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ABSTRACT  

An explanation is presented of the shrinkage process 

In unidirectional fibre composites which leads to thermal 

self-straining and successful predictions on the nature of 

the stresses are made. 

A finite element method is used to investigate the 

shrinkage and ahesive stresses in uniaxial fibre composites 

for various fibre spacings. It is shown that the magnitude 

of the shrinkage stresses depends on the Young's Modulus 

of the matrix and the thermal coefficients of expansion of 

both matrix and fibre. The transverse stresses are compre-

ssive for most fibre spacings increasing with decreasing 

fibre spacing, except for very close spacings when tensile 

stresses develop from within the central region of the matrix. 

Plane and axisymmetric finite element idealisations 

simulating the conditions in the axial direction of fibres, 

and as used by other investigators to study the response of 

composites to external forces, were found to be inadequate 

and unsuccessful for the simulation of thermal shrinkage 

in real composites. 

A photothermoelastic technique has been developed to 

study the restrained shrinkage in the composites for both 

continuous and discontinuous fibres using a hot-setting epoxy 

resin as matrix and aluminium rods as fibres. The results 

for the caseof the continuous fibres agree well with the 

numerical results. A triaxial state of compression is found 

to exist in be discontinuity and initial high shear stresses 
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at the tip of the fibre ends were sufficient to initiate 

cracks when the fibre spacing was close. 

The effect of the initial stresses in composites is to 

increase the composite strength in compression and in tension 

for continuous and discontinuous fibre composites respectively. 

It should be possible to control the manufacture of composites 

for high performance applications by optimising the spacing 

of the fibres so as to avoid initial tensile stresses which 

would precipitate cracks. 
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COMMONLY USED NOTATION* 

m 	 subscript for matrix; packing factor 

f subscript for fibre 

a 	coefficient of thermal expansion 

v 	Poisson's ratio 

E Young's Modulus 

✓ volume fraction 

o direct stress 

shear stress 

E, e 	strain 

*Other symbols are defined in text. 
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INTI2 ODUCTIO N 

The quest for new structural materials to meet the demands 

of the present and developing trend of technology has stimulated 

a lot of interest and research in composite materials over the 

past decade. Although the use of composite materials is an old 

art (e.g. straw in bricks, reinforced concrete), the need to 

understand the mechanics of their reinforcing action is 

comparatively a very new but growing pre-occupation of structural 

and materials scientists and engineers. Progress and interest 

in this field of activity have been spurred on by the advent of 

manufactured fibres having unusually high levels of strength 

and stiffness. 

A great deal of attention has been given to the problem of 

the stress distribution of fibre-reinforced composite materials 

under various loading conditions and fibre geometry. However, 

most practical composite materials are formed at elevated 

temperatures; in addition, during use, they may be subjected 

to temperature variations such as in aerospace applications. 

The use of reinforced concrete in structures exposed to thermal 

gradients such as nuclear reactor shields, high temperature 

ducts, etc. are other examples. The differences in thermal 

expansions of the component materials may give rise to internal 

stresses whose magnitudes can be extremely large and often 

detrimental. 
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Consider, for example, a composite in which boron fibres 

are formed into a nickel alloy matrix at 500°C. If we assume 

for simplicity that the thermal self-straining is wholly 

elastic when the composite is cooled to atmospheric temperature 

we find that stresses of the order of the strength of the 

strongest nickel alloys are produced. Little attention has 

been given to this problem in the past even though its presence 

has long been recognised; only the simplest picture of thermal 

stress distribution has been available. It is clear, however, 

that an accurate picture of thermal self straining is necessary 

before reasons for fibre, matrix or interface failure can be 

understood more fully. 

The purpose of the present work is to explain the 

mechanics of thermal self-straining in composite materials 

employing continuous unidirectional fibres and to provide 

finite element and photoelastic analyses for a wide range of 

fibre spacing. Since many of the high strength fibres are 

likely to be available only as short discontinuous filaments, 

or whiskers, the thermal self-straining effects in the fibre 

discontinuities have also been investigated. 

1. FIBRE REINFORCEMENT  

The mechanics of fibre reinforcement is well understood 

and has been treated at length in various experimental and 

analytical ways elsewhere (1) (2) (3) (4). An enormous 

literature covers both micro and macro-analytical methods. 
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The general view of fibre-reinforcement is that an 

otherwise brittle but very strong phase is embedded in a 

weaker and ductile phase or matrix which acts as a load 

transmitter between the fibres. In order for the matrix to 

transfer load effectively, it must have a sufficiently high 

adhesive and interfacial shear strength either through a 

chemical or mechanical adhesion or a combination of the two. 

In addition the matrix fulfils the function of (i) bonding 

the fibres together and protecting their surfaces from damage 

which could lead to loss of strength and (ii) separating the 

fibres to prevent crack propagation across the composite 

entirely in the brittle phase. The strength of the composite 

depends upon the environment in which it is to be used and 

factors like temperature, humidity, the presence of corrosive 

elements are of great importance. 

Both the matrix cohesive shear strength and the inter-

facial shear strength must be adequate to the designed service 

conditions of the composite. An elevated temperature 

application will generally reduce the interfacial shear strength 

to a greater extent or at a faster rate than the matrix cohesive 

shear strength. It is therefore necessary to investigate 

the effect of temperature on the matrix and its interface to 

obtain fundamental information which would lead to improved 

load transfer characteristics thereby resulting in efficient 

and optimum use of composite materials. 
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2. MATERIALS FOR COMPOSITES  

High strength fibres are available in one of the 

following forms: 

(i) Glass fibres, 

(ii) Ceramic fibres, 

(iii) Polymeric fibres 

(iv) Metal wires, and 

(v) Whiskers 

Whiskers possess the highest strengths approaching the 

theoretical strength of the crystal (5). These include 

graphite whiskers,sapphire whiskers (A1203) and the carbides 

and borides of most hard metals. An account of these materials 

may be found in references (6) (7) (8); Coleman (9) has reviewed 

the methods of their preparation. Due to the present form of 

their preparation, they are available mainly in the form of 

short fibres; their cost of production is very high. Metal 

wires which have been used for reinforcement include stainless 

steel wires, tungsten wires and platinum wires usually 

manufactured by conventional drawing or extrusion methods. 

Glass fibres and polymeric fibres are cheap and easy to produce 

in the form of continuous filaments. All these materials, 

especially the oxides, carbides and silicates, maintain their 

high strength properties at elevated temperatures and it is 

in these high temperature fields Of application that their 

potential lies. The matrix may either be a metal, e.g. copper, 

aluminium, silver, or resin although in a few instances a ceramic 

matrix may be employed. 
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3.. PRODUCTION METHODS FOR COMPOSITES  

The fabrication of fibres into a matrix presents many 

problems. Prominent among these are the problems of surface 

wetting to achieve a consistent and effective bond and the 

tendency of fibres to alloy with the matrix in the case of 

metallic fibres - the oxide fibres being by comparison 

chemically inekt. In addition, the processing temperature must 

not be so high as to lead to structural changes in the fibre 

and an associated reduction in strength. Petrasek and Weeton (10 

observed these effects in their study of copper alloy composites 

reinforced with tungsten wire. 

Different methods are available for the preparation of 

composite materials. These include powder-metallurgical 

methods, liquid infiltration methods, hot-pressing and hot-

rolling processes. Details of these operations may be found 

in references (5) and (6). In all these operations, control 

of the operating pressure and temperature is necessary to 

ensure fibre/matrix coherenceand integrity and maximum 

composite strength. For example, using stainless steel wires 

in an aluminium matrix, Cratchley (11) carried out soaking 

experiments to determine an appropriate pressing temperature. 

Again, Cratchley and Baker (12) have studied the effect of 

temperature and pressure on silica/aluminium composites by 

hot pressing fibres which had been previously coated with the 

matrix at different pressures and temperatures in a mould. At 

all pressing temperatures the curve of pressure versus fraction 

of theoretical composite strength achieved, showed a maximum, 

the peak value of which was dependent upon temperature. 
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4. LITERATURE SURVEY 

The anisotropy of the single crystals of most materials 

and the differences. between the bulk physical properties of 

the components of compound solids readily cause internal 

self-compensated stress systems to develop round such centres 

as crystals or components of the compound structure. The 

problem of thermal shock resulting in cracks or failure is 

well known to the ceramicist; quench hardening of steels is 

also an old craft. All these processes involve the use of 

materials which are both structurally and crystallographically 

inhomogeneous and anisotropic. 

(1) Analytical Work  

The first published serious analytical consideration of 

the problem of thermal self-straining in compound materials 

appears to be by LgszlS in 1942 (13). He called the resulting 

stresses "tessellated stresses". Using different "tessellated" 

units in the form of a lamellar slab, compound cylindrical and 

spheroidal units, and elasticity theory, he calculated the 

stresses in these various units resulting from (i) a uniform 

temperature drop, (ii) a phase transformation at constant 

temperature resulting in a volumetric change A and (iii) 

entrainment of spherical gas cavities. He then attempted the 

explanation of the hardening of steels based on the results of 

the calculations considering the hardened material as cylinders 

of m-martensite needles embedded in a matrix of austenite. 

The effect of "tessellated stresses" on other phenomenon related 
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to steel and cast irons such as yielding, graphitation, fatigue, 

magnetisation etc. were also examined. 

Florence and Goodier (14) first recognised that localised 

thermal stresses appear when an otherwise uniform flow of heat 

is disturbed by cavities or inclusions with different thermal 

and elastic properties from those of the surrounding matrix. 

Dundurs and Zienkiewicz (15) investigated the stresses in the 

vicinity of a long cylindrical elastic rod embedded in an 

elastic material subjected to a uniform temperature gradient 

in a direction transverse to the axis of the bar. Their 

solution is based on an Airy stress function which was obtained 

by the superposition of a "zero-stress" solution on a second 

solution introduced in order to cancel the multivalued and 

discontinuous displacements arising from the first solution. 

The same problem has also been solved in a direct way by 

Tauchert (16) using a displacement function derived by 

Sternberg and McDowell (17). 

The first serious consideration of thermal shrinkage stress 

in fibre reinforced composites of any consequence was by 

Outwater (12). In deriving a mathematical relationship for 

the tensile modulus of elasticity of uniarectionally reinforced 

plastics, he took into account shrinkage stresses as providing 

the necessary frictional restraint at the interface to maintain 

the composite strength after delamination. 

(ii) Experimental Work  

Early experimental work on thermal shrinkage stresses in 

composites involved the use of strain gauges to measure the 
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pressure on the surface of a spheroidal glass bulb immersed in 

a curing resin (19). As the curing and cooling proceeded the 

strain gauge readings were recorded and from a previous 

calibration of the gauge for temperature the pressure due 

purely to the resin shrinkage effect, was evaluated. Haslett 

and McGarry (20) and Daniel (21) all used photoelastic methods 

to study the shrinkage stress in small diameter E-glass fibres 

surrounded by a resin matrix. Using multiple fibres they 

found that the axial stresses (along the length of the fibres) 

diminish rapidly as the spacing between fibres decreases. 

Also using various assumptions and simplifications Haslett 

and McGarry attempted an analytical solution for the shrinkage 

stresses. They found that the sense of the resin stress 

tensile or compressive, depended upon the spacing of the fibres, 

but this conclusion depended on the assumptions made. 

Daniel and Durelli (22) have studied the photoelastic 

fringes resulting from the shrinkage of resin around both 

single and multiple disc inclusions in a plate. They found 

that the number of fringes decreased appreciably (up to 60%) 

with time after cooling to room temperature due to stress 

relaxation in the viscoelastic resin. In all these experiments 

it was found that the level of the fringes and hence of stress 

increased with increasing curing temperature; the stress 

distribution was independent of the curing cycle and size of the 

inclusion but depended on the geometrical arrangement of the 

inclusions. In another work (23), Daniel and Durelli attempted 

both to explain and simulate the shrinkage process by inserting 
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slightly oversized glass discs into holes in a sheet of urethane 

rubber. The stress distribution resulting from such an inter-

ference model was obtained. 

More recently, Marloff and Daniel (24) have used three-

dimensional stress-freezing techniques to determine the 

stress distributions in the matrix of unidirectionally fibre 

reinforced composite model subjected to both shrinkage and 

normal transverse loading. Koufopoulos and Theocaris (25) have 

also used photoelastic methods to study the effect of the 

elastic moduli of both matrix and inclusion on the stress 

distribution. By the use of unpiasticized epoxy as inclusion 

and plasticized epoxy as matrix it was found that for a single 

disc in an infinte matrix, the magnitude of the stresses at 

the interface during the period of cooling depended only on 

(i) the constant elastic modulus of the inclusion and (ii) 

the instantaneous value of the matrix elastic modulus; it was 

independent of. the amount of shrinkage of the matrix. However, 

for a square array of closely packed discs the stress distribu-

tion was found to depend on both the elastic moduli and the 

amount of shrinkage. 

In all the above-experimental studies temperature cycles 

were involved and consequently the elastic properties of the 

viscoelastic birefringent material did not remain .constant. 

The methods of analysis of experimentally observed fringe 

patterns associated with such transient and steady state 

thermal stress fields is termed PHOTOTHERMOELASTICITY. In 

studies relating to composite materials, the frinT patterns 
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result from the restraint to shrinkage offered by the 

inclusions. It is imperative in such work to investigate 

the variations of the physical properties such as the 

modulus of elasticity, E, the coefficient of thermal 

expansion a and the material fringe value f over the 

appropriate temperature range. 

(iii) Numerical Methods  

Up to the present time all numerical work on fibre-reinforc 

materials has been concentrated on the elastic and elastic/ 

plastic response of composites to externally imposed forces. 

The applicability of numerical methods to stress analysis of 

this kind depends largely on the fact that complex solid 

composite systems can be idealised e.g. to conform to either 

plane stress (or plane strain) or axisymmetric models. This 

is a major simplification but the results are useful towards 

the underttanding and interpretation of composite behaviour 

and lead to better design and production techniques. 

Numerical methods include (i) point-matching techniques (26 

(85), (ii) finite difference methods (28) and (iii) finite 

element methods (29) -(30) (4). In their various forms these 

methods have been successfully applied to the study of stresses 

in fibre-reinforced composites. 

5. SHRINKAGE STRESS STUDIES  

In the present work,'the finite element method is used 

to study the shrinkage and adhesive stresses in various 

composite systems. The stresses in the transverse plane of 
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hexagonally arranged lanidirectional fibre composites are 

investigated. The validity of simulating thermal shrinkage 

around fibre discontinuities using plane and axisymmetric 

models is also examined. A photothermoelastic method has 

been developed and is used to analyse both continuous and 

discontinuous fibre composites. In the first chapter, a 

more comprehensive and realistic view of the shrinkage 

mechanism leading to a prediction of the nature of the 

shrinkage stresses to be expected, is expounded. This 

explanation of the shrinkage mechanism should supercede 

the interference model view presented by Durelli and Daniel (23). 

Chapters 2-4 deal with the finite element analyses start- 

ing with the presentation of the basic theory behind the 

method in Chapter 2. In Chapter 5-7 the experimental 

techniques and results are presented. The photo-viscoelastic 

properties of birefringent materials are reviewed in Chapter 5 

and it is hoped that this will lead to a better understanding 

and appreciation of the various steps involved in the 

photothermoelastic technique which follows in Chapter 6. 

Finally in the last section, a discussion of the experi- 

mental technique both- on its own merits and in the light of 

related work by other investigators, is conducted. The 

relevance of the findings both experimental and numerical to 

prectical composites is also discussed. 

A paper based on part of the work reported herein has 

been accepted for publication in the Journal of Strain Analysis. 
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CHAPTER 1  

MECHANICS OF SHRINKAGE  

1.1 INTRODUCTION 

The shrinkage stresses for a single plane disc or 

continuous fibre embedded in a matrix, assuming elastic 

considerations, can be easily derived using the well-known 

Lame type equations. Assuming perfect bonding, the radial and 

tangential stresses developed at the interface of a single plane 

disc* are given by: 

AT(mm-af)Em  

d'r,e 	c1+v )-1-(1-V)E /E m 	ffm 

where a is the linear thermal expansion coefficient, V  the 

Poisson's ratio, E Young's modulus and AT the temperature change; 

the subscripts m and f refer to matrix and fibre respectively. 

A much more complex state of stress arises in multiple 

fibre composites and the spacing of the fibres is important in 

determining the nature of the stresses. .Fibre reinforced 

materials tend to an arrangement in which any fibre is surrounded 

by six other fibres equally spaced about it - namely a hexagonal 

arrangement, as in figurel-1. In addition, the coefficient of 

thermal expansion of the matrix material is generally larger 

than that of the fibre. Haslett and McGarry (20)have presented 

*For the case of a continuous fibre at points removed 
from its ends, plane strain conditions may be assumed. 
Equation (i) still holds for the stresses but the 
constants have to be modified thus: 

a = a(1-11 
E = E/1-v 

V = 1-V 
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a simple extension of the single fibre analysis to widely 

spaced multiple fibres and this predicts compressive radial 

stresses at the interface when the composite is cooled. 

However, Outwater (18) has pointed out that when the fibres 

are parked tightly so that they lie in continuous line contact 

with each other, the tricorn of matrix material enclosed by 

any three fibres, figurei24, will tend to shrink away from the 

fibres on cooling and produce tensile stresses at the interface. 

It is evident that the possibility of debonding, and beyond 

this, whether any surface traction between fibre and matrix will 

be available after debonding, is intimately connected with the 

t sign and magnitude of the shrinkage stresses at the interface. 

Experimental studies by Broutman and McGarry (31) support this. 

They found that the bond strength of fibre reinforced plastics 

tested in compression depended upon the temperature at which 

the composite had been cured. 

Daniel and Durelli(23) attempted to simulate the shrinkage 

problem by inserting oversize glass discs into a hexagonal array 

of holes in a sheet of urethane rubber. They subsequently 

analysed the stress system produced by the interference photo-

elastically. The two stress systems, namely the one resulting 

from thermal shrinkage and that produced by the interference, are 

not however, strictly analogous because the compatibility 

conditions of the true shrinkage system are violated by the 

interference model. This difference is discussed in the next 

section of this chapter. 

1.2 THE INTERFERENCE MODEL  

Consider a solid block of material with parallel holes in 
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a hexagonal array, figure 1. If the block is cooled a 

contraction will take place such that holes of size D become 

size d and this will be irrespective of the spacing of the 

holes. Let us examine the effect of inserting rods of 

diameter d, 	> d) in the holes for various spacings. 

a) Large Spacing  

If the holes are spaced well apart, the effect is largely 

one of each rod being surrounded by a tube of matrix, 

independently of all the others. The effect of the tricorn in 

figurel-2cwill be very slight and there will be little shear 

along the interface in this case because each unit is almost 

purely axi-•symmetric. Thus Haslett and McGarry's (2O)model 

of axi-symmetric unit suffices here and purely radial compressive 

stresses appear at the interface. 

b) Small spacing 

All practical fibre-reinforced materials employ closely 

spaced fibres and to obtain a clear picture of the mechanics 

of interaction, we shall discuss first the limiting case where 

the fibres almost touch. 

(i) Case of fibres almost touching  

Here, the insertion of the rods would cause unequal 

_stretching of each tricorn unit, figure1.2a, the material at 

the corners of the tricorn being stretched most and gaps would 

appear betweeft the fibres and the matrix. This cannot occur 

in the real shrinkage system because interfacial adhesion is 

presumed fully established before cooling takes place and this 

is maintained throughout the shrinkage process. The adhesion 

thus provides radial restraint on the matrix as long as the 
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bond remains intact. In addition, adhesion implies a 

compatibility condition in the circumferential direction 

around each fibre and shear stresses are established to 

control the unequal stretching of the tricorn which augment 

the tensions at the points of the tricorns, figurel-2b. The 

Daniel-Durelli model is therefore inadequate for representing 

both radial and circumferential stresses due to shrinkage. 
...... 	- 	• 	. 	 ..... 

(ii) Case of fibres spacing slightly greater than (i)  

Consider now the case where the holes are close enough 

to influaace one another as the rods are inserted but are 

spaced a little further apart than before, figurel'2c. Figure i. 

2d shows a simplified stress system in the matrix element 

which may be useful in the following discussion. 

The forces T will increase as the fibre spacing is 

increased and as a larger area of matrix material becomes 

involved and there will be a condition when T will be large 

enough relative to the inside tricorn stress 047)  , to establish 

contact all along the rod-to-matrix interface. A slightly 

smaller spacing than this would, in the interference model 

produce a gap at the points C which face the spaces between 

adjacent fibres. Consequently, the radial stress distribution 

.in the real thermal shrinkage system might be expected to 

change from compression to tension in order to maintain 

compatibility 'as shown along the top edge of the matrix element 

4 

	in figuret2d. Wider spacings will lead to a decreasing effect 

from the tricorn, and when the fibres are well spaced apart, 

the single element axisymmetric model previously discussed 

becomes valid. 
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Daniel and Durelli(23) tested interference models with 

different hole spacings and did not report any gaps between 

the matrix and discs. We may conclude that the critical 

spacing below which the interface stresses becomes in part 

tensile, is less than the smallest spacing which they studied. 

Packing densities which give spacings of this order are common 

in practice and even in composites where the fibre volume 

fraction is smaller than this irregular spacing due to the 

method of manufacture may result in groups of fibres in very 

close proximity. 

