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ABSTRACT 

The work described in this Thesis is centred on the measurement 

of the electrical resistivity of epitaxial thin films of silver. 

The epitaxial (single crystal) films are obtained by evaporation on 

to a hot substrate, and have a better crystal structure than films 

evaporated on to a cold substrate, i.e. they'have fewer dislocations. 

The dislocations cannot be ignored, however, as they appear to provide 

the main contribution to the bulk residual resistivity of the films. 

The films range in thickness from ,- 500 to 60,00CA. The 

resistance measurements were made over the temperature range 4.2°K 

. to room temperature. As the surfaces play an important part in size 

effect resistivity, the surfaces of some specimens were modified by 

the addition of thin layers of aluminium or extra silver. 

The resistivity results are analysed in terms of Fuchs' free 

electron theory of thin film resistivity. Two important parameters 

of the theory are the bulk resistivity and the fraction of electrons 

specularly scattered at the film surface. The bulk resistivity at 

4..2°K is estimated to lie in the range 0.01 to 0.02 p. 0 COL The surface 

specularity, estimated from both high and low temperature results, is 

found to be greater than 0.5 for most of the thicker films. 

It is shown that the bulk resistivity at higher temperatures 

cannot. be obtained simply by adding the residual resistivity to the 

.ideal lattice resistivity, as the dislocations contribute a temperature 

dependent term. A method for estimating the dislocation contribution JAI 

described. The experimental results are compared with Fuchs' tieory 
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over the whole temperature range, and good agreement is obtained down 

to quite low temperature. 

The final chapter is devoted to an extension of the theory, by 

a numerical method, to allow for low angle scattering, as this type 

of scattering is expected from phonons at low temperatures. 
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Introduction. 

• 
It was recognized early in this century that the electrical 

resistivity of a metal can depend on the size of the specimen measured, 

if it is sufficiently small. In this context sufficiently small means 

that at least one dimension of the specimen must be comparable with the 

mean free path of the current carrying electrons. 

The theory of the size dependent resistivity of thin films of a 

free electron metal was developed by Fuchs in 1938. He used a simple 

model of surface scattering of electrons which covers the range from 

fully diffuse to fully specular scattering. This theory remains the 

basis for the interpretation of experimental results, as any extension 

is both difficult, and not clearly demanded by the experimental results 

available. 

Experimental Observation of resistivity size effects requires thin 

films or long electronic mean free paths. The thin films are usually 

prepared by evaporation or sputtering and long mean free paths'are 

obtained by lowering the temperature of measurement. Very thin evaporated 

or sputtered films can be prepared, but they usually have highly 

defective structures, making comparison with the bulk material difficult. 

The structural disadvantages of evaporated films have been reduced 

in recent years by the advent of a method for producing single crystal 

films of silver and gold. Such films have far fewer defects than normal 

films. They can be prepared thin enough to have a significant size 

effect at room temperature, and the lattice is sufficiently freefrom 

defects to allow long mean free paths at low temperatures. 



The disentangling of the processes contributing to the resistivity 

of thin films is not at all easy. 'This is largely because there are 

too many unknown factors; the structure of the bulk, the structure of 

the surface and the way in which electrons interact with the surface. 

Ideally the films should have a structure identical to that of.the 

bulk metal from which t hey are made. The single crystal films of silver 

and gold approach this ideal more•closely than any other films. They 

have fairly simple electronic structures so comparison with the free 

electron theory is not•too unreasonable. There is, therefore, some 

hope of understanding the resistivitied of these films and•thereby 

providing a basis for the understanding of less simple films. Some 

steps in this direction are presented in the following chapters. 



CHAPTER  

FLECTRONS IN METALS 

Introduction 

The theory of electrons in metals involves the quantum mechanical 

treatment of many electrons interacting with each other and with the 

atomic nuclei., In all simple models these complex interactions are 

replaced by a periodic potential function. Solutions are sought for a 

single electron moving in a potential resulting from the nuclei and the 

other electrons. The electrons in a metal are divided into two groups, 

(i) the core electrons which are tightly boUrd to particular nuclei and 

(ii) the conduction electrons whits are free to move throughout the 

volume of the metal. Only the conduction electrons are considered in 

the theory, the core electrons merely contribute to the potential. The 

theory is discussed in texts on solid state physics(1,223  and only 

some of the results obtained are given here. 

Models which consider single electrons moving in a fixed. potential 

are referred to as one electron models and the solutions of the 

SchrBdinger equation obtained as one electron states. 

The free electron model, 

This model assumes the simplest possible potential. The conduction 

electrons are treated as being in &potential well with its walls at the 

surface of the metal and a constant potential inside. The solutions of 

the Schrbdinger equation for an electron in a constant potential are of 

-10- 



the form exp (i k.r), where 1k1 is proportional to the momentum of the 

electron. The boundary oanditionithat the wave function must be zero at 

the surfacel restricts the solutions to particular values of k, so electron 

states can be represented by points in k-space . The states are distributed 

in k-space with uniform density; The energy of an electron in a particular 

• 2 
k-state is proportional toikl, so the surfaces of constant energy in 

k-space are spherical. 

Each one electron state can be occupied by only two electrons, one 

for each spin direction. The fraction of states occupied at k is given 

by the distribution function f(h) which, therefore, represents the state 

of the conduction electrons as a whole. Fermi-Dirac statistics apply to 

a system of electrons, and in the absence of an electric field the 

distribution function is the Fermi.  function F(s), a function of energy 

alone. At zero temperature F(c) has the value'one'up to the Fermi energy 

o• 
and zero above. The surface in k-space at co is called the Fermi 

surface. At finite temperatures the change from one to' zero takes place 

over an energy range-31er, which for normal temperatures is small 

compared with the Fermi energy. 'The Fermi surface is then no longer a 

true surface,bUt has a finite width. The Fermi function is shown in 
• 

Figure 1.1 for a number of temperatures. 

The periodic potential.  

Any reasonable potential function must reflect the periodicity of the 

crystal lattice in which the electrons move. This periodicity alone leads 

to striking consequences. Solutions of Schr8dinger)equation *CO for an 

electron in a periodic potential must have the form exp (i k.r) uk(r), 
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where uk  (r) is a function with the same periodicity as the lattice. The 

wave vector k takes the saire values as in the free electron model, but 

it is not uniquely defined for a given state. If *(r) has the above 

form it has equivalent forms with k replaced by k+L, where K is any 

vector of the reciprocal lattice derived from - the crystal lattice. The 

planes which bisect the reciprocal lattice vectors divide k-space into 

regions called Brillouin zones.. Within each Brillouin zone k is 

uniquely defined and there is one electron state per atom of the metal. 

The energy function E(h) is no longer proportional tolkP . The 

most important changes occur at the boundaries of the.Brillouin zones 

where E(k) is' discontinuous. The detailed shapes of the constant energy 

surfaces in k-space depend on the form of the periodic potential function. 

The kind of changes that are produced by a weak periodic potential in the 

case of a two dimensional lattice are shown in Figure 1.2. The energy 

surfaces well away from the zone boundaries have the free electron form. 

Near the zone boundaries the surfaces tend to bulge towards them, and if 

close to make contact. 

The distribution of elebtrons among the one-electron states is given 

by the Fermi function which is a function of energy, so to obtain the 

distribution function in terms of k the energy function E(k) must be 
known. 

Real Metals.  

In order to obtain detailed information on the electronic structure 

of real metals .it is necessary to appeal to experiment. A review of the 
experimental methods used has been given by Pippard" ). The results 
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Figure 1.1 

The Fermi function. 
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Figure 1.2  

Energy contours 

in two dimensions. 
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Figure 1.3  

The Fermi surface 

of silver. 
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obtained are in agreement with the general picture given by the one-

electron theory. 

As this thesis is concerned with silver films, this chapter will be 

concluded with a description of the electronic structure of silver. 

Silver has a close packed cubic lattice, and has one conduction 

electron per atom. The fiee electron Fermi surface for one electron 

per atom lies completely within the first Brillouin zone, but passes 

fairly close to the [ill] zone boundpries. The theory shows that the 

constant energy surfaces tend to bulge towards zone boundaries, so the 

possibility arises that the Fermi surface may make contact with the [111] 

boundaries. That this is the case in silver has been shown by Shoenberg( 5 

using the de EMas-Van Alphen effect. The Fermi surface of silver is 

shown in Figure 1.3. It is roughly a sphere with necks to the [111] zone 

boundaries. Shoenberg showed that the cross section area away from the 

necks is within a few per- cent of that of the equivalent free electron 

sphere. The neck distortions occupy only a small fraction-of the Fermi 

surface, i.e. 2% if the diameter of the region involved is twice the 

contact diameter of the neck. These results suggest that it would be 

reasonable in many circumstances to treat silver as a free electron metal. 
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CHAPTER II 

THE THEORY OF FrxICTRICAL CONDUCTIVITY.  

1) The Boltzmann Equation,  

The conduction electrons are so named because they are the ones 

which, by being free to move throughout the volume of the metal, are able 

to carry an electric Current. These alone are considered in the theory 

of conductivity. 

The mechanism by which the current is established and maintained is , 

best approached from the point of view of the distribution function and 

the Boltzmann equation. The theory is introduced in a general way, and 

simplifying assumptions are made when they are needed, so their 

significance can be readily seen.. Simpler methods, such as the mean 

free path method, start with the assumptions built in, and their 

reliability can only be assessed by seeing how closely the results 

obtained agree with those from the Boltzmann equation approach. 

The theory of conductivity is dealt with in many standard 

( e•g.1.2b) 
texts 	' 	so detailed references will not be given in the 

following account. 

The Boltzmann equation can be obtained for any collection of 

particles that can be described by a distribution function,• and of which 

the dynamics are known. Here electrons in metals will be specifically 

treated, and the distribution function in terms of k used, i.e. f(k), 

or if variation with position is inoluded,f(,r). 
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The theory of electrical conductivity is concerned with finding 

the current produced in a metal by an electric field. The current 

density is obtained from the distribution function by a generalization 

of the simple relationship j = nev, i.e. 

= e f v(k) f(h) dk , 	(2.1) 

where dk is a volume element in k -space and v(k) is the velocity of 

electrons with wave vector k. All integrals are assumed to be over the 

whole physically meaningful range of each variable, unless otherwise 

stated. The discussion starts with'a metal carrying zero current, as 

this is the normal state of an isolated piece of metal. The distribution 

function is then folk) which must satisfy 2.1 with .„1 = 0. The 

temperature will be assumed constant unless otherwise stated. 

E 

Figure 2.1 Displacement of distribution 
function by an electric field. 
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When an electric field is established in the metal the distribution 

function changes. It tends to move bodily through k-space in the 

direction of -E (Figure 2.1). This process is immediately. opposed by'' 

scattering processes which tend to return the distribution' to fo. The . 

scattering processes must always occur, but leave the zero current 

distribution. unchanged. The two processes achieve a dynamic equilibrium 

when the distribution is slightly displaced from fo, and a current flows. 
4 

To obtain the equilibrium distribution function in the presence of 

an electric field, and hence the current, more detailed consideration of 

the ways in which f changes is required. If variation of f with r is 

allowedi thereare three factors which tend to change it. 

(a) External fields.  

In the presence of electric and magnetic fields an electron 

moves through k - space with a velocity given by: 

= f, CE +e v( ) A LI). 	 (2.2) 

This movement means that f(k) at time t is replaced by f(k -8k) 

at time (t + St), where 8k F k 1St. 

f(k - 8k) = 	- c7ic  f(Ik).,Egic . 	(2.3) 

The rate of change of f due to fields is, therefore, 

of (1) 
at 	fields = 

- k.1c7k  f 0.c,) • ( 2. 4.) 
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• 
If an electric field only is considered dt   is independent of k, and the 

bodily movement of the distribution through k-space mentioned earlier 

occurs. Then: 

af().]e E 	f(k). 
at 	

_ 	• ic   
field 

(2.5) 

(b) Diffusion, 

The electronsin a metal have real-space velocities, so the 

distribution at a given point is formed from a continuously changing 

collection. of electrons, and is thus influenced by the distributions 

at surrounding points. The situation is formally similar to that of the 

the previous section. Electrons from an element in c-space at k, which 

are at r at tine tpwere at r - 8r at time t - 8t, where + Sr = v(Is) 8t. 

The change in f(ic,z) caused by this movement is - 19'1, f(k,r) Sr, 

i.e. v(k). szrf(k,r) 6t, so the rate of change of the distribution• 

function owing to diffusion is: 

af 
at. I 	= — 20.0. Or  f(Lcyz). 

diff. 
(2.6) 

(o) .Scatterings  

The one-electron statesof a metal are obtained on the 

assumption of a perfect periodic potential. In a real metal there are 

departures from perfection, in the form of impurities, structural defects 

and phonons, which induce transitionsbetween the one-electron states of 

the perfect lattice. In the zero eternal field situation these 
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processes must produce no change in the distribution function. 

fo  
scatt. = 0 

(2.7) 

The rate of change of the distribution. function in general is complicated, 

and discussion will be left until later, apart from the comment that 

scattering tends to return the distribution to fo. 

The Boltzmann equation in zero magnetic field.  

To obtain the D.O. electrical resistancel the constant current 

produced by a constant electric field is required. The distribution 

function is, therefore, constant, and its total rate of change is zero. 

+ f? 	+ f 	= 0 	(2.8) 

fields 	diff. 	scatt. 

Replacing the first two terms by the expressions already obtained: 

.+ e E 	f + v. Vrf = f 
it 	 scatt: 

(2.9) 

This is the general Boltzmann equation in the absence of a magnetic field. 

Linearization.  

A simplification which is immediately available on considering the 

magnitude of the displacement of'the distribution,when a current is 

flowing, is the replacement of f by fo in N7k f. Taking f as fo+g, 

Figure 2.2 shows that g and Vig are small if 8k is small compared with 
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	 4.0  

3  

kc  

Figure 2.2 f and g at the Fermi surface. 

the width of the Fermi surface. in k space. 

A rough estimate of 8k can be obtained on the basis of the free 

electron model. The current density is: 

j = nevF 
	 (2.10) • 

where ve  = the velocity of electrons at the Fermi surface. 

and n = the number of electrons contributing to the current. 

These lie in a layer at the Fermi surface of average thickness -•-•
x 

1:0 n = 8k
x x(Surface area of Fermi sphere) 

x(Density of statesin k-space) 

The value of 8k obtained in this way for a reasonable current 

density (104  amp/cm2) is the same as the Fermi surface width produced 

by a temperature of 10-3  0K. Thus ag is negligible andWo can 

replace Vkf in equation 2.9, giving the linearized Boltzmann equation: 
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+ e E V
k fo + v. Vr  f = 

	

.1 scatt. 
	(2.11) 

The solutiorsof this equation are linear in E in agreement with 

Ohm's law. • This provides a justification for the linearization,as metals 

usually obey Ohm's law. 

Spatial variations of f.  

The second term in 2.11 involves real space variations of f, and 

it is of interest to see how these can arise. In a specimen with no 

external fields fo might be determined by gradients of composition 

(i.e. in an alloy)or of temperature. These will not be considered here, 

although the variation with temperature is of importance in the theory 

of electronic thermal conductivity. 

When f 0  is constant throughout the specimen, variations of f with r 

can still occur as a result of the influence of an electric field if the 

specimen is small enough for the presence of the surfaces to be important. 

This is the situation which is of interest in the discussion of the 

resistivity of thin films. 

The distribution function f may be expressed as 

f(Lc,r) 	= fo(4.) + g(kz) 	 (2.12) 

where g is the change in the distribution function caused by the electric 

field. fo  is to be assumed independent of r in this work,so the real- 

space term becomes v. Or 	r), and the Boltzmann equation becomes: 
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7kfo(h) 	N71. gCk-pr) = i(hp.r)] scatt. 	(2.13) 

The scattering term,  

The ease of solution of the Boltzmann equation depends largely on 

thefonnofthescattering term,which will now be considered. Complete 

discussion would involve the details of the interactions between the 

conduction electrons and the lattice, imperfections and other electrons. 

The conduction electrons are assumed to occupy one-electron states and 

interactions to result in transitions between these states, so the total 

effect of all types of interactions can be represented by a function 

Q(Lcsk), which gives the intrinsic transition probability from a state 

k to a state k'. This means that the probability of an electron in a 

state k being scattered into a totally unoccupied element of k-space 

8k' at k'is Q(A xisl)8, Is'per unit time. 

In order to calculate transition rates we must take account of the 

occupation of the initial and final states. The number of electrons 

per second being scattered out of an element of k-space dk at k is 

proportional to the number of electrons in the element, i.e. f(k)8k. 

The probability of an electron being scattered into an element oki at 

is proportional to the number of unoccupied states in the element, 

i.e. (1 - f(Ase)) dk°. The rate of scatter from ak to 8k" is, therefore; 

f() (1 	f(ls')) Q(k,k.) dk 	(2010 



Electrons are also scattered from k°  to k, at a rate of; 

f(le) (1 - f()) Vics,k) dk 	 (2.15) 

The intrinsic transition probability is the same in both directions., 

i.e. Q(sk° ) = Q(Z,t ), so the net rate of electron transfer from 

6k to 6.k°  is given by the difference between 2.14 and 2.15, .which„ 

when simplified,is  

(f(k) - f(  )) Q(k tke ) dk dk° 	 (2.16) 

The total rate of scattering of electrons out of an element 81c at lc, 

regardless of their final states, is obtained by integrating 2.16 over 

all final states; 

11 (.1-cal 	=f (gic11;) 	f(k,1;) 
scatt 

(2.17) 

If f(k,r) is replaced by foQs) + gOsoz) the scattering term 

becomes;. 

scatt = 	(lc or) — g(.t 	QQ.c.ac.') dk'  • (2.18) 

  

The BOltzmann equation can now be written: 

2 E. csk r0()  + 1(k). V.g(SZ) =f141-cyl-') -8( s  pl: Q(1,1c') dk' 

(2.19) 
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If fo 
and Q are given this equation can, in principle, be solved 

for g. The current density at point r is 

i() = efAls) giss6r..) ilk = e.f2r.(1c) g(isvE) dk + e i Igh) fo() da . 

(2.20) 

The final term is zero, as fo  is defined as the zero current distribution, 

SO 

.11 	= efv(k) ightE) 
ter 5  

dk. (2.21) 

The foregoing integrals are taken over all k-space. 

2) 	Some Solutions Of The Boltzmann Equation 

The Boltzmann equation 2.19 is very general, being restricted only 

by constancy of temperature. It is, however, only of formal interest as 

it stands,because solving it for arbitrary functions 1'0  and Q would be 

prohibitively difficult. Some restriction on the forms of these 

functions is required if solutions are to'be obtained, and the following 

assumptions are made. 

• 1) The energy surfaces in k-space are spherical. This is 

slightly more general than the free electron modell as it does 

not require that the electron energy is proportional to k2. 

The distribution function as a function of energy is the 

Fermi function F(5). When the energy surfaces are spherical 

e is a function of lk I (or k) only, so 1'0  is a function of 

k only. 	. 



2) The, conduction electrons are scattered elasticallyi so energy 

is conserved. It is reasonable to make this assumption when 

the scattering is by impurity atoms,butlesssowhen scattering 

is by phonons. The energy change caused by phonons is small 

compared with the total energy of the electrons, but comparable 

with the thermal width of the Fermi surface. 

3a) The intrinsic scattering probability on a given energy surface 

depends only on the angle of scatter, *, and not at all on 

the initial or final values of k. 

The function Q may then be re-written as ,follows. 

Q(sie) dk 

 

Q(lisk) k2  d ft'  clic . 

 

where df) is aft element of solid angle. 

Before considering whether solutions can be obtained with Q in 

this form, the consequences of a further simplification will be discussed. 

3b) The intrinsic scattering probability on a given energy surface 

is independent of j, 

i.e. 
il= Q(k) if k = k' 

Q(..kac. ) 
= 	0 	if k * 

or 	Q(I lke) = Q(k)8(k-k') 	' (2.22) 

It is now possible to simplify the scattering term in the 

Boltzmann equation, but before doing so a property of the function 

g(k,r) must be established. 
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Re-writing the Boltzmann equation 2.19 with polar coordinates in 

k-space we have 

E. Vk f0() + Y Vrg (43,0,k,r) 

= 	- ge;0',i,r)) Q(k) 6(k-k') k2sin edeidcedk' . 

(2.23) 

Integration of the right hand side over k has the effect of 

replacing the k! by k in the second g. The equation can then be solved 

for each value of k independently. Now, the number of electrons in 

k-spaceis conserved under the influence of a field, and this places a 

constraint on g, the change in the distribution function caused by the 

field, i.e. 

g dk  • 0 

or 	j g(02(, kor) k2  sin 0 de dO dk = 0 

	(2.24.) 

But Q(k) is arbitrary, and g depends on Q(k), so the integral in equation 

2.24. must be zero for each value of k4 

i.e.  ,r  g,e„,k,r,k2..in el de dO = 0 	(2.29)* 

The scattering term from equation 2.23,with the k integration 

donelis 
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i] = 

	

f(g(e,0,k) g(e:0:k)) Q(k) k2  sin e` de de 
= 	Q(k) k2[ g(e,0,k).1:in e' de* de -  ,fg(d:01,k) sin e' de' 

(2.26) 

The first integrals lot and the second, as is shown above, is zero. 

= - i k2  Q(k) g(e00,k) . • 
	

(2.27) 

The rate of change of g due to scattering at a particular point 

in k-space is now proportional to the value of g at that point only, so, 

in the absence of other disturbing influences, g decays exponentially 

to zero with a time constant, or relaxation time, ¶(k) = 1/4x k2  Q(k). 

This tremendous simplification has been bought at the price of the 

assumptions made earlier, but it leaves an equation which can be solved 

for each combination of 0,0 and k independently. 

The Boltzmann equation, with the assumption (1) applied to the 

first term, is now: 

A 

e 	df (k), E. k 	v. V37  g(e,95,k,3) Ti 	dk 
=-g(0,0,k,x) 

T(k) 
(2.28) 

where k is a unit veotor in the direction of k. 

The simple relaxation time form of the scattering term is 

frequently taken as an assumption when elementary solutions of the 
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Boltzmann equation are required 
(e.g. 6, 7 ) 

 Here, the restrictions 

on Q(k,k8 ) required to justify this assumption have been given 

explicitly, and are summarized below: 

1. Spherical energy surfaces . 

2. Energy conserved on scattering . 

3. Q depending only on k,i.eQ = Q(k) 6(k-k'). 

It will be shown in the next section that some relaxationof the last 

• condition is possibleil ytile still obtaining an analytical solution when 

bulk material only is being considered. 

The Bulk Case. 

In bulk material, i.e. specimens large compared with the distances 

an electron travels between collisions, there is no variation of g with r, 

so the second term in 2.28 is zero. The solution is then immediately 

available. If B is directed along the polar axis; 

Ee 1(k) df040 cos 6. 	(2.29) 
g "Tit  

The current is obtained from this with equation 2.21. Symmetry ensures 

that the current density 1 is in the same direction as E. 

j 
2 

e fv(k) ooe e g(k„0) k sin eded0 dk 

_ Ee2 jrT(k) v(k) k2 .gcrOlc cos26 sin e de dO dk. 	(2.30) 
- 11 dk 

For metals df041) is finite only in a small range of k at the Fermi 
dk 

dk 
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surface. If v(k) and t(k) are relatively slowly varying functions of ks  

it behaves as a 6-function. t s  v and k take their values at the Fermi 

surfaces  tps  vp  kV and 

dro dk = 1. (2.31) 

  

leaving 

2 j = 	2 1p  vp kp  Sd0 cost  0 sin 0 dB • 	(2.32) 
irtir t  

The 0 integration.  gives 2x and the 6 integration 2/3, 

2 2 j = E 	Tyr  kp  e 
.3tr 

2 2 0.• = 	typ  kp  e 31/- 

(2.33) 	. 

(2.34) - 

The value of kp  depends solely on, the number density of conduction 

electrons9  but vi depends on the rate of change of energy with k at 

the Fermi surfaces  and cannot be obtained without some assumption about 

this. If the.free electron model is chosen the expression for Cr reduces 

to 

cr = ne2 to 	 (2.35) 

n = no.of eleotrong/co and m = electronic mass:, 
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A 
	

G(k) cos e  
scatt. 	

T(k) 

where s(k) = 1/'2% k2.1(1-cos *) Q(*,k) sin * d*. 

(2.36) 

(2.37) 

It may seem that a rather elaborate procedure has been adopted to 

obtain a formula which can also be obtained by the simple mean free .  

path approach(e.g 67). The success of the mean free path approach 
depends on the simplicity of the angular dependence of g in the bulk 

case, and cannot be reliably extended to size effect problems. 

The simplicity of the angular dependence of g in the bulk case 

also allows a relaxation of the restriction on Q,in that the assumption 

3(b) (page 24) can be shown to be unnecessary, i.e. Q may depend on *. 

We assume that g has the form G(k) cos 64and evaluate the scattering 

term using Q($,k). The result obtained is; 

Thus if G(k) = Ee s(k) dfo
(k) 	G(k) cos 6 is a solution of the 

ti dk 

Boltzmann equation and the relaxation time concept is still applicable. 

The details of this argument are given in Appendix le 

Ziman(1  ) states that it should be possible to define a relaxation 

time in the bulk case with fewer restrictions on Q than have been 

assumed so far. The only requirement is that scattering should be 

elastic, then the relaxation time should have a form similar to 2.37, 

but with a more complicated function of direction weighting Q. 

The Mean Free Path.  

If electrons are scattered isotropically the relaxation time s is 
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the mean time between scatterings, where the probability of scattering 

is p per unit time and T = 1/p. Only electrons at the Fermi surface 

are important for conductionland their velocity is VF, so the mean 

distance travelled by electrons between scatterings is TVi, = 1, the 

mean free path. The simple conduCtivity formula (2.35) may be 

re-written in terms of 19  

c" 	= n.2_3 _1 O 

	 0.38) 

If scattering is not isotropic 1 defined as above is no longer 

the distance between scatterings.. Several lam angle scatterings are 

required to produce the same effect as one large angle one., and. 1 is 

then a measure of the average distance travelled by an electron before 

it 'forgets' its initial direction. 
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3) The Intrinsic Scattering Function C2(1(J) in Practice.  

So far Q(11,k) has been taken as given. In practice it is neither 

'given' nor is it easy to obtain. Only some general aspects of its 

form under certain conditions' will be discussed. 

Crystal Imperfections.  

Two basic types of scattering agent will be mentioned - imperfections 

and phonons. The term 'imperfection' is used to cover such static 

departures from the ideal lattice as impurities, vacancies and 

dislocations. An imperfection involves a departure from the potential 

* of the ideal lattice. Electrons are scattered from the perturbing 

potential with unchanged energy and an angular distribution which 

depends on its shape. If the potential is spherically symmetric the 

probability of scattering depends only on the angle of scatter, and Q 

has the form Q(*,k). Thus the condition imposed to obtain the last 

solution of the Boltzmann equation discussed may be approached in 

practice by metals of simple electkonic structure at low temperatures, 

when only imperfection scattering is of importance. As a spherically 

symmetric perturbing potential, is'requiredlthe imperfections should be 

mainly impurity atoms. 

Phonons, 

Important departures from the ideal lattice of a solid result from 

the thermal motions of the ion cores. The thermal excitation of an ideal 

lattice may be resolved into a set of independent modes. These are 

plane waves which are specified by their wave vectors (q), which lie on 

a rectangular lattice in g-space just as do the electron states in 

k-space'. The energy of a mode of frequency wc, is quantized in units of 
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called phonons. The mean energy in a given mode depends on the 

temperature/ and is given by twAexp OE w/k2)-1). At low temperature, only 

phonons of low w and q are excited in significant numbers. 

