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ABSTRACT

In this thesis, the two=port tuned amplifier is analysed both
in the conjugately matched and the mis~-matched modes, with the aim
of obtaining a set of conditions for the optimum gain~sensitivity‘-
performance of the amplifier,

The analysis is carried out in athree%ﬁmensional space
whose axes are the real and imaginary parts of the inverse of the
measure of non-reciprocity and the inverse of the unilateral power
gain. The actual power gain of the two=~port is represented by a
series of surfaces on each of which power gain remains constant.

Spreads in a batch of active two=ports are expressed in
terms of departures of a point from the surface representing the
power gain of the average two~port in directions parallel to the
axes, . Conditions are derived which express the maximum initial
departure from the initial average power gain in terms of tﬁe
initial spreads and the required average'pOWer gain; Thus it is
possible to test at the Qery outset whether a batch of two-port
active networks (transistors) can be used to build amplifiers given
the gain-sensitivity condition as 6 + AG, where G is the required
average power gain and /G is the maximum tolerable deviation.

Two basic types of feedback are suggested and their per-

formance vis-a=vis gain-sensitivity for various types of spread



Sl

in the four-dimensional space are compareds

Geometrical models are used to iliustrate the concepts
involved in the employment of thethree-dimensional space and the
movement of a pbint which represents a particular active two=
port network in the space with fecdback, Statistical methods
are used in processing data collected from a batch of transistors

and finally, the theoretical results are verified by measurement,
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Chapter 1

INTRODUCTORY BACKGROUND

1,1  INTRODUCTION

In order to study the behaviour of active networks, many
\

electrically equivalent circuits have been developed to illustrate

2 Relatively simple forms exist for specific

how they work.l’
applications but to make these at all realistic over a frequency
band or for general purposés, it has to be quite complicated. The
usefulness of equivalent circuits is limited in so far as it makes
relatively simple calculations of say gain of an amplifier in
which the active device will be used, an extremely lengthy
operationa

An alternative way of dealing with active devices is to treat
them as 'black boxes', that is to determine their electrical
properties in terms of applied voltages and currents at its
terminals at a particular frequency thus évoiding involvement in
the inner workings of the devv:i.ce.}.'6 The electrical properties
are usvally defined in the form of 0pen-circﬁit impedances (z=
parameters), short-circuit admittances (y~parameters), or a mixture
of the two which is generally described as hybrid parameters., Other
characterizations exist for special purposes such as a= and b=

7

parameters for cascade connection.
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A two-port network, as the name implies, is an electriéai
network which has two 'ports'! or terminal pairs., One pért is
described as the input port and the other as the output pbft; A
- port is any pair of leads in the network through which current,
voltage or power can be fed or cxtracteds -Normally, the signal
obtained from the output port is a transformation of what goes
into the input port. A large number of clectrical networks fall
under this classification, for example, transmission lines, filters,
amplifiers and attenuators.

A large number of two-ports have only three terminals, Thus
the input and output ports have to share a common lead which is
normally, but not necessarily, connected to ground. The transis=
tor is one example of this groups, The mathematical techniques for
dealing with these three-terminal two-ports include the use of
matrix algebra.8 The device can be represented by a 3 x 3 matrix
which does not indicate which of the three terminals is the common
terminal, To obtain a particular configuration of the two-port,
the row and column representing the appropriate common terminal is

9

removed and what is left describes the two=-port completely.

1.1.,1 Sensitivity

Sensitivity problems arised in every field of engineering,



It is impossible to manufacture ddentical parts to be used in any
system and therefore the designer must take into account the
ultimate effect of the imperfections of the elements which make

up the system, For example, the designer cannot afford to design
an amplifier and then discover that when a batch of these are
built in the factory, some of them give a gain of, say, 30 db,
others give only, say, 10 db and worse still others become unstaoble
and oscillate, just because the elements used have tolerances on
their nominsl values.  The problem of sensitivity is therefore

a problem of the cumulative effects of tolerances on the response

of the system as a whole,

1.2 CHOICE OF THE TRANSISTOR

In this thesis, the two—pért active network is taken td be
a junction transistor operating under conditions of small signal
and therefore in a linear fashion. Biasing is accordingly
arranged.

Quite apart from the ordinary advantages of using transise—
tors as active devices such as small physical size and low power
consumption, the transistor has a finite input impedance and even
at low frequencies it is ncm--unilad:eral.10"13 These two properties

of the transistor make it a good choice for a general study of
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two=ports ns the conclusions reached can be made applicable to other

two-ports by setting the appropriate parameters to zero or infinity..

1.3 HISTORICAL BACKGROUND

In 1929, Strecker and Feldtkeller5 published a paper in
which they analysed two=~ports by means of matrix algebra. Three
years later, Baerwa1d6 carried the work of the two gentlemen
further by showing its application to various passive bilateral
networks. The next significant work was published by Guillemin3
in his book on communication networks in which he dealt with among
ofher things the inter-connection of two=ports. Seven years
passed before PetersonlLF extended the matrix algebra technique
to active noh—bilateral two=~ports. .

The name *two=port' was first used by Wheeler and Dettinger15
in connection with a superhetrodyne convertor but has come to be
accepted as adequate description for' a large number of circuit
units and elements.,

Early attempts to use the transistor for amplification were
hampered by the non~-unilateral nature of the device i.e..the
existence of internal feedback in the transistor. With some

values of intermal feedback,  passive terminations at the ports

can make the two=port oscillate.. TFurther, the internal feedback
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made the input impedance a function of the output impedance thus
complicating the problems involved in cascading ampiifiers since the
‘tuning of the previous stages affected the tuning of subsequent
stages. lMany workers therefore attempted to unilateralise the

10-13

transistor before using it in amplifier circuits. But

unilateralisation was not easy to achieve and among other things
required an ideal transfonner.16 Several workers have since shown
that unilateralisation is unnecessary for stable 6peration of a
two=-port amplifier.13’16’l7

In 1946, Robert518 derived an expression for the transducer
gain of the conjugately matched, as well as the arbitrarily ter—
minated two-port. In 1961, Venkateswaran and Boothroyd19 showed
that the power gain expression for the arbitrarily terminated an&.the

conjugately matched two-port amplifier maintains the same form in all

matrix configurations. Thus the transducer gain

2
_ 4 pg pr | Py
B
: l(pll * pg)(pay * pp) = PPy

Gy

where p = p + jo and p can be in the form of Y-, Z=~, h=, or g-

parameters, Lathiao and Rollettzllater derived the same expression.
The problem of stability which was mentioned above will now

be discussed in a little more detail, In 1933, Gewertz37 published

the results of his work on reciprocal two-port networks in which

he derived a condition for stability of the form,
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RipRp = B3 > O

where the matrix of the two-port is of the form,

IR T Ba *

Ry + 325 Bop + 35

In 1952, Llewellyn22 extended Gewertz's condition to cover non-

reciprocal networks, Llewellyn's conditions were:

By >0
R, >0
and
: 2
By Rop + X Koy MRy Ry = Ry Ry ) = (R Xy = Ryy¥pp)™ > 0
In 1956, Bahrs36 derived an expression for the margin between the
point of operation of a potentially unstable element, in a stable
mode, and instability, which he called p. When p was greater than
unity the device was &table., This was one of the first attempts to
attach a numerical value to how far a device is from instability.
In the following year, Stern26 derived the same condition but

in a slightly different form. This has come to be known as 'Stern's

stability criterion' and it is generally written in the form,

2P P
1 P2 oo
ky = v > 1 for stability
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where  p; = pyy tp, and  py = puyy F Py
and

o= fue g | - 'Plzpall

In 1961, Venkateswaran derived what he described as the 'invariant

stability factor! Si where,

_ | "2 .
S = e */ng -2
and
2 Pyq Pop ~ M

My ° 7
As before, when Yhi is greater than unity, the two~port is said to be

inherently stable, that is, no pair of passive terminations can be

found which will make the two=-port oscillate, When V%i is less than

unity, the two=-port is said to be potentially unstable and a pair of

passive terminations can be found which will make it oscillate. This
stability factor appeared invthe work of several authors as different
symbols. For example Lathizo called it the ‘invariant stability
. figure! and used the symbol ¢i° Aure1124 gave it the symbol k, and
Linvill and;Schimpf25 called the reciprocal of *11 the 'critical
factor', C.

In order to ensure that the two~port will not oscillate under ail
conditions of passive termination, although the two~port itself might

27

be potentially unstable, Venkateswaran“>, Singleton and Scanlan®’ have

shown that the value of Y}i can be increased by the addition of
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resistive elements at the input or output or both ports of the device.
The device together with the 'pads' as they are generally called, can
then be treated as a new device which is inherently stable,

An alternative way of dealing with the problem of using-
potentially unstable devices to produce useful and stable gain is to
choose the resistive parts of the source and load such that Sternt's
stability criterion is satisfied, Venkateswaran and Boothroydl9
using this technique derived an expression for power gain incorporating

20 and a little later Spence28

a 'performance factor! n, Later, Lathi
independently introduced the concept of 'skew factor' as a measure

of the departure of the resistive part of the ftermination from the
optimum determined by the choice of the performance factor n.

In order to discuss later developments, it is convenient to
leave the design aspect for the moment and to introduce some achieve=-
ments in the more theoretical aspects of the active network,

For a two=port to provide useful power gain, it must be ‘Yactivel,
Mason®? has shown that the unilateral power gain (U) of a device must
be greater than unity if it is active. Mason also showed that the
numerical value of U remained the séme even with the chaﬁge of the
common terminal and that if the device is embedded in a lossless enw=
vironment, U remained unchaged, Mason's U has been widely used in
connection with two=port amplifiers and oscillators. Meadows and
DasherBO have extended the concept of U for application to n=port
networks,

Shekel31 developed the idea of gyrators from the ideas of



T

TellegenBZ. Since a two=-port active network is only partly unilateral;
Sheke131 separated the unilatef%i'part of the device, which is the
gyrator, from the bi—léteral part which represents the reciprocal

part of the device, Iﬁ_its admittance form, it consists of a delta
of passive bi-latcral admittances whose nodes are connected to the

three terminals of the gyrators '

As it is not possible to mangfactﬁre exactly identical components
by the same industrial process, nominally identical devices have
differing responses to the same stimulus. The study of sensitivity
is aimed at reducing the differences between the responses of the
individual devices of the same batch. Passive elements are relatively
easy to manufacture to a close tolerance. For example, in the manu~
facture of capacitors, the two most important parameters which have
to be controlled are the areas of the plates and the thickness of the
di~electric and these are not very difficult to control, Active
elements, however, are usually influenced by a large number of para=
meters some of which are not readily controllable in the manufacturing
processes. For exampie, the response of a transistor depends on a
.large ﬁumber of parameters of which the doping level in the emitter,
base and collector, the areas of the junctions, the thickness: the base
afe but a few.

Linvill and Gibbons > approached the problem of sensitivity
by considering changes in the values of the matrix elements.\ The
hybrid parameter hal,vwhich they assumed to be real, and which exhibited

the largest spread, was used to estimate the spreads in the three other
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h-parameters. Quite apart from thec assumption that the hybrid para=-
meters were real, Singhakowinta34 has shown that this approach is
unsatisfactory as it involves lengthy calculationswhich have little
or no relationship to reality. Lathi'sao work on sensitivity was
done from the point of view of variation in the values of the physical’
equivalent circult of the transistor and he reached a number of
empirical conclusions that gain-~sensitivity performance can be
improved by reducing the impedance of the input mesh, increasing

the impedance of the output mesh or by adding an impedance in series
with the common lead. (In the common emitter configuration, this

is called emitter degeneration).

In 1964, Singhakowinta and Boothroyd35 derived an expression
which related the power gain of an active two-~port to its non-
reciprocity (Yél/Yla) and its unilateral power gain (U),

% - 5, [°

where U = : e
4 [Re(Yll)Re(Yag) - Re(Yla)Re(YZI)]

The importance of this contribution lies in the fact that it became
possible to reduce the number of parameters to be considered in the
design of conjugately matched amplifiers to three, namely, the real
and imaginary parts of the reciprocal of the measure of non-reciprocity
(Ap and RI) and the reciprocal of the unilateral power gain (1/U).

3k

Due to the simplicity of the approach, Singhakowinta” ' was able to
meke athree-dimensional model which displayed the three parameters

mentioned above on the axes and a series of surfaces each of which
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represented a constant value of conjugate matched power gain,

3h

Singhakowinta” represented the spread in the parameters of a
batch of transistors by a group of points in the three-dimensional
space, and by enclosing them firstly in a cylinder and then in a
sphere, he was able to indicate on a normalized chart, areas in
which improved sensitivity performance could be obtaihed.

