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Abstract

In this tﬁésis, control function optimisation for linéar
dynamical systéms wifh quadratic pérformancé indicés is mainly considered.,
Control funcﬁions aré sypfhésiséd from compo;énfs of linéarly—indépendént
basis~func£ions.‘ Hill-ciimbing in function—spacé is then achieved by
optimising thé componénts of thé basis-functions which are present in the
control function. -

The basis-functions may be chosen before optimisation;
combiningithéir usé with the convolution-description of linear dynamical
systéms then has considérable potential advantages comp;tationally. A
new algorithm, based on Dynamic Programming, is developed for opfimising
the components of the basis-functions present in the control function for
linéar convolution—déscribed dynamical systems. The optimal components
aré achieved in one iteration, as a linear function of initial conditions.

The basis~functions used for control function synthesis may also
be defined during iterative optimisation, from calculated gradient
functions. The map from the linear manifold of the control space which
is sPannéd by the basis-functions to the similarly defined manifold of
thé gradient space can be simultaneously determined. This enables new
algorithms to be developed which yield faster convergence than the
stéepest—descent algorithm. Control functions can be determined as a
function of initial conditions using our approach, which is not possible
using the conventional conjugate-gradient algorithm. A new technique is
used for determining when, in non~quadratic enviromments, data deduced from

past iterations should be discarded.



To ascertain whether the performance achievable would be
appreciably better were the control function to be synthesised from
a larger number of basis-functions, methods are developed for
calculating lower—-bounds for the minimal performance index for a large
class of optimisation problems when only non-optimal control functioms
are available. The lower-bound calculaﬁions are not expensive
computationally and enable the stage to be determined at which

iterative optimisation should cease.
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" Notation

Those notations which are not common or are not explained when
first uséd are introducéd Héré.

All quantitiés considered in this thesis are real.

Véctors aré usually dénoﬁéd Ey 16wércasé italic characters,
such as x, although somé aré dénotéd by 1owércasé script characters, such
as U. Matricés aré dénotéd by uppercase.italic characters, such as 4.
The scalar elements of vectors & and matrices A are usually denoted by
X:s aij’ etc. Scalar-valued functions aré usually denoted by characters
such as V, F and G. Spaces and sets are denoted by uppercase script
characters, such as R.

The set of integers {m, m+l, .., n}, n > m, is denoted by
I(m,n), and by I(n) if m = 1.

Transposition is denoted by T. The set of all n x m matrices
of real scalars associated with linear maps from R® to R is denoted by
M(R™ + Rn). The unit matrix of any order is denoted by I, and the n x n
unit matrix in particular by.I(n,n). The zero matrix or vector of any
order is denoted by O, and the n x m zero matrix by O(n,m). 5(t,T) 1is
a matrix of appropriaté order which is a unit matrix when t = 7 and is a
zero matrix otherwise. If z Rn, we intérprét [O(m,l)), fx ] e R0

4 x 0(m, 1)
as x ¢ R if m = 0, and similarly for matrices. The square symmetric

matrix which is obtained by replacing every element aij of a square matrix
T . . +
«. = .. °F . .

A by 2 (a‘lJ aJl) is denoted by 4

Positive definite, negative definite and non-negative definite



are abbreviated to p.d., n.d. and n.n.d.

Maximum and minimum eigenvalues of any réal, symmétric and
n.n.d. matrix Z are denoted by Amax(Z) and xmin(z), réspéctivély.

Partial derivatiYes such as [aﬁ/ax) are sometimes written as h,.

We assume that .i.aj = a,, and similarly for products..

Open intervals g;lthe real 1ine are denoted by (tl,té) and
closed intervals by {tl’tz}’ etc. The segment of a time function u on
an interval {t,,t,} is denoted by u{t,,t,}, etc. Integration on'{tl,tz)
is denoted by I%Ei de, etc. When properties of a function on some subset
(perhaps not proper) of its domain are mentioned, we refer to properties
of the image under the function of each element belonging to the consid-
ered subset., When no confusion is likely to arise, different functions
are sometimes denoted by the same character with different arguments -
to reduce notational complexity.

A set A containing only b(c) for every c belonging to a set C
is written as {a : a = b(e); ¥ec e C}, etc. By ¥t21, T € T we mean for
all T e T and, for each such 1, for all t e T such that t>T1.

By the xs—optimal cqntrol function we mean the optimal control
function for the initial condition zg, and similarly for the xs-minimal
performance index.

The number 1.58E+08, say, is to be interpreted as 1.58 x 10i8.

Thé main results of this thesis are often summarised in Remar#s.
The beginning and end of Remarks, Comments, Definitions, Assumptions,

Lemmas and Proofs are indicated in the left-hand margin by the symbols V

and A, for clarity. By RHS (LHS) we mean right (left) hand side.
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Chapter 1 : Introduction

1.1 Motivation B
The solution of optimal control problems defined for dynamical
systems is of great theoretical and practical importance, and has been
the subject of widespread interest in recent years. The aim is to choose
the control function so that the system considered behaves optimally with
respect to a prescribed performance functional, which may be chosen to
give a numerical measure of how well the controlled system fulfils its
design objectives. ' L
One of the important abstract problems which has been studied
is that of trajectory optimisation on a fixed and finite time intervalj;
a realisation of this problem which is of considerable engineering
significance is:
For the linear dynamical system described by
z(t) = flz(e),uw),t)
y(t) = C(t)z(t)
on the time interval T = {t_,t¢} with the initial condition-

x(tg) = Z o,
the problem is to minimise the (scalar) performance index
V(xs,u) = ITF(y(t),u(t),t)dt + G[y(tf)]
with respect to the control function u on T,
where F and G are quadratic. .
The application of conventional optimisation techniques to

problems of the above type which are formulated for complex dynamical

systems is itself complex and computationally expensive: in this thesis-



_are studied approaches to control function optimisation for such problems
which can be more efficient computationally than the conventional
techniques.

In the next section we review briefly the background to the

developments of this thesis.

1.2  Background

The optimisation of the control function u for the optimisation
problem considered in 1.1 is more complex-thau the choicerof the control
function on each infinitesimal sub-interval of T in such a way as to
extremise the contribution to the performance index on that sub-intervalj
the dynamic effects which relate the contribution to the performance index
on each following sub-interval to the control function on the considered
sub-interval must also be considered.

The Calculus of Variations, Pontryagin's Maximum Principle,
Halkin's Principle of Optimal Evolution, Bellman's Dynag;c Programming
and the methods of Functional Analysis all utilise theoretically the
dynamic features of control function optimisation problems. ~ Some

salient attributes of these are next discussed.

The Calculus of Variations

The Calculus of Variations is concerned with problems which
"require the determination of the form of an unknown quantity, or of
unknown quantities, as a function ar functions of a variable (being
a dependent va;iable or dependent variables) so that some integral may
assume a maximum or minimum value" {1}. This, essentially, is our

problem; however the theory is developed so that, in our context, -
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& is chosen optimally rather than the manipulable control variable u
which affects . More convenient results, next discussed, have been
produced during the last decade.

Pontryagin's Maximum Principle

The optimal control function is generated when the correct
boundary conditions are obtained for a two~éoint boundary valué problem
{2-6}. Halkin's work is parallel to this and qﬁes reachable-set theory
{7-10}.  The unknown boundary conditions can be obtained by iteratively
adjusting initial guesses in a systematic way {11-12}. The system

i

behaviour is often very sensitive to the boundary conditions because the
optimality of the entire control function is deéendent!only on the
boundary conditions at the start of the time interval considered. This
helps to ensure that ultimgtely an exactly optimal control function

is obtained, but it can cause severe numerical difficulties. The optimal
control function is not obtained from an optimal feedback control law.
Perturbation analysis has, however, been used to allow compensation for

initial condition changes {13-14}.

Dynamic Programming

-

Dynamic Programming can, theoretically, be applied to yield.
globally extremal feedback control laws {15-17}, but the computational
and storage requirements become vast for even relatively small dynamic
problems, aithough techniques have been developed for reducing high-
speed storage requirements {18}.

. Nevertheless, the philosophy of Dynamic Programming, émbodied

in the Principle of Optimality {15}, can be applied to yield algorithms
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which utilise first— and second-order expansions about non-optimal
control functions and the associated system responses {19-23}. The
resulting algorithms generate information which allows non—opfimal
control functions to be varied so that the performance index is improved.

The first-order algorithms iteratively generate the gradient
of the performance index with respect to the control function ;nd improve
the performance index by making a sufficiently small change in the
négative gradient direction (i.e. downhill). Convergence to the
optimal control function may, however, be very slow.

The second-order algorithms calculate actual control function
changes, possibly large, from which the optimal controi function can
be determined. For optimisation problems of the type considere& in i
1.1, the optimal control function can be achieved in one iteration. The
second-order algorithms, however, require extra theoretical complexity,
programming effort and extra computation per iteration compared with the
first—order algo%ithms ~ these effects becoming rapidly more pronounced
as the number of differential equations describing the considered
dynamical system becomes iaiger. For nonlinear systems with non-
quadratic but nonlinear performance indices, the control function changes
may have to be limited to preserve the validity of the second-order
expansions used, and many iterations may be required. An optimal feed-
back éontroi law is yielded by the second-order algorithms, which is
perhaps especially useful for implémentation purposes. This is a result
of the fundamental approach used (Principle of Optimality) by which the

control chosen at each time instant is functionally related to the state

of the system at that time.
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Functional Analysis

The techniques of functional analysis, discussed in Porter {24},
may be used for linear dynamical systems having norms as performance
indices. These fundamental restrictions allow the use of powerful but
specialised theoretical results to select the optimal control function

from the class of admissible functions.

1.3 Outline of the Thesis

In this thesis we mainly consider determining optimal control
functions for optimisation problems of the same kind as that mentioned
in 1.1 when x e R™ for either am (arbitrary) nominal initial condition

is or for all initial conditions x belonging to X(q), where

V Definition 1.3.1 &S e R® and has bounded Euclidean norm,
X(q) = {z  : =z = ey vzl e ®Y},
X(q) = {xs iomg =B+ s s ¢ X(q)},
xd = (Xl ces Xﬁ) e MRYT > R*)  and has rank q,
Xi € Rn, ¥i ¢ I(q), and has bounded Euclidean norm,
Qa  _ q QT
Sz = (le cee qu) N
Aq e I(@).

We also consider initial conditions belonging to a closed and
bounded neighbourhood X(q) of z_, defined by

V Definition 1.3.2

- X _ - q. q TR
Y(Q) = {xs H xs = xs + jzlijXj’ VIGXjI ..<—= 15}{5], UJ € 1(‘1)}’

A where Iéﬁ?l <o, Vje I(q.

Choice of q, X{q), z and X(q) may be made in an essentially

3
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arbitrary way, depending on the particular control problem considered.
Consideration of initial conditions belonging to X(q) is not particularly
restrictive since if q is set equal to n, X(q) = " - the‘space of all
possible initial conditions for the considered optimisation problem.

It is, however, desirable that the smallest q be chosen such that X(q)
contains all those initial conditions of interest since, as will become
apparent later, such a choice reduces the computational effort involved
in optimal control function synthesis. Comsideration of initial con-
ditions belonging to the bounded neighbourhood.ikq) is also not particular
ly restrictive since initial conditions for practical problems aré
bounded and 6%?, ¥j e I(q), can be chosen so that X(q) contains all

those bounded initial conditions of interest. Choice.of the smallest
suitable neighbourhood.ykq) by choice of the smallest suitable |

6;?, Vj e I(q), is desirable since it may well reduce the computational
effort réquired.

The optimisation techniques of 1.2 require the numerical inte-
gration of differential equations when they are applied to optimisation
problems such as that of 1.1. It is necessary to discretise time to
pérmit the numérical intégration of the differential eqﬁations. A pot-
ential disadvantage is that the discretisation required for the stability
of the integration procedure used may well be far finer than that
required to allow the discretised Fontrol functioﬁ to fluctuate rapidly
enough in time for effective optimisation to be possible, so that far
more numericai work may be performed than is really necessary. The

L3

integrations which are required are perhaps the most expensive feature



involved in the application of conventional optimisation techniques from
the computational point of view. It would therefore be desirable to
eliminate the need for the direct numerical solution of differential
system equations during optimisation.

A representation of linear dynamical systems in non-differential
form is given by the convolution-description. The optimisation of
control functions for linear convolution-described dynamical systems is
mainly considered in this thesis, although the algorithms of Chapter 3
may also be used for differentially-described dynamical systems.

In Chapter 2 we briefly examine the potential advanéages of the
convolution-description and then develop a procedure for gradient function
determination for convolution-described linear dynamical systems using an
approach closely related to Dynamic Programming. Because algorithms
using first-order gradient functions do not necessarily achieve convergenc
to the optimal conérol function belonging to the control space considered
in one (or even many) iterations, we continue to develop a second-order,
Dynamic Programming based, optimisation algorithm for choosing, in one
iteration, the oﬁtim&l contr;I function belonging to a pré—chosen linear
manifold L(pN) of the control space in terms of componeﬁts of the basis-
functions which span L(pN). Optimal componenﬁ choice is achieved.as
a function 'of initial conditions x belonging to X(q). A gimple result
is then obtained for calculating, for any particular initial condition T
a lower-bound for the xs-minimal performance index on a liﬁear manifold

for a large class of optimisation prcblems when only a non-aé-optimal

control function belonging to the linear manifold is available. - The
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lower-bound calculation usually requires far less numerical work than
that which would be required to determine the xs-minimal performance index
on the linear ?gnifolé. The lower-bound result can be used to help
overcome the arbitrarinegs associated with the choice of L(pN) because
it enables us to determine, in a simpie and computationally inexpensive
way, whether the optimal control law which determines xs-optimal control
functions belonging to L(pN) as a function of initial conditions z € X(q)
yields xs-optimal control functions which are é certain desired s@ns]-
approximation (defined in tﬁe body of the thesis) to the xs—optimal
control function belonging to any particular larger linear manifold L(pN)
féf ;il initial conditions z belonging to‘the bounded neighbourhood th).
A control law yielding such an approximation for all z belonging to Y(q)
is referred to as an’e(i(q)]-approximation to the optimal control law
which determines xs-Optimal control functions belonging to L(pN) as a
function of initial conditions © belonging to X(q).

| The second-order algorithm of Chapter 2 is rather complex and
has considerable computer stofage requirements, in common with other

second-order algorithms. Thus it would seem to be advantageous to develop

an algorithm which, for any particular initial condition x_, causes the

control function to converge more rapidl&vto the_ms-optimal control
function belonging to the controi-space than does the steepest-descent
algorithm while only using the relatively simple first-order gradient
equations. Such an algorithm is developed in Chapter 3. The algorithm
depends on the decomposition of calculated gradient functions into

components of non~arbitrary basis-functions, and is therefore referred to

«



as a gradient—decomposition based optimisation algorithm. Lower-bounds
for the xs—minimal performance index on the control space are obtained in
this gradient-decomposition context for a large class of optimisation
problems. The lower-bounds can be computed with little computational
effort. The gradient-decomposition based algorithm achieves optimisation
on linear manifolds of the control space (perhaps translated along s&me
non-zero initial control function) which are spanned by basis-functions
defined by that algorithm. The dimension of the (perhaps translated)
linear manifold on which optimisation is possible is increased by each
iteration of the algorithm. The lower-bound results are uséd»to determine
when sufficient iterations have been used for the ms-optimal control
function belonging to the (pérhaps translated) linear manifold on which
optimisation is possible to be some pre-chosen'eﬂxs)-approximation to tﬁe
xs—optimal control function belonging to the control space, even though
the xs-optimal control function belonging to the control space is not
known.

An efficient procedure is presented for determining an optimal
control law such that for éa;h initial condition ms belonging to qu),
the resulting control function is some pre—chosen'eﬁrs}—approximation to
the xs—optimal control function belonging to the coqtrol sPéce, even
though the -latter control function is not known.

A new algorithm is also developed for use with problems which are
the same as that of 1.1 save in that f is non-linear and (or) F and (or)
G are non:linear and non-quadratic. For a computed non-linear example,

more rapid reduction of the performance index has been achieved using




our algorithm than was obtained using the steepest-descent or conjugate-
gradient algorithms.
Chapter 4 contains our conclusions and a brief discussion of

those areas in which further work might be profitable.

Computed examples which illustrate the theoretical discussions
are presented where appropriate. |

It will be seen that the techniques developed in this thesis
involve optimisation on (perhaps translated) linear manifolds of the
control space for the optimisation problem considered. The optimal
control function belonging to each (perhaps translated) linear manifold
is synthesised by hill-climbing with respect to the components of the
basis-functions spanning the linear manifold which are present in the
control function. This justifies our title:

Optimal Control Synthesis by HIlL1-Climbing in Function Space.

1.4 Major Contributions of the Thesis

The major contributions of this thesis, which are believed to
be original, are: .

1)  Our application of the philosophy of Dynamic Programming
to optimisation problems defined for linear convolution-described
dynamical systems, in Chapter 2.

Bélakrishnan and Hsieh have considered the optimisation of
control functions for linear convolution-described dynamical systems

using first-order algorithms {25-26}. A different approach is used here

which is Tore computation oriented and which permits a second-order



algorithm to be developed.
2) The gradient—decomposition approach of Chapter 3 and the
associated optimisation algorithms. -
Lasdon, Mitter and Warren have recently published an account of
the use of the conjugate-gradient algorithm in a control context {27}.
Their algorithm can be shown to be related to our é}adienﬁ-decompOSition
based algorithms. Optimal control functions cannot, however, be obtaiﬁed
as a function of initial conditions using their algorithﬁ, but can be so
obtained using our results. ler a computed example, our algorithm for
optimising in non—quadratic environmenté has yielded more rapid optimis=~
ation of the performance index ag a function of iterations than did their
conjugate-gradient algorithm while only using the same number (one) of
gradient calculations and optimisations in calculated search directions
per iteration as did their algorithm.
3) ' The results of Chapters 2 and 3 for lower—Bounds for the
minimal p.erformance index, and the use of the lower-bound results for
AOptimisation purposes through our.eers)-approximations to ;he xs-optimal
control function and our s(qu))—approximations to the optimal control law
which determines xs-0ptima1 control functions as é function of initial
‘conditions x_ belonging to the bounded neighbourhood X(q) .
Pearson has considered the computation of lower-bounds for the
minimal pefformance index for differentially-described dynamical systems
{28-30}.  Our approach is different and is developed for linear

convolution-described dynamical systems, although the results of Chapter 3

are also valid for linear differentially-described dynamical systems.
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Chapter 2 : Optimal Control Function Synthesis for Linear

Convolution-Described Dynamical Systems

2.1 Summary

In this chapter the philosophy underlying Dynamic Programming is
first applied to optimisation problems defined for linear convolution-des-
cribed dynamical systems. Some potential advantages of the convolution-
‘description over the differential-description are discussed in 2.2. A
new approach to gradient détermination for linear comvolution-described
systems is used in 2.3. To facilitate computation, the considered control
functions are then constrained to belong to a pre-chosen finite-dimensional
linear manifold L(pN) of the control space. A second-order optimisation
algorithm is developed in 2.4 for determining the optimal control function
belonging to L(pN) as a function of initial conditions belonging to X(q).
We develop in 2.5 results which enable us to compute a lower-bound for the
xs-minimal performance index on L(pN) for any initial condition x_ when
only a non—ag—oPtimal control function belonging to L(pN) is available.

The lower-bound can be computed with much less effort than that which would
be needed to determine the xs-minimal performance index on L(pN). We
also show how a similar result can be obtained for all initial conditions
‘belonging to Ytq) when only a non-optimal control law is available. The
results can help us to overcome the arbitrariness associated with the
choice of L(pN) in that they enable us to compare the effectiveness of
optimisation on L(pN) and on a larger linear manifold L(pN) for all
initial conditions belonging to X(q) in a simple and computationally
inexpensive way without having to determine optimal control functions
belonging to L(pN). A numerical example is presented in 2.6 which

demonstrates the application of the main lower-bound result.

2.2 ' Convolution-Description of Linear Dynamical Systems

The comvolution-description is introduced in 2.2.1 and an
effective convolution state is defined in 2.2.2. Some potential

advantages of the convolution-description are considered in 2.2.3.

.



2,2.1 The Convolution-Description

Many linear systems of engineering interest, with control u# and

output y, have the following form of differential-description:

(d/dt)x(t) = A(t)x(t) + B(tlult) : x(t) =z,
y(t) = C(t)z(t), (2.1)
where t e T - the independent (time) variaBie,
T = {ts,tf} the interval on which (2.1) is defined,
z o, z(t) e R® the initial condition and the state at time t,
y(t) e R" tﬁe system output at time t,.
u(t) e R the system éontrol at time t,
AR) e MR RS, Bt) e M(E > RY,

ct) e M@ER® > RD).
If A and Bu are continuous almost everywhere on T and
fT | 4e) | dt < =, IT | BCt)u(e) | dt < =, | @ | < », which are

fairly unrestrictive conditions from the practical point of view, a unique
solution é exists for (2.1) which satisfies (2.1) in that z is cqntiﬁﬁous
on T and satisfies z(t) = @y + 123@4(1)3(1) + B()u(n))dr, ¥t e T.
The output y can then be written as:
y) = Ple,e )z, + IESW(t,T)u(T)dT, Ve e T, - (2.2)

where ¢(;,r) e M@®R™ > Rn), Ve >, teT,

w(égts) = C)e(t,t) e MER® > RY), Ve e T,

W(t,©) = C(£)e(t,7)B(x) e MR +R"), ¥t >, teT,

(d/dt)e(t,t) = A(L)e(t,t) : &(t,7) = I(aym), Yt > 1, Tt e T,

I | - denotes Euclidean norm.



V Definition 2.2.1 We refer to (2.2) as the convolution-description

of the linear dynamical system with the differential-description of (2.1),
A and to W as the convolution kernel,
Further discussions are available in {24} and {31}. Similar
convolution—descriptions can be obtained for discrete-time (seg 2.4.8)

and distributed-parameter systems {32}.

2e2.2 Effective Convolution State

The state of a dynamical system at any time is intuitively
defined as the minimal information which summarises the entire past
history of the system at that time as far as its effect on the future
behaviour of the system is concerned {33}. The state of differéntially-
described dynamical systems is usually considered in the literature. We
next define an effective state for convolution-described systems.

Suppose that the dynamical system considered in 2.2.1 actually
exists on T" = {t_,t{}, tf > te.  Then:

V Definition 2.2.2 For convolution-description (2.2), sufficient

information regarding the system history up to, ‘and including, any time

t e T, as far as that history affects the future behaviour on T", is

given by the pair @xs, u{ts,t}). We refer to this pair as the
A effective convolution state at time t, and denote it by St‘
Fot all t e T, our effective convolution state at time t can
be considered to be a minimal description of the history of the considered

convolution-described system, as far as the future behaviour on T" is
concerned, if St contains no contribution which does not affect the

future response on T", i.e. if, for all £ e (t,tg}! z, and ultg,t}
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belong to the orthogonal complements of the null-spaces of w(g,ts)'and
the linear map on u{t,t} which is defined by IESW(E,T)H(T)dT,
respectively.

St will not usually be a minimal description of the system history im

the above sense, but it will serve our purpose.

2.2.3 Potential Advantages of the Convolution-Description

. Consider calculating the output function y of a linear dynamical
system with the differential-description of (2.1) and the convolution-

description of (2.2).

Comment 2.2.1 When differential-description (2.1) is used to

calculate y(t), the behaviour of every element of x(t) has to be calcu-
lated, even though y(t) may have considerably fewer elements than z(t).
Therefore, if only y and u are costed in the performance index (as in 1.1)
and r < n, an advantage of convolution-description (2.2) over differential-
descriptién (2.1) is that, by using the convolution-description, x does

not have to be calculated to obtain y. This is especially important

if the linear dynamical system which is actually considered has

distributed dynamics but onlé non-distributed input u and output y, since

such a system can often be viewed as a version of (2.1) with n infinite.

Comment 2.2.2 A most unpleasant feature of the direct numerical

integration- of even time-invariant versions of (2.1) occurs when the
matrix 4 has a wide range of eigenvalues. The time interval on which the
output function y is of interest (probably determined by the sjstem mode
yieldiné the least-rapidly varying contribution to the time-response of z)

is then likely to be large relative to the integration step-length require
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for the stability of the integration algorithm employed (probably determin-~
ed by the system mode yielding the most-rapidly varying contribution to

the time response of x), so that many integration steps and much computat-—
jonal effort are likely to be required. The computational difficulties
associated with arrays consisting of elements with a wide spread in value
have been noted by Kalman {34},

The integration step-length needed ( and thus the computaticnai
effort involved) when convolution-description (2.2) is used to calculate
the output ¥ depends on the smoothness of Wand u. These may be fairly
smooth functions even if 4 has a wide range of eigenvalues. A potential
advantage, therefore, of the convolution-description is that the integ-
rations involved in calculating y to specified accuracy when the convolut-
ion-description is used may require less computational effort than that
which would be required were the differential-description used, even if
x(t) and y(t) are both n-vectors.

Comment 2.2.38 A potential advantage of the convolution-descrip-

tion over the differential-description for system modelling purposes is
that the convolution kernel and ¢ can be-estimated from observed inpué—
output data using only linea; regression {35-36}, while the parameters
of the differential-description should . be chosen using nonlinear regress—
ion, due to the highly nonlinear way in which y depends on A.

Once  and W of (2.2) have been determined, we see from the above
comments that the convolution-description has potential advantages over
the differential-description for calculating outputs y for given input

functions # and initial conditions Zs. Since control function optimis-

ation may require several, perhaps many, computations of outputs for -

o e e T - o wga e wHend oy < 4T o e
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different control functions, these potential advantages could be of
considerable computational significance. This is the practical justif-
ication for studying control function optimisation for linear

convolution~described dynamical systems.

2.3 Gradient Function Determination for Linear Convolution-Described

Dynamical Systems

An idea closely connected with the use of Dynamic Programming for
control function optimisation is that the contribution to an integral
performance index following any time belonging to the domain of integration
depends only on the state of the system at that time a;d the following
control function segment., This idea is used in this éection to develop
in a novel way a (novel) procedure for calculating the sensitivity of the
performance index on the control function, which we refer to as the (first-
order) gradient funcrion, for linear convolution-described dynamical
systems. The optimisation problem is stated in 2.3.1 and gradient function
determination is considered in 2.3.2. Control function optimisation cam
then be achieved using the steepest-descent algorithm or the new
algorithms which are dévelopgd in Chapter 3. Some conciuding comments

are contained in 2.3.3.

2.3.1 The Optimisation Problem

For the linear dynamical system described by
y@) = vtz + [0 (DU, Ve e T, (2.3)
s
minimise with respect to the control function u on T the scalar

performance index

Viz,u) = [iFl@®),u@),t)ae + clyp), (2.4)
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where T = {ts,tf}, te =t <

Y, W and u are bounded and continuous,.

z e RY, y@) e RY, u() e RO, Ve e T, and

for any bounded initial condition z, and considered control function u,

F, F, and F, are bounded and continuous on T,

Yy
G and Gy are bounded.

Comment 2.3.1 Convolution-description (2.3) with bounded and -

continuous ¢ and ¥ is that for the system with the differential-descrip-

tion of (2.1) with t_ - L, <e if A, B and C of (2.1) are bounded and

f

continuous on T. Note that ¥ being bounded and continuous refers to

W(t,t) being bounded and continuous on the triamgle t, < T <t <t The

f.
above restrictions on ¢ and W are not serious from the computational point
of view and can easily be relaxed in the following discussions to ¢ and W

being continuous almost everywhere and being bounded.

2,3.2 Gradient Function Determination

Consider the optimisation problem of 2.3.1 for some nominal
initial condition Z_. Suppose that a nominal control function u is
applied to the dynamical system with the convolution-description of (2.3)
and that the resulting output function and effective convolution state
(of Definition 2.2.2) at time t are y(t) and Ses Vt eT. |

For all t e T, define V(t;St,u(t,tf}) to be the contribution
following time t to performance index (2.4) given the effective convolution
state S, at time t and the following control function segment u(t,tf}.

Then:.

V[t;St,u(t,tf}] = IEE}F(y(t),u(t),t)dt + G(y(tf)]., VteT, (2.5)
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where V[t;St,u(t,tf}) with t = t¢ is interpreted as
V(tgsSeeoulteated) = clyep). (2.6)
The gradient function (av(xs,u)/au] is defined so that, for

sufficiently small arbitrary déu:

V(gg, ursw)) = V(z,u) + vizg,su)
= Vg, ) = V(zg,u) + ev(zg,eu)l, @.7)
where
8V (zg,0u)1 = [o<(3V(zg,w /ou(D)], (8u(E))>aE (2.8)

and the superscript ! denotes first-order éxpansion.

For all t e T, define GV(t;GSt,Gu(t,tf}) to be the change in the
contribution following time t to performance index (2.4) whicﬁ is caused
by a change from S; to (S+8S), in the effective convolution state at time t
and a change from u(t,tgf} to (u+du)(t,tg} in the following control
function segment. Then: ‘>
V(E5(5+68)y, (wsu) (t,te}) = V(t3Sp,ult,tel) + 6V(t;68,,oult,tel),

Yt eT. 2.9)

A first-order expansion of V(t;(S+63)t,(u+6u)(t,tf]] can then be written as
V(5 (8+68) ., (u+du) (t,tf‘}]l = V(38 ,ult,te)) + ov(t;6S,,6ult,tel)l Ve e T.

