Some Studies of Thermal Degradation in

рλ

John Thomas Klaschka, B.Sc., A.C.G.I.,

A Thesis submitted for the Degree of Doctor of Philosophy of the University of London

Nuclear Technology Laboratory, Department of Chemical Engineering and Chemical Technology, Imperial College, London, S.W.7. January 1967.

Abstract

The thermal stability of four weak and five strong base exchange resins was measured at temperatures up to $180^{\circ}C$. The loss in strong base capacity, gain in weak base capacity, yields of trimethylamine and methanol, and the change in water regain were determined. The decomposition reaction followed a first order rate law with activation energies between 20 and 35 kcal/mole. The weak base exchangers were found to be stable at $180^{\circ}C$, for up to 10 days. The strong base exchangers were much less stable, and Deacidite FF was the most stable example.

X

The effect of degree of crosslinking, particle size and nature of the sorbed counter ion on the thermal decomposition of Deacidite FF was investigated. A higher degree of crosslinking resulted in a substantial decrease in stability; stability decreased with particle size significantly above 100°C and the most stable ionic form of a resin was that in which the most preferred counter ion was sorbed on the resin.

The behaviour of the Deacidite FF - hydroxide in a flow system was studied in a hot water test, specially constructed for this purpose. Thermal decomposition of the resin in a flowing system was found to be substantially the same as in a static system. Hydrodynamic studies in the test loop indicated that the resin particles suffered no significant physical or mechanical damage. The Carman Cozeny correlation for pressure drop in fixed beds of particles was found to account for the observed pressure drop in the test loop. A maximum bed compaction of 5% occurred over a 70 day run.

Mass transfer studies in the region where both film and particle diffusion are significant were carried out with degraded samples of Deacidite FF, in a small packed column. Diffusion coefficients were calculated from a published mathematical theory; a Fortran IV computer programme was written to accomplish these calculations. The rate of exchange, and hence the particle diffusion coefficient as defined by the model, passed through a maximum value as the total capacity was reduced by thermal decomposition. The chemical reaction of exchange, the rate of which decreases with decreasing resin capacity, probably replaces the diffusional mechanism as the exchange rate controlling factor after the maximum has been passed.

イ

Acknowledgements

It is a pleasure to thank Professor G.R. Hall for his constant encouragement and support throughout this work. I am also particularly grateful to Dr. M.Streat for contributing his experience and knowledge of Ion Exchange and for much sensible advice.

I am indebted to Dr. P.G. Clay for rewarding discussions on reaction mechanisms and advice on many whemical matters and to Dr. H. Sawistowski for stimulating the theoretical work on alternative models of Ion Exchange.

I wish to thank Mr. W. F. White , Senior Technician in the Department for his willing help during the erection of the test loop.

This work was made possible by a Research Bursary awarded by the United Kingdom Atomic Energy Authority.

<u>Contents</u>

Chapter 1. Introduction.	4
Chapter 2. Thermal decomposition of anion exchange	10
resins under static conditions.	
2.1 Introduction	10
2.1.1 Scope of work	10
2.1.2 Structure of anion exchange resins	10
2.2 Experimental	16
2.2.1 Preparation of resin for experimental work	16
2.2.2 Analytical techniques	17
2.2.3 Experimental method	19
2.2.4 Sources of error	19
2.3 Results and discussion	20
2.3.1 Weak base exchangers	20
2.3.2 Strong base exchangers in the hydroxide form	22
2.3.3 Strong base exchangers in the chloride form	50
2.3.4 Kinetics of thermal decomposition	51
2.3.5 Heating of model compound	51
2.3.6 The reaction mechanism of thermal decomposition	57
2.3.7 Effect of the sorbed counter ion on thermal	63
stability	
2.3.8 Effect of the degree of crosslinking on	67
thermal stability	
2.3.9 Effect of particle size on thermal stability	67
2.3.10 Thermal decomposition of Permutit SK	72

	2
2.4 Conclusions	80
Chapter 3. Design, commissioning and operation	83
of a test loop.	
3.]. Introduction	83
3.2 The test loop	84
3.2.1 Description	84
3.2.2 Important design considerations	. 86
3.2.3 Choice of equipment and operating conditions	93
3.2.4 Safety circuitry	95
3.3 Results and discussion	98
3.3.1 General considerations	98
3.3.2 Thermal decomposition in a flow system	99
3.3.3 Pressure drop across the resin test beds	107
3.4 Conclusions	111
Chapter 4. Mass transfer studies in packed beds	113
of anion exchange resin.	
4.1 Introduction	113
4.1.1 General	113
4.1.2 Column performance	113
4.1.3 Theories of column performance	115
4.2 Experimental	119
4.2.1 Scope of work	119
4.2.2 Design of experiments	119
4.2.3 Experimental method	124
4.3 Assessment of results	131
4.3.1 General	132
4.3.2 Gilliland and Baddour's model	132

	3 .
4.3.3 Calculation of the diffusion coefficients	135
4.3.4 Effect of a varying selectivity coefficie	nt 138
on the breakthrough curve predicted assum	ing
a constant value	
4.3.5 Effect of a varying diffusion coefficient	160
on the breakthrough curve predicted assum	ing
a constant value	···
4.4 Results and discussion	161
4.4.1 Diffusion coefficient in the particle pha	.se 165
4.4.2 Diffusion coefficient in the fluid phase	173
4.4.3 Selectivity coefficients	177
4.5 Conclusions	182
4.6 Nomenclature	186
References .	190
Appendix 1. Conversion of resin samples to	194
desired ionic form.	. •
Appendix 2. Development of the capacity analysi	s 196
scheme.	
Appendix 3. An alternative model of ion exchang	e. 200
Appendix 4. Computer programmes.	201

Chapter 1

INTRODUCTION

Ion exchange resins were first developed for use in water treatment; lately they have found application in many other chemical engineering operations. The increasing use of these materials has opened a whole new field of study, concerned with measuring and improving their performance.

The development of nuclear power in particular has stimulated the use of ion exchanges, both in their traditional applications and where the more common separation processes have proved unsatisfactory for economic or technical reasons. In nuclear chemical operations ion exchange resins are used for refining new materials, represent in water cooled fuels and decontamination of primary ocolant in water cooled reactors.

Ion exchange resins in common with all other engineering materials have disadvantages which limits their usefullness. The inorganic ion exchangers have poor resistance to chemical attack, while the more commonly used organic exchangers are seriously damaged by exposure to radiation and elevated temperature. Elevated temperature is taken as the range from 50°C to 180°C, for the purposes of this report.

 \star

The thermal instability of organic ion exchange materials (such as quaternary ammonium polystyrene based resins), in the hydroxide form is well known. In practical operations, manufacturers recommend that the temperature of process solutions should be kept below 60° C, to avoid serious chemical decomposition. Very little quantitative data exists at the present time on the precise nature of the decomposition reactions, and the degree of chemical decompositions that may ensue at operating conditions above 60° C.

Wheaton and Baumann(ref.Wl) investigated the anion exchangers Dowex 1 and Dowex 2 and found little capacity loss after 26 hours when the hydroxide and chloride forms of these resins were heated at 125°C. Heating at 175°C for 26 hours caused a complete loss of capacity in the hydroxide form and a 75% loss in the chloride form of the resin. Results obtained by heating Dowex 2 in the hydroxide and chloride forms at 95°C for 50 days showed 60% capacity loss and no capacity loss respectively. Hall and Streat (ref.Hl) working with the anion exchanger Deacidite FF hydroxide found 10% loss in capacity when the resin was heated at 100°C for 26 hours and only 20% loss after 100 hours. Marinsky and Potter (ref.Ml) however observed a marked decrease in exchange capacity when Amberlite IRA 400 hydroxide was heated at temperatures of 117°C and 135°C for 100 hours. Amberlite IRA 400 and Dowex 1 are chemically similar. E.W. Baumann (ref.Bl) conducted an investigation into the thermal decomposition of Amberlite IRA 400, in static and simulated flow system and found that the resin decomposed

on heating by 2 distinct reactions, suggested to be the following:-

1-CH2 N+ (CH3)3 OH- - R (-CH2 N (CH3)2 + CH3 OH

where R denotes the resin matrix. Creed (ref.Cl) heated Deacidite FF hydroxide at 150°C and reported total strong base capacity loss in less than 12 hours . Several other workers (ref.Sl,Jl,Pl,P3) have reported results of experimental work on the thermal stability of anion exchange resins, but as yet no exhaustive work has been completed. The results to date are summarised in Table 1.1.

The results of the work described above are incomplete and therefore the first stage of the present work was a systematic study of the thermal stability of a variety of anion exchange resins under carefully controlled conditions, The second stage of the work was an investigation of the variation in the rate of exchange with temperature.

Ion exchange operations, whether in the laboratory or in plant scale processes are most frequently carried out in columns. A solution is passed through a fixed bed of ion exchange particles, where its composition is changed by sorption. The composition change with time, depends on the characteristics of the ion exchanger, and the operating conditions.

	• TRESOLTS OF THERM		I Y INVESTIGAT	IONS TO DATE .
WORKER	RES IN	TIME HEATED	HEATING TEMPERATURE	CAPACITY LOSS
W 1	DOWEX 1 AND 2 HYDROXIDE	26_HRS	125 ° C	LITTLE
W 1	DOWEX 1_AND 2 CHLOR1DE	26 HRS	125 °c	LITTLE
W 1	DOWEX 1 AND 2 HYDROXIDE	26 HRS	175°C	100%
W 1	DOWEX 1 AND 2	26 HRS	175°C	60 %
W1	DOWEX_1_AND_2 HYDROXIDE	50 DAYS	95 ° Ç	60 %
W 1	DOWEX 1 AND 2	50 DAYS	95 °C	NONE
H1	DEACIDITE FF	26 HRS	100°C	10 %
H1	DEACIDITE FF	100-HRS	100 [°] C	20 %
M1	AMBERLITE_IRA_400 HYDROXIDE	100 HRS	117°C	MARKED
M 1	AMBERLITE IRA 400	100 HRS	135°C	MARKED
C1*	DEACIDITE_FF HYDROXIDE	<u>12 HRS</u>	150 [°] C	100 %
B1	AMBERLITE IRA 400	- - - -	ee Chapter 1	

. . .

t, E

The characteristics of an ion exchange resin operating on a given binary ionic system, which affect its performance are resin capacity, selectivity, and the rate of sorption. Resin capacity changes significantly with sustained temperature above 50° C. The selectivity of an ion exchanger for a given ion decreases with temperature since selectivity results in most cases from association processes, which are suppressed by an increasing temperature. The rate of sorption is strongly dependent upon diffusion processes, the rates of which increase markedly with temparature (ref.B8,H6,B9), and are probably also affected by thermal damage.

The effects of temperature increase are therefore more rapid exchange, consequent greater column utilisation, but also an increased rate of resin decomposition. The most economic temperature for any resin operation occurs at the point where increased operating efficiency is balanced by reduced resin lifetime caused by thermal damage.

Anion exchange at temperatures above 50°C is accompanied by thermal decomposition of the resir, and the release of decomposition products. The latter may cause trouble in separation processes by contamination of the process solution. In application where mixed beds of resin are used (e.g. coolant cleanup), some decomposition products may reduce effective cation capacity, and the remainder accumulate in the process equipment. Salt forms of anion exchangers decompose less rapidly at any given temperature and have found application in elevated temperature chemical processing (ref.Rl).

The work presented in this thesis had two aims. Firstly, to examine the feasibility of processing elevated temperature solutions without prior cooling, and secondly to determine whether ambient temperature exchange processes can be significantly improved by increasing the operating temperature. Quantitative information is not available on all the factors relevant to these problems, so the answers must be determined by experiment.

Chapter 2

THERMAL DECOMPOSITION OF ANION EXCHANGE RESINS UNDER STATIC CONDITIONS

2.1 Introduction.

2.1.1 Scope of work, (Table 2.1).

The object of this work was an extensive study of the effect of prolonged exposure to elevated temperatures on selected anion exchange resins (Table 2.2). The term elevated temperature is used in this report to describe the range between 50° C and 180° C.

The effect of time, temperature, sorbed counter ion, decomposition degree of crosslinking and particle size on thermal in anion exchange resins at elevated temperature was investigated. The nature and quantity of all significant decomposition products was determined. The reaction mechanisms were identified and characterised by velocity constants and activation energies. The factors affecting water regain were considered.

2.1.2 Structure of anion exchange resins.

Organic anion exchangers contain fixed, basic, icnic, functional groups attached to an inert, irregular, three dimensional matrix of hydrocarbon chains. The hydrophobic

TABLE 2.1 SCOPE OF STUDIES ON ANION EXCHANGE RESINS

TYPE OF RESIN 0-30 DAYS IRA 400 IR 45 IRA 900 IR 93 EACIDITE FF DEACIDITE J

DOWEX_1 ____DOWEX_3

ORE STRUCTURE RDINARY IRA 400 EFFECT ON RESIN NATURE OF GROUPS N-(ALKYL), IRA 400 N-(ALKYL), IR 45 PYRIDYL PERMUTIT SK

NATURE OF ION OH,CL,B,O,, NO, SO²,CNS,

TYPE OF CROSSLINK METHYLENE BRIDGE DEACIDITE FE DVB TYPE IRA 400

EMPERATURE

PARTICLE SIZE

DEGREE OF CROSSLINKING 2-3, 4-6, 7-9,

14-52 MESH 100-200 MESH

TABLE 2.2 LI	ST OF ANION EXC	HANGERS_USE	D_IN_THIS_WOR	K
STRONG BASE	EXCHANGERS			
TRADE NAME		•B•CAPACITY	W.B.CAPACITY	WATER REGAI
MBERLITE IRA 400	QUATERNARY AMMONIUM POLYSTYRENE	2•90	0.00	1•06
MBERLITE IRA 900		2.90	0 • 30	1 • 25
EACIDITE FF		3,90	0.10	0•98
OWEX 1		2•90	0•28	0•94
ERMUTIT_SK	ALKYL VINYL POLYPYRIDINE	3•40	0.61	0•71
WEAK BASE EX				WATER DEGAI
MBERLITE_IR 45	POLYAMINE POLYSTYRENE		5•48	0•51
MBERLITE IR 93			5.49	0•62
EACIDITE J			5+22	0.40
OWEX-3			5.55	0•30•
		GE_RESINS		
	ULAR ION EXCHAIN			
+ MACRORETIC	N MEQ/GO.	DRY RESIN.		

-

.

matrix is insoluble but flexible and may swell to a limited extent by taking up water, depending on the degree of crosslinking. The hydrophilic functional groups are able to exchange ions selectively and may be weakly or strongly basic. The chemical, mechanical, and thermal properties of an ion exchange resin depend on the nature and degree of crosslinking and the nature and number of fixed ionic groups.

The early ion exchangers, now obsoleta, were based on a phenol formaldehyde polycondensation matrix, crosslinked with unsubstituted phenol. The degree of crosslinking was controlled by the relative amount of phenol anded to the reaction mixture, but this was not easily adjustable. Anion exchange properties were incorporated by the use of m-phenylene diamine. Resins prepared in this way were polyfunctional alighatic amines with very variable properties.

A significant advance was afforded by the introduction of the second generation ion exchange resins based on a polystyr me matrix, and with which this work is entirely eoncerned. In these resins the degree of crosslinking is easily and accurately adjustable by the controlled addition of divinylbenzene. The matrix is chloromethylated in a carefully controlled reaction before quaternization with trimethylamine (type 1) or dimethylethanclamine (type 2). The resulting anion exchanger is almost monofunctional and has reproducible properties.

The following structure has been suggested for amerilite IRA 400, a typical type 1 second generation streng base exchanger, quaternised with trimethylamine (ref H3). (Strong base functional groups are those groups which are capable of exchange over the whole pH range, whereas weak base groups operate only at pH values less than 6).

イ

The resin contains strong base functional groups $-N^+(alkyl)_3$ type and a small proportion of weak base functional groups thought to be of the $-N(alkyl)_n$ type. Type 2 strong base exchangers differ from type 1 only in the type of strong base functional group. A typical example is Amberlite IRA 410:-

Weakly basic exchangers based on the polystyrene matrix are prepared by the amination of a chloromethylated matrix

with amines or ammonia. Examples of this type are Amberlite IR 45 and Dower 3.

Deacidite FF is a type 1 strong base exchanger produced by the suspension cepelymerisation of styrene mith a divinyl aliphatic ester thought to be ethylene glycol dimethacrylate (ref.B6). Subsequent chleromethylation gives a matrix crosslinked by methylene bridges as in structure X although some typical DVB crosslinks are produced as in structure Y. The manufacturers of Deacidite FF claim that their resin centains mainly type X cresslinks, whereas in Amberlite IRA 400 and other type 1 strong base exchangers cepelymerised with divinylbenzene the DVB crosslink predominates (ref. Al,H3).

- CH2 - CH - CH2 -

STRUCTURE

Functional groups are distributed throughout the whole resin matrix and if exchange capacity is to be fully utilised, the exchanging counter ions must be able to move freely through the particle. The pore structure of the conventional

anion exchangers is such that large complex molecules are unable to penetrate into the interior of the particle. Macroreticular resins were introduced to overcome this problem. These are highly porous materials with pores of several hundred Angstrom units diameter and a narrow pore size distribution, which guarantee access to the interior of the particle even when large molecules or non polar solvents are used. They are identical to the conventional resins in all other aspects. An example of this type of anion exchanger is Amberlite IRA 900.

Samples of Deacidite FF used in this work were of the " isoporous" type introduced by the Permutit Co. in 1964 (ref.A2). "Isoporous" resins are claimed to have a uniform distribution of functional groups and pore sizes on the molecular scale.

2.2 Experimental.

2.2.1 Preparation of resin for experimental work.

Raw resin was obtained from the makers predominantly in the chloride form, and treated as follows before use. A large quantity of each resin was thoroughly mixed and divided into equal batches for further treatment. This procedure ensured constant properties in the resin used in this work, because a 10% variation in properties was sometimes found between resin taken from different bottles.

Each batch was conditioned by washing with 10 batch volumes of warm methanol (40°C) and an equal volume of fresh demineralised water, air dried and converted to the required ionic form as described in Appendix 1.

After 99.5% conversion (checked by capacity analysis) batches were stored under methanol in stoppered bottles until required. Immediately before use each batch was soaked in fresh demineralised water for 24 hours, washed with 10 batch volumes of fresh demineralised water and divided into samples of appropriate size.

Resin for mass transfer work was pretreated as follows before carrying out the above operations. The raw material was sieved after air drying and the fraction between 20 and 30 BSS mesh size was retained. Irregular and cracked particles were removed by careful inspection and water elutriation. A sample removed for examination under a microscope showed that this treatment was sufficient to reduce the fraction of undesirable particles to a negligible level (0.005).

2.2.2 Analytical techniques.

a) Capacity analysis.

Initially it had been decided to use the standard Fisher Kunin method for anion exchange capacity analysis. (ref.Fl). However, at an early stage in the work a paper by Juracka and Stamberg (ref.J2) was published which demonstrated certain errors in the Fisher Kunin technique. The paper showed that values of strong base capacity obtained by the Fisher Kunin technique were too low and values of weak base capacity were too high. This was because the ammonium hydroxide reagent used, hydrolysed an appreciable fraction of the strong base capacity. Fisher and Kunin had assumed that ammonium hydroxide only reacted with the weak

base functional groups. The method of Juracka and Stamberg was tested against the Fisher Kunin method and the conclusions of the former confirmed. Results and discussion are given in Appendix 2. The former method was used for all subsequent analyses of capacity. Juracka's method was further modified by using a radiochemical technique to measure chloride, instead of the Volhard volumetric analysis. This technique, described fully in Appendix 2, saved a considerable amount of time since counting could be carried out automatically while other analyses were being made.

b) Water regain.

Water regain was measured by the method of Pepper et al. (ref.P2). Samples were dried at 105°C for 48 hours to obtain the final dry weight. This sufficed to attain constant weight. Water regain was measured after carrying out capacity analysis and samples were therefore always in the sulphate form .

c) Soluble decomposition products.

After heating, resin samples were separated from the liquid in which they have been heated. The liquid and washings from rinsing the sample were analysed for soluble decomposition products. Trimethylamine, methanol, demethylamine, methylamine and ammonia were expected. It soon became apparent that trimethylamine and -methanol only were produced as a result of the decomposition. Trimethylamine was measured by the amine picrate method (ref.Dl). In the past methanol has only been inferred as a decomposition product. Recently, however, quantitative

measurement using a Perkin Elmer vapour phase chromatograph has proved possible. A column containing DE 105K packing, (i.e. pelyethylene glycol 155 supported on chromosorb P) was used, with a flame ionisation detector. Methanol yields were measured only in a few cases, by comparing the area under peaks produced from a sample of liquid and from a controlled sample of known methanol content.

2.2.3 Experimental method.

A large number of small samples (0.5g) of ion exchange resin were heated in demineralised water (5ml.) to provide experimental data. Samples and water were sealed in glass ampoules . to prevent the escape of volatile decomposition products. At temperatures up to 90°C the ampoules were heated in a constant temperature water bath. maintained to within $+ 0.5^{\circ}C$ of the required temperature by a thermostatically controlled lkw. Heater and stirrer unit. At temperatures above 90°C a heavily lagged bath of silicone oil was used : the temperature was maintained to + 1°C of the required value. The ampoules were placed in a small autoclave for work above 100°C. A trial experiment was carried out to determine the time necessary for the interior of the autoclave to attain the bath temperature. This was found to be less than 2 minutes in all cases. 2.2.4 Sources of error and precautions.

a) Incomplete conversion.

Each bath of resin was checked by separate analysis and rejected if less than 99.5% converted to the desired ionic form.

b) Carbon dioxide absorption.

Streat (ref.Hl) showed that anion exchange resins in the hydroxide form absorbe carbon dioxide rapidly on exposure to air. Hydroxide samples were accordingly stored under methanol in stoppered bottles.

c) Impurities in analytical reagents.

checked Methanol, sodium, sulphate and ammonium hydroxide were for chloride content before use in capacity determinations. (see Appendix 2). No chloride was detected.

d) Incomplete removal of sorbed chloride ions during capacity analysis.

The number of column volumes for complete elution of the chloriderions in the resin samples was determined beforehand by collecting successive 10ml. aliquots of column effluent and analysing each for eluted chloride ions, until no further amounts were detected.

c) Loss of velatile decomposition products.

Soluble products of thermal decomposition include volatile amines. Loss of these was avoided by heating resin samples in sealed ampoules. After heating, these ampoules were cooled to ambient temparature and broken under water.

2.3 Results and discussion.

2.3.1 Weak base exchangers.

No significant changes were observed over a 30 day heating period in the four weak base exchangers, which were heated in the chloride and free base forms, at temparatures up to 180° C. Results are shown in Table 2.3. Limits of significance were taken as \pm 0.05 meq/g. change

TABLE 2.3	THERMAL DECON	POSITION CAPAC	ITY CHANGES
	14-52 MESH.	-9% CROSSLINKE	De
EMPERATURE	RESIN	IONIC FORM	CAPACITY AS % OF ORIGIN
-90 C*	18 45	FREE BASE	99•8
	IR 93		99.8
	DEACIDITE)	99•8
	DOWEX 3		100+0
	IR 45	CHLORIDE	100.0
•	IR 93	-	99.9
	DEACIDITE		99.8
	DOWEX 3		99•8
180 C+	IR 45	FREE BASE	100+0
	IR 93		100 • 1
	DEACIDITE		100+0
	DOWEX 3		99.9
	IR_45	CHLORIDE	99.8
	10 93		100.0
	· · · · · · · · · · · · · · · · · · ·		

+30 DAYS HEATING +10 DAYS HEATING

NO SIGNIFICANT CHANGE IN WATER REGAIN. ERROR ON MEASUREMENTS IS OF THE ORDER OF 1-2%

in capacity, 0.01 meq/g. yield of decomposition products and \pm 0.01 gH₂O/g. dry resin for water regain. Weak base functional groups in these anion exchangers are evidently stable up to 180° C for long periods of time.

Previous reports (ref.BlO) had indicated good thermal stability in weak base exchangers up to 100^OC. These new results suggest that certain exchangers with properties similar to weak base exchangers might be usefully applied to water coolant treatment. For example Amberlite IR 63 (which has become available since this work was finished) operates effectively over the whole pH range (ref.K3) yet has strong similarities to the weak base exchangers in all other respects suggesting that the above thermal stability results may well apply.

2.3.2 Strong base exchangers in the hydroxide form.

Strong base capacity decreases and the rate of capacity loss increases with increasing temperature above 50° C. In the hydroxide form Amberlite IRA 400 and Dowex 1 are stable at 50° C (Table 2.4) but have lost approximately 25% and 50% strong base capacity at 75° C and 90° C respectively after 30 days heating (Fig.2.1 and 2.4). Amberlite IRA 900 (Fig.2.2), a macroreticular resin is slightly more stable with strong base capacity losses of about 20% at 75° C and 40% at 90° C over the same period. Deacidite FF resin (Fig 2.3) has the greatest stability, 1.sing only about 10% and 30% strong base capacity at 75° C and 90° C respectively after 30 days heating. The results for Amberlite IRA 400 are in good agreement with E.W. Baumann (ref.Bl). At 120° C a more rapid loss of strong

				23
TABLE 2	2.4 THERMAL D STRONG BA	ECOMPOSITION.	CAPACITY_CHANGES+ HYDROXIDE_AND_CHLORIDE	
HYDROXI	DE FORMS AT 5	0 [°] C		
RESIN	CAPACITY	BLANK	AFTER 30DAYS HEATING	
IRA 400	S•B•	2.91	2.90	
	W•B•	0•28	0•28	
IRA 900	S•B•	3.01	3.02	
	Weberra	0.21	0 • 20	
DEACIDITE FF	lainile S•B•Chining a marging W•B• of marging	3.90	3.91	
DOWEX 1	S•B•	2.B1	2•B1	
	WeBe	0+21	0+21	
	Contraction of the second sec second second sec			regionaria de la constante de l
		9~		
CHLORID	E FORMS AT 90	۰ <u>ر</u>		
CHLORID RESIN	E FORMS AT 90 CAPACITY	CBLANK	AFTER_30 DAYS_HEATING	
CHLORID RESIN	E FORMS AT 90 CAPACITY S.B.	°cBLANK 8_90	AFTER_30_DAYS_HEATING	
CHLORID RESIN	E FORMS AT 90 CAPACITY S.B. W.B.	°cBLANK 2.90 0.28	AFTER_30_DAYS_HEATING 2.91 0.28	
CHLORID RESIN IRA 400 IRA 900	E FORMS AT 90 CAPACITY S.B. W.B. S.B. W.B.	°CBLANK 2.90 0.28 3.01 0.22	AFTER_30_DAYS_HEATING 2.91 0.28 3.00 0.22	
CHLORID RESIN IRA 400 IRA 900	E FORMS AT 90 CAPACITY S.B. W.B. S.B. W.B.	°CBLANK 2.90 0.28 3.01 0.22	AFTER_30_DAYS_HEATING 2.91 0.28 3.00 0.22 2.91 0.28	
CHLORID RESIN IRA 400 IRA 900 DEACIDITE FF	E FORMS AT 90 	°C BLANK 2.90 0.28 3.01 0.22 3.91 0.11	AFTER_30_DAYS_HEATING 2.91 0.28 3.00 0.22 3.92 0.13	
CHLORID RESIN IRA 400 IRA 900 DEACIDITE FF	E FORMS AT 90 	℃ BLANK 2.90 0.28 3.01 0.22 3.91 0.11 2.80	AFTER_30_DAYS_HEATING 2.91 0.28 3.00 0.22 3.92 0.13 2.79	
CHLORID RESIN IRA 400 IRA 900 DEACIDITE FF DOWEX 1	E FORMS AT 90 CAPACITY S.B. W.B. S.B. W.B. S.B. W.B. S.B. W.B. S.B. W.B.	°C BLANK 2.90 0.28 3.01 0.22 3.91 0.11 2.80 0.21	AFTER_30_DAYS_HEATING 2.91 0.28 3.00 0.22 3.92 0.13 2.79 0.22	
CHLORID RESIN IRA 400 IRA 900 DEACIDITE FF DOWEX-1	E FORMS AT 90 CAPACITY S.B. W.B. S.B. W.B. S.B. W.B. S.B. W.B. S.B. W.B.	℃ BLANK 2.90 0.28 3.01 0.22 3.91 0.11 2.80 0.21	AFTER_30_DAYS_HEATING 2.91 0.28 3.00 0.22 3.92 0.13 2.79 0.22	
CHLORID RESIN IRA 400 IRA 900 DEACIDITE FF DOWEX 1	E FORMS AT 90 CAPACITY S.B. W.B. S.B. W.B. S.B. W.B. S.B. W.B. S.B. W.B.	°C 	AETER_30_DAYS_HEATING 2.91 0.28 3.00 0.22 3.92 0.13 2.79 0.22	
CHLORID RESIN IRA 400 IRA 900 DEACIDITE FF DOWEX 1	E FORMS AT 90 CAPACITY S.B. W.B. S.B. W.B. S.B. W.B. S.B. W.B.	℃ BLANK 2.90 0.28 3.01 0.28 3.01 0.28 3.01 0.28 3.01 0.28 3.01 0.28 3.01 0.28	AETER_30_DAYS_HEATING 2.91 0.28 3.00 0.22 3.92 0.13 2.79 0.22	
CHLORID RESIN IRA 400 IRA 900 DEACIDITE FF DOWEX 1	E FORMS AT 90 CAPACITY S.B. W.B. S.B. W.B. S.B. W.B. S.B. W.B.	℃ BLANK 2.90 0.28 3.01 0.22 3.91 0.11 2.80 0.21	AETER_30_DAYS_HEATING 2.91 0.28 3.00 0.22 3.92 0.13 2.79 0.22	
CHLORID RESIN IRA 400 IRA 900 DEACIDITE FF DOWEX 1	E FORMS AT 90 	℃ BLANK 2.90 0.28 3.01 0.22 3.91 0.11 2.80 0.21	AETER_30_DAYS_HEATING 2.91 0.28 3.00 0.22 3.92 0.13 2.79 0.22	
CHLORID RESIN IRA 400 IRA 900 DEACIDITE FF DOWEX 1	E FORMS AT 90 	℃ BLANK 2.90 0.28 3.01 0.22 3.91 0.11 2.80 0.21	AFTER_30_DAYS_HEATING	

base capacity was noted. Considerable loss occurred in about 4 to 5 days, in all four strong base resins. Above 120° C loss in strong base capacity was very rapid; complete loss occurred in 12 hours at 150° C and in four hours at 180° C. Deacidite FF was again the most stable of the resins over the range 120° C to 180° C (Fig. 2.1-2.4). Marinsky and Potter's values for Amberlite IRA 400 at 117° C and 135° C are again in good agreement (ref.M1).

2

Significant increases in weak base capacity and yields of trimethylamine were measured when any loss in strong base capacity occurred. At temperatures-up to 90° C, the weak base capacity increased steadily with time, reaching 120% of the original value in Amberlite IRA 400, Dowex 1 and Amberlite IRA 900 and 150% in Deacidite FF, after 30 days heating at 75°C (Fig.2.5-2.8). At 90°C values of 145% and 160% respectively were attained after the same heating period. A similar result was observed for the production of trimethylamine (Fig.2.9-2.12).

At temperatures of 120°C and above, the weak base capacity increased rapidly, reaching a maximum when all strong base capacity had been destroyed, after which a slew decrease in weak base rapacity occurred. At higher temparatures six fold increases of weak base capacity were observed. Yields of trimethylamine continued to increase as the heating temperature was increased until all strong base capacity had been lost, after which no further change occurred. Weak base capacity changes are plotted on a logarithmic scale for the sake of presentation.

THERMAL DECOMPOSITION STRONG BASE CAPACITY CHANGES.

AMBERLITE IRA 400 - HYDROXIDE AND CHLORIDE

14-52 MESH, 7-9 % CROSSLINKING.

FIG 2.2

THERMAL DECOMPOSITION STRONG BASE CAPACITY CHANGES. AMBERLITE IRA 900 - HYDROXIDE AND CHLORIDE

THERMAL DECOMPOSITION STRONG BASE CAPACITY CHANGES

DEACIDITE FF - HYDROXIDE AND CHLORIDE

14-52 MESH, 7-9 % CROSSLINKING.

HEATING PERIOD

THERMAL DECOMPOSITION

STRONG BASE CAPACITY CHANGES

DOWEX 1 - HYDROXIDE AND CHLORIDE

14-52 MESH, 7-9 % CROSSLINKING.

FIG 2.4

THERMAL DECOMPOSITION WEAK BASE CAPACITY CHANGES.

AMBERLITE IRA 400 - HYDROXIDE AND CHLORIDE

14-52 MESH, 7-9 % CROSSLINKING.

THERMAL DECOMPOSITION WEAK BASE CAPACITY CHANGES.

AMBERLITE IRA 900 - HYDROXIDE AND CHLORIDE 14-52 MESH, 7-9 % CROSSLINKING.

THERMAL DECOMPOSITION WEAK BASE CAPACITY CHANGES.

DEACIDITE FF - HYDROXIDE AND CHLORIDE 14-52 MESH, 7-9 % CROSSLINKING.

HEATING PERIOD

(MEQ/G)

WEAK BASE CAPACITY

THERMAL DECOMPOSITION WEAK BASE CAPACITY CHANGES.

DOWEX 1 - HYDROXIDE AND CHLORIDE

14-52 MESH, 7-9 % CROSSLINKING.

HEATING PERIOD
THERMAL DECOMPOSITION TRIMETHYLAMINE YIELD. AMBERLITE IRA 400 - HYDROXIDE AND CHLORIDE

14-52 MESH, 729 % CROSSLINKING.

FIG 2.10

THERMAL DECOMPOSITION TRIMETHYLAMINE YIELD.

AMBERLITE IRA 900 - HYDROXIDE AND CHLORIDE

14-52 MESH, 7-9 % CROSSIINKING.

HEATING PERIOD

THERMAL DECOMPOSITION TRIMETHYLAMINE YIELD.

DEACIDITE FF - HYDROXIDE AND CHLORIDE

14-52 MESH, 7-9 % CROSSLINKING.

FIG 2.12

THERMAL DECOMPOSITION TRIMETHYLAMINE YIELD.

DOWEX 1 - HYDROXIDE AND CHLORIDE

14-52 MESH, 7-9 % CROSSLINKING.

(MEQ/G.)

TRIMETHYLAMINE YIELD

HEATING PERIOD

It is interesting to compare the slow decomposition of the weak base groups formed by the decomposition of strong base capacity in the strong base exchangers, with the completely stable weak base groups found in the weak base exchangers. These two types of group are evidently of a different nature, even though they both give a weak base capacity reaction during capacity analysis.

It was suspected that methanol would be present as a decomposition product at all temperatures, but actual measurements were only made at 150°C in the static experiments. Yields of methanol steichiometrically equivalent to 10% of the increase in weak base capacity were measured in all four resins (Table 2.8). If the reaction scheme proposed by E.W. Baumann is correct then the yield of methanol should be stoichiometrically equivalent to the increase in weak base capacity. In fact this is not so, and Baumann's scheme must be modified to make allowance for this fact.

The changes observed during the heating of strong base exchange resins can be adequately described by the following three reactions. The proportion of the decomposition occurring by any one reaction varies with temparature.

CH2 NICH33 OH --- R ---- CH2 OH + (CH3)2 N

A- CH2 N (CH3)3 OH ---- B (CH3)2 + CH3 OH

(- CH2 N (CH3) OIT -- R (CH2 N (CH3) +

Further evidence in support of this scheme is given in Section 2.3.5.

٩.

22

38

The small loss in weight that occurred when resin samples were heated was slightly in excess of the measured weight of trimethylamine resulting from heating. The small yield of methanol, which was not measured in all cases, was not taken into account and is probably responsible for the discrepancy. The accuracy of the loss in weight experiments was poor and little inference can be made from them.

No significant change in the water regain was detected up to 90° C, but at 120° C, a 150° C and 180° C a rapid decrease in water regain accompanied the loss in strong base capacity (Fig. 2.13-2.16). In all cases it was noted that little change in water regain took place until between 30% and 50% of the strong base capacity loss occurred. The water regain attained a constant value, independent of heating temperature (within experimental error) when all strong base capacity was lost. This suggests that a definite fraction of the water regain of a dry resin is associated with the strong base functional groups, probably as water of hydration and that this fraction was lost when the strong base groups are destroyed.

Thermal decrosslinking can be discounted since it would cause an increase in water regain. The change in water regain corresponds completely with the change in

THERNAL DECOMPOSITION WATER REGAIN. AMBERLITE IRA 400 - HYDROXIDE 14-52 MESH, 7-9 % CROSSLINKING.

(G./G. DRY RESIN)

WATER REGAIN

HEATING PERIOD

AMBERLITE IRA 900 - HYDROXIDE 14-52 MESH, 7-9 % CROSSLINKING.

THERMAL DECOMPOSITION WATER REGAIN.

THERMAL DECOMPOSITION WATER REGAIN.

DEACIDITE FF - HYDROXIDE

14-52 MESH, 7-9 % CROSSLINKING.

HEATING PERIOD

THERMAL DECOMPOSITION WATER REGAIN

DOWEX 1 - HYDROXIDE

14-52 MESH, 7-9 % CROSSLINKING.

(G./G. DRY RESIN)