In order to achieve the improved sensitivity performance, it
is necessary to move the points of operation of the batch of
transistors from one area to another and this is done by embedding,
On a normalised chart, lossless as well as lossy embedding moves the
points in a straight line. In terms of the space model, lOSSiess
embedding moves the points of operation in such a way that the values
of 1/U remains unchanged, Port~padding on the other hand leaves KR
and A; unchanged while altering the value of 1/U,

As Singhakowinta's work immediately preceeded the present work,

it is often referred to in this thesis.

l.4 FORMULATION OF THE PROBLEM

34 which

There are several defects in the work of Singhakowinta
need to be rectifieds His assumption that the spread in the ‘'inverse
gain space! can be enclosed in some arbitrary geometrical volume and

the use he made of normalized charts tended to confuse rather than

elucidate the advantages of this new approach to semsitivity, and there
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is a need to replace it by simpler concepts and techniques.

Secondly, it has been known that when negative feedbaék is
applied to a batch of devices, such as transistors, which exhibit
spread in gain, then the result is to reduce the spfead in gain. It
is also common knowledge that the reduction of the spread in gaiﬁ is
paid for by the loss of average gain. What is not known is the
precise relationship which exists between the improvement in sensi-
tivity performance and the loss of average gain, A knowledge of this
relationship should give an indication of the methods to be used in
the synthesis of embedding networks which will optimise the gain=
sensitivity performance of the devices, |

Thirdly, several stability factors have been mentioned above
which purport to measure how far or how near a device is to
: instability,27 i.ec. the gencration of oscillations. The implication
here is that say, a transistor which has an 8, value equal to 4 is twice
as stable as one with an Si équal to 2, or indeed that the former is
more stable fhan the latter. .Stability factors as measures of |
stability need to be carefully cxamined.

Mason's U has over the years come to be associated, and in some
cases become synonymous, with activity. There is need to show how
far Mason's condition for activity, hamely, that U must be greater
than unity, is valid especially with reference to the manner in which

U is connected to the theory of conjugately matched amplifiers.
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1.5 DRESENT WORK

In the present work, gain-sensitivity performance of linear
active devices is made the main theme., The emphasis is on being able
to predict, from a knowledge of the positions of the points of opera-
tion of a batch of transistors in the inverse gain space whether a
specified gain-sensitivity performance can be achieved and what kind
of embedding can be used to achieve it,

The problems outlined in Section 1.4 are discussed and solutions
are suggesteda’

A new concept of the 'average transistor' is used in the design
of embedding networks and in the choice of source and load impedances,
Given a batsh of transistors, there can be no guarantee that one of
the batch will exhibit average properties all round: one might be’
found which will have average gain but with nop—averége input or
“output impedance, for examples, This problem is solved by the applica=-
tion of statistical techniques.

Digital computers are used as aids to the design of embedding
networks, to perform various types of calculations and also in the
analysis of statistical data collccted from the transistors used in
this work. Apart from speed and accuracy, computer techniques offer
the advantage of using the programs developed during the course of this
work for a wide range of applications. Some of these programs will
be discussed in detail later.

As general design guides, experimental results are presented
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which relate the effects of the spread in the passive embedding
elements to changes in gain-sensitivity performance. The changes
in response due to changes in emitter current and collector voltages
are also given.

This work does not deal with gain-sensitivity duc to changes

in temperature, mechanical vibration and stresses, radiation or ageing.

1.6  ORIGINALITY

Except where references have been made to the work of others,
the work prescnted in this thesis was carried out independently by the
author andyto his best knowledge, the conclusions recorded in the last

chapter are original.
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Chapter 2

GAIN -~ SENSITIVITY RELATIONSHIP

2,1  INTRODUCTION

When a batch of transistors of the same type are used to build
nominally identical amplifiers, it is highly improbable that the
amplifiers will give identical gain. This is because each element
used in the construction departs slightly from its nominal value.

In general, the departure in passive elements such as capacitors,
inductors and resistors are slight and the factors which affect

their values are relatively simple to analyse and control, For
example, the capacitance of a capacitor is basically controlled by the
thickness and permittivity of its dielectric and the area of its plates.
Therefore, spreads in passive elements used in an amplifier circuit

are unlikely to affect the performonce of an amplifier adversely,

This suggests that the differences in the gains of the amplifiers are
due largely to the differences in the transistors.

In order to study the effect of the changés in transistors on
the gain of the amplifiers, it is necessary to eliminate the changes
in gain due to changes in the passive clements in the circuit. To
do this it is necessary to design an amplifier such that the transistors
can be changed easily. Since it is assumed that all the transistors

in the batch will be conjugately matched, it is necessary to make the
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resistive as well as the reactive parts of the terminations tunable.
For a batch of 20 p-n=p planar silicon transistors the results of
measurements are shown in Fig, 2.la.

When negative feedback is applied equally to all the transistors
in the batch, it is well known that the differences in gain will tend
to diminish and also that the average gain of the whole batch will
decrease., Fig. 2.1b shows a typical effect of connecting a single
resistor between emitter and collector (Y-feedback) of the common-

base amplifier,

2,2 DESIGN REQUIREMENTS

When a designer is presented with a batch of transistors and
asked to build a set of amplifiers which satisfy the gain condition
given in the form G + AG db, he should be able to determine on the
basis of the scatter of the small signal parameters:

a) vhether it is possible to satisfy the conditions

b) what type or types of embedding are necessary to achieve
the requirements.

In making his choice of embedding he must take into consideration the
following important points,

i) The design procedure should be as simple and accurate as
possible,

ii) the resulting gainwsensitivity performance should be as close

to the optimum as possible (i.e. maximum possible average gain with
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minimum possible gain spread).

iii) the number of embedding elements should be the minimum
possible thus reducing the cost of manufacture and increasing
reliability.

The answer to question (a) must be obtained before starting
the design. - In order to clarify the position further, the problem
will be put in numerical terms.  Supposing that we have a batch of
transistors which give a natural average pain of 25 db with a spread
of + 3 db and that for our purpcses + 3 db spread is more than we
can tolerate and further that an average gain of 23 db and a spread
of + 1 db will satisfy our requirement, The question is, if we use
negative feedback to reduce the spread from + 3 db to + 1 db will
the average gain then be greater or less than the required 23 db?

If the answer is: greater than 23 &b, then we can proceed with
the design., If the answer is less than 23 db, we either have to
relax the requirements or, failing that, to reject those of the

transistors which give extreme values of gain.

243 CONJUGATE MATCHED GAIN OF TWO~PORT

For a two=-port which is inherently stable or made so by
embedding, Singhakowinta and Boothroyd’” have shown that the following

equation holds:

la - 1]
- ] (2.1)

e



This equation expresses the conjugate matched gain G in precisely three
terms, namely, the complex measure of non-reciprocity 4 (i.e. Y21/Y12)

and the unilateral power gain U,

2s3.1 A = 1/U Space (Inverse Gain Space)

Because equation (2.1)\involves four parameters, Singhakowinta34
was able to construct a three dimensional space model to represent it,
He chose to use the inverse of the complex measure of non-reciprocity
(iees ¥,./¥,) = 1) and the inverse of the unilateral power gain 1/U
as the axes. Thus he obtained a family of surfaces each representing

a particular value of gain,

Equation (2,1) can be written in the form,

U , 1 =2 12
g --——————-' - GL!E . (2.2)

It can be shown that if U » 1 and 1 )ll! , then,

A+ (g - 1/8)° - 1/6U = 0. (2.3)

The assunptions that U 33> 1 and 1 33>[2 | are valid as typical
values are about 100 and 0,003 respectively.

From equation (2.3) it can be shown that a plane of constant
1/U cuts the constant gain surfaces in circleé, as shown in Fig. 2.2a,
and that a plane of constant XR cuts the constant gain surfaces in
hyperbolaee as shown in Fig. 2.2ba

Since we are interested in the conjugate matched gain, it should
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be possible to incorporate one of the stability conditions and then
confine our attention to the inherently stable region of the four-~

dimensional model.

1 (which is the same condition

i}

It can be shown that when Si

as k, = 1),

x% - (1/20)? - AU =0 (2,4)

Equation (2.4) represents a surface which scparates the inverse gain
space (IGS) into regions of inherent stability and potential instability.
This surface cuts a plane of constant 1/U in a parabola and a plane

of constant XR in a hyperbola represented by:

Ao - (1/20)% - kU = o, (2.5)

where k is a constant., When k = O, the hyperbola degenerates into

two straight lines given by:

A= o+ (3/2v). (2.6)

The boundary is shown in Figs. 2.2a and 2.2b., Fig. 2.3 is a model
illustrating the stability surface broken to show three constant gain
surfaces, |

From now on, we shall confine our attention to the stable region
of the inverse gain space and unless otherwise stated, conjugate

matched gain will be referred to simply as gain.
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26342 Embedding in the Inverse Gain Space (IGS)

One of the advantages of working in the IGS is that when the
transistor is embedded (i.e. feedback is applied to it),bfhe resulting
change can be represented approximately by a movement of ‘the point of
operation in a straight line to'a new position, The difection and
distance moved depends on the type of embedding used, the nature of
the embedding elcment and the value of the element.  These will be
explained in detail. '

Considering only lossless embedding for the moment, there are
two types of simple cmbedding, namely 'Y! mode embedding or fecdback
and ‘2! éode embedding, These two types of embedding are shown in
Fig. 2«4 and their corresponding matrices are giﬁen. The third possi-
bility of connecting a reactive element across the input or output
port hastﬁgen considered as it is assumed that the reactive part of
the port‘immitanceé“will be tuned 6ut (i.c. conjugately matched).

Since the gquantity U is invariant to lossless reciprocal
embedding, the effect of such embedding can be considered as a move=
ment in a plane of constant 1/U, Fig. 2.5 shows such a section, If
the point of operation of the transistor is originally at a point
such as M, then Y-mode embedding might move the point of operation
along a line NML. The direction of motion depends on whether the
element used is a capacitance or an inductor; an inductance moves
it in the direction of N and a capacitance moves it in the direction
of L. The distance moved in the directions shown depends on the

value of the inductance or capacitance usecd. The distance moved is
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linearly related to the value of suséeptance or reactance of the ele-
ment, (i.c. if 50 pF moves it a distance of 2 cms then 100 pF will
move it 4 cms.). Zr-mode cembedding moves the point of operation
along a line PMK. A capacitance will move it in the direcfion of P
and an inductance will move it the direction of K.

A combination of Y- and Z-modes of embedding can, in general,
be used to move the point of operation to any point on the plane of
constant 1/U, such as Q.

The use of lossy elements (i.e, resistive elements) in embedding
circuits have the common effect of changing the value of 1/U, In
addition to the two types of embedding alrecady considered, a third,
namely, port-padding can be used. These are illustrated in Fig. 2.6
with the appropriate matrices, Y-ﬁqde resistive embedding might
move a'point of operation such as M in the direction of P. It should
be noted that this movement is not in the plane of constant XR as
shown in Fig. 2.7, in which the locus of motion is projected onto the
constant KR plane for siﬁplicity. As before, the distance moved is
linearly related to the value of the resistance used. Z-mode embedding
might move the point of operation from M in the direction of N, Again
this movement is not in the plane of constant XR‘ It should be noted
that the value of 1/U is decreasing as the point of operation moves
from M to N. This type of movement is subject to a number of con-
ditions which will be discussed in detail in Chapter 3. Port padding
has the interesting property of altering the value of 1/U while leaving

KR and KI unchanged.  Thus the motion is in the plane of the paper



and parallel to the 1/U axis, There are two types of port padding
namely, Y-mode padding in which the resistive element(s) is connected
across the input and/or output port(s) and Z-mode padding in which the

resistive element(s) is connected in series with the lead(s).

2.4 SPREAD IN THE INVERSE GAIN SPACE

Supposing we measured the gains of a batech of transistors and
found that they were all of the same value,rwe can draw one of two
conclusions, namely that all the transistors operated at the same point
in the IGS or that they operated at different points in the IGS but
on the same gain surface, The first case is mosf improbable and can
be dismisseds The second while being highly unlikely illustrates
one point and that is, when the points of operation of the transistors
have been plotted in the IGS, it is possible to 'see! an apparent
spread in the points when in fact no spread in gain exists.,  In terms
of equation (2.3) the three parameters, XR’ KI and 1/U can be altered
while 1/G is kept constant,

In general, if we measure a batch of transistors and compute the
values of Ap, Ay and 1/U and proceed to plot them in the IGS, we shall
find that there will be considerable spread in the values of the cow
ordinates of the points, Fig., 2,8 show typical spreads projected on
to planes of constant 1/U and Ap respectively, Now, if we compute the
average gain of the batch of transistors and locate the constant gain

surface which corresponds to it, we should find that the surface goes
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through the points separating those of higher~than-average gain from
those of lower-than-average gaig. Those with average gain will
naturally sit on the surfacse, The higher-than-average transistors
will be on the convex side of the constant gain surface and those with

lower-than-average gain will be on the concave side.

