading out towards the interface
and beyond with decreasing fibre spacing. ‘

The resulting shrinkage may be high enough to generate
cracks in brittle materials, or cause interfacial debonding
~or to plastically deform a ductile matrix. The longitudinal
stress may be relieved by the fibres buckling to accommodate
- the shrinkage (76 ), and these buckle@ fibres provide a con-
siderable source of weakness if the composite is to be loaded

in compression or bending.
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The total stress system in the composite will be the
sﬁm of the shrinkage stresses, the stresses from the differences
in lateral expansion arising from unequal Poisson's ratios
and the appligd stresses. Even if the stresses generated
by shrinkage cause no direct failure they may provide an
‘initial state of stress which requires only small initial
external loads to produce failure. Outwater (77) reports
the sounds of resin cracking in filament wound pressure vessels
at a pressure barely 15% of the final failures loaé, due to
tensile stresses acting normally to the fibres.v'By far the
greatest number of cracks occur in regions of high fibre
density, especially where the fibres are in or nearly in
contact.

When the fibres are brittle and the interface strong,
fibre cracking may occur. The probable .planes of failure
deduced from the maximum tensile stresses are shown'dottéd in
figure 6.8a and these form arcs between the compressively
loaded contact lines along the fibres. A striking confirmation
of thié is provided by a photomicrograph of a cross section
of dlass fibres in an aluminium matrix due to Sutton etial (78 )
" in addition sharp discontinuities in the fibres can cause cracks
"in the matrix as was found in the tests. The photomicrograph
is presented by Sutton et al to show the probagation of cracks
fhrough the points of contact, but the source of the cracking
and the reasons for the form of crack almost certainly arises

)
- from the causes we have discussed here.
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‘It is clear from the results, in particular Figures 6.6a-
6b, that both the sign and magnitude of the radial stresses
are very sensitive to fibre spacing when the fibres are close
together, which is the usual condition required for maximum
strength. Where composites are formed by compaction or
‘infiltration of coated fibres it'should be possible to optimise
the geometry to obtain a maximum strength by a suitable choice
of ébating thickness in any practical case.. This form of
fabrication seems to offer the best opportunity fof the rational

design of composite materials.



- 120 -

CONCLUSTONS

The mechanics of the thermal shrinkage process in
unidirectional fibre composites has been explained and
predictions successfully made on the nature of the stresses
resulting from the thermal self—straiﬁing. The results
should be applicable to other compdsite syétems such as
reinforced concrete. The pfesent view of the shrinkage
process invalidates the interference model as presented
by Daniel and Durelli (23).

The shrinkage stresses in composite materials can be
very large. The magnitude of the stresses for a given
temperature drop, depends on the matrix Young's Modulus,
the difference between the coefficients of expansion of
.matrix and fibre as well as their ratios but is independent
of the ratios of the Young's Moduli. |

The radial stresses in the transverse plane of the
. composite are mainly compréssive and increase with decreas-
ing fibre spacing except for very close spaéiﬁgs when tensile
stresses develop from the centre of the tricorn within the

maﬁrix. The greater the difference between the expansion

u:coefficients of. the matrix and fibre, the greater the

~tendency for tensile stresses to deyelbp. Below a certain
spacing depending on the particular composite system, the
tensile stresses spread out in the matrix and beyond into
the fibrej; when the fibres lie in continuous contact with

each other (i.e. minimum spacing), the tensile stresses
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pervade throughout matrix and fibre except in the vicinity
of the line of contact where compressive contact stresses
exist.

A triaxial state of éompression exists in regions lying
between the ends of discontiﬁuous fibre ends and the axial
stress in this region is always in compression. The likeli-
hood of cracks de&eloping from witﬁin this region purely from
the shrinkage effects is diminished. However at the tips of
the fibre ends the shear stresses are high enough to precipi-
tate initial cracks in a brittle matrix such as a plastic. -

For continuous fibre composites the overall strength
in compression is enhanced whilst the presence of discontin-
uities tends to increase the tensile strength due to the nature
of the resulting initiai-stresses ffom the thermal self-
straining. “

Good agreement'has bean found between sfress distri-
butions obtained from the plane strain model in the section
normal fo the fibres using.the finite element method, and
the experimental‘model usiﬁg'the technique of photothermo-
elasticity. By performing suitable calibration tests judged
on the merits Of the experimental model and method, it has ~
. been poséible to assign an absolute stress value to the
fringes in the restréined shrinkage_syétem. The.célibration
constant as suggested byASampson (66 ) has been found to be
ifrelelevant and inapplicable.

Plane and axisymmetric model id¢€alisations of the

composite system to study the shrinkage stresses around

discontinuities have proved inadequate and unsuccessful.
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A much more elaborate three-dimensional idealisation of the
compoéite-system would be required., However the feasibility
of this approach is limited by the available computer storage
capacity. Nevertheless, the finite element method has proved
a powerful tool and it should therefore be possible to adapt
it to solve conventional thermal stress problems encountered -
in engineering préctice. |

Finally, because both fibre and matrix failure may be
influenced by shrinkage stresses especially in the composites
where high performance is sought and a high fibre volume
fraction consequently employed, it maybe desirable to design
any particular composite material so that the fibre spacing

is closely controlled. )



) 10.
11.
12.

13.

14.

- 123 -

REFERENCES

. H.L. COX: "The Elasticity and Strength of Paper and

Other Fibrous Materials". Brit. Jnl. Appl. Phys. 3,
72, 1952.

N.F. DOW: "Study of Stresses near a Discontinuity in a
Filament-reinforced Composite Material". GEC Rept.
R63SD61, 1963.

We.R., TYSON AND G.J. DAVIES: "A photoelastic.Study of
the Shear Stresses Associlated with the Transfer of
Stress during Fibre Reinforcement!". Brit. Jnl. Appl.

Phys. 16, 199, 1965.

M.J. IREMONGER AND W.G. WOOD: "Effects of Geometry on
Stresses in Discontinuous Composite Materials". Jnl.
Strain Analysis, 4, 2 1969.

A. KELLY: "Theory of Strengthening of Metals". Ch.1,
Composite Materials, Iliffe London 1965.

Met. Revs; 10, 37, 1965. .

