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ABSTRACT 

The development of the cell model of Lennard:.Jones and 

Devonshire is discussed and the reasons for its failures 

noted. 

Various mathematical forms of the intermolecular 

potential are examined together with some current ideas 

on the strict pair additivity of the intermolecular potential. 

The thermodynamic properties of solid argon and neon 

have been predicted using a quantum version of the Lennard-

Jones cell model, which utilizes the W.K.B. approximation 

to solve the Schroedinger equation. Excellent agreement 

between theoretical and experimental properties is observed 

and the critical dependence of the predicted data on the 

source of the parameters for the intermolecular potential 

clearly shown. 

The above examination has been extended for various 

forms of the bi-reciprocal (m:n) potential. For predictions 

of the high density state of the inert gases the 12:6 

potential is markedly superior to any alternative form. 

A Corresponding States approach has been used to study 

the high density state of quantum molecules. The equation 

of state is regarded as the sum of a classical term and 

a quantum correction term. Theoretical isotherms were 

unsuccessfully predicted using an L.J. 12:6 model. However, 

better agreement was obtained using a uniform potential 

approximation to this theory. 



2. 

An experimental determination of partial molar volumes 

at 25°C. was made for twenty four systems of non-polar gases 

in organic solvents. In all cases a dilatonetric technique 

was used. 

The experimental results were found to be in excellent 

agreement with those predicted through a simple hard sphere 

theory. A quantal version of this theory also successfully 

explained the solution behaviour of hydrogen and deuterium at 

room temperature. 

The application of a more rigorous but correspondingly 

more complex "free volume" theory to solubility phenomena 

has also been examined but found unsatisfactory. 
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7. 
Introduction 

"And like a man to double business bound 

I stand in pause when shall I first begin." 

Hamlet III, 2, 40. 

The ultimate quest of the scientific researcher is a complete 

understanding of the basic properties of matter. This 

optimistic and indeed far distant objective is, of necessity, 

attacked on two fronts; by experiments which are planned 

observations of physical phenomena, and by theories which 

seek to correlate ebservables by ideas. 

At the present time the scientific picture on all 

levels is in a constant state of flux and upheaval, but 

although theories rapidly appear, are extended or are 

superceded, one paramount fact remains. This is that any 

theory concerning the properties of matter must have as 

its objectives a satisfactory description of structure 

on the molecular level and a quantitative correlation 

between macroscopic or experimental observations and the 

properties of individual molecules or atoms. 

The problem of molecular structure is therefore one of 

the most challenging and intriguing in physical chemistry. 

It is, however, also one of the most complex, and in an 

attempt to arrive at situations that may be conceivably 

studied theoretically we are forced to adopt methods that 

make wide use of simplifying assumptions. Through these ass-

umptions mathematical theories can be apploed to natural 
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phenomena, and we are immediately involved with the discipline 

of statistical mechanics. 

Statistical mechanics was described by Henry Eyring as, 

"Simply a game, amatirematical game with the rules made up 

as we go along" (1). This observation may well be true but 

it does not detract from the utility of a method which 

enables us, by averaging over systems of molecules, to 

predict macroscopic properties that compare favourably to 

the corresponding physical measurements. 

Thus by astute use of the appropriate mathematical 

techniques we may compound theories to explain experimental 

phenomena. However, the picture given above is not quite as 

simple or as justifiable as has been stated. The reason for 

this is that in order to satisfactorily perform our averaging 

techniques i.e. to produce the tractable from the intractable, 

we are forced to impose conditions which have no physical 

reality. These conditions, often in the form of artificial 

boundaries or arbitrary assumptions as to molecular positions, 

can sometimes be justified by experimental observations, 

but almost as often their chief reason for existence is 

simply that of mathematical expediency. 

These sets of artificially imposed conditions constitute 

a model on the molecular level. The following chapters 

are devoted to theories and experiments linked with one 

such model, the cell model, and especially in the form 

proposed some thirty years ago by Lennard-Jones and Devonshire 

(2-5). 
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The cell theory of Lennard-Jones and Devonshire (hence-

forth called L.J.&D.) was first developed to facilitate 

theoretical calculations on liquids and dense gases. It is 

one of the simplest LiodelE, propounded for this phase of 

matter and over the last few decades has been the basis of 

many discussions and suggested improvements in the theories 

of liquids and solutions. Unfortunately this model does not 

give a good description of the fluid state and due to the 

assumptions on which it is formulated describes (as will 

be shown later) solids rather better than it describes 

fluids. 

The most attractive media for any theoretical study are 

the crystals of the inert gases. These molecules are spherical 

units wlh closed electron shells, bound by central molecular 

forces which are to a first approximation additive i.e. the 

total potential energy of an inert gas crystal can be thought 

of as the sum of the two body interactions of all constituent 

atoms. This assumption of pair additivity is one of the 

basic concepts of the Lennard-Jones (henceforth L.J.) theory 

which considers intermolecular forces in terms of a bi-

reciprocal potential. It is also a concept that perhaps 

suffers from being too elementary and during the last few 

years the subjects of pair additivity and the form of the 

intermolecular potential have stimulated much discussion 

and theory. 

In this thesis it is proposed to study in some detail the 

limitations and successes of the cell model, in particular the 
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model of L.J.&D., which utilises the bi-reciprocal potential. 

We will first trace the development of the model as a 

description of the fluid state, study the assumptions 

on which it is based and consider the inherent limitations 

they impose. The form and nature of the potential will be 

examined in the light of contemporary ideas and in particular 

whether these sophisticated and often complex postulates lend 

themselves as simply, productively and successfully as those 

used in the L.J.&D. theory. 

A detailed account of a theoretical investigation into 

the inert gas solids will then be presented, an investigation 

which,as will be shown, leads to extensive and accurate 

predictions of the temperature dependent properties of argon 

(6 ) and neon (7) at high densities. In all cases an L.J.&D. 

cell theory is employed assuming both pair additivity ad 

a bi-reciprocal potential. Further studies on the second 

virial coefficients of these substances have been made, and 

the results ofetriprouS generalised approach to the potential 

it its bi-reciprocal form are also given (8). 

Following the success of the above model under strongly 

favourable conditions we have imposed a strain on the model 

by using it in a "Corresponding States" approach to study 

the compressibility of hydrogen and deuterium at fluid 

densities (9). These studies harshly expose the limitations 

of the potential, limitations moreover that' are emphasised 

by comparison of the results with those from similar studies 

using an empirical potential. 
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The above investigations wore in the greater part made 

on systems at low temperature and high densities. However, 

there exist in the range of normal temperatures and pressures 

(298°K., 1 atmos.) several physical situations that invite the 

application of the cell model. Chief amongst these is gas 

solubility theory and it is to this topic that the second 

part of this thesis is devoted. 

The solubility of non-polar gases in non-polar solvents 

has been studied by Hildebrand and co-workers (10-16), 

resulting in an extensive array of data for a wide range- of 

two component systems. The majority of measurements have 

been of the solubilities and entropies of solution. Together 

with these there exists another experimental property, the 

partial molar volume (expressed as V
2 cc/mole) which 

represents the expansion of the solution due to the dissol-

ution of the solute. This is essentially a property of the 

solution as a whole but since these measurements can, to 

a good approximation, be considered on the basis of infinitely 

dilute solutions a cell theory which pictures the gas 

molecule as creating a spherical cavity the size of which 

is dependent on the partial molar volume is quite defensible. 

Available experimental data for partial molar volumes 

were found to be both limited and incomplete. In order to 

extend these results, as well as to confirm or disprove 

several observations made by previous workers we have carried 

out an experimental determination of the partial molar 

volumes for twenty four gas-liquid systems. The results 



12. 

of this project and their interpretation when compared with 

the data already available is comprehensively presented in 

the text. 

The results of our experiments together with those from 

other sources are initially investigated by a hard sphere theory 

first proposed by Smith and Walkley (17) and later refined 

by Hillier and Walkley to allow for quantum effects (18). 

Further calculations were then made using the more complete 

cell theory of Kobatake and Alder (19), which should enable 

estimates as to the effect of distant neighbours and to the 

degree of order remaining in the liquid to be made. However, 

the complications arising in t'aio treatment were substantial 

and it is doubtful whether the final results can be taken as 

a satisfactory picture of gas solubility phenomena. 

We therefore present this work as a comprehensive 

investigation of the predicative value of the cell model 

under varying physical conditions. It should perhaps be 

stressed that at no time do we forward the model as an absolute 

theory of the fluid state, but we do claim that it may act 

as a simple and versatile framework in situations where it 

has often been rejected or ignored. The authenticity or 

otherwise of this statement will be ably demonstrated in 

subsequent chapters. 
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CHAPTER 1. 

The Evolution of the Cell Model 

1.1 The Liquid State 	z 	. 	. 	• 	14 

1.2 Intermolecular Forces 	. 	. 	. 	. 	17 

1.3 The theory of L.J. & D. 	• 	 . 	 23 

1.4 The calculation of the Cell potential. 	26 

"All the inventions that the world contains 

Were not by reason first found out, nor brains 

But pass for theirs who had the luck to light 

Upon them by mistake or oversight" 

Samuel Butler (1612-1680) 
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1.1 The Liquid State 

The obstacles that st-md between us and a clearer 

understanding of the liquid state may be better under-

stood by a consideration of the three discreet phases of 

matter. To the one side lies the solid state character-

ised by cohesion, rigidity and regular crystalline 

structure, to the other the gaseous state, a state of 

complete molecular disorder. Liquids, however, rep-

resent a peculiar compromise between these two extremes, 

exhibiting forces strong enough to lead to a condensed 

state but not strong enough to prevent considerable 

translational energy between the individual molecules. 

There seems to be little doubt from experimental 

evidence that a certain degree of order exists in the 

liquid. How permanent or substantial this may be is 

difficult to say. However, it is on the strength of 

this order that a collection of theories known as latt-

ice theories have been developed. 

These lattice theories immediately introduce the 

model of a eiltorted crystal in which long range order 

has been lost. It is well to consider here the basic 

differences between solids and liquids. The solid 

consists of molecules without internal degrees of free-

dom executing small vibrations about their equilibrium 

positions - "a static structure only slightly blurred 

by thermal motions..." (20). In the liquid there are 
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no lattice sites and the instantaneous picture is continually 

changing. How then can an ass-m-Ition of order be justified? 

To answer this we examine the experimental evidence. The 

most important direct results arise from neutron diffraction 

cr X ray studies. The latter, performed by Eisenstein and 

Gingrich (21) indicated that a liquid, though lacking the 

long range order found in the crystal structure, had con-

siderable short range order and possessed intermolecular 

distances similar to those observed in solids. The ex-

periments of iienshaw (22), in which he studied the scatter-

ing of slow neutrons by liquids, confirmed Eisenstein's 

observations and also indicated that molecular motions in 

a liquid can approximately be described as vibrations 

interrupted by occasional jumps. These findings give 

considerable weight to the picture of Alder and Wainwright 

(23) who used the methods of molecular dynamics to make 

of molecular trajectories. extensive calculations 

If we accept this picture of 

a theoretical model we arc forced 

jumps from one molecular position 

theories essentially do this and, 

a liquid when forming 

to ignore occasional 

to another. Lattice 

therefore, find their 

greatest usage in predicting equilibrium rather than 

transport properties, in which these disregarded jumps 

are all important. 

The calculatirin and comparison.of theoretical equilibrium 

properties with experimentally measured values is a critical 

test of liquid state theories that employ the methods of 
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equilibrium statisitical mechanics. As mentioned previously 

(see introduction), the use of statistical mechanics of 

necessity introduces the idea of a model or ideal structure. 

Starting from this model it should be possible to derive the 

correct results for the equilibrium properties through a 

series of direct approximations. This, though theoretically 

feasible, is almost practically impossible and imposes the 

condition that any model or ideal structure chosen should 

be as close as possible to the true liquid structure. 

From the strictly statistical viewpoint the two most 

satisfactory methods used in the problems of liquid theory 

are those of Monte Carlo and molecular dynamics. They bot11. 

depend on averaging procedure and follow the trajectories of 

many molecules moving in large cells. They differ mil: in 

their methods of averaging, obtain results by direct numerical 

techniques and should by all theoretical reasoning yield 

complete and accurate solutions. They are, however, hamstrug 

by mathematical complexity, lin the frightening number of 

calculations they involve, mrld in general their progress 

is parallel to the increase in llower of numerical techniques 

and the capacity of modern electronic computers. 

This leaves us with theories based on a regular lattice 

structure, the earliest of which was developed between 

1936-41 by gyring and co-workers (24-26). They introduced_ 

the "hole theory", which correlates liquid properties through 

a model of a lattice structure with some sites vacant. Soon 

after this, Lennard-Jones and Devonshire placed the theory 
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on a more quantitative basis by introducing assumptions 

regarding the geometry of dist±bution of the lattice cites 

and the size of cell surrounding each site, to which they 

assumed the molecule confined. This theory is the best known 

example of a cell model - a theory based on a lattice with 

all sites occupied. 

In the past few years other theories of the liquid state 

have been forwarded - the tunnel model of Barker (20), 

amended hole theories (27), worm models (28) and significant 

structure theories (1). However, we will not dwell on these 

here but move on to a discussion of intermolecular forces 

and a more detailed examination of the cell model. 

j.2 Intermolecular Forces and the Bi-reciprocal Poten',Ial 

The successful prediction of any exporimantal property 

from a theoretical model depends to a large extent on a 

clear knowledge of intermolecular forcool .i.rrespoctivt of 

phase or conditions. In all cases that we investigate 

the molecules arc assumed to be non-polar, chemically satur-

ated and neutral. The forces between these molecules are 

electrostatic in origin and are ultimately basdd on Coulomb's 

law of attraction and repulsion between like and unlike 

charges. Thus, the force of interaction (F) between two 

non polar molecules is taken as a function of the separation 

between the centres. In most instances it is better to 

investigate the potential energy of interaction, W(r); 
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rather than the fora° of interaction, F(r). These two 

quantitiqc are related, the force being the gradient of the 

potential function. Hence:- 

	

Fr") 	_ d 60 (OA r 	(1.2.1) 

	

(4) (r) 	f 	dr 	 (1.2.2) 
We may now investigate how this potential energy between 

molecules varies with the distance between their centres. 

On close approach their electron clouds overlap and they 

repel each other strongly. This short range repulsion varies 

exponentially with the separation but,  its true form is 

more complex. At larger intermolecular distances a force 

of attraction appears to exist. This observation at once 

poses two problems, i.e. what is the nature of the attractive 

force and how can the total potential be expressed as a 

function of the distance between the molecular centres? 

As early as 1903 Nie (29) proposed that the interaction 

energy between two atoms could be expressed in the form of 

a bi-reciprocal potential, which involved a negative term 

proportional to the power ..12 of the distance r and a 

positive term proportional of the power wn of r, (m>00). 

This was termed the "m:n" potential and was written as:- 

(1.2.3) 

where\mn 
are constants. 

The origin of the repulsive term has been given above, 

its form in (1.2.3) being justifiable only on the grounds of 

mathematical convznience. The explanation of the more 

important attractive term posed more difficult problems. 
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That it was due to Van der Waals or "dispersion forces" was 

unquestionable but attaching a theoretical explanation to 

this proved somewhat complex. Beason (30) and later Debye 

(31) theorised that the attraction was due to permanent dipoles, 

postulating an attractive index of six. These theories, 

however, failed to c::plain the case of the inert gas mol- 

ecules which exhibited considerable attractive forces while 

possessing no trace of permanent dipoles. Then in 1930 

London (32) solved the problem by the application of 

quantum mechanics. London pictured a neutral molecule as 

a positive nucleus surrounded by a cloud of negative charge. 

Although the time average of this charge distribution was 

spherically symmetrical, at any specific instant it was 

also somewhat distorted.Thus, an instantaneous picture 

would reveal an orientated dipole. The time average of 

these dipoles would be zero but the instantaneous dipole on 

one molecule would polarise a second molecule, attract the 

resultant reduced dipole and produce an average attractive 

force. 

This dispersion interaction generally known as dipole- 

dipole led to the attractive force Wa
, being given as:- 

(. cL = 	kvoc-,%—". 
	 (1.2.4) 

where h=Planckls constant,o4=polarisability, Vo =characteristic 

frequency of oscillation of charge distribution. (For deriv-

ation of the above sec Ref. 33.) 

London also showed that there were further terns in the 

interaction energy arising from contributions from the 
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dipole-quadrupole (varying as r 8) and from quadrupole- 

quadrupole(varying as r-10). These are usually ignored in 

the simple potential, an omission that may possibly not be 

fully justified. 

On the basis of London's work Lennard-Jones (34) 

re-adjusted the "m:n" potential that he had used for the 

argon interaction (38) and produced the potential in the form:- 

( 	en,/r 1-4  — L/r. 
	 (1.2.5) 

This is the form used extensively in the cell theory. It 

is, as are most formulae describing the intermolecular 

potential, essentially empirical, depending on constants that 

are obtained from the: properties of the substance. being.  S6tid-

ied. The graphical form of the "L-J." potential is Shown 

in Fig. 1 and equation (1.2.5) may be written:- 

(A) (r) 
	

1)
1 
 - (5111 
	

(1,„2.0 

Here d and 6 are constants having dimensions of :.cnh 

and energy respectively. We now consider the origin of these 

constants. On consultation of Fig. 1 we see that they in-

dicate unique values of the potential. 

Thus r=d when W(r)=0 	 (1.2.7) 

and W(r)=-Ewhen dW(r)/dr=0 	(1.2.8) 

The values of these parameters or scale factors are determined 

from the properties of the gas or solid. The second virial 

coefficient, B(T), or transport properties are the best 

known sources and tabulated values of d and E. for a 

variety of molecules have boon given (35). Knowledge of 

the parameters also leads to a law of corresponding states. 
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W(r) 

r(10 

4 

Fig 1.1 Lennard=4ones bi.reciprocal potential. 

Potential energy W(r),expre2sed as a 
function of the distance r(A),between 
the centres of two molecules. 
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However, a discussion of this and the sensitivi%y of the 

parameters to the nature of the potential will be given 

later. At present it suffices to note that (1.2.6) is the 

most commonly used form of the ti-reciprocal potential and 

is generally know as the "Lennard-Jones 12:6". 

Having traced the development of the bi-reciprocal 

potential, we must now consider another basic assumption 

made in calculations involving intermolecular forces, 

namely that of pair additivity. This postulates that for an 

N body system the potential is given by N/2x the pair 

interaction, summed over all pc!_rs of molecules, viz. 
A/  

= (1,2.9) 

where W=total potential energy of the system 

and 0(rij)=potential energy between molecules i and 1. 

The very mode by which London forces are derived indicates 

that the concept of pair additility cannot be completely 

true. Thus, the problem of non-additivity corrections,arises 

and has been of considerable interest since the early cal-

culations on three body forces by Axilrod and Teller (36). 

There has recently been renewed discussion on the effect of 

non-additivity on the form of the intermolecular potential 

(37), and it appears that a satisfactory explanation of 

certain experimental phenomena demand a consideration of 

the three body effect. (For further discussion see 3.3). 
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1.3 The Cell Theory of Lennard-Jones and Devonshire. 

In the introduction to thAr original paper Lennard-

Jones and Devonshire stated that their object was "...to 

find an equation of state and other properties at high 

concentrations in terms of interatomic forces of a general 

type...."(2). 

In order to develop this equation of state they 

proceeded to make several basic assumptions,which although 

mostly intuitive havelfron the time they were suggestedlonly 

undergone minor improvements(39-42). 

These assumptions are:- 

(i) The available volumes is divided into cells and 

each molecule is confined to it's cell by 

nearest neighbours. 

(ii) The cells are chosen so that their centres 

occupy sites on a regular lattice. 

(iii) The molecules are regarded as roving independently 

in their cells 

The second assumption is required to relate the distance 

between cell centres to the density.It is in fact made 

because no satisfactory alternative is known and immediately 

imposes the concept of long range orderlso typical of the 

solid and so unwanted in any fluid theory. 

We now digress for a moment into statistical mechanics 

and consider 	a system of N moleeules,of mass n,occupying 

a volume Valle partition function for this system may be 
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written as - 

z = 
N
I© 	

(1,3.1) 

where >= (277mkT/h2) 2  

and Q, the configurational integral is given by - 

p(iv,v,;-).-21... 

	

- .Jexp  7(4  dz2  •-- 	(1. 2) 
The third assumption in the L.J. theory is needed to 

make the evaluation of the integral(1.3.2) practicable. 

It does this by approximating the potential energy(W) of 

the system as the sum of terns each depending on the 

position of one molecule.This assumption which is essenti-

ally that made in the Einstein model of a solid enables us 

to write 

6)  = 649  ('°) tF106-6)  — (19(07 	(1,.3.3) 

where W(0) is the energy when all molecules are at tae 

centres of their cells and i1O(ri) - t10(0) is the change in 

potential energy when a molecule i is displaced from 

cell centre by a vector r. . 

The configurational integral Q, may now be written 

as 

	

V, 7) = pm,/  el,  wroyk-d %/f ly- 	(1.3.4) 
exp [-zo(0)A-rivi" 

	
(1.3.5) 

where the summticn is taken over all arrangements of 

molecules with ono in each cell. 

We introduce at this point the free volume term 

which is the volume available to the centre of a molecule 

in it's cage. It is defined as- 

of = [99(ri) — ti7 (qA 
dri(1.3.6) 
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The integration for (1.3.6) is taken throughout the interior 

of a cell who's volume is equal to the volume per molecule. 

The la'Aice of cefl centres is chosen on energy considerations, 

the laGtice with do most stable structure( i.e. the lowest 

free energy) being the one normally adopted 

The partition function (1.3.1) may now be written as- 
3H

Z = vi zxp Fe4/07] 	 (1.3.7) 

At low donsitios this equation ray be simplified and 

an inherent difficulty of the cell theory exposod.Hence 

within this low density limit 

(r) 	01 of  --> (V/N) 

and Z )3(i\t/414. 
	

(1.3.8) 
which differs from the partition function for a perfect 

gas by a factor of 	This extra factor gives rise to an 

additional contribution Nk to the entropy and is known as 

the floommunal entropyn(24-26), since it arises from sharing 

the volume.Erying and later Lennard-Jones and Devonshire 

suggested that this extra oN  shoUld be included in the 

partition function, but recent work by Alder (43) indicates 

that it appears more gradually. 

We may now consider each molecule in itts coil moving 

in a field defined bybP(r) ..(1poil. If the potential 
energy function W(r) for the interaction of pairs of molecules 

is known this cell field may be calculated.To simplify 

this calculation it is assumed that the number of nearest 

neighbours ZI  are uniformly smeared over the face of a 

spherical surface, radius a,(equal to the nearest neighbour 
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distance), further neighbours being smeared aver concentric 

shells. Over this surface nearest neighbours take up all' 

positions with equal probability and tp(r), is the field 

of surrounding molecules averaged over all directions. 

in the next section this procedure is described explicitly. 

1.4 The Calculation of the Cell Potential. 

The calculation of the sphericalised field involves the 

cell geometry as shown in Fig 1.2. Initially we will 

consider only one shell of neighbours and hence — 

Area of atnulus A = 27Ta2  Sin e dO 	(1.4.1) 

It contains a fraction of smoothed neighbours NI  where 

Na.= Z/7  girt 0 da 	 (1.4.2) 

with Z = Number of neighbours in first shell. 

Thus the potential at a distance r from cell centre is 

given by- 

'°(r )  = Wffe) z ft .n G (A9 
0 

WIZ) being a potential of the m:n type 

(1.4.3) 

i.e. CJ (R) = /i6 gd7k Pl(e4) /) 
	

(1.4.4) 
where IC is a constant depending on m and n. 

But from Fig (1.2) 

R
2 = a2 + r

2 — 2arCos e. 

and 2R.dR = 2arSin 0.d0. From which (1.4.3) may be rewritten 

as 	 tv+r" 

900r) = 
-r 

(1.4.5) 
,,?ar 
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Fig 1.2 Cell geometry is the Lennard.Jenes and 
Devonshire model. 
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(1.4.6) 
Fcr a 12:6 potential m= 12, n= 6, K= 42  and V7(r) becomes- 

? 	_Ldef f. 
7  - 

 = Q)2  

r fa- 	— (04- r)7I., tar OA 4- 	— (a-114  
Similarly the potential at the cell centre is given by 

410(o) 	li-gt(0-// )12 —(47R )41 

and the total cell potential may be written as- 

(1.4.8) 

This is the cell potential due to the first shell of 

neighbours at a distance a. It may now be generalised 

for 1 shells, each containing Z. molecules at a distance a. 

ZI6 	2_ 	j_44 (0-1- -t 	 (1.V10) 
5-11 r (11.1./ 	(22.14c)1° 	Zo r o r c / j- r) 14  

The form of (1.4.10) nay now be expanded and simplified 

as has been done by other workers(40). 

Thus if we define y (r/a)2„assume from the lattice 

concept a3/22  = VAT and introduce V
o 

=-1Td3 then 

may be expanded to give- 

where Z11  is the number of neighbours in the first shell 

and from the assumption of a face centered cubic lattice 

Z1 = 12. L(y) and M(y) are therefore written as- 

(1.4.10) 
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with 1(y) =- ( 1+ + 25.2y2  +12y3  +y4  )(1-y)-10  (1.4.14) 

m(y) = (1 + 	:-)(1 y) 	-1 (1.4.15) 

Equatiolls (1.4.12) Laid (1.4.13) may also be written as 

L(y) = 1(y) + 1 1-(Y/2) + 2 1(y/3) .... (1.4.16) 
712.'7 	729 

M(y) = m(y) 	m(y/2) 	2 m(y/3) .... 	(1.4.17) 
77-6 27 

In their original treatment Lennard-Jones and Devonshire-- 

considered only the first shell of neighbouring molecules - 

and therefore neglected the second and third terns in 

(1.4.16) a15. (1.4.17) which result from taking the-second 

and third shells-. containing-  and 24 -moleculesc  at -a- distance. . 
--1-- 

of 2'a and 37a respectively, into consideration. This • 

technique hPs.been-extensively employed by-Wentorf-etal(40). 

The cell poten-!Lial may te -readily'evaluated fram -the-- - 

above -equations..- To -calculate the partition_ -function 

must evaDiate_the free -volume„ which involves-integratien... 

over the-cell. Lei and-Jones and Devonshire arbitarilY 

- took this cell to be a sphere of radius 0.5a1. Wentorf .et  

-a1,(40) used a sphere of radius 0.55267.alt  since the volume-

of -tiori'sphere is equal to the--volume per molecule. Using 

this value the-free volume-is given as-- 

where 

and 

v
f 	217 a

13  G. 
I 

2 X 2277' (VAT ) 
xn 	 - 

= 	z .op 11[(e(r) P NAT 

yra 	7 ( 3/4 	o. YoSzo-11-.  

- 

-- 41.4.19). 

of4, 
,q (1.4.20) 

The- partition function- 

Z = A .vf 
N .exp(-UW(0)/kT) 
	

(1.4.21) 
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nay now be developed to give the equation of state for the 

system. 

PV' 	_fze[24o9o(v./04_2o2t9N _3-[("P— 
kT 	 xi Y 	v 

where 	o405441 

21" f 4( .-̀f ) exP r`e‘r)--°)/011} 
and 	a•305a4 

=- f ?zi_t6i)oxp f-rt,(0 _ iolo)/Krij 
both integralslas is G, are evaluated by numerical integrat-

ion and have been tabulated by Wentorf et al(40) and by 

Fickett and Wood(44). 

The equation of state (1.4.22) is for a L.J. & D. 

potential considering the first three shells of neighbours. 

It includes the static lattice term W(0), which is the 

potential energy when all molecules arc at their lattice 

sites. This can be evaluated by a lattice suniiation. Hence- 
00  

W(0) =14 	Z. W(a.) 	(1.4.25) — a 2 - 
4= 1  

which was given by Lennard-Jones and Ingram(207) as 

W(0) = 6N“1.0109(vo/V)4- 2.4090(Vo/V)
2
) (1.4.26) 

Having evaluated the mean potential in the cell by 

sphericalisation it is of interest to consider the nature 

of this field for cella of various sizes(i.e. differing 

values of Vo
/V). This has been done by Hirschfelder, after 

the results of Lennard-Jones and Devonshire(35) and also 

by Prigogine(45). 

In Fig (1.3a) the potential is uniform within the cell 

except for a region of low potential near the edge. The 

(1.4.22) 

(1.4.23) 

(1.4.24) 
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Ill 

Fig. 1.3 Potential field within a cell for various cell 
sizes, after (2). 
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molecule is in fact "adsorbed" at the cell walls and the 

model becomes less justifiable since the ground state of 

the system no longer corresponds to a regular arrangement 

of the molecules. Fig (1.3b) represents the situation at 

liquid densities, the potential regions overlap and an 

energy barrier is formed between them. Finally in the 

region of normal crystal densities the energy barrier 

disappears and the potential assumes a parabolic shape as in 

Fig (1.3c). Further increase in density only serves to 

raise the minimum of this curve and it is in these situations 

that approximations based on a harmonic oscillator approach 

have their greatest appeal(45). 

We have shown in (1.4.21) that once the potential is 

known the partition function may be evaluated and hence the 

thermodynamic properties of the system under study at once. 

calculated. Most treatments of cell theory results employ 

reduced variables to express their equations of state' 

thermodynamic properties etc. and it would be as well to 

define these here. In the present treatment the reduction 

parameters are those of the L.J. cell theory i.e. E and d 
which are used to give - 

T* =kTAe,reduced temperature: a* =a/6,reduced neighbour dist. 

V* 	V/63 	ti 	volume 	: r* =r/6 " 	distance. 

v* = of/6 	11 	free volume: p* =p63As " pressure. 

Using the above (1.4-.22) may be written as- 

PV 

NkT 

- 12 r2.4090  - 2.02'1 	1 Ern  - 1 E-7  --4  1 
T* L v*2 	V-4—* 	T* V*2G V* G 

(1.4.27) 
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The expressions for the free energy etc. may be similarly 

formulated and hence with a knowledge of the appropriate 

integrals the thermodynamic properties evaluated over a 

range of V* and T*. 

The results obtained, their correspondence to observed 

experimental data and suggested improvements to the theory 

will be discussed in the next chapter. 
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CHAPTER 2. 

The failure of the Cell Theory at fluid densities. 

2.1 Comparison of theoretical and experimental 

results. 	 • 	35 

	

2.2 Improvements on the L.J. & D. theory. 	38 

"Seek simplicity and distrust it" 

Alfred North Whitehead (1861-1946) 

"And differing judgements serve but to declare 

The truth lies somewhere- if we knew but where': 

William Cowper (1731-1800) 
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2.1 Th3 Comparison of Experimental and Theoretical Results  

The most extensive theoretical calculations on the 

Lennard-Jones theory are those in which Wentorf et al(40) 

considered the interaction of the wandering molecule with the 

first three shells of neighbours. In addition to the energy 

and entropy they presented both graphically and tabularly val-

ues of the reduced pressure over a wide range of reduced 

volumes for differing T*. The compressibility term, PV/NkT, 

was also given in a similar manner. 

From these results it was possible to calculate a set of 

reduced critical constants, the critical point being defined 

as that where (dP/dV)T  and (d2P/dV2)T  vanish. These were 

found by the interpolation of tabular values and are present-

ed in Table (2.1) together with the experimental values for 

argon reduced by -the appropriate L.J. parameters.(Ref 35, 

Table 1A.) 

Table 2.1 Reduced critical constants for argon(Theoretical 

and Experjmental values.) 

Source 	Tho- 	Pw Ircire  

L.J. &D.theory 1.30 	1.77 	0.434 	0.591 

Argon(expt.) 1.26 3.160.116 	0.291 

(Table froze Ref 20, p61.) 

From the above table it is immediately seen that although 

the calculated and experimental values of T* are in good 

agreement the other quantities differ substantially. 

Prigogine and Garikian(41) showed that this agreement is 

relatively insensitive to the form of the potential. They 
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concluded that the Model therefore needs considerable refine-

ment in the critical region, where the density io too low to 

exclude all configurations besides those corresponding to one 

particle per cell. 

A further comparison of theoretical and experimental data 

C20,45 for.other Substances underlines the fact that the 

theory is most satisfactory at low temperatures and high 

densities. Under such conditions the noleculen are almost 

restricted to notions in their cells. At the other physical 

extreme i.e. at low densities and high temperatures, the 

substantially increased molecular motion makes the applicat-

ion of a cell theory less plausible. 

This discrepancy between theoretical and experimental 

results at fluid densities led De Boer(46) to suggest an 

alteration in.the-number of nearest neighbours from 12 to 10. 

This idea is in sole-degree supported by experimental 

evidence(21) and eriploying a "hole" theory(24) can be 

easily Incorporat84 into the calculations. On a strict 

lattice model howuvur, no regular structures with ZI  between 

12 and 8 exist. De Boer avoided this difficulty by adjust-

ing the values of his lattice parameter. The validity of 

such a step is highly dubious. Anemones also exist 

rogaraing rree energies and it is generally considered that 

the concept of decreasing the co-ordination number is not 

satisfactory. 

A comprehensive comparison of the experimental propert-

ies of argon, against those calculated from the L.J. & D. 

theory has been given by Barker(20). In particular he 
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examined the properties of the theoretical condensed phase, 

comparing them with data from the solid and liquid state. 

Table 2.2 Condensed phase compared with solid and liquid 

argon at the triple point(kT/i. 0.7) 

Source 	V*Oft 	E*6  S*
a  C*a  -v 

      

L.J.D.theory 

Sld. argonb. 

Lqd. argon 

1.037 

1.035 

1.086 

-7.32 

—7.14 

—5.96 

-5.51 
-5.33 
.5.64 

1.11 

1.41 

0.85 

a. Properties expressed as excess quantities i.e. theoretical 

values in excess of an ideal gas. 

b. Experimental properties 

( Table from Ref 20,p57.) 