The simplest treatment of the vibrational modes is that of Debye. 

The crystal is treated as a oontinuumland the modes ennumerated by 

applying suitable boundary conditions to the accoustic wave equation. 

The frequency of each mode is proportional to q, and the energy of the 

quantum to q2. A crystal differs from a continuum in having a 

maximum frequency of vibration when the wavelength is twice the 

interatomic distance. A cut-off is included in the Debye model by 

limiting the total number of modes to jN, the number of degrees of 

freedom of a lattice of N atoms. 

The application of the perturbation theory of scattering to the 

lattice deformation of a phonon shows that interactions only occur 

when the following condition is satisfied; 

K = k t 4 	 (2.39) 

where k and k' are the initial and final states of the electron and K 

is a reciprocal lattice vector. When K = Q the interaction is called 

a normal process, and is illustrated in k-space in Figure 2.3. 
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Figure 2.3 Normal Processes. 

Figure 2.4. Umklapp Processes. 

The angle through which the electron is scattered is determined by the 

value of 4. The maximum angle thrOugh which an electron can be 

scattered by a normal process depends on the maximum value of q, and is 

about 79o for the free electron model. WhenIC * 0 the Change of state 
is equivalent to scattering into another zone of the repeated zone 

scheme (Figure 2.4). When returned to the equivalent point in the 

original zone it is seen that the angle of scattering is not so 

simply related to sp and that large angles of scatter can result from 
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small values of j, especially if the Fermi surface is close to, or 

touches, the zone boundary. These are called Umklapp processes. 

The energy condition on the interaction between an electron and a 

phonon is; 

E0-c9) = E() ± ECO , 	(2.40) 

as the phonons may be created or annhilated. This means that the 

solutions of the Boltzmann equation obtained assuming that scattering 

takes place on a constant energy surface in k-space are not applicable 

when scattering is by phonons. 

The, temperature dependence of the electrical resistivity has been 

calculated by Gruneisen (1933) and Wilson (1937) assuming the free 

electron model and' the Debye vibrational spectrum, and ignoring' 

Umklapp processes. The results predict a lattice resistivity 

proportional to T5 at low temperatures and to T at high temperatures. 

This is borne out in practice in most cases, particularly for metals of 

simple electronic structure such as the alkalie metals and the noble 

metals. 

The disOussion of bulk resistivity has already been taken well 

beyond what can be extended to thin films, so it will not be taken 

further. 
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CHAPTER III 

THE THEORY OF SIZE hM.CT RESISTANCE 

1) Introduction. 

This chapter is concerned with the way in which the electrical 

resistance of a specimen depends on its size and shape. The shape of 

a large specimen is only of importance in determining its resistance for 

a given resistivity of the material from which it is made. The 

resistivity is constant for a given material, provided that the specimen 

under consideration is sufficiently large. The relationship between the 

resistance and resistivity is simple if the specimen is in the form of a 

bar of uniform cross section, and the resistance is measured between the 

ends of the bar. The resistance, R, is then: 

R = p b 	
• 
	 (3.1) 

where p is the resistivity, b the length of the bar and a the cross 

section area. 

When one or both of the transverse dimensions is small,equation 

3.1 is no longer valid with p as the normal bulk resistivity, though 

the material remains unchanged. In small specimens the surfabe influences 

the resistance, and equation 3.1 is used to define an effective 

resistivity, which depends on the small dimensions of the specimen, and is 

the resistivity that would give the measured resistance if the effect of 

the surface could be ignored. 
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From the size-effect point .of view there are three classes of 

specimensi 

(a) Bulk specimens. 

(b) Specimens with one small dimension - films. 

(c) Specimens with two small dimensions - wires. 

The purpose of this chapter is to give an account of the basic 

theoretical treatment of the resistance of small specimens. The 

discussion is concerned mainly with thin films, as these are the subject 

of the. experimental part of this work. The extension to thin wires is 

briefly discussed for purposes'of completeness and comparison. 

The electronic mean free path.  

The concept of mean free path, which was introduced near the end of 

the previous chapter, is of considerable importance in the understanding 

of size effect phenomena. Roughly speaking it is a measure of thp 

distance travelled by an electron before it'forgets' about the 

distribution from which it originally came. Thus a disturbance of the 

distribution at a given point only influences the surrounding distributions 

to distances of a few mean free paths at most. Applying these ideas 

to electrical resistivitAit is seen that the surface will only haire a 

significant effect if at least one dimension of the specimen is 

comparable with the bulk mean free path of the electrons at the Fermi 

surface. 
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2) Simple Methods.  

Mean free path concepts have been used by a number of workers to 

obtain expressions for the resistivity of thin films and wires
(8,9,10 ) 

• 
To illustrate these methods formulae for the effective resistivity 

of small specimens will be obtained for the two extreme cases, (a) when 

the mean free path is much less than the smallest dimension, and (b) when 

the mean free path is much longer than the smallest dimension. Both 

methods can be applied to films and wires. 

(a) Small mean free path. 

Consider a specimen of arbitrary cross section (Figure 3.1). The 

effect of the'surface is confined 

to a thin layer of thickness pro-

portional to 1, the mean free path. 

It is assumed that in this layer 

the average current is reduced to a 	 ayer of 
thickness 

fraction p of its value in the bulk. 	proportional 
to 1. 

If S is the cross section area, P 

the length of the perimeter and j 

the bulk current density the total 

current through the wire is jS - p j 1 P. If the surface had no effect 

the total current would be jS, so the ratio of specimen conductivity to 

bulk conductivity is 

	

s 	jS-0j1 P 

	

crb 
	jS 

_ 22 
S (3.2) 
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.As the second term is small the resistivity ratio is 

Ps  
= 1 

Pb (3..3) 

where subscripts s and. b refer to specimen and bulk material respectively. 

For films of thickness t this becomes 

—12 	= 	2p 1 9 

Pb 

and for wires of diameter d 

g = 1 + 413 1 
Pb • 	d. 

(3.4-) 

(3.5) 

Nordheim obtained a value of 1/4 for p by considering the probability, 

of an electron hitting the 5urfaCe0 The value of p will be discussed 

later in the light of more reliable treatment of films and wires, 

(page 60. 

b) 	Large mean free oaths. 

The method used by Lovell(10)  is based on the bulk formula for 

resistivity 

my 
P = net  1 
	

(3.6) 

It is assumed that the bulk mean free path can be replaced by an 

average which allows for the shortening of some paths by the surface. 
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Pb 
Pf 	1 

= 1/ K(log 	+ 1) (3.7) 

The following assumptions are also made: 

(i) All free paths start at the surface. 

(ii) All paths not terminated at, the surface are of length 1. 

if d is electron path and 1 = t/cos 00  

d = t/cos 6 
	

8< 80 
d = 1 
	

> 8o 

Figure 3.2  

Electron paths are of two types. (Figure 3.2). Those terminating at the 

surface when the distance to the surface is less than 1, and those 

terminating in the bulk; all of length 1. The average of the, free paths 

in all directions is taken (1
eff) and the ratio of the effective 

resistivity to the bulk resistivity assumed to be 1/leff. Lovell's 

result for films is: 

where K is 0 and Pf  is the effective film resistivity. 

J.J. Thomson(8 ) obtained a similar formula by considering only 

free paths which start in the bulk, giving 

1  + Pf  Pb = 2/ K (log R. 	2  ) 
 (3.8) 
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Figure 3.3  
Thin filth results 

T = Thomson 

L = Lovell 

= Fuchs 

1 

These two expressions differ mainly by a factor 2. 

Lovell's method is open to the following criticisms. (TUchs). 

(i) All paths do not start at the surface. 

(ii) The free paths in the bulk are exponentially distributed about 

1,not of fixed length. 

(iii)The simple average over all directions is not the correct way 

to obtain the current. The simple resistivity formula is a 

result of the simplicity of .the bulk situation for which 

it is valid. It cannot be expanded again to apply to a more 

general case merely by averaging the electron paths. 

These criticisms apply equally well to Thomson's method if (i) is 

reversed. 

Lovell's and Thomson's results are plotted in Figure 3.3 with 

Fuchs' results from the Boltzmann equation approach. 



3) Size-Effect Resistivity Fram the Boltzmann Equation.  

It is impossible to be confident of the reliability of results 

obtained by the mean free path methods without being able to compare 

them with a more rigorous treatment. Such a treatment has been provided 

by Fuchs("). The mean free path methods require two types of assumption. 

The first concerns the nature of the films, in that they are made from a 

free electron metal and that electrons behave in a specified way on 

reaching the surface. The second concerns the method used to evaluate 

the resistivity which is assumed to be proportional to the reciprocal of 

an effective meanfree path, obtained by' averaging over possible mean 

free paths. Fuchs makes only the first type of assumption and obtains the 

resistivity rigorously from the Boltzmann equation. Thus, differences 

between theory and experiment must be explained in terms of failure of the 

assumptions about the nature of the films„and cannot be attributed to an 

incorrect method of estimating the resistivity. 

The discussion of the resistivity of thin.films given below is 

essentially that given by Fuchs. 

Solutionsof the Boltzmann equation are required in the presence of 

surfaces, but at constant temperature. The groundwork has been laid in 

the previous chapter. The appropriate equation is (2.13) 

SI P • Vk  %Os) + v • vrg(a) = i(Istr.)1 
is 

(3.9) 

The second term must now be retained,as variations of g over the specimen 
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are expected. This equation can only be easily solved if the scattering 

term at a given point can be reduced to the simple form where it is 

proportional to the value of g at that point only. The, possibility of 

doing this was shown to depend. in turn on the three 'assuRations discussed 

on page 24.. 

In brief: i.) Spherical energy surfaces in k-space. 

2) Electrons scattered elastically. 

3) The intrinsic scattering probability is constant on any 

energy surface. 

The equation to be solved is then: 

E 	folk) 	2.DrgOs,z) = 	g(,x)  9 
717c 	(3.10) 

from 2.28, where 1(k) = 1/1 k2  Q(k). 

The general solution to this equation was found by Chambers( 12) 

and. is established below using his approach, vhich shows clearly the way 

in which the surface influences the distribution function in the presence 

of a field. 

Consider the electrons in an element of k-space at k,with velocities 

v(k). In Figure 3.4. a line with direction v(k) is drawn from a point on 

the surface (s) to somewhere in the bulk (B). 
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Figure 3.4 

A general point P on SB is r
P 
 . If k is fixed in equation 3.10 the first 

term is a constant scalar (A) and the second is the product of v and the 

rate of change of g along SB, so the equation refers only to values of g on 

SB,which can therefore be solved for independently of the values of g for 

other positions and other directions. The only coordinate that need be 

considered is the distance along SB, i.e. u = r - r
0 
 . Equation 3.10 

—P — 
may now 'be written for a fixed value of k, 

v dg(u) 	2,-(1-)1  • = -A du (3.11) 

The solution of this equation is 

g(u) = r A(1 - C e-11/'") 	(3.12) 

where C is a constant for particular values of k and Es. The full 

general solution of 3.10 may now be written: 



g(k,r) = -,c(k)e  E k  fo  (k•) 	- C(1,rs) e- 	Esi /7) 

11 

(3.13) 

COsz:s) is an arbitrary function which cannot be determined without some 

information about the nature of the surface. It represents the 

disturbance of the function g from its bulk value, caused by the surface. 

On moving into the metal the disturbance dies away exponentially. 

Equation 3.13 applies to a specimen of arbitrary, but constant, 

cross section. It is made much more manageable by restricting it to 

the case of a thin film. The z axis is taken perpendicular to the film, 

with 'the surfaces at z = 0 and z = t. The electric field direction is, 

.along the x axis. Thersurfaces are assumed uniform in properties; so 

g(k)depends only on z„ and C depends only on k. The general solution. of 

the Boltzmann equation'is then : 

g(k,z) 	-2.(15.12 E
. v 
A

ic 
ft 
 o`.=1 

tir) 1 - c(h) e-z/1 cos 0) 

(3.110 

Where spherical polar coordinates are used in k-space, i.e. 0 is the 

angle from the z axis,and 0 the angle of rotation about the. z axist with 

0=0 in the x direction. The bulk mean free path 1 replaces TV. No further 

progress can be made until something has been said about the nature of 

the scattering processes at the surface. 
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Surface Scattering.  

The scattering of electrons at a surface may be represented by a 

function S(Z,k), similar to the bulk scattering function Q(Z,k ). 

s(k,k) gives the probability that an electron in state lc' on arriving 

at the surface will.  be  in state k on leaving. If the distribution 

function of electrons approaching the surface is fa(1);and that of 

those leaving is fia(k), the latter is related to the former by : 

fb(j.c) = f SOLO fa Qs.) dk . 
	(3.15) 

If zero current flows both fa and fb equal fo, so replacement of f 

by f0  g in 3.15 gives: 

gb(is) = fs(Isivi) gaoc: 
	

(3.16) 

This represents a boundary condition which must be applied to 3.14. to 

obtain a particular solution. Solutions can be fairly readily obtained 

with two simple forms of the surface scattering function, one for 

diffuse scattering and one for, partially specular scattering. 

Diffuse Scattering  

This is the simplest form of scattering. It assumes that the 

scattering is elastic and that all directions are equally probable. 

Most surfaces have irregularities larger than the wavelength of 

conduction electronsl so this is quite a reasonable assumption. The 

irregularities must, however, be small compared with the mean free path, 

or the specimen could no longer be treated as a plane surfaced film. 



The surface scattering function becomes: 

S(k'.0k ) = 
	So 	) 
	

(3.17) 

where So •= constant. In 3.16 this gives: 

gb(115.) = JCSo  8(k- k') ga( ak°  

= 0 	 (3.18) 

using the result obtained on page 26. The electronsleaving the surface 

have the zero current distribution Po This boundary condition must 

be put into the general solution for films, 3.14., to obtain CUE). The 

function 'g(ktz) is considered in two parts: 

g+ 	• kz  > 0  

(3.19) 
g_(k,z) 	kz  < 0 ‘./ 

At z = 0 g+  refers to electrons which have. just been scatteredland is zero 

for all k. From the general solution, reverting to an earlier 

abbreviation, and using C+  and C..  to correspond with g+  and g_, 

	

g+Os, 0) = 1 A (1 - 0+(k)) = 0 	 (3.20) 

i.e.
+(Lc) = 1. 
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54. 

At z = t: 

g_(is,t) = T A (1 - C(k) e-t/1 cos 6 ) = 0 	(3.21) 

i.e. 	c (k) = et/1 cos. e 

So the solution to the Boltzmann equation for a film with diffuse 

scattering of the electrons at its surfaces is: 

gi.(k,r) 	¶ A (1 
	e-z/ 1 cos e ) 

T A (1 - e
(t-v)/1 cos e ) 
	(3.22) 

These functions are completely symmetrical about the mid-plane of 

the film. Figure 3.5 shows some examples of their form with respect 

to variation of z. 

iA 

0 

 

t 

 

Figure 3.5.  Examples of g vs. z. 

The variation of g with direction, especially for films with K(=t/l) 

below 1, shows a sharp singularity at e = 900, i.e. the direction 



parallel to the surface of the film. This is illustrated in Figure 3.6 

where g v. 0 plots are given for a film with K = 0.2 at three values of 

z. The 0 dependence of g is as for the bulk case, proportional to cos 6. 

0 rf/2. 	rr 
z = 

0 	Cl/a. 
z =t/2. 

rr.  TT 0 

Z = 0 

Figure 3.6  g vs. e for three values of z. 

The Current 

 

The current density at each value of z is given by: 

 

 

jx(z) = e fvx  g(lc,z) dk (3.23 ) 

The current measured is the total current: 

J(z) dz ( 3. 24) 

The effective resistivity is calculated allowing for the size and shape 

of the specimen, and assuming the current to be uniform across the film. 

t 

Pf  = 	vt• 	.( j,z) dz) 	 (3.25). 



The two parts of g are symmetrical about the mid-plane of the film, 

so the current can be obtained from just one of them. e.g. 

J = gel v g+  05.,z) dk X  
o 

(3.26) 

i.e. J = erv(k) sin. 0 CO S  
df sin e cos 0  (1-e-z/1 cose) 
dk or,  

k sineded0. 	(3.27) 

_ 	e2v 
h s.lr 5f2  

0 

t 	 2, 
ae sin 2e f dz(1 - e-2/1  cos 6) f d 0 os2 0 

df dk k2 v(k) •r(k) 	. 	(3.28) 
dk 

The pseudo delta function dfo  replaces the final integral by kr,2 T2v2. 
dk 

The constant term outside the remaining integrals is 

3 	2 	2 

L  
e vF TF 1  E = 2 	E 	(3.29) 

e  5TC  2 

where cr is the conductivity of the bulk material, (page 29). ,The 

effective conductivity may now be written in terms of J, 

= de sin3  f tE 	2 b cr• 	 f, 
t  (A 
	cos 0 ) 

0 (3.30) 
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Figure 3.7  

The integration may be taken a little further analytically, but 

numerical methods must eventually be used. Before giving the results 

for the diffuse case the extension to partially specular scattering will 

be discussed. 

Partially Specular Scattering at the Surface. 

The assumption that scattering is diffuse may often be justified, 

but if a surface is a crystalline plane the possibility of specular or 

near specular scattering may need to be considered. This possibility . 

was allowed for by Fuchs by assuming a simple one-parameter model 

for the scattering. A fraction p of the electrons 'arriving at the . 

surface are assumed to be specularly scatteredond the remainder to be 

diffusely scattered. The scattering function S for this model is 

s(1.4k ) = so( (1-p) + p 8(e' + e ) 6(0=4 ))45(1..k) 	(3.31) 

where S
o 
is a constant. The effect 

on the boundary conditions of this 

type of scattering can be seen 

without explicitly putting S(kck ) 

in the boundary condition equation 

3.16. The diffuse part contributes 

nothing to the g of the outgoing 

electrons. The specular part 

involves transitions of the type shown in Figure 3.7 for a fraction p of 

the electrons, so the g for the outgoing electrons has the same form as 

the g for the ingoing electrons, but scaled down by the fadtor p,and with 

kz  replaced by -kz. 
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9 
i.e. at z = O. 	g+(kZ ) = p g_ (-kz) 

	
(3.32) 

and. at z= t 	 = p g+(kz) 
	

(3.33) 

Replacing the 'g' s in these equations by the general solution of the 

Boltzmann equation for films (3.14) gives two equations for the two 

functions COs), C+  and. C which aresolvable by simple substitution. 

The particular solution thus obtained for partially specular 

scattering is: 

g+ = A 1  exp( 	cos 0)) 
1-p exp(-t/1 cos 

g_ =T A (1-n) exp(t/1 cos 6) exp (-A/1 cos e)) 
- p exp(-t/1 cos e) 

(3.34) 

Examples of g+  and g_ plotted against z and 6 are given in Figure 3.8 

The solution for diffuse scattering is now a special case, obtained 

when p = 0. 
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Tr 

gfys. t. 	 g vs. e 

a: p=0, b: p=0.4, c: p=0.8 
	

z= t/2 

Figure 3.8  

The effective conductivity.. 

The expression obtained for the conductivity in the diffuse 

scattering case (3.30) can be immediately extended, to the case of 

partially specular scattering as C() depends only on e, and the e 

integration has not been done. 

f - 2 de sin30 
• 
faz (1  

- c(e) e-z/1  cos e, ). 

(3.35) 

The integration with respect to z is quite straightforward, and gives: 

c-f  
(i - C(0) (1- exa-Mcos e)))  sidede l  

o-
b 

(3.36) 
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where K = t/l. The c(e) required is: 

. 1 - p  C = + 	- p exp(-K/cos e) (3.37) 

from 	on page 52. If p = Oythe special case of diffuse scattering is 

recovered. 

The final integration must be done numerically. Fuchs gave an 

expression for it in the form of a series, and Sondheiner(13) 

tabulated the results for some values of p. 

The function 6f/orb  depends on p and K only. The ratio of the 

effective resistivity to the bulk resistivity (pf/pb) is the reciprocal 

ofcrb129 and will sometimes be written as F(K,p). 

Program to calculate pf/pb. 

In order to allow detailed comparison with the experimental results 

presented later in this work, a computer program was written which 

obtains pf/pb  (= c1/o f) from the expression given by Fuchs: 

Pb 
Pf 

crf  = 1 - 3(1-p) (1-1:)2  
crb 	

+ 
8K 

en1  13(KiL) 

( 
2  n  2  - La. 4. 4. + e 	-2.  -Kn ( X 	 - 

12 
Kn - K2n2 + 3)1 

12 	12 	s 

(3.38) 



. 	. 	m 
i e  -t 

' where B(x) = 	— t 	dt 	 (3.39) 

x 

The program was written in FortranIand run on the 	7090 

computer at Imperial College. The results are plotted in Figure,3.9 

as F(K,p) v. K for a number of values of p. 

Simple formulae in extreme cases. 

The complex formula used to cover the full range of K can be 

reduced to simple forms at high and law K (Fuchs(  " ), Sondheimer( 13  )) 

At high K: 

P f 
+8 

 00 • (3.40) 

  

This is of the form obtained from the 'simple approaches to film 

resistivity discussed at the beginning of this chapter. 

At low1K: 

  

1 

 

( 3.1+1) 

    

Pb K log-. 

 

This formula is applicable only at very low K (< 0.01). A slightly 

modified version is useful, up to K = 0.1 (Mayer (14)): 

Pf = 	  

Pb 	K(log 	+ .423) 
	

(3.42) 
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Figure 3.9  
pr  vs. K, from Fuchs' theory 
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Figure 3.10 	K(F-1) vs. K from Fuchs' theory. . 



Matthiessen Rule.  

The concept of the surface as just another independent scattering 

mechanism leads to an extra term in the familiar form of Matthiessen's 

rule which applies to impurity and phonon scattering in bulk(60) . • 

Pg  = Pi Pph 4' Ps  

(3.4.3) 
or Pt =  Pb 	Ps 
	%1 

where subscripts i, ph and s refer to impurity, phonon and surface 

scattering respectively. This formula is supported by the thick film 

limit of Fuchs' theory; 

PC = Pb 	lt (I P)  Phi  ° 	(3.44) 

as ptil is a constant for a given metal or range of dilute alloys. 

It is of interest to see to what extent Matthiessenbrule can be 

applied when the condition K » 1 does not hold. This is best shown 

by the form of (pf  - pb), which should be constant if Matthiesse lsrule 

holds. The result expected on the basis of Fuchs' theory is given below. 

.= Pf Pb 

= Pb F(K,P) - Pb 

= pb(F(x tp) 	) . 	 (3.45) 

Expressing p1  in terms of K: 

-58- 



g+ (kz) = pi  g_ (-kz) 
	= 0) 

g_ (-kz) = p2  g+  (kz) 	(z = 

( 1 47) 

Apm= t MF(IC,p)- 1) 7  (C = pb1 ) „ 	 (3.46): 

For a film of given thickness Apm  is proportional to K(F(Ki p)-1). This' 

expression is plotted in Figure 3.10 for a number of values of p. The 

curves show that Apm  is fairly constant down to about K = 64, when it 

begins to fall steadily with K. There is a rise above the high K value 

at about K = 1, which is largest at low p, when it is about 10% of K(F-1). 

Theory for a film with nonidentical surfaces.  

The possibility that the t*o surfaces of a film may be different 

can be dealt with within the framework of Fuchs' theory by assuming 

that the surfaces have different values of p, p1  and p2  say. As only 

a change in the boundary conditions is involved only a change in the 

function C(k) is expected. The boundary conditions are determined by 

the two equations ( cf page 52). 

The functions g+  and g_ are replaced by the general form (equation 3.14) 

and the equation solved for C.+  and  C_, giving: 

(1-p1) +(1-p2) p1  exp(-K/cos e) 

1 - pi  p2 exp(-21c/cos e) 
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(1 -p2) + (1-pi) p2  exp (-4/cos e) (3.4.8) 

  

pip2  exp (-2K/cos e) 

C.1.  and C can be inserted directly into the conductivity equation (3.36), 

but now g+  and g_ are no longer symmetrical about the mid-planes  so both 

must be used. 'C(6) in equation 3.36 is replaced by (C4.(6) + c_(e),),(2. 

f' _ 	c+(8) a-(8)  cos a (1-e- i °°3  8) sin 36 dB 
oi3 	2 	.2K 

(3.49) 

It would be quite straightforward to evaluate this integral 

numerically,but no attempt has been made to do so. Instead the 

consequences of assuming a one -p form,when the two-p form should be used, 

are discussed for two extreme cases. 

(a) K >> 1. The exponentials can be taken as zero . 

134.(e) 	a_(e) 	(1-p1 ) + (1  -P.)) 
	

( 
	- P1 	P2 ) 

2 
	

2 • 
	2 

(3.50) 
Compare this with the single p form which gives: 

C 	= C = 1 - p 	(3.51) 

Thusl at high K, the two-p form is the same as the one-p form with the 

mean of pi  and p2  (P) used instead of.p. 
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This result is not surprising for thick filmsl as the effect produced 

by one surface does not extend far enough to influence the other. 

(b) Films with one surface specular. 

In this case the effective conductivity (or resistivity) can 

be obtained over the whole range of K from the one-p results for 

the p on the non-specular surface. If p2  = 1 the film is 

equivalent to half a film with p1  on both surfaces. Putting p1  = P.  

c+(e) 

   

- exp(-20. cos e 

.(3.52) 
(1-p) exp (-2t400s 0) 

- exp (2t/iCose) 
"%of 

9 

which are as for the one-p casep but with t replaced by 2t. If pf/Pb.  

in the two-p case is written as F(K,p1,p2) then F(K,1,p) = F(2K,p). 

F(E41,p) was obtained in this way for a number of values of p, and 

the result compared with the one -p result for the mean of the two values 

of p(i.  = (1+p)/2), to see whether the use of the mean could be extended 

to low values of K. 

The difference between F(K01 2p) and F(K,p) is plotted in Figure 3.11 

as a percentage of the latter. As the situation considered here is an 

extreme onel these curves indicate the maximum error that would arise 

from using P in the one -p theory instead of p1  and p2  in the 2-p theory. 

The resistivity with p1  and p2  different is always greater than for the 

one -p case with p=p. 
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Figure 3.11. The difference 

between F(K,1,p) and F(K,p) 

as a percentage of F(K,p). 
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4) Thin Wires.  

The application of. the simple theories of size effect resistance 

to wires has already been discussed (pages38). 

A rigorous treatment of the problem by the solution of the 

Boltzmann equation has been given by Dingle(15 ). The same assumptions 

are made as for films, and the argument is identical up to the general 

solution of the Boltzmann equation (3.13). The same surface scattering 

model is also used to obtaining the function C(k). Finding C(k) and 

integrating to get the current is more complicated for wires than for 

films, and will not be discussed in detail here. The results obtained 

by Dingle for wires with p = 0 andp = 0.5 are given in Figure 3.12. 

For wires K is 00 where d is the diameter. 
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Figure 3.12 p/pb  for wires and films. 

.01 	 -1 
Figure _3.13 IC(F-1) for wires 

and filnu3 compared. 
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Films Pf 
= 	4. 	(1-p) 1 

Pb 	8 (3.53) 

Comparing Wires and Films 

An instructive comparison of wires and films can be made by 

considering how well eachobeysMatthiesses rule. It was shown for 

films that K(F(K, p) -1) is proportional to the difference between the 

film resistivity and the bulk resistivity, and should be constant if.  