2.4,1 Definition of spread in the Tnverse Gain Space

The transistof with the minimum gain in a batch operates at a
point such as j, as shown in Fig, 249, and has a value of gain equal to
Gj' If lines are drawn parallel to the axes from j to the surface
representing the value of the average gain and these meet it in the
points i, k, and 1 then, because i, k, and 1 are on a constant gain
surface, Gi = Gk = Gl. It is clear that if we had transistors
Operatiﬁg at i, k andil, although there will be considerable spread
in KR’ KI and 1/U, theré will be no spread in gain between them.,  The
reason Gj is differént from Gi’ Gk? G1 is that it ‘sitsf on a c;nstant
gain surface which has a different value., Thus as we move from say
1 to j, we would go through constant gain surfaces representing gains

of values lying between G1 and Gj' We can now define spreads in the

inverse gain spacT as:

Alg = A = (2.7)
AV L S 5 (2.8)

A/u) = (1/‘0)j - (1/U)i (2,9)
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where the suffices of XR’ XI and 1/U refer to the values of these para=

meters at the points. From (2.3)

2 2 _
At O - 1/6,)° - 1/6T, =0 (2.10)
3 1
2 2
A+ Qg =1/
-.n l/Ui = L = - " (2011)
1/G

Now, from (2.9)

2 2
in + (xRi - l/Gi)
ANQ/Y) = 1/0, -
J 1/G.
1
2 2
1/GiU. =AM - Op - l/Gi)
J i i
= (2912)
1/Gi : ‘ :
But Ap = Az TApand A=A = A
i ] i 3

Therefore, in general,

2 2
l/Gin =M - (xR - 1/Gi)

A)\.R = (2-13)
2(1/Gi - Ag) :
Similarly,
: 2 2
/6.0, - AS - (A, - 1/6.)
Ary = i L. R = (2.14)
~ 2y
and
2 2
1/6.U, = A =\, -1/G.)
AQ/u) = = R = (2.15)

l/Gi
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The above parameters will be referred to as the spreads in the co=~
ordinates of the point of opcration of the transistor, Fig. 2.9 shows

a physical representation of the spreads in a three~dimensional model.

2.he2 Sensitivity factors in the Inverse Gain Space

The definition used by Hokimi and Cruz38 in a study of the effect
on the response of a multi-parameter system of a variation Ap in the
parameter p was f%?gg » AR being the change in response resulting
from Ap.

Using this definition and starting from (2.3), it can be shown

that,

>
n

i AU+ (1/20)% - (1/pR)2 (2.16)

(li * “i * lI/“i)Z

(A + 1/20)° (2.17)
g+ 23 + 2np/ug)

xg = AU+ (1/20)% - (/2 ”(1/U))2 (2.18)

where Hp = agli ’ (2.19)

-4 (2.20)

B
R axR

3G/G

are the sensitivitics to gain (or sensitivity factors) in directions

parallel to Ap, Ay and 1/U respectively.
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It can be seen from (2,16) that for constant values of Hps &
family of surfaces can be drawn in the IGS, This is also true of
by and pey gy in (2.17) and (2.18)., By inspecting (2.16) and (2.18),
it can be seen that gain is twice as sensitive to changes in XR as
in 1/U, Further, when Bpe By and g 47) are equal to infinity,

(2.16), (2,17) and (2.18) reduce to,
o= AU+ (/20)? (2.22)

which is the same as (2.4) and therefore the condition that
Si = ki = 1 is identical to equating the sensitivity factors to
infinity. The relationship between sensitivity and stability will
be discussed in detail later.

The above suggests that a three=dimensional approach in which
spread in gain due separately to XR, XI and 1/U is considered offers
distinct advantages over Singhakowinta's method34 of treating the

spread in A as a circular spread and then dealing with the spread in

1/U separately.

244,33 Changes in Gain

In section 2.4.1 we obtained expressions for the spreads in
directions parallel to the coordinate axes, In section 2.4,2,
sensitivity factors in directions parallel to the axes were derived.

We can now combine the two in order to obtain expressions for the
changes of gain which occur as a result of movement in the inverse gain

space parallel to each oxis in turn.
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Sensitivity factor was defined as é%fﬁéi o To a first order
of approximation,
A
Nete = =& | Ap (2.23)
FANS
Therefore,
Da
XS = == = 8
RPR k due to KR R
2 2
1/Gin A - (7‘12, - 1/Gi) . 1/(;:.L
s - J i
) 2 2~y /a.)
(1/G, =2, )AL + 222 - 1/G.U, ~ 27 /G,
i Rj Rk Ij i7j Rk i
(2,24)
and
De
OMbr | = = 5
due to KI
2 2
7\11 l/Gin -M - ()\R. - 1/Gi)
S = - J ]
I 2 2
2 (7‘3. + A ) - Mg _/Gi -1/2 Gin
J J 1 J
(2.25)
and . Zl :
G
A1/u)p = == = 8
(1/v) i G due to (1/v) (1/v)
2 2
l/Gin - 7\11' - (xRi- 1/Gi)
S/ = S 5 (2,26)
2 ij + ij - 7LRj/Gi - 1/2Gin

From Fig. 2,9 it can be seen that movement from i to j should result in
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the same change in gain as movement from 1 to j or k to j. This
means that the change in gain resulting from movement from the average
gain surface to j is independent of the path taken., Thus

k 1 i
J[ ppdag) = Jf pratry) =jf p(l/U)d(l/U)

J J J

(2.27)

AG

If we caleulate the partial differential asp/ap where p is
consecutively Ap, Ay and 1/U, and equate the result to zero, it should
be possible to locate any turning points which might exist in the

directions parallel to the axes of the IGS.

;. 0 gives a turning point when Ay, = o , (2,28)
axR R
asI
e~ 0 gives a turning point when XI =0 and  (2.29)
I
% (1/1)
71—%,—;= 0 gives a turning point when 1/U=0. (2,3C)

The result of (2.28) is not interesting since a turning point at
infinity cammot have much practidal valuea Equation (2.29) however
shows that a turning point exists on the plane of symmetry of the
inverse gain space. A second partial differential shows that SI has
a minimum turning point at A = 0. This means that the change in
gain resulting from small movement in a direction parallel to the XI
axis is a minimum when A; is equal to zero.  Equation (2430) like

(2,28) does not give any interesting result since U has to have an
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infinite value in order to obtain the turning point.

The same conclusions can be drawn from Figs. 2.2a and 2,2b, From
Figs 2.22, it can be seen that the constant gain lines cross the XIK
axis at right angles since they are circles and their centres are on
the KIlaxis. Therefore a small movement from the XI axis at right
angles to it will produce virtually no change in gain. This is not
the case if XI is not equal to zero in the first place. Since the
axis is a line of symmetry, a turning point must exist on it and this
turning point must be a minimum. Therefore one of the conditions
for optimum gain~sensitivity performance is that KI = 0,- This
result was arrived at by Singhakowinta using a different method,
From Fig, 2,10 it can be seen that the lines of constant gain have
no turning points on them in the directions parallel to the axes.
However, movement in directions parallel to the Ap and 1/U axes which
result in improved gain=sensitivity will be discussed when embedding

networks are considered.

2»5. CHANGE IN AVERAGE GATN -~ CHANGE IN GAIN SPREAD

The dependence of change in gain spread on change in average gain
was mentioned briefly in section 2.2. We shall now discuss this
dependence in some detail,

In Sectién 2,443, it was concluded that the change in gain
resulting from movement in the inversc gain space from the average

gain surface to another point in the space was independent of the path
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taken, Bearing in mind Fig. 2.9, we can write, to a first order

of approximation,

G| oy o - ] sow
k 1 i

(2.31)
The above equation is similar to (2,23) but instead of taking the
partial differentials of gain with respect to XR’ KI and 1/U, the
partial diffcrentials of inverse gain have been taken. This is more
convenient as the basic relationship between gain and the parameters
of the inverse gain space given by equatioh (2,3) involves 1/G rather
than G.  The value of the differentials are evaluated at the points
k, 1 and i since these give average values for the whole batch of
transistors.

Since G, = G = Gy ond G > Gj to a first order of approximation,

1 1 a(1/G)

ol e N R (2.32)
i g R K

1 1 3(1/G

ol R R (2.33)
i B I 1

1 _ 1 . 2a/) |

G, = G 3?1557 5 AQ/w) - (2.34)

Rearranging (2.34),

g 1 G) . A/ = é - é which we define as A(1/G).
i 3 i

(i.e. change in inverse gain between points i and j).

From (2.3) we obtain the partial differential



g_&%)f R -l/ng- SV (2.35)
Thereforc,

a1/6)  _ 1/6, (2.5%6)

a0/, 2/6, =~ 2hy = 1/0,

Substituting in (2.34) and recalling (2.15), we get

2 2
l/Gin ~Ap = Qg - l/Gi)

A@i/eg) = , (2.37)
2/G; = 2np = 1/0,
From Fig. 2.9,
-1/Uj = 1/Ui +  A@/u)
2 2
A+ (A, = 1/G, )7+ A1/v)/a,
= I R 1 1 (2.38)
1/Gi

Substituting in (2.37) and leaving out the suffices where they refer

to the point j, and at the same time recalling (2.11), we get

AG/G) D/ (2.39)
= 2039
2 2 2
l/Gi - (7‘3 + 7‘1)

We have now obtained an expression for the inverse gain spread,
A(1/6), in terms of Ap, N, the averoge natural gein, G, and the
spread in ;/U, A@/v).

Starting with (2.32), on expression can be derived connecting
the spread in inverse gain, N(/a), wiﬁh the spread in KR’ZS}TP and

the natural average gain Gk‘ This relationship can be shown to be:
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Aar) = A/ (2.40)
1/'Gk o = Al

Equation (2.33) can be used to relate [3(;/G) to Ay, but then
there appears to be little point in doing this since one of the
conditions for optimum gain=-sensitivity operation is that XI should
be equal to zero and further it has been pointed out in Section 2.4.3
that the sensitivity of gain to changes in KI in the vicinity of the
A = O plane is very low. |

So far we have not considered any particular type of embedding
network which will make equations (2.39) and (2;40) realisable, We
shall now consider possible embedding networks that can be used in the

amplifier circuit.

2+5s1 Lossless Embedding

Lossless embedding has the property of leaving the value of U
unchanged, From Fig. 2.11, therefore, if we have one transistor

operating at i. and another at jl and we use lossless embedding to

1

change their value of Ap to zero, since their values of 1/U remain

constant, the spread /A\(1/U) remains constant and the transistors

which operated at il and jl will now Operatekat i2 and 52 respectively..
Assuming we wish to operate the transistors at A= 0 (which is

a condition for optimum gain-=sensitivity operation) then we can now

move the point il along a line parallel %o the Ap axis on the KI =0

plane until it intersects the line of constant gain which has the same



value as the desired average gain, If then the value of XR is X,
the required average gain is Gav and the specified minimum gain is

Glo’ (2.39) then becomes:

N/) feE
AQ/e) = —— (2.41)
1/Gav - X
Now from (2.3) when A =0,
2 _ 1 . 2 1
av aﬁv av i
Substituting in (2.41) we get
AN@/v)/a,
Aa/eG) = & (2.43)

2/ GavUi - 1/Ui

If l/G10 - 1/Gav ;; A(1/G), the design specifications can be

satisfied using lossless embedding. Therefore,

1 1 A(l/U)/Gav
%10 Gav Z 2/A GavUi - 1/Ui
it |
1o av 2Al G _U. = 1/U,
av 1L 1

-

We have therefore obtained a condition which relates the required
average and minimum gain to the original spread in 1/U and the 1/U

of the 'average transistor!. Since these quantities are known
before the design is commenced, it is possible to apply the condition

given in (2.44) to test whether the specifications can be met.
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If instead of using the transistor with the lowest gain, we
use that with the highest gain, Gup’ it can be shown that

- )

1 A1/0) 1> . (2045)

Cov 2/ ‘/ G Ui - 1/Ui up

A few tests based on practical considerations are necessary to

confirm the condition given in (2.4%), As Gav > Gio’ the part
inside the square brackets has to be greater than unity.

That 1is,

aaM) > o (2.46)
2/ 1/ e U, -1/U,
A(1/U) is positive by definition and therefore the only way in which
(2.46) can possibly not be satisfied is when the denominator becomes

negative i.e. when

1 2 '
T. > W gi
i ]/ GavUi
Gy > . (2.47)

It can be shown that in the stable region of the IGS, gain camnot be
greater than 41, Since we are here dealing with conjugate matched
goin, (2,46) élways holds,.