For the non—anticip;tory system considered, Su(t,tg} has no
effect on ghe variables y and ﬁ costed in performance index (2.4) before
time t. Its effect on V[t;(S+GS)t,(u+6u)(t,tf}) is therefore the same as
its effect on the performance index. A'first-order expansion of
GV[t;GSt,Gu(t,tf}] with fespect to Su(t,tg} can therefore be written aé‘
ft§}<(avﬁxs,u)[au(§)],[6u(£))>dg, where (3V(xg,u)/3u(E)) is the sensitivity
of the pe;formance index on the control at time £ and is the gradient which

we wish to determine for all £ e T. Since we wish to determine the
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gradient for the initial condition Ly 1O initial condition change is
considered here. The change GSt in the effective convolution state at
time t can, from Definition 2.2.2, therefore only be caused by a control
function change on {ts,t}, which we denote by Gﬁ{ts,t}. Hence:

8S, = su{ts,t}; Ve e T. (2.10)
A first-order expansion of GV(t;GSt,Gu(t,t }) with respect to GSt can
therefore be written as fri <(av(t)/3u(E)), (u(e)}>dE. Combining the

s

above two first-order contributions leads to the following first—order

ekpansion for GV(t;GSt,Gu(t,tf}):

NACTORICR R fzis<[3V(t)/3u(E)),[6u(£))>d£ +
IE£}<(SV(xs,u)/3u(£)],(6u(£))>d€, Vte T, . (2.11)
where GV[t;GSt,Gu(t,tf}]l with t = te is interpreted as
SV[t;sstf,Su(tf,tf})l = jf£:<(aV(tf)/au(s)],[su(s))'>ds. (2.12)

The changes GSt (of (2.10)) and Gu(t,té} on which
GV(t;GSt,Gu(t,tf}] depend will change y(t) and ST to, say, (y+8y)(t) and
(S+63)T, respectively, Y1 e (t,tf}. Now F and G of performance index
(2.4) can be expanded to first-order in 8y and éu as follows .
F((y+8y) (1), u+su) (1) ,7) 1 = '-F(y(T),u(r),r) +'6F(6y(1),6u(1),1]1, VteT,
c(rem) (£))? = c(y(rp) + sc(ey(e)l, ‘

where
8F (8y (1) ,6u(t), 1)t = <F,(D),8y()> + <F (0),8u(1)>, ¥r e T, (2.13)°
6G(6y(tf)]1 = <Gy,6y(tf)>, . (2.14)

and Fy’ Fu and_Gy are all evaluated for y and u.
From (2.5) and the definition of GV(t;SSt,&u(t,tf}), we therefore see that

a first-order expansion of GV(tgast,&u(t,ff}) should satisfy:
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§V(t;eS, ,6u(t,t 1) ftf}aF(ay(r),au(r),rjld% + 86y (tp))?, Uzzelg;
where V(t;éSt,éu(t,tf}) with t = t_ is interpreted as

£
. = 1
av(tf,astf,au(tf,tf})1¢ = GG(Gy(tf)) . (2.16)
On splitting the domain of integration of the integral involved
~in (2.15):
GV(t;GSt,Gu(t,tf})l ft+6t}6F(6y(1),6u(T),1]ldr +

év(t+6t;68 su(t+st,t })!, Verstot, t e T, (2.17)

t+6t?
From convolution-description (2.3) and (2.10), the output function
change at time 1 2 t caused by 6S, and au(t st} is given by
Sy (1) j{t W(t,n)su(n)dn, ¥Yuzt, teT. (2.18)
By combining (2.16), (2.14), (2.18) and (2.12), we see that:
f¥£:<[av(tf)/au(5)),[6u(E))>dE - f§£i<(W(tf,n) Gy],(éu(h))>dn. (2.19)
It is clear from (2.13) and (2.18) that the integrand of
(2.17) can be written as
8F (67 (1), u(r),7)! = <(r (1)), (su(n))>
f }j}:; (W(T,n)TFy (r)) s (u())>dn + [ T(,}; (W(r,p)T_Fy (1)), (6u(n))}>dn,
Y1 e (t,t+st}, Ve+st>r, te T, (2.20)
On using the first-order expansions of (2.11) and (2.20) in
(2.17), it can be seen that
jfis<[av(t)/au(")) (6u(z))>ds + IE£}<(av(xs,u)/au(g)),(5u(g))>dg
= jt+6t} <(F, (1), (su(1))>ar
+ I“*‘St}d J‘{:} <75, (1), (6 (n))>dn
‘ jt+6t}dr fg < (e, mTE, (1), (um))>an +
8V(t+6t)/au(3)),(6u(_))>d_ ftf} (aV(xs,u)/au(g)),(au(g))>dg,

(t+6t
. Ytastot, t e T, . (2.21)

ft+6t} <




For arbitrary Gu{ts,t}, we see from (2.21) that

_ oY qs 6t} T
{Eis<(8V(t)/3u(:)),(5u(:))>d:. = ft: “ar I%is<[w(rvn) Fy(r)],[ﬁu(n)]>dn

+ f'{zt}: <(av(t+st) /ou(=)), (su(z))>ds, Ve+st > t, t e T,
s
For sufficiently small 6t, this reveals that
= = = } T
f'{"i;(aV(t)/au(:)},[Gu(:)]>d: = stf'{:t;(hf(t,n) Fy(t)),[Gu(n))>dn
o+ f'{:t}: <(av(e+st) /ou(=)), (su(z))>ds, Vr+st, t e T.
s

For arbitrary Su(t,t+§t}, we see from (2.21) that

flé‘:ﬁt}< (3V(xs,u) /au(E)) , (5u'(g))>dg = f‘état}< (Fu(‘t)) 2 (6u(‘t))>dr
@ e [ m T, @), ()

+ f%:at}<(9v(t+6t)/au(5)],(5u(5))>d5, Vesst > t, t e T,
We can now prove

V Remark 2.3.1 For the optimisation problem of 2.3.1, the

gradient function (Bv(xs,u)/au] can be determined using the following
reverse~time equations:

-(a/at) (3v(t) /ou(z)) = W(t,E)TFy(t), Vg e {t_,t}h:

(av(ep)/ou(E)) = W(tf,E)TGy, Ve e T,
(VG /() = B )+ (aV(e)/ou(t)),
Ve e T, ‘

where F,» Fy and Gy are evaluated for the control function u and the

A associated response y of (2.3) for the initial condition x

s

V Proof of Remark 2.3.1 Under the assumptions of 2,3.1, we see that:

(a) reverse-time equation (2.24) comes from (2.22) as §t - O,
(b) starting condition (2.25) comes from (2.19) for arbitrary 5u{ts
A () (2.26) comes from (2.23) as st + O.

v Comment 2.3.2 Note that the interval {t_,t} on which

(2.22)

(2.23)

(2.24)
(2.25)

(2.26)

tehs
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(BV(t)/Bu(E)] of (2.24) has to be stored at time t decreases as t
decreases from tf to t_ at the same rate that the interval {t,tf}
increases on which the gradient function has been determined using (2.26)
and needs to be stored, for future use, The main storage needed for

gradient function determination using (2.24) and (2.26), other than that

Y
starting condition (2.25), i.e. that needed to store

needed to store W, F,s F, and Gy’ is therefore only that needed to store

A [BV(tf)/Bu(E)] for al1 5 e T.

vV Comment 2.3.3 It is clear from Remark 2,3.1 that the gradient

function [BV(xs,u)/au] is bounded and continuous on T when the boundedness

A and continuity assumptions of 2.3.1 hold.

V Comment 2.3.4 It is interesting to compare the result of
Remark 2.3.1 with the equivalent result for an optimisation probleﬁ which
is the same as that of 2.3.1 save in‘that differential~description (2.1)
is used in place of convolution—déscription (2.3). It 1s well-known that
the gradient function [BV(xs,u)/Bu] is then given by the following

reverse~time equations:

[}

-(a/ar)v_(t) C(t>TFy_<t> AW (0 v ) = C(tf)TGy,

[av(xs,u)/au(t))_

Fu(t) + B(t)TVx(t), VteT,

where Fu’ Fy and Gy are evaluated for the control function u# and the
associated résponse y of (2.1) for the initial condition z . Note the
similarity in structure of the equatioms of Remark 2.3.1 for gradient
function determination for linear convolution-described dynamical systems
and the above equations for linear differentially-described dynamical

A systems, .,
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V Comment 2.3.5 It is clear from (2.7) and (2.8) that a

necessary condition for a control function % to be the ms—optimal control
function belonging to the linear space of bounded and continuous control
functions with domain T and range R® is that (av(ms,u)lau] should be

zero almost everywheré on T. This arises since otherwise, for
sufficiently small Q > O, the control function u -'Q(BV(ms,u)/au] would
give a lower (i.e. better) performance index value for the initial

A condition xs than would the control function u.

2.3.3 Concluding Comments

The determination of the first~order gradient function for
convolution-described dynamical systems has also been considered by
Balakrishnan {25) and Hsieh {26}, in a different way. Our approach
of 2.3.2, which is believed to be original, yields additional insight
into gradient function deterﬁination for such system#.

In this chapter we do not consider optimisation algorithms
which use first-order gradient functions (although we develop new
algofithms.of this type in Chapter 3) but continue to develop a
second~order, Dynamic Programming based, algoritim for choosing the
xs-Optimal control function belonging to a finite-dimensional linear
manifold of the considered control space, as a functiom of initial

conditions“xs belonging to X(q).
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2.4  Second-Order, Dynamic Programming Based, Optimisation on L(pN)

In 2.4.1 we define the finite-dimensional linear manifold L(pN) of
the linear space of all bounded control functions u: T + R°. An optimis~
ation problem on L(pN) is formulated in 2.4.2. A second-order, Dynamic
Programming based, algorithm for choosing the optimal control function

belonging to L(pN) as a function of initial conditions belonging to X(q)

is developed in 2.4.3 for linear convolution-described dynamical systems.

The algorithm is stated in 2.4.4. The optimal performance index on L(pN)

is considered in 2.4.5. Some comments concerning computation and some

extensions are the subjects of 2.4.6 and 2.4.7. Another type of optimis-—

ation problem to which the approach used herein can be applied is mentioned

in"2.4.8., Some concluding comments are contained in 2.4.9.

2.4.1 The Linear Manifold L(pN)

Definition 2.4.1 The pN-dimensional linear manifold L(pN) of the

linear space of all bodnded control functions u: T -+ R® is defined to be
that linear manifold which is spanned by the following pN, m-vector
valued, linearly independent and bounded basis-functions which are

continuous almost everwhere on their domain T:

F s Vs e I(p), ¥j ¢ I(),

8,3
where, for all j e I(N),
fo,;(®) = 0@,1) if t¢ T, ¥sel(p),
Fa,i® = Ffoi(0) if teT, s e 10,
and
(PR R T c (t55ts), ¥ie TQN, T = {tg,te),

tg = b < Ty < t3 ... < by <ty = tg,
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The number N of disjoint sub-intervals 73 which cover f, the
partition P(N) = (Tl T2 ... TN) of T, the number p of basis-functions
which are not necessarily zero on each sub-interval 7i and the functions
f" define L(pN), and can all be freely chosen within the constraints
imposed in Definition 2.4.1.

Any control function u belonging to L(pN) can be uniqueiy
decomposed into components of the basis-functions f of Definition 2.4.1,
and can then be written as

u(t)
where F(j,t)

N 4
)} F(i,t)u(§) = FN(t)uN, VteT, (2.27)
=1
Lfl,j(t) e fb’j(t)] e MRP - R™), ¥j e I(N),

Om,p), Ve ¢ TV, ¥j e T(),

F(j,t)

u(j) e RP, ¥j e I1(N),

)

N
u

Fa,n ... F,E)) e MERPY > RD,

@' ... wmTT e woF,

The following notations will also be used

o= @ . wDTe RED b 1aen,
= @ L w@TTe R ke T,
ug = u(N).

Definition 2.4.2 We refer to the controi funéﬁion u of (2.27)

as a control function belonging to L(pN) which is exactly characterised
by the components uN. Similarly, we say that such a control function
is exactly characterised on 7! by the components u(j), ¥j e I(N).

Comment 2.4.:1 The important property of L(pN) from our point of

view is that control functions belonging to it can be varied om each
sub-interval 7 independently of the control function on the other sub-

intervals of T. This enables optimisation of the control on the sub-
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intervals T to be carried out in a sequential manner using a Dynamic

Programming based approach.

2.4.2 An Optimisation Problem Defined on L(pN)

For the linear dynamical system with the convolution-description
y) = v(t,tdx, + IEBW(t,T)u(T)dT + D(®u(t), Ve e T, (2.28)
choose the control function u = FNuN, belonging to L(pN) and exactly

. N . . s s
characterised by the components ¥, which minimises the scalar performance

index
V(pNszg,u) = [7E(p®),um,)d + 6lyp), (2.29)
where z, = X+ ez? e X(q),

y(®) e RY, u(t) e R%, Ve eT={t,tel,
Hp = tg -ty <=,
Y, W, D and u are continuous almost everywhere and arelbounded,
and, for all bounded initial conditions and all considered control function
F, fy, Fyy’ F,, F,,, and Fuy are continuous almost everywhere

on T and are bounded, and all higher-order derivatives of F are zero,

G, Gy and ny are bounded and all higher-order derivatives of

-

G are zero.

For convenience, we rewrite performance index (2.29) as

N

VipNszg,u') = ] Fly,u(,k) + Gly(tp), (2.30)
k=1

where

Fly,u(),k) = kaF[y(t),u(t),t)dt, Vk e I(N).

2.4.3 Algorithm Development

The optimisation problem of 2.4.2 is considered.
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Suppose that a nominal control function u, which belongs to
L(pN) and is exactly characterised by the components ﬁN, is applied to
the dynamical system with the convolution-description of (2.28) for our
nominal initial condition ﬁs’ of 1.3. Denote the resulting output
function—by Y and the resulting effective convolution state, of
by S, Vk e T(+1).

k
The optimal components uN* = ﬁ4(1)*T cos u(N)*T)T which

Definition 2.2.2, at time t

exactly characterise the optimal control function belonging to L(pN)
for any particular initial condition x = is + %629 ¢ X(q) can then be
determined by optimising a pertufﬁation GuN = (Gu(l)T coe Gu(N)T3T
from ﬁN, when

uN* Yo GuN*. (2.31)

The optimisation of GuN to give GuN* is next considered.

Definition 2.4.38 Consider the dynamical system with the

convolution;description of (2.28) and the control function @ = FNﬁN

which belongs to L(pN). From Definition 2.2.2, we see that if the
initial condition is changed from és to 58 + x%2? and the components
ﬁN.are changed toﬂN + GuN, the resulting effective convolution state
at time t is changed from gk to Sk + GSk where GSk is exactly
characterised by ng‘- defined as follows:

Gsl = g2 e'Rq, Gsk = [6z9 c Rq+p(k—1), Uk ¢ T(2,N+1). (2.32)‘
sukL

For all k e I(N), define V[k;Sk,u£5 to be the contribution- " :

following time t, to performance index (2.30) given the effective
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convolution state Sk at time £ and the components

"k

ug = (u(k)T s u(N)I)T, which exactly characterise control
functions which belong to L(pN) on Tk, sey TN. .
Then:

N N
V(k3S,u) = ‘IkF(y,u(jm) + Gly(tp), Yk e TN, (2.33)

J:

and ‘
V(1S ) = 6(w(e). (2.34)

For all k e T(X), define 8F (8y(8s, ,6u(k)),8u(k),k) to be
the change in F[y,u(k),k) (the contribution to performance index (2.30)
on T) £rom F(5,2(),k) to F(J+8y(8s,,6u (1)), @+ (k) k)
due to:

(a) a change from f1(k) to #(k) + Su(k) in the components u (k)
which exactly characterise control.functions belonging to L(pN) on
Tk, and -

(b) the change Sy(Gsk,Su(k)) from J in the output function
Yy on Tk due to a change from §k to §k + SSk in the effective
convolution state at time tk and the change Su(k) which is mentioned

in (a) above.

Define SG(Gy(Gs )) to be the change in G(y(tf)) from G(y(tf))

N+1
due to the change in y(tf) from y(tf) to g(tf) + Sy(tf) which is caused

by a change from §N+1 to SN+1 + SSN+1 in the effective convolution state
at time tN;l'

For all k e T(W), define'GV[k;Gsk)* to be the change in the
contribution following time tk to performance index (2.30), relative to

V[k;gg,ﬁg}, which is caused by a change in the effective comvolution
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state at time e from Sk to S + 63 when the components
= ( (k) ees  U(N) ) are optimised. Then
- - § o~ N
GV(k;Gsk)*. = ming V(k;B+sS),, Gireu),) - V(i3

k’“
oy,

Pk e T(N). (2.35)

Using the above definitions, it can be seen that

6V (ksoe, )% = m;.rék){ 8F (8y (885 8u(K)), 6u(k), k) + oV (k+1368, ,,)* } |
Yk e T(N), (2.36)
where av(N+1;5gN+1)* - 86 {8y (ssyg,1)) - (2.37)
V Remark 2.4.1 For the optimisation problem of 2.4.2, there exists

a unique xs—optimal control function belonging to L(pNy for each x, e X(q) .
if, for k = N, N-1, .., 1 there exists a unique u(k) which minimises the

RHS of (2.36) for all &8s From (2.31), if a unique (a"cs+xqaxq)~optima1

K’
control function belonging to L(pN) exists, it is exactly characterised by
the components u * = ({ﬂ(1)+6u(1)*} ce {ﬁ(N)+6u(N)*}T)T, where Su(k)#*
is the change u(k) which minimises the RHS of (2.36) when 63k = 83 if
pk=1and 65, = ((6ehT aw(*T . e if k> 1

| Expression (2.36) is a realisation of the Principle of Optlmallty,
the key concept of Dynamic Programming {15}. We refer to (2.36) as a
Perturbational Equation of O;timality, since it is concerned with optimal
controi changes. |

We next use the above definitions and-Perturbational Equation of
Optimality i2.36) to obtain results which enable the optimal component
changes Su(k) to be determinéd for-all k ¢ I(N), if they exist.

The unminimised RHS of Perturbational Equation of Optimality

(2.36) can be viewed as the change in the contribution following time tk
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to performance index (2.30) due to changes 63k and Su(k) when all the
following components ui+1 (if there are any, i.e. if k <« N) are chosen

optimally given SSk and Su(k), i.e. given &8s 1 ©f Definition 2.4.3,

k+

Perturbational Equation of Optimality (2.36) can therefore be rewritten as:

8V(ksés )% = min  &V(ksds, )%, Yk e TQW), (2.38)
Su(k) .
where
5V[k;63k+1)*» = SF(Sy(Ssk,Gu(k)),Gu(k),k) + BV[k+1;ssk+1)*’
’ Vk e T(N) (2.39)
and
oV (N+1s8s, )% = 8G(Sy(se, 1)) (2.40)

i
For some k ¢ I(N), assume that a second-order expansion of

6V(k+1;63k+1)* with respect to 88 e Rq+Pk is exact, so that:

k+1
6V(k+138s,, )% = SVG)* + <(3V(k#1)*/3s ), (85, ,,)> +
5<[5sk+1],(32yck+1)*/ask+lask+l)(ssk+1)>. (2.41)

Numerical minimisation procedures could be used to minimise
5V[k;53k+1)* of (2.38) with respect to Su(k) when the second-order
expansion for 6V(k+1;63k+1)* of (2.41) is used in the RHS of 6V(k;63k+1)*
of (2.39). The optimai value of su(k), denoted by Su(k)*, will in
general depend on Ssk, i.e. on 8z and Suk—l = [Su(l)T ‘e Su(k-l)lﬁT.
Since the previous component changes Suk-l'have not yet been chosen and
any change from &S to &S + X%%2% e X(q) in the initial condition is to
be consider;d, the optimisation of 6V(k;63k+1)* with respect to Su(k)
would have to be carried'out for a‘range of values of Ssk to give Su(k)*,

at least approximately, as a function of Gsk of the following type:

u(* = ak) + B(ss k).
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Numerical minimisation using search procedures has been explored in {21}
for differentially-described dynamical systems. For the problem of
2.4.2, however, a second-order expansion for 6F[6y(6sk,6u(k)),6u(#),k)
of (2.39) with respect to Gsk and Su(k) is exact so that minimisation of
the RHS of (2.38) with respect to Su(k) can be achieved analytically,
This is next considered.

Recall that the output function change 6y(6sk,§u(k)) on Tk is
the change in ¥ on Tk from § due to a change in the effective convolution

state at time tk of 8g8, = ({qu}T {Suk_l}I)T and a change of Su(k) in the

k

components exactly characterising considered control functions on Tk.
. I

On using the notation of 2.4.1 with convolution-description (2.28), we

see that 6y(6sk,6u(k)) at time t e Tk is given by

6y (s, 0u(k),t) = y(t,t)x%x? + IEZW(t,T)Fﬂ,T)au(l)dr +oees
]
' +!§kW(t,T)F(k,T)6u(k)dT + D(t)F(k,t)suk)
= Y (Do, Vte ™, (2.42)
where

t
Yk(t) [ w(t,ts)xq jtiW(t,r)F(l,r)dr ces .IZt_IW(t’T)F(k-l’T)dT

J5 W, DF (k,¥)dT + D(DF(k,t) )

x

e M@RIPE LYy ye e TV, (2.43)
For the optimisation problem of 2.4.2, a second-order expansion
for GF(ay(ask,au(k)),au(k),k) in terms of Gy(ask,6u(k)) and the control
function change
su(t), = Fk,t)dulk), Vre Tk, (2.44)
which is caused by a change of Su(k) in the components u(k) exactly

. s . . k ,
characterising the considered control function on T, is exact and can be
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written as

6F (8y (88, u (k) , 8u (k) k) = ka{ <(gg(t)) (sy(ss,,suk),0))>

1<[ay<ask,su<k) t)), Fyy (t) (sycss, ,oul@),0)> + <(Fy(e)), (su(t))>
d<(su ()} ,Ey, (1) (su(t>)>
<(su(t)),F, 5 (®) (sy(ss,,0ulk), ©))> I, (2.45)

where all derlvatlves of F are evaluated for the control funection # and

the associated response §, i.e. where Fy(t) = F(y(t),ﬂ(t),t]y, etc.

On using (2.42) and (2.44) in (2.45), we see that

; T T
GF(Sy(Gsk,Gu(k)),6u(k),k3 depends only on 6§k+1 = [Gsk Gu(k)T) and

can be expanded exactly to second-order in 68k+1 as

§F (8 (85, , su (k) 8u (k) k) | = <(sF (k) /38y ,1), (88 1) #
$<(68y 1), (32F () /3 08, 1) (88, 1) s (2.46)
where
{aF(k)/askﬂ)‘ = '[T (y (t)} Fy (t)dt + [0(q+p(k-1),1) ‘
ka(F(k,t))TFﬁ(t)dt

e  RIPE (2.47) -
(327 () /38, , 08, L)) = jfk(ykm]pry(_c) (7 (0)ar +
’0(q+P(k-1),q+p(k-l)) 0(q+p (k-1),p) .
(0(p,q+p (k-1)) ka(F(k,t))T%aﬂ(t)(F(k,t))dc] '

(0¢a+p (k-1), gipk) )f
JTk(F(k’t)')TFﬁg(t) (7 (©))de

Then, if expansion (2.41), for 6V(k+1;ésk+1]* is exact,

MRIPE . ga*PKy (2.48)

6V(k;63k+1)* of (2.39) can be expanded exactly as:

5U(k;5sk+.1]*' = SV(k+1)* . + k(av(k)'*/askﬂ],(Gs;k_'_l)z +

i< (88, 1), (32V(RI*/2e, 0 k+1) [Gsk+1)>, (2.49)
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where
(V@)*/as, ) = (FGI/osy ) + (V(k+l)*/3s ), . (2.50)
(2V(k)*/as, 0, 1) = (3%F (k) /08y 88, 1) +
(32V(k+1)*/0ey 08, ;) : (2.51)
Perturbational Equation of 0ptimalit§ (2.38) then becomes
6V (k388 )* = :i?k) { ov@+)* + <(aV@)*/as,), (8s,)> +
' b<(ss, ), (32V (k) */3s, 38, ) (8¢, }> +
<(u), 1 (vG*/am)) + (p2Va)*/uk)es,) (8s,) >+
b< (8u(®)), (320 (k) */au (k) su(k)) (suk))> }, (2.52)

where the following have been used:
(a) the symmetry of the second-derivative matrices,

k

(c) the partitions Su(k)

®) the fact that 6sk+1 = {Gs ], and
(Vd*/3s, ;) = |[(av@)*/3s,) }, 4(2.53)
l(BV(k)*/au(k))

(32V(x)*/3s (2.54)

k+1ask+1)
(32 ()% /38, 35, ) (2v(x)#/3s, Bu(K)) ].
(v @*/au k) s, ) (320 (R)*/am (k) 3w (k)
Then, if T(k) of (2.58) is p.d., the minimising component

change du(k) of (2.52) is:

s()* = ak) + (8G))(ss,), (2.55)
where |

a) = ~T) (V@O */u) e R, (2.56)

JONEE —r(k)'1(azvck)*/au(k)ask} e M(Rq+p(k'1)+Aép),(z.s7)

r) = (220 */au(k)su(k)) e M(RP > RP). (2.58)
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If T(k) is not p.d., however, a minimising component change
su(k) does not exist and no optimal performance index exists on L(pN).
For the purposes of this development we assume that T'(k) is p.d.

From (2.55), &u(k)* depends linearly on 8s, € Rq+p(k—l)’ i.e. on
the initial condition change from &s to is + X362% which is exactly

characterised by sz

Guk—l.

and, if k > 1, on the unoptimised component changes

If k > 1, 6% (k-1) needs to be optimised. To optimise Su(k-1)

we need the expansion terms for GV(k;Gs * for insertion in the RHS of

K
(2.50) and (2.51) with k replaced by k-1, so that &u(k-1)* can be
determined from (2.52) with k replaced by k-1 in the same way that we have
just determined Su(k)*. ‘

Inserting Su(k)* of (2.55) into (2.52) leads to the following

éxact second-order expansion for GV(k;ask)*:

6V (ksds )% = sV* + <(aV(K)*/2s ), (0s,)> +
1< (8s,), (32V () */2s, 25, ) (85,)>, (2.59)
where
SV(k)* = oV(k+1)* - I<(a(®)),r (k) (e(k))> e R, (2.60)
(vayw/as) = (W@)*/3s,) - (£a0) ra) ¢ RTPED 2 61)

(22V )% /s, 25, ) - (Bx)) r o) (8 0))
HERIP D) | parp(k=1)y (2.62)

(32v()*/2s, 35, )
Equations (2.60), (2.61) and (2.62) are reverse-time recurrence- -
relations giving the expansion terms for GV(k;Gsk)* from those for

8V (k+1;63k+1)* through those for &V{k;és

k+l)*' The expansion terms

SV (k) *, (aV(g)*/ask) and (BZV(k)*/askask) are clearly bounded if
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8V(k+1)*, (oV(k+1)*/s, ;) and (3%V(k+1)*/2s ) are bounded and

Kk+1°%k41

if T(k) is p.d. since, under the assumptions of 2.4.2, (3F(k)/83k+1)

and (BZF(k)/as ) are bounded.

k+lask+1
We now need starting conditions for the above reverse=-time
relations.

Recall from (2.37) that

8V (M+ls8s )% = 8G(sy(8sy, )], (2.63)

where 6G(6y(63N+1))is the change in G(y(tf)) from G[y(tf)) due to the

change in y(tf) from Q(tf) which is caused by a change characterised by
_ q,T N.TNT . - . x .

GSN+1 = ({Gx }" {6u"}"j" in the effective convolution state at time te1

The change in y(tf) from y(tf) due to §s is clearly

N+1
8y (8sy,ote) = (Yyyq) (88y0,4)s (2.64)
where
q t tN
Yyel. = ( wétf,ts)X ftlﬂ(t,T)F(l,T)dT ces ftN.lW(tf,T)F(N-I,T)dT
[ e, DF O, 1) + D(e)IF (N, ey) )

MRITPN . RTy, (2.65)

For the optimisation problem of 2.4.2;
6G(8y(8sy, 1)) = <[Gg], (63;(5'9_N+1’tf))> +
§<[5y(GSN+1,tf)),(Gyg}(ﬁy(ﬁsN+1,tf))>, (2.66)
where 6y = G(3(ep), end Gop = G(F(eD) - _

On-using (2.64) in (2.65) and using the result with (2.63),
we see that 6V(N+1;Gsn+1)* can be expanded exactly to second-order in
as

58N+1

6V(N+1;Gs = SV(N+L)* + <(8V(N+1)*/35N+1),[GSN+1]> +

N+1) * .
g<(asN+1),(azv(N+1)*/asN+lasN+1)(53N+1)§, . (2.67)



46

where
SV(N+1)* = O, (2.68)
(v awm1y*/3sy,, ) (T 1) Tcy RAPN (2.69)
(22v (1) * /08y, 98,.) = (YN+1)TGgg(YN+1) e MERYPN ., RIPNy (5.70)

The required starting conditions are thérefore provided by
(2.68), (2.69) and (2.70).

Having developed the results needed for the (sequential)
optimisation of Su(k) as k decreases from N to 1, we next state the

resulting optimisation algorithm.

2.4.4 Statement of the Second-Order Optimisation Algorithm

The following algorithm is designed to choosé'thé optimal
control function belonging to L(pN) for the optimisation problem of
2.4.2 as a linear function of initial conditioms x, = &S + X329 e X(q).
1) Choose nominal components aN which exactly characterise a nominal
control function # = FNﬁN which belongs to L(pN). It is desirable
(but not at all essential) that ## should be a sensible guess at the
ﬁs-optimal control function belonging to L(pN), in order to try to limit
the size of the control function change relativé to ## which has to be
made to optimise the control function - since large control function
changes mighf lead to significant inaccuracies when digital computers,
with their finite word length, are used.

Go to 2)
2) Calculate the output function J associated with the nominal initial

2 s - . . NN . .
condition X and the nominal control function # = F ', using convolution-—

description (2.28). Evaluate and store the following derivatives of
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‘F(y(t),ﬂ(t),t): Fyp(t), Foo(e), Fy(r), Fpp (1), Fp(t), Ve e T
Also evaluate and store the following derivatives of G(y(tf)): Gy, ny.
Go to 3). -

3) Evaluate the terms SV(N+1)%, (BV(N+1)*/BSN+1) and
(BZV(N+1)*/BSN+188N+1) of an exact second-ordér éxpansion for
6V[N+1;63N+1)* using (2.68), (2.69) and (2.70). Go to 4).

4) Set k = N. Go to 5).

5) Calculate the terms (BF(k)/Bsk+l) and (BZF(k)/Bs of an

141 %%41)
exact second~order expansion for SF(6y(6sk,6u(k)),6u(k),k) using (2.47)

and (2.48). Calculate the terms (BU(k)*/Bs and (BZU(k)*/Bs
i

") 141 %k41)
of an exact second-order expansion for 6U(k;6$k+l)* using (2.50) and (2.51)

If T'(k) of (2.58) is not p.d., stop — since Su(k) cannot be
optimised and there exists no optimal control fumction belonging to L(pN)
for any x_ € X(q).

~If (k) is p.d., calculate the parameters a(k) and (B(k))
which determine the optimal component change Su(k)*, using (2.56) and
(2.57) and recalling partitions (2.53) and (2.54). It will be apparent
from Lemma 2.5.4 of 2.5 that a sufficient condition for the existence of
an xs—0ptima1 coﬁtrol function belonging to L(pg) for all x e X{(q), and
thus for T'(k) to be p.d., is that Assumptiom 2.5.1 of 2.5 hold. Since.
r¢k) is p.d., 6V(k;ask)* exists, so calculate the terms
8V (k)*, (BV(k)*/ask] and (BZV(k)*/?skask] of an exact second-order
expansion for GV(k;Gsk]* using (2.60), (2.61) and 2.62).

If k ¥ 1, further component changes have yet to be optimised,

so set k =k - 1 and go to 5).
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If k =1, the parameters o and B which determine all optimal
component changes have been détérminéd, 50 go to 6).
6) The xs-optimal control function bélonging to L(pN) can now be
determined for any initial condition x_ = &s + X522 e X(q), and is
w(t)x = P, Ve eT,

where, from (2.31), (2.32) and (2.55):

wWr = @M e alx = (@@ L @Wrsmx )T,
sw()* = o) + (8 (89, |
su()* = a2 + (@) [z 1}, |

(Su(l)*
tveteasetvane !
su(id* = @)+ (8())[sx% 1,
6uj-1*
su* = o + (p){sx? Y,
6uN-1*

and where

6uj_1*

(T oo swG)T, v e Te,N).

2.4.5 The Optimal Performance Index orn L(pN)

For the optimisation problem of 2.4.2, denote by V(pN;xs]* the
xs—minimal performance index on L(pN). Denote the performance index
for the nominal initial condition &s and the nominal control function

N N N . as
4 =F1U of 2.4.4 by V(pN;ms,ﬂ ). - Then, from the definition of
'8V(1365,)* of (2.35) and the fact that V(1;S,,u;) of (2.33) is equal to

performance index (2.29), we see that:
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-

v(pnsE rleat)x = min V(1 3+89) |, Girow)))
sl

= ViensE @)+ sv(138e))%, (2.71)
vhere, from (2.32): &8sy = éx°. (2.72)
If optimisation on L(pN) is possible (i.e. if T(k) is p.d.,
Vk e T(N)), the terms sV(1)*, (3V(1)*/3s;) and (3%V(1)%/ds;9s,) of an
exact second-order expansion for GV(I;GSIJ* are available after stage 5)

of the clgorithm of 2.4.4 has been implemented with k = 1. Then we see

from (2.71) and (2.72) that:

V(pN;EsH.(chxq}*. = V(pNiE,AY) ¢ D +
<(avarrrae ), (69> + $e(sD), (529 /o8 20,) (T, (2.73)
where, from (2.68) and (2. 60) ’
V(L* = —12 <(a)),r 0 (alk))>. (2.74)

The dependence of the xs-mlnlmal performance index on L(pN) on
initial conditions z = Es +X3629 ¢ X(q) might be useful information
for con-rol system design purposes; and is clear from (2.73).