The calculated values of the above properties are 

clearly closer to solid rather than liquid values and these 

observation& are supported by a comparison of theory with 

Manta enrlo data(k7). Preasuren and energies from the L.J.D. 

model are in good agreement with Monte Carlo results on the 

solid side of the "freezing" transition but not on the 

compressed gas side. This comparison is thought to be 

particularly convincing, since Monte CnrJaonlonlations 

employ the sane concept of addivity as the L.J.D. model 

and it does not appear that any discrepancy may be attributed 

to this. 

In the light of relations between experimental and 

predicted data, the high density results of the L.J.D. 

theory appear to describe the solid state. The low density 

situation must be regarded as a hypothetical ordered structure 
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which may be thought of as an "expanded solid" which is 

metastable with respect to a true gas, the latter having a 

lower free energy. The phase transition predicted by the 

theory is therefore neither a solid-gas nor a liquid-gas 

transition but rather a hypothetical transition from the 

condensed phase to the phase of the hypothetical expanded 

solid 

The clear-cut failure of the cell theory to describe 

liquid phenomena may be traced to the assuriptions from 

which it is developed. There have been several attempts to 

improve these, a comprehensive account of which is given 

elsewhere(20). We will briefly describe these attempts 

and comment on their relative success. 

2.2. Improvements on the L.J. & D. Theory. 

The major defects of the cell theoty lie in the 

smearing approximation which sphericalises the cell, ina 

the incorrect calculation of the communal entropy-

resulting from the postulate of one molecule per cell 

and the neglect of correlations between the molecules 

in their cells. 

An early estimation as to the accuracy of the 

smearing approximation was carried out by Beuhler et al 

(48) for rigid spherical molecules on a face centered 

cubic lattice. The correction involves a straightfoward 
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numer!_cal integration over the duodecehedral cell (the 

true cell that the molecule sits in formed by planes 

bisecting the distances from the neighbouring molecules 

to the origin). The correct free volumes were found to be 

50% larger than the smeared free volumes. The cause of this 

difference is that the potential energy is averaged over 

the surface of a sphere and the term exp 	fouled 

whereas 	

foed  

whereas the correct procedure would be to average 

exp(-W/kT) itself. 

The exact treatment far the 12:6 potential was given by 

Barker (50) who expanded the potential energy as a power 

series. At high densities and low temperatures the free 

volume is primarily determined from a harmonic oscillator 

- model and as a result of lattice symnetry it can be shown 

that the change in the potential energy is proportional 

to r2 (where r is the distance from the cell centre). The 

exact and smeared cell fields were found to be identical 

as far as the quadratic terms were concerned and thus the 

error due to smearing tends to zero with increasing density. 

At lower densities the ratio vf(correct)/vf(srleared) =1.4, 

but this nay be easily corrected far. 

The effect of correlated motions was studied, chiefly 

on account of computational difficulties, by an estimate 

of the effect of only binary correlations (50). However, 

it was found that an allowance for binary correlations 

corrects for the major part (75% - 85% for the harmonic 

force model), of the error due to independent motions - an 
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error that is itself rather small. Barker (20) performed 

these 	 ij which 

gives Ihe differenr.e between the true potential energy and 

the app77c7:irate notantial energy for fixed neighbours. lie 

expanded the expression 

fij  =e,_p(-6ij/kT) — 1. 

in a manner analogous to that used in imperfect gases 

(3s) anal found that at low ter2peratures the effect of these 

corrections appeared to improve the predictions of the cell 

model. At higher temperatures the agreement is not as good 

but the correction is considered adequate to account for 

correlations over the density range studied. 

The last assunption,that of single occupency is more 

difficult to improve 	Approximate corrections for the 

communal entropy were made by Pople (52) and by Jannsens and 

Prigogine (53)  who estimated the possibilty of finding 

two molecules in a cell. The calculations were performed 

under the assumption that there was no correlation between 

the number of molecules in neighbouring cells. Although 

this is justified for a solid at high densities where there 

are few multiple occupied cells and fara gas at low densities 

where the cells are large and independent it's validity in 

the range of liquid densities is questionable. 

The conclusion of these workers, that the effect of 

double occupation was negligable at densities as high as 

the liquid density at the triple point was not accepted. 

Calculations were made for a 12:6 fluid in the range of the 

critical density by Barker (49-51), who concluded that the 
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contribution of double occupency to the communal entropy 

was present even at liquid densities. His results also 

enphesised the difficulties of estimating the communal free 

energy at low densities and it was concluded that the 

approximations on which the work of Pople etc. were based 

would drastically underestimate the effect of multiple 

occupation in the fluid region. 

From the above discussion it can be seen that while many 

of the fundimental faults of the cell model may be allowed 

for, the final product still does not yield a satisfactory 

description of the fluid state. Barker considers the main 

problem remaining to be that of evaluating the communal 

free energy, this would appear to necessitate calculations 

at liquid densities around the triple point, calculations 

that would involve the correlated notions of more than three 

molecules. Howevyrlany treatment of this type introduces 

severe mathematical problems that, within the framework 

of the present theory, are almost intractable. 

If we acknowledge the failure of the detailed cell 

modellas given abovel we are left with the conclusion that 

ideally the L.J. theory must describe a solid. At solid 

densities most of the corrections we have described have 

a low order of magnitude and considered from the viewpoint 

of mathematical expediency nay, to a goad approximation, 

be neglected. 

The conclusion that the cell model is more valid in 

the solid state was in fact indicated by the later work of 
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Lennard-Jones and Devonshire (54-55) who introduced the 

order-disorder theory of me]ting in an effort to explain the 

difference between the solid and liquid phases. 

In spite of itIs limitations the cell theory should 

therefore give a reasonable description of the solid state 

especially of the simple inert gas solids. Thix of course 

assumes the validity of the basic concepts of the Lennard-

Jones theory and in particular that of the bi-reciprocal 

potential normally employed. Doubts have been cast on the 

authenticity of thin form, even with regard to the most 

elementary of systems and on this account we now propose 

to examine the form of the intermolecular potential in 

closer detail 
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CHAPTER 3. 

The Intermolecular Potential. 

3.1 Simple potentials, 	. 	. 	. 	44 

3.2 Multi-term potentials . 	. 	. 	4E3 

3.3 Non Additivity. . 	. 	. 	. 	55 

3.4 Discussion 	. 	. 	. 	. 	. 	58 

"Matter exists only as attraction and repulsion 

Attraction and repulsion are matter!" 

Edgar Allan Poe (1809-1849) 
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3.1 Simple Potentials. 

To date we have assumed the intermolecular interaction 

to be of the form shown in Fig (1.1) and to be mathematically 

described through the introduction of parameters of energy 

E and distance d so - 

W(r) = E f(d/r) 	 (3.1.1) 

where f is some universal function. 

Furthermore it has been assumed that the function f is 

adequately described by the L.J. 12:6 potential, so that we 

are immediltely able to introduce a law of corresponding 

states utilising the reduced variables given in (1.4). 

Now while the general form of the potential is almost 

universally acknowledged, the mathematical representation 

of f in (3.1.1) is far from being completely and uniquely 

determined-even for the simplest of molecular systems, 

i.e. the solid phase of the inert gases. To test any 

theoretical potential it is essential to have a wide range 

of accurate experimental data to serve as a comparison with 

theoretical results. The inert gases, though a good theoret-

ical medium , do not lend themselves easily to experimental 

measurements, most of which require extreme physical condit-

ions. However over recent years many of these difficulties 

have been mastered and a wealth of experimental data, 

especially for argon, has been produced. These results 

have been admirably reviewed by Dobbs and Jones (56) far 

argon alone, and more recently by Pollack (58) and Boato (57) 
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for all inert gases except helium, while Hollis Ballet (59) 

has produced a comprehensive discussion and compilation of 

physical propertie$1  Thus several hitherto unsolved 

problems may be considered in greater detail and especially 

whether even the simple Ar-Ar interaction can be adequately 

described by the L.J. potential. 

The construction of almost any intermolecular potential 

involves a sample function containing several parameters 

which are fixed from the thermodynamic properties. Having 

set up the potential in this manner, it's ability to give 

a good description of the system under study is tested by 

using it to predict other experimentally known properties. 

With regard to the inert gas solids, the properties 

generally used are the crystal lattice Spacing (ao) and the 

heat of sublimation (L) both at 0oK., or gas phase proper-

ties „such as second virial coefficients B(T) and transport 

data. If one is interested in the general description of 

the Ar-Ar interaction certain points immediately arise. 

The second virial coefficient, the first correction far 

non ideality in the gas phase, is essentially a two body 

property, being the result of two body interactions. The 

crystal properties at 0°K. are by definition multi-particle 

properties. In view of this several workers have stateci.  

(60-63) that the pair potential parameters must be determin-

ed from properties dependent only on binary interactions 

and on these grounds, solid state data reflecting the many 

body problem is unacceptable. The author, however shares 
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the vit; of Pella* (58) that parameters for solid state 

work should wheresver possible be obtained from solid state 

data. The test of this surmise will come later in this 

text (4.4,4.6). 

Returning to the determination of the potential 

parameters from second virial coefficients, it is as well 

to investigate the sensitivity of various parts of the 

potential curve. The limiting behaviour of B(T) at low 

temperatures in a classical system is determined by the shape 

and depth of W(r) near its minimum. This minimum occurs 

at a distance ro, where for the L.J. 12:6, ro=246 (easily 

obtained from the first derivative of the potential). 

However, the low temperature limit is difficult to approach 

and its relation to the potential is complicated by quantum 

effects. The high temperature limit is determined by the 

details of molecular collisions which in turn shape the 

repulsive part of the potential. 

Using accurate second virial data it is an easy matter 

to estimate e and d (65). However it has become abundantly 

clear that not on17 is it often impossible to evaluate a 

unique set of r- and d to fit over the temperature range 

studied, but that parameters derived from one set of 

properties appear to predict other properties only fairly: 

The inability to find unique values for E and d was ably 

demonstrated by the results of Halsey and Fender(64) and 

Stavely(66) and it has further been shown by Eunn (62) 

that by considering wells of different shapes, a large 

number of potentials will fit second virial coefficient data. 
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With regard to other experimental properties which 

nay be u-od for the determination of parameters it is 

noted that a
o  is most sensitive to the form of the potential 

around the minimum, (the portion that controls lattice 

vibrations) while the sublimation energy (L0) depends on 

the portion of the potential from the minimum out to 

large separations. 

It therefore appears that the introduction of a two 

parameter law of interaction imposes an unnatural constraint 

on the potential. It has already been mentioned that the 

assumption of the repulsive tern as 1/r12 was purely 

arbitrary (1.2) and that a more logical step-would be to 

express this part of the potential- in the form of,an-expom.-

ential.-  However, although earlier workers, -including 

Corner-(67)--investigated potentials of this-typel_the 

most -widely used 	is-that given by Kihara.and Koha...(68) 

-. -.and known-as thamexp-6"-.. - This -is_wrktten as-,. 

W(r) = W ( 6ex r) -Ar0/r)6) . 
ro 

   

where .o.; = parameter controlling narrowness of bowl. 

ro = position of the minimum. 

The above form, although quantum mechanically more reasanable 

than that of the L.J. at once introduces serious mathematical 

complexities. It has-bean investigated by Mason.and Rice 

(69) who.like Corner found their parameters by fitting . 	•.. 

crystal. properties at 0°K. However, their calculations of 

-crystal data were only slightly better than those obtained 

by using n L.J. potentin]. 
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An extension of (3.1.2) was introduced in the four parameter 

Buckingham Corner exp-6 potential (70), which includes 

a correction in the attractive part of the potential. 

This correction is in the form of a dipole-quadrupole term 

(r 8) which is added to the normal dipole-dipole(r 6) 
It also introduces an extra paraneter/ which is the 

dimensionless ratio of the coefficients of the attractive 

terms and may be determined either from quantum mechanics 

or experiment. 

Like those using (3.1.2), calculations involving the 

Buckingham-Corner potential have been made, but no signific-

ant improvement over the simpler potentials in fitting 

properties has been reported, Consequently there does not 

appear to be much gained by abandoning the bi-reciprocal 

potential in favour of either of the above. However, it 

should be stated that due to the complexities in the 

sphericalisation process etc., no reports have been given 

for a cell model employing an exponential repulsion. Such 

calculations are at present being performed in these labor-

atories and until their results are available it would be as 

well to reserve judgement.(71) 

3.2 Multi-term Potentials. 

In view of the apparent failure to produce a uniquely 

successful and moreover a general mathematical form for the 

potential, attempts were made by several authors to determine 



49. 

the correct expression by utilisation of all available 

experimental data. The earliest work in this direction was 

by Rice (72-74) but he was hampered by a dearth of available 

experimental results. Further investigations of a similar 

nature were performed by Corner (67) using a L.J. m:n potent-

ial but it was not until Dobbs and Jones (56) published 

precise measurements for the density of solid argon that it 

was possible for any comprehensive treatment to be fowarded. 

These results were utilised by Guggenheim and McGlashan (75) 

who introduced a two piece intermolecular potential for the 

Ar-Ar interaction, a potential that involved six parameters, 

This potential has recently been extended by McGlashan (61) 

but in the present context it is perhaps better to concentrate 

on the origional equation that has provoked much comment 

and discussion. 

The potential nay be expressed (after Rice(72)) as 

W(r) = — 6 + 	_ oz• 	/)
.3 	

(3.2.1) 
4 	4 

for r in the neighbourhood of r
o 
and 

W(r) = -)r6o/r6 	r >1.40 ro 	(3.2.2) 

The parameters in (3.2.1) and (3.2.2) are nobtly determined 

from solid:state data and are such that 6 and ro denote, as 
usual the energy and separation of the minimum. A( describes 

the curvature of this minimum and o< the rate of change of 

curvature there. The parameter,8 	related to the anharmoni- 

city, a phenomenon present in argon even at lowest temperatures 

and having its origins in the non negligable zero point 

vibrations. 
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The factor )\which is found in the attractive part was 

determined a priori from the theory of dispersion forces, 

though it may also he obtained from experimental data. 

A unique determination of the parameters of this potential 

using only solid state equilibrium data was found to be 

impossible and this led to the introduction of a sixth parame- 

ter 0-  such that W(r) =0, where r=o' 	This distance, 

essentially a hard core repulsion, was estimated from the 

results of gas viscosity measurements. 

Thus, having introduced their six parameters Guggenheim 

and McGlashan (henceforth G. and Mc.) then assumed 0 \<g:,C0‹.  

which effectively ignored anharmonicity. The importance of 

anharnonicity forthe potential was given by/3-c6 and the 

assuuption that this tern was zero was equivalent to neglect-

ing molecular correlations and implying only a single 

Einstein frequency. The justification for this step lay 

in the surmise that since the theoretical minimum of the 

potential was ill defined it would be satisfactory to assume 

a shape that made anharnonicity unimportant. It also ensured 

that the first order perturbation theory employed in the 

calculations was still permissible since large values of ie 
would invalidate treatments involving this technique. 

McGlashan in his extension to the theory allowed for 

anharmonicity and found a best fit of experimental data with 

/3/04 =1.25. However, he states that the original assumption 

of/3 =1.0 did not appreciably effect the accuracy - of the 

previous results. 
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To test their equation G. and Mc.,used it to make 

theoretical predictions of the temperature dependent propert-

ies of solid argon. These results were compared with those 

predicted using a 12:6 potential with or without anharrionicity 

corrections, from the lattice dynamical equations first propo-

sed by Domb and Zucker (76)and later extended by Zucker (77). 

For second virials both potentials, as night be expected, 

give similar predictions but fcr the temperature dependence of 

entropy, energy and lattice constant the potential of G. and 

Mc. appeared to possess marked superiority. 

Thus, on first impressions this potential is to a 

greater degree more successful than any of the simpler forms 

discussed previously. It would therefore be as well to 

make a careful examination of this potential and initially 

of its graphical shape as shown in Fig (3.1), where it is 

compared with the form of the L.J. 12:6. Several points 

are immediately noticable;the greater well depth and wider 

bowl for the G. and Mc. potential and also the complete 

absence of any repulsive (short range) section of the 

potential apart from the hard core d . This latter factor 

together with the other observed discontinuity are notic-

able failings. The lack of any continual representation 

of the repulsive term results in the failure to predict 

high temperature second virials (78) but while this cannot 

be treated as a serious fault the piecewise nature of the 

potential certainly is. Thus, certain section') of the 

curve must be constructed free hand (as above) or remain 
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Fig 3i1 The potential of Guggenhtom and McGiashan(Iv) 
-(75.),for the Ar-Ar interaction compared 
with that of Lennard-_Jones.(II0 
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hypothetical. It has been claimed that the attractive 

discontinuity is not critical. This conclusion, however, 

is open to discussion. The fact that the potential gives 

good agreement for many Ar-Ar temperature dependent propert-' 

ies is not too surprising, for by the use of so much 

experimental data to fit the parametrs the curve itself 

is "tailored" to fit the model. Thus, Zucker (79) considers 

the above agreement to be expected and suggests that in 

the determination of potential functions from solid state 

data, volume dependent properties such as isotherms or 

bulk modulus should be used, these being insensitive to 

the model but sensitive to the potential. 

Other criticisms have been leveled against this potenti-

al. Rowlinson finds that it does not give reasonable 

agreement with viscosity data (37), while both Rowlinson 

(37) and Munn (62) consider that the, use of so many experi-

mental properties involving multi-•body interactions ensure 

that it cannot be the true pair potential, and hence yield 

little information regarding the importance of three body 

forces. 

However the greatest criticism of the G, and Mc. 

potential must be its non-analyticali nature. It also 

demands a detailed and exact knowledge of experimental data 

and in its final form can only be regarded as strictly 

valid far argon alone. There have been attempts to extend 

this anproach to situations which lack the conprehensive 

data found for argon. Other inert gases were studied 

employing a corresponding states approach (80) and using 



54. 
rather gross approximations. The results were claimed to 

be reasonable but serious discrepencies are observed especially 

in the predictions for the tetperature dependence of the 

molar volume of xenon and krypton while in the case of 

neon the method fails completely. 

The arguements against the G. and Mc. potential 

stressed above, i.e. discontinuity and multi-parameter 

nature are partially oatiofied by the five tern potential 

recently fowarded by Snith, Dymond and Rigby (60).- This 

is expressed as- 

W(r)=E0.331(Rn/R)28-1.7584(nn(n)24+2.07151(Rn/R)18 

-1.74552(Rm/R)8-o.59959(nm/R)) 
	

(3.2.3) 

where R
m-..7.-the separation at the nininuri. 

The potential is continuous and involves two parameters 

only, these being derived from second virial data. It 

appears to interpret certain gas phase and solid state data 

to a high degree of accuracy and lends itself readily to 

calculations involving non-additivity (see: 3,3).  It is 

however substantially empirical. Its authors admit that 

the five coefficients of the powers of R, obtained from a 

machine fit, cannot be meaningful, while the attractive 

term in R
24

has no theoretical basis and is included for 

the sole reason of giving a broad bowl to the potential. 

However, it would not be justifiable for an account such as 

this, which defends the L.J. 12:6, to dismiss any potential 

function for its empirical basis alone. Within its object-

ivies of being an easily manipulated function with 
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substantial predicative value there can be little doubt of 

its general success or in its superiority over forms 

siuilar to that of G. and Mc. Its major disadvantage 

however, lice in its mathematical form which is considerably 

more difficult to handle than the simple L.J. 

The above discussion has clearly emphasised the diffic-

ulties in obtaining a satisfactory form of the potential 

for even the simplest system, The next section discuosec a 

further complication that may be present, the phenomon of thr-

ee body interactions or non-additivity._ 

3.3 Non-additivity.  

The strict additivity of intermolecular fates ai 

required for the cell model hac long been in doubt. If 

three body forces must be considered the question arises as 

to what properties are affected and the magnitude of any 

non-additive correction? 

The relative stability of structure for 

inert gas crystals is a fundimental problem that has been 

linked with non-ad,f,itivity.Thio problem arises since the 

nolecules crystalise in the face centred cubic (f.c.c.) 

rather than in the hexagonal close packed(h.c.p.) structure 

which they should adopt from strict energy considerations, 

if the L.J. law was obeyed. 

Barron and Domb (81) reviewed and recalculated the results 

is of several previous workers on the static lattice energy 

and showed that the energy difference betwcon the two 
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structures was dependent on the distribution of further 

neighbours.This energy difference was considered by Axilrod 

(82) who extended his work of almost ten years earlier (36). 

He computed the effect of the triple dipole over a large 

but finite cylindrical lattice. His calculations favoured 

the f.c.c. but not sufficiently to counteract the original 

lower value of the h.c.p. 

Perturbation calculations by Jansen, and 0o-workers 

(83-85) supported the views of Axilrod and others, that 

the stability of the f.c.c. structure in the rare gas solids 

could only be explained by the presence of many body forces. 

However Jansens estimation of the three body contribution 

( 23% of the cohesive energy for solid argon) definitely 

appears to be too large. 

Thus, although the presence of a non-pairwise additive 

term seems beyond dispute', the Liagnitude of the effect 

especially in the explanation of the above phenomena is 

still a matter of uncertainty. Another situation where 

qty ttsoune importance is in considerations of the third 

virial coefficients. Calculations by Kihara and others (86) 

indicate the contribution to be important in the cases of 

argon and krypton and this view was supported by the work 

of Sherwood and Prausnitz(87) who stated that non-additive 

forces made a significent contribution at low temperatures, 

Kihara estimated the leading term in Axilrod's dipole-

dipole-dipole calculation (u123) 
 which in proportional to 

(r12r23r31)
-3end which may be calculated from polarizability 
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measurements 	Sherwood and Prausnitz used this tern to 

indicate that the discrepency between the predictions of 

the two body potential and the observed virial coefficient 

could be as7,igned entirely to the leading ter(1 in 
u123.  This 

result has led Barker to conclude that the triple dipole 

interaction is the only important non-additive effect, this 

conclusion however awaits experimental confirmation.(24 

Those observations stress the importance of obtaining 

an accurate estimation as to the magnitude of non-additivity. 

If the corrections are so small that they only account for 

the 0.01% difference in the relative lattice energies then 

the effect may generally be neglected, for this difference 

is less than the uncertainty in experimental properties. 

However, if the order of the effect is as high as predicted 

by Jansen the depth of the potential energy minimum would, 

of necessity, be substantially raised. 

At the present time the position regarding non-additivity 

is far from clear and radically opposed opinions are rife. 

Thus Rowlinson and Stavely (88) have made low temperature 

neasureneato for Ar and Kr and fitting their results to a 

core potential of the type first proposed by Kihara (89) 

predict a value of €/k=170°K.(approx.) for argon( e/k=1200K 

from L.J.) 

From the opposite viewpoint Batchelder et al (90) 

have recently published accurate measurements of the lattice 

constant for argon, and on comparing their results with 

theoretical predictions find "no experimental necessity 
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to invoke three body interactions". 

In view of such conflicting statements, one must 

hesitate to draw any definite conclusions on non-additivity. 

However, the author feels that the effect is substantially 

less than that suggested by Rowlinson. In the subsequent 

theoretical studies of the inert gas solids no correction 

has been made for non-additivty.Its magnitude may possibly 

be reflected in the comparison of theoretical and experimental 

values. 

3.4 Discussion. 

The evidence presented earlier in this chapter indicated 

clearly the constraint i71posed on the potential by a two 

parameter interaction law, However,potentials containing 

three or more parameters do not appear to justify their 

increased complexity by demonstrating a similar degree of 

improvement in their predicative value. The most successful 

multi-parameter potential, that of G.and Mc. must be 

considered as specific for a specific substance, demanding 

as it does a comprehensive knowledge of experimental data. 

We therefore propose that a treatment of the solid 

state of the inert gases employing the cell model of 

Lennard-Jones and Devonshire is perfectly reasonable. 

The simple analytical form of the potential makes calculat-

ions relatively easy and enables the treatment to be 

generalised by a corresponding states approach- a treatment 
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that may be readily applied in situations where multi- 

parameter potentials appear to fail. 

To date we have not mentioned quantum effects, which 

are markedly present- in the low temperature states of the 

inert gases. These will be doalt with in the next chapter 

and we content oursel,res here by stating that the simple 

analytical methods we employ are such that our treatment 

is readily and fully quantised. 

The problem of the anharrionic vibrations of the 

crystal lattice at low temperatures has also been neglected. 

In lattice dynamical treatments these effects contribute 

measurably to the thermodynamic properties and must therefore 

be allowed for. To date most treatments that correct for 

anharmonicity have been long and detailed (76, 91-93). 

In cell methods however, these difficulties are not encoun- 

tered and it is well known. that the model of L.J. & D. 

deals exactly with anharmonicity (94). 

Thus, neglecting three body forces and adopting a 

L.J. 12:6 interaction potential we will proceed to apply 

a quantised cell model to the solid state of the inert 

gases argon and neon. 
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CHAPTER 4. 

A theoretical study of Argon and Neon at high densities. 

4.1 Quantum effects. 	• 	. 	. 61 

4.2 The Quantum cell model 	• 	• 63 

4.5 The evaluation of the potential 

parameters. 	• 71 

4.4 Solid argon 	• 	. 	. 	. 80 

4.5 Thermal vacancies in solid argon . • 91 

4.6 Solid neon 	. 	• 	• • 95 

4.7 Discussion 	. 	. 	. 	. 1c4 

"The essential fact is that all pictures which 

science now draws of nature and which alone seem 

capable of according with observational fact are 

mathematical pictures." 

Sir James Jeans. 
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4.1 Quantum Effects. 

Any attempt to investigate and interpret the propert-

ies of the inert gases, particularly at very low tempe:mtures 

must account for the fact, that under these conditions the 

molecules behave quantum mechanically. This quantum 

behaviour can be conveniently described, as was pointed 

out by De Boor (95), by the introduction of a dimencionlecm 

quantum parameter /1: where 

hAra E) 20' 
	 (4.1.1) 

h =- Planck's constant; m = mass of molecule 

E 	16ore the potential constants. 

is the ratio of the De Broglie wavelength of the 

relative notion of the two molecules (€ = 2/2) to the 

molecular diameter d. When Ais of the order of unity for 

a particular element, large quantum effects are present at 

and below e/k°14 However as the parameter becomes smaller 

the quantum effects noticably decrease in magnitude. 

If we consider that the potential energy of a molec-

ular system is expressed as the sum of pairwise interactions 

of the Lennard-Jones type, then the classical equation of 

state may be written (in reduced variables) as a universal 

function. 

(p63/ ) classical = f(V*IT*) 
	(4.1.2) 

which is the clan7icaI law of corresponding states. 

To extend this law into the region of quantum effects the 

A parameter must be introduced. As a result the 
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thermodynamic propere:ez are no longer functions of the 

reduced variables 4tone, but unique functions of these 

variables and of A'-;.e. the thermodynamic properties bec-

one dependent on the nass of the molecule under consideration 

and - 

(p63/€)quantura 	f(V*,T*, A* ) 	(4.1.3) 

We have already shown that the classical partition 

function for a system of molecules without internal degrees 

of freedom is- 
3N 	

_xffederAl d - 
In quantum mechanics the above equation. must be replaced by 

the quantum or Slater sun, such that 

nth eigenstate satisfying the equation Irlyriz.: n m a*d 

where- gn is'Ithe degeneracy and lithe eigen value of the.  

qu 	23A-exp 	I. Ail 	(4.1.5) 

where the summation extends over all eigen values of which 

the system is capable. 

Quantum effects are largest near 00K., where ordinary 

thermal effects are small. These have been widely invest-

igated by examining the reduced static lattice energy U*0' 

(=U
o/NE) and the reduced molar volume V*(=

,VoATd3) for Xe, 

Kr,Ar and Ne at 0°K., as functions of/r5(see 4.3). Quantum 

deviations are apparent for all rare gas solids and are most 

pronounced for neon (96). The deviations further increase 

as the molecular masses become smaller and any application 

of a statistical theory to investigate these regions must 

involve quantum corrections. The problem of introducing 

Aq
4 (277A471)  

11 4  
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such corrections into the cell nodel, although complex, 

has been solved and the solution is presented in the form of 

the quantum cell model. 

4.2 The Quantum Cell model.  

The equation of state for a system obeying quantum 

statistical mechanics requires the solution of a Schroedinger 

wave equation, which describes the equilibrium configuration 

of a system of N particles. A straightfoward sointion of 

this equation is virtually impossible and hence the intro-

duction of a single particle theory such as the cell theory 

would simplify matters to a considerable extent. 

The earliest attempts to introduce quantum corrections 

into the classical cell theory were by Lunbeck (97) who 

evaded a direct solution of the Schroedinger by expanding 

the Slater sum in powers of the quantum parameter. Another 

method initiated by Prigogine and Philpot (98), that of 

simplifying calculations by introducing an arbitary potential 

was extended by Henderson et al (99-100) and by Hamann end 

co-workers (101-103). The latter estimated the zero point 

energy in the cell by adopting a square well potential. 

This has appeal in limited circumstances (see 6.1), but in 

general these treatments are only approximate. The develop-

ment of a fully quantised cell model for systems obeying a 

L.J. interaction is more rational and, as will be shown 

decidedly successful. 
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The first treatrient of such a model was proposed by 

Levelt and Hurst (104) and later sinplifed by Henderson and 

Reed (105). The approach we will describe here and which we 

have extensively employed in our calculations is that initial- 

ly developed in these laboratories by Hillier and Walkley (106). 

It is more conprehens:Lve than that of Henderson and Reed 

and less involved than the method used: by Levelt and 

Hurst. It is also equally as rigerous, highly accurate 

and with regard to quantum systems, completely general in 

its application. 

The assumptions of the cell theory have been described 

elsewhere (1.4) and, apart from a few relevant details will 

not be reiterated here. 

The geometry of the cell is such that the cell centres 

lie on a hexagonal close packed lattice and 

3 1  
V/N = a-  /22 	 (4.2.1) 

The classical partition function (4.1.4) may be replaced 

by the product of elle particle integrals. 

(VW( ( exp -(W(r)-W(0)/kT) cIT") zclass 

x exp(-NW(0)/2kT) 

N 

(4.2.2) 

where W(r) - W(0) is the potential experienced by 

the wandering molecule at a distance r from the cell cond. 

tree 

The volume of the cell is taken as equal to the volume 

per partial° and therefore the integral in the free volume 

tern occuring in (4n2.2) is given by integrating over rn  

where 	4/37Tr3 = V/N 
	

(4.2.3) 
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The reduced cell volume V* = V/Vo is defined so that 

V* = a3/ 22(53  and the reduced cell radius R = r /d c 
= 0.55267a((where0<=a/O ). 

Assuming an L.J. potential we may rewrite the expression 

for the sphericalised:HRotential, over k shells (1.4.10) 

as 	W(r) - W(0) = 77.7 
112

', 
l
ir E 

	r 

'CR L21(k÷4)* 	s R4° ( 	T1  g..4 	
Lit4  oe,g  

= 	 - 	(4.2.4) 

where Z. is the co-ordination number of the ith shell 

at oeLand R is the reduced distance R = r/cr 

We have already stated in (4.1) that for a system 

obeying quantum statistics the classical partition function 

must be replaced by the Slater sum (4.1.5) and adopting a 

one particle theory-L-01a as the cell theory this reduces to 

	

( 	gnexp(- 1T))Nx exp(-NW(0)/2KT) 

(4.2.5) 

The energy levels)\nof the particle in its cell are obtained 

by solving the Schroedinger equation 

(--f-,2/24gLef/ (eon 	t-p 0 (4.2.6) 
In the case of motion in a central field of force the 

generalised Haniltonian allows a separation of variables 

(107). To determine the eigen values, only the radial 

component of this equation need be solved and denoting 

this by S(r) we may write the equation as-- 

S" (R) + CE 	-1(1+1)/R2  - 8711Y175))S(R) =0 

	

lln 	 (4.2.7) 

where E, = ge 10.  ---- and ) rE 2, fc 	2 , n 
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The boundary conditions for (4.2.7) are such that the 

wave function falls to zero at the cell boundary defined by rm  

i.e. LIJ (0) = 	(r
m
) = 0 	(4.2.8) 

To obtain convergence of the partition function a large 

number of energy levels are required. An "exact" solution 

of, the eigen value equation may be obtained either by a series': 

expansion or through a finite difference method. The former 

approach was adopted by Levelt and Hurst who, using the 

fact that a Taylor expansion of W(R) contained only even 

powers of R, employed a Frobenius solution to solve the 

Schrodinger equation. For the light isotopes 112  and D2 

which these workers investigated the method is capable of 

a limited degree of success. However, due to the complex-

ities of the procedure no volume derivatives of the partition 

function (i.e. pressure) were obtainable and the mathematical 

evaluation of the eigen values was slow and involved. 

The other exact method, that of the finite difference is 

more versitile than a series expansion. It is however 

comprehensively described elsewhere (108) and since it is 

not employed in these calculations other than as a comparative 

medium we will not describe it in detail. Instead we have 

utilised an approximation, known as the Wentzel-Kramers 

-Brillouin (W.K.B.) approximation (109-110) that enables 

a large number of energy levels to be rapidly evaluated. 

The W.K.B. method which is exact for a harmonic 

oscillator should be a good approximation for the spheric-

alisecl potential in the high density region, effectively 
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replacing the potential in the cell with a parabola split 

by a region of constant potential.It expands S(R) as a 

power series in R 

S(R) = So(R) 4-45.1S (R) +4
:12/2  s2(R) + **es 

	(4.2.9) 

Neglecting terns above the second results in solutions 

that are singular at the classical turning points(111) 

i.e. those values of R for which the kinetic energy is 

zero. These solutions are linked by a relationship 

which is the determining equation for the eigen values:- 
-j 

6e-1-1) 
— (4.2.10) 

where a and b are the classical turning points. However 

the formula (4.2.10) was found to give an incorrect solution 

unless 1(1+1) was replaced by (144)2. This condition is 

requisite for the wave function to vanish at r=0 (i.e. 

that the boundary condition is satisfied). This modification 

is tantamount to raising the potential barrier, but is 

essential for a successful application of the approximation 

(112). Hence : 

0 	72-   

	

8.7r2 	-- P-0 	_61,112  671 a ti,==-rt04.2.11) 

	

z 	Z. 
g 

for n = 

For each value of 1, this equation computes an infinite 

number of eigen values corresponding to integral values of 

n. 