1.3 EFFECT OF CONSTRAINT IN AXIAL DIRECTION 

The effects of shrinkage in the axial direction on the 

transverse stress distribution must also be examined. In the 

actual shrinkage system since mm  > of  there will be an axial 

tension in the matrix and an axial compression in the fibres. 

Thus we must examine here the effect of an axial pull on our 

original block with holes. In this case there will be a 

lateral contraction so that all the holes will shrink in size; 

in addition, all the fibres will expand laterally. The effects 

of both of these will be to increase the radial compression at 

the interface. 

The predictions on the stress distribution within the 

matrix made here, have been tested using both experimental 

and numerical methods, for most real fibre reinforced composites. 

The methods employed and the results obtained from them will be 

the main subject of the ensuing chapters. 



CHAPTER 2 

THE FINITE ELEMENT METHOD 

2.1 INTRODUCTION 

The development of the finite element method of structural 

and continuum analysis was originally pioneered in the 

aircraft industry. It stemmed from the need to provide a 

method that would give sufficiently accurate structural 

data to be adequate for subsequent dynamic and aeroelastic 

analyses of complex aircraft structures. The experimental 

stress analyses of complex models is both expensive and time 

consuming; added to this, obsolescence and changes in design 

are not uncommon in the aircraft industry. These considerations, 

together with the advent and continuing development of digital 

computers, led engineers to develop analytical methods for 

the solution of complex structures. 

Essentially, in formulating the finite element method, 

standard structural analysis procedures are generalised; the 

stresses and displacements in two- and three-dimensional 

structures are also calculated by the same procedures. 

Any structural system may be considered as consisting 

f separate components interconnected at a number of nodal 

points - e.g. for a jointed frame structure, the joints may 

"be conveniently taken as nodes. However, for an elastic 

continuum, there exists an infinite number of such nodes. In 

the finite element method, a continuum may be approximated 

by an assemblage of suitably chosen geometrical elements 

(e.g. triangles, quadrilaterals, tetrahedra etc.) interconnected 

at a discrete number of points lying on their boundaries. 
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The determination of the displacements of these nodal points 

when the structure is subsequently deformed, is the central 

core of the method. Since the elements are assumed to be 

interconnected only at a limited number of nodal points, the 

relevant elastic characteristics of an element are represented 

by the relationship between the forces applied to the nodal 

points and the resulting displacements expressed as the 

FLEXIBILITY OR STIFFNESS of the element. 

It must be pointed out that whilst some approximation is 

involed in the discretisation of the structure, its subsequent 

mathematical analysis is exact. Equilibrium and compatibility 

conditions must be satisfied in each element. The analysis can 

be approached either by the force or the displacement method as 

in conventional structural analysis. However, it has been found 

that in general, the displacement_method provides simpler formu-

lation and computer programming work for complex structures (32). 

In,the present work, this approach has been followed. 

2.2 DISPLACEMENT FUNCTIONS  

In deriving the stress-strain relationship of an element, 

first,.a displacement function has to be chosen to define 

uniquely the state of strain within an element in terms of its 

nodal displacements, and such as to ensure compatibility of 

deformation of adjacent elements. For triangular plane stress 

elements linearly varying displacements in two orthogonal 

directions would produce compatible deformation patterns. In 

this case straight lines in the body will remain so after 

deformation and contact between boundaries will be maintained. 
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This displacement function also implies constantcy of strains 

within an element and therefore in regions where the strains 

vary rapidly, smaller size elements would be required to give 

more accurate results. 

2.3 DERIVATION OF THE ELEMENT CHARACTERISTICS  

The characteristics of a "finite element" may be derived 

by rigorous methods of structural analysis as by the use of 

energy principles. Zienkiewicz (33) has presented a direct 

physical approach and this is followed here. 

(i) General Structural. Relationships  

Ifthe forces acting at the nodes of an element e within 

a structure, is represented by a matrix {F}e, and the 

corresponding nodal displacements by (file, then if the element 

is Hookean in behaviour, 

fF 3e  = [kle  (53e  + (F3 pe  + t'Fiq) 	(2.1 

('rte j e  represents ttenbdal forces required to balance any 

distributed loads acting on the element, e.g. body forces; JF1(?)  

the nodal forces required to balance any initial strains, e.g. 

caused by temperature change, initial lack of fit etc., 

without any rigid body movement. The first term represents 

forces resulting from the nodal displacements and the matrix [k]e  

in the stiffness matrix. 

Similarly, the stresses [ale  at any point in the element 

may be expressed by the relationship: 
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C63 e 	
Drc53e 

   

(2.2 

   

where the matrix [Sr 

[o] are the stresses 

is the element stress matrix. Ear and 

resulting from distributed loads and 

 

initial strains respectively. 

(ii) Displacement Relationships  

'Figure 2.1a is a triangular mesh drawn in a Cartesian 

Coordinate system and i, j, m are the nodes of a typical 

element e. The displacements at any point in the element may 

be expressed generally as: 

(x, y)11 = [NI [E e  = [Ni, NJ Nm  • • . 

d. 

d. 
J 
dm 
. 

 

... (2.3 

 

The elements of N are in general functions of position chosen so 

as to obtain appropriate nodal displacements. 

(iii) Strains  

The strainsWr at any point can be expressed in terms of 

the nodal displacements as: 

[el  e 	e 	 (2.g 

where DI is derived from the displacement functions and also 

expressed in terms of the coordinate of the nodal points. 

(iv) Stresses  

Denoting any 

age etc. by ,Nol e  

Within an element  

initial strains by temperature changes, shrink-

and assuming elastic behaviour, the stresses 

can be written as: 
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101  e _ [D]([63  e 	Jecoe)  
• • 	 • • d• • • 	 • 	 (2.5 ) 

where [D] is the elasticity matrix containing the relevant 

material properties. 

(v) Nodal Forces  

The nodal forces, (F)e, must be made statically equivalent 

to the actual boundary stresses and distributed loads. To do 

this, the principle of virtual work may be resorted to. If 

virtual displacements are imposed on the nodes, the external 

and internal work done by the various forces and stresses must be 

equal. When this is done a final expression of the form: 

= (1[B]T[D][B]dv)(53e 	S[B]T[D]teldv - j[N]T[p)dv 	(2.6) 

is arrived at, after integrating over the volume of element. 

Comparing the form of equation 2.6 with that of equation 

2.1, the stiffness matrix is readily recognised as: 

Ulcr = f[B]TEDHB ]dv*  (2.7, 

the nodal forces due to distributed loads are: 

(1-3; = -.JIN]T(y3dv 	. ...... . (2.7] 

and those due to initial strains are: 

= _J[B]TEDifp j 	=0) dv 	• 	• 	• 	• 	• 	. 	. 	. . 	• (2.7c 

* See Appendix I 
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2.4 GENERAL REMARKS 

(i) In the above direct derivation of the characteristics of 

the finite element, distributed stresses on the element 

boundaries were replaced by equivalent static loads at the 

nodes. The validitiy of this may however be established by a 

more rigourous procedure by minimising the total potential energy 

of the system, e.g. see Appendix I; the finite element procedure 

is therefore identical with the-Ritz method (34). 

(ii) Since the equivalent forces are concentrated at the nodes, 

equilibrium conditions are satisfied in the overall sense only. 

This would give rise to local stress concentrations 'and 

equilibrium within each element and on its boundary would be 

violated. 

(iii) It has been shown that for fully compatible displacement 

functions, the strain energy of the idealised structure is 

always below that of the exact solution (35). Thus the results 

of the analysis represent a lower bound-solution. 

2.5 COMPUTATIONAL PROCEDURE  

(i) Evaluation of Stiffnesses  

The first step in the analysis is to evaluate the stiffness 

properties [k] of the individual elements using the relationship 

equation 2.7a in a -convenient coordinate system, e.g. as in 

figure 2.1a. The matrix [k] is square, the size of which depends 

on the number of degrees of freedomof the element. For example, 

in a plane stress problem of triangular elements, the total 

number of degrees of freedom of the element is six, (two 
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component displacements for each of three nodes), resulting 

in a 6 x 6 matrix. The individual element stiffness contributing 

to each nodal point are then superimposed to obtain the total 

assemblage nodal stiffness matrix [K]. 

(ii) Solution of Equilibrium Equations  

- The next step is the formulation and solution of the 

equilibrium equations. The equilibrium equations may be 

expressed in the form: 

(F1 = [K] (51   ,•••• 	(2.8 

The solution of the equations in the program used in this work 

is achieved by the Gauai-Stidel iteration procedure which is a 

systematic relaxation technique starting with any known or 

assumed values of nodal displacements. The basis of the method 

is given in Appendix (III). 

(iii) Stresses and Strains  

`With the nodal point displacements evaluated, direct 

substitution into equations 2.4 and 2.5 gives the strains and 

stresses respectively. 

2.6 APPLICATION TO PRESENT WORK  

The present problem under investigation is the shrinkage 

and adhesive stresses in fibre reinforced composites. The 

fibres are assumed to be long and continuous making the 

assumption of plane strain conditions valid. They are also 

considered to be in the form of either an infinite hexagonal or 

triangular array within the matrix. Figure 1.1 shows the cross-

section of such a composite with seven fibres. 
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A uniform temperature change (as far as fabrication stresses 

are concerned this is usually a drop) is imposed on the system 

and it is required to evaluate the resulting stresses due to 

the differential shrinkage assuming complete adhesion between 

interface. The material properties of the components of the 

composites are assumed to remain constant over the whole 

temperature range considered. 

.(i) Thermal loads  

In gen,erall  if any elastic body is subjected to a change 

in temperature, strains are set up within it. For an isotropic 

homogeneous body these strains will also be isotropic. For the 

case of plane stress or plane strain there would be no shear 

strains and the initial strain matrix fe0  in a Cartesian 
Coordinate system is: 

for the plane stress case where a is the coefficient of thermal 

expansion, AT the change in temperature, and rx'y  the shear strain 

It can be easily shown that for the case of plane strain, 

due to the presence of a third stress component Cr_ perpendicular 

to the x-y plane, the initial strain matrix modifies to: 

1E01 (141 	 (2.9 

where ir is the Poisson's ratio. 

eo 3 f Yo 
E X0 

xy 

AT 

m AT 

/I 

0 

 

(2.9 
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The thermal strains induced in a homogeneous isotropic body 

do not produce any stresses if the body is not subject to any 

constraints. However, for a composite body, the differences in 

the thermal expansion coefficients of the component materials, 

would tend to establish mutual constraints setting up a system 

of internally self-equilibrating forces. 

In the finite element analysis, assuming all nodal points 

to be completely restrained, the equivalent nodal forces due to 

the temperature change in the elements, are calculated from 

'equation 2.7c. In order to eliminate these forces the system 

is analysed for nodal point loads which are equal in magnitude 

but opposite in sign to these restraining forces. The final 

(self-strained) thermal stress distribution is the sum of 

stresses due to these thermal loads and the initial stresses in 

the externally restrained system, as given by equation 2.5 

'2.7 BOUNDARY CONDITIONS  

The hexagonal arrangement of the fibres gives rise to a 

multifold ,symmetry. Any triangle such as OAB in figure (1.1) 

would therefore contain all the required information. It is 

therefore only necessary to isolate such a 'unit' for analysis 

by imposing the correct boundary conditions on it. 

The boundary lines OA, AB and OB, being lines of symmetry, 

do not transmit any shear stresses. Also in the resulting 

deformation due to the thermal strains, the geometrical shape 

of the triangle OAB is preserved. Referring to figure 2.1b the 

boundary conditions are as follows: 
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a. Point 0 is fixed with respect to the whole system, i.e. 

no movement of the nodal point at 0 is permitted, 

Displacement of all other nodes are therefore obtained 

relative to this reference point O. 

b. The nodal points on OA are allowed to move only in the_ 

x-direction, i.e. •no shearing is permitted across OA , 

the nodal point forces having only components normal to 

this boundary. 

c. Along AB, the nodal points arefree to move in both the x-

directions and y-directions with the x-disp,I.acements being 

made equal to that at point A, and 

d. On OB, the nodal points are free to slide along OB, and the 

nodal point forces must act perpendicular to this boundary. 

The iteration procedure is effectively a relaxation 

procedure (34), the final correct displacements worked out will 

correspond to those that would impart a condition of minimum 

potential energy to the system. 

2.8 ACCURACY 

Inaccuracies' in the finite element method, generally arise .  

from: 
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(i) the discretisation of the continuum into a mesh of 

elements, 

(4) the representation of the loading conditions and 

boundary restrictions, and 

(iii) the convergence of the iterative solution of the 

equilibrium equations. 

As mentioned earlier due to the choice of. Airsear ,  

displacement functions and hence constant strains ip the 

elements, the size of the elements is governed by the strain 

gradients within the actual system under study. The storage 

capacity of the Imperial College IBM 7094 computer used in this 

analysis, limited the mesh size to about 400 elements. However, 

at the time of writing, new computing facilities are available 

using the much larger and faster CDC 6600 computer. This is 

capable of dealing with a mesh size of up to over 2000 elements. 

On examination of the equations giving the thermal loads at 

the nodes, i.e. equation 2.7c and 2.9 it would appear at first 

sight that all nodal points are effectively loaded thus giving 

rise to several regions of local stress concentrations and 

affecting the general accuracy of the results. However, when 

summations are taken at each node over all the elements 0.,Ccorotip3to 

eir-A*2(10 the only loads remaining in the mesh, are those at 

the boundaries and at the interface nodes. Thus mesh 

refinement 	would be mandatory not only in the region of the 
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interface for the two reasons of high strain gradient and nodal 

forces, but also at the boundaries where elements are supposed 

to be free of shear stresses. With the limitation imposed by 

the size of the computer on the number of elements, this was 

difficult to achitve if enough small elements were concentrated 

in the regions of greatest gradient. The result was that the 

final solution gave shear stresses in the boundary elements thoug 

of small orders comRared with the direct stresses. Therefore, 

in plotting the stress distribution along the boundary lines, 

stresses in adjoining elements were averaged. 

The rate of convergence of the iteration procedure was 

found to depend not so much on the mesh size as the regularity 

of the mesh, the type of boundary constraints and the order of 

operations along the boundaries. In general using an over-

relaxation factor of 1.95 (see Appendix III) convergence was 

obtained after about 500-800 cycles depending on the particular 

mesh. 

The computer programme employed in this investigation has 

been developed from one by Wilson (36). The various formulations 

involved are given in Appendix II and a Fortran Programme Listing 

is provided at the end of this thesis. 
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CHAPTER 3 

FINITE ELEMENT ANALYSIS OF CONTINUOUS FIBRES  

3.1 INTRODUCTION 

Both analytical and experimental studies in the stress 

distributions in multifibre composites under external loads 

have been successfully conducted (28), (37), (38). The 

finite element method makes possible the study of stress 

distributions in composite materials under various loading 

conditions and for different fibre volume fractions (Vf). 

In addition to providing a numerical check on the validity 

of the postulates on the shrinkage mechanism made in chapter 

1 the finite element method also affords a means of 

studying shrinkage stresses in various practical fibre-matrix 

combinations and to determine the effect of their elastic 

properties on the stress distribution. With the knowledge of 

these initial stresses, the effect of any externally applied 

stresses can be more fully appreciated. 

3.2 COMPOSITE MATERIALS  

The various composite systems studied fall into three 

main groups as follows: 

(i) The first group is the commonest and perhaps best-

known category of practical composite materials employing 

long glass fibres in a plastic matrix. Here, a relatively 

weak, brittle and low density matrix is strengthened by a 

much stronger fibre, usually glass; stronger fibres e.g. 

carbon 	fibres are also being used to achieve high strength 

to weight ratios for aero-engine components as recently 

announced by Rolls-Royce Ltd. (England). 
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(ii) The second group of composites use very strong fibres 

in the form of whiskers e.g. carbon, iron, sapphire whiskers 

which are potentially very strong - the strength in some cases 

approaching their theoretical crystal strength (39). These 

have high melting points with usable strengths at elevated 

temperatures in excess of those sustained by the available 

high temperature alloys. They Fre brittle and fracture without 

any plastic deformation and have small thermal expansion 

coefficients. The metal whiskers, e.g. iron, though initially 

strong, tend to lose strength due to the introduction of 

dislocations (6 ); the oxide whiskers, e.g. sapphire (A1203), 

in addition to being free from dislocations are less chemically 

reactive, the main problem being the difficulty in achieving 

effective bonding with the matrix. Sapphire/silver composites 

have provided useful experimental models for the study of 

whisker reinforced composites (41). The growth and properties 

of whiskers have been extensively reviewed by Coleman (9). 

(iii) The third category of composites. have metal wires 

(e.g. strainless steel wire, tungsten wire etc.) as fibres in 

a ductile metal matrix. However, metal wires lose strength 

very rapidly at elevated temperatures and are prone to alloying 

with the matrix thus causing further deterioration in strength. 

The relative ease of manufacture of the wires and incorporation 

into the matrix makes them attractive; tungsten-copper composite 

have been extensively used to obtain fundamental information 

on the mechanics of fibre-reinforcement (42), (43). 
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Most of these composites are formed by either hot pressing 

or direct infiltration methods both of which involve operations 

at temperatures above the ambient. It is therefore obvious that 

initial stresses resulting from thermal self-straining have to 

be properly appraised because their presence will directly 

influence the failure characteristics of the composite under 

external load. 

3.3 COMPOSITE SYSTEMS INVESTIGATED  

Various fibre volume fractions (Vf) were considered 

from the limiting case where the fibres lie in continuous 

contact with each other (Vf 0.907) to very wide fibre 

spacing, (Vf  = 0.179). Table 3.1 gives the list of the 

various packing factors '111", and the corresponding values 

of Vf**.  

PACKING FACTOR 

(m) (Vf) 

FIBRE VOLUME FRACTION 

• 

2 .907 

2.08 .838 

2.125 .804 
. 	. 	. 

2.5 .580 

3  .404 

. 
4.5 -.179 

Table 3.1: Packing factors and fibre volume fractions 

has.. been. defined. a S.:_ 
distance between adjacent fibre centres (a)  

fibre radius (f) 

**Vf = 21/m213 
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Table 3.2 gives a list of materials from which the 

composite systems which will be discussed were selected, 

their designated symbols and elastic properties. Table 3.3 

shows the composite systems studied and their derived 

properties. 

The critical fibre volume fraction (V) in Table 3.3 

is that volume which must be exceeded or equalled for fibre 

strengthening of the composite to be achieved and the 

expression for it has been derived elsewhere, e.g. reference 

(6). With this amount of reinforcement, the strength of 

the composite exceeds the ultimate tensile strength of the 

matrix. The expression applies to,  continuous fibres and 

assumes no alteration in the work-hardeing characteristics 

of the matrix due to the presence of the fibres at small 

,values of Vf. It has also been derived assuming that all the 

fibres break in a given cross section. However, in all the 

material systems studied, only the Al/ARL system was below 

Vc for m = 4.5 which was the widest spading studied. 



MATERIAL* SYMBOL 

• 

, 

YOUNG'S MODULUS 
(E) x 106psi 

. 
. 

EXPANSION 
' COEFFICIENT 
(m)x.10/°C 

, 

POISSON'S 
RATIO 

ULTIMATE 
TENSILE 
STRENGTH 
u(lb/m2) 

Glass fibre GL 10 8.5 .22 500,000 

Boron fibre -B 55 . 	6 .213 350,000 

Sapphire 
Whisker' Al203 74 8 .2 2,200,000 

Graphite C 98 1.6 .16 9,800,000 
Whisker 

Araldite ARL 0.46 63 .35 10,000 

Copper Cu' 18 17 .343 60,000 

Steel Fe 30 13 .29 575,000 

Silver As 11 19.1 .367 30,000 

Tungsten W 50 4.5 .28 420,000 

Aluminium Al 10 24 .33 42,000 

il 

Table 3.2: Materials and Properties 

*The material properties have been obtained mainly from references (6), (44), 
(40), (7). 
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FJ:BRE 	(f) Ef Ef Em -* mm-af Vc  MATRIX (m)** Em 

Al 20 9.5 19 .24 ARL 1 

GL 20 9.5 44.5 .02 ARL 

B 110 54.5 57 .03 ARL 

GL 1 0 15.5 .084 Al 

Fe 3 20 11 -073 Al  

W 2.78 32 12.5 .143 Cu 

C 3.27 68 11.4 .058 Fe 

A1203 
6.7 63 11.1 .014 Ag. 

Table 3.3: Composite systems and derived properties 

* V is the minimum volume of fibre necessary for 
srengthening to be achieved and it is given 
approximately by the expression Vc  = u(m)/ u(f)  

** The suffix 'm' refers here to matrix and must 
not be confused with 'm' when used as packing 
factor. 
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3.4 COMPUTED RESULTS  

Following the arguments in Chapter 1, a hexagonal 

packing arrangement of the fibres was adopted; they were 

also regarded as long and continuous in an infinte array. 

The computer programming procedure has been described in 

Chapter 2. Figure 3.1 shows a typical mesh used in the 

analysis; Table 3.4 shows the different mesh sizes for 

each packing factor m. 

m Number of 
Elements 

Number of 
Boundary nodes 

2 310 62 

2.08 339  55 

2.125 - 	310 46 • 

2.5 364 	. 44 

3 386 .48 

4.5 343  57 
- 	-.. 

Table 3.4: Mesh sizes 

Convergence of the solution was obtained in each case 

after 'about 500 cycles of iteration and the computing time 

on the IBM 7094 (at Imperial College) was around two minutes. 

