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ABSTRACT

The work described in this Thesis is centred on the measurement
of the electrical resistivity of epitaxial thin films of silver.
The epitaxial (single crystal) films are obtained by evapora:tion on
to a hot substrate,and have a better crystal structure than f£ilms
evaporated on to a cold substrate, i.e. they have fewer dislocations.
The dislocations cannot be ignored, however, as they appear to provide
the main contribution to the bulk residual resistivity of the fihm&

The films range in thic.kness from ~ 500 to ~ 60,000. The
resistance measurements were made over the temperature range 4.2°K
. o room temper;ture. As the surfaces play an impoftant part in sige
effect resistivity, the suffaces bffsome specimens were modified by
the addition of thin.layera of aluminium or extra silver. ’

vThé resistivity results are analysed in terms of Fuchs' free
eiectfon £heox& of thin film resistivity. Two important pﬁrameters
of the theory are the bulk resistivity and the fraction of electrons
sPécularly scattered at the film surface. The bulk resistivity at
42K is estimated to lie in the range 0.01 to 0.02 u @ cm. The surface
specularity, estimated from bothlhigh and low temperature résults, is
found to be greater than 0.5 for most 9f the thicker films.

It is shown that the bulk resistivity at higher temperatures
cannot be obtained simply by adding the residual resistivity to the
‘ideﬁl latfice resistivity, as the dislocations contribute a temperature

dependent term. A method for estimating the dislocation contribution is

described. The experiﬁental results are compared with Fucha' theory
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over the whole témperature range, and good agreement is obtained down
to quite low femperature. | |

The final chapter is devoted to an extension of the theory, by
a numerical method, to allow for low angle scattering, as this type

of scattering is expected from phonons at low temperatures.
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Introduction

It was recognized early in this century that the electrical
resistivity of a metal can depend on the size of the specimen measured,
if it is suf;f'iciéntly small. In this context sufficiently smhll means
that at least one dimension of the specimen must be comparable with the
mean free path of the current carrying electrons.

The theory of the size dependent resistivity of thin films of a
free electron metal was developed by Fuchs in 1938. He used a simple
model of surface scattering of electrons which covers the range fron_:
fully diffuse to fully specular scattering. This theory remains the
basis for the interpretation of experimer_xtal results, as any extension
is both dif'fic;llt, and not clearly demanded by the experimental results
available. |

Experimental observation of resistivity size effects requires thin
films or long electronic mean free paths. The thin films are usually
prepared by evaporation or sputtering and long mean free paths are
obtained by lowering the tempera.turé of measurement. Very thin evaporated
or sputtered films can be prepared, but they usually have highly
defective structures, making comparison with the bulk material difficult.

'fhe structural disadvantages of evaporated films have been x:educed
in recent yearé by the advent of a method for producing single crystal
films of silver and gold. -Such films have far fewer defects than normal
films. They can be prepared thin enough to have a significant éize
effect at room temperature, and the lattice is sufficient]y free from

defects to allow long mean free paths at low temperatures.



The disentangling of the processes contributing to the resistivity
of thin films.is not at all easy. 'Tﬁis is largely because there are
too many unknown factors; the structure of the bulk, the struéture of
the surface and the wgy in which electrons interact with the surface.
Ideally the films should have a structure identical to that of the _
bulk metal from which they are made. The single crystal films of silver
and gold approach this ideai more -closely than any other films. They .
have fairly simple electronic structures so comparison with the free
electron theory is not. too unre;SOnable. There is, therefqre; some
hope of understanding the resisti#ities of these films -and 'thereby
providing a basis for the understanding of 1ess s:mple films. Some

steps in this direction are presented in the followlng chapters.



CHAPTER I

ELECTRONS IN METALS

:ntmction
The theory of electrons in metals inwvolves the quantum mechanical

treatment of many electrons interacting with each other and with the
atomic nuclei, In all simple models these complex interactions are
replaced by a periodic potential function. ' Solutions are sought for a
single electron moving in a potential rgs’ulting from the muiclei and the
other electrons. Thé electrons in a metal are divided into two gropps,.
(i) the core electrons which are tightly bound to particular nuclei- and
(ii) the conduction electrons whitch are free to move throughout the
volume of the metal. Only the conduction electirons are considered in
the theory, the core electrons m'e';-'ely contribute to the potential., The
theory is discussed in texts on solid state physics(1 1253 2 and only
same of the resulis obtained are given here. | |

Models which consider single electrons moving in a fixed potential
are referred fo as one electron models and the solutions of the
Schrddinger equation obtained ;.s one electron states.
The free electron model,

This model assumes the simplest p‘bséible i)otential. The conduction
electrons are treated 88 being in a potential well with its walls at the
surface of the metal and a constant potential inside. The solutions of

the Schrddinger equation for an electron in a constant potential are of

T o



the fom exp (i k.r), where |k| is proportional to the momentum of the
electron. The boundary condition,that. the wave function must be zero at

the surface,restricts the solutions to particular values of k, so electron
states can be represented by points in g-spmé « The states are distributed
in k-space with uniform density.” The energy of am electron in a particular
k-state is proportional 'l.:o]l_q% so the surfaces of constant energy in
Xk-space are spherical.

Each one electron state can bé occupied by only two el.ect:r:’ons, one
for each spin direction. The fraction of states occupied at k is given
by the distribution function f(k) which, therefore, represents the state
- of the conduction electrons as a whole. Fermi-Dirac statistics apply to
a system of electroné,a.nd in the absence of an electric field the
distribution function is the Fermi function F(e), a function of energy
alone, At zero temperature F(e) has the value ‘one’ up to the Fermi energy
€, and zero above, The surface izi'g-space at e.o is called ‘the Fermi
surface, At finite temperatures the c.hﬁnge from one to zero takes place
over an energy range ~3kT, which for normal t(a_mpera:tures is smé.ll
compared with the Fermi energy. 'The Fermi surface is then mo longer a
true surface,but has a finite w:i;dth. The Fermi function is shown in
Figure 1.1 for a mumber of temperatures.

The periodic potential,

Any reasonable potontial function muét refiect the periodicity of .the

crystal lattice in which the electrons move. This periodicity alone leads

to striking oonsequences, Solutions of S'chrbdinger& equation y(x) for an

electron in a periodic potentiel must have the form exp (i k.r) u (r),
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where uk(_x_‘) is .a function with the same pericdicity as the lattice. The
wave vector k takes the saue values as in the free electron model, but
it is not uniquely defined for a given state. If y(r) has the above |
form it has equivalent forms with k replaced by k+X, \vl;lere X is any
vector of the reciprocal lattice derived fram- the crystal lattice. The
planecs which bisect the reciproc;,al lattice vectors divide k~space into
regions called Brillouin zones.. Within each Brillouin zone k is
uniquely defined and there is one electron state per atom of the metal,

The energy function E(k) is no longer proportional tou&f . The
most important changes occur at the boundaries of the. Brillouin zones
where E(k) is’ discontinuous, The détailed shapes of the constant energy
surfaces in k-space depend on the form of the periodic potential function.
The kind of changes that are produced By a weak periodic potential in the
case of' a two dimensional lattice are shown in Figure 1.2. The encrgy
surfaces well away from the zone boundaries have the free electron form,
Near the zone boundaries the surfaces tend to bulge towards them, and if
close to make contact.

Yhe distribufion of electrons among the one-electron states is given
by the Fermi function which is a function‘of energy, so to obtain the
distribution function in terms of k the energy function E(k) mist be
4known. |
Real Metals.

In order to obtain detailed infomation on the electronic str'uct‘ure
of real metals.it is necessary to appeal to experiment. A review of the

experimental methods used has been given by l:’:lppa.rd(l‘L ). The results
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c;'abtained are in agreemcnt with the general picture given by the one-
electron theory.

As this thesis is concerned with silver films,this chapter will be
concluded with a description of the electronic structure of silver.

Silver has a close packed cﬁbic lattiée,and h;s one conduction
elecvtron per atom. The free electx;on Fermi surface for one electron
per atom iies completely within the first Brillouin zone, but passes
fairly close to the [111] zone boundaries. The theory shows that the
constant energy surfaces tend to bulge towards zone bounda.z;ies; s0 the
poseibility arises thtlat the Fermi surface may make contact with the [111]
. boundaries. That this is the case in silver has been shown by Shoenberg( 5)
using the de Haas-Van Alphen effect. The Fermi surface of silver is
shown in Pigure 1.3. It is roughly a sphere with necks to the [111] zone
boundaries. Shoemberg showed that the cross section area away from 1'he'
necks is within a few per-.cent of that of the equivalent free electrén
sphere., The neck distortions occuby orly a small fraction -of the Fermi
surface, i.e. 2% if the diemeter of the region involved is twice the
contact diameter of the neck., Thes.e results s.uggesf. that it would be

reasonable in many drwmstanoes to treat silver as a free electron metal.

v
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CHAPTER _II

THE THE.ORY OF ELECTRICAL CONDUCTIVITY.

1) The Boltzmann Equation.

The conduction electrons are so named because they are the ones
which, by being free to move throughout the volume of the metal, are able
to carry an electric current. These alone are considered in the theory
of conductivity. |

The mechanism by which the current is established and meintained is .
best approached from the point of view of the dlstnbut:.on function and
the Boltzmenn equation. The theory is introduced in a general way, and.
simplifying assumptions are made when they are neqded, s0 their
significance can be readily seen.. Simpler methods, such as the mean
free path method, start with the assumpfions built in, and their
reliability ca.n only be assessed by seeing how closely the results
obtained agree with those from the Boltzmann equation approach.

The theory of conductivity is dealt with in many standard -
texts( e-g.1 ’252 so detailed references 'will x.wt be given in the
following account.

The Boltzmamm equation can be obtained for any collect;'.on of
particles that can be described by a distribution function, and of which
the dynamics are known. Here electrons in metals will be specifically
treated, and the distribution function in terms of k used, i.e. .f(k) ,

or if variation with position is included.f(k,r).
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The theory of electrical conductivity is concerned with finding
the current produced in a metal by an electric field. The current
density is obtained from the distribution function by a geheralization

of the simple relationship j = nev, i.e.

i o= e [3(k) k) dk, | (2.1)
where dk is a volume element in k-space and v(k) is the velocity of
electrons with wave vector k. All integrals are assumed to be over the
whole physically meaningful range of eacﬁ variz;v.ble, un;Less otherwise
stated. The discussion starts with'a metal carrying zero current, as
this is the normal state of an isolated piece of metal. The distribution
function is then fch) which must satisfy 2.1 with j = O. The

temperature will be assumed constant unless otherwise stated.

Figure 2,1 Displacement of distribution
function by an electric rield.
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When an electric field is established in the metal the distributiép
function changes. It tends to move bodily through k-space in the
direction of -E (Figure J.1). ’i‘hi"s process is immediately. opposed by’
scattering processes which tend to return the distribution to f,. The -
scattering processes must always occur, but leave 1;he zZero cufrent
distribution unchanged, The two processes achieve a dynamic equilibrium
when the distribution is slightly displaced from f,, and a current flows.

To obtain the equilibrium .distm'.bution function in the presence of
an electric field, and hence the current, more detailed consideration of
the ways in which f changes is required., : If variation of f with r is '
allowed, there are three factors which tend to change J;.t.

(a) External fielgs.

In the presence of electric and magnetic fields an electron

moves through k - space with a velocity given by:

E=£E +3 v©AD. - (2.2)

This movement means that £(k) at time t is replaced‘by f(k-8k)

at time (t + 6t), where 6k = k 6t.
£k - 8k) = £(k) - & £lk). 8k . (2.3)

T.he rate of change of f due to fields is, therefore,

af (k) .
5T ]ﬁelaa = - k.Y 2 . (2.4)
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If an electric field only is considered, K is independent of k,and the
bodily movement of the distribution through k-space mentioned earlier

occurs. Then:

gf_ﬂﬂ} = e E J f(). (2.5)
%% lriela BT S

(b) Diffusion,

The electromsin a metal hm}e real-space velocities,so the
distribution at a given point is .fozme'd from a contimiously changing
collection of electrons, and is thus influenced by the distributions
at surrounding points. The situation is formally similar to that of the
the previous section. Electrons from an element in k-space at k, which
are at r at time t,were at r - 6r at tme t - 8t, where + Or = v(k) &t.
The change in f(k,r) caused by this movement is - A f(k,r) &r,

i.e. ¥(k). Vrf(g,g) 6t, so the rate of change of the distribution:

function owing to diffuaion is:

'g'%. ser. o y(k). 7, £(,z). (2.6)

(o) -Scattering,

The one-eloatron statesof a metal are obtained on the
assumption of a perf'ect periodic potential. In a real metal there are
departures from perfection, in the foﬁn of impurities, structural defects
and phonons, which 'induce transitionsbetween the one-electron states of

the perfect lgttioe. In the zero external field situation these

18-



processes must produce no change in the distribution function.

fo] -0 (2.7)
scatt.

The rate of change of the distribution. function in general is complicated,
and discussion will be left until later, apart from the comment that

scattering tends to return the distribution to f,-.

The Boltzmann éﬂatign in zero magnetic field.

To obtain the D.C. electrical :neéist_ance, the constant current
produced by a constant electric field is required. The distribution

function is, therefore, constant, and its total rate of change is zero.

[ [ . .
f] + f] + f] = 0 - (2.8)
fields “aiff. scatt.

Replacing the firat two terms by the expressions already obtained:

oo

E.Uf + X% VUL = f:l " (2.9)
. scatt,

This is the general Boltzmann equation in the absence of a magnetic field.

Linearization,

A simplification which is immediatel.y,availabl‘e on considering the
mﬁgnitude of the displacement of‘thg distribution,when a current is
flowing, is the replaceuxex;t of £ by foin NJk f. Taking f as fo+g,

Figure 2.2 shows that g and vkg are small if 8k is small compared with



the width of the Fermi surface.in k space.

Figure 2.2°f and g at the Fermi surface.

A rov:gh estimate of 6k can be obtained on the basis of the free

electron model. The current density iss

J = nevy (2,10) -
where Vp = the velocity of electrons at the Fermi surface,
and n = the number of electrons contributing to the current.

These lie in a layer at the Fermi surface of average thickness ~ ka.

& n o= 6kx x(Surface area of Fermi sphere)

x(Density of statesin k-space)

The value of 6kx obtained in this way for a reasonable current
density (10J+ amp/cmz) is the same as the Fermi surface width produced
by a temperature of 10-'3 ®k. Thus %g is negl:xglble and kao can

replace ka in equation 2.9, giving the linearized Boltzmann equatlon
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E, Vifo + .G £ = +f’] - (2.11)
r scatto .

Slo

The solutiomsof this equation are linear in E in agreement with
Ohms law,- This provides a justification for the linearization,as metals

usually obey Ohm's law,

Spatial variations of f.

The second term in 2.11 involves real space variations of f, ‘and
it is of interest to see how these can arise. In a specimen with no
external fields f_ might be determined by gradients of composition
(i.e. in an alloy)or of temperature. These will not be considered here,
el though the variation with temperature is of importance in the theory
of electronic thermal conductivity. B

When £, is constant throughout the specimen,variations of f with r
can still occur as a result of the influence of an electric field if the
specimen is small ehough for the presence of the surfaces to be important.
This is the situstion which is of interest in the discussion of the
resistivity of thin films.

The distribution function f may be expressed as
£(k,z) = folk) + g(kz) | (2.12)

where g is the change in the distribution function caused by the eléctric
field. f, is to be assumed independent of r in this work,so the real-
space term becomes V. Y% g(k r), and the Boltzmann equation becomes:

™
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E Wfol) +x. v, er) = f@s,z)] (2.13)

e
i scatt,

The _scattering term,
The ease of solution of the Boltzmann equation depends largely on

the form of the scattering term,which will now be considered. Complete
discussion would involve the details of the interactions between the
condﬁction electrqns and the laftice, imperfections and other electrons.
The conduction electrons are assumed to occupy one-electron étates and
interactions to result in transitions between these states, so the total
effect of all types of interactions can be represented by a function'
.Q(_l_c,_lg) , which gives the intrinsic transition. probability from a state

k to a state g'. This means that the probability of an electron in a
state k being scattered into a totalljr unoccupied element of k-space

6k’ at k’is Q(k,k )6 k'per unit time.

In order to calculate transition rétes wé mugt talke account of the
occupation of the initial and final states. The number of electrons
per second being scattered out of an element of k-space dk at k is
proportional to the mumber of electrons in the element, i.e. f(K)Sk.
The probability of an electron being scattered into an element 6k'at k'
is proportional to the nunber of unoccupied states in the -elen;ent ’

icee (1 - £(k")) ak'. The rate of scatter from 8k to &’ is, therefore;

£ (1= £G') Qo) @ & (21)
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Electrons are also scattered from _l_c.' to k, at a rate of;

£(k) (1 - £k)) Qk) ak &', (2.15)

The intrinsic transition probability is the same in both directions,
i.es Q(k,k') = Q(K,X ), so the net rate of electron transfer from

8k to &c is given by the difference between 2.11.. and 2,15, which,
when simplified, is:

(£(k) ~£(x")) QUe,k’) ax ax’ . (2.16) -

The total rate of scattering of electrons out of an element 8k at k,

-regardless of their final states, is obtained by integrating 2,16 over
a.'l.l final states;

5&.5)] = f () - £@n) alk,x’) a' (2.17)
soatt
It f(}g,g) is replaced by fo(k) + g(k,r) the scattering term

becomes;

f] = f(s@.s) - &) k) & . (2.18)
scatt . ' . .

The Boltzmann equation can mow be written:

% Ee Vk ,fo(.K) + X(k)° Vrg@’l') =f('80_c:£)v°3(]£' ’I)) QQS)E') ak’

(2.19)
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Ir fo and Q are given this equation can, in principle, be solved

for g. The current density at point r is

i) = efz@' (k) & = o f ¥(®) 8,2 & + e () £,00) a .
(2. 20)

The final term is zero,as £ is defined as the zero current di stribution,

80

d () = e |x(k) gk,r) & . o (2.29)
: G '

The foregoing integrail;s are taken over all k-space,

2) Some Solutions Of The Boltzmann Equation
The Boltzmann equation 2,19 is very general, being restricted only

by constancy of temperature. It is,however, only of formal interest as
it stands,because solving it for arbitrary functiohs fo and Q would be
prohibitively difficult. Some restriction on the forms of these
functions is required if solutions are to be obtained, and the following
assumptions are made.

1) The energy surfaces in k-space are spherical. This is
slightly more general than the free electron model,as it does
not require that the electron energy is proportional to k2.
The distribution function as a function of energy is the
Fermi function F(e). When the energy surfaces are spherical

€ is a function of 1k | (or k) only, so fo is a function of

k only. :
=2



2) The conduction electrons are scattered elastically, so energy
is conserved. It is reasonable to make this assumption when
the scattering is by :i.mpurity‘ atoms',but less so when scattering
is by phononé. The energy change caused by phonons is smsll
compared with the total energy of the electrons, but comparsble

with the thermal width of the Fermi surface.

3a) The intrinsic scattering probability on a given energy surface
depends only on the angle of scatter, y, and not at all on

the initial or finsl values of k.

The function Q may then be re-written as follows.

Q@:.l.‘.‘) d]_" - Q(*le) k2 andc .
where d is an element of solid angle.
Before considering whether solutions can be obtained with § in
this form, the consequences of a further simplification will be discussed.