There are two ways in which Glo can approach Gav‘ The first
is vhen /\(1/U0) approaches zero and the second is when both G, , and
Gav approach zero (i.e. when the average gain is zero and therefore

the spread is also zero). Both these conditions are satisfied by



~L4Qm

(2.44)., The above tests are equally applicable to (2.45),

2.5.2 Lossy Embedding (Port Padding)

The effect of port padding, is easy to analyse since it only
changes the value of 1/U and leaves both lR’ and 7\1 unchanged. From

Fig. 2,11, therefore, transistors operating at il, jl’ 11, and k1 will

operate at 13, j3, l3 and kg respectively. From (2:40), we obtain the
expression
2/
al_ > al_ R + 1| (2,48)
lo av 1/Gav oA - [EXR

using similar steps to those shown in cquations (2.41) to (2.44). The

counterpart of (2.48) is

——

2N ' -
1 R 1

——o— . + 1 > — ( 2 1.4.9)
Gav l/ Go.v + XR A'}\R = Gup

As before, G > G, therefore the part inside the square
~ av o

1

brackets in (2.48) has to be greater than unity. That is,

2 A -
/G + Rx = A > 0
R R

av

The quantity ZSKR’ by definition, is positive and therefore the
denominator must be positive i.e. 1/Gav + Mg ;} ZSKR. It can be
shown from (2,3) that Ay lies between 3/G  and =1/G__, assuming that
A = 0. In the case when A = wl/Gav, the point of operation of the

transistor is on the stability surface of the inverse gain space and

(2.48) breaks down, It must be noted however, that rekistive port-
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padding cannot; in gencral, be used to cause the transistor to become
unstable,

As ZXXR approaches zero, G10 approaches Gav (the point k, in
Fige. 2.9, coincides with j). Altcrnatively, as both G, and Gy
approach zero, the spread in gain will approach zero. The above

conditions are satisfied by both (2,48) and (2.49)¢

2+.5¢3 Y-mode Lossy Embedding

As was mentioned in section (2:3:2), Y-mode lossy embedding
changes the value of 1/U as well as that of A This makes it rather
difficult to analyse the performance of an amplifier in which this type
of embedding has been employed, A further disadvantage arises because
the condition for optimum gain-sensitivity operation, namely A =0,
cannot, in general, be satisfied by using Y-mode lossy embedding alone,
This means that some other type of embedding has to be employed in
addition to this, Such a circuit would not only be expensive but
unreliable as wells There are also a number of practical objections
to the use of Y-mode lossy embedding which will be discussed in
Chapfer L, For the rest of this work, lossy embedding will be

restricted to resistive port~padding.

2.5, Resistive-Capacitive Embedding

The use of capacitance and resistance only in the embedding

circuit will not be considered in detail here, as it is a special case
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which will limit the original point of operation of the two-port to
areas above the lR axis, (i.e. positive values of XI), It can be
seen from Fig. 2,5 that the XI = 0 can be satisfied only if the

transistor has a positive value of XI‘

2,6  LOSSLESS VERSUS LOSSY EMBEDDING

2¢6.1 'Ideal! Spreads

In order to study the advantages and disadvantages of lossless
and lossy cmbedding vis-a~-vis gain sensitivity performance, we can
consider three transistors located at the points A, B, and C as shown
in Fig. 2410, such that the gains of transistors B and C are equal,
the values of XR for transistors A and C are equal and the values of
1/U for transistors A and B arc equal. Thus the difference in gain
between transistors A and B is due exclusively to the spread [}lR and
that between A and C to the spread /A\(1/U), This is a case of 'ideal!
spread and it will be referred to as such.

Assuming that the spreads remain constant when the devices are
embedded to move through small distances about their present location,
~ then the point A moves to A', B will move to B' and C to C' such that
AAY = BBY = CC*, If instead, A is moved to A" such that the gain at
A' is equal to the gain at A", B will then move to B" and C to C" such
that AA" = BB" = CC", Since movement of the point A to A' can be
accomplished by using lossless embedding and the movement from A to A"

by lossy embedding (port-padding) the problem of comparing the gain=
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sensitivity porformance of the two types of embedding is reduced to
examining the gains at the points B!, B", C!' and C".
It is assumed that Ay is equal to zero for all the three

transistors before and after embedding.

2.6.2 Conditions Governing Choice of Embedding

Recalling (2.3) with A = 0, we have
Ay - 1/6)° = 1/aU (2.50)

This is the equation of a paraobola for which positive finite values of
1/U will be considered. From (2.50), the slope of the constant gain

lines is given by

s(1m) 2(ny = 1/6)
‘Siég' - 1/G (2.51)

Assuming a straight line approximation for the constant gain line

through A'A" we can write:
20, =1/,,)
~ RA' Al

S £ AYAT = = Slope of B'B"
lope o 'l/GA, ope o

The slope of the constant gain line through B' is given approximately

by
2(LRB' 1/Gg,)
/G5 .
For Mg, if
2(xRA‘ - 1/e,,) 2(xRB' - 1/Gg,)
> ,  (2.52)
1/G, 1/Ggy
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it follows from Fig, 2,1@ that Gy, > Gpne  Therefore movement
in a direction parallel tc the KR axis leads to improved gain-
sensitivity operation over movement in 2 dircction parallel tc the
1/U axis, that is, lossless embedding will result in a greater reduction
in the gain spread than lossy embedding. The incquality (2.52)

simplifies to,

Gy XRA' > G, xRB' . (2.53)

Similarly, for A/U), if Gy, > G,

G, KRA‘ > G, XRcv (2.54)

movement in a direction parallel to the 1/U axis results in a greater
reduction of gain spread than movement in a direction parallel to the
KR axis, that is, port-padding will lecad to a superior gain-sensitivity

performance.

2.6,3 Distribution of Points of Operation and Choice of Embedding

In the preceeding section, we derived conditions which govern the
choice of the type of embedding to be employed for reducing the spread
in gain arising from spreads in XR and 1/U, In general, a typical
batch of transistors will display both types of spread. We there=
fore have to decide in the light of the distribution of the points of
operation which of the two types of embedding is predominant i.e. what
type of embedding will reduce the gain spread of the maximum number of
transistors by the moximum amount with the highest average gain possible.

In order to determine which of the two types of ideal spread
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predominates in causing the spread in gain, we can sum the moduli of
the distances of the points of operation from the average gain surface,
Thus we obtain two quantities :E}[ﬁ(l/U) and :E}{SXR. From section
(2.4.2), it will be recalled that the gain of the device is twice as
sensitive to changes in XR as in 1/U. Therefore, the spread in gain
is caused by spread in 1/U if ZA(l/U) > 2 ZA Mg and the

appropriate type of embedding can then be chosen.

2.6.4 Port=Padding

As already stated, port-padding is the simplest way of reducing
the value of U without affecting those of XR and XI; We have a choice
of padding either the input and/or the output ports. We shall now
consider the advantages and disadvantages of the three possible com-
binations of port-padding in both the Y-mode and Z-mode.

Considering the two modes of padding, it is ohvious that the use
of both input and output pads has no real advantages. Firstly, the
introduction of two resistors in to circuit will increase the cost of
the amplifier and lower its reliability.  Sccondly, there is no
criterion to help the designer to decide the relative values of the
resistors at the input and output in order to obtain the required value
of U,

Non=linearity in the transistor emplifier arises mainly because
of the non=linear nature of the input characteristics of the transistor,
One technique of improving this is to swomp it with an external resistance

(such as the source resistancc i.e. mismatching). For Z-mode port=
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padding thercfore, the input seems to be the place to put it.

Amplifiers are quite often used in a cascaded chain and if losses
due to mismatch are to be avoided, the transformers have to be designed .
to couple them together, Since coupling transformers are casier to
design and wind whem the admittance ratio is close to unity, it is
desirable that Y-mode port-padding should be applied in such a way
as to increase the lower of the two admittances. For example, for
a common cmitter tronsistor amplificr, the input admittance is about
ten orders higher than the cutput admittance. In a cascade chain
therefore, Y-mode output port~padding has obvious advantages over Y=

mode input port-padding.

2.7  MISMATCHED AMPLIFIER

2.7+1 Mismatch using a Potentinlly Unstable Two=Port

A potentially unstable two=port will oscillate at some point
as the terminations are varied over an infinite range., However, useful
gain can be obtained from it by a judicious choice of terminations so

36, 203 26, 28 way of SOlVing the

as to avoid instability. A popular
prcblem has been the use of source and load terminations which give
mismatch conditions at the ports. The actual choice of terminations
depends largely on how much loss of gain the designer is willingyto
exchange for "increased stability". Thus thé choice depends on the

'expericence! of the designer and design to specified limits is too

complex to consgider, .
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2.7+,2 Mismatch using an Inherently Stable Two=-port

Although for an inherently stable device, the argument put
forward for using mismatch terminations does not apply, there are
equally compclling reasons to investigate the performance of the mis=—
matched inherently stoble two-port, |

In transistors, non-lincarity arises mainly becausc the input
impedance which is generally low, is non-linear., The linearity of
the transistor amplifier can be improved considerably if it is fed from
a source impedance (presumed linear) which is higher than the input
impedance. The effect of this is to !'swamp! the non-lincarity.

Given o source and load impedance to be used in conjunction
with an inherently stable two=port amplificr, tremendous advantages
can be obtained by avoiding the use of matching transformers at the
output and/or input provided that this does not lead to a serious
loss of gain,

The degree of the mismatch must be chosen with care as the noise
performance of the amplifier tends to deteriorate as the source and

input or the load and output impedances divergeul’uaf.

2+7+3 Iransducer Gain with 'Degrec of Mismatch! = X

The transducer gain of a two=port is given by

i ‘ p21'2 Re(p_)Re(p; ) (2.55)
(pyq * pg/lpgy * 2 = Py Py @

Assuming that the two=port is inherently stable, values of source and




load immittances con be found which will match the two-port. Supposing

we designate the symbols 65 and ﬁL to these parameters. Then,

ﬁs = R-Pll and aL = R Pao (2.56)
where
L. NP
R = V/ 1 - WMpi1p,n = N7/ P11P50 (2.57)
and : '

PioPoy
Wéléan define the source and'lodd:imittancéé as

Ps = ﬁs(l,_i X) . ~and pL - ﬁL(:L * X). '(2'59)-'.

Since the reactive parts of the immittances have to be tuned out,

N . )
o, L= oy tN2p,, and of o, * N/2 pyg (2.60)

Substituting the above in the troansducer gain cxpression (2.55), it can
be shown after considerable simplification that the gain for dégree of
mismatch X is:
' 2 2
G 4'Palr Pr1Pap(L = X7

= (2.61)’
X h Pa [R(l__ %) + %]2 . 2

11952
One advantage offercd by (2.61) is the absence of + X which means that
we are free to choosc to make ps greater or less than ﬁs. Sceondly,
we have lost one degree of freedom in the choice of terminations since
Ps and pr, are related to each other by the degrec of mismatch X,

When X = 0, the gain is equal to the conjugate-matched gain which
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iss ‘ .
2 .
4IP21‘ P11P22 (2:62)

c 2 2 . 2 2
Hoppphy R L)T 4N

. Fig. 2,12 is a plot of gain against mismatch factor X and it can
be seen that the gain is symmetrical about X = O and it is fairly
flat over a wide range of values of mismatch factor reaching 3 db when

X =+ 0,85,
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ACTIVITY, UNILATERAL GAIN AND STABILITY

3.1  ACTIVITY

A device which is capable of delivering more signal power to a
load than it receives, is generally described as 'active's A device
which always returns or dissipates signal power is usually described
as 'passive'. Examples of the former are valves, transistors and
tunnel~diodes, and of the latter, caﬁacitors; inductors, transformers
and positive resistors,

Practically every electronic equipment contains an active element
for amplification, oscillation or switching; It is therefore
profitable for the circuit engineer to have a clear understanding
of activity and, if possible, to devise a way of measuring the
activity of a given device for the purposes of comparison.

In general terms, activity manifests itself in two ways. For
a three-terminal two-port linear device, if more signal power can
be taken out of a port than is fed into another port, the activity
displayed is of the transfer variety and is described as transfer
activity. Two-port amplifiers employ this type of activity. Negative

conductance activity, as the name implies, is due to the presence of

a negative conductance seen ''locking in'" at a pair of terminals. This

may be due to a negative Re(Yll), a negative Re(Y22) and/or a negative
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conductance™ arising from terminating one port of the device with
passive reciprocal elements. This is a one-port property and

generally assoclated with reflexion amplifiers,

%s1lsl Power Flow

For a two-port three-terminal device, it can be shown that the
total flow of signal power into the device is given by
> = el +a Ty + Y _ed% 4 ¥ o I% (3.1)

'VlV2 ' 11 22 21 12

where

v, /v and a = [V./V
] .

12

We are interested in the real part of this power as it will give an
indication of the activity or passivity of the device. The orientation
of the voltages and currents used in (3.1) are defined in Fig. 3.la.