WATER REGAIN

HEATING PERIOD

RESIN IN TH	E HYDROXIDE FOR	M										
TEMPERATURE	75.0 C											
TIME		DAYS	0	0.25	1.00	2.00	5.00	10.00	15.00	20.00	25.00	30.00
AMBERLITE	SB CAPACITY	MEQ/G	2.92	2.88	2.80	2.74	2.72	2.63	2.48	2.38	2.28	2.21
IRA 400	SB CAPACITY	MED /C	1.00	0.99	0.20	0.20	0.93	0.30		0.33	0.33	0.34
	ΜΟ ΟΑΡΑΟΙΙΙ Τητλι Γλρδριτή	MEQ/G	3.20	3.16	3.09	3.03	3.01	. 2.93	2.79	2.71	2.61	2.55
	TRIMETHYLAMINE	MEQ/G	υ.	0.03	0.10	0.16	0.19	0.28	0.40	0.50	0.60	D.64
	METHANOL	MEQ/G	······									
	WTR REGAIN	GM/GM	1.06	1.07	1.06	1.09	1.06	1.07	1.06	1.07	1.06	1.08
AMBERLITE	SB CAPACITY	MEQ/G	3.02	3.01	3.01	2.98	2.96	2.94	2.85	2.70	2.60	2.56
IRA 900	SB CAPACITY	- · · · · · · · · · · ·	1.00	1.00	1.00	0.99	0.98	0.97	0.94	0.89	0.86	0.85
	WB CAPACITY	MEQ/G	0.20	0.20	0.20	0.20	0.21	0.21	0.21	0.22	0.22	0.23
	TOTAL CAPACITY	MEQ/G	3.22	3.21	3.21	3.18	3.11	3.12	3.00	0.29	2.02	2019
		MEQ/G	a V € stal	UOUL		U U U Z			- Uelo	V.20	Vetv	UUUTJ y
	WTR REGAIN	GM/GM	1.25	1.23	1.24	1.27	1.25	1.25	1.26	1.24	1.25	1.23
DELCIOITE		NEO /C	2 01	2 01	2 05	2 92	3.76	2.40	3-68	3.64	3-63	3-54
DEAUIDITE	SD CAPACITY		1_00	1.00	0_98	0_9A	0-96	0_94	0_94	0.93	0.93	0.91
	WB CAPACITY	MEQ/G	0.10	0.10	0.10	0.11	0.11	0.12	0.12	0.12	0.12	0.13
	TOTAL CAPACITY	MEQ/G	4.01	4.01	3.95	3.94	3.87	3.81	3.80	3.76	3,75	3.67
	TRIMETHYLAMINE	MEQ/G	0.	0.	0.06	0.08	0.13	0.22	0.24	0.25	0.26	0.34
	METHANOL WTR REGAIN	MEQ/G GM/GM	0 • 9 8	0.96	0.98	D. 96	0.96	0.97	0.96	0.99	0.98	D. 9.9
				· •		- <u>-</u>			3 10	3 37	2 21	2 27
DOWEX	SB CAPACITY	MEQ/G	2•82 (1 00	2.78	2.70	Z+68	2.02	C. 20 54	2.48	2021	0.92	0-80
L	SB CAPACITY	MEDIC	1.00	0.21	0.90		0.72	0.23	0.24	0.25	0.25	0.25
A second seco	ΤΟΤΔΙ CΔΡΔCΙΤΥ	MEQ/G	3.03	2.99	2.98	2.90	2.83	2.77	2.72	2.62	2.56	2.52
	TRIMETHYLAMINE	MEQ/G	0.	0.03	0.05	0.12	0.19	D.27	0.30	0.40	0.48	0.52
	METHANOL	MEQ/G								· · · · · ·		
	WTR REGAIN	GM/GM	0.94	0.91	0.96	0.94	0.92	0.92	0.91	0.94	0.94	·_0•92
				.			7.7					
interest in the interest of the second s	and the second		the second of the state of the second		and a second							
· · · · · · · · · · · · · · · · · · ·									a se de la composición	· · · _	ang ang san san	
SAMPLE 2										••••••••••••••••••••••••••••••••••••••		
SAMPLE 2										· · · · · ·		
SAMPLE 2 Resin in th	E HYDROXIDE FOR	N										
SAMPLE 2 RESIN IN TH TEMPERATURE	IE HYDROXIDE FOR 75.0 C	M								· · · · · · · · · · · · · · · · · · ·		
SAMPLE 2 RESIN IN TH TEMPERATURE TIME	IE HYDROXIDE FOR 75.0 C	M DAYS	0	0.25	1.00	2.00	5.00	10.00	15.00	20.00	25.00 ·	30.00
SAMPLE 2 RESIN IN TH TEMPERATURE TIME	IE HYDROXIDE FOR 75.0 C Sb Capacity	M DAYS MEQ/G	0	0•25 2-87	1.00	2.00	5.0D 2.68	10.00	15.00 2.34	20.00	25.00 2.27	30.00 2.25
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400	E HYDROXIDE FDR 75.0 C SB CAPACITY SB CAPACITY	M DAYS MEQ/G	0 2.92 1.00	0•25 2•87 0•98	1.00 2.77 0.95	2.00 2.75 0.94	5.0D 2.68 0.92	10.00 2.62 0.90	15.00 2.34 0.80	20.00 2.36 0.81	25.00 2.27 0.78	30.00 2.25 0.77
SAMPLE 2 RESIN IN TH TEMPERATURE 1 TIME AMBERLITE IRA 400	IE HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY	M DAYS MEQ/G MEQ/G	0 2.92 1.00 0.27	0•25 2•87 0•98 0•27	1.00 2.77 0.95 0.28	2.00 2.75 0.94 0.28	5.00 2.68 0.92 0.29	10.00 2.62 0.90 0.30	15.00 2.34 0.80 0.31	20.00 2.36 0.81 0.33	25.00 2.27 0.78 0.33	30.00 2.25 0.77 0.35
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400	IE HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY	M DAYS MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19	0.25 2.87 0.98 0.27 3.14	1.00 2.77 0.95 0.28 3.05	2.00 2.75 0.94 0.28 3.03	5.0D 2.68 0.92 0.29 2.97	10.00 2.62 0.90 0.30 2.92	15.00 2.34 0.80 0.31 2.65	20.00 2.36 0.81 0.33 2.69	25.00 2.27 0.78 0.33 2.60	30.00 2.25 0.77 0.35 2.60
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400	E HYDROXIDE FDR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0.	0.25 2.87 0.98 0.27 3.14 0.05	1.00 2.77 0.95 0.28 3.05 0.12	2.00 2.75 0.94 0.28 3.03 0.15	5.00 2.68 0.92 0.29 2.97 0.22	10.00 2.62 0.90 0.30 2.92 0.29	15.00 2.34 0.80 0.31 2.65 0.41	20.00 2.36 0.81 0.33 2.69 0.47	25.00 2.27 0.78 0.33 2.60 0.60	30.00 2.25 0.77 0.35 2.60 0.64
SAMPLE 2 RESIN IN TH TEMPERATURE ITIME AMBERLITE IRA 400	E HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G GM/GM	0 2.92 1.00 0.27 3.19 0. 1.08	0.25 2.87 0.98 0.27 3.14 0.05 1.09	1.00 2.77 0.95 0.28 3.05 0.12 1.08	2.00 2.75 0.94 0.28 3.03 0.15 1.05	5.0D 2.68 0.92 0.29 2.97 0.22 1.04	10.00 2.62 0.90 0.30 2.92 0.29 1.08	15.00 2.34 0.80 0.31 2.65 0.41 1.09	20.00 2.36 0.81 0.33 2.69 0.47 1.07	25.00 2.27 0.78 0.33 2.60 0.60 1.07	30.00 2.25 0.77 0.35 2.60 0.64 1.07
SAMPLE 2 RESIN IN TH TEMPERATURE I IME AMBERLITE IRA 400	IE HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G GM/GM	0 2.92 1.00 0.27 3.19 0. 1.08	0.25 2.87 0.98 0.27 3.14 0.05 1.09	1.00 2.77 0.95 0.28 3.05 0.12 1.08	2.00 2.75 0.94 0.28 3.03 0.15 1.05	5.00 2.68 0.92 0.29 2.97 0.22 1.04	10.00 2.62 0.90 0.30 2.92 0.29 1.08	15.00 2.34 0.80 0.31 2.65 0.41 1.09	20.00 2.36 0.81 0.33 2.69 0.47 1.07	25.00 2.27 0.78 0.33 2.60 0.60 1.07	3D.0D 2.25 0.77 0.35 2.60 0.64 1.07
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400	E HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G GM/GM MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01	0.25 2.87 0.98 0.27 3.14 0.05 1.09 3.00	1.00 2.77 0.95 0.28 3.05 0.12 1.08 2.98	2.00 2.75 0.94 0.28 3.03 0.15 1.05 2.95	5.0D 2.68 0.92 0.29 2.97 0.22 1.04 2.89	10.00 2.62 0.90 0.30 2.92 0.29 1.08 2.90	15.00 2.34 0.80 0.31 2.65 0.41 1.09 2.77	20.00 2.36 0.81 0.33 2.69 0.47 1.07 2.72	25.00 2.27 0.78 0.33 2.60 0.60 1.07 2.60	30.00 2.25 0.77 0.35 2.60 0.64 1.07 2.54 0.86
SAMPLE 2 RESIN IN TH TEMPERATURE ITIME AMBERLITE IRA 400 AMBERLITE IRA 900	E HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY SB CAPACITY	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00	0.25 2.87 0.98 0.27 3.14 0.05 1.09 3.00 1.00	1.00 2.77 0.95 0.28 3.05 0.12 1.08 2.98 0.99	2.00 2.75 0.94 0.28 3.03 0.15 1.05 2.95 0.98	5.00 2.68 0.92 0.29 2.97 0.22 1.04 2.89 0.96	10.00 2.62 0.90 0.30 2.92 0.29 1.08 2.90 0.96	15.00 2.34 0.80 0.31 2.65 0.41 1.09 2.77 0.92 0.19	20.00 2.36 0.81 0.33 2.69 0.47 1.07 2.72 0.90 0.20	25.00 2.27 0.78 0.33 2.60 0.60 1.07 2.60 0.86 0.86	30.00 2.25 0.77 0.35 2.60 0.64 1.07 2.54 0.84 0.84
SAMPLE 2 RESIN IN TH TEMPERATURE ITIME AMBERLITE IRA 400 AMBERLITE IRA 900	IE HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G GM/GM MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19	0.25 2.87 0.98 0.27 3.14 0.05 1.09 3.00 1.00 0.18 3.18	1.00 2.77 0.95 0.28 3.05 0.12 1.08 2.98 0.99 0.18 3.16	2.00 2.75 0.94 0.28 3.03 0.15 1.05 2.95 0.98 0.18 3.13	5.00 2.68 0.92 0.29 2.97 0.22 1.04 2.89 0.96 0.19 3.08	10.00 2.62 0.90 0.30 2.92 0.29 1.08 2.90 0.96 0.19 3.09	15.00 2.34 0.80 0.31 2.65 0.41 1.09 2.77 0.92 0.19 2.96	20.00 2.36 0.81 0.33 2.69 0.47 1.07 2.72 0.90 0.20 2.92	25.00 2.27 0.78 0.33 2.60 0.60 1.07 2.60 0.86 0.20 2.80	30.00 2.25 0.77 0.35 2.60 0.64 1.07 2.54 0.84 0.23 2.77
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900	IE HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G GM/GM MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0.	0.25 2.87 0.98 0.27 3.14 0.05 1.09 3.00 1.00 0.18 3.18 0.03	1.00 2.77 0.95 0.28 3.05 0.12 1.08 2.98 0.99 0.18 3.16 0.01	2.00 2.75 0.94 0.28 3.03 0.15 1.05 2.95 0.98 0.18 3.13 0.04	5.0D 2.68 0.92 0.29 2.97 0.22 1.04 2.89 0.96 0.19 3.08 0.07	10.00 2.62 0.90 0.30 2.92 0.29 1.08 2.90 0.96 0.19 3.09 0.06	15.00 2.34 0.80 0.31 2.65 0.41 1.09 2.77 0.92 0.19 2.96 0.15	20.00 2.36 0.81 0.33 2.69 0.47 1.07 2.72 0.90 0.20 2.92 0.30	25.00 2.27 0.78 0.33 2.60 0.60 1.07 2.60 0.86 0.20 2.80 0.41	30.00 2.25 0.77 0.35 2.60 0.64 1.07 2.54 0.84 0.23 2.77 0.44
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900	E HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0.	0.25 2.87 0.98 0.27 3.14 0.05 1.09 3.00 1.00 0.18 3.18 0.03	1.00 2.77 0.95 0.28 3.05 0.12 1.08 2.98 0.99 0.18 3.16 0.01	2.00 2.75 0.94 0.28 3.03 0.15 1.05 2.95 0.98 0.18 3.13 0.04	5.00 2.68 0.92 0.29 2.97 0.22 1.04 2.89 0.96 0.19 3.08 0.07	10.00 2.62 0.90 0.30 2.92 0.29 1.08 2.90 0.96 0.19 3.09 0.06	15.00 2.34 0.80 0.31 2.65 0.41 1.09 2.77 0.92 0.19 2.96 0.15	20.00 2.36 0.81 0.33 2.69 0.47 1.07 2.72 0.90 0.20 2.92 0.30	25.00 2.27 0.78 0.33 2.60 0.60 1.07 2.60 0.86 0.20 2.80 0.41	30.00 2.25 0.77 0.35 2.60 0.64 1.07 2.54 0.84 0.23 2.77 0.44
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900	E HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G GM/GM MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27	0.25 2.87 0.98 0.27 3.14 0.05 1.09 3.00 1.00 0.18 3.18 0.03 1.26	1.00 2.77 0.95 0.28 3.05 0.12 1.08 2.98 0.99 0.18 3.16 0.01 1.26	2.00 2.75 0.94 0.28 3.03 0.15 1.05 2.95 0.98 0.18 3.13 0.04 1.27	5.00 2.68 0.92 0.29 2.97 0.22 1.04 2.89 0.96 0.19 3.08 0.07 1.27	10.00 2.62 0.90 0.30 2.92 0.29 1.08 2.90 0.96 0.19 3.09 0.06 1.27	15.00 2.34 0.80 0.31 2.65 0.41 1.09 2.77 0.92 0.19 2.96 0.15 1.29	20.00 2.36 0.81 0.33 2.69 0.47 1.07 2.72 0.90 0.20 2.92 0.30 1.26	25.00 2.27 0.78 0.33 2.60 0.60 1.07 2.60 0.86 0.20 2.80 0.41 1.25	30.00 2.25 0.77 0.35 2.60 0.64 1.07 2.54 0.84 0.23 2.77 0.44 1.27
SAMPLE 2 RESIN IN TH TEMPERATURE ITIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE	E HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87	0.25 2.87 0.98 0.27 3.14 0.05 1.09 3.00 1.00 0.18 3.18 0.03 1.26 3.86	1.00 2.77 0.95 0.28 3.05 0.12 1.08 2.98 0.99 0.18 3.16 0.01 1.26 3.85	2.00 2.75 0.94 0.28 3.03 0.15 1.05 2.95 0.98 0.18 3.13 0.04 1.27 3.83	5.00 2.68 0.92 0.29 2.97 0.22 1.04 2.89 0.96 0.19 3.08 0.07 1.27 3.78	10.00 2.62 0.90 0.30 2.92 0.29 1.08 2.90 0.96 0.19 3.09 0.06 1.27 3.67	15.00 2.34 0.80 0.31 2.65 0.41 1.09 2.77 0.92 0.19 2.96 0.15 1.29 3.64	20.00 2.36 0.81 0.33 2.69 0.47 1.07 2.72 0.90 0.20 2.92 0.30 1.26 3.60	25.00 2.27 0.78 0.33 2.60 0.60 1.07 2.60 0.86 0.20 2.80 0.41 1.25 3.60	30.00 2.25 0.77 0.35 2.60 0.64 1.07 2.54 0.84 0.23 2.77 0.44 1.27 3.60
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF	IE HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G GM/GM MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00	0.25 2.87 0.98 0.27 3.14 0.05 1.09 3.00 1.09 3.00 1.00 0.18 3.18 0.03 1.26 3.86 1.00	1.00 2.77 0.95 0.28 3.05 0.12 1.08 2.98 0.99 0.18 3.16 0.01 1.26 3.85 0.99	2.00 2.75 0.94 0.28 3.03 0.15 1.05 2.95 0.98 0.18 3.13 0.04 1.27 3.83 0.99	5.0D 2.68 0.92 0.29 2.97 0.22 1.04 2.89 0.96 0.19 3.08 0.07 1.27 3.78 0.98	10.00 2.62 0.90 0.30 2.92 0.29 1.08 2.90 0.96 0.19 3.09 0.06 1.27 3.67 0.95	15.00 2.34 0.80 0.31 2.65 0.41 1.09 2.77 0.92 0.19 2.96 0.15 1.29 3.64 0.94	20.00 2.36 0.81 0.33 2.69 0.47 1.07 2.72 0.90 0.20 2.92 0.30 1.26 3.60 0.93	25.00 2.27 0.78 0.33 2.60 0.60 1.07 2.60 0.86 0.20 2.80 0.41 1.25 3.60 0.93	30.00 2.25 0.77 0.35 2.60 0.64 1.07 2.54 0.84 0.23 2.77 0.44 1.27 3.60 0.93
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF	IE HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY WB CAPACITY WB CAPACITY WB CAPACITY	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10	0.25 2.87 0.98 0.27 3.14 0.05 1.09 3.00 1.00 0.18 3.18 0.03 1.26 3.86 1.00 0.10	1.00 2.77 0.95 0.28 3.05 0.12 1.08 2.98 0.99 0.18 3.16 0.01 1.26 3.85 0.99 0.10	2.00 2.75 0.94 0.28 3.03 0.15 1.05 2.95 0.98 0.18 3.13 0.04 1.27 3.83 0.99 0.11	5.00 2.68 0.92 0.29 2.97 0.22 1.04 2.89 0.96 0.19 3.08 0.07 1.27 3.78 0.98 0.11	10.00 2.62 0.90 0.30 2.92 0.29 1.08 2.90 0.96 0.19 3.09 0.06 1.27 3.67 0.95 0.12	15.00 2.34 0.80 0.31 2.65 0.41 1.09 2.77 0.92 0.19 2.96 0.15 1.29 3.64 0.94 0.12	20.00 2.36 0.81 0.33 2.69 0.47 1.07 2.72 0.90 0.20 2.92 0.30 1.26 3.60 0.93 0.13	25.00 2.27 0.78 0.33 2.60 0.60 1.07 2.60 0.86 0.20 2.80 0.41 1.25 3.60 0.93 0.12	30.00 2.25 0.77 0.35 2.60 0.64 1.07 2.54 0.84 0.23 2.77 0.44 1.27 3.60 0.93 0.12
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF	IE HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY SB CAPACITY WB CAPACITY WB CAPACITY WB CAPACITY CAPACITY SB CAPACITY SB CAPACITY	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10 3.97	0.25 2.87 0.98 0.27 3.14 0.05 1.09 3.00 1.09 3.00 1.00 0.18 3.18 0.03 1.26 3.86 1.00 0.10 3.96	1.00 2.77 0.95 0.28 3.05 0.12 1.08 2.98 0.99 0.18 3.16 0.01 1.26 3.85 0.99 0.10 3.95	2.00 2.75 0.94 0.28 3.03 0.15 1.05 2.95 0.98 0.18 3.13 0.04 1.27 3.83 0.99 0.11 3.94	5.00 2.68 0.92 0.29 2.97 0.22 1.04 2.89 0.96 0.19 3.08 0.07 1.27 3.78 0.98 0.11 3.89	10.00 2.62 0.90 0.30 2.92 0.29 1.08 2.90 0.96 0.19 3.09 0.06 1.27 3.67 0.95 0.12 3.79	15.00 2.34 0.80 0.31 2.65 0.41 1.09 2.77 0.92 0.19 2.96 0.15 1.29 3.64 0.94 0.12 3.76	20.00 2.36 0.81 0.33 2.69 0.47 1.07 2.72 0.90 0.20 2.92 0.30 1.26 3.60 0.93 0.13 3.73 0.26	25.00 2.27 0.78 0.33 2.60 0.60 1.07 2.60 0.86 0.20 2.80 0.41 1.25 3.60 0.93 0.12 3.72 0.24	30.00 2.25 0.77 0.35 2.60 0.64 1.07 2.54 0.84 0.23 2.77 0.44 1.27 3.60 0.93 0.12 3.72 0.24
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF	IE HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10 3.97 0.	0.25 2.87 0.98 0.27 3.14 0.05 1.09 3.00 1.09 3.00 1.00 0.18 3.18 0.03 1.26 3.86 1.00 0.10 3.96 0.01	1.00 2.77 0.95 0.28 3.05 0.12 1.08 2.98 0.99 0.18 3.16 0.01 1.26 3.85 0.99 0.10 3.95 0.01	2.00 2.75 0.94 0.28 3.03 0.15 1.05 2.95 0.98 0.18 3.13 0.04 1.27 3.83 0.99 0.11 3.94 0.04	5.0D 2.68 0.92 0.29 2.97 0.22 1.04 2.89 0.96 0.19 3.08 0.07 1.27 3.78 0.98 0.11 3.89 0.10	10.00 2.62 0.90 0.30 2.92 0.29 1.08 2.90 0.96 0.19 3.09 0.06 1.27 3.67 0.95 0.12 3.79 0.18	15.00 2.34 0.80 0.31 2.65 0.41 1.09 2.77 0.92 0.19 2.96 0.15 1.29 3.64 0.94 0.12 3.76 0.23	20.00 2.36 0.81 0.33 2.69 0.47 1.07 2.72 0.90 0.20 2.92 0.30 1.26 3.60 0.93 0.13 3.73 0.24	25.00 2.27 0.78 0.33 2.60 0.60 1.07 2.60 0.86 0.20 2.80 0.41 1.25 3.60 0.93 0.12 3.72 0.24	30.00 2.25 0.77 0.35 2.60 0.64 1.07 2.54 0.84 0.23 2.77 0.44 1.27 3.60 0.93 0.12 3.72 0.24
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF	IE HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TOTAL CAPACITY MB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10 3.97 0. 0.96	0.25 2.87 0.98 0.27 3.14 0.05 1.09 3.00 1.09 3.00 1.00 0.18 3.18 0.03 1.26 3.86 1.00 0.10 3.96 0.01 0.97	1.00 2.77 0.95 0.28 3.05 0.12 1.08 2.98 0.99 0.18 3.16 0.01 1.26 3.85 0.99 0.10 3.95 0.01 0.98	2.00 2.75 0.94 0.28 3.03 0.15 1.05 2.95 0.98 0.18 3.13 0.04 1.27 3.83 0.99 0.11 3.94 0.04 0.98	5.0D 2.68 0.92 0.29 2.97 0.22 1.04 2.89 0.96 0.19 3.08 0.07 1.27 3.78 0.98 0.11 3.89 0.10 0.98	10.00 2.62 0.90 0.30 2.92 0.29 1.08 2.90 0.96 0.19 3.09 0.06 1.27 3.67 0.95 0.12 3.79 0.18 0.98	15.00 2.34 0.80 0.31 2.65 0.41 1.09 2.77 0.92 0.19 2.96 0.15 1.29 3.64 0.94 0.12 3.76 0.23 0.97	20.00 2.36 0.81 0.33 2.69 0.47 1.07 2.72 0.90 0.20 2.92 0.30 1.26 3.60 0.93 0.13 3.73 0.24 0.98	25.00 2.27 0.78 0.33 2.60 0.60 1.07 2.60 0.86 0.20 2.80 0.41 1.25 3.60 0.93 0.12 3.72 0.24 0.97	30.00 2.25 0.77 0.35 2.60 0.64 1.07 2.54 0.84 0.23 2.77 0.44 1.27 3.60 0.93 0.12 3.72 0.24 0.96
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF	IE HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TOTAL CAPACITY TTIMETHYLAMINE METHANOL WTR REGAIN	M DAYS MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10 3.97 0. 0.96 2.00	0.25 2.87 0.98 0.27 3.14 0.05 1.09 3.00 1.00 0.18 3.18 0.03 1.26 3.86 1.00 0.10 3.96 0.01 0.97 2.77	1.00 2.77 0.95 0.28 3.05 0.12 1.08 2.98 0.99 0.18 3.16 0.01 1.26 3.85 0.99 0.10 3.95 0.01 0.98 2.79	2.00 2.75 0.94 0.28 3.03 0.15 1.05 2.95 0.98 0.18 3.13 0.04 1.27 3.83 0.99 0.11 3.94 0.04 0.98 2.73	5.00 2.68 0.92 0.29 2.97 0.22 1.04 2.89 0.96 0.19 3.08 0.07 1.27 3.78 0.98 0.11 3.89 0.10 0.98 2.58	10.00 2.62 0.90 0.30 2.92 0.29 1.08 2.90 0.96 0.19 3.09 0.06 1.27 3.67 0.95 0.12 3.79 0.18 0.98 2.46	15.00 2.34 0.80 0.31 2.65 0.41 1.09 2.77 0.92 0.19 2.96 0.15 1.29 3.64 0.94 0.12 3.76 0.23 0.97 2.41	20.00 2.36 0.81 0.33 2.69 0.47 1.07 2.72 0.90 0.20 2.92 0.30 1.26 3.60 0.93 0.13 3.73 0.24 0.98 2.32	25.00 2.27 0.78 0.33 2.60 0.60 1.07 2.60 0.86 0.20 2.80 0.41 1.25 3.60 0.93 0.12 3.72 0.24 0.97 2.25	30.00 2.25 0.77 0.35 2.60 0.64 1.07 2.54 0.84 0.23 2.77 0.44 1.27 3.60 0.93 0.12 3.72 0.24 0.96 2.16
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF	IE HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN	M DAYS MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10 3.97 0. 0.96 2.80 1.00	0.25 2.87 0.98 0.27 3.14 0.05 1.09 3.00 1.00 0.18 3.18 0.03 1.26 3.86 1.00 0.10 3.96 0.01 0.97 2.77 0.99	1.00 2.77 0.95 0.28 3.05 0.12 1.08 2.98 0.99 0.12 1.26 3.16 0.01 1.26 3.85 0.99 0.10 3.95 0.01 0.98 2.79 1.00	2.00 2.75 0.94 0.28 3.03 0.15 1.05 2.95 0.98 0.18 3.13 0.04 1.27 3.83 0.99 0.11 3.94 0.04 0.98 2.73 0.97	5.00 2.68 0.92 0.29 2.97 0.22 1.04 2.89 0.96 0.19 3.08 0.07 1.27 3.78 0.98 0.11 3.89 0.10 0.98 2.58 0.92	10.00 2.62 0.90 0.30 2.92 0.29 1.08 2.90 0.96 0.19 3.09 0.06 1.27 3.67 0.95 0.12 3.79 0.12 3.79 0.18 0.98 2.46 0.88	15.00 2.34 0.80 0.31 2.65 0.41 1.09 2.77 0.92 0.19 2.96 0.15 1.29 3.64 0.94 0.12 3.76 0.23 0.97 2.41 0.86	20.00 2.36 0.81 0.33 2.69 0.47 1.07 2.72 0.90 0.20 2.92 0.30 1.26 3.60 0.93 0.13 3.73 0.24 0.98 2.32 0.83	25.00 2.27 0.78 0.33 2.60 0.60 1.07 2.60 0.86 0.20 2.80 0.41 1.25 3.60 0.93 0.12 3.72 0.24 0.97 2.25 0.80	30.00 2.25 0.77 0.35 2.60 0.64 1.07 2.54 0.84 0.23 2.77 0.44 1.27 3.60 0.93 0.12 3.72 0.24 0.96 2.16 0.77
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF DOWEX 1	IE HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TTAL CAPACITY SB CAPACITY TTAL CAPACITY TTAL CAPACITY TTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY SB CAPACITY SB CAPACITY WB CAPACITY SB CAPACITY SB CAPACITY SB CAPACITY SB CAPACITY SB CAPACITY SB CAPACITY	M DAYS MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10 3.97 0. 0.96 2.80 1.00 0.27	0.25 2.87 0.98 0.27 3.14 0.05 1.09 3.00 1.09 3.00 1.00 0.18 3.18 0.03 1.26 3.86 1.00 0.10 3.96 0.01 0.97 2.77 0.99 0.20	1.00 2.77 0.95 0.28 3.05 0.12 1.08 2.98 0.99 0.18 3.16 0.01 1.26 3.85 0.99 0.10 3.95 0.01 0.98 2.79 1.00 0.21	2.00 2.75 0.94 0.28 3.03 0.15 1.05 2.95 0.98 0.18 3.13 0.04 1.27 3.83 0.99 0.11 3.94 0.04 0.98 2.73 0.97 0.21	5.00 2.68 0.92 0.29 2.97 0.22 1.04 2.89 0.96 0.19 3.08 0.07 1.27 3.78 0.98 0.11 3.89 0.10 0.98 2.58 0.92 0.22	10.00 2.62 0.90 0.30 2.92 0.29 1.08 2.90 0.96 0.19 3.09 0.06 1.27 3.67 0.95 0.12 3.79 0.12 3.79 0.18 0.98 2.46 0.88 0.23	15.00 2.34 0.80 0.31 2.65 0.41 1.09 2.77 0.92 0.19 2.96 0.15 1.29 3.64 0.94 0.12 3.76 0.23 0.97 2.41 0.86 0.24	20.00 2.36 0.81 0.33 2.69 0.47 1.07 2.72 0.90 0.20 2.92 0.30 1.26 3.60 0.93 0.13 3.73 0.24 0.98 2.32 0.83 0.24	25.00 2.27 0.78 0.33 2.60 0.60 1.07 2.60 0.86 0.20 2.80 0.41 1.25 3.60 0.93 0.12 3.72 0.24 0.97 2.25 0.80 0.24	30.00 2.25 0.77 0.35 2.60 0.64 1.07 2.54 0.84 0.23 2.77 0.44 1.27 3.60 0.93 0.12 3.72 0.24 0.96 2.16 0.77 0.24
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF DOWEX 1	IE HYDROXIDE FDR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY TOTAL CAPACITY TTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY SB CAPACITY WB CAPACITY WB CAPACITY WB CAPACITY TOTAL CAPACITY CAPACITY SB CAPACITY SB CAPACITY	M DAYS MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10 3.97 0. 0.96 2.80 1.00 0.20 3.00	0.25 2.87 0.98 0.27 3.14 0.05 1.09 3.00 1.00 0.18 3.18 0.03 1.26 3.86 1.00 0.10 3.96 0.01 0.97 2.77 0.99 0.20 2.97	1.00 2.77 0.95 0.28 3.05 0.12 1.08 2.98 0.99 0.18 3.16 0.01 1.26 3.85 0.99 0.10 3.95 0.01 0.98 2.79 1.00 0.21 3.00	2.00 2.75 0.94 0.28 3.03 0.15 1.05 2.95 0.98 0.18 3.13 0.04 1.27 3.83 0.99 0.11 3.94 0.04 0.98 2.73 0.97 0.21 2.94	5.00 2.68 0.92 0.29 2.97 0.22 1.04 2.89 0.96 0.19 3.08 0.07 1.27 3.78 0.98 0.11 3.89 0.10 0.98 2.58 0.92 0.22 2.80	10.00 2.62 0.90 0.30 2.92 0.29 1.08 2.90 0.96 0.19 3.09 0.06 1.27 3.67 0.95 0.12 3.79 0.18 0.98 2.46 0.88 0.23 2.69	15.00 2.34 0.80 0.31 2.65 0.41 1.09 2.77 0.92 0.19 2.96 0.19 2.96 0.15 1.29 3.64 0.94 0.12 3.76 0.23 0.97 2.41 0.86 0.24 2.65	20.00 2.36 0.81 0.33 2.69 0.47 1.07 2.72 0.90 0.20 2.92 0.30 1.26 3.60 0.93 0.13 3.73 0.24 0.98 2.32 0.83 0.24 2.56	25.00 2.27 0.78 0.33 2.60 0.60 1.07 2.60 0.86 0.20 2.80 0.41 1.25 3.60 0.93 0.12 3.72 0.24 0.97 2.25 0.80 0.24 2.49	30.00 2.25 0.77 0.35 2.60 0.64 1.07 2.54 0.84 0.23 2.77 0.44 1.27 3.60 0.93 0.12 3.72 0.24 0.96 2.16 0.77 0.24 2.40
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF DOWEX 1	IE HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TOTAL CAPACITY TOTAL CAPACITY SB CAPACITY MB CAPACITY MB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TOTAL CAPACITY MB CAPACITY TOTAL CAPACITY TOTAL CAPACITY MB CAPACITY	M DAYS MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10 3.97 0. 0.96 2.80 1.00 0.20 3.00 0.	0.25 2.87 0.98 0.27 3.14 0.05 1.09 3.00 1.00 0.18 3.18 0.03 1.26 3.86 1.00 0.10 3.96 0.01 0.97 2.77 0.99 0.20 2.97 0.01	1.00 2.77 0.95 0.28 3.05 0.12 1.08 2.98 0.99 0.12 1.08 2.98 0.99 0.18 3.16 0.01 1.26 3.85 0.99 0.10 3.95 0.01 0.98 2.79 1.00 0.21 3.00 0.03	2.00 2.75 0.94 0.28 3.03 0.15 1.05 2.95 0.98 0.18 3.13 0.04 1.27 3.83 0.99 0.11 3.94 0.04 0.98 2.73 0.97 0.21 2.94 0.07	5.00 2.68 0.92 0.29 2.97 0.22 1.04 2.89 0.96 0.19 3.08 0.07 1.27 3.78 0.98 0.11 3.89 0.10 0.98 2.58 0.92 0.22 2.80 0.20	10.00 2.62 0.90 0.30 2.92 0.29 1.08 2.90 0.96 0.19 3.09 0.06 1.27 3.67 0.95 0.12 3.79 0.12 3.79 0.18 0.98 2.46 0.88 0.23 2.69 0.30	15.00 2.34 0.80 0.31 2.65 0.41 1.09 2.77 0.92 0.19 2.96 0.15 1.29 3.64 0.94 0.12 3.76 0.23 0.97 2.41 0.86 0.24 2.65 0.34	20.00 2.36 0.81 0.33 2.69 0.47 1.07 2.72 0.90 0.20 2.92 0.30 1.26 3.60 0.93 0.13 3.73 0.24 0.98 2.32 0.83 0.24 2.56 0.45	25.00 2.27 0.78 0.33 2.60 0.60 1.07 2.60 0.86 0.20 2.80 0.41 1.25 3.60 0.93 0.12 3.72 0.24 0.97 2.25 0.80 0.24 2.49 0.52	30.00 2.25 0.77 0.35 2.60 0.64 1.07 2.54 0.84 0.23 2.77 0.44 1.27 3.60 0.93 0.12 3.72 0.24 0.96 2.16 0.77 0.24 2.40 0.60
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF DOWEX 1	IE HYDROXIDE FOR 75.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY SB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TOTAL CAPACITY TOTAL CAPACITY SB CAPACITY SB CAPACITY SB CAPACITY MB CAPACITY SB CAPACITY SB CAPACITY MB CAPACITY SB CAPACITY MB CAPACITY SB CAPACITY	M DAYS MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10 3.97 0. 0.96 2.80 1.00 0.20 3.00 0.	0.25 2.87 0.98 0.27 3.14 0.05 1.09 3.00 1.09 3.00 1.00 0.18 3.18 0.03 1.26 3.86 1.00 0.10 3.96 0.01 0.97 2.77 0.99 0.20 2.97 0.01	1.00 2.77 0.95 0.28 3.05 0.12 1.08 2.98 0.99 0.18 3.16 0.01 1.26 3.85 0.99 0.10 3.95 0.01 0.98 2.79 1.00 0.98 2.79 1.00 0.03	2.00 2.75 0.94 0.28 3.03 0.15 1.05 2.95 0.98 0.18 3.13 0.04 1.27 3.83 0.99 0.11 3.94 0.04 0.98 2.73 0.97 0.21 2.94 0.07	5.00 2.68 0.92 0.29 2.97 0.22 1.04 2.89 0.96 0.19 3.08 0.19 3.08 0.07 1.27 3.78 0.98 0.11 3.89 0.10 0.98 2.58 0.92 0.22 2.80 0.20	10.00 2.62 0.90 0.30 2.92 0.29 1.08 2.90 0.96 0.19 3.09 0.06 1.27 3.67 0.95 0.12 3.79 0.12 3.79 0.12 3.79 0.18 0.98 2.46 0.88 0.23 2.69 0.30	15.00 2.34 0.80 0.31 2.65 0.41 1.09 2.77 0.92 0.19 2.96 0.15 1.29 3.64 0.94 0.12 3.76 0.23 0.97 2.41 0.86 0.24 2.65 0.34	20.00 2.36 0.81 0.33 2.69 0.47 1.07 2.72 0.90 0.20 2.92 0.30 1.26 3.60 0.93 0.13 3.73 0.24 0.98 2.32 0.83 0.24 2.56 0.45	25.00 2.27 0.78 0.33 2.60 0.60 1.07 2.60 0.86 0.20 2.80 0.41 1.25 3.60 0.93 0.12 3.72 0.24 0.97 2.25 0.80 0.24 2.49 0.52	30.00 2.25 0.77 0.35 2.60 0.64 1.07 2.54 0.84 0.23 2.77 0.44 1.27 3.60 0.93 0.12 3.72 0.24 0.96 2.16 0.77 0.24 2.40 0.96

