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"How can you explain the fact that our men use the same 

materials to build identical cars yet some are faster 

than others? I am convinced that each one of our cars 

has its own individuality - a soul." 

Enzo Ferrari. 
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ABSTRACT 

In this thesis, the two-port tuned amplifier is analysed both 

in the conjugately matched and the mismatched modes, with the aim 

of obtaining a set of conditions for the optimum gain-sensitivity 

performance of the amplifier. 

The analysis is carried out in a three-dimensional space 

whose axes are the real and imaginary parts of the inverse of the 

measure of non-reciprocity and the inverse of the unilateral power 

gain. The actual power gain of the two-port is represented by a 

series of surfaces on each of which power gain remains constant. 

Spreads in a batch of active two-ports are expressed in 

terms of departures of a point from the surface representing the 

power gain of the average two-port in directions parallel to the 

axes. Conditions are derived which express the maximum initial 

departure from the initial average power gain in terms of the 

initial spreads and the required average power gain. Thus it is 

possible to test at the very outset whether a batch of two-port 

active networks (transistors) can be used to build amplifiers given 

the gain-sensitivity condition as G AG, where G is the required 

average power gain and AG is the maximum tolerable deviation. 

Two basic types of feedback are suggested and their per-

formance vis-a-vis gain-sensitivity for various types of spread 



in the four-dimensional space are compared. 

Geometrical models are used to illustrate the concepts 

involved in the employment of thethree-dimensional space and the 

movement of a point which represents a particular active two-

port network in the space with feedback. Statistical methods 

are used in processing data collected from a batch of transistors 

and finally, the theoretical results are verified by measurement. 
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INTRODUCTORY BACKGROUND 

1.1 INTRODUCTION 

In order to study the behaviour of active networks, many 

electrically equivalent circuits have been developed to illustrate 

how they work.12 Relatively simple forms exist for specific 

applications but to make these at all realistic over a frequency 

band or for general purposes)  it has to be quite complicated. The 

usefulness of equivalent circuits is limited in so far as it makes 

relatively simple calculations of say gain of an amplifier in 

which the active device will be used, an extremely lengthy 

operation. 

An alternative way of dealing with active devices is to treat 

them as 'black boxes' that is to determine their electrical 

properties in terms of applied voltages and currents at its 

terminals at a particular frequency thus avoiding involvement in 

the inner workings of the device.3" 	The electrical properties 

are usually defined in the form of open-circuit impedances (z 

parameters), short-circuit admittances (y-parameters), or a mixture 

of the two which is generally described as hybrid parameters. Other 

characterizations exist for special purposes such as a- and b 

parameters for cascade connection.? 
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A two-port network, as the name implies, is an electrical 

network which has two 'ports' or terminal pairs. One port is 

described as the input port and the other as the output port. A. 

port is any pair of leads in the network through which current, 

voltage or power can be fed or extracted. 'Normally, the signal 

obtained from the output port is a transformation of what goes 

into the input port. A large number of electrical networks fall 

under this classification, for example, transmission lines, filters, 

amplifiers and attenuators. 

A large number of two-ports have only three terminals. Thus 

the input and output ports have to share a common lead which is 

normally, but not necessarily, connected to ground. The transis-' 

tor is one example of this group. The mathematical techniques for 

dealing with these three-terminal two-ports include the use of 

matrix algebra.8 The device can be represented by a 3 x 3 matrix 

which does not indicate which of the three terminals is the common 

terminal. To obtain a particular configuration of the two-port, 

the row and column representing the appropriate common terminal is 

removed and what is left describes the two-port completely.9 

1.1.1 Sensitivity 

Sensitivity problems arised in every field of engineering. 
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It is impossible to manufacture identical parts to be used in any 

system and therefore the designer must take into account the 

ultimate effect of the imperfections of the elements which make 

up the system. For example, the designer cannot afford to design 

an amplifier and then discover that when a batch of these are 

built in the factory, some of them give a gain of, say, 30 db, 

others give only, say, 10 db and worse still others become unstable 

and oscillate, just because the elements used have tolerances on 

their nominal values. The problem of sensitivity is therefore 

a problem of the cumulative effects of tolerances on the response 

of the system as a whole. 

1.2 CHOICE OF THE TRANSISTOR 

In this thesis, the two-port active network is taken to be 

a junction transistor operating under conditions of small signal 

and therefore in a linear fashion. Biasing is accordingly 

arranged. 

Quite apart from the ordinary advantages of using transis-

tors as active devices such as small physical size and low power 

consumption, the transistor has a finite input impedance and even 

at low frequencies it is non-unilateral.10-13 These two properties 

of the transistor make it a good choice for a general study of 
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two-ports as the conclusions reached can be made applicable to other 

two-ports by setting the appropriate parameters to zero or infinity..  

1.3 HISTORICAL BACKGROUND 

In 1929, Strecker and Feldtkeller5  published a paper in 

which they analysed two-ports by means of matrix algebra. Three 

years later, Baerwald6 carried the work of the two gentlemen 

further by showing its application to various passive bilateral 

networks. The next significant work was published by Guillemin3  

in his book on communication networks in which he dealt with among 

other things the inter-connection of two-ports. Seven years 

passed before Peterson14 extended the matrix algebra technique 

to active non-bilateral two-ports.. 

The name 'two-port' was first used by Wheeler and Dettinger15 

in connection with a superhetrodyne convertor but has come to be 

accepted as adequate description for'a large number of circuit 

units and elements. 

Early attempts to use the transistor for amplification were 

hampered by the non-unilateral nature of the device i.e. the 

existence of internal feedback in the transistor. With some 

values of internal feedback, passive terminations at the ports 

can make the two-port oscillate. Further, the internal feedback 
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made the input impedance a function of the output impedance thus 

complicating the problems involved in cascading amplifiers since the 

tuning of the previous stages affected the tuning of subsequent 

stages. Many workers therefore attempted to unilateralise the 

transistor before using it in amplifier circuits.11°-13 But 

unilateralisation was not easy to achieve and among other things 

required an ideal transformer.16 Several workers have since shown 

that imilateralisation is unnecessary for stable operation of a 

two-port amplifier.13116,17 

In 1946, Roberts18 derived an expression for the transducer 

gain of the conjugately matchedv as well as the arbitrarily ter-

minated two-port. In 1961, Venkateswaran and Boothroyd19 showed 

that the power gain expression for the arbitrarily terminated and the 

conjugately matched two-port amplifier maintains the same form in all 

matrix configurations. Thus the transducer gain 

4  PS PL 1132112  

I
(Pil Ps)(P22 PL)  P12p2112  

where p = p + jc and p can be in the form of Y-, Z-, h-, or g-

parameters. Lathi20  and Rollett21later derived the same expression. 

The problem of stability which was mentioned above will now 

be discussed in a little more detail. In 1933, Gewertz37  published 

the results of his work on reciprocal two-port networks in which 

he derived a condition for stability of the form, 
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RaR22  R2.22  > 0 

where the matrix of the two-port is of the form, 

AIN.* 

211 jX11 	212 jX12 

R
21 

+ jX
21 	

R
22 

+ jX
22 

ewe 

In 1952, Llewellyn22 extended Gewertes condition to cover non-

reciprocal networks. Llewellyn's conditions were: 

211 	° 2  

R22 > 0 

and 

4(211222 11  -2X21)(211R22 I/12R21) (1112X21 R21X12)2  > o  

In 19560  Bahrs36  derived an expression for the margin between the 

point of operation of a potentially unstable element, in a stable 

mode, and instability, which he called p. When p was greater than 

unity the device was stable. This was one of the first attempts to 

attach a numerical value to how far a device is from instability. 

In the following year, Stern26 derived the same condition but 

in a slightly different form. This has come to be known as 'Stern's 

stability criterion' and it is generally written in the form, 

2 p 
k. = 	— L

p
—-- > 1 for stability 
i 
+ M

2 
 



where PI = p11 Ps  and p2 = p22 PL 

and 

L = 	jN I 	P12P21 

In 1961, Venkateswaran derived what he described as the 'invariant 

stabilityfactoroS.where„ 

Si +" 
2 

2  Pll P22 - M  
L 

As before, when yti  is greater than unity, the two-port is said to be 

inherently stable, that is, no pair of passive terminations can be 

foundwhichwillmakethetwo-portoscillate,Whenmis less than 

unity, the two-port is said to be potentially unstable and a pair of 

passive terminations can be found which will make it oscillate, This 

stability factor appeared in the work of several authors as different 

symbols. For example Lathi20  called it the 'invariant stability 

figurOandused thesymbol. OI  .Aurell24 gave it the symbol k,and 

LinvillandSchimpf25 calledthereciprocaleyl.the 'critical 

factor', C. 	
LL 

In order to ensure that the two-port will not oscillate under all 

conditions of passive termination, although the two-port itself might 

be potentially unstable, Venkateswaran23 Singleton and Scanlan27 have 

shown that the value of 	
1 

Yl.can be increased by the addition of 
1 

and 

i 
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resistive elements at the input or outmat or both ports of the device. 

The device together with the 'pads' as they are generally called, can 

then be treated as a new device which is inherently stable. 

An alternative way of dealing with the problem of using 

potentially unstable devices to produce useful and stable gain is to 

choose the resistive parts of the source and load such that Stern's 

stability criterion is satisfied. Venkateswaran and Boothroyd
19 

using this technique derived an expression for poweer gain incorporating 

a 'performance factor' n. Later, Lathi
20 

and a little later Spence  

independently introduced the concept of 'skew factor' as a measure 

of the departure of the resistive part of the termination from the 

optimum determined by the choice of the performance factor n, 

In order to discuss later developments, it is convenient to 

leave the design aspect for the moment and to introduce some achieve-

ments in the more theoretical aspects of the active network, 

For a two-port to provide useful power gain, it must be 'active'. 

Mason29 has shown that the unilateral power gain (U) of a device must 

be greater than unity if it is active. Mason also showed that the 

numerical value of U remained the same even with the change of the 

common terminal and that if the device is embedded in a lossless en-

vironment, U remained unchaged. Mason's U has been widely used in 

connection with two-port amplifiers and oscillators. Meadows and 

Dasher30  have extended the concept of U for application to n -port 

networks. 

Sheke131  developed the idea of gyrators from the ideas of 
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Tellegen32. Since a two-port active network is only partly unilateral:  

Shekel31 separated the unilateral part of the device, which is the 

gyrator, from the bi-lateral part which represents the reciprocal 

part of the device. 	In its admittance form, it consists of a delta 

of passive bi-lateral admittances whose nodes are connected to the 

three terminals of the gyrator. 

As it is not possible to manufacture exactly identical components 

by the same industrial process, nominally identical devices have 

differing responses to the same stimulus. The study of sensitivity 

is aimed at reducing the differences between the responses of the 

individual devices of the same batch. Passive elements are relatively 

easy to manufacture to a close tolerance. For example, in the mann-

facture of capacitors, the two most important parameters which have 

to be controlled are the areas of the plates and the thickness of the 

di-electric and these are not very difficult to control. Active 

elements:  however, are usually influenced by a large number of para-

meters some of which are not readily controllable in the manufacturing 

processes. For example, the response of a transistor depends on a 

large number of parameters of which the doping level in the emitter, 
of 

base and collector, the areas of the junctions, the thicknessA  the base 

are but a few. 

Linvill and Gibbons33 approached the problem of sensitivity 

by considering changes in the values of the matrix elements. The 

hybrid parameter h21, which they assumed to be real, and which exhibited 

the largest spread, was used to estimate the spreads in the three other 



h-parameters. Quite apart from the assumption that the hybrid para-

meters were real, Singhakowinta34  has shown that this approach is 

unsatisfactory as it involves lengthy calculations which have little 

or no relationship to reality. Lathits20 work on sensitivity was 

done from the point of view of variation in the values of the physical 

equivalent circuit of the transistor and he reached a number of 

empirical conclusions that gain-sensitivity performance can be 

improved by reducing the impedance of the input mesh, increasing 

the impedance of the output mesh or by adding an impedance in series 

with the common lead. 	(In the common emitter configuration, this 

is called emitter degeneration). 

In 1964, Singhakowinta and Boothroyd35 derived an expression 

which related the power gain of an active two-port to its non-

reciprocity (Y21/1.12 ) and its unilateral power gain (U), 

where U IY21 - Y1212  
4  Pe(711)Re(Y22) Re(Y12)Re(Y21)] 

The importance of this contribution lies in the fact that it became 

possible to reduce the number of parameters to be considered in the 

design of conjugately matched amplifiers to three, namely, the real 

and imaginary parts of the reciprocal of the measure of non-reciprocity 

R and 'XI) and the reciprocal of the unilateral power gain (1/U). 

Due to the simplicity of the approach, Singhakowinta34  was able to 

make athree-dimensional model which displayed the three parameters 

mentioned above on the axes and a series of surfaces each of which 
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represented a constant value of conjugate matched power gain. 

Singhakowinta34  represented the spread in the parameters of a 

batch of transistors by a group of points in the three-dimensional 

space, and by enclosing them firstly in a cylinder and then in a 

sphere, he was able to indicate on a normalized chart, areas in 

which improved sensitivity performance could be obtained. 

In order to achieve the improved sensitivity performance, it 

is necessary to move the points of operation of the batch of 

transistors from one area to another and this is done by embedding. 

On a normalised chart, lossless as well as lossy embedding moves the 

points in a straight line. In terms of the space model, lossless 

embedding moves the points of operation in such a way that the values 

of 1/U remains unchanged. Port-padding on the other hand leaves AR  

and XI unchanged while altering the value of 1/U. 