"Fibre Composite Materials™" (Papers presented at a
Seminar of the AsSM, Oct. 1964) ASM, Metals Pk, Ohio.

J.E. HOVE AND W.C., RILEY: "Ceramincs for Advanced
Technologics'", Wiley 1965.

R.V. COLEMAN: "The Growth and Properties of Whiskers",

- Met. Revs. 9, 35, 1964.

DoW. PETRAESEK AND J.,W. WEETON: NASA Tech Note D1568, 1963.
D. CRATCHLEY: Powder Met., 11, 59, 1963.
D. CRATCHLEY AND A.A. BAKER: Metallurgia, 69, 153, 1964.

7’ I
F. LASZLO: "Tesselated Stresses". Jnl. of Iron and Steel.

Pt I - 1, 147, 1943
Pt IT - 2, 148, 1943
Pt III - 2, 150, 1944
Pt IV - 2, 152, 1945

A.L. FLORENCE AND J.N. GOODIER: "Thermal Stresses at
Spherical Cavities and Circular Holes in Uniform Heat
Flow". Jnl. Appl. Mech, 26, 293-294, 1959.



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.-

25.

26.

27,

28,

29.

- 124 -~

J. DUNDURS AND 0.C. ZIENKIEWICZ: "Stresses Around
Circular Inclusions Due to Thermal Gradients with
Particular Reference to Reinforced Concrete!. Jnl.
Amer. Concrete Inst. p.1523, 1964.

T.R. TAUCHERT: "Thermal Stress Concentrations in the
Vicinity of Cylindrical Inclusions". Jnl. Comp. Mtls.
3, 192, 1969, )

E. STERNBERG AND E.L. McDOWELL: "On the Steady State
Thermoelastic Prcocblem for the Half Space". Quart Appl.
Math., 14, 381, 1957. ' )

J«0. OUTWATER: "The Mechanics of Plastics Reinforcement
in Tension". Mod. Plastics, March 1956.

MCA-MIT: "Resin Shrinkage Pressures during Cure'.
Plastics Research Project, Progress Rept. Jan. 1959.

W.H. HASLETT AND F.J. McGARRY: "Shrinkage Stresses in
Glass Filament-resin Systems". Mod. Plastics, Dec. 1962.

I.M. DANTEL: "Photoelastic Investigation of Residual
Stresses in Glass-plastic Composites". ARF report
8194-3, 12, May 1960.

I.M. DANIEL AND A.J. DURELLI: "Photoelastic Investigation
of Residual Stresses in Glass-Plastic Composites'". SPI
Sect. 19-A.

I.M. DANIEL AND A.J. DURELLI: "Shrinkage Stresses Around
Rigid Inclusions'". BSESA Aug. 1962.

R.H. MARLOFF AND I.M. DANIEL: "Three—Dimenéional Photo-
elastic Analysis of a Fibre-Reinforced Composite Model".
SESA April 1969.

T. KOUFQPOULOS AND P.S. THEQCARIS: "Shrinkage Stresses
in Two-Phase Materials". Jnl. Comp. Matls. 3, 308, 1969.

A.W. LEISSA AND W.E. CLAUSSEN: "Application of Point-
Matching to Problems in Micromechanics'". Ch.3. "Fund-
amental Aspects of Fibre-Reinforced Plastic Composites'.
Wiley, 1968, ' ’

"Composite Materials": Ed. L., HOLLIDAY, Van Nostrand, 1965,
D.F. ADAMS, D.R. DONER and R.L. THOMAS: "Mechanical
Behaviour of Fibre Reinforced Composite Materials". Air

Force Mtls, Lab., AFML-TR 67-96, 1967.

M.J. IREMONGER: Ph.D. Thesis, University of London 1968.



30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40,

41.

42.

43.

44,

- 125 -

D.R.J. OWEN, J. HOLBECHE AND O.C. ZIENKIEWICZ: "Elastic-
Plastic Analysis of Fibre-Reinforced Materials!". Fibre
Science and Technology, Elsevier Publ. Co. Ltd., England

p.185, 1969.

L..J. BROUTMAN AND F.J. McGARRY: "Glass—Resin joint
Strength Studies'"; Mod. Plastics, Sept. 1962.

M.J. TURNER, R.W. CLOUGH, H.C. MARTIN AND L.J. TOPP:
"Stiffness and Deflection Analysis of Complex Structures",
Jnl. Aero Sci., 23, 9, Sept. 1956.

0.C. ZIENKIEWICZ AND Y.K. CHEUNG: "The Finite Element
Method in Structural and Continuum Mechanics", Mc-Graus-—-
Hill, 1967. ‘ )

R.V.SOUTHWELL: "Relaxation Methods in Engineering Science™
OUP, 1940. ’

B. FRAEJIS DE VEUBEUKE: "Displacement-Equilibrium Models
in Finite Element Method", Ch.9 of Stress Analysis ed.
0.C. ZIENKIEWICZ AND G.Sf HOLISTER, Wiley 1965.

E.L. WILSON: "Finite Element Analysis of 2-Dimensional
Structures." Structures and Materials Research, Depart-
ment of Civil Engineering, Rept. No. 63-2, June 1963,
Univ. of California.

D.F. ADAMS AND D.R. DONER: "Transverse Normal Loading of
a Unidirectional Composite". Jnl. Comp. Mtls. 1, 1967.

M.J. IREMONGER AND W.G. WOOD: "Stresses in a Composite

"Material with a Single Broken Fibre", Jnl. Strain Analysis,

2, 239, 1967.
A.H. COTTRELL: "Strong Solids" Proc. Roy. Soc., 2, 1964.

"Physics and Chemistry of Ceramics". Ed. Cyrus KLUIGSBERG,
GORDON AND BREACH, N.Y. 1963,

D.i,. McDANIELS, R.W. JECH AND J.W. WEETON: NASA Tech. Note
D-1881, 1963, -

A. KELLY AND W.R. TYSON: "Proceedings of the 2nd Inter-
national Materials Symposium'", California 1964, Wiley.

A, KELLY AND W.R. TYSON: "Tensile Properties of Fibre-
Reinforced Metals: Copper/Tungsten and Copper/Molybolenum".
Jnl. Mech. Phy. Solids, 13, 1965.