Sold and a second

Sec. 1

RESIN IN THE HYDROXIDE FORM

TEMPERATURE	90•0 C		• • • • •								• • •	
TIME		DAYS	Ó	0.25	1.00	2.00	5.00	10.00	15.00	20.00	25.00	30.00
AMBERLITE	SB CAPACITY	MEDIC	2.92	2.86	2.75	2-67	2-54	2.25	1.95	1.65	1.50	1.35
TRA AND	SB CAPACITY	HEQ70	1.00	0.98	0.94	0.91	0.87	0.77	0.67	0.57	0.51	0.46
	WB CAPACITY	MEQ/G	0.28	0.30	0.29	0.28	0.30	0.32	0.33	0.35	0.37	0.38
	TOTAL CAPACITY	MEQ/G	3.20	3.16	3.04	2.95	2.84	2.57	2.28	2.00	1.87	1.73
	TRIMETHYLAMINE	MEQ/G		0.08	0.16	0.27	0.37	0.68	0.92	1.20	1.33	1.47
	METHANOL	MEQ/G		••••								
	WTR REGAIN	GM/GM	1.06	1.08	1.04	1.04	1.01	1.04	1.07	1.06	1.04	1.04
AMBERLITE	SB CAPACITY	MEQ/G	3.02	2.97	2.88	2.84	2.72	2.45	2.27	2.16	1.87	1.78
IRA 900	SB CAPACITY		1.00	0.98	0.95	0.94	0.90	0.81	0.75	0.72	0.62	0.59
	WB CAPACITY	MEQ/G	0.20	0.21	0.21	0.21	0.22	0.24	0.25	0.26	0.28	0.31
	TOTAL CAPACITY	MEQ/G	3.22	3.18	3.09	3.05	2.94	2.69	2.52	2.42	2.15	_ Z•D
(a) Construction of the first order of the first of th	TRIMETHYLAMINE	MEQ/G	• 0 ∙ .	0.02	0.14	0.16	0.30	0.60	0.70	0.80	1.06	1.00
en e	METHANDL WTR REGAIN	MEQ/G GM/GM	1.27	1.26	1.27	1.27	1.24	1.23	1.26	1.26	1.27	1.24
							· • • • •					
	SB CAPACITY	MEQ/G	3691	3.82	3.72	3.71	3.65	3.40	3.30	3.20	3.04	2.80
	UB CADACITY	MEO/C	0 10	0.10	0.11	0.12	0.14	0.16	0.17	0.19	0.19	0.10
	TOTAL CADACITY	MEQ/G	4.01	3.02	2.83	2.82	3.79	3.56	3.47	3,39	3.23	2.9
	TRIMETHYLAMINE	MEQ/G		0.06	0.15	0.22	0.34	0.40	0.54	0.74	0.88	0.9
e en les contra l'estante en Eliter (que le que les contra la contra la contra la contra la contra la contra la la contra la contra l	METHANOL	MEQ/G	•••			UULL	0021	0010				
	WTR REGAIN	GM/GM	0•98	0.96	0.99	0.96	0.94	0.96	0.96	0.94	0.96	0.90
DOWEX	SB CAPACITY	MEQ/G	2.82	2.78	2.63	2.55	2.38	2.10	1.85	1.60	1.50	1.45
1	SB CAPACITY		1.00	0.99	0.93	0.90	0.84	0.74	0.66	0.57	0.53	0.51
	WB CAPACITY	MEQ/G	0.21	0.20	0.20	0.20	0.22	0.24	0.25	0.26	0.27	0.2
· · · · · · · · · · · · · · · · · · ·	TOTAL CAPACITY	MEQ/G	3.03	2.98	2.83	2.75	2.60	2.34	2.10	1.86	1.77	1.7
	TRIMETHYLAMINE	MEQ/G MEQ/G	0 • .	0.05	0.15	0.22	0.35	0.61	0.93	1.17	1.26	1.3
aft.	WTR REGAIN	GM/GM	0.94	0.96	0.91	0.94	0.97	0.96	0.95	0.96	0.95	0.9
											•	
		```		ting tig.	1 	*	ren ar en aren er El					
CANDLE 2						· · · · · · · · · · · · · · · · · · ·						
SAMPLE 2		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · · ·	÷						
SAMPLE 2 Resin in th	E HYDRÖXIDE FOR	M										
SAMPLE 2 Resin in th Temperature	E HYDRÒXIDE FOR 90.0 C	M										
SAMPLE 2 RESIN IN TH TEMPERATURE TIME	E HYDRÒXIDE FOR 90.0 C	M DAYS	0	0.25	1.00	2.00	5.00	10.00	15.00	20.00	25.00	30.00
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE	E HYDRÒXIDE FOR 90.0 C Sb capacity	M DAYS MED/G	0 2,92	0•25 2-82	1.00	2.00	5.00	10.00	15.00	20.00	25•00 1~60	30.0(
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400	E HYDRÒXIDE FOR 90.0 C SB CAPACITY SB CAPACITY	M DAYS MEQ/G	0 2.92 1.00	0•25 2•82 0-97	1.00 2.73 0.93	2.00 2.65 0.91	5.00 2.40 0.82	10.00 2.30 0.79	15.00 2.00 0.68	20.00 1.68 0.58	25.00 1.60 0.55	30.0(1.49
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400	E HYDRÒXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY	M DAYS MEQ/G MEQ/G	0 2.92 1.00 0.27	0•25 2•82 0•97 0•28	1.00 2.73 0.93 0.28	2.00 2.65 0.91 0.27	5.00 2.40 0.82 0.32	10.00 2.30 0.79 0.33	15.00 2.00 0.68 0.34	20.00 1.68 0.58 0.36	25.00 1.60 0.55 0.38	30.01 1.4 0.5 0.3
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400	E HYDRÒXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY	M DAYS MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19	0.25 2.82 0.97 0.28 3.10	1.00 2.73 0.93 0.28 3.01	2.00 2.65 0.91 0.27 2.92	5.00 2.40 0.82 0.32 2.72	10.00 2.30 0.79 0.33 2.63	15.00 2.00 0.68 0.34 2.34	20.00 1.68 0.58 0.36 2.04	25.00 1.60 0.55 0.38 1.98	30.0 1.4 0.5 0.3 1.8
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400	E HYDRÒXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0.	0.25 2.82 0.97 0.28 3.10 0.09	1.00 2.73 0.93 0.28 3.01 0.18	2.00 2.65 0.91 0.27 2.92 0.30	5.00 2.40 0.82 0.32 2.72 0.40	10.00 2.30 0.79 0.33 2.63 0.73	15.00 2.00 0.68 0.34 2.34 0.86	20.00 1.68 0.58 0.36 2.04 1.16	25.00 1.60 0.55 0.38 1.98 1.23	30.01 1.4 0.5 0.3 1.8 1.4
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400	E HYDRÒXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0.	0.25 2.82 0.97 0.28 3.10 0.09	1.00 2.73 0.93 0.28 3.01 0.18	2.00 2.65 0.91 0.27 2.92 0.30	5.00 2.40 0.82 0.32 2.72 0.40	10.00 2.30 0.79 0.33 2.63 0.73	15.00 2.00 0.68 0.34 2.34 0.86	20.00 1.68 0.58 0.36 2.04 1.16	25.00 1.60 0.55 0.38 1.98 1.23	30.0 1.4 0.5 0.3 1.8 1.4
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400	E HYDROXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G GM/GM	0 2.92 1.00 0.27 3.19 0. 1.08	0.25 2.82 0.97 0.28 3.10 0.09 1.06	1.00 2.73 0.93 0.28 3.01 0.18 1.01	2.00 2.65 0.91 0.27 2.92 0.30 1.04	5.00 2.40 0.82 0.32 2.72 0.40 1.03	10.00 2.30 0.79 0.33 2.63 0.73 1.07	15.00 2.00 0.68 0.34 2.34 0.86 1.02	20.00 1.68 0.58 0.36 2.04 1.16 1.02	25.00 1.60 0.55 0.38 1.98 1.23 1.02	30.0 1.4 0.5 0.3 1.8 1.4 1.0
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400	E HYDRÒXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01	0.25 2.82 0.97 0.28 3.10 0.09 1.06 2.92	1.00 2.73 0.93 0.28 3.01 0.18 1.01 2.88	2.00 2.65 0.91 0.27 2.92 0.30 1.04 2.77	5.00 2.40 0.82 0.32 2.72 0.40 1.03 2.68	10.00 2.30 0.79 0.33 2.63 0.73 1.07 2.47	15.00 2.00 0.68 0.34 2.34 0.86 1.02 2.20	20.00 1.68 0.58 0.36 2.04 1.16 1.02 2.07	25.00 1.60 0.55 0.38 1.98 1.23 1.02 1.90	30.0 1.4 0.5 0.3 1.8 1.4 1.0 1.7
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900	E HYDRÒXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G GM/GM MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00	0.25 2.82 0.97 0.28 3.10 0.09 1.06 2.92 0.97	1.00 2.73 0.93 0.28 3.01 0.18 1.01 2.88 0.96	2.00 2.65 0.91 0.27 2.92 0.30 1.04 2.77 0.92	5.00 2.40 0.82 0.32 2.72 0.40 1.03 2.68 0.89	10.00 2.30 0.79 0.33 2.63 0.73 1.07 2.47 0.82	15.00 2.00 0.68 0.34 2.34 0.86 1.02 2.20 0.73	20.00 1.68 0.58 0.36 2.04 1.16 1.02 2.07 0.69	25.00 1.60 0.55 0.38 1.98 1.23 1.02 1.90 0.63	30.01 1.4 0.5 0.3 1.8 1.4 1.0 1.7 0.5
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900	E HYDRÒXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY WB CAPACITY	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G GM/GM MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18	0.25 2.82 0.97 0.28 3.10 0.09 1.06 2.92 0.97 0.19	1.00 2.73 0.93 0.28 3.01 0.18 1.01 2.88 0.96 0.20	2.00 2.65 0.91 0.27 2.92 0.30 1.04 2.77 0.92 0.21	5.00 2.40 0.82 0.32 2.72 0.40 1.03 2.68 0.89 0.21	10.00 2.30 0.79 0.33 2.63 0.73 1.07 2.47 0.82 0.22	15.00 2.00 0.68 0.34 2.34 0.86 1.02 2.20 0.73 0.24	20.00 1.68 0.58 0.36 2.04 1.16 1.02 2.07 0.69 0.25	25.00 1.60 0.55 0.38 1.98 1.23 1.02 1.90 0.63 0.26	30.01 1.4 0.5 0.3 1.8 1.4 1.0 1.7 0.5 0.2
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900	E HYDROXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G GM/GM MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19	0.25 2.82 0.97 0.28 3.10 0.09 1.06 2.92 0.97 0.19 3.11	1.00 2.73 0.93 0.28 3.01 0.18 1.01 2.88 0.96 0.20 3.08	2.00 2.65 0.91 0.27 2.92 0.30 1.04 2.77 0.92 0.21 2.98	5.00 2.40 0.82 0.32 2.72 0.40 1.03 2.68 0.89 0.21 2.89	10.00 2.30 0.79 0.33 2.63 0.73 1.07 2.47 0.82 0.22 2.69	15.00 2.00 0.68 0.34 2.34 0.86 1.02 2.20 0.73 0.24 2.44	20.00 1.68 0.58 0.36 2.04 1.16 1.02 2.07 0.69 0.25 2.32	25.00 1.60 0.55 0.38 1.98 1.23 1.02 1.90 0.63 0.26 2.16	30.0 1.4 0.5 0.3 1.8 1.4 1.0 1.7 0.5 0.2 2.0
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900	E HYDROXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G GM/GM MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0.	0.25 2.82 0.97 0.28 3.10 0.09 1.06 2.92 0.97 0.19 3.11 0.04	1.00 2.73 0.93 0.28 3.01 0.18 1.01 2.88 0.96 0.20 3.08 0.14	2.00 2.65 0.91 0.27 2.92 0.30 1.04 2.77 0.92 0.21 2.98 0.20	5.00 2.40 0.82 0.32 2.72 0.40 1.03 2.68 0.89 0.21 2.89 0.30	10.00 2.30 0.79 0.33 2.63 0.73 1.07 2.47 0.82 0.22 2.69 0.51	15.00 2.00 0.68 0.34 2.34 0.86 1.02 2.20 0.73 0.24 2.44 0.75	20.00 1.68 0.58 0.36 2.04 1.16 1.02 2.07 0.69 0.25 2.32 0.85	25.00 1.60 0.55 0.38 1.98 1.23 1.02 1.90 0.63 0.26 2.16 1.00	30.0 1.4 0.5 0.3 1.8 1.4 1.0 1.7 0.5 0.2 2.0 1.1
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900	E HYDROXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G GM/GM MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27	0.25 2.82 0.97 0.28 3.10 0.09 1.06 2.92 0.97 0.19 3.11 0.04 1.26	1.00 2.73 0.93 0.28 3.01 0.18 1.01 2.88 0.96 0.20 3.08 0.14 1.27	2.00 2.65 0.91 0.27 2.92 0.30 1.04 2.77 0.92 0.21 2.98 0.20 1.27	5.00 2.40 0.82 0.32 2.72 0.40 1.03 2.68 0.89 0.21 2.89 0.30 1.24	10.00 2.30 0.79 0.33 2.63 0.73 1.07 2.47 0.82 0.22 2.69 0.51 1.23	15.00 2.00 0.68 0.34 2.34 0.86 1.02 2.20 0.73 0.24 2.44 0.75 1.26	20.00 1.68 0.58 0.36 2.04 1.16 1.02 2.07 0.69 0.25 2.32 0.85 1.26	25.00 1.60 0.55 0.38 1.98 1.23 1.02 1.90 0.63 0.26 2.16 1.00 1.27	30.0 1.4 0.5 0.3 1.8 1.4 1.0 1.7 0.5 0.2 2.0 1.1 1.2
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900	E HYDROXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27	0.25 2.82 0.97 0.28 3.10 0.09 1.06 2.92 0.97 0.19 3.11 0.04 1.26	1.00 2.73 0.93 0.28 3.01 0.18 1.01 2.88 0.96 0.20 3.08 0.14 1.27	2.00 2.65 0.91 0.27 2.92 0.30 1.04 2.77 0.92 0.21 2.98 0.20 1.27	5.00 2.40 0.82 0.32 2.72 0.40 1.03 2.68 0.89 0.21 2.89 0.30 1.24	10.00 2.30 0.79 0.33 2.63 0.73 1.07 2.47 0.82 0.22 2.69 0.51 1.23	15.00 2.00 0.68 0.34 2.34 0.86 1.02 2.20 0.73 0.24 2.44 0.75 1.26	20.00 1.68 0.58 0.36 2.04 1.16 1.02 2.07 0.69 0.25 2.32 0.85 1.26	25.00 1.60 0.55 0.38 1.98 1.23 1.02 1.90 0.63 0.26 2.16 1.00 1.27	30.0 1.4 0.5 0.3 1.8 1.4 1.0 1.7 0.5 0.2 2.0 1.1 1.2
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900	E HYDROXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G GM/GM MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87	0.25 2.82 0.97 0.28 3.10 0.09 1.06 2.92 0.97 0.19 3.11 0.04 1.26 3.87	1.00 2.73 0.93 0.28 3.01 0.18 1.01 2.88 0.96 0.20 3.08 0.14 1.27 3.77	2.00 2.65 0.91 0.27 2.92 0.30 1.04 2.77 0.92 0.21 2.98 0.20 1.27 3.70	5.00 2.40 0.82 0.32 2.72 0.40 1.03 2.68 0.89 0.21 2.89 0.30 1.24 3.50	10.00 2.30 0.79 0.33 2.63 0.73 1.07 2.47 0.82 0.22 2.69 0.51 1.23 3.50	15.00 2.00 0.68 0.34 2.34 0.86 1.02 2.20 0.73 0.24 2.44 0.75 1.26 3.20	20.00 1.68 0.58 0.36 2.04 1.16 1.02 2.07 0.69 0.25 2.32 0.85 1.26 3.00	25.00 1.60 0.55 0.38 1.98 1.23 1.02 1.90 0.63 0.26 2.16 1.00 1.27 2.90	30.0 1.4 0.5 0.3 1.8 1.4 1.0 1.7 0.5 0.2 2.0 1.1 1.2 2.9
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF	E HYDROXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY SB CAPACITY SB CAPACITY	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G GM/GM MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00	0.25 2.82 0.97 0.28 3.10 0.09 1.06 2.92 0.97 0.19 3.11 0.04 1.26 3.87 1.00	1.00 2.73 0.93 0.28 3.01 0.18 1.01 2.88 0.96 0.20 3.08 0.14 1.27 3.77 0.97	2.00 2.65 0.91 0.27 2.92 0.30 1.04 2.77 0.92 0.21 2.98 0.20 1.27 3.70 0.96	5.00 2.40 0.82 0.32 2.72 0.40 1.03 2.68 0.89 0.21 2.89 0.30 1.24 3.50 0.90	10.00 2.30 0.79 0.33 2.63 0.73 1.07 2.47 0.82 0.22 2.69 0.51 1.23 3.50 0.90	15.00 2.00 0.68 0.34 2.34 0.86 1.02 2.20 0.73 0.24 2.44 0.75 1.26 3.20 0.83	20.00 1.68 0.58 0.36 2.04 1.16 1.02 2.07 0.69 0.25 2.32 0.85 1.26 3.00 0.78	25.00 1.60 0.55 0.38 1.98 1.23 1.02 1.90 0.63 0.26 2.16 1.00 1.27 2.90 0.75	30.0 1.4 0.5 0.3 1.8 1.4 1.0 1.7 0.5 0.2 2.0 1.1 1.2 2.9 0.7
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF	E HYDROXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY SB CAPACITY WB CAPACITY WB CAPACITY WB CAPACITY	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10 3.97	0.25 2.82 0.97 0.28 3.10 0.09 1.06 2.92 0.97 0.19 3.11 0.04 1.26 3.87 1.00 0.10	1.00 2.73 0.93 0.28 3.01 0.18 1.01 2.88 0.96 0.20 3.08 0.14 1.27 3.77 0.97 0.11	2.00 2.65 0.91 0.27 2.92 0.30 1.04 2.77 0.92 0.21 2.98 0.20 1.27 3.70 0.96 0.10	5.00 2.40 0.82 0.32 2.72 0.40 1.03 2.68 0.89 0.21 2.89 0.30 1.24 3.50 0.90 0.12	10.00 2.30 0.79 0.33 2.63 0.73 1.07 2.47 0.82 0.22 2.69 0.51 1.23 3.50 0.90 0.13 2.47	15.00 2.00 0.68 0.34 2.34 0.86 1.02 2.20 0.73 0.24 2.44 0.75 1.26 3.20 0.83 0.15 2.5	20.00 1.68 0.58 0.36 2.04 1.16 1.02 2.07 0.69 0.25 2.32 0.85 1.26 3.00 0.78 0.15 2.5	25.00 1.60 0.55 0.38 1.98 1.23 1.02 1.90 0.63 0.26 2.16 1.00 1.27 2.90 0.75 0.16 2.01	30.0 1.4 0.5 0.3 1.8 1.4 1.0 1.7 0.5 0.2 2.0 1.1 1.2 2.9 0.7 0.1 2.9
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF	E HYDROXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY SB CAPACITY TOTAL CAPACITY NB CAPACITY	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10 3.97 0-	0.25 2.82 0.97 0.28 3.10 0.09 1.06 2.92 0.97 0.19 3.11 0.04 1.26 3.87 1.00 0.10 3.97 0.04	1.00 2.73 0.93 0.28 3.01 0.18 1.01 2.88 0.96 0.20 3.08 0.14 1.27 3.77 0.97 0.11 3.88 0.17	2.00 2.65 0.91 0.27 2.92 0.30 1.04 2.77 0.92 0.21 2.98 0.20 1.27 3.70 0.96 0.10 3.80 0.20	5.00 2.40 0.82 0.32 2.72 0.40 1.03 2.68 0.89 0.21 2.89 0.30 1.24 3.50 0.90 0.12 3.62 0.20	10.00 2.30 0.79 0.33 2.63 0.73 1.07 2.47 0.82 0.22 2.69 0.51 1.23 3.50 0.90 0.13 3.63 0.41	15.00 2.00 0.68 0.34 2.34 0.86 1.02 2.20 0.73 0.24 2.44 0.75 1.26 3.20 0.83 0.15 3.35 0.67	20.00 1.68 0.58 0.36 2.04 1.16 1.02 2.07 0.69 0.25 2.32 0.85 1.26 3.00 0.78 0.15 3.15 0.80	25.00 1.60 0.55 0.38 1.98 1.23 1.02 1.90 0.63 0.26 2.16 1.00 1.27 2.90 0.75 0.16 3.06 0.91	30.0 1.4 0.5 0.3 1.8 1.4 1.0 1.7 0.5 0.2 2.0 1.1 1.2 2.9 0.7 0.1 3.0 0.8
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF	E HYDROXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY TOTAL CAPACITY TOTAL CAPACITY MB CAPACITY MB CAPACITY MB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10 3.97 0.	0.25 2.82 0.97 0.28 3.10 0.09 1.06 2.92 0.97 0.19 3.11 0.04 1.26 3.87 1.00 0.10 3.97 0.04	1.00 2.73 0.93 0.28 3.01 0.18 1.01 2.88 0.96 0.20 3.08 0.14 1.27 3.77 0.97 0.11 3.88 0.17	2.00 2.65 0.91 0.27 2.92 0.30 1.04 2.77 0.92 0.21 2.98 0.20 1.27 3.70 0.96 0.10 3.80 0.29	5.00 2.40 0.82 0.32 2.72 0.40 1.03 2.68 0.89 0.21 2.89 0.30 1.24 3.50 0.90 0.12 3.62 0.28	10.00 2.30 0.79 0.33 2.63 0.73 1.07 2.47 0.82 0.22 2.69 0.51 1.23 3.50 0.90 0.13 3.63 0.41	15.00 2.00 0.68 0.34 2.34 0.86 1.02 2.20 0.73 0.24 2.44 0.75 1.26 3.20 0.83 0.15 3.35 0.67	20.00 1.68 0.58 0.36 2.04 1.16 1.02 2.07 0.69 0.25 2.32 0.85 1.26 3.00 0.78 0.15 3.15 0.80	25.00 1.60 0.55 0.38 1.98 1.23 1.02 1.90 0.63 0.26 2.16 1.00 1.27 2.90 0.75 0.16 3.06 0.91	30.0 1.4 0.5 0.3 1.8 1.4 1.0 1.7 0.5 0.2 2.0 1.1 1.2 2.9 0.7 0.1 3.0 0.8
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF	E HYDROXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN	M DAYS MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10 3.97 0. 0.96	0.25 2.82 0.97 0.28 3.10 0.09 1.06 2.92 0.97 0.19 3.11 0.04 1.26 3.87 1.00 0.10 3.97 0.04 0.97	1.00 2.73 0.93 0.28 3.01 0.18 1.01 2.88 0.96 0.20 3.08 0.14 1.27 3.77 0.97 0.11 3.88 0.17 0.98	2.00 2.65 0.91 0.27 2.92 0.30 1.04 2.77 0.92 0.21 2.98 0.20 1.27 3.70 0.96 0.10 3.80 0.29 0.99	5.00 2.40 0.82 0.32 2.72 0.40 1.03 2.68 0.89 0.21 2.89 0.30 1.24 3.50 0.90 0.12 3.62 0.28 0.98	10.00 2.30 0.79 0.33 2.63 0.73 1.07 2.47 0.82 0.22 2.69 0.51 1.23 3.50 0.90 0.13 3.63 0.41 0.98	15.00 2.00 0.68 0.34 2.34 0.86 1.02 2.20 0.73 0.24 2.44 0.75 1.26 3.20 0.83 0.15 3.35 0.67 0.98	20.00 1.68 0.58 0.36 2.04 1.16 1.02 2.07 0.69 0.25 2.32 0.85 1.26 3.00 0.78 0.15 3.15 0.80 0.97	25.00 1.60 0.55 0.38 1.98 1.23 1.02 1.90 0.63 0.26 2.16 1.00 1.27 2.90 0.75 0.16 3.06 0.91 0.97	30.0 1.4 0.5 0.3 1.8 1.4 1.0 1.7 0.5 0.2 2.0 1.1 1.2 2.9 0.7 0.1 3.0 0.8 0.9
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF	E HYDRÒXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TOTAL CAPACITY SB CAPACITY WB CAPACITY SB CAPACITY WB CAPACITY SB CAPACITY WB CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY	M DAYS MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10 3.97 0. 0.96 2.80	0.25 2.82 0.97 0.28 3.10 0.09 1.06 2.92 0.97 0.19 3.11 0.04 1.26 3.87 1.00 0.10 3.97 0.04 0.97 2.75	1.00 2.73 0.93 0.28 3.01 0.18 1.01 2.88 0.96 0.20 3.08 0.14 1.27 3.77 0.97 0.11 3.88 0.17 0.98 2.65	2.00 2.65 0.91 0.27 2.92 0.30 1.04 2.77 0.92 0.21 2.98 0.20 1.27 3.70 0.96 0.10 3.80 0.29 0.99 2.56	5.00 2.40 0.82 0.32 2.72 0.40 1.03 2.68 0.89 0.21 2.89 0.30 1.24 3.50 0.90 0.12 3.62 0.28 0.98 2.42	10.00 2.30 0.79 0.33 2.63 0.73 1.07 2.47 0.82 0.22 2.69 0.51 1.23 3.50 0.90 0.13 3.63 0.41 0.98 2.12	15.00 2.00 0.68 0.34 2.34 0.86 1.02 2.20 0.73 0.24 2.44 0.75 1.26 3.20 0.83 0.15 3.35 0.67 0.98 0.95	20.00 1.68 0.58 0.36 2.04 1.16 1.02 2.07 0.69 0.25 2.32 0.85 1.26 3.00 0.78 0.15 3.15 0.80 0.97 1.65	25.00 1.60 0.55 0.38 1.98 1.23 1.02 1.90 0.63 0.26 2.16 1.00 1.27 2.90 0.75 0.16 3.06 0.91 0.97 1.52	30.0 1.4 0.5 0.3 1.8 1.4 1.0 1.7 0.5 0.2 2.0 1.1 1.2 2.9 0.7 0.1 3.0 0.8 0.9 1.3
SAMPLE 2 RESIN IN THI TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF	E HYDROXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY NB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TOTAL CAPACITY SB CAPACITY MB CAPACITY SB CAPACITY MB CAPACITY SB CAPACITY SB CAPACITY SB CAPACITY SB CAPACITY SB CAPACITY	M DAYS MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10 3.97 0. 0.96 2.80 1.00	0.25 2.82 0.97 0.28 3.10 0.09 1.06 2.92 0.97 0.19 3.11 0.04 1.26 3.87 1.00 0.10 3.97 0.04 0.97 2.75 0.98	1.00 2.73 0.93 0.28 3.01 0.18 1.01 2.88 0.96 0.20 3.08 0.14 1.27 3.77 0.97 0.11 3.88 0.17 0.98 2.65 0.95	2.00 2.65 0.91 0.27 2.92 0.30 1.04 2.77 0.92 0.21 2.98 0.20 1.27 3.70 0.96 0.10 3.80 0.29 0.99 2.56 0.91	5.00 2.40 0.82 0.32 2.72 0.40 1.03 2.68 0.89 0.21 2.89 0.30 1.24 3.50 0.90 0.12 3.62 0.98 2.42 0.86	10.00 2.30 0.79 0.33 2.63 0.73 1.07 2.47 0.82 0.22 2.69 0.51 1.23 3.50 0.90 0.13 3.63 0.41 0.98 2.12 0.76	15.00 2.00 0.68 0.34 2.34 0.86 1.02 2.20 0.73 0.24 2.44 0.75 1.26 3.20 0.83 0.15 3.35 0.67 0.98 0.95 0.34	20.00 1.68 0.58 0.36 2.04 1.16 1.02 2.07 0.69 0.25 2.32 0.85 1.26 3.00 0.78 0.15 3.15 0.80 0.97 1.65 0.59	25.00 1.60 0.55 0.38 1.98 1.23 1.02 1.90 0.63 0.26 2.16 1.00 1.27 2.90 0.75 0.16 3.06 0.91 0.97 1.52 0.54	30.0 1.4 0.5 0.3 1.8 1.4 1.0 1.7 0.5 0.2 2.0 1.1 1.2 2.9 0.7 0.1 3.0 0.8 0.9 1.3 0.4
SAMPLE 2 RESIN IN THI TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF DOWEX 1	E HYDROXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY	M DAYS MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10 3.97 0. 0.96 2.80 1.00 0.20	0.25 2.82 0.97 0.28 3.10 0.09 1.06 2.92 0.97 0.19 3.11 0.04 1.26 3.87 1.00 0.10 3.97 0.04 0.97 2.75 0.98 0.19	1.00 2.73 0.93 0.28 3.01 0.18 1.01 2.88 0.96 0.20 3.08 0.14 1.27 3.77 0.97 0.11 3.88 0.17 0.97 0.11 3.88 0.17 0.98 2.65 0.95 0.21	2.00 2.65 0.91 0.27 2.92 0.30 1.04 2.77 0.92 0.21 2.98 0.20 1.27 3.70 0.96 0.10 3.80 0.29 0.99 2.56 0.91 0.21	5.00 2.40 0.82 0.32 2.72 0.40 1.03 2.68 0.89 0.21 2.89 0.30 1.24 3.50 0.90 0.12 3.62 0.98 0.98 2.42 0.86 0.23	10.00 2.30 0.79 0.33 2.63 0.73 1.07 2.47 0.82 0.22 2.69 0.51 1.23 3.50 0.90 0.13 3.63 0.41 0.98 2.12 0.76 0.24	15.00 2.00 0.68 0.34 2.34 0.86 1.02 2.20 0.73 0.24 2.44 0.75 1.26 3.20 0.83 0.15 3.35 0.67 0.98 0.95 0.34 0.26	20.00 1.68 0.36 2.04 1.16 1.02 2.07 0.69 0.25 2.32 0.85 1.26 3.00 0.78 0.15 3.15 0.80 0.97 1.65 0.59 0.27	25.00 1.60 0.55 0.38 1.98 1.23 1.02 1.90 0.63 0.26 2.16 1.00 1.27 2.90 0.75 0.16 3.06 0.91 0.97 1.52 0.54 0.28	30.0 1.4 0.5 0.3 1.8 1.4 1.0 1.7 0.5 0.2 2.0 1.1 1.2 2.9 0.7 0.1 3.0 0.8 0.9 1.3 0.4 0.2
SAMPLE 2 RESIN IN THI TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF DOWEX 1	E HYDROXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY SB CAPACITY SB CAPACITY SB CAPACITY MB CAPACITY SB CAPACITY	M DAYS MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10 3.97 0. 0.96 2.80 1.00 0.20 3.00	0.25 2.82 0.97 0.28 3.10 0.09 1.06 2.92 0.97 0.19 3.11 0.04 1.26 3.87 1.00 0.10 3.97 0.04 0.97 2.75 0.98 0.19 2.94	1.00 2.73 0.93 0.28 3.01 0.18 1.01 2.88 0.96 0.20 3.08 0.14 1.27 3.77 0.97 0.11 3.88 0.17 0.97 0.11 3.88 0.17 0.98 2.65 0.95 0.21 2.86	2.00 2.65 0.91 0.27 2.92 0.30 1.04 2.77 0.92 0.21 2.98 0.20 1.27 3.70 0.96 0.10 3.80 0.20 1.27 3.70 0.96 0.10 3.80 0.20 0.99 2.56 0.91 0.21 2.77	5.00 2.40 0.82 0.32 2.72 0.40 1.03 2.68 0.89 0.21 2.89 0.30 1.24 3.50 0.90 0.12 3.62 0.28 0.98 2.42 0.86 0.23 2.65	10.00 2.30 0.79 0.33 2.63 0.73 1.07 2.47 0.82 0.22 2.69 0.51 1.23 3.50 0.90 0.13 3.63 0.41 0.98 2.12 0.76 0.24 2.36	15.00 2.00 0.68 0.34 2.34 0.86 1.02 2.20 0.73 0.24 2.44 0.75 1.26 3.20 0.83 0.15 3.35 0.67 0.98 0.95 0.34 0.26 1.21	20.00 1.68 0.58 0.36 2.04 1.16 1.02 2.07 0.69 0.25 2.32 0.85 1.26 3.00 0.78 0.15 3.15 0.80 0.97 1.65 0.59 0.27 1.92	25.00 1.60 0.55 0.38 1.98 1.23 1.02 1.90 0.63 0.26 2.16 1.00 1.27 2.90 0.75 0.16 3.06 0.91 0.97 1.52 0.54 0.28 1.80	30.01 1.4 0.5 0.3 1.8 1.4 1.0 1.7 0.5 0.2 2.0 1.1 1.2 2.9 0.7 0.1 3.0 0.8 0.9 1.3 0.4 0.2 1.6
SAMPLE 2 RESIN IN THI TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF DOWEX 1	E HYDROXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY WB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY SB CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY SB CAPACITY TOTAL CAPACITY TOTAL CAPACITY TOTAL CAPACITY TOTAL CAPACITY TOTAL CAPACITY SB CAPACITY MB CAPACITY	M DAYS MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10 3.97 0. 0.96 2.80 1.00 0.20 3.00 0.	0.25 2.82 0.97 0.28 3.10 0.09 1.06 2.92 0.97 0.19 3.11 0.04 1.26 3.87 1.00 0.10 3.97 0.04 0.97 2.75 0.98 0.19 2.94 0.05	1.00 2.73 0.93 0.28 3.01 0.18 1.01 2.88 0.96 0.20 3.08 0.14 1.27 3.77 0.97 0.11 3.88 0.17 0.97 0.11 3.88 0.17 0.98 2.65 0.95 0.21 2.86 0.16	2.00 2.65 0.91 0.27 2.92 0.30 1.04 2.77 0.92 0.21 2.98 0.20 1.27 3.70 0.96 0.10 3.80 0.20 1.27 3.70 0.96 0.10 3.80 0.20 0.99 2.56 0.91 0.21 2.77 0.23	5.00 2.40 0.82 0.32 2.72 0.40 1.03 2.68 0.89 0.21 2.89 0.30 1.24 3.50 0.90 0.12 3.62 0.28 0.98 2.42 0.98 2.42 0.86 0.23 2.65 0.40	10.00 2.30 0.79 0.33 2.63 0.73 1.07 2.47 0.82 0.22 2.69 0.51 1.23 3.50 0.90 0.13 3.63 0.41 0.98 2.12 0.76 0.24 2.36 0.65	15.00 2.00 0.68 0.34 2.34 0.86 1.02 2.20 0.73 0.24 2.44 0.75 1.26 3.20 0.83 0.15 3.35 0.67 0.98 0.95 0.34 0.26 1.21 0.92	20.00 1.68 0.58 0.36 2.04 1.16 1.02 2.07 0.69 0.25 2.32 0.85 1.26 3.00 0.78 0.15 3.15 0.80 0.97 1.65 0.59 0.27 1.92 1.11	25.00 1.60 0.55 0.38 1.98 1.23 1.02 1.90 0.63 0.26 2.16 1.00 1.27 2.90 0.75 0.16 3.06 0.91 0.97 1.52 0.54 0.28 1.80 1.23	30.00 1.4 0.5 0.3 1.8 1.4 1.0 1.7 0.5 0.2 2.0 1.1 1.2 2.9 0.7 0.1 3.0 0.8 0.9 1.3 0.4 1.3 0.2 1.4 1.2 1.1 1.2 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.1
SAMPLE 2 RESIN IN TH TEMPERATURE TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF DOWEX 1	E HYDROXIDE FOR 90.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY SB CAPACITY WB CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN SB CAPACITY SB CAPACITY SB CAPACITY SB CAPACITY TRIMETHYLAMINE METHANOL WTR REGAIN	M DAYS MEQ/G	0 2.92 1.00 0.27 3.19 0. 1.08 3.01 1.00 0.18 3.19 0. 1.27 3.87 1.00 0.10 3.97 0. 0.96 2.80 1.00 0.20 3.00 0.	0.25 2.82 0.97 0.28 3.10 0.09 1.06 2.92 0.97 0.19 3.11 0.04 1.26 3.87 1.00 0.10 3.97 0.04 0.97 2.75 0.98 0.19 2.94 0.05	1.00 2.73 0.93 0.28 3.01 0.18 1.01 2.88 0.96 0.20 3.08 0.14 1.27 3.77 0.97 0.11 3.88 0.17 0.97 0.11 3.88 0.17 0.98 2.65 0.95 0.21 2.86 0.16	2.00 2.65 0.91 0.27 2.92 0.30 1.04 2.77 0.92 0.21 2.98 0.20 1.27 3.70 0.96 0.10 3.80 0.20 1.27 3.70 0.96 0.10 3.80 0.20 0.99 2.56 0.91 0.21 2.77 0.23	5.00 2.40 0.82 0.32 2.72 0.40 1.03 2.68 0.89 0.21 2.89 0.30 1.24 3.50 0.90 0.12 3.62 0.90 0.12 3.62 0.98 2.42 0.98 2.42 0.86 0.23 2.65 0.40	10.00 2.30 0.79 0.33 2.63 0.73 1.07 2.47 0.82 0.22 2.69 0.51 1.23 3.50 0.90 0.13 3.63 0.41 0.98 2.12 0.76 0.24 2.36 0.65	15.00 2.00 0.68 0.34 2.34 0.86 1.02 2.20 0.73 0.24 2.44 0.75 1.26 3.20 0.83 0.15 3.35 0.67 0.98 0.95 0.34 0.26 1.21 0.92	20.00 1.68 0.58 0.36 2.04 1.16 1.02 2.07 0.69 0.25 2.32 0.85 1.26 3.00 0.78 0.15 3.15 0.80 0.97 1.65 0.59 0.27 1.92 1.11	25.00 1.60 0.55 0.38 1.98 1.23 1.02 1.90 0.63 0.26 2.16 1.00 1.27 2.90 0.75 0.16 3.06 0.91 0.97 1.52 0.54 0.28 1.80 1.23	30.0 1.4 0.5 0.3 1.8 1.4 1.0 1.7 0.5 0.2 2.0 1.1 1.2 2.9 0.7 0.1 3.0 0.8 0.9 1.3 0.4 0.2 1.6 1.3

•

In the second sec

RESIN IN THI	E HYDROXIDE FOR	M	•							
TEMPERATURE	120.0 C		C ·			a na sing si		• •		
TIME		DAYS	0	0.25	1.00	2.00	3.00	4.00	5.00 10.00	D
AMBERLITE	SB CAPACITY	MEQ/G	2.92	2.88	2.36	0.99	0.41	0.19	0.08 0.	
IRA 400	SB CAPACITY	NEO /C	1.00	0.99	0.81	0.34	0.14	0.07		۰, ۲۰۰۰ ۲۰۰۰ ۲۰۰۰
	TOTAL CAPACITY	MEQ/G	3.20	3.17	2.83	1.91	1.52	1.37	1.29 1.2	4 the factors
	TRIMETHYLAMINE	MEQ/G	0	0.03	0.37	1.29	1.68	1.84	1.91 1.9	0
	METHANOL	MEQ/G						/	A 71 A 7	
	WTR REGAIN	GM/GM	1.06	1.06	1.06	0.97	0.84	0•.(4	0+/1 0+/	2 (1994) - 1 99
AMBERLITE	SB CAPACITY	MEQ/G	3.02	2.98	2.36	1.03	0.41	0.17	0.04 0.	
IRA 900	SB CAPACITY		1.00	0.99	0.78	0.34	0.14	0.06	0.01 0.	_
	WB CAPACITY	MEQ/G	0.20	0.21	0.46	0.83	1.06	1.10	$1 \cdot 16 \cdot 1 \cdot 2$	
	TRIMETHYLAMINE	MEQ/G	0.	0.03	0.44	1.30	1.70	1.87	2.01 2.0	1
u pitanti el este como di cui a Stato di cui a	METHANOL	MEQ/G	•							
	WTR REGAIN	GM/GM	1.25	1.26	1.27	1.18	1.13	0.94	0.91 0.9	
DEACIDITE	SH CAPACITY	MEDIC	3. 91	3-85	3.13	1.88	1.18	0-66	0-39 0-0	4
FF	SB CAPACITY		1.00	0.98	0.80	0.48	0.30	0.17	0.10 0.0	1
	WB CAPACITY	MEQ/G	0.10	0.11	0.35	0.78	1.01	1.20	1.25 1.3	7 - 100 -
	TOTAL CAPACITY	MEQ/G	4.01	3.96	3.48	2.66	2.19	1.86	1.20 24	
	THANNI METHANINE	MEQ/G MEQ/G	V. C	Ue U4	U•21	1.4 4U	1000	491C	2030 200	 20.75.7.8.730
	WTR REGAIN	GM/GM	0.98	0.99	0.99	0.86	0.74	0.70	0.68 0.6	9
							• • •		0 0E' 0	÷.
DOWEX	SB CAPACITY	MEQ/G	2.82	2.79	2.20	0.34	0.31	0-13		
	WB CAPACITY	MEQ/G	0.21	0.22	0.41	0.81	1.04	1.14	1.08 1.1	2
	TOTAL CAPACITY	MEQ/G	3.03	3.01	2.61	1.77	1.35	1.27	1.13 1.1	2
	TRIMETHYLAMINE	MEQ/G	0	0.02	0.41	1.22	1.66	1.81	1.86 1.8	5
	METHANOL WTR REGAIN	MEQ/G	0.94	0-93	0.92	0-80	0-65	0-62	0-61 0-6	0
en en la seconda de la composición de l Composición de la composición de la comp	WIN NEGALA	GH7 GH	V8 7 T		0072	0.00				
									•	
SAMPLE 2				· · · · · ·		n mar an an an An an an an an				
RESIN IN T	HE HYDROXIDE F	ORM	an		, to tet				•	
TEMPERATUR	E 120.0 C	· • · · · ·	•				-			
		DAYS	. t)	0_25	5 1-04) 2.00) 3-01) 4_00	5.00 10.	00
			-							
AMBERLITE	SB CAPACITY	MEQ/G	2.92	2 2 85	2.2		3 0.43	3 0.20	0.07 0.	
<u>ika 400</u>	WB CAPACITY	MEO/G	. ⊥•00 . 0_27	J U∙98 7 0_30) U.()) 0_4:	2 0.91		5 U.U7 4 1_19	1.24 1	-26
n en later i de later d <u>e la de la de</u> fond de Formanie	TOTAL CAPACI	TY MEQ/G	3.19	3.15	5 2.6	9 1.99	1.57	7 1.39	1.31 1.	.26
	TRIMETHYLAMI	NE MEQ/G	Ŭ.	0.04	0.3	7 1.32	2 1.69	5 1.85	1.87 1.	•92
	METHANOL	MEQ/G						: 0 7/	0 73 0	
	WIK REGAIN	GM/GM	1.08	s 1°06	0°1°0	y U.98	5 U.85	D U.●76	0.30	• (1
AMBERLITE	SB CAPACITY	MEQ/G	3.01	2.96	2.3	0 1.12	2 0.43	8 0.17	0.02 0.	•
IRA 900	SB CAPACITY	· · · · · · ·	1.00	0.98	3 0.7	6 0.3	7 0.14	4 0.06	0.01 0	
	WB CAPACITY	MEQ/G		3. 0.2 0) 0.4		5 1. 00	5 1. 09	1014 10	16 <u>16</u>
	TRIMETHYLAMI	NE MEQ/G	9+17 0		5 0.4	5 /1.21	1 1.943 L 1.974	· 1.78	1.96 2	•04
and a second second Second second	METHANOL	MEQ/G	Ū							
	WTR REGAIN	GM/GM	1.27	7 1.27	1.2	7 1.18	B 1.10	0.96	0.90 0	• 90 · · · · · · · · · · · · · · · · · ·
DEACTOTTE	CADACTTV	MED /C	2 01	7 2 70	2 2 0	4 1.0*		L A LL	0.41 0	- 04
EE	SB CAPACITY	MEQ/G	· 2001	r ⊃•18 0⊾98	3 0.7	9 <u>0</u> =47	7 0.2	- 0.00 7 0.17		•01
	WB CAPACITY	MEQ/G	0.10	0.13	3 0.3	B 0.7	7 1.0!	5 1.17	1.24 1	•36
	TOTAL CAPACI	TY MEQ/G	3.97	7 3.91	3.4	4 2.59	9 2.09	9 1.83	1.65 1	• 40
	IRIMETHYLAMI	NE MEQ/G	Ð,	0.07	0.5	2 1.39	1081	5 2.14	2032 20	9 7 0
	WTR REGAIN	GM/GM	0.96	5 0.98	8 0.9	5 0.88	8 0.74	4 0.71	0.68 0	• 68
na na sana ana tati a										
DOWEX	SB CAPACITY	MEQ/G	2.80	2.74	2.1	0 0.98	8 0.30	5 0.13	0.04 0	•
.	SB CAPACITY	MEDIC	1.00	3 0°98	3 0.7	5 0.35	5 0.13	3 0.05		a (1.2 (1.2 (1.2 (1.2 (1.2 (1.2 (1.2 (1.2
	カロ いみてみにします	1100/0	U024	J V066	- Vo4.		J IOU.	r Teng	1015 1	917 · [682] ·
	TOTAL CAPACT	TY MEO/G	3.01	2.96	5 2.5	3 1.79	8 1.3	7 1.16	1.17 1.	.13
	TOTAL CAPACI TRIMETHYLAMI	TY MEQ/G NE MEQ/G	3.00 0) 2.96 0.20	5 2.5) 0.4	$ \begin{array}{r} 3 1.78 \\ 6 1.24 \\ \end{array} $	B 1.3 ⁻ 4 1.60	7 1.16 5 1.79	1.17 1.	•13
	TOTAL CAPACI TRIMETHYLAMI METHANOL	TY MEQ/G NE MEQ/G MEQ/G	3.00	2.96	5 2.5 0 0.4		B 1.3 4 1.60	7 1.16 5 1.79	1.17 1.	•13 •85

RESIN IN THE HYDROXIDE FORM TEMPERATURE 150.0 C TIME 1.00 3.00 4.50 6.00 9.00 12.00 15.00 24.00 48.00 HR S 0 1.00 0 0. J. B. 2.45 1.60 0 2.92 0.36 0.06 D AMBERLITE SB CAPACITY MEQ/G 1.00 SB CAPACITY 0.84 0.55 0.34 0.12 0.02 0 0... 0. 0. IRA 400 1.74 1.76 1.78 0.50 0.94 1.20 1.50 1.70 1.75 WB CAPACITY MEQ/G 0.28 1.78 1.74 1.76 1.75 TOTAL CAPACITY MEQ/G 2.54 1.86 1.76 3.20 2.95 2.20 0.24 0.98 1.16 1.41 1.43 1.40 1.44 1.42 TRIMETHYLAMINE MEQ/G Ω 0.68 0.15 0.12 0.14 METHANOL MEQ/G Û. 0.99 1.06 1.04 1.05 0.81 0.70 0.70 0.67 0.70 : 0.68 WTR REGAIN GM/GM U O AMBERLITE 1.96 1.18 0.48 0.10 0 D D SB CAPACITY MEQ/G. 3.02 2.81 0 0. . . SB CAPACITY 0 IRA 900 0.93 0.65 0.39 0.16 0.03 1.00 1.76 0.69 1.10 1.44 1.70 1.74 1.70 WB CAPACITY 0.31 1.70 MEQ/G 0.20 TOTAL CAPACITY MEQ/G 2.65 2.28 1.92 1.80 1.70 1.74 1.76 1.70 3.22 3.12 1.55 1.47 1.54 1.57 1.50 0.94 TRIMETHYLAMINE MEQ/G 0 0.10 0.74 1.56 0.15 0.13 0.12 METHANOL Ω MEQ/G 1.17 1.01 0.91 0.90 0.89 0.91 0.88 WTR REGAIN . GM/GM 1.25 1.24 1.21 0. Ö. 0. 2.57 0.92 0.06 SB CAPACITY MEQ/G SB CAPACITY 0.17 1.59 DEACIDITE 3.91 3.62 0. 0.66 0.41 1.00 0.93 0.24 0.04 0.02 ٥. 0. FF WB CAPACITY 1.78 1.84 1.83 0.55 0.94 1.43 1.72 1.81 MEQ/G 0.10 0.20 1.84 1.78 1.83 1.89 2.53 2.35 1.87 TOTAL CAPACITY MEQ/G 4.01 3.82 3.12 0.19 1.04 1.41 1.53 1.90 2.10 2.16 2.16 2.20 TRIMETHYLAMINE MEQ/G 0. - 1 MEQ/G 0.15 0.20 0.20 METHANOL 0 2 -0.90 0.60 0.60 0.62 0.97 0.75 0.61 WTR REGAIN GM/GM 0• 38 0.96 0.64 SB CAPACITY DOWEX MEQ/G 2.82 2.40 1.66 1.08 0.42 0.04 0 ۵. 0 0 0.59 0 0.15 0.01 0 0. 0 SB CAPACITY 1.00 0.85 0.38 1 WB CAPACITY MEQ/G 0.47 1.59 1.11 1.54 1.60 1.61 1.61 0.25 0.62 0.21 1.53 1.59 1.61 1.58 1.60 1.61 TOTAL CAPACITY MEQ/G 3.03 2.65 2.13 1.70 1.42 1.40 Ũ, TRIMETHYLAMINE MEQ/G 0.36 0.88 1.30 1.33 1.43 1.41 1.40 METHANOL MEQ/G O WTR REGAIN GM/GM 0.94 0.96 0.14 0.14 0.13 0.62 0.61 0.97 0.94 0.75 0.64 0.61 0.60 ter a transmission a second SAMPLE 2 **RESIN IN THE HYDROXIDE FORM** TEMPERATURE 150.0 C 0 TIME HRS 1.00 3.00 4.50 6.00 9.00 12.00 15.00 24.00 48.00 0, AMBERLITE SB CAPACITY 1.01 MEQ/G 2.92 0.07 D 2.47 1.61 0.36 0 Ω IRA 400 0.55 SB CAPACITY 1.00 0.85 0.35 0.12 0.02 0 0. 0 0 WB CAPACITY MEQ/G 0.27 0.51 0.98 1.23 1.52 1.71 1.73 1.76 1.77 1.79 TOTAL CAPACITY MEQ/G 2.59 1.77 1.79 3.19 2.98 2.24 1.88 1.78 1.73 1.76 1.44 TRIMETHYLAMINE MEQ/G Ũ 0.21 0.69 0.99² 1.46 1.50 1.47 1.46 1.22 METHANOL 0.16 0.14 MEQ/G Û 0.12 0.97 0.69 WTR RÉGAIN 1.08 1.04 1.03 0.80 0.71 0.68 0.68 0.71 GM/GM AMBERLITE 3.01 1.08 Ö 0 0 0 SB CAPACITY MEQ/G 2.74 1.84 0.45 0.09 IRA 900 SB CAPACITY 1.00 0.91 0.61 0.36 0.15 0.03 0 0 0. Ö. 1.71 1.73 WB CAPACITY 1.47 1.71 1.69 MEQ/G 0.18 1.51 0.34 1.13 0.77 TOTAL CAPACITY MEQ/G 2.61 1.92 1.71 3.19 3.08 2.21 1.60 1.71 1.73 1.69 1.50 .1.51 1.71 1.51 TRIMETHYLAMINE MEQ/G 0 0.17 0.77 0.91 1.46 1.51 0.13 0.16 0.16 METHANOL MEQ/G 0 1.27 WTR REGAIN GM/GM 1.21 1.21 1.19 1.04 0.89 0.90 0.90 0.90 0.86 DEACIDITE SB CAPACITY 1.51 0.91 0.15 0.04 0 0 D 3.87 3.60 MEQ/G 2.31 SB CAPACITY 1.00 0.93 0.60 0.39 0.24 0.04 0.01 0 0 0. FF 1.72 1.84 1.83 WB CAPACITY MEQ/G Ü.10 0.20 0.55 0.94 1.43 1.81 1.78 1.85 1.84 3.80 2.86 2.34 1.78 1.83 3.97 2.45 1.87 TOTAL CAPACITY MEQ/G 1.48 1.86 TRIMETHYLAMINE MEQ/G Û 0.18 1.05 1.41 2.13 2.17 2.18 2.18 METHANOL 0.13 0.19 0.20 MEQ/G Ũ 0.59 J. 96 0.95 0.89 WTR REGAIN 0.98 0.63 0.61 0.61 GM/GM 0.76 0.63 DOWEX 0 2.43 SB CAPACITY MEQ/G 1.06 0.38 80.0 0 0 0 2.80 1.63 SB CAPACITY 0 * 0.87 0.03 0 1.00 0.58 0.38 0.14 0 0-1.55 WB CAPACITY 0.20 0.27 1.11 MEQ/G 0.44 0.65 1.62 1.61 1.62 1.61

2.07

0.94

0.95

1.71

1.30

0.89

3.00

0.94

Û.

Ð.

2.70

0.37

0.98

TOTAL CAPACITY MEQ/G

TRIMETHYLAMINE MEQ/G

MEQ/G

GM/GM

MÉTHANOL

WTR REGAIN

1.62

1.39

0.15

1.61

1.40

0.61

1.61

1.41

1.62

1.39

0.15

0.59 1.60

1.63

1.38

0.76 0.63 0.63

1.49

1.35

0.12

ł

RESIN	IN THE	HYDROXIDE	FORM

TEMPERATURE	180•0 C	· 									
TIME		HR S	0	0.25	0.50	0.45	1.00	1.50	2.00	6.00	
AMBERLITE	SB CAPACITY	MEQ/G	2.92		1.79		0.47	0.09	0	0.	
IRA 400	SB CAPACITY		1.00		0.61		0.16	0.03	0	0	· · · ·
The second se	WB CAPACITY	MEQ/G	0.28		1.07		1.78	2.11	2.19	2.19	
	TOTAL CAPACITY	MEQ/G	3.20		2.86		2.25	2.20	2.19	2.19	
	TRIMETHYLAMINE	MEQ/G	0.		0.35		0.94	0.98	1.01	1.01	
	METHANUL	MEQ/G	1.06		0.00		0-82	0.72	0.71	94-0	
	WIR REGAIN	GHZGH	1.00	•	08 70		0002	₩ ¶1&			a golf er fræmte Transformer
AMBERLITE	SB CAPACITY	MEQ/G	3.02		1.83		0.46	0.13	0	0	
IRA 900	SB CAPACITY		1.00	· · ·	0.61		0.15	0.04	. 0	0	
	WB CAPACITY	MEQ/G	0.20		0.92	· · · ·	1.78	2.01	2.04	2.03	 In a constraint of a constraint
	TOTAL CAPACITY	MEQ/G	3.22		2.75	ing the second	2.24	2.14	2.04	2.03	
	TRIMETHYLAMINE	MEQ/G	Û		0.39		0.81	0.91	0.93	0.92	
	METHANOL	MEQ/G	1 96	- 1977		en an Ar	1 02	0 07	0 02	0 00	
	WIR REGAIN	GM/GM	1.20		i a i i		1000	0.95	0.72	U 6 7 U	in the second
DEACIDITE	SB CAPACITY ,	MEQ/G	3.91	3.17	2.55	2.05	1.07	0.28	0	0	
FF.	SB CAPACITY		1.00	0.81	0.65	0.52	Ú. 27	0.07	0	0	
	WB CAPACITY	MEQ/G	0.10	0.62	0.99	1.40	1.92	2.74	2.85	2.8D	
	TOTAL CAPACITY	MEQ/G	4.01	3.79	3.54	3.45	2.99	3.02	2.85	2.89	
		MEQ/G	U.	0.20	0.44	0.52	1001	1.10	1 • 2 U	1	i stratic E
	WTR REGAIN	GM/GM	0.98		0.88		0.80	0•72	0.71	0.69	
DAMEX	SB CAPACITY	MEO/G	2.82		1.70		0.42	0.13	0	D	1
1	SB CAPACITY	HEQ/ O	1.00	, 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	0.60		0.15	0.05	Ō.	D.	
	WB CAPACITY	MEQ/G	0.21		0.90		1.78	2.03	2.11	2.09	
	TOTAL CAPACITY	MEQ/G	3.03		2.60	•	2.20	2.16	2.11	2.09	
• • • • • • • • • • • • • • • • • • •	TRIMETHYLAMINE	MEQ/G	0		0.62	Ren Hard Kara	0.86	0.90	0.91	0.93	- construction of the second o
	METHANOL '	MEQ/G	0.94	Alta <u>jeta</u> n	0.81		0.70	0.61	0.61	0.61	
n han sing bereiten site her site site site site site site site site				n na		and and the second s					n an
	••• ••• ••• •••					n an an ann Seanna Anns	n an	•	ж.4 Г.		na na sa
JAMPLE 2	· · · · · · · · · · · · · · · · · · ·	تيم در آن مُنجور مسجد جريد الدار		بېسېر	ا ، ، ، ، ، ، ، . محمودین رکز دیر .			4. •	· · ·		
RESIN IN TH	E HYDROXIDE FOR	M	2			<u></u>					
TEMPERATURE	180.0 C				· · · · · · · · ·		· · · · ·	· · ·			
TIME	an at	HR S	0.	0.25	0.50	0.75	1.00	1.50	2.00	6.00	
AMBERLITE	SB CAPACITY	MEQ/G	2.92		1.75		0.45	0.08	0	0	
IRA 400	SB CAPACITY		1.00	`	0.60		0.15	0.03	0	ō	
	WB CAPACITY	MEQ/G	0.27	11 - 13 10 - 17 - 19 1	1.10		1.81	2.15	2.20	2.21	
	TOTAL CAPACITY	MEQ/G	3.19	· · · · ·	2.85		2.26	2.23	2.20	2.21	a perrolation.
	TRIMETHYLAMINE	MEQ/G	0		0.36		0.92	0•96	1.00	0.99	
	METHANOL WTR REGAIN	MEQ/G GM/GM	1.08		0.91	•	0.81	0.70	0.70	0.70	n a sa na na magana a sa na
in the second											
AMBERLITE	SB CAPACITY	MEQ/G	3.01		1.79		0.47	0.11	0	0	
IRA 900	SB CAPACITY	1150 10	1.00	·	0,59		0.16	0.04	0	0.	
	WE CAPACITY	MEQ/G	0.18		0.99		1.01	2.04	2.01	2.06	
	TOTAL CAPACITY	MEQ/G	2017		2.10		2020	2017	2001	2.00	
	METHANOI	MEQ/G	U ·		V6 41		0.00	V e 73	UB7 4	0090	
	WTR REGAIN	GM/GM	1.27		1.13		1.04	0.96	0.92	0.93	 A second second sector at and second s second second se
DEACIDITE	SBCAPACITY	MEQ/G	3.87	3-08	2.56	2.01	1.11	0.23	0	0	
FF	SB CAPACITY		1.00	0.80	0.66	0.52	0.29	0.06	0	D	
	WB CAPACITY	MEQ/G	0.10	0.66	0.98	1.42	1.93	2.73	2.83	2.83	
	TOTAL CAPACITY	MEQ/G	3.97	3.74	3.54	3.43	3.04	2.96	2.83	2.83	
	TRIMETHYLAMINE	MEQ/G	0	0.21	0.38	0.50	1.08	1.16	1.21	1.20	
	METHANOL	MEQ/G					n n	o ~••	a	0 70	
	WIR REGAIN	GM/GM	0.96		. ⊽ ∎87		0.81	U • 70	0.70	V• / V	

DOWEX 1 SB CAPACITY

SB CAPACITY

METHANOL

WTR REGAIN

. .

WB CAPACITY MEQ/G TOTAL CAPACITY MEQ/G TRIMETHYLAMINE MEQ/G

MEQ/G

MEQ/G

GM/GM

2.80

1.00

0.20

3.00

U•94

0

1.68

0.60

Û**.** 92

2.60

TANK D

に見たいで見た

2.22 2.18 2.12 0.60 0.84 0.87 0.88 0.83 0.72 0.63 0.62

0.43

0.15

0.10 0.

0

2.12

0.04

2.08

0

0...

2.08

2.08

0.92

0.63

SAMPLE 3

RESIN IN THE CHLORIDE FORM

TEMPERATURE 150.0 C

									· · · ·			
TIME	••••••••••••••••••••••••••••••••••••••	DAYS	0	0.25	1.00	2.00	5.00	10.00	15.00	20.00	25.00	30.00
AMBERLITE	SB CAPACITY	MEQ/G	2.91	2.91	2.90	2.90	2.88	2.83	2.75	2.70	2.66	2.61
IRA 400	SB CAPACITY		1.00	1.00	1.00	1.00	0.99	_0∙97	0.95	0.93	0.91	0.90
	WB CAPACITY	MEQ/G	0.28	0.28	0.30	0.30	0.31	0.33	0.35	0.37	0.39	0.41
	TOTAL CAPACITY	MEQ/G	3.19	3.19	3.20	3.20	3.19	3.16	3.10	3.07	3.05	3.02
	TRIMETHYLAMINE	MEQ/G	0	0.0	0 : 9	0.2	0	0.02	0.08	0.11	0.13	0.16
AMBERLITE	SB CAPACITY	MEQ/G	3.01	• • • • •		2.98	2.92	2 • 86	2.83	2.77	2.74	2.74
IRA 900	SB CAPACITY		1.00			0.99	0.97	0.95	0.94	0.92	0.91	0.91
	WB CAPACITY	MEQ/G	0.28			0.31	0.32	0.35	0.36	0.38	0.38	0.40
and the second	TOTAL CAPACITY	MEQ/G	3.29			3.29	3.24	3.21	3.19	3.15	3.12	3.14
	TRIMETHYLAMINE	MEQ/G	O _C , 1		· · ·	0.01	0.03	0.05	0.06	0.06	0.09	0.10
DEACIDITE	SB CAPACITY	MEQ/G	3.92	3.87	3.88	3.87	3.87	3.84	3.80	3.78	3.74	3.70
FF	SB CAPACITY		1.00	0.99	0.99	0.99	0.99	0.98	0.97	0.96	0.95	0.94
 a contrat processor for approximation of the state of the	WB CAPACITY	MEQ/G	0.11	0.14	0.13	0.12	0.13	0.15	0.17	0.19	0.21	· 0.23
	TOTAL CAPACITY	MEQ/G	4.03	4.01	4.01	3.99	4.00	3.99	3.97	3.97	3.95	3 . 93
	TRIMETHYLAMINE	MEQ/G	0.,	0.02	0.02	0.04	0.03	0.04	0.06	0.06	0.08	0.10
DOWEX	SB CAPACITY	MEQ/G	2.79	2.78	2.77	2.77	2.75	2.70	2.66	2.61	2.56	2.50
1	SB CAPACITY		1.00	1.00	0.99	0.99	0.99	0.97	0.95	0.94	0.92	0.90
	WB CAPACITY	MEQ/G	0.19	0.19	0.21	0.22	0.25	0.25	0.27	0.30	0.32	0.34
••••••••••••••••••••••••••••••••••••••	TOTAL CAPACITY	MEQ/G	2.98	2.97	2.98	2.99	3.00	2.95	2.93	2.91	2.88	2.84
	TRIMETHYLAMINE	MEQ/G	0	0.01	0	0.01	0,	0.03	0.05	0.07	0.10	0.13

•

TABLE 2.10

SAMPLE 4

RESIN IN THE CHLORIDE FORM

TEMPERATURE 150.0 C

TIME	C	DAYS	0	0.25	1.00	2.00	5.00	10.00	15.00	20.00	25.00	30.00
AMBERLITE	SB CAPACITY	MEQ/G	2.91	2.89	2.88	2.90	2.89	2.81	2.72	2.69	2.67	2.63
IRA 400	SB CAPACITY		1.00	0.99	0.99	1.00	0.99	0.97	0.93	0.92	0.92	0.90
142	WB CAPACITY	MEQ/G	0.28	0.29	0.30	0.31	0.31	0.34	0 . 35	0.35	0.39	0.42
	TOTAL CAPACITY	MEQ/G	3.19	3.18	3.18	3.21	3.20	3.15	3.07	3.04	3.06	3.05
	TRIMETHYLAMINE	MEQ/G	Û.	0.01	0.01	0	0	0.04	0.12	0.15	0.13	0.14
AMBERLITE	SB CAPACITY	MEQ/G	3.01		• •	2.98	2.95	2.92	2.83	2.83	2.77	2.74
IRA 900	SB CAPACITY	· .	1.00			0.99	0.98	0.97	D.94	0.94	0.92	0.91
	WB CAPACITY	MEQ/G	0.29			0.31	0.33	0.35	0.37	0.38	0.39	0.41
	TOTAL CAPACITY	MEQ/G	3.30	•	•	3.29	3.28	3.27	3.20	3.21	3.16	3.15
	TRIMETHYLAMINE	MEQ/G	0	<u> </u>		0.01	0.03	0.06	0.06	0.08	0.10	0.11
DEACIDITE	SB CAPACITY	MEQ/G	3.92	3.89	3.88	3.88	3.87	3.85	3.81	3.76	3.73	3.69
FF	SB CAPACITY		1.00	0.99	0.99	0.99	0.99	0.98	0.97	0.96	0.95	0.94
	WB CAPACITY	MEQ/G	0.11	0.13	0.13	0.13	0.14	0.16	0.18	0.20	0.22	0.24
	TOTAL CAPACITY	MEQ/G	4.03	4.02	4.01	4.01	4.01	4.01	3.99	3.96	3.95	3.93
	TRIMETHYLAMINE	MEQ/G	0	0	0.02	0.01	0.01	0.01	0.03	0.06	0.07	0.13
DOWEX	SB CAPACITY	MEQ/G	2.79	2.79	2.78	2.78	2.76	2.71	2.65	2.60	2.54	2.47
• 1	SB CAPACITY		1.00	1.00	i.00	1.00	0.99	0.97	0.95	0.93	0.91	0.89
	WB CAPACITY	MEQ/G	0.19	0.20	0.20	0.24	0.25	0.26	0.28	0.31	0.33	0.37
	TOTAL CAPACITY	MEQ/G	2.98	2.99	2.98	3.02	3.01	2.97	2.93	2.91	2.87	2.84
	TRIMETHYLAMINE	MEQ/G	0	0.04	0.05	0.01	0.02	0.06	0.10	0.12	0.16	0.1

SAMPLE 3								IAKLE	A 11			
· · · · · · · · · · · · · · · · · · ·												
RESIN IN TH	HE CHLORIDE FOR	M		•								
TEMPERATURE	E 180.0 C											
TIME		DAYS	0	0 . 25	1.00	2.00	5.00	10.00	15.00	20.00	25.00	30.00
AMBERLITE IRA 400	SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACIT	MEQ/G MEQ/G Y MEQ/G	2.91 1.00 0.28 3.19	2.86 0.98 0.31 3.17	2.84 0.98 0.32 3.16	2.81 0.97 0.33 3.14	2.77 0.95 0.35 3.12	2.64 0.91 0.38 3.02	2•52 D•87 0•47 2•99	2•38 0•82 0•56 2•94	2.27 0.78 0.65 2.92	2.17 0.75 0.74 2.91
	TRIMETHYLAMIN	IE MEQ/G	0	0.01	0.02	0.04	°0.06	0.16	0.19	0.22	0.27	0.26
AMBERLITE IRA 900	SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACIT TRIMETHYLAMIN	MEQ/G MEQ/G Y MEQ/G IE MEQ/G	3.01 1.00 0.28 3.29 0	• • •	· · · · ·	2.92 0.97 0.32 3.24 0.05	2.80 0.93 0.35 3.15 0.10	2.65 0.88 0.40 3.05 0.15	2.55 0.84 0.48 3.01 0.20	2.44 0.81 0.54 2.98 0.24	2.55 0.78 0.58 2.93 0.24	0.70 0.63 2.92 0.25
DEACIDITE FF	SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACIT TRIMETHYLAMIN	MEQ/G MEQ/G Y MEQ/G IE MEQ/G	3.92 1.00 0.11 4.03 0	3.87 0.99 0.15 4.02 0.01	3.85 0.98 0.15 4.00 0.01	3.83 0.98 0.17 4.00 0.08	3.78 0.96 0.21 3.99 0.04	3.69 0.94 0.28 3.97 0.06	3.60 0.92 0.35 3.95 0.08	3.48 0.89 0.42 3.90 0.13	3.37 0.86 0.49 3.86 0.17	3.2 0.8 0.5 3.8 0.1
DOWEX .	SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACIT TRIMETHYLAMIN	MEQ/G MEQ/G TY MEQ/G	2.79 1.00 0.19 2.98	2.77 0.99 0.22 2.99	2.75 0.99 0.23 2.98	2.70 0.97 0.25 2.95 0.03	2.65 0.95 0.29 2.94 0.04	2.52 0.90 0.39 2.91 0.07	2.40 0.86 0.51 2.91 0.07	2.24 0.80 0.58 2.82 0.16	2.17 0.78 0.67 2.84 0.14	2.04 0.73 0.76 2.80 0.16
	- INIAL III CAALA				. •							
	- Maria - Antonio Carlo - Antonio Carlo Maria - Antonio Carlo - Antonio					nya <u>na po</u> nya Nya	n an	۰ بر دی _{ر ۱} ۰ ۰		•	1977 - 19	
		····					••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·				• . • • • • • • • • •
		······································						تر اختار و المور				
				••••••••••••••••••••••••••••••••••••••		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			•	
						•						
SAMPIE 4												
SAMPLE 4 RESIN IN TH	HE CHLORIDE FOR											
SAMPLE 4 RESIN IN TH	HE CHLORIDE FOR	M										
SAMPLE 4 RESIN IN TH TEMPERATURE	HE CHLORIDE FOR E 180.0 C	M	0	0- 25	1 - 00	2-00	5-00	10-00	15-00	20-00	25.00	30-01
SAMPLE 4 RESIN IN TH TEMPERATURE TIME	HE CHLORIDE FOR E 180.0 C	M DAYS MEO/G	0, 2, 91	0.25	1.00	2.00	5.00	10.00	15.00	20.00	25•00 2-24	30.00
SAMPLE 4 RESIN IN TH TEMPERATURN TIME AMBERLITE IRA 400	HE CHLORIDE FOR E 180.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACIT TRIMETHYLAMIN	M DAYS MEQ/G MEQ/G Y MEQ/G IE MEQ/G	0. 2.91 1.00 0.27 3.18 0.	0.25 2.82 0.97 0.32 3.14 0.05	1.00 2.81 0.97 0.32 3.13 0.06	2.00 2.79 0.96 0.32 3.11 0.08	5.00 2.73 0.94 0.33 3.06 0.13	10.00 2.62 0.90 0.39 3.01 0.18	15.00 2.50 0.86 0.49 2.99 0.20	20.00 2.41 0.83 0.56 2.97 0.22	25.00 2.24 0.77 0.68 2.92 0.27	30.00 2.14 0.74 0.76 2.90 0.29
SAMPLE 4 RESIN IN TH TEMPERATURN TIME AMBERLITE IRA 400 AMBERLITE IRA 900	HE CHLORIDE FOR E 180.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACIT TRIMETHYLAMIN SB CAPACITY SB CAPACITY WB CAPACITY	M DAYS MEQ/G MEQ/G IE MEQ/G MEQ/G MEQ/G Y MEQ/G	0. 2.91 1.00 0.27 3.18 0. 3.01 1.00 0.29 3.30	0.25 2.82 0.97 0.32 3.14 0.05	1.00 2.81 0.97 0.32 3.13 0.06	2.00 2.79 0.96 0.32 3.11 0.08 2.89 0.96 0.33 3.22	5.00 2.73 0.94 0.33 3.06 0.13 2.95 0.98 0.36 3.31	10.00 2.62 0.90 0.39 3.01 0.18 2.92 0.97 0.42 3.34	15.00 2.50 0.86 0.49 2.99 0.20 2.89 0.96 0.50 3.39	20.00 2.41 0.83 0.56 2.97 0.22 2.83 0.94 0.54 3.37	25.00 2.24 0.77 0.68 2.92 0.27 2.77 0.92 0.59 3.36	30.00 2.14 0.74 0.74 0.76 2.99 0.29 2.74 0.99 0.64 3.31
SAMPLE 4 RESIN IN TH TEMPERATURN TIME AMBERLITE IRA 400 AMBERLITE IRA 900	HE CHLORIDE FOR E 180.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACIT TRIMETHYLAMIN SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACIT TRIMETHYLAMIN	M DAYS MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G IE MEQ/G	0. 2.91 1.00 0.27 3.18 0. 3.01 1.00 0.29 3.30 0	0.25 2.82 0.97 0.32 3.14 0.05	1.00 2.81 0.97 0.32 3.13 0.06	2.00 2.79 0.96 0.32 3.11 0.08 2.89 0.96 0.33 3.22 0.05	5.00 2.73 0.94 0.33 3.06 0.13 2.95 0.98 0.36 3.31 0.11	10.00 2.62 0.90 0.39 3.01 0.18 2.92 0.97 0.42 3.34 0.16	15.00 2.50 0.86 0.49 2.99 0.20 2.89 0.96 0.50 3.39 0.23	20.00 2.41 0.83 0.56 2.97 0.22 2.83 0.94 0.54 3.37 0.26	25.00 2.24 0.77 0.68 2.92 0.27 2.77 0.92 0.59 3.36 0.25	30.00 2.14 0.74 0.76 2.90 0.29 2.74 0.99 0.64 3.38 0.27
SAMPLE 4 RESIN IN TH TEMPERATURI TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF	HE CHLORIDE FOR E 180.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACIT TRIMETHYLAMIN SB CAPACITY WB CAPACITY WB CAPACITY TOTAL CAPACIT TRIMETHYLAMIN SB CAPACITY WB CAPACITY WB CAPACITY TOTAL CAPACIT TRIMETHYLAMIN	M DAYS MEQ/G MEQ/G IE MEQ/G IE MEQ/G MEQ/G IE MEQ/G IE MEQ/G IE MEQ/G IE MEQ/G IE MEQ/G IE MEQ/G	0. 2.91 1.00 0.27 3.18 0. 3.01 1.00 0.29 3.30 0 3.89 1.00 0.13 4.02 0	0.25 2.82 0.97 0.32 3.14 0.05 3.85 0.99 0.17 4.02 0	1.00 2.81 0.97 0.32 3.13 0.06 3.85 0.99 0.17 4.02 0	2.00 2.79 0.96 0.32 3.11 0.08 2.89 0.96 0.33 3.22 0.05 3.86 0.99 0.18 4.04 0	5.00 2.73 0.94 0.33 3.06 0.13 2.95 0.98 0.36 3.31 0.11 3.76 0.97 0.24 4.00 0.02	10.00 2.62 0.90 0.39 3.01 0.18 2.92 0.97 0.42 3.34 0.16 3.67 0.94 0.29 3.96 0.06	15.00 2.50 0.86 0.49 2.99 0.20 2.89 0.96 0.50 3.39 0.23 3.58 0.92 0.37 3.95 0.07	20.00 2.41 0.83 0.56 2.97 0.22 2.83 0.94 0.54 3.37 0.26 3.50 0.90 0.44 3.94 0.08	25.00 2.24 0.77 0.68 2.92 0.27 2.77 0.92 0.59 3.36 0.25 3.40 0.87 0.50 3.90 0.12	30.00 2.14 0.74 0.76 2.99 0.29 0.29 0.29 0.29 0.29 0.29 0.29
SAMPLE 4 RESIN IN TH TEMPERATURI TIME AMBERLITE IRA 400 AMBERLITE IRA 900 DEACIDITE FF MM	HE CHLORIDE FOR E 180.0 C SB CAPACITY SB CAPACITY WB CAPACITY TOTAL CAPACIT TRIMETHYLAMIN SB CAPACITY WB CAPACITY WB CAPACITY TOTAL CAPACIT TRIMETHYLAMIN SB CAPACITY WB CAPACITY WB CAPACITY SB CAPACITY WB CAPACITY SB CAPACITY SB CAPACITY SB CAPACITY SB CAPACITY SB CAPACITY SB CAPACITY	M DAYS MEQ/G MEQ/G IE MEQ/G IE MEQ/G MEQ/G IE MEQ/G IE MEQ/G IE MEQ/G MEQ/G IE MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G MEQ/G	0, 2.91 1.00 0.27 3.18 0, 3.01 1.00 0.29 3.30 0 3.89 1.00 0.13 4.02 0 2.82 1.00 0.21	0.25 2.82 0.97 0.32 3.14 0.05 3.14 0.05 3.14 0.05 3.14 0.05 2.76 0.17 4.02 0 2.76 0.98 0.24	1.00 2.81 0.97 0.32 3.13 0.06 3.85 0.99 0.17 4.02 0 2.77 0.98 0.24	2.00 2.79 0.96 0.32 3.11 0.08 2.89 0.96 0.33 3.22 0.05 3.86 0.99 0.18 4.04 0 2.69 0.95 0.25	5.00 2.73 0.94 0.33 3.06 0.13 2.95 0.98 0.36 3.31 0.11 3.76 0.97 0.24 4.00 0.02 2.64 0.94 0.30	10.00 2.62 0.90 0.39 3.01 0.18 2.92 0.97 0.42 3.34 0.16 3.67 0.94 0.29 3.96 0.06 2.52 0.89 0.42	15.00 2.50 0.86 0.49 2.99 0.20 2.89 0.96 0.50 3.39 0.23 3.58 0.92 0.37 3.95 0.07 2.41 0.85 0.50	20.00 2.41 0.83 0.56 2.97 0.22 2.83 0.94 0.54 3.37 0.26 3.50 0.90 0.44 3.94 0.08 2.27 0.80 0.59	25.00 2.24 0.77 0.68 2.92 0.27 2.77 0.92 0.59 3.36 0.25 3.40 0.87 0.50 3.90 0.12 2.15 0.76 0.69	30.00 2.12 0.72 0.72 0.72 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.2

strong base capacity, so there is no evidence to support thermal crosslinking, which is anyway an unlikely process. 2.3.3 Strong base exchangers in the chloride form.

The strong base exchangers in the chloride form were more stable than in the hydroxide form and no measuraable decomposition occurred over the 30 day heating period at $90^{\circ}C$ (Table 2.4) . Above $90^{\circ}C$ strong base capacity losses were observed in all four resins. At $120^{\circ}C$, losses were approximately 1-2% in Amberlite IRA 400 and Dowex 1, 1% in Amberlite IRA 900 and Deacidite FF, after 30 days heating but at $150^{\circ}C$ strong base capacity losses of 10% in Amberlite IRA 400 and Dowex 1, 5% in Deacidite FF and 10% in Amberlite IRA 900 were measured, over the same period. At $180^{\circ}C$ Amberlite IRA 400 and Dowex 1 lost 30%, Deacidite FF, 20%, and Amberlite IRA 900, 25%, strong base capacity after 30 days heating (Fig.2.1 - 2.4).

Degradation of strong base capacity resulted in the formation of weak base capacity in the heated samples (Fig. 2.5 - 2.12), and the formation of trimethylamine. No significant change was observed in the water regain in any of the chloride form samples, presumably because the loss in strong base capacity never exceeded 30%. A slight loss in weight was observed during thermal decomposition. No attempt was made to determine any decomposition products other than trimethylamine.

By analogy with the hydroxide form the following set of reactions probably account for the thermal decomposition of chloride form strong base exchange resins.

5Ò -

 $(CH_2 N(CH_3)_3 CC \rightarrow (CH_2 CV)$ 51 ... + (CH3), N $-CH_2 N^{\ddagger} (CH_3)_3 CC \longrightarrow (CH_2 N (CH_3)_2 + CH_3 OH$ -CH2 Nt (CH3)3CC --- K CH2 N (CH3)2 + H20 2.3.4 Kinetics of thermal decomposition

Loss of strong base capacity in the hydroxide and chloride forms of the four strong base exchangers followed a first order rate law, as observed by E.W. Baumann and Marinsky and Potter (ref.Bl,Ml). At 150°C and 180°C the first order law is obeyed after transient decomposition has been passed (see Section 2.3.9). Activation energies for decomposition calculated with the Arrhenius equation are given in Table 2.12. Values are of the order 25 to 35 kcal/mole as compared with 29 to 33 kcal/mole reported by Marinsky and Potter.

The decomposition of Deacidite FF was analysed in more detail and activation energies for each of the three reactions occurring during thermal decomposition are given. A plot of velocity constants versus reciprocal temperature for each reaction (Fig. 2.17) shows that reaction (1) predominates over the range investigated, but that reaction (2) becomes more important as the temperature increases and reaction (3) becomes less important as the temparature increases.

2.3.5 Heating of model compounds.

Thermal decomposition in anion exchange resins detaches simple molecules from the main matrix structure. Identification of the simple molecules is easy. The

								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TAB	LE 2.12 R	THERMAL ESIN-HYD	DECOMPOS ROXIDE A	ITION KI	NETIC DA IDE	TA•		
		14-32 ME	5001-7 <i>(</i> 0		NLD •			
		VELOCIT	Y CONSTA	NT OF RE	ACTION		ACTIVATION	
	TEMP	75 [•] C	_(DAYS-1 90°C) 120°C	150 [°] C	180 ° C	ENERGY KCAL/MOLE	
	он тот	7.4×10	2.5*10	7.2.10	=1.5x10	7.4×10	24.5	
400	CLTOT			<u> </u>	0.9*10	2.4.10	33.7	
		-3			11	4		
IRA	ОНТОТ	5•8×10	_1•9*10_	<u>B•4×10</u>	1.3×10	_6.2*10	24.7	
900	GL TOT			<u> </u>	=1.02/10	8.0 10	29.2	
DOWEX	- OH TOT	7.4110	2.5*10	8.2110	1.4810	6.4.10	24.5	
1	CL TOT			< 10	0.8*10	1.7×10	33.7	
			2 . - 2 2.					
)EACIDITE	OH_TOT_	3.4*10	1 • 1 # 1 0	4.6710	9.9*10	5.4*10	26.8	

52

277262 (S)

DEACIDITE FE IS ANALYSED IN MORE DETAIL

configuration remaining on the matrix after removal of the simple molecules cannot be found by analysis, but may be inferred by proposing reaction schemes, which account for the formation of the simple molecules.

Alternatively a model compound may be used. This is a simple molecule identical with the suspected part of the resin structure where thermal decomposition occurs. Manufacturing processes give some idea of the resin structure and enable suitable model compounds to be chosen.

The method of production of the anion exchanger Deacidite FF, suggests that the strong base functional groups are substituted benzyltrimethylammonium salts or bases linked to the main structure by methylene groups:-

XI-CH2 N(CH2) X

Hence a useful model compound is a benzyltrimethylammonium salt or base . This splits into two simple molecules on heating, both of which are readily identifiable. The

 $(-CH_2 \cdot N \cdot (CH_3)_3 X^{-1})$

configuration remaining on the matrix after thermal decomposition may be inferred from model compound heating results with some confidence.

Collie and Schryver (ref.C2) have reported the formation of benzyldimethylamine and trimethylamine when the compound benzyltrimethylammonium hydroxide was heated. They found a similar reaction in the salt forms of the compound, though at substantially higher temperatures.

Similar experiments were carried out as part of this work. A 2 molar solution of the model compound (i.e. with the same concentration as that of the functional groups in Deacidite FF), was prepared, and heated at 90°C, 120°C,150°C and 180°C. No decomposition was observed at 90°C but at 120°C and above increasing amounts of trimethylamine, methanol benzyldimethylamine and benzyl alcohol were detected by vapour phase chromatography. Results are shown in Fig. 2.18. No other significant products were observed over the temperature range indicated. The reactions occurring in the thermal decomposition of the model compound are therefore:-

$$1. \qquad (-cH_2 \cdot N^+ (CH_3)_3 \quad OH^- \rightarrow (-cH_2 \cdot CH + (CH_3)_3 \cdot N^-)$$

2.
$$(\Box CH_2 \cdot N \cdot (CH_3)_3 OH^- - (CH_2 \cdot N \cdot (CH_3)_2 + CH_3 \cdot OH)$$

No attempts to measure the quantitative yields of decomposition products were made, but some indications of the relative increase in yield as the temperature increases can be gained by comparing peak areas on the chromatograph record (Fig. 2.18).

The following conclusions were drawn from the model compound heating work.

a. The model compound yields the same decomposition products as the equivalent resin form, thus justifying the choice of model and confirming the suspected resin

THERMAL DECOMPOSITION OF 2M AQUEOUS BENZYLTRIMETHYLAMMONIUM HYDROXIDE

VAPOUR PHASE CHROMATOGRAMS OF DECOMPOSED SOLUTION

The model compound has substantially better thermal stability than the resin.

b. The configuration remaining on the resin after thermal decomposition is either a substituted benzyl alcohol group or a substituted benzyldimethylamine group. The latter most probably accounts for the increased weak base capacity and suggests the structure of one type of weak base group. c. The Hofmann Martius rearrangement reaction (ref.M3) given below has been observed in compounds similar to the model at temperatures between 200°C and 300°C. In the resin analogous reactions to (1) and (2) occur at some 50°C lower than in the model compound, and it is probable that

 $\int -cH_2 \cdot N^{+}(CH_3)_3 X^{-} \rightarrow \int -cH_3 \cdot N(CH_3)_3 + H_2 O$

the Hofmann Martius reaction will occur in the resin at temperatures substantially lower than 200⁰C. 2.3.6 The reaction mechanism of thermal decomposition.

The results of the present work have shown that the simple Hofmann degradation scheme proposed by E.W. Baumann (ref.Bl) requires some modification if it is to fully describe the thermal decomposition of anion exchange resins. In quaternary ammonium compounds, thermal decomposition occurs by the abstraction of an electron by the quaternary nitrogen atom, from one of the groups attached to it. This may result in substitution or elimination reactions. The nature of the functional group in the quaternary ammonium polystyrene based anion exchangers precludes the elimination reaction.

Collie and Schryver (ref.C2) and Hanhart and Ingold (ref.H7) have heated many different quaternary ammonium compounds and have arrived at the following sequence of organic groups arranged in order of increasing electron affinity:-

 $(C_6H_5)_3C$ - : $(C_6H_5)_2CH$ - : $C_6H_5CH_2$ - : CH_3 - : C_6H_5 -From the sequence it can bee seen that a quaternary ammonium nitrogen atom can abstract an electron from a benzyl group with greater ease than from a methyl group. Now , in the strong base exchangers under study, there are only methyl and substituted benzyl groups attached to the quaternary nitrogen, which leads to the conclusion that both the reactions suggested by E.W. Baumann should occur, but that the trimethylamine producing reaction should predeminate:

E.W. Baumann's reaction scheme was as follows :- $\frac{1}{2} \frac{R}{(H_2 \cdot N^{\dagger}(H_3)_3)} \times \frac{R}{(H_3)_3} \times \frac{R}{(H$ $R = CH_2 \cdot N^+ (CH_3)_3 \times R = R = CH_2 \cdot N \cdot (CH_3)_2 + CH_3 \cdot X$

The existence of methanol as a product of decomposition was only inferred, no actual measurements being possible.

In the present work a special experiment was carried out as described below to provide detailed information on the reaction mechanisms. In addition a search for methanol

58

11 B

was made and this product was detected and measured, though in substantially smaller quantities than expected. a. The loss in weight experiment.

The object of this experiment was to provide additional information about the mechanism of thermal decomposition in Deacidite FF .

Samples of Deacidite FF (approx., 10g.) In the hydroxide form (14-52 mesh, 7-9% crosslinking) were dried in a des cator over silica gel to constant weight. The drying time needed was three weeks. This method of drying has been found to be equivalent to heating the resin salt forms at 105°C for 48 hours. Accurately weighed dried samples were placed in weighed ampoules and heated for 24 hours at 150°C. Subsequently the ampoules and contents were cooled and frozen in liquid nitrogen prior to opening. The ampoule and frozen contents were transferred to a vacuum distillation apparatus (Fig.2.19) and the volatile products, i.e. methanol, trimethylamine and water separated from the decomposed resin. The volatile products were condensed in the cooler part of the apparatus and collected. The separated resin was analysed for strong and weak base capacity by the method described earlier and dried in the sulphate form at 105°C to constant weight.

The condensed products (Approx., lml.) were weighed. To separate organic products from the water a simple fractional crystallisation was performed by freezing the solution in a salt-ice bath at $-10^{\circ}C$. In this way it was possible to separate ice crystals from the mother liquor

, 60

containing methanol and trimethylamine. The latter were analysed by vapour phase chromatography and colorimetry respectively. The ice was melted, checked for organic products and weighed. Results of the experiment are shown in fable 2.13.

The capacity measurements were reproducible to 1%, whereas there was greater scatter in the measurement of decomposition products. Trimethylamine was measured to \pm 5% and the yield of methanol was averaged from five independent measurements. The scatter on the methanol determinations is between \pm 10% of the arithmetic mean. The measured amount of water given in Table 2.13 may possibly be higher than the true yield from decomposition. This is because the resin is expected to contain some tightly bound water , which may be released during heating and subsequent vacuum distillation.

b. Conclusions.

The following evidence is extracted from Table 2.13:i. Approximately half the decomposition results in the formation of trimethylamine .

ii. The yield of water is approximately nine times the yield of methanol.

iii . The loss in strong base capacity equals the gain in weak base capacity plus the yield of trimethylamine.

iv. The yield of methanol is approximately 10% of the increase in weak base capacity.

v. The only significant decomposition products are methanol, trimethylamine and water.

					6	2
			<u> </u>			
TABLE 2.13 THERMAL DI DEACIDITE	ECOMPOSIT	ION • ACCL	S2 MESH	5 IN WEI 7-9% CRO	GHT EXPT. SSLINKED.	
TEMPERATO	RE 90 C		PERIOD 2	4 HOURS		
	UNHEATED	SAMPLE	SAMPLE	SAMPLE	SAMPLE	
	SAMPLE			3		
CAPACITYSTRONG BASE	3.92	0.00	0.00	0.00	_0.00	
(MEQ/G.) WEAK BASE	0•10 4•02	1•83 1•83	1.81	1.82	1.83	
PRODUCTTRIMETHYLAMINE	=	2.20	2.25	2.20	2.20	
YIELD METHANOL	0.00 ≡	0•2 ± •02	0•2±•02	0.2 1 .02	0.22.02	
	13.7091	12.6142	14.3010	13.7111	12.8703	
	13.6979	10.6313	12.0629	11.5544	10.8342	
				2.150,		
LOST_PER	0.001	0.157	0.157	0.157	0.158	
GRAMS						
PRODUCTS	0.000	0•167	0•169	0•167	0.168	
				•		
					/	
						· · · · · · · · · · · · · · · · · · ·
a na series a series		· · · · · · · · · · · · · · · · · · ·			المتعقف الرسام معتقرهم	

. .

The two reactions suggested by E.W. Baumann can satisfactorily account for the production of trimethylamine and methanol. However, these two reactions alone cannot account for the proportion of weak base capacity to methanol, as in (iv). To account for those proportions there must be at least another reaction, which results in the formation of weak base capacity and water.

The following three reactions account for all the points of evidence:-

The discrepancy of 0.2 m moles/g between the observed and expected yield of water based on the above scheme (1.7 m moles/g) is more likely due to the loss of tightly bound water from the resin matrix, than to any other undetected reaction. At other temperatures, though the overall contribution to decomposition from each reaction is different (Table 2.14), the pattern of reactions should be the same.

2.3.7 Effect of the sorbed counter ion on thermal stability.

It is known that the quaternary ammonium strong base functional groups in anion exchange resin are less stable

TABLE 2.14 THERMAL DECOMPOSITION, RATIO OF TRIMETHYLAMINE YIELD TO INCREASE IN WEAK BASE CAPACITY ON HEATING AT VARIOUS TEMPERATURES DEACIDITE FF-HYDROXIDE,14-52 MESH, 7-9% CROSSLINKED.

HEATING TRIMETHYLAME YIELD

50°	C+							
75	C+			10:1	 			
90•	C+			8:1				
120•	C¥			 2:1	 	 <u> </u>	 	•
150*	C#			 - 131				
180*	C*		2 	2:3				
And the party of the second		 		 	 	 		

+RATIO AFTER 30 DAYS HEATING *RATIO AFTER TOTAL COSS IN STRONG BASE CAPACITY

than the corresponding tertiary amine weak base groups. A possible explanation for this is the electron drift caused by the positively charged nitrogen atom in the quaternary group, which tends to weaken the bonds between nitrogen, the three methyl groups and the resin matrix. The substituted benzyl group between the nitrogen atom and the resin matrix is a better electron donor than the methyl groups and reaction (1) is favoured.

The negatively charged counter ion will tend to neutralise the electron drift caused by the nitrogen atom. The magnitude of any effect depends upon ionic charge, ionic size, distance of nearest approach and any specific interactions between the counter ion and resin functional group. Similar criteria apply to the selectivity of the resin for a given counter ion. The counter ion of the greatest selectivity is the most closely bound to the functional group, and hence the most effective in neutralising the effect of the nitrogen atom. This explanation predicts that the order of increasing thermal stability should be identical with the order of selectivity. The results of

testing this hypothesis are shown in Table 2.15.

The order of stability was:-

 $B_2 O_7^{4-} > SO_4^{2-} > NO_3^{-} > CNS^{-} > Cl^{-} > OH^{-}$

The difference in stability between borate, sulphate, nitrate, thiscyanate and chloride is amall though outside the range of experimental error, whereas the difference between these forms and hydroxide is large.

the second s				· · · · · · · · · · · · · · · · · · ·	
 		DECOMPOSIT	ON-STOOL	NG BASE CI	ADACITY CHANGE!
	DEACIDIT	E FF 14-52	2 MESH 1	-9 /0 CROSSI	INKEDO
	TEMPERAT	URE 150 C.			
No. March 1997	FEFECT C			COUNTED T	

1

۰.

	PER CENT LOSS IN STRONG BASE CAPACITY	HEATING TIME (DAYS)	
4- 	17.0	600	
so?	18.0	60.0	
NO	20.0	60.0	
CNS	21+5	60.0	
CL	240	60.0	
	100+0	12 HOURS *	

-

*HYDROXIDE FORM HEATED TILL ALL STRONG BASE CAPACITY LOST .

2.3.8 Effect of degree of crosslinking on thermal stability.

Results obtained by heating Deacidite FF hydroxide samples of 2-3%, 4-6% and 7-9% crosslinking are shown in Fig.2.20 and 2.21. It can be seen that the loss in capacity is greatest in the sample of greatest degree of crosslinking at any given time.

A possible explamation of these effects is as follows. A greater degree of crosslinking results in a more closely knit matrix, with functional groups much closer to one another. As the degree of crosslinking increases there will be an increasing tendency for the sorbed counter ion to move continuously between adjacent functional groups. On average the counter ion will be further from any given functional group, and hence have less effect in neutralising the bond weakening action of the nitrogen atom, discussed in the previous section.

Further, if a comparison is made between the stability of Deacidite FF and Amberlite IRA 400, the former is found to be more stable. The crosslinks in Deacidite FF are longer than in the latter resin, so resulting in a greater separation between functional groups and an increased thermal stability for the reason given above. In Amberlite IRA 900 the slightly greater thermal stability, when compared with Amberlite IRA 400, could be caused by a greater functional group separation resulting from the wider pores. 2.3.9 Effect of particle size on thermal stability.

Samples of Deacidite FF in the hydroxide form, 7-9% crosslinked were heated at 90°C, 150°C and 180°C for 30 days

FIG 2.20 THERMAL DECOMPOSITION STRONG BASE CAPACITY CHANGES. DEACIDITE FF - HYDROXIDE, 14-52 MESH, TEMPERATURE 90°C,

EFFECT OF DEGREE OF CROSSLINKING.

FIG 2.21 THERMAL DECOMPOSITION WEAK BASE CAPACITY CHANGES. DEACIDITE FF - HYDROXIDE, 14-52 MESH,

TEMPERATURE 90°C,

EFFECT OF DEGREE OF CROSSLINKING.

or until all strong base capacity had been destroyed. Resin samples in the BSS size ranges 14-52 mesh and 100-200 mesh were used (i.e. 0.05 to 0.01 in. and 0.006 to 0.003 in., respectively). Strong base capacity changes were measured.

At 90° C, no significant difference between resin samples of different particle sizes (ratio approximately 7:1) was observed, but at 150° C and 180° C, the smaller particles lost their entire strong base capacity in about three quarters of the time taken by the larger particles (Fig. 2.22). It was noted that the strong base capacity loss did not follow the first order rate law at the start of the heating period.

It is possible that heating of an ion exchange particle occurs in two stages, i.e. firstly, a transient period during which the bead is raised to the surrounding temperature, followed by a steady state period when the entire bead is at the surrounding temparature. During such a transient period, decomposition would occur more slowly in the cooler inner part of the bead. Hence the average rate of decomposition would increase at first during the transient period, attaining a first order rate when the entire bead has attained constant temparature. The duration of the transient period would increase with particle size.

At 150°C and 180°C a particle size effect is observed in Deacidite FF which may be explained in terms of transient periods lasting about five hours and one hour respectively in the larger particles. The smaller particles show shorter transient periods. After the transient period, decomposition proceeds at the same rate irrespective of particle size.

FIG2.22^{THERMAL DECOMPTINE FF - HYDROXIDE, 7-9 % CROSSEINKED,} THERMAL DECOMPOSITION STRONG BASE CAPACITY CHANGES. 71

FRACTION OF ORIGINAL STRONG BASE CAPACITY

At 90°C the duration of the transient period would be small compared with the time for significant damage to occur, and therefore no detectable difference would be expected. Particle size effects based on this explanation would only be important when the transient period is appreciable compared with the time for significant thermal damage to occur.

2.3.10 Thermal decomposition of Permutit SK.

¥.

Permutit SK (ref.G3) is a polysubstituted pyridine, based, polyfunctional anion exchange resin which is thought to be prepared by chlorinating a crosslinked polymer of an alkyl vinylpyridine, aminating the chloro-alkyl group and finally alkylating the tertiary mitrogen atom in the pyridine ring. This results in a measured weak and strong base capacity of 3.40 meq/g.and 0.81 meq/g. respectively.

The thermal stability of Permutit SK in the hydroxide and chloride forms was stydied at 90° C, 120° C, 150° C and 180° C. Samples were heated in demineralised water for periods up to seven days and analysed for strong and weak base capacity. A few determinations of the nature and yield of soluble decomposition products were made.

At 90° C, this resin is stable in the hydroxide form for at least 24 hours (Fig. 2.23) and in the chloride form for at least 7 days (Fig. 2.24). Above 90° C, strong base capacity decreases and the rate of capacity loss increases with increasing temperatur. At 120° C no significant capacity changes occur in the chloride form up to 7 days, whereas the hydroxide form showed a strong base

THERMAL DECOMPOSITION STRONG BASE CAPACITY CHANGES. 72

FIG 2.23

PERMUTIT S.K. - HYDROXIDE

14-52 MESH, 4-9% CROSSLINKING.

FIG 2.24

THERMAL DECOMPOSITION STRONG BASE CAPACITY CHANGES. PERMUTIT S.K. - OLILORIDE, 14-52 MESH, 4-9 % CROSSLINKED,

RESIN IN_THE HYDROXIDE FORM TABLE 2.16 TEMPERATURE 90.0 C TABLE 2.16 TIME HR3 D 1.00 2.00 5.00 6.00 8.00 10.00 12.00 PERMUTIT SB CAPACITY MEQ/G 3.40 3.40 3.43 SK SB CAPACITY MEQ/G 3.40 3.40 3.43 SK SB CAPACITY MEQ/G 3.40 3.43 3.43 SK SB CAPACITY MEQ/G 3.40 3.40 3.43 TEMPERATURE 120.0 C TIME HRS 0 1.00 2.00 3.00 6.00 10.00 12.00 12.00 PERMUTIT SB CAPACITY MEQ/G 3.37 2.06 2.52 4.32	• 00 24• 00 3• 33 0• 98 0• 85 4• 18 • 00 24• 00 1• 50 0• 40 • 38 2• 84 • 38 4• 42 • 00 24• 00 0 • 22 4• 22 • 22 4• 22 • 22 4• 22 • 22 4• 22 • 00 24• 00 0 0 0 0 0 0 0 2 4• 2 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TEMPERATURE 90.0 C TRDLE 2.10 TIME HRS 0 1.00 2.00 3.00 6.00 10.00 12.00 18.00 PERMUTIT SB CAPACITY MEQ/G 3.40 3.40 3.43 3.33 SK SB CAPACITY MEQ/G 4.85 0.085 0.083 0.08 TOTAL CAPACITY MEQ/G 4.25 4.22 4.21 TEMPERATURE 120.0 C	.00 24.00 3.33 0.98 0.85 4.18 .00 24.00 1.56 0.46 .38 2.86 .38 4.42 .00 24.00 0 .22 4.25 .22 4.25 .00 24.00 0 .22 4.25 .00 24.00 0 .22 4.25 .00 24.00 0 .22 4.25 .22 4.25 .00 24.00 0 .22 4.25 .22 4.25
TIME HRS 0 1.00 2.00 3.00 6.00 10.00 12.00 18.00 PERMUTIT SB CAPACITY HEQ/G 3.40 3.33 3.33 SK SB CAPACITY HEQ/G 3.40 3.33 3.33 SK SB CAPACITY HEQ/G 4.25 4.21 1.00 0.465 0.485 TIME LBC.APACITY HEQ/G 3.37 3.06 2.52 4.21 TEMPERATURE 120.0 C	.00 24.00 3.33 0.98 0.85 4.18 .00 24.00 1.50 0.40 .38 2.80 .38 4.42 .00 24.00 0 .22 4.22 .22 4.22 .22 4.22 .22 4.22 .22 4.22 .00 24.00
PERNUTIT SB CAPACITY MEQ/G 3.40 3.40 3.33 SK SB CAPACITY MEQ/G 0.85 0.85 0.98 TOTAL CAPACITY MEQ/G 0.25 0.85 0.86 0.98 TIOTAL CAPACITY MEQ/G 4.25 4.21 4.21 TEMPERATURE 120.0 C	3.33 0.98 0.85 4.18 4.18 0.00 24.00 1.50 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0
PERMUTIT SB CAPACITY MEQ/G 3.40 3.40 3.40 3.40 3.40 SK SB CAPACITY MEQ/G 6.85 0.85 0.85 0.86 TOTAL CAPACITY MEQ/G 6.85 0.85 0.85 0.85 0.86 TEMPERATURE 120.0 C	0.98 0.85 4.18 4.18 0.00 24.00 1.50 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0
NB CAPACITY MEQ/G 0.85 0.85 0.86 TOTAL CAPACITY MEQ/G 4.25 4.25 4.21 TEMPERATURE 120.0 C 1.00 2.00 3.00 6.00 9.00 12.00 15 TIME HRS 0 1.00 2.00 3.00 6.00 9.00 12.00 12.00 TIME HRS 0 1.00 2.00 3.00 6.00 9.00 12.00 1.00 2.00 3.00 6.00 10.00 12.00 12.00 1.00 2.00 3.00 6.00 10.00 1.00 2.00 3.00 6.00 10.00 1.00 1.00 2.00 3.00 6.00 10.00 1.00 TEMPERATURE 150.0 C T T 2.62 2.62 1.53 0.37 0.14 C SK SB CAPACITY MEQ/G 3.83 1.29 2.01 2.79 3.91 4.15 4.10 0.0 <	0.85 4.18 4.18 0.00 24.00 1.50 0.40 0.38 2.80 0.38 4.42 0.40 0.22 4.22 0.22 4.22 0.22 4.22 0.22 4.22 0.22 4.22 0.22 4.22 0.22 4.22 0.22 4.22
TOTAL CAPACITY MEQ/G 4.25 4.25 4.25 4.21 IEMPERATURE 120.0 C	+•10 •00 24•00 1.50 0.40 •38 2.80 •38 4.42 •38 4.42 •00 24•00 0 •00 24•00 •0 •0 •0 24•00 •0 •0 •0 24•00 •0 •0 •0 •0 •0 •0 •0 •0 •0
TEMPERATURE 120.0 C TIME HR.S 0 1.00 2.00 3.00 6.00 10.00 12.00 12 PERMUTIT SB CAPACITY MEQ/G 3.37 3.06 2.52 SK SB CAPACITY MEQ/G 0.39 1.26 1.800 2.52 SK SB CAPACITY MEQ/G 0.485 1.26 1.800 2.52 TOTAL CAPACITY MEQ/G 0.432 4.32 4.32 4.32 4.32 2 TEMPERATURE 150.0 C TOTAL CAPACITY MEQ/G 3.37 2.62 2.62 1.53 0.37 0.14 C PERMUTIT SB CAPACITY MEQ/G 3.37 2.62 2.62 1.63 0.37 0.14 C SK SB CAPACITY MEQ/G 3.37 2.62 2.62 2.62 2.62 2.62 2.62 2.62 2.62 2.62 2.62 2.62 2.62 2.62 2.62 2.62 2.62 2.62	• 00 24• 00 1• 50 0• 40 • 38 2• 80 • 38 4• 42 • 38 4• 42 • 00 24• 00 0 • 22 4• 22 • 22 4• 22 • 22 4• 22 • 00 24• 00 • 0 • 0 • 0 • 0 • 22 4• 22 • 0 • 0 • 0 • 0 • 22 4• 22 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0
TEMPERATURE 120.0 C TIME HRS 0 1.00 2.00 3.00 6.00 8.00 10.00 12.00 <th12.00< th=""> 12.00 <th12.00< td="" th<=""><td>• 00 24• 00 1• 50 0• 40 • 38 2• 80 • 38 4• 42 • 38 4• 42 • 00 24• 00 • 02 4• 22 • 22 4• 22 • 22 4• 22 • 00 24• 00 • 00 200 200 200 200 20</td></th12.00<></th12.00<>	• 00 24• 00 1• 50 0• 40 • 38 2• 80 • 38 4• 42 • 38 4• 42 • 00 24• 00 • 02 4• 22 • 22 4• 22 • 22 4• 22 • 00 24• 00 • 00 200 200 200 200 20
TIME HRS 0 1.00 2.00 3.00 6.00 8.00 10.00 12.00 14 PERMUTIT SB CAPACITY MEQ/G 3.37 3.06 2.52 SK SB CAPACITY MEQ/G 0.99 0.00 0.74 SK SB CAPACITY MEQ/G 0.422 4.32 4.32 TEMPERATURE 150.0 C	• 00 24• 00 1• 50 0• 40 • 38 2• 80 • 38 4• 42 • 38 4• 42 • 00 24• 00 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PERMUTIT SB CAPACITY MEQ/G 3.37 3.06 2.52 SK SB CAPACITY MEQ/G 0.99 0.90 0.74 SK SB CAPACITY MEQ/G 0.85 1.26 1.80 2 TOTAL CAPACITY MEQ/G 4.32 <t< td=""><td>1.50 0.44 .38 2.86 .38 4.42 .38 4.42 .00 24.00 0 .22 4.22 .22 4.22 .22 4.22 .00 24.00 .00 24.00 .00 24.00 .00 24.00 .00 24.00</td></t<>	1.50 0.44 .38 2.86 .38 4.42 .38 4.42 .00 24.00 0 .22 4.22 .22 4.22 .22 4.22 .00 24.00 .00 24.00 .00 24.00 .00 24.00 .00 24.00
PERMUTIT SB CAPACITY ME(X) 0.599 0.90 0.74 SK SB CAPACITY ME(X) 0.659 1.26 1.602 TOTAL CAPACITY MEQ/G 0.652 1.26 1.602 4.32 TEMPERATURE 150.0 C 4.32 4.32 4.32 4.32 TIME HRS 0 1.000 2.000 3.00 6.00 8.00 10.00 12.00 14 PERMUTIT SB CAPACITY MEQ/G 3.37 2.62 2.62 1.53 0.37 0.1.00 SK SB CAPACITY MEQ/G 3.37 2.62 2.62 1.53 0.37 0.1.00 SK SB CAPACITY MEQ/G 3.37 2.62 2.61 2.79 3.91 4.15 4 TOTAL CAPACITY MEQ/G 0.88 1.29 2.01 2.79 3.91 4.15 4 TEMPERATURE 180.0 C 1.00 2.00 3.00 6.00 8.00 10.00 12.00 14 TEMPERATURE 180.0 C 1.00	0.44 • 38 2.84 • 38 4.42 • 00 24.00 0 • 22 4.22 • 22 4.22 • 22 4.22 • 00 24.00 • 00 24.00 • 0 • 0 • 0 • 0 • 0 • 0 • 0 •
WB CAPACITY MEQ/G 0.055 1.26 1.600 2.432 TOTAL CAPACITY MEQ/G 4.22 4.35 4.35 4.35 4.35 4.35 4.35 4.35 4.35 4.35 4.35 4.35 4.35 4.35 4.35 4.35 4.35 4.35 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.	• 38 2• 86 • 38 4• 42 • 38 4• 42 • 00 24• 00 • 22 4• 22 • 22 4• 22 • 0 • 00 24• 00 • 0 • 0 • 0 • 22 4• 22 • 0 • 0 • 0 • 0 • 22 4• 22