Teking the real part of (3.1),

~ -1 Jo
l I = apyta Pyt Re [ (Y21 + Y§2)e :] |
(3.2

Since we are considering the flow of power into the two-port and this
has to be negative if the device is active, the minimum value of the
real part of P/' vlvzl ought to give conditions for activity. The

two ways in which the real part of P/’ .V could be negative are

*This happens only if the two-port is potentially unstable.



either that

o > pp (3.3)
or

However, assuming that both p,. and P, are positive, the first two

terms on the right-hand side of (3.2) give the least positive value

when g = +]/ 9227911 rand the third term the most negative when

. the phase angle is an odd integral multiple of =,  Under these

conditions, (3,2) becomes:

P =
RqrrT) 2V PRz ’Y21+Y§2' (3.5)
so that if,
2 |
lY21 ¥ Y;ZI > 1P 0 - (5:6)

the device is active. Several authors such as Raisbeck39 and

40

Ejaellbrant have derived the above conditions.

3ele2 Negative Conductance Activity

For a two-port, the admittance 'looking in' at the input and the

output ports respectively are

Y Y
12721 N
Y. = Y " —— (5.7)
in 11 Y22+ Yi

Y Y

_ - 12721
Yout - Yaa Y + Y (.8)
11 s :



where Ys and YL are the admittances of the source and load respectively,

If the device is inherently stable, then the Re(Y,) > o0
and provided that Y. is passive and reciprocal, the Re(Yin) will
always be pogitive. On the other hand, if the device is potentially
unstable, the Re(Yll) can be negative and/or a passive reciprocal YL
exists which will make the Re(Yin) < 0. The zbove statement is true
if Yll is replaced by Y22’ Yin by Yout and YL by Ys'

With passive embedding, the sign of the Re(Yin) and the Re(Yout)
can be changed as desired. Fig, 3.1b shows an embedded device with
a positive conductance g, equal to the Re(Yin), and a susceptance
equal -Im(Yin) (for optimum power transfer to g) both connected across
the port.

The use of negative conductance activity in amplifying circuits
is relatively rare at radio frequencies although at microwave fre-
quencies, the technique is well known, Tunnel-diode amplifiers
have been built which make use of the negative conductance character-
istics of the device. The reason for the under~development of
negative conduétance activity amplifiers at radio frequencies is
inherent in the one-port nature of the activity, With one-port activity,
signal power must be fed into the same port as it is taken out, and
while separation of incident and reflected power can be obtained at
microwave frequencies by the use of circulators, no reasonable means
has been found for use at lower fregquencies.

Negative conductance activity can be exploited in the design of

'active impedance transformers?!s To illustrate the principle, we may
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consider resistances instead of conductances. If,Rs and RL are
source and load resistances respectively and R_ > R , it can be
shown that by connecting a negative resistance Rn such that ‘

[Rnl > 'RL’ the source and input can be conjugately matched, In
doing so, the power developed in the load is increased by a factor
of (RS + RL)a/(aRL)2 over that which would have been obtained using
a 'passive! transformer. This arrangement (shown in Fig. 3.1lc) can .
be looked upon as an amplifier operating with a source and load both

of which are connected to the same terminals.

3els3 Transfer Activity and Unilateral Power Gain

When (3.6) holds, the device is capable of exhibiting 'transfer
activity! properties and naturally the device must have at least two
ports, Subtracting from each side (3.6), the term 4 PyoPop» the

condition remains unchanged and we have,

2

! In = hp > 4(911922 = 912921)' (3.9)

Mason16 defined a quantity U as,

2
1, - 1
T = ) (3.10)
Pr1P22 = ProPa1
and obtained the condition for transfer activity as U > 1. The

quantity U has the same value as the gain that can be obtained from
the device if it is unilateralised by lossless reciprocal embedding

and hence the name unilateral power gain is appropriate,
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On condition that (pjipss = PioPy) > 0, we can divide both
sides of (3.9) by 4(py1p,p = PP,y ) and obtain the result of Mason.
Similar forms of the formula given by (3.10) exist for Z-, h~ and g-
matrices and have the property of giving the same numerical result
whichever matrix form is used. U also has the property of remaining
invariant with lossless embedding.

When (pllp22 - PlZPZl) < 0, dividing both sides of (3,9)

by 4(911922 - 912921) we get

2 :
lv,, - %]
1721 12 <
1 (3.11)
Hp11Pon = P1oP2/
(the inequality sign is reversed since the divisor is negative).
The left hand side of (3.,11) is negative since the numerator is always
positive and the denominator is negative. Therefore we can write
U < O without violating (3,11), The complete condition for

activity is therefore,

0> U o U >21 (3.12)

Zelel Unilateral Power Gain with Lossy Embedding

Assuming that the Re(Yll) > 0 and the Re(¥,) > 0, Y-mode
lossy embedding and port-padding have the common effect of reducing
the value of U, This was discussed in section (2.3.2), The effect

of lossy embedding in the Z-mode was only briefly mentioned, and will

now be discussed in detail.
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It can be shown (Appendix D) that if

Rot Ry 2> Byt R (3.13)

then the addition of registance in series with any of the leads will

result in an increase of the value of U provided that

Bofon = BBy
(3,14)
r S R11+322"P12"R21

where Rf is the embedding resistor and Z = R + jX,

A plot of Rf against U is given in Fig. 3.2 for a transistor which

R

satisfies (3.13). As Rf is increased, U increases rapidly and goes
through a discontinuity after which it becomes negative., Measured
values are also plotted, No measured points could be obtained for
negative values of U as the bridge used for the measurement was not
capable of doing this.

If activity is defined as the ability of a device to support
oscillation, then the load which the device is capable of supporting
during oscillation could be used as a measure of its activity. If the
U of a device were a measure of the activity of that device, then it
would be surprising if the value of U could be increased by lossy
(dissipative) embedding. Contrary to its use as a 'measure of goodness'?4
U remains a condition for the determination of the boundary between
activity and passivity as given in (3.12).

The increased value of U obtained as a result of lossy embedding
is of dublous value to the designer of amplifiers since it is not

posgible to obtain the gain which is associated with the increase in U
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because of dissipation in the embedding resistor.
It must be noted that the transistor (together with its embedding)
remains active when Rf is increased beyond the discontinuity, A small

gain can be obtained from it.

3.2  STABILITY

A system is said to be stable if, when it is disturbed, the effects
of the disturbance decay with time; if the effects of the disturbance
grow with time, the system is said to be unstable, For two-ports,
the criterion for determining whether a device is stable or not is
the presence or absence of oscillation, with a given pair of ter-
minations, If when the two=port is terminated in passive, reciprocal
and infinitely variable elements, it is not possible to obtain oscilla-
tion, the two-port is said to be inherently stable. If a pair of
terminations can be found which will make‘the two-port oscillate, the
device is said to be potentially unstable. It must be noted that

stability is a condition which defines a boundary between two states,

3.2.1 Stability and Activity

The definition of inherent stability rules out the possibility
of negative conductance activity in an inherently stsble device, given
that no change in the embedding is allowed.s This is because with

passive reciprocal termination, the real part of the port immittance
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can never be negative. Such a device can therefore only exhibit
transfer activity. When it is possible to meke the real part of the
port immittance negative by means of passive reciprocal termination,
the device is capable of exhibiting negative conductance activity and

under conditions of mismatch, transfer activity as well,

3e2.2 Stability Factors

Since a potentially unstable two-port is capable of giving any
gain, (infinite gain vhen it is unstable); it is neceséary to have a
means of estimating how far or near the device is to the threshold of
oscillation, A stability factor is generally taken as a measure of
the margin between the point of operation of the device and instabilit;?’27
Thus two amplifiers with the same gain will be judged for superiority
on the basis of their respective stability factors: the one with the
higher numerical value being taken as the better of the two.
26

The two most popular stability factors were derived by Stern

and Venkateswaran23 and designated the symbols ki and Si respectively,

Where,
S L md s o oPuPep M
i LT i T .

The stability condition is given by ky > 1 and 8 > 1, respectively,
The results of assigning numerical valucs to ki and Si and their use
as stability factors will now be examined.

If we plot constant values of k. and 8, on a chart of M against N,
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where M + jN = Y, 1,1, we obtain curves as shown on Fig. 3.3, It
can be seen that constant ki values give parsbolae symmetrical about
the M~-axis and that constant Si values give ellipses also symmetrical
about the M=axis. For the particular case ki = Si = 1, we have two
coincident parabolae which divide the chart into inherently stable
and potentially unstable regions. It is possible to obtain values of
ki less than unity whereas Si breaks down for potentially unstable
devices.

From Fig, 3.3, it can be seen that the constant ki and Si lines
cross and therefore a device with a given Si value can have quite a
large variation in its ki'value and vice=versa,

If we plot the point of operation of a transistor on the chart
and study the effect of lossless embedding on the point, we find
that the point of operation moves in a straight line and the distance
moved is directly proportional to the susceptance of the embedding
elements  The direction of movement and the elements required to
achieve it are given in Fig. 3.4

Supposing that we have two transistors operating at the points
A and X, then each one would have a ki value equal to 4, Supposing
that for some reason they both developed equal inductances between
their common terminal and ground of such a value that A moved to B
and X moved to Y. It can be seen that the resulting two-ports will
exhibit completely different prOperﬁiés: A would have become more
tstable! while X would have become potentially unstable. - Therefore

the margins between A and the threshold of instability cannot be the
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same as that between X and the threshold of instability, and therefore .
ki is an unsatisfactory measure of the stability margin.

A similar argument shows that Si is no better than ki as a
measure of the stability margin,

It appears that stability can only be a 'go - no go'! test and
that when it is 'go', the only relevant factor we can consider is
the sensitivity of the area in which the device is operating, to
such changes as embedding elements, biasing point and the active device

itself.
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Chapter L

DESIGN EXAMPLES

4,1  INTRODUCTION

In Chapter 2, gain-sensitivity performance was analysed for the
conjugately matched two~port with lossless as well as lossy embedding.
As a result, formuloe were derived for the prediction of gain=
sensitivity performance from the parameters of the two-ports,

In this Chapter, some design examples, with a batch of transistors,
are givenf Brief descriptions of computer programmes written for -
the purpose are also presented, and where necessary, flow diagrams

of the programmes are given,

Le2 THE TRANSISTOR AS A TWO=PORT

4,2,1 Transistor Data

The transistors used in the experiments were Type 2G302 (Texas
Instruments), Twenty of these were used and no attempt was made to
select them on any basis: the first of the batch developed a fault
during the tests and was discarded, The Y=-parameters of the transistors
were measured at 3Mc/s with an emitter current of 1 mA and =10 volts
between emitter and collector on a Wayne Kerr Radio Frequency Bridge

Type B601l, Adaptors for biasing the transistors were designed for
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this purposes

4,2.2 The Transistor in the Inverse Gain Space

The advantages of using the IGS in the study of gain=-scensitivity
of active two-ports have been discussed in detail in Chapters 1 and 2.
One of its major drawbacks will now be cxamined. Y-parameters will
be used throughout although any other set of paramcters could be used
with equal facility.

A two~port three=terminal device can be described by a 2X2
matrix., In general, each of the clements of the matrix is complex
and therefore the device can be characterised by eight quantities.

Iq order to simplify the design theory, three basic parameters, namely
Ags Ap and 1/U, were calculated from the matrix. However, the effect
of embedding on the three parameters camnot be calculated except by
using the eight elements in the matrix. This means that we cannot
select a point in the inverse gain space and study the effects of em=
bedding on a device which operates there without actually measuring
such a device. The problem can be put more clearly if we consider

the situation which arises when we start to design a suitable embedding
for a batch of ﬁransistors to satisfy a given gain=sensitivity require-
ment. One way of doing this is to base the design on the 'average'
transistor: this was the method adopted., Now it might happen that
vhen we have plotted the points of operation of the batch of transistors

in the IGS, that one of the transistors sits in the 'middle' of the
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batch so far as the coordinates are concerned and has a gain which is
equal to the average of the whole batch. Such an occurrence would
be fortunate and we can use this peculiar transistor for the design.
In general, we have to 'make' such a transistor to be able to design
our circuilt. This means working backwards from the values of lR, Ay
and 1/U to obtain eight Y~parameters,

If we write down the equations relating our coordinates to the

Y-parameters namely,

Pip * J93,
= Ayt JA (4,1)
Py * doy R 1
and
4(pyyPop = PyoPoy) . :
. - 12 = 1/U , (4,2)
21 12

it is apparent that with a knowledge of Ap, Ay and 1/U, it is

impossible to obtain values for the other parameters.

L.3 A STATISTICAL SOLUTION

One way of overcoming the problem is to measure a sample of
transistors and calculate the corresponding values of KR’ kI and 1/U,
We can now use the data in a regression with Ap, A; and 1/U as
independent variables and each of the eight elements in the matrix

in turn as the dependent variable,



=88

4,%.1 Brief Description of the Regression Program

The program is briefly outlined here; the algorithmn is given
in Appendix A.

The data was obtained from the batch of 19 transistors whose Y=
parameters had been measured and from which the’corresponding values
of Ap, My, and 1/U have been calculateds Each of the eight values
constituting the Y-parameters is taken in turn to be the dependent
variable énd Mgy s 1/U are made the independent variables so that

the regression model is of the form:

Pyp = @ byhp + bAp + b3(1/U). (4.3)

The coefficients of multiple correlation obtained from the above model

are given in Table 1.

