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ABSTRACT 

The work reported in this thesis is concerned with 

research into the behaviour of elastic-plastic elastically 

restrained H-section columns which are restrained against 

sway. The thesis is sub-divided into chapters. Chapter 1 

is a review of previous allied work. Chapter 2 presents 

the results of experimental work and Chapter 3 gives a 

theoretical treatment of the problem and discusses the 

correlation between experiment and theory. Chapter 4 

shows how the theoretical equations of Chapter 3 can be 

presented to form the basis of a suitable design approach 

and Chapter 5 summarises the findings of the investigation 

as a whole. 

The experimental work was concentrated on a series of 

exploratory tests in which significant parameters were 

varied from one experiment to the next and the theoretical 

work investigated the influence of unloading, strain hardening, 

and torsion. 
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CHAPTER 1  

INTRODUCTION 

1. 1 AN OUTLINE OF THE PROBLEM  

1.1.1 The purpose of this thesis is to study the behaviour of 

steel H-section columns stressed into the elastic-plastic range 

whilst subject -to restraint about both axes from elastic beams. 

The loading is applied axially to the columns and laterally to 

the beams. Attention is restricted to the no-sway case and . 

in particular to the loading conditions shown in Figure 1. 2(a) 

where the beam loads cause symmetrical single curvature. 

This condition represents an important loading case which can 

arise in an office type building frame where the beams have 

been designed to remain elastic and the columns elastic-

plastic. 

1. 1. 2 Interest in the problem was occasioned by recent 

publications due to Heyman(1), Stevens (2)(3)  and Gent (4)  

where an alternative approach to conventional structural design, 

based on assuming a suitable deflection configuration and force 

distribution, has been outlined. In the elastic range this consists 

of selecting members capable of supporting all loads in the 

deformed state so that strength, stability and deflection 

requirements are satisfied simultaneously. .A further paper 

by Gent (5), awaiting publication, extends these general ideas 

in a modified form to cover a design approach for office type 

buildings in which elastic beams and elastic-plastic columns are 



used. By this approach the necessity for a designer to analyse 

a column largely disappears and many of the difficulties which 

were perceived in the past(6) in the design of this class of 

member no longer exist. It was because of the enhanced prospects 

of finding a suitable design method by this approach that this 

investigation was undertaken. 

1.1. 3 In considering the possibility of deriving suitable design 

methods for elastic-plastic columns, it was realised that there 

were several research problems which might receive attention. 

Some of these are extremely difficult and can only properly 

be solved by a rigorous theoretical approach; others are simpler 

and their solution is a much more mechanical process. These 

are enumerated and discussed below and the particular problems 

considered in this thesis are pointed out. They are as follows: 

1. An examination of the chief parameters affecting column 

behaviour when the irreversible nature of plastic strains and 

residual stress effects are not considered. In this thesis this 

particular aspect was the main problem investigated although 

within the limits set out in paragraph 1.1.1. It is also the problem 

to which the vast majority of present literature is devoted. 

2. An examination of the. effects of unloading after yield. 

The precise effect of this is unknown although the available 

evidence indicates its influence will be to strengthen a column 

rather than weaken it. In the current literature calculations on 

only one particular column have been reported (6)  which show in a 

straightforward manner this strengthening effect. A general 

proof covering all columns is not available. In this thesis 
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calculations on particular members have also been performed 

and can be compared with calculations which ignore unloading. 

3. An examination of the effects of residual stress. Recent 

work (7) on the behaviour of pin-ended columns has indicated 

that this is the most serious column imperfection. It is 

possible however, that in restrained columns, subjected to 

primary moments, the effect is quite small. 

4. An examination of whether shakedown will occur. No 

solution to this problem has ever been attempted even in 

particular cases and since only an approximate solution is 

available in the absence of axial load a solution for 

elastic-plastic columns seems far off. 

1. 2 PREVIOUS WORK  

1. 2.1 Previous work on the whole field of elastic-plastic 
stability is extensive, going back to the end of the last century. 

To restrict the field somewhat attention in this thesis is focussed 

mainly on that dealing with elastically restrained, elastic-plastic 

columns. However, since most of this previous work is 

concerned with single axis bending, a review of the literature 

dealing with bi-axially bent but unrestrained members is also 

included as this indicates how geometry and internal and 

external force distributions can be related. 

1. 2.2 The first work on the restrained elastic-plastic column 

appears to have been done in 1937 by Chwalla; his work has been 

reported by Bleich (8). Chwalla presented a highly involved 



FIG. 1.1 

(a) Single Curvature 

(b) Double Curvature 
Beam Loads 

FIG. 1.2 

e= Eccentricity 

8 
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grapho-analytical procedure to calculate equilibrium 

configurations for the structure shown in Figure 1.1 The 

method, as presented, was restricted to columns bent in one 

plane. 

1. 2. 3 Further and rather more extensive work was carried out 

in Britain by Baker and his associates who conducted a series 

of experimental and theoretical studies chiefly on restrained 

rectangular columns. This work was reported in "The 

Steel Skeleton'', Vol. II (6) where the important aspects of 

several papers were summarised. The method of experimental 

investigation differed from the one shown in Figure 1.1 in that 

moment was applied by loading the beams of the structure 

shown in Figures 1. 2(a) and (b) and this was followed by the 

application of axial load to failure. Both symmetrical single 

curvature and symmetrical double curvature cases were 

investigated, taking unloading into account where necessary, 

and the work was extended to H-section columns bent about the 

minor axis. Agreement between the experimental and 

theoretical results was excellent, the errors on the collapse 

loads being generally less than 5 per cent. One notable 

exception occurred in a case where a column had been bent in 

double curvature. By ignoring unloading a theoretical 

collapse load was computed which was 12 per cent low. 

Inclusion of the unloading effect produced a result which was 

then 7 per cent too high. This discrepancy was attributed to the 

possibility of a column unwinding from the double curvature 
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condition into a single curvature failure mode, a factor which 

was ignored in the theory. However, the importance of this result 

is that it is the only one available where the influence of 

unloading has been clearly demonstrated. Some approximate 

methods of calculating collapse loads were also given. 

1;  2.4 In the British work the theoretical solution of the 

non-linear differential equation for deflection was reduced to 

evaluating a series of elliptic integrals, i. e. the integration 

was performed analytically. In a recent paper by Hau::k and 

Lee(9)  this process of analytical integration has been extended 

to H-section members bent about their major axis. This has 

been done by idealising the member cross-section as being 

composed of a series of thin-walled elements. 

1.2. 5 Subsequent to the British work further research was 

undertaken in the U.S.A. by Bijlaard, Fisher and Winter (10)  

The work consisted of a presentation of two computational methods 

for restrained columns of any cross-sectional shape, bent in 

symncE trical single curvature, together with corroborating 

experimental work. The first computational method was 

described by the authors as exact and was an extension of work 

on pin-ended columns. It consisted of finding a hypothetical, 

pin-ended, concentrically loaded column of length less than 

the length of the real column such that it behaved in the same 

manner as a portion of the original member. The second 

method, described as approximate, was based on certain 
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assumptions which were not completely justified. The 

method, however, was the one by which most of the 

theoretical results were computed. Several assumptions 

were involved and these were debated at some length in the 

discussion to the paper by various contributors. Experimental 

work was carried out for both rectangular columns and H-section 

columns bent about the minor axis using the loading 

arrangement shown in Figure 1.1. Agreement between 

experiment and theory was satisfactory. 

1.2.6 Further work by Bijlaard (11) extended the theoretical 

treatment mentioned above to deal with unsymmetrical bending, 

e. cases with unequal end eccentricities and equal and 

unequal end restraints. The basis of the calculations was the 

same although the work did represent a significant extension 

of the theory. The methods overcame a defect of the British 

work in that for the symmetrical double curvature case 

allowance was made for the unwinding mentioned previously. 

1.2.7 A further extension along the same lines was made 

by Ojavlo (12)  who described how nomographs could be 

developed to design columns with one end hinged and also 

columns with equal applied end moments and equal rotational 

restraints. Methods of performing graphical research type 

calculations with non-linear rotational restraints and unequal 

end eccentricities were also given. 

1.2.8 Research into the behaviour of bi-axially bent columns 



has not been extensive but two recent publications on the topic, 

discussed below, are particularly interesting. Before 

discussing these, however, it should be mentioned that a 

standard textbook on elastic stability such as Timoshenko and 

Deere (13)
provides useful background information since it is a 

fairly easy matter to extend their derivation of the elastic 
fleetural-torsional equations to the inelastic caw, 

1.2.9 Work on the elastic-plastic problem has been done by 

1c1t3ppel and Winkelmann (14) who studied experimentally and 

theoretically a large number of eccentrically loaded pin-ended 

columns of H and E shaped sections. Their theory ignored 

unloading and the contribution made to torsional resistance by 

flange warping. The solution wis based on assuming polynomial 
>lc 

expressions for u and v displacements and satisfying 

equilibrium at a sufficient number of points to determine the 

coefficients, i„ e. a power series solution. Twist was found 

later in a separate operation. 

1.210 A more philosophically accurate theoretical solution 

to this problem was given by Birnstiel and Michalos (15)  

Their solution allowed for all possible contingencies so far as 

stress distribution at a cross-section was concerned. Warping 

strains and unloading were considered and allo*ance was made 

for residual stresses although this effect was not included in the 

* 
These are defined in Chapter 3.. 
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one calculated example given. The solution itself involved 

a computer and graphical solution of a set of simultaneous non-

linear algebraic equations in which the displacements at 

selected points along the column were adjusted. 

1.3 SUMMARY OF PREVIOUS WORK AND ITS RELATIONSHIP 
TO THIS THESIS 

1.3.1 From the previous work mentioned above it can be seen 

that two distinct bread theoretical approaches to the restrained 

column problem have been attempted. The first, used by the 

British team, determines the column shape without reference 

to solutionsobtained for various end moment values and axial 
for pin-ended members 

loads/whilst the second, used by Bijlaard and Ojavlo, does. 

This latter approach cannot be extended to biaxial bending because 

of the infinity of end moment combinations possible nor can it be 

used when strain reversal is considered. The first broad 

approach has therefore been adopted in this thesis. 

1.3.2 The experimental problem has likewise been approached 

in two different ways, viz. by the loading conditions represented 

by Figures 1.1 and 1.2. The second was chosen for use in this 

thesis as it was felt that it was more directly representative of 

the loading conditions to which an elastically tind restrained column 

in an actual building frame would usually be subjected. 
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1.3. 3 In considering the relationship of this thesis to 

previous work it is possible to regard it as an extension of two 

different aspects, depending on the point of view. Firstly, it 

can be regarded as an extension of the work of Chwalla or the 

British team to bi-axial bending or, secondly, as an extension 

of the work of Kli3ppel. and Winkelmann or Bi-2r.stiel and 

Michalos to the case of elastically restrained members. In 

either case, there are considerable differences in the details 

of the theoretical calculations, e.g. the concepts involved 

in calculating torsional displacements are different from those 

used by Birnstiel and Michalos and the method has been fully 

"computerised. Many other detailed differences also exist. 

However, despite the fact that considerable work has been 

performed on restrained columns bent about a single axis and 

pin-ended columns bent bi-axially, this appears to be the first 

theoretical and experimental study of restrained and bi-axially 

bent H-section columns. 
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CHAPTER 2  

EXPERIMENTAI., WORK 

2.1 INTRODUCTION 

2.1.1. The experimental work consisted of loading model H-section 

columns axially and through elastic beams framing into their 

ends. This loading was restricted to that causing single 

symmetrical curvature as explained previously in paragraph 

1.1.1. Whilst restricting attention to this particular loading 

case considerably reduced the scope of the investigation it was 

'-realised.at the outset that avast imount of work•would still be 

required if a comprehensive experimental programme were to 

be undertaken... Consequently atteition was restricted even 

further to the extent of conductiing:a series, of pilot tests 'for 

• which corresponding theoretic4l results were obtained. By 

- obtaining the theoretical and experimental results,conjunetively 

it was reasoned that the significant parameters affecting 

column behaviour could be determined. The full..test prograinme 

that•was ultimately undertaken is. summarised in. the table 

given as Figure 2. 6, In this table the slenderness ratio values 

are computed on the basis of the length of the column between • 

beam centre lines and the ratio of beam to column stiffness. ... 

is the moment of inertia of the beam divided by that of the 

column. 

2.1.2 The work divides itself naturally into two parts; firstly' 

three tests in which major axis beam loads and axial load only 

.14 
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were applied, and a second series of tests with both the major 

and minor axis beams loaded and axial load applied. Test 

specimens were accurately machined from annealed solid 

bars so as to minimise imperfections and beams were welded 

to the column to provide rigid joints. 

2.1.3 The loading system that was used in the experiments 

is shown diagrammatically in Figure 2.1. Firstly moment 

was applied to the column to produce a preselected amount of 

beam-column joint rotation by pulling the beam ends together 

with turnbuckles, see Figures 2.2(a) and (b). This action is 

indicated in Figure 2.1 by the loads W1  and W2. The distance 

between the beam ends was then fixed by tightening locking nuts 

in the turnbuckles, see Figure 2. 2(a), and this was followed by 

the application of axial load, P, until failure. (Note: For 

convenience the moments,' joint rotations and curvatures present 

after the application of the loads W1  and W2  will be known as the 

initial values, i, e. the ones present at the commencement of the 

axial load application. ) 

2.1.4 In considering the application of the loading described above 

it is important to realise that it corresponds exactly to that 

applied to the structure shown in Figure 1. 2(a). The loads W1  and 

W2 correspond to the distributed beam loads and can be arranged 

to produce the same joint rotation exactly. Also the ratio of 

beam moment to beam shear can be adjusted by changing the 

beam length and changes in the beam stiffness can be effected by 

alteration of the cross-sectional dimensions, 



Axial Load 
W2--: Minor Axis 

Turnbuckle Load 

-44%41441 :11=Major Axis.  
Turnbuckle Load 

17 

Wi 

110. 2.1 
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joint rotations 

Beams 

18 

Lower end loading block 

FIG. 2.2 (a) 
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FIG 2-2 (b) 
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2,1. 5 A further matter requiring consideration is the 

irreversible nature of the plastic strains which can cause 

variations in the collapse load depending on the order of load 

application. Despite this the loading sequence described in 

paragraph 2.1.3 was used throughout. This was because it 

was difficult to predict sequences whereby strain reversal 

could be avoided to any large extent. It was concluded that 

any changes which might be induced in this way would be very 

small. 

2.2 DETAILS OF EXPERIMENTAL RIG 

2.2.1 The full experimental rig is shown in the photographs, 

Figures 2.2(a) and (b). These are two views of the apparatus 

and a specimen, column 3.1, at the completion of a test. 

Important pieces of the apparatus which are not part of the 

loading machine are labelled. 

2.2.2 The major design problem was the provision of end 

bearings capable of applying a concentric load whilst retaining 

free joint rotation in both major and minor axis directions. 

(The question of torsional conditions is deferred until a later 

section). This was solved using two sets of mutually 

perpendicular and concentric roller bearings whose common 

rotational centre, C, was nominally coincident with the 

intersection of the beam centre lines. Therefore provided the 

column was placed between the centres of the upper and lower 

end bearings no eccentricities could exist, and provided the 
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bearings neither jammed nor became affected by significant 

friction no unaccounted rotational restraint could occur. 

The principle of operation of the bearings is easily understood 

by referring to Figure 2.3. 

2.2.3 It should be obvious from Figure 2.3 that the bearings 

must have certain clearances between the sides of their lower 

and middle sections and again between their middle and upper 

sections. These were quite small, being 0.003 inch on either 

side in the former case and 0.005 inch on either side in the 

latter case. The clearances were necessary to prevent friction 

on the sides but they did allow the possibility of small end 

eccentricities being applied. However, by moving the column 

bodily across on the bearings, the clearances could be used to 

advantage to remove any eccentricities due to machining errors. 

2.2.4 Positioning of the column on the end bearing was by means 

of a 3/8 inch diameter pin located accurately in the centre of the 

column end and the final loading surface of the bearing itself. 

The bearing block as a whole was positioned by a pin entering 

the base plate and a hole provided in the loading machine for 

centralising purposes. This did not need to be located 

accurately, however. 

2.2.5 The action of the turnbuckles has been described 

previously in paragraph 2.1.3 and labelled photographs have 

also been given, Figures 2.2(a) and (b). Two important details 
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of the turnbuckles not mentioned previously, however, are two 

sets of roller bearings, one of which allowed free rotation 

of the beams about their major axerl, i.e. provided a simply 

supported condition, and a second set which prevented the 

application of twisting moments to the beams. The ends of 

the beams were specially machined to slide neatly into 

bushes of this first set of bearings. 

2. 2. 6 A problem encountered with the use of turnbuckles was 

their own self-weight. The adjustment for this was by means 

of the screw device shown and labelled in Figure 2. 2(1). 

The screwed thread was right-hand-left-hand, enabling 

rapid adjustment to be made. The use of this and the process 

of adjustment are deferred to paragraph 2. 5.3. 

2.2. 7 The turnbuckles in conjunction with their supports 

performed a further function by supplying torsional restraint 

once the turnbuckle locking nuts had been tightened. Minor 

axis beam stiffnesses were quite high in comparison with the 

torsional rigidity of the column so that torsional restraint 

depended largely on the lateral resistance at the beam ends. 

But since the adjusting screws of the turnbuckle supports 

were sufficiently rigid to prevent the top U piece of the turn-

buckle from rotating significantly the rather rigid turnbuckles 

were then able to prevent relative rotation of the column ends. 

Evidence that the ends were restrained was supplied by 

deflection data recorded in the experiments. In no case were 

relative rotations greater than 2 x 10-3 radians recorded, this 
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value being within the accuracy of the readings. 

2.2,8 A solid end section, see Figure 2. 5(b), at the beam 

column junction ensured complete restraint against torsional 

warping at both ends of the column. 

2.2. 9 Central displacement measurements only were taken 

and were made by dial gauges throughout. The frame to which 

both major and minor axis gauges were attached was bolted to 

the base plate of the top end bearing and cantilevered the full 

column length, see Figure 2.4. The frame was zikagiesiffekr 

of sufficient rigidity for its purposes and the fact that it and 

the column could move and rotate as rigid bodies was 

irrelevant with the three dial gauge system used. Central 

deflection was found using the formula, 

= de  - i  (dt  + db) 

where dt, de  db  are reduced top, central and bottom dial 

gauge readings. Minor axis dial gauges were used in pairs and 

column twist was the difference of these readings divided by 

the distance between dial gauges. 

2. 2.10 In the photographs, Figures 2.2(a) and (b), mirrors 

mounted on the beams can be seen. The intention was to take 

readings of the average end rotations, by double reflection, to 

provide information concerning the relative amounts of moment 

relaxation due to joint rotation and column shortening. 