CeJ. SMITHELLS: "Metals Reference Book", Vols 1-3,
Butterworths, London 1967.



45.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

— 126 -

D. SCHUSTER AND E. SCALA: '"The Mechanical Interaction
of Sapphire Whiskers with a Birefringent Matrix". Trans.
Am , Inst. Min. Eng. 230, 1635, 1964,

JeS. ISLINGER ET AL : "Mechanism of Reinforcement of

" Fibre-Reinforced Structural Plastics and Composites'.

WADC TR 59-600 Pt 1, March 1960.

R.D. MOONEY AND F.J. McGARRY: "Resin-Glass Bond Study".
14th Am. Conf. Reinforced Plastics Div., SPI, Feb. 1956.

B.E. GATEWOOD: "Thermal Stresses in Long Cylindrical
Bodies". Phil., Mag., Sev.7, 32, 1941,

H.T. JESSOP AND F.C. HARRIS: "Photoelasticity, Principles
and Methods!", Cleaver-Hum Press Ltd., London.

A;J. DURELLI AND W.R. RILEY: "Introduction to Photome-
chanics". Prentice-Hall, 1965,

M.M. FROCHT: "Photoelasticity" Vols. I & II, Wiley, 1957.

E.G. COKER AND L.N.G. FILON: "Photoelasticity" 2nd ed.
CUP 1932.

G. GERARD: "Progress in Photothermoelasticity", Symposium
on Photoelasticity, ed. M.M. FROCHT, Pergamon, 1963,

R.C. SAMPSON AND D.M. CAMPBELL: "Contribution of Photo-
elasticity to Evaluation of Solid Propellant Motor
Integrity". Jnl. Spacecraft, 4, April 1966.

A.J. DURELLI AND V.J. PARKS: "New Method to Determine

" Restrained-Shrinkage Stresses in Propellant Grain Models'™,

SESA, Nov., 1963

"Physics of Plastics", Ed. P.D. RITCHIE, London Iliffe, 1967.

P.S. THEOCARIS: "Viscoelastic Properties of Epoxy Resins
Derived from Creep and Relaxation Tests at Different
Temperatures'". Rheologica Acta 2, 2, 1962.

P. MEARES: "Polymers: Structure and Bulk Properties".
Van Mostrand 1965. .

S.M. CRAWFORD AND H. KOLSKY: Proc. Phys. Soc. (London)
119, 1364, 1951.

L.R.G. TRELOAR: "The Physics of Rubber Elasticity".
Clavendon, 1958.



61.

62.
63.

64.

65.
66.
67.

68.

69."

70.
71.
72.
73.
74.

75.

“Wiley N.Y.

- - 127 -

D.W. SAUDNERS: "The Photo-Elastic Properties of Cross-

"Linked Amorphous Polymers", Trans. Faraday Soc. 52,

1414-3C, 1956.

I.M. DANIEL AND A.J. DURELLI: "Photothermoelastic Analysis

" of Bonded Propellant Grain'" SESA March 1961.

"Araldite CT200 for Photoelastic Models", Ciba Instruction
Sheet No. M32a, CIBA (ARL) Ltd., Duxford, Camb., England.

H. SPOONER AND L.D. McCONNELL: "An Ethoxyline Resin for
Photoelastic Work", Brit. Jnl. Appl. Phys. p.181-4,
June 1953. "

M.M. LEVEN: "Epoxy Resins for Photoelastic Use", from
ref' 530 ‘

R.C. SAMPSON: "A Three-Dimensional Photoelastic Method
for Analysis of Differential Contraction Stresses™", SESA
Sept. 1963; :

M. HETENYI: "Handbook of Experimental Stress Analysis",

~

J.W. DALLY AND W.F. RILEY: "Experimental Stress Analysis",
McGraw Hill, 1965.

H.T. JESSOP: "Equilibrium Equations Along a Stress
Trajectory in Three-Dimensions". Jnl. Sci. Instr. 26,
Jan. 1949,

M.M. FROCHT AND R. GUERNSEY: "A Special Investigation to
Develop a General Method for Three-Dimensional Photo-
Elastic Stress Analysis", NACA Tech. Note 2833, Dec. 1952.

A.J. DURELLI AND V.J. DORKS: "Photoelastic Stress Analysis
on the Bonded Interface of a Strip with Different End
Configurations". Amer. Ceram. Soc. Bull. 46, June 1967.

T.N. MUCKHELISHVILI: "Some Basic Problems in the Math-

ematical Theory of Elasticity", P. NOORDHOFF, 1963.

S. TIMOSHENKO AND J.N. GOODIER: "Theory of Elasticity™"
McGraw Hill. : '

A.A. BAKER AND D. CRATCHLEY: Appl. Matts. Research Vol. 3,
215 1964. .

R.K. HAM AND J.A. PLACE: "The Failure of Copper-Tungsten

Fibre Composites in Repeated Tension'". Jnl. Mech. Phys.
Solids. 14, 1966, ) ' '



76.
77.
78.
79.
80.

81.

82.

83.

84,

85.

- 128 -

‘B.W. ROSEN. "Mechanics of Composite Strengthenlng"

Ch. 3 of Ref. 7.

J.0. OUTWATER: "The Promise and Reality in Filament-wound

* Laminates'", Chemical Engineer, Oct. 1964.

W.H. SUTTON ET AL: Gen. Elect Co. Rept. Contract NOW-60-
0465-d, 1960-64.

R.W. CLOUGH: "The Finité Element Method in Structural
Mechanics", Ch. 7 of Ref. 35.

G. TEMPLE AND W.G. BICKLEY: "Raleigh's Principle and its
Application to Engineering", OJP 1933,

A. MATTING AND G, EHRENSTEIN: "Interfacial Stresses in
Glass Reinforced Plastics", Rept. of the Institute for
Materlal Science of the Technical University, Berlin,
1966. :

'T.F. MACLAUGHLIN: "A Photoelastic Analysis of Fiber
.Discontinuities in Composite Materials", Jnl. Comp. Matts.

G.S. HOLISTER AND C. THOMAS: "Fibre Reinforced Materials",
Elsevier, 1966.

'Modern Computing Methods': Notes on Aﬁplied Science No.16"'
HMSO: 1961.

