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ABSTRACT 1.

In this thesis a set of axioms sufficient to
generate the Darwinian theory of natural selection is
developed and some of the implications of the theory
derived.

In the process of developing the axioms the basic
assumptions of the theory are clarified and the doubis
raised by its apparent tautological nature resolved.

The theoreus derived from the axioms show that certain
consequences that must be derivable in a theory of natural
selection can be derived. (Z.g» One theorem shows that
there is always a subpopulation, fitter than the
population as & whole, which is in the process of taking
over the population; other theorems show that under certain
circumstances less fit subpopulations will be eliminated.)
They also show that the axiomatized theory has various
expected consequences. (T.g. One theorem states consequences
of density dependent selective advantage; several theorems
show differences between natural selection in interbreeding
populations and natural selection in non-interbreeding
populations.) Thus the theorems provide evidence for the
assertion that these axioms will generate the Darwinian
theory of natural selection.

Two further axioms are stated in order to indicate how
the axiomatized theory of natural selection can be embedded
within an axiomatized theory of evolution and further

theorems are proved with the use of these axioms,.
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CHAPTER 1 : HISTORICAL INTRODUCTION

Section l.1l: Darwin's Theory of Natural Selection

To the layman, Darwin's claim to greatness lies in
his theory of evolutiony; +to the bioclogist, it lies in
his theory of natural selectione This theory was well
summarised by Darwin in the following paragraph from

(1)

The Origin of Species:

"If under changing conditions of life organic
beings present individual differents in almost
every part of their structure, and this cannot bse
disputed; if there be, owing to their geometrical
rate of increase, a severe struggle for life at
some age, season, or year, and this certainly
cannot be disputed; then, considering the infinite
complexity of the relationg of all organic beings to
each other and to their conditions of life, causing
an infinite diversity in structure, constitution,
and habits, to be advantageous to them, it would be
a most extraordinary fact if no variations had ever
occurred useful to each being!s own welfarw, in the
same manner as so many variations have occurred
useful to man., But if variations useful to any
organic being ever do occur, assuredly individuals
thus characterized will have the hest chance of
being preserved in the struggle for life; and from
the strong principle of inheritance, these will tend
to produce offspring similarly characterised, This
principle of preservation, or the survival of the
fittest, I have called Natural Selection."

Succeeding generations of biologists have filled in the
details of "the strong principle of inheritance® and of
the nature of the occurrence of variations, but Darwin's
principle of natural selection is, essentially unaltered,

the basis of the wmodern theory of evolution,



Section 1.2: The liodification of Species over Time

By his massive presentation of the evidence for
evolution, Darwin convinced the world that evolution had
in fact occurred, but with the emergence of an understanding
of the mechanism of heredity (i.e. lMendelian genetics) the
efficacy of Darwinian selection as a force in evolution
began to be seriously questioned, for selection appeared
to be a weak force compared to the power of mutation, and
a propensity for single factor theories of evolution
hindered the recognition that a cowbination of mutation

(2)

and natural selection was necessary. According to Huxley:

"It was not until about 1930 that the facts behind
the chromosome theory and the mutation theory could
be finally reconciled with the idea of gradual
evolutionary change and the selective origin of
adaptations in what R.A. Fisher called, in the
title of his iwmportant book 'The Genetical Theory
of Watural Selection'!.®

(It is important to note that Fisher's work was a
reconciliation of genetics and natural selection, not a
derivation of natural selection from genetics.) Largely
as a result of Fisher's workz(s)

"The many dissenting theories were almost suddenly
fused,; in the 1930's, into a broad unified theory,
the 'synthetic theory'....In essence it is a two
factor theory, considering the diversity and
harmonious adaptation of the organic world as the
result of a steady production of variation and of
the selective effects of the environment?®. :

Thus, by the 1930's, the concepts of mutation, gene, and

population had been added to the theory of evolution,
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clarifying the mechanisms of variance and inheritance
and elucidating the role of natural selection. This
essentially completed the theory of the modification of
species over time, though many details stiil remain to

be clarified.

Section 1.3: The Origin of Species

This understanding of the modification of species did
not, however, provide an understanding of the origin of
species (i.e. the splitting of one species into two species).,

(4)

As Hayr comments:

"It was not possible to state the problem of the

multiplication of species with precision until

the biological species concept had been developed.®
The essential prerequisite for the developument of the
biological species concept was provided by Dobzhansky in
1940 in his paper introducing the idea of isolating

(5

mechanisms ) over the next twenty years this idea was

. (6)
explored and developed by Dobzhansky, lMayr, and others,
resulting in the statement of the biological species
concept;, which defines species as sets of organisms which
interbreed within their own set and are reproductively
isolated from organisms in other sets. Once the speciles
has been defined in these terms it is possible to ask how

species split by asking how reproductive isolation can

develop between organiswms within a set. It is also
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possible to ask what the role of natural selection may be
in meintaining fertility between organiswms in the same set
and reducing fertility between organisms from the two parts
of a splitting set. Answers to these gquestions have been
put forth by the proponents of the biological species
concept, but they have not coalesced into a really
definitive theory. Theée concepts are, however, expected
to form the basis of a definitive explanation of the origin

of species.

Section l.4: On the Relation Between Natural Selection

and Svolution

otice that the two previous sections have not
discussed the history of the develovment of the theory of
natural selectiong; they have discussed the history of
the development of the application of the theory to the
theory of evolution. Natural selection is a part of the
theory of evolution but the theory of evolution is not a
part of it. Thus the theory of evolution has been
presented here not because it can be derived from the
theory of natural selection but because it provides a
pfactical background against which the theory (and hence
the axiomatization of the theory) can be judged; this
fact has been used extensively in the development of this

axlomatization to discover in the early statements of the
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axioms, errors which would lead to obviously false
statements in the theory of evolution. The reader may
similarly use the theory of evolution to test the final

statements of the axioms.

Section 1.5: Mathematical Approaches

Because of the enormous number of generations involved
in modification through natural selection, particular
consequences of ifs action are not easily understood by
the intuitive methods which form the basis of most biological
thinking. Intuition is e cessarily based on experience with
a relatively few generations and, because of the none
deterministic nature of the individual events, experience
with them is not easily extrapolated by intuition alone to
generalisations about the course of events over millions of
years. Thus it is not surprising that the most important
theoretical contribution of mathematics to biology has been
in the field of evolution.,

This contribution has been made by statistical genetics,
which proved that Mendelian heredity and natural selection
could work together to produce the characteristics of
natural populations. It proved that effects which
intuition had dismissed as negligible(v) could be most
important in producing evolutionary change. It proved
that effects;, such as altruism,(s) which intuition had

decided certainly could not be produced by natural
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selection, could be produced by natural selection. And,
of course, it confirmed the possibility of many effects
which intuition had decided would be produced by natural
selection.

As yet, no other mathematical approach has made a
comparable contribution to the understanding of evolution,
though this is not because there are no further important
problems. Two different approaches will be described below
in order to provide further orientation in what has been
done, mathematically, in this area and in order to mention
some light which they incidentally throw on the relation
between Mendelian genetics and natural selection.

J«H. Woodger has pioneered the application of the

9)

axiomatic method to biological problems,(

(10)

using the

techniques of Principlia HMathematica in an attempt to

provide a logically solid foundation for genetics. (These
techniques will be familiar to the mathematical readers;
Woodger's axiomatization will not be discussed in detail
here as the axiomatization presented in this thesis is
independent of it.) This work, in addition to clarifying
the foundations of genetics, has led to some clarification
of the texonomic problem of classifying groups of animals
which are in the process of becoming distinct speciesg
this taxonomic work has been domne by Woodger himself(ll)
and by Gregg.(l2) Woodger has further used these techniques
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(13)

in a recent paper on random (i.e. non-selective) evolution
thus underlining the fact that natural selection is not a
necessary consequence of ldendelian genetics.

Still another mathematical approach to evolution has

(14)

been developed by Barricelli, whose principal technique
is computer simulation. He studies the effects of certain
artificial reproduction rules on patterns of numbers (called
symbioorganisms) which are created; from a firgt generation
of random numbers, by the repeated application of the rules.
He claims to have obtained such phenomena as selection,
competition, and even parasitism, though it is impossible
to evaluate these claims without more of the computer
output than has been published and, wmore important,; without
explicit definitions, acceptable to the whole biological
community, of these terms. The apparent ability to obtain
evolutionary phenomena in a selective but decidedly non-
lendelian universe is;, however, interesting in underlining

the fact that lMendelian genetics is not a necessary

conseguence of natural selection.

Section 1l.6: Conclusion

This chapter has provided an orientation to the state
of development of the theory of natural selection and of
the related theories in terms of which it is usually
discussed, namely the theories of evolution and of Mendelian

genetics. It has further provided an orientation to the
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mathematical approaches which heve been developed to
elucidate thede theories+ It has not provided a history
of the axiomatic development of the theory of natural

selection because, to the authorfs knowledge, there is

nones,
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CHAPTER 2 : INTRODUCTION

Section Z2.1: Purpose

What are the basic assumptions of the theory of
natural selection? What are their implications? It
is the purpose of this thesis to attempt to answer these
questions, particularly the first. The exioms that will
be stated, are, we assert, an explicit statement of the
basic assumptions of the theory of natural selection.

The theorems that will be stated are a few of the
implications of these assumptions.

The reasons for this attempt are twofold: <firstly
because the lack of an expliclit statement of the theory
has led to serious question of its worth; and secondly
because the great difficulty of deriving in a human life-
time an intuitive understanding of a process occurring
over millenia poimts to a need for a mathematical tool
to ald the intuition. The goal implied by the first
reason is achieved in the thesis; the serious charge of
tautological reasoning is answered. The goal implied by
the second reason is achieved to some at present
unknowable extent; +the only way to prove the achievement
of this goal is to show a statement derivable from the
axioms which is important, not intuitively predictable,
and either intuitively or wverifiably true; no such

theorem has yet been derived (though important,
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intuitively predictable ones have been), but this is
hardly surprising at this stage of the development of
the system. Thus the axiom system achieves the first

goal and gives some reason to believe that it may achieve

the second.

Section 2.2: Two Concepts Which Are not Essential to

the Theory

It hagsy, since Fisher published The Genetical Theory

of Natural Selection, been usual to regard natural selection

as almost a part of Mendelian heredity; natural selection
is almost never considered independently of Mendelian
heredity. However, as was mentioned in the previous
chapter, natural selection is independent of Mendelian
hereditys; +this is not surprising since Darwin derived
the theory while believing in an antithetical mechanism
of inheritance. Therefore it is a part of the task of
this thesis to separate the theory of natural selection
from the genetical theory of natural selection. By so
doing we shall clarify not only the process of natural
selection but also the extent to which different theories
of heredity are compatible with it.

Just as we shall ignore, without denying, the
Mendelian mechanism of heredity, so also we shall ignore,
without denying, the statistical aspect of the details of

the process of natural selection. Yewton has shown in



physics that it is possible to describe, without statigstics,
the global behaviour of a system in which every individual
event is determined not by deterministic laws but only by
statistical laws., Similarly Darwin has showvn (though not
as precisely) in biology that it is possible to describe,
without statistics, the global behaviour of a system in
which every individual event is determined not by
deterministic laws but only by statistical laws. Newton's
success in ignoring statistics is based on the fact thsat
the size of the objects considered is so large that the
statistical behaviour is smoothed into average behaviour.
Darwin's success in ilgnoring statistics is based on the
fact that the size of the time interval considered is so
large that the statistical behaviour is smoothed into
average behaviour. Thus there is considerable historical
evidence to support the contention that a theory may be
very useful, even though it ignores the statistical aspects
of the phenomena, as long as the numbers involved in the
phenomena are large enough. By taking advantage of this
historical precedent and ignoring the statistical aspects,
we shall be able to present the theory in its simpler form.,
There is yet another concept which might be expected
to play an important part in the axiomatization which we
shall ignore. This, unlike, the previous, biological

concepts, is & technical mathematical concept and will be
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best mentioned within the context of a description of
the axiomatic method; since such a description is in
any casge necessary to orient the non-mathematical reader, .

it will be presented in the following section.

Section 2.3: The Axiomatic Method

The axiomatic method begins by setting forth
certain fundamental statements, the axioms, which the
reader is asked to accept, without proof, as the basic
assumptions of the theory; thus "If L is a line then
there exists a point not on L." is one of the axioms of
Huclidean geometry, while the law of the survival of the
fittest is one of the axioms of the theory of natural
selection. Axioms are usually intultively reasonable
statements about the concept which is to be axiomatiseds;
thus the two examples cited above are intuitively
reagsonable statements about, respectively geometry and
natural selection. From these axioms it will be possible,
using the methods of proof made familiar by Buclidean
geometry, to deduce other statements, the theorems, which
therefore must be true if the axioms are true; thus
"Every polnt is on at least two distinct lines." is one
of the theorems of Huclid ean geometry, while "No organism
is its own ancestor." is one of the thecrems of natural
gselection. The theorems themselves provide a check on

the truth of the axioms, for if a theorem which is
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demonstrably not true of the concept which was axiomatized
is derivable from the axioms, then at le ast one of the
axioms is not true; this means that the discovery of an
error in an axlomatized theory necessitates correction

of the error at its source (possibly in the basic structure
of the theory) which prevents the unlimited proliferation
of ad hoc assumptions which makes much of biology resemble
a patchwork quilt. Hence the axiomatic method allows the
number of statements which have to be accepted solely on
the grounds of intuitive probability to be reduced to a
bare minimum, and it provides a check on the truth of
those that are accepted on such grounds.

These axioms contain certain words, the undefined
terms, which usually have a relatively clear intuitive
meaning but whose me aning is never explicitly stated;
thus "point" and "line" are undefined terms in Buclidean
geometry, while "fitness" and "organism" are undefined
terms in the theory of natural selection. These terms,
though undefined, are not completely free from restriction
on their meaning, for they are limited by the assumption
that the axioms are true statements about them; thus
"organism" may be thought of as meaning "bacterium",
*plant", or any of wmany other possibilities, but it mey
not be thought of as meaning; e.g., "real number", for a

real number does not have ancestors with the properties
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stipulated in the axioms. Just as all other statements
in the theory are proved by using the axioms together
with the laws of logic, so all other terms in the theory
are defined by using the undefined terwms together with
the terms of logic.

These laws and terms of logic constitute the other
concept which it was mentioned would be ignored. By this
we mean not that we shall not use them (for we must) but
that we shall not explicitly state them and that when we
use them we shall not explicitly state that we are using
them. This is possible because these laws are in large
part derived from (and presumably form the basis of) our
usual intuitive method of reasoning and hence we may
assume that in using this method we shall not contravene
the laws. This assumption may in some cases be false,
but the simplification made possible by the assumption is
great ehough, and the risk is small enough, that most
mathematicians prefer to take the risk. We shall,
therefore, use the methods of reasoning coumonly used
by mathematicians rather than the formal methods of

mathematical logic.

Section 2.4: Description of the System - Introduction

We shall separate the axioms into three sets; which
shall be described briefly in this section and more fully

in the following sections., The first set describes a
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system which we call a Biological Universe; this system
is simply the biological background which Darwin, and
everyone else, took for granted. The second set
describes a system which we call a Darwinian Universey
this set describes the theory of natural selection and
places it in the above mentioned biclogical background.
The third set describes a system which we call a Diverse
Darwinian Universe; this set adds to the concepts of
the Darwinian Universe the concept of the existence of

different environments.

Section 2.5: Description of the System - Biological

Universe

The axioms of the Biclogical Universe are probably
the only ones in the thesis which are simple enough to
be called self-evident truths. They are the following
very simple statements about the ancestor-descendant relation:
no organism is its own parents if organisml (read
"organism sub one") is an ancestor of organismz then
organism2 is not an ancestor of organisml; if organisml
is equal to organism2 then every ancestor of organisml is
an ancestor of organism2 (this is really a statement about
what we mean by "is equal to"); there are a finite number
of organisms in any one generation of any population.
With these axioms we can prove scveral theorems which are

useful later in proving theorems that are consequences of
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natural selection. But the wmain purpose of stating
these axioms is simply to provide the background which
is necessary in order to state the axiowms of natural
gelection, for it is iwmpossible to discuss either the
successive generations of a population or inmheritance
without some statement of what is mecant by "ancestord,
Thus a Biological Universe 1s simply a set of organisms
which are related to other organisms in the set by the

ancestor relation.

Section 2.6: Description of the System - Darwinilan

Universe

The Darwinian Universe is described by the same
number of axloms as the Biological Universe, but the axioms
are nmuch more complicated. The first states that the
populations that will be the object of discussion satisfy
the axioms of the Biological Universe. The second
introduces the concept of the fitness of an organism,
stipulating that the fitness can be described numerically.
The third is the survival of the fittest axion, which
states that the universe 1s such that in the long run a
fitter subpopulation will increase in numbers relative
to a less fit subpopulation; the statement of this is
necessarily rather complicated as the phraée "in the long
run" covers a very complicated concept. The fourth is

the hereditary variation axiom, which is also very



complicated as we must state in it that fitness is
hereditary but not too hereditary; 1i.e. that there are
changes whose influence is sufficiently lasting to change
the composition of the population but not sufficiently
lasting to forbid further changes. Together these four
axlioms glve the properties of the Darwinian Universe; it
is a set of populations with a fitness assumed for the
individual members of the populations which is such that
(1) there are always some lineages that are fitter than
others, and (2) the numbers of descendants in these
lineages will increase relative to the numbers of

descendants in the less fit lineages.

