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Abstract 

In this thesis, control function optimisation for linear 

dynamical systems with quadratic performance indices is mainly considered. 

Control functions are synthesised from components of linearly-independent 

basis-functions.' Hill-climbing in function-space is then achieved by 

optimising the components of the basis-functions which are present in the 

control function. 

The basis-functions may be chosen before optimisation; 

combining their use with the convolution-description of linear dynamical 

systems then has considerable potential advantages computationally. A 

new algorithm, based on Dynamic Programming, is developed for optimising 

the components of the basis-functions present in the control function for 

linear convolution-described dynamical systems. 	The optimal components 

are achieved in one iteration, as a linear function of initial conditions. 

The basis-functions used for control function synthesis may also 

be defined during iterative optimisation, from calculated gradient 

functions. 	The map from the linear manifold of the control space which 

is spanned by the basis-functions to the similarly defined manifold of 

the gradient space can be simultaneously determined. 	This enables new 

algorithms to be developed which yield faster convergence than the 

steepest-descent algorithm. 	Control functions can be determined as a 

function of initial conditions using our approach, which is not possible 

using the conventional conjugate-gradient algorithm. A new technique is 

used for determining when, in non-quadratic environments, data deduced from 

past iterations should be discarded. 



To ascertain whether the performance achievable would be 

appreciably better were the control function to be synthesised from 

a larger number of basis-functions, methods are developed for 

calculating lower-bounds for the minimal performance index for a large 

class of optimisation problems when only non-optimal control functions 

are available. The lower-bound calculations are not expensive 

computationally and enable the stage to be determined at which 

iterative optimisation should cease. 
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Notation 

Those notations which are not common or are not explained when 

first used are introduced here. 

All quantities considered in this thesis are real. 

Vectors are usually denoted by lowercase italic characters, 

such as x, although some are denoted by lowercase script characters, such 

as u. 	Matrices are denoted by uppercase italic characters, such as A. 

The scalar elements of vectors x and matrices A are usually denoted by 

.) 
x.1, aL.., etc. 	Scalar—valued functions are usually denoted by characters 

such as V, F and G. 	Spaces and sets are denoted by uppercase script 

characters, such as R. 

The set of integers {m, m+l, 	n}, n > m, is denoted by 

I(m,n), and by I(n) if m = 1. 

Transposition is denoted by 
T
. 	The set of all n x m matrices 

of real scalars associated with linear maps from Rm  to Rn  is denoted by 

M(Rm  Rn). The unit matrix of any order is denoted by I, and the n x 

unit matrix in particular by.I(n,n). The zero matrix or vector of any 

order is denoted by 0, and the n x m zero matrix by 0(n,m). 	d(t,T) is 

a matrix of appropriate order which is a unit matrix when t = T and is a 

zero matrix otherwise. If x e Rn, we interpret (0( m,1)), r 
0(m,1)) 

Rmill  
x c  

as x c Rn  if m = 0, and similarly for matrices. 	The square symmetric 

matrix which is obtained by replacing every element a..3.3 
 of a square matrix 

A by a.. = (a. + a.3.) is denoted by At
. 

3- 

Positive definite, negative definite and non—negative definite 
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are abbreviated to p.d., n.d. and n.n.d. 

Maximum and minimum eigenvalues of any real, symmetric and 

n.n.d. matrix Z are denoted by Xmax (z) and am in ' (Z) respectively. 

Partial derivatives such as (9h/8x) are sometimes written as hx. 

We assumethatla.=a.,and similarly for products. 
j=i 3  

Open intervals of the real line are denoted by (ti,t2) and 

closed intervals by ft/,t21, etc. The segment of a time function u on 

am interval {ti,t2} is denoted by u{ti,t2}, etc. 	Integration on it t2) 

) rt2 is denoted by J{ti  d•, etc. 	When properties of a function on some subset 

(perhaps not proper) of its domain are mentioned, we refer to properties 

of the image under the function of each element belonging to the consid-

ered subset. When no confusion is likely to arise, different functions 

are sometimes denoted by the same character with different arguments - 

to reduce notational complexity. 

A set A containing only b(c) for every c belonging to a set C 

is written as {a : a = b(c); bye e C}, etc. 	By Vt>r, T e T we mean for 

all T c T and, for each such T, for all t e T such that t>.r. 

By the xs-optimal control function we mean the optimal control 

function for the initial condition xs' and similarly for the xs-minimal 

performance index. 

The number 1.58E±08, say, is to be interpreted as 1.58 x 10-18. 

Thd main results of this thesis are often summarised in Remarks. 

The beginning and end of Remarks, Comments, Definitions, Assumptions, 

Lemmas and Proofs are indicated in the left-hand margin by the symbols V 

and A, for clarity. 	By RHS (LHS) we mean right (left) hand side. 
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Chapter 1 	Introduction 

1.1 Motivation  

The solution of optimal control problems defined for dynamical 

systems is of great theoretical and practical importance, and has been 

the subject of widespread interest in recent years. The aim is to choose 

the control function so that the system considered behaves optimally with 

respect to a prescribed performance functional, which may be chosen to 

give a numerical measure of how well the controlled system fulfils its 

design objectives. 

One of the important abstract problems which has been studied 

is that of trajectory optimisation on a fixed and finite time interval; 

a realisation of this problem which is of considerable engineering 

significance is: 

For the linear dynamical system described by 

1(t) = flx(t),u(t),t) 

y(t) = C(t)x(t) 

on the time interval T = {ts,tf} with the initial condition 

x(ts) = xs' 

the problem is to minimise the (scalar) performance index 

V(xs,u) = IT
F(y(t),u(t),t)dt + G(y(tf)) 

with respect to the control function u on T, 

where F and G are quadratic. , 

The application of conventional optimisation techniques to 

problems of the above type which are formulated for complex dynamical 

systems is itself complex and computationally expensive: 	in this thesis 



13. 

are studied approaches to control function optimisation for such problems 

which can be more efficient computationally than the conventional 

techniques. 

In the next section we review briefly the background to the 

developments of this thesis. 

1.2 Background  

The optimisation of the control function u for the optimisation 

problem considered in 1.1 is more complex than the choice of the control 

function on each infinitesimal sub-interval of T in such a way as to 

extremise the contribution to the performance index on that sub-interval; 

the dynamic effects which relate the contribution to the performance index 

on each following sub-interval to the control function on the considered 

sub-interval must also be considered. 

The Calculus of Variations, Pontryagin's Maximum Principle, 

Halkin's Principle of Optimal Evolution, Bellman's Dynamic Programming 

and the methods of Functional Analysis all utilise theoretically the 

dynamic features of control functiOn optimisation problems. Some 

salient attributes of these are next discussed. 

The Calculus of Variations  

The Calculus of Variations is concerned with problems which 

"require the determination of the form of an unknown quantity, or of 

unknown quantities, as a function or functions of a variable (being 

a dependent variable or dependent variables) so that some integral may 

assume a maximum or minimum value" {1}. This, essentially, is our 

problem; however the theory is developed so that, in our context, 
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X is chosen optimally rather than the manipulable control variable u 

which affects x. More convenient results, next discussed, have been 

produced during the last decade. 

Pontryagin's Maximum Principle  

The optimal control function is generated when the correct 

boundary conditions are obtained for a two-point boundary value problem 

{2-6}. Halkin's work is parallel to this and uses reachable-set theory 

0-101. The unknown boundary conditions can be obtained by iteratively 

adjusting initial guesses in a systematic way {11-12}. The system 

behaviour is often very sensitive to the boundary conditions because the 

optimality of the entire control function is dependent only on the 

boundary conditions at the start of the time interval considered. This 

helps to ensure that ultimately an exactly optimal control function 

is obtained, but it can cause severe numerical difficulties. The optimal 

control function is not obtained from an optimal feedback control law. 

Perturbation analysis has, however, been used to allow compensation for 

initial condition changes fl3-1.41. 

Dynamic Programming  

Dynamic Programming can, theoretically, be applied to yield 

globally extremal feedback control laws [15-0}, but the computational 

and storage requirements become vast for even relatively small dynamic 

problems, although techniques have been developed for reducing high-

speed storage requirements {18}. 

Nevertheless, the philosophy of Dynamic Programming, embodied 

in the Principle of Optimality {15}, can be applied to yield algorithms 
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which utilise first- and second-order expansions about non-optimal 

control functions and the associated system responses {19-23}. The 

resulting algorithms generate information which allows non-optimal 

control functions to be varied so that the performance index is improved. 

The first-order algorithms iteratively generate the gradient 

of the performance index with respect to the control function and improve 

the performance index by making a sufficiently small change in the 

negative gradient direction (i.e. downhill). 	Convergence to the 

optimal control function may, however, be very slow. 

The second-order algorithms calculate actual control function 

changes, possibly large, from which the optimal control function can 

be determined. For optimisation problems of the type considered in 

1.1, the optimal control function can be achieved in one iteration. The 

second-order algorithms, however, require extra theoretical complexity, 

programming effort and extra computation per iteration compared with the 

first-order algorithms - these effects becoming rapidly more pronounced 

as the number of differential equations describing the considered 

dynamical system becomes larger. For nonlinear systems with non-

quadratic but nonlinear performance indices, the control function changes 

may have to be limited to preserve the validity of the second-order 

expansions used, and many iterations may be required. An optimal feed-

back control law is yielded by the second-order algorithms, which is 

perhaps especially useful for implementation purposes. This is a result 

of the fundamefital approach used (Principle of Optimality) by which the 

control chosen at each time instant is functionally related to the state 

of the system at that time. 
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Functional Analysis  

The techniques of functional analysis, discussed in Porter {24}, 

may be used for linear dynamical systems having norms as performance 

indices. These fundamental restrictions allow the use of powerful but 

specialised theoretical results to select the optimal control function 

from the class of admissible functions. 

1.3 	Outline of the Thesis  

In this thesis we mainly consider determining optimal control 

functions for optimisation problems of the same kind as that mentioned 

in 1.1 when x
s 

e Rn  for either an (arbitrary) nominal initial condition 

Ms 
or for all initial conditions xs 

belonging to X(q), where 

V Definition 1.3.1 	ft
s 
e Rn  and has bounded Euclidean norm, 

X(q) 	{x
s 
: x

s 
= X1.6xcl; V6xcl  e Rql, 

X(q)
s 
: x

s 
 = M

s 
 + s; Vs e X(q)}, 

Xq
1 	

• .. X
q 
 ) e M(Rq Rn) 	and has rank q, 

X. 	e Rn, Vi e I(q), and has bounded Euclidean norm, 

6xcl (6xq 	6x(1)T, 
1 	q) 

A q 	e I(n). 

We also consider initial conditions belonging to a closed and 

bounded neighbourhood 7(q) of Ms, defined by 

V Definition 1.3.2  

7(q) = {xs 
	s = xs 	

! X.60-
' 
 V1601 < 1 dx11, Vj e I(q)), : 

— J=1 	3 

A where 1601 <'03, Vj e 1(q). 

Choice of q, X(q), Ms  and X(q) may be made in an essentially 
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arbitrary way, depending on the particular control problem considered. 

Consideration of initial conditions belonging to X(q) is not particularly 

restrictive since if q is set equal to n, X(q) = Rn  - the space of all 

possible initial conditions for the considered optimisation problem. 

It is, however, desirable that the smallest q be chosen such that X(q) 

contains all those initial conditions of interest since, as will become 

apparent later, such a choice reduces the computational effort involved 

in optimal control function synthesis.‘ Consideration of initial con-

ditions belonging to the bounded neighbourhood X(q) is also not particular 

ly restrictive since initial conditions for practical problems are 

bounded and gic,!, Vj e I(q), can be chosen so that 7(q) contains all 
3 

those bounded initial conditions of interest. 	Choice of the smallest 

suitable neighbourhood X(q) by choice of the smallest suitable 

O;c.1, Vj e I(q), is desirable since it may well reduce the computational 
3 

effort required. 

The optimisation techniques of 1.2 require the numerical inte- 

gration of differential equations when they are applied to optimisation 

problems such as that of 1.1: 	It is necessary to discretise time to 

permit the numerical integration of the differential equations. A pot-

ential disadvantage is that the discretisation required for the stability 

of the integration procedure used may well be far finer than that 

required to allow the discretised control function to fluctuate rapidly 

enough in time for effective optimisation to be possible, so that far 

more numerical work may be performed than is really necessary. The 

integrations which are required are perhaps the most expensive feature 
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involved in the application of conventional optimisation techniques from 

the computational point of view. It would therefore be desirable to 

eliminate the need for the direct numerical solution of differential 

system equations during optimisation. 

A representation of linear dynamical systems in non-differential 

form is given by the convolution-description. The optimisation of 

control functions for linear convolution-described dynamical systems is 

mainly considered in this thesis, although the algorithms of Chapter 3 

may also be used for differentially-described dynamical systems. 

In Chapter 2 we briefly examine the potential advantages of the 

convolution-description and then develop a procedure for gradient function 

determination for convolution-described linear dynamical systems using an 

approach closely related to Dynamic Programming. Because algorithms 

using first-order gradient functions do not necessarily achieve convergenc 

to the optimal control function belonging to the control space considered 

in one (or even many) iterations, we continue to develop a second-order, 

Dynamic Programming based, optimisation algorithm for choosing, in one 

iteration, the optimal control function belonging to a pre-chosen linear 

manifold L(pN) of the control space in terms of components of the basis-

functions which span L(pN). Optimal component choice is achieved as 

a function of initial conditions xs 
belonging to X(q). A simple result 

is then obtained for calculating, for any particular initial condition xs, 

a lower-bound for the x -minimal performance index on a linear manifold 

for a large class of optimisation problems when only a non-a6-optimal 

control function belonging to the linear manifold is available. The 
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lower-bound calculation usually requires far less numerical work than 

that which would be required to determine the x
s
-minimal performance index 

on the linear manifold. The lower-bound result can be used to help 

overcome the arbitrariness associated with the choice of L(pN) because 

it enables us to-determine, in a simple and computationally inexpensive 

way, whether the optimal control law which determines xs-optimal control 

functions belonging to L(pN) as a function of initial conditions xs  e X(q) 

yields x
s
-optimal control functions which are a certain desired e(xs

)-

approximation (defined in the body of the thesis) to the xs-optimal 

control function belonging to any particular larger linear manifold L(pN) 

for all initial conditions xs 
belonging to the bounded neighbourhood X(q). 

A control law yielding such an approximation for all xs  belonging to 7(q) 

is referred to as an etX(q)j-approximation to the optimal control law 

which determines x
s
-optimal control functions belonging to L(pN) as a 

function of initial conditions xs 
belonging to X(q). 

The second-order algorithm of Chapter 2 is rather complex and 

has considerable computer storage requirements, in common with other 

second-order algorithms. 	Thus it would seem to be advantageous to develop 

an algorithm which, for any particular initial condition xs
, causes the 

control function to converge more rapidly-  to the xs
-optimal control 

function belonging to the control space than does the steepest-descent 

algorithm while only using - the relatively simple first-order gradient 

equations. 	Such an algorithm is developed in Chapter 3. The algorithm 

depends on the decomposition of calculated gradient functions into 

components of non-arbitrary basis-functions, and is therefore referred to 
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as a gradient-decomposition based optimisation algorithm. Lower-bounds 

for the x -minimal performance index on the control space are obtained in 
s 

this gradient-decomposition context for a large class of optimisation 

problems. The lower-bounds can be computed with little computational 

effort. Tha gradient-decomposition based algorithm achieves optimisation 

on linea~ manifolds of the control space (perhaps translated along some 

non-zero initial control function) which are spanned by basis-functions 

defined by that algorithm. The dimension of the (perhaps translated) 

linear manifold on which optimisation is possible is increased by each 

iteration of the algorithm. The lower-bound results are used -to determin 

when sufficient iterations have been used for the x -optimal control 
s . 

function belonging to the (perhaps translated) linear manifold on which 

optimisation is possible to be some pre-chosene{xs)-approximation to the 

~ -optimal control function belonging to the control space, even though 
s 

the x -optimal control function belonging to the control space is not 
s 

known. 

An efficient procedure is presented for determining an optimal 

control law such that for each initial condition x belonging to X(q), s . 

the resulting control function is same pre-chosene(xs}-approximation to 

the x -optimal control function belonging to the control space, even 
s 

though the -latter control function is not known. 

A new algorithm is- also developed for use with problems Which are 

the same as t~at of 1.1 save in that f is non-linear and (or) F and (or) 

G are non-linear and non-quadratic. For a computed non-linear example, 

more rapid reduction of the performance index has been achieved using 
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our algorithm than was obtained using the steepest-descent or conjugate-

gradient algorithms. 

Chapter 4 contains our conclusions and a brief discussion of 

those areas in which further work might be profitable. 

Computed examples which illustrate the theoretical discussions 

are presented where appropriate. 

It will be seen that- the techniques developed in this thesis 

involve optimisation on (perhaps translated) linear manifolds of the 

control space for the optimisation problem considered. 	The optimal 

control function belonging to each (perhaps translated) linear manifold_ 

is synthesised by hill-climbing with respect to the components of the 

basis-functions spanning the linear manifold which are present in the 

control function. 	This justifies our title: 

Optimal Control Synthesis by Hill-Climbing in Function Space. 

1.4 Major Contributions of the Thesis  

The major contributions of this thesis, which are believed to 

be original, are: 

1) Our application of the philosophy of Dynamic Programming 

to optimisation problems defined for linear convolution-described 

dynamical systems, in Chapter 2. 

Balakrishnan and Hsieh have considered the optimisation of 

control functions for linear convolution-described dynamical systems 

using first-order algorithms {25-26}. A different approach is used here 

which is bore computation oriented and which permits a second-order 
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algorithm to be developed. 

2) The gradient-decomposition approach of Chapter 3 and the 

associated optimisation algorithms. 

Lasdon, Hitter and Warren have recently published an account of 

the use of the conjugate-gradient algorithm in a control context {27}. 

Their algorithm can be shown to be related to our gradient-decomposition 

based algorithms. Optimal control functions cannot, however, be obtained 

as a function of initial conditions using their algorithm, but can be so 

obtained using our results. For a computed example, our algorithm for 

optimising in non-quadratic environments has yielded more rapid optimis-

ation of the performance index as a function of iterations than did their 

conjugate-gradient algorithm while only using the same number (one) of 

gradient calculations and optimisations in calculated search directions 

per iteration as did their algorithm. 

3) The results of Chapters 2 and 3 for lower-bounds for the 

minimal performance index, and the use of the lower-bound results for 

optimisation purposes through our c(xs)-approximations to the xs-optimal 

control function and our c(r(q))-approximations to the optimal control law 

which determines xs
-optimal control functions as a function of initial 

`conditions x
s 
belonging to the bounded neighbourhood X(q). 

Pearson has considered the computation of lower-bounds for the 

minimal performance index for differentially-described dynamical systems 

{28-30}. Our approach is different and is developed for linear 

convolution-described dynamical systems, although the results of Chapter 3 

are also valid for linear differentially-described dynamical systems. 
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Chapter 2 	:  Optimal Control Function Synthesis for Linear 

Convolution-Described Dynamical Systems 

2.1 Summary  

In this chapter the philosophy underlying Dynamic Programming is 

first applied to optimisation problems defined for linear convolution-des-

cribed dynamical systems. Some potential advantages of the convolution- 

- description over the differential-description are discussed in 2.2. 	A 

new approach to gradient determination for linear convolution-described 

systems is used in 2.3. 	To facilitate computation, the considered control 

functions are then constrained to belong to a pre-chosen finite-dimensional 

linear manifold L(pN) of the control space. A second-order optimisation 

algorithm is developed in 2.4 for determining the optimal control function 

belonging to L(pN) as a function of initial conditions belonging to X(q). 

We develop in 2.5 results which enable us to compute a lower-bound for the 

x
s
-minimal performance index on L(pN) for any initial condition xs 

when 

only a non-a4-optimal control function belonging to L(pN) is available. 

The lower-bound can be computed with much less effort than that which would 

be needed to determine the xs
-minimal performance index on L(pN). We 

also show how a similar result can be obtained for all initial conditions 

belonging to X(q) when only a non-optimal control law is available. The 

results can help us to overcome the arbitrariness associated with the 

choice of L(pN) in that they enable us to compare the effectiveness of 

optimisation on L(pN) and on a larger linear manifold L(pN) for all 

initial conditions belonging to X(q) in a simple and computationally 

inexpensive way without having to determine optimal control functions 

belonging to L(pN). A numerical example is presented in 2.6 which 

demonstrates the application of the main lower-bound result. 

2.2 Convolution-Description of Linear Dynamical Systems  

The convolution-description is introduced in 2.2.1 and an 

effective convolution state is defined in 2.2.2. Some potential 

advantages of the convolution-description are considered in 2.2.3. 
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2.2.1 The Convolution-Description  

Many linear systems of engineering interest, with control u and 

output y, have the following form of differential-description: 

(d/dt)x(t) = A(t)x(t) + B(t)u(t) : x(ts) = xs, 

y(t) = C(t)x(t), 	 (2.1) 

where 	t e T 	the independent (time) variable, 

T 	= fts,tf1 	the interval on which (2.1) is defined, 

xs' x(t) e Rn 	the initial condition and the state at time t, 

y(t) e Rr 	the system output at time t, 

u(t) e Rm 	the system control at time t, 

A(t) e M(Rn  -0- Rn), 	B(t) e M(Rm  -+ le), 

C(t) e M(Rn  -* Rr). 

If A and Bu are continuous almost everywhere on T and 

f T 
	1 A(t) 1 dt < co, f

T 
 1 B(t)u(t) 1 dt < co , i x

s 
11 < co, which are 

fairly unrestrictive conditions from the practical point of view, a unique 

solution x exists for (2.1) which satisfies (2.1) in that x is continuous 

on T and satisfies x(t) = xs  + ft  (A(T)x(T) + B(T)u(T)idT, Vt e T. ts  

The output y can then be written as: 

Y(t) = gt,ts)xs  + frt W(t,T)u(T)dT, Vt e T, 	(2.i) s   

where (1)(t T) e M(Rn 	Rn), Vt > T, T e.T, 

gt,ts) = C(04)(t,ts) e M(Rn  Rr), Vt e T, 

= C(t)W,T)B(T) e M(Rm  Rr), Vt > T, T e T, 

(d/dt)(1)(t,T) = A(t)0(t,T) : cD(T,T) = I(n,n), Vt > T, T e T, 

denotes Euclidean norm. 
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V Definition 2.2.1 	We refer to (2.2) as the convolution-description 

of the linear dynamical system with the differential-description of (2.1), 

A and to W as the convolution kernel. 

Further discussions are available in {24} and {31}. Similar 

convolution-descriptions can be obtained for discrete-time (see 2.4.8) 

and distributed-parameter systems-1321. 

2.2.2 Effective Convolution State  

The state of a dynamical system at any time is intuitively 

defined as the minimal information which summarises the entire past 

history of the system at that time as far as its effect on the future 

behaviour of the system is concerned (33}. The state of differentially-

described dynamical systems is usually considered in the literature. We 

next define an effective state for convolution-described systems. 

Suppose that the dynamical system considered in 2.2.1 actually 

exists on T" = fts,t71, t2 > tf. 	Then:  

v Definition 2.2.2 	For convolution-description (2.2), sufficient 

information regarding the system history up to, 'and including, any time 

t e T, as far as that history affects the future behaviour on T", is 

given by the pair (xs, te{ts,t}). We refer to this pair as the 

A effective convolution state at time t, and denote it by St. 

Fot all t e T, our effective convolution state at time t can 

be considered to be a minimal description of the history of the considered 

convolution-described system, as far as the future behaviour on T" is 

concerned, if S
t contains no contribution which does not affect the 

future response on T", i.e. 	if, for all E e (t,t21, xs  and u{ts,t} 
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belong to the orthogonal complements of the null-spaces of W,ts) and 

the linear map on u{ts,t} which is defined by ftsM,T)u(T)d-r, 

respectively. 

St will not usually be a minimal description of the system history in 

the above sense, but it will serve our purpose. 

2.2.3 Potential Advantages of the Convolution-Description  

Consider calculating the output function y of a linear dynamical 

system with the differential-description of (2.1) and the convolution-

description of (2.2). 

V Comment 2.2.1 	When differential-description (2.1) is used to 

calculate y(t), the behaviour of every element of x(t) has to be calcu-

lated, even though y(t) may have considerably fewer elements than x(t). 

Therefore, if only y and u are costed in the performance index (as in 1.1) 

and r < n, an advantage of convolution-description (2.2) over differential-

description (2.1) is that, by using the convolution-description, x does 

not have to be calculated to obtain y. This is especially important 

if the linear dynamical system which is actually considered has 

distributed dynamics but only non-distributed input u and output y, since 

A such a system can often be viewed as a version of (2.1) with n infinite. 

V Cumwent 2.2.2 	A most unpleasant feature of the direct numerical 

integration-of even time-invariant versions of (2.1) occurs when the 

matrix A has a wide range of eigenvalues. The time interval on which the 

output function y is of interest (probably determined by the system mode 

yielding the least-rapidly varying contribution to the time-response of x) 

is then likely to be large relative to the integration step-length require 
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for the stability of the integration algorithm employed (probably determin-

ed by the system mode yielding the most-rapidly varying contribution to 

the time response of x), so that many integration steps and much computat-

ional effort are likely to be required. The computational difficulties 

associated with arrays consisting of elements with a wide spread in value 

have been noted by Kalman {34}. 

The integration step-length needed ( and thus the computational 

effort involved) when convolution-description (2.2) is used to calculate 

the output y depends on the smoothness of Wand u. These may be fairly 

smooth functions even if A has a wide range of eigenvalues. A potential 

advantage, therefore, of the convolution-description is that the integ-

rations involved in calculating y to specified accuracy when the convolut-

ion-description is used may require less computational effort than that 

which would be required were the differential-description used, even if 

A x(t) and y(t) are both n-vectors. 

v Comment 2.2.3 	A potential advantage of the convolution-descrip-

tion over the differential-description for system modelling purposes is 

that the convolution kernel and IP can be estimated from observed input-

output data using only linear regression {35-36}, while the parameters 

of the differential-description should be chosen using nonlinear regress- 

A ion, due to the highly nonlinear way in which y depends on A. 

Once IP and W of (2.2) have been determined, we see from the above 

comments that the convolution-description has potential advantages over 

the differential-description for calculating outputs y for given input 

functions u and initial conditions xs. Since control function optimis-

ation may require several, perhaps many, computations of outputs for 
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different control functions, these potential advantages could be of 

considerable computational significance. This is the practical justif-

ication for studying control function optimisation for linear 

convolution-described dynamical systems. 

2.3 Gradient Function Determination for Linear Convolution-Described 

Dynamical Systems  

An idea closely connected with the use of Dynamic Programming for 

control function optimisation is that the contribution to an integral 

performance index following any time belonging to the domain of integration 

depends only on the state of the system at that time and the following 

control function segment. This idea is used in this section to develop 

in a novel way a (novel) procedure for calculating the sensitivity of the 

performance index on the control function, which we refer to as the (first-

order) gradient function, for linear convolution-described dynamical 

systems. The optimisation problem is stated in 2.3.1 and gradient function 

determination is considered in 2.3.2. Control function optimisation can 

then be achieved using the steepest-descent algorithm or the new 

algorithms which are developed in Chapter 3. Some concluding comments 

are contained in 2.3.3. 

2.3.1 The Optimisation Problem 

For the linear dynamical system described by 

y(t) = tp(t,t
s
)x
s 

+ ft
t 
 W(t,T)u(T)dT, Vt e T, 	(2.3) 
• s  

minimise with respect to the control function u on T the scalar 

performance index 

V(xs,u) = fTF(y(t),u(t),t)dt 	G(y(tf)), 	(2.4) 
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where 	T = fts,tfl, tf  - is  < =, 

W and u are bounded and continuous, 

xs e Rn, y(t) e Rr, u(t) e Rm, Vt e T, and 

for any bounded initial condition xs 
and considered control function u, 

F, Fy and Fu are bounded and continuous on T, 

G and G are bounded. 

V Comment 2.3.1 	Convolution-description (2.3) with bounded and 

continuous IP and W is that for the system with the differential-descrip-

tion of (2.1) with tf  - is  <o if A, B and C of (2.1) are bounded and 

continuous on T. Note that W being bounded and continuous refers to 

W(t,T) being bounded and continuous on the triangle is  < T < t < tf. The 

above restrictions on IP and W are not serious from the computational point 

of view and can easily be relaxed in the following discussions to 4, and W 

A being continuous almost everywhere and being bounded. 

2.3.2 Gradient Function Determination  

Consider the optimisation problem of 2.3.1 for some nominal 

initial condition xs. Suppose that a nominal control function u is 

applied to the dynamical system with the convolution-description of (2.3) 

and that the resulting output function and effective convolution state 

(of Definition 2.2.2) at time t are y(t) and St, Vt e T. 

For all t e T, define V(t;St,u(t,y) to be the contribution 

following time t to performance index (2.4) given the effective convolution 

state St at time t and the following control function segment u(t tf }. 

Then: 

V(t;St'u(ttd) = f (t 
tflFw r 	) (t),u(t),tidt 	G(y(tf))! Vt e (2.5) 
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where V(t;St,u(t,tf}) with t = tf  is interpreted as 

V(tf;Stf,u(tf,tf)) = G(y(tf)). 	 (2.6) 

The gradient function (aV(xs,u)Pu) is defined so that, for 

sufficiently small arbitrary du: 

V(xs,(u+6u)) = V (xs  , u) + 6V (xs  , du) 

V(xs,(u+6u))1  = V(xs,u) 	6V(xs,6u)1, 	(2.7) 

where 

6V(xs,6u)1  = fT<(aV(xs,u)/au(E)),(6u(t))>dt 	(2.8) 

and the superscript I  denotes first-order expansion. 

For all t e T, define 6V(t;6S06u(t,tfl) to be the change in the 

contribution following time t to -performance index (2.4) which is caused 

by a change from St  to (S+6S)t  in the effective convolution state at time t 

and a change from u(t,tf} to (u+6u)(t,tfl in the following control 

function segment. Then: 

V(t;(S+63)t,(u+6u)(t,tfl) = V(t;St,u(t,tfl) + 6V(t;6$06u(t,t0), 

Vt e T. 	 (2.9) 

A first-order expansion of V(WS+6S)t,(u+60(t,tf)) can then be written as 

V(t;(S+6S)t,(u+6u)(t,tf1)1  = V(t;St,u(t,tfl) + 6V(tOSt,du(t,tf})! Vt e T. 

For the non-anticipatory system considered, 6u(t,tf) has no 

effect on the variables y and u costed in performance index (2.4) before 

time t. 	Its effect on V(t;(S+6S)t,(u+6u)(t,tfl) is therefore the same as 

its effect on the performance index. A first-order expansion of 

6V(t;6St,6u(t,tf}) with respect to Zu(t,tf) can therefore be written as 

ittf)}<(3V(xs,u)4u(t)) ,(6u())>dg, where (DV(xs,u)/au(E)) is the sensitivity 

of the performance index on the control at time t and is the gradient which 

we wish to determine for all t e T. Since we wish to determine the 
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gradient for the initial condition xs, no initial condition change is 

considered here. The change 6S
t in the effective convolution state at 

time t can, from Definition 2.2.2, therefore only be caused by a control 

function change on its,t1, which we denote by Suits,t1. 	Hence: 

dSt  = du{ts,t}, Vt e T. 	 (2.10) 

A first-order expansion of 657(tOSt,Su(t,tf)) with respect to SSt  can 

therefore be written as ft/it  <(aV(t)/au(E)),(Su(E))>dE. 	Combining the 

above  two first-order contributions leads to the following first-order 

expansion for SIT(tOSt,Su(t,tf}): 

rtl f 6V(t;6Se6U(t,td)1  = itts<OIT(t)/aU(E)),(6U(E))>dE 

ft41<(aV(Xs,U)/aU(E)),(6U(E))>d, Vt e T, 	(2.11) 

where EV(tOSt,Su(t,tf))1  with t = tf  is interpreted as 

SII(t;SS ,Su(t t })1 	f
It
f/<(3V(t

f  )/au(E)),(Su(E))>dE. tf 	f' f 	s  

The changes SSt  (of (2.10)) and du(t,tf) on which 

CV(tOSt,Su(t,tfl) depend will change y(T) and ST  to, say, (y+Sy)(T) and 

(S+SS)T, respectively, VT C (t,tf). 	Now F and G of performance index 

(2.4) can be expanded to first-order in Sy and Su as follows 

F((y+6y)(T),(u+6u)(T),T)1  = F(y(T),u(T),T) + SF(Sy(T),Su(T),T)1, VT e T, 

G((y+dy)(tf))1  = G(y(tf)) 	6G(6y(tf))1, 

where 

(SF(dy(T),Su(T),T)1  = <F (T),Sy(T)> + <Fu(T),Su(T)>, VT e T, (2.13) 

8G(Sy(tf))1 	= <G
Y 
 ,Sy(t

f 
 )>, 	 (2.14) 

and F 
y 
 , F

u 
 and. G are all evaluated for y and u. 

From (2.5) and the definition of OV(t0Sedu(t,tf)), we therefore see that 

a first-order expansion of SVft;&Sedu(t,tf)) should satisfy: 

(2.12) 
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where V(t;dSt,Su(t,tf1)1  with t = tf  is interpreted as 

617(tf 0Steou(tf ,y)1  = 60(6y(tf ))1. 	(2.16) 

On splitting the domain of integration of the integral involved 

in (2.15): 

6t1 
(t
t+ 	/, stx 617(tOSt'(Su(ttf1)1 	f 	

VE (Uhl %,:r
‘ 

UZI
f ‘ 	

LIT + 

6V(t+6t;
6St+6V

Su(t+ft,tf 1)1, Vt+ot>t, t e T. 	(2.17) 

From convolution-description (2.3) and (2.10), the output function 

change at time T-> t caused by &St  and 15u(t,tf l is given by 

oy(T) = frT,1  
s

W(T01)67.1(1)dri, 	t e T. 	(2.18) 
I' 

By combining (2.16), (2.14), (2.18) and (2.12), we see that: 

rtf l<(W(tf )/au(E)),(du(E))>dE = V<(W(tf ,n)TGy),(62./01))>dn. 