L.E.HULBERT: "The Numerical Solution of Two-Dimensional

Problems of the Theory of Elasticity", Bulletin 198,
Engineering Experiment Station, The Ohio State University,
Columbus, 1963%,



-129-



= m

\

REPEATED UNIT USED IN FINITE

ELEMENT ANALYSIS, SEE FIG.2.1b.

FIG.1.1: HEXAGONAL, ARRAMNGEMENT CF FIBRES,




MATRIX MATERIAL

('D) TRACTIONS oM "TRICOIN OF AT
e SHENN KATE  SYDTEIR

- ToN SR8

e

[e

(QDEMWAFE%%VK MOD&H}GLQ&iFﬁQKED RODS

-1¢T-

g
i

(RS
¥ 2

Z
(d) SmPLIFED STRESS SVETEM oo )

: x} X

ol o g

FiGi1:2 THE INTERFERENCE AND ACTUAL SHRINKAGE 8Y8TEMS.




-1%2-

>
X
FIG;Z.la: IYPICAL ELEMENT TN A TRIANGULAR MESH.

: B
y A .

DEANGULAR MRESIT FOR FINITE
ELEMENT ANALYSTIS,




FIG.3.1:

-13%-

TYPTCAL MESH (FULL-SIZE) FOR

PLANE STRAIN ANALYSIS CF

" CONTINUCLS FIBFES, m=4.5,

/'

S

(ARl P Rl d o,

P, LS o

PRde .

Ol P

s




-134 -

FIGURE %.,2: SELECTED LINES AND POINTS
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FIG.7.1: STRESS TRAJECTORIES IN 3-DIMENSIONS.
THROUGH FOINT O. C,,C,,C, ARE CENTRES
OF _CURVATURE_AND £,, fa; @& ” THE CORRES=-

PONDING RADII OF CURVATURE.,
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PLANES FOR SHEAR DIFFERENCE
METHOD.
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FIG.7.3c:TYPICAL ISCCLINICS AND STRESS TRAJECTORIES
FOR A MERIDIONAL SLICE II FOR DISCONTINUCUS
ROD ALSO SHOWING LINES O INTEGRATION. (m=
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—————————— CCMPUTED RESULTS
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- =gy . — Crack path

FIG.D. 3:CRACK FORMATION IN CLOSELY PACKED FIBRES.
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APPENDTX I

DERIVATION OF ELEMENT STIFFNESS

BY STATIONARY POTENTIAL ENERGY

The potential energy (V) of a system i1s the sum of the
work done by external forces {F] over displacement {&} and
the elastic energy stored in the system. Since, in'the finite
element method, fhe stress ¢ and strain  are assumed constant

in an element,

T .
. v =‘-{F}{5} + iglgiﬁl X (vo;ume)

~

For .equilibrium

Fdr a unit thickness of material if A 1s the area of the

eieﬁent, then,
T T T ‘d A
0 = —{F) +[{o},%{g% + {e) %%5%35

Now if {e} = [BI{o}

and {0} = [DI{¢} = [DICBI{6}
0 = -{F3T+[(IDITBI {61)T[BI+([B] {6} [DI[BIIS

[D] is the 'elasticity' matrix which for an isotropic

material is symmetric i.e. [DJT = [D]
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= ~{F}+2({6} [B1TIDI[B])S

T

. -%T = arB17[DICE]
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APPENDTIX I I

FINITE ELEMENT FORMULATION FOR A TRIANGULAR ELEMENT

In Chapter 2, the theory of the finite element method
was presented and the element characteristics derived. A
Fortran programming for elastic analysis has been developed
by Wilson (36). ' The most important element characteristic
is its-stiffness and we shall show how this can be obtained.

Figure A.1 shows a typical'triangu1a£ element with nodes
%, js, ky. in a cértesian system. u, v, are the displacements
in the x-, Y—direétions respectivelyy; the dimensions of the

triangle are also shown.

34

£

WA
e a

Fig. A.1 Triangular element dimensions

A
bl

1. Displacement Functicns

Starting with linear displacement functions:

= U+ CuX; + C,Y.

Y(x,y) i

Vix,y) = Vit CG3%; * CuY;

I

(A.2(i)
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and expressing Cqs Cp weees in terms of the nodal displacements

and geometry of the element, we obtain:

Cy b.-b 0 bk 0 —bj 0 us
J Tk 0 0 v,
ol 1 la-a. 9 % ~8y +
=2 < "3
Csy 0 b —bk 0 bk 0 =b v e s e e v e e (AL 2(0)
J
Lf4 0o 25 -0 -3 0 a3y Uk
- ol i
,where 2A = 2 X area of triangle = (ajbk - akbj)
2. Strains (.), [B] matrix
P18
€x P33
{el =4Cv¥= 3>
QU asav
Y ok oY
I3y * 3x
From equations (A.2(i)) and (A.2(ii)),
. _ : _ u,
) by=b, 0 by 0 -b, O o8
) oL _ _ 3
{el = 57 0] 3y aj 0 ay 0 aj uj ( o
e a4 e . . A,2Gii
ak—aj bj—bk -3y bk aj —bj vj
¢ \ Yk

Comparing eq.. (A.2(iii)) with eq. (2.4), the [B] matrix is

easily identified.

3. Stress-Strain Relationship - [D] matrix

For the case of isotropic thermal expansion of an isotrpic

material under plane strain conditions, using Hooke's law, we
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obtain the relationships:

o, - MO VO,

X e
€X = E - E - E + 0:.9
-V o VO,
= X 2 _ Z € .
GY - E + E E + 0'-9 . . e b . v s « s @ (A.Z(lv)
Vo vCo log
_ X - N Z e _
€, = 7E E & *© ag” =0

where @ is the temperature change in an element and o« the
coefficient of thermal expansion.’
Eliminating o, and rearranging equation A.2(iv), the

stress ¢ can be expressed in matrix form as:
~

{o} = [DIL¢ - €o] (cf eduation 2.5)

s
i

where €q 2re the initial strains.

The [D] matrix is obtained as:

v v 0]
T (1+Vv) (1-2vy) 12
o . 0 0 a4
2

4, Element stiffness [k]e

From equation (2,7a):

[x1¢ = \[B1"[DICB] taxdy
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-

where t is the thickness of the element and the integration
is taken over the area of triangle. For unit thickhess this

becomes:
[x1® = [BITCDICBIA

and the actual matrix multiplication may be left to the computer.