As Singhakowinta's work immediately preceeded the present work, 

it is often referred to in this thesis. 
t 

1.4 FORMULATION OF THE PROBLEM 

There are several defects in the work of Singhakowinta which 

need to be rectified. His assumption that the spread in the 'inverse 

gain space' can be enclosed in some arbitrary geometrical volume and 

the use he made of normalized charts tended to confuse rather than 

elucidate the advantages of this new approach to sensitivity, and there 
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is a need to replace it by simpler concepts and techniques. 

Secondly, it has been known that when negative feedback is 

applied to a batch of devices, such as transistors, which exhibit 

spread in gain, then the result is to reduce the spread in gain. It 

is also common knowledge that the reduction of the spread in gain is 

paid for by the loss of average gain. What is not known is the 

precise relationship which exists between the improvement in sensi—

tivity performance and the loss of average gain. A knowledge of this 

relationship should give an indication of the methods to be used in 

the synthesis of embedding networks which will optimise the gain—

sensitivity performance of the devices. 

Thirdly, several stability factors have been mentioned above 

which purport to measure how far or how near a device is to 

instability,27  i.e. the generation of oscillations. The implication 

here is that say, a transistor which has an Si  value equal to 1+ is twice 

asstableasonewithanS.equnl to 2, or indeed that the former is 

more stable than the latter. Stability factors as measures of 

stability need to be carefully examined. 

Mason's U has over the years come to be associated, and in some 

cases become synonymous, with activity. There is need to show how 

far Mason's condition for activity, namely, that U must be greater 

than unity, is valid especially with reference to the manner in which 

U is connected to the theory of conjugately matched amplifiers. 
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1.5 PRESENT WORK 

In the present work, gain-sensitivity performance of linear 

active devices is made the main theme. The emphasis is on being able 

to predict, from a knowledge of the positions of the points of opera-

tion of a batch of transistors in the inverse gain space whether a 

specified gain-sensitivity performance can be achieved and what kind 

of embedding can be used to achieve it. 

The problems outlined in Section 1.4 are discussed and solutions 

are suggested. 

A new concept of the 'average transistor' is used in the design 

of embedding networks and in the choice of source and load impedances. 

Given a bath of transistors, there can be no guarantee that one of 

the batch will exhibit average properties all round: one might be 

found which will have average gain but with non-average input or 

output impedance, for example. This problem is solved by the applica-

tion of statistical techniques. 

Digital computers are used as aids to the design of embedding 

networks, to perform various types of calculations and also in the 

analysis of statistical data collected from the transistors used in 

this work. Apart from speed and accuracy, computer techniques offer 

the advantage of using the programs developed during the course of this 

work for a wide range of applications. Some of these programs will 

be discussed in detail later. 

As general design guides, experimental results are presented 
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which relate the effects of the spread in the passive embedding 

elements to changes in gain-sensitivity performance. The changes 

in response due to changes in emitter current and collector voltages 

are also given. 

This work does not deal with gain-sensitivity due to changes 

in temperature, mechanical vibration and stresses, radiation or ageing. 

1.6 ORIGINALITY  

Except where references have been made to the work of others; 

the work presented in this thesis was carried out independently by the 

author and)to his best knowledge, the conclusions recorded in the last 

chapter are original. 
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GAIN - SENSITIVITY RELATIONSHIP 

2.1 INTRODUCTION  

When a batch of transistors of the same type are used to build 

nominally identical amplifiers, it is highly improbable that the 

amplifiers will give identical gain. This is because each element 

used in the construction departs slightly from its nominal value. 

In general, the departure in passive elements such as capacitors, 

inductors and resistors are slight and 	the factors which affect 

their values are relatively simple to analyse and control, 	For 

example, the capacitance of a capacitor is basically controlled by the 

thickness and permittivity of its dielectric and the area of its plates. 

Therefore:  spreads in passive elements used in an amplifier circuit 

are unlikely to affect the performance of an amplifier adversely, 

In order to study the effect of  

the gains of the amplifiers are 

transistors,. 

the changes in transistors on 

This suggests that the differences in 

due largely to the differences in the 

the gain of the amplifiers, it is necessary to eliminate the changes 

in gain due to changes in the passive elements in the circuit. To 

do this it is necessary to design an amplifier such that the transistors 

can be changed easily. Since it is assumed that all the transistors 

in the batch will be conjugately matched, it is necessary to make the 



-.30- 

resistive as well as the reactive parts of the terminations tunable. 

For a batch of 20 p-n-p planar silicon transistors the results of 

measurements are shown in Fig. 2.1a. 

When negative feedback is applied equally to all the transistors 

in the batch, it is well known that the differences in gain will tend 

to diminish and also that the average gain of the whole batch will 

decrease. Fig. 2.1b shows a typical effect of connecting a single 

resistor between emitter and collector (Y-feedback) of the common-

base amplifier. 

2.2 DESIGN REQUIREMENTS 

When a designer is presented with a batch of transistors and 

asked to build a set of amplifiers which satisfy the gain condition 

given in the form G AG db, he should be able to determine on the 

basis of the scatter of the small signal parameters: 

a) whether it is possible to satisfy the conditions 

b) what type or types of embedding are necessary to achieve 

the requirements. 

In making his choice of embedding he must take into consideration the 

following important points, 

i) The design procedure should be as simple and accurate as 

possible. 

ii) the resulting gain.-sensitivity performance should be as close 

to the optimum as possible (i.e. maximum possible average gain with 



-31- 

minimum possible gain spread). 

iii) the number of embedding elements should be the minimum 

possible thus reducing the cost of manufacture and increasing 

reliability. 

The answer to question (a) must be obtained before starting 

the design. 	In order to clarify the position further, the problem 

will be put in numerical terms. Supposing that we have a batch of 

transistors which give a natural average gain of 25 db with a spread 

of + 3 db and that for our purposes + 3 db spread is more than we 

can tolerate and further that an average gain of 23 db and a spread 

of + 1 db will satisfy our requirement. The question is, if we use 

negative feedback to reduce the spread from ± 3 db to ± 1 db will 

the average gain then be greater or less than the required 23 db? 

If the answer is: greater than 23 db, then we can proceed with 

the design. If the answer is less than 23 db, we either have to 

relax the requirements or, failing that, to reject those of the 

transistors which give extreme values of gain. 

2.3 	CONJUGATE MATCHED GAIN OF TWO-PORT 

For a two-port which is inherently stable or made so by 

embedding, Singhakowinta and Boothroyd35 have shown that the following 

equation holds: 

1/1 . (2.1) 
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This equation expresses the conjugate matched gain G in precisely three 

terms namely, the complex measure of non-reciprocity A (i.e. Y21
/112) 

and the unilateral power gain U. 

2.3.1 X - 1/Li Space (Inverse Gain Space) 

Because equation (2.1) involves four parameters, Singhakowinta34  

was able to construct a thres_dimensional space model to represent it. 

He chose to use the inverse of the complex measure of non-reciprocity 

(i.e. Y12/Y21 = 1) and the inverse of the unilateral power gain 1/U 

as the axes. Thus he obtained a family of surfaces each representing 

a particular value of gain. 

Equation (2.1) can be written in the form, 

1 - W 12  
=

G   I 1 - GX12 
(2.2)  

It can be shown that if U > 1 and 1 >>1 XI , then, 

WI
2 
	1/G)2  - 1/GU = 0. 	(2.3) 

The assumptions that U >> 1 and 1 ›,>IX are valid as typical 

values are about 100 and 0.003 respectively. 

From equation (2.3) it can be shown that a plane of constant 

1/U cuts the constant gain surfaces in circles, as shown in Fig. 2.2a, 

and that a plane of constant XR cuts the constant gain surfaces in 

hyperbolae as shown in Fig. 2.2b. 

Since we are interested in the conjugate matched gain, it should 
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be possible to incorporate one of the stability conditions and then 

confine our attention to the inherently stable region of the four-

dimensional model. 

It can be shown that when S. = 1 (which is the same condition 

as k. = :1), 

X2 
	

(1/2U)2  XR/U = 0 
	(2.4) 

Equation (2.4) represents a surface which separates the inverse gain 

space (IGS) into regions of inherent stability and potential instability. 

This surface cuts a plane of constant 1/U.  in a parabola and a plane 

of constant XR in a hyperbola represented by; 

X2 - (1/2U)2  k/U = 0. 	(2.5) 

where k is a constant. When k = 0, the hyperbola degenerates into 

two straight lines given by: 

XI = ± (1/2U). 	 (2.6) 

The boundary is shown in Figs. 2.2a and 2,2b. Fig. 2.3 is a model 

illustrating the stability surface broken to show three constant gain 

surfaces. 

From now on, we shall confine our attention to the stable region 

of the inverse gain space and unless otherwise stated, conjugate 

matched gain will be referred to simply as gain. 
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2.3.2 Embedding in the Inverse Gain Space (IGS)  

One of the advantages of working in the IGS is that when the 

transistor is embedded (i.e. feedback is applied to it), the resulting 

change can be represented approximately by a movement of the point of 

operation in a straight line to a new position. The direction and 

distance moved depends on the type of embedding used, the nature of 

the embedding element and the value of the element. These will be 

explained in detail. 

Considering only lossless embedding for the moment, there are 

two types of simple embedding, namely 'Y' mode embedding or feedback 

and IZI mode embedding. These two types of embedding are shown in 

Fig. 2.4 and their corresponding matrices are given. The third possi- 

bility.of connecting a reactive element across the input or output 
not 

port has been considered as it is assumed that the reactive part of ^ 

the port immitanceS will be tuned out (i.e. conjugately matched). 

Since the quantity U is invariant to lossless reciprocal 

embedding, the effect of such embedding can be considered as a move-

ment in a plane of constant 1/U. Fig. 2.5 shows such a section. If 

the point of operation of the transistor is originally at a point 

such as M, then Y-mode embedding might move the point of operation 

along a line NML. The direction of motion depends on whether the 

element used is a capacitance or an inductor; an inductance moves 

it in the direction of N and a capacitance moves it in the direction 

of L. The distance moved in the directions shown depends on the 

value of the inductance or capacitance used. The distance moved is 
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linearly related to the value of susceptance or reactance of the ele-

ment, (i.e. if 50 pF moves it a distance of 2 cms then 100 pF will 

move it 4 ems.). 	Z-mode embedding moves the point of operation 

along a line PMK. A capacitance will move it in the direction of P 

and an inductance will move it the direction of K. 

A combination of Y- and Z-modes of embedding can, in general, 

be used to move the point of operation to any point on the plane of 

constant 1/V, such as Q. 

The use of lossy elements (i.e. resistive elements) in embedding 

circuits have the common effect of changing the value of 1/1J. In 

addition to the two types of embedding already considered, a third, 

namely, port-padding can be used. These are illustrated in Fig. 2.6 

with the appropriate matrices. Y-mode resistive embedding might 

move a point of operation such as M in the direction of P. It should 

be noted that this movement is not in the plane of constant X
R as 

shown in Fig. 2.7, in which the locus of motion is projected onto the 

constant XR plane for simplicity. As before, the distance moved is 

linearly related to the value of the resistance used. 	Z-mode embedding 

might move the point of operation from M in the direction of N. Again 

this movement is not in the plane of constant XR. It should be noted 

that the value of 1/U is decreasing as the point of operation moves 

from M to N. This type of movement is subject to a number of con-

ditions which will be discussed in detail in Chapter 3, Port padding 

has the interesting property of altering the value of 1/U while leaving 

XR and XI unchanged. Thus the motion is in the plane of the paper 
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and parallel to the 1/U axis, There are two types of port padding 

namely, Y -mode padding in which the resistive element(s) is connected 

across the input and/or output port(s) and Z-mode padding in which the 

resistive element(s) is connected in series with the lead(s). 

2,4 SPREAD IN THE INVERSE GAIN SPACE 

Supposing we measured the gains of a batch of transistors and 

found that they were all of the same value, we can draw one of two 

conclusions, namely that all the transistors operated at the same point 

in the IGS or that they operated at different points in the IGS but 

on the same gain surface. The first case is most improbable and can 

be dismissed. The second while being highly unlikely illustrates 

one point and that is, when the points of operation of the transistors 

have been plotted in the IGS, it is possible to 'sees an apparent 

spread in the points when in fact no spread in gain exists. In terms 

of equation (2,3) the three parameters, AR, WI  and 1/1J can be altered 

while 1/6 is kept constant. 

In general, if we measure a batch of transistors and compute the 

values of WR, XI  and 1/U and proceed to plot them in the IGS, we shall 

find that there will be considerable spread in the values of the co-

ordinates of the points. Fig. 2,8 show typical spreads projected on 

to planes of constant 1/U and ?.
R respectively. Now, if we compute the 

average gain of the batch of transistors and locate the constant gain 

surface which corresponds to it, we should find that the surface goes 
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through the points separating those of higher-than-average gain from 

those of lower-than-average gain. Those with average gain will 

naturally sit on the surface. The higher-than-average transistors 

will be on the convex side of the constant gain surface and those with 

lower-than-average gain will be on the concave side. 

2.4.1 Definition of spread in the Inverse Gain Space  

The transistor with the minimum gain in a batch operates at a 

point such as j,as shown in Fig. 2.9, and has a value of gain equal to 

G... If lines are drawn parallel to the axes from j to the surface 

representing the value of the average gain and these meet it in the 

points i, k, and 1 then, because is  k„ and 1 are on a constant gain 

surface, Gi  = Gk  = G1. It is clear that if we had transistors 

operating at i, k and 1, although there will be considerable spread 

in Xle XI and 1/U, there will be no spread in gain between them. The 

reason G. is different from Gi, Gk  G1  is that it 'sits' on a constant 

gain surface which has a different value. Thus as we move from say 

1 to j, we would go through constant gain surfaces representing gains 

ofvalueslyingbetweenGl andG.
J
.Ade can now define spreads in the 

• 
inverse gain spac as: 

6(1/u) = (1/V) j  - (1/1)i  

(2.7) 

(2.8) 

(2.9) 



But XR. = XR. = XR and X.I.  = W = X . 
1 	 I 	I 1 
Therefore, in general, 

  

% 1/G.U. - X - (XR - 1/G ) 1 	I 

 

(2.13) 

(2.14) 

Similarly, 

 

2(1/Gi  XR) 

1A411jj. ...  AI   _N_I/G.? 