It is clear from (2.13) and (2.18) that the integrand of 

(2.17) can be written as 

6FRy(T),(5u(T),T)1  = <(Fu(T)),(6u(T))> 

f s<(W(T,n)TFy(T)),(6u(n))>dn + fT(<(W(T,n)TFy(T)),(6u(n))>dn, 

VT e (t,t+6t1, Vt+St>t, t e T. 

(2.19) 

(2.20) 

On using the first-order expansions of (2.11) and (2.20) in 

(2.17), it can be seen that 

f ti /ts<(aV(t)/au(E)),(ft(E))>dE + ft(11<(3V(xs,u)/au()),(6u())>d 

frt6t1<(Fu(T)),(6u(T))>dT 

+ 'frt!ticIT fti lt  <(W(T,n)TFy (T)),(6u(n))>dn 

+ 	ft+6t/dT f T/s<(W(T n)Ti (T)) (&u(n))>dn (t 	(t 	y 

f t1:6°< (aV(t+60/aU(E)),(62,1(E))>CIE 
f (t+ot 

41  (
<°V(XSPU)/aU"))'(15"°)›d" 

(2.21) 

617(tOSt,ft(t,tf l) 1 	= f(ttfl  6F(Sy(T),du(T),T) 1dT + W(6y(tf ))1, {fit e T, 
(2.15) 

. Vt+6t>t, t e T. 
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• For arbitrary 6ufts,t1, we see from (2.21) that 

ftl
s
<(3V(t)/au(E)),(Su(E))>dE = rt 	f +atldt  t} iw(T,n)TF (T)),(6u(n))›cin  

	

ft 	 J(t 	lft  
• j

tl r <OV(t+dt)/au(E)),(Su(E))>dE, Vt+dt > t, t e T. 
{ts 

For sufficiently small St, this reveals that.  

fit <(av(t)/au(E-1)), (su(F.))>dE = Stf }t <(w(t,n)TFy  (0) , (su(n))>dn s   

+ Wt <(av(t+60/au(s)),(su(E))>dE, Vt+dt, t e T. 	(2.22) s   

For arbitrary 6u(t,t+60-, we see from (2.21) that 

.11+tatl<f 	 11:(50.<(F ,.c., f  

	

OV(xs,u)/au(E)),(Su(E))>g = 	
u
( )),Ou(T))>dT 

t+dt1 	} 
+ f(t  dT f 

T
w(W(T,n)

T
Fy(T)),(6u(n))>dn 

• rt+Stl<  r OV(t+St)/@u(E)),(Su(E))>dE, Vt+St > t, t e T. 	(2.23) J(t 

We can now prove 

✓ Remark 2.3.1 	For the optimisation problem of 2.3.1, the 

gradient function (311(xs,u)/3u) can be determined using the following 

reverse-time equations: 

-(d/dt)(317(0/374(E)) = W(t,E)
T
F (t), VE e {ts,t}: 
	

(2.24) 

(WV(tf)/au(E)) = W(tf,E)TGy, YE e T, 	(2.25) 

(3V(xs,u)/324(0) = Fu(t) + (3V(t)/Du(t)), 	(2.26) 

Vt e T, 

where Fu, Fy and G are evaluated for the control function u and the 

A associated response y of (2.3) for the initial condition xs. 

✓ Proof of Remark 2.3.1  Under the assumptions of 2.3.1, we see that: - 

(a) reverse-time equation (2.24) comes from (2.22) as St 0, 

(b) starting condition (2.25) comes from (2.19) for arbitrary Sufts,t0, 

	

A (c) 	(2.26) comes from (2.23) as St -+ 0. 

✓ Comment 2.3.2 	Note that the interval fts,t1 on which 



32 

(3V(t)/3u(E)) of (2.24) has to be stored at time t decreases as t 

decreases from tf  to is  at the same rate that the interval {t,tf} 

increases on which the gradient function has been determined using (2.26) 

and needs to be stored, for future use. The main storage needed for 

gradient function determination using (2.24) and (2.26), other than that 

needed to store W, Fu, Fy 	Y 
and G

' 
 is therefore only that needed to store 

starting condition (2.25), i.e. that needed to store 

A (DV(tf)/3u(E)) for all E e T. 

V Comment 2.3.3 	It is clear from Remark 2.3.1 that the gradient 

function (3V(xs,u)/;u) is bounded and continuous on T when the boundedness 

A and continuity assumptions of 2.3.1 hold. 

V Comment 2.3.4 	It is interesting to compare the result of 

Remark 2.3.1 with the equivalent result for an optimisation problem which 

is the same as that of 2.3.1 save in that differential-description (2.1) 

is used in place of convolution-description (2.3). 	It is well-known that 

the gradient function (W(xs,u)/3u) is then given by the following 

reverse-time equations: 

-(d/dt)Vx(t) = C(t)TF
Y 	

V (t) + A(t)TVx(t) : x(tf) ) = C(tf)
T
Gy' x  

(3V(xs,u)/@u(t)) = Fu(t) 	B(t)TVx(t), Vt e T, 

where Fu' Fy and G are evaluated for the control function u and the 

associated response y of (2.1) for the initial condition x
s. Note the 

similarity in structure of the equations of Remark 2.3.1 for gradient 

function determination for linear Convolution-described dynamical systems 

and the above equations for linear differentially-described dynamical 

A systems. . 
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V Comment 2.3.5 	It is clear from (2.7) and (2.8) that a 

necessary condition for a control function u to be the xs-optimal control 

function belonging to the linear space of bounded and continuous control 

functions with domain I and range Rm  is that (aV(rs,u)/au) should be 

zero almost everywhere on. T. 	This arises since otherwise, for 

sufficiently small 0 > 0, the control function u - R(V(xs,u)/au) would 

give a lower (i.e. better) performance index value for the initial 

A condition x
s 

than would the control function u. 

2.3.3 Concluding Comments  

The determination of the first-order gradient function for 

convolution-described dynamical systems has also been considered by 

Balakrishnan {25} and Hsieh {26}, in a different way. Our approach 

of 2.3.2, which is believed to be Original, yields additional insight 

into gradient function determination for such systems. 

In this chapter we do not consider optimisation algorithms 

which use first-order gradient functions (although we develop new 

algorithms of this type in Chapter 3) but continue to develop a 

second-order, Dynamic Programming based, algorithm for choosing the 

xs
-optimal control function belonging to a finite-dimensional linear 

manifold of the considered control space, as a function of initial _ 

conditions x
s 
belonging to X(q). 
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2.4 Second-Order, Dynamic Programming Based, Optimisation on L(pN)  

In 2.4.1 we define the finite-dimensional linear manifold L(pN) of 

the linear space of all bounded control functions u: T Rm. An optimis-

ation problem on L(pN) is formulated in 2.4.. A second-order, Dynamic 

Programming based, algorithm for choosing the optimal control function 

belonging to L(pN) as a function of initial conditions belonging to X(q) 

-is developed in 2.4.3 for linear convolution-described dynamical systems. 

The algorithm is stated in 2.4.4. The optimal performance index on L(pN) 

is considered in 2.4.5. 	Some comments concerning computation and some 

eictensions are the subjects of 2.4.6 and 2.4.7. 	Another type of optimis- 

ation problem to which the approach used herein can be applied is mentioned 

in.2.4.8. 	Some concluding comments are contained in 2.4.9. 

2.4.1 	The Linear Manifold L(pN)  

V Definition 2.4.1 	The pN-dimensional linear manifold L(pN) of the 

linear space of all bounded control functions u: T -4- Rm  is defined to be 

that linear manifold which is spanned by the following pN, m-vector 

valued, linearly independent and bounded basis-functions which are 

continuous almost everwhere on their domain T: 

f 	Vs e I(p), Vj e I(N), 

where, for all j e 1(N), 

fS,j(t) = 0(m,l) if t 	T3, Vs e I(p), 

fs,j(t) = f;',j(t) if t e T3, Vs e I(p), 

and 

T1  = {ti,t21, Tj = (t.,t. J, V• c 1(2,N), T = (ts,tfl, J+1 

ts  = ti < t2 < t3 <...< tN  < tN+1  = tf. 
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The number N of disjoint sub-intervals Ti which cover T, the 

partition P(N) = (rl T2 ... TN) of T, the number p of basiS-functions 

which are not necessarily zero on each sub-interval Ti and the functions 

f" define L(pN), and can all be freely chosen within the constraints 

imposed in Definition 2.4.1. 

Any control function u belonging to L(pN) can be uniquely 

decomposed into components of the basis-functions f of Definition 2.4.1, 

and can then be written as 
N 

	

u(t) 	F(j,t)u(j) 	= FN(t)uN, Vt e T, 	(2.27) 
j=1 

	

where F(j,t) 	(fi,j (t) 	4,j(t)) e M(RP 	Rm), Vj e I(N), 

	

F(j,t) 	0(m,p), Vt 	Tj, Vj e I(N), 

	

u(j) 	a 	RP, Vj e I(N), 

	

FN(t) 	(F(1,t) 	F(N,t)) e M(RPN  Rm), 

u (u(1)T 	u(N)T)T e K  -ripN 

The following notations will also be used 

(u(k)T 	elso 	u(N)T)T  e RP(N-k+1), Vk e I(N-1), 

(u(1)T 	u(k)T)T  e RPk, Vk e I(N),  

N  

	

uN 	u(N). 

V Definition 2.4.2 	We refer to the control function u of (2.27) 

as a control function belonging to L(pN) which is exactly characterised 

by the components J. Similarly, we say that such a control function 

A is exactly characterised on Ti  by the components u(j), Vj e I(N). 

	

V Comment 2.4:1 	The important property of L(pN) from our point of 

view is that control functions belonging to it can be varied on each 

sub-interval Ti  independently of the control function on the other sub-

intervals of T. This enables optimisation of the control on the sub- 
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intervals Tj  to be carried out in a sequential manner using a Dynamic 

A Programming based approach. 

2.4.2 An Optimisation Problem Defined on L(pN)  

For the linear dynamical system with the convolution-description 

y(t) = ip(t,ts)xs  + ftsW(t,T)u(T)dt + D(t)u(t), Vt e T, 	(2.28) 

choose the control function u = FNuN, belonging to L(pN) and exactly 

characterised by the components uN, which minimises the scalar performance 

index 

= fTF(y(t),u(t),t)dt 

= "X's  + Xgox(1  e X(q), 

Rr, u(t) e Rm 
	

tit c T = {ts,tf}, 

= t
f 

 is  < =
9  

W, D and u are continuous 

V(pN;xs,u
N
) 

where xs 

y(t) 

HT 

G(y(tf )), 	 (2.29) 

almost everywhere and are bounded, 

and, for all bounded initial conditions and all considered control function 

F,Fys Fyy, Fu,  Fuu  and Fuy are continuous almost everywhere 

on T and are bounded, and all higher-order derivatives of F are zero, 

G, Gy  and Gyy are bounded and all higher-order derivatives of 

G are zero. 

For convenience, we rewrite performance index (2.29) as 
N 

V(pN;xs,u14) = 	F(y,u(k),k) + G(y(tf)), 
k=1 	

(2.30) 

where 

F(y,u(k),k) = 	fTkF(y(t),u(t),t)dt, Yk e /(N). 

2.4.3 Algorithm Development 

The optimisation problem of 2.4.2 is considered. 



37 

Suppose that a nominal control function u, which belongs to 

- L(pN) and is exactly characterised by the components u , is applied to 

the dynamical system with the convolution-description of (2.28) for our 

nominal initial condition Z
s, of 1.3. Denote the resulting output 

function by g and the resulting effective convolution state, of 

Definition 2.2.2, at time t
k 

by :§
k' Vk c /(N+1). 

The optimal components uN* = (12(1)*T 	u(N)*T)T  which 

exactly characterise the optimal control function belonging to L(pN) 

for any particular initial condition x
s 
=

s 
+ Xqdxq  c X(q) can then be 

determined by optimising a perturbation ouN = (&u(1)
T 	TNT 

du (N) ) 

- 
from u , when 

• - uN* = u + duN*. 

The optimisation of 6uN  to give 6uN* is next considered. 

V Definition 2.4.3 	Consider the dynamical system with the 

(2.31) 

    

. convolution-description of (2.28) and the control function it = F 
N
u
N 
 

which belongs to L(pN). From Definition 2.2.2, we see that if the 

initial condition is changed from Zs  to Zs  + Xcl6xcl  and the components 

N. 	- 
u are changed to u

N 
 + 6u

N, the resulting effective convolution state 

at time tk  is changed from 	to :§k  + 6Sk  where 6Sk  is exactly 

characterised by 6sk  - defined as follows: 

A 

681  = 6sq e Rg , 6sk  = [6,xci 

6uk-1  

e 0+P(k-1), Vk c I(2,N+1). (2.32) 

For all k e 1(N), define V(k;Sktu) to be the contribution-

following,time tk  to performance index (2.30) given the effective 
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convolution state S
k 

at time tk  and the components 

I u
k 

	(u(k)T 
	

u(N)
TjT  , which exactly characterise control 

functions which belong to L(pN) on Tk, 	TN.  

Then: 

V(k.'Sk'k 
uN) 

• 

N 
F(y,u(j),j) 

j =k 
G(y(tf)), 'k e 1(N), (2.33) 

and 

V(N+1;S114.1) = 	G(y(tf)). 	 (2.34) 

For all k e 1(N), define 6F(6y(6sk,61u(k)),6u(k),k) to be 

the change in F(y,u(k),k) (the contribution to performance index (2.30) 

on Tk) from qp,a(k),k) to F(g+6y(6sk,6u(k)),(a+6u)(k),k) 

due to: 

(a) a change from tick) to 72(k) + 6u(k) in the components u(k) 

which exactly characterise control functions belonging to L(pN) on 

Tk  and 

(b) the change 6y(Ssk,624(k)) from p in the output function 

y on Tk  due to a change from Sk  to Sk  + 6Sk  in the effective 

convolution state at time tk  and the change 6u(k) which is mentioned 

in (a) above. 
••• 

Define 60(6y(6s114.1)) to be the change in G(y(tf)) from G(P(tf)) 

due to the change in y(tf) from ?(tf) to le(tf) + 6y(tf) which is caused 

. 	- 
by a change from ;14.1  to SN+1 

+ 6SN+1 
in the effective convolution state 

at time t114.1. 

For all k e 1(N), define'6V(kOsk)* to be the change in the 

contribution following time tk  to performance index (2.30), relative to 

NI 
V(k:§k,ickj, which is caused by a change in the effective convolution 



state at time t
k from k to Sk + (SSk when the components 

uN 	fu(k)T 	
u(N)T)T are optimised. Then 

&V(k.
' 
 6s
k)* = minN  V(k;(+6S)k,(ii+Su)114) 	V(0 k' k 

e) ' 
uk Yk e 1(N). 
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(2.35) 

Using the above definitions, it can be seen that 

6V(kOsk)* = min { 6F(Sy(Ssk,6u(k)),du(k),k) + SV(k+1;15sk+1)* }, 
6u(k) 

	

Yk e 1(N), 	(2.36) 

where 	6V(N+108N+1)* 	6G(Sy(d8N+1)). 	(2.37) 

V Remark 2.4.1 	For the optimisation problem of 2.4.2, there exists 

a unique xs-optimal control function belonging to L(pN) for each xs  e X(q). 

if, for k = N, N-1, .., 1 there exists a unique Su(k) which minimises the 

RHS of (2.36) for all 68k. 
	

From (2.31), if a unique
s
+Xq6x(1)-optimal 

control function belonging to L(pN) exists, it is exactly characterised by 

the components uW* = ({17(1)+Su(1) *)T 	{il(N)+Su(N)*)T)T, where du(k)* 

is the change 6u(k) which minimises the RHS of (2.36) when 6sk  = Sx(1  if 

A k = 1 and Ssk = ({6xcl}T  au(1)*T 	6u(k-1)*7)T  if k > 1. 

Expression (2.36) is a realisation of the Principle of Optimality, 

the key concept of Dynamic Programming {15}. We refer to (2.36) as a 

Perturbational Equation of Optimality, since it is concerned with optimal 

control changes. 

We next use the above definitions and-Perturbational Equation of 

Optimality (2.36) to obtain results which enable the optimal component 

changes 6u(k) to be determined for - all k c 1(N), if they exist. 

The unminimised RHS of Perturbational Equation of Optimality 

(2.36) can be viewed as the change in the contribution following time tk 
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to performance index (2.30) due to changes 6Sk  and du(k) when all the 

following components uN +1 (if there are any, i.e. if k < N) are chosen k 
optimally given 6Sk  and du(k), i.e. given dsk+1 of Definition 2.4.3, 

Perturbational Equation of Optimality (2.36) can therefore be rewritten as: 

6V(k;dsk)* 	= min 6V(k;68k+1)*' Vk e 1(N),  Su (k) 
where 

air (k;'sk+i)* = 6F(dy(dsk,du(k)),du(k),k) + dV(k+1.
' 68k+1  )* ' 

Vk e 1(N) 

(2.38) 

(2.39) 

and 

6V(N+1;68N+1  = W(Sy(Ss174.1)). 	 (2.40) 

For some k e 1(N), assume that a second-order expansion of 

6V(k+1;dsk+1)* with respect to dsk+, e Rcl+Pk  is exact, so that: 

6V(k+1;6s10.1)* = 6V(k+1)* 	<(;V(k+1) *iask+1)'(68k+1)> 

l< (68k+1) ' (a2V (k+1)*/ask+lask+1) (68k+1) >. 
	 (2.41) 

Numerical minimisation procedures could be used to minimise 

6V(kOsk+1)* of (2.38) with respect to 
6u(k) when the second-order 

expansion for dV(k+1;6810.1)* of (2.41) is used in the RHS of 6V(kOski.1)* 

of (2.39). 	The optimal value of Su(k), denoted by du(k)*, will in 

general depend on dsk, i.e. on dxcl  and duk-1  = (6u(1)T 	du(k-1) T)T. 

Since the previous component changes cS.0
k-1 have not yet been chosen and 

any change from /s  to Is  + Xcidxq  e X(q) in the initial condition is to 

be considered, the optimisation of dV(kOsk+1)* with respect to du(k) 

would have to be carried out for a range of values of dsk  to give du(k)*, 

at least approXimately, as a function of oak  of the following type; 

(524(k)* = a(k) + S(dsk,k). 
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Numerical minimisation using search procedures has been explored in {21} 

for differentially-described dynamical systems. For the problem of 

2.4.2, however, a second-order expansion for aRy(Ssk,(5u(k)),Su(k),k) 

of (2.39) with respect to dsk  and Su(k) is exact so that minimisation of 

the RHS of (2.38) with respect to Su(k) can be achieved analytically, 

This is next considered. 

Recall that the output function change Sy(dsk,du(k)) on Tit  is 

the change in y on Tk from y due to a change in the effective convolution 

state at time tk  of 6sk 
	
({6s4}T {ouk-1}T)T and a change of du(k) in the 

Tk. components exactly characterising considered control functions on • , . 

On using the notation of 2.4.1 with convolution-description (2.28), we 

see that Sy(6.9k0Su(k)) at time t e Tk  is given by 

Sy(dsk,du(k),t) = Ip(t,ts)Asxcl ftt2w(t,T)F(1,T),sumdT 

rt
k 
 w(t,.or(k,,),su(k)dT 	D(t)F(k,t)du(k) 

't 

= 	Yk(t)6sk+1' Vt e T
k, 

•• • 

(2.42) 

where 
t, 	tu  

k
(t) = ( tp(t,ts)X4  f,`W(t,T)F(1,T)dT 	W(t,T)F(k-1,T)dt 

• tk-1 
fl W(t,T)F(k,t)at + D(t)F(k,t) ) 
"lk 

m(Rq+pk Rr
)  , Vt e Tk. 

For the optimisation problem of 2.4.2, a second-order expansion 

for 6F(6y((%k,ou(k)),(Su(k),k) in terms of Sy(Ssk,Su(k)) and the control 

function change 

Su(t), = 	F(k,t)Su(k), Vt e Tk, 	(2.44) 

which is caused by a change of du(k) in the components u(k) exactly 

k  
characterising the considered control function on T , is exact and can be 

(2.43) . 



0(q+p(k-1),p) 

f Tk(F(k,t))1Faa(t)(F(k,t))dt 

t t 
e M(0.413k  gq+Pk). 
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written as 

6F(Sy(6 k,ou(k)),Su(k),k) = fTk{ <(Fp(t)),(Sy(dsk,Su(k),t))> 

(6y(cSsk,Su(k),t)) ,Fvv(t) (dy(dsk,Su(k) , t))> + < (Fit(t)) , (cSu(t))> + 

i< (62.t (t)) ,Fna(t) (Su ( t)) > + 

< ((Su (t)) ,Fizp  (t) (Sy (Ssk, dy (k) , t)) > }dt, 	 (2.45) 

where all derivatives of F are evaluated for the control function f and 

the associated response g, i.e. where F 	= F(g(t),V(t),t) , etc. 

On using (2.42) and (2.44) in (2.45), we see that 

6F(Sy(Ssk,(514.(k)),(Su(k),k) depends only on Ss
k+1 	

r 	
= k Su(k)T)T  and 

can be expanded exactly to 

oF (Sy (6sk , 6u (k)) , 6u (k) ,k)  

second-order in 6s
k+1 

as 

= <(af(k)/Dsk+1),(dskil.)> 

1<(6sk+1)
,(a2F(k) as

k+Osk+i) (68k+1) 

	
(2.46) 

where 

 

= 	f
Tk
(ric(t))

T
Fy(t)dt 

 

(g(k )/ask+1) 
0(q+p(k-1),1) 

fTk(F(k,t))TFg(t)dt 

  

Rq+Pk, 	 (2.47) 

(a2F(k)/as
k+laski-1) 

	
fTk(Yk(t))

T
F.a.(t)(Yk(t))dt + 

[

0(q+p(k-1),q+p(k-1)) 

0(p,q+p(k-1)) 

[

O(ck+p(k-1),q+pk) 

fTk(Foc, 0-) T-F27.g  ( 0 (yk  (0)d 

Then, if expansion (2.41), for Ar(k+1 0sk+1)* is exact, 

6V(kOsk+1)* of (2.39) can be expanded exactly as: 

6V (k; 6 8  k+1)*  = 6V(k+l)* + <(3V(10.1k/aski4) ,(dskil.)>.  • 
i< (6sk+i) , ( 2V (k)* I Ds ki.3.  s.,lc+ 1)  (661c+1)>' 

(2.48) 

(2.49) 
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where 

(DV(k)*
/sk+1)  = (aF(k)/38k+1) 	

/A (mr(k+1)*• -810-1)' (2.50) 

(a2V(k)
*'  /AP ng 1 

k+l —k+1. )  • = (a2F(k)/81‹.+08k+1)  

(a?Y(k+1) /ask+1k+1) 	 (2.51) *' 	 . 

Perturbational Equation of Optimality (2.38) then becomes 

6V(kOsk)* 	= 	min 	{ 	W(k+1)* 	+ 	<(aV(k)*/ask),(Ssk)> 
Su (k) 

(6sk) 	(k) */3sk  ask ) (680 > 

< (6u(k)) , I 	(W(k)*iti(k)) + 	(k)*/ 	(k) sk) (6sk) 	}> 

i< (6u(k)) 	(a2V(k)*/au(k) au(k)) (6U (k)) > 

where the following have been used: 

(2.52) 

(a) the symmetry of the second 

(b) the fact that 	Ssk+1 	= 

-derivative 

6sk  [ 

matrices, 

 , and 

(c) the partitions Su(k) 

(DV(k)*hsk+i) 	= f(aV(k)*Ask) , (2.53) 

[(DV(k)*/au(k)) 

(22V(k)"aski-lask+1) 	- (2.54) 

( 2V(k)*/sOu(k)) . (a2V(k)*/;skask) 

[ (22V(k)*A72(k)sk) (22V(6*/au(k)au(k)) 

Then, if r(k) of (2.58) is p.d., the minimising component 

change 6u(k) of (2.52) is: 

(522-(k)* = a(k) + (13(k))(Ssk), 	 (2.55) 

where 

a(k) 	= -r(k)-1 (8V(k)*Au(k)) e RP, 	(2.56) 

$(k) 	= —r(k)—lf  (a2V(k)*/au(k)ask) c M(Rq+p(k-1) 0),(2.57) 

r(k) 	= 	(a2V(k)*/au(k)au(k)) e M(RP -- RP). 	(2.58) 
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If r(k) is not p.d., however, a minimising component change 

624(k) does not exist and no optimal performance index exists on L(pN). 

For the purposes of this development we assume that r(k) is p.d. 

From (2.55), 624(k)* depends linearly on 6sk c +p(k-1), i.e. on 

the initial condition change from 2
s 
to 2

s 
+ 216xcl which is exactly 

characterised by 6xcl  and, if k > 1, on the unoptimised component changes 

67.4k-1  

If k > 1, 624(k-1) needs to be optimised. 	To optimise 624(k-1) 

we need the expansion terms for CV(kOsk)* for insertion in the RHS of 

(2.50) and (2.51) with k replaced by k-1, so that Wk-1)* can be 

determined from (2.52) with k replaced by k-1 in the same way that we have 

just determined 621(k)*. 

Inserting 61u(k)* of (2.55) into (2.52) leads to the following 

exact second-order expansion for 6V(kOsk)*: 

6V(kOsk)* = 6V(k)* + <(aV(k)*/8sk),(6sk)> 

i< (6sk) , (32V (k)*/ @sic  ask) (6sk)>, 	 (2.59) 

where 

6V(k)* = 6V(k+1) - 1<(a(k)),r(k)(a(k))> c R, 	(2.60) 

(ay(k)*/ask) 	(av(k)*/ask) - ($(k))Tr(k)a(k) e 0413(k-1)(2.61) 

(22V(k)*/8skask) = (82V(k)*/askask) - ($(k))Tr(k)(a(k)) 

+p (k-1) 4.  0+p(k-1)).  c m(0 	 (2.62) 

Equations (2.60), (2.61) and (2.62) are reverse-time recurrence-

relations giving the expansion terms for EV(kOsk)* from those for 

6V(k+1;68k1.1)* through those for gl(kOsk+1)*. 	The expansion terms 

617(k)*, (A7(k)*/3sk) and ( 2V(k)*/2sosk) are clearly bounded if 
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6V(k+1)*, (W(k+1)*/;810.1) and (a2V(k+1)*/8sk+Osk+/) are bounded and 

if r(k) is p.d. since, under the assumptions of 2.4.2, (g(k)/ask+i) 

and (;2F(k)/ask+lask+1) are bounded. 

We now need starting conditions for the above reverse-time 

relations. 

Recall from (2.37) that 

AT(N+1 ;6811+1)*  = 6G(6Y(68N+1))' 	 (2.63)  

where SG (6y(ds114.1))is the change in G(y(tf)) from G(g(tf)) due to the 

change in y(tf) from P(tf) which is caused by a change characterised by 

Ss
N+1 

= ({dx(1}T  {duN}T)T  in the effective convolution state at time 

The change in y(tf) from P(tf) due to Ssni1  is clearly 

6Y(68N+1'tf) = 
(-17N+1)(6811+1)' 

	 (2.64) 

where 

	

t, 	t, 
*(tf'ts)2ri  ftV(t,T)F(1,T)dT ... 	W(tf'T)F(N-1,T)dt t 	1 tN-1 , 
f v4+j'h7(t

f 

 ,T)F(N,T)di + D(tf)F(N,tf) 
tN 	NT 

	

e M(Rq  P- 	Rr). 	 (2.65) 

For the optimisation problem of 2.4.2; 

6G(Sy(15s144.1)) = <(Gp),(6Y(ds11.1.1,y)> 

1<(4(68N+1'rf))'(GRY)(6Y(643N+1'rf))>' 
	(2.66) 

where G9  = G(P(tf))y  and Gu  = G(g(tf))yy. 

On-using (2.64) in (2.65) and using the result with (2.63), 

we see that 6V(N+1;45s
N+1

)* can be expanded exactly to second-order in 

OsN+1 as 

W(N+10s )* = 611(N+1)* N+1 	<(W(N+1)*/33N+1)'(6sN+1)>  

1<(6811+1)'(;2V(N+1)*/;6N+1 sN+0(68N+1)>' 
(2.67) 

N+1 

) 
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0, 

e lel+PN  (YN4.1) 	9 

(2.68) 

(2.69) 

where 

6V(N+1)* 

(8v(N+1)*/B8N+1) 

(a2v.N+1, ` 1"N+0'11+1) 
The required  

1Tn ry ) 
(YN+1) — pk.N+1) 

starting conditions are therefore provided by 

e M(RPN  01-PN).(2.70) 

(2.68), (2.69) and (2.70). 

Having developed the results needed for the (sequential) 

optimisation of Su(k) as k decreases from N to 1, we next state the 

resulting optimisation algorithm. 

2.4.4 	Statement of the Second-Order Optimisation Algorithm 

The following algorithm is designed to choose the optimal 

control function belonging to L(pN) for the optimisation problem of 

2.4.2 as a linear function of initial conditions x
s 
= I

s 
+ ASxcl e X(q). 

1) Choose nominal components ft
N 
 which exactly characterise a nominal 

control function i = FN 2
N 
 which belongs to L(pN). 	It is desirable 

(but not at all essential) that V should be a sensible guess at the 

2
s
-optimal control function belonging to L(pN), in order to try to limit 

the size of the control function change relative to 2 which has to be 

made to optimise the control function - since large control function 

changes might lead to significant inaccuracies when digital computers, 

with their finite word length, are used. 

Go to 2) 

2) Calculate the output function p associated with the nominal initial 

condition /
s 

and the nominal control function 2 = FNd, using convolution- 

description (2.28). 	Evaluate and store the following derivatives of 
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F(P(t),V(t),t): 	Fy(t), Fyy(t), Fa(t), F122(t), Fay(t), Vt e T. 

Also evaluate and store the following derivatives of G(g(tf)): Gy, Gyp. 

Go to 3). 

3) Evaluate the terms (5V(N+1)*, (8V(N+1) */;s174.1) and 

(B2V(N+1)IciaN+18N4-1) of an exact second-order expansion for 

(51T(N+10sN41)* using (2.68), (2.69) and (2.70). 	Go to 4). 

4) Set k = N. 	Go to 5). 

5) Calculate the terms (g(k)/ ak-i-1) and  (a2F(k)/a8k+lask+1) of an 

exact second-order expansion for g(6y(Ssk,du(k)),du(k),k) using (2.47) 

and (2.48). 	Calculate the terms (8V(k)*/Zsk+1) and (;2V(k)*/ask+13sk+1) 

of an exact second-order expansion for 0(kOsk+1)* using (2.50) and (2.511 

If r(k) of (2.58) is not p.d., stop - since 6u(k) cannot be 

optimised and there exists no optimal control function belonging to L(pN) 

for any xs  e X(q). 

If r(k) is p.d., calculate the parameters a(k) and (a(k)) 

which determine the optimal component change du(k)*, using (2.56) and 

(2.57) and recalling partitions (2.53) and (2.54). 	It will be apparent 

from Lemma 2.5.4 of 2.5 that- a sufficient condition for the existence of 

an xs
-optimal control function belonging to L(pN) for all x

s 
e X(q), and 

thus for F(k) to be p.d., is that Assumption 2.5.1 of 2.5 hold. 	Since 

r(k) is p.d:, 6V(kOsk)* exists, so calculate the terms 

6V(k)*, (WV(k)*/;sk) and (22V(k)*/2sOsk) of an exact second-order 

expansion for (5V(k;c5sk)* using (2.60), (2.61) and 2.62). 

If k 1, further component changes have yet to be optimised, 

so set k = k - 1 and go to 5). 
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If k = 1, the parameters a and 8 which determine all optimal 

component changes have been determined, so go to 6). 

6) 	The x
s-optimal control function belonging to L(pN) can now be 

determined for any initial condition xs  = 2s  + Xqdxq  e X(q), and is 

fi7(N)+15u(N)*}T)T, 

, 

and where 

	

u(t)* 	= 

where, from (2.31), 

uN* 	= 	UN  + duN  * 

	

&u(1)* 	= 

au(2)* 

FN(t)uN*, 	Vt e T, 

(2.32) 	and (2.55): 

({ii(1)+6u(1)*}T  

a(1) (8(1)) 

a(2) (8(2)) 

(Sx9, 

ax(' 

ku(1)* 

6.74(i)* 	= cc(j) (f3(j)) ioxcl 

Su(N)* 	= a(N) (8(N)) Sxq  

SuN-1* 

dui-1* = (du(1)*T  • • • 

-%T du(j-1)*T) , Vj e 1(2,N). 

2.4.5 The Optimal Performance Index or. L(pN)  

For the optimisation problem of 2.4.2, denote by V(pN;xs)* the 

x
s
-minimal performance index on L(pN). Denote the performance index 

for the nominal initial condition s and the nominal control function 

= AN  of 2.4.4 by V(pN;2,214). • Then, from the definition of 

.6V(1;6s1)* of (2.35) and the fact that V(1;S1,4r) of (2.33) is equal to 

performance index (2.29), we see that: 
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V(pN;"ths+X416x9*.  = min V (1; (-.§+6S)i, (2-4.+Su)Ni) 
duN 

V (p+N; s,i2N) 	av(i•
' 
 os
1 
 )*' 	(2.71) 

where, from (2.32): 	Ss1 = &eq. 	
(2.72) 

If optimisation on L(pN) is possible (i.e. if r(k) is p.d., 

Vk e 1(N)), the terms (W(1)*, (3V(1)*/Dsi) and (a2V(1)*/asiasi) of an 

exact second-order expansion for W(1;6.91)* are available after stage 5) 

of the rlgorithm of 2.4.4 has been implemented with k = 1. Then we see 

from (2.71) and (2.72) that: 

1.1(pN; s+Xcl6xcl)* = V(pN;'X's,e) + 6V(1)* 

< (W 1/41)*/ as].) , (63:9> + 1<(Sxcl) , (;2V(1)*/as2s3.) (6x9>, 	(2.73) 

where, from (2.68) and (2.60): 
N 

dV(1)* = -II <(a(k)),r(k)(a(k))>. 	(2.74) 
k=1 

The dependence of the xs-minimal performance index on L(pN) on 

initial conditions x
s 
 = xs  +Xcl6xcl e X(q) might be useful information 

for control system design purposes, and is clear from (2.73). 