On the CDC 6600 (at University College) the time was reduced 

to about thirty-five seconds using on all occasions an over-

relaxation factor of 1.95. Plane strain conditions have 

been assumed in all cases. 
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3.5 RESULTS  

The stress distributions within the matrix and along 

selected lines of symmetry have been plotted. Figure 3.2 shows 

these lines - namely ox, dz, and the points A, B, and C which 

will be constantly referred to in the rest of the work. ox 
o'z 

is the line of centres of adjacent fibres and/is inclined at 

30°  to ox; B and C lie on the interfaces along ox and o'z 

respectively and A is the isotropic point as will be seen from a 

later Chapter. 	0 _ is the angular displacement along the 

interface measured from ox; all the computed results correspond 

to a uniform temperature drop of 50°C. 

(i) Stress distribution along ox  

Figures 3.3a-3e show the radial stress distribution on 

ox within the matrix, for various fibre volume fractions and 

composite systems. The following observations can be made 

from the graphs*. 

a) For all the composite systems the radial stress 

distribution on ox is nearly uniform for densely-packed 

fibres and the stresses are all compressive. For the 
closely 

case of the/packed fibres i.e. m = 2.08, these stresses 

slightly decrease from 0 to the interface and vice versa, 
packing 

for all other/factors. For the widely spaced fibres, the 

radial stresses tend to follow a. Lame-type distribution 

as would be expected, see Figure 3.3e. 

* On some of the graphs, not all the composite systems 
have been represented. This is purely to avoid over-
crowding the graphs. However the general trend of the 
stresses is always evident. 
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b) The C/Fe system which has the largest values of 

Young's Modulus both for the matrix and fibre, produced 

the highest stresses at all points along ox for all fibre 

volume concentrations, whilst the Al/ARL, GL/ARL and B/ARL 

systems having the least value of Young's Modulus for 

their matrices, also showed the least level of stresses. 

It therefore seems that the level of the stresses mainly 

depends only on the properties of the matrix and not those 

of the fibres. Thus all the Araldite systems which have 

fibres with their Modulii an order of magnitude different 

(B(55), Al,GL(10)), all give the same order of stresses. 

The same form of distribution is exhibited by the GL/Al 

and Fe/A1 systems having the common matrix aluminium. 

Also, the A1203/Ag system shows similar order of stresses 

to the Al-matrix system since Ag has almost the same 

values of modulus and thermal expansion coefficient as Al. 

In the light of the above observations, the radial stresses 

at the interface 'B' were plotted against the matrix moduli 

for each packing factor as shown in Figure 3.4a. A linear 

relationship thus exists between the radial stresses and the 

Young's Modulii of the matrices. The curve for the case of 

m = 2 has been drawn using the contact stresses within the 

fibres. Figure 3.4b shows the variation of the interfacial 

radial stress at B with the reciprocal of the thermal expansion 

coefficient. Here, there is no linear relationship but the 

points all lie on a curve for each spacing, the stresses 

increasing with 1/am. In figure 3.4c, the variation of the 
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radial stress at B, with the derived parameters (Ef -Em ) ' 
am/af and (am-af ) is shown plotted for different fibre 

spacings, for the composite systems all having Araldite 

as matrix. A linear relationship is exhibited in all cases. 

No sensible relationship was however found between the stresses 

and the ratio of the Young's Modulii (Ef/Em ). 

The variation of the interfacial radial stress at Buitt6 m PS 

shown in Figure 3.6a for the different composite systems. 

The shapes of the curves however apply to any point along 

ox. From these curves, stresses within the matrix for all 

the composite systems increase sharply from around m = 2 to 

their maximum values at a value of m between 2.2 and 2.25. 

Beyond this value, the stresses decrease, at first sharply 

up to m = 2.5; thereafter they gradually tend to the stress 

distribution for a single fibre configuration. 

(ii) Stress distribution along o'z  

The variation of radial stresses in o'z is shown in 

Figures 3.5a-5f. Here, the spacing of the fibres and the 

Young's Modulus of the matrix material, are significant in 

determining both the sense and magnitude of the stresses. 

a)• Closely-packed fibres  

Figure 3.5a shows the curves for the different systems 

for the case of the fibres lying in continuous contact i.e. 

m = 2. All the stresses are tensile everywhere along o'z 

increasing from the interface to a maximum at the isotropic 

point A, at the centre of the tricorn. These stresses are 

very sensitive to slight changes in the spacing of the fibres. 
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As the spacing is slightly increased to m = 2.08, Figure 

3.5b, the composite system with Araldite as matrix continue 

to show tensile stresses whilst in all the other systems 

the stresses have become compremive. The compressive stresses 

are maximum at the interface decreasing to a minimum at the 

isotropic point. Thus algebraically, the mode of variation 

of the radial stresses is the same for all fibre spacings. 

For m = 2.125, Figure 3.5c, the variation of the stresses for 

the Araldite systems is only partly tensile, beginning with 

tension at the centre of the tricorn and changing at about 

half way along o'z to compression. The value of m at which 

the stresses change from tensile to compressive can be obtained 

from Figure 3.6b which shows the variation of radial stresses 

at the centre of the tricorn A, for the different composite 

systems. 

b) Widely-spaced fibres  

For widely-spaced fibres and for all the composite systems 

• the stress variation along o'z is similar to that on ox 

previously examined; the stresses are compressive and increase 

'as the fibres become more closely packed, the peak compressive 

stress ,for each spacing occurring at the interface C. However, 

the distribution changes rapidly as the spacing is reduced 

below m = 2.5 for the soft ARL matrix composite systems. 

(iii) Stress Distribution Along Interface - a-direction  

The variation of radial stresses along the fibre/matrix 

interface is shown in Figures 3.7a-7c. The radial stresses 

have been plotted against the angular distance Q along the 

interface. 
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Figures 3.7a-7b show the stress distributions along the 

interface for m = 2 and m = 2.08 respectively, showing 

part-compressive stresses even for m = 2. At first sight this 

would seem to conflict with our explanation of the shrinkage 

mechanism, that because of the difference between the 

coefficients of thermal expansion (am  > af), the matrix 

material must be in tension when the fibres touch. Certainly 

the major part of the matrix material experiences radial 

tension in these circumstances, but in order for adjacent 

fibres to remain in equilibrium under the radial tensile, 

stresses from the matrix, the fibres must press on one another 

and if a thin strip of matrix material separates them at the 

closest points it must be in compression. The stress distri-

bution is similar to that shown in Figure 1.2d. The thinner 

the strip of material separating the fibres, the more uniform 

the compression within it. In the limit when the fibres touch 

(m = 2) the radial stresses at Q = 0 becomes the compressive 

stress in the 'fibre along the line of contact. 

Figures 3.8a-8b show the general distribution of radial 

tensile and compressive stresses within the matrix for both 

stiff and soft matrix materials for closely spaced fibres. 

The tensile stresses originate from the centre of the tricorn 

and the compressive stresses within the vicinity of the contact 

points of the fibres are confined to only a small area as explain 

above. It is also clear that the softer matrix has a far 

greater tendency to develop tensile stresses whilst the stiffer 

matrix produces the type of compressive stresses as described 

above even when the fibres touch. 
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As the fibre spacing increases, the interfacial radial 

stresses everywhere become compressive for all the composite 

systems, and tend to be uniform. In Figure 3.7c the two 

extreme cases, namely C/Fe and AL/ARL are shown for packing 

factors equal to 2.125 and 4.5 

The significance of these results in relation to composite 

materials will be discussed later. 
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CHAPTER4 

SHRINKAGE STRESSES AROUND A DISCONTINUOUS FIBRE  

4.1 INTRODUCTION  

In the last chapter, the shrinkage stresses in a solid 

composite having cylindrical continuous fibres were investi-

gated. However, since many fibres are available in the form 

of short fibres, it is important also to study the shrinkage 

behaviour of discontinuous fibre composites. 

Both the theoretical and experimental analyses of contin-

uous fibre composites are relatively easy to achieve since they 

can be successfully idealised and made amenable to elastic 

analysis or simulated closely in experiments. Cox (1 ) has 

provided an analysis of a single fibre in an infinit?matrix 

using a strength of materials approach; experimental work has 

also been carried out by Tyson and Davies (3 ) and Schuster 

and Scala (45), providing information on the shear tractions 

on the fibres. 

4.2 DISCONTINUOUS FIBRE COMPOSITE MODELS  

Iremonger and Wood (4 ), (38) and Owen et al (30) have 

all used both two-dimensional photoelastic and finite element 

models to study the stresses around fibre discontinuities of 

various sizes and for different fibre volume concentrations, 

in both the elastic and elastic-plastic regions. In all these 

cases, the effect of neighbouring fibres adjacent to the 

discontinuity was also examined. However, practical fibres 

invariably have circular cross-sections and are all completely 

surrounded by the matrix material; plane models used in the 
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above investigations and simulating the longitudinal section 

of the real composite inherently overlook this fact. It is 

obvious, therefore, that whilst such analyses may yield valuable 

information towards a better understanding of fibre-reinforcement 

the models adopted for the studies are only convenient approxi-

mations to the real composite. If we consider, for instance, 

the effect of compression in the axial direction of the fibres 

in the two cases of the plane model and the real composite, 

the response to the load would be different. For the composite, 

the 'holes' occupied by the fibres would tend to increase in 

diameter due to the Poisson's ratio effect to a greater extent 

than the diametral expansion of the fibres since Vm  >Vf  

generally, thus resulting in the establishment of transverse 

tension to maintain interfacial coherence. Various analytical 

expressions for the transverse- radial stress developed at 

the interface, have been derived by Islinger et al (46) and 

Mooney and McGarry (47) for both single and multifibre 

composites. Ebert and Gadd (7 ) have extended the analysis 

into the plastic yielding using as the model a composite with 

a central soft core surrounded by a rigid cylindrical case. 

In the case of the plane model, the reverse effect would 

.take place since the matrix lying between adjacent fibres 

would expand laterally against the fibres which also expand 

to augment the compressive effects. Herein lies the major 

inadequacy of the plane model simulation. However, in real 

composites, most of the load (>80%) is borne by the fibres, 

the matrix serving merely as a binder and shear force 

transmitting medium. Under these conditions the Poissonts 
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ratio effect in the matrix may be negligible. It is therefore 

necessary that in the simulated plane models vf  and vm should 

be approximately equal and the ratio Ef/Em should be high to 

realise this. However, it has been shown that the effects 

due to of and vm alone are negligible (29) in plane models. 

4.3 MODEL FOR THERMAL SHRINKAGE ANALYSIS  

The object was to study the shrinkage stresses around a 

discontinuity in a multifibre composite. From the foregoing, 

it was felt that a better idealisation of the composite ought 

to be considered. It was argued that in .that part of the 

matrix lying directly between the ends of the fibres in a 

discontinuity, axisymmetric conditions would prevail to a good 

approximation. Figure 4.1 shows the longitudinal cross-section 

and plan view of such a model. It is composed of a central 

long cylindrical fibre with a central discontinuity and 

surrounded by the matrix material which is'in turn surrounded 

by a ring of material assigned the elastic properties derived 

from the rule of mixtures for the composite. The outermost 

ring of material is the same as the matrix. The problem is 

therefore that of shrinkage stresses in concentric cylinders 

with a central discontinuous core. The analytical solution 

of such a problem (without the discontinuity) has been proposed 

by Gatewood (48) using Complex Variable analysis. 

It is readily recognised that the shrinkage mechanics in 

the propzed axisymmetric model is different from those of real.  

composites. In addition since most investigations have been 



- 55 - 

conducted on the plane model to advantage, it was felt that 

this (the plane model) should be adopted even if only to make 

a comparison of results possible. Note that the longitudinal 

section for the axisymmetric model in figure 4.1 serves also 

as the plane model. For the finite element analysis, due 

to symmetry, only one quarter of the plate (Figure 4.1) was 

'considered. The point o was fixed and nodal points along ox 

and oy permitted to slide only along their respective axes, 

all other nodal points being allowed to move freely. The 

number of elements of the mesh employed was 966 (528 nodes), 

permitting all necessary mesh refinement in the appropriate 

regions. The University College computer CDC 6600 was used 

for the analysis. Computhg time was just over one minute 

after 500 cycles of iterations, using as before, an over-

relaxation factor of 1.95. T composite systems were studied 

namely C/Fe and AL/ARL, the two extreme cases in Chapter 3. 

* Packing factors of m = 4.5 and 2.5 and discontinuities .5 —= 1 

and 2 were investigated for each system. 

4.4 RESULTS  

The stress distributions for both the C/Fe and Al/ARL 

systems were similar and the plots are mainly shown for the 

C/Fe system. The stress levels were of course different, the 

C/Fe system giving higher stresses. 

*5 	length of qap (15)  
p - radius of fibre (p) 
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(i) Axial Stresses  

Figure 4.2a shows the axial stresses in the plane model, 

in the centre line of the longitudinal section starting from 

the centre of the discontinuity in the matrix, i.e. along 

Oy in Figure 4.1. These stresses are tensile in the matrix 

and rapidly decrease, changing to compressive in the fibre. 

Perfect continuity of stress from matrix to fibre is exhibited 

in all cases. The magnitude of the compressive stresses in 

the fibres increases to a maximum constant value a few gap-

lengths along the fibre. The axial stress magnitudes are 

influenced more by the size of the discontinuity than by 

fibre proximity or spacing for the two fibre spacings investi-

gated. 

(ii) Radial Stresses on ox (Figure 4.1)  

Starting from the interface at the outer fibre along ox'fig.7 

the'stress distributions in the direction perpendicular to 

the axis of the fibre for both the C/Fe and Al/ARL systems 

have been plotted up to o', the centre of the discontinuity, 

Figure 4.2b. These stresses are all positive and increase 

along ox' from the interface. For the same discontinuity 

higher stresses are obtained with increasing fibre spacing 

but the stresses*are nearly the same at the interface for the 

same spacing. 

In Figure 4.2c, both the plane and axisymmetric stress 

distributions for m = 4.5 and b = i for the Al/ARL systems 

have been shown for comparison, the axisymmetric case giving 

much lower stresses. 
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(iii) Shear Stresses  

The interfacial shear stresses along the central 

dis- ,tinuous fibre starting from the tip of the discontinuity 

in Cyrection oy (Figure 4.1), are shown plotted in Figure 4.2d. 

For both fibre spacings, the tip maximum shear stresses are 

the same for all discontinuities; however, the shorter the 

discontinuity and the closer the fibres the slightly longer 

the distance along the fibre over which shear stresses persist. 

They all fall to zero in just over one fibre width. 

4.5 RELATIONSHIP OF RESULTS TO REAL COMPOSITES  

The plane model adopted in the analysis excludes circum-

ferential stresses which arise in real composites from the 

fact that the fibres are completely surrounded. Insteado the 

central fibre is bounded on either side completely by other 

fibres; the matrix is thus in effect surrounded by a fibre 

material which is the reverse of conditions in a real composite. 

In the shrinkage process, the shrinkage of the matrix material 

at the outer fibre interface would be greater than that of the 

fibre (am > af) and hence interfacial tension would be 

required to maintain adhesion. This is equally true of the 

axisymmetric model in which the inner cylindrical matrix 

(Figure 4.1) would tend to shrink inwards, away from the 

intermediate material. The effect of the differential contrac-

tion is therefore to establish tensions and not compression as 

explained in Chapter 1, for all fibre spacings. This is borne 

out by the results. The results therefore pertain more to 

the particular geometry of the models than to real composites. 
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A more realistic simulation of fibre discontinuity is 

by a three-dimensional discretisation of the finite element 

method. This would however require a large total number of 

elements to achieve a reasonable physical approximation. The 

feasibility of this is limited by the storage capacity and 

speed of the computer, and this was the main reason for not 

using this approach. 

An experimental simulation of fibre discontinuity will 

be presented in the ensuing chapters using photoelastic methods. 
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CHAPTER 

PHOTO-VISCOELASTIC BEHAVIOUR OF 

BIREFRINGENT MATERIALS 

5.1 The Basic Principles of Photoelasticity  

When a ray of light enters a transparent isotropic 

medium, it suffers a change in velocity. The ratio of the 

velocity in vacuo to that in the medium is the refractive index 

of the medium and it is independent of the direction of propa-

gation and state of polarisation of the ray. 

In anisotropic transparent media, such as strained or drawn 

high polymers the behaviour is more complicated. In general a 

single ray entering such a material is propagated as two 

separate orthogonally polarised components travelling with 

different velocities, each parallel to a direction of secondary 

principal stress in the plane of the wavefront. Both the 

velocities and the state of polarisation vary with'the direction 

of propagation. This phenomenon is known as double refraction 

and the body is said to be birefringent. The principles of 

photoelasticity are based on this property of double refraction 

exhibited by most polymeric materials and glasses. 

For polarised light of a given wavelength incident normally 

in a plate under plane stress conditions the velocities of the 

component rays v1, v2  are each proportional to the magnitude of. 

the principal stresses T102, lying in their planes of vibration, 

i.e.: 
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v1  c 0r1, and v2 w or 

Thus on emerging from the photoelastic medium the two components 

will have suffered a relative change of phase or RELATIVE 
X 

RETARDATION,such that xm(v1-v2)t,, where t is the length of the 

path of the ray through the medium. (This will be the thickness 

of the medium for normally incident light). 

Since (v1  -v2  ) is proportional to (C'1- O'2)we can say that 

= C (C1- 0-2)t 	 (5.1 

where C is a constant for a given material at a given temperature 

and is known as the STRESS-OPTIC COEFFICIENT. 

On viewing the emergent ray through another polaroid material 

(usually called ANALYSER), with its transmission axis perpendicull  

to the initial plane -of vibration (i.e. axis of the POLARISER) 

only the components of those two waves which are parallel to the 

ANALYSER transmission axis can be observed. When the value of X 

is such that the ray components for the analyser are out of phase 

by it radians, mutual extinction will occur, producing zero light 

intensity at every point in the medium having a similar value of 

principal stress difference (61-0.2). The loci of such points 

form fringe patterns called ISOCHROMATICS. A complete analysis, 

may be found in most texts on photoelasticity, e.g. reference (52  

Photoelasticity thus affords a direct means of obtaining the 

distribution of the principal stress differences in a stressed 

plate optically. There exists another parameter which can also 

be optically measured, the ISOCLINIC. This is the locus of all 

points in the pltate at which the directions of principal stresses 
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are parallel to the axes of the polariser and analyser. From 

such loci, stress trajectories within the plate can be 

graphically plotted. 

5.2 Photoelastic Methods  

By making models of structures or components out of suitable 

birefringent materials and subjecting them to the required mode 

of loading, the resulting stress distribution can be conveniently 

obtained. In the mainl photoelastic methods fall into two groups 

of analyses: 

(i) two-dimensional analysis and 

(ii) three-dimensional analysis. 

The first methodl by definition, is employed in the study 

of plane models (plane stress) elastically loaded for 	short 

'periods to avoid creeping of the materials..  

The second method is applicable to three-dimensional models 

made from polymeric materials and depends on the changes that 

occur 'in the molecular chains of the polymer at elevated 

temperatures. When loaded at a particular temperature known as 

the CRITICAL TEMPERATURE, the exact value of which depends on the 

composition of the particular polymer, the material deforms 

considerably almost instantaneously, with consequent sharp 

reduction in the value of its modulus. After unloading at that 

temperature, there is complete recovery without much delay. If 
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however, the loads are maintained whilst the specimen is cooled 

to room temperature, the deformation and optical effects 

produced at the critical temperature are retained on removal 

of the load. Hence the method is described as the FROZEN STRESS 

TECHNIQUE. To explain this behaviour of the birefringent materia 

at the elevated temperature, a descriptive theory has been 

postulated in which the material is assumed to have two phases 

simultaneously having different properties, see e.g. ref. (50) 

The ratio of relative retardation produced in the model to 

the load applied is actually much greater in the frozen stress 

than in a model at ordinary room temperature. The linear 

relationship, however, between the load and the stress-optical 

effects is retained for a wide range of loads so that the stress 

distribution may be determined from such a model. Also, the 

frozen stress pattern remains unaltered when the model is cut 

or drilled with care. 

5.3 Photothermoelasticity  

Comparatively, more recently, a new technique of photoelasti 

analysis is increasingly being employed in thermal stress 

problems (53) (54) (55). This method has been termed 

PHOTOTHERMOELASTICITY. The problem may be a purely thermal 

stress problem due to a non-uniform temperature distribution or 

stress resulting from differential shrinkage as in composite 

structural systems. In this method, also, both two and three-

dimensional approaches are possible. This method differs from th 

conventional methods outlined above, both in the mode of loading 

and in the nature of the resulting isochromatic  fringes. In the 
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conventional methods loading is externally applied whilst in 

the photothermoelastic approach, advantage is taken of the 

thermal loads induced as a result of any temperature gradients 

or the differential shrinkage of the components of a composite 

material due to a uniform temperature change. This technique 

will be examined in a greater detail in the next chapter. 

In general; the isochromatics resulting from this approach 

will be due to a combination of frozen stress and creep effects 

and elastic stresses depending on the creep and thermo-viscoelast 

properties of the birefringent materials used in the test. This 

technique has been employed in this investigation and to 

interpret the results correctly, an understanding of the 

behaviour of binefringent materials is imperative. 