 

and 

2XI  
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where the suffices of ?R, WI  and 1/V refer to the values of these para-

meters at the points. From (2.3) 

X1.4-(XR.-1/G.)2 1/G.U. = 0 
1 

(2.10) 

Vui  
X2 	(XR. - 1/6.)2 
1 

(2.11) 

 

Now, from (2.9) 

6(1/11) = 1/U 

 

2 

  

 

1/Gi  

  

 

vcm.j. ... 	... 	3./G 
I. 1 	1 

(2.12) 

    

1/G:11.j 	I 	(
tic. 1/G.)2  1   (2.15) 
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The above parameters will be referred to as the spreads in the cow 

ordinates of the point of operation of the transistor. Fig. 2.9 shows 

a physical representation of the spreads in a three-dimensional model. 

2.4.2 Sensitivity factors in the Inverse Gain Space 

The definition used by Hakimi and Cruz38 in a study of the effect 

on the response of a multi-parameter system of a variation Ap in the 

parameter p was 	
R/R 	AR being the change in response resulting AP 

from Ap. 

Using this definition and starting from (2.3), it can be shown 

that, 

WI = W.1/U + (1/2u)2 - (1/ph)2 
	

(2.16) 

XI
2  

= XR/U + (1/2U)2  - (1/2 p(1/U))2 

(XR + 1/2U)
2  =  

x1/()2 

2 (XR + XI
2  
+ 2XI/µi) 

(2.1?) 

(2.18) 

where aG/G. 
PI = XI 

 

 

aG/6,  
PR = axR 

aG/G  
11(1/u)—  a(1/u) 

and 

are the sensitivities to gain (or sensitivity factors) in directions 

parallel to X AR and 1/U respectively. 
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It can be seen from (2.16) that for constant values of pR, a 

family of surfaces can be drawn in the IGS, This is also true of 

11, and µ(i/u)  in (2.17) and (2.18). 	By inspecting (2.16) and (2.18), 

it can be seen that gain is twice as sensitive to changes in XR  as 

in 1/t. Further, when 4R, [II  and 'lam  are equal to infinity, 

(2.16), (2.17) and (2.18) reduce to, 

2 	% = XR/U + (1/2U)2 	(2.22) 

which is the same as (2.4) and therefore the condition that 

S = k. = 1 is identical to equating the sensitivity factors to 

infinity. The relationship between sensitivity and stability will 

be discussed in detail later. 

The above suggests that a three-dimensional approach in which 

spread in gain due separately to XR, XI  and 1/U is considered offers 

distinct advantages over Singhakowintats method34 of treating the 

spread in X as a circular spread and then dealing with the spread in 

l/t separately. 

2.4.3 Changes in Gain 

In section 2.4.1 we obtained expressions for the spreads in 

directions parallel to the coordinate axes. 	In section 2.4.2, 

sensitivity factors in directions parallel to the axes were derived. 

We can now combine the two in order to obtain expressions for the 

changes of gain which occur as a result of movement in the inverse gain 

space parallel to each axis in turn. 
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AG/G Sensitivity factor was defined as 	To a first order 

of approximation, 

AG/G = LG/G  
AP 

Lp (2.23) 

Therefore, 

L.'"RIIR 1 k 	

G = AG I 	= SR  due to WR 

1/G.Uj 	I - X2.  - (AR. - 1/G.)2. 	1/G. 
3 

(1/G. - X )(2X
2 + 2XI  - 1/Gi 

 U. - 2W /G.) 1 AR Pk 	j 	 __k 1 

(2.24) 

AG. 1

due to 	
= s 

XI  

SI  

and 

L(i/u)l(l/u)  

S(i/u) 

XI 	Ij 1/G.0 	- X2,  - (XR. - 1/G)
2 

l 	I 

2WI. 

AG 

2 

	

(XR. +XI
2  )-X 	/6 	- 1/2 

	

R. 	i 

	

3 	1 	3 

	

= 	S(l/U) due to (1/U) 

	

AI 	- (XR 	- 1/Gi)2 
3 

G.U. 3. 	3 

(2.25) 

(2.26) 

G 

1/GiUj  

2 	X2 . + X2 . - XR  /Gi 	1/2G.U. 

From Fig. 2.9 it can be seen that movement from i to j should result in 

SR 

and 
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the same change in gain as movement from 1 to j or k to j. This 

means that the change in gain resulting from movement from the average 

gain surface to j is independent of the path taken. Thus 

1 

AG = jr 	jr 	
-jtiRd(XR) 	,(1,u),(1,u) 

(2.27) 

If we calculate the partial differential as /ap where p is 

consecutively XR, XI  and 1/110  and equate the result to zero, it should 

be possible to locate any turning points which might exist in the 

directions parallel to the axes of the IGS. 

asR = 0 gives a turning point when AR  = 00 	(2.28) 
R 

asI 
0 gives a turning point when XI  = 0 	and (2.29) 

a sum_  
a(i/u) 0 gives a turning point when 1/11= 0. 	(2.30) 

The result of (2.28) is not interesting since a turning point at 

infinity cannot have much practical value. Equation (2.29) however 

shows that a turning point exists on the plane of symmetry of the 

inverse gain space. A second partial differential shows that SI  has 

a minimum turning point at XI  = 0. This means that the change in 

gain resulting from small movement in a direction parallel to the XI  

axis is a minimum when XI is equal to zero. Equation (2.30) like 

(2.28) does not give any interesting result since U has to have an 

a 



-43- 

infinite value in order to obtain the turning point. 

The same conclusions can be drawn from Figs. 2.2a and 2.2b. From 

Fig. 2.2a, it can be seen that the constant gain lines cross the X21  

axis at right angles since they are circles and their centres are on 

the X/taxis. Therefore a small movement from the X
I axis at right 

angles to it will produce virtually no change in gain. This is not 

the case if XI is not equal to zero in the first place. Since the 

axis is a line of symmetry, a turning point must exist on it and this 

turning point must be a minimum. Therefore one of the conditions 

for optimum gain-sensitivity performance is that WI  = 0. This 

result was arrived at by Singhakowinta using a different method. 

From Fig. 2.10 it can be seen that the lines of constant gain have 

no turning points on them in the directions parallel to the axes. 

However, movement in directions parallel to the AR and 1/U axes which 

result in improved gain-sensitivity will be discussed when embedding 

networks are considered. 

2,5 CHANGE IN AVERAGE GAIN - CHANGE IN GAIN SPREAD 

The dependence of change in gain spread on change in average gain 

was mentioned briefly in section 2.2. We shall now discuss this 

dependence in some detail. 

In Section 2.4.3, it was concluded that the change in gain 

resulting from movement in the inverse gain space from the average 

gain surface to another point in the space was independent of the path 



a(1/6)  1 
G. 

1 
G3  

1 
G. 

(2.32) 
k 

.1 

1 
G. 

1 
G. 
1 

1 
G. 

Rearranging (2.34), 

awR 	6'XR 

(2.33) 
1 

all/G)  
• 6(1/u) 	(2.34) a(i/u) 
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taken. Bearing in mind Fig. 2.9, we can write, to a first order 
of approximation, 

    

a(1/G)  
axR 

• = 	all G)  
1.--1  XI k 

Lxi  = aft/6)  
a(i/u) 

1 
6,(1/u) 

    

    

(2.31) 

The above equation is similar to (2.23) but instead of taking the 

partial differentials of gain with respect to XR, XI  and 1/V, the 

partial differentials of inverse gain have been taken. This is more 

convenient as the basic relationship between gain and the parameters 

of the inverse gain space given by equation (2,3) involves 1/G rather 

than G. The value of the differentials are evaluated at the points 

k, 1 and i since these give average values for the whole batch of 

transistors. 

Since G
i = Gk = GI and G. > G. to a first order of approximation, 

a(2/U) 1  . Z(3./(J) = 	- ---- which we define 

	

G. 	G 
1 
. 	as A(1/G). 

i 	J 	i 
(i.e. change in inverse gain between points i and j). 

From (2.3) we obtain the partial differential 
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a(1/0) 1/0  
all/U) 	2/G — 2XR 

 

(2.35) 

 

Therefore, 

aci/b)  
a(l/u) 

    

   

(2.36) 
2/Gi  2XR  1/111.  

in (2.34) and recalling (2.15), we get Substituting 

 

1/GiUi  - XI  - (AR  1/Gi)2 

2/Gi  - 27,11  - 1/Ui  

QUM 

XI  + (XR  - VG)2  + ZN(1/W/G. 

(2.37) 

(2.38) 

From Fig. 2.9, 

1/U. 

 

1/Gi  

Substituting in (2.37) and leaving out the suffices where they refer 

to the point j, and at the same time recalling (2.11), we get 

6,(1/0) = 
z(1./u)/q.  

(2.39) 
1/0.2  - (? + AI)   2 	R  

We have now obtained an expression for the inverse gain spread, 

(1/0), in terms of AR, XI, the average natural gain, Gi, and the 

spread in 1/U, A(1/11). 

Starting with (2.32), an expression can be derived connecting 

the spread in inverse gain, A(1/0), with the spread in W.R,QXR, and 

the natural average gain Gk. This relationship can be shown to be: 



A(1/G) (2.40) 

 

l/Gk 	7,11 	6.xR 
Equation (2.33) can be used to relate Q(1/G) to XI, but then 

there appears to be little point in doing this since one of the 

conditions for optimum gain-sensitivity operation is that X should 

be equal to zero and further it has been pointed out in Section 2.4.3 

that the sensitivity of gain to changes in XI  in the vicinity of the 

X = 0 plane is very low. 

So far we have not considered any particular type of embedding 

network which will make equations (2.39) and (2.40) realisable. We 

shall now consider possible embedding networks that can be used in the 

amplifier circuit. 

2.5.1 Lossless Embedding 

Lossless embedding has the property of leaving the value of U 

unchanged, From Fig, 2.11, therefore, if we have one transistor 

operating at it  and another at 	and we use lossless embedding to 

change their value of XI  to zero, since their values of 1/U remain 

constant, the spread Q,(1/U) remains constant and the transistors 

which operated at 11  and ji  will now operate at 12  and j2  respectively. 

Assuming we wish to operate the transistors at XI= 0 (which is 

a condition for optimum gain-sensitivity operation) then we can now 

move the point it  along a line parallel to the 7,..p  axis on the WI  = 0 

plane until it intersects the line of constant gain which has the same 



value as the desired average gain. If then the value of XR  is X0  

the required average gain is Gay  and the specified minimum gain is 

G
lo, (2.39) then becomes: 

6,(1/V)/62  
A(1/4) = 	av  

1/G v  - X
2 

a 

Now from (2.3) when XI  = 0, 

X2 	1 	2  
2 G avy  A/ G avU. Gav

(2.42)  

Substituting in (2.41) we get 

ZY1/U)/G 
ZVI/6) _ 	av  

2/1/ GavUi 	1/113.  

1 

(2.41) 

(2.43) 

G 	U. 
av I 

If 1/610  - 1/Gav  :2) A(1/6), the design specifications can be 

satisfied using lossless embedding. Therefore, 

'A(1/q)/6av 
0•1 

Glo 	G 
av 2/i1777 

, 

and 

   

 

1 	1 	6,(1/U)  
Glo 	G 

av2/1/ GavUi  - 
+ 3. (2.44) 

    

We have therefore obtained a condition which relates the required 

average and minimum gain to the original spread in 1/U and the 1/U 

of the 'average transistor/. 	Since these quantities are known 

before the design is commenced, it is possible to apply the condition 

given in (2.44) to test whether the specifications can be met. 
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If instead of using the transistor with the lowest gain, we 

use that with the highest gain, G
up  , it can be shown that 

        

1 
Gav 

 

6(1./g) 

 

+ I 1 
G • 
up 

(2.45) 

    

 

2// GavUi 	1/Ui  

 

        

        

A few tests based on practical considerations are necessary to 

confirm the condition given in (2.44). As Gay  > G10, the part 

inside the square brackets has to be greater than unity. 

That is, 

/

z (1/U)  
2// 	 1/Ui  

(2.46) 

6(1/(1) is positive by definition and therefore the only way in which 

(2.46) can possibly not be satisfied is when the denominator becomes 

negative i.e. when 

1 	2  
U.  GayUi  

which gives 

 

G
av > 4u.. 

 

(2.47) 

It can be shown that in the stable region of the IGS, gain cannot be 

greater than 4U. Since we are here dealing with conjugate matched 

gain, (2.46) always holds..  

There are two ways in which Glo can approach Gav. The first 

is when A(1/1) approaches zero and the second is when both G
lo and 

Gay approach zero (i.e. when the average gain is zero and therefore 

the spread is also zero). Both these conditions are satisfied by 



2 R + 1 (2.48) 
1/Gav  + R AXR 
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(2.44). The above tests are equally applicable to (2.45), 

2.5.2 Lossy Embedding (Port Padding)  

The effect of port paddingo  is easy to analyse since it only 

changes the value of 1/0" and leaves both XR, and XI unchanged. From 

Fig. 2.11, therefore, transistors operating at il, j1, 11, and k1  will 

operate at i
3' 

j
3' 

1
3 

and k
3 
respectively. From (2.40), we obtain the 

expression 

1 	1 
G
10 	G

av 

using similar 

counterpart of 

1 

steps to those shown in equations 

(2.48) is 

2AXR 

(2.41) to 

1  ":51 

(2.44). 