Matthiesseris rule is obeyed. This applies equally well to wires. The 

function given above is plotted in Figure 3.13 for both films and wires. 
The two are similar at high-K„ down to about K=1. Below this there is 

a marked difference. The wire curves remain more nearly constant than the 

film curves. Wires obey NWtthiessens rule' much better than do films at 

low L. 

The high K limit. 

The similarity between wires and films at high K is shown in their 

high K forms.. 

Wires 	Pw 
 g. 1 4. 	(1-p) 1 . 	 ( 3. 54) 

Pb 

If these are compared with the general formula for the small mean free 

path case (page 39), 

2- = 	p  2_2 
8 	9  ( 3. 5 5 ) 

it can be seen that a p of 3/16 givesboth the wire. and the films results. 



The low K limit 

The differences between wires and films at low K are shown by the 

low K limits of Fuchs' aid Einglels theories: 

Pf 	1 

Pb 	K log g • 

Pw = 1 

Pb 	
K 

Films 

Wires 

K« 1 
	

(3.56) 

K « 1 	(3.57) 

As po  a K in both casesI the resistivity of the wire is constant at 

low Klwhile that of the film falls as 1/log (1/K). 

If an effective mean free path is defined, after Sondheimer(13 ) 9 

by 

Pf = 	ra 
9 

ne
2 
1
eff 

(3.58) 

we get for films in the low K limit, 

1 
Leff = t log 7  . 

and for wires 

1eff  = d 

(3.59) 

. (3.6o) 

The effective mean'free path increases indefinitelywith 1 in films, 

though more slowly, while in wires it reaches a maximum equal to the 

diameter of the wire. The difference lies in the number of electrons 
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attaining the full mean free path. In wires such electrons occupy 

, a spot on the 'front' of the Fermi surface of area 4- (d/1)2 
 (where 

the total area of the Fermi surface is d. 47). 'The electrons over 

the rest of the Fermi surface have mean free paths » d. If the current 

is j 

j oc locd + (i)2  1 = !fad ( I + 4:1) 	(3.61) 

i.e. the electrons in the 'front spot' contribute less as the wire 

become thinner. In films the electrons attaining the full mean free 

paths lie in a'band around the 'equator' of the Fermi surface. Treated 

as above the current in a'film is 

j c lead + 	. 1 	 (3.62) 

i.e. the contribution from the band round the 'equator' is of the 

same order as that from the rest of Fermi sphere. This approach is 

too crude to resolve the log term obtained by Fuchs. 
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CHAPTER IV 

THIN FT WS FOR SIZE .6.v.VhOT STUDIES. 

1) Introduction. 

The theory of resistance size effects given in the previoua chapter 

shows that the effect is only significant if K is small 	1 or less), 

where K = til, t being the film thickness and 1 the mean free path of the 

electronsin bulk material.;  The value of K may be reduced by decreasing 

'it, increasing 1, or both. 

Specimens of small thickness have been produced by rolling bulk 

N  
material (Andrew

16 
 ) 2  and by evaporation or sputtering nethods.. The latter 

two have been most often usedlas much thinner films can be produced by 

these methods. The thinnest films obtained by Andrew by rolling were 

about 30,0001 thick,, whereas evaporated films may be obtained less than 

1001 thick. 

The mean free path of electrons in a metal may be increased by 

reducing its temperature. The limit is set by the defects and impurities 

in the metal which determine its residual resistivity. ThUs2 for law 

temperature mork2the film structure is of considerable importance. 

Thin films of many metals can. be prepared by evaporation and 

sputtering(17). In the evaporation method the metal is heated strongly in 

a vacuum andthe metal vapour allowed to condense on the substrate. The 

sputtering method also involves condensation of the netal vapour, but in 

this case it is produced by making the metal the cathode of a glow discharge 

in an inert gas at low pressure. Unfortunately films prepared by these 
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methods usually have highly defective structures,(18'25)  resulting in 

high bulk residual resistivities and making comparison with the normal 

bulk material difficult. Under some circumstances, however, it is possible 

to obtain single crystal films with far fewer defects. Such films are the 

subject of much previous work, and also of the experimental part of this 

work. The remainder of this Chapter is devoted to a discussion of single 

crystal films, their preparation and their structures. 

Epitaxial thin films.  

When crystalline materials are grown on crystalline substrates, it is 

frequently observed that the axes of the overgrowth crystal are oriented in 

a definite way with respect to those of the substrate. This phenomenon, 

known as epitaxy, is observed for a wide variety of overgrowth-substrate 

combinations, and methods of growth. A review of the occurrences of 

epitaxy is given. by Faahley(19). 

In particular, epitaxial films of silVer may be obtained by evaporation 

on to cleavage surfaced of various crystals, e.g. mica, rocksalt and 

molybdenum bisulphidec46'47225). It is necessary to heat the substrate to 

about 300°C during evaporation for'good epitaxy to occur. Silver grows on 

mica and molybdenum bisulphide with the [111] planes parallel to the 

surface but on rocksalt with the [100] planes parallel to the surface. The 

details of the preparation of the epitaxial silver films used in the 

experimental part are given in Chapter VI. Epitaxial gold films on mica are 

best produced by sputtering(35). The resulting films have [111] planes 

parallel to the surface, as in silver films on mica. 
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2) Methods for the Study of the Structure of Thin Films. 

The structure of thin filmS is examined mainly by two complementary 

but related techniques; electron diffraction and electron microscopy. 

Brief descriptions of these techniques are given below, followed by an 

account of the information obtained by using them. Electron diffraction 

is used to check the epitaxy of the specimen films used in the experimental 

part, and details of the experimental procedure are given in Chapter VI. 

Electron diffraction.  

When a beam of electrons is incident on a crystal there are diffraction 

maxima for only certain combinatiOns of incident and scattering directions. 

The directions of the diffraction maxima are determined by the recuirement 

that the scattered electron waves from the atoms of the crystal should' 

reinforce each other. The Bragg approach to diffraction by crystals will 

first be described, then a construction which allows the diffraction 

directions for any incident beam direction to be determined. The details 

of the theory are given in the standard texts 20) 

/ 1./1/ / 

/ 
/ / 

/  

f 

Figure 4.1  
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A set of crystal planes are considered (Figure 4A). The scattered 

waves from a single plane are in phase when the angle of incidence equals 

the angle of reflection, but the !raves from different planes only reinforce' 

each other if the following condition is also satisfied: 

nX = 2d sin 0, 

where d is the separation of the planes; is the wavelength of the 

electrons and n is an integer. This is Bragg's law. 

The construction mentioned above involves the reciprocal lattice 

(base vectors b1, 122, and b3), which is related to the direct crystal 

lattice (base vectors 41, a2  and a3) by: 

—a —3  

- 	

a2 A 

 ° (12A 13)  
etc. (4.2) 

The line joining the origin to the reciprocal lattice point (h,k,l) is 

perpendicular to the planes in the direct lattice with Miller indices 

(ikl), and its length is 1/d, where d is the separation of the (hkl) 

planes. A line is drawn from the origin in the direction opposed to the 

incident beam and of length 1A, (0C in Figure 4.2). The sphere of radius 

1A with centre at C is the Ewald sphere (the wavelength of the electrons 

used is small compared with interatomic distances, i.e. 0.06R, so the 

radius of the Ewald sphere is large compared with the reciprocal lattice 

spacing). If the Ewald sphere passes through any point of the reciprocal 

lattice,P, there will be a diffraction maximum in the direction CP. 

The relationship between the Ewald sphere construction and Bragg's 

law is also illustrated in Figure 4.2, OP = 1/d = 2 sin 0A. The 

-70- 



• / 

4E. 

I 

Figure 4.3 4.3  Reciprocal lattice and 

Diffracted 
beam direction/ 

Incident beam 
directio 

• 
	• 	 • 	 • 	 . 

Plane ge • 
the , 'direct 

lattice 

Figure 4.2 The Ewald Sphere Construction. 

Ewald sphere for thin films. 
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Figure 4-.4 

diffraction maximum indicated by P is equivalent to a Bragg reflection 

from the corresponding set of planes in the direct lattice. 

The Ewald sphere would only be required to pass through the precise 

reciprocal lattice point for diffraction if the crystal were perfect and 

of infinite extent. In the case of real crystals a diffraction maximum is 

obtained if the Ewald sphere passes through a region around the point. 

The shape and size of this region is influenced by the shape and size of 

the crystal. 'If the crystal is very thin,a few atomic layers, 

the region is elongated in the thin direction. This situation is illustrated 

in Figure 4.3. 

Electron diffraction observations of films are usually made with the 

electron beam at a small angle to the film surface (Figure 4.4). Electrons 

are only scattered through small angles 

by atoms, so diffracted beams are 

only found at small angles to the 

incident beam. The Ewald construction 

shown in Figure•4.3 is for this 

situation. The nature of the 

diffraction pattern obtained depends 

on the degree of elongation of the 

regions around.the reciprocal lattice 

points, which depends in turn on the 

effective thickness of the film. 

The effective'thickness is the 

number of crystalline layers which 

contribute to the diffraction•..  
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pattern. While an electron is in the film it may be scattered 

inelastically, after which it cannot contribute to the diffraction ,  

pattern. A measure of the possible path lengths inside the film is 

given by the mean free path for inelastic collisions of the beam 

electrons. The way in which the nature of the surface influences the 

effective thickness is shown in Figure 4.5. Films with flat surfaces 

have small effective thicknesses and the diffraction directions are 

spread out perpendicular to the film surface .(Figure 4.3). 

•••••••• 	 -Ow 

Figure 4.5.  Electron penetration. 

Some 	electron diffraction patterns for silver films are shown in 

Plates 1 and 2(page11-6. Plate 1 is from an epitaxial film, and the 

vertical streakiness indicates surface flatness. Plate 2 is from.a film 

evaporated ontpa.cold. mica substrate. The greater resolution of the 

spots suggests a rougher surface. 

Electron diffraction observations show clearly the presence of 

epitaxy in thin films,'and can be used to estimate lattice constants. 

They also give an indication of the smoothness of the surface of the film. 

The electron beam is wide on the atomic scale so all information obtained 
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is averaged over a relatively large area. For the detailed study of 

film structure the electron microscope must be used. 

Electron microscopy.  

The electron microscope is a most valuable instrument for the study 

of the structure of thin films. A small region of the film is observed, 

and details can be seen which are entirely lost in the averaging process 

of electron diffraction. 

The use of the electron microscope for the study of thin films has 

been reviewed by Bassett, Menter and Pashley(21) and by Thun
(22)

. The 

films are usually observed by transmission techniques after removing them 

from their substrates. There are two basic methods for obtaining images 

of crystalline objects. In the first method, known as diffraction 

contrast, the aperture of the objective lens is restricted so that no 

diffracted beams are allowed to pass. Variation in contrast then occurs 

if there is variation in the intensity of the diffracted beam from one 

part of the specimen to another. In the second method,at least one 

diffracted beam is allowed to contribute to the image, and a periodic 

fringe pattern is obtained which is related to the periodicity of the 

crystal lattice. This is known as the lattice resolution method. The 

resolution of electron microscopes limits. the direct application of this 

method to crystals with lattice spacings greater than about 5a, so the 

lattices of elements and simple compounds cannot be resolved. However, 

the Moire patterns that are obtained when two lattices are superimposed, 

can be resolved. The misorientations of growing crystallites and the 

presence of dislocations in films,can both be studied by this method.- 



The surface topology of films may be studied by the replica 

technique( 
23) 

 . A layer of carbon is evaporated onto the specimen 

surface and reproduces the surface features. A little chromium is then 

evaporated on to the carbon replicafrom a small angle to the film surface. 

The specimen film material is dissolved away,and the shadowed replica 

Observed in an electron microscope. Shadowing is Used as the image 

contrast from an unshadowed carbon replica is poor. 

3) The Growth and Structure of Epitaxially Evaporated Thin Films. 

Growth 

. Electron diffraction and electron microscope work have yielded a 

clear picture of the way in which epitaxial filmsgrow(19,25).  .The first 

detectable stage of the deposition is the formation of three dimensional 

crystalline nuclei scattered over the Surface of the substrate; These 

nuclei are mainly well oriented:with respect to the substrate
(26,27)

. 

The nuclei grow with the arrival of more material, becoming island . 

crystallites. When two crystallites grow close together they coalesce 

very quickly in a liquid-like fashion. The crystallites eventually link 

up over the whole surface leaving only holes. Further deposition fills 

in the holes and thickens-the film. 

The above details of the initial stages of film growth can be observed 

directly in the electron microscope. A recent study of the growth of 

gold and silver films on molybdenum bisulphide by Pashley, Stowell, Jacobs 

and Law
(24)  brings out many details of the growth of evaporated thin films. 

The films were evaporated inside an electron microscope on to a flake of 

substrate thin enough to allow the transmission of the electron beam. • 

The growth of the films could then be observed continuously. The Moire 
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patterns obtained between the substrate lattice and the metal lattice 

were interpreted to reveal the following orientational aspects of film 

growth. The small crystallites found in the early stages of growth are 

not perfectly oriented with respect to the substrate. Misorientations 

are typically one or two degrees. When the crystallites are still small 

the misorientation between a coalescing pair is eliminated by the rotation 

of one ()Thoth, presumably by recrystallization. Misorientations 

between larger coalescing crystallites are not eliminated'and must he 

taken up by dislocations. The defects produced in this way become 

permanent features of the film. 

The substrates on which epitaxial deposits are formed usually have 

lattice spacings significantly different from those of the overgrowth 

materials. Electron diffraction work has shown that, in spite of this, 

the overgrowth has its normal bulk lattice spacing even at the earliest 

detectable stage(26,27,28) 

Defects in epitaxial thin films.  

The presence of structural defects in films is clearly observable by 

electron microscopy(21,29,31).  Dislocations and stacking faults are shown 

up by the diffraction contrast technique, and dislocations by the Moire 

pattern technique. Bassett et a1.(21)  describe the methods usedl and present 

some results for [111] gold films evaporated onto epitaxial silver films, 

and separated by-dissolving the silver in nitric acid. Dislocation lines 

are present in large numbers, estimated at between Wand 10" cm/cm3. 

They are inclined to the plane of the film at ...70°, i.e. they lie in 

[111] planes, and extend from surface to surface. 

Similar results were obtained by Matthews(29), who used [100] silver 
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films which had been evaporated on to rocksalt. He estimated that the , 

dislocation density lies between 1.10" and 3.10" ami/cm3. It is 

interesting to note that the above values for dislocation densities are 

similar to the value obtained by Baily
(30) for cold worked silver. 

Rolling to 90 reduction resulted in a dislocation density of about 5.10.1  

ow  cm • 
The origin of defects in thin films.  

Several mechanisms have been suggested for introducing imperfections 

into epitaxial thin films. These are listed by Pashley(25) who considers 

that the most important are the presence of misorientations in the early 

stages of growth, which have already been mentioned, and displacement 

misfits. Displacement misfits arise between two growing crystallites as 

a result of the difference in lattice spacing between the film material 

and the substrate. The extended lattices defined by the two initial 

nuclei do not, in general, coincide. The difference must be taken up by 

defects when the crystallites coalesce. 

The electron microscopy work described has been mainly on very thin 

films, usually little thicker than required for complete coverage of the 

substrate. It is to be expected, however, that the dislocation structure 

will largely persist, as the substrate for subsequent layers'is the 

highly defective initial layer. 

Film surfaces.  

The electron diffraction patterns obtained from epitaxial silver 

films have streaks rather than spotso indicating that the surface is flat 

on a near atomic scale over much of its area. The streakiness of the 

diffraction spots shows that the depth of penetration of the electrons 
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is only a few atomic layers, perhaps only one or two as suggested. by 

Newman and Pashley(46). 

Further information about the surfaces of the epitaxial silver 

films used in the experimental part of the present work is provided by 

the replica technique. Carbon replicas of some of the specimens used 

were prepared and examined by C. Gonzales
(32) 

and they show that the 

surfaces have large flat areas with occasional steps of a few tens of 

angstroms and occasional pits. Theseresults are discussed in greater 

detail in; Chapter 

Summary  

The results described in this chapter provide a picture of 

epitaxial thin films of silver and gold which may be summarized as.follows: 

The films are well oriented with respect to their substrates. 

The lattice spacing is as'for the normal bulk material. 

They have large numbers of dislocations, comparable with 

the numbers found in heavily worked bulk material. 

(d) The free surface of a film is nearly atomically flat over 

most of its area. 
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CHAPi.t.kt V 

PREVIOUS EXPERIMENTAL WORK ON RESISTANCE SIZE EFFECTS. 

In this chapter some previous measurements of the electrical 

resistance of small specimens are described. The emphasis is mainly on 

films of the noble metals, particularly single crystal films, as these 

are most relevant to the present work. Other types of film, and wires, 

are also discussed in an attempt to provide a wider picture. The work 

is grouped according to the type of specimen involved. 

Rolled foils.  

Specimeni produced by rolling have thicknesses much greater than 

the mean free path of electrons at room temperature, so size effects 

can only be obtained at low temperatures. Andrew
(16) measured the 

resistivity of foils of tin with thicknesses down to 3.3µ, and obtained 

size effects at temperatures below about 20°K. At each temperature the 

resistivities of the thicker foils were independent of thickness, giving 

a value which could be taken as the bulk resistivity, while those of the 

thinner foils increased with decreasing thickness. The results could be 

roughly fitted to Fuchs' theory with p = 0, giving a value for the mean 

free path. The resistivities of the thinner foils were a factor of ten 

greater than the bulk value at 3.8°K, indicating a K (= thickness/ mean 

free path) of less than 0.1e The values obtained for the mean free path 

at the three temperatures were 0.1 mm. at 3.8°K, .005 mm. at 14°K and 

.002 m m. at 20°K. 

Alkali Metals.  

Mayer(1° has shown that it is possible to obtain films of alkali 
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metals which have reproducible electrical properties. The films are 

prepared by evaporating the metals ontoa glass substrate cooled to about 

90°K. Lovell(10,33) also evaporated filmsont)acooled substrate and 

observed changes in the film resistance after evaporation was complete. 

Mayer avoided these effects by the use, of a very high vacuum (109 torr) 

and a very pure source metal. 

The'resistivities of caesium, potassium and rubidium films in the 

'thickness range",  1008 to ". 5000 were measured. The bulk resistivity 

(pb) was Obtained from the results Poi. the thicker films, and the reduced 

resistivities (pf/pb) fitted to Fuchs' 'theory with p = 0. Although the 

films were quite thin the lowest value of K reported was 0.15. The 

agreement with Fuchs° theory was quite good and values for the mean free 

path at 60°K and 90°K were obtained. 

Films deposited at low temperatures can be expected to have a highly 

defective structure. This is shown up in Mayer's films by the values 

obtained for the bulk resistivity, which are significantly higher than for 

the normal bulk material. The bulk resistivities estimated for potassium 

films were 1.341-cm at 60°K and 2.1µ0-ca at 90°K. The corresponding ideal 

lattice bulk values are 0.6 and 1.2 respectively. (MacDonald34). 

Silver and gold films.  

It was shown in the previous chapter that evaporated or sputtered 

films, in the early stages of their growth, are a collection of isolated 

crystallites. In this condition the film resistivity is very high and 

remains so until there is a substantial amount of interconnection of the 

crystallites. The change from the high resistivity, characteristic of 

the 'island' state, to the much lower value, characteristic of a 



continuous film, occurs for quite a small increase in the average 

thickness of the deposit. The point at which this rapid change occurs 

varies considerably with the method of preparation. 

Chopra,Bobb and Francombe(35) give results of resistivity measure-

ments on gold films which show the onset of conductivity. This occurred 

at -‘.1601 for single crystal films sputteredonto heated mica. When the 
measuring voltage was applied during the sputtering process the onset of 

conductivity did not occur until 3001. Results given by Minos(36) for 

gold films evaporated onto an evaporated layer of bismuth oxide on glass 

show a much earlier onset of conductivity, at about ,FOR. 

If evaporated or sputtered films are to be used for size effect 

studies, they must be thick enough to be outside the range of the structural 

effects associated with the early stages of growth. 

The resistivities of continuoua films vary considerably with the 

method of preparation. Reynolds and Stilwell(37) showed that, when films 

are evaporated on to a room temperature substrate, the rate of evaporation 

and the pressure of the residual gas in the evaporation chamber are 

important parameters. The lowest film resistivities were obtained using 

a high rate of evaporation and low residual gas pressure. An.increase in 

film resistivity by a factor of fiie could be obtained by lowering the 

evaporation rate or raising the pressure. The results for silver films of 

the low resistance type in the thickness range 100 - 15001, measured at 

room temperature, gave a mean free path of about 5002 when compared with 

Fuchs' theory for p=0. This value is in good agreement with that 

Obtained from the free electron model assuming one conduction electron' 

per atom. 
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As films evaporated onto a cold substrate have manydefects)it is' 

reasonable to attempt to reduce the bulk resistivity by annealing. 

This approach was successfully adopted by Gillham, Preston and Williams (38,39) 

who used sputtered bismuth oxide on glass as a substrate. Gold was 

sputtered on to the substrate while it was at -room temperature, then the 

film was annealed at 450°C. Films only 502 thick, prepared by this 

method, had low resistivities.• A further reduction in resistivity was 

obtained by coating the free surface of the gold film with sputtered 

bismuth oxide before annealing. The resistivity of the bulk material, 

was estimated from the results for the thicker films (400 - 8002.), and 

was found to'be significantly higher than the accepted value for pure 

gold, i.e. 3.6µ 0-cm compared with 2.48µ 0-cm. ,This shows that many 
defects must have remained after annealing. 

The most striking feature of this work is the low resistivity of 

the very thin films. At room temperature a film of thickness 551 had a 
resistivity of 4.8µ 0 cm. A reasonable value for the bulk mean free path 

is over 200 	making IC-- 0.25. In order to explain the small size effect 

on the basis of Fuchs° theory it is necessary to assume that p lies 

between 0.8 and 0.9. 

The resistivity of gold films is also the subject of a paper by ' 

Chopra, Bobb and Francombe(35). They measured the room temperature 

resistivity of films obtained both by sputteripg and by evaporation onto 

freshly cleaved mica substrates. A polycrystalline film was obtained 

with the Substrate at room temperature, and an oriented single crystal 

film obtained when the substrate was heated to about jOdb during deposition. 

The thickness range covered was 100 to 1000E. The results were similar to 
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those obtained by Gillham et al. in that the resistivities of the 

unannealed (polycrystalline) films were considerably higher than those of 

annealed (single crystal) films. The results for the polycrystalline 

' films could be fitted reasonably well to Fuchs' theory with p=0. The 

single crystal sputtered films had'constant resistivity, about 6% above 

the value for pure bulk gold, down to 2501. This is only 100 above the 

thickness of the onset of conductivity. Both polycrystalline and single 

crystal evaporated films had higher resistivities than the corresponding 

sputtered films. The thick film resistivity of evaporated epitaxial films 

was 20% above the pure bulk value. 

It is of'interest to see what extra resistivity might result from 

the dislocation density estimated by Pashley for.gold films discussed in 

Chapter 4. The effect of dislocations on resistivity is reviewed by 

Baszinski, Dugdale and Howie, (4a) whogive values for the increased 

resistivity per cm. of dislocation in various metals. The value for gold, 

taken with the limits on the dislocation density given by Pashley, results 

in an increased resistivity of between 0.003 and 0.03µ 	The larger 

value is still a factor of five too small to explain the increase found in 

the best of Chopra's films. This comparison must be treated with caution, 

however, as the'fiIms were prepared in different ways 

The curves obtained by Chopra et al. and Gillham et al. for gold 

films are given in Figure 5.1. Some room temperature results for silver 

films, obtained in the course of- the present work, are included in this 

figure. To allow comparison of the gold and silver results the curves 

are plotted in a reduced form, i,e. as pf/p, against thickness, where pl  

is the ideal lattice resistivity of the metal at room temperature. 
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The work ,on gold films on mica was extended to lower temperature ama  

thicker films by Chopra and Bobb(41). They showed that the• temperature 

coefficient of resistivity of single crystal sputtered gold films, down 

to 780K, is consistent with Fuchs' theory with p = 0.8. The films used 

were up to 500OR thick. 

An interesting demonstration of the presence of partially specular 

scattering at the surface of gold films evaporated onto bismuth oxide was 

given by Lucas(43). Taking annealed films as a starting point he 

evaporated a further layer of gold on top, while reaordingthe resistance 

continuously. The resistance went up, at first, even though the film was 

getting thicker. This effect was interpreted as being caused by the lower 

value of p at the new, unannealed, surface. 

Low temperature resistance.measurements on epitaxial silver films 

have been reported by Larson and Boiko(44). The films were prepared in 

the usual way, but with a very high vacuum (5 x 10 torr). The film 

resistivities were measured at room temperature and 4.2°K, and the thick-

ness range covered was 600 to 130001,.. The thicker films had resistivity 

ratios(p3Sp4.2) as high as 175. No low temperature measurements of 

epitaxial gold films have been reported, but the high bulk values found 

by Chopra et al. at room temperature indicate that the resistivity ratios 

would be no more than 17. The low temperature silver results were found 

to fit reasonably well to Fuchs' theory with p = 0.5. 

Chopra(2) measured the variation of resistivity with temperature 

of silver films at low temperatures. The films he used were quite thick, 

15,000 to 60,004 both epitaxial and polycrystalline. The epitaxial 

films showed a twofold increase in resistivity in the temperature range 
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8 - 10°K (Figure8.19page 160 a smaller increase in the same range was 

found for polycrystalline films. In order to explain this effect 

Chopra took up a suggestion made by Olsen(45). This was that the low 

angle scattering of electrons by phonons of Small wave number, which 

predominate at low, temperatures, should. be  more effective in prothoting 

resistivity in the presence of a diffusely scattering surface. This. 

subject will be considered again in later chapters, and will be referred 

to as the phonon-surface effect. 

Thin wires  

As wires cannot be made very thin the size effect can only be 

observed by using very pure metals and. making measurements at low 

temperatures. Measurements on pure mercury wires were made by Andrew(16) 

and. the results evaluated. by Dingle(15)  in the light of his theoretical 

treatment of resistance size effects in wires. The results were in 

agreement with the theory with p=0, though the accuracy was not good 

enough for this value to be certain. The thinner wires did. not obey 

Matthiessen' a rule, whereas the theory indicated that they should. 

The failure of Mattiessen's rule for thin wires was also observed by 

Olsen(45) using pure indium wires: This result was the reason f or his 

suggestion that the phonon-surface effect mentioned. above might be 

important. 

Conclusion. 

The work described. in this chapter shows that resistance size 

effects occur quite generally in small specimens, and that the results 

obtained can often be explained in terms of Fuchs' theory. The 

existence of surfaces from which electrons are partially specularly 
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scattered has also been demonstrated. 

The work of Olsen and Chopra has raised the question: what part 

does low angle phonon scattering play in resistance size effects at 

low temperatures? 
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CHAPTER VI 

EXPERIMENTAL IIVPHODS 

This chapter describes the various experimental methods,used in 

the course of this worklfor the preparation, examination and measurement 

of thin silver films. 

1) Preparation of Specimens.  

The thin film specimens were prepared by evaporating, in a vacuum, 

pure silver from a basket shaped tungsten filament onto a heated mica 

substrate. The silver used was Johnson Matthey 'spec-pure' (99.9997.). 

A diagram of the evaporation set up is given in Figure 6.1. It is.based 

on an Edwards evaporating unit which has a 14. inch oil diffusion pump to 

evacuate the evaporation chamber. 