As some of the coefficients of multiple correlation for the
linear model were rather low, the second order model was adopted

instead.. The mathematical model was of the form:
= a+ b Ay + b A + b (1/U) + b A+ bA% + b (1/U)2
P11 1hr T P2M T PR3 4"r T PghrT g
In
+ bohghy + ngR(l/U) + ngl(l/U), (4.4)

The coefficients of multiple correlation calculated from this model

are also given in Table 1.
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Table 1
Coefficient of Multiple Correlation
Parameter Lineaf 2nd Order
P11 0,809 0,997
o 0.557 0.931
P1o 0.865 0.996
515 0,992 : 0,999
Poy 0.991 0,997
Oy 0.809 0.991
Psn 0.612 0,927
Top 0,841 0.958

Teble 1 indicates that the second order regression provides much
better results than the linear one, and also that it would be unnecessary
to go to a higher order than second.

It is now possible to synthesise the matrix of a transistor
given its coordinates in the inverse gain space. In general, we might
be interested in synthesising a transistor with a given value of gain,

1/U and N In this case, we can calculate the value of Ap which is

RO
required from the basic equation,

xi + (O - 1/6)% - 1/aU = 0 . (4.5)
Having obtained the three coordinates which give the required gain,
these can be substituted into (4e4) to evaluate the elements of the

matrix which may be in the Y , 2, h , or g form.
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Some caution should be exercised in employing this technique.
The coefficients obtained from a set of data can be used to make
inferences about that particular set of devices to which the data
appliess The coefficients have no physical meaning and may give rise
to nonsensical results if used outside their range of validity, This
is a general rule and should be observed religiously in all statistical

techniques.

4,3,2 Synthesis of the Average Transistor

If the coordinates of the centrddd of the points of operation
of the batch of transistors dwe used for the synthesis of the matrix
of the average transistor, it is found that the synthesised transistor
has a gain different from taking the average of the gain of the batch,
This is because the average gain surface does not go through the
centréid of the points of operation.

To obtain the true average transistor, it is necessary to find
a point which lies on the constant gain surface representing the
average gain. Since one of the conditions for optimum gain=-
sensitivity operation is to embed the devices such that AT 0,
assuming that the relative positions of the points of operation are
preserved when embedding is applied, the mean value of xI must be used
in the regression, so that the "moments' of the points of operation
about the plane given by KI = Odeeas neér to zero as possible.

Fig. 4.lashows the points of operation of the batch before and after



embedding,

The basic equation of the IGS is given by equation (4.5) and Eo
far we have obtained two of its parameters: the gain G and KI‘ We
can now choose a value for KR and calculate 1/U or vice~versa. Fig.
2.8 shows that the spread in Ap is much less than that in 1/U and
since, statistically, the mean only makes sense when wide divergences
do not occur in the sample, it is better to use the mean value of Ap
and then calculate 1/U, We now have the three values we need for
calculating the Y-parameters of the average transistor and can proceed

to substitute them into the regression model (4.4).

4,2.3 Results of Average Transistor Synthesis

Using the following values in the regression equation,
Mg = 1.87 x 1072, A7 = 5,17 x 107> and G = 96,0 which gives
1/U = 9,58 x 10-3, we obtain the Ywparameters of the average

fransistor as follows:
4.72153 + j6.24221 -0.04335 =~ j0.13977

21.23883 - j16,05998 0:16589 + 3j0.36784
(4e6)

From the Y-parameters, we can calculate the values of Ags A and 1/0

and compare these to the original. The results are
Ap = 1867 x 1077, % = 5,168 x 107, 1/U = 9.537 x 107

and G = 05,5,

The two sets of values compare favourably and therefore the conclusion
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can be drawn that the method is valid,

4,4  EMBEDDING IN THE INVERSE GATIN SPACE

4,4, Use of the Computer in Embedding

Given a transistor, we can locate its point of operation in the
IGS, Considering lossless embedding, the point might be at P in
Fig. 4.2, Supposing we want to move the point to X, then we have to
connect in series with the common terminal a reactance of such a
value as to move the point from P to A and then connect a susceptance
between the input and output leads of such a value as to move the point
from A to X, To reach the point W, as before, we have to use a
reactance of such a value as to move the point to B and then using a
susceptance between input and output the point can be moved to W.
It is interesting to note that although we can calculate the direction
of the lines PR and PQ, we cannot calculate the direction of the line
A until we have obtained the parameters of the transistor at A, This
is because the device at A is a different device from that which was
originally at P and therefore the line PQ is not parallel to the line
AX,  Similarly, the line BW is neither parallel to PQ nor to AX. These
can be seen from Fige. 4.3 in which the final points of operation on
the A, axis are equally spaced,

It appears that the easiest way to tackle the problem manually
is to assume a point such as C, in Fig. 42, on the line PR, which is

reasonably close to where we expect A to be. From the distance PC,
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we can calculate the value of a series inductance L_ (refer to Fig.
245). The parameters of the device together with the series inductance
can now be calculated to givevthe new device with point of operation

at C, We can now calculate the direction of movement which results
from connecting a parallel inductance Lp between input and oufput

leads and locate the point of intersection of this line with the g
axis, Supposing the point is at U, i.e. larger than X, then we can
see that PC is 1bngér than required and we have to take a shorter
distance for PC and start the whole process again. The process
described above is a fairly straight forward operation which can be

done very rapidly by a digital computer.

L, 4,2 The Lossless Embedding Routine

The flow chart of the routine is given in Fig, 4.4, 1In addition,
the actunl routine is given in Appendix B, A brief description
suffices here,

In Fig. 4.4, E and W contain the arbitrary step lengths 0,01,
These step lengths are changed automatically in the programme should
they turn out too large. K and K' contain either +1 or ~1 and deter-
mine the sign of the Z~embedding and Y-embedding elements respectively.,
Y and Z contain the modulis of the final value of the Y-embedding and
Z-embedding elements respectively. I' contains the number of times
that the iterative process is executed and there is a trap (not shown

in the flow chart) which prevents the iteration from continuing after
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the 15th time.,  If this happens, the value of E is divided by 10 and
the iteration is‘resumed: The output contains information in&icating
that the iteration has been'trapped and reasons for this occurrence,

so that the programmer can alter, if necessary, the trapping condition.
For all the embedding design in this work, I' > 15 was found adequate.
The numbered junctions refer to instruction numbers in Appendix B.

The upper half of the flow chart examines the position of the
point of operation of the transistor and determines what element types
will move the point of operation of the transistor to the ».quired
point on the XR axis i.é. it determines whether K and K' should have
+1 or =1 stored in them. The second - half does the iteration
and jumps out of the cycle when the error in both My and KI is less

than 5 x 1072,

L4,4y3 The Y-Mode Port~Padding Routine

It was pointed out in Chapter 2, Y-mode port-padding is better
at the output than at the input and Z~mode port-—padding is superior at
the input than at the output. Since in this work, Y-parameters have
been used throughout, this routine was developed only for Y-mode output
port-padding,

The routine solely changes the real part of ¥,, such that 1/U
has the required value. It uses an arbitrary but automatically
adjustable step length contained in E which is equal to 0,01 and the

error permitted is less than 1.0 x 10‘5. The routine is given in
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b4, The Y~Mode Lossy Embedding Routine

It was mentioned in section (2,5.3) that the use of Y-mode lossy
embedding had a number of practical objections. Two of these will
now be discussed,

The use of lossy Y-mode embedding must be accompanied by lossless
embedding if the condition for optimum gain-sensitivity is to be pre—
served, namely XI = 0, Both of these types of embedding change the -
gain of the amplifier and it is not at all clear what percentage of
the change to assign to each type of embedding.

The second and more serious objection to lossy Y-mode embeddiﬁg is
that it is not possible to reach some points on the A-plane after this
type of embedding has been applied. Fig., 4.5 shows a device which
sits at the point D after the application of Y-mode lossy embedding,
Zemode lossless embedding moves the point along the line AE, At the
points A4, B, C, D, and E, Y-mode lossless embedding is applied to move
the point of operation on to the Ap axis. From Fig, 4.5 it is easy
to see that the point of operation cannot be moved to the right of V,
This is obviously an‘unacceptable limitation on the possible points

of operation.
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4,5  AVERAGE AND EXTREME TRANSISTORS

We have so far synthesised the matrix of the average transistor
and from the batch, we can select the two transistors which give
extreme gain i.e. the highest and lowest. We moke an agsumption that
the extreme gain transistors before embedding give extreme gain after

3 has shown that the angle

embedding has been applied. Singhakowinta
of the locus of the point of operation of the transistor when lossless
embedding ié applied makes an angle approximately equal to Y2l with
the XR.axis. Thus it could happen that two transistors which operate
at A and B (GA e 8 GB) in Fig. 4.1b could have such angles of Ty
that when embedded losslessly, Gé = GA. Such ‘cross=overs' occur
within the batch of transistors used in the experiment and lead to
small and negligible changes in the 'gain ratings'. However, in
three separate batches of 25, 2G302's and two other batches of OCLkts,
it was found that the extreme transistors before the application of
lossless embedding were also the extreme transistors after embedding.
This supports the above assumption.

'A siﬁilar situation occurs in the case of port-padding although
in that case cross-overs do not occur,

We are now in a position to design the embedding and apply it

to the extreme transistors.

4,5,1 Calculated Limits of Gain

The required average gain is defined in terms of the position of

the point of operation on the XR axis of the average tramsistor. With
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this value, we enter the lossless embedding routine and at the end
we have two values for the elements, namelj K'Y and KZ, Taking the

Y~parameters of one of the extreme transistors we embed in the Y-mode

to obtain:

' - KV
Yll + K'Y YlZ KvY

(4e7)

- K '
Y21 K1y Y22 + K'Y

The above Y-matrix is then converted into Zematrix with elements

1 1 1 1 s s htadn e
211, Zi2’ ZZl’ and 7 >* The Z=embedding is then added to obtain:

2
!
le + K2 Ziz + K2
(4.8)
1 '
221 + KZ Z22A+ KZ

The gain of the extreme transistor is then the gain given by the above
matrix. In practical terms, we have designed an amplifier to obtain
a sgecified gain from the average transistor. We have then replaced
the average traunsistor by one of the extreme ones and our interest is
to find out what gain we get. VWe can repeat the process with the other
extreme transistor and hence define the upper and lower 1imits of the
gain of the batch for the particular average gain we designed fors

In Fig. 4,6 the gains calculated as indicated above are referred

to as 'Calculated Gain',

445,2 Predicted Limits of Gain

The limits of gain can be predicted from (2.,44), (2.45) and

(2.48), (2.49).
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To make use of these formulae, we have to calculate the co=
ordinates of the extreme tramsistors in the IGS. Referring to Fig.
2,9, the point of operation of the extreme transistor will be at j.

Since we lmow the value of the natural average gain Gi’ and kR = XR

and KI = 2p s from (2,3), we can calculate the value of 1/U which is:
J i :
2 2
1 A+ (g = 1/6) 4.9)
U, 1/G. *
i i

The value of [}(1/U)max is obtained by subtracting 1/Ui from 1/Uj’
This value is kept for further use when predicting extreme gain for
other average gqins. We now have values for all the terms in (2.44)
and (2.45) and can therefore calculate the limits of gain, Glo and
Gup; these are plotted in Fig. 4.6,
It is fairly clear how to deal with (2,48) and (2,49) which are con-
cerned with port-padding. The results of the prediction from the above

are shown in Fig. 4.7,

4,6 POTENTTALLY UNSTABLE TRANSISTORS

A batch of potentially unstable transistors will have their
points of operation outside the IGS, In this region, there are no
constant gain surfaces and therefore.the definition of [}RR, ZXAI
and /A\(1/U) bresk down. A new technique therefore has to be

developed to deal with this case.
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Lossless embedding leaves /\(1/U) unchanged thercfore we can
apply an arbitrary lossless embedding to the batch to make them
inherently stable. The values of /\(1/U) for both upper and lower
limits of gain can then be calculated.s All the other quantities in
(2.454) and (2.45) can be calculated and hence the limits of gain
evaluated,

Fig. 4.8 shows the points of operation of the batch of 19
transistors, used in the previous experiment, in the common base
connection. It must be noted that the transistors are unstable.

The arbitrary embedding applied to them is such as to make the average
transistor have a value of Ay equal to 0,002,  The values of AN\(1/0)
are then calculated and stored for later use,

Fige 4.9 shows the calculated and predicted values of gain
against average gain for a batch of potentially unstable transistors

using lossless embedding.