The condition for Su(k)* to exist for all k e 1(N) is that 

r(k) shpuld be p.d. for all k e 1(N). 	If r(k) is p.d. for all k e 1(N), 

it is clear from (2.73) and 42.74) that 

V(pN;ls)* < V(pN; s,e), 

i.e. that the x
s
-minimal performance index on L(pN) is certainly not 

greater than the nominal performance index V(pNpls,e), as would be 

expected. 

2.4.6 Comments Concerning Computation 

V Comment 2.4.2 Since all the second-derivative matrices used by 
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the algorithm of 2.4.4 are symmetric, only the elements belonging to the 

upper triangle of each such matrix need be evaluated and stored. 	This 

reduces the computatiOnal effort required and, perhaps more important, 

A reduces the number of computer storage locations needed. 

V Comment 2.4.3 	The number of elements associated with the 

expansion terms SV(k)*, (av(k)*/ask) and (32V(k)*AskDsk) of an exact 

second-order expansion for SV(kOsk)* decreases as k decreases from 

N+1 to 1.  during the operation of the algorithm of 2.4.4. 	In fact, for 

all k e 1(N), the expansion terms for (SV(kOsk)* which are computed 

using (2.60), (2.61) and (2.62) and the terms a(k) and (13(k)) of (2.56) 

and (2.57) can all be stored in the block of storage needed to store the 

expansion terms for dV(k+10s
k+1

)*, which are no longer needed once the 

previously mentioned terms have been determined. 	This arises because: 

(a) 	dV(k)* can be written over SV(k+1)*, 

can be written over (9V(k+1)*/98k4.1), and DV(k)*/9sk)) 

a(k) 

(d) ( (32V(k)*/askasj  (a(k))T  ) can be written over 

(b)  

(32V(k+1)*/3sk+1Dsk+1
) - even when the elements belonging to the 

upper triangle only of each second-derivative matrix are stored. 

The expansion terms for (SV(kOsk
)* together with the terms 

a(j), (“j)), Yj e I(k,N) which are calculated by the algorithm of 2.4.4 

as k decreases from N to 1 can therefore all be stored in the block of 

storage needed to store SV(N+1)*, (W(N+1)*/;sN.1.1) and 

A (32V(N+1)*/sm+13s17.1.1), the starting conditions of (2.68), (2.69) and (2.70 

V Comment 2.4.4 	When the xs-optimal control function belonging to 
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L(pN) has been calculated and applied to the dynamical system considered 

in 2.4.2, the resulting performance index should be V(pN;xs)* of (2.73). 

This can be used as a check on the xs-optimality of the calculated x -

A optimal control function belonging to L(pN). 

✓ Comment 2.4.5 	The behaviour of the xs-optimal performance 

index on L(pN) as a function of initial conditions xs e X(q) may, however, 

be of no interest. In this case a reduction in the computational effort 
• 

required may be achieved by dropping all terms of the type (a-/Bxcl) and 

(a2-/axclax(1) from all the expansions associated with the algorithm of 2.4.4. 

This does not affect the determination of the xs-optimal control function 

A belonging to L(pN) as a linear function of x
s 
e X(q). 

✓ Comment 2.4.6 	If the optimal control function belonging to 

L(pN) is not required as a function of x
s 
e X(q) but is only required for 

the nominal initial condition M
s
, we can re-define Ss

k 
of (2.32) as 

Suk-1, instead of Sxq 	. 	The algorithm of 2.4.4 is then essentially 

unchanged save 	 duk-1 	in that all expansion terms such as (3-/Bx(1), 

(D2-/axclax(1), (a2-/au(k);x9, etc., are dropped, which clearly reduces 

A the computational effort required. 

2.4.7 Extensions  

The range of optimisation problems to which the algorithm of 

2.4.4 can be applied is here extended by introducing additional variables 

which can be treated in the same way as initial conditions. 

✓ Comment 2.4.7 . 	The initial condition at time i
s 
for the system 

with the convolution-description of (2.28) can be considered to be 

established by the system input before time is  if the system exists 
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before i
s 
(for an arbitrarily long time,say) and if the system is 

controllable in the sense that any initial condition x(t
s
) = x

s 
can be 

established by suitable choice of the input function u before i
s 
(on 

(-00,ts), say). 	The system may then be considered to have the following 

convolution-description: 

y(t) = ft  W(t,T)u(T)dT + D(t)u(t), Vt e T. 

For many such systems, the history of the entire input function 

u before time i
s 
(i.e. on 	

s
)) may be unnecessary from the practical 

point of view, as far as the output y on T is concerned, if the input 

before some time t
I 
< i

s 
has negligible effect on y on T. The input 

function on ftI'ts)  may then be characterised by components of basis-

functions which can be non-zero only on ftI'ts)  and are zero elsewhere. 

The components can then be considered as initial conditions for the 

system at i
s 
and can be assembled in a vector X

s
. The output y on T 

can then be written as 

y(t) = w(t,ts)xs 	W(t,T)u(T)dT + D(t)u(t), Vt e T, 	(2.75) 

where each column of T(t,ts) gives the effect on y(t) of a unit component 

of a basis-function present in u on {tits). 	Since (2.75) has the same 

form as convolution-description (2.28), the second-order optimisation 

algorithm which we have developed in 2.4.3 and stated in 2.4.4 can be 

used to optimise performance index (2.29) on L(pN) when convolution- 

A description (2.28) is replaced by convolution-description (2.75). 

V Comment 2.4.8 	It is sometimes desired to cause the output 

function y of a dynamical system such as that considered in 2.4.2 to be 

as close as possible to a specified output function yd  in that 
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f T  { < (yd  ( -y (0) ,Q( t) (yd 	-y (0) > 	<(u(0) ,R( t) (u ( 	> } dt 

is smallest, where Q is n.n.d. on T and R is p.d. on T. 

If yd  is exactly characterised by components (which are assembled 

into a vector b) of some basis-functions and can be written as 

yd(t) = E(t)b, Vt e T, 

the error between y and yd  can be written as 

e(t) = (4)(t,ts) --E-3(0){xs

b 
 f tt  w(t-,T)u (T)dT + D(t)u(t), 

'It e T. 	(2.76) 

Then, if performance index (2.29) is replaced by 

f F(E(t) ,u(t) ,t)clt 

where 

F(e(t),u(t),t) = <(e(t)),Q(t)(e(t))> + <(u(t)),R(t)(u(t))>, Vt e T, 

the second-order optimisation algorithm stated in 2.4.4 can be used to 

determine the optimal control function belonging to L(pN) for this 

`follower' problem when convolution-description (2.28) is replaced by 

[ 

convolution-description (2.76) and xs  is treated as the initial 

A condition vector. 	
b  

V Comment 2.4.9 	Clearly any combination of initial conditions 

of the types considered in Comment 2.4.7 and Comment 2.4.8 can be 

A considered. 

2.4.8 Discrete-Time Performance Indices  

An algorithm essentially the same as that developed in 2.4.3 

and stated in 2.4.4 can be developed for problems of the following type: 
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for the dynamical system with the convolution-description 
k 

yk.a.  = 41(k+1
'
1)x

s 
+ 	X W(k+l,j)u(j), Yk e I(N), 	(2.77) 

j=1 
minimise with respect to u(k), Vk e /(N), the scalar performance index 

V • = 	X F(ykll,u(k),k) • + G(y10.1), 
1c=1 

where 

F(yk+l,u(k),k) is twice differentiable with respect to-yk+, and u(k) 

and has zero higher-order derivatives with respect to these, Vk e I(N), 

G(y11.4.1) is twice differentiable with respect to y174.1  and has zero 

higher-order derivatives with respect to yx.a. 

Convolution-description (2.77) is, for example, an exact 

convolution-description for the system 

x
k+1 • 

= A
k
x
k 	

Bku(k) 	= x
s
, 

k+1 = 
C 
k+1

x 
 k+1 + D

ku(k) 

Vk e I(N), 

when the terms * and W of convolution-description (2.77) are given by 

*(k+1,1) = C101(1)(k+1,1), Vk e I(N), 

W(k+l,j) = C
k+1

4'(k+1,j+1).6. + 6(k,j)D. 
1' 

where 

4)(k+1,j) = Ak1)(k,j) : (1)(j,j) = I, Vk2j, j e I(N). 

2.4.9 Concluding Comments  
• 

We have considered the optimisation problem of 2.4.2 and have 

developed an optimisation algorithm, summarised in 2.4.4, for choosing 

the optimal control function belonging to L(pN) as a linear function of 

initial conditions x
s 
= Xs + Xq

dxcl  e X(q). The algorithm is based on 

j e 1(N), 
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Dynamic Programming and is believed to be novel. 

Balakrishnan (251 and Hsieh C26) have also considered control 

function optimisation for linear convolution-described dynamical systems. I
I  

They also calculate second derivative information but they only use it to 

determine the gradient function (and the optimal step in the associated 

search direction) for each control function which arises during the 

implementation of the first-order gradient algorithms which they use. 

Their algorithms do not necessarily yield convergence to the optimal 

control function in one (or many) iterations and do not enable optimal 

control functions to be determined as a function of initial conditions. 

Our algorithm of 2.4.4, however, makes full use of calculated second-

derivative terms to determine the optimal control function belonging to 

our linear manifold L(pN) as a linear function of initial conditions 

x e X(q). 

In 2.5 we shall consider theoretically optimisation on L(pN) 

, using the inverse of a pN x pN second-derivative matrix, (a2V/8uN  auN  ). 

The Dynamic Programming based algorithm of 2.4.4 determines the xs-optimal 

control function belonging to L(pN) as a function of initial conditions 

x
s 
e X(q) without the explicit evaluation and inversion of ( 2V/3uM2uN), 

which is advantageous. Another feature of the Dynamic Programming based 

algorithm is that the resulting control law (of stage 6) of 2.4.4) 

determines the optimal control function on each interval T3  as a function 

ofthechanged.S.,whichisexactlycharacterisedbyds...(iftqlT{Ou3-11Tf 

in the effective convolution state at the start of TT  from its nominal 

value of S.. If• were to be estimated from the response of the system osj 
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up to time T3  in such a way as to cause the response of convolution-

description (2.28) to be as close as possible to that of the system 

being controlled, a potentially useful control law would result which 

would automatically tend to compensate for any differences there might be 

between convolution-description (2.28), used for determining the optimal 

control law, and the actual convolution-description of the system being 

controlled. 
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2.5 c-Approximations to Oztimal Control Functions and  

Optimal Control Laws  

The optimisation problem of 2.4.2 is considered. 	In 2.5.1 is 

developed a simple and computationally inexpensive means for determining 

a lower-bound for the xs-minimal performance index on L(pN) when the 

xs-optimal control function belonging to L(pN) is not known. A similar 

result is also obtained for all initial conditions belonging to X(q) when 

there is available only a non-optimal control law yielding control 

functions belonging to L(pN) as a function of initial conditions belonging 

to X(q). We explain in 2.5.2 how the results can be used to decide in 

a simple and computationally inexpensive way whether the computational 

expense involved in optimising on a linear manfold L(pN) of larger 

dimension than that of L(pN) could be profitable, performance-index wise, 

before actually optimising on L(01). 	Some concluding comments are 

contained in 2.5.3. 

2.5.1 Lower-Bounds for the Minimal Performance Index on L(pN)  

V Assumption 2.5.1 	Suppose that a nominal control function a = E a
N 

 , 

which belongs to L(pN), is applied to the dynamical system considered in 

2.4.2 for the initial condition Is  and yields an output function y and 

a performance index value of V(pN;/s,a14). 	Suppose also that for all 

bounded du and dy: 

F((p+Sy)(t),(21+15u)(t),t) = F(-g(t),rt(t),t) + <(Fp(t)) , (sy (0) > •+ 

I‹ (6y(t)), (Fpp (0) (Sy(t))> + <(Fa(t)),(du(t))> + 

1<(Su(t)),.(Frtu(t))(15u(t))>, Vt e T, 
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G((g+sy)(td) = G(g(to) + .((cp.),(sy(y)> + 14sy(y),(cpp)((sy(tf))>, 

where 

Fp(t) = F(p(t),u(t),t)y, etc., 

Y' 
F
PY' 

F
u 
 and Ftat  are continuous almost everywhere on T and 

are bounded on T, 

is n.n.d. on T, 

	

aa 	Fly  

G- exists and G__
YU 

 is bounded and n.n.d. 

Assume finally that the linear independence of the basis-functions 

f of 2.4.1 is such that, for all j e 1(N), there do not exist scalars a., 

which are not all zero, such that' ! a..f% 	= 0 for all t e T except I 
1=1 	

,j 
 

A for t belonging to a set of measure zero. 

The main result of this sub-section is contained in the 

following Remark. 

	

V Remark 2.5.1 	Consider the optimisation problem of 2.4.2 when 

Assumption 2.5.1 holds. Then a lower-bound for the '±s-minimal performance 

index on L(pN), evaluated for the (potentially non-optimal) control 

function a = FNaN e L(pN), is: 
ti 
-V(pN;2s,aN)* = V(pN;;,all) - 
N 

<(aV(pN;2s,aN)/Du(k)),(Ek)-1(BV(pN;IsAN)/au(k))>, 
k1 
where 

Ei = fvc(F(k,t))TF212(t)(F(k,t))dt e M(RP -* RP), Vk e 1(N), 

(3V(pN;'x's op)/auN) 	'T "oiTFa(t) 	r tD (t)FN  (t))TF g(t) 

ftts(W(t,T)FN(-0)TFy. (t)ch + (W(tf,t)FN(0)TG, }dt 
N  

+ (D(tf)FN(tdi Gp 
• 

(11(pN;Zs,i1N)/auN) is partitioned as 

C ON  (2.78) 
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( (aV(pNrts,UN)/au(1))T 	(317(pN;sraN)/au(N))T )T 

and where 

A (DV(pN;2s,0)/3u(k)) a RP, Yk e 1(N). 

V Comment 2.5.1 	Since 2.s  may be any initial condition belonging to 

RI', the lower-bound result of Remark 2.5.1 may be used to determine a 

lower-bound for the xs-minimal performance index on L(pN) for any initial 

A condition xs  e Rn. 

We next prove Remark 2.5.1, for which the following lemmas 

are helpful. 

V Lemma 2.5.1 	When Assumption 2.5.1 holds, the performance index 

for the optimisation problem of 2.4.2 for an initial condition 

xs  = xs  + Xg(Sx(1 e X(q) and a control function u = FN(12+du)N  e L(pN) is: 

V(pN;2s+X(IcSxcl AN4.suN) ) = V(pN; s,aN) 	<(aV(pN;Xso"IN)/axcl),(6x9> 

i<(axcl),(a2v/axgax9(sx9> + <O r V(pN; ths,0)/uNI(60)> + 
< (6uN) (a2v/auNaxg) (6x(1), + 1<(duN),(32V/auNauN)(SuN)>, 

where 

(BV(pN;.X's,uN)/auN) is as defined in Remark 2.5.1, 

(a2V/auNauN) = fT{ CFNWITFua(t)(FN(0) 

(D(t)FN(0)T%-(t)(D(OFN(0) + 

ftt  dTi  jt dr2  (W(t,T1) FN(T.0)TF-_(t)(W(t,T2)FN(T2)) 

( jt (wt,T)F• N(T))TF,e(t)CD(t)FN(0)dT )t ldt 

(Ntf)• FINI(tf)) Tcpe  (D(.tf)FN(.tf)) 

( f T (W(tf ,T)FN(T)) TGpp(D(tf)FN(tf ))(IT )t  + 

fTchl  f7dT2  (W(tfoyFN(Ti  )) TG,p(W(tf ,T2 )FN(T2)) 	e m(RpN RpN),  

and where all expansion terms (aV(pN;Zs,e)/aull),.(32V/8uNauN), etc" 

Aare bounded. 
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✓ Proof of Lemma 2.5.1  The control function change from it = F uN  to 

   

u = FN(ii+ou)N is, from 2.4.1, du(t) = FN(t)(5uN, Vt e T. 	The output 

function change due to an initial condition change of Xcl&xcl  from 1.
s 

and 

the control function change FNauN is therefore, from convolution-, 

description (2.28): 

(VW = Igt,ts)Xcl&xcl  + ft W(t,T)F 	+ D(t)FN(06uN  Vt e T. 
tsi 

On using these changes with the expansions of Assumption 2.5.1, the 

A results of Lemma 2.5.1 emerge; 

✓ Lemma 2.5.2 	When Assumption 2.5.1 holds, ( 2V/auNauN) of 

Lemma 2.5.1 is symmetric, bounded, p.d.-  and-can be written as 

(a2v/aulla)) = E + H 

where. 

E2 

0 • 

EN,. 
 

Ek e M(RP -4- RP) is as defined in Remark 2.5.1, Vk e 1(N), 

and where 

E is symmetric, bounded and p.d., H e M(RPN  RPN) and is symmetric, 

A bounded and n.n.d., Ek  is bounded and p.d., Vk e 1(N). 

✓ Proof of Lemma 2.5.2 	Suppose Assumption 2.5.1 holds. 

Write the RHS of (32V/auNuN) of Lemma 2.5.1 as E + H where 

E 6  fTCFN(t))TFm(t)(FN(t))dt. 	(2.79) 

n 4  "  E is therefore symmetric. E is bounded since r41  (of Legell is bounded, 

Fo  is bounded (Assumption 2.5.1) and tf  - is  < co (from 2.4.2). Also: 

E = .El  
e M(RPN  RpN), 

0 



61 

< (Su14) ,Eat?) > > 0 if dull  # 0 because 

(a) <(uN) ,E (dull) > = f <CFN(06u1 	uu),F--(t)(PN(t) 6uN)>dt, 

(b) FNauN is not zero everywhere on T if duN # 0 since the basis-func 

tions f which constitue FN-  (defined in 2.4.1) are linearly-independent, 

(c) F--
uu 

 is p.d. on T (Assumption 2.5.1). 

.-• 

E is therefore p.d. 

From 2.4.1, FN(t) = (F(1, t) 	F(N,t)), Vt e T, 

where F(k,t) = 0(m,p) if t ¢ Tk, Vk e 1(N). 	Hence E of (2.79) 

written as E = P5 
T1

(F(1,t))1F--(t)(F(1,t))dt 	0 

• • 

can be 

• 
0 	

fTN 	uu (F(N,t))TF--(t)(F(N,t))dt 

be bounded, symmetric and p.d. if Clearly E can only 

ftic(F(k,t))%a(t)(F(k,t))dt is bounded, symmetric and p.d., Vk e 1(N). 

Now <(6uN),H(duN)» 0 because 

(a) <(6uN),E(duN)> = 1 i_<(6y(t)),F..h..(t)(sy(t))>dt + <(6y(tf)) ,Ggg..(dy(tf))* 

when Sy(t) = fl W(t,T)FN(T) 6uNdT + D(t)Fli(t)6uN, Vt e 	and 
's 

(b) fic(sy (0) ,Fpg (t)(Sy(t))>dt.A• <(Sy(ti)),Go(Sy(tf ))> > 0 since 

n.n.d. (Assumptica 2.5.1). 
yy 	yy 

H is therefore n.n.d. H is bounded since W and D are bounded (from 

2.4.2),FN isbounded(from2.4.1),F-
Y 
 and G g-are bounded (Assumption 

2.5.1) and.tf  - is < 	(from 2.4.2). 

We see that (B2V/DuNDuN) is p.d. since (a2V/DuNauN) = E + H 

where E is p.d. and H is n.n.d. 	(;2V/DuNauN) is symmetric from its 

definition in Lemma 2.5.1 and H is symmetric since H = (a2v/auNaul - E. 

A This concludes the proof of Lemma 2.5.2. 
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V Lemma 2.5.3 	Suppose Z = X + Y 

where 

Z, X, Y e M(R1  R1) and are bounded and symmetric, 

X is p.d. and Y is n.n.d. 

Then Z-1 	1 = X 	- K 

A where K is bounded, symmetric and n.n.d. 

V Proof of Lemma 2.5.3 	Since I is real, bounded, symmetric and n.n.d., 

it has the spectral representation 

Y = VAATVT  

where 

V is a matrix with columns which are the real, orthonormal 

eigenvectors of I, and 

A is a diagonal matrix which has diagonal elements which are 

the bounded, real positive (or zero) square roots of the eigenvalues of Y. 

Then 

Z = X + VAA
T
V
T
. 	 (2.80) 

Pre-multiply (2.80) by Z 1: and post-multiply the result by X-1, 

noting that both Z-1  and X-1-exist since both a-e p.d., to give 

-1 	- X 	= 	Z 1 + Z-1  VAAT  V TX 1  . 	 (2.81) 

Post-multiply (2.81) by VA, to give 

X 1VA = Z-1VAGT + (VA)TX 1(VA)). 

Since X is p.d., GT+ (VA)TX-1(VA)) is p.d. and therefore 

invertible, so that 

z-lvA = x-lvA(/ (VA)TX 1(VA)J -1. 	(2.82) 

On using (2.82) with (2.81) it can be seen that 
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-1 
= X 1  - K 

where 	K 	= (ATVTX- )
T
(I + (

v
A)

T
ii(VA))-1(A

TvTx-1). 

p.d. 

K is clearly symmetric andis n.n.d. since (1-  + (yA)TX(vA)) is 
1 That K is bounded follows from the fact that (I + (VA)TX (VA)) and 

X are p.d., the boundedness of the eigenvalues of Y and the fact that the 

A columns of V are orthonormal. 	This concludes the proof of Lemma 2.5:3. 

V Lemma 2.5.4  Suppose Assumption 2.5.1 holds. Then we see 

  

from Lemmas 2.5.1 and 2.5.2 that the (xs+X(Idsq) -minimal performance index 

on L(pN) exists for any bounded initial condition s+X(1 6,xcl e X(q) and is 

V(pN; s+Xclaxcl)* = min V(pN;1" +X(16xcl ,i7N+6u14) 
duN 

V (pN;.th's  ,1714) + < (DV (pN s  ,i1N) axcl) , (Sxcl) > 

1<(Ssq) , (a2V/axg&Tc1) (oxcl)> - 	(dxcl)) , (32V I DuN  auN)-1  (Sxq)) > , 

where 	g(&x(1) = (aV(pN;is,iiN)/auN) + 	a2v/ auNasq) (sx9 • 

The existence of a unique minimising du
N confirms the existence of a 

A unique 	control function belonging to L(pN). 

V Proof of Remark 2.5.1 	Suppose Assumption 2.5.1 holds. 

From Lemma 2.5.4, the 3i
s 
-minimal performance index on L(pN) is 

V (pN ;Is) * = V (pN;Xs,i) 

- 	1.<(WV(pNpIs,71N 
	) WV/auNaull) -1(aV(pN;cCs,liN)/ZuN)>. )/auNN ,  

From Lemma 2.5.2 

(a2V/@uNauN) = E + H 

where E is p.d. and H is n.n.d. 	On using Lemma 2.5.3 we see that 

(a2v/uNauNr1. 	- x" 
where K" is n.n.d. 	Then, from (2.83): 

V(pli; s)* = V(pN;-ths,i2) - 1-<(W(pN;B",s,e)/aull) ,E-1(aV(pN;X s 

+ 111<(all(pN;X
s'
-it )/auN) , K"(av(pN ;1. s )/aull) > 

(2.83) 
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v(pN; s,tiN) 
N, 

A RiqpN;2s,R j*. 

i<i3IT(pN;2s j E 1(91l(pN; 

(2.84) 

On using the block-diagonal structure for E of Lemma 2.5.2 and 

the partition for (8V(pN;2s  ,UN)/814N) of Remark 2.5.1, V(pN;2s,U14)* of 

(2.84) becomes NN;2s,111)* of Remark 2.5.1. 

V(pN;2s ,P.N)* is, from (2.84) a lower-bound for the 2s--minimal 

performance index on L(pN), evaluated for the (potentially non-optimal) 

control function U =Fu e L(pN). 

a 	This concludes the proof of Remark 2.5.1. 

V Comment 2.5.2 	The calculation of the lower-bound for the 

25-minimal performance index on L(pN) using Remark 2.5.1 is (potentially) 

considerably less expensive computationally than the calculation of the 

25-minimal performance index on L(pN) using (2.83) because 

(a) the determination of the minimal performance index V(pN;2s)* using 

(2.83) requires the evaluation and inversion of the pN x pN matrix 

(32V/aull8uN), 
ti 

(b) the determination of the lower-bound V(pN;28,0)* using Remark 2.5.1 

requires the evaluation and inversion of N matrices which are each p x p, 

(c) the inversion of N matrices which are each p x p is potentially 

considerably less expensive computationally than the inversion of one 

pN x pN matrix, 

(d) the calculation of the p x p matrix Ek  of Remark 2.5.1 for all 

k e 1(N) requires (potentially) considerably less computational effort 

A than the evaluation of the pN x pN matrix (a2W@Aull) of Lemma 2.5.1. 
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V Comment 2.5.3 	We see from (2.83) and (2.84) that 

V(pN.IXs,0) - V(pN;E!s)* = 

i<(aV(pN;Xs 071N)/auN),(a2v/auNauN)-1(av(pN;s0.111)/auN)>, 

V(pN;E:s)* - V(pN;Xs,0)* = 

1<(3V(pN; s,it'll)/3uN),K"(OV(pN;Xs,EiN)PulsT)>. 

Hence: 

Amin(K")Xmin((a2V/auNauN)) I V(PN;ftsteT) 	V(1311;s)*  

L- 	I v(PIT;s)* - V(1314;solN)* 	L 

Xmax(K")Xmax( (a2v/auNauN)) I v
(p1,4s  21N) - v(pN;2s)* (2.85) 

Relation (2.85) bounds the way in which the lower-bound 
ti 
V(pN;2s,UN)* approaches the 25-minimal performance index on L(pN), 

V(pN;2s)*, as the nominal control function R = FNRN  e L(pN) approaches 

the 2s-optimal control function belOnging to L(pN), i.e. as V(pN;2s,0) 

approaches V(pN;2s)*. When R is the 2s-optimal control function belong- 

ing to L(pN), V(pN;fts,RN) = V(pN;2s)* so that, from (2.85), the lower- 
ti  

bound V(pN;2s,RN)* for the 25-minimal performance index on L(pN) is equal 

A to the 2s-minimal performance index on L(pN), V(pN;2s)*. 

We next prove 

V Remark 2.5.2 	Consider the control law 

u(t) = FN(t)uN(xs+ASxcl), Vt e T, 	(2.86) 

which determines control functions belonging to L(pN) as a function of 

initial conditions xs  = fts  + X416xci e X(q) for the optimisation problem of 

2.4.2 where 

U
N
(2s+Xq5x-'a  ) = 	+ aN 

 
+ (e) (6x9 
	

(2.87) 

and 

uN, aN  e RPN, (e) a M(Rq 4 RPN). 
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Suppose that 

(1) Assumption 2.5.1 holds, 

(2) for the initial condition -±S9 the control function u = F
liuN(ts) 

yielded by control law (2.86) is applied to the dynamical system considered 

in 2.4.2 and yields a gradient (31.7(pN;2s,u11( s))/BuN) e Oil  which is 

.(xs,N)T )T partitioned as ( g(Xs,1)T 	0 	
J 

(3) for each i e I(q), the initial condition 'th's  is replaced by 

xi = xs  + XikX11 (on the boundary of 7(q) of Definition 1.3.2) and the 

corresponding control function u = FNuN(xi) yielded by control law (2.86) 

is applied to the dynamical system considered in 2.4.2 and yields a 

gradient (aV(pN;xi,uN(xi))/auN) e RPN  which is partitioned as 

( g(xi,l)T 	g(xi,N)T  )T, 

where 

g(xs,k), g(xi,k) e RP, '1k e I(N), Vi e 1(q), 

For xs  = s and xs  = xi, Vi e I(q), (W(pN;xs,uN(xs))/auN) 

can be determined using (2.78) with xs  replaced by xs  and 214  replaced 

by Axs) and Fg, Fa  and Gg  evaluated for the control function u = FNuN(xs) 

and the associated response y of (2.28) for the initial condition xs. 

Then: 

V(pNrts+JOI(Sxcl)* > V(pN;5:s+ridxcl,uN(5:s+Xqx(1)) - E* 

for all s + ASZ1 el(q), 

where 

V(pN;t's+ridxcl)* is the (fts+A5xcl) -minimal performance index on 

on 1.(pN), 

V(pNr±s+Xcidxg,uN(fts+rtc5xcl)) is the performance index for the 
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initial condition Zs + A &T
q  resulting from control law (2.86), 

e*. = 	G  <(g(X"s
,k)),(Eic)-1(g(xs,k))> k=1 

N 	
-1 + 	1 	< (g. 	, k)) , (E` 	(x 	-g 	, k)) > 

1=1 k=1 	s  
q q N -1 + II 	 (g(xi,k)-g(xs,k))> 1, 

j =1 1=1 1c=1 

A 	E
k 
 = S 

k 
 (F(k'  t)3 TFua  (t) (k,t)3c1t, Vk e 1(N). 

Comment 2.5.4 	It will be observed that the result of Remark 

2.5.2 gives a lower-bound for the xs-minimal performance index on L(pN) 

for all x
s e X(q) in terms of the performance index yielded by the 

A (potentially non-optimal) control law of (2.86). 

V Proof of Remark 2.5.2 	Suppose Assumption 2.5.1 holds. Then, from 

Lemma 2.5.1 and (2.87): 

V (pN;Zs+Xcldxcl ,u1i(Zs+Xci6xcl)+Aull) = V (pN;Zs+XciSxcl  ,u14(Zs+Xqdx(1)) 

• <{ (av (pN; s  ,u11) / pull)) 	(a2v/ auNauN) (c4N)),(AuN)> 

• <(Au14),1(a2V/auNaxcl) + (D2V/DuNull) ()) (6x9> 

• 1<(AuN),(D2V/aINDuN)(AuN)>. 

Hence 

(nT(pN; s+Xcl6x(1,uN(xs+X
cl6Z1))/auN) = e 

where 

g 0 = i  r a  (pNr s 	 (,2v/auNauN) (.N),  

gl  = column i of {(32V/auNDx9 Vi e 1(q), ( azv/ aiNaull) 

6xt1  = (Sx9 T  (recall Definition 1.3.1). q  • 

Therefore, on using the partitions of Remark 2.5.2: 

(av (pN • 	s )) I au N ) = 	,1) T 	• . g(x,N)T ) T  = g° , 
	(2.88) 

Q 
+ 	X g -  63c1 

i=1 	1  



< (e) , E-1  (gioxl) > - 	L < (g3  60) ,E 1  (gi6x1) > 
1=1 	j=1 1=1 

where E is that of Lemma 2.5.2. 

V(pN;.ths+X(16xcl)*  > 	V(pN;Ss+Xcl6x(1,uN('X's+21(Sx(1)) 
q 	n - 1<(g0  + 1 erS0),E-1(0 + ! g1cbc1)> 

j=1 	J 	1=1 	1 

= 	V(pN;Is+XcicSxcl,uN(X-s+Xcloxq)) - i< (go) ,E-1  (go) > 

q  
- 	I<V),E-1(gi laill)>1 

1=1 

V(pN;55 s
+Xcl 6x9 * 	> 
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(3V(pN;xi,uN  (xi) ) aull) = 	, 1)T 	g (x i,N)T)T  

Thus 
	g0  + gl  l dxg 1 ,  Vi e T(q). (2.89) 

= fg(xi,1)-g(xs,1)1T 	[g(xi,N)-g(xs,N)}T)T, 

Vi e I(q). 	 (2.90) 

The (mss+Xclaxcl)-minimal performance index on L(pN) is clearly 

given by 

V(pN;ths+Xclax(1)*.  = min V(04;Bs+Xclexcl ,uN(xs+Xqdxs4)+AuN) 
AO 

= 	V(pN;X 
s
iqq&xcl,uNa

s-0C1xcl)) •  q I 	q 
- 	I.<  (g , 0 + 1 9,1 (sxC.1) I  (a  2v/ auNau N)  —3. (g 0 + 1 g it xl) > . 

j=1 3 	i=1 1 
On using the arguments involved in the Proof of Remark 2.5.1,, 

it can be seen that 

For all initial conditions x
s 
 = X

s 
 + eftcl  e 7(q), l(Sx11 < 

Vi e I(q) (recall Definition 1.3.2), so that: 

+Ziaxcl e 37((q).. 

V(pN;Zs+Xclaxcl,uN(xs+X416xcl)) - 1<(0),E 1(91> 

- 	14.16icc.1 1),E 1(gi16:11)>I, 
j=1 .1=1 

(2.91) 

On using the block-diagonal form of E of Lemma 2.5.2 with (2.88) 

and (2.90), the result of (2.91) becomes that of Remark 2.5.2. 

A 	This concludes the proof of Remark 2.5.2. 
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2.5.2 	e-Approximations  

Consider a linear manifold L(pN) defined in the same way that 

L(pN) was defined in 2.4.1. 	Suppose pN > pN and L(pN) C L(pN), so 

that L(pN) is a larger linear manifold than L(pN). Denote the 

x -minimal performance index on L(pN) for the optimisation problem of 

2.4.2 by V(pN;xs)*, and that on L(pN) by V(pN;xs)*. 

V Definition 2.5.1  For the optimisation problem of 2.4.2, the 

    

xs-optimal control function belonging to L(pN) will be referred to as 

an e(r
s
)-approximation to the x

s
-optimal control function belonging to 

L(pN) if, for e > 

A 	I V(pN;xs)* - V(pN;xs)* I < e. 

V Definition 2.5.2 	The control law which determines xs-optimal 

control functions belonging to L(pN) as a function of x e X(q) for the 

optimisation problem of 2.4.2 will be referred to as an e(g(q))-approx-

imation to the corresponding control law for L(pN) if, for E > 0: 

A 	I V(pN;xs)* - V(pN;xs)* I < e, Vxs  e T(q). 