5.4 Viscoelastic Behaviour of High Polymers 

The response of polymeric materials to any form of 

loading is, in general, highly time and temperature dependent. 

At very short loading periods, the material exhibits a Hookean 

elasticity, the ratio of stress to strain being constant and 

independent of time. At longer loading periods this ratio 

does depend on time; the strains may become large, but they are 

recoverable if the load is removed. This is called delayed 

or retarded elasticity*. At still longer times, some of the 

*Also known as HIGH ELASTICITY 
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strain may become irrecoverable showing that the material 

has deformed in part like a liquid rather than a solid, this 

is called flow. (56) (57) (58). 

(i) Creep Characteristics  

From the foregoing7  in a creep test at constant stress and 

temperature, the strain, c  may be generally expressed as: 

e (t) = el  + e2(t) + e3(t)  	J- 	(5.2a) 

the parameterse e .. are measured at time t. 	is the part 1.• • 	 e 

corresponding to the instantaneous elasticity and hence is 

independent of t; e,2(t) and e3(t) are the delayed and flow 

deformations respectively. e.3(t) is assumed to depend on the 

time according to Newton's law for viscous liquids. Hence 

equation 5 .2a may be expressed as: 

c:(t) = e1  + e2(t) + t/1 	 (5.2b) 

where '►1 has the dimensions of viscosity. Figure 5.1a shows the 

type of creep curve which would be obtained with a specimen 

which obeys these assumptions. At very short times, the 

deformation under load consists only of the instantaneous 

elastic deformation el; it then behaves like a hard solid. Later 

there is a region of transition in which the high elastic 
** 

deformation develops, and the compliance of the material changes. 

** Ratio of strain at any time to stress. 
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to that of a soft solid. This transition region covers several 

decades of time. The flow term tin may have some effect during 

the high elastic deformation; at very long times this term may 

become dominant and the material then *axes like a very 

viscous liquid, figure 5.1a. 

(ii) Strain recovery  

A strain recovery experiment may follow a creep test. The 

stress is removed and while the specimen recovers, the strain 

is measured as a function of time. On removal of the stress 

there is assumed to be instantaneous recovery, corresponding 

to the instantaneous deformation ei. Then there is delayed 

elastic recovery which corresponds to 
02. If there is complete 

recovery, then there has been no viscous flow e5. It may be 

difficult, however, to distinguish between flow and very 

delayed elasticity.. 

(iii) Stress relaxation  

In a stress relaxation test, the strain e, is held constant 

and the stress and modulus become functions of time. Figure 

5.1b shows the type of curve that may be obtained in a relaxation 

experiment. The initial stress is high corresponding to an 

instantaneous elastic response. The stress then falls as 

delayed elasticity takes place and if there is no flow, the 

modulus eventually falls to a constant finite value corresponding 

to that of a soft solid. If flow occurs, the modulus and stress 

'eventually decreases to zero. 
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The above behaviour may be expressed by an equation in 

terms of the modulus at zero time G(0) as: 

G(t) 	G(0)-GE(t) 

 

(5.3a) 

 

where GE(t) is a function describing the change in modulus 

caused by the delayed elastic response. Alternatively, the 

equation may be written in terms of the modulus at infinite 

time G(a)  as: 

G(t) = G(W)E(t) 

 

(5.3b) 

 

If viscous flow occurs G(co)  = 0. 

Comparison of the two curves in figures 5.1a-lb, shows that 

stress relaxation and creep follows a similar course and are 

found to be identical in the hard and soft regions. In the 

hard region G(0)  = 1/e1  and in the soft region: 

G(c) 	1./[e1 	e (WO 

 

(5.3c) 

 

if there is no flow. However, in the transition region, the 

experiments give results, which though similar, are not identical 

It is found that the centre of the transition region does not 

occur at the same time in creep and stress relaxation experiments 

(iv) Effect of Temperature  

, The properties of high polymers vary greatly according to 

the temperature at which they are tested. At sufficiently low 
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temperatures all plastics are hard with Young's Modulus in the 

region of 0.3 - 1.0 x 1061b/in4-. This state of the plastic is 

referred to as the GLASSY STATE. 

In general, any linear polymer* can, depending on its 

temperature", exist in each of the following states: 

(i) the glassy state, 

(ii) the retarded highly elastic or leathery state, 

(iii) the instantaneous highly elastic or rubbery state, and 

(iv) the viscous state. 

The j_asssy state corresponds with the lowest temperature 

range and the viscous with the highest. These states roughly 

correspond to those demarcated in the creep and relaxation 

behaviour. For a cross linked polymer**, viscous flow should 

be prevented by the permanent character of the molecular 

network structure, except at exceptionally high temperatures. 

The widths and temperature ranges over which any particular 

polymer exhibits these different types of behaviour and their 

general positions on the temperature scale depend upon the 

chemical and physical structure of its molecules. .The temperatur 

of the transition for state (i) to state (ii) is called the 

GLASS TRANSITION TEMPERATURE. Although the elastic modulus, 

viscosity*  density and other physical properties decrease only 

slowly with increasing temperature in the glassy state, at the 

* A linear polymer is one which has continuous 
unbranched molecular repeat units in its 
network structure (58). 

A polymer with network formed by the linking 
together of previously formed polymer molecules 
via boded chemical structures, e.g. vulcanised 
rubber. 
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transition temperature these quantities fall quite drastically 

over a narrow temperature range. 

5.5  TIME-TEMPERATURE SUPERPOSITION PRINCIPLE  

It has been observed by many experimenters (56) (57) 

(58), that the curves which represent the viscoelastic 

behaviour of a single polymer sample, determined at several 

different temperatures, are similar in shape when plotted 

against a logarithmic time base, log t. These curves can be 

exactly superimposed by simply shifting them along the log t 

axis. This is known as the TIME-TEMPERATURE SUPERPOSITION 

PRINCIPLE and it applies to curves of stress relaxation, creep 

and their allied derivatives. Thus one MASTER curve can be 

drawn from a series of tests at different temperatures for 

creep or relaxation. 

5.6 TEMPERATURE-STRESS-OPTICAL RELATIONSHIP  

Hitherto we have discussed the mechanical behaviour of 

birefringent materials. However, from the standpoint of the 

photoelastic investigation, the most important behavioural 

aspect.of the material, is its optical response during the 

various mechanical states. This is required for an accurate 

interpretation of the fringes present in a model which may 

pass through any of these various states. 

A simple theory of the photo-elastic properties of 

molecular networks of long chains of random links, has been 

developed 	by Crawford, and Kolsky (59) and Treolar (60), 
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from the kinetic theory of rubber-like elasticity. This theory 

predicts that at constant temperature, the difference between 

any two of the three principal refractive indices of a 

network in pure homogeneous strain is proportional to the 

difference in the two corresponding stresses. The constant 

of proportionality or stress optical coefficient is approximately 

inversely proportional to the absolute temperature and is,  indep- 

endent of the degree of cross-linking of the network. 

Experimental verification of the above theory has been 

obtained (61) for natural rubber and gutta-percha. In 

particular, it was shown that the stress optical coefficient 

is constant during creep and has the same value as for elastic 

equilibrium.' In the same work it was found that the constant 

for amorphous cross-linked polythene and polymethylene, 

measured in their rubbery state (elevated temperatures), 

decreased markedly with increasing degree of cross-linking. 

This decrease can be accounted for on the basis of the theory 

of the photo-elastic properties of short chain molecular 

networks put forward by Treolar. 

P. S. Theocaris (57) has carried out a series of creep 

and relaxation tests over a limited time interval, on both 

hot and cold-setting Araldite epoxy resins, and at temperatures 

up to the rubbery state. The characteristic mechanical and 

optical viscoelastic properties were de'rived from these tests; 

it was established from these tests that: 

(i) The values of ,the stress-optical coefficient and the 

strain-optical coefficient are identical in creep and relaxation 

for various temperatures. Their corresponding master curves are 
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coincident and therefore the variation of birefringence 

follows the same law in creep as in relaxation. 

(ii) The creep compliance master curves and the relaxation 

modulus master curves can be represented by functions which are 

the reciprocals of one another at any time. This shows the 

validity of the relationship established earlier in equations 

(ii) - (vi). 

The significance of (i) will be appreciated in the next chap 

-ter on the experimental work which was conducted over a wide 

temperature range from the glassy state up to the transition. 
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- CHAPTER6 

EXPERIMENTAL WORK 

6.1 THE PHOT HERMOELASTIC TECHNIQUE  

, If an unrestrained homogeneous isotropic elastic body 

undergoes a uniform temperature change, then the state of 

strain produced in the material is everywhere isotropic. 

The expression for the strain eT  is, 

eT 	adT 

To 

where To and T are the initial and final temperatures of 

the body and a the linear coefficient of thermal expansion; 

a may either be a constant or a function of the temperature. 

This thermal strain does not give rise to any stresses since 

the displacements are uniform and unimpeded. However if the 

body is subjected to any constraints or thermal gradients, 

stresses will be induced in it. If the thermal configurations 

of a structure are simulated by a model made from a suitable 

birefringent material, the resulting stress distribution can 

successfully be studied photoelastically. Three different 

kinds of thermal stress problems can be envisaged. 

(i) Thermal stresses due to steady-state temperature gradients  

This represents a class of problems in classical thermo-

elasticity and essentially conventional two-dimensional photo-

elastic techniques are employed except that the loading is 

thermal rather than mechanical. Such problems have been 

investigated (53) in order to verify the photothermoelastic 

method since exact solutions are available for certain 
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configurations, e.g. a long beam subjected to a steady-state 

parabolic temperature distribution. Some three-dimensional 

models, e.g. the long circular thick-walled cylinder, have 

been successfully studied by this method. 

(ii) Transient Thermoelastic Problems  

A sudden non-uniform temperature change applied to a body, 

produces stresses. In this case, the temperature distribution 

in the body and the associated strains and stresses all vary 

with time. By suitable instrumentation the isochromatics 

associated with the changing stresses can be obtained at 

desired intervals(50). 

(iii) Restrained Shrinkage Problems  

The third class of thermal stress problems is encountered 

in bonded composite structures, e.g. reinforced solids and 

solid propellant grains for rockets. By comparison with the 

above types of problems (i)and (ii), these are the simplest 

to simulate experimentally. However they form an important 

and growing field of stress analysis by photothermoelastic 

techniques. When the bonded composite structure experiences 

any uniform temperature change, stresses are developed in it 

due to the differential expansion and also the differences in 

the elastic constants of the component,/ materials. Thus by 

bonding a birefringent material to a second material, either 

by casting against it or by applying a suitable adhesive, the 

change in or development of birefringence with temperature may 

be observed. This method of analysis has been adopted in 

the present investigation which is presented below. 
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6.2 SHRINKAGE AND ADHESIVE STUDIES 

The restrained shrinkage method has been used by many 

experimenters eog Durelli et al (55) (62) for different 

shrinkage problems. The behaviour of birefringent materials, 

as described in the previous chapter, makes a preliminary study 

of the model materials to be used in any tests under varying 

temperature configurations imperative. In addition, in order 

to eliminate extraneous stress producing effects, during the 

experiment, certain characteristics are desirable in any 

material chosen for the tests. 

(i) Desirable Properties of Test Materials 

In the present study, which consists basically of casting 

a resin around metallic rods at an elevated temperature, the 

following qualities would have to be fulfilled by the test 

materials: 

a) A hot-setting material with negligible or mild 

exothermic reaction during gelation. This is important 

in order to avoid an undesirable rise in temperature 

within the model as this might be non-uniformly distributed 

and give rise to stresses. With excessive exotherm, 

volumetric distortion might take place as well as the 

entrainment of air bubbles. This last factor is also 

influenced by the fluidity of the casting resin. 

b) A negligible polymerisation shrinkage of the resin 

system is required so as to avoid stresses not purely due 

to thermal shrinkage which is mainly the consequence of 

moelcular rearrangement; the geometrical distortions e.g. 
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buckling produced by this kind of shrinkage in large 

plate models, for instance, can affect the thermal stress 

distributions. 

c) Good bonding between the component materials is 

desirable since compatibility is a necessary condition 

of the shrinkage process as explained in Chapter 1. This 

should also leave the interface bond undisturbed on 

cutting the model into slices for photoelastic analysis. 

d) The resin should possess a reasonably high figure 

of merit, Q, defined as Q = E/f = n/e  where E is the 

Young's Modulus, f the material fringe constant, n, the 

number of fringes and the strain. Hence Q is a Measure 

of the fringe sensitivity of the material in response to 

strain. 

(ii) Preliminary studies of resin systems  

For the reasons stated above a preliminary study of the 

currently available photoelastic materials was carried out for 

the selection of the material best suited to the tests. 

a) BAKELITE SR9098 ACCELERATOR Q17448 CATALYST  

Q17447 (SUPPLIED BY BAKELITE LTD.) This is a polyester 

resin in liquid form and can be cured at various temp-

eratures. When tested, it exhibited excessive polymerisa-

tion shrinkage, even on a macroscopic scale. A i in. thick 

plate casting with a circular glass inclusion produced 

a severely buckled plate. The material also became soft 

at slightly elevated temperatures. 
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b) ARALDITE MY753 
	

H Y922 (SUPPLIED BY CIBA LTD.) 

This is a liquid cold setting resin and can be cured at 

various temperatures from room temperature upwards to 

about 100°C. It produced excessive exotherm with 

increasing casting temperature and size of casting and 

proved to be most unsuitable. However it had the 

advantage that since it can be cast and cured at various 

temperatures, the level of residual stresses and hence 

isochromatics resulting from a composite casting could be 

controlled by curing at a selected temperature. 

c) ARALDITE CT200 HT901 (SUPPLIED BY CIBA LTD.)  

This resin is solid and melts at 120°C and may be Cured 

successfully at 110°C - 150°C. When tested, it produced 

negligible polymerisation shrinkage and exotherm. Repeated 

tests with thermocouples located at the centre of a large 

mould in the form of a cylindrical vessel of the same 

dimensions as the mould to be employed in the main 

experiment (4.3 in. diameter and 7 in. long), showed 

thatthere was practically no exotherm at curing temp-

eratures of 110°C - 120°C. The resin poured easily at 

120°C without trapping any air bubbles. Its pot life was 

found to be about 2 - 3 hours at 110°C and solidification 

was complete after 5 - 7 hours. This meant that enough ' 

time would be available for the mould and its contents 

to attain a uniform cure temperature of the oven before 

the onset of polymerisation. This system has a high 

figure of merit and is widely used in this country and 

elsewhere for three-dimensional photoelastic'work (63) (64). 

It was therefore adopted for the'tests. 
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(iii) Choice of Fibre Material 

Because of its excellent bonding with Araldite and its 

transparency, glass rods (E-glass) were first considered 

for the tests. However their unsuitability was soon discovered 

when on cooling the cast mould down to room temperature, 

repeated cracking of fibres and matrix was experienced; the 

whole matrix and fibres cracked rather drastically. Other 

alternative materials therefore had to be considered. 

After tests with steel, copper, and aluminium (alloyed) rods, 

the last was selected for its ease of cutting, lightness4  good 

bonding with Araldite, cheapness and availability. However, 

initially some difficulty was experienced in obtaining a good 

bond which would not break during the cutting process. Even 

careful 'and thorough abrasion and cleaning agents* could not 

improve this. Aluminium is highly chemically reactive; when 

exposed to the atmosphere, it quickly forms a protective 

• thin coating of its oxide which prevents its further degradation. 

The higher the time and temperature of exposure, the thicker 

the oxide film formed and the more difficult it is to bond 

effectively with Araldite. 

It is normal in' most casting procedures to heat the mould 

to the same temperature as the molten resin before pouring so 

as to avoid distortions due to non-uniform temperature distri- 

bution. It was discovered that by pouring the Araldite into 

*e.g. ethylene tetrachloride, acetone, etc. 
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the mould whilst the latter was still cold (room temperature), 

the rods having just been assembled after cleaning, the bond 

was considerably improved. Since the material gels over a 

long period, and as aluminium is an excellent heat conductor, 

the rods and vessel would soon attain the oven temperature. 

Adhesion was further ensured 	mechanically by cutting short 

shallow and narrow slots along the sides of the rods far 

„removed from the regions of interest. The stress concentrations 

produced by these slots would be highly localised and would 

have no effect on the overall fringe patterns. The particular 

aluminium alloy selected was BSS/EIC supplied in Z  in. diameter 

rod. 

(iv) Properties of Araldite CT200 	HT901  

The manufactures of this resin (CIBA Ltd. of Daxford, 

Cambridge) have extensive data on the mechanical and electrical 

properties. of the material. (63). 

Up to the glass transition temperature, 105-116 C, the 

material behaves in a brittle manner when tested over a 

relatively short period., The values of the Young's Modulus 

and the thermal coefficient of expansion remain practically 

constant over this temperature range. However, like all 

polymeric materials, it has a tendency to creep over a period 

of time. 

The room temperature elastic fringe constant was obtained 

from a compression specimen and the frozen stress constant 

from tension specimens at 120°C the critical temperature. 

Table 6.1 gives the various properties of the araldite and 
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PROPERTY ARALDITE* ALUMINIUM./  

(E) 
Young's Modulus, x 106 lb/in2 0.46 10 

(a) 
Expansion coefficient, x 106/oC 63 24 

(v) 
• Poisson's Ratio 0.35 0.33 

(fe) 
Material Fringe Value, lb/in2/in/ 

fringe 
.- 	• 

55.5 - 

(fr) 
Frozen stress fringe value, 

lb/in /in/fringe 
1.438 - 

(Ef) 
Effective Young's Modulus for 2  

frozen fringes, lb/in 
w• 

2150 

. 

- 

, 

(Tc) 
Critical Temperature oC 120 - 

(Tg) 
Glass Transition Temperature, oC 
• - 	- 

105-110 - 

Table 6.1: Mechanical and Photelastic Properties of Araldite 
CT200 and Aluminium (EIC) 

.10  

*Averaged from sample tests 

+From "The Properties of Aluminium and its Alloys"; 
The Aluminium Development Association; Infor-
mation Bulletin No.2. 
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aluminium. The resin/hardener weight ratio used here and in 

all subsequent tests, was in the recommended proportions of 

100 parts to 30. 

(v) 	Casting - of Models  

The geometrical arrangement of the fibres adopted in 

the tests was that of a hexagon for reasons already mentioned. 

Fortunately this arrangement has several planes of symmetry, 

thus simplifying the photelastic analysis which will be presented 

in the next chapter. Three different packing factors (m = 4.5, 

3, 2.5), see Figure 1.1 corresponding to fibre volume fractions 

of 0.179, 0.403 and 0.580 were studied for both continuous and 

discontinuous fibres. 

A base for each model was made from a disc of Araldite 

1 in. thick, drilled for the required spacing and treated 

with release agent to prevent adhesion to main model. The 

disc located the seven aluminium rods accurately as the 

Araldite was cast around them in a cylinder about 7 ins. high 

and about 	ins in diameter, also treated with release agent. 

Casting was carried out at 120°C followed by sixteen hours 

of furing at 110°C, the mould finally being slowly cooled to 

room temperature (26°C) at a rate of 2°C per hour. 

For each packing factor, three different lengths of 

discontinuity were studied, namely 4  in.,  2  in and 4  in. 

These various configurations are tabulated below in Table 6.2. 
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m LENGTH OF GAP.  

4.5 0 1  i in 2  in 3 4 	• in 

3 0 3 --1- 	in 4 
1 	in 2 w in 

2.5 • 01 i in y in 3  -4- 	• in 
. 

2 * 0 - - - 

Table 6.2 Fibre Geometry and Discontinuity 

For m = 2 i.e. the case where fibres lie in continuous line 

contact with each other, one model was obtained. The discon-

tinuity in the central fibre was achieved by screwing the 

upper portion of the central rod into a bar made of Araldite 

which had been accurately drilled to be supported by the two 

extreme rods in a straight 

use of Araldite as support 

rods was necessary so that 

would not take place; this 

stress distributiOn due to 

(vi) Cutting the Slices  

In the case of the models cast around glass rods, 

line as shown.in  Figure 6.1. The 

for both the base and the upper 

relative movement of the matrix 

would otherwise change the true 

the presence of the rods alone. 

transverse slices were cut using a large diameter diamond 

wheel cutter at high speed (24,000 RPM) and very slow feed, 

the model and wheel being profusely supplied with liquid coolant. 

!No useful information was obtained for this. 
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Three different available workshop machines were 

considered for slicing the Aluminium/Araldite model which 

mfldnot be cut on the diamond wheel since the rather soft 

aluminium would tend to clog the diamond wheel and damage 

it. These were (i) a milling machine, (ii) a band saw and 

(iii) a power saw. Trial cuts were made with these machines 

to evaluate their suitability. 

a) Milling Machine This is a horizontal milling 

machine with a wheel cutter. Whilst this produced excellent 

surface finish, it was found to exert too much force on the 

specimen during cutting. Also the size of the specimen was 

too large to enable a complete cut to be made through the 

model in one traverse of the machine bed. The cuts therefore 

had to be taken in bits requiring the model to be turned round 

with possible consequent mal-alignment. This procedure of 

cutting proved to be rather slow and cumbersome and repeatedly 

gave broken bonds due to the excessive force of the machine. 

b) Band Saw This proved to be the quickest way of 

cutting the slices. However the saw bench had no feeding 

or clamping mechanism and these had to be done by hand. 

