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ABSTRACT 	1. 

In this thesis a set of axioms sufficient to 

generate the Darwinian theory of natural selection is 

developed and some of the implications of the theory 

derived, 

In the process of developing the axioms the basic 

assumptions of the theory are clarified and the doubts 

raised by its apparent tautological nature resolved. 

The theorems derived from the axioms show that certain 

consequences that must be derivable in a theory of natural 

selection can be derived. 	(E.g. One theorem shows that 

there is always a subpopulation, fitter than the 

population as a whole, which is in the process of taking 

over the population; other theorems show that under certain 

circumstances less fit subpopulations will be eliminated.) 

They also show that the axiomatized theory has various 

expected consequences. (E.g. One theorem states consequences 

of density dependent selective advantage; several theorems 

show differences between natural selection in interbreeding 

populations and natural selection in non-interbreeding 

populations.) Thus the theorems provide evidence for the 

assertion that these axioms will generate the Darwinian 

theory of natural selection. 

Two further axioms are stated in order to indicate how 

the axiomatized theory of natural selection can be embedded 

within an axiomatized theory of evolution and further 

theorems are proved with the use of these axioms. 
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CHAPTER 1 : HISTORICAL INTRODUCTION 

Section 1.1: Darwin's Theory of Natural Selection  

To the layman, Darwin's claim to greatness lies in 

his theory of evolution; to the biologist, it lies in 

his theory of natural selection. This theory was well 

summarised by Darwin in the following paragraph from 

The Origin of Species:(1) 

"If under changing conditions of life organic 
beings present individual differents in almost 
every part of their structure, and this cannot be 
disputed; if there be, owing to their geometrical 
rate of increase, a severe struggle for life at 
some age, season, or year, and this certainly 
cannot be disputed; then, considering the infinite 
complexity of the relations of all organic beings to 
each other and to their conditions of life, causing 
an infinite diversity in structure, constitution, 
and habits, to be advantageous to them, it would be 
a most extraordinary fact if no variations had ever 
occurred useful to each being's own welfare, in the 
same manner as so many variations have occurred 
useful to man. 	But if variations useful to any 
organic being ever do occur, assuredly individuals 
thus characterized will have the best chance of 
being preserved in the struggle for life; and from 
the strong principle of inheritance, these will tend 
to produce offspring similarly characterised. This 
principle of preservation, or the survival of the 
fittest, I have called Natural Selection." 

Succeeding generations of biologists have filled in the 

details of "the strong principle of inheritance" and of 

the nature of the occurrence of variations, but Darwin's 

principle of natural selection is, essentially unaltered, 

the basis of the modern theory of evolution. 
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Section 1.2: The Modification of Species over Time  

By his massive presentation of the evidence for 

evolution, Darwin convinced the world that evolution had 

in fact occurred, but with the emergence of an understanding 

of the mechanism of heredity' (i.e. Mendelian genetics) the 

efficacy of Darwinian selection as a force in evolution 

began to be seriously questioned, for selection appeared 

to be a weak force compared to the power of mutation, and 

a propensity for single factor theories of evolution 

hindered the recognition that a combination of mutation 

and natural selection was necessary. According to Huxley: 2) 

"It was not until about 1930 that the facts behind 
the chromosome theory and the mutation theory could 
be finally reconciled with the idea of gradual 
evolutionary change and the selective origin of 
adaptations in what R.A. Fisher called, in the 
title of his important book 'The Genetical Theory 
of Natural Selection'." 

(It is important to note that Fisher's work was a 

reconciliation of genetics and natural selection, not a 

derivation of natural selection from genetics.) Largely 

as a result of Fisher's work: 3) 

"The many dissenting theories were almost suddenly 
fused, in the 1930's, into a broad unified theory, 
the 'synthetic theory'....In essence it is a two 
factor theory, considering the diversity and 
harmonious adaptation of the organic world as the 
result of a steady production of variation and of 
the selective effects of the environment". 

Thus, by the 19301s, the concepts of mutation, gene, and 

population had been added to the theory of evolution, 
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clarifying the mechanisms of variance and inheritance 

and elucidating the role of natural selection. 	This 

essentially completed the theory of the modification of 

species over time, though many details still remain to 

be clarified. 

Section 1.3: The Origin of Species 

This understanding of the modification of species did 

not, however, provide an understanding of the origin of 

species (i.e. the splitting of one species into two species).  

As iIayr COMMents: (4) 

"It was not possible to state the problem of the 
multiplication of species with precision until 
the biological species concept had been developed." 

The essential prerequisite for the development of the 

biological species concept was provided by Dobzhansky in 

1940 in his paper introducing the idea of isolating 

mechanisms;(5) over the next twenty years this idea was 

explored and developed by Dobzhansky, Nayr,
(6) 

and others, 

resulting in the statement of the biological species 

concept, which defines species as sets of organisms which 

interbreed within their own set and are reproductively 

isolated from organisms in other sets. 	Once the species 

has been defined in these terms it is possible to ask how 

species split by asking how reproductive isolation can 

develop between organisms within a set. 	It is also 
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possible to ask what the role of natural selection may be 

in maintaining fertility between organisms in the same set 

and reducing fertility between organisms from the two parts 

of a splitting set. Answers to these questions have been 

put forth by the proponents of the biological species 

concept, but they have not coalesced into a really 

definitive theory. 	These concepts are, however, expected 

to form the basis of a definitive explanation of the origin 

of species. 

Section 1.4: On the Relation Between Natural Selection  

and Evolution  

Notice that the two previous sections have not 

discussed the history of the development of the theory of 

natural selection; they have discussed the history of 

the development of the application of the theory to the 

theory of evolution. Natural selection is a part of the 

theory of evolution but the theory of evolution is not a 

part of it. 	Thus the theory of evolution has been 

presented here not because it can be derived from the 

theory of natural selection but because it provides a 

practical background against which the theory (and hence 

the axiomatization of the theory) can be judged; this 

fact has been used extensively in the development of this 

axiomatization to discover in the early statements of the 
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axioms, errors which would lead to obviously false 

statements in the theory of evolution. 	The reader may 

similarly use the theory of evolution to test the final 

statements of the axioms. 

Section 1.5: Nathematical Approaches  

Because of the enormous number of generations involved 

in modification through natural selection, particular 

consequences of its action are not easily understood by 

the intuitive methods which form the basis of most biological 

thinking. 	Intuition is necessarily based on experience with 

a relatively few generations and, because of the non-

deterministic nature of the individual events, experience 

with them is not easily extrapolated by intuition alone to 

generalisations about the course of events over millions of 

years. 	Thus it is not surprising that the most important 

theoretical contribution of mathematics to biology has been 

in the field of evolution. 

This contribution has been made by statistical genetics, 

which proved that Mendelian heredity and natural selection 

could work together to produce the characteristics of 

natural populations. 	It proved that effects which 

intuition had dismissed as negligible(?) could be most 

important in producing evolutionary change. It proved 

that effects, such as altruism,(8) which intuition had 

decided certainly could not be produced by natural 
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selection, could be produced by natural selection. And, 

of course, it confirmed the possibility of many effects 

which intuition had decided would be produced by natural 

selection. 

As yet, no other mathematical approach has made a 

comparable contribution to the understanding of evolution, 

though this is not because there are no further important 

problems. 	Two different approaches will be described below 

in order to provide further orientation in what has been 

done, mathematically, in this area and in order to mention 

some light which they incidentally throw on the relation 

between Mendelian genetics and natural selection. 

J.H. Woodger has pioneered the application of the 

axiomatic method to biological problems,(9) using the 

techniques of Principia Nathematica
(10) 

 in an attempt to 

provide a logically solid foundation for genetics. (These 

techniques will be familiar to the mathematical reader; 

Woodgerts axiomatization will not be discussed in detail 

here as the axiomatization presented in this thesis is 

independent of it.) 	This work, in addition to clarifying 

the foundations of genetics, has led to some clarification 

of the taxonomic problem of classifying groups of animals 

which are in the process of becoming distinct species; 

this taxonomic work has been done by Woodger himself
(11) 

and by Gregg,(12) Woodger has further used these techniques 
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in a recent paper on random (i.e. non-selective) evolution
(13) 

thus underlining the fact that natural selection is not a 

necessary consequence of Mendelian genetics. 

Still another mathematical approach to evolution has 

been developed by Barricelli,
(14) 

whose principal technique 

is computer simulation. 	He studies the effects of certain 

artificial reproduction rules on patterns of numbers (called 

symbioorganisms) which are created, from a first generation 

of random numbers, by the repeated application of the rules. 

He claims to have obtained such phenomena as selection, 

competition, and even parasitism, though it is impossible 

to evaluate these claims without more of the computer 

output than has been published and, more important, without 

explicit definitions, acceptable to the whole biological 

community, of these terms. 	The apparent ability to obtain 

evolutionary phenomena in a selective but decidedly non-

Mendelian universe is, however, interesting in underlining 

the fact that hendelian genetics is not a necessary 

consequence of natural selection. 

Section 1.6: Conclusion  

This chapter has provided an orientation to the state 

of development of the theory of natural selection and of 

the related theories in terms of which it is usually 

discussed, namely the theories of evolution and of Mendelian 

genetics. 	It has further provided an orientation to the 
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mathematical approaches which have been developed to 

elucidate these theories. 	It has not provided a history 

of the axiomatic development of the theory of natural 

selection because, to the authorfs knowledge, there is 

none. 
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CHAPTER 2 : INTRODUCTION  

Section 2.1: Purpose  

What are the basic assumptions of the theory of 

natural selection? What are their implications? It 

is the purpose of this thesis to attempt to answer these 

questions, particularly the first. 	The axioms that will 

be stated, are, we assert, an explicit statement of the 

basic assumptions of the theory of natural selection. 

The theorems that will be stated are a few of the 

implications of these assumptions. 

The reasons for this attempt are twofold: firstly 

because the lack of an explicit statement of the theory 

has led to serious question of its worth; and secondly 

because the great difficulty of deriving in a human life-

time an intuitive understanding of a process occurring 

over millenia points to a need for a mathematical tool 

to aid the intuition. 	The goal implied by the first 

reason is achieved in the thesis; the serious charge of 

tautological reasoning is answered. 	The goal implied by 

the second reason is achieved to some at present 

unknowable extent; the only way to prove the achievement 

of this goal is to show a statement derivable from the 

axioms which is important, not intuitively predictable, 

and either intuitively or verifiably true; no such 

theorem has yet been derived (though important, 
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intuitively predictable ones have been), but this is 

hardly surprising at this stage of the development of 

the system. 	Thus the axiom system achieves the first 

goal and gives some reason to believe that it may achieve 

the second. 

Section 2.2: Two Concepts Which Are not Essential to  

the Theory  

It has, since Fisher published The Genetical Theorx 

of Natural Selection, been usual to regard natural selection 

as almost a part of Mendelian heredity; natural selection 

is almost never considered independently of Mendelian 

heredity. However, as was mentioned in the previous 

chapter, natural selection is independent of Mendelian 

heredity; this is not surprising since Darwin derived 

the theory while believing in an antithetical mechanism 

of inheritance. Therefore it is a part of the task of 

this thesis to separate the theory of natural selection 

from the genetical theory of natural selection. By so 

doing we shall clarify not only the process of natural 

selection but also the extent to which different theories 

of heredity are compatible with it. 

Just as we shall ignore, without denying, the 

Mendelian mechanism of heredity, so also we shall ignore, 

without denying, the statistical aspect of the details of 

the process of natural selection. Newton has shown in 
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physics that it is possible to describe, without statistics, 

the global behaviour of a system in which every individual 

event is determined not by deterministic laws but only by 

statistical laws. 	Similarly Darwin has shown (though not 

as precisely) in biology that it is possible to describe, 

without statistics, the global behaviour of a system in 

which every individual event is determined not by 

deterministic laws but only by statistical laws. Newton's 

success in ignoring statistics is based on the fact that 

the size of the objects considered is so large that the 

statistical behaviour is smoothed into average behaviour. 

Darwin's success in ignoring statistics is based on the 

fact that the size of the time interval considered is so 

large that the statistical behaviour is smoothed into 

average behaviour. 	Thus there is considerable historical 

evidence to support the contention that a theory may be 

very useful, even though it ignores the statistical aspects 

of the phenomena, as long as the numbers involved in the 

phenomena are large enough. By taking advantage of this 

historical precedent and ignoring the statistical aspects, 

we shall be able to present the theory in its simpler form. 

There is yet another concept which might be expected 

to play an important part in the axiomatization which we 

shall ignore. 	This, unlike, the previous, biological 

concepts, is a technical mathematical concept and will be 
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best mentioned within the context of a description of 

the axiomatic method; since such a description is in 

any case necessary to orient the non-mathematical reader, 

it will be presented in the following section. 

Section 2.3: The Axiomatic Method  

The axiomatic method begins by setting forth 

certain fundamental statements, the axioms, which the 

reader is asked to accept, without proof, as the basid 

assumptions of the theory; thus "If L is a line then 

there exists a point not on L." is one of the axioms of 

Euclidean geometry, while the law of the survival of the 

fittest is one of the axioms of the theory of natural 

selection. Axioms are usually intuitively reasonable 

statements about the concept which is to be axiomatised; 

thus the two examples cited above are intuitively 

reasonable statements about, respectively geometry and 

natural selection. 	From these axioms it will be possible, 

using the methods of proof made familiar by Euclidean 

geometry, to deduce other statements, the theorems, which 

therefore must be true if the axioms are true; thus 

"Every point is on at least two distinct lines." is one 

of the theorems of Euclidean geometry, while "No organism 

is its own ancestor." is one of the theorems of natural 

selection. 	The theorems themselves provide a check on 

the truth of the axioms, for if a theorem which is 
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demonstrably not true of the concept which was axiomatized 

is derivable from the axioms, then at least one of the 

axioms is not true; this means that the discovery of an 

error in an axiomatized theory necessitates correction 

of the error at its source (possibly in the basic structure 

of the theory) which prevents the unlimited proliferation 

of ad hoc assumptions which makes much of biology resemble 

a patchwork quilt. Hence the axiomatic method allows the 

number of statements which have to be accepted solely on 

the grounds of intuitive probability to be reduced to a 

bare minimum, and it provides a check on the truth of 

those that are accepted on such grounds. 

These axioms contain certain words, the undefined 

terms, which usually have a relatively clear intuitive 

meaning but whose maning is never explicitly stated; 

thus "point" and "line" are undefined terms in Euclidean 

geometry, while "fitness" and "organism" are undefined 

terms in the theory of natural selection. 	These terms, 

though undefined, are not completely free from restriction 

on their meaning, for they are limited by the assumption 

that the axioms are true statements about them; thus 

"organism" may be thought of as meaning "bacterium", 

"plant", or any of many other possibilities, but it may 

not be thought of as meaning, e.g., "real number", for a 

real number does not have ancestors with the properties 
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stipulated in the axioms. 	Just as all other statements 

in the theory are proved by using the axioms together 

with the laws of logic, so all other terms in the theory 

are defined by using the undefined terms together with 

the terms of logic. 

These laws and terms of logic constitute the other 

concept which it was mentioned would be ignored. By this 

we mean not that we shall not use them (for we must) but 

that we shall not explicitly state them, and that when we 

use them we shall not explicitly state that we are using 

them. 	This is possible because these laws are in large 

part derived from (and presumably form the basis of) our 

usual intuitive method of reasoning and hence we may 

assume that in using this method we shall not contravene 

the laws. 	This assumption may in some cases be false, 

but the simplification made possible by the assumption is 

great enough, and the risk is 

mathematicians prefer to take 

therefore, use the methods of 

by mathematicians rather than 

mathematical logic. 

small enough, that most 

the risk. 	We shall, 

reasoning commonly used 

the formal methods of 

Section 2.4: Description of the System - Introduction  

We shall separate the axioms into three sets, which 

shall be described briefly in this section and more fully 

in the following sections. 	The first set describes a 
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system which we call a Biological Universe; this system 

is simply the biological background which Darwin, and 

everyone else, took for granted. 	The second set 

describes a system which we call a Darwinian Universe; 

this set describes the theory of natural selection and 

places it in the above mentioned biological background. 

The third set describes a system which we call a Diverse 

Darwinian Universe; this set adds to the concepts of 

the Darwinian Universe the concept of the existence of 

different environments. 

Section 2.5: Description of the System - Biological  

Universe  

The axioms of the Biological Universe are probably 

the only ones in the thesis which are simple enough to 

be called self-evident truths. 	They are the following 

very simple statements about the ancestor-descendant relation: 

no organism is its own parent; if organism].  (read 

"organism sub one") is an ancestor of organism2  then 

organism2  is not an ancestor of organism]) if organism].  

is equal to organism2  then every ancestor of organism].  is 

an ancestor of organism2  (this is really a statement about 

what we mean by "is equal to"); there are a finite number 

of organisms in any one generation of any population. 

With these axioms we can prove several theorems which are 

useful later in proving theorems that are consequences of 
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natural selection. 	But the main purpose of stating 

these axioms is simply to provide the background which 

is necessary in order to state the axioms of natural 

selection, for it is impossible to discuss either the 

successive generations of a population or inheritance 

without some statement of what is meant by "ancestor". 

Thus a Biological Universe is simply a set of organisms 

which are related to other organisms in the set by the 

ancestor relation. 

Section 2.6: Description of the System - Darwinian  

Universe  

The Darwinian Universe is described by the same 

number of axioms as the Biological Universe, but the axioms 

are much more complicated. 	The first states that the 

populations that will be the object of discussion satisfy 

the axioms of the Biological Universe. 	The second 

introduces the concept of the fitness of an organism, 

stipulating that the fitness can be described numerically. 

The third is the survival of the fittest axiom, which 

states that the universe is such that in the long run a 

fitter subpopulation will increase in numbers relative 

to a less fit subpopulation; the statement of this is 

necessarily rather complicated as the phrase "in the long 

run" covers a very complicated concept. 	The fourth is 

the hereditary variation axiom, which is also very 
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complicated as we must state in it that fitness is 

hereditary but not too hereditary; i.e. that there are 

changes whose influence is sufficiently lasting to change 

the composition of the population but not sufficiently 

lasting to forbid further changes. 	Together these four 

axioms give the properties of the Darwinian Universe; it 

is a set of populations with a fitness assumed for the 

individual members of the populations which is such that 

(1) there are always some lineages that are fitter than 

others, and (2) the numbers of descendants in these 

lineages will increase relative to the numbers of 

descendants in the less fit lineages. 