The condition for Su(k)* to exist for all k e I(N) is that
I'(k) should be p.d. for all k e I(N). -If I'(k) is p.d. fﬁr all k e I(W),
it is clear from (2.73) and (2.74) that

v(pN;E )* < V(pN;Es,ﬁN) R

i.e. that the xs—minimal performance index on L(ﬁN) is certainly not
greater than the nominal performance index V(pN;Es,&N), as would be

expected.

2.4.6 Comments Concerning Computation

V Comment 2.4.2 Since all the second-derivative matrices used by
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the algorithm of 2.4.4 are symmetric, only the elements belonging to the
upper trianéle of each such matrix need bé evaluated and stored. This
reduces the computational effort required and, perhaps more important,

A reduces the number of computer storage locations needeﬁ.

vV Comment 2.4.3 _ The number of elements assoclated with the

expansion terms SV(k)¥*, (av(k)*/ask) and (32V(k)*/askask] of an exact
second~order expansion for §V(k;63k)* decreases as k decreases from

N+l to 1 during the operation of the algorithm of 2.4.4. In fact, for
all k e I(N), the expansion terms for GV(k;Gsk)* which are computed
using (2.60), (2.61) and (2.62) and the terms a(k) and (B(k)) of (2.56)
and (2.57) can all be stored in the block of storage needed to stcre the
expansion terms for 6V(k+l;63k+l]*, which are no longer needed once the
previously mentioned terms have been determined. This arises because:

(2) SV(k)* can be written over SV(k+1)%*,

(b) (3V(k)*/3sk) can be written over (3V(k+l)*/3sk+l)l and
a(k)
T .
(c) ( (azv(k)*/askask) (B(k)) ) can be written over
2 - ’ .
(? V(k+1)*/38k+138k+1) even when the elements belonging to the

upper triangle only‘of each second-derivative»matrix are stored.

The expansion terms for GVCk;Gsk)* together with the terms
al(i), (B(j)), ¥j € T(k,N) which are calculated by the algorithm of 2.4.4
as k decreases from N to 1 can therefore all be stored in the block of

storage needed to store SV(N+1)*, [3V(N+1)*/83N+l) and

2 % . . .
A (3 V(N+1) /33N+133N+1), the starting conditions of (2.68), (2.69) and (2.70

V Comment 2.4.4 When the xs-optimal control function belonging to
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L(pN) has been calculated and applied to the dynamical system considered
in 2.4.2, the resulting performance index should be V(pN;xs)* of (2.73).
This can be used as a check on the xs—optimality of the calculated z -
optimal control function belonging to L(pN).

Comment 2.4.8 The behaviour of the xs-optimal performance

index on L(pN) as a function of initial conditions x € X(q) may, however,
be of no interest. In this case a reduction in the computational effort
reéuired may be achieved by dropping all terms of the type (B—/axq) and
(82—/8xq8xq) from all the expansions associated with the algorithm of 2.4.4.

This does not affect the determination of the xs—optimal control function
[

belonging to L(pN) as a linear function of x e X(q).

Comment 2.4.6 If the optimal control function belonging to

L(pN) is not required as a function of x, € X(q) but is only required for

the nominal initial condition &s, we can re-define 8s, of (2.32) as

k
Guk-l, instead of {82% ). The algorithm of 2.4.4 is then essentially

duk_l in that all expansion terms such as (8-/§xq),

unchanged save
(32~/3xq3xq), (32~/3u(k)axq), etc., are dropped, which clearly reduces

the computational effort required.

2.4.7 Extensions

The range of optimisation problems to which the algorithm of
2.4.4 can be applied is here extended by introducing additional variables

which can be treated in the same way as initial conditioms.

Comment 2.4.7 . The initial condition at time t for the system
with the convolution-description of (2.28) can be considered to be

established by the system input before time tg if the system exists
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béfore ts (for an arbitrarily long time,say) and if the system is
controllable in the sense that any initial condition x(ts) = x_ can be
established by suitable choice of the input function u before te (on
(-m,ts), say). The system may then be considered to have the following
convolution-description:

y(r) = [Ew@,Dutdr + p(oule), Ve e T,

For many such systems, the history of the entire input function
u &efore time tg (i.e. on (-w,ts)) may be unnecessary from the practical
point of view, as far as the output y on T is concerned, if the input
before some time by <t has negligible effect on y on 7. Thg input
function on {tI,tS) may then be characterised by compoﬁents of basis~
functions which can be non-zero only on'{tI,ts) and are zero elsevhere.
The components can then be considered as initial conditions for the
system at ts and can be assembled in a vector xs. The output Y oan
can then be written as
y(t) = ‘P(t,ts)xs + ft Wit,Tult)dt + D(tu(t), VYt e T, (2.75)
where each column of ?(t,:s) gives the effect on y¥(t) of a unit component
of a basis-function present in u on {tI,ts). Since (2.75) has the same
form as convolution-description (2.28), the second-order optimisation
algorithm which we have developed in 2.4.3 and stated in 2.4.4 can be
used to optimise performance index (2.29) on L(pN) when convolution-

description (2.28) is replaced by convolution-description (2.75).

Comment 2.4.8 It is sometimes desired to cause the output

function y of a dynamical system such as that considered in 2.4.2 to be -

as close as possible to a specified output function Y4 in that
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is smallest, where § is n.n.d. on T and R is p.d. on T,
If Yq is exactly characterised by components (wﬁicﬁ are assembled
into a vector b) of some basis-functions and can be written as
yd(t)_ = E()b, Yt e T,
the error between y and Yq can be written as
e(®) = (v(t,t) —a(c))[xs] + jz W(t,T)u(tddr + D(e)ule),
> ’ Vt e T. (2.76)
Then, if performance index (2.29) is replaced by
ffF(e(t),u(t),t}dt -
where )

Fle(®)u(t),t)] = <(e(0)),0®) (e®)> + <@®),R(®)um)>, VteT,
the second-order optimisation algorithm stated in 2.4.4 can be used to
determine the optimzl control function belonging to L(pN) for this
'follower' problem when convolution—description (2.28) is replaced by
convolution-description (2.76) and [xs} is treated as the initial

' N b

condition vector.

Comment 2.4.9 Clearly any combination of ini;ial conditions

of the types considered in Comment 2.4.7 and Comment 2.4.8 can be

considered.

2.4.8 Discrete-Time Performance Indices

An algorithm essentially the same as that developed in 2.4.3

and stated in 2.4.4 can be developed for problems of the following type:
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“for the dynamical system with the convolutlon—descrlptlon

Ypep . = VEHL Dz o+ XlW(k**l.J)u(J) Vk e I(N), (2.77)
minimise with respect to u(k), Vk e I(N), the scalar performance index

vV = kle(yk_'_l,u(k),k] + Glyga)s
where '
F[yk+l,u(k) ,k) is twice differentiable ﬁth respect to'y, . and u(k)
and has zero higher-order derivatives with respect to these, Vk ¢ I(N),
G(yN+1} is .tnfice differentiable with respect to Yye1 and has zero
higher—-order derivatives with respect to Yye1®
Convolution-description (2.77) is, for example, an exact

convolution—description for the system

. = Ax +Bku(k) r xo =2,

k+l - k'k 1 s
Ypal = Crelrnn + DD
k e I(NW),

when the terms ¢ and W of convolution-description (2.77) are given by

Y+, = € a0(kel,1), Vhe (N, -

W(k+1l,j) = Cha® (k*1, J+1)B + 80k, 3)D;, Vk>i, j e 1),
where ’

e(k+1,3) = A 0,5 : (G,)) = I, k>3, j ¢ I(W.

2.4.9 Concluding Comments

We have considered the optimisation problem of 2.4.2 and have
developed an optimisation algorithm, summarised id 2.4.4, for choosing
the optimal control function belonging to L(pN) as a linear function of

initial conditions x = :JT:S + X362% ¢ X(q). The algorithm is based on-
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Dynamic Programming and is believed to be novel.

Balakrishnan {25} and Hsieh {26} have also considered control
function optimisation‘for linear convolution-described dynamical systems.
They also calculate seconé-derivative information but they only use it to
determine the gradient function (and the optimal step in the associated
search direction) for each control function which arises during the
implementation of the first-order gradient algorithms which they use.
Their aléorithms do not necessarily yield convergence to the optimal
control function in one (or many) iterations and do not enable optimal
-control functions to be determined as a function of initial conditioums.
Our algorithm of 2.4.4, however, makes full use of calculated second-
derivative terms to determine the optimal control function belonging to
oﬁr linear manifold L(pN) as a linear function of initial conditions
x € X(q) .

| In 2.5 we shall consider theoretically optimisation on L(pN)
uéing the inverse of a pN x pN second-derivative matrix, (BZV/auNBuN).
The Dynamic Programming based algorithm of 2.4.4 deter?ines the ms—optimal
control function belonging to L(pN) as a function of initial conditions
T € X(q) without the explicit evaluation and inversion of (BZV/BuNBﬁF?,
which is advantageous. Another feature of the Dynamic Programming based
algorithm is that the resulting control law (of stage 6) of 2.4.4)
determines.the optimal control function on each interval Tj as a function
of the change SSj, which is exactly characterised by st = ({6xq}T{6uj-l}Ty€
in the effective convolution state at the start of Tj from its nominal

value of Sj- If Ssj were to be estimated from the response of the system

.
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up to time Tj in such a way as to cause the response of convolution-
description (2.28) to be as close as possible to that of the system
being controlled, a potentially useful control law would result which
would automatically tend to compensate for any differences there might be
betwveen convolution-description (2.28), used for determining the optimal
control law, and the actual convolution-description of the syst.:em being

controlled.
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2.5 e-Approximations to Optimal Control Functions and

Optimal Control Laws

The optimisation problem of 2.4.2 is considered. In-2.5.1 is
developed a simple and computationally inexpensive means for determining
a lower-bound for the xg-~minimal performance index on L(pN) when the
xg~optimal control function belonging to L(pN) is not known. A similar
result is also obtained for all initial conditions belonging to X(q) when
there ié available only a non-optimal control law yielding control

- functions belonging to L(pN) as a function of initial conditions belonging
to X(q). We explain in 2.5.2 how the results can be used to:decide in

a simple and computationally inexpensive way whether the comput;tional
expense involved in optimising on a linear manfold L(pNS of larger
dinension than that of L(pN) could be profitable, performance-index wise,
before actually optimising on L(pN). Some concluding comments are

contained in 2.5.3.

2.5.1 Lower-Bounds for the Minimal Performance Index on L(pN)

Assumption 2.5.1 Suppose that a nominal control function # = FNuN,

which‘belongs to L(pN), is applied to the dynamical systém considéred in
2.4.2 for the initial condition Z; and yields an output function é and

a performan?e index value of V[pN;&s,uN). Suppose also that for all
bounded Su and dy:

F(@+oy) (0), rowd (8),t) = F(y(e),m(t),t) + <(Fg(t)),(6y(t))> +
1<(sy(0)), (Fyy(0)) (by(0))> + <(Fy(e)), (su(®))> +
%<(6u(t)),TFﬁﬂ(t))(6u(t))>, Yt eT,
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c(@reyd(ep)) = elgiee)) + <(ep), (syep))> + d<(sy(ep)), (655) (sy(ep))>,
where '
Fy(t) = F{g(r),a(t),t)y, ete.,

Fy, Fyg’ F, and F,, are continuous almost everywhere on T and
are bounded on T,

Fﬂﬁ is p.d. on T, F__ is n.n.d. on T,

Yy
G. exists and ny is bounded and n.n.d.

y

Assume finally that the linear independence of the basis-functions
f of 2.4.1 is such that, for all j e¢ I(N), there do not exist scalars Gy
which are not all zero, such that- 'glai i,j(t) =0 forallteT except |
for t belonging to a set of measurel;ero. ‘

The main result of this sub-section is contained in the

following Remark.

Remark 2.5.1 Consider the optimisation problem of 2.4.2 when

Assumption 2.5.1 holds. Then a lower-bound for the Z -—minimal performance

index on L(pN), evaluated for the (potentially non-optimal) control

r

function & = AR} ¢ L(pN), is:

v . -

V(gu;zs,u‘q)* = vipN;z, 8N -

gk)jl < [av(pN;as,uN)/ au(k)), (8,) -1 [QV(pN;:’f:S,z'ZN)/Bu(k)) >,
where

B = ka(E(k,t))TFﬂu(t)(F(k,t))dt e M(RP » RP); Yk e TN,

(VN 26, 20 /0d) = [ L () ry(e) + @ ®) e +
IES (W(t,r)i”(r)_)TFy(t)dr + [W(tf,t)FN(t)JTGy }at ’
+ (D(tf)FN(tf))TGy e &N, (2.78)

(av(pN;zs,ﬁN)/auN) is partitioned as



59

( (ovipN;2g,#/0u@)T ... (sv(pN;zg,#%) /0u)T )T
and where

o (3V(pNszg,uN) /ou(k)) e RP, ¥k e T(N).

V Comment 2.5.1 Since 5 may be any initial condition belonging to
R, the lower-bound result of Remark 2.5.l may be used to determine a
lower-bound for the xg-minimal performance index on L(pN) for any initial

A condition xg € R?.\

We next prove Remark 2.5.1, for which the following lemmas
are helpful.

V Lemma 2.5.1 When Assumption 2.5.1 holds, the performance index
for the optimisation problem of 2.4.2 for an initial condition
zg = &g + X96x9 € X(q) and a control function u = M+l e L(pN) is:
V[pN;£s+Xq6xq,aN+6uN] = V[pN;&s,ﬂN] + <(8V(pN;&S,ﬁN)/3xq],(6xq]> +
< (829), (32v/22%029) (629)> + <(aV(pN;&S,ﬁN)/auNL(GﬁN]> +

<(8M), (32v/2uMox) (529)> +  p<(8u), (22v/0o) (6uN)>,

where

(aV(pN;&s,ﬁN)/auN is as defined in Remark 2.5.1,

(22v/euMeu) = [t (FN(0))TEgy(e) PV(®)) +

()P (£)) Try5 (0 (D)) +

j d'rlf dty (W(t, Tl)FN(Tl))TF....(t)(W(t 10FN(15))  +

(It [W(tsT)FN(T))TF~~(t) (D(t)FN(t))dT )T 1 4+
(D(tf)FN(tf)]TG....(D(tf)FN(tf)] +

( J7(tee, FN0)) Tegy (D) (eg))ar )F

Jyary [rar, (W(eg,t )FN(Tl))TG....[W(tf,'rz)FN('rz)] e M(RPN 5 RPNy,
and where all expansion terms [8V(pN Bg,i )/aug] a2v/auN FU, etc.,

A are bounded.
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V Proof of Lemma 2.5.1 The control function change from i = PR to

N

u = FN(ﬁ+6u)N is, from 2.4.1, su(t) = FN(t)Gu , Yt e T. 'The output
function change due to an initial condition change of x% 5% fronlﬁs and
the control function change F’NéuN is therefore, from convolution-.
description (2.28):

(e = w(e,e)xled + Jt F:’(t,'r)FN('r)cSuNd'r + p(FN Y, vee T
On using these changes withsthe expansions of Assumption 2.5.1, the
A results of Lemma 2.5.1 emergei

V Lemma _2.5.2 - When Assumption 2.5.1 holds, (32v/au’au®) of

Lemma 2.5.1 is symmetric, bounded, p.d. and -can be written as

v/t = B o+ &
where -
B o= (5, ) e MR - RN,
: o
Es.
o -
E e M(RP + RP) is as defined in Remark 2.5.1, Vk e I(N),

and where -

.E is symmetric, bounded and p.d., H ¢ M(RPN - RPN) and is symmetric,

A bounded and n.n.d., Ek is bounded and p.d., Yk e I(N).

Vv Proof of Lemma 2.5.2 Suppose Assumption 2.5.1 holds.
Write the RHS ofl(azvlaunéun] of Lemma 2.5.1 as E + H where
: N \ N ' :
E = jT(F (£)) "y (0 (77 (2D e (2.79)
E is therefore symmetric. E is bounded since FN (of 2.4.1) is bounded,

Fﬁﬁ is bounded (Assumption 2.5.1) and tf - ts < o (from-2.4.2). Also:



<(6uN3,E(6uN3> > 0 if Gug # O because
(a) <(6uN3,F(6uN5>. = st(FN(t)GuNS,Fﬁa(t)(FN(t)auN5>df,

®)

& is not zero everywhere on T if éug # O since the basis-func=~
tions f which constitue FN“(defined in 2.4.1) are linearly-independent,
(c) Fﬁﬁ is p.d. on T (Assumption 2.5.1). |
F is therefore p.d.

From 2.4.1, F(t) = (F(1,£) ... F(N,b), ¥teT,
where F(k,t) = O(m,p) if t ¢ Tk, Uk ¢ T(N). Hence Z of (2.79) can be
written as E = ITI(F(I,t))TF{a:(t) (F(1,t))at 0 :

T
0 J'TN(F(N,t)) For (£) (F(N, ©))ae
Clearly E can only be bounded, symmetric and p.d. if
ka(F(k,t)}Ifﬁ&(f)[F(k,t))dt is bounded, symmetric and p.d., ¥k e I(N).
Now <(6uN),H(<SuN)> > 0O because
(a) <{ou),H(ou')> = J'T<_[6y(t)),Fgg(t) (sy(t))>dt + <(5y(tf)),(;gg(6y(tf)}
when §y(t) = J'EW(t,'r)FN(‘E)GuNdT + DOFN ()&, Ve e T, and
s
(d) Jjﬁ(éy(t)),Fgg(t)(éy(t))>dt..+ <(6y(tf)),Ggg(6y(tf))> > 0 since
F~~ is n.n.d. on T and G~. is n.n.d. (Assumptica 2.5.1).
yy yy
H is therefore n.n.d. H is bounded since W and D are bounded (from
2.4.2), FN is bounded (from 2.4.1), Fgg and Ggg are bounded (Assumption

2.5.1) and t. = ts < » (from 2.4.2).

£
We see that (92v/au’au") is p.d. since (02v/mlou’) = E + &

t

where E is p.d. and H is n.n.d. ' (QZV/BuNBuN) is symmetric from its .
definition in Lemma 2.5.1 and H is symmetric since H = (BZV/SuNBuN) - E.

A This concludes the broof of Lemma 2.5.2,
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V Lemma 2.5.3 Suppose Z = X + Y
where
Z, X, Y e M(Ri - Ri) and are bounded and symmetrié;
X is p.d. and Y is n.n.d.
Then Z 1 = X1 - X
A where X is bounded, symmetric and n.n.d.

V Proof of Lemma 2.5.3 Since Y is real, bounded, symmetric and n.n.d.,

it has the spectral representation
Y = vm%T
where
V is a matrix with columns which are the real, orthonormal
eigenvectors of Y, and
A is a diagonal matrix which has diagonal elements which are
the bounded, real positive (or zero) square roots of the eigenvalues of Y.
Then
2 = X + v o (2.80)
Pre-multiply (2.80) by Z_} and post-multiply the result by X’l,
noting that both 271 and ¥ !.exist since both ave p.d., to give

1 o= g1 LyanTvTz L, - (2.81)

+ 27
Post-multiply (2.81) by VA, to give
Tl = 27z + o o).
Sir‘lce X is pud., (T + (VA)TX’IWA)] is p.d. and therefore
invertible, so that ‘ | _ . _
27w = xlua(r + onTx o). | (2.82)

On using (2.82) with (2.81) it can be seen that
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-

27 o=yl g

vhere k= (0TEF Yz on T em) Y.

A

v

X is clearly symmetric and is n.n.d. since (I + (_VA)TX.]'(VA)) is
p.d. That X is bounded follows from the fact that (I + (VA)TX “(Vn)) and
X are p.d., the boundedness of the eigenvalues of Y and the fact that the
_columns of V are orthonormal. This concludes the proof of Lemma 2.5.3.
Lemma 2.5.4 Suppose Assumption 2.5.1 holds. Then we see
from Lemmas 2.5.1 and 2.5.2 that the (:"f:sﬁfquq)-minimal performance index

on L(pN) exists for any bounded initial condition :Es+Xq6xq e X(q) and is

vpmsZ #xlsY)* = min v(pN;E_+x%62?, i Neu)
. f&u i
= V[pN;&ES,iZN) + <[_8V(pN;:'ES,ﬁN)/qu),((qu)?
+ 3<f8x?), (82v/ac%ax?) (82¥)> - {<{g(5xq))',(azv/auNauN)'l(g(qu))%
where  g(&x?) = (BV(pN;:ES,ﬁN)/éuN) + (22v/2uMaz%) (623

The existence of a unique minimising su confirms the existence of a ’
unique (:ES+Xq6:ch) -optimal control function belonging to L(pN).

Proof of Remark 2.5.1 Suppose Assumption 2.5.1 holds.

From Lemma 2.5.4, the :’Es—minimal performance index on L(pN) is
v (pN;E ) £ = v (PN;:ES,;’ZN)
- (v emE " /ey, (2v/ oM ey T (v emsE LD fau)>. (2.83)
From Lemma 2.5.2 ' '
v/ = E o+ &
where E is p-d. and H is n.n.d. On using Lemma 2.5.3 we see that
(il BT - e
where X" is n.n.de Then, from (2.83):
V(pN;?és)*. = V(pN;iﬁs,i’ZN - %<[8V(pN;?x’:s,ﬁN)/8uls,E'-l(aV(pN;&is,ﬁN)/?uN)>

+ <oV (pN;?I:s,ﬁN) 15l , k" (v (pN; s,ﬁN)/ aul)>
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fIv

V(pN;:’i?s,iZN) - < (BV(pN;i‘s,ﬂN) /auN) ,E'1 (BV(pN;i‘s,ﬁN)/auN) >

A V(pN;zg,ut)*. ' (2.84)

On using the block-diagonal structure for E of Lemma 2.5.2 and
the partition for (BV(pN;&s,ﬂN)/BuN) of Remark 2.5.1, %(pN;ﬁs,ﬁN)* of
(2.84) becomes V(pN;&g,iN)* of Remark 2.5.1.

%(pN;ﬁs,ﬁN)* is, from (2.84) a lower—bouﬁd for the Zg—minimal
performance index on L(pN), evaluated for the (potentially non-optimal)
control function & = FAZY e L(pN).

A This concludes the proof of Remark 2.5.1.

V Comment 2.5.2 The calculation of the lower-bound for the

2g-minimal performance index on L(pN) using Remark 2.5.1 is (potentially)
considerably less expensive computationally than the calculation of the
%g—minimal performance index on L(QN) using (2.83) because

(a) ghe determination of the minimal performance index V[pN;ﬁs)* using
(2.83) requires the evaluation and inversion of the pN kx pN matrix
(BZVIGuNauN),

(b) the determination of the IOWfr-bOUHd %(pN;is,ﬂN]* using Remark 2.5.1
requires the evaluation and invergion of N matrices which are each p x p,
(¢)  the inversion of N matrices which are each p x p is potentially
considerably less expensive computationally than the inversion of one

pN x pN matrix, .

(d) the calculation of the p X p matrix Ej of Remark 2.5.1 for all

k € I(N) requires (potentially) considerably less computational effort

A than the evaluation of the pN x pN matrix {aZV/auNauN) of Lemma 2.5.1.
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V Comment 2.5.3 We see from (2.83) and (2.84) that

v(pN;Zg, i) - V(pN;Zs)* =
1< (éV(pN;S:S,aN)/auN) , (82v/9uN3uN) 71 (av (pN; &g, i) /00N) >,
V(pN;Eg)* - V(pN;ig,iN)* =
1< (av(oN;z,, i) /o) k" (5V (pN; g, 2) /) >,
 Hence:

Amin(K")Amin((azvlauNauN)) I V(PN;ﬁSsﬁN) - V(PN;xs]* l

< | vlewzs)* - V(pmszs,dN)* | <
Apax (B Apag ((32v/3uNaul)y | v(pN;zg,#N) - v(pN;zg)* |. (2.85)

Relation (2.85) bounds the way in which the lower-bound
%(pN;&."s,aN)* approaches the Zg-minimal performance index on L(pN),
V[pN;ﬁs]*, as the nominal control function # = FMVN e L(pN) approaches
the Zg-optimal control function belonging to L(pN), i.e. as V[pN;is,ﬂN)
approaches V[pN;ﬁs)*. When #i is the Zg-optimal control function‘belong-
ing to L(pN), V(pN;ES,ﬁN) = V[pN;ﬁs)* so that, from (2.85), the lower-
bound %(pN;ﬁs,ﬁN)* for the 2g—minimal performance index on L(pN) is equal

A to the Zg-minimal performance index on L(pN), V(pN;xs)*.

We next prove

V Remark 2.5.2 Consider the control law

u(t) = PN)ul (@ +x%629), Ve e T, (2.86)
which determines control functions belonging to L(pN) as a function of

initial conditions zg = &, + X%96z% e X(q) for the optimisation problem of
2.4.2 where ’

. BN@gaxlsad) = & + o + (&) (62%) (2.87)
and

uN, o e RPN (BN) e M(RY » RPNy,
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Suppose tﬁat
(1) Assumption 2.5.1 holds,
(2) for the initial condition Zg, the control function u = FNuNGES)
yielded by control law (2.86) is applied to the dynamical system considered
in 2.4.2 and yields a gradient (aV(pN;ﬁS,uN(is))/auN} e RPN which is
partitioned as ( g(@s,1)T ... g(&g,MT )T,
(3) for each i e I(q), the initial condition Zg is replaced by
x; = Xg + Xilﬁﬁgl (on the boundary of X(q) of Definition 1.3.2) and the
corresponding control function u = FNuN(mi) yieldgd by control law (2.86)
is applied to the dynamical system considered in 2.4.2 and yields a
gradient (aV(pN;xi,uNCxi))/auN) e RPY yhich is partitioned as
(9@,DT oor g,mT )T,
where )
glxg,k), glxi,k) e RP, ¥k e T(N), ¥i e 1(q),
For x5 = &g and ;7:.3 = x5, Vi e 1(q), (aV(pN;xs,uN(a:s))/BuN]
can be determined using (2.78) with Z, replaced by xs and al replaced
by uN(xS) and Fy, F; and G‘17 evaluated for the control function u = FNuN(xs)
and the associated response y of (2.28) for the initial condition xzg.
Then:
V(pN;:‘t’:;-l-Xan:q)* > V(pN;zg+xdszd, N (2 +x%529)) - e*
for all g + X%sx9 e‘R(q), .
where .
V(pN;&s+Xq6xq)* is the (&;+Xq6mq)—minimal performance index on
on L(pN),

V(pN;§S+XQGxQ,uN(ﬁs+Xq6xq)) is the performance index for the
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initial condition Es + X529 resulting from control law (2.86),

ex = | E <(g(§:s,k))f(Ek 'l(g(a"cs,k))>
" .1211I _k£1< (g(&S"k)]’(Ek}_l(g @ k) g E,0)> |
q ¢ N ) 1
’ %551,1211_1(21([9@5 W@ L0}, (5 ) e, 0ngE,0)> |,
A B, = ka(F(k,t))TFw(t) (Fe,t))dt, ¥k e I(N).
V Comment 2.6.4 It will be observed that the result of Remark

2.5.2 gives a lower-bound fér the xs-miniﬁal performance index on L(pN)
for all x_ e ikq) in terms of the performance index yielded by the
A (potentially non-optimal) control law of (2.86).

V Proof of Remark 2.5.2 Suppose Assumption 2.5.1 holds. Then, from

Lemma 2.5.1 and (2.87):
v(pN;:?cs+Xq<sxq,uN(a‘és+Jﬂcmq)+AuN} = v(pN;&s+Xq5xq,uN(5s+xqsxq))
+ <{ (ov(pNsE /o) + (2v/a ™ (o)), ()5
+ <(AuN],{(32v/auNa:cq] + (aigr/aubfauN] GINCRE

+ 1< (0™, (22v/ 2N ) (0>

-

Hence .
(BV(pN;53+Xqqu,uNGEs+XqGéq))/BuN)‘ = g0 4 iilging
where
g = (wvemz ,aN/al) + (2v/atwl) (@),
g% = colum i of {(22v/mMax?) + (2v/a’au™) (8%)1, Vi e I(q),
6z = (&3 ... 6x3)’? (recall Definition 1.3.1).

Therefore, on using the partitions of Remark 2.5.2:

(wemz, m'@ ) /ab) = @@, 0T . g@ Tt = 0 (2.89)
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N
(vemz, @/ = (@, ... g@,mT)T
= g0 + gllsﬁgl, Vi e I(q). ' (2.89)
Thus .
18]l = Uo, 090G, . g, mue,mY)T,
Vie I(q). . (2.90)

The GES+Xq&rq)—minimal performange index on L(pN) is clearly
given by
v(eN;E xsd)w = mi v (oM +xox? N @ _exlan) i)
= (pN'ac +x362% 4 (ac +X &zq))
- <(g + z chqu] [82V/auN } [g + Zglﬁxq)%
On using 1£e arguments involved in the Proof of Remark 2.5.1,

it can be seen that

v (pN;Z +Xqéxq)* 2 v(pN;E +xled (5':S+Xq6:nq))
- ke e+ e
” = [pu & +;qaxq D (@ +xq&zq)) - 3<(g%),E 1 (g0)>
- 1<l - i‘ 1 <ad) ey
i=1 J— 1—

where E is that of Lemma 2.5.2.
For all initial conditions x = 5':5 + x%x? e Y(q) |6xq| < |ch Is

Vi e T(q) (recall Definition 1.3. 2), so that:

. V(pN;‘IES-PXq&Bq)* 2 (pN,x +x%6% uN(.'L' +Xq5mq)) - i< (go) E 1(g0)>
q - -
- LI el - ] L 1 e el
= .— 1—
* ‘sz+Xq6:cq e X(q)« 3= (2.91)

On using the block—-diagonal form of E of Lemma 2.5.2 with (2.88)
and (2.90), the result of (2.91) becomes that of Remark 2.5.2.

This concludes the proofi of Remark 2.5.2.
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2.5.2  e~Approximations

Consider a linear manifold L(pN) defined in the ;ame way that
L(pN) was defined in 2.4.1. Supposé pN > pN and L(pN) C L(pN), so
that L(pN)~is a larger linear manifold than L(pN). Denote the
xs-minimal performance index on L(pN) for the optimisation problem of
2.4.2 by V(pN;xs)*, and that on L(pN) by V(pN;xs)*.

Definition 2.5.1 For the optimisation problem of 2.4.2, the

ms-optimal control function belonging to L(pN) will be referred to as

an eoxs)—approximation to the mS-OPtimal control function belonging to

L(pN) if, for e > O: .
| Vlma s - V(M) | < e

Definition 2.5.2 The control law which determines xs-optimal

control functions belonging to L(pN) as a function of x e X(q) for the
optimisation problem of 2.4.2 will be referred to as an e(i(q))—approx—
imation to the corresponding control law for L(pN) if, for ¢ > O:

| V(pN;xs]* - V(pN;xs]* | L Ués e Ktq).

Definitions 2.5.1 and 2.5.2 provide a méasure of the closeness,
performance-index wise, of optimal control functiions and optimal control
laws for L{pN) to those for L(pN).

1f thé ms-optimal control function bélonging to the smaller |
linear manifold L(pN) is available (pérhaps computed using the algorithm
of 2.4) and Assumption 2.5.1 holdg, we can calculate a lower-bound for the
xs-minimal performance index on L(pN) using Remark 2.5.1 by replacing.