(2.49) 

The 

Gav 
+ 	1 1/Gav  + XR 	ZSXR  

01.11•• 

G 	' 
up 

As before, Gav 	Glo therefore the part inside the 

brackets in (2.48) has to be greater than unity. That is, 

square 

2 D AR  

1/Gav XR 1  AXR 

The quantity LWR, by definition, is positive and therefore the 

denominator must be positive i.e. 1/Gav XR 	LSXR' It can be  

shown from (2.3) that WR  lies between 3/Gav  and -1/Gav, assuming that 

XI = 0. In the case when XR = -1/6av
, the point of operation of the 

transistor is on the stability surface of the inverse gain space and 

(2.48) breaks down. It must be noted however, that resistive port- 

> 



padding cannot, in general, be used to cause the transistor to become 

unstable; 

As LSXR  approaches zero, G10  approaches Gay  (the point k, in 

Fig. 2.9, coincides with j). Alternatively, as both Gay and Glo 

approach zero, the spread in gain will approach zero. 	The above 

conditions are satisfied by both (2.48) and (2.49). 

2.5.3 Y -mode Lossy Embedding 

As was mentioned in section (2;3:2), Y -mode lossy embedding 

changes the value of 1/U as well as that of X. This makes it rather 

difficult to analyse the performance of an amplifier in which this type 

of embedding has been employed. A further disadvantage arises because 

the condition for optimum gain-sensitivity operation, namely Al  = 0, 

cannot, in general, be satisfied by using Y -mode lossy embedding alone. 

This means that some other type of embedding has to be employed in 

addition to this. Such a circuit would not only be expensive but 

unreliable as well. There are also a number of practical objections 

to the use of Y -mode lossy embedding which will be discussed in 

Chapter 4. For the rest of this work, lossy embedding will be 

restricted to resistive port-padding. 

2.5.4 Resistive-Capacitive Embedding 

The use of capacitance and resistance only in the embedding 

circuit will not be considered in detail here, as it is a special case 
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which will limit the original point of operation of the two-port to 

areas above the XR axis. 	(i.e. positive values of XI). It can be 

seen from Fig. 2.5 that the XI = 0 can be satisfied only if the 

transistor has a positive value of XI. 

2.6 LOSSLESS VERSUS LOSSY EMBEDDING  

2.6.1 'Ideal' Spreads  

In order to study the advantages and disadvantages of lossless 

and lossy embedding vis-a-vis gain sensitivity performance, we can 

consider three transistors located at the points A, B, and C as shown 

in Fig. 2.10, such that the gains of transistors B and C are equal, 

the values of X for transistors A and C are equal and the values of 

1/U for transistors A and B are equnl. Thus the difference in gain 

between transistors A and B is due exclusively to the spread &t.lz and 

that between A and C to the spread L(1/U). This is a case of 'ideal' 

spread and it will be referred to as such. 

Assuming that the spreads remain constant when the devices are 

embedded to move through small distances about their present location, 

then the point A moves to A', B will move to B' and C to C' such that 

AA' = BB' = CC'. If instead, A is moved to A" such that the gain at 

A' is equal to the gain at A", B will then move to B" and C to C" such 

that AA" = BB" = CC". Since movement of the point A to A' can be 

accomplished by using lossless embedding and the movement from A to A" 

by lossy embedding (port-padding) the problem of comparing the gain- 
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sensitivity performance of the two types of embedding is reduced to 

examining the gains at the points B', B", C' and C". 

It is assumed that XI is equal to zero for all the three 

transistors before and after embedding. 

2.6.2 Conditions Governing Choice of Embedding 

Recalling (2.3) with XI  = 0., we have 

(XR 	1/G)2 = 1/GU 
	

(2.50) 

This is the equation of a parabola for which positive finite values of 

1/U will be considered. From (2.50), the slope of the constant gain 

lines is given by 

6(1/U) 	
2(XR  - 1/G) 

R 	1/G 	(2.51) 

Assuming a straight line approximation for the constant gain line 

through A'A" we can write: 

Slope of A'A" 

2(?.R 	1/0.0) 
A' 

Slope of BIB" 1/GAt  

The slope of the constant gain line through B' is given approximately 

by 

2(X2Bt 	1/GB,) 

1/GB, 

For ZX1R/ if  

2(WR
A' 

	1/GA,) 	2(X 	- 1/6131) 

1/GA, 1/GB, 	  , (2.52) 
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it follows from Fig. 2.10 that GB, > GB"., Therefore movement 

in a direction parallel to the 	axis leads to improved gain-

sensitivity operation over movement in a direction parallel to the 

1/U axis,that is, lossless embedding will result in a greater reduction 

in the gain spread than lossy embedding. The inequality (2.52) 

simplifies to?  

GA, XRA,  > GB, XRBI  . 	(2.53) 

Similarly, for 6,(1/U), if Gcu > GC, 

GA, W.R 	Gc, X2  
AI 	CI 

(2.54) 

movement in a direction parallel to the 1/U axis results in a greater 

reduction of gain spread than movement in a direction parallel to the 

hR axis, that is, port-padding will lead to a superior gain-sensitivity 

performance. 

2.6.3 Distribution of Points of Operation and Choice of EmbecldinR 

In the proceeding section, we derived conditions which govern the 

choice of the type of embedding to be employed for reducing the spread 

in gain arising from spreads in XR  and 1/U. In general, a typical 

batch of transistors will display both types of spread. We there-

fore have to decide in the light of the distribution of the points of 

operation which of the two types of embedding is predominant i.e. what 

type of embedding will reduce the gain spread of the maximum number of 

transistors by the maximum amount with the highest average gain possible. 

In order to determine which of the two types of ideal spread 
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predominates in causing the spread in gain, we can sum the moduli of 

the distances of the points of operation from the average gain surface. 

Thus we obtain two quantities 	Q(1/U) and 21.14LXR. From section 

(2.4.2), it will be recalled that the gain of the device is twice as 

sensitive to changes in XR  as in 1/U. Therefore, the spread in gain 

is caused by spread in 1/U if 4(1/11) > 2 :ZIA XR  and the 

appropriate type of embedding can then be chosen. 

2.6.4 Port-Padding  

As already stated, port-padding is the simplest way of reducing 

the value of U without affecting those of 	and Al. We have a choice 

of padding either the input and/or the output ports. We shall now 

consider the advantages and disadvantages of the three possible com-

binations of port-padding in both the Y-mode and Z-mode. 

Considering the two modes of padding, it is ohvious that the use 

of both input and output pads has no real advantages. Firstly, the 

introduction of two resistors in to circuit will increase the cost of 

the amplifier and lower its reliability. Secondly, there is no 

criterion to help the designer to decide the relative values of the 

resistors at the input and output in order to obtain the required value 

of U. 

Non-linearity in the transistor amplifier arises mainly because 

of the non-linear nature of the input characteristics of the transistor. 

One technique of improving this is to swamp it with an external resistance 

(such as the source resistance i.e. mismatching). For Z-mode port- 
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padding therefore, the input seems to be the place to put it. 

Amplifiers are quite often used in a cascaded chain and if losses 

due to mismatch are to be avoided, the transformers have to be designed 

to couple them together. Since coupling transformers are easier to 

design and wind when the admittance ratio is close to unity, it is 

desirable that Y-mode port-padding should be applied in such a way 

as to increase the lower of the two admittances. For example, for 

a common emitter transistor amplifier, the input admittance is about 

ten orders higher than the output admittance. In a cascade chain 

therefore, Y-mode output port-padding has obvious advantages over Y-

mode input port-padding. 

2.7 MISMATCHED AMPLIFIER 

2.7.1 Mismatch using a Potentially Unstable Two-Port  

A potentially unstable two-port will oscillate at some point 

as the terminations are varied over an infinite range. However, useful 

gain can be obtained from it by a judicious choice of terminations so 

as to avoid instability. A popular 	20, 26, 28 	) way of solving the 

problem has been the use of source and load terminations which give 

mismatch conditions at the ports. The actual choice of terminations 

depends largely on how much loss of gain the designer is willing to 

exchange for "increased stability". Thus the choice depends on the 

texperiencet of the designer and design to specified limits is too 

complex to consider. 



-56- 

2.7.2 Mismatch using,  an Inherently Stable Two-port  

Although for an inherently stable device, the argument put 

forward for using mismatch terminations does not apply, there are 

equally compelling reasons to investigate the performance of the mis-

matched inherently stable two-Tort. 

In transistors, non-linearity arises mainly because the input 

impedance which is generally low, is non-linear. The linearity of 

the transistor amplifier can be improved considerably if it is fed from 

a source impedance (presumed linear) which is higher than the input 

impedance. The effect of this is to 'swamp' the non-linearity. 

Given a source and load impedance to be used in conjunction 

with an inherently stable two-port amplifier, tremendous advantages 

can be obtained by avoiding the use of matching transformers at the 

output and/or input provided that this does not lead to a serious 

loss of gain. 

The degree of the mismatch must be chosen with care as the noise 

performance of the amplifier tends to deteriorate as the source and 

input or the load and output impedances diverge41'42. 

2.7.3 Transducer Gain with 'Degree of Mismatch' X 

The transducer gain of a two-port is given by 

G t  4  1 P2112 Re(ps)Re(pL) (2.55) 

1
(1311 Ps)(P22 PL)  P12P2112  

Assuming that the two-port is inherently stable, values of source and 
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load immittances can be found which will match the two-port. Supposing 

we designate the symbols Ps  and PI,  to these parameters. Then, 

R  Pll 

where  

and pZ = R  P22 (2.56) 

(2.57) , 

(2.58) 

u2/  2 2 
1  - M/p11p22 - f-  Pl1P22 

and 

M 	iN = P121321 

We can define the source and. load imittances as 
. 	' 

Ps 
	k(1 + X) 	 and 	pL  = p,„( 7- X). 	(2.59). 

Since the reactive parts of the immittances have to be tuned out, 

a 	a11  + N/2 p22 and o-  =1.- a22 
+ N/2 p11 	(2.60) 

Substituting the above in the transducer gain expression (2.55), it can 

be shown after considerable simplification that the gain for degree of 

mismatch X is: 

Gx 
41132'12  P111)22(1 -2)  

(2.61) 
4 4/42  [R(1-- x2) 4.  2 + N2 

One advantage offered by (2.61) is the absence of + X which means that 

we are free to choose to make ps  greater or less than Ps. Secondly,  

we have lost one degree of freedom in the choice of terminations since 

ps  and pi,  are related to each other by the degree of mismatch X. 

When X = 0, the gain is egml to the conjugate-matched gain which 



G
c 2 .2 4 o11 p22 (R + 1)2 + N2 

'  

I 	I 2 
4113211 P111322 

(2.62) 

is; 
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Fig. 2.12 is a plot of gain against mismatch factor X and it can 

be seen that the gain is symmetrical about X = 0 and it is fairly 

flat over a wide range of values of mismatch factor reaching 3 db when 

X = + 0.825. 
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ACTIVITY, UNILATERAL GAIN AND STABILITY 

3.1 ACTIVITY 

A device which is capable of delivering more signal power to a 

load than it receives, is generally described as 'active'. A device 

which always returns or dissipates signal power is usually described 

as 'passive'. Examples of the former are valves, transistors and 

tunnel-diodes, and of the latter, capacitors, inductors, transformers 

and positive resistors. 

Practically every electronic equipment contains an active element 

for amplification, oscillation or switching. It is therefore 

profitable for the circuit engineer to have a clear understanding 

of activity and, if possible, to devise a way of measuring the 

activity of a given device for the purposes of comparison. 

In general terms, activity manifests itself in two ways. For 

a three-terminal two-port linear device, if more signal power can 

be taken out of a port than is fed into another port, the activity 

displayed is of the transfer variety and is described as transfer 

activity. Two-port amplifiers employ this type of activity. Negative  

conductance activity, as the name implies, is due to the presence of 

a negative conductance seen "looking in" at a pair of terminals. This 

may be due to a negative Re(Y
11) a negative Re(Y22  ) and/or a negative 
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conductance arising from terminating one port of the device with 

passive reciprocal elements. This is a one-port property and 

generally associated with reflexion amplifiers. 

3.1.1 Power Flow 

For a two-port three-terminal device, it can be shown that the 

total flow of signal power into the device is given by 

V V 	= aY
11 

+ a-1Y
22 

+ Y
21
eja Y

12  e-ja  (3.1) I2    

where 

a = IV1/V2I and a = /
1/
1
/V
2 

We are interested in the real part of this power as it will give an 

indication of the activity or passivity of the device. The orientation 

of the voltages and currents used in (3.1) are defined in Fig. 3.1a. 

Taking the real part of (3.1), 

Re( 111 	. ) 
1 	21 a  Pll 

a-1 
 P22 Re [ (Y21 Y112)0j/ 

(3.2) 

Since we are considering the flow of power into the two-port and this 

has to be negative if the device is active, the minimum value of the 

real part of P/1 V1V21 ought to give conditions for activity. The 

two ways in which the real part of P/1 V1V21 could be negative are 

This happens only if the two-port is potentially unstable. 



either that 

0 > P13. 	 (3.3) 

or 

0 > 	P22 ' 
	 (3.4) 

However, assuming that both pli  and p22  are positive, the first two 

terms on the right-hand side of (3.2) give the least positive value 

when a p22/p11 .and the third _term the most negative when 

the phase angle is an odd integral multiple of n. Under these 

conditions, (3.2)'becomes: 

Re(iv 	 
t 1 21 

so that if, 

) 	= 	2 - 1 Y 	+ Y!! 
V 	P111)22 	21 	.1.2 I ( 3 . 5 ) 

1 Y21 
M 12 	h  

"1" Y12 	>P11P22 ' 
(3.6) 

the device is active. Several authors such as Raisbeck39 and 

Fjaellbrant40 have derived the above conditions. 