The filament is wound from 0.5 mm. tungsten wire, and is heated by 

passing a current of about 20 amp through it. Before a new filament 

is used for evaporationlit is outgassed by heating it in a vacuum for 

a few minutes at a current higher than that used fOr evaporation. 

The hot stage. 

The stage on which the substrate rests during evaporation is 

constructed from 'spec-pure' copper, as normal commercial copper contains 

impurities which may evaporate when the stage is hot and contaminate the 

film. (Pashley(47)). The stage is heated electrically by a constantin 

heater, insulated by mica and sandwiched between two pieces of copper. 

The temperature of the stage is measured using a copper-constantin 
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thermocouple attached to the upper copper plate. 

The Masks.  

In order to obtain thin film specimens of a shape suitable for ' 

resistance measurementspa mask is placed over the mica substrate 

during evaporation. It is required that the edges of the specimens should 

be sharp, so the edges of the mask must be thin and lie close to the 

surface of the mica. A mask of thin material satisfies the former 

conditionobut'cannot be kept flat enough to be close to the mica at all 

points. 

The problem was solved by making the masks from thick material and 

thinning the regions near the'specimen apertures. The starting material 

was 3 m.m. thick 'spec-pure' copper sheet. A central rectangle was milled 

down to 11114 thick leaving a border of the full thickness for rigidity. 

The apertures were made in the central region by spark etching,. with the 

help of Standard Telecommunications Laboratories Ltd. When an arc 

discharge occurs between two metal electrodes immersed in a dielectric 

liquid, such as paraffin, some Material is removed from the electrodes, 

mainly from the anode. This process is exploited in the spark etching 

method of shaping intricate pieces of metal. A suitably shaped cathode 

is lowered onto the workpiece (the anode) and etches its way through by 

repeated arc discharges. The breakdown through the paraffin occurs when 

the separation between the electrodes is very small (--0.001"),and the 

result obtained closely follows the shape of the cathode. Sections 

through a mask and one of the electrodes used in producing it ere shown 

in Figure 6.2. The electrodes were made from 'Elkonite', an alloy made 

by Johnson Matthey Ltd. 
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The Substrate  

Mica has been used throughout this work as a substrate for the 

evaporated silver films as it has two important advantages, i) Silver 

film evaporated on it are epitaxial. ii) It can be cleaved to give 

large fault free areas, which are essential for resistance measurements. 

The mica is freshly cleaved before use to minimize surface contamination. 

Pieces suitable for substrates are obtained as follows. A sheet of mica 

about 2 inches square is carefully cleaved using a fine needle. The 

quality of the cleavage surfaces is checked by joining the two surfaces 

again, but slightly displaced from their original position, and looking 

at the white light fringes formed between them. Fault free areas join 

very closely and show no fringes. A fault produces two close steps in 

the thickness of the air films between the surfaces, and these are 

shown up very clearly by the white light fringes. Although the white 

light fringes cannot be expected to show steps less than about 2500111  

the method appears to give good results. No faults have been observed 

on specimen films during the course of the interferometric thickness 

measurements described later in this chapter. The two pieces of. mica 

are left in contact until required for evaporation, not more than an, 

hour later. 

The Evaporation.  

Each mask produces four specimens on a single sheet of mica. The 

four specimens on one sheet will be referred to as a 'spedimen set'. 

Two specimen sets are evaporated together. The sheets of mica are 

placed on the stage with.the masks over them. A smaller piece of 
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freshly cleaved mica is placed on the masks to provide a sample for 

electron diffraction observations. A length of 2mm. silver wire (between 

about 11. cm. and 3cm. depending on the specimen thickness required) is 

placed in the tungsten basket. The evaporation chamber is pumped down 

4 to below 10-  mm Hg and the current to the stage heater is switched on. 

The evaporation is performed when the temperature of the stage is between 

320 and 330% 

There is a movable shield which is controlled from outside the 

evaporation chamber and can be moved above the masks (Figure 6.3). With 

the shield fully covering the specimen apertures the filament is heated 

just sufficiently to melt the silver, so the silver can outgas without 

contaminating the surface of the mica. The masks are then fully exposed 

and evaporation commenced. Variation in the thickness of the specimens 

is achieved by moving the shield stepwise across the masks. The shape of 

the shield is such that one mask can be exposed alone if required. After 

evaporation is completep the stage is allowed to cool to near room temperature 

before air is admitted to the chamber; 

If the surface of a specimen set is to be modified this can be done by 

means of a second evaporation,using only a small amount of material to 

produce a thin additional layer. 

The Specimens. 

The shape and size of films obtained through the masks in shown in 

Figure 6.4. There are four specimens AB, CD, EF and GH, each with a pair 

of potential leads which go to the edge of the mica sheet. The current 

circuit A to H is completed by painting on a silver suspension ('Dag' silver 
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in 11.I.B.K, manufactured by Acheson Colloids Ltd.) as indicated by the 

dotted lines. This dries to give a conducting layer. 

In order to obtain the thickness of the film from the high temperature 

resistance measurements; the ratio of the distance between the mid-points 

of the potential leads (d) and the width (w) is required. These 

dimensions are obtained for each specimen using a travelling microscope 

and viewing the specimens in reflected light, When the edges can be 

clearly seen. The edges of the specimens are not so clear when viewed 

in transmitted light, as some silver spreads.a little way under the 

edge of the maSk9giving a section of the type shown in Figure 6.5. 

The accuracy of the ratio 4/w depends mainly on w, the smaller 

of the two distances. The width is measured at at least two points and 

these rarely differ by more than 1%; The mean is taken for w. The error 

in d contributes at most 0.3% to the error in 4/w. 

Storage of Specimens. 

Between preparation. and measurement, a period of a few days, the 

specimens are kept in dry air is a dessicator, with silica gel as the 

drying agent. 'Specimens stored in this way show no visible signs of 

change even after several months, While.  any left in the open air soon 

become discoloured. 

2) Electron Diffraction.  

The electron diffraction patterns from the surface of a thin film 

provide a useful check on the epitaxy, and to some extent on the surface 

flatness, of the film. In this work the electron diffraction observations 

were usually made on the sample film produced with the specimens for 

,this purpOse. 



A diagram of the arrangement of the electron diffraction camera 

is given in Figure 6.6. A piece of the sample about 5mm. square is 

attached to a flat metal support with.  'Aquadag' which also provides a 

'conducting path from the film, to prevent it becoming charged by the 

electron beam. The specimen support is clamped on a mounting which 

allows the specimen to be rotated'in its plane and also about an axis 

perpendicular to the beam and in the plane of the film (Figure 6.6 axes 

X and Y respectively). 

With the specimen in position the electron diffraction camera is 

evacuated to a pressure of about 10 3mm Hg and the beam switched on. 

The diffraction pattern is visible on the fluorescent screen. The 

specimen is rotated about the Y axis to bring the shadow edge to a. 

suitable position, roughly as in Figure 6.6. It is then rotated about 

X until the spot or line pattern appears. This is recorded on the 

photographic plate by raising the fluorescent screen for a'few seconds. 

Exampleiof diffraction patterns from epitaxial silver films are 

shown in Plates 1 and 2, page 117. 

3) The Lbw Temperature Apparatus. 

The thin film resistance measuring apparatus was built to fit into 

an existing glass cryostat. The general arrangement of the apparatus is 

shown in Figure 6.7. The outer dewar is for liquid nitrogen and the inner 

one for liquid helium. 

A two can.  system is used to cover the temperature range between 

4.2
0
K and about 300

0 
K. The outer can, is cooled by liquid helium or 

liquid nitrogen and the space between the cans evacuated. The inner 
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can may then be maintained at some temperature above that of the outer 

can by supplying just sufficient heat to balance the losses. 

The arrangement of the cans is shown in Figure 6.%. They are 

supported from the brass top plate by two thin walled (.006") stainless 

steel pumping tubes. The 11F" diameter tube is connected at its top 

end to an oil diffusion pump and leads directly to the inter-can space. 

The smaller tube (3/16"  diameter) is connected to a backing pump, and 

leads to the inner can via the inner cans support tube. 

Both cans must be vacuum tight so some form of demountable vacuum 

joint is required. Indium '0' rings are used as they are both convenient 

in use and avoid the heating. required by solder joints with the 

attendant risk of damage to films, wires and other permanent solder 

joints. The'0' rings are freshly made each time from 06" indium wire. 

The ends of the wire are overlapped and the ring compressed by a set of 

12 6BA screws between a flat surface and a shallow 'V' groove, as shown 

in the detail.of Figure 6.8. 

The brass outer can has on top a 1 inch high container made from 

sheet copper. This' holds liquid nitrogen to cool the cans to about 78°K. 

The inner can.  

The inner can is supported from the thermal anchor box in•the top 

plate of the outer can by a 411 diameter thin walled stainless steel 

tube. This can is constructed mainly of copper to ensure uniformity of 

temperature. A sheet copper cylinder soldered to the top of the can has 

wound on it a 200 fl heater of 42 S.W.G. constantin wire, and also a 

copper resistance thermometer of L,6 S.W.G. enamelled copper wire which 

has a room temperature resistance of about 185 0. The wires connecting 
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these to the outside world are brought down the main pumping tube. 

The details of the internal structure of the inner can are illustrated 

on page 98. .Six copper strips, 06" x 3/8" section, are soldered to the 

top of the can. Between these "are the film contact devices, consisting 

of pieces of perspex with grooves into which are fixed phosphor-bronze 

contact strips. These are shown in Figure 6.9(d). Each mica specimen 

sheet is placed between a copper strip and a set of phosphor-bronze 

contacts. The contacts press on the evaporated current and potential 

leadsl and hold the specimen sheet against the copper strip. 'Enamelled 

46 S.W.G. copper wires are soldered to the free ends of the phosphor-

bronze contact strips. 

To ensure good electrical contact a spot of colloidal silver is 

placed at each of the film to phosphor-bronze contacts. The important 

current contacts have, in addition, pieces of indium pressed between the 

perspex and the contact strip. 

There are positions forfour specimen sheets, each of which has four 

specimens (page 93 ). The electrical connections inside the can are 

sketched in Figure 6.9(e). The current leads are connected in series so 

that the sane current flows through all specimens. All the wires are led 

to the tap of the can and bunched together. The bundle passes in a spiral 

up the inner can support tube into the thermal anchor box, where it is 

wound several times round a sheet copper former whiCh is soldered to the 

outer can lid. This thermal anchor is provided so that, when the cans are 

at low temperatures, heat coming down the wires from the room temperature 

end is taken up by the outer can and the helium bath, and does not reach 

the inner can. 
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The bundle of wires passes up the smaller pumping tube and out 

through an 'Araldite' seal at room temperature. In the junction box 

(Figure 6.7) the wires are joined to a corresponding set of much 

thicker wires which go to the resistance measuring circuit. Taking 

the wires by the route described avoids the need for a low temperature 

vacuum seal, which mould be difficult to provide for so many wires. 

Controlling the temperature of the inner can.  

When the inner can is at a higher temperature than the outer can 

heat is lost from it by oonduction and, at higher temperatures, radiation. 

If the temperature of the inner can is to. remain constant the loss must be 

balanced by the heat supplied by the heater (Figure 6.8). The' current 

through the heater is controlled by a feedback system which uses the 

copper resistance thermometer wound near the heater as a reference. The 

use of such a control system greatly facilitates the establishment of a 

controlled temperature., and reduces temperature drift caused by, for 

example, change of temperature of the outer can. 

The control circuit.  

A diagram of the control circuit is shown in Figure 6.10. A more 

detailed circuit diagram is given in Appendix II. The resistance 

thermometer fonns one arm of a Wheatstone bridge, the output of which is 

amplified and used to control the current to the heater. The temperature 

of control is determined by the variable resistance (R). As the resistance 

of the thermometer changes from just below R to just above the heater 

current changes fram its maximum value, to nearly zero, as shown in 

Figure 6.11. If the required amount of heat is provided by some current in 

this range the temperature of the can will be controlled, as large changes 
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in the current are caused by small changes in temperature. The change 

in the thermometer resistance, required to produce a change in output 

of 50% at the balance point, represents a change of temperature of less 

than 1% over most of the temperature range. 

The meter shows the fraction. of full output being delivered, and 

thus indicates when the system is controlling. The variable resistance 

in the output circuit allows .the scale of the output current to be 

altered to suit the various heat requirements over the temperature range. 

Extra current, not subject to the controller, can be passed through the 

heater to 'increase the heating rate at higher temperatures. 

The effectiveness of control.  

The control system is very effective in use, particularly at the 

higher temperatures, where changes during sets of measurements are 

usually less than 0.1°K. Good control at the higher temperatures is 

important in this work, as the film resistivities are compared with those 

for bulk at corresponding temperatures. Small differences between 
• 

relatively large numbers are required, and uncertainty in the temperature 

would make the comparison unreliable. 

As the controller depends on a copper resistance thermameterl it is 

not very effective below about 25°K.. However, sufficiently constant 

temperatures can be obtained in this range by hand adjustment of the 

heater current. Accurate control is not requiredlas the resistivities 

of neither the films nor the bulk material change rapidly in this range. 

The temperature of the specimens.  

It is impracticable to measure the temperature of each specimen 

individually at the same time as its electrical resistance is measured. 



The temperature measurement relies on the temperature of the inner Can 

being constant over a period of time and being the same at all points in 

the can. 

The constancy with time is ensured by the temperature controller 

described in the previous section. The inner can is constructed of copper 

and is filled with helium gas at a pressure of about 0.5 m.m. Hg during 

experimental runs. The ipecimena are thermally connected to the body of 

the can by the exchange gas and through the copper strips against.which 

they are held. 

The temperature measurement is made using a copper resistance 

thermometer mounted in the same environment as the specimens. .This is 

shown in Figure 6.9(d).. The thermometer consists of a sheet of mica round 

which a length of 38 S. W. G. commercial enamelled copper wire is' loosely 

wound. It is held in place in the same way as the specimen sheets. In 

this position it can be expected to give a good estimate of the temperature 

of the specimens, and also a reliable indication of when they achieve 

thermal equilibrium. 

Copper thermometers wound in a strain free manner have been found 

to be reliable and reproducible (White()). A general calibratiori can be 

used to obtain the temperature to better than 0.1°K if the residual 

resistivity ratio is less than 000. In the case of the thermometer used 

,it is about 0.007. The function (R(T) - R(4.2)) / (R(273) - R(4.2)) is 

tabulated by White, so the residupl resistivity and one fixed point are 

required to calibrate a particular thermometer. The fixed point used in 

this case was near the ice point and was determined by an accurate mercury 

thermometer. 
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The actual temperature is not required to great accuracy. What is 

• required is the value of the resistivity of bulk material at the same 

temperature as the film. It is sufficientthatthethermometer shodld be 

reproducible, as the resistivity of the bulk material is measured using the 

same thermometer. 

The room temperature resistance of the copper thermometer is about 

1 ohm, so the same measuring technique is used to obtain its resistance 

as is used for the film specimens. 

A copper resistance thermometer is unsuitable Tor temperatures below 

about 20°K, so a carbon resistance thermometer is used to cover this range. 

A nominally 39 Q * watt resistor was attached to the top plate of the inner 

can (Figure 6.9(a)). Its resistance is measured using a simple Wheatstone 

bridge circuit (Figure 6.12). The high resistance arms were necessary to 

'keep the current in the thermometer low, to prevent self heating. The 

accuracy required in this range is not high, so no elaborate calibration 

procedure is needed. The helium point And some points from the 'low end 

of the copper thermometer range'are considered sufficient. 

The measurement of resistance.  

The thin film specimens have small resistances, much less than 1 ohm 

at low temperatures, and are necessarily remote from the resistance 

measuring circuits. In order to keep the heat leak from room temperature 

small, the connections to the specimens must be through thin wires which 

have resistances of over 10 ohms. A. potentiometric method of resistance 

measurement is, therefore, an obvious choice. 

The method is very simple. The specimens are provided with current 

and potential leads, and are connected in series by their current leads. 
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A current is passed through the specimens, the copper thermometer and 

a standard resistance (0.2 ohms), and the voltage developed across each 

resistance in the circuit is measured. The current is obtained from the 

voltage across the standard resistance, and the values of all the other 

resistances in the circuit can then be. obtained from their respective 

voltages. 

The voltages are measured using a Dieselhorst pattern potentiometer, 

which has five' decade switches, giving up to 10,000 µV in steps of 0.1 µV. 

The out-of-balance voltage is amplified by a galvanometer amplifier, the 

output of which is displayed on a secondary galvanometer. A very sensitive 

indication of the balance point is thus obtained. 

Thermals. 

The temperature gradients in the voltage measuring circuits cause 

thermoelectric voltages of up to a few micro-volts to be set up. These 

are constant over a.  short period of time and are allowed for in the following 

way. 

The potentiometer current and the specimen current are passed through 

a coupled pair of reversing switches. If there is no thermoelectric. 

voltaget reversing the currents has no effect, and the true specimen voltage 

is obtained in each position. If a thermoelectric voltage is present, it is 

not reversed with the current,but it is added to the specimen voltage in one 

direction and subtracted in the other. The. mean of the two voltages measured 

gives the true specimen voltage. 

The circuit. 

The Dec. resistance measuring circuit is shown in Figure 6.13. The 

potential leads from the specimens are taken into a Of way, 2 pole, low 
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thermal switch. The output from this is available for voltage 

measurement by the potentiometer. The specimen current is supplied by 

a 6V accumulator and regulated by a variable resistance in series. The 

specimen' current used is in the range 5 - 10 ma. 

The procedure at a given temperature.  

The resistance measurements are made only when the temperature of 

the inner can has stabilised at the required value. The specimen current 

is then also constant. The voltages across the copper resistance and the 

standard resistance need be measured only twice at a given temperature, 

as they are expected to be constant. Voltages are measured in the 

following order: 

Copper resistance thermometer. 

Standard resistance. 

Specimen on the 1st switch position. 

Specimen on the 2nd switch position. 

• 

Specimen on the 16th switch position. 

Copper resistance thermometer. 

Standard resistance. 

The average values of the two temperature and specimen current 

measurements are taken as appropriate for all the specimens. Changes 

are usually small enough for this to be justified. 

The procedure of a resistance measuring run. 

The specimen sheets are placed in position and the inner can sealed 

with an indium '0' ring. The vacuum tightness of the can is checked using 
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a helium mass-spectrometer leak detector. The outer can is sealed and 

similarly checked. Helium gas at a pressure of about 0.5 m.m. Hg is 

introduced to both the inner can and the inter-can space. 

The apparatus is fitted into the cryostat and the outer dewar filled 

with liquid nitrogen. The cooling of the apparatus is hastened by 

running liquid nitrogen into the container at the top of the outer can. 

/hen the temperature is near 78°K, and no liquid nitrogen is left at the 

top of the outer can, the nitrogen gas is pumped out of the inner dewar 

and replaced by helium. If this were not done, solid nitrogen might 

Condense on the walls of the dewar and prevent the liquid helium level 

being seen. 

The apparatus is cooled to 4.2°K by transferring liquid helium from 

its transport vessel through a vacuum jacketed. transfer syphon. The 

transfer is performed sufficiently slowly that the 'specific heat of the 

helium gas is fully used ip the cooling process. Liquid helium has a very 

low latent heat of vaporizationland much more would be used if this alone 

had to cool the apparatus from 78°K to 4.2°K. The cryostat is filled with 

liquid helium to just above the top of the outer can. 

The resistances at 4.2°K are measured and the exchange gas in the 

inter-can space is pumped out. The inner can is warmed up and brought 

to equilibrium at various temperatures, when the resistances are measured. 

Below about 25°K the temperatures are measured by the carbon resistance 

thermometer and the heater current is set by hand. Equilibrium is 

established quickly in this range as specific heats are small.. Above about 

25°K the temperature controller is.used. At higher temperatures the liquid 

helium level falls below the bottom of the can, and is eventually lost, but 
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control is still effective as long as the temperature of the outer can 

is lower than that of the inner can. 

Measurements are continued up to about room temperature, with an 

overnight'break when the temperature is somewhere in the range 100°K - 200°K. 

The cans do not warm up to room temperature during this period 'as liquid. 

nitrogen remains in the outer dewa.r long enough. 

Above about 200°K the temperature of the outer can rises very slowly 

so heat is provided by a 500 ohm electrical heater wound on it. This is to 

avoid very large temperature differences occurring between the cans. 

The resistances are usually measured. at about 30 temperatures in the 

range 1..2°K to room temperature. 

if ) The Thickness of Thin Films.  

Methods for estimating the thicknesses of thin metal films may be 

divided into three groups. 

(a) Mass measurement methods(35A. The mass of material deposited in 

a given area is estimated, e.g. by weighing or by chemical analysis, and. 

the average thickness calculated assuming that the film density is the same 

as the bulk density. In order to get sufficient mass for accurate measure-

ment large substrates are required, so these methods are unsuitable for the 

films used in this work, as several small specimens of different thicknesses 

are produced at each evaporation. 

(b) Multiple beam interferometric methods( 4'9)  Fringes of equal 

chromatic order are usually used and. the thickness at a single point at 

the edge of the film is obtained. 

(c) Resistance methods(58). The thickness is deduced from the shape 

of the specimen and its electrical resistance near room temperature, where 
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size effects are small. 

A resistance method has been used to obtain the thickness of all. 

the specimens discussed in the results chapters. The method is described 

in Chapter VII as it arises naturally from the analysis of the resistance 

results. The thickness of some specimens were measured by means of fringes 

of equal chromatic order, and the results compared, in Chapter VII, with 

the thicknesses obtained by the resistance method. •A description of the 

fringe method will now be given. 

Thickness measurement by multiple beam interferometry. 

The use of multiple beam interferometry for the study of surface topology 

has been thoroughly investigated by Tolansky and described in his book(49), 

from which the methods employed here have.  been taken. 

An air film bounded by surfaces which are good, but not total, 

reflectors hag transmission and reflection properties which are critically 

dependent on the thickness of the air film. For the purpose .of measuring 

metal film thicknesses,our interest is restricted to the reflection 

properties of an air film which has one surface totally reflectir and the 

other about 90% reflecting. Monochromatic light incident perpendicularly 

on the latter surface is totally refleCted unless the thickness of the air 

film is close to n?/2, where n is an integer and X the wave length of the 

light. An indication of the 'form of the reflectivity thickness curve is 

given in Figure 6.14.. 

If the air film is not of uniform thicknessIthere are dark fringes' 

where the thickness 'is inX.. These contours of constant thickness are known 

as Fizeau fringes, and an arrangement for observing them is shown in Figure 

6.15. The output of a mercury vapour lamp is. filtered to leave only the 
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green linevand a half silvered mirror is used to allow perpendicular 

observation of the air film. A drawing of a typical fringe system 

is shown in Figure 6.16 (a). 
The above method can be used to observe the thickness of an 

evaporated specimen film, provided it has sharp edges away from the 

edge of the substrate. A layer of silver is evaporated over the film and 

substrate sufficiently thick to give zero transmission. Tolandky has 

shown that the surface of this upper layer reproduces the features of 

the surface below to better than 201. A microscope slide, silvered to 

about 90% reflectivity, is pressed lightly in contact with the silvered 

specimen (Figure 6.17). The resulting air film Changes thickness over 

its area in a gradual fashion, except at the edges of the specimen film.' 

Such an air film, when observed with the arrangement of Figure 6.15, gives 
a fringe pattern like that shown in Figure 6.16(b). The fringe steps 

occur at the edge of the specimen film, and could, in principle, be used 

to obtain its thickness. In practice the fringes are used for preliminary 
observation onlyp and the thickness measurement is made by using fringes 

of equal chromatic order. 

Fringes of Equal Chromatic Order. 

The same.interference film is used as for Fizeau fringesIbut white 

light is used instead of monochromatic, and more information is obtained 

about a more restricted region. The method is best explained by 
considering the experimental arrangement used (Figure 6.18). 
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film 

Figure 6.18  Apparatus for fringes of equal chromatic order. 

White light from an Ediswan'Pointolite' is incident on the air film. 

The part of the reflected beam which passes through the hn/P silvered 

mirror enters a good achromatic lens which projects an image of the surface 

of the air films onto the slit of a spectroscope. The slit receive alight 

which has been reflected from a line (PQ) on the air film. A line along 

the spectrum produced is obtained from a single point on PQ, where the 

thickness of the air film is t(say). The interference condition is note 

realized for wavelengths An, which satisfy the equation n An  = 2t, so a 

line along the spectrum has dark spots at these values of A. ,The speCtrum 

is built up from a set of lines from points on PQ with various values of 

so it is crossed by a set of dark lines, one for each value of n. The 

order of interference is constant for each fringe, hence the name. 

Changes of thickness along PQ result in changing wavelength for the 

fringe across the spectrum. For a given n, A is proportional to t, so 

changes of the thickness of the air film are directly related to the shape 

of the fringe. If the line PQ crosses the edge of a specimen filmlthe 
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abrupt change of thickness of the air film produces a step in each 

fringe, from which the thickness of the specimen film can be obtained. 

Plate 3 shows a photograph of a fringe system with steps. 

Fringes of low order are most sensitive to change of film thickness, 

as 8X = 28t/n, but the advantage is offset to some extent by the greater 

width of low order fringes. Fringes of order 1030 are useful for 

measurement, and can be fairly easily obtained by varying the pressure on 

the microscope slide, while observing the Fizeau fringes. 

A linger spectroscope with a reflection diffraction grating is used, 

and spectra are recorded on Ilford R4.0 plates. The mercury spectrum is 

superimposed on the fringe system to provide wavelength reference points. 

The fringe width is significantly greater than the resolution of the 

spectroscope, so the achievable accuracy is limited by the properties of 

the interference film., 

Measurement of the fringe system.  

To obtain the thickness of the specimen film from the step on a fringe, 

the order (n) and the wavelength change at the step (6 X) are required. 

The wavelength 'of two fringes and the difference between their orders 

are required to establish the order of each fringe in the system. If the two 

fringes are well separated)  the value of n obtained should be near enough to 

an integer to avoid ambiguity. Once the order is known for a given fringe)  

the thickness of the specimen film is given by 

A scale for measuring the fringe system was made by reducing a 

millimetre scale about 5 times onto a photographic plate. The spectrum 

and scale, plate are projected togetherl and the fringe system measured in 

terms of the scale. The scale is calibrated by referring it to the mercury 
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spectrum superimposed on the fringe system. The fringes used to obtain 

the order of interference are chosen near spectral lines, one at each end 

of the spectrum. For step measurement the wavelength difference is taken 

as proportional to the difference between the scale readings. Measurement 

of a set of close fringes, which occur at wavelengths 2t/n, showed that 

this procedure is justified. .The'step.edges are usually a little rounded, 

so the wavelength difference is measured between the points X and Y 

(Figure 6.19) where the extrapolated main lines of the fringe meet the line 

through the step system, AB. 

If systematic errors are discounted the accuracy of the thickness 

results obtained by the fringe method may be roughly estimated from the 

variations in the results for particular specimens. These were up. to about 

5%, a value also given for the accuracy of this method by Wolter(59) 

Some thicknesses obtained by the fringe method are compared, in 

Chapter VII, with the thicknesses of the same films obtained from the 

resistance results. The agreement between the two methods is fairly good, 

but the fringe thicknesses are usually less than those from resistance 

measurements and lead to unreasonable results for the film resistivity. 