%) The intrinsic scattering probability on a given energy surface
is independent of y,

Q(k) if k = k’
ice. QUk,k’ ){ ks
or  QUok') = Qk)8(k-k’) ' (2.22)

It is now possible to simplify the scattering term in the
Boltzmann equation, but before doing so a property of the function

g(k,r) muat be established.
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Re-writing the Boltzmamn equation 2.19 with polar coordinates in

Xk-space we have

2 E. V,; £ (k) " LVA: (9,¢.k,r)

=+ j (808,1,7) = a(639" K,x)) Q) B(k-k’) ¥osin 0" a0’ @’ ax’ .-

(2.23)

Integration of the right hand side over k has the effect of
replacing the x’ by k in the second g. The equation can then be solved
for each value of k indepenﬁent]y. Now, the number of electrons in
_l_c-apac.:e.ig conserved under the influence of a field, and this places a
constraint on g, the change in the distribution function caused by the

field, i.e.

Jsdls-O

. : (2.24)
or J' g(8,0, k,r) kK> sin 0 a0 @ ak = O . '

But Q(k) is arbitrary,end g depends on Q(k), so the integral in equation
2,24 must be rero for each value of k.

ie.e 'f g(e ’¢’klr)k2'si.n 6 4o w = 0 . (2025)'

The scattering term from equation 2,23,with the k integration

dope,is

26w



é] = - f(s(m.k) - g(6193k)) Q(k) k® sin 0’ a0’ ap’
8
a « Q(k) kz{ g(6,9,x) [sin 6° -ae‘va¢' -fg(6:¢,'k) sin e‘de' a¢'} .

(2.26)

The first integral = 4x and the second, as is shown above, is zero.

é-_\ = - ux % Q(k) g(6.,9,k) o (2.27)
8

The rate of change of g due.to scattering at a particular point
in k-space is now proportional to the ‘value of g at that point. only, so,
in the absence of other distur:bing influences, g decays exponentially
to zero with a time oconstant, or relaxation time, (k) = 1/1.:;11:2 (k).
This tremendous simplification has been bought at the price of the
assumptions made earlier, but it leaves an equation which can be solved
for each combination of 6,9 and k independently.

The Boltzmann equation, with the assumption (1) applied to the

first term, is now:

% Q_f__QC). E. _;S + Y. Vr g(6,¢,k,_1_‘) s - g(6,¢,k.£)
dk e ':'('k;

where k is a unit veotor in the direction of k.

(2.28)

The simple relaxation time form of the scattering term is

frequently taken as an assumption when elementary solutions of the
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- Boltzmann equation are required (e.ge 6, 7 ).

Here,the restrictions
on Q(k,k’') required to Justify this aésmption have been g‘we:.l
explicitly, and are sﬁﬁmrizgd below: .

1.  Spherical energy surfaces .

2. Energy conserved on scattering .

3. Q depending only on k,i.eQ = Q(k) 5(k-k').

It will be shown in the next section that some relaxationof the last
condition is possible,while still obtaining an analytical solution when
bulk material only is being considered.

The Bulk Case.

In bulk material, i.e. specimens large compared with ‘the. distances
an electron travels between collisions, there is no variation of g with r,
80 the second term in 2.28 is zero. The solution is then immediately

available., If E is directed along the polar axis;

g= L8 (k) ;i_t:a;!&) cos 6. (2.29)

The current is obtained from this with equation 2.21. Symmetry ens.ures

that the current density j is in the same direction as E.

2
j = e fv(k) cos 6 g(k,0) k ain 6d6ap dk

= P.%E j't(k) v(k) 1 af (k) cos% sin 6 ab ap ak,  (2.30)
- dk

For metals df (k) is finite only in a small range of k at the Femmi
ak * .
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surface. If v(k) and t(k) are relatively slowly varying functions of k,
it behaves as a 6~function. T, v and k teke their values at the Fermi

surfaoe,..a:F, Va kF’ and

j._d_ig dke = 1. . (2.31)
dk . ‘

leaving §
J “m %P "F l:F ‘J‘d¢ j‘cos? 6 sin 0 40 - .‘ (2.32)

The ¢ integration gives 2x and the © integration 2/3,

2 2 '
J = BE ®myw e” 1, . (2.33)
- F_hkr P
¢ cwmd Sy e
=5 : . .

The value of kF depends solely on the rnumber density of condulction
electrons, but p depends on the rate of change of. energy with k at
the Fermi surface, and cannot })e obtained without some assumption about
this. If the-free oleotron model is chosen the expressioh for o reduces

to

o = nez 12- , ' (2.35)

@ = no,of electrons/co and m = electronic mass,
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It may seem that a rather elaborate procedure has been adopted to
obtain a formula which can also be obtained by the simple mean free
path app:;'oach(e°g' 6'7). The success of the mean free path approach
depends on the simplioity of the angular dependence of g in the bulk
case, and canmot be reliably extended to size effect problems.

The simplicity of the angular dependence of g in the bulk cas:e
also allows a relaxation of the restriction on Q,in that the assumption
3(b) (page 2}i) can be shown to be unnecessary, i.e. Q may depend on ¥.
We assume that g has the form G(k) cos 0,and évaluate the scattering

term using Q(¥,k). The result obtained is;

g = G(k) cos @ .
] scatt. T(k) ! (2. 36)

vhere t(k) = 1/2x k:zj(1-cos V) -Q(w,ic) sin ¥ ay. (2.37)
Thus if G(k) = Ee (k) d_fo(k) » G(k) cos 6 is a soiution ofl the
-

dk
Boltzmann equation,and the relaxation time concept is still appliceble,

The details of this argument are given in Appendix 1.

Z:i.ma.n(1 ) states that it should be possible to define a relaxation
time in the bulk case with fewer restrictions on Q than have been
assumed so far. The only requirement is that scattering should be
elasti}c s then the relaxation time should }_mve' a form similar to 2.37,

but with a more complicated funetion of direction weighting Q.

The Mean Free Path,

If electrons are scattered isotropicelly, the relaxation time 7+ is
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the mean time between scatterings, wher;e the i)mbgbility of scattering
is p per unit time and < = 1/p. Only electrons at the Fermi surface
aré important for oorﬂuc‘i:ion,and their velocity is vy, so the mean
distance tra.w.relled by electrons 'betw;en scatterings is TV = 1, the

mean free path, The simple conductivity formula (2.35) may be

re-written in temms of 1,
o = ne 1 ° (2038) ,

¢

If scattering is not isotropic 1 defined as above is no longer
the distance between gcattefcings.. Several low angle scatterings are
required to produce the same effect as one large angle one:, and 1 is
then a measure of the average distance travelled by an electron btefore

it 'forgets' its initial direction.



3) The Intrinsic Scatteri t3 k in Practice

So far Q(k,k) has been taken as given. In practice it is neither
'givén' nor is it easy to obtain. Only some general aspects of its
form under certein conditions will be discussed.

Crystal Imperfections,

Two basic types of scat;hering agent will be mentioned - ifnperfections
and phonons. The term"imperfectipn' is used to cover such static
departures érom the ideal lattice as impurities, vacancies and
dislocations. An imperfection involves a departure from the potential
‘of the ideal lattice. Electrons are scattered from the perturbing
potential with unchanged energy and an angular distribution which |
depernds on its shape., If the potential is spherically symmetric the
probability of scattering depends oniy on the angle of scatter, and Q
has the form Q(y,k). Thus the condition imposed to obtain the last
solution of ﬁe 7]3011:2:mann éq.m.tion discussed may be 'approacheé. in
practice by metals of simple electronic structure at low temperatures,
when only impérfection Scattering is of importancé. As & sphericallf
symmetrio perturbing potéﬁtiai ié'reqpired,the imperfections should be
mainly impurity atoms. -

Phono;g .

Imp'ortarit departures from the ideal lattice of a solid result from
_ the thermal motions of the ion cores. The thermal excitation of an ideal
lattice mayAbe resolved into a sef ;f iﬁdependent modes, Thess are
plane waves which are specified by their wave vectors (q), which lie on
a rectangular lattice in g-space just as do the electron states in |
k-ppace. The energy of a modevof frequency wq is quantized in units of
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'ﬂwq called ;Qhonons. The mean energy in a given mode aepends on the
temperature, and is given by fw/(exp (B w/kT)-1), At low temperature, only
phonoﬁs of low w and q are excited in signif’icalnt mmbers,

The simplest treatment of the vibrational modes is that of Debye.
The crystel is treated as a continuum,and the modes ennumefated’ by
applying suitable boundary conditiong to the accoustic wave equation.
The frequency of each mode is proportional to q, and the energy of the
quantum to q?. A crystal differs from a continuum in having a
maximm frequenc;w,' of vibration when the ﬁavelength is twice the
interatomic distance, A cut-off is included in the Debye model by
limiting the 1.:ota71 mmbezf_of modes to 3N, the numﬁer of degrees of
freedom of & lattioce of N atoms.

The application of the perturbation theory of scattering to the
latticé deformation of a pho.noh shows that interactions only occur

when the following condition is satisfied;

.0

Xk + K = k2 g, (2.39)
where k and k' are the initial and final states of the electron and K
is a reciprocal lattioce vechr. When K = 0, the interaction is called

a normel process, and is illustrated in k-space in Figure 2.3.



Fipure 2.3 Normal Processes.

Figure 2.4 Umklapp Processes.

The angle through which the electron is scattered is determined by the
value of g, The maximum angle through which an electron can be
scattered by a nomal process depends on the maximum value of g, and is
asbout 79° far the free electron model. When K # O the change of state
is eéuivalent to scattering into another zore of the repeated zone
scheme (Figuré 2.4). When returned to the equivalent point in the

original zone it is seen that the angle of scattering is not so

simply related to g, and that large angles of scatter can result from
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small velues of 9» especially if the Fermi surface is close to, o
touches, the zone boundary. These are called Umklapp processes.

The energy condition on the interaction between an electron and a

phonon is;

Ek’)

E(k) *EQ), (2.40)

as the phonons may be created or annhilated. ' This means that th;a
solutions of the Boltzmann equation obtained assuming that scattering
takes place on a constant energy surface in k-gpace are not applicable
when scatterirng is by phonons. '

The temperature dependence of the electrical resistivity has been
calculated by Grineisen (1933) and Wilson (1937) assuming the free
" electron model and the Debye vibrational spectrum, and ignoring’ |
Umklapp processes, The results predict a lattice resistivity '

5 at low temperatures and to T at high temperaturves;

proportional to T
This is borne out in practice in most cases, particularly for metals of
simple electronic structure such as the alkalie metals and the noble
ﬁetals. |

The discussion of bulk resistivity has already been taken well
beyond what can be extended to thin films, so it will not be taken

further. )



CHAPTER TII

THE THEORY OF SIZE EFFECT RESISTANCE

1)  Introduction.

This chaptef is concerned with the way in which the electrical
resistance of a specimen depends on its size and shape. The shape of
a large spgcimenvis only of importance in determining its resistance for
a given resistivity of the material from which it is made. The
resistivity is constant for a given material, provided that the specimen
under consideration is sufficiently large. The relationship betweeq the
resistance and resistivity is simple if the specimen is in the form of a
bar of uniform cross section, and the resistance is measured between the

ends of the bar. The resistance, R, is then :

R=p2 . , (3.1)

where p is the resistivity, b the length of the bar and a the cross
section area, |

When one or both of the transverse dimensions is small,equation
3.1 is no longer valid with p as’ the nofmal bulk resistivity, though
the material remainé unchanged. In small specimens the surface influences
the resistance, and equation 3.1 is used to define an effective |
resistivity, which depends on the small dimensions of the specimen,and is
the resistivity that would give the measured resistance if the effect of

the surface could be ignored.
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From the size-effect point .of view there are three classes of
specimens:

(a) Bulk specimens.

(b) Specimens with one small d:iinehsion - films.,

(c) Specimens with two smell dimensions - wires.

The purpose of this chapter is to give an accc;urrt of the basic
theoretical treatment of the resistance of small specimens, The
discussion is concernecd mainiy with thin filmsgas these are the subject
of the experimental part of this work., The extension to thin wires is

~br:l'ef1y discussed for purposes of comialeteness and comparison.

The electronic mean free path.

The concept of mean free patl'_x, which was introduced near the end of
the previous chapter, is of obnsiderabie importance in the undérstanding
of size effect phenamena., Rouglhly speaking it is a measure of the
distance travelled by an electron before it 'forgets' about the
distribution from which it ariginally came. Thus a disturbance of the
distribution at a given point only influences the surrounding distributions
to distanoés of a few mean free paths at most. Applying these ideas
to electrical resistivi‘ty, it is seen that the surface will only have a
significant effect if at least one dimension of the specimen is
comparable with the bulk mean free path of the electrons at the Fermi

surface,



2) Simple Methods.

Mean free path concepts have been used by a number of workers to
obtain expressions for the resistivity of thin films and vﬁms(8’9’1o ).

To illﬁs’qrate these methods f'ormqlae for the effective resistivity
of small specimens will be obtained for the two extreme cases, (a') Wk;en
the mean f"ree path is much less than the smallest dimension, and (b) .when
the mean free path is much longer than the smallest dimension. Both
methods can be applied to films and wires.

(a) Small mean free path.

Consider a specimen of arbitrary cross section (Figure 3.1). The
effect of the surface is confined
to a thin layer of thickness pro-
portional to 1, the mean free path,

It is assumed that in this layer

the average current is reduced to a ayer of
thickness

fraction § of its value in the bulk, proportional
to 1.

If S is the cross section area, P

the length of the perimeter and jJ

the bulk current density the total Pigure 3.1

current through the wire is JS - f j 1 P. If the surface had no effect
the total current would be jS, so the ratio of specimen conductivity to

bulk conductivity is

s jS-pji1p
crb J S
=1 - %R | ‘ (3.2)
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. AB .the second term is small the resistivity ratio is

Po 8 - ’ (3.3)

where subscripts s and b refer to specimen and bulk material respéctively.
For £ilms of thickness t this becomes

2 = 4 + 281 _ (304)

and for wires of dismeter &

....1'+ L8

'ol'o
o in
)

Z. | (3.5)

Nordheim ol;taine& a value of 1/4 for f by considering the probability
of an electron hitting the surface. The value of P will be discussed
later in the light of more reliable treatment of films and wires,

(page 64).

b) Large mean free paths.

The method used by 1ove11¢19) i5 vased on the bulk formula for

resistivity

ne“ 1 (3.6)

It is assumed that the bulk mean free path can be replaced by an

average which allows for the shortening of some paths by the surface.



The following assumptions are also made:
(1) All free pathsstart at the surfaces

(1i) All paths not terminated at the surface are of length 1.

if d is electron path and 1 = t/cos o,

d = t/cos 6 8 < 8,
| a = 1 8 >80,

Electron paths are of two ‘types. (Figure 3.2). Those terminating at the
surface when the distance to the surface is less than 1, and those
terminating in the bulk; all of length 1., The average of ‘l':he‘free paths
in all direcf;;lqns is taken (1,..) and the ratio of the effective

resistivity to the bulk resistivity assumed to be 1/1eﬁ.. Lovell's
result for'films is:

ﬂf.: = 1/ K(log %{ + 1), (3.7)
Py, - ' :

where K is t/1 and p ¢ is the effective film resistivity.

J.J, Thomson( 8) obtained a similar formula by cdnsiderin.g only

free paths which start in the bulk, giving

by = 2/ K(log'ﬁ + =)

2 (3.8)
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These two expressions differ mainly by a factor 2.
Lovell's method is open to the following criticisms. (Fuchs).
(1) All paths do not start at the surface. |
(i1) The free paths in the bulk are exponentially distributed about
1,mt of fixed length. S
(iiiji‘he simple average over all directions is not the correct w.ay
to obtain the current. The simple resistivity formula is a
result of the simplicity of .the bul}c situation for which
it is valid. It cannot be expanded again to apply to a more
general case merely by averaging the electron paths.
These criticisms apply equally .well to Thamson's method if (i) is
reversed,
Lovell's and Thomson's results are plotted in Figure 3.3 with

Fuchs' results from the Boltzmann equation approach.

00
‘ Figure 3.

ﬁ Thin film results
fb T = Thomson
L = Lovell

Fuchs

-001\ .0l . I, {o
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3) Size-Effect Resistivity From the Boltzmann Equation,
It is impossible to be confident of the reliability of results

obtained by the mean free path methods without being able to compare
.thex'n with'a more rigorous treatment. Such a treatment has been provided
by Fuchs(“) . The mean free path methods require two types of 'assumption..
The first concerns the nature of the films, in that they are made from a
free electron metal and that eiectrons behave in a specified way on
reaching the surf'ace; The second concerns the method used to evaluate
the resistivity which is assumed to be proportional to the réciprocai of
an effective mean f ree path, obtained by averaging over possible mean
free paths. Fuchs makes only the first type of assumption and obtains the
resistivity rigorous.ly from the Boltzmann eqﬁation. Thus, dif ferences
between theory and experiment must be explained in terms of failure of the
assumptions about the nature of the films,and cannot be attrib_u.lted to an
incorrect method of estimating the resistivity. |

The discussién of the resistivity of thin films given below is
essentially that given by Fuchs. |

Solutions of Athe Boltzmann equation are required in the presence of
surfaces, but at constant temperature., The groundwork has been laid in

the previous chapter. The appropriate equation is (2.13) :

8

2 BV L) ¢ ¥ .vmler) = é(Lc,.zz)] (3.9)

The second term must now be retained,as variations of g over the specimen



?

are expected. This equetion can only be easily solved if the scattering’
term at a given point can be reduced to the simple form where it is
proportional to the value of g at that point only. The possibility of
doing this was shown to depend in turn on the three assumptions discussed.
on page 24 . . ' |
In brief: 1) Spherical energy surfaces in k-space.

2) Electrons scattered elastically.

3) The intrinsic scattering probability is constant on any

energy surface.. |

The equation to be solved is then:

+ ﬁ E 'Vk fo(.lﬁ) *+ I.V,,BOS:E) = - 8&92) s i
o = (k) (3.10)
from 2,28, where (k) = 1/4xk> Q(k).

The general solution to this equation was found by Chambers( 12) ,
end is established below using his approach, vhich shows clearly the way
in which the surface influences the distribution fpnction in the pfesence
of a field. |

Consider the electrons in an element of k-space at k,with velccities
v(k). InFigure 3.4 a line with direction y(k) is drawn from a point on

the surface (S) to somswhere in the bulk (B).



A gereral point P on SB is ;’P. If k is fixed in equation 3,10 the first
term is a constant scalar (A) and the second is the product of v and the
rate of change of g along SB, so the equétion :fefers only to values of. g on
SB,which can therefore be solved for independently of the values of g for
other positions and other directions. The only goordinate that need be
considered is the distance along SB, i.e. u = _I;p - I, Equation 3.10

may now be written for a fixed value of k,

v da(u) gtw __,.
D=L 4 = =<4 (3.11)
The solution of this equation is

g(w) = © A(1 -C e VW) | (3.12)

where C is a constant for particular values of k and Ige The full

general solution of 3.10 may now be written:
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Bd) = -atie E Vg, (- oy o |27 5[ /7).
h : A

(3.13)

C(_]g,;_-s) is an arbitrary function which cannot be determined without some
iﬁformation about the nature of the surface. It represents the ‘
disturbance of the function g from its bulk value, caused by fhe surface.
On moving into the metal the disturbance dies'away exponentially.,
Equation 3.13 applies to a specimen of afbitrary » but constant,
cross section. It is made much more managesble 'by restricting it to
the case of a thin film, The z axis is takén perpendi.cular to the f‘ilni,
with ‘the élzrfacgs at z = O and z = t; The electric field direction is
-along the x axs. The surfaces are assumed uniform in properties, so
g(k)depends only on z, and C depend; only on X. The general solution.of

the Boltzmann equation is then :

glk,z) = "-"-%L‘? B. Vi £, (k) Q - ¢(x) g~#A cos e) ,
(3.14)
where spherical polar coordinates are used in k-space, i.e. 0 is the
angle from the z axis;and ¢ the angle of rotation sbout the z axis,with
$=0 in the x direction. The bulk mean free path 1 replaces 1v. No further

progress can be made until something has been said about the nature of

" the scattering processes at the surfaqe.
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Surface Scattering.
The scattering of eléctmns at a surface may be represented by a

function S(k’ ,k), similar to the bulk scattering function Q(k,k ).
S(_l_g‘,}g) gives the probability that an electron in state k' on arriving
"at the surface will be in state k on leaving. If the distributibx;
function of electrons approaching the surface is fa(l_c), and that of

those leaving is fb(I_C), the latter is related to the former by :

L@ < [s@pn e . G)

If zero current flows both fa and fb equal fo’ s0 replacement of f

by fo + g in 3.15 gives:
gy k) = J’s(z',.ls) g (k) & - (3.16)

This represents a boundary condition which must be applied to 3.14 to
obtain a particular solution. Solutions can be fairly readily obtained
with two simple forms of the surface scattering function, one for
diffuse scattering and one for partially specular scattering, °
Diffuse Scattering

This is the simplest form of scattering. It assumes that the
scattering is elastic and that all directions are equally pmbaLble.
Most surfaces have irregularities larger "th;m the wavelength of
conduction electrons,so this is quite a reasonable assumption. The
irregularities must, however, be small campared with the mean free path,

or the specimén could no 16n,ger be treated as a plane surfaced fllm
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The surface scattering function becomes:

S(k,k ) = 8, 6(k-k ) : (3.47) ..

where S, = constant. In 3,16 this gives:

&) = f 5, 8(k-k') g (k) ax

=0 ' (3.18)

using the result obtaine.d on page 26, The electronsleaving the surface
have the gzero current distribution fo. This boundary condition must
be put into the general solution for films, 3,14, to obtain C(k). The

function g(k,z) is considered in two parts:

z

(3.19)

g (k2) "k, > 0,

g_(.].c.’z) kz < o .