Section 2.7: Description of the System - Diverse

Darwinian Universes

In the Darwinian Universe the councept of environment
is never explicitly mentioned, though certain properties
of the environment are iwmplicitly described in the axioms.
For example, since fitness is a property of an organism in
an environment, the statement that fitness is reasonably
hereditary implies that the environwent is reasonably
stable. Similarly the source of the new variation
guaranteed by the hereditary variation axiom may be in
change in the environment or it may be in change in the
hereditary elements within the organism. Also, to give

yet another example, the survival of the fittest axion
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may be seen as a statement about the type of environment
in which the organisms live. But, although these axloms
do indicate some properties of the environment in their
statement of the environment-organism relationship, they
never indicate that a particular organism may have one
fitness in one environment and quite another fitness in
another environment; in fact the axioms do not allow
this possibility since the fitness function assigns a
unique fitness to each organism, Thus while the
Darwinian Universe describes the modification of
populations in the tiwme dimension; it cannot account for
the modification of one population into two populations
by selective forces acting in opposite directions.

As is indicated in the previous chapter, this is not
the result of a failure to completely translate Darwin's
insights into explicit statements, for(l5)

"Darwin failed to solve the problem indicated by

the title of his work. Although he demonstrated
the modification of species in the time dimension,
he never seriously attempted a rigorous analysis
of the problem of the multiplication of species, of
the splitting of one species into two."
Thus in order to describe the splitting of species it is
necessary to go beyond the Darwinian Universe; to add
axioms which formalize post-Darwinian insights. These
post«Darwinian insights are not insights into the process

of natural selection but rather into the way in which

natural selection interacts with the diversity of
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environments to produce the diversity of specles. To
axiomatize these insights is clearly not a part of the
stated task of the thesisg however it is very difficult
to gain an intuitive understanding of the Darwinian
Universe without some discussion of how it interacts
with the diversity of environments, so we shall present
a partial axiomatization of these post-Darwinian
insights. This axiowmatization wili be neither complete
nor definitive, but it will answer some of the questions
about how the Iarwinian Universe can be embedded into a
larger universe in which the origin of species can be
explained.

A Diverse Darwinian Universe is essentially a set of
Darwinian Universes which have different fitness functions
and therefore different selective properties, It is
described by two axiomss: the first states that each
fitness function behaves as a fitness function in a
Darwinian Universe; the second states that for each
population there are at least two different fitness
functions with opposite selective properties. With
these axioms 1t is possible to work out some of the
conseguences of the existence of environments with

different selective properties,
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Section 2.8: Description of the Presentation

The substantive part of the thesis thus consists of
three sets of axioms together with the statements and
proofs of a few of the theorems which can be derived from
them; these are found; for each Universe; in the
appendix at the end of the relevant chapter. The
majority of the thesis, however, is devoted to explaining
(with biological examples in the most complicated cases)
the meaning of the axioms, definitions, and theorems.
There are no mathematical prerequisites for understanding
them other than a vague grasp of the concept of function.
(It must be admitted, though, that a real appreciation of
the system would probably require not only what is called
mathematical maturity but also its analog, biological
maturity.) Thus, though a solid mathematical background
and a solid biological background would be helpful,
neither is required for understanding our answer to the
questions stated at the beginning of this chapter.

This answer is given in the following chapters.
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CHAPTER 3 : BIOLOGICAL UNIVIERSES

Section 3.13 Undefined Concepts

Before we can discuss natural selection we must
delineate the objects upon which natural selection works.
These objects are sets of organisms and their descendantss
Thug the objects are themselves structured entities and it
will be necessary to state this structure in axioms in
order to provide a firm foundation for the later
axiomatization of the process of natural selection.

The difficulty of defining "life® has been pointed
out so often that it will come as no surprise to the
reader that we shall take Yorganism” as an undefined
concept. By "organism" we shall mean (intuitively) the
same self-reproducing living entities that are the usual
objects of study in biology. However, i1f there should
happen to be other entities, not usually considered alive,
which satisfy the axioms in this chapter, then they will,
within this system; be considered to be perfectly
respectable organisms. Similarly, if there should happen
to be entities which are usually considered to be alive
but which do not satisfy all of the axioms in this chapter,
then these entities will not, within this system, be
considered to be organisms. Thus,; any entity which is

part of a group which satisfies these axioms is an
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organismsy any entity which is not contained within such
a group is not an organism.

The reader should, therefore, while reading each axiom,
decide if there are any entities which he would call
organisms which do not satisfy the axiom and, after reading
all of the axioms, decide whether there are any entities
which he would not call organisms which gsatisfy the axioms.
If there are any entities of the first kind, then he
should note that nothing that we subsequently assert to be
true of all organisms can be taken to be necessarily true
of these entities. If there are any entities of the
gsecond kind, then he should note that our "definition®™ of
organism is wider than his "definition® of organism. It
is desirable that there be very few (if any) entities of
the first kindg it is iumaterial for our purposes whether
there be few or many entities of the second kind. (In
fact, for a given axiom gystew, the more different types
of entities there are which satisfy the axious, the more
interesting is the system.) The axioms should characterize
at least the vast majority of those entities which are
normally considered to be organisus.

The other concept which will be defined only by the
way in which it is used in the axiows is the concept of
parent, or immediate ancestor. This concept is not of an

entity but of a relation between entitiesg. In this it is
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gimilar to, for example, the relation "greater than® used
in arithmetic. Just as one says "five is greater than
four", one also says "John is a parent of Jim", These
two relations are also similar in having a directions:

the statement "five is greater than four" is not the same
as the statement "four is greater than five®; gimilarly
the statement "John is a parent of Jim" is not the same
as the statement "Jim is a parent of John'. For the
relation “is greater than" the symbol *>" is generally
useds for the relation "is a parent of" the symbol #AY
will be used. Thus "John A Jim" will be used to mean
TJohn 1s a parent of Jim". This symbol is a combination
of the letter "A" and the symbol for "is greater than';
the letter "A" appears closest to the ancestral (i.e.
parent) organism and this fact can be used as a mnemonic
device for remembering which is the parent organism. If
necessary, the symbol may be reversed so that the name of
the descendant comes first: thus “Jim A John" also
means "John 1s a parent of Jim" (or "Jim is an immediate
descendant of John"); note that the letter "A® still
appears closest to thé organism which is the ancestor,

We note also (as another mnemonic device) that the pointed
end of the symbol points at the younger organism, the one
whose age is "less than" the age of the other, just as the

pointed end of the "is greater than® symbol in 95 >4n
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points at the smaller number. It would; clearly,; be
ridiculous to use names like John and Jim for all of the
organisms we will discuss; we shall hereafter, denote an
organism by the letter "0" (for organism} with a subscript
or superscript to allow us to distinguish between different
organisms. Thus we shall use "Oj 4> 0s" to mean "organism
sub-one is the parent of organism-sub-two",

There is one more notation that must be explained
before the first axiom can be stated; it is the notation
for "is not a parent of", Normally in mathematics a
slash through a symbol denoting a relation is used to
denote the negation of the relation;g thus " # ¥ means
"is not equal to%, Similarly ",@% " will be used to

denote "is not a parent of",

Section 3.2: Axioms Delimiting the Ancestor Relation

The first axiom states merely that no organism is the
parent of itself.

Axiom 3.1l: Tor any organism O, O /@ﬁ C.

It 1s desirable to ensure not only that no organism
is its own parent but also that no organism is its own
ancestor, In order to do this it is necessary first to
define the general concept of ancestor. The next
definition defines the symbol "[> ® +o denote the

relation "is an ancestor of",
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Definition 3.1: 010z 1if and only if O30 or there

exists a non~-empty set of organisms g)g, O4s5 055 o3 OK%
such that 014 023404405 ... A OxA 09,

This definition states that 07 is an ancestor of Og
if either O3 1is a parent of Og or there is a set of
organisms such that O; is a parent of 0z, Oz is a parent
of Og4s Og4 is a parent of Os, and so forth up to Ox is a
parent of Os. Again note that the pointed end of the
gymbol is pointing at the younger organism.

Axiom 3.2: For any organisms O; and Og, if 01t Og,
then Oggjol.

This axiom states that if 07 is an ancestor of Og,
then Og 1s not an ancestor of 0;. Using these two axions
we can prove that no organism is an ancestor of itself, as
is stated in the following theorem.

Theorem 3.1: TFor any organism O1» Oll?‘Ol.

We can also prove that if 07 is an ancestor of 0o,
and Op is an ancestor of 0Oz, then 0 is an ancestor of
Oz. This 1is stated formally in Theoreu 3.2.

Theorem 3.2: TFor any organisms Oy, Op, and Oz, if 03105

and Og > Oz, then 0 D05,
The above two axioms give some idea of what is meant
by "O0; is an ancestor of O5"; the next axiom will give

gome idea of what is meant by "01 1s equal to Oy".
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Axiom 5.3 For any organisms 07 and O, if O; = Op then
1) if 0z 07 then 0305, and 2) if 0zB> 0y then Oz p 07
This axiom states that if 07 = 0o then every organism
in the set of ancestors of 07 is in the set of ancestors
of 0o and every organism in the set of ancestors of Og is
in the set of ancestors of 07. Notice that it does not
say that every pair of organisms with this property are
equal; if it did then it would imply that if 05 and Oy

are siblings, then 03 = 0s.

Section 3.3: Definition of Lineage

Now when we discuss natural selection we will be
concerned with its action on populations over several
generations. Consequently we must eventually decide
what we mean by a "population over several generations®.
Clearly the first step is to define a set containing a
specified collection of organisms and its descendants over'
the generations; we shall call such a set a lineage; The
next few definitions will be devoted to explicitly defining
this concept.

Definition 3.2: D 1is a descent if and only if D is an

ordered set of organisms {bo, O15 025 eccy OK} guch that
1) X= 1 and 2) for any i such that 0<i< K, 0;<A0;{+7 -
A descent is; thus, a single line of ancestors, where

Op is a descendant of all of the other organisms in the
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descent and OK is an ancestor of all of the other organisms
in the descent. In the case of sexually reproducing
organisms a single descent will not contain all of the
ancestors in the family tree since the descent will contain
only one of the parents of each organism. Notice that 04
is one generation removed from Og; Og 1s two generations
from Opn; and, in general, O; 1s i generations removed

from Op. We use this to define "i~descendant®.

Definition 3.3: The organism O' is an i-~descendant of

the set S 1f and only if there exists an organism O" in
S and a descent D such that 0' is the first element of D
and O" is the i+1°% clement of D.

Thus a child would be a l~descendant; a grandchild
would be a 2-descendant; a great~grandchild would be a
3-descendant, etc. It will also be convenient to have a
term for the opposite relationship; we shall define
i-~ancestor so that if 0! is an i-descendant of 0O%, OV
will be an i-ancestor of 0O'.

Definition 3.4: O" is an i-ancestor of the set S of

organisms if and only if there exists 0! in 8 such that
O' is an i-descendant of 09.

Consider an arbitrary set S of organisms. Denote by
R the set containing S and all of its descendants. Then
denote the set 8 by R(0), where the zero indicates that

this is to be considered the zero®th generation., Denote
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the set of all l-descendants of R(O) by R(1l); this will
be called the first generation of R. Similarly denote
the set of all 2-descendants of R(O) by R(2); this will
be called the second generation of R. In general,
denote the set of all k-descendants of R(0) by R(k);
this will be called the kth generation of R. These
concepts will be formalized in the following three
definitions.,

Definition 3.5: Given any set of organisms R(0) and any

positive integer k, the organism 0' is in the set R(k)
if and only if O' is a k-descendant of R(0).

Definition 3.6: The lineage R associated with a set of

organisms R(O) is a set of organisms such that O' is in R
if and only if O' is in R(O) or 0' is in R(k) for some
positive integer k.

Definition 3.7: The kth generation of the lineage R is a

set of organisms such that O' is in the k'R generation of
the lineage R if and only if O' is in R(k).
Thus we now have a word, lineage, which denotes a set

of organisms plus all of its descendants.
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Section 3.4: Definition of Subset and Other Set Theoretic

Notations

The primary notion of set theory,; that of set, has
already been used extensively without any explanation of
what is meant by it. This was possible because the meaning
of "set" within set theory is very close to its meaning in
its everyday usage. However, in order to go further in
this discussion of lineages we will need to use a few
notions from set theory that are not self-explanatory;
therefore this section will be used to describe or
define them.

We have above defined R(k) as the set of all
k-descendants of R(0O). But suppose R(0) has no
k~-descendants; is it still legitimate to call R(k) a set?
Yes, it is; such a set containing no elements is called
the null set. The null set will be denoted here by the
symbol "g"; thus if R(O) has no k-descendants R(k) = ¢, or,
to put it in words, R(k) is equal to the null set.

Now we should make explicit what will be meant by
saying of two sets, 51 and Sg, that Sl= SH

Definition: 51 = 83 1f and only if there exists a one=to-on%

correspondence between organisms O!' in S and O" in S5 such
that corresponding organisms are equal.
We will often have occaslion to use the concept of a part

of a set. For example, we may wish to say that one part of a
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set 1a superior to another part of the set. A part of
a set i1s called, in set theory, a gubset of the set.
This ig defined as follows.

Definition: Sl ig a subset of S if and only if every

organism O in Sl is also in S.
Notation: 8§, C S means S, is a subset of S.

Now suppose that Ry(k) is the set of all organisums
in R(k) which have claws; then Rl(k) is a subset of R(k).
If no organisms in R(k) have claws, them Rj(k) contains
no organisms and so Ry(k)= ¢. If all of the organisms
in R(k) have claws, then R;(k) =R(k})s notice that a
subset need not be smaller than the set. At times it will
be necessary to stipulate that a particular subsect S1 is a
gubset of S but that it is not equal to S; that is, that
there is at least one organism which is in 8 and not in Sq.
To stipulate this we will use the following notation.
Notation: S; %z S weans that S is a subset of S and S is
not equal to S.

For example, if Rl(k) is;, as before, the set of all
organisms in R(k) which have claws, then the stipulation
Rl(k) Q;TR(k) would guarantee that there is at least one
organism in R(k) which does not have claws.

Now suppose Ro(k) is the set of all organisms in R(k)
which have teeth. Then the set of all organisus in R(k)

which have either teeth or claws (or both) is the set of
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will be useful to have a notation for a set which is the
sum (or, as it is usually called, the union) of two given
gets. Below we define the union of two sets and then

give the notation which is used for it,.

Definitions S3 is the union of Sl and S2 if and only if
every organism that is in S3 ig in either Sl or 82 and
every organism that is in either Sl or S, is in SS'
Notations: S]_US2 denotes the set S, which is the union

of S, and S..

1 2

Suppose an organism O' has both teeth and claws.
Then O' is in both Ry(k) and Ry(k). The set of all
organisms which are in both of two sets is called the
intersection of those two sets. This set is defined below,
Definition: Sz is the intersection of $; and Sy if and
only if every organism that is in 85 is in both Sl and So
and every organism that is in both Sl and 82 is in SB‘

Notation: 81(182 denotes the set S, which is the

3
intersection of S, and Sy.

It will often be necessary to discuss the set of all
organisms which are in a set S but are not in a certain
subset Sq. Tor exaumple, the set of all organisms in R(k)
which do not have claws is the set of all organisms which
are in R{k) but are not in Rl(k). This set is called the
complement of R,(k) with respect to R(k); this concept is

defined as follows.
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Definition: 85 ig the complement of Sl with respect to

S if and only if every organism that is in 83 is in S and
is not in Sl’ and every organism that is in S and is not
in Sl is in 83.

Notations S - Sl denotes the get S5 which is the
complement of Sl with respect to S.

Thus the set of all organisms in R(k) which do not

have claws may be denoted by R(k) = Rl(k).

Section 3.5: Descendants of a Subset

Now it is possible to define a notation for the set
of all i-descendants of a subset of R(j) which will make

th

clear its connection with the j generation, This will

be useful when it is necessary to compare; e.g. the
descendants of those organisms which have claws with the
descendants of those organisms which do not have claws.
Notation: Let Ry(j) be a subset of R(j). ILet Ry be
the lineage associated with the set of organisms

R1(j)= Ryj(0). Then Ryj(i) is the i®™ generation of the

thgeneration

lineage Ryj» and le(i) is a subset of the j+ i
of the lineage R. Define the set R{(j+i) by the equation
R{(j+ i)=le(i), where i is a non-negative integer.

This notation, R{(k), permits a brief designation of

the set of all organisms in the kth generation of R which

are descendants of Ry(j). F¥or example, suppose we wished
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to say that the set of descendants of a particular subset
Rl(j) of R(j) are superior.in every generation after j to
the set of organisms in their generation; then we simply
gay that for all k> j, Ri(k) is superior to R(k) - Ri(k).
Now we will use the concepts developed so far to
prove two theorems that will be of use in later chapters.
Suppoge that the population R(j) contains a subset
Rl(j) of organisms containing a certain “"good" gene. This
gene will be selected for and will spread throughout the
populationy that is, after a certain number, k', of
generations every organism of the population R(j+ k?')
will have the gene. If mutation to this gene is sufficiently
rare,; we may expect that every organism in R(j +k') is a
descendant of the original subset Rl(j); that is, every
organism in R(j+ k') is also in Ri(j+ k'). Now we would
like to be able to say that in this case every organism in
later generations must also be a descendant of Rl(j);
that ig, if R(j +k')= R‘:].L(j+ k'), then for all k= j+k',
R(k) = Ri(k). This is clearly a general property of sets
of descendants and can be stated as a general theorem about
descendants, without reference to "good" genes and selective
forces. Ve will then have the following general statement:
if there exists a generation m such that all organisms in
R(m) are descendants of Ry(j)s then for all kz m all
organisms in R(k) will be descendants of Ry(j). This is

stated formally in Theorem 3.4.
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Tt is easier to prove Theorem 3.4 if another theorem
is proved first. This theorem states that if there are
; j 2 ji
two subsets of R(m), Ril(m) and R% (m), such that Ry (m)

is a subset of Rjz(m), then for all generations k= m

2
the set of descendants of Ril(m) will be & subset of the
get of descendants of R%Z(m). (In this statement jl and

j2 are used instead of simply j in order to allow for the
possibility that the generation in which Ry was originally
defined was not the same as the generation for which Ry

was originally defined.) Tor example, if the descendants
of Jones and Brown intermarry so that by the mph generation
all descendants of Jones are also descendants of Brown,
then there cannot be, in subsequent generations, any
descendants of Jones which are not descendants of Brown.
This is stated formally in the following theorem.