An evaluation of the pressure for a quantum system 

requires the volume derivative of (4.2.5) 



P = kT(dln Zqu
/dV)T 

=57gn(An/dV).exp(- )\11./kT) 
  

68. 
(4.2.12) 

- 1 dW(0) (4.2.13) 

      

rgnsexp(- >/kT) 	2kT dV 

which in turn deands the evaluation ofdr/dV* where- 

 

9P 
=-_ 	- Zia 

3c,(2.  da 
(4.2.1'4) 

dV*  
This differential requires lengthy machine computation, 

but is readily obtainable frori (4.2.11) by a solution of 
K 

	

coo( 	oia! j e 

	

91T a  e\ 	 atdfie)j YiTzgz 	94 	-2  
kg- A* 

,, 	6)60 (!4..2.15) 

factor from (4.2.13) so- 

	

w 	.of 

PV = (-- M*51-0)Pc4 ):,31/dV*) ex? (- 2,e/ /) 

	

-- --- - 	2.16) NkT 	
7.1t 	""°   — V*  iltilK9)( 4.  

r(2 -1-1) 	exp (- AriT*) 	027" d1/* 

where W*(05% W(0)4°  

The corresponding ge  classical expression is 

PV ={(-V*/T*)(7117711/)/6V*).exp(-717(7)/T*) 41R.dR  
NkT 	fexp(-7TR)/T*) 471122.dR 

0 	- V*/2T*(dW*(0)/dV*) (4.2.17) 

where TFTR) = W(R)/E 

It is clear that once the partition function (4.1.5) is 

evaluated the thernodynamic properties of the system can 

be immediately calculated. These are expressed as reduced 

internal properties (i.e. the value of the reduced,  property 

in excess of that of an ideal ga). The reduced internal 

energy (U1'), entropy (S*) and specific heat (C* ) are vi 

a 
We nay directly proceed to evaluate the compres3ibility 
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U? 	=II
i 
 /NE* 	kT2/C ( dinZ 

qu/dT) - 1.5T* 
	

(4.2.18) 

Si I 7 
=S./Nk =-1 1nZqu  + T dlnZ

qu 
 (1nV + 2.5 +1.51n(27-AkT)) 

N -711, N 	h  

(4.2.19) 
7--  C* 	C /Nk . 2T dlnZ + T2  id 1nZ vi vi 	au - 	qu 

N dT 	N dT2 
-3 (4.2.20) 

In all calculations that follow we have performed our 

summations over the first three shells of neighbouring 

molecules. Hillier and Walkley (106) initially examined 

the effect of increasing from one to three the number of 

shells considered and observed a lowering of the energy levels 

of some 5% for the lowest levels, an effect that decreased 

with increasing n and 1 	The process of suming over 

more than three shells did not appreciably effect the 

values of the Slater sum an& consequently exercised a 

negligable effect on the values of the thermodynamic 

properties. Calculations on N2 and D2 at V* =5/3 enabled 

the energy levels from the the approximate W.K.B. method 

to be compared with similar values from Henderson and Reed 

and with the exact solutions of Levelt and Hurst. A small 

inaccuracy for the W.K.B. values was observed but was 

insufficient to detract from the superiority of the approx-

imation with regard to speed of computation. A more attract-

ive alternative may well be a faster application of the 

finite difference method, this is under investigation (71) 

but to date comprehensive results are not available. 
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We finally refer to the reduced static lattice potential 

W*(0) occuring in (/,,2.16) and (4.2.17). All compressibil-

ity terms involving he 12:6 potential were calculated 

using this in its asoymtotic form. 

W*(0) = 12 1r1.0110  - 2.4091  
L 	V*2 
	(4.2.21) 

which is developed from the expression for a cubic close 

packed structure 

w(o) = me (2.1318  - 14.4539 	(4.2.22) 
oCl2 	ob 

The co-ordination numbers were taken from the. tables 

of Kihara and Koba (68) and the crystal lattice parar.etors 

used in (4.2.22) calculated by direct summation.(5.2) 

The methods described in this section enable us to 

evaluate the compressibility and the thermodynamic propert-

ies for a quantum particle, experiencing a L.J. 12:6 

potential over a wide range of temperatures and 

Further the approach nay be generalised for any 

al potential of the Mie Lennard-Jones type (see 

The mathematical techniques and the computational methods 

involved in this procedure are presented in Appendix 1, 

and for further details the reader is refered to this. 

densities. 

bi-reciproc-

Ch 5.). 
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4.3 The Evaluation of the Potential Parameters.  

The importance of Jeterm:7ming a unique set of parameters 

for any system °belying a bi-reciprocal interaction law 

has already been stressed (3.1), as has the fact that 

second virial coefficient data noticably fails to meet 

this requirement. If we reject the latter as a suitable 

source of the parameters the only remaining thermodynamic 

state rigorous in its specification to determine e and d 

is the crystalline state at 0°K., i.e. the values of the 

total lattice energy (U0) and the molar volume (V0) at 

this temperature. These quantities nay be expressed in 

terns of the zero point energy ( 	and the static lattice 

potential (W(0)) an:-- 

U
° 

= N 	NW(0)/2 	(4.3.1) 

...P0A1w(dU0/dV)T=0  = N(d)‘0/dV) 	(1112)(dW(0)/dV) 	(4.3.2) 

The use of these properties to determine e and Cs' 

essentially means that any thermodynamic data derived 

through them should reflect the multi-particle interaction 

and ipso facto should include any effects of non-aditivity 

in the high density state. It is therefore of interest 

to compare parameters obtained from the zero point crystall-

ine state with those found from second virial calculations 

and further to compare their relative merit in the predict-

ion of other thermodynamic properties fcr the solid state. 

Earlier workers who employed crystal data to charact-

erise parameters include Corner (67) and Mason and Rice (69). 



72. 
Corner used the latice distance and the heat of sublimation 

(both at 0°K.). however, he was only able to uniquely 

determine his parameters by a combined consideration of 

virial (gas), zero point (solid) and Joule Thomson data. 

Mason and Rice performed similar work to Corner but on the 

exp-6 potential. They used the sane experimental propert-

ies and in addition the viscosity coefficients only to 

reach similar conclusions. 

The treatment used in this work was developed by 

Walkley and is completely different from any of the methods 

enumerated above. It makes extensive use of data available 

from the W.K.B. approximation, combined with an accurate 

knowledge of experinental properties. 

The computed data allows 	and dAo/dV to be deter- 

rained for any range of reduced density over any given 

region of the iik*  parameter. Equations (4.3.1) and (4.3.2) 

can be solved in their reduced form and hence considering 

the zero pressure (P0=0) state these become:- 
* 

0 
U* = U0 

 /NE mr-> 
o 

W*(0)/2 	(4.3.3) 

* d Ao/dV* 2dW*(0)/dV* =0 	(4.3.4) 

The second ter' in (4.3.4) is independent of the Xparamet-

er, and therefore lends itself to a simple graphical 

method of solving these equations. ForAMy given lattice 
\* 

(4.3.4) nay be solved by a sirultaneous plot of d Ao
/dV* 

and 2dW*(0)/dV* as functions of V*. As will be seen from 

Fig (4.1) this results in a unique set of V* at various 

/1( values. For any particle of known mass m it is then a 
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relatively wimple matter to proceed graphically to a determ-

ination of e and d" for the system. These calculations have 

been performed by the author for neon and by Islam (113) 

for argon and other inert gases. The detailed derivation 

of e and o'for neon is given in Appendix 2. The results 
are presented in Table (4,1) together with values of CA 

and Nd3  quoted from second virial data and the experimental 

data used in the calculations. Also included are values 

of the parameters obtained from a direct numerical solution 

of (4.3.3) and (4.3.4) using a method developed by Utting. 

This utilises the W.K.B. approximation and a Newton-Raphson 

technique in two variables. The equations may be satisfied 

to any predetermined degree of accuracy, and the procedure 

involves little computing time. A description of the method 

is also given in Appendix 2. 

We now compare our zero point parameters with those 

obtained from second virial data. We first study the 

dependence of the reduced zero point volume V*o(=V o
/N63) 

and the crystal energy u.*(,...uo/Ne ) upon 44')reducing exper-
imental data with both sets of parameters. In both cases 

a significant difference between the two curves is observed 

( see Figs (4.2) and (4.3).> Similar plots using virial 

parameters alone have been given by Dobbs and Jones (56) 

after De Boer (95) and by Boato (57). However, as our 

zero point values of and d" were directly calculated from 

Vo and Uo 
the curves arising from their use must be consid-

ered the most rigorous. In addition they also display 
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Table 4.1 Characteristic L.J. parameters and zero point 
properties. 

Element. Experimental 
zero point 
enfn- 

Z.pt.params. 
(graphical) 

Z.pt.params. 
(computed) 

Second 
virial 

U 

ea? 
11.

° cc 
6/k 
(00  

i  

yd3 
cc 
mot e 

C/k  f olo  
` 

N63 
cc 
MO1 A 

. 

Gik 	Nd3 
(OK) 	cc 
 rini eN, mr)1 F% rtinl A 

H2 183a  22.5a  32.6 15.64 32.92 15.35 36.70 	15.600  

iv 37.0,:  15.12f 

D2 274a  19.5a  34.4 15.85 33.70 15.74 35.2°  15.50°  

II 37.0E 150121  

[20 Ne 4481)  13.39d  36.6 12.8c 36.31 12.8; 33.74 12.61 

Ar 1846°  22.55d  120.8 23.6E 120." 23.6/1 119.51  23.89h  

a.  Best values of Levelt & Hurst(114) e. Michels et al.(118) 

b.  Clusius et al.(115) Table la Ref.35. 

0. Morrison et al.(116) g.  Nicholson & 

d. Batchelder.(117) 
h.  

Schneider.(119) 

Whalley & 

Schneider.(120) 
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.4 

no irregularities unlike the plot of V* vs J\. given by 

Boato (57) 

Another point of in;erest arising fron the evaluation 

of the parameters is that all other attempts to use (4.3.1) 

and (4.3.2) to characterise the pair potential have made 

use of the Debye temperature OD  to give annexperimental" 

value for ) oI  le e. 

Uo(expt) 	(9/8)R eD 	(N/2)W(°) 	(4.3.5)  

(d/dr)(NW(o)/2  + (9/8)ROD) ---- 0 	(4.5.6) 

where r is the nearest neighbour distance. The deriv-

ative de
D/dr however, must be calculated theoretically 

and in general a harmonic oscillator approximation nust 

be made. Such calculations are at best suspect especially 

for particles lighter than argon. 

A comparison of the theoretical values of Ao  with 

the reduced zero point energy may be Made by plotting 

these. quantities as a function of N. This is done in 

Fig (4.4) from which it can be seen that for/ 0.4, a 

narked discrepency between the two quantities occurs. 

However on a perfunctory comparison of zero point 

parameters with those obtained fret,/ gas data (Table (4.1)) 

and on a further exaMination of Figs (4.2) and (4.3) a 

casual observer night conclude that although the parameters 

differ, this difference, on account of its low order of 

:Iagnitude, should be unit/portant. In the study of the high 

dendty state this suMW-se would certainly be false, to what 
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degree will be illustrated in the following sections when 

we will deal with solid argon /1-..0.185) and the more quant- 

um solid - neon( irr.-; 0.58). 

4.4 Solid Argon.  

Of all the inert gases arson lends itself nost easily 

to any theoretical study. The low magnitude of its
* 

 

parameter indicates that quantul4 effects though present 

do not exert an overbearing effect on its low temperature 

properties. More important however is the abundance of 

experimental data available - in particular tl-e recent 

X ray diffraction Measurements of Batchelder (117) together 

with the heat capacity and vanour pressure values obtained 

by Morrison et al (116). These latest Ppasuredents are 

assumed to have supercedbd all others for the relevant 

properties, further data however flay  be found in Pollack (58) 

and in Dobbs and Jones (56). 

Most previous theoretical treateignts of the solid have 

been based on the assumption that the particles in the 

crystal lattice are constraine4 to their equilibrium posit-

ions by harmonic forces. Typical of these are the Einstein 

model (121), assuming the independent vibration of all 

particles in the crystal and the Debye model where the system 

is allowed a distribution of vibrational frequencies (122) 

More recently Henkel (92) and Zucker (123) have predicted 
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the thermodynamic properties of argon using an Einstein 

model but have allowed for anharmonicity in the model by 

suitably peturbing the basis harmonic potential. The marked 

improvement at high temperatures brought about by the 

inclusion of the anharmonic terms lends support to the use 

of the rigorously anharmonic L.J. cell model. 

We have therefore evaluated the thermodynamic properties 

of argon employing the quantum cell model described in (4.2), 

normalising our computed data with the appropriate zero point 

parameters. It is important however to examine how the use 

of virial parameters would effect our calculations. The 

virial parameters given in Table (4.1) are far from unique. 

Using experimental data compiled by Dymond (124) and 

employing a Newton method (125) we have found the best fit 

from 200°  - 300°K. This is shown in Table (4.2). 

Table 4.2 	L.J. Parameters for Argon. 

Source 	C/Ic (°K.) Nd3  (cc/Hole.) 

Z.point data 120.8 23.68 

200-300°K.2  119.8 23.50 

323-873°K.12  119.9 23.90 

85-155°K. 104.9 31.53 

a Virial parameters calculated from compiled data (124) 

b 
	

It 	 tt 
	

by Saville (126) 

Also given in the above table are the values of 

Saville (126) who performed similar calculations over other 

restricted temperature ranges. An examination of the values 

in Table (4.2) indicates that the good agreement between the 
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"best fit" virial values and those obtained from zero point 

data must be chiefly fortuitous. However, since the best 

fit values are the closest to the zero point parameters 

we arbitarily employ then for comparative purposes. Their 

use should minimise the difference betveen the predicted 

properties and act as a test as to the sensitivity of these 

properties to the nature of the parameters. 

Taking argon with the appropriate value of /"(depend-

ent on 6 and 6) and using the W.K.B. approxination, we 

calculate PV/NkT (i.e. (4.2.16)) over a range of T* for 

set V* values. The resulting PV/NkT vs T* plots are 

typified by Pig (4.5). We are interested in the zero pressure 

state of argon and hence zero compressibility • From this 

condition we find unique values of V* and T* whichlnormalised 

by the appropriate values of Nd3 and E/k respectively, 

determine the volume-temperature relationship at P=O. 

This is given in Fig (4.6) - ( for data from which this and 
subsequent plots in (4.4) were developed see Appendix 3), 

the reduced data being normalised by both zero point and 

by virial best fit values. The plot is remarkably sensit-

ive to the parameters and the two curves are distinctly 

different. This difference is also ;lost influenced by 

the magnitude of N63 ( i.e. a lower value of E/k z•pt• 

would make the difference appreciably worse.). The discrep-

ancy is only of the order of 0.18 cc/mole, however since 

graphical and computed values agree to within 0.04 cc/mole 

we do not attribute this difference to graphical errors 
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Fig 4.5 Argon,12-6 potential( #ft0.186).Compressibility 

factor as a function of reduced temperature. 
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in evaluating our parameters. Attention is drawn to the 

excellent agreement between theoretical (zero point) and 

experimental measurements, The experimental data used is 

that of Batchelder (117), derived from single crystal X 

ray diffraction measurements, the bulk density values of 

Dobbs and Jones that we employed in our earlier calculations 

have been disregarded in favour of these latter results. 

In particular we note the good agreement between the 

theoretical and experimental molar volumes at temperatures 

below 40°K., This contrasts sharply with the agreement 

obtained by McGlashan using his "improved" Guggenheim and 

McGlashan potential (61). He plotted the inter-atonic 

distance of solid argon (directly related to the molar 

volume i.e. ro<V ) against temperature and explained the 

discrepencies observed below 400K. as " in a sense satisfact-

ory because we know that the Einstein approximation must 

fail progressively at sufficiently low temperatures." 

He went on to indicate that a correct comparison should 

involve weighting techniques. This latter statement is 

substantially true, that the Einstein nodel fails at low 

temperatures is also true. However, the degree of this 

failure is unknown and therefore to dismiss all low tempera-

ture discrepencies on these grounds cannot be justified. 

It is the author's view that discrepencies due to the 

failure of the Einstein approximation are small, we support 

this with our results for argon calculated from our anharmon-

ic Einstein model- a more sensitive test will of course 
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result from the study of solid neon which only exists in 

this state between 0-25°K. 

We now calculate the theoretical heat capacity q7(v) 

from (4.2.20) and then compare it to experiment. The 

experimentally measured quantity however is C . This is 

because measurements of heat capacities are generally made 

by condensing the gas at a sufficiently low temperature in a 

suitable container. These measurements give Cs, the heat 

capacity of the solid in equilibrium with its vapour, but 

Cs is generally equal to C since the vapour pressures 

are too small to produce appreciable compression effects. 

Measurements of Cv (the heat capacity at constant volume) 

are well nigh impossible and this quantity can only be 

obtained by the use of the coefficients of compressibility 

and of thornAl expotsion. Chrolk A-coral. 1540704 kkertiblnatp.. 

is relmoiofthip:- 

Cp  - (v) = 042w/3 	(4.40) 

where.(_= -coefficicriat of Lliormal expansiontt,(1/V)(dV/dT)p  

p= isothermal compressibility=(1/V)(dV/dP)T  

V 	molar volume at T°K. 

Theoretical values of of and /3 may be calculated by fitting 

a polynomial to the theoretical data. This was done by 

Hillier (6) and hence the theoretical Cv(V) was converted 

to a theoretical C . The comparison of this with experiment- 

al data is shown in Fig (4.7). 

It is alo possible to convert the experimental C to 
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Fig 4.8 Solid Argon:-Heat capacity(Cvoal/molek.) 
vs Temperature. 
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Cv using indirect "experimental" values of oe. and P 

This was done using (4.4.1) and in Fig (4.8) we give a 

comparison of "experimental" and theoretical Cv, the 

former being obtained, as were the values of Cp, from the 

results of Morrison et al (116). In both cases agreement 

between theory and experiment is again excellent. It 

should howeVer be noted that these comparisons are sensitive 

only to the temperature parameter E/k of the potential and 

therefore either zero point or "best fit " values for 

argon would give similar results. 

An interesting facet of the heat capacity plots is the 

divergence between the-theoretical and experimental curves 

at high temperatures, One explanation of this is that it is 

due to thermal vacancies. There are however several 

objections to this concept which we will discuss in (4.5) 

We make a final comparison with experiment by plotting 

the entropy term as a function of temperature, Fig (4.9). 

This term nay be obtained from the experimental heat capac-

ity data using the relationship - 

S(T) 	/T)dT 	(4.4.2) 

and the theoretical value directly from theoretical data 

with the correction for the ideal gas entropy (4.2.19). 

The agreement is not as good as that observed for other 

temperature dependent properties. Discussion however 

is postponed pending the examination of solid neon. 
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4.5 Thermal Vacancies in solid Argon. 

Any consideration of imperfect crystals must consider 

the problem of vaca-lcies, TheSe are formed at temperatures 

above 0°K., aad must occur in inert gas solids as in my 

other crystal. It is pro-Jablc that vacancies are the only 

important point defects in pure crystals of the inert gases 

since the formation energy for interstitials is high 

compared with that calculated far• a vacancy. 

Experinental evidence for the presence of vacancies 

was first given by Martin (127) and later supported by the 

heat capacity measurements of Morrison et al., as shown 

in Fig (4.7). The anonolous rise in C above 50°K. is 

much greater than would be expected from anharnonic effects 

alone and offers fruitful ground for a theoretical investigat- 

ion. Two approaches have been applied to this problem; 

the consideration of vacancy formation purely on energetic 

grounds, as done by Kanzaki (128), Hall (129) and Nardelli 

and Chiarotti (130), or a consideration of the lattice 

in the vacatcy (perfect) and no vacancy (imperfect) modes. 

The latter method was employed by Foreman and Liddard 

(131) who used a harmonic Einstein model with an anharmonic 

correction torn developed as a classical perturbation 

and found a clear difference between the vacancy and no 

vacancy cases for plots of the heat capacity above 50°K. 

In this discussion we assume the cell nodel to repres- 

ent a no vacancy solid. If the difference in the theoretical 
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and experimental heat capacity terns is Lc then:- 

LCD  =re:  (nh) /Oil V 
	(4.5.1) 

where n is the number of vacancies in a crystal of 

N atoms and h is the enthalpy of vacancy formation. 

If we assume that h is independent of T we find: 

In LC T2  =.-h/kT + S/k + n(Nh2/k) 	(4.5.2) 

Measuring the difference Ac from Fig (4.7) the linear 

plot of ln( ne T2) against reciprocal temperature can be 

constructed. This is shown in Fig (4.10) and from its 

slope the enthalpy of vacancy formation can be calculated 

as:- 	h 1190 cals/mole 

This value is in substantial disagreement with the predicted 

value of 2540 cal/mole given by Nardelli and Chiarotti (130). 

It is much nearer the value of 1280 cal/mole found by 

Morrison et al, who estimated the no vacancy heat capacity 

curve by the extrapolation of low temperature data. 

Provided that the quantum cell model is a good repres-

entation of the no vacancy case and (assuming that correlat-

ed notions do not effect C ) there is no reason why it 

should not be, our calculations strongly support the theory 

of an increase in vacancy concentration above 60°K. 

Certain voices have recently been raised against 

such ideas as those described above and especially we 

mention those of McGlashan (61) and Batchelder et al (90). 

McGlashan derived a theoretical expression for Cp  that 

directly fitted the experimental data of Morrison as far 

as the triple point. He concluded that earlier theoretical 
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estimations were in error for in gcneral the experimental 

specific heat (C p) %Tas converted to C
v 

by the use of a 

"dubious mathematical relationship", and then compared with 

theoretical predictions. However, this is not true fez 

our treatment (ref. Fig (4.7)), Cp(theory) being derived 

completely on theoretical grounds and then being compared 

to C (expt.). We further refute the opinion that (4.4,1) 

is not valid and agree with Zucker (79) that in fact 

McGlashan has forced correct values onto a model that 

cannot really cope with then. Ile has done this by leaning 

heavily on experimental specific heat data to determine 

fnur of his six parameters and the successful prediction 

of Cp, using these sane parameters, must therefore be 

expected. 

However thn work vf Batchelder et al is more convinc-

ing and difficult to disregard. They have performed 

accurate experiments using single crystal techniquob:Adopting 

these as the "no vacancy" case and using measurements 

from bulk density work as the vacancy condition they-1'1.4d 

that the concentration of vacancies appagrs to decrease 

with increasing temperature. 

These results are considered to raise serious doubts 

as to whether the presence of vacancies is as important as 

predicted by Foreman and Liddiard. To resolve this problem 

direct measurements of the thermal vacancy content and high 

temperature compressibilities are needed but,at present, 

little information on these exists. 
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4.6 Solid Neon 

(For theoretical and experimental data used to construct 

figures in this section see Appendix 4.) 

Compared to argon the solid phase of neon has been 

neglected both experimentally and theoretically. The 

reason for this must be attributed to the low triple 

point of the solid (24.55°K.), for with such a narrow range 

of working temperature experimental problems are substantial. 

However, experimental data has recently become available and 

the X ray studies of Batchelder (117) and Bolz and Mauer 

(132) ably supplemented by the heat capacity measurements 

of Cluatius et al. (115) now provide criteria against 

which any theory may be compared. 

Fron the theoretical viewpoint solid neon is of 

much greater interest than the corresponding phase for 

argon. The quantum effects arc substantial (A=0.584) and 

anharnonic contrubutions are very large. Leech and Reissland 

(91) have studied the effects of anharnanicity in the 

inert gases and have concluded that in the case of neon a 

harmonic theory could not expect to be realistic. This 

system therefore acts as a test for the anharnonic nature of 

our model and in addition of the ability of the quantum 

cell theory to successfully predict properties for systems 

displaying large quantum effects. 

The earliest attempt to formulate a theory for solid 

neon might be attributed Lo Johns (133) who used a Henkel 



96. 

model (92) to study isotopic differences especially those in 

the vapour pressure. This model although taking some account 

of anharmonicity cannot be regarded as a valid approach and 

any success through its use must be considered fortuitous. 

Variational calculations have been made.-by-Berne±des (134) 

and Mullin (135). The former employed a wave function 

assuming simple spherical symmetry. Mullin extended this 

technique allowing for some correlation between the atoms 

by using a Jasrow type wave function and a L.J. potential. 

He found correlation effects between the molecules to be 

negligible at 00K., and obtained good agreement with 

experimental data at this temperature by altering the value 

of his energy parameter. 

llowever, (apart from the data of Leech and Reissland) 

there has been no extensive work to date on the temperature 

dependent properties of neon. Once again we have applied 

our quantum cell model to evaluate these properties. The 

choice of parameters - already shown to be sensitive for 

argon - in the case of neon is almost critical. The values 

of E. and cs' from various so,urces tether with related 

data is given in Table 4.3 (see overleaf). 

The values of our zero-point parameters E and h were 

obtained using the recent X ray diffraction of Bolz and 

Mauer (132) which together with that of Kogan et al. (139) 

replaced the earlier data of Smedt, Keesom and Mouay measured 

in 1930 (140). Bolz and Mauer gave a lattice spacing for 

20Ne of 4.462 i at 4.2oK., the value of Smedt et al. being 
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Table 4.3. L.J.  Paraneters for Neon 

Source & Ref eA.( °K, .A) 

2.757 

2670 

2.699 

2.750 

2.740 

2.774 

2.777 

2.775 

Nd3(cc/m010 

a 

b 

d 

c 
... 

: 

a 

h 

Nicholson & 
Schneider(119) 

Boato & 
Casanova(136) 

Horton & 
Leech(137) 

Mullin(135) 

Bernardes(134) 

Brown(138) 

Z.point(graph.) 

Z.point(conp.) 

33.74 

37.10 

35.31 

35.70 

36.23 

35.28 

36.60 

36.31 

12.61 

11.46 

11.83 

12.52 

12.38 

12.86 

12.89 

12.87 

0,608 

0.596 

0.607 

0.593 

0.590 

0.580 

0.582 

4.3505 (confirfiration of the - forner value has been co.:mnicated 

to us by Batchelder). 

Brown has also, useArthe kta of Bolz And MAlier to 

repeat the calculations of Horton and Leech for neon. 

His wales are given as f (Table 4.3), which closely agree 

with our zero point (either graphical or nutirical) values. 

As r.ay b- seen fro-:, the table, paraneters frott the other 

sources have a spread of about 10%, a spread that is not 

negligible when reflected in the thertiodynanic properites. 

It is considered of interest that the Levelt and Hurst 

calculations (114) based 3n virial values give a zero point 

energy of 136 cal/mole agreeing will with the Donb and 

Salter approximation i.e. 91Zej)/8, of 139 cal/mole. Our 

calculations give a value of 142 cal/mole, so this wnulcl not 
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account for the difference in 	values as calculated by 

ourselves and Brown. It is possible, but not certain, 

that these values night arise from the nature of the Horton 

and Leech calculations themselves. However, the critical 

test of the parameters lies in their prediction of temperature 

dependent properties. 

In Fig. 4.11 we present a plot of zero point molar 

volume as f(T). The experimental curve maybe constructed 

from -the data of Bolz and Mauer or-af Batchelder.--The-thParet. 

ical -drttr-normalised by the paraneters-of laate- -and-Casazurra,',-..  

by 	n  -and -by Nicholson and -Schneider- -were-rejecte.d... -The_ 

:theoretical_zero point - parameters giv-e -a far-better-agree-r"• 

meat_ with--experinezrt...and... 	se-paration_.D.f-the.1,.various 

is an. inidcation -of-the sensitivity af the- data. to-thc 

.parameter-values. 

--In Fig. 4.12 we plot -latti-ce • constant (ad_ _against 

temperature and compare• theory to the late.st data.of 

Batchelder- The lattice constant is -simply related_to_the 

mnlnr volume-(V).:_lience, for a close packed latticez- - 

V=Nr03/24 	 (4.4.1) 
• 

where r is - the intaratumic.distancev 

but 	a o  =,re  / 27  

-an.d ao=t 22  x---(2417111.)- 

(14.) 	 (4*6.3) 

Yag(4.12)is. therefore another- war-of presenting..Fig 14.11)-. _ 

1/0Weardirl ita 1.9 perils-  4- La &ger 	on a th e prvdie.-- 

411-Vit 	b‘e eider,. lig arzewle46 3.exaeliott- 
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being alm,)st within_ experimental accuracy (+0.001 R). In 

this plot we also nerrzalise the theoretical data with the 

parameters of Brown. This, for the sake of clarity was not 

done in Fig. 4.11. Agreement with experiment is again 

acceptable. 

The heat capacity tern Cv(V) is plotted as a f(T) in 

Fig. 4.13. The experimental data is that of Clusius, which 

is calculated from C
P 
 using Gruneisen's relationship (142):- 

Cv = C 	k1Cp
2T 	 (4.6.4) 

where k
1 is a constant. 

Although this evaluation can ,)nly be regarded as approximate, 

confirmation of the Cv value is given through the data of 

Batchelder, using (4.4.1) and values of d and /3 derived 
from accurate X ray data. 

The comparison of experimental and theoretical values of 

ICJ show that the theretical data "normalised" by the paramet-

ers of Brown gave a slightly better fit with experiment - 

a direct result of a lower value ofelic. 

In Fig. (4.14) we give a plot of C against temperature. 

The theoretically computed Cv(V) arc corrected to C through 

thetuse df (4.4.1), the expansion coefficients being eval-

uated from theoretical data, utilizing the fact that (4.4.1) 

reduces to:- 

Cp-CV= d2VT/13 = dVAIT) 2T/( dir/dP) 	 (4.6.5) 

where (dV/dT) and (dV/dP) nay be evaluated from computed 

results. 

The agreement between theory and experiment is again 
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good and in particular no divergence is observed in the 

pre.melting region. However, since is by definition 

(1/V)(dV/dT) and the theoretical and experimental V vs T 

curves •- Fig. (4.11) - are definitely not identical, this 

agreement may be somewhat fortuities. 

Finally we compare the theoretical and experimental 

total entropies in Fig. (4.15). As in the case of argon the 

experimental curve was calculated from heat capacity data 

using (4.4.2). The agreement is very similar to that found 

for argon, the theoretical curve exhibiting the lower entropy. 

It is of interest to observe that for both neon and argon 

the theoretical and experimental curves are roughly parallel 

and sone 0.4 cal/deg.nole apart. Barker has recently 

stated that the entropy calculated by an Einstein model sh)uld 

be too low at high temperatures (94). He also mentioned 

that his calculations for the particular case of a Lennard-

Jones potential indicated that the discrepancy was approx-

imately equal to 0.2R (i.e. 0.39 cal/deg. mole). We 

therefore conclude that this discrepancy in entropy nay be 

in the adoption of the Einstein model, to which, of all 

thermodynamic properties the entropy is most sensitive. 

4.7 Discussion 

The suocess of the cell model in predicting the thermodyn-

amic properties of neon at high densities is unquestionable. 

Its exact allowance for anharmnicity is markedly superior 
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to anharnonic correctims developed for harmonic models. 

This point is ably illustrated by the reaults of Leech and 

Reissland, who, although improving their model, were unable 

to attain a satisfactory agreement between theory and experiment 

(for lattice constant as a function of temperature). 

Further we nigh; conclude from the results observed for 

both argon and neon that the 12:6 potential appears to be 

satisfactory for the prediction of solid state properties. 

Howevert  when. employing this. potential-at high.densitleadt.. 

appears essential to derive the-potential-parameters' fran 

solid state-data at 0°K.-1, accepting the fact that at these 

temperatures the second virial arpears too insensitive a 

property for this-purpose. 

The. observed_agreemant.hetween theoretical and experim.. 

ental data-  do-es-nnt- appear to- warrant the use of non-add- 

itivity corrections, although it is possible that these 

effects may he adequately accounted for by the-character-- 

isation of the cell potential through zero2pcint'(nalti- 

- -particle) data, i.e. instead of a strict pair potential 

we are in fact employing an "effective potential" that 

allows for tulti-particle interactions. 

The cell m,del emplJying a 12:6 interaction is therefore 

a much mare versatile medium for investigating the said 

inert gases than any meth.:d involving multi-parameter 

potentials,- or anhartnnic perturbation theories. The excell-. 

ent.prediction of temperature dependent properties .argues 

well for the model, while the W.Z.B nethod provides_a rapid 
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and accurate method of summing the required energy levels 

and evaluating the conpressibilities. The potential is 

known to be empirical but it is difficult to say whether 

any noted discrepancies can be directly attributed to this. 

We will now proceed to investigate the potential in a 

general m:n form and further to study the effect of the 

zero point parameters in predicting second virial 

behaviour. 
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CHAPTER 5. 

The Bi-reciprocal potential and some considerations of 

The Second Virial Coefficient. 

5.1 The Bi-reciprocal potential. 	. 	109 

5.2 The general m:n for solid argon . 	112 

5.3 The Second Virial Coefficient 	. 	122 

"For up and down and round says he 

Go all appointed things 

And losses on the roundabouts 

Means profits on the swings." 

P.P,Chalmers (1872-1940) 
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5.1 The Bi-reciprocal Potential. 

Our investigations in the high density region have 

invariably used a 12:6 potential in the cell model. It 

is mathematically convenient and in its own right often 

more valuable than the rigorous forms described in (3.2). 

However, if we consider the potential as a general bi-

reciprocal form of the n:n type,as originally proposed by 

Mie, an infinite number of possible m:n combinations exit 

This number can bempidly narrowed by assuming the attractive 

power to be six, as suggested by the Landon concept (1.2). 

There can be little doubt that this is the correct asymp-

totic form. Under certain circumstances, generally at 

large intermolecular separations, it has been suggested 

that r-6  in the attractive tern nay be replaced by r-7 (143). 

In sharp contrast for the evidence available for fixing the 

index of attraction is the way in which the repulsive 

index is set at twelve (r-12). Its justification has often 

been sinp'y its mathematical cavenience, or that it fits 

experinenthl results best, while it is widely held that 

may value of m between 10 and 14 will give adequate agree-

ment between the ciculated and experimental data far low 

energy properties such as the second virial coefficient. 