Added -to this, the continuous movement of the saw and its 

small thickness produced excessive heat by friction which 

was not easy to eliminate even by prodigious supply of coolant 

which again had to be done manually. Surface finish was poor 

and this method proved most unsuited to the work. 
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c) Power Saw  

The.power saw has a rigid hacksaw blade of dimensions 

14 in. x 2 in. x 0.10 in. x 10 t.p.i.; it also has an 

adjustable dashpot mechanism which controls the depth of 

cut per stroke and hence the pressure exerted on the specimen. 

It has facilities for clamping the model and an automatic 

coolant supply system. By setting the dial on the dashpot to 

give minimum pressure, this machine proved to be the best 

suited to the work; the finish was fairly good. 

One specimen was cast without any inclusions and sliced 

up on the machine. On examination the slices were found to 

show negligible birefringence. This was proof that (i) the 

cutting process did not introduce any extraneous stresses 

into the slices and (ii) the residual stresses from the 

restrained shrinkage (i.e. with the aluminium inclusions) 

were practically all due to differential shrinkage. 

(vii) Polishing of Slices  

Initially it was decided to improve the finish of the 

cut slices by fly-cutting both faces. There was difficulty, 

however, in getting them uniformly clamped on the machine 

bed and the slightest flutter of the specimen produced non-

uniform cutting. Otherwise the finish obtained in this manner 

was excellent. In the end, careful polishing with sandpaper 

by hand proved to be a quick and satisfactory method. 

(viii) Slicing Planes  

For each model geometry slices were cut as follows: 
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a)  

b)  

c)  

SLICE I 

SLICE II 

SLICE III 

- a transverse slice from the mid-section of 

the model, 

- a meridional slice through the centre of three 

rods in a straight line, 

- a meridional slice through the central rod 

and at SO°  to SLICE 

d)  SLICE IV - a meridional slice through any two adjacent 

rods 	surrounding the central rod. 

Figure 6.2 shows the various planes in which the above slices 

are located in the model. The thickness of the slices was 

about 0.1 in. Figures 6.3a - 33 show typical isochromatic 

patterns associated with the different slices. 

(ix) Check f&r Infinite Fibre Array Simulation  

The seven-rod arrangement in the models is supposed to 

yield the same stress distribution around the central fibre 

as for an infinite hexagonal array of these fibres in an 

Araldite matrix. To check the validity of this, one model 

with m = 3 with nineteen rods was cast. Figure 6.41a shows 

the isochromatics in a transverse s?ction SLICE I which are 

practically of the same form and distribution as those from 

the seven-rod model, figure 6.4a. 

(x) Recording of Photoelastic Data  

Frozen stress tests on Araldite ( 65) have shown that the 

level of the frozen stress isochromatics slightly decreases 

from the value immediately after freezing, over a period of 

time. However, the initial value is found to be attained 

again after a further period of time. In most conventional 

three-dimensional photoelastic work, therefore, the practice 
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is to wait for the stabilisation of the fringes before record-

ing them.. However, in the present tests, the presence of elastic 

stresses in the models would give rise to stress relaxations 

and hence irretrievable loss of fringes with the passage of 

time. Figure 6.3f shows the isochromatics for m = 3 (6 = i in. 

immediately after cutting the slice. The isochromatics from 

the same slice recorded after six months' storage at room 

temperature, are shown in figure 6.5: and there is a reduction 

in the level of. fringes. 

The procedure adopted, therefore, was to carry out the 

various stages of the tests from the casting stage to the 

photographic recording of data, in rapid succession. A sodium 

monochromatic light source was used to record the isochromatics 

and a white light source for the isoclinics. By a suitable  

combination of lenses, magnifications of up to 4 were obtained 

and accuracy of data improved considerably. 

6.3 CALIBRATION TESTS  

Having obtained the isochromatics, we now have to 

investigate their nature and assign meaningful stress values 

to them. In conventional two- or three-dimensional analysis 

this is a simple matter. However, in the present case, since 

the fringes developed gradually over a temperature• range from 

around the critical, various tests have to be carried out to 

evaluate the effective fringe constant for the models. 

(i.) Elastic and Frozen Fringes  

To determine the nature of the isochromatics in the 

spcimens,_the metal component of the slices from both transverse 
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and meridional planes (SLICES I and II) were carefully 

removed and the resulting isochromatics examined. Figures 

6.6a - 6b show the fringes from such slices; figures 6.7a - 

7b show plots of the total fringes and residual fringes along 

particular lines. These show that: 

(i) both the released and residual fringe patterns are of 

the same form throughout the material, and 

(ii) they occur in approximately equal numbers. 

The problem of calibration therefore resolves itself into 

the determination of the relationship between fringe order and 

strain for that part of the composite isochromatic fringe 

system which is released when the constraints are broken and 

that part which remains, bearing in mind that creep might occur 

in the experiments. 

(ii) Doq-bone Tests  

Tests were performed on a dog-bone specimen , Figure 

6.8, of the form recommended by Sampson (66). In these tests, 

specimens were cast in an aluminium mould and subjected to 

the same curing and cooling cycle as the models. Adhesion 

was obtained at all points except along the shank of the 

specimen where the two side pieces were treated with release 

agent and removed before the specimen and its mould were 

cooled in the oven at the same rate as the models. By 

suitable arrangement of a polariscope and camera the isochromatic 

in the dog-bone specimen were photographed at various temp- 

eratures during cooling, Figure 6.9. 
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The fringe order in the shank obtained from separate 

tests is plotted against temperature in Figure 6.10. The 

results are clearly reproducible and yielded a single 

straight line and therefore one calibration constant for the 

temperature range. 

The borids at the ends of the dog bone specimens were broken 

at intervals from 0-5 days after cooling to room temperature. 

All the specimens were free of isochromatics, Figure 6.11a-11b, 
the 

showing that/residual shrinkage stress was purely elastic. 

Allowing for both differential thermal effects and the 

elasticity of the sides of the mould, an expression for the 

rate of appearance of fringes with temperature can easily be 

obtained as follows: 

The strain eS1 in the shank of the dog bone due to the 

free differential contraction of the shank and the ends of 

the mould is: 

eS1 = (af - am)T 

 

(6.1) 

 

where af and am are the thermal coefficients of linear expansion 

of the aluminium and araldite respectively and T the temperature. 

Considering the constraint of the sides of the mould, if 

eST is the total strain in the shank and eS2 
the strain in 

the sides, then for equilibrium, 

eS2EfAf eSTAmEm 

 

(6.2) 
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where Af' Am are the total cross-sectional areas of the 

sides of mould and shank respectively and Ef, Em9 the respective 

Young's Modulii. 

• From equation (6.2): 

A E m m  
eS2 eST EfAf  

Also 	eST = eS1 + eS2 

A E 
= 	(af-am)T + Am  Em AfEf 	eST 

E
m 
 A 

_ = (af-mm)T/(1-T; I 
A
E ) 
f  

 

(6.3) 

 

The stress Cr in the shank is given by, 

cr 	EmeST = NF 

where N is the number of fringes in' the shank and F the material 

elastic fringe value of the Araldite. 

Hence 
Em(af-am)T 

NF - 	 
Em  A 
• x 	

m  
). 

 

(6.4) 

 

Substituting the appropriate values from Table 6.1 into 

equation (6.4), we obtain: 
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dN 	(0.46 x 106) x (24-63) x 10-6 

dT 	0.46 	C'.125 55.5(1 10 

=-0. 31 

This value compares with that obtained from Figure 6.10 

i.e.-0.306. It is clear therefore, that the usual photoelastic 

constants are directly applicable to the elastic part of the 

shrinkage process. 

6.4 Creep Tests  

To determine the nature of the frozeh finges, a series 

of short-time creep tests were carried out on tensile specimens 

at various temperatures up to the critical, 120°C. Lines were 

scribed on the specimens and any permanent strains measured 

'on a projection microscope to an accuracy of ± 0.00001 in. 

The time for the duration of the creep tests at each tempera-

ture was two hours, the same as the cooling rate in the models. 

Except at temperatures greater than about 100°C no 

permanent fringes or strains were obtained. Tests above 100°C 

gave the normal frozen stress fringe value of 1.438 p.s.i./ 

fringe/in. 

With the two calibration values established, it is possible 

to separate the elastic from the frozen stress systems and 

analyse each separately. The complete separation of the stresses 

will be the subject of the next chapter. 
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CHAPTER7  

ANALYSIS OF EXPERIMENTAL DATA  

7.1 INTRODUCTION  

Generally, the optical data as recorded, by themselves, 

do not directly give the separate stresses. This is because 

different states of stress with different principal magnitudes 

but all differing by an arbitrary isotropic system, produce 

equal phot°elastic effects. 

On free boundaries, however, since the direct stress in 

the direction of the normal to the surface is known to be 

zero, the magnitude and direction of the boundary stress lying 

in a plane parallel to the tangent plane r at a point in the 

surface, is directly given by the value of the fringe order 

arid isoclinic respectively for normail incidence in the plane. 

In separating the stresses in two-dimenionsal photoelastic 

models, a number of methods may be resorted to. These methods, 

are in the main: 

(i) 	Mechanical methods, e.g. lateral extension and grid 

measurements yielding values of strain in the surface of the 

plate, 

jii) 	A relaxation numerical method based on the Laplace 

Equation (— 	—2  )(a 	d2) = 0, for generalised plane bx2 by  

stress conditions, 

,(iii) The oblique incidence method devised by Drucker (67), 

(iv) Interferometricmethods for determining isophaics i.e. 

locus of points having the same principal stress sum (61  + 62), 
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(v) 	Step by step integration methods, e.g. the shear 

difference method and the method based on the Lame Maxwell 

Equilibrium Equations. 

Details of these methods may be found in standard texts 

on photoelasticity, e.g. references (44), (51), (67). Of 

the above methods only (v), i.e. the integration method is 

applicable to the separation of stresses in three dimensions 

from frozen stress models. Essentially this is an extension 

of the governing equilibrium equations in three-dimensions. 

Thus, in general, in order to separate the three principal 

stresses, P, Q, Rj from photoelastic data'at a point in the 

body, two orthogonal planes containing the point would be 

required. When the body contains planes of symmetry the 

procedure for obtaining the required data becomes simpler. 

7.2 PLANES OF SYMMETRY  

The normal to a plane of symmetry at any point in the 

plane is a principal axis at the point. Hence a slice cut 

from any such plane would give the principal stress differences 

(P-Q) say, and their directions at any point in the plane. 

The other principal stress difference (P-R) say, at any point 

may be found by cutting a slice orthogonal to the first and 

whose mid-plane passes through the point. To do this for 

several points in the plane would entail a lot of labour. 

To avoid this, the method of oblique incidence may be employed 

'using the first slice alone, e.g. see reference (68). 
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7.3 EXTENSION OF LAME-MAXWELL EQUATIONS IN THREE- 

DIMENSIONS 

Equations of equilibrium at a point, of the Lame-Maxwell 

type, have been formulated in three-dimensions (69). In 

general, none of the three lines of principal stress passing 

through any point is a plane curve and the application of 

these equations to a step-by-step integration procedure is 

impracticable since this would involve the determination of 

principal stress directions for several points lying in 

different planes. 

However, for a plane of symmetry, it is known that a 

line of principal stress is a plane curve and from equilibrium 

consideratiOns, the differential equation can be derived as: 

P-Q R-P 
P2 

	
Cos a 	0  	( 7. 1) 

P3 

dS is the increment of length along-  the P line of 

stress pi' p27  P3  the radii of curvature of the P-, Q- 7  and 

R- stress trajectories at the point and a is generally the 

inclination of P3  to the p-stress trajectory, as shown in 

Figure 7.1. 

The two systems which permit an easy evaluation of these 

parameters are: 

(1) the case of an axisymmetric stress distribution. 

In this case, the R-stress trajectories are circles with their 

centres on the axis of symmetry; any plane which contains the 

axis of symmetry is also a plane of symmetry. 
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(ii) The case where the P-stress trajectory is the 

intersection of two planes of symmetry. Here a is zero at 

all points and equation (7.1) reduces to: 

 

ap
+ + 
P-Q R-P 

- 0 02 	P3 

  

(72) 

  

7.4 SHEAR DIFFERENCE METHOD  

The shear difference method in two-dimensional analysis, 

has also been extended to three-dimensional problems (70). 

This method is general and may be used to determine the six 

components of stress along any line in an arbitarily loaded 

body. 

Using the stress system shown in Figure 7.2a and neglect-

ing body forces, the equilibrium equation in the X-direction is: 

bx 	6y 
x 	xy 	

bz 
zx + 	+ 	o  	 (7.3) 

In figures 7.2b-2c an arbitarily chosen line in the solid 

body has been aligned with the x-axis. Upon integration 

of equation (7.3), the stress at any point k is given by: 

T = ox (A) 
aY

„  - 	 rrz 6x(K) 	x(A) 	dx A bz 
x  dx 	(7.4) 

where dx(A) is the stress at an initial point A which would 

in most cases coincide with the boundary where at least one 
bT 	aT  

	

stress would be completely known. 	and zx may be 
by 	bz 



AT 	 A 
ZX 

AY Ljj.  L- Az 
A . 	A 

x(K) 
= a

x(A) Ax (7.5) 
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determined in the same manner as in two-dimensional problems, 

e.g. reference (50), from the two slices containing the line 

of integration from the XZ and XY planes respectively. 

Replacing the integrals by summations, equation (7.4) 

becomes: 

The summations can be evaluated graphically. From Mohr's 

Circle or other considerations, 

(a'x-6y)K  = [(p-q)K(Cos 20)Oxy  ..F[rK(Cos 20)Oxy,  

	 (7.6) 
(csx—az ) K  = [(p—q)K(Cos 20)0xz =' F[rK(Cos 20)K3 ', xz 

where xy and xz denote values obtained from the XY and XZ 

planes respectively, 0, the isoclinic parameter, F the model 

fringe value and 1 the fringe order, all measurements 

referring to the point K. 

Having thus obtained .the five stress components, namely 

x 
	6y  76z,Txy,Txz,  the last component, T

yz
, may be obtained 

by the method of oblique incidence from either slice. For 

details of the application of the oblique incidence method, 

see for example, reference (68). It may be mentioned that 

this method is subject to serious inaccuracies for regions of 

high shear stress gradients. 
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7.5 ANALYSIS OF PHOTOELASTIC DATA  

The three-dimensional methods of stress separation 

outlined above, are applicable only to frozen stress models 

in which the fringe pattern in the body is unaltered on 

cutting out the slices. In our present models, however, 

there are both frozen and elastic fringes in the slices. The 

number of elastic fringes within the model changes slightly 

upon cutting the slices due to the relief of the stresses in 

the orthogonal direction to the plane of the slice. 

Tests as conducted in the previous chapter, showed that 

the residual elastic fringe distribution has the same form 

as the frozen fringes in the slices. Thus by analysing the 

frozen stress fringes separately, and knowing the boundary 

conditions in the various planes of.-tbe slices for both the 

elastic and frozen fringes, we can evaluate a correction 

factor for the elastic portion of the isochromatic fringe 

system to obtain the true distribution in the model. We 

shall proceed to show how this was achieved. 

(i) Continuous Rods  

The numerical effort involved in general three-dimensional 

separation of stresses was reduced in the present work since 

the hexagonal arrangement of the rods allowed for the existence 

of several planes of symmetry. The isochromatics.associated 

with the various slices are shown in Figure 6.3; the isaainics 

and stress trajectories are shown in Figures 7.3a-36. The 

lines of interest are HJ and DB (Figure 7.3a7 3b), HJ is the 

intersection of the planes of.SLICES II and IV and DB that 
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,of the planes of SLICES I and II. HJ and DB are stress 

trajectories and they coincide with isoclinic parameters. 

(ii) Boundary Stresses (Initial Conditions)  

Since the model was not subjected to any constraints on 

its; boundary, the normal component of stress everywhere on the 

boundary is zero. In the transverse slice, SLICE I, the 

outermost dark fringe at the edge of the disc represents an 

isotropic* region. Hence if Q, R, is the stress system in 

this slice, R = Q = 0 around the edge. This region extends 

up to the point M, Figure 7.3a. 

On the top and bottom, edges of the meridional slice, 

SLICE II, since the axial stress P is zero, the fringe orders 

at these edges give directly the values of the Q-stress. 

(iii) Integration in Transverse Plane  

Starting from the point M in the transverse plane, SLICE I, 

Figure 7.3a, the integration was carried out in stages along 

MA, AD and DB as follows: 

a.) Analysis Along MA  

MA is the intersection of the two planes of symmetry, - 

i.e. SLICES I and III. The stress trajectories for SLICE 

were found to be straight lines except in a small region close 

to the ends of the rods. This state of affairs also applies 

to SLICE IV and is due to plane strain conditions, Hence 

*an isotropic point or region is a region of zero 
order of fringe and is characterised by a constant 
dark field ( in white light) during the plotting 
of isoclinics; all the isoclinic parameters pass 
through this point or region. 
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along MA the Lame-Maxwell equation i.e. equation (7.2) 

reduces to: 

Q Q-R 
s 	pi  

0 

since p2  is c. C1-=R and pi  can be obtained from SLICE I only 

and the procedure effectively reduces to a two-dimensional 

type of analysis. 

b) Analysis along AD (Figure 7.3g)  

The integration here is similar to that along MA 

requiring only the transverse slice. The initial conditions 

are the values obtained at A previously. 

It may be observed that in the transverse slice, since 

the axial elastic stress P has been -released  by cutting, the 

elastic residual stress system Qe 
and Re 

approximate to a 

plane stress system. Similar plane stress conditions can be 

said to exist at the bottom and top edges of the model where 

the axial component of stress is zero. Indeed in the vicinity 

of H, Figure 7.3b, the stress trajectories are straight lines 

indicating that this state of plane stress extends over a 

finite thickness. However, due to the release of the R-stress 

in SLICE II, the value of the elastic stress given by the 

apparent fringe order would differ from the true plane stress 

elastic fringe order at H as obtained from the analysis in 

the transverse plane. 

c) Correction for Elastic Fringes  

The frozen fringes have been shown previously to have 
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, the same form of distribution as the residual elastic fringes, 

see Figures 6.7a-7b; they also represent the elastic stress 

distribution in the model. Thus if f
e is the true elastic 

fringe order and ff* the frozen fringe order at a point in 

the model, then f
e =cff; where c is a constant factor. At H 

fe = f' e(D) 

where f (D)  is the residual elastic fringe order at D in the 

transverse plane corresponding to the stress in direction DB, 

i,e, the Q-stress. 

' 
Hence, 	c 	

e(D)  - 
 ff(H) 

f' 
and 	fe 	

e(D)  x ff ff(H) 

f' 	fT e(D)  

ff(H) 	2  

where fT is the total number of apparent fringes at the 

point since ff  = fT/2.  

Having determined the correction factor for the elastic 

fringes, the integration is next switched into SLICE II along 

HJ and JX, Figure 7.3b. 

*f4  is always the true frozen fringe order in both 
slice and model. 
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(d) Analysis along HJ  

Using the correction factor for the elastic fringes, 

the integration is carried out along HJ using the Lame-Maxwell 

equation and noting that 1/p2  = 0 from SLICE IV. The equation 

here reduces to: 

P-Q - 0 
P1 

Q is known at H. From the stress trajectories and isochromatic 

patterns it can be seen that the P- and Q-stress attain 

terminal constant values in regions away from the edge indicat-

ing plane strain conditions. 

(e) Analysis along DB  

Again after correcting the elastic fringes as described 

above the integration is conducted along DB in the transverse 

slice, Figure 7.3a, using as the initial value, the Q-:stress 

at H obtained previously. The relevant equation in this case 

is: 

bQ Q-R = 0 
bS 

where p1  is measured from the transverse slice; 1/P2 = 0 from 

the meridional SLICE II. 

(ii) Analysis of Discontinuous Rods  

(a) Thochromatic Patterns  

Figures 6.3a-33 show typical isochromatic patterns for 

various fibre spacings and discontinuity from different planes 
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within the model. The following observations may be made .  

about the fringe patterns: 

(i) In SLICE II, Figures 6.3e-3f, the fringes show 

the same mode and level of distribution as for the continuous 

fibre in regions removed from those containing the discontin-

uity since the middle rod is long enough to establish plane 

strain conditions ( parallel isochromatics) some way up its 

length. 

(ii) The position of the two isotropic points in SLICE 

II are reversed depending on the length of the discontinuity 

and the packing factor m. These points lie either on the 

transverse line of symmetry or on the central axis, Figures 

6.3e-3f. For most of the models the two points lay on the 

transverse line of symmetry. 

(iii) The slices from the mid-transverse, plane show (Fig.& 

isotropic regions which increas?. in area with increasing 
to a condition of rotational symmetry 

length of discontinuity. This region approximates/as assumed 

in'the proposed numerical computational model earlier. 

For the purposes of the analysis, the main interest was 

the stress distribution in the discontinuity along the two 

lines of symmetry ox' and o'z', Figure 7.4 

(b) Isoclinics and Isostatics  

Figure 7.3c-3d show typical isoclinics and isostatics 

in SLICE II for discontinuous fibres. Notice that the set 

of stress trajectories does not change as we pass through the 

isotropic point. 
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From the observations made about the fringe pattern, 

the same fringe correction factor was adopted as for the 

respective cases of the continuous rods and the analysis 

conducted systematically starting from the edge E along 

EL, Figure 7.3C. 

