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ABSTRACT 

In Chapters II - IV we give a brief survey of the 

quantum field theory necessary here. Particular attention 

is given to the Haag-Ruelle Collision theory. The theory 

developed in Chapters II - IV is applied to a particular 

model of almost local field theory. In fact, we set up 

an approximation scheme by requiring that the theory is 

relativistically equivalent to the presumably correct 

local field theory. Then, a. aImost.lOcal field 

possesses the Haag expansion. 

In Chapter V we demonstrate the possibility of 

imposing the condition of almost locality on a L.-point 

matrix element. This is done 	order to obtain certain 

restrictions on the functions F appearing in the Haag 

expansion of an almost local field. Disregarding possible 

end-point singularities we have been able to show that in a 

certain finite energy region the functions (p2 - m2  )F 

satisfy equations similar to "physical unitarity". Assuming 

that the /11 -functions appearing in the Haag expansion 

possess analytic properties, we have been able to find a 

model (Chapter VI) which explicitly shows how the end-point 

singularity can be cancelled by the threshold behaviour if 

the energy region is restricted to the elastic region. 

The whole of.Chaptel,  VII is spent in showing how the 



bound state problem may be incorporated into the spirit 

of almost local field theory. The problem is analysed in 

the case of AB elastic scattering where B represents a 

two—particle bound state of A 

The last Chapter, or conclusion, indicates the 

difficulties which are met when the 6-point function is 

examined. 
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I. GENERAL INTRODUCTION  

It is the ideal of particle physics to arrive at a 

unified description of all kinds -)f particles and all 

possible interactions. The attempts to understand the 

strongly interacting particles and their couplings 

represent another partial approach in this direction. 

Obviously all information we have about particles 

has been derived directly from experiment and using the 

language of particles. This so-called particle concept 

is characterized by giving the mass m, energy momentum 

four vector p with p2 = m2 spin s and internal 

quantum numbers a. 	It became clear, when the list of 

particles and resonances swelled up as the energy 

available had been increased, that there must be some-

thing more fundamental than the observed particles. 

Thus, in the current theoretical discussion of elementary 

particle physics, quantum field theory is the most 

sophisticated concept presently available. It is in terms 

of fields that we attempt to construct the basic theory. 

Then, there is a hope that by starting from a few fields 

we may, at least qualitatively, calculate the existence of 

various kinds of particles and the variety of their 

dynamical properties. So far, no fully satisfactory and 

simple theoretical model is known, from which the existence 
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of particles, that is, their mass spin values and other 

experimental properties can be accurately evaluated. 

There are various approaches to field theory, each of 

which has advantages in certain situations. Their common 

purpose is the desire to exploit to as full an extent as 

possible the mathematical consequences of a few playsical 

principles. 

We may distinguish three main divisions: 

a) Lagrangian field theory
(1). The theory deals with 

a certain function called Lagrangian density I, which 

is specified as a function of "bared  fields iV  and 

their gradients. The parameters which are involved 

are "bares  masses and coupling constants. This 

formalism leads to a definite equation of motions 

which is then solved by perturbation methods or 

some modification thereof. Of course, it is not 

always possible to find exact mathematical solutions 

to the complicated equations one writes down in 

this way. The S-matriX is calculated by the method 

of Feynman diagrams(2)  

A second approach is that of Lehman, 

LSZN  Symanzik and Zimmermann ( 	/(3)  Wightman(),  

Haag-Ruelle(5) and others, This approach is 

adopted here and is treated in most details. 

b)  



c) 	The third approach is that of dispersion theory
(6) 

or now extensively called analytic S-matrix theory( 7)  

By imposing directly relativity, unitarity and other 

symmetries together with analyticity to the S-matrix 

one hopes to have a complete theory which is able 

to describe all the properties of elementary particles. 

A good feature of the dispersion theory approach 

is that one works with quantities that are obser-

vables or nearly so. It should also be emphasized 

that the analytic S-matrix theory considers the 

analytic properties of S-matrix elements on the 

mass shell in all their variables. 

In none of the above-mentioned kind, of field theory 

have we any assurance that solutions of the equations 

actually exist or describe nature accurately. To make 

progress with field theory at present requires setting 

up phenomenologically based models or approximation schemes 

tha-',, reflect the general properties of the underlying funda-

mental theory. 

It is the aim of this thesis to obtain a reasonable 

approximation to a local field theory, and still have a 

complete dynamical theory with at least a partial particle 

interpretation. The way to achieve it is to consider an 

almost local field(8) having the Haag expansion(9) in terms 

of free fields which are complete. 



The Haag expansion introduces an infinite set of 

generalized Fmn  functions (potentials), then, the 

condition that the field B(x) is almost local requires 

certain mathematical restrictions on Fmn. For finite 

energy it is possible to smear B(x) with such a test 

function that only a finite number of Fm's occur in the 

haag expansion far B(x). Thus, the idea of the approxi-

mation is to approximate the almost local field B(x) 

by a finite number of Fes. The S-matrix and the partial 

particle interpretation is given by the Haag-Ruelle 

collision theory(5). Since we deal only with finite energy, 

it must be possible to modify the theory at any stage so 

that the physical interpretation can be extended to higher 

energies. The most general set of F 's with the "almost 

local" conditions is supposed to provide a parametrization 

of high energy physics. In this thesis we mainly consider 

the four-point truncated Wightman functions(5), for the 

"almost local" condition is best understood in terms of them. 

The energy domain is extended to the threshold for the 

n + 1 particle production. We find as a consequence of 

/ this (see Chapter V) that a certain function T
2 = uo

2 
 -m2 )F21 

related to a 2 	2 scattering amplitude., when restricted 

to the mass shell, satisfies an equation similar to the 

physical unitarity up to the n + 1 particle production. 

The solution to such a .unitary equation possess several 
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isolated singularities(1o) on the positive real energy axis 

knon as physcal threshold singularities. It is then shown 

on the model how the two-particle threshold branch point 

can b' can-_telled with an end-point singularity when the 

analysis of Chapter V9  is applied in the elastic region. 

The derived formalism allows incorporation of bound states 

as well. To show this, we consider the bound state problem 

in Chapter VII in the case of two-particle bound state. 

The whole problem is then analysed on AB elastic scatter-

ing where B is a bound state of A. 

The conclusion summarizes the obtained results, 

pointing out the difficult points in the theory. It also 

contains a brief sketch about the higher approximation, i.e. 

the 6-point furr:tion which is supposed to be connected 

with the 3-particle scattering region and therefore perhaps 

with the 3-particle unftarity as well. 

For the convenience of the reader and the sake of com-

pleteness, we give at the beginning (Chapters II-IV) a 

necessary review of the theory, especially the Haag-Ruellc 

scattering theory, which will be used here. The review 

given here is by no means complete and is therefore supplied. 

with a number of references to which the interested reader 

may refer. 
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II. AXIOMS IN QUANTUM FIELD THEORY AND WIGHTMLN FUNCTIONS 

(a) 	Introduction 

In this chapter we give a brief review of certain 

important features o-4' relativistic field theories necessary 

here. This survey is not intended to be complete in any 

way. The starting point is the definition of the axiomatic 

approach to the quantum field theory contained in studying 

the consequences of a set of a few fundamental postulates 

on the theory, These postulates are stated in terms of a 

condition on operators called fields in a Hilbert space. 

Some of them, as Lorentz covariance(1i) and statements con—

cerning the structure of the energy momentum spectrum(I') 

are adopted by practical13, all authors. Apart from this the 

requirement that such a theory is also physically reasonable 

brings a :lumber of other necessary properties of the fields,  

(depending upon the treated model). Among these, one which 

we consider as a very important requirements  is the 

"asymptotic condition" C515). This condition, of course, 

imposes further mathematical restrictions on the field 

operators, but the necessity for having it is to make a 

particle interpretation possible at all, as will be seen 

later. 

For simplicity we treat the case of a single neutral 

scalar field interacting with itself. All of the investi—

gations which have been carried out make the following 
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general assumption about the theory: 

(b) Axioms J:n Quantum rf,eld Theory 

I. The usual postulates of quantum mechanics are valid, 

ieo, the states of the systems are represented by the vectors 

of a (separable) Hilbert space41-  with positive definite 

metric(12). The "field operator" is introduced in the follow—

ing way: for every point x of space—time there exists a 

bilinear form A(x) in the Hilbert space, such that for any 

two vectors%,j D (D is a dense domain in 41 ) 
\-tc A(x) 	) is a finite number which, of course, 

depends linearly on /  antilinea ly ors ItIr . Further—

more, one requires that D is a linear set containing vacuum 

It was also recognized that the components of fields 

are in general more singular than ordinary functions in their 

dependence on a space—time point. This suggests that only 

smeared fields(5'11)  could yield to well—defined operators 

However, examples show that even after smearing, the fields 

are still unbounded operators which are not defined on every 

vector in a natural way, In spite of this difficulty one 

defines the smearing as a requirement that if fgx) is any 

real function of space—time, which belongs to class 	 '(13)
, 

ioea, which is a.VIDJ.trarily often differentiable and vanishes 

faster than any power for large x i! 	then 

( 	 )9s (x. )d4x 



is an (unbounded) self-adjoint operator defined on a dense 

linear subset D of Hilbert space 4--In this case we 

shall say that the theory is specified by a Hilbert space and 

a linear and weakly continuous mapping( i2)  ,(x) 	A,06  from 

a suitable test-function space into the set of closed linear 

operators in c•L 

Although the functions of classLi 	are very well 
(4) 

behaved there are several known field theoretic models in 

which the functions are not good enough to make Ap‘  an 

operator. In such a model one has to restrict oneself to 

test functions $(x) whose Fourier transform differs from 

zero only in a finite region of momentum space. As smeared 

fields can still have an arbitrarily large expectation value 

in a suitably chosen state (i.e., if A/. is an unbounded 

operator) we are obliged to make some assumptions about the 

domain of vectors in which the smeared fields are definable. 

We say that an operator 	is defined on D(D 	such 

that A4  D C D and such that for 	,) c 

A 
	) L4- 

II. The theory is invariant under inhomogeneous Lorentz 

transformation(15) This says that the relativistic trans-

formation law of the states is given by a continuous unitary 

representation of the inhomogeneous SL(C, 2): 

a„ 	U(a1 /\ ) (II.2) 

so that 	is invariant under unitary operators U(a, A.. ). 



The unitary irreducible representations of the translation 

group, ices, ,ca, 1 	U(a, 1) can be written in the form(12) 

U(a, 1) 	= 	exp(iP//a) 

as it is a four-parmleter abelian gloup whose Unitary 

irreducible representations are all one-dimensional. 

are of course, infinitesimal generators of the group and are 

unbounded hermitian operators interpreted as the energy 

momentum operators of the theory. The specification of the 

irreducible representations of the group can be given in 

terms of the eigenvalues of the so-called Casimir operators(16) 

(scalars of the group). One such Casimir operator is 

definitely P2  = 13/1  P so that an irreducible representa-

tion can thus be partially spacified by giving the eigenvalue 

of this operator. For physical states we restrict this 

eigeAlvalue to be non-negative and interpret it as a square 

of the mass. 

Furthermore, the sign of po  (the eigenvalue of the 

operator Po) may also be specified, since it cannot he 

reversed by the operations of the groups  Thus a partial 

labelling which we require is given by 

1 	p2 
o 

/ P 	= 	= m2 > 0 * 	0 (11.4) 7 P 

This condition is known as a FlaaLizal condition( 8 ) 

Physically it is clear that we have selected only those 

states corresponding to a given mass and non-negative energy. 
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The wave function is thus defined on the hyperboloid 

p2 = m2. This hyperboloid  is called an o nit.(17)  

IITfl There exists a unique (strictly speaking, up to a 

co-astant phase factor) invariant vacuum state r o' 

characterized by 

U(a„")Thjj = o o 

IV. 	The, tfa=af±mation rule for the field is defined by 

U(a,/\ )Ais U-1(a2A ) = A Sa  

where 

(-ca_,Ak/)(x) = /(/\71(x - a)) 	(II.7) 

and 
U(a,/\)D C D 	 (I1.8) 

The other usual requirements on the theory as for example: 

Completeness: the Hilbert space is irreducible with respect 

to the algebra generated by the set of operators?  i.e., it 

does not contain any invariant subspace. 

CauaalLtz: This is also known as a condition that the 

theory is local, i.e., that a field observable at a point x 

commutes with a field observable at 'JO, if the distance 

between x and xi  is space-like and the 

asymptotic condition: the condition that the field obser-

vables A(x), contain particle observables and also that 

the usual formulation of S-matrix theory is possible, It is 
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also a requirement that a field theory has an interpretation 

in terms of asymptotic observables corresponding to particles 

of definite mass and charge, 

will be treated separately later. The reason is that they 

could be relaxed or even replaced with a less strong con-

dition. For example, the question whether physical particles 

and their interactions can be described only in terms of 

local operators is answered with no, since one can quite 

well formulate the theory using so-called almost local field 

operators (Haag-Ruelle collision theory)(5). The asymptotic 

condition t-1- oo can also be translated into the asymptotic 

conditions for large spacial separations(5), if the effective 

interaction between the particles is at least of short 

range. This leads to a very important cluster decomposition 

property of the S-matrix. On the other hand, the complete-

ness, although a good physical requirement which implies that 

the S-matrix is unitary, is rather a difficult one to handle 

or satisfy in practice. 