#i of Remark 2:5.1 by the ms—optimal control function belonging to L(pN),

by replacing ES of Remark 2.5.1 by z and by replacing L(pN) of Remark
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"2.5.1 by L(pN). Denote the rgsulting lower-bound for thg xs—minimal
performance index on L(pN) by %(pN;xs];N, where the subscript pN denotes
that the lower-bound for the xs—minimal performance index oﬂ L(pN) is
evaluated for the xs-optimal control function belonging to L(pN).

Since v(pN;xs);N ;=V(pN;és)*, we have

Remark 2.5.3 The xs—optimal control function belonging to
L(pN) is an e(xs)-approximation to the xs-optimal control function
belonging to L(pN), for e > 0, if:

[V(pN;xs)* - "}'(pN;xs)gnl < Es

Since %(pN;xs)gN is relativély éasy to compute, we can now
determine with relatively little computational effort whether, for some
pre—-chosen € > 0, the xs—optimal control function belonging to L(pN) is-
an eﬁrs)—approximation to the ms-optimal control function belonging to
L(pN), and thus whethér the former can be considéred to be an adequate
approximation to the latter, without the computational expense involved in
determining the xs—optimal control function bélonging to L(pN) and the
associated optimal performance index on L(pN). This information can be
used to decide whether, whén'the xs—optimal concrol function belonging
to L(pN) has béén detérmined, the extra computational effort which would
be réquired to optimise on L(pN) would be likely to lead to a worthwhile
performance, improvement (i.e. a worthwhile performance index decrease) .
An upper-bound for the performance index decrease is clearyy

elplsm)hy = | V(pMsz)x - V(pNsz Yoy |-
This information is of considerable use computationally and would not be

available with so little computational expense without our lower-bound



71

result of Remark 2.5.1.

V Remark 2.5.4 It can be seen that the result of Remark 2.5.2

can be used when

(a) L(pN) is replaced by L(pN) in Remark 2.5.2,

(b) control law (2.86) is the control law which determines optimal
control functions belonging to L(pN) as a function of initial conditions
z e X(q) (it is clear that the control law used in stage 6) of the
algorithm of 2.5.4 couid be written in the form of (2.86)). ~ ~

Then V (pN;2_+1%62%,u" @ +1%62%)) of Remark 2.5.2 is the
(£S+Xq6xq)—minima1 performance index on L(pN), V(pN;és+Xq6xq)*, and the
result of Remark 2.5.2 states that:

V(N2 sxlsad)r 2 v(pm;z_sxfeal)x - ex
for all initial conditions z = &s + %627 ¢ qu),

i.e. that the optimal control law which determines optimal control
functions belonging to L(pN) as a functien of initial conditions z e X(a)
is an e(ikq)}—approximation to the optimal control law which determines

A optimal control functions belonging to L(pN) for all e > e*.

We can thas detérmiﬁe whether, for any pre-chosen £ > 0, the
optimal control law determining optimal control functioﬁs belonging to
L(pN) is an e(yfq))—apprOQimation to the optimal control law determining
optimal control functions belonging to L(pN) without having to determine
the optimal control law for L(pN).‘

| This enables us to decide whether the computational expense
involved in deéermining the optimal control law for the larger linear

manifold L(pN) would be worthwhile, performance-index wise, when the
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optimal control law for the smaller linear manifold, L(pN), is already
available and optimal control functions are of interest for all initial

conditions belonging to Ekq).

2.5.3 Concluding Comments

We have developed in 2.5.1 results which yield, Qith relatively
little computational expense, lower-bounds for the ms—minimal performance
index on L(pN) for any particular initial_condition x (Remark 2.5.1)
and for all initial conditions belonging to th) (Remark 2.5.2). These
results are believed to be novel. We have explained in 2.5.2 how the
results can be used to decide whether, when optimisation on L(pN) has
been achieved, optimisation on a linear manifold L(pN) of larger dimension
than L(pN) could be profitable, performance-index wiée, before actually
undertaking the computational expense involved in optimisation on'the
larger linear manifold. This is believed to be novel and to be of

considerable value from the computational point of view.
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2.6 A Computed Example

The linear dynamical system which is considered is an axially=-
symmetric idealisation (sketched in Fig. 2.1, below) of an existing tube

and shell counter-flow heat-exchanger.

[ JInsulation
] . ) ]

“ Shell Fluid « Vg : i
i{/[//// VLN TS ITI I TII I T TR IR I F LI AT BT VST TN I o AL /Za
! +

-1 Tube Fluid Vg » i
L rvrer 20777 PRI RI L e e e bl Ll it LE L Ll it ///L!

e ' -
1 1
| —J
- = ||
0 2

Fig 2.1 The Idealised Heat—exchanger

|

The shell is insulated on the outside. The temperature (OF) and

speed of the shell fluid are denoted by B and V_, and those of the tube

B
fluid by 6 and Ve. The temperature of the inter~fluid wall is denoted
by x. Under obvious assumptions, the idealisation is described by the
following partial differential equations: |

(373t + vga/om + m)o(n,t) = mx(n,t),

(8/3t = v 3/on + m Ja(n,t) = mx(n,t),

(3/3t + m, +'m)e(n,t) = moe(n,t) + mB(n,t),

Un e (0,2), - (2.92)

with boundary conditions .
_e(o,t) = ein(t), an uncontrolled input,

8(2,t) = wu(t), a controlled input (note that m = 1 here).

The output of interest is

y(t) = 0(2,t) (note that r = 1 here).
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The parameter values used were:

V, = 0.356 ft sec - m = 0.712 sec
VB = 0.0150 ft sec_I m, = 1.24 sec_1
2 = |1.59 ft ' my = 0.404 secm1
m, = 0.00648 sec L.
The performaﬁce index considered was
v, = fT{<[y(t)—yd(t)),Q(y(t)-yd(t))> + <(u(t)),3[u(t))>}at (2.93)

where @ =10, R = 0.5,
yqalt) = (al(t) EZ(t))(b1 bz)T, VteT, '

1 on {0,100),

[£3]

0 on {100,200},

]
]

1 i
E, = 0 on {0,100}, = 1 on {100,200},
T = {0,200},

all times are in seconds.
The uncontrolled input ein(t) had relatively small effect on the
output y on T for all t < -100, and was therefore ignored. ein on

{-100,200} was assumed to be given exactly by

o, () = (6,00 oo £ ). ... %) s
where o

£,(t) = 1 on {-100,0), =0 on {0,200},
fz(t) = 0.01(t+100) on {-100,0), = 0 on {0,200},

- £5(t) = 1 on {0,100), = O on {-100,0) and {100,200},
£,(t) = 0.0t on {0,100), = 0 on {-100,0) and {100,200},
£, (t) = 1 on {100,200}, = 0 on {~100,100),
f6(t) = 0.01(t-100) on {100,200}, = O on {-100,100).

Following the comments of 2.4.7, the costed output (y-yd) on T



was considered to depend on the control function # on T and on the
following 'initial condition' vector:
zg. = (bg by m %) %y %, %5 %)%, (2.94)
The linear manifolds L(pN), of 2.4.1, on which optimisation was

considered were each spanned by the following N basis-functions:

f1 j(t)_= 1, Yt e T3,

- o, ¥t ¢ T,
Uj € I(N)’
where TX = {0,200/N}, T* = (200(i-1)/N,200i/N}, Vi e 1(2,N).

Since one basis-function was non—-zero on each interval Tj, p of 2.4.1
was one. |

A convolution—-description for the heat—exchange¥ was obtained
for the initial condition zg of”(2.94) and control functions belonging
to L(pN) by
(a) determining the frequency-domain transfer functions y(juw)/u(jw)
and y(jm)/ein(jm) from the partial differential equation description of
(2.92), and
(b) calculating, for each case, the required éime—domain results by
evaluating numerically the inversion integral which maps from the
frequency domain to the time—domain for that case.

The second-order, Dynamic Programming based, optimisation
algorithm of 2.4 was then used to determine the optimal control function
belonging to L(pN) as a function of initial conditions x e R8 by setting

(in 2.4) 3, = 0(8,1), q = 8 and x? = I(8,8), for N =1, 2, 4, 10 and 20.

Trapezoidal integration was used with a step-length of one second.
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For pN = 1, 2, 4, 10, 20 and each of the following initial

conditions
o T
zl = (40 40 0o 0 0o 0o o0 o)
«2 = (20 40 -20 -20 ~20 -20 -10 -30 )T
«3 = (20 10-10 -10 -20 -20 40 20 N
z¥ = (0 0-10-10-20-20 40 20)%,

the optimal control function belonging to L(pN) was then calculated and
applied to the convolution-description of the (idealised) heat-exchanger.
For each case the results were used to determine:

(a) V(pN;xi)*, the xi-minimal performance index on LSpN), which was
sufficiently close to the value which was predicted using the results of
2.4.5 as to be indistinguishable on Fig. 2.2 (below), and

(b) %(pN;x:);N, a lower-bound for the mi—minimal performance index

on L(?N) for N = 100, evaluated for the calculated mi—optimal control
function belonging to L(pN) using the results of 2.5. .

The results are shown in Fig. 2.2 and reveal that the xs—optimal
control function belonging to L(20) is, for eacb of the above inpitial
conditions, an excellent approximation, performance-index wise, to that
which would’Be obtained after xs-optimising on L(100). The results thus
reveal that, for each of the above initial conditions, there would be
negligible return, performance-index wise, for the computational effort
which would be required to optimise on L(100) when the optimal control
function belonging to L(20) for each initial condition is already
available. Since the computational effort required to achieve optimis-

ation on a linear manifold increases with the dimension of the linear
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manifold, this information is valuable from the computational point

of view and demonstrates the usefulness of the lower-bound result

of Remark 2.5.1.
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\



78

Chapter 3 : Optimal Control Function Synthésis using

a Gradient-Decomposition Approach

3.1  Summary

The main optimisation problem considered is stated in 3.2.
Some preliminary definitions and discussion are contained in 3.3. In 3.4
are considered lower-bounds forlthe xs—minimal performance index on the
ecdntrol space in the gradient-decomposition context of thi; chapter, as
well as e[xs]-approximations to the xs—optimal control function belonging
to the control space. Gradient function decompositiog is considered
further in 3.5. An iterative algorithm for determining an s(xs)-approx-
imation to the xs-optimal control function belonging to the control space
is developed in 3.6 and its effectiveness at control function optimisation
is compared with that of the steepest-descent algorithm in 3.7. The
results of the application of the algorithm and lower—bound results to
numerical examples are presented in 3.8. In 3.9 we consider optimal
control function determination as a function of initial conditions and
develop a simple procedure for determining an e(XXq)]-approximation to the
optimal control law which determines optimal control functions belonging
to the control space as a function of initial conditioms belonging‘to X(q).
Some related computational results are presented in 3.10. The approach
of this chabter is applied in 3.11 to ms-optiﬁal control function determin
ation for nonlinear systems with (potentially) non-quadratic and nonlinear
performance index terms. Computational results which demonstrate thé
superiority of the resulting algorithm over the steepest-descent and

conjugate-gradient algorithms are presented in 3.12. Some concluding
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comments are contained in 3.13.

3.2 An Optimisation Problem

The optimisation problem considered throughout most of Chapter 3
is: minimise with respect to the control function u on T the
scalar performance index

V(z,u) = jTF(y(t),u(t),t)dt + Gy(tp) (3.1)
for a linear dynamical system which can be described by
y(r) = wt,e )z, + [° Wt Dultddr, VteT, (3.2)
. S S ts

where Y, W and u are continuous and bounded,

n

x %, + X%zl e X(q), the initial condition

S - S

y(t) e Rr, Ve eT, the costed oﬁtput,
u(t) e Rm, Ve eT, the control,
T.=‘{ts,t oty -t <,

£

and, for any bounded initial condition z and considefed control function u
F has first- and second-derivatives with respect to y and u
which are continuous on T and are bounded, and has zero higher-order
derivatives,
G has bounded first-~ and second-deri?atives with respect to
y(tf) and has zero higher-order derivatives.

Under the above conditions, we see from 2.3 that the gradient
function (BV(xs,u)/au) can be computed using Remark 2.3.1 for any bounded
initial condition T and any bounded and continuous control function u,
and is bounded and continuous on T.

- It will become apparent that the resultsiwhich will be obtained

will be applicable to optimisation problems similar to the above problem
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save in that they are defined when Y, ¥ and u are continuous almost
everywhere and are bounded or are defined for discrete-time or

distributed parameter-systems.

3.3 Optimisation on Translated Linear Manifolds

In this section the k-dimensional translated linear manifold
U(1,k)" of the control space for the optimisation problem of 3.2 is
defined and the xs—optimal control function belonging to it is determined,

as well as the xs—minimal performance index on U(1,k)".

V Definition 3.3.1 Define F(k) = {61, cey 6k} to be a set of
k bounded and m-vector valued basis—functions 4, each with domain T and
each continuous on that domain, which are orthonormal in that

A jT<5i(t),5J.(t)>dt = 8(i,3), ¥ij e T(K).

V Definition 8.3.2 Denote by U the linear space of all bounded

control functions u: T - R* which are continuous on their domain T.

Define U(1,j) to be that linear manifold of U which is spanned by

61, ooy 65, ¥i e I(k). Also define U(j) to be that linear manifold
A of U which is spanned by ﬁj, ¥i e T(x).

V Definition 3.3.3 Define U(1,j)" to be the translate of U(1,3)

along an initial control function u; e U, so that

u@E,iN"™ = u:u=u, +s; Vs e lU(,j)}, Vie I(k).

1
A Define U(j)" similarly, ¥j e I(k).

V Definition 3.3.4 For all j-e I(k), a control function change du

belonging to U(l,j) will be said to be exactly characterised by the

components sud (of .basis-functions 61, ey 55) if
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»

Su = Fjau.J (i.e. Su(t) = Fj (t)du!, Ve e M,

where  F. = (51 55] (i.e. F (t) = (51(t) 53. (1)), Ve M,
. T .
sul = (ou; ... Suj) e R3,
Definition 3.3.6 For all j e I(k), define G(1,j) to be that linear

manifold of the linear space of all gradient functions (8V(xs,u)/3u)
which is séanned by 61, “ey 65. Also, define G(1) to be that linear
manifold which is spanned by 61,

Definition 3.3.6 For all j e I(k), a gradient function

(BV(xs,u)/au} belonging to G(1,j) will be said to be exactly characterised
by the components gJ(xs,u) (of basis-functions 61, . 65) if

(V@ w/mm) = Fiog @, veeT,

» N T j
where g’ (xs,u) = (gl(xs,u) cee gJ. (xs,u)) e R,
Definition 3.3.7 For all j e I(k), a gradient function

(8VGrs,u)/3u) will be said to contain components gjcrs,u) (of basis-
functions 61, .oy ﬂj), or it will be said that components gj(xs,u) are
present in (BVCxS,u)/Su), if gj(xs,u) minimises

[ <3V u) 3 (0)) -F, (533, 130 (@ ) /3 (1)) F; (£)g? It

with respect to gJ e RJ, i.e. if

g @ ) = [ (z, (6)) T (ovie ,uy fou(e)) . (3.3)
Conment 3.3.1 If (B_V(xs,u)/au} e G(1,j), the components

gJst,u) of (3.3)jexactlykcharacterise it, so that
- 3
(Ve u) /) = F.go(e ,u).
For the optimisation problem of 3.2, it can be seen that the-
performance index'V&rs,u} can be expanded about V(ﬁs,ul) in terms of

st=:cs-§seknand Su =u ~u, ¢ U to give

1
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-~

V(S':s-l-dms,ul-l-ﬁu) = V(xs,ul} + <(BV(5§S,u1)/aa:S),(<SxS)>

+ d<(ez ), (92v/0x b ) (82 )> + jT<(aV(5':S,ul-)/au(t)),(5u(t))>dt

+ HTdTlITde (su ('rl)) s (BZV/Bu(Tl) au('rz)) (su (Tz))>

+ j_r<[<5u(r)),(32v/au(r)axs) (8 ) >dx o -G8
where 2, e R", u

1
bounded for bounded Ga:s and Su.

e U and every centribution to the RHS of (3.4) is

For an initial condition change, from 5':8, of éz_ = x98x% ¢ X(q)
and a control function change, from Uyy of Su = thSu.j e UL,j), ¥ e T(k),
we‘see from (3.4) that A
V(S':s-t-Xquq,u

1+Fjauj] = V@ uy) + <(E up) /), (29>

+ b (82}, (02v/ 2x¥52) (62T)> + <[av(5':s,u1)/auj),(6uj)>

+ £<(6uj),T(1,j+1,j)[6uj)> + <(5u5),P(1,q+1,j)(axq}>, (3.5)

where '
(V@ up/weY) = (N (WE up/x) e R,
(22v/at2?) = (Xq]T(azv/axsaxs) (%) e MR > Rq?»,._ o
(WG up/wd) = | (F, @) (V& up/au)ar e R, (3.6)
T(1,3+1,3) = defledfz [Fj (rl)}T(aZV/au (v;)3u(,)) (Fj (1))

e MR =R, , (3.7)
P(1,q+1,3) = L0 () (e2v/au () ) (F)ax

e M@®RY Ry, (3.8)

and all expansion terms such as (aV(&s,ul)/axq}, etc., are bounded.

Comment 3.3.2 We see from (3.7) that T(1,3j-+1,j) is symmetric,
Vi e I(k).
Comment 3.3.3 For all j ¢ I(k), we see from Definition 3.3.7

that (BV(S':S,ul)/BLLJ) of (3.6) is equal to the vector gJ (:Z‘s,ul) of the
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components of basis-functions 61, ces 6j present in (8VC§S,u1)/Bu), i.e.

(Bv(ﬁs,ul)/aw'"] = @ ), Ve 1. | (3.9)
Comment 3.3.4 From (3.9) and (3.5):
3z o730, iy - = q A j
gl @& s upHF8ul) [avcrs+Xq6m ,u1+F5?u ) /aud)
=g @)+ PAeeLie + 7,301,560, Vi e TG, (3.10)

Since chEs+Xq6xq,u1+FjauJ) is the vector of the components of basis=-
functions 61, . 6j present in the gradient function

[BVGiS+Xq6xq,u +Fjau3)/?u}, we see from (3.10) that P(1l,q9+1,j) maps

1

initial condition changes characteriséd by szd to changes in the
components of basis-functions 61,..., 6j present in the gradient function,
For this reason P(1,q+1,j) will be referred to as an X»G map matrix.
Similarly, T(1,j+1,j) maps changes Guj in the eomponenés of basis-functions
61, .o 6j present in the control function % to changes in the components
of basis-funqtions 6i, .oy 6j present in the gradient function, and is

referred to as a U»G map matrix.

Definition 3.3.8 In general we denote the U+G map matrix which

maps changes éuz = (éua vee GubJT in the components of basis-functions

63, vy ﬁb present in the control function to changes Ggi = (ch . ng]T
in the components of basis-functions 6c’ ces 6d present in the gradient
function by T(a,bc,d) e MR o 227N then 58 = T(a,bae,d) o,
Similarly, we denote by T(a+c,d) e M(R1 + Rd_c+1) the U»G map matrix which
maps changes in the component of 63 present in the control function to
changes in the components of 6c’ ooy 6d present in the gradient function,

b-a+l

and we denote by T(a,b+c) e M(R -+ Rl) the U+ map matrix which maps

changes in the components of basis-functions 63, cey 6b present in the
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control function to changes in the component of basis-function ﬁc present
in the gradient function. We interpret T'(a,b»c,c) as the U»G map matrix
which maps changes éuz in the components of basis-functions 6a’ .oy 6b
present in the éontrol function to changes in the component of basis-
function 6c present in the gradient function, i.e. we interpret T(a,b»c,c)
as T(a,b>c). Similarly,.we interpret T(a,a>c,d) as T(a»c,d). We
sometimes denote by 7(a>c) the (scalar) U»G map matrix element which maps
changes Gua in the component of basis-function 6a present in the control

function to changes ch in the component of 6c present in the gradient

function (so that ch = T(a+c)6ua?, and we interpret T'(a,a*c,c) as T(a+c).

Remark 3.3.1 For all j e I(k), the (ES+Xq6xq)—optima1 control
function belonging to U(1,j)" for the optimisation problem of 3.2 is

u1»+ Fsauj(axq)* if aujcaxq)* minimises V(& +x%6z%,u,
with respect to éuj. Therefore if T'(1,3j+1,j) of (3.7) is p.d., the

+Fj6uJ] of (3.5)

(ES+Xq6xq)-optimal control function belonging to U(1l,j)" exists (since
all the expansion terms of (3.5) are bounded) and is

u(j;&s+Xq6xq]*. = u o+ Fjauj(éxq)* ‘
where auj(axq)*_ = -(T(l,j+1,j))71{ ngES,ul) + P(l,q>1,i)82% 3.
The associated (ES+Xq6xq)—ﬁinimal performance index on U(l,j)" is then

v(3 ;;'z':s+Xq6mq)* o= V(ES"'Xq‘quvu +Fj su? (axf-I)*‘)

1
= V(E§,u1) + <(3VC§S,u1)/?xq),(éxq)> + 4<(829), (32v/az%29) (629) >
- £<(gJ<a"cS,u1) + P(1,¢1,5)62%) ,7(1,541,5) " (g7 @ yu)) + P(L,q71,5)8x)>.

Comment 3.3.5 The control function u(j;§s+Xq6mq)* of Remark

3.3.1 ensures that the components of basis-functions 61, ves 8
: J

present in.the gradient function (BV(ES+Xq6xq,u1+F.6uq(qu)*)/au) are
]
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all zero. This is clearly a necessary condition for
Cis+Xq6mq)-optimality on U(1,j)" since it ensures that a small arbitrary
control function change belonging to U(l,3), relative to u(j;&s+Xq6mq)*,

A can cause no first-order performance index change.

7
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3.4 _Eﬁrs)-Approximations to the xs—Optimal Control Function

We consider in 3.4.1 the determination of lower-bounds for the
xs-minimal performance index on the control space U for the 5ptimisation
problem of 3.2 when only a non-ms-optimal control function belonging to
U is available, . The lower-bounds can be computed with little computat-
ional effort. An s&rs)—approximation to the xs—optimal control function
belonging to U is defined in 3.4.2 and is there discussed. The

definitions and notations of 3.3 are used throughout.

3.4.1 Lower—bounds for the xs—Minimal Performance Index on U

Vv Assumption 3.4.1 Consider the optimisation problem of 3.2 and

suppose that for a bounded initial ‘condition x and some contrel function
U, € U, which together determine an output function y through con&olution-
description (3.2), the following expansions hold for any bounded &y and
Su e U: » _
F{@+oy) (1), uyrau) (£),8) = F(y(t),u,(0),t)
+ <(Fy<t)),(6y_(t))>°+ £<(6y(t)),Fyy(t)(6y(t)}>
+ <5, 0], (um)> + d<(au(e),F,, () (u®))>, VeeT,
c((y+ay)(tf)) = c(y<tf)) + <(Gy),(<sy(tf))>
+ (o (ep)),6, (sute)>,
where Fy'and Fu are continuous on T and are bounded,
F__ is continuous on T and is bounded and n.n.d. on T,
F. is continuous, bounded and p.d. on T,

uu

A G exists and G is bounded and n.n.d.
y STTSES AnG By 18 :
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V Assumption 3.4.2 Suppose that [aV(m;xSYVBu] is the gradient
function [aV(xs,u)lau) for the optimisation problem of 3.2 with the
initial condition T of Assumption 3.4.1 and a control funcfion u which
is the x _—optimal control function belonging to U(l,m", 0 <m < j <k,
and that V@ﬂ;xs)* is the xs-minimal performance index on U(1,m)".

Suppose also that (BVOM;xSTVBu) is exactly characterised by the components
gj(m;xs)* of basis-functions 61, .oy 55, so that

A [aV(m;xSYVBu) = Fng(m;xs)*. (3.11)

The main results of this section are contained in

/

V Remark 3.4.1 Consider the optimisation probiem of 3.2 and

assume that Assumptions 3.4.1 and 3.4.2 hold. Then, lower-bounds for
the xs-minimal performance index on the control space U - evaluated
for the xs~optimal control function belonging to U(1,m)" - are

@ V(e )r . = imz )* - 4<(gd mz )], (g7 sz ))>/ax

= V(mz ) - £IT<’[8V(m;xs)*/3u(t)),[BV(m;xs)*lau(t))>dt/)\*

where A% = 22¥ Amin(Fuu(t))’ and
® V(e )y = vims)s '

% - % L
- <(avimz YTou(n)), (B (0)) 7 (avimsz YT ou(t))>dt,
T s uu s
where the lower-bound Q[j;xs); is, potentially, a better (more positive)

A lower-bound.than is V(j;x )* . .
s’m

vV Comment 3.4.1

By considering U(1,0)" to be the sub-set of U

which contains -only the initial control function u; of Assumption 3.4.1,

it can be seen that the lower-bound results of Remark 3.4.1 are valid
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when m is set equal to zero, V(O;:z;s}* is replaced by V(xs,ul),
(_BV(O;xS)*/Bu} is replaced by (BV (:cs,u‘l)/au) and when gj (O;xs)* exactly
characterises (av(acs,ul)/au}, i.e. when (av(acs,ul)/au} = Fjgj (O;acs)*,
The lower-bounds V(j ;:cs)s and %J(J ;xs}’(‘) are then lower-bounds for the
xs—minimal performance index on the control space U - evaluat@ for the
control function Uy

Although statement (a) oé Remark 3.4.1 follows directly from
st.atement (b), it is illuminating to derive it an a somewhat different
way. The proof of Remark 3.4.1 is facilitated by three lemmas, which
are next presented and proved.
Lemma 3.4.1 When Assumption 3.4.1 holds arid je I(k):
7(1,3»1,3) of 3.3 is p.d. and can be written as

T(1,j+1,3) = E(1,j»1,j) + D(1,j-1,3)

vhere  E(1,3»1,j) = fT(Fj (t)}TFuu(t)(Fj(t)}dt and is p.d.,

D(1,51,i) is n.n.d.,

7@,3+1,3), E(1,i+1,3), D(1,i+1,i) ¢ MRI + RI) and are
bounded and symmetric.

Proof of Lemma 3.4.1 It can be seen that when Assumption 3.4.1 holds,

(3%v/3u(ry)Bu(r,)) of (3.4) satisfies
' [Ty Jpary< (o (x))), (207 3w (apdou(n))) (8 (1)) > = <(ay(tf)},cyy(ay(tf)}.>'
+ IT<(6u(t))’Fuu(t) (su(e))>de + fT<(6y(t)},Fyy(t) (sy(t))>dt
when sy(t) = IESW(t,T)Gu(T)d:t, Ve e T (from (3.2)).
From (3.7):
<(sud),r@1,341,5) (sud)> = [ fany<(sute ), 3%/t (x ) tu(x)) ) (u () )

when su(t) = Fj (t)6u,j, Ve e T,



Thus:
<(sud), 71,301, (oud)> = <(owd),E (1,301, 5) (6ud)>
+ <(6uj),D<1,j+1.j)(6uj)> (3.12)

where <(6uJ),E(1,j+1,j)(6uj]>

[<(su(e)),F,, () (su(e))>de,  (3.13)

IRCIOIRMMOICTONLE

<(5uj),p(1,j+1,j)(auj)>

+ <(eyep)se,, (syep)>, (3.14)
when Su(t) = Fj(t)éuj, Ve eT, (3.15)
= [t i
. Sy(t) = ftsW(t,r)Fj(r)Gu dt, Yt e T.

From (3.12), 7(1,j*1,j) can be written as
T(1,5+1,3) = EQ,i+1,3) + D(,3+1,3),
where, from (3.13) and (3.15): ’
EQ,j+1,5) = fT(Fj(t))TFuu(t)(Fj(t)]dt. (3.16)
Since Su of (3.15) is not non-zero only on a set of measure zero
when Guj # 0(j,1) (because fT<6u(t),6u(t)>dt = <6uj,6uj>, due to the
orthonormality of the bounded basis—functions § which constitute Fﬁ) and
since Fu is p.d. on T (Assumption 3.4.1), we see from (3.13) that
<(6uj),E(1,j+1,j)(6uj)> > 0 whenever Sui # 0(3,1). Hence E(1,j»1,j) is"
p.d. when Assumption 3.4.1 helds. E(1,j»1,j) is bounded since Fj and Fuu
are bounded (from 3.3 and Assumption 3.4.1) and since te-t < o (from 3,2).
Since Fyy is n.n.d. on T and ny is n.n.d. (Assumption 3.4.15, :
we see from (3.14) that <(6uj),D(1,j+1,j)(6uj]> > 0. Hence D(1,3»1,3) is
n.n.d. wvhen Assumption 3.4.1 holds. It is clear from (3.14) that
D(1,j+1,j) is then bounded since W, Fj’ G, and Fyy are all bounded anq

vy
bt <o (from 3.2, 3.3 and Assumption 3.4.1).

D(1,j~1,3) is symmetric since D(1,j+1,j) = 7(1,j1,3) - E(1,3+1,3)
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and T(1,j~1,j) is symmetric (Comment 3.3.2) and, from (3.16), E(1,j+1,j)
is symmetric.

r(1,j»1,3) is p.d. since it is the sum of a p.d. matrix,
E(1,3+1,j), and a n.n.d. matrix, D(1,j+1,3).

This concludes the proof of Lemma 3.4.1.
Lemma 3.4.2 When Assumption 3.4.1 holds for the optimisation
problem of 3,2:

Mpin T(LIPLD) 2 % > 0, Vi e 1(1),

* = 1 1 1 3
where A tm:nT kmin(Fuu(t)) and is independent of j and.k.
Proof of Lemma 3.4.2 From (3.13), (3.15) and the fact that
fT<(5u(t)),(5u(t))>dt = <{su!), (6ul)> when su = Fjqu_ (due to the

orthonormality of the basis-functions 4§ which constitute Fj), we see that
when sul # 0(j,1) and Su(t) = Fj(t)éu.j, Vt e T:
<(5uj),E(l,j+l,j)(5uj)> / <(6uj),[5uj)>
= fT< (su(e)},F,, (£) (su(t))>de / fT<(5u(t)),(5u(t))>dt
fT Apin (B, (B))<(su(©)], (su(t))>de  / ka(su(t)),(au(t)]>dt

. f *
tm:nT kminLFuu(t)) Iy } .

v

v

Sincé Fuu is p.d. on T (Assumption 3.4.1), A* > O.
From Lemma 3.4.1 and the above we see that when &ul # 0(3,1):
<(sud),r1,521,) (6ud)> 7 <(sul), (su?)>

<o), B, 01, (sud)> 7 <(ad),(ad)> 2 ax > o

fiv

Hence Amin(T(l,j+1,j)) ;: A* > 0, a result which does not
depend on j or k.

This concludes the proof of Lemma 3.4.2.
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V Lemmag 3.4.3 When Assumption 3.4.1 holds for the optimisation

problem of 3.23:

<(g?),2(1,51,1%(@d)> > <(d?), ®Q,i41,)) ), vl e B3, ¥ e 10,

where

EQ1,0% = [ @) (5, ) ) e MR > ),
A EQ@,j+1,i) = fT[Fj )T (7, ®) [Fj(t))dt e MR »rY).
V Proof of Lemma 3.4.3 Suppose Assumption 3.4.1 holds and, for some

jel®, g9 e R3, wel, consider the scalar-valued function
v(gdw) = J'T{< [Fj(t)gj),{w(t))> + < w®),F, ) o)),
Functions v belonging to U(1,j) can be written as v = Fjw]
for some W e R, and for such functionms
v(gd,w) q@mw%,=;f@fafywﬁaﬂya
* ngf(Fj(t)w’),Fuu(t) (Fj(t)wl)xit
<(gh), @)> + 1<@),EQ,i21,5) (@)
The minimal value of v(g’,u) with respect to w e U(1,j) is thus -
v(36°)% = mia vlg F) - k(o)) (BE1,0) 7 (@)

The function » e U which tminimises v[gJ ,w) with respect to » is

]

weyt = =(F,, ()T (gl v e,
so that the minimal value of v{g’,w) with respect to w e U is
v(g)r = (W) = -4 067, (7, ) F (0g7) e
= -ke(@?),E@, 301, 0% (g0
Now u[gj)* < U[j ;gj}*, Vg:i e Rj, ¥j e I(k), since U(1,j) is a
- linear manifold of U. Using this with the above expressions for v[gj)*

A and v[j;gj)*-yie'lda -the result of Lemma 3.4.3.
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V Proof of Remark 3.4.1 By applying the arguménts of 3.3 to the optimis-

ation problem of 3.2 when Assumptions 3.4.1 and 3.4.2 hold, it can be
seen that the xs-minimal performance index on U(1,j)", 0 <m<j <k

is related to that on ua,m" by

o (s : | : . Aay~1lr 3

V(J;xs)* = V(m;xs)* - 5<(gJ(m;xs)*),CT(1,3+1,J)) (gJ(m;xs)*]> (3.17)
where gJ(m;xs)* exactly characterises (SV(m;xsjﬁau).