Section 2.7: Description of the System - Diverse  

Darwinian Universes  

In the Darwinian Universe the concept of environment 

is never explicitly mentioned, though certain properties 

of the environment are implicitly described in the axioms. 

For example, since fitness is a property of an organism in 

an environment, the statement that fitness is reasonably 

hereditary implies that the environment is reasonably 

stable. 	Similarly the source of the new variation 

guaranteed by the hereditary variation axiom may be in 

change in the environment or it may be in change in the 

hereditary elements within the organism. 	Also, to give 

yet another example, the survival of the fittest axiom 
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may be seen as a statement about the type of environment 

in which the organisms live. But, although these axioms 

do indicate some properties of the environment in their 

statement of the environment-organism relationship, they 

never indicate that a particular organism may have one 

fitness in one environment and quite another fitness in 

another environment; in fact the axioms do not allow 

this possibility since the fitness function assigns a 

unique fitness to each organism. Thus while the 

Darwinian Universe describes the modification of 

populations in the time dimension, it cannot account for 

the modification of one population into two populations 

by selective forces acting in opposite directions. 

As is indicated in the previous chapter, this is not 

the result of a failure to completely translate Darwin's 

insights into explicit statements, for
(15) 

"Darwin failed to solve the problem indicated by 
the title of his work. Although he demonstrated 
the modification of species in the time dimension, 
he never seriously attempted a rigorous analysis 
of the problem of the multiplication of species, of 
the splitting of one species into two." 

Thus in order to describe the splitting of species it is 

necessary to go beyond the Darwinian Universe, to add 

axioms which formaliz.e post-Darwinian insights. These 

post-Darwinian insights are not insights into the process 

of natural selection but rather into the way in which 

natural selection interacts with the diversity of 
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environments to produce the diversity of species. 	To 

axiomatize these insights is clearly not a part of the 

stated task of the thesis; however it is very difficult 

to gain an intuitive understanding of the Darwinian 

Universe without some discussion of how it interacts 

with the diversity of environments, so we shall present 

a partial axiomatization of these post-Darwinian 

insights. 	This axiomatization will be neither complete 

nor definitive, but it will answer some of the questions 

about how the Darwinian Universe can be embedded into a 

larger universe in which the origin of species can be 

explained: 

A Diverse Darwinian Universe is essentially a set of 

Darwinian Universes which have different fitness functions 

and therefore different selective properties, It is 

described by two axioms: the first states that each 

fitness function behaves as a fitness function in a 

Darwinian Universe; the second states that for each 

population there are at least two different fitness 

functions with opposite selective properties. 	With 

these axioms it is possible to work out some of the 

consequences of the existence of environments with 

different selective properties. 
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Section 2.8: Description of the. Presentation  

The substantive part of the thesis thus consists of 

three sets of axioms together with the statements and 

proofs of a few of the theorems which can be derived from 

them; these are found, for each Universe, in the 

appendix at the end of the relevant chapter. The 

majority of the thesis, however, is devoted to explaining 

(with biological examples in the most complicated cases) 

the meaning of the axioms, definitions, and theorems. 

There are no mathematical prerequisites for understanding 

them other than a vague grasp of the concept of function. 

(It must be admitted, though, that a real appreciation of 

the system would probably require not only what is called 

mathematical maturity but also its analog, biological 

maturity.) Thus, though a solid mathematical background 

and a solid biological background would be helpful, 

neither is required for understanding our answer to the 

questions stated at the beginning of this chapter. 

This answer is given in the following chapters. 
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CHAPTER 3 : BIOLOGICAL =VERSES  

Section 3.1: Undefined Concepts  

Before we can discuss natural selection we must 

delineate the objects upon which natural selection works. 

These objects are sets of organisms and their descendants, 

Thus the objects are themselves structured entities and it 

will be necessary to state this structure in axioms in 

order to provide a firm foundation for the later 

axiomatization of the process of natural selectfon. 

The difficulty of defining "life" has been pointed 

out so often that it will come as no surprise to the 

reader that we shall take "organism" as an undefined 

concept. By "organism" we shall mean (intuitively) the 

same self-reproducing living entities that are the usual 

objects of study in biology. However, if there should 

happen to be other entities, not usually considered alive, 

which satisfy the axioms in this chapter, then they will, 

within this system, be considered to be perfectly 

respectable organisms. 	Similarly, if there should happen 

to be entities which are usually considered to be alive 

but which do not satisfy all of the axioms in this chapter, 

then these entities will not, within this system, be 

considered to be organisms. Thus, any entity which is 

part of a group which satisfies these axioms is an 
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organism; any entity which is not contained within such 

a group is not an organism. 

The reader should, therefore, while reading each axioms 

decide if there are any entities which he would call 

organisms which do not satisfy the axiom and, after reading 

all of the axioms, decide whether there are any entities 

which he would not call organisms which satisfy the axioms. 

If there are any entities of the first kind, then he 

should note that nothing that we subsequently assert to be 

true of all organisms can be taken to be necessarily true 

of these entities. 	If there are any entities of the 

second kind, then he should note that our "definition" of 

organism is wider than his "definition" of organism. It 

is desirable that there be very few (if any) entities of 

the first kind; it is immaterial for our purposes whether 

there be few or many entities of the second kind. (In 

facts  for a given axiom system, the more different types 

of entities there are which satisfy the axioms, the more 

interesting is the system.) 	The axioms should characterize 

at least the vast majority of those entities which are 

normally considered to be organisms. 

The other concept which will be defined only by the 

way in which it is used in the axioms is the concept of 

parent, or immediate ancestor. 	This concept is not of an 

entity but of a relation between entities. 	In this it is 



28. 

similar to, for example, the relation "greater than" used 

in arithmetic. 	Just as one says "five is greater than 

four", one also says "John is a parent of Jim". 	These 

two relations are also similar in having a direction: 

the statement "five is greater than four" is not the same 

as the statement "four is greater than five"; similarly 

the statement "John is a parent of Jim" is not the same 

as the statement "Jim is a parent of John". For the 

relation "is greater than" the symbol ">" is generally 

used; for the relation "is a parent of" the symbol "ttV 

will be used. 	Thus "John, Jim" will be used to mean 

"John is a parent of Jim". 	This symbol is a combination 

of the letter "A" and the symbol for "is greater than"; 

the letter "A" appears closest to the ancestral (i.e. 

parent) organism and this fact can be used as a mnemonic 

device for remembering which is the parent organism. If 

necessary, the symbol may be reversed so that the name of 

the descendant comes first: thus "Jim GASohn" also 

means "John is a parent of Jim" (or "Jim is an immediate 

descendant of John"); note that the letter "A" still 

appears closest to the organism which is the ancestor. 

We note also (as another mnemonic device) that the pointed 

end of the symbol points at the younger organism, the one 

whose age is "less than" the age of the other, just as the 

pointed end of the "is greater than" symbol in "5->4" 
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points at the smaller number. 	It would, clearly, be 

ridiculous to use names like John and Jim for all of the 

organisms we will discuss; we shall hereafter, denote an 

organism by the letter "0" (for organism) with a subscript 

or superscript to allow us to distinguish between different 

organisms. 	Thus we shall use "Olip-02" to mean "organism 

sub-one is the parent of organism-sub-two". 

There is one more notation that must be explained 

before the first axiom can be stated; it is the notation 

for "is not a parent of". Normally in mathematics a 

slash through a symbol denoting a relation is used to 

denote the negation of the relation; thus " 9" means 

"is not equal to". 	Similarly ", 	will be used to 

denote "is not a parent of". 

Section 3.2: Axioms Delimiting the Ancestor Relation  

The first axiom states merely that no organism is the 

parent of itself. 

Axiom 3.1: For any organism 0, 0 4 0. 

It is desirable to ensure not only that no organism 

is its own parent but also that no organism is its own 

ancestor. 	In order to do this it is necessary first to 

define the general concept of ancestor. 	The next 

definition defines the symbol ur, 	to denote the 

relation "is an ancestor of". 
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Definition 3.1: 	Olc>07 if and only if 01)p02 or there 

exists a non-empty set of organisms 63, 04, 05, 	OKI3 

such that 010003A704A>05 	AP.OKA>02. 

This definition states that 01  is an ancestor of 02 

if either 01 is a parent of 02 or there is a set of 

organisms such that 01 is a parent of 03, 03 is a parent 

of 04, 04 is a parent of 05, and so forth up to OK is a 

parent of 02. Again note that the pointed end of the 

symbol is pointing at the younger organism. 

Axiom 3.2: 	For any organisms 01 and 02, if 01b*02, 

then 02p01. 

This axiom states that if 01  is an ancestor of 02, 

then 02 is not an ancestor of 01. Using these two axioms 

we can prove that no organism is an ancestor of itself, as 

is stated in the following theorem. 

Theorem 3.1: For any organism 01, 01  001. 

We can also prove that if 01 is an ancestor of 02, 

and 02 is an ancestor of 03, then 01 is an ancestor of 

03. This is stated formally in Theorem 3.2. 

Theorem 3.2: For any organisms 01, 02, and 03, if 01r>02 

and 02t> 03, then 01C>03. 

The above two axioms give some idea of what is meant 

by "01  is an ancestor of 02"; the next axiom will give 

some idea of what is meant by "01  is equal to 02". 
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Axiom 3.3: 	For any organisms 01  and 02, if 01=02 then 

1) if 03f> 01  then 031:> 02 p and 2 ) if 031> 02  then 03  1). 01  . 

This axiom states that if 01=02 then every organism 

in the set of ancestors of 01  is in the set of ancestors 

of 02 and every organism in the set of ancestors of 02 is 

in the set of ancestors of O.  Notice that it does not 

say that every pair of organisms with this property are 

equal; if it did then it would imply that if 01  and 02  

are siblings, then 01= 02. 

Section 3.3: Definition of Lineage  

Now when we discuss natural selection we will be 

concerned with its action on populations over several 

generations. Consequently we must eventually decide 

what we mean by a "population over several generations". 

Clearly the first step is to define a set containing a 

specified collection of organisms and its descendants over 

the generations; we shall call such a set a lineage. The 

next few definitions will be devoted to explicitly defining 

this concept. 

Definition 3.2: D is a descent if and only if D is an 

ordered set of organisms f00, 019  02,—, OKI such that 

1) IC k: 1 and 2) for any i such that 0..5ii< K9  Ofk01.4.1. 

A descent is, thus, a single line of ancestors, where 

00  is a descendant of all of the other organisms in the 
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descent and 0K is an ancestor of all of the other organisms 

in the descent. In the case of sexually reproducing 

organisms a single descent will not contain all of the 

ancestors in the family tree since the descent will contain 

only one of the parents of each organism. Notice that 01 

is one generation removed from 00; 02  is two generations 

from 00; and, in general, Oi is i generations removed 

from 00. We use this to define "i-descendant". 

Definition 3.3: The organism 0' is an i-descendant of 

the set S if and only if there exists an organism 0" in 

S and a descent D such that 0' is the first element of D 

and 0" is the i+ 1st  element of D. 

Thus a child would be a 1-descendant; a grandchild 

would be a 2-descendant; a great-grandchild would be a 

3-descendant, etc. It will also be convenient to have a 

term for the opposite relationship; we shall define 

i-ancestor so that if 0' is an i-descendant of 0", 0" 

will be an i-ancestor of 0'. 

Definition 3.4: 0" is an i-ancestor of the set S of 

organisms if and only if there exists 0' in S such that 

0' is an i-descendant of 0". 

Consider an arbitrary set S of organisms. 	Denote by 

R the set containing S and all of its descendants. Then 

denote the set S by R(0), where the zero indicates that 

this is to be considered the zeroth  generation. 	Denote 
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the set of all 1-descendants of R(0) by R(1); this will 

be called the first generation of R. Similarly denote 

the set of all 2-descendants of R(0) by R(2); this will 

be called the second generation of R. In general, 

denote the set of all k-descendants of R(0) by R(k); 

this will be called the kth generation of R. These 

concepts will be formalized in the following three 

definitions. 

Definition 3.5: Given any set of organisms R(0) and any 

positive integer k, the organism 0' is in the set R(k) 

if and only if 0' is a k-descendant of R(0). 

Definition 3.6: The lineage R associated with a set of 

organisms R(0) is a set of organisms such that 0' is in R 

if and only if 0' is in R(0) or 0' is in R(k) for some 

positive integer k. 

Definition 3.7: The kth generation of the lineage R is a 

set of organisms such that 01  is in the kth generation of 

the lineage R if and only if 0' is in R(k). 

Thus we now have a word, lineage, which denotes a set 

of organisms plus all of its descendants. 
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Section 3.4: Definition of Subset and Other Set Theoretic  

Notations  

The primary notion of set theory, that of set, has 

already been used extensively without any explanation of 

what is meant by it. 	This was possible because the meaning 

of "set" within set theory is very close to its meaning in 

its everyday usage. However, in order to go further in 

this discussion of lineages we will need to use a few 

notions from set theory that are not self-explanatory; 

therefore this section will be used to describe or 

define them. 

We have above defined R(k) as the set of all 

k-descendants of R(0). But suppose R(0) has no 

k-descendants; is it still legitimate to call R(k) a set? 

Yes, it is; such a set containing no elements is called 

the null set. The null set will be denoted here by the 

symbol "0"; thus if R(0) has no k-descendants R(k) 
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to put it in words, R(k) is equal to the null set. 

Now we should make explicit what will be meant by 

saying of two sets, S1  and S2, that Sl= S2. 

Definition: S1  = S2  if and only if there exists a one-to-ant 

correspondence between organisms 0' in Si and 0" in S2  such 

that corresponding organisms are equal. 

We will often have occasion to use the concept of a part 

of a set. For example, we may wish to say that one part of a 
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set is superior to another part of the set. 	A part of 

a set is called, in set theory, a subset of the set. 

This is defined as follows. 

Definition: S1 is a subset of S if and only if every 

organism 0 in Sl  is also in S. 

Notation: 	S1CS means S1 is a subset of S. 

Now suppose that Ri(k) is the set of all organisms 

in R(k) which have claws; then R
1
(k) is a subset of R(k). 

If no organisms in R(k) have claws, then R1(k) contains 

no organisms and so Ri(k)= 0. 	If all of the organisms 

in R(k) have claws, then Ri(k)=R(k); notice that a 

subset need not be smaller than the set. At times it will 

be necessary to stipulate that a particular subset S1  is a 

subset of S but that it is not equal to S; that is, that 

there is at least one organism which is in S and not in Sl. 

To stipulate this we will use the following notation. 

Notation: Sl  .S means that Si is a subset of S and Si is 

not equal to S. 

For example, if R1(k) is, as before, the set of all 

organisms in R(k) which have claws, then the stipulation 

R/(k) c;TR(k) would guarantee that there is at least one 

organism in R(k) which does not have claws. 

Now suppose R2(k) is the set of all organisms in R(k) 

which have teeth. Then the set of all organisms in R(k) 

which have either teeth or claws (or both) is the set of 
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all organisms which are in either R1(k) or R2(k). 	It 

will be useful to have a notation for a set which is the 

sum (or, as it is usually called, the union) of two given 

sets. 	Below we define the union of two sets and then 

give the notation which is used for it. 

Definition: S3 is the union of S1 and S2 if and only if 

every organism that is in S3 is in either S1 or S and 

every organism that is in either S1  or S2  is in S3. 

Notation- S1  US2  denotes the set S3 which is the union °  

of SI  and S2. 

Suppose an organism 0' has both teeth and claws. 

Then 0' is in both R1(k) and R2(k). 	The set of all 

organisms which are in both of two sets is called the 

intersection of those two sets. 	This set is defined below. 

Definition: 	S3  is the intersection of S1  and S2 if and 

only if every organism that is in S3  is in both S1  and S2 

and every organism that is in both S1 and S2 is in S3. 

Notation: 	S1()S2 denotes the set S3 which is the 

intersection of Si  and S2. 

It will often be necessary to discuss the set of all 

organisms which are in a set S but are not in a certain 

subset Si. 	For example, the set of all organisms in R(k) 

which do not have claws is the set of all organisms which 

are in R(k) but are not in R1(k). 	This set is called the 

complement of R1(k) with respect to R(k); this concept is 

defined as follows. 
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Definition: 	S3  is the complement of Si  with respect to 

S if and only if every organism that is in S3  is in S and 

is not in Sip and every organism that is in S and is not 

in Si  is in S3. 

Notation: 	S S1 denotes the set S3 
which is the 

complement of S1 with respect to S. 

Thus the set of all organisms in R(k) which do not 

have claws may be denoted by R(k) - R1(k). 

Section 3.5: Descendants of a Subset  

Now it is possible to define a notation for the set 

of all i-descendants of a subset of R(j) which will make 

th clear its connection with the jgeneration. This will 

be useful when it is necessary to compare9  e.g. the 

descendants of those organisms which have claws with the 

descendants of those organisms which do not have claws. 

Notation: 	Let R1(j) be a subset of R(j). Let Rii  be 

the lineage associated with the set of organisms 

R1(j)= Rii(0). Then Rli(i) is the ith  generation of the 

lineage Rli p and Rii(i) is a subset of the j+ ithgeneration 

of the lineage R. Define the set Rj1(j+i) by the equation 

Ri
1
(j + i)=Rlj(i), where i is a non-negative integer. 

This notation9  Ri(k), permits a brief designation of 

the set of all organisms in the kth generation of R which 

are descendants of RIM. For example, suppose we wished 
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to say that the set of descendants of a particular subset 

R1
(j) of R(j) are superior.in every generation after j to 

the set of organisms in their generation; then we simply 

say that for all k> j, Ri(k) is superior to R(k) - Ri(k). 

Now we will use the concepts developed so far to 

prove two theorems that will be of use in later chapters. 