So far there are only, in general, two different methods 

of reducing the above stated conditions on field operators 

to a set of functions. 	One of them is initiated by 

Lehmann, Symanzik and Zimmermann (LSZ)(3) and the other by 

Wightman(4). 

The former considers the vacuum expectation values of 

either time ordered or retarded products of field operators 

giving rise to the set of Z-- or r-functions respectively, 



whereas the the latter considers the vacuum expectation values 

of simple products giving rise to the set of Wightman 

Functions. From the practical (and also physical) point of 

view the LSZ method is very useful as it includes the 

asymptotic condition ,,nd extremely helpful reduction 

formulae which gives the possibility of studying the 

analytic properties of the S—matrix elements, together with 

the system of equations for 	— and r— expressing 

essentially the unitarity of S. On the other hand, from 

the purely axiomatic point of view and for mathematical 

rigour the Wightman method seems to be more adaptable and 

also has a few important applications to problems of a 

general nature. 

We shall follow the method of Wightman and first 

discuss briefly the Wightman functions(4 

(c) Wightman functions, Let us consider the following 

vacuum expectation value of the product of field operators 

wn (xl-.-4n) = (11)0A(xl )  A(x2).--. A(xr)vtlo ) 
	

(II 9) 

together with the equivalent ones where the operators are 

smeared out and Als  D C L 

Wn(ftS1 x ... x 11In) 	= 	k.__.,  y .A.,( o v o ir. 
0 	l'f ) 	(II. .10) 

)'):1  

(c5]..° "° Cc;  41.)(xl '" xn)  = $1(xl) 00. 41 n 	(Ii ii) 

where 
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..---, 
is considered as an element of 	/---N, 9  with c2s)n as „,X,) 11 

a space of n-taple Minkowski vectors (x1  -0•. xn.)° Since 
LO 
s  j 	 .1•911 is dense ini n  , the W's may be uniquely extended 1 r---  

to distributions in j---'n by Schwartz's nuclear-theorem
(19) 

. 	,./; According to the prot.rties (1r, Ags 	for 

we conclude that W n 	n iQeo,W functions 
are temperddistributions. Now, as we have a rigorous 

methematical definition of W's, the study of their properties 

can be done in an unambiguous, precise fashion. We shall not 

go into this study any further as it may be found elsewhere. 

Briefly, we can only say that the properties of the 

Wightman functions equivalent to the aforementioned postulates 

are the positive-demidefiniteness, the hermicity, the 

relativistic covariance, the locality and the spectral 

condition. 

For example the sp,ctral conditions imply that the 

Wightman functions are boundary values of analytic functions 

in complex coordinate space, and the locality says that 

some of these analytic functions are identical. The rela-

tivistic covariance, of course, enlarges the domain of 

analyticity due to he theorem of Bargman, Hall and 

Wightman. Except for positive definiteness the other 

properties of Wightman functions are known as linear pro-

perties, since they connect only a finite number of the 

Wightman functions. 



III. CLUSTER DECOMPOSITION AND TRUNCATE? VACUUM 

EXPECTATION VALUE 

The cluster decomposition properties, or sometimes 

called the connectedness structure, of the S-matrix 

elements are generaLl,  considered true in all scattering 

theories whether or not there exists a local, or non-

local quantum field theory. Such a property is usually 

postulated. However, it seems that the S-matrix decom-

position properties are in some way related to the approxi-

mate locality or "short range" of particle interactions. 

This approximate locality could be made by stating the 

observed fact that experiments sufficiently separated in 

space or time are mutually independent. That is to say, 

the outcome of a Scattering or production process between 

massive particles is asymptotically independent of the 

presence of other particles. Of course, these asymptotic 

properties for t - - op are a consequence of the vanish-

ing of the effective interaction between two subsystems as 

their separation becomes infinite. A way to translate the 

asymptotic properties for large separation at finite times 

into asymptotic properties for large t has been developed 

and described by Haag
)
The physical idea behind this 

assumption is the following. Consider the simple case 

where xl  0.. xp  are concentrated in a finite region(.;1% 

and x104.1,.., xn  to a finite regionl io. Let the distance 

between 	anekb  tend to infinity. We introduce a 



(partial) physical interpretation of the field quantity A(x) 

by saying that the change, caused by A(x), on the state on 

which it operaties is concentrated near the point x, so that 

A(xl) 	A( )4Jo  cannot be distinguished from the vacuum 

(Th except "near the region fr"a". The same conclusion follows 

for the product A(x1041) 	A(xn)"Cjo  which is different 

from the i.raculani only "near the -4egion.4". In other words, 

A(xl) .0. A(xp)02"0  is the state which is experimentally 

localized in *a, while A(xp+1) 	A(xn)V0  is the 

state experimentally localized in (A/-DD. Therefore as the J-(  

distance betweenC- 	andc b  tends to infinity, the 

vacuum expectation value tends to 

A(xl) 	A(x.n )W0) (WO A(x1) A(xp) fo). 
(III.1) 

(yr,' y A(X__ -p+1) ... A(Xn)To) 

Repeating this kind of heuristic argument we arrive at 

cluster decomposition properties. This kind of cluster 

decomposition can be proved mathematically rigaeously from 

the conventional postulates of relativistic quantum field 

theory. The difficulties which could come from the high 

energy behaviour are expected not to be essential in the 

behaviour at large distances. The rigorous proof of the 

cluster decomposition is based on the fact that D is a 
9 
Gardir&domain(21)  for the infinitesimal generators of the 

Lorentz group, or in other words, since D is a Ggrding 

domain 

• 



intermediate states so that at pl  + 	+ pi  

= w(p, ... pi ) w(pi,1  .V 

= 0 

(22) 

pn) 	(III 5) W (— alP ij 

-r 
U(a,1)1Ir) converges to (T,W0)(A5 

"
f) (III.2) 

as 	ODo Using this fact one can prove that 

n a. 	Wm+m(x/...xn,Yl  + ay...l ym  + a) 

xm)WM(y/...Ym) 

as a —) 

0 	(III.3 ) 

and the convergence is in the range of distributions(19) 

In order to get a neat statement of the required 

cluster decomposition property it is help.aul to introduce 

the notion of the truncated part of a vacuum expectation 

value. Before giving the definition of the truncation itself, 

let us recall that according to the spectral condition the 
rU 

support of a distribution Wn (i.e., the Fourier transform 

of Wn which exists since Wn is a tempered distribution) 

is contained in a forward cone 

Ja  
t P P1 + 0.4 + pig 	IP1  C J for i = 1,00.,n, ) pi  = 0 1 

(IIIQ4) 
vm _ (101_,,,, 	p2> m2) where 	and the bar on '''' i pc,v, 	 V means 

the closure. 

(III,4) includes also the contribution from vacuum 

We shall, however, in what follows use the stronger 



requirement that that there exists a positive lowest mass m in 

the theory. If we consider now the vacuum expectation value 

itself, then the occurrence of the vacuum intermediate 

states as in (III05) will hide the existence of the positive 

smallest mass m of the theory. To remedy this situation 

we subtract the contribution due to the vacuum intermediate 

states frpm the Wightman functions in a symmetric and 

systematic way, with respect to the permutation of the n 

field operators. Thus, one defines "truncated" vacuum 

expectation value by induction 

W(xl)  = WT(xl)  

W(xix2) = WT(xlx2) + WT(xl)WT(x2) 

W(x1x2x3) = WT(x1x2x3) WT(xl)WT(x2x3)  

WT(x1x2)WT(x3) WT(x2)WT(x1x3)  

+ WT(x1)WT(x2)WT(x3) 

and so on. In general we have 

W(x1 	xn) = WT(x1000xn) AY (X4  4 400) 
-61'2 

OP W(x. .")... 
°1°2 

The sum 5 is taken over all possible partitions A of the 
A 

indices 1, pop, n in distinct classes i 1 2- 0.0 
0  
9 

j1j2""; 0 a 0 p and the order of operators inside 

w
T( . , .) is the same as that on the left hand side. 



With the above definition of truncation Haag has assumed 

that if allxi  . had the same time components xi°, then 

as the diameter d of the three-dimensional set of points 

xi  tends to infinity wT(xl 	xn) tends to zero faster 

than any power of d 	The first rigorous proof of this 

so-called space-like asymptotic condition was given by 

Ruelle.
(5)  

It is interesting to mention that the truncated part 

calculated in perturbation theory is just the sum of all 

connected diagrams. Therefore in analogy with the per-

turbation theory we can say that the cluster decomposition 

properties are stated as: the truncated parts go to zero 

as their arguments separate. 

At the end of this chapter we can briefly mention that 

the truncated functions have the same properties as those 

of the Wightman functions, except for the smaller support 

in momentum space. We have also seen (although without 

proof) that truncated functions have a better property than 

the Wightman function, at an infinite separation of their 

arguments. 



IV. ALMOST ALMOST LOCAL FIELDS AND HAAG-RUELLE COLLISION THEORY. 

(a) Introduction 

In the previous chapter it has been mentioned that the 

cluster decomposition properties may be related to the 

approximate locality due to the assumption of short range 

effective interaction, which leads to the space-like 

asymptotic properties of the S-matrix. It is important to 

see the significance of the cluster decomposition properties 

for the theory of collisions. Although the collision theory 

has been developed by Haag on the basis of a spacial 

asymptotic condition, the work by Rue le has put Haag's 

arguments on a rigorous mathematical foundation. It is 

well known that if a field theory is to be useful it must 

have a well-defined physical interpretation in terms of 

asymptotic scattering states. In other words, the general 

concept of collision theory is based on the relationship 

between an initial asymptotic donfiguration of particles 

and the corresponding final asymptotic donfiguration. 

To talk about the asymptotic configuration of the 

particles one has to define the notion of localized states, 

i.e, a criterion which tells whether a state 0 is at time 

t localized in a region V or not. If one considers two 

states, one localized in V/  and another one in V2 at time 

t, then the third state which one may hope to find to 



describe simultaneously simultaneously the situation in V1 and V2 need 

not be very well defined if V1 and V2 are close to-

gether, But, asymptotically when V1  and V2  are far 

apart from each other the third state will have unam-

biguous physical mewling. (For example, this state is 

simply the direct product of the states localized in V1  

and V2)0 

Since such an asymptotic product has a physical sig-

nificance, it should only enter into the final formulae. 

One has also to remember that if the localization volumes 

of y)1  and 	2 2  say, are far apart then the interaction 

between the two subsystems is assumed to be negligible and 

the asymptotic product betweenandk4,2  is a well 

defined finite vector in Hilbert space, The limit in which 

such an asymptotic product is taken will depend upon the 

explicit assumption made about the vanishing of the inter-

action for large distances. 

In a field theory the basic quantities which describe 

the physical situation are the set A(x) (one quantity 

A for every point x in space-time). As A(z) cannot be 

a proper observable (i.e, an operator in the Hilbert space) 

both l'or physical and mathematical reasons one introduces 

the regularized or smeared field(5 ) 

dLW(y-x) A(x) = U(x,1)\ y/(y) My) u(x91)-1  

with / C 

	 (rr i) 
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Then one can investigate the time dependence of 

Afj(t) (1) on the basis of the dispersion of a wave- 

packet, where'\4J and 6) are asymptotic states. 

From the physical point of view one requires that 

particles behave as free ones at time t 	± OD and that 

the free particle states are described by the field 

operators Aex(x), which satisfy the free field equation 

of motion 

0_, th  .2)Aezoo  = 0 	 (r 02) 

We use the symbol ex which consistently replaces out or 

in. 	Defining a quantity 

Aex  (t,f) = i (Aex(x) f(x))d3x 

one can easily see that it is independent of t as it is 

a scalar product of two solutions of the Klein--Gordon 

equation. 

The operators Ain  (f) and AOut/ \ and their 

adjoints are of course defined on "in" and out" states 

which span two subspaces of Hilbert space 	in and 

C, ir711)! out respectively. There is no assurance that 

in = 	unless we require that TCP theorem holds. 

Of course, this does not mean that if r-VA  in = out then 

41 in = (111 	In fact, examples show that the asymptotic 

states need not be complete at all. If we talk about the 
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S-matrix which connects "out" states with "in" ones, then 

the S-operator is only a unitary mapping ofj out  onto 

rlin' but is generally undefined on these vectors of 

which are not incij out° 

) ex(t, The condition that A 	approximates r A(t) 

at t 	± cp, written symbolically as 

lim(A(x) 	Aout,in(x)) 	0 	(IV .4) 
-00 --4  xo 

is known as the "asymptotic condition":  in the theory, where 

the meaning of the passage to the limit is not yet clarified. 