'5, Nodal Forces due to Initial Strains:.{F}e
€o -
From equation 2.7c: '
' e T .
F = ~[Bl [DI[¢ 1a
{ ]eo e € A
this, after substitution, becomes :
dos ' 7]
. | F Dy b,
. 7.
rt 2578
Y
FJ —Py
Jeg F; 2(1+ (12 )| ‘o L A_z_(v.‘)
k b.
FX J
Fk —a.
Y J.
L n . |

6. Total Assemblage Stiffness [K]

For a Eypical element e, the equilibrium equation 2.8

N may be written as:
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PR . . m
Fy kii ®is fix ;7]
F.l =1]xk.. . ) . .
J le kJJ ka 63 e e (A.2it))
F k.. k.. k 5
| k] kL k3 Tkk [Tk

where.in terms of arbitrary nodal points p, g :

N 'e
[F ]e _ FX -

p X Fy

|Y

e
[6 1° = °x
q 6y

q

and the stiffness coefficient k is of theiform:
e
k.
e plod Xy
[k 1" =
Pd xy Fyy
A e

which represents the/forces developed on element e at nodal

point p due to unit displacements-at nodal point q.

- ._ e
. . k%q f:i[kpq]
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APPENDTIZX IITI

‘THE GAUSS—SEIDEL ITERATION

The Gauss-Seidel iteration for the solution of equation
2.8 involves the repeated calculation of new displacements

from the equation:

(s+1) -1 q;i' (s+1) N (s) .
6n = nn[Fn— féiknibi —i:gi%ikni6 ] (A.3(1))

where n is the number of nodal point and s is the cycle of

'(s)

iteration. The change in displacement Ab between two

successive cycles of iteration is given by:

(s+1)_6(s)

(s) _
A()n - 6n n

and from equation (A.3(i):

n ivi Tif=En ni i

—

(s) -1 n=1  (3,9) X (S)
b =Knn [F-lE:,_Lknﬁ Z x .56.571

' By using an over-relaxation factor B, the new displacement

6(s+’.L)

n of nodal point n is then determined from:

(s+71) (s)
6 =6n

(s)
n BAS, .

This greatly speéds up the convergence.
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THE COMPUTER PROGRAMME

THE Finite Element Method has been described in
Chapter 2 and Appendices I-XIXII. For completeness a listing
of the programme for the plane stain analysis of continuous

fibres presented in Chapter 3 is given here.

[y
.

Data for the mesh include the nodal point coordinates,
elemnent nodes, elastic properties of the elements and the
temperatﬁre change, Initial loads and displacements, if any,

are also generally included in the data.

For each nodal point, the thermal load contributions
from all the elements which meet at that node are summed

up using the appropriate relationships, see Appendix II.

The B and D matrices are then set out from which
the Stiffmness matrix is obtained by the appropriate matrix
multiplication. The stiffnesses are inverted to obtain the
flexibilities which are then modified for the boundary nodal

points according to the type of constraint impcsed on them.

Next,; the Gauss-Siedel iteration procedure is performed
to obtain the correct nodal point displacements from which

the stfains and stresses are calculated.
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c DIMENSION AND COVION STATEVENTS

DIMENSICON ARRAY(7)

DIMENSICN CCF(5)y5X{350)+EY(350) s2XY{350) EPLAS{350)

DIMENSTION NPNUMI2G1) s XORD(2U1) 1 YORD(201) +DSX(201)+0SY(201)

1 IXLOAD(ZC})9YLOAD(201)!NP(201910)9SXX(20109)!SXY(EOIvQ)qSYX(ZOI!@)1
1 25YY ({201 ¢+ NARP (20 1)

DIMENSICN NUMEI350) shPIIRS0) s NPU(250) « NPK{350)+ET(350) + XU(250) »
IRO(250)+COED(350) «+DT (250 s THERM(350) 1 AJ(250) 18J(350) 1 AK (350) »
28K(350)9516XX(350)eEIGYY(35O)sSIGXY(350).SLOPE(1OO)

DIMENSION MPBOI100) yNEFIX{100)Lii{3)sA(616) B{B16)15(646)

DIMENSICON NSLOPEZ (201

IMTEGER T1 -
JEL=1 .
INC=

¢ READ AND PRINT OF DATA
NCYCLE=0

150 READ(S5»100) ARRAY
VRITE(S:99)
WRITE (6+100) ARRAY
100 FOrRMAT(7A10)
READ (5 1 ) NUMEL yNUYNP sNUMBC sNCPINNOPININCYCHMs TOLERIXFAC T1
C NUMBER OF ELLEMENTs NUMBER OF NODAL POINT» NUMBER OF BOUNDARY CONDITI
C UNBALANCE CONDITIONS PRINT-OUT INTERVALY FULL OUTRPUT pPRINT-0UT
C INTERVAL Y MANIMUM NUMBER OF CYCLESs TOLERANCE AND OVER-RELAXATION FAC
C JF T IS NON-ZERDO pATA PRINT-OUT IS SUPPRESSED o
VRITE (69101 YNUMEL
WRITE(62 102 )NUMNP
WRITE (6 1C3)NUMBC
WRITE(63104)NCPIN
WRITE(6+105)INCPIN
WRITE(6s106)INCYCM '
WRITE(64+107)TOLER '
VRITE(S+4108)XFAC
FEAD(Ss2) INUME Ny s NPT IN) o NP UMY sNPRINY s N=1 s NUMEL )
C ELEMENT NUVEERs ELEMENT NCODAL PCOINTS
READIS 3y INPNUW (¥ )y s XORD M) s YORD (M) « XLOAD (MY s YLOAD (M) o
1DSX(v )y sDSY (M) M= s MUMND)
C NODAL POINT COORDIMATES (X-Y)s X-=Y {OADSs INITIAL DISPLACEMENTS (X-Y)
155 WRITE(6+110)
WRITE(Hs8) INUMEIN) «NPTINDY sNPUINY s NPRIN) s N=1 s NUMEL)
WRITE(64111)
WRITE{S+109) INPNUMIM) » XORD (M) s YORD { M) s XLCAD (1) s YLOAD (M) «
1DSKIMY s DSY (i) st=1 s NUMNP )
VRITE(S+112)
DO 9Cg L=1NUMBC
READ(S»A)NPI L) +NMFIX(L ) « SLOPE (L)
909 WRITE(6«4)NPES (L) s NFIXIL) sSLOPE(L)
NFIX=0 NODAL. POINT 1S FIXED
MFIX=1 NODAL POINT AN MOVE IN Y-DIRECTION ONMLY
NFIX=2 NODAL. POINT cAN MOVE IN X~DIRECTION ONLY
NFIX=3 NODALL POINT MCVES ALONG SLOPE
151 CONTINUE
READ(Z+ 140 TET« TROs TXUSTCOEDS TDT
DATA CARD FOR MATRIX
TET 15 YOUNGtS MODULUS
TRO-CENSITYs TXU—PCISSCMN!'S RATIOs TCOED-SXPSN COEFFe TDT-TEM CANGE
WRITE(5s142) i
WRITE(S143)TETsTROsTXUSTCOED «TDT