However, although the initial rotations, i. e. with beam loads 

alone, could be measured accurately, subsequent joint 
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rotations were so small that little useful information was 

obtained. To provide more reflections and thus magnification 

would have been impossibly complicated for various reasons 

so that the use of the mirrors was discontinued in later column 

tests. 

2.3 PREPARATION OF SPECIMENS 

2.3.1 The theoretical analysis of the columns contained no 

allowance for either residual stress or initial deflections. To 

fulfill these assumptions experimentally the specimens were cut 

from solid bars that had been annealed. This treatment was 

not given to the three columns subjected to major axis bending 

alone, viz. 1.1, 2.1, 2.2. 

2.3.2 Lengths of 1+ inches by 1+ inches commercial black 

bar were heated to 840oC for 11 hours and subsequently cooled 

to room temperature in the furnace entry chamber. Since 

the largest column specimens cut were 1 inch square and 

since only the top 1/8  inch is usually considered decarburised in 

a natural atmosphere no purging gas was used. 

2.3.3 The heat treatment given to the specimens was 

regarded as lying somewhere between a normalising and full-

annealing treatment. This was because the cooling in the entry 

chamber was considered to occur at a moderately slow rate due 

to the reasonably high temperature in this confined region. 

This was dDne to reduce the drop in yield stress that occurs 

with a full-annealing process and so produce an experimental 
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series related to the unannealed columns. The treatment could 

only have left small temperature gradients. 

2.3.4 The machining of the columns was a lengthy and 

difficult operation. Firstly, specimens were roughly and fairly 

rapidly machined to within 0.01 inches of their finished size. 

Sufficient care was taken at this stage, however, to ensure 

parallel and constant width flanges. Next they were aid 

aside for two weeks to "settle". Outside dimensions were then 

finished to size by grinding and the flange and web thicknesses 

by a milling operation. In this final machining, particularly 

for the long slender columns, packing was required to ensure 

that bends were machined out rather than clamped out. This 

often required approaching the final sizes more gradually 

with further "settling" periods between the grinding and 

milling operations. 

2.3.5 In designating machining tolerances for the column 

specimens it was specified that the correct cross-sectional shape 

be maintained, i. e. the flangesof equal thickness (to within 

+ 0.001 inches) and parallel and the web centrally placed 

(to within + 0.001 inches). Liberal tolerances were allowed 

on the actual values of web and flange thickness, however (+0. 005 

inches). The columns shown in the table, Figure 2.6, are in 

three groups, each group having nominally the same 

dimensions. The actual finished sizes are given in Figure 2.5(a). 

Columns were generally straight to almost undetectable amounts. 
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Co LU MN B D t f t w 

1.1 1.000" 1.000" . 0.100" 0.060" 

1.2 1.000" - 1.000" 01 00" 0.060" 

1.3 1.000" 1.000"  0101" 0.060" 

1.4 1.000" 1.000" 0101" 0.060" 

2.1 0.500" 1.000" 0.075" 0.060" 

2 ,2 0.500" 1.000" 0.075" 0.060" 

3.1 0:750" 0.750" 0.060" 0.050" 

3.2 0.750" 0.750 " 0.055" 0.054" 

3.3 
" 

0.750 0.750" 0.055" 0.054" 

3.4 0.750" 0.750" 0.055" 0.054" 

(a) 

Hole for locating pin 

(b) 

FIG • 2.5 
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A maximum bend of between 0.001 inches and 0.002 inches 

was recorded on one of the' 18 inch long columns. 

2.3.6 Welding of the beams to the columns was facilitated by 

the solid end section mentioned previously, see paragraph 

2.2.9 and also Figure 2.5(b). Direct attachment to the thin 

flanges would have only resulted in them burning away, 

The solid section was needed, in any case, as a platform for 

the application and transmission of the axial load. Squareness 

of the beams to the columns was ensured by machining the beam 

ends square and clamping both beam and column during the 

welding process. 

2.4 MEASUREMENT TECHNIQUE 

2.4.1 The quantities recorded during the course of an 

experiment were, 

(i) axial load, 

(ii) major and minor axis deflections and column twist, 

(iii) beam moments, 

(iv) column strains. 

2.4.2 Axial load was read directly off the Buckton 10-ton loading 

machine used. This was a dead load device with a scale 

capable of being read to 0.001 ton. However, the accuracy of the 

actual load applied was not commesurate with this reading as a 

Comparison with a proving ring indicated errors of up to 

+ 0.01 ton. 
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2.4.3 The measurement of deflections and rotations has 

been discussed previously, see paragraph 2.2.9. 

2.4,4 Beam moment measurement was by means of 

electrical resistance wire strain gauges. Beam steel was 

chosen to prevent yielding and the moment gauges glued near 

the beam-column junction slightly away from the weld area. 

Calibration charts were prepared by plotting electrical 

resistance change, measured on a Peekell strain gauge bridge, 

against moment. Care was exercised in positioning the 

strain gauges since it was desirable to have the calibration 

factors the same for the two beams on any one axis, see 

paragraph 2.5.3. 

2.4.5 Column strain measurements were taken principally 

to provide approximate post-mortem data for columns where 

experimental and theoretical results were not agreeing. They 

also provided an independent check on the initial moment 

present and by applying a nominally axial load in a preliminary 

test the existence of accidental eccentricities. Gauges were 

arranged symmetrically in four sections as shown in Figures 

2. 7(a) and (b) so that additional data which indicated the 

assumed symmetry of the loading in the experiment was also 

available. The limitations on absolute measurements were 

due to both placing and measuring the position of strain gauges 

with large strain gradients present and to the gauge size 

(10 mm by 2 mm grid), a limitation imposed by economic 

reasons. Strains were recorded on a Solartron automatic high- 
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(0) 

Column strain gauge 
positions 

(b) 

FIG. 2.7 
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speed recorder. 

2.5 EXPERIMENTAL PROCEDURE  

2.5.1 The experimental procedure consisted of preliminary 

tests, designed to eliminate faulty functioning of any component 

and errors in the preparation of the calibration charts, followed 

by the test to failure. The details of this are given below. 

2.5.2 Firstly, all bearings were cleaned and oiled. Next the 

column was positioned and a small holding load applied. After 

checking the bearing clearances a safe axial load was applied to 

the column as the first part of the preliminary testing. Column 

strain readings were taken to check on accidental eccentricities, 

as mentioned in paragraph 2.4.5, and the beam ends flexed lightly 

with the fingers to check that the bearings were running freely. 

Provided all strain gauge readings were the same to + 20 micro-

strain and no residual deflections remained after the beam flexing, 

the stage was considered satisfactory. The effectiveness of the 

end bearings in avoiding frictional restraint was demonstrated with 

loads up to 3 tons. 

2.5.3 A second preliminary test consisted of applying moment 

about each axis in turn keeping all stresses below the yield point 

values. During this application adjustment was made to correct 

for turnbuckl€ .3elf-weight by making use of the equal moment-

strain gauge calibration factors for the beam arms, see paragraph 

2.4.4. Firstly, the strain gauge readings were equalised with the 



33 

turnbuckles off by using variable balancing resistors in a 

switchbox. Thus by subsequently manipulating the turnbuckle 

support to keep these readings the same, equal moments on the 

column ends were ensured. During this loading column deflection 

and strain readings were taken and required to be within + 0.002 

inch and + 5 per cent respectively of the theoretical values. 

2.5.4 The test to failure began with a recheck of all bearing 

clearances and a rereading of all strain and dial gauges. Beam 

loads were then applied to produce the preselected beam-column 

joint rotation, as described in paragraph 2. 5. 3, and the locking 

nuts tightened as described in paragraph 2.1.3. During the locking 

process the moment induced in the column by the beam loads 

usually decreased slightly and it is this value which is plotted in 

the graphical presentation of the results and which was used in the 

correspondingtheoreticar calculations. 

2. 5. 5. Increments of axial load were then applied until failure, 

the turnbuckles supports being continuously adjusted to equalise 

the beam moments. Deflection and strain gauge data were 

recorded throughout. Near collapse the increment was 

decreased and up to 20 minutes was allowed for the column to 

creep. If at the end of this period the column was still 

supporting its load, readings were taken and a further load 

increment applied. Periodic checks were made of the bearing 

clearances to ensure their free running. 
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2.6 MATERIAL PROPERTIES 

2.6.1 The properties required for correlation of theory with 

the experimental results and general identification of the column 

material were the upper and lower yield points and Young's 

modulus E. Further tests were conducted to indicate the extent 

of the plastic plateau and to obtain strain hardening data. 

2.6.2 All the material used for the columns was originally 

purchased in one batch and could therefore be assumed similar. 

However, column tests 1.1, 2.1, 2.2 were of unannealed material 

whilst that of 1.2, 1.3, 1.4 and 3.1, 3.2, 3.3, 3.4 was annealed 

in two separate batches due to limitations imposed by available 

furnace sizes. Upper and lower yield point tests were 

conducted on samples from each of the three batches, three 

specimens from each batch, whilst the Young's modulus value was 

obtained by testing two samples, one each of annealed and unanneakd 

material. 

2.6.3 Upper and lower yield point values were the result of 

Hounsfield tensometer tests. In the order of the grouping 

of paragraph 2.6.2, the upper yield point values recorded were 

18, 16, 16 tons per square inch respectively and lower yield 

point values were 15.5, 14.6, 14.6 tons per square inch 

respectively. 

2.6.4 Young's modulus was determined by loading a specimen 

with a hydraulic machine and recording strains with electrical 
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resistance strain gauges. Results were obtained for the first 

and third batches of material indicated in paragraph 2.6.2; 

the values recorded were 13.3 and 13.7 tons per square inch 

respectively. 

2.6.5 Although both the tensometer tests and the Young's 

modulus test showed that some plastic yielding was occurring 

neither indicated the extent of the plastic plateau or the initial 

strain-hardening modulus. The tensometer test was not capable 

of doing so and the use of strain gauges and a hydraulic 

loading machine was found to be unsuitable for the purpose. 

Consequently a test was run using a 10 ton Dennison hydraulic 

testing machine with load and strain recorded on a revolving 

drum. Results were obtained only for the last batch of 

annealed material and these are shown in Figure 2.8. A lower . 

yield stress of 15.5 tons per square inch is indicated, together 

with a plastic plateau extending to 3.8 times the yield strain, 

and a strain hardening modulus of 1.08 tons per square inch. 

2.7 EXPERIMENTAL RESULTS 

2.7.1 As stated previously, the experimental programme 

consisted of three tests involving major axis beam loads only 

and a further seven with both beams loaded. The details of each 

test are discussed below, the order of discussion corresponding 

to the chronological order of testing. The major axis tests were 

conducted first and have been reported elsewhere by Gent (5)  

but the essential details are included here as part of the more 
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general experimental programme. A discussion of the 

biaxial tests then follows. Experimental results for axial 

load versus central displacements (a deflection and in some cases 

an angle of twist) and axial load versus beam moment are given 

for all columns in Figures A. 1 to A. 20 along with the summary 

mentioned previously, Figure 2.6. 

2.7.2 The purpose of conducting the major axis tests was to 

investigate the question of lateral stability under these particular 

loading conditions. Little previous work was available, the only 

tests which appear in the literature seeming to be those reported 

in "The Steel Skeleton". These indicated that columns of this 

type fail by lateral bending with little twist. The same tendencies 

were noted in the te.:.ts reported in this thesis. In his discussion 

of the latter test series Gent (5)  reasoned that torsion was a minor 

effect and could, for practical purposes, be ignored so that a 

simple application of the deterioration of stability concept, i. e. 

in this context, that material which becomes plastic no longer 

contributes to the stiffness of the member, would allow lateral 

stability to be checked. As it can be arranged that no tension 

yield occurs during the loading process the elastic critical 

load of one flange will be a lower limit on the buckling load. 

The load computed in this fashion may be regarded as a tangent-

modulus load so that a slight increase to the final collapse load, 

in accordance with the ideas introduced by Shanley (8), will occur. 

See the design method presented in Chapter 4. 
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The first three tests reported below were designed to provide 

experimental support for these ideas. 

2. 7.3 Column 1.1 (Figures A;1 and A. 2) 

(i) Object of Test  

This short, heavy, wide-flanged member represented a 

column that would remain laterally stable until failure by 

excessive major axis deflection occurred. The squash load 

( = total area x yield stress = 8804 pounds) is the maximum 

possible under any consideration and the elastic critical load 

of one flange, in this case 68600 pounds, was far in excess of 

this value. Heavy initial major axis moment was applied; 

equal to 89 per cent of the fully plastic moment. The holding 

load plus beam shear prevented yield in tension at this stage 

although the entire compression flange had yielded. Beam 

dimensions in this case meant that the column was effectively 

fixed-ended about both axes. 

(ii) Results  

Failure occurred at 8300 pounds or 95.6 per cent of the 

squash load. Major axis deflections increased linearly during 

the application of beam moment, part OA of the curve in 

Figure A.2, then increased slowly with axial load until failure 

was approached. At failure they accelerated and physical 

collapse occurred with insigificant minor axis deflections and 

twist. 

(iii) Comment on performance  

Beam moments decreased throughout and became negative at 

about 7500 pounds. At this stage much of the compression flange 
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must have unloaded, i. e. the strain decreased after yield. 

However in this, thS first test, strain gauges were present 
at the central cross-section only and this was not detected4  

The central strain gauges did show, however, that at this 

critical cross-section no yield in tension occurred until the final 

collapse process was well in progress. 

2.7.4 Column 2.1 (Figures A. 3 and A. 4) 

(i) Object of Test  

In order to examine the question of lateral stability further 

a second test was conducted with the elastic critical load of one 

flange reduced to 40 per cent of the squash load. This was 

achieved by using a narrow flanged section in conjunction with the 

omission of the minor axis beams. Heavy initial major axis 

beam moment was applied again, 79 per cent of the fully plastic 

moment, and this in combination with the holding load and beam 

shear just produced yield in compression. 

(ii) Results  

Failure occurred at 1430 pounds by bending about the minor 

axis accompanied by only insignificant amounts of twist. The 

curves of Figure A. 4 show that during the application of the 

major axis beam moment there was a tendency for minor axis 

deflections to develop, 0.006 inches in all. A central twisting 

displacement of 0.2 degrees also developed. With the application 

of axial load minor axis deflections magnified and then accelerated 

rapidly approaching and during collapse. Twist also increased 

but during the deformation caused by the final load increment, 

i. e. during the actual physical collapse, whilst the minor axis 
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deflections doubled (0.12 inches to 0.25 inches), the central 

twist increased from only 1.72 degrees to 1,95 degrees 

(iii) Comment on performance  

An analysis of the strain gauge results indicated that just 

prior to collapse the compression flange was plastic along the 

entire column length, so that the internal strain distribution was 

causing the column stiffness to conform to the minimum 

requirements set out in paragraph 2.7.2. According to the 

reasoning given the elastic critical load of one flange should 

lie slightly below 1430 pounds. Evaluation offEI /2L2  

( = 1370 pounds) showed that its value conformed to this 

requirement; it is only 4.2 per cent below. Further analysis 

of the strain gauge results revealed that unloading had 

occurred approaching collapse as required in paragraph 2.7.2 

and this explains why the experimental collapse load exceeds 

1370 pounds. The fact that twisting displacements did not 

increase significantly during failure indicated that their effect 

was slight and that further calculation with their influence 

included would be unlikely to alter the theoretical collapse load 

very much. 

2.7.5 Column 2.2 (Figures A. 5 and A..6) 

(i) Object of Test  

This was the column of test 2.1 straightened but with 

minor axis support. It was included to study the influence of 

minor axis restraint on lateral stability and so provide 

further confirmation of the above interpretation of the behaviour 

of this class of column. An initial major axis moment approximately 
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equal to the same as that of column 2.1 was applied so that 

a direct comparison of the results was possible. 

(ii) Results  

The member performed in a similar fashion to the stiff 

column of test 1.1, relaxing its beam moments as necessary to 

sustain axial load, but due to imperfections lateral displacements 

developed under the high initial bending moments and these were 

subsequently magnified and produced failure about the minor axis 

as the squash load was approached. As in test 2.1 the increments 
of displacement during collapse were minor axis only, see Figure 

A. 6. 

(iii) Comment on performance  

Little can be said about the performance of this column as 

the imperfections introduced by the straightening masked most 

other effects. This became evident when the column deflected 

about the minor axis in a direction opposite to that which would 

be expected from the influence of axial shortening. However, 

the provision of minor axis restraint obviously had important 

beneficial effects as can be seen by comparing the collapse 

loads of columns 2.1 and 2.2. 

2.7.G Further details of the work have been given by Gent (5)  

in his paper, together with further explanation of how the 

stiffness of a column deteriorates with the onset of plasticity. 

These details sada= not be given in this thesis since this would 

involve too much unnecessary repetition. 
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2. '7. 7 While the three tests described above fall somewhat 

short of the number desirable for a fully convincing 

demonstration no further work was done since the major 

aim was to study biaxial behaviour. The biaxial tests, 

however, provided further evidence of the small significance 

of torsional action, the only debatable assumption in the 

simplified theory above. In this study attention was centred 

on wide-flanged Universal column sections as it was felt 

that the narrow-flanged types such as 2.1 and 2.2 would be 
bending 

used in cases of major axispnly. In these tests no simple 

stability criterion was anticipated, the chief purpose being to 

examine experimentally the effects of various parameters in 

conjunction with the theoretical calculations. The discussion 

below traces the history of the tests and describes certain 

other aspects but a discussion of the correlation between 

the results and the theory is deferred until the end of Chapter 3. 

2. 7.8 Column 1.2 (Figures A.7 and A. 8) 

(i) Object of Test  

This, the first test with biaxial bending, was a repetition 

of test 1.1 so far as column and beam dimensions were 

concerned. Initial moments were applied so as to produce 

equal curvatures in the two principal planes their combined 

magnitudes being sufficient to cause stresses equal to the lower 

yield value in the column. 
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(ii) Results  

Failure occurred at approximately the same load as 

column 1.1 by a mode in which minor axis deflections 

predominated. Major axis deflections increased also during 

the final physical collapse but the twist remained constant. 

Reversal of beam moment about both axes took place at 

approximately the same axial load, the value of which was 

quite close to the final failure load, see Figure A. 8. 

(iii) Comment on performance  

The main point of interest was the fact that considerable 

minor axis moment had not reduced the collapse load as 

compared with column 1. 1. However, in view of the fact 

that the mode of failure had switched to a predominant minor 

axis collapse condition, i. e. the minor axis moments had 

caused an effective reduction in stiffness, it was thought the 

effect might be more severe on slender columns and cause 

large reductions in the load carrying capacity. The next four 

tests, all on the same reduced column section, were made to 

examine this question. 

2.7.9 Column 3.1 (Figures A. 9 and A. 10) 

(i) Object of Test  

Apart from the increase in slenderness ratio, from 46.3 

to 98.4, this test was a repetition of the previous one. Beam 

stiffness was reduced but on a proportional basis was not 

significantly lower. Initial moments again provided column 

stresses equal to the yield value with equal principal curvatures 
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in the two principal planes. 