If this limit somehow exists, we shall say that the particles 

behave as free ones at t > ± op and that this behaviour 

may be described by the operators A.out,in(x). 	The idea 

of introducing the asymptotic condition is first of all the 

requirements which relate the mathematical object A(x) 

with the quantities of physical interest, as for example 

cross-sections by collision processes and, of course, the 

possible particle interpretation of the theory. On the 

other hand, the particle interpretation without the asymptotic 

condition is possible if one starts from certain assumptions 

about the behaviour of vacuum expectation values where all 

times are equal and the space distances large. In this 

direction recently ::. Ruelle 5) has succeeded in proving 

these assumptions provided that there is no particle with 

vanishing rest-mass in the theory. We are now left With 

mainly. two problems: 
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one, to calculate the S—matrix (or scattering amplitude) 

from the knowledge of Aex(x) and the second, the existence 

proof of the limit in (1V,4) under, of course, a suitable 

assumption for the interaction. 

So far there exists two main approaches to the asymptotic 

condition in "axiomatic quantum field theory". One is due 

to Lehmann, Symanzik and Zimmermann.(LSZ)(3) in which they 

postulate the convergence of field matrix elements to 

matrix elements of free fields, Expressed mathematically 

the LSZ—asymptotic condition requires that 

lilt Mip A(t;f)(7.1)) 	(% f, Aout'in(t;f) 	) (IV.6) 
t --co 

exists for all V 
	

in the domain of the operators, 

The limit is zero if m is not one of the masses of the 

stable particle described by the taeory. We notice that 

only the matrix element of A(t,f) between two fixed states 

are assumed to converge whereas the vectors A(t,f),, need 

not approach any limit as t---5 top, Using mathematical 

language we say that only "weak convergence 

required, ioee  only weak limits of A(.4f) exist for 

"-± co . 

The other approach to the asymptotic condition is due 

to Haag(5 ) 	Haagis main idea is that it is possible to 

construct asymptotic "in" and "out" states as a strong limit  

(limit in the norm) in Hilbert space, if a certain "space 
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like asymptotic" condition holds. 

Of course, we are already familiar with the definition 

and required properties of the "space like asymptotic 

condition" which was introduced in Chapter III. Haagls 

programme, as was mentioned earlier, was carried through 

the rigorous mathematical framework of the Wightman axioms 

by Ruelle () He has introduced, in addition to the 

standard Wightman axioms, a new postulate — completeness 

of the asymptotic states and spectral conditions connected 

to this. Again, for the sake of completeness we shall 

only briefly recall this, now usually quoted as the 

Haag—Ruelle collision theory, in the form in which it will 

be used here, 

(b) Almost Local Fields  

Consider a quantized field A(x) satisfying the axioms 

(I — IV) of Chapter I, plus locality, i.e. 

7 A(x), A(y)-1  — 0 	if 	(x 	y)2  < ° 	(iv.7) 

As we are dealing with the theory of a neutral scalar field 

with cyclic vacuum the pl-ysical spectrum must be additive. 

The nooltcm actually says: if pi  and p2  are in the 

spectrum, then p/  p2  is also in the spectrum. The proof 
(5) 

due to Wightman is: Consider two open domains V1 and V2 
of p/  and p2  respectively. Then by choosing field 

operators B(1)(x) and B(2)(x) satisfying 
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U(a21) B(i)(m) U-1(a,l) = 	B(i)(x 	a) 	(IV08) 

and test functions /. with supports in V1 and V2 

we require that 

)- 
Pi 
(1 Jr

L) 	
a. B )  - o an. 	c 	0 

J-12 	o 

The energy-momentum spectra of these vectors is, of course, 

in V1  and V2  respectively as 

U(a,1)B(jI (j) 	r 
	

(Tvolo) 
j  

where (ta,1159(x) = /(x - a) „ 

To get the required B's we consider the closed subspace 

Tic)f 	where Ti(1 1,Ti  and all the vectors whose 

spectra lie in Ti„ 	o s cyclic there exist 

vectors of the form 
N 

5= 1 
J O. 111 4S h (j)(za.... xn) A(xl) oes. A(x,n)d4x1  WAD 	1.":,y'o  

(IV,11) 

which are not orthogonal to *.:1-t:  The coefficient functions 
0 hn(x10.. xn) have a compact support in the time coordinates 

vanish faster than any power of .t0 when any of the 

xi . gets large, 

Naturally we define our B(j)  to be 
N 

B(j)(x) = '› , 	( \,•,, 	(j) hn 	(x-xn,,,,p x-xn)  ° n=1 
A(x1)„„,A(xn) dx,,..„d4xn  

(Iv.12) 
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and they definitely satisfy (IV08). Now the vectors 

D4)  U(avl) 13) 
-1  0 

 (rV.13) 
"2 	-5  

have their support in Vi V2  by the same argument as 

before. 

The norm of this vector is 

(2 	_ 	2 * 11 41) 	2) Br )Tr
°3

2 
 (,.r 

(2)* 
 U(8.,1)"  By(1)  • 

1 	P 1  —  

B(141
)  
U(a 91 ) B(2)  

7-'2 	o 

Now, as a--4 a in a space—like direction the above norm 

converges to 

(-Jrc, B(2)32,(2)T xtT B(1)*B(1) 
P 2 	2--f°  riC  .)]. Io (IV.15) 

as a consequence of cluster decomposition properties. 

This completes the proof since the norm cannot be zero 

(T for all a as it would require that either B,‹2)  lif = 0 
2 Jo 

or 	0. 

We shall now pay special attention to the fields which 

can. be  written as a polynomial BN(x) in the basic field 

operators, i.e., in the following form 

N h  
BN  (x) = 	d41-Xiaoad4Xn  hn(x—xpeooyx—xn)A(x1)o„A(xn) n=1 

(Iv.16) 

such that B  is not orthogonal toCIA (N)  . IN om 	If m is 

M = 4 1)2  = c m (1E(P) 
J 

then there exists a projection operator Pm  such that 

an eigenvalue of the mass operator 
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Pm t-1 47-1 m = 	m  where 	(N) (r)ts are 

irreducible representations of the Lorentz group. 

After regularizing At s, (IV,16) becomes 

n( x) = 
 1 d4x1° .. 	i 	1d4x h.(x-x 9°'a 2  x--x.) 

AaS1(X1).200, 	 (IV017) 

Thus, the field Br(x) = U(x„1)Bil. U-1(x,1) 

has support in the momentum space restricted to a neighbour-

hood of.1 p p2 = m21- . There is, however, one additional 

difficulty connected with the Lorentz invariance of B!s„ 

that is to say the Lorentz invariance is hard to establish 

for them. 

In future we will drop the index N and write only 
, 

B. 	It is a=1.so easy to prove that if Q2 e D and f 

then 

B(t,x) f(x) x 	 (IV,18) 

exists, and is continuous in f and Cmin t. In what 

follows we shall need to know a bit more about the solution 

of the KG equation, 

The smooth positive frequency solutions of the KG 

equation with mass m, 	(CD 1112)f = 0 are of the form 

(27)-2r, ,(p2.„m2)9(po)e-i(p,x)a(;)a4p  

r„,(25)j  
where g(p) c::,) 	This follows from the fact that 

f(x) = (270-2C e-1(P9x)  76(p)d4p 	(IV,192 ) 

f(x) (Iv.19) 



-1+ m2),_r  is a solution of (( 	= 0 provided 

2 	2 
m ) (f) = o 	(1v.19") 

Then it is easy to check that the following f(p) satisfies 

(IV.19") 

f(p) 
	 r e(po)g+(5) 	e(...po)g_ f-4.,1 (1v.191 

where e(po)  . +1 if po > 0  

0 	if po < 0 

Thus, if f is a smooth solution of the KG equation then 

for every 

f(t:x, ) e 	 (IV,20) 

i.e. lim iixilf(n)(x) = 0 exists for all 1, m . 
it x 114  co 

There is also a very important theorem giving the asymptotic 

behaviour of the smooth solutions of the KG equation. We 

shall only quote it without tl.,e proof(5) O 

It says: if f is a smooth solution of the KG 

equation, then 
t's 

1. For all t we have f(t, x) c
3 

2. There exist constants A and B independent of t 
such that 

(a) max Iti3/2  f(t, R) < A 
x 

(b) f(t,7-1) 13x < B (1 + Iti3/2  ) 

(IV4,21) 
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Let us new consider the vacuum expectation value of the 

product of basic field operators A(x) 

'q-4 ) (-6-A - - T A4  
lu 	

w 	

n -0 (IV 22) 

where /g = p1Q 0000 0)5n  4-11 
by using Schwartz nucleon theorem and define the 

quantity 

. W(a0):)=W(aa.p. 0. an,,). d.)-4-xice • ,d.4  xn  4(x10,,,xn)W(xi+aip...xn±an) 

(Iv 23) 

Let 7c be the element (permuteion) of the symmetric group 

on 	n objects such that 7z(1. ..0 n) = (i1.0.0.in)r  so that 

$ 
W7c(alfS) = (ex1 	d4x jgx *.ox )W7c(x +a. .*.x. +a. ) n 1? n 	i11 	1n  1n  

(IV.214.) 

Ingeneralwetake.to be pure space-like: 	- (0 a ) - 	j.  al 	 ai  

and the diameter d(a) of the set,..elan 	is then 

given by 

2 
d = d(a) = max n ai - a. 
	(IV„25) 

The translation invariance of A(x) leads to the translation 

invariance of W(a/4)/ that is 

W(a 	an' 7S) 19  = 	VI 1, 0 0 0 (1V.26) 
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ai  = 	a1 - af+1  . Furthermore, since 4 s 4n  and 

W(x + a) is a tempered distribution W(64c1,4) is at least 
oo 

in C and is polynomially bounded. 

Let us denote the truncated vacuum expectation values 

(WEV's) corresponding to (IV.23) and (IV024) by WT(a, 4) 

and WwT(a,4) respectively. 

Considerthepartitionofaif s into two disjoint sets, 

and then define the partitions of (1.00n) into two subsets 

X and X' such that X U X' = (1,..., n), X n X' 

x 	im); X1  = (ii,...„ 11;11 ), m + m' = n, 

and both sets are in natural order. The distance between 

(ai)1.6X  and (air )i' 	is 5(X) '6X1 	min 11 ai - ,U 

ly it  

Now, if 

(1,...,n) identity permutation 

= (i s _is000tim; iitpeoyit t) 	(IV.27) 

then for any integer N 

lim dN(WI(;°  4) - WT(a ; 4)) = 0 	(IV028) T 

If the configuration of the ai  remains the same, 

i.e., 16X and il eXI. 	We shall omit the detailed proof, 

of (IV.28) as it is quite long and can be found elsewhere. 

We should also mention that here W W7c  is a tempered 

distribution, and 4 decreases faster than any power, 

The following inequality holds 

(IV029) 
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for any N, where GN  depends on the specific partition. 

Thus, it is possible quite generally to show (and also 

to prove) that, Vic;', 4) 8,577 and 01.7 1-fif(cii 4) 	0 as 

d--',00„atleastwhena.sa are separated into two clusters 

whose space-like seprviation distance becomes increasingly 

larger as d--> co. 

The field operators A4(x) in the above procedure can 

be replaced by an arbitrary polynomial 13,5(x) in the field 

operators A(x). Then, it follows that 

B156'1(ti  ) 	B (t 	) s xl 	 n n A. o 

	

k = xk 	xk 

k(Iv 4, 30) 

is for fixed t1,0", to a tempered distribution of rapid 

decrease at op f.n the variables 	= xk xk+1 
k 	1,„., n-1, We will call such a fixed B4(x1) 

according to Haaes definition, "almost local"(8  ) 

In other words we say that the field is called "almost local" 

if the truncated functions decrease faster than any power 

of the distance betwcen the points with increasing separa- 

tion in spacelike directions, and they do not increase for 

large separations in time-:-.ke directions-, 

The "almost locality" may also be seen from the equations 
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_ 
B(0)i 	0 	(IV.31) 

as 	a 	co for all N if x2< 0 and 
	

D. 

w (x1"'"  xn) 	INT( E1 	n-1)  = 

B(t, IjOiro)T(IV.32) 

is a distribution strongly decreasing at infinity, i.e., 

lim dN  
d-) co 

(U "o' B(t, x1) 	B(t, n f )),Tro  ) = 0 	(Iv.33) 

it can be represented as a finite sum of derivatives of 

continuous functions(19) 

WT( ) 
= > mk D " Fk 	I 

where 	 (IV.34) 
C 

I Fk  ( 	

(1  + oglo2  
Furthermcre (IV.33) together with (IV.3Lj) imply that 

the following integral 

Kirc , B(t, 	B(t, l'n)V110y3x2,...„ d3xn  (IV.35) 

is a constant and independent of xi  . 
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Since translation invariance holds for B(t, 5?) and 'N,1 o 

is translation invariant, we have 

04 0, B(t, x1  )...B(t, 3ZII)Qlpro) T= (0j0,B(0, x1) ...B(0, %)ed 

It therefore follcws that 

(Y o' 

i=2 

B(t, 	)triY0/0)T 
fl(  t 31  c ) ..f

n
(t,1)d3x

1 	
d3xn 

max f.(t, 
ye 	It)1 	31'7].)1 d3xl 

, d3 x S 	B“),x1) ... B(0, ''En.)\:1J" 	3 '2  
o n 

-3/2 n-1) 
I 	A. t 	( 	' A (1 + Iti)3/2  . cons t. 

i=2 1 	1 

const. t 
-3/2(n -2) 

(Iv.36) 

(c) Haag's Theorem on Strong Convergence 

In order to proceed with the actual construcAion of the 

asymptotic states and the S-matrix, it is desirable that for 

an irreducible representation contained in U(a,f\) of mass m, 

there exists an almost local field such that B(x)"0i lies 
10 

in the subspace pf thatirreducible representation. That is 

to say, we require that the one-particle state of mass m 

and spin 0 is generated by the application of B(x) to the 
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vacuum. This requirement is known as the "solution of the 

one-body problem." In a physically reasonable theory this 

should follow from spectral properties connected with the 

stability condition and selection rules. 