The cause of this discrepancy is probably the departure of the film edge 

from an ideal step shape, resulting from the spread of material under the 

edge of the mask. The section of a film edge is shown in Figure 6.20. It 

would not be possible to separate the effect of the 'tails from the general 

shape of the fringe, and the thickness would be underestimated (Figure 6.21) 

This mechanism would lead to an error of constant percentage, and this 

is found roughly to be the case. 
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Plate 1  

Electron diffraction 
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silver film. 
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CHAPTER VII  

ANALYSIS OF RESISTIVITY, RESULTS  

Resistance and Resistivity.  

The experimental measurements of resistance give the resistance of 

o, 
each specimen at about 30 points in the temperature range 4.2 K to about 

300°K. The resistances are related to the more meaningful resistivities 

by a constant for each specimen, depending on its shape and thickness. 

Rf (T) 
	= 	C pf(T), 	(7.1) 

where R
f
(T) is the measured resistance at temperature T and pf

(T)'is the 

effective resistivity, i.e. the resistivity that would give the'observed 

resistance if there were no size effects. Although the word 'effective' 

will not normally be used, it is always implied when films are being 

discussed. For a rectangular specimen of thickness t, length d and width w 

d/wt. 
	 (7.2) 

The thin film specimens used in this work approximate to this simple 

form,and C can be obtained if d, w and t can be measured. 

The ratio d/W  

The. specimens have the shape shown in Figure 6.A4 (page 90 ), and their 

dimensions are measured as described on page 	. They are not quite of 

the ideal form required by equation 7.2 as the potential leads have finite 

width. The width of a specimen presents no problem,but the value which 

Should be taken for its length is not immediately obvious. 
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The flow of current in a film of constant thickness is governed by 

the two dimensional Laplace equationN7
2 
V = 0. A diagram of a single 

potential lead of a specimen is shown in Figure 7.1, drawn to scale, with 

a plausible set of current flow lines and equi-potential lines drawn in. 

Y 

► 	• 

	 current 

Figure 7.1 

The voltage drop, for a given current, along a section of specimen 

containing a potential lead (XI) is less than along the same length of 

specimen without a potential lead. The effective length of a specimen (d*) 

is,therefore, less than the distance between the mid-points of the 

potential leads (d). The reauctioncannot be greater than the width of a 

potential lead, which is k. of d. In fact it must be very much less than 

thisl as can be'seen be considering the current pattern. If the potential 

drop in the region of the potential lead is to bereduced,the current 

flow must spread over a greater width. An increase of effective specimen 

width of as much as 3Gyr is certainly an overestimate, as it is not possible 

to draw a consistent set of current and potential lines to fit this 

condition. An effective increase of 30i0 would result in a d* only 27. less 

than d. 
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An exact correction for d could be obtained by solving the Laplace 

equation, but the small increase in accuracy that would result does not 

justify the effort. The error is probably less than that involved in 

the measurement of d/w2and certainly less than the error in the thickness 

as measured by fringes. The specimens are treated, therefore, as haying 

potential leads of zero width separated by the distance d. 

The thickness t.  

The measurement of the thickness of films by the use of fringes of 

equal chromatic order is described in Chapter VI. The accuracy of these 

measurements is, at best, a few per cent. 

The constant C.  

The value of C obtained from d/w and t has a probable error of about 

5,0,and this dominates the error Ln the resistivity, as the resistance is 

measured to well under 1. The advantage of this direct method of 

estimating C is that no assumptions are made about the resistivity of the 

films. Its disadvantage is the low accuracy of C compared with the accuracy 

of the resistance measurements. 

A method will now be described in which C is, estimated from the 

specimen resistance at the high end of the temperature range, and the 

thickness obtained from C and d/W . 

2) Estimating C and t From the Film Resistance at the Higher Temperatures. 

This method, which will be referred to as the 'fitting method', 

requires some assumptions about the resistivity of the films at the high 

end of the temperature range,' i.e. above about 150 K. 

These are: 
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(a) That the resistivity of a film is related to the resistivity 

of the bulk material from which it is made (pb) by. 

pf(T) = pb(T) + Pm, 
	 (7.3) 

where pm  is a constant. 

(b) 'That the bulk resistivity obeys Natthiessen's rule: 

Pb(T) 	= 	P1 (T) 	Po' 
	 (7.4-) 

where pl  is the ideal lattice resistivity and po  is the residual' 

resistivity. 

The justification of (a) depends partly on an appeal to the theory 

of thin film resistance. All theoretical approaches agree that 7.3 is 

the appropriate forM, provided that the ratio K (= t/1, where 1 is the 

bulk mean free path) is sufficiently large. Fuchs' theory is the most 

rigorous and shows that the deviations from the form 7.3 should be quite 

small down to K 	0.4 (page 58). The experimental results show that Pf 

is linear in pa, but cannot show that the coefficient of pb  in 7.3 is 

accurately one., 

The justification of assumption (b) depends on the structure of the 

material of the film being very similar to its structure in bulk. It was 

shown in Chapter IV that epitaxial films have the normal bulk lattice 

spacing, but have a high dislocation density. Matthiessen's rule is 

generally obeyed for dilute alloys, but even then cannot be taken for 
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granted. Alley and Serin(50)  showed that departures from Yatthiessen's 

rule occur in alloys of aluminium, tin and copper, but only at, low 

temperatures and only'to an extent of about 8,-'/,; of the residual resistivity. 

The departures which occur when the residual resistivity is caused by 

dislocations are much more serious, and can be over 10070 of the 

residual resistivity (Bazinaki et alb). It appears, however, that 

Matthiessen's rule still holds closely enough in the temperature range 

used for the fitting method. A fuller discussion of the effect of 

dislocationson the resistivity of bulk silver is given in Chapter VIII 

(page 149). 

Combining equations 7.1, 7.3 and 7.4 gives 

Rf(T) 	= C(pl(T) + pc) 	(7.5) 

Considering this equation graphically, if R(T) is plotted against 

pi(T) the slope of the line obtained would be C and the intercept on the 

R axis would be Cpc. Once C is known the resistivity at each temperature 

is given by R(T)/C, and the thickness of the film can be obtained using 

the measured value of d/W: 

t = d/WC, 	 (7. 6) 

A graph plotting procedure is not in fact used. The resistance 

values are fitted to 7.5 numerically, using a computer. 

3) 	Comparing the Methods for Estimating C. 

The ,direct method uses t from fringes and d/W to find C. The fitting 
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Thicknesses 
Differences 

(1) 	- 	(2) 

1 
Differences 

, (1) By fitting 
method 

' 	(2) By fringe 
method 

596 642 - 46 - 7.5 

633 647 - 14 - 2.5. 

813 836 - 23 - 2.5 

910 884. 26 3. 

916 875 41 5. 

1072 1029 43 4. 

1470 1302 168 12. 

1866 1824 42 2.5 

1884 1720 164 9 

, 	2370 2250 120 .5 

. 3005 2725 280 10 

3120 2800 320 10 

4170 3850 320 8 

Table 7.1 

Film thicknesses by fringe and fitting methods. 
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method finds C and uses 4/0) to find t. If the same value of 4/ w 

is used in both cases, comparing, the two values of t obtained is an 

effective way of comparing the methods. The value of the resistivity 

obtained at a given temperature is proportional to the value of t, i.e. 

from 7.1: 

pf(T) = wt R(T). 	(7.7) 

The thicknesses of a number of epitaxial silver specimens were 

measured by the fringe methodland the results are given in Table 7.1 

with the results for the same specimens by the fitting method and the 

differences between them. Although the general agreement is fairly good, 

there are systematic differences between the two sets of values. The 

thicknesses of the thicker films from the fringe method are smaller than 

the corresponding thicknesses from the fitting method. The absolute 

differences increase with thickness butthe percentage differences show 

signs of being very roughly constant in this range. The thinner films 

do not conform to this pattern, but the differences involved are small 

in absolute terms, probably of about the same size as the errors involved 

in the measurement of the fringes. 

At first sight it is not clear which method is to be preferred, and 

the direct approach might be chosen as it makes no assumptions about the 

resistivity of the film. It is shown below, however, that the use of the 

thicknesses obtained by the fringe method leads to unreasonable results 

for the film resistivities. It has been suggested earlier (page 115) 

that the discrepancy may be caused by the slight spreading of the silver 
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under the edges of the evaporation masks, as this would result in the 

thickness being underestimated by the fringe method. 

Equation 7.7 shows that resistivity is proportional to t, so a 

lower value of t implies a lower film resistivity. The values of. 

thickness given by the fringe method lead to low effective resistivities,in 

some cases lower than the ideal lattice resistivity of pure silver. This 

result seems improbable,as the bulk material of the films is expected . 

to have a higher resistance than the ideal bulk, as it has a high disloca-

tion content. In addition the size effect is expected to make a 

positive contribution. 

The fitting method makes some reasonable assumptions which are 

supported by theoretical considerations and some experimental evidence. 

Above about 150 K R
f 

is found to be linear in p
1 

to better than 26so 

errors larger than this can only arise if the film resistivity should be 

expressed in the form. 

pf(T) = 	(1 + c) p1(T) 4- pc, (T > 150°K), 	(7.8) 

where c is a constant. A non-zero value of c could arise from failure 

of Matthiessen's rule for the bulk material of the film as a result of 

the high dislocation density, or from the failure of the high K limit 

of the thin film theory. It is shown in Chapter VIII that the errors 

in C and t arising from these causes are unlikely to be greater than 1;.; 

(pages156and170). Thus it appears that both the film resistivity and the 

thickness can best be estimated by the fitting method, so this method 

has been used for all the specimens mentioned in this work. 
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4) The Fitting Program. 

The values of the constants C and pc  for each specimen are obtained 

by fitting the high temperature resistanceresults to equation 7.57 using 

a computer. The program was written in Elliott autpcodel and is run on an 

Elliott 803 computer. It was deSigned to accept data in a fairly raw 

form. Only a little preliminary calculation is required. The resistance 

of the copper thermometer is calculated at each point and from this the 

values of the temperature arid the ideal lattice resistivity are obtained 

using previously prepared graphs. 

The remaining data are the 'as measured' voltages across the specimens 

and standard resistance. These are punched onto paper tape in the 

following arrangement: 

Initial constants: 	Number of'temperatures. 

Number of specimens. 

Number of points for fitting. 

Standard resistance value. 

Then for each temperature:  

The Temperature. 

Voltage across standard resistance 

Voltage across specimen 

to 

Voltage across specimen 16 

Then finally:,  

A list of 
Pl(T)' 

one for each temperature. 

The program fits the high temperature values of Rf(T) to 7.5, i.e. to 
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Rf(T) 	= 	C (pf(T) + pc), 	(7.9) 

by a conventional least squares fitting
(,1) 

which minimizes 

Z(Rf - Rc)2' where Rc is the value of the right hand side of 7.9. 

An error in one or more of the voltages can easily arise as a 

misreading or copying mistake, and may then easily be very large. To 

prevent such errors distorting the fit obtained,the program was designed 

to ignore points which are inconsistent with the majority. The block 

diagram of the program (Figure 7.2) shows the procedure adopted for this, 

and also the general arrangement of the calculation. For each specimen 

a fit is produced,and the standard deviation of the experimental points 

from the fitted line is calculated. If any point is found to be more 

than 2i standard deviations away from the linel the fitting is repeated 

without the offending point. The rejection process may have to be 

repeated,as a very large deviation'will swamp a merely large one. Points 

should excede 22 stanaArd deviations with a frequency of less than 1 in 80 
on the basis of normal fluctuations, so their rejection from groups Of 

less than 20 points is not unreasonable. 

The output tape of the fitting program is in a form which is 

acceptable as a data tape for other programs, so the results of past 

runs can be further analysed without having to repeat the fitting part. 

It gives all the information required; the fitting constants, resistivities 

and lists of the temperatures and lattice resistivities. It will be 

referred to as the intermediate data tape. Its first use is as the input 
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Resistances from 
voltages Read data 

any point 

more than 2i s. d. 

off line? 

Label 
bad points 

Any more 

Take next 
specimen. 

Fit resistances to Rf  = C (pf+ pc) by 

least squares. Ignore labelled points 

Print results for specimen. 

Figure 7.2  The fitting program. 

to a short program which produces lists of results specimen by specimen. 

An example of the output for a single specimen is given on page 129. 

SIZE FACTOR is 1/C and RHO CONST is pc. The first two columns give the 

temperature and resistivity and the third the difference between the film 

resistivity and the lattice resistance of the bulk silver at each 

temperature i.e. ( pf(T) - pl(T)). The latter twaare in µ 0-cm. The 

last column shows the departures of the experimental points from the 

line fitted to the high temperature data, in units of .0001 µ 0-cm. 

The thickness of the specimen is obtained by multiplying the value given 

for SIZE'FACTOR by the measured value.of d/w. 
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SPECIMEN 

SIZE FACTOR 	: 

RHO CONST.: 

4.2 
11.0 
14.4 
17.1 
18.2 

7. 

14.3645 

0.0387 

0.0221 	.: 
0.0226 
0.0234' 
0.0249 
0.0262 

R-P0 

0.0221. 
0.0224 
0.0227. 
0.0233 
0.0238 

R-R CAL 

21.0 0.0293 .0.0247 
25.2 0.0361 0.0266 
29.7 0.0471 0.0284 
33.5 0.0596 0.0304 
35.3 0.0785 • 0.0315 
44.1 0.1062 0.0331 
50.2 0.139.8 0.0339 
54.4 0.1631 0.0341.  
58.0 0.1939 0.0424 
64.7 0.2275 0.0334 
70.1. 0.2621 0.0341 

. 77.8  0.3137 0.0345 
78.5 0.3173 0.0351 
87.7 0.3765 0.0347 
99.8 0.4552 0.0355 
110.9 0.5264 0.0-360 
122.9 0.6008 0.0363 
136.5 0.6874 0.0368 
150.2 0.7734 0.0374 13 
164.3 0.8590 0.0379 7 
178.8 0.9445 0.0381 - 	5 
192.2 	. 10.2910 9.2999 CT 	1. 
206.5 1.1165 0.0385 1 
220.8 1.2012 0.0382 4 
235.5 1.2887 0.0387 0 
249.9 1.3762 - 0.0402 15 
250.0 1.3758, 0.0388 1 
264.5 1.4619 0.0399 12 
278.4 1.5493 . 0.0393 -, 

293.1 1.6372 0.0392 5. 
308.0 1.7245 0.0375 - 	11 • 
322.6 1.8152 0.0372 - 	14 - 
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CHAPTER VIII  

THE RESISTIVITIES OF THE SILVER FILM SPECIMENS. 

1) Introduction. 

The results to be presented in this chapter are mainly for epitaxial 

silver films prepared by the method described in Chapter VI. Some of the 

epitaxial silver films have thin layers of aluminium or cold substrate 

silver on their free surfaces. The term 'cold substrate' is used for films 

or additional layers which are evaporated aato a substrate which is at 

room temperature. Some measurements were made on cold substrate silver 

films to see how they compared with the epitaxial films. The specimens 

cover a wide range of thicknesses. 

The following Mist gives the types of specimen with the numbers of 

each type that were successfully measured. (Details are given in Appendix IV). 

1. Epitaxial silver. 	 72 
2. Epitaxial silver with a thin layer 

of cold substrate aluminium. 	39 

3. Epitaxial silver with a thin layer 

of cold substrate silver. 	15 

.Cold substrate silver. 	6 

The resistivities of most of these specimens were measured thrOugh-

out the temperature range. About 40 were measured only at 4.2'k and at 

sufficient points above 1500K to allow the fitting procedure to be used. 

Orientation of thin films. 

No attempt to control the orientation of the films with respect to the 

current direction was made. The symmetry of the epitaxial films about the 
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normal to the surface is essentially hexagonal, so no variation of the 

resistivity with direction in the plane of the film is expected. 

The Results.  

The results have been analysed by the fitting method described in 

the previous chapter. They will be discussed in terms of Fuchs' theoretical 

treatment7as this is the best starting point available, in spite of its 

simplifying assumptions. There are two questions of particular interest; 

a) Can the experimental results be explained in terms of Fuchs' theory, 

and if so what values of the parameters 1, the bulk mean free path, and p 

the surface specularity coefficient are appropriate? 

b) If not, are there systematic deviations from the theory which might 

indicate in which respects it is inadequate? 

There are several aspects of the resistivity of each specimen and of 

the specimens in groups. It will be convenient to consider the results 

under three main headings. 

1) The resistivities at 4.2
o
K. 

2) The pc  values from the high temperature fitting. 

3) The variation of the film resistivities with temperature, 

particularly at low temperatures. 

A section will also be devoted to a discussion of the bulk resistivity of 

silver, with particular reference to cold worked silver, as this appears 

to be especially relevant to the bulk resistivity of the material of the 

films. 

2) 	The Film Resistivities at 4.2
o
K.  

The epitaxial specimens, 

The resistivities at 2.2°K of all the unmodified epitaxial films 
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measured are given on a log-log resistivity-thickness plot in Figure 8.1. 

The results are fairly scattered, particularly above about 1000 R, and 

cannot be said to lie on a single line. They may be summarized by a line 

representing the general trend. (AB in Figure 8.1),with two broken lines 

indicating the spread of the results about AB. The spread ranges from 

about ±12) at 60OR to nearly ±44-4, at 4.0002.. The results for some very 

thick films are included in Figure 8.1, and will be discussed separately 

(page 13). 

There are two aspects of the results that require explanation. The 

first is the form of the curve, ABA  which is a property of the filmsas a 

whole. The second is the spread of the results about AB, which involves 

da:Terences between specimens of the same thickness. 

The marked variation of resistivity over the thickness range is 

presumably due mainly to size effects. As a first step in comparing the 

results with the theory-I -the curves from Figure 8.1 are plotted in Figure 8.2 

with curves from Fuchs' theory. If constant values of pb  (the bulk 

resistivity) and 1 are assumed for the whole range the Fuchs' curves have 

the same shape on a log-log pf  -t plot as on a log-log pf/pb-t/1 plot. A 

change of pb.or 1 results only in a change of the position of the set of 

Fuchs' curves on the pf-t plot. The curves in Figure 8.2 assume that 

pb  = 0.013 and 1 = 650008 . It is evident that the line AB does not.fit 

a single Fuchs' curvel and could not be made to do so by any juggling with 

the values of pb  and 1. The slope at about 11008 is much greater than 

is found anywhere on the theoretical curves. 

If these results are to be explained on the basis of Fuchs' theory, 
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there must be a general change of one or both of the parameters p and 1.  

with tnicknessl and also variations between specimens of a given thickness. 

The specimens are in sets of four. Each set is on a single piece of 

mica and the four specimens are deposited during a single evaporation. 

Some of the 4.2
o
K results are given in Figure 8.3 with the sets 

distinguished, and it is seen that the points for a single set lie 

reasonably close to a smooth curve. The set curves are usually roughly 

parallel to AB, especially those which lie close to AB. This suggests, 

more clearly than Figure 8.1$ that the line AB represents a general 

property of epitaxial films of, silver prepared by the method described in 

Chapter VI. • 

Figure 8.3 shows that the large spread in the 1...2°K resistivities is 

a between set spread rather than a within set spread. The difference 

between sets'must be attributed to some aspect of the preparation procedure 

which has been inadequately controlled. Although the cause of the 

differences is at present unknowni there is evidence of a relationship 

between the resistivities and fairly large scale surface features which are 

revealed by replica electron microscopy. A discussion of this subject 

will be given in Chapter IX (page 176). 

Estimating pb  and 1 

It is impossible to determine the values of pb  and 1 for a single 

specimen. A number of specimens are required, all with the same values 

of p 1 and p. If the thick film theory can be applied to the films
b 

 

under consideratiOn,the resistivity can be expressed in the form 
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Pf 
	 + B/t , 	 (8.1) 

where B is a constant. This form allows 
Pb  to be obtained without 

involving 1 and p,by extrapolating a plot of Pf  against 1/t to 1/t=0. 

The results for some of the thicker specimen sets are plotted in this 

way in Figure 8.4,and tentative extrapolations have been made for 

individual specimen sets. There appear to be variations in both the 

intercept and the slope of the lines. The interceptsgive values for 

the bulk resistivity in the range 0.01 to 0.02 1.10-cm. 

The constant in 8.1 is proportional to (i-p) (page 58),so variations 

of the slope indicate variations of p, low slope for high p. 

It is pointless to pursue this approach much further, as it is 

improbable that equation 8.1 is valid for the films in Figure 8.4 at 

4.2°K. The values of Pb  and 1 are not independentond in Fuchs' 

treatment the free electron model is used,so they are related by (page 31): 

Pb 
mvp  

= --T- 
ne 1 

(8.2) 

The free electron model is probably not too great a simplification 

in the case of silver. Shoenberg(5) has shown that the Fermi surface 

is confined to a single zoneland departs significantly from a sphere over 

only a small fraction of its surface. The radius of the main body of the 

Fermi surface is quite close to the free electron model (page -14). The 

electronic specific heat, which is proportional to the density of states 

at the Fermi surface, is only 27 above the free electron value(6°) 
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Assuming, therefore, the free electron model the relationship between 

resistivity and mean free path in silver is 

Pb 
84.6 

 

 

(8.3) 

where pb  is in µ 0-cm and 1 is in 2.. 

Fuchs' theory shows that equation 8.1 is reasonably applicable 

provided K is greater than about 0.4. If the bulk resistivity is 0.02 pa-cm 

the mean free path from the free electron model is 420008, so the specimens 

plotted in Figure 8.4 all have K values less than 0.4 and are outside the 

range where 8.1 can be applied. 

To see to what extent the Figure 8.4 plot might be usefuli the 

pfl/t curves calculated from Fuchs' theory are given in Figure 8.5 for 

two values of p
b and three values of p. Only in the region of 1/t below 

about 10-4  2 -1  is the approximation of equation 8.1 likely to be valid. 

' 	 -he theoretical curves have a fairly straight region aboveV 	 4 9 1t. = 10 It 5  

and it is here that the points in Figure 8.4. lie. The curvature of this 

region of the curves is too small to be noticed in the experimental results, 

and extrapolation to zero 1" always gives a Value higher than pb, so the 

values obtained from Figure 8.4. may be taken as upper bounds on the value 

of pb. The true values are lower by between 0.002 and 0.006 

The approximately linear region of the curves in Figure 8.5 above 

about Vt = 104  271  have slopes which depend on p as do the slopes of the 

straight lines obtained in the simple high K case, but the slope for a 

given p is less. The variation of slope in Figure 8.4 may still, therefore, 

be taken as an indication of variation of p between specimen sets. 
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Very thick films.  

Some very thick films were produced by evaporation onto heated: mica. 

The method used was basically as described in Chapter Vlybut a special 

filament in the form of a closely wound coil had to be used to hold 

sufficient silver. The filament coil was mounted horizontally about 

6cm. above the substrate. The resistivities at 4.2°K are included in 

Figure 8.4. The electron diffraction patterns from these specimens have 

the usual epitaxial streaks and also a superimposed polycrystalline 

ring pattern. This is a normal result for very thick films,and is 

attributed to the presence of small departures from epitaxy which 

accumulate and become significant as the film grows thicker. 

The thickness are 40000 to 6000d so K is aboutionthe basis of the 

estimates of pb  obtained from Figure 8.4, so the size effect contribution 

must be quite small. For each of these films a lower bound on the bulk 

resistivity can be obtained from the high K theory, which should be 

applicable this time. If p is taken as zero the values of pb  obtained lie 

between 0.0075 and 0.015. It will be shown shortly that non-zero values 

of p are expectedl so the estimated bulk resistivities of the thick films 

should be higher, e.g. if p=0.5 they lie between 0.01 and 0.017 u a-cm. 

These values are similar to those obtained by extrapolation from thinner 

films. This agreement should perhaps be taken as an indication that the 

departures from epitaxy in the very thick films do not greatly influence 

the bulk resistivity, rather than as confirmation of the results from the 

thinner films. The polycrystalline rings may be caused by no greater 

number of dislocations per unit volume than are present in thinner films. 
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Estimating p • 

The rough estimates of pb  obtained may now be used to give 

corresponding values for p, as 1 can be obtained from the free electron 

relationship between 1 and pb  (equation 8.3). The ratios pf/pb  and t/1 

define a point on the set of Fuchs' curves (page 56) which is associated 

with a particular value of p. As the estimates of pb  are fairly rough, 

the values of p have been obtained for the three values of pt  0.01, 0.015 

and 0.02 µ a-cm. The specimens are those used in Figure 8.1. and the 

results are listed in Table 8.1. 

The values of p are quite high, showing that there is a substantial 

amount of specular scattering of the electrons at the film surfaces. 

The agreement within specimen sets, for a given value of pb  assumed, 

is fair.. There are significant differences between specimen sets. These 

can be reduced if different values of pb are assumedI but not eliminated 

without going outside the range 

estimated earlier for pb. It appears, therefore, that variations in both 

p and pb  are involved in the variations found in the film resistivities. 

Specimens less than 1500_in thickness 

So far the discussion has been mainly confined to those specimens 

with thicknesses greater than about 15002.. The results for these are 

consistent with a bulk resistivity of about 0.01 —>0.02 µ 0-cm and a 

surface specularity coefficient (p) 0.4-0.8. In Figure 8.2 the curve AB 

has been transferred to a Fuchs' plot assuming pt  to be 0.013 .µ 0-cm and 

1 to be the value obtained from the free electron relationship between 

pb  and 1. The assumption of the free electron relationship constrains 
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Specimen 
No. (a) 

p 
(b) (c) 

Specimen 
No. (a) 

p 
(b) (c) 

39.3 .67 .75 .82 57.1 .77 .89  - 

.4 • 63 .74 .84 .2 .80 .89 .96 

. .3 .72 .80 .86 

49.1 .41 .52 .61 .4 .65 .71 .77 

.2 .34. .4.2 .51 

. 3 .40 .49 .56 61.1 .72 .78 .84 

•4- .36 .4.2 .49 .2 .71 .79 .86 

.3 .73 •.85 .92 

48.1 .47 .60 .69 

.2 .49 .61 .71 (a) 	pb  = 0.01 

• 3 .43 .60 .71 (b) 	pb  = 0.015 

.4 .31 .43 .58 (c) 	pia  = 0.02 

Table 8.1  

The p values for epitaxial silVer specimens. 

(Note. Specimen sets are numbered in 
sequence of preparation. Specimens 
within a set are numbered .1 to .4) 
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the movement of AB on Figure 8.2,resulting from a change of pb, and 

therefore 1, to a line of slope - . Single points are constrained 

in the same way and Figure 8.2 shows the movements of a number of points 

on AB for changes of pb  of .01 p 0-cm. 

It can be seen from Figure 8.2 that changing the value of pia  

assumed for the specimens in order to reduce all points to a single curve 

would require very large changes of pbe It would be similarly impossible 

to reduce the cur•"e AB to a Fuchs' curve for a single value of.p. This• 

shows that variations in p are involved in the shape of AB, as well as in 

the scatter of points about AB. 

It can also be seen from Figure 8.2 that the p values are quite loW 

for films below 10001, -0.1 --> 0.2. Figure 8.3 shows that for a given 

specimen set the change of resistivity.with thickness usually follows a 

curve nearly parallel to AB, and it is assumed that the curve that is 

followed must relate to some condition of preparation which has been 

inadequately controlled. The change to low p at 10001 appears to be 

quite independent of conditioni, a fact which is well illustrated by 

specimen set 57,which has members with very low resistivities at about 

4000-5000A and thinner members which are rapidly rising in resistivity. 

as they approach 10001 in thickness. 

Specimens with a thin layer of aluminium. 