TEMPERATURE 150-0 C TIME HRS 0 1.000 2.00 3.000 6.000 8.000 10.000 12.000 14 PERMUTIT SB CAPACITY MEQ/G 3.37 2.62 2.62 1.53 0.37 0.14 C SK SB CAPACITY MEQ/G 0.99 0.77 0.77 0.45 0.11 0.04 C WB CAPACITY MEQ/G 4.825 3.91 4.63 4.29 2.01 2.79 3.91 4.15 4.25 3.91 4.63 4.22 4.28 4.29 4.26 4.29 4.26 4.29 4.26 4.29 4.26 4.29 4.26 4.29 4.26 4.29 4.26 4.28 4.28 4.32 4.28 4.29 4.26 4.29 4.26 4.29 4.26 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25	• 00 24• 00 0 • 22 4• 29 • 22 4• 29 • 22 4• 29 • 00 24• 00 • 0 • 0 • 0 • 22 4• 29 • 0 • 0 • 0 • 0 • 0 • 22 4• 29 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0
TEMPERATURE 150.0 C TIME HRS 0. 1.000 2.00 3.00 6.00 8.00 10.00 12.00 14 PERMUTIT SB CAPACITY MEQ/G 3.37 2.62 2.62 1.53 0.37 0.14 C SK SB CAPACITY MEQ/G 0.99 0.77 0.77 0.45 0.11 0.04 C SK SB CAPACITY MEQ/G 0.99 0.77 0.77 0.45 0.11 0.04 C WB CAPACITY MEQ/G 4.25 3.91 4.63 4.32 4.28 4.29 4.63 TEMPERATURE 180.0 C 1.00 2.00 3.00 6.00 8.00 10.00 12.00 12.00 TIME HRS 0 1.00 2.00 3.00 6.00 8.00 10.00 12.00 12.00 SK SB CAPACITY MEQ/G 3.40 2.89 4.08	• 00 24• 00 0 • 22 4• 29 • 22 4• 29 • 22 4• 29 • 00 24• 00 • 0 • 0 • 0 • 22 4• 29 • 20 • 20 •
TIME HRS 0 1.00 2.00 3.00 6.00 8.00 10.00 12.00 14 PERMUTIT SB CAPACITY MEQ/G 3.37 2.62 2.62 1.53 0.37 0.14 0.99 SK SB CAPACITY MEQ/G 0.80 1.29 2.01 2.79 3.91 4.15 4.15 4.25 3.91 4.63 4.32 4.28 4.29 4.25 TEMPERATURE 180.0 C TOTAL CAPACITY MEQ/G 3.40 2.58 1.39 0.24 0	•00 24•00 0 •22 4•2 •22 4•2 •00 24•0 •00 24•0 0 •0 •22 4•2 •22 4•2
TIME HRS U 1.00 2.00 9.00 0.000 0.000 1.000 <td>0 0 • 22 4 • 2 • 22 4 • 2 • 00 24 • 0 • 00 24 • 0 • 0 • 0 • 0 • 22 4 • 2 • 2 • 2 • 2 • 2 • 2 • 2 • 2</td>	0 0 • 22 4 • 2 • 22 4 • 2 • 00 24 • 0 • 00 24 • 0 • 0 • 0 • 0 • 22 4 • 2 • 2 • 2 • 2 • 2 • 2 • 2 • 2
PERMUTIT SB CAPACITY MEQ/G 3.37 2.62 2.62 1.53 0.37 0.14 0 SK SB CAPACITY MEQ/G 0.99 0.77 0.77 0.45 0.11 0.045 0.11 0.045 0.11 0.045 0.11 0.045 0.11 0.045 0.11 0.045 0.11 0.045 0.11 0.045 0.11 0.045 0.11 0.045 0.11 0.045 0.11 0.045 0.11 0.045 0.11 0.045 0.11 0.045 0.11 0.045 0.11 0.045 0.11 0.14 0.	0 0 22 4.2 22 4.2 0 0 0 0 0 0 0 0 0 0 0 0 0
SK SB CAPACITY U.999 U.11 U.911 <	•22 4•2 •22 4•2 •00 24•0 •00 24•0
TOTAL CAPACITY MEQ/G 4.25 3.91 4.63 4.32 4.28 4.29 4.25 TEMPERATURE 180.0 C TIME HRS 0 1.00 2.00 3.00 6.00 8.00 10.00 12.00 <td< td=""><td>•22 4•2 •00 24•0 •0 •0 •0 •22 4•2</td></td<>	•22 4•2 •00 24•0 •0 •0 •0 •22 4•2
TEMPERATURE 180.0 C TIME HRS 0 1.00 2.00 3.00 6.00 8.00 10.00 12.00 16 PERMUTIT SB CAPACITY MEQ/G 3.40 2.58 1.39 0.24 0	•00 24•0 0 •0 •22 4•2
TEMPERATURE 180.0 C TIME HRS 0 1.00 2.00 3.00 6.00 8.00 10.00 12.00 14 PERMUTIT SB CAPACITY MEQ/G 3.40 2.58 1.39 0.24 0	•00 24•0 0 •0 •22 4•2
TIME HRS 0 1.00 2.00 3.00 6.00 8.00 10.00 12.00 14 PERMUTIT SB CAPACITY MEQ/G 3.40 2.58 1.39 0.24 0	•00 24•0 0 •0 •22 4•2
PERMUTIT SB CAPACITY MEQ/G 3.40 2.58 1.39 0.24 0	0 0 • 22 4• 2 • 22 4• 2
PERMUTIT SB CAPACITY MEQ/G 3.40 2.33 0.24 0 SK SB CAPACITY 1.00 0.76 0.41 0.07 0 <td>0 •22 4•2</td>	0 •22 4•2
WB CAPACITY MEQ/G 0.88 1.80 2.89 4.08 4.25 4.20 4.20 1.25 1.25 <td>•22 4•2</td>	•22 4•2
TOTAL CAPACITY MEQ/G 4-28 4-38 4-23 4-33 4-23 4-33 <td< td=""><td></td></td<>	
TEMPERATURE 90.0 C TIME HRS 0 1.00 2.00 3.00 6.00 8.00 10.00 12.00 18 PERMUTIT SB CAPACITY MEQ/G 3.40 3.33 3.37 SK SB CAPACITY MEQ/G 3.40 0.98 0.99 WB CAPACITY MEQ/G 0.82 0.82 0.85 TOTAL CAPACITY MEQ/G 4.22 4.15 4.22	
TIME HRS 0 1.00 2.00 3.00 6.00 8.00 10.00 12.00 18 PERMUTIT SB CAPACITY MEQ/G 3.40 3.33 3.37 3.37 SK SB CAPACITY MEQ/G 0.40 0.98 0.99 0.99 0.95 0.82 0.85 0.85 0.85 0.422 0.85 0.422 0.85 0.422 0.85 0.422 0.85 0.422 0.85 0.422 0.85 0.422 0.85 0.422 0.85 0.422 0.85 0.422 0.85 0.422 0.85 0.422 0.85 0.422 0.85 0.422 0.85 0.422 0.85 <td></td>	
PERMUTIT SB CAPACITY MEQ/G 3.40 3.33 3.37 SK SB CAPACITY 1.00 0.98 0.99 WB CAPACITY MEQ/G 0.82 0.85 TOTAL CAPACITY MEQ/G 4.22	•00 24•0l
SK SB CAPACITY 1.00 0.98 0.99 WB CAPACITY MEQ/G 0.82 0.85 0.85 TOTAL CAPACITY MEQ/G 4.15 4.22	3.40
TOTAL CAPACITY MEO/G 4.22 4.15 4.22	0.78
an la chuir ann an thairt an tha	4.18
TEMPERATURE 120.0 C	
TIME HRS 0 1.00 2.00 3.00 6.00 8.00 10.00 12.00 18	.00 24.00
PERMUTIT SB CAPACITY MEQ/G 3.40 6.39 2.38 3.30	1.30 0.40
WB CAPACITY MEQ/G 0.82 1.15 1.70 2	•24 2•6
ARTING CHARACTER LUIAL CAPACITY MEQ/G 4022 CLOBE REFERENCE/004 CLOBE REFERENCE/004 CLOBE REFERENCE/004 CLOBE REFERENCE/004 CLOBER REFERENCE/004 C	• 24 4•U
TEMPERATURE 150.0 C	
TIME HRS 0 1.00 2.00 3.00 6.00 8.00 10.00 12.00 18	•00 24•0
PERMUTIT SB CAPACITY MEQ/6 3.40 2.65 2.38 1.33 0.31 0.10 0 SK SB CAPACITY 1.00 0.78 0.70 0.39 0.09 0.03 0	
WB CAPACITY MEQ/G 0.82 1.22 1.94 2.72 3.81 4.01 4	•15 4•1
HERE HAR STREET UTAL CAPACITY MEQ/6 4.22 STREET BERLE 3.87. 4.32 4.00 4.12 4.11 4	● 1 つ 4●1
TEMPERATURE 180-0 C	
TIME HRS 0 1.00 2.00 3.00 6.00 8.00 10.00 12.00 18	
PERMUTIT SB CAPACITY MEQ/G 3.37 2.38 1.26 0.14 0 0 0	•00 24•00
SK SB CAPACITY 0.99 0.70 0.37 0.04 0	•00 24•00
	•00 24•00 0 0

e terri della UNECCONT	≠ in class inne a tro geo	and the state of the	• • • • • •	na na headar ar						· · · · · · · · · · · · · · · · · · ·	ан нерени С	
SAMPLE 7		· · · · · · · · · · · · · · · · · · ·	•	-	na trut Vite				· .		landar da la composition de la composit La composition de la c	
RESIN IN TH	E CHLORIDE FORM	· · · · · · · · · · · · · · · · · · ·	•	•			TAR		217			
TEMPERATURE	120.0 C	· · · · · · · · · · · · · · · · · · ·)	2.17			
TIME	<u>ب</u> ر مربق میں میں اور	DAYS	0	1.00	2.00	3.00.	4.00	5.00	6.00	7.00	8.00	9.00
PERMUTIT	SB CAPACITY	MEQ/G	3.40	3.47	3.47	3.43	3.40	3.33	3.26			
SK	SB CAPACITY WB CAPACITY	MEQ/G	1.00	1.02 0.71	1.02 0.71	1.01 0.75	1.00 0.78	0.98	0.96			
· • • • • • • • • • • • • • • • • • • •	TOTAL CAPACITY	MEQ/G	4011	4.18	4.18	4.18	4.18	4.08	· 4°04	•	· · · ·	
TEMPERATURE	150.0 C	•				· ·				•	et e e e	
TIME		DAYS	0	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00
PERMUTIT	SB CAPACITY	MEQ/G	3.40	3.33	3.30	3.23	3.16	3.13	3.06	3.03	1	
SK	SB CAPACITY	MEO /C	1.00	0.98	0.97	0.95	0.93	0.92	0.90	0.89	•	4
in werden staffingereite. Solorieren in staffingereite	TOTAL CAPACITY	MEQ/G	4.15	4.15	4.22	4.18	4.18	4.22	4.22	4.32		
		· .	• •	ж. 			•	1				an tratic
TEMPERATURE	180.0 C			•			•	•	•			
TIME		DAYS	0	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00
PERMUTIT	SB CAPACITY	MEQ/G	3.40	3.23	3.03	2.89	2.72	2.52	2.41	2.31	X i	
	WB CAPACITY	MEQ/G	0.71	0.95	1.16	1.38	1.50	1.67	1.77	1.94	•**	
	IUTAL CAPACITY	MEQ/G	4011	4.18	4.19	4•∠(4.22	4.19	4.18	4.27		
		، مستقدم المراجع الماليين م المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع الم المراجع المراجع	· · •	······································								
	·····							···· . · . · . · . · . · . · ·		,		
	· · · · · · · · · · · · · · · · · · ·			- <u></u>							······································	
	·····			· · · ·		· · · · · · · · · · · · · · · · · · ·			i i i i i i i i i i i i i i i i i i i i		•	
SAMPLE 8	n an		· · · · · · · · · · · · · · · · · · ·							······································	na an a	
RESIN IN TH	E CHIDRIDE FORM		······	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·			·····				
TEMPERATURE	120.0 C					بر سابستان در سالیه دور در				•		
TIME		DAVE		1.00	2.00	3.00	4.00	5.00	6.00	7-00	8-00	9,00
			• • • • • •	- A 40 -	2000	3.00	TOUU	3 aa	2.50	2 (0		7000
SK	SB CAPACITY	MEQ/G	3.40	3.43	3°43 1°01	3.43 1.01	3.43 1.01	0.98	1.03	3•40 1•00		. ¥
	WB CAPACITY TOTAL CAPACITY	MEQ/G MEQ/G	0•75 4•15	0°75 4°18	0°75	0.78	0.82 4.25	0.75	0.75 4.25	0•78 4•18		
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				•					· · · · · ·	
TEMPERATURE	150.0 C		•	···· · · · · · ·							. * :	
TIME、		DAYS	0	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00
PERMUTIT	SB CAPACITY	MEQ/G	3.40	3.33	. 3.26	3.23	3,13	3.09	3.03	2.92		
SK	SB CAPACITY WB CAPACITY	MEQ/G	1.00 U.75	0•98 0•85	0,96 0,95	0.95 0.95	0.92	0.91	0.89 1.19	0.86	ų L	
	TOTAL CAPACITY	MEQ/G	4.15	4.18	4.21	4.18	4.18	4.21	4.22	4.21		
TEMPERATIOE	180-0 0					· ·		·				
TIME			•	1 00		2 00		5 00	(00	7 00	0.00	
IIME		UAYS	U	1.00	2000	3.00	4000	>•00	0.00	1.00	Ø. VV	9.UU
PERMUTIT SK	SB CAPACITY SB CAPACITY	MEQ/G	3°40 1°00	3.20 0.94	3°06 0°50 -	2.89 0.85	2°69 N°79	2∙55 0•75	2•45 0•72	2•28 0•67		
	WE CAPACITY	MEQ/G	Ŭo 75	1.02	1.16	1.33	1.50	1.67	1.77	2.01		•
	TOTAL CAPACITI		-10 T J	TOLL	7846	- TOLL	T017	-T • 6 £	₩₽₽₽₽₽	-TO £ 7		
					• · · · ·		-	*			··· ·	
	•									•		
	1										1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	

capacity loss fof 45% in 24 hours. At 150°C and 180°C total loss of strong base capacity takes place in less than 24 hours in the hydroxide form (Fig 2.23), whereas the chloride form is appreciably more stable, showing a strong base capacity loss of about 10% and 30% respectively, after 7 days heating (Fig.2.24). Increases in weak base capacity were measured in cases where decomposition occurred (Fig.2.25 and 2.26).

Methanol was the only significant decomposition product detected; the yield was measured in several cases and found to be comparable with the increase in weak base capacity. The precise chemical structure of Permutit SK is not known, but the results of this work suggest that the most likely configuration is:-

L.

Although some quaternary side chains may exist, these are small in number compared with the N-methyl groups. A suggested mechanism of decomposition is as follows:-

The removal of methyl groups from the quaternary nitrogen atom results in the conversion of strong base capacity to

FIG 2.25 THERMAL DECOMPOSITION WEAK BASE CAPACITY CHANGES.

PERMUTIT S.K. - HYDROXIDE,

14-52 MESH, 7-9 % CROSSLINKED.

FIG 2.26 THERMAL DECOMPOSITION WEAK BASE CAPACITY CHANGES. 79 PERMUTIT S.K. - CHLORIDE

14-52 MESH, 4-9 % CROSSLINKING.

weak base capacity and the production of methanol.

The activation energy for thermal decomposition of Permutit SK and the velocity constant at each temperature are given in Table 2.18.

2.4 Conclusion.

X

The following conclusions were drawn from the work described in this chapter :-

a. Organic anion exchangers with strong base capacity of the quaternary ammonium type are generally unstable above 50° C.Limited improvements may be attained by changing the matrix structure and the groups attached to the quaternary nitrogen atom.

b. Weak base capacity in the weak base exchangers is thermally stable up to 180°C, whereas weak base capacity resulting from the decomposition of strong base capacity is glowly destroyed at temperatures below 180°C. Hence there are at least two kinds of weak base capacity groups. c. Trimethylamine bases and salts, methanol and its derivatives and water result as products of the thermal decomposition of strong base capacity. Of the two organic products trimethylamine is the main product and the yield of methanol decreases with temperature.

d. Particle size, degree and nature of cross linking and the nature of the sorbed counter ion have a limited effect on the thermal stability of strong base capacity. Thermal stability increases with decreasing degree of crosslinking of increasing length of crosslinks. The most stable ionic form of resin is that where the affinity between counter ion 81 ----------TABLE 2.18 THERMAL DECOMPOSITION . KINETIC_DATA . PERMUTIT SK HYDROXIDE AND CHLORIDE . 14-52 MESH . 4-9% CROSSLINKED VELOCITY CONSTANT OF REACTION ACTIVATION (DAYS-1) TEMP 120°C 150°C ENERGY 180°C KCALE/MOLE 5.9×10-1 3.7410 - 4 1.4×10 OH TOT 10.3 5.6×10-2 < 10-4 1.9×10-2 CL TOT 14.1

and functional group is greatest. The lifetime of an ion exchange resin increases with particle size at temperatures in excess of $100^{\circ}C$.

e. Decomposition of strong base capacity proceeds by a Hofmann degradation and a rearrangement reaction. The reactions are:-

2.
$$R$$
 $(CH_2, N, (CH_3)_3$ $OH \rightarrow R$ $(CH_3, N, (CH_3)_2 + CH_3, OH$

³.
$$R = CH_2 \cdot N^+ (CH_3)_3 \quad OH^- = R = CH_2 \cdot N \cdot (CH_3)_2 + H_2 O$$

CH₂ + H₂O

Activation energies are of the order of 30 kcal/mole.

ı, i

Chapter 3

DESIGN, COMMISSIONING AND OPERATION OF A TEST LOOP.

3.1 Introduction.

The aim of this work was to investigate the behaviour of Deacidite FF-hydroxide in a flow system at elevated temperatures. To this end it was neccessary to design and construct a continuously operating test loop and to specify in line measuring-instruments and automatic control circuitry to allow unattended operations.

A glass lined, cast iron system was considered at first, to enable operation at temperatures up to 200° C. However, feasibility studies indicated that the cost of such a loop would be beyond the financial resources of the project. In view of financial and also safety considerations it was decided that a 90° C all glass loop was feasible and would produce useful data.

The apparatus was put to the following uses, during a test run of 71 days at 90° C:-

a. Measurement of changes in strong and weak base capacity with time in order to compare these changes with thermal decomposition in a static system.

b. Analysis of the ionic form of the resin under test at various times during the run to determine whether the sample remained in the hydroxide form.

c. Identification of the decomposition products and measuremen of yields of :-

i. organic products.

ii. inorganic ions, in the loop water, if any.

d. Measurement of the particle size distribution before and after a run.

Q. Measurement of the pressure drop across the test beds of anion exchange resin as a function of time and determination of changes in voidage and bed compaction during the run. Assessment of any physical damage to the resin f. Measurement of the pH of the circulating water, upstream and downstream of the test beds as a function of time. g. Degradation of larger quantities of anion exchange resin for mass transfer work as described in chapter 4. 3.2 The test loop.

3.2.1 Description.

The entire circulating loop (Fig.3.1) is constructed of Q.V.F. glass pipeline, fittings, valves and pump. Water only comes into contact with glass and plastic meterials, hence maintaining a system where undisolved and disolved impurities are reduced to a minimum. A schematic flowsheet of the system is enclosed in the wallet.

The p circulating pump can deliver water at up to 20 g.p.m. against a head of 30 p.s.i.g. measured by a Bourdon gauge (Pl). Water from the pump outlet is heated by a lkw. booster heater section (A3) before passing through either of two 4 in. deep by 3 in. diameter clean

up beds. included to remove decomposition products. These beds contain Zeokarb 225 cation exchange resin and can be isolated from the loop by valves (SV1,SV2,SV3, SV4), when regeneration is necessary. Water flow through the main circuit is measured by a 65X glass rotameter with a korranite float, having a maximum capacity of 25 g.p.m. water at 25°C. The flow rate in the main circuit is controlled by the valve VB2 which regulates the flow through the by-pass line. Beyond the rotameter two further heater sections are incorporated; a lkw. booster heater section (A2) and an 1kw trimmer heater section (A1). controlled by a sensitive mercury in glass temperature sensor (TCl). The booster heater sections are operated at a constant power level, which may be adjusted by a "variac" autotransformer. Water continues in down flow through a 6 in. diameter column containing the resin under test, before returning to the suction side of the pump. PTFE bellows are incorporated in the pipeline at the suction and delivery side of the pump to allow for misalignment in the pipe work and to ensure minimum transmission of sump vibration to the loop pipe lines and components.

86

A header tank of 100 litres capacity provides make up water to compensate for small leaks in the loop, and maintains the reference pressure at the circulating pump suction side at 4 p.s.i.g. For this purpose water may flow from the header tank through a manual stop value (SV7) and a pressure operating shut off FIG 3.2 RESIN LOADING

valve (PV1) into the loop through a tee immediately before the circulating pump. Suitable ventcocks and drain cocks for filling and emptying the system are provided.

The 6 in. diameter test column contains two fixed beds of anion exchange resin. The upper 4 in. deep bed consists of 20-30 mesh, 7-9% crosslinked Deacidite EF in the hydroxid form. The lower bed is of the same resin, in a 4 in. deep layer, except that the resin is 2-3% crosslinked. Resin may be loaded and unloaded by hydroulic conveying as shown in Fig. 3.2 and 3.3. Mercury manometers are incorporated for accurate pressure measurement across each bed.

Provision is made for temperature measurement by a mercury in glass thermometer (T1) and a chrome alumel thermocouple (T2) in a glass jacket. The pH of the flowing water is monitored by in-line electrodes (pHl and pH2). Safety devices are designed to take action in the event of low header tank level, excess system pressure, serious leakage, circulating pump failure, excess temperature and failure of the safety circuitry. A clock is incorporated for measurements of the running time.

3.2.2 Important design considerations.

Trace quantities of metallic and other ions are reported to have an appreciable effect on the thermal decomposition of ion exchange resins (ref.A2), and the circulating loop was therefore designed to reduce unwanted impurities to a minimum.

Water was deionised to a conductivity less than 1 micromho/cm. and thereafter allowed to come into contact

with only glass, plastic and other non contaminating materials. The leaching of silica from glass(ref.A3) was expected and taken into account in assessing the results of loop experiments. Where possible measuring devices and sensors were specified in glass or plastic (pH probes. resistance thermometers. mercury in glass thermometers and temperature sensors). or specially manufactured in glass (level sensor. Fig. 3.4). In cases where metallic components were unavoidable they were enclosed in glass sheaths filled with mercury (fail safe temperature overload cutout), or in plain glass sheaths (thermocoupled), or separated from the system by PVC diaphragms (pressure switches, Fig. 3.5). The bronze spring safety valve was situated at the end of a long dead leg and separated from the circulating water by a non return valve (NR1). This allowed water to flow from the system wife a pressure overload occurred. In practice a small quantity of water leaked past the non return valve and accumulated in the dead leg from which it was periodically removed before the leg become full. The pressure shut off valve used to separate the header tank from the loop (PV1) was a rubber lined. cast iron 1 in. Saunders valve. All glass pipelines and components were Q.V.F. borosilicate glass to BSS 2598 (ref.Ql). The beds of ion exchange resin were supported on a glass and nylon mesh grid. Asbestos gaskets with PTFE sheaths or plain neoprene rubber gaskets were used at all joints. Stop cocks, ventcocks and draincocks were lubricated with non metallic "Apiezon" grease. Mercury

FIG 3.4 FLOAT SWITCH FITTING

manometers were separated from the loop water by a small column of carbon tetrachloride .

Each of the three original heater sections consisted of 960 watt " thermocord " heating cord wound round a 2 ft. length of 1 in. bore pipe line. A 2 in. layer of asbestos string was wound over the heating cord to cut down heat loss to atmosphere. This type of heater was liable to burn out if accidental drainage of the system occurred. so each was later replaced by two 500 watt silica " red rod" heaters inserted into the loop through tee pieces . The red rod heaters were much more efficient, required no lagging and did not burn out under any conditions. In addition fusible links were cemented on to the outside wall of the pipeline in the heater sections, to provide an additional safety The links melted if the outside wall temperature measure. exceeded 100°C, because of accidental drainage of the loop. 3.2.3. Choice of equipment and operating conditions.

The materials in contact with the loop water were chosen to minimise undesirable impurities. A centrifugal circulating pump was chosen because it provided a constant output of the required capacity and could be obtained in glass as a standard item. The glass rotameter was chosen because it was obtainable already calibrated. Calibration would have been difficult had the alternative orifice plate meter been used because of the large flow rates involved. $1\frac{1}{2}$ in., 1 in. and $\frac{5}{8}$ in. nominal bore pipelines were considered. The 1 in. pipeline gave the best safety factor (i.e.6) under the internal pressure of the loop. Only the l in. and $\frac{5}{6}$ in. pipeline systems would fit in the space allocated for construction. There was no significant difference in the cost of the l in. and $\frac{5}{8}$ in. pipeline system, and the former would degrade twice as much resin as the latter in one run. These factors made the l in. system the obvious choice.

Valves were chosen on two counts. Firstly, ease of operation and secondly, minimum pressure drop. The pressure drop through a l in. Q.V.F. stopcock and the l in. DVS diaphragm valve (ref. Ql) is approximately the same, but the stopcock barrel is likely to seize unless frequent maintenance is undertaken. The DVS valve was therefore used where stop valves were required. The more expensive VB type screw down valve was used where flow rate adjustment was required because of its better characteristic. Sensitive adjustment was achieved by using two of these valve one in the by pass circuit and one in the main circuit (VB1 and VB2).

The maximum superficial flow r te was $\frac{160}{1}$ g.p.m./sq. ft. through the 6 in. diameter test column, this being the maximum output of the larger Q.V.F. glass pump. This superficial flow rate range was chosen to extend the work of Creed (ref.Cl). He worked up to approximately 20 g.p.m./sq ft. in a $\frac{5}{6}$ in. diameter bed. The test bed dimensions (4 in. deep by 6 in.diameter) in this work was chosen to avoid difficulties encountered by Creed and to provide 1.5 litres of resin for mass transfer work, reported in chapter 4.

Beds of cation exchange resin (4 in. deep by 3 in. diameter) were necessary to give sufficient clean up capacity for a minimum of 10 days operation with an acceptab pressure drop at the flow rates used. The clean up beds consisted of 14-52 mesh, 8% crosslinked Zeokarb 225 initially in the hydrogen form, and were used to absorbe trimethylamine produced by decomposition of the resin in the test section. Methanol, the other significant product was not sorbed, and was allowed to accumulate in the system for 10 days. After this period the loop was drained and filled with fresh deionised water.

The maximum working pressure in the loop was 26 p.s.i.g. Pressure at the pump inlet was maintained at 4 p.s.i.g. by the 8 ft. water column connecting the loop to the header tank. The maximum working pressure was sufficient to prevent cavitation in the circulating pump at the maximum operating temperature. The heating capacity was calculated from formulae given by Colburn (ref.C5,C6) with modifications. The calculated figure was 1.5kw., but this was doubled in view of the approximate nature of the calculation. In practice 2kw. was sufficient for sustained operation at 90°C, but the extra power was useful for rapid attainment of operating temperature. When the loop was operating, the maximum variations of temperature over the test column were $\pm 2^{\circ}$ C. 3.2.4 Safety circuitry.

The circulating loop was designed to run continuously without the presence of an operator, and

appropriate safety circuitry was designed to prevent damage caused by maloperation. The following fault conditions were considered.

a. Total loss of water caused by either a rapid leak or a slow leak (less than 0.5 litres per hour).

Damage would be caused by water spraying over personnel and apparatus, and by possible overheating and burn out of the heaters. In addition the circulating pump would overspeed, causing damage to its seals and bearings.

A float switch (Fig.3.5) was incorporated in the loop and arranged to discriminate between a rapid and slow leak. A rapid leak caused a suction action which lowered the float rapidly and actuated cutout circuits before much water had drained from the system. Slow leaks were made up by water from the header tank, causing a gradual drop in the level in the tank and the float switch chamber. Eventually, the float activated cutout circuits. The cutout circuits shut down the heaters and circulating pump and closed the pressure operating valve between the loop and the header tank. Additional safety features were incorporated in case the electrical cutout circuits failed. The heater sections were individually protected by fusible links and designed so that dry running would not cause damage. The pump was not additionally protected since overspeeding control would have been difficult to achieve reliably, and damage through overspeeding would have been confined to easily replaceable PTFE seals. The whole system was placed in a drip tray of sufficient capacity

to contain twice the volume of water in the loop and header tank, and was surrounded by an aluminium and perspex shield to prevent spraying of the adjacent area.

b. Failure of the circulating pump.

In this case water circulation would cease and boiling would occur in the heater sections causing pressure in the loop to rise beyond the design limit. A pressure sensor was provided to detect lowered pressure, consequent on pump failure and a second pressure sensor detected pressure in excess of the design limit, caused by boiling and other factors. In addition fusible links in the heater sections would melt before boiling temperatures were reached. In practice, boiling would also be prevented by the temperature sensors in the system, which were set at 90°C and 95°C respectively.

c. Water temperature in excess of the desired value.

Water temperature in the system was maintained by two booster heater sections switched on continuously and a trimmer heater section controlled by a sensitive mercury in glass temperature sensor. The operation of this sensor completed a circuit when the set temperature was reached, thereby initiating control action and hence failure of this device would usually result in an uncontrolled temperature rise. A coarse bimetallic strip sensor was also incorporated in the system to prevent excess temperature due to this cause. This stand by sensor breaks the circuit when the set temperature is reached.

Signals from the sensors were transferred to relays

, designed to bring about appropriate control action. The relay systems were arranged so that a power failure would cause shut down of the circulating loop. Duplicate relays were included were necessary to safeguard against relay failures. Temperature control was self. resetting but the other safety circuits had to be reset manually.

3.3 Results and discussions.

3.3.1 General considerations.

The pH of the circulating water remained at 7 ± 0.2 units during the 70 day running period, showing that trimethylamine was completely sorbed from solution by the cation exchange clean up beds. Methanol was not significantly sorbed, and was detected in the loop water.

Sorbed trimethylamine was eluted from the clean up beds by a 15% hydrochloric acid solution (ref.J3) every 10 days, 46% of the total capacity was utilised, without significant leakage. This is in agreement with the work of Juracka and Kaspar (ref.J3) and Creed (ref.Cl) who reported 90% capacity utilisation in controlled experiments with cation exchangers and trimethylamine. Creed's work was carried out at superficial flow rates of up to 17.5 g.p.m./sq.ft. approximately 20% of the maximum h this work. The present results show that the decrease in officiency of clean up is very small if the superficial flow rate is increased beyond

20 g.p.m./sq.ft. up to 100 g.p.m./sq.ft.

x

The observations regarding methanol sorption are in agreement with E.W. Baumann (ref.Bl) who reported no

significant sorbtion in a simulated flow system. At higher methanol concentrations (50 g./litre) Wheaton and Bauman (ref.W5) achieved methanol sorPtion on Dowex 50-H⁺; however it is unlikely that methanol sorbtion on cation exchangers will occur in a predominantly aqueous environment such as exists in water circulating systems.

The size distribution of fully swollen particles in the two resin beds before and after heating is shown in Fig. 3.6. No significant damage was observed. Microscopic examination before and after heating revealed less than 0.1% broken fragments. These results show that no significant physical damage has occurred. The majority of the particles in the 2-3% and 7-9% crosslinked samples have a diameter of 0.070 ± 0.001 and 0.067 ± 0.001 cm. The close tolerance was achieved by careful grading of the particles as described in chapter 2.

Measurement of the cation exchanger capacity showed that no thermal decomposition occurred in the clean up beds. 3.3.2. Thermal decomposition in a flow system.

The rate of loss of strong base capacity compared with that in static heating experiments (see chapter 2) is shown in Fig. 3.7. As found by E.W. Baumann (ref.Bl) no significant difference was observed. The important difference between the circulating system and static experiments was that in the former the pH was maintained close to 7.0, whereas in the latter the pH increased as a result of the accumulation of trimethylamine. Of the possible SN_1 and SN_2 reactions (ref.H7), only the latter

100

 \mathcal{A}

FIG 3.7 THERMAL DECOMPOSITION STRONG BASE CAPACITY CHANGES DEACIDITE FF - HYDROXIDE TEMPERATURE 90°C, COMPARISON OF STATIC AND FLOW EXPERIMENTS.

is pH dependent since the hydroxyl ion is one of the reactants. Hence an SN₂ reaction would occur more rayidly in the static experiments because of the resultant increase in basicity.

$$SN_1$$
 R $(CH_2, N^{\ddagger}(CH_3)_3$ $OH^{\ddagger} \rightarrow R$ $(CH_2, OH^{\ddagger} + (CH_3)_3 \cdot N$

$$SN_2$$

 $R = R + (CH_3)_3 + OH - R + (CH_3)_3 + N$

The methanol yield from the flow experiments is shown in Fig. 3.9. The 2-3% crosslinked resin is the more stable thermally. Changes in trimethylamine yields of the heated samples (Fig. 3.8) again show no difference between the static and flow experiments. This confirms the evidence of the strong base capacity results, that there is no difference in the rate of thermal decomposition in static and flow systems.

Two Canadian workers (ref.A3) observed that silica dimolved in water at 270°C. If silica also dimolves at 90°C it is probable that the dimolved silica would be sorbed by the anion exchange resin in the test bed. However, analysis of the heated samples from the test bed indicated that no more than 0.5% of sorbed silicate was present (Table 3.1). This means either that silica was not FIG 3.8

DEACIDITE FF - HYDROXIDE TEMPERATURE 90 C.

COMPARISON OF STATIC AND FLOW EXPERIMENTS.

FIG 3.9

THERMAL DECOMPOSITION METHANOL YIELD

DEACIDITE - FF TEMPERATURE 90 C.

FLOW SYSTEM EXPERIMENTS.

TABLE 3.1 THERMAL DECOMPOSITION IONIC COMPOSITION OF RESIN SAMPLES AFTER HEATING AT 90 C. DEACIDITE FF-HYDROXIDE . 20-30 MESH.

2-3 CROSSLINKING

TIME (DAYS) 0.0 13.5 45.0 32.0 71.0

CAPACITY (ME	Q/G•)				
HYDROXIDE	4.00	3.76_	3.60		3.11
CARBONATE	D+01	0.01	0	0	0.01
OTHERS		0	0.01	0.01	0.01
TOTAL	4.01	3.77	3.61	3.41	3.13

7-9 CROSSLINKING

 section of the s 13.5 71.0 TIME (DAYS) 0.0 32.0 45.0 CAPACITY (MEQ/G.) 2.72 1.97 1.82 3.99 3.20 HYDROXIDE ___0•01____0•01 ___0•02____0•010.01 0.01 CARBONATE ... 0.01 0 0 OTHERS 2.73 2.00 1.84 4.01 3.21 TOTAL

TABIE 3.2 THERMAL	DECOMPOSI	TION FLOW	SYSTEM D	AIA		
DEACIDI	TE FF-HYDR	OXIDE . 20	-30 MESH.			
TEMPERAT	TURE 90°C.					
<u>.</u>						
CROSSLINKING						
TIME_(DAYS)	0•0		32.0	45•0	71.0	
STOONG BASE*	1.00	0.94	0.90	0.85	0•78	
	1.00	0.94	0.88	0.81	0.74	
					- 76	
	0.00	0.21	0.36	0.51	0.91	
	0.00	VVZ 1				
METHANOL	0.00	0.02	0.04	0.06	0.08	
(MEQ/G.)	0•00	0.01	0.03	0.05	0.09	
7-9% CROSSLINKING						
		• • • •	20.0	<u> </u>	7) 0	
	0•0		32.00	45.0	/1.00	
STRONG BASE*	1.00	0.80	0.68	0.50	0•46	
CAPACITY	1.00	0+86	0.72	0.53	0•48	
TRIMETHYLAMINE	0.00	0.51	0•98	1.65	1.79	
(MEQ/G•)	0.00	-0•70	1.13	1•74	1.81	
METHANO	0.00	0.05	0.08	1+14	0.19	

=104=

0.20 1.16 0.07 0.09 0.00 (MEQ/G.)

* STRONG BASE CAPACITY IS EXPRESSED IN TERMS OF THE ORIGINAL STRONG BASE CAPACITY -

leached from the glass in significant quantities or that silica was leached from the glass but that it was not sorbed by the anion exchange resin. Samples of loop water were analysed to decide between these possibilities, and no silica was detected. (Table. 3.2).

3.3.3 Pressure drop across the resin test beds.

Pressure drops per unit bed depth versus superficial velocity are plotted for various times after the beginning of the 70 days running period (Fig. 3.10 and 3.11). After the start of a run the pressure drop at a given superficial velocity increased for several hours, till a steady value was reached. At 13.5, 31, 45, and 71 days small samples of resin were removed from the bed by fluidisation. Immediately after this operation the pressure drop corresponded to the value at the beginning of the run. A steady rise to the original constant value independent of time then occurred. The change in pressure drop per unit bed depth with time at a superficial velocity of 0.016 ft./sec. is shown in Fig. 3.12. The basic pattern after the beginning of the run is repeated after each sampling time.

Several correlations between pressure drop and superficial velocity are currently accepted as accurate. The Carman Cozeny relation (ref.C7) was chosen instead of the more usually used Chilton Colburn plot (ref.C8) because the former allows the calculation of bed voidage, which was one of the aims of the experiment. In view of the narrow particle size distribution in the test beds, the necessary assumption of uniform particle size did FIG 3.10

PRESSURE DROP VERSUS FLOW RATE IN A 6 in DIAMETER BED OF THERMALLY DEGRADED ION EXCHANGE RESIN. DEACIDITE FF, 2 - 3% crosslinked, 20 - 30 mesh, TEMPERATURE 90°C.

PRESSURE DROP VERSUS FLOW RATE IN A 6 in DIAMETER FIG 3.11 BED OF THERMALLY DEGRADED ION EXCHANGE RESIN. DEACIDITE FF, 7 - 9% crosslinked, 20 - 30 mesh,

TEMPERATURE 90°C.

FIG 3.12 PRESSURE DROP VERSUS TIME IN A BED OF THERMALLY DEGRADED ION EXCHANGE RESIN. DEACIDITE FF, 20 - 30 mesh, 7 - 9% crosslinked, TEMPERATURE 90°C, BED DIAMETER 6 in.

SUPERFICIAL VELOCITY 0.016 ft/sec.

HEATING PERIOD (DAYS)

not result in important errors. This might not hold in beds with a wide particle size distribution although Demmitt's results (ref.D3) are encouraging.

The correlation was based on the mean diameters given in Section 3.3.1, and used to determine the bed voidage initially and after the steady pressure drop stage had been reached. This was accomplished by visually matching experimental curves and computed Carman Cozeny curves for several voidages. At the beginning of the run the voidage was approximately 0.40 in both beds. When the time independent pressure drop stage was reached the voidage was found to be approximately 0.36. The agreement between predicted and experimental curves was good. The decrease in bed voidage implies a bed compaction of 4% which agrees well with the measured 5% decrease in bed height. 3.4 Conclusions.

1. The rate of thermal decomposition is the same in static and flow systems. Thermal decomposition in anion exchangers occurs by SN_1 spontaneous decomposition reactions.

2. No physical damage occurs to the resin particles at temperatures up to 90° C and flow rates up to 100 g.p.m./sq.ft. over a 70 day running period .

3. Of the two significant decomposition products , methanol is not sorbed and trimethylamine is completely sorbed , with no clean up bed leakage at up to 46% capacity utilisation.

4. No silica was leached from the glass tubing at 90°C

during the 70 day running period.

5. Bed voidage decreased from an initial value of 0.40 to a steady state value of 0.36 after two days running so that a maximum of 4% bed compaction occurs.

.

Chapter 4

MASS TRANSFER STUDIES IN PACKED BODS OF ANION EXCHANGE RESIN

113

4.1 Introduction.

4.1.1. General.

In this stage of the project the effects were investigated of temperature and solution concentration on the mass transfer performance of Deacidite FF at various stages of thermal decomposition. A theoretical model was assumed so that derived parameters of the resin could be calculated from the experimental results.

The kinetics of column processes are complex. Numerous theories have been published, some based on unrealistic assumptions and semi empirical approaches. Careful choice of one of these theories based on a sound understanding of the important factors can provide a good approximation of the operation of a given column and the most likely range of optimum operating conditions. Contrary to occasional claims, a general and quantitative theory of ion exchange column processes does not yet exist.

4.1.2 performance.

Consider a system comprising a column filled with uniformly sized ion exchange resin beads initially saturated with ion A. A solution containing ions B is

- -----

. . .

passed through the column at a constant flow rate. Ions A are transferred to the solution and ions B enter the resin until equilibrium is reached. The factors affecting the separation performance of the column are:-

a. Equilibrium.

The equilibrium between ions of equal valence in the particle and solution phases can be represented by a simple mass action equation, the use of which has been justified by Bauman and Eichorn (ref.B4) and (Boyd ref.B5). The

RA + B = RB + A

selectivity coefficient K is a measure of the equilibrium; K is defined as:-

$$K = [RB][A^-]$$
[RA][B⁻]

K has also been called the equilibrium constant and separation factor, and varies with external solution concentration, temperature and ionic composition of the resin, in a given system (ref. Kl,K2,W4,Gl).

b. Stoichiometric capacity.

The exchange capacity of the resin in a column has an important effect on performance.

c. Rate behaviour.

The sequence of molecular scale processes involved in the exchange of an ion between the external solution and a resin particle can be grouped into four steps. i. Fluid phase external diffusion (film diffusion).

Counter diffusion takes place of ion B from the bulk external solution to the surface of the particle, and ion A from the surface into the bulk solution. The overall effect of fluid phase diffusion can be accounted for by a hypothetical film as in the Nernst concept (ref.B7). ii. Phase change at the particle surface.

Ions A and B cross the particle surface. Spalding (ref. S5) has shown that provided this step is a purely physical process it occurs very rapidky, iii. Solid phase internal diffusion (particle diffusion).

Counter diffusion of A and B occurs within the resin particle between the surface and the site of exchange . iv. Chemical reaction of exchange.

The sorbed ion B reacts with the functional group, resulting in the release of ion A. This process follows a second order law, but in ion exchange not involving complexing reactions it is much more rapid than either of the diffusional steps.

In most ion exchange operations only the diffusional steps acting alone or together meed be considered, when calculating the rate of ion **exchange**. 4.1.3. Theories of column performance.

The various theories of column performance can be divided into two main groups, the equilibrium theories and the rate theories.

a. Equilibrium theories.

These fall into two groups. In the discontinuous models the column is treated as a series of theoretical stages in which the solution attains equilibrium before entering the next stage. The effluent consists of a series of finite solution packets each equal in volume to a theoretical stage. These packets undergo a series of through equilibriations on their way the column. Deviations from equilibrium are accounted for by a semi empirical stage height (ref.F2,M2,S2,S3). The disadvantages of these theories are their inability to predict stage height and the fact that the stage height is different for each species.

In the second group of theories local equilibrium is assumed in the column. These theories are inadequate for linear and favourable isotherms because the spreading effect of a finite exchange rate persists even after the boundary has travelled a considerable distance. Good approximation is attained for the case of unfavourable equilibrium (ref.C3,D2,W2,W3).

The only advantage of the equilibrium theories is their much greater simplicity. However, in the present work they are clearly inadequate.

b. Rate theories.

These are based on continuous flow through the column with a finite exchange rate and give a more realistic approach to the problem. The mathematics of these rate theories is difficult, but they allow the prediction of column performance from fundamental data without the use of empirical quantities. The various theories differ in their simplifying assumptions about rate processes and equilibria. A general survey of theories of column performance based on rate processes is given by Vermeulen (ref.Vl). From the point of view of this work, only certain general theories are of interest, and discussion of published work is restricted to these alone.

Furnas (ref.B3) adapted his heat transfer solution (ref.F3) to ion exchange, with a linear equilibrium (K=1). The result is more general than previous theories. Rosen (ref.R2) derived a model for the linear equilibrium case based on diffusional processes. This model accounts for ion exchange where both film and particle diffusion are important.

Thomas (ref.Tl) assumed the rate of ion exchange to follow a second order reaction with a constant selectivity coefficient (K=constant) and derived the most general result toddate. The main short-coming of Thomas's solution is that ion exchange does not follow a second order reaction.

The region in which both film and particle diffusion are important has not been satisfactorily analysed for anion exchange with a constant selectivity coefficient. The compounding of the individual rates into the overall rate is very difficult because of the discontinuity in the concentration profile at the interface between particle and solution. All #tempts to date involve simplifying assumptions that restrict validity to varying degrees. Gilliland and Baddour (ref.G2) and others (ref.S4) equated the second order rate constant defined by Thomas with an overall mass transfer resistance. This resistance was calculated from the individual resistances to diffusion in the film and particle by an equation valid only for linear equilibrium. Hiester et al. (ref.H5) introduced a correction term based upon local donditions at the interface which enabled them to extend Gilliland and Baddour's treatment to the case of a constant selectivity coefficient. The correction term can be evaluated if 0.4 < K < 7, where it is insensitive to changes in local bed conditions; outside this range only a very approximate value can be obtained since the interfacial conditions are unknown. Rosen's model (ref.R2) accounts for the interfacial eencentration by the use of an integrodifferentiel boundary condition. His differential equations can only be solved by numerical integration, requiring several hours time on high speed electronic computers.

Other rate theories have been proposed with first or second order reversible and irreversible reactions. Rosen's work has recently been extended to isotherms of the Freundlich type (ref.T2) . Electronic computers were used to tackle the lengthy complications involved. The most rigorous approaches to date consider ion exchange in terms of diffusional steps.

The majority of these rate models are designed to enable the prediction of column performance over a wide range of conditions from a few experimental measurements and as such have considerable value. However, mass transfer and diffusion coefficients used in such models are necessarily defined by the assumptions in the k model and do not necessarily coincide with conventionally

accepted meanings of these parameters, and hence cannot be expected to agree with independently determined values.

Since one of the aims of this work was to determine conventional diffusion coefficients from column experiments, the formulation of an improved model was attempted (see Appendix 3).

4.2 Experimental.

X

4.2.1. Scope of work.

The aims of the work described in this chapter were :-

a. To investigate a case of favourable and a case of unfavourable ion exchange in the region where particle and film diffusion are significant, in order to calculate the diffusional parameters in the particle and solution phases and to study to effect of changes in temperature, solution concentration and thermologiegradation on the diffusion parameter.

b. To formulate an improved model of ion exchange in a column, if possible.

4.2.2. Design of experiments.

Ion exchange measurements may be carried out either in column or batch experiments. In a batch experiment, the progress of exchange is followed by *x*emoving samples of the resin at regular intervals, for subsequent analysis. The analytical proceedure is time consuming and restricts the number of expriments which can be carried out in a given time. At temperatures in excess of 60⁰C exchange occurs very rapidly and it is impessible to remove sufficient samples to follow the process accurately. The concentration of ions in the effluent from a column experiment can be monitored and recorded with good accuracy. A large body of data can be rapidly accumulated giving added confidence to the final result. Rapid exchange at elevated temperatures can be followed with a responsive system. Finally, most practical ion exchange operations are carried out in columns. These considerations led to the choice of a column system in preference to a batch system.

Hydroxide-chloride exchange with Deacidite FF resin was chosen for several reasons. Firstly, thermal decomposition of Deacidite FF in these forms has been throughly investigated (see chapter 2). Secondly, the hydroxide-chloride cycle is of interest in practical ion exchange operations at elevated temperature, such as coolant circuit clean up. Thirdly, the effluent concentration change may be followed by pH measurement. Fourthly, Deacidite FF shows a marked preference for chloride ions , giving favourable exchange in one direction and unfavourable exchange in the reverse direction.

Experimental apparatus was designed to reduce unwanted impurities to a minimum. The apparatus (Fig. 4.1) was constructed of glass and plastic with the exception of the feed pump. This was a DCL "M" plunger head type pump with a pumping head constructed of Hastelloy "B" to prevent corrosion by hydrochloric acid used in the experimental work (ref. C4).

Deacidite FF was used with a particle size range between 20 and 30 BSS mesh size (see Fig. 3.6.).

This was chosen as a good compromise between practical resins (14-52 mesh) and applicability of the results to a model based on uniform particles. Measurements were made on samples of 2-3% and 7-9% crosslinked Deacidite FF.

The solution concentration range was between 0.01 and 0.1 molar. This is the region where both solution and particle diffusion are important rate controlling factors, and includes the region of greatest practical importance in chemical processing. The probable maximum operating temperature of anion exchange resins in the hydroxide form is 90° C. Experiments were therefore carried out at room temperature and at 50° C and at 90° C.

In a binary ionic system with a fixed bed of ion exchange resin , the rate of exchange varies with the solution flow rate, when film diffusion is significant. A typical case, sodium hydrogen exchange on Dowex 50 is shown in figure 4.2 (ref.G2). At high flow rates, particle diffusion contributes the major resistance, with film diffusion resistance attaining greater importance as the flow rate is decreased. The diffusion regions are shown in Fig. 4.2. Vermeulen (ref. V1) recommends an empirical correlation due to Wilke and Hougen (ref.W7) for the calculation of film transfer resistance. The range of flow rates applicable to this work was determined by using this correlation.

Economy of time and materials prescribes a fixed bed system of minimum size. A small system allows rapid approach to equilibrium at a given flow rate and is easier

from GILLILAND and BADDOUR (ref.G2).

to maintain at a uniform temperature. The dimensions of the fixed bed must be large enough to avoid significant wall and entry effects. The minimum column diameter is given by Boyd (ref.Bll) as greater than 20 particle diameters. No effect of column height was observed by Gilliand and Baddour as long as the minimum height diameter ratio was greater than 6. Therefore the bed dimensions were fixed at 1.5cm.diameter and about l2cm. height.

The effluent concentration from the column was monitored continuously by a pH flow cell, which was carefully designed to avoid mixing and turbulence . 4.2.3. Experimental method.

a) Measurement of effluent concentration histories.

Resin samples were prepared and sbred as described in Section 2.2.1 and soaked in deionised water $(CO_2 \text{ free})$ for 24 hours prior to use. Solutions of sodium hydroxide and hydrochloric acid were stirred thoroughly before use to ensure even concentration.

At the beginning of each day's experimental work the following procedure was carried out. The pH meter and recorder were switched on one hour before work was due to begin. Simultaneously, the pH cell was filled with a buffer solution (pH 4), the solution temperature noted and the meter controls adjusted until a reading of pH 4 was obtained. Half an hour later the meter was readjusted if necessary. The pH cell was then filled with deionised water and the column loaded with approximately 12cm. height

of resin. The column and pH cell were assembled and allowed to stand for one minute so that the resin night reach a settled state, after which the bed height was noted. meanwhile the pump controls and scew clips were adjusted to give the desired flow rate and the pump and recorder were started. The recorder scale was adjusted to include the expected concentration change. Finally the column outlet valve was opened to allow flow through the resin bed and the zero time marker on the recorder actuated at the some time. The flow rate of the solution through the column was measured by collecting solution for one minute. Three successive measurements were taken to check the constancy of flow. The experiment was continued till the influent and effluent concentration were equal. The temperature of the effluent was observed during the experiment. Experiments were repeated at several solution flow rates, temperatures and concentrations. Both forward and reverse exchange were examined and rosin samples of 2-3% and 7-9% crosslinking were used.

Sources of error and precautions taken against them were as follows:-

i) Temparature constancy.

The pH meter was used on an expanded scale of two theoretical pH units and temperature constancy of $\pm 0.05^{\circ}$ C was necessary to avoid errors in pH measurement. Where experiments were carried out at elevated temperature, the exchange column was lagged and heated to the required temperature by pumping deionised water through it.

before beginning the experiment. Temperature constancy in all work was maintained to the above limits.

ii) Distortion of the pH scale in high concentration region.

At pH values greater than 11.0 and less than 3.0 it was found that the observed pH equation deviated from the theoretical pH-concentration relation. The following empirical relations were found to hold:-

pH 11.0

 $pH = 12.425 - 0.475 \log_{10}(concentration)$ pH 3.0

 $pH = 0.30 - 0.67 \log_{10}$ (concentration)

iii) Distortion of the effluent concentration history curves by turbulence and mixing thethe pH cell, and axial dispersion in the column.

In experiments of this kind it is vital that the effluent concentration history curves should be caused only by ion exchange. Unless distortion of the curves by hydrodynamic effects such as axial dispersion in the resin column or mixing in the pH cell are eliminated, the recults are meaningless.

The pH flow cell and resin column were tested by pumping a solution of hydrochloric acid through a bed of chloride form resin at the maximum and minimum flow rates to be used in the work. The resulting curves are shown in Fig. 4.3. Distortion of the input step is shown to be negligible.

iV) Meter and recorder response.

A full scale deflection occurred in less than 0.5 sec., compared with at least 1 min. for the most rapid effluent concentration change.

v) Flow rate constancy.

The instantaneous output of the DCL pump varied with time, and a system of tanks (Fig. 4.4) was used to smooth the pulsations before solution was passed to the column. Flow through the column could be varied by adjustment of a screw clip on the effluent line. Excess liquid delivered by the pump was returned to supply via overflow pipes. b) Determination of selectivity coefficient.

Experimental values of the selectivity coefficient for forward and reverse exchange in the hydroxide and chloride system were determined as follows: 100 g. batches of resin in the hydroxide and chloride form, prepared as described in chapter 2 were soaked in demineralised water for 24 hours prior to use. The capacity of a sample of each batch was measured as described previously. Approximately 100 g. of resin was added to 25 ml. standard solution in a clean conical flask, tightly stoppered and left for 24 hours in a constant temperature bath, after which the solution was drained off and replaced by a further 25 ml. of standard solution. This procedure was repeated four times after which equilibrium was attained and the solution concentration remained unchanged. The resin and solution were separated by centrifuging (ref.P2) for 30 minutes, which sufficed to remove adherent liquid films from the

FIG 4.4

SYSTEM OF SMOOTHING AND OTHER TANKS USED IN THE BREAKTHROUGH CURVE MEASUREMENTS.

resin particles. The resin selectivity coefficientswere calculated from equation 4.1,

ROH + Cl RCL + OH

 $q_{\rm B}$

q_A C_B

X

 $K = \frac{(q_B/Q)/(C_B/C_0)}{(1-q_B/Q)/(1-C_B/C_0)} ---4.1$

CA

which gwis K in terms of one in and the hotal solubia concentrations Measurements were made at external solution concentrations of 0.01, 0.05 and 0.1 N, temperatures of 18,150 and 90° C \times and 2-3% and 7-9% resin crosslinking; each equilibr/ation was repeated three times.

> Chloride resin samples were equilibr/ated with sodium hydroxide solution and hydroxide samples with hydrochloric acid solution.

Sources of error and precautions taken to avoid them were as follows:-

i) Disturbance of equilibrium during separation.

Equilibriation is a relatively rapid process (30 mins. required for strong acid and base resins of less than 10% DVB crosslinking), and therefore small traces of solution can cause considerable error (ref. F5), with high capacity and dilute solutions. Care was taken to separate resin and solution rapidly. In practice most of the liquid was removed from the solid in less than 15 secs. after removal from the constant temperature bath.

ii) Disturbance of equilibrium by cooling before separation.

At elevated temperature, the container in which the resin and solution was separated was immersed in the constant temperature bath before use. This meant that most of the liquid had been separated from the solid before a significant temperature drop had occurred. Since the standard enthalpy of ion exchange is of the order of 2 kcal/mole., small changes in temperature do not cause significant changes in equilibrium between resin and solution.

iii) Changes in capacity caused by equilibrization at elevated temperature.

The total time of heating was 96 hours. At the maximum temperature investigated the loss in capacity during this period of heating was small. Where thermal damage was likely to occur, the capacity of the sample was determined before and after equilibrization and an average of the initial and final values taken.

iv) Contamination by glassware.

Soda glass is reported to exhibit ion exchange properties, therefore pyrex glass was used in all experimental glass ware.

4.3 Assessment of results.

4.3.1. General.

Since the attempted model development was not accomplished, a suitable published model was selected for the assessment of experimental results. The model was that of Gilliland and Baddour (ref.G2) as modified by Hiester and Vermeulen (ref. H5).

4.3.2. Gilliland and Baddour's model.

A short resume of the mathematical development is given here and the sources of error are indicated in more detail. The basic assumptions in the model are:i. The rate of exchange in a given resin ion system follows. a second order reaction with a velocity constant dependent on particle size, solution flow rate and diffusional parameters. In fact ion exchange does not obey a second order rate law in most cases, so the velocity constant varies with time during exchange and is a rate parameter defined by the model, for use only with the model. ii. The velocity constant may be equated to the combined film and particle mass transfer coefficients, based on diffusional mechanisms.

The rate in each individual phase is given by:-

Rate = $kA(C-C_i)$ ---- 4.2 where k is a general mass transfer coefficient per unit interfacial area. Equation 4.2 assumes a constant linear concentration gradient, which is accurate for film diffusion but unrealistic for particle diffusion. In Gilliland and Baddour's model the velocity constant is related to the individual transfer coefficients by

132 -

$$\frac{1}{k_{kin}} = \frac{Q}{k_L} + \frac{C_o}{Kk_P} --- 4.3$$

equation 4.3 is only mathematically true when K equals unity. Hiester and Vermeulen (ref.H5) have modified equation 4.3 so that it holds more closely for all values of K, by the inclusion of a correction term b. The modified equation is:-

$$\frac{b\epsilon}{k_{kin}Q(1-\epsilon)} = \frac{1}{k_{L}A} + \frac{1}{k_{p}AD} --- 4.4$$

The correction term is related to a mechanism parameter as shown in Fig. 4.5. The mechanism parameter can be calculated from a knowledge of the interfacial concentration or the diffusion coefficients of the system. In practice b is not constant since the interfacial concentration varies with time as exchange proceeds. iii. Equilibrium at the particle solution interface is assumed to be described by a selectivity coefficient K. The equilibrium in the system is :-

$$K = \frac{[RA][8^-]}{[RG][A^-]} --- 4.5$$

where R represents the resin matrix, and K is assumed independent of the ionic composition of the resin which is not strictly accurate.

The rate of exchange based on these assumptions is :-

134

$$\frac{dq_A}{dt} = k_{kin} \left[C_A (Q-q_A) - \frac{q_A}{K} (C_0 - C_A) \right] - -- 4.6$$

The use of equation 4.3 to relate the velocity constant and

the individual coefficients can give values of the latter an order too low or high if Kidiffers greatly from unity.

In evaluating diffusion coefficients from experimental data the value of the correction factor b cannot be calculated, since neither the diffusion coefficients nor the interfacial concentrations are known. For the case of favourable exchange K lies between 5 and 15 and b is fortunately substantially independent of the mechanism parameter, and has a value of 1.8. In the unfavourable direction of exchange where K lies between 0.2 and 0.1, b varies considerably during exchange and the best compromise is to assume an average value of 0.35.

Combining equation 4.6 with the continuity equation for a column* and making use of Thomas's result (ref.Tl) gives equation 4.7, which describes the effluent concentration history from a column:-

$$C_A/C_o = 1/[1 + G \exp[(K-1) (Kw-u)/K]] --- 4.7$$

where $u = k_{kin}C_o\Theta$; $w = k_{kin}\overline{x}/Kv$;

It has been shown by past work that the mid point slope of the effluent concentration history curve can be used as a measure of the whole curve for the purposes of calculating transfer and diffussion coefficients (ref.Tl,G2).

* see Appendix 3.

The mid point slope of the effluent concentration history curve is the gradient of the curve at the point where the effluent concentration has attained half the value of the influent concentration. Differentiating equation 4.7 with respect to $\boldsymbol{\Theta}$ gives the mid point slope in terms of time:-

 $\frac{1}{R} \frac{\partial (C_A/C_0)}{\partial \Theta} = \frac{\overline{kC}_0}{4v} + \checkmark \qquad --- 4.8a$ where $\Theta = t - x/v$ and is time measured from the instant
when the solution front reaches a cross section x units
from the column entry, and $\overline{k} = k_{kin}(K-1)/K$. Written in
terms of, y, the volume of effluent collected, equation
4.8a becomes 4.8b:-

where $\mathbf{\mathfrak{G}}$ is a function of k_{kin} .

ÐÌ.

While this treatment is not strictly rigorous, the introduction of Hisster's correction term yields diffusion coefficients of the right order in both liquid and particle phase.

4.3.3. Calculation of the diffusion coefficients.

It is not possible to obtain an explicit relation for the diffusion coefficients in terms of the effluent concentration histories, so the former must be calculated by a controlled trial and error process. This computation can be substantially reduced by assuming that the concentration histories are fully characterised by their mid point slopes, so that equation 4.8b may be used for calculations. This assumption should be checked by

FIG 4.5

CORRECTION FACTOR FOR THE COMBINATION OF INDIVIDUAL TRANSFER RESISTANCES INTO THE OVERALL RESISTANCE.

from HIESTER et al. (ref.H5)

comparing experimental concentration history curves with model curves when the derived diffusion coefficients are substituted. In most cases good agreement will be found.

The mid point slope and the volume of effluent collected at the time at which the mid point slope occurred were estimated from each concentration time curve, obtained from the recorder. Equation 4.8b was then used to evaluate the velocity constant of exchange. The trial and error process was accomplished as follows. A value of k_{kin} was assumed and the mid point slope for that value calculated and compared with the observed mid point slope. The assumed value of k_{kin} was then corrected in equal steps of kkin /10 until the difference between the observed and calculated mid point slopes passed the minimum and began to increase. The direction of change in k_{kin} was reversed and the step magnitude changed to kkin/100 until the minimum was again passed. Finally, a third traverse was varried out with steps of kkin/1000. This procedure was programmed for a computer and gave an accurate value of kkin corresponding to the observed mid point slope.

A further trial and error calculation was performed using the results of five runs in which only solution flow rate was varied. This was intended to separate the velocity constant into the individual film and particle transfer coefficients, which was possible because the particle transfer coefficient is independent of flow rate, and the film transfer coefficient varies with flow rate according to a known law. Film transfer resistance is proportional to the Reynolds number to a known exponent. When the film transfer resistance and flow rate are plotted on log-log paper they should give a straight line of known slope. To determine the value of the particle transfer resistance, trial and error values of the particle transfer resistance are subtracted from the total resistance, until the plot of the logarithm of the difference against the logarithm of flow rate gives a straight line of the required slope. The application of this technique to a sample set of results is shown in Fig. 4.6. The results of the other runs are summarised in Tables 4.1-4.16.

The liquid diffusion coefficient was calculated from the film transfer resistance using the correlation of Wilke and Hougen (ref. W7) . $k_{\rm L} = 1.82v \ {\rm Re}^{-0.51} \ {\rm Sc}^{-0.67}$ ---- 4.9 The diffusion coefficient in the particle is calculated from equation 4.10, which is based on a constant surface concentration.

$$D_{\rm P} = \frac{k_{\rm P} d_0^2}{4\pi^2} ---- 4.10$$

A Fortran IV programme was developed to perform these calculations (_see Appendix 3). Computation was carried out on the IBM 77090 system at Imperial College . 4.3.4. Effect of a varying selectivity coefficient on the break through curve predicted assuming a constant value.

In general there is some variation of selectivity with the ionic composition of the resin, and since the

FIG 4.6

SEPARATION OF TRANSFER RESISTANCES FOR THIS WORK DEACIDITE FF-CHIORIDE 20-30 MESH, 7-9% CROSSLINKING, EXTERNAL SOLUTION CONCENTRATION 0.1 N. TEMPERATURE 18.5°C. PERCENTAGE DEGRADATION 0.0%.

The following Tables are photocopies of off line computer output. As such they contain certain notations peculiar to the computer output system. The character E denotes the number 10.

For example 0.318E 03 means 0.318 \times 10³.

Tables 4.1 to 4.10 refer to Deacidite FF, 20 - 30 mesh, 7 - 9% crosslinking. Tables 4.1 - 4.2 are reproducibility measurements. Tables 4.3 and 4.4 show the effect of temperature. Tables 4.5 and 4.6 show the effect of concentration. Tables 4.7 to 4.10 show the effect of thermal degradation.

Tables 4.11 - 4.16 refer to Deacidite FF, 20-30 mesh, 2-3% crosslinking.

Tables 4.11 and 4.12 show the effect of temperature . Tables 4.13 to 4.16 show the effect of Thermal degradation.
TABLE 4.1

الالتواردة الممام فالتساسي سمادات

OBSERVED RESULTS HYDROXIDE SOLUTION - CHLORIDE RESIN

SERIE	S (GROUP	RÚN	OBSERVI MID PO VOLUMI	BRE ED INT E	AKTHROUGH C OBSERVED MID POINT SLOPE	URVE CALCULATED MID POINT SLOPE	SPECIFIC SOLUTION FLOW RATE	RADIUS OF Actual Particle	DIFFUS IN E PARTIC	ION : LE	COEFFICIENTS IN FILM		
				ML		1/SEC	1/SEC	ML/SEC	CM	CM*CM/	SEC	CM*CM/SEC		
	n an an Seo an		1	0.318E	03	0.188E-01	0.188E-01	0.182E 00	0.335000E-01	0.140E-05	0.1	73E-04		-
		1	2	0.287E	03	0.116E-01	0.116E-01	0.408E 00	0.335000E-01	0.140E-05	0.1	73E-04		
			3	0.312E	03	0.781E-02	0.781E-02	0.764E 00	0.335000E-01	0.140E-05	0.1	73E-04		
		1	4	0.253E	03	0.593E-02	0.593E-02	0.116E 01	0.335000E-01	0.140E-05	0.1	73E-04		
		<u>i</u> n Fé	5	0.293E	03	0.461E-02	0.461E-02	0.170E 01	0.335000E-01	0.140E-05	0.1	73E-04		
	CO	NCENTE	ATION	0.106	N	TEMPERATURE	18.70 C P	ERCENTAGE	DEGRADATION	D. PARTI	CLE	DIAMETER D	.6700E-01 CM	
		2	6	0.331E	03	0-190E-01	0.190E-01	0.180E 00	0.335000E-01	0.140É-05	0.1	73E-04		
		2	7	0.307E	03	0.118E-01	0.118E-01	0.398E 00	0.335000E-01	0.140E-05	0.1	73E-04		
1		2	8	0.331E	03	0.783E-02	0.783E-02	0.762E 00	0.335000E-01	0.140E-05	01	736-04		
		2	9	0.314E	.03	0.592E-02	0.592E-02	0.117E 01	0.335000E-01	0.140E-05	0.1	73E-04		
1.		2	10	0.312E	03	0.455E-02	0.455E-02	0.173E 01	0.335000E-01	0.140E-05	0.1	73E-04		
	C 01	NCENT	RATION	0.106	N	TEMPERATURE	18.70 C F	ERCENTAGE	DEGRADATION	0. PARTI	CLE	DIAMETER 3	.6700E-01 CM	÷
1		3	11	0.301E	03	0.189E-01	0.189E-01	0.181E 00	0.335000E-01	0.140E-05	. 0.1	73E-04	a an	
ŀ		3	12	0.295E	03	0.118E-01	0.118E-01	0.398E 00	0.335000E-01	0.140E-05	0.1	73E-04		
		3	13	0.309E	03	0.781E-02	0.781E-02	0.764E 00	0.335000E-01	0.140E-05	0.1	73E-04		
1		3	14	0.286E	03	0.579E-02	0.579E-02	0.121E 01	0.335000E-01	0.140E-05	0.1	73E-04		
1		3	15	0•283E	03	0.422E-02	0.422E-02	0.193E 01	0.335000E-01	0.140E-05	0.1	73E-04		
	C 0	NCENTI	RATION	0.106	N	TEMPERATURE	18.70 C F	PERCENTAGE	DEGRADATION	0. PARTI	CLE	DI-AMETER S	.6700E-01 CM	

	ጋ	HLORIDE	SOLUT	ION - HYDR(DXIDE RESIN						
	SERIES	GROUP	RUN	BRI OBSERVED MID POINT VOLUME	AKTHROUGH CO OBSERVED MID POINT SLOPE	URVE CALCULATED MID POINT SLOPE	SPECIFIC SOLUTION FLOW RATE	RADIUS OF Actual Particl	DIFFUS IN E PARTIC	ION COEFFICIEN IN LE FILM	T S
				ML	17SEC	1/SEC	ML/SEC	CM	CM*CM/	SEC CM*CM/SEC	
		4	16	0.334E 03	0.219E-01	0-219E-01	0.179E 00	0.335000E-01	0.540E-05	0.213E-04	
n de la composition de la composition de la composition de la composition de de la composition de		4 1	17	0.326E 03	0.140E-01	0.140E-01.	0.410E 00	0.335000E-01	0.540E-05	0.213E-04	
		4.	18	0.290E 03	0.988E-02	0.988E-02	0.762E 00	0.335000E-01	0.540E-05	0.213E-04	
	1	4	19	0.339E 03	0.779E-02	0.779E-02	0.116E 01	0.335000E-01	0.540E-05	0.213E-04	
	1		20	0.365E 03	0.621E-02	0.621E-02	0.171E 01	0.335000E-01	0.540E-05	0.213E-04	
		CONCENT	RATION	0.100 N	TEMPERATURE	18.90 C P	ERCENTAGE	DEGRADATION	0. PARTI	CLE DIAMETER	0.6700E-01 CM
	1	5	21	0.331E 03	0.219E-01	0.219E-01	0.180E 00	0.335000E-01	0.540E-05	0.213E-04	
		5	22	0.331E 03	0.142E-01	0.142E-01	0.397E 00	0.335000E-01	0.540E-05	0.213E-04	
	1	5	23	0.362E 03	0.989E-02	0.989E-02	0.761E 00	0.335000E-01	0.540E-05	0.213E-04	
		5	24	0.341E 03	0.775E-02	0.775E-02	0.117E 01	0.335000E-01	0.540E-05	0.213E-04	
··· ·		5.	25	0.336E 03	0.609E-02	0.609E-02	0.177E 01	0.335000E-01	0.540E-05	0.213E-04	
		CONCENT	TRATION	0.100 N	TEMPERATURE	18.90 C	PERCENTAGE	DEGRADATION	0. PARTI	CLE DIAMETER	3.6700E-01 CM
	1	6	26	0.357E 03	0.218E-01	0.218E-01	0.180E 00	0.335000E-01	0.540E-05	0.213E-04	
		6	27	0.336E 03	0.141E-01	0.141E-01	0.400E 00	0.335000E-01	0.540E-05	0.213E-04	
	in an an Anna an Anna Anna an Anna an	6	28	0.354E 03	0.984E-02	0.984E-02	0.768E 00	0.335000E-01	0.540E-05	0.213E-04	
		6	29	0.367E 03	0.764E-02	0.764E-02	0.120E 01	0.335000E-01	0.540E-05	0.213E-04	
	1999) 2018 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997	6	30	0.359E 03	0.615E-02	0.615E-02	0.174E 01	0.335000E-01	0.540E-05	0.213E-04	
			FRATION	0.100 N	TEMPERATURE	18.90 C	PERCENTAGE	DEGRADATION	0. PART	ICLE DIAMETER	0.6700E-01 CM

TABLE 4.2

OBSERVED RESULTS

		DESIU	ŦC					TABLE 4.3						
۳	DROXIDE	SOLU	JTION -	CHLO	RIDE RESI	N								
SERIES	GROUP	RUN	OBSERV MID PO VOLUM	BRE/ ED INT E	AKTHROUGH OBSERVED MID POIN SLOPE	CURVE CALCUL T MID PO SLOP	ATED INT E	SPECIFI SOLUTIO FLOW RATE	C	RADIUS OF Actual Particl	DIFFU In E Parti	SION	COEFFICIENT IN FILM	S
ere tratici	n - Narian'ny Ny Asian'ny		ML		1/SEC	T/SE	C	ML/SEC		CM	CM*CM	/SEC	CM*CM/SEC	
2		1	0.318E	03	0.188E-0	1 0.188E	-01	0.182E 0	0 0.33	35000E-01	0.140E-05	0.	173E-04	
2		2	0.287E	03	0.116E-0	1 0.116E	-01	0.408E 0	0 0.33	35000E-01	0.140E-05	0.	173E-04	
2	1.7	- 3	0.312E	03	0.781E-0	2 0.781E	-02	Ū.764E 0	0 0.33	35000E-01	0.140E-05	0.	173E-04	
2	ni en n Ad	4.4	0.253E	03	0.593E-0	2 0.593E	-02	0.116E 0	1 0.33	35000E-01	0.140E-05	0.	173E-04	i da de la composición de la

CONCENTRATION C.106 N TEMPERATURE 18.70 C PERCENTAGE DEGRADATION PARTICLE DIAMETER 0.6700E-01 CM 0. 2 2 6 0.320E 03 0.201E-01 0.201E-01 0.179E 00 0.335000E-01 0.412E-05 0.315E-04 2 2 7 0.315E 03 0.126E-01 0.126E-01 0.411E 00 0.335000E-01 0.412E-05 0.315E-04 2 2 8 0.314E 03 0.874E-02 0.874E-02 0.769E 00 0.335000E-01 0.412E-05 0.315E-04 2 2 9 0.311E 03 0.673E-02 0.673E-02 0.119E 01 0.335000E-01 0.412E-05 0.315E-04 2 10 0.312E 03 0.547E-02 0.547E-02 0.167E 01 0.335000E-01 0.412E-05 0.315E-04 CONCENTRATION 0.101 N. TEMPERATURE 50.00 C. PERCENTAGE DEGRADATION PARTICLE DIAMETER 0. 0.6700E-01 CM 2 3 11 0.331E 03 0.185E-01 0.185E-01 0.177E 00 0.335000E-01 0.136E-04 0.542E-04 3 12 0.342E 03 0.118E-01 0.118E-01 0.407E 00 0.335000E-01 2 0.136E-04 0.542E-04 2 3 13 0.329E 03 0.833E-02 0.833E-02 0.773E 00 0.335000E-01 0.136E-04 0.542E-04

2 3 14 0.329E 03 0.653E-02 0.653E-02 0.119E 01 0.335000E-01 0.136E-04 0.542E-04 2 3 15 0.327E 03 0.520E-02 0.520E-02 0.179E 01 0.335000E-01 0.136E-04 0.542E-04 CONCENTRATION 0.101 N TEMPERATURE 90.00 C PERCENTAGE DEGRADATION 0. PARTICLE DIAMETER J.6700E-01 CM

]	CABLE 4.4				
08 CH	SERVED I LORIDE	SOLUTI	ION - HYDRO	XIDE RESIN				<u>an an</u> hear anns an		
SERIES	GROUP	RUN	BRE OBSERVED MID POINT VOLUME	AKTHROUGH CU OBSERVED MID POINT SLOPE	JRVE CALCULATE MID POINT SLOPE	SPECIFIC D SOLUTION FLOW RATE	RADIUS OF ACTUAL PARTICL	DIFFUS IN E PARTIC	ION COEFFICIEN IN LE FILM	ITS
			ML	1/SEC	1/SEC	ML/SEC	СМ	CM+CM/	SEC CM*CM/SEC	
2	4	16	0.334E 03	0.219E-01	0.219E-01	0.179E 00	0.335000E-01	0.540E-05	0.213E-04	an a
2	ų .	17	0.326E 03	0.140E-01	0.140E-01	0.410E 00	0.335000E-01	0.540E-05	0.213E-04	
2	<u>L</u>	18	0.290E 03	0.988E-02	0.988E-02	0.762E 00	0.335000E-01	0.540E-05	0.213E-04	and a standard stand Standard standard stan
2	4 , 200	19	0.292E 03	0.779E-02	0.779E-02	0.116E 01	0.335000E-01	0.540E-05	0.213E-04	
2	на ц ана. 19 4 р. н. 19	20	0.365E 03	0.621E-02	0.621E-02	0.171E 01	0.335000E-01	0.540E-05	0.213E-04	n an
C	ONCENTR	ATION	0.100 N	TEMPERATURE	18.90 C I	PERCENTAGE 1	DEGRADATION	0. PARTI	CLE DIAMETER	0.6700E-01 CM
• 2	5	21	0.283E 03	0.396E-01	0.396E-01	0.178E 00	0.335000E-01	0.233E-04	0.476E-04	
2	5	22	0.283E 03	0.256E-01	0.256E-01	0.409E 00	0.335000E-01	0.233E-04	0.476E-04	
2	5	23	0.283E 03	0.183E-01	0.183E-01	0.768E 00	0.335000E-01	0.233E-04	0.476E-04	
2	5	24	0.283E 03	0.147E-01	0.147E-01	0.115E 01	0.335000E-01	0.233E-04	0.476E-04	
2	5	25	0.321E 03	0.118E-01	0.118E-01	0.173E 01	0.335000E-01	0.233E-04	0-476E-04	
<u> </u>	ONCENTR	ATION	0.103 N	TEMPERATURE	50.00 C I	PERCENTAGE	DEGRADATION	0. PARTI	CLE DIAMETER	0.6700E-01 CM