From Lemma 3.4.2: xmin(T(1,§+1,j)) > A% > 0.

Hence, from (3.17):

v(ism)x 2 Vima)* - kgt me )#), (@ oz )%)> / ax _
A v{ie )x. (3.18)

Clearly V(j;xs); of (3.18) is a lower-bound for the xs—minimal performance
index on U(1,3)", V(j;xs)*. A stronger statement can in fact be made,
as we next show. Consider optimisation onAU(l,k)", vhere k > j. The
xs-minimal pefformance index on U(1,k)" is then given by (3.17) with j
replaced by k when gk(m;xs)* is the vector of the components of basis-—
functions 61, .oy ﬂk present in (SV(m;xsfyau). Because we have assumed
that (SV(m;xs)Vau) is éxactly characterised by the compoments gj(m;xs)* of
basis—functions 61, ..,6j,A(§V0m;xs)78u) = Fjgj(m;xs)* and contains no
componénts of basis—-functions 6j+l’ .ay ﬁk. Hence gk(m;xs)* is given by
gz ) = (P )xT o3, 0T |
Since the lower-bound of (3.18) for j replaced by k depends only on the
non-zero components of basis-functions 61’ .ay ﬁk present in the gradient
function (SV(m;xSYWSu), the lower-bound V(k;xs)a for the xs—minimal
pérformance index on UeL,k)" is équal to the 1owér—bound'V(j;xs]; for the

ms—minimal performance index on U(1,j)". Cléariy k can be increased
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until the orthonormal basis-functions 61,F.., 6k span the control space
with no change in this result. Thus V(j;xs)ﬁ of (3.18) is a lower-bound
for the xs-minimal performance index on the control space U - evaluated
for tﬁe xs-optimal control function belonging to U(1l,m".
Because (BV(m;xSfVBuJ = E}gj(m;xs)é (Assumption 3.4.2) and
because fT(Fj(t))TLEj(t))dt = I(,3) (dué to the orthonormality of the
basis—functions § which constitute F}):

<(g? sz )%, (g emsz )%) >

jT< (7 (g (msz )*), ;s ()g? (msz_)*)>dt

% Y %
IT<(3V(m;xs)/3u(t)}, [BV(m;xS)/Bu(t))>dt._
‘The lower-bound V(j;xs]; of (3.18) can therefore be written as
. *
V(e Jx = v(mz )* - HT<(3V(m;xS)/au(t)),(Bv(m;xs)*/au(t))>dt,/ A%,
This concludes the proof of statement (a) of Remark 3.4.1. We
next prove statement (b).
We see from Lemma 3.4.1 that the xs—minimal performance index on
Ui,id™, of (3.17), can be written as
V(isz )% = Vimz j* |
.3 : s Y s . e
- 1<(g? omsz %), (C1,591,3) + D(L,3+1,5)) 7 (g7 omsz )%)>.
On using Lemma 2.5.3 we see that
j ' . 1173
V(j;xs)* = V(m;xs)* - §<(gJ(m;xs)*),(E(I,J+1,J)) (gJ(m;xs)*)> _
+ :lz<(gJ(m;xs)*) ,K(l,j-ﬂ,j)(gJ (m;xs)*)>:

where X(1,j*1,3) e M(R3 + RY is n.n.d.

Hence:
V(i )* 2 Vimz )% - %<(gj(m;xs)*),(E(l,jﬂ,j))-l(gj(m;xs)*]> |
p 906 (3.19)



94

Clearly ﬁ(j;xs)% of (3.19) is a lower-bound for the xs—minimal
performance indgx on U(1,j)", but it is not necessarily a lower-bound for
the xs—minimal performance index on the control space U since the approach
ﬁsed to explain why the lower-bound V(j;xs)z of (3.18) is such a lower-
bound cannot be used to show that G(j;xs]; is a lower-bound for the
xs—minimal performance index on U due to the potentially complicated wa&
in which [E(l,j*l,j))-l depends on j.

However, we see from Lemma 3.4.3 and (3.19) that
Viism )% 2 vlmz ) - k(g tmz )%),BQ,591,5)% (g iz )%)>

b ¥(ise )x. | (3.20)

On using the definition of E(1,j+1,j)* of Lemma 3.4.3 and (3.11),
it can be seen that
Ve )x = v(mz )% - %IT<(Fj<t)gj(m;xs)*); (Fuu(tU_l(Fj(t)gj (msz )*) >dt

v{msz )% - HT<(BV(m;xS)*/3u(t)) , (Fuu(t))“l(aV(m;xs)"‘/au(t))>dt.

The approach used to show that V[j;xs); of (3.18) is a lower—
bound for the xs-minimal performance index on the control space U can
now be used to show that %(j;xs); is also such a lower-bound.

This concludes the broof of statement (b) of Remark 3.4.1.

It may be seen that %[j;xs)a of Remark 3.4.1 is more positive

than V(j;xs)ﬁ if, say, A [Fuu(t)) is not constant on T and

min
(BV(m;xS)/Bu) is not zero on T. Thus %(j;xs); is a better (more positive)
lower-bound, potentially, than is V(j;xs)%.

This concludes the proof of Remark 3.4.1.
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3.4.2 E{xs)—Approximations

For the optimisation problem of 3.2 when Assumption 3.4.1 holds,
the existence of an xs-optimal control function (unique in the Hilbert
space sense) belonging to Hm(T) (the Hilbert space of m-vector valued
functions with domain T) for the initial condition z of Assumption 3.4.1
can be seen from the studies of Hsieh {26}. It can also be seen that,
under the continuity assumptions of 3.2, there exists.a control function
u belonging to U such that'V@rs,u) is equal to the xs~minima1 performance
index on Hm[T) and such that the gradient function (GV(xs,u)lau) is zero
on T. Such a control function is referred to as the xs—optimal control
function belonging to U and the associated performance index V(xs,u) is

referred to as the xs-minimal performance index on U.

V Definition 3.4.1 For the initial condition xg of Assumptiop 3.4.1,
the xs-optimal control function belonging to U(1,m)" will be said to be
an e@zs)-approximation (e > 0) to the xz_—optimal control function belong=-
ing to U if

]V(m;xs)* - V(xs)*l L &,
where V@ﬂ;xs)* is the xs-minipal performance index on U(1,m)" and V(xs)*
A is the xs-minimal perfo?mance index on U.
When Assumptions 3.4.,1 and 3.4.2 hold, lower-bounds for the
xs-minimal performance index on U can easily be calculated using the
results of Remark 3.4.1. Then:

V Remark 3.4.2 For the optimisation problem of 3,2 when

Assumptions 3.4.1 and 3.4.2 hold, the xs-optimal control function

belonging to U(1,m)" is an e@xs)-approximation to the xs—optimal control
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. function belonging to U if either
| V@uxg* - Vﬁ;xJ; | = ¢

or | V(m;xs)* - %(j;xs}zg |

fia

€y

[ r\l -
where V(J;xs}; and V(J;ms}% are those of Remark 3.4.1,

Also, the minimal ¢ for which the x_-optimal control function
belonging to U(1,m)" is an e@ns]—approximation to the xs-optimal control

function belonging to U has as upper-bounds both

b< (gj (Yn;ms)*} > [gj (m;ms)*)> ] Ak

(a) elmz )* ‘
= %fT<(aV0n;msf78u(t)},(BVO%;mSYVBu(t))>dt [ A%

where A* min Amin(Fuu(t)}, and
tel

| (b) %(m;ms)* 5;T< (Bv(m;ms)’%u(t)) , (Fuu(t))'l(avcm;ms)fyauctj}'>dt.
Since the lower-bounds of Remark 3.4.1 or the upper-bounds of
Remark 3.4.2 can be calculated with relatively little computationél
effort (compared with that which would be needed to optimise on U(l,m+1)"
or U, say), we can easily determine whether the xs—optimal control
function belonging to U(l,m)" is ah E(xs)—approximation to the xs—optimal
control function belonging to the control space U with little computation-
al expense without knowing tﬁe ms—optimal control function belonging to
U or the associated xs-ﬁinimal performance index on U.. We can then
ascertain whether the ms—optimal control function belonging to U(1,m)"
can be considered to be an adequate approximation, performance-index wise,
fo that belonging to the control space U by checking whether it is an
e(ms)—approximgtion for a suitably small € > 0. If it is not an

adequate approximation in the above sense, optimisation on a linear mani-

fold which includes U(1,m)" but is of larger dimension should be attempted.
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V Comment 3.4.2 eOm;ms)* and gOn;ms)* of Remark 3.4.2 are

both upper-bounds for the further performance index decrease, relative

to the ms-minimal performance index on U(1,m)", which can be achieved

by optimising on U itself, but EOM;ms)* is a potentially better (i.e.
A less positive) upper-bound thamn is e(m;zg)*.

The practical usefulness of the results we have obtained depends,
of course, on gOn;ms)* and s(m;ms)* approachipg zero as Vbﬂ;xs)*
aéproaches V@xs)* with increasing m. Since g(m;xs)* ;=90m;ms)*, we need
only consider the behaviour of e(m;xs)* - the subject of

V Remark 3.4.3 Consider the optimisation problem of 3.2 when

Assumption 3.4.1 holds. Then
(B2/Ba%){V{msz )% - V(z )%} < elmsz )% < (B2/ba%){v(msz )* - iz )*}
A for some scalars b and B such that 0 < b < B < =,

V Comment 3.4.3 We see from Remark 3.4.3 that, when Assumption

3.4.1 holds for the optimisation problem of 3.2, eOm;ms)* approaches
- * *
A zero as VOﬂ,xs] approaches V(ms] .

V Proof of Remark 3.4.3 Denote the ms-optimal control function belonging

to U(1,m)" by u*, and that belonging to U by u*, Let 6u; = uﬁ - u%,
Then, it may be seen from (3.4) with u replaced by u; and Su replaced
by Su* that:
Vimge J* = V(e ux) = vz )
+ 4 Td12<(6u;=1("rl)],(BZVIBu(rl)Bu(TZ)) (au;‘(rz)]S.

Also: (BVOM;mS)VBu(t)] (BV(ms,u;)lau(t)]

[ (3% /aue)au(n)) (sur(v))ar, vt e T,

Suppose that Assumption 3.4.1 holds for the optimisation problem
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of 3.2. Then, as stated in the proof of Lemma 3.4.1:
Td'rlf_rd'rz<(5u('rl)],(BZV/Bu(rl)Bu(TZ)] (bu(c)> = <(6y(tf))',ny(6y(tf))_>
+ [ (su®)),F, (0) (su(t))>at + fT<(esy(t)],Fyy(t)(ay(t))>dc'
when Sy(t) = fi W(t,t)éu(t)dr, ¥Vt e T.

s

Since then F,, is bounded and p.d. on T, F,_ is bounded and n.n.d. on T,

vy
G, is bounded and n.n.d. and W is bounded, it can be seen that scalars
b and B exist, 0 < b < B < =, such that

[ Jeutt) [|2ar < derlderz<(6u('rl)),(BZV/Bu(Tl)ABu(TZ)](Gu(rz))>

< BfT | su(t) [|2dt

{

for all 6u, where |l6u(t) || = v<(ou(r)), (su(t))>.
Let |
a(.K,t) = wux(t) + (1/|<)(8V(m;xs)’78u(t)], Ve eT,
blk,t) = wéuk(r) - (/) (aVimsz ¥ou(r)), ¥t e T,

where « is a scalar. Then
J7 1 (avam;c You(e)) ||2ae
= [rar<(evime )7su(r))) S (8207 3ury ) au(r,) ) Su (z, )dw >
= Hrar Jrar,<(ate,r )),(B’-V/'au(rl)au(rz)) [a_(nc,'rz)]>
- 4 [, < (B, ))_,(azv/au(rl)au(rz))'(b(n,rz))>
}BJT laCe,t) [|2de + %Bf_r |B(c,t) ||2at
£(x?),

in

where 4£(k2) = (BKZ/Z)IT Hﬁurﬁ(t) |24t + (B/zK?-)fT I (av(m;ms)/au(t)) || 2a

2 2

Since this holds whatever x? is, it holds when «? is chosen to minimise
£(<2) with respect to k2,

i.e. when k2 .= /{IT H(BV(m;xstBu(t)) ”zdt/IT Hdu;(t) ﬂzdt}.

Hence [, || (Vim;z YTou(e)) [|2de < B/ [l 8w (e) [[2de[ B (av(msz Yyou(e)) IRae}

so that [ || (BV(m;xs‘)"f’au(t)] 12ae < 8/, [loux(e) [|2at.
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Since

A

dethdT<[6u;(t)),(aQV/au(t)au(T))[6u;(r))>

- IT<(6%;(C)),(aV(m;xSfVBu(t)]>dt,

‘bjT "Bu;(t) |24t

we see that (av(m;xs)*/au] must have the form
(aV(m;xS)*/au(t>) = (brmyur(t) + k(r), Ve eT,
where n 2 0 and [<(k(t)], (suk(t))>dt = o.
sence [ | (aV(msz Y7ou(r)) ||2dt
2 bem2[ fleuk(e) [2de [ [lk(e) |24t
> beT'n suk(t) ||2at.

Therefore

b2jT f Suk (t) 12dt < IT I (av(m;xsﬁau(t)] 2at < 82[1. ”(Suy’;l(t) | 2at.

Also, from the result for V[m;xs]* of page 97 and the above:

ofpllogree Pae o vlma) - vie )t < 48[ Jource |7
Hence

2(52/3){V0w;xs)* - V(z )*}

s

fla

J<(ov (m;xs)*/aucc)] , (av(m;xs)*/au(t)] >dt
< Z(BZ/b){Vﬁm;xs]* - V@zs]*}.
On using this result with the definition of eOm;xS)* of

A Remark 3.4.2, the result of Remark 3.4.3 emerges.
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3.5 Gradient Decomposition

The optimisation algorithms which are developed in the remainder
of this chapter define (using Gram—Schmidt orthonormalisation) the basis-
functions 4 which are considered in 3.3 and 3.4 so that each calculated
gradient function can be exactly characterised by components of the

defined basis—functions. We shall use the following definitions:

Definition 8.5.1 By decoﬁpose the gradient function (aV(xs,u)IBu]
as Flgl(xs,u) we mean define a normalised basis-function 61 so that
(aV(xs,u)/auJ e G(1) and can be written as (aV(ms,u)/aﬁ(t)] = Fl(t)gl(xs;u)
for a11-t e T. This requires that
6@ = V<0V m /o)), (3G w fouce))>dt] e R,

8 = (v ,w/ou(e)) /g (@ u), Ve e T, if g, (z ,u) # 0.
If, however, gl(xs,u) = 0, we define 61 to be zero on T even though 61 is

then not normalised.

Definition 3.5.2 By decompose the gradient function (aV(ms,u)lau)
i+l ,

as Fj+1gJ (xs,u) we mean

(a) determine the components gJ(xs,u) e Rl of the already defined ortho-

normal basis-functions 61, ces 65 present in (avfxs,u)lau), and

(b) define a new basis-function 6j+1 orthonormal to 61, .ep 6j so that

(av(xs,u)/au] e G(1,j+1) and can be written as

(aV(ms,u)/au(t)] = £5¥1(t)gJ+1(xs,u), Yt ¢ T. This requires that:

gl (z_yu) [ (7 @) (e ,wmw)a e ®,
gj+1(xs,u) = l/fT<(z(t)),(z(t))>d£| e R,
6j+1(t), = z(t)/gj+l(ms,u), Vt e T, if gj+l(ms,u) # 0,

j+l j T T j
g (xg,u) (gJ(xS,u) gj+1(xs,u)] e Ri*L

3.
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where z2(t) - = (av(xs,u)/au(t)] - Fj (t)gj (z_,u), Ve e T,
If? however, gj+1(xs,u) = 0, we define 6j+1 to be zero on T even though
it is then not normalised.

Since the algorithms we develop later depend heavily on gradient-
decomposition (in the above sense), we refer to them as being gradient-
decomposition based. We shall be able to see, later, that all the contro
functions u considered in the algorithms for the optimisation problem of
3.2 (with bounded xs) are bounded and continuous. From 3.2, all the
associated gradient functions (BVGxS,u)/Bu] are also bounded and contin-
uous. It can therefore be seen that all the orthonormal basis-functions
4§ which will be defined in the algorithms using Definitions 3.5.1 and
3.5.2 will be bounded and continuous, i.e. will be of the type considered
so far in this chapter.

Once basis-functions 61, vey 65 have been defined, we see from
3.3 how, for the optimisation problem 3.2, optimisation on U(1,j)" can
be achieved for any bounded initial condition is + X%z ¢ X(q) when
r(1,j»1,j) and P(1,q9»1,j) are known. T(1,j*1,j) and P(1,q9>1,3) could be
determined from (3.7) and (3.8), but that would require the determination

of (BZV/au(Tl)Bu(TZ)] and (BZV/au(Tl)axs) for all 1 T, € T, which is not

1°
desirable from the computational point of view. We therefore determine
r(1,j*1,3j) and P(l,q»1,3) in oﬁr algorithms from those changes in the
components of considered basis-functions present in the gradient function
which are caused by changes in the components of considered basis-functions
present in the control function and by initial condition changes (recall

from Comment 3.3.4 the interpretation of T(1,j-+1,j) and P(1,q*1,j) as

U+G and X+G map matrices, respectively).
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We see that minimisation on U(1l,j)" using Remark 3.3.1 involves
the inverse of T(1,3*1,j). Since the algorithms wﬁich we develop minimise
on U(l,m)" as m increases from 1 in unit steps, it is desirable to be able
to compute T(l,m+l+1,m+1)-1 in terms of T(l,m+1,m)_1 aﬁd to be able to

check whether T7(1,m+1+1,m+1) is p.d. This is the subject of

Lemma 3.5¢1 Suppose
1 +1
P(Lmlrlml) = (T(Lmel,m T@mwlsl,m) e MRS >R )
T(1,mem+l) T (m+l-mel)

where T(i,m1,m e M(Rm - Rm) and is symmetric and p.d.,

T mml) = Temlolme e MR+ R),

T(m+l-m+l) e R. i

Let Ty, = T(mlomsl) - <(Tm1+1,m),7@,ml,m L (Tm1s1,m))> e R,

o —T(l,m+1,m)-1T(m+1+1,m) e RM™L,
1

Then T7(1,m+1+1,m+1) is p.d. if and only if Pm+ >0,

1
and if Fm+ > 0

1
T(I,WH1+1,WH1)—1 = !Z’(l,lm->1,m)_1 om,1)} + (1/rm+1)[nm+1)><[nm+1).
o@m) (0]
Proof of Lemma 3.5.1 Consider the positive-definiteness of

m+l

7(1,m+1+1,m1). Since n belongs to the null-space of

(r@,m1,m) T@m+1+1,m)), we see that

y J
< [sm+1 + anm+1] o T (1 ,m+1+1 1) (6m+1 + anm+1)>

= <(sm] , T (1,m1,m) [sm]> + a2l ys™1 = [sm] e R yy e R,

m+1

0
m+l m T .
Now any (m+l)-vector g = ({g } gm+1]T with gm e ®" can be uniquely
written as &0 + o™ when ¢ ¢ R" and o e R (in fact, o = sl and

g = gm + gm+1T(1,m+1,m51T(M+1+1,m)]. Therefore; from the above,
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we see that

<(gm+1),T(l,m+1+1,m+1)(gm+1]> > o, Ugm+1 . Rm+1’

iff 7(1,m»1,m) is p.d. and Tpppq > Oe

+1
That the stated inverse of T(1l,m1+1,m+l) is correct when

Typq > O can be seen by pre- and post-multiplying it by T(1,m+1-+1,m+1)

A when the latter is partitioned as in Lemma 3.5.1.
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3.6 An Iterative, Gradient-Decomposition Based, Algorithm for

Control Function Optimisation

The optimisation problém of 3.2 is considered when an
eﬁrs)-approximation to the xs-optimal control function belonging to the
control space U is reqﬁired and whén Assumpéion 3.4.1 holds. The
initial condition x considéred may, of coursé, be the initial condition
xs of 1.3. The algorithm may be useq whgn Assumption 3.4.1 does not
hold provided that T(1,m*1,m) is p.d. for all considered m.

The optimisation algorithm iteratively defines basis-functions §
and deduces U+G map matrix elements which enable optimisation on Ukl,m)"
to be achieved as m is (iteratively) increased until the xs—optimal
control function belonging to U(l,M)" is the desired e@rs)-approximation.
The structure of the algorithm is such that checks can easily be ﬁmde on
the validity of the deduced U+G map matrix elements without the computat—
ional expense of applying to the dynamical system of 3.2 the calculateé
optimal control function belonging to each translated linear manifold
U(l,m)" and checking whether the ;esulting performance index and gradient
function are those predicted using the deduced U~+G map matrix elements.
For clarity, and because the checks are easy to implement, we do not
include the checks in the algérithm statement but outline them in
Comment 3.6.2, which follows the algorithm statement. The definitions
and notations introduced so far in Chapter 3 are used throughout. The

algorithm is next stated, with sufficient discussion to explain its

operation.
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1) Choose an initial control function u; € U which is a guess at the
xs-optimal control function belonging to U. Go to 2). '

2) Calculate the gradient function (BV(xS,ul)/Bu) and decompose it as
Flgles,ul), which involves the définition of a basis—function 61 (recall
Définiti&n 3.5.1). If gl(xs,ul) = 0, stop since Uy is the desired x -
optimal control function bélonging to U. If gl(xs,ul) # 0, continue

by choosing a variation Aul(l) e R in the coﬁponént of 61 present in the

control function and by perturbing u, to

1
uy = ug + Foau (D).

Set thé iteration index, j, equal to 2. Go to 3) to qalculate the

resulting performance index and gradient function.

3) Calculate the performance index V@rs,uj) and the gradient function

(QV(xS,uj)/au). Décompose the latter as E}gj(xs,uj), which involves the

definition of a basis—function 6j (recall Definition 3.5.2). Go to 4)

if j =2 and goto5) if j > 2 - to deduce U-G map matrix elements.

4)  Deduce U+G map matrix elements for j = 2.

The gradiént function (aV(xs,ul)/au) is exactly characterised by

thé compbnents _
k k
g (xs,ul) = gl(xs,ul) e R, ¥k >1, (3.21)
0(k-1,1)
. k
of basis~functions 61’ «oy 6k (i.e. [EV(xs,ul)/Bu) = hg (xs,ul) )
even though 62, ey 6k have not yet been defined. This arises because
gl(xs,ul) and 61 were chosen so that (BV(xs,ul)lau) = Flgl(xs,ul).
Similarly, the gradient function (aVCxS,uz)/au) is exactly

-characterised by the components
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gz(xs,uz) e R, W > 2,

0(k-2,1)

k
g (@ ,uy)

of basis-functions 51, ey 6k’ even though 63, . 6k have not yet
been defined. '
The change in the components of basis-functions 61, ces 6k

present in the gradient function due to the change Aul(l) in the component

of 61 present in the control function is therefore

Agk(Aul(l)) = gk(xs,uz) - gk(xs,ul), ¥k > 2.
The U-G map matrix P(1+1,k) must therefore satisfy
Agk(Aulcl)) = a0 (D), Vi > 2, !
so that
7(1+1,k) = Agk(Aul(l)]/Aul(l) € Rk, Ve > 2. (3.22)

Clearly T(1+1,k) of (3.22) can be partitioned as

it

7(1+1,k) 7(1,1-1,1)}, ¥k > 2, (3.23)
7(1+2)

0(k~2,1)

where 7(1,1+1,1) 7(1+1) e R.

From Lémma 3.4.1, 7(1,1+1,1) is p.d. so that its inverse exists.
Compute T(1,1+1,1)-1. Since optimisation on U(1)" is now possible,
go to 6) to determine whether the xs—optimal control function belonging to

U(1)" is the desired e@rs)-approximation.

5) Deduce U»G map matrix elements for j > 2.

Employing the approach used in 4), we see that the gradient

function change caused by the control function change from uj—l to uj

of Fj_lAuJ-l(j—l) is exactly characterised by the change
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ke, 3-1,. j
Ag (AuJ (3-1)]. = gJCrs,uj) - Grs,u 1) € Rk, Ve > 3,
O(k-j,1) O(k-3+1,1)
in the components of 61, . ﬁk présént in thé'gradient function, i.e.
: ke, j-1,. .

(av(xs,uj)/au) - [avix, P _)/%u) = Fug (A ™ (G-1)), ¥k > 3.
Partition 4g%(au"1¢i-1)) and aud1(5-1) as

@wﬂwme’ﬁﬂwﬁﬂm,wﬁﬂxjwﬂmT
3=1,.

Agj_l(éu (3-D)

bg; (0w’ (5-1)

Lo(k'j’l) ) Vic > j’

w,_ (G-1)j

vhere  agd 2 (aud(G-D), adR(G-1 e RITZ,

b9, I(AuJ li-1), g (it 5-1y), bus_ (J~1) e R.

Then, since T(1,j-2+1,j-2) 1is already avallable from the last
iteration of the algorithm , it can be seen (f;om the Proof at the end

of 5), below) that

P(§-11,3-2) = {Agi'z(Au5‘1<5—1))-T(1,5-2+1,5-2)Au5“2<j-1)d/Auj_1(j-1)

e RIZ, (3.24)
T(j~1+j-1) ={Ag I(Au (J-l))-T(J-1+1,J~2) _z(j-l)}/Auj_l(j-l)
e R, - | (3.25)
7(3-1+%) - Agj(Auj“?(j-l))/Auj_lgj-l) e R, (3.26)
r(+1,5-1) = (0G-2,10) e ®R7L (3.27)
{T(j-1+j)] \

Since T(1,j-1+1,j-1) is symmetric (Comment 3.3.2), it can now
be constructed by bordering T(1,j-2-1,j-2), vhich is already available,
giving: T(1,j-1-1,3~1) = [T(l,j-2+1,j-2) T(j-1+1,3j-2)].

P(3-1+1,3-2)T  T(§-1+3-1)
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Since T(1,j-2+1,j-2) and T(1,j-1»1,j-1) are p.d. when Assumption
3.4.1 holds (Lemma 3.4.1) and are both symmetric, T(l,j-l—*l,j-l).-.1 exists
and can be computed using Lemma 3.5.1. Since xs—optimisation on
U(1,j-1)" is now possible, go to 6) to determine whether the z_-optimal

control function belonging to U(l,j-1)" is the required eﬁrs]-approximation

V Proof of (3.24-27) 7(1,3-101,k) e MRI™L + R¥) can be partitioned as
T(1,j-1+1,k) = [T(1,3-2+1,5-2) T(j-1-1,i-2)], ¥k > j+1,
T(1,j-2+j-1) T(j-1+j-1)
T(3,i-2*3) T(-1+3)
7Q1,j-2+j+1,k)  T(j-1+j+1,k))

where 7(1,j-2*1,j-2) e M(R‘i—2 > Rj—z), T(j~1+1,j=2) e Rj-z,

T(L,5-25-1), T(1,j-2+]) e MR~ > R,

T(j-1+j-1), T(j-1+3) e R, |

P(L, j-205+1,%) e MRIT2 » Ry, p(-1+41,%) e REI.,

.Since 7(1,j-1+1,j-1) is symmetric (Commenrt 3.3.2) and can be
partitioned as T'(1,j-1+1,j-1) = |T(1,j-2»1,j-2) T(j~1+1,j-2)], we see that
[T(l.j‘2+j‘1) | T(§=1+j-1)
T(1,j-2+5-1) = T(j-1+1,5-2)". (3.28)

Now T'(i+1,k) can be partitioned as

T@PL,E) = [TGL,i+1)) e RE, Vie 1(3-2), ¥k 2 is2,
Lf(i+i+2,k)] (3.29)
where T(i+lzi+1) e gi+l and where, as we shall see later:
T(i+i+2,k) = O(k-i-ltl), Vi e I(j-2), ¥k > i+2, (3.30)

Also, T'(1,j-2+1,k) may be partitioned in the following two ways:

7(1,j-2»1,k) = (T(1»1,k) ... T(-2»1,k)) = (7(1,3j-2+1,j-2)). (3.31)
7(1,j-2+j-1) '
17(1,3-273)
7(1,3-2+j+1,k)
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On using (3.29) and (3.30) in (3.31), it may be seen that
TQ,j-2+3) = 0(1,j-2), (3.32)
T(1,5-2+j+1,k) = O(k-j,j~2), ¥k > j. (3.33)

Now 7(1,j-1+1,k) must satisfy
Agk(AuJ"lq-i)) - 7@,i-101,k)8ud H (-1, Yk > 5. (3.38)

Since T(l,j—2+1,j—2) is known at this stage of the algorithm, we

can use our partitions for Agk(Auj_l(j-l)) and AUj—l(j-l) of stage 5)

and our partition for T(1,j-1+l,k) of the previous page in (3.34),

together with (3.28), (3.32) and (3.33), to give (3.24), (3.25), (3.26)

and ‘

T(-1+j+1,k) = O(k=j,1), ¥k 2 j+l. (3.35)
We can now justify (3.30). It can be seen from (3.23) that

T(i+i+2,k) is indeed giyen by (3.30) when i = 1. We can then see that

(3.35) is valid for j = 3, so that (3.30) holds when i = 2, Using this

argument iteratively enables (3.30) to be justified.

Since T(1,3j*1,j) can be partitioned as
7(1,3+1,3) = (7(1,j-1-1,j-1) T(j~1,5-1)
7(1,5-1+3) 7(33)
and 7(1,j»1,3) is symmetric (Comment 3.3.2), we see that
T(+1,3-1) = T(1,3-1+) . (3.36)
On partitioning T(1,j~1+j) as CT(I,j-Z*j) T(j-lﬁj)) and on
using (3.32) and (3.36), (3.27) results.