(c) Analysis along EL  

Using the corrected fringe orders the integration was 

carried out as in the case of the continuous rods, by either 

the Lame-Maxwell equations or the shear difference method, 

depending on the nature of the stress trajectory along EL. 

For example, in Figure 7.3d (m.31  5.4 in.), EL does not 

remain coincident with a stress 	trajectory along the 

whole length and the shear difference method was adopted. 

(d) Analysis along LK (Figure 7.3C)  

Having arrived at the point L the analysis was switched 

over alOng OLK using data from both the transverse and the 

meridional slice (SLICE II). OLK is coincident with the 

zero isoclinic for all the models and hence the Lame' Maxwell 

equations were adopted for analysis. 

(e) Analysis along KG (Figure 7.3c)  

Using data from SLICES II and III the analysis was per-

formed along KG which was also coincident with the zero 

isoclinic. 
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7.6 ACCURACY  

In all the models except those for m = 2.5, very clear 

and sharp isoclinics were obtained. In the case of the 
m 

models for/2.5, cracks persistently appeared at the tips of 

the rods in the discontinuity. On examination of the solid 

model, the crack was found to extend around the circumference 

of the rod in the form of a cone within the gap. Both the • 

isochromatics and isoclinics were therefore distorted and 

no accurate data could be obtained from Ummt figure 6.3g. 

The main source of inaccuracies was in the measurement 

of radii of curvatures of the stress trajectories. This is 

to be expected in any photoelastic work. 

7.7 RESULTS  

(i) Continuous Fibres  

Figure 7.5 shows the distribution of computed radial 

stresses in the transverse section of the matrix along the 

two lines of symmetry; the separated radial stresses from 

the photoelastic analysis along the line OX in Figure 3.2 

are shown as points for comparison. The computed and 

experimental values have been assumed equal at the interface, 

(x/X) = 1.0. The variation of one distribution from the 

other is within the limits of experimental and analytical 

error throughout the range. 

(ii) Discontinuous Fibres  

Referring to Figure 7.4, the three stress components 

P7 Q1  and R are shown plotted- in Figures 7.6-7.7, for the 
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two packing factors m = 3 and m = 4.5 and for 6/p = 1, 2 and 3. 

(a) Stresses along ox' (Figure 7.4)  

The axial stresses Px, all start with tension at the 

interface 0 at the inside of one of the outer fibres and 

change to compression which increases up to a maximum at the 

centre of the gap (x'/X') = 1, Figure 7.6a. For each value 

of m the stresses at the interface (x'/X' = 0) are the same 

for all gaps and as the discontinuity decreases the stresses 

increase and the point along ox' at which the change to 

compression occurs moves towards the interface. As the fibre' 

spacing increases, the axial tensile stresses extend over a 

wider region. 

The circumferential stresses Rx' behave in a similar 

manner to the axial stresses Px' starting with tension of 

approximately the same magnitude at the interface and changing 

to compression, Figure 7.6b-6c. However the corresponding 

points of change along ox' occur at shorter distances from 0. 

The radial stresses Qx' have their maximum compressive values 

at the interface and decrease to a uniform compressive value 

about midway along ox'; from this point onwards, the radial 

and circumferential stresses have equal uniform values as 

shown by the isotropic regions in the' photoelastic slices 

from the transverse section, e.g. figure 6.3b. 

(b) Stresses along o'z' (Figure 7.4)  

The axial stress distributions on o'z', Pz' are shown 9 

in Figure 7.7a. These are all compressive and almost 

uniform, the magnitude of the .stresses increasing as the 
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fibres become closely spaced and as the discontinuity decreases. 

As would be expected, both the radial and circumferential 

stresses on o'z' have the same values for the same fibre 

geometry indicating conditions of axial symmetry, Figure 7.7b. 

(iii) Shear Stress ("t) along Discontinuous Fibre (Figure 7.4)  

Starting from the tip of the discontinuity, the shear stress 

(T) along the discontinuous fibre have been plotted in figures 

7.8a-8b for both packing factors and for each discontinuity. 

The shear stresses are high at the tip and fall to zero a few 

fibre-widths along the fibre. - The smaller the fibre spacing . 

and discontinuity the larger the shear stresses, and the longer 

the distance along the fibre over which they fall tO zero for 

a particular fibre spacing. 

7.8 COMPARISON WITH PLANE MODEL  

The results obtained for the experimental model clearly 

prove the validity of the objections raised about the plane 

model. At this point doubts may be raised about the usefulness 

of plane model in other work related to composite studies 

previously mentioned. It should be remembered that the shrinkage 

system is an internally self-equilibrating system requiring a 

precise simulation of the shrinkage process; In the other 

types of work where external loads are specifiedl the internal 

mode of constraints are automatically satisfied to a good 

approximation of the real system in accordance with the 

St. Venant's principle, as long as the Ef/Em  ratio.is 

sufficiently large. 
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DISCUSSION  

1. EXPERIMENTAL TECHNIQUES  

The photothermoelastic technique of stress •analysis is 

being extensively employed in a variety of thermal shrinkage 

problems. Two distinct applications have emerged: 

(i) A comparative study of shrinkage stresses in bonded 

structures to evaluate the best design shape of the structure 

(55) (62) (71) (50). In this, a suitable calibration factor 

may be derived, based for instance, on the known value of the 

strain at a region removed from the bonded interface and the 

associated fringe number for the material. Fringe concentra-

tion factors can thus be measured for different geoMetrical 

configurations to obtain the shape which giyes the least 

stress concentration. 

(ii) The second approach is to obtain a satisfactory calibration 

of the fringes in terms of stress to be used subsequently in 

determining the absolute magnitudes of the separate stresses 

in either a two- or three-dimensional bonded structure. The 

main difficulty in this, is in the calibration procedure and 

the relief of stresses when slices are cut from three-dimensional 

models as mentioned in an earlier chapter. 

(a) Calibration Procedure  

Sampson (66) has suggested a method of calibrating the 

fringes from the dog-bone tests also employed in the present 

work. In this method a factor 'C' was introduced into 

equation (6.4) to account for the lack of perfect restraint 

in the dog-bone system (and indeed for any other shrinkage 

system) thus: • 
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dN CEm(af-am) * 
dT 	Em . Am 

F(1- 	
Af
) 

Ef 
 

 

( D 1) 

 

Using this factor, a dimensionless stress system expressed as 

P-q _ 
- 

used 
was proposed to be/in the interpretation of the fringes in 

a restrained shrinkage 	model. In this expression, P-q 

is the stress difference at a point, E, the Young's Modulus, 

N the fringe order in the model, N the fringe order in the 

shank of the dog-bone and A the free thermal differential' 

contraction strain. 

In subsequently applying this dimensionless form of the 

principal stress difference to a three-dimensional model, 

Sampson failed to account for the stresses relieved due to 

the slicing although as has been presently revealed, their 

effect is not negligible. In evaluating the constant C, 

Sampson used the frozen stress constants of the material 

since on removing the specimen from its mould, it became 

apparent that the source of the fringes was predominantly 

of the frozen type. Further, the sue of this coefficient 

as suggested, contradicts a previous stipulation that the 

model (in this case the dog-bone specimen ) and prototype 

must be geometrically similar, since otherwise the value of 

C would be different in another system of restraint. Such 

a coefficient is therefore valueless and provided the nature 

*In his derivation, Sampson neglected the effect of 
the restraint of the sides of the mould. His expression 
was: dN_CEm(a-am) 

dT- 	.F 

C,N 

N 
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of the fringes in a dog-bone has been determined, the fringe 

orders found for any other similar elastic system must apply. 

Note that in the present investigation, the dog-bone 

tests were conducted to ascertain the nature of the fringes 
shrinkage 

resulting from the differential thermal/in the material used 

for the photoelastic analysis. By substituting the elastic 

constants into the expression equation (6.4), the value of 

dN/dT was the same,as the experimentally measured value. 

Hence it was concluded that the elastic fringes in the 

subsequent analysis of the model must be assigned the same 

stress value as that obtained from a conventional elastic 

calibration test. Further, the creep tests established both 

the constancy of the properties over the,temperature range, 

and the nature of the frozen-in fringes. 

(b) Viscoelastic Effects  

Data on the temperature and strain-rate dependence of 

the properties of Araldite are not available. It is however 

known that a complex relationship exists between the mechanical 

and optical responses and the time-temperature-load history 

of polymeric materials at temperatures below the critical in 

• a manner as previously described in an early chapter. 

The question may be raised as to why the photoelastic 

data in the slices were not recorded after the elastic fringes 

had stabilised. The dog-bone calibration tests had established 

beyond doubt that the elastic part of the fringes in the model 

was wholly attributable to elastic effects and since the 

.problem was essentially one of residual stress measurement in 
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an absolute sense, the instantaneous elastic modulus was the 

most significant property. Also in.the finite element method 

viscoelastic effects of the plastic were not taken into 

account, the matrix material (for the ARL systems) being 

considered, as perfectly Hookean over the whole temperature 

range. Furthermore, the dissimilarity in elastic properties 

and elastic behaviour of the component materials, in particular 

the Poisson's ratios, would not make for accurate comparison .  

between photelastic results recorded after delayed elastic 

response, and the numerical results. To minimise any changes 

With time all slices were cut and the photoelastic data 

obtained from them as soon as the casting, curing and cooling 

cycle was complete. 

(c) Plane Strain Model 

The choice of plane strain models for the experimental 

investigation was (i) to eliminate the effect of 'pinching' 

and (ii) to enable the method to be extended to the study 

of stresses near discontinuities once it was established for 

continuous fibres. 'Pinching' is the shrinkage effect in 

the direction perpendicular to the plane of the plate (plane 

stress model) at the interface thus creating a three-dimensional 

state of stress, see for example reference (55). The effect 

Is that the photoelastic patterns exhibit slightly less fringes 

near the interface than if the whole field were truly two-

dimensional. 

In elasticity problems if certain conditions are satisfied, 

all the in-plane stresses are the same for the same boundary 
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conditions in both plane stress and plane strain. These 

conditions are (72): 

(i) the problem must be linear, 

(ii) loads must be specified in terms of boundary stresses 

(first boundary value problem) and, 

(iii) the body is simply connected, or a multiplyconnected 

body with the loads on each closed portion of the boundary 

in equilibrium. 

The shrinkage problem, however, does not satisfy condition 

(ii) since it is a mixed boundary value problem, i.e. the 

restraints at the bonded boundaries are given in terms of 

displacements. To obtain an exact correspondence of the plane 

stress and plane strain solutions, the elastic constants must 

be modified. This is done by a simultaneous solution of two 

modified forms of the 'general expression of Hooke's law (75). 

Clearly in all practical unidirectional fibre composite 

materials, the conditions away from the boundaries will be 

those of plane strain so that the models chosen for .this analysis 

should provide data which correspond to the actual conditions. 

(d) Accuracy  

Within the limits of experimental error, and, in particular 

errors associated with the graphical integration in the photo-

elastic separation of the stresses, there is good agreement 

between the stress distributions obtained by the two methods 

for continuous fibres, Figure 7.5. It has been previously 

.established that in the restrained shrinkage method the total 

fringe order in the model represents the elastic stress 
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distribution and the fringes remaining in the slices after the 

load is broken and the fibres are removed, are wholly 

attributable to the deformations imposed on the primary bond 

structure of the resin (57), (66). These frozen fringes are 

fully representative ( as in any other photoelasticity work 

using frozen stress techniques) of the elastic stress distribu-

tion in the composite so that the sum of the two sets of fringes 

.(elastic and frozen) also represents a purely elastic stress 

distribution in the composite. Because of this, the comparison 

of the photelastic results with the purely elastic solution 

given by the finite element method, is justified even though 

the properties of the ARALDITE matrix do not remain Constant, 

over the range of temperature drop considered. The correspond-

ing temperature drop for computation assuming purely elastic 

conditions which is chosen to apply in the numerical procedure 

would be- different from the 90°C used in the experiments because 

the experimental shrinkage system comprises both elastic and 

frozen stress behaviour. It was found that this temperature 

drop was about 50°C. 

2. RESULTS  

(i) Matrix Stresses and Elastic Properties  

It is evident from the results of the finite element 

analyseS for continuous fibres in Chapter 3 that the shrinkage 

stresses resulting from a temperature change in a composite 

material can be large. For a given random set of composite 

systems, the most significant factor which determines the 
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magnitude of the matrix shrihkage stresses is the value of 

i-tsYoung's Modulus; high matrix values of Young's Modulus 

produce correspondingly high stresses, whilst the Young's 

Modulus of the fibre is not significant. However, for a 

given matrix material,, the stresses were found to be 

directly proportional to the following parameters: 

(i) the difference between the coefficients of thermal 

expansion of fibre and matrix, (am-af), 

(ii) the ratio of the coefficients of thermal expansion, 

am/af and 

(iii) the difference between the Young's Modulii of matrix 

and fibre, (Ef-Em). 

No dependence on the ratio Et/Em was found. 

(ii) Tensile Stresses in Matrix  

The results also show that in most composite materials, 

there exists a mixture of tensile and compressive stresses in 

the principal directions, as a result of a temperature change. 

The state of the stress depends on the fibre density. For 

most fibre spacings the radial stresses are mainly compressive 

except for very dense packing of the fibres when tensile 

• stresses occur in the centre of the tricorn, Figure 1.2. 

The development of tensile stresses within the matrix 

has been explained in Chapter 1 (q.v.), using an 'interference' 

model, and the results prove the validity of the shrinkage 

mechanism as postulated. With decreasing fibre spacing tensile 

stresses are established to maintain the adhesion between, matrix 

and fibre. The less stiff the matrix material the greater the 



tendency for tensile stresses to develop. It is clear from 

the interference model that this is a factor of the difference 

between the shrinkage coefficients (Aa), the greater the value 

of Da the greater the tendency for the interference gaps to 

appear as in Figure 1-2a. Thus the Araldite composite systems 

'(Aa ~50 x 10-6/°C) showed tensile stresses in the tricorn for 

m = 2, 2.08 and 2.125 whilst the rest of the systems (Aa ^•12 

x 10-6 /o  C) gave tension only for the one case of maximum fibre 

density, namely m = 2. 

(iii) Radial Compression in Matrix  

For all fibre spacings, the radial stresses remain 

compressive along a line joining the centres of any two adjacent 

fibres and the stresses Increase, the closer the fibres are 

packed. The variation of the radial stresses at the interface 

B, (and at any point on ox in Figure 3.2) with fibre spacing 

is shown in Figure 3.6a. For all composite systems, the 

compressive radial stress increases sharply from its value at 

m = 2 to a maximum at m = 2.25; thereafter it decreases 

gradually to an asymptotic value corresponding to the single 

fibre analysis. 

Measured round the interface, the radial stresses remain 

nearly constant for widely spaced fibres when they approximate 

to the case of a single fibre, but they change from compressive 

to tensile for closely packed fibres. Assuming symmetrical 

packing the change is cyclic, occurring six times for a 

hexagonal packing and four times for a square arrangement; The 

tangential stresses were found to be positive along the inter-

face and beyond into a larger part of the matrix for all fibre 

spacings as postulated even though the radial stresses change 



- 112 - 

along the same path. The radial and tangential stresses at A, 

(Figure 3.2) were found to be approximately equal in magnitude 

and had the same sense since A is an isotropic point. 

(iv) Fibre Stresses  

The fibres were found approximately to be in a state 

of uniform biaxial compression for most spacings except those 

small enough to produce radial tensile stresses within the 

matrix up to the interface. In the latter case, depending 

on the spacing, the fibre stresses became tensile in the 

appropriate regions as shown in Figures 3.8a-8b. Figure D.2 

shows the isochromatic patterns in a slice from the transverse 

section of a Glass/Araldi.te model; it shows a uniform isochro-

matic field in the'glass, thus confirming the numerical results 

from the finite element analysis. Further, examination of 

the computed results showed that along any radial line, the 

radial stresses vary continuously throughout matrix and fibre 

whilst a sharp discontinuity at the interface occured in the 

tangential stresses. This is because at the interface radial 

stresses must be the same for equilibrium whilst in the 

.tangential direction compatibility conditions require equality 

of strains. 

(v) Discontinuous Fibres  

For the reasons of computer-model inadequacy already 

discussed in Chapter 4 and from the consequent discrepancies 

' in results from the numerical and photoelastic analyses of the 

shrinkage stresses around discontinuities, attention here will 

be confined mainly to the results from the photoelastic work. 
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These results are the more realistic and pertinent to real 

composite materials. 

For the case of continuous fibres embedded in a matrix, 

the axial stress within the matrix is tensile as explained 

earlier, and this was found to be the case in the photoelastic 

analysis. The magnitude of the axial stress increased with 

decreasing fibre spacing. However in the neighbourhood of a 

discontinuity, since the fibres are in both radial and axial 

compression resulting from shrinkage as explained in Chapter 1, 

the matrix material lying in the gap directly between the ends 

of the fibres must also be in compression. The matrix material 

in the gap behaves more and more like a piece of fibre as the 

gap becomes shorter so that axial stresses in the matrix become 

more uniform and compressive as those in the fibre. 

The axial and tangential stresses at the interface were 

found to be approximately equal. The length of the discontinuity 

(50) beyond which the axial stress in the centre of the gap 

vanishes may be obtained from Figure D.1. For m = 4.5 the value 

of b0 is about two fibre diameters and for m = 3,60  is about 

two and a half fibre diameters, 

An isotropic state of Stress in the transverse plane 

in the region around the centre of the discontinuity and lying 

between the ends of the fibres, was found to exist.forboth 

fibre spacings and all the discontinuities. This region is 

therefore it a state of triaxial compression which eliminates 

.the possibility of crack initiation. The radial and circum-

ferential stresses in the isotropic region attain their minimum 
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constant values a.t a certain .value of 5; if b is increased 

beyond this value, the stresses are unchanged. At this point 

and beyond, the presence of the gap has no effect on the 

stress distribution as the fibre end may be regarded as 

isolated from each other, without any interacting effects. 

The magnitude of the shear stress at the tip of the 

discontinuous fibre (measured along the side), increases with 

both decreasing fibre spacing and discontinuity. As reported 

earlier on, persistent cracking of the brittle Araldite 

matrix occurred when the fibres were packed closely together 

(m = 2.5), Figure 6.3g. In this case the crack developed in 

a manner as shown in figure D.3 around the sharp tip of the 

fibre along a line inclined at about 30°  - 45°  to the horizontal 

and spreading out into the matrix in the form of a cone. 

Examination of the isochromatics around the tip of the fibre, 

Figures 6.3e-3g, shows that the line of maximum shear stress 

in the matrix, coincides with the line of the crack. 

Baker and Cratchley (74) and Ham and Place( 75) have 

performed fatigue tests on silica-reinforced aluminium and 

tungsten-reinforces copper composites, respectively, and 

observed the formation of cracks near a fibre end at about 

45°C to the axis of the fibr. Initial shear stresses would 

aggravate the situation and any fatigue, creep or crack tests 

on composites should take due cognizance of their presence for 

a more correct interpretation of results. For instance, in the 

test by Ham and Place, the forming temperature of the composite 

was 1100-1200°C, enough to create extremely high shrinkage 

stresses. 
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3. EFFECT OF EXTERNALLY APPLIED LOAD  

The shrinkage stresses initially established in a 

composite material as a result of its fabrication method, would 

influence the behaviour of the composite under a subsequent 

external loading. If we consider for instance, the effect of 

* a tensile load applied in the axial direction of the fibres, 

then for continuous fibres and in regions removed from fibre 
in discontinuous fibres, 

discontinuities,/this would augment the initial axial tensile 

stresses in the matrix, thus precipitating matrix failure 

earlier whilst fibre failure would be delayed since the fibres are 

initially in compression. The compressive strength of the 

composite as a whole is therefore enhanced. 

The existence of residual compressive stresses in 

discontinuities will improve the composite strength in tension. 

Tests on discontinuoLs-fibre tungsten/copper composites have 

been made by Kelly and Tyson (43) to determine the shear 

strength (T) of the matrix at various elevated temperatures, 

It was found that pull-out experiments on the composites 

yielded values of T higher by a factor of two or three than 

the values of T calculated from composite strength theory. 

This was partially attributed to good bonding between fibre 

and matrix. Again in compression tests on the strength of 

single glass fibres embedded in a resin matrix, Broutman and 

McGarry (31) found that the bond strength increased with 

the cure temperature up to an optimum temperature above which 

the strength fell. Clearly these findings are inextricably 

linked with the residual stresses which in turn improve the 
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bond strength of the composite by offering a radial or 

axial constraint on the fibres. 

The effect Df axial load on the transverse radial stress 

has already been pointed out. The effect of an axial compression 

for instance is to create radial tension at the interface due 

to the unequal lateral expansions of fibre and matrix. Initial 

radial compression would therefore be desirable. However since 

the fibres take a far greater share of the load it' is not 

likely that the lateral free expansion of the fibres would 

exceed that of the matrix and thus augment any initial com- 

pressive stresses. Thus in a situation where a composite 

may be subjected to excessive compressive loading, higher fibre 

volume concentrations would be required to ensure initial radial 

tensions in the matrix to prevent the incidence of cracks. 