In general, we do not know how to "solve the one-body 

problem." To solve it means actually to construct and find 

the almost local field B(x) such that B(x) (
0 
 is a 

one particle state. 

It is clear that under some circumstances it can always 

be done. For example, if the discrete mass state in question 

is isolated in the mass spectrum, then the required B(x) 

cluld he an appropriate polynomial in the basic local fields 

A(x). Therefore we shall assume the discrete mass state is 

isolated in the mass spectrum, uo that one can "solve the 

one-body problem" exactly. Now define 

1 
2 87ccop 

p(;) = 

with  

."," \ 
T  d3( x-y)CW- ,3(0,3t)B(0„;)T0) e-lP x-Y)  

(IV.37) 

--N•2 
= (P + m

2
) 

so that Nic, 13(0,;)  B(0,y) dvdT  

13(0,],l)B(0, 57)143,0) 
T 

can be written 

= ( 27c) -2  c d3p( 2wp) )2  p(-p') exp 	- ;)-1 	(1V.38) 
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Let fi(t, 	be the smooth solutions of the KG 

equation, then 

c (kJr/0  9 B( t, x) B( t„ -a.y)\.111 ) fi( ti ;) 
T 

2 	' d3x d3y Fl 

( 2qt) -2  S d3p( 2co1) 2p (;) 
	

ei;( 14) f 	950f2(tp;)d3x d3y 

(IV.39) 
Consider the integral 

eiP( x-y) f1( t, 	12( t„ y) d3x d3y 

(2)2 	dq°  dq° 
	

e-it(q° 	q°  ) 7.11(q°,-;) 
	

P) 

(Iv.40 
Since 

1112 ) i (4(10 )g
1 (q) 
	E4(_cio)0J7(c7)1 

1 	
g 

liS(cio_coci)eili) (cio cog.
)

_;, 
C.)1 (IV.41) 2wq  

or 

0  
f i( ci. 	q.) 	= 

we have a term in (IV.40) which is completely independent of 

time. It is of the following form 

(27)2  + 

g;(;) 	gi(-P) g2(P) (IV.42) 
(2w.1)2  

and will only remain when the limit t 	op is taken. 



Finally, we are left with 

S 

•> 
‘ ("- X0 9 	t x) 	t ,;)1410 ) f t 	f 
2
(t,yi  d 3xd 3y—).  

(IV.42) 
3 d p p(p) lig+1( -5) 	13_( -11) g2( p,) 

as 	t 	t a . 

The representation of the inhomogeneous Lorentz group 

for a theory of a free field of mass m and spin 0 can be 

reduced to the direct integral of the irreducible repre-

sentations labelled by [m, 01 . The corresponding Hilbert 

space can be written as a direct sum 

CO 

41= 0 ( 

  

n (iv -43) 

   

where Ho is a one-dimensional subspace corresponding to 

tn the identity representation and is taken to be pro-

portional to the vacuum. 

tl 1 _L s the (separable) Hilbert space of functions 

square integrable with measure 

(911(p)  = G(p) S(p2 	m2)a4p, 
 and consists of one-parGicie 

states corresponding to the irreducible representation Lm, 01. 

Furthermore, as we have already indicated, suppose that 

the spectrum of P2 in (IA 1 is disjoint from m2 so that 

is given by 
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g'" 
C d2E, g(-13)1 2 < 

2w 
 

2 -12 2 
(A) 	 m 

(Iv.44) 

with a scalar product 

(g19 g2)  = C  g1(p) 13) g2(13) j 2w
P  

(IV 845) 

The one-particle projection operator 

El  = E({,  pi p2  = 
	2 	

P 	0 ) has, of course, the 

property that 

El 	 (Iv.4.6) 

Now consider 

B(t, fi) = 	B(t, X) fi.(t, 	d3x 	(IV.47) 

wiih 

(poy B(t,fiNJ0) 	0 	 (Iv.48) 

and 

E
1 
 B(t , f = 	B(t, f) 0 	1Tiv 0 (Iv.49) 

where f(t,X.) is the smooth positive frequency solution 

of the KG equation (i.e., g; (5) = 0). 

The equality (IV.49) says that B(t, fi)To  is a 

one-particle state. We shall prove that the one-particle 

state (IV.49) is time independent°  To see this we take 

(IV.47) and rewrite it as 
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B( t, 	= S 
d3x fi(e,x) U(x,l) B(C)Cif o  

d3x fi(t,l) U(x,l)  E/  B(0)gro  

The unitary representation U(x,l) of the translation 

group is represented by the continuous integral 

U(x, 1) 
	= 	ei(qx) cl4E(q)  

with a unique projection valued measure E(q) whose support 

is in the forward cone (i.e., V = p p2 	0, p°> 0 ). 

It is the consequence of Stone's theorem for the representa-

tion of Abelian groups bzr nnitary operators. If, however, 

we had restricted ourselves to the states in Hilbert space, 

orthogonal to the vacuum ' o, then E(q) would have had 
= f 	p2), m2, po 	0  its support in Vm  

Thus we have 

B(t,f = 	dE(q) (( d3x fi(t,l)ei(clx)) E B(0)W 
1  0 

, 	co = 	( 27) \ dEM) 7,77 ayjeit(qc)- ci)
-  B(01NIf "a_ 	1 	.i.0 

(IV.52) 

and it is time independent, since E(q)E1  has its support 

q 1 
1 ( 	, 	_ 

q2 = m 
2 
 , q 

o
> 0 	thus in. giving q0  = w = (12-Fm.2). A J.  q  

Furthermore, B(x)1(1{0  Satisfies the KG equation 



• (0 + m2  )u ( x ,1)E1B( )\35-0  

= 	+m
2
)sc dE(p)ei(Px)  E1B(0)410  

• dE(p) (p2-2)e i(px) ElBk°Nfo = 0 

(1v.53) 

for the same reason as before. 

The properties of B's listed above onable• us-  to 

p7oove,te existence of strong convergence in (ti  , as 

t 	± co for the following vectors 

(1).0 ,of  (t) = B(tl_ ...E(tIfia) <1,(t j  
n 

(IV.54) 

In other words
t- 

 lim 
T'lfl***fn 

 (0 exists in the norm 
.± co  

and is written 5 out„inI thus defining asymptotic 
J. flmfn 

states. It follows from the definition of q)f 	f (t) 
1"" n 

that 

(t) 

a•-i-n 

lim 
A t- 0 

1 	(t+/\\t) 	.0fn(t)-1 
TEL Z 

(IV.50) 

exists, and the limit is taken in the norm, Then, one 
), estimates 11 

dc 	(t) 
1.1  by expanding it into a sum of 

dt 
products of TVEVIs. 

First we notice that 

J 



d(t)  
ii ( corst. t 

-3/2 
dt 

9 	(1v057) 
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B(t 	f1  )00, 
aB(t, 

B(t, 
dt 

f )o 

(IV055) 
gives 

dB(t,fi) 
0.0 	 

dt  

dB(t„fi) 
	..B(t,fn)\0„ Bi(t,f,) 

dt 
(Iv.56) 

B(tpfn )T0 ) 

The TVEVT  expansion of (1V.56) has the following hehaviour 

a) Terms with one-point functions vahish: 

(icy°, B(t,f)121/0) = 0, (To, A_ B(t9c)q!0) = 0 . 

b) Purely quadratic terms La B vanish because it has 
the form 

(... dt  B(t,f)T0), and, as we have shown B(x.)ifo  

satisfies the KG equation. 

. () Terms that only contain truncated two point functions 

including cu, 13(tIcii B(;:,f0)\,,Jo) and 

B(t,fk) B(t, ft).W0) vanish because f is 

the positive frequency solution of the KG equation. 

3) Terms that contain a truncated function of order 

n.)/  4, or two cubic terms in B, vanish as 

Iti-3 at least,(see (1V036))* 

Hence, 

at worst as 	± OD 



Then, 
t2  

(ti) -(1);t2)) ' 
ti  

(  )1!dt< const00t/0t21 /2) 
dt 

 

and this can be made arbitrarily small for sufficiently large 

t, and t2. So the limit exists. In fact, (IV.58) shows that 

(tm) is a Cauchy sequence with respect to the norm in 

Hilbert space, Therefore there always exists a limit 

vector (Hilbert space is complete), which we denote by 
out, ire according to whether t 	co or - a). 

We should also mention that 
(t)112_7L4.  

v oofn  o 	(I .59) 

since the TVEV expansion of (IV.59) contains the following 

products 

C 
*(t,fi*))3(t 9  f 1  )

1JJ ) 
T 
 NJ 0„ B14.(t f2) B(tlfJ.r, 	) 0 

...0;10,B*(tIf:) B(t,fi Ylio)T  n   
(Ivo6o) 

The sum runs over all possible permutations of 

j1"° 	117 i.e. 	(1 -.-.•.n) = 

Now, as Cis are positive frequency solutions of the 

KG equation, and [B(t,fi)1 	J3 	‘ *= 	"t„fi  ) it follows that 



(jfo" B*(t4) B(t,f 4,)T0) 

= 	B*(t„ Ye) B(tMOS ) f.*(tr )f. (tS)d3xd3y lo T  

(5)gOt ) 

	(Iv,,60) 

as t 	oo 

has a time independent part which remains after limit 

t 	± oo is taken. The relation (rv.60) can be still 

more simplified by noting that 

B(t l 'it) 	= U(x,1) B(0)T0  = U(x5,1)E1B(0)-(?0  

is a one-particle state, satisfying the KG eqvation. Then 

for the reixoesentation of U(x,l) we have.  

(U(x,l)fB)(5) = ei(px) 	. fB(p) 	= (52 + m2 )1Y2 

(rv.61) 
where 

El  B(0)To 	 (IV.62) 

Thus, 

B*(t„50B(t 9 ) 132 ei(4)rifB*ZfB(.(7) 
j 2wp  

(IV063) 

and one easily finds that 

(rv.64) p(104') 	
(27c)2  

*5-) CiD) -B (2wp)-  B 

By redefining gi  and goz  in (IMO) in the following way 



2w 
2wp  

2w 
2w
P  

(5) 

gi(P) 

(5) 
e 

we obtain 

3  * 	" *(t f )B(t f )1_ ) 	d 	(5) g. (p) 
( 01B 	jz  1:0 T 	2. 	jz  

(1V.66) as t 	oo 
2 

11.:b(t)11 
When we were estimating 11 —Yr--m 

requirement was (440, B(ta) 0) 

sequence of the assumption that the 

be solved exactly, i.e. E B(o)lo1   

one of the important 

= 0. This is a con-

!!one-body problem" can 

= B(0)1f0  a Let us 

now consider this problem from a slightly different point 

of view. Consider 

fqx) = (210-2 5—i(qx)  ;(g)d& e J 
	(1V.67) 

and 

B4  = 	B(x) f6(x)d4x 
	(1V.68) 

Then 

BA f0 = 	)6(x) U(x„1) B(04o  

(2702 r3(p) dE(p) B(0)14/0  

(2902  ;5 (P) B(0).1/0 	(1V.69) 

whee 

9S(P) = 	AP) dE(p) 
	(Iv.7o) 

(Iv.65) 



(IV,70) follows from the fact, that the translation 

operator P ha3 spectral resolution of the form 

P = 	p (1R(P) 
	

(Iv.71) 

Now if at the same tine 

supp );5 fTh supp P = 	p 1 2 = m2 } 	(IV,72) 

then 
E1 	1 B;;Cr  0 	BR°  for all 	(1V.77) 

fl. "fn  
can easily be worked out. 
a)  ?1-7.“)utin is independent of the Lorentz frame used 

'Le  flo o  -fn 
to define it, 

out,in is independent of the choice of B(t,f), f1  ...fn 
In other words, the collision states are unique, 
Suppose we choose two different sets of Bts„ say B 

and B, such that the twu one-particle states 

B(tlf)4/0  and B(t,f)1K (T4:I , 
1 

are equal, and B and B are almost local with 

respect to each other (i.e. Boutin = B  out,in)  

then, 

lim 11113(t„f) — Bet lfl 
co 

soof (011= 0 	(IV.78) 

Finally, we shall only mention a few important properties of 
out,in without giving a detailed proof of them, as they 



7,1 out, in 

}

n 

denotes the closed linear hull of the 

(17..82) 
out, in 

fl.. ern 

where 
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To see this we expand (1\1..78) in TVEV/s and let 

The only remaining terms are purely quadratic and all 

contain a factor 

1-B(t,f) — B(t f) j.4)  = 0 	(IV.79) 

for B, B both give a one-particle state with the same 

amplitude. 

c) out , in 
f1°"fn 

depends only on fl...fn, whose 

support is on the pass shell and on these in a 

symmetrical way, that is 

7" 

11111 
(t  ) Qf. 0 fl (t) \\ t co ° n 	11 n 

f = f. n n 

(IV.80) 

If we now want to introduce an S-matrix, we have to ensure 

that 

l in. 