Definitions 2.5.1 and 2.5.2 provide a measure of the closeness, 

performance-index wise, of Optimal control functions and optimal control 

laws for L(pN) to those for L(0). 

If the x
s
-optimal control function belonging to the smaller 

linear manifold L(pN) is available (perhaps computed using the algorithm 

of 2.4) and Assumption 2.5.1 holds, we can calculate a lower-bound for the 

x
s
-minimal performance index on L(pN) using Remark 2.5.1 by replacing.  

II of Remark 2.5.1 by the xs-optimal control function belonging to L(pN), 

by replacing '±'s  of Remark 2.5.1 by xs  and by replacing L(pN) of Remark 
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2.5.1 by L(pN). Denote the resulting lower-bound for the xs-minimal 

performance index on L(pN) by V(pN;x sp )*N' where the subscript pN denotes 

that the lower-bound for the x
s
-minimal performance index on L(pN) is 

evaluated for the x
s
-optimal control function belonging to L(pN). 

Since V(IoN;x s p )*
N 
 < VipN;x

s
j*, we have 

V Remark 2.5.3  The x
s
-optimal control function belonging to 

   

L(pN) is an c(x )-approximation to the x
s
-optimal control function 

belonging to L(pN), for e > 0, if: 

I V(pN;x)* - V(ioN;xs)* I < C. 
pN 

Since v(ioN;x )* is relatively easy to compute, we can now 
s pN 

determine with relatively little computational effort whether, for some 

pre-chosen e > 0, the x
s
-optimal control function belonging to L(pN) is 

an e(xs
)-approximation to the x

s
-optimal control function belonging to 

L(pN), and thus whether the former can be considered to be an adequate 

approximation to the latter, without the computational expense involved in 

determining the xs-optimal control function belonging to L(pN) and the 

associated optimal performance index on L(pN). This information can be 

used to decide whether, when the x
s
-optimal con,:rol function belonging 

to L(pN) has been determined, the extra computational effort which would 

be required to optimise on L(pN) would be likely to lead to a worthwhile 

performance. improvement (i.e. a worthwhile performance index decrease). 

An upper-bound for the performance index decrease is clearly 

e(pN;xs);11. = I V(pN;x8)* - elY(pN;xs);N  I. 

This information is of considerable use computationally and would not be 

available with so little computational expense without our lower-bound 
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result of Remark 2.5.1. 

V Remark 2.5.4 	It can be seen that the result of Remark 2.5.2 

can be used when 

(a) L(pN) is replaced by L(pN) in Remark 2.5.2, 

(b) control law (2.86) is the control law which determines, optimal 

control functions belonging to L(pN) as a function of initial conditions 

x
s e X(q) (it is clear that the control law used in stage 6) of the 

algorithm of 2.5.4 could be written in the form of (2.86)). 

Then V(pN;/
s
-acidxcl,uN(2s+ASxq)) of Remark 2.5.2 is the 

s+X(Idxcl)-minimal performance index on L(pN), V(p4%+XqcSxcl)*, and the 

result of Remark 2.5.2 states that: 

V(pN;Is+fox l)* 	V(pN;
s
+XqcSx(1)* - c* 

for all initial conditions x
s 
=

s 
+ ASxcl  e X(q), 

i.e. 	that the optimal control law which determines optimal control 

functions belonging to L(pN) as a function of initial conditions x
s 
e X(q) 

is an c(g(q))-approximation to the optimal control law which determines 

A optimal control functions belonging to L(pN) for all c > c*. 

We can thas determine whether, for any pre-chosen £ > 0, the 

optimal control law determining optimal control functions belonging to 

L(pN) is an e(X(q))-approximation to the optimal control law determining 

optimal control functions belonging to L(pN) without having to determine 

the optimal control law for L(pN). 

This enables us to decide whether the computational expense 

involved in determining the optimal control law for the larger linear 

manifold L(pN) would be worthwhile, performance-index wise, when the 
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optimal control law for the smaller linear manifold, L(pN), is already 

available and optimal control functions are of interest for all initial 

conditions belonging to X(q). 

2.5.3 Concluding Comments  

We have developed in 2.5.1 results which yield, with relatively 

little computational expense, lower-bounds for the x
s-minimal performance 

index on L(pN) for any particular initial condition x
s (Remark 2.5.1) 

and for all initial conditions belonging to X(q) (Remark 2.5.2). 	These 

results are believed to be novel. 	We have explained in 2.5.2 how the 

results can be used to decide whether, when optimisation on L(pN) has 

been achieved, optimisation on a linear manifold L(ph) of larger dimension 

than L(pN) could be profitable, performance-index wise, before actually 

undertaking the computational expense involved in optimisation on the 

larger linear manifold. 	This is believed to be novel and to be of 

considerable value from the computational point of view. 
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2.6 A Computed Example  

The linear dynamical system which is considered is an axially-

symmetric idealisation (sketched in Fig. 2.1, below) of an existing tube 

and shell counter-flow heat-exchanger. 

  

Insulation 
÷ Shell Fluid { Vs 

/// 

Tube Fluid Ve 

  

11 
0 

Fig 2.1 The Idealised Heat-exchanger  

The shell is insulated on the outside. 	The temperature (°F) and 

speed of the shell fluid are denoted by $ and VS, and those of the tube 

fluid by 6 and ye. The temperature of the inter-fluid wall is denoted 

by K. Under obvious assumptions, the idealisation is described by the 

following partial differential equations: 

(a/at + yea/an + mi)e(n,t) = miK(n,t), 

(a/at — yea/an + m4)0(n,t) = m4K(n,t), 

(a/at + m2  +- m3)K(n,t) = m2e(n,t) + m30(n,t), 

Vn a (0,0, 	(2.92) 

with boundary conditions 

.e(o,t) = ein(t), an uncontrolled input, 

$(2,,t) = u(t), 	a controlled input (note that m = 1 here). 

The output of interest is 

Y(t) = 0(2,t) (note that r = 1 here). 
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The parameter values used were: 

0.712 	sec-1  V 	= 0.356 ft sec-1 = e 	 n11 

V
6 	

= 0.0150 ft sec-1 m2   = 1.24 sec-1  

2, 	= :1.59 ft m3   = 0.404 sec-1  

m4 = 0.00648 sec
-1. •  

The performance index considered was 

V. 	= f T{< (y (t)-yd  (0) ,Q (y (0-yd  (0) > + < (u (0) ,R (u (0) >1171t 	(2.93) 

where 	9 . 10, R = 0.5, 
1 

yd  (t) = (E1(t) E2 (t)) 0)1  b2) T, Vt e T, 

El  = 1 on {0,100), = 0 on {100,200}, 

E2 = 0 on {0,100), = 1 on {100,200}, 

T = {0,200}, 

all times are in seconds. 

The uncontrolled input ein(t) had relatively small effect on the 

output y on T for all t < -100, and was therefore ignored. 	6. an 

{-100,200} was assumed to be given exactly by 

ein(t)  = 
	

(t) 
	

f 6(t))(xl 	• •• 	x6) 

 T 

where 

f1 
 (t) = 1 on {-100,0), =0 on {0,200}, 

f2(t) = 0.01(t+100) on {-100,0), = 0 on {0,200}, 

f3
(t) = 1 on {0,100), = 0 on {-100,0) and {100,200}, 

f4
(t) = 0.01t on {0,100), = 0 on {-100,0) and {100,200}, 

f5- (t) = 1 on {100,200}, = 
• 

f6(t) = 0.01(t-100) on {100,200}, = 0 on {-100,100). 

Following the comments of 2.4.7, the costed output (y-yd) on T 

0 on {-100,100), 
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was considered to depend on the control function u on T and on the 

following 'initial condition' vector: 

s. 
= (bi b2  xi  x2  x3  x4  x5  x6)T 
	

(2.94) 

The linear manifoldsL(pN), of 2.4.1, on which optimisation was 

considered were each spanned by the following N basis-functions: 

f (t) = 1, Vt e Ti, 1,3 

0, Vt 

Vj e 1(N), 

where 	T1 (0,200/N), Ti  = (200(i-1)/N,200i/N), Vi e 1(2,N). 

Since one basis-function was non-zero on each interval T3, p of 2.4.1 

was one. 

A convolution-description for the heat-exchanger was obtained 

for the initial condition xs of (2.94) and control functions belonging 

to L(pN) by 

(a) determining the frequency-domain transfer functions yOu0/22(10 

and y(jw)/8in(jw) from the partial differential equation description of 

(2.92), and 

(b) calculating, for each case, the required time-domain results by 

evaluating numerically the inversion integral which maps from the 

frequency domain to the time-domain for that case. 

The second-order, Dynamic Programming based, optimisation 

algorithm of 2.4 was then used to determine the optimal control function 

belonging to L(pN) as a function of initial conditions xs e R
8 

by setting 

(in 2.4) ei:s  = 0(8,1), q = 8 and X4  = 1(8,8), for N = 1, 2, 4, 10 and 20. 

Trapezoidal integration was used with a step-length of one second. 
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For pN = 1, 

conditions 

S • 	
( 

x2 
S. 	

( 

x3 
S • 	

( 

x4  
S • 	

( 

2, 

40 

20 

20 

0 

4, 

40 

40 

10 

0 

10, 20 and each of the following initial 

0 	0 	0 	0 	0 	0 )T  

-20 -20 -20 -20 -10 -30 )T  

	

-10 -10 -20 -20 	40 	20 )T  

	

-10 -10 -20 -20 	40 	20 ) T, 

the optimal control function belonging to L(pN) was then calculated and 

applied to the convolution-description of the (idealised) heat-exchanger. 

For each case the results were used to determine: 

(a) V(pN;xs)*, the xs-minimal performance index on L(pN), which was 

sufficiently close to the value which was predicted using the results of 

2.4.5 as to be indistinguishable on Fig. 2.2 (below), and 

ti 
(b) VtpN;xi)*

N 
 , a lower-bound for the xi-minimal performance index 

s p 

on L(pN) for N = 100, evaluated for the calculated x
i
-optimal control 

function belonging to L(pN) using the results of 2.5. 

The results are shown in Fig. 2.2 and reveal that the x
s
-optimal 

control function belonging to L(20) is, for each of the above initial 

conditions, an excellent apiroximation, performance-index wise, to that 

which would be obtained after xs
-optimising on MOO). The results thus 

reveal that, for each of the above initial conditions, there would be 

negligible return, performance-index wise, for the computational effort 

which would be required to optimise on L(100) when the optimal control 

function belonging to L(20) for each initial condition is already 

available. 	Since the computational effort required to achieve optimis-

ation on a linear manifold increases with the dimension of the linear 



manifold, this information is valuable from the computational point 

of view and demonstrates the usefulness of the lower-bound result 

of Remark 2.5.1. 

y__V(pN;x:)* .... 	.. ...... 	 ... 	......... 	
..... ..... 	

........... .1. 
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1.0E+06 - 

0.5E+06 - 

(pN;s)* 
s pN 

`---vtpl‘l;s1)i pN 

y---V(pN;xs3)* 

A V (IN ;x3s)p*N  

(-V(pN;x:)* 

k---VIpN;x4)*N  • p 

1 	I 	1 
1 	2 	4 

, 	Fig. 2.2  

10 	20 pN 
0 
• 

-0.5E+06 - 
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Chapter 3 	Optimal Control Function Synthesis using 

a Gradient-Decomposition Approach 

3.1 Summary  

The main optimisation problem considered is stated in 3.2. 

Some preliminary definitions and discussion are contained in 3.3. 	In 3.4 

are considered lower-bounds for the x
s
-minimal performance index on the 

control space in the gradient-decomposition context of this chapter, as 

well as c(x
s
)-approximations to the x

s
-optimal control function belonging 

to the control space. 	Gradient function decomposition is considered 

further in 3.5. An iterative algorithm for determining an c(xs
)-approx-

imation to the x
s
-optimal control function belonging to the control space 

is developed in 3.6 and its effectiveness at control function optimisation 

is compared with that of the steepest-descent algorithm in 3.7. The 

results of the application of the algorithm and lower-bound results to 

numerical examples are presented in 3.8. 	In 3.9 we consider optimal 

control function determination as a function of initial conditions and 

develop a simple procedure for determining an c( (q))-approximation to the 

optimal control law which determines optimal control functions belonging 

to the control space as a function of initial conditions belonging to X(q). 

Some related computational results are presented in 3.10. 	The approach 

of this chapter is applied in 3.11 to s
-optiMal control function determin 

ation for nonlinear systems with (pbtentially) non-quadratic and nonlinear 

performance index terms. Computational results which demonstrate the 

superiority of the resulting algorithm over the steepest-descent and 

conjugate-gradient algorithms are presented in 3.12. 	Some concluding 
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comments are contained in 3.13. 

3.2 An Optimisation Problem  

The optimisation problem considered throughout most of Chapter 3 

is: 	minimise with respect to the control function u on T the 

scalar performance index 

V(xs,u) = f F(y(t),u(t),t)dt + G(y(tf)) 	(3.1) 

for a linear dynamical system which can be described by 

y(t) = ip(t,ts)xs 	ft  W(t,T)u(T)dT, Vt e T, 	(3.2) ts  

where 	p, W and u are continuous and bounded, 

xs 	s + XcicSxcl  e X(q), 	the initial condition 

y(t) e Rr, Vt e T, 	the costed output, 

u(t) e Rm, Vt e T, 	the control, 

T = fts'tfl' tf - is < 

and, for any bounded initial condition xs  and considered control function u 

F has first- and second-derivatives with respect to y and u 

which are continuous on T and are bounded, and has zero higher-order 

derivatives, 

G has bounded first- and second-derivatives with respect to 

y(tf) and has zero higher-order derivatives. 

Under the above conditions, we see from 2.3 that the gradient 

function (DV(xs,u)/au) can be computed using Remark 2.3.1 for any bounded 
• 

initial condition xs and any bounded and continuous control function u, 

and is bounded and continuous on T. 

It will become apparent that the results which will be obtained 

will be applicable to optimisation problems similar to the above problem 



80 

save in that they are defined when p, W and u are continuous almost 

everywhere and are bounded or are defined for discrete-time or 

distributed parameter-systems. 

3.3 Optimisation on Translated Linear Manifolds  

In this section the k-dimensional translated linear manifold 

U(l,k)" of the control space for the optimisation problem of 3.2 is 

defined and the x
s-optimal control function belonging to it is determined, 

as well as the x
s-minimal performance index on U(l,k)". 

✓ Definition 3.3.1  Define F(k) = {ii, 	ik} to be a set of 

  

k bounded and m-vector valued basis-functions 6, each with domain T and 

each continuous on that domain, which are orthonormal in that 

A 	yii(t),ij(t)>dt = (5(i,j), Vi,j e 1(k).__ 

✓ Definition 3.3.2  Denote by U the linear space of all bounded 

    

control functions u: T Rm  which are continuous on their domain T. 

Define U(l,j) to be that linear manifold of U which is spanned by 

	

.., S., Yj e 1(k). 	Also define U(j) to be that linear manifold 

A of U which is spanned by 4.5 , Yj e 1(k). 

✓ Definition 3.3.3 	Define U(l,j)" to be the translate of U(l,j) 

along an initial control function u1  c U, so that 

	

U(1,j)" = 	: u = u1  + s; Vs e U(l,j)},  Yj e 1(k). 

A Define U(j)m  similarly, Vj e 1(k). 

✓ Definition 3.3.4  For all j-e 1(k), a control function change au 

   

belonging to U,(1,j) will be said to be exactly characterised by the 

components awl  (of,basis-functions 	ii) if 
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a 
auj (i.e. du(t) = F. (t)&43, Vt e T), 

where 	Fj 	= (ii  ... .63) (i.e. Fj(t) = (61(t) 	ii  (t)), Vt e T), 

A 	6u5  = ((Sul  ... 6U.)T  e RJ , 3 

✓ Definition 3.3.5 	For all j c 1(k), define G(l,j) to be that linear 

manifold of the linear space of all gradient functions (DV(x
s
,u)/au) 

which is spanned by 	.., 6j. Also, define G(1) to be that linear 

A manifold which is spanned by 61. 

✓ Definition 3.3.6 	For all j e 1(k), a gradient function 

(W(xs,u)/au) belonging to G(l,j) will be said to be exactly characterised 

by the components gi(xs,u) (of basis-functions 61, .., 6j) if 

t(aV(xs
,u)/Du(t)) = F.( )93 (xs ,u), Vt e T, 

A where 	gi  (xs,u) = (gi  (xs,u) 	g j  (xs,u))T  e RJ . 

✓ Definition 3.3.7 	For all j e 1(k), a gradient function 

(3V(x
s
,u)/au) will be said to contain components 23(xs

,u) (of basis- 

functions 	ii), or it will be said that components gj (xs,u) are 

present in (aV(xs,u)Pau), if gi (xs ,u) minimises 

tf <{(Mr(xs,u) 	(t)) -F. ( )gi  { (aV(xs,u)/ au (t)) -F. (t)gi  }>dt 

with respect to 93  e 0, i.e. if 

A 	gi (x s,u) =
r 3  

(F. (t))T(DV(xs,u)/au(t))dt. 	(3.3) 

✓ Comment 3.3.1 	If (DV(x ,u)/au) a G(l,j), the components 

g3(xs,u) of (3.3) exactly characterise it, so that 

A 	(W(xs
,u)/au) = F.gi(x s,U). 3  

For the optimisation problem of 3.2, it can be seen that the 

performance index V(xs
,u) can be expanded about V((s,u1) in terms of 

(sxs = xs "X's e Rn  and 6u =u-ul
et1 to give 
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v (p"is+dxs  ,u1+ du) . = v (*X' s  ,u1) + < (pv(x,u1)/axs) , (cs xd> 

▪ 1<((sxs),(a2W;xs;xs)(6x.)> + f.r< (W(xs  ,u3.) / (t)) , (du (0) >dt 

▪ if 
T 
dT
1T 
f dT

2 
 <(&u(T

1  )),(;2v/au(T1) 
au (T2))(dy (T

2
)) > 

+ LT< (&,u (T)) , (D2V/ au (T)BX 
S 
 ) (6.X 

S
) >d T 
	

(3.4) 

where x- e Rn, u1 e U and every contribution to the RHS.of (3.4) is 

bounded for bounded (Ix
s 

and Su. 

For an initial condition change, from .1
s
, of (Sx = Xgaxcl e X(q) 

and a control function change, from ul, of du = F.Sui  e U(l,j), 4,1j e 1(k), 

we see from (3.4) that 

V(X
s
+X116xcl'  u1  +Fj  Su)) = V(:Zu1) 

• < (ay s,u1)/ axq), (62) > 

+ (dxq) , (a2V/ arq  arq) (0) > + <(av(x041) uj) , (duj)> 

+ I< (duj) ,T (1, j +1, j ) (dui) > + < (duj),P(1,q41,j)(6x9>, (3.5) 

(Xq)T(W(ie's,u1)/;xs) c gq, 

(x9T(2v/;xs;xs)(x) c 11 (R(1  + 	, 

I (F. co)T(ay.os ,uivau(t)3dt c Ri, 
T 

• fTdTlfT4T2  (F:i (T 1)) T  (a2v/au (T1) 3u (1-2)) (Fj  (T2)) 

• WO 4- RI ) , 

• fT(Fi  (.0) T  WV/ ;zz (T) axs) (X4I)dr 

• M(Rq  R3), 

(3.6) 

P(1,q+1,j) 

(3.7) 

(3.8) 

and all expansion terms such as (W(xs,u1)/ax(1), etc., are bounded. 

V Comment 3.3.2 
	

We see from (3.7) that T(1,j41,j) is symmetric, 

A Vj e 1(k). 

V Comment 3.3.3 
	

For all j e 1(k), we see from Definition 3.3.7 

that (DV(xs,u1)/Dui) of (3.6) is equal to the vector gj
s'  u1  ) of the 
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components of basis-functions 	present in (8va
e
u
1Vau), i.e. 

A 	(Mr(xa,u1)/3ui) = g3(x0U1), Vj e 1(k). 

V Comment 3.3.4 	From (3.9) and (3.5): 

g3(x
s
+Xcld.xcl,u

1 
 +F.SUj) = (8V (x s  +XcISsci'  u1  +F.SUi)/&j) •   

= g3(xs'
u
1
) + P(1,q41,J)0 + T(1,j41,j)du3, Vj e 1(k). 

Since gj(th
s
+XqSocci' u

13  
+F.dui) is the vector of the components of basis- 

functions 	ij  present in the gradient function 

(W(x
s
+XqrSxcl

'  u1  +F.SUi)/au), we see from (3.10) that P(1,q+1,j) maps 

initial condition changes characterised by dzq  to changes in the 

components of basis-functions iv 	ij  present in the gradient function. 

For this reason P(1,q+1,j) will be referred to as an X-*G map matrix. 

Similarly, T(1,j41,j) maps changes St) in the components of basis-functions 

ij  present in the control function u to changes in the components 

of basis-functions t 	. 	
6j 
 present in the gradient function, and is 

A referred to as a U4G map matrix. 

(3.9) 

(3.10) 

V Definition 3.3.8 

maps changes (Sub = (Su
a a  

In general we denote the U4G map matrix which 

• • • SabiT  in the components of basis-functions 

ia, 	ib  present in the control function to changes (54 = (6gc 	62d)T 
in the components of basis-functions ic, .., id  present 

function by T(a,b-e-c,d) e M(Rb-a+1 R
d-c+1

). 	Then Sgc  

in the gradient 

=T(a,b4c,d)Suba. 

Similarly, we denote by T(a+c,d) e M(R1  Rd-c+1) the U4G map matrix which 

maps changes in the component of La  present in the control function to 

changes in the components of ic, .., id  present in the gradient function, 

R1) K) 
n.  and we denote by T(a,b4c) e M(Rb-a+1 -+ 	the U40 map matrix which maps 

changes in the components of basis-functions 4
a, 	ib  present in the 
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control function to changes in the component of basis-function £
c 
present 

in the gradient function. We interpret T(a,b4e,c) as the U4G map matrix 

which maps changes (Sul; in the components of basis-functions £a, .., 

present in the control function to changes in the component of basis-

function £c present in the gradient function, i.e. we interpret T(a,b4e,c) 

as T(a,b÷c). 	Similarly, we interpret T(a,a÷e,d) as T(a÷c,d). 	We 

sometimes denote by T(a--c) the (scalar) 	map matrix element which maps 

changes Sua  in the component of basis-function £a  present in the control 

function to changes dBc in the component of sc present in the gradient 

A function (so that dgc  = T(a+c)6ad, and we interpret T(a,a--c,c) as T(a+c). 

V Remark 3.3.1 	For all j e 1(k), the Cis-I-ASA-optimal control 

function belonging to U(1,j)" for the optimisation problem of 3.2 is 

u
1  + F.dui(6,xcl)* if Sui(Sx(1)* minimises V(''s+Axcl

'  u1  +F.Suj) of (3.5) j 

with respect to &Li. 	Therefore if T(l,j-'-1,j) of (3.7) is p.d., the 

s+Xcit5x(1)-optimal control function belonging to U(1,j)" exists (since 

all the expansion terms of (3.5) are bounded) and is 

u0;3-y-Xclftc9ic=u1 -1-FAuj(6211)* 

where 	&Li  (SA* = --(T(1,j±1,j))-1{ gjs'u1)  + P(1,q-+1,j)6xcl  1. 

The associated (is+Xcidxg)-minimal performance index on U(1,j)" is then 

V(j;
s
+Xcl(52)* = V(5:

s+X616x(1 JP  u +Fj  Atii(dxcl)*) 

= 	 <(aV(xs,U1)/!XCI),(05,X9> 	1<(6XCI),(a2VIRCCIaX9(6X9> 

. 	. 

A - 1<(g3
(x

a,u1) + P(1,q41,j)ox(1),T(1,j41,j)-1(9j(xs'
u
1
) + P(1,q41,j)(32)>. 

V Comment 3.3.5 	The control function u(j; s+Xcli5xcl)* of Remark 

3.3.1 ensures that the components of basis-functions 41, .., 

present in-the gradient function (aVa
s+e6xcl,u +F.dujOsq)*Mu) are 1 j 
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all zero. This is clearly a necessary condition for 

s
+XIdmq)-optimality on U(1,j)" since it ensures that a small arbitrary 

control function change belonging to U(1,j), relative to u(j; s+Xcl6m(1)*, 

A can cause no first-order performance index change. 
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3.4 	e(x 
s)-Approxinations to the xs-Optimal Control Function  

We consider in 3.4.1 the determination of lower-bounds for the 

xs-minimal perfornance index on the control space U for the optimisation 

problem of 3.2 when only a non-x
s-optimal control function belonging to 

U is available. . The lower-bounds can be computed with little computat-

ional effort. An e(x
s)-approximation to the xs-optimal control function 

belonging to U is defined in 3.4.2 and is there discussed. 	The 

definitions and notations of 3.3 are used throughout. 

3.4.1 Lower-bounds for the xs-Minimal Performance Index on U  

V Assumption 3.4.1  Consider the optimisation problem of 3.2 and 

   

suppose that for a bounded initial' condition xs  and some control function 

u
1 
e U, which together determine an output function y through convolution-

description (3.2), the following expansions hold for any bounded Sy and 

Su e U: 

F((y+6y)(t),(u1+60(t),t) = F(y(t),241(t),t) 

+ < (Fy  (t)) , (Sy (t)) > + i< (dy (t)) ,Fyy  (t) (ay (t))> 

+ < (Fu(t)) , (Su (t)) > + l< (6u (t)) ,Fuu(t) (Su (t))>, Vt e T, 

G((y+dy) (tf) = G(y(tf)) + < (Gy) , (Sy (tf))> 

+ l< (dy (tf)) ,Gyy  (SY (tf)) >, 

where 	F 'and F
u 

are continuous on T and are bounded, 

Fyy is continuous on T and is bounded and n.n.d. on T, 

F'uu is continuous, bounded and p.d. on T, 

A 	G exists and G 
Y 
 is bounded and n.n.d. 

Y 



j, g orqx
s
)* of basis-functions 	.., 	so that 

• 
(aV(m;x )*/au) = F.2.1 (m;xs)*. (3.11) 
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V Assumption 3.4.2 	Suppose that (;V(m;xs)*/3u) is the gradient 

function (aV(x
s
,u)/Bu) for the optimisation problem of 3.2 with the 

initial condition x
s 
of Assumption 3.4.1 and a control function u which 

is the x
s
-optimal control function belonging to U(1,m)", 0 < m < j < k, 

and that V(m;xs)* is the x
s
-minimal performance index on U(1,m)". 

Suppose also that (9V(m;xs)*
/au) is exactly characterised by the components 

The main results of this section are contained in 

V Remark 3.4.1 	Consider the optimisation problem of 3.2 and 

assume that Assumptions 3.4.1 and 3.4.2 hold. 	Then, lower-bounds for 

the x
s-minimal performance index on the control space U - evaluated 

for the x
s
-optimal control function belonging to U(1,m)" - are 

(a) 	V(j;xs)A . = V (m;xs)* - i< (gj (m;xs)*), (gj  (m;xs)*)>A* 

• V(rp:s)* - ifT<faV(m;xd"au(t)),(3V(m;xs
)*/3u(t))>dt/X* 

where A* = min 	. 	(t)), and 
teT man uu 

(b) 	(j ;x
sm  * = V (m;z

s
)* 

if <(Mr(m;x
s
)/3u(t)),(F (t)) OV(TT;x

s
)/au(t))>dt, uu 

where the lower-bound V(j;xs)1,11 is, potentially, a better (more positive) 

• lower-bound.than is V(j;xs)1,71k . 

✓ Comment 3.4.1 	By consideiing U(1,0)" to be the sub-set of U 

which contains only the initial control function u1  of Assumption 3.4.1, 

it can be seen that the lower-bound results of Remark 3.4.1 are valid • 
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when m is set equal to zero, V(0;xs)* is replaced by V(xs,u1), 

(aV(0;xs u) is replaced by (WV(xs,u1)/Du) and when g1(0;xs)* exactly 

characterises .F.93(0;xs)*. 

The lower-bounds VO;xs)8 and VO;xs)8 are then lower-bounds for the 

xs-minimal performance index on the control space U - evaluated for the 

A control function 221. 

Although statement (a) of Remark 3.4.1 follows directly from 

statement (b), it is illuminating to derive it an a somewhat different 

way. 	The proof of Remark 3.4.1 is facilitated by three lemmas, which 

are next presented and proved. 

✓ Lemma 3.4.1  When Assumption 3.4.1 holds and j e 1(k): 

  

T(1,j41,j) of 3.3 is p.d. and can be written as 

T(1,j41,j) = E(1,j41,j) + D(1,j41,j) 

where 	E(1,j41,j) = f 
T 
(F.(0)T  F

uu 
 (t)(F.(0)dt and is p.d., 

Da,j41,j) is n.n.d., 

Ta,j41,j), E(1,j41,j), D(l,j+l,j) e M(R3  4- R3) and are 

t bounded and symmetric. 

✓ Proof of Lemma 3.4.1 	It can be seen that when Assumption 3.4.1 holds, 

(B2V/Du(T1)au(T2)) of (3.4) satisfies 

f Td- r Tdi2< (csu(r 1)) (a 2v / au (-r 1) au (T 2 )) (su (T 2 )) > = < (sy (td) ,Gyy  ((Sy (tf ))> 

+ 	(Su (t)) ,Fuu  (t) (Su (t))>dt + f (sy (0) ,Fyy(t) (Sy (t))>dt 

when 	dy(t) = ftt  W(t,T)622(T)dT, Vt e T-  (from (3.2)). 
s  

From (3.7): 

<(dui),T(1,j41,j)(Sui)> = fTd.rifTdT2<(du(T1)),WV/au(Ti)au(T2))(&2(T2))5. 

when 	du (t) = F.(06(1), Vt e T. 
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Thus: 

<(6j),T(1,j4-1,j)(6u3)> 	<(ouj),E(1,j41,j)(45(1.3)> 

	

+ <(Sui),D(1,j+1,j)(Sui)> 	(3.12) 

where <(ou3),E(1,j÷1,j)(Su3)> = fT<(Su(t)),Fuu(t)(du(t))>dt, 	(3.13) 

<((Sui),D(1,j41,j)(&))> = fr<Ry(0),Fyy(t)(dy(t))>dt 

<Ry(tf)),G y Ry(tf))>, 	(3.14) 

when 	= F.(06(1.3, {fit e T, 	 (3.15) 

6y(t) = f 
Ls
W(to)F.(7-)&13dT, {fit e T.

From (3.12), T(1,j+1,j) can be written as 

T(1,j41,j) = E(1,j41,j) + D(1,j+1,j), 

where, from (3.13) and (3.15): 

E(1,j-÷1,j) = f 
T 
 (F.(0)TF uuj  (t)(F(0)dt. 	(3.10 

Since du of (3.15) is not non-zero only on a set of measure zero 

when Suj # 0(j,l) (because f <Su(t),Su(t)>dt = <6ujoSuj>, due to the 

orthonormality of the bounded basis-functions 6 which constitute F.) and 

since Fuu  is p.d. on T (Assumption 3.4.1), we see from (3.13) that 

<((0),E(1,j41,j)(Sui)> > 0 whenever dui  # 0(j,1). 	Hence E(1,j-q,j) is 

p.d. when Assumption 3.4.1 holds. 	E(1,j+1,j) is bounded since Fi  and Fuu  

are bounded (from 3.3 and Assumption 3.4.1) and since tf-ts< 03 (from 3.2). 

Since F
YY 

 is n.n.d. on T and G
YY 

 is n.n.d. (Assumption 3.4.1), 

we see from (3.14) that <(duj),D(1,j.4-1,j)(Sui)› > 0. 	Hence D(1,j41,j) is 

n.n.d. when'Assumption 3.4.1 holds. 	It is clear from (3.14) that 

D(1,j4,1,j) is then bounded since W; F. 	 and 	are all bounded and 

tf-ts < i= (from 3.2, 3.3 and Assumption 3.4.1). 

D(1,j41,j) is symmetric since D(1,j41,j) = T(1,j+l,j) - E(1,j41,j) 
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and T(1,j41,5) is symmetric (Comment 3.3.2) and, from (3.16), E(1,j41,j) 

is symmetric. 

T(1,j41,j) is p.d. since it is the sum of a p.d. matrix, 

E(1,j÷1,j), and a n.n.d. matrix, D(1,j÷1,j). 

A 	This concludes the proof of Lemma 3.4.1. 

✓ Lemma 3.4.2 	When Assumption 3.4.1 holds for the optimisation 

problem of 3.2: 

Amin T(1,j.41,j)) > 	X* > 0, Vj e 1(k), 

A where A* = min Amin(Fuu(0) and is independent of j and k. t e T 
✓ Proof of Lemma 3.4.2 	From (3.13), (3.15) and the fact that 

f 7.< (Su(t)) , (du (t)) >dt = <(duj),(61))> when du = F.Sui  (due to the 
3 	• 

o 	 we see that 

when (0 # 0(5,1) and 624(0 = F.(t)duj, Vt e T: 

<(Su3),Ea,j÷1,j)(Su3)> / <(dwi),(dui)> 

• f 7.< (6u (t)) ,F uu (t) (su (0) >dt / f (6u (t)) , (f5u(t)) >dt 

fT  xmin(Fuu(t))< (672(0),(62(0)>dt / f .r< (6u(t)) , (Su (t)) >dt 

Amin(Fuu(t)) A X*. 

Since Fuu  is p.d. on T (Assumption 3.4.1), X* > 0. 

From Lemma 3.4.1 and the above we see that when Suj 0(5,1): 

<(tSu3),17(1,j41,5)(cSu3)> / <(duj),(Sui)> 

(du3).,E(1,j4-1,j)(du3)> / <(duj), (duj)> > x* > 0. 

Hence Amin(T(1,5-4-1,j)) > x* > 0, a result which does not 

depend on j or k. 