Any alteration of this index is reflected in a change of 

s)ope of the repulsive arm of the potential (see Fig (1.1)), 

and consequently alters the shape of the potential bowl. 

A lowering of the index "softens" the arm and generally 
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widens the bowl, while an increase m>12 "hardens" the 

potential making the repulsive arm considerably steeper. 

A consideration of the potential in its general m:n 

form has been the concern of sereral workers. Their results 

are varied and their conclusions nebulous. however, these 

investigations deserve mention if only to indicate the 

degree of confusion surrounding the topic. 

To find an optimum value of m Corner (67) employed 

second virial and Joule Thompson data. The optimum fit 

was obtained with m=121  but also little difference was 

observed in varying n over the range mentioned previously 

(10<a(14). These conclusions were supported in part by 

Zucker• (77), who derived, his parnveters from solid state data 

and. used them to fit the experimental properties of argon, 

krypton and neon. He obtained "best fit" values with 

m=12 for Ar, Kr but for Ne n=14. 

Kihara.and Koba (68) investigating the relative stab-

.ility - of crystal structure for the inert gases: found that'• 

in order for cubic-(f.c.c.) to be of lower energy than 

hexagonal (h.c.p.) a much broader well than that given by - 

the 12:6 was needed. They examined the 9:6 (first used- by 

Kihara in his..study of third virials (86)), 7:6 and 12-:6 

but experienced little success, since this problem is n_aw 

,..generallynaccepted as one of three bDdy forces (3.3). 

Epstein and co-workers (144-146) also discussed the 9:6 

potential in s:ne length, justifying its use by the findings 

of Kihara and other investigations current at that time (147). 



Their findings, livever, did little to advance the cause of 

r-9  as the true re];u1sive tern. 

Perhaps the most rigorous investigation as to the 

value of the repulsive exponent was that of Brown and 

Rowlinson (148). This involved a thermodynamic discriminant, 

and evaluated m directly from experimental results without 

the need for statistical calculations. The discriminant, 

a specific function of pressure, temperature and several 

thermodynamic properties as well as n was shown to satisfy 

a "Schwarz inequallty" at all pressures and temperatures and 

for all values of n, This process set a lower bound for m 

such that m)13.3 for liquid arf;.on near the triple point. 

Due to quantum effects no test of the potential could be made 

in the solid regial but it was considered that a bi-recip-

rocal potential ShonlA,be satisfactory at low temperatures if 

013. 

The, effect of varying m where 10004 was also studied 

by Horton and Leech (137) as part of a systematic examination 

of the inert gas solids (Ne, Ar, Kr, Xe), the potential 

parameters in each case being determined from solid state data. 

Machine calculations were performed to evaluate the specific 

heat and Gruneisenis constant ugu and the temperature 

variation of these quantities studied. The conclusions 

am ml fratithin investigation are many and complex, and in 

fact almost too complex for a great deal of useful inform-

ation to be obtained. The comparison of theoretical results 

with experimental data did, however, lead to the statement 
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"that no g=12 calculation cones near experiment", a conclusion 

not in concordance with our findings for argon and neon 

(4.4, 4.6). 

These arguments for and against various values of 

m do not appear to be in hardly - even in the case of the 

inert gas solids. It night well be that the often neglected 

anharmonicity or non-additivity corrections have unduly 

influenced the final results but the validity of this is 

difficult to estimate. Moreover, comparisons of predicted 

and experimental properties using these differing potentials 

have been generally directed towards second and third 

virial coefficients and only in the lattice dynamical 

calculations of Horton and Leech has the variation of 

temperature dependent properties with el been studied. We 

therefore consider it of value to examine the effect of varying 

Mtn values in our cell model calculations and hence to 

ascertain the sensitivity of the predicted properties to 

this variation. 

5.2 The General "n:n" for Solid Argon  

We have studied the general m:n-model by extending 

our theoretical calculations for solid argon. The potentials 

we employed were 9:6, 18:6, 14:7, 28:7 (in addition to 12:6 - 

(4.4)). The 9:6 potential has already been mentioned; the 

18:6 is somewhat m-re arbitrary but gives us a good indication 

as to the effect of "hardening" the repulsion with respect to 
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the 12:6. The 14:7 and the 28:7 are included to investigate 

the effect of altering the attractile term. They are 

not suggested as a logical description of the Ar-Ar 

interaction, and have only been seriously considered 

elsewhere (149) as approximations for the force field 

between quasi-spherical molecules. Together these potent-

ials give a spectrum of variables that should indicate 

the value and sensitivity of the arbitary 12:6. 

The general n:n potential mny be written as:- 

W(r) = (rE/n-n)(m/n)n/m-n  [(d/r)111 	(d/r)] 	(5.2.1) 

where n> n> 0 

This leads to a generalised cell potential which is an ex-

tension of (1.4.6). The potential is applied through the 

W.K.B. method (Appendix 1) and this may be done for any 

system of n:n values. The calculation of the compressibility 

for any quantum system however, requires the volume derivative 

of the static lattice term W*(0) (see (4.2.18)) are this was 

separately evaluated for each potential. Its calculation 

considers an infinite crystal and may be written (after 

Kihara and Koba (68)) as : - 
oa 	 oo  

W(0) = (N/2)Cm,nG (1/am) L zn/Nn/2) - (1/a
n)› (Zn/Nm/2) 

al...i 

 

where Cmn =.- (m/m-n)(11/n)
n/n-n = f(ml n) 

l 
 

an = n a = distance of n
th shell. 

Hence writing V =Na3/22  ; Vo
3 and V* = V/Vo 

Zn 
=number of :Molecules in n

thshell. 
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W*(0) = (Cm ,n/2) A.(2v*2) -m/6  — B(2v*2)-n/6 
	

(5.2.3) 

where A = E(Zn/Nn/2 ) 	B = 	(zn/e/2) 

11.11 
	 n= 

therefore 

V*/2T*(dW*(0)/dV*) = (C 
n/12T*)tBm(2V*2)-  12/6-An(2V*2)-

n/6/ 
nl  

(5.2.4) 

A and B are evaluated by summing to convergence over a 

cubic close packed lattice giving the results in Table (5.1) 

Table 5.1  

n r-'- 	n 
/N/2  ) n 

6 14,4539 

7 13.3594 

9 12.4920 

12 12.1315 

14 12.0589 

18 12.0130 

28 12.0036 

The above values agree almost exactly with those obtained 

by Kihara and Koba who performed a summation and a partial 

integration. 

Any treatment of the potential in its d:n forn requires 

the evaluation of the L.J. paratleters e and or. These 
were obtained fron zero point data using the iterative 

nethod of Utting given in Ap.pendix 2. The results are 

shown in Table (5.2) together with the 12:6 values obtain- 

ed previously. 

It should be noted fron these tabulated values that 

whereas the change inGris snail (the ratio of 6(9:6) to 
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Table 5.2 Zero pt. pararn&tere for some "m-n" 
potentials,applied to Argon. 

. 

Potential E/k(°K) a (X) N63  
cc/mole 

A*  

9-6 105.2 3.398 23.62 0.199 

12-6 120.4 3.398 23.62 0.185 

18-6 132.4 3.429 24.27 0.176 

14.-7 141.0 3.405 23.77 0.177 

28-7 156.9 3.479 25.35 0.159 

Table 5.3 Virial parameters for some"m-n" 
potentials,obtainedby "fitting" 
to Argon experimental data(124), 

Potential 6/k(°10 e(A)  N63 cc 
moll 

A* 

12-6 119.8 3.396 23.50 0.186 

18-6 160.7 3.249 20.65 0.168 

14-7 170.5 3.231 20.50 0.164 

28-7 
c 

249.0 3.028 16.71 0.145 
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d(12:6) is 1.004) the depth of the potential minimum 

drops sharply as the repulsion "hardens". 

It was also considered of interest to calculate G 

and d fron second virial data for some m:n potentials 

using the "best fit" method and the data in the same 

temperature range as studiediprevieusly (4.4). These 

parameters are presented in Table (5.3). The virial values 

are in complete variance with the zero point paramet*rs. 

Preliminary calculations indicated that apart fron 12:6 

they appeared totally unable to interpret theoretical 

data realistically and they were therefore rejected. 

The investigation of the model with a general m:n 

potential was effected by computing the reduced thermo- 

dynamic properties of argon at the /nor each potential 

and then converting the reduced data to unreduced units 

by use of the appropriate parameters. 

Figs (5.1) and (5.1a) show the results of molar 

volume V(cc/mole) against temperature for the five potentials. 

The most significant factor appears to be the increase in 

e/k by the hardening of the. repulsive wall. For the n:6 

potential the similarity in d between the 9:6 and 12:6 

is completely overshadowed by this effect, and even with 

a more marked increase in d' from 12:6 to 18:6 the well 

depth again appears to be all important. The alteration of 

the attractive (i.e. r-6  to r-7) similarly affects predicted 

values and this potential suffers in a similar way to the 

n:6 in going from 14:7 to 28:7. 
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The comparison of the theoretical specific heat Cv  

with converted experimental data (4.4.1) is shown in Figs 

(5.2) and (5.2a). Since we are primarily concerned with a co- 

mparison of theoretical values, Cv  is clearly a better 

medium than C * In this case the theoretical plots are 

entirely dependent on the E/k values (this is not strictly 

true since the reduced data depends on X4 ). Once again 

the effect noticed in Fig (5.1) is emphasised and each potent- 

ial provides a unique prediction of experimental data. 

In the case of argon it was not felt necessary to 

pursue this investigation any further. The indications 

of the molar volume and specific heat vs temperature plots 

are indisputable. They are that the alteration of the shape 

of the potential by hardening or softening the repulsive 

wall, or by making the attraction a shorter range force, 

drastically affects the predicted properties. Further 

the.12:6 potential is far and above the best form to 

predict experimental properties. Other investigations 

of an m:n potential for neon (113) have resulted in similar 

conclusions (cf. Zucker (77) m=14). 

We therefore underline the points made in (4.7) with 

the rider that the potential for the anharmonic quantum 

cell *del must be the L.J. 12:6, Further we emphasise that 

the study of high density phenomena must utilise parameters 

derived from solid state properties and that for this phase 

of matter parwleters obtained from second virial measure• 

nents are of dubious value. 
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5.3 The Second Virial Coefficient. 

In view of the conclusions reached in the previous 

section and in Chapter 4. it was decided to nrke a brief 

but concise examination of second virial coefficient data 

using zero point paraeters and the pair potential. This 

test of these properties in predicting a two body interaction 

could yield more information (especially as to the validity of 

the potential) if the temperature derivative of the sec-

ond virial and the third virial coefficient were studied. 

However, the amount of experimental data available espec-

ially for the latter property are limited and this invest-

igation is therefore confined to the prediction of 

reduced second virials. 

From the quantum partition function written as the 

(5.3.1) 
.., 

the second virial coefficient B(T) is developed as:- 

	

B(T) = (N/2) R1- S(0.1 dq 	(5.3.2) 

and S(q) = 	714.("exp(-Hi/kT)I/L 	(5.3.3) 

The expansion expansion of (5.3.3) in terms of the pair potential 

W(r) and the integration of (5.3.2) leads to the series 

representation of the quantum second virial coefficient:-

B(T) = Bcl(T) + (h
2/m)B (T) + (h2/m)

2
BII(T) +....(5.3.4) 

oa 

where B
el 

= -277N .((exp(-W(r)/kT) - 1)]r2.dr 
oa 

B1  = 27N(481T2k3T3)-1 	
exp(-W(r)/kT)(dW(r)/dr)2r2dr 

etc (150) 

Slater sun for two particleS,:- 

qu 	Lt7exT(-)1 
i/kT) 	dq(2)  Z(2) =  
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A further term is included to account for Bose or Fermi 

statistics obeyed by the quantum gas and the final 

reduced farm may be written as:- 

3 
B*(T*) = (13*cl  + 	B*I 	B*II + 	)+ 	(5.3.5) 

where B4i 	I = B./b
o  and b = iTrN6

3 

The values of B* 	B*I etc have been tabulated (150,151). 

They nay be calculated by numerical integration or by the 

use of gamma functions, assuming an m:n potential. Hence, 

knowing At , the reduced second virial can be obtained for 

any quantum particle (for a more complete treatment see 

(150,152).) 

Fig (5.3) shows the comparison of the theoretical 

reduced second virial curve (5.3.5) for argon with the 

reduced experimental data of Fender and Halsey (64) < 110°K. 

and of Michels et al (153) > 110°K. The experimental data 

is reduced both by zero point parameters and by the values 

of Boato (136). The agreement in the low temperature 

region T*<'.1 is not substantially improved. In Fig (5.4) 

a similar comparison is made for neon, but over a wider 

temperature range. The theoretical curve was calculated 

for 	the zero point value) and the experimental 

data of Michels and co-workers (154) reduced with zero point 

parameters and also those calculated by Nicholson and 

Schneider (sec Table 4.3). The change in agreement for the 

different E and or values is insignificant (reflected by 

the change in /I ) and although the zero point parameters 

reduce the data to a slightly better degree, the curve is 
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relatively insensitive to the alterations in e and 6 (espec-

ially when the comparisons of 4.4, 4,6 and 5.2 are borne in 

mind.) 

In the case of hydrogen and deuterium, zero point studies 

yield parameters, markedly different from those obtained from 

virial data (Table 4.1). It should also be noted that not 

only were these parameters different but that those for D2  

were smaller than those for H
2' a trend opposite from that 

found by Michels in his examination of second virial, data. 

In Figs (5.5) & (5.6) the experimental data of Michels 

et al is reduced with the appropriate zero point parameters 

and compared with the theoretical curves from (5.3.5) for 

H2and D2 respectively. Agreement is quite acceptable and 

tallies reasonably well with that found by Michels who used 

a more rigorous equation and his own virial parameters. 

The re.ints of this section, therefore indicate that 

parameters derived from zero point data are not invalid in a 

consideration of the gas phase. However, bearing in :lind 

the insensitivity of the second virial coefficient, a factor 

ably illustrated in Figs (5.3) ac (5.4), it would be fair to 

say that they do nA show a marked inprover-icnt over values 

obtained from virial data itself. The use of the multi-

particle situation at 0°K. to characterise parameters for high 

density work nust be beyond dispute. The carrying over of 

these parameters to describe the fluid and gaseous states is 

a step that can only be undertaken with caution, and only 

in the light of more evidence than is at present available. 
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"Oh let us never, never doubt 

what nobody is sure about." 
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6.1 The Uniform Potential Model 

The success of the cell model for quantum solids at 

low temperatures and its relative merits in a pair inter-

action situation cannot and are not carried over into the 

fluid region. The nemesis that greets any such straightfow-

ard attempt is inherently due to the assumed static lattice 

structure or to the form of the potential itself. The 

first pitfall can, as we will show, be avoided under 

certain circumstances. The second problem, that of the 

potential, especially that employed in quantum statistics 

is almost impossible to deal with on a rigorous basis. 

Any more realistic picture of the pair interaction must 

complex the mathematics involved, sometimes to an impract-

icable degree. Our other alternative is to simplify the 

potential, a process that of necessity must be of an 

arbitary nature. However, it can enable the wave equation 

to be solved quiclzly and easily. One application of this, 

first proposed by Prigogine and Mathot (156) and developed 

by Hamann and David (102), is to regard the cell potential 

as uniform but ristag discopft_nuiously infinate at some 

displacement rm  fr= the cell centre. 

i.e W(r) = W(0) 
	

r < n 

W(r) = 	r r
n 

This theory was put onto a euanturtbasis by Hillier and Walkley 

(157). We will only tiontiott here the parts of this treat- 

nent relative to the present discussion, far a tiore 
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complete presentation the reader is rofered to Appendix 6. 
The classical expression for the cell theory config-

urational integral (1.3.5) leads to the compressibility 

term. 

(PV/NkTLass.= (ding/dV*) 	(V*/2T*)(dW*(0)/dV*) 
	(6.1.2) 

where v; = vf/Ne3  and of  is given by (1.3.6) 

If the limit r is chosen as the point at which the potent-

ial W(r) is numerically zero, then a simple relationship 

between y (_(rm/a)2) and the reduced volume is found. 

We nay then write (6.1.2) 

Cclass= (1 + 1.5V*(dlny/dV*) 	(V*/2T*)(dW*(0)/dV*)) (6.1.3) 

where (PV/NkT) = compressibility = C. 

When treated on a quantum basis (see A.6) analytical 

solutions to the spherical cell potential wave equation 

aro possible and the partition function may be developed as:- 

C =E21+1)(D*Cl/T*V**y;)(V*dlnylVdV*44).exp(-D*Cl/T*V**y;11) 

27(21+1).eXp(.4)*Ci/T*V* 3* 
1 

— (V*/2T*)(dW*(0)/dV*) (6.1.4) 

where D* = h
2Arne. d22,3  and CI is obtained numerically 

from the zeros of half integral Bessel functions. 

6.2 The Quantum Correction Term. 

The uniform potential and quantum cell model (4.2) 

equations of state are developed through a numerical 

determinati-m of the eigen values arising from the wave 

equation. We have mentioned earlier the work of Lunbeck 
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and De Boer (97) which sprung from ideas by Kirkwood (158) 

and Uhienbeck (159). In these the Slater sum (4.1.5) 

was transformed to the integral over phase space so 

Zqu =- IS(r).47r
2
.dr 
	

(6.2.1) 

where S(r)
0 
 = fih[exp(- 	/kT) 	(6.2.2) 

= 	 (6.2.3) 

and terns in F(r) = exp( -H op/kT)1Prsatisfy the equation 

Hop 	= kT2(dF/dT) 
	

(6.2.4) 

By a successive approximation solution and replacement in 

(6.2.1) followed by partial integration the partition 

function was expanded to give 

-- 
Zqu= (nkT

2/2171.2) 	exp(-W(r)/kT).4tir
2  dr - 121(EiE) 

lakTr2 

  

+ h
4  B(r,T) +.... 0100" 	(6.2.5) 

n2k
2T2r4 

where A(r1T) =.(rWl/kT)2/24(2(i)2  

B(rIT) = (r214/kT)2+2(rW/kT)21-10/9(rW/kT)3-3/56(rWi/kT)4  

480(27T)4  

The development of Zqu 
is comprehensively described in the 

references quoted above. Our intcrest in such an approa-

ch is limited to the fact that through it the free energy 

of the system may be written as a power series in the 

quantum parameter. 

F* = F* + JI_F*1 	2 + 	F* + 
	(6.2.6) 

This expansion when applied to systems of high nass reduc-

es to the single classical term F*. The equation of state 

ray be expressed in a similar manner so:- 



P* 	P*  .4-  APfi + A + 	 2 

133. 
(6.2.(l7 ) 

where ID!' =
T 

The first tern in (6.2.7) is the classical reduced pressure 
A* 

having no _adependence. The remaining terns in the series 

represent the "quantum correction" i.e. that pressure 

in excess of the classical value. We now propose to use 

this correction tern in a corresponding states treatment 

at fluid densities. 

6.3 The Cell theory and Corresponding States. 

The probler of a long range order assumption in any 

fluid theory may now be exLnined in closer detail. 

Calculations show that the effect of this lattice array 

upon the classical equation of state (6.1.2) is such that 

the inclusion of further neighbours beyond the first shell 

( at radius a) has only a minor effect on the free volume 

integral. The inclusion of further neighbours has however 

a drastic effect upon the static lattice term and upon its 

volume derivative dW(0)/dV. It would therefay appear that 

the effect of a lattice structure upon the equation of state 

arises almost entirely through the static lattice term. 

These criticises ap,cay exactly to the quantum cell model 

as was illustrated by Hillier and Walkley (106) in their 

investigation of hydrogen and deuterium and similarly, 

since it is based on the same fl )del, must also be valid 
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for any examination of a -/niforn potential theory. 

We now reintroduce the idea first fowarded by Hamann 

(101,102) that the quantum equation of state nay be regard- 

ed as a composite term made up of a classical term and a 

quantum correction term. If this classical tern is represent- 

ed by actual experimental data then the latter quantum 

correction tern nay be compounded theoetically from the 

cell model. Hence if this tern is given by Ptheory then 

from (6.1.2) and (4.2.12) 

Ptheory = T*( din 	/Ii/ T*)/dV*..dinv;/dV*) 

(6.3.1) 

A The quantum pressure for any given T*, V* and 	is therefore 

(6.3.2) 

As will be seen from (6.3.1) the correction term is completly 

independent of the static lattice concept and depends 

solely on the free volume terns that are relatively insens-

itive to further neighbour contributions.Thus.the development 

of the quantum correction allows a far better investigation 

of a single particle theory at fluid densities. 

We now proceed to apply our "corresponding states" 

approach to quantum systems. These craculations are carried 

out in reduced variables and therefore prior to any calcul-

ations two decisions are required. Foremost the values of 

the reduction parotteters used on any experimental data must 

be dettrnIned and secondly the choice of a system to repres-

ent the experimental classical tern in (6.3.2) must be mftde. 

The first problem raises several debatable points. To date 

P*quantum
= I)*

classical+  theory 
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the majority of our calculations have employed L.J. paramet-

ers derived from zero point data. The use of these multi-

particle parameters in fluid state calculations is of 

interest but also of dubious validity 	Another natter that 

must be considered in this context is that although the 

Pexpt and the theory terms are-  evaluated at similar T*, 

their unreduced values cover widely differing te-perature 

ranges. Because of these arguements it was decided to use 

virial data to calculate the parameters over the temperatu-

re range from which the experimental results were obtained. 

The second problcn,that of choosing a classical 

systam,was solved by using experimental data for argon 

(160), since it had previously been observed that this 

exhibited little departure.fron classical cell theory data 

fort T*,>1 at fluid densities (106). The choice of paramet.. 

ors to reduce this data was obtained by a Newton fit (ident-

ical to that used in (4.4)) which gave-(/k =119.8°K., 
and N63 = 23.71 cc/mole. 

6.4 Theoretical Results. 
(Experimental and theoretical data used to construct 

relevant figures are given in Appendix 5) 

The conpressibilities of hydrogen and deuterium at 

T* = 1.748 were derived by writing (643.2) as 



12:6 calculations but not as good as observed for H
2
and D2 

from treating helium This increased discrepancy night arise 

136. 
C 	= C 	+ (C 	- C 	) 	(6.4.1) Cqu argon (Cqu class theory 

Where C = (PV/NkT) 
;argon is from the data of Levelt 

(160) and C
qu 	Ccl are derived from (4.2.16) and (4.2.17) 

for tie 12:6 model and from (6.1.4) and (6.1.3) for the 

U.P. model respectively. 

The resulting compressibilities are plotted against 

V* in Figs (6.1) and (6.2) and compared to the experiment-

al data of Htuiann (102). In both instances the good 

agreement of the Uniform Potential (henceforth U.P.) 

approximation against that of the 12:6 isotherm is well 

illustrated. In Figs (6.3) and (6.4) a comparison is made 

of the theoretical isotherm using only the U.P. difference 

at T* = 3,32 with the experimental data of Michels et al 

(161). Once again good agreement is observed. 

A more testing system than hydrogen and deuterium :-

is provided by holiun. This exhibits enhanced departure 

from classical corresponding states, which is demonstrated 
A 41  

by its high it value ( 11=2.674) and its small fundimental 

parameters. In Fig (6.5) the experimental data of Buch-:ann 

(162) for holiun at T* = 1.996 is shown as compared to the 

U.P. and 12:6 correction tern isotherms. The data for the 

U.P. model are again in better lreenent than those from the 

by an over-simplified qyantum theory. The latter is unable 

to take account of behaviour other than that of Boltzmann 

statistics which, in the case of helium, could well be 
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Fig 6.1 Hydrogen:-Compressibility factor isotherms for T*=1.748. 

lt) 	(A.) Experimental,data Hamman & David(102.) 

(B.) U.P. approximation quantum correction 
term 

\(0.) 12-6 cell model quantum correction term. 
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inadequate. Another cause for disagreement might be traced 

to the reduction pr'rameters, to which, in this case, the 

curves are particularly sensitive. However, we cannot 

justifiably alter these without invalidating our previous 

calculations and the discrepancy for helium must therefore 

remain unexplained. 

It is now of interest to delve deeper into a natter that 

results directly from the formulation of (6.3.2). We have 

already observed that the low E/k values for the light gases 

(H2'D Og ) compared to the largeelk for argon means that 

data at the same reduced temperature describes markedly 

different experimental temperatures. Thus an experimental 

study of H2and D2  at room temperaturesf  i.e. T*=8, is not 

an unreasonable task. To study argon at a similar T* 

would involve measurements around 960°K., and would present 

an experimental problem of some magnitude. It is also 

observed that experimental data for H2  and D2  are available 

up to T*=8.73(323°K.) while none appears for argon above T* 

=3.5(420°K.). We have therefore reversed our corresponding 

states procedure and using data fa•the light isotopes at 

T*= 8.73, have subtracted the U.P. correction tern to 

give a "theoretical isotherm" far argon at 1048°K. 

This is shown in Fig (6,6). The agreement between the 

two sets of theoretical data is satisfactory. However, 

in view of the somewhat better prediction of the dcItterium 

isotherm from argon data at lower temperatures, the 

classical isotherm at this elevated temperature may best be 
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considered as given by predictions from D2  experimental results. 

The predicative value of the crlculations given in 

Figs (6.1 - 6.5) can be emphesised by considering the magnit- 

ude of the quantum corrections. For H2  at T*=1.748,V*=1.35 

the experimental compressibility is 1216 atms., and the 

quantum correction 533 atms. At the same reduced tempera- 

ture and a V*=1.90 these pressure values are 366 atns. and 

175 atns. respectively. The successful prediction of a 

correction of such magnitude, approximately 45% of the 

experimental value, must therefore stand as• a sensitive 

test of the theory. 

The validity of the adaptation of our treatment at high 

T* is, on a single prediction open to question. This region 

of high temperature is of considerable interest. Plots 

of the compressibility against reciprocal reduced temperature 

for H2 and D2 are seen to pass through a maxinun (Fig (6.7)). 

This plot also shows a 	curve for argon compounded 

from experimental data and continued into the region of 

high T* by theoretical considerations identical to those 

ehployed in forming Fig (6.6). The theoretical plot, 

constructed from experimental deuterium data, exhibits a 

maximum comparable to that observed for the H2  and D2  curves 

and therefore provides a rational continuation of experim-

ental data. 

From our accurate but perhaps limited application of 

the corresponding states theory at fluid densities it would 

appear that the method de capable of a reasonable degree of 
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of success, but only through the use of the uniforn 

potential model. The quantum L.J. method, so applicable in 

the high density state, fails for fluids even in the con-

text of a corresponding states approach. These observations 

would indicate that the situation at fluid densities is 

again critical to the nature of the potential. The shape of 

the potential tern is known to be of considerable importance 

in the solution of the energy eigen value equation and in fact 

the major reason for the existance of the U.P. nodel is to 

make this solution readily available. It is therefore 

somewhat disturbing to find that an arbitary potential of this 

type appears so decidly superior to the 12:6 , which although 

empirical in certain respects is much closer to the true 

picture of the intermolecular interaction. The success of 

the U.P. approxriiation may, of course, be considered as 

fortituous. The same cannot be said for the failure of 

the L.J. model which, as always, ap-)ears to reward the 

slightest excursion beyond its favoured rang© of high 

densities and low temperatures with results that are both 

unwanted and inexplicable. 
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CHAPTER 7. 

Gas solubility and the Cell theory - an Introduction. 

"One may not doubt that somehow good 

Shall come of water and of mud 

And sure, the reverent eye must see 

A purpose in liquidity." 

Rupert Brooke (1887-1915) 
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7. Gas Solubility  and the Cell Theory-an Introduction.  

Our discussions to date have been confined to a narrow 

range of physical limits. We now move fron these nether 

regions around absolute zero to the more realistic and 

more easily approached (at least experimentally) phenomena 

that are observed at and around room temperature. In partic-

ular we are interested in gas solution theory which presents 

several situations that nay possibly be interpreted through 

the use of a suitable cell nada. 

Any consideration of solution theory is, by definition, 

a consideration of solubility and solubility phenomena and 

similarly any consideration of the work in this field must 

deal with the work of Hildebrand (10-16, 163-169). Over 

more than fifty years Hildebrand, together with co-workers 

has produced a prodigious array of experimental results 

on the solubilities of solids, liquids and gases in various 

solvents . From these results haszsprung regular solution 

theory which, as the name implies „has predicted from 

experinental observatiOnS a regular relationship for many 

differing solute-solvent systems. These relationships 

indicate that the entropy of mixing for non polar compact 

molecules of different species nay easily be estimated 

unless anemones such as complexing or unorthodox forms 

of bonding occur. Hildebrand's theories are excellent in 

that they rationally account for much of the solution 

behaviour of solid-liquid and liquid-liquid systems but in 
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the case of gases dissolved in non polar solvents regular 

solution theory is observed to fail. 

Early studies of gas solubility behaviour were limited by 

the absence of accurate experimental results with which to 

compare any theory. The work of Horiuti (170) remained 

for many years the only source of reference, but recently 

measurements by Reeves (16), Cleaver et al (171-173) &nd 

Hiroka (14) have provided a wide and reliable spectrum of 

solubility data. From these Hildebrand was able to derive 

solubilities and entropies of solution for many differing 

systems. On the theoretical level however no explanation 

was readily obtainable and in most investigations any 

attempt at a theoretical treatment was either avoided 

or postponed to an ensuing ( but rarely materialising) 

publication. 

The regions far the above measurements were restricted 

to dilute solutions.which, when considered in terms of the 

concentration of the solute gas, aret to a good approximation, 

infinitely dilute. Under these conditions any theoretical treat- 

ment of the problem in terms of intermolecular forces nay ignore 

all solute-solute interactions and consider may the 

forces between solute and solvent molecules. 

If we assume the solute ,T-,s molecules to be spherical 

non polar entities the solution process creates a situation 

which can, quite logically, be described by a cell theory. 

The use of the word logic in this context is p,rhaps open 

to question. Over many years and on many different occasions 
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Hildebrand has expressed his hardened and clear cut views 

on such an interpretation of solubility phenomena. "There 

is no quasi-crystalline or lattice structure, there are no 

holes of definite size or shape, no discrete molecular 

frequencies or.velaities and no distinguishable gas-like 

or solid-like molecules." Hildebrand in fact adheres strictly 

to the concept of maximum randomness in a pure liquid 

and in mixtures of non pol.u.,non reacting molecular species 

(174). In such concepts a cell theory obviously has no 

place but as we have already observed neither are the 

problems arising from gas solubility satisfactorily explained 

by regular solution theory. 

To return to the cell -odel picture of the solution 

process, the introduction of the solute molecule must 

disturb the molecular arrangement of the solvent. A tine 

averaged approxination therefore pictures the solute as 

"sitting" at the centre of a spherical cavity which it 

has dug out for itself in the liquid. This is by no means 

a new idea, similar suggestions having been made by Eley 

(175-176) and Uhlig (177), and should be considered with an 

experimental property not mentioned to date, namely the 

partial molar volume. 

When a solute in any physical form dissolves in a 

solvent at a constant temperature, a volume expansion of the 

system directly attributable to this process occurs. This 

expansion is defined in terms of the partial molar volume (V2) 

i,e. V2  = (dV/dN) cc/mole. 
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where the dissolution of dN moles. causes the volume of 

the system to increase by dV cc. This quantity is a property 

of the system rather than a property of the solute in that 

it represents (as do other partial molar quantities) the 

change occuring in the system on the addition of a different-

ial amount of solute. However, in a gas-liquid system, 

considered as an infinitely dilute solution the partial 

molar volume (P.M.V.) may be regarded as the major factor 

in determining the size of the cavity occupied by the 

solute molecule. 

It night be as well at this point to consider the cell 

theory approach in a little more detail. In investigations 

of the inert gas solids the model used was that of L-J.&D. 

based on a regular lattice structure and on several other 

doubtful assumptions (doubtful in regard to fluid state 

situations). In the application of a corresponding states 

approach to quantum fluids attempts were made to eliminate the 

ottist of the static lattice while a more empirical uniform 

potential was alge studied. It is known that any explanation 

of liquid phenomena at room temperatures must acknn•wledge 

that at best only short range Drder can be present. A 

rigorous cell model is therefore unacceptable and the theory 

must be considered in its simplest form as a free volume 

type model with a definite but limited degree of imposed 

order. The potential in the cell and the number of neigh-

bouring solvent molecules surrounding the solute gas arc not 

uniquely defined by the assumptions of the model but arc 
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rather adjustable factors, the true fritAl of which will only 

be obtained b7 a thorough "free volure" treatnent. 

To erbark upon any such treatnent for a suitable nu-ber 

of differing gas-liquid syste7s demands nunerous and accurate 

values of the P.M.V. The extent and validity of the data 

obtained by earlier workers will be described in the next 

section together with a detailed account of our own experi-

mental neasure:lents for a large number of solute-solvent 

systers. Subsequent chapters will describe a tret!lent of 

these results in terns of varying free volume theories and our 

attempts through these to co::e to grips with sole of the 

theoretical problems of gas solubility. 
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CHAPTER 8. 

An experimental determination of some partial molar volumes 

at 25°C. 

8.1 Previous work. 	. 	. 	. . 	154 

8.2 The Dilatometer 	. 	. 	. 	. . 	159 

8.3 The vacuum line 	. 	. 	. 	. . 	163 

8.4 The thermostatting of the dilatometer. . 	165 

8.5 A typical run . 	. 	. 	. 	. . 	171 

8.6 The calculation of experimental results . 	179 

8.7 Errors and difficulties of operation . . 	188 

8.8 Discussion and comparison of experimental 

results . 190 

"Why think-why not try the experiment?" 

John Hunter (1728-1793) in a letter to 

Edward Jenner. 

"The true worth of the experimenter consists in,  

his pursuing not only what he seeks in his 

experiments but what he did not seek." 