 

out = 

  

with 00 

(1. out, in 1  

n=0 
out,in 
n 

and 

 

    

vectors I  out„in I 
flmfn 

One way to do this is to postulate 

• 

in 
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Then 4-.4 
	out 

= 	by TCP invariance. 

	

The postulate 	in = 	
, called "the completeness 

of asymptotic states" pose new and difficult problems 

although immediately implies that S is a unitary operator 

on 124 	The asymptotic completeness, too, enables us to 

prove that Boutir is completely determined by BTO. 

If we have 	in =1out  only (which is true by 

requiring TCP) then the S operator is a unitary mapping 

of 	 out 	 in, onto 474 	but is undefined on those vectors 

of cilA which are not in ]1.1 out. 
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UNITARITY AS A CONDITION FOR. ALMOST LOCALITY. 

(a) Introduction  

The basic concept in any elementary particle theory 

is that of a free :.crticle. This so-called stable 

particle concept is usually characterized by giving the 

mass, of the particle, four vector k with k2  = m2, 

spin a and internal quantum numbers, a, say. 

All these quantities, except mass, are the results 

of the symmetry of space-time or of the particle. Thus, 

k and s follow from relativistic invariance, the 

quantum numbers a from the invariance properties in the 

internal space of the 

several particles one 

states so that in the 

overlapping (assuming 

finite range, that is 

from the theory) they 

one distinguishes two  

particle. Furthermore, having 

makes the wave packets out of these 

limit where the wave packets are not 

the forces between particles are of a 

to say, we exclude massless particles 

can be observed independently. Then, 

sets of wave packets - those which 

are coming together and subsequently interact, and these 

which are going out signi-Pying that the interaction is 

supposed to have already taken place and the wave packets 

are receding, The elements of the S-matrix are then the 

amplitudes for finding in the "in".state defined by the 

incoming beam the various "out" components which are 
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defined by the detecting telescope. Thus, the S-.thatrix 

is a function of the properties of a number of incoming 

and a number of outgoing particles. Physically, it is 

defined in such a way that the absolute square of one 

of its elements gives the transition probability from an 

initial to a final state' -One important property of the 

S--matrix whicn we have only indirectly mentioned before 

comes from the requirement that the sum of the probabilities 

for all the final and initial states must be exactly equal 

to one (probability conservation requirement). This leads 

to the ilifarity of the S-matrix. However, we have already 

seen that one way of ensuring it is to require that both 

the final and the initial states form a complete ortho-

normal set of states. It is then hoped that all experi-

mentally observable quantities can be calculated from 

matrix elements of S. All that we have said ao far is 

more or less the experimental requirement on the S-matrix. 

Any physically reasonable quantum field theory usually 

tries to incorporate the above-mentioned experimental 

facts, The difficulties which are then net could be 

overcome by introducing slightly relaxed axioms. For 

example, as we have already noticed, the space-like 

asymptotic condition is quite closely connected with 

almost loclity, and is simply understood and. interpreted 

as the cluster decomposition properties of the S-matrix. 
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Experimentally, we know that a given collection of par-

ticles„.eaoh.ititially out of range of the force of all 

the others, may interact in two or more distinct groups 

se that the corresponding S-matrix elements split up 

:7..nto the sum of terms. 

Since,the particle interpretation is still possible, 

even if the theory is not strictly local (due to Haag 

and Ruelle) we assume from now on that our fields are 

almost local in the sense of the definition given in 

Chapter IVb. 

Furthermore, the unitarity of the S-matrix may be 

assured by requiring asymptotic comraetehess, :Another 

immediate consequence of asymptotic completeness is that 

the relativistic transformation law U(a,A) of an 

asymptotically complete theory in unitarY equivalent 

to that of the theory of free fields. Therefore it is 

naturally expected to require that a representation 

U(a1 ") of the Poincare group is unitary' equivalent 

to the representation Uo(al i\) In a theory of free 

particles9  instead of asymptotic completeness. Of course, 

a theory relativistically equivalent to the free fields 

describing the same particles might not be;  by any reason, 

asymptotically complete, even if it has a collision theory. 

The unitary equivalence between U(a,/\) and U0(a,/,,) 

( 9 ) implies that the field has a Haag expansion 	in terms 
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of a free field, which is complete. 

As a result of the equivalence between U(a,A) and 

Uo(a„/\) we expect to obtain certain relations very 

similar to physical unitarity, 

Before proceeding further, let us for the sake o' 

completelessr  list the usual requirement on the theory we 

will be tsing here for spin—zero particles with mass m. 
4. 

A) For each test function 4(x) 

Bits  = C B(x),5(x)(14x is an (unbounded) operator 

in a Hilbert space sil:d , defined on vectors in 

DC 	and B4  DCD. 

B) B(x) transforms 

TJ(a,/\)B(x) U(a„/\)-1  = B( /\x 	a) 

and the spectrum of tae energy—momentum operator 

P 	is assumed to lie in the forward light cone. 

C) B(x) is an "almost local" field. 

D) A non—degenerate one—particle state, i.e., a 

discrete mass state in question is isolated in 
the mass spectrum. 

E) A representation U(a,A) of the Poincare group 

Is unitary equivalent to the representation 

17o( a ,/\,) in a theory of free particles. 
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b)  Haag.,expansion. 

The theori satisfying axions A) - E) has a 

particle interpretation given by the Haag-Ruelle collision 

theory. The first step in the Haag-Ruelle collision 

theory of "strong ccTivergence" in Hilbert space is the 

construction of almost local fields B(x). The concept 

is best understood in terms of the truncated functions, 

as we have already seen in Chapter IVc. 

Then from the property (IV.30) 

CCLI„,  , 

	

	B,o6 (tn  x 	o ) T 	xk 	xk+1 Jo  

(v.1) 

it follows that the Fourier transform 	of (V.1) as a 

distribution in / 	is an infinitely differentiable 

function (Cap ) which increases no faster than a poly-

nomial at co. The seb of all Cm  functions with all 

derivatives bounded by polynomials at co is usually 

denoted by Om. That is to say 

f e 0M if 

(a) f e Cm  

(b) for given m there exists km  such that 

Dmf/(1 +qx02)1c11/2  is bounded. 

Thus, we have an alternative definition for almost 

locality which states that B4(t, x) is almost local if 
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lili(t/D41;osett tn5) e 014(512..0, pn ) 	 (V.3) 

where a(3)( pi)„ 	tiV is the Fourier transform of (V.1) in 

ply..., pn, and ,eS = 

An interesting question which arises is to ask what 

restrictions on the Ueld give the condition for almost 

locality for a particular model chosen to ensure that the 

S-ma-„rix (which follows from the Haag-Ruelle theory) is 

different from unity. The first work along this line has 

been done by Streater (26)®  

The starting point is the Haag expansion of an almost 

local field B(x) given by 

B(x) 	B°(x) 	(270-2 -Ski  1  mn 	 -- 	j F (p; ,q)exp i(5-p. 	) 

	

1 1-11/\(+)(pi)d4pi  IV+)(qi)d4qj 	a+(ilm) 

a(-4) 	(V.4) 

where 
F 	= F = P 	- 0 oo 10 of 

Fmn(p; q) 	Fmm(p1,000, Pm; qm ) 

30(x) = (270-2  dLIP/( ) a+(1)exPri(Px)1 

(Vc5) 

a(p)expl-i(px) 

i,+(p) = 19(10°)stp24k  m (2wp )-4(130  wp ) 

-A2 	% = 	m2  ) 

In (V44) a (13) and a(q) are the creation and annihilation 

operators respectively for free spinless boson particles 

satisfying the following commutation relations: 

0 
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a+(5)1 = 2w 'V3)(5 g!) 	
(v.6) 

a(.1)] = re(5), al-(51 )3 
	

= 0 

The field B°(x) is a given free field. It contains two 

parts, 13_7(x) and B°(x), corresponding to the creetion 

and annihilation operators respectively. This notion 

enables is to write 

B°(x) = B!),_(x) B°(x) 

with an obvious identification. 

One could have started the expansion (v.4) either with 
in 	out \ B (x) or B (x) according to which of them is assumed 

to exist. Then, our theory would be asymptotically complete, 

at least for either t 	-oo or t--4 -!oo . In a local 

theory the completeness of B(x) for t---* -oosay„ 

implies the completeness of B(x) for t---* +co by the PCT 

theorem. Although Bin(x) andB° ut(x. ) are also free 

fields, they are a.ptriori not in any way related to B°(x). 

The Haag expansion introduced here for an almost local 

field B(x) starting out with B°(x) does not involve any 

loss of generality since we assume that B(x) can create 

the one particle state with one application to the vacuum. 

We sce that Haag expansion (V.4) supplies us with an 

infinite set of, in general, unknown generalized functions 

which determine an interpolating almost local field 

B(x). In local field Leory these functions may be related 
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to S-matrix elements, 

Furthermore, it is clear from the expansion (V.4) 
2 	m2) of  thatonlymassshellvalues(p.2 = m2,  qi  

F's enter into the definition of the field B(x). Off 

the mass shell these functions can be chosen in arbitrary 

manner. In other woras, if B(x) is given, the functions 

Fmn  (p q) are not uniquely determined, Apart from that 

it is possible to have many different fields giving rise to 

the same S-matrix, as a reflection of the arbitrariness 

which exists in the extrapolation of F 	off the mass mn 

shell, It is important to mention that in a complete local 

field theory Fmnls have analyticity properties which come 

from locality, spectrum and Lorentz invariance, Since our 

theory is not local, the equivalent analyticity properties 

of F 	are not known. The property that might be used 

here is 	invariance of B(x) under arbitrary inhomogeneous 

Lorentz transformation (property B) (Chapter Va), This 

implies that 

Fmn(P1' 000, Pm; ql,"" qn)  = Fmn(t\P1'9""\Pmv:/:1" 4\q. (  

To prove (7,7) one assume ,7 that the functions Fmn  (p; q) 

are sufficiently well behaved so that they have Fourier 
ti 

transforms: F(xa y) defined by 



l m  

Figure 1. 

A, 	 NP m 	
n F 	(x 	xm  ° yl'***' yn  ) = (290-2(in+n) 	d' .Pi  Ti d.4q. mn  

m 
Fmn(ply...,Pm;q1,00.„qn)exp i(5pixi  - s-q-0Y 0• ) 

(V.7)  

Then, expansion for B(x) may be put in the following form 

A ti 
B(x) = B )̀  (x) 	(27C)

-2
t E&T 	9 e e X-*Xin; XY 	X"'Yn) 

m  4 	n  4 	of xi  TTd yo  BiAx1)...e.1.(xm)B°(y1)...B°(yn) 

(V.8)  

that is suitable for the examination of the Lorentz 

invariance of Fmn (p,q). 

We shall consider only models with a finite number of 

terms in the Haag expansion. This can be avhieved by 

smearing the field B(x) with an appropriate test function 

wrilose Fourier transform is zero outside a certain region 

in the momentum space. 

Let f, be a small region in the momentum space 

including mass shell p2  = m2 Fig. 1), and let 	A ) be __f  

the space of test functions f c 	with supp f C6-fe 

P
2
=m
2 
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rsj 	/ A Then we consider for any f esj
‘-4.9  

4ke....Nf) 

operator 

the well-defined 

B(t; f) = 	d4x B(x)f(x,,t) 	(V.9) 

where 

f(x,t) = (290-2  (‘\ d14'p f(p)ei(P°-cop)t e-ipx 	(V.10) 

Defining the Fourier transform of B(x) to be 

B(x) = (29)-2  c 	B(P)d410 	(V.11) 

the relation (V.9) may be written in the following form 

as well 

B(t; f) = _PP) ;'(ID) I( (D-wp)t 
	

(V.12) 

It is clear from (V.4) that B(t9f)V0  Is a one- 

particle state 	= 2')E'cWin with a wave function 

f(P) 
	

(01:), 5) c,. 3. To see this we apply the 

to (V.12) and by using the expansion (V.14-) 

we arrive at 

/0  = a 

r 	
i(121°W)t 	

(V013) t l;f )1.11 	
'Pe 

All other terms are equal to zero since the support 

of f(p) is 01,1:43ntreated around.the mass-shell p2 = m2 

(Fig. 1), By this we mean that the smaller the support 

of f2  the more correct the equation (V,13) is. In V.13) 

3(D) = 6(+)(P) a+(P) = (2wp)-1  g(PO  wp)e(5) 

so that it follows 
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r d3p B(t;flif c) 	a+(i1)141; = 	f(wp/1045 (V.1)4) 

with 

a+(5 )To  

We should also point out that any other function f', say, 

with smaller support which coincides with f in the neighbour-

hood (or even only on) the mass-shell will give rise to the 

same state (V014). Thus although B(x) has to be almost 

local for all f, we get u consistent scattering theory 

provided only that B(x) is almost local for a sequence 

of f coinciding on the mass-shell and with smaller and 

smaller supports, i.e. for the germ of f(w y p). The 

advantage gained by choosing the 5's with small support 

is that their product of the fields have then nearly the 

same maximum energy as the corresponding asymptotic state, 

ard only a finite number of terms enter in the product, of 

coarse, if energy is finite, 

Using CV,13) one can construct asymptotic states. 