At z = 0 g, refers to electrons which have just been scattered,and is zero
for all k. From the general solution, reverting to an earlier

abbreviatidn, and using C 4 80d C_ to correspond with g, and g_,
g,k 0 =sa(1-c) =0 (3.20)

i.e,
.—c_'_(l_:) = 17
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At z = t&:
g (,t) = TA(1-0k)e WSOy _ 5 (50

i.e. c_ () = et/l cos. &

So the solution to the Boltzmann equation for a film with diffuse

scattering of the electrons at its surfaces is:

-2/ 1 ©
g(r) = va (1. 1080,

(3.22)

g_(k, ) tA(1- o(t-2)/1 cos 6 )

These functions are completely symmetrical about the mid-plane of

the £ilm, Figure 3.5 shows some examples of their form with respect

to variation of z.

TAF=

~ >

dx
9.
9. 9-

o ' t/a zZ — t

Figure 3.5. Examples of g vs. Z.

The variation of g with direction, especially for films with K(=t/1)

below 1, shows a sharp singularity at © = 900, i,e, the direction

B



parallel to the surface of the film., This is illustrated in Figure 3.6
where g v, €@ plots are given for a £ilm with K = 0.2 at three values of

z, The § dependence of g is as for the bulk éase, proportional to cos 6.

o v/ w o /2 T o /2 s
zZ =0 z =t/4 z=t/2

Figure 3.6 g vs. 8 for three values of z.
The Current

The current density at each value of 2 is given by :

5(z) = fvx gle,z) a . (5.25)
The current measured is the total current:
g = [ iz (3.24)

The effective resistivity is calculated allowing for the size and shape

of the specimen, and assuming the current to be uniform across the film,

P =E/(% t (z) dz) . (3.25)"



The two parts of g are symmetrical about the mid-plene of the film,

s0 the current can be obtained from just one of them. €.g.

It [ vos, (e) a (3.26)
o

iees J = ﬂ_@_ v(k) sin 6 cos ¢.(.1‘.%L2)E fiQ sin @ cos ¢ (1_e-z/l cose)
' dk

23
¥’ sin6doed¢ . (3.27)
x
2 _  ez/leos 8, A
I;E.E._ﬁ‘_’, dd sin O'Idz(‘l.-e- cos )/ d¢cosz¢
o} [} ) (o]
fdk K2 v(k) (k) Ei: . _ (3.25) .
dk .

The pseudo delte function di‘o replaces the final integral by sz TpVpe

dk
The constant term outside the remaining integrals is

' 2 2
2 o rw_ e Vp Tp kF E = g O‘b E, (3029)
2 )

where o, is the conductivity of the bulk material, (page 29). .The

effective conductivity may now be written in terms of J,

. J % :
o = &= = 2 o ( desm5e[dz%(1-e'z/1°°s°)

o (3.30)
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The integration may be taken -a little further analytically, but
numerical methods must eventually be used, Before giving the results
for the diffusecase the extension t_o partially specular scattéring will
be discussed.

Partially Specular Scattering at the Surface.

The assumption that scattering is diffuse may often be jﬁstified,
but if a surface is a crystalline piane the possibility of specular or
near specular scattering may need to be considered. This possibilit:}
was allowed for by' Fuchs by assuming a simple; one-parameter model
for the scattering. A fraction p of the electrons arriving at the
surface are assumed to be specularly s;cattemd,arxd the remainder to be

diffusely scattered. The scattering function S for this model is

5Gk ) =5, (1-p) + p 6(6'+ 8 ) (-4 )s(k-k) », (3.31)
where So is a constant. The eff;ect
on the boundary conditions of this k’ :
type of scattering can be seen +
without explicitly putting S(K,k ) :
in the boundary condition equation k :
3.16. The diffuse part contributes . '
nothing to the g of the outgoing
o . Figure 3.7

electrons. The specular part

involves fransi'tions of the type shown in Figure 3.7 for a fraction p of

the electrons, so the g for the: qutgoing electrons has the samé form as

the g for the ingoing électrons, but scaled down by the factor p,and wﬁ:th

kgz replaced by -kgz.
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v

i.ee at z =0 g+(kz) = pg_ (-kz) R (3.32)

and at z = t g_(-kz) =p g+(kz) . ‘ (3.33)

Replacing the 'g’'s in these equations by 'the gene‘ral solutioq of the

Boltzmann equation for films (3.14) gives two equations for ‘the two

functions g(l_c), C, and C_, which aresolvable by simple substitution.
The particular solution thus obtained for partially specul'ar

scattering is:

= A .1 - l-p : e:@(—z/lcos o)\
g+. ) ( 1-p exp(-t/1 c0s 0) ) ’
g =1 A (l-.‘_(i:.a)_@s&(il_fzo_s‘.ﬁl exp (-z/1 cos 9))‘_'

1 -« p exp(~t/1 cos 8)

(3.34)

Exsmples of g . and g_ plotted against z and 6 are given in Figure 3.8
The solution for diffuse scattering is now a special case, obtained

when p = Q.

52



TA

/
b
a
' 1
o t/2 t o /2 - T
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a; p=0, b: p=O.k4, c: p=0.8 : z= t/2

Figure 3.8

The effective conductivity. .

The expression obtained for the conductivity in the diffuse
scattering case (3.30) can be immediately extended to the case of
partially specular scattering as C(k) depends only on 6, and the 0

integration has not been done.

S >
.3 1 -z/1 cos ©
o%._:%.crb dé sin”0 fdz ?(1_c(e)e-/ s ).

o o

(3.35)

The integration with respect to z is quite straightforward, and gives:

o o ' '
;,;11 - 2 f G - c(e) (1= expé-KLCO.%_Q))) sin 6.d 6 ,
(o]

(3.36)



where K = /1, The C(6) required is:

C = 1 -p .
* 1 - p exp(-K/cos 6) (3.37)

from g, on page 52. If p = Oythe special case of diffuse scattering is
recovered.

The final integration must be done numerically. Fuchs gave an
expression for it in the fomm ozf‘ a series, and Sondhemer( 5)
tebulated the results for some values of p.

The funetion cf/cb depends on p and X only. The ratio of the
effective res.istivity to the bulk resistivity (p f/Pb) is the reciprocal

oi./cb, and will sometimes be written as F(K,p).

Program to calculate po/p,. -
In order to allow detailed comparison with the experimental results
presexited later in this work, a éomputer program  was written which

obtains p f/Pb (= O'.b/d'f) from the expression given by Fuchs:

g 2 - : -
o2 L 4 .30m), 3 (1p) E ™! ) B(kn)
% 8K kK

n=1

K%’ - l"n e ¥n 2 Kn - _12_2_1.12 + I{3n3
: 12 1 2 ’



‘ . . (-] o -t
where B(x) = f 2 at ' (339)
J .

The program was written in Fortran,and run on the I.B.M. 7096
~ camputer at Imperial College. The results are plotted in Figure, 3.9

as F(K,p) v. K for a mnumber of values of p.

Simple formulae in extreme cases.
The complex formula. used to cover the full range of K can be

reduced to simple forms at high end low K (Fuchs® 1) Sondhe:mer( 3y

At high K:
.f..g = 1 4+ 1 (hE) ° | ' | (3040)
P'.b‘ 8 K .

This is of the form obtained from the ‘simple approaches to film
resistivity discussed at the beginning of this chapter.
At lowK!

-P;f. = 1 1 ° | (3‘41)
Py K ]ng;{°

This formula is applicable only at very low K (< 0.01). A slightly

modified version is useful up to K = 0.1 { Mayer (“*)):

Pe 1

— — 2

Py K(log (£) + +423) (3.42)
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Figure 3.9 -
Pp V& K,f’rom Fuchs' theory
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Figure 3.10

K(F=1) vs. K from Fuchs' theory.
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Matthiessen Rule.
The concept of the surface as just another independent scattering
mechanism leads to an extra term in the familiar form of Matthiessen's

rule which applies to impurity and phonon scattering in bulk( 6,14 ) .

P

£ = pi+pph+Ps

(3.43)
T Pe= Py *Pg
where subscripts i, ph end s refer to impurity, phonon and surface
scattering respectively. This formula is supported by the thick film

limit of Fuchs' theoxry;

Pp =P+ Fo (1 - p) Pl - ”(3-“\\)

as pbl is a constant for a given metal or range of dilute alloys.:

It is of interest to see to what extent Matthiessensrule can be
applied when the cﬁndition K> 1 doeé not hold. This is best shown
‘by the form of (pp - p.b), which should be constant if Matthiessensrule

holds, The result expected on the basis of Fuchs' theory is given below.

0

bo, = Pp = Py

Py F(K,p) =Py

Pp(F(K,p) =1) « (3.45)

Expressing p, in terms of Ki
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"

o, = % K@E&P)-1), (6=g1). (5.6

For a film of given thickness 8p_ 'is proportional to K(F(K,p)-1). This'
expression is plotted in Figure 3.10 for a numbler of values of p. The
curves show that Apm ié fairly constant down to sbout K = O:.l.., when it
begins to fall steadily with K. There is a rise above .the high K value |

at about K = 1, which is largest at low p, when it is about 10% of K(F-1).

Theory for a film with non-identical surfaces.

The possibility that the two surfaces of a film may be different
cen be dealt with within the framework of Fuchs' theory by assuming
that the surfaces have different values of p, Py and P, say. As only -
a change in the boundary conditions is involved only a change in the
function C(k) is expected. The boundary conditions are determined by

the two equations ( cf page 52)-

g, (k) =p,8 (%) (z2=0)
: (3. 47)
g (k) = pyg (k) (z=t)

The functions g _and g_ are replaced by the general form (equation 3.14)
and the equation solved for C+ and C_, giving :

(1-p;) +(1-py) b, exp(-K/cos 6)

1=-p, P, ‘exp (=2K/cos 6)




’

h (1-p32_[) + (1-p,) p, exp (-K/cos 6) . (3.48)

1 = pp, exp (-2K/cos 6)

C, and C_ can be inserted directly into the conductivity equation (3.3%),
but now g_ and g_ are no longer symmetrical sbout the mid-plene,so both

must be used. C(6) in equation 3.36 is replaced by (C+(6) + C_(0)) /2.

L]

. IQ_ c+(e) + C_(8) co; 6 4(1_8-1(/ cos e)>sin 39 a5
2 .

o9 l,_bq

K
| (3.49)
It would be quite straightforward to evaluate this integral
mmerically,but no attempt has been made to do so. Instead the
consequences of assuming a one -p form,when the two-p form ahould_ be used,

are discussed for two extreme cases.

(a) K >> 1. The exponentials can be taken as zero .

0,(8) + c_(0) _ (1-py) + (1-pp) -

= (1- Py *Pyy
2

2 : 2
(3.50)
Compare this with the single p form which gives:
C =06 = 1-p - (3.51)

4 -

Thus, at high K, the two-p form is the same as the one-p form with the
mean of p, amd p, ($) used instead of p.
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This result is not surprising for thick films,as the effect produced
by one surf'a;e does not extend far enough to influence the other,
(b) Films with one surface specular.
In this case the effective conductivity (or resistivity) can
be obtained over the whole range of K from the one-p results for
the p on the non-specular surface. .If Py = 1 the film is

equivalent to half a film with py on both surfaces, Putting Py = Pt

oy 1 -p .
%) = 1 - exp(-2tAc0s0 )
'(3.52)
_ (4-p) exp (-2t/lcws 6) |

¢ (o) = 3

1 - exp (2t/1c0s6)

which are as for the o.ne-.p case,but with t repiaoed by 2t. If p f/pb'
in the two-p case is written as F(K,p,,p,) then F(X,1 ,p) = F(2K,p).
F(X,1,p) was obtained in this way for a number of values of p,and
the result compared with the one-p result for the mean of the two values
of p(p = (1+p)/2), to see whether the use of the mean could be extended
to low values of K 4
The difference between F(K,1,p) and F(K,p) is plotted in Figure 3,11
as a percentage of the latter. As the situation considered here is an
extreme one,these curves indicate the maximum error that would arise
from uslng p in the one-p theory instead of p, and p, in the 2-p theory.
' The resgistivity with Py and Py different is always greater than for the

ons-p case with p=p,
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Pigure 3.11. The difference
between P(K,1,p) and F(K,p)

as a percentage of F(K,p).

10-

4) "L‘hinl Wires.,

The applicatiaon of 'the simple theories of size effect resistance
to wires has already been discussedb (pages 38 ). ’

A rigorous treatment of the problem by ‘lhé solution of the
Boltzmann.equat.ion has been given by Dingle( 15 ). The same assumptions
are made as for films, and the argument is identical up to the general
solution of the Boltzmann equation (3.13). The same surface scattering
model is also -used to obtaining the function C(k). Finding C(k) and
integrating to get the current is more complicated for wires than for
films, and will not be discussed in detail here. The resulfs obtained
by Dingle for wires with p = O andp = 0.5 are given in Figure 3.12.

For wires K is d/1 where d is the diameter.

2=



p=O
F-1)
5 - : ,
p=-S M
— - / S
-—"--F:o
2 S T T T - -
a : ————- ———--.—‘
‘) T '
0l

| K I-0
‘Figure 3.13 K(F-1) for wires
and films compared.
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Comparing Wires and Films

An instructive comparison of wires and films can be made by
considering how well each obeys Matthie ssens rule. It was shown for
films that K(F(K,p) =1) is proportionsl to the difference between the
f£ilm resistivity and the bulk resistivity, snd should be constent if
Matthiessens rule is obeyed. This applies equally well to wires. The
function given abo§e is plotted in Figure 3.13 for both films and wires.
The two ere similar et high K, down to sbout K=1. Below this there is

a marked difference, The wire cﬁrves remain more nearly constant than the

£ilm curves. Wires obey Matthiessens rule much better than do films at
low K. -
'.fhe high K limit.

The similarity between wires and films at high K is shown in their

high K forms.
Films Pf 3 (1 ) ' |
P -p) L
N =1+ ¢ : . (3.53)
Wires : P | .
R XCT F (3.54) -
P'b d .

'

If these are compared with the general formula for the smell mean free

- path case (page 39),

& . 4 +p &2 | : (3.55)
Py 5 - |
it can be seen that a B of 3/16 givesboth the wire and the films results.

L]
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The low K limit

The d:ifferenceg between wires and films at low K are shown by the

low K limits of Fuchs' ard Dingle's theories:

Filos Pt = L . K << 1 (3.56)
Py K log % .

Wires f_v_r = 1 K << 1 (3.57)
Py L

As p_ = K in both cases,the resistivity of the wire is constant at
low K,while that of the film falls as 1/log (1/K). ™
'If an effective mean {ree path is defined, after Sondheiner(” ) s

by

n321

pp = _mV 9 | " (3.58)
eff ' ' ‘

we get for films in the low K limit, .-

1

1¢ ep = tlog¥ . : (3.59)
and for wires
1 = 4. ‘ - ) - (3‘ 60)

The effective mean:free path increases indefinitely with 1 in films,
though more sloyely, while in wires it reaches a maximum equal to the

dismeter of the wire. The difference lies in the mumber of electrons
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attaining the full mean free path. In wires such eléctrons occupy
a spot on the 'front' of the Fermi surface of area ~ (d/l)z, (where
the total area of the Fermi surface is ~ ix). The electrons over

the rest of the Fermi surface have mean free paths ~ d. If the current

is j
dooctma + G212 ma (14 (3.61)

i.e. the electrons in the 'front spot' contribute less aé the wire
becqxhe thinner. In fiims the electrons attéining the full mean free
paths lie in a band around the 'equator® of the Fermi surfacé. | lfreate'd
" a8 above the current in a'film is |

-

J e lmd+%ol . (3.62)
i.es the contribution from the band round the ‘equator® is of the

same order as that from the rest of Fermi sphere. This approach is

too crude to 'rqsolve the log term obtained by Fuchs.
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CHAFTER IV

THIN FIIMS FOR SIZE EFFECT _STUDIES.

1) Introduction.

The theory of resistance size effects given in the previous chapter
shows that the effect is only significant if K is small (~ 1 or less),
where K = £/1, t being the film thickness and 1 the mean free path of the
electrons ih bulk material, The Evalue of K may be reduced by decreasirg
t, increasing 1, or both.

Specimens of small thickress have been produced by rolling bulk
material (Andmw16), and by. evaporation or sputtering methods.. The latter
two have been most often used,as much thinner films can be produced by
these methods. The thimnest .films obtaine'd by Andrew by rollin.g were
sbout 30,000A thick, whereas evaporated films msy be obteired less than
100A thick.

The mean free path of electro'ns in a metal may be increased by
reducing its temper_ature. The limit is set by _the defects and impurities
in the metal which detérmine its résidqal resistivity. Thus,for low )
temperature work,the film structure is of comidera,ble.impc;rta,née.

Thin films of many metals can be prepared by evaporation and

(17). In the evaporation method the metal is heated strongly in

sputtering
a vacuum,and the metal vapour allowed to condense on the substrate. The
sputtering method also involves condensation of the metel vapour, but in
this case it is produced by making the metal the cathode of a glow disg:herge

in an inert gas at low pressure. Unfortunately films prepared by these
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methods usually have highly defective s’crt.u:tures,(18’zb )

resulting in

high bulk residual resistivities and. making oc;mparison with the normal
bulk nﬁterial difficult. Under scme ciraimstances, however, it is possible
to obtain singi‘!.e crystal films With far fewer defects. Such films are the
subject of much previous work, and also of the experimental part of this
work. The remainder of this &apter is devoted to a discussion of single
crystal films, their preparation and their structures.

Epitaxial thin films.