Suppose that the population R(j) contains a subset 

R1(j) of organisms containing a certain "good" gene. This 

gene will be selected for and will spread throughout the 

population; that is, after a certain number, k', of 

generations every organism of the population R(j+ 10) 

will have the gene. If mutation to this gene is sufficiently 

rare, we may expect that every organism in R(j +1(1 ) is a 

descendant of the original subset R1(j); that is, every 

organism in R(j + k') is also in Ri(j+ k'). Now we would 

like to be able to say that in this case every organism in 

later generations must also be a descendant of Ri(j); 

that is, if R(j +10)=1 Ri(j+ 10), then for all k > j+ 

R(k)= Ri(k). 	This is clearly a general property of sets 

of descendants and can be stated as a general theorem about 

descendants, without reference to "good" genes and selective 

forces. We will then have the following general statement: 

if there exists a generation m such that all organisms in 

R(m) are descendants of R1(j), then for all k> m all 

organisms in R(k) will be descendants of R1(j). 	This is 

stated formally in Theorem 3.4. 
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It is easier to prove Theorem 3.4 if another theorem 

is proved first. This theorem states that if there are 

two subsets of R(m), Ril(m) and 42(m), such that Rj  (m) 1 

is a subset of R 2(m), then for all generations k>- m 

the set of descendants of R11(m) will be a subset of the 

set of descendants of Rj
2
2(m). (In this statement jl and 

j2 are used instead of simply j in order to allow for the 

possibility that the generation in which R1  was originally 

defined was not the same as the generation for which Hp 

was originally defined.) For example, if the descendants 

of Jones and Brown intermarry so that by the m,th generation 

all descendants of Jones are also descendants of Brown, 

then there cannot be, in subsequent generations, any 

descendants of Jones which are not descendants of Brown. 

This is stated formally in the following theorem. 

Theorem 3.3: If 01:j1t;m, Olgj2Am, and R11(m)C:Re(m), 

then for all k >m, Ril(k) C: Re(k) 

Theorem 3.4: If 07.4; ji m and Ri(m) = R(T11) then for all 

k>m Ri(k)= R(k). 

Section 3.6: 	Axiom Delimiting Lineage  

The next axiom is not a statement about the ancestor 

relation, as the previous ones have been, but a statement 

about the world in which the organisms live. It states 

simply that for any lineage R and any generation k, the 

number of organisms in R(k) is finite. 
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It will frequently be necessary in succeeding chapters 

to refer to the number of organisms in a particular 

generation of a particular lineage. 	We shall, therefore, 

define a notation for this concept so that it may be 

referred to more easily. 

Notation: 	N(R,k) is the number of organisms in R(k). 

Axiom 3.4: For any lineage R there exists a positive 

integer MR  such that, for any generation k, N(R,k)411R. 

hils  therefore, is an absolute upper bound to the 

number of organisms in any one generation of R. It should 

not be confused with the temporary upper bounds imposed by, 

e.g., climatic conditions over a long succession of 

generations but which may change if the climate changes. 

For a given lineage MR  is fixed for all time, and no 

amount of environmental change and no number of 'good" 

mutations will allow it to be exceeded. 	The existence 

of MR  may be considered as being due to the fact that 

there is a limited amount of matter in the world, and 

therefore there is a limitation to the number of organisms 

that can be made out of that matter. 

Section 3.7: 	Definition of Biological Universe  

It would be possible to investigate further the 

structure specified for these sets of organisms by these 

axioms and to prove more theorems concerning it. However 
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the primary purpose of this chapter was to set forth the 

axioms defining what we will call a Biological Universe 

and this purpose has been accomplished. We shall, 

therefore, close this chapter with a definition of 

Biological Universe. 

Definition: 	A Biological Universe is a set B of 

organisms and two relations,? and = 9  such that axioms 

3.1 through 3.4 are true statements about them. 

Notation: 	(Bp41.11b.p= ) denotes a Biological Universe. 
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CHAPTER 3 : APPIITDIX 

A Biological Universe (B, 	= ) is a set B of 

organisms and two relations, A> and =, such that the 

following four axioms hold: 

Axiom 3.1: 	For any 0 in B, A-,(0/01> 0). 

is here used as the symbol for the logical negation.) 

Definition 3.1: 	01>0 if and only if 01,4> 02  or there 

exists a non-empty set of organisms f05, 04, 05, 

such that 01  ier> 03  A> 04  4> 	.A>Ok  A> 02. 

Axiom 3.2: 	For any 01  and 02  in B, if 0 1  02, then 

t'-/(021>01). 

Axiom 3.3: 	For any 01  and °2  in B, if 01,02  then:  1) if 

there exists 03  in B such that 03001, then 03C>02; and 

2) if there exists 04  in B such that 04 -02, then 04c>01. 

Definition 3.2: 	D is a descent if and only if D is an 

ordered set of organisms in B {00, 01;  02,..., 0k 	such 

that; 1) k21; and 2) for any integer i such that 

00>Oi4.1. 

Definition 3.3: The organism 0' is an i-descendant of the 

set S if and only if there exists an organism 0" in S and 

a descent D such that 0' is the first organism of D and 0" 

is the i+1st organism of D. 

Definition 3.4: 0" is an i-ancestor of the set S of 

organisms if and only if there exists 0' in S such that 0' 

is an i-descendant of 0". 
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Definition 3.5: 	Given any set of organisms R(0) and any 

positive integer k, the organism 0' is in the set R(k) if 

and only if 0' is a k-descendant of R(0). 

Definition 3.6: 	The lineage R associated with a set of 

organisms R(0) is a set of organisms such that 0' is in R 

if and only if 0' is in R(0) or 0' is in R(k) for some 

positive integer k, 

Definition 3.7: 	The kth generation of the lineage R is 

a set of organisms such that 0' is in the kth generation 

of the lineage R if and only if 0' is in R(k). 

iTotation: 	IT(R,k) is the cardinal number of the set R(k). 

Axiom 3.4: For any lineage R there exists a positive 

integer MR  such that, for any generation k, N(R,k)5.MR. 

Some theorems which can be proved using these axioms 

follow: 

Theorem 3.1: For any organism 01, 019,4 01. 

Proof: Suppose p01. Then, by definition, either 

(1) Ol4>0l  or (2) there exists a non-empty set 

(02, 03, 	Ok) such that 010-04)03  ..4>Okit>01. By 

Axiom 3.1, 0
1  01, so (1) cannot hold. 	But if (2) holds, 

then 011>02  and 02t>01, which cannot happen by Axiom 3.2. 

Therefore, since assuming that Op=- 01  leads to a contradiction, 

°10.°1' 
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Theorem 3.2: 	For any organisms 019  02, and 03  in D, if 

01t> 02  and 09C039  then 01C>03. 

Proof: 	01b 02  implies, by definition, that either (1) 

0 A 1>0 2 or (2) there exists a descent 04, 05, 069 ...y 013 

such that 014>04A>05A>06  ...A>Okp02. 	Similarly, 

020.03  implies that either (1) 02A>03  or (2) there exists 

a descent f04, 06, 	01,4 such that 02A>0404>06 ...A>0003. 

If (1) holds for both 01c>02  and 021>03, then 0191>024>03, and 

the set &23 is a descent such that (2) holds for 01  and 03; 

therefore in this case 01>03. 	If (1) holds for 01>02  

and (2) holds for 02C>03, then 02, 04, 06, ..., 01,c.3 is a 

set such that (2) holds for 01  and 03; therefore in this 

case 01 03. If (2) holds for both 01C>02  and 02C>03, 

then iO4, 05, ...2 Okt 029 04, 06, 	0 	is a set such 

that (2) holds for 01  and 03; 

01C,03. We have shown that in all possible cases 01. >03. 

Notation: Let Ri(j) be a subset of R(j). Let Rii  be the 

lineage associated with the set of organisms Ri(j)= 

Then Rip) is the ith  generation of the lineage R1j  and 

is a subset of the j ith generation of the lineage R. 

Define the set Ri(k) by the equation Ri(j+i)=. Rij(i), 

where i is a non-negative integer. 

therefore in this case 
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Theorem 3.3: 	If 04j1<m, 0.-5.j2‹.m, and. Ril(m)CR 2(m), 

then for all kam, Ril(k)C.Re(k). 

Proof: 	Suppose 0' is in Ril(k) for some k>m. We must 

show that it is also in Rj22(k). 	0' in Ri1l(k) implies that 

there exists a descent D of length k j1+ 1 such that the 

first organism in D is 0' and the last organism in D is in 

Ri1l(j1). The last jl - m+ 1 organisms of this descent 

provide a descent D' such that the first organism, Oil  is 

in Ril(m). 	Therefore, since R11(m)CRr(m), 01  is in 

Ri 2(m). 	By definition of Ri2(m) there exists a descent 

D" such that the first organism in Da is 0! and the last J1 
organism in D" is in Rg2(j2). If we let the descent D 

be the descent whose first k m+ 1 organisms are the 

first k m +1 organisms of D and whose last m - j2+ 1 

organisms are the organisms of D", then D is a descent 

whose first organism is 01  and whose last organism is in 

R22(j2), thus proving that 01  is a descendant of R22  ( j2). 

Therefore 0' is in R:2j2(k). 

We have taken an arbitrary organism 0' in Rj11(k) and 

shown that it is in Re(k). 	Therefore Ri1l(k)C.Rj2(k). 

Theorem 3.4: If 05,_.j-<m and R.1(m)= R(m), then for all 

k>m, Ri(k)= R(k). 

Proof: 	We first note that R(m)can be considered to be a 

sublineage of itself; that is, R(m)= Rg(m). Since, by 

the definition of subset, RIM = R(m) implies that 
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Ri
1 
 (m) C R(m) 9 theorem 3.3 can be used to give RiI  (k)CR(k) . 

Similarly, Ri(m)= R(m) implies that R(m)C.Ri(m), and by 

theorem 3.3 this implies that R(k) C Rii(k). 	But, for 

any sets S' and S", SIC. S" and S"C SI implies that 

S' = S''. Therefore RI (k) = R(k) . 
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CHAPTER 4: DARWINIAN UNIVERSES 

In the first chapter of this thesis Darwin's summary 

of the theory of natural selection was quoted and it was 

stated that his theory is still considered to be 

essentially correct. In this chapter we shall convert 

the important constituents of his statement of the theory 

into explicitly stated axioms and derive some of their 

consequences. 

Section 4.1: 	Populations  

Clearly when Darwin spoke of "organic beings" and 

their "offspring" he was assuming the existence of a set 

of organisms and an ancestor relation with the properties 

discussed in the previous chapter. In particular, when 

he say4 16)"if there be owing to their geometric rate of 

increase, a severe struggle for life," he is assuming the 

property given by Axiom 3.4; for without an upper limit 

on the number of organisms in a generation, there is no 

reason for a geometric rate of increase leading to a 

severe struggle for life. 	Therefore it will be necessary 

to state an axiom specifying that the objects of natural 

selection are in a Biological Universe. 

Single organisms are not the objects of natural 

selection; selection is a process which changes the 

composition of populations and it must be discussed in 
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terms of populations. 	Population is one of the 

elementary concepts of natural selection, so it will be 

an undefined term in this axiom system. Like all 

undefined terms its meaning will be delimited only by 

the statements made in the axioms concerning its 

properties. 

Intuitively speaking, a population is a lineage in 

which the different sublineages are tied together by the 

law of the survival of the fittest and in which there is 

sufficient hereditary variation. 	It should be recognized 

that a lineage is not necessarily composed of members of 

only one species; the associated set R(0) may have 

contained members of several species and in this case the 

lineage R will consist of several non-interbreeding 

sublineages. 	On the other hand, the fact that the law 

of the survival of the fittest holds guarantees that 

there is some relation between the different sublineages 

in a population (possibly competition for resources). 

This law does not necessarily hold for every lineage, for 

if a less fit part of the lineage accidentally found new 

and unexploited territory and thereafter had no contact 

with the rest of the lineage, it might survive and 

flourish although continuing to be less fit; thus it is 

clear that not all lineages are populations. 	It should 

also be clear that not all sets of organisms which are 

populations in the sense in which the word is used here are 
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populations in the sense in which the word is used in 

population genetics. 	But all sets of organisms which are 

populations in the sense in which the word is used in 

population genetics should be populations in the sense in 

which the word is used here. The word is used here to 

denote a larger variety of sets of organisms than it 

denotes in population genetics. 

Axiom 4.1: For any population R, R is a lineage in (B,4',= 

Section 4.2: Fitness of an Organism  

Clearly we cannot talk about natural selection without 

using the concept of fitness, but this concept, while very 

intuitive, is remarkably hard to define explicitly. 	Those 

who must define it explicitly (e.g. Fisher,(1'7); Feller,(18)  

and 	Hamilton,(1g)) generally use the expected number 

of offspring; that is, Of is fitter than 0" if the 

expected number of offspring of 0' is greater than the 

expected number of offspring of 0". But this is not the 

intuitive concept of fitness; it is merely a consequence 

of the intuitive fitness. 	Furthermore, it is a consequence 

of intuitive fitness only when the population is subject to 

selection. 	(If the organism is in a population which is 

being artificially selected by an experimenter for, e.g. 

low bristle number, it may have a very low expected number 

of offspring even though its intuitive fitness is much 

higher than that of the other organisms in the population. 
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It may be argued that this organism does indeed have a 

low fitness in the environment created by the experiment, 

but this only makes it more obvious that fitness is not 

independent of selection.) 	Thus the definition should 

be: the fitness of an organism is equal to the number 

of offspring of the organism expected when the population 

is under the operation of natural selection. If we then 

state natural selection in terms of "survival of the 

fittest" we will find ourselves in the well-known dilemma 

described as follows by Hayr.(20) 

"Darwin...has therefore been accused of tautological 
(circular) reasoning: 'What will survive? The 
fittest. What are the fittest? Those that survive.' 
To say that this is the essence of natural selection 
is nonsense! 	To be sure, those individuals that 
have the most offspring are by definition (Lerner, 
1959) the fittest ones. 	However, this fitness is 
determined (statistically) by their genetic 
constitution..... A superior genotype has a greater 
probability of leaving offspring than has an inferior 
one. 	Nstural selection, simply, is the differential 
perpetuation of genotypes." 

Mayr has ended in the same circle in which he started; 

we have only to ask: "which are the superior genotypes?" 

But he is right to be in this circle; his error lies in 

the (unexpressed) assumption that arguments which are 

tautological are worthless; since he knows that the 

concept of natural selection is not worthless, he concludes 

that it is nonsense to call it tautological. But, in fact, 

properly controlled tautological arguments can have great 

power and real explanatory value. Any axiomatized theory 
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can be considered to be in the form "if axioms, then 

theorems;" this implication is true regardless of the 

truth of either the axioms or the theorems; therefore, it 

is, by definition, tautological. 	Euclidean geometry is 

an example of such a tautological theory, yet it is clearly 

not worthless. 

If we consider the concept of "point" in Euclidean 

geometry and subject a mathematician to the catechism used 

above for the concept of fitness, we will hear: "What 

satisfies the Euclidean axioms? Points. What is a point? 

Something which satisfies the Euclidean axioms." Notice 

that the mathematicianstreasoning is just as circular as 

the biologists: But,it may be protested, everyone knows 

what a point is: 	Indeed it is just as true to say that 

everyone knows what fitness is; and it is just as 

difficult to explicitly define "point" as to explicitly 

define "fitness". 

This difficulty has been met in geometry by the 

device of explicitly stating that point is an undefined 

concept. 	There is an intuitive concept of what a point 

is, and this intuitive concept is used to decide what 

statements about points are likely to be true. But when 

these statements are being formally proved, the only 

information that can be used about points is the fact 

that they are entities which satisfy the Euclidean axioms. 
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The difficulty in defining fitness will be met in 

exactly the same way. 	It will be an undefined concept, 

denoted by f(0), about which we can say only that it 

satisfies the axioms of the Darwinian Universe. 	But 

for purposes of heuristic thinking we can consider that 

f(0) exactly corresponds to the intuitive concept of a 

measure of the fitness of the organism in the environment 

in which it spends its life. 

It is intuitively reasonable that any organism has a 

positive fitness; it may be very small but the fact that 

the organism exists long enough to be the object of 

discussion implies that its fitness is not zero. 

Therefore we assert the following property of f(0) as an 

axiom. 

Axiom 4.2: 	For any organism 0, f(0) is a positive real 

number. 

Section 4.3: Fitness with Respect to a Set of Organisms  

Normally the intrinsic fitness of an organism is not 

by itself important for natural selection; what is 

important is the fitness of the organism relative to the 

fitness of the other organisms in some population. 

Therefore we shall define the fitness of 0 relative to 

R(k) as the ratio of its fitness to the sum of the 

fitnesses of all of the organisms in R(k). 
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Definition 4.1: 

F(0,R,k) r 	f(0) 	if 0 is in R(k) 

f(0i) 
01  • in R(k) 

0 	if 0 is not in R(k) 

We have, thus, defined a new function F(0,R,k) in terms 

of the fitness function F(0). Note that with this 

definition, if 0' and 0" are both in R(k), F(0',R,k),›F(0,R,k) 

if and only if f(0') > f(0"); thus the definition has not 

changed the relative fitnesses of any two organisms. 

Theorems 4.1 and 4.2 follow immediately from this 

definition and Axiom 4.2. 

Theorem 4.1: For any 0' in R(3c), 	0 4F(0T,R,k) 	1. 

Theorem 4.2: F(01  ,R,k) = 0 if and only if 0' is not in R(k). 

Theorem 4.1 asserts that if 0 is in R(k) then the 

fitness of 0 relative to the fitness of all organisms in 

R(k) is always between 0 and 1. 	On the other hand, if 0 

is not in R(k) its fitness relative to R(k) is always 0; 

therefore if 0' is in R(k) and 0" is not in R(k),F(0",R,k), 

which is equal to 0, is always less than F(01 ,R,k) even 

though f(0") may be greater than f(0'). However, if we 

wish to compare two such organisms using F, we can do so 

by defining R'(0)=R(k)+ 0"; then F(0',R',0) ->F(0",111 ,0) 

if and only if f(0') >f(0"). 
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It will be useful to be able to discuss the fitness 

of parts of a population relative to the whole population, 

so we shall define the fitness of a part of a generation 

relative to the whole generation. 	Consider two 

populations R and Rt. We shall usually be interested in 

the case when Rt is a subpopulation of R, but it will be 

useful to have fitness defined for the most general case. 

To do this it will be necessary to use RI(k)r1 R(k), the 

set of organisms which are in both RI(k) and R(k). 

Definition 4.2: 	Let R*(k)= 111(k) (1 R(k). Then 

F(RtpRok) = 
N(R,k) 

0 in R' (k) F(0,R,k),) N(R*,k) 
if R(k) 

0 	 if R*(k) = 

The purpose of multiplying by N(R,k)/N(R*,k) is to make 

F(R',R,k) an average fitness; otherwise the larger the sub- 

population the greater the fitness. 	F(R',R,k) is such that, 

if the subpopulation Rt is superior in fitness in the 

generation k to the population R, then F(R',R,k) > 1. 	On 

the other hand, if R' is inferior in this generation, then 

F(R',R,k) 41. 	Some other interesting properties of F will 

now be stated as theorems. 