3.1.2 Negative Conductance Activitz 

For a two-port, the admittance tlooking inl at the input and the 

output ports respectively are 

Yin = Y11 - 	 (3.7) Y
Y12Y

22 YL 

Y12
Y
21  Yout 

= Y
22 - 	 (3.8) Y

11
+ Y

s 
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where Y
s 
and Y are the admittances of the source and load respectively. 

If the device is inherently stable, then the Re(Y11) > 0 

and provided that YL  is passive and reciprocal, the Re(Yin) will 

always be positive. On the other hand, if the device is potentially 

unstable, the Re(Y11) can be negative and/or a passive reciprocal YL  

existswhichwillmaketheRe(Y.)‹ O. The above statement is true 

if Y
11 

is replaced by Y22, YinY by Yout and YL by Ys. 

With passive embedding, the sign of the Re(Yin) and the Re(Yout) 

can be changed as desired. Fig. 3.1b shows an embedded device with 

a positive conductance g, equal to the Re(Yin), and a susceptance 

equal -Im(Yin) (for optimum power transfer to g) both connected across 

the port. 

The use of negative conductance activity in amplifying circuits 

is relatively rare at radio frequencies although at microwave fre- 

quencies, the technique is well known. Tunnel-diode amplifiers 

have been built which make use of the negative conductance character- 

istics of the device. The reason for the under-development of 

negative conductance activity amplifiers at radio frequencies is 

inherent in the one-port nature of the activity. With one-port activity, 

signal power must be fed into the same port as it is taken out, and 

while separation of incident and reflected power can be obtained at 

microwave frequencies by the use of circulators, no reasonable means 

has been found for use at lower frequencies. 

Negative conductance activity can be exploited in the design of 

'active impedance transformers'. To illustrate the principle, we may 



consider resistances instead of conductances. If R
s and RI,  are 

source and load resistances respectively and Rs  > RL, it can be 

shown that by connecting a negative resistance Rn  such that 

I
Rni > 'Rd the source and input can be conjugately matched. In 

doing so, the power developed in the load is increased by a factor 

of (Rs  + RL)2/(2RL)2  over that which would have been obtained using 

a 'passive' transformer. This arrangement (shown in Fig. 3.1c) can 

be looked upon as an amplifier operating with a source and load both 

of which are connected to the same terminals. 

3.1.3 Transfer Activity and Unilateral Power Gain 

When (3.6) holds, the device is capable of exhibiting 'transfer 

activity' properties and naturally the device must have at least two 

ports. 	Subtracting from each side (3.6), the term 4 o12121' the '  

condition remains unchanged and we have, 

121 - Y1212 4(13111)22 - P12P21 (3.9) 

  

Mason16 defined a quantity U as, 

I Y21 - Y12 2  

44111)22 - 13121321)  

and obtained the condition for transfer activity as U 	1. 	The 

quantity U has the same value as the gain that can be obtained from 

the device if it is unilateralised by lossless reciprocal embedding 

and hence the name unilateral power gain is appropriate. 

U (3.10) 
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On condition that (011.022 - Pl2P21)  0, we can divide both .  

sides of (3.9) by 4(011.022 Pl2P21 ) and obtain the result of Mason. . 	-  

Similar forms of the formula given by (3.10) exist for Z-, h- and g- 

matrices and have the property of giving the same numerical result 

whichever matrix form is used. U also has the property of remaining 

invariant with lossless embedding. 

When (o 11.o22 Pl2P21)  0, dividing both sides of (3.9) '  

by 4(. 111)22 22 	1)121)21) we get  

I
Y
21 

- Y
12

I2 

e( 1 	 (3.11) 
4(1)111)22 1)12P21)  

(the inequality sign is reversed since the divisor is negative). 

The left hand side of (3.11) is negative since the numerator is always 

positive and the denominator is negative. Therefore we can write 

U < 0 without violating (3.11). The complete condition for 

activity is therefore, 

0 > U or U > 1 	(3.12) 

3.1.4 Unilateral Power Gain with Lossy Embedding 

Assuming that the Re(Y11) > 0 and the Re(Y22) > 0, Y-mode 

lossy embedding and port-padding have the common effect of reducing 

the value of U, This was discussed in section (2.3.2). 	The effect 

of lossy embedding in the Z-mode was only briefly mentioned, and will 

now be discussed in detail. 
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It can be shown (Appendix D) that if 

212 	R21 > Rll + R22 ' 
	(3.13) 

then the addition of resistance in series with any of the leads will 

result in an increase of the value of U provided that 

E12R21 R11R22  Rf  e 
EL + R 	EL 	R 
11 22 12 21 

(3,14) 

where R
f 
is the embedding resistor and Z = R + jX. 

A plot of Rf  against U is given in Fig. 3.2 for a transistor which 

satisfies (3.13). As Rf  •is increased, U increases rapidly and goes 

through a discontinuity after which it becomes negative. Measured 

values are also plotted. No measured points could be obtained for 

negative values of U as the bridge used for the measurement was not 

capable of doing this. 

If activity is defined as the ability of a device to support 

oscillation, then the load which the device is capable of supporting 

during oscillation could be used as a measure of its activity. If the 

U of a device were a measure of the activity of that device, then it 

would be surprising if the value of U could be increased by lossy 

34 (dissipative) embedding. Contrary to its use as a 'measure of goodness', 

U remains a condition for the determination of the boundary between 

activity and passivity as given in (3.12). 

The increased value of U obtained as a result of lossy embedding 

is of dubious value to the designer of amplifiers since it is not 

possible to obtain the gain which is associated with the increase in U 
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because of dissipation in the embedding resistor. 

It must be noted that the transistor (together with its embedding) 

remains active when R
f is increased beyond the discontinuity. A small 

gain can be obtained from it. 

3.2 STABILITY  

A system is said to be stable if, when it is disturbed, the effects 

of the disturbance decay with time; if the effects of the disturbance 

grow with time, the system is said to be unstable. For two-ports, 

the criterion for determining whether a device is stable or not is 

the presence or absence of oscillation, with a given pair of ter-

minations. If when the two-port is terminated in passive, reciprocal 

and infinitely variable elements, it is not possible to obtain oscilla-

tion, the two-port is said to be inherently stable. If a pair of 

terminations can be found which will make the two-port oscillate, the 

device is said to be potentiallj unstable. It must be noted that 

stability is a condition which defines a boundary between two states. 

3.2.1 Stability and Activity 

The definition of inherent stability rules out the possibility 

of negative conductance activity in an inherently stable device, given 

that no change in the embedding is allowed. This is because with 

passive reciprocal termination, the real part of the port immittance 
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can never be negative. Such a device can therefore only exhibit 

transfer activity. When it is possible to make the real part of the 

port immittance negative by means of passive reciprocal termination, 

the device is capable of exhibiting negative conductance activity and 

under conditions of mismatch, transfer activity as well. 

3.2.2 Stability Factors  

Since a potentially unstable two-port is capable of giving any 

gain, (infinite gain when it is unstable), it is necessary to have a 

means of estimating how far or near the device is to the threshold of 

oscillation. A stability factor is generally taken as a measure of 

the margin between the point of operation of the device and instabilit 

Thus two amplifiers with the same gain will be judged for superiority 

on the basis of their respective stability factors: the one with the 

higher numerical value being taken as the better of the two. 

The two most popular stability factors were derived by Stern  

andVenkateswaran23 anddesignatedthesymbolsk.and Si  respectively. 

Where, 

and 	S. 	2  P11P22 M  
• 

Thestabilityconditionisgivellbyki>landS.>1, respectively, 

The results of assigning numerical values to ki  and Si  and their use 

as stability factors will now be examined. 

If we plot constant values of ki  and Si  on a chart of M against N, 

6,27 
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where M jN = /12Y211 we obtain curves as shown on Fig. 3.3. It 

can be seen that constant k. values give parabolae symmetrical about 

theM-axisandthatconstantS.values give ellipses also symmetrical 

about the M -axis. For the particular case k. = S
i 
 = 1, we have two 

coincident parabolae which divide the chart into inherently stable 

and potentially unstable regions. It is possible to obtain values of 

k. less than unity whereas Si  breaks down for potentially unstable 

devices. 

From Fig. 3.3, it can be seen that the constant ki  and Si  lines 

cross and therefore a device with a given Si  value can have quite a 

largevariationinitsk.value and vice-versa. 

If we plot the point of operation of a transistor on the chart 

and study the effect of lossless embedding on the points  we find 

that the point of operation moves in a straight line and the distance 

moved is directly proportional to the susceptance of the embedding 

element. The direction of movement and the elements required to 

achieve it are given in Fig. 3.4. 

Supposing that we have two transistors operating at the points 

AandXptheneachonewouldhaveak.value equal to 4. Supposing 

that for some reason they both developed equal  inductances between 

their common terminal and ground of such a value that A moved to B 

and X moved to Y. It can be seen that the resulting two-ports will 

exhibit completely different properties: A would have become more 

'stable' while X would have become potentially unstable. Therefore 

the margins between A and the threshold of instability cannot be the 
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same as that between X.and the threshold of instability, and therefore 

lci  is an unsatisfactory measure of the stability margin. 

AsimilarargumentshowsthatSi isnobetterthank.as a 

measure of the stability margin. 

It appears that stability can only be a 'go - no go' test and 

that when it is 'got, the only relevant factor we can consider is 

the sensitivity of the area in which the device is operating, to 

such changes as embedding elements, biasing point and the active device 

itself, 



(p+ icr) IPI Device + Embedding 

(c) 

( b) 

n 

81 

(a) 

Fig 3.1a Orientation of Two-Port 
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Fig 3.1b Negative Conductance 	Fig 3.1c Negative Resistance 
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DESIGN EXAMPLES 

4.1 INTRODUCTION 

In Chapter 2, gain-sensitivity performance was analysed for the 

conjugately matched two-port with lossless as well as lossy embedding. 

As a result, formulae were derived for the prediction of gain- 

sensitivity performance from the parameters of the two-ports. 

In this Chapter, some design examples, with a batch of transistors, 

are given. Brief descriptions of computer programmes written for 

the purpose are also presented, and where necessary, flow diagrams 

of the programmes are given. 

4.2 THE TRANSISTOR AS A TWO-PORT 

4.2.1 Transistor Data 

The transistors used in the experiments were Type 2G302 (Texas 

Instruments), Twenty of these were used and no attempt was made to 

select them on any basis: the first of the batch developed a fault 

during the tests and was discarded. The Y-parameters of the transistors 

were measured at 3Mc/s with an emitter current of 1 mA and -10 volts 

between emitter and collector on a Wayne Kerr Radio Frequency Bridge 

Type B601. Adaptors for biasing the transistors were designed for 
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this purpose. 

4.2.2 The Transistor in the Inverse Gain Space  

The advantages of using the IGS in the study of gain-sensitivity 

of active two-ports have been discussed in detail in Chapters 1 and 2. 

One of its major drawbacks will now be examined. 1-parameters will 

be used throughout although any other set of parameters could be used 

with equal facility. 

A two-port three-terminal device can be described by a 2X2 

matrix. In general, each of the elements of the matrix is complex 

and therefore the device can be characterised by eight quantities. 

In order to simplify the design theory, three basic parameters, namely 

XIR' hI and 1/U, were calculated from the matrix. However, the effect 

of embedding on the three parameters cannot be calculated except by 

using the eight elements in the matrix. This means that we cannot 

select a point in the inverse gain space and study the effects of em-

bedding on a device which operates there without actually measuring 

such a device. The problem can be put more clearly if we consider 

the situation which arises when we start to design a suitable embedding 

for a batch of transistors to satisfy a given gain-sensitivity require-

ment. One way of doing this is to base the design on the 'average' 

transistor: this was the method adopted. Now it might happen that 

when we have plotted the points of operation of the batch of transistors 

in the IGS, that one of the transistors sits in the 'middle' of the 
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batch so far as the coordinates are concerned and has a gain which is 

equal to the average of the whole batch. Such an occurrence would 

be fortunate and we can use this peculiar transistor for the design. 

In general, we have to 'make' such a transistor to be able to design 

our circuit. This means working backwards from the values of XR, WI  

and 1/U to obtain eight Y -parameters. 

If we write down the equations relating our coordinates to the 

Y-parameters namely, 

 

P12 j°12 AR j XI (4.1) 

and 

P21 Ja21 

4(P11P22 P12P21)  = 1/U (4.2) 
I Y21 - Y1212  

it is apparent that with a knowledge of AR, XI  and 1/ti, it is 

impossible to obtain values for the other parameters. 

4.3 A STATISTICAL SOLUTION 

One way of overcoming the problem is to measure a sample of 

transistors and calculate the corresponding values of XR, XI  and 1/U. 

We can now use the data in a regression with XR, WI  and 1/U as 

independent variables and each of the eight elements in the matrix 

in turn as the dependent variable. 
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4.3.1 Brief Description of the Regression Program 

The program is briefly outlined here; the algorithmn is given 

in Appendix A. 

The data was obtained from the batch of 19 transistors whose Y-

parameters had been measured and from which the corresponding values 

of AR, XI, and 1/U have been calculated. Each of the eight values 

constituting the Y-parameters is taken in turn to be the dependent 

variable and ?R, XI'  1/U are made the independent variables so that 

the regression model is of the form: 

pll = a  b1XR b2X1  + b3(1/1). 
	(4.3) 

The coefficients of multiple correlation obtained from the above model 

are given in Table 1. 

As some of the coefficients of multiple correlation for the 

linear model were rather low, the second order model was adopted 

instead. The mathematical model was of the form: 

p11  = a + b1XR  + b2X, + b3(1/0 + b4X12,z  + 	b6(1/1.02  

+ b7X2XI b8XR(1/U) + b9XI(1/U). 
	(4.4) 

The coefficients of multiple correlation calculated from this model 

are also given in Table 1..  
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Table 1 

Coefficient of Multiple Correlation 

Parameter Linear 2nd Order 

p11 0.809 0.997 

a.11 0.557 0.931 

P12 0.865 0.996 

°12 0.992 0.999 

P21 0.991 0,997 

a21 0.809 0.991 

P22 0.612 0,927 

022 0.841 0.958 

Table 1 indicates that the second order regression provides much 

better results than the linear one, and also that it would be unnecessary 

to go to a higher order than second. 