The fraction (p) of electrons specularly reflected at the surface of 

a film is an important parameter in the theory of its resistivity. In 

the previous sections it was shown that p appears to have a general 

variation with the thickness of the film,and.variations at given thicknesses 

between different specimen sets. It is probable that there are also 
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variationSof pb  which complicate the interpretation of the results. 

If pccUldbe varied independently of pb% more definite results might be 

obtainable. 

It seems unlikely that any method of increasing the value of p could 

be found, but decreasing it is quite feasible. To this end,thin layers of 

aluminium were evaporated onto the free surfaces of epitaxial silver films, 

after they had cooled to room temperature. • Electron diffraction patterns 

from these surfaces showed a faint diffuse ring pattern, indicating a fine 

grained polycrystalline structure. The absence of any silver pattern 

showed that the surfaceswere fully covered by the aluminium. 

The resistivities at 4.2°K of all epitaxial silver specimens with 

aluminium layers are shown in Figure 8.6,with the curves from the untreated 

epitaxial films results (Figure 8.1) for comparison. The specimens with 

aluminium layers lie, in general, above the line AB, indicating lower 

values of p. The specimens with aluminium layers are not sharply separated 

from the untreated specimens, as the spread in the results for both is 

large. A line CD is drawn in Figure 8.6 which represents the general 

pattern of these results. It is given again in Figure 8.7,with AB and the 

Fuchs' curves based on pl  = 0.013 and 1 = 65,000A, as in Figure 8.2. 

The change in p brought about by the.aluminium layer is seen to be 

typically about 0.1 at the thicker end of the range. At the thin end the 

specimens with aluminium layers move out of the range of the Fuchs' curves. 

This suggests,at first sight, that the constancy of pb,implied in Figure 

8.7, is not justifiedland that pb  should be higher for the thinner films. 

It has already been shown, however, that large changes in pb  would be 

required to bring these points inside the range of the Fuchs' curves. 
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The spread of the resistivities at 4.2°K obscures the change of p 

produced by the aluminium layer,when all specimens are considered 

together. In an attempt to get more accurate information on the change 

produced by an aluminium layerl some .specimen sets were prepared in the 

following way. Two sets of epitaxial specimens were evaporated together, 

with corresponding specimens as faras possible of the same thickness. They 

were allowed to cool to room temperatureland a. thin (-60k) layer of 

aluminium was evaporated over the surface of one of the sets. By this 

means it was hoped to produce specimens differing only in the presence 

or absence of an aluminium layer. 

The resistivities at 4.2°K of 11 pairs of sach specimens are shown 

in Figure 8.8. The aluminium layers result in increases in the resistivities 

by various amounts. If it is assumed that the bulk resistivities are the 

same for corresponding films, the changes in resistivity can be attributed 

Figure 8.8  
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to changes in p. This is not entirely justified as differences between 

sets evaporated at the same time can occur, as is shown by specimen 

sets 48 and 49 in Figure 8.3. The values of p estimated on the basis of 

the free electron model and a bulk resistivity of 0.015 p 0-cm are given 

for the specimen pairs in Table 8.2. The tip column gives the difference 

between the p values for each pair. These show considerable variation, 

which may be partly due to the variation between the epitaxial specimen 

sets mentioned above. These results give specific instances of the trend 

illustrated by the general plot in Figure 8.7. 

Specimen 
set pairs 

P A  
(a) 	(b) "13  

Specimen 
set pairs 

' 
(a) 

p 
(b) AP  

. 	)( 89 71  .18 .37 .26 .11 

57/56 80 59 .21 63/62 .31 .28 .03 

71 51 .20 .47 ..2.1.0 .07.  

59/58 ( .86 .69 .17 . 	.54 . 	.50 .0'4. 

.78 .56 .22 
67/66 

.60 .46 .14 

61/60 .79 .70 .09 . 	.50 .09 .41 

.85 .67 .18 

(a) Epitaxial silver film. 

(b) Epitaxial silver film with Al layers. 

Table 8.2 	Changes in p caused by an aluminium layer. 
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Films with different values of p on the two surfaces. 

Up to this point it has been tacitly assumed that p is the same at 

both surfaces of the films. Even if this is true of epitaxial filmslit 

cannot possibly continue to be true when one of the surfaces is deliberately 

roughened. The theory of films with different surfaces has been discussed 

on page 59, and an expression appropriate for thick films obtained i.e. 

fA ... Pi 	P2) 
Pf = Pb 8K VI  2 

where A = Pb  1, a constant. The change from the usual thick film theory is 

that p is replaced by the average of p at the two surfaces. The extent 

to which the same substitution is justified at lower K has been discussed 

for an extreme case in which one surface is assumed to be specular (page 61). 

The errors arising from using the mean value of p in the one-p theoryl in 

this case, were obtained. They are plotted against K for various values of 

p in Figure 3.11 (page 62). If these errors are typical of the whole 

range of p1  and p2,the error in Pf  involved in assuming the one p form for 

the films with aluminium layers is less than 101% The values of p obtained 

so far are, at best„the mean for the two surfaces. In cases where the 

' surfaces are different,the value obtained underestimates the mean. 

The effect of changing the p of just one surface will now be 

considered. This situation is just that which occurs when two specimen 

sets differ by only a thin layer of aluminium on one of them. The surfaces 

are characterised by (p,p1) and (p,p2) for the modified and unmodified 

films respectively. If the mean is obtained for both surfaces, the 

difference between the means (op ) is half the change of p at the free 
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surface. 

p1 	P2 = 2 Op 
	 (8.5) 

The estimated mean for the modified film is expected to be a little low, 

making gyp, and therefore p1  - p2, rather too large. The values estimated 

for 2AP, for the films which have high values of p in the unmodified 

state, are typically 0.4. If there is a 10% error in Pf  resulting from 

the use of 17) in the one-p theory this value would be reduced to about 0.3. 

Films with 'cold-substrate' layers of silver  

The results for untreated epitaxial silver films indicate a variation 

of p with film thickness. To see if the p values could be changed 

significantly by altering the state of the silver at the surface of the 

films, some specimens were prepared as follows. Epitaxial silver specimens 

sets were prepared in pairs and allowed to cool. A further thin layer of 

silver was evaporated on to the cold surface of one of the films. Electron 

diffraction observations of such films show that the surface layer is 

completely oriented on the epitaxial silver. The streaky effect is less 

marked, however, indicating a rougher surface. 

A few specimen set pairs of this type were measured, but the 

results obtained were inconclusive. The p values calculated on the basis 

of the free electron model with Pb = 0.015 are given in Table 8.3. 

The changes of p produced by the silver layers are usually negative 

but are otherwise too variable to yield a clear picture. 
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Specimen 
set pairs 

p 
(a) 	(b) Ap Specimen 

set pairs 
p 

(a) 	(b) AP  

'( 

39/38 

69/68 

j 

.19 	.00 

.30 	.38 

.75 	.64 

.74 	.59 

.60. 	.614. 

 .54 	.56 

.50 	.48 

.19 

-.08 

.11 

.15 

-.014. 

-.02 

.02 

71/70 

	

.59 	.31 

	

.61 	.34 	, 

	

.55 	.31 

\ 	.49 	.19 

.28 

.27 

.24 

 .30 

(a) .Epitaxial silver films 

(b) Epitaxial silver films 
with 'cold-substrate' 

layers. 

Table 8.3  

Change in p case d by cold substrate layers 

of silver. 

Silver films evaporated onto a cold substrate. 

To get soale quantitative idea of the improvement in the structure 

of films produced by epitaxialvrather than non-epitaxiallmethods, some 

specimens. were produced by evaporating silver on to a freshly cleaved mica at 

room temperature, and measured. Electron diffraction observations show 

that such specimens are well oriented/but the spots are less spread into 

streaks than those for films evaporated on to a hot substrate, indicating 

a rougher surface. 

The resistivities at 4.2
o
K are shown in Figure. 8.1, where they are 

seen to lie well above the resistivities for plain epitaxial 
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If the free electron relationship pb  = 846/1  is assumedl the results 

are consistently explained in terms of a pb  of 0.3 - 0.35 p 0-cm, and 

a p in the range 0.1 to 0.4. The pb  is about 20 times larger than 

that found for most epitaxial films. As the bulk resistivity is 

proportional to the number of defects in the metal, this factor gives'a 

measure of the structural improvement obtained by evaporating onto a 

heated substrate. 

3) 
	

The Resistivity of Bulk Silver. 

The sections following this will be concerned with the resistivities 

of silver films at temperatures between 4.2 K and about 3000K. The 

resistivity of the bulk material.of the films is an important parameter 

in their effective resistivity, and it is desirable to know how it is 

related to the resistivity of bulk silver. This question has already 

arisen in connection with the fitting procedure in the previous chapter. 

It was assumed there that Matthiessen's rule applied to the bulk material 

of the filmsin the temperature range above. 1500K i.e. 

Pb = P1 	Pbo 
	 (8.6):  

It will be shown that this assumption is reasonably justified in 

the temperature range mentioned, but not at lower temperatures, especially 

below 100
o
K. In particular the p

bc 
applicable to the high temperature 

region is not the same as the residual resistivity, and may differ from it 

by a factor of two. 

The analysis of the thin film results is facilitated by having pl  

available in terms of the copper thermometer used in the resistance 
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measuring runs. The resistances of some bulk silver wires were measured 

in the same apparatus as is used for the films. They were drawn down from 

the same material as is used in the preparation of the films. The lattice 

resistivity was obtained from the measured resistances by subtracting the 

residual resistance, and multiplying by a size-shape factor which was 

obtained by assuming the room temperature results given by White and 

Woods
(52)

. 

The resultS obtained for a wire which had a residual resistivity of 

about 0.040 p 0-cm were found to deviate from the White and Woods results 

at lower temperatures (e.g. 2-3/0 at 80°K). It was realized that this 

might be caused by the failure of Matthiessen's rule;so further wire 

specimens were made)and annealed by heating electrically, in a vacuum, 

for about half an hour at near red heat. Specimens produced.in  this way 

had residual resistivity ratios (14.2/300) of about 1/500 (cf. 1/40 above);  

which is low enough to enable the value of (p(T) - p (4.2)) obtained to 

be confidently taken as the ideal lattice resistivity of silver at 

temperature T. The agreement with White and Woods is as good as their 

implied accuracy' allows)and the residual resistivity ratio is lower 

than that, of their specimen, (1/160). 

The residual resistivity of unannealedlor partly annealed,wire is• 

caused by lattice dtfectssand it will now be shown that their contribution 

is not temperature independent. Figure 8.10 shows the difference betWeen 

the temperature dependent part of the resistivities of two specimen wires, 

one unannealed and one partly annealed, and the ideal lattice resistivity 

as obtained from a well annealed wire. The multiplying size-shape constant 

has been adjusted so that Matthiessen'sruleisobeyed at high temperatures. 
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The dotted line shows the curve obtained when one of the wires is 

normalized to the White and Woods value at 300°K. This requires a 

size-shape constant which is 
	3 lower. 

Tie failure of Matthiessen's rule under these circumstances has been 

reported by Bazinski et al(), who compared the resistivities of deformed 

and annealed specimens of accurately known shape factor. The results they 

obtained for silver are included in Figure 8.10,and have the same general 

shape as the result introduced above butwith a small linear temperature 

dependence at high temperatures. 

These results lead to the conclusion that the resistivity of the bulk 

material of the films cannot be taken as(pi  + constant over the whole 

temperature range, if lattice defects play an important part in the residual 

resistivity. The work described in Chapter IV shows that epitaxial thin 

films have a high dislocation density, so the presence of dislocations is 

certainly important. 

Bazinski et al. show that dislocations give rise to additional 
fs, 

resistivity proportional to the dislocation density, and/give constants 

for various metals. There have been no measurements of the dislocation 

density in epitaxial silver films on mica, but values have been obtained 

for epitaxial silver films on rocksalt (1.10" to 3.10" cm/dm
3 (29)) 

 and 

epitaxial gold films on epitaxial silver on mica (10
10 

to 10
11  cm/cm3 (21) 

) • 

It is not unreasonable to expect values similar to these for epitaxial 

silver films on mica. Using the constant for silver given by Bazinski et al, 

a dislocation density of 10
11 

aA/am3 would give an additional resistivity 

of 0.02 p Q-cm. This value is agreeably close to the bulk residual 
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resistivities.obtained for the thicker films, but the uncertainty in 

the dislocation density makes it unreliable. 

The temperature dependence of the bulk resistivity of the films may 

be approached more directly by considering the resistivity results for 

very thick films. These films have been mentioned before (page 138)., 

Their thicknesses are 40,000 - 60,000A and their residual resistivities 

0.012 - 0.02 µ 0-cm. The value of K is therefore -1 if the free electron 

model is assumed. The resistivity results are plotted in Figure 8.11 

in the form (p(T) -p1(T)) against T, where p(T) is the measured 

resistivity and po  is the residual resistivity. It. can be seen that 

the curves have the same general shape as the curvesfor the wire 

specimens. Fuchs' theory shows that size effects in thick specimens 

(K> 0.4.) should contribute a nearly constant term, and the resistivity 

should, if anything, be less at high K (i.e. high temperature) (page 57). 

In order to compare more 'effectively the curves in Figure 8.11  

they are reduced by expressing them all as pp(T) - pc)  where the 

Pm 	Po 

terms are explained by Figure 8.12. The resulting curves are plotted in 

Figures 8.13 and 8.14. The former contains the wires and the latter the 

thick films. The results for both wires and films all lie close to a 

universal curve, which is shown in Figure 8.15, with dotted lines to 

indicate its uncertainty. The differehces between wire and film-specimens 

are no greater than the differences between different film specimens. 

The close similarity between'the reduced curves of cold worked wires and 

thick films confirms that dislocationsplay an important part 
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in the residual resistivity of thin films. 

An important outcome of the existence of a universal curve is the 

possibility of using it to predict the bulk resistivity of the material 

of the films at all temperatures. It will be expressed in the form: 

pb  (T) = pi(T) + po  + PA  (T) 	(8.7) 

The universal curve approach allows the additional term opt(T) to be 

replaced by Du(T), where D is a constant and u(T) lies between 0 and 1,and 

is. the universal curve of Figure 8.15. The need to find a function has 

been replaced by the need to find a constant, a considerable simplificatiOn. 

The value of D can be roughly related to oo,as is shown in Figure 8.15 

The actual 4.2
o
K resistivities have been given corrections to allow for 

the size effectlon the basis of p = 0.5. The nature of the line that 

should be drawn is not very clear, but the straight line which gives 

D = o0  is not' unreasonable. This line does not take account of the 

unannealed wire, but as a speculation it can be said that the partly 

annealed wire 	may be more like the films than the unannealed 

wire 	as the films are produced at a fairly high temperature,and 

may be effectively partly annealed. 

The uncertainty in the non-ideal part of the bulk resistivity, 

(po  (4.2) + Du(T)), is likely to be quite large as po  is difficult to 

estimate accurately and the relationship between pc.  and D is only 

roughly known. 
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The bulk resistivity and the high temperature fitting. 

In the previous chapter it was shown how the resistivities of thin 

films specimens are obtained from the resistance by assuming that • 

Matthiessen's rule holds in the high temperature region (> 150?K). 

This assumption has been made for all the specimens reported here, both 

wire and film. The results of Bazinski et al. for cold worked silver 

(Figure 8.10) show a small linear temperature dependence of (o 
wire - Pl)  

in the high temperature region, and it is of interest to see what error 

in the size-shape factoro and in pcymight arise from ignoring this. 

All film resistance measurements are fitted to the form 

Rf(T) = C(pi  (T) + pc) 
	

(8.8) 

where C is the size-shape factor. If. the temperature dependent part 

of the bulk resistivity should have the form (1 + c) pl(T), where c is a 

constant << 1, in the high temperature region, 8.8 becomes 

Rf(T) = 1+c 
	((1+c) pi(T) + (1+c) pc). 	(8.9) 

Thus by assuming that the bulk temperature dependence is as for the ideal 

latticey an error of 100 c% is obtained in both C and pc. 

How big is c in practice? The results of.  Bazinski et al. for highly 

strained wires give a c of 0.04. The additional resistivity caused by 

dislocations in films with a bulk residual resistivity of 0.02 µ Q-cm is 

about ten times smaller, so c should be no more than 0.004 (0.4A. This' 

justifies the assumption of Matthiesen's rule for the fitting method. 
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4) The Constant Term from the High Temperature Fitting. 

In the section on the residual resistivity of the films attempts 

to obtain values for 'p' were made difficult by the uncertainty about 

the constancy of pb  and p from specimen to specimen. Inferences could 

only be made by using several specimens of different thickness to vary K. 

Further difficulties were caused by the inapplicability of the high.K 

limit to most of the films. In the temperature range above about 150°K 7  

the bulk mean free path is short enough for the high K limit to be used, 

and variations in K occur as a result of change. of temperature. It is 

possible in this range, therefore, to estimate p for a single specimen. 

The applicability of the high K limit at high temperatureS has 

already been exploited in the fitting method for finding the size-shape 

factor of specimens. The significance of the term peobtained 

incidentally in the course of the analysis will now be considered in terms 

of Fuchs' theory. 

The fitting procedure yields pcfrom 

Pf = p1 Pc' 

If p is the same on both surfaces,Fuchs' high K limit gives 

Pf = Pb 	
3Pb 1 	(1-p). 
8t 

(8.10) 

8.11) 

Matthiessen's rule is assumed for the bulk. material of the films (page 149) 

30 

p 1 
= Pbc 	(1-p). 

t 
(8.12) 
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On the basis of simple resistance theory pbl is a constant (A) so 

rearranging 8.12, 

P = 1 8t 
3A 	( P c 	Pbc) (8.15) 

The constant term pbo  has been shown, in the previous section (page 155),  

to be different from po  , but roughly related to it by Pbc = 
2  Po' 

It is not easy to estimate pbo  with certainty so, as a basis for 

discussion, it is useful to evaluate p when Pbc is assumed zero. This 

gives a minimum value for p which Will be referred to as p(min). Figure 

8.16 shows values of p(min) plotted against thickness for epitaxial 

silver specimens. The values are fairly scattered,as is expected from the 

4.2
o
K result, and lie mainly in the range 0.2 to 0.5. The general trend 

is summarized by the line XY. 

The effect of including pbo  in the estimation of p is independent 

of p(min),but proportional to 	and to t. The increase (Op) resulting 

from a pbo  of 0.01 µ 0-cm is plotted in Figure 8.16 . For films thinner 

than iood. Ap is small, so in this region p is quite well known, provided 

that po  is not very much greater than the value estimated for thicker 

films (-0.01 - 0.02 µ Q-cm). As the films get thicker pbc  become more 

important but it is possible to be a little more confident about po  

(page13110. Eventually, certainly by 10,000A,pbo  dominates the estimate, 

and uncertainties in pc  and in its relationship to pbo  loom too large 

for comfort. 

The effect of reasonable values of pc(0.01, 0.0125 and 0.015 p Q cm) 
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on•XY is shown in Figure 8.16a by XY1  XY2  and XY3, on the assumption 

that pbc  2p0. At the thick end of the range, about 2000A —> 5000i, 

the values of p'for po  = 0.0125 lie between 0.6 and 0.7, and agree well 

with the values obtained by superimposing the trend line AB of the 4.2aK 

results (Figure 8.1) on a set of Fuchs' curves with the same po. , 

Changing the po  assumed produces similar changes in the values of p 

estimated at both high and low temperatures. At the thin end of the range 

(below 1000 A), there is a marked difference between the two approaches. 

The high temperature results point to values of p between 0.2 and 0.4, 

whereas the 4.2
o
K results give 0.1 or less. 

A more detailed comparison of the high and low temperature values 

of p is given in Figure 8.17. Both estimates of p assume a pc)  of 0.015 µo cm 

The high temperature values are obtained from equation 8.13 and the low 

temperature values from the Fuchs' curves, as on page 139 . The 

agreement between the pairs of values is quite good,considering the large 

differences in K between the high and low temperature ends of the range. 

The p values above about 0.5 are mainly from the thicker films and 

here there isa tendency for the high temperature values to be lower than 

the low temperature values. The differences are usually less 

than 0.15 ( 256). The lower values of p are from the thinner specimens, 

and the tendency for the high temperature values of p,for these filmslto 

be higher than the low temperature values is shown again in this plot. 

It is not immediately necessary to go beyond the simple theory used so 

far in order to find possible causes for the discrepancies shown in 

Figure 8.17 for films at the thick end of the range. There may easily 
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be errors in both po, the bulk residual resistivity, and in the constant 

relating Po  to o bc, the high temperature constant term. The error in po  

would change the two estimates by about the same amount, but the error 

in pbc  effects only the high temperature value. This could easily account 

for the discrepancies in the thicker films. 

The value of a is not so important for the p values estimated for the 
c 

thinner films, and could not account for the discrepancies, especially 

as p(min) is larger than the low temperature value for these filMs. The p 

value estimated at low temperatures would be lower than that estimated 

at high temperatures if the two surfaceshad different values of p. This 

explanation would only be sufficient, however, if very large differences 

between the two surfaces could be assumed. Large scale features of the film 

struCture,as revealed by replica electron microscopy,may be of importance, 

and will be discussed in the next chapter (page 176 ). 

Eloitaxial silver films with aluminium layers. 

The p values estimated for films with thin aluminium layers do not 

behave noticeably differently from those for untreated films. The values 

for a number of the thicker specimen pairs, with and without aluminium 

layers, are listed in Table 8.3. The low temperature p values are 

higher than the high temperature values for both the treated and 

untreated films. The changes in p produced by the aluminium layers are, 

however, about the same at both high and low temperatures. 
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. 	Untreated Treated 

Specimen p 	(a) p 	(b) Specimen p 	(a) p 	(b) Ap (a) Ap (b) 

57.2 .83 .84 56.3 .62 .71 .21 .13 

.3 .66 .80 .2 .46 .59 .20 .21 

.4 .58 .71 .1 .44 .51 .14. .20 

59.3 .77 .86 58.2 .48 .69 .29 .17 

61.1 .62 .78 60.4 .40 • 53 .22 .25 

2 .62 .79 • 3 .58 .70 .04 .09 

3 .72 .85 .2 .58 .67 .14 .18 

Table 8.5  

Films with Al layers. 

The p values from high and low 

temperatures compared. 

(a) High temperature values 

(b) Low temperature values. 
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5) Variation of Film Resistivity with Temperature. 

Below about 20 K. 

The large increase in resistivity observed by Chopra(42) between' 

8°K and 12°K in fairly thick silver films has already been mentioned 

(page 85). He reported a twofold increase in resistivity in this range 

for epitaxial silver films 15,000 and 60,000A thick, and a smaller increase 

for polycrystalline films on glass. It is shown below that no sign of 

this effect has been found in the present work. 

The resistivities of, several specimens were measured in some detail 

in the temperature range 4.2
o
K to 30 K. The results for some of these 

are plotted in Figure 8.18, and Chopra's results are given for comparison. 

The specimens cover a wide range of thickness, and two of them have thin 

'aluminium layers on their free surfaces. The ones most closely resembling 

those used by Chopra are specimens 52.1 and 55.1, which have thicknesses 

of 40,000A and 15,000A respectively. The residual resistivity.ratio 

(R(300)A(4,2)) of the former specimen is 85, which is a little lower 

than the value quoted by Chopra for his specimens (110). Two specimens 

with higher resistivity ratios, and thicknesses of about 60,000A were 

measured at the same time as 52.1 and 55.1, but with no points between 

24.4°K and 4.2°K. The difference in resistivity between 24.4°K and 4.2°K 

is nearly the same for all four specimens, suggesting that 54.1 and .2 

behave in the same way as 55.1 and 52.1 
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Specimen 
N o. 

p(4.2°K) p (24.4°x) difference 

55.1 .0258 .0377 .0119 

52.1 .0190 .0304 .0114 

54.1 .0151 .0265 .0114 

54.2 .0123 .0233 .0110 

Table 8.4  

The residual resistivity ratios of 54.1 and .2 are 106 and 130 respectively. 

The available points for these specimens are included in Figure 8.18. 

The resistivities of some other specimens were measured at a few 

points below 20
0 
K)and none shows any indication of behaviour significantly 

different from those mentioned above. 

The full temperature range. 

The resistivities of two film specimens are plotted against temperature 

in Figure 8.19, but this form of plot is of liMited use, as changes brought 

about by the presence of the surfaces are obscured by the lattice term. 

A more useful plot is the difference between the film resistivity and the 

ideal lattice resistivity at each temperature. This is given for a 

number of films of various thicknesses in Figure 8.20. 

The flat region at the high temperature end of the range is the 

result of the assumption of the fitting procedure, and a discussion of 

the information that can be obtained from this region has already been 
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given. If this assumption is not justified,the effect on the low end of 

the temperature range would not be great. This is illustrated for one of 

the specimens in Figure 8.20. The broken lines show the effect of 

changing the size shape factor for the specimen by ±1'). 

If Matthiesseris rule were obeyed by the films,(pf- pl) would be 

independent of temperature. 	This is clearly not the case, as the curves 

in Figure 8.20 show a significant drop at low temperatures for all specimens. 

Fuchs' theory predicts a drop in (pf-pi) at low K, and a drop is also 

expected as a result of the temperature dependent contribution made to 

the bulk resistivity by dislocations. 

To what extent can the variation in the resistivity of the films with 

temperature be explained by Fuchs' theory? This question can only be 

answered by a detailed comparison of the film resistivities with those 

expected on the basis of Fuchs' theory. The way in which this comparison 

is made„and the computer program to put it into effectl will now be 

described. 

Fuchs' theory has two parameters, K, the ratio of the film thickness 

to the electronic mean free path, and p, the surface specularity coefficient. 

As a single film is now being considered,it is reasonable to start by 

assuming that p is constant throughout the temperature range, and to ask 

whether the film resistivity can be explained in terms of the variation 

of the bulk resistivity with temperature. The assumption of Fuchs' theory, 

that electron scattering in the bulk is isotropic, is retained at all 

temperatures, so 1, the mean free path of electrons, is obtained from Pb 

by 1 = (846/pb) A, where pb  is in µ f2 -cm. 
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Estimating the value of the bulk resistivity at a given temperature 

is complicated by the dislocation effect described on page 150. It was 

shown that the bulk resistivity may be treated as the sum of three terms. 

(i) The ideal lattice resistivity, pl. 

(ii) The bulk residual resistivityipo. 

(iii)The temperature dependent dislocation term, 

which is approximately expressed by a 

universal function, u(T), multiplied by a 

constant for a given specimen, D. 

Both p and D can only be roughly estimated, and this limits the value of 
0 

comparison with theory at low temperatures (12r < 30°K), where these'terms 

dominate. 

The value of p used for a particular film is obtained from the high 

temperature resistivity of the film. This leaves only the two constants 

po  and D to be fixed. They are treated as parameters for the comparison 

program. 

The Comparison Program. 

The program considers the experimental results for one specimen at 

a time, and has two objectives. The first is to make small corrections to 

the constants Obtained by the high temperature fitting program (page 126 ) 

to take account of the slight departures from the large K form of the theory, 

which is assumed by the fitting program, when K is near to 1. The second 

is to take the value of p obtained from the high temperature resultsl and 

compare the resistivity expected on the basis of Fuchs' theory with the 

experimental results over the whole temperature range. 
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The program uses the intermediate data tape from the fitting program 

as input, and runs on the same computer. A supplementary data tape is also 

required to give the bulk residual resistivity, the length-width ratio 

(4/1) for each specimen, and the modification to the bulk resistivity 

required by the dislocation term. A block-diagram of the program is given 

in Figure 8.21. 

The high temperature fitting expresses the measured 

resistance, R, in terms of the ideal lattice resistivity. 