2	6	26	0.324E 03	0.492E-01	0.492E-01	0.180E 00	0.335000E-01	0.728E-04	0+813E-04	
2	6	27	0.324E 03	0.326E-01	0.326E-01	0.399E 00	0.335000E-01	0.728E-04	0.813E-04	
2	6	28	0.324E 03	0.232E-01	0.232E-01	0.771E 00	0.335000E-01	0.728E-04	0.813E-04	
2	6	29	0.329E 03	0.184E-01	0.184E-01	0.120E 01	0.335000E-01	0.728E-04	0.813E-04	
2	6	30	0.326E 03	0.152E-01	0.152E-01	0.173E 01	0.335000E-01	0.728E-04	0.813E-04	
	ONCENTR	ATION	0.103 N	TEMPERATURE	90.00 C	PERCENTAGE I	DEGRADATION	0. PARTI	CLE DIAMETER	0.6700E-01 CM

방법을 가지 않는 것 같은 것 같은 것은 것 같은 것 같은 것 같은 것 같이 많이 있는 것 같이 없다.

		TABLE 4	•5			
OBSERVED RESUL HYDROXIDE SOLU	TS TION - CHLORIDE RESIN					
	BREAKTHROUGH CL	JRVE S	PECIFIC	RADIUS DIFFUS	ION COEFFICIENT	S
SERIES GROUP RUN	MID POINT MID POINT VOLUME SLOPE	MID POINT SLOPE	FLOW RATE	ACTUAL IN PARTICLE PARTIC	IN LE FILM	en anderen verbrieden der Bereiten der Bereiten Bereiten der Bereiten der Bereiten der Bereiten der Bereiten der Bereiten der Bereiten
	ML 1/ SEC	1/SEC	ML/SEC	CM CM+CM/	SEC CM*CM/SEC	
3 1 1	0.316E 03 0.133E-01	0.133E-01 0.	182E 00 0.3350	00E-01 0.140E-05	0.164E-04	
3 1 2	0.283E 03 0.835E-02	0.835E-02 0.	408E 00 0.3350	00E-01 0.140E-05	0.164E-04	
3 1 3	0.306E 03 0.574E-02	0.574E-02_0.	764E 00 0.3350	00E-01 0.140E-05	0.164E-04	
3 1 4	0.245E 03 0.443E-02	0.443E-02 0.	116E 01 0.3350	00E-01 0.140E-05	0.164E-04	
3 1 5	0.284E 03 0.349E-02	0.349E-02 0.	170E 01 0.3350	00E-01 0.140E-05	0.164E-04	
CONCENTRATION	I 0.106 N TEMPERATURE	18.70 C PERC	ENTAGE DEGRADA	TION O. PARTI	CLE DIAMETER	0.6700E-01 CM
3 2 6	0.653E 03 0.634E-02	0.634E-02 0.	179E 00 0.3350	00E-01 0.910E-06	0.170E-04	
3 2 7	0.672E 03 0.398E-02	0.398E-02 0.	409E 00 0.3350	00E-01 0.910E-06	0.170E-04	
3 2 8	0.608E 03 0.276E-02	0.276E-02 0.	767E 00 0.3350	00E-01 0.910E-06	0.170E-04	
3 2 9	0.616E 03 0.214E-02	0.214E-02 0.	117E 01 0.3350	00E-01 0.910E-06	0.170E-04	
3 2 10	0.586E 03 0.170E-02	0.170E-02 0.	170E 01 0.3350	00E-01 0.910E-06	0.170E-04	
CONCENTRATION	1 0.051 N TEMPERATURE	17.00 C PERC	ENTAGE DEGRADA	TION O. PARTI	CLE DIAMETER	0.6700E-01 CM
3 3 11	0.286E 04 0.762E-03	0.762E-03 0.	183E 00 0.3350	00E-01 0.470E-06	0.173E-04	
3 3 12	0.273E 04 0.503E-03	0.503E-03 0.	398E 00 0.3350	00E-01 0.470E-06	0.173E-04	
3 3 13	0.268E 04 0.350E-03	0.350E-03 0.	770E 00 0.3350	000E-01 0.470E-06	0.173E-04	
3 3 14	0.258E 04 0.274E-03	0.274E-03 0.	120E 01 0.3350	000E-01 0.470E-06	0.173E-04	
3 3 15	0.253E 04 0.214E-03	0.214E-03 0.	185E 01 0.3350	000E-01 0.470E-06	0.173E-04	
CONCENTRATION	0.011 N TEMPERATURE	17.60 C PERC	ENTAGE DEGRADA	TION O. PARTI	CLE DIAMETER	0.6700E-01 CM

بالإمراض والمتحصص وجرار والمتعاد والمواصف والمواصف والمواصف والمواصف والموارد والمرار والمرار

.

CHLORI	DE SOLUTION - HYDR	DXIDE RESIN					
SERIES GRO	BRI OBSERVED UP RUN MID POINT VOLUME	EAKTHROUGH CURVE OBSERVED CALCULATED MID POINT MID POINT SLOPE SLOPE	SPECIFIC SOLUTION FLOW RATE	RADIUS OF Actual Particle	DIFFUSION C IN Particle	OEFFICIENTS IN FILM	
	ML .	1/SEC 1/SEC	ML/SEC	CM	CM+CM/SEC	CM*CM/SEC	
3 4	16 0.334E 03	0.154E-01 0.154E-01	0.179E 00 0.3	35000E-01 0.5	40E-05 0.21	3E-04	
3 4	17 0.326E 03	0.991E-02 0.991E-02	0.410E 00 0.3	35000E-01 0.5	40E-05 0.21	13E-04	
3 4	18 0.290E 03	0.707E-02 0.707E-02	0.762E 00 0.3	35000E-01 0.5	40E-05 0.21	13E-04	
3 4	19 0.339E 03	0.561E-02 0.561E-02	0.116E 01 0.3	35000E-01 0.5	40E-05 0.21	3E-04	
3	20 0.364E 03	0.451E-02 0.451E-02	0.171E 01 0.3	35000E-01 0.5	40E-05 0.21	13E-04	
CONCE	NTRATION 0.100 N	TEMPERATURE 18.90 C	PERCENTAGE DEGR	ADATION 0.	PARTICLE [DIAMETER)	.6700E-01 CM
3 5	21 0.640E 03	0.933E-02 0.933E-02	0.177E 00 0.3	35000E-01 0.4	10E-05 0.23	39E-04	
3 5	22 0.635E 03	0.604E-02 0.604E-02	0.404E 00 0.3	35000E-01 0.4	10E-05 0.23	39E-04	
3 5	23 0.640E 03	0.428E-02 0.428E-02	0.768E 00 0.3	35000E-01 0.4	10E-05 0.23	39E-04	
3	24 0.640E 03	0.341E-02 0.341E-02	0.117E 01 0.3	35000E-01 0.4	10E-05 0.23	39E-04	
3 5	25 0.639E 03	0.272E-02 0.272E-02	0.177E 01 0.3	35000E-01 0.4	10E-05 0.23	39E-04	
CONCE	NTRATION 0.051 N	TEMPERATURE 17.00 C	PERCENTAGE DEGR	ADATION 0.	PARTICLE [DIAMETER 3	.6700E-01 CM
3 6	26 0.325E 04	0.211E-02 0.211E-02	0.181E 00 0.3	35000E-01 0.3	51E-05 0.25	58E-04	
3 6	27 0.320E 04	0.141E-02 0.141E-02	0.398E 00 0.3	35000E-01 0.3	51E-05 0.25	58E-04	

3 6 28 0.318E 04 0.999E-03 0.999E-03 0.773E 00 0.335000E-01 0.351E-05 0.258E-04 3 6 29 0.323E 04 0.794E-03 0.794E-03 0.120E 01 0.335000E-01 0.351E-05 0.258E-04 3 6 30 0.325E 04 0.646E-03 0.646E-03 0.179E 01 0.335000E-01 0.351E-05 0.258E-04 CONCENTRATION 0.010 N TEMPERATURE 17.60 C PERCENTAGE DEGRADATION PARTICLE DIAMETER 3.6700E-01 CM 0.

TABLE 4.6

OBSERVED RESULTS

OBSERVED RESULTS HYDROXIDE SOLUTION - CHLORIDE RESIN

			BRE	AKTHROUGH C	URVE	SPECIFIC	RADIUS	DIFFUSION	COEFFICIENT	S
SERTE	GROUP	RUN	OBSERVED	OBSERVED	MID POINT	SOLUTION	OF ACTUAL	TN	IN	
			VOLUME	SLOPE	SLOPE	RATE	PARTICL	E PARTICLE	FILM	
			ML	1/SEC	1/SEC	ML/SEC	CM	CM+CM/SEC	CM+CM/SEC	
4	1	1	0.260E 03	0.215E-01	0.215E-01	0.182E 00	0.335000E-01	0.140E-05 0.	173E-04	
4		2	0.310E 03	0.178E-01	0.178E-01	0.248E 00	0.335000E-01	0.140E-05 0.	173 E-04 .	
4	1	3	0.244E 03	0.125E-01	0.125E-01	0.441E 00	0.335000E-01	0.140E-05 0.	173 E-04	
4		4	0.265E 03	0.603E-02	0.603E-02	0.133E 01	0.335000E-01	0.140E-05 0.	173E-04	
4	1	5	0.216E 03	0.476E-02	0.476E-02	0.187E 01	0.335000E-01	0.140E-05 0.	173 E-04	
	CONCENT	RATION	0.108 N	TEMPERATURE	19.00 C P	ERCENTAGE [DEGRADATION	0. PARTICLE	DIAMETER	0.6700E-01 CM
4	2	6	0.241E 03	0.264E-01	0.264E-01	0.182E 00	0.335000E-01	0.202E-05 0.	173 E-04	
4	2	7	0.237E 03	0.211E-01	0.211E-01	0.266E 00	0.335000E-01	0.202E-05 0.	173E-04	
4	2	8	0.284E 03	0.152E-01	0.152E-01	0.461E 00	0.335000E-01	0.202E-05 0.	173E-04	
4	2	9	0.221E 03	0.730E-02	0.730E-02	0.147E 01	0.335000E-01	0.202E-05 0.	173E-04	
. 4	2	10	0.221E 03	0.536E-02	0.536E-02	0.233E 01	0.335000E-01	0.202E-05 0.	173E-04	
	CONCENT	RATION	0.108 N	TEMPERATURE	19.00 C P	ERCENTAGE [DEGRADATION	7.20 PARTICLE	DIAMETER	0.6700E-01 CM
4	3	<u>11</u> .	0.219E 03	0.373E-01	0.373E-01	0.186E 00	0.335000E-01	0.244E-05 0.	173 E-04	
4	3	12	0.237E 03	0.334E-01	0.334E-01	0.224E 00	0.335000E-01	0.244E-05 0.	173E-04	
4	3	13	0.208E 03	0.213E-01	0.213E-01	0.477E 00	0.335000E-01	0.244E-05 0.	173 E-04	
4	3	14	0.188E 03	0.114E-01	0.114E-01	0.128E 01	0.335000E-01	0.244E-05 0.	773E-04	
4	3	15	0.244E 03	0.820E-02	0.820E-02	0.211E 01	0.335000E-01	0.244E-05 0.	173 E-04	
	CONCENT	RATION	0.108 N	TEMPERATURE	(19.00 C P	ERCENTAGE	DEGRADATION 2	3.60 PARTICLE	DIAMETER	0.6700E-01 CM

TABLE 4.7

					TA	BLE 4.8				
	CHLORIDE	SOLUT	ION - HYDRO	XIDE RESIN						
SERIE	S GROUP	RUN	BRE OBSERVED MID POINT VOLUME	AKTHROUGH CU Observed Mid Point Slope	URVE CALCULATED MID POINT SLOPE	SPECIFIC SOLUTION FLOW RATE	RADIL OF Actua Partic	JS DIFFUS NL IN CLE PARTIC	ION COEFFICIENT IN LE FILM	'S
		erije Literation	ML	1/SEC	1/SEC	ML/SEC	CM	CM+CM/	SEC CM+CM/SEC	
4	4	16	0.321E 03	0.252E-01	0.252E-01	0.175E 00	0.335000E-01	0.540E-05	0-214 5-04	
1. 1. 1. 1. 1. 4. 1. mijesta	9 1 1 1 1 1 1 1	17	0.315E 03	0.179E-01	0.179E-01	0.328E 00	0.335000E-01	0.540E-05	0.214 E-04	
4	4 	18	0.323E 03	0.150E-01	0.150E-01	0.451E 00	0.335000E-01	0.540E-05	0.214 E-04	
4) 4) ()	4 1	19	0.308E 03	0.919E-02	0.919E-02	0.107E 01	0.335000E-01	0.540E-05	0.214 E-04	
4 	e <u>a antil an</u> tradicio. A u a anti-	20	0.310E 03	0.699E-02	0.699E-02	0.170E 01	0.335000E-01	0.540E-05	0.214 E-04	
	CONCENT	ATION	0.100 N	TEMPERATURE	19.00 C P	ERCENTAGE (EGRADATION	0. PARTI	CLE DIAMETER	0.6700E-01 CM
4 4	5	21	0.282E 03	0.275E-01	0.275E-01	0.172E 00	0.335000E-01	0.556E-05	0-214) E-04	
(, 2007540 4 999751 () 199	5	22	0.279E 03	0.208E-01	0.208E-01	0.285E 00	0.335000E-01	0.556E-05	0•214 E-04	
4	5	23	0.284E 03	0.161E-01	0.161E-01	0.457E 00	0.335000E-01	0.556E-05	0•214 E-04	
4	5 5	24	0.274E 03	0.980E-02	0.980E-02	0.109E 01	0.335000E-01	0.556E-05	0.214E-04	
4 	5	25	0.289E 03	0.711E-02	0.711E-02	0.187E 01	0.335000E-01	0.556E-05	0.214E-04	
	CONCENTR	ATION	0.100 N	TEMPERATURE	19.00 C P	ERCENTAGE (EGRADATION	7.20 PARTI	CLE DIAMETER	0.6700E-01 CM
4	6 6 19	26	0.247E 03	0.333E-01	0.333E-01	0.178E 00	0.335000E-01	0.796E-05	0•214 E-04	
4	6	27	0.243E 03	0.232E-01	0.232E-01	0.347E 00	0.335000E-01	0.796E-05	0.214 E-04	
4	6 	28	0.241E 03	0.219E-01	0.219E-01	0.385E 00	0.335000E-01	0.796E-05	0•214E-04	
4	6	29	0.213E 03	0.117E-01	0.117E-01	0.117E 01	0.335000E-01	0.796E-05	0.214 E-04	
4 ,	6	30	0.237E 03	0.845E-02	0.845E-02	0.206E 01	0.335000E-01	0.796E-05	0-214E-04	
	CONCENT	ATION	0.100 N	TEMPERATURE	19.00 C P	ERCENTAGE [DEGRADATION	23.60 PARTI	CLE DIAMETER	0.6700E-01 CM

.

TABLE 4.9

i na sente de la companya de la comp

OBSERVED RESULTS HYDROXIDE SOLUTION - CHLORIDE RESIN

SERIE	S GR			BR ED TNT	EAKTHROUGH CU OBSERVED	URVE CALCULATE	SPECIFIC D SOLUTION ELOW	RADIU OF	S DII	FUSION	COEFFICIEN	ITS
			VOLUM	Ē	SLOPE	SLOPE	RATE	PARTIC	LE PAI	TICLE	FILM	
			ML		1/SEC	1/SEC	ML/SEC	CM	CM	CM/SEC	CM+CM/SEC	
5	o në trobo Norienjeto i	1 1	0.142E	04	0.671E-02	0.671E-02	0.154E 00	0.335000E-01	0.316E-	-05 0.	173 E-04	
5	on eginni Romanas	12	0.160E	04	0.550E-02	0.550E-02	0.226E 00	0.335000E-01	0.316E-	-05 0.	1731E-04	
5	n e ten. Et e eter	1 3	0.163E	04	0.365E-02	0.365E-02	0.497E 00	0.335000E-01	0.316E	-05 0.	173 E-04	
5		1 4	0.167E	04	0.284E-02	0.284E-02	0.806E 00	0.335000E-01	0.316E	-05 0.	173 E-04	
. 5	n an tait Filipin agus	15	0.158E	04	0.185E-02	0.185E-02	0.182E 01	0.335000E-01	0.316E	-05 0.	173 E-04	
	CONC	ENTRATIO	N 0.011	N	TEMPERATURE	19.00 C	PERCENTAGE (DEGRADATION	33.10 P/	ARTICLE	DIAMETER	0.6700E-01 CM
5		26	0.131E	04	0.713E-02	0.713E-02	0.181E 00	0.335000E-01	0-225E-	-05 0.	173E-04	
5		27	0.174E	04	0.476E-02	0.476E-02	0.391E 00	0.335000E-01	0.225E-	-05 0.	173 E-04	
5		28	0.174E	04	0.429E-02	0.429E-02	0.478E 00	0.335000E-01	0.225E-	-05 0.	173E-04	
5		29	0.180E	04	0.337E-02	0.337E-02	0.753E 00	0.335000E-01	0.225E	-05 0.	173E-04	
5		2 10	0.163E	04	0.210E-02	0.210E-02	0.182E 01	0.335000E-01	0.225E-	-05 0.	173E-04	
	CONC	ENTRATIC	ON 0.011	N	TEMPERATURE	19.00 C	PERCENTAGE	DEGRADATION	48.60 P	ARTICLE	DIAMETER	0.6700E-01 CM

2 🚆 👾

1.1

~ · •

. . .

. . .

					ТА	BLE 4.10			
	OBSERVED CHLORIDE	RESUL SOLUT	TS ION - HYDRC	XIDE RESIN					
SERIE	S GROUP	RUN	BRE OBSERVED MID POINT VOLUME	AKTHROUGH CU Observed MID Point Slope	JRVE CALCULATED MID POINT SLOPE	SPECIFIC Solution Flow Rate	RADIU OF Actual Partici	S DIFFUSION COEFFICIE L IN IN LE PARTICLE FILM	NTS
lation process or subsection of the	a an	ratific	ML	1/SEC	1/SEC	ML/SEC	CM	CM+CM/SEC CM+CM/SE	C
5	4	16	0.202E 03	0.375E-01	0.375E-01	0.184E 00	0.335000E-01	0.658E-05 0.214E-04	
5	4	17	0.201E 03	0.297E-01	0.297E-01	0.279E 00	0.335000E-01	0.658E-05 0.214 E-04	
5	4	18	0.185E 03	0.232E-01	0.232E-01	0.435E 00	0.335000E-01	0.658E-05 0.2141E-04	
5	4	19	0.194E 03	0.112E-01	0.112E-01	0.152E 01	0.335000E-01	0.658E-05 0.214 E-04	
. 5	4	20	0.213E 03	0.983E-02	0•983E-02	0.187E 01	0.335000E-01	0.658E-05 0.2141E-04	
	CONCENT	RATION	0.100 N	TEMPERATURE	19.00 C P	ERCENTAGE	DEGRADATION	33.10 PARTICLE DIAMETER	0.6700E-D1 CM
5	5	21	0.200E 03	0.396E-01	0.396E-01	0.181E 00	0.335000E-01	0.554E-05 0.214 E-04	
5	5	22	0.199E 03	0.299E-01	0.299E-01	0.298E 00	0.335000E-01	0.554E-05 0.2141E-04	
5	5	23	0.200E 03	0.241E-01	0.241E-01	0.433E 00	0.335000E-01	0.554E-05 0.214 E-04	
5	5	24	0.192E 03	0.133E-01	0.133E-01	0.117E 01	0.335000E-01	0.554E-05 0.214E-04	
5	5	25	0.171E 03	0.894E-02	0.894E-02	0.221E 01	0.335000E-01	0.554E-05 0.214E-04	
	CONCENT	RATION	I 0.100 N	TEMPERATURE	19.00 C P	ERCENTAGE	DEGRADATION	48.60 PARTICLE DIAMETER	0.6700E-01 CM

.

n de la companya de l

Contract of the second Alternatives	1.	· A · A		 	 	 	 	 	
ar man summar and a set of 12 A FK L. H.					 ••	 ÷ •-	 	 	
			41.54	 	 	 	 *******	 	1.1

OBSERVED RESULTS HYDROXIDE SOLUTION - CHLORIDE RESIN

SERIES	, GROUP	RUN	OBSERVE MID POI VOLUME	BRE D NT	AKTHROUGH_CI OBSERVED MID_POINT SLOPE	JRVE CALCULATE MID POINT SLOPE	SPECIFIC D SOLUTION FLOW RATE	RADIU: OF ACTUAI PARTICI	S DIFFUS L IN LE PARTIC	ION COEFFICIEN IN LE FILM	ι Τ S
		į j	ML		1/SEC	1/SEC	ML/SEC	CM	CM*CM/	SEC_CM*CM/SEC	
6	1	1	0.313E	03	0.185E-01	0.185E-01	0.178E 00	0.350000E-01	0.370 2-05	0.173E-04	
6	1	2	0.313E	03	0.111E-01	0.111E-01	0.410E 00	0.350000E-01	0.370 E-05	0.173E-04	
6	1	3	0.289E	03	0.740E-02	0.740E-02	0.770E 00	0.350000E-01	0.370 E-05	0.173E-04	
6	1	4	0.281E	03	0.561E-02	0.561E-02	0.116E 01	0.350000E-01	0•370 E-05	0.173E-04	
6	1	5	0.284E	03	0.436E-02	0.436E-02	0.168E 01	0.350000E-01	0 . 370 E-05	0.173E-04	
(CONCENT	RATION	0.102	N	TEMPERATURE	18.60 C	PERCENTAGE [DEGRADATION	0. PARTI	CLE DIAMETER	0.7000E-D1 CM
6	2	6	0.317E	03	0.216E-01	0.216E-01	0.176E 00	0.350000E-01	0.789 E-05	0.315E-04	
6	2	7	0.319E	03	0.130E-01	0.130E-01	0.423E 00	0.350000E-01	0.789.E-05	0.315E-04	
• 6	2.	8	0.321E	03	0.927E-02	0.927E-02	0.740E 00	0.350000E-01	0.789 E-05	0.315E-04	
6	2	9	0.287E	03	0.694E-02	0.694E-02	0.118E 01	0.350000E-01	0.789 E-05	0.315E-04	
6	2	10	0.300E	03	0.537E-02	0.537E-02	0.175E 01	0.350000E-01	0.789°E-05	0.315E-04	
. (CONCENT	RATION	0.102	N ·	TEMPERATURE	48.60 C	PERCENTAGE [DEGRADATION	0. PARTI	CLE DIAMETER	0.7000E-01 CM
6	3	11	0.315E	03	0.195E-01	0.195E-01	0.180E ÓO	0.350000E-01	0.140 E-04	0.542E-04	
6	3	12	0.318E	03	0.123E-01	0.123E-01	0.410E 00	0.350000E-01	0.140 E-04	0.542E-04	
6	3	13	0.310E	03	0.858E-02	0.858E-02	0.763E 00	0.350000E-01	0.140E-04	0.542E-04	
6	3	14	0.305E	03	0.661E-02	0.661E-02	0.118E 01	0.350000E-01	0.140 E-04	0.542E-04	
6_	3	15,	0.301E	03	0.527E-02	0.527E-02	0.171E 01	0.350000E-01	0.140 E-04	0.542E-04	
(CONCENT	RATION	0.103	N	TEMPERATURE	90.10 C	PERCENTAGE (DEGRADATION	0. PARTI	CLE DIAMETER	0.7000E-01 CM

a je po na na pri na svetova o svoji kao predstan svetov pri česti na konstrukcio po slovi na konstrukcio po s Na svetova po na svetova po svetov Na svetova po svetova p

in a fritter an telle a frederik frederik G

0 C	BSERVED HLORIDE	RESUL	TS ION - HYDRC	XIDE RESIN	<u></u> ТАВ.	LE 4 . 12				
SERIES	GROUP	RUN	BRE OBSERVED MID POINT VOLUME	AKTHROUGH CU OBSERVED MID POINT SLOPE	JRVE CALCULATED MID POINT SLOPE	SPECIFIC SOLUTION FLOW RATE	RADIUS OF ACTUAL PARTICL	DIFFUSI IN E PARTICL	ON COEFFICIEN IN E FILM	ITS
			ML	1/SEC	1/SEC	ML/SEC	CM	CM*CM/S	SEC CM*CM/SEC	
6	4	16	0.308E 03	0.208E-01	0.208E-01	0.179E 00	0.350000E-01	0.118)E-04	0.213E-04	
6	4	17	0.318E 03	0.131E-01	0.131E-01.	0.411E 00	0.350000E-01	0.118°E-04	0.213E-04	
6	4	18	0.298E 03	0.906E-02	0.906E-02	0.777E 00	0.350000E-01	0. 118,E-04	0.213E-04	
• 6	4	19	0.300E 03	0.715E-02	0.715E-02	0.116E 01	0.350000E-01	0.118 E-04	0.213E-04	
6	4	20	0.313E 03	0.567E-02	0.567E-02	0.170E 01	0.350000E-01	0. 118 E-04	0.213E-04	
	CONCENT	RATION	0.098 N	TEMPERATURE	18.60 C P	ERCENTAGE (DEGRADATION	0. PARTIC	LE DIAMETER	0.7000E-01 CM
6	5	21	0.333E 03	0.368E-01	0.368E-01	0.180E 00	0.350000E-01	0.312 E-04	0.476E-04	
6	5	22	0.338E 03	0.237E-01	0.237E-01	0.399E 00	0.350000E-01	0.312 E-04	0.476E-04	
6	5	23	0.323E 03	0.161E-01	0.161E-01	0.788E 00	0.350000E-01	0.312E-04	0.476E-04	
6	5	24	0.323E 03	0.131E-01	0.131E-01	0.112E 01	0.350000E-01	0.312E-04	0.476E-04	
6	5	25	0.328E 03	0.101E-01	0.101E-01	0.174E 01	0.350000E-01	0.312E-04	0.476E-04	
	CONCENT	RATION	0.098 N	TEMPERATURE	48.70 C P	ERCENTAGE [DEGRADATION	0. PARTIC	LE DIAMETER	0.7000E-01 CM
6	6	26	0.326E 03	0.486E-01	0.486E-01	C.175E 00	0.350000E-01	0.696E-04	0.813E-04	
6	6	27	0.321E 03	0.304E-01	0.304E-01	0.411E 00	0.350000E-01	0. 696 E-04	0.813E-04	
6	6	28	0.328E 03	0.214E-01	0.214E-01	'0.772E 00	0.350000E-01	0.696E-04	D.813E-04	
6	6	29	0.321E 03	0.167E-01	0.167E-01	0.118E 01	0.350000E-01	0'. 696 E-04	0.813E-04	
6	6	30	0.328E 03	0.135E-01	0.135E-01	0.171E 01	0.350000E-01	0.696E-04	0.813E-04	
	CONCENT	RATION	0.098 N	TEMPERATURE	19.00 C P	ERCENTAGE (DEGRADATION	0. PARTIC	LE DIAMETER	9.7000E-01 C
									<u>, </u>	

OBSERVED RESULTS

. ر. ا ر. ا

TABLE 4.13

 $1 \sqrt{r}$

		_		_	-			_			_																	
 						-				 						 -	 -	And in case of the local division of the loc		-					 	_	 	 _
 			-							 -		~ .			-	 ~	 ٠	-				· · ·			 		 	
	115	5 G (<u> </u>		1.	e	- 1	• 6	N 4			110			· · ·	 - f 1			-		1 - 1			۹. I		1.00	 	
	¥ 1 1	5.7 F										1 1 1 1		-		 		* * * *			£	`	1 1 2	•				
1.1	1. 1.	CN 3											5								1.00			۶.			1.0	
	-																											
																							2.1.1.1					
																							a. 2 -					
																							10 M H					

•

					and the second	SPECIEIC		A DECHS		Ψ C (100 μ. 100 μ. 1
	1		OBSERVED	OBSERVED	CALCULATE	D SOLUTION	OF	DIFFUS	IUN CUEFFICIEN	
SERIES	GROUP	RUN	MID POINT	MID POINT	MID POINT	FLOW	ACTUAL	IN	IN	
			VOLUME	SLOPE	· SLOPE /	RAIE	PARTIC	E PARIICI		
		Ø j	ML	1/SEC	1/SEC	ML/SEC	СМ	. CM*CM/	SEC CM*CM/SEC	
7	1	1	0.257E 03	0.286E-01	0.286E-01	0.178E 00	0.350000E-01	0.370'E-05	0.174 E-04	
7	1	2	0.252E 03	0.232E-01	0.232E-01	0.265E 00	0.350000E-01	0.370'E-05	0.174 E-04	
7	1	3	0.250E 03	0.177E-01	0.177E-01	0.440E 00	0.350000E-01	0.370 E-05	0.174) E-04	
7	1	4	0.245E 03	0.105E-01	0.105E-01	0.117E 01	0.350000E-01	0.370 E-05	0 • 174 E-04	
7	1	5	0.239E 03	0.816E-02	0.816E-02	0.186E 01	0.350000E-01	0.370 E-05	0.174'E-04	
C	ONCENT	RATION	0.113 N	TEMPERATURE	18.70 C I	PERCENTAGE [EGRADATION	0. PARTI	CLE DIAMETER	0.7000E-01 CM
7	2	6	0.255E 03	0.314E-01	0.314E-01	0.171E 00	0.350000E-01	0.391'E-05	0.174 E-04	
7	2	7	0.251E 03	0.240E-01	0.240E-01	0.285E 00	0.350000E-01	0.39 E-05	0.174 E-04	
7	2	8	0.251E 03	0.180E-01	0.180E-01	0.495E 00	0.350000E-01	0.3911E-05	0 • 174 E-04	le de la company de la comp
7	2	9	0.244E 03	0.103E-01	0.103E-01	0.142E 01	0.350000E-01	0•391:E-05	0.174 E-04	
7	2	10	0.242E 03	0.924E-02	0.924E-02	0.172E 01	0.350000E-01	0.39/1E-05	0.174!E-04	
C	CONCENTI	RATION	0.113 N	TEMPERATURE	18.70 C	PERCENTAGE [EGRADATION	3.74 PARTI	CLE DIAMETER	D.7000E-01 CM
7	3	11	0.247E 03	0.352E-01	0.352E-01	0.177E 00	0.350000E-01	0. 418 E-05	0.174 E-04	
7	3	12	0.241E 03	0.308E-01	0.308E-01	0.230E 00	0.350000E-01	0.418 E-05	0.174)E-04	
7	3	13	0.239E 03	0.210E-01	0.210E-01	0.479E 00	0.350000E-01	0.418E-05	0.174)E-04	
7	3	14	0.229E 03	0.122E-01	0.122E-01	0.135E 01	0.350000E-01	0. 418 E-05	0•174 [;] E-04	
7	3	15 ·	0.239E 03	0.108E-01	0.108E-01	0.171E 01	0.350000E-01	0. 418 -05	0.174 E-04	

					•			
propagation and the figure is a set of the s	section and the section of the secti	and the second	ALL STREET, ST		and the second	the second s		
sending and shows the sender of the sender	and the first of the second	the control of the state building and the state of the st	the second	and a second	and the second	The second		And a state of the
	server and the second	the second	the second second second second second second second second	and the state of t		A 77 AM 177		A COMPANY AND A
THE REPORT OF THE PARTY OF THE REPORT OF THE R	the state of the second st	. The statement of the second s	A 1 1 I I I I I I I I I I I I I I I I I	The second	and the second sec			and the second sec
and the second	the second se	a strength and sold and because and and and and an an an an an an an an an	and have been as a second s	and the second sec	and the second se			the states of the base of the second states of the
NUMBER OF STREET, STRE		a second and the second s	and the state of t	The second rest of the second se	CONTRACTOR OF A CONTRACTOR OF			
and an Alexandria and a second and the second	and share a second second second	The second se	and the second state of the second state of the second state of the	All south and the second s	and the state of t			Contraction of the local division of the loc
								the second se
and the second sec			the second se	whereas a characteristic from the second	and the same of the spirit of a start of the start of the spirit of the	and the second s	taken familier version of the present state affinition and state affinition affinition and state affinition af	be derested on he had an any make we are shown
Carlos A. C. C. C. C.					A A A A A A A A A A A A A A A A A A A		and the second	the second data and the second data and the second data
	c n n n n n n			• • • • • • • • • • • • • • • • • • •	The second se	The state of the second st	and a state of the control of the state of the	the second of the second secon
and the second	1 MILING 1 100*				and had a second to the second the second to the	ter for the second s	sector which whether of a suspend to address a such harders from the	the second
and the second sec					and the second	the second se	and the second s	contract source is sufficient to an an effective of
states and the supervised with success of 1995				the second of the second s	and a set of the second we will be set of the second second between part of the	and the second state of th	and the second sec	term and conference and a serie constraints
and the second s	where the state of	the second property of the second sec	A Company of the state of th	the second s	the second part of the second s	The second descent of the second se	and the second s	Internet and Additional Additional Additional

									_
					 	•••			-
- 1		~		- 6 A T	 			1	
							11	.	
· · · ·	ا ف ما		_	-	 Τ.		-	т	-
_					 				

SERIE	S GROUI	P RUN	B OBSERVED MID POIN VOLUME	REAKTHROUGH C OBSERVED IT MID POINT SLOPE	URVE CALCULATEE MID POINT SLOPE	SPECIFIC SOLUTION FLOW RATE	RADIUS OF ACTUAL PARTICL	DIFFUSI IN E. PARTICL	ON COEFFICIENT In E Film	ſS
			ML	1/SEC	1/SEC	ML/SEC	CM	CM*CM/S	EC CM*CM/SEC	
7	4	16	0.267E 0	3 0.238E-01	0.238E-01	0.185E 00	0.350000E-01	0.118 =-04	0.214 5-04	
. 7	4	17	0.262E 0	3 0.186E-01	0.186E-01	0.285E 00	0.350000E-01	0. 118 E-04	0.214 E-04	
7	4	18	0.254E 0	3 0.134E-01	0.134E-01	0.506E 00	0.350000E-01	0. 118)E-04	0.214E-04	
7	4	19	0.249E 0	0.803E-02	0.803E-02	0.119E 01	0.350000E-01	0.118 E-04	0.214 E-04	
7	4	20	0.248E 0	3 0.542E-02	0.542E-02	0.223E 01	0.350000E-01	0.118 E-04	0.214 E-04	
	CONCEN	TRATION	0.101 N	I TEMPERATURE	19.50 C F	PERCENTAGE (DEGRADATION	0. PARTIC	LE DIAMETER	0.7000E-01 CM
7	5	21 ·	0.286E 0	0.248E-01	0.248E-01	0.187E 00	0.350000E-01	0.141;E-04	0•214 E-04	
7	5	22	0.288E 0	0.198E-01	0.198E-01	0.279E 00	0.350000E-01	0.14[]E-04	0.214E-04	
7	5	23	0.293E 0	3 0.141E-01	0.141E-01	0.503E 00	0.350000E-01	0.141 E-04	0.214) E-04	
7	5	24	0.295E 0	0.838E-02	0.838E-02	0.120E_01	0.350000E-01	0.141 E-04	0.2 4}E-04	
7	5	25	0.259E 0	0.669E-02	0.669E-02	0.173E 01	0.350000E-01	0.441 E-04	0.24)E-04	
	CONCEN	TRATION	0.101 N	I TEMPERATURE	E 19.50 C F	PERCENTAGE I	DEGRADATION	3.74 PARTIC	LE DIAMETER	0.7000E-01 CM
7	6	26	0.238E 0	03 0.263E-01	0.263E-01	0.196E 00	0.350000E-01	0.232E-04	0.214 E-04	
7	6	27	0.256E 0	0.217E-01	0.217E-01	0.275E 00	0.350000E-01	0-232 =-04	0.24 ³ E-04	
7	6	28	0.234E 0	0.138E-01	0.138E-01	0.607E 00	0.350000E-01	0.232E-04	0.214 E-04	
7	6	29	0.251E 0	0.898E-02	0.898E-02	0.124E 01	0.350000E-01	0.232E-04	0.214 E-04	
7	6	30	0.240E 0	0.633E-02	0.633E-02	0.216E 01	0.350000E-01	0.232 E-04	0.214 E-04	
	CONCEN	TRATION	0.101 N	I TEMPERATURI	= 19.50 C F	PERCENTAGE	DEGRADATION	10.72 PARTIC	LE DIAMETER	0.7000E-01 CM

--)

OB	SERVED	RESUL	<u>ک</u> ا	\ \	<u> </u>	ABLE 4.15					
СН	LORIDE	Resin	- HYDF,	XIDE SOLUTION	C						
			BRE	AKTHROUGH C			RADIUS	DIFFUS	LON COEFFICIEN	ITS	
SERIES	GROUP	RUN	MID POINT	MID POINT SLOPE	MID POINT SLOPE	FLOW	ACTUAL	IN E PARTICI	_E FILM		
			ML	1/SEC	1/SEC	ML/SEC	CM	CM*CM/S	SEC CM*CM/SEC		
8	4	16	0.242E 03	0.295E-01	0.295E-01	0.179E 00	0.350000E-01	0.390 E-05	0. 174 E-04		
8	4	17	0.221E 03	0.235E-01	0.235E-01	0.267E 00	0.350000E-01	0.390 E-05	0.174 E-04		
8	4	18	0.213E 03	0.164E-01	0.164E-01	0.497E 00	0.350000E-01	0.390 E-0.5	0. 174 E-04		
8	4	19	0.213E 03	0.843E-02	0.843E-02	0.147E 01	0.350000E-01	0.390 E-05	0.174 E-04		
8	4	20	0.219E 03	0.763E-02	0.763E-02	0.172E 01	0.350000E-01	0.390 E-05	0.174 E-04		
C	ONCENT	RATION	0.101 N	TEMPERATURE	19.50 C P	ERCENTAGE D	EGRADATION 1	7.45 PARTI	CLE DIAMETER	0.7D00E-01 CM	
8	5	21	0.201E 03	0.291E-01	0.291E-01	0.214E 00	0.350000E-01	0.441 E-05	0.174 E-04		
8	5	22	0.201E 03	0.263E-01	0.263E-01	0.257E 00	0.350000E-01	0.441 E-05	0. 174 E-04		
8	5	23	0.197E 03	0.191E-01	0.191E-01	0.446E 00	0.350000E-01	0.441 E-05	0.174E-04		
8	5	24	0.201E 03	0.107E-01	0.107E-01	0.117E 01	0.350000E-01	0.4417E-05	0.174 E-04		
8	5	25	0.197E 03	0.740E-02	0.740E-02	0.209E 01	0.350000E-01	0•44('E-05	0.174'E-04		
C	ONCENT	RATION	0.101 N	TEMPERATURE	19.50 C P	ERCENTAGE D	DEGRADATION 2	3.69 PARTI	CLE DIAMETER	0.7000E-01 CM	

4.36

· · · ·

OBSERVED RE	SULTS		TAI	3LE 4.16					
HYDROXIDE R	esin - Chuc	RIDE SOLUTION	۷				(
SERIES GROUP R	BRE OBSERVED UN MID POINT	AKTHROUGH CU OBSERVED MID POINT	URVE CALCULATED MID POINT	SPECIFIC SOLUTION FLOW	RADIUS OF ACTUAL	DIFFUS	ION COEFFICIEN	ITS	-
	VOLUME	SLOPE	SLOPE	RATE	PARTICL	E PARTIC	LE FILM		
/	, <u>ML</u>	1/SEC	1/SEC	ML/SEC	СМ	CM*CM/	SEC CM*CM/SEC		
8 1 1	0.200E 03	0.388E-01	0.388E-01	0.178E 00	0.350000E-01	0.285 E-04	0.214 2-04		
8 1 2	0.198E 03	0.316E-01	0.316E-01	0.265E 00	0.350000E-01	0.285E-04	0.214 E-04		
8 1 3	0.200E 03	0.228E-01	0.228E-01	0.497E 00	0.350000E-01	0.285E-04	0.214E-04		
8 1 4	0.195E 03	0.149E-01	0.149E-01	0.112E 01	0.350000E-01	0.285E-04	0.214 E-04		
8 1 5	0.189E 03	0.113E-01	0.113E-01	0.190E 01	0.350000E-01	0.285E-04	0.214 E-04		
CONCENTRAT	ION 0.113 N	TEMPERATURE	18.70 C P	ERCENTAGE [DEGRADATION 1	7.45 PARTI	CLE DIAMETER	0.7000E-01 CM	
8 2 6	0.181E 03	0.438E-01	0.438E-01	0.171E 00	0.350000E-01	0.281 E-04	0.214E-04		
8 2 7	0.176E 03	0.303E-01	0.303E-01	0.349E 00	0.350000E-01	0.2811E-04	0.214E-04		
8 2 8	0.175E 03	0.257E-01	0.257E-01	0.479E 00	0.350000E-01	0.281 E-04	0.214 E-04		
8 2 9	0.176E 03	0.160E-01	0.160E-01	0.117E 01	0.350000E-01	0.281 E-04	0.214 E-04		An and a set of a set
8 2 10	0.177E 03	0.126E-01	0.126E-01	0.184E 01	0.350000E-01	0.281E-04	0.2142-04		
CONCENTRAT	ION 0.113 N	TEMPERATURE	18.70 C P	ERCENTAGE I	DEGRADATION 2	23.69 PARTI	CLE DIAMETER	0.7000E-01 CM	

· ·

.

17 8

•

.

inge Store - new star net store - Store - Store -

.

od in alara

ماه معمد الولايات الي المرأت بالاستفادة المعمد ما مدارية 1999 - من المعالية المعالية المعالية المعالية المعالية المعالية المعالية المعالية ا 1999 - من المعالية ا

latter changes during ion exchange, so also does the selectivity coefficient.Inta binary ionic system, where the resin is initially circulated with one ion, three cases must be considered during exchange, depending upon the relation between the assumed constant value and the actual varying selectivity coefficient.

Case a) The selectivity coefficient varies as shown in Fig. 4.7a and the maximum value is taken as the assumed constant value.

Gilliland and Baddour's model (equation,4.8a) shows that the slope of the breakthrough curve at any time decreases with decreasing selectivity coefficient. The breakthrough curve is another name for the effluent concentration history curve. The difference between the observed curve (broken line), and the predicted curve (full line) based on a constant selectivity coefficient is shown in Fig. 4.7a. In the early stages of exchange, the slope of the observed curve is smaller than that of the predicted curve. Later the slopes become equal. In the present work, the selectivity coefficient has a 5% variation as shown in Fig. 4.8 and is independent of the fractional ionic conversion over the upper part of its range, so the assumption of a constant value equal to the maximum is useful.

Case b) The selectivity coefficient varies as in Fig.4.7b and the assumed constant value is taken to be the minimum value.

The effect on the breakthrough curve is as shown in

FIG 4.7

a)

EFFECT OF A VARIABLE SELECTIVITY COEFFICIENT ON THE BREAKTHROUGH CURVE PREDICTED BY A MODEL BASED ON A CONSTANT SELECTIVITY COEFFICIENT.

FIG 4.8

SELECTIVITY COEFFICIENT VERSUS IONIC COMPOSITION OF THE RESIN DEACIDITE FF-HYDROXIDE, 20-30 MESH, 7-9% CROSSLINKED. UNHEATED SAMPLE INITIALLY SATURATED

WITH CHIORIDE IONS.

CONCENTRATON 0.1 N, TEMPERATURE 20°C.

IONIC FRACTION OH ON RESIN

Fig. 4.7b. The observed curve (broken line) at first has a greater slope than is predicted, and later attains the predicted slope.

Case c) The selectivity coefficient varies as in Fig.4.7c and the assumed constant value is an average of the maximum and minimum values.

The difference between the predicted and observed breakthrough curves is shown in Fig. 4.7c. These two curves do not necessarily cross. The assumption should be used where the graph of selectivity coefficient against ionic fraction on the resin shows no regions of constant selectivity coefficient.

A sample experiment on the system used in this work is shown in Fig 4.8. It can be seen that the preference of the resin for the hydroxide ion increases with increasing saturation of the resin phase. This trend was assumed in all the cases of exchange treated in this work and the selectivity coefficient was assumed to have a constant value equal to the maximum value.

4.3.5. Effect of a varying diffusion coefficient on the breakthrough curve predicted assuming a constant value.

or greater than $1/k_L$. Because of the factor d_0^2 in the particle diffusion term, variation of the particle diffusion coefficient has greatest effect on the mid point slope for large particles.

Helfferich (ref.H9) states that the particle-deffusion coefficient for binary exchange, when ion A is diffusing into resin initially saturated with a faster moving ion B, decreases with increasing saturation of the resin by ion A. The effect of this change in diffusion coefficient on the slope of the breakthrough curve, calculated with a constant average value is shown in Fig. 4.9.

4.4 Results and discussion.

X

4.4.1. Diffusion coefficient in the particle phase.

a) Diffusion coefficients of the counter ion.

Experimental changes of the diffusion coefficient with external solution concentration , nature of the diffusing species, temperature, degree of resin crosslinking and percentage loss in strong base capacity caused by thermal degradation were examined.

i. Dependence on external solution concentration.

When the external solution concentration was increased an increase in the counter ion diffusion coefficients was observed (Fig. 4.10). The magnitude of the change was greater than that observed by other workers (ref.S6,R4,T3). It is possible that the method of calculation of particle diffusion coefficients in this work (type. Gilliland and Baddour's model) is responsible for the difference.

Helfferich attributes the change of particle diffusion

FIG 4.9

EFFECT OF A VARIABLE PARTICLE DIFFUSION COEFFICIENT ON THE BREAKTHROUGH CURVE PREDICTED BY A MODEL BASED ON A CONSTANT PARTICLE DIFFUSION COEFFICIENT. 16

TIME

FIG 4.10

PARTICLE DIFFUSION COEFFICIENTS VERSUS EXTERNAL SOLUTION CONCENTRATION. DEACIDITE FF-HYDROXIDE AND CHLORIDE 20-30 MESH, 7-9% CROSSLINKING, UNHEATED SAMPLE. TEMPERATURE 18.5°C.

coefficients with external solution concentration to the increased concentration of the co ion in the pores of the resin particles.

ii. Dependence on temperature.

Increased temerature was found to cause an increase in the diffusion coefficient (Fig 4.11 and 4.12). This is probably due to the weakening of specific and electrostatic retardation of the counter ions and reduction of solvation and hence ionic size. Activation energies are given in Table 4.17, and lie in the accepted range below 10 kcal/mole.

iii. Dependence on degree of resin crosslinking .

Diffusion coefficients were found to be higher in the less crosslinked sample (Fig 4.11 and 4.12). Boyd and Soldano (ref.B8) observed the same effect. Evidently the more open matrix structure in the less crosslinked resin increases the ease with which any species may diffuse through the particle.

.iv. Effect of loss of strong base capacity by thermal degradation.

The change in diffusion coefficients with thermal degradation is shown in Fig. 4.13 in terms of the loss in total capacity. It can be seen that a maximum value in the 7-9% crosslinked sample occurs when the total capacity is approximately 3.0 meq/g. for resin initially saturated with hydroxide ions, and at about 2.75 meq/g. for resins initially saturated with chloride ions. Similar maxima may occur at slightly higher values of total capacity in the 2-3% cross linked samples. These observations

FIG 4.11

PARTICLE DIFFUSION COEFFICIENTS VERSUS TEMPERATURE.

DEACIDITE FF-HYDROXIDE AND CHLORIDE. 20-30 MESH, 2-3% CROSSLINKING, UNHEATED SAMPLE.

EXTERNAL SOLUTION CONCENTRATION 0.1 N.

FIG 4.12

PARTICLE DIFFUSION COEFFICIENTS VERSUS

TEMPERATURE.

DEACIDITE FF-HYDROXIDE AND CHIORIDE

20-30 MESH, 7-9% CROSSLINKING,

UNHEATED SAMPLE.

EXTERNAL SOLUTION CONCENTRATION 0.1 N.

TABLE 4.17 ACTIVATION ENERGIES FOR DIFFUSION IN THE PARTICLE DEACIDITE FF . 20-30 MESH . UNDEGRADED SAMPLES . SOLUTION CONCENTRATION 0.1N.

RESIN INITIALLY WITH HYDROXIDE

2-3% 5.20 KCAL/MOLE

7-9% 4.01 KCALZMOLE CROSSL INKED

RESIN INITIALLY SATURATED WITH_CHLORIDE

7.78 KCAL/MOLE

5+90 KCAL/MOLE

are consistent with Creed (ref.Cl) who observed the same effect in self diffusion experiments with Deacidite FF and bromide ions from sodium bromide solution. Creed's maximum value occurred when approximately 2.3 meq/g strong base capacity (3.0 meq/g total capacity) remained on the resin samples. Creed found that degradation by heat and radiation produced approximately the same maximum.

Boyd and Soldano (ref. Bl2) varied the total capacity of sulphonated styrene type cation exchangers by partial thermal desulphonation and found maxima in the curves of self diffusion coefficient versus capacity for various ions. The positions of the maxima were found to be substantially independent of the degree of crosslinking in the resin used. However, as the authors point out, their procedure for varying the capacity is likely to effect the degree of crosslinking and swelling in the resin.

In thermal decomposition at 90° C, it has been observed that no significant change in water regain takes place over a 70 day heating period, and hence it is unlikely that changes in crosslinking and swelling take place to any appreciable extent.

Any changes in the diffusion coefficients within the particle must be caused only by changes in capacity. In addition Creed's work shows that when samples were degraded by radiation, a process which affects the degree of crosslinking, the maxima occurred at the same value of strong base capacity as in thermally degraded samples. The inference again is that capacity changes are the prime

reason for changes in diffusion coefficients during thermal degradation.

Boyd and Soldano (ref.Bl2) also observe that the maxima occurred at different values of total capacity for self diffusion of different ions, although the difference was small. In the present work the positions of the maxima were also found to vary, slightly dependent upon the ion initially saturating the resin. The magnitude of these differences is such as to throw doubt on their significance.

The reason for the existence of maxima can be explained as follows. Initially a decrease in capacity results in an increase in diffusion coefficients because of the decrease in electrostatic retardation of the diffusing ions. Eventually the decrease in capacity reaches a point where insufficient functional sites are available to react with the entering ions as quickly as they can diffuse inwards. The rate of exchange then becomes controlled by the rate of the chemical reaction of exchange.

If this complanation is correct, reaction rate models such as that of Gilliland and Baddour should fit experimental breakthrough curves with greater accuracy after the maximum in the diffusion coefficient curve has been passed. Fig.4.14 and 4,15 show a series of comparison plots. The improvement in agreement between observed and predicted curves is clearly shown. The velocity constant of a second order reaction becomes-valid after the maximum has been passed and is a better way 1 of describing the rate of exchange than the diffusion coefficients.

FIG 4.13

PARTICLE DIFFUSION COEFFICIENTS VERSUS DEGRADATION. DEACIDITE FF-HYDROXIDE AND CHLORIDE 20-30 MESH, UNHEATED SAMPLES EXTERNAL SOLUTION CONCENTRATION 0.1 N. TERMPERATURE 18.5°C.

DECOMPOSITION.

FIG 4.15

VOLUME OF SOLUTION FED TO COLUMN (ML)

290

COMPARISON OF PREDICTED AND EXPERIMENTAL CURVES AT VARYING PERCENTAGE THERMAL

Although no data is available for direct comparison of the present results, the difference between values of diffusion coefficients found in the present work for hydroxide and chloride ions and Creed's (ref.Cl) value for bromine or Boyd and Soldano's (ref.B9) values for bromine is consistent with expectation. The hydroxide ion mobility measured in aqueous solution at infinite dilution is considerably greater than that of the bromide ion, whereas chloride and bromide are comparable. Hence the hydroxide ion would be expected to diffuse more rapidly than bromide and chloride within the resin matrix. The rate of ion exchange has been found to be faster when the resin is initially saturated with the faster moving ion (ref. H8) and this is confirmed by the results of this work, although the difference in measured diffusion coefficients is less than one might expect from the mobilities of the ions in solution. This is not altogether surprising in view of the uncertainty as to the degree of ionic solvation within the resin phase and as to the effects of the tortuosity of the pores and specific interactions of different ionic species with the resin matrix.

4.4.2. Diffusion coefficient in the fluid phase.

Diffusion coefficients of electrolytes can be predicted very accurately at infinite dilution using equation 4.12.

$$D_{L}^{n} = 8.931 \times 10^{-10} T \left(\frac{1_{+}^{n} 1_{-}}{\Delta_{\infty}} \right) \left(\frac{z_{+} + z_{-}}{z_{+} z_{-}} \right) --- 4.12$$

due to Nernst (ref.Nl). At concentrations other than infinite dilution,Gordon (ref.G4) has derived an equation for the correction of the values at infinite dilution. Unfortunately fundamental data for this equation is scarce so its use is limited severely.

Equation 4.12 was used to calculate diffusion coefficients at infinite dilution for solutions of hydrochloric acid and sodium hydroxide at the temperatures used in this work.

In general the decrease in diffusion coefficient as the concentration is increased to 1.0 N from infinite dilution is less than 10% of the value at infinite dilution (ref.G5). Therefore an approximate predicted value can be obtained for pure solutions at concentrations other than infinite dilutions. However, in actual binary ion exchange systems the fluid phase is generally a mixture of four ionic species, and diffusion coefficients must therefore differ from those predicted for those of pure solutions. The diffusion of faster species will tend to be retarded by the presence of slower species although the difference is unlikely to be large since ionic mobilities are generally of the same order of magnitude.

In Fig. 4.16 experimental values of liquid phase diffusion coefficients at several concentrations are shown for hydrochlorideacid and sodium hydroxide.

In Fig.4.17 experimental variations in liquid phase diffusion coefficients with temperature and the nature of electrolyte are compared with the predicted value at FIG 4.16

DIFFUSION COEFFICIENTS OF IONS IN THE EXTERNAL SOLUTION (FILM DIFFUSION COEFFICIENTS) VERSUS CONCENTRATION OF THE EXTERNAL SOLUTION. TEMPERATURE 18.5°C.

FIG 4.17 DIFFUSION COEFFICIENTS OF IONS IN THE EXTERNAL SOLUTION (FILM DIFFUSION COEFFICIENTS) VERSUS TEMPERATURE.

EXTERNAL SOLUTION CONCENTRATION 0.1 N.

inifinite dilution based on the pure electrolyte entering the column. It can be seen that the experimental values lie reasonably close to the predicted value at infinite dilution and are generally within 10% of the latter. Activation energies for liquid diffusion were found to lie between 3 and 6 kcal/mole. as generally accepted.

4.4.3. Selectivity coefficients.

i, Dependence on temperature.

Generally ion exchange occurs with little evolution of heat and therefore only small changes in equilibrium would be expected as the temperature increases. Activation energies are usually smaller than 2 kcal/mole. (ref.Kl). In this work (Fig 4.18) a small change in selectivity coefficient was observed with activation energies of -2.14 and 2.26 kcal/mole. For resin initially in the hydroxide and chloride forms respectively. The effect was subbtantially independent of the degree of resin crosslinking. In the hydroxide chloride system, the unfavoured hydroxide ion becomes more favoured as temperature increases; the opposite is true of the chloride ion.

ii. The effect of degree of crosslinking and external solution concentration.

Fig. 4.18 shows experimental selectivity coefficients at various temperatures for Deacidite FF resinwith 2-3% and 7-9% crosslinking. Selectivity is found to decrease with increasing degree of crosslinking. The effect of varying the external solution concentration is shown in Table 4.20 for 7-9% crosslinked resin. An increase in dilution of the

EXTERNAL SOLUTION CONCENTRATION O.1 N.

0.8 MOLE FRACTION OF CHLORIDE ION ON THE RESIN.

179 TABLE 4.18 ACTIVATION ENERGIES FOR DIFFUSION IN THE EXTERNAL SOLUTION. SOLUTION CONCENTRATION 0.1N. 1. The set of a set of the set EXTERNAL ACTIVATION SOLUTION ENERGY And a first state of the 3.44 KCAL/MOLE HYDROCHLORIC ACID SODIUM 3.12 KCAL/MOLE HYDROXIDE -T÷.

TABLE 4.19 AFPARRENT ENTHALPY FOR SELECTIVITY DEACIDITE FF. 20-30 MESH. UNDEGRADED SAMPLES. SOLUTION CONCENTRATION C.IN 0.8 MOLE FRACTION CHLORIDE ON RESIN. RESIN INITIALLY RESIN INITIALLY SATURATED WITH SATURATED WITH HYDROXIDE CHLORIDE-2-3% 2.24 KCAL/MOLE -2.06 KCAL/MOLE CROSSLINKED 7-9% 2.14 KCAL/MOLE 2+26 KGALZMOLE CROSSLINKED

			261
TABLE_4•:	DEACIDITE FF 20-3	CENTS_VERSUS_CONCENTRA 0_MESH+ 7-9%CROSSLINK	ED•
	UNDEGRADED SAMPLES	•_TEMPERATURE_20°C•	
	SOLUTION	SELECTIVITY	
	CONCENTRATION	COEFFICIENT	
INITIALLY	0.10 N	0.163	
SATURATED	0.05 N	0.182	
HYDROXIDE			
RESIN			
INITIALLY	0.10 N	5.43	
WITH	0.01 N	15.63	
CHLORIDE			
		•	
and a second sec			

external solution results in an increase in selectivity. Helfferich (ref.H9) attributes both these observations to the increase in swelling pressure that occurs as the degree of crosslinking and dilution of the external solution are increased. The elastic properties of the resin matrix result in a preference of the ion exchangers for the counter ion of smaller equivalent solvated volume and this tendenty is pronounced when the matrix is highly strained (i.e. when the swelling pressure is high).

iii. The effect of thermal degradation.

Table 4.21 shows the change in selectivity coefficient with percentage loss in strong base capacity caused by thermal decomposition. The observed gain in selectivity is small presumably since the loss of functional groups affects both ions. The effect of ionic composition of the resin on the selectivity coefficient is shown in Fig.408. The observations are reasonably consistent with Gregor (ref.Gl) who investigated Dowex 1. Gregor gives a detailed theoretical explanation of the reasons for the changes.

4.5 Conclusions.

An increase in the operating temperature of a binary ion exchange system leads to an increase in the diffusion coefficients and selectivity changes such that the selectivity coefficient tends to unity.

Considering firstly, changes in diffusion coefficients, it can be seen that an increase in the diffusion coefficient results in a greater hid point slope

TABLE 4.21 SELECTIVITY COEFFICIENTS VERSUS DEGRADATION DEACIDITE FF. 20-30 MESH. . SOLUTION CONCENTRATION 0.1N. TEMPERATURE 20°C. 0.8 MOLE FRACTION CHLORIDE ON RESIN.

2-3%		INITIAL FORM	OF_RESIN_
	MEQ/G	_HYDROXIDE	CHLORIDE
	4.01	6.20	0.150
	3.86	6 • 50	0.146
	3.58	6.80	0.140
	3.31	6 • 94	0.138
	3.06	7.10	0.135
7-9%	4.01	5.43	0.163
CROSSLINKED	3.72	5.63	0.151
	3.06	5.61	10.131
	2.68	5.91	0.110
	2.06:	6.20 1	10.102

r P

<u>.)</u>

2

Δ.

183

at any given time, (equation 4.8b and 4.11) and a greater rate of exchange (equation 4.6). Both ions are likely to be affected to much the same extent, since activation energies for diffusion are similar. The result of these changes is an increasing sharpness of the breakthrough curve.

The favoured ion becomes less favoured as the selectivity coefficient tends to unity; the converse is true for the unfavoured ion. As a result the sharpness of breakthrough increases only for the unfavoured ion.

The nett effect of an increased operating temperature is therefore an increase in separation efficiency for the unfavoured ion, whereas the effect on the favoured ion depends on whether the diffusion of selectivity effect is stronger. In normal ion exchange the diffusion effect predominates, since activation engrgies for diffusion are between 3 and 5 times those for selectivity.

If separation performance alone is important, a good rule is to raise the temperature for unfavourable exchange operations. However, in most practical cases, resin lifetime and product contamination are important and the increase in separation performance must be Dalanced against decreased resin lifetime and product contamination caused by thermal damage to the resin.

In hydroxide resin operations thermal damage will probably restrict the maximum practicable operating temperature to less than 100°C. The effects of thermal degradation (i.e. and eventual decrease in the particle

Diffusion coefficient and an increase in selectivity) begin to offset the advantages gained in elevated temperature operation if operation is continued to high percentage degradation.

In salt forms, the maximum practical operating temperature is likely to be 200°C.

4.6 Nomenclature.

A	particle surface area per unit volume of	
	packed column	r-J
b	correction factor in equation 4.4	dimensionless
C	ionic concentration in external	
	solution	ML-3
\mathcal{D}	distribution parameter = $Q/C_0 \epsilon$	dimensionless
D _{ld}	axial dispersion coefficient	L ² T-1
\mathtt{D}_{L}	fluid diffusion coefficient	L ² T-1
$\mathbb{D}_{\mathbf{P}}$	particle diffusion coefficient	L ² T ⁻¹
d _O	particle diameter	L
G	term used in Gilliland and Baddour's	
	model = (-g(Kw,u/K))/g(w,u)	dimensionless
g(u	,w) =	
	$0.5(1+H(\sqrt{u}+\sqrt{w}))+H'(\sqrt{u}+\sqrt{w})/4(\sqrt{u}+\sqrt{w})$	dimensionless
H	error function	dimensionless
H'	derivative or error function	dimensionless
1 1	modified first order Bessel function	
	of the first kind	dimensionless
K	selectivity coefficient	dimensionless
k k	rate parameter = k _{kin} (K-1)/K liquid film mass transfer coefficient	M-1L3T-1
~L	per unit interfacial area	LT ⁻¹
kow	overall mass transfer coefficient	
	per unit interfacial area	LT-I
жЪ	per unit interfacial area	LT ⁻¹

		187
k _{kin}	second order reaction velocity	M-1L-3T-1
	constant	
l	ionic conductance of any ion	M ^{-l} LT
m	mass	И
n	term in series expansion	dimensionless
Ρ	constant	
Q	ultimate volumetric capacity of resin	ML ⁻³
	particles	
q	ionic concentration in resin	ML ⁻³
q	average ionic concentration in	ML-3
	resin	
R .	external solution flow rate	L ³ T-1
Rov	overall mass transfer resistance	T
^{R}L	film mass transfer resistance	T
Rp	particle mass transfer resistance	T
ī	particle radius	L
r	radius of surface of equal concentration	L
	in a spherical particle	
T	absolute temperature	Ð
t	real time	T
u	dimensionless parameter = $k_{kin} C_0 \Theta$	
v	superficial flow rate	LT ⁻¹
W	dimensionless parameter = $k_{kin} \overline{x}/Kv$	
x	term used in Fick's law equation $X=C_Ar$	ML ⁻²
x	linear distance from column	L
	entrance	
у	volume of effluent collected	L ³

•

		188
Z	term used in alternative model	dimensionless
	$= \left[(K-1)C_A/C_0 \right] / (1+(K-1)C_A/C_0)$	
z	ionic charge of an ion	dimensionless
z	equilibrium capacity of the packed	Μ
	column	
e.	void fraction in a packed bed	dimensionless
9	time measured from time of arrival	Т
	of solution front at any cross	
	section x cm. from the column	•
	entrance = $t - x/v$	
ϕ	denotes a functional relation	
σ	term in equations 4.8a and 4.8b	L-I
	= $(u/4y)2\sqrt{w/u} \exp(-u-w)I_1(2\sqrt{uw})/g(w,u)$	
P	fluid density	ML ⁻³
А	sum of ionic conductances of all	M-lT
	species in solution	
	$= \sum_{n=1}^{n} 1^{+} + \sum_{n=1}^{n} 1^{-}$	
A	fluid viscosity	ML ^{-l} T ^{-l}
/ Subs	scripts and superscripts	
A	property of ion A	

B property of ion B

o condition at column entrance

vo value at infinite dilution

* equilibrium value

+ cationic property

- anionic property

i condution at interface

ŗ,

References

Al. Anderson R.E., Ind. Eng. Chem., 3, (2), 85, (1964). A2. Arden T.V., private communication. A3. Robertson R.F.S., Anderson P.G., CRDC - 596 Out Reactor Tests of the HTP loop. Bl. Baumann E.W., J.Chem.Eng. Data., 5, 376, (1960). B2. Bonner O.D., Pruett R.R., J.Phys.Chem., 63,1417,(1959). B3. Beaton R.H., Furnes C.C., Ind.Eng.Chem., 33, 1500, (1941). B4. Bauman W.C., Eichorn J., J.Am.Chem.Soc., <u>69</u>, 2830, (1947). B5. Boyd G.E., et al. J.Am.Chem.Soc., <u>69</u>, 2818, (1947). B6. British patent, 694,778., (1953). B7. Boyd G.E., Adamson A.W., Myers L.S., J.Am.Chem.Soc., 69, 2836, (1947). B8. Boyd G.E., Soldano B.A., J.Am.Chem.Soc., <u>75</u>,6099, (1953). B9. Boyd G.E., et al. J.Phys.Chem., 58, 456, (1954). Breden C.R., ANL-6562, Vol. II, 55. B10. Bll. Boyd G.E., Adamson A.W., Myers L.S., J.Am.Chem.Soc. 69, 2849, (1948). Cl. Creed G.R.B., PhD Thesis., London University, (1965). C2. Collie N., Schryver S.B., J. Chem.Soc., <u>57</u>, 767, (1890). C3. Coates J.I., Gluekauf E., J.Chem.Soc., 1308, (1947). C4. Corrosion Data Survey., Am. Inst. Chem. Engrs., (1959). C5. Colburn A.P., Ind.Eng. Chem., <u>22</u>, 522, (1930). C6. Colburn A.P., Hougen O.A., Trans.Am.Inst.Chem.Engrs., 29, 174, (1933). C7. Carman P.C., Trans.Am.Inst.Chem.Engrs., 15,150, (1937).

26, 178, (1931). C9. Carslaw H.S., Jager J.C., Conduction of Heat in Solids, (Oxford, 1950). Dl. Dyer W.J., J. Fisheries. Research. Board.Canada., 7, 576. (1960). DeVault D., J.Am.Chem.Soc., 65,532, (1943). D2. D3. Demmitt T.F., HW-65478, High Flow Rate Operation of a Duplex Ion Exchange System. D4. Dobbs H.E., J.Chromatography., 2, 572, (1959). Fisher S., Kunin R., Anal.Chem., 27, 1191, (1955). Fl. F2. Freiling E.C., J.Am.Chem.Soc., <u>77</u>, 2067, (1955). F3. Furnas C.C., Trans.Am.Inst. Chem.Engrs., 24, 142,(1930). F4. Faires R.A., private communication. F5. Freeman D.H., J. Phys.Chem., 64, 1048, (1960). Gl. Gregor H.P., Belle J., Marcus R.A., J.Am. Chem. Soc., 77, 2713, (1959). G2. Gilliland E.R., Baddour R.F., Ind.Eng.Chem., 45,330, (1953). G3. Greer A.H., Mindler A.B., Termini J.P., Ind.Eng.Chem., <u>60, 166, (1958).</u> G4. Gordon J.B., J.Phys.Chem., 5.522, (1937). G5. Gordon J.B., Glasstone S., Thermodynamics for Chemists, (Van Nostrand, 1947). Hl. Streat M., PhD Thesis., London University, (1961). Helfferich F., Ion Exchange, p^P 167, (McGraw Hill, 1962). H2. ibid. p^{P} 47-61. H3.

Chilton T.H., Colburn A.P., Trans.Am.Inst.Chem.Engrs..

C8.

H4.	Hiester N.K., Vermeulen T., Chem.Eng.Prog., 48, 505, (1952).
H5.	Hiester N.K., et al. A.I.Ch.E.J., 2, 404, (1956).
Н6.	Hering B., Bliss H., A.I.Ch.E.J., <u>9</u> , 495, (1963).
H7.	Hanhart W., Ingold C.K., J.Chem.Soc., 997, (1927).
H8.	Helfferich F., Ion Exchange, p^P 318, (McGraw Hill, 1962).
Н9.	ibid, p ^P 159.
Jl.	Juracka F., Chem. Prumysl., <u>12</u> , 158, (1962).
J2.	Juracka F., Stamberg J., Zh.Prik.Khim., 35, 10, 2295 (1962).
J3.	Juracks F., Kaspar K., Chem.Prumysl., <u>10</u> , 554, (1960).
Kl.	Kressman T.R.E., Kitchener J.A., J.Chem.Soc.,1190,(1949).
К2.	Kraus K.A., Raridon R.J., J.Phys.Chem., <u>63</u> ,1901, (1959).
К3.	Kunin R., Ind. Eng.Chem., <u>3</u> , 404, (1964).
Ml.	Marinsky J.A., Potter W.D., AECU-3348 (1954), A Stufy
	of Granular Ion Exchange.
M2.	Mayer S.W., Tompkins E.R., J.Am. Chem.Soc., <u>69</u> , 2866,(1947)
Μ3.	Moller F., Methoden der Organischen Chemie, p ^P 848,
	(Houben-Weyl, 1957).
M4.	Miller A.I., PhD Thesis, London University, (1966).
Nl.	Nernst W. Z.Physik.Chem., <u>47</u> , 52, (1904).
N2.	Nernst W., Z.Physik.Chem., 2, 613, (1888).
Pl.	Pashkov A.B., Plastickeskie. Massy., <u>5</u> , 20.
P2.	Pepper K.W., Reichenberg D., Hale D.K., J. Chem. Soc.
	3129, (1952.
P3.	Polyanskii N.G. Shaburov M.A., Zh.Prik.Khim.,
	<u>38</u> ,115, (1965).
Q1.:	Q.V.F. Glass for Industry.

Rl.	Ryan J.L., Wheelwright E.J., Geneva, 1958, Vol 17,p ^P 137.
R2.	Rosen J.B., J.Chem.Phys., 20, 387, (1952).
R3.	Reichenberg D., J.Am.Chem.Soc., <u>75</u> , 589, (1953).
R4.	Richman D., Thomas H.C., J.Phys.Chem., <u>60</u> , 237,(1956).
Sl.	Sivetz P.M., Ind. Eng. Chem., <u>47</u> ,1020, (1955).
S2.	Said A.S., A.I.Ch.E.J., <u>2</u> , 447, (1956).
	ibid, <u>5</u> , 223, (1959).
S3.	Sargent R., Rieman W., J. Phys. Chem., <u>60</u> , 1370, (1956).
S4.	Selke W.A., Bliss H., Chem.Eng.Prog., Symposium Series,
	46,10, 509, (1950).
S5.	Spalding D.B., Internat.J.Heat. and Mass.Transfer.,
	<u>2</u> , 283, (1951).
S6.	Schlögl R., Z.Elektrochem., <u>57</u> , 195, (1953).
Tl.	Thomas H.C., J.Am.Chem.Soc., <u>66</u> , 1664, (1944).
Ψ2.	Tien C., Thodos G., A.I.Ch.E.J., <u>5</u> , 373, (1959).
тз.	Tetenbaum M., Gregor H.P., J.Phys.Chem., <u>58</u> , 1156,(1954))
Vl.	Vermeulen T., in Advances in Chemical Engineering Vol II,
	(Academic Press,1958).
Wl.	Wheaton R.M., Bauman W.C., Ind.Eng.Chem., <u>40</u> ,1350(1948).
₩2.	Weiss J., J.Chem.Soc. 297,(1943).
W3.	Wilson J.N., J.Em.Chem.Soc., <u>62</u> , 1538, (1940).
W4.	Wheaton R.M., Bauman W.C., Ind.Eng.Chem., <u>43</u> , 1088,(1951).
W5.	Wheaton R.M., Bauman W.C., Ind. Eng. Chem., <u>45</u> , 228, (1953).
W6.	Wheaton R.M., Chem. Eng. Prog., Symposium Series,
	14,43,(1954).
W7.	Wilke T., Hougen O.A., Trans.Am.Inst.Chem.Engrs.,

41, 445, (1945).

•

193

· ,

Appendix 1

CONVERSION OF RESIN SAMPLES TO DESIRED IONIC FORM.

99% Conversion to a given ionic form was achieved by carrying out the appropriate cycle between chloride and the desired form four times in a fixed bed before final conversion. A sample from each batch was removed and checked for 99% conversion.

a) Hydroxide form.

A two stage process was used because of the unfaveurable equilibrium (ref.W6). A solution of 0.1M sodium carbonate was passed through the bed followed by a 3M solution of sodium hydroxide.

b) Chloride form.

The raw resin as supplied by the manufacturer was predominantly in the chloride form. After pretreatment as described in chapter 2 the resin was washed with 4% hydrochloric acid and washed free of acid with methanol.

c) Nitrate form.

Chloride form resin was treated with 4% nitric acid and washed with methanol . Percentage conversion was checked by eluting a sample with 4% sodium sulphate and estimating the nitrate in the eluate by standard methods.

d) Borate, Thiocyanate and Sulphate form.

These were prepared by treating chloride form resin with 4% solutions of sodium tetraborate, ammonium thiocyanate and sulphuric acid respectively. Percentage conversion was determined by eluting samples with 4% sodium nitrate in the first two cases and 3M sodium hydroxide in the third case. The respective eluates were analysed by standard method.

Appendix 2

DEVELOPMENT OF THE CAPACITY ANALYSIS SCHEME.

The scope of the small scale studies described in Chapter 2 involved the analysis of a large number of samples and would have been very time consuming if carried out by normal volumetric and colourimetric techniques. each requiring individual attention. In addition Stamberg Juracka (ref.Jl) suggested that the standard and Fisher Kunin method of capacity analysis was inaccurate. Their conclusions were confirmed by experiment here and the results are given in Table Al. Stamberg claims that whereas the ammonium hydroxide leach is popularly assumed to remove only those ions attached to the weak base groups, in fact some of those attached to the strong base groups are also exchanged and are converted from chloride to hydroxide form during analysis. These hydroxide groups are then released in the subsequent sulphate leach and can be measured by acid base titration. Hence the true weak and strong base capacity can be calculated.

The technique used in this work was Stamberg's, further modified to include the use of chlorine 36 tracer to measure chloride concentration rather than the conventional

TABLE A1.

Comparison of the new method with the Fisher Kunin method for measurement of capacity.

Analytical method used	Salt Splitting Capacity	Weak Base <u>Capacity</u>	Strong Base Capacity	Total Capacity
Fisher Kunin	2.92	1.02	2.22	3.24
n de la construcción de la constru Recentra de la construcción de la c	2.90	0.93	2.31	3.24
ан алаан алаан Алаан алаан алаа	2,92	1.03	2,21	3.24
" tracer used	2,92	1.05	2.18	3.23
Modified method	2.92	0.31	2.92	3.23
11	2.94	0.30	2.95	3.20
2010 - 1997 -	2.92	0.25	2.91	3.20
" tracer used	2,92	0.33	2.91	3.24

All capacities are given in milliequivalents per gram of dry resin. The tests were carried out on Amberlite IRA 400 in the hydroxide form. The makers quote the resin as having a total capacity of 3.30 meq/dry g.

Volhard titration, leaving the operator free to perform the relevant colorimetric analyses. In this way the time necessary for a complete analysis of one sample was almost halved.

A survey of counters was carried out to find the most efficient and easiest to use for automatic counting of chlorine 36. The isotope is a beta emmitter of energy 0.708 Mev. A special liquid counter (ref. D4,H4) using a GM4 tube was built and this was compared with a standard liquid Geiger Huller counter using a M6H tube and also with a solid source technique using a GM4 tube. It was found that the solid source technique was the most efficient but difficulty was experienced in making reproducible sources. Of the two liquid counters the special counter was the most efficient but least convenient to use, whereas the liquid M6H counter was much more easily filled and cleaned. The latter was therefore used.

One of the important disadvantages of the Fisher Kunin capacity analysis technique was the poor agreement between strong base and salt splitting capacity. This has been eliminated by using the new method. It can be seen (Table Al) that the salt splitting capacity measurement agrees in all cases as expected since no difference exists in the two schemes for this measurement . However, the value of strong base capacity should agree with the value of the salt splitting capacity and this is only the case where the new method is used. The values of total capacity are in

agreement in all cases. The use of the tracer technique gives the same results as when the chloride ion concentration is measured by Volhard titration.

The weak base capacity as given by the Fisher Kunin method is three times the correct value and the strong base capacity values are proportionally smaller.

Appendix 3

AN ALTERNATIVE MODEL OF ION EXCHANGE.

a) Model formulation.

For the purposes of this model ion exchange resin beads were assumed to be quasi homogeneous, rather than to consist of a solid frame work with pore spaces as in reality. The effective diffusion coefficient calculated from experimental measurements using such a model is a macroscopic average for a large number of ions in pores of widely different sizes, shapes and directions in the solid matrix at greater and smaller distances from the pore surfaces. As such it expresses the average ability of a species to diffuse in any direction. A model based on such a diffusion coefficient is consistent only if all possible diffusion processes can indeed be described by a single diffusion coefficient. These requirements are met by most ion exchangers since the beads are isotropic and diffusion within them is not limited by slower non diffusional processes. In addition the application of diffusional flux equations based on a quasi homogeneous structure has proved quite successful in the common styrene type polymer ion exchange resin.

Ions originally in the solution must diffuse through the liquid "film" to reach the particle surface. Diffusion through the film depends upon the solution flow rate, which affects the film thickness, while diffusion through the particle remains unaltered. In this alternative approach the liquid film is replaced by an equivalent particle film. and the actual particle and the particle film are compounded into a hypothetical particle. This removes the difficulties normally encountered at the particle solution interface. since the concentration gradient is assumed to be continuous across the hypothetical particle, and to follow Fick's law equations. The concentration profiles in the real case and that assumed in the model are shown in FiguAl. Now, Since both the liquid and equivalent particle film are very thin, the nature of the gradient assumed within them is not of great importance. In fact the Fick's law gradient is almost linear at the surface of the hypothetical particle. The thickness of the assumed particle film and hence the hypothetical particle radius vary with the solution flow rate.

ACTUAL SITUATION Fig. A.L. MODEL SITUATION

b) Mathematical developments.

The development of this alternative model of ion exchange was attempted but was not completed within the available time. The uncompleted work is described below, because the final solution of the problem is solely one of mathematical manipulation.

The model assumes equimolar counter diffusion within the particle according to Fick's law. This assumption ignores some of the more subtle effects associated with electric coupling between ions, but is otherwise quite satisfactory and has been successful in much past work. No specific interactions (ion-ion, ion-solvent or ion-matrix) are taken into account. The co ions are assumed to have no direct effect on diffusion within the particle because of Donnan exclusion. The diffusion coefficients are assumed to be independent of position within the bed. Variations in solution concentration and velocity over any cross section of the bed are assumed negligible. Concentration within the bed depends on one space variable x, and one time variable t. i. Conservation of mass.

A mass balance over any cross section in the column;-

$$-\epsilon D_{1d} \frac{\partial^{2} C_{A}}{\partial x^{2}} + \epsilon \frac{\partial^{2} C_{A}}{\partial t} + \frac{\partial^{2} (1-\epsilon)}{4\pi r_{o}^{3}} \frac{\partial^{M} A}{\partial t} + v \epsilon \frac{\partial^{2} C_{A}}{\partial x} = 0 \quad --A.1$$

neglecting longitudinal dispersion i.e.

 $-cD_{ld} \quad \frac{\partial^2 C_A}{\partial x^2} << v_{\varepsilon} \frac{\partial^2 C_A}{\partial x}$

and introducing a new variable $\partial = t - x/v$ where θ is the

time at which the saturating solution reaches any cross section distant x from the column entrance, equation A.1 can be simplified as follows:-

By a fundamental property of partial differentials:-

$$-v\left(\frac{\partial C_{A}}{\partial x}\right)_{t} = \left(\frac{\partial C_{A}}{\partial \Theta}\right)_{x} - v\left(\frac{\partial C_{A}}{\partial x}\right)_{\theta}$$
$$= \left(\frac{\partial C_{A}}{\partial t}\right)_{x} - v\left(\frac{\partial C_{A}}{\partial x}\right)_{\theta}$$
$$= \left(\frac{\partial C_{A}}{\partial t}\right)_{x} - \frac{v\left(\frac{\partial C_{A}}{\partial x}\right)}{\Phi x}$$
$$= \left(\frac{\partial C_{A}}{\partial x}\right) = -\frac{-3(1-\varepsilon)}{4\pi r_{0}^{-3}}\left(\frac{\partial M_{A}}{\partial t}\right)_{x}$$

and hence

ii. The rate of diffusion into a sphere.

The equasion of diffusion in a homogeneous spherical particle, where the surfaces of equal concentration are concentric spheres is:-

$$\frac{\partial C_{A}}{\partial t} = D_{P} \left(\frac{\partial^{2} C_{A}}{\partial r^{2}} - \frac{2}{r} \frac{\partial^{2} C_{A}}{\partial r} \right) ---A.3$$

substituting $X=C_A r$ this reduces to:-

$$\frac{\partial \mathbf{x}}{\partial \mathbf{t}} = D_{\mathbf{p}} \frac{\partial^2 \mathbf{x}}{\partial \mathbf{r}^2}$$
 ---A.4a

If the particle initially saturated with ion B is situated within a column of similar ion exchanging particles, through which a solution of ions A has been passing since zero time, then the concentration of ion A at the surface of the spherical particle will be a function of time and position in the column.

The diffusion equation must be solved with the following boundary condition:-

----A.2

X = 0	:	r	=	0;	A.4b
$X = \phi(t,x)$;	r	=	r _o ;	A.4c
X = 0	;	t	=	0;	A.4d

If the parameter $\hat{\theta} = t - x/v$ is used, the boundary condition become :-

X = 0	; $r = 0$;	A.5b
$X = \phi(\Theta)$; $r = r_0$;	A.5c
X = 0	; 🏟 = 0 ;	A.5d

and equation A.4a becomes :-

$$\frac{\partial x}{\partial \theta} = D_p \frac{\partial^2 x}{\partial r^2}$$
 ---A.5a

 Θ represents time measured from the instant when the solution front reaches a given cross section in the column distant x units from the entrance. At that cross section diffusion begins when $\hat{P} = 0$.

The solution of equation A.5a is given by Carslaw and Jager (ref.C.9) as :-

$$q_{A} = \frac{2}{rr_{on}} \sum_{n=1}^{\infty} \exp(-D_{p}n^{2}\pi^{2}\theta/r_{o}^{2}) \sin(n\pi r/r_{o}) \times -n$$

$$\int_{0}^{\theta} \int_{-n\pi D_{p}(-1)^{n}}^{\theta} \exp(D_{p}n^{2}\pi^{2}(\lambda)/r_{o}^{2}) \phi(\lambda) d\lambda ---A.6$$
The rate of diffusion across the surface of the particle may be obtained by differentiating A.6 with respect to

r, substituting for $r=r_0$ and combining the result with equation A.7 to give A.8.

$$\frac{\partial M_{A}}{\partial t} = -D_{P} 4\pi r_{o}^{2} \quad \frac{\partial C_{A}}{\partial r} \qquad ---A.7$$

At the particle surface equilibrium between particle and fluid phases is attained :-

hence $\frac{q_A^*}{Q} = \frac{KC_A^*}{C_O}$ (1+(K-1) C_A^* /C_O) ----A.9 combining A.8 and A.9 with the continuity equation for the column A.2 gives the partial differential equation for column operation A.10:- $\frac{\partial C_A}{\partial + 1} = C_2 \sum_{n=1}^{\infty} n^2 \exp(-D_p n \pi^2 \varphi/r_O^2) \times$

$$\int_{0}^{0} \exp(D_{p}n^{2}\pi^{2} \frac{2}{2} \frac{1}{r_{o}^{2}}) (KC_{A}/(1+(K-1)C_{A})) \qquad ---A.10$$

where C_{2} is a constant.

The solution to the problem of diffusion into spheres in a deep packed column is given by the integration of A.10 Equation A.10 may only be integrated by trial and error so lo as the integral signe on the RHS remains. Using the substitutions $Y = (K-1)C_A/C_o$ and Z = Y/(Y+1) are used to change A.10 to A.11:-

$$\frac{\partial Z}{\partial t} \frac{1}{(1-z)^2} = \Pr_{3n=1} \sum_{n=1}^{\infty} n^2 \exp(-D_p n^2 \pi^2 \theta/r_0^2)$$

$$\int_{0}^{\theta} \exp(D_p n^2 \pi^2 \theta/r_0^2) Z \quad ---A.11$$

Now the LHS may be expanded by the binomial theorem to give the series $\sum_{n=1}^{\infty} nZ^{n-1}$. Subsequently the corresponding terms on each side of the equation A.ll may be equated. Generally this gives A.l2. $nZ^{n-1} \frac{1}{n^2} \exp(D_p n^{2} \frac{2}{r} \frac{C}{r_0^2}) = P_3 \int_{0}^{\infty} \exp(D_p n^2 \pi^2 \frac{\theta}{r_0^2}) Z \frac{\partial e_{---A,12}}{\partial e_{---A,12}}$ Differentiation of both sides yields A.13 which can be integrated by the Laplace Transform method in principle. $\frac{Z^{n-1}}{n} \frac{\partial^2 Z}{\partial x \partial e} + \frac{(n-1)}{n} Z^{n-2} \frac{\partial Z}{\partial x} \frac{\partial Z}{\partial e} + \frac{nZ^{n-1}}{e_{x}^2} \frac{\partial Z}{\partial x} = \tilde{G}Z \qquad ----A.13$ where $\bar{G} = \frac{8\pi^3 D_p^2 C_0 QK}{(K-1)r_0}$

206

Insufficient time was available for the final solution of this problem since it was only a secondary aim of this work. However, at this stage the last step should merely be a matter of time.

Appendix 4

COMPUTER PROGRAMMES.

a) A programme to calculate diffusion coefficients from experimental breakthrough curves using Gilliland and Baddour's model. This comprises the following:-

i. The main programme, which reads in date, accomplishes part of the calculation and prints the results.

ii. A subroutine subprogramme SBGCAL which achieves the contpolled trial and error calculations described in Section 4.3.3.

iii. A subroutine subprogramme FMTBGC which calculates the film mass transfer coefficient from Wilke and Hougen's correlation (ref.W7).

iv. A subroutine subprogramme DETECT which is used in minimum detection in conjunction with SEGCAL, in the controlled trial and error calculations.

Variable names used in the main programme. Common variables.

B correction factor in equation 4.4.
 CAP ultimate volumetric resin capacity.
 CFINIS external solution concentration at column entrance.

208

CMDIA column diameter.

CMHT column height.

CMPSLP calculated mid point slope.

COAREA column cross sectional area.

COLCAP column volumetric capacity.

DG percent degradation of strong base capacity.

DENS external solution density.

DLIQ external solution diffusion coefficient.

DPAR particle diffusion coefficient.

EDIA particle diameter.

EQCON selectivity coefficient.

FIRATE external solution flow rate.

IDIR control variable in trial and error processes.

KBAR \overline{k} in nomenclature.

KF film mass transfer coefficient.

KOV overall mass transfer coefficient.

KPAR particle mass transfer coefficient.

OMPSLP observe mid point slope.

RF film mass transfer resistance.

RFA assumed film mass transfer resistance.

RN Reynolds number.

ROV overall mass transfer resistance.

SC Schmidt number.

SPFLRT specific flow rate.

TEMP temperature .

VALA constant term in Wilke and Hougen's equation.

VISC external solution viscosity.

VMID volume of effluent collected at mid point.

VOID voidage in resin column.

Dimensioned variables.

HEAD headings.

NGROUP group number.

NSERIS series number.

Undimensioned variables.

I subscript.

IF loop finishing value.

IS loop starting value.

K subscript.

DIFFB

KFACT parameter of KBAR.

PRAD particle radius.

X initial assumed value in trial and error process.

Variable names used in subroutine SBGCAL. Undimensioned variables.

n+l th difference.

A	assumed value in trial and error process.
BA	nth assumed value of parameter.
BB	n+1 th assumed value.
BC	n+2 th assumed value.
D	distribution factor.
DIFF	general difference between assumed and actual
	value.
DIFFA	nth difference.

DIFFC n+2 th difference.

EQA assumed value of parameter. in nth traverse of minimum.

EQB assumed value in n+1 th traverse.

EQC assumed value in n+2 th traverse.

IZ control value.

JDISC control value.

KDISC control value.

KFACT meaning as in main programme.

KTT initial assumed value of parameter in trial and error process.

KZ control value.

NDISC control value.

NDIV control value.

NQ control value in minimum defection

NSX control value in minimum detection.

Variable names used in subroutine FMTBGC.

Undimensioned variables.

EXPA Reynolds number exponent.

EXPB Schmidt number exponent.

KFACT value of film mass transfer coefficient.

Variable names used in subroutine DETECT.

Undimensioned variables.

A first value.

B second value.

C third value.

NA controlled value transferred to subroutine.

NS control value transferred to calling programme. The difference between the observed and assumed value of the perameter to be determined by trial and error must be calculated for three consecutive cases to allow the detection of minima and maximal The three difference values are stored in A,B and C. The absolute values of A, B and C must be used since the sign of the difference changes when a minimum or maximum is passed.

b) A programme for the prediction of break through curves from diffusion coefficients by Gilliland and Baddour's model. This comprises the following:-

i. The main programme BGPDN which reads in data calculates
overall mass transfer coefficients and prints results .
ii. A subroutine subprogramme FMTBGP which calculates film
mass transfer coefficients from Wilke and Hougen's equation .
iii. A subroutine subprogramme FLCVBG which calculates
breakthrough curves from data supplied by the main programme.

N.B. This programme is set for a void fraction of 0.37 and a column diameter of 1.5 cm.

Variable names used in the main programme. These are only defined where they are different or additional to those in the previous programme.

Common variables.

RELCN relative effluent concentration C_A/C_o . VOL volume of solution fed to column. Undimentioned variables.

RP particle mass transfer resistance.

Variable names used in subroutine FLCVBG. Fimensioned variables.

GEE value of g(x,y) as in nomenclature.

UA parameter x in g(x,y).

V parameter y in g(x,y).

BIGGEE value of G as in nomenclature.

c) A programme to calculate the pressure drop across a packed column of particles for any flow rate, particle size, voidage and fluid using the Carman Cozeny correlation. This comprises the following:-

i. The main programme PRESDP , which reads in data calculates the ordinate values from the input data, and calculates the pressure drop per unit bed length from the Carman Cozeny ordinate value supplied by the function subprogramme FRICF and prints results.

ii. A function subprogramme FRICF which determines the Carman Cozeny ordinate for any supplied **Abcissa** value

Variable names used in the main programme. Common variables.

FCarman Cozeny abcissa value.RNCarman Cozeny ordinate value.Dimensioned variables.

ROELIQ Eiguid Consity.

VISC liquid viscosity.

Undimensioned variables.

XCarman Cozeny abcissa value. in main programme.REYNOReynolds number.
DELP pressure drop.

Variable names used in the subprogramme FRICF. Undimensioned variables.

FRICFsubprogramme returned value.Bsubprogramme argument.FRFinterpolated value.Isubscript.