This concludes the proof of (3.24~27).
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6) Consider xs—thimisation on U(1,3j-1)"
Since T(1,j-1+1,j-1) is p.d. when Assumption 3.4.1 holds (from
Lemma 3.4.1), it can be predicted by using thé'approach of 3.3 that:

(a) the xs-optimal control function bélonging to U(Q1,j-1)" is

L3 I=1- * - j—l 3-1": *
udJlﬁJ usy ot % 8T (G )
vhere 5uJ‘1(j~1;xs)* - -7(1,j-101,5-1) Lgd 1crs,uJ D
(b)  the & _-minimal performance index on U(1,j-1)" is
V(j—l;xs]* = V(xs,uj_l)

- (@ u ), 70,5 L T e T e u ),

(c) the gradient function following xs-optimisatlon on U(l,J-l)" is

. k. .
(av(;—l;xs)%u} = F g (G-lLiz )%, ¥k >3,
where gk(j~1;xs)* - gJ—l(xs,uj_l) + T(1,j-1+1,k)5uJ'1(j-1;xs)*
0(k=j+1,1)
g : . . . -1 -1
= [ CRUMR 7(1,j-1+1,3-1) r(1,j-11,j-1) ¢’ (=,
loG=5+1,1) 7(1,§-273)  T(G-1+3) o )

T(1,3-2+3+1,k) T(j-1+j+1,k)
= 0(5—1’1)
i Vs
8; (3-132 )
0(k-j,1)

where g; -1 )% = (0(1,3-2) P(§-1+§)) 7(1,i~121,i-1) T g? = e

1)

and T(j-1+j), etc., are those just determined in stage 4) if j = 2 or in
stage 5) if j > 2. Note that if j = 2, T(1,j-2+j) and T(1,j-2-j+1l,k) can
be omitted from the above partition of T(1,j-1-+1,k) since

7(1,1>1,k) = T(1+1,k) = (7(1,1+1,1) T(1-2) T(1+3,k3)T. This does not,

however, affect the final result for gk(j—l;xs)*.



111

The gradient function following xs—optimisation on U(1,j-1)" is
therefore predicted to be éxactly charactériséd by thé components
gJ(j-l;xs)# = (O(l,j—l) gj(j—l;ms)*)T of basis-functions 61,-.., ﬁj.

i . l\J. L.

Lower-bounds V(J;ms)§_l or V(J;xs)§_1 for the ms-mlnlmal perfor-
mance index on the control space U can now be evaluated using Remark 3.4.1.
We suppoese here that %(j;ms)ﬁ_l is actually calculated, although the

- I\J.
following holds when V(J;ms)§71 1°
) . e,

If l V(J—l;xs)* - V(J;xs)§_1 ] < &, the ms—optimal control

is replaced by V(j;ms)§_

function belonging to U(1,3j-1)", u(j-l;ms)*, is the desired e@rs]-approx-
imation, so stop.
L3 '\, . , »

If l V(_]—l;.'ns]* - V(J ;ms)?';-l l #; £, the .'Jcs—optlmal control
function belonging to U(1,j-1)" is not the desired a@rs)-approximation,
so go to 7) to cause a control function change which will enable those
U~G map matrix elements to be deduced which are required for xs-optimisat-
ion on U(1,3)".

7) Choose next control function

We desiré to causé a changé in thé componént of basis—function ﬁj
present in the control function to enable sufficient UG map matrix
elements to be deduced to enable ms-optimisation on U(1,j)" to be achiev-
able. To test the accuracy of the U-G map matrix elements which have
already been deduced (see Comment 3.6.2), and to optimise as far as
possible, we attempt to reduce to zero the components of basis-functions
61’ .oy 6j-1 present in the gradie;t function at the same time as making
a change of Aué(j) in the component of 6j which is present in the control

function. This is possible because T(j=+1l,j-1) is available at this stage
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of thé algorithm, évén though no changé in fﬁé componént of 6j present
in thé control function has yet béen madé. Thé procéduré for choosing
a suitablé control function uj+1 is next explained.

Choose Auj(j) e R.

Partition gj(xs,uj) e Rj as (gj-lcxs,uj)T ngxS,uj))T, where

j-1 j-1
g (xs,uj) e R

. Then the componénts of basis—-functions 61, .oy 65_1
présént in the gradiént function (BV(xS,uj+l)/Bu) when

uj+1 = uj + FjAuj(j) aré givén as

P ) = P T ) ¢ T, iD s THGE) + TG, 1M )
when Auj(j)/c Rj is partitioned =s (Auj_l(j)T Auj(j))T and Auj-l(j) e Rj_l.

If j =2, T(j»1,j-1) = T(2+1) = T(1+2) -of (3f23)_ since
7(1,2+1,2) can be partitioned as {T(1+1) T(2+1)} and T(1,2+1,2) is
symmetric (Comment 3.3.2). T(1-2) T(2°2)

If j > 2, 7(j»1,j-1) is available from (3.27).

The components of basis—functions 61, .oy 6j-1 present in the
gradient function (EV(xS,uj+1)/Bu) should therefore all be zero (if -
thé deducéd U»G map matrix térms 7(1,j-1+1,j-1) and T(j=*1,j-1) are
corréct) in spité of the cho;en changé Auj(j) in the component of 6j
présent in the control function if
s (5) = -T(l,j-—l-*l:j-1)-1{gj_1(ms,uj) + 7L D (D). (3.3D)

Au.j (N

Calculate Auq(j) of (3.37). Set

]

U,

ios
541 u-_.I + F}Au (1)

j = j+1

and go to 3) to determine the gradient function for the new control
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function uj.
This concludes the statement of the gradient-decomposition based
optimisation algorithm.

Comment 3.6.1 Each change Auj(j) of the agbove algorithm should

be chosen to be large enough to cause a gradient function change suffic-
iently large to enable U+G map matrix elements to be deduced with
adequate accuracy. Since the U+G map is linear for the optimisation
p{oblem of 3.2, each change Auj(j) may be made as large as is desired.
There should therefore be no difficulty in choosing suitable changgs
(our computational experience confirms this).

Comment 3.6.2 For all j > 2, the control function uj generated

by the above algorithm is designed (using the deduced matrices
r1,j-2+1,j~2) and 7(j-1+1,j~2)) to have a gradient function
(av(xs,uj)/au] which contains zero components of basis~functions 51, cay-
6j-2' ~ Thus if the actual components of 61, aes 6j-2 present in
[BV(xs,uj)/au) are relatively small compared to, say, the components of
51, sey 6j-2 present in (BV(xs,uj_l)/au), we can deduce that the U-+G map
matrices used to construct u.,_| were of satisfactory accuracy and that it is
worthwhile to continue to determine r{1,3-1+1,j-1) by bordering
T(1,572+1,j~2). If, however, the components of 61, ves 6j-2 contained

in (BV(xs,uj)/au) are not relatively small, we can deduce that the elements
of the deduced matrices 7(1,3j-2+1,j~-2) and T(j-1+1,j-2) are significantly
in error and that there can be little justification for ¢ontinuing to
determine 7(1,j-1+1,j-1) by bordering 7(1,3j-2+1,j-2). If T(1,j-2+1,3j-2)
and T(j~i+1,j-2) contain unacceptable errors (in the above sense) but

T(1,i+1,i) and T(i+11,i) do not, for some i e I(j-2), a sensible plan
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would be to restart optimisation using the above algorithm with fhe
predicted (using the deduced matrix T'(l,i+1,i)) xs-optimal control function
belonging to U(1,i)" (for the largest i e I(j-2) with acceptable I'(1,i+1,i)
and T(i+1+1,i), preferably) as the initial control function u,.

For each j > 2, it is desirable to check that each deduced (G
map matrix T(1,j-1+1,j-1) is p.d., as it should be when Assumption 3.4.1
holds (by Lemma 3.4.1). This is trivial when j = 2 and can be done when
evaluating T(l,j-l—*l,j-l)-1 using Lemma 3.5.1 if j > 2 since we shall
only comstruct T(1,3-1+1,3-1) if T(1,j-2+1,j-2) is p.d. If '
r(1,j-1+1,3-1) is not p.d., its elements must be significantly in error
and the same action should be taken as that which would be taken were it
found that (BV(xs,uj+1)/8u) contains non-negligible components of basis-—
functions 61, ey 65_1.

Checks on the accuracy of the deduced U+G map matrices are
desirable because without the checks there would be no way of telling
whether or not the deduced U+G map matrix elements contain numerical errors
which are large enough to render valueless all further calculations based
on them, The ability to check the accuracy of each deduced U-G map matrix
7(1,j-1+1,3j-1) by calculating the gradient function (BV(mS,uj+l)/8u)
without having to compute and apply the predicted (using the deduced matrix
7(1,j-1+1,j-1)) xs-optimal control function belonging to U(1,j-1)" to the
considered dynamical system equations and calculate the resulting gradient
function is a valuable feature of our algorithm because (BV(xs,uj+1)/au)
contains information needed for optimisation on U(1l,j)" while the gradient
function for the x -optimal control funmction belonging to U(1,j-1)" does

not, since the latter gradient function can be predicted in stage 6) of
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A the above algorithm before ms—optimisation on U(1,j)" is considefed.
The following lemma will be of use later.

V Lemma 3.6.1 Suppose k orthonormal basis—functions f15 +=s B
have been defined by the above algorithm and that there are no numerical
errors. Then, if Assumption 3.4.1 holds, T(1,k+1,k) is symmetric and
tri-diagonal with all tri-diagonal elements non-zero and all diagonal

A elements p.d.

V Proof of Lemma 3.6.1 Denote the scalar elements of T(l,k+1,k) by

tip’ Vi,p e I(k)., Since T(1,k+1,k) is symmetric (Comment 3.3.2):

tiP = tpi’ Yi,p e I(R). . (3.38)

T(1,k+1,kR) can be partitioned as follows:
T(1,k>1,k) = (T(1+1,k) ... T(k+1,R)] (3.39)
where T(i~1,k) e RE, Vi e I(k).
From (3.23):

T(1+1,k) 0(1,k-2))T, vk > 2. (3.40)

(e 5
From (3.29) and (3.30):

T(i+1,k) L 0a,k-i-1))7,

(b5 €3 o ti41,
Pk > 1+l (3.41)
On using (3.38), (3.39), (3.40) and (3.41) together, it can be

seen that T(1,k+1,k) must have the following tri-diagonal form if k = 6,
)

say: P(Lko1,R) = ft; t,; 0 0 o o).
: B21 f22 t3 0 O O
’ O t3p t33 ty O O
07 0 t3 ty ty O
0 0 0 t5, tgs tgs
0 0 0 0 g6,
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L}

The above tri-diagonal structure of T(1,k>1,k) is clearly
independent of k.
It may be seen from Lemma 3.4.1 that T(1,k+1,k) is p.d. when

Assumption 3.4,1 holds, which requires that:

tii > 0, Vi e I(k—)o

It can be seen from (3.22) and (3.23) that 7(1+2) # O only if -
gz(ms,uz) # 0, i.e. if an orthonormal basis-function 62 needs to be defined
té enable the gradient function (Bv(ms,uz)/au) to be exactly characterised
by components of defined basis—functions. If gz(ms,uz) = 0, we see
from Definition 3.5.2 that 62 %ill be zero on T, and so will not be

!
orthonormal to 61. Similarly, it may be seen that T(i+i+l) # O only if

g

i+1(ms,ui_l_l) # 0, i.e. if an orthonormal b351s—functlop 6i+1 has to be

defined to enable (Bv(ms,ui+1)/8u] to be exactly characterised by
components of defined basis-functions. Since we have assumed in

Lemma 3.6.1 that orthonormal basis-functions 61, .oy 6k have been

defined, T(i>i+l) # 0; Vi e I(k~1). On using (3.38) and Definition 3.3.8,
we therefore see that

ti+1,i ti,i+f # 0, Vi e I(k~-1).

This concludes the proof of Lemma 3.6.1.
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3.7 Comparative Effectiveness of the Gradient-Decomposition Based

and Steepest-Descent Optimisation Algorithms

The object of this section is to compare the effectiveness at
control function optimisation of the gradient-decomposition based
optimisation algorithm of 3.6 with that of the well-known (piece-wise)
steepest-descent algorithm. The optimisation problem of 3.2 is considered
when Assumption 3.4.1 holds for somé particular (but arbitrary) initial
condition z e X(q), perhaps &S of 1.3. The results obtained are valid,
however, when Assumption 3.4.1 does not hold provided that T(1,m>1,m) is
p.d. for all considered m. For comparison purposes it is assumed that
the steepest~descent algorithm and gradient-decomposition based algorithm
both start with the same initial control function U, € U, that each
algorithm is used independently and that no numerical errors occur.

As in 3.4, we denote the xs-minimal performance index on U(1l,m)" by
V[m;xs}* and the xs-minimal performance index on U by Vﬁzs)*.

We next stage the considered steepest-descent algorithm, designed
to perform at most Rk iterations (i.e. k optimal control function changes
in steepest—descent directions):

1) Set ﬁo = Uy and set m = 0. Go to 2).
2) Calculate the gradient function [av(xs,ﬁm)/au).

Stop if (Bv(xs,ﬁm)/au] is gero.almost everywhere on T,
since no further performance index improvement is then possible.

If (BV(xs,ﬁm)lau) is not Zero-almost-everywhere-on-T, minimise

with respect to 2(m) e R the performance index V(xs,ﬁm—ﬁ(m)[BV(xs,ﬁm)lau)).

Denote the minimising value of Q(m) by Q(m)*.
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Set u

el um - Q(m)*(av(xs,um)/au] and set m = m+l,

Stop if m = k, since the desired k iterations have been
performed. Otherwise, go to 2).
The main results of this section are contained in

Remark 3.7.1 Suppose that Assumption 3.4.1 holds and that

1
true that (BV(xs,ul)lau] is zero almost everywhere on 7.

V(xs,u ] is not the'xs-minimal performance. index on U, so that it is not
(I) Suppose also that the gradient-decomposition based
optimisation algorithm of 3.6 is used to achieve xs-optimisation on U(1)",

r

which involves the definition of a normalised basis-function 61, and
~ N
H % = *, Th Vix = Vix |*. '
that V[l,xs) V[ms) en ( s’ul) ( s)
(II) Alternatively, suppose in addition that
V[l;xs)* # V[xs]* and that the gradient-decomposition based optimisation
algorithm of 3.6 is used to optimise on U(l,k)" for k > 1 (which involves

the sequential definition of k orthonormal basis—functions 61, sey 6h).

Then k iterations of the steepest~descent algorithm can be performed and

(i) V[l;xs)* : V[xs,ﬁl),

(ii) V(m;xs)* < V[xs,iim], ¥m e 1(2,k),
(1ii)  V(ksz)* < v(k-13z )* < ... < V(l;xs)’f < V(z_siy).
Comment 3.7.1 The gradient-decomposition based optimisation

algorithm of 3.6 has to perform two gradient function evaluations before
it can achieve xs-optimisation on U(1)", and the gradient function
evaluations required are the most expensive feature, computationally,
associated with xs—optimisation on U(1)" using the algorithm of 3.6..

The steepest-descent algorithm considered requires one gradient function
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evaluation and one optimisation in a steepest-descent direction to

determine ﬂl. Hence xs—optimisation on U(1)" and the determination of

ﬂl require about the same amount of computaﬁi;nal effort. We therefore
see from Remark 3.7.1(I) that the gradient-decomposition based optimisation
algorithm of 3.6 and the steepest-descent algorithm considered are equally
effective at control function optimisation if V(l;xs)* = V(xSJ*, -No
further iterations of either algorithm are needed in this case since
the xs—minimal performance index on U is achieved in the first iteration.
If, however, V(l;xs]# # V(ms]*, the gradient—decomposition based

algorithﬁ can be used to optimise on U(1,2)", etc. Probably the most’
expensive feature, computationally, associated with xs—optimisation onl
U(l,m)" using the algorithm of 3.6 after xs—optimisation on U(1)" is
possible is the calculation of the further m-1 gradient functions which are
required. The determination of ﬁm given ﬂl using the steepest-descent
algorithm also requires m=1 further gradient function evaluations. We

see from Remark 3.7.1(II) that V(l;xs]# = V(ms,ﬁl], Vﬁﬂ;ms)* < V(ms,ﬁm),

¥n e I(Z,k).' Hence ﬁm is not the.xs~optima1 control function belonging
to u,m)" if m>1, and the further gradient function evaluations

performed by the algorithm of 3.6 to enable ms—optimi§ation on U(L,m)" -
.to be possible (after ms—optimisation on U(1)" is possible) can be consid- -
ered to be used more effectiveiy by that algorithm than the further
gradient function evaluations (which are used by the steepest-descent
algorithm to obtain ﬁm given ﬁl) are used by the steepest—déscent algorithm
Thus if V[l;xs)‘* # V[ms)*, the gradient-decomposition based optimisation

algorithm of 3.6 can.be considered to be more effective at control function
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A optimisation than the steepest—descent algorithm.
To prove Remark 3.7.1 we first considér thé casé of
Remark 3.7.1(XI). We relate the orthonormal basis-functions 61, . 6&
defined by the gradient-decomposition based optimisation algorithm of 3.6
to the firsf k iterations of the steepest-descent algorithm, as follows.
Since ﬁo =u , ve see from (3.21) that
(av(xs,ﬁo)/au) = Fkgh(xs,zlo) he G(1)

where gk(ms,ﬁo). = glcrs,ul) e R, (3.42)
0(k-1,1)
We see from (3.42), (3.48) and (3.50), by usiné an iterative
argument, that |
(ZV(ms,ﬁm)/au) = 8% %) e G(Lml), ¥ e I(k-1) (3.43)
where g (:cs,zlm) = gm(xs,ﬁm) e Rk, gm(xs,ﬁm) e Rm,A
gm+1(xs,ﬁm) bm e T(k-1). (3.44)
0(k-m-1,1)
By using the results of 3.3 it can be seen that
V(e B0 m) (VG i) /ou)) = V(xs,.ﬁm-ﬂ(m)Fkgk(xs,ﬁm))
= V(zgg,) - ame<le,u)), 6Fe 5]
+ gn<m)2<(gk(xs,am)),T(l,k+1,k) [gh(xs,ﬁm))>,
Ym e 1(0,k-1). ' (3.45)
Hence Q(m)*, which m?nimises Vﬁxs,ﬁm-ﬂ(m)(BV(xs,ﬁm){Bu]) with
respect to Q(m), is given by
' k ~ k ~ ~ -
am* = <(g (xs,um)],(g (:cs,um‘)]>/<(gk(xs,um)],T(l,k—>l,k) (gk(xs,um))>,
¥n e 1(0,k-1). (3.46)
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Thens
Gy = Ty - Q(m)*Fkgh(xs,ﬁm) e UQL,m1)", ¥m e 1(0,k-1).
Hence, from (3.45) and (3.46):
' . N R, . R, .
V[xs’umﬂ) = V(xs,um] = £<(g (xs’um))s(g (xssum))>29 {_”m e 1(0,k-1).
< k(xs,ﬁm)],T(l,h+l,h)(gk(xs,ﬁm))> (3.47)

On using the U~G map property (Comment 3.3.4) of T(1,k>1,k),

. we see that

(BV(xs,ﬁm+l)/au) = (BV(xs’ﬁm-Q (m)*Fth(xssﬁm))/au)
= thh(mS’ﬁm-l-l) € G(l,m+2), Ym e I(O,k—Z), (3.48)
where gh(”s'ﬁm+1) - gh(xs’ﬁm) - 90")*T(1,h+1.k>gk(xs-ﬁm>. (3.:49)

Because gh(ms,ﬁm) has the form of (3.42) if m = 0 and the form
of (3.44) if m > 0, and because T(1l,k+1,k) is tridiagonal for our basis~

functions 61, .es 6’2 (by Lemma 3.6.1), we see that gk(:és,ﬁm_'_l) of (3.49)

has the form

@, ) = (™ g )] e RE, Wne T0,k2),  (3.50)
Ime2 (xs ’ﬁm+1)
0 (k~m-2,1)
where gml(ms,?}mﬂ) € i_im-l.

It may be seen that although [Bv(xs,ﬁh)/au) does not necessarily
belong to G(1,k), the components of basis—fgnctions ;Sl seos 6!2 present in
it are the elements of gh(:cs,ﬁ;ﬂ_,_l) of (3.49) when m+l = k,

The :cs-minimal performance index on U(1,m)", V[m;xs)*, ca'n be
seen to be related to the performance index V[xs,z'fz ).in the'follbwing way:

V(m;xs)* = V(ms,z'lp) - %<(gm(acs,12p)),T(l,m+1,m)_l(gm(xs,ﬁp))>,

¥m e I(k), ¥p e I(0,m), . . (3.51)
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where gm(xs,ﬁp) is the m-vector comsisting of the components of basis-
functions 61, cey 6m which are present in-(SV(xs;ﬁp)/Bu).

The remainder of the proof of Remark 3.7.1 is facilitated by
the following simple lemmas. | .
Lemma 3.7.1 For the optimisation algorithm of 3.6, the
ms-optimal control function belonging to U(1)" is equal to ﬁl.
Proof of Lemma 3.7.1  We see from (3.42) that (av(xs,ﬁo)/au) =gy (® %y 6y »

The first iteration of the steepest-descent algorithm therefore optimises
the component -Q(O)gl(xs,ul) of basis-function 61 present in the control
function Uy - Q(O)gl(xs,ul)ﬁl. The resulting comtrol functionm, ﬁl, is
thus the xs—optimal control function belonging to U(1)".
Lemma 3.7.2 Suppose T(1,k+1,kR) is p.d. and m+l e I(R)., 1If
T(1,k+1,k) has no distinct eigenvalues, gk(xs,ﬁl) = 0(k,1). Suppose next
that T(1,k+1,k) does not have eigenvalues which are all equal. Define K
to be the set of all non-zero k-vectors which cannot be written as a
~weighted sum of eigenvectors hi of T'(1,k>1,k) with associated eigenvalues
k; which are equal. Define W to be thatvset which consists of all those
k-vectors which contain no non-zero components of eigenvectors hi with
associated eigenvalues A {Ab,AB} and contain at least one non-zero
component of an eigenvector with eigenvalue Ap and at least one non-zero
component of an eigenvector with eigenvalue equal to Ags where Ab and Ag
are distinct. Clearly W C K, Then gk(xs,ﬁm+1) # 0(k,1) if and omly if
gh(xs,ﬁm) e K. Also, gk(xs,ﬁm+1) e K if gk(xs,ﬁm) e K.  Further,
gk(xs,ﬁmﬂ) e W if gk(xs,i'cm) e W. |

Proof of Lemma 3.7.2 Since T(1,k+1,k) is assumed to be p.é. and is

symmetric, it has the spectral representation
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k
- T , .
T(1,k>1,k) = izlhilihi (3.52)
' where hi e Rk, ¥i e I(k), are the orthonormal eigenvectors of T(1,k+1,k)

A. > 0, ¥i ¢ I(k), are the associated eigenvalues (all real).
i

Now gk(x U ) and gk(x ,ﬁ ) can be uniquely decomposed into components

m+1
(m+1) and o.(m) of the elgenvectors h of T(1, kzl ,k), so that
k

i
g (xs, pey) = 1210 (1), g (xs,um) = 1210 oL (3.53)
On using (3.52) and (3.53) in (3.49) and (3.46), we see that

. . .k -
the components Oi(M+1) of the eigenvectors hi contained in g (xé,um+1)

. k ~
are related to those in g (xs,um) by

o, (m1) [1}2- Q@ Joi @), Vi e I(R), (3.54)
k

(Yo m2)/( ] o (m2r). (3.55)

s=1 8 s=1 $ 8

Suppose first that the only non-zero components oi(m) of the

where Qm)*

eigenvectors hi present in gk(xs,ﬁﬁ) are components of those eigehvectors
associated with eigenvalues equal to AC, say, so that oi(m) =0 if Ai # Ac,
where Ac is an eigenvalue. Then, gh(xs,ﬁm) ¢ K and, from (3.55)

Qm)* = 1/Ac
so that, from (3.54): 0ﬂ+1) = 0, Vi e I(R).
Thus g (x ,u ) = 0(k,1) and g (x ,um+1) ¢ Kif gk(xs,ﬁm) é K.

k

Suppose next that g" (x ,# ) e W. Then o,(m) = 0 if A, ¢ {A,,A }
k spm 1 1

| b*"8
and Szlos(m)ZAS/AB < szlos(m)z,.

so that, from (3.55): Q(m)* > 1/AB.

Similarly: - am)* < 1/Ab.

We see from (3.54) that oiﬁﬂ+1) 0 only if either o {m) = 0 or

Qm* = 1/Ai. _ Since we have just shown that 1/)\B < Qm)* < lllb

when g (xs,um) e W, g st,ﬁm+1) contains at least one non-zero component
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of an eigenvector of T(l,k>1,k) which has Ab as its associated eigenvalue
and at least one non-~zero component of an eigenvector which has AB as its
assgciated eigenvalue. Also, cioﬂ+1) =0 if Ai £ {Ab,AB}.«

Hence gk(xs,ﬁml) e Wif gk(xs,iim) e W, Since this result
is independent of A, and Ag provided that A, # Ags it can be seen that
gk(xs,ﬁml) e K if gh(xs,ﬁm) e K.

This concludes the proof of Lemma 3.7.2.

In the following we sometimes refer to element (i,j) of a matrix
T, say, when we mean the scalar element tij of T.
Lemma 3.7.3 Consider k orthonormal basis—functions 51, ..,'5k
defined by the gradient-decomposition based optimisation algorithm of 3.6

when Assumption 3.4.1 holds. Denote element (1,1) of T(l,m+1,m)-l

by tTl. Then, for the U+G map matrices T(l,m>l,m) defined for the
considered basis-functions 61, .oy 6k:
k k-1 2 1
>
tll tll > aee 7 tll > tll > 0.

Proof of Lemma 3.7.3 It can be seen (by Lemma 3.4.1) that T(1,m>1,m)

is bounded and p.d. when Assumptica 3.4.1 holds, ¥m e I(k). We see from

L3

‘Definition 3.3.8 that T(1,1+1,1) is a scalar. Since T(1,1+1,1) is

1

tll > 0. N
By Lemma 3.6.1, T(1,k»1,k) is symmetric and ‘tridiagonal with

bounded and p.d.:

all tridiagonal elements non—zero. For all m e I(k-1), T(1,k>1,k)

can be partitioned as
T(1l,ks1,k) = [TQ,m1m) T@mlsl,m) ...).

T(1,mm+l) T(m+l-m+l) ...

S 6800043020080 00000s000s00000e08
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Hence, for all m e I(k-1), T(1,m-1,m) is tridiagomal with all tridiagonal

éléménts non-zéro. Also, T(m+l»1,m) = [O(l,m-l) t where t

]T
m,m+1) mym+1

denotes element (m,m+1) of T(L,k+1,k) and t

m,m1 # O since element (m,m+l)

of T(1,k>1,k) is a tridiagonal element,

Now T(l,m+1,rn)-1 = adj(T(l,m+1,m))/A where A is the determinant
of T(1,m>1,m). Since T(i,m»l,m) is p.d., A # O. Thus element (1,m) of
m is equal to t . Xt _ X «0 X t /4,

1,m’ 12 23 m-1,m

where t, denotes element (1,2) of T(1,m>1,m), etc. Since all the

tridiagonal elements of T(1,m*1,m) are non-zero, tT m # 0.
1

7(1,m1,m)" L, denoted here by t

We see from Lemma 3.5.1 that
m+l m
tn = tp * |

1/I'm+1)(nl)2

where

n, denotes the first element of the (Mml)-vector

1
ATl —T(l,m+1,m5iT(m+1+1,m) ,
1
Fm+1 is positive and bounded since T(i,m+1+1,m+1) is p.d. and bounded

when Assumption 3.4.1 holds (by Lemma 3.4.1).

On using the above results we see that n X t

1

m
1° "tim # 0.

> t];. Since this holds for all m e I(k-1), Lemma 3.7.3 is

m,+1
m+
Hence t11

now proved.
We can now come to the

Proof of Remark 3.7.1 Remark 3.7.1(I) follows from the fact that

V(l;xs]* = V(xs,ﬁl), by Lemma 3.7.}. Result (i) of Remark 3.7.1(II) also
comes from Lemma 3.7.1. We next consider the proof of the remainder of

Remark 3.7.1(II).

Since we assume in Remark 3,7.1(II) that.V(l;xs)* # V(m )*,
: ~ s
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and since (by Lemma 3.7.1) ﬁl ig equal to the xs-optimal control function
belonging to U(1)", (av(xs,ﬁl)/au] is non-zero. Hence the components
gh(xs,ﬁl), of (3.44), which exactly characterise (BV(xs,ﬁl)lau) are not
all zero, i.e. gh(xs,ﬁl) # 0(k,1). We see from Lemma 3.7.2 that this
can only occur if gk(xs,ﬁo) # O(k,1) and contains non-zero components of
eigenvectors of T(1l,k>1,k) which have distinct eigenvalues associated
with them. On using the result of Lemma 3.7.2 iteratively, we see that
gk(:cs,i‘(m) # O(k,1), ¥m e I(0O,k). Hence, from (3.43), (av(xs,ﬁm)/au)

is non-zero for all m e 1(0,k) and k iterations of the steepest-descent
considered can actually be performed. Since T(1,k+1,R) is p.d. when
Assumption 3.4.1 holds, we can also see, from (3.51), that

V[k;xs]* < V[xs,ﬂk). This result is independent of kR provided that k > 1.
Hence V(m;xs)* < V(xs,ﬂ"J, ¥m e 1(2,k), which proves result (ii) of
Remark 3,7.1(II).

It can be seen from (3.51) and (3.42) that

!

v(m;xs)* = V(xs,z'zo) - §<{gl(;cs,u1)J,T(l,m—*l,m)-l[gl(acs,ul)}>

O(m~1,1) O(m-1,1)

~ m
= V(=) - _%gl(xs,ul)ztll, Ym e ICk),
m : -
where t11 denotes element (1,1) of 7(1,m>1,m) 1.
We have said above that, under the assumptidns involved in

Remark 3.7.1(II), gk(xs,ﬂo) # O(k,1), This can only occur if

g @ ) # 0 since, from (3.42), gk(xs,ﬁo) = (gl(xs,ul) 0(1,k-1))T.

k k-1 2 1
We see from Lemma 3.7.3 that t11 > t11 > hee > t11 > t11 > 0.

- * -F oo * - . 27
Hence V (k,xs) <V (k ,ws) < ase < V(Z,.’L‘S] * < A (l,WS) * < V (xsguo) 'K
which proves result (iii) of Remark 3.7.1(II) and completes the proof

A of Remark 3.7.1.
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Further informstion concerning the comparative behaviour of
the gradient-decomposition based optimisation algorithm of 3.6 and the

steepest~descent algorithm considered is yielded by

V Remark 3.7.2 Suppose that the assumptions of Remark 3.7.1(II)
hold and that gk(¢s,505 contains non-zero components of eigenvectors‘of
T(1,k+1,R) with associated eigenvalues equal to Ap and Ap, where A, and
Ag are eigenvalues of T(1,k+1,k) and Ap < Age  Assume also that gh(xs,ﬂo)
contains no non-zero components of eigenvectors of T(1,kR>1,k) with

associated eigenvectors smaller than Ab or larger than AB. Then:

(e, 0,) - v(ksz )%} < ((AB-Ab)/(AB+Ab))zm{v[xs,izo) - V(ks= )%},

A Yme I(R).

V Comment 3.7.2 The result of Remark 3.7.2 provides an upper-

bound for the rate at which the performance index V(ms,ﬂm) achieved by
m steepest-descent iterations approaches from above the performance index
V(h;xs)*, which can be achieved after xs~optimisation on U(1,k)" using
the gradient-decomposition based optimisation algorithm of 3.6. This
is of concepfual interest but is not of direct computational significance
since Ab and AB will not usually be kﬁown. The result rgveals, however,

that V(ms,ﬁk) € V(h;xs)*, which is consistent with the previous results

A of this section,

The proof of Remark 3.7.2 is facilitated by

V Lemma 3.7.4" Suppose:
(a) T(Q,k>1,k) is bounded and p.d.,
(b) Z denotes that linear manifold of Rk which is spanned by all those

eigenvectors of T(1,k»1,k) which have associated eigenvalues.A, such that
: i
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-

Ay ;:A Ags where A, and Ag are eigenvalues of T(1l,k»1,R),
© 2@ - <(900,00,0 66,2000 60,
@ 2@ = (Opp2napg<(), 652
A Then: z(gk) < 2(9’2), nge Z.
The proof of Lemma 3.7.4 is facilitated by
V Lemma 8.7.5 IEO <Ay A, S Apg <=

fin

@) (g (An)-arn )+ ((L/xb>+(1/xB>)(xl rg) 0
@ pymg(anp-any) + (Anp+ang)(r;=2,) < o.