O This concludes the proof of Lemma 3.4.2. 
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V Lemma. 3.4.3 	 When Assumption 3.4.1 holds for the optimisation 

problem of 3.2: 

	

<(g i ),E(1,j-+1,,j)*(95 )> 	<W), (E(1,j-4-1,j))-l(gj)>,V93  e Rj, 613 e 1(k), 

where 

E(1,j4-1,j)* = ST(Fi (t))T(Euu( t))-1(Fi(t))dt c M(R3 

A 	 E(1,j4-1,j) 	= fr(Fi  (t))T  (Fuu(t)) 	(t))dt e M(R5 	R3 ). 

V Proof of Lemma 3.4.3 	Suppose Assumption 3.4.1 holds and, for some 

j e 1(k) , gi a R3, w e U, consider the scalar-valued function 

v(93 ,w) = STA< (Fi  (t)gj) , (w(t))> 	l< (w(t)) ,Fuu  (t) (zu (0) >}dt. 

Functions w belonging to U(1,j) can be written as w = FAA0 
J 

for some Wi  e R5 , and for such functions 

v (gi ,w) = v (gj ,Fi ttti ) = 	(OA , 	(t)W5 )>dt 

If <(F. (t)Wi),F (t) (F . (Qv)) >dt 
T 3 	uu 

<(g3 ), (w3 )> + i< (uP) ,E(1,j.+1,j ) (j)>• 

The minimal value of v(9.5  ,w) with respect to w e U(1,j) is thus 

v(j ;g3 ) * = mitt v(gi 	= -1< (gj) (E(1, j-÷1,j )) (gj) >. 
14.0 

The function W e U which minimises v(g3 ,w) with respect to w is 

(w 	 t)gj , Vt et)* = -(F CO) 	( uu 
so that the minimal value of v(g3 ,w) with respect to w e U is 

= v(g3,w*) = 	 j7.< 	(OA ' (Euu(t))- 1((t)gi)>dt 

--i< (g5 ) ,E(1,j+1,j)*(gj)>. 

Now v(g5 )*< v(j ;A*, V93 c R3 , Vj c 1(k), since U(1,j) is a 

linear manifold of U. Using this with the above expressions for v (gi)* 

A and v(j;gj)* yields-the result of Lemma 3.4.3. 
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V Proof of Remark 3.4.1 By applying the arguments of 3.3 to the optimis- 

  

ation problem of 3.2 when Assumptions 3.4.1 and 3.4.2 hold, it can be 

seen that the x
s-minimal performance index on U(l,j)", 0 < m < j < k, 

is related to that on U(1,m)" by 

V (j ;xs)* = 	(m;xs)* - I< (gi  (m;xs)*) , (T(1, j-)-1,j )) -1. (gj (n;xs)*)  
> (3.17) 

where g3(m;s
s
)* exactly characterises (aV(m;x

s
)*/au). 

From Lemma 	Xmin(T(1,j41,j)) > x* > 0. 

Hence, from (3.17): 

V (j ;xs)* > V (m;xs)* 	I< (gi (m.
's 	' 

)*) (gi  (m;x
s
)*)> / x* 

A V(j;xs)A. 	 (3.18) 

Clearly V(j;xs)A of (3.18) is a lower-bound for the x
s-minimal performance 

index on U(l,j)", V(j;xs)*. 	A stronger statement can in fact be made, 

as we next show. 	Consider optimisation on U(1,k)", where k > j. 	The 

x
s-minimal performance index on U(1,k)" is then given by (3.17) with j 

replaced by k when gk(m;x
s
)* is the vector of the components of basis- 

. 	•• 

functions gi, 	gk  present in (aV(m;x
s
)*/au). 	Because we have assumed 

that (aV(M;xs)*/Dtt) is exactly chafacterised by the components gi(Fqx
s
)* of 

basis-functions g ..4(n7071;:cd*Ikt)..F.TI(m;x
s
)* and contains no 

components of basis-functions 6., 	' 6k  . 	Hence gk(m;xs
)* 

3+1  
21cfml.

9
x 
Si 
N* 	C

2 3 
eml.9x 

Si*
T 10(k_j,i)T)T.  41 

 

is given by 

Since the lower-bound of (3.18) for j replaced by k depends only on the 

non-zero components of basis-functions 61, 	ik  present in the gradient 

function (DV(m;x)*/ au), the lower-bound V(k;x )* for the x -ninimal s s m 	s  

performance index on U(1,k)" is equal to the lower-bound V(j;x 
s m  )* for the 

x
s-minimal performance index on U(l,j)". Clearly k can be increased 
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until the orthonormal basis-functions iv 	k span the control space 

with no change in this result. 	Thus V (j ;xs);;I: of (3.18) is a lower-bound 

for the xs-minimal performance index on the control space U - evaluated 

for the xs-optimal control function belonging to U(1,m)". 

Because (@1/(m;x s )*/au) = Figi (m;x s )* (Assumption 3.4.2) and 

because t  f T (F.(t)) T(F.( ))dt = I(j,j) (due to the orthonormality of the 

basis-functions S  which constitute P.): 

<(g3  (m;xs)*) , (gi (m;xs )*)> • f<V.(t)g3 (m;xs)*), (F. ( t)g3  (m;x s)19>dt 
T 3 

f T< (MT On ;s s)*Au (t)) , 	(m ;x s)*/ (t))>dt.. 

The lower-bound V(j;xs)A of (3.18) can therefore be written as 

11(j ;xs)41: = V(m;xs)* - if <(Ml(m;xs)*/au(t)),(V(m;xs),3u(t))>dt,/ X*. 

This concludes the proof df statement (a) of Remark 3.4.1. We 

next prove statement (b). 

We see from Lemma 3.4.1 that the xs-minimal performance index on 

L1(1,j)", of (3.17), can be written as 

V (j ;x s )* = V (m;xs)*.  

- 	(gj  (rn;xs)*) , (E(1, j+.1,.j) + D(1, j+1, j ))-1  (gi  (m;x s )*)>. 

On using Lemma 2.5.3 we see that 

V (j ;x s)* = V (M;xs)* - 1<(gi  (r;x5)*) , (E(1,j4-1,j))-1(g3  (m;x s )*)> 

▪ 1<(g3  (n;xs)*) ,K(1, j-+1, j) (gi  (m;x s )*)>, 

where K(1,j4-1,j) e M(R3 	R3 ) is n.n.d. 

Hence: 

V(j ;Fe s )* L V .(m;x s )* - 1<(g3  (m;x s )*), (E(1, j-±1, j )) 	(gi  (m;x s )*)> 

(3.19) 
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Clearly il(j;xs)A of (3.19) is a lower-bound for the xs-minimal 

performance index on U(l,j)", but it is not necessarily a lower-bound for 

the x
s-minimal performance index on the control space U since the approach 

used to explain why the lower-bound V(j;xs)A of (3.18) is such a lower-

bound cannot be used to show that V(j;xs)A is a lower-bound for the 

x
s-minimal performance index on U due to the potentially complicated way 

in which (E(1,j-+1,j))-1  depends on j. 

However, we see from Lemma 3.4.3 and (3.19) that 

V(j;xs)* > V(M;x
s
)* 	i•t(gj  (m;x

s
)*),E(1,j+1,j)*(gi  (m;xs)*)> 

A 	V 	;x
s 
 )*. 	 (3.20) m 

On using the definition of E(1,j+1,j)* of Lemma 3.4.3 and (3.11), 

it can be seen that 

;x 
s 
 )* 	V (m;xs) IY0 * 	T < J (t)Ti  (m;xs)19 (E. uu  (0)-1  (F. (t)g3  (mqxs)*)>dt 

V(m;xs)* - 2 fT<(3V(m;xs
)*/u(t)),(Fuu(t))-1(;11(m;xs)/u(t))>dt. 

The approach used to show that V(j;xs)A of (3.18) is a lower-

bound for the x
s
-minimal performance index on the control space U can 

now be used to show that V(j;x s  )*M  is also such a lower-bound. 

This concludes the proof of statement (b) of Remark 3.4.1. 

It may be seen that iif(j;xs)A of Remark 3.4.1 is more positive 

than V(j;xs)A if, say, Amin(Fuu
(0) is not constant on T and 

(aV(m;xs)/au) is not zero on T. 	Thus IN1(.  j;x s m  
)* is a better (more positive) 

lower-bound, potentially, than is V(j;xs)A. 

A 	This concludes the proof of Remark 3.4.1. 
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3.4.2 	c(x s)  -Approximations 

For the optimisation problem of 3.2 when Assumption 3.4.1 holds, 

the existence of an xs-optimal control function (unique in the Hilbert 

space sense) belonging to 1111(T) (the Hilbert space of m-vector valued 

functions with domain T) for the initial condition x
s 
of Assumption 3.4.1 

can be seen from the studies of Hsieh {26}. 	It can also be seen that, 

under the continuity assumptions of 3.2, there exists a control function 

u belonging to U such that V(xs,u) is equal to the xs-minimal performance 

index on Hm(T) and such that the gradient function (aV(xs,u)/3u) is zero 

on T. Such a control function is referred to as the xs-optimal control 

function belonging to U and the associated performance index V(xs,u) is 

referred to as the x
s
-minimal performance index on U. 

V Definition 3.4.1 	For the initial condition xs of Assumption 3.4.1, 

the Xs-optimal control function belonging to U(1,m)" will be said to be 

an e(xs)-approximation (c > 0) to the xs-optimal control function belong-

ing to U if 

I v(m;xs)* — v (xs )* I < c 

where V(m;x
s
)* is the x

s-minimal performance index on U(1,m)" and V(xs)* 

A is the X
s
-minimal performance index on U.' 

When Assumptions 3.4.1 and 3.4.2 hold, lower-bounds for the 

xs-minimal performance index on U can easily be calculated using the 

results of Remark 3.4.1. 	Then: 

V Remark 3.4.2 	For the optimisation problem of 3.2 when 

Assumptions 3.4.1 and 3.4.2 hold, the xs-optimal control function 

belonging to U(l,m)" is an c(xs)-approximation to the xs-optimal control 
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function belonging to U if either 

I V(m;xs)* 	VO;xs)A 1 < e 

or 	I V (m ;x8) * - V(j;xs)* m  I < e, 
ti 

where V(j;xs)ilic and V(j;xs)g are those of Remark 3.4.1. 

Also, the minimal c for which the xs-optimal control function 

belonging to U(1,m)" is an e(xs)-approximation to the xs
-optimal control 

function belonging to U has as upper-bounds both 

(a) 	e(m;xs)* = 2< (gJ (m;xs )*), (gj (m;xs )*)> / A* 

= if <(3v(m;xs )'rlau(0),(avOm;xsyYau(t))>dt / X* 

where X* 	min  Xmin(Euu(t))' and 
teT 

e(mx )* 
' s 	

ifT<(@V(m;x
s
)YDu(t)),(Fuu(t)) OV(r;xs)19u(t))>dt. 

Since the lower-bounds of Remark 3.4.1 or the upper-bounds of 

Remark 3.4.2 can be calculated with relatively little computational 

effort (compared with that which would be needed to optimise on U(1,m+1)" 

or U, say), we can easily determine whether the x
s
-optimal control 

function belonging to U(1,m)" is an e(xs)-approximation to the xs-optimal 

control function belonging to the control space U with little computation-

al expense without knowing the xs-optimal control function belonging to 

U or the associated xs-minimal performance index on U. We can then 

ascertain whether the xs-optimal control function belonging to U(l,m)" 

can be considered to be an adequate approximation, performance-index wise, 

to that belonging to the control space U by checking whether it is an 

e(x
s)-approximation for a suitably small e > 0. 	If it is not an 

adequate approximation in the above sense, optimisation on a linear mani- 

fold which includes U(1,m)" but is of larger dimension should be attempted. 

A (b) 
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ti 

e(m;xs)* 
and c(m;xs)* of Remark 3.4.2 are 
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both upper-bounds for the further performance index decrease, relative 

to the xs
-minimal performance index on U(1,m)", which can be achieved 

by optimising on U itself, but 411;ms)* is a potentially better (i.e. 

A less positive) upper-bound than is c(m;ms)*. 

The practical usefulness of the results we have obtained depends, 

of course, on c % (m;x
s
)* and c(m;x

s
)* approaching zero as V(m.;x )* 

approaches V(m.$)* with increasing m. 	Since re'(m;x 
s
)* < e(M;x

s)*, we need 

only consider the behaviour of e(m;x
s
)* - the subject of 

✓ Remark 3.4.3 	Consider the optimisation problem of 3.2 when 

Assumption 3.4.1 holds. Then 

(62/&*)(V(14m )* - v(m )*1 < e(m;x )* < (B2/bX*)1V(m;xs)*  V(xs)*/ si 	s 

A for some scalars b and B such that 0 < b < B < 

✓ Comment 3.4.3  We see from Remark 3.4.3 that, when Assumption 

   

3.4.1 holds for the optimisation problem of 3.2, c(m;ms)* approaches 

A zero as V(N;ms)* approaches V(ms)*. 

✓ Proof of Remark 3.4.3  Denote the x
s-optimal control function belonging 

to U(1,m)" by 	and that belonging to U by u*. Let du*
m 
 = u* - u*. 

m 

Then, it may be seen from (3.4) with u1  replaced by u* and Su replaced 

by Si/ that: 

V(m;s
s)* = V(x s m), 	= V(x

s)* 

+ 	IfTdrif7dT2<(dun)),(32V/3u(TI)u(T 
2 m  
))(6u*(T

2 
 ))>. 

Also: 	(n(m;xs)f u(t)) = (av(xs,217)/au(t)) 

fT (a 2v/au(t)au(T))(autilci(T))dT, {fit e T. 

Suppose that Assumption 3.4.1 holds for the optimisation problem 
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of 3.2. 	Then, as stated in the proof of Lemma 3.4.1: 

fTd-rifTdt2<(du(1./)),(a2V/@u(Ti)au(T2))(6u(T1))> = <(dy(y),Gyu (dy(ti))> 

f T< 	(0)  ,Fuu 	(du (0) >dt + f T< (Sy (0) ,Fyy  (t) (Sy (t))>dt 

when 	6y(t) = ft  W(t,T)Su(T)dT, Vt e T. ts  
Since then Fuu  is bounded and p.d. on T, Fyy  is bounded and n.n.d. on T, 

G is bounded and n.n.d. and W is bounded, it can be seen that scalars 
yy 
b and B exist, 0 < b < B < co, such that 

• bf T  1*(0 112dt 	f Td-rifTdT2<(Su(T1)),(32V/Du(T )3u(T2))(Su(T2))> 

< Bf T  Pu(t) 11 2dt =  
for all Su, where 116u(t) 11 = 1/<(622(0),(624(0)>. 

Let 

a(K,t) = Kouivil(t) + (1/K)(W(m;x5Yrau(t)), bit e T, 

b(K,t) = K6uA(t) - (1/K)(DV(m;x5)YDu(t)), Vt e T, 

where K is a scalar. Then 

fT EaV(In;xsYllau(0) 112dt 

fT(11-1<(avoNxs)/au(T1)),fT(a2v/au(yau(T2))6241A(T2)dT2> 

o 	ifizTif.fit2<(a(K,T1)),(a2V/au(Ti)au(r2))(a(K,T2))> 

- 4fidTifTd•r2< (7)(K , 	(a2V/au(ri)@u(T2)).(b(K,T2))> 

1E34 ga(K,0 II 2dt + iBiT  Hb(K,t) II2dt 

£((2),  

where 	£(K2) 	(BK2/2)fT Sum(t) 112dt + (8/2K2)fT  11 (WV (71;x5)/;u(0) 112d 

Since this fiolds whatever K2  is, it holds when K2  is chosen to minimise 

.e(K2) with respect to K2, 

i.e. when K2 -= iffT 11(DIT(m;xsYYDu(0) 112dt/fT  IVO 112dt). 

Hence fT  11(DV(m;x5),;24(0) 112dt < BifITI1SuA(t) 11 2444TH(DV(m;xs)/Du(t)) Fat) 

so that 	fT 11 (aV011;xsMu(t)) 112dt S. 82IT  116uA(t) 112dt. 
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Since 

6f T  li sum(t) 112dt < f rdtiTch< (6uA(t)) , (a2v/au(t) (T)) (611(T))> 

= 	(suA(t)) , (mr(m;xs )*Pu(t))>dt, 

we see that (aV(m;x
s
)*/324) must have the form 

(311(m;xs)*
/;u(t)) = (b+n)(Su*(t) + k(t), Vt e T, 

where r > 0 and f T<(k(t)),(824:1(t))>dt = 0. 

Hence ST  HaV(m;xs)'au(t)) I2dt 

> (6+71)24 IS24(t) rdt + f T II  k(t) 112dt 

• 62r 11 67,1
m`
*(0 112dt. - )1-    

Therefore 

b2f T  IduA(t) a 2dt 	IT  11(DV(m;xs),@u(t)) 11 2dt < B2f T  11(5211(t) a 2dt. 

Also, from the result for V(m;xs)* of page 97 and the above: 

ibf T  aSuA(t) rdt < 	{V(m;xs)* — V(xs)*1 	< OfT  116u*(t) I12dt. =   
Hence 

2(62/8){V(m;x
s
)* — V(x

s
)*1 < 5

T 
 <(31/(m;x

s)*/au(t)),(aV(m;x
s),Du(t))>dt 

2(82/b){17(m;s )* — V(xs)*}. 

On using this result with the definition of c(m;xs )* of 

A Remark 3.4.2, the result of Remark 3.4.3 emerges. 
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3.5 Gradient Decomposition  

The optimisation algorithms which are developed in the remainder 

of this chapter define (using Gram-Schmidt orthonormalisation) the basis-

functions 6 which are considered in 3.3 and 3.4 so that each calculated 

gradient function can be exactly characterised by components of the 

defined basis-functions. We shall use the following definitions: 

V Definition 3.5.1 	By decompose the gradient function (aV(xs,u)/au) 

as F1g1(xs
,u) we mean define a normalised basis-function 61 so that 

(W(xs,u)/3u) e G(1) and can be written as (3V(xs,u)/au(t)) = Fl(t)gi(xs,u) 

for all t e T. This requires that 

gi(xs,u) = 	lifT<(DV(xs,u)/372(0),(W(xs,u)/au(t))>dt] e R, 

il(t) 
= 	(W(xs,u)19u(t))121(xs,u), Vt e T, if gi(xs,u) # O. 

If, however, gi(xs,u) = 0, we define 61  to be zero on T even though 
	

is 

A then not normalised. 

V Definition 3.5.2 	By decompose the gradient function (3V(xs,u)/3u) 

as F..3+1  g
j+1

(rs,u) we mean 

(a) determine the components gj(x
s
,u) e 0 of the already defined ortho- 

normal basis-functions 6
1
, 	6 present in (Di(xs,u)/au), and 

(b) define a new basis-function 6j1.1  orthonormal to 61, .., 6j  so that 

(DV(x
s,u)/au) e G(l,j+l) and can be written as 

(FV(x
s
,u)/Bu(t)) = Fj4.1(09j+1(xs,u), Vt e T. 	This requires that: 

gi(xs,u) 
	

f 
T 

 (E7.
3
(0)T(Dv(xs,u)/au(0)dt e Rj, 

gj+1(xs'u) 
	

<(z(0),(z(0)>dil e R, 

gj+1(xs,u) 

ii+1(t) 
	

z(t)/gi4.1(xs,u), Vt e T, if 9j44(xs,U) 0 O p  

g (x,u)
T gJ+i(xs,u))T 

j 
	

e R
j+1, . 
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where 	z(t). =(317(xet)/374.(0) - F.(t)95(xs,u), 
Vt e T. 

If, however, g
j+1 

 Or 
s
,u) = 0, we define j+1 to be zero on T even though 

it is then not normalised. 

Since the algorithms we develop later depend heavily on gradient-

decomposition (in the above sense), we refer to them as being gradient-

decomposition based. We shall be able to see, later, that all the contro 

functions u considered in the algorithms for the optimisation problem of 

3.2 (with bounded x
s
) are bounded and continuous. From 3.2, all the 

associated gradient functions (M7(x
s
,u)/3u) are also bounded and contin- 

uous. 	It can therefore be seen that all the orthonormal basis-functions 

6 which will be defined in the algorithms using Definitions 3.5.1 and 

3.5.2 will be bounded and continuous, i.e. will be of the type considered 

so far in this chapter. 

Oncebasis-functions61,.., 6.  have been defined, we see from .1  

3.3 how, for the optimisation problem 3.2, optimisation on U(1,j)" can 

be achieved for any bounded initial condition x
s
+ Xcldx(1  e X(q) when 

T(1,j+1,j) and P(1,q+1,j) are known. 	T(1,j+1,j) and P(1,q÷1,j) could be 

determined from (3.7) and (3.8), but that would require the determination 

of (32VAu(T1)3u(T2)) and (a2V/324(T1)3xs) for all 1-1, T2  e T, which is not 

desirable from the computational point of view. We therefore determine 

T(1,j41,j) and P(1,q4-1,j) in our algorithms from those changes in the 

components of considered basis-functions present in the gradient function 

which are caused by changes in the 'components of considered basis-functions 

present in the control function and by initial condition changes (recall 

from Comment 3.3.4 the interpretation of T(1,j41,j) and P(1,q+1,j) as 

114.G and X+G map matrices, respectively). 
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We see that minimisation on U(1,j)" using Remark 3.3.1 involves 

the inverse of T(1,j41,j). Since the algorithms which we develop minimise 

on U(1,m)" as m increases from 1 in unit steps, it is desirable to be able 

to compute T(1,m+14.1,m+1)-1  in terms of T(1011-->l,m)
-1  and to be able to 

check whether T(1,m+1+1,m+1) is p.d. This is the subject of 

V Lemma 3.5.1 	Suppose 

	

[

T(1,m+141,m+1) = T(1

T(1,m4m+1) Vm+1-)m+1) 	

e M(Rm+1  4- Rm+1) 014-1,1TO T(m+141,0 

where 	T(1,m410) e M(Rm  ÷ Rm) and is symmetric and p.d., 

T(1,m4m+1) = T(M+141,M)T  e M(Rm  + R), 

T(m+14m+1) e R. 

Let 	rm+1  = T(m+1-÷m+1) - <(T(m+141,a)),T(1,m4-1,m)-1(T(m+141,m))> e R, 

n
m+1 

= -T(1,m41,m) 1T(m+141,0 	e R111+1  

1 	 1 

Then T(1,m+14.1,m+1) is p.d. if and only if Fir+1 > 0, 

and if raii.1 > 0: 

T(1,m+1-4.1,m+1)
-1 = T(10141,m)-1  0(m,l) + (1/rm+1)(nm+1)><(nm+1). 

A 	0(1,m) 	0 

v.  Proof of Lemma 3.5.1 	Consider the positive-definiteness of 

T(1,m+1+1,m+1). Since nm+1 belongs to the null-space of 

(T(1,m±1,n) T(m+1-4-1,m)), we see that 

m+1 	m+1,J  
.< 	+ an 	) 

< (sni) ,T (1 ,m÷1,m) 	)> 

Now any (11+1) -vector g 	= 

m+1 
,17  (1 ,m+14-1 ,m+1) 

a2r
m+1 	Vsm+1  = -0 

({gm}T  gm4.1)T  with 
t 0 

m+1, 
+ an 	)> 

Rm+1, Va e R. 

g-
,,„, 

e Rm  can be uniquely 

• written as sm+1  + anm+1 when am  e Rm  and a e R (in fact, a = gm+1  and 

SrN 	M 	- = g + gm+g(1,m+1,m)1  T(m+141,m)). Therefore, from the above, 
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we see that 

ig m+1) ,P(1,m+141,m+1)(r1)> > 0, tigai+1 
	Rm+1 

iff T(1,m41,m) is p.d. and rma  > 0. 

That the stated inverse of T(1,m+1-01,m+1) is correct when 

rm+1 > 0 can be seen by pre- and post-multiplying it by T(1,m+141,m+1) 

A when the latter is partitioned as in Lemma 3.5.1. 
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3.6 An Iterative, Gradient-Decomposition Based, Algorithm for  

Control Function Optimisation 

The optimisation problem of 3.2 is considered when an 

c(x
s
)-approximation to the x

s
-optimal control function belonging to the 

control space U is required and when Assumption 3.4.1 holds. 	The 

initial condition x
s 

considered may, of course, be the initial condition 

M
s 

of 1.3. 	The algorithm may be used when Assumption 3.4.1 does not 

hold provided that T(1,M41,m) is p.d. for all considered m. 

The optimisation algorithm iteratively defines basis-functions 

and deduces 1.1-->G map matrix elements which enable optimisation on U(1,0" 

to be achieved as m is (iteratively) increased until the x
s
-optimal 

control function belonging to U(1,m)" is the desired e(x
s
)-approximation. 

The structure of the algorithm is such that checks can easily be made on 

the validity of the deduced U-'G map matrix elements without the computat-

ional expense of applying to the dynamical system of 3.2 the calculated 

optimal control function belonging to each translated linear manifold 

U(l,m)" and checking whether the resulting performance index and gradient 

function are those predicted using the deduced U-'G map matrix elements. 

For clarity, and because the checks are easy to implement, we do not 

include the checks in the algorithm statement but outline them in 

Comment 3.6.2, which follows the algorithm statement. 	The definitions 

and notations introduced so far in- Chapter 3 are used throughout. 	The 

algorithm is next stated, with sufficient discussion to explain its 

operation. 



105 

1) Choose an initial control function u
1 e U which is a guess at the 

x
s-optimal control function belonging to U. 	Go to 2). 

2) Calculate the gradient function (W(x
s'
u
1)/u) and decompose it as 

Figi(xs,u1), which involves the definition of a basis-function
1 
(recall 

Definition 3.5.1). 	If g1(xs,u1) = 0, stop since u1  is the desired xs- 

optimal control function belonging to U. 	If g1(xs,u1) # 0, continue 

by choosing a variation AU1(1) e R in the component 

control function and by perturbing u1  to 

u2 = u1 	F1Au1(1). 

Set the iteration index, j, equal to 2. 	Go to 3) to calculate the 

resulting performance index and gradient function. 

3) Calculate the performance index V(x s  ,u.) and the gradient function 

(WV(x s  ,u.)/Bu). 	Decompose the latter as F.gi(x 
s,u.), which involves the 

.3  definition of a basis-function 6.  (recall Definition 3.5.2). 	Go to 4) 

if j = 2 and go to 5) if j > 2 - to deduce U-3.0 map matrix elements. 

4) Deduce U4G map matrix elements for j = 2. 

The gradient function (W(xs,u1)/au) is exactly characterised by 

the components 

9(k-1,1) 

of basis-functions 61, 	4.  (i.e. (BV(xs ,u1)/au) = Fkgk(xs,u1) ) 

even though 62, .., 6k  have not yet been defined. 	This arises because 

gi(xs,u1) and
1 
 were chosen so that (W(xs ,u1)/au) = F

11
(x

s
,u
1
). 

Similarly, the gradient function (W(rs,u2)/3u) is exactly 

characterised by the components 

of 
£1 present in the 

9k(xs,ul) =
21(xs'u1) 	 (3.21) Rk, vk > 1, 
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g
k
(x , 

	

	 11kk > 2, = {g
2
(xs,u2)] s

u 
2
) 	R

k
, • 

0(k-2,1) 

of basis-functions 41, .., 6k, even though 63, 	6k have not yet 

been defined. 

The change in the components of basis-functions 61, • •, 

present in the gradient function due to the change Au
1(1) in the component 

of 61 present in the control function is therefore 

k r Ag 011.1(1)) = gk(xs,u2) - gk(xs,u1), ilk > 2. 

The U4G map matrix T(141,k) must therefore satisfy 

kr Ag tAul(1)) = T(14-1,k)Aul(1), Vk > 2, 

so that 

r T(141,k) 	= 	Agk  tu1(1))/Au.1(1) 	e 	R
k
, 11k > 2. (3.22) 

Clearly T(141,k) of (3.22) can be partitioned as 

• 
T(141,k) 	= T(1,141,1)' ,11k > 2, (3.23) 

T(1-).2) 

p(k-2,1) 	, 

where T(1,141,1) 	= 	T(1.4-1) 	e R. 

From Lemma 3.4.1, T(1,141,1) is p.d. so that its inverse exists. 

Compute T(1,141,1)-1. 	Since optimisation on U(1)" is now possible, 

go to 6) to determine whether the xs
-optimal control function belonging to 

U(1)" is the desired e(xs
)-approximation. 

5) 	Deduce U4G map matrix elements for j > 2. 

Employing the approach used in 4), we see that the gradient 

function change caused by the control function change from u. to u. u_i  

of F. Dui-1  (j-1) is exactly characterised by the change 3_1 
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Agk(Auj-1(j-1)) = 	gi(x 

{ 	

,u.) 	- 	g j-1(x ,u._) s j 	 s  J1 
0(k-j+ 0(k-j01) 	1,1) 	

e Rk, vk > j, 

in the components of / 1., .., ik  present in the gradient function, i.e. 

(DIT(m s  ,u.)/Bu) - fail(rs,uj_1)/u) = Ekhgk (Auj-1(j-1)), Vk > j. 

Partition Agk (Auj-1(j-1)) and Auj-1(j-1) as 

Aglc (AU3-1(j-1)) = 'Ag j-2(AUj-1(j-1 	—j-1(j-1) = AU) —2  —1) , 1-) 	Lit  

(ALLi 	.1-)) 	 AU.J-1 (j-1) Agj-1  
Agi (Atli (j-1)) 

0(k-j,1) 	 I/k > 

where 	Agi -2  (Auj -1  (j -1)) , Auj  (j -1) e Ri -2  

Agj-1(Auj-1(j_1)), L.(Auj-10-1)), Au.J-1  (j-1) e R. g j    
Then, since T(1,j-24-1,j-2) is already available from the last 

iteration of the algorithm , it can be seen (from the Proof at the end 

of 5), below) that 

T(j-14-1,j-2)= {45. -2(Auj-1(j-1))-T(1,j-2+1,j-2)Auj-2(j-1))/AUj_1(j-1) 

e 	R5-2 	 (3.24) 

T(j-lti-1) = {Agi _1(Au j-1(j-1))-T(j-1+1,j-2)TAuj-2(j-1)1/Auj_1(j-1) 

R, (3.25) 

T(j-14-j) 0-1) 	a 	R, = 	Agi (Auj-1(j-1))/AuJ.-1.- (3.26) 

T(341,3-1) = e 	Rj-1. (3.27) [0(j-2,1)] 

T(j-1+j) 
Since T(1,j-1-*1,j-1) is symmetric (Comment 3.3.2), it can now 

be constructed by bordering T(1,j-24-1,j-2), uhich is already available, 

giving: 	T(1,j-141,j-1) = 	T(1,j-241,j-2) TU-14-1,j-2) . 

T(j -141,j -2)T 	T(j -17-j -1) 
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Since T(1,j-2-+1,j-2) and T(1,j-14-1,j-1) are p.d. when Assumption 

3.4.1 holds (Lemma 3.4.1) and are both symmetric, T(1,j-1+1,j-1)-1  exists 

and can be computed using Lemma 3.5.1. Since xs
-optimisation on 

U(1,j-1)" is now possible, go to 6) to determine whether the xs-optimal 

control function belonging to U(1,j-1)" is the required c(xs)-approximation 

V Proof of (3.24-27) 	T(1,j-141,k) e M(Rj-1  Rk) can be partitioned as 

T(1,j-14-1,k) = 	T(1,j-241,j-2) 	T(j-1÷1,j-2) , Vk > j+l, 

T(1,j-2÷j-1) 	T(j-1+j-1) 

T(j,j-2+j) 	T(j-14-j) 

T(1,j-2-÷j+1,k) T(j-14j+1,k) 

where 	T(1,j-2-0-1,j-2) e M(R3-2  + Rj-2), T(j-141,j-2) e Rj-2, 

T(1,j-24-j-1), T(1,j-2÷j) e M(0-2  + R1), 

T(j-1÷j-1), T(j-1+j) e.R, 

T(l,j-2+j+l,k) e M(0-2  + Rk-j), T(j-1+j+1,k) e Rk J..  

Since T(1,j-14.1,j-1) is symmetric (Commer.t 3.3.2) and can be 

{ 

partitioned as T(1,j-141,j-1) = T(1,j-2+1,j-2) T(j-1-4,j-2) , we see that 

T(1,j-24j-1) T(j-l+j-1) 

T(1,j-2->j-1) = T(j-141,j-2)T. 	(3.28) 

Now T(141,k) can be-partitioned as 

T(1÷1,k) = 	T(141,i+1) 	e Rk, 1/i e I(j-2), Vk > i+2, 

[r(i+1+2,k) 

where T(141,1+1) e Ri+1  and where, as we shall see later: 

T(14-1+2,k) = 0(k-1-1,1), Ni e I(j-2), Vk > 1+2. 	(3.30) 

Also, T(1,j-241,k) may be partitioned in the following two ways: 

T(1,j-2÷1,k). = (T(14-1,k) 	T(j-24-1,k)) T(1,j-2+1,j-2) . 	(3.31) 
T(1,j-2-4-j-1) 
T(1,j-24j) 
T(1,j-24.j+1,k) 

  

(3.29) 
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On using (3.29) and (3.30) in (3.31), it may be seen that 

T(1,j-24j) = 0(1,j-2), 	 (3.32) 

T(1,j-2-*j+1,k) = 0(k-j,j-2), Yk > j. 	(3.33) 

Now T(1,j-141,k) must satisfy 

A9k(Auj-1(j-1))  = T(1,j-1÷1,k)Auj-  (j-1), Vk > J. 	(3.34) 

Since T(1,j-2÷1,j-2) is known at this stage of the algorithm, we 

can use our partitions for Agk(Aui-1(j-1)) and auk-1(j-1) of stage 5) 

and our partition for T(l,j-1+l,k) of the previous page in (3.34), 

together with (3.28), (3.32) and (3.33), to give (3.24), (3.25), (3.26) 

and 

T(j-14-j+1,k) = 0(k-j,1), Yk ?j+1. 	(3.35) 

We can now justify (3.30). 	It can be seen from (3.23) that 

T(i-q+2,k) is indeed given by (3.30) when i = 1. We can then see that 

(3.35) is valid for j = 3, so that (3.30) holds when i = 2. 	Using this 

argument iteratively enables (3.30) to be justified. 