(ii) Results  

Axial load application resulted in the column failing by 

minor axis bending at 76 per cent of the squash load. Major 

axis deflections actually decreased slightly during the last two 

load increments and twist values remained constant, see 
Figure A:10. 

(iii) Comment on performance  

To support the axial load above 2500 pounds, the minor 

axis beam moments had to reverse their direction rather 

rapidly. The increase to the final collapse load of 3210 pounds 

indicated the reserve of strength that was available above the 

pin-ended condition. It also indicated the method by which the 

column counteracted its high slenderness ratio and enabled it 

to sustain its high axial load. 

2. 7.1C Column 3.2 (Figures A.11 and A.12) 

(i) Object  

In the two previous biaxial tests the application of moder&.e 

minor axis moment, in combination with the major axis moment, 

had caused considerable reduction of minor axis stiffness to 

below the elastic critical load of one flange. This had 

resulted in the increasing deflections, in this direction, at 

failure so that a column in which reduced minor axis moment 

was applied was studied next. The initial curvature vector was 

inclined at 22+ degrees to the major axis, i.e. with more major 

axis curvature, and the initial column moments caused stresses 
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equal to the lower yield point value.. During the application 

of the major axis moment, minor axis deflections increased 

by 0.007 inches because the major axis beams had not been 

accurately welded to the column. This resulted in joint 

rotations of 1. 7 x 10-2 radians being present, about the 

me,.)r axis, at this stage. 

(ii) Results  

Collapse occurred at 3430 pounds by predominantly major axis 

deflection, although there was a slight arid sudden increase in minor 

axis deflection but a decrease in twist during actual physical collapse. 

(iii) Comment on performance  

The interesting point about this particular experiment is that 

the presence of high major axis curvaturen.tad no influence on the 

column's load-carrying capacity. In many respects this test can be 

likened to test 1.1 in that one flange at least was elastic for most 

of the test, due to the small minor axis curvatures, enabling the 

column to remain laterally stable. Also, in accordance with the 

column of test 1.1, this column was able to sustain quite high major 

axis deflections before it finally failed by major axis bending. 

2.7.11 Column 3.3 (Figures A. 13 and A. 14)  

(i) Object of test 

As part of the general series to investigate the effect of 

variations of the initial curvature vector a reduction was made in 

the major axis moment used for column 3.1 whilst retaining all 

other features of that test. It was thought that with only part of 

the total possible major axis moment applied, minor axis effects 

might predominate, induce plasticity in both flanges, and cause 

collapse at a reduced level. 
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(ii) Results  

The test results, see Figures 2.6, A. 14, A.15, show 

clearly that this was not the case. Collapse was by minor axis 

bending at 3350 pounds at which stage a positive moment 

was still being applied from the major axis beams. 

(iii) Comment  on performance  

The test obviously indicates that the particular variation 

of beam loading that has been used has had no adverse effects 

on the load-carrying capacity of the column, Although this 

may be true for all conceivable variations of beam loads below 

their full maximum values, it is not possible to draw this 

conclusion on the basis of one test. The point has not been 

investigated further, however. 

2.7.12 Column 3.4 (Figures A.15 and A. 16) 

(1) Object of test 

All the previous tests were performed with relatively stiff 

beams. To investigate the effect of a reduced minor axis 

beam restraint the considerable reduction indicated in Figure 2.6 

was made. The column was tentatively designed to fail at a 

load of 2500 pounds on the basis of the one flange elastic 

assumption of the major axis tests. The elastic critical load 

of one flange was 1930 pounds in a pin-ended condition and this 

was raised to the above figure by a suitable selection of minor 

axis beams. As with column 3.2 major axis beam moment was 

fixed at 670 inch pounds, i. e. producing an initial joint 

rotation of 1.7 x 10-2 radians. Minor axis moment was limited 
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to 25 inch pounds because considerable joint rotation was 

necessary to relax the beam moment and it was thought 

desirable to limit this to some extent.-ismosimillithemillisilift 

(ii) Results  

Collapse occurred at 2240 pounds in a predominantly 

minor axis mode accompanied by slight major axis 

displacements but decreasing twists. 

(iii) Comment on performance  

The load versus deflection graphs indicate approximately 

linear behaviour up to 1400 pounds followed by non-linearity 

to failure. Subsequent calculations and analysis of the strain 

results showed that yielding first occurred at 1300 pounds 

so that the change in behaviour was attributed to this. The fact 

that the experimental collapse load was below the design figure 

.was. attributed to the plasticity induced in the tension flange 

by minor axis curvatures. 

2.7.13 The completion of the experimental programme 

involved the testing of two columns with an intermediate slender-

ness ratio. Cross-sectional dimensions were the same as 1.1 

and 1.2 above but the length was increased.. Two tests were 

performed, one with the usual equal initial principal curvatures 

and first yield condition, and a second in which the major axis 

beam stiffness was reduced. It is doubtful whether this second . 

test is representative of any practical conditions but it does 

irvirstigate a further aspect of the fundamental behaviour and 
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complements test 3.4. 

2. 7.14 Column 1.3 (Figures A. 17 and A. 18)  

(i) Object of test 

As explained above, this column was tested under the 

equal initial curvatures condition with initial bending stress 

equal to first yield in the extreme fibres. Both major and minor 

axis beams were the same as those used in tests 3.1 to 3.3 

above, 

(ii) Results  

The application of axial load brought about failure at 

78 00 pounds in a mode in which there were approximately equal 

amounts of major and minor axis deflection, see Figure A. 18. 

Positive major and minor axis beam moments were sustained 

until close to collapse, see Figure A.17. 

(iii) Comment on performance  

After failure this column was straightened, reloaded with 

precisely the same initial moments, and failed again. The 

displacement and moment curves have not been plotted as they 

lay quite close to those obtained in the original version of the 

test. There were only slightly higher twists and deflections 

generally, for the same load. The really interesting point, 

however, was that the failure load was unaffected, suggesting that 

residual stresses, in general, will not be serious in restrained 

columns. 
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2.7. 3 Column 1. 4 (Figures A.19 and A. 20) 

(1) Object of Test  

For the column major axis beam stiffness was 

considerably reduced, as compared with column 1. 3, although 

the minor axis beams were not altered. Initial major axis 

moment of 500 inch pounds only was applied, due to limitations 

on beam stresses. Minor axis moment was fixed at the same 

value to retain some degree of realism in the test as it was 

thought this could hardly be the larger of the two. 

(ii) Results  

Failure occurred at 7400 pounds in a major axis mode. 

A little minor axis bending also occurred but very little 

twist. Major axis deflections, which were small to begin with, 

and major axis beam moment, changed very little in the early 

part of the test with the column elastic. As loading proceeded 

the section became plastic and the major axis deflections 

accelerated rapidly causing failure. 

(iii) Comment on performance  

Of interest in this test was the fact that the lighter major 

axis beams had not dramatically reduced the collapse load as 

was the case with slender minor axis beams in column 3.4. 

2.8 CONCLUSIONS ON COLUMN PERFORMANCE  

2. 6. 1 The following general conclusions can be drawn from 

the work above. 

1. Variations in the initial mono nts applied to a column, 

provided the yield stress is not exceeded under their influence 
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alone, have but a small effect on the load-carrying capacity. 

2. The collapse load is much more sensitive to changes in 

beam stiffness than to the amount of intial moment applied; 

in particular it is sensitive to changes in minor axis beam 
stiffness. 

3. Twisting occurs during the application of axial load but it 

must be considered a secondary effect since in no case did it 

increase to an3 =larked ,.xtent during collapse. In three 

cases it actually decreased. 

4. Initial imperfections due to straightening the specimen 

do not affect its load-carrying capacity provided the beams are 

relatively stiff. 

2.8.2 In view of conclusion (3) above, the following further 

conclusions may be drawn, concerning the major axis tests. 

1. Provided the tension flange remains elastic the critical 

load of it alone provides a lower limit for the load at which 

lateral instability will occur. 

2. The actual collapse load may be higher than that calculated 

in (1) above due to the effect of unloading. 
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CHAPTER 3 

THEORETICAL STUDY 

. Theory of Elastically Restrained Elastic-Plastic H-Columns  

3.1 NOTATION 

3.1.1 The following symbols are adopted in the text below: 

A 	total column cross-sectional area 

B breadth of flange 

b1,  r 2 bl b' parameter defining the strain distribution at a cross- 

section 

parameter defining the strain distribution at a cross- 

section 

D depth of section 

E modulus of elasticity 

G modulus of rigidity 

IBX and  IBY moments of inertia of the beams restraining the 

columns about the major and minor axes 

It 	moment of inertia of the total cross-section about 	axis 

Lrt„ 	moment of inertia of the total cross-section about 11,  axis 

L length of column between beam centre lines 

h 1410 

parameter defining the strain distribution at a cross- 

section 

LBX and  LBY lengths of the beams restraining the columns 

about the major and minor axes 
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MX 	bending moment about an axis parallel to the X axis 

MY 	bending moment about an axis parallel to the Y axis 

MZ 	bending moment about an axis parallel to the Z axis 

IV 	bending moment about the 	axis 
M.v, 	bending moment about the -ru axis 
Mc 	bending moment about an axis through the effective shear 

centre parallel to the 	axis 

flange bending moments 

axial load 

r 	perpendicular distance from the effective centre of twist 

to a fibre 

s 	arc length along a cross-sectional element defining the 

warping displacement 

T 	torque 

tf 	thickness of flange 

tom, 	thickness of web 

u 	deflection in X direction due to pure translation 

total deflection in X direction 

deflection in Y direction due to pure translation 

total deflection in Y direction 

shear force in a flange VUr VLS 
w 	warping displacement 

x 	coordinate in the direction of the X axis 

xo 	coordinate of the shear centre in direction of the X axis 

y 	coordinate in the direction of the Y axis 

coordinate of the shear centre in the direction of the Y axis yo 
z 	coordinate in the direction of the Z axis 

axial shortening of the column 
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/Au Av deflections at ends of minor and major axis Sc.  
beams after applying the initial moment 

parameter defining the strain distribution at a cross- 

section 
E. 	strain 

yield strain 

coordinate in the direction of the 	axis 

coordinate in the direction of the ^1 axis 

coordinate in the direction of the c axis 

curvature 

unit stress normal to the cross-section 

angle of twist 

3.1.2 The axes X, Y, Z are a reference set which coincide with.  

the major, minor and longitudinal axes of the column section in 

the undeformed state, The 	) Th )  C; are a set in which the 

and Prt,  axes correspond to the major and minor axes of the 

column section in the deformed state and 	is an axis tangent 

to the curved column axis; 

3.2 AIMS OF THE THEORETICAL STUDY  

3.2.1 The aims of the theoretical study were twofold: 

(a) to develop computational proceduresthat would enable a 

theoretical study of restrained elastic-plastic columns to 

be undertaken, 

(b) to determine the significant parameters affecting t he column 

behaviour and therefore obtain reasonable correlation between 

theoretical results and the experimental results discussed in 

Chapter 2. 
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3.2.2 The initial endeavours in these directions restricted 

attention to the stresses induced in the column by the action of 

bending moments and axial load. The stress-strain relation 

was taken as that shown in Figure 3.1 with plastic strain 

assumed recoverable. Subsequent work extended the analysis 

to include such phenomena as strain reversal, strain hardening 

and in an approximate fashion the action of torsion moments. 

The inclusion of strain reversal and strain hardening was necessary 

to interpret certain experimental results and the inclusion of 

torsional effects was undertaken to obt ain some theoretical 

indication of their significance. Torsional effects were not 

considered to be of great importance however and studies were 

made on two columns only. 
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3.2.3 From the outset numerical techniques were employed to 

obtain the results and the computation procedures, which are 

presented below, were developed with this in mind. During 

their development it was found that it was possible to solve the 

column problem in a fashion that is rigorously correct within 

the sense normally understood in engineering mechanics. 

Accordingly, these ideas are presented below for two reasons, 

firstly to clarify the degree of approximation introduced into the 

actual but approximate torsion calculation and secondly to 

provide a record of this exact procedure that would enable the 

approximations to be removed from future studies as desired. 

3.3 INTRODUCTION 

3.3.1 To allow a full comparison of theoretical and experimental 

results a calculation procedure which follows the loading path of 

the experiments is required. Consequently the method developed 

begins by establishing the equilibrium shape of the column after 

the application of beam loads. It then proceeds to compute 

displacements and axial load values for a series of equilibrium 

shapes defined by increments of curvature at the central cross-

section. In doing this it is found that initially, with increasing 

curvature, the axial load also increases but that with the spread of 

plasticity this tendency is reversed and failure has occurred. 

Graphs of axial load versus central displacement, a translation 

or a twist, are drawn and the maximum load, which is taken as 

failure, is read off. 
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3. 3.2 The inclusion of strain reversal, strain hardening and 

torsion in the analysis means that calculations were performed 

under varying assumptions. For convenience in referring to these 

varying calculations they have been numbered as follows: 
(a) calculation 1 ignores all the phenomena mentioned above, 

i. e. strain reversal, strain hardening and torsion. 

(b) calculation 2 includes torsional effects but excludes strain 

reversal and strain hardening. 

(c) calculation 3 includes strain reversal and also, where it is 

indicated, strain hardening but it ignores torsion. 

3. 3.3 The assumptions used in calculation 1, which is the simplest 

form possible and convenient for the derivation of design methods, 

are given below. They are; 

Twisting and thus warping are negligible so that during loading 

plane sections remain plane. 

2. The material stress-strain curve is as shown in Figure 3,1, 

is e. there is no upper yield point. 

Plastic strain is recoverable, i. e. the stress-strain 

relationship is defined uniquely by the line OAB. This means the 

solutions so obtained are unique. 

4. Shear stresses are small and have no effect on deflections 

or in producing a combined stress yield condition. 

5. Deflections are small so that curvature is given by 

d2u/ dz 2 and d2v/ dz 2 , 	etc, 

3.3.4 In calculation 2 assumption 1 was removed and in calculation 

3 assumption 3 was removed and strain hardening added, 
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3.4 GENERAL PRINCIPLES OF CALCULATION PROCEDURE  

3.4.1 Before setting out the mathematical formulae used in the 

solution to the problem it is advantageous to consider some of 

the more general principles involved. In the discussion which 

follows the rigorous solution that was mentioned previously in 

paragraph 3.2.3 is outlined and this is followed by further 

discussion of certain underlying principles used in the 

computational methods. 

3.4.2 Outline of an Accurate Calculation Procedure  

1. To calculate the equilibrium configuration of a column subject 

to axial load P and moments MX'  MY  and M about axes X, Y 

and Z (see Figure 3:2(b)), taking the secondary forces arising 

from member displacements into account, it is necessary to 

compute and equate internal and external forces at a general 

displaced section as shown in Figure 3.2(a); For any such section 

the moments acting about the two principal axes of the section, 

and lid  , and the 	axis are called 1\fl , MTh  and 1\11 	respectively. 

The computation of the external values of these moments is 

straightforward and follows the well-known procedures used to 

compute the same quantities in the elastic case, e. g. reference 
(13) pp 244 and 245. However, for internal member resistance 

such information is not available and the procedure outlined below 

must be adopted. 

(a) Apply displacements u and v, see Figure 3.2(a), together with 

axial compression simultaneously to the column using the 

conventional assumption of plane sections remaining plane, The 
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amount of each displacement component is adjusted to satisfy 

equilibrium of the forces P, Mt , M.-n, taking due account of 

the amount of plasticity and strain reversal that occurs during 

the process. The flange and web shears which develop during 

this stage need not be considered. 

(b) Twisting displacement about the point S, called the effective 

centre of twist, is now applied as indicated in Figure 3.2(a). 

This point is chosen so that after superimposing the warping 

strains due to twisting on top of the strains due to the displacements 

of step (a) above the internal values of the forces P, M , MIL  
remain unchanged. The na gnitude of the twisting displacements 

must be adjusted to produce equilibrium of the torsion moment 
M 	, considering strain reversal and plasticity in the process. 

In computing the component of torsion resistance in an elastic-

plastic member corresponding to warping resistance in an elastic 

member it must be remembered that S is not a shear centre in the 

classical, or any other sense. In an elastic member the shears 

due to u and v displacement components would have no resultant 

torsion moment about a true shear centre but this does not follow 

for the point S, as defined above, in an elastic-plastic member. 

Thus in considering flange and web shears it is their total 

magnitude, i.e. due to all displacement components, which must 
be used. 

(c) During twisting the external values of the forces 11/1 , and Mr.r.k,  
change slightly, see equations 3.3(a) and (b), so that an iterative 

cycle must be set up; The values of M. and M-rt,  are used to 
obtain new u and v displacements and these in turn alter the 
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external torque values. At each iteration the member must 

be considered to start again at 0 in Figure 3. 2(a), the only 

purpose of the iteration being to adjust the external forces. 

In fact if 8,11 forces could be known at the outset no such 

iteration would be necessary. The process is continued until 

successive values of the external forces differ by less than a 

small specified amount. 

3.4.3 The reason for placing on axial compression and u and 

v displacements simultaneously followed by twist in a separate 

operation is because torsional resistance depends on two 

derivatives of the same quantity of different order. Thus moment 

resistance can be obtained from axial compression and the 

curvatures d2u/dz2 	and d2v/dz2 but torque depends on 

di6/dz 	and d3  Ndz3  . Hence in the finite difference 

expressions by assuming values of dk/dz 	at all station 

points the first part of the torque can be found. However, to 

obtain the second part numerical differentiation of these values 

must occur so that the full resistance at each station depends 

on d16/dz at other stations. The procedure to satisfy torsion 

equilibrium is therefore different. 

3.4.4 To take account of unloading of plastically deformed fibres 

the cross-section has been divided into a number of small 

elemental areas, thirty in each flange and ten in the web. The 

maximum strain occurring in each is allocated to a fixed memory 

location in the computer. The calculation is allowed to proceed 



62 

in small increments of curvature at the central cross-section 

and at each step the strain at each small element is compared 

with the previous maximum value. It overwrites the previous 

maximum value if it is larger or leaves it if it is smaller. 

In assessing the internal force account must be taken of unloading 

in both displacement stages mentioned in paragraph 3.4.2 above. 

Further details are given later. 

3.4.5 The use of small increments of central curvature also 

settles the question of load path dependence, i. e. lack of 

uniqueness of the solution. This is because during an 

incremental increase in curvature the stress-strain relation 

is uniquely defined from the strains produced at previous stages 

in the computation. Since these represent fixed conditions so far 

as iteration for a new equilibrium position is concerned the only 

error involved is concerned with how small the increment is 

made and not with the basic philosophy. In the computer programme 

the increment is made small. 