It is now possible to synthesise the matrix of a transistor 

given its coordinates in the inverse gain space. In general, we might 

be interested in synthesising a transistor with a given value of gain, 

1//7 and XR. In this case, we can calculate the value of X
I which is 

required from the basic equation, 

2 
+ (AR 1/6)2 - 1/611 = 0 . 	(4.5) 

Having obtained the three coordinates which give the required gain, 

these can be substituted into (4.4) to evaluate the elements of the 

matrix which may be in theY0Z0hlorgform. 



Some caution should be exercised in employing this technique. 

The coefficients obtained from a set of data can be used to make 

inferences about that particular set of devices to which the data 

applies. The coefficients have no physical meaning and may give rise 

to nonsensical results if used outside their range of validity. This 

is a general rule and should be observed religiously in all statistical 

techniques. 

4.3.2 Synthesis of the Average Transistor 

If the coordinates of the centrthid of the points of operation 

of the batch of transistors cm used for the synthesis of the matrix 

of the average transistor, it is found that the synthesised transistor 

has a gain different from taking the average of the gain of the batch. 

This is because the average gain surface does not go through the 

centroid of the points of operation. 

To obtain the true average transistor, it is necessary to find 

a point which lies on the constant gain surface representing the 

average gain. Since one of the conditions for optimum gain-

sensitivity operation is to embed the devices such that XI  = 0, 

assuming that the relative positions of the points of operation are 

preserved when embedding is applied, the mean value of XI  must be used 

in the regression, so that the "moments" of the points of operation 

about the plane given by WI  = 0 dreas near to zero as possible. 

Fig. 4.1a shows the points of operation of the batch before and after 
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embedding. 

The basic equation of the IGS is given by equation (4.5) and so 

far we have obtained two of its parameters: the gain G and XI. We 

can now choose a value for XR and calculate 1/U or vice-versa. Fig. 

2.8 shows that the spread in X2  is much less than that in 1/U and 

since, statistically, the mean only makes sense when wide divergences 

do not occur in the sample, it is better to use the mean value of XR 

and then calculate 1/U. We now have the three values we need for 

calculating the Y-parameters of the average transistor and can proceed 

to substitute them into the regression model (4.4). 

4.3.3 Results of Average Transistor Synthesis  

Using the following values in the regression equation, 

XR  = 1.87 x 10-3 xi  = 5.17 x 10-3 and G = 96.0 which gives 

1/U = 9.58 x 10-3, we obtain the Y-parameters of the average 

transistor as follows: 

4.73153 + 	j6.24221 -004335 - 	j0.13977 

21.23883 - j16.05998 0,16589 + 	j0.36784 

(4.6) 
From the Y-parameters, we can calculate the values of XR, XI and 1/U 

and compare these to the original. The results are 

XR = 1.867 x 10-3 	XI  = 5.168 x 10-3, 1/V = 9.537 x 10 

and G = 95.5. 

The two sets of values compare favourably and therefore the conclusion 
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can be drawn that the method is valid. 

4.4 EMBEDDING IN THE INVERSE GAIN SPACE 

4.4.1 Use of the Computer in Embedding  

Given a transistor, we can locate its point of operation in the 

IGS. Considering lossless embedding, the point might be at P in 

Fig. 4.2. Supposing we want to move the point to X, then we have to 

connect in series with the common terminal a reactance of such a 

value as to move the point from P to A and then connect a susceptance 

between the input and output leads of such a value as to move the point 

from A to X. To reach the point W, as before, we have to use a 

reactance of such a value as to move the point to B and then using a 

susceptance between input and output the point can be moved to W. 

It is interesting to note that although we can calculate the direction 

of the lines PR and PQ, we cannot calculate the direction of the line 

AX until we have obtained the parameters of the transistor at A. This 

is because the device at A is a different device from that which was 

originally at P and therefore the line PQ is not parallel to the line 

AX. Similarly, the line BW is neither parallel to PQ nor to AX. These 

can be seen from Fig. 4.3 in which the final points of operation on 

the XR axis are equally spaced. 

It appears that the easiest way to tackle the problem manually 

is to assume a point such as C, in Fig. 4.2)  on the line PR, which is 

reasonably close to where we expect A to be. From the distance PC, 
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we can calculate the value of a series inductance L
s (refer to Fig. 

2.5). The parameters of the device together with the series inductance 

can now be calculated to give the new device with point of operation 

at C. We can now calculate the direction of movement which results 

from connecting a parallel inductance L between input and output 

leads and locate the point of intersection of this line with the WR  

axis. Supposing the point is at U, i.e,. larger than X, then we can 

see that PC is longer than required and we have to take a shorter 

distance for PC and start the whole process again. The process 

described above is a fairly straight forward operation which can be 

done very rapidly by a digital computer. 

4.4.2 The Lossless Embedding Routine  

The flow chart of the routine is given in Fig. 4.4. In addition, 

the actual routine is given in Appendix B. A brief description 

suffices here. 

In Fig. 4.4, E and W contain the arbitrary step lengths 0.01. 

These step lengths are changed automatically in the programme should 

they turn out too large. K and Kt contain either +1 or -1 and deter-

mine the sign of the Z-embedding and Y -embedding elements respectively. 

Y and Z contain the modulis of the final value of the Y -embedding and 

Z-embedding elements respectively. It contains the number of times 

that the iterative process is executed and there is a trap (not shown 

in the flow chart) which prevents the iteration from continuing after 
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the 15th time. If this happens, the value of E is divided by 10 and 

the iteration is resumed. The output contains information indicating 

that the iteration has been trapped and reasons for this occurrence, 

so that the programmer can alter, if necessary, the trapping condition. 

For all the embedding design in this work, 	15 was found adequate. 

The numbered junctions refer to instruction numbers in Appendix B. 

The upper half of the flow chart examines the position of the 

point of operation of the transistor and determines what element types 

will move the point of operation of the transistor to the x quired 

point on the AR axis i.e. it determines whether K and K' should have 

+1 or -1 stored in them. The second-half does the iteration 

and jumps out of the cycle when the error in both XR  and XI  is less 

than 5 x 10 5. 

4.4.3 The Y -Mode Port-Padding Routine  

It was pointed out in Chapter 2, Y -mode port-padding is better 

at the output than at the input and Z-mode port-padding is superior at 

the input than at the output. Since in this work, Y-parameters have 

been used throughout, this routine was developed only for Y -mode output 

port-padding. 

The routine solely changes the real part of Y22  such that 1/U 

has the required value. It uses an arbitrary but automatically 

adjustable step length contained in E which is equal to 0.01 and the 

error permitted is less than 1.0 x 10 . The routine is given in 
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Appendix C. 

4.4.4 The Y-Mode Lossy Embedding Routine  

It was mentioned in section (2.5.3) that the use of Y-mode lossy 

embedding had a number of practical objections. Two of these will 

now be discussed. 

The use of lossy Y-sode embedding must be accompanied by lossless 

embedding if the condition for optimum gain-sensitivity is to be pre-

served, namely WI  = 0. Both of these types of embedding change the 

gain of the amplifier and it is not at all clear what percentage of 

the change to assign to each type of embedding. 

The second and more serious objection to lossy Y-mode embedding is 

that it is not possible to reach some points on the W-plane after this 

type of embedding has been applied. Fig. 4.5 shows a device which 

sits at the point D after the application of Y-mode lossy embedding. 

Z-mode lossless embedding moves the point along the line AE. At the 

points A, B, C, D, and E, Y-mode lossless embedding is applied to move 

the point of operation on to the WR  axis. From Fig, 4.5 it is easy 

to see that the point of operation cannot be moved to the right of V. 

This is obviously an unacceptable limitation on the possible points 

of operation. 



4.5 AVERAGE AND EXTREME TRANSISTORS  

We have so far synthesised the matrix of the average transistor 

and from the batch, we can select the two transistors which give 

extreme gain ice, the highest and lowest. We make an assumption that 

the extreme gain transistors before embedding give extreme gain after 

embedding has been applied. Singhakowinta34  has shown that the angle 

of the locus of the point of operation of the transistor when lossless 

embedding is applied makes an angle approximately equal to 
/Y21 with 

the XR axis. Thus it could happen that two transistors which operate 

at A and B (GA  7.7›* GB) in Fig. 4.1b could have such angles of Ya,  
/  

that when embedded losslessly, GA 1-.... GI. 	Such 'cross-overs' occur 

within the batch of transistors used in the experiment and lead to 

small and negligible changes in the 'gain ratings'. However, in 

three separate batches of 25, 2G302's and two other batches of 0C44's, 

it was found that the extreme transistors before the application of 

lossless embedding were also the extreme transistors after embedding. 

This supports the above assumption. 

A similar situation occurs in the case of port-padding although 

in that case crossovers do not occur. 

We are now in a position to design the embedding and apply it 

to the extreme transistors. 

4.5.1 Calculated Limits of Gain 

The required average gain is defined in terms of the position of 

the point of operation on the XR  axis of the average transistor. With 
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this value, we enter the lossless embedding routine and at the end 

we have two values for the elements, namely K'Y and KZ. Taking the 

Y -parameters of one of the extreme transistors we embed in the Y -mode 

to obtain: 

Y11 + 	Y12 - K'Y 

(4.7) 
Y21 - KIY 	Y22 + K'Y 

The above Y -matrix is then converted into Z-matrix with elements 

Z11, ZI2, Z 1, and Z12. The Z-embedding is then added to obtain: 

Zit  + KZ 9.2  + KZ 

(4.8) 
Z' + KZ 	Z' + KZ 21 	22 

The gain of the extreme transistor is then the gain given by the above 

matrix. In practical terms, we have designed an amplifier to obtain 

a specified gain from the average transistor. We have then replaced 

the average transistor by one of the extreme ones and our interest is 

to find out what gain we get. We can repeat the process with the other 

extreme transistor and hence define the upper and lower limits of the 

gain of the batch for the particular average gain we designed for. 

In Fig. 4.6 the gains calculated as indicated above are referred 
to as 'Calculated Gain'. 

4.5.2 Predicted Limits of Gain 

The limits of gain can be predicted from (2.44), (2.45) and 

(2.48), (2.49). 
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To make use of these formulae, we have to calculate the CO"' 

ordinates of the extreme transistors in the IGS. Referring to Fig. 

2.9, the point of operation of the extreme transistor will be at j. 

Since we know the value of the natural average gain Gi, and XR  = XR  
j 

and XI. = XR.1 from (2.3), we can calculate the value of 1/U which is: 
J 

xI fx  
R 	a./  2  

U. 	1/Gi  (4.9) 

The value of 6(1/U)max  is obtained by subtracting 1/U1  from 1/Uj. 

This value is kept for further use when predicting extreme gain for 

other average gains. We now have values for all the terms in (2.44) 

and (2.45) and can therefore calculate the limits of gain, G10  and 

Gup ; these are plotted in Fig. 4.6. 

It is fairly clear how to deal with (2.48) and (2.49) which are con- 

cerned with port-padding. The results of the prediction from the above 

are shown in Fig. 4.7, 

4.6 	POTENTIALLY UNSTABLE TRANSISTORS  

A batch of potentially unstable transistors will have their 

points of operation outside the IGS. In this region, there are no 

constant gain surfaces and therefore the definition of ,n,XR, ,A*11 /41  

and Z(1/U) break down. A new technique therefore has to be 

developed to deal with this case. 
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4.6.1 Lossless Embedding 

Lossless embedding leaves ZY1/1J) unchanged therefore we can 

apply an arbitrary lossless embedding to the batch to make them 

inherently stable. The values of A(1/U) for both upper and lower 

limits of gain can then be calculated. All the other quantities in 

(2.44) and (2.45) can be calculated and hence the limits of gain 

evaluated. 

Fig. 4.8 shows the points of operation of the batch of 19 
transistors, used in the previous experiment, in the common base 

connection. It must be noted that the transistors are unstable. 

The arbitrary embedding applied to them is such as to make the average 

transistor have a value of XR equal to 0.002. The values of 6,(1/U) 

are then calculated and stored for later use. 

Fig. 4.9 shows the calculated and predicted values of gain 

against average gain for a batch of potentially unstable transistors 

using lossless embedding. 

4.6.2 Port-Padding 

Port-padding leaves AXR unchanged and therefore we need to 

apply an arbitrary pad to be able to calculate the values of LYX.R  for 

both upper and lower limits of gain. However, for optimum operation, 

it is necessary to reduce the value of XI  of the average transistor 

to zero. This cannot be done using port-padding and therefore we 

have to apply lossless embedding for this purpose. 	An arbitrary 



-100- 

port-pad is then used to make the average gain equal to 100. Values 

of QA.R for both upper and lower cases are calculated. The other 

quantities in (2.48) and (2.49) can then be calculated and hence the 

upper and lower limits of gain evaluted. 

Fig. 4.10 shows the calculated and predicted values of gain 

against average gain for the batch of potentially unstable transistors 

using port-padding. 

4.6.3 Discussion of Results 

From Fig. 4.9 it can be seen that the predicted values of gain 

over-estimate the lower limit and under-estimate the upper limit of 

the gain. The explanation is that the transistors used in this case 

(the 19 transistors in common base) show a Large spread in the direction 

of 7\. . 	This can be seen from Fig. 4.8. 	The calculated gain takes 

into account the spread in XI  while the formulae for predicting the 

limits of gain assume that the change in gain due to ,AX, is negligible. 