Since T(1,j41,j) can be partitioned as 

[ 

T(1,j4-1,j) = T(1,j-14-1,j-1) T(j4-1,j-1) 

T(1,j-14.j) 	T(H) 

and T(1,j41,j) is symmetric (Comment 3.3.2), we see that 

T(j41,j-1) = T(1,j-14-j)T. 

On partitioning T(1,j-14-j) as (T(1,j-24j) T(j-ltj)) and on 

using (3.32) and (3.36), (3.27) results. 

A 	This concludes the proof of (3.24-27). 

(3.36) 



110 

6) 	Consider x
s
-Optimisation on U(1,j-1)"  

Since T(1,j-1+1,j-1) is p.d. when Assumption 3.4.1 holds (from 

Lemma 3.4.1), it can be predicted by using the approach of 3.3 that: 

(a) 	the x
s
-optimal control function belonging to U(1,j-1)" is 

u(j-1;xs)* =- 2.13_1  + Fi _16tvi-1(j-1;xs)* 

where 	6a3-1(j-1;xs)* = -T(1,j-14-1,j-1)-193-1(xs'J u.-1  ), 

(b) 	the x
s
-minimal performance index on U(1, j-1)" is 

Ii(j-1;xs)* = 11(xs,ui_
1
) 

_ 	1<(gi-1(r s ,u. 
 1 

)),T(1,j-1+1,j-1)71(gi-1(x 
 s ,u3-1. ))>, 

(c) 	the gradient function folldwing xs-optimisation on U(1,j-1)" is 

(8V(j-1;x5Y7u) = Fkgk(j-1;xs)*, Yk > j, 

where s)*
g3-1

(xs ,u. + T(1,j-1-+-1,k)Str3-i(j-4rs)* 

0(k-j+1,1) 

= 
 i

j-1 	 -1 j-1 
g  (ss'uj-1)] 	T(1,j-1+1,j-1) 	. g Ors 

tO(k-j+1,1) 	T(1,j-24j) 	T(j-1-4-j) 	 uj_i) 

T(1,j-24j+1,k) T(j-1tj+1,k), 

0(j-1,1) 

.(j-1;x
s)* 

0(k-j,1) 

where .(j-1;:rs)* = (0(1,j-2) T(j-1-4-j))T(1,j-1-*1,j-1)-igi-1  
9 	

(x
s'J 

u.-1 ) 

and T(j-14j), etc., are those just determined in stage 4) if j = 2 or in 

stage 5) if j > 2. 	Note that if j = 2, T(1,3-2-).-j) and T(1,j-2+j+1,k) can 

be omitted from the above partition of T(1,j-141,k) since 

T(1,141,k) = T(141,k) = (T(1,1-+1,1) T(1-)-2) T(1.+3,k)T. 	This does not, 

k,. however, affect the final result for g kJ-1;xs)*. 
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The gradient function following xs-optimisation on U(1,j-1)" is 

therefore predicted to be exactly characterised by the components 

gi(j-1;xs)* = (0(1,j-1) gi(j-1;xs)*) T 
 of basis-functions 	.., 

Lower-bounds V(j;x s J )t-1 or V(j;x 
sj  
)i.c
-1 

 for the x
s
-minimal perfor-

mance index on the control space U can now be evaluated using Remark 3.4.1. 

F 
We suppose here that V(

j;x s 3 )t-1 is actually calculated, although the 

following holds when 13.(j;xs).1..1  is replaced by V(j;xs)I_1. 

If 	I V (j -1 ;xs) * - (j ;xs)1_, I 	< c, the x
s
-optimal control 

function belonging to U(1,j-1)", u(j-1;xs)*, is the desired c(x
s
)-approx-

imation, so stop. 

fv f  
If 	I VO-1;xs)* - Vt.j; s)1_1  I 	c, the xs-optimal control 

function belonging to U(1,j-1)" is not the desired e(xs)-approximation, 

so go to 7) to cause a control function change which will enable those 

U-'G map matrix elements to be deduced which are required for x
s
-optimisat- 

ion on U(1,j)". 

7) 	Choose next control function  

We desire to cause a change in the component of basis-function. gj  

present in the control function to enable sufficient U-*G map matrix 

elements to be deduced to enable x
s
-optimisation on U(1,j)" to be achiev- 

able. 	To test the accuracy of the U-*G map matrix elements which have 

already been deduced (see Comment 3.6.2), and to optimise as far as 

possible, we attempt to reduce to zero the components of basis-functions 

61' 	
6j-1 present in the gradient function at the same time as making 

a change of Auj(j) in the component of ,6j  which is present in the control 

function. 	This is possible because T(j-4-1,j-1) is available at this stage 
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of the algorithm, even though no change in the component of fi present 

in the control function has yet been made. 	The procedure for choosing 

a suitable control function uj+1 is next explained. 

Choosehlt.
J 
 (j) e R. 

Partition gi(xs,u3) e 0 as (g3-1(xs,uj)T  gj(xs,y)T, where 

gj-1(r 
s .1 
,u.) e  Rj-1. 	

Then the components of basis-functions i
l' 

..
' 
6
3-1 

present in the gradient function (DV(x ,u. )//..i) when s j+1 

u.
J+1 

= u. + F.Auj(j) are given as 
J 	J 

gi-1(xs' U3+1  ) = 	-1(xs 9 72 .)+T(11.H:+1 9.i -1)N1J-1M+ 27(j41,j-1)A"(j ) 

when Au3(j) e Ri  is partitioned as (AO-1(i)T  Auj  (j))T  and Auj-1(j)  e R3-1. 

If j = 2, T(j+1,j-1) = T(241) = T(1+2) -of (3.23)- since 

T(1,2+1,2) can be partitioned as T(1+1) T(2-41) and T(1,2+1,2) is 

symmetric (Comment 3.3.2). 	T(1+2) T(242) 

If j > 2, f(j41,j-1) is available from (3.27). 

The components of basis-functions 	.., £j_1 present in the 

gradient function (917(x ,u. )Au) should therefore all be zero (if • 
s j+1 

the deduced 11+3 map matrix terms T(1,j-141,j-1) and T(j+1,j-1) are 

correct)inspiteofthechosenchangeW.(j) in the component of ij 

present in the control function if 

Auj(j) . = 	-T(1,j-1+1,j-1)-1{B3-1(xs,ui) + T(j+1,j-1)Auj(j)) . 	(3.37) 

[ at.3 
 (j) 

Calculate Auj(j) of (3.37). 	Set 

ui.o.  = u. + F.Aui(j) 
3 	J 

j = j+1 

and go to 3) to determine the gradient function for the new control 
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function u.. 

This concludes the statement of the gradient-decomposition based 

optimisation algorithm. 

✓ Comment 3.6.1 	Each change Au.(j) of the above algorithm should 

be chosen to be large enough to cause a gradient function change suffic-

iently large to enable U+G map matrix elements to be deduced with 

adequate accuracy. 	Since the 1.1+G map is linear for the optimisation 

problemof3.2,eachchanget1u..(j) may be made as large as is desired. 

There should therefore be no difficulty in choosing suitable changqs 

• (our computational experience confirms this). 

✓ Comment 3.6.2 	For all j > 2, the control function u. generated 

by the above algorithm is designed (using the deduced matrices 

T(1,j-2+1,j-2) and T(j-1+1,j-2)) to have a gradient function 

(317(x 
s
,u.)/3u) which contains zero components of basis-functions 61, 

6j_2. 	Thus if the actual components of 4
l' 	

2 present in 6j- 
(DV(x 

s 
 ,u.)/9u) are relatively small compared to, say, the components of 

.., 6j-2  present in (aV(xs,ui...1)/au), we can deduce that the 1.14G map 

matrices used to construct u. were of satisfactory accuracy and that it is 

worthwhile to continue to determine T(1,j-1+1,j-1) by bordering 

T(1,j-2+1,j-2). 	If, however, the components of 	.., 6j_2  contained 

in 	(DV(x 
s  ,u.)/3u) are not relatively small, we can deduce that the elements 

of the deduced matrices T(1,j-2+1,j-2) and T(j-1+1,j-2) are significantly 

in error and that there can be little justification for continuing to 

determine T(1,j-1+1,j-1) by bordering T(1,j-2+1,j-2). 	If T(1,j-2+1,j-2) 

and T(j-1+1,j-2) contain unacceptable errors (in the above sense) but 

T(1,1+1,1) and T(1+1+1,1) do not, for some i e I(j-2), a sensible plan 



114 

would be to restart optimisation using the above algorithm with the 

predicted (using the deduced matrix T(1,1+1,1)) x
s
-optimal control function 

belonging to U(1,i)" (for the largest i e 1(j-2) with acceptable T(1,141,1) 

and T(i+1-41,1), preferably) as the initial control function u1. 

For each j > 2, it is desirable to check that each deduced U4G 

map matrix T(1,j-141,j-1) is p.d., as it should be when Assumption 3.4.1 

holds (by Lemma 3.4.1). This is trivial when j = 2 and can be done when 

evaluating T(1,j-14-1,j-1)-1  using Lemma 3.5.1 if j > 2 since we shall 

only construct T(1,j-1.41,j-1) if T(1,j-24-1,j-2) is p,d. 	If 

T(1,j-141,j-1) is not p.d., its elements must be significantly in error 

and the same action should be taken as that which would be taken were it 

found that (DIT(xs'3 u.+1 )Au) contains non-negligible components of basis- 

functions 	• 1  • J- 
Checks on the accuracy of the deduced U--)-G map matrices are 

desirable because without the checks there would be no way of telling 

whether or not the deduced U4G map matrix elements contain numerical errors 

which are large enough to render valueless all further calculations based 

on them. The ability to check the accuracy of each deduced U4G map matrix 

T(1,j-1+1,j-1) by calculating the gradient function (DV(x s j ,u+1 )/3u) 

without having to compute and apply the predicted (using the deduced matrix 

T(1,j-141,j-1)) xs-optimal control function belonging to U(1,j-1)" to the 

considered dynamical system equations and calculate the resulting gradient 

function is a valuable feature of our algorithm because (M7(xs'3 u.+1 )/ki) 

contains information needed for optimisation on U(l,j)" while the gradient 

function for the xs-optimal control function belonging to U(1,j-1)" does 

not, since the latter gradient function can be predicted in stage 6) of 
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A the above algorithm before xs-optimisation on U(l,j)" is considered. 

The following lemma will be of use later. 

V Lemma 3.6.1 	Suppose k orthonormal basis-functions 	.., 4k 

   

have been defined by the above algorithm and that there are no numerical 

errors. 	Then, if Assumption 3.4.1 holds, T(1,k41,10 is symmetric and 

tri-diagonal with all tri-diagonal elements non-zero and all diagonal 

A elements p.d. 

V Proof of Lemma 3.6.1 	Denote the scalar elements of T(1,k+1,k) by 

t
ip,  

Yi,p e 1(0. 	Since T(1,fi.4-1,k) is symmetric (Comment 3.3.2): 
tip 	= tPi 

 , Vi
' 
 p e l(k). 	 (3.38) 

T(1,k+1,12) can be partitioned as follows: 

= (27(1-I-1,10 	T(fZ+1,k)) 	(3.39) 

where T(i÷1,k) e Rk, Vi e /(12). 

From (3.23): 

I T(1-q,k) = (t
11 

t
21 

0(1,k-2))T, Vk > 2. 	(3.40) 

From (3.29) and (3.30): 

.1T T(i÷1,k) = (tn. t21 . ti+1 1  0(1,k-i-1)J , , 

Vk > 1+1 	 (3.41) 

On using (3.38), (3.39), (3.40) and (3.41) together, it can be 

seen that T(1,12.÷1,12.) must have the following tri-diagonal form if k = 6, 

say: 	T(1,12÷1,12) 	= t11 t21 0 0 0 • 
0 

t21 t22 t32 0 0 0  
0 t32 t33 t43 0 0  
0' 0 t43 t44 t54 0  
0 0 0 t54 t55 t65 
0 0 0 0 t

65 
t
66 
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The above tri-diagonal structure of T(1,k9-1,k) is clearly 

independent of k. 

It may be seen from Lemma 3.4.1 that T(1,k+1,k) is p.d. when 

Assumption 3.4.1 holds, which requires that: 

t.. > 0, Yi e 7(k). 11 

It can be seen from (3.22) and (3.23) that T(142) 0 0 only if 

g2(xs'u2) 0 0, i.e. if an orthonormal basis-function 62  needs to be defined 

to enable the gradient function (217(x
s
,u
2
)/9u) to be exactly characterised 

by components of defined basis-functions. 	If 92(ms,u2) = 0, we see 

from Definition 3.5.2 that 6
2 
will be zero on T, and so will not be 

orthonormal to 61. 	Similarly, it may be seen that T(i÷i+1) 0 0 only if 

gi+1(ms,ui4.1) 0 0, i.e. if an orthonormal basis-function 6i.+1  has to be 

defined to enable (W(x s1 ,u.+1 )/au) to be exactly characterised by 

components of defined basis-functions. Since we have assumed in 

Lemma 3.6.1 that orthonormal basis-functions 61, .., 6k  have been 

defined, T(i-+i+1) 1 0, Vi e 1(k-1). 	On using (3.38) and Definition 3.3.8, 

we therefore see that 

1+11 	11+1 # 0 Yi e 1(k-1).  

A 	This concludes the proof of Lemma 3.6.1. 
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3.7 Comparative Effectiveness of the Gradient-Decomposition Based  

and Steepest-Descent Optimisation Algorithms  

The object of this section is to compare the effectiveness at 

control function optimisation of the gradient-decomposition based 

optimisation algorithm of 3.6 with that of the well-known (piece-wise) 

steepest-descent algorithm. The optimisation problem of 3.2 is considered 

when Assumption 3.4.1 holds for some particular (but arbitrary) initial 

condition x
s c X(q), perhaps Fcs of 1.3. The results obtained are valid, 

however, when Assumption 3.4.1 does not hold provided that T(1,m+1,m) is 

p.d. for all considered m. 	For comparison purposes it is assumed that 

the steepest-descent algorithm and gradient-decomposition based algorithm 

both start with the same initial control function u
1 e U, that each 

algorithm is used independently and that no numerical errors occur. 

As in 3.4, we denote the x
s-minimal performance index on U(1,m)" by 

V(m;xs)* and the xs-minimal performance index on U by V(xs)*. 

We next state the considered steepest-descent algorithm, designed 

to perform at most "f. iterations (i.e. k optimal control function changes 

in steepest-descent directions): 

1) Set /Co  = ul  and set m = 0. 	Go to 2). 

2) Calculate the gradient function (BV(xs,um)/9u). 

Stop if (aV(xs,i1m)/au) is zero almost everywhere on T, 

since no fuither performance index improvement is then possible. 

If (DV(x
s
,u
m)/Zu) is not zero-almost-everywhere-on T, minimise 

with respect to QM e R the performance index V(xs,um-0(m)(Maxelim)/au)). 

Denote the minimising value of f(m) by c(m)*. 
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Set Unii./  = Um  - 0(m)*(DV(x s 
,1
m
)/au) and set T = T4-1. 

Stop if m = (z, since the desired k iterations have been 

performed. 	Otherwise, go to 2). 

The main results of this section are contained in 

V Remark 3.7.1 
	

Suppose that Assumption 3.4.1 holds and that 

V(xs,ui) is not the'x
s
-minimal performance index on U, so that it is not 

true that (3V(x
s
,u
1
)/374) is zero almost everywhere on T. 

(I) Suppose also that the gradient-decomposition based 

optimisation algorithm of 3.6 is used to achieve xs-optimisation 

which involves the definition of a normalised basis-function 4 

on U(1)", 

and 

that V(1;x )* = V(x )*. Then V(x
s'

ii
1
) = V(x

s
)*. 

(II) Alternatively, suppose in addition that 

V(1;x
s
)* V(x)* and that the gradient-decomposition based optimisation 

algorithm of 3.6 is used to optimise on U(l,k)" for k > 1 (which involves 

the sequential definition of k orthonormal basis-functions 	44). 

Then k iterations of 

(i) V(1;x
s
)* .= 

(ii) V(m;x
s
)* < 

A (iii) 	V(k;xs)* 

V Comment 3.7.1  

algorithm of 3.6 has  

the steepest-descent algorithm can be performed and 

V(x
s'1
)
' 

V(x
s
,U
m
), tim e I(2,k), 

V(k-1;x
s
)* 	V(1;x 

s 
 )* < V(x

s 0
). 

The gradient-decomposition based optimisation 

to perform two gradient function evaluations before 

it can achieve x
s
-optimisation on U(1)", and the gradient function 

evaluations required are the most expensive feature, computationally, 

associated with x
s-optimisation on U(1)" using the algorithm of 3.6..  

The steepest-descent algorithm considered requires one gradient function 
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evaluation and one optimisation in a steepest-descent direction to 

determine U
1
. Hence xs

-optimisation on U(1)" and the determination of 

UI 
require about the same amount of computational effort. We therefore 

see from Remark 3.7.1(I) that the gradient-decomposition based optimisation 

algorithm of 3.6 and the steepest-descent algorithm considered are equally 

effective at control function optimisation if V(1;xs)* = V(xs)*, No 

further iterations of either algorithm are needed in this case since 

the x
s
-minimal performance index on U is achieved in the first iteration. 

If, however, V(1;x
s
)* 4 V(x

s
)*, the gradient-decomposition based 

algorithm can be used to optimise on U(1,2)", etc. 	Probably the most' 

expensive feature, computationally, associated with xs-optimisation on 

U(1,m)" using the algorithm of 3.6 after xs-optimisation on U(1)" is 

possible is the calculation of the further m-1 gradient functions which are 

required. The determination of 1m given U1 using the steepest-descent 

algorithm also requires m-1 further gradient function evaluations. We 

see from Remark 3.7.1(11) that V(1;xs)* = V(xs,u1), V(r;xs)* < V(xs,Um), 

Vm e 1(2,k). Hence U
m 

is not the x -optimal control function belonging s 

to U(1,m)" if 171> 1, and the further gradient function evaluations 

performed by the algorithm of 3.6 to enable x
s
-optimisation on U(1,m)" 

to be possible (after x s -optimisation on U(1)" is possible) can be consid-

ered to be used more effectively by that algorithm than the fUrther 

gradient function evaluations (which are used by the steepest-descent 

algorithm to obtain Um  given U1) are used by the steepest-descent algorithm 

Thus if V(1;x
s
)* # V(x

s)*, the gradient-decomposition based optimisation 

algorithm of 3.6 can be considered to be more effective at control function 
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A optimisation than the steepest-descent algorithm. 

To prove Remark 3.7.1 we first consider the case of 

Remark 3.7.1(11). 	We relate the orthonormal basis-functions iv  .., 61,e  

defined by the gradient-decomposition based optimisation algorithm of 3.6 

to the first k iterations of the steepest-descent algorithm, as follows. 

Since fio  = ul, we see from (3.21) that 

(W(x
s0

)/3u) = Fok(xs,ii0) e G(1) 

where 	gk(x 	) = 	Or u 	e R. 
s o 	s 2  1 	 (3.42) 

0(k-1,1) 

We see from (3.42), (3.48) and (3.50), by using an iterative 

argument, that 

(3V(.9:
s
,"7.1
m
)/3u) = F gk(xs'm) e G(1,m+1), 41m e 1(k-1) (3.43) 

where gii(x
s 

 ,771. 
m 
 ) = gm(x 	

rn s 	
) 	c 	gm(xsm)  e  et  

9m+1(xs'UnI)  

0(k-m-1,1) 

e 	(3.44) 

 

By using the results of 3.3 it can be seen that 

V(xs,rm-R(m)(DV(ms,iim)/@u)) = V(xs,iim 2(m)Fok(xs,um)) 

= 	V(x s r ,u n) - 2(m)<(2k(ms,um)),(9k(ms,um))>.  

+ 0(m)2<(9la(ms,um)),T(1,k+1,k)(gia(xs,"rim))>, 

e 	I(0,k -1). (3.45) 

Hence ft(m)*, which minimises V(msolm n -(m)(aV(xs,um)/Bu)) with 

respect to 0(m), is given by 

n(m)* = <(9k(ms,firri)),(9iz(xs,i.im))>/<(gf2(rs,iim)),T(1,k4-1,k)(9la(xs, m))>, 

I(o,k-1). 	 (3.46) 
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Then: 

am+1 = am  - 0(m)*Fok(xs,am) 
e U(1,m+1)", Vm e 1(0,k-1). 

Hence, from (3.45) and (3.46): 

V(xs,am+1)= 
 V(xs,Rm) - I< gk.(xs,iim)) (9k(ss,iini))>2,  

{gym e 1(0,k-l). 

<(gia(xs,am)),T(1,k÷1,k)(gia(xs,am))> 	(3.47) 

On using the (14G map property (Comment 3.3.4) of T(1,12.4-1,k), 

we see that 

(av(x
s'm+1  )/au) = (w(xs'm -P(m)*Fk

gk(x
s' m

))/au) 

= Fkgk(x
s'm+1

) e G(1,m+2), bum e 1(0,k-2), 	(3.48) 

where 	912(xs,am+1) = g
k
(x 
s 
 ,U
m 
 ) - 2(m)*T(1,k-q,k)gk(x s  ,Um  ). (3.'49) 

Because giz(x
s
,a
m
) has the form of (3.42) if m = 0 and the form 

of (3.44) if m > 0, and because T(1,k÷1,k) is tridiagonal for our 	

-

basis-

functions 61, .., 4 (by Lemma 3.6.1), we see that gk  (rs,um1) of (3.49) 

has the form 

k g (x
s
,um+1) = 

m+1
(x
sm+1

) e Rk, bum e I(0,k-2), 	(3.50) 

  

gm+2(xs'iIm+1)  

0(k-m72,1) 

Rol. 
g 
m+1 

(xs'271m+1)  e 5m+1  
It may be seen that although (DV(x

s,ak)/au) does not necessarily 

belong to G(1,0, the components of basis-functions 6/  ,.., 61,e  present in 

it are the elements of gk(x
s
,Urita) of (3.49) when m+1 = k. • 

The x
s
-minimal performance index on U(1,m)", V(m;xs)*, can be 

seen to be related to the performance index V(T
s,ap) in the following way: 

V(m;xs)* = qrs,ap) - 142/71(x 
s 
 01
p 
 )),T(1,m+1,m)-1(9/71(xspap))>, 

Vm e 1(k), Vp e 7(0,m), 	 (3.51) 
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where gm(x 
s 
 ,U
p 
 ) is the m-vector consisting of the components of basis-

functions iv  .., 4111  which are present in (3V(xs,up)/3u). 

The remainder of the proof of Remark 3.7.1 is facilitated by 

the following simple lemmas. 

✓ Lemma 3.7.1 	For the optimisation algorithm of 3.6, the 

A xs-optimal control function belonging to U(1)" is equal to U1. 

✓ Proof of Lemma 3.7.1 	We see from (3.42) that (M/(xs,u0)/3u) =gi(xs,u1)41. 

The first iteration of the steepest-descent algorithm therefore optimises 

the component -Q(0)21(xs,u1) of basis-function 	present in the control 

function ul  - n(0)91(xs,u1)41. 	Theresultingcontrolfunction,U.is 

A thus the x
s
-optimal control function belonging to U(1)". 

✓ Lemma 3.7.2 	Suppose T(1,k÷1,k) is p.d. and m+1 e 1(k). 	If 

T(1,12+1,k) has no distinct eigenvalues, gk(x,U
1
) = 0(k,1). 	Suppose next 

that T(1,k-3-1,k) does not have eigenvalues which are all equal. 	Define K 

to be the set of all non-zero k-vectors which cannot be written as a 

weighted sum of eigenvectors hi  of T(1,k-1,k) with associated eigenvalues 

A. which are equal. Define W to be that set which consists of all those 

iz-vectorswhichcontainnonon-zerocomponentsofeigenveotorsh.with 

associatedeigenvaluesDtb,A0 and contain at least one non-zero 

component of an eigenvector with eigenvalue ?Lb  and at least one non-zero 

component of an eigenvector with eigenvalue equal to AB, where 	and Xs  

are distinct. 	Clearly W C K. 	Then 9k(xs1714-1) 	0(k,l) if and only if 

- gk(xs,i/m) e K. 	Also, gk  (rs,um4.1) e K if gk(xs,fini) e K. 	Further, 

A g (x
sm+1

) e W if gFe.
(x
sm

) e W. 

✓ Proof of Lemma 3.7.2 	Since T(1,k+1,k) is assumed to be p.d. and is 

symmetric, it has the spectral representation 



where 	h. e Rk, Vi e /(k), are the orthonormal eigenvectors of T(1,k+1,k) 
1 

A. > 0, Yi e I(k), are the associated eigenvalues (all real). 

Now gk(x
s
:ft
m+1

) and g
k 
 (x
s
,a
M
) can be uniquely decomposed into components 

a. (m+1)anda.(m)oftheeigenvectorsh.of T(1,k+.1,k), so that 
1 	1 	k 	1 	k 
912(xsAyili./)=Ics.(m+1)77.,g

k
(x

s
A
m
) = 	1 a.(m)h.. 	(3.53) 

i=1 1 	1 	1=1 1 	1   
On using (3.52) and (3.53) in (3.49) and (3.46), we see that 

the components ai(m+1) of the eigenvectors hi  contained in g
k
(x A

mi 
 ) 

s 	l. 

Ta,k4-1,k 	
i 

) = 	h.X.hT 	 (3.52) 
=1  1 1 1 
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are related to those in g
k
(x
sM

) by 

ai(m+1) 	(1 — Q(m)*X.)ai
k 
 (m), Yi e 	, 	(3.54) 

where 	P(m)* 	( 	a  (11)2)/( X 0  0102A  ) . 	(3.55) 
s=1 s 	s=1 s 	s' 

Supposefirstthattheonlynon-zerocomponentsa.(m) of the 
1 

eigenvectors h.
1 
 present in g

k
(x 

s m  
,5') are components of those eigenvectors 

associatedwitheigenvaluesequaltoXe say,sothata.(m) = 0 if A. 	AC' 

where X is an eigenvalue. 	Then, gk(x
sm

) ¢ K and, from (3.55) 

0(m)* = 1/Ac  

so that, from (3.54): 	ai(n+1) = 0, Yi e I(k). 

Thus g (x
sm+1

) 0(k,l) and g
k
(xs m

:ft+1  ) K if g
k
(x

s'
m) 
  

K. 

	

Suppose next that gk(x
m 

 ) e W. 	Then a.(m) = 0 if Ai  ¢ IALI,X131 

and 	1 a
s
(m)2A

s
/A

B  < 
	a

s
(m)2, 

s=1 	s=1 
so that, from (3.55): 	QM* > 1/AB. 

Similarly: . 	Q(m)* < 1/A
b. 

We seefrom0.510that a,(11+1) = 0 only if either a.(m) = 0 or 
1 

PM* = I/A.. Since we have just shown that 1/A
B 
< QM* < 1/A

b 

when gk(x
s m) e (t, g (rs'm+1) contains at least one non-zero component 
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of aneigenvectorof 0 
 as  its associated eigenvalue 

and at least one non-zero component of an eigenvector which has AB  as its 

associated eigenvalue. 	Also, ai(m+1) = 0 if Ai  ¢ fAb,AB). 

Hence g
k
(x a

m+1
) e W if g

k
(x

s m
) e W. 	Since this result 

is independent of Ab  and AB  provided that Ab  0 AB, it can be seen that 

g
k
(x

s m+1
) e K if g

k
(x 
s 
 R , ) e K. m 

This concludes the proof of Lemma 3.7.2. 

In the following we sometimes refer to element (i,j) of a matrix 

T, say, when we mean the scalar element t.. of T. 

V Lemma 3.7.3 	Consider k orthonormal basis-functions 61, ..,- 6k  

defined by the gradient-decomposition based optimisation algorithm of 3.6 

when Assumption 3.4.1 holds. 	Denote element (1,1) of T(1,m+1,m)-1  

by tn.. 	Then, for the (1-+G map matrices T(1,m+1,m) defined for the 

considered basis-functions £1, "' 
6k:  

t
11 

> till 
	1 

 > 	> 	t2 
1 	1 

> tl
1 
 > 0. 

V Proof of Lemma 3.7.3 	It can be seen (by Lemma 3.4.1) that T(1,m+1,m) 

is bounded and p.d. when Assumption 3.4.1 holds, Vm e I(k). We see from 

'Definition 3.3.8 that T(1,14-1,1) is a scalar. 	Since T(1,141,1) is 

bounded and p.d.: t1 > 0. 
11 

By Lemma 3.6.1, T(1,12+1,10 is symmetric and 'tridiagonal with 

all tridiagonal elements 

can be partitioned as 

T(1,k÷1,k) =  

non-zero. 	For all m e l(k-1), T(1,12.+1,12.) 

'T(1,m÷1,M) TOn+1-41,m) 

T(101-411+1) T(m+14m+1) 
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Hence, for all m e 	T(1,m-i,m) is tridiagonal with 

N

all tridiagonal 

elements non-zero. 	Also, T(m+1÷1,m) = 09(1,m-1) tm,m4.1j
T  , where tm,111.1 

denotes element (m,m+l) of T(1,k+1,k) and trii,m+1 	0 since element (m,m+1) 

of T(1,k-,-1,(a) is a tridiagonal element. 

Now T(1,m4-1,m)-1  = adj(!r(1,m+1,m))/A where A is the determinant 

of T(l,m±1,m). 	Since T(1,m4-1,m) is p.d., A 	0. 	Thus element (1,m) of 

T(1,m±1,m)-1, denoted here by ti m' is equal to t
12 

x t
23 

x 	x t
m71 m

/A, 
, 

where t
12 

denotes element (1,2) of T(1,m41,m), etc. 	Since all the 

tridiagonal elements of T(1,m÷1,m) are non-zero, ti 	O. 
m 

We see from Lemma 3.5.1 that 

m+1 
t11 = t

11 + (1/Fm+1)(n1
)2  

where 

n
1 
 denotes the first element of the (r+1)-vector 

nm+1  = [-T(1,m410,)1T(m+1+100), 
1 

rmi1 is positive and bounded since T(1,m+1÷1,m+1) is p.d. and bounded 

when Assumption 3.4.1 holds (by Lemma 3.4.1). 

On using the above results we see that n
1 
 = -t1 m x  tmm 1 O. 

m+ 
Hence t11

1 
 > t11. 	Since this holds for all m e I(k-1), Lemma 3.7.3 is 

A now proved. 

We can now come to the 

V Proof of Remark 3.7.1  Remark 3.7.1(I) follows from the fact that 

V(1;xs)* = V(xs,K1), by Lemma 3.7.1. 	Result (i) of Remark 3.7.1(11) also 

comes from Lemma 3.7.1. We next consider the proof of the remainder of 

Remark 3.7.1(11). 

Since we assume in Remark 3.7.1(11) that V(1;x )* V(x
s
)*, 
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(by Lemma 3.7.1) U1  is equal to the xs-optimal control function 

to U(1)", (aV(x
s
,U1

)/Du) is non-zero. 	Hence the components 

and since 

belonging 

g(xs'1)' 
of (3.44), which exactly characterise (WV(xs

,U
1
)/ali) are not 

all zero, i.e. g s1) 	
0(k,1). 	We see from Lemma 3.7.2 that this 

can only occur if g
12.
(x
s'

ft0) 	
0(k,l) and contains non-zero components 	of 

eigenvectors of T(1,k->-1,10 which have distinct eigenvalues associated 

with them. On using the result of Lemma 3.7.2 iteratively, we see that 

k 	- 
g (xs,um) ¢ 0(k,1), Vm e 1(0,k). 	Hence, from (3.43), (3V(rs,am)/3u) 

is non-zero for all m c 1(0,k) and k iterations of the steepest-descent 

considered can actually be performed. 	Since T(1,124.1,k) is p.d. when 

Assumption 3.4.1 holds, we can also see, from (3.51), that 

V(k;xs)* < V(xs,ak). 	This result is independent 

Hence V(m;x
s
)* < V(x ,U ), Vim e 1(2,k), which proves result (ii) of s 

,um) 

Remark 3.7.1(11). 

It can be seen from (3.51) and (3.42) that 

v(m ;x )* = v(xs0) - 	

il

gi(x801) ,27(l01141,m)-1[91(xs,u1)> 

0(m-1,1) 	0(m-1,1) 

- 
3g1sl 

u
1 	1 
)2t1, Mr e 1(k), 

where t11 denotes element (1,1) of T(1 mr41,m)-1. 

We have said above that, under the assumptions involved in 

Remark 3.7.1(11), g(x
s
,u
0
) 	0(k,1). 	This can only occur if 

91(xs,u1) 0 0 since, from (3.42), g
12.
(xs,i20) = (gi(Ts,u1) 0(1,k-1))T. 

k 	• 2 	1 We see from Lemma 3.7.3 that t11 > t11 > 	> t11 > t11 > 0. 

Hence V(k;x)* < V(k-1;=)* < 	< V(2;a)* < V(1;X
s
)* < V(0;

s0
4 

which proves result (iii) of Remark 3.7.1(11) and completes the proof 

0 of Remark 3.7.1. 

of k provided that k > 1. 
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Further information concerning the comparative behaviour of 

the gradient-decomposition based optimisation algorithm of 3.6 and the 

steepest-descent algorithm considered is yielded by 

V Remark 3.7.2 	Suppose that the assumptions of Remark 3.7.1(11) 

hold and that g (rs0)  contains non-zero components of eigenvectors of 

T(1,124-1,k) with associated eigenvalues equal to Ab and A ' 
where 	and 

A5  are eigenvalues of T(1,k±1,k) and Ab  < A. Assume also that g(x
s
01
0
) 

contains no non-zero components of eigenvectors of T(1,k÷1,k) with 

associated eigenvectors smaller than Xb  or larger than AB. Then: 

{V(xs,Tim) - V(k;x
s
)*1 < ((AB-Ab)/(Ag+Ab))

2m
{V(xs,r40) - V(k;xs)*}, 

A 	Vm e 1(k). 