eNeNaNe

o0

DO 178 I=1s+14a
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ET(1)y=TET
RO(I)=TRC

XU(TI)Y=TXU

COED(1)Y=TCOED

DT(1)y=TDT

CCNTINUE

EEAD(Ss 140)YTET + TR0« TXUsTCOEDs TDT

C DATA CARD FOR FIBRE

160

HRITE(Gs 1 aa)
WRITE(6+123)YTET TR sTXKUSTCOED«TDT
DO 160 1=145«NJUMTL

ET(I1)=TET

RO(1)=TRO

XUCT)y=TXU

COED(1)=TCQED

DT(1)Yy=TDT

CONT INUE

C CHECK FOR CORRECT ™MESH DIMENSIONS

176

701
711

TAREA=U,
DO 16 N=1sNUMEL
I=NPI (N)

S J=NPJU N

K=NPK (N)
AJIN)=XCRD(J)=X0OrD(1)
AK (M) =XORD(K)~=X02p (1)
BJIN)=YCRD(Jy=YOrp (1)
BKINY=YORD(K)=YORD(I)
AREA=(AJ N #B<CINYy—BJIINIFAKIN) )72,
IF(AREA.GT .Gy GC TO 177
WRITE(S«711)N
FORMAT (32HCZERC OR NEGATIVE AREA:S
TAREA=1,
GO TO 16

ElL e

NOe=114¢)
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Cc MODIFICATION OF LOADS aND ZLEMEMT DINENSIONS

C THERMAL LCADS wWORKED OUT AND ADDED TO ANY SPECIFIED LCADS

177 THERIIN)==TIN)*+CO=D (M)*DT(N) /7 {XUN)—14)
DL=ARTAFRO(N)/ 3.
XLoan(I)y=THERY (N2 (2w (N)-RJ (N ) /2. +XLDAT (T
X oan(J)y==TRIRV a1y %5 (iN) /2 4 +XLCAD LU
XLOAD (K )y =THERM (M) #2 J(MI /2 o +XL0OAT(K)
YLOCAD (T ) =THERM () % L 40N AR IN)) /2, +YLOAD ([ ) —DL
YE0AD ()= THERAIN)Y #AKINYZ2 0+YLCAD (U =D

180 YLOADIK)=—THERMIN)I®AJIN) /2 4+YLCAD(K)—DL

16 CONTIMUEZ

IF(TAREA eNFeCW ) sTeop
C INITIALIZATION
NCYCLE=U
NUZPT=NCP I N
NURCPRT=NOPR TN
DO 175 =1 NJMNP
CC 170 1=114+9
EXX(LsM)=0,0
SYX{LeM)=0U,.0
SXY(Ls)=0,0
SYY(Li)=0,0

170 NP LMy =C
P L103y=0

175 NP (L_<1)=L




[

184

FORMATION OF
THE 181 AND'D!
BY APPROPRIATE

STIFFNESS
MATRICE

MATD I X

DO 200 N=1 +NUMEL
AREA= (AJINY #EK (N) —AKIIN)#BJN) #0635
COMM=0,25%ET NI/ (1 « D=XUN)#22)#AREA)
Alls1)=8J(N)~-B{N)

Alla2)y=0,0
AC1+3)=8<{N)
Alleg)y=0,0

AlL1s5)==BJ(N)

Al2s2)=AKINI—-AJIN)

Al2+1)=0,0
Al116)=0,0
A(213)=0,0

Al294)==2K{N)

A(2:5)=0,0
Al2s86)=AU0N)

Al3s1)=AKI{N)I~AJTIN)
Al3+2)y=68J(N)~-BKIN)

Al323)=-AK(IN)

AC334)=BKIN)
Al3+35)=AJ(N)

Al(245)=-BJIN)

B(1+1)=COMM

B(1s2)=COMMXXLIN)

B(1+2)=0,0

B{2s1)=COMM*XUN)

B(2+2)=CONMM
E(2e3)=0,0
E (391);'0.0
B(3+2)=0,0

ARRLY
S ARE
MULTIFPUICATION

B(313)=COMMY ] «0=XUIN)I*0,5

DO 182 J=146
DO 1832 1=1+3
S(1+¢U)=0,0

DO 182 K=1s3

g

J=114+5
I=1+3

DC 182
DC 183

DC 184 J=1+6
DO 184 I=1+6
S(1+4U)Y=0,0

DO 184 K=14+3
S(1eJ)1=S{1sN+B(1s)y ALy )

B(Js11=501+J)

SC1eu)=S(Te)+BITaI¥AIKYY)
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COUNT OF ADJACENT NODAL POINTS

LMOT)Y=NPI (N)
LM(2)y=NPJN)
LM3)=NPKIN)
DO 200 L=1+3
DO 200 M=143
LX=0 00
MX =0
185 MX=MX+1
IF (NP LK aMXy=M0)) 190412541
170 IFINPILXs' X)) 18541954185
195 NP LXeMXy=pMm 4
IF (1aX=10) 19567024702
196 SUXILXsMX)=SXX (LY +MX)4+S(2¥]_ -1 «2%"=1)
SHUY (L XsmX)=SXY (LX e MX)+S (23 =19 23%01)
SYXILXs Xy =SYX (L XyMX)+S{ 2% s 23%0~1)
200 SYY (L XeX)=SYY{LX X )43 (2% 9 2%04)
DO 205 ™M=1sNUMNP
NSLOP= (1) =0,
MX =1
205 MX=MX+1]
IF (NP (MeMX)) 202089205
206 NAP (M )=MX—1