Haag and Ruelle (Chapter IV) have shown that for 

1. 
1 

1/4-4(3/ A 	• 
ej k4.. f 	and B(x) almost local 

lim 	B(46!f.)lf 
	

(V.15) 
co 1=1 

exists in the strong sense, i.e., in the norm. Now we 

realise that the requirement that B(x) is almost local 

will depend heavily upon the chosen functions Fran. It 

is the purpose of this chapter to find out what these 



conditions on on F 	are to make the.field B(x) almost mn 

local. 

Since we are dealing with the asymptotic limits of 

the type (v.15) thus defining an "in" and "out" state, we 

must choose PMD  t s so that the "in" and "out" states 

differ. For otherw:-e„ the S-matrix will turn out to be 

unity. To illustrate this statement we recall that by 
, 

using test functions f(p) which are zero outside a 

small neighbourhood A f  of the mass hyperboloid n2 = m2 

we can have many different fields giving rise to the same 

S-matrix. According to the general theory(5 ) (Chapter IVc; 

equation (TV.78))2 a creation operator B(t,f) leads to the 

same S-matrix as a creation operator B(t,f) if 

[B(t,f) 

t +0D 

where B and B are almost local with respect to each 

other, and the two one-particle states B(t,f)To  and 

B(t0f)Iko  are equal. Then, it follows that (IV.78) holds 

provided that the fallowing norm of the state 

[B(x) - 13(x)/ B(x/)...B(xn)To 	(V‘16) 

is rapidly decreasing in space-like directions. 

We can also express J.t in a different way by saying 

that the Fourier transform of (V.15) is op-differentiable 

(0°) as a function of the spacial p. Since our B(x) 

is given as an infinite series in terms of the free fields 

i2 ii(t 5,f); C f1...rn(t) 1! = 0 	(IV.78) 



-65- 

B°(x) we can assure the Fourier transform of (V.16) to be 

Cm  by choosing Fm's to be Cm  themselves. However, this 

would lead to S = 1. In order to get scattering we must 

choose Fm's with "singularities" which cancel in the trun-

cated function but not in the matrix element (V.16), or 

similar ones. 

c) Unitarity. 

Consider an almost local field with the expansion 

(Vol:(.) and choose test functions 

f2 t'P  P 	 ) 14. ( - 	f2 
of the state 

)f 
1  f  2 

 (t) = B(t; f7)B(t; f2)-clro 	(v.17) 

is less than the threshold for n+1 particle production. 
We assume that domains/./.1

f1 
 and A f 2  contain the mass 

shell, i.e., 

fl 
l(f2)  n 	4 

where 

Vm 	IP; Po  ) Op P2  = m2  

and the bar on 	means the closure of Vm . We shall also 

consider the domains A f
1 

Z.Sf
2 

to be mutually disjoint 

4 
	

(V.20) 

i 1 	( A ) and 1 	4 - f 1 
such that the largest momentum component 



a+1 
T-r f\k -t- i

) 
 (pi )d4p j  exp I i(

a+1 	
s"'"- 

Pk q j=1 - )t]4Pk-g 
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Since B(t; f1  ijf is the one-particle state (by -7.0 
assumption) the only terms in the expansion of B(t; 

that will contribute to (1:, 	(t) have no more than one 
flf2 

annihilation operator in them. 

For that reason B(t; f) may be considered to have 

the following form 
n-1 

E(t; f) = B°(t; f) + B,,(t; f) 	(V.21) 
a=1 

where 
27E)-  

2 c Ba(t; f) = a+1) . Fa+1(p1...pa+1 q)/N,(+)(q)d4q 

a+l 
p -q) a+(b.*  )act') a+1 (V.22)  

The other ignored terms in the expansion of B(t; f) will 

nct effectively contribute to a state f1f2 
We now construct the following 4-point truncated 

function 
* 	 * 	*, wT(t1,..., t4) 	(\pb, B(t1;f1) B(t2;f2)B(t3;f5)B(t4;f4)\1/0)., 

= W(ti,...9t4)-W(tlyW(t2t4)-W(t/t4)W(t2t3) 

(V.23)  

Substituting (V,21) into (V.23) we arrive at the equation 
(27) 
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WT(t1...t) = Cji 0  „B°(t1  f1  )* 1  B°(t2  f2  )*B°(t3  f3  )B°(t f4 10 ).(E() 

+ qio ,B°(tifi )
* 
 B-(t2f2) Bl(t3f3)B°(t4f4)T)) 

ft-1 , 	,* 
+ 5=2( 	„B°(tifi)

* 
 Bakt2f2) Ba(t3f3)B°(t4f4q0) 

a=1 

(V.24) 

Before g)ing further, let us define the Fourier transform 

of the truncated function 

WT  (x1  ...x4  ) = ( ,B(x1) B(x2).  )B(x rciff) 	(V.25) 3 	4 0  T  

which we write as 

WT(xi ..x) = (27)-174 d4p
1 
 (4 ) (pl+pr)  - p3-p4)WT(p,..9p4) 

1=1  

.exp 	 , 	+ p277c2  p3x3  p4x49 
(V.26) 

The B(x) is an almost local field (by the assumption C) so 

that the truncated function (V.26) in x-space is strongly 

decreasing when the distance between the points with in-

creasing separation in space-like direction is large. Then 

•(4)(Y 	( 	- 	) with WT being C°1°  and at most of a 

the Fourier transforM Vp12.,,,p4) pf (V,26) is of the form 

P 	Pl."P4 ." 
polynomial increase in 1?2,•40, ple. when integrated over 

4,00.91TI.  with the test function from 	
4° 

Therefore it follows that (v.26)  becomes 
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(To7B(t1f1)*B(t2f2)*B(t3f3)B(t4f4)T0)T 
4 

a d3pi  exp_[(wpit, + wp2t2  - wp3t3  

-6(3)(51  52  - p3  - 54) wT(t15-)9...0 t54) 
	

(V.27) 

where 

wT (t171,..„  t454) 
4 o 0 o 
TT dpi 	+p i=1  i 1 2 - 127.°4. ) it:11)1'02 ) 

.f(p3)(p14.) exp r-i(qt/  + 4t2  - p(3)-t3  - pl°1.t4)] 

WT(P19,!.,P4) 	 (V.28) 

is then the required Cwfunction which behaves at worst 

like a polynomial at co. 	(V.28) ;l.'s always satisfy 

the condition pi  + p2  = p, Fp4. that comes from (V.27). 

As it was already pointed out, in order to avoid 

S = 1, we ought to assume certain singularities for Fa's 

in the neighbourhood of the mass shell. These singularities 

must be not only of suuh a kind that S 1 but also such 

that the C°°  condition for (T...28) holds. In other words, 

they have somehow to cancel themselves in (V.28). The 

condition that the assumed singularities for Fa's should 

cancel in (V.28) will supply us with a certain relation 

which should be satisfied between Fa's in order to preserve 

the C°°  property of (V.28) in p21 "" p4' for fixed times. 

What kind of singularities shall we assume for Fa's to 

make S 1 ? Everybody will agree that the above question 

is completely open and there is no simple way of deciding 

which chosen singularity for Fa  is the best one. 
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AB is well known from perturbation theory and local 

field theory with B°(x) = Bin(x), the Fats have the 

retarded singularity f(p° is)2 (021 -10 Perhaps we 

would not make a mistake to assume for 	F a's 

2 	. S-singularities of the type S(p 	m2) or even more 

principle value singularities like P 1  2 2 
P -m 

In .he local field theory the above mentioned 

singularities are expected to be contained in the vacuum 

expectation value of the products of local field operators(28) 

Recently, Hepp(9)  has proved that also in the 

framework of the Haag-Ruelle collision theory 1-particle 

singularities exist in the physical region of any con-

nected scattering amplitude. They occur with the causal 

propagator (p2 - m2 4.  1.6)-1 in the dominant term and have 

a residue, which factors into the product of two connected 

amp3itudes for subprocesses. Furthermore the remainder 

of the amplitude is infinitely often differentiable in the 

critical variable. Using the graphical language our Ts 

will represent only the connected irreducible graphs. 

It is clear that Fat s contain the whole complications of 

dynamics which B(77.) has. Since we expect that Fa  is 

related to the (a+2)-leg scattering function with (a+l)-legs 

on the mass shell and one off, a suitable (p2  m2) factor 

when applied to Fa  and then restricted to the mass shell 
2 will turn (p 	m2)F

a
, to the connected part of the S-matrix 

for the process involving a+2 particles. 
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Thus, we assume the following retarded singularities 

as possible ones for Fa  's 

1- 13° 	is)2 - 52  - m21Fa(Ply.•., Pm  %) = Ta(Pilm:Pa; q) 

(V.29) 

a 
= 5 Pi - q o 

i=1 

With this choice of singularities for Fa  (V.28) has the 
following form 

WT(t151-9°°, %I%) = (w14-17
2 
 +T
3 
 )(t 1-1"'"t454)  

(" 
* 	 * 	 ▪ , 

GOO) = fl (w1,PlIf2 (—°1+4)3+(b4,5-2)f3'w3s.P3)f4'49-74) 

• exPi --colt] —(—c°1-1-(1)3 -R134.)t2--(1)3t3-Ht4t4 
-1 	.2 	-1 • (8wiw3w4) T2(p3,r4;pig(co3+co14,-col-ie) -(0 2,21 

(v.31) 

w2(..0) = f11.(131'51)f2*(w2Y52)f3(°11-c°2-w4;63)f4(w4Y54) 

'exPi[-wltl-w2t2+(w1+w2-w4)t34-c°4% 

• (8w1w2w4)-1T2(p1,p2;p4)Rwl+w2-vie)2-41-1  

W3(...) = fl(w1'Pl)f4(w42544) exPi[7w1t1+(wl-w0t3+w4t43 

, 1 A(10 )f:(10  ; )f (Pc)  
(440104)-- _ 2 	2' 2- 	 ---2.114/1-4)k eZPi(t 

[(4...1.02- w lr( 	n 
2.11._ 132+wl - (144-ie)c'  - 

2 o 
P2 

3 
(v.32) 
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with 
n=l 	a+1 	a+1 

A(4)  = 	Pcja...d4qm+1  T1 CS4-(qi) 8(4)(1)1+132 - 1E1  qi) 
a=1 	1=1 

* , 
Tai1(cIlow9qa+1;PI ) Ta+1( q1,—,qm+1;P4 )  

(v.33) 

and 
	

wi  = CO 

Pi 
• 

Let us consider the integral over P2  in W3. Simple 

examination shows that the contour of p2 integration is 

pinched with two coincident zeros of the denominator which 

are 

Po • — 
	 - 0 

P2 • + (01 — w3 	w4 	is 
	

0 

when col  + w2  = w3  + w4  and limit c —4- 0 is performed. 

If we assume the integrand in W to be an analytic function 
3(30 ) 

then the well-known pinch ahalysis can be applied. This 

analysis consists essentially in replacing the pinched 

p2-integration contour by the two contours. One of them 

encircles one of the singularities and another is taken 

away from the pinch, so that it is regular there. If the 

integrand is not analytic 	q, but is differentiable 

we ca..). use the standard function analysis instead of the 

pinch analysis (Appendix I). There is also another diffi-

culty which may occur when the end points of p2 integration 

coincide with different threshold branch points of A(4). 
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The end points of p2 integration depend upon the size 

and position of the domains /S 	and
f3 

in the momentum 

space as is seen from the form of W3. Let us for the 

moment forget end point singularities and consider which 

condition should holq in order to cancel a pole arising from 

the pinch. 

It is now quite easy to see the following equation 

should hold 

T2 (P3/1349P1) - T2(P1a2;1:4) = 

n 
2wi 

a=2 
a N S(4), 4ql...d qm  T1 Ls kqi) 	kpl+p2  
i=1 

a 
q 

1=1
i) 

 

* / 
	p ) 	(V.34) T q ..q 	- 	4 • a, k  ir 	a' p 1)T a(q1,...,qm,  

for pl  + p2  = p3  + p4  and gi
2 2 = n if we want 

to cancel the pole singularity coming from the pinch of the 

p2 integration contour in W3. Solutions to this equation 

may have several branch points corresponding to the different 

thresholds for the production of two, three,... etc. 

particles. 	It is known and it has been proved 	that 

from the analyticity and unitartty hypotheses for a general 

transition amplitude, it ' llows the conclusion that the 

general tvansition amplitude has no singularities on the 

positive real energy axis other than isolated singularities 

at physical thresholds,. Now we realise the role that end 

point singularities of the integral over p° may play here. 
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They must in fact cancel with the threshold branch points 

which can appear according to the position of the domains 

/\ f in the momentum space. This is because at the branch 

points the functions in question are usually hot 

differentiable in the momentum space pi. To show this 

cancellation explicItly one must find particular models for 

Ta's or at least their analytic behaviour near each 

threshold singularity. In the next Chapter we shall show 

that it is really possible to find such a model, at least 

in the elastic region, i.e., below three particle production. 