3..5 GENERAL EQUATIONS FOR INELASTIC BIAXIAL BENDING 
OF COLUMNS  

3. 5. 1 Geometry 

1. A column cross-section which undergoes the general 

displacements mentioned in the sections above is shown in 

Figure 3.2(a). It starts initially in position 1, then under the 

action of u and v displacements moves to position 2, and finally 

by twisting about an axis through S it moves to position 3, 
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Displacements u and v, the twist 	, and the coordinates of S, 
viz.. xo and yo, are all positive as shown. The quantities u, v 

and fh are small so that the geometry for small displacements 
applies. 

2. During the twisting process the axes t and -Yt rotate 

relative to the X and Y axes through an angle 16 and the 

displacement components of the centroid change from u and v 

to u and v where, 

u = u + yo  

= v xo 

3. Another geometric change which occurs during the member 

displacement is the inclination of the 	axis to the Z axis 

caused by the slopes dti/dz 	dv/dz) and diiidz (4: dv/dz) 

This and the column twisting means that forces computed in the 

XYZ coordinate system differ from those computed for the g 

system. Since force transformations between the two systems 

are required to compute the external loads acting at a cross-

section it is convenient to have a table of the relevant direction 

cosines. The one below is reproduced from Timoshenko and 
(13) Giere 	p.252. 
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x 	 y 	 z 

	

1 	 0 	- du/ dz 

	

-0 	 1 	 -dvidz 

duidz 	dvidz 	1 

3, 5.2 External Forces 

1. In establishing equilibrium between internal and external 

forces at any cross-section complete freedom is available 

concerning the choice of axes about which moments are taken 

provided the same ones are used for internal and external 

forces. Here moments M 	and Mit are taken about axes 

and m through the centroid of the section and torsion moment 

M(.- 	about an axis parallel to the 	axis and passing through 

S. Moment sign is in accordance with the right-hand screw rule. 

2. The external moments about a set of axes parallel to the XY 

axes but with their origin at the centroid of the displaced section 

are calculated first. They are then resolved about the 

and /-r-;t, axes. Torsion moment 	depends on the way the 

external loads distribute themselves over the cross-section 

and the relevant equation is developed separately. 

3. Taking the axial load on the column as P, positive when 

compressive, and the beam moments about the X and Y axes 
as MBX and M 	the total moments about the displaced set BY'  
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of X and Y axes, at a section where displacements 'a and NT occur, 

are 

MX 	MBX P;./. 
	 3. 2(a) 

M 	= MBY + Pu 
	

3. 2(b) 

Due to the symmetry of loading the value of torsion moment Mz  

is zero. By resolving the moment Mx  and My  about the 

and 	axes, using the table of direction cosines, the result, 

Ms 	MY f6 

and M41, 
 M - MX 

3.'3(a) 

3.3(b) 

is obtained. 

4. To evaluate M 	consider a point in the cross- section defined 

by coordinates x and y with respect to the displaced set of XY 

axes so that after bending and twisting the components of 

deflection of that point in the X and Y directions are 

tit 	= u + (yo  y) ¢ 	and v' 	= v - (xo - x) IS respectively. 

The slopes of a longitudinal fibre beneath this point in the XY 

and YZ planes are du'/dz and dv'/dz so that vertical 

components of force per unit area 	parallel to the Z axis 

and acting on a small area dA, will exert components of force 

in the X and Y directions of (-UdA)du'idz 	and (- Cr dA)dvtidz. 

The contribution these make to the total torque is given by, 
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dM 	= -(0 dA )( yo-y)du7dz + (adA)(xo-x)dvIdz 	3. 4.  

Substituting for u' and v', integrating over the area,. noting that, 

cradA=P, 	eray dA= M)? 	 A ircr x dA= MY 4 A T 	 AT 	 T 

and writing 	r2  = (xo-x )2  + (yo-y )2  

the result, 

Ms = P(yodu/dz -xodv/dz) t Mxdu/dz - Mydv/dz 

- d ./dar:rr2d A • 
AT  

is obtained. 

3. 5. 3 General Discussion of Internal Forces  

1. Internal resistance at a cross-section is calculated by 

integration of the stresses over the total area following the 

applications of strains as explained in the introductions During 

the application of curvatures and axial load plafie sections are 

assumed to remain plane so that the resulting strain distribution 

may be expressed in terms, of the three parameters, la, , c, I , 
defined from the diagram in Figure 3, 3. From these strains, 

stresses are deduced and the values of P, Mg and M-ri 

obtained. Flange and web shears occur also but need not be 

calculated. The warping strains which are the result of twisting 

about S are now superimposed on the strains above. Web .and 

flange shears arising from all displacement components must now 

3. 5 
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be computed and the moment they cause about S calculated. 

This in addition to the normal St. Venantt s term gives the full 

value of the torsional resistance. The details follow. 

Stress 

FIG• 3.3 

3. 5. 4 Forces Due to Principal Curvatures and Axial Compression 

1. A general stress distribution is shown in Figure 3;3 above 

where yield in both compression and tension has occurred 

according to the plane sections assumption. The evaluation of 

forces is made now ignoring unloading since the equations as 

such were used in calculation 1. The corrections for unloading 

will be made later. 

2. A coordinate m, defined as shown in Figure 3.3, enables the 

stress at any point in the elastic zone to be expresged as, 
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o = ayrnic 	 3.6 

where 	m = Itc o s (g+tdsin.4 
	

3.7 

and 
	 = cosecl [(bi+c)-(Dcos42+Bsind/2)) 	3.8 

By substituting equation 3.7 into 3.6 the expression, 

a = cry  [is os d+(g gd s n .0/ c 	 3.9 

is obtained. In the plastic zone the stress is cry 

3. The internal forces are given by the equations, 

P =fadA + 	p 	 3.10(a) 

MsjondA + 07LAp 	 3.10(b) 

Knjaag d A + atY  AP 	 3.10(c) 
it  A  

where Ae is the area elastic, Ap the area plastic and ;it and 4 
the coordinates of the centroids of the plastic zones. Substituting 

equation 3.9 into equations 3.10 leads to the equations, 

P =ayil:Lcos./+ sin d +gosind)dA/c + ayAr, 

Mg = cryfA(qc o s +71t s n +/-LA i n .4) d A /c + ay-rt A p  
MYCaiff4gs in .4+ YLt cos./+;%si ni)dA/c + cryg A, 

In this thesis these equations are re-written in the form of an 

elastic solution less a correction for plasticity, that is the 

integration is made over the whole area AT  assuming the member 

remains elastic and a correction is then applied for plasticity. 

In this form they become, 	. 

P=ayuin.(AT/c -Z F 
Ap 



or by substituting for the value of go  , 

P- Pr  = ay [ 	(Dcos.e/2 + Bsin.1/2)1AT/c EF 
AP Mg = ayie0Sol/C •-• F 

M,= Oyl.,t?in /c - 
Ap 

3.12(a) 

3.12(b) 

3. 12(c) 

where Py 	Arcry 	, F is the force correction for a plastic 

zone and the E denotes their summed effect. The quantities -71: 
A P  

and t are the coordinates of the centroids of these zones-. The 

detailed calculations involved in making these corrections are 

lengthy but not difficult and are therefore deferred to appendix A. 

The corrections themselves are entirely functions of b1  ,c and .Z 

so that the full force equations 3.12 are functions of these 

variables also. 

.4. It is a straightforward matter to obtain curvatures and axial .  

compression from these cross-sectional parameters. The 

relevant equations are, 

du/d2= crysini/Ec 

2 P- dv/dz=2  crcosilEc 

- for curvatures and, 

Ear Cyt( bi+C) (bi  + c -D cos.( -Bsind))/ 2Ec 	 3.13(c) 

for the average strain. 
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5. Inthe method of determining the deflected shape that is 

presented later the solution of the equations 3.12 for to!, c, .1 
with fixed force values is required. These are three non-linear 

algebraic equations which in general have no analytical solution and 

must be solved iteratively. However, provided no yield in tension 

occurs one of the unknowns, c, can be eliminated by dividing the 

equations in pairs and the resulting two equations then solved 

iteratively for b1  and .4 . Tension yield generally does not 

occur before the maximum load is reached, provided the initial 

moments of themselves are not capable of causing it so that 

considerable savings in computer time result from this procedure. 

Additionally this fact is fundamental to the design approach 

presented in Chapter 4. In order to see that c may indeed be 

eliminated reference to Figure 3.3 is made again where a 

coordinate m' is defined. The correction stress at any point is 

iiiiii*azaraky given by, 

cc= 	c 	 3.14(a) 

where 	mir..71,c0skr. 	gsin.1+1:4- (Dcos.4+Bsind)/2 	 3.14(b) 

"Thus on an elemental area ciA where the correction stress is ac  

the infinitesimal correction to axial load is given by, 

dP c  =cry  mi. dA/c 	 3. 15(a) 
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The corresponding corrections to moment are, 

'dMg rz airrY 	dA/c 

dMC1,= 	m' g • dA/C 

By integration over the total area of plastic compression, the 

corresponding total corrections can be expressed in the form, 

Pc= cry fm' dA/c 
A 

14= cry  fm' 	dA/c 
AP 

M C= cry 
A

frn.  4 dA/c 
P 

3. 

3. 

3. 

3. 

3. 

15(b)  

15(c)  

16(a)  

16(b)  

16(c)  

where if indicates integration over the areas plastic. 
Ap 

Substituting these expressions into equations 3.12 and removing the 

common factor 	Cy/c 	the equations, 

P- [3...cry  [(bi - (1/2Dcos.41/2Bsini))AT-1;m1  dAJ/c 3. 17(a)  

MVOry [ I4C05 1 - f dA)/c 3. 17(b)  
A P  

Mn= cry  [I,Lsin 	- 	 m f 	' • AP  
dAi/c 3. 17(c) 

are obtained. Since m' is a function of bi , and 	only division in 

pairs eliminates '6. and produces the equations, • 

' 

, 
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MOP - P3r) = F1  0)1,00 3. 18(a) 

mq(P 	py) = F2  (by  j) 3. 18(b) 

which are solved Iteratively. The value of 0 is obtained by back 

substitution into equation 3.17(a). 

6. The allowances for fibres that unload and for strain hardening 

are made as corrections to the force expressions given above. 

Since the strain at each and every point in the cross-section may 

be expressed in terms, b, c, .4 the stresses and thus the internal 

forces P, M 	, M,y  will still be functions bf these three 

parameters. In the solution of the equations no division in 

pairs can now occur since the stresses are not linear functions 

of mt The full details of making the corrections are given in 

appendix B. 

3.5.5 Forces Due to Twisting 

1. The torsional resistance offered by a section about an axis 

of twist such as the one through S is due to the combined effect 

of a pure torsion or St. Venant's term and the effect discussed 

previously in paragraphs 3.4.2(i) and 3.5.3(i) of flange and web 

shears. The evaluation of the St..Venant's term follows along 

the lines of current research into this problem, e. g. reference 

(16). It is straightforward and in an engineering sense exact. 

Flange and web shear terms however are evaluated only 

approximately and it is here that the simplifications mentioned 

earlier in paragraphs 3.2.2 and 3.2.3 have been introduced. 
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Prior to the presentation of these approximations, however, the 

more general equations for the exact evaluation of flange and 

web shear effects are given in outline. The equations that have 

been used in the actual computations to date are then presented 
in detail. 

2. The St. Venant's term may be expressed in the form, 

T1 =Cdfilidz 	 3. 19(a) 

where C is known, in the elastic case, as the torsion constant. 

For an elastic section composed of thin walled elements, 

C 	4.  1G It31 
	

3. 19(b) 

where t is the thickness and 1 the length of a typical element. 

The summation is for all elements. In the elastic-plastic case 

C varies with the spread of plasticity due to a decrease in the value 

of G. The value of G has never been clearly established, 

particularly for cases where non-uniform bending moment occurs 

along the length of the member, but it would appear to be 

conservative (16)  to take G as zero for the plastic zones and to 

use the full elastic value elsewhere. 

3. General Expressions for Flange and Web Shear Terms  

(i) The resistance offered by flange and web shear terms is 

based on the thin-walled elements assumptions, and is therefore 

the product of the total shear force in each element multiplied 

by its perpendicular distance from S. (It must be remembered that 

external torsion moments were evaluated about S as the internal 

ones will be now). In addition to the shears caused by the u and v 
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bending displacements, which in general have a resultant twisting 

moment about S, warping displacements due to twisting also 

cause shears which have a moment about S. Both components 

can be obtained simultaneously by adding the warping strains to 

the strains due to u and v displac'ements, evaluating longitudinal • 

stress and then calculating shear stress, using the well-known 

expression (see Timoshenko and Glere, p.222), 

a (Tt)/as= -tacii az 	 3.20 

The torsional resistance, T2, offered by these shears, is given by, 

pm 
T2  = Jo  Ur. ds 

= -fornfo(st acr,/az • ds)r. d 

where m is the total length of walls in the section and t is their 

thickness. The expression can be re-written as, 

3.21(a) 

rm rs 
T2  = -a [ jo  jo(tads)r ds] /az 	 3.21(b) 

or, if ( t crzds ) 	is written as.  a force dF acting on an area 

(tds), then as, 

rm 
T2 = -a[ jo  Fr ds]/az 3.21(c) 
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The term [f Frds] 	can be evaluated at each station 
0 

point and differentiated numerically to obtain T2. 

b; 
0 UPPER FLANGE 

S 
Yo 	 yo. 

+ 
A 	LOW ER FLANGE 	 

(a) 

	

	 (b) 

FIG: 3.4 

(ii) Reference to Figure 3. 4(a) shows the effective centre of 

twist .S defined with reference to the axes g and irk,  by the 

quantities xo and yo, When twisting occurs about S the resulting 

warping displacements are given by, 

ps 
w = wo  - (doiclz ) Jo rds 3. 22 
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where r is the perpendicular distance from S to the fibre under 

consideration and wo is the displacement at the origin of s, taken 

as 0. The following expressions for warping obtain, 

.(a) for the web, 

w = wo  -(d0 iclz) xos 

(b) for the lower flange, 

w = wo-(d4/dz )[x0((D- 9/ 2 - yo) 	-tf )/ -y0) 

(s - (D-t1)/2)] 

(c) for the upper flange, 

w= wo+  (thiddz )1Xj(D-tf)/2 + yo)t(( D - td/2 +yo) 

3. 23(a) 

3. 23(b) 

(S-(D-td/2)] 	3.23(c) 

These expressions are differentiated with respect to z to obtain 

strains which are added to those already present due to u and v 

displacements. The contribution to the torque is then calculated 

as explained in section 3(i) above. 

(iii) Values of the quantities w o  , x o  , yo  are obtained from 

the requirement that the stresses induced by twisting do not affect 

the internal values of P, Mg , M. , see also paragraph 3.4.2. 

The three conditions give rise to three non-linear algebraic 

equations which must be solved iteratively at each section of the 

column to obtain w o  , xo, yo. No further details of this shall be 

given. 
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2. Approximate Calculation for Web and Flange Shear Terms  

(1) The main approximation introduced into the torsion cal-

culation consists of evaluating the web and flange shear terms 

assuming the reduced elastic section shown in Figure 3.4(b), 

The quantities bi, b;, h' are the lengths of elastic upper flange, 

lower flange and web respectively, which remain after applying 

the u and v displacements. This simplification avoids the 

necessity of solving the non-linear algebraic equations 

for w o  , x o  , yo  mentioned above. It is not altogether an 

unreasonable procedure as the actual movement of S, for the 

cases where the torsion calculation was used, i. e. with 

reasonably large major axis moments, is more or less 

described by this method. In accordance with these 

approximations the values of xo  and wo  are zero and yo  is given 

by, 

yo  = 	tf) - ht [ 	1313/(be + 	)1 	3.24 

(ii) In conjunction with the assumption above it was 

considered that the significant contribution from the web and 

flange shear terms could be evaluated computing the shears 

arising out of twisting displacements alone. This follows 

because the point about which the shear forces due to u and v 

displacement have a zero resultant torsion moment should be 

reasonably close to the point S. 

(iii) Following from these approximations the calculation of 

web and flange shear terms is straightforward. The equations 

are written in such a form that the extension to the more 
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accurate calculation, merely involves replacement by a more 

accurate equation. The steps to be followed are as set out below. 

(a) Compute the strains due to u and v displacements alone at the 

points ABCDEF of the section shown in Figure 3. 4(a). 

are, 

cry(b,+c-(1/2)t tcos./.)/Ec 

The values 

3.25(a) 

Glie ay( Il l+ c - Bsing -(1/2)t fcos .1)/Ec 3.25(b) 

ec= cry(bl+c- Bsin .4- D cos g. +(1/2)ttcosg)/Ec 3.25(c) 

erj= ay(b +c- Dcos 	+(1/2)t tcos g)/Ec 3.25(d) 

cr y(1)1+c - (1/2)Bsin g-(1/2)ticos .)/Ec. 3.25(e) 

GF= cry(ta l+ c -(1/2)Bsing- Dcos d+(I/2)tfcos 1)/Ec 	3.25(f) 

This step replaces computing the strains at the same points 

due to all displacement components in the more accurate'procedure. 
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FIG. 3.5 

(b) Compute the lengths of elastic top flange, lower flange and web, 

e. b' 	 ' b'2  h.  A typical element, AB, is shown in Figure 3.5 

. with strains EA. and eB  at its ends and depths of plastic compression 

and tension zones given by dA and dB where, 

dA B (EA-€)/ (CA- 68)  • 
	 3: 26(a) 
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dB= 	(et,-es) 	 3. 26(b) 

from which the elastic portion is readily obtained by, 

b;= B''  dA- d5 	 3.26(c) 

A similar process is carried out to obtain b2 and h'. 

(c) Calculate the curvatures of the upper flange and lower flange 

using, 

	

. 1. upper flange 	 (4/di) [0.5(D-tf ) +yol 	3.27(a) 

2. 	lower flange 
	 (d20/dz3[0.5(D-tf ) —yo] 	3. 2 7(b) 

and compute warping moments using, 

1. upper flange 	Mt? Eblt e12 • 	 3. 27(c) 

2. lower flange 	MLCEI:c3t p/12 	 3. 27(d) 

(d) Numerically differentiate the flange moments to obtain shear 

VUf and  VLf  for the upper and lower flanges respectively and sum 

their effect to obtain the second part of the torque, T2, where 

T2= Vut[ 0.5 (D -tf ) —yo] +Vu[05(D—tf)+yol 
	

3.28 

The steps (b), (c) and (d) above replace the calculation of the 

integral for T2  from the strains 6A  to er  as in section 3(i) for the 
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more accurate procedure. 

3.6 CALCULATION OF THE DEFLECTED SHAPE  

3.6.1 In the preceding sections the relationships existing 

between the displacements and the internal and external forces 

have been established. In this section and the next it is shown 

how this geometry may be expressed in terms of finite 

difference equations and the relationships mentioned above used 

to establish equilibrium shapes. Two separate calculations 

are required to trace the load path of the experiments, one which 

determines the column shape for known values of the end 

moments and axial load, i. e. corresponding to the application 

of the initial moments, and a second which determines the shape 

after the distancesbetween the beam ends have been fixed. The 

procedures are outlined below followed by further details. 