Theorem 3.3: If 0<€jlsm, O0£j2<m, and Ril(m)CRgz(m)s

then for all k zm, RI'(k) CRI?(x).

Theorem 3.4: If O<j<m end RI(m)=R(m), then for all

k2m RI(k)= R(k).

Section 3.6: Axiom Delimiting Lineage

The next axXiom is not a statement about the ancestor
relation, as the previous ones have been, but a statement
about the world in which the organisms live. It states
simply that for any lineage R and any generation k, the

number of organisms in R(k) is finite.
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It will frequently be necessary in succeeding chapters
to refer to the number of organisms in a particular
generation of a particular lineage. We shall, therefore,
define a notation for this concept so that 1t may be
referred to wmore easily.

Notation: ¥(Rsk) 1is the number of organisms in R(k).
Axiom 3.4: For any lincage R there exists a positive
integer lig such that, for any generation k, N(R,k)< .

Ips therefore, is an absclute upper bound to the
number of organisms in any one generation of R. It should
not be confused with the temporary upper bounds imposed by,
€.8ey Climatic conditions over a long succession of
generations but which may change if the climate changes.
For a given lineage Hﬁ is fixed for all time, and no
amount of environmental change and no number of 'good!
mutations will allow it to be exceeded. The existence
of Mp may be considered as being due to the fact that
there is a limited amount of matter in the world, and
therefore there is a limitation to the number of organisms

that can be made out of that matter.

Section 3.7: Definition of Biological Universe

It would be possible to investigate further the
gtructure specified for these sets of organisms by these

axioms and to prove more theorems concerning it. However
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the primary purpose of this chapter was to set forth the
axioms defining what we will call a Biological Universe
and this purpose has been accomplished. We shall,
therefore; close this chapter with a definition of
Biological Universe.

Definitions A Biological Universe is a set B of

organisms and two relations, A and =, such that axions
3.1 through 3.4 are true statements about them.

Notations (BsA;=) denotes a Biological Universe.



CHAPTER 3 : APPONDIX

A Biological Universe (B, A>,=) is a set B of
organisms and two relations, A> and =, such that the
following four axioms holds
Axiom 3.l: For any O in B, ~(0 A> 0).

(~~ is here used as the symbol for the logical negation.)

Definition 3.1l: 0

lD O2 if and only if OlA> 02 or there
exists a non-empty set of organisms éba, 04, Ogs ...,Og}
such that O:L/°£>O3A>O‘,nL A O A> . . A0, £ 0y

Axiom 3.2: For any 0, and Oy in B, if 0, 055 then
AJ(OZDOI).

Axiom 3.3: For any Ol and 02 in By if Ol==O2 then; 1) if
there exists Oz in B such that Oz0>01, then 0z>0o; and
2) if there exists Oy in B such that O4p»05, then O,p>04.

Definition 3.2: D is a descent if and only if D is an

ordered set of organisms in B {OO, Ol’ 02,9.0, Ok} such
that; 1) k=2 1; and 2) for any integer i such that
0< i<k, Oiboiﬂ_.

Definition 3.3: The organism O' is an i-descendant of the

set 8 if and only if there exists an organism 0" in S and

a descent D such that O' is the first organism of D and O%

t

is the i+1° organism of D.

Definition 3.4: O% is an i-ancestor of the set S of

organisms if and only if there exists O' in S such that 0!

ig an i-descendant of Q4.
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Definition 3.5: Given any set of organisms R(O) and any

positive integer k, the organism 0' is in the set R(k) if
and only if O!' is a k-descendant of R(0).

Definition 3.6: The lineage R associated with a set of

organisms R(O) is a set of organisms such that O' is im R
if and only if O' is in R(O) or O!' is in R(k) for some
positive integer k.

Definition 3.,7: The k°H generation of the lineage R 1is

a set of organiswms such that O!' is in the kth generation
of the lineage R if and only if O' is in R(k).

¥otation: M(R,k) is the cardinal number of the set R(k).
Axiom 3.4: TFor any lineage R there exists a positive

integer lp such that, for any generation k; N(R,k)fEMﬁ.

Some theorems which can be proved using these axious

follows

Theorem 5.1: For any organism O, 019$ 07 «

Proof: Suppose 0,L>0;. Then, by definition, either

(1) 044>0, or (2) there exists a non-eupty set

{02, Oxs e ok} such that Oy>0,40z .« A>0; 05+ By
Axiom 3.1, or¢$ol, so (1) cannot hold. But if (2) holds,
then 04> 05 and 02£>Ol, which cannot happen by Axiom 3.2.

Therefore, since assuming that Ol!}Ol leads to a contradiction,

010505 -
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Theorem 3.23 Tor any organisms 07, Og, and Oz in B, if

01> 05 and 05> 05, then 0100z

Proof: 0,0, iuplies, by definition, that either (1)
0;A>05 or (2) there exists a descent 664, Ogs Ogs +oos C%%
such that OlApO4A>O5A>O6 e o e >0 05 Similarly,

OoP> 0z implies that either (1) 094>0z or (2) there exists

a descent §0), 04, ..., 043 such that 0,A>04A>04 -»+B>0p>0g.
If (1) holds for both 0,0>0, and 05> 05z, then 0,A>0,4 04, and
the set 5625 is a descent such that (2) holds for O; and Oz
therefore in this case 040z. If (1) holds for 01503

and (2) holds for 0,>0, then {02, Ofs Ofs «ovs 018 is a
set such that (2) holds for 0; and Oz; therefore in this
case 01>0z. If (2} holds for both 0,005 and 0,803,

then {04, Ops =++s Opr Ogs Ofs Ofs ooy Oﬁ% is a set such
that (2) holds for 0O and Oz; therefore in this case

01> 0z. We have shown that in all possible cases 011> 0z
Notation: Let Rl(j) be a subset of R(j). Let le be the
lineage associated with the set of organisms Ry(J) = le(O).
Then le(i) is the i generation of the lineage le and

is a subset of the j+ ith generation of the lineage R.

Define the set Ri(k) by the equation R?L(jqri): le(i),

where 1 is a non-negative integer.
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Theorem 3.3: If 0£Ljl<m, O<j2&m, and R{l(nl)CRgz(nl),

then for all k>m, RJil(k)CR%E(k).,

Proofs Suppose 0' is in R{l(k) for some k>m., Ve must
show that it is also in Rgz(k). o' in R?Ll(k) implies that
there exists a descent D of length k ~ jl+ 1 such that the
first organism in D is 0! and the last organism in D is in
Ril(jl). The last jl -~ m+ 1 organisms of this descent
provide a degcent D' such that the first organism, 051 is
in Ril(m). Therefore, since R{l(m)(::Rgg(m), 0! is in
Rgg(m). By definition of Rgz(m) there exists a descent
D" such that the first organism in D" is 051 and the last
organism in D" is in R%z(jQ). If we let the descent D

be the descent whose first k -~ m+ 1 organisms are the
first k¥ - m+1 organisms of D and whose last m - j2+ 1
organisms are the organisms of D", then D is a descent
whose first organism is O' and whose last organism is in
gz(jz), thus proving that 0! is a descendant of Rgg(jz).

Therefore O' is in RI?(X).

R

We have taken an arbitrary organism O' in Ril(k) and
shown that it is in RJ%(k). Therefore Ril(k) C rI%(x).
Theorem 3.4: If 0£j<m and R{(m): R(m)s then for all

k> m, P{(k): R(X).

Proof: We first note that R(m)can be considered to be a
sublineage of itself; that is, R(m)= Rg(m). Since, by
the definition of subset, Ri(m) = R(m) implies that
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Ri(m) C R(m), theorem 3.3 can be used to give R‘:{(k)CR(k).
Similarly, Rf]j_(m) = R(m) implies that R(m)C.R‘:JL(m), and by
theorem 3.3 this implies that R(k) CRi(k). But, for
any sets S' and 8% S S" and SWT S!' implies that

S'a 8%. Therefore Rs_{(k) = R(k).
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CHAPTER 4: DARWINIAN UNIVERSES

In the first chapter of this thesis Darwin's summary
of the theory of natural selection was quoted and it was
stated that his theory is still considered to be
essentially correct. In this chapter we shall convertd
the important constituents of his statement of the theory
into explicitly stated axioms and derive sowe of their

consequences.

Section 4.1: Populationg

Clearly when Darwin spoke of "organic beings® and
their "offspring® he was assuming the existence of a set
of organisms and an ancestor relation with the properties
discussed in the previous chapter. In particular, when
he sayéljﬂ“if there be owing to their geometric rate of
increase; a severe struggle for life,™ he is assuming the
property given by Axiom 3.4; for without an upper limit
on the nuwmber of organisms in a generation, there isgs no
reason for a geométric rate of increase leading to a
severe struggle for life. Therefore it will be necessary
to state an axiom specifying that the objects of natural
selection are in a Biological Universe.

Single organisms are not the objects of natural
selection; selection is & process which changes the

composition of populations and it must be discussed in
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terms of populations. Population is one of the
elementary concepts of matural selection, so it will be
an undefined term in this axiom system. Like all
undefined terws its meaning will be delimited only by
the statements made in the axioms concerning its
properties.

Intuitively speaking, a population is a lineage in
which the different sublineages are tied together by the
law of the survival of the fittest and in which there is
sufficient hereditary variation. It should be recognized
that a lineage is not necessarily composed of members of
only one species; the associated set R(0) may have
contained members of several species and in this case the
lineage R will consist of several non-interbreeding
sublineages. On the other hand, the fact that the law
of the survival of the fittest holds guarantees that
there is some relation between the different sublineages
in a population (possibly competition for resources).
This law does not necessarily hold for every lineage, for
if a less fit part of the lineage accidentally found new
and unexploited territory and thereafter had no contact
with the rest of the lineage, it might survive and
flourish although continuing to be less fits; thus it is
clear that not all lineages are populations. It should
also be clear that not all sets of organisms which are

populations in the sense in which the word is used here are
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populations in the sense in which the word is used in
population genetics. But all sets of organisms which are
populations in the sense in which the word is used in
population genetics should be populations in the sense in
which the word is used here. The word is used here to
denote a larger variety of sets of organisms than it
denoteg in population genetics.

Axiom 4.1l: For any population Ry R is a lineage in (By/y= ).

Section 4.2: Pitness of an Qrganism

Clearly we cannot talk about natural selection without
using the concept of fitness, but this concept, while very
intuitive; is remarkably hard to define explicitly. Those
who must define it explicitly (e.g. Fisher,(l7); Feller.(ls)
and Hamilton,(lg)) generally use the expected number
of offspringg +that is, O' is fitter than O" if the
expected number of offspring of 0! is greater than the
expected number of offspring of Ov. But this is not the
intuitive concept of fitmess; it is merely a consequence
of the intuitive fitness, Furthermore, it is a consequence
of intuitive fitness only when the population is subject to
selection. (If the organism is in a population which is
being artificially selected by an experimenter for, e.g.
low bristle number, it may have a very low expected number
of offspring even though its intuitive fitness is much

higher than that of the other organisms in the population.
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It may be argued that this organism does indeed have a
low fitness in the environment created by the experiment,
but this only makes it more obvious that fitness is not
independent of sgelection.) Thus the definition should
bes the fitness of an organism is equal to the number
of offspring of the organism expected when the population
is under the operation of natural selection. If we then
state natural selection in terms of "survival of the
fittest" we will find ourselves in the well~-known dilemma
)
described as follows by Mayr.(”c)

"Darwin...has therefore been accused of tautological
(circular) reasoning: 'What will survive? The
fittest. What are the fittest? Those that survive.!
To say that this is the essence of natural selection
is nonsense! To be sure, those individuals that
have the most offspring are by definition (Lerner,
1959) the fittest ones. However, this fitness is
determined (statistically) by their genetic
constitutions.... A superior genotype has a greater
probability of leaving offspring than has an inferior
one. Nstural selection, simply, is the differential
perpetuation of genotypes.?

Mayr has ended in the same circle in which he started;
we have only to ask: f“which are the superior genotypes?®
But he is right to be in this circle; his error lies in
the (unexpressed) assumption that arguments which are
tautological are worthless3 since he knows that the
concept of natural selection is not worthless, he concludes
that it is nonsense to call it tautological. But, in fact,
properly controlled tautological arguments can have great

power and real explanatory value. Any axiomatized theory
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can be considered to be in the form "if axioms, then
theorems;" +this implication is true regardless of the
truth of either the axioms or the theorems; therefore, it
is, by definition, tautological. Buclidean geometry is

an example of such a tautological theory, yet it is clearly
not worthless.,

If we consider the concept of "point" in duclidean
geometry and subject a mathematician to the catechism used
above for the concept of fitness, we will hears "What
satisfies the Huclidean axioms? Points, What is a point?
Something which satisfies the Zuclidean axioms." Notice
that the mathematicianst reasoning is just as circular as
the biologists® But,it may be protested, everyone knows
what a point is! Indeed it is Just as true to say that
everyone knows what fitness is; and it is just as
difficult to explicitly define "point® as to explicitly
define "fitness",

This difficulty has been met in geometry by the
device of explicitly stating that point is an undefined
concept. There is an intuitive concept of what a point
is, and this intuitive concept is used to decide what
statements about points are likely to be true. But when
these statewments are being formally proved, the only
information that can be used about points is the fact

that they are entities which satisfy the Euclidean axioms.
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The difficulty in defining fitness will be met in
exactly the same way. It will be an undefined concept,
denoted by f£(0), about which we can gsay only that it
satisfies the axioms of the Darwinian Universe. But
for purposes of heuristic thinking we can consider that
£(0) exactly corresponds to the intuitive concept of a
measure of the fitness of the organism in the environment
in which it spends its 1life,

It is intuitively reasonable that any organism has a
positive fitnessy; it wmay be very small but the fact that
the organism exists long enough to be the object of
discussion implies that its fitness is not zero.
Therefore we assert the following property of £(0) as an
axi oum.

Axiom 4.2: For any organism 0, £(0) is a positive real

number,

Section 4.3: TFitness with Respect to a Set of Organisms

Wormally the intrinsic fitness of an organism is not
by itself important for natural selectiong what is
important is the fitness of the organism relative to the
fitness of the other organisms in some population,
Therefore we shall define the fitness of 0 relative to
R(k) as the ratio of its fitness to the sum of the

fitnesses of all of the organisms in R(k).
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Definition 4.1

F(O,R k) _ £(0) if 0 is in R(k)
> £(0y)
Oi in R(k)
= 0 if 0 is not in R(k)

We have, thus, defined a new function F(0,R,k) in terus
of the fitness function F(0). Note that with this
definition, if O' and 0% are both in R(k), F(O'sRsk)>F(0%;Ryk)
if and only if £(0') > £(0"); +thus the definition has not
changed the relative fitnesses of any two organisms,.

Theorems 4.1 and 4.2 follow immediately from this
definition and Axiom 4.2,

Theorem 4.1: For any 0! in R(¥); 0 <F(O',Ryk) < 1.

Theorem 4.2: F(O',R;k)=0 if and only if 0! is not in R(k).

Theorem 4,1 asserts that if 0 is in R(k) then the
fitness of 0 relative to the fitness of all organisms in
R(k) is always between O and l. On the other hand, if O
is not in R(k) its fitness relative to R(k) is always O;
therefore if 0' is in R(k) and 0" is not in R(k),F(0",R;k},
which is equal to O, is always less than F(O';R,k) even
though f(0") wmay be greater than f£(0'). Iowever, if we
wish to compare two such organisms using F, we can do g0
by defining R'(0) =R(k)+ O"; then F(O',R',0) > F(O",R',0)
if and only if £(0') > f£(o").
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It will be useful to be able to discuss the fitness
of parts of a population relative to the whole population,
80 we shall define the fitness of a part of a generation
relative to the whole generation. Consider two
populations R and R!'. Ve shall usually be interested in
the cage when R' is a subpopulation of Ry, but it will be
ugseful to have fitness defined for the most general case.
To do this it will be necessary to use R!'(k) /M R(k), the
set of organiéms which are in both R'(k) and R(k).
Definition 4.2: Let R*(k)= R*(k) N R(kx). Then

!/ < ‘ \
™~

-y

P(R',R,k) = o F(0sRsk)3 I\lﬁﬁfﬂ. if B (k) # ¢
0 in R'(k) ) N(R",k)
= 0 if R*(k) = ¢

The purpose of multiplying by ¥(R,k)/N(R¥;k) is to make
F(R';R,k) an average fitness; otherwise the larger the sub-
population the greater the fitness. F(R';Rs;k) is such that,
if the subpopulation R' is superior in fitness in the
generation k to the population R, then F(R';R;k) > 1. On
the other hand, if R' is inferior in this generation, then
F(R',R,k) < 1. Some other interesting properties of F will
now be stated as theorems,

Theorem 4.3: F(R';R;k)=0 if and only if R!'(k)/}R(k)= &.

Theorem 4.4: If R(k)# ¢, then F(R;R;k) = 1.

Notation: In F(R-R';R,k), R-R'!' denotes the set R(k) - R'(k).
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Theorem 4.5: Let R and R!' be such that g# R'(k)NR(k)# R(k).

(
Then F(R',R,k) > 1 if and only if TF(R-R',;R,k) < 1.
Theorem 4.6: Let R and R' be such that @# R'(k))R(k)# R(k).

Then F(R';R,k) = 1 if and only if F(R-R',R,k) = L.

Theorem 4.7: Let R and R' be such that Z# R'(k)M1R(k) # R(k).