4,642 Port-Padding

Port-padding leaves ZSXR unchanged and therefore we need to
apply an arbitrary pad to be able to calculate the values of Z}XR for
both upper and lower limits of gaine. However, for optimum operation,
it is necessary.to reduce.the value of RI of the average transistor
to zero. This cannot be done using port-padding and therefore we

have to apply lossless embedding for this purpose. An arbitrary



~100=

port—pad is then used to make the average gain equal to 100. Values
of [}xR for both upper and lower cases are calculated, The other
quantities in (2.48) and (2.49) can then be calculated and hence the
upper and lower limits of gain evaluted,

Fig. 4.10 shows the calculated and predicted values of gain
against average gain for the batch of potentially unstable transistors

using porit-padding.

4.6.% Discussion of Results

From Fig, 4.9 it can be seen that the predicted values of gain
over-estimate the lower limit and under-estimate the upper limit of
the gain., The explanation is that the transistors used in this case
(the 19 transistors in common base) show a large spread in the direction
of Aye  This can be seen from Fig. 4,8, The calculated gain takes
into account the spread in XI while.the formulae for predicting the
limits of gain assume that the change in gain due to Z}xI is negligible.

Comparing Fig. 4.9 to Fig. 4.10, it can be seen that lossless
embedding produces a smaller gain spread than port-padding for the

batch of transistors used in the experiment.

4,7 THE PRACTICAL AMPLIFIER

We are concerned with small changes in gain which occur as a

result of changing the environment of the active element. Since these
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small changes are of the same order as the losses which would normally
occur in the circuilt, it is necessary to eliminate, as far as possible,
to measure where possible and to estimate where no other means exist,

the losses which occur in the circuit,

4,71 The Variable Impedance Transformer (VIT)

The signal source used in the experiments was an Airmec Signal
Generator Type 201 with an output impedance of 75 ohms resistive, It
is evident that since there is spread in the parameters df the tran=
sistors and the embedding changes for various tests, we have to find
a simple method of matching the signal source to a varying input
impedance of the amplifiers.

One of the simplest ways of realizing this is to use the
'reactance transformer' principle. This is illustrated in Fig., 4.11,
and requires no further explanation, One snag arises however, and
that is Rout must be greater than Rs. To overcome this, the circuit
in Fig, 4.12 was designeé. The transformer steps down the source
impedance such that Ré is less than the minimum required Rout' Again
Fig. 4.12 is self-explanatory except for the presence of Lst and Cst'
The output of the transformer was found to be slightly inductive due
to the leakage inductance L'. However, it was of such a small value
that to eliminate it, an impractically large value of capacitance would
be required and the resulting Q of the series tuned circuit would con;
sequently be small, Tuning out the leakage inductance would therefore

be rather difficult, The series inductance Lst was therefore introduced
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to reduce the value of Cst to an acceptablé value and hence fo increase
the @ of fthe circuit. The tuning of the circuit was then carried

out with greater precision and Ré measured accurately: Variation

of Rout is obtained by changing the values of Cé and Cx‘ Two variable
capacitors were calibrated and used in place of Cé and Cxi A chart

of Rout against scale recading was then plotted as shown in Fig, 4,13,
Rout was then measured for various settings of the scale readings and
the results are also plotted in Fig. 4.13., The circuit of the VIT

is shown in Fig. 4,14,

4,7,2 Losses in the Variable Impedance Trdnsformer

The presence of the inductors Lst and Lo and the transformer
introduces losses in the circuit. These losses are calculatedyby
measuring the voltage at the input and output of the VIT when it has
been correctly terminated at the 6utput. Figs 415 shows a plot of
losses in decibels against Rout'

Fig, 4.15 shows that as Rout increases, the losses go up rapidly.
Since the losses in the transformer and the inductors cannot be expected
to rise as sharply as shown, it can be concluded that the increase in
loss is partly due to a slight mismatch between the source resistance

RS and the impedance it 'sees'! as Rout increases,

4,7.3 Measured Limits of Gain

The values of the embedding elements obtained from the computer
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program were used to construct amplifiers using both lossless and
lossy techniques to obtain the required gain-sensitivity condition,
The gain of the amplifiers with the minimum and maximum gain transis=-
tors as the active element was measured and the results plotted in
Figse 4.6 and 4.7. TFig. 4,16 shows a partially schematic diagram

of the arrangement of the circuit,

L,7.4 Determination of Predominant Spread

| In section (2.6.3), a criterion was suggested for the deter—
mination of the predominant spread. It must be recalled that [EXI
does not cause a significant change in gain for reasons given in
section (2.4.3) when Ap of the average device is reduced to zero,

From the 19, transistors used in this work,

DD/ 0,03856

ZARR ‘

Thus :E:[}(l/U) 1>2:z:[§lR and therefore the spread in this particular

and

1

0.02356

batch of transistors is predominantly due to [}an Therefore, loss=~

less embedding should givelbetter results than port-padding.

L,7.5 Comparison of Lossless Embedding and Port-Padding

Comparing the spread in gain after the application of lossless

embedding to that resulting from port-padding for the same average
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gain, (sec Figs. 4.6 and 4,7) it can be secen that lossless embedding
leads to a much greater reduction in gain spread than poptepadding.
Closer inspection of Fig. 4.7'reveals that in fact port=padding reéults
in a greater sprea@ in gain than beforec. Note that lossless embedding
was used to reduce the value of KI for the average trénsistor to

zero before port~padding was applied, Thus, without this extra
'help'!, port-padding would have given mucﬁ worse results, Therefore
for the particular set of transistors used in the experiment, port-

padding would certainly be the less attractive of the two methods.

4,7.6 Discussion of Predicted and Calculated Gain

Fig. 4.6 shows that there is a discrepancy between predicted
and calculated gain, and further that the formula for predicting the
upper gain limit overestimdtes and that for the lower limit under-
estimates the gain. This is because in (2.31) we used the rate of
change of gain with respect to A, and 1/U at the points k and i
respectively, which are on the natural average gain surface. Since
the constant éain surfaces on the 'outszide' of the natural average gain
surface are much closer than those on the 'inside', equation (2.31)
will tend to underestimate the total change in inverse gain between
the natural average gain surface and a point on the 'outside'! of it,
Similarly it will tend t6 overestimate the total change in inversec gain
between the natural average gain surface and a point on the ‘'inside!

of it. Hence, the formula for predicting the limits of gain based on
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equation (2,31) will tend to overestimate the upper limit and under=-
egtimate the lower limit.

From Fig. 4.7, it can be seen that the predicted and calculated
values of gain agree morc closely in the case of port-padding than
for lossless embedding, further that both the upper and lower limits
are underestimated., The close agreement can be explained in terms of
the relatively lower sensitivity of gain to movement in a direction
parallel to the 1/U axis as compared to movement parallel to the KR
axis. This means that errors arising from the approximation of (2,31)
will be small. The fact that the predicted 1limit of gain line for
the upper case is below the calculated gain line might be explained
by the fact.that when WI of the average transistor is reduced to zero,
the upper goin transistor may not nccessarily have its XI equal to
ZET0 In fact, the RI of the transistor with the highest gain is not
equal to zero after lossless embedding has been applied for this
purpose. Fig. 4.laillustrates this argument (transistor 11). The

same is true of the tronsistor with the lowest gain (transistor 15).

4,8 IDEAL SPREADS

4,8,1 Synthesis of Ideal Spread Transistors

To study the advantages and disadvantages of lossless embedding
vis-a~vis port-padding to achieve a given gain-sensitivity condition,
it is necessary to have say, the Y-parameters of three transistors

which exhibit ideal spread (section 2.6.1). Note that when discussing
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ideal spread, Ay is always made equal to zero.

Z~resistive embedding is known to decrease the value of 1/'Ux
and Y output port-padding to increase the value of 1/U. Thus given
the parameters of a transistor we can change the value of 1/U to a
predetermined value., We cannot guarantee that at fhis point, the
value of xI will be equai to zero. S50 we can apply lossless embedding
(keeping 1/U constant) such that the transistor will give the pre-
determined value of gain,for KI = 0. The parameters of the transistor
together with the applied cmbedding are recordeds In Fig. L4.17, such
a transistor will have its point of operation at say Aa. Fufther
lossless embedding can be applied to transistor Aa to reduce the gain
to another predetermined value. The point of operation of the second
transistor will then be at BE' Y-mode output port-padding can then
be applied to transistor A2 to give the parameters of a third transis=-
tor whose point of operation is at C2 and whose gain is equal to that
of Baa‘ By repeating the above method, two other groups of transistors
were synthesised such that the gain for the A's were squal and those
of the B's and C's were also equal. For the particular case dealt

with here, the gain of the A's was chosen to be 100 (20 dbs) and that

of the B's and C's 80 (19.03 dbs).

4,8.2 Predicting the Choice of Embedding for Ideal Spread

In section (2.6.2), conditions governing the choice of the type

of embedding were derived. A numerical example will now be given. From

® Refer to Chapter 3.



the coordinates of the points B', B", C" for the three groups of

transistors at P, Q, and R in Fig. 4,18 the gain of the transistors
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were calculated for the poitits,.

Table 2 summarizes the results.

Table 2

Group R (high U = high \p)

BesT

Type of R Type of
Spread Gain Embedding
ALY ay* g1 = 7346 Lossless
Bolg¥ o =735 | (G = Gy
A/ @ Ggy = 73.80 Port-padding
b) Gcn = 72,48 (ch =< GC!)
Group Q (medium U = medium XR)
Type of Gain ‘.'L'yf)’e¢s gf
Spread Embedding
@) G, = 73.45
JAYSS B! Lossless
B Gpy = 72.86
a) GC' = 72.91
IN1/U) Port-padding
B Gy = 73.15
Group P (Low U = low %)
Type of Cai Ty%gng
Spread an Zmbedding
Q) Gy = 74,24
AR Lossless
b) Gy = 73.88
| ﬁ) GC' = 72. 87
A(1/U) Port-padding
Q GC" = 75,01
* 0) Lossless 3m|:¢do“m3
by FPort- ?addw\j
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As scen from Table 2, port-padding is, in general, the best way
of reducing the spread in gain due to A(1/U) for the same average

gain, and lossless embedding for spread in gain arising from [XKR.

4.8.3 BEmbedding the Ideal Spread Transistors

We can now apply lossless embedding and Y output port-padding
to each group of transistors in turn and to compare their performance,
vis~a=~vis the two types of spread (i.e. A(L/U) and LSKR).

The compufer programme for lossless embedding is used to
determine the values of the elements which when applied to say AZ
will give a predetermined gain. The values of these elements are
then 'added' to the parameters of B, and C_, and for each, the gain

2 2

is calculated. The difference in gain between AZ and B2 as well as
between‘.A2 and C2 is calculated for the situation when the embedding
has been applied., Fig, 4.19b shows plots of gain spread, /G,
against the resulting average gain when the appropriate embedding has
been applied. The process is repeated for Y output port-padding
and.the'results are plotted in Fig. 4.1%h. Figs. 4.19% and 4.19¢

also shows plots of gain spread against average gain for the two

other groups of transistors shown in Fig. 4.17.

4,8.4 Conclusion on Ideal Spreads

It is concluded from Fig. 4,16a, b, and ¢, that port-padding

is the best way of dealing with spread in gain due to A(1/U) but
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certainly the least attractive way of reducing the spread in gain
when this is due to AxR. Lossless embedding shows slightly better
results for gain spreads due to /A\(1/U) than for gain spreads due to
ZSKR when the overall value of U is high. For low overall values of
U (see Fig. 4.19¢c), the opposite is true over a large portion of the
range of the average gain. The genersl conclusion is that lossless
embedding is far more reliable than resistive porit-padding although
for the particular case when the spread in gain is predominantly
due to A\(1/U), port-padding might be a better choice.,

The above conclusions are in agreement with the predictions

made in section (4,7.2).
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Chapter 5

'CONCLUSIONS AND FURTHER RESEARCH PROBLEMS

5.1  CONCLUSIONS

5.1.) Synthesis of Amplifiers with Specified Gain-sensitivity

Performance

It has been shown that for single frequency tuned two=-port
amplifiers, it is possible to predict the ultimate gain-sensitivity
performance of the amplifiers, stated in the form G + AG, from a
knowledge of the natural points of operation of the batch of devices
in the IGS. The theory has been shown to be equally applicable to

devices which are potentially unstable.

S5ele2 Choice of Embedding

The choice of the mode of embedding to be used to achieve a
specified gain-sensitivity performance has been shown to be dependent
on the nature of the distribution of the points of operation of the
batch of devices in the IGS. The case of 'ideal! spread was found
to compare favourably with that of the batch of 19 transistors used in

the experiment.

S5¢1ls3 Stability Factors

The numerical values of stability factors Si and ki have been
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shown to be poor indications of the margin of the devices from
instability. It has been suggested that the sensitivity of the gain
of the amplifier to changes in the embedding is a more realistic
estimate of the margin of stability. The conditions Si > 1 and
ki > 1 simply define the border of stability and no other meaning

should be given to them,

S5elelt Unilateral Power Gain (U)

The numerical value of U of a three terminal device has been
shown to be an unsuitable measure of its tactivity's Thus O > U

and U > 1 simply define a border between activity and passivity.