3.6.2 Initial Shape 

(i) A solution suitable for this type of problem was first 

proposed by Newmark (17)  and can be summarised in the following 

way. 

1. Assume a deflected form for the column. Zero deflections 

have been used in the computer programme. 

2. Calculate the external forces acting on the column, including 

the magnification of the moments Mx  and Mydue to deflections 

and axial load and the torsion moments. 

3. Considering these moments as the external loads, 

calculate the deflected shape. 
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4. Compare this deflected shape with the one assumed. If it 

agrees to a specified accuracy proceed to step 5; if not, replace 

the assumed shape with this newly-calculated one and return to 

step 2. This new shape is regarded as a new assumed shape 

for the purposes of the comparison just mentioned. 

5. Calculate the deflection of the ends of the beams. 

STATION 
-1 

0 

1 

2 

3 

4 

5  

Column End 

Deflected Column 
Shape 

Column Centre 

FIG. 3.6 

(a) 

STATION 
-1 

0 

1 

2 

3 

h 
1 

5 
6 
7 

(b) 

3. 6. 3 Subsequent Shapes  

(i) To enable the calculation of the subsequent deflected shapes 

to cover points on the falling branch of the load versus central 
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displacement curves, the procedure outlined below was adopted. 

This effectively continuously increases the central curvaturespt 

and 	-lin proceeding from one equilibrium configuration to the 

next. In order to reduce the computer time required the iteration 

between the u and v displacement application and the twisting 

application mentioned in paragraph 3. 4.2 (1) does not occur. 

Instead in calculating a new deflected shape values of twist 

from the previous equilibrium position are assumed. Only 

when these have been established are new twist values found. 

Thus in a sense the twist values are always a step behind the u and 

v displacements but the error is not large with the small curvature 

increments used. In the procedure given below, it is assumed that 

the column length has been divided into ten sub-units, see Figure 

3. 6(a), for the purposes of finite difference computation. 

(ii) The steps can be outlined as follows. 

1. Increment the parameter b1  at the centre, i. e. at the station 5 

in Figure 3.6(a). Select trial values of it% and p and take the 

values of angle of twist from the last calculated equilibrium 

configuration. 

2. Using the values of b1, p ,,P •yl calculate P, Mp , M,r) 
'QS* 	4,5'  

at the central station. 

3. From the central curvatures calculate the off set distances 

d4 using finite difference expressions. 

4. Calculate the reduced values of the moment M and MY+ X4 
(= M5  - Pd4), convert these to M and Musing equations 3.3, 

and solve the equations for b1, 	, c at station 4. Since f)t S4- 
and ..P,n  aro obtained immediately from o& and c, see equations 

3. 13, the value d3 can then be calculated from finite difference 
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expressions. 

5. Step 4 is repeated for the stations up the column until the 

offset d-1 is obtained. 

6. Numerically differentiate the offset values to obtain the 

column slopes and compute the deflections at the beam ends. 

If this agrees with the deflections calculated in paragraph 

3. 6. 2(1) step 5 above, then proceed to step 7; if not adjust ,01e.
6"  

and py169nd return to step 2. 	
S 

 

7. Calculate the external torque at all stations using equation 

3. 5, and estimate values of twist to carry this torque as 

described above. 

8. Continue to increment the parameter b1  until either the axial 

load values decrease or yield in tension occurs. Either of these 

occurrences is taken as indicating failure. 

3. 7 DETAILS OF CALCULATION PROCEDURE 

3. 7.1 In the procedures above the solution of the equations 

3. 12 for b1, o(,  c is required. For this the generalised Newt:on-

Raphson iterative algorithm has been employed. Basically this 

consists of selecting t rial values of the unknowns and basing 

corrections to those on a Taylor series expansion of the 

functions ignoring derivatives of order higher than the first. 

If the functions are F1,  F2, F3 the expansion is, 
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.tr-sd,ncn+64 

=F (b"1, .c.,nc") (aF, la 	61)+ (affia.011 6.494. (aFliac)"se 

F2(61+,5'I); Jn+6.1; cn+6cn) 

=F (6,4c) + (8F1 a bps Si+ (aF2./ ah)°sin+ (pciacfse 

F3( bril+6 bnt, 	d,ncn+6 cn) 

=F3  (1;10(,c) + (aF/a bPsb,+(aF/ai)+S.(+(aF3/ac)n$c  

3.29(a) 

3.29(b) 

3.29(c) 

where the superscripts denote the nth approximation to the 

correct answers. If 4+8bill ) , 	.1%64 	(cn+Scn ) 
	are to be the 

correct solution, then, 

o =F1 ( 61%-ln,c) 4.- (a ff/abfis f taffia.o96I+(aacPscn 	3.30(a) 

0  =F2 ( 131i Jj11C1) caFilpbr,sbn,+ 	(aFzbac)rscn 	3. 30(b) 

o =F3  (b;, d,+ (aFilabAst-T, + caya.cfs.‘n  + caFilaescn 
	

3. 30(c) 
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These are three simultaneous.linear equations which can be solved 
,n 

by standard matrix inversion techniques to obtain 8bti , S .1. 	Sc 
The (n t 1)th approximation to the answers is given by, 

6 

671-, 6, 1. 8 bni 

n4.1 n n 
‘.Z = 	+ 

C 
n +0n 

C =C 	C 

3.31(a) 

3.31(b) 

3.31(c) 

The process is continued until successive approximations agree to a 

specified accuracy. The derivatives are obtained numerically 

using backward difference formulae since no great numerical 

accuracy is required of these values, i. e. formulae of the type, 

aFi tabriFi (bt,.(,c).-(brAbLet,c)]/Iibi 	 etc. 

are used. The process of adjusting pg  and 13,11  to close the end 

beam deflections is• done using the same process with only two variables. 

3.7.2 Finite Difference Expressions  

(i) Initial Shape, u and v displacements  

The finite difference expressions for u and v displacements at the 

rth station are of the form, 

ur+1 -2u r  + ur-1  =h2(d.I/d4r  —CUr 	 3.32 



Cuo  

C1.11  

Cus  

3.33 h
z Cue  

Cu3  

Cuh  
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where h is one tenth the column length and CU r  represents the 

higher order difference correction terms. (The v displacements are 

expressed in the same way). For the initial shape the following 

boundary conditions apply, 

(a) at z = 0 	u 0 • 

and 	(b) at z = L/2 du/dz= 0 

so that with this ten sub-unit division, which was used throughout, 

curvatures and deflections are related in matrix form by, 

2 -2 

U1  

U2  

U 3  

Uh  

U5  

am. 4.• — 

A check on the higher order difference correction terms showed them 

to be small so that they were ignored, i. e. the Cur  terms were 

taken as zero. 

(ii) Subsequent Shapes, u and v displacements  

For the computation of the subsequent equilibrium shapes equation 

. 3.32 above was rearranged in the form, 

d 4 	 t?(-a2u/8z) - Cd
r  +2d r  -d 

r1 	
3.34 1, + 



,.de  I;(-atuaz)3 4.2d3- 

4:15=-I..h2(-a8/a22)6 +2d6  

2 d =1- h(-aufaz2  ) +2d d6  9 	 5 5 6 

ds::-Ii-ti(-a2u/az2)7  

d;= 0 

3= 
• 2 	2 3=-1 h2 (-au/az )4  - 3 d4+ 4.d5  

3. 35(a) 

3.35(b) 

3.35(c) 

3.35(d) 

3. 35(e) 

3.35(f) 
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where the d 
s

are offset distances. This enables the step-by-step 

integration explained above to proceed up the column. The higher 

order correction terms were generally found to be ,small except in 

some cases 'When, approaching failure. This is because certain 

columns require the formation of a plastic or near plastic hinge before 

failure is possible. Instead of attempting to allow for this in the 

finite difference expressions, e.'g. by calling a reasonably large 
• 	curvature a plastic hinge, yield in tension is taken as failure.' Some 

reduction in the size of the finite difference mesh was attempted 

however, as indicated by Figure 3. 6 (b) and the effect of this is 

discussed in section 3. 8. To change the size of the mesh the 

expression, 

etc. 



89 

must be used in order for each of the u and v displacements, 

3. 7.2 The values of the slope of the column at each station are 

found using the expression, 

(du/dz)r = i (ur+1 ur-1)/h 	 3. 36 

and the beam deflection Au  is calculated using, 

A ut... Axial shortening + (du/dz)0 LBY  + MByL2
By/(31.13y) 

of Column 	 3.37 

3. 7.4 Axial shortening is due to a combination of axial compression 

of the column and the effect of column curvature. The total, A 
is given by, 

A= 	ay. 	(dw/dz)21 dz 	 3. 38 

where € ov.is obtained using equation 3.13(c) and w equals Y/ u2 + v2 

The integration is performed numerically using the trapezoidal 

rule. Thus putting 

B =[e av,  +i (dw/dz)2] 
	

3.30 

the expression for the coarse grid with ten column sub-divisions is, 

LS = h Bo  + Bi + B2 + B3 + B4 + 	3.44140 

where the subscripts refer to station points shown in Figure 3.6(a). 

For the finer mesh shown in Figure 3. 6(b), 
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Z.\ = h [1130  + B1  + B2  + B3  + B4  + -113,7] 
	

3.4 o(b) 

3. 7.5 For the twisting displacements the procedure generally 

consists of assuming values of (10/1z 	for the stations 1 to 4 

(it was only done with the coarse sub-division) and regarding the 

equilibrium at each station as non-linear functions of these 

variables. The generalised Newton-Raphson algorithm has 

again been employed to adjust the d4Iz values. The boundary 

conditions are, 

(i) at z = 0 	= 0 and dbidz = 0 
and(ii) at z = 1.42, dAidz = 0 due to symmetry. 

From the trial ds6/dz values d2A/cit2  is computed at stations 1 to 

5 using the finite difference expressions, 

(d
2  Ndz2  )r  = 2 I I [NW d0r4.3. - (CIA/C1Z)r..1 j /11 3.41 

Flange warping moments are next computed using the equations 

given in paragraph 3. 5.3. Next flange shears are obtained by 

numerically differentiating these moments, but recourse must be 

made to forward difference formulae as insufficient moment values 

are available to do otherwise. Therefore, 

V = (Mr+i  - Mr)/ h 	 3.42 

The total internal torque is calculated and compared with the 

external torque. The d4hz values at each station are adjusted 

until these values agree to a specified accuracy. Following this 

the dhaz values are integrated by Simpson's rule to obtain the 
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angles of twist 6  , except at station 1. Here an approximation is 

made and )61 is found by, 

'Si= ih(db/dz)i 	 3.43(a) 

followed by, 

kr = )6r-1 + 	(dk/dz)r+i  + 4(c1)6/dz)r  + 	 3.43(b) 

for the other station points. 

3. 7.6 The accuracy of the torsion calculation, as given above, 

can be improved in some respects, e, g. a fictitious value of Viz 

outside the column should be computed and the differential 

equation for torsion written at station 0. Also, this would enable 

1 to be computed more accurately by expanding the Taylor series 

for ¢/i at station 0. Additionally, a larger number of station points 

would improve the numerical accuracy. However, in view of the 

secondary significance of torsion, this has not been undertaken. 
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3.8 DISCUSSION OF THE COMPUTATION METHOD 

3.8.1 Before presenting and discussing the results that were 

obtained during the theoretical study it is advantageous to 

consider the numerical aeeura.oy of the solutions of the 

differential equations that were involved and other salient 

features of the computation method„ In particular specific 

numerical difficulties are mentioned, such as these which arose 

due to the use of a given mesh length in the finite difference 

computations along with the numerical problems which occurred 

when considering unloading and strain hardening. Mesh length 

is discussed with respect to u and v displacements only. No 

further discussion of the twisting displacements computations 

is given as this was only an explor atory investigation. 

3.8.2 The principal difficulties with the numerical accuracy of 

the solutions for u and v displacements occurred when columns 

were so short and heavy that the formation of what could amount 

to a plastic hinge was required at the centre before collapse was 

possible (see "The Steel Skeleton" 
(s) 

 pp273). By assuming 

that yield in tension constituted failure the necessity for allowing 

for such behaviour in the theory was avoided but the tension yield 

criterion still required the existence of considerable curvature 

gradients and led to some numerical difficulty. Columns 1.1 and 

1.2 were the most troublesome in this respect and it is instructive 

to consider typical difference tables for deflections for one of these 

members. 

3.8.3 The first table shown below is for column 1.2 during a 
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calculation where a mesh length of L/10 was used throughout. 

The axial load is 7.80 kips and the column is aim st to the 

stage of exhibiting tension yield at the central section. 

	

Station 	v 
Fig. 3.6(a) ins x 105 

	

-1 	4305 

0 	3487 

1 	2682 

2 	1903 

3 	1171 

4 	518 

5 	0 

6 

-818 

-305 
-779 
-732 
-.6533

p.51  

,62  
p 

13 

26 

47 

79 

135 

1036 

63  

13 

21 
32 
56 

901 

64 

8 

11 
24 

845 

-1802 

Cvr 
Eqn. 3.32 

-1 

-1 
-2 

- 70 

+150 

Examination of the table reveals that the curvature at station 4 

is only 1/8  the value at station 5. This results in the fourth order 

corrections shown in the final column and it is found that no 

matter how far the table is extended the differencesnever become 

small and oscillatory as they should in a "well-behaved" table (12) 

This means that tabulation at a smaller interval is required. However, 

since away from the influence of the rapid curvature variation, 

near the column centre, the corrections are small, the use of the 

smaller inte rval can be restricted to the central zone. 

3.8.4 The second table shown is for tae same column carrying 

an axial load of 7.83 kips but with the mesh length reduced to 

L/30 over the central portion as explained in paragraph 3,7.2. The 
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table is restricted to the central zone of the column where the 

mesh is constant. Curvatures in this table may be compared 

with the curvatures in the first table when multiplied by 9i 

Station 
Fig. 3.6(3) ins. x105 

64 
Cvr 

Eqm 3.32 

4 437 -180 15 3 
5 257 -162 18 49 46 -4 

6 95 -95 67 133 84 -7 

7 0 190 -266 +22 

From the table it can be seen that the fourth order terms are 

considerably smaller than the previous values although 

further reduction in mesh length would obviously improve the 

result further. Another feature exhibited by the table that is 

relevant to this discussion is the fact that the curvature at the 

central station is 60 per cent higher than the value given by .using 

the coarser mesh. This indicates that there are considerable 

differences in the internal strain distributions particularly at and 

near the centre of the column. In spite of this the second 

computation, using the finer mesh, may be taken as sufficiently 

accurate. This is because at 7,2 kips values of central 

curvature for the two mesh sizes agree to within 11 per cent and at 

7.0 kips the difference is negligible. Hence the use of the finer 

mesh should restrict significant error to the load range above 

about 7.6 kips at which stage the final theoretical collapse load 

has been so closely approached that the failure load could not 
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possibly be significantly affected by reducing mesh length 

further. For this reason additional investigation of mesh size 

effects was not considered to warrant further attention. 

3.8.5 In addition to the problems described above the possibility, 

with the long and more flexible columns, of a large negative 

moment producing a significant fourth order co irection arose due 

to the switch from positive to negative curvatures. To check 

this condition the difference table for deflections for column 

3.1 at 3.00 kips was formed. (This case is discussed since the 

largest negative curvatures occurred here). It was found that 

despite the retention of the 1410 mesh size in the region of the 

point of contraflexure the correction terms were reasonably 

small, e.g. 1/12 64 v1 = 2 x 10-5 when v1 = 7670 x 10-5 
inches. 

The corrections rose somewhat above this load but no significant 

variation in the collapse load was considered likely as the 

theoretical collapse load of 3.14 kips was only slightly above 

3.00 kips. 

3.8.6 A further problem arose during the computations which 

investigated the effects of unloading and strain hardening. 

This occurred due to a loss in numerical accuracy in solving 

the equations B. 5(a), (b), (c) for by c, e/particularly when cl was 

small. This was because when integrating for the force 

corrections from the stresses in each of the 70 small rectangles 

(see Appendix B), it was possible with oC, extremely close to 

zero for a whole row of rectangles to change from an unloading 
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or strain hardening type behaviour to a non-unloading or non-

strain hardening type behaviour, due to small changes in b1, c, 

Because of this the solution failed to converge unless a certain 

loss of numerical accuracy was accepted or else if the accuracy 

requirements were maintained a solution was obtained only by 

chance and the computation time began to rise. The alternative 

of using more small rectangles, was not attempted, because this 

would have also caused the computation time to rise. Therefore 

some of the computations involving unloading and strain 

hardening have been terminated prematurely owing to this 

condition although in all cases sufficient computation has been 

done to show that the presence of one or both these parameters 

adequately explains certain discrepancies between experiment 

and theory. At present an investigation is under way where 

unloading is neglected and the integration at a section for strain 

hardening effects is performed analytically. Results will be 

reported when available. 

3. 8. 7 A further aspect which is of interest is that although the 

computation procedures were developed to solve the biaxial 

problem in particular an extension to single axis bending is 

possible. The method works best when the member fails in 

the plane of bending but it can also be made to calculate the 

lateral collapse mode as occurred in column 2.1. By 

proceeding in sufficiently small increments of spreading 

plasticity at the central section it is possible to obtain the 

lateral collapse load as accurately as desired. The problem of 
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locating directly the exact load where bifurcation of the 

equilibrium position is first possible has been tackled elsewhere(19)  

although a method of the type described in sections 3.1 to 

3.8 above must be used to obtain the post-buckling behaviour. 

3.9 DISCUSSION OF THE THEORETICAL RESULTS AND THEIR  
COMPARISON WITH THE EXPERIMENTAL RESULTS  

3.9.1 As explained previously in paragraphs 2.1.1 and 3.2.1 

the chief purpose of the theoretical study was to determine the 

significant parameters affecting column behaviour. No 

exhaustive investigation of all the various parameters involved 

was undertaken, the main effort having been directed towards 

modifying the computer programme to obtain correlation 

between experiment and theory, i. e. including the effects of 

unloading, strain hardening and torsion. 

3.9.2 Early in the work it was found that large discrepancies 

(up to 23 per cent) occurred between experiment and theory when 

using calculation 1, i. e. the simplest form. Generally however, 

the theoretical collapse loads were between 0 per cent and 8 per 

cent below the experimental results but on three columns, viz. 

1.1, 1.3 and 3,2, larger discrepancies between 11 per cent and 

23 per cent below were obtained. It was an attempt to explain 

these results which became the major theoretical undertaking of 

this project. After eliminating a possible influence due to mesh 

size effects, as explained previously, it was considered that the 

explanation lay with one of the following: - 
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(1) small variations in yield stress, 

(ii) unloading, 

(iii) strain hardening 

(iv) the existence of an upper yield point, 

(v) a combination of all four effects. 