One instance in which the presence of residual stresses 

is desirable is when interfacial delamination occurs before 

composite failuret, Here, radial compression in the matrix 

would provide a frictional bond necessary for composite 

strength to be maintained. This. is more significant in a non- 

ductile matrix as in glass/plastic composites and this has 

been pointed out by Outwater (18). When delamination occurs 

then the fibre/matrix integrity is determined solely by the 

frictional restraint at the interface, and this is.a direct 

function of the interfacial radial compression initially existing 
• 

in the matrix. 
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GENERAL 

In the computer anall s of the various composite systems, 

perfect adhesion was implicitly assumed. However, in some 

practical fib.r:e/matrix combinations, the achievement of 

interfacial coherence presents great difficulties and this 

has been the subject of several investigations. 	Coupled  

with this is the surface degeneration of some fibres at elevated 

temperatures. However most of the systems studied can be 

realised in practice, e.g. see ref. (6). 

The results from the computer analysis show that for most 

practical fibre reinforced materials there is likely to be a 

mixture of both compressive and tensile radial stresses within 

the matrix due to shrinkage if the composite is formed at a 

temperature above the ambient. This is also the case if the 

composite is formed at the ambient temperature and subsequently 

subjected to a temperature rise, except that the sign of the 

stresses is reversed. The closer the spacing of the fibres and 

the softer the matrix material, the larger the area in—tension, 

the tensile region developing first from within the tricorn as 

postulated and gradually spreading out towards the interface 

and beyond with decreasing fibre spacing. 

The resulting shrinkage may be high enough to generate 

Cracks in brittle materials, or cause interfacial debonding 

or to plastically deform a ductile matrix. The longitudinal 

stress may be relieved by the fibres buckling to accommodate 

the shrinkage (76), and these buckled fibres provide a con-

siderable source of weakness if the composite is to be loaded 

in compression or bending. 
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The total stress system in the composite will be the 

sum of the shrinkage stresses, the stresses from the differences 

in lateral expansion arising from unequal Poisson's ratios 

and the applied stresses. Even if the stresses generated 

by shrinkage cause no direct failure they may provide an 

initial state of stress which requires only small initial 

external loads to produce failure. Outwater (77) reports 

the sounds of resin cracking in filament wound pressure vessels 

at a pressure barely 15% of the final failures load, due to 

tensile'stresses acting normally to the fibres. 'By far the 

greatest number of cracks occur in regions of high fibre 

density, especially where the fibres are in or nearly in 

contact. 

When the fibres are brittle and the interface strong, 

fibre cracking may occur. The probable planes of failure 

deduced from the maximum tensile stresses are shown dotted in 

figure 6.8a and these form arcs between the compressively 

loaded contact lines along the fibres. A striking confirmation 

of this is provided by a photomicrograph of a cross section 

of -glass fibres in an aluminium matrix due to Sutton et al (78); 

in addition sharp discontinuities in tie fibres can cause cracks 

'in the matrix as was found in the tests. The photomicrograph 

is presented by Sutton et al to' show the propagation of cracks 

through the points of contact, but the source of the cracking 

and the reasons for the form of crack almost certainly arises 
) 

'from the causes we have discussed here. 
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It is clear from the results, in particular Figures 6.6a-

6b, that both the sign and magnitude of the radial stresses 

are very sensitive to fibre spacing when the fibres are close 

together, which is the usual condition required for maximum 

strength. Where composites are formed by compaction or 

infiltration of coated fibres it should be possible to optimise 

the geometry to obtain a maximum strength by a suitable choice 

of coating thickness in any practical case. This form of 

fabrication seems to offer the best opportunity for the rational 

design of composite materials. 
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C O N C L U S I O N  S 

The mechanics of the thermal shrinkage process in 

unidirectional fibre composites has been explained and 

predictions successfully made on the nature of the stresses 

resulting from the thermal self-straining. The results 

should be applicable to other composite systems such as 

reinforced concrete. The present view of the shrinkage 

process invalidates the interference model as presented 

by Daniel and Durelli (23). 

The shrinkage stresses in composite materials can be 

very large. The magnitude of the stresses for a given 

temperature drop, depends on the matrix Young's Modulus, 

the difference between the coefficients of expansion of 

matrix and fibre as well as their ratios but is independent 

of the ratios of the Young's Moduli. 

The radial stresses in the transverse plane of the 

composite are mainly compressive and increase with decreas-

ing fibre spacing except for very close spacings when tensile 

stresses develop from the centre of the tricorn within the 

matrix. The greater the difference between the expansion 

coefficients of the matrix and fibre, the greater the 

tendency for tensile stresses to develop. Below a certain 

spacing depending on the particular composite system, the 

tensile stresses spread out in the matrix and beyond into 

the fibre; when the fibres lie in continuous contact with 

each other (i.e. minimum spacing), the tensile stresses 
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pervade throughout matrix and fibre except in the vicinity 

of the line of contact where compressive contact stresses 

exist. 

A triaxial state of compression exists in regions lying 

between the ends of discontinuous fibre ends and the axial 

stress in this region is always in compression. The likeli-

hood of cracks developing from within this region purely from 

the shrinkage effects is diminished. However at the tips of 

the fibre ends the shear stresses are high enough to precipi-

tate initial cracks in a brittle matrix such as a plastic. 

For continuous fibre composites the overall strength 

in compression is enhanced whilst the presence of discontin-

uities tends to increase the tensile strength due to the nature 

of the resulting initial stresses from the thermal self-

straining. 

Good agreement has been found between stress distri-

butions obtained from the plane strain model in the section 

normal to the fibres using the finite element method, and 

the experimental model using the technique of photothermo-

elasticity. By performing suitable calibration tests judged 

on the merits Of the experimental model and method, it has 

been posSible to assign an absolute stress value to the 

fringes in the restrained shrinkage_ system. The calibration 

constant as suggested by Sampson (66) has been found to be 

irrelelevant and inapplicable. 

Plane and axisymmetric model idalisations of the 

composite system to study the shrinkage stresses around 

discontinuities have proved inadequate and unsuccessful. 
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A much more elaborate th'ree-dimensional idealisation of the 

composite system would ,be required. However the feasibility 

of this approach is limited by the available computer storage 

capacity. Nevertheless, the finite element method has proved 

a powerful tool and it should therefore be possible to adapt 

it to solve conventional thermal stress problems encountered 

in engineering practice. 

Finally, because both fibre and matrix failure may be 

influenced by shrinkage stresses especially in the composites 

where high performance is sought and a high fibre volume 

fraction consequently employed, it maybe desirable to design 

any particular composite material so that the fibre spacing 

is closely controlled. 
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REPEATED UNIT USED IN FINITE 

ELEMENT ANALYSIS, SEE FIG.2.1b. 

FIG.1.1: HEXAGONAL ARRANGEMENT OF FIBRES. 
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FIG.3.1: TYPICAL MESH (FULL-SIZE) FOR  
PLANE STRAIN AALYSIS OF  
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FIGURE 3.2: SELECTED LINES AND POINTS  

FOR PLOTTING STRESSES. 
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PROBABLE LINE OF CRACKING (m=2) 

' FIG.5.8a:REGION EXPOSED TO TENSILE RADIAL 

STRESS FOR CLOSELY SPACED FIBRES 

'FOR GLASS/ARALDITE SYSTEM.  
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FIG.38b:RADIAL STRESS DISTRIBUTION FOR FIBRES  
TOUCHING.  
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FIG.4.2b: MATRIX TRANSVERSE SMESS VARIATION ON 

ox' (FIG.7.4) FOR PLANE NODEL.  
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FIG.5.1a: TYPICAL CREEP CURVE OF A POLYMER. 

Hard Elastic 

Log(t) 

FIG.5.1b: TYPICAL STRESS RELA';ATTON CURVE 0 F 'A POLYMER 
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SUPPORTING BAR 
( ARALDITE ) 

FIG.6.1: SECTION THROUGH MOULT).  
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FIG.6.2: LOCATION OF PLANES FOR PHOTOELASTIC SLICES  
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FIG.6.3a:TYPICAL ISOCHROMATICS FROM, 
SLICE I (m=2,5, 8=0)  

FIG.6.3b: TYPICAL ISOCHROMATICS FROM  

SLICE I (m=3, 54).1 ENTRAL DARK REGION 

IS ISOTROPIC.  
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FIG6.3c:TYPICAL ISOCERONATICS FROM  
SLICE II FOR CONTINUOUS RODS 
(m=4.5, S=0). 	. 

FIG.6.3d:POLISHED SLICE FROM FIG.6.5c. ABOVE. 



FIG.6.3e:TYPICAL ISOCHROMATICS FROM SLICE II FOR  
OICCNTINUOUS ROD (m=4.5. fi=r),NOTE POSITION 
OF ISOTROPIC FOINTS.  

FIG.6.3f: ISOCHROMATICS FROM SLICE II FOR DISCONTINUOUS  
ROD (m=3,S=2).NOTE  POSITION OF ISOTROPIC POINTS. 



FIG.6.3g: ISOCHROMATICS FROM SLICE II FOR 
DISCONTINUOUS ROD (m=2.5, S4-). 
ARROW SHOWS CRACL. 
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FIG.6.3h:TYPICAL ISOCHROMATICS FROM SLICE III  
FOR CONTINUOUS RODS (m=3,6=0).  

FIG.6.3i:TYPICAL I,50CHROMATICS FROM SLICE III 
FOR DISCONTINUOUS ROD (m=3,S=4)• 



FIG.6.3j: TYPICAL ISOCHROMATICS FROM SLICE IV, 

N.B. PICTURE HAD TO BE TOUCHED UP TO 
BRING OUT DARK FRINGES. 
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(a) SEVEN RODS 

(b) NINETEEN RODS 

FIG.6.4:COMPARISON OF FRINGES FOR 7-ROD AND  
19-ROD ARRANGEENTS, (m=3,6=0). 



- 

FIG.6.5: ISOCHROMATICS FROM SLICE II (m=3,6=4)  
AFTER SIX MONTHS STORAGE SHOWING LOSS 
OF FRINGES (cf FIG.6.3f)  



FIG.6.6a: TOTAL FRINGES IN SLICE II  
(m=4.54.0)  

FIG.6.6b:RESIDUAL FRIGES AFTER REMOVING  
DISCS FROM SLICE I (m=4.5,6=0) 
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(c) 80°c 

(d) 70°C 

FIG.6.9:ISOCHROMATICS IN CALIBRATION MOULD 
DURING COOLING. 
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FIG.6.11a: ISOCHROMATICS IN CALIBRATION SPECIMEN  
AT ROOM TEMPERATURE (20°C) STILL BONDED  
TO MOULD. 

FIG.6.11b: ISOCHROMATICS IN CALIBRATION SPECIMEN  
AFTER BREAKING BOND. 
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3t,„ 

FIG.7.1: STRESS TRAJECTORIES IN  3-DIMENSIONS  
THROUGH POINT O. C1,C2 ,C_ ARE CENTRES 
OF CURVATURE_AND 	Qs --)  THE CORRES= 
E0NDING RADII OF CURVATURE. 
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FIG.7.2a: CARTESIAN COMPCT'ENTS-OF NORMAL 
AND SHEAR STRESSES. 

( b ) 
	

(c) 

FIG.7.2b-2c: AUXILLIARY LINES IN XY AND XZ  
PLANES FOR SHEAR DIFFERENCE  
METHOD. 
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FIG.7.3c:TYPICAL ISOCLINICS AND STRESS TRAJECTORIES  
FOR A MERIDIONAL SLICE II FOR DISCCWINLOUS  
ROD ALSO SHOWING LINES OF INTEGRATION. (m=  
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FIBRE. 

FIQ.7.4.:SCHEME OF ANALYSIS FOR DISCONTINUOUS FIBRE. 
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	 COMPUTED RESULTS 
o o o o o o EXPERIMENTAL RESULTS 

x x 

FIG.7.5: VARIATION OF RADIAL STRESS ON ox:  
A COMPARISON BETWEEN COMPUTED AND  
EXPERIMENTAL RESULTS. 
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STRESSES ON AI FOR m=3 AND m=4.5.  
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FIG.D.1:VARIATION OF AXIAL STRESS AT CENTRE OF DISCONTIN- 
UITY WITH LENGTH OF DISCONTINUITY. 



FIG.D.2:ISOCHROMATICS FROM A TRANSVERSE 
SLICE I FROM A GLASS/ARALDITE  
MODEL SHOWING LNIFORM FRINGE IN 
THE GLASS DISCS. 
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	 Crack path 

FIG.D.3:CRACK FORMATION IN CLOSELY PACKED FIBRES.  
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APPENDIXI  

DERIVATION OF ELEMENT STIFFNESS  

BY STATIONARY POTENTIAL ENERGY  

The potential energy (V) of a system is the sum of the 

work done by external forces (Fl over displacement (epl and 

the elastic energy stored in the system. Since, in the finite 

element method, the stress cf and strain e  are assumed constant 

in an element, 

V ='-(F)(51 + {0'12fel  x (volume) 

For-equilibrium_ 0 6(63 

For a unit thickness of material if A is the area of the 

element, then, 

pl + l 0 = -(F)T+E(C1Tb 6 
r  ,TfdlA  

' 6 ) 	ei [51-1
i
2 

Now if (el 	[B](6).  

and 	[a) 7  [D] {g) 	[p][B]col , 

A 
0 	-(F)T+E(CDHB7(51)

TCB]+([B](.51TEDJ [B]] 2— 

[D] is the 'elasticity' matrix which for an isotropic 

material is symmetric i.e. [D]
T 
	CD] 
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... 0 . -{1-1 }T+2( [83 T[B]TEDHB3 )-6. 2 

T 
i•e-Dd - {si r  CF1 -  An33 TED3[13] 
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APPENDIX II  

FINITE ELEMENT FORMULATION FOR A TRIANGULAR ELEMENT  

In Chapter 2, the theory of the finite element method 

was presented and the element characteristics derived. A 

Fortran programming for elastic analysis has been developed 

by Wilson (36). The most important element characteristic 

is its stiffness and we shall show how this can be obtained. 

Figure A.1 shows a typical triangular element with nodes 

j, k, in a cartesian system. u, v, are the displacements 

in the x-, l'r-directions respectively; the dimensions of the 

triangle are also shown. 

1. Displacement Functions  

Starting with linear displacement functions: 

= u. + c x. + c y. u(x7y)  I 	1 1 	2 I - , 	. • . • • . • • • • • • • • 
v(x 

	

	
= v.

1  + c3a.  x. + c41  y. ly)   

(A.2(i). 
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and expressing c1, c2 

 

in terms of the nodal displacements 

 

and geometry of the element, we obtain: 
41%.• OM, 

AIMED 011.6. 	 "MIA. 

b.-b 0 bk 0 -b. 0 
j k 

a -a. 	0 	-ak 0 -a. 0 
k 3 

0 b.-bk  0 bk 0 -b. 

0 	a -a. k 3 0 -ak 0 a. 

c1 
C2 	1 

- 2A 
3 

c4 

U. 
 1 

v. 1 
u.  

v.  

uk 

k 

  

".(A.2(ii) 

  

    

    

where 2A = 2 x area of triangle 	(albk  - akbi) 

2. Strains (p), EB3 matrix  

1 

f e ) =fel= 	"I‘  
y 	u as 6v xy 	+ 6y 6x 

From equations (A.2(i)) and (A.2(ii)), 

 

duallo 

    

 

u.  a_ 
v.  1 
u.  

v.  

uk 
vk 

   

• {e = 

b.-bk  0 bk 	J 

	

. 0 -b. 	0 3 	-  
0 ak j  -a. 0 -ak 0 a. J 

a -a. b.-b -a b 	a. -b. k 3 3k -ak 	.7 	J 

   

(A.2(iii 

    

      

      

       

Comparing eq.. (A.2(iii)) with eq. (2.4), the [B] matrix is 

easily identified. 

3. Stress-Strain Relationship - [D] matrix  

For the case of isotropic thermal expansion of an isotrpic 

material under plane strain conditions, using Hooke's law, we 



-196- 

obtain the relationships: 

• V°y  vdz x 	 a Be  ex = E 	 E + 

cY 

-V E Cf °Z X 
E + a 0e  . . . (A.2(iv) • 6 • • • 

ozx 	c  ez 	- 
__y 

7-  + 	= 0 E 

where 0 is the temperature change in an element and a the 

coefficient of thermal expansion. 

Eliminating a2  and rearranging equation A.2(iv), the 

stress Cr can be expressed in matrix form as: 

[al . [D][c  - co] (cf equation 2.5) 

where co  are the initial strains. 

The [D] matrix is obtained as: 

E CD] - 

1-V 

V 

0 
I••••• 

Ni 

1-y 

0 

On. 

0 

0 
1-2y 

(A.2(v) 
(1+V)(1-2v).  

2 
mob. 

4. Element stiffness [c]e  

From equation (2.7a): 

11 

[k]e  = EB7T[D][B]tdxdy 



Fx 

F1 
y 

Fj  

Fi  

Fk x 

Fk 
y 

sok 
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where .t is the thickness of the element and the integration 

is taken over the area of triangle. For unit thickness this 

becomes: 

[k]e  = [B]ir[i][B]A 

and the actual matrix multiplication may be left to the computer. 

5. Nodal Forces due to Initial Strains:. (Fle  

co 

From equation 2.7c: 

(F) 	= 
co 

J ED3C co7A 

this, after substitution,' becomes: 

(F le 
eo 

Em AT  
- 2(1+ )(1-2 ) • • - A • 2.(vi) 

On* 	 ••••• 

bk-b. 

aj-ak  r. 

-bk 

b. 
J 

-a. 
J, 

IND 

6. Total Assemblage Stiffness [K]  

For a typical element e, the equilibrium equation 2.8 

may be written as: 



e 
[ k 	k. xx xy 

Ckp qJ e  k k xy yy 
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—F. 	Ia. 
— e 

	

1 	k.. 	k. . 	;,-i_ k  6. 13  

	

F. 	k.. 	k.. 	k.,_ 	6. 

	

3 	31 	33 	3K 	3 

	

Fk 	kki 	kkj 	kkk 	5k 
am& 

wherein terms of arbitrary nodal points p, q : 

(A.2(vii)) 

A 

F 

[Fxyl 
[F 3e  p x 

[o]
Is 3e  . 

and the stiffness coefficient k is of the form: 

e 

q 

which represents the forces developed on element e at nodal 

point p due to unit displacements at nodal point q.  

k( .2.Ck 3e  
• Pq  e Pq 
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APPENDIX III  

THE GAUSS-SEIDEL ITERATION  

The Gauss-Seidel iteration for the solution of equation 

2.8 involves the repeated calculation of new displacements 

from the equation: 

o(s+1) [F - 151.
n-1 

 k 6(s+1)-. 	k 6(s)] i nn n =1 ni i 	i=n+1 ni (A.3(i)) 

where n is the number of nodal Point and s is the cycle of 

iteration. The change in displacement A6(s) between two 

successive cycles of iteration is given by: 

(s) 	
n 
(s+1)-6 (s) A6n 	

= o
n  

• 

and from equation (A.3(i): 

(s) 	-1 	n-1 .11; 
Kn  [F 	k 6(3+1 	k 6(s)] A6n 	n n i=1 ni i 	1.n ni i 

By using an over-relaxation factor p, the new displacement 

6(s+1) of nodal point n is then determined from: 

n
s+1) 	(s) pAbi(_15)  = 6n  

This greatly speeds up the convergence. 
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THE COMPUTER PROGRAMME 

THE Finite Element Method has been described in 

Chapter 2 and Appendices I-III. For completeness a listing 

of the programme for the plane stain analysis of continuous 

fibres presented in Chapter 3 is given here. 

Data for the mesh include the nodal point coordinates, 

element nodes, elastic properties of the elements and the 

temperature change. Initial loads and displacements, if any, 

are also generally included in the data. 

For each nodal point, the thermal load contributions 

from all the elements which meet at that node are summed 

up using the appropriate relationships, see Appendix II. 

The B and D matrices are then set out from which 

the Stiffness matrix is obtained by the appropriate' matrix 

multiplication. The stiffnesses are inverted to obtain the 

flexibilities which are then modified for the boundary nodal 

points according to the type of constraint imposed on them. 