N4

0

INVERSION OF NODAL POINT STIFFNESS

DO 210 M=1NUMNP

COMM=SXX(1r 1) ¥SYY (s 1 J=SXY (M 1) #SYX (M 1)

TEMP=SYY (e 1) /CO"

SYY(tia1

SXX(nve 1 )y=TENMP

SUY(Me 1 )==5SXY (141 )y/COMM
210 SYX(ras 1 )==8SYX (a1 )/ COVN
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MODIFICATION OF BOUNDARY FLEXIEILITIES
BOUNDARY FLEXIBILITIES MCDIFIED ACCORDING TO TYPE OF RESTRAINT
DO 240 L=1s+NUMRC :
MA=NRR(L)
MNSLOPT (M) =NF IX(L)
NP(s1)=C
IFINFIX(L)I=1)225+22Us357
3357 IF(NFIX(L)eEDe3) GO TO 24C
C=(SXX (M 1125 0OPE(L ) SXY (1)) /A ISYX (a1 ) S
R=1.0~C*#5L0PE(L)
SXXIpe 1 1= (SXX (a1 )—CxSYX(Me13) /R
SXY (M1 )= {(EXY{Me1)~CxSYY (Me1))/R
SYX(Me 1 )=SXX{Ma 1y xSLOPE(L)
S‘(Y(Ms 1)=SXY (Mas1)xSLOBE(L)
CC To 2«0
220 SYY {Me1)=8YY{(7e1)=SYX{Ma 1 )REXY(Me1)I/SXX (M 1)
GO TOo 23¢C
225 3YY(vi1)=0,
230 SXX(Me1)1=0,0
235 SXY(Me1)=0,0
SYX{me13y=0,0
240 CONTINUE

)-SYY({ a1

(@]

~

a)

ITERATICN ON NODAL POINT DISPLACEYMENTS
SOLUTICN OF EQUILIBRIUNM EQUATIONS-THE GAUSS~-SIEDZL ITERATIONM

242 WRITE(6+119)
244 SUM=C,0
SUMDZO.
DO 290 M=z=1NUMNP
NUd=NAPR (1)
IF (SXX(pM1)145YY( (e 1)) 27512204275
275 FRX=XLOAD (M)
FRY=YLOAD(M)
DO 280 L=2«NJM
N=NP (ML)
DSX{155)y=Dp5X(13)
FRX=FRX-SXX (ML y3#DSXIN)=-SXY (e )y #DSY (N
280 FRY=zFRY=-SYX(Ms 1£nSXIN)=SYY i+ )#DSY (N)
281 DX=SXX (M 1) #FRXESXY (M 1) XFRY DSX ()
OY=SYX (49 1) ¥FRX+LSYY (11 1) =FRY OSY ()
IF(MeEQe12) DXANOD=DX
IFI(NSLCPE(M)«EGQs23) DX=DXNOD
G2 TO 297
297 DSX(m)=TSX((M)y+DX
DEY(M)=DSY (1) +DY
SUMD=SUMD+ARS(DSEX (VY)Y +ABS(DSY (1))
IF(NP(Me1))2B5325C 285
285 SUM=SUYMH+ABSIDX)+anS (DY)
290G CCNTINUE
S LMz SUNM/SUNMD
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CYCLE COUNT AND PRINT CHECK

NCYCLE=NCYCLE +1

IF (NCYCLE-NJUMPT) 305+300.300
300 NUMPT=NUMPT NCPIN

WelTE(6s120) NCYCLESUNMsSUMD
305 1F(SUM~TOLER) 400,400+310
310 IF(NCYCM=NCZYCLE)»400+1400¢315
315 IF (NCYCLE-NUMOPT) 2441320220
320 NUMOPT=NUMORT+NCOPIN

PRINT OF DISPLACEMENTS AND STRESSES

400 WRITE(&+99)
WRITE(Ee121)
WRITE(G61122) INPRNUMM) 4DSX (MY +DSY (1M4) sM=1 s NUNMNP)
WRITE(Es126)
DO 420 N=1«NUMEL
I=NPI(N)
J=NPJIN)
K=NPKKIN) -
EPX=(BJ(N)-BK(N))#DSX (1) +BK (N)*DSX{J)~3J (N)*#DEX()
EPY=(AK(N)~AJIN) ) #DSY (1) —aK (M) #DEY (U)+AJIN) *¥DSY (K)
GAM= (AK(NY AJ(N) I#DSX{1)1=-AK(N)*¥DSX(J) AJINIFDEX(K)
1 (BUIN)=8KIN))*DSY (1) +3K (N)Y*DSY () -BJI (NI *DIY (K}
COMM=ET(N) /(1 40-XUN)*%2T% (AJIN)*#BKIN)-AKIN)I*BJIINY ) )
Y=COMME (ERX XU (N)XEPY)+THERM(N) ’
Y=CcOoMME (ERPY XU (IN)¥EPX)+THERM(N)
XY=COMMH¥GAMH (] ¢ =XUIN) ) ¥ 5
SIGXX(N) =X
SIGYY(N)=Y
SIGXY{(N})=XY
C=(X4+Y) /240
R=SQRT(((Y=X)/2,0)%%24+XY%32)
XMAX=C+R
XMIN=C-R
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C RESCLUTION OF STRESSES INTO RADIAL AND TANGENTIAL COMPONENTS

XMEAN= (XORD (1 )+XORD () +X0ORD (K ) )/ 3
YMEAN=(YORD (1) +YORD{(J)+YORDI(K))I /3.
CRX=57+7-XMEAN
CRY=100,-YMEAN
CZ=CRA¥¥2+CRY%¥2
COSASQ=(CRX%*2)/CZ
SINASQ=(CRY%%2)/CZ
SINZ2A=20%CRX*CRY/CZ
SIGRAD=X#*#COSASQ+Y#S INASQ+XYES IN2A
SIGTAN=X+Y-SIGRAD
RADSHR=XY* (COSASQ-SINASQ)I+LY X)%0«5%3SIN2A
THETA=ATANI(CRY/CRX)
ALPHA=ET7,3%THETA
PA=0 s 5%#5T7 e 29578 %ATANI 2 e ¥XY /(Y -X) )
IF (24%X=XMAX=XMIN) 405+420+:420