R = C(p1  + pc) 

R 
Pf = C = P1 Pc' 

(8.14) 

where C and pc  are determined by a least squares fit. The film thickness 

is obtained from C, and the specUlarity coefficient, p, from pc. The 

comparison program reconsiders the situation in the high temperature region, 

using the correct form of Fuchs' theory. The values of p and t obtained 

using the constants from the fitting program are used as preliminary 

estimates. The bulk mean free path at each temperature is obtained from the 

bulk resistivity, which includes all three terms, and, with t, gives a 

value for K(= t/1). The resistivity expected on the basis of Fuchs' theory 

can then be calculated (Pt h)' There is usually some disagreement between 

Pf and 
 Pth' and the program analyses the differences and makes small 

corrections to and pet° improve the agreement. The new values of p,t 

and pf  are then obtained, and the process repeated until there is agreement 

between the measured resistivities and the calculated resistivities. Two 
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cycles are usually sufficient. 

The fitting constants correction procedure is concerned with the 

high temperature results only. When final values of p and t have been 

obtainedIthe resistivity expected on the basis of Fuchs' theory is 

calculated for all temperature points. An output is produced giving 

p,t and, at each temperature, K, Pf and(PC Pth). The qualities(pf  - 0 'th)  

will be designated Ap, and curves obtained by plotting Ap against T will 

be referred to as Ap curves. Small values of Ap at high temperatures 

confirm that the correction procedure has established agreement between 

the resistivities from the experimental results and those from theory. The 

Ap curve shows to what extent this agreement persists at lower temperatures. 

Some further details of the comparison program are given in Appendix III. 
Results from the Comparison Program. 

The results from the comparison program may first be used to provide 

an indication of the reliability of the fitting program based on the thick 

film approximation of the theory. 'The changea in the fitting constants 

are reflected in changes in p,t and pf. The latter two involve C, the 

slope of the R vs. pl  line, and the changes are small, usually much lesa 

than 1 	The value of p is obtained using pc, which depends on the 

intercept, and the changes are more significant. A table (8.5) of p values 

obtained from both the fitting program and the comparison programl is 

given below. The fitting program always underestimates p, so the value 

it gives is still p(min). (page 158). 

An curves. 

The main use of the comparison program is to produce Ap curves. 
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Specimen 
No. 

Thickness 
A 

Comp. 
Prog. 

 Fitting 
Frog. Difference 

57.1  5500 .76 .74 .02 

39.4 4170 .63 .6o .03 

49.1 4030 .48 .45 .03 

57.2 3870 .72 .70 .02 

56.3 3800 .54 .50 .04 

26.1. 2590 . 59 .54 .05  

.57.3 2410 .62 .59 .03 

56.2 2350 .46 .41 .05 

49.3 2320 •49 •4.5 .04 

57.4 1670 .55 .5o .o5 

56.1 1590 .46 .39 .07 	• 

39.1 596 .4.6 .43 .03 

Table 8.5  

Some values of p estimated by 

both the fitting program and 

the comparison program. 
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On the basis'of these curves the specimens may be roughly separated into 

two groups. The first consists of specimens thinner than about 1000A,and 

is characterised by a Ap curve which rises rapidly with decreasing 

temperature below about 100
0 
K. The second consists of thicker films,which 

give Ap curves with little or no rise at low temperatures. Examples of the 

two types are given in Figure 8.22. It seems possible that the behaviour 

of the first group may be connected with the presence of holes in the 

films, and this possibility will be examined in the next chapter.. Only 

the second group will be considered further in this chapter. 

For a given specimen there are two parameters which can be only 

roughly estimated. These are the bulk resistivity at 4.2°K (p
o
) and the 

scaling constant of the temperature dependent dislocation contribution. 

It was shown on page 155 that there appears to be a rough relationship 

between these parameters, i.e. D = pc,. This relationship has been assumed 

for most applications of the comparison program. If the assumed values of po  

alone are changed, only small changes in the Ap curves result, 

and these are confined to low temperatures. The introduction of the 

temperature dependent dislocation term produces a larger effect,which 

reduces the values ofiAplat low temperatures in most cases. The 

uncertainties in po  and D mean that the Ap curves must be assumed to have 

uncertainties of the magnitudes and types indicated by the examples in 

Figure 8.22. 

The Ap curves for a variety of specimens were obtained from the 

comparison program with p. and D both taken as 0.01 µ 0-cm. Figure 8.23 

shows the curves for three films all about 2400 A thickl but with widely 
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various combinations of pc.  and D. 
pa- cm. 

Po D 

a 0.01 0 	' 

b 0.015 0 

C 0.01 0.01 	' 

0.015 	0.015 

10 	10 	50 100 

0 

0 	 

0 

.00r. 
0 	 

10 20 °K SO 100 

104.5  2310 A 

zoo 

57.3 14470A 

04.1 25110 A 

b 
	 39.4 4170 

- 

Figure 8.22  

Bp curves for three films with 

Figure 8.23 Ap curves ,for film - 214.01 
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aluminium layers 

Figure 8.26  

Ap as a percentage.of Pe  
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Figure 8.24  Ap curves for thicker films. 
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different film residual resistivities. Figure 8.24 shows the curves for 

three thicker films,also with a range of film residual resistivities. In 

Figure 8.25 the results for a pair of specimen sets are given, one modified 

by a thin aluminium layer and the other unmodified. The agreement between 

theoretical and experimental values is good down to quite low temperatures. 

The error as a percentage of pf  is plotted for a few specimens in Figure 

8.26. The large variations at low temperatures must be expected as a 

result of the uncertainties in the parameters po  and D. 

These results are interesting in their failure to show any features 

which can be attributed to the dominance of low angle scattering of 

electrons by phonons at low temperatures. Low angle scattering is expected 

to lead to higher film resistivities for a given bulk resistivity(45'53). 

This subject is discussed in Chapter X, where an approximate 

theoretical treatment is given. The theory predicts significant positive 

departures from Fuchs' theory, especially for films of low p at about 

30-40 K. The experimental results show mainly negative departures. 
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CHAPTER IX  

FTTMS  IN THEORY AND FILMS IN PRACTICE 

In this chapter and the next some aspects of the relationship 

between the films measured in practice and the films assumed in theory 

will be discussed. The first section of this chapter is concerned with 

the surface structure of the films as revealed by replica electron 

microscopy and the second with electronic structure. Chapter X is 

devoted to a discussion of an important consequence of low temperatures; 

the predominantly low angle nature of the electron scattering by phonons. 

1) The Epitaxial Silver Film Surfaces  

The electron microscopy work on replicas mentioned in earlier 

chapters will now be described. While examining replicas of 

epitaxial silver films C. Gonzales(32) of Imperial College found 

considerable variation between specimensprepared on different 

occasions, although the conditions of preparation were apparently the 

same. The films were prepared in the same evaporator and by the same 

method as the resistance specimens. 

The replicas are prepared as follows. A thin layer of carbon is 

evaporated over the surface of the silver film to be examined. The 

carbon layer is then shadowed', to improve the contrast in the 

microscope, by evaporating a small amount of chromium from an angle 

of about 20
o 
to

. 
the surface. The silver is dissolved away by 

leaving it in the vapour of nitric acid. The replica can then be 

floated on to a copper grid and examined in the electron microscope. 

-176- 



(a) Specimen 37.3 

. t = 1390 pf  0.060 

(b) Specimen 33.2 

t = 1230 pf  = 0.122 

(c) Specimen 57.3 

t = 2400 pf  = 0.030  

(d) Specimen 49.3 

• t = 2310 pf  = 0.067 

PLATE 4 	Replicas of film surfaces  

t in A. of  at 4.2°K. Scale 5000A/cm. 
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Replicas of six of the resistance specimens were prepared by 

Gonzales and micrographs of four of them are shown in Plate 4. These 

results illustrate the variable nature of the film surfaces. They 

are generally fairly flat with occasional features which are large on 

the atomic scale. The features shown in Plate 4 fall into three main 

groups, only two of which represent structures found on the surfaces 

of freshly prepared films. The large features, of the type shown 

by circles, are holes or depressions in the film surface. The lines, 

marked by arrows, are steps in the surface, probably -100A or less. 

The small bumps on the surface (as in the squares) are not seen on 

. replicas from freshly made films and may be due to contamination 

acquired during storage. 

The centres of the main features in (a) and (b) are white,, showing 

that no chromium has been deposited there and suggesting that the 

features may represent holes rather than merely depressions. Confirmation 

of the presence of holes was obtained by observations with an oil 

immersion optical microscope. A part of specimen 33.2 ((b) in Plate 4) 

was observed and many faint spots of light were seen, distributed 

typically as in Figure 9.1 (a). The diameter of the spots was very 

roughly estimated, by comparison with a fine wire, to be 2000 - 50001 . 

Most of the spots were very faint, but a few were brighter, apd around 

these a ring was seen. 

These results are just as expected from holes with diameters small 

compared with the wavelength of light. They may be explained in terms 

of the Abbfi theory of microscope image formation( 61 ). Parallel 
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0 
(a) 	O0  0 00 

0 00 

IF / 
o, 

(c) (d) 

Figure 9.1  

light is incident on the object plane. (Figure 9.1b). The Fraunhofer 

• diffraction pattern of the object plane is formed at the focal. plane 

FF, but with an angular cut-off determined by the aperture of the 

lens. The light leaving a very small hole is uniformly distributed 

over a wide angle, so the intensity distribution at FF' is as shown 

on 9.1 (c). The image formed at the image plane II° has the shape that 

would be required in the object plane to give the pattern (c) at FF' 

i.e. roughly as in 9.1 (d). The size of the image depends only on the 

microscope, while the brightness depends on the site of the hole in the.  

film. Only the larger holes allow sufficient light through to allow 

the first ring to be visible. 

Holes were seen optically in several films - 1200i thick, but not 

in some thicker films. This is in agreement with the electron 
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micrographs, as only the depressions in the thinner films have white 

centres. 

The six specimens examined point strongly to the conclusion that 

the variability of the residual resistivity of films of a given 

thickness is related to the density of surface features. This is 

illustrated in Plate 4. by the pairs (a),(b) and (c),(d). In each 

pair the films are of similar thickness, but have considerably different 

densities of surface features and the residual resistivities differ by 

about a factor of 2. 

It is of interest to consider what effect the presence of holes in 

a film might be expected to have on its resistivity. At high temperatures 

the electronic mean free path is much smaller.  than the average distance 

between the holes. They then merely contribute to the overall shape of 

the specimen, and the size-shape factor will take account of them. At 

low temperatures, however, the mean free path is long compared with the 

separation of the holes and they contribute to the bulk resistivity. 

In a film with bulk resistivity 0.01µ 0-cm the bulk. mean free path is 

80,000A. If the holes in the film (b) are assumed to have their 

apparent surface diameter all the way through the film and to be the 

only scattering agent, the mean free path parallel to the surface is 

about 400000A. indicating a contribution to the resistivity of about 

0.02 g 0...016 This rough estimate is about one third the difference 

in resistivity between film (a) and (b) (Plate 4.). 

The presence of holes in the thinner films offers a possible 

explanation of the results for the thinner films described in 
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Chapter VIII, page 172. The.measured resistivities at low 

temperatures are higher than expected from the high temperature 

results on the basis of Fuchs' theory. The density of holes 

required to explain the results for films below 1000i would, however, 

have to be at least four times greater than in specimen (b), Plate 1. 

2) 	The Electronic Structure in Thin Films. 

Restriction on kz. 

The free electron structure in thin films is usually assumed to 

be independent of thickness. This is not exactly true, as the 

surfaces impose boundary conditions on the electronic wave functions 

which restrict the values of the z components of the wave vector 

(k s) to x q/t, where n is an integer and t the thickness of the film(54). 

The electron states are thus 

confined to planes in k-spaces 

parallel to the film surfaces 

(Figure 9.2). There are N  2t/c 

such planes in the first 

Brillouin zone; where c is the 

lattice spacing perpendicular 

to the film surface. Silver films 

about 1000 A thick would have 	4  
6k% 

about 200 planes crossing the 

Fermi sphere. 

Crittenden and Hoffman(55)  

have suggested that the restrictions 

Figure 9.2 
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on the values of kz may reduce the resistivity but it seems likely 

that this will not happen unless the films are very thin. If the 

intrinsic scattering probability is isotropic (impUrity scattering) 

the rate of scattering depends only on the number of final states 

available at the Fermi surface. There are as many states per unit 

volume in the film as in the bulk and the fact that they are confined 

to particular planes does not reduce their effectiveness as final 

`states. When the electron scattering is by phonons the availability 

of phonons of the right wave number must be considered. The 

distribution of states in phonon wave-number space (q-space) is 

identical to the distribution of electron states in k-space. The.  

phonons required to excite transitions between electron states must 

have values of qz  which are 	integral multiples of Akz, and the 

phonons all have just this property (Figure 9.1), so scattering 

probabilities are unaffected by kz  quantization. It must be emphasized 

that this argument is only applicable if q >> A kz  for most of the' 

phonons, i.e. it would break down in very thin films at very lopw 

temperatures. The experimental fiImsphowever, are thick enough for the 

condition given above to be satisfied at temperatures where phonon 

scattering is important. 

Non-Spherical Fermi Surface.  

The Fermi surface in silver is nearly a sphere over much of its 

area (Chapter I), and this gives credibility to the assumption of the 

free electron model. However, silver is not a free electron metal; 

it has a zone structure. The Fermi surface has necks to the [1113 zone 
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boundaries and electron scatterings may•be of the Umklapp type. The 

possibility of Umklapp processes makes it more reasonable to assume 

Figure 9.3  Umklapp scattering. 

that phononcscattering is isotropic, especially at high temperatures. 

The Debye phonon model for a free electron metal includes a frequency 

cut off which limits the scattering of electrons to about 79°  by 

normal processes, so even at high temperatures the scattering would not 

be isotropic. When Umklapp processes are included scattering is not 

so limited. In Figure 9.3 the small q scatterings to A and B are 

equivalent to scatterings to A' and B' in the original zone. The 

assumption of isotropic scattering is, therefore, probably quite 

reasonable, especially above the Debye temperature (200°K for silver) 

when large areas of the Fermi surface in adjacent zones are accessible 

to phonon induced transitions. 
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CHAPTER X 

THE PHONON-SURFACE kier'ECT  

I. Introduction  

In the resistance size effect theories of Fuchs and Dingle isotropic 

scattering of electrons is assumed. While this is probably a reasonable 

assumption at the Debye temperature and above, it cannot, with confidence, 

be maintained at law temperatures when low angle phonon scattering 

predominates. It was suggested by Olsen(45) that the low angle scattering 

may be of greater importance in thin specimens than in bulk specimens. 

The argument is put as follows (56).: Thecurrent in a thin film or wire 

is carried mainly by electronatravelling parallel to the surface. If one 

of these electrons is scattered through a small angles it will soon 

reach the surface where it will be scattered through a large angle. The 

original low angle scattering is, therefore, finally equivalent to a large 

angle scattering. For a given bulk resistivity, the film resistance is 

expected to be higher when the scattering is mainly low angle than when, 

it is mainly isotropic. 

Although the phonon-surface effect is certainly expected to exist, 

the above argument is oversimplified. It would apply directly to a beam 

of particles which could only lose particles and not gain them. The 

situation in a metal is rather more complicated than this, and must be 

approached from the Boltzmann equation point of view. 

The Boltzioann equation in the absence of a magnetic field was 

obtained in Chapter II. From equation 2.19,page 23: 
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e E. 
k 
f
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I(E) 	(k)• Sr g ICE,E) = 0E2E) I 	(10.1) 

I s 

where elto) is the equilibrium change in the distribution function 

caused by the electric field. The scattering term has the form 

Os., E.) 	= J ( g ( Lc., E) - g (i .c.; E. )) Q Qs a ' ) d is: 
a 

10.2) 

and it is here that differences in the type of scattering make themselves 

felt. The simplifying assumptions 1,2 and 3(a). made in Chapter II page 25 

will be retained i.e.: 

	

.1) 	Energy surfaces are spherical in k-space 

	

2) 	Electrons are, scattered on constant energy surfaces. 

3(a) The intrinsic scattering probability depends only on the 

angle through which the electron is scattered. 

Phonon scattering involves change of the electron energy, so these 

assumptions really exclude phonon scattering. However, it may not be 

unreasonable to ignore the energy changes, as the calculation of the 

current involves an average across the Fermi surface. An electron 

scattered to a point on the Fermi surface contributes the same amount to 

fgdk, and hence to the current,whether it changes its energy on scattering, 

or not. The above objection also applies to Fuchs° theory, and has been 

ignored in applying that theory to the high temperature film results, so 

it is consistent to continue to ignore it at lower temperatures. The 



aspect of phonon scattering expected to be of importance is its angular 

dependence, and this is incorporated in the theory by allowing Q to depend 

on ', instead of keeping it constant as in Fuchs' theory. 

With the above assumptions the scattering term becomes, introduoing 

polar coordinates in k-apace, 

Pg(13,01k2I) - 80'10; k,LA Q(f) k2  sin ededo 

(10.3) 

When the bulk case was being considered (page 30) the scattering term 

was reduced to the simple relaxation time form g(es0,k)/Y where 

1 
= 2% 1(1 - cos V) Q(!) sin lid! (10.4) 

The bulk conductivity is then ne2  T/111. This simple form for gl is 

no longer obtained in the more general case of thin specimens. 

Figure 10.1 (a) shows a g(e) curve for a film with isotropic scattering 

(Fuchs' theory) and 10.1 (b) shows the g(e) curve for the corresponding 

bulk case. If the scattering is mainly low angle, e.g. with Q(Y) 

as in 10.1 (c), the rate of scattering from e = 90°  will clearly be 

much greater in the film than in the bulk. The values of (g(e) - g(d) 

are much larger, in the range defined by Q(Y),in the film than in the 

bulk. To allow comparison with the bulk case, the scattering integral 

Js 



Figure 10.1  

;-90 

(al 9(e) 
(film) 

° at e divided by the value of g at 

e (i.e. i(e)1 / g(e) ) is considered. 
Js 

This goes down as e moves away from 

isc,,  900. The form of gOrshown for 

the film assumes a constant value of 

k (0)] / g(e) (Fuchs' theory, 

T = const, 11.10eg), so it cannot be 

the solution when scattering is 

go 	0 	4°1  mainly low angle. As scattering 

from the peak shown in 10.1 (a) 

is high for low angle scattering, 

the change in g required can be 

expected to involve a smoothing 
490 

out of the peak. 

2) 	Previous Calculations of the Phonon-Surface Effect. 

Three calculations of the phonon surface effect will be mentioned. 

Two of these are concerned with wires, and although they are not of 

immediate concern in the present work the methods used are considered. 

Blatt and Satx(56).start with the assumption that the meanfree 

path in wires (l w) can be split up as follows: 

1_ 	1 	1 
.4- 1— 1 = 1ph 	1i 1s 	1ps 	(10.5) 
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The component mean free paths are: 

ph 
	normal phonon scattering. 

li  - impurity scattering. 

1s 
- surface scattering. 

1 	- phonon-surface scattering. 
Ps 

The phonon surface term is obtained by considering an electron initially 

travelling parallel to the surface of the wire. The electron is 

scattered repeatedly through angles A. T/TD, where T is small compared 

with TD (the Debye temperature)) 
 and eventually reaches the surface. The 

average distance required for this is taken as 1 . The phonon-surface 
Ps 

contribution calculated for electrons parallel to the surface is assumed 

to apply for all directions, and the resistivity of the wire Is taken 

as proportional to 1/lw. 

The lack of rigour of this method,which is admitted by the authors, 

makes it difficult to assess whether it can be expected to give even 

approximate estimates for the phonon surface-effect. The method is 

restricted to very thin wires (diameter « lw), and it is asserted 

that the bulk of the current is carried by electrons moving parallel 

to the surface of the wire. This is not true for thin wires, though 

it is for thin films (page 65). The electrons moving parallel to the 

surface are, of decreasing significance as the wire becomes thinner, so 

the'phonon-surface effect should decrease similarly. The method described 

above predicts an increased phonon-surface effect with decreasing wire 

diameter. 
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Lathi and Wyder (57) used a Monte Carlo method to estimate the 

phonon-surface effect in wires. A computer program simulated electron 

paths in the wire, allowing a constant probability of scattering by 

phonons and impurities in each small increment of length. The angle of 

scatter was made T/TD 
for each phonon scattering and selected randomly 

from the isotropic sphere for impurity scattering. When a.path reached 

the surface an isotropic scattering back into the wire was generated. 

The mean free path was taken as the total distance travelled by the 

electron divided by the total number of effective scatterings. An effective 

scattering was defined as one which randomized the electron direction. Each 

impurity and surface scattering is counted as one effective scattering, 

but not each phonon scattering. The number of scatterings through a 

, 
small angle e required to randomized direction is 1/6

2 
 , so each phonon 

, 
scattering was assumed to contribute. only (T/TD)

2 
 to the total number 

of effective scatterings. 

This simple Monte Carlo method is open to several objections, of 

which the two most important are the following. The resistance is 

assumed to be proportional to the mean free path of the electrons. This 

assumption is based on the relationship obtained from the Boltimann 

equation in the bulk case, when scattering is isotropic and the angular 

dependence of g is cos 6 (page 30). It is by no means obvious that this 

result can be extended to the more general case where g has a different 

angular dependence. It was shown in the previous section that the 

angular dependence of the scattering influences the resistivity by 

changing the scattering term. No provision for this is made by LQthi 
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and Wyder, so it is not easy to see how their method would be expected 

to estimate the phonon-surface effect. 

Azbel and Gurzhi(53) obtained a formula for thin film resistivity 

which includes the phonon surface effect. The effect of low angle 

scattering is, introduced by allowing the relaxation time r to depend on 

0. The thin film limit only is treated, i.e. K<< 1 and the function g 

for the isotropic case has a very narrow peak at 9 = 900 (Figure 10.2). 

The width of the peak is N K radians. 

In this region each low angle scattering is taken to be as 

effective as a large angle scattering, so the relaxation time is decreased 

by a factor which is the reciprocal of the number of low angle scatterings 

required to be equivalent to one high angle scattering. The phonon 

surface effect is assumed to be 

unimportant away from the peak 	
ICO 

(0,0A) 
in g(e ), so an ad hoc function 

is used for the phonon 

contribution to the relaxation 

time which is.vwb(T/TD)2  

at e = 966 andarb  near 8 = 0 

and 1800. The crossover occurs 

at sin = 4.• T/TD. The  
function is: 

Figure 10.2  

g(e) from Fuchs theory and 

• T (e) from 10.6. 
-190- 
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= .11. 12  + 812 e ) • b " TD/  • 
(10.6) 

The transport equation was solved with this TO) and a formula 

obtained for pr/pb. Contributions are included from both phonon and 

impurity scattering. 

Pf 

Pb 	
K log (1+ 1 ) (10.7) 

where 

x = 
1 

4/1a  

  

(T/TD)2+0/1d2  + (4/1ph)g/3  

and 
	

1ph 	effective m.f.p of phonons in bulk. 

li 	= 	impurity mean free path in bulk. 

1 	= 	total effective bulk mean free paths. 

This result predicts that the resistivity of a film should rise 

more rapidly with temperature than expected from Fuchs' theory at low 

temperature. The shape of the curve depends on the values of t, li  and 1p. 

Two examples are given in Figure 10.3. The films have the same value of 

K(0.01) at T=0,but different values of bulk residual resistivity. The 

first has a very low bulk residual resistivity, and the film resistivity 

rises sharply at about T = 0.03 TD. The second has a resialiel  resistivity 
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comparable with the films described in the experimental part, and the 

film resistivity rises more slowly with temperature. 

Figure 10.3 Examples of Azbel and Gurzhi's results 

Azbel and Gurzhi's calculations do not allow for any dependence 

of T(e) on g(0), and are confined to very thin films. In the next 

section a numerical method for estimating the phonon-surface effect 

will be described which has neither of these limitations. 

3) Numerical Calculations of the Phonon-Surface Effect. 

The discussion of the phonon-surface effect given so far shows 

that Fuchs' theory cannot be expected to apply to films when the 

scattering is largely low angle. In order to calculate the magnitude 

of the effect to be expected for the films measured in the experimental 

part, a numerical method was developed which is based on the Boltzmann 

equation approach. The methods used by Blatt and Satz and LLthi and . 

Wyder were felt to be too loosely related to the Boltzmann theory 
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Equation 10.8 then becomes 

au(e,z) 
cos 0 az 4.  cos 9 sin e 0330 

to allow them to be used with confidence. The method described below 

is, in effect; a development of the'method used by Azbel and Garzhi to 

allow for the relationship between the relaxation time ¶(e) and the 

function g( e). 

The form of the Boltzmann equation to be solved for films of a 

free electron metal is obtained from equation 10.1 and 10.3 with the 

assumptions on page 185 	The electron velocity v is the Fermi 

velocity 

v cos e 211.(el0'k'l)  ¢ 	 B de
o(k) sin e cos  

az 	11 
ak 

= Pg(03,0,k9z) = g(e; 0',  koz))14 Q(!) sin 	e' d 0 

(10.8) 

In both bulk material and films with isotropic scattering g depends on 

0 only through a factor cos 00 It will now be shown that this is also 

true in the present case by assuming that g can be expressed in a form 

proportional to cos 0, and putting it in equation 10.8 i.e. assuming 

g(0,0,k,z) = 	
E  dfi)(k) cos 0 u(e,z) 	, (10.9) 

• dk 

=f(u(e,z) cos 0 - u(e;s) cos 0') Q(Y)k2  sin O'd. e'd 0' 

(io.io) 
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If the right hand side can be 

shown to be proportional to cos 0, 

with no other 0 dependence, all 0 

terms can be eliminated from the 

equation, confirming that g has . 

the form given in 10.9. In 

figure 10.4. 0 is (04) and X is 

e wide' are kept constant, 

and X moves on a line of constant 

0'. Q may be written as 

Q(ese's. 00) where 00  = 	O. 

Q is an even function of 0
0 

The integral may now be written in 

00+ Of i.e. 

Figure 10.4 

two parts with 0' replaced by 

27(  2 u(0,z) cos 0 	ae° sin e'f k cAele°,00) 40.  
0  

(10.11) 

de' u(e'z) sin e°  [ 40 
 
2 cos(00  +0 ) Q(eve°  00) 

0 
	

JID 

The 00  integral in (a) is independent of 0. The 00  integral in (b) 

may be expanded to 

Q(6,0:00) (cos 00  cos 	0 sin 0) d 00  (10.12) ' 
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The second part is zero, as Q is an even function of 0o and sin 0o 
and an odd function. (b) is finally 

cos 0fk
2 
 cos 00  Q (ete',00 	(10.13) 

Now cos 0 cancels through 10.10, leaving an equation for u(e,z) 

as 
z 
ii(e.z) y oos 	+ sin 0 . 	• 

.R1  u(e,z) - JIR(e e') u( e;z) sin e'd e' 

(io.14) 

where R1  = 10) k2  sin TO', a constant for a given function Q(Y) 

and R(0,0') = fk2  cos 00  C(esei,00) d  0. 

u(e,z)  
T(0,z) 

conditions are as used by Fuchs' (page 46), the equation 10.14. has an 

analytiO solution. Although -6(0,z) is not independent of u(e,z) the 

simplified equationli.e. with the right hand side of 10.14. replaced by 

u(00z)/T, forms, the basis of an iterative method for obtaining a 

solution. A solution u1 is first obtained with a constant T T. p i• 

This solution is put in the scattering integral to give a new relaxation 

time function, T2(0,z), which is used to calculate a new solution u2. 