Next, the Gauss-Siedel iteration procedure is performed 

to obtain the correct nodal point displacements from which 

the strains and stresses are calculated. 
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C 
	

DIMENSION AND COYr'ON STATEMENTS 
DIMENSION ARRAY(?) 
DIMENSION COF( 5),FX( 3`50),EY(350),EXY(350)+EPLAS(350) 
DIMENSION NPNuM(201),XORD(201)+YORD(201),DSX(201)+OSY(201), 

	

1 	1XLOAD( 201)+YLOAD(201),NR(201,10),SXX(201+9),SXY(201,9),SYX(201 + 9),  

	

1 	2SYY(201 ,?)+NAP(201) 
DIMENSION NUE( 3 0)+NPI(350),NPJ(250),NPK(350),ET(350),XU(350) 9 

1 R0(350)+COED( 350),DT(350),THERM(350)+AJ(2 0)+BJ(350),AK(350) 
28K ( 350),SIGXX(350),SIGYY(350),SIOXY(30),SLOPE(100) 
DIMENSION NPB( 1 00)INFIX( 1 00)+LM(3)+A(616)+B(6+6)+S(6+6) 
DIMENSION NSLOPE(201) 
INTEGER T1 
JEL=1 
INC=1 

C 
	

READ AND PRINT OF DATA 
NCYCLE=0 

150 READ(5+100) ARRAY 
WRITE(6'99) 
WRITE (6,100) ARRAY 

100 FORMAT(7A10) 
READ( 5+1)NUMEL+NUNP+NUMBCINCRIN+NOPININCYCM+TOLER,XFACIT1 

C 
	

NUMBER OF ELEMENT,  NU?s4p;EP OF NODAL POINT, NUMBER 0= BOUNDARY CONDITIC 
C 
	

UNBALANCE CONDITION, PRINT—OUT INTERVAL+ FULL OUTpUT PRINT—OUT 
C 	INTERVAL+ MA:.P.IUM NUMBER OF CYCLES, TOLERANCE AND OVER—RELAXATION FAC 

	

C 
	

IF T1 IS. NON—ZERO DATA PRINT—OUT IS SUPPRESSED 
WRITE(6,1 01)NuM,EL 
WRITE(6,102)NUNP 
WRITE(6,1 03)NUfIBC 
WRITE(6110A)NCRIN 
WRITE(6,10ci)NOPIN 
WRITE(,6,1 06)NCYCM 
WRITF(6,107)TOLFR 
VPITE(6,108)XFAC 
PEAD( 5+2)( NumE( N)INPI(N)+NRJ(N)+NPK(N),N=1+NUMEL) 

	

C 
	

ELEMENT NUMBER, ELEMENT NODAL POINTS 
READ ( 5+3)( NPNU'v1(:v.),XORD(P)+YORD(M),XLOAD(M),YLOAD(M), 
1DSX(v)IDSY(m)im=1,NUu!NP) 

	

C 
	

NODAL POINT COORDINATES (X—Y), X—Y LOADS, INITIAL DISPLACEMENTS ( X —Y ) 
155 WRITE(6,110) 

WRITE(6+8)(NuF(N),NPI(N),NPJ(N),NPK(N)+N=1,NUMEL) 
WRITE(6+111) 
WRITE(6,109)(NPNUm(m)IXORD(M),YORD (1),XLOAD(F,')+YLOAD(M), 
IDSX(),DSY(M)+M=1,NUMNP) 
!!!RITE(6+112) 
DO 909 L=1,NUBC 
READ(5,4)NPB(L)INFIX(L),SLOPE(L) 

909 WRITE(5+4)NPB(L)+NFIX(L)+SLOPE(L) 

	

C 
	

NFIX=0 NODAL POINT IS FIXED 

	

C 
	

NFIX=1 NODAL POINT CAN MOVE IN Y—DIRECTION ONLY 

	

C 
	

NFIX=2 NODAL POINT CAN MOVE IN X—DIRECTION ONLY 

	

C 
	

NFIX=3 NODAL POINT roOVES ALONG SLOPE 
151 CONTINUE 

READ(5,1110)TET,Tpo,TXu,TCOED,TDT 

	

C 	DATA CARD FOR MATRIX 

	

C 
	

TET IS YOUNG'S MODULUS 

	

C 
	

TRO—DENSITY, TXU—POISScNIS RATIO+ Tc0FD—EXPSN COEFF, TDT—TEM CANOE 
wRITE(6,142) 
WRITF(6,14.3)TET,TpO,TXU,TCOEDITDT 
DO 176 I=1,144 
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ET(I)=TET 
RO(I)=TRO 
XU(I)=TXU 
COED(I)=TCOED 
DT(I)=TDT 

178 CCNTINUE 
FEAD(51140)TETITpc+TXUITCOED,TDT 

C 	DATA CARD FOR FIBRE 
kVPITE-(6,144) 
WRITE(69143)TET4TRpsTXU,TCOEDITDT 
DO 160  I=145,NOMEL 
ET(I)=TET 
RO(I)=TRO 
xu(/)=TXU 
COED(I)=TCOED 
DT(I)=TDT 

160 CONTINUE 

C 	CHECK FOR CORRECT MESH DIMENSIONS 
TAREA=O. 
DO 16 N=1,NUMEL 

I=NPI(N) 
..J=NPJ(N) 
K=NPK(N) 
AJ(N)=XORD(J)—XORD(I) 
AK(N)=XORD(K)—XORD(I) 
BJ(N)=YORD(J)—YOQD( I) 
BK(N)=YORD(K)—YOPD(I) 

176 AREA=(AJ(N)*BK(N)—BJ(N)AK(N))/2. 
IF(AREA.GT.0.) GC TO 177 

701 'IRITE(6q711)N 
711 FORMAT (32HOZERO OR NEGATIVE AREA' EL. NO.=1I4) 

TAREA=1. 
GO TO 16 
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C 	r.10D IF I CAT ION OF LOADS AND ELEMENT DIMENSIONS 
C 	THERMAL LOADS V!ORKED CUT AND AD 'ED TO ANY SPECIFIED LOADS 

177 THc-1-2.1( N ) ==- T ( N ) *- COFD ( N!) *DT ( N ) / ( XL) ( N ) -I. ) 
DL=APP- A*PO(N ) /3 • 
XL0nr, ( I ) T H R " ( )*( 	( N ) -pj ( ^.! ) ) /2 . 4-XL0A ( I ) 
XLanD ( J ) =-T1-,7P \4( 	( N ) /2 -4-XL0A7/( J ) 
XL0 	( ) 	( ) *I= 	(,! ) / 2 . 4-X 1-0 	) 
YLOAD( I ) =THF-R4( N ) ( J( N ) -AK ( )1 /2 • +YL04,k ( 1 ) -DL 
YLOAD (J ) =THE R. ,1 N 	( N! ) 	+Y LC 	( 

180  YLOAD( K ) =-THER%1 ( )*Aj ( N ) /2 •+YLOAD ( K ) -DL 
16 	CONT INUE 

IF ( TAREA • NE • c • ) STOP 
C 	INITIALIZATION 

NCYCLE=0 
NUr4PT=NCP I N 
NUf, OPT =NOP I N 
DO 175 L=1 
CC 170  ;1=119 
5:XX(Ltr.1)=0.0 
SYX(Lifv )=0 • 0  
SXY(L ,;..1) =0.0 
SYY(L“, )=0.0 

170 NP ( L • N•", ) =C 
NP(L ,10)=0 

175 NP (L 1 ) =L 



-205- 

C 	FORMATION OF STIFFNESS ARRAY 
C 	THE 1 BI FIND' D' MATRICES ARE SET OUT AND STIFFNESS IKI ':JORKED OUT 

C 	BY APPROPRIATE MATRIX MULTIPLICATION 
DO 200 N=1 ,NUMEL 
AREA=(AJ(N)*BK(N)-AK(N)*I3j(N))*0.5 
COMM=0.25*ET(N)/((1.0-XU(N),/,*2)*ARP'Al 
A(191)=9J(N)-BK(N) 
A(142)=0.0  
A(1,3)=5K(N) 
A(194)=0.0  
A(116)=-BJ(N) 
A(212)=AK(N)-AU(N) 
A(241)=0.0 
A(116)=0.0 
A(2.93)=0.0  
A(294)=-AK(N) 
A(295)=0.0 
A(296)=AJ(N) 
A(391)=AK(N)-Aj(N) 
A(312)=83(N)-BK(N) 
A(3,3)=-AK(N) 
A(314)=8K(N) 
A(345)=AJ(N) 
A(216)=-83(N) 
13(1q1)=COMM 
B(192)=COMM*XU(N) 

E3(1 , )=0.0  
B(211)=COMM*XU(N) 
B(292)=COMM 
E(213)=0.0 
E(3,1)=0.0 
B(.392)=0.0  
13(3,3)=COMM-v:(1.0-XU(N))*0.5 
DO 182 J=1,6 
DO 102 1=143 
S(/,J)=0.° 
DO 182 K=1,3 

192 SCI9,1)=S(19J)+B(I.K)*A(Kg„)) 
DO 183 J=115 
DC 183 1=113 

183 B(J+1)=S(I,J) 
DO 184 J=1.6 
DO 184 1=1.6 
S(19j)=0.0 
DO 184 K=1+3 

184 S(I,J)=S(I,J)+0(IIK)*A(KIJ) 
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C 	COUNT OF ADJACENT NODAL POINTS 
C 

LV(1)=NPI(N) 
LM(2)=NPJ(N) 
LM(3)=NPK(N) 
DO 200 L=1,3 
DO 200 M=1,3 
LX=L(L) 
MX=O 

185 MX=0,X4-1 
IF(NP(LX1;4X)—L)) 1901195,190 

190 IF(NP(LX1r.'X)) 185,1951185 
195 NP(LX.,X)=LM(M) 

IF (MX-10) 1969702,702 
196 SXX(LX“.1X)=SXX(LY,mX)+S(2*L-1 ,2*Y-1) 

SXY(LX,TAX)=SXY(LX,;.IX)+S(2L-192*) 
SYX(LX ,mX)=SYX(LX,;4X)+S(2-N_I2*M-1) 

200 SYY(LX,74X)=SYY(LX4MX)+S(2*L,2*) 

DO 205 M=1INUMNP 
NSLOPE 
MX =1 

205 MX=mX-1-1 
IF (NP(M,MX)) 206,2061205 

206 NAP(^4)=MX-1 

C 	INVERSION OF NODAL POINT STIFFNESS 

C 
DO 210 M=l+NUMNP 

COroM=SXX(No1)*SYY(r.1 ,1)—SXY(M91)*SYX(:'411) 

TEVP=SYY(',1,1)/CO 
SYY(MqI)=SXX(II)/COm 

SXX(mt1)=TEP 

SXY(M41)=—SXY(.1,1)/C01 

210 SYX(m+1)=—SYX(7::+1)/COvV 
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C 	MODIFICATION OF BOUNDARY FLEXIBILITIES 
C 	BOUNDARY FLEXIDILITIES roODIFIED =ICCOPDING 

DO 240 L=1INUiv7 BC 
M=NPB(L) 
NSLOPE(%1)=NFIX(L.) 
Nom( " ,1)=0 
IFCNFIX(L)-1)225,22u12:-57 

357 IF(NFIX(L).70.3) GO TO 2E:0 
c=(SXX(mil)*SLOPE(1  ) SXYW, 
R=1.U—C*SLOPE(L) 
SXX(m11)=(SXX(mi 1)—C*SYX(me1 ))/R 
SXY(N191).(SXY, 1)—C*SYY(M91 ))/R 
SYX(m.1)=SXX(M41 )*SLOPECL) 
SYY(mq1)=SXY(M11 )*SLOPECL) 
CC TO 240 

220 5YY(m11)=SYY(11 )—SYX(N1,1)*SXY(4,1 )/SXX(mil) 
GO TO 230 

225 SYY(m11)=0.0 
230 SXX(m,1)=0.0 
235 SXY(mq1)=0.0 

SYX(mq1)=0.0 
240 CONTINUE 

C  

9 1)) 

TO TYPE OF RESTRAINT 

1) 
	/ C S Y X ( • q ) * S CI PE 	) —SYY C 

C 	ITEPATICN ON NODAL POINT DISPLACEMENTS 
C 	SOLUTION OF EOUILIBRIU EQUATIONS—THE GAUSS—SIEDEL ITERATION 
C 
243 WRITF(6,119) 
244 SU74=0.0 

sump=0. 
DO 29C M=1,NUiv,NP 
NUM=NAP(M) 
IF (SXX(N191)+SYY(v,t1)) 275,2901275 

275 FRX=XLOAD(M) 
FRY=YLOAD(Y) 
DO 280 L=2.NUm 
N=NP(MIL) 
oSX(155)=DSX(13) 
FRX=FpX—SXX(:,IIL)*DSX(N)—SXY(7.19L)DSY(N) 

280 FRY=FRY—SYX(m+L)*DSX(N)—SYY(m4L)*DSY(N) 
281 DX=c,LXX(m11)*FRXI-SXY(7,441)*FRY DSX(v!) 

DY=SYX(:4.1)*FpX+SYY(mil)*FRY DSY(v1) 
IF(M.E0.13) DXNOD=DX 

IF(NSLCPE(M).EQ.3) DX=DXNOD 
GO TO 297 

297 DSX()=DSX(1)+DX 
DSY(:v)=DSY(P)+DY 
SUSUN4o+AmS(DSX(v))+ABS(DSY(i•')) 
IF(NP(M+1))285$290,2S5 

285 SUm=SU'ili-ABS(DX)+AF?S(DY) 
290 CONTINUE 

C 
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C 	AND PRINT CHECK 
C 

NCYCLE=NCYCLE +1 
IF (NCYCLF-NUmPT) 30,300,300 

300 NUMPT=NUMPT NCPIN 
WRITE(61120) NCYCLE,SW4ISUD 

305 IF(SUV-TOLER) 400,400,710 
310 IF(NCYCM-NCYCLE)400+400.315 
315 IF (NCYCLE-NUMOPT) 24.ii,320.320 
320 NUMOPT=NUM0PT+N0PIN 

C 
C 	PRINT OF DISPLACEMENTS AND STRESSES 
C 
400 WRITE(6499) 

WRITE(6,121) 
WRITE(6,122)(NPNUm(M),DSX(m)ipSY(m),m=1,NUr4NP) 
WRITE(6+126) 
DO 420 N=1,NUMEL 
I=NPI (N) 
J=NPJ(N) 
K=NPK(N).  
EPX=(E3J(N)-BK(N)) *DSX(1)+BK(N)*DSX(J)-3J(N)*DSX(K) 
EPY=(AK(N)-AJ(N))*DSY(I)-AK(N)*DSY(J)+AJ(N)*DSY(K) 
GAM= (AK(N) AJ(N))*DSX(I)-AK(N)*DSX(J) AJ(N)*DSX ( K) 

1 	(BJ(N)-BK(N))*DSY(1)-1-5K(N)*DSY(J)-BJ ( N)DSY ( K) 
COMM=ET(N)/((1.0-XU(N)**2*(AJ( N)*BK( N)-AK ( N)*BJ ( N))) 
Y=coMM*(EPX XU(N)*EPY)A-THERM(N) 
N=COMM*(EpY XU(N)*EPX)+THERM(N) 
XY=COMM*GAM*(1.-XU(N))*.5 
SIGXX(N)=X 
SIGYY(N)=Y 
SIGXY(N)=XY 
C=(X+Y)/2.0 
R=SORT(C(Y-X)/2.0)-x-*24.XY**2) 
XMAX=C+R 
XMIN=C-R 
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C 	REECLUTION OF STRESSES INTO RADIAL AND TANGENTIAL COMPONENTS 
XMEAN=(XORD(I)+XORD(J)+XORD(K))/3. 

YMEAN=(YORD(I)+YORD(J)+YORO(K))/3• 
CRX=57•7—XMEAN 
CRY=100.—YMEAN 
CZ=CRX**2+CRY**2 
COSAS0=(CRX**2)/CZ 
SINASQ=(CRY**2)/C-27 
SIN2A=2•0*CRX*CRY/CZ 
SIGRAD=X*COSASC)+Y*SINASO+XY*SIN2A 
SIGTAN=X+Y—SIGRAD 
RADSHR=XY*(COSASO—SINASQ)+(Y X)*0•5*SIN2A 
THETA=ATAN(CRY/CRX) 
ALPHA=57•3*THETA 
PA=0,5*57•29576*ATAN(2•*XY/(Y—X)) 
IF (2.*X—XMAX—XMIN) 405,4201420 

405 IF (PA) 410,4209415 
410 PA=PA+90.0 

GO TO 420 
415 PA=PA-90.0 
420 WRITE(61125)NUME(N),X,Y4XY,XmAX,XmIN,PAqSIGRAD,SIGTANIPAOSHReALPHA 
C 

IF (SUM—TOLER) 440.440.430 
430 IF (NCYCM—NCYCLE) 440,440,243 

C 
440 GO TO 150 

C 
C 	PRINT OF ERRORS IN INPUT DATA 
C 
702 WRITE(6,712)LX 

GO TO 440 
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C 	FORMAT STATEMENTS 
C 

1 FORMAT(614,2E12.5+111) 
8 FORMAT(4I4) 
3 FORMAT(114,4F8.5,2F12.8) 
4 FORMAT(2I44F12.8) 
5 FORMAT (3E15.8) 
99 FORMAT (1H1) 
2 FORMAT(414) 

140 FORMAT(4E15.89F10.2) 
142 FORMAT(////110H MATRIX 	YOUNG'S MODULUSDENSITY 	POISSONS 

1 RATIO 	EXPANSION COEFFICIENT 
	

TEMPERATURE CHANGE) 
143 FORMAT(5X42E20.8,E15.8,E20.8,12X4F20.10) 
144 FORMAT(////110H FIBRE 	YOUNG'S MODULUS 	DENSITY 	POISSONS 

1 RATIO 	EXPANSION COEFFICIENT 	TEMPERATURE CHANGE) 
125 FORMAT(1I5910F12.3) 
126 FORMAT(120H1ELFMENT 	x-STRESS 	Y-STRESS 	XY-STRESS 	MAX-ST 

1RESS MIN-STRESS DIRECTION RADIAL TANGENTIAL SHEAR ALPHA)  
101 FORMAT(29HONUmBER OF ELEMENTS 	=914/) 
102 FORMAT(29H NUMBER OF NODAL POINTS 	=qI4/) 
103 FORMAT(29H NUMBER OF BOUNDARY POINTS 1---+I4/) 
104 FORMAT(29H CYCLE PRINT INTERVAL 	=,14/) 
105 FORMAT(29H OUTPUT INTERVAL OF RESULTS =.I4/) 
106 FORMAT(29H CYCLE LIMIT 	tt,I4/) 
107 FORMAT(29H TOLERANCE LIMIT 	rzgE12.4/) 
108 FORmAT(29H OVER RELAXATION FACTOR 	=1E6.3) 
109 FORMAT (118,4F12.892F12.8) 
110 FOR'1AT(94H1EL. 	I 	J 	K 	YOUNGS MODULUS 	DENSITY 	POISSONS 

1 	RATIO 	ALPHA 	DELTA T) 
111 FORMAT (80H1 	NP 

	
X-ORD 	Y-ORD 	X-LOAD 	Y-LOA 

1D 	X-DISP 	Y DISP) 
112 FORMAT (20H BOUNDARY CONDITIONS) 
119 FORMAT(34H0 	CYCLE 	FORCE UNBALANCE) 

120  FORMAT(I1112E20.6) 
121 FORMAT (42HONODAL POINT 	DISPLACEMENT Y-DISPLACEMENT) 
122 FORMAT(I11+2E15.8) 
712 FORMAT (33HOOVER 8 N.P. ADJACENT TO N.P. NO.114) 
823 FORMAT(120H1 N-POINT 	X-STRESS 	Y-STRESS  

1 	XY-STRESS 	MAX STRESSMIN-STRESS 	DIRECTION) 
C 

END 
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C 	STATEMENTS 
C 

I FORMAT(61492E12.5,111) 
8 FORMAT(4I4) 
3 FORMAT(114,4F8.5,2F12.8) 
4 FORMAT(214,F12.S) 
5 FORMAT (3E15.8) 
99 FORMAT (1H1) 
2 FORMAT(4I4) 

140 FORMAT(4E15.8,F10.2) 
142 FORMAT(////110H MATRIX 	YOUNG'S MODULUS 	DENSITY 	POISSONS 

I PATIO 	EXPANSION COEFFICIENT 	TEMPERATURE CHANGE) 
143 FORMAT(5X12E20.8,E15.8,E20.8,12X4F20.10) 
144 FORMAT(////110H FIBRE 	YOUNG'S MODULUS 	DENSITY 	POISSONS 

1 RATIO 	EXPANSION COEFFICIENT 	TEMPERATURE CHANGE) 
125 FORMAT(1I5'10F12.3) 
126 FORMAT(120HIELEMENT 	X-STRESS 	Y-STRESS 	XY-STRESS 	MAX-ST 

1RESS MIN-STRESS DIRECTION RADIAL TANGENTIAL SHEAR ALPHA) 
101 FORMAT(29HONUMBER OF ELEMENTS 	='14/) 
102 FORMAT(29H NUMBER OF NODAL POINTS 	=.I4/) 
103 FORMAT(29H NUMBER OF BOUNDARY POINTS =+14/) 
104 FORMAT(29H CYCLE PRINT INTERVAL 	=.14/) 
105 FORMAT(29H OUTPUT INTERVAL OF RESULTS =.I4/) 
106 FORMAT(29H CYCLE LIMIT 	=qI4/) 
107 FORMAT(29H TOLERANCE LIMIT 	='E12.4/) 
108 FORMAT(29H OVER RELAXATION FACTOR 	=1F6.3) 
109 FORMAT (11814F12.8y2F12.8) 
110 FORMAT(94H1EL. 	I 	J 	K 	YOUNGS MODULUS 	DENSITY 	POISSONS 

1 	RATIO 	ALPHA 	DELTA T) 
111 FORMAT (80H1 	NP 	X-ORD 	Y-ORD 	X-LOAD 	Y-LOA 

ID 	X-DISP 	Y DISP) 
112 FORMAT (20H BOUNDARY CONDITIONS) 
119 FORMAT(34H0 	CYCLE 	FORCE UNBALANCE) 
120 FORMAT(II1,2E20.6) 
121 FORMAT (42HONODAL POINT X-DISPLACEMENT Y-DISPLACEMENT) 
122 FORMAT(I1112E15.8) 
712 FORMAT (33HOOVER 8 N.P. ADJACENT TO N.P. NO.II4) 
823 FORMAT(120H1 N-POINT 	X-STRESS 	Y-STRESS 

1 	XY-STRESS 	MAX STRESS 	MIN-STRESS 	DIRECTION) 
C 

END 
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