```
IBFTC BGCAL
     REAL KF, KPAR,
                       KOV, KBAR, KFACT
     COMMON/COMA/EQCON(12), CFINIS(12), DPAR(12)
    1, DENS(12), VISC(12), DLIQ(12), DEG(12), TEMP(12)
     COMMON/COMB/VMID(60), CMHT(60), ELRATE(60), SPELRT(60),
                                          RN(60), SC(60), VALA(60)
    1
                        KF(60),
     COMMON/COMC/ CMDIA, VOID, COAREA, IDIR, PI, EDIA
     COMMON/COMD/OMPSLP(60), CMPSLP(60), COLCAP(60)
     COMMON/COMX/KPAR(12),KOV(60),KBAR(60),
     COMMON/COMY/RF(60),ROV(60),RFA(60)
     COMMON/COMV/CAP(12),B(12)
     DIMENSION NSERIS(60), NGROUP(60), HEAD(40)
     READ(5,4) (HEAD(1), I=1,30)
     FORMAT(6A6)
   4
     VOID=0.37
     CMDIA=1.5
     PI=3.141952
     COAREA=CMDIA**2*PI/4.
     DO 21 K=1,1
                                             , TEMP(K), DEG(K), DENS(K), VISC
                EQCON(K), CFINIS(K), PRAD
     READ(5,2)
    1(K), CAP(K), B(K)
   2 FORMAT(7E10.4,2F4.2)
     EDIA=PRAD*2.
     SQDIA=PRAD**2
     IS = (K - 1) * 5 + 1
     IF = IS + 4
     DO 21 I=IS, IF
     READ(5,1) FLRATE(I); CMHT(I), VMID(I), OMPSLP(I)
     FORMAT(4E10.4)
   1
     COLCAP(I)=CMHT(I)*COAREA*(1.-VOID)*CAP(K)
     SPFLRT(I)=FLRATE(I)/(COAREA*VOID)
     NGROUP(I)=K
     NSERIS(I)=1
     IDIR=1
     X=0.1
  21 CALL SBGCAL(X,K,I,IS,IF)
     DO 22 K=1,1
     IS = (K-1) * 5 + 1
     IF=IS+4
     IDIR=2
     X=ROV(IF)*B(K)/10.
     CALL SBGCAL (X,K,I,IS,IF)
     DO 23 I=IS, IF
  23 CALL FMTBGC (I,K)
     DPAR(K)=KPAR(K)*SQDIA/(4.*PI*PI)
  22
     DO 526 K=1,6
     IS = (K-1) * 5 + 1
     IF = IS + 4
     IF(K.EQ.1) WRITE(6,10) (HEAD(I), I=1,6) (HEAD(I), I=13,18)
  10 FORMAT(1H1,5X,6A6/6X,6A6)
     IF(K.EQ.4) WRITE(6,10) (HEAD(I), I=1,6) (HEAD(I), I=19,24)
     IF(K.EQ.1) WRITE(6,916)
     IF(K.EQ.4) WRITE(6,916)
```

E.916 FORMAT(1H0,27X,18HDREAKTHROUGH CURVE,9X,8HSPECIFIC,2X, 16HRADIUS, 5X, 22HDIFFUSION COEFFICIENTS/21X, 8HOBSERVED, 3X, 8HOBSERVED 2,3X,10HCALCULATED,2X,8HSOLUTION,2X, 8X,2HOF/1X,6HSERIES,2X,5H 3GROUP, 2X, 3HRUN, 3(2X, 9HMID POINT), 5X, 4HFLOW, 4X, 6X.6 4HACTUAL, 8X, 2HIN, 9X, 2HIN/22X, 6HVOLUME, 6X, 5HSLOPE, 6X, 5HSLOPE, 7X, 4HRA 5TE+4X+ 5X,8HPARTICLE,4X,8HPARTICLE,5X,4HFILM//23X,3HML,8X 6,5H1/SEC.6X,5H1/SEC.6X,6HME/SEC.3X, BARANA SHOM,7X,9HCM*CM/SEC.2X 7,9HCM*CM/SEC) DO 522 I=IS, IF 522 WRITE (6, T2) MSERIS(IT, NGROUP(17, 1, VMID(1), UMPSLP(1), CMPSLP(1), 1SPFLRT(I), PRAD, State DPAR(K), DLIQ(K) 12 FORMAT(1H0,14,17,15,E13.3,3E11.3, E13.6.2E11.3) 526 WRITE(6,13) CFINIS(K), TEMP(K), DEG(K) , EDIA 13 FORMAT(1H0, 6X, 13HCONCENTRATION, F7, 3, 2H N, 13H TEMPERATURE, F6, 2, 12H C,24H PERCENTAGE DEGRADATION, E7.2, 19H PARTICLE DIAMETER, E13.4 2.3H CM) D0 527 K=1,6 IS = (K-1) * 5 + 1IF = IS + 4IF(K.EQ.1) WRITE(6,10) (HEAD(I), I=1,6) (HEAD(I), I=13,18) IF(K.EQ.4) WRITE(6,10) (HEAD(T), I=1,6) (HEAD(I), I=19,24) IF(K.EQ.1) WRITE(6,911) IF(K.EQ.4) WRITE(6,911) 911 FORMAT(1H0,5X,048HSERIES GROUP RUN OVERALL FILM ,63H0 1 REYNOLDS SCHMIDT ILUTION PARTICLE 16X, 1108HN0 NO M.T. NO S FLOW M.T 1 NUMBER NUMBER λ÷. /18X,61H 1COEFE: COEFF RATE COEFF /29X,41HSEC-1 SEC-1) 1 SEC-1 ML/SEC DO 523 I=IS, IF FLRATE(I), CMHT(I), VMID(I), OMPSLP(I) WRITE(6,6) 6 FORMAT(1HP,4E,10.4) E CLAR STREET 523 WRITE(6,913) NSERIS(I), NGROUP(I), I, KOV(I), KF(I), FLRATE(I), IKPAR(K), RN(I), SC(I) 913 FORMAT(1H0, 17,19,18,E14.3,5E12.3) 527 WRITE(6,13) CFINIS(K), TEMP(K), DEG(K) +EDIA