Theorem 4.3: F(111 ,11,k)= 0 if and only if RI(k)nR(k)= 0. 

Theorem 4.42 If R(k), O, then F(R,R,k) = 1. 

Notation: In F(R-R',R,k), R-R1  denotes the set R(k) - Rt(k). 
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Theorem 4.5: Let R and R' be such that 0 Ri(k)nR(k)/ R(k). 

Then F(R',R,k) >1 if and only if F(R-R',R,k) < 1. 

Theorem 4.6: Let R and R' be such that 07? RI (k)4111(k) R(k) 

Then F(R',R,k) = 1 if and only if F(R-R',R,k) = 1. 

Theorem 4.7: Let R and R' be such that 0 R! (k)nR(k) R(k) 

Then F(R',R,k) F(R,R,k) if and only if F(RI,R,k)>F(R-111 ,R,k). 

Theorem 4.3 states that if F(111 ,R,k) = 0 then there are 

no organisms that are in both R'(k) and R(k); it states 

further that if there are no organisms that are in both 

R'(k) and R(k), then F(R',R,k) = 0. 	Theorem 4.4 states 

that any population is exactly as fit as itself. Theorem 

4.5 asserts that if the fitness of a subpopulation is 

greater than the fitness of the population as a whole in 

generation k (i.e. if R'(k) has more than its fair share 

of the more fit organisms), then the fitness of the 

remainder of the population must be less than the fitness 

of the population as a whole (i.e. the remainder of the 

population must contain in that generation less than its 

fair share of the more fit organisms). 	Theorem 4.6 

asserts that if R'(k) contains exactly its fair share of 

the more fit organisms, then the remainder of the generation 

must also contain exactly its fair share. 	Theorem 4.7 

asserts that if R'(k) has more than its fair share of the 

fitter organisms then its average fitness is greater than 

the average fitness of the population as a whole. 	All of 
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these assertions are straightforward, intuitive -- even 

trivial, and they are meant to be; these theorems prove 

that F has the qualities that a fitness function should have. 

Section 4.4: 	Survival of the Fittest  

Now that the concepts of fitness that shall be used 

have been specified, it is possible to convert the most 

important constituent of Darwin's theory into an a)d.om.(21) 

"assuredly individuals thus characterized by 
useful variations will have the best chance of 
being preserved in the struggle for life". 

This is not, of course, a statement which follows with 

logical necessity from the other elements of his argument; 

it is a statement about the type of universe in which the 

events are assumed to take place. 	It is easy to imagine 

a universe in which this statement is not true (e.g. a 

universe in which the individuals death or reproduction is 

determined by an omnipotent god from a table of random 

numbers) and it would not even be difficult to approximate 

such a universe in the laboratory. 	Since the statement 

is not necessarily true in all possible universes, it is 

necessary to explicitly assume that it is true in a 

Darwinian Universe. 	That is, it must be stated as an 

axiom. 

But first it is necessary to define a concept which 

must be used in the statement of the axiom. 	It will be a 

rather complicated definition, for the concept is not 
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simple, but it is important to understand it as it 

contains the secret of the hidden compartment from which 

all subsequent rabbits will be produced. 

It is clear that, in the world which we would like 

our axioms to describe (i.e. the world in which we live), 

the better organism does not always win; the most that 

can be said is that it wins most of the time. 	The usual 

way to handle this uncomfortable fact mathematically is 

to use the theory of probability, that is, to state that 

the better organism has a higher probability of winning. 

We shall, instead, state that in the long run the fitter 

set of organisms will win, if it stays fitter long enough. 

It may not increase at the expense of the less fit in 

every generation, but it will do so over any sufficiently 

long succession of generations. 	In order to work with 

this it is necessary to be able to break up any long 

succession of generations into a set of 'sufficiently 

long' successions of generations. 	For example, if it is 

necessary to consider the generations between 100 and 

1000, we shall define a partition, p(100,1000) of these 

generations as a set of smaller successions of generations 

which are composed of successive generations and which 

completely cover, without overlapping except at the ends, 

the generations between 100 and 1000; that is, each 

generation between 100 and 1000 is in one and only one of 

the smaller successions. 	An example of a partition of 
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100,1000 is 1(100, 120), (120, 196), (196, 254), (254, 255), 

(255, 847), (847, 1000). 	The following definition of 

partition makes this more explicit. 

Definition 4.3: For any integers j1  and j2, a partition, 

p(j i,j2 ), of ji,j2  is a set of pairs of integers such that: 

either ki= j1  or 

in p(ji,j2 ) such 

(1) for any pair (ki,k2 ) in givi2 ) 

there exists exactly one pair (ki,k2) 

that k = ki; 

(2) for any pair (ki,k2 ) in p(ji,j2 ) either k2  = j2 or 

there exists exactly one pair (kl,k,g) in p(ji,j2 ) such 

that k = k2; 
(3) there exists exactly one pair (ki,k2 ) in p(ji,j2 ) such 

that ki  ji ; 

(4) there exists exactly one pair (ki,k2 ) in p(ji,j2 ) such 

that k2 = j 2; 

(5) for any pair (k19k2 ) in p(ji,j2 ) there exists no pair 

(ki,k) in p(ji,j2 ) such that lc{ 	kce 	or ki k2  

(6) for any pair (ki,k2 ) in p(ji,j2 ), 

Notice that there are a great many different partitions 

of any j12 j2* 
ji  and j2  is 

stated in the 

Theorem 4.8: 

any partition 

p(ji „j2 ) such 

It is important that every generation between 

included in any partition; this fact is not 

definition, but it may be proved as a theorem. 

For any integer i such that 	j2  and for 

p(ji,j2 ), there exists a pair (ki,k2 ) in 

that ki<  i k2. 
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Notation: Let N(p(ji,j,)) denote the number of pairs in 

the partition. 

Now, at last, it is possible to state the survival 

of the fittest axiom. 

Axiom 4.3: (Survival of the Fittest): 	For any 

population R, if R11(j1) is a subset of R(j1) and there 

exists an 2 s> 0 such that F(RT,R,k) > F(R-RT,R,k) + S2> 2 

for all k between ji  and j2, then if 2(j2-j1) 7.-e_ 1 there 

exists a partition p(j,,j,) such that for every pair 

(k1,k2) in the partition 

N(RT,k?) - N(R-RT0k2) 	N(R12,1c1) 	N(R-R112k1) 

and N(P(i1pi2))?: 2(j2-j1)* 

Suppose that in generation kl  there were exactly two 

more organisms in RT(ki) than in R(y RT(ki); •that is 

N(R11,k1) - 	2; then according to the axiom, 

N ( RT.  k2  ) 	( 	k2  ) > 2 which implies that during the 

generations between 	and k2  the number of organisms in 

Ri has increased relative to the number of organisms in 

the remainder of the population. 	Or, in general, the 

axiom states that for every pair (k1,k2) in the partition, 

the number of organisms in 1117  has increased during the 

generations between k1  and k2  relative to the number of 

organisms in the remainder of the population. 	It does 

not state that the number of organisms in 	has 1 
increased, for the inequality would still be true if both 
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Rm  and R-RT were decreasing in number as long as R-RT 

was decreasing faster than Rt. 	The axiom further 

states that the number of such pairs (ki,k2) is at least 

equal to 2(j2-j1). 

Now let us consider the first part of the axiom. 

Remember that, according to theorem 4,7, F(Rt,R,k)>F(R-RI,R,k) 

implies that the average fitness of R'(k) is greater than 

the average fitness of the population as a whole. Thus 

this axiom says that a subpopulation whose average fitness 

is greater than the average fitness of the population as 

a whole for a sufficiently long period of time will increase 

in numbers relative to the population as a whole. 

Notice that there is no assumption that RT will 

increase in absolute numbers; natural selection will 

occur even when the population as a whole is decreasing. 

It is necessary to state the axiom so that this will be 

true, since in nature the most effective selection often 

takes place while the population as a whole is decreasing 

and in spite of the fact that the favoured population is 

also decreasing, 

Notice also that the axiom does not state that the 

favoured population gains (relatively) in every generation; it 

is necessary' to avoid stating this since, in the universe 

which the axioms should describe, there is an element of 

chance which occasionally allows a less fit subpopulation 
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to gain on the remainder of the population. What the 

axiom does state is that if the fitness difference (2 ) 

multiplied by the number of generations in which it 

exists (j2-j1) is large enough, then selection will occur. 

A close look at the axiom shows that it will 

guarantee an average gain of 2 organisms per generation, 

though it does not rule out the possibility that the gain 

is much greater. 	The reason for this very low average 

gain is that the axiom does not state that the average 

gain per generation is a function of the size of the 

populations as well as of the fitness difference and the 

length of time. 	It would be possible to state this in 

the axiom, but at present this would complicate matters 

unnecessarily; natural selection would be seen to 

proceed faster if this were stated, but speed is not 

important; what is important is the question of what 

happens when natural selection proceeds. 

Section 4.5: 	Some Theorems on the Fate of Superior  

and Inferior Sub;opulations  

Theorem  4.9: If Rl(m) is a subset of R(m) and there exists 

a c 0 such that F(RT,R,k) > F(R-RT,R,k) +2 for all k such 

that k.?_m and RT(k) / R(k), then there exists an integer 

t such that R(t) = RT(t). 
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This theorem states that if the descendants of R1(m) 

are better than the remainder of the population for long 

enough, then there will be a generation t such that all 

organisms in the population R after the generation t are 

descendants of R1(m); i.e. the descendants of R1(m) will 

have completely taken over the population by the generation 

t. Note that it does not state that RT has eliminated 

another subpopulation; in sexually reproducing populations 

there is always the possibility that the inferior 

population has ensured some descendants by interbreeding 

with the superior population. 	(The axiom was carefully 

worded to avoid stating that any subpopulation would 

decrease; survival of the fittest is not the same as 

elimination of the unfittest.) However in asexual 

populations, or in populations with two non-interbreeding 

subpopulations of which one is superior to the other, it 

can be asserted that the inferior population will be 

eliminated. 	This will be stated in theorem 4.10. 

Notation: If Rm  is a subpopulation of R which fulfills 

the conditions of theorem 4.9 and t is the generation 

guaranteed by the theorem, then we shall call t the 

takeover generation of RTwith respect to R and we shall 

denote it by t(RT,R). 

Definition 4.4: Ril  and R 2  are non-interbreeding for i = k 

if and only if Ri
1
l(i)(-) 	= 

2 
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This simply states that two populations are non-

interbreeding if they have no descendants in common. 

Theorem 4.10: If R(k) = Rm(k)L)Rm(k) 9 RR(k) and Rm(k) 
1 	2 	1 	2 

are non-interbreeding for k > in, and there exists 2>0 such 

that F(RT,R0k) > F(111,R,k) + 2 for all k such that k>m 

and RR(k) I R(k), then R2(t(RT,R)) = 0. 
This theorem states that by the time of the takeover 

generation 112 will have been eliminated. Notice that we 

are beginning to see differences between the way natural 

selection works on sexually reproducing populations and 

the way it .rorks on asexually reproducing populations. 

In asexual populations it completely eliminates inferior 

populations; in sexual populations it simply ensures that 

after a certain time all of the population will be 

descendants of the superior subpopulation. 	This is, in 

fact, an indication of the greater flexibility of sexual 

populations in storing variability. 

Theorem 4.11: If there exists an 27> 0 and a number b 

and RT such that p(RT,R,k) 	F(R-RT,R,k) R for all k 

such that H(R12,10/N(Rok) 	b then there exists an integer 

j such that N(RT,j )/N(Ro j ) 	b. 

This theorem describes what happens when the 

advantage of the subpopulation RM is density dependant. It 
1 

asserts that if Rm  is a subpopulation which is superior to 
1 

the remainder of the population as long as it constitutes 
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less than the proportion b of the population, then R 

will attain that proportion. If we further assert that 

R does not interbreed with the rest of the population 

and that it is inferior to the rest of the population 

when it constitutes more than the proportion b, we can 

assert that the proportion of Rm
1 
 to R will either stabilize 

at b or oscillate around b. 	This is stated in the next 

theorem. 

Theorem  4.12: If R(k) = R11(k)L)q(k) for all 1.<7.-im, Ri and 
Rm are non-interbreeding for all k 1.--m, and there exist 

numbers b and SZO such that (1) F(RT,R,k)7:, P(1-11;°,R,k) +2 

whenever N(R11,k)AT(R,k) < b and (2) F(4111,R,k) >F(R1111,R,k) +2 

whenever N(RT,k)/M,k) >b, then one of the following holds: 

(1) there exists a j such that RR(j)=0; (2) there exists a 

j such that RIyj)=1 0; or (3) for any number AZ there exists 

j' and j" such that j -.311]As. 	N(RT,j1 )/17(R,j 1 ).e=b, and 

N(RT,P)/N(R1j") b. 

Section 4.6: Hereditary Variation 

The next constituent of Darwin's theory that will be 

stated as an axiom is:(22) 

"it would be a most extraordinary fact that if no 
variations had ever occurred useful to each beings 
own welfare....if variations useful to any organic 
being ever do occur,...from the strong principle 
of inheritance, these will tend to produce off-
spring similarly characterized". 
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now it may seen that this ought to be translated into two 

axioms; one axiom stating that useful variations occur 

and the other stating the strong principle of inheritance. 

However, since variations that are not hereditary do occur, 

we cannot state (1) useful variations occur and (2) all 

variations are hereditary (from which two statements we 

could derive the statement that useful hereditary 

variations occur). 	Similarly, since some variations are 

not useful, we cannot state (1) some variations are 

hereditary and (2) all variations are useful (from which 

two statements we could also derive that useful hereditary 

variations occur). So if we want to state, without grossly 

misrepresenting the universe, that useful hereditary 

variations occur, we must state it as an axiom. 

Axiom 4.4: (Hereditary Variation): For any population 

R and any generation m such that N(R,m)? 20  there exists 

H(m) contained in R(m) and 2>0 such that R(112+1)/ Hm(m+1) 

and, for any l<2_,_m such that R(k)11121(k), 

F(Hm,R,k) 	F(R-Hm,R,k) +2 . 

Notation: The letter H will hereafter be used to denote 

the subpopulation guaranteed by this axiom. 

This axiom states that in every generation m any 

population R contains a subset H(m) thich is superior to 

the remainder of the population in generation m and whose 

descendants are superior to the remainder of the population 
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for as long as the population contains any organisms which 

are not descendants of H(m). 

Notice that R(m+ 1) /Hm(m+ 1) implies that R(m),H(m). 

Therefore this stipulation means that there are at least 

two generations (m and m+1) for which F(Hul,R,k)>F(R-Hm,R,k)+2. 

The fact that the subpopulation has the property of being 

better than the remainder of the population for as long as 

it is distinguishable means that the property (or whatever 

causes the property) is hereditary; the fact that it is 

distinguishable for at least two generations guarantees 

that the IBreditary property is not fulfilled vacuously. 

(It would be fulfilled vacuously by, e.g., a subset R1(m) 

containing all organisms in R(m) which have descendants; 

clearly RT(m+ 1) = R(m + 1) so that, although RT fulfills 

"for any k-?..m such that R(k) 41(k) , F(R111,R,k)>F(R-Rril,R,k)+2," 

there is no inheritance of fitness since there is only one 

generation involved. 
assumes 

Notice that the hereditary variation axiom g===nt 

not only that in at least some cases organisms inherit 

characteristics of their parents, but also that the 

environment of the organisms inherits characteristics of 

the environment of the organismst parents, for fitness is 

the result of both the characteristics of the organism and 

the characteristics of the environment. For natural 

selection to work it is necessary that the environment be 
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reasonably stable; i.e. that it be stable with respect 

to the characteristics tar which the population is selected 

for long enough to force the population to change. Thus 

this axiom, which states that fitness is inherited, is 

more relevant to natural selection than the laws of 

Mendelian heredity, which merely state that characteristics  

are inherited. 

Note that the set H(m) guaranteed to exist for R(m) 

by this axiom may be the descendants of the subpopulation 

guaranteed to exist for R(m-1). If Hm-1(m+ 1) 	R(m+ 1), 

then Hm-1(m) is a subset of R(m) Which fulfills the axiom. 

This does not mean, however, that the axiom guarantees 

only one variant subpopulation in the course of all time, 

since theorem 4.9 guarantees that the descendants of Hm(m) 

can coexist with non descendants for only a limited period 

of time. 	Therefore the superior subset guaranteed for 

ml= t(Hm,R) cannot be simply the set of all descendants in 

R(m') of Hm(m), since Hm(m') = R(mt). 	Thus this axiom 

guarantees that there is always variation, and the survival 

of the fittest axiom guarantees that any particular 

variation of the type guaranteed (i.e. variation whose 

fitness characteristic does not oscillate) can only remain 

variable in the population for a limited period. 
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Section 4.7: A Nested Sequence of Subpopulations that 

Take Over  

The preceeding paragraph contains the germs of two 

theorems which will now be formally stated. 	The first 

simply states that there always exists a subset which is 

fated to take overA
in 
 a finite number of generations. 

Theorem 4.13: For any population R and generation n 

such that Ni(RIn)?!.2, there exists a subset Ri(n), such 

that R1(n)/R(n), and a generation j such that 

R1(j) = R(j),  

Suppose that N(R,k) > 2 for all k. Then, since the 

hereditary variation axiom states that there is hereditary 

fitness variation in every generation of R, there must be 

a subset H(j) of R(j) which has, along with its descendants, 

an advantage over the rest of the population. H3  will, 

in time, eliminate its less fit cousins (either by 

extermination or interbreeding); suppose this happens by 

generation j2. 	Then there must exist a subset H(j2) of 

R(j2) which has an hereditary advantage over the rest of 

the population; Hi2  will, in time, eliminate its less 

fit cousins. 	Clearly this process will go on forever, 

with superior subpopulations becoming noticeable as soon 

as the previous superior population completes its takeover. 

This is stated in the following theorem. 
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Theorem 4.14: For any population R such that there exists 

a generation n such that N(R,k)7,2 for all k>n t  there 

exists a set of generations 	j 1, j2, j3,...ji...3 and a 

subset Hji(ji) of R(ji) for each generation in the set 

such that j1,, j2< 	<ji< **op 

for each generation ji in the set, and R(k) = H31(k) for 

all ki(i+ 1). 