Then F(R';R,k) >F(R,R,k) if and only if F(R',R,k) >F(R-R',R,k).
Theorem 4.3 states that if F(R';Ryk) = 0 then there are
no organisms that are in both R'(k) and R(k); it states
further that if there are no organisms that are in both
R'(k) and R(k), then F(R';Ryk) = 0. Theorem 4.4 states
that any population 1s exactly as fit as itself. Theorem
4.5 asserts that if the fitness of a subpopulation is
greater than the fitness of the population as a whole in
generation k (i.e. if R'(k) has more than its fair share
of the more fit organisms), then the fitness of the
rewainder of the population must be less than the fitness
of the population as a whole (i.e. the remainder of the
population must contain in that generation less than its
falr share of the more fit organisms). Theorem 4.6
asserts that if R'(k) contains exactly its fair share of
the more fit organisms, then the remainder of the generation
must also contain exactly its falr share. Theorem 4.7
asserts that 1f R'(k) has wmore than its fair share of the
fitter organisms then its average fitness is greater than

the average fitness of the population as a whole. All of
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these assertions are straightforward, intuitive -- even
trivial, and they are meant to be; these theorems prove

that ¥ has the qualities that a fitness function should have.

Section 4.4: Survival of the Fittest

Now that the concepts of fitness that shall be used
have been specified, it is possible to convert the most
important constituent of Darwin's theory into an axiom.(gl)

"assuredly individuals thus characterized by

useful variations will have the best chance of

being preserved in the struggle for life%.
This is not, of course, a statement which follows with
logilcal necessity from the other elements of his argument;
it is a statement about the type of universe in which the
events are assumed to take place. It is easy to imagine
a universe in which this statement is not true (e.g. a
universe in which the individuals death or reproduction is
determined by an omnipotent god from a table of random
numbers) and it would not even be difficult to approximate
such a universe in the laboratory. Since the statement
is not necessarily true in all possible universes, it is
necessary to explicitly assume that it is true in a
Darwinian Universe. That is, it must be stated as an
axiom.

But first it is necessary to defime a concept which

must be used in the statement of the axiom. It will be a

rather complicated definition, for the concept is not
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simple, but it is important to understand 1t as it
contains the secret of the hidden compartment from which
all subsequent rabbits will be produced.

It is clear that, in the world which we would like
our axioms to describe (i.e. the world in which we live),
the better organism does not always win; the most that
can be gaid is that it wins most of the time. The usual
way to handle this uncomfortable fact mathematically is
to use the theory of probability, that is, to state that
the better organism has a higher probability of winning.
We shall, instead, state that in the long run the fitter
gset of organisms will win, if it stays fitter long enough.
It may not increase at the expense of the less fit in
every generation, but it will do so over any sufficiently
long succession of generations. In order to work with
this it is necessary to be able to break up any long
succession of generations into a set of 'sufficiently
long! successions of generations. For example, if it is
necessary to consider the generations between 100 and
1000, we shall define a partition, p(l00,1000) of these
generations as a set of swmaller successions of generations
which are composed of successive generations and which
completely cover, without overlapping except at the ends,
the generations between 100 and 1000; that is, each
generation between 100 and 1000 is in one and only one of

the smaller successions. An example of a partition of



38

100,1000 is g(loo, 120), (120, 196); (196, 254), (254, 255),
(255, 847), (847, 1000)}. The following definition of
partition wakes this more explicit.

Definition 4.3: TFor any integers J1 and jgs 2 partition,

p(jl’jg)’ of 31,32 is a set of pairs of integers such that:
(1) for any pair (kl’kz) in p(jl,jz) elther k,=j,; or
there exists exactly one pair (ki,ké) in p(jl,jz) such
that ki = kg3
(2) for any pair (klskg) in p(jl,jz) either k, = j, or
there exists exactly one pair (ki,kg) in p(jl,jz) such
that ki = k,j
(3) there exists exactly one pair (k19k2) in p(jl,jg) such
that ki = jq3
(4) there exists exactly one pair (kl'kz) in p(jl,jz) such
that kg = jzg
(56} for any pair (kl,kg) in p(jl,jg) there exists no pair
(ki,ké) in p(jl,jg) such that k{ <k, <k} or ki«<k2<ikég
(6) for any pair (kq,ks) in P(J1eda)s 1€k <ko <igs

Notice that there are a great many different partitions
of any j19j2| It is important that every generation between
jl and jz i3 included in any partition; this fact is not

stated in the definition, but it may be proved as a theorem.

Theorem 4.8: Tor any integer i such that jlé.i'é jo and for

any partition p(jl,jg), there exists a pair (kl,kz) in

p(Jl,jz) such that klé.iﬁilgr
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Notation: Let N(p(jl,jz)) denote the number of pairs in
the partition.

Now, at last, it is possible to state the survival
of the fittest axiom.
Axiom 4.3: (Survival of the Fittest):  For any
population R, if R?(jl) is a subset of R(jy) and there
exists an >0 such that F(RJ4R,k) > F(R-RT:R:k) + 2>
for all k between j, and j,, then if Q(jg-jl) > 1 there
exists a partition p(jl,jg) such that for every pair
(kl,kg) in the partitiom

. m
N(R‘f,k - N(R-R‘f,kz) > N(R”l“,kl) - W(R-Ry,k;)

5)
and N(P(jlng) ):\’ 2 (jz-jl).
Suppose that in generation ki there were exactly two

more organisums in R%(kl)

N(RT,kq) - W(R-R)»k;) = 2; then according to the axiom,

than in R(Y) - 1]1_1(1;1); that is

N(R%,kg) - N(R-RTgk2)3>2, which implies that during the
generations between k, and ko the number of organisms in
R? has increased relative to the number of organisms in
the remainder of the population. Or, in general, the
axiom states that for every pair (k,,ks) in the partition,
the number of organisms in K" has increased during the
generations between ky and ko relative to the number of
organisms in the remainder of the population. 1t does
not state that the number of organisms in RT has

increased, for the inequality would still be true if both
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RT and R-R% were decreasing in number as long as R—R?
was decreasing faster than R'. The axiom further

gtates that the number of such pairs (kl.kg) is at least

equal to R(jg-jl).

Now let us consider the first part of the axiom.

Remember that, according to theorem 4.7, F(R'sRyk)> F(R-R's;R,k)
implies that the average fitness of R'(k) is greater than

the average fitness of the population as a whole. Thus

this axiom says that a subpopulation whose average fitnesgs

is greater than the average fitness of the population as

a whole for a sufficiently long period of time will increase
in numbers relative to the population as a whole.

Notice that there is no assumption that R will
increase in absolute numbers; natural selection will
occur even when the population as a whole is decreasing.

It is necessary to state the axiom so that this will be
true, since in nature the most effective selection often
takes place while the population as a whole is decreasing
and in spite of the fact that the favoured population is
also decreasing.,

Notice also that the axiom does not state that the
favoured population gaings (relatively) in every generation; ig
is neceasary * to avoid stating this since, in the universe
which the axioms should describe, there is an element of

chance which occasionally allows a less fit subpopulation
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to gain on the rewmainder of the population. What the
axiom does state is that if the fitness difference (g)
multiplied by the number of generations in which it
exists (32'31) is large enough, then selection will occur.
A close look at the axiom shows that it will
guarantee an average gain of & organisms per generation,
though it does not rule out the possibility that the gain
is much greater. The reason for this very low average
gain is that the axiom does not state that the average
gain per generation is a function of the size of the
populations as well as of the fitness difference and the
length of time, It would be possible to state this in
the axiom, but at present this would complicate matters
unnecessarily; natural selection would be seen to
proceed faster if this were stated; but speed is not
important; what is important is the gquestion of what

happens when natural selection proceeds.

Section 4.5: Some Theorems on the Fate of Superior

and Inferior Subpopulations

Iheorem 4,9: If Ry(m) is a subset of R(m) and there exists
a ©>0 such that F(R),R,k) > F( R-RIGR,k) + & for all k such
that kx2m and R?(k) Z R(k), then there exists an integer

t such that R(t) = RT(t).
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This theorem states that if the descendants of Rl(m)
are better than the remainder of the population for long
enough, then there will be a generation t such that all
organisms in the population R after the generation t are
descendants of Ry(m); i.e. the descendants of Rj(m) will
have coupletely taken over the population by the generation
t. Note that it does not state that R] has eliminated
another subpopulation; in sexually reproducing populations
there is always the possibility that the inferior
population has ensured some descendants by interbreeding
with the superior population. (The axiom was carefully
worded to avoid stating that any subpopulation would
decrease; survival of the fittest is not the same as
elimination of the unfittest.) IHowever in asexual
populations; or in populations with two non-interbreeding
subpopulations of which one is superior to the other, it
can be asserted that the inferior population will be
eliminated. This will be stated in theorem 4.10.
Notation: If RT is a subpopulation of R which fulfills
the conditions of theorem 4.9 and t is the generation
guaranteed by the theorem, then we shall call t the

m

takeover generation of Rl with respect to R and we shall

denote it by t(R?,R).
Definition 4.4: Ril and J2 are non-interbreeding for i = k
if and only if Ril(i) 1 RIZ(1) = ¢,

2
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This simply states that two populations are non-

interbreeding if they have no descendants in common.

Theorem 4.10: If R(k)= Rff(k)uRg(k), R‘f(k) and Rg(k)
are non-interbreeding for k>m, and there exists >0 such
that F(R],R,k) > F(BL,R,k) + & for all k such that k>m
and Ry(k) # R(k), then E5(t(R}4R)) = .

This theorem states that by the time of the takeover
generation R% will have been eliminated. Notice that we
are beginning to see differences between the way natural
selection works on sexually reproducing populations and
the way it works on asexually reproducing populations.

In asexual populations it completely eliminates infexrior
populations; in sexual populations it simply ensures that
after a certain time all of the population will be
descendants of the superior subpopulation. This is, in
fact, an indication of the greater flexibility of sexual
populations in storing variability.

Theorem 4.11: If there exists an ¢ 0 and a number b

and RI such that F(R],R,k) > F(R-RF,R,k) +¢ for all k
such that N(RT,k)/N(R,k)jS b then there exists an integer

j such that N(RT,J’ J/A(Ryj) = Do

This theorem describes what happens when the

advantage of the subpopulation R? is density dependant. It

asserts that if RT is a subpopulation which is superior to

the remainder of the population as long as it constitutes
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less than the proportion b of the population, then R

will attain that proportion. If we further assert that

R does not interbreed with the rest of the population

and that it is inferior to the rest of the population

when it constitutes more than the proportion b, we can
agsert that the proportion of RT to R will either stabilize
at b or oscillate around b. This is stated in the next
theorem.

Theorem 4.12: If R(k)= RI]I_‘(k)URg(k) for all k=m, R’ln and

R% are non-interbreeding for all k »m, and there exist
numbers b and ¢>0 such that (1) F(R,R,k) > F(RS,R,k) * @
whenever N(R{,k)/N(R,k) < b and (2) F(RZ,R,k) >F(R])R)k)+ @
whenever N(R%,k)/N(R,k) > b, then one of the following holds:
(1) there exists a j such that R?(j)==¢g (2) there exists a
J such that R}(j)=g; or (3) for any number M there exists

j' and j" such that j'=M, j"=1, N(RD5j')/N(Rsj')<b, and
N(R%»j")/N(R:j") = b

Section 4.6: Hereditary Variation

The next constituent of Darwin's theory that will be

(22)

stated as an axiom is:

"it would be a most extraordinary fact that if no
variations had ever occurred useful to each belngs
own welfare....if variations useful to any organic
being ever do occur, ...from the strong principle
of 1nherltance, these will tend to produce off-
spring gimilarly characterized®.
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now it may seanthat this ought to be translated into two
axioms; one axiom stating that useful variations occur
and the other stating the strong principle of inheritance.
However, since variations that are not hereditary do occur,
we camnot state (1) useful variations occur and (2) all
variations are hereditary (from which two statements we
could derive the statement that useful hereditary
variations occur). Similarly, since sowe variations are
not useful, we cannot state (1) some variations are
hereditary and (2) all variations are useful (from which
two statements we could also derive that useful hereditary
variations occur). So if we want to state, without grossly
misrepresenting the universe, that useful hereditaxry
variations ococur; we must state it as an axiom.
Axiom 4.4: (Mereditary Variation): For any population
R and any generation m such that N(R,m)> 2, there exists
H(m) contained in R(m) and >0 such that R(m+l)#jﬂm(m+l)
and, for any k:m such that R(k)# H®(k),
F(IM,R,k) > F(R-H®,Ryk) +2.
Notation: The letter H will hereafter be used to denote
the subpopulation guaranteed by this axiom.

This axiom states that in every generation m any
population R contains a subset H{m) which is superior to
the remainder of the population in generation m and whose

descendants are superior to the remainder of the population
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for as long as the population contains any organisms which
are not descendants of H(m).

Notice that R(u+ 1) #H™(m+ 1) implies that R(m)# H(m).
Therefore this stipulation means that there are at least
two generations (m and m+1) for which F(H™,R,k) > F(R-HZy R,k )}*%.
The fact that the subpopulation has the property of being
better than the remainder of the population for as long as
it is distinguishable means that the property (or whatever
causes the property) is hereditary; the fact that it is
distinguishable for at least two generations guarantees
that the e reditary property is not fulfilled wvacuously.
(It would be fulfilled vacuously by, e.g.s; 2 subset R, (m)
containing all organisms in R(m) which have descendantsg
clearly R%(m+ 1) = R(m+ 1) so that, although R? fulfills
"for any kz m such that R(k)# Rj(k), F(R[,R,k)> F(R-R{,R,k)+8,"
there is no inheritance of fitness since there is only one
generation involved.
Notice that the hereditary variation axiom Szt
not only that in at least some cases organisms inherit
characteristics of their parents, but also that the
environment of the organisms inherits characteristics of
the environment of the organisms! parents, for fitness is
the result of both the characteristics of the organism and
the characteristics of the environment. For natural

selection to work it is necessary that the environment be
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reasonably stable; i.e. that it be stable with respect

to the characteristics £= which the population is selected
for long enough to force the population to change. Thus
this axiom, which states that fitness is inherited, is

more relevant to natural selection than the laws of

Mendelian heredity, which merely state that characteristics
are inherited. |

Note that the set H(m) guaranteed to exist for R(m)
by this axiom may be the descendants of the subpopulation
guaranteed to exist for R(m-1). If H®(m+ 1) # R(un+ 1),
then H®~l(m) is a subset of R(m) vhich fulfills the axiom.
This does not mean, however, that the axiom guarantees
only one variant subpopulation in the course of all time,
since theorem 4.9 guarantees that the descendants of H%(m)
can coexist with non descendants for only a limited period
of time, Therefore the superior subset guaranteed for
m' = t(H®,R) cannot be simply the set of all descendants in
R(m') of H%(m), since H%(m')= R(m'). Thus this axiom
guarantees that there is always variation, and the survival
of the fittest axiom guarantees that any particular
variation of the type guarantced (i.e. variation whose
fitness characteristic does not oscillate) can only remain

variable in the population for a limited period.
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Section 4.7: A Nested Seyuence of Subpopulations that

Take Over
The preceeding paragraph contains the germs of two
theorems which will now be formally stated. The first
simply states that there always exists a subset which is
fated to take overré finite number of generations.

Theorem 4,13: For any population R and generation n

such that N(R,n) =2, there exists a subset Rl(n), such

that Rl(n)%}ﬂrn, and a generation j such that

Suppose that N(R,k)> 2 for all k. Then, since the
hereditary variation axiom states that there is hereditary
fitness variation in every generation of R, there must be
a subset H(j) of R(j) which has, along with its descendants,
an advantage over the rest of the population. Hj will,
in time, eliminate its less fit cousins (either by
extermination or interbreeding); suppose this happens by
generation J2. Then there must exist a subset H(j2) of
R{(j2) which has an hereditary advantage over the rest of
the populationg sz will, in time, eliminate its less
fit cousins. Clearly this process will go on forever,
with superior subpopulations becoming noticeable as soon
as the previous superior population completes its takeover.

This is stated in the following theorem.
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Theorem 4.14: Tor any population R such that there exists

a generation n such that N(R;k)»2 for all kzn, there
exists a set of generations Ejl, i2s jS,...ji...§ and a
subset HI1(ji) of R(ji) for each generation in the set
such that J1< j2< §3< ves <l ouv, Wi(5i)e=md(E-1)(51)
for each generation ji in the set, and R(k) = Hji(k) for

all k2 j(i+ 1).

Section 4.8: On the Use of Infinity

Now the reader should notice that the assumption, in
the previous two theorems, that R(k) contains at least
two orgenisms for every kzn implies that the population
never dies out. As it is entirely possible that all life
wlill one day be exterminated by some cosmic catastrophe,
it is possible that there do not exist any populations for
which this assumption is true. It is necessary, therefore,
to ask whether the hypotheses of these theorems are
sufficiently close to being true of the universe in which
we live for their conclusions to give the sort of phenomena
that can be expected in our universe.

In almost every non-trivial application of mathematics
to the real world the concept of infinity is a necesseary
element of the mathematics involved. Calculus, which was
invented by Newton to express certain relationships among
physical bodies, uses the concept of infinite sub=-

divisiblility; calculus is very useful even though matter
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is not infinitely subdivisible. Similarly statistics,
which is used to describe finite sets of chance happenings,
in defined.in terms of infinite sets; in spite of this,
the conclusions of statistics prove of practical value.
Clearly in both these fields there are assumptions, without
which the fields cannot be defined, which are not true in
our universe; but they are sufficiently close to being
true to allow these fields to be of practical 1B e.
Similarly we expect that the infinity which must be
introduced in order to get interesting results will prove
to be sufficiently true to allow this theory to be of
practical value; the populations alive today, in which

we are most interested, have probably existed for only a
finite time period, but if that period is sufficiently

large the theory should be sufficiently close.