V Proof of Lemma 3.7.5 The results may perhaps best be proved by

multiplying (a) throughout by AiAbA% and by multiplying (b) throughout
A by AiA%AB. On cancelling the common terms, the required results emerge.

V Proof of Lemma 3.7.4 We consider first the proof for the case when

g!z e Q, where Q = {g’2 : <(gk],(gh]? = 1 and gk e 1.
Recall from (3.52) that T(1,k*1,R) can be written as

T(1,kol,k) = ] AR
jo=1 1
For notational convenience, suppose that the orthonormal eigenvectors

hi are ordered so that AL = A and A, = Ag.

Let §* = (n+h,)/V2. Then §° e Q ana zB®) = 2@™.

We have thus shown that the upper-bound E(Qk) of Lemma 3.7.4 is
kR _ Ak

actually attained for § =§ . We complete the proof by first showing that

Z(gk) ;=2(gk) for all gk = ék + dgk e Q.

Now 83~ e Q can be uniquely decomposed into components o of

~ the orthonormal eigenvectors hi of T(1,k+1,k),and can then be written as

i=1 1
where o, =0 if A ¢ {A AB}, Yi e I(R).



129

For Qk + égk to belong to O, we require that

2<(sg%), (85> = ~<(6g"), (2% (3.57)
On using (3.56), we see that (3.57) requires that
oy +0p = —( z )//2. (3.58)
It can be seen that
2(GResg® = x@Prsg® yatiog® C (3.59)

vhere  x(3R+sg) (“h) T(1,k>1,k) (3 k)> + 2<(égh) T(1,k>1,k) (3 )

(égk] T(1,k+1 k)[dgk)>

+

= [Ab+AB)/2 + /2[01Ab+okAB) + '2 ogxf
k k _ Ak : : "1 Ak =1
Y8 +sg) = <(§),T(1,kx1,R)7 (57 )>
+ <(ég ) T(1,k>1,kR)” (*h)> + <(égk);T(lék+1,k)—1(égh)>
= ((1/Ab)+(1/AB))/2 + /2[(01/Ab)+(ck{AB)] + izloilxi.
Two cases can occur: (i) 0 = 0; (ii) Gk = 0, We treat

these separately, for convenience.,

Suppose first that o, = 0. Then, we see from (3.58) and (3.59)

that x(gk+6gk) = (prgllz + 202( —z)
y(gk4dg ) = ((I/Ab)+(1/AB)]/2 + ) o [(I/A )- (1/xB))
Hence z(gk+ég ) = 2(%k+5gk) . N
+ 2 o%(x.—x )}{_Z o2 (A/A)-Up))

+ 1210 2L (agrrg) (A D=-ang) + ((1/xb)+(1/x3) -AB)}.
iz

Since o, =0 if Ay é {aps2 B} whenever g!2 + égk e Q, we see from
Lemma 3.7.5(a) and the above that z(gk+ég ) £ 2@ +59 ) for all gk + 59k

belonging to Q such that g, = 0.

"The case with op = 0 can be treated in a similar way. We then

see that when o, = Ot )
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b b
z@gProghy = 2@gResghy (] 20 ] sanp-any))

1=
+ 3 ] o2 (aymg) (anp-any) + (anp+ang) (a;=2p)?
i=1
Since o, = 0 if X, ¢ {)p,Ag} whenever ék + ng' e Q, we therefore see

I~

from Lemma 3.7.5(b) and the above that z(§k+dgk) < 2(§k+dgk’) for all
Qk + ng belonging to Q such that o = 0.
We have thus shown that
26 < 26®, ¥ e 0.
Since Z(ozgh)A = a“z(gh) and E(agh) = a“2(gk) for any scalar a,
we see that
2 5 26D, ¥ e 2, |
which proves Lemma 3.7.4. |

We can now come to the

Proof of Remark 3.7.2 Clearly

{v(x ﬁm+1) - V(h;xs)*} = )L(m'){V[ms,ﬁm) - V[h;xs)*}, bmel e I(R), (3.60)

s
vhere  a(m) = 1 - {V(z_,7) —v[xs,ﬁm+l)}/{v(xs,ﬁm) —v(iz;xs)*}.,
From (3.47) and (3.51):

nm)y = (a(m) = d(m))/a(m), ¥m e I(0,k-1), (3.61)
where )

aqm) = <[gh(ms,ﬁm)),T(1,k+1,h) (gk(ms,z'im))> x
<[gk(xs,i2m)) Ik, g7 ))>,

<(gk(acs,ﬁm)) , (gk(xs,ﬁm))>2.

Under the assumptions of Remark 3.7.2, gk’(ms,z'io) e W, where W is

d(m)

as defined in Lemma 3.7.2. On using Lemma 3.7.2, we see that

gh(m st ) e W, ¥me I(0,k=1). Since W C Z, where Z is as defined in

s m+l

Lemma 3.7.4, we see from Lemma 3.7.4 and (3.61) that:
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) < (Og=2p)/ Og+rp))2, ¥m e 1(0,k-1). (3.62)

On using (3.62) in (3.61) as M is increased from one in unit

A steps, the result of Remark 3.7.2 can be obtained.
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3.8 Computed Examples

To demonstrate the usefulness of the developments which have
been presented so far in this chapter, we present here the results of
computations performed for two optimisation problems which are essentially
the same as the optimisation problem of 3.2. For computational purposes,
however, the linear space (for each problem) to which considered control
functions belong is not infinite dimensional but is of finite (100)
dimension. Since the modifications to enable our results and algorithm
to be used for such problems consist mainly of obvious changes in notatiom,

they are not discussed.

3.8.1 A Boiler

The boiler considered here 1is that of Nicholsdn {37} and 1is

assumed to be described by the following difference equation:

| xi+1 = .dxi + Bu(i) + Cud(l)
where x, = rxl1 = [steam density )
x2 superheated steam temperature
Xgq steam quality
%, ). (water level displacement in drum j,
47 1- . 1
u(@i) = rul(i) = |water mass flow rate
' (1)
Nuz(i) fuel oil mass flow rate
ud(i) = [steam (demand) mass flow rate)(i)
A = [0.912E+00 0.367E-04 0.192E+01 O.
0.631E+00 0.921E+00 -0.909E+01 O,
0.187E-02 0.168E-06 0.381E+00 O.
(0.120E+00 0,224E-04 -0.217E+02 0.100E+01
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B = [-0.368E-03 0.499E-01), ¢ = [ -0.183E-02].
0.384E~02 0.131E+02 -0.729E+00
-0,.138E~03 ~-0.619E-02 0.253E~03
-0.219E~02 ~0.244E+00 0.731E~-02

The units associated with each element above are given in the paper
by Nicholson, but do not concern us directly here,

A problem considered by Nicholson was the regulation of the
boiler response to minimise the effect on x of a change in ud(i) from
ud(i) =0 foric<1to ud(i) = 2,778 for i > 1. We also considered
this problem and attempted to minimise with respect to u(i), ¥i e 1(50),

the performance index

51 )
1Io<l=)e(=,)>
i=1

diag{0.1E+06 O0.1E+01 0.0 O0.1E+05}.

V .

where Al
The discrete~time convolution-description forfthe boiler was determined
from the difference-equation and was used as the system description in

our computations.

Because the discrete-time version of Assumption 3.4.1 is not
satisfied in this case, lower-bounds for the xs-minimal pe?forhance index
on the control space cannot ée calculated for the above problem. The
nominal initial condition considered was 55 =z = 0?4,1). The steepest=-
descent algorithm of 3.7 and the gradient-decomposition based'optimisation'
algorithm of 3.6 were both used (with obvious modifications to allow for
the discrete-nature of the considered control functions and the fact that
lower-bounds cquld not be calculated), both starting with the same initial

control function - namely u(i) = 0(2,1), ¥i ¢ 1(50). The performance

index V(&S,ﬂm) obtained after m iterations of the steepest-descent
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algorithm is shown in Fig. 3.1 for each of the 17 iterations performed.
The performance index predicted to be achievable after m iterations
(control function changes) of the gradient-decomposition based optimisatio
algorithm (calculated using the approach of stage 6) of the algorithm
statement),'vﬁm;ig]*, is als; shown in Fig. 3.1 for each of the 17 iterat-
ions of that algorithm which were performed. The performance index for
the initial control function, denoted by V(is,ﬁo) and by V(O;ﬁs)* in
Fig. 3.1, was actually 0.351E+05 (too large to be plotted in Fig. 3.1).
The predicted (using the U~G map matrix elements deduced using
the gradient—decomposition based algorithm) is—optimal control function
belonging to U(1,17)" was applied to the convolution-description of the
boiler and the associated gradient function was calculated. The gradient
was found to be exactly characterised by the following components of basis-
functions 61, ees 618:
918(17;&8)*‘ = (-0.1E+00 0.3E-01 -0.5E-01 0.3E-01 -0.1E-01 -0.6E-02
-O.ZE—'OZ 0.2E~02 ~0.3E~01 -0.1E-01 -0.9E~01 -0.9E-01 -0.1E+0Q0
~0.7E-01 -0.6E~01 ~0.3E~01 ~0.8E-02 0.3E+03)T. _
The components of basis-functions 61, ooy 617 would all have been zero
had the predicted &S~optima1 control function belonging to U(1,17)" been
precisely optimal. .AAlthough the components were not actually zero, they
were very small compared with the component of 618 present in the gradient
function, which ccmponent could nﬁt have been reduced to zero after 17
iterations since optimisation on U(1,18)" would only be possible after
18 iterations. - The relatively small size of the components of 6i, vy o

present in.the gradient function, compared to the component of 618’

was considered to be very satisfactory for an IBM 7090 computer operating
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in the single precision mode (i.e. using eight significant.figure,

floating point, arithmetic). The performance index change, relative

to the performance index for the initial control function, which occurred
on applying the predicted &S-oﬁtimal control function belonging to U(1,17)"
was within 0.157 of that change predicted using the deduced UG map

matrix elements, which was also considered to be rather satisfactory.

We see from Fig. 3.1 that the gradient-decomposition based
optimisation algorithm of 3.6 reduced the.performance index more rapidly,
as a function of iterations, than did the steepest-descent algorithms

.this result would have been expected from the discussion of 3.7 since
the first iteration of the steepest-descent algorithm did not achieve
the 5S-minimal performance index on the considered control space and

'k > 1 orthonormal basis-functions 4 were defined by the gradient~
decomposition based optimisation algorithm. Because of this and
because 17 iterations of each algorithm required about the same amount
of computing time (1.0 minutes), the gradient-decomposition based
algorithm is far superior to the steepest-descent algorithm for this

problem, .
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1 . SE“"O[‘ ~4

1.0E+04 -

Fig., 3.1



137

3.8.2 A Heat-Exchanger

The optimisation problem considered here is defined for the
heat-exchanger of 2.6 and has the same performance function as that of
2.6 but with @ = 10 and R = 0.0025. Trapezoidal integration was used
with a step-length of 1 second. The initial control function considered
was zero on {0,200} and the initial condition considered was

g = (40 40 0 0 0 0 O ot

Fourteen iterations of the gradient-decowposition based
optimisation élgorithm of 3.6 were performed. The predicted (using
stage 6) of the algorithm) 5S—minima1 performance index on U(1,m)",
VOM;&S)*, and the associated lower~bound %0m+1;&s]; for the‘&s~minima1
performance index on the control space aré plotted in Fig. 3.2 for
m= 9, ;.., 14.

The predicted (using the (PG map matrix elements deduced by the
gradient—decomposition’based algorithm) ﬁs-optimal control function
belonging to U(1,14)" was applied to the heat-exchanger description.

The resulting performance index and lower-bound for fﬁe &S-minimal
performance index on the control space were 0.45173336E+05 and
0.45171316E+05, respectively. These compare favourably with the

values predicted using stage 6) of the gradient-decomposition based
algorithm, which were 0.45173349E+05 and 0.45171340E+05 (respectively) =
bearing in mind that an IBM 7090 computer operating in the single precision
mode was used for the computations;

From the above results we see that the predicted £>~optima1
s

control function belonging to U(1,14)" has an associated performance index
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value which is negligibly different from the és-minimal performance

index on the control space consideréd, which was of dimension 100 because
thé control functions considered were constrained by the integration
algorithm which was used to be constant over each of the 100 integration
steps which were employed. Optimisation on a translated linear manifold
containing U(1,14)" but of larger dimension would therefore be relatively
unprofitable, performance~index Wisé. This is a result which is

useful from the computational point of view, and which would not be

available without our lower-bound results of 3.4.

0.459E+05

|

0.455E+05

0.450E+05_

; : : Fig. 3.2
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3.9 Optimal Control Function Determination as a Function of

Initial Conditions

The optimisation problem of 3.2 is considered when Assumption
3.4,1 holds for x o= is, of 1.3. A simple procedure is stated for
defining a translated linear manifold and determining the ms-optimal
control function belonginé to it as a function of initial conditionms
z € X(q) such that a certain approximation condition holds for all.
x, e X(qQ).

Recall the definition, in 1.3, of the closed and bounded
neighbourhood X(q) of ﬁs. From 3.3, the ms-optimal control function
belonging to U(1,j)" is, for all initial conditions x, = ﬁs + X%z e X(q@):
uljsz x%eat)s = u - FjT(l,j-*l,j)’l(gj @, u)) + P(L,901,3)62%)  (3.63)
where gj(is,ul) = fTFj(t)T(BV(és,ul)lau(t))dt
when 7(1,j+1,j) is p.d., which it is when Assumption 3.4.1 holds.
Expression (3.63) is an optimal control law which determines the ms—optimal
control function belonging to U(1,j)" as a function of initial conditions
x, = 58 + X9529 ¢ X(q). Recall the definitian of an sﬁrs)—approximation,
in 3.4.2.

Definition 3.9.1 Control law (3.63) will be referred to as an

E(X(q)}—approximation to the optimal control law which determines the
optimal control function belonging to the control space U as a function of
initial conditions if u(j;és+Xq6xq)* is an s(5S+Xq6mq)—approximation
to the (§S+Xq6xq)—optima1 control function belonging to U for all initial
conditions x = &S + x%2% € X(q).

Definition 3.9.1 provides a useful means for characterising

the effectiveness of control law (3.63). If an s(z(q))-approximqpion is
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required for a specified e, it is desirable to use the smallest integer j
for whiéh control law (3.63) is the desired E(X(q))-approximation, to
reduce as far as possible the computational effort required to determine
the control law. A simple algorithm is next outlined for determining a
suitable small j, j(q), and the associated control law, although j(q) is
not necessarily the smallest j for which control law (3.63) is an
e(X(q))—approximation. Some of the quantities used in the algorithm are
defined in Remark 3.9.1, which follews the statement of the algorithm.

1) Choose an initial control function u, e U, where u

1

the is-optimal control function belonging to U.

1 is a guess at
Set the initial condition to 55. Define orthonormal basis-
functions {§ and choose the smallest integer j(0) such that the gradient
function (avcj(o);&s)ﬁau) (defined ko be equal to (av(&s,ug)/au), where
ug is the &s-optimal control function belonging to U{l,j(0))") satisfies
B(3(@) < s(0), (3.64)
where
m :
8(3(0)) = i.zlf‘T{s(hict)),(av.cj<o);&s)*/auct))ﬂ,/xict)}dt. (3.65)
The graézent-decompqsition based optimisation algorithm of 3.6
can be simply modified to define, and ﬁs-optimise on, U(l,m)" as m is
iteratively increased from one in unit steps until condition (3.64), with
j(0) replaced by m, is satisfied. The required value of j(0) is then
the first value of m which causes condition (3.64), with j(O) replaced by
m, to be satisfied. Clearly T(l,,j‘(O)—>1,j(O))“1 will be available when
j(0) has been determined in this way. Denote the total number of orthﬁ-

normal basis-functions { defined at this stage by n(0), and denote the

ﬁS-OPtimal control function belonging to "U(1,j(0)}" by u%., Go to 2).
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2) Setx=1. Go to 3).

3) Equate the control function to ug. Perturb the initial condition

~ = a.q v
from xs to mn ?s + X&|5xn|, on the boundary of X(q). Calculate the

resulting gradient function, (BV(m&,ug)lau].- The gradient function
change caused by the initial condition change Xﬁldﬁzl from Es when the

control function remains unchanged at us is therefore

sg(lsz3) = (= ot [8u) - (3V(§ (033 )7ou) . (3.66)

Decompose the gradient function change 59(]5 |] as F; (&)ng(&),

in exactly the same way as we would decompose a gradient function, where

A n) Ri(n) is zero

i

set L(1) = n(ﬂrl) since 5g(|6x l) is then exactly characterised by

L(n) = n(n~1) + 1. If the last element of 6q

components of ba51s-funct10ns 61, sey § alone, and no new orthonormal

n{=1)

: e . . o\q
bas;s function 6n(ar has to be defined to enable Gg(lﬁxnl) t? be

1)+1
exactly characterised by components of defined orthonormal basis-functions.
The total number of orthonormal basis-functions defined at this stage is

A(n). Thens

g(lell) = Fi %9 g
Therefore ,
sg(le2d]) = Fgy, vk 2 4(0), | (3.67)
where 5gfL - [594(") e RE, ¥k > i(n), (3.68)
0Cte=i (1) ,1)

-

no matter how 6&(&)+1’ cey 6k are defined (if 61, cos 6k are orthonormal),
On recalling the X+G map ﬁroperty of P(1,q*1,k), of Comment 3,3.4,
we see that column % of P(1,q+1,k) is given by

P(a*1,k) = Ggilldﬁzl = agf;(">/|a§g| , Yk > £(n). (3.69)
- oG=i, 1)
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it

of the
n

For any integer j(1) > 0, the j(%)-vector &g
components of basis-functions 61, ces 5j(n) (which have not all been
defined yet if j(1) > 4i(4), since only basis-functions 51, .oy 61(&) have
been defined at this stage of the algorithm) present in the gradient
function change 6g(l6§i|) is equal to P(n&l,j(&))[dﬁg], where P(n~1,3j(1))
is the j(1)~vector consisting of the first j(4) elements of P(x+1l,k) of

(3.69) - for any k > max(é(n),j(n)]. On using the U~»G map property of

7(1,5(1)+1,5(1)), it can be seen that the components of basis-functions

i)

61, cey 6j(n) present in the gradient function can be changed by -8g;

. - () .
. by making a change of -T(1,3j(1)»1,3(1)) lﬁgi( ) in the components of

basis~functions 61, ces 6j(ﬂ) present in the control function. Thus

the components of basis—functions 61, ooy 6j(n) present in the gradient
function change 6g(]6§§|) from [3V(j(0);58773u] which is caused by an
initial condition change of Xﬁ]&ﬁﬁl from 58 can be reduced to, or

maintained at, zero by changing the control function from u% to

0
uf = uf - FJ.(’,L)(T(l,j(/z_)+1,j(/L)))_IP(/L-»l,j(/L))IGﬁzI (3.70)

when the initial condition is changed from is to =, .

The gradient function change from [3V(j(0);58f73u] which is
caused by the initial condition change - from 53 to x, when the control

functicn is changed from ug to ui is then

s5(islexl]) = (v ,w)/on) - (v (033 Vo). - (3.71)
Choose j (1) so that
s(it)) < s(n) ' (3.72)

where

m
(i), = 4} fT{<(h.(t)),(Gg(j(ll);Idﬁql)(t))?z/)\.(t)}dt, (3.73)
i=1 . 1 1
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and where Gé[j(n);léizl](t) is the value of Gé[j(n);ldigl) at time t.
Since T(1,3 (1)1, (1)) is available at the start of

stage 3), we can easily check whether j(4) = j(1~1) satisfies condition

(3.72). If it does, set j(1) = j(2~1) and go to 4). If it does not,

an algorithm similar to that of 3.6 can be simply constructed to choose

the smallest integer j (i) greater than j(2~1) such that condition (3.72) is

satisfied (and to define further basis-functions § if necessary, i.e.

if j(n) = 4(1) does not cause condition (3.72) to be satisfied). Note,

however, that the U+(G map matrices T will not necessarily be tridiagonal

in this case since basis-functions § may have to be defined by the current

algorithm to enable gradient function changes which have been caused by

initial condition changes to be exactly characterised in terms of

components of defined basis-functiéns, which breaks the chain of reasoning

which lead us to deduce that T is tridiagonal for the basis—functions

defined by the algorithm of 3.6. The procedure used for calculating

T in the algorithm of 3.6 is still valid, however, since it does not

depend on T being tridiagomal. WPen a suitable j(2) has been found in

this way, T(l,j(n)+l,j(n))-1_will be available. Denote the total-

number of orthonormal basis-functions § which have been defined at this

stage of the algorithm by n(1). Go to 4).

4) If the initial condition éhanges which have been made so far do

not span X(&), i.e. if n # q, set £ = 2 + 1 and go to 3). Otherwise,

if ~ = q, stop.

This concludes the statement of the algorithm.
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V Remark 3.9.1 Consider the optimisation problem of 3.2 when

Assumption 3.4.1 holds for z = &s. Since Fuu(t) is then symmetric and
p.d. for all t e T, it can be written as

S T
PRIAIOLAC (3.74)

F (&) =
uu i=1

where, for all te T,
hi(t), ¥i ¢ I(m), are the orthonormal eigenvectors of Fuu(t)’
Ai(t), ¥i e I(m), are the associated eigenvalues of Fuu(t) (all > 0).

Suppose that in the above algorithm

e/(q+1)2

(e + a(1)? = 2a(1) |Ve|)/(q~1+1)2, Yn e I(q)

5(0)

§{n)
-1

where a(i) = Z i/B(j(a))I.

.a=1
Then control law (3.63) with j = j(q) is an e(i&q))-approximation

t

to the optimal control law which determines optimal control functions
belonging to the control space U as a function of initial conditions .
bz e X(qg).
Before proving Remark 3.9.1 we make the following comments.

V Comment 3.9.1 Using Remark 3.9.1 with the above algorithm

enables the j (actually j(q)). to be determined in a simple way for

which control law (3.63) is an e(z(q))-approximation for any desired ¢ > O.

The X+G map matrix P(l,q+1,j(q)) and the inverse U»G map matrix

T(l,j(q)-*l,j(q))-1 will be available when j(q) has been determined, so

all the terms needed to implement control law (3.63) with j = j(q) are

available once j(q) has been determined in the above way. Note that
P(L,921,i (@) = (P(1+1,i(q)) ... P(g=1,j(q)))

where P(%+1,3(q)), ¥ e I(q), is the j(q)-vector consisting of the first
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A j(q) elements of P(1>1,k) of (3.69) for any k ;zmax(j(q),i(n)).

V Comment 3.9.2 Rerark 3.9.1 is especially easy to implement if,

as is common, F is chosen so that Fuu is diagonal, since then hi(t) is
that m-vector which has element i equal to unity and all other elements

A equal to zero, Yt e T.

V Proof of Remark 3.9.1 For the initial condition z_ = at-s + x%829,
consider the control function
- . . -1_.3(0) /=
u(@ e = wy - Fy0 (70L,3001,500) T DG u)
§ P o) (7,3 ()+1,3 (1)) P11, 3 ('L))csxz
. r=1
j(0) - Trv(z
wvhere g1V’ (@ _,u,) fT(Fj (0)_(1:)) (av(xs,ul)/au(t))dt,
szd = (Gxg cee Gxg]T,
P(>1,3(1)) is the j(n)-vector consisting of the first j (1)
elements of P(1*1,j(q)) of Comment 3.9.1.
On using (3.70) and the fact that U - Fj(o)CT(l,j(0)+l,j(0)))_lx
j(0) /~ . ~ . .
gJ( )st,ul) is the xs—optlmal control function belonging to U(1,j(0))",
it can be seen that
{~ Xq q " g q ‘A
U T +X16 = y* % - yk q
T )" uk + /"L=l{u’l' uo}dxnlldxnl. (3.75).
We can cozsider u@%stQqu]" to be an e&i +Xq6xq]-approximation
‘ s
to the (5S+Xq6xq)—optimal control function belonging to U if
~ q ~ ~
I‘VLrS+Xq6x ,u(xs+Xq6xq]"] - Vﬁxs+Xq6xq)*-l < €. (3.76)
where V[&S+Xq6xq)* is the (55+Xq6xq)-minimal performance index on U,
in exactly the same way that we consider the (% +X%6x%)-optimal control
s
function belonging to U(1,j(q))" to be an e&ES+Xq6xq]-approximation
T {3 ¢a) s o796 % = vl q
i | V(3 @)z +x%62) V(E axlsa)x | < e (3.77)
vwhere V(j(q);és+Xq6xq)* is the 655+Xq6xq)-minima1 performance index on

U(l’j (q))"c.
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Recall from 3.4.2 that the minimal ¢ for which the (5 +X%sa%)-
optimal control function belonging to U(1,j(q))" is an e@is+Xq6xq -
approximation has as an upper-bound

¥ @saalealyx = 4f<(g®), (7, ) g)>ae
where g is equal to the gradient function (8V(58+Xq6mq,u)/au] vhen u is
the (5S+Xq6xq)-optima1 control function belonging to U(1,j(q))". In

an exactly similar way, it can be shown that the minimal ¢ for which

u@is+Xq6xq)" is an eCES+Xq6xq]-approximation to the (&S+Xq6xq)-optima1
control function belonging to U has as an upper-bound
vz q - -1 »
%(ms+Xq6x o= £IT<(g"(t)],(ruu(t)) (g"(t))>dt (3.78)
where g" = (av(@E +x%62%,u(z_+x%62T)") /0u)., i (3.79)
. s Vs

From the structure of the algorithm considered, j(1) < j(q),
¥ e 1(0,q). Therefore
v (3 (q) ;a?:s+x‘15xq] ¥ <V [558+Xq69:q,u (& +x%829)"), (3.80)
since (a) u(&s+Xq6xq)" is the (&S+Xq6xq)-optima1 control function belonging
to U(l,j(g))"™ if jr) = j(q) for all & e 1(0,q-1), and
(b) u(&s+Xqéxq]" is a potentially 'less-optimal' control function
than the (5S+Xq6xq)—optima1 c?ntrol function belonging to U(1,j(q))"
if j(n) < j(q) for any % e I(0,q-1).

Thus to prove that control law (3.63) with j = j(q) is an
E(R(q)]—approximation to the optimal control law for U we need only show
that u(Es+Xq6xq]" is an e(5S+Xq6xq]-approximation to the (5S+Xqéxq)-
optimal control function belonging to U for all initial conditions
x, = 58 + X323 ¢ X(q). This arises because’(3780) ensures that (3.77)

is satisfied for a given g if (3.76) is satisfied for.the same €,
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-

We therefore prove Remark 3.9.1 by showing that the choice of GL&),

Yo e 1(0,q), used there ensures that %(53+Xq6xq)" < e for all initial
conditions Es + X352 e X(q), which ensures that uﬁ%S+Xq6xq)" is an
eGES+Xq6xq)—approximation for all 5S+Xq6xq e X(q).

Because the gradient function for the optimisation problem of
3.2 varies linearly with the initial condition z_ and with the control
function, and because u(55+Xq6xq)" varies linearly with qu, it can be

shown that

(BV(;'I':S+Xq6;cq,u(E:S+Xq6xq]")/3u) = g, * § axq/laxq| (3.81)
for some time-functions ggs *+» gq.
We can in fact identify the functions Gor **» 9q° Consider firsF the
case when Sx? = 0., Then we see from (3.75) that u[%s+Xq6xq)" = ug,
the & —6ptima1 control function belonging to U(1,j(0))". Hence

(v ,u(@ )" /ou) = (VG ,ub)/ou) = (3V(j(0)35,)7ou) and, from (3.81):

g9o. = (3V(30)33,)75u). (3.82)

Next consider the case when 6z% (0(1,&—1) laﬁzl 0(l,q—n))T, e I(q)e.
Then, from (3.75), u(5:5+Xq6xq)'f = u¥ and, from (3.71):
(3V(&S+Xq6xq,u(és+Xq6xq)“)!au)A = (avc;n,uz)/au)
= (VG sz YTew) + sg(i(ms|ex]]).
On comparing this with (3.81), it can be seen that
g, = G(ieslexll). ) (3.83)
On using the spectral reéresentation of Fuu of (3.74) in (3.78),

we see that ?CES+Xq5bq)"

le {<(n, (t)) (3V(55+Xq6xq,u(5:s+Xq6xq)")/Bu(t)]>2‘/7\i(t)}dt.
l—

Using (3.81) in the above yiélds:

e e e oo e A o8 e G 0 e . 3 1 A S i e w4 N e mumr ew s s sme e -
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%(£S+Xq6xq)"
q 9 mn '
= 11 ) T t<(g,(0), (r (0))><(2; (D), (g, (€3)> /2 (D }ae]
B a=0 b=0 i=1 T a
H§S+Xq6xq e X(q), (3.84)
since Gxg < |a§,‘i[, ¥n e 1(@), if & + 1%zt e X(@).

On using H&lder's inequality for integrals, (3.84) yields

q9 9 m
2z +x%6zyn 2 Y 11 IVB.(j(a))l I/Bi(j(b))"
8 a=0 b=0 i=0 *

U&S+Xq6mq e X(q), . ' (3.85)
where Bi(j (a)) = %f.r{<(hi(t))=(ga(t)]>2/)\i(t)}dt’ Ya e I(O’q). (3.86)
Using the Cauchy-Schwarz inequality with (3.85) yields
q 4
v@ +xlezhn < Y IveG@)] IYB(Em)],
a=0 b=0

| v +x%6d e X(), (3.87)
vhere B8(j(a)) = .§ 8, (1@), va e 100,. © (3.88)
By using (3.§§%, (3.83) and (3.86) with (3.88), we see that
8(j(a)) of (3.87) is defined as in the algorithm (i.e., 8(j(0)) of (3.87)
is equal to B(j(0)) of (3.65) and 8(j(1)) of (3.87) is equal to B(j(1n))

of (3.73), %1 e I(q)).

Define a(1) as follows:

a(r) = 0 if 1 =0 _
= ﬂillfb(j(a)}l if 7 e I(q+l). , (3.89)
Thens a=0
‘a(q+1)2 > a(@? 2 .. 2 a()? 2 a(0)2. - (3.90)

It is convenient to next state and prove two simple lemmas.
V Lenma 3.9.1 Suppose that for some % e 1(0,q), a(1)? < ¢.

Then a(q+1)2 < ¢ if j(a) is chosen so that B(j(a)] ;=6(m], Ya e 1(n,q),
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where (1) = (a(n)2 + ¢ - 20(n) |Ve|)/(q-n+1)2. -

‘Proof of Lemma 3.9.1 We see from (3.89) that

q q

a(q+l)2 = a2 + 20(n) ) |V8(3@))] + (] |/8(G@))3.
a=n as=f

Suppose j(a) is chosen so that

8(i@) < (1), Yae I(n,q).
Then alq+l)2 < a(r)2 + 2a(n) (q-n+l)]Ve(n)| + (q-1+1)25(4)
and a(q+1)2 < e if [Ve(n)] = (|Ve] - at0))/(g~1+1),
which completes the proof of Lemma 3.9.1.
Lemma 3.9.2 Suppose that for s;ome 2 e 1(04q=1) such that
a(1)2 < e, j(1) is chosen so that B(j (1)) < §(1) where
5(n) = (a2 + ¢ - 20(1)|Ve|)/(q~2+1)2.  Then
§(n+1) = (a(+1)2 + € - 20¢+1) |Ve|)/(g=1)2 > &6(n). Also
if 8(j () = &(n), then 6(1+1) = s(n).
Proof of Lemma 3.9.2  Since a(a+l) = a(n) + [VB(j(W)]:
§(+1) = {(an+1)28(n) + 2(alr) = |Ve[}[VB(E )| + 8(3¢0))}/ (a-1)?2
= &(1) + {(2(g=)+1)6(n) + 2(atn) - [Ve])[VB(300)] + B(3(0))}/ (a-n)2.