One model has al-ready been found by Streater(26) but it 

seems too restrictive as it eliminates both threshold and 

end-point singularities. 

However, this model does show that one can have a form of 

"macroscopic causality", namely, almost locality, in a theory 

whose S-matrix is not the boundary value of an analytic 

function. One gets more physical models by assuming that 

A(p2) has analytf.c properties, and this is done in the next 

chapter,, 
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VT. 	MODEL 

The method and the result of the previous Chapter 

will be applied here only in the elastic region (below 

the three-particle -1::::.oduction). The aim is to find a 

relative77 simple model which will explicitly show how 

end point singularities in W3 may be cancelled with the 

threshold behaviour in W1  and W2. Having this in mind we 

restrict the total energy of the state to be below the 

three-particle threshold. In other words, if 

pisLf,  and p2czli2  the following inequality holds 

(p1 + P2)24( 9m2 	(VI.1) 

This restriction reduces the number of terms in A(p2) 

to one, which is 

4 	+ 	+ 	SO4 ) , 
UD d  qld q2 	(q1)A (q2) 	1+132-ql-q2)  

(VI.2) 

A(p ) 
	

S 

°T21'(q12  q2; P1)T2(q11 q2; 134)  

In order to put (IV.2) in a more transparent form 

we shall work in a particular Lorentz frame (since T's 

are Lorentz invariant functions) where 

pi 	p2  = p3  p4  = 00 After siml)le and straight 

forward manipulation we obtain (VI.2) in the form 
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2,1/2  0 	.2 

(1)2+wl) -Liaj 	 Vii,T2(Zi.4,-,71;Pi)T2Cg4,-7:1;POI A(P2°) - 
8(q + (01) 

2 
q= X 

where X = (1/14) T(pc23+w)2 	2j and 

where the remaining integral is over angular variables only. 

It is clear from (VI.3) that A(4) has a branch point at 
(no+, ,2 w2  .1) = 4m2. Using restriction (VI.1), we find easily 

that the lower limit of 4 integration in W3  is m, 

since n0 / n
" 

	

	 ' 

o p2  + wl  - w4  '› 0 and m < w.1  < 2m. -2  
Therefore, there is a possibility

(26) that the lower 

2 	2 	2 
PI = P4 = m  

end 

point cf 

of (v103) 

scription  

p2 integration coincides with the branch point 

when w1 = m. According to the well-known pre- (3o) 
for dealing with end point singularities 	we 

should assume that we are far enough away from the pinch 

so that wl + w2 / w3 w4. In that case the integrand 

in 4.3  has two poles at p2  = w2  and p2  = 	+ m4  - wl. 

Let us now take T2 to have a square root branch point. 

We can exhibit this property completely by writing 

(w14-'2)2  
T2(P1,P2;P4) = d(y102;p4)-i----71  

(14 = m2 is always assumed) 

where d and, a have no bra.-.3h point at (w, + w2)2  = 4m2  and 

are furthermore 0°)  in the considered elastic region. 

Taking the residue of the pole at p3 = w2, say, we 

find that the conditioli for cancelling threshold square root 

branch point is 

a(10102;1)4) 

(VI.4) 
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T 	 13  )T 	-1PP-T0 h 	n a(P1'132;134)  = (A/4) d  CIL2 gY""4Y 1 2 ' 	)..J 

(17.5) 
at the threshold. 

Thus, the unitarity relation and the model (va.4) 

with (VI.5) are enough to show that T2  may be interpreted 

as the usual scattering amplitude at least in the elastic 

region. 

Finally, we should also mention that this model has 

been invented and used before by Oehme(33) although for 

completely different reasons. 
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VII. THE BOUND STATE PROBLEM 

a) Introduction 

In the conventional formulation of quantum field 

theory each of the "elementary" particles is described 

by a basic field operator whereas the composite particles 

appear as the stable bound states of the system. The 

distinction between what to call elementary and what 

composite particles has not yet been cleared up. For 

example, considering strong interactions only, it has 

recently been suggested
.(32) 

that perhars there are no 

"elementary" particles; all baryons and mesons being 

bound statJs of one another. It is also very well known 

that most c)-: the so-called elementary particles are 

unstable or composite ones. In practice it would be 

almost impossible to find directly from experiment whether 

or not a given particle was elementa:ly. Thus, the definition 

of a composite particle usually depends on the formalism or 
(33) 

on the model used to describe it. On the other hand, however, 

we must be aware that there is no generally satisfactory 

theory for treating the scattering of composite systems. 

The reasons seems to be in the complexity of the many-

particle system in dynamics. 

For the description of composite particles in field 

theory it is important to define a field B corresponding 
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to a composite particle which satisfies the required 

asymptotic condition, in the sense that B
in 

and Bout, 

which are the limits of B when 	; co, do exist. 

In the local field theory the treatment of the bound 

state problem has been carried out by ZimmE,-rinann(34) 

the spirit of the LS2;' 3)  formalism. Zimmermann's result 

may be briefly stated, that the bound state can be des-

c2ibed by a local and invariant field operator, and the 

S-matrix derived using the LSZ reduction technique. 

According to a rather similar situation in almost 

local field theory, where the LSZ weak asymptotic con-

dition is replaced by the Haag strong asympLotic con-

dition, there is no reason not to believe that it is also 

possible to derive the same results here as Zimmermann has 

found in the local field theory. 

The advantage which our model gains is that there are 

no difficulties with reduction formulae, since the Haag 

expansion, in terms of free fields, for an almost local field 

has been assumed to exist. 

b) The Buund State Problem 

We consider a model ',ere an almost local field A(x) 

describes just two kinds of particles, an elementary one 

of mass mA and a composite one of mass mB, both of spin 

zero. Note that A(x) is the same almost local field 
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which has been denoted by B(x) in previous chapters. Being 

more precise we assume the existence of a stable two particle 

bound state with mass mB  which satisfies the following 

inequality 

111B  < 2mA 	(VII.1) 

The so-ca_,led fundamental almost local field A(x) belongs 

to the mass mA. This means that 

d4x h(x) A(x)rfo  

is w A" one-particle state with h being a test function 

with finite support in the momentum space which, of course 

contains mass shell p2 = m2
A 
 . Further, we require that 

, 
A(h

f 
 ) 1,(1g)T , B(h)i 0 0 B h = hI 	hg  (VII .3) 

is a "B" one-particle state. The inequality(V1I.1) and the 

condition (VII.2) tell us that the test function h
f 

must 

have its support in an unphysical region ir the momentum 

space, i.e. below the mass shell p2 = m2 A  (Fig. 2) if 

o 	2m . A 
mB 

' 	G  
(:) z h 

• h1 /1—‘  
A/ 

'h 
f 

	.> 

 

FiRure 2,, 
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we want to satisfy (v1I.3). The problem which we wish to 

analyse in the spirit of the almost local field theory is 

the AB scattering. The vectors that we are interested in 

are 

B(hl)A( h,e 	= 	BA> 
, 

A(h2 )B(laiAlfo  = l AB) 
(vII.4) 

The above problem cannot be considered in its full generality 

as we have not yet derived the condition that the 6-point 

function IN(x 	x6  ) is almost local in a three particle 

scattertng region. 

Therefore we shall discuss only the elastic region. 

For that reason it is required that domains o h, 

outside which the corresponding test functions vanish in 

momentum space, satisfy the following relations 

a) Lhp6hf and /.. hg are mutually disjoint (as in Fig. 2) 

b) 6h  and hg contain part of the mass shell 2 	2 
P = mA 

but A hf does not (Fig. 2). 

c) mA  < ( Pf  Pg )
2 

< 4171A
2 

2 
d) (Ph  + Pf. Pg) 2 ( 9mA  

where 

et\hf , pg  sA hg  and 
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e) 	It is always possible to find a vector pf  eAh  f and — 
a vector pg  s gh such that 

KIDfg)2 
C 

According to the HaeQ,-Ruelle collision theory if A( t;ba ) 

and B(t;h2) are almost local fields which create corres- 

ponding one-particle states from vacuum 	then 

(A( t;h1)B( t;h2 ) - )3( t;h2)A( t;hi  ))1,p-  0  H 	as 	co 

(vII.5) 
, 	n. , where A( th3. ) = 	A( x) o10c d3 x and similarly B( t;h2 ) 

Thus, the relation (VII.5) shows that there aye in fact only 

three essentially different Vtrightman funr;tions <B* A* 
 AB), 

A
* 	 * * 
B BA> and <A B AB> in our problem. Their truncated 

functions will fall Jff rapidly at large space like distances. 

Consider the fundnmental field A(x) satisfying (VII.3) 

Then the Haag expansion for A(x) must be slightly modified 

by introducing creation and annihilation operators for the 

F-state. Having this in mind and the domain restrictions 

a)...e) we may consider A(x) to have the following 

expansion 

4 
A(x) = A°(x) 	>--- Ai(x) 

i=1 
(v11.6) 

where 
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= (270-21C T(1) prl *P 	132P3)x 	
-I- 

1 	2 ' 3)ei(P1+ 	
" i-SA(P )d 'pi i=1 

.a4-(51)a+(52)a(53) 

A2(x) = (270-2S V(P1' 9P )ei(131-132)xA+(p ), +(p )d410 dLi-io 2 	— B 1 	2 	-1 - 2 
.114-(11)a(52) 

= (2„)-2m(p 
1 yp 2

0, 
3
)ei(P11-P2̀ 133)XtSI(131) eq(P2) 

''L-  

-'- tS-113-(p3)d4pid4  p2d4  p3a4  (pl)b+  (p2)b(p3) 

A400 (2‘g)21.4G(13I11,229 p24.)ei(P1i.P2"-P3"-PI4
)X 	\

d 
 4 n 1) -L-1 

-1764-A(P.)d4p.b+C;1 )a+(;2  )a( 5.  )a(;.) 3 4 i=2 

( v 	. 7 ) 

with6+  / A CB) = (4(P) (P2  + mA(B)) and A (x) equals the 

free field introduced in Chapter V.b. In (VII.7) b+  and b 

are respectively creation and anrihilation operators for the 

B-state, with the following commutation relations 

A3(x) 

b+Cc1.)1= 2c013(P  - 1) 

D(P)1 = 	b+Cc7.1 )1 = 0 

(1/11.8) 

where 	= /t tip 	 2 + 

As before we have ignored the terms in the Haag expansion 
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that do not contribute to LAB) or \ BA) . By comparing 

the terms in the above expression for A(x) with corres-

ponding ones in the local field theory we arrive at the 
2N conclusion that T = (p2 - mA)T may be regarded as the 

s^•••• 

AA -4- AA scattering amplitude and similarly V as 	2A 

decay amplitude (or simply the vertex function). M as 

satttering amplitude and O as AB---+-3A pro-

duction amplitude. The validity of this conclusion is not 

yet beyond doubt in the case of G for the same reason as 

before in the three-particle region. In our case G will 

be defined only in the unphysical region. 

Before going into final considerations of the almost 

locality condition, let us estimate which of the functions 

T, V, M and. G will contribute to AB)D.0  and BA\Ti vectors. 

It is then quite easy to check that the following terms are 

only relevant ones in -6he expansion of A and B, for the 

vectors 'AB> and BA> : 	a+ (a+b+b) in the expansion 

for A and b+, (b+a+a) in the expansion for B. The 

corresponding coefficients are 

fA(p) = (2.1)2  hop) 
	

for 	a 

(10.1p21p3) = (2n) :,(p) M(p1p2;ID3) for (a11-11) 

TB(p) = (2702S d4a hf(a) hg(p-a)/q(P-a) V(141)-(1) for b+  

(VII.9) 
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, 
and FB which is the coefficient caf OD+.a. a) as a rather 

complicated function of V, T and G is given in the 

Appendix II. Now we can impose the condition that the corres-

ponding 4-point matrix elements are almost local by using 

the same procedure as in Chapter VI. Consider the following 

functions 

w(I),t 	('(1), 0 0 0 ON  
T 	1P1"°' 4-L-4 = 

	U)14-132-P3-P4) 

-i(qt14-4t2-4)t3-PIT'4)  

x 	 (I)( 	o 	o 
T Pl'"" L̀  P4JP1'2°" À-P4 

(vii.lo) 

which must be C°°  as a function of the spatial PY where 

I = fta,b,c3 corresponds to 
w(a)(  
T 	-"') 	

.e
WT(B A 

;E 
 AB) 

	

w(
T
b)(,  " ) 
	

Wm(A *B rr BA) 

(c)( 
T 4̀ " ) 

k 
WT  (AB 

.E
AB) 

In order to avoid S = 1 we again choose the retarded 

singularities as possible ones for FA and FB 

• 4-ic)2-042.1FA(P1P29),P3) = F (P P 	) A 	9P 1 2' 3 

L.(14;+ic)2  —wilf1FB(101132;r7) = FB(P1P2;P3) 

i.e., 

(VII,12) 

where p4  = p1  + p2  p3. 