Section 4.8: 	On the Use of Infinity 

Now the reader should notice that the assumption, in 

the previous two theorems, that R(k) contains at least 

two organisms for every k?-n implies that the population 

never dies out. As it is entirely possible that all life 

will one day be exterminated by some cosmic catastrophe, 

it is possible that there do not exist any populations for 

which this assumption is true. 	It is necessary, therefore, 

to ask whether the hypotheses of these theorems are 

sufficiently close to being true of the universe in which 

we live for their conclusions to give the sort of phenomena 

that can be expected in our universe. 

In almost every non-trivial application of mathematics 

to the real world the concept of infinity is a necessary 

element of the mathematics involved. 	Calculus, which was 

invented by Newton to express certain relationships among 

physical bodies, uses the concept of infinite sub-

divisibility; calculus is very useful even though matter 
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is not infinitely subdivisible. 	Similarly statistics, 

which is used to describe finite sets of chance happenings, 

is defined in terms of infinite sets; in spite of this, 

the conclusions of statistics prove of practical value. 

Clearly in both these fields there are assumptions, without 

which the fields cannot be defined, which are not true in 

our universe; but they are sufficiently close to being 

true to allow these fields to be of practical Ise. 

Similarly we expect that the infinity which must be 

introduced in order to get interesting results will prove 

to be sufficiently true to allow this theory to be of 

practical value; the populations alive today, in which 

we are most interested, have probably existed for only a 

finite time period, but if that period is sufficiently 

large the theory should be sufficiently close. 

Section 4.9: 	Theorems on the Structure of Subpopulations  

that Take Over  

The next theorem should be taken as a warning that we 

cannot reason backward from the fact that a certain sub-

population takes over to the conclusion that it is fitter. 

It would not, of course, be desirable to have an axiom 

system which implies that the subpopulation that takes over 

is always the best one, since this is not a characteristic 

of the universe that we wish to describe. 
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Theorem 4.15: 	If R1(n) is a subset of R(n) such that 

there exists X2,0 such that F(Rni,R,k).-;3F(R-Rni,R,k)+2 for 

all kin such that R(k) 	R11(k), and R2(n) is a subset 	of 

R(n) such that R1(n) is a subset of R2(n), then there 

exists a generation j such that R(j) = R(j). 

This theorem asserts that if Rill  is being selected 

for, then any subpopulation R11  which contains RRi will 

seem to be being selected for. For example, suppose 

that R3(n) consists of all those organisms that are 

fitter than the average but which left no j-descendants 

because of chance catastrophes. 	Then let 

R2(n)=R(n) 	R3(n). 	Clearly F(R2,R,n). F(R-1,R,n), 

but in spite of this 	will be seen to exterminate gl  3 

and to take over R. Thus the axioms do not guarantee 

that every subpopulation which survives is fitter than 

every subpopulation which does not; they guarantee that 

some subpopulations which survive do so because they are 

fitter. 

Theorem 4.10 has shown that if a population is 

composed of two non-interbreeding subpopulations one of 

which is consistently superior to the other, then the 

inferior subpopulation will be exterminated. But what 

happens in the case when neither subpopulation is 

consistently superior? In view of the continual supply 

of subpopulations which, according to Theorem 4.14, arise 

to take over any population, can such non-competitive sub- 
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populations continue to exist? And if they can, how do 

they coexist with the competitive populations which are 

taking over? The following theorem will show the 

relationship between such non-competitive sub-populations 

and the competitive populations. 

Theorem 4.16: 	If R(0) 	R1(0)Li R2(0) and (1) R.  and 

are non-interbreeding for k>„0, (2) IT(RT,k) > 1 for 

all 	and (3) N(R2,k) > 1 for all k;,0, then there 

exist subsets R1(0) (::::Ri°(0) and RS)(0) CR2(0), at 

leant one of which is a non-trivial subset, and a 

generation j such that R(2).(j)=. q(j) and 112(j)=R2(j). 

Clearly neither qi  nor 
	

is consistently superior 

to the other, since the fact that they are non-inter-

breeding implies that a consistently inferior one would 

be exterminated and, by conditions (2) and (3) both 

remain in existence. According to the theorem, what 

happens in this case is that the takeover subpopulation, 

which we know must exist, contains some members of R0(0) 

(namely R2(0)) and also some members of 4(0) (namely 1(0)). 

Each of these sub-subpopulations eliminates the remainder 

of its own subpopulation. 

It is obvious that this theorem could be extended to 

show the same results if R consisted of any finite number 

(instead of just two) of non-interbreeding, non-competitive 

subpopulations. We see therefore that although the axioms 
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guarantee that there is competition within each 

population, they do not guarantee free competition; that 

is, there is no guarantee that the population is 

homogenous with respect to competition. 	Thus our use of 

the word population is very much wider than the usual use 

of the word; many groups that are populations in our 

sense of the word are not populations in the usual sense. 

However, since any group that is a population in the 

usual sense is also a population in our sense, any 

statement that we make about populations will also be 

true for populations in the usual meaning of the word. 

Section 4.10: 	Conclusions  

In this chapter four axioms have been stated and some 

of their implications discussed. 	There are many other 

hypotheses about the process of evolution which could be 

stated as axioms; there could be an axiom asserting that 

heredity is hendelian, or one asserting that variation 

arises from random mutations. 	These would add power 

to the theory, but they are not necessary for natural 

selection. We assert, however, that the four axioms that 

have been stated are necessary for natural selection. We 

assert further that they are sufficient to define natural 

selection. 	(These assertions cannot be proved since 

natural selection has never been explicitly defined.} We 

shall call such a universe a Darwinian Universe. 
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Definition: 	A Darwinian Universe is a Biological 

Universe, (B,4›,... ), a function f on B, and a set P of 

populations such that axioms 4.1 through 4.4 are true 

statements about them. 

Notation: 	(B,A>,= pf,P) denotes a Darwinian Universe. 



Definition 4.1: 

F(0911,k) = 	f(0) 

0. 

0 

if 0 is in R(k) 

if 0 is not in R(k) 

f(0i ) 
in R(k) 
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CHAPTER 4: APPENDIX 

A Darwinian Universe (Bs..->9 = ,f,P) is a Biological 

Universe (Bp/1›,= ), a function f on B and a set P of 

populations such that the following axioms holds 

Axiom: 4.1: 	For any R in P, R is a lineage in (B,/,>,= ). 

Axiom: 4.2: 	For any 0 in B, f(0) is a positive real number. 

Definition 4.2: Let 11(k) = Ri(k)(1R(k). Then 

F(R',R,k) = 
N(.k 

F(0,R,k) 	 if .H.-(k)?4  
0 in R' (k1) 	 N(R

R
'pk

)  

) 

0 	 if R (k) = Ql 

Definition 4.3: For any integers j1  and j2, a partition, 

p(j1pj2 ), of j1,j2  is a set of pairs of integers such that: 

(1) for any pair (k1,k2) in p(j1,j2) either kl = jl or there 

exists exactly one pair (ki,k) in p(j1t j2) such that k k1; 

(2) for any pair (k1,k2 ) in p(j1,j2 ) either k2 = j2  or there 

exists exactly one pair -(k]IpkV in p(j1,j2 ) such that k= k " 	2' 
(3) there exists exactly one pair (k1ok2) in p(jipj2) such 

that k =j 1 19 



76. 

(4) there exists exactly one pair (ki,k2) in p(ji,j2) 

such that k2  = j2; 

(5) for any pair (ki,k2) in P(j1,j2) there exists no pair 

(ki,kfl in p(j1,j2) such that ki-K ki<k 	or ki,,:k9<k; 

(6) for any pair (ki,k2 ) in P( j1Ij2)9 	ki< k2`;:i 2. 
Notation: Let N(p(ji,j2)) denote the number of pairs in 

the partition p(j1,j2 ). 

Axiom 4.3: (Survival of the Fittest): For any R in P, 

if 0(j
1 
 )CIRU

1 
 ) and there exists an 2>0 such that 

F(RT,R,k) > F(R-RT,R,k).1. 2 2 for all k in 019j2], then 

if 2(j2-j1):11 there exists a partition p(j1,j2) such 

that for every pair (ki,k2) in the partition 

H(RIT2k2) IT(R-RT,k2) H(1172k1) N(R-Riaskl)  

and N(10(i1,j2)) 	202-j1). 

Axiom 4.4: (Hereditary Variation): For any R in P and 

any positive integer m such that IT(R,m) > 2, there exists 

H(m)L1R(m) and2>0 such that R(m+ 1) iim(ra+ 1) and, for 

any k>rn. such that R(k) Hm(k) F(Htil yRpk) > F(R-Hul 9 R,k) -+ 2. 

Some theorems which can be proved using these axioms 

follow. 

Theorem 4.1: For any 0' in R(k), 0 F(01R,k) 1. 

Proof: Since 0' is in R(k), F(0',R,k)= 	f(0)  

f( ) 
Oi in R(k) 

by definition 4.1. 	By axiom 4.2, the numerator is a 
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positive number and. the denominator is a positive number. 

Therefore the ratio is positive; i.e. F(01 ,R,k):;) 0. 

Since 0'  is in R(k), 

f(0i ) = f(0') 	 f(0i) 

	

Oi  in R(k) 	 Oi 

so F(0',R,k) is of the form a+a  b  where a> 0 and b 0. 

Therefore F(0',R,k) 	1. 

Theorem 4.2: F(0',R,k) = 0 if and only if 0' is not in R(k). 

Proof: By definition 4.1, 0' not in R(k) implies 

F(OT,R,k) = 0. 	By theorem 4.1, 0' in R(k) implies 

F(0',R,k) >O; therefore F(0',R,k) = 0 implies 0' not in 

R(k). 

Theorem 4.3: F(R',R,k)= 0 if and only if 	(k)) R(k) = c. 

Proof: 	By definition 4.2, F(R , ,R,k)= 0 when R'(k)OR(k)= 

Now suppose Rt(k)11R(k)A 0. Then there exist an organism 0' 

in 111 (k) 	. 	By theorem 4.1, F(0' 9 119 k) CS. 

Clearly IST(Rpk) '7,,  O. and 1\T (Ii.*  9k) 0 • 	(Remember that 

R* (k)-= R' (k) 	R(k) .) Therefore 

F(RI,R,k) F(0i ,R,k) ) IT(R,k)  
Oi  in 

R' (k) 
1T(Rw ,k) 

Therefore, since the assumption that Rt(k)nR(k) 0 

leads to the conclusion that F(RI,R,k) > 0, 

F(R',R,k)= 0 implies that RI (k) riR(k) = 0. 



Theorem 4.4: If R(k) A Op then F(R,R9k) = 1. 

Proof: Since 1-i(k) 	R(k) 	R(k) = R(k)/ 

Therefore 

F(119  R k sz.LF(0i,R99/ 
in -Rik) 

N R k  
N(R,,k ) 

 	11( 0 R,k)  
Oi  in R(k) 

f(0i) 	1 i  
______) . - R 
	

I 	 
. i 	(_k i ()2. n 	777—  f (0i  )i 

\\ Oi  in 11-0.0 

-,-,, 
-:. 

. in R(k)f(01 ) 

f(0i) 
. in fi:( 

= 1 

Notation: In F(R-R'9 R9k), R-R' denotes R(k) 	R'(k). 

Theorem 4.5: Let R and R' be such that $ PO(k)()R(k)74ER(k) 

Then F(R'9119k) > 1 if and only if F(R-RI,R,k) < 1. 

Proof: 	Let R"(k)=R(k) 	R'(k), R1(k)= Ra(k)(-)R.(k), 

and 4(k)-4  Rt(k)(IR(k). Then 

F(R-R',R,k) = P(R4 9 R,k) 

N(R 9 k)  1 F(0i ,R9 k) 
ET ( Rt, k ) 1\0i in R"(i) 

78   . 



     

79. 

N(11,10  1 
N(RI,k) 

  

11(0i ,R,k) 

 

in R'(k) 

 

      

      

, N(R,k) __ ..- N(R,k) 	, 	F(0i9R,k)) 
N( I,k) 	N(RI,k) \ 4i  in R' (k) 

= N(R9k) 	N(Rt,k) 
F(R',R,k) 

N(111,k) 	N(Fil,k) 

N(R,k) - N(R,k)F(Rt,R,k)+N(Ri,k)111(Rt 9 R,k) 

N(14.9k) 

= NSR,k)  
N(Iel,k) 

1  
F(R',R,k)? + F(117 ,11,k). 

Now suppose F(R',R,k) ,;= 1; then F(R',R,k) = 1+ o for 8.>0, 

Therefore 

k, , R   p(R_R,,R,k) 	,, 	—  (1+ by +1+ 6 11(eirk) 

1 since 
N(R,k) 	1.  
Y(141,k) 

On the other hand, suppose F(R-R',R,k) 1; then 

F(R-109R,k) = 1 - b. 

So 	1  _o = N(R9k)  

N(..q9k) 

If F(1-0011,k) 	10  then either (1) F(R',R,k) = 1 or 

(2) F(R',R,k) = 1 - b. 

11 •- ROM pR.,k + F(R',R,k) 
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If (1) then 1-5- N(R,k)   . 0+ 1, which is impossible. 
ff(R1,k) 

If (2) then 1- 5= N(R,k) 	 + 1-5 
lq(111*,k) 

but since the right side of the equation is greater than 1, 

this is impossible. 	Therefore, since assuming 

F(Rt,R,k)7,1 leads to a contradiction, F(R',R,k) 	1. 

Theorem 4.6: Let Rt(k) be a non-trivial subset of R(k). 

Then F(R',R,k) = 1 if and only if F(R-RT,11.,k)= 1. 

Proof: 	Only if: Assume the contrary; i.e. F(Rt,R,k) = 1 

and F(R-Rt ,R,k) 	1. Then either (1) F(R-111 ,11,k) <- 1 or 

(2) F(11-1V,R9k),-- 1. 	By theorem 4.5, 	pEtpk) < 1 

implies 111(Rt 911,k) -7=- 1; therefore F(R',R,k) cannot be 

equal to 1 when F(R-R',R,k)<l; therefore (1) cannot be 

true. Let R1(k)= R(k) - R'(k); then R(k) - R1(k) 'I R (k). 

Now using theorem 4.5 on R1(k), 11(111,11,k) ->1 implies that 

F(R-R1,R,k) < 1; substituting equal sets, this implies 

that F(R-R',R,k) 	implies 11(11t,11,k)-=1; therbfore (2) 

cannot be true. 	Since neither (1) nor (2) can be true, 

it cannot be true that F(R',R,k) = 1 and F(R-R, ,R,k) 74  1. 

If: The proof of the implication in the other direction 
is analogous. 

Theorem 4.7: Let R'(k) be a non-trivial subset of R(k). 

Then F(R',R,k) > F(11,R,k) if and only if 

F(R',R,k) 	F(R-R',R,k). 
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Proof: If: By theorem 4.4, F(R,R,k)= 1; therefore 

F(R',R,k) > F(R,R,k) implies F(R',R,k) T - 1. This implies, 

by theorem 4.5, F(R-10,1i,k) 1. Therefore 

F(R',R,k) 	F(R-R ,  

Only if: Assume the contrary: i.e. (1) F(11.1 ,11,k):-p-F(R-10,Ryk) 

and (2) F(R 1 ,R,1) 	But by theorem 4.6, F(111 ,R.,k) = 1 

implies F(R-Re,R,k) =1 and by theorem 4.5 F(R',R,k) -1 

implies F(R-1/1 ,11,k) >1. Thus statements (1) and (2) cannot 

both be true. Therefore F(R',R,k) 	F(R-R 1  ,R,k) implies 

F(13.1 ,1-t,k);- 1 = F(R,R,k). 

Theorem 4.8: For any integer i such that j l i j 2 and 

for any partition p(ji,j2 ), there exists a pair (ki pk2 ) in 

p(ji,j2 ) such that 

Proof: Suppose that no such (ki ,k2 ) exists. By the 

definition there exists a (k J.  k2  ) such that k J. = ji ; 

therefore, since 	j1, there exists at least one (ki,k2 ) 
such that k1- 	Since there are a finite number of pairs 

in the partition, they are well-ordered; therefore there 

exists a pair (kl,q) such that ki! is the largest k1  

less than i. By part (2) of the definition, either 

k = j2  or there exists (ki,k) such that kJ. = k. 	But 

by the assumption i lq; therefore i> k2. This implies 

that either k" is not the largest k
1 less than i, which 

is impossible, or i >j2 , which is impossible. Therefore, 

since the assumption that no such (ki,k2 ) exists leads to a 

contradiction, such a pair must exist. 
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Lemma 4.9: For any population R and integer m there 

exist no RIT(m)C_R(m) such that there exists 9 >0 and k' 

such that F(RT,R,k) ;1= F(R-RT,R,k) 	27->2 for all 	k'. 

Proof: Suppose such an Rm(m) exists. Let i1= 

Since 2 is a constant, there exists an integer i2 such that 

9 (i2-11) 
	

Therefore, by the survival of the fittest 

axiom, there exists a partition p(i1,i2) such that 

N(p(i1,i2))'?1 and for every k1,k2) in the partition 

N(RT,k2) 	N(R-RT,k2) --->N(111Pk1) 	N(R-RTPk1).  

Again, since 2 is a constant, there exists an integer i3 

such that 9(i3-i2) > 1. 	Therefore, by the survival of 

the fittest axiom there exists a partition p(i2„i3) such 

that N(p(i20i3))1 and for every (ki,kp) in the partition 

N(R1,k2) - N(R-RT,k2) > N(FIT'kl) 	Y(R-RT'kl)*  

Similarly there exist an infinite succession of integers 

i4,i5,16,... with the same properties. 

Let S(R,RT,ki,k2) =1:(RT'k2)-N(R-RT9k2)31 4(Rm1l
k )-N(R-Rm,k 
I 	I 

Then, by the survival of the fittest axiom, 

3Y 	311 

N(13(ijvij+1)): -"> 
j=1 	j=1 (ki,k2Tin 

\P(ipii+1) 

Now since, in a partition, every kl  except the first is equal 

to the k2  of the next smaller pair and every k2  except the 

S(RIRTtkltk2)' (1) 
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last is equal to the ki  of the next larger pair, the inner 

sum on the right side of (1) is of the form 

(a-b)+(b-c)+(c-d)+...+ (x-y)+(y-z) = a-z 

So the right side reduces to 

3MR  

J=1 
 

m Rij+1) 	1 N(R-Rm,ij+1   -tR(RT9 i.) - N(R-1119i.)1 

But this is clearly of the same form, so it reduces to 

- m  i  	m  „AIR) 	N(RR19 31.1R;x1 	••• 11-(13..•RM, yi, ) 

Now since each member of the sum on the left of (1) is 

at least 1, 
3/ 

3MR  < 	N(p(ivii+/). 

j=1 

So, according to (1), 

31111 - ..11(RT.I131\1R )  

Now, since N(RI,k)% 09  (2) implies 

3MR 	N(RT'i'w ) 
	

(3) 

But by axiom 3.4, N(R,k) 	so (3) implies 

311iR  2%. 