Comparing Fig. 4.9 to Fig. 4,10, it can be seen that lossless 

embedding produces a smaller gain spread than port-padding for the 

batch of transistors used in the experiment. 

4.7 THE PRACTICAL AMPLIFIER 

We are concerned with small changes in gain which occur as a 

result of changing the environment of the active element. Since these 
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small changes are of the same order as the losses which would normally 

occur in the circuit, it is necessary to eliminate, as far as possible, 

to measure where possible and to estimate where no other means exist, 

the losses which occur in the circuit. 

4.7.1 The Variable Impedance Transformer (VIT)  

The signal source used in the experiments was an Airmec Signal 

Generator Type 201 with an output impedance of 75 ohms resistive. It 

is evident that since there is spread in the parameters of the tranl_ 

sistors and the embedding changes for various tests, we have to find 

a simple method of matching the signal source to a varying input 

impedance of the amplifiers. 

One of the simplest ways of realizing this is to use the 

'reactance transformer' principle. This is illustrated in Fig. 4.11, 

and requires no further explanation:. 	One snag arises however, and 

that is Rout must be greater than Rs
. To overcome this, the circuit 

in Fig. 4.12 was designed. The transformer steps down the source 

impedance such that RI is less than the minimum required Rout. Again 

Fig. 4.12 is self-explanatory except for the presence of Lst  and Cst. 

The output of the transformer was found to be slightly inductive due 

to the leakage inductance L'. However, it was of such a small value 

that to eliminate it, an impractically large value of capacitance would 

be required and the resulting Q of the series tuned circuit would con-

sequently be small. Tuning out the leakage inductance would therefore 

be rather difficult. The series inductance L
st 

was therefore introduced 
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to reduce the value of Cst to an acceptable value and hence to increase 

the Q of the circuit. The tuning of the circuit was then carried 

out with greater precision and Rts  measured accurately. Variation 

of R
out is obtained by changing the values of Co and C. Two variable 

capacitors were calibrated and used in place of Co and Cle A chart 

of Rout against scale reading was then plotted as shown in Fig. 4.13. 

R
out was then measured for various settings of the scale readings and 

the results are also plotted in Fig. 4.13. The circuit of the VIT 

is shown in Fig. 4.14. 

4.7.2 Losses in the Variable Impedance Transformer 

The presence of the inductors Lst  and Lo and the transformer 

introduces losses in the circuit. These losses are calculated by 

measuring the voltage at the input and output of the VIT when it has 

been correctly terminated at the output. Fig. 4,15 shows a plot of 

losses in decibels against Rout. 

Fig, 4.15 shows that as Rout  increases:  the losses go up rapidly. 

Since the losses in the transformer and the inductors cannot be expected 

to rise as sharply as shown:  it can be concluded that the increase in 

loss is partly due to a slight mismatch between the source resistance 

R
s and the impedance it 'sees' as Rout increases. 

4.7.3 Measured Limits of Gain 
The values of the embedding elements obtained from the computer 



-103- 

program were used to construct amplifiers using both lossless and 

lossy techniques to obtain the required gain-sensitivity condition. 

The gain of the amplifiers with the minimum and maximum gain transis-

tors as the active element was measured and the results plotted in 

Figs. 4.6 and 4.7. Fig. 4.16 shows a partially schematic diagram 

of the arrangement of the circuit. 

4.7.4 Determination of Predominant Spread 

In section (2.6.3), a criterion was suggested for the deter-

mination of the predominant spread. It must be recalled that AX, 

does not cause a significant change in gain for reasons given in 

section (2.4.3) when XI  of the average device is reduced to zero, 

From the 194  transistors used in this work, 

and 

0.03856 

0.02356 

   

    

Thus 	 Z(1/11.) 1:1EZ:Vt.R  and therefore the spread in this particular 

batch of transistors is predominantly due to AhR. Therefore, loss-

less embedding should give better results than port-padding. 

4.7.5 Comparison of Lossless Embedding and Port-Padding 

Comparing the sptead in gain after the application of lossless 

embedding to that resulting from port-padding for the same average 
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gain, (see Figs. 4.6 and 4.7) it can be seen that lossless embedding 

leads to a much greater reduction in gain spread than port-padding. 

Closer inspection of Fig. 4.7 reveals that in fact port-Tadding results 

in a greater spread in gain than before. Note that lossless embedding 

was used to reduce the value of 	for the average transistor to 

zero before port-padding was applied. Thus, without this extra 

'help', port-padding would have given much worse results. Therefore 

for the particular set of transistors used in the experiment, port-

padding would certainly be the less attractive of the two methods. 

4.7.6 Discussion of Predicted and Calculated Gain  

Fig. 4.6 shows that there is a discrepancy between predicted 

and calculated gain, and further that the formula for predicting the 

upper gain limit overestimates and that for the lower limit under-

estimates the gain. This is because in (2.31) we used the rate of 

change of gain with respect to hp  and 1/U at the points k and i 

respectively, which are on the natural average gain surface. Since 

the constant gain surfaces on the 'outside' of the natural average gain 

surface are much closer than those on the 'inside', equation (2.31) 

will tend to underestimate the total change in inverse gain between 

the natural average gain surface and a point on the 'outside' of it. 

Similarly it will tend to overestimate the total change in inverse gain 

between the natural average gain surface and a point on the 'inside' 

of it. Hence, the formula for predicting the limits of gain based on 
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equation (2.31) will tend to overestimate the upper limit and under-

estimate the lower limit. 

From Fig. 4.7, it can be seen that the predicted and calculated 

values of gain agree more closely in the case of port-padding than 

for lossless embedding, further that both the upper and lower limits 

are underestimated. The close agreement can be explained in terms of 

the relatively lower sensitivity of gain to movement in a direction 

parallel to the 1/1J axis as compared to movement parallel to the WR  

axis. This means that errors arising from the approximation of (2.31) 

will be small. The fact that the predicted limit of gain line for 

the upper case is below the calculated gain line might be explained 

by the fact that when WI  of the average transistor is reduced to zero:  

the upper gain transistor may not necessarily have its WI equal to 

zero. In fact, the WI  of the transistor with the highest gain is not 

equal to zero after lossless embedding has been applied for this 

purpose. Fig. 4.1aillustrates this argument (transistor 11). The 

same is true of the transistor with the lowest gain (transistor 15). 

4.8 IDEAL SPREADS  

4.8.1 Synthesis of Ideal Spread Transistors  

To study the advantages and disadvantages of lossless embedding 

vis-a-vis port-padding to achieve a given gain-sensitivity condition, 

it is necessary to have say, the Y-parameters of three transistors 

which exhibit ideal spread (section 2.6.1). Note that when discussing 
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ideal spread, XI  is always made equal to zero. 

Z-resistive embedding is known to decrease the value of 1/e 

and Y output port-padding to increase the value of 1/V. Thus given 

the parameters of a transistor we can change the value of 1/1J to a 

predetermined value. We cannot guarantee that at this point, the 

value of 'XI will be equal to zero. So we can apply lossless embedding 

(keeping 1/U constant) such that the transistor will give the pre-

determined value of gaintfor XI  = 0. The parameters of the transistor 

together with the applied embedding are recorded. In Fig. 4.17, such 

a transistor will have its point of operation at say A2. Fiirther 

lossless embedding can be applied to transistor A2  to reduce the gain 

to another predetermined value. The point of operation of the second 

transistor will then be at B2. Y-mode output port-padding can then 

be applied to transistor A2  to give the parameters of a third transis-

tor whose point of operation is at C2  and whose gain is equal to that 

of B2.,  By repeating the above method, two other groups of transistors 

were synthesised such that the gain for the A's were equal and those 

of the B's and C's were also equal. For the particular case dealt 

with here, the gain of the A's was chosen to be 100 (20 dbs) and that 

of the B's and C's 80 (19.03 dbs). 

4.8.2 Predicting the Choice of Embedding, for Ideal Spread 

In section (2.6.2), conditions governing the choice of the type 

of embedding were derived. A numerical example will now be given. From 

Refer to Chapter 3. 
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the coordinates of the points B', B", C" for the three groups of 

transistors at P, Q, and R in Fig. 4.18 the gain of the transistors 

were calculated for the points. Table 2 summarizes the results. 

Table 2 

Group R (high U - high AR) 

Type of 
Spread Gain 

Best 
Type of 
Embedding 

6,XR 

0)* GB, = 73.46 

le GB„ = 73.35 

Lossless 

(G
B, 

:=.• 	G 	) B" 

60./10 
ct) 	GC, = 73.80 

0 	GC,,  = 72.48 

Port-padding 

(GCH ,4.7.: G 	) GC,  

Group Q (medium U - medium XR) 

Type of 
Spread Gain 

est' 
Type of 
Embedding 

0 GB, = 73.45 

ZSXR Lossless 
b) GB" = 72.86 

0) GC, = 72.91 
,6,(1/U) Port-padding 

b) GC„ = 73.15 

Group P (low U - low XB) 

Type of 
Spread Gain 

Best- Type of 
Embedding 

a) GB, = 74.24 

AXR Lossless 
b) GB" = 73.88 

01) Gc, = 72.87 
4N1/10 Port-padding 

19) Gc" = 75.01 

	

ct) 	Loss I etv 144113(dd ;p1,1 

	

A 	Poo- tiCkFiCri 
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As seen from Table 2, port-padding is, in general, the best way 

of reducing the spread in gain due to Q(1/17) for the same average 

gain, and lossless embedding for spread in gain arising from Z7tici. 

4.8.3 Embedding the Ideal Spread Transistors  

We can now apply lossless embedding and Y output port-padding 

to each group of transistors in turn and to compare their performance, 

vis-a-vis the two types of spread (i.e. ZY1/U) and QXR). 

The computer programme for lossless embedding is used to 

determine the values of the elements which when applied to say A2  

will give a predetermined gain. The values of these elements are 

then 'added' to the parameters of B2  and C2  and for each, the gain 

is calculated. The difference in gain between A2  and B2  as well as 

between A2 and C2 is calculated for the situation when the embedding 

has been applied. Fig. 4.196 shows plots of gain spread, &42  

against the resulting average gain when the appropriate embedding has 

been applied. The process is repeated for Y output port-padding 

and the results are plotted in Fig. 4.196. Figs. 4.19b1 and 4.19c 

also shows plots of gain spread against average gain for the two 

other groups of transistors shown in Fig. 4.17. 

4.8.4 Conclusion on Ideal Spreads  

It is concluded from Fig. 4.16a, b, and c, that port-padding 

is the best way of dealing with spread in gain due to &1/0 but 
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certainly the least attractive way of reducing the spread in gain 

when this is due to AWR. Lossless embedding shows slightly better 

results for gain spreads due to Q(1A.) than for gain spreads due to 

6,XR when the overall value of U is high. For low overall values of 

U (see Fig. 4.19o), the opposite is true over a large portion of the 

range of the average gain. The general conclusion is that Lossless 

embedding is far more reliable than resistive port-padding although 

for the particular case when the spread in gain is predominantly 

due to A(1/U), port-padding might be a better choice. 

The above conclusions are in agreement with the predictions 

made in section (4.7.2). 
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Fig 4.2 Illustration of Iterative 
Embedding Design. 



Fig 4.3 Locus of Point of Operation 
with Lossless Embedding. 



Fig 4.4 Flow diagram for Lossless*  
Embedding Routine. 
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Fig 4.5 Illustration of movement 
of Point of Operation with Lossless 
Embedding after Y-mode Lossy 
Embedding. 
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Fig 4.11 The Principle of the 
Reactance Transformer. 
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Variable Impedance Transformer. 
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CONCLUSIONS AND FURTHER RESEARCH PROBLEMS 

5.1 CONCLUSIONS  

5.1.1 Synthesis of Amplifiers with Specified Gain-sensitivity 

Performance  

It has been shown that for single frequency tuned two-port 

amplifiers, it is possible to predict the ultimate gain-sensitivity 

performance of the amplifiers, stated in the form G + &4„ from a 

knowledge of the natural points of operation of the batch of devices 

in the IGS. The theory has been shown to be equally applicable to 

devices which are potentially unstable. 

5.1.2 Choice of Embedding 

The choice of the mode of embedding to be used to achieve a 

specified gain-sensitivity performance has been shown to be'dependent 

on the nature of the distribution of the points of operation of the 

batch of devices in the IGS. The case of 'ideal' spread was found 

to compare favourably with that of the batch of 19 transistors used in 

the experiment. 

5.1.3 Stability Factors 

The numerical values of stability. factors Si  and ki  have been 
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shown to be poor indications of the margin of the devices from 

instability. It has been suggested that the sensitivity of the gain 

of the amplifier to changes in the embedding is a more realistic 

estimateofthemarginofstability.TheconditionsS.>1 and 

k. >. I simply define the border of stability and no other meaning 

should be given to them. 

5.1.4 Unilateral Power Gain (U)  

The numerical value of U of a three terminal device has been 

shown to be an unsuitable measure of its 'activity'. Thus 0 > U 

and U > 1 simply define a border between activity and passivity. 

5.1.5 Average Transistor 

Statistical methods have been developed for the synthesis of the 

matrix of the average transistor. Since the design of the embedding 

circuit depends on the average transistor, this method which ensures 

that it has all the average properties of the batch is a significant 

step forward. 

5.1.6 Use of Digital Computers  

The speed and accuracy of the computer in performing the design 

calculations in this work have distinct advantages over the use of 

design charts.34 
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5.2 FURTHER RESEARCH PROBLEMS  

The present work has led to a better understanding of the gain-

sensitivity capabilities of transistors. It has also shown the need 

for further research into amplifier circuit design and device manu-

facture. These are discussed below. 