The influence of the first three of these parameters was then 

investigated, where possible, on columns 1.1, 1. 3 and 3. 2. In 

addition to these effects calculations were carried out to study 

the action of torsion moments (these always lower the collapse 

load) on two columns. 

3. 9. 3 All of the theoretical results have been expressed 

graphically and they are given, along with the experimental 

curves, in Figures A. 1 to A.20. The calculation method, i. e. 

whether calculation 1, 2 or 3, is clearly shown in the legend 

on each graph and the yield stress value in kips per square inch 

is also indicated. 

3. 9. 4 Column 1. 1. (Figures A. 1 and A. 2) 

(i) The results for this column are given in Figures A. 1 and 

A. 2. Only major axis deflections and moments are plotted as 

the minor axis values were negligible throughout. Three 

theoretical curves are shown.. The lowest, curve (A), was 

calculated with the effect of axial shortening neglected and forms 

the only instance in the entire series where this oc curs. Curve 

(B) ignores unloading but includes axial shortening, and curve (C) 

shows the effect of unloading. 
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(ii) Curve (A) indicates a theoretical collapse load equal 

to 5.03 kips, a value which is 39 per cent below the experimental 

result The curve demonstrates the behaviour expected of 

elastic-plastic columns in that axial load increases to a 

maximum and then decreases. It is this maximum value which 

is taken as the theoretical failure load and it is important to 

realise that this can occur without requiring the beam moments 

to become negative. This is due to the dependence of part of 

the column loading, i..e. the Pv stability moments and beam 

moments, on the column deformations. At failure and beyond 

t',iese forces develop rapidly enough to maintain the spread of 

plasticity in the column without increase in the externally 

applied axial load. This computation exhibits this iype of 

behaviour, The influence of neglecting axial shortening can 

best be noticed in the moment-axial load curve. It can be 

seen that moment values are slightly high compared with the 

experiment due to neglecting a portion of the moment reducing 

influence. 

(iii) Curve (B) demonstrates the considerable improvement in 

correlation brought about by considering the effect of moment 

relaxation due to axial shortening. The last point plotted for 

this curve occurs at the onset of tension yield so that the 

corresponding axial load of 7.4 kips is taken as failure. At this 

stage with a 1 inch deep section subject to major axis moment 

only the computation indicated b1  = 0.9611 ', i. e. only 0.04" of 

the original tension flange remained elastic. Despite this 

curvatures were still high enough to produce tension yield and 
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also to cause the maximum compressive strains to exceed 

50 times the yield value. It can be seen that allowing for the 

existence of a plastic hinge in the theory would not improve 

the correlation of the collapse loads to any extent as the large 

disagreement of deflections has resulted due to the excessively 

high central (-.irvature. The existence of some further 

phenomenon is required to prevent this happening. 

(iv) Curve (C) demonstrates the influence of unloading. It was 

obtained after running the programme for 10 minutes on Atlas. 

The computation was not continued further as the convergence 

of the iterative cycles was slow at this stage, see paragraph 

3.8.6, and the theoretical and experimental results were 

beginning to disagree anyhow. Although no tension yield had 

occurred the maximum compressive strains were 9.5 times the 

yield values due to the development of an excessive central 

curvature. It therefore appears that on the basis of the results 

indicated by both curves (2) and (3) thet only the existence of strain 

hardening can possibly improve the correlation by the desired 

amount. Unfortunately no proper verification of this will be 

possible as the requisite basic material properties were not 

recorded although, as will be seen from the results for later 

columns, this would be perfectly capable of improving the 

correlation by the desired amount. 
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3.9.5 Column 2.1 (Figures A. 3 and A, 4) 

(i) The results for this narrow flanged member are given in 

Figures A. 3 and A.4. The relationship of the observed failure 

load to the elastic critical load of one flange has already been 

discussed in Chapter 2, and it is the presentation and discussion 

of the computer result which will be the chief consideration now. 

In obtaining the result calculation 1, i. e. ignoring torsion, was 

used. 

(ii) The actual numerical computation was interesting in that 

the computer programme calculated equilibrium positions above 

the theoretical collapse load. This was because in order to 

avoid oivision by zero at certain places in the programme, a 

small positive minor axis moment was applied (0. 0001 inch 

kips), which was maintained throughout the computation. 

The last equilibrium configuration that was obtained below the 

elastic critical load of one flange (P = 1.37 kips) was at 

P = 1.32 kips. At this point b1  varied between 0.133, at the 

column end, and 0.267 at the centre, meaning that the entire 

compression flange was plastic. When the central b1  value was 

incremented the programme was unable to obtain equilibrium 

shapes and continued to be unable to do so until b1  equalled 

0.367. Subsequent increments then produced a series of 

equilibrium configurations with the compression flange still 

remaining entirely plastic initially. Minor axis stability was 

maintained by the column developing negative deflections so 

that the original positive moment was effectively acting as a 

restraint and causing a point of contraflexure to move towards 
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the centre. A slide rule computation revealed that the 

distance between the points of contraflexure was such that 

the Euler load of one flange based on this distance equalled 

the total axial load on the column. Although the result was 

of no practical significance it at least provided a check on the 

functioning of the computer programme. 

(iii) The correlation with the experimental results, especially 

the pattern of major axis moment relaxation and the 

development of major axis delections, is considered to be 

extremely good. The fact that minor axis deflections developed 

in the experiment below 1.37 kips is attributed to the presence 

of initial imperfections. Effects of this type have nct been 
considered theoretically so that the questior cannot be discussed 

further. The programme is capable of extension to include 

Stich influences. 

3.9.6 Column 2.2 (Figures A. 5 and A. 6)  

(i) This was the column of test 2.1 straightened and with 

minor axis supporting beams attached. These should 

theoretically have caused the development of,.cue gative minor 

axis deflections due to axial shortening effects but in fact, due 

to imperfections, it collapsed with increasing positive ones. 

For this reason no theoretical result was computed. 
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3.9.7 Column 1.2 (Figures A. 7 and A. 8) 

(i) The results for this column are shown in Figures A. 7 and 

A, 8. Only one set of theoretical curves is given and this was 

obtained using calculation 1. Theoretical failure in this case 

was characterised by the existence of tension yield at 8 kips, 

1. e. at a load 4.8 per cent below the observed failure load. 

The agreement was considered satisfactory and no further 

investigation was undertaken. From the result it can be 

concluded only that the effects of strain hardening and unloading 

played little part in providing column stiffness. As mentioned 

in Chapter 2, the values of the angle of twist were so small 

in this case that their effect can be regarded as negligible. 

(ii) Very little further useful discussion of this result is 

possible except to point out that whilst the theoretical result 

indicated a predominating build up of major axis deflections 

nearing failure, the experimental results showed the minor 

axis ones were predominant. No direct investigation was made 

of this point but it is assumed that this occurs due to unloading 

and/or strain hardening, which because of a shape factor effect, 

will be more significant in the major axis direction. However, 

since in both experiment and theory both deflection components 

were increasing it is really only a question of a minor directional 

change. 
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3.9.8 Column 3.1 (Figures A. 9 and A.10) 

(i) The results for this column are given in Figures A. 9 and 

A. 10. There are two sets of theoretical curves plotted, both 

obtained by calculation 2. Set (A) is for a yield stress of 33 kips 

per square inch and set (B) for 35 kips per square inch. 

Corresponding curves were obtained ignoring torsion but these 

have not been plotted as the two results lie close to one 

another. Agreement between experimental and theoretical values 

of all parameters that are plotted is reasonable and no 

theoretical collapse load is more than 5 per cent different from 

the observed collapse load. 

(ii) The first set of curves, (A), which was computed using the 

33 kips per square inch yield stress, gave excellent agreement 

between moments although the deflection curves disagreed 

slightly. The result was obtained using a mesh length of L/10 

throughout because this corresponded to that used in the torsion 

sub-routine. This led to the development of high curvatures at 

the centre before the maximum load was reached and resulted 

in a tension yield type failure. However, at the stage where 

theoretical failure occurred (P = 3.08 kips) the deflections were 

increasing quite rapidly with axial load (0. 01 inches for a 10 

pound change). Twisting displacements did not agree particularly 

well with the experimental results although the characteristic 

of decreasing values approaching failure was obtained. For the 

corresponding result, ignoring torsion, the finer mesh size, 

L/30, was used in the central region and a true maximum of 

3.14 kips was obtained. 
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(iii) The second set of curves, (B), obtained using the 

higher yield stress, showed better agreement of some 

variables, notably the twisting displacements, at the expense 

of others, particularly major axis moments. The latter effect 

was presumably directly due to the use of the higher yield 

stress and this in turn produced larger twists because the 

i— du term Mx cT  formed a major contribution to the external 

torque. As occurred when using the lower yield stress value 

axial load did not produce a maximum although the same 

flattening of the curves was obtained. The failure load of 3.25 

kips, compared with a corresponding figure of 3.35 kips obtained 

by ignoring torsion. 

(iv) The results obtained above show that torsional action has 

played only a minor role in the failure process. However, it 

must be acknowledged that due to the use of a coarse mesh size 

in the finite difference expressions that the influence of this 

rather small effect has not been obtained accurately. A 

more accurate assessment will form part of future investigations 

where a higher order of accuracy is used. 

3.9.9 Column 3.2 (Figures A. 11 and A.12) 

(i) The results for column 3.2 are given in Figures A. 11 and 

A. 12. The column is one for which the simplified computation, 

i. e. calculation 1, did not produce satisfactory agreement. Two 

further sets were obtained to investigate the effects of unloading 

and strain hardening. In all the theoretical results the value 

of initial minor axis moment, as measured in the experiment , 
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has been increased, 110 inch potinds as against 100 inch 

pounds in the experiment. This is because the major axis 

beams were inaccurately welded and were applying a 

component of minor• axis moment, see paragraph 2.7.10. The 

experimental results plotted show the actual values of minor 

axis beam moment as recorded during the experiment. 

(ii) The curves produced by calculation 1, with a mesh length 

of L/10, izsidicate failure at a load of 2.7 kips due to yield in 

tension, a value which is 20 per cent. below the observed figure 

of 3.4 kips. Agreement between experiment and theory is 

satisfactory until a load 2.5 kips is reached when major axis 

deflections begin to develop rapidly. 

(iii) Calculation (3) was used in an attempt to improve the 

correlation and the yield stress was raised to 35 kips per square 

inch. The result shown was obtained after allowing the computer 

programme to run for 4 minutes during a development run. It 

was found that unloading did not explain the discrepancy and no 

further calculation on this basis was attempted. 

(iv) Strain hardening was included in calculation 3 and the 

programme was run until the cross-section equations failed to 

produce solutions as explained in paragraph 3.3.6. The stress-

strain curve used was that shown in fig. 2.6 except that the yield 

stress was reduced to 33 kips per square inch. The use of 

this curve was not strictly valid, however, as the column 

material was from a different heat treated batch to that 

tested. The theoretical effect produced by strain hardening is 

seen in Figures A.11 and A.12 where the major axes stiffness 
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is adequately explained, but the same detrimental effect on 

minor axis deflections and moments that was caused by 

unloading is seen to occur. It is difficult to explain the minor 

axis behaviour but the explanation is assumed to lie with one or a 

combination of the following. 

1. The material properties given in Figure 2.8 may differ 

slightly from those of the material used in the column. This 

could involve variations of yield stress, length of plastic 

plateau and strain hardening modulus. 

2. The existence of accidental end eccentricities. It is known, 

see column 2.2, that minor axis behaviour is sensitive to small 

variations of moment when that moment is small. (Note: at 

3 kips a 0.007 inch eccentricity would cause the central bending 

moment to increase from 0.1 inch kips to 0.12 inch kips, i. e. 

by 20 per cent). This could combine with the material properties 

effect described above. 

3.9.10 Column 3.3 (Figures A. 13 and A. 14) 

(i) Results for this column are given in Figures A. 13 and A. 14. 

The curves shown were computed for a yield stress of 35 kips per 

square inch using calculation 1. A second result using 33 kips 

per square inch was obtained but is not plotted. It showed the 

same tendencies throughout but reduced the theoretical collapse 

load from 3.20 kips to 3.10 kips. This meant that the effect 

of a 5.5 per cent reduction in the yield stress was to cause a 

4.8 per cent reduction in the collapse load, i, e. a roughly 

proportional change. Both results however, were regarded as 
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being in satisfactory agreement with the experiment. 

(ii) The major axis beam moments were slightly high 

throughout the calculation, but the difference was quite small. 

Some improvement occurred when using the lower yield stress 

value so that this was presumably due to minor variations in 

material properties. An interesting feature of the 

computations also occurred here in that major axis deflections 

tended to decrease after the maximum load had been reached 

and the beam moments increased, but only slightly. This is 

evidently a property of the theoretical solution. 

3.9.11 Column 3.4 (Figures A.15 and A. 16) 

(i) The results for this column are given in Figures A. 15(a), 

(b), and A. 16(a), (b). Two sets of curves are shown, one using 

the simplified method, calculation 1, and a second, calculation 2, 

which includes the effects of torsion. Twisting displacements 

are plotted in addition to u and v displacements. 

(ii) Calculation 1 produced a result for which the collapse load 

was very slightly above the observed failure load; 2.26 kips as 

against 2.24 kips for the experiment. Generally throughout 

the agreement between observed and theoretical values was 

excellent. This is probably brought about by . the slender 

minor axis beams permitting collapse without requiring the 

development of large amounts of plasticity. Thus the effects 

of unloading and strain hardening are largely ruled out. 
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(iii) Calculation 2 provides a second example where the 

influence of torsional displacement components is illustrated. 

Their inclusion caused the failure load to drop from 2.26 kips to 

2.11 kips, i. e. by 6.6 per cent. Figure A. 16(s) shows that 

despite the large number of assumptions used in the torsion 

calculation there is reasonably god agreement of experimental 

and theoretical twist values. The main discrepancy is that 

theoretical twist values do not decrease when approaching the 

collapse load as the experimental quantities do. This results 

in an exaggerated reduction of the collapse load and causes a 

slight worsening of the agreement of the minor axis moment and 

deflection curves. The difference is not large. The importance 

of these results, however, is that the 6.6 per cent reduction 

calculated is an accurate and reliable figure for the twist values 

used and it is not clouded by the existence, in this case, of 

large curvature gradients near the centre. Furthermore, it 

indicates that even by over-estimating the magnitude of the 

twist values that the collapse load reduction is not exceptionally 

large. 

3.9.12 Column 1.3 (Figures A. 17 and A. 18) 

(1) The results for t his column are given in Figures A. 17 and 

A. 18. In this case, as with columns 1.1 and 3.2, the curves 

obtained by calculation 1 did not produce satisfactory agreement 

with the experiment. Inclusion of unloading caused no 

significant improvement but the inclusion of strain hardening 

effects was found to be capable of explaining the column strength. 
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(ii) Calculation 1 indicated failure at 6.0 kips, i. e. 23 per cent 

below the experimental value of 7.8 kips, due to yield in 

tension. A mesh length of L/10 was used to obtain this result. 

Agreement of all curves was satisfactory until near the 
theoretical failure load where the experimental column apparently 

gains some extra reserve of stiffness. 

(iii) Calculation 3 was next used to investigate the effect of 

unloading and the curve shown indicates the result obtained 

after allowing the computer programme to run for 4 minutes 

during a trial run. No significant improvement in the 

correlation was apparent and no further computation was 

attempted. 

(iv) Strain hardening effects were next included in the analysis 

and the computer programme was allowed to run until the 

numerical accuracy problems, described in paragraph 3.8.6, 

occurred. The stress-strain curve, which was obtained 

experimentally (see Figure 2.8 and paragraph 2.6.5) was used 

as the basis of the calculation. Immediate improvement of the 

correlation occurred and it was concluded that strain hardening 

was the chief source of column stiffness above 6 kips. Results 

are now awaited from the analytical integration method discussed 

previously, paragraph 3.8.6. 
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3.9.13 Column 1.4 (Figures A. 19 and A. 20)  

(1) The results for this column are shown in Figures A. 19 

and A. 20. Only one set of theoretical curves is given and this 
was obtained using calculation 1. A yield stress of 33 kips 

per square inch was adopted. The theoretical collapse load 

of 6.9 kips compares favourably with the observed value of 7.4 kips, 

a difference of 6.8 per cent. 

(ii) Reference to Figure A. 19 shows that above a load of 4.5 

kips the theoretical minor axis beam moments tend to be too 

small. Figure A. 20 shows that this is accompanied by slightly 

excessive major and minor axis deflections. On the basis of 

previous calculations it was presumed that exact correlation 

could be produced by modifications to the yield stress value or by 

the inclusion of strain hardening. The errors were not 

considered large enough to make this worthwhile. 

(iii) The solution itself exhibited the same characteristics as that 

for column 3.3 except that the positions of major and minor 

axis deflections were reversed. Thus, following the maximum 

load, minor axis deflections decrease and major axis ones 

increase. The beam moments exhibit corresponding 

characteristics. 
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3.10 CONCLUSIONS ON THEORETICAL RESULTS  

3.10.1 Generally speaking, the aims of the theoretical 

study as described in section 3.2 have been achieved. A 

computation procedure has been developed and the important 

factors, residual stress apart, required in the analysis of a 

column bent in symmetrical single curvature have been 

determined. The results of these findings are summarised 

below. 

1. The collapse load computed on the basis of ignoring 

unloading and strain hardening produces a conservative 

estimate of the collapse load. 

2. The influence of unloading is to increase the collapse load. 

No general proof of this statement has been given but the 

theoretical results obtained tend to confirm the belief. 

3. The influence of strain hardening is to increase the collapse 

load. In cases where heavy major axis moment has been applied 

and the plastic plateau of the stress-strain curve is short, it 

has been shown to provide a major contribution to column 

stiffness. The effect does not appear to depend on the length 

of the column to any large extent. 

4. Small changes in the yield stress produce more or less 

proportional changes in the collapse load. 

5. The collapse load is sensitive to changes in beam stiffness. 

This conclusion corresponds to conclusion 2 of paragraph 2.8.1 

at the end of the experimental chapter. 

6. The th-retical results obtained by ignoring strain 

hardening indicate a significant decrease in the load-carrying 
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capacity due to high initial moments in certain cases, viz. 

3.2 and 1.3. This means that conclusion 1 of paragraph 2.8.1 

may have to be viewed with some reservations as it appears 

that for a material with a large plastic pleateau that the 

collapse load could be lowered. It would be interesting to 

repeat tests 3.2 and 1.3 with such a material. 
7. The rr,-. ',lotion in the load-carrying capacity due to torsional 

displacements is not large. No thorough investigation has been 

made of this aspect but the two results calculated, along with 

the experiments, tend to confirm it. However, since the influence 

of unloading raises the collapse load and torsion decreases it there 

are two phenomena working in opposite directions which may not 

always cancel. The best hope of eliminating the awkward twisting 

displacements from consideration lies with proving their influence 

is small and this matter should receive further attention. 
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cit"iPTE11.4  

A DESIGN APPROACH 

4.1 INTRODUCTION 

4.1.1 In Chapter 1 it was mentioned that a possible approach 

to structural design could be based on assuming suitable 

deflection configurations and force distributions for the 

structure. In so far as the design of columns in the elastic-

plastic range is concerned, this requires the calculation of 

internal forces, caused by the assumed deflections, and their 

comparison with the corresponding external forces. For 

satisfactory performance of any chosen member the internal 

forces must equal or exceed the external ones at all sections of 

the column. The purpose of this chapter is to show how, at a 

particular section, given values of axial load, major and minor 

axis moments to be resisted, and principal curvatures 

the internal forces may be obtained and the requisite 

comparisons made. The selection of which particular cross 

section or cross sections should be checked is not discussed, 

however. It is assumed the critical section(s) are known. 