V Comment 3.7.2 	The result of Remark 3.7.2 provides an upper-

bound for the rate at which the performance index V(xsAm) achieved by 

m steepest-descent iterations approaches from above the performance index 

V(k;xs)*, which can be achieved after xs-optimisation on U(l,k)" using 

the gradient-decomposition based optimisation algorithm of 3.6. This 

is of conceptual interest but is not of direct computational significance 

since Ab  and A5  will not usually be known. The result reveals, however, 

that V(xs,R12.) 4 V(k;x
s)*, which is consistent with the previous results 

A of this section. 

The proof of Remark 3.7.2 is facilitated by 

	

V Lemma 3.7.4- 	 Suppose: 

(a) T(1,k÷1,k) is bounded and p.d., 

(b) Z denotes that linear manifold of Rk which is spanned by all those 

eigenvectorsofT whichhaveassociatedeigenvaluesA.such that 

	

7." 
	 • 
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Ab  < Ai  < AB, where Ab  and AB  are eigenvalues of T(1,k+1,12), 

(c) z(g
h
) = <(g

k),T(1,24-1,12)(gia)><(gfa),T(1,12,4 ,0-1(?)>, 

(d) ±.• (912.)  = ((Ab+xs) 2/4x bAB) < (912.) cgkp.  

Then: 	z(9k)  < ugh.),  vgia e Z. 

The proof of Lemma 3.7.4 is facilitated by 

✓ Lemma 3.7.5 	If 0 < Xb  f Xi  1,X23  < 

(a) (Xbi-X8)((1/Ai)-(1AB)) + ((lAb)+(1/AB))(ACA) 

• (b) 	(X b+AB) ((11Ai)-(11Ab)) 	((11X b)+(11),B))(xi-Ad < O. 

✓ Proof of Lemma 3.7.5 	The results may perhaps best be proved by 

multiplying (a) throughout by XiX0123  and by multiplying CO throughout 

A by AiAgAB. On cancelling the common terms, the required results emerge. 

✓ Proof of Leona 3.7.4 	We consider first the proof for the case when 

g
h e Q, where 2. = fgk  : <(gk),(2k)> = 1 and g

k 
e Zl. 

Recall from (3.52) that T(1,k-q,k) can be written as 

T(1,k+1,k) = IhXhT. 
1=1 i  

For notational convenience, suppose that the orthonormal eigenvectors 

h. are ordered so that A = A and A = A$. 

Let 	
1 6 k B.  

k. - 	r 	..k 	. Let g = thli-h
k
)/1/2. 	Then g e Q and z(g-Iz  ) = 2(gk  ). 

We have thus shown that the upper-bound z(gk  ) of Lemma 3.7.4 is 

actually attained for g = g . We complete the proof by first showing that 

z(g
k
) 5_ 2(gk) for all gk gk 69k e  

Now (5211  e Q can be uniquely decomposed into components of  of 

the orthonormal eigenvectors h. of T-(1,k-)1,10,and can then be written as 
1 

(Sg = a.h. 	 (3.56) • 1.1  1 1  

where a. = 0 if Ai  ¢ fAb,A81, Vi e 7(h). 
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For g + 6giz  to belong to Q, we require that 

2‹  (691a) (gk)> = 	(6gk.),  (6gh.)>.  

On using (3.56), we see that (3.57) requires that 

crl 	= 	/ ai)/12' i=1 
It can be seen that 

z (g12.+69k)  = x (g"12..1.69k)  y(9k
.1.69k)  

),T(1,k±1,k) Olz)> + 2< (6 g ia ) ,T (1 ,12.4-1 	C.A> where xof2+69k)  = < tg  

+ < (69k) ,T(1,k-q,k) (6A> 

= (Ab+AB)/2 	 112(C1Abi-api3) 

y(g
k+62k)  = <e),T(1,k4-1,k)-1(e) 

C
a 

i=1 1 

(3.57) 

(3.58) 

(3.59) 

+ 	<(,5g12"),T(1,k4-1,k)-1(e)> 	< (69k) ,To. ,k+1,k)-1 (69k) > 

= ((1/Ab)+(1/AB))/2  i2((al/X6)+(ak/AB))  

Two cases can occur: (i) al  = 0; (ii) ak  = O. 	We treat 

these separately, for convenience. 

Suppose first that a
1 

= O. 	Then, we see from (3.58) and (3.59) 

Hence 

that 
	x(j +69 ) = (A

b
+XB)/2 

y(9
k4.69k) 	r 

zok+69k) 	wk.1.69k) 	1=1 1  

k k 

((l/Ab)+(l/AB))/2 + 	X a?((l/Ai)-(1/A13)). 
i=1 1 1  128  

a?(A.-A ), 

a?(X.-A )}{ 1  a2j(1/X.)-(1/A13  ))1 { iX 1 	i  ==  

il a?{(Ab.0,B)(0./y...01),0) + Wy+0./x130„),8)}. 

Since a. = 0 if A. i {4 ,AB} whenever g + Sgt  e Q, we see from 

Lemma 3.7.5(a) and the above that z(dzi.691z) < 2(e+dg12.) for all g-k  + 6g k 

belonging to Q. such that al  = O. 

The case with ak  = 0 can be treated in a similar way. We then 

see that when uk  = 0: 
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k 	k 
zok4.69) = 2(gk4.69k)  4. { 1 icr

1  1
(1.-x 

b
)}{  1 cy1 
	3_
((i/x.)_(1/), 

b 
))) 

F 	 1.1 	1. =1 	• 

+ i / a
1
l(XL)+XB)((i/Xi)-(1/X1)))  + ((i/Xd4.(1/XB))(Xi-Ab)1  

11 	.k 	k 
Since a.1  = 0 if Ai  4 “

b„)131 whenever g + 69 e Q, we therefore see 

from Lemma 3.7.5(b) and the above that z(gk+Sgia) < i,ok+_gia„ 6 ) for all 

g
Ja 	k + dg belonging to Q. such that ak  = 0. 

We have thus shown that 

z(gk) <z(9k), Vgk  e  Q. 
Since z(agk  ) = a-z(gk  ) and 2(agk) = 0.2(gk) for any scalar a, 

we see that 

z(9
k
) 5_

k
), Vg

k 
e Z, 

A which proves Lemma 3.7.4. 

We can now come to the 

V Proof of Remark 3.7.2  Clearly 

{11(xs,Ecm+1) 	V(k;xs)*) = A.(m){1.7(xs,i1m) - v(k;x)*}, Vm+1 e /(k), (3.60) 

where 	t(m) = 1 - 1V(xs,um) - V(ms,iimi.01/{V(ms,iim) - V(k;xs)*}. 

From (3.47) and (3.51): 

x(m) = (a(m) - d(m))/a(m), Vm c 1(0,k-1), 	(3.61) 

where 

a(m).  = <(glz(xsAim)),T(1,k+1,k)(gia(xs,ilin))> x 

<(glz(xs,ism)),T(1,(ztl,k)-1(glz(xs,iim))>,- 

d(m) 	<(gfe(xs,iim)),(212.(xs,ilm))›.2. 

Under the assumptions of Remark 3.7.2, gk(x
s0) e (U, where W is 

as defined in Lemma 3.7.2. 	On using Lemma 3.7.2, we see that 

gk(x
sm+1) 

 e 	Vm e 1(0,k-1). 	Since (U C:Z, where Z is as defined in 

Lemma 3.7.4, we see from Lemma 3.7.4 and (3.61) that: 
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t(m) L ((A 3-Ab)/(AB+Ab))2, Mn e I(0,k-1). 	(3.62) 

On using (3.62) in (3.61) as m is increased from one in unit 

A steps, the result of Remark 3.7.2 can be obtained. 
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3.8 Computed Examples  

To demonstrate the usefulness of the developments which have 

been presented so far in this chapter, we present here the results of 

computations performed for two optimisation problems which are essentially 

the same as the optimisation problem of 3.2. For computational purposes, 

however, the linear space (for each problem) to which considered control 

functions belong is not infinite dimensional but is of finite (100) 

dimension. Since the modifications to enable our results and algorithm 

to be used for such problems consist mainly of obvious changes in notation, 

they are not discussed. 

3.8.1 	A Boiler  

The boiler considered here is that of Nicholson {37} and is 

assumed to be described by the following difference equation: 

where x. 
1- 

x. 	= Ax. 
1+1 	1 

1 

x
2 

x
3 

+ Bu(i) + Cu (i) 

steam density 

superheated steam temperature 

steam quality 

ud(i)  = 

A = 

4' i 

[111 

2

1 

(i) 

(steam (demand) 

0.367E-04 0.192E+01 

0.921E+00 -0.909E+01 

0.168E-06 0.381E+00 

0.224E-04 -0.217E+02 

water level displacement in drum e i  

water mass flow rate 
(1) 

fuel oil mass flow rate 

0.912E+00 

0.631E+00 

0.187E-02 

0.120E+00 

0. 

0. 

0. 

0.100E+01 

mass flow rate) (1) 
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B = -0.368E-03 0.499E-01 

0.384E-02 0.131E+02 

-0.138E-03 -0.619E-02 

0.219E-02 -0.244E+00, 

The units associated with each element 

-0.183E-02 

-0.729E+00 

0.253E-03 

0.731E-02, 

above are given in the paper 

by Nicholson, but do not concern us directly here. 

A problem considered by Nicholson was the regulation of the 

boiler response to minimise the effect on x of a change in u
d
(i) from 

ud(i) = 0 for i < 1 to ud
(i) = 2.778 for i > 1. We also considered 

this problem and attempted to minimise with respect to u(i), Vi e 1(50), 

the performance index 
51 

V 	= 	< (x.) ,Q (x.) > 
i=1 

where 	Q = diag{0.1E+06 0.1E+01 0.0 0.1E+05}. 

The discrete-time convolution-description for the boiler was determined 

from the difference-equation and was used as the system description in 

our computations. 

Because the discrete-time version of Assumption 3.4.1 is not 

satisfied in this case, lower-bounds for the x
s
-minimal performance index 

on the control space cannot be calculated for the above problem. The 

nominal initial condition considered was
s 
= x

1 
= 0(4,1). The steepest-

descent algorithm of 3.7 and the gradient-decomposition based optimisation 

algorithm of 3.6 were both used (with obvious modifications to allow for 

the discrete-nature of the considered control functions and the fact that 

lower-bounds could not be calculated), both starting with the same initial 

control function - namely u(i) = 0(2,1), 4/i e 1(50). 	The performance 

index V(xs,iim) obtained after m iterations of the steepest-descent 
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algorithm is shown in Fig. 3.1 for each of the 17 iterations performed. 

The performance index predicted to be achievable after m iterations 

(control function changes) of the gradient-decomposition based optimisatio 

algorithm (calculated using the approach of stage 6) of the algorithm 

statement), V(m.th s 
 )*' is also shown in Fig. 3.1 for each of the 17 iterat- 

ions

'  

of that algorithm which were performed. The performance index for 

the initial control function, denoted by V("ths,g0) and by V(0;k.'s)* in 

Fig. 3.1, was actually 0.351E+05 (too large to be plotted in Fig. 3.1). 

The predicted (using the U-*G map matrix elements deduced using 

the gradient-decomposition based algorithm) "ths-optimal control function 

belonging to U(1,17)" was applied to the convolution-description of the 

boiler and the associated gradient function was calculated. The gradient 

was found to be exactly characterised by the following components of basis- 

functions 6., L 	••' 410 
18 
Q 	(17;:ths

)* (-0.1E+00 0.3E-01 -0.5E-01 	0.3E-01 -0.1E-01 -0.6E-02 

-0.2E-02 	0.2E-02 -0.3E-01 -0.1E-01 -0.9E-01 -0.9E-01 -0.1E+00 

-0.7E-01 -0.6E-01 -0.3E-01 -0.8E-02 0.3E+03JT  . 

The components of basis-functions 4, .., 47  would all have been zero 

had the predicted 'ths-optimal control function belonging to U(1,17)" been 

precisely optimal. Although the components were not actually zero, they 

were very small compared with the component of 618 present in the gradient 

function, which component could not have been reduced to zero after 17 

iterations since optimisation on U(1,18)" would only be possible after 

18 iterations. - The relatively small size of the components of 4 ••, 417 
present in.the gradient function, compared to the component of 6

18' 

was considered to be very satisfactory for an IBM 7090 computer operating 
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in the single precision mode (i.e. using eight significant figure, 

floating point, arithmetic). The performance index change, relative 

to the performance index for the initial control function, which occurred 

on applying the predicted .X's-optimal control function belonging to U(1,17)" 

was within 0.15% of that change predicted using the deduced 1,1--).G map 

matrix elements, which was also considered to be rather satisfactory. 

We see from Fig. 3.1 that the gradient-decomposition based 

optimisation algorithm of 3.6 reduced the performance index more rapidly, 

as a function of iterations, than did the steepest-descent algorithm: 

this result would have been expected from the discussion of 3.7 since 

the first iteration of the steepest-descent algorithm did not achieve 

the
s
-minimal performance index on the considered control space and 

ii > 1 orthonormal basis-functions were defined by the gradient- 

decomposition based optimisation algorithm. Because of this and 

because 17 iterations of each algorithm required about the same amount 

of computing time (1.0 minutes), the gradient-decomposition based 

algorithm is far superior to the steepest-descent algorithm for this 

problem. 
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3.8.2 A Heat-Exchanger  

The optimisation problem considered here is defined for the 

heat-exchanger of 2.6 and has the same performance function as that of 

2.6 but with Q = 10 and R = 0.0025. Trapezoidal integration was used 

with a step-length of 1 second. The initial control function considered 

was zero on {0,200} and the initial condition considered was 

xs 	= (40 40 0 0 0 0 0 0) T  

Fourteen iterations of the gradient-decomposition based 

optimisation algorithm of 3.6 were performed. The predicted (using 

stage 6) of the algorithm) .'s-minimal performance index on U(1,m)", 

V(m;.th.
s
)*, and the associated lower-bound V(m+1;2 

s m  
)* for the 2s-minimal 

performance index on the control space are plotted in Fig. 3.2 for 
• 

m = 9, ..., 14. 

The predicted (using the (i+G map matrix elements deduced by the 

gradient-decomposition based algorithm) 2
's
-optimal control function 

belonging to (!(1,14)" was applied to the heat-exchanger description. 

The resulting performance index and lower-bound for the '2
s
-minimal 

performance index on the control space were 0.45173336E+05 and 

0.45171316E+05, respectively. These compare favourably with the 

values predicted using stage 6) of the gradient-decomposition based 

algorithm, which were 0.45173349E+05 and 0.45171340E+05 (respectively) - 

bearing in mind that an IBM 7090 computer operating in the single precision 

mode was used for the computations. 

From the above results we see that the predicted X.
'
-optimal 
s 

 

control function belonging to Liar/4r has, an associated performance index 
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value which is negligibly different from the 53
's
-minimal performance 

index on the control space considered, which was of dimension 100 because 

the control functions considered were constrained by the integration 

algorithm which was used to be constant over each of the 100 integration 

steps which were employed. Optimisation on a translated linear manifold 

containing U(1,14)" but of larger dimension would therefore be relatively 

unprofitable, performance-index wise. This is a result which is 

useful from the computational point of view, and which would not be 

available without our lower-bound results of 3.4. 

0.459E+05 - 

 

0.455E+05 - 

 

  

0.450E+05- 

  

  

Fig. 3.2 

  



139 

3.9 Optimal Control Function Determination as a Function of  

Initial Conditions 

The optimisation problem of 3.2 is considered when Assumption 

3.4.1 holds for x
s 
 = xs, of 1.3. 	A simple procedure is stated for 

defining a translated linear manifold and determining the xs-optimal 

control function belonging to it as a function of initial conditions 

x
s 

e X(q) such that a certain approximation condition holds for all 

xs e X(q). 

Recall the definition, in 1.3, of the closed and bounded 

neighbourhood X(q) of xs. From 3.3, the xs
-optimal control function 

belonging to U(l,j)" is, for all initial conditions xs  = "is  + ASZI  e X(q): 

u(j;"is+ASxcl)* = 241  - FiT(1,j->l,j)-1(gj(xs,u1) + P(1,q+1,j)(Sx9 (3.63) 

where 	gi(xs,u1) = fTFi(t)T(W(xs,u1)/3u(t))dt 

when T(1,j41,j) is p.d., which it is when Assumption 3.4.1 holds. 

Expression (3.63) is an optimal control law which determines the x -optimal 

control function belonging to U(l,j)" as a function of initial conditions 

x
s 
= x + Xcl6xcl e 

in 3.4.2. 

V Definition 3.9.1 

X(q)• Recall the definition of an e(x
s
)-approximation, 

Control law (3.63) will be referred to as an 

     

c(X(q))-approximation to the optimal control law which determines the 

optimal control function belonging to the control space U as a function of 

initial conditions if u(j;."th
s
+Xci6x9* is an e(X

s
+X(4x9-approximation 

to the
s
+X(4xcl)-optimal control function belonging to U for all initial 

A conditions x
s 
= xs  + ASZI  e X(q). 

Definition 3.9.1 provides a useful means for characterising 

the effectiveness of control law (3.63). 	If an e(g(q))-approximation is 
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required for a specified c, it is desirable to use the smallest integer j 

for which control law (3.63) is the desired e(g(q))-approximation, to 

reduce as far as possible the computational effort required to determine 

the control law. A simple algorithm is next outlined for determining a 

suitable small j, j(q), and the associated control law, although j(q) is 

not necessarily the smallest j for which control law (3.63) is an 

c(g(q))-approximation. 	Some of the quantities used in the algorithm are 

defined in Remark 3.9.1, which follows the statement of the algorithm. 

1) Choose an initial control function u
1 
 a U, where u

1 
is a guess at 

the 
's
-optimal control function belonging to U. 

Set the initial condition to
s
. Define orthonormal basis-

functions 6 and choose the smallest integer j(0) such that the gradient 

function (W(j(0);Xdlau) (defined to be equal to (MT( s,248)/3u), where 

u*0  is the 'X's-optimal control function belonging to U(l,j(0))") satisfies 

(i (o)) 	s (o), 	 (3.64) 

where 

a 0 	
1 

(0)) = 	
1T  
f l< (h. (0) , (av (j (o) s)/au (t))>2/x (t)}dt. (3.65) 

1  
The gradient-decomposition based optimisation algorithm of 3.6 

can be simply modified to define, and 	on, U(l,m)" as m is 

iteratively increased from one in unit steps until condition (3.64), with 

j(0) replaced by m, is satisfied. The required value of j(0) is then 

the first value of m which causes condition (3.64), with j(0) replaced by 

m, to be satisfied. 	Clearly T(1,5(0)±1,j(0))-1  will be available when 

j(0) has been determined in this way. Denote the total number of ortho-

normal basis-functions defined at this stage by n(0), and denote the 

%-optimal control function belonging to U(1,j(0))" by tit. 	Go to_2). 
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2) Set A = 1. 	Go to 3). 

3) Equate the control function to ut. Perturb the initial condition 

from s to x = x
s
+ X4  laql'  on the boundary of X(q). Calculate the 

resulting gradient function, (DIT(xA' 
0  
u*)/au). 	The gradient function 

change caused by the initial condition change X
A A. 16°1 from 	when the 

control function remains unchanged at u*
0 
 is therefore 

dg(162171,1) = (DV(X)0242(p/aU) - (av(j (0);i''s)/3u). 	(3.66) 

Decompose the gradient function change Sg(I t 	Sgi(k)  (5°I) as F.(h) 

in exactly the same way as we would decompose a gradient function, where 

= n(A-1) + 1. 	If the last element of (SQh 	e R 	is zero, - 

set i(h) = n(11.-1) since (Sg(I 6°1) is then exactly characterised by 

components of basis-functions 6 .. 6n.(h-1) alone and no new orthonormal 

basis-function 6n(k-1)+1 has to be defined to enable 6g(1601) to be 

exactly characterised by components of defined orthonormal basis-functions. 

The total number of orthonormal basis-functions defined at this stage is 

'LW. Then: 

dg(1(501) = F. 84
L 

 
(t) 

4.00 A. 

Therefore 

where 

Fk V  69
k 

Vk > 	 (3.67) 

(h) 6gt 	e R
k, Vk > 	(3.68) 

0(k-i(4.),1) 

no matter how 
iii(h)+1, 

 .., 6k are defined (if S1, 
	

4k 
are orthonormal). 

On recalling the X-9G map property of P(l,q+l,k), of Comment 3.3.4, 

we see that column ft of P(1,q+1,k) is given by 

P(A+1,k) = 62kA./1601 = 69i(k)
/1601 , '1k 	(3.69) A. 

0(k-i(k),1) 
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For any integer j(h) > 0, the j(t)-vector (SgiIL(j°  of the 

components of basis-functions 41, 	4j(h) (which have not all been 

defined yet if j(h) > i(A), since only basis-functions 	.., Si(4)  have 

been defined at this stage of the algorithm) present in the gradient 

function change SIg(16XII) is equal to P(4÷1,j(t))1(5q1, where P(h+1,j(A)) 

is the j(h)-vector consisting of the first j(h) elements of P(4.4-1,k) of 

(3.69) - for any k Lmax(i(h),j(A)). On using the (14G map property of 

T(1,j(h)41,j(A)), it can be seen that the components of basis-functions 

61, .., 4i(A)  present in the gradient function can be changed by -agi() 

by making a change of -T(1,j(h)41,j(h))-1621(t)  in the components of 

basis-functions 41, 	6j(A)  present in the control function. Thus 

the components of basis-functions 	ij(jo  present in the gradient 

function change dg(1641) from (aV(j(0);"±s)1/3u) which is caused by an 

initial condition change of XILI6X,71 from F:s  can be reduced to, or 

maintained at, zero by changing the control function from u8 to 

u* = 4 	- Fj(t)(T(1,j(A.)-)1,j(t)))-1/3(441,j(h))16:111 	(3.70) 

when the initial condition is changed from 'X.'s  to xt. 

The gradient function change from (3V(j(0)(th
s)Nu) which is 

caused by the initial condition change - from
s 
to x when the control 

function is changed from ut to u31 is then 

	

6g(j(h);16X11) = (W(Xleut)/au) - (DV(j(0);Xs)*/3u). 	(3.71) 

Chdose j(h) so that 

(i (10) 	6(4.) 	 (3.72) 

where 
m 

s(j00). =
11  f

„..f<(h.
1
(0),(agicoflaql)(t) 

=  
2 A.(t)}dt, 

1 
(3.73) 
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1 and where (3 -4 Qz.) ; 161 	(5'40 (t); 65111) 

	

1) (t) is the value of 	at time t. 

Since T(1,j(X).+1,j(h))-1  is available at the start of 

stage 3), we can easily check whether j(h) = j(h-1) satisfies condition 

(3.72). 	If it does, set j(h) = j(h-1) and go to 4). 	If it does not, 

an algorithm similar to that of 3.6 can be simply constructed to choose 

the smallest integer j(A) greater than j(h-1) such that condition (3.72) is 

satisfied (and to define further basis-functions 6 if necessary, i.e. 

if j(h) = i(A) does not cause condition (3.72) to be satisfied). 	Note, 

however, that the U-G map matrices T will not necessarily be tridiagonal 

in this case since basis-functions 6 may have to be defined by the current 

algorithm to enable gradient function changes which have been caused by 

initial condition changes to be exactly characterised in terms of 

components of defined basis-functions, which breaks the chain of reasoning 

which lead us to deduce that T is tridiagonal for the basis-functions 

defined by the algorithm of 3.6. The procedure used for calculating 

T in the algorithm of 3.6 is still valid, however, since it does not 

depend on T being tridiagonal. When a suitable j(h) has been found in 

this way, T(1,j(A)41,j(A))-1.will be available. Denote the total 

number of orthonormal basis-functions 6 which have been defined at this 

stage of the algorithm by n(h). 	Go to 4). 

4) 	If the initial condition changes which have been made so far do 

not span X(q), i.e. if tt 0 q, set t = h + 1 and go to 3). 	Otherwise, 

if h = q, stop. 

This concludes the statement of the algorithm. 
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V Remark 3.9.1 	Consider the optimisation problem of 3.2 when 

Assumption 3.4.1 holds for x
s 
=

s
. 	Since F 

uu
(0 is then symmetric and 

p.d. for all t e T, it can be written as 

F 	=h.(t)X.(t)h.(t)T  
i=1 

h1(t)X.(t)h.(t)T 

1 	1  uu 
(3.74) 

where, for all t e T, 

hi(t), Vi e 1(m), are the orthonormal eigenvectors of Fuu(t),  

A.(t), Vi e 1(m), are the associated eigenvalues of F 	(all > 0). 
uu 

Suppose that in the above algorithm 

a (0) = c/(q+1)2  

6(A) = (e + a(1)2  - 2a(A)liel)/(q-A+1)2, VA e I(q) 
A-1 

where a(A) = 	14(j(a))1. 
a=1 

Then control law (3.63) with j = j(q) is an c(K(q))-approximation 

to the optimal control law which determines optimal control functions 

belonging to the control space U as a function of initial conditions 

A x e X(q). 

Before proving Remark 3.9.1 we make the following comments. 

V Comment 3.9.1 	Using Remark 3.9.1 with the above algorithm 

enables the j (actually j(q)).to be determined in a simple way for 

which control law (3.63) is an c(X(q))-approximation for any desired c > 0. 

The X-YG map matrix P(1,q÷1,j(q)) and the inverse U-.}G map matrix 

T(1,j(q)-4,j(q))-1  will be available when j(q) has been determined, so 

all the terms needed to implement control law (3.63) with j = j(q) are 

available once j(q) has been determined in the above way. Note that 

P(1",v1,j(q)).  = OP(1-4-1,j(q)) 	P(74.1,j(q))) 

where P(A.4-1,j(q)), VA c I(q), is the j(q)-vector consisting of the first 
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A j(q) elements of P(A÷1,k) of (3.69) for any k > max(j(q),i(0). 

V Comment 3.9.2 	Remark 3.9.1 is especially easy to implement if, 

as iscormnon,FischosensothatFiscliagonaltsincethen7L(t) is uu 	1 

that m-vector which has element i equal to unity and all other elements 

A equal to zero, bit e T. 

V Proof of Remark 3.9.1  For the initial condition xs 
= X

s 
+ X(18x(1, 

consider the control function 

u(Xs+Xl(Sx9" = ul  - Fi(0)(T(1,j(0)41,j(0)))-19j(°)(Xs,u1) 

- 
4 1 

F. 
 (IL) 

 (T(1,j(A)41,j(&)))-1P0.4-1,j(t))&cq 
=   

where g3(0)(Xs,u1) fT(Fj(0)_(t))T(DV(Xs,u1)/Du(t))dt, 

Sxcl = (t5xcl 	Sx)T, 
1 

P(h+1,j(h)) is the j(t)-vector consisting of the first j(h) 

elements of P(A-*1,j(q)) of Comment 3.9.1. 

On using (3.70) and the fact that u
1 	 (0) 	' - F. 	(T(1 j(0)41,j(0)))-lx 

gi(0)(x
s
,u
1
) is the X

s
-optimal control function belonging to U(1,j(0))", 

it can be seen that 

u(̂ths+Xclox(1)" = u* + 	{u* - u*}Sxcl/ laql. 	(3.75). 0 h=1 A 0 A A 
We can consider u(X

s
+XI(Sx9" to be an c(X

s
+XqcSx9-approximation 

to the (x +Xq'Sxq)-optimal control function belonging to U if 

v(-th.s4-xci(sxq,u( s-Exclisscipt) s+A5x9*. < C 	(3.76) 

where V(X
s
+Xg(Sxcl)* is the (x

s
+edxg)-minimal performance indeX on U, 

in exactly the same way that we consider the (x
s
+Xqdx(1)-optimal control 

function belonging to U(1,j(q))" to be an e( s+Xcl(Sxq)-approximation 

if 	1 V(j(q);X
s
+Xclox(1)* -

s
+Xcl6x(1)* 1 < e 
	

(3.77) 

where V(j(q);Xs+Xq6x(1)* is the (xs+Xclftc1)-minimal performance index on 

U(1,j(q))", 
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Recall from 3.4.2 that the minimal c for which the (53s+X(16xcl) - 

optimal control function belonging to U(1,j(q))" is an e(xs+Xclft(1) - 

approximation has as an upper-bound 

(j(q);iCs+X(1.5xcl)* = ifT<(g(t)),(Fuu(t))-1(g(t))>dt 

where g is equal to the gradient function (3Vas+Xclf5x(1,uMu) when u is 

the (xs+e6x(1) -optimal control function belonging to U(1,j(q))". In 

an exactly similar way, it can be shown that the minimal e for which 

u(xs+Xgdxq)" is an E(ths+Xlioxcl) -approximation to the (Xs
+X(16xcl) -optimal 

control function belonging to U has as an upper-bound 

1(.s+Xcidcecl)" = ifT<(g"(t)),(Fuu(t))-1(g"(t))>dt 
	

(3.78) 

where 	= (all( si-XcliSxcl ,u( s+XciSxcl)")/au). 	 (3.79) 

From the structure of the algorithm considered, j(h) < j(q), 

Vh e 1(0,q). 	Therefore 

V (j (q) ; s+X(115xcl)* < V ( s+Xc  dxc  ,u s+ 6xcl)") , 	(3.80) 

since (a) u(i
s
+XclOsq)" is the cth

s+ASA-optimal control function belonging 

to U(1,j(q))" if j(h) = j(q) for all h e I(0,q-1), and 

(b) u(is-1-2qdx(1)" is a potentially 'less-optimal' control function 

than the
s+ASA-optimal control function belonging to U(1,j(q))" 

if j(t) < j(q) for any h e T(0,q-1). 

Thus to prove that control law (3.63) with j= j(q) is an 

e(g(q))-approximation to the optimal control law for U we need only show 

that u(Fc
s
+ASx(1)" is an e(Fc

s
1-Xcl(Sxcl)-approximation to the (Bs+XcIdxcl)-

optimal control function belonging to U for all initial conditions 

x
s  = xs  X

(16xcl e R(q). 	This arises because (3.80) ensures that (3.77) 

is satisfied for a given E if (3.76) is satisfied for the same e. 
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We therefore prove Remark 3.9.1 by showing that the choice of (S(h), 

bah e /(0,q), used there ensures that ri(Is+X(1dx(1
)" < e for all initial 

conditions s + X416xcl 
 e X(q), which ensures that u(Is+ASZI

)" is an 

c(I
s
+Xcl6x9-approximation for all s+Xcloxq  e g(q). 

Because the gradient function for the optimisation problem of 

3.2 varies linearly with the initial condition xs  and with the control 

function, and because u(Is+.0.(5x9" varies linearly with 6xcl, it can be 

shown that 

(W(xs+ASZI,u(Is+XclOx9")/au) = go  + 	gt(541/115i1 	(3.81) 
A=1 

for some time-functions go, 	gq. 
We can in fact identify the functions g0, .., gq. Consider first the 

case when 6xcl  = O. Then we see from (3.75) that u(Is+Ax(1)" = u0, 

the Is-Optimal control function belonging to U(1,j(0))". Hence 

(W(Is,u(Is)")/9u) = (3V(Is,u(*))/3u) = (DIT(j(0);Is)*/au) and, from (3.81): 

go  = (n(j(0);Is)/Du). 	 (3.82) 

Next consider the case when (Sxcl  = (0(1,h-1) lajll 0(14q-A.))T, h e I(q). 

Then, from (3.75), u(Is+X(16x9" = ut and, from (3.71): 

(W(xs+Xcldxcl,u(Is+X(16x9")/3u) = (W(xleut)/au) 

= 	(avj (o);%Pau) + cso.0 (n); 	. 
On comparing this with (3.81), it can be seen that 

= 	de (j 	; (3 ill.1) • 
	 (3.83) 

Onlusing the spectral representation of F
uu  of (3.74) in (3.78), 

we see that 	a'(xs+XciSicc1)" 

= I / [{<(h.(t)),(DIT(Xs+Xcl6x(1,u(Is+Xcl6xcl)")/Du(t))>2/A.1
(t)ldt. 

i=1 T   

Using (3.81) in the above yields: 
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-olcIsxqr 

q q m 
< 	1 	X. 1 if.„{<(ga.(0),(7/.(0)><(7/i(0Mgb(t))4x.(Oldtl,  

a=0 b=0 i=1 

11!a
s
+A5x(1  e R7(q), 	 (3.84) 

since dx,c1 	Idql, VA e 1(q), if Xs  + Xcl6xcl e 54q). 

On using Wilder's inequality for integrals, (3.84) yields 
q q m 

a'acs+Ylascir < 	IIII4i(j (a))1 1 4 i0( 0)1, 
a=0 b=0 i=0 

VX
s+Xcl(Sxq  e K(q), 

where 	8i(j(a)) = /17_1<(hi(t));(ga(t))>2/Xi(t))dt, Va e 1(0,q). (3.86) 

Using the Cauchy-Schwarz inequality with (3.85) yields 
q q 

(Xs+Xclikcci)" < 	/ 1113 (j  (a)) I 	I 1/8 (b)) I  , 
a=0 b=0 

41Xs+Xcl6xq e T(q), 	 (3.87) 

where 	8(j(a)) 	= 	8i(j(a)), Va e I(0,q). 	(3.88) 
i=1 

By using (3.82), (3.83) and (3.86) with (3.88), we see that 

8(j(a)) of (3.87) is defined as in the algorithm (i.e., 8(j(0)) of (3.87) 

is equal to 8(j(0)) of (3.65) and B(jW) of (3.87) is equal to 8(j(A)) 

of (3.73), VA. e 1(q)). 

Define a(h) as follows: 

a(t) = 0 if h= 0 
A-1 

= 	G 11/13(j (a)) I if h e I(q+l). 
a=0 

Then: 

a(q+1)2  > a(q)2  > 	> a(1)2  > a(0)2. 

(3.89) 

(3.90) 

It is convenient to next state and prove two simple lemmas. 

V Lemma 3.9.1 	Suppose that for some A e /(0,q), a(h)2  < e. 

Then a(q+1)2  < c if j(a) is chosen so that 8(j(a)) 5._ o(h), Va e 

(3.85) 
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A where d(h) = (a(h.)2  + c - 2a Qt.) I ic I) (q-it.+1)2. 

V Proof of Lemma 3.9.1 	We see from (3.89) that 

a (q+1) 2  = a (h.)2  + 2a (A) 	(j (a)) I + (G 14(j (a)) 1)2. 
a=it. 