5.2.1 Manufacture of Transistors with Specified Tolerances  

This study has revealed the wide spreads which occur in a batch 

of nominally identical transistors. These divergencies arise from 

the lack of right control during the stages of manufacture. A study 

aimed at isolating the parameters to which the spread in the transis-

tors are most sensitive and guidelines as to how these parameters 

may be controlled during manufacture should eliminate a large number 

of the problems which the author set out to solve in this thesis. 

5.2.2 Resistance-Capacitance Amplifiers  

The modern tendency to micro-miniaturise circuits have made the 

use of inductances almost an anachronism. Thus a study of embedding 

networks for sensitivity control involving only resistors and 

capacitors should make an interesting research topic. This can be 

carried to a further stage in which distributed resistance and 

capacitance embedding may be considered. The study of the manu-

facturing tolerances and the use of RC embedding could be considered 

as complimenting each other. 
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(APPENDIX A) 

TRANSISTOR SYNTHESIS PROGRAM 

INTRODUCTION 

The program is divided into three parts; a main program and 

two subroutines. It employs the Doolittle technique43. The program 

is of such a general nature that it can be used in any situation in 

which curvilinear multiple regression is required. The algorithmn 

of the constituent parts of the program are given below. 	The 

language used is FORTRAN IV. 

a) 	Main Programme  

1) Read number of samples, total number of variables, number of 

dependent variables, number of independent variables, order of 

regression and the names of the. variables. 

2) Call Subroutine 'PROLES'. 

3) Print (new) independent variables and dependent variables. 

4) Call Subroutine IDOLITLI. 

5) Print the coefficients of the rczn, sion equation, the 

standard error of estimate, the standard error of the regression 

coefficients, the standard deviation of the dependent variable, the 

coefficients of multiple determination and correlation and the co-

efficients of partial correlation. 

b) 	Subroutine 'PROCES'  

1) 	If order of regression is unity go to 2, otherwise transfer 

independent variables into register IADEP and permutate them. Go to 3. 



c) 	Subroutine 'DOLITL'  

1) 	Enter ij 	;"1.)(yi  - 7) 

j 
dependent variable. 

into 'A' column matrix for 
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2) Transfer independent variables into 'ADEP'. 

3) Transfer dependent variable into 'DEP' registers. 

4) Sum independent variable columns and calculate mean. 

5) Sum dependent variable columns and calculate mean. 

6) Enter 	(x.. - ig i 
— 	— x.x.. lj 	a.-x.I)into 'A' matrix. a.3  

i 
7) Return to main program. 

2) Compute 'Check Sum Column'. 

3) Compute 'C' unity matrix. 

4) Apply Doolittle technique to 'A' matrix. 

5) Compute coefficients of regression equation. 

6) Calculate the constant term of the regression equation. 

7) Compute 'C' matrix. 

8) Compute the standard error of estimate and of the regression 

coefficients, 

9) Compute the standard error of the dependent variable for the 

complete model. 

10) Calculate the coefficients of multiple determination and 

correlation. 

11) Calculate partial correlation coefficients44 (i.e. eliminate 

each independent variable in turn and repeat process starting from 

step 4 of Subroutine IPROCESI. 

12) Return to main program. 
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(APPENDIX B;) 

LOSSLESS EMBEDDING ROUTINES  

(Extended Mercury Autocode) 

TITLE 
LOSSLESS EMBEDDING 

ROUTINE 1 

(A,B)=(A10131)m(A9,B9)-(AyE3)m(A7,B7) 

(U111/1)=(A9,B9)/(A0B) 

(U3' V3 
 )=-(A- B3 

	' 
)/(A B) 

(u7,v7)= -(A7,137)/(A,B) 

(U9,v9)=CA1,B1)/(A,B) 

RETURN 

ROUTINE 2 

Zi=V2.+KZ 

Z
3 
 =V
3 
 +KZ 

z
7 
 =V
7 
 +KZ 

Z
9
=V
9
+KZ 

(zioszil)=(U3,z3)/(u7,2y) 

(z12'zi3)=.(u7,z)-(u3,z3) 

zi4.-(4y9 -4u3u7)/(zi2z12+zi3z13)  
RETURN* 
X3e 

ROUTINE 3 

(A,B)=(u1pzi)m(u9,z9)-(u7,z7)m(u3,z3) 

(A10B1)=(J9,Z9)/(A,B) 

(A3,B3)=-(11.3,Z3)/(A,B) 

(A7' B7 
 )=-(U

7
, Z_)/(A,B) 

(A9,B9)=(UlI ZI)/(A,B) 

RETURN 
xx 
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ROUTINE 4 

Y
1
=B
1
+10Y 

Y
3 
 =B
3 
 -K1 Y 

Y =B 
7 

Y
9 
 =B 4-1(1 Y 
9 

(Y10'
Y
11

)=(A
3/

Y
3
)/(A

7'
Y
7
)  

(Y12'Y13)=(AVY7) -(A3113)  
Y3.4.= ( 	

5 
A9-4A_

7  
A_ ) 	Y 

12 124-Y13Y13)  
RETURN 

ROUTINE 5 

E=0.01 

W=0.01 

Z=0 

>> DIRECTION FINDING (Z) 

JUMPDOWN (R1) 

K=0 

JUMPDOWN (R
2
) 

B1 =Z_ 
1 

Z=0.01 

JUMP 6, BI>0 

K=1 

JUMPDOWN (R2) 

JUMP 5, Z11> B' 

K=-1 

JUMP 5 

6)K=-1 

JUMPDOWN (R2) 

JUMP5,B1 >71., 

K=1 

5)Z=0 

U1 =0 

V1 =0 

I1=0 
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1 ) Z=Zr4-E 
2 )JUMPDOWN (R2) 

>>DIRE'CTION FINDING (Y) 

JUMPDOWN (R3) 

K'=0 
JUMPDOWN (RI+) 

B1 =1.11 
Y=0.01 

JUMP 4:  B'>0 

Kt=-1 
JUMPDOWN (R4) 

JUMP 19' 1.11 > 
K1 =1 
JUMP 19 

4)10=1 
JUMPDOWN (R4) 
JUMP 19:  B >1.11  

19)1=0 
G'=0 

ilt=0 

J'=0 

>>(Y) ITERATION 

11 )Y=Y+W 
12 )JUMPDOWN (R4) 

JUMP 51:0 > Yu.  

G' =Y 

51 )jUMP 26' Y11>  
H t=Y 

16 )JUMP 37:J I .> 1 
El =131 Y

11 
JUMP 37:E > 0 

W=W/10 
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JUMP 19 

37),P=P+1 
JUMP 9, J1 =500 
JUMP 11, Ge=0 
JUMP 11,111=0 
Y=0, 5G I +0. 5H I 

B0— 7/IMOD ( Y11  ) 
JUMP 12, Bo  O. 00005 

>> ( z) ITERATION 
JUMP 501X > Yio  
UT=Z 

50 )JUMP3,Y10> X 
V1  =Z 
3)1'=1'+1 
JUMP 7,11  > 15 
JUMP 1, U =0 
JUMP 1, VI =0 
Z=0. 5U +O. 5V 
•=s•YtMOD (X—Y10  ) 

JUMP 2, B0 3  0, 00005 

>>15 CYCLE TRAP 
JUMP 8 
7)U'=U'V' 
JUMP 8).0 1/0 

JUMP 10,0.001E 
9 )E=E/io 
z=c,  
I" =a 
U =0 
vi =0 
W=0.01 
CAPTIOT 
J.: TOO LARGE 
JUMP 1 
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10)K=-K 

z=0 

'1 =0 

U1 =0 

VI=0 

E=0.01 

W=0.01 
CAPTION 
K REVERSED TO 
PRINT(K)1,0 
JUMP 1 
8)AI=Y

10
+Y
14
/2+0SQRTUY

10
+Y
14
/2)(Y +Y 	)-(Y 	)) 

10 14/2 	10
Y 
 10
+Y 

 11
Y 
 11 

G=1/A' 

RETURN 
XI! 

CHAPTER 0 

A-› 10 

B-i0,  10 

U-÷ 10 

V- 10 

Y-› 15 

Z- 15 

>> READ TRANSISTOR PARAMETERS 

1=1(2)9 

JUMP1,I=5 

READ(AI) 

READ(BI) 

1)REPEAT 

>>READ LAMBDA(R) 

READ(X) 

JUMPDOWN (R
5
) 

PRINT(KZ)1,5 

PRINT(KIY)125 

PRINT (G)1,1 
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END 

cL0sE 

2.48729 0.66042 0.00409 -0.01379 

4.30492 -13.65130 0.15765 0.07813 

0.0050 

xmx z 
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CAPPENDDC 

Y -MODE PORT-PADDING ROUTINES 

(Extended Mercury Autocode) 

ROUTINE, 9 
H0=A9+D 

(H2,114)=(A3,B3)/(A71B7) 

H5=(4A1H0  -4A3A7)/(A7  -A3)(A?  -A3+(B7  -B3)(B7  -B3)) 
H6=H2+H5/2+4SQRT((H2+H5/2)(H2+H5/2)-(H2H2+H4H4)) 

H8=1/H6 

RETURN 
xne 

ROUTINE 10 

C=0.01 

6)D=o 

LI=0 

H10=0  

H11=0  

JUMPDOWN (R
9
) 

Hir-H5  

3)D=D+c 

/0JUMPDOWN (R
9
) 

JUMP 101-15>F1  

H10=D  

1)JUMP2,1 1.1>H5  

H11=D  

2)JUMP5,1,..1 

H13=H12(19-H5)  
JUMP5,1113,70 0 
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C=C/10 

JUMP 6 

5)LI=L1 +1 

JumP701,1 >29 

Jume5/1-110=o 

JumP3,Hil=o 

D=0.5H10+0.511  

B0=0MOD(FI-H
5
) 

JUMP41B0?.0.00001 

JUMP 8 

7)NEWLLTE2 

CAPTION 

Ll>29 

PRINT(H10)1,6 

PRINT(H11)1,6 

8)NEWLINE 2 

CAPTION 

PORT PAD = 

PRINT(D)1,5 

PRINT(1000/D)1,O 

CAPTION 

(OHMS) 

NEWLINE 

PRINT(H
2
)1,5 

PRINT(H4)1,5 

PRINT(H
5
)1,5 

PRINT(H6)1,5 

PRINT(H8)1,1 

PRINT(4.340L0G(H8))111 

NEWLINE 2 

RETURN 
xx 
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(APPENDIX D) 

UNILATERAL POWER GAIN AND RESISTIVE EMBEDDING 

The unilateral power gain can be written in terms of impedances 

as, 

1 
	Z, 12  Z - 21 	 2 	 (D1) 

4(R11222 212821)  

When a resistor is connected in series with the common lead, a new 

value of U is obtained: 

Ut (D2) 

 

4 (R114-Rf )(R22+Rf )-(812i-Rf)(R21+Rf) 

Since the numerator of (D1) is the same as that of D2), the only way 

in which Ut could be greater than U is for the denominator of (D2) to 

be less than that of (D1). 

As IP on (Rn+q) (R22+Rf)-(R12+Ri)(221+R1) -› 0 . 

In the limit, 

R. = R12R21 R• 11R22 (D3) 
R114-822 R• 12 -R21 

When R. = co , U cannot be increased by Z-mode lossy embedding. Under 

these conditions, 

R11 	R22 = R12 R• 21 
	 (DLE) 
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Substituting in (D1), 

U . 
-- Z1, 12  

21 	.L.2 

11(R22 -R21)(R12 -222)  
(D5) 

Since U > U 
min' 

212 R• 21 > 	R11 4. R22 

Therefore, 

211 R• 22 - 212 - R21 < 
0 

Using the indefinite impedance matrix, 

Rll - R12 = R13m  
and 

R
21 

+ R
22 

= - R
23
m 

Therefore, 

Ril 	R• 22 - R12 - 221 = -(213 R23) = R33 
and 

R
33 < 0. 

(D6) 

(D7)  

(D8)  

(D9)  

(D10)  

(D11)  

It is concluded that: 

i) It is possible to increase the value of U of a device 

if R12 R21 > RI1 R• 22 (1.4" R33 < 0). 
ii) The embedding resistor 

R12 R21 - R• ll R22 

Ril -I- R22 - 2• 12 -R21 

for U to remain finite and positive. 

2The sign of the transfer elements of the indefinite impedance matrix 

have to be changed when they are removed and replaced in the matrix, 

hence negative R12  an d  R21° 

R
f (D12) 
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(APPENDIX E) 

SENSITIVITY OF GAIN TO VARIATION IN EMBEDDING ELEMENTS 

Variations in the embedding elements and their effect on the 

gain of the amplifier have not been considered in this thesis. 

However, results computed for a simple case of lossless embedding 

are given in Fig. El. The aim is to give a general idea of what 

the order of magnitude of these changes are. Fig. El shows a plot 

of gain against percent change in the susceptance Yf  for fixed 

values of the reactance Zf. 

It can be seen from Fig. El, that with a nominal Zf and a 

variation of +10% in Y
f/ the change in gain is 1.54 db whereas with 

nominal Y
f and a variation of +10% in Zf, the change in gain is 

0.82 db. 



215 

21.0 

.5  4-20.5 

Nominal 
Gain 

19.5 

1-k t o{  ?etc& 

2.040  
19.0 

010 

rx° 
Fig El Sensitivity of Gain to 
Variation in Embedding Elements. 

-20 -10 
10 Percent of Y- 
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APPENDIX 

SENSITIVITY OF GAIN TO EMITTER CURRENT AND COLLTZTOR VOLTAGE 

Changes in gain arising from changes in emitter current and 

collector voltage have not been considered in this thesis. This is 

because changes in the bias point results in changes in the point of 

operation of the transistor in the IGS; the theory then applies. 

Fig. Fl shows a plot of the point of operation of a transistor as 

the collector voltage and emitter current are varied. 



Fig Fl Loci of the Point of 
Operation of a Transistor with 
Emitter Current and Collector 
Voltage. 
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