Now if B(j(/z.)] < 6(11.), then I/B(j(lz.)“ = I/G()L]I - x for some k > 0.

On using the facts that [a(/z.) - ]/;|)/(q-lz.+1) = =-|/§ (/L]| and that
g% > 0 if n e 7(0,q), it can be seen from the above that
§(n+1) = (1) + {e? + 2(q-)c|Vs(1) M (@~)2 > &(n).
Also, if B[j (/L)]. = 6(11.], then « = 0 and 6(/L+1] = 6[11.], which |
concludes the proof of Lemma 3.9.2.
We see from (3.87) and (3.89) that

'eY(EéS+Xq6:cq)" < o(q+l)?, U£S+Xq6wq e X(q), (3.91)

so that @(&S+Xq6xq)"'_<__ e for all :'E:S + x9529 ¢ —)Z(q} if j(a), Ya e I(0,q),

is chosen so that
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a(gtl)? < e, (3.92)
From Lemma 3.9.1 with Z = O and, from (3.89), a(r) = 0,
condition (3.92) is satisfied if j(a) is chosen so that
B(j@) < 8(0) = e/(g+1)2, Va e 1(0,9). (3.93)
Now 6[0) is defined in Remark 3.9.1 in the same way as in (3.93),
so the algorithm considered chooses j(0) so that condition (3.93) is
satisfied for a = 0, which also ensures that a(1)2 < .e. Due to the
_integer nafufe of j(0), it is unlikely that the number j(0) chosen by
the algorithm will be such that B(j(0)) = §(0). If 8(j(0)) is actually
less than §(0), which is likely, a less stringent condition on j(a),
Pa e I(q), than B(j(a)] ;=6(0), need be imposed to ensure that a(q+l)?2 X E.
We see from Lemma 3.9.1 that to ensure that a(g+l)? < e it is sufficient,
when 5(0) has been chosen as above,‘that j(a), Ya e I(q), be chosen so
that |
8(j(@)) < (1) = (a2 + e - 22(1)|/e|)/q2. (3.94)
This is a less stringent condition on j(a), ¥Ya'e T(q), than condition
(3.93) if 8(j(0)) < §(0) since then, from Lemma 3.9.2, (1) > &(0}. If,
however, B(j(o)) = 6(0), the conditions are equivalent since then, from
Lemma 3.9.2, §(1) = §(0). |
By proceeding in the above way it may be seen that the conditions
of Remark 3.9.1 are such that o.z(q+1)2 % €, i.e. are such that-
EGES+Xq6xq)ﬁ < e for all initial conditions 55 + X%2% e X(q), which
ensures .that control law (3.63) with j = j(q) is the desired.s(xzq))~app—
roximation to the optimal control law which determines optimal control
functions belonging to the control space U as a function of initial

A conditions.
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3.10 Computed Results

The theoretical results and discussion of 3.9 do not need
computational verification. In this section, however, computed results
are presented which demonstrate the usefulness for control function
re—optimisation following an initial condition change of UG map matrix
data deduced from optimisation iterations perforged before the ;onsidered
initial condition change. We use the theoretical result that the z =
optimal control function belonging to U(l,m)" is equal to
ﬁl - Fﬁ(T(l,m+1,m)]—lfT(ﬂﬂ(t)]T(BV(xs,ul)/8u(t))dt. Also demonstrated
is the usefulness of the results of 3.4 for determining when optimisation
on a larger (translated) linear manifold than that on wkich optimisation
has already been obtained would not be profitable, performance-index wise.
We do not explain in detail the operations which were carried out since
they are fairly ob§ious and such a description would be tedious and would
not enable the results which are presented to be apﬁreciated better. As
before, orthonormal basis-functions § were defined so that each calculated
gradient function could be exactly characteriséd by components of the

defined basis-functions.

The optimisation problem considered is that of 3.8.2 with

€ = 10 and R = 0.5. The initial control function ul-considered was

20 on {0,100} and 100 on (100,200}, The nominal initial condition
considered was x = (40 40 0 0 0 0 O O)T. Computed results are

presented to eight figures since an eight significant figure computer

(IBM 7090) was used.

The performance index for the initial control function and the
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nominal initial condition Es was calculated and is denoted here by
V(O;ES}*. It is shown in Table 3.10.1. Four iterations of the gradient
decomposition based optimisation algorithm of 3.6 were then applied. The
resulting 5S—minima1 performance index on U(l,m)"{ Vﬁm;is]*, and the
associated upper-bound %Om;és)* for the remaining performance index
improvement possible, relative to Vﬁm;is)*, on optimising on the contro}
space are shown in the following table for m = 1, .., 4. Further
iterations were not considered because of the small size of the remaining
performance index decrease possible after optimising on U(1,4)" (bounded
from above by %(4;58)*).

Table 3.10.1 ’

m v (ms& )% Eln;E )

0 0.19737759E+07

1 0.10882303E+07 0.02559285E+07
2 0.10031260E+07 0.00212385E+07
3 0.09867041E+07 0.00001809E+07
4

0.09865632E+07 0.00000051E+07
The control funcfion was then set to the Es—optimal control
function belonging to U(1,4)" and the initial condition changed to
x; = (40 40-20 0 O 0 O OJT. The resulting performance index
value is denoted here by V(O;x;}*. It is given in table 3.10.2. The
x;—optimal control function belonging to U(1,4)" was then determined
using T(l,441,4)—1, which had already been established by the four iterat=—
ions of the.gradient—decomposition based optimisation algorithm of 3.6

for the nominal initial condition ﬁs. The resulting xl-minimal perfor=

0

mance index on U(1,4)", V(4;m§]*, and upper—bound‘%(4;xé)* for the-
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remaining performance index decrease possible, relative to V(4;xé)*, on
optimising on the control space were evaluated. Further iterations of
thelgradient—decomposition type were used to defined further basis-
functions § and to optimise on U(1,5)", .., U(1,7)", after which
’_7’(1,7—»1,7)-1 was available. The results are listed in the following
table. No further iterations were used because of the negligible

size of the upper-bound %(7;mé)* for the remaining performance index
improvement possible after optimising on U(1,7)".

Table 3.10.2

m Vﬁm;mé)* %(m;mé)*

0] 0.13697292E+07

4 Of13137437E+07 0.00038777E+07
5 0.13110189E+07 0.00003546E+07
6 0.13107011E+07 0.000D0084E+07
7 0.13106940E+07 0.00000002E+07

Note that most of the performance index decrease obtained after
thevinitial condition change from és to xé was achieved by optimisation
on U(1,4)" using the U+G ﬁap matrix inverse T(1,4+1,4)_1 vhich was
determined before the initial condition change (optimisation on U(1,4)"
causing a performance index decrease of 0.00559855E+07, from V(O;z;)* to
v 4;#;]*). The further performance index decrease achieved by the
three following iterations (which caused a decrease of 0.00030497E+07,.
from V(A;x;]k'to V(7;x;]*) was only about 67 of that achieved by

optimisation on U(1,4)". The usefuiness of the U+G map matrix data
determined before the initial condition change from is to x; for optimis~
ing the control function for the initial condition x! is clear from the

s
above results.
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The control function was then set to the xé—optimal control
function belonging to U(1,7)" and the initial condition changed to
xg = (40 60-20 0 0 0 O O)T. The resulting performance index
value, denoted by V[O;mé]*, is shown in Table 3.10.3, below. Optimisation
on U(1,7)" was then achieved using the U+G map matrix inverse 1’(1,7-*1,7)"l
which was determined before the initial condition chénge to xi. Two
iterations of the gradient~decomposition type were then applied to enable
optimisation to be achieved on U(1,8)" and U(1,9)", after which
!Z’(1,9-+1,9)-l was available. . The results are shown in Table 3.10.3, below.
Optimisation on a larger (translated) linear manifold than U(1,9)" was
not considered because of the small size of E(Q;xi)*.

Table 3.10.3

m v (m22) * € mp2)%
o 0.20409221E+07 ‘

7 0.17670290E+07 0.00011335E+07
8 0.17662468E+07 0.00002357E+07
9 0.17660436E+07 0.00000203E+07

Note that most of the performance index decrease achieved was
obtained by optimisaiion on U(1,7)" using the (G map matrix inverse
T(l,9+l,9)_l, which had been established before the initial condition
change to xi, since the performance index decrease obtéined by optimising
on U(1,7)" was 0.0273893;E+07 (from V(O;xz)* to V(7;x§)*) while the
further berformance index decrease obtained by the two further iterations
of the gradient-decomposition type was only 0.00009854E+07 (from V(7;x§)*
to V(Q;xg)*). The usefulness of the U+G map matrix data determined

before the initial condition change to xﬁ for optimising the control
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function for the initial condition x: is clear from the above results.
The control function was then set to the x:-optimal control
function belonging to U(1,9)" and the initial condition changed to
2% = (20 40 =20 -10 -20 -30 -20 ~20)T,  The resulting performance
index value, denoted by V[O;x:)*, was calculated and is shown in
Table 3.10.4, below. The.x:—optimal control function belonging to
U{1,9)" was determined using T(1,9+1,9)_1, which was already available
from the optimisation iterations carried out for the previous initial
conditions., The resulting xi-minimal performance index on U(1,9)",
V(Q;xg)*, was calculated as well as the associated upper-bound E(9;x:)*
for the remaining performance inde% decrease, relative to V(9;xg)*, which
could be obtained by optimising on the control space. Further iterations
of the gradient-decomposition type were used to optimise on U(1,13)".
Optimisation on a larger (translated) linear manifold than U(1,13)" was
not considered because of the small size of g(l3;x:)*. The results are
shown in the following table.

Table 3.10.4

m V(33 * & (m3z3)*
0.21296120E+07

9 0.11664665E+07 0.00003334E+07

13 0.11661538E+07 0.00000003E+07

Note that, once again, most of the performance index decrease

achieved was obtained by optimising using UG map matrix data determined
before the initial condition change to xg. The performance index
decrease obtained by optimising on U(1,9)" using the U+G map matrix

inverse T(1;9+1,9)" ), which had been established by the previous iterationms,



156

-

was in fact 0.09631455E+07 (from V(O;xz)* to V(9;xz)*) while the further
ﬁerformance index decrease obtained by the further iterations of the
gradient-decomposition type was only 0.00003127E+07 (from V(9;xg)* :

to V(13;23)%).

Now there is no obvious reason why U~G map data which is
insufficient to enable optimisation on the whole control space to be
achieved, and which has been determined through control function
optimisations for a sét of initial conditions, should be of particular
help in control function optimisation for ;nother initial condition
(unless, as does not occur in the above case, the initial conditions
yield linearly dependent contributions to the costed response of the
system), The above results, however, show that, for the example
considered, the UG map data is actually very useful. The results
have also demonstrated again the usefulness of our results of 3.4 for
deciding when optimisation on a iarger (translated) linear manifold of
the control space than that on which optimisation has already been

achieved would mot be particularly profitable, performance-index wise.

-



3.11 A Gradient-Decomposition Based Algorithm for Optimising in

Non-Quadratic Environments

In this section we define non—quadrafic to mean (simultanéously)
both non—linéar and non—quadrafic. Tﬁé gradiénﬁ—décomposition based
optimisation algorithm of 3.6 was désignéd for use in quadratic environ-
ménts, for which the sécond—dérivativés of the pérformance index on the
con?rol function - and thus the UG map matrices T - are indépendent of
the control function. In non—quadratic énvironmeﬁts the second-deriv-
atives of the performance index on the control fuﬁction depend on the
control function, so that the U~G map matrices T also depend on the céntro
function. Thus in non-quadratic environments the constant U-G map matrix

elements which could be deduced from past control function changes and the

‘resulting gradient function changes are not necessarily correct locally or

hélpful. In this section we use the gradient—decomposition approach to
construct an optimisation algorithm which can decide when the results of
past control function changes seem to be no 1§nger helpful and should be
discarded. The résulting algorithm can reduce the performance index
moré rapidly than does the sféepéstfdeécént algoerithm of the conjugate-
gradient algorithm.

The optimisation problem considered is ésséhtially the same as
that of 3.2 when the optimal control function is required for some specifié
initial goﬁdition és<and F and G may be non—-quadratic func?ions of their
érguments y and u and the dynamical system is non-linear. We assume

that the gradient function (BV(ES,u)/Bu) can be calculated for any control

function u-which is to be applied to the system.
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Eécausé non—quadrafic énvironménés aré éonsidéréd, it is désirable
that all confrol fﬁnciion variaﬁions which aré madé should lead to
immediate improvéménfs in the pérformancé iqﬁéx. A somewhat different
algorithm structure to fhgt of 3.6 is théréforé néédéd. At the start
of éach itératioﬁ thé algorithm should usé the gradiént function for the
last control function (and pérhaps thé gradiént function changes caused
by somé or all of thé prevfous control function changes) to compute a
new search direction, in which the control function can be optimised using
a nuﬁérical procedure for minimising with respect to a scalar variable.
There are three basic problems associated with each iteration of such an
algorithm:

(a) detérmination 9f whéther the results of past control function
changes are likely to be helpful

(b) construction of the U»G map matrix

(c) choice of the search direction.

Thé suggésted procédures for solving thésé probléms should be clear from

stagés 3, 4).and 5) of thé following algorithm statement.

1) Choose an initial control function u, which is a guess at the

réquired ES—Optimal control function. Set the iteration index, j,

équal to 1. Set k, thé number of defined orthonormal basis-functions,

équal to 0. Go to 2).

2) Calculate the gradient function (BVCES,uj)/Bu)..

If fT<(3v(a‘cs,uJ.)/au(t)),(av@é,uj)/au(t)bdt is sufficiently

small, consider uj to be the required 5S—optima1 control function and stop.
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Otherwise:

if k

0 go to 5) to choose the next search diréction,
. = K+l o

if k>0 decomposg (BVCrS,uj)/au) as Fk+lg (xs,uj).
Then:

if k = 1 go to 4) to begiﬁ constructing a U+G map matrix,

if k > 1 go to 3) to check the usefulness of the UG map matrix éléments
which havé alréady been éstablished.

3) Check Effectiveness of the Storéd U-G Map Matrix Elements

The structure of this optimisation algorithm is such that

basis~function § can only be defined following a control function

k+l
change designed to reduce to, or maintain at, zero the .components of
basis~functions 51, vy 6k present in the gradient function. That
control function change was in a séarch direction chosen by stage 5) of
this algorithm with j = j-1 using U~G map matrix elements deduced from
past control function changes and the consequent gradient function changes
If that control function change were unsuccessful in that it did not
causé the contribution to thé gradient function which belongs to G(1,k)
(thé linear manifold spanned by 61, cuy 5k) to be small, it would seem
that the U~+G map matrices T(1,k-1»1,k-1) and T(k>1,k-1) used to determine
thé séarch direction were sufficiently incorréct to be harmful to the
convérgencé of the algorithm. . Additional gradient function calculations
could be used to determine the locally correct UsG map matrix for the
defined basis-functions but since the gradient calculations would be

expensive-computationally and the resulting matrix might be of use only

once, such an approach would seem to be undesirable.
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Also, since optimisation in a specified search direction 1s expensive
computationally, it is undesirable to use U~G map matrix éléménts which
are of dogbtful validity to choose the next search direction. Perhaps
the most suitable measure of the effectivéness of thé U~G map data used to
determine the last search direction is the 'size' <gk(5s,uj),gk(is,uj)>

of the components of basis~functions 61, .oy zk présent in the gradient
function (BV(&S,uj)/au) relative to the 'size' gk+1(£s’uj)2 of the

component of basis-function {§ present in that gradient functiom.

k+l

Thus if <g¥G_,u,),d%@F_,u.)>/g, . @& wu.)> < p for some pre-
s’ J L s’ J k+1 s’ J —

chosen p > 0, decide that the stored U-G map data is satisfactory and go

to 4) to deduce new U~G map matrix data from the gradient function change

caused by the last control function change. Otherwise decide that the

stored U»G map matrix elements do not describe satisfactorily the UG

map in the neighbourhood of the control function uj and so discard

basis—functions 61, .oy 6k+1 and all the stored U-G map matrix elements,

set k equal to O (since there will then be no basis-functions defined) and

go to 5) to use the only information which is known to be useful and

correct, the current gradient function (BV(&S,uj)/Bu}.

4)  Deduce U-G Map Matrix Elements

The last control function change which was made was exactly
characterised by components Auk(j—l)* of basis-functions 61,'.., 6k
and caused a change from gk(is,uj_l) to gk+1(is,uj) in the components of
the basis-functions which exactly characterise the gradient. By ‘assuming
that tﬂe environment.has been quadratic for thé last k control function
changes (which seems reasongble in view of the check made in 3), above)

and by using the approach of stages 4) and 5) of the algorithm of 3.6,
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we can now determine ‘the U»G map matrices ZCl,k+l,k) and T(k+1-+1,k).

Consider first the case when k = 1. On partitioning gk+105 SU.)

e RZ as (glcis,uj) gé(ﬁs,uj))T, it may be séen that
T(1+1) = T(1,1+1,1) = '(gl(is,uj) 8, @ g ))/Au (j-1)%,
T@1) = g, @ u) /bt G-1)%.

If 7(1+1) # 0, it would séém to bé undesirablé to choose a search
direction for minimisation purposes using it so discard all the defined
basis-functions and UG map matrix elemenfs, set k equal to zero (since
there are then no defined basis-functions) and go to 5) to choose the
next search direction using the current gradient function alone. -

If 7(1»1) > O, compute ’I’(l-*l)—1 (which is t¥ivial since 7(1-+1)
is a scalar) and go to 5) to choosé the next search direction.

Consider next the case when k > 1. We already have

7(1,k~1+1,k~1) and its inverse available when we reach this point in the

. P k" k k"lﬂ T -~ T
algorithm. Partition g (xs,uj_l) e R as-(g st,uj_l) gk(xs,uj_l))

where gk-l(i ,u. 1) e Rk_l. Partition gk+1(5 ,u.) € Rk+1 as
~ k-1
( (x ,u ) gk(x ,u ) 9k+1(x ,u )) where g Qx u.) e R apd
~1)% ¢ R¥
k(xs,uj), gk+1(x u ) e R, Partition s G-1)* e
(2 Gg-1yx T aa <J-1)*) , where au¥ L(35-1)% e R"L,  Then:
T(L,k*1,k) = (7(1,k-1+1,k-1) P (ko1, k~1)
: P(k1,k-1)T T (kok)
where
9. T, k=1,
T1,k-1) = (g~ l(xs,uj) - gF l(xs,uj_l) - (1, k121, k-1) 0" T (G-1)%)

Ay (3-1)%
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Tok) = (g @) - g Eu, ) - (11, k1) TadF T (-1 %) /b (G-1)*.
Also:r  P(k+1+1,k) = (0(k-1,1) e RE.
8ya G o145 /00, (-1

T(l,k+1,k)—1 is réquired for choosing the next search direction
in stagé 5) of this algor;'n.thm and can be constructed from [l’(l,k—l—»l,'k-l)-1
(which is p.d. - otherwise this point in the algorithm could not have been
reached - and which has already been computed),
T(k+1,k-1) and T(k+k) by using Lemma 3.5.1, if T(l,k+1,k) is p.d.
Whether or not 7(1,k*1,k) is p.d. will become apparent when Lemma 3.5.1 is
used to invert'it. If it is p.é., compute T(l,k+1,k)-1 and go to 5) to
choose the next search direction. 1f 7(1,k+1,k) is not p.d., choice of
a search direction for minimisation purposes using it should not be
attempted so discard all defined basis-functions and UG map matrix
elements, set k equal to O (since there will then be no defined basis-—
functions) and go to 5) to use the only remaining useful information -

the current gradient function — to define the next search direction.

5) Choice of the Next Search Direction

Consider first the case when k = 0. Since the current gradient
function is the only information which.is available or which seems to be
useful, optimisation in the local steepest-descent direction.will be
attempted.. Decompose the. current gradient function (BV(ES,uj)/au} as
Flgl(is,uj).:' Set Aul(j) = -1 and go to 6) to optimise in the steepest—
descent direction.

Consider next the case when k > O. To choose a search direction
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wé assumé that thé pérformancé indéx is, locally, a quadratic function of
thé control function., At-thié stagé thé currént gradient function,
(BV(Es,uj)/au), is éxacﬁly cﬁaracfériséd éy fﬁé componénts gk+l(is,uj)

of basis—functions 51, <oy 6k+1 and T(1,k*1,k) and 7(k+1+1,k) are both
avdilablé, from stagé 4). Récall that a nécessary condition for a control
function to be the ﬁs—optimal control function belonging to U(l,k+1)" is
that the components of basis-functions 61, .oy 6k+1 present in the gradient
function for the control function should all be zero. Due to the check
of stage 3) of this algorithm, we can only reach this point in the algor-
ithm if the components of basis—functions 61, « oy ﬁk present in Fhe
current gradient function (BV(ES,uj)/au) are all relatively small compared
to the component of 6k+l present in the current gradient function. Hence
we need only consider the problem of reducing to zero the component of
basis-function 6k+l present in the gradient function in order tc achieve
(at least approximately) the Es—optimal control function belonging to
U(1,k+1)". Because T(1l,k+1+1,k+l) is not yet known, we cannot predict

a control funétion change to do this. If the performance index is,
locally, a quadratic function of the control function andvT(l,k+l+l,k+1)
is p.d. we can, however, choose a search direction such that a control
function variation in the search direction should decrease the component
of basis-function 6k+l present in the gradient function while leaving
unchanged the components of bas§Srfunctions ﬁi, .o 6k present in the
gradient function. '

We next shown that the search direction which is exactly charac-—

terised by the components Auk+1(j) = (T(l,g+l,k)_lT(k+l+l,k)1 is suitable.
~ -1
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If the performance index function is locally quadratic, wé see from the
U~G map property of T(1,k+1-+1,k+1) that a change of 9Auk+1(j) (Q'being
.a scalar) in.the components of basis—funcfions 61, ouy 6k+1 presént in
k+1

the control function should cause a change of QAg in the components of

basis-functions 61, ooy 6k+1 present in the gradient function where

8 = T,k )0l Gy
= (T(1,k01,k) PC11,10 ) [T(L, ko1, k) T (ke 1L, )
LT(k+1-+1,k)T T (k+1+k+1) ) | -1 J
= {0(k,1) ).

(1411, %) TP(1 k1, 1) I (101, k) = T (i 1okr )
Since 7(1,k+1,k) is p.d. (otherwise we would not have been able to reach
this point of the algorithm), we see from Lemma 3.5.1 that if
T(1,k+1+1,k+l) is p.d. (as it would have to be for minimisation on
U(1,k+1)" to be possible):
P(k+171,K) TT(L, k41, k) TP (k101 ,k) ~ T(k+1ok+l) < O.

Hénce, under the above assumptions, a change éf 9Auk+l(j) in the
components of basis-functions 61,°.., 6k+1 presént in the controi function
should cause no change in the components of basis-functions 61, .oy 6k
present in the gradient function but should cause a reduction (for Q& > 0)
in the component of basis—function 6k+1 present in the gradient function.
Therefore, .under the above assumptions, Auk+1(j) does exactly characterise
a suitable search direction. ,

Hence compute Auk+l(j) and go to 6) to optimise in the
direction exactly characterised by it (note that if k = 1 the search

direction is exactly characterised by Auz(j) = (T(1+1)_1T(2+1) -l)T).
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6) Optimisation in the Next Search Direction

Optimise the control function in the search direction chosen by

stage 5) of this algorithm by minimising with respect to the scalar Q

the performance index V(x U, +QFk (J))
Denote the minimising value of @ by Q.
) . k+1
= *
Then set uj+1 uJ. + Q Fk+ (i) .
The optimal control function change in the search direction was

clearly exactly characterised by the components Au (3)* Q*Auk+l

(3
of basis-functions 61’ ooy 6k+1'
Since k+l basis~functions have now been defined, set k = k + 1.

Set j, the iteration index, equal to j + 1. Go to 2).

This concludes the statement of the optimisation algorithm.

v domment 3.11.1 It will be noted that there are several rather

arbitrary decisions taken by the above algorithm which have only been
justified intuitively. Nevertheless, it is likely that our algorithm will
cause the performance index to decrease more rapidly as a function of
iterations than would the steepest-descent algorithm which uses the
optimal step in each search direction, because our algorithm always
attempts to optimise on as large a linear manifold of the control space

es possible and, as may be seen from 3.7, an algorithm which succeede in
doing that will cause faster convergence to the minimal performance index
than the steepest—descent algorithm. It is also likely that our
algorithm will cause non~quadratic performance indices to be decreased

more rapidly as a function of iterations than would the conjugate-gradient

.
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algorithm, since the latter algorithm does not check the validity of
the information it uses to construct its seérch directions, unlike
our algorithm, Since the major computational effort associated with
each iteration of each algorithm mentioned above is common (the
gradient function evaluation and the optimisation in the
computed search direction}, it therefore seems 1ike1§; that our
algorithm will be more effective at minimising iq non—quadratic
environments than either the steepest—descent algorithm or
the conjugate-gradient algorithm. This statement is, in fact,
justified for a particular problem by the computed results which

A are presented in the following section.

V Comment 3.11.2 The UG map matrices T constructed by the above

algorithm will not necessarily be tridiagonal unless the environment is
perfectly quadratic and mo numerical errors occur. For this reason
we have not forced a tridiagonal structure on them but have tried -

to choose them so as to extract as much information as possible from

A the available results.



167

3.12 A Computed Example

The results of applying the gradient-decomposition based
optimisation algorithm of 3.11 to a well known rocket problem are here
presented. The problem is one on which the conjugate-gradient
algorithm was demonstrated in {27}. The mathematical formulation of

the problem iss

min VCx ,u} for the dynamical system
u{0,100} ~ ®
' %,() = x5(t)
iz(t)' = 64cos(u(t))
xy(t) = 64sinfu(t)) - 32, Ve € {0,100},
where z, = '(xl(o) x2(0) xs(o))T_ = 0(3,1) !
V(z,u) = -x,(100) + 0.002(x (100) - 105)2 + 0.05(x4(100))2.

The following algorithms were applied, all starting with the
initial control functiéﬁ u(t) = 1.55 - 0.014t (rads), ¥t ¢ {0,100}:
(a) the steepest—descent algorithm with optimisation in each
steepest—-descent direction,
(b) the conjugate-gradient algorithm,
(¢) the gradient-decomposition based optimisation algorithm of 3.11
with p = 0.16.
For each algorithm, the performance index value achieved after
optimisation in each search direction is plotted versus iterations
(i.e. the number of optimisations in chosen search directions) in Fig. 3.3.
It can be seen from Fig. 3.3 that our algorithm of 3.11 did tend to

choose more effective search directions than did the other algorithms.

The same algorithms were also applied when the initial control
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function was that control function which resulted from the first

iteration of the steepest-descent algorithm for the previous trial.

The results are shown in Fig. 3.4. It can be seen from Fig. 3.4

that the gradient-decomposition based algorithm of 3.1l again tended

to choose more effective search directions than did the other algorithms,
For each algoritﬁm, the most expensive computational feature

associated with each iteration was the optimisation in the chosen search

direction. This feature was common, so that eacﬁ iteration of each

algorithm took about the same amount of computation time, Therefore,

for this example, the gradient-decomposition based optimisation algorithm

of 3.11 has been shown to be more ;ffective at control function

optimisation than the steepest-descent and conjugate-gradient

algorithms.
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3.13 Concluding Comments

In this chapter, a gradient-decomposition approaéh to control
function optimisation has been introduced. The approach has been
fruitful in that it has enabled new optimisation algorithms to be
developed. The.algorithm of 3.6 is designed for optimisation
problems defined for linear dynamical systems with quadratic
performance index functions. As well as optimising the control function
for a particuiar initial condition, the algorithﬁ determines a U-»G map
matfix which is useful for optimising the control function for other
initial conditions. The behaviour of the gradient-decomposition
based optimisatién algorithm of 3.6 has been compared with that of the
steepest-descent algorithm in 3.7, where it is shown that the gradient-
decomposition based algorithm is at least as effective as the steepest—~
descent algorithm, and is usually more effective. It can be shown that
our gradient-decomposition based algorithm of 3.6 is related to the
conjugate—-gradient algorithm, but our algorithm is more versatile since
it can check the accuracy of the information it deduces from previous
iterations and since it deduces U»G map data which is helpful for
optimising for other initial conditions. The derivation of the lower-
bound results of 3.4 depends on the gradient-decomposition approach.

The results are used in the algorithm of 3.6 to decide when a required
approximatio; to the optimal control function belonging to the infinite=-
dimensional control space has been ;chieved. They are also.used in 3.9,

where we consider the determination of a control law which is a certain

desired e(X(q))-approximation to the control law which determines the
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optimal control function belonging to the infinite~dimensional
control space as a function of initial conditions. The lower-
bound results, and their applications, are believed to be novel,
In 3.11 the gradient-decomposition approach is used in a new algorithm
for optimising in non-quadratic environments. The algorithm has proved,
for a particular example, ﬁo be more effective than either the
steepest-descent or the conjugate-gradient algorithms. The algorithm
may also be used in quadratic environments,

Some of the results developed in this chapter have been
published elsewhere by the author {38}.

An algorithm which has n;t been mentioned so far is that of
Fletcher-Powell (Davidon). The algorithm was originally designed
for optimising on a finite-~dimensional space. It has recently been
extended, in a straightforward way, to enable optimisation on an
infinite-dimensional space to be performed {39}. The extended version,
however, requires 0pe?ations to be performed using infinite-—dimensional
matrices (estimates of the inverse of the second-derivative operator).
It is interesting, and computationally significant, that our gradient-
decomposition approach leads to algorithms which, while behaving in
essentially the same way as the Fletcher~Powell (Davidon) algorithm,
use matrices the dimension of which depends only on the number of
iterations which have been performed, and does not depend on the

dimensionality of the space on which optimisation is desired.
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Chapter 4 : Final Remarks

It may be considered that, loosely speaking, there are
three necessary conditions for efficient control function optimisation
to be possible:

(a) there should exist a mathematical model of the system to be
controlled which enables system responses to be evaluated with
relatively little computational effort,

(b)  there should exist effective optimisation algorithms which can be
used with the efficient model of the system, and

(e) since most effective algoritﬁms are (at least in some sense)
iterative, there should exist a means of deterﬁining when sufficient
iterations have been performed,

In this thesis we have discussed the use of the convolution-
description of linear dynamical systems since it can sometimes have
considerable computational advantages, in spite of the storage
requirements, and can thus help to enable condition (a) to be satisfied.

By employing procedures based on synthesising optimal control
functions from components of linearly independent basis-functions, we
have developed new algorithms for optimising control functions for
linear convolution-~described dynamical systems. We have thus
contributed towards satisfying condition (b).

Our lower-bounds for the minimal performance index have been

used for deciding when an adequate approximation to the optimal control

function, or optimal control law, has been achieved. We have thus

made a contribution towards satisfying condition (e¢).
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A more detailed>discussion of our contributions will not
be given here, since they have all been dis;ussed in 1.3, 1.4 and in the
body of the thesis.

In the future it is intended to apply our results to more
examples. In particular, it would be especially interesting to compare
the behaviour of the gradient-decomposition based optimisation algorithm
of 3.11 with that of the steepest-descent and conjugate~gradient algorithms
for a number of large, non-quadratic, examples. The ideas used in
this thesis have been applied (by the author) to optimisation problems
subject to linear, terminal-equality, constraints. It is hoped to

be able to apply them to optimisation problems subject to more general

constraints.
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