. When crystalline materials are grown on crystallire substrates, it is
frequently observed that the axes of the overgrowth crystal are ariented in
a definite way with respect to those of the substrate. This phenoménon,
known as epitaxy, is observed for a wide variety of overgrowth-substrate
combinations, and methods of growth. 'A review of the occurrences of
epitaxy is glven by Pashley( 9) |

In parta.cular, ep:.tana.l films of silver may be obtained by evaporation
on to cleavage surfaces of various crystals, e.g. mica, rocksalt and

. molybderum blsulph]_de (‘05 sle? ,25)

It is necessary to heat the substraté to
about 300 °c during evaporat:.on for ‘good epitaxy to occur. Silvér grows on
mice and molybdemum bisulphide with the [111] planes parallel to the
surface,but on rocksalt with the [100] planes parallel to the surface. The
details of the preparation of the epitaxial silver films used in the
experimental part are given in Chapte;' VI. Epitaxial gold films on mica are
beét producec} by sPuttering(x’ ). The; rea;ulting films have [111] planes

parallel to the surface, as in silver films on mica.
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2) Methods for the Study of the Structure of Thi{l Films,

The structure of thin films is examined mainly by two complementary
but related techniques; eiectron diffraction and electron microscopy.
Brief descriptions of these techniques are given below, followed by an
account of the information obtained by using: them. Electron @iffraction
is used to check the ¢pitaxy of the specimen films used in the experimental
part, and details of the experimental procedure are given in Chapt.er VI.

Electron diffraction.

When a beam of eiectrox_ls is incident on a crystal there are d:if"f‘raction
maxima for only certain combinaticns of incident and scattering directions.
The directions of the diffraction maxima are determired by the reauirement
that the scettered electron waves from the atoms of the crystal should’
reinforce each other., The Bragg approéch to diffraction by crystals will
first be described, then a construction which _alloﬁs the dif‘fré.ction
directions for any incident beam direction to be def:ermined. The details

of the theory are given in the standard texts(e'g' 20).




A set of crystal planes are considered (Figure 4e1). The scattered
waves from a single plane are in phase when the angle of incidence equals
the angle of reflection, but the waves from different planes only reinforce’

each other if the following candition is also satisfied;

m = 2d sin 0, - (he1)

where d is thé separation of the plancs; A is the wavelength of the
electrons and n is an integer. This is Bragg's law.

The construction mentioned above invol&es the reciprocal lattice
(base vectors by, by, and pﬂ), which is related to the direct crystal

lattice (base vectors 24 8, and 25) by:

a

2A 8 |
91 = 54—:-(2—2’\}—2‘;) etco (4..2)

The 1ine jpining‘the origin to the reciprocal lattice point (h,k,1) is
perpendicular to the planes in the direct lattice with Miller indices
(hkl1), and its length is 1/d, where d is the separation of the (hkl)
planes. A line is drawn from the origin in the direction opposed to the
incident beam and of length 1/A, (0C in Figure 4.2). The sphere of.radius
1/\ with centre at C is the Ewald sphere (the wavelength of the electrons
used is small éompared with interatomic distances, i.e. ~ 0-062, so the
radius of the Ewald sphere is large c&mpared with the reciprocal lattice
spacing). If the Ewald sphere passes through any point of the reciprocal
lattice,P, there will be a diffraction maximum in the directioﬁ CP.

The relationship between the Ewald sphere construction and Bragg's

Jaw is also illustrated in Figure 4.2, OP = 1/d = 2 sin 6/A. The
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Figure 4.2 The Ewald Sphere Construction.

Pigure 4.3 Reciprocal lattice and

Ewald sphere for thin films. SN
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diffraction maximum indicated by P is equivalent to a Bragé reflection '
from the corresponding set of planes in the direct ;attice.

The Ewaid sphere would onl& be required to pass through the precise
reciprocal laftice point for diffraction if the crystal were perfect and
of infinite extent. In the case of real crystals a diffraction maximum is
obtained if the Bwald sphere passes through a region around the point.

The shape and size of this region is influenced by the shape and size of

the crystal. ' If the crystal is ver& thin,a few atomic layers,

the region is elongated in the thin direction. This situation is illustrated
in Figure 4.3.

Electron diffraction observations of films are usually made with the
electron beam at a small angle to the film surface (Figure h.u).- Electrons
are only scattered through small angles
by atoms, so diffracted beanms are
only found at small angles to the . . \
incident beam. The Ewald construction

shown in Figure 4.3 is for this

' situation. The nature of the
diffraction pattern obtained depends
on the degrée of elongation of the
regions around .the reciprocal lattice

points, which depends in turn on the

effective thickness of the film.
The effective thickness is the

number of crystalline layers which -

contribute to the diffraction.
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pattern. While an electron is in the film it may be scattered
inelastically, afte;.which it cannot contribute to the diffraé%ion;
pattern. A measure of the possible path leﬁgths inside the film is
given byvthe mean free path for ihelastic collisions of the beam
electrons. The way in which the nature of the surface influenées the
effective thicknesé ié shown in figure 4.5. Fiims with flat surfaces :
have small effective thicknesses and tiae diffraction d.irec~tioné are

spread out perpendicular to the film surface (Figure &4.3).

— 3
— e

FPigure 4.5. Electron penetration.

Some electron diffraction patterns for silver films are shown in
Plates 1 and 2(pagp‘1TD. Plate 1 is from an épitaxial film, and the
vertical streakiness indicates surface flatness. Plate 2 is from a film
evaporated ontoa cold mica substrate. The greé.ter resolution of the
spots suggests a rougher surface. |

'Elecfron diffraction observatioﬁs show clearly the presence of

“epitaxy in thin films, and can be used to estimate lattice constants.
They also give an indication of the smoothness of the surface‘of'the film.

The electron beam is wide on the atomic scale so all information obtained
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is averaged over a relatively large area. For the detailed study of
film structure the electron microscope must be used. |

Electron microscopy.

The electron microscope is a most valuable instrument for the study
of the structure of thin films. A small region of the film is observed,
and details can be seen which are entirely lost in the averaging process
of electron diffraction.

The use of the electron microscope for the study of thin films has

(21) 11 by Taun'?®), The

been reviewed by Bassett, Menter and Pashley
films are usually observed by transmission techniques after removing them
from their substrates. There are two basic methods for obtaining images
of crystalline objects. In the first method, known as diffraction
contrast, the aperture of the objective lens is restricted so that no
diffracted beams are allowed to pass. Variation in contrast then occurs
if there is variation in the intensity of the diffracted beam from one
part of the specimen to a;othero In the second method,at least one
diffracted beam is allowed to contribute to the image, and a periodic
fringe pattern is obtained which is related to the periodicity of the
crystal lattice. This is known as the lattice resolution method. The
resolution of electron microscopes limits the direot application of thia
method to crystals with lattice spacings greater than about 53, 80 the
lattices of elements and simple compounds cannot be resolved. However,
the Moiré patterns that are obtained when two lattices are superimposed
can be resolved. The misorientations of growing crystallites pnd the

presence of dislocations in films;can both be studied by this method.



The surface topolbgf of fi;ms may be studied by the replica
'tgchniquegzs).. A layer of carbon is evaporated onto the specimen
surface and reproduces the surface features. A little chromium is then
evaporated on to the carbon replicafrom a small angle to the film surface.
The specimen film material is dissolved away, and the shadowed replica
observed in an electron microscope. Shadowing is used as t@e image
contrast from an unshadowed carbon replica is poor.

3) The Growth and Structure of Epitaxially Evaporated Thin Films.

Growth
) Eieétfon diffraction and electron microscope work have yielded a
‘clear picture of the way in which epitaxial filmSgrow(19’25)o The first
detectable stage of the.deposition ia.the formation of three dimensional
crystalline nuclei scattered.ovef the surface of the substrate: These

nuclei are mainly well oriented with respect to the substrate(26’27)o
The nuclei grow with the arrival of more material, becoming island
crystallites. Ithn two crystallites grow close fogether they coalesce
very quickly in a liquid-like fashion. ihé crystallites eventually link
up over the whole surface leaving only holeg. Further deposition fills
in the holes and thickens the film.

The abofe details of fhe initial stages of film growth can be observed
direotly in the electron microscope. A recent study of the growth of
gold and silver films on molybdenum bisulphide by Pashley,'Stoweli, Jacobs
and Law(zh) brings out many details of the growth of evaporatéd thin films.
The films were ;vaporated inside an'eleétron microscope onto a flake of
substrate thin enough to allow the transmission of the electron beam. |
The growth of the films could then be observed continuously. The Moire
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patterns obtained between the substrate lattice and the metal lattice
were interpreted to reveal the following orientational aspedts of fi.lm
growth. The small crystallites found in the early stages of growth are
not perfectly oriented with respect to' the substrate. Misorientations
are typically one or two degrees. When the crystallites are stili small
the misorientafior; between a'coalescing pair is eliminated by the rotation
of one or both, presumably by recrystallization. Misorientations
_between larger éoalescing cfystallites are not elimiﬁated,a.nd must be
taken up by disloca.tions . ‘The éefeéts produced in this way becope
permanent features of the film.

The substrates on which e'pi.taxial deposits are formed usually have
lattice sﬁacing's significantly different from those of the overgrowth
materials. Electron diffraction work has shown that, in spite of this,
the overgrowth has its normal bulk lattice spacing even at the earliest
detectable sta.ge(26’ 27,28)

Defects in epitaxial thin films.

The presence of structural defects in films is clearly observable by

(21,29,31)

electron microscopy Dislocations and stacking faults are shown
up by the diffraction contrast technique, and dislocations by the Moire
.patfern téchnique. Bassett et al.(21) describe the methods ﬁsed,and present
some results for [111] gold films evaporated on to epitaxial silver films, |
and separated by dissolving the silver in nitric acid. Dislocation lines
are present in large numbers, égtimated at between 10*° and 10't cm/cms.
They are inclined to the plane of the film at ~70°, i.e. they lie in
[411] planes, and extend from surface to surface. ‘ |
Similar results were obtained by Hatthews(zg) , who used [100] silver
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films which hed been evaporated on to rocksalt. He estimated that the |
dislocation density lies between 1.10'* and 3.10'?* cm/cmj. It is
interesting to noté that the abofé values for dislocation densities are
similar to the value obtained by Baily(so) for cold worked silver.
Rolling to 95% reduction resulted in a dislocation density oflabout 5.10%
cq/cm?. '

The origin of defects in thin films.

Several mechanisms have been suggested for introducing imperfections
into epitaxial thin films. These are listed by Pashley(25) who considers
that the most important are the presence.of miﬁorientgtions in the eafly
stages of growth, which have already been mentioned, and displacement
misfits. Displacement misfits arise between two growing crystallites as
a result of the difference in lattice ‘spacing between the film material
and the substrate. The extended lattices defined by the twp initial
nuclei do not, in general, coincide. The difference must be taken up by
defects when the crystallites coalesce. |

The electron microscopy work described has been mainly on very thin
films, usually little thicker than'requireﬂ fof complete coverage of the
substrate. It is fo be expected, however, that the dislocation strucfure
wili largely persist, as the subsirate for subsequent layers is the
highly defective initial layer. '

Film surfaces.

The electron diffradtion patterns obtained from epitaxial silver
films have streaks rather than spots,indicating that the surface is flat
on a near atomic scale over much of its area. The streakiness of the

diffraotion spots shows that the depth of penetration of the electrons
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is only a fe; atomic layers, perhaps oﬁly'one or two as suggested by
Newnan and Pashley(hs). »

Further information about the surface# of the epitaxial silver
films used in the experimental part of the present work is provided by
the replica technique. Carbon replicas of some of the specimens used
were prepared and examined by C. Gonzales(32) and they show that the
surfaces have large flat areas with occasional steps of a few tens of
angstroms and.occasional pits. These results are discussed in greater
detail in Chapter IX.
Sumnary

The results described in this chapter provide a picture of
epitaxial thin films of silver and goid which may be summarized as.follows:

(a) The films are well oriented with respect to.their substrates.

(b) The lattice spacing is as for the normal bulk material.

(c) They have large numbers of dislocations, comparable with

the numbers found in heavily worked sulk material .
(d) The free surface of a film is nearly atomically flat over

most of its area.



CHAPTER V

PREVIOUS EXPERIMENTAL WORK ON RESISTANCE SIZE EFFECTS.

In this chapter some previous_mea;urements of the electrical
resistance of small specimens are described. The emphasis is mainly on
films of the noble metals, particularly single crystal films, as these
are most relevant to the present work. Other types of film, and wires,
are also discussed in an attempt to provide a widez:picture° The work
is grouped according to the type of specimen involved.

Rolled foils.

Specimens produced by rolling have thicknesses much greater than
the nean free path of electrons at room temperature, so sige effects
can only be obtained at low temperatures. Andrew(16) measured the
resistivity of foils of tin with thicknesses down to 3.3u, ana'obtained
size effects at temperatures below about 20%K. At each temperature the
resistivities of the thicker foils were independent of thickness, giving
a value which could'be taken as the bulk resistivity, while those of the '
thinner foils increased with decreasing thickness. The results could be
roughly fitted to Fuchs' theory with p = O, giving a value for the mean
free path. The resistivities of the thinner foils were a factor of gen
greater than the bulk value at 3.8°K, indicaﬁing a K (= thickness/ mean
free path) of less.than 0.1 The values obtained for the mean free path
at the three temperatures were 0.1 mm.'at 3.8°K, .005 mm. at 14°K and
.002 m m at 20°K.

Alkalt Metals.

Mayer('%) has shown that it is possible to obtain films of alkali
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metals which have reproducible electrical properties. The films are
prepared by evaporating the metals ontoa glass substrate cooled fo about
90°K. Lovell(1o’33) also evaporated filmsontoacooled substrate and
observed changes in the {ilm resistance after evaporation w;s complete.
Mayer avoided these effects by the use of a very high vacuum (10-? torr)
and a very pure source metal.

The resistivities of caesium, potassium and rubidium films in the
"thickness range ~ 1008 to ~ BOOOX were measured. The bulk resistivity
(p,) was obtained from the results for the thicker films, and the reduced
resistivities (p/pb) fitted to Richs' ‘theory with p = O. Although the
films were guite thip the lowest value of K reported was 0.15. The
agreement with Fuchs® theory was quite good and values for the'me;n free
path at 60°K and 90°K were obtained.

Films dep;sited at low temperatures'cén be expected to have a highly
defective structure. This is shown up in Mayer's films by the values
obtained for the bulk resistivity, which are significantly higher than for
the normal bulk material. The bulk resistivities estimated fo? potassium
films were 1.30-cm at 60°K and 2.14 Q-cm at 90°K. The corresponding ideal
lattice bulk values are 0.6 and 1.2 respectively. (MacDonaId}k).

Silver and zold films.

It was sthp in the previous chqpfer that evaporated or sputtered
films, in the early stages of their growth, are a collection of isolated
‘crystallites. In this condition the film resistivity is very high and
remgins 30 until there is a substantial amount of interconnection of the

crystallites. The change from the high resisfivity, characteristic of

the 'island' state, to the much lower value, characteristic of a
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continuous film, occurs for quite a small increase in the average
thickness of the deposit. The point at which this rapid change occurs
varies considerably with the method of preparation.

(35)

Chopra,Bobb and Francombe give results of resistivity measure-
ments on gold films which show the onset of conductivity. This occurred
at ~1608 for single crystal films sputtered onto heated mica. When the

measuring vpltage was applied during the sputtering process,the onset of

(36)

conductivity did not occur until SOOX. Results given by Ennos for
gold £ilms evaporated onto an evaporated layer of bismuth oxide on glass
show a much earlier onset of conductivity, at about AOR.

If evaporated or sputtered films are to be used for size effect
studies, they must be thick enough to be outside the range of the structural
effects associated with the early stages of growth.

The resistivifies of continuous films vary considerably with the
method of prebaration. Reynolds and Sﬁnwell(37) showed that, when films
are evaporated on to a room temperature substrate, the rate of evaporation
and the pressure of the residual gas in the evaporation chamber are
important parameters. The lowest film resistivities were obt;ined using
a high rate of evaporation and low residual gas pressure. An increase in
film resistivity by a factor of five could be obtained by lowering the
evaporation rate or'raising the pressure. The results for silver films éf
the low resistance type in the thickness range 100 - 15003, measured at
room-temperature, gave a mean free path of about 5003 when qompgred with
Fuchs! theonf for p=0. This value is in good agreement with that
obtained from the free electron model assuming one conduction electron’

per atom.



As films évaporated onto a cold substrate have many d efects,it is’
reasonable to attempt to reduce the bulk resistivity by annealing.
This approach was successfully adopted by Gillham, Prestoré and Willia'ms(38’39)
who used sputtered bismuth oxide on glass as a substréte. Gold was .
sputtered on to the substrate while it was at room temperature, then the
film was annealed at 450°C. Films only 508 thick, prepared by this
method, had low resistivities.* A further reduction in resistivity was
obtained by edating the free surface of the gold film with sputtered
bismuth oxide before annealing. The resistivity of the bulk material
was estimated from the results for the thicker films (400 - BOOX), and
was found to be significantly highe} than the accepted value for pure
gold, i.e. 3.6u Q-cm compared with 2.48u -cm. .This shows that many
defects must have remained after anneéling. |

The most striking feature of this work is the low resistiv?ty of
the very thin films. At room temperature a film of thickness 558 had a
resistivity of 4.8u Q1 cme A reasonable value for the bulk mean free path
is over 200 X, making K ~ 0.25. In order to explain the small size effect
on the basis of Fuchs' theory it is necessary toAassume that p lies
between 0.8 and 0.9. . |

The resistivity of gold films is also the subject of a éaper'by

Chopra, Bobb and Ffancombé(}S);

‘Th¢y measured the room temperafure
resistivity of films qbtgined both by sputtering and by evaporation on to
freshly cleaved mica substrates. A polycrystalline film was obtained
with the substrate at room temperature, and an oriented single crystal

film obtained when the substrate was heated to about 30db during deposition.

The thickness range covered was 100 to 10008, The results were similar to
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those obtained by Gillham et al. in that the resistivities of the
unannealed (polycry;talline) films were considerasbly higher than those of
annealed (single crystél) films. The results for the polycrystalline k
* films could be fitted reasonably well to Fuchs!' theory‘with p=O; The
single crystal sputtered films had'constgnt resistivity, about 6% above
the value for pure bulk gold, domn to 250%. This is only 1008 above the
thickness of the onset of conduetivity. Both polyerystalline and single
crystal evaporéted films had higher resistivities than the corresponding
sputtered films. The thick film resistivity of evaporated epituxial films
was 20% above the pure bulk value.

It is of interest to see what extra resistivity might result from
the dislocation density estimated by Pashley for .gold films discussed in
Chapter 4. The effect of dislocationsvon resistivity is reviewed by

(40)

Bamzinski, Dugdale and Howie, who give values for the increafed
resistivity per cm. of dislocation in various metals. The value for gold,
taken with the limits on the dislocation density given by Pashley, results
in en increased resistivity of between 0.003 and 0.03u Q-cme The larger
value is still a factor of five too small to explaln the increase found in
the best of Chopra's fllms. This comparison must be treated with caution,
however, as the films were prepared in different ways -

The curves obtalned by Chopra et al. and Gillham et al. for gold
films are given in Flgure'5.1. Some room temperature results for silver
films, obtained in the course of - the present work, are included in this
figure. To allow comparison of the gold and silver results the curves
are plotted in a reduced form, ise. as pf/bl against thickness, where p,

is the ideal lattice resistivity of the metal at room temperature.
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The work .on gold films on mica was extended to lower temperature and
thicker films by Chopra and.'Bobb(M) « They showed that the temperature
coefficient of resistivity of single crystal sputtered gold films, down
to 78°K, is consistent with Fuchs! theory with P = 0.8. The films used.l
| were up to 50008 thick. :

An interesting demonstration of the pres.e‘nce of partially specular
scattering at the surface of gold :f‘ilms evaporated onto bismuth oxide was
given by Lucms(l’:5 ). Taking annecaled films as a starting point he
evaporated a furthef 1a§er of gold...on top, whiie recording the resistané.e
continuously. The resistance went up, 'at first, even t'houg.h the' film was
getting thicker. This effect was interpreted as being caused by the lower
value of p at the new, unanneale&, surfaée.