Claude Bernard (1813-1878) 
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8.1. Previous Work 

The volume change in a system resulting from gas 

dissolution can be accurately determined by measuring either 

the volume increnent itself or the accompanying change in 

density. The former method involves dilatonetric techniques 

while the latter is effected through a pycnoneter. For the 

systems in which we are interested these changes are of 

a very small order of magnitude and hence extreme accuracy of 

measurement and a sensitive control of experimental conditions 

are required. It is possible to achieve this accuracy by the 

use of either method but in general the measurement of 

volume expansion using a dilatometer has been found the 

more convenient. This, in fact, was the conclusion reached 

by Horiuti (170) who published extensive and accurate data for 

the P.M.V.'s of various gases in organic solvents.. Unfort-

unately, from the viewpoint of contemporary investigations, 

the systems Horiuti studied are, apart from those in two 

or three solvents, not of a great deal of interest. However, 

his experimental dilatometric method of measuring the 

partial molar volume has been adopted with only minor 

modifications by nearly all later workers. 

The method if Horiuti was used by Kritchevsky and 

Iliinskya (178) who measured the P.M.V.'s of several gases in 

methanol and water, and by ff.thumn and Brown (179), in their 

study of CF4  and CH4  in various organic solvents at 27°C. 

We arc specifically interested in systems of the latter 
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type i.e. non polar gases in non polar solvents. The 

majority of work on thesesystelis as night well be expected, 

is clue to Hildebrand and co-workers who studied P.M.V.'s as 

part of their general investigation of solubulity theory. 

Hildebrand's results are given for systel,s at 25°C. The 

earlier work of Horiuti hay; shown the P.M.V. (V2) to be 

temperature dependent but only to a mincer extent. For 

slightly soluble gases in organic solvents Horiuti only 

pUblished results at 25°C. We have therefore restricted our 

investigations (both the:retical and experimental) to 

measurements at this temperature and have not considered the 

more complex but doubtless more accurate expression for 

V2 as f(T). 

From the work listed above we have compiled V2 values 

for 41 systems of relative interest and these are given in 

Table(8.1). All values are at 25°C., except for those 

of Schurin and Brown at 27°C. and all have been obtained 

through'dilatonetric measurements. A closer examination j. 

of the results indicates the presence Gf.pronounced and 

indisputable trends in the V2  values for the various systems. 

If the non polar gas molecule is treated as a spherical 

entity (which on the scale we consider is valid for all 

gases listed) having a collision diameter d (where 6 is 

the Lennard-Jones constant) then, as night be expected, 

the value of V2 
increases with molecular size. Further, 

if the non polar solvents are charactimrised by the Hilde-

brand solubility parameter 6, V2 
is generally seen t) decrease 
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	 Table 8.4 Experimental P.M.V.'s at 25°C., (cc/mole.) 

Gas 	olvent n.C7111;i08H18 CKHIL. ,, 	..-.. C,H16t  , 
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52.6
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667  

CO 6 52.4 
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51.7
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CH4 , 

68.43 56.64 603 

56.84 
55.44c 52.46  54,86 56.13  

. 

C H. 82.33 6 3 9.3 
2 b 

67.43 

. 

4 85.4
4 86.44 7 9.7

4  
83.24 

 
87.77 

SF6 
104.25 105.55 1045  105,55  1265  945 a 5 101.% 93.71  

1. Jolley and Hildebrand(13); 2. Walkley and Hildebrand(169); 3. Gjeldabeck and Hildebrand(10) 

4. Schumm and Brown(179); 5. Hiroka and Hildebrand(168); 6. Horiuti(170); 7..Hiroka and Hildebrand(14) 
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with increasing S . These parameters have been extensively 

used by Hildebrand to predict and interpret solubility 

in a semi-quantitative manner. They are defined as the 

square root of the cohesive energy density, viz. 

S =. 

where .E, is the cohesive energy density of the liquid, 

essentially the molar energy of vapourisation for the liquid 

at zero pressure (i.e. infinite separation of the molecules) 

and V1, the molar7volume_df%the%liqAid. The parameters, 

which are specific for each solvent, are easily evaluated 

from experimental data and are usually quoted in units of 

(cal/cc)1. Extensive tables of Svalues are given in Refs. 

(163,164). 

Another interesting but perhaps not obvious factor 

arising from Table (8.1) is the relative value of V2 for 

H
2 
and D

2 in the 
same solvents. Jolley and Hildebrand (13) 

found evidence that V2 for 
hydrogen was greater than V2 for 

deuterium, but within the limits of their experimental 

measurements were unable to draw any conclusions from this 

observation. However, later and more accurate work by 

Walkley and Hildebrand (169) to determine the P.M.V.'s of 

H
2 

and D
2 

in benzene, toluene and perfluoro-n-heptano 

confirmed these earlier findings and indicated that, in 

benzene, hydrogen occupied a volume larger by 8% than that 

for deuterium. The only explanation for this phenomenon 

must lie in a quantum effect, but while this is undoubtedly 

present for H
2 
and D2 

at low temperatures it is scarcely 

credible that one should exist in the region of 25°C. 
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We have already mentioned the linearity of P.M.V., values 

with regard to increasing gas size and perhai,s more important 

decreasing S. There exists one striking deviation from the 

latter itrule - that of the P.M.V.'s of sulphur hexafluoride 

as measured by Hiroka and Hildebrand (168). The irregularities 

in these values were linked with the irregular solubility 

relationships for SF6  as found by Hildebrand and Archer 

(12) being attributed to "departures of SF6  fron the 

geometric mean relation in mixtures with non fluoride 

solvents". Such a conclusion was inconsisipnt with other 

available data. Archer (12) had observed similar irregular 

solubility behaviour for freon (CFO. However, the values 

of V2 for freon as quoted by Schumr and Brown (179) followed 

the expected trend,increasing with decreasing /S. 

The survey of previous experimental work indicated that 

substantial gaps still remain in our knlwledge of P.M.VIs. 

Many of the quoted values were for uncommon systems (e.g. 

Hildebrand's numerous values for fluorocarbons) and further 

several doubtful or curious resvitsstoodudthout experimental 

confirmation. The most extensive work as listed in Table (8.1) 

was that of Jolley (13), giving results for eleven systems 

while the most comprehensively examined solvents were benzene 

and carbon tetrachloride. We therefore decided to measure the 

P.M.V.'s for gases of increasing molecular sizes in solvents 

covering a small but distinct range of solubility parameters. 

The gases used were Ar, CI14, CF4  and SF6, and the solvents 

benzene ( S=9.2),cyciohexane (S=8.2), n-heptane (S=7.95) 
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and iso-octane (where b is usually given as 6.9, but about 

which value there appears to he some doubt - see (8.8)). 

To the selected gases hydrogen and deuterium were added 

giving in all twenty fOur systems to be studied. It should 

be noted that not only did these systems extend over a wide 

spectrum of gas size and a values but also pernitted an 

examination of several pertinent facts - whether more evid-

ence for a quantum effect at room temperature could be 

obtained from the measurements involving hydrogen and 

deuterium - if the values of Schunm and Brown at 27°C. would 

be identical with measurements for the same systems at 25°C. 

- and whether a check could be made on the seemingly 

anonolous data of Iliroka for SF6. Finally it was considered 

that several regular systems which had been measured previously 

would serve as a sensitive test of the accuracy of our 

experimental method. With these objectives in mind we 

perfor- led our measurements eiroloying the dilatometric 

techniques so successfully introduced by Horiuti sone thirty 

years earlier. 

8.2 The Dilatoneter  

The dilatoneter used in our experiments is shown in 

Fig. (8.1). It possesses one innovation when compared to 

those used 7reviously in that it is in'two sections joined: 

by a Quickfit B.19 cone and socket (F). This device enables 

the otherwise lengthy cleaning procedure to be considerably 
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Fig 8.1 The Dilatometer. 	160. 
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shortened, and provided due care is taken, does not introduce 

any new source of error into the measurements. 

The general dinensionscf the dilatoneter are consider- 

ably larger than any of those nreviously empfloyed. Its 

total canacity is approximately 300 cc. (cf. 140 cc. - Jolley 

(13) and Schunm and Brown (179)) and during any experimental 

run about 250 cc. of this space is occupied by the solvent. 

The two capillary arms (A) and (B) are also longer than 

those used by other workers, being 33 cm. (approx) compared 

with the 20 cm, arms of the Horiuti dilatometer. 

Prior to the construction of the dantometer these 

arms, made from precision capillary, were calibrated by the 

"mercury drop method". A selected length of precision 

capillary was narked off and a slug of mercury introduced 

(sufficient to occupy a length of about 6 cn.). This 

was moved down the capillary and its length at various 

points carefully measured with a travelling microscope. 

After 20-25 such readings the mercury was removed and 

weighed and from the readings the average length of the 

slug determined. Thus, knowing the -"tensity of mercury it 

was a relatively simple natter to evaluate the radius and 

hence the area cross section of the capillary. The following 

results were obtained. 

(i) Left hand limb (B) 

Radius of capillary (r) = 3.047x10-2  cm. 

Hence a rise of 1 cm. in the capillary is equal to a 

volume V, where 
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37-r2x1 = 2.916x10-3  cc./cm. 

(ii) Right hand limb (A) 

Similar to (B) with r=3.037x102  cm. 

and V=2.899x10-3  cc./cm. 

(It should be emphasised that for the above measurements 

strict precautions were taken that, at all tines, both 

capillary and travelling microscope were in the same plane.) 

Returning to Fig. (8.1) we may note two other factors, 

namely that the left hand limb enters the dilatoneter through 

a nozzle (C) and that the same arm ends in a Quickfit ball 

joint (H). The nozzle was first introduced by Horiuti (170) 

and enables gas to be injected directly into the solvent, 

without adhering to the wall of the vessel. The ball joint 

owes its origin to experimental convenience since it reduces 

the tension on the vacuum line and enables the dilatoneter 

to be easily attached to the Hain rig. 

For an experi:lental run the dilatoneter is clamped to a 

perspex and brass frame while inside it is placed the stirrer, 

shown as (G) in Fig. (8.1). This was constructed fron stain- 

less steel, coated with liquid "Araldite" and fixed to a 

"Teflon" base. Its length was such that it could easily be 

agitated by a magnet held just above the to? of the dilatmeter. 

This design of stirrer was adopted in preference to a glass 

(or Teflon) coated metal slug on two counts; Maj. 

the difficulty in controlling such a device in our experimental 

arrangement and secondly the naximum width of any stirrer 

imposed by the diameter of the cone (F). The stirrer (G) 
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was f)und to be efficient and providing that the solvents 

we used did not affect the Araldite coating (manufacturer's 

data assured us that they did not) no adverse effects should 

have been introduced. 

8.3 The Vacuun Line 

Experimental procedure demands that the dilatoneter is 

placed in a thermostatic tank and attached to the vacuun 

line at (C) (see Fig.(8.2)). This line consists essentially 

of two sectionl; that to the left of the dilatoneter that 

leads to the vacuum pump (A) and that to the right that 

stores the gas to be used during the run. The gases, which 

are obtained stored in cylinders arc connected to the line 

at (F) by a MathesonlAutomatic Regul1tir No.36. Gas passes 

through the two way tap (E) and is stored and isolated in the 

gas burette (G). This burette consists of an inner "U" 

tube surrounded by an outer jacket through which water is 

circulated. The left hand limb of the U tube was constructed 

from a Springhon straight bore burette, calibrated from 

0-25 cc. with 0.05 cc. direct accuracy. The tube was connected 

to a mercury reservoir (M) through a spring loaded tap (H) 

and the reservoir attached to a stand that could be moved 

in a vertical plane. The contents of the burette were 

thermostatted by water at 25°C., circulated by a Stuart 

Turner centrifugal pump No.10. The water was stored in 

a well stirred, well lagged bath , thermostatic equilibrium 
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being maintained by an Electra methods Ether control relay, 

which operated a 60 watt lamp and a 30 watt "fish tank" 

heater. Temperature control was through a contact thermometer 

made by the Electro Thermometer Co. Ltd., having a range of 

20-30°C., and a sensitivity of 5°C.-1 cm. 

All taps on the line were greased with Apiezon "N" 

and the joint (D) was secured with springs. Joints (0) and 

(F) were made particularly secure and the reliability of the 

whole line with respect to leaks etc. could be investigated 

by use of the manometer (J). 

8.4 The Thernostatting of the Dilatometer 

Perhaps the !last important experimental factor to be 

considered in our MeasurtMents is the if intenance of a 

high consistency Of tegpernture in the neighbourhood of the 

dilatometer. The volume chanc;es resulting from gas dissolution 

are small and any temperature fluctuation even in the 

region of 0.01°C., can affect the accuracy of these measure-

ments to a considerable extent. 

The choice of a thermostat vessel, a suitable control 

system and a sensitive method of detecting temperature 

fluctuations were all problems that had ta be solved before 

any meaningful results were obtained. These problems (or 

rather unsatisfactory attempts to by-pass then) caused 

many delays in the project and in fact the majority of ex-

perimental difficulties can be directly or indirectly traced 



to lapses in thermostatic control. However, we 1d6o6:ot 

propose to describe the various permutations forwarded as 

vain solutions but rather the optimum conditions of control 

and the successful experimental method that evolved from 

their consideration. 

When the dilateter is attached to the line at (C) 

(see Fig. (8.2)), it is immersed in a copper thermostat 

tank. This has the internal dimensions of 32cm.x25on.xil7em., 

with a glass window 26cm.x4Ocn. fitted in the front. The 

other sides are padded and the top nay be covered with a 

lid. The thermostatic liquid that filled the bath was 

water and this was vigorously agitated by a stirrer driven 

by a Griffin and George adjustable speed motor. The motor 

drove an axial rod which carried five copper paddles each 

8.5 cm. in diameter and each being interleaved into eight 

sectione. 

Temperature control is achieved via an electronic relay 

and a contact thermometer which t,)gether c-,nsiitute a 

typical "on-off" system. Such a system is in essence an 

osdillatory circuit in which temperature control is enhanced 

by (i) increasing frequency, (ii) decreasing amplitude. 

An increase 	frequency is :obtained by increasing the 

sensitivity of the c)ntrol and minimising the inertia of 

the therranl load (where in our case the load is the heat cap-

acity of the heater and contact thermometer). The frequency 

nay also be increased by decreasing ten7erature lags, con-

sequently making it easier to attenuate oscillations by 

filtering. 
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To decrease the amplitude, factors such as efficient 

stirring must be considered. This is requisite in order to 

remove "temperature pockets" in the liquid and hence 

minimise irregularities due to localised heating. 

These objectives were achieved, in part, by using a 

contact thermometer of the gas sealed "metastatic" type 

supplied by the Electrical Thermometer Co. Its adjustment 

was 10M/1oC.land it gave a (lifferential of 0.0010C with 

negligable lags over the range 20°  -30°C. Also attached 

to the relay was a heater of nichrome wire, wound on a 

glass frame. The power for the heater was obtained by 

reducing mains voltage through a Douglas MT 3AT transformer, 

which took 30 volts D.C. off the A.C. mains. The input of 

this voltage was further monitored by a variac transformer 

(Zenith Elect. Co. Variac Duratrak) which provided a 

sensitive control leer heater current. As was stated above 

this heater was connected to the relay - an identical heater 

operated in a similar manner was placed in the bath to act 

as a permanent heating source. This enabled the temperature 

differential to be kept to a minimum (fast response) and 

also if thermostatting control was lost due to Irge 

alterations in room temperature, enabled the balance to be 

restored witha.it any adjustment of the sensitive relay 

circuit. 

Bearing in mind the minimisation of lags, fast response 

to temperature changes, elimination of temperature pockets 

by stirring etc., there exists one factor which, though 
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important, owes its solution chiefly to trial and error 

methods. This is the best relative position in the bath 

of the heaters (both switching and permanent), contact 

thermometer and stirrer, the most favourable arrangement 

being of course that where temperature variations are smallest. 

To find this position we oust be able to detect these 

fluctuations, a technique that demands an accurate temper-

ature neaeuriug devicel  and nnreover one that responds 

rapidly to small temperature changes. The Beckmann thermom-

eter, used in these investigations, is not ideal for such 

a task. Its accuracy was quoted as 0.001oC. but it also 

possesses a large thermal lag (slow response) and is not 

adverse to "sticking". We therefore searched for an addit-

ional and more sensitive medium which we found in the 

shape of m thermistor. 

A thermistor is a sensitive resistor (made from semi-

conducting materials) whose temperature coefficient of 

resistance is negative and many tines that of ordinary 

metals at room temperature. A change in temperature of 

the surroundings therefore produces a change in resistance 

of the thermistor which, using a simple bridge circuit 

can be easily evaluated. 

We have used a Standard Telephone and Cables F22 

thermistor (with a temperature coefficient of -2.8% at 

20°C.) and the Wheatstone bridge circuit shown in Fig (8.3). 

Balancing the circuit in the thermostatic bath (i.e. finding 

the resistance of the thermistor at bath temperature) it was 
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possible to calculate the change in resistance for a change 

of 100. and fron this the fluctuations in temperature for 

a unit deflection on the galvanometer scale. This calcul-

ation indicated that inn, on the scale =0.5 x 10-30  C. 

(sending 1+ volts through the bridge circuit). Hence, 

making the reasonable assumptions that heating effects due 

to the thermistor were nogligable and that its response tine 

was no more than 15 secs we were able, accurately and easily, 

to follow temperature changes in the bath. 

It night be justifiably stated that for a claim of 

accurate thormostatting the bath should be "mapped" (i.e. 

observations should be taken at a variety of different 

points rather than temperature changes at a fixed position 

be continually observed). Such a task however presents 

serious problems and it was felt that a reasonable oscill-

ation on the galvanometer scale supported by a stationary 

Beckmann gave an accurate indication of good thermostattingi 

Perhaps more important however, is that the capillary 

levels of the dilatoneter do not change. Because of its 

large thermal mass, the dilatometer is more sensitive to 

temperature drifts than to fluctuations, the former being 

clearly shown by a rise (or fall) in the mercury levels. 

For the dilatometor to be atcquilibrium its levels must 

be completely stationary. Throughout our experimental 

measurements we were able to achieve this. When for some 

reason or other we were not it was nearly always necessary 

to abandon the relevant run. Tomperature control was not 
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claimed to be better than 0.002°C., but it nay be stated 

that within our degree of accuracy all volume changes 

were due to gas dissolution and not to spurious temperature 

effects. 

8.5 A Typical Rur.  

We will now describe in some detail an experimental run 

typical of any solute-solvent systeni investigated. 

Triple distilled mercury was first introduced into the 

open dilatometer so that the mercury level was slightly 

higher than that of the nozzle (C) - Fig (8.1). The stirrer 

was next placed in position and the top half of the dilatom-

eter scaled on by the use of Edwards "E" wax. Only a little 

of this wax was used, just enough to give a clear transparent 

seal to the joint' (F). 

During this period about 500cc of the solvent were 

degassed by boiling under reduced pressure. This was 

continued for 2-3 hours until the solvent was considered 

free of all traces of air. The dilatometer was then 

carefully inverted, attached to the degassing apparatus 

as shown in Fig (8.4) and evacuated via attachment (R). 

On completion of this tap (S) was closed and tap (T) opened. 

It should be noted that a ward solvent would undoubtedly 

dissolve traces of tap grease. To minimise this we introdu-

ced at (T) a spring loaded tap of glass impregnated teflon 
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(which of course needs no grease), and only lightly greased 

the joint (U). The solvent wLs initially fared into the 

evacuated dilatoneter in small doses ,until it was certain 

that all air had been removed from the latter. (S) was 

then closed and (T) left open, enabling the solvent to 

rapidly fill the dilatoneter. When the filling process 

was complete (T) was shut, The dilatoneter re•^oved at 

(U) and (V) and quickly inverted, extreme care being taken 

not to introduce any air bubbles into the solvent. 

In its normal position the dilatoneter now stands, 

filled with solvent which is isolated from the atmosphere 

by a lower layer of mercury. However, the filling process 

results in traces of solvent remaining in the side arms. 

These traces were removed by warming the dilatometer with 

an Infra Red Mercury lamp and taking off the excess liquid  

with "Kleenex". The process of warming and cooling was 

continued until all traces of solvent had disappeared from 

the capillaries and the mercury columns moved smoothly 

without displaying any apparant fracture. 

The filled dilatoneter was then placed in the thermo-

stat tank and attached to the vacuum line at (C) (this, as 

all refs. in the following paragraphs, refer to Fig (8.2)), 

particular care being taken that the frame was fixed in a 

vertical plane and that the capillaries were in piumb(i.e-

not forced out of the vertical by a bad joint). The line 

was evacuated from (A) as far as the gas regulator (F) and 

by carefully adjusting (K) the last traces of air above the 
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dilatometer were removed. This procedure,of course, pulled 

the mercury level in the left hand limb up to (K) and to 

avoid air being drawn in through the open capillary excess 

mercury was added at (L). 

All air having been removed, the dilatometer was iaolat. 

ed at (K) and the line flushed several tines with the gas 

under study. The line between (K) and (F) was next filled 

with gas and the burette isolated by closing (E). The mercury 

which was held at (H) was forced into the burette in such 

a manner as to give a head in both arms. The line between 

(K) and the mercury level in (I) therefore contained solute 

gas, while atmospheric pressure was applied to the limb 

(G) by opening tap (E). 

Through sever-1 adjustments the two arms of the burette 

were levelled and the dilatometer opened to gas pressure. 

This pressure forced down the mercury in the closed limb, 

an effect counteracted by removing the excess from the other 

arm at (L). By adjusting the pressure through the reservoir 

(M) it was possibly to remove enough nercury from the dilat-

ometer so that the equilibrium position of the capillary 

levels was approximately half way down the dilatometer arms. 

However, for a run of four or more doses, a much lower 

initial level of the capillaries was needed. This could 

only be achieved by a rather drastic but successful procedure. 

The thermostatting of the bath was disturbed by heating the 

contents for a short time with a 300 watt red rod heater, 

This enabled further mercury to be removed from (L) with a 
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capillary dropper. Having achieve? this the bath was 

quickly cooled by the addition of ice, the capillary levels 

falling rapidly. Observations over a substantial number of 

occasions indicated that the levels continued to fall slowly 

for 2-3 hours and did not achieve equilibrium much before 

a 4-5 hour period. Considering the severe heating and cool- 

ing conditions employed this was not unexpected and therefore 

ter each run the system was at this juncture left overnight 

to reach equilibrium. It was considered that a period 

of 10-12 hours should be quite sufficent for this to be 

effected and it is emphasised that no measurements whatsoever 

were taken up to this point. 

After the lapse of this periodof equilibration the 

stability of the system was checked by ensuring that the 

mercury levels in the dilatometer were steady. We did this 

by observing them through a cathetoneter telescope (Precision 

Instrweents Ltd.) over a period of 15-20 mins. If there 

was no measurable motion during this tine, temperature 

equilibrium of the dilatometer and contents were assumed 

and the run proceeded with. 

The atmospheric pressure was noted, the tap above the 

gas burette closed and by adjusting the reservoir (M) five 

or six readings of the pressure and volume of the gas 

obtained. Burette readings and mercury levels were observed 

through a Griffin and George cathetoneter, enabling gas 

volume to be read to + 0.02 cc., and mercury heights to 

0.002 cos. On completion of these measurements the burette 
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was returned to atmospheric pressure (i.e. the height of 

both arms equal) and the tap connecting the burette to 

the dilatometer reopened. 

Preliminary readings of the dilatometer levels were 

taken, being over a period of 15 r-ins.(again to ensure 

equilibrium). Next a dose of gas was passed by closing 

(E) and raising the reservoir (M). Gas passed clown the 

closed arm of the dilatometer and bubbled through the 

nozzel into the solvent, at the sane time forcing the 

mercury up into (L). Having sent over a close of 1-3 cc., 

the burette was returned to equilibrium. The capillary 

levels took up a much higher position than before and the gas 

dose (or that part of it undissolved) was visible as a 

bubble in the top half of the dilatometer at (K). Complete 

dissolution was achieved by agitating the stirrer with 

a magnet. The period of dissolution varied with the system 

under study. Thus at the lowest it was ten minutes while 

for H2 or D2 
in benzene periods of over li hours were not 

uncommon. When no further trace of the gas bubble remained 

in the 'ilatometer the system was left for 50-45 nins. to 

equilibrate. 

Observations of galvanometer and Beckmann readings 

enabled us to check that the dissolution process had not 

altered the thernostatting temperature. The new levels of 

the mercury in the capillary arms therefore represented the 

increase in volune of 	system due to the dose of gas. 

These levels were taken (again measurements being spread 
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over a sufficient period as to ensure consistancy). However, 

the volume increase as indicated by these readings is not 

the true volume increase, since due to the rise in the 

levels of the mercury in the capillaries the liquid in the 

dilatometer will be under a higher pressure after dissolution 

than before the gas dose was passed. This necessitates 

a " compressibility correction" typical of which are those 

lade by Horiuti (170) and by Kritchevsky and Iliinsyka (178). 

Such a correction introduces several unwanted inaccuracies 

into the measurements and nay be directly avoided by using 

an experimental "constant pressure" technique devised by 

Wnikl  ey and Hildebrand (16 9).  The dilatometer is isolated 

at (K) and a negative pressure applied to the open capillary 

arm. This pressure must be sufficient to pull the level 

in the closed aryl down to the original position it held 

before the gas dosage. The extension in the open arm 

will then represent the "true " expansion due to gas 

dissolution and may be directly measured. 

This technique was employed by us for all doses. A 

slight negative pressure was applied at (L) through a tube 

attached to a 50 nl. glass syringe. When the level in the 

closed arm reached its original position, a clip was fixed 

to the syringe tube to hold the pressure. It was found that 

this device enabled the mercury level to be held exactly 

at the required position (+0.002 cm.). When :'ore than one 

dose of solvent gas has been passed, there are in fact two 

positions that are of intc,rest. The one described above, 
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where each dose acts as an individual measurement of the 

volume expansion or the consideration of each dose in the 

context of previous doses. To effect the latter the level 

in the closed arm is pulled down to the position it occupied 

in the first instance before any gas was introduced into the 

system. The expansion in the open arm therefore represents 

the total expansion in the system due to the cumulative 

effect of all doses passed, and by averaging and decreasing 

errors gives a more valid representation of the volume 

expansion. 

To obtain a consistent value for the true expansion 

pressure was applied and removed on about six occasions 

over 12,-20 mins., in each instance a separate reading being 

taken. If two reference marks were being used (i.e. the 

individual close and the total expansion due to several 

doses) this procedure was repeated. 

On the completion of the above operations atmospheric 

pressure was again taken, the burette isolated and pressure-

volume measurements made to determine the amount of gas 

remaining after dosage. 

Further doses were then passed,tie process just described 

being repeated identically. A run generally consisted of 

4-5 doses taking between 8-11 hours. On completion of a run 

the dilatometer was removed at (C) and emptied by applying 

a partial vacuum at (L) via a water pump. The two halves 

of the dilatometer were separated by heating the waxed 

joint and after coaling all traces of wax were removed. 
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Preliminary cleaning of the bottom half of the clilatometer 

was effected by washing with acetone and water. The apparatus 

was then filled with chronic nitric acid and left standing 

for 6-8 hours (generally overnight). This process was 

considered rigeroue enough to ensure all grease etc., was 

removed from the capillaries. After standing, it was 

washed with distilled water and dried far 3-5 hours in an 

oven at 150oC. The top bulb was similarly, but not as 

violently treated being cleaned with acetone, water and 

chrcrio sulphuric acid before being dried at 150°C. for 

3-5 hours. 

The dilatoneter could then be reassembled and another 

run started. Under optimum conditions the process of 

cleaning filling and performing a run was refined to a 

two day cycle. The possibility of using two dilatorieters 

was considered but rejected since it ap)eared to offer little 

or no saving of labour or time. 

8.6 Calculation of Experimental Results. 

The procedure of (8.5) w"s employed for over thirty 

runs involving approximately 140 dcses of the various gases. 

These gases, obtained from the Matheson Co. Ltd., were 

quoted to the following minimum degrees of purity, argon 

(99.998%), methane (99%), sulphur hexafluoride (98%), carbon 

tetrafluoride or "freon-14" (96%), hydrogen (99.95%) and 
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deuterium (99.5%). It was considered that these levels of 

purity made further techniques such as riultiple trap 

sublimation (15) etc. unnecessary and all were used directly 

from their cylinders. 

With regard to the solvents, iso-octane and cyclohexane 

were "spectro-analytical" reagents supplied by Hopkin and 

Williams Ltd., and were judged to be acceptable without 

any further purification. The benzene, obtained "thiopane 

free" from M.& B.Ltd., was dried and fractionally distilled 

B.pt. 79.5-80.50C. The n-heptane, a Hopkin and Williaris 

product conforming to I.P. specification, was similarly 

treated being dried and fractionated B.pt. 97.5-98.5°C. 

. Of the runs made certain were rejected due to break-

downs in experimental procedure, or due to inconsistencies 

in results for successive doses. The errors that may occur 

in the experimental process will be considered later. We 

now content ourselves with an examination of the successful 

results for the 24 systems under study. We do this by 

giving our complete experimental data for one system and 

presenting the others in a somewhat abbreviated form. 

The system chosen for detailed study is that of deuter-

ium in cyclohexane, for which four doses of gas were used. 

The pressure volume data before and after each dose is 

given in Appendix 7, where it can be observed that the 

atmospheric pressure changes little during the course of 

a run. The volume readings are taken directly from the gas 

burette, while the pressure is calculated by adJing the 
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the difference in the mercury levels (n.2-n1) to the atmospher-

ic pressure to give the total pressure (PT). Plots of the 

volume of gas (V) vs 1/PT  are constructed (see Fig (8.5)) and 

to eliminate errors due to changing atmospheric pressure etc., 

the resulting straight lines are produced back to PT  =760nn.Hg 

from which the volute of gas before and after each dose can 

be easily obtained. 

Also given in Appendix 7 are the comprehensive dicta 

for the four doses. Attention is drawn to the consistancy 

in the height of the capillary levels - even under negative 

pressure conditions, the very small oscillation of the 

galvanometer scaler and the rock-like steadiness of the 

Beckmann (which was frequently tapped to avoid sticking), 

From these results the P.M.V. of deuterium in cyclohoxano 

is readily evaluated, the calculations for the first dose 

being described below. 

Dose 1. 

(Gas volumes from Fig(8.5), dilatoneter levels averaged 

from results in Appendix 7.) 

1 

Vol. of gas before dose = 23.36 cc. at 760nn.Hg. 

Dose = 2.50 cc. 

Dose nay be expressed in nols (N), where N =2.50/RT, with 

R, the gas constant( =82.07 atn.cc./ deg.mole.) and T, 

experimental teriperature(=298.36°K.Ior 25°C.) 

Hence N = 2.50/82.07 x 298.36 = 1.021 x 10 moles. 

ti 	IT 	II after 	= 20.86 cc. 
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. Fig 8.5 Deuterium'in cyclohexane,P-V isotherms at 25 C. 

Volume(cc.)-from gas burette vs Total pressure. 
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Dilatometer levels- 

L.H.Arn(after dose) =36.691 ems; R.H.Arn(after close) =36.973cns. 

u u u (before " ) =36.452cns  (before 	) =35.917 cns; H u 

dl1 	= 0.774 cms 	dl2 = 0.521cns 

with negative pressure applied- 

R.H.Arn(after dose) = 37.888 cns 

It It It (before It ) = 36.452 cns 

d13= 1.436 cns. 

Calculation of V2 

(a) From negative pressure result("true" expansion) 

V2 = dV/dN = Vol expansion of 
system in cog  

No. of moles of gas passed 

= 1.436 x 2.899 x 10-3/ 1.021 x 10-4  cc/mole, 

(where expansion of 1 cm in L.H. capillary is equal 

to a volume change of 2,899 x 10-3cc.-see (8.2)) 

Hence 
V 
 2 -7--; -470-.77-6-616-61-6-  

(b) It is possible to obtain a value of V2 1 
from the 

expansion without any application of a negative pressure 

using a compressibility correction introduced by Kritch-

evsky and Iliinskya (178). Thus if the apparent volume 

expansion is Va, the true vclume expansion Vt  is greater 

by a correction term Vc, where 

Vc=3V.dP 

and /3is the isothermal compressibility of the solrent 

occupying a volume V, under on excess pressure c':1?. 
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For this dose of deuterium in cyclohexane- 

Vc = 1.08 x 10
-4
x 250 x( d11+ dl2)/PA cc. 

where P
A = 76 cns.Ilg. 

hence Vc = 0.490 x 10-3cc. 

and V2 = (0.774 x 2.916 + 0.521 x 2.899) x 10-3cc. 

= 3.767 x 10-7cc.  

From above V
t Va V° = 4.257 x 10-3cc. 

and V2 -.4.257 x 103/1.021 x 10-4cc/mole. 

= 41.69 cc/mole  

For the subsequent three doses the results may be 

calculated in an identical manner with the extension that 

using the original position of the left hand meniscus as 

reference mark two estimations of V2 
are dtained from the 

application of a negative pressure to the right hand limb. 

These results are best drawn up in the form of a table 

(see Table (8.2)) 

This shows that it is possible to calculate a value 

of V2 
for individual doses by three different methods. 

However, in Jur evaluation of V2  for each system we did 

not employ these methods, or at least not in the form 

given above. We instead plotted the total extension given 

by lb in Table (8.2) against the total volume of gas added 

(B)- from the same table. The result, which should be a 

straight line through the origin is shown in Fig (8.6). 

The points lie on an unique line with a very snal]J scatter 

and from the slope of this line V
2 
 nay easily be calculated. 
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Table 8.2 Experimental data and V2  values for Deuterium 
in Cyclohexane at 25°C. 

Dose. 
(A) 

V. 
( 	cc.) 

(B) 

V. 
(tot) 

(C) 

N x104'N 
(mo1o4 

(D) 

x104  
ttot) 

la  
(cm), 

lb  
(cms) 

lcV, 
(off ' 

(E) 
a 

(F) 
b 'V2 

(0) 
c V2 

I 2.50 (2.50) 1.021 (1.021 1.436 (1e436: 1.295 40.8 (40.8) 41.7 

II. 3.01 5.51 1.229 2.250 1.624 3.052 1.506 38.3 39.3 40.2 

III 2.80 8.31 1.143 3.393 1.550 4.546 1.472 39.3 .38.8 42.3 

1y 
, 

2.60 10.91 1.062 4.555 1.451 5.997 1.341 33.8 39.0 41.5 

A(or-C)* Vol of gas passed for each dose in cc.(or-molW 
B(ora)== Total volume of gas passed during run in cc(or.imolMO 

Ta'sEXtension refered to reference mark before ihat dose; 
1b Total extension refered to reference mark before 

Dose I. 
lc  Combined extension (d114412),both arms. 