```
D0 \ 30/1 \ K=1,6
     IF(KXX.EQ.5.AND.K.EQ.3)
                                GO TO 3071
     IF(KXX.EQ.5.AND.K.EQ.6)
                                GO TO 3071
     IF(KXX.EQ.8.AND.K.EQ.3) GOTO 3071
                                GO TO 3071
     IF(KXX.EQ.8.AND.K.EQ.6)
     IS = (K-1) * 5 + 1
     IF = IS + 4
     IE(K.EQ.1) WRITE(6,517) (HEAD(I),I=25,30)
IE(K.EQ.4) WRITE(6,517) (HEAD(I),I=25,30)
2517 FORMAT(1H1,5X,6A6)
     IF(K.EQ.1)
                 WRITE(6,519)
IE(K.EQ.4) WRITE(6,519)
 519 FORMAT(1HO, 1X, 78HSERIES GROUP RUN FLOW
                                                      CONCN
                                                                TEMP DEN
    ISITY VISCOSITY DEGRON COL, 23HUMN CAPACITY COLUMN/22X, 4HRAT
    2E,51X,2HHT,18X,8HCAPACITY/22X,6HML/SEC,5X,67HN
                                                              С
                                                                    GM/CC
    3
        POISE S CM MEQ/ML MEQ//)
3071 WRITE(6,3061) (NSERIS(I), NGROUP(I), I, FLRATE(I), CFINIS(K), TEMP(K), D
    IENS(K),VISC(K),DEG(K),CMHT(I),CAP(K),COLCAP(I), I=IS,IF)
3061 FORMAT(1H0,1X,I1,I8,I7,2X,2E10.2,F6.1,2E10.2,F8.1,3E10.2)
525 CONTINUE
     STOP
     END
```

		217
and a second	SUBRUUTINE SBOLAL (X,K,1,1S,1F)	· · · · · · · · · · · · · · · · · · ·
	$\frac{\text{REAL} \text{REAK} $	
	$\frac{1}{1} \frac{1}{1} \frac{1}$	
	COMMON/COMB/VMIDIAO) = CMHI(AO) = ELRATE(AO) = SPELRI(AO).	1. C. L. C. C. M.
	$KF(\mathbf{A}\mathbf{O}) = KF(\mathbf{A}\mathbf{O}) + KF(\mathbf{A}$	
	COMMON/COMC/ CMDIA.VOID.COAREA.IDIR.PI.EDIA	
(1) A strangen and an experimental sector of the sector	COMMON/COMD/OMPSLP(60), CMPSLP(60), COLCAP(60)	
······	COMMON/COMX/KPAR(12),KOV(60),KBAR(60),	1. The second s Second second sec
	COMMON/COMY/RF(60), ROV(60), RFA(60)	
	COMMON/COMV/CAP(12),B(12)	
	I Z=1	
		The second se
	JDISC=1	-
653	KTT=X	
660	GO TO (640,641,639), JDISC ,	n 1971 po poli anti altino di supersidare de sino di <u>supersidare de la constante de la constante de la constante</u> 1971 po poli a constante di una constante de la
640	NQ = -1	
21.1		
041	n = 1	
670	GO 10 042 KTT-1 1*KTT	
		A set of the set of
	GO TO 660	
642	NDISC=1	
656	KDISC=0	
648	KDISC=KDISC+1	
	NDIV=KDISC-1	
655	NDIV=NDIV+1	
	GO TO (643,644,645),NDISC	
643	EQA=KTT+FLOAT(NQ)*FLOAT(NDIV-1)*X/2.	
	Y=EQA	
	GO TO 647	
644	EQB=EQA-FLOAT(NQ)*FLOAT(NDIV-1)*X/4.	
••••••••••••••••••••••••••••••••••••	Y=EQB	
/ \. ٣		
045	EQL=EQB+FLUAI(NQ)*FLUAI(NDIV-I)*X/8.	
<u>ل ال 1</u>	I-CVU CO TO 1922 8231 IDTP	
041 272	TE(17, E0, 1) KBAR(1)=Y	
022	I = (I7 - EQ + 1) = KT - EQ + 1 = (BB + DI = A + BA + DI = A + BA + DI = A + BA	DIFF8)
	IF(I7, F0, 2, AND, K7, F0, 2) KBAR(I)=(BC*DIFFB+BB*DIFFC)/(DIFFB+	DIFFC)
ini, antala sa ta	KFACT=CFINIS(K)*KBAR(I)/(4.*FLRATE(I))	
	KOV(I) = KBAR(I) * EQCON(K) / (EQCON(K) - 1.)	
	$IF(KOV(I) \cdot LT \cdot O \cdot)$ $KOV(I) = -KOV(I)$	 Comparison of the second state of
د روی سازم ور اروم ۲۰۰۱ کار	an an an an an an ann an ann an an ann an a	n and a state of the

 Second March 1998 	ROV(I)=B(K)*VOID/(KOV(I)*CAP(K)*(1VOID))
	CMPSLP(I)=KFACT
	IF(IZ.EQ.2) RETURN
	DIFF=OMPSLP(I)-CMPSLP(I)
 An and a second s	GO TO 824
823	Λ=0.
An annual an Arristo Arristo An anna an Arristo Anna Arristo Arristo Anna Arristo Anna Arristo	DO 20 1=15,1F
	RF(I) = ROV(I) - Y
<pre>contention if i final i i i i i i i i i i i i i i i i i i i</pre>	RFA(I) = SPFLRT(I) * * (-0.49)
20	$\Delta = \Delta + RF(1) / RFA(1)$
	DIFF=ABS(A-5.*RF(IF)/RFA(IE))
824	IF(NDIV-(KDISC+1))630,631,632
630	DIFFA=DIFF
	BA=KBAR(I)
N age for a second	G0 T0 655
631	DIFFB=DIFF
	BR=KBAR(I)
All and a second s	GO TO 655
632	DIFFC=DIFF
	BC = KBAR(I)
	$IE((DIFEA*DIFEB), IE_0) K7=1$
	$IE((DIEE(*DIEEB), IE_0/c) = K7=2$
	CALL DETECT/DIFERADIFERADIFEC. NOISC NSX1
 Construction of Australia States and Construction of Australia States and Constructiono States and Constructionos and Constructionos and Construct	NDISC=NSX
	GO TO (648-648-648-649-650-651-652)-NDISC
652	IDISC = IDISC + 1
	CO TO 453
- 6110	
049	
450	GO TO 7751 7501 IDIR
	50 10 (101,100), 101K
	12-2 CO TO 022
700	0 - CAU(k) + (1) + UO(D) ((CETNIC(k) + UO(D)))
150	
	RPAR(R) = Y * U
700	DU 720 1=15,1F
120	KF(1) = 1./KF(1)
~ 6.2	CONTINUE
051	LONIINUE
	REIURN
	END 6
	가운 것을 하는 것을 수 있다. 이는 것을 하는 것을 하는 것을 하는 것을 하는 이는 것을 하는 것을 수 있다. 이는 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것
	그는 그는 것이 아이지 않는 것이 없는 것이 같은 것을 하는 것이 말했다. 것이 가 많아요. 방송 방송 방송 것이 많은 것이다.

£IBF C FTHICK SUBROUTINE FMTBGC (I,K) REAL KE, KPAR, KOV, KBAR, KFACT DPAR[12] -COMMON/COMA/EQCON(12), CFINIS(12), , DENS(12), VISC(12), DLIQ(12), DEG(12), TEMP(12) OMMON/COMB/VMID(60), CMHT(60), FLRATE(60), SPFLRT(60), KF(60), RN(60), SC(60), VALA(60) CMDIA, VOID, COAREA, IDIR, PI, EDIA COMMON/COMC/ COMMON/COMD/OMPSLP(60), CMPSLP(60), COLCAP(60) COMMON/COMX/KPAR(12), KOV(60), KBAR(60), 1.444 27 COMMON/COMY/RF(60), ROV(60), RFA(60) EXPA=-0.51 EXPB=-0.67 SPFLRT(I)=FLRATE(I)/COAREA RN(I)=SPFLRT(I)*VOID*EDIA*DENS(K)/VISC(K) VALA(I)=1.82*SPFLRT(I) SC(I)=((KF(I)*EDIA)/(6.*(1.-VOID)*VALA(I)*(RN(I)**EXPA)))**(1./EXP 18) DLIQ(K)=VISC(K)/(DENS(K)*SC(I)) RETURN -----END 31. Ā C S 6 r! 2 ĸ ٧ 0 Û E 3 P, 6 Ň 3. ſ. 5 i.l 3 11. 6

.

220

BETC MINDEC DECK
SUBROUTINE DETECT(A, B, C, NS, NA)
A=ABS(A)
B=ABS(B)
C=ABS(C)
IF (B.LT.A.AND.C.LT.B) GO TO 20
IF (B.LT.A.AND.C.GE.B) GO TO 21
IF (B.EQ.A.AND.C.GT.B) GO TO 21
IF (B.GT.A.AND.C.GT.B) GO_TO 22
IF (B.GT.A.AND.C.LE.B) GO TO 23
20 NA=NS
GO TO 24
21 NA=N\$+3
GO TO 24
22 NA=8
GO TO 24
23 WRITE(6.100)
100 FORMAT(1H1,6X,15HMAXIMUM PRESENT)
NA=7
24 RETURN
END

-27

.....

IBFT	C BGPDN NODECK
	REAL KF, KPAR, KOV, KBAR
and a second sec	COMMON/COMA/EQCON(12), CFINIS(12), DPAR(12)
	1, DENS(12), VISC(12), DLIQ(12), DEG(12), TEMP(12)
Caracteria processor (C) and the analysis of the context of the context of the analysis of the context of the context of the context of the	COMMON/COMB/VMID(60), CMHT(60), FLRATE(60), SPFLRT(60).
	1 KF(60), RN(60), SC(60), VALA(60)
Non-Maria and San	COMMON/COMC/ CMDIA, VOID, COAREA, IDIR, PI, EDIA
	COMMON/COMD/OMPSLP(60), CMPSLP(60), COLCAP(60)
 Andre services sets in the service set of the service set	COMMON/COME/RELCN(400), VOL(400)
	COMMON/COMX/KPAR(12),KOV(60),KBAR(60)
	COMMUN/COMY/RF(60), ROV(60),
	COMMON/COMZ/CAP(12),B(12)
a de la casa de la c casa de la casa de la casa de la casa de la casa de l	
	DIMENSION NSERIS(60), NGROUP(60), HEAD(40)
() standing gapping pige of a second seco	READ(5,4) (HEAD(1),1=1,30)
4	FORMAT(6A6)
provide and the second se	VOID=0.37
·····	CMDIA=1.5
	PI=3.141952
	COAREA=CMDIA**2*PI/4.
	D0 626 K=1,6
	READ(5,2) EQCON(K), CFINIS(K), PRAD, TEMP(K), DEG(K), DENS(K), VISC
1	(K), CAP(K), B(K)
2	FORMAT(7E10.4.2F4.2)
AND THE REPORT OF A	EDIA=PRAD*2.
	SQDIA=PRAD**2
	READ(5,3) DPAR(K), DLIQ(K)
3	FORMAT(2E10.4)
2 24 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20	D=CAP(K)*(1VOID)/(CFINIS(K)*VOID)
and All and a second	KPAR(K)=4.*PI*PI*DPAR(K)/SQDIA
	RP=1./(KPAR(K)*D)
	IS=(K-1)*5+1 +
	IF=IS+4
n an anna an tha ann an	D0 627 I=IS, IF
amigen la colie. Optici	READ(5,3) FLRATE(I), CMHT(I)
	COLCAP(I)=CMHT(I)*CUAKEA*(1. VOID)*CAP(K)
	SPFLRT(I)=FLRATE(I)/(COAREA+VOID)
	XOV=CMHT(I)/SPFLRT(I)
	NGROUP(I)=K
	NSERIS(I)=1
in and an and a second seco	
	이 가는 것이 같은 것이 같다. 이 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같이 많이 많이 많이 많이 많이 많이 많이 많이 했다.
	- 영상 방법 가슴에 있는 것은 해외에서 가슴을 가슴다. 그는 것은 것을 가슴을 가슴을 가슴을 가슴다. 가슴을 가슴을 가슴다. 가슴을 가슴을 가슴을 다 가슴을 가슴다. 가슴을 가슴을 가슴을 가슴을 가슴을 가슴을 가슴을 가슴을 가슴다. 가슴을
	이 그는 것은 것이 같다. 이 수밖에 있는 것은 말을 것 같아요. 이 가지 않는 것은 것은 것은 것은 것이 가지 않는 것이 같아. 것이 같이 가지 않는 것이 같아. 것이 같아. 가지 않는 것이 않는 것이 같아. 가지 않는 것이 같아. 가지 않는 것이 않는 않는 않는 않는 않는 것이 않는 않는 않는 않는 않는 않는 않는 것이 않는
	이 같은 것은 것이 있는 것이 있는 것이 있는 것이 같은 것이 있는 것 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 있는 것이 같은 것이 같이 있는 것이 있

н з

С А

4Ľ