Low tempex;ature resistance measurements on epitaxial silver films
have been reported by Larson and B.oiko(u*) « The films were prepared in
the usual way, but with a very high vacuum (5 x ‘lO-8 torr). The film
resistivities were measured at room temperature and 4._201(, and the thic;k-
ness range covered was 600 to 13000A. The thicker films had resistivity
ratios (950(/94.2) as high as 175. No loﬁ temperature measurements of
epitaxial gold films have been reported, but the high bulk values found
by Chopra et al. at room temperature indicate that the resistivity ratios
would be no more than 17. The low temperature silver results wer.e found
to fit reasonably well to Fuchs' theory with p = 0.5.

Chopra(hz) measured the variation of resistivity with temperature
of silver films at low temperatures. The films he used were quite thick,

15,000 to 60,0002, both epitaxial and. polycrystalline. The epitaxial

films' showed a twofold increase in resistivity in the temperature range,
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8 - 10°K (Figure8Bpage 16) a smaller increase in the same range was
found for polyerystalline films. In order to explain this effect

(LS). This.was that the low

Chopra took up a suggestion made by Olsen
angle scétteripg of eiectrons by ph&nons of small wave number, which
predominate at low temperatures, should be more effective in promoting
resistivity in the presence of a diffusely scattering surface. ' This.
subject will be considered again in later chaﬁters, and will be referred
tp as the phonpn—surface effect.
Thin wires

As wires cannot be made very thin the size effect can only be
observed by using very pure metals and making measurements at low
temperatures. Measurements on pure mercury wires were made by Andrew(js)
and the results evaluated by Dingle(15) in the light of hi; theoretical
treatment of resistance size effects in wires. The results were in
agreement with the theory with p=0, though the accuracy was not good
enqugﬁ fqr'this value to be certain. ' The thinner wires did not obey

" Matthiessen's rule, whereas the theory indicated that they should.

The failure of Mattiessen's rule for thin wires was also observed by

Olsen(l*5 ) using pure indium wires. This result was the reason for his
suggestion that the phonon-surface effect mentioned above might be
importante.

Conclusion.

The work described in this chaptef shows that resistance size
effects occur quite generally in small specimens, and that the results

obtained can often be explained in terms of Fuchs' theory. The

existence of surfaces from which electrons are partially specularly
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scattered has also been demonstrated.
The work of Olsen and Chopra has raised the question: what part
does low angle phonon scattering play in resistance size effects at

iow temperatures?
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© CHAPTER VI

EXPERTMENTAL _ METHODS

This chapter describes the various experimental methods,used in
the course of this work,for the preparation, examination and measurement
of thin silver films.

1) Preparation of Specimens.

The thin film specimens were prepared by evaporating, in a vacuum,
pure silver f:lom a basket shaped tungstén filament on to a heated mica
substrate. The silver used was Johnson Matthey ‘'spec-pure' (99.99%%).

A diagram of the evaporation set up is givén in Figure 6,1, It is based
on an Edwards evaporating unit which has & 4 inch oil diffusion pump to
evacuate the evaporation chamber, .

The filament is wourd from 0.5 mm. tungéten wire,and is heated by
passing a current of sbout 20 amp through it., Before a new filament
is used for evé.poration, it ié outgassed by heating it in a vacuum for
a few minutes at a current higher than that used for evaporation.

The hot stage.

The stage on which the substrate rests during evaporation is
constructed from 'spec-pure' copper, a..s normal commercial copper contains
impurities whlich may evaporate when the stage is hot and contaminate the
f£ilm, (Pashley(l"?)). The stage is heated electrically by a constantin

heater, insulated by mica and sandwiched between two pieces of copper.

The temperature of the stage is measured using a copper-constantin

=-88=



movable
shield N

rﬁlg hot stage
Ll n

1 . t 4 h

[ ] 1

shield

/// electrodes

hot stage
e HA
\F‘“l ~—r—r \1——‘._-7

Fig.gre 60 2




‘ TA H * 6 mm
- L L el LJ L l _'f
Figure 6.& . "
. e
Arrangement of —
: | mm
specimen set.
o _
- Figure 6.5 Specimen edge.
L 40 KeV
electron beanm
' sample

film

Iy _ R h
fluorescent/ | , Shadow /’
screen ', - edge ’./

F3
plate !

= o =]

Figure 6.6 Electron _diffraction. '



therﬁocouple attached to the upper copper plate.
‘The Masks.

In order to obtain thin film spécimens of a shape suitable for
resistance measurementé,a'mask is placed over £he mica substrate
during evaporation. It is required that the edges of the specimens should
be sharp, so the edges of the mask must be thin and lie close to the
surface of the mica. A mask of thin material satisfies the former
condition,but cannot be kept flat enough to be close to the mica at all
points,

The problem was solved by making the masks from thick material and
thinning the regions near the specimen apertures. The starting material
was 3 m.m. thick 'spec-pure' copper sheet. A central rectangle was milled
down to imn. thick leaving a border of the full thickness for rigidity.
The apertures were made in the central region by spark etching, with the
help of Standard Telecommunications Laﬁoratories Ltd. When an arc
discharge occurs between two metal.elec'l':rodes immersed in a dielectric
liquid, such as paraffin, some material is removed from the electrpdes ’
mainly from the anode. This process is exploited in the spark etching
method of shaping intricate pieces of metal. A suitably shaped cathode
is lowered onto the workpiece (the anode) and etches its way through by
repeated arc discharges. The breakdown through the paraffin occurs when
the separation between the electrodes is very small (~0.001"), and the
result obtainéd closely follows the shape of the cathode. Sections
through a mask and one of the electrodes used in producing itare ghown
in Figure 6,2. The electrodes were made from ‘Elkonite', an allloy made

by Johnson Matthey Ltd.
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The Substrate

Mica has been used throughout'this-work és a substrate for the
evapofated silver films as it has two important advantages, i) Silver
film evaporated on it are epit;xial. ii) It can be cleaved to give
large fault free areas, which are essential for resistance measurements.
The mica is freshly cleaved béfore use t0 minimige surlace contaﬁination.
Pieces suitsble for substrates are pbtained as follows. A sheet of mica
about 2 inches square is carefully cleaved using a fine needle. The
quality of the cleavage surfaces is checked by joining the two surfaces
égain, but slightly displaced from their original position, and looking
at the white light fringes formed between them. Fault free areas join
very closely and show no fringes. A fault produces two close steps in
the thickness of the air films between the surfaces, and these are
shown up very_clearly by the white light fringes. Although thg white
light fringes cennot be expécted to show steps less than about 25004,
the method appears to give good results. No faults have been observed
. on specimen fiims during ﬁhe course of the interfez“ometric tbickness
measurements described 1atér in thié‘chqpter. The two pieces of mica
are lef't in contact ﬁntil required for evaporation, not more than an,
hour later.

The Evggofatioﬁ.

Each mask produces four qpecimgns.on a single sheet of mica. The

foﬁr specimens on one sheet will be reférred to as a 'specimen set'.

Two specimen sets are evaporated together. The sheets of mica are

placed on the stage with the masks over them. A smaller piece of
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freshly cleaved mica is placed on the masks to provide a sample for
electron diffraction.observations. A length of 2mm. silver wire (5etyeen
about 12- cn. and 3cm. depending on the specimen thickness required) is
placed in the ‘t".ungsten basket. The evapo'ra'tion chamber is pumped down

to below 10%" mm Hg and the current to the stage heater is switched on.
The evaporation is performed when the temper#ture of the stage is between
320 and 330°C.

There is a movable shield which is controlled from outside the
evaporation chamber and can be moved above thé masks (Figure 6.3). With
the shield fully covering the specinmen apertures the filament is heated
just sufficientiy to melt the.silver; so the silver can outgas without
conteaminating the surface of the mica, The masks are then fully exposed
and evaporation commenced. Variation in the thickness of the spscimens
is achieved by moving the shield stepwise across the masks., The shape of
the shield is such that one mask can be.exposed alone if required., After
evaporation is camplete,the stage is allowed to cool to near room temperature
before air is a@mitted to the chambers

If the surface of a specimen set is to be modified this can be dore by
means of a second evaporation,using only a’ small. amount of material to
‘ produce a thin additional layéi;.

The Specimens.

The shape and size of films obtained through the masks in shovm in
Figure 6.4. There are four specimené AB, CD, EF and GH, each with a pair
of potential leads which go to the edge of' the mica sheet. The current

circuit A to H is completed by painting on a silver suspension '(‘D‘ag' silver
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in M.I.B.K, manufactured by Acheson Colloids Ltd.) as indicated by the
dotted lines. .This dries to give a conducting layer,

In order to obtain the thickness of - the film from the high femperature
resistance measurements, the ratio gf the distance between the mid-points
of the potenéial leads (d) and the width (w) is required. These
dimensions are obtained for each specimen usirig a travelling microscope
ana viewing the specimens in reflected light, when the edges can be
clearly seen. The edges of the specimens are not so clear when viewed
in transmitted light, as same silver spreads-a little way under the
edge of the mask,giving a section of fhe type shown in Figure 6.5.

The accuracy of the ratio d/w depends mainly on w, the smalier
of the two digtan;es. The ﬁidth is measured at at least two péints and
these rarely differ by more than 1%. The mean is taken for w. The error
_in @ contributes at most 0.3% to the error in d/w. |
Storage of §Eecimeﬁs. B |

Between preparation.and measurement, a period of a few days, the
specimens are kept in dry air is a dessicator, with silica gel as the
dirying agent. ~Specimens stored in this way show no visible signs of
change even after several months, while eny left in the open air soon
become discoloured. -

2) Electron.Diffraction.

The electron diffraction patte;ns from the surface of a thin film
provide a useful check oﬁ the epitaxy, and to some extent on the surface
flatness, of the film. In this work the electron diffraction observations
were usually maede on the sample film produced with the specimens for

‘this purpose,



A diagram of the arrangement of the electron diffraction camera
is given in Figure 6.6. A piece of the sample about 5mm. square is
attached to a flat metal support with 'Aquadag' which also provides a
' conducting path from the film, to prevent it becoming charged by the
electron beam. The sPecimen.support is clamped on a mounting which
allows the specimen to be rofated“in its plane and also about an axis
perpendicular to the beam and in the plane of the film (Figure 6.6 axes
X and Y respectively). '

With the specimen in position the electron diffraction camera is
evacuated to a pressure of about 10-3mm'Hgland the beam switched one.
The diffraction pattern is visible on the fluorescent screen. The
specimen is rotated about the Y axis to bring the shadow edge to a.
suitable position, roughly as in Figure 6.6. It is then rotated about
X until the spot or line pattern appears. This is recorded on the
photographic plate by raising the fluorescenf screen for a few seéonds.

Examples of diffraction patterns from epitaxial silver films are
shown in Plates 1 and 2, page 117.

3) The Low Temperature Apparatus.

The thin film resistance measuring apparatus was built to fit into
an existing glass cryostat. The general arrangement of the apparatus is
shown in Figure 6.7. The outer dewar is for liquid nitrogen and the inner
one for liquid helium.

A two can system is used to cover the temperature range between
4.2°K and about 300°K. The outer can is cooled by 1liquid helium or

liquid nitrogen and the space between the cans evacuated. The inner
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can may then be maintained at some temperature sbove that of the outer
can by supplying just sufficient heat to balance the losses.

The arrangement of the cans is shown in Figure 6.%. They are
supported. from the brass top plate by two thin walled (.006") stainless
steel pump:n.ng tubes, The 1" diemeter tube is connected at its top
end to an oil diffusion pump and leads directly to.the inter-can spa.ce..
The smaller tube (5/16” diameter) is connected to a backing pump, and
leads to the inner can via tﬁe inner cans support tube,

Both cans must be vacuum tight so some fomn of demountable vacuum
joint is required. Indium °‘O° rings are used as they are both convenient
in use and avoid the heating required by solder joints with the
attendant risk of damage to films ’ wires and other permanent solder
joints., The'O' rings are freshly made .each time from 1/16" :|.nr11um wire.
The ends of the wire are overla.pped. and the ring compressed by a set of
12 6BA screws between a flat surface and a shallow 'V* groove, ‘as shown
in the detail - of Figure 6,8.

The brass outer can has on top a 1 inch high container made from
sheet copper. This holds liquid nitrogen to cool the cans to about 78°K.
IThe inner can, | '

The inner can is supported from the thermal anchor box in‘the top
plate of the outer can by a " diameter thin walled stainless steel
tube. This can is constructed mainly of copper to ensure uniformity of
temperature. A sheet copper cylirdgr soldered to the top of the can has
wound on 1t a 200 {1 heater of 42 S.W.G. constantin wire, and also a
copper resista.nce thermometer of 46 S.W.G. enamelled copper wire wh.uh

has a room temperature resistance of sbout 185 €I, The wires connecting
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these to the outside world are brought down the main pumping tube,

The details of the internal structure of the inner can are illustrated
on page 98. Six copper strips, 1/16" x 3/8" section, are soldered to the
top of the can., Between these *are the film contact devices, consisting
of pieces of p;arspex with grooves into which are fixed phosphor-bronze
contact strips. These are shown in Figure 6.9(d). Each mica specimen
sheet is placed between a copper strip and a set of phosphor-bronze
contacts, Thle contacts press on the evaporated current and potential
leads,and hold the specimen sheet against the copper strip. ' Enamelled
X S.W.G. copper wires are soldered to the free ends of the phosphor-
bronze contact strips. |

To ensure good electrical contact a spot of colloidal silver is
placed at each of the film to phosphdr—bronze contacts. The impartant
current contacts have, in addition, pieces of indium pressed betwéen the
perspex and the contact strij). |

There are positioné for four specimen sheets, each of which has four

specimens (page 93 ). The electrical connections inside the can are

sketched in Figure '6.9(;3).' 'The current leads are connected in éeries so
that the same current flows through all specimens, All the wires are: led
to the top of the cen and bunched together. The bundle passes in a spiral
up the imner csn support tube into the thermal anchor box, where it is
vpund several times round a sheet copper former which is soldered to the
outer can lids This thermal e.nchorli-s prov:Ld.ed so that, when the cans are
at low temper;.mres, heat coming down the wires frqm the room temperature
end is taken up by the outer can and the helium bath, and does not Iweacl"l

the imner can.
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The bundle of wires passes up the smaller pumping tube and out.
through an 'Araldite' seal at room texixperawre. In the junction box
(Figure 6.7) the wires are joined to a corresponding set of much
thicker wires which go to the resistance npeasﬁring, circuit. Tsking
the wires by the route described avoids the need fc.Jr a low temperature
vacﬁum seal, which would be @ifficult to provide for so many wires.
Controlling the temperature of the i_nner can,

When the. inner can is .at a hi'ghér temperature than the outer can
heat is lost from it by conduction and, at higher temperatures;', radiation.
If the temperature of the inner can is to remain constant the loss must be
balanced by the heat ‘supplied by the. heé.ter (Figure 6.8). The current
through the heater is comtrolled by a feedback system which uses the
copper resistance thermometer wourd near the heater as a reference. The
use of such a control system greatly facilitates the establishment of a
controlled temperature, and reduces  temperature drift caused ;oy, for
example, change of temperature of‘ the outer can.

The control circuit.

A diagram of the control circuit is shown in Figure 6.,10. A more
detailed circuit dié.gra.m is given in Appendix II. The resistance
thermometer forms one arm of a .Wheatstone bridge, the output of which is
amplified and used to control the current to‘the heater, The temperature
of control is determined by the variable resistance (R). As the resis‘tance
of the thermo.meter changés from just below R to Jjust ébove the heater
current changes from its maximum velue, to nearly zero, as shown in
Figure 6.11. If the required amount of heat is iymvided by some current in

this range the temperature of the can will be controlled, as large changes
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in the current are caused by small changég in 'temperature. The dhange
in the thermometer resistance, required to produce z; change in output
of 50% at the balance poiht,represents a change of temperature of less
than 1% over most of the temperature range.

The meter shows the fraction of full output being dellvered and
_thus 1nd:1.cates when the system is controlling. The variable res:Lstance
in the output circuit allows the SCale of‘ the output current to be
altered to suit the wvarious heat requlrements over the temperature range.
Extra current, not subaect to the controller, can be passed through the
heater to increase the heating rate at higher temperatures.

The effectiveness of control.

The control system is very'e'ffective in use, particula,rls-f at the
higher temperatures, where changes. during sets of measurements are
usually less than 0.1%K. Good control at the highei‘ temperatufces is
important in this work, as the film resis‘tivities are compared with those
for bulk at mm$p§nding temperatures. Small differences between
relatively large numbers are re:1uired, and uncertainty in the temperature
would make the comparison unrgliable.

As the controller depends on a copper resistance thermometer,it is
not very effeptive 'below- about 25°K.. However, sufficiently constant
temperatures can be obtained in this range by hand adjustment of the
heater current. Accurate control is not recpireé., as the resistivities
olf neither the films nor the bulk materisl change rapidly in this range.
The tggerafure of the Specimens, |

It is impracticable to measure thga tempei'ature of each specimen

individually at the same time as its electrical resistance is meagured.
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The temperature measurement relies on the temperature of the inner c‘:a.n
being constant.over a period of time and being the same at all points in
the can.
| The constancy with time is ensur'ed' by the temperature controller
described in the previous section. The inner can is constructed of copper
and is filled with helium gas at a pressure of about 0.5 m.m. Hg during
experimental runs. The specimens are thermally connected to the body of
the can by the exchange gas and through the copper strips against. which
they are held.

The temperature measurement is @% using a copper resistance
.thermometer mounted in the same environment as the specimens., This is
shown in Figure 6.9(d).. The thermometer consists of a sheet of mica round .
which a length of 38 S.W.G. commez:cial enamelled copper wire is loosely
wourd, It is held in place in .the same way as the specimen sheets. In
this position it can be expected to give a good estimate of the temperature
of the specimens,and also a reliable indication of when they échieve
thermal equilibrium.

Copper thermometers wourd in a strain free manner have been found
to be reliable and reproducible (White(w)). A general calibration can be
used to obtain the temperature to better than 0.1°K if the residual
resistivity ratio is less than 1/100. In the case of the thermometer used
‘it is about 0.007. The function (R(T) - R(4.2)) / (R(273) - R(4.2)) is
tabulated by‘ White, so the residual reg.istivity and one fixed point are
required to calibrate a particular ﬁiemometer. The fixed point used in
this case ;vas near the ice point and was determined by an accurate meI;cury

thermometer.
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‘The ‘actual. tempez;ature is not r'equired to great accuracy. What is
" required is the value of the resistivity of bulk material at the same
temperature as the film. It is sufficient that the thermome ter should be
reproducible, as the r'esi'stiv_ity of the bulk material is measured using the
same thermometer.

| The room temperature resistance of the copper thermometer is sgbout
1 ohm, so the same measuring technique is used to obtain its resj.sta.nce
as is used for the film specimens.

A copper resistance thermometer is unsuiteble for tempgratures below
about 20°K, so a carbon resistance thermometer is used to cover this range.
A nominally 39 Q % watt resistor was attached to the top plate of the inmner
can (Figure 6.9(a))e. Its resistance is measured using a simple Wheatstone
bridge circuit (Figure 6.12). The high resistance arms were necessary to
'keep the current in the thermometer low, to prevent self heating. The
accuracy required in this ranée is not high, so no elaborate calibration
procedure is needed. The helium point and some points from the low end
of the copper thermometer range are considered sufficient.

The measurement of resistance.