B: 	 ' 	• 
Va2  P.M V. calculated from ia  and 

F; V/; $ P.M.V. 	" 	e *1b and B, 

OW V ,  P M V 	" 2 	• • • 	
-11 

correction. 
1crand A.With compressibility 



Deuterium in Cyclohexane at 25
oC., Extension (cms.) vs Gas Passed(cc.) 	• 
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Hence for D2 - Cyclohexane at 25°C. 

V2  = (dl/dV)slope  x 293,36 x 82.07 x 2,899 x103  cc/mole. 

x 70.986 cc/mole. 

= 5.54/10.00 x 

2 = 39.35co/661-6. 

The calculation of the P.M.V. by this method yields a 

result that is dependent on the run as a whole and not on 

separate doses. It therefore averages certain errors and 

can withstand the effect of slightly spurious expansions. 

The values of V2 given in (F) - see Table (8.2), which 

gives results for each original dose are much more sensitive 

and, since they deal with smaller extensions and gas doses, 

are more liable to errors. The use of the compressibility 

correction to give the results in (G) is of very dubious merit; 

values of $and V are uncertain and the mathematical 

formulation of the correction term is itself open to 

criticism. For certain systems it yielded results in close 

agreement with those obtained directly from the "true" 

expansion but for others agreomont was at the best poor. 

For subsequent tables results obtained by the use of this 

correction term have not been included, emphesis instead 

being placed on the more meaningful values obtained from 

the volume expansions that resulted from the application of 

a negative pressure. 

The results from the other 23 systems studied were 

treated in an identical manner (considering the above 

argue rents)as those of the deuteriun-cyclohexane system. 
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These results are presented tabularly in Appendix SI  . ogether 

with the plots of length (volume expansion) against total 

volume of gas passed, from which the required values of 

V2 at 25
oC., are readily obtainable. 

8.7 Errors and Difficulties of Operation. 

In this section we consider not only errors of measurement 

likely to effect the accuracy of our V2  values but perhaps 

the more important effects that cannot be represented 

numerically. These when present may result in such gross 

disturbances as to cause the experimental run to be abandoned 

or more dangerously, may effect the final results to an 

unknown degree. 

The process of filling the dilatometer can introduce sev- 

eral such factors, the most difficult to eliminate being small 

solvent traces in the capillaries and fractures of the 

mercury columns in the semi-visible part where the capillary 

joins the dilatometer. The latter effect is also very 

difficult to detect and several anomolous runs were traced 

to this cause. Linked with this is capillary blockage 

caused by dust or other foreign matter in the arms. In 

spite of our extreme care in cleaning and filling, and 

also in the use of freshly distilled mercury for each run 

small blockages sometimes :appeared and in the case of 

certain solvents a slight tailing effect for the mercury 
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was noted. In fact,after thernostatting, capillary behavi-  

our gave most experimental trouble, but unlike spurious 

temperature fluctuations which we were rapidly able to pic': 

up, these errors often managed to escape notice for some 

little while. 

Another not infrequent but fortunately easily detect- 

ed fault was that of a gas leak between the dilatometer and 

the burette. The causes of these were uncertain i.e. faulty 

taps, loose joints etc., but the effects were generally 

mirrored in the unexpected movements of the burette levels 

and in these cases the run was usnsTily abandoned. 

There are many other small errors likely to occur 

Owing the course of a run which are too indeterminate to be 

mentioned here. However, it should be clear that an 

individual gas dose is much .more likely to suffer from 

these (and the errors already mentioned) than the overall 

run spread over 4-5 doses and a proportionately longer 

period. This is one of the major reasons for our nothod of 

calculating the P.M.V.'s. We consider at all times the expan- 

sion caused by the total volume of gas passed during the 

run, spurious effects such as capillary blockage can 

generally be detected, while from a numerical viewpoint 

we are continually dealing with larger quantities so the 

errors in their me-asurementl assumed constant, become pro- 

portionally smaller. 

To attach a definite accuracy to the numerical value 

of the experimental results we adopt a straightfoward, rather 
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than complex evaluation of errors: These may arise directly 

from two sources; the measurement of gas volume and that of 

capillary height. If we assume the plots such as Fig (8.5) 

to be accurate, the error in the gas volume should not be 

more than + 0.05 cc. Similarly if the dilatometer levels 

are consistant the error in their heights should not be more 

than ± 0.020 cms. Substituting these values into our 

calculations and using normal error techniques we find a 

maximum error in V2 of 1.4% — 1.8%. It is stressed that 

this figure does not take into account errors in graphical 

methods or other uncertain experimental factors, but 

within these limits it is a maximum rather than a minimum 

figure. However, we consider the claim of Hiroka (168) 

to an accuracy of 0.8% in V2  values, measured in a similar 

fashion to ours impossible and further state that quoting the 

P.M.V. to even the first decimal place is somewhat optimistic. 

8.8 Discussion and Comparison of Experimental results. 

From the experimental data in Appendix 8. we were able 
to calculate the P.M.V.'s at 2500., which are shown in 

Table (8.3) together with where relevant (and where available) 

results of earlier workers for the same systems. We 

believe our accuracy comparable with most data previously 

quoted. This m:►'be verified by an examination of the 

tables in A.8. From these it is clearly seen that while the 
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Table 8.3 Partial Molar Volumes at 25oC.(oe/mola 

Gas 
olven 

Ar. CR4 CF4 SF6  M2 D2 	s 

C6E6 
4=9.2 

44.6 53.3 
(54.8) 

82.3 
(83.2) 

97.1 
(105.5) 

35.4 
(35.3) 

32.7 

(32.7) 
c-C6H12 
4 r„.8.2 

47.6 55.o 87.4 1oi.4 41.0 39.4 

n-Ce10 
S.7.45 

48.3 59.6 
(55;4) 

88.6 
(864) 

102.6 
(105g) 

43.2 41.2 

i-c8It18 
S mr6.9  

49.6 
(50.0) 

56.6 
(56.6) 

86.7 
(85.4) 

103.3 
(104.2) 

46.2 43.1 

Basalts of previous workersolee Table 8.1 
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data for individual doses may show some dincrepencys  .hat 

from which the graphical plots of expansion vs gas volume 

were constructed have a significentry smaller spread. A 

noticable exception to this perhaps is the plot for freon 

in n-heptane. In all four rurs were made on this system 

and in each case the data demonstrated wide and sometimes 

startling inconsistancies. We can offer no explanation 

for this anonalombehaviour and foward our value of 

V2  = 88.6 cc/mole, subject to a larger degree of error 
than our other results. 

The overall patteriof the P.M.V.'s follows the lines.  

already discussed in (8.1) — increasing with increasing 

molecular size of solute gas and decreasing with increasing 

S for the solvent. Comparing our values with those 

obtained by previous workers we exactly agree with Jolley 

(13) for argon in iso-octane and within experimental 

accuracy with Horiuti (170) for the methane-benzene result. 

However, our results for SF6 in all solvents show a total 

disagrecnent with those of Hiroka (168). The most striking 

of those is for the SF6-benzene system. Our value Differs 

from that previously neanured by nearly 8.5 cc/mole. To 

check this we quote two runs totalling nine doses (see 

A.8.). The experimental result shown in Table (8.3) is 

from the first of these., The second run gives data with 

a slightly higher spread but a smaller V2 
value ana in not 

one instance on our graphs do we have an experi-ental 

point in excess of 100 cc/mole. The remaining comparison 
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of P.M.V.'s for sulphur hexafluoride do not yield ouc'-

striking discrepencies but whereas Hiroka's values for 

different systems were almost identicall ours show a small 

but definite tendency to behave "normally" in that they 

increase with decreasing 

With regard to the results of Schur= and Brown (179) 

no firm conclusion may be reached. We agree with their 

value for freon in benzene, but disagree outside the 

limits of permitted accuracy for methane in n-heptane. 

Moving to iso-octane as the solvent medium we again agree 

with their results for methane (exactly) and for freon 

(within limits). However, these are against the predicted 

trend i.e. we would expect larger P.M.V.'s on going from 

n-heptane to iso-octane. We can only attempt to explain 

this by refering to the work of Fujishiro et al (180) 

on liquid-liquid mixtures. In this, anomalous behaviour 

for iso-octane was again observed and was attributed to 

"loose structure". Further it was suggested that to fit 

experimental data the solubility parameter of the solvent 

should be altered from g=6.85 to 7.7-7.9. A step of this 

nature would not help us particularly since although 

explaining the low values of the P.M.V.'s for nethane 

and freon it would make the Ar, SF6, H2  and D2  results 

irregular. We must therefore conclude that in certain 

situations iso-octane exhibits anomalies. These may well be 

due to its branched structure but to put a numerical estim-

ate on this effect is beyond our scope. 
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Finally we draw attention to the results observed 

for hydrogen and deuterium. In each solvent a distinct 

"quantum difference " is noted, slightly dubious perhaps 

for cyclohexane but clearly outside the range of experiment- 

al uncertainty in all other cases. Further the results in 

benzene agree exactly (but probably fortuitously) with 

the results of Waikley and Hildebrand (166)• The aigin 

of this quantum difference is thought to lie in the fact 

that the solvent exerts an internal pressure of a considerable 

magnitude (3000 atm. - approx.). Under such conditions 

the dissolved molecule of hydrogen or deuterium acquires 

a zero point energy well in excess of its classical energy, 

and this, even at 25°C. is responsible for a quanturi effect. 

Any theoretical treatment of such behaviour therefore 

requires a consideration of quantum statistics, the success 

(or failure) of which will act as a test both for any 

model and for the explanation of the P.M.V. difference 

as voiced above. 
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CHAPTER 9. 

The Hard Sphere theory and Partial riolar volumes. 

9.1 Regular solution theory. 	6 	of 	. 	196 

9.2 A Classical hard sphere treatment . 	a 	198 

9.3 The Quantum hard sphere equation of state. 	206 

9.4 Discussion . 	. 	. 	. 	. 	. 	211 

"How often have I said to you that when we have 

eliminated the impossible whatever remains 

however improbable, must be the truth." 

Sir Arthur Conan Doyle (1859-1930) 

- from "The Sign of Four." 
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9.1 Regular Solution Theory. 

A theoretical prediction of P.M.V.Is from regula-2 

solution theory may be developed through a consideration 

of the excess volume VE i.e. the volume change resulting 

from mixing (and in the cases that we consider mixing at 

constant pressure.). This term was given by Hildebrand as- 

VE  = n PPE 	 (9.1.1) 

n„ being the ratio of internal pressure to the cohesive 

energy density ( = (dE/dV)T/(E/V)) , 13 the isothermal 
compressibility, while Fes' isthe excess free energy developed 

by the process of solution. 

In the specific case of highly dilute solutions 

(9.1.1) nay be differentiated in the limit x2--3 0 (where 

x2  is the mole. fraction of the solvent) to yield an 

equation for the P.M.V. 

	

= V2  - V(2)  = 11 	 (9.1.2) 

In the above, V2 is the molar volume of the solute 

in its reference state, n1  and /31  are defined as properties 

of the solvent, while n2, the activity coefficient of the 

solute is given as 

	

RT1n 2 vo ( 	2 
) 2 = ' 

4
1 2 	2 	(9.1.3) 

where °1 
is the volume fraction of the solute andr1 and pia2 

the solubility parameters of the solute and solvent 

respectively. (9.1.2) and (9.1.3) can therefore be combined 

so that 

V - V°  - 	pS1 2  2V°  (i4 	S )2  
2 	2 - n 1 / 1 	2 

(9.1.4) 
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The partial molar volumes of iodine and bromine in 

perfluoro..n-.heptane, as measured by Glew (11) and Reeves (182) 

respectively were tested against theoretical values from 

(9.1.4). Here /31  = 2.34 x 10-4  atn-1  and n
1  = 1.49. Good 

agreement was found for bromine (i.e. 72.5 cc/vole exper- 

iment against 75.7 cc/mole from (9.1.4)) but for iodine 

a larger discrepancy was observed. 

Further successful predictions of P.M.V.'s for said 

and liquid solutes were made by Smith ad Walkley (17). 

In all cases they employed1(9.1.4) with n1= 1 ( an approx- 

imation valid for the majority of non polar liquids) and 

with V°2  given by the molar volume of the solute, which 

in the case of a liquid was obtained by extrapolating from 

the melting point to the reference temperature (generally 

25°C.) 

The success of this treatment could not be carried 

over into gas solvent systems. One major difficulty was 

the determination of a solubility parameter for the 

solute gas ( (5.2). However, values of & were indirectly 

evaluated by Clever et al (171-173) and G.jaldebeck (183-184). 

Using these values Smith and Walkley applied (9.1.4) to 

calculate gas P.M.V.'s. The results obtained were completely 

anomalous. The predicted values of the sale gas in differing 

solvents showed little if any change with 	and in 

general this approach within the limits of gas liquid 

systems was proved both insensitive ancl. inaccurate. 
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Such observations forced Smith and Walkley to lo-k 

outside the boundaries of regular solution behaviour for 

an explanation of this phenomenon and led them to formulate 

a simple but effective hard sphere "free volume" theory. 

In the following sections we describe the development of 

this theory and its extensions into the limits of quantum 

behaviour. 

9.2 A Classical Hard Sphere Treatment.  

The hard sphere theory follows, to some extent, the 

earlier ideas of Uhlig (177) and Eley (175,176). It 

pictures the molecule as occupying a spherical cavity in 

the solution being surrounded at the boundaries of this 

cavity by the neighbouring solvent molecules. The simplest 

theoretical approach is to consider the solute as a hard 

sphere molecule of diameter 6, (i.e. an entity capable 

of exerting only a repulsive potential). This molecule 

positioned at the centre of its cell will therefore generate 

a pressure (obtainable from the hard sphere equation of 

state) which, to maintain equilibrium, is balanced' by an 

equal and opposite pressure from the solvent, the latter 

being defined as the "internal pressure". The mixing 

process is considered to be such that, having attained 

this equilibrium, nixing occurs without any further volume 

change and therefore the molecular volume of the solute 
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in the hypothetical liquid state must be identical with the 

partial molar volume of the solute in the final solution. 

Putting this concept on a somewhat simpler basis, before 

solution the gas consists of a system of hard spheres at 

atmospheric pressure, the volume occupied by this system 

being given by the hard sphere equation of state. For mixing 

to occur the gas must be drastically compressed until 

its pressure is equal to the mixing pressure (given by 

the internal pressure of the solvent). At this pressure 

isothermal and isometric mixing take place, while also 

at this pressure the volume occupied by the gas is equal to 

its P.M.V. in solution. 

The internal pressure of a solvent is given as 

(dE/dV)T  = T(dP/dT)v  - P 	(9.2.1) 

Since P is generally one atmosphere it may be ignored in 

comparison with T(dPidT)v  which is in the region of 2000-

3000 atlas. 

The free volume of a system of hard spheres is readily 

evaluated 	4-0'' 

Vf  =4 77 r2dr = ( 4/3)7(a - 403  
f0 	

(9.2.2) 

where a is nearest neighbour distance. 

Substitution of (9.2.2) in the classical partition function 

leads to the classical expression for the pressure of a 

system of hard spheres 

P = (RT/V)(1 - d/a)-1 	 (9.2.3) 

Now by definition (9.2.3) must be equal to the internal 

pressure of the liquid, so equating (9.2.1) and (9.2.3) 
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gives:- 

(dP/dT)v  = (R/V)(1 - dVa)-1 	(9,2.4) 

We define V
oailo 3  and V=111a3, where is a constant 

dependent on the geometry of the lattice and set Vo  equal 

to the volume of the gas at 0°K. Further we assume that 

when this equilibrium is effective V=V
2. (9.1.4) therefore 

becomes:- 

(dPAIT)e(R/V2){1-(Vo/V2 -1 	 (9.2.5) 

or 

V0=V2  1.(R/V2)(dP/dT).7_1 3 	 (9.2.6) 

Hence knowing the collision d:ameter of the gas (4 and the 

value of (dP/dT)V  for the solvent, a value of the P.M.V. 

nay be obtained for any gas-solvent system. Several 

assumptions must now be made to develop these equations. 

First the packing paraneterY, is assumed to be unity. 

This night appear somewhat arbitrary but, like the L-J 

theory, the lattice concept is only introduced to link near-

est neighbour distance and density. This concept has no 

further part in the calculations, and a packing parameter of 

Y =1 is perhaps as justifies as any other assumption. The 

choice of a value for d raises somewhat greater problems. 

It was in fact assumed to be given by the L.J. collision 

diameter. This parameter cantliereTore be obtained either 

from a choice of gas (second virial or transport) data or 

from solid state properties as characterised by the zero 

point parameters (4.3). In this treatment, however, we 

are dealing with gas molecules at room temperature and 
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and therefore gas imperfection data would appear the obvious 

choice. This was the procedure eitloyed by Smith and Walkley 

for ter, N2, CO, and CI141  although they did use solid state 

data for hydrogen and deuterium. In all our craculations 

we used the nornal d values derived iron second viriale, 

the only exception being the value for sulphur hexafluoride 

which we later discuss in some detail. Hydrogen and deuterium 

present aSSpecial case and they are treated in (9.3). 

The values of (dP/dT)v for various solvents were, 

if possible, taken from direct experimental measurements. 

Failing this they may be obtained to a good approximation 

from the relationship:- 

(dP/dT)v  = (d/P) 	 (9.2.7) 

whereaC= coefficient of lineAr expansion and 	the 

isothermal compressibility of the solvent (185). 

The solution of (9.2.6) is effected by writing it 

generally as:- 

Vo = f(V) 	
(9.2.8) 

For any solvent knowing (dP/dT)VI 
f(V) may be evaluated 

over a range of volumes and plotted as V against f(V). 

Now by definition each gas in this solvent has a unique 

value of Vo 
such that Vo 

= f(V) when V=V2' and hen-e for 

each gas-solvent system the value of [f(q V=V  giv" a  

corresponding value oqyjv=v  
2 

The plot of f(V) vs. V for benzene ((dP/dT)v=12.3 atn/deg.) 

is given in Fig. (9.1) and an abbreviated list of data used 

to construct it in Table (9.1). 
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Fig 97.1 Classical Hard Sphere for Benzene'fEq 
Vo = f(V), (dP/dT)v  = 12.10.atm/deg 
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Table 9.1 V vs f(V) for Benzene at 25°C,after Eq 9.2.6 	203. 

(dP/dT) = 12.60 atm/deo:0 = 82.07 cc e atm/°K,mole 

V R 
V 

R(dll  
V dTv  

1 - R dl 
V dT 

-1.3 (1- R 	) 
V WT, 

V(1- R 	P 1 )3 

V 

10 8.207 0.667 0.333 0.037 0.370 

20 4.104 0.534 0.666 0.295 5.900 

30 2.735 0.222 0.778 0.471 14.130 

40 2.052 0.167 0.833 0.578 23.120 

50 1.641 0.133 0.867 0.652 32.60n 

6o 1.368 0.111 0.889 0.703 42.180 

7o 1.173 0.095 0.905 0.741 51.870 

8o 1.026 0.083 0.917 0.771 61.680 

90 0.912 0.074 0.926 0.794 71.460 

100 0.821 0.067 0.933 0.812 81.200 

Table 9.2 Experimental P.M.V.rs at 25°C,compared with values 

from the hard sphere theory( from 9.2.8) 

Gas 

Solvent. 

Ar. 

N63=25 

CH4 
Ne
3 =35 

CF4 
u63 =63 

SF
6 

N63 =77 	. 
C6H6 44.6 53.3 82.3 97.1 

(dP/dT)v=12.3 (42) (53) (81) (96) 

c-c6H12 
47.6 55.o 87.4 101.4 

;dp/dT)v=10.5 (45) (55) (84) (99) 

n-C7H16 48.3 59.6 88.6 102.6 

(aP/dT),,=8.4 (48) (60) (89) (103) 

i-C8H18 49.6 56.6 86.7 103.3 
(dp/dT)v=7.6 (51) (62) (92) (106) 

CC3.4  45 52 80 104 

(dP/dT)v=11.2 (44) (54) (83) (97) 

( ) values calculated from H.S.theory (9.2.6) and (9.2.8) 
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We formulated similar plots for cyclohexane, iso-

octane, n-heptane and carbon tetrachloride, and using values 

of N6 3 from second virial data obtained theoretical P,M.V.'s 

for Ar, CH4  and CF4. Preliminary calculations for SF6  however 

indicated that any theoretical results would be anomalously 

high. The value initially used for N6 3  was 100.7 cc/mole, 

being derived from the e value (=5.51R) given by MacCormA3k 

and Schneider (186). These workers were also responsible for 

parameters for CF4  which appeared to give orthodox results. 

However, a close study of their work indicated that their 

fitting procedure for SF6  was most unsatisfactory. Indeed 

the authors themselves state that "an exact determination 

of the parameters for SF6  was not possible". These parameters 

were of course derived' on the assumption of a L.J. 12:6 

interaction. However, for some little tine there have been 

definite suggestions that large quasi spherical molecules 

such as SF6  might be better described by a 28:7 potential. 

Values of G 	and 6'for such molecules were given by 

Hamann and Lambert (149) who derived their parameters from 

collision integrals in combination with existing second 

virial coefficient data. Hamann's value for Nc`3=76.61 cc/mole 

(6s:5.051) was much more reastmlable than that given by 

MacCormack, but if a 28:7 interaction is assuga for SF6  

why not for CF4? To answer this we quote the work of 

McCoubrey and Sing (187) who investigated intermolecular 

forces in quasi spherical molecules. Their investigations 

showed that whereas Xe, CH4  and CF4  were adequately described 
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by a 12:6 potential, SF6  and SiF4  were better accounted 

for with a 28:7 potential. In our calculations we therefore 

use No' 3 for SF6 from Hamann data. The other gases are 

all considered to be adequately described by the normal 

L.J. cf Is. 

The theoretical results from (9.2.8) are shown in 

Table (942) and are compared with the experimental values 

from 8.8. The agreement between measured and calculated 

values is often within experimental error and in only two 

cases, the Hanomillous" iso-octane results for methane and 

freon (see 8.8), are large discrepancies observed. In 
particular we note the excellent correspondence between the 

predicted values for SF6 
and experimental data. For interest 

we have indicated theoretical values for carbon tetrachlordde 

which are compared with the experimental results of other 

workers from Table (8.1). Once again good agreement is ob-

served, apart from the SF6 
value of Hiroka. The fact that 

the theoretical P.M.V.'s follow the trend of decreasing with 

increasing g parameter is not surprising since for any solvent 

(dP/dT)v  but nevertheless the utility of (9.2.6) must be 

beyond question. A comparison of values derived from it 

compared with other more "rigorous" expressions is postponed 

until later (9.4). 
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9.3 The Quantum Hard Sphere Equation of  State 

A close examination of Table (9.2) will reveal no 

mention of V
2 values, either experimental or theoretical for 

hydrogen or deuterium. These can be obtained through 

(9.2.6) and in fact this was done by Smith and Walkley. 

They assumed Vo  values from the volume of the low temperature 

solid and using these calculated results that were grossly 

above the experimentally measured data (see Tables (9.3) 

and (9.4)). The cause of this "failure" of the theory must 

be in the use of (9.2.3) to give the pressure of the gas. 

If hydrogen and deuterium indeed display a quantum effect 

at roe::: temperatures, and the evidence is heavily biased 

to support this, their pressure and equation of state can 

only be derived through quantum statistics and hence a 

quantum hard sphere equation of state. 

Such an equation was developed by Hillier and WElkley 

(157), who then adopted it to evaluate the quantum V2  values 

for hydrogen and deuterium in benzene and perfluoro-n-

heptane (188), achieving a reasonable agreement with 

experimental data. For the latter investigation they used 

an approximation which re7daced the spherical cavity by 

a cubical cell of equivalent free volume. This step 

was taken chiefly to ease mathematical computation. In our 

present treatment we use the more accurate spherical cavity 

method developed by Utting (71) from the work of Hillier 

ald slightly amended by the author. It is in many respects 

identical to the uniform potential treatment given in 
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Appendix 6, and is therefore pally briefly described i4,re. 

The. hard sphere potential is given by:- 

W(r)=0 O‘r((a-6) 
(9.3.1) 

W(r)= 09 r(a-o) 

The free volume integral in (9.2.2) is, as is usual in any 

quantum treatment, replaced by the Slater sum. The resulting 

Schroedinger wave equation is for one particle in a spherical 

cell and, for the hard sphere potential, may be solved 

by transforming to polar co-ordinates (see A6.). 

The energy levels are given by:- 

E = (h2C*/8mR2) 
	(9.3.2) 

where R is the radius of the effective cavity and 

C* is obtained from the zeros of the half integral Bessel 

functions. 

From these arguements, the equation of state may 

finally be written in reduced units as: 

(PV/NkT) = f(V*1T*) 	(9.3.3) 

where 

f(V*,T*)= 	 (21+1)(D*C*/T*)(V*--'-1)V*4-exp(-D*C*/T*(V*-1)
2 
 ) 

1 	 1  

2...  (21-1-1)exp(-D*C1/T*(V*1)
2 
 ) 

and D* =(h2/8mE)V0  =.,6 *2/8  with Athe De Boer parameter. 

For our calculations we require, not the compressibility 

of the system as given above, but the pressure where:- 

P=(RT/V*Vo)f(V*,T*) 	 (9.3.4) 

since V*:-.V/Vo 

which may he equated to (9.2.1) such that:- 

(V0/12)(dP/dT)v=f(V*,T*)/V* 	(9.3.5) 
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Hence knowing the L.J. parameters for the system (9.3,5) may 

be solved in a similar manner to (9.2.6). This is done 

by computing f(U*,T*)/V* over a range of V* values with 

Al* *=1.729 (hydrogen) or A*- 1.223 (deuterium). It is nec-

essary to evaluate the function at a reduce3 temTerature T* 

such that T*=298/( E/k) - i.e. at 25°C. We then plot 

graphically f(V*,T*)/V* against V*, for the appropriate 

quantum gas (the plot for H2  being given in Fig. (9.2)). 

Consequently knowing (dP/dT)v  for each solvent we may 

calculate (Vo/R)(dP/dT) for a riven gas-solvent systun and 

from the equality of (9.3.5) immediately derive an equivalent 

V*. This latter quantity is tabulated and readily normalised 

(through 1416 3) to give the V2 value for the system. 

In Tables (9.3) and (9.4) we give the theoretical ad 

experimental data for hydrogen and deuterium. The reduction 

parameters used in our calculations being these of Michels 

(118) i.e. H2  (N6-3=15.60 cc/mole; e/k=36.7°K.), D2  (Nor'% 

15.50 cc/mole;e/k=35.2°K.). 

The theoretical results derived from (9.3.5) .and listed 

in these tables again show good agreement with experimental 

data. A marked exception to this perhaps are the results 

in cyclo-hexane but the other predicted values altholigh not 

yielding such close agreement as measurements in Table (9.2) 

all lie within or just outside the range of experimental 

error. The difference between theoretical V2
's for hydrogen 

and deuterium in the same solvent is small and constant 

(approx. 1.3 cc/mole). We performed other calculations 



209. 

Fig 9.2 Quantum Hard Sphere for Hydrogen f(V*,T*)/V* vs V* 

at T* =8.02( i.e. 298°K) 
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Table 9.3 Hydrogen,theoretical P.M.V.'s from Q.H.S. equation 
of state( Nd3  =15.60 oc/mo34 /1:!' = 1.729) 

Solvent (dP/dT4 

atm/der 
I" 

Voq 
kicl.T 7 

V0(\dP V* V2 
Theory 

V2 
Expt 

V2 
(9.2.6) Tv 

06H6 12.30 191.9 2.238 2.264 35.3 35.4 
• 
39.8 

c::c6H12 10.50 163.8 1.996 2.415 37.7 40.0 42.5 

n-C7H16 8.4o 131.0 1.597 2.677 41.8 43.2 46.6 

i-C8H18 7.60 

A 

118.6 1.445 2.808 43.8 46.2 49.9 

... 

Table 9.4 Deuterium,theoretical P:M:V:t6 from Q:H:S: equaii8k 
of state( Nd3  =15.50 cc/moIe...A*  =1.223) 

Solvent (dP/d1 

atm/de4 

V0(01 
ciTiy 

Vop V* V2 
Theory 

V2 
Expt 

V2 
(9.2.6)  R 	aVy 

C6H6 12.30 190.6 2.323 2.188 33.9 32.7 36.5 

c-C6H12 10.50 162.8 1.983 2.350 36.4 39.4  „59., 	_„,.„, 

n-C7H16  8.40 130.2 1.586 2.613 40.5 4-1.2 43.3 

i-C8H18 7.60 117.8 1.435 2.740 42.5 f3.1 45.5 
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with the parameters given by Hirschfelder et al. (189), 

which were used in the earlier work of Walkley and Hillier 

(188). No significant improvement in theoretical values 

was observed. 

The calculations just described in common with other 

expresssions in reduced variables must be extremely 

sensitive to the parameters employed in any "normalisation" 

procedure. In view of this,agreement of theory with exper-

iment must be classed as excellent, especially when one 

considers the anomalously high values of V2  for hydrogen 

and deuterium as derived from (9.2.6) and as shown in the 

final column of Tables (9.3) and (9.4). The relative 

success of the quantum cell model must also emphasise two 

distinct facts. First that the differences in solution 

properties of H2 and D2 
at room temperature must, beyond 

all doubt, be attributed to quantum effects and secondly that 

even in complex situations the empirical but simple hard 

sphere theory retains a remarkable predicative value. 

9.4 Discustton 

We conclude this chapter by com7aring the relative merits 

of the hard sphere "free volume" theory with other methods 

used to predict P.M.V.'s. Smith and Walkley conclusively 

demonstrated the inadequacy of regular solution thenry (9.1) 

and also revealed the limitations of the Prigogine.7.5cott 

(190) model, which, depending on the thermodynamic properties 



212. 

of both gas and solvent in their pure states, formulated 

equations which exhibited minimum dependence on a cell 

model. 

Since then another method of predicting V2  values, 

given by Pierotti (191,192) and based on a hard sphere 

theory theory of fluids developed by Reiss et al (193-195) 

has been forwarded. Pierotti's approach considers the solut- 

ion process in much the same way as the work of Eley (175-6) 

in that two distinct steps are postulated. These are the 

creation of a cavity to accomodate the solute molecule 

and the introduction of the molecule into this cavity. 

From this the expression for V2  is given as: 

V2  = Vi  Vc  4AT 	(9.4.1) 

where Vc is the volume change on cavity formation, V the 

change on introducing the solute molecule and the isothermal 

compressibility of the solvent. Vi  is assumed negative 

but so small as to be unimportant, Vc  is calculated through 

the equations of Reiss. In Table (9.5) we compare the 

theoretical V2 
values of Pierotti in benzene at 298°K., 

with experimental values and our own theoretical calculations 

from the hard sphere theory. (For Table see overleaf.) 

Similar results to those given in Table (9.5) are 

observed for carbon tetrachloride. Pierotti claims the 

agreement using (9,4.1) to be good and further states that 

the discrepancies are " ...what one would expect by 

ignoring Vi040.0"0 With regard to this statement all 
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Table 9.5 Theoretical and experimental P.M.V.'s for sem° 
gases in benzene at 25°C. (cc/mole.) 

Gas 	- V2a 	V2(exp-t.-) 	
.1.2b. 

Ar 	52 	45 
	

42 

N2 	61 	53 
	50 

CH4 	65 	53 
	

53 

112 	38 	35 

a 	Values of Pierotti from (9.4.1) 

b 	Our values from (9.2.6.) and (9.3.5) 

comment is superfluous, while Pierotti's further attempts 

to use this " evidence " as a basis for dismissing free 

volume theories out of hand can only be regarded with 

astonishment. 

In fairness to the Pierotti approach however, it must 

be stated that it is a versatile method in that it allows 

the prediction of solubilities (via the Henry coefficient) 

and other thermodynamic solution properties, In this 

context our model with the hard sphere pressure being 

balanced by the solvent pressure is strictly limited. 

We have attempted to extend it to predict the solubilities 

and entropies of solution using the methods of Eley (175) 

and the more recent approach of Prausnitz (196) but have 

not achieved any notable degree of success. 

Acknowledging this failure to extend the model to 

solution properties, we also observe that it can have other 

and perhaps im're unexpected uses. We rewrite the classical 
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equation (9.2.6) as: 

- Vo3  - R(dP/dTi.  V2  j = 0 	(9,4.2) 

I Z 
Or 	V2 - Vo3V23  - R(dP/dT)V  -1  = 0 	(9.4.3) 

(9.4.3) is a cubic equation in V2 and similar to (9.2.6) 

may be solved graphically, knowing NC3 for the gas and 

(dP/dT)v  for the..solvent. It is specific for any gas-

solvent system and in Fig (9.3) we show the relevant curves 

for argon in benzene and iso-octane and for freon in benzene. 

These perhaps represent the limits with regard to the gas-

solvent systems studied experinenta3lr. It is known that 

the V2 values for the same gas in different solvents alter 

only slightly. This is clear from an examination of (9.4.3) 

and Fig (9.3). The only term to change is the (dP/dT)v  

for the solvent. This results in the iso-octane curve being 

almost identical to the benzene one but with a lower minimum 

and with a fractionally lavger zeroth intercept (f(V2-5)=0). 

For different gases in the same solvent the size effect 

(i.e. Vo) is of much greater importance. This is reflected 

in the behaviour of (9.4.3) for the freon-benzene curve 

which is totally different from that of argon in the same 

solvent. 

Throughout this chapter we have continually used the 

model to predict P.M.V. values. We now reverse the process 

and assuming a knowledge of V2  take a further look at 

(9.4.3). If we know V2 
an experimental solution property, 

and Vo an empirical gas relationship, we may solve (9.4.3) 

to find (dP/dT)V 
 which is a property of the pure solvent. 