The iteration is repeated until an unchanging solution is obtained. 

If this process were to be successfully implemented the solution 

obtained would be the solution of 10.14. under the boundary condition 

assumed, and could be used to obtain priffb for films with low angle 
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scattering. Although there is no difficulty in principle with the 

method given above, a simplified version has been used which is expected 

to give a reasonable approximation to the results that would be obtained 

from the complete method, and requires a less complicated computer 

program. 

The function u depends on z, so T must also depend on z. 'The most 

important variation of v, however, is with e,as it is the high rate of 

scattering out of the peak in g(e) that is expected to be most. significant. 

The peak becomes lead symmetric away froM z = t/2, but the width remains 

about the same (Figure 3.6 page 49), so it is not too unreasonable to 

take r as independent of z. This is done in the simplified calculation 

and T (03) is obtained at each iteration by the use of the scattering 

integral with u(essiz) replaced by its average over z, 

At each iteration the solution of the following equation is required. 

au (0,$) 	u(e,$) 
N. cos 0 . a. 	+ sin .0 = 	T (e) (10.15) 

An equation of this type was solved in Chapter III (page 47), giving 

u(e,z) = ¶(e) sin e(i 	c(e).-z/c(e)v cos e ) 	(10.16) 

The Fuchs° partially specular boundary condition gives 

c(e) 

   

. (10.17) 
1 - De-tA (0)v cos e 
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The average of u(0,$) over s is 

(e) = 

t 
 f u(e,$) ds = ¶(e) sin e (1 - (1-p) 0 -e-w)  

o 	 w(1-pew) 

(10.18) 

where w = 	(0) v cos e. Thus, given r (e), u(e) is obtained directly 

from the formula. 

The other main stage in each iteration is the calculation of 

ti (e) from u (0). From 10.144 

1 j(-R(e,e) a (e) sin O'd e° 	(10.19) 

R
1 and R(0,0') are independent of a (e) and can be calculated for a 

given Q(Y) before stating the iteration process. 

The scattering function, Q(Y). 

The shape of the scattering function is obtained from the Debye 

model of lattice vibration. The mean number of phonons in a particular 

element of q-space at temperature T is n(q) where 

q d4  
n(q) lc 

e
h q/ckT 

(10.20) 

Phonons in element doir scatter electrons into an equal sized element 

in k-space (Figure 10.5). It is assumed that the probability of an 

electron being scattered by a phonon in element d9  at Vs proportional 
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Figure 10.5  

to the number of phonons in the element, i.e. to n(q). As q is related 

to the scattering angle Y by q = 2 r  sin Y/2,the number of phonons 

per unit q-space may be expressed in terms of Y . 

n(Y) sin Y/2 oc 	 

ex  - 1 
(10.21) 

where x = 2TD sin Y/2. 
T 

This gives the shape of the scattering function and it is necessary 

to find a scaling constant to give Of). The constant is established 

by the requirement that the Q(Y) should give the observed bulk lattice 

resistivity of silver at the temperature concerned. From page 30: 

ne
2 
 r 	2K ne p 	(1-cos Y) n(Y) sin YdY ' 

Ph 
(10.22) 

where P is the constant. • 
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° f  —t 	gr  (Lcsi z) dk dz 
crb 

The residual scattering is assumed to be entirely isotropic and 

contributes a term to the scattering integral which is independent of 

a (e) and can be included in R1. 

The resistivity ratio,pf/pb. 

When the iteration process has yielded a- solution,i.e. when two 

consecutive solutions are close enough, the ratio of the film conductivity 

to the bulk conductivity is calculated. 

(10.23) • 

gb 	. 

The factors common to gf  and gb  cancel (cf. page 50) leaving 

f 	I sing e o (e) d e 
a13 r 	I sing e ub  (e) d e 

The bulk u, ub(0) is Tb  sin 09  

Pf 	
2 = 2Tb/3 f sin e u (e) d e 

Pb 

(10.4) 

(10.25) 

• Some program details. . 

In very thin films a (e) changovery rapidly at angles close to.  

0= 900  and slowly elsewhere. The e range is, therefore, divided in two. 

The point of division and the number of intervals in each part of the 

range are program parameters. The set of 6 values are fixed throughout 
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a calculation,so computing time is saved by obtaining cos e, sin e 

and R(8,8') once only at the beginning instead oeeach time they are 

required.R(0,6') is calculated for the standard values of 8 and for a 

number of values of e' on either side of e. The integrals at all parts 

of the calculation are by Simpson's rule. 

The program steps are summarized below. 

1) Parameters read in: T, pop  p, ppb(T),Odivision point and 

numbers of intervals for e ranges. 

2) n(Y) calculated from formula 10.21. 

3) Constant to give Q(Y) calculated from n(Y) using 10.22 with 

ph = 1/Pph (T). 

4.) Cos e and sin 8 for all values of 0. 

5) R(8,e') for each 8 value. EY:equally spaced values on 

either side of Of  the range being determined by the angular 

spread of Q(Y) 

6) ii(0) from T(8) by formula 10.18. The change in a (6) 

permitted is limited*to prevent oscillation. 

7) New T(8) from a(e) by numerical integration of 10.19. 

8) Is the change in a (8) since previous iteration small? 

No0 return to (6) 

Yes. pf/pb  from 10.250 

The program was written in Fortran IV and run on the IBM 7090 computer 

at Imperial College. About 25 secawere required for each value of 

Pr/ Pv 
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Stability of the iteration process. 

The simple version of the iteration process described at first is 

extremely unstable, giving wildly oscillating values of a (e) and T(e). 
- 	. 

When u (e) is far removed from a solution the changes in T(0). obtained 

are in the right direction but much too large. .The oscillations can be 

controlled by limiting the change in u (e) allowed at each iteration to 

some fraction (N 1006) of its value .at the previous iteration. The function 

u (e) then changes in a steady manner and a reasonable solution is 

obtained. within 10 - 30 iterations. The solution is judged to be reasonable 

when the values of a (e) generated by one iteration are all Within 1$ 
of those obtained from the previous iteration. In most cases the 

difference is Much less than 1%. The error in the value of pf/Pb  is 

quite small (<0.190 as many of the errors in u (e) are cancelled by 

the integration. 

The results. 

The change in ; (D) brought about by the change from isotropic to 

low angle scattering is, as expected, a smoothing out of the peak at 

e = 900 (Figure 10.6). The reciprocal of the relaxation time is also 

shown.. This is proportional to the rate of scattering out of an 

eleient in k-space, so the negative regions imply a net gain by 

scattering. These regions receive the electrons scattered out. of the 

peak and they lose electrons only by surface scattering. 

The program was run for various values of 1E, T and p. 

The results are given in Table 10.1 with the Fuchs° values for 
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u(o) 

comparison. The residual 

resistivity in all cases is 

0.01 µ fl-cm, i.e. roughly the 

value found for the experimental 

films. 

Tte 
41.• •=1, 	 •mm. AWN* 	 ••••• .1=11,  ••• gm. ammo an 

co 

0 	 40 	9 
	Ise 

program results 

Fuchs 

K • = 0.1 T = 40°K 

Figure 10.6  

The results for each value of K may be plotted as the change in 

pf/pb  brought about by the change from isotropic scattering to low 

angle scattering, i.e. the difference between the program results 

and. Fuchs' results. The result forK = 0.1 are plotted in Figure 10.7. 

The results up to about 60°K seem quite reasonable. At very low 

temperatures the residual isotropic scattering is most important and 

Fuchs' results hold. Ai.the temperature and number of phonons 

increases the phonon-surface effect 
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. 

P 

K(=t/1) 	
_ 

Tb.K. ' 	• 
0.01 

. 
0.03 0.1 0.3 

. 
1.0 

0 (Fuchs) 26.1 11.24. 4.781 2.466 1.462 
100 33.22 14.46 5.996 2.884 1.549 
60 33.90 14.73 6.062 2.896 1.549 
40 36.48 15.61 6.287 2.941 1.559 
25 37.77 15.80.  6.207 2.886 1.536 
20 36.42 15.15 5.950 2.893 1.517 
15 30.4 13.7 5.454 2.630 1.465 

- . 
0.4 (Fuchs) 13.98 6.4.12 3.030 1.791 1.253 • 

100 17.9 8.02 3.538 1.932 1.280 
60 18.3 8.12 8.553 1.932 1.278 
40  19.4 8.43 3.613 1.940 1;280 
25 19.6 8.38 3.550 1.906 1.260 
20 18.9 8.03 3.433 1.886 1.261 
15 16.9 7.33 3.235 1.822 	' 1.235 

0.8 (Fuchs) 5.46 2.855 1.673 1.250 
100 6.78 8.29 1.772 1.275 . 
60 6.84 3.30 1.770 1.2717 
40 7.08 3.34 1.774 1.2647 
25 6.97 3.31 1.748 1.244 
20 6.78 3.19 1.702 1.245 
15 6.09 2.97 1.658 1.222 

Table 10.1. 

Phonon-surface effect. 

Program results -.pripb  
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• Figure 10.7 

	

	A Pf. vs. temperature when K=0.1 

Pb, 

becomes more important. At higher temperatures, when the scattering 

angles increase, the effect begins to decrease, but it does not fall 

	

to zero at high temperatures. This is a' consequence of the Debye 	' 

phonon model, which limits the maximum angle of scatter to about 790 . 
As the scattering is expected to be isotropic at high temperatures 

(page 183)l it is more realistic to assume that A(pf/P10) is' zero 

above about 200°K (the Debye temperature for silver) and that the 

curves have the forms indicated roughly by the broken lines. 

Comparison with Azbel and Gurzhi. 

A few of the results from the program are compared in Table 10.2 

with results from the formula obtained by Azbel and Gurzhi. The 

agreement is quite good, especially at 40°K. This is perhaps because 

the principle result of both methods is to smooth out the peak in 
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• Pf/Pb 
' - 

K. Fuchs 
T =20oK T = 40°K 

A and G V A and G V 

0.01 

0.03 

0.1 

26.1 

11.24. 

4.78 

42.0 

18.1 

7.49 

36.4.. 

15.1 

5.95 

38.5 

15.7 

6.49 

36.5 

15.6 

6.27 

Table 10.2, 

g(8) and leave the rest of the Fermi sphere relatively unchanged. 

Comparison with the experimental results. 

To be useful for comparison with the expeiimental result the 

phonon-surface effect results needs to be expressed as the change in 

resistivity vs. temperature for films of various thickness. In this 

form they will then be directly comparable with the Ap curves obtained 

near the end of Chapter VIII, i.e. the differences between the measured 

resistivities and the resistivities expected oil the basis of Fuchs' 

theory. 

Films of thicknesses 1000, 2000 and 5000! are taken as examples. 

'The program results above 60°K are modified as in Figure 10.7 to be in 

agreement with the assumption of isotropic scattering a high temperatures. 

A(pf/Pb) is plotted against K for each temperature. The values of K 
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for the three films at each temperature are calculated from pb(T) 

and the thicknesses, and the appropriate values of A(p,/pb) obtained 

from the curves. The increase in resistivity for the film is then. 

Pb A(Pf/Pb).  

The final results are plotted in Figure 10.8 as Apvs. T for the 

three films and for three values of p: 0, 0.4 and 0.8. When p=0 the 

phonon surface effect is very large but falls rapidly as p is increased 

(Figure 10.9). 

There are several specimens among the experimental films which have 

thicknesses about 2000k and with p about 0.4 - 0.6. The maximum at 

about 40°K, predicted by the calculation, for such films should be 

clearly seen in the experimental results. There is no convincing 

indication of the effect in the results, in fact the deviatioh from Fuchs` 

theory is usually negative (Figure 8.25). 

Chopra(42)  obtained silver film resistance results which he 

attributed to the phonon surface effect (page.  164). The films concerned 

were very thick, 60,0001, and had residual resistivity ratios which 

indicate a bulk residual resistivity -#.0.01 µ fl-cm. The results obtained 

from the program do not support the conclusion that the rapid rise in 

resistance at about 10
o
K can be explained by the phonon surface effects. 

• N  

The phonon-surface effect is small in films 5000A thick, and would be 

very small in much thicker films. 

Conclusion. 

The theoretical calculation of the phonon surface effect shows that 

it should be.large enough to be observed in the films measured'in the 

-206- 



Figure 10.9  
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Figure 10.8. 
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Calculated A 
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vs. T curves. 
loo 6K 
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experimental part. The effect was not observed. 

The solution of the Boltzmann equation was obtained by an approximate 

method that assumed T to depend on e but not on z. However, it seems 

unlikely that this approximation would cause large errors in the results. 

The program could be developed to include variations of T with z, but it 

would not be worthwhile without more positive experimental indication 

of the phonon surface effect. 

A more serious error might have been the omission of Umklapp 

processes, which allow phonons of small q to induce effectively large 

angle scatterings. The inclusion of Umklapp processes would be a 

necessary first step in any refinement of the theory of the phonon 

surface effect. 
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CONCLUDING REMARKS 

The work reported in this thesis has provided a picture of the 

electrical resistivity properties of epitaxial films of silver.' 

Ptom'this a direction for future work could be decided. 

The results have been interpreted mainly in terms of Fuchs' theory, 

and two principle difficulties have arisen: 

1) The variable film structure. This was shown by the variation 

in resistivity between films of the same thickness, and confirmed by 

the electron microscope work of C. Gonzales. This type of variation 

was partially overcome by the use of sets of four specimens evaporated 

together. In addition to the variation between specimens of the same 

thickness, there appears to be a tendency for the thinner films to have 

holes in them. 

2) Dislocation resistivity. The, temperature dependent resistivity 

of the dislocations in the films complicates the comparison of results 

with theory at intermediate temperatures. This effect was reduced 

'to a single parameter by comparison with partially annealed wire, and 

very thick films, which yielded a 'universal curve'. However, it is 

impossible to be sure that the universal curve used is completely 

appropriate for the dislocation configuration in the films. 

In spite of these difficulties 'the comparison of the results, for 

individual films, with Fuchs' theory resulted in agreement, within a 

few per cent, down to 50 K, i.e. covering a range of g=t/i) from 

—5 to -.1/5. There was no definite evidence of large deviations from 

Fuchs' theory. In particular there was no sign of the phonon surface 
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effect, either as described by Chopra, or as calculated in Chapter X. 

The calculations ignore Umklapp processes and the phonon surface effect 

would be less if these were important, so the absence of the effect may 

indicate that Umklapp processes make an important contribution to the 

resistivity at quite low temperatures. 

Further work in this field would have to be initially directed 

at the preparation of films with reproducible properties. An ultra 

high vacuum system would be required, not necessarily because a high 

vacuum is needed, but in order to be able to control the composition 

of the residual gas. A method of cleaving the substrate in a controlled 

atmosphere would probably also be necessary. The object would be to 

find the factors causing variable film structure by the use of both 

resistance measurements and electron microscope observations. 

If films of different thicknesses could be prepared with constant 

structure, the bulk residual resistivity could be accurately estimated, 

and the dislocation contribution might be more directly obtainable. 

It may well, however, be rather difficult to achieve a structure 

independent of thickness, as each new layer has the previous layer as 

a substrate, so any changes are cumulative. 
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(a) 0 about OE 

APPENDIX I  

A Solution of the Boltzman equation for the bulk case when Q is a  

function of ! and k only.  

It will be shown that the solutioh has the same form as in the 

simpler bulk case considered in Chapter I, page 28. The solution is 

assumed tobe of the form G(k) cos e . This leads to a scattering 

term proportional to G(k) cos e and an expression for the relaxation 

time,r(k). 

] 
A 	= c (G(k) cos 8 - gic").  cos e') Q(!,k) 8(k-k') 

s 	 . 

.51 
k sin e' de' do° 

(b) 0 about OA  

= G(k) klgcos 8 -cos el 	(A1.1) 

Q(!,k) sin e' 	do' 

The integral is over the whole 

of the Fermi surface, so the 

same result is obtained if the 

polar axis is changed to.OA 

(Figure A1.1) and the integration 

taken over! and 0. i.e.: 

Figure 11.1  



= G(k) k1  j  (cos e - cos e') Q(Y,k) sin *V dY d0 
J s (Al . 2) 	. 

e° must be expressed in terms of Y and 0, 

cos e° = cos a cos !cos- 	0 sin 6 sin Y, 	(A1•3) 

(by use of spherical trigonometry formulae). The integral now becomes: 

(cos e - cos 0 sin Y sin 6 - cos Y cos e) Q(Y)sin Y dY dO 

= cos ept•*008 Y) Q(Y) sin Y dY dd -fay sin2  Y sin 61;0 cos 0 

(A1.4.) 
2x 

cos 0 110 = ,0 so the second term is zero. 
0 

The scattering term is now: 

gl = atk G(k)cos eo jr(1 - cos Y) Q(!) sin Y d 

G(k) cos 6/r (k) 	(A1.5).  

where r(k) = 1/241.1(1-cos 11) Q(Y) sin Y dY 	(A1.6) 

With the scattering term reduced to the form in A1.5 the Boltzman 

equation solution is (from equation 2.29 page 28) 

G(k) cos e = Ee 	,c (k) 	df (k) o 	.008 e , (A1.7) 
dk 

confirming that the solution is of the form assumed. 
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APPENDIX II  

The Temperature Controller. 

The temperature controller is based on a silicon control. 

rectifier (SCR). The SCR is a diode which will not conduct in the 

forward direction until a pulse has been applied to a gate electrode. 

When there is an alternating voltage across the SCR a pulse must be 

applied to the gate during each forward half cycle. (Figure A2,1) 

The average current through the SCR depends on the phase relationship 

between the gating pulses and the supply voltage, so the small gating 

pulses control the large currents which the SCR can carry. 

The control circuit (Figure A2.2) varies the phase of the gating 

pulse in response to the output of the Wheatstone bridge circuit. 

The DC output from the bridge in first amplified byalong tailed 

pair amplifier (low drift) then, by a conventional ;2 stage DC amplifier. 

The DC level at X (Figure A2.2) depends, therefore, on the bridge 

output. It is made the zero point for an AC input to a Schmidt trigger. 

This AC is mains frequency but 900 out of phase with the main supply 

to the SCR. The Schmidt trigger fires (transistor A turned off, 

B turned on) when the input voltage at Y becomes sufficiently 

positive. The time at which this happens depends on the DC level 

at X (Figure A2.3). The gate pulse for the SCR is derived from the. 

collector of B by the CR circuit following. 
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APPENDIX III  

The Comparison Program  

The aim of this program is to fit.the resistance result to.  

Fuchs' theory using the fitting program results (page 126) as a 

starting point. The input data for each specimen are as follows.' 

1) p(T) from the fitting program with the constants C and pc. 

2) u(T) - the points from the universal curve for the 

dislocation contributions (page 153). 

3) The scaling constant for u(T). (D) 

4) The residual bulk resistivity (pc). 

5) The specimens length width ratio (d/w). 

The first stage of the program makes use of only the high 

temperature results, i.e. those used in the fitting program. Initial 

values for the'specularity coefficient p and the thickness t are 

obtained from C,d/w, D and pc  (pages 128 and 158). At each temperature 

K is obtained from the total bulk resistivity, and the film resistivity 

expected from Fuchs' theory obtained (pth). It is required that 

Pf - pth  should be zero at all temperatures. 'Considered graphically 

Pf 	Pth may appear as in Figure A3.1. The change in C required 

makes AB horizontal i.e. to A'B: The distance between A'B' and zero 

is taken up by changing PC  

AC x2 xi  as 
P2 - P1 

APO 	x2 -.A°  P2 
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A-------------3  

Figure A3.1  

The change in pc  involves a change of p so the processes must be 

repeated. -The process rapidly converges and two iterations are 

usually quite sufficient. 

The program frequently requires the value of F(K,p). The 

evaluation of this each time would be very time consuming on the 

Elliott 803computer. Tables of F(K,p) obtained by another program 

(page 514.),  were included in this program, and particular values are 

obtained by interpolation. 

The final values obtained for C and pc;  are used to calculate 

pf  and pth  for all temperature points. 
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.APPENDIX IV 

Experimental Results. 

Some of the principle results for each specimen are given b~lowJ 

as analysed by the fitting program. 

Epitaxial silver films. 

Specimen Thickness 

no. A 

18.1 420 
.2 829 
.3 1004 
.4 1120 

. 
20.1 572 

.2 560 

21.1 525 

22.1 813 
.2 910 
.3 1470 
.4 1860 

23.2 635 
·3 1070 

26.1 '2580 
.. 2 2750 . 
.3 2970 
• 4- 3130 

27.1 . 1193 
.. 2 893 
.3 644-
.4- 546 

. Pf(4. 2) 

f.l {} -~ 

.4601 

.2412 

.1878 

.1793 

.3134 

.. 3617 

.3700 

.2564-

.2137 

.0784-

.064.3 

.3183 

.1207 

.0398 

.0359 

.0340 

.0392 

.0949 

.1985 

.. 2918 

.3719 

-217-

Pc p(min) 
I..l l'l-cm 

.501 .33 

.288 .25 

.213 .33 

.187 .34 

·327 .41 
.362 .36 

.4251 .30 

.3029 .• 22· 

.2575 .• 26 

.1236 .43 

.1024- .40 

.3639 .27 

.1752 .41 

.0741 .40 

.0689 .40 

.0658 ·38 

.0696 .31 .. 

.1534- .• 42 

.2799 .21 

.3833· .• 22 

.4616 .. 21. 

continued 



no. t Pf(~K) Pc p(min) 

28.1 2065 .0.568 .09.52 .38 
.2 2550 . .0442 .0740 ·41 
.} 2910 .0402 .0698 .36 

31.1 2.500 .0978 ,.1284- -.01 
.2 1720 .• 1138 .149.5 .19 
.} 1335 .1.511 .1937 .18 
.4- 789 .21,.17 .3103 .23 

33.1 2110 .0651 .1024- .32 
.2 1235 .1224-, .1716 ·33 

37.3 1391 .. 0600 .1073 .53. 

39.1 596 .2833 .3238 .. 39 
.2 916 .. 1722 .2021 .41 , 
.. } '3005 .03.53 .0573 .46 
.. 4· 4170 ,,0309 .0.508 .33 

48.1 4220 .0400 .0582 .2} 
.2 5080 .0357 .0.50.5 .19 
.3 ' 6100 .0338 .0479 .08 
.. 4 6330 .0}95 .0574 -.15 

49.1 4020 .. 0460 .0639 .19 
.. 2 3200 .. 0591 .0803 .19 
.. } 2310 .0669 .0963 .30 
.4- 1340 .1061 .1081 .54 

52.1 40800 .0190 .0336 -
.2 4}400 00198 .0}28 -
.. 3 41600 .0208 .0343 -.4 31800 .0201 .0339 -

,54.1 63700 .0151 .0.574 -
.. 2 64500 .0123 .. 0233 -

57.1 . 5493. .0206 .0358 .}8 
.2 3864- .02}O .0446 .l,h 
.3 2407 , .0348 .0738 .44 
.. l,. 1666 .0535 .1135 .40 

cont1nUea 
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, . 

no. t Pt(4.2~ 'Pc p(min) 

, 

59.' 4920 .0235 .0458 .29 

61.1 1920 .. 0419 .0923 .44-
.2 2730 .0340 .0736 .37 
.3 }710 .. 0266 .0567 .. 34 

63.1 2410 .0795 .1316 .0 
.2 2570 .0825 .1294 --.04 
.} }670 .0525 .0897 -.O} 

. .4- 4270 .0428 .0755 -.03 

65.} 781 .• 2932 .3411 .16 . 
67.1 2620 .0515 .0848 .30 

..2 17.50 .0783 .1178 .35 

.} 14-70 .124-7 .1638 .25 

.4 1200 .2318 .2868 -.09 

69.1 3220 · .. 0461 .0860 .13 
.. 2 1455 .0816 .1416 ·35 
.3 1020 .1107 . .1878 .40 

71~1 .1645 .0717 .1275 .34 
.2 1570 .0702 .1286 .}6 
.3 1255 .0877 .1569 .38 
.4 957 .1209 

, \ 
.2149 .35 

Epitaxia1 silver films with thin aluminium layers. 

no. t Pr{4-.2oX) ~c p (min) 

42.2 2810 .0746 .1201 -.07 
.} 3260 .0646 .1044- -.07 
.. 4 }460 .0524 .0876 .04-

43.1 2190 .. 0761 .1327 .07 
.2 1770 .1384.' .194-1 -.08 
.. 3 1365 .. 1914 .2426 -.04-
.4- 977 .. 2782 .3412 - .. 0,5 

cont1nued 
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no. t pt(4.2
oKJ Pc p(min) 

.50.1 4490 .048lt. .0793 -.12 
;,2 5200 .0410 .0666 -.09 
.3 5690· .OqQ1 .0631 -.13 
.. 4 5950 .0395, .0652 -.22 

51.1 3100 .0746 .1182 -.16 . 
.. 2 2230 .0924- .1591 - .1.2 
.3 1709 .1255 .2102 -.13 

53.2 34000 .. 0239 .0396 -
.3 ·35400 .0245· .0390 -

55.1 151qQ .. 0258 .0372 -
.2 17030 .0228 .0325 -
.3 16950 , .0207 .0307 -
.4 14300 . .0262 .0390 -

56.1 1582 .0834- .. 1419 .29 
.2 2}4.3 .0567 .1007 .25 
.. 3 2790 .0335 .0616 .26 

58.1 3330' .0542 .0921 .03 
.2 . 4780 .0374 .0662 .00 
.3 7435 .0262 .0476 - .12 
.4- 9908 .0221 .0387 - .22 

60 .. 2 3630 .0375 .. 0683 .22 ., 2580 .. 0430 .0836 .32 
Qlt. 1810 .. 0701 .1296 ~ 25· 

62.1' 4256 .0464- .. 0786 -.03 
.2 36qo .0570 .0929 -.06 
.. } 2590 .. 0870 .1313 -.07 
.4 2420 .0911 .1387 -.06, ' 

64,.'2. 599 .. 5049' . .5310 .00 .. , 1880 .1353 .1926 - .14 
.4- 3380 .. .. 0921 .1355 -.43 

66.1 1135 02529 .3020 -.08 
• 2 1235 .. .2408 .2767 -.07 . 
;.3 1560· '. .1583 .2078 - • .02 
.4 2Jo.6O .0658 .1134- .12 . 
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. . 

Epitaxial silver films with cold substrate l!yera 

no. t Pf(4.2~K) Pc p(min) 

36.1 4270 .0452 .·0701 .05 
.2 1540 .• 0871 .1462 .29 
.3 887 .2828 .3429 .04 

38.1 4460 .03~8 .0628 .12 
.. 2 3250 .0424 .0658 .33 
.3 1208 .1237 .• 1807 .31 
.4 784- .2980 ;'3453 .15 

68.1 740 .2119 .3173 .26 
.. 2 1200 .1060 .1832 .31 
.3 1850 .0715 .1295 .25 
·4 3420 .Q4.12 .0731 .21 

70.1 1275 .1580 . .2476 .01 
.. 2 1600 .1129 .1927 .. 03 
.3 1965 .0941 .1575 .. 02 
.4- 2000 .0970 .1585 .00 

Silver films evaporated on .to mica at room temperature. 

no. t pt(4e2
o
K) Pc p(min). 

. " 

44-3 2300 . ... .509 .642 . -
.. 4 2950 e472 .. 595 -

45.1 2020 .• 447 .536 -
.2 1320 .503 ·5·96 -
.3 936 .565 .. 665 -
.4- 706 .604 .682 -
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