The thin film specimens have small msistanées, much less than 1 ohm
at low temperatures, and are necessarily 're;note from the resistance
measuring circuits. In order to keep the heat leak from room temperature
small, the connections to the specimens must be through thin wires which
have resistances of over 10 chms. A potentiometric method of resistance
measurement is, therefore, an obvious choice. '

The method is very simple. The specimens are provided with dzrrent

and potential Jeads, end are connected in series by their current leads.
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A current iS .p:assed through the specimens, the copper thermometer and

a standard resistance (0.2 ohms), a.nd the voltage developed across each
resistance. in the circuit is measured. The current is obtained from ‘l;he
voltage across the standard resistance, and the values of all the other
resistances in the circuit can then be obtained fram their respective
voltages.-

The voltages are measured using a Dieselhorst pattern potenticmeter,
which has five decade switches, givi;lg up to 10,000 pV in steps of 0.1 uV.
The out-of-balance voltage is amplified by a galvanometer amplifier, the
output of which is displayed on a secondﬁry galvanometer, A very sensitive
indication of the balance point is thus obtained. '

Thermals.

The temperature gradients in the voltage measuring circuits cause
thermmoelectric voltages of up to a few micro-volts to be set up. These
are co.nstant over a short period of time and are allowed for in the following
way. | |

The potentiometer cu:rreﬁt and the specimen current are passed through
a coupled peair of reversing switches., If there is no thermoelectric '
voltage, reversing the currents has no effect ,. and the true specimen voltage
is obtained in each position. If a themmoelectric voltage is present, it is
not reversed with the current,but it ié added to the specimen voltage in ome
direction and subtracted in the other. The mean of the two voltages measured
gives the true specimen voltage. |
The circuit.

The D.C. resistance m;:asuring circuit is shown in Figure 6.13. The

potential leads from the specimens are taken into a 24 way, 2 pole, low
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thermal switch. The out.put from this is available for voltage

measurement by the potentiomé ter. The specimen current is supplied by

a 6V accumlator and regulated by a variable resistance in series. The
specimen current used is in the range 5 - 10 ma.

The procedure at a given temperature.

The resistance measurements are made only when the temperature of
the inner can has stsbilised at the ret'luired value. The specinlen current
is then also constant. The voltages across the copper resistance and the
standard resistance need be measured only twice at a given 'Eempera.tﬁre,
as they are expected to be constant, Voltages are measured in the
following order:

C0pper resistance thermameter.
Standard msistamg ‘

Specimen on the 1st switch position.

Specimen on the 2nd switch position.

Specimen on the 16th switch position.
Copper resistance thermometer.
Standard resistance.

The average values of the two temperature and specimen current
measurements are taken as appropriate for all the specimens., Changés
are usually small enough for this to be justified.
he procedure of a resistance messuring run.

The specimen sheets are placed in pqsition and the inner can sealed

with en indium '0' ring., The vacuum tightness of the can is checked using
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a helium mass-spectrometer lesk detector. The outer can is segled and
similarly checked, Helium gas at a pressure of about 0.5 m.m. Hg is
introduced to both the inner can and the inter-can space.

The apparatus is fitted into tﬁe cryostat and the outer dewar filled.
with liquid nitrogen. The cooling of the apparatus is hastened by
running iiquid nitrogen into the container at the top of the outer can,
When the temperature is near 78K, and no liquid nitrogen is left at the
top of the oufer can, the nitrogen gas is pumped out of the inner dewar
and replaced by helium. If this were not done,solid nitrogen might
condense on the walls of the dewar and prevent the liquid heliuxﬁ level
being seen. |

The aspparatus is cooled to 4. 2° by transferring liquid helium from
its transport vessel through a vacuum jacke'ted. transfer syphon. The
transfer is performed sufficiently slowly that the ‘specific heat of the
helium gas ‘is fully used ip the cooling process. Liquid helium has a very
low latent heat of vaporization,and much more would be used if this alone
had to cool the apparatus from 7805 to l..2°K. The cryostat is filled with
liquid helium to just above the top of the outer can.

The resistances at 4.2°K are measured and the exchangev gas iﬁ the
inter-can space is pumped out; The inner can is warmed up and 't?rought
to equilibrium at verious temperatures, when the resistances al;e meagured.
Below about 25°K the temperatures are measured.by the carbon resistance
thermometer and .the heater current is set by hand, Equilibrium is
established quickly in th:.s range as specific heats are small.. Above about
25°K the temperature controller is used., At higher tezrperatures the 11qu1d

hel:Lum level falls below the bottom of the can, and is eventually lost, but
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control is still effective as long as the temperature of the outer can
is lower than that of the innér can,

Measurements are contimied up to about room temcerature, with an
.overnight'break when the temperature is somewhere in the range 100%K - 200%K.
The cans do not warm up to room temperature during this period as liquid
nitrogen femains in the outer dewar long enough.

Above about 200%K the temperatum of the outer can rises ve;ry slowly
so heat is érovided by a 500 ohm electrical heater wound on it. This is to
avoid very large temperature differences occurring between the cans.

The resistances are usually measured at about 30 temperatures in the

range . 2%k to room temperature,

4) The Thickness of Thin Films,
Methods for estimating the thicknesses of thin metal films may be

divided into three groups.

(a) Mass measurement methods(35’36). The mass of mater'ial‘ deposited in
a given area .i‘s estimated, e.g. by weighing or by chemical analysis, and
the average thickness calculated assuming that the film density is the same
as the bulk densi"by; In order to get sufficient mass for accurate measure-
ment large subsirates are required, so these methods are unsuitable for the
films used in this work,as several small specimens of different thicknesses
are produced at each evaporation.

(b) Multiple beem interferometric methods( 49) . Fringes of eé;ual
chromatic order are usually used and the thickness at a single point at
the edge of the film is obtained.

(¢) Resistance methods®®. The fhickr)ess is deduced from the shape

" of the specimen and its electrical resistance near room temperature, wvhere
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size effects are small,

A resistance method has been used to obtain the thickness of all-
the specimens discussed in the results chaptefs. The method is described
in Chapte:c" VII as it arises naturally from the analysis of the resistance
results, The thickness of some specimens were measured by means of fringes
of equal chromatic orde'r, and the Tesults compared, in Chap;ter VII, with
the thicknesses obtained by the resistance method. A éescriptic;n of 'lhél

fringe method will now be given,

Ihickness measurement by multiple beam interferometry.

The use of multiple beam interferometry for the study of surface topology
has been thorou'ghly investigated by Tolansky and described in his booka'"g) s
from which the methods employed here have been taken.

An air film bounded by surfaces which are good, but not total,
reflectors has transmission and mfl;action properties which are critically
dependent on the thickness of the air film, For .the purpose .of measurirg
metal film thicknesses,our interest is restricted to the reflection
properties of an air film which has one surface totally reflecting and the
other about 90f% reflecting. Monochromatic light incident perpendicularly
on the latter surface is totally reflected unless the thickness of the air
film is close to n\/2, where n is an integer and A the wave length of the
lights An indication of the form of the reflectivity thickness curve is
given in Figure 6.14; |

.If the air film is not of uniform thickness,there are daric fringes’
where the thickness is é—n?». These contours of constant thickness are known
as Fizeau fringes, and an arrangement for observing them is showr; in F‘igure

6.15. The output of a mercury vepour lamp is filtered to leave only the
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green line,and a half silvered mirror is used to allow perperdicular
'observation of the air film., A drawing of a typical fringe system
is shown in Figure 6.16 (a). |

The above method can be used to observe the thickress of an
evapcrated specimen film, provided it has sharp edges awsy f'mxﬁ the
edge of the substrate. A layer of silver is evaporated over the film a.nd
substrate sufficiently thick to give zero transmission. Tolansky has |
shown that the surféce of this upper layer reproduces the features of
the surface below to better than 20A. A microscope slide, silvered to
about 90% reflectivity, is pressed lightly in contact w.'ﬁ:h the silvered
specimen (Figure 6.17). The resulting air film changes thickness over
its area in a gradual fashion,except at the edges of the specimen film,’
Such an air film, frhen observed with the arrangement of Figure 6.15,gives
a fringe pattern like that shown in Figure 6.16(b). The fringe steps
occur at the edge of the specimen film, and could, in principle, be used
to obtain its thickness. In practice the fringes are used for preliminary
qbservation only, and the thickness measurement is made by using fringes
of equal chromatic order. .
Fringes of Equal Chromatic Order.

The seme -interference film is used as for Fizeau fringes,but white
light is used instead of mohochromatic, ard more information is obtained
about a more restricted region. The method is best explaiﬁed by '

considering the experimental arrangement used (Figure 6.18).
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Figure 6.18 Apparatus for fringes of equal chromatic order.

White light from an Ediswan'Pointolite' is incident on the air film.
The part of the reflected beam which passes through the half sil\}ered
mirror enters a good achromatic lens which projects an image of the surface
of the air films on to the slit of a spectroscope. The slit receivesdlight
which has been reflected from a line (PQ) on the air film. A line along
the spectrum produced is obtained from a single point on PQ, where the
thickness of the air film is t(say). The interference condition is now
‘realized for wavelengths; A,» Which satisfy the equation n A = 2t , so a
line along the spectrum has dark spots at these values of A. uTh'e spectrum
is built up from a set of lines from points on P§ with various values.of
t, so it is crossed by a set of dark lines, one for each value of n, The
order of interference is constant for each fringe, hence the name.

Changes of thickness along PQ result in changing wavelength for the
fringe across the spectrum. For a given n, A is propartional to t, so
changes of the thickness of the air film are d.irectiy related to the shape

of the fringe., If the line PQ crosses the edge of a specimen film,the
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abrupt change of thickness of the air film produces a step in each
fringe, from wl;ich the thickness of the specimen film can be obtained.
Plate 3 shows a photograph of a fringe system -with steps. |

Fringes of low order are most sensitive to change of film thickness,
as 6\ = 25t/nl, but the advantage is of fset to some extent by the greater
width of low order fringes. Fringes of‘ order 10-30 are useful for
m’ea'surement, and can be fairly easily obtained by varying the pressure on
the microscope slide,while observing the Fizeau fringes. |

A Hilger spectroscope with a reflection diffraction grating is used,
and spectra are recorded on llford R!+0' plates. The mercury spectrum is
superimposed on the fringe system to provide wavelength reference ‘points.
The fringe widfh J.S significémtly greater than the resolution of‘ the
spectroscope, so the achievable accuracy is limited by the properjties of
the interference film. ‘ |
Measurement of the frigge system.

To obtain the thickness of the specimen film from the step on a fringe,
the order (n) and the wavelength change at the step (4 A) are required.
The wévele.ngth of two fringes and the difference between their orders
are required to establish the order of each fringe in the system. If the two
fringes are well separated,the Value' §f hlobtained should be near enough to
an integer to avoid ambiguity. Once the order is known for a given fringe,
the thickness of the specimen film is given by % nda.

A scale for measurin.g the fringe system was made by reducing a
millimetre scale about 5 times onto a photographic plate. The spe'ctrum
and scale plate are projected together,and the fringe system measured in

terms of the scale. The scale is calibrated by referring it to the mercury
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spectrum superimposed on the fringe system. The fringes used to obtain

the order of interference are chosen near spectral lines, one at each end
of.thé spectrum. For step measurement the wavelength difference is taken

" as proportional to the difference between the scale readinga.' Measurement
of a set of close fringes, which occur at wavelengths 2t/n, showed that
this procedure is justified. The step'edges are usually a little rounded,
80 the wavelength difference is measured between the points X and Y

(Figure 6.19) where the extrapolated main lines of the fringe meét the line
through the step system, AB.

If systematic errors are discounteé fhe accuracy of the thickness
results obtained by the fringe method may be roughly estimated from the
variations in the results for particular specimens. These were up. to about
5%, a value also given for the accuracy of this method by WOlter(59).

Some thicknesses obtained by the fringe method are compared, in
Chapter VII, with the thicknesses of the samé films obtained from the
resistance results. The agreement between the two methods ié fairly good,
but the fringe.thicknesses are usuéllyhless than those from resistance
méasuremeﬁts and lead to unréasonable results for the film resistivity.
The cause of this discrepancy is probably the departure of the film edge
from an ideal step shape, resulting from the spread of material under the
eage of the mask. The section of a film edge is shown in Figure 6.20. It
would not be possible to separate the effect of the 'tail' from the general
shape of the fringe, and the thickneéas would be underestimated (Figure 6.21)

This mechanism would lead to an error of constant percentage, and this

is found roughly to be the case.
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Replicas of six of the resistance specimens were prepared by
Gonza;l.e.;s and micrographs of fbu.;' of them are shown in Plate 4. These
résulta illust;'ate the variable nature of the film surfaces. They
are generally fairly flat with occasional features which are large on
th.e atomic scale. The features shown in Plate 4 fall into three. main
groups, only two of which represent structures found on the surfaces
of freshly prepared films. The large features, of the type‘ shown
by circles, are holes or depressions in the film surface. The lines,
marked by arrows, are steps in the surface, probably ~100f or leés.
The small bumps on the surface (as in the squares) are not .seen on
'mpiicas ;t’rom freshly made films and may be due to contamination
acquired during storage. |

The centres of thé main featiures in (a) and (b) are white,. showing
that no chromium has been deposited there and suggesting that the
features ma.y represent holes rather than merely depressions.. Con‘f’ix';nation
of the presence of holes was obtained by observations with an oil
immersion optical microscope. A part of specimen 33.2((b) in Flate J)
was observed and many faint spots of light were seen, distributed
typically as in Figure 9.% (a). The diametér of the spots was very
roughly estimated, by comparison with a fine wire, to be ~ 2000 - 50004 .
Most of the spots were very faint, but a few were brighter, apd around
these a ring was seen. |

These rebults are just as expected from holes with diameters small
compared with 1':h§ wavelength .of light. '.fhey may be explained in terms
of the Abbé theory of microscope image formation( 61 ). Parallel
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light is .incide.nt on the object planle. (Figure 9.1b). The Fraunhofer ,
- diffraction pattern of the object plane is formed at the focal plane
FF, but with an angular cut-off deférmined by the aperture Of, the
lens. The light leaving a very small hole is uniformly distributed
over a wide angle, so the inten;ity distribution at FF’ is as shown
oﬁ 9.1 (c¢). The image formed at the image plane II’ has the shape that
would be reciuired in the object plane to give the pattern (c) at FP’
i.e, roughly as in 9.1 (d). The size of the image depends only 6n the
microscope, while the brightness depends on the size of the hole in the.
film. Only the larger holes allow sufficient light throug}:; to allow
the first ring to be visible.: '
Holes were seen optically in several films ~ 1200A thick, but not
in somé thicker films. This is in agreement with the electron
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micrographs, as only the depressions in the thinner films have white
centres.

The six specimens examined point strongl& to the conclusion that
the variability of the residual resistivity of films of a given
thickness is related to the density of surface features. This is
illustrated in Plate 4 by the pairs (a),(b) and (c),(d). In each
pair the films are of similar thickness, but have considerably different
densities of surface features.a.nd the residual resistivities differ by
about a factor of 2.

It is of intereat to consider what effect the presence of holes in
a film might be expected to have on its resistivity. At high temperatures
the electronic meean free path is much smaller than the average distance
between the holes. | They then merely contribute to the overall shape of
the specimen, .and the size-shape factor will take account of them. At
.low temperatures,' however, the mean free path is long compared with 'l;he_
separation of the holes and they contribute to the bulk resistivity.
in a film with bulk resistivity 0.01u Q-cm the bulk mean free path is
80,0008, If the holes in the f£ilm (b) are assumed to have their
apparent surface diameter all the way through the f£ilm and to be the
only scattering agent, the mean free path parailel_ to the surface is
about 40,0008 , indicating a confribution to the re.sistivity of about
0.02lp. (=cm. This rough estimate i.s about one third the difference
in resistivity between film (a) and (b) (Plate 4).

The preae.nce of holes in the thﬁmer £ilms offers a poaai‘ple

explanation of the results for the thinner films described in
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Chapter VIII, page 172. The measured resistivities at low
temperatures are higher than expected from the high temperature
results on the basis of Fuchs® theory. The density of holes
required to explain the results for films below 10004 would, however,

have to be at least four times greater than in specimen (b), Plate Le

2) The Electronic Structure in Thin Films.

Restriction on k .
The free electron structure in thin films is usually assumefl to
be independent of thickness. This is not exactly true, as the
surfaces impose boundary conditions on the electronic wave functions
which restrict the values of the 2 components of the wave vector
(kg) to x n/t, where n is an integer and t the thickness of the»film(sl*).

The eiectron states arev thus

/—\

confined to planes in k-spaces \
perallel to the film surfaces o /74 RN
(Figure 9. 2.). There are ~ 2t/c | %7(‘/ \l{ A/ \\
such planes in the first C k \

Brilibuin‘ zone; where c is the —=\

lattice spacing perpendicular \ -/
to the film surface. Silver £ilms — \\ //
about 1000 & thick would have | — - \v/

about 200 planes crossing the _"'Ar a . :

Fermi sphere. ' ' Figure 9.2

Crittenden and Hoff'lmsm(s5 ) '

have suggested that the restrictions
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on the valués of kz may reduce the resistivity, but it seems likely

that this will not happen unless the films are very thin. If the
intrinsic scattering probability is isotropic (impurity sca:l:teriug)

the rate of scattering depends only on the number of final states
available at the Fermi surface. There are as many states per unit
volume in the film as in the bulk and the fact that they are confined
to part:xcular planes does not reduce their effectiveness as final
‘states. When the electron scatteringis by phonons the availability

of phonéns of the righ‘l; wave number mﬁst be considered. The
distribution of sta;tes in phonon wave-riumber space (q-space) is'
identical to the distribution of electron states in k-space. The'
phonons required to excite transitions between electron states must .
have values of' q, which are integral fnllltiples of Akz, and the
phonons all have just this property (Fig\lu'e 9.1), so scattering
probabilities are unaffected by kz, quantization. It must be emphasized
that this argument is only applicable if q >> A kz for most of the -’
phonons, i. e.. it would break down in very thin films at very low
temperatures. The experimental films,however, are thick enough for the
condition given above to be satisfied at temperatures wheré pl}onon

scattering is ‘important.

Non-Spherical Fermi Surface.

| The Fermi surface in silver is nearly a sPheré over much of its
area (Chapter I), and this gives credibility to the assumption of the
free electron model. However, silver is not a free electron metal;

it has a zone structure. The Permi surface has necks to the [111] zone
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boundaries and electron scatterings may be of the Umklapp type. The

possibility of Umklapp processes makes it more reasonable to assume

Figure 9.3 Umklapp scattering.

that phonon: séé.ttering is isotropic, espécia.lly at high temperatures.
The Debye‘phonon model for a free ele'ctrqn metal includes a frequency
cut off which limits the scattering of electrons to about 79° by
normal processes, 8o even at high temperatures the scattering ‘;would not
be isotropic. When Umklai:p processes are included scattering is not
80 limiteds In Figure 9.3 the small q scatterings to A and B are
equivalent to scattérings to A’ and B’ in the original zc;ne. The
assumption of isotropiq scattering is, therefore, probably qu;lte
reasonable, especially above the Debye temperature (200°K for silver)
when large areas of the Fermi surface in adjacent zones are accessibl'e

to phonon induced transitioms.
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CHAPTER X

THE PHONON-SURFACE EFFECT

1. Introduction

In the resistance size effect theories of Fuchs and Dingle‘ isotropic
scattering of electrons is assumed. While this is probably a.. reasonable
assumption at the Debye temperature and above, it cannot, with confidence,
be maintained at low temperatures when low angle phonon scattering

(45)

predominates. It was suggested'by» Olsen that the low angle scattering

may be of greater importance in thin specimens than in bulk specimens.
(56)

The argument is put as follows «: The current in a thin film or wire
is carried mainly by electr'onstrav‘elling parallel to the surface. If one
of these electrons is scattered through a small angle,it will soon

reach the surface where it will be scattered through a large angle. The
original low angle scattering is, therefore, finally equivalent to & large
angle scattering. For a given bulk resist:urity, the £ilm resistance is
expected to be higher when the scattering is mainly low angle than when.
it is mainly 1sotropic. ) '

Although the phonon-surface effect is certainly expected to exist,
the above argument is oversimplified. It would apply directly to a beam
of particles which could only lose particles and not gain them. The

situation in .a metal is rather nore comi:licated than this, and must be
| approached frem the Boltzmann gquation point of view.