405 1IF (PA)Y 41044204415

410 PA=PA+90,0
GO TO 420

415 PA=PA~-S0,0

420 WRITE(G6s 125 INUMEIN) s XY e XY a XMAX s XMINIPAISIGRADSIGTANIRADSHR . ALPHA

IF (SUM-TOLER) 44044404430
430 1F (NCYCM-NCYCLE) 44014404243

440 GO TO 150

PRINT OF ERRORS N INPUT pATA

OO0

702 WRITE(6+712)LX
GO To 440
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FORMAT STATEMENTS

1 FORMATI(614+2E12+5¢111)
8 FORMAT(414)

DENSITY POISSONS

TEMPERATURE CHANGE)

3 FORMAT(114+4FB.5¢2F12.8)
4 FORMAT(2141F12.8)
5 FORMAT (3E15.8)
99 FORMAT (1H1)
2 FORVMAT(414)
140 FORMAT(4E15.89F10,2)
142 FORMAT(/7/7/711CH MATRIX YOUNG'S MODULUS
1 RATIO EXPANSION COEFFICIENT
143 FCRMAT(S5X12E20.8+E15.817E20.8+12X+F20410)
144 FORMAT(///7110H FIBRE YOUNG*S MODULUS
1 RATIO EXPANSION COEFFICIENT

125 FORMAT(115+10F12.3)

126 FORMAT(120H1ELENENT X-STRESS Y-STRESS
IRESS MIN-STRESS DIRECTION RADIAL

101 FORMAT (29HONUMBER OF ELEMENTS

DENSITY POISSONS

TEMPERATURE CHANGE)

TANGENT 1AL
114/

102 FORMAT(29+H NUMBER OF NODAL POINTS =v14/)
103 FORMAT(29H NUMBER OF BOUNDARY POINTS =9 14/)
104 FORMAT(29H CYCLE PRINT INTERVAL =+ 14/)
105 FORMAT (294 OUTPUT INTERVAL OF RESULTS =e«l4/)
106 FORMAT(29H CYCLE LIMIT =s14/)
107 FORMAT (29K TOLERANCE LIMIT =1E12e4/)
108 FORMAT (294 OVER RELAXATION FACTOR =[F643)
109 FORMAT (118+4F 12.832F1248)
110 FORVAT(O4HIEL 1 J KK YOUNGS MODULUS
1 RAT1O ALPHA DELTA T
111 FORMAT (80H1} NP X—-0ORD Y-—-ORD
1D X-DISP Y DISP)
112 FORMAT (20H BOUNDARY CONDITIONS)
119 FORMAT (34H0 CYCLE FORCE UNBALANCE)

120 FORMAT(I11+2E20,.6)

XY-STRESS MAX=ST

SHEAR ALPHA)

DENSITY POISSONS

X~LOAD Y-LOA

121 FORMAT (42HONODAL POINT X-DISPLACEMENT Y-DISPLACEMENT)

122 FORMAT(I1192E15.8)

712 FORMAT (23HCOVER 8 Na.Pe ADJACENT TO NePe NOs114)
823 FORMAT{(120H1T N=-POINT X-STRESS

1 XY-5TRESS MAX STRESS

END

MIN-STRESS

Y-STRESS
DIRECTION)
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FORMAT STATEMENTS

1 FORMATI(614s2E12.5s111)
8 FORMAT(414)
FORMAT(11444F84512F12.8)
FORMAT(2]14+F12a.8)
FORMAT (3E15.8)
FORMAT (1H1)
FORVMAT(414)
FORMAT(4E15.8sF10,2)
FORMAT(/7/711CH MATRIX
1 RATIO EXPANSION COEFFICIENT
143 FCRMAT(SX12E20.84E15,81E20.8+¢12X+F20.10)
144 FORMAT (/777110 FIBRE YOUNG'S MODULUS DENSITY PO 1SSONS
1 RATIO EXPANSION CCEFFICIENT TEMPERATURE CHANGE)

o

[AVARVH RS IR |

140
142 YOUNG'S mMODULUS DENSITY POISSONS

TEMPERATURE CHANGE)

125 FORMAT(1154+410F12,3)
126 FORMAT (120H1EL EMENT X-STRESS Y-STRESS XY-STRESS MAX-ST
1RESS TIN-STRESS DIRECTION  RADIAL TANGENTIAL SHEAR ALPHA)
101 FORMAT (29HONUMBER OF ELEMENTS =414/
102 FORMAT (29H NUMBER OF NODAL POINTS =2 14/)
103 FORMAT(29H NUMBER OF BOUNDARY POINTS =s14/)
104 FORMAT(29H CYCLE PRINT INTERVAL =e14/)
105 FORMAT (29H OUTPUT INTERVAL OF RESULTS =114/)
106 FORMAT(29H CYCLE LIMIT =s14/)
107 FORMAT(29H+H TOLERANCE LIMIT =21E12e4/)
108 FORMAT(29H OVER RELAXATION FACTOR =1F643)
109 FORMAT (11844F12,8+2F1248) .
110 FORMAT{94H1IEL » 1 J K YOUNGS MODULUS DENSITY PO1SSONS
RATIO ALPHA DELTA T)
111 FORMAT (80H1 NP X-0ORD Y -ORD X-LOAD Y-LOA
1D X~-D1SP Y DISP)
112 FORMAT (20H BOUNDARY CONDITIONS)
116 FORMAT ( 34HO CYCLE FORCE UNBALANCE)
120 FORMAT(111+2E204.6) !
121 FORMAT (42HONODAL POINT X-DISPLACEMENT Y-DISPLACEMENT)
122 FORMAT(I11v2E15.8)
712 FORMAT (33HOOVER 8 N.Pe+ ADJACENT TO No.Pe« NOe«114)
823 FORMAT(120H1 N-POINT X~STRESS Y-STRESS
1 XY-STRESS MAX STRESS MIN~-STRESS DIRECTION)

END
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