Section 4.9 Theorems on the Structure of Subpopulations

that Take Over

The next theorem should be taken as a warning that we
cannot reason backward from the fact that a certain sub-
population takes over to the conclusion that it is fitter,
It would not, of course, be desirable to have an axiom
system which implies that the subpopulation that takes over
is always the best one, since this is not a characteristic

of the universe that we wish to describe.
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Theorem 4.15: If R,(n) is a subset of R(n) such that

there exists @>0 such that F(Rﬁ,R,k) > F(R-Ry,Rsk) +@ for
all k>n such that R(k) # Rg(k), and Ro(n) is a subset of
R(n) such that Ry(n) is a subset of Rg(n), then there
exists a generation j such that Rg(j) = R(J)»

This theorem asserts that if R? is being selected
for, then any subpopulation RE which contains B& will
gseem to be being selected for. For example, suppose
that Rz(n) consists of all those organisms that are
fitter than the average but which left no j-descendants
because of chance catastrophes. Then let
Ry(n) = R(n) = Ry(n). Clearly F(RysReyn)< F(R-R5,R,n),
but in spite of this Rg will be seen to exterminate Rg
and to take over R. Thus the axioms do not guarantee
that every subpopulation which survives 1s fitter than
every subpopulation which does not; they guarantee that
some subpopulations which survive do so because they are

fitter.

Theorem 4,10 has shown that if a population is
composed of two non-interbreeding subpopulations one of
which is consistently superior to the other, then the
inferior subpopulation will be exterminated. But what
happens in the case when neither subpopulation is
consistently superior? In view of the continual supply
of subpopulations which, according to Theorem 4.l1l4, arise

to take over any population; can such non-competitive sub-



72

populations continue to exist? And if they can, how do
they coexist with the competitive populations which are
taking over? The following theorem will show the
relationship between such non-competitive sub~populations

and the competitive populati ons.

Thoorem 4.16: If R(0) = Ry(0) (/ By(0) and (1) & eand
Rg are non~interbreeding for k>0, (2) N(Rg,k) > 1 for
all k>0, and (3) N(RS,k) > 1 for all k>0, then there
exist subsets RO(0) <= R2(0) and RO(0) < R’3(0), at
leagt one of which is a non-trivial subset, and a
generation j such that RE(j):: Rg(j) and RS(j)::R%(j)-
Clearly neither Bg nor Eg is consistently superior
to the other, since the fact that they are non-inter-
breeding implies that a consistently inferior one would
be exterminated and, by conditions (2) and (3) both
remain in existence. According to the theorem, what
happens in this case is that the takeover subpopulation,
which we know must exist, contains some members of RO(0)

1
(namely R?(O)) and also some mewbers of RS(O) (namely ﬁo(o)).

2
RKach of these subasubpopulations eliminates the remainder
of its own subpopulation.
It is obvious that this theorem could be extended to
show the same results if R consisted of any finite number

(instead of just two} of non-interbreeding, non-coumpetitive

gsubpopulations. We see therefore that although the axioms
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guarantee that there is competition within each
population, they do not guarantee free competition; that
is, there is no guarantee that the population 1s
homogenous with respect to competition. Thus our use of
the word population is very much wider than the usual use
of the word; wmany groups that are populations in our
sense of the word are not populations in the usual sense.
However, since any group that is a population in the
usual sense is also a population in our sense, any
statement that we make about populations will also be

true for populations in the usual meaning of the word.

Section 4.10: Conclusions

In this chapter four axiows have been stated and sonme
of thelr implications discussed. There are many other
hypotheses about the process of evolution which could be
stated as axioms; there could be an axiom asserting that
heredity is lendellian, or one asserting that variation
arises frowm random mutations,. These would add power
to the theory, but they are not necessary for natural
selection. We assert, however, that the four axioms that
have been stated are necessary for natural selection. We
assert further that they are sufficient to define natural
selection. (These assertions cannot be proved since
natural selection has never been explicitly defined. We

shall call such a universe a Darwinian Universe.
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Definition: A Darwinian Universe is a Biological

Universe, (By,4>; =), a function f on B, and a set P of
populations such that axioms 4.1 through 4.4 are true

statements about them.

Notations (ByA>»y = ,£,P) denotes a Darwinian Universe,
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CHAPTER 43 APPUNDIX

A Darwinian Universe (By<>y = ,f,P) is a Biological
Universe (B, ,= )}, a function f on B and a set P of
populations such that the following axioms holds

Axiom: 4.1: For any R in P, R is a lineage in (B4, = ).

Axioms 4.2: For any O in B, f(0) is a positive real number.

Definition 4.1:

F(O,R,k £(0)
(OsRsk) _ — if 0is in R(k)
e f(Oi)
0, in R(k)
= 0 if 0 is not in R(k)

Definition 4.2: ILet 3" (k) = R'(k)NR(k). Then

F(R',R, k) = > F(0sRs k) BReke) yp B (x)# ¢

-
L VS

0 in R'(k) N(R* 5 k)

i
O

if R (k) =¢

Definition 4.3: Tor any integers jl and js, a partition,

P(lejz), of jl,j2 is a set of pairs of integers such thats
(1) for any pair (ky,ke) in p(jy,jo) either k3 = jy or there

exists exactly one pair (ki,ké) in p(jl,jz) such that k1= k

27 %18
(2) for any pair (kysks) in p(JysJg) either ky=j, or there

exists exactly one pair-(k{,kg) in p(jl,jQ) such that k£= ko3

(3) there exists exactly one pair (kl’kz) in p(jl,jz) such

that k, = ;3
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(4) there exists exactly one pair (kl,kg) in p(jl,jz)
such that kz = 32;
(5) for any pair (ki,kg) in p(jysjo) there exists no pair
(ki,ké) in p(jqsJp) such that k] < kj<kd or kj<ky<kdy
(6) for any pair (k ,k,) in p(J sdg)s J;= Kk <kysi,.
Notation: TLet N(p(j;,jp)) denote the number of pairs in
the partition p(jl,jz).

Axiom 4.3: (Survival of the Fittest): Tor any R in P,
and there exists an >0 such that

. My o — .
if Ri(Jl)L"R(Jl)
(R Ry k) > F(R-_%,R,k)+gz ¢ for all k in {jl,jzj, then

if 9(32-jl)zil there exists a partition p(jy,jy) such
that for every pair (kj,ke) in the partition

m

N(RT,kg) - N(R—Rl

and N(p(J1sds)) > glding-dq).

sky) > W(R,ky) - N(R-RP,kq)

Axiom 4.4: (IHereditary Variation); For any R in P and
any positive integer m such that ¥(R,m) > 2, there exisits
H(m) < R(m) and2>0 such that R(m+ 1)# H(m+ 1) and, for

any k>m such that R(k)# mm(k), F(E%,R,k)> F(R-IIT,R, k) + 9,

Some theorems which can be proved using these axioms
follow.

Theorem 4.1: 7For any O!' in R(k), 0 F(O'R,k) 1.

Proof: Since 0' is in R(k), F(O';Ryk) 4 £(0)
=
> £(0,)

Lo

Oi in R( )

by definition 4.1. By axiom 4.2, the numerator is a



77,

positive number and the denowminator is a positive number.

Therefore the ratio is positive; 1i.e. F(O';R,k) > 0.

Since 0' is in R(k), <
o £(05) & £(00) o FlOi)
0; in R(k) 0; in R(k)-0"

go F(O';R;k) is of the form where a> 0 and b = 0.

a
a+ b
Therefore F(O';R,k) = 1.

Theorem 4.2: F(O',R;k) = 0 if and only if 0' is not in R(k).

Proof: By definition 4.1, O' not im R(k) implies
F(O';R,k) = O. By theorem 4.1, O' in R(k) implies
F(O',R;k)>0; therefore F(0'sR,k) = O implies 0! not in
R(k).

Theorem 4.3: F(R',R,k)= 0 if and only if R'(k)/jR(k)= ¢.

Proof: By definition 4.2, F(R',R,k)=0 when R'(k)/} R(k)=¢.
Now suppose R'(k)/I1R(k)# #. Then there exist an organism O
in R'(k)/1R(k). By theorem 4.1, F(O0',R,k)#0.

Clearly W(R,k) >0, and W(R¥,k)>0. (Reweuber that
R*(k)=R'(kX) /0 R(kx).) Therefore

e
- ) )
F(R',Rok) = [ 7 F(0,Rk)| LlEek)
0; in R'(Kk) ] oaw(R®,x) -

/

Therefore, since the assumption that R'(k)NR(k)# &
leads to the conclusion that F(R',R,k) > 0,
F(R'5R,k) = 0 implies that R'(k)R(k) = £.
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Theorem 4.4: If R(k)£ # then F(R,Rsk) = 1.

Proof: Since R(k)# &, R(k) R(k)= R(k)# 4.

Therefore
U
/AN
F(BsRyk) = | - F(04,Ryk) D
0; in R(k ’
:T'\";T‘ ~
= f‘/—// F(Ol’R’k)
0; in R(k)
e
N / £(0, ) \
= et /
0. in R(k) | = £(0y)/
i \\ 05 in R(k) * /
-
‘c'/"'/_..; - f O-
0; in R(k) (0;)
= =
.:'_"‘/\" f(O )
0, in R(E)
=1

Yotation: In F(R-R';R;k), R-R! denotes R(k) = R'(k).

Theorem 4,5: ZLet R and R' be such that @# R'(k)NR(k)# R(k).

Then F(R';R,k) > 1 if and only if F(R-R!',R,k) < 1.
Proofs  Let R"(k)=R(k) -~ R*(k), Rj(k)=R"(k)R(k),
and B5(k)= R'(k)R(k). Then

il

F(R-R',R,k) = F(R",R,k)

— \
. > }
N{Ryk / — F(OiaRsk) !

N(R,k) !\\oi in R"(k) /
/

i
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% = . {
M(Ryk) i 7 !
= _.(_E.!._.L_! 1 - . F(OlgRsk) i
(R, k) | 0; in R'(k) |
S \
= MRk) | NREK) ;0 > F(oi,R,k)j

m(H, k) N(R),k) -’\oi in R(¥)

N(R,k) _ N(EE,k)
W(H] k) N(R], k)

i

F(R';R,k)

N(Ryk) = N(R,k)F(R',R,k)+ N(Rﬁ,k)F(R',R.k)

W(R] k)

N(R], k)"

1
Rt ,R.’k)}l +* F(R.! gRyk) .

Now suppose F(R';R,k) ~ 13 then F(R',R,k) = 1+ § for §>0,

Therefore

NiR,k - -
F(R=R';R;X) = 'L::_—)' (l - (14 6)/ +1+3
:N(R' yk) - -

1
(R k) >

< 1 since %
N(Rl,k)

1.

On the other hand, suppose F(R-R';R,k)<1l; then

F(R-R';ng) = 1 - &,
o = N(R,k r
So 1 -9 "iff_l j1 - F(R'sRvky}*’F(R"R’k)
W(R k) g

If F(R'gR,k) ;’)’ ly then either (l) F(R'gR,k) = 1 or
(2) F(R'>Rek) = 1 = 6.
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If (1) then 1-6= W{Rpk . O+1, which is impossible.
N(E] k)

It (2) then 1- 6= K(ReX} [3.(1.8)] + 1.5
N(R7, k) ‘

but since the right side of the equation is greater than 1,
this is impossible. Therefore, since assuming
F(R',R,k);sl leads to a contradiction, F(R',R,k) > 1.

Theorem 4.6: Let R'(k) be a non-trivial subset of R(k).

Then F(R';Rsk) = 1 if and only if F(R-R';R,k)= 1.

Proofs Only if: Assume the contrary; i.e. F(R'5R,k) = 1
and F(R-R'5R,k) # 1. Then either (1) F(R-R';R;k)< 1 or
(2) F(R-R'R,k)> 1. By theorem 4.5, F(R-R';Rek) < 1
implies T(R',R,k) > 1y therefore F(R'y;R,k) cannot be
eyual to 1 when F(R-R';R;k)< 1; therefore (1) cannot be
true. Let Ry(k)= R(k) = R'(k); then R{k) - Ry(k) = R (k).
Now using theorem 4.5 on Rj(k), F(Ry,Rsk) >1 implies that
F(R-RysRsk) «. 13 substituting equal sets, this implies
that F(R-R';R,k) »1 implies F(R',;R,k)<1; therdfore (2)
cannot be true. Since neither (1) nor (2) can be true,

it cannot be true that F(R';R,;k) =1 and F(R-R';R,k) # 1.
If: The proof of the implication in the other direction

is analogous,

Theorem 4.7: Let R'(k) be a non-trivial subset of R(k).

Then F(R'5R,k) > F(R,R,k) if and only if

F(R"R,k) > F(R-R' ,R'k) .
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Proof: Ifs Iy theorem 4.4, F(R;R,k)= 1; therefore

F(R',Ryk) > F(R,R,k) implies F(R',Rsk)>- 1. This implies,

by theorem 4.5, F(R-R'5R,k)« 1. Therefore

F(R'yR)k) > F(R-R's;Rek).

Only if: Assume the contrary: i.e. (1) F(R';Ryk)>F(R=-R'sR,k)
and (2) F(R'sR,k) =1. But by theorem 4.6, F(R';R,k) =1
implies F(R-R',;R,k) =1 and by theorem 4.5 FP(R';R,k)=1
implies TF(R~-R',R,k) »1l. Thus statements (1) and (2) cannot
both be true. Therefore F(R';R,k) = F(R-R',R,k) iumplies
P(R',Ryk) > L=F(RsRyk)w

Theorcu 4.8: TFor any integer i such that jlziizsjg and
for any partition p(jl,jz), there exists a pair (kl’kz) in
p(jl,jg) such that kg = 1=k,

Proofs Suppose that no such (kl,kg) exists,., By the
definition there exists a (kl’kZ) such that kq = jq;
therefore, since iz j;, there exists at least one (kqi,k5)
suchh that klsfi. Since there are a finite number of pairs
in the partition, they are well-ordered; therefore there
exists a pair (ki’ké) such that ki is the largest k,

less than 1. By part (2) of the definition, either

kp = jo or there exists (ki,k') such that k! = kl. But

2 1 2
by the assumption it$~k§; therefore i>kj. This implies
that either ki is not the largest kl less than i, which

is impossible, or i:>32, which is impossible., Therefore,
since the assumption that no such (kl,kg) exists leads to a

contradiction, such a pair must exist,.
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Lemma 4.9: For any population R and integer m there
exlst no R{{m) < R(m) such that there exists € >0 and k'

such that F(RI,R,k) > T(R-E],R,k) + e>¢ for all k= k'.

Proof: Suppose such an RT(m) exists. Let i1= k',

Since & is a constant, there exists an integer io such that
Q(iz—il);zl. Therefore, by the survival of the fittest
axiom, there exists a partition p(ij,ig) such that
N(p(iisin)) =1 and for every ki,kp) in the partition

N(RLK,) - W(R~-R2, k

m 3 _ m
1 j>=N(Rl,kl) - N(R-Rl,k

2) 1)

Again, since @ is a constant, there exists an integer iS
such that R(is~i2);zl. Therefore, by the survival of
the fittest axiom there exists a partition p(iz,ia) such

that N(p(izgis))le and for every (kl’k?) in the partition

N(RT,k,) - N(R-R],k - N(R-RT,

. m
17K > H(Rl,k

5) 2) L

Similarly there exist an infinite succession of integers
14’i5’16"°' with the same properties.

. [ o m oy N (1]
Let  S(R,RR,k, k) = [N(R%,k )-N(R-RT,k, )] - M(RY,k

Tk, )-N(R-Rm,kla.

1 1

Then, by the survival of the fittest axiom,

1 ] g

o N . )

~.. . . .

> N(p(igsigeq))e > [ 0 S(RyRyskyako)/ (1)
J=1 j=1 | (k1. k57 in

Now since, in a partition, every kj except the first is equal

to the k2 of the next smaller pair and every k9 except the
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last is equal to the kg of the next larger pair, the inner

gum on the right side of (1) is of the form
(a=b)e(b-cl+(c~A)}+e.cu + (X=y)4(¥y-2) = a=-z

So the right side reduces to

3Mp
w;;;*‘aﬁ(R si. 1) - N(R-RT ) - N(R i) - N(R_Rm i ﬂ; .
el N 1t J"'lj 1773 12254)
J:

But this is clearly of the same form, so it reduces to
o .

Now since each member of the sum on the left of (1) is

at least 1,
31

3y < } BT(p(ij,ij+l)=

j=1

S0, according to (1),

,
3Mp < ’;\I(Rl,n.:,JMR - N(R-RY] 5M/ [N(Rl,ll) N(R-RT51i )/« (2)
Now, since N(R',;k)> 0, (?) implies

Bip < N(Rl,lm- ) + N(R- Rl,ll) (3)
But by axiom 3.4, N(R,k) < Mps so (3) implies

SMR <
This is clearly impossible. By assuming that such an RT
exists we have shown that this gives rise to a contradiction.

Therefore no such R? exists,.
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Theorem 4.9: If Ry(m) <~ R(m) and there exists ang>0

such that F(R’f,R,k) >F(R-R‘f,R,k) +9  for all k such
that k>m and R‘il(k);/ R{k), then there exists an
integer t such that R(t) = RT(t).

Proofs: Suppose no such t exists., If we let

Ro(k) = R(k) = RT(k), then this assumption asserts that
Ro(k)# & for any k>m. Therefore, Ro(k)/IR(k)# @ for
any k>m, so by theorems 4.3 and 4.1, F(Ra,Rs;k) > 0 for
any kzm. Therefore, for any k>m, F(Ro,Rsk)+ >R
Therefore F(RT,R,k) ';»F(R-RT,R,k) +Q> 2 for all k>m.
But by lemma 4.9 this is impossible, Therefore such a

t must exist.