The Boltzimann equation in the absence of a magnetic field was
obtained in Chapter II. From equation 2.19, page 23:
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BV, 2,0 + YW V_ el = i) | (10.1)

B o

where g@:_,g) is the equilibrium change in the distribution function

caused by the electric field. The scattering term has the form

cn)| = J(s(k_,z)-s(s.-'s)) Wek) & (10.2)

a

and it is here that differences in thé type of scattering make themselves
felt. The simplifying assumptions 1,2 and 3(a) made in Chapter. IT page 25
will be retained i.e.: | | '

‘1)  Energy surfaces are spherical in k-space

2) Elect.rons are scattered on constant energy surfaces. ‘

3(a) The intrinsic sc;.ttering probability depends only on the

angle throﬁgh which the electron is scattered. i

Phonon écattering involves ch&nge of the electron energy, so these
aésumptioﬁs rea..lly exclude phonon scattering. However, it may not be
unreasonable to ignore the energy changes, as the calculation of the
cufrent involves an average across the Fermi surface. An electron
scattered to a point on the Fermi surface contributes the same amount to
fgdk, and hence to the current, whgther it changes its energjr on scattering,
or note The above objection also applies to Fuchs® theory, and has been
ignored in applying that theory to the high temperature film resuits, 80,

it is consistent to continue to ignore it at lower temperatures. The
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aspect of phonon scattering expected to be of importance is ;ts angular .
_ dependence, and this ig incorpora_rl:ed in the theory'by allowing Q to de‘pend
on ¥, instead of kéeping :.t oonsté.r‘;"c as in Fuchs' theory. |

With the above éssumptions the scattering term becomes,’introduping

polar coordinates in k-space,

:;] = [Gopkin) - 804197 1,5.)) A1) 12 sin sdoas

8

(10.3)

When the bulk case was being considered (page 30) the scattering term
was reduced to the simple relaxation time form g(6,@,k)/tr where

S|
T ox

(1 - éos ¥) Q(Y) sin ¥4V (10.4)

The bulk conduct.ivity is then nez. t/m. This simple form for 'g] is
no longer cbtained in the morélgeneral case of thin specimens. ®
Figure 10.1 (a) shows a g(8) curve for a f£ilm with isotropic scattering
(Puchs' theory) and 10.1 (b) shows the g(0) curve for the corresponding
bulk cases If the scattering is mainly low angle, e.g. with Q(¥)

as in 10.1 (c), the rate of scattering from 6 = 90° will clearly be
much greater in the film than in the bulk. 'The values of (g(e) - g(8))
are much larger, in thé range defined by Q(¥), in the film than in ;:he

bulk. To allow comparison with the bulk case, the scattering integral
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at 6 divided by the value of g at

6 (i.e. ’g(e)]

/ g(8) ) is considered.
8 . ‘

" This goes down as @ moves away from

O

90°. The form of g(6) shown for

' the film assumes a constanf value of

g (6)] / 8(6) (Fuchs® theory,

s

const, ‘g]ocg), so it cannot be
s .

the solution when scattering is

T =

As scattering

- from the peak shown in 10.1 (a)

.+is high for low angle scattering,

the change in g required can be
expected to involve a smoothing

out of the peak.

Previous Calculations of the Phonon-Surface Effect.

Three calculations of the phonon surf‘ace effect will be mentioned.

Two of these are concerned with w:l.res, and although they are not of

mme(hate concern in the present work the methods used are considered.

Blatt and Satz(5 ) - start with the assumption that the mean free

path in wires (1 ) can be split up as follows:

S
1

s . =,
w lph 1

X
18

1
+ ——

s (10.5)
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The component mean free paths are:

1bh - normal phonon séattering.

1, =~ impurity scattering.

i
ls - surface scattering.
1, ~ phonon-surface scattering.
p .

The phonon surface term is obtained hj considering an electron initially
‘travelling parallel to the surface of the wire.- The electron is

- scattered repeatedly through angles =~ T/Tb,‘where T is small cﬁmparedf
with T, (the Debye temperature), and eventually reaches the surface. The
_average distance requi:gd for this is taken as 1P8.l The phonon-surfacé
contribution calculated fofvelectfons parallel to the surface ié assumed
to apply for all directions, and the resistivity of the wire is taken
as proportional to 1/1'.

The lack Gf rigour of this method,which is admitted by the authors,
makes it difficult to assess whether it can be expected to give even
approximate estimates for the phonoﬁ éﬁrface-effect. The method is
restricted to.very thin wires (diameter << l'), and it is asserted
that the bulk of the current is carried by electrons moving parallel
to the surface of the wir;. This‘is not true for thin wires, though
it is for thin films (page 65). The electrons moving parallel to the
surface are of decreasing significance as the wire becomes thinner, so
the phonori-surface effect should decrease similarly. The method described
above predicts an increased phonon-surface effect with decreasihg wire

diameters.
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Lathi and Wyder (57) used a Monte Cerlo method to estimate the
phonon-surface effect in wires. A computer program simulated electron
paths in the wire, allowing a constant probability of scattering by
phonons and impurities bin.ea.ch small increment of length. The angle of
scatter was made T/TD for each phonon scattering and selectedt .randomly
from the isotropic sphere for impurity scattering. When a.path reached
the surface an iabtropic scattering back into the wire was generated.

The mean free path was taken as the total distance travelled by the
electron d:_i.vided. by the total number of effective scatterings. An effective
scattering was defined as one which randomized the electron direction. Each
impurity and surface scatteringiscounted as omne effective scattering,
but not each phonon scattering. The number of scatterings through a
small angle 8 required to randomized direction is ~ 1/62, so each phonon
scattering was assumed to contribute.only (!l‘/’].‘l))2 to the total number
of effective scatterings.

This simple Monte Carlo method is open to several objections, of
which the two most important are the following. The resista.nqe" is
assumed to be proportional to the mean free path of the electrons. This
assumption is based on the relationship obtained from the Boltzmann
equation in the bulk case, when scaftering is isotropic and the angular
dependence of g is cos 6 (page 30). It is by no means obvious that this
result can be extended to the mors general caée where g has a different
angular dependence. It was shown in the previous section that the
angular dependénce of the scattering influences the resistivity by

changing the scatte;'ing term. No provision for this is made by Lﬁthi
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and Wyder, so it is not easy to see how their method would be expected
to estimate the phonon-surface effect._

Azbel‘ and Gurzhi(5 3) obtained a formula 'for thin film resistivity
which :‘mcludea the phonon surface effect. The effect of low angle
scattering is introduced by allowiné the relaxation time t to depend on
6. The thin film limit only is treated, i.e. K<< 1 and the function g
for the isotropic case has a very narrow peak at © = 90° (Figure 10.2).

' The width of the peak is ~ K ;'adians.

In this region each low angle scattering is taken to be as
effective as a large angle scattering, so the relaxation time is decreased
by a factor which is the reciprocal of the number of lowl'angle scatterings
requifed to be equivalent to one high angle scattering. The phonon

surface effect is assumed to he

g(o)

unimportant away from the peak
in g(6 ), so an ad hoc function

is used for the phonon

contribution to the relaxation
time which s~ (2/2p)°

at 6 = 90°andu:b near 6 =0

and 18(_)0. The crossover occurs '

at sin 8 = ~ T/TD. 'The

function is:

Figure 10.2
" g(6) from Puchs theory and

. x(8) from 10.6.



w(0) =y (( -g—Df + sin?e) (10.6)

The transport equation was solved with this +(6) and a formula

obtained for pa/p,. Contributions are included from both phonon and

impurity scattering.

L 1
Py K log (1+ 1; ) | ' (10.7)
where
x = % e d'/:Lph .
‘ 2 12
(2/2)%4(a/1)% + (/2 )
. and 1 = - effective m.fop of phonons in bulk .

-

1 =  impurity mean free path in bulk .

1 = total effective bulk mean free paths.

This rgsult predicts that the resistivity of a film should rise
more rapidly with temperature than ’expécted from Puchs' theory at low
temperature. The shape of the curve depends on the values of t, 1, and 1p.
Two examples are given in Figure 10.3. The films have the same value of
K(0.01) at T=0,but different values of bulk residual resistivity. The
firat has a very low bulk residual resistivity, and the film resistivity
rises .sharply at about T = 0,03 TD e« The second has a residual resistivity
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comparable with the films described in the experimental part, and the

film resistivity rises more slowly with temperature.

° 'Og i; 17&3 ' -] 065 '; 17%3‘
Figure 10.3 Examples of Azbel and Gurzhi's results

Azbel and Gurzhi's calculations' do not allow for any dependence
of ©(8) ong(6), and are confined to very thin films. In the next
section a numerical method for estimating the phonon-surface effect
will be described which has neither of these limitations.

3) Numerical Calculations of the Phonon-Surface Effect.

The discussion of the phonon-surface effect given so far shows
that Fuchs' theory cannot be expected to apply to films when the
scattering is largely low angle. In order to calculate the magnitude
of the effect to be expected for the films measured in the e:;pefimental
part, a numerical method wa# developed which is based on theA Boltzmann

equation approach. The methods used by Blatt and Satz and Lithi and .
Wyder were felt t_o' be too loosely related to the Boltzmann theory
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to allow them to be used with conf'idence. The method. described below
is, in effect, a development of the method used by Azbel and Garzhi to
allow for the relationship between the rélaxatiop time t(6) and the
function g( 6). |

The form of the Boltzmamn equation to be solved for films of a.
free electron metal is obtained from equation 10.1 and 10.3 with the

assumptions on page 185 . The electron velocity v is the Fermi

velocity
E dfo(k) 8in® cos @

-
h .

g (95¢,k,2)
6 Y. +
ok

v cos

. f (2(0,8,kiz) - 8(05 97, kys)ks Q(¥) sin 0°a 07 ¢
| («10;8)

In both bulk material and films. with isotropic scattering g depends on
¢ only through a factor cos @ It will now be shown that this is also
true in the present case by assuming that g can be expressed in a form

proportional to cos ¥, and putting it in equation 10.8 i.e. assuming

ar- (k) '
go,g,k,n) = = B2 cos § u(e,z) . (10.9)
. . &
Bquation 10.8 then becomes
oulo
Vvcos 6 cosg _tal:—_’i)"’ sin 6 cag

=f (u(0,2) cos ¢ - u(6;z) cos ¢*) Q(¥)k’ sin g’d 0°a §* .
| (10.10)
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If the right hand side can be
shown to be pi'oportional to cos ¢,
with no other ¢ dependence, all ¢
terms can be eliminated from the
equatibn, confirming that g has"
the form given in 10.9. In
figure 10.4 O is (6,9¥) and X is

(6’,¢7)s 6 and®” are kept constant
and X moves on a line of constant
8’. Q may be written as . '
Q(0,07, ¢) where ¢ =g°-¢g. . ' Figure 10,4
Q is an even function of ¢°0 '

The integral may now be written in two parts with ¢§’ replaced by
¢O+ ¢, i.ee
(a) u(esz) cos ¢ f dd’ sin e'f k Q(e’elt¢°) d¢°'
° ° T (10.11)
x 2x 2 ' '
(v) f a6’ u(6’z) sin 6° J ag, k ,cos(¢g +# ) Q(e,0’ ¢°)
o o |
The ¢ integral in (a) is independent of g@. The ¢ o, integral in (b)

may be expande.d to
2x : | | .
[ Q(e,e:¢°) '(cos $, cos ¢ =sin g _ sin )] d g, (10.12)
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The second part is gero, as Q is an even function of ¢° and sin ¢°

and an odd function. (b) is finally
cos ¢fk2 cos ¢o Q (e,,e',¢o) .d ¢°. (10.13)

Now cos ¢ cancels through 10.40, leaving an equation for u(6,s)

-

v cos @ -a-l(g-'—zj)-p-sine

0%

= R, u(s,s) - fR(e 67) U( 6}3) sin 0°a 6*

(10.14)

where R, = f () k® sin vav » @ constant for a given function AY)
and R(6,0°) = j'kz cos ¢, Q(8,6%,¢.) & g |

If the right hand side is of the form E—E%‘f)i , and the boundary
conditions are as used by Fuchs' (page 46), the’equation 10. 14 ﬁas an
analytic solution. Although v(6,2) is not independent of u(@,z) the
simplified equation,i.e. with the right hand side of 10.14 replaced by
u(e ,z)/'c, forms the basis of' an iterative method for obtaining a
solution. A solution .u1 is first obtained with a constant TyToye
This solution is put in the scattering integral to give a new relaxation
time function, 'rz(e,z), which is used to calculate a new so_lutio;x u,.
The iteration is repeated until an unchanging solution is obtained.
If this process were to be successfully' i;xzplemented the solution
obtained would be the solution of 10.1} under the boundary condition

assumed, and could be used to obtain pf/ﬂ) for films with low angle
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scattering. Although there is no diffic’ul'ty in principle with the
method' given esbove, a simplifie@ version has been.'ﬁsed which is expected
to give a reasonable approximation'to the results that would be obtained
from the complete method, and requires a less complicated computer
programe. i
The function u depends on z, so' T must also depend on z. ' The most
important variation of < s however, is wifl_l 0,as it is the high rate of
" scattering out of the peak in g(0) that is expected to be most.significant.
The peak becomes less symmetric away from z = t/2, but the width remains
about the same (Figure 3.6 page 49), so it is'not t00 unreasonable to .
take 't as independent of 2. This is done in the simplified ca;culatioh
and v (@) is obtained at each itération by the use of the ‘sca'ttering
integral with u(6‘,z) replaced by its average over gz, i. e.\;l(e)..
At each iteration the solution. of the followirg equation 'is required.

ou (e,z) l u(6,2 (10’15)

v cos § . 2% + 8in 6 = < (0

An equation of this type was solved in Chapter III (page 47), giving

u(e,z) = 7(6) sin 6(1 - c(p) ¢~ ¥/ T(0)V co8 8. (10 16)

The Fuchs’ partially specular boundary condition gives

{

= i-p
c(e) Tt v cono - (t0.17)
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The average of u(6,z) over z is

. .
i) = [ulom)ar =(e) sme (1- (2;1’) f;;e ) )
SR A _ w(1-pe

(10.18)

where w = t/t (0) v cos 0. Thus, given t (0), u(6) is obtained directly
from the formula. .
The other main stage in each iteration is the calculation of

© (6) from u (0). From 10.14:

j;.) = B, - G:e) fn(e,e'.) a (e} sin 6°d 6’ (10.19)

R, and R(6,6’) are independent of u (8) and can be calculated for a

1
given Q(¥Y) before stating the iteration process.

The scatteri function ¥Y)e

The shape of the scattering function is obtained from the Debye
model of lattice vibration. The mean number of phonons in a particular

element of g-space at temperature T is n(q) where .

qdq
n(q) « o - (10. 20)
e o/ ckT -1
Phonons in element dq_ scatter electrons into an equal sized element

in k-space (Figure 10.5). It is assumed that the probability of an

electron being scattered by a phonon in element dg at q is proportional
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q-space

k=-space

Figure 10.5
to the number of phonons in the element, i.e. to n{q). As q is related

to the scattering angle ¥ by g = 2k, sin ¥/2, the number of phonons

per unit g-space may be expressed in terms of Y .

sin v/2
n(¥) « __L_ (10.21)
x
e -1
where x = °°D sin ¥/2.
7 ,

This gives the shape of the scattering function and it is necessary
to find a scaling constant to give Q(¥). The constant is established
by the requirement that the Q(¥) should give the observed bulk lattice

resistivity of silver at the temperature concerned. From page 30:

e = ne® < _ 2 ne’ P (1-cos ¥) n(¥) sin vay
ph m = m : .
: (10.22)

where P is the constant,.



The residual scattering is assumed to be entirely isotropic and
contributes a term to the scattering integral which is independent of
4 (6) and can be included in R,.

The resistivity ratio,pf/pb.

When the iteration process has yielded a solution,i.e. when two
consecutive solutions are close enough, the ratio of the film conductivity

to the bulk conductivity is calculated.

e 118 () &k as

A (10.23) -
[ g ® &

The factors common to g, and g, cancel (cf. page 50) leaving |

o, f sin® 0 u.(6) d e | ‘
b fein“"eu (6)ade

The bulk u, ub(e) is 7, sin @,

' pe . | | -

" = &/3[sin"06u(e)de. (10.25)
b . .

- Some program details. -

In very thin f£ilms @ (6) changesvery rapidly at angles close to
0= 90° and slowly elsewhére. The 6 range is, therefore, divided in two.
The point of division and the number of intervals in each part of the

range are program parameters. The set of 6 values are fixed throughout
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a calculation, so computing time is saved "Dy obtaining cos 6, sin 6

.and R(e,e') once only at the be'.ginning instead ofl‘"each time they are
req‘uired.ﬁ(ﬁ.,ﬁ') is calculated for the standard values of 6 and for a
number of values of 6’ on either side of 6. The integrals at all parts
of the calculation are by Simpsors rule.

The program steps are summarized beiow. A

1) Parameters read ins: T, Py p,.gph(T),Odivision point and
numbers of - intervals for 6 ranges.

2) n(¥) calculated from formula 10.21. ,

3) Constant to give Q(¥) calculated from n(¥) using 10.22 with .
Gph = 1/pph (T).

4) Cos 6 and sin 8 for all values of 6..

5) R(6,6”) for each © value. 8’: equally spaced valiues on
either side of 6, the range being determined by the angularv |
spread of Q(¥) | |

6) u(6) from t(6) by formula 10,18. The change in u ()
permitted is limited’to prevent oscillation.

7) New 1:(6) from u(6) by numerical.integration of 10.19.

8) 1Is the change in u () since previous iteration small?

No. return to (6)
Yes. Pf/Pb from 10e25,
The program was written in Fortran IV and run on the IEM 7090 computer

at Imperial College. About 25 secs, were required for each value of

Pf/ Pb°



Sta;bility;of‘ the iteration process.

The simple version of the iteration process described at first is
extremely unstable, giving wildly oscillating values of u (8) and t(0).
When u (8) is far removed from a solution the changes in t(6) obtained
are in the right direction but much too large. . The oscillations can be
controlled by limiting the change in u (8) allowed at each iteration to
some fraction ( ~ 10%) of its value -at the previous iteration. The function
u (6) then changes in a steady manner and a reasonable solutioni's
obtained within 10 - 30‘ iterations. The solution is Judged tq l:>e reasonable
when the values of u (6) generated by one iteration are all within 19? .
of those obtained from the previous iteration. In most cases the
diff;ai'encé is much less than 1% The error in the value of p./p, is
quite small (<0.1%) as many of the errors in u (8) are cancelled by
the integration. o '

The results. | '

The change in u (8) brought sbout by the change from isotropic to |
low angle scattering is, .as expeéted, a smoothing out of the peak at
o = 90° (Figure 10.6). The r.eciprocal' of the relaxation time is also
shown. . This is pr;aportional to the rate of scattering out of an
_element in k-space, so the negative regions imply a net gain by
scattering. These regions receive the electrons scattered out of the
peak and they lo'se electrons only by su:rface scattering.

The program was run for i}a.riaus values of K, T and p.

The resulta.a.re given in Table 10.%1 with the Fuchs' values for
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a®)

.comparison. The resi&ual

resistivity in all cases is

0.01 p Q=-cm, i.e. roughly the

‘value found for the experimental

o q'o 9 1 80' f ﬂms.
program results

_____ Puchs
K=0.4 T=140%

Figure 10.6 -

The results for each value of K may be p1.c>tted as the ;.hange in’
P f./p-b, brought about by the change from isotropic scattering to low
angle scattering, i. é. the difference between the program results
and Fuchs' results. The result forK = O.1 are plotted in Figure 10.7.
The results up to about 60°K seem quite reasonable. At very low
temperatures the residual isotropic scattering is most impo;rtant and
Fuchs’ results hold. As.the temperature and number of phonons

increases the phonon-surface effect
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Phonon-surface effect.