```
CALL FMTBGP(I,K)
    RF(I) = PRAD/(KF(I) * 3 \cdot * (1 \cdot - VOID))
    ROV(I) = RP + RF(I)
    KOV(I) = B(K) * VOID/(ROV(I) * CAP(K) * (1, -VOID))
    KBAR(I)=KOV(I)*(EQCON(K)-1.)/EQCON(K)
    IF(KBAR(I).LT.O.)
                         KBAR(I) = -KBAR(I)
                    WRITE(6,650)
    IF(I.EQ.IS)
                                    KXX.
650 FORMAT(1H1,6X,14)
    WRITE(6,18) NSERIS(I), NGROUP(I), I
 18 FORMAT(1H0,5X,13HSERIES NO ,13,4X,12HGROUP NO
                                                           ,13,4X,
                ,13//5X,4HC/CO,2X,6HVOLUME)
   19HRUN NO
    CALL FLCVBG (XOV, I, K, IS, IF)
                  FLRATE(I), CMHT(I)
    WRITE(6,9)
  9 FORMAT(1HP,2E10.4)
    CMPSLP(I)=KBAR(I)*CFINIS(K)/(4.*SPFLRT(I))
    OMPSLP(I) = CMPSLP(I)
627 CONTINUE
626 CONTINUE
    DO 526 K=1.6
    IF(K.EQ.1) WRITE(6,10) (HEAD(I), I=1,6) (HEAD(I), I=13,18)
 10 FORMAT(1H1,5X,6A6/6X,6A6)
    IF(K.EQ.4) WRITE(6,10) (HEAD(I),I=1,6) (HEAD(I),I=19,24)
    IF(K.EQ.1) WRITE(6,916)
    IF(K.EQ.4) WRITE(6,916)
916 FORMAT(1H0,27X,18HBREAKTHROUGH CURVE,9X,8HSPECIFIC,2X,
                                                                       6X,
   16HRADIUS,5X,22HDIFFUSION COEFFICIENTS/21X,8HOBSERVED,3X,8HOBSERVED
   2,3X,10HCALCULATED,2X,8HSOLUTION,2X, 8X,2HOF/1X,6HSERIES,2X,5H
   3GROUP, 2X, 3HRUN, 3(2X, 9HMID POINT), 5X, 4HFLOW, 4X,
                                                                      6X,6
   4HACTUAL, 8X, 2HIN, 9X, 2HIN/22X, 6HVOLUME, 6X, 5HSLOPE, 6X, 5HSLOPE, 7X, 4HRA
                    5X,8HPARTICLE,4X,8HPARTICLE,5X,4HFILM//23X,3HML ,8X
   5TE,4X,
   6,5H1/SEC,6X,5H1/SEC,6X,6HML/SEC,3X, 8X,2HCM,7X,9HCM*CM/SEC,2X
   7,9HCM*CM/SEC)
    IS = (K - 1) + 5 + 1
    IF = IS + 4
    D0 522 I=IS, IF
522 WRITE(6,12) NSERIS(I), NGROUP(I), I, VMID(I), OMPSLP(I), CMPSLP(I),
                                DPAR(K), DLIQ(K)
   1SPFLRT(I), PRAD,
 12 FORMAT(1H0,14,17,15,E13.3,3E11.3,
                                             E13.6,2E11.3)
526 WRITE(6,13) CFINIS(K), TEMP(K), DEG(K) EDIA
 13 FORMAT(1H0,6X,13HCONCENTRATION, F7.3,2H N,13H
                                                    TEMPERATURE, F6.2,
   12H C, 24H PERCENTAGE DEGRADATION, F7. 2, 19H PARTICLE DIAMETER, E13.
   2,3H CM)
    DO 527 K=1.6
    IS = (K - 1) + 5 + 1
    IF=IS+4
    IF(K.EQ.1) WRITE(6,10) (HEAD(I), I=1,6) (HEAD(I), I=13,18)
```

```
IF(K,EQ,4) WRITE(6,10) (HEAD(I), I=1,6) (HEAD(I), I=19,24)
    IF(K.EQ.1) WRITE(6,911)
   IF(K.EQ.4) WRITE(6.911)
                               GROUP
                                         RUN
                                               OVERALL
 11 FORMAT(1H0,5X,048HSERIES
                                                            FTLM
                                                                     · 63HO
   1
              PARTICLE
                           REYNOLDS
                                        SCHMIDT
                                                                      /6X.
   1LUTION
   1108HN0
                 NO
                                MITI
                                         Mata
                                                  File Line of
                          NO
                                                                       M<sub>-</sub>T
            NUMBER
                           NUMBER
                                                     /18X.61H
   1
                COEFF
                                          COEFF
   1COEFF
                             RATE
                                                       /29X.41HSEC-1
                                SEC-11
       SEC-1
                     ML/SEC
   1
   DO 523 I=IS, IF
523 WRITE(6,913) NSERIS(I), NGROUP(I), I, KOV(I), KF(I), FLRATE(I).
   1KPAR(K),RN(I),SC(I)
                   17.19,18,E14.3,5E12.3)
913 FORMAT(1HO.
                                             . EDIA
527 WRITE(6,13) CFINIS(K), TEMP(K), DEG(K)
    DO 3071 K=1.6
    IS = (K - 1) + 5 + 1
    IF = IS + 4
                                (HEAD(I), I=25, 30)
    IF(K.EQ.1)
                 WRITE(6,517)
                                (HEAD(I), I=25, 30)
    IF(K.EQ.4)
                 WRITE(6,517)
517 FORMAT(1H1.5X.6A6)
                 WRITE(6.519)
    IF(K.EQ.1)
                 WRITE(6.519)
    IF(K.EQ.4)
                                      RUN
                                                      CONCN
                                                                 TEMP
                                                                        DEN
519 FORMAT(1H0,1X,78HSERIES
                               GROUP
                                           FLOW
           VISCOSITY DEGRDN COL, 23HUMN CAPACITY COLUMN/22X, 4HRAT
   1SITY
   2E,51X,2HHT,18X,8HCAPACITY/22X,6HML/SEC,5X,67HN
                                                               C.
                                                                     GM/CC
                                                  MEQ//)
                    £
                             CM
                                       MEQ/ML
   3
        POISE
071 WRITE(6,3061) (NSERIS(I), NGROUP(I), I, FLRATE(I), CFINIS(K), TEMP(K), D
   1ENS(K), VISC(K), DEG(K), CMHT(I), CAP(K), COLCAP(I), I=IS, IF)
061 FORMAT(1H0, 1X, 11, 18, 17, 2X, 2E10.2, F6. 1, 2E10.2, F8. 1, 3E10.2)
525 CONTINUE
                           STOP
  END
```

```
IBFTC FCBGCL
                                                                     224
     SUBROUTINE FLCVBG (XOV, I, K, IS, IF)
     REAL KE, KPAR, KOV, KBAR
     COMMON/COMA/EQCON(12), CFINIS(12),
                                                DPAR(12)
    1, DENS(12), VISC(12), DLIQ(12), DEG(12), TEMP(12)
     COMMON/COMB/VMID(60), CMHT(60), FLRATE(60), SPFLRT(60)
                      ,KF(60),
                                        ,RN(60),SC(60),VALA(60)
    1.
                     CMDIA, VOID, COAREA, IDIR, PI
     COMMON/COMC/
     COMMON/COMD/OMPSLP(60), CMPSLP(60), COLCAP(60)
     COMMON/COME/RELCN(400), VOL(400)
     COMMON/COMX/KPAR(12),KOV(60),KBAR(60)
COMMON/COMY/RF(60), ROV(60),
UIMENSION V(2), GEE(2), UA(2)
     JA=1
     H=0.1*FLOAT(I-IS+1)*4.*0.1/(CFINIS(K)*5.)
     HB=10.**3*H
     TX=XOV*FLRATE(I)
     YA=0.001
     D0 1020 J=1.1000
     JB=J-JA+1
     VOL (JB)=TX+FLOAT (JB-1)*HB
     Y=YA+FLOAT(JB-1)*HB
                            /CFINIS(K)-Y
     APAR = COLCAP(I)
                      n
     BPAR=APAR*KBAR(I)*CFINIS(K)/SPFLRT(I) 6
     U=KOV(I)*CFINIS(K)/SPFLRT(I)
     V(2)=KOV(I)*COLCAP(I)
                                 /SPFLRT(I)A
     V(1) = V(2) / EQCON(K)
     ID=0
     UA(1) = U * Y
     UA(2) = UA(1) / EQCON(K)
  48
     ID=ID+1
     A=SQRT(V(ID))-SQRT(UA(ID))
     C = A * A
     IF(C.GT.80.)
                        C=80.
     DERF=2.*EXP(-C)/SORT(PI)
     GEE(ID)=0.5*(1.-ERF(A))+DERF/(4.*SQRT(SQRT(V(ID)*UA(ID)))+4.*SQRT(
    UA(ID)))
     IF(ID.EQ.1) GO TO 48
     BIGGEE=(1, -GEE(2))/GEE(1)
     IF(BPAR.GT.80.) BPAR=80.
     IF (BPAR.LT.-80.)
                        BPAR=-80.
     RELCN(JB)=1./(1.+BIGGEE*EXP(BPAR))
 546 IF(RELCN(JB)-0.10)
                         1020,230,230
 230 IF(H8-(H*10.+0.001)))231,231,232
 231 IF(RELCN(JB).GE.0.99)
                           GO TO 1030
     GO TO 1020
 232 JA=J+1
     IF(TX.NE.VOL(JB)) TX=VOL(JB-1)
     IF(YA.NE.Y)
                   YA=Y-HB
     HB=H8/10.
1020 CONTINUE
1030 WRITE(6,1010) (RELCN(JC), VOL(JC), JC=1, JB)
1010 FORMAT(1H ,6X,8E12.4/
     D0, 1021, J=1, 1000
```

F

IF(RELCN(J)-0.5) 1021,241,242 241 VMID(I)=VOL(J) RETURN 242 JC=J-1 VMID(I)=VOL(J)-(VOL(J)-VOL(JC))*(RELCN(J)-0.5)/(RELCN(J)-RELCN(JC)) 1) RETURN 1021 CONTINUE RETURN					100 B	•		•	2 A	1	
IF(RELCN(J)-0.5) 1021,241,242 241 VMID(I)=VOL(J) RETURN 242 JC=J-1 VMID(I)=VOL(J)-(VOL(J)-VOL(JC))*(RELCN(J)-0.5)/(RELCN(J)-RELCN(JC)) 1) RETURN 1021 CONTINUE RETURN									· · · ·		
IF(RELCN(J)-0.5) 1021,241,242 241 VMID(I)=VOL(J) RETURN 242 JC=J-1 VMID(I)=VOL(J)-(VOL(J)-VOL(JC))*(RELCN(J)-0.5)/(RELCN(J)-RELCN(JC)) 1) RETURN 1021 CONTINUE RETURN		•				• .		1			· .
241 VMID(I)=VOL(J) RETURN 242 JC=J-1 VMID(I)=VOL(J)-(VOL(J)-VOL(JC))*(RELCN(J)-0.5)/(RELCN(J)-RELCN(JC)) 1) RETURN 1021 CONTINUE RETURN		IF (RELCN(J)-0.5)	1021,24	1,242				and the processing of the p		
RETURN 242 JC=J-1 VMID(I)=VOL(J)-(VOL(J)-VOL(JC))*(RELCN(J)-0.5)/(RELCN(J)-RELCN(JC) 1) RETURN 1021 CONTINUE RETURN	241	VMID(I)=V	'OL(J)								
242 JC=J-1 VMID(I)=VOL(J)-(VOL(J)-VOL(JC))*(RELCN(J)-0.5)/(RELCN(J)-RELCN(JC) 1) RETURN 1021 CONTINUE RETURN		RETURN									
VMID(I)=VOL(J)-(VOL(J)-VOL(JC))*(RELCN(J)-0.5)/(RELCN(J)-RELCN(JC) 1) RETURN 1021 CONTINUE RETURN	242	JC=J-1				n destando e recebio e recebio. A construir e					
1) RETURN 1021 CONTINUE RETURN		VMID(I)=V	0L(J)-(V	OL(J)-VOL	(JC))+	(RELCN(J)-0.51	/(RELCN	(J)-REI	CNIJC)
RETURN 1021 CONTINUE RETURN		ľ s		المراجع فالمحافظ المراجع		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				a ina ana ang sa
RETURN 1021 CONTINUE RETURN		1)								10 C	
1021 CONTINUE RETURN	A second distance of the second secon	RETURN				Antibacca de las consectos a para en acordo en las consectos en entre para entre en la consecto en entre	 A control of a second se				<pre>control of the control of the c</pre>
RETURN	1021	CONTINUE								and a second sec	
		RETURN									
END		END		a nanana a mini	and far in meaninghan and				and and the second second second second	1	ana ang ang ang ang ang ang ang ang ang

REAL KF, KPAR, KOV, KBAR COMMON/COMA/EQCON(12), CF1NIS(12), DPAR(12) 1, DENS(12), VISC(12), DL1Q(12), DEG(12), TEMP(12) COMMON/COMB/VM1D(60), CMHT(60), FLRATE(60), SPFLRT(60), COMMON/COMB/VM1D(60), CMHT(60), FLRATE(60), SPFLRT(60), KF(60), RN(60), SSC(60), VALA(60), COMMON/COMC/ COMMON/COMC/ CMD1A, VOID, COAREA, IDIR, P1, EDIA EXPA=-0.51 EXPB=-0.67 RN(1)=SPFLRT(1)*VOID*EDIA*DENS(K)/VISC(K) SC(1)=VISC(K)/(DENS(K)* DLIQ(K)) VALA(1)=1.82*SPFLRT(1) KF(I)=VALA(I)*(RN(I)**EXPA)*(SC(I)**EXPB)	K MTBGD (lak)		
COMMON/COMA/EQCON(12), CF1NIS(12), DPAR(12) 1. DENS(12), VISC(12), DL1Q(12), DEG(12), TEMP(12) COMMON/COMB/VM1D(60), CMHT(60), FLRATE(60), SPFLRT(60), 1. KF(60), RN(60), SC(60), VALA(60) COMMON/COMC/ CMD1A, VOID, COAREA, IDIR, P1, EDIA EXPA=-0.51 EXPB=-0.67 RN(1)=SPFLRT(1)*VOID*EDIA*DENS(K)/VISC(K) SC(1)=VISC(K)/(DENS(K)* DL1Q(K)) VALA(1)=1.82*SPFLRT(1) KF(1)=VALA(1)*(RN(1)**EXPA)*(SC(1)**EXPB) DETUDN	A KOV KBAR		
<pre>1.DENS(12).VISC(12).DL10(12).DEG(12).TEMP(12) COMMON/COMB/VMID(60).CMHT(60).FLRATE(60).SPFLRT(60) . 1</pre>	EQCON(12) + CF 1NIS(12) +	DPAR(12)	
COMMON/COMB/VMID(60).CMHT(60).FLRATE(60).SPFLRT(60). I KF(60). RN(60).SC(60).VALA(60) COMMON/COMC/ CMDIA.VOID.COAREA.IDIR.PI.EDIA EXPA=-0.51 EXPB=-0.67 RN(1)=SPFLRT(1)*VOID*EDIA*DENS(K)/VISC(K) SC(1)=VISC(K)/(DENS(K)* DLIG(K)) VALA(1)=1.82*SPFLRT(1) KF(1)=VALA(1)*(RN(1)**EXPA)*(SC(1)**EXPB) DETUDN	SC(12) . DL 10(12) . DEG(12) . TEM	P(12)	
<pre>I KF(60), RNL60)*SC160)*VALA(60) COMMON/COMC/ CMDIA*VOID*COAREA*IDIR*PI*EDIA EXPA=-0*51 EXPB=-0*67 RN(1)=SPFLRT(1)*VOID*EDIA*DENS(K)/VISC(K) SC(1)=VISC(K)/(DENS(K)* DLIQ(K)) VALA(1)=1*82*SPFLRT(1) KF(1)=VALA(1)*(RN(1)**EXPA)*(SC(1)**EXPB) DETUEN</pre>	VMID(60) . CMHT (60) .FLRATE (60) • SPFLRT (60) •	
COMMON/COMC/ CMDIA,VOID,COAREA,IDIR,PI,EDIA EXPA=-0.51 EXPB=-0.67 RN(1)=SPFLRT(1)*VOID*EDIA*DENS(K)/VISC(K) SC(1)=VISC(K)/(DENS(K)* DLIQ(K)) VALA(1)=1.82*SPFLRT(1) KF(1)=VALA(1)*(RN(1)**EXPA)*(SC(1)**EXPB) DE TUDN	KF(60) • RN16	0) SC(60) VALA(60)	
EXPA=-0.51 EXPB=-0.67 RN(1)=SPFLRT(1)*VOID*EDIA*DENS(K)/VISC(K) SC(1)=VISC(K)/(DENS(K)* DLIG(K)) VALA(1)=1.82*SPFLRT(1) KF(1)=VALA(1)*(RN(1)**EXPA)*(SC(1)**EXPB) DETUDN	CMDIA, VOID, COAREA, IDIR,	PIIEDIA	
EXPB=-0.67 RN(1)=SPFLRT(1)*VOID*ED1A*DENS(K)ZVISC(K) SC(1)=VISC(K)/(DENS(K)* DLIG(K)) VALA(1)=1.62*SPFLRT(1) KF(1)=VALA(1)*(RN(1)**EXPA)*(SC(1)**EXPB) PETUDN			
RN(1)=SPFLRT(1)*VOID*ED1A*DENS(K)/VISC(K) SC(1)=VISC(K)/(DENS(K)* DLIQ(K)) VALA(1)=1•82*SPFLRT(1) KF(1)=VALA(1)*(RN(1)**EXPA)*(SC(1)**EXPB) DETUDN			
SC(1)=VISC(K)/(DENS(K)* DLIQ(K)) VALA(1)=1+82*SPFLRT(1) KF(1)=VALA(1)*(RN(1)**EXPA)*(SC(1)**EXPB) DETUDN	(1)*VOID*EDIA*DENS(K)/VISC(K)	
VALA(I)=1+82*SPFLRT(I) KF(I)=VALA(I)*(RN(I)**EXPA)*(SC(I)**EXPB) RETURN)/(DENS(K)* DLIQ(K))		
KF(I)=VALA(I)*(RN(I)**EXPA)*(SC(I)**EXPB)	*SPFLRT(1)		
PETUDN)*(RN(I)**EXPA)*(SC(I)**EXP	B)	

	-
\$IBFTC PRESDP	-
COMMON//RN(50) +F(50)	
DIMENSION ROELIG(50) VISC(50)	
P1=3.141592	
READ(5.1) (RN(1).F(1).I=1.14)	
I FORMAT(2E7.2)	
READ(5.1) PDIA.CMDIA	
COAREA=CMD1A**2*P1/4.	
V01D=0•40	
READ(5+1) ROELIG(1)+VISC(1)	÷
WRITE(6,10)	
10 FORMAT(1H1,6X,34HPRESSURE_DROP_IN_BEDS_OF_PARTICLES/7/	Ē
16X+35HSEE PERRY CHEM ENGRS HANDBOOK+P 394)	
WRITE(6,11) VOID	<u>.</u>
11 FORMAT(1H0+6X+13HBED VOIDAGE=+F6+2///7X+8HFLOWRATE+3X+11HSUPERFIC	=
11AL+2X+8HREYNOLDS+4X+8HFR1CT10N+14X+8HPRESSURE73X+11HTHROUGH BED+3	
2X+8HVELOCITY+5X+6HNUMBER+6X+6HFACTOR+3X+18HPER UNIT BED DEPTH)	
D0 20 K=1.50	
FLRATE=FLOAT(K/10)	
SPFLRT=FLRATE/COAREA	
S=6.*(1VOID)/PDIA	Ξ.
REYNO =ROEL10(1)*SPFLRT/(VISC(1)*S)	-
X=FRICF(REYNO)	1
DELP=X*S*ROEL1Q(1)*SPFLRT**2/(144.*32.2*V01D**3)	Ξ
20 WRITE(6.12) FLRATE.SPFLRT.REYNO.X.DELP	
12 FORMAT(1H0+6X+4E12+4+6X+E12+4)	
21 WRITE(6+13)	
13 FORMAT(1H0+6X+19HUNITS ARE LB+FT+SEC)	-
STOP	
END	-
\$IBFTC_FIG35	
FUNCTION FRICE(B)	
COMMON//RN(50)+F(50)	
DO 20 I=1.14	-
· IF(RN(I)-B) 20,40,41	
	≣
20 CONTINUE	
20 CONTINUE 40 FRICF=F(1)	
20 CONTINUE 40 FRICF=F(1) RETURN	Ē
20 CONTINUE 40 FRICF=F(1) RETURN 41 N=1-1	
20 CONTINUE 40 FRICF=F(1) RETURN 41 N=I-1 FRF=(ALOG10(RN(1))-ALOG10(B))*(ALOG10(F(1))-ALOG10(F(N)))/	
20 CONTINUE 40 FRICF=F(I) RETURN 41 N=I-1 FRF=(ALOG10(RN(I))-ALOG10(B))*(ALOG10(F(I))-ALOG10(F(N)))/ I(ALOG10(RN(I))-ALOG10(RN(N)))	
20 CONTINUE 40 FRICF=F(1) RETURN 41 N=I-1 FRF=(ALOG10(RN(1))-ALOG10(B))*(ALOG10(F(1))-ALOG10(F(N)))/ I(ALOG10(RN(1))-ALOG10(RN(N))) FRICF=10.**ABS(ALOG10(F(1))-FRF)	
20 CONTINUE 40 FRICF=F(1) RETURN 41 N=I-1 FRF=(ALOG10(RN(1))-ALOG10(B))*(ALOG10(F(1))-ALOG10(F(N)))/ I(ALOG10(RN(1))-ALOG10(RN(N))) FRICF=10.**ABS(ALOG10(F(1))-FRF) RETURN	

010E-01048E	03
010E 00052E	02
010E 01050E	01
030E 01018E	01
050E 01012E	=01
010E 02072E	00
020E 02052E	00
050E 02037E	00
010E 03030E	00
020E 03026E	00
050E_03021E	00
010E 04019E	: 00
050E 04017E	00
010E 05015E	00
023E-02060E	00
062E_02070E	-03

The first fourteen data cards contain the Carman-Cozeny correlation curve as fourteen X and Y values. These cards must be included in the programme. The number of following data cards will depend on the number of separate calculations to be carried out.