Notations If RT ig a subpopulation of R which fulfills
the conditions of theorem 4.9 and t is the generation

guaranteed by the theorem, then we shall call t the

n

takeover generation of Rl with respect to R and we shall

denote it by t(R‘f,R).

Definition 4.4: Ril and R%z are non-interbreeding for

1 zk if and only if R{l(i)/f)ﬂgg(i)= &g for iz=k.

m m , .
Theorem 4.10: If R(k) = Rl(k) Rz(kL a%(k) and Rg(k) AYe Nnori-
interbreeding for k2m, and there exists 23> 0 such that

P(R)»R,k) > F(RS,R,k) +2 for all k such that k=m and

i1

R)(k) # R(k), then RH(t(R{»R))= g.
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Proof: RY satisfies the conditions of theorem 4.9.

Therefore RU(4(Rf,R)) = R(t(R7sR)). Since R3(k) < R(k)
m m

for all k, this implies that R%(t(R%,R))::Rl(t(Rl,R)).

But since RT and Rg are non-interbreeding for k=m and

1
t(R%R) > m, RT(t(RTf,R))ﬂRg(t(R‘f,R)) = ¢f. Therefore
RY(t(R7,R)) = &.

Theorem 4,11 If there exlsts an >0 and a number b

such that F(R‘f,a,k) >F(R-RT,R,1<) + % for all k such that
N(RT,k)/N(R,k) < b, then there exists an integer j such
that N(RysJ)A(R,5) = ba

Proof: Suppose that no such j exists. Then

F(er,R,k) >F(R-R§1,R,k) +@ @ for all k. But by lemme 4.9
this is impossible, Therefore such a j must exist.

Theorem 4.,12: If R(k) = R*f(k)u]?{g(k) for all k> m,

m m .
Rl and R2 are non-interbreeding for all k =>m, and there

exist numbers b and 23>0 such that (1) (Rl,R,k R2 Ryk

whenever N(Rl,k)/N(R,k) < b and (2) F(R ,R,k)>>F(Rl,R,k) +8

2
whenever N(R?,k)/N(R,k)T> by then one of the following holds:
(1) there exists a j such that R%(j)= @s (2) there exists a
j such that Rm( )= @; or (3) for any number M there exist

jt and j" such that j'>M, j"-M, N(lﬁf,j')/l\r(n,'j') < by

and W(R7»3")/N(R,§") =D

Proof: Suppose neither (1) nor (2) holds and there does

not exist such a j". Then for all k>, N(R l,k)/l\T(R yk) <D,

which implies that P(TQ,R,k) (ngR k) +8 . Since (1)
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does not hold, theorems 4.1 and 4.3 imply that T(R7,Ryk)> 0.

Therefore, since le and 'Rgl non=interbreeding implies that

le(k) =R(k) = R?(k), F(RgsR,k)»- F(R—-RS,R,I{) + 8> for all
k=M. But this is impossible by lemma 4.9, so we have
arrived at a contradiction. Therefore such a j" must

exigte.

Suppose neither (1) nor (2) holds and there does not
exist such a j'. Then for all k=M, 1\?(R§‘,k)/N(R,k)>b,
which implies that F(E],R,k) > F(E,R,k) +2. Since (2)
does not hold, theorems 4.1 and 4.3 imply that F(RS,R,}:) > 0.
Therefore, since Rtil and R‘g non-interbreeding implies that
Rg(k) = R(k) =- Rt]r_l(k), F(R‘f,R,k)>F(R-R§],R,k) +2>9 for all
k=M. But this is impossible by lemma 4.9, 80 we have
arrived at a contradiction. Therefore such a j! must

exist.

Theorem 4.13: For any R in P and any n such that N(R,n) =2,

there exists Ry(n) < R(n) such that Ry(n) # R(n) and a
generation j such that Rﬁl’(j) = R(J).

Proof: The hereditary wvariation axiom guarantees that
there exists an H(n) %R(n) such that HI(n) # R(n) and, for
any k=n such that R(k)# HY k), P(H,Rsk) > P(R-H, R, k) + R,
Let Rl(n) = H(n). Then Rq(n) _C;_R(n); we must now prove
that there exists a j such that R(J) = R(J). Suppose

1

there exists no such j. Then R(k) - If]’.(k),é @ for any k=n;

80 by theorems 4.1 and 4.3, F(R-Rlil,R,k) = 0 for all k:=n.
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Therefore F(RI,R,k) > P(R-RysTok) + -2 for all kzn.
But, by lemma 4.9, this is impossible, so we have arrived
at a contradiction by assuming that no such j exists.

Therefore such a J must exist,

Theoremn 4,14 For any R in P such that there exists a

generation n such that N(R,k) > 2 for all k=n, there
exists a set of generations Ei}‘l,jZ,le,...f and a subset
Hji(ji) < R(ji) for each generation in the set such that
(1) j1=j2=33<..., (2) Wi(51)ewi(3-2)(j1) for eacn
generation in the set, and (3) R{(k) =Hji(k) for all
k=zj{(i+1).

Proof: We shall prove this by mathematical induction.
First we must show that there exists jl,jZ,Hjl,sz such
that Hjl(jz):;—;HJ?(Jz) and R(k)= Hil(k) for all k = j2.
Since N(R,k)= 2 for all k=n, there exists, by theorem
4,13, a subset H(n)ff/:;R(n) and an integer j >mn such that
H(j)=R(j). By theorem 3.4, H?(j)=R(j) implies that
B (k) = R(k) for all k=j. Therefore, if we let jl= n,
i2 =j, and B}(j1) = Hn), then B(j1)SR(j1) and
1I1(k) = R(x) for a1l k= j2.

Now we can apply theorem 4,13 again, letting m = j2.
Therefore there exist a subset H(j2) ?;R(jz) and an
integer j > j2 such that HJ2(j)= R(Jj), and thus
H‘jg(k)= R(k) for all k =z j. DLetting j3=j, we have
Hi2(k)= R(k) for all kx=>j3. Since HI1(j2)=R(j2),
H2(j2) 2wl (52),
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Now we must show that if (1) there exist ji, j(i+ 1),
jli+2), Hji, and Hj(i"' 1) such that Hj(l+1)(j(i+ 1))@:‘_

mIl(3(1+ 1)) ana R(x)= 93+ 1) (k) for all x> j(i+ 2)

_ 1o
then there exist j(i +3) and 1 ‘1 ¥ 2)

(i+2)

such that
HJ (3(i+ 2))5;Hj(i+ l)(j(ii-2)) and R(k)=Hj(i+ 2)(k)

for all k> j(i+ 3}, We apply theorem 4.13, letting
m=Jj(i+2); thus there exist H(j(i +2))E=R(I(1+ 2))
HE2)5) - ).
(J(1+3))=R(5(1+ 3))
Jj(i+ 2)(1{)

-and an integer j»> j(i+ 2) such that H

Letting j(i+ 3)= j, we have that HJ(l +2)

and therefore; by theorem 3.4, that H
(1+1)

= R{(k) for
all k>j(i+3). Since HY (J(1+2))=R(j(i+2)),
H‘j(j’+ 2)(j(i+ 2)) H‘j(i+l)(j(i+ 2)). This completes the

proof by induction.,

Theorem 4.15: If Rl(n)f:_ R(n} and there exists 23>0

such that F(erl,R,k) > F(R-R’f.a,k) + for all k>n such

that R(k) # Rlil(k), and there exists Ro(n) such that
Ri(n)CRg(n)R(n), then there exists a generation j such
that Ry(J) =R(J).

Proof: By theorem 4.9, there exists a j such that

RO(j) = R(J). By theorem 3.3, Ril(n)C.Rg(n) ~~R(n)

implies that Rg(j)CRg(j)'-“.R(j). Then

R(3) = RJ) CRA(J) <R(j) implies R(J) = R(J).
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Theorem 4.16: If R(0)= R,(0){JR,(0) and (1) RCl’ and Rg

are non-interbreeding for k>0, (2) N(Rg,k) 1 for all
k>0, and (3) N(Rg,k)>l for all k>0, then there exist
non-mull subsets Ty(0)(ZRJ(0) and RJ(0) R3(0), at
least one of which is a non=-trivial subset, and &
generation j such that Rg(j)==Rg(j) and Rg(j) = Rg(j).
Proof: By theorem 4,13 there exists a subset H(O)%;R(O)
and a generation j such that HO(j)= R(j). Now there are
three possibilities: (a) HO(J )C.'ZRO(J) (b) #O(3j CRO (3)y
end () T(JINEJ(J) ## and H%le A g

Suppose (a) is true. Since Ri and Rg are nons
interbreeding, Rl(J) RO(J) Z, which implies that
R(JINEQ(4)=#. But this implies that RY(3) = &
which is impossible by part (3) of the hypothesis.
Therefore (2) is not true.

(b) can be shown to be false by the same argument.

Therefore (c) is true, This implies, by the
definition of R , that HO(0)f) RCl’(O) and HO(0) N Rg(o)

are the subsets required.
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CHAPTER o3 DIVERSE DARWINIAN UNIVERSES

Having delineated the process of natural selection,
we now wish to indicate how this process, together with
the diversity of environments, acts to produce the diversity
of species. We shall not give a set of axioms which are
necessary and sufficient to produce diversity of speciess
for this is too complex a problem to be completely solved
here. The purpose of this chapter is, rather, to indicate
how the theory of the Darwinian Universe can be embedded in
a larger theory in which the production of diversity by
natural selection can be discussed. This will be done by
embedding the Darwinian Universe in a system,‘called a
Diverse Darwinian Universe, in vwhich the existence of

environments with different selective effects is postulated.

Section 5.1: IEnvironments

We shall not actually discuss environments; we shall
confine the discussion to different fitness functions for
the same set of organisms and their different selective
effects. However, since the concept of different
environments which have different effects on the same set
of organisms is what gives rise to the concept of different
fitness functions and since the properties that we give to
the fitness functions are intuitively derived from the

properties that we see in environments, we shall first
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give an intuitive discussion of the concept of environment
which will form a background to the properties of fitness
functions.

Intuitively, the environment of an organism is the
set of all factors which influence its life, including
both physical factors (climate, soil type, etc.) and
biological factors (predators, parasites, food, etc.).
Thus the environment of the organism is not wholly
determined by its surroundings: it is partly determined
by the capabilities of the organism. For example, the
colour red is not part of the environment of a colour
blind organismj the organism may be more likely to be
caught by a predator if seen against a red background,
but this will not make red a selective factor uniiess the
organism has =& way of differentiating between red and
not-red, since there is nothing in a population of such
organisms to select for. Thus the environment of a
population,; which may be thought of as the "sum" of the
environments of the individual organisms comprising it,
may be changed either by changes internal to the organisms
or by changes external to the organisms.

Within a Diverse Darwinian Universe we shall be able
to discuss such changes and to differentiate between
internal and external changes. We shall do this by

considering the fitness in an environment « of an
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organism O, given by fa(O), and the fitness in environment
g of the same organism 0, given by §3(O). (Except for
the letter 8, all of the Greek letters used hereafter will
denote environmentssy ® will be used; as before, to denote
a small positive nuwmber.) Ve shall stipulate that each
environment « (or 8, vy, etc.} is a Darwinian Universe with
fitness function f;, (or fﬁ’ s etc.); that is, the
function f on the Biological Universe (B,{>, =) has the
properties ascribed to the function#® f by axioms 4.1
through 4.4. The set of such functioms will be denoted
by E as a reminder of its connection with environments.

Notice that if the fitness function f, is different
from the fitness function fb (i.e. £, and fg select for
different properties), then, under natural selection, the
population derived by %1 from a given set S of organismg
will be different from the population derived by fb from
S; thus we designate a population in o by R, and the
population in g by RB; similarly we designate by P, and
Pb the sets of populations in « and . The first axiom
simply states that every fa in B is a Darwinian fitness
function.
Axiom 5.1: For any f, in E, (B;&,= , £, B, ) is &
Darwinian Universe.

The stipulation that each environment gives rise to a

Darwinian Universe automatically excludes the possibility
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of emigration into an environment at a rate sufficliently
high to upset the Darwinian properties. For example,
suppose we wish to study a population R on the edge of

the range of its species and which is such that (1) at

all times a certain subset R! is more fit than its
complement R-R! in the situation in which both are living
but (2) R-R!' actually has an advantage over R' because of
emigration from the interior of the range of the species;
this "population" R cannot be studied by itself (i.e.
without reference to the emigrants' parent population and
its environment), since the Darwinian properties will not
hold if fa is interpreted to mean fitness in the immediate
environment of R; in this case it is necessary to consider
the environment of the whole of the population which is
contributing descendants to R. (Biologists will recognize
that this is related to the problem of the effect of
reproductive isolation on selection.) On the other hand,
the axiom does not exclude emigration which can be absorbed

without upsetting the Darwinian properties.

Section 5.2: HBauivalent Subpopulations

It is intuitively clear that a subpopulation which is
more fit than its complement in one environment may be less
fit than its complement in another environment. (For

example, giraffes with long necks may be more fit than



94,

giraffes with short necks in an environment containing
tall trees, but less fit then giraffes with short necks
in an environment containing only low bushes.) We could
denote this situation by: E&(Rl,R,k)>>Fa(R—Rl,R,k) but
Eb(Rl,R,k)<:Eé(R-R1,R,). However, this statement of the
gituation assumes that the same organisms are present in
both environments. This, while intuitively clear, is
physically iwmpossible, since the fitness assigned to an
organism by the fitness function is its fitness over its
vhole lifetime., Now, if an organism moves from a to 8
its fitness may be given by ﬁr, where the environment ¥
is a combination of the environments ¢« and g, but fY is
not a siwmple combination of fa and §3 gince the fact that
the organism has spent part of its 1life in « will influence
its reaction to g. With such a concept of fitness, how can
we explicitly state the intuitively clear fact that there
exist populations and enviromments such that one sub=-
population will be selected for in one environment while
its complement will be selected for in another environment?
In order to do this it will be necessary to introduce
the concept of equivalent subseis. Roughly speaking,; a
subset S' of S and its complement S~S! are equivalent to
each other with respect to a subset D of S if the organisus
in D are randomly (with respect to fitness) divided between

S and S-5', Thus, for two such equivalent subsets,
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F (D8 8',0) > 1 when and only when
Fa(DfW(S-S'),S-S',O):>l. Now this relationship between
fitnesses is the property that equivalent sets must have
in order %o provide a tool for discussing the different
selective effects of different environments; wlth it we
can say that if F _(DMN8',8',0) > 1 and
FB(D/‘)(S-S'),S-S',o)41 then « and g are different
environments. This relationship is not, however;, a
property of randomly divided subsets; randowm division
does not always ensure fair division; 1t only ensures
that on the average the division will be fair. We shall,
therefore, define equivalent subsets not in terms of
random division but in terms of the relationship between
fitnesses.

But first, in order to express this and succeeding
concepts somewhat more concisely, it is desirable to
define a notation for certain sets which will appear in
definition 5.1, axiom 5.2, and some of the theorems in
this chapter.

Notation: Given f in E and sets 8, S'C’. S, and DL 8,

the following notation will be used for the indicated

subsets:
(1) s* = §-8! (5) D*(0)=DMs*
(2) RI(0) =38! (6) Bg(o)=s' - DNs?
(3) R*(0) =8 (7) Di(0)=s8* - DIs*
(4) Dy (0)=Dris?
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A visual representation of the sets mentioned in this

notation is provided by the following diagram.

| R S S D R S S B I I R A . S

(SN SR S R S R R B A S T L N L

! t 1 ! ! 1 1 tl¥ ¥ ¥ * ¥ % ¥ ¥ ¥ *

* ¥ X X ¥ X Kk O X ¥

* ok
* %
* *
x! %
¥ %
¥, %
* %
* %
* ok
x! %

*
*
*
*
*
%
sk
*
3
£ 3

The whole figure represents the set S. The right hand
rectangle, containing the gymbol ¥, represents S*. The
left hand rectangle, containing the sywbol ', represents
S's (Motice that g*¥ = 5-8'). The bottom rectangle,
containing the symbol -, represents D. (The fact that
the areas of the different rectangles are approximately
equal should not be taken to mean that all of the subsets
contain the sawme nuwmbers of organisms.)} The set D[] S!'
is the part of the figure containing both -~ and '. The

set DI S is the part of the figure containing both -

and *,
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Definition 5.1: A set S'C S B is equivalent in

0

generation k to S with respect to DCS and fa in ® if
and only if for any R! in P, and for any R§ in P, swhen
(a) designates the inequality

F,(D!0,R! ,k)>F (RI-DIO,R! ,k) + % (a)
and (b) designates the inequality

F, (D*0,R*, k) > F (R%-D*0,R},x) + ¢ (b)
Then for any 0 (a) &&(b).

To illustrate this definition, consider the exampilie
of the giraffes. Suppose the environment a is such that
the longer the giraffe's neck, the greater its fitness.
Then if S is the set of giraffes in a; let D be the get
of all giraffes in a with necks longer than a fixed
length x3 then S~D is the gset of all giraffes in a« with
necks shorter than or equal to the length x. Assume
that there are exactly 100 giraffes in S. XLet the giraffes
in S be numbered so that 8 has the longest neck, 8o has
the second longest neck, and in general g; has a longer
neck than 8i,1" Then D = {gl,gg,...,gm§ and
S'I)=€ém 178, 2’“'°’glOQ§' Let S!' be the subset

\

S‘ = R'(O) {él’gzggsgonnggm l,gm 3’°°.,g99§

Then S* ) {gpigl}’gG’""g 9g11 29""%1005
D& 0) = % 17839855+« - ’gpj where p=m or p=m - 1
D: 0) = {;sg4sg63--o9gqg where ¢ =m or gq=m ~ 1
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Frou the way S' and S* are defined it is clear that they
have approximately equal relative fitnesses with respect
to Dy i.e., if F, (DO,R! ;0) >F (R&-D&O,R& 20)
then F, (DXO,R* ,0) > E(R¥ -D*¥0,R*,0) or, to put this in
words, if in o the fitness of that part of D which 1is in
S' is greater than the fitnessof 1ts complement in S', then
the fitness of that part of D which is in 8* 1is greater
than the fitness of its complement in S¥.