This is clearly impossible. By assuming that such an R1 

exists we have shown that this gives rise to a contradiction. 

Therefore no such R1 exists. 
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Theorem 4.9: 	If R1(m) 	R(ria) and there exists ans2>0 

such that F(Rnil,R,k) > F(R-Ruli ,R,k) + 2 	for all k such 

that k,› m and 111213:(k) R(k) 9 then there exists an 

integer t such that R(t) = Rif(t). 

Proof: Suppose no such t exists. If we let 

R2(k) = R(k) 	Rrid(k), then this assumption asserts that 

R2(k)/ 	for any k m. Therefore, R2(k)f)R(k)/ 0 for 

any k 7>m, so by theorems 4.3 and 4.1, F(R2,R,k) 	0 for 

any k "ra. Therefore, for any k=-›m, F(R2,R,k)+ 

Therefore F(RIT,R,k)>F(R-R1111,R,k) + 2 -=' 2 for all k>m. 

But by lemma 4.9 this is impossible. 	Therefore such a 

t must exist. 

Notation: If Rm is a subpopulation of R which fulfills 
1 

the conditions of theorem 4.9 and t is the generation 

guaranteed by the theorem, then we shall call t the 

takeover generation of 1Ri with respect to R and we shall 

denote it by t(RT,R). 
j 	j Definition 4.4: R1l  and R22  are non-interbreeding for 

i 	if and only i f 41( ) 	2,12( ) = 0 for i k. 

Theorem 4.10: If R(k) 	Rin2(k), 2,111(k) and R11(k) are non- 
interbreeding for kam, and there exists 2 0 such that 

F(R1311,R,k) > 11(111:211,R,k) +2 for all k such that .1‹.-m and 

R(k) , then Ii2m(t(R11,R))= 0. 
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Proof: Rm
1 
 satisfies the conditions of theorem 4.9. 

Therefore Rif(t(1111.,R)) = R(t(Rmi,R)). Since 41(k) 	R(k) 

for all k., this implies that Rtp(Rmi,R)):::_Rtili(t(4.,R)). 

But since HT and RI:1  are non-interbreeding for k.,..-122 and 

t(Rnil,R)> 	R(t(RTIR))nRn21(t(R112,R)) 	Therefore 

4(t(RT,R)) = 0. 

Theorem 4.11: If there exists an Sa>0 and a number b 

such that F(Rmi ,R,k) .--11(R-1111,11,k) + 2 	for all k such that 

N(Rnli ,k)/N(R,k) -5„ b, then there exists an integer j such 

that N(Rilli ,j)/N(R,j) 	b. 

Proof: 	Suppose that no such j exists. Then 

F(Rm1,R,k) >F(R-R22,R,k) + 2 2 for all k. 	But by lemma 4,9 

this is impossible. 	Therefore such a j must exist. 

Theorem 4.12: 	If R(k) = RT(k)UR31,1(k) for all k=-1._- va, 

RI  and R2  are non-interbreeding for all k 	and there 

exist numbers b and 	such that (1) 1T(Rmi ,R,k)>F(R11,21,R,k) +5/ 

whenever 11(Rmi ,k)/11-(R,k) < b and (2) F(R2911,k)>F(Rmi ,Rsk) 

whenever N(Rlin,k)/N(R,k) > b, then one of the following holds: 

(1) there exists a j such that 11111(j)= 0; (2) there exists a 
j such that Iim(j)= 0; or (3) for any number M there exist 

j' and j" such that 	 N(ct,i )/N(R,i = ) mo= bp 

and N(Rinipj")/Ei(Rpj") 

Proof: Suppose neither (1) nor (2) holds and there does 

not exist such a j". 	Then for all lc> EL, N(RITI,k)/N(R,k)zr-b, 1 
Since (1) which implies that 11(4,R,k) > 11(Rma.,R,k) +2 . 
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does not hold, theorems 4.1 and 4.3 imply that F(Rmi,R,k) > O. 

Therefore, since Rini   and R2 non-interbreeding implies that 

R1.11(k)=R(k) - Rinp(k), F(Rm22R,k)F(R-R1112,R,k) 2>2 for all 

k",--.11. 	But this is impossible by lemma 4.9, so we have 

arrived at a contradiction. 	Therefore such a j" must 

exist. 

Suppose neither (1) nor (2) holds and there does not 

exist such a j t . 	Then for all k 	N(Rmi tk)/N(Rik)>b, 

which implies that F(Rtili ,R,k) > F(111112,R,k) +2 . 	Since (2) 

does not hold, theorems 4.1 and 4.3 imply that F(111112,R,k) 	0. 

Therefore, since Rm  and Rm2  non-interbreeding implies that 1  tn. 
Rm2(k) = R(k) - Ri(k), F(Rmi9R,k)>F(R-Ri,R9 k) + 27- 2 for all 

k aqi. But this is impossible by lemma 4.9, so we have 

arrived at a contradiction. Therefore such a ji must 

exist. 

Theorem 4.13: 	For any R in P and any n such that N(R,n).-..2, 

there exists R1(n) 	R(n) such that Ri (n) 76 R(n) and a 

generation j such that Rn( j ) = R( j ) . 

Proof: The hereditary variation axiom guarantees that 

there exists an H(n) 5.LR(n) such that H(n) 	R(n) and, for 

any ka- n such that R(k)/Hn(k), 	F(R-Hn,R,k) 2. 

Let R1(n) = H(n). 	Then R1(n) 	R(n); we must now prove 

that there exists a j such that RR(j) = R(j). 	Suppose 

there exists no such j. 	Then R(k) 	1113.(k) gf for any k ---1.n; 

so by theorems 4.1 and 4.3, F(R-Ril,R,k) 	0 for all k gin. 
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Therefore F(Rn,R,k) > F(R-Rni,fl,k) + S2>2 for all k 

But, by lemma 4.9, this is impossible, so we have arrived 

at a contradiction by assuming that no such j exists. 

Therefore such a j must exist. 

Theorem 4.14: For any R in P such that there exists a 

generation n such that N(R,k) > 2 for all k n, there 

exists a set of generations j1,j2,j3,...:3)  and a subset 

Hi i (ji) _,.R(ji) for each generation in the set such that 

(1) 	 (2) Hi i(ji)5-_Hi (i-1)(ji) for each 

generation in the set, and (3) R(k)=Hi i(k) for all 

k -?-j(i+ 1). 

Proof: We shall prove this by mathematical induction. 

First we must show that there exists j1,j2,Hi1,Hi 2  such 

that Hil(j2)Hi 2(j2) and R(k)= Hil(k) for all k 

Since N(R,k)..-  2 for all k n, there exists, by theorem 

4.13, a subset H(n)R(n) and an integer j >n such that 

Hn(j) = R( j ) . 	By theorem 3.4, Hn(j ) = R(j) implies that 

H9k) = R(k) for all k>_ j. 	Therefore, if we let jl= n, 

j2 =j and Hi1(j1)=Hn(n), then Hi1(j1)1R(j1) and 

Hj i(k)=R(k) for all 

Now we can apply theorem 4.13 again, letting m = j2. 

Therefore there exist a subset H(j2)(5:-R(j2) and an 

integer j > j2 such that Hi2(j)= R(j) and thus 

Hi 2(k)= R(k) for all k j. 	Letting j3 j, we have 

Hi 2(k)= R(k) for all k ---2:_j3. 	Since Hil(j2) = R(j2), 

Hi2(j2)2Hil(j2). 
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Now we must show that if (1) there exist ji, j(i+ 1), 

j(i + 2), Hi i , and Hi (i+ 1) such that Hi(i+1)(j(i+ 1)) 

Hi i(j(i+ 1)) and R(k)=Hi(i+ 1)(k) for all k)- j(i+ 2) 

then there exist j(i +3) and Hi (i  + 2)such that 
HJ(1+ 2)

(j(i+ 2))_51ii(i+ 1)(i(i+ 2)) and R(k)=Hi(i+2)(k) 

for all k>j(i+ 3). 	We apply theorem 4.13, letting 

m=j(i+  2); thus there exist H(j ( + 2 )) R(j( + 2) ) 

and an integer j -?•j(i+ 2) such that Hj(i +2)(j) = R(j). 

Letting j(i + 3)= j, we have that Hi(i 2)(j(i+ 3)): R(j(i+ 

and therefore, by theorem 3.4, that Hi(i+ 2)(k) = R(k) for 

all k>j(i+ 3). 	Since Hi(i+ 1)(j(i+ 2))=R(j(i+ 2)), 

Hj(i+ 2)(j(i+ 2)) Hi(i+1)(j(i+ 2)). 	This completes the 

proof by induction. 

Theorem 4.15:  If Ri(n)C R(n) and there exists 2>0 

such that F(Rni,R,k) > F(R-Rni,R,k) +2 for all k>n such 

that R(k) 	Rn1(k), and there exists R2(n) such that 

R1(n)CR2(n.)c:R(n), then there exists a generation j such 

that R2( j ) = R(j ) . 

Proof: By theorem 4.9, there exists a j such that 

Rn1(j)=R(j). By theorem 3.3, Rn(n)r_Rn(n) - 2 
implies that Rni(j )::_.- Rn2(j)C:R(j). 	Then 

R(j ) 	Rn
1
(j ) 	.R11-(j ) 	R(j ) implies RR(j) = R(j ) 

3)) 
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Theorem 4.16: 	If R(0)= Ri(0)UR2(0) and (1) RT.  and R2 

are non-interbreeding for k:>0, (2) N(q.,k) 1 for all 

k:>.0, and (3) Y(R2,k)13>1 for all k>_0, then there exist 

non-null subsets to)  (724(o) and R2(0) C- R2(0), at 
least one of which is a non-trivial subset, and a 

generation j such that R9(j)=P(j) and R9 (j) = R2 (j)  
1 	2 	2 

Proof: By theorem 4.13 there exists a subset H(0):713(0) 

and a generation j such that OW= R(j). Now there are 

three possibilities: (a) 0(j)C:R9(j)j (b) 119(j)CR(j), 
1 

and (c) HCI(i 	and Hoomq(i),( 0. 
0 

Suppose (a) is true. 	Since R1 
	2 
and R are non- 

interbreeding, RT(J )n R2( i ) . 0, which implies that 

R(j)()101(j).= O. 	But this implies that R2(j) = 

which is impossible by part (3) of the hypothesis. 

Therefore (2) is not true. 

(b) can be shown to be false by the same argument. 

Therefore (c) is true. 	This implies, by the 

definition of R , that 119(0)r) q(0) and 11°(0)n R°(0) 

are the subsets required. 
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CHAPTER 5: DIVERSE DARWIYIAN UNIVERSPZ  

Having delineated the process of natural selection, 

we now wish to indicate how this process, together with 

the diversity of environments, acts to produce the diversity 

of species. We shall not give a set of axioms which are 

necessary and sufficient to produce diversity of species, 

for this is too complex a problem to be completely solved 

here. 	The purpose of this chapter is, rather, to indicate 

how the theory of thi Darwinian Universe can be embedded in 

a larger theory in which the production of diversity by 

natural selection can be discussed. 	This will be done by 

embedding the Darwinian Universe in a system, called a 

Diverse Darwinian Universe, in which the existence of 

environments with different selective effects is postulated. 

Section 5.1: Environments  

We shall not actually discuss environments; we shall 

confine the discussion to different fitness functions for 

the same set of organisms and their different selective 

effects. 	However, since the concept of different 

environments which have different effects on the same set 

of organisms is what gives rise to the concept of different 

fitness functions and since the properties that we give to 

the fitness functions are intuitively derived from the 

properties that we see in environments, we shall first 
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give an intuitive discussion of the concept of environment 

which will form a background to the properties of fitness 

functions. 

Intuitively, the environment of an organism is the 

set of all factors which influence its life, including 

both physical factors (climate, soil type, etc.) and 

biological factors (predators, parasites, food, etc.). 

Thus the environment of the organism is not wholly 

determined by its surroundings; it is partly determined 

by the capabilities of the organism. 	For example, the 

colour red is not part of the environment of a colour 

blind organism; the organism may be more likely to be 

caught by a predator if seen against a red background, 

but this will not make red a selective factor unle 
F  ss the 

organism has sAGe way of differentiating between red and 

not-red, since there is nothing in a population of such 

organisms to select for. 	Thus the environment of a 

population, which may be thought of as the "sum of the 

environments of the individual organisms comprising it, 

may be changed either by changes internal to the organisms 

or by changes external to the organisms. 

Within a Diverse Darwinian Universe we shall be able 

to discuss such changes and to differentiate between 

internal and external changes. We shall do this by 

considering the fitness in an environment a of an 
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organism 0, given by fa(0), and the fitness in environment 

p of the same organism 0, given by fp(0). 	(Except for 

the letter 2, all of the Greek letters used hereafter will 

denote environments; 2 will be used, as before, to denote 

a small positive number.) We shall stipulate that each 

environment a (or p, y, etc.) is a Darwinian Universe with 

fitness function fa  (or fp, fy, etc.); that is, the 

function fa  on the Biological Universe (B,p, :71) has the 

properties ascribed to the function f by axioms 4.1 

through 4.4. 	The set of such functions will be denoted 

by E as a reminder of its connection with environments. 

Notice that if the fitness function fa  is different 

from the fitness function f
0 
 (i.e. fa  and f select for 

different properties), then, under natural selection, the 

population derived by Cc  from a given set S of organisms 

will be different from the population derived by fp from 

S; thus we designate a population in a by Ra  and the 

population in p by Rp; similarly we designate by Pa  and 

P
0 
 the sets of populations in a and p. The first axiom 

simply states that every fa  in E is a Darwinian fitness 
function. 

Axiom 5.1:  For any fa  in El  (13,44›,= st fa t 	is a 

Darwinian Universe. 

The stipulation that each environment gives rise to a 

Darwinian Universe automatically excludes the possibility 
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of emigration into an environment at a rate sufficiently 

high to upset the Darwinian properties. For example, 

suppose we wish to study a population R on the edge of 

the range of its species and which is such that (1) at 

all times a certain subset R' is more fit than its 

complement R-R' in the situation in which both are living 

but (2) R-R' actually has an advantage over R' because of 

emigration from the interior of the range of the species; 

this "population" R cannot be studied by itself (i.e. 

without reference to the emigrants' parent population and 

its environment), since the Darwinian properties will not 

hold if fa is interpreted to mean fitness in the immediate 

environment of R; in this case it is necessary to consider 

the environment of the whole of the population which is 

contributing descendants to R. 	(Biologists will recognize 

that this is related to the problem of the effect of 

reproductive isolation on selection.) 	On the other hand, 

the axiom does not exclude emigration which can be absorbed 

without upsetting the Darwinian properties. 

Section 5.2: Equivalent Subpopulations  

It is intuitively clear that a subpopulation which is 

more fit than its complement in one environment may be less 

fit than its complement in another environment. (For 

example, giraffes with long necks mPy be more fit than 



94. 

giraffes with short necks in an environment containing 

tall trees, but less fit than giraffes with short necks 

in an environment containing only low bushes.) We could 

denote this situation by: Fa(RI,R,k)>Fa(R-Ri,R,k) but 

(111,R,k)4: 	However, this statement of the 

situation assumes that the same organisms are present in 

both environments. 	This, while intuitively clear, is 

physically impossible, since the fitness assigned to an 

organism by the fitness function is its fitness over its 

whole lifetime. Now, if an organism moves from a to 3 

its fitness may be given by 	where the environment Y 

is a combination of the environments a and 3, but fy  is 

not a simple combination of fa  and fl3  since the fact that 

the organism has spent part of its life in a will influence 

its reaction to R. With such a concept of fitness, how can 

we explicitly state the intuitively clear fact that there 

exist populations and environments such that one sub-

population will be selected for in one environment while 

its complement will be selected for in another environment? 

In order to do this it will be necessary to introduce 

the concept of equivalent subsets. 	Roughly speaking, a 

subset S' of S and its complement S-S' are equivalent to 

each other with respect to a subset D of S if the organisms 

in D are randomly (with respect to fitness) divided between 

S and S-S'. Thus, for two such equivalent subsets, 
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F(DrIS1 , S',0) >1 when and only when 

Fa(Di)(S-S 1 ),S-S 1 ,0)>-1. 	Now this relationship between 

fitnesses is the property that equivalent sets must have 

in order to provide a tool for discussing the different 

selective effects of different environments; with it we 

can say that if Fa(Dr)S1 ,S',0) > 1 and 

F
P 
 (Dn(S-S'),S-S',0)4:1 then a and 0 are different 

environments. 	This relationship is not, however, a 

property of randomly divided subsets; random division 

does not always ensure fair division; it only ensures 

that on the average the division will be fair. We shall, 

therefore, define equivalent subsets not in terms of 

random division but in terms of the relationship between 

fitnesses. 

But first, in order to express this and succeeding 

concepts somewhat more concisely, it is desirable to 

define a notation for certain sets which will appear in 

definition 5.1, axiom 5.2, and some of the theorems in 

this chapter. 

Notation: 	Given fa  in E and sets S, SIC: S, and D CS, 

the following notation will be used for the indicated 

subsets: 

= S-S' 
_Ss 

= S 

(5) iy):,(0)=Dns* 
(6) 14(o)... S' 	DrIst 

(7) Z(o). s* Dns* 
(4) DI (o)=Drist 
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A visual representation of the sets mentioned in this 

notation is provided by the following diagram. 

t 1 1 

IIIIIII* 

1 1 1 I 

* 	* 	* 	* 	* 	do 	* 	* 	* 

* 	* 	-X. 	* 	* 	* 	* 	* 	* 	* 

tIttIt1 t * 	* * * * 	* * 	* * * 

I I I I I I 
* 	* * 	* 	* 	* 	* * 	* * 

I I t I t I t********** 

t II t t t 1********** 

t It t II t l ****** -Ys- * * 	* 

- --- 

The whole figure represents the set S. The right hand 

rectangle, containing the symbol *, represents S*. The 

left hand rectangle, containing the symbol ', represents 

S'. (Notice that S*  = S-S'). 	The bottom rectangle, 

containing the symbol -, represents D. (The fact that 

the areas of the different rectangles are approximately 

equal should not be taken to mean that all of the subsets 

contain the same numbers of organisms.) The set Dr1 S' 

is the part of the figure containing both - and '. The 

set Dr) s* is the part of the figure containing both -

and *. 
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Definition 5.1: A set S' C: SB is equivalent in 

generation k to S with respect to DC:S and fa in E if 

and only if for any 100‘  in Pa  and for any 4 in Pa,when 

(a) designates the inequality 

aaa (DIO,R1  ,k)>F
a 	

1
CC CC (X
02R, ,k) + 2 	(a) 

and (b) designates the inequality 

Fa(DV,R,k)>Fa(*D*2,4c,k) +2 	(b) 

Then for any a>0 (a) (--:>(b). 