215. 

Fig 9.3 Plot.  of Eq 9.4.3 for three gas-solvent systems. 
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As we have already stated, this may be directly measured 

or indirectly calculated (9.2.7). Its derivation through 

(9.4.3) is possibly of questionable value. 

We now move to the third and perhaps most surprising 

corollary of (9.4.3) in that measuring V2  and (dP/dT)v  

experimentally we may proceed throughl(9.4.3) to evaluate 

Vo and consequently e, the Lennard4-Jone..3 force constant 

for the gas. This quantity, normally derived from second 

virial or transport data, assuming an L.J. 12:6 interaction 

is specifically a gas property. Can it be successfully 

evaluated from experimental solution and solvent data? 

To answer this question we proceed in a somewhat unorthodox 

manner, by considering the P.M.V.is of iodine and bro:tne 

in perfluoro-n-heptane. These constitute a solid-liquid 

and liquid-liquid system respectively and were of course 

used by Hildebrand (9.1) as a sensitive test of regular 

solution theory. Outside the solutions, there can be no 

accountable reason to consider either solute as a hard sphere 

gas. However, the solution process itself and the situation 

directly resulting from it may, to a good approximation 

be described by a hard sphere theory, 

Therefore using the experimental V2  values of 

Hildebrand and co-workers and the (dP/dT)V 
 for perfluoro-n- 

heptane measured by Smith (167) we have used (9.4.3) to 

predict d values for iodine and bromine which are shown 

in Table (9.6.) 
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Table 9.6 d parameters from V?  values in n-C7F 
16  at 2S'C.  

((dP/dT)v  = 7.10 atm./deg.) 

Solute V 
2
a 6(1)b 
 6(1)c 

12 100 4.862 4.982 

Br2 73 4.166 4.268 

a From Ref (163) p110- vallies in cc/mole. 

b Theoretical values from (9.4.3) 

C Experimental values derived from viscosity data (189) 

The theoretical values are compared with those obtained 

from gas viscosity data (189). Even bearing in mind the 

frequent unreliability (i.e. non uniqueness) of values 

obtained from transport properties, and in addition the 

somewhat dated experimental results from which they were 

derived, the correspondence renains remarkable and muss, lead 

to several possible conclusions, The first of these is 

that (9.4.3) must be insensitive, especially with regard to 6, 

but this is not supported by our earlier evidence (see Fig 

(9.3)). The second and, we think, more plausible conclusion 

is that for solution behaviour directly related to the volume 

expansion of mixfng and involving either gas, liquid or solid 

solutes the hard sphere theory of Smith and Walkley, used as a 

simple predicative medium remains without equal. Its theor-

etical justification is (as we have seen) somewhat nebulous and 

we offer no rigerous explanation for it. Instead (and here we 

paraphrase Hildebrand) we must provisionally content our-

selves with this presentation and offer the relationships 

described above as a suggestive model for further theoretical 

treatments. 
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CHAPTER 10 

A modified Cell theory. 

10.1 The model. 	 • 	219 

10.2 Pure liquids 	 • 	223 

10.3 Gas-liquid systems and the combining 

rules 	• 	• 
	 230 

"It is a capital thing to theorise 

befoie one has data." 

Sir Arthur Conan Doyle (1859-1930) 

from "Scandal in Bohemia." 
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10.1 The Model 

The picture of gas solubility as given by the hard 

sphere treatment, although attractive, is rather grossly 

over simplified. We have therefore attempted to extend 

our approach by utilising the ideas of Kabatake and Alder 

(19) and Walkley (199). These, while admitting the failure 

of a lattice model to act as an adequate theory of fluids, 

especially with regard to the communal entropy problem, 

(i.e. higher order correlations) emphasise that one particle 

theories nay provide one of the fdw methods through which 

meaningful results can be obtained. 

In the treatment of either a liquid in its pure state 

or a liquid gas mixture, a one particle theory pictures 

each molecule as confined to a cell. To date, in this 

discussion, such a theory has automatically involved the 

parallel assumption of a virtual lattice, which is needed 

to define the cell dimensions. However, we now follow 

Kobatake and Alder (K.&A.) in rejecting this concept ad 

instead determine the size of the cell from the thermodynamic 

properties of the system. We therefore picture the represent- 

ative particle as confined to a spherical cell, not part of 

a lattice, whose size and whose number of surrounding 

neighbours are determined by forcing agreement on two 

thermodynamic properties, the resulting cell parameters 

being known as "effective" paraneters, since they reflect 

higher order correlations. In any consideration of pure 
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liquids we have a relatively simple situation, composed of 

an "array" of identical cells. However, moving to dilute 

gas solutions the position rapidly complexes. The introduction 

of the solute molecule is accompanied by cavity formation, 

which disturbs the uniform nature of the solvent and creates 

a situation where several different types of cell may exist. 

The extent and degree of this disturbance is therefore one 

factor that should be predictable from any rigorous treatment. 

To simplify the theoretical model we adopt the ::ssump-

tions of earlier workers (19,199) with regard to the size of 

the cell. In pure systems the cell length parameter is 

determined from the volume per particle, its nearest neighbours 

being smoothed at a distance equal to 6/2 (d is the L.J. 

parameter). At this latter point the force between two 

molecules is, by definition, highly repulsive and to a 

good approximation the wandering molecule nay be regarded as 

being confined to the particle volume. In the case of 

gas solutions the treatment is similar but the volume 

per particle is replaced by the P.M.V. for the system and 

the resulting length used, in conjunction with the radius 

of the pure solvent, to evaluate the nearest neighbour 

distance. 

Any cell theory, requires the cell potential W(r) as 

a definite function of volume, temperature and r(where 

r is the distance of the "wanderer" from the centre of the 

cell). K.U. adopted the Lennard-Jones potential, primarily 

for the convenience of tabulated integrals (48). We do 
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likewise but instead use our classical approach that enables us 

to quickly and readily compute properties over a wide 

spectrum of "theoretically imposed" conditions. This 

adaptation of the L-J potential introduces the parameters 

e and 6 which become the "effective" parameters mentioned 
above. The 6parameter has already been defined, being 

obtainable from the size of the cell. The energy parameter 

however, involves not 6 alone but ZE, where Z is the number 

of nearest neighbours. From a rigorous cell theory Z=12 

but in structures that we consider it varies with volume 

and temperature. Such a factor should strictly be considered 

in any manipulation (e.g differentiation) of functions 

developed from the potential. However, this would introduce 

complexities into the mathematical process and is therefore 

arbitrarily ignored. 

Calculations using this modified theory are usually 

made it reduced variables. These differ from the reduced 

quantities previously defined (1.4) to a considerable 

extent. Thus reduced temperature (T*) is replaced by the 

"effective" reduced temperature (n) so:- 

T* = (12/Z)(kT/6) 
	

(10.1.1) 

while V*, the effective volume is given as:- 

V* = a3 	3 /(22d ) 	 (10.1.2) 

a being the nearest neighbour distance, 6 as above (dependent 

on the system) while 21-  is not a packing factor but rather 

a normalisation to allow comparison with previous results. 

L more exact formulation of (10.1.1) and (10.1.2) is highly 
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dependent on whether we are studying a one or two component 

system and the full treatment is therefore postponed until 

later in this chapter. At this point, however, it is 

pertinent to remark that in the case of a gas-liquid system 

the "effective" parameters, if determined through experiment, 

can be used to obtain information on the arrangement of 

solvent molecules around each gas-solute. Thus, providing the 

energy parameter is assumed, the effective temperature can 

be used to calculate the number of nearest neighbours, 

while it should be possible, knowing 6, to investigate the 

geometric distribution of these neighbours around the cell 

boundary. 

The idea of a decreased co-ordination number has 

previously been examined in the application of the 

"L-J" to liquid argon (46). In this context its validity 

must be doubtful. In the field of gas solubility, however, 

geometrical factors alone make such a concept more probable. 

An examination of this through (10.1.1) yields information 

that is confined only to nearest neighbours. However, 

the arrangement of further neighbours must also be altered 

and should be reflected in their contribution to W(r). But, 

as before, a direct evaluation for an effect of this kind is 

difficult, and to a good approximation it may be assumed that 

the number of further neighbours changes in the came 

proportion as the nearest neighbours deviate from 12 in 

a close packed structure. 

Therefore, utilising the above assumptions we have 



223. 

performed a limited examination (for some of the systems 

studied in Chapter 8) on the disorder introduced into a 

solvent by gas dissolution. Other authors have extended 

this treatment to predict other solution properties. A 

closer perusal of these extensions, however, reveals them 

to be based on foundations that oven the most optimistic 

theoretician must regard as shaky. These will be discussed 

later. 

We now apply our effective theory to a consideration of 

pure liquids. 

10.2 Pure Liquids  

A liquid may be regarded as a classical system, the 

partition function of which is given by (1.3.7), and 

having a Gibbs free energy (AL) such that:- 

AL 	---== RI.ern )\ RT eve, vf ± AA) (0) (10.2.1) 
a 

where )_-_-(h2/21MkT) 	 2, 

The corresponding free energy in the gas phase (AG) is:- 

Te44-1 —k -74-efret ( -Y- ) 	RT 	(10.2.2) Ali 

Assuming the gas to be ideal, (10.2.1) and (10.2.2) balance 

at a pressure equal to the vapour pressure of the liquid, hence:- 

t/f 	6(21(.2) 	+  

	

2 kr- 	/1( 
(10.2.3) 

From (1.3.7) we may also develop a term for the entropy of 

vapourisation Sv, which is the excess entropy of the liquid 

over the ideal gas. 
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J DE 42. C, 	(1092.4) 

elf/2 Vf d.4,, 	v  
(10.2.5) 

Substituting (10.2.3) in (10.2.5) 

j 	V 1 	(4)(0) 4 (10.2.6) 
614, ) 

classical "L-J" cell model as developed 

in (1.3) to evaluate (10.2.6), together with the compress-

ibility as given by (4.2.7). Calculations of this type 

must take account of distant neighbours (i.e. those outside 

the first shell). K.n. did this by assuming them to be 

distributed uat the uniform density of the fluid, starting at 

a distance from the central molecule such that when the 

nearest neighbour distance correnentis to that of a face 

centred lattice (ao) the sane results are obtained as for 

the lattice...". The Kobatake and Alder calculation was 

therefore almost identical to that normally made in the 

L.J. treatment and in fact it was stated that the assumption 

of further neighbours contributing as if they were in a 

lattice structure would not significantly affect the final 

results. Our calculations were themftre made on the latter 

assumption. However, we emphasise that the contribution is 

so small as to not invalidate our earlier ideas. 

For a pure liquid (PV/NkT) is to a good approximation 

zero and by performing calculations over a range of V: 

and T* it was possible to obtain the relationship between 

these two "effective" reduced quantities at zero compressibil-

ity. This is shown in Fig.(10.1) while Fig.(10.2) gives a 

We apply the 
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Fig 10.1 
	

V*e  vs T*e 
 for zero compressibility using 

a Classical L.J. potential 

1.02 - 
	1.04 	1.06 	1.08 	1.10 	1.12 



Fig 10.2 Entropy of Vapourisation vs Effective Reduced 

Volume for zero compressibility using an L.J.petential 

-7.0 
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similar relationship between V: and the computed entropy 
of vapourisation (from (10.2.6)). 

Thus, through an experimental value of Sv, an effective 

reduced volume for the liquid can be found and from this 

and Fig.(10.1) an effective reduced temperature. 

For a pure liquid (10.1.2) may be defined more explicitly 

as:- 
07V Ya- 2 0-z (10.2.-7) 

where 622 is the distance parameter for the solvent, and 

a is given by the volume per particle, so:- 

37783 — 	 (10.2.8) 

with V=nolar volume of the liquid. 

For carbon tetrachloride at 25°C., the heat of vapour-

isation is given as 7.83 kcal/mole (200). Since SIT=HITIT, the 
entropy of vapourisation nay immediately be calculated as 

Sv/R=-13.23. From Fig. (10.1) we find a corresponding 

V* such that V*=1.0232, and through (10.2.8) and (10.2.7) 

a 6 value of 5.3388. From Fig.(10.2) we also obtain 

T*=0.638. To evaluate e/k we need to know the number of 

nearest neighbours, Z. For a pure liquid it is difficult to 

justify anything other than Z=12, an4dher arbitrary factor 

but one which serves as a lower limit for the ensuing 

calculations on gas-liquid systems. 

The pair potential parameters for various solvents are 

given in Table (10.1) and nay be compared with those obtained 

by Kobatake and Alder, using an almost identical procedure 

and with values quoted from ether sources. This is done 
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Table 10.1 Calculated pair potential parameters for 

organic solvents. 

A 
Solvent -Sv/R Mol. V*e  T*e  E/k(°K) 6(k) 

Vol. Fig10.2 Fig10.1 (10.1.1)(10.2.71, 

CC14  13.23 96.5 1.0232 0.638 467 5.34 

C6H6 13.69 88.8 1.0183 0.619 481 5.24 

n.07H16 14.78 146.5 1.0084 0.576 516 6.16 

c.c6H12 13.37 108 1.0217 0.633 472 5.55 

i'c8H18 14.19 165.1 1.0137 0.600 497 6.42 
1 

A From Ref. 200. 

Table 10.2 Calculated parameters, compared with those 

from other sources. 

Solvent 4 a 
d,b d c d d e/ka E/kb e/k c e/k  d 

al CI) _ 00 (A) (°K) (°K) (°K) (°K) 

CC14  5.34 5.35 5.88 5.41 467 493 327 486 

C6H6 5.24 5.22 5.27 5.26 481 504 44o 494 

a From Table 10.1; b From Kobatake Rc Alder(19); c From 

viscosity or second virial measurements(189); From cell 

theory of Salsberg & Kirkwood(201) 
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for CC14  and benzene in Table (10.2). As might be expected, 

our values are in general almost indentical with the 

resultb of K.&A. but are perhaps a little closer to those 

obtained from the sell thm147 of Salsberg and Kirkwood 

(201). All values differ grossly from those obtained 

from gas imperfection data. Other workers namely Bird et al. 

(202) and David, Hamann and Thomas (203) have found it 

impossible to fit second virial or organic molecules 

and in particular benzene and cyclohexane. Ls a test of 

this we employed our fitting procedure (4.4) together with 

the data compiled by Dymond (124) for C6H6' 
c-C

6
H
12 

and 

n-heptane. The results obtained were compltely anomalous, 

6 values in some cases)10.0p. It would therefore appear that 

parameters for the liquids are best obtained from liquid 

state properties (cf. low temperature solids). This 

conclusionis at least justified on the grounds of finding 

an unique value. However, a study of these parameters must 

cause a little uneasiness. The e/k values are much larger 

than any previously encountered and thejr adoption assumes 

that the organic molecule is adequately described by a 12:6 

potential - a fact which on available evidence must be 

under some shadow of doubt. 
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10.3 Gas-Liquid Systems and The Combining Rules 

We now move from pure liquids to solvent-gas systems, 

infinitely dilute with respect to the concentration cf the 

latter. We assume that the solute is surrounded only by 

solvent molecules and that beyond a few shells of neighbours 

the presence of this solute molecule does not affect the 

solvent medium. We have therefore define,'. a two component 

fluid, which must involve composition dependent averages of 

the interaction constants 6,and d such that the "effective" 

temperature and "effective" volume are given by:- 
_-* 
/ r 	

Z E z 	(10.3.1) 

V; 	1/7,  - 2 	(10.3.2) 

where 
-12' 012 are the parameters for the solute-solvent 

interaction. To obtain these, one must apply combining rules. 

The simplest of which are:- 

01z , (Cnt 	 (10.3.3) 

= 	e,, ez„...) 	 (10.3.4) 
where C11' 611; E22,  d22 are .the force constants of solute 

and solvent respectively. irls was stated above, these relation-

ships are the simplest a'ailable and in fact the arithmetic 

mean law for the collision diameter (10.3.3) is extremely 

difficult to improve on. However, there have been several 

attempts to alter the geometric mean rule (10.3.4) notably 

by Fender and Halsey (64), who adapted the Kirkwood-Muller 

formula4, and by Hudson and McCoubrey (204) who developed 

an expression from the London theory of dispersion forces. 
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In its final form this may be written:- 

3  ? r 
1. 2  

4.  (10.3.5) 

where I1, I2 
are the ionisation potentials of the two 

components and the other quantities are as previously 

defined. It is seen that for molecules of identical 

ionisation potentials (I1=I2) and similar size (611-622) 

(10.3.5) reduces to (10.3.4). 

For the systems in which we are interested the 622 

values (given in 10.2) are all in the region of 	R, 

and the values of d11 
for the solute gases vary from 

argon (3.4R) to BF6  (5.038). (In this context it should be 

noted that we use 622 values from gas imperfection data, 

previous calculations having indicated little difference 

between these and values from S
v and the equation of state 

data). 

It would, therefore seem clear that for these systems the 

combining rule in the form of (10.3.4) is not rigorous 

enough. On closer examination the ionisation potentials are 

also non identical though perhaps not as seriously different 

as the 6 values. We therefore, have three possible ways of 

applying the geometric mean rule - in its simplest form, 

by allowing for size effects and rigorously as in (10.3.5) - 

each of which enables an .612  to be formulated. Using this 

value and knowing the experimental temperature, a Te*, 

which is a strictly theoretical value, nay be calculated. 



In addition through the cell model, and using an 

experimental P.M.V. another value of T* may be oIltaincd. 

Thus, knowing V2' we may evaluate Rc and the nearest 

neighbour distance of the system is given by:- 

0e c 4 (512) 

with:- 
76/ 

We may through (10.3.3) and (10.3.2) obtain a 	(expt) an r" 

balancing the compressibility equation at unit atmospheric 

pressure find the corresponding T* (expt). This effective 

parameter should reflect any alteration in the co-ordination 

number due to the solution process and is related to T* 

(theory) by:- -A4 	 --$ 
(77-4Erni'Y j x 1_2  = / (A--XP7), ,ete  (10.3.8) 

The calculation of T* (theory) nay of course be performed 

in either of three ways, depending; on which form of the 

geometric mean rule we adopt. In Tables (10.3) and (10.4) 

we present the results for argon and methane in various 

solvents. Striking anomalies are immediately obvious 

since for the majority of systems the use of anything more 

rigorous than (10.3.4) to evaluate P12 
 leads to co-ordinatj.on 
' 

numbers in excess of 12, which are basically unacceptable. 

Kobatake and Alder using only the geometric mean rule appear 

to obtain lower Z values than those we have calculated. Thus 

for Ar-C6H6 
they find Z=6.3 which even allowing for geometric 

effects is drastically low. A value of Z of 8-10 is more 

reasonable, which is in the region of that determined using 

the simple combining rules, K.&A. further proceed with a 
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Table 10.3 Co-ordination number for Argon in various solvents 
at 25°C. 

Solvent V* e 
10.3.2 

T* e T*a 
thpnry 

Za T*b 
thArvpy 

Zb T*e 
theory 

Z° 

c6H6 1.246 1.544 1.240 9.6 1.427 11.1 1.479 11;5 

c.06H12  1.261 1.395 1.252 10.8 1.494 >12 1.522 512 

n.C7H 16 1.225 1.360 1.220 9.7 1.516 )12 1.548 12 

i.08H18 1.222 1.533 , 1.259 9.8 1.636 >12 1.672 712 

a From geometric mean rule(10.3.4); b From (10.3.5) if 11=12  

c From (10.3.5) 

Table 10.4 Co-ordination number for Methane in various solvents 

at 25°C. 

Solvent V* e 
10.3.2 

T* e T*a  

theory 

Za  T*-11  

theory 

Z.13 	' T*°  

theory 

Z°  

06H6 1.191 1.329 1.117 10.1 1.203 10.9 1.222 11.0 

c.C6H12  1.188 1.220 1.127 11.1 1.251 712 1.297 702 

n.C7H16  1.236 1.275 1.078 10.1 1.278712 1.325 ;)12 

i.C8H18  1.214 1.250 1.099 10.6 

.............. 

1.341).12 1.391 >12 

a,b and c as fa-Table 10.3 
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detailed examination of the solute-solvent system in terms of 

solubility and entropy, assigning entropy contributions 

to various shells of solvent molecules. Their treatment, 

however, appears over optimised and this is exemplified in 

their evaluation of the solvent contribution to the entropy. 

They write:- o -,ATT)  
LVAlk /ffk (10.3.9) 

SG (theory) is evaluated as in (10.2.6). An exvression is 

given for Ss  but it is not calculated; instead the SG  (theory) 

value is subtracted from SG (expt.) and the difference 

attributed to the solvent. This step must be viewed with 

some suspicion, especially if one considers the relative 

insensitivity of SG  (expt.) (205). In addition the step is 

justified thrrugh the thermodynamic identity:- 

o76> 
76")i 

which they simplify to:- 

d ),0„, ) 
/-Zrjv (10.3.11) 

i.e.'that the entropy contribution of the solvent can be 

calculated as if the solvent were expanded uniformly by the 

P.M.V..." However, (10.3.11) is not theusual expression 

for the entropy of expansion (206) nor is the development 

of (10.3.11) from (10.3.10) very logical. 

The above examples are held out not so such in destruct-

ive criticism but rather to drive home the point that it is 

relatively futile to proceed to situations such as entropy 

and solubility without first solving the preliminary 

problems. The results such as those given in Tables (10.3) 

(1a.3.10) 
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and (10.4) and as calculated for other systems are disappoint- 

ing in that any move towards a more rigorous treatment 

does not appear to be favoured. At present calculations 

are being made by altering the structure of "L-J“ static 

lattice term. To expand on this topic we are essentially 

considering the "cell" and the perturbed shells up to a 

maximum of three at an effective volume VN (as given in 

(10.3.2)). The rest of the solvent is rresuned uninfluenced 

by the solute existing with shells numerically unaltered at a 

pure solvent V* as given by (10.2.7). To date only preliminary 

results are available and these tend to support high co- 

ordination values for the first shell (Zz60), similar 

to those given through (10.3.8) 

Considering what has been said in the last few sections 

and bearing in mind present calculations, it would he fair 

to say that for this part of our work the picture is far 

from clear. The reasons for this are reasons that we have 

dealt with over the preceding chapters, and which Dne must 

deal with in any calculations involving potentials of the 

Lennard-Jones type, namely the sensitivity of the calculated 

results to the empirical potential parameters. In the 

present case we arc faced not only with the problem of 

evaluating the parameters but also with that of combining 

them. It has already been noted (cf.SF6  in Chapter 8) that 

the larger the gas molecules become the more difficult it 

was to adequately describe them by an "L-j" potential. 

A large ellipsoidal organic molecule which typifies the 
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the solvents under study, is hardly the ideal medium for 

such%a treatment. The simple combining rules have been 

encountered elsewhere, in the application of the quantum 

cell model to argon trapped in aig-quinol clathrate (6). 

The theoretical data obtained showed wide divergences from 

experiment and once again exemplify the complications 

encountered in a two component system. We therefore 

conclude that in such systems and particularly in gas-

liquid mixtures the cell theory can Andisputably be 

manipulated to give detailed information on the thermodynamic 

behaviour of the system. However, for such infprration to 

be meaningful, some of the inherent assanptions must be 

removed and the model placed on a sounder theoretical 

basis. 
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Conclusion  

The objective of this investigation as set out in the 

Introduction, was an examination of the defects and merits 

of the cell model under various sets of physical conditions. 

Throughout the text we have discussed in some detail the 

reasons for the relative successes and failures of this 

model and consequently do not propose to repeat them here 

other than underlining a few salient points. 

The first and most general of these is whether, in the 

situations we have studied (most of which are rife with 

semantics) the ultimate criterion of success is the correct 

prediction of experimental data through a theoretical model? 

This is possibly too arbitary a demand but is one that must 

at least be mct in part by any meaningful theory. Bearing 

this in mind our investigations indicate time and time again 

that a simple and often arbitary approach appears to yield 

more exact results than any more rigorous method. This fact 

is clear and indisputable, the reasons for it are somewhat 

more diffuse. 

In the consideration of the inert gas solids the Kennard 

Jones model finds itself in a situation which is ideal. 

The errors of its basic assumptions are minimised, it deals 

exactly with anharmonicity and "effectively allows for many 

body forces by using solid state data to determine its 

parameters. In contrast 	the discipline of lattice 
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dynamics, admitedly complex but perhaps more correct 

this phase of matter encounters greater difficulty in 4110WRA2 

for anharmonicity and even when this has been achieved doeS 

not appear to give as successful predictions as the simple 

theory already mentioned. 

From our consideration of quantum fluids through a 

Corresponding States approach another factor emerges in thm6 

the Uniform Potential approximation gives markedly superior 

results to those citained from the L.J. model. Does this 

mean that the former empirical model gives a more correct 

picture of the intermolecular potential at fliud densd2:es? 

This is hardly likely but might augur well far the amendment 

of the bi-reciprocal form in such situations 

Finally examining gas solubility we find that our 

accurate experimental results are best interpreted by 

the empirical hard sphere theory. What is the explanaon 

of this - does it lie in the behaviour of the solute after 

solution has been effected or does it lie in the nature 

of the internal pressure of the solvent? The latte:r 

of investigation would seel. the more profitable for it has 

already been demonstrated that in this pressure lies the 

reason for quantum behaviour in solutions at room temperatures 

We have therefore used a cell model to obtain favourable 

results ( when compared to experiment ) in several differing 

situations. We admit that in these cases the word "success'? 

is often linked closely with the words qarbitary" or 
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"empirical" but accepting these limitations the model 

generally appears decidedly superior to any alternative. 

* 	* 	* 
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.4p*Udix 1 (A.1). The Solution of the Schroedinger Equation 

Through the W."1..E. Approximation. 

In this section we do not use flow diagrams to illustrate the 

computational process, but rather we briefly describe the 

Problem and in a qualitative manner show how it was attacked 

in the program. 

(i) Theory  

The quantum partition function (4.2.5) involves energy 

levels that can only be obtained by solving the Scroedinger 

equation (4.2.6), which under auitable conditions & separation 

of variabbareduces to:- 

SIM) 4. ?T 2 	— 6 re,,-/- _ err- w(g ) sy,,o, 0, (A.1.1) 
/Po- 

-,The W.K,B. approximation expands S(R) as a power series in 

in R, thus:- 

S(e) 	go CO -k (e)± 	 (A.1.2) 
2 

and retains only the first two terms in this series. 

The energy levels come as the solutions of 

2 	 -2 

7 --(e-q) 	11 .orie )  
/1".°-  

which may be written as: -'e  

3. \ 

a 

(A.1.3) 

(A.1.3) is solved by first defining a cell size, subdividing 

this interval and then moving across the cell, evaluating 

Q until Q changes sign. It does this at the classical turning 

points a and b which may therefore be found approximately 

and refined by a Newton iterative technique. 
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The integration in (A.1.3) is performed by a Gauss 

quadrature procedure over 20 Gauss points giving an accuracy 

of 10-3. The solution, o
, of this same equation is obtained 

by iteration to a specified degree of accuracy using a Newton 

method. 

We also need therolume derivative of the eigen-value 

(4.2.14) and this is found from:- 

2 
2 	.1-r2 'd -9,7' dtv7i) 

4 	A*7- d et 	/V. 1.  dol 
in a similar manner. 

(A.1.4) 

(ii) The Program 

The program was written in G:ELF Autocode and was run cn the 

Atlas computer of the University of London Institute of 

Computing Science. For further information on the programming 

language the reader is referred to the publications of the 

Institute. 

The program itself was subdivided into charters and 

routines and rather than give these in their Autocode form we 

content ourselves with a general description of their function. 

The basic requirement is to compute thermodynamic 

properties for a quantum particle of given/1*, obeying a 

specific "m:n" potential. This is done for a set V', over 

a range of T*, using the W.K.B. approximation to derive the 

energy levels and obtaining preliminary values ofk)  and 

dAo
/dV from a harmonic oscillator approximation. 

(a) Chapter 0 

This is chiefly the input chapter. It reads m and n, the 

potential coefficients, stores temperature range in T*, reads 
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in number of neighbours in each shell, number of Gauss 

points, quantum parameter and evaluates further neighbour 

distances. 

Reads initial guesses for,
o and d)VdV, sets upi, 

Rc(0.552700 and prints cell radius. 

Sums ,potential over required number of shells, stores), 

d)YdV from Chapter 1. 

Increases quantum number,L,imposes connection formula. 

(b) Chapter 1.  

Uses Newton iterative method to refine turning points, 

then calculatesA,d,A/dV. 

Sets tr; Gauss points, calculates Q(R) and dQ(R)/dR at turn- 

ing points a and h (via Routine 1000). 

Using Newton method refines a and b and then moves 

into Gauss integration (Routine 10). 

Solves Q(R)2 = (n+I)Tr, when this true Avalue is 

obtained. Solution by Newton Raphson method. When \ is known 

to specified accuracy it is printed (via Anelex lay out 

Routine 1) and stored for calculation of thermodynamic 

properties. A similar procedure is adopted for d)VdV. 

Increases n, increases L. New turning points evaluated. 

Continues until the maximum level (set in input data) for 

values has been obtained. 

(c) Chapter 2  

Fault chapter; detects negative, or positive d>/dV. 
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(d) Chapter 3  

Output chapter. Sets up temperature count and count on 

energy levels. Brings eigen-values and their volume,  derivatives 

out of storage. Sums over all available L,n. 

Determines accuracies of thermodynamic properties. 

Calculates and prints these for all set T. 

(e) Routine 1000  

Most used part of program. Is entered with differnet 

calues of R to calculate W(R), dW(R)/dR, Q(R) and dQ(R)/dR. 

Further it gives (Q(R))d  and dW(R)/d0C. 

(f) Routinc 9  

Calculates all terms that depend solely on m and n 

i.e. the constant K, where:- 

7 Ir ) %-1.)1-- (4n)41/;f4-11  

It also evaluates the asymptotic correction term. 

(g) Routine 11  

Evaluates turning points by "chord method". Splits 

search area into units of c`/50 then increases R stepwise 

byc/50. Caloulates Q(R) and after'fiAding where it changes 

sign applies the "chord method" 

(h) Routine 10  

Gauss integration. Integrates all fu'actions over 

appropriate a and b interval. Continually moves control into 

Routing 1000 to evaluate Q(R) etc. 
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„4„,p-,)endix  2 (A.2). Evaluation of the Potential Parameters 

(a) GraFikleal Method 

This will be illustrated by a resume of its a-)plication to 

noon where:- 

Uo=-448.0cal/mole(115) 

Vo=13.39cc/mole (117) 

and m=20.183/(6.02x1023), where m is the mass of the molecule- 

(i) Utilising the equations in (4.3) we find (for zero 

(A.2.1) 

°()1Eci 	= 	cat (01/d 	(A02.2) 

no' (4*/dV*) are computed directly from the W.K.B. approxiMM6- ' 

ion and:- 

pressure:- 
= V./A/ --- 	-f-60*(°)/2, 

7.01o9 (A42.3) 
v*z  

 

dW*(0)/dV* comes from the derivative of (A.2.3) with respect 

to V. 

(ii) Solutions of (A.2.2) are obtained from a graphical 

(see Fig44.1). This gives unique sets ofil* and V* values, 

and from a plot ofA* vs.* corrospondia unique values of 

are obtained 

(iii) The molecular diameter o is obtained from:- 

v4/0-3  = vo /NO-3 (Gt.  e ooe) 

For neon 
	0--  = 	3 A'w ) 

(iv) To evaluatee7k at varying A* 
/1 4'.  = /6176)4  cy-- 

hence 	--.--4a  (4 )(2?-to-2) -: 

(A.2.4) 

(A.2.5) 

(A,2.6) 

(A,2.7) 
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where h and k are the Planck and Boltzmann constants respec- 

tively. Fence from (ii),(iii) and (iv) we may compute or 

evaluate unique sets of/A*,V*,6,e/k and)\0  

(v) Tho solution of (A.2.1) requires that:- 

U* 	*--:W*(0)/2 	 (A.2.8) 

which may be "normalised" to:- 

o — 	A0  	e te(0. 	(A.2.9) 

where R.1.98 cal./mole deg. 

Plots of U--(i71,6/k* and (P.e/2k)W*(0) against V* intersected 

at a unique V* for the systom. Table (A2.1) gives abbreviated 

data for the neon investigation. 

Table (1.2.1) 

V* /1*  Na-3  01) Vel‹) v vo- fro pro)3 g-] z  
1.01 0.460 13.328 2.798 57.03 1.73 -643 941 

1.02 0.500 .13.108 2.792 48.48 1.84 -625 795 

1.03 0.540 12.980 2.783 41.83 1.95 -610 682 

1.04 0.580 12.856 2.774 36.5o 2.04 -596 591 

The intersection of the curves in Fig.(A2.1) is at V*=1.0595. 

From data in Table (A2.1) and further data from higher V*, 

Fig. (A2.2) is constructed with e/k ;clotted against V. 

The intercept on this curve for V*=1.0395 is ate/k.56.60K. 

which is the unique value for the energy parameter for the 

system. 

Hence for neon:- V*=1.0395 

N63=13.39/1.0395 cc/:role 

d =2.777R 

and the experimental and com7:uted data give for the zero poirt 
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(A.•) 

vs V* 
see Table(A2.1) 

i 	I 	1 

— 520 

48o 

.44o 

,a• 400 

.36o 

I 	I 	I 
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Fig A2.1 Determination of Ne(mV/V* at O.K.) for Neon 

through the solution of (A.2.1) 
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	1.08 	1.10 

	
1.12 	1.14 

V• 



258. 
Fig A2.2 Neon 12-6 potential EA(•K) ye V• 
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V• 
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parameters of neon:- 

e =2.7778; eA=36.6°K; 
N63=12.89 cc./Dole- .=0.580. 