5.1,5 Average Transistor

Statistical methods have been developed for the synthesis of the
matrix of the average transistdr. Since the design of the embedding
circuit depends on the average transistor, this method which ensures
that it has all the average properties of the batch is a significant

step forward.

5.1.6 Use of Digital Computers

The speed and accuracy of the computer in performing the design

calculations in this work have distinct advantages over the use of
34

design charts,
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52  FURTHER RESEARCH PROBLEMS

The present work has led to a better understanding of the gain-
sensitivity capabilities of transistors. It has also shown the need
for further research into amplifier circuit design and device manu-

facture. These are discussed below.

5e2+1 Manufacture of Transistors with Specified Tolerances

This study has revealed the wide spreads which occur in a batch
of nominally identical transistors, These divergencies arise from
the lack of right control during the stages of manufacture, A study
aimed at isolating the parameters to which the spread in the transis—
tors are most sensitive and guidelines as to how these parameters
may be controlled during manufacture should eliminate a large number

of the problems which the author set out to solve in this thesis.

5¢2+,2 Resistance-Capacitance Amplifiers

The modern tendency to micro-miniaturise circuits have made the
use of inductances almost an anachronism. Thus a study of embedding
networks for sensitivity control involviﬁg only resistors and
capacitors should make an interesting research topic. This can be
carried to a further stage in which distributed resistance and
capacitance embedding may be considered. The study of the manu=
facturing tolerances and the use of RC embedding could be considered

as complimenting each other,
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APPENDIX A

TRANSISTOR SYNTHESLIS PROGRAM

INTRODUCTION

. Thé program is divided into three parts; a maln program and
two subroutines. It employs the Doolittle techniquehs. The program
is of such a general nature that it can be used in any situation in
which curvilinear multiple regression is required, The algorithmn
of the constituent parts of the prégram are given below. The

language used is FORTRAN IV,

a) Main Programme

1) Read number of samples, total number of varlables, number of
dependent variables, number of independent variables, order of
regression and the names of the variables,

2)  Call Subroutine 'PROCES',

3) Print (new) independent variébles and dependent variables,

L) Call Subroutine 'DOLITL',

5) Print the cocfficicents of the regression equﬁtion, the
standard error of estimate, the standard error of the regression
coefficients, the standard deviation of the dependent variable, the
coefficients of multiple determination and correlation and the co-

efficients of partial correlation,

b) Subroutine 'PROCES!

1) If order of regression is unity go to 2, otherwise transfer

independent variables into register 'ADEP' and permutate them. Go to 3,
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2) Transfer independent variables into 'ADEP!',

3) Transfer dependent variable into IDEP?' registers.

4)  Sum independent variable columns and calculate mean.
5) Sum dependent variable columns and calculate mean.

6)  Enter :;: (xij - ;i)(xi'j - Ei') into '"A' matrix,

7) Return to main program,

c) Subroutine 'DOLITL!

1) Enter :E: (xij - Ei)(yj - y) into 'A! column matrix for
dependent variable.

2) Compute 'Check Sum Column?,

3) Compute 'C!' unity matrix,

4) Apply Doolittle technique to 'A! matrix,

5) Compute coefficients of rggression equation.

6) Calculate the constant term of the regression equation,

7) Compute 'C! matrix,

8) Compute the standard error of estimate and of the regression
coefficients.

9) Compute the standard error of the dependent variable for the

complete model.

10) Calculate the coefficients of multiple determination and
correlation.

11) Calculate partial correlation coefficients44 (i.e. eliminate
each independent variable in turn end repeat process starting from
step 4 of Subroutine 'PROCES?,

12) Return to main program.
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APPENDIX B

LOSSLESS EMBEDDING ROUTINES

(Extended Mercury Autocode)

TITLE
LOSSLESS EMBEDDING

ROUTINE 1

(4,B)= (4,8, )x(A ,B ) (A ii)x(A B, )
(U, vy )= (A ,B )/(A B)
(U3’V3)="(A3’33)/(A'B)
(U7,V7)=—(A7,B7)/(A,B)

RETURN
b

ROUTINE 2

Zy =V, +K2

3—V3+KZ

%,V K2

9‘V 9+KZ

(Z]_O’ le)=(U3:Z )/(U Z7)
(212,213)=(U7,Z7) (UB,ZB)

Zy 1= (40, T =050, )/ (2 2 542 57 5)
RETURN

e

ROUTINE 3 .
(4,B )=(U1,Zl)x(U9, zg)—-(U,?,z?)_x(UB,zB)
(A'_L"Bl):(UQ’ Zg)/(A:B)
(AB’BB)?.(UB’ %)/(A:B)
(A,?,B?)—"(U?, Zy?)/(A;B)
(A9)B9)=(Ul, Z:L)/(A’B)

RETURN
™
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ROUTINE 4
= 1
¥ =B +K'Y
¥,=B,~K'Y

373
=B-K'Y
l?

Y7 '
9—B 9+K Y

( 10, ¥yq 0285150/ (A, X))

12, 13) (A7 Y ) (A3 Y )
¥y = (e Ag “Azf“ )/ (g 0 Yy 5, 5)
RETURN
e
ROUTINE 5
E=0,01
=0.01
7=0

>> DIRECTION FINDING (Z)

JUMPDOWN (Rl )
=0

JUMPDOWN (R2)
Bl=2y,
Z=0,01

JUMP 6, B!'>0
K=1

JUMPDOWN (122 )

JWP5, Z > B!
=1

JUMP 5

6)K=-1

JUMPDOWN (Rz)

JUMP 5B' >7 .

K=1

5)2=0

Ut=0

V=0

T'=0



1)Z2=7+E
2 )JUMPDOWN (R2 )

>>DIRECTION FINDING (Y)
JUMPDOWN (RB)

K'=0

JUMPDOWN (RL*)

Bl=t11

¥=0,01

JUMP 4, B'>0

K'=—1

JUMPDOWN (RL})

JUMP19, Y., > B!

K'=1

JUMP 19

4)Kr=1

JUMPDCWN (Rq)

JUMP 19,B'> Y
Kt=-1
19)¥=0

G!'=0

H'=0

J1=0

11

>>»(Y) ITERATION
11)¥=Y+W

12 )JJUMPDOWN (Rl} )
JUMP 51,0> Yll .
G'=Y

51)JUMP 16,Y11> 0
Ht=Y

16)JUMP 27,J'2 1
Tl=R1

mr=B Yll
JUMP 37,E'> 0
W=W/10
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JUMP 1.9
37)31=0141

JUMP 9,J ' =500
JUMP11,G'=0
JUMPIL,H'=0
Y=0.5G*+0,5H*

B, =gMOD( ¥4 )

JUMP 12, B, 0, 00005

>>(Z) ITERATION
JUMP50,X >Y
Uv=7
50)JUMP3,Y10> X
V=g

=L 4]

JUMP 7,I'> 15
JUMP1,U*=0
JUMP1,V'=0
Z=0,5U'+0,5V!

By =¢MOD(X-Y10)
JUMP 2, B, 3 0,00005

10

>>»15 CYCLE TRAP
JUMP 8
7)ur=urye

JUMP 8 U'#0

JUMP 10,0,001 >E
9)E=E/10

770

T1=0

Ut=0

V=0

W=0.01

C4PTION

2 TCO LARGE
JUMP 1
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10)K=-K
Z=0
It=0
Ut=0
V1=0
E=0,01

W=0,01
CAPTICH
K REVERSED TO

PRINT(X)1,0
JUMP 1

8)A/leo+Y14/2*¢S°RT((Ylg 1y,/2) (Yot ) g )=y oYy 6¥ Y1 Y5 )
G=1/A

RETURN
e

CHLPTER O
A 10
B-» 10
U-> 10
V> 10
Y-> 15
7w 15

>>READ TRANSISTOR PARAMETE
I=1(2)9

JUMP 1,1=5

READ(ATL)

READ(BI)

1 )REPEAT

>> RELD LAMBDA(R)
READ(X)

JUMPDOWN (R5 )
PRINT(KZ)1,5
PRINT(K'Y)1,5
PRINT (G)1,1
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END

CLOSE

2.48729 0.66042 0.,00409
L, 30492 ~13.65130 0.15765
0.0050

wwn 7

-0,01379
0.07813
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APPENDIX C

Y-MODE PORT~PADDING ROUTINES

(Extended Mercury Autocode)

ROUTINE, 9

H =A9+D
(H,,H, )=(45,8,)/(4,,B,)

H (hAlH hA A )/(A A )(A7 A3+(B7 BB)(B7 BB))
H6 =H _+H / +¢SQRT((H +H5/2)(H +H5/2) (H H+H, H 4))
H8'1/H6

RETURN
e

ROUTINE 10

C=0,01
6 )D=0
L1=0

070

Hll=0

JUMPDOWN (R9)

H1§F'—H5
3 )D=D+C

L4 )JUMPDOWN (R9)
HWPLH5>F'
07D

1)JuMP 2,F'> H
H,4=D
2)JUMPS5, L= 1

H13=H12(F"H5)

TUMP 5,H, 5 >0

5
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C=C/10

JUMP 6
5)LY=L1+1

JUMP 7,L.' > 29
JUMP 3,H, =0
JUMP 31, 1 =0
D=0, 5H, ;+0, 5H, 1
BO=¢M0D(F'-H5)
JUMP &, B, 0, 00001
JUMP 8

7 )NEWLINE 2
CAPTION

L'>29
PRINT(Hlo)l,G
PRINT(Hll)I{G

8 )NEWLINE 2
CAPTION

PORT PAD =
PRINT(D)1,5
PRINT(1000/D)1,0
CAPTION

(OHMS)

NEWLINE
PRINT(H2)1:5
PRINT(H4)1,5

PRINT(H5)1,5
PRINT(H6)1,5
PRINT(Hg)lfl

PRINT (4. 343pL.0G (Hg ) )1,1
NEWLINE 2

RETURN
o
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APPENDIX D

UNTLATERAL POWER GAIN AND RESISTIVE EMBEDDING

The unilateral power gain can be written in terms of impedances

'Zal - ziala

MR Ry = BBy )

as,

(p1)

When a regsistor is connected in series with the common lead, a new

value of U is obtained:

|2,

b <R11+R )(R22+Rf)-(R1 +R )(R21 f)

(D2)

Since the numerator of (D1) is the same as that of D2), the only way
in which U! could be greater than U is for the denominator of (D2) to
be less than that of (D1),

1 ' 1) 1 +R!
As Ut > o0, (Rll+Rf)(R22+Rf) (R12+Rf)(R21 Rf) -> 0,
In the limit,
Bofoy = Ryfon

£ Ry¥Rym RymRy

When R% = o , U cannot be increased by Z-mode lossy embedding. Under

these conditions,

Ry ¥ Ry = By + Ry (D)

(D3)
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Substituting in (D1),

2
Unin = a(Rlzéé )fial-R 3. (05)
2271/ 270
Since U > U . ,
mix
Rot By > Ry +R, (D6)
Therefore,
Bjg " Ryy "R, =Ry < O (p7)

Using the indefinite impedance matrix,

Bp =R = Rlsx (08)

and -
=Ry + Ry, = - 323 (D9)
Therefore,
Riq * Rop = Ry = By = ~(R; + Ry5) =Ry (D10)
and
]R33 < 0. (p11)

It is concluded that:
i) It is possible to increase the value of U of a device

if R12 + Ral > Rl‘.L + R22 (i.e. ]R33 < 0).

ii) The embedding resistor
Bo By Ry R
+ - -
Rll R22 R12 Rzl

for U to remain finite and positive.

(D12)

R, €

*The sign of the transfer elements of the indefinite impedance matrix
have to be changed when they are removed and replaced in the matrix,

hence negative R12 and Rzl'
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APPENDIX E

SENSITIVITY OF GAIN TO VARTATION IN EMBEDDING ELEMENTS

Variations in the embedding elements and their effect on the
gain of the amplifier have not been considercd in this thesis.
However, results computed for a simple case of lossless embedding
are given in Fig, El, The aim is to give a general idea of what
the order of magnitude of these changes are. Fig. El1 shows a plot
of gain against percent change in the susceptance Yf for fixed
values of the reactance Zf.

It can be seen from Fig. El, that with a nominal Z% and a
variation of +10% in Yf, the change in gain is 1.54 db whereas with
nominal ¥, and a variation of +10% in Zgs the change in gain is

£
0,82 dv,
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APPENDIX

SENSITIVITY OF GAIN TO EMITTER CURRENT AND COLLECTOR VOLTAGE

Changes in gain arising from changes in emitter current and
collector voltage have not been considered in this thesis. This is
because changes in the bias point results in changes in the point of
operation of the transistor in the IGS; the theory then applies,
Fig. F1 shows a plot of the point of operation of a transistor as

the collector voltage and emitter current are varied,



Fig F1 Loci of fthe Point of
Operation of a Transistor with
Emitter Current and Collector
Voltage.
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