Suppose j (a) is chosen so that 

f3 (j (a)) _s 6 (it.) , Va e I(h.,q)•  

Then 	(q+1) 2  < a (rt.) 2  + 2a (n)  (q-h+1) I ✓S N I + (q-A.+1) 2  6 (4) 

and a (q+1)2  < c 

A which completes 

V Lemma 3.9.2  

a(h)2 < c,  j(10 

S (h) = (ct 00 2  +  

if 	IAN] = (I✓c1 - aW)/(q-A+1), 

the proof of Lemma 3.9.1. 

Suppose that for some A e (09q-1) such that 

is chosen so that S (j (t)) < 6 (it) where 

E 2a(&)licI)/(q-it+1)2. Then 

6 (1L+1) = (a (h.+1)2  + c - 2a (h+1) I ic I) / 	> (it) . 	Also 

A if 13(j (h.)) = 6 (t) , then 6 (t+1) = 6 (cit.) . 

Proof of Lemma 3.9.2 	Since a (h+1) = a (h.) + I ✓S (j (t)) I : 

6 (A+1) = { (q-it.+1) 2  6 (JO + 2 (a (t) - 1/E I) I is (j  (it)) I + s(jQL)) 1/ (q-40 2  

= 	6 (it) + { (2 (q-A..)+1) 6 (it) + 2 (a (t) - I ✓c 1) 1 	(j ('c)) 1 + s (j (n)) 1/ (q-A) 2. 

Now if 	(z.)) < 6 (it.) , then I 43 (j (h)) I = I ✓S (10 I - K for some K > 0. 

On using the facts that (a (X) - I icl) /(q-4+1) = 	✓S (it.) I and that 

> 0 if h e “0,q) , it can be seen from the above that 

6 (it.+1) = 6 (4) + {K2  + 2 (q-n)K I ✓S (A) I}/ (q-h.) 2  > 6 (A.) . 

Also, if 8 (j (Ai) = 6 (it) , then K = 0 and 6 	= 6 	, which 

A concludes the proof of Lemma 3.9.2. 

We see from (3.87) and (3.'89) that 

416xq)" < 	(q+1)2, trth +Ifq6xq e g(q) 	 (3.91) 

so that ( ..th's+Xcl ax(1)" < c for all -ths  + Xcloxcl e R(q) if j (a), Va e I (0,q), 

is chosen so that 
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a(q4.1)2 < E. 
	 (3.92) 

From Lemma 3.9.1 with t = 0 and, from (3.89), a(A) = 0, 

condition (3.92) is satisfied if j(a) is chosen so that 

8(j(a)) 5_ 6(0) = e/(q+1)2, Va e I(0,q). 	(3.93) 

Now 6(o) is defined in Remark 3.9.1 in the same way as in (3.93), 

so the algorithm considered chooses j(0) so that condition (3.93) is 

satisfied for a = 0, which also ensures that a(1)2  <.e. Due to the 

integer nature of j(0), it is unlikely that the number j(0) chosen by 

the algorithm will be such that 13(j(0)) = 6(o). 	If B(j(0)) is actually 

less than 6(0), which is likely, a less stringent condition on j(a), 

Va e I(q), than 8(j(a)) 56(0), need be imposed to ensure that a(q+1)2  < e. 

We see from Lemma 3.9.1 that to ensure that a(q+1)2  < e it is sufficient, 

when j(0) has been chosen as above, that j(a), Va e I(q), be chosen so 

that 

13(j (a)) < S(1) = (ct(1)2  + e - 	(1) 1 161) /c12. 
	(3.94) 

This is a less stringent condition on j(a), Va e 1(q), than condition 

(3.93) if 8(j(0)) < 6(0) since then, from Lemma 3.9.2, Is (1) > S (0) . 	If, 

however, a(j0)) = 6(0), the conditions are equivalent since then, from 

Lemma 3.9.2, 6(1) = 6(0). 

By proceeding in the above way it may be seen that the conditions 

of Remark 3.9.1 are such that a(q+1)2  < e, i.e. are such that' 

("th
s
+Xcl(Sxcl)" < e for all initial conditions xs  + Xcloxcl e7(q), which 

ensures that control law (3.63) with j = j(q) is the desired e(T(q))-app- 

roximation to the optimal control law which determines optimal control 

functions belonging to the control space U as a function of initial 

A conditions. 
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3.10 Computed Results  

The theoretical results and discussion of 3.9 do not need 

computational verification. In this section, however, computed results 

are presented which demonstrate the usefulness for control function 

re-optimisation following an initial condition change of U-*G map matrix 

data deduced from optimisation iterations performed before the considered 

initial condition change. We use the theoretical result that the xs-

opiimal control function belonging to U(l,m)" is equal to 

u
1 	

F - 	(T(1 mr)-1" m))-if
Tm 

 (0)T(M1(x 
s 
 ,u
1 
 )/au(t))dt. Also demonstrated 

is the usefulness of the results of 3.4 for determining when optimisation 

on a larger (translated) linear manifold than that on which optimisation 

has already been obtained would not be profitable, performance-index wise. 

We do not explain in detail the operations which were carried out since 

they are fairly obvious and such a description would be tedious and would 

not enable the results which are presented to be appreciated better. As 

before, orthonormal basis-functions 6 were defined so that each calculated 

gradient function could be exactly characterised by components of the 

defined basis-functions. 

The optimisation problem considered is that of 3.8.2 with 

Q = 10 and R = 0.5. The initial control function u
1 

considered was 

20 on {0,100} and 100 on (100,200). The nominal initial condition 

considered was xs = (40 40 0 0 0 0 0 0)T. Computed results are 

presented to eight figures since an eight significant figure computer 

(IBM 7090) was used. 

The performance index for the initial control function and the 
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nominal initial condition Z's 
was calculated and is denoted here by 

V(O;Zs)*. 	
It is shown in Table 3.10.1. Four iterations of the gradient 

decomposition based optimisation algorithm of 3.6 were then applied. The 

resulting x
s
-minimal performance index on U(1,m)", V(rn;Z

s
)*, and the 

associated upper-bound el(m;Z)* for the remaining performance index 

improvement possible, relative to V(m;Zs)*, on optimising on the control 

space are shown in the following table for m = 1, .., 4. Further 

iterations were not considered because of the small size of the remaining 

performance index decrease possible after optimising on U(1,4)" (bounded 

from above by N4;iIs)*). 

Table 3.10.1 

V (m;Zs)* 

0.19737759E+07 

0.10882303E+07 

a'.(m;1.s)* 

0.02559285E+07 

m 

0 
1 
2 0.10031260E+07 0.00212385E+07 

3 0.09867041E+07 0.00001809E+07 

4 0.09865632E+07 0.00000051E+07 

The control function was then set to the Z
s-optimal control 

function belonging to U(1,4)" and the initial condition changed to 

xs = (40 40 -20 0 0 ) 0 0 0)T. The resulting performance index 

value is denoted here by V(0;x;)*. 	It is given in table 3.10.2. 	The 

xl-optimal control function belonging to U(1,4)" was then determined 

using T(1,441,4)-1, which had already been established by the four iterat- 

ions of the gradient-decomposition based optimisation algorithm of 3.6 

for the nominal initial condition a's. The resulting x-minimal perfor- 

mance index on U(1,4)", V(4;x0*, and upper-bound '4;x1s)* for the 
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remaining performance index decrease possible, relative to V(4;a4)*, on 

optimising on the control space were evaluated. Further iterations of 

the gradient-decomposition type were used to defined further basis-

functions 6 and to optimise on U(1,5)", .., U(1,7)", after which 

T(1,741,7)-1  was available. The results are listed in the following 

table. No further iterations were used because of the negligible 

size of the upper-bound e"(7;x1)* for the remaining performance index 

improvement possible after optimising on U(1,7)". 

Table 3.10.2 

V (m;xs1)* 

0.13697292E+07 

Nm;x1
s
)* m 

0 

4 0.13137437E+07 0.00038777E+07 

5 0.13110189E+07 0.00003546E+07 

6 0.13107011E+07 0.00000084E+07 

7 0.13106940E+07 0.00000002E+07 

Note that most of the performance index decrease obtained after 

the initial condition change from xs  to 	was achieved by optimisation 

on U(1,4)" using the U-4-G map matrix inverse T(1,4+1,4)-1  which_ was 

determined before the initial condition change (optimisation on U(1,4)" 

causing a performance index decrease of 0.00559855E+07, from V(0;x1s)* to 

V(4;x1)*). The further performance index decrease achieved by the 

three following iterations (which caused a decrease of 0.00030497E+07, 

from V(4;x1)* to V(7;x1)*) was only about 6% of that achieved by 

optimisation on U(1,4)". The usefulness of the U-G map matrix data 

determined before the initial condition change from "±s  to xis  for optimis-

ing the control function for the initial condition x1  is clear from the 

above results. 
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The control function was then set to the xl-optimal control 

function belonging to U(1,7)" and the initial condition changed to 

x2  = (40 60 -20 0 0 0 0 0)T. The resulting performance index 

value, denoted by V(0;x2)* is shown in Table 3.10.3, below. Optimisation 

on U(1,7)" was then achieved using the 114.G map matrix inverse T(1,741,7)
-1 

which was determined before the initial condition change to x2. Two 

iterations of the gradient-decomposition type were then applied to enable 

optimisation to be achieved on U(1,8)" and U(1,9)", after which 

T(1,941,9)-1  was available. The results are shown in Table 3.10.3, below. 

Optimisation on a larger (translated) linear manifold than U(1,9)" was 

not considered because of the small size of 2(9;x2)*. 

Table 3.10.3  

m 	 V (m;x2s. 	Z' )* 	(m; x2) 

0 	0.20409221E+07 

7 	0.17670290E+07 	0.00011335E+07 

8 	0.17662468E+07 	0.00002357E+07 

9 	0.17660436E+07 	0.00000203E+07 

Note that most of the performance index decrease achieved was 

obtained by optimisation on U(1,7)" using the U->G map matrix inverse 

T(1,941,9)
-1

, which had been established before the initial condition 

change to x2, since the performance index decrease obtained by optimising 

on U(1,7)"Wup 0.02738931E+07 (from V(0;xD* to V(7;x:)*) while the 

further performance index decrease obtained by the two further iterations 

of the gradient-decomposition type was only 0000009854E+07 (from V(7;x2)* 

to V(9;x2)*). The usefulness of the U-*G map matrix data determined 

before the initial condition change to x2  for optimising the control 
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function for the initial condition x
2 is clear from the above results. 

The control function was then set to the 0:2-optimal control 

function belonging to U(1,9)" and the initial condition changed to 

x3  = (20 40 -20 -10 -20 -30 -20 -20)T. The resulting performance 

index value, denoted by V(0;x3s)*, was calculated and is shown in 

Table 3.10.4, below. The x3-optimal control function belonging to 

U(1,9)" was determined using T(i,9-4,9)-1, which was already available 

from the optimisation iterations carried out for the previous initial 

conditions. The resulting x-minimal performance index on U(1,9)", 

V(9;x3)*, was calculated as well as the associated upper bound '(9;x3)* 

for the remaining performance index decrease, relative to V(9;x:)*, which 

could be obtained by optimising on the control space. Further iterations 

of the gradient-decomposition type were used to optimise on U(1,13)". 

Optimisation on a larger (translated) linear manifold than U(1,13)" was 

not considered because of the small size of '(13;x3)*. The results are 

shown in the following table. 

Table 3.10.4 

m V (m;x)* 
s 

0 0.21296120E+07 

9 0.11664665E+07 

13 0.11661538E+07 

Nm;x:)* 

0.00003334E+07 

0.00000003E+07 

Note that, once again, most of the performance index decrease 

achieved was obtained by optimising using 11-4-G map matrix data determined 

before the initial condition change to x3. The performance index 

decrease obtained by optimising on U(1,9)" using the U-G map matrix 

inverse T(1,9+1,9)-1, which had been established by the previous iterations, 
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was in fact 0.09631455E+07 (from V(0;x3s)* to V(9;x:)*) while the further 

performance index decrease obtained by the further iterations of the 

gradient-decomposition type was only 0.00003127E+07 (from V(9;x:)* 

to V(13;xD*). 

Now there is no obvious reason why U4G map data which is 

insufficient to enable optimisation on the whole control space to be 

achieved, and which has been determined through control function 

optimisations for a set of initial conditions, should be of particular 

help in control function optimisation for another initial condition 

(unless, as does not occur in the above case, the initial conditions 

yield linearly dependent contributions to the costed response of the 

system). The above results, however, show that, for the example 

considered, the U4G map data is actually very useful. The results 

have also demonstrated again the usefulness of our results of 3.4 for 

deciding when optimisation on a larger (translated) linear manifold of 

the control space than that on which optimisation has already been 

achieved would not be particularly profitable, performance-index wise. 
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3.11 A Gradient-Decomposition Based Algorithm for Optimising in 

Non-Quadratic Environments 

In this section we define non-quadratic to mean (simultaneously) 

both non-linear and non-quadratic. The gradient-decomposition based 

optimisation algorithm of 3.6 was designed for use in quadratic environ-

ments, for which the second-derivatives of the performance index on the 

control function - and thus the U~ map matrices T - are independent of 

the control function. In non-quadratic environments the second-deriv-

atives of the performance index on the control function depend on the 

control function, so that the U~ map matrices T also depend on the contro 

function. Thus in non-quadratic environments the constant U~ map matrix 

elements which could be deduced frqm past control function changes and the 

. resulting gradient function changes are not necessarily correct locally or 

helpful. In this section we use the gradient-deeomposition approach to 

construct an optimisation algorithm which can decide when the results of 

past control function changes seem to be no longer helpful and should be 

discarded. The resulting algorithm can reduce the performance index 

more rapidly than does the steepest-descent algwrithm or the conjugate-

gradient algorithm. 

The optimisation prohlem considered is essentially the same as 

that of 3.2 when the optimal control function is required for some specifi 

initial condition x and F and G may be non-quadratic functions of their 
5 

arguments y and u and the dynamical system is non-linear. We assume 

that the gradient function (aV(xs,u)/au) can be calculated for any control 

function u·which is to be applied to the system. 
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Because non-quadratic environments are considered, it is desirable 

that all control function variations which are made should lead to 

immediate improvements in the performance index. A somewhat different 

algorithm structure to that of 3.6 is therefore needed. At the start 

of each iteration the algorithm should use the gradient function for the 

last control function (and perhaps the gradient function changes caused 

by some or all of the previous control function changes) to compute a 
• 

new search direction, in which the control function can be optimised using 

a numerical procedure for minimising with respect to a scalar variable. 

There are three basic problems associated with each iteration of such an 

algorithm: 

(a) determination of whether the results of past control function 

changes are likely to be helpful 

(b) construction of the U4G map matrix 

(c) choice of the search direction. 

The suggested procedures for solving these problems should be clear from 

stages 3), 4) and 5) of the following algorithm statement. 

1) Choose an initial control function u
1 
which is a guess at the 

required 
's
-optimal control function. 	Set the iteration index, j, 

equal to 1. 	Set k, the number of defined orthonormal basis-functions, 

equal to 0. 	Go to 2). 

2) Calculate the gradient function (W(xs,uj)/Du).. 

If f <(;v(th" s  ,u.)Au(t)),(TvU s  ,u.)Au(t))›at is sufficiently 

small, consider u. to be the required is-optimalcontrol function and stop. 
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Otherwise: 

if k = 0 go to 5) to choose the next search direction, 

if k > 0 decompose (aV(Xs,ui)/u) as Fk+igk+las,up. 

Then: 

if k = 1 go to 4) to begin constructing a U-.}G map matrix, 

if k > 1 go to 3) to check the usefulness of the U-'G map matrix elements 

which have already been established. 

3) 	Check Effectiveness of the Stored U4G Map Matrix Elements  

The structure of this optimisation algorithm is such that 

basis-function 4
k+1 

can only be defined following a control function 

change designed to reduce to, or maintain at, zero the components of 

basis-functions 41, .., 4k  present in the gradient function. 	That  

control function change was in a search direction chosen by stage 5) of 

this algorithm with j = j-1 using 11-4G map matrix elements deduced from 

past control function changes and the consequent gradient function changes 

If that control function change were unsuccessful in that it did not 

cause the contribution to the gradient function which belongs to G(l,k) 

(the linear manifold spanned by 41, .., 4k) to be small, it would seem 

that the 114G map matrices T(1,k-1-3-1,k-1) and T(k4-1,k71) used to determine 

the search direction were sufficiently incorrect to be harmful to the 

convergence of the algorithm. Additional gradient function calculations 

could be used to determine the locsally correct 11-40 map matrix for the 

defined basis-functions but since the gradient calculations would be 

expensive-computationally and the resulting matrix might be of use only 

once, such an approach would seem to be undesirable. 
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Also, since optimisation in a specified search direction is expensive 

computationally, it is undesirable to use U4G map matrix elements which 

are of doubtful validity to choose the next search direction. Perhaps 

the most suitable measure of the effectiveness of the 1.14G map data used to 

determine the last search direction is the 'size' <gk(x ,u.),g 	,u.)> s 	s  

of the components of basis-functions 61, .., 6k  present in the gradient 

function (BV(X 
s 
 ,u.)/3u) relative to the 'size' g

k+1  a s,u.)
2 

of the 

component of basis-function 4
k+1 

present in that gradient function. 

Thus if <9k(x 
s3  
,u.),g

k
(x s3  

,u.)
>/gk+is 

 ,u.)
2 

< p for some pre-

chosen p > 0, decide that the stored Li-+G map data is satisfactory and go 

to 4) to deduce new U-*G map matrix data from the gradient function change 

caused by the last control function change. 	Otherwise decide that the 

stored 11-+G map matrix elements do not describe satisfactorily the U-+G 

map in alanaighbourhoodofulacontrolfunctionu.arld so discard 

basis-functions 61, .., 6kil  and all the stored U-'G map matrix elements, 

set k equal to 0 (since there will then be no basis-functions defined) and 

go to 5) to use the only information which is known to be useful and 

correct, the current gradient function (DV(x s  ,u.)/Du). 

4) 	Deduce U-*G Map Matrix Elements  

The last control function change which was made was exactly 

characterised by components Au
k(j-1)* of basis-functions 	ik  

and caused a change from g
k  (rs,ui _i) to gk+1  (xs,ui) in the components of 

the basis-functions which exactly characterise the gradient. By•assuming 

that the environment has been quadratic for the last k control function 

changes (which seems reasonable in view of the check made in 3), above) 

and by using the approach of stages 4) and 5) of the algorithm of 3.6, 
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c R
2 
as (g.,I( S,u.) 	S,u.))T, it may be seen that ]  

T(1+1) = T(1,1+1,1) = (2,(x 
s 
 ,u.) - g

1 
 (""
th s'3 u.-1 ))/Au1(j-1)*, 

T(2.4-1) = g2  ac's,uj  VALLI' (j-1)*. 

If T(1+1) $ 0, it would seem to be undesirable to choose a search 

direction for minimisation purposes using it so discard all the defined 

basis-functions and U- G map matrix elements, set k equal to zero (since 

there are then no defined basis-functions) and go to 5) to choose the_ 

next search direction using the current gradient function alone. 

If T(1+1) > 0, compute T(1+1)-1  (which is trivial since T(1+1) 

is a scalar) and go to 5) to choose the next search direction. 

Consider next the case when k > 1. We already have 

T(1,k-1+1,k-1) and its inverse available when we reach this point in the 

algorithm. Partition 

where k7.1(x ,u. ,) e Rk-1 
s 3 

,u.)T  4  a 2,1.) 
S 3 	s' 3 	gk+ 

gk(s'uj)' gk+1 (X
s,u j  ) e R. 

 

Partition gk+1(X" 
s
,u.) 

1s' ))T where 2k-1
(x 

Partition Au
k(j-1)* e 

c Rk+1  as 

s'uj) e Rk -1  

Rk  as 

and 

(Itik-1(j_1)*  T Auk(j_1)1 ,  T 
* 	where Au

k-1
(j -1)* e Rk-1. 

[ 

T(1,k+1,k)  = T(1,k -1+1,k -1) T(k+1,k -1) 

T(k+1,k -1)
T T(k+k) 

Then: 

where 

T(k+1,k-1)= (gk-1(s,ui) - 
gk-r(s,ui  1. ) - T(1,k-1+1,k-1)Auk-1(j-1)*), 

Auk6-1)* 

we can now determine:the 4+G map matrices X(1,k+1,k) and T(k+1+1,k). 

Consider first the case when k = 1. 	On partitioning gic+1(i.  ,u.) 
s 3 

,u. ) e Rk  as-V-10
s,uj-1)T  gk(xs'uj-1))  

T 
gk 	

s -1 
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TOv+k) = (gk(xs,ui) — gk  (th' s3 
,u.

-1 
) — T(10-1,k-1)TAuk-1(j-1)*)/Auk(j-1)*. 

Also: 	T(k+1+1,k) = 0(k-1,1) 	e R . 

gic-1-1(s'uj)/Atik(j-1)*  

T(1,k+1,k)-1 is required for choosing the next search direction 

in stage 5) of this algorithm and can be constructed from T(1,k-1÷1,k-1)-1  

(which is p.d. - otherwise this point in the algorithm could not have been 

reached - and which has already been computed), 

T(k41,k-1) and T(k4k) by using Lemma 3.5.1, if T(1,10-1,k) is p.d. 

Whether or not T(l,k--1,k) is p.d. will become apparent when Lemma 3.5.1 is 

used to invert it. 	If it is p.d., compute T(1,k4-1,k)-1 and go to 5) to 

choose the next search direction. 	If T(1,k4.1,k) is not p.d., choice of 

a search direction for minimisation purposes using it should not be 

attempted so discard all defined basis-functions and U4G map matrix 

elements, set k equal to 0 (since there will then be no defined basis-

functions) and go to 5) to use the only remaining useful information - 

the current gradient function - to define the next search direction. 

5) 	Choice of the Next Search Direction  

Consider first the case when k = 0. Since the current gradient 

function is the only information which_is available or which seems to be 

useful, optimisation in the local steepest-descent direction will be 

attempted. 	Decompose the current gradient function (;17( s 3  ,u.)/au) as 

1,- 	1,.. 	• 
r1 kxs'uj). 	

Set Au k3).  = -1 and go to 6) to optimise in the steepest- 

descent direction. 

Consider next the case when k > 0. To choose a search direction 
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we assume that the performance index is, locally, a quadratic function of 

the control function, At this stage the current gradient function, 

(av(x s,u.)/au), is exactly characterised by the components gkfl(x s  ,u.) 

of basis-functions 41, -.? 6'04  and T(l,k--1,k) and T(k+1+1,k) are both 

available, from stage 4). Recall that a necessary condition for a control 

function to be the 07
s
-optimal control function belonging to U(1,k+1)" is 

that the components of basis-functions 41, .., 4.10.1  present in the gradient 

function for the control function should all be zero. Due to the check 

of stage 3) of this algorithm, we can only reach this point in the algor-

ithm if the components of basis-functions 41, .., ik  present in the 

current gradient function (Fl(x 
s
,u.)/3u) are all relatively small compared 

to the component of 6k+1 
 present in the current gradient function. Hence 

we need only consider the problem of reducing to zero the component of 

basis-function 6k+1 
present in the gradient function in order to achieve 

(at least approximately) the 1"s
-optimal control function belonging to 

U(l,k+l)". 	Because T(1,k+1-4-1,k+1) is not yet known, we cannot predict 

a control function change to do this. 	If the performance index is, 

locally, a quadratic function of the control function and T(1,k+1.4-1,k+1) 

is p.d. we can, however, choose a search direction such that a control 

function variation in the search direction should decrease the component 

of basis-function 6k+1 
present in the gradient function while leaving 

unchanged the components of basis-functions 41, .., ik  present in the 

gradient function. 

We next shown that the search direction which is exactly charac- 

terised by the components ALL
10.1

(j) = (T(1,k9-1,k)
-1 

 T(k+1+1,k)1 is suitable. 
I 	—1 
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If the performance index function is locally quadratic, we see from the 

U-*G map property of T(1,k+1÷1,k+1) that a change of nAuk+1(j) (c being 

•a scalar) in the components of basis-functions 	.., 610.1  present in 

the control function should cause a change of mgk+1 in the components of 

basis-functions 	.., 6104  present in the gradient function where 

Agk+1  = T(1,k+1+1,k+1)Auk+1(j) 

[ 

= T(1,k+1,k) T(k+141,k) T(1,k+1,k)-1T(k+141,k) 

T(k+1+1,k)T T(k+1+k+1) 	-1 

= 
 [

9(k,l) 

T(k+1-+1,k)TT(1,k+1,k)-1T(k+1-q,k) - T(k+14k+1) 

Since T(1,k±1,k) is p.d. (otherwise we would not have been able to reach 

this point of the algorithm), we see from Lemma 3.5.1 that if 

T(1,10-141,k+1) is p.d. (as it would have to be for minimisation on 

U(1,k+1)" to be possible): 

T(k+1+1,k)TT(1,k+1,k)-1T(k+1+1,k) - T(k+1-qc.+1) < 0. 

Hence, under the above assumptions, a change of PAuk-1-1(j) in the 

components of basis-functions 61,*.., 	present in the control function 

should cause no change in the components of basis-functions 	ik  

present in the gradient function but should cause a reduction (for S2 > 0) 

in the component of basis-function £k+l present in the gradient function. 

Therefore,.undei the above assumptions, AU
k+1  (j) does exactly characterise 

a suitable search direction. 

,. 
Hence compute AU

k+1  kj) and go to 6) to optimise in the 

direction exactly characterised by it (note that if k = 1 the search 

direction is exactly characterised by Au2(j) = (T(1+1)-1T(24-1) -13T). 
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6) 	Optimisation in the Next Search Direction  

Optimise the control function in the search direction chosen by 

stage 5) of this algorithm by minimising with respect to the scalar 2 

the performance index V(Fcs ,u.+2Fk+1 AUk+1(j)). 

Denote the minimising value of Q by Q*. 

Then set u.3+1 = u. + n*rk+1Au 	
(J). 

The optimal control function change in the search direction was 

clearly exactly characterised by the components Auk+1(j)* = 0*Auk+1(j) 

of basis-functions 41, "7 4k4.1. 

Since k+l basis-functions have now been defined, set k = k + 1. 

Set j, the iteration index, equal to j + 1. 	Go to 2). 

This concludes the statement of the optimisation algorithm. 

V Comment 3.11.1 	It will be noted that there are several rather 

arbitrary decisions taken by the above algorithm which have only been 

justified intuitively. 	Nevertheless, it is likely that our algorithm will 

cause the performance index to decrease more rapidly as a function of 

iterations than would the steepest-descent algorithm which uses the 

optimal step in each search direction, because our algorithm always 

attempts to optimise on as large a linear manifold of the control space 

as possible and, as may be seen from 3.7, an algorithm which succeeds in 

doing that will cause faster convergence to the minimal performance index 

than the steepest-descent algorithm. 	It is also likely that our 

algorithm will cause non-quadratic performance indices to be decreased 

more rapidly as a function of iterations than would the conjugate-gradient 



166 

algorithm, since the latter algorithm does not check the validity of 

the information it uses to construct its search directions, unlike 

our algorithm. 	Since the major computational effort associated with 

each iteration of each algorithm mentioned above is common (the 

gradient function evaluation and the optimisation in the 

computed search direction), it therefore seems likely that our 

algorithm will be more effective at minimising in non-quadratic 

environments than either the steepest-descent algorithm or 

the conjugate-gradient algorithm. This statement is, in fact, 

justified for a particular problem by the computed results which 

A are presented in the following section. 

V Comment 3.11.2 The U+G map matrices T constructed by the above 

  

algorithm will not necessarily be tridiagonal unless the environment is 

perfectly quadratic and no numerical errors occur. For this reason 

we have not forced a tridiagonal structure on them but have tried_ 

to choose them so as to extract as much information as possible from 

A the available results. 

• 
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3.12 A Computed Example  

The results of applying the gradient-decomposition based 

optimisation algorithm of 3.11 to a well known rocket problem are here 

presented. The problem is one on which the conjugate-gradient 

algorithm was demonstrated in {27}. The mathematical formulation of 

the problem is: 

min 	V(x ,u) for the dynamical system 
u{0,100} s  

Yt)  = x3(t)  

2
(t) = 64cos(u(t)) 

X3(t) = 64sin(u(t)) - 32, Vt e {0,100}, 

where x = (x1(0) x2(0) x3(0))T  = 0(3,1) 

V(ms,u) = -x2(100) + 0.002(x1(100) - 105)2  + 0.05(x3(100))2. 

The following algorithms were applied, all starting with the 

initial control function u(t) = 1.55 - 0.014t (rads), Vt e {0,100}: 

(a) the steepest-descent algorithm with optimisation in each 

steepest-descent direction, 

(b) the conjugate-gradient algorithm, 

(c) the gradient-decomposition based optimisation algorithm of 3.11 

with p = 0.16. 

For each algorithm, the performance index value achieved after 

optimisation in each search direction is plotted versus iterations 

(i.e. the number of optimisations in chosen search directions) in Fig. 3.3. 

It can be seen from Fig. 3.3 that our algorithm of 3.11 did tend to 

choose more effective search directions than did the other algorithms. 

The same algorithms were also applied when the initial control 
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function was that control function which resulted from the first 

iteration of the steepest-descent algorithm for the previous trial. 

The results are shown in Fig. 3.4. 	It can be seen from Fig. 3.4 

that the gradient-decomposition based algorithm of 3.11 again tended 

to choose more effective search directions than did the other algorithms. 

For each algorithm, the most expensive computational feature 

associated with each iteration was the optimisation in the chosen search 

direction. This feature was common, so that each iteration of each 

algorithm took about the same amount of computation time. Therefore, 

for this example, the gradient-decomposition based optimisation algorithm 

of 3.11 has been shown to be more effective at control function 

optimisation than the steepest-descent and conjugate-gradient 

algorithms. 
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3.13 Concluding Comments 

In this chapter, a gradient-decomposition approach to control 

function optimisation has been introduced. The approach has been 

fruitful in that it has enabled new optimisation algorithms to be 

developed. The algorithm of 3.6 is designed for optimisation 

problems defined for linear dynamical systems with quadratic 

performance index functions. As well as optimising the control function 

for a particular initial condition, the algorithm determines a 1.14G map 

matrix which is useful for optimising the control function for other 

initial conditions. The behaviour of the gradient-decomposition 

based optimisation algorithm of 3.6 has been compared with that of the 

steepest-descent algorithm in 3.7, where it is shown that the gradient-

decomposition based algorithm is at least as effective as the steepest-

descent algorithm, and is usually more effective. It can be shown that 

our gradient-decomposition based algorithm of 3.6 is related to the 

conjugate-gradient algorithm, but our algorithm is more versatile since 

it can check the accuracy of the information it deduces from previous 

iterations and since it deduces (.1.4G map data which is helpful for 

optimising for other initial conditions. The derivation of the lower-

bound results of 3.4 depends on the gradient-decomposition approach. 

The results are used in the algorithm of 3.6 to decide when a required 

approximation to the optimal control function belonging to the infinite-

dimensional control space has been achieved. They are also used in 3.9, 

where we consider the determination of a control law which is a certain 

desired c(g(q))-approximation to the control law which determines the 
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optimal control function belonging to the infinite-dimensional 

control space as a function of initial conditions. The lower- 

bound results, and their applications, are believed to be novel. 

In 3.11 the gradient-decomposition approach is used in a new algorithm 

for optimising in non-quadratic environments. The algorithm has proved, 

for a particular example, to be more effective than either the 

steepest-descent or the conjugate-gradient algorithms. The algorithm 

may also be used in quadratic environments. 

Some of the results developed in this chapter have been 

published elsewhere by the author {38}. 

An algorithm which has not been mentioned so far is that of 

Fletcher-Powell (Davidon). The algorithm was originally designed 

for optimising on a finite-dimensional space. It has recently been 

extended, in a straightforward way, to enable optimisation on an 

infinite-dimensional space to be performed 1391. The extended version, 

however, requires operations to be performed using infinite-dimensional 

matrices (estimates of the inverse of the second-derivative operator). 

It is interesting, and computationally significant, that our gradient-

decomposition approach leads to algorithms which, while behaving in 

essentially the same way as the Fletcher-Powell (Davidon) algorithm, 

use matrices the dimension of which depends only on the number of 

iterations which have been performed, and does not depend on the 

dimensionality of the space on which optimisation is desired. 
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Chapter 4 	Final Remarks 

It may be considered that, loosely speaking, there are 

three necessary conditions for efficient control function optimisation 

to be possible: 

(a) there should exist a mathematical model of the system to be 

controlled which enables system responses to be evaluated with 

relatively little computational effort, 

(b) there should exist effective optimisation algorithms which can be 

used with the efficient model of the system, and 

(c) since most effective algorithms are (at least in some sense) 

iterative, there should exist a means of determining when sufficient 

iterations have been performed. 

In this thesis we have discussed the use of the convolution-

description of linear dynamical systems since it can sometimes have 

considerable computational advantages, in spite of the storage 

requirements, and can thus help to enable condition (a) to be satisfied. 

By employing procedures based on synthesising optimal control 

functions from components of linearly independent basis-functions, we 

have developed new algorithms for optimising control functions for 

linear convolution-described dynamical systems. We have thus 

contributed towards satisfying condition (b). 

Our lower-bounds for the minimal performance index have been 

used for deciding when an adequate approximation to the optimal control 

function, or optimal control law, has been achieved. We have thus 

made a contribution towards satisfying condition (c). 
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A more detailed discussion of our contributions will not 

be given here, since they have all been discussed in 1.3, 1.4 and in the 

body of the thesis. 

In the future it is intended to apply our results to more 

examples. 	In particular, it would be especially interesting to compare 

the behaviour of the gradient-decomposition based optimisation algorithm 

of 3.11 with that of the steepest-descent and conjugate-gradient algorithms 

for a number of large, non-quadratic, examples. The ideas used in 

this thesis have been applied (by the author) to optimisation problems 

subject to linear, terminal-equality, constraints. 	It is hoped to 

be able to apply them to optimisation problems subject to more general 

constraints. 
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