In this example S' and S* were formed so that they
had approximately equal numbers of giraffes from D and
so that the number of giraffes in S!' was approxiwmately
equal to the number of giraffes in s¥*. Neither of these
conditions are necessary for equivalent sets. The
necessary condition is the one stipulated in the definition,
namely that the relation b8tween the fitnesses of D' and
S1-D' is the same as that between the fitnesses of D¥
and 8* -D*. These relations could be the same even if
S' contained only a small fraction of the giraffes in S;
therefore a small set of giraffes which is separated from
its parent population by an earthquake may be equivalent
to its parent population with respect to D even though it
is very much smaller than its parent population.

So far we have only considered the situation when S!
and S* are equivalent in one generation. Because length

of neck, and therefore fitness due to length of neck, isg
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hereditary we would expect that if the fitness of D! is
greater than that of R'-D' in the zeroth generation, then
it will be greater in the first generation; 1i.e. if
F,(D!O,R! ,0)>F,(R!-D!O,R! ,0) then
F, (DO,R! ,1)>F, (RL-DLO,RY ,1). In fact, if S' is well
chosen, we could expect that the fitness of D' is greater
in the kth generation, for k any positive integer.
(Remewber that if Iﬂ? takes over R& by generation j
then 1= F_(D!0,R! ,k)>F,(R,-DIO,RY »k)= 0 for all k>].)
This is the kind of set we are most interested in, since
we would like to compare the effect of natural selection
on two sets S' and 8 which are equivalent with respect
to D in environment « over wmany generations and are also
equivalent with respect to D in environument B over many
generations. If S' and S* are such sets then we can
consider the effect of natural selection on S! in
environuent « and on S* in environment B and know that
differences in the resulting populations in the K0
generation would be due to differences in a« and p rather
than to differences in §' and s¥*.
Axiom 5.2: For any fa in E and any R, in Py, there
exists an m such that if S=R (m), then there exists
s 8, D<s, % in &, and % 0 such that

(1) B(r_,m) > 0

(2) R!m is equivalent in all k2m to Rznlwith respect

to D and £ .
[v4
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(3) Rém is equivalent in all k>m to Rgm with respect

to D and fﬁu

(4) F(D:ORY ,k)>F, (RY -DiOsRL ,k) +@ for eny k>m

such that R&(k) # 0.

(5) FB(IEB’O,RB‘ k) >, (Ré-ﬁéO,Ré ,k)+9 for any k > m
such that R! (k) # O.

B

This axiom states that, in any environment «, any
population R, in « contains for some generation m a set
D and a pair of sets 8! and S which are equivalent with
respect to D in both a« and B, where B is an environment
different from « Turther D is selected for in & and S~D
is selected for in B. Thus the axiom guarantees that
every population has a chance at some time during its
existence to split into two populations which will evolve
in different directions. This provides an opportunity

for the multiplication of species.

Section 5.3: Different Subpopulations Take Over in

Different Environments

With this axiom and some theorems proved in previous
chapters, we can prove that the population derived from
the subset D of the axiom will take over in environment @,
while the population derived from S-D will take over in
environment g, The axiom states that there exist two
environments, « and B, such that, e.g., short necked

giraffes are favoured in a and long necked giraffes are
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favoured in g; the following theorem states that the
descendants of the short necked giraffes will take over
in « and the descendants of the long necked giraffes
will takénover in B.

Theorem 6.1: Let S, D, S', f, and fg
functions of axiom 5.2. Then there exists a generation

be the sets and

J suchféhat
Ri(3) =D5(3)s BE(3) = DE0%(5), Bg () =T%3)s ana

RE (3) = Dg°3).

This theorem says that in environment a« D will take
over regardless of whether S! or S¥=S5-8' ig in @ and
that in 8 D = 8~-D will take over regardless of whether S!
or ¥ is in g. Actually this does not say that D will be
eliminated in e« or that D will be eliminated in B, for
interbreeding may allow them to escape destruction.
Remember that a takeover in generation j by D only means
that all of the mewmbers of the population in generation j

are descendants of D; it does not mean that none are
descendants of D and, in fact, it wmay be the case that all
are descendants of both D and D. If, on the other hand,
it is known that there is no interbreeding between D (and
its descendants) and D (and its descendants) then it is
possible to prove that the one which does not take over

will be eliminated. This is stated in the following

theorem.,
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¢4

Theorem 5.2: Iet Sy D, 8', £ and fB be the sets and
functions of axiom 5.2. Let the following pairs of
populations be non-interbreeding for all k=0:

tQO 10

8 and E&

(4) Dgo and I%O. Let j be the generation guaranteed

(1) D0 and D3O; (2) DX and D¥0; (3) D

by theorem 5.1. Then 529(3) = @, 5&0(3) = &,
O(3) = ¢ and D3°(3)= g.

To illustrate this theorem let us consider the
following example. Let S be a set of lions and tigersg
let D be the lions and D be the tigers. Let S! be a
set contalning roughly half of the lions and half of the
tigers., Let o be an environment where lions are favoured
over tigers and B be an environment where tigers are
favoured over lions. Now we wish to consider the effects
on these organisms if they are in a and compare them with
the effects on the organisws if they are in B. Suppose
S' is in a and ¥ is in 8. Then D0 is the set of lionms
in a; D&O is the set of tigers in ag Dgo is the set of
lions in B; and Dgo is the set of tigers in B. Since
lions and tigers do not interbreed, the non-interbreeding
conditions are fulfilled. Then the theorem states that
there is a generation j such that there are no tigers
left in « (D0(j)= @) and no licns left in § (75 (j) = 9).
The theorem further shows that if the situation had been

reversed (i.e. S* in a and §' in g ) the final outcome would

have been the same.
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Notice that the non-interbreeding conditions of this
theorem will hoid: (1) if D and D are different species;
(2) if the set S consists of organisms which reproduce
agsexually; or (3) if D and D just happen not to inter=-
breed during the time required (perhaps because they
utilize slightly different parts of the environment
though still competing for some resources). Thus the

conditions of this theorem are not so restrictive as they

might seem.

Section 5.4: Different Environments Generate Different

Populations

Now we are in a position to state that, at least
under these conditions of non-interbreeding, R} cannot
be the same population as Ré (i.e. cannot contain the
same organisms); +this shows that the two environments
will generate different populations from an identical
zeroth generation. In fact we will show that after a
certain generation j (the takeover generation shown to
exist by theorem 5.1}, R&(k) cannot contain any organism
which has a set of ancestors identical with the set of
ancestors of any organism in Ré(k). This is not because
the probability of the same pattern of wmating being
repeated twice is very low; R&(k) designates any one of

the whole set of possible kth generations which can arise

in @, so when we say that R!(k) contains no organism with
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ancestor set identical to that of an organism in Ré(k)

we mean that in none of the possible xth generations in «
and p does such an organism exist. Thus by this generation

j the set of possible descendants in a of S' has become
completely different from the set of possible descendants

in g of S'. This result is stated in the following theorem.

Theorem 5.3: Let 8, D, S8'y f; and fg be the sets and

functions of axiom 5.2. Let the following pairs of

populations be non-interbreeding for all k>O0:

(1) DO and DLO; (2) DE0 and ;O3 (3) D40 and Déo 3

(4) Dgo and ﬁgo. Let j be the generation guaranteed by

theorem 5,1, Then
(4) RI(K)NRY(x)
(B) RE(k)VRS (k)

If we consider again the example of lions and tigers

g for any k=2

g for any k=j.

used to illustrate theorem 5.2, this theorem states that,

th

even if we suppose that the zero generation in «

contained exactly the same organisms as the zeroth
generation in B, the k'R generation (for k>j) in «
contains no organisms that are the same as organisms in
the kth generation in B, since only lions remain in «
and only tigers remain in p. One possibility that this
theorem excludes is that organisms can migrate from a,

evolve for a while in a different environment, and then

return to a3 for, if they could, tigers whose ancestors
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had found a better home than ¢ might at any time
reappear in a; thus contradicting the statement that
there exists a generation j such that they disappear for-
ever by j. So we see that « must be simply the sum of
the environments of the descendants of R,(0); « may,
to our senses change drastically over the generations and
not be the "same" environment at the time of the kth
generation as it was at the time of the oth generationg
the only things that may not change are those which are
specified by the axioms to be true for all k. In fact,
it 1is even possible for the particular selectlive pressure
favouring H@, as guaranteed by the hereditary variation
axiom, to change ;ig;‘Hm has taken over, since if
Ry(k)~ HR(X) = &, Fo (i iRgekK) > Fo(By =l s sk) + ¢ 1is always
true for R(k)# 4.

Returning to the position of the tigers which migrate
to a better environment, we see that their environment
must become a part of @, Thus, if « is a Darwinian Universe,
they cannot have wmigrated to an environment where they are
protected from competition by better fitted competitorsg
the conditions stipulated for a by the theorem are such
that if o is Darwinian the tigers will be exterminated
in «3 any environment in which tigers are not exterminated
is either not Darwinian or not as stipulated in the

hypothesis of the theoreu. They could have migrated to
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an environment where there were no lions; as long as it
was an environment in which they were doomed for some
reason. In fact, physical proximity is not a necessary
part of "being in the same environument"y; the lions and
tigers may have always lived on different continents; in
this case the relationship between the fitnesses of the
lions and the tigers must come from some factor other

than direct competition.

Section 5.5: On the Value of Sexual Reproduction

Since the environment of any organisms in R, 1is
automatically a part of a  we cannot wmove a population
from one environment to another. We can, however, take
the set of organisms in one generation of R, and consider
what will happen if they form the zeroth generation of a
population RB' This will be done in Theorem 5.4.

In this theorem we shall investigate the iwplications
of the following type of situation. ILet R be a set of
bacterlia containing two strains T and R-T. Let each of
these strains contain a subset P which is penicillin
resistant and a subset S which is streptomycin resistant.
Suppose that the only way for a bacterium to appear with
resistance to both drugs is through interbreeding between
these two subsets. Suppose further that there is no
interbreeding between S and P in strain T, but there is

some interbreeding between S and P in strain R-T. Then
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let R be placed in a wmedium containing penicillin,
allowed to rewain there until no non-penicillin resistant
bacteria remain, and then placed in a medium containing
streptomycin. It is clear that no mewbers of strain R-T
can survive this treatment, since the lack of inter-
breeding prevents the formation of doubly resistant
bacteria in R-T3; on the other hand, some members of
strain T can survive, since there are doubly resistant
bacteria in T+ Thus this situation of an environment in
which the selective pressure reverses puts a positive
gelective value on interbreeding. This is formalized
in theorem 5.4, which will be stated following the
definition of interbreeding.

Definition 5.2: R} and R] are interbreeding in k 1f
and only if RI(Xk) () RI(k)# 2.

This says that R} and R} are interbreeding in k if

at least one of the k-descendants of R!(0) is also a
k-descendant of R¥(0). Thus it includes not only the
cases where firgt generation hybrids (with one parent in
R!(k-1) end the other in R%(k-1)) exist in generation k,
but also the cases where the actual interbreeding was
many generations earlier than k. Note thaty; in spite of
this, it is possible for R§ and Rj to be interbreeding
in generation k-1 and not interbreeding in generation ks

this would happen if no k-15% generation organism with
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ancestors in both RI(0) and R§(0) had progeny and there
were no first generation hybrids in generation k.

Theoren 5.4: Let S be any set contained in B which

gsatisfies conditions A and B.

Condition A: There exists a set U contained in
S which satisfies the following fitness
conditions with respect to f, and fﬁ :

(1) if R (0) =8, there exists an 2>0 such that
F(L(UO Ry sk) > P, (R, ~U§Ry s k) +& for any k>0
(2) if j= asRoc Bﬁ(o = Ry (J)s and
(S-U)g (0) = (S-U)a(j) then there exists an
>0 such that
0 1O
- -{ 8- @
Fﬁ((S U)ﬁ ,PB ,1{)>FB(RB (s U)BsRB,k) +
for any k2> 0.

Condition B: There exists a set T contained in S
such that if j=t(U0,R,), T9(0) = T, (8-T)(0) = 8-1T,
Tﬂo(o) =19(j), and (s-T)(0) = (s-T)9(j) then the
following interbreeding conditions are satisfied:
(1) Tg and (S-T)g are non-interbreeding for all k >
(2) 9N U9 and 79/} (8-U)J are interbreeding for all

k20
(3) (S-T)g m Uo? and (S-T)gn (S-U)S are non inter-
breeding for all k>0.

Then if Rg(k ) # ¢ for any k>0, there exists a j' such

that (S-T)Q(3') = ¢ and 29(3') # 4.
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The two fitness conditions in Condition A stipulate
that U 1s a set which is selected for in environment «
and whose complement is selected for in environment B.

The breeding conditions in Condition B stipulate that the
gets T and S-T are such that: 1) the descendants of T do
not interbreed with the descendants of S-T in environment
B 3 2) the descendants of the part of U which is contained
in T interbreeds in environment & with the descendants of
the part of S-U which is contained in T; and 3) the
descendants of the part of U which is contained in S-T do
not interbreed in environment « with the descendants of
the part of S-U which is contained in S-T. The conclusion
then states that under these conditions the set in which
interbreeding occurred survives and the set in which
interbreeding did not occur does not survive.

This theorem therefore shows that populations which
allow interbreeding within the population have survival
value in changing environmental conditions over
populations which do not. The reason for this is that
less fit subpopulations are protected from extermination
by interbreeding with the more fit subpopulationsg thus
interbreeding allows the fitness characteristics of the
population which is less fit to be stored, and therefore
to be available if the organisms are wmoved to an

environment in which the previously less fit are more fit.
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It is interesting to see that this value of sexual
reproduction does not depend on the particular techanics
of liendelian heredity but can be derived frowm the general
laws of natural selection.

With this very interesting result we shall conclude
this chapter, which was, after all, only intended to
indicate how the Darwinian Universe could be embedded in
a universe which contained different environments.

Definition: A Diverse Darwinian Universe is a Biological

Universe; a set B of functions fo » and a set C of
populations P such that axioms 5.1 and 5.2 are true
gtatements about them.

Notation: (By,A>;, = , 1y () denotes a Diverse Darwinian

Universe.,
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CHAPTER & s APPENDIX

A Diverse Darwinian Universe is a Biological Universe,
a set I of functions fa, and a set C of populations P,
such that the following two axioms hold:
Axiom 5.1: For any f, in E, (ByAD>y. s £,5P,) is a Darwinian
Universe.
Notations Given f, in ® and sets 8, S'CCS; and DCS; the

following notation will be used for the indicated subsets:

(1) s* = g - st (5) Da(0) = Dy s*
(2) Ri(0) = 8 (6) Dy(0) = S'- D/S!
(3) rz(O) = &* (7) o¥(o) = g~ pN*

(4) Di(0) - DNs?

Definition 5.1: A set S'¢C SC B is equivalent in generation

k to S* with respect to DS and fy, in B if and only if for
any R} in P, and for any Rz in P, when (a) designates the
inequality

T, (D%, RL k) > T, (RL-Di ORI, k) + @ (a)
and (b) designates the inequality

F, (D¢O,R k) >P, (R¥-D¢ O, %, k) + @ (b)
Then for any 2>0, (a) & (D).
Axiom 5.2: For any f, in B and any Ry, in P , there exists
an m such that if S=R,(m), then there exists S'¢C” S, D¢T8
fy in B, and 8>0 such that

(1) N(R,,m)> 0
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(2) Re™ is equivalent in all kzm to R¥ with
respect to D and £, .

(3) Rs'm ig equivalent in all k>m to R"ém with
respect to D and fﬁ.

(4) 7, (D% RYk)>E(R:-D,

such that Ri(k) ¥ O

Ogl{&yk) +& for any kZ m

(5) Fﬁ(ﬁéO,RB! k) >y (RY- D',R',k +Q for any k>u

such that R} (k) Z 0.

Theorem H.1l: Let S8, D, 8's £, and fﬁ be the sets and

functions of axiom 5.2. Then there exists a generation

j such that Ri(J)=DLO(3), RE(J)=TE0()» RY(3) = T0®3)s
and R* DS‘D

Proof: By axiom 5.2 (4) there exists an %>0 such that for
any k>m, T (D0,R! ,k) > F,(RL-DLO,RY +k) +R; therefore,
by theorem 4.9, there exists a j} such that R}(Jjd)= D&O(ja' ) o
By axiom 5.2 (2) and definition 5.1, axiom 5.2 (4) implies
that F, (D¥,R},k)>F,(RE-DEO, R}, k) + ¢ for any k>m;
therefore by theorem 4.9 there exists a jgf such that

R¥ (%) —D*O(Ja) Similarly, by axiom 5.2 (5) there exists
an >0 such that for any k> Fﬁ(ﬁéo,Ré ,k)>F(P\B‘—ﬁéO,R§9k“
therefore by theorem 4.9 there exists a jB' guch that

RY(3d) =1 éO(JB) By axiom 5.2 (5) and definition 5.1,

axiom 5.2 (5) implies that

B (5§O:R*sk)>FB(R;)$—5§O,Rg,k) + © for any k>»m; therefore by
theorem 4.9, there exists a jg such that RB(JB)“‘ D (JB)
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Let j be the largest member of the set fijs» ids Jis j"é}.
Then, by theorem 3.4, B!(j)=DLO(j)s RE(J)=D;0(4)»
1(3Y) = TO( 3 *¥(3) = BHO(9).
Ri(j) = D (§)s and R3(J) = TzO(J)
Theorem 5.2: Let S,D, S's £y and fé be the sets and

functions of axiom 5.2. Let the following pairs of

populations be non-interbreeding for all k=O0:

(1) g% ana 5% (2) X0 ana B (3) DO and T30

(4) Dgo and fgo. Let j be the generation guaranteed by

theorem 5.1. Then DX°(j) = &, DY) = ¥,

2#%(3) = ¢ and 3°(4) = g.