To illustrate this definition, consider the example 

of the giraffes. 	Suppose the environment a is such that 

the longer the giraffe's neck, the greater its fitness. 

Then if S is the set of giraffes in a, let D be the set 

of all giraffes in a with necks longer than a fixed 

length x; then S-D is the set of all giraffes in a with 

necks shorter than or equal to the length x. 	Assume 

that there are exactly 100 giraffes in S. Let the giraffes 

in S be numbered so that gl  has the longest neck, g2  has 

the second longest neck, and in general gi has a longer 

neck than gi+1. Then D  = g 	and 19 -29 * •90111 

S-D 	m 19-m 29-09g100 	Let S' be the subset . 
S' = lq(0)= 	. g lsgm 39-9g99 

Then 	S*  = V*a(0)= fg7,g4,g6„. • R g 29.."g100 
Da(0)= g  . .__p)  where p=m or p= m - 1 

D*a(0) 	g4  g69 • ° • gq3 where q=m or q=m - 1 
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From the way S' and S' are defined it is clear that they 

have approximately equal relative fitnesses with respect 

to D; i.e., if Fa(D'a°,R ,0) > F (1 a-D,R11 ,0) 

then Fa  (ie,11 	-D-r,B 4O) or, to put this in 

words, if in a the fitness of that part of D which is in 

S' is greater than the fitness of its complemont in SI, then 

the fitness of that part of D which is in S*  is greater 

than the fitness of its complement in S. 

In this example S' and S*  were formed so that they 

had approximately equal numbers of giraffes from D and 

so that the number of giraffes in S' was approximately 

equal to the number of giraffes in S. Neither of these 

conditions are necessary for equivalent sets. 	The 

necessary condition is the one stipulated in the definition, 

namely that the relation bdtween the fitnesses of D' and 

S'-D' is the same as that between the fitnesses of D*  

and S*  -Ile. 	These relations could be the same even if 

S' contained only a small fraction of the giraffes in S; 

therefore a small set of giraffes which is separated from 

its parent population by an earthquake may be equivalent 

to its parent population with respect to D even though it 

is very much smaller than its parent population. 

So far we have only considered the situation when S' 

and S*  are equivalent in one generation. 	Because length 

of neck, and therefore fitness due to length of neck, is 
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hereditary we would expect that if the fitness of D' is 

greater than that of R'-D' in the zeroth  generation, then 

it will be greater in the first generation; i.e. if 

Fa(D'a°,13.(!(  ,0)>Fa(RI-Dla°,Rla  ,0) then 

Fa(Dlx°,R ,1)>Fa(RI-DLC),Rjc  ,l). In fact, if S' is well 

chosen, we could expect that the fitness of D' is greater 

in the kth generation, for k any positive integer. 

(Remember that if Dt° takes over R'a  by generation j a  

then 1= Fa(D'2,13.(1.  ,k)>Fa(RL-D'a°,10a  ,k).= 0 for all k>j.) 

This is the kind of set we are most interested in, since 

we would like to compare the effect of natural selection 

on two sets S' and S which are equivalent with respect 

to D in environment a over many generations and are also 

equivalent with respect to D in environmentP over many 

generations. 	If S' and S*  are such sets then we can 

consider the effect of natural selection on S' in 

environment a and on S*  in environment p and know that 

differences in the resulting populations in the kth 

generation would be due to differences in a and p rather 

than to differences in S' and S. 

Axiom 5.2:  For any fa  in E and any Ra  in Pas  there 

exists an m such that if S= Ra(m), then there exists 

SIC1S, DC:S, f
P 
 in _L4 and R 0 such that 

(1) ii(Ratni) > 0 

(2) Rtam is equivalent in all k>m to R*ul  with respect Ram  
to D and fa 



100. 

(3) Rpm is equivalent in all k).-m to Rpm with respect 

to D and fo. 

(4) Fa(De,R'a  ,k)>Fcc(R 	a 
-Di0  ,R,a  ,k) +R for any k>m 

such that Wa(k) 	O. 

(5) F
13 	P 
(15,°,10 	

p PPP 
(10-13'°pR' ,k) #2 for any k > m 

such that 10 (k) / O. 

This axiom states that, in any environment a t  any 

population Ra  in a contains for some generation m a set 

D and a pair of sets St and S which are equivalent with 

respect to D in both a and 0, where p is an environment 

different from a. Further D is selected for in a and S-D 

is selected for in 0. Thus the axiom guarantees that 

every population has a chance at some time during its 

existence to split into two populations which will evolve 

in different directions. This provides an opportunity 

for the multiplication of species. 

Section 5.3: Different Subpopulations Take Over in  

Different Environments  

With this axiom and some theorems proved in previous 

chapters, we can prove that the population derived from 

the subset D of the axiom will take over in environment -a, 

while the population derived from S-D will take over in 

environment p. The axiom states that there exist two 

environments, a and p, such that, e.g., short necked 

giraffes are favoured in a and long necked giraffes are 
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favoured in 0; the following theorem states that the 

descendants of the short necked giraffes will take over 

in a and the descendants of the long necked giraffes 

will tak6 over in 0. 

Theorem 5.1: 	Let S, D, SI, fa  and f0  be the sets and 

functions of axiom 5.2. 	Then there exists a generation 

j 	such :that 

RIa(j) =DIni )9 	 ( j) 4°(i), RI  (i)=r-e(i),  and 

(i) 	nr( ) • 
This theorem says that in environment a D will take 

over regardless of whether SI or S*= S-S' is in a and 

that in p D = S-D will take over regardless of whether S' 

or S*  is in 0. Actually this does not say that D will be 

eliminated in a or that D will be eliminated in P, for 

interbreeding may allow them to escape destruction. 

Remember that a takeover in generation j by D only means 

that all of the members of the population in generation j 

are descendants of D; it does not mean that none are 

descendants of D and, in fact, it may be the case that all 

are descendants of both D and D. If, on the other hand, 

it is known that there is no interbreeding between D (and 

its descendants) and f (and its descendants) then it is 

possible to prove that the one which does not take over 

will be eliminated. 	This is stated in the following 

theorem. 
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Theorem 5.2: 	Let 8, Dsi SI , fa  and fp  be the sets and 

functions of axiom 5.2. 	Let the following pairs of 

populations be non-interbreeding for all k?0: 

by theorem 5.1. 	Then ff(j) = 09 

Dle(j) = Sr, and Dc130(j)= 0. 

To illustrate this theorem let 

Da0(j)  = 

us consider the 

following example. Let S be a set of lions and tigers; 

let D be the lions and 13 be the tigers. 	Let St be a 

set containing roughly half of the lions and half of the 

tigers. Let a be an environment where lions are favoured 

over tigers and p be an environment where tigers are 

favoured over lions. Now we wish to consider the effects 

on these organisms if they are in a and compare them with 

the effects on the organisms if they are in P. 	Suppose 

SI is in a and S* is in p. 	Then DIa9 is the set of lions 

in a; rIt0  is the set of tigers in a; Dr is the set of 

lions in p; and n*
P  0  is the set of tigers in p. 	Since 

lions and tigers do not interbreed, the non-interbreeding 

conditions are fulfilled. 	Then the theorem states that 

there is a generation j such that there are no tigers 

left in a (IYV(j)= 0) and no lions left in p (Ie(j)= 

The theorem further shows that if the situation had been 

reversed (i.e. 5*  in a and SI in p) the final outcome would 

have been the same. 
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Notice that the non-interbreeding conditions of this 

theorem will hold: (1) if D and n are different species; 

(2) if the set S consists of organisms which reproduce 

asexually; or (3) if D and D just happen not to inter-

breed during the time required (perhaps because they 

utilize slightly different parts of the environment 

though still competing for some resources). Thus the 

conditions of this theorem are not so restrictive as they 

might seem. 

Section 5.4: Different Environments Generate Different  

Populations  

Now we are in a position to state that, at least 

under these conditions of non-interbreeding, Rla  cannot 

be the same population as R1 (i.e. cannot contain the 

same organisms); this shows that the two environments 

will generate different populations from an identical 

zeroth generation. In fact we will show that after a 

certain generation j (the takeover generation shown to 

exist by theorem 5.1), Illa(k) cannot contain any organism 

which has a set of ancestors identical with the set of 

ancestors of any organism in Rf!l(k). This is not because 

the probability of the same pattern of mating being 

repeated twice is very low; 1a(k) designates any one of 

the whole set of possible kth  generations which can arise 

in a, so when we say that Illx(k) contains no organism with 
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ancestor set identical to that of an organism in N(k) 

we mean that in none of the possible kth generations in a 

and 0 does such an organism exist. Thus by this generation 

j the set of possible descendants in a of S' has become 

completely different from the set of possible descendants 

in p of S'. 	This result is stated in the following theorem. 

Theorem 5.3: 	Let S, D, S', fa  and fp be the sets and 

functions of axiom 5.2. 	Let the following pairs of 

populations be non-interbreeding for all k>0: 

(1) Da0 and M10; (2) D410  and )1401; (3) Dr)  and rp 

(4) Dr and Er. Let j be the generation guaranteed by 

theorem 5.1. 	Then 

(A) Rttc(k)()N(k) = 0 for any k3,?.j 

(B) Rtc(k)(1111(k) = 0 for any k:ej. 

If we consider again the example of lions and tigers 

used to illustrate theorem 5.2, this theorem states that, 

even if we suppose that the zeroth generation in a 

contained exactly the same organisms as the zeroth  

generation in 0, the kth generation (for k>j) in a 

contains no organisms that are the same as organisms in 

the kth generation in 0, since only lions remain in a 

and only tigers remain in 0. One possibility that this 

theorem excludes is that organisms can migrate from a, 

evolve for a while in a different environment, and then 

return to a; for, if they could, tigers whose ancestors 
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had found a better home than a might at any time 

reappear in a, thus contradicting the statement that 

there exists a generation j such that they disappear for-

ever by j. So we see that a must be simply the sum of 

the environments of the descendants of Ra(0); a may, 

to OUT senses change drastically over the generations and 

not be the "same" environment at the time of the kth 

generation as it was at the time of the 0th  generation; 

the only things that may not change are those which are 

specified by the axioms to be true for all k. In fact, 

it is even possible for the particular selective pressure 

favouring 112, as guaranteed by the hereditary variation 
after 

axiom, to change effox Hm has taken over, since if 

4(k)= 09 Fa(Ea$Ra,k) 	Foc(Ra...iluflitsk) 	is always 

true for R(k)i0. 

Returning to the position of the tigers which migrate 

to a better environment, we see that their environment 

must become a part of a. Thus, if a is a Darwinian Universe, 

they cannot have migrated to an environment where they are 

protected from competition by better fitted competitors; 

the conditions stipulated for a by the theorem are such 

that if a is Darwinian the tigers will be exterminated 

in a; any environment in which tigers are not exterminated 

is either not Darwinian or not as stipulated in the 

hypothesis of the theorem. 	They could have migrated to 
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an environment where there were no lions, as long as it 

was an environment in which they were doomed for some 

reason. 	In fact, physical proximity is not a necessary 

part of "being in the same environment"; the lions and 

tigers may have always lived on different continents; in 

this case the relationship between the fitnesses of the 

lions and the tigers must come from some factor other 

than direct competition. 

Section 5.5: On the Value of Sexual Reproduction  

Since the environment of any organisms in Ra  is 

automatically a part of a , we cannot move a population 

from one environment to another. We can, however, take 

the set of organisms in one generation of Ra  and consider 

what will happen if they form the zeroth generation of a 

population R p. 	This will be done in Theorem 5.4. 

In this theorem we shall investigate the implications 

of the following type of situation. Let R be a set of 

bacteria containing two strains T and R-T. Let each of 

these strains contain a subset P which is penicillin 

resistant and a subset S which is streptomycin resistant. 

Suppose that the only way for a bacterium to appear with 

resistance to both drugs is through interbreeding between 

these two subsets. 	Suppose further that there is no 

interbreeding between S and P in strain T, but there is 

some interbreeding between S and P in strain R-T. Then 
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let R be placed in a medium containing penicillin, 

allowed to remain there until no non-penicillin resistant 

bacteria remain, and then placed in a medium containing 

streptomycin. It is clear that no members of strain R-T 

can survive this treatment, since the lack of inter-

breeding prevents the formation of doubly resistant 

bacteria in R-T; on the other hand, some members of 

strain T can survive, since there are doubly resistant 

bacteria in T. Thus this situation of an environment in 

which the selective pressure reverses puts a positive 

selective value on interbreeding. 	This is formalized 

in theorem 5.4, which will be stated following the 

definition of interbreeding. 

Definition 5.2: 	RI and Rg are interbreeding in k if 

and only if R1(k) n Evk)A 0. 

This says that RI and RI are interbreeding in k if 

at least one of the k-descendants of R1(0) is also a 

k-descendant of Ra(0). 	Thus it includes not only the 

cases where first generation hybrids (with one parent in 

Rk(k-1) and the other in Ra(k-1)) exist in generation k, 

but also the cases where the actual interbreeding was 

many generations earlier than k. Note that, in spite of 

this, it is possible for RI and Ra to be interbreeding 

in generation k-1 and not interbreeding in generation k; 

this would happen if no k-1 st  generation organism with 
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ancestors in both R1(0) and. lig(0) had progeny and there 

were no first generation hybrids in generation k. 

Theorem 5.4: Let S be any set contained in B which 

satisfies conditions A and B. 

Condition A: There exists a set U contained in 

S which satisfies the following fitness 

conditions with respect to fa  and. 

(1) if Rix  ( 0) = S, there exists an 9>0 such that 

Fct  (U(Gc) ,Ra s k) > Fcc  (Roc  -U2Rct  ,k) 42 for any k>0 

(2) if j=t(UcCt),Ra ), Rp(0)=R5c (j) 9  and 

(S-U)r? (0) = (S-U)Ca). (j) then there exists an 

2>0 such that 

110 ((s-U)(3°  ,11,k)>F0 (130 -(S-00°,Rp „ -k) +9. 

for any k>0. 

Condition B: There exists a set T contained in S 

such that if j= t(Ua°,11(x ), T2(0) = Ts  (S-T)2(0)=S-Ts  

T.130(0) =T?((i), and (S-T)R( 0) = (S-T)2(j) then the 

following interbreeding conditions are satisfied: 

T° and (S-T)°  are non-interbreeding for all k > 0 

n 11(2 and T2 n (S-U)2 are interbreeding for all 

k >0 

(3) (S-T) C)cc  n u2 and ( s_T )oco n (S-U)a°  are non inter-

breeding for all k>0. 

Then if R (k) 0 for any k>0, there exists a j1  such 

that (S-T)1(jt) = 0 and Tc9(j') 
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The two fitness conditions in Condition A stipulate 

that U is a set which is selected for in environment a 

and whose complement is selected for in environment p. 

The breeding conditions in Condition B stipulate that the 

sets T and S-T are such that: 1) the descendants of T do 

not interbreed with the descendants of S-T in environment 

p 9  2) the descendants of the part of U which is contained 

in T interbreeds in environment a with the descendants of 

the part of S-U which is contained in T; and 3) the 

descendants of the part of U which is contained in S-T do 

not interbreed in environment a with the descendants of 

the part of S-U which is contained in S-T. The conclusion 

then states that under these conditions the set in which 

interbreeding occurred survives and the set in which 

interbreeding did not occur does not survive. 

This theorem therefore shows that populations which 

allow interbreeding within the population have survival 

value in changing environmental conditions over 

populations which do not. The reason for this is that 

less fit subpopulations are protected from extermination 

by interbreeding with the more fit subpopulations; thus 

interbreeding allows the fitness characteristics of the 

population which is less fit to be stored, and therefore 

to be available if the organisms are moved to an 

environment in which the previously less fit are more fit. 
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It is interesting to see that this value of sexual 

reproduction does not depend on the particular mechanics 

of Mendelian heredity but can be derived from the general 

laws of natural selection. 

With this very interesting result we shall conclude 

this chapter, which was, after ails  only intended to 

indicate how the Darwinian Universe could be embedded in 

a universe which contained different environments. 

Definition: 	A Diverse Darwinian Universe is a Biological 

Universe, a set E of functions fa  , and a set C of 

populations Pa  such that axioms 5.1 and 5.2 are true 

statements about them. 

Notation: 	= , 3jj9 (;) denotes a Diverse Darwinian 

Universe. 



CHAPTER 5 : APPENDIX 

A Diverse Darwinian Universe is a Biological Universe, 

a set E of functions f a  , and a set C of populations Pa  
such that the following two axioms hold: 

Axiom 5.1: For any f a  in E, 	 fa ,Pa ) is a Darwinian 

Universe. 

Notation: 	Given f a  in E and sets S, StCS0  and DCS, the 

following notation will be used for the indicated subsets: 

(1) S*  = 	S - St 	(5) D:(0) = Dos*  
(2) R1(0) = St 	 (6) Dd(o) = St- DnSt 
(3) lq(0) =S 	 (7) Itt(0) = e- D()S*  
(4) Dc:(0) = DnSt 

Definition 5.1: A set SIC S CB is equivalent in generation 

k to S with respect to DCS and fa  in E if and only if for 

any RI in Pa  and for any Ha in Pa y when (a) designates the 

inequality 

	

Fcc (Djc°,Rctok)>Fct (Rjc -Dctc°,Rd,k) +2 	(a) 

and (b) designates the inequality 

( VccE°' 	'k  ) Pa ( R*ct -Dtc°'RCifc 9k)  + 2 	(b) 

Then for any 2>0, (a) 4  (b). 