Proceeding as before (Chapter VI) we find that the 

following relations 
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FA(P3P49Pl)fA(w3) 	
Srt 	0,1

=  

27cic d4g.d4qf  illA(qqt;p1) j;;A(qqt;p4)6I(1) -(e)5(4)(q+qf _pi  _p2) 

(VII.13a) 

* 	B 
FB(r4P3;132) 1113(w4 	f (w  

B 
B l'Pl) FI(P1/3242)P3)  = 

dii"qd4qt i113(qql ;p2)FB( 
	

;p3  ).6.143 ( q) A:FA:( qt )5(4) ( q+cIT 

(VII.13b ) 

3B(P4'1339P2) fA(4)3 9P3) 	CB(°1'11)7A(iD2'1D1;1314.)  = 

27ciS d4od4e 3:(q,e;p2)FA(cl9q;p4X4(q)61-(e)S(4)(q+e-101-P2) 

(VII.13c) 

.A A 	 AB when pli-p2  = p3+p4  and colB+w2A  = w3+w, must hold if we 

want (IV.11) to be C°°  as a function of the spatial p1. 

The relations (VII.1.3) are only the condition for can-

celling pole like sint;ularities. The end point singularities 

which are also present here may be treated as before. 

There is, however, one more interesting question which 

we would like to touch upon here. For example, cne may 

naturally ask what is the reason for taking singularities 

for FA and FB  in the form (VII.12). 

In th3 case of FA this is a pare analogy with local 

field theory where FA  has retarded singularity. We may, 

of course, assume some other more complicated singularities 

as principal value, for example. The problem which then 

remains is to prove that S 1 and the condition for 
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almost locality is satisfied as well. 

In the case of FB it seems at first glance that 

there is no such simple analogy with local field theory. 

FB is given in terms of V, T and G so that it is quite 

hard to find a model which will produce the desired 

singularity in FB. However, a satisfactory explanation 

could be drali.n from the Zimmeimann result in local field 

theory which says that the bound state can be described by 

a local and invariant fiela operator, If this is so then 

FB would have the mentioned retarded singularities in the 

local field theory. Thus, there should exist a model con-

necting (roughly speaking) V, T and G which would be 

able to produce the desired singularity. 

The simplest one which can be constructed is the 

following factorization for G 

R) V(P31-P5;D)M(13211)1;131-11:1-, 2 regular terms G(p1,104,11'3,P) '' 	0 0 	N2 r..4 .4  )2 	m 	
(V11.14) (103+P5+16 ) -- 03+105  

where plipo 	p3+p4+p50  

Then ay using the formulae in the Appendix II we. find without 

difficulty that 

fA(P3)3B(P1,Ip2;P3)  

With (4.15) the relations  

(13 )F 	47)1,134) B 4 A 2 (VII.15) 

(4013) are trivially satisfied 

and reduce to a single one for FA  only, i.e., to (VII.13a). 
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Since FA  'NJ M the equation (VII.l3a) is the requirement 
ti 

that M satisfied elastic unitarity in the elastic region. 

Thus we have indirectly established that in fact M may be 

considered as a scattering amplitude for AB 	elastic 

scattering, which has certain analytic properties. 

Finally, we may say that one could also consider the 

bound st;,te composed of more ';,han two elementary particles 

described by a field A(x). In that case the field B(x) 

describing the bound state will be a certain polynomial in 

the basic field A(x). The treatment presented here is 

easily applied to these cases as well. 
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So far ail serious attempts to describe elementary 

particle phenomena in mathematical terms, by using different 

approaches to field theory for the purpose of interpreting 

any experimental result in high energy physics, have been 

rather limited, We cannot deny that some of the approaches 

to field theory have advantages in certain situations, but 

none of them is able to describe nature with enough 

accuracy. The reason is that the full dynamical problem 

is practically impossible to solve at present. Thus, any 

model which one could probably imagine must of necessity be 

extremely complicated. It will require well defined 

equations with a unique solution, which can be computed by 

reliable approximation methods, and that by such calculations 

we can predict experimental results. 

Ever regardless of the ultimate form of the theory, we 

know that we have to deal with an infinite set of functions 

which are interrelated. This set of functions may be, for 

instance, the S-matrix elements of all possible scattering 

and creation processes, or it may be the set of "Green's 

Functions" of a field theory, or it may be something else. 

Since there are very few ..'oblems which can now be solved 

completely either analytically or numerically, the conse-

quences are that whenever someone suggests a specific 

dynamical scheme in high energy physics, it is extremely hard 
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to find out what the scheme predicts. 

It is perhaps worthwhile to stress that even although 

the field theoretical approach to elementary particles is 

not the best one, the advantages gained by choosing it are 

relateu to the possibility of setting up approximation 

schemes. These approximations may be regarded as taking 

account ,)f all contributions involving up to some n-

par.uicles in intermediate states. In graphical language 

the approximation assumes that the connected graphs with 

few external lines dominate in a particular energy region. 

The usual requirements in an approximation scheme to the 

strong interactions are, of course, physical reasonableness 

and numerical solubility. It is possible to argue that the 

above-mentioned complications may be connected with the 

locality condition, asymptotic completeness and so on. Thus, 

some physicists believe that to find a theory of the 

particles we must violate some of the postulates of field 

theory. If we dropped the locality condition, we could 

construct any number of quantized fields with any spin we 

like, by using the well-known Haag expansion of a field in 

terms of a free-field. Such a '!theory" is again fully 

determined only if we kncv an infinite set of so-called 

generalized potentials, Fes, containing all the com-

plication of dynamics. Of course, we expect that Fmn  are 

such that it is possible to define the scattering of 

incoming states to outgoing states. For the exact Finn's 
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in a local quantum field theory, there are formulae which 

give the Flanis in terms of the multiple retarded commutator 

functions. But, as we have seen, a much weaker condition 

also allows us to define an S-matrix, and this is that the 

field shall be "almost local" in the sense of Haag. Our 

programme was to writo down the condition on the functions 

Fran  whiL,h ensure that the field be almost local. These 

conditions have been written in terms of the Wightman 

functions for the field B(x). (Chapter VI). Then the 

ifconnected part" (truncated part) of the Wightman functions, 

being th) many particle comielation function, should decrease 

In space-like directions according to the way the potential 

does, i.e, exponentially. Thus, examining successively the 

connected parts of 2,3,4,00, point functions we obtain the 

necessary conditions on Fran  which make the field B(x) 

aimrst local up to certain order in the Haag expansion. 

At each stage we have not got, precisely, an almost 

local field, but it is possible to make it if F 	satisfy 

certain relations. It is also interesting to notice that 

at each stage for a finite energy, only a finite number of 

functions F 	enter; so that we have a feasible approxi- 1111 

matioA scheme, 

There is still the question to what extent an almost 

local field is a good approximation to the local one. It 

is possible to look upon it in auch a way as to ensure that 
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the theory is relativistically equivalent to the presumably 

correct local field theory. Unfortunately, the exact 

relationships of these two descriptions (of Wightman field 

and Haag almost local field) have not yet been fully explored. 

Coming back to our programme, of setting up an 

approximation scheme for an almost local field having Haag 

expansion, we consider the almost locality condition beyond 

the elastic region for 4-point matrix element, but still for 

finite energy. It is found that almost locality conditions 

require Fits to satisfy an equation similar to "physical" 

unitaritj. The different threshold branch points are 

supposed to appear in a final solution of that unitarity 

equation. They probably could be cancelled with the end-

point singularity if the functisis involved are analytic. 

Tnis is explicitly shown here (Chapter VI). if the energy 

is -estrtcted to the elastic region only. If the functions 

iii questions are not analytic, then a model which removes 

both threshold and end-point singularities seems to be 

necessary in order to satisfy the condition for almost 

locality and have 3 1. 

The bound state problem, which is very involved in 

elementary particle phys:i:s, may also be considered in 

almost local field theory. The approach can go along the 

same lines as in local field theory. Here we suppose that 

the B particle may be regarded as composed of two A 

particles. Then, the AB scattering in the alastic region 
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is treated exactly in the same way as the case of AA 

elastic scattering. The generalization to a B particle 

composed of several A particles is straightforward. The 

difficulties which may appear are connected with the 3—

particle scattering region. This region is fairly important 

because of the relationship which it has with the 3-particle 

relativistic theory. 

The problem that remains is to find the condition that 

the 6—point function W(xl,...„x6) is almost local at least 

when the test functions are chosen to have support below 

the L.-particle threshold in momentum space. The new fecture 

wiich will appear then is that the defined asymptotic (in 

and out) 3-particle states need not span the corresponding 

Hilbert space. This is because the irreducible representa-

tions of the Poincare group enter with infinite multiplicity 

tn this energy region, 

The proof that the 6—point function w is 

possible to make almost local, in a eense that 

e-, 
(q/0 ,Bs(t1,5).000 BfrS(t6'34.c) 

	
ej k = xk-xki-1 

for fixed t1,,.., t6, 

has not yet been complete 	Thus, the question whether or 

not in vas approximation scheme the three particle states 

exist as a strong limit, is still open, When we say in 

our approximation scheme we mean that the supports of the 
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test functions are chosen such that the energy momentum 

spectra of the vectors 13 Bi B.( 	are below the 
'1 '2 	o 

threshold for the 4—particle production process, i.e., 

(p, + p2  + p3)2‹ 16m2. The finite number of terms which 

then come into the Haag expansion for B(x) is three, i.e. 

a+ , F21(a+a+a) a:1,1 F32  (a+a+a+aa), 

The corresponding truncated function will contain 

twenty four topologically different terms in the sense that 

we count F and F as two different functions. Assuming 

retarded singularities for F21  and F32 it seems at 

present very difficult to prove that the condition 4- W- =1 1 

is Coo  requires only that (p2  m2)F32 satisfies 

3—particle unitarity. There is, however, the problem of 

determining whether the higher order conditions (or approxi—

mations) reflect back on the lower order ones we have 

already solved, or whether Raz solution, say, of the 4—point 
function, is a possible solution of the coupled 4 and 6-

point functions. This problem is, as we have seen, closely 

connected with the composite particle models, 
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APPENDIX I 

Consider the function 

1\2 
W(a,b,x,,x2) = 	f(x)[(x-a+ic)(x-b-JA -1  

x, 

Nvhere f(x) is a continuous scalar function in the closed 

interval (x1„x2) defined on the real axis. Here we consider 

only the case where both a and b are points in the inter-

val (x1, x2). If the derivative fl(x) exists at every 

point interior to the, interval (x1, x2) we can split the 

function W( ...) into two parts. One part will have a pole 

at a = b (when limit 	is taken) and the other will 

be r€ gulag there, and moreover- Coo  

When a b we can write 

[(x-a+ia)(x-b-101-1 	 (x-b-ic)-1A 

(I.2) 

Using the following identity 

(x-b-ie)-1  = (x-a-ie)-1 	(a-b)(x-b-te)-1] 	(I03) 

we have (I.1) in the form 

r2 
f(x) r  (=.-a+is)-1  

xi  
W( 	) (x-a -is) -13dx + 

In the neighbourhood of a•Nd b (1.4) becomes 
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AN( ..0 )^a27ci(a—b)-1  f(a) + 
	

2 f(x)(x—a—ie)-2dx 
x 

Xn 
,/ 	. 27c (a—b)-1  f(a) + P 	(se.  f(x)kx—a)-2  oix + iltfl(a) 

x1  
(1b5) 
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APPENDIX II  

Consider B(x;h) defined by the relation 

B(4h) = U(xyl)B(h)U-1(x31) = A(x;hf)A(x;hg) (II,1) 

By taking the Fouri,,,.,  transform of (II,1) we obtain 

B(1 4h) = (290-2  eiPxB(x;h) dux 

where 

(290-2  r 1Z(elhf)A(p-m,hg) d4a 

is the Fourier transform of A(3;0). We now 

take the expansion for A(x) given in Chapter VII and 

rewrite the indicated product AR; (II.2) in the form of 

usual Wick product thus obtaining the coefficient FB  

of (b+a7a) to be 

FB(10191029P3) = 	-I- FVT + FG + FGT)(P1'132;P3)  (II03) 

where 

Fv(0.*) = -(27)211f(P-P2)hL(P2)V(P/iP3) 

FvT(000) '74  (2702S clict hf(a)hg(IP-c)v(Pl;PI-m) 

.6-1-.(D1-c)T(PrayiD2;P3) 

	

FG( • •) 	(27)2S d4cchf(0)hg(p-a,)/Vit(p-a)G(P1o2;P-a9P3) 

	

FG1(...) 	(1/2)(27)2S Pahr(a,)hg(p-a)Cp102,q,q1 )4(q)61.(q1 ) 

(1.1.)( 

14.  
apl+P2-q-e-a) T(qPqr;P3)d  qd  q 

The four vectors pi  and p are connected by the relation 

P1 	P2 -- p3 
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