Program results - p./p,

«203=-

K(=t/1)
P ) [ 1 ,
0.01 | 0.03 | 0.1 0.3 1.0
0 |(Fuchs) | 261 | 1124 |4.781 |2.466 1.462
100 33.22| 1446 |5.996 |2.884 | 1.549
60 33.90| 1473 [6.062 |2.896 | 1.549
40 36.48] 15.61 |6.287 [2.941 1.559
25 37.77| 15.80|6.207 |2.886 | 1.536
20 36042] 15.15 [5.950 [2.893 | 1.517
15 30.4 | 13.7 [5.454 [2.630 | 1.465
0.4 | (Fuchs) | 13.98| 6.412(3.030 [1.79% 14253 .
100 | 17.9 | 8.02 [3.538 [1.932 | 1.280
60 48.3 | 8.12 |8.553 [1.932 | 1.278
40 19.4 | 8.43 |3.613 |1.940 | 1,280
25 19.6 | 8.38 |3.550 |1.906 | 1.260
20 18.9 | 8.03 |3.433 [1.886 | 1.264
15 169 | 7.33 |3.235 [4.822 | 1.235
0.8 |(Fuchs) | 5.46| 2.855/1.673 [1.250
60 6,841 3430 [1.770 |1.2717
40 7.08 | 3.34 |1.774 112647
25 6.97 | 3.31 [1.748 [1.2044
20 6.78| 3419 |1.702 [1.245
15 6.09| 2,97 |1.658 |1.222
Table 10.1.




Figure 10.7 A (&_) ‘vs. temperature when K=0.1
. Py

becomes more important. At higher tempei'atures, when the 'scattering
angles increase, the effect begins to decrease, but it does not fall
to zero at high temperatures. This is a consequence of the Debye
phonon model, which limits the maximum angle :l)f scatter to about 790.
As the scatterj;ng is expected to be isotropic at high temperatures
(pege 183), it is more realistic to assume that A(pf/Pb) is' gero
above about 200°K (the Debye tempéfa.ture for silver) and tl:xat the

curves have the forms indicated roughly by the broken lines.

Comparison with Azbel and Gurzhi.

A few of the results from the program are compared in Table 10.2
with results from the formula obtained by Azbel and Gurzhi. The
agreement is quite good, especially at loOoK.; This is perhaps because

the principle result of both methods is to amooth out the peak in
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P/l Py

T =20% T = 4,0%

A and G V |Aand G v

0,01 | 26¢1 | 42.0 |36.4 . | 38.5 |36.5
0,03 | 14,24 | 18.1 |15.1 15.7 |15.6
0.1 4. 78 749 | 5.95 6.49 6. 27

Table 10.2

g(e) and leave the rest of the Fermi sphere relatively unchanged.

Comparison with the experimental results.

To be useful for comparison with the experimental result the
phonon-surface effect repults needs to be éxpressed as the changé in
resistivity vs. tempei'ature for films of various thickness. In this

. form they will 'ther.z be directly comparable with ‘i:hej Ap curves obtained
near the end of Chapter VIII, i.e. the differences between the measured
resistivities and thé resistivities expected on the basis of ‘Fuchs'
theory. | |

' Films of thicknesses 1000, 2000 and 5000 are taken as examples.

'The progrém' results above 60°K are modified aﬁ in Figure 10.7 to be in

agfeement with the assumption of isotropic scattering a high temberatures.

A(pf/pb) is plotted againstK for each temperature. The values of K
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for the three films at each temperature are calculauted from pb(’l’)
and the thicknesses, and the eppropriate values of A(Pi’/Pb } obtained
from the curves. The increase in resistivity for the film is then.
Py 8log/Py):

The final results are plotted in Figare 10.8 as Apvs. T for the
three films and for three values of p: O, O.4 and 0.8. When p=0 the .
phonon surface effect is very large but falls z‘-apicl'l.y as p is increased
(Figure 10.9). |

There are several specimens among the eicperimenta.l £ilms which have
thicknesses sbout 2000k and with p about O.4 - 0.6, The maximum at
about h.OoK, _predicte_d by the calculation, for such films should be
clearly seen in the experimental resulfs. There is no convincing
indication of the effect in the resulis, in fact the deviation from Fuchs'
theory is usually negative (Figure 8.25).

(42)

Chopra obtained silver film resistance results which he |
attributed to the phonon surface effect (page 164). The films concerned
were very thick, 60,000k, and had residual resistivity ratios which |
indicate a bulk residual resistivity ~ 0.01 p N-cme The results obfained
from the program do not support the conclusion that the rapid rise in
resistance at about 10° K can be explained by the phonon surface effects.
The phonon—surf’ace effect is small in fJ.lms 50004 thlck and would be
very small in much thicker films.
Conclusion.

The theoretical éalculgtion of fﬁe phonon ésurface effect shows that

it should be-large enough to be observed in the films meas@red’in the
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experimental part. The effect was not observed.
- The solution of the Boltzm;nn equation was obtained by an approximate
méthod that assumed v to depend on © but not on z. However, it seems
unlikely that this approximation would caugse large errors in the results,
The program could be developed to include variations of T with #, but it
would not be worthwhile without more positive experimental indication
of the phonon surface effect. |
A more serious error might have been the omission of Umklapp
processes, which allow phonons of small q to induce effectively large
angle scatterings. The inclusion of Umklapp processes would be a
'necessary first step in any refinement of the theory of the phpnon

surface effect.
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CONCLUDING REMARKS

The work reported in this thesis has proviﬁed a picture of the
electrical resistivity properties of epitaxial films 61‘ silver.
From’ this' a direction 'for future wor:k could be decided.

The results have been interpreted mainly in terms of Fucha' theory,
end two principle difficulties have arisen: ‘
1) The variable film structure. This waé shown by the irariatio‘n
in resistivity between films of the same thickness, and confirmed by
tﬁe electron microscépe work of C. Gonzales. This type of variation
was partialiy overcome by the use of sets of four specimens evapqrated
together. In addition to the variation between specimens of the same
thickness, there appears to be a tendency for the thinner films to have.
holes in them. |

2) Dislocation resistivity. The temperature dependent resigtivity
of the dislocations in the films complicates the comparison of results
with theory at intermediate temperatures, This effect was reduced
'to a single parameter by comparison with partially annealed wire, and
very thick films, which yielded a 'universal curve'. However, it is
impossible to be sure tl'zat the universal curve used is completely
appropriate for the dislocation' configuration in the films.

In spitg of these difficulties the comparison of the results,. for
individual films, with Fuchs® theory resulted in agreement, within a
few per cent, down to ~ 50°K, ice. ooveriné a range of K(=t/1) from
~5 to ~1/5. There w_ﬁ no definite evidence of large deviations from

Fuchs®’ theory. In particular there was no sign of the phonon surface
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effect, either as described by Chopra, of as calculated in Chapter X.
The calculations ignore Umklapp processes and the phonon surface effect
would be less if these were important, so the absence of the effect may
indicate that Umklapp processes make an important contribution to the
resistivity at quite low temperatures. |

further work in this field would have to be initially directed
at the preparation of films with reproducible properties. Aﬁ ultra
high vacuum system would be‘reqpired, not necessarily becauée a high
vacuum is needed, but in order to be able to control the composition.
of the residual gas. A méthod of cleaving tﬁe substrate in a controlled
atmosphere would probably also be necessary. The object would be to
find the factors causing variable filﬁ structure by the use of both
resistance measurements and electron microscope observations.

If films of different thicknesses cﬁqld Se pr?pared with constant
étructure,»the bulk residual resistivity could be accurately estimated,
and the dislocation contribution might be more directly obtainable.

It may well, however, be rather diff;cult to achieve a structure
independent of thickness, as each new layer has the previoqs layer as

a substrate, so any changes are cumilative.



A Solution of the Boltzman equation for the bulk case when Q is a

function of ¥ and k only.

It will be shown that the ablutioh has the same form as in the
simpler bulk case considered in Chapter I, page 28. The solution is
assumed .to. be of the form G(k) cos 6 . This leads to a scattering
. term proportional to G(k) cos 6 and an expression for the relaxation
time (k). . .
z;] = f (G(k) cos & - G(k’) cos 6’) Q(¥,k) &(k=k’)

8 ) o .
/& ’
k sin 6’ d9’ d¢
2
= G(k) k f(cos & -cos 6°) (A1.1)

Q(¥,k) sin 6’ a8’ &g’

The integral is over the whole

: of the Fermi surface, so the
(a) ¢ about OR same result is obtained if the
polar axis is changed .to.OA
(Eigme A1.1) and the integration

teken over ¥ and ¢g. i.e.:

(b) ¢ about OA
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g] = (k) K* | (cos 0 - cos 6°) Q(¥,k) sin ¥ a¥ ag |
8 (A1.2)

8’ mist be expressed in terms of ¥ and 6 ’
cos 6’ = cos 6 cos ¥~cos @ sin 6 sin ¥, (A1.3)
_ (by use of épherical trigonometry formulae). The integral now becomes:
f(cose -cos @ 8in ¥ 8in 6 - cos ¥ cos 6) Q(¥)sin ¥ a¥ dag

= cos .e‘(ﬁ-oos ¥) Q(¥) sin ¥ av &f -fﬂ sin> ¥ sin ‘e/‘d¢ cos @

(a1.4)
2K .
J cos gdg =0 so the second term is zero.
o
The scattering term is now:
E] = Zxk G(k)cos 0, _((1 - cos ¥) Q(¥) sin ¥ ¥
s B

= (k) cos o/x (k) (81.5)

where t(k) = 1/2k [(1-cos ¥) Q(¥) sin ¥ a¥ (A1.6)

'With the scattering tehn reduced to the form in A1.5 the Boltﬁnan

equation solution is (from e'quation 2.29 page 28)
G(k) cos 6 = %‘4 < (k) ﬂﬁ .cos 6 , (a1.7)
' dkc
confirming that the solution is of the form assumed.
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APPENDIX II

The Temperature Controller.

The temperature oonfroller is based on a silicon control
rectifier (SCR). The SCR is a diode which will not conduct in the
forwgrd direction until a pulse has been applied to a gate electrode.
When there is an alternating volfage across the SCR a pulse g:ust be
applied to the gate during each Porward half cycle. (Figure A2.1)

' The average current through. the SCR depends on the phase relationship
between the gating pulses and the supply vol'tage,so the small gating
pulses control thé large currents which the SCR can carry.

The control circuit (Figure A2.2) varies the phase of the .gating
pulse in response to the output of the Wheatstone bridge circﬁit.

The DC output from the bridge in first gmplifj.ed byalong tailed

pair amplifier (low drift) then by a conventional .2 stage DC amplifier.
.The.DC level at X (Figure A2.2) depends, therefore, on the bridge
output. It is made the zero point for an AC input to a Schmidt trigger.
This AC is mains frequency but 900 out of phase with the main supply

to the SCR. The Schmidt trigger fires (transistor A turned off,

B turned on) when the input voltage at Y becomes sufficiently

positive. The time at which this happens depends on the DC level'

at X (Figure A2.3). ~ The gate puise for the SCR is derived fréz;: the.

collector of B by the CR circuit foilowingo '
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APPENDIX III

The Comparison Program

The aim of this pfogram is te fit the resistance result to

Fuchs' theory using the fitting progrem results (page 126) as a

starting point. The input data for each specimen are as follows.

1)
2)

3)
L)
5)

p(T) from the fitting program with the constants C end P c°-
u(T) - the points from the universal curve for the
dislocation contributions (page 153).

The scaliﬁg constent for u(r). (D)

The residual bulk resistivity (p o)"

The specimens length width ratio (d/w).

The first stage of the program makes use of only the high

temperature results, i.e. those used in the fitting program. Initial

values for the specularity coefficient ‘p and the thickness t are

obtained from C,d/w, D and p o (pages 128 and 158). - At each temperature

K is obtained from the total bulk resistivity, and the film resistivity

expected from Fuchs' theory obtained (p th)' It is required that

Pr = Ptn should be zero at all temperatures. ‘Considered graphically

Pp = Pyp MY b.ppea.r as in Figure A3.1. The change in C required

makes AB horizontal i.e. to A’BS The distance between A’B’ and zero

is teken up by changing p .

!

12—11

AC =
Po = Py

dpg = X = ACp,
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.'I‘h'e change in Pe involves a change of P .éo the processes must be
repeateds.. -Thé process rapidly converges and two‘ iterations are
usually quite sufficient. |

The program frequen.tly requires the value of F(K,p). The
evaluation of this each time .wouid be .very time consuming on the
Elliott 803 computer. Tables of F(K,p) obtained by another program
_ (page 54) were included in this program, and particular values are
obtained by interpolation.

The final velues obtained for C and p_ are used to calculate

pp and p,, for all temperature points.
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APPENDIX IV

Experimental Results.

Some of the principle results for each specimen are given below,
as analysed by the fitting program.

Epitaxial silver films,

Specimen | Thickness P f(lk 2) Po p(min)
no. A B2 -cm B Q-cm
18.1 420 L4601 | .50 .33
2 829 2412 288 .25
o3 1004 .1878 .213 .33
ok 1120 | .1793 .187 <3
204 | 572 o33 | 327 o4
o2 560 .3617 .362 .36
21.1 525 . . ‘® 3700 01{-251 ) L] 30
22.1 813 | .2564 | .3029 | .22
3 2 910 * 2137 ] 2575 ‘e 26
o3 1470 .0784 .1236 43
ol 1860 | 0643 . 1024 <40
23.2 635 « 3183 « 3639 27
0'3 ’ 1070 ) 01207 01752 01&1
26. 1 2580 0398 | .0741 40
o2 2750 ° 0359 .0689 40
°3 2970 0031}0 00658 038
ol 3130 .0392 .0696 o3
2741 - 1193 | .09 | <1534 | .42
o2 893 - .1985 <2799 .24
o3 6L, «2918 «3833 | .22 .
ok 546 »3719 <4616 021
continued
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r
no. % P f(&.é’x) Pe p(min)
28,1 - 2065 .0568 | .0952 .38
o2 2550 < OLl2 .0740 41
o3 2910 0402 | .0698 36
3141 2500 0978 |..1284 | ~.0%
.2 1720 . +1138 . 1495 .19
+3 1335 « 1511 . 1937 .18
ol 789 2017 | 3103 .23
33,4 2110 «0651 | 1024 .32
o2 1235 .1224 | 1716 «33
37.3 1394 L0600 . | +1073 «53
39.1 596 .2833 | .3238 039
] 4 916 0 1722 » 2021 ’ 041 R
Y 3005 0353 «0573 o 46
ol 1170 20309 | .0508 .33
48.1 4220 L0400 | .0582 .23
3. | 6100 .0338 | 0479 .08
ok 6330 + 0395 «057h | =~.15 .
49,1 4020 0460 | 0639 .19
02 3200 00591 00805 019
o3 2310 L0669 | .0963 <30
ohy 1340 . 1061 .1081 o5l
52.4 40800 .0190 | .0336 -
[ 2 I;JAOO ° 01 98 . 0328 -
° 3 41 600 _— 0208 - 031#5 -
o 31800 «0201 +0339 -
5"‘ 1 637m .01 51 . 0571" -
02 64500 L0123 20233 -
57.1 5493 .0206 | .0358 .38
o2 3864 <0230 | JOLL6 A6
® 3 216'07 . o05h8 00738 . 1;11-
olp 1666 <0535 |.1135 o0

~218-

continue




noe % pf(h,Zok) Pe p(min)
59.3 4920 0235 | .o458 | .29
61.1 1920 <0419 | ,0923 okly
o2 2730 <0340 | .0736 37
3 3710 0266 | .0567 o 34
63.1 2410 «0795 | 1316 «0
2 2570 «0825 | 1294 =04
3 3670 +0525 | .0897 -.03
ok-' 4270 <0428 | 0755 =03
653 781 ° © 02932 | 34114 W16 -
671 2620 +0515 | .0848 « 30
2 1750 «0783 | .1178 «35
3 1470 «A247 | 41638 25
ol 4200 2318 | .2868 =09
69.1 3220 -0 Q461 . 0860 «13
2 1455 0816 {1416 «35
3 41020 «1107 - | . 1878 «40
7.1 4645 0717 | .1275 o3k
2 1570 .0702 |.1286 «36
3 1255 0877 |.1569 «38
b 957 1209 .2149 | o35
1 7 ] )
Epitaxial silver films with thin aluminium layers.
. nOoe t pf(u.ZOK) Po p (min)
14»202 2810 007)4-6 01201 - 007
03 3260 OO&G .101&1}- -007
ol 35,60 052, | .0876 «Ob
43.1 2190 . «0761 «1327 07
2 1770 o 1384 | «1941 -.08
03 1365 91911}. 021‘-26 -.o’-‘-
"" 977 e 2782 . 310-12 bt ] 05
continued
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no. t pp(ke2’®) p, | Plumin)
50.1 L4390 « 048k «0793 | ~.12
ok 5950 <0395, | 0652 | =e22
5141 3100 omé | L1182 [ -.16
02 2250 009214- 01591 "012
03 1?09 01255 '2102 "013
53¢ 2 34000 «0239 «0396 -
3 -35400 .0245. | .0390 -
55. 1 1 51w ° 0258 . 0372 -
o2 17030 .0228 «0325 -
ol 14300 - ,0262 | .0390 -
5601 1582 » 0834 « 1419 .29
02 2343 «0567 | 1007 25
.3 2790 .0335 | .0616 | .26
«2 | 4780 L0374 | 0662 | .00
[ 3 725-35 . 0262 O 01‘-76 - 1 2
ol 9908 0221 0387 =22
60. 2 3630 «0375 » 0683 022
o3 2580 2 04.30. «0836 032
ods 1810 « 0701 »1296 25
620 1 ' 11,.256 3 0’-).6‘{- e 0786 - 003
° 2 36‘}0 00570 . 0929 - . 06
05 2590 ) 00670 .1313 -.07
oll- 2&.20 00911 01387 -006
6l 2 599 25049 | .5310 | .00
°3 1880 01355 01926 “0110.
'14- 3380 e . 0921 ° 1555 -e 43
66. 1 41 55 ° 2529 ° 3020 e 08
2 12357 - 02408 | 2767 |=.07:
o3 - 1560 - 01583 | .2078 |=.02
01# w ! R 0658 . 1 2

1134




Epitaxial silver films with cold substrate layers

1
no. t p i.(l+. Z?K) Po p(min)
.2 1540 .. 0871 SAL62 | .29
3 887 « 2828 « 3429 | Ok
38. 1 4460 .0398 L0628 | .12
02 3250 OU24 «0658 | <33
3 1208 « 1237 1807 | .31
o l{, 78&! - 2980 :3’4‘53 ° 15
68.1 0 «2119 o373 | .26
02 1200 « 1060 1832 | 31
3 1850 0715 «1295 | .25
ok 3420 1- out2 0731 | .21
70.1 . 1275 © | .1580. $ 2476 | .01
2 1600 .1129 «1927 | .03 .
o3 1965 <0941 <1575 | .02
ok 2000 . 0970 «1585 | .00

Silver £ilms evaporated on to mica at room temperature.

no. t pe(te2’8)| p_ | p(min).
bhe 3 2300 ° . «509 6u2 | .-

® l.. 2950 e l+72 ° 595 =
454 2020 | <447 | 536 -

o2 1320 <503 «596 -

o3 936 0565 = 665 -

ok 706 « 604 682 -
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