Axiom 5.2: For any f a  in E and any Ra  in P , there exists 

an m such that if S= Ra (m), then there exists SI C. Sy DC:2S 

f a  in E, and 2>0 such that 

(1) N(Rcom) > 0 



(2) .3(m R ,M is equivalent in all k>.m to Ra with a 
respect to D and fa  . 

(3) Rpt m  is equivalent in all k>m to R-73m with 

respect to D and fp . 

(4) 1Pcx (De,R‘ct,k)>F4Rjt-Nc°,11,1,k) +2 for any k>m 

such that Iqt(k) y 0 

(5) pa  (15e,13 ,k) >Fp (ly-Di139,R,k) +2 for any k>m 

such that Ri (k) d 0. 

Theorem 5.1: 	Let Sp D, SI fa  and fp  be the sets and 

functions of axiom 5.2. 	Then there exists a generation 

j 	such that Rjc(j)= Dj,c°(j ) 9  4(j)= DV(i) 

and RR(j) = 1r0(j). 

Proof: By axiom 5.2 (4) there exists an 2>0 such that for 

any k>in, Fa (De,Rel ,k)> Fcc (RL-D&°,Rtc  ,k) +2; therefore, 

by theorem 4.9, there exists a jd such that Rjt(jcl)r--; Dicc°(j 

By axiom 5.2 (2) and definition 5.1, axiom 5.2 (4) implies 

that Fix (D*C)ct FR:,k)>F0c (Rtc-Dr,R*cc ,k) +2 for any k>m; 

therefore by theorem 4.9 there exists a j: such that 

R:(jI)= Dng) . 	Similarly, by axiom 5.2 (5) there exists 

an 2> 0 such that for any k,? ._m Fp(r) 0 	,k)>F(T-W,R4,k‘ 

therefore by theorem 4.9 there exists a jp,  such that 

)= 1iii 0(j1). By axiom 5.2 (5) and definition 5.1, 

axiom 5.2 (5) implies that 

xpk.up 2x113 9n.),P p kil.p 	,x1p,A.1 
n tr,*0  n* 	(n*_7-1*()  n* 	.4. 2 for any k>m; therefore by 

theorem 4.9, there exists a j:()3(' such that R;(431. )= 3.°04(-). 
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Let j be the largest member of the set A; 9 ,M j: S403 
Then, by theorem 3.4, R:c(j)= D(10(j), ea(j)= D.:°(j 

13t ( j ) = 15 0(j ), and RR(j) = Dr(j ) 

Theorem 5.2: Let S,D, SI, fa, and 	be the sets and 

functions of axiom 5.2. 	Let the following pairs of 

populations be non-interbreeding for all k>0: 

(1) N°  and fe;  (2) Dr and El(); (3) D'0  and MO- 13 9  

(4) Dr and Er. Let j be the generation guaranteed by 

theorem 5.1. Then 55/°(j) = 0, B.&0  (j) 	0, 

De(j) = pry and De(j) = 
Proof: By theorem 5.1 there exists a j such that 

Rta(j ) = D&O(i)  2  Ri:c  ) = 40( j) 2  RVi) = 	( ) 9  

17(j) = pro ) . 	Since D1c0  and Tjc°  are non-interbreeding 

for all k> 0, 5%0(j)c:RL.,(j)- J4c()(j); but RIM) = De(j) 
implies that Rjc(j) - DL°(j) = ch therefore 710(j) = 

The remaining three equations in the conclusion of 

the theorem follow by exactly analogous arguments. 

Theorem 5.3: Let S, D, S', fa and f
P 
 be the sets and 

functions of axiom 5.2. Let the following pairs of 

populations be non-interbreeding for all k>0: 

(1) N°  and fj,0; ( 2 ) 40  and BaO; (3) De and 150 
(4) D4e)  and °. Let j be the generation guaranteed by 

theorem 5.1. 	Then 

(A) 1/c1( k ) 	( k ) = 0 	for any k > j 

(B) Rtc  (k) n I(k) = 0  for any k > j 
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Proof: (A) Suppose k' is an integer greater than or equal 

to j, and suppose there exists an organism 0 such that 0 

is in Rj(k') C) N(10). 	Then 0 is in 1=(10), which implies, 

by theorems 5.1 and 3.4, that 0 is in nc  (k') ;  therefore 

there exists an 0' in 55,°(0) such that 0401 . On the other 

hand 0 in -R,c(k1 ) 	vki ) implies that 0 is in R'a(k'). Now 

since there exists 0' in 1510(0) = S-D such that 040' and 

since 0 is in R1(kt), 0 must be in 15L0(k1 ). But by theorem 

5.2, 15&0(k1 ) = O. Since 0 cannot be in the null set, this 

is a contradiction. 	Therefore there exists no such 0, 

so 11. ((k') n Rtl (kt 	9f. 

(B): The proof of (B) is exactly analogous. 
Definition 5.2: Rjc  and 	are interbreeding in k if and 

only if Ra'(k)n Rir!t(k )  10. 

Theorem 5.4: 	Let S be any set contained in B which 

satisfies conditions A and B. 

Condition A: There exists a set U contained in S 

which satisfies the following fitness conditions 

with respect to fa  and f p : 

(1) if Ra (0) = S, there exists an 2-7.0 such that 

Fa  (UC2c9 Ra9 k) > Fa (Ra-Ua°,Ra9k) +2. for any k>0. 

(2) if j=t(U2,Ra ), RR( 0) = R a(j), and 

(S-U)R(0) = (S-U)2(j) then there exists an 

2>0 such that 

((S-U)13°,Rp ,k)>Fo (Rp-(S-U)g,Rpk)+-2 for 

any k> O. 
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Condition B: There exists a set T contained in S 

such that if j =t(UC'co l/c ), 1(0) =Ty (S-T)2(0)= S-T 

1(0) = T2(j), and (S-T)a (0) = (S-T)2(j) then the 

following interbreeding conditions are satisfied: 

(1) TP and (S-T)p are non-interbreeding for all 

(2) T2n U°a  and To?n(S-U)2 are interbreeding for 

all k 

(3) (S-T)2nU2 and (S-T)2n (S-U)2 are non-inter- 

breeding for all k> 0. 

Then if lio (k) ( 0 for any k >-0, there exists a ji such that 

(S-T0i t ) = 0 and T13°(j I  ) 	0. 

Proof: By Condition Asr(1), and theorem 4.9, j = t(UaPyRa )<oo. 

Since any sublineage of a population satisfies axioms 4.1, 

4.2 and 4.3 theorem 4.9 can be used with sublineages. 

Therefore by Condition B,(3),the conditions of theorem 

4.10 are satisfied for sublineages (S-T)a(k)11 (s-u),9,(k) 

and (S-T),2(k) n uc,p(k); by theorem 4.10 (S-T)0?(i)n(S-U)2(j)= 

Therefore (S-T)F(j)fl (s-up) = 	and so 

(S-U)g(0) Cf(0); by theorem 3.5, (S-U)(l.c..) C.  1(k) 

for any k ? 0. 	So, by Condition By (1) 

(S-T)(k)n (S-u),(k) = 0, for any k 	0. 	Therefore 

	

(S-T)S(1:) (-113(k) - (S-U)/(1(k) for any 	(a) 
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Now, by Condition B (2), (S-U)2(j)/ 0; therefore 

(S-V(0) 	Q. So by Condition A,(2), and Theorem 4.9, 

there exists ji = WS-U.)6) 1,1 3 ) such that 

RN(P) - (S-4(jt )= 0. 	Therefore, combining this with 

(a) above 

(S-T)(0)(p) = 9f 	 (b) 

Since R
P  (k) / 0 for any k".0, (b) implies that 

T 
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CHAPTER 6 : CONCLUSION  

In the previous three chapters the axioms necessary 

to a theory of natural selection have been explicitly 

stated, along with some of the theorems which can be 

derived from them. 	The discussions in these chapters 

have been, necessarily, concerned with the details of 

the system in order to justify and clarify the statements. 

The discussions in this chapter will be concerned with 

characteristics of the axiom system as a whole in order 

to indicate the type of clarification which the 

axiomatization provides. 

Section 6.1: The Structure of the Theory  

To what extent does the structure of the axiom system 

reflect the underlying structure of evolutionary theory? 

(Note that we here use the term "evolutionary theory" 

instead of "the theory of natural selection" because the 

Diverse Darwinian Universe includes more than the theory of 

natural selection.) The Diverse Darwinian Universe 

presupposes the Darwinian Universe, which presupposes the 

Biological Universe; does this structure of three nested 

sets of axioms reflect an intrinsic property of evolutionary 

theory or is it merely an arbitrary device of presentation? 

That this does indeed reflect an intrinsic property of 

evolutionary theory is indicated by the fact that the stages 
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in the historical development of the theory closely 

correspond to the stages in the axiomatic development: 

the Biological Universe describes pre-Darwinian theory; 

The Darwinian Universe describes Darwinian theory; and 

the Diverse Darwinian Universe describes post-Darwinian 

theory. It is further indicated by the fact that each 

axiom set introduces a new undefined concept and uses 

this concept to place additional structure on the 

previously defined universe; clearly the additional 

structure made possible by these new undefined concepts 

corresponds to new ideas which are not contained within 

the previously defined universe and thus, since these 

ideas are the elementary ideas of the theory, the axiom 

sets must reflect the underlying structure of the theory. 

The axiomatic method, therefore, provides a means for 

discovering the underlying logical structure of the 

theory. 

Section 6.2: Interpretations of Fitness  

The axiomatic method provides, also, a controlled 

flexibility which will allow us to explore the possibility 

of natural selection in universes different from the one 

in which we live and thus to discover both the generality 

of the concept and the factors in our universe which 

particularize it. 	In this section we will consider 

universes in which the interpretation of the undefined 
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term "fitness" differ, but the method that will be 

used could be applied equally well to clarify any of 

the other undefined terms. 

Although the term "fitness" has never bean defined, 

both the reader and I have some interpretation of what 

it means in natural selection. (Ay conception is of a 

combination of reproductive potential with a potential 

for obtaining food and avoiding dangers.) 	Similarly 

we have interpretations of the meanings of the other 

undefined terms. Without such interpretations of the 

undefined terms an axiom system has no meaning; it is 

just a meaningless set of relationships in which no one 

is particularly interested. A set of such interpretations 

which assigns a meaning to each of the undefined terms of 

an axiom system such that the axioms are true statements 

is called an interpretation of the axiom system. Now, 

in fact, I believe that the set of interpretations which 

has been implied in the descriptive part of this thesis 

forms an interpretation of the axiom system; however it 

is clearly impossible to prove that the axioms are true 

statements about them (this would be equivalent to 

proving that evolutionary theory truly describes the 

real world), so this can only be called a possible 

interpretation. 	It is interesting to realize that 

there are other possible interpretations of the axiom 
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system, which would correspond to a realization of the 

axiom system within a universe different from our own. 

Let us consider a different interpretation of fitness. 

Suppose the universe were such that food was available 

without limit and all organisms in any generation had 

exactly the same life span, this life span being limited 

by the condition that the number alive at any one time 

was fixed; thus suppose that differential reproductive 

ability was the sole difference according to which 

individuals could be selectively superior or inferior. 

If we then conceive of f as being a measure of reproductive 

ability, then the set consisting of this interpretation of 

the meaning of f plus our usual interpretations of the 

meanings of the other undefined terms is a possible 

interpretation of the axiom system; that is, the axioms 

will be plausible statements about the relationships 

between f, organisms, ancestors, etc. 	We could use this 

possible interpretation to deduce the results that would 

be expected in such a population which was selected only 

on reproductive ability; the results that could be thus 

deduced would, of course, be exactly the same as the 

results deduced when considering any other interpretation 

of the meaning of fitness, but the interpretation of the 

results would be different; that is, the structuve of 

the results would be the same though their meanings would 

be different. 
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We could consider, on the other hand, a universe 

such that the organisms differed (hereditarily) only in 

their ability to obtain food. 	Then we would conceive of 

f as being simply a measure of the ability to obtain food; 

this interpretation of the meaning of f plus our usual 

interpretations of the meanings of the other undefined 

terms provides another possible interpretation of the 

axiom system. 	The survival of the fittest axiom would, 

of course, only be plausible if in this universe 

superiority in the ability to obtain food led to 

superiority in the number of descendants. 

Clearly the list of possible interpretations could 

be extended indefinitely, with f defined in each case 

as the only factor (or set of factors) in which the 

organisms differed hereditarily and such that superiority 

in the factor will lead to superiority in the number of 

descendants. 	In other words, if all other possible 

components of fitness are held constant, whatever is left 

will give a plausible interpretation of the axiom system. 

Therefore, no matter what component of "total fitness" we 

choose to think of as fitness we would derive the same 

axiom system to describe natural selection as long as we 

considered all other components to be negligible. 	This 

is the reason that Darwin, with a rather different 

conception of fitness from that of the statistical 
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geneticist, was able to derive a theory which is, in 

all of its essential points, accepted by the statistical 

geneticist. 	The different meanings that Darwin and the 

statistical geneticist (or you and I) have for the most 

important concept in the theory do not lead to a 

necessity to develop different theories, because it is 

the theory rather than the intuitive meaning which 

determines the meaning of fitness. 

Section 6.3: Possible Systems of Heredity  

We have, in the previous section, discussed the 

flexibility of the axiomatic method in terms of the 

differing possible interpretations of the undefined 

terms; in this section we shall discuss its 

flexibility in terms of the different sets of axioms 

that may be added to a given axiom system. It will be 

an informal discussion, for the different systems of 

heredity which will be discussed have not themselves 

been axiomatized and therefore cannot be formally proved 

to be independent of and consistent with the Diverse 

Darwinian Universe. 

We shall consider three systems of heredity and 

their possible relationship with the Diverse Darwinian 

Universe. 	First consider the blending theory of 

heredity, which postulates that the hereditary 

characteristics of an organism are a combination of the 
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average of the hereditary characteristics of its parents 

and some new, non-parental, characteristics; if the non-

parental characters are related to fitness and if there 

are enough but not too many of them, then this system of 

heredity will be consistent with the Diverse Darwinian 

Universe and axioms defining this system could be 

combined with the axioms of the Diverse Darwinian Universe 

to give predictions about the progress of evolution within 

such a system. Next consider the Lamarckian theory of 

heredity, which postulates that the hereditary character-

istics of an organism are a combination of some of the 

hereditary characteristics of its parents together with 

some characteristics acquired during its lifetime; if 

the acquired characteristics are related to fitness and 

if there are enough but not too many of them, then this 

system of heredity will be consistent with the Diverse 

Darwinian Universe and axioms defining this system could 

be combined with the axioms of the Diverse Darwinian 

Universe to give predictions about the progress of 

evolution within this system. 	Lastly, consider the 

hendelian theory of heredity, which postulates that the 

hereditary characteristics of an organism are a 

combination of a particular type oi set of some of the 

hereditary characteristics of its parents and some new, 

non-parental, characteristics; if the non-parental 
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characteristics are related to fitness and if there 

are enough but not too many of them, then this system 

of heredity will be consistent with the Diverse 

Darwinian Universe and axioms defining this system 

could be combined with the axioms of the Diverse Darwinian 

Universe to give predictions about the progress of 

evolution within this system. From these examples it is 

clear that hendelian heredity occupies no special logical 

position with respect to the theory of natural selection; 

it may be replaced by another, contradictory, system of 

heredity without any change being made in the theory of 

natural selection. 

The combination of Mendelian heredity and the theory 

of natural selection would, however, be of special interest 

to us, for it would be particularly useful to be able to 

derive the consequences of a system in which survival is 

determined by natural selection and heredity is determined 

by the hendelian laws. 	Such a system could be formed by 

simply adding to the axioms defining the Darwinian 

Universe a set of axioms corresponding to the Mendelian 

laws. 	It would be of interest to see how the conclusions 

of such a system would compare with the conclusions of the 

statistical geneticist, for the statistical geneticist 

uses, as crude approximations, so many assumptions that 

are known to be false (e.g. random mating, constant 
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selective value, etc.) that his conclusions, although 

valuable in indicating the potentialities of natural 

selection in a universe with Mendelian heredity, are not 

reliable in detail. On the other hand, the system 

suggested, while completely unable to discuss events 

over a short time period, should be completely reliable 

in the statements it does make. Therefore each system 

might provide information in the area of the blind spot 

of the other system. 

Section 6.4: Extent of Achievement of PurRose  

What are the basic assumptions of the theory of 

natural selection? The author would assert that this 

thesis completely answers this question. 	The assumptions 

are stated in the axioms of the Darwinian Universe; the 

theorems proved with the axioms are evidence that these 

are, in fact, the assumptions of natural selection, for 

the theorems are all intuitively derivable consequences 

of the intuitive concept of natural selection. 	It is 

impossible to state the contribution of the thesis in 

terms of its answering more specific questions which have 

been raised in the literature, for the contribution is, 

rather, in reducing the amorphous confusion prevalent in 

the statement of the theory. 

However one specific contribution can be clearly seen 

in the clarification of the tautological nature of the 
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concept of fitness in the theory of natural selection. 

This clarification may prove to be of value not only 

to those interested in natural selection but also to 

those interested in taxonomy, for the tautological 

nature of the traditional theory of biological classifi-

cation is of serious concern to taxonomists and is one 

of the major weapons used by numerical taxonomists to 
(23,24) 

discredit classical taxonomy; 	probably an 

axiomatization of the theory of taxonomy would provide 

taxonomists with an understanding of the reason that 

classical taxonomy, like natural selection, has been 

so fruitful in spite of its obviously tautological 

nature. 	Thus the axiomatization in this thesis provides 

the answer to at least one question which has worried 

biologists and provides a method of answering another. 

What are the implications of the assumptions of the 

theory of natural selection? It is clear that I have 

only begun the exploration of the consequences of this 

axiom system. No attempt has been made to derive new 

and astounding results, for such results will be of 

interest only after the system has been shown to generate 

the expected intuitive results. 	Thus the theorems have 

been aimed at showing that the axioms have reasonable, 

expected consequences (e.g. the oscillation around a 

stability point when the selective advantage is density 
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dependents  and the differences between natural selection 

in interbreeding populations and natural selection in 

non-interbreeding populations) and that certain 

consequences that must be derivable in any theory of 

natural selection (e.g., the phenomenon of subpopulations 

taking over) can be derived; this aim has been reasonably 

well achieved. However the important result of the 

thesis is not the set of theorems but the axiom system 

itself, which, though incomplete for the description of 

evolutionary theory, does give a precise logical statement 

of the Darwinian theory of natural selection. 
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