Proof: By theorem 5.1 there exists a j such that

Ry(3) = Dr2(3)s RE(3) = DEC(3), mY(I) = TgC3),

Rg(j) = ﬁgo(j). Since D&O and D&O are non-interbreeding

for all k20, D2(3)CRYI)- D0(5)s but RY(3) = DO(3)

implies that R!(j) - D'O( ) = ¢s therefore E&O(j) = g.
The remaining three equations in the conclusion of

the theorem follow by exactly analogous arguuents.

Theorem 5.3: Let S, D, S', f& and £, be the sets and

B
functions of axiom 5.2. ILet the following pairs of

populations be non-interbreeding for all k>0:
(1) DO:O and ]')'&O; (2) D§O and 5203 (3) Déo and T)"SO;
(4) DEO and ﬂfo. Let j be the generation guaranteed by
theorem 5.1. Then
(4)  RY(k) /) RY (k)
(B) RE(x}IR¥(k) = ¢ for any k2 j.

i

g for any k > j
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Proof: (A) Suppose k' is an integer greater than or equal
to js and suppose there exists an organism O such that O

is in R}(k') () Ré(k'). Then O is in Ré(k'}, which implies,
by theorems 5.1 and 3.4, that 0 is in Taé (k*); therefore
there exists an 0' in D'9(0) such that 0<0'. On the other
hand 0 in R('Z(k')ﬂ Ré(k') implies that O is in R!(k'). Now
since there exists O' in T)'éo(o) = S-D such that 040' and
since 0 is in R!(k'), O must be in E&O(k‘). But by theorem
5.2, ﬁ&o(k‘) =@. Since 0O cannot be in the null set, this
is a contradiction. Therefore there exigts no such O,

50 RY(K') M RY(K!) = .

(B): The proof of (B) is exactly analogous.

Definition 5.2: Ry and Ry are interbreeding in k if and
only if R!(k)/] R!(k)+ 0.

Theorem S.4: TLet S be any set contained in B which

gatisfies conditions A and B.

Condition A: There exists a set U contained in S
which satisfies the following fitness conditions
with respect to f, and fB:

(L) if RL(0) = S, there exists an >0 such that
F, (09,R ,k) > F (R ~UJ,R,,k) +© for any k=0,
(2) if j=+(UQsRy)s> Rp(0) = Re(d). and
(S-U)g(o) = (S-U)S(j), then there exists an
>0 such that
FB((S-U)BO,RB,k);T«FB(Rﬂ-(S-U)g,RB,k)MZ for
any k> 0.
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Condition B: There exists a set T contained in S
such that if j =t(U%,R ), TO(0) =T, (s-1)9(0) = 8-T
Té’(o):'rg(j), and (S-T)g(o) = (8-7)9(3) then the

following interbreeding conditions are satisfieds

(1) TéD and (S-T)é) are non-interbreeding for all k=0

(2) To?ﬂ U% and TS(\(S-U)S are interbreeding for
all k=0

(3) (5-7)9N00 and (5-T7)9/) (8-U)Y are non-inter-
breeding for all k20.

Then if Rﬁ(k Y £ & for a.ny k >0, there exists a j' such that

(s-T)§(3") = ¢ ana (§") # 4.

Proof: By Condition 4,(1l), and theoram 4.9, j = t(UJ,R,)<co.

Since any sublineage of a population satisfies axiowms 4.1,

4,2 and 4.3 theorem 4.9 can be used with sublineages.,

Therefore by Condition B, (3), the conditions of theorem

4.10 are satisfied for sublineages (S-T)(k)/7 (8-U)%(xk)

and (8-T)O(x) M UP(k); by theorem 4.10 (8-T)(5)N(8-U1)9(5)= 2.

Thercfore (S*T)Q(j)[j (s-U)g(j) = ¢ and so

(8-0)§(0) ¢~ 70(0); by theoren 3.5, (8-U) (k) 19 (x)

for any k¥ > 0. So, by Condition B,(1)

(S—T) (L)ﬂ (S~ ) (k) = ¢, for any k¥ > 0.  Therefore

(S-—T)B(lz) CRg(k) - (S-—U)g(k) for any k>0. (a)
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Now, by Condition B,(2), (S-UJS(j)#’ﬁ; therefore

(S-U}P(O) # ¢+ So by Condition A,(2), and Theorem 4.9,

= t((S-U)g »®3 ) such that

there exists j!
Therefore, combining this with

Ra(3') - (8-U¥(i')= 7.
(a) above
(s-T7)Q(3") = ¢
Since RB(k) # @ for any k>0, (b) implies that
() # 4.

(o)
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CHAPTER 6 s CONCLUSION

In the previous three chapters the axioms necessary
to a theory of natural selection have been explicitly
stated, along with some of the theorems which can be
derived from them. The discussions in these chapters
have been, necessarily, concerned with the details of
the system in order to justify and clarify the statements.
The discussions in this chapter will be concerned with
characteristics of the axiom system as a whole in order
to indicate the type of clarification which the

axiomatization provides.

Section 6.1: The Structure of the Theory

To what extent does the structure of the axiom system
reflect the underlying structure of evolutionary theory?
(Note that we here use the term "evolutiomary theory"
instead of "the theory of natural selection" because the
Diverse Darwinian Universe includes more than the theory of
natural selection.) The Diverse Darwinian Universe
presupposes the Darwinian Universe, which presupposes the
Biological Universe; does this structure of three nested
sets of axioms reflect an intrinsic property of evolutionary
theory or is it merely an arbitrary device of presentation?

That this does indeed reflect an intrinsic property of

evolutionary theory is indicated by the fact that the stages
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in the historical development of the theory closely
correspond to the stages in the axiomatic development:
the Biological Universe describes pre-Darwinian theorys
The Darwinian Universe describes Darwinian theory; and
the Diverse Darwinian Universe describes post-Darwinian
theory. It is further indicated by the fact that &ach
axiom set introduces a new undefined concept and uses
this concept to place additional structure on the
previously defined universey; clearly the additional
structure made possible by these new undefined concepts
corresponds to new ideas which are not contained within
the previously defined universe and thus, since these
ideas are the elementary ideas of the theory, the axiom
sets must reflect the underlying structure of the theory.
The axiomatic method, therefore, provides a means for
discovering the underlying logical siructure of the

theory.

Section 6.2: Interpretations of Fitness

The axiomatic method provides; also, a controlled
flexibility which will allow us to explore the possibility
of natural selection in universes different from the one
in which we live and thus to discover both the generality
of the concept and the factors in our universe which
particularize it. In this section we will consider

universes in which the interpretation of the undefined
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term "fitness" differ, but the method that will be
used could be applied equally well to clarify any of
the other undefined terms.

Although the term "fitness®" has never been defined,
both the reader and I have some interpretation of what
it means in natural selection. (My conception is of a
combination of reproductive potential with a potential
for obtaining food and avoiding dangers.) Similarly
we have interpretations of the meanings of the other
undefined terms. Without such interpretations of the
undefined terms an axiom system has no meaning; it is
just a meaningless set of relationships in which no one
is particularly interested. A set of such interpretations
which assigns a meaning to each of the undefined terms of
an axiom systert such that the axioms are true statements
ig called an interpretation of the axiom systeu. Now,
in fact; I believe that the set of interpretations which
has been implied in the descriptive part of this thesis
forms an interpretation of the axiom system; however it
is clearly impossible to prove that the axioms are true
statenents about them (this would be equivalent to
proving that evolutionary theory truly describes the
real world), so this can only be called a possible
interpretation. It is interesting to realize that

there are other possible interpretations of the axiom
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system; which would correspond to a realization of the
axiom system within a universe different from our own.

Let us consider a different interpretation of fitness.
Suppose the universe were such that food was available
without 1limit and all organisus in any generation had
exactly the same life span, this 1life span being limited
by the condition that the number alive at any one tine
was fixed; thus suppose that differential reproductive
ability was the sole difference according to which
individuals could be selectively superior or inferior.

If we then conceive of f ag being a measure of reproductive
ability, then the set consisting of this interpretation of
the meaning of f plus our usual interpretations of the
meanings of the other undefined terms is a possible
interpretation of the axiom system; that is, the axioums
will be plausible statements about the relationships
between f, organisms, ancestors, etc. We could uge this
possible interpretation to deduce the results that would
be expected in such a population which was selected only
on reproductive ability; the results that could be thus
deduced would; of course, be exactly the samec as the
results deduced when considering any other interpretation
of the meaning of fitness, but the interpretation of the
results would be different; that is, the structuve of

the results would be the same though their meanings would

be different.
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We could consider; on the other hand,; a universe
such that the organisms differed (hereditarily) only in
their ability to obtain food. Then we would conceive of
f as belng simply a ueasure of the ability to obtain foods
this interpretation of the meaning of f plus our usual
interpretations of the meanings of the other undefined
terms provides another possible interpretation of the
axiom system. The survival of the fittest axiom would,
of course; only be plausible if in this universe
superiority in the ability to obtain food led to
superiority in the number of descendants.

Clearly the list of possible interpretations could
be extended indefinitely, with f defined in each case
as the only factor (or set of factors) in which the
organisms differed hereditarily and such that superiority
in the factor will lead to superiority in the number of
descendants. In other words, if all other possible
components of fitness are held constant, whatever is left
will give a plausible interpretation of the axiom system.
Therefore, no matter what cowuponent of "total fitness" we
choose to think of as fitness we would derive the same
axion system to describe natural selection as long as we
considered all other coumponents to be negligible. This
is the reason that Darwin, with a rather different

conception of fitness from that of the statistical
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geneticist, was able to derive a theory which is, in
all of its essential points, accepted by the statistical
geneticist. The different meanings that Darwin and the
statistical geneticist (or you and I) have for the most
impo:tant concept in the theory do not lead to a
necessity to develop different theories; because it is
the theory rather than the intuitive meaning which

determines the meaning of fitness.

Section 6.3: Posgssible Systems of Heredity

We have, in the previous section, discussed the
flexibility of the axiomatic method in terms of the
differing possible interpretations of the undefined
terms; in this section we shall discuss its
flexibility in terms of the different sets of axionms
that may be added to a given axiom system. It will be
an informal discussion; for the different systems of
heredity which will be discussed have not theumselves
been axiomatized and therefore cannot be formally proved
to be independent of and consistent with the Diverse
Darwinian Universe.

We shall consider three systewus of heredity and
their possible relationship with the Diverse Darwinian
Universe., First consider the blending theory of
heredity, which postulates that the hereditary

characteristics of an organism are a combination of the
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average of the hereditary characteristics of its parents
and some new; non-parental, characteristicsg if the non-
parental characters are related to fitness and if there
are enough but not too many of thewmy; then this system of
heredity will be consistent with the Diverse Darwinian
Universe and axioms defining this system could be
combined with the axioms of the Diverse larwinian Universe
to give predictions about the progress of evolution within
such a system. Wext consider the Lamarckian theory of
heredity, which postulates that the hereditary character-
istics of an organism are a combination of some of the
hereditary characteristics of its parents together with
some characteristics acquired during its lifetimey; if
the acquired characteristics are related to fitness and
if there are enough but not too many of them, then this
system of heredity will be consistent with the Diverse
Darwinian Universe and axioms defining this system could
be combined with the axioms of the Diverse Darwinian
Universe to give predictions about the progress of
evolution within this system. Lastly; consider the
HMendelian theory of heredity, which postulates that the
hereditary characteristics of an organism are a
combination of a particular type of set of some of the
hereditary characteristics of its parents and some new,

non-parental, characteristicsy 1if the non-parental
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characteristics are related to fitness and if there

are enough but not too many of them, then this system

of heredity will be consistent with the Diverse

Darwinian Universe and axioms defining this system

could be combined with the axioms of the Diverse Darwinian
Universe to give predictions about the progress of
evolution within this system. From these examples it is
clear that lMendelian heredity occupies no special logical
position with respect to the theory of natural selectiong
it may be replaced by another, contradictory, system of
heredity without any change being made in the theory of
natural selection.

The combination of lMendelian heredity and the theory
of natural selection would, however; be of special interest.
to us, for it would be particularly useful to be able to
derive the consequences of 2 system in which survival is
determined by natural selection and heredity is determined
by the lendelian laws. Such a system could be formed by
simply adding to the axioms defining the Darwinian
Universe a set of axiows corresponding to the lMendelian
laws. It would be of interest to see how the conclusions
of such a system would compare with the conclusions of the
statistical geneticist, for the statistical geneticist
uses; as crude approximations,; so many assumptions that

are known to be false (e.g. random mating, constant
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selective value, etc,) that his conclusions, although
valuable in indicating the potentialities of natural
selection in a universe with Mendelian heredity, are not
reliable in detail. On the other hand, the system
suggested, while completely unable to discuss events
over a short time period, should be completely reliable
in the statements it does make. Therefore each system
wmight provide information in the area of the blind spot

of the other systemn.

Section 6.4: Ixtent of Achievement of Purpose

What are the basic assumptions of the theory of
natural selection? The asuthor would assert that this
thesis completely answers this question. The asgsumptions
are stated in the axioms of the Darwinian Universe; the
theorems proved with the axioms are evidence that these
are, in fact, the assumptions of natural selection, for
the theorems are all intuitively derivable consequences
of the intuitive concept of natural selection. It is
impossible to state the contribution of the thesis in
terms of its answering more specific questions which have
been raised in the literature, for the contribution is,
rather, in reducing the amorphous confusion prevalent in
the statement of the theory.

However one specific contribution can be clearly seen

in the clarification of the tautological nature of the
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concept of fitness in the theory of natural gselection,
This clarification wmay prove to be of value not only
to those interested in natural selection but also to
those interested in taxonomy, for the tautological
nature of the traditional theory of biological clasgssifi-
cation is of serious concern to taxonomists and 1s one
of the major weapons used by numerical taxonomists to
discredit classical taxonomy;(23,24) probably an
axiomatization of the theory of taxonomy would provide
taxonomists with an understanding of the reason that
clasgical taxonomy, like natural selection, has been
so fruitful in spite of its obviously tautological
nature. Thus the axiomatization in this thesis provides
the answer to at least one question which has worried
biologists and provides a method of answering another,
What are the implications of the assuwmptions of the
theory of natural selection? It is clear that I have
only begun the exploration of the consequences of this
axiom system. No attempt has been made to derive new
and astounding results, for such results will be of
interest only after the system has been shown to generate
the expected intuitive results. Thus the theorems have
been almed at showing that the axioms have reasonable,
expected consequences (e.g. the oscillation around a

stability point when the selective advantage is density
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dependent,; and the differences between natural selection
in interbreeding populations and natural selection in
non-interbreeding populations) and that certain
consequences that must be derivable in any theory of
natural selection (e.g., the phenomenon of subpopulations
taking over) can be derived; this aim has been reasonably
well achieved. However the iwmportant result of the
thesis is not the set of theorems but the axiom system
itself, which, though incomplete for the description of
evolutionary theory, does give a precise logical statement

of the Darwinian theory of natural selection.



(1)

(2)

(3)

(4)
(5)

(6)

(7)

(8)

(9)

(10)

128,

REFERENCES

Charles Darwing The Origin of Species; 6th ed.

Everyman's Iibrary, J.M4. Dent and Sons, Ltd., London,
1928 (first published 1859); p.l24.
Julian Huxley; A.C. Hardy and E.B. Ford, eds;

Evolution as a Process; George Allen and Unwin Litd.,

London, 1958, pp.l,2.

Ernst Mayr; Animal Species and Tvolutiong The Belknap

Press of Harvard University Press, Cambridge, Mass,
1963; p.l.

Mayr, p.30.

Th. Dobzhansky; Speciation as a Stage in Evolutionary
Divergence; The American Naturalist, (1940), LXXIV;
pPp.312-321,

Mayrs pp.l2-30.

Ronald A. Fisher; The Genetical Theory of Natural

Selectiony 2nd ed. Dover Publications, Inc. New York,
1958 (first published 19293) pp.22-51.

W.De Hamilton; The Genetical dvolution of Social
Behaviour, I J. Theoret. Biols. (1964); VII; pp.l-16,

J.H. Woodger; The Axiomatic lMethod in Biologys

Cambridge University Press, Cambridge, 1937.

N. Whitehead and B. Russell: Principia Mathematica,

To #56, Cambridge University Press, 1964,



129,

(11) J.H. Woodger; Biology and ILanguage; Cambridge

University Press, Cambridge, 1952; pp.219-252,

(12) John R. Gregg; The Language of Taxonomys

Columbia University Press, New York, 1954,

(13) J.H. Woodger; Theorems on Random Hvolution;
Bull.Math. Biophysics, XXVII {(1965)3 pp.145-150.

(14) ¥.A, Barricelli; Numerical Testing of Evolution
Theoriesy DParts 1 and 23 Acta Biotheoretica, IV,
(1962) 1pp.69-98 and 100-126.

(15) Hayr, p.l2.

(16) Darwins loc.cit.

(17) Fisher; op.cit.

(18) William Fellerz On the Influence of Watural Selection
on Population Size; Proc.N.A«S., LV, (1966) Dp.733=737.

(19) W.D. Hamilton; The Moulding of Senescence by Natural
Selection; J.Theoret. Biol. XII, (1966); pp.12-45.

(20) HMayr; p.183.

(21) Darwing loc.cit.

(22) Darwing loc.cit.

(23) Robert Sokal and Peter Sneath; Principles of Numerical

Taxonomys W.H. Freeman and Company, London, 1963.

(24) David L. Hull; Certainty and Circularity in
Evolutionary Taxonomy; Gvolution, XXI, (1967),
pp.l74=184,



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130