4.1.2 For this purpose the equations for internal resistance, 

developed in Chapter 3, have been non-dimensionalised and 

presented graphically in Figure 4.1 so that a single entry to 

the chart provides immediate values of the internal forces. In 

particular equations 3.17 have been used, i. e. strain reversal, 
strain hardening, torsion and tension yield are all ignored, to 
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obtain values of M /D(13,,  - P) 	and Mil  /D(P - P) corresponding 
/ to constant values of D3 •7  p/(Py 7  P) and D3  ()„/Py  P) obtained 

from equations 3.13 and 3. 17(a). Hence by assuming the axial 

load condition is satisfied, i. e. internal and external P values 

are equal, it is a simple matter to, use the given curvatures and 

the chart to qbtain internal moments and check the section. 

4.1.3 The assumptions upon which the calculations for the curves 

have been made are as follows: 

1. Torsional effects are insignificant•and can be neglected for 

restrained columns. 

2. The effect of unloading is to increase the collapse load so that 

• neglecting its effect, as is done, is to be conservative. 

3. No yield in tension occurs. 

4. Imperfections can be considered by increasing the external loads. 

These assumptions are discussed below and justified, as far as 

possible, for columns bent in symmetrical single curvature. 

Although they may possibly apply to a wider range of loading 

conditions the basic investigation has not been undertaken so that for 

the present their application must be limited to columns bent in 

symmetrical or near symmetrical single curvature. 

4.1.4 The first of these assumptions is considered justified on the 

•basis of the experimental and theoretical results reported in the 

previous chapters. Experiments with model Universal H-columns of 

slenderness ratio up to 100 have been conducted without any 

evidence of twist increasing significantly dtiring the actual physical 
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collapse. This was confirmed to some extent by the 
theoretical calculations where the limited number of results 

obtained showed its effect on the collapse load was small, see 

paragraph 3.10.1. Slenderness ratios above 100 generally 

only arise with narrow flanged I type members which are 

usually subjected to primary major axis bending moments only. 

Here again the only result available, column 2.1, shows that 

lateral stability can be checked by ignoring torsion and 

calculating the elastic critical load of one flange. However, 

although the mathematical equations below apply to any shape 

of section the approach is intended to apply particularly to 

Universal H-column sections. 

4.1.5 Regarding the second assumption it has been shown 

that for the particular cases in which unloading was considered 

it has been shown to increase the collapse load. Although this 

cannot be proved generally, see paragraph 3.10.1, these 

tendencies shall be considered to apply unprovisionally to 

all columns bent in symmetrical or near symmetrical curvature. 

4.1.6 Yield in tension is eliminated by a suitable check in 

the method. No investigation has been made of imperfections, 

i. e. residual stress and initial deflections. However, it is 

essential to the approach that residual stress, in particular, 

be eliminated from the graphical procedure since otherwise 

division of equations 3.17 in pairs cannot be performed and the 

simple chart shown cannot be drawn. 
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4.2 PRINCIPLE OF THE METHOD 

4.2.1 From the assumptions and discussion above, it is seen that 

the basic mathematical equations upon which the procedure has 
been based are equations 3.17. Since torsional effects have been 
ignored the subscript symbols g• and 'rt, may be replaced by X 

and Y to con'form to the inore usual notation used in the bi-axial 

bending expressions. Similarly coordinates 	and 1,--are 

changed to ,x-and y. , In this form the equations become, 
• 

P = Py = oy  5,13 -(iD co!3•1+ IS sin .1)1 AT 	midAl ic 1

4. 1(a) 

4.1(b) 

4.1(c) 

`4.2.2 To non-dimensionalise these expressions equation 4:1(a) 
• is divided by D3  and equations 4. 1(b) and 4.1(c) by D4. Therefore, 

• (P - p VD3  
"7 

0 • [tb -(4D cosi+ 	sin 4)3 A .• JA y 	1 	1-13 	.T 	p 

4.2(a) 
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MY/D4 a , [I sin _ - A m'x dA] /(cD4) 4.2(c) 
Y , 

Considering the terms on the right hand,side in square brackets it 

is seen that if b1  /D, B/D, m'/D, ATVD2, etc., are all replaced 
by by  B, mi, AT, etc., these new symbols will represent 

quantities on a scaled down section. This section will have D equal 
to 1 inch and all other sizes reduced proportionately. Qmantities 
on the left hand side and c will still apply to the full-sized column, 

howeVer. The equations thus become, 

• 
(P P )/D3.' = 0 ab 	1-B sin.4)3 A' - JA. 	/c 
• Y. 	 p 

• 

4. 3(a) 

4 	 'fA 111IY dA] ic M 	0 EI cos • - X 	y X 4.3(b) 

y/D4 	D sin 	mIxdA] ic 	4.3(c) 

Division in pairs and multiplication of both sides by.-1 produces the 
results, 

MX/
Eli(Pnr-F' 	= P1(4  b  ) 

and 	My/. ED(Py .- 13] .= F2(1, bi) 

where the functions F1  2and F2  are computed in non-dimensionaled 

form, i.e. for the scaleci•down or reduced Sized 
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Non-dimensionalised curvature functions can be found 

beginning with equations 3.13(a) and (b). In the.present notation 

these become, 

Px 	y = 0 co s I./(Ee). 

fr and P = 0 sin ci/(E¢)' 
. Y • y. 

4.5(a) 

Introducing equation 4. 3(a) into these relationships leads to the 

final results, 

D3,px/(  
y 
	- cos 4.1 E(.(b 	CoR•14: IB sin4)1 AT  - JAp  m dA] 

and • 
D3 p /(P. Y 	y. 

sin d - 
. 	1 

4.6(a) 

cc;13.1+1B sin 4))AT 	JA 	m' m' dA] 

• 4.6(b) 

where again the quantity in square brackets must be computed in 

non-dimensional form. 
= 	, 	' 

4.2.4 Since equations 4.1 contain no allowance for yield in tension . 

this must be prevented. Referring back to Figure 3.3 of Chapter 3 • 

it can be seen that the requisite condition is, 

These Junctions are not fully non-dimensionalised. To do this both 
sides should be multiplied by E. However; the expression is left in 
this form Since it simplifies the design calculation. 
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1(a) to eliminate Cz the condition becomes, 

B sin 01 

D cos 	sin',  

- where /0. (P 	) is the difference between the yield stress-
: 

and the average stress over the section 	f both sides of the equation: 

are divided by.  D then the condition is,. 
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so that introducing the non-Oiffendionalised parameters the result, 

- 20 . Lib ,,(1. cos .1+ -D3 sin.( )1. A 	, dA] /(/0 AT) 
y 1 2 	 T. p.  

> cos •1 + B sin .1 - b1 	4.12 

is obtained. Since the expressionDi  7.(1-  cos 4+ 1B sin .C) I AT, 

fA m' dAl is always negative for a compressive load 4.12 can 

be rewritten as, 

AO < -2 °Y Elb  1 
-(1- cos 1 4-IS sin .1 	AT  

LA (cos .:1+ B sin eZ b1)1  4.13 

4.2.5. The solution of the mathematical equations above relating 
geometry and forces, as well as the checking of the tension yield 
condition, is undertaken graphically in the design method. The 
relevant curves are shown in Figure 4.1 where the two sets of 

heavy lines represent curves of constant value of D3 p X/(Py P) 
- and D3 pY (Py P) and the ;lighter set constant values of Aa . 

Numerical values for the heavy lines were obtained by computing. 

the non-ilimensionalised func'tions in square brackets of the equations 

4.3 for various values of b1  and di . These .were then divided in 

pairs to obtain MX/ D(Py  P) • and MY  D(Py  - ,P) and the expressions • 
4.6 used to obtain corresponding values of u3  pX/(Py P) and 

D3pY/(Py - P). Interpolation of the results enabled the particular 
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constant curvature lines shown to be plotted. The A0 curves 

were obtainedin the same fashion using condition 4.13 as an 

equation and taking 0 S  36 kips per inch2. 

4.2.6 Whilst the equations above have been non-dimensionalised 

the various Universal cOlumn sections are shaped differently 

and cannot therefore be represented by one set of curves:- The 

set shown is for a 14 x 16 x 426 lbs. U.B. and should strictly 

only be used for checking this particular member. Although it 

has not been investigated it is possible that other sections can be 

checked on these curves and it is likely that all sections can be 

checked, with reasonable accuracy, by three or four sets. 

4.2.7 Before considering how the diagram, Figure 4.1, can be 

used for column checking one further feature of it will be explained. 

It can be seen that the curves which represent constant curvature 

functions all pass through either A or B. These points correspond 

to extremely high curvatures and their coordinates cannot be 

obtained numerically since they represent a limiting condition 

requiring the division 01014 Reference to Figure 4.2 shows a single 
- curve of constant D.3  p •X  /(Py P), the line CA, in a skeleton graph. 

When .1 is zero, as at C, the value of My/ D(P - P) is also zero 
Y. 

but in moving towards A an increase-in ./ occurs accompanied by an 

increase n  M 	D(P P) and'a decrease in MX/ D(Py .  P).. Y 	y • •  
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In order that D3 	(P - P) remains constant the value of b1  must 

also increase, as can be seen by referring to Figukes 4.3(a)•and 

In Figure 4.3(a) the angle el is zero. The value of (P 	P) is the 

integral of the stresses.HJK over the. unshaded elastic , area and 

the curvature is given by the slope of the line HJ. In Figure 4. 3(b) ./ 

is shown approaching TT/2 and bi  is shown at an increased value. 

Obviously (P - P) is smaller as consequently the resolved slope 
" Y 

of H' J' must be to hold the curvature function constant. Other 

possibilities, not requiring an increase in bi; come to mind but they 

can be rejected on the basis of various arguments, e.g. Pand 

(P
Y 
 - P) both increasing with b • decreasing is eliminated because 1 

with .1 approaching ITT and yield in tension ignored (P 	P) would 

eventually change sign. Other cases can be argued similarly so 

that by , a process of elimination the only remaining possibility. • 

is that as .1 approaches -} TT then b, approaChes B. 

4.2.8 To deduce the actual value of the limits a simple geometric 

interpretation of equations 4.4 is used. If these are written in 

the form, 
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or, alternatively as, 

can be stated as,' 

then evidently the, values Dy and Dx are the coordinates of the centroid 
of the force (P - P), drawn at .E in Figure 4. 3(b). (This is a 

full-sized member, whereas x and y are values appropriate to a non-
dimensiOnalised or scaled-down section). Obviously as 
approaches DT the elastic portions of the flanges become equal and 
Dxapproaches zero whilst with b1  approaching B,Dir approaches B/2, 

or in the non-dimensionalised form y approaches B/2. A similar 

type of situation arises as .1  approaches zero with the positions 

of the moment functions reversed. _Mathematically these conditions 
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li 
4 

m,
-0-0 My/D(P -P) =0 	 4.16(d) • 

4. 3 USE OF THE CURVES 

4.3.1 Given external values of the forces P, M MY  and 

curvatures 	and Py at a section the adequacy of a column 

can be checked by the following procedure. 

1. Calculate (P - P) on the basis of 0 = 36 kips per inch2. 

2. Calculate Mx/ D(Py  P), My/ D(Py  - P), D3 px/ (Py  - P), 

D3  pY  / (Py  P) and AO ( -4Py  - 14/ AT ). 
3. Using the computed values of D3 px/ (Py -,  P) and D3  P./ (Py  P) 

• locate a point on the design curves, Figure 4.1, by interpolation 

between the appropriate curvature function lines. Read off values of 

MX/ D(Py - P) and M 	D(P - P) from the axes. 

4. If the section is adequate then these values of Mx/ " D(P7  P) 

and M 	D(P7  - P) must be larger than the externally computed 

ones. Additionally the value of 0 0 read off the chart should be 

greater than the value of A 0 calculated in step (2) above. 

4. 3. 2 Example 

(i) Consider that a 14 x 16 x 420 lbs. U.B. is to be checked under 

the following conditions. 
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P = 3500 kips. Mx  = 4800 inch kips. My  = 2500 inch kips. 
- = 5 x 10-5 inches 1. 	= 7 x 10-5  inches 1. 

(ii) The following quantities may be calculated from this data, 

Py  P = 1009 kips 

Mx/ D(P - 	= 0.254, M 	- 13) = 0.133, 

• 	
• 
D

3 
px/(Py  13) = 3.27 x 10-4 kips-1 inches2, 

D3 p /(P - F.) = 4.58 x 10-4 kips-1 inches2, Y y 
Ao = 8.06 kips inches-2. 

3. Reference to Figure 4.1 shows the point C located by the 

curvature functions where obviously internal forces are higher than 

the corresponding external ones so the loads can be stably 

suppOrted. In addition for the point C located,A04.19 kips per inch-24  

which is greater than the figure above so that no yield in tension 

occurs. 
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CHAPTER 5 

CONCLUSIONS AND NOTES RELEVANT TO FUTURE 

WORK 

The work has investigated both experimentally and 

theoretically the behaviour of elastic-plastic, elastically 

restrained, H-section columns bent in symmetrical single 

curvature about two axes. Ten columns in all have been 

studied for which correlation between experimental and 

theoretical collapse loads has-been obtained to within B per 

cent, except for one case, where the difference was 11 per 

cent. The following points summarise the findings and give 

information that should be helpful in future investigations. 

5.1 Significant Features of the Column Analysis  

The work has indicated most of the important factors which 

should be included in the analysis of a column bent in 

symmetrical single curvature. The influence of unloading 

has been considered as well as strain hardening and torsion 

although further investigation of some of these aspects would be 

desirable. It has been shown that unloading is not extremely 

important except, perhaps, when columns are subjected to very 

heavy initial moments from stiff restraining beams, e.g. column 

1.1. Its effect is to raise the collapse load but as, in 

general, this does not appear to be by extremely large 
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amounts it would seem justifiable and convenient to omit this 

awkward feature from future investigations. Strain 

hardening, however, should be included as it has been shown 

for a column bent by heavy major axis moment and made of 

material with a short plastic plateau, e.g. columns 3.2 and 

1.3, that the collapse load is raised considerably. Torsion 

is discussed separately in section 5.3. 

5.2 Beam Stiffness and Beam Loads 

Variations of minor axis beam stiffness appear to affect 

the collapse load considerably, e.g. the collapse load of 

column 3.4 is 55 per cent of the squash load which compares with 

the other columns of the same dimensions whose collapse 

loads are all above 75 per cent .of the squash load. Major axis 

beam stiffness appears to matter less as shown by the collapse 

load of column 1.4 being 7400 pounds as against a column, viz. 

1.3, of similar dimensions whose collapse load was 7800 pounds. 

Likewise variations in beam loads, equivalent to variations 

of initial moments in this thesis, appear to have little effect on 

the collapse load provided minor axis beam loads are not large . 

However, in two instances, i. e. with columns 3.2 and 1.3, the 

existence of strain hardening at a fairly early stage was required 

to make this so; see also sections 3.10 and 5.1.. Beam load 

sc 
The case of minor axis bending only is discussed elsewhere, 

e. g. reference 6, where significant reductions in load carrying 
capacity occur with heavy beam loads. 
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effects might therefore usefully receive further investigation 

with a different column material. 

5.3 Torsional Action  

Torsional action, for the load path adopted in this project, 

e. beam loads followed by axial load, does not appear to be 

an important consideration. However, work by Campus and 

Massonnet (19),  and more recently in the U. S.A. (20),  on the 

lateral-torsional behaviour of pin-ended members, bent by 

eccentric loading in the plane of the web, indicates a much 

larger effect under these circumstances. Torsional action 

should therefore be more carefully investigated for biaxial 

bending cases under alternative loading paths. 

5.4 Residual Stresses 

Residual stresses are known to be the major column 

imperfections in pin-ended axially loaded members (6)(21)  

Their effect is less when the loading is eccentric and decreases as 

the eccentricity increases. It is possible for restrained 

columns that their effect is extremely small as was suggested 

by the reloading of column 1.3 after straightening it. This 

requires further verification however. Theoretically, this 

problem can be tackled by making a minor modification to the 

computation of this thesis which evaluates unloading effects. 

This will require the use of a finer sub-division into 

infinitesimal rectangles than that used so far and the 

computation required will be quite time consuming, even for a 
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computer. 

5.5. Computation Procedure  

It is felt that the computation procedure developed in this 

thesis with its full computo..!•:ation will be of advantage 

particularly when the extension to unsymmetrical bending is being 

considered and adjustment of parameters at a large number of 

station points is required. Methods such as the one employed, 

in reference 15, where displacements Cay. d
2u d2v , d216  

dz2 dz2 dz2 

are adjusted manually, do have the advantage of knowing more 

of what is happening during the calculation. However, this could 

get tedious (it certainly must waste computer time) in dealing with 

unsymmetrical problems. 

A further interesting comparison of the method of reference 

15 and that of this thesis is the actual method of computing 

equilibrium configurations. As explained above the quantities 

e ay.  d
2u , d

2
v , d2  	are adjusted at each station which means — 

dz 	dz 	dz2 

that if six station points are used, 6 x 4 (= 24) simultaneous 

non-linear algebraic equations must be solved less the fixed 

boundary conditions which reduce it to 19. By the approach of 

this thesis the maximum number which must be solved at any 

one time is 5, when adjusting the twisting displacements, 

although a smaller number of equations must be solved several 

times. If both methods were fully computeAsed (the method of 
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reference 15 is capable of being computerised), it would be 

interesting to compare their computing efficiencies. Such a 

comparison at this stage is not possible. 

5.6 Experimental Rig 

The experimental rig that was used, whilst satisfactory in 

the present tests, is subject to one very important limitation; 

it cannot easily be extended to investigating unsymmetrical 

loading conditions. This is largely due to the unstable nature 

of the Buckton dead load machine that was used and the fact 

that the column shortens axially. The first difficulty means that 

random rigid body motions of the column can occur and, with 

the beam ends fixed in space, induce extraneous column bending 

moments. This may be overcome by bu!lding a more rigid 

loading frame to which the beam ends are connected. However, 

if due to axial shortening, equal changes of beam moments at the 

two column ends are required, each beam, at its turnbuckle end, 

must also be allowed to move in an appropriate manner. The 

present turnbuckle support screws should be capable of performing 

this function. In addition the end bearings will have to be 

modified to be capable of supplying horizontal reactions without 

jamming, probably by inserting bearings in the space that occurs 

in the present design. 
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5.7 Design Approach 

The design curves developed show how three dimensional 

moment (Mx and MY)-curvature-axial load relationships 

may be represented, in a limited sense, on a two dimensional 

diagram. They are intended for use in checking members by 

a design approach in which the deflected shape of the column is 

assumed. From a knowledge of the external moments and axial 

load, and the column curvatures at any section, it is possible 

to check whether a particular member is adequate. It is 

realised that design methods such as this are in the embryo 

stage so far as elastic-plastic members are concerned, e. g. it 
is not yet known how to select the critical section(s) in the 

member for checking, but it is hoped that as these are 

developed the curves presented will be of some value. 

5.8 Plastic Hinges 

In future investigations it may be desirable to allow for 

plastic hinge action in the columns to compute, in particular, 

the falling branch of the axial load - deflection curves to 

determine whether the load capacity drops off rapidly, leading to 

a catastrophic type of failure. In this connection it should be 

noted that the calculation procedure described above always 

computes firstly the loads at the most heavily loaded section, the 

central section, and so avoids attempting to solve equations 

3.12 for unreal values. Thus the solution with plastic hinges 

creates no special difficulties provided strain reversal is 
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ignored, After a certain stage a plastic hinge is inserted 

and the calculation proceeds in increments of slope at the central 

section instead of central curvature. A minor modification of 

the finite difference expression is required at the central . 

section, but this difficulty is not insurmountable. 
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APPENDIX A 

A. 1 PLASTICITY CORRECTIONS  

A. 1. 1 The corrections to the force equations for plastic yield 

begin by calculating the stress excess values at the twelve 

positions shown in Figure A. Al. For the three separate cross-

sectional elements shown, these quantities are sufficient to allow 

stress excess at any point in the cross-section to be determined. 

All of these values can, and have been expressed in terms of 

the parameters b, c, ,,/ where c and ciare defined as they were 

in Chapter 3, but b is taken to mean b1, or b2, depending on 

whether the correction is for compression or tension yield. 

A. 1. 2 Lending consideration to the type of yield zones that can 

arise under the plane sections remaining plane assumption, it 

will be observed that if general formulae for the types shown in 

Figure A.A. 2 are calculated, then the complete range will be 

covered. In Figure A.A. 2 the m values are the stress excess 

quantities which, when substituted into the formulae below, allow 

the magnitude of the axial load correction to be calculated and 

its line of action to be located. In both cases this latter function 

is performed by taking moments about the lines AB or A'B' and 

AC or A'C'. The double or volumetric integrals which are 

required are as follows: 

(a) Type 1 Zone 

(i) axial load correction F 
A = dt(m1  m2  + m3  + madi 4 .. t2  cotta (m1  + 2m2  + 2m3  + m4)/12 

A. 1(a) 
(ii) moment about AB, MAB 
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= d2t(m3.  + m2  + 2m3  + 2m4)/12 dt2  cot (3 (m1  + 2m2  4m3  +2m4) 

/18 	t3  cot2A 	+ 3m2 + 6m3 + 2m4)/72 

A. 1(b) 

(iii) moment about AC, MAC 

dt2(mi  + 2m2  + 2m3  + m4)/12 - t3  cot f5 (m1  + 3m2  + 3m3  + m4)/24 
A.1(c) 

(b) Type 2 Zone 
(1) F' .(1/6)ti ml d' 
	

A. 2(a) 

(") MIAB =(1/24)t'  mjd' (d' cot 	t') 	 A. 2(b) 
(iii) M'Ac =(1/24)t' ml  d'' 

	
A. 2(c) 

If values dAB, dAC and d' AB' d'AC are now defined as distances 
measured parallel to the lines AB, AC and A'B', A'C' respectively 
which specify the location of F and F' then they may be obtained 
from the following expressions, 

dAB = MAC 
F 

dAC = MAB 
F 

d'AB= M'AC 
F' 

d'AC= 1W  AB 
F' 

A. 3(a) 

A. 3(b) 

A. 3(c) 

A. 3(d) 

From these quantities the distances of F and F' from the geometric 
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centroid, 0, of the whole section, c%, d,re 	di,lcan be found 

and the force corrections made. The positive sense of these new 

d coordinates is defined in Figure A.A. 1. In making these 

corrections compression stress excess is considered positive 
so that F and F' must be subtracted from the axial load. Moment 

correction is performed however by always subtracting: the 

absolute value of F or F' multiplied by a distance, i. e. one of 

dg, 	d',1 	, as given in paragraphs A. 4 to A. 6 
below. 

A.1.3 In the equations A. 1 and A. 2 above the quantities t, d, 

t', d',0 , X appear without any explanation of their method of 

calculation. Their magnitude depends on the cross-sectional 

element for which the correction is being made as well as the 

amount of plasticity present. The full details for calculating 

these values as well as F and F' and the distances d, dr%  4‘, aft, 
now follow. 

A.1.4 Top Flange  

(1) All possible variations of the spread of plasticity in the top 

flange, requiring different correction expressions, are shown in 

Figure A.A. 3 where the points 1,2,3,4 correspond to those 

numbered in Figure A. A. 2. Additionally, the lines AB, AC, 

A'B', A'C', show how the yield zones discussed above fit each 

particular case. 

(ii) The setting of all quantities in the general formulae and the 

conditions under which each case occurs are as follows: 
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Case (a) Only type 1 zone present (speci6.1 case) 

zn1 = 11  and m2  = m3  = ni4  = 0 

d = b cosec of 

t = b see oe 

= 
d?- 1.13 dAC 
dl  =z D  - dAB 

Conditions (i) f1  >. 0 

(ii) f2 = f3 = f4 = 0 

Case (b) Only type 1 zone present 

m1 = fl' m2 = f2 and m3 = m4 = 0 

d = b cosec aC 

t = tf 
= 
= +B - dAC 

- dAB 
Conditions (i) f >f > 0 

1 2 
(ii) f3  = 14  = 0 
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The values f1 to f1 are the stress excess values which can be 
taken from Figure A. .2. 



Case (c) Both type 1 and type 2 zones present 

Zone 1 
m1 = f1' m2 = f2' m3 = m4 = 

d = B 
t = tf 
13  = tan 1  [tf/(B - (b - t cos e4) cosecl 
d = 1.13 - dAC 
dn: 	dAB  

Zone 2 
= 

4 
d' = B (b - tf  cos o4) cosec.4 

= (b - B sin o() secoe. 

I 	rr - p 
dic - -113 + d'AB  
dyt 	- d'AC  

Conditions (i) f1  > f2  > f4  > 0 
(ii) f3  = 0 

Case (d) Only type 1 zone present 
m1 = f4' m2 = f1' m3 = m4 = 0 

(b - t cos 00 cosec 
t = B 

dg= -}33 dAB 
deli= D- dAC 

Conditions (1) f1  > 14  >0 
(ii) f2  = f3  = 0 

143 
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Case (e) Only type 1 zone present 

ml fli m2 = f2' m3 = f3' m4 f4 
d = B 

t = tf 
@ = 

Condition is f1 > f2 > f3 > f4 > 0 

A. 1.5 Web 
(i) The details given for the top flange in paragraph A. 4 above 

are now repeated for the web. The various possible zones of 

plasticity are shown in Figure A.A. 4 and the quantities and 

conditions corresponding to those given in paragraph A, 4 are as 

follows: 

Case (a) Only type 1 zone present (special case) 

m1 = f6' m2 = m3 = m4 = 0 

d = (b - 1-B sin o4 It*  sin a t f  cos 91) cosec 

t 	= d tan 04. 

= o 

= 	- d c  

- t. - dAB 
Conditions (1) f6  > 0 

(ii) 15  = f7  = f8  = 0 
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Case (b) Only type 1 zone present 
m1 = 15' m2 = f6, m3 = m4 = 0 
d = (b - -}B sin 0( - z  t sin c/.- if  cos c1 ) sec 94 

t om, 

Tr+ 01,  
d- a  tw + dAB 
dit= iD  - tf  - dAC 

Conditions (i) f6 > f5 > 0 

(ii) 17 = 18 = 0 

Case (c) Both type 1 and type 2 zones present 
Zone 1 

m1 = f5' m2 = f6' m3 = f7' m4 =0  
d 	= (b - -1-.B sin 04 - i  t w  sin 04 - tf  cos o4) sec 04 

t = 

= 	+ tan 	[(_13 d)/twl 
- z  tw + dAB  

dit= Z D - if  - dAc  
Zone 2 

mi = 
dt = B - d 
t' = (b 	B sin c4+ z  tw  sin 	D cos 04 + tf  cost') cosec 

= tan-1  DB - d)/tvil 
= a  tur - d'Ac  

&I= - i  D + + 
diAB 

Conditions (i) f6  > f6  > f7  > 0 
(ii) 18 = 0 
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Case (d) Only type 1 zone present 

m1 = f6' m2 = f7' m3 = m4 = 0 

d = (b - z  B sin c + i tw  sin 01- - tf cos 04) cosec ca4 

t = D - 2 tf  

= 
d 	z tw  - dAc  

d= 	D - tf  - dAB  

Conditions (i) f6 > f7 > 0 

(ii) f5 = f8 = 0 

Case (e) Only type 1 zone present 

m1 = f5' m2 = f6, m3 = f7' m4 = f8 
d = D - 2tf 
t = tw 
p = +Tr 

dg = -z tw dAB 
dl= 	D - t. - dAC 

Condition is f6  > f5  > f7  >f8 > 0 

A. 1. 6 Lower Flange 

(i) For the lower flange reference to Figure A. A. 3 again shows 

the possible plastic zones. However, case (e) need not be 

considered since the entire section would be plastic and therefore 

unstable. Case (c) was also considered to represent a condition 

where a section would be unstable and is therefore excluded. The 

conditions and parameters corresponding to those given above are 

as follows: 



Case (a) Only type 1 zone present (special case) 

m1 = f9' m2 = m3 = m4 = 0 

d = (b - D cos 	tf  cos 04) cosec of 

t 	= d tan 04 

@ "4* 
• = z B - dAc  

d'11,  - 	2  D + tf dAB 
Conditions (1) 19  > 0 

(ii) 110 = f11 = 112 = 0 

Case (b) Only type 1 zone present 
m1 = f9' m2 = 110' m3 = m4 = 0 

d = (b - D cos .4 + tf  cos d ) coseco4 
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t 

B - dAC  
d,71; - D + tf - dAB 2 1   

Conditions (i) 19 > f10>  
(ii) i

ll = /12 = 0 

Case (d) Only type 1 zone present 
m1 = 112' m2 = f9' m3 = m4 = 0 

d 	= (b - D cos oZ tf  cos o() sec o4 

t = B 

= 	+ 
• - B dAB 
• - z  D + tf  - dAc  

Conditions (i) 19  > f12  > 0 

(ii) flO 	fll = 



F + 

met  
A 	•L 

(Fd,„) + 	(F' d'ry 

= 	(Fd) + 	(F' d's) 1, A 

A. 4(a) 

A. 4. (b) 

A.4(c) 
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A. 1. 7 The total correction is found by summing the corrections 

for all plastic zones. Thus using the notation of Chapter 3 the 

corrections are as follows: 

where 	denotes the summation for the plastic zones. It 

should be doted that all conditions and formulae above are for the 

angle 04 in the first quadrant, i. e. with Mt  and M lyti  positive. 

If either of M 	or M,vt  is negative it must have its sign 

changed and then the curvature it causes negated at the completion 

of the solution of the cross-sectional equations. 
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APPENDIX B  

B.1 UNLOADING CORRECTION 

B. 1. 1 To obtain corrections to the equations 3.12 for - unloading it has 

been found convenient, for the purposes of integrating correction 

stresses, to construct on the cross-section the imaginary grid shown 
in Figure A. B. 1. Each enclosed rectangular area is considered to 

contain a single fibre, the behaviour of which coincides with that of 

the most centrally placed material. Thus by recording the maximum 

strain at all such central points and storing the result in a fixed 

location in the memory store of the computer, a sufficiently complete 

strain history may be kept. 

B.1.2 Unloading of compression fibres only has been considered so 

that all strains are directly expressible in termd-of b1,c'arid 	. 

To obtain the strains at the centre of all grid rectangles shown and 

numbered in Figure A. B. 1 the following procedure is adopted: 

1. Strains are calculated at the points A, B, C, H, I, J and E in 

Figure A.B. 1. The relevant equations are: 

€4  =ay(bi+ c-tt cos4 6) /Ec 	 B. 1(a) 

ea  =GA  - crytfc osdnEc 	 B. 1(b) 

ec  =ea- aytfcos.413Ec 	 B. 1(c) 

ej• r.ec ay(D- tf/ 3)c o s I/Ec 	 B. 1(d) 

=ej+ ay  tfc o s /3Ec 	 B. 1(e) 

CH  =CI+ ayt fcos .1 /3Ec 	 B. 1(1) 

eE=Crifbec - 0.5E3sin.‘ - trcos.0/Ec 	 B. 1(g) 
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2. Using the strains above, and noting that the strain gradients in 

the flanges and web are (criEc ) sin.t 	and (cry/Ec )cos.1 

respectively, the strains at the centres of the various numbered 

rectangles are found as follows: 

EA-Bcrysi 	/20Ec 	 B. 2(a) 

€2 = e1-Baysin.1 /10 EC 	 B. 2(b) 

C3= G2BaySind/10 EC 	 B.2(c) 

etc. 	 etc. 

E»= es- Baysi n /20 Ec 	 B. 3(a) 

Ei2=q1-Baysin a/10 Ec 	 B. 3(b) 

€13= en' Baysind/10 Ec 	 B. 3(c) 

etc. 	 etc. 

where this process must be continued for the six rows in each of the 

two flanges. For the web, 

C61= € E -(D -2y cry  cossa 20 Ec 	 B. 4(a) 

€62= €61-(D - 2tf)cry  cos •C/10 Ec 	 B. 4(b) 

;3= C52-(D -2tdcry  cosd/108c 	 B. 4(c) 

etc. 	 etc. 
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FIG• A• B2 
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B.1.3 Now bearing in mind that unloading effects are being 

considered as a correction to the original force equations, 3.12, it is 

seen that the two distinct unloading possibilities indicated in the stress 

strain diagram, Figure A.B. 2, will need to be considered. Defining 

the quantities, 
maximum strain on a fibre, 

' max 
yield strain, 

	

Ey 	 current strain, 

	

a 	= 	area of a general elemental rectangle, 

the force correction, F, on each element, and the associated conditions 

which arise in each case, are as.follows: 

Case (a) 

F = E( emax 	)a  
Conditions (1) e  > Ey, otherwise it is case (b) 

(ii) E( C  max - 6 ) > 0. otherwise F = 0 

(iii) E(max -G)<20 otherwise F a 2 cr a 

Case (b) 

F = E( e max - Cy)a 

B. 5(a) 

B. 5(b) 

Conditions (i) E <E y, 'otherwise it is case (a) 

(ii) E(6 max - ) > 0, otherwise F = 0 

(iii) E( e max - C )<2cr otherwise F = 2 a a 

In programming this for the computer it should be noted that the 

application of condition (1) distinguishes case (a) from case (b). The 

conditions (ii) and (iii) are the same for case (a)- and case (b) and 

need only be programmed once. Also the force corrections F, 

(F1  to F.,70), corresponding to the strains C1 	7d to e 	may be allowed • 
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to overwrite the strains since these are no longer required. 

B. 1.4 To obtain the modifications to the forces (P - P ), Mg , 

M 	vit. Pu, M J 41 tie , J .the following expressions are used. a   

70 

E Fn  
n=1 

B. 6(a) 

3 	 • 10 

E ((D/2.tf/6)-mtf/3) E (F 	F lomsn-lo 40m4tv.60)  m=1 	 n.7.1 

10 

R0.550414) -0.1n(D-2tf)]Fn.eo 

M
6 

- t (0..55B- 01mB) 	(F 	- F 	) 
mr., 	 n moon-to -m4On-1 

B. 6(b) 

B. 6(c) 

These corrections are all to be subtracted, in order, from the 

equations 3.12. 

B. 1. 5 In the computer programme all elemental force corrections 

are placed in fixed locations in the memory store . Associated with 

each location are coordinates which define the location of the force 

with respect to the geometric centroid of the whole section. These 

are located correctly irrespective of the values of b1  ,c, 04 and enable 

the unloading corrections to be made without difficulty. However, the 

evaluation of the plasticity expressions as given in appendix A is valid 

only if 0 < et < DT . Outside this range b, and 	must be modified 
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to blc and eZ c, where •C is an angle in the first quadrant, 

and the internal moments sign corrected. The last function 

is performed by multiplying M g by d17 and M4~ by d18. The 

evaluation of b1c' .4 c, d17, d18 is summarised below for 

27r< 	< 21T . 

Condition 
	 blc 	d17 	• d18 

-21T < <-31T/2 21T-11.1 	b1 	 1 	 1 

-37/ 2‹ el <-1T 	ld 1 -1T 	131+Dcos 	 -1 	1 

-11 < 	-117 2 	1T- 411 	bi+Dcosh+Bsin.Cc -1. 

be Bs in./ c -7T/2 	< 0 	141 	 1 	-1 

0< I<TT/2 	1.11 	b1 	 1 

1T/2 <.1 <TT 	1T-1.11 	bi+Dcossl c 

TT< 	<31T/2 	ill TT 	b +Dcos.1e6sindc -1 

31T/2‹..l< 21T 	27T-14 	be Bs in.!, 	1 	-1 

B. 2 STRAIN HARDENING  

B. 2. 1 The correction for strain hardening is made utilising the 

same sub-division of the cross-section that was used for the 

unloading computation. The stress-strain relationship upon which 

. the correction is based is shown in Figure A.B. 3 where strain 

hardening first begins at A and results in a linear increase in •stress 

• 
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above a at a rate defined by the modulus E 
y 	 Sir 

B. 2. 2 The strain hardening correction must be applied to a fibre 

whenever the maximum strain that has occurred at any time 

during the loading process exceeds N Cy. It can be applied in 

conjunction with the unloading correction since, as can be seen 

in section B. 1. the values of the maximum strains have already 

been obtained.• (Note: for some of the small rectangles the 

current strains will be the maximum ones whilst for others, i. e. 

with fibres that have unloaded, it will have occurred at an earlier 

stage.) 

B.2.3 To allow for strain hardening-the force on a small 

elemental area, a, is evaluated using the expression, 

Fs  = E5EmcL% N ey) a 	 B. 7 

which corresponds to equation B. 5(a) of the unloading correction. 

Expressions B. 6(a), (b), (c) may then be used, with Fs  replacing 
• - 	

Mg ,, F throughout, to obtain corrections 	PSH  Mg, SH  . .The.se 
corrections are then added, in order, to the values of P Mg, Mit  
of equations 3.12. 
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