(b) Iterative Method (as devbloped by B.D.Utting Ref.(71)) 

Consider (4.3.3) and (4.3.4) as:- 

 

 

,00#6 	+ o•Y.0)/x. 
—ro 7C- - (4 -g/ 4, 1 del)  ) 

dY* 	ciiixt 

(A.2.10) 

(A.2.11) 

(NB. this treatment is general for any P
o) 

(A.2.10) and (A.2.11) are both functions of C and d and may 

be written as:- 
1-2 	) 	o 	

(A.2.12) 

If(61o' ) is the first aprroximation to the solution and 

if (61o1' 	4-112  ) is a better approximation we may write:- 

CF2.  a'/ 0-4-6,) ) 	o 4- 4= 0 	( z  1, 2.) 
	

(A.2.13) 

Expanding (A,2.13) as Taylor series and truncating after 

terms linear in h1,h2 we obtain:- 

„ 6  ) hi (WV 	6)6/It) /- 	(A.2.14) z. =urt 	 6 = 
(A.2.14) is two linear sinuNWeous equations in hh2 

which may be solved for h h providing that F.(K 1' 2 providing that  

and the partial derivatives nay be calculated. The partial 

derivatives may be replaced by the difference quotients so:- 

where 

0 (A.2.15) 

1 
A.EJC:::( 1

o 	(A.2.16) 
1)6- 	---7:: r2 (bi 01 614 _,,,--(K, 	('- , i  	   

1".:irirr eQ) 

and Oa'lo 
is chosen as 0.01610(arbitrary). 

A similar expression to (A.2.16) gives OTT7047 2g, ,c1b. 



260. 

Equations (A.2.15) may bee sily solved for ho h2. The 

new Solution is then iterated to a specified accuracy. 

The process as described obove can be integrated into 

the W.K.B. program. 
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Appendix 3 (A.3) Argon experimental & theoretical data. 

(i)Morinental Molar volume vs Temperature data 

Va  T(°K) V T(°K) 0 

22.8o 6o 23.61 15 22.55 

22.91 65 23.79 25 22.69 

23.02 7o 23.98 35 22.88 

23.15 75 24.20 50 23.31  

23.29 8o 24,43 61 23.64 

23.45 

( all molar volumes expressed am cc/mole.) 

a Calculated from X ray density /0  (gm/cc.) as given by 

Batchelder (117) : V = M//f) whore M is 39.984 gms. and 

/(2 is quoted to 	0.0001 gm/cc. 

b Data of Barrett & Mayer(197.) 

(ii) Theoretical Molar volume vs Temperature data 

T(°K) V(cc/mole)a  T(°K) V(cc/mole)b 

9.78 22.54 25.88 22.54 

15.34 22.57 32.59 22.68 

19.82 22.63 41.33 22.89 

26.09 22.71 51.12 23.19 

32.86 22.85 61.10 23.52 

41.68 23.06 69.96 23.87 

52.20 23.37 

62.3o 23.7o 

70.55 24.06 

a Theoretical data for ii* =0.185 normalised with zero point 

params, 	=120.8°K.;N63=23.68 cc/mole. 
h Normalised with virial params. e/k=119.8°K.;Nd3=23.50cc/mole 

T(°K) Va  T(°K) 

4 22.55 3o 

8 22.65 35 

10 22.56 40 

15 22.59 45 

20 22.64 50 

25 22.71 55 
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(iii) Experimental Heat Capacity Data.. 

T(°K) C a  -- p T(°K) Ca  -p T(°K) Cb  -v T(°K) 0°  -v 
5 0.088 40 5.387 10 0.787 60 5,/18 

10 0.790 50 6.006 15 1.910 70 5.453 

15 1.940 60 6,528 20 2.894 75 5.740 

20 2.990 70 7.100 25 3.632 80 5.788 

25 3.828 75 7.488 30 4.145 

30 4.463 80 7.928 40 4,674 

50 	5.046 
( all heat capacaties in cals/degemole.) 

a Data of Morrison et al (116) 

bAs a but obtained through (4.4.1) 

c From work of Clusius et al (115). 

(iv) T1221:21.12.9.11.124.. Ca 	..1 

T(°K) 2v T(°K) c, TO K) -.0cv 

9,78 0.380 2609  3.954 52.20 5,040 

15,34 1.600 32.86 4.290 62.40 5.124 

19,82 '‘ 2.742 41.68 4.760 70.55 5.162 

(smoothed plot of above gives Cv  values below.) 

T(°K) Cv  dx104(deil)a  [x105(atiiii)a  
3 	---,., 

cvT/p c 
P 

.0 2.676 4.903 34427 0.065 2.741 

30 4.176 8.764 4.045 0,292 4,468 

40 4.720 11.300 4,,263 0.586 5.306 

50 5.008 13.241 4.861 0,931 5,949 

60 5.110 14.953 5.316 1.278 6.427 

70 5.158 16.882 6.009 1.550 6.744 

80 5.200 19.301 7.447 2.099 7.299 

(for legends see overleaf.) 
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all specific heats are in cals/deg.mole. 

a 6c/ v /2 calculated from fitting of polynomial to experimental 

data - Hillier & Walkley (106). Values of V from 

theoretical V vs T(°K.) curve. C linked to Cv by (4.4.1) 

(v) Theoretical & Experimental entropy. 

T(°K) S (cals/deg.mole.) T(°K) S.b  (cals/de:F.mole) 

10 0.282 26.09 2.092 

20 1.256 32,86 3.052 

30 3.008 41.68 4.118 

4o 4.406 52.2o 5.50o 

5o 5.688 62.3o 6.670 

60 6.802 70.55 7.546 

70 7.900 

8o 8.547 

a Calculated from (4.4.2) 

b Theoretical data from (115). 
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Appendix 4 

(i) 	Ex-Reimental 

(A.4) 	Neon Experimental & theoretical data. 

Molar volume vs Temperature data. 

a (A)B  T(°K) 

3,0 

A V(cc/mole)A 	ao(A) 	V(cc/mole)B  

13.389 4.4617 

4.0 13.390 4.4619 13.393 4.4622 

6.0 13.394 4.4622 13.400 4.4630 

8.0 13.404 4.4634 13.408 4.4639 

10.0 13.425 4.4658 13.435 4.4669 

12.0 13.460 4.4696 13.471 4.4709 

14.0 13.509 4.4750 13.526 4.4771 

16.0 13.574 4.4822 13.570 4.4818 

18.0 13.655 4.4912 13.672 4.4951 

20.0 13.775 4.5043 13.753 4.5109 

22.0 13.877 4.5154 13.864 4.5139 

23.5 13.982 4.5269 

A Data of Batchelder (117) 

B 	tt" Bolz & Maud (132) ....__.  
(ii) Theoretical Data Molar volume,lattice constant,heat  

cap ,city & entropy(normalisinp with zero pt.params.) 

T(°K) --ao(A) V(cc/mole) --v S
i 

 

10.25 13.407 0.970 4.4637 0.140 

15.52 4.4782 13.536 2.516 0.953 

18.81 4.4923 13.665 3.244 1.582 

21.23 4.5064 13.794 3.622 2.053 

23.02 4.5203 13.992 3.876 2.492 

24.60 (4.5340) (14.051) (3.972) (2.813) 

( 	) values must be doubtful since temp. is above triple point. 

Cv  ,S. are in cals/deg.nole. A4  
Z.pt. params.e/k =36.60°K,N63=12.89cc/mole, /1..0.580. 

ao and V connected via (4.6.3) 
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Ax  

(iii) Theoretical data for A- =0.5901normalised with params. 

Of Brown (138)(E/k=35.28°K.,N63= 12.86 cc/mole.) 

°K) a (A) V(cc/mole) Cv(cal/mole.de.) 

8.6 4.4637 13.405 0.680 

14.29 4.4748 13.507 2.280 

17.46 -4.489313.636 

4.5030 19.58 13.764 33:: 

21.70 4.5173 13.893 3.770 

23.36 4.5308 14.022 3.940 

(iv) Molar Volume vs Temperature data( theoretical values 

normalised by appropriate parameters.) 

T(°K)a  V(cc/mole)a 1,(olob V(cc/mole)b  T(61,0c  V 

11.13 13.241 12.24 12.033 6.43 12.940 

15.42 13.367 16.96 12.148 10.22 12.962 

18.05 13.619 19.85 12.262 15.17 13.021 

21.66 13.745 23.82 12.491 18.54 13.146 

23.38 13.871 20.98 13.271 

23.04 13.396 

24.80 13.522 

a Virial params of Nicholson & Schneider (119), e/k=33.74°K 

NO3  =12.61 cc/mole. AC0.608 

b "Self-consistant" params. Boato & Casanova (136) E/k=37.10°K. 

Nd3  =11.46 cc/mole, AC0.596. 

c Solid state params. Mullin (135), e/k=35.76°K, N63=12.52 cc,'molo 

/1%0.593 
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-- • _ 	^J.- 

(v) Experimental Heat Capacity Data. 

T(°K) - C a 	b 
C a 	C -p 	-P 

8 0.586 0.580 0.577 

10 1.238 1.206 1.202 

12 1.883 1.825 1.786 

14 2.520 2.350 2.311 

16 3310 2.815 2.763 

20 4.358 3.569 3.571 

22 5.030 (3.898) 

24 5.755 (3.999) 
all heat capacities expressed as cal/mol.deg. 

aData of Clusius et al (115) Cv obtained from C via (4.6,
), 

P 
b Data of Batchelder (117) Cv obtained from Clusius C P 

data via (4.4.1) using oCand /3 from X ray measurements. 

(vi) Theoretical values of  C 
P 

T(0-  K) C 
-1.-----, 
a VT/ IS C 

v .."..."'  

14.29 2.280 0.174 2.454 

17.46 3.044 0.545 3.589 

19.58 3.462 0.620 4.082 

21.7o 3.770 1.222 4.992 

a Obtained via (4.6.5) 

(vii) Entropy 

T(°K) S.
a  

0.069 

Sib  T(°K) Sis  - 
5.0 

10.0 0.428 0.398 20.0 2.278 2.225 

15.0 1.253 1.204 22.0 2.728 2.672 

18.0 1.849 1.800 24.0 3.197 3.140 
a From Clusius data (115) and (4.4.2) 

b " 	Batchelder (117) calculated by machine integration. 
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Appendix 5 (A.5) Theoretical and Experimental data for 

Quantum corresponding states  

(i) Hydrogen & Deuterium (64.5°K) experimental data of Hamann(102) 

A' --  iyqrogen 	=1.729 Deuterium , =1.223 

V* C. v*  C. 

1.342 4.791 1.396 3.587 
1.417 4.406 1.484 2.965 
1.504 3.394 1.622 2.317 
1.710 2.441 1.737 1.984 
1.924 1.922 1.902 1.629 

2.235 1.277 
Throughout A.5 C = PV/NkT 

Experimental data reduced with e/k=37.0°K,Nd3  =15.11cc/Pole'. 

(ii) Theoretical data for H21D2 from U.P.Approxiination 

A =1.223  

OCUP a  C 2Cc  

1.390 2.028* 3.418 

0.890 1.322 2.212 

0.580 o.884 1.464 
0.402 0.738 1.140 

a From U.P. theoretical datatcompressibility far various 

At AA" 
V* over a range of T* evaluated with/I =/1/ , At experimental 

T* unique set of Cup  for various V* evaluated then 

LC = (Cup  - Cclass) 

where C class  is at same V* --
b This is argon data of Levelt obtained from graphical plots 

of experimental data and interpolated under required con6kons 

(i.e. V* and T*) 

ccC = C + Cexrt _ - 

* this value was obtained by extrapolation of expt. data. 

V* 

U.P.Data =1 .7 29 

4CUlaP 
c 

 Cb  
1.350 2.060 2.028* 4.089 

1.611 1.380 1.322 2.702 

2.000 0.980 o.844 1.864 

2.500 



V* 	LCa 	- 
- C  ,b axpt ECe 	6 Ca 

1.350 0.795 21,028* 2.823 0.345 
1.611 0.275 1.322 1.597 0.040 
2.000 0.137 0.884 1.019 0.034 
2.500 -0.077 0.738 0.731 

- cbexpt - cbexpt 	
2i:cc 2i:cc 

2.028* 2.373 2.028* 	2.373 

1.322 1.362 1.322 	1.362 

0.884 0.884 	0.918 0.918 

Hydrogen* Deuterium* 

ers 

of the density. This was evaluated using coefficients 

given for 123°K., resulting values were in amergats and 

were converted to normal compressibilities using the fact 

that A amergats of PV = 543.082 cals/mole x A. 

(v) H2 & D2, U.P.Data T* = 3.32 

U.P.Data /r=1.729 	/r =1.223 

V* 	A c 	c a 	Ac 	0' 

a Evaluated from argon data of Levelt (160) at approptiate T*,V* 

V* - c -- 
1.48 3.428 
1.64 2.793 
1.85 2.296 
2.11 1.912 
2.64 1.623 

v* c 

1.48 3.102 

1.64 2.578 
1.85 2.128 

2.11 1.799 
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(iii) Theoretical data from L.J. Model for H
2 & D2 at T*=1.748 

L.J.Data /1 =1.729 	 /\''' 1.223 

a, b and c obtained similarly to U.P.case but with6.C=(CLJ- clas) 

(iv) Experimental H2  & D2  data at 123°K.(T*=3.32) from 

Michels et al (161). 

1.350 	1.390 	2. 885 	4,27$ 	0.840 	2.885* 	57 

1.611 	0.900 	2.157 	3.057 	0.580 	2.157 	2.737  

2.000 	0.560 	1.619 	2.179 	0.380 	1.619 	1.999 

2.500 1.597 
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(vi) Experimental Helium data of Buchmann (162) (T*=1.996(20.L°K) 
E/k =I0,22°K,N 3  =10.06 cc/mole) 

V* 	C 	V* 	C 

1.242 12067 1.488 8.16 
1.284 11.57 1.613 6.93 
1.335 10.47 1.806 5.64 
1.401 9.33 2.167 4.21 

(vii) HeliumU.P.theoretical data /k = 2.674 
a 

V* 6a -cexpt 	21 

1.350 5.010 2.32o* 7.330  
1.611 2.758 1.604 4.462 
2.000 1.599 1.093 2.693 
2.500 1.026 0.905 1.931 

a From argon data of Levelt T*=1.996,V* as appropriate. 

(viii) Experimental data H2  & D2  when T*=8.74(323°K) 

Michels et al (161) 

Hydrogen Deuterium 

Ca  V* -d 

1.48 2.897 1.48 2.798 
1.64 2.535 1.64 2.465 

1.85 2.226 1.85 2.174 

2.11 1.966 2.11 1.927 
2.47 1.745 2.47 1.538 

a Calculated as in (iv) via a polynomial. 
From above,three "theoretical

o
argon points may be obtained 

where 	Cir 	Cexpt - 6 CUP 
V * 	Lic 	c --expu 	Ar  

1.48 0.545 2.897 2.332 

1.64 0.460 2.535 2.075 for H2 - 4%1.729 
1.85 0.380 2.226 1.846 
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(viii) -cont. 

V* 	6C- 	c , 	c, 

	

---expt 	-iir 
1.48 

1.64 

1.85 

0.405 

0.300 

2.174 

2.798 

2.465 

2.174 

2.393 

2.165 

1.924 

D2 at 	A4.=1.2;• 

Hydrogen 	Deuterium 

6C 	C 	c, 	Lc 	c 	c 
-exp 	-Thr 	- exp 	-Ix 

1.350 0.710 3.250 2.540 0.550 3.130 2.580 

1.611 0.480 2.590 2.110 0.320 3.520 2.200 

2.000 0.320 2.075 1.755 0.220 2.030 1.810 

The above were evaluated at V* corresponding to those for 

the U.P. 

From the six points for CAr(= Cexp-Aaup) the two "theoretjtaln 

curves for argon at T*=8.74 were constructed. 
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Appendix 6 (A.6) The Uniform Potential approximation 

( after Hillier & Walkley (157)) 

The quantum partiticn function Z
qu may be written for 

a single particle theory as (4.2.5) and the resulting energy 

levels for the particle in the cell are found by a solution of 

the wave equation - 

al  )17Y 4- 
(A.6.1) 

Assuming a uniform potential 

W(r) =.W(0) rOm 	W(r) = og r >rm 

the wave equation (A.6.1) may be transformed into the 

appropriate polar co-ordinates and the solution(198) given as - 

// = Ap171(Cose)exp(im)(1/r).J(114)(Kr) 	(A.6.2) 

where K=(2mE)4/11. is an associated Legendre function and 

3(14)  is a Bessel function. Applying the conditions that 

the wave equation falls to zero when r = r
m it is found - 

J(14.4)(Krm) = 0 	 (A.6.3) 

As a direct result of (A.6.3) the energy levels are given 

4-2 El  = 0 n 01/2rm2 	 (46.4) 

where 1  is obtained numerically from zeros of half integral 

Bessels using Newton's recurrance relationships. 

This gives a partition function:- N, 

Zqu = 	/(214-1)exp(-h
2C1/8mkTrm

2 	x exp(-NW(0)/2kT) 

(A.6.5) 

The value of rm is determined by adopting the assumption 

of Haman (101,102) that rm, on account of the strongly 
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repulsive potential in the cell, may be evaluated by 

equating W(r) -to zero. Thus - 
I 1/4  

V*Ty*-2-2 " (A.6.6) 
where r*=(r m m  /cf) and y*=(r m/a)

2 

and (A.6.5) becomes 

Zqu 	(21+1)exp(-D*C1  /T*V"y*) 	x exp(-NW*(0)/2T*) 

(A.6.7) 

where D* = h2/8m6622 Y3 , and from which the compress-

ibility & other thermodynamic properties are readily 

derived. 
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Appendix 7 (A.7) Experimental data for the system Deuterium. 

Cyclohexane at 25°C. 

(i) Pressure -Volume readings before Dosel (Atmos.Press. = 

76.275 cms.Hg) 

b 	b Va 	ra 	 El &m
- 	--1 	 2 & T 

23.01 22.884 22,953 0.069 76.944 

21.06 27.167 32.927 5.760 82.635 

18.95 31.804 44,761 12.957 89.832 

19.95 29.624 39.057 9.433 86.308 

1/PT  xloc.  

1.300 

1.210 

1.113 

1.159 

a. Volume reading of gas burette in cc. 

b 	m1' m2 are heights of mercury levels in left and right 

arms of burette; Ara = m2 op m1 

PT  = atmos. pressure +km 

(ii) Pressure-Volume readings after Dose I(before Dose II) 

V 	m -2 	Am 	P 
 

1/PT  x1( 
1 	m 	 T 

20.51 28.313 28.459 0.146 76.891 1.299 

18.60 32.546 38.865 6.319 83.154 1.203 
16.50 37.181 51.561 14.380 91.225 
17.45 35.072 45.628 10.556 87.491 1.143 

19.45 30.679 34.153 3.474 80.309 1.245 

(iii) Pressure-Volume readings after Dose II(before Dose III: 

V m1 m2 Am ET 

17.55 34.864 34.958 0.094 76,914 
15.55 39.272 46.77o 7.498 84.318 

13.35 43.685 60.055 16.370 93.190 
14.47 41.648 53.706 12.058 88.788 
16.55 3c2,089 4o.664 3.575 80.395 

--- 1/PT  x10
2 

1.300 
1.186 
1.073 
1.125 
1.244 



V m1  m2 
12.25 46.578 46.586 
10.19 51.108 61.317 
8.56 54.68o 75.072 
9.34 52.984 68.279 
11.14 49.020 54.159 

_ 	 - - 
"1/T Ara 	16,0T  x102  

o.008 76.778 
10.209 86.979 
20.392 97.162 
15.295 92.065 
5.139 81.909 

_ 76.770 cms.Hg.) 

1.302 
1.15o 
1.029 
1.086 
1.220 
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(iv) Pressure-Volume readings after Dose III(before Dose IV) 

( 

V 

Atmos. pressure =76,775 

- m1 	n2  

cms.Hg.) 

&an -2T 
- x 	1, 	• /1•7/ 

14.81 40.04 40.976 0.062 76.837 1.301 
12.78 45.391 54.139 8.748 85.523 1.169 
10.90 49.555 68.219 18.664 95.439 1.048 
11.80 47.548 61.109 13.562 90.336 1.107 
13.85 43.013 46.926 3.913 80.688 1.239 

(v) Pressure-Volume readings after Dose IV(Atmos.Press. 

Results of (i) - (v) inclusive, are used to construct 

V vs 1/PT  plots in Fig (8.5) 

(vi) Dose I, Dilatometer levels etc 

Before Dose 

Time 	m1 	m2 	
S(div) 	Beck(°C) 	R.Temp 

09.55 35.916 36.461 5.8-6.2 3.081 20.65 

10.0o II 36.454 5,7-6.1 
ft 20.50 

10,05 35.917 36.452 it II II 

10.10 PI II 5.8-6.1 II if 

After Dose:- 

10.49 36.692 	36.974 5.7-6.2 3.081 21.60 

10.54 36.690 	36.971 5.6-5.9 21.70 

10.59 36.692 	36.974 5.7-6.1 

( N.B. in all above and-subsequent tables mi  is capillary 

height in closed arm of dilatometer; m2  height in open 

arm; S the galvanometer reading in scale divisions over 

time interval between measurements.) 
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(vi) -cont 

After dose-partial pressure applied. 

Time m1 	m2 	S(div) Beok(°C) R.Temp 
11.05 35.917 37.898 5.7-6.1 3.081 21.70 
11.10 u 37.872 ft tt 21.80 
11.15 U 37.898 It u it 
11.21 17  37.881 5.8--1 II  22.0 
11.27 PP 37.878 II 71 II 

(vii) Dose II 

Before dose:- 
11.45 36.679 36.995 5.8-6.1 3.081 22.05 
11.50 36.676 36.995 5.6-5.9 22.20 
11.53 36.682 36.996 5.6-6.0 PP II 

After dose:- 
12.45 37.284 37.894 5.7-6.2 3.081 22.20 
12.50 37.287 37.896 5.9-6.1 I1 tt 
12.53 37.284 37.896 5.8-6.1 fl  21.90 

Pressure applied,L.H.limb at level as before Dose II 

13.00 
13.04 
13.10 
13.13 
13.16 
13.20 

36.679 

91 

71 

IP 

tt 

38.606 
38.580 
38.606 
38.631 
38.614 
38.640 

5.8-6.1 
5.7-6.o 
5.7-6.1 
5.8-6.1 

PT 

tt 

3.081 
ft 
u 
u 
It 

II 

22.30 
ti 

22.5o 
u 
91 

PI 

Pressure 

13.22 
13.25 
13.28 
13.32 
13.37 

appliedIL.H.limb 

35.917 	39.546 
99 39.500 

39.496 
IP 39.504 
99 39,516 

at level as before DoseI 

5.8-6.0 	3.081 
P1 	IP 

ti 	11 

It 5.7-6.o 
It 	 tt 

22.40 
11 

91 

It 

22.15 



(viii) Dose III 
Before dose 
Time 	m1 m2 S(div) 

13.48 37.279 37.852 5.8-6.0 
13.53 37.283 tt 5.8-6.1 
13,58 rf 37.857 I 

After dose:- 

14.50 37.974 38.634 5.7-6.2 
14.55 57.974 58.636 u 
15.00 37.971 U 5.7-6.0 
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Beck(°C) R.Temp 

3.081 	22.40 
fr 

Pt 

3.081 	22.20 
it 	22.45 
ft 	u 

Pressure applied, L.H. limb at level as before Dose III 

15.03 37.282 39.400 5.8-6.1 
15.07 II  39.479 if 
15.10 II 39.404 ft 

15.14 u 59.422 If 
15.18 U 39.382 II 

3.081 	22.60 
II 	 II 

u 	U 
u 	u 
II 	22.70 

Pressure applied!, L.H. limb at level as before Dose I 

15.20 	35.917 
15.25 rI 

15.28 	II 

15,31 II 

15.37 	It  

40.994 
40.990 
40.984 
41.004 
41.005 

It 	 It 	 II 

5.6-5.9 	It II 

5.7-6.2 	3.081 	22.60 
5.7-6.0 	tt 
	

tI 

It 	 II 
	22.30 

(ix) Dose IV 

Before dose 

15.48 37.978 38.566 5.8-6.1 
15.53 	II 	38.569 
15.57 	ft 	It 

After dose 

16.45 38.651 39.239 5.8-6.1 
16.49 38.650 39.234 5.7-6.1 
16.53 38.649 39.236 	rI 

3.081 	22.70 
II 	 ft 

II 	 It 

3.081 	22.80 
IP 	 It 
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(ix) Dose IV- cont.:- Press. applied,L.H.limb at level as before 

Time M1  
Dose IV 

m2  S(div) Beck(°C) R.Temp 

16.55 37.978 40.021 5.8-6.1 3.081 22.80 
16.59 11 40.030 5.8-6.0 u n 

17.03 It 40.001 1/ 11  22.70 
17.07 U 40.009 5.7-6.0 11 I/ 

Pressure applied,L.H.limb at level au before Dose I 

17.11 35.917 42,469 5.7-6.0 3.081 22.80 
17.15 ft  42.452 11 11 11 

17.20 n 42.454 II n 

17.31 11 42.442 if II If 

From data given in (vi) - (ix) inclusive Table 8.2 is 
constructed. 



Appendix 8 (A.8) 

Experimental Partial Molar Volume data 

at 25°C. 

278. 



Argon in Benzene at 2500. 
	279. 

Table A8.1 Experimental Data 

r 

Dose V. 
(cc.) 

V(tot) 
(cc.) 

N x10
4 

(mo) W - 

N x104 1a 

(cma) 
1b 

..(C11115a) 
Ira  

- 
V2

b 

I 2.37 (2.37) 0.968 (0.968) 1.480 (1.480: 44.32 (44.32 

II 2..89 5.26 1.180 2.148 1.800 3.312 44.22 44.70 

III 2.78 8.04 1.135 3,283 1.736 5.047 44.34 44.57 

IV 2.75 10.79 1.123 4.406 1.112 6.815 44.55 44.84 

la  - Extension from right hand arm alone. 

1b It 	it 	it 	" refered to it's position 
before dose I. 

a V2'V2
b  -Respective partial molar volumes obtained from above, 

for individual doses. 

V2 calculated from plot of 1
b(cms.) vs V(tot) in cci-Fig A8.1 

V2 m (dl/dV)slope 
x 298.36 x 82.07.x 2.899.x 10-3(cc/m015) 

=6.28 x 70.986 (cc/mole.) 

V2 
 - 44.58 (cc/molaf) 
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Argon in Cyclohexane at 25°C. 
	281. 

Table A8.2 Experimental data. 

Dose V. 
(cc.) 

V(tot) N x104 

(moim) 
N x104 1a 

(cms) 
lb 

(ems) 
Va2  Vb2 

I 2.70 (2.70) 1.103 (1.103; 1.837 (1.837) 48.30 (48.30) 

II 2.63 5.33 1.074 2.177 1.783 3.574 47.60 47.12 

III 2.49 7.82 1.017 3.194 1.666 5.190 46.19 46.74 

IV 2.34 10.16 0.956 4.150 1.619 6.612 45.48 45.73 

Columns superscripted as in previous tables. 

V2 calculated] from elope of 1b(cms) vs V(tot)-total dosage 
in cc.Plot given as Fig A8.2 

V2 = (dl/dv)slope x 70.986 cc/mol4 

gr 5.00/7.45 x 

V2 = 46.85 cc/moW. 
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Argon in n..Heptane at 25°C. 
	283. 

Table A8.3 Experimental Data. 

Dose V. 
(cc.) 

V(tot) N x104 
(m0104)(tot.) 

N x104  1a 
(ems.) 

lb  

(ems.) 

a % 
" 

b V2 

I 2.27 (2.27) 0.927 (0.927) 1.550 (1.550) 48.47 (48.47: 

II 1.90 4.17 0.776 1.703 1.307 2.831 48.82 48.19 

III 2.11 6.28 0.862 2.565 1.466 4.331 49.31 48.95 

IV 2;84 9.12 1.160 3,725 1.761 6.136 44,01 48.95 

V 2.39 11.51 0.976 4.701 1.681 7.744 49.93 47.76 

Columns superscripted as in previous tables 

V2 calculated from slope of 1
b(ems) vs V(tot),in cc.Plot given 

as Fig A8.3 

V2 = (dl/dV)slope 
x 70.986 co/mole. 

= 6.80/10.00 
	It 

V2 ur 48.27 oc/mole, 
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285. 
Argon in i-Octane at 25°C. 

Table A8.4 Experimental Data 

Dose V. 
(cc.) 

V(tot) N x104 
(molgO 

N x104 
(tot) 

1a 
(ems.) 

1b 
(ems.) 

V.8; vb 2 

I 2.03 (2.03) 0.829 (0.829, 1.497 (1.497) 52.35 (52.35: 

II 2;41 4.44 0.934 1.813 1.625 3.053 47.87 48.82 

III 2.22 6.66 0.907 2.72. 1.593 4.675 50.23 49.83 

IV 2.23 8.89 0.911 3.631 1.590 6.195 50.60 49.46 

V 2.10 10.99 0.858 4.489 1.483 7.645 50.12 49.37 

Columns superscripted as in previous tables 

V2 calculated from slope of 1b(ems) vs V(tot),in cc.Plot given 
as Fig A8.4 

V2 = (dl/dV) x 70.986 cc/mole, 

= 5.94/8.50 

V2 = 49.61 cc/mollt 
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287. 

Methane in Benzene at 250C. 

Table A8.5 Experimental Data. 

Dose V. 
(„) 

V(tot) N x104 
(,niat 

N x104 1a 
(r.mg.) 

1b 
(rms_l 

V2  Va2 

I 1.55 (1.55) 0.633 (0.633) 1.183 (1.183) 54.18 (54.18 

11 2.07 3.62 0.895 1.478 1.586 2.800 53.80 54.92 

III 1.93 5.55 0.788 2.666 1. 367 4.180 50.29 53.46 

IV 1.80 7.35 0.735 3.001 1.375 5.515 54.23 53.26 

Columns superscripted as in previous tables. 

V2 
calculated from the slope of 1b(ems) vs V(tot),in cc.Plot 

given as Fig A8.5. 

V2= (dl/dV)siope  x 70.986 cc/molt. 

is 3.76/5.00 " 

V2= 53.38 cc/mo1g; 
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289. 

Methane in Cyclohexane at 25°C. 

Table A8.6 Experimental Data. 

Dose V. 
(cc) 

V(tot) N x1011  
(mole 

N x104 
(tot) 

1a 

(ems) 
lb 

(cms) 
V2 

b V2 

I 1.94 (1.94) 0.792 (0.792: 1.629 (1.629) 59.63 (59.63: 

II 2.67 4.61 1.090 1.882 2.010 3.605 53.46 55,53 

III 2.45 7.06 1.001 2.883 1.853 5.421 53.46 54.51 

IV 2.50 9.56 1.021 3.904 1.945 7.460 59.22 54.40 

V 2.52 12.08 1.032 4.936 1.786 9.260 50.17 54.39 

Columns superscripted as in previous tables. 

V2 calculated from slope of lb(cms) vs V(tot),in co.Plot given as Fig A8.6 

x 	cc/mold I= (dl/dV)slope  70.986 cc/m  

= 7.75/10.00 ' " 

V2 m 55.01 oc/mold. 
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291. 

Methane in n.11eptane at 25°C. 

Table A8.7 Experimental Data 

Dose V. 
(cc) 

V(tot) N x10
4 

(m016 
N x104 
(tot) 

_ 

1a 
(ems) 

lb 
(cms) 

V, V2 
c  

. 

Va 
2 

I 2.05 (2.05) 0.837 (0.837) 1.724 (1.724) 59.71 (59.71: 

II 2.45 4.5o 1.003 1.84o 2.008 3.743 5804 58.97 

III 2.62 7.12 1.070 2.910 2.290 6.081 62.04 60.58 

IV 2.43  9.55 -  0.992 3.902 1.887 8.021 55.15 59.59 

v 2..53 12.08 1.033 4.935 2.023 10.039 56.77 58.97 

Columns superscripted as in previous tables. 

V2 
calculated from the slope of 1b(ems) vs V(tot),in cc. 
Plot is given as Fig A8.7 

V2 I= (dl/dV)slope x 70.986 cc/mole 

= 8.39/10.0 " 

V2 m 59.56 cc/mole 
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Methane in i—Octane at 25oC. 
	293. 

Table A8.8 Experimetal Data. 

, 

Dose V. 
(cc) 

V(tot) 11 x10
4 

(mo14 
N x 10+ 

(tot) 
1a 

(oms) 
lb 

(cmv) 

a V, 
‘ 

V2  

1 2.49 (2.49) 1.017 (1.017) 2.055 (2.055) 53.38 (53.38) 

II 
I 	 

2.36 4.85 0.964 1.981 1.859 3.851 55.90 56.36 

,III 
/ 	 

2.41 7.25 0.984 2.965 1.882 5.750 55.45 56.22 

Iv 2.49 9.74 1.017 3.982 1.910 7.618 54.45 55.56 

Columns superscripted as in previous tables. 

V2 calculated from the elope of 11'(cms) vs V(tot),in cc. 

Plot is given as Fig A8.8 

V2  = (dl/dV)slope  x 70.986 cc/molt. 

= 3.99/5.0 	ft 	If 	II 

V2 = 56.65 cc/mole. 
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295. 
Freon in Benzene at 25°C. 

Table A8.9 Experimental Data. 

Dose V. 
co) 

V(tot) N x10
4 

(moloti 
N x104 

etot) 
1a 

Comm) 
1
b 

(emn) 
Va 2 V2

b 

Ia 1.70 (1.70) 0.694 (0.694) 1.974 (1.974) 82.46 (82.46: 

jr\ 1.78 (1.78) 0.727 (0.727) 2.052 (2.052) 81.82 (81.82, 

II 2.15 3.93 0.878 1.605 2.516 4.573 83.07 82.60 

III 1..93 5.86 0.788 2.393 2.196 6.835 81.20 82.80 

** Thermostating control lost after Ia,hence V2  estimated from 
Doses I-III. 

Columns supersdripted as in previous tables 

V2 calculated from the slope of 1
b(ems) vs V(tot),in cc. 

Plot is given as Fig A8.9. 

x V2 = (dl/dV)slope  70.986 cc/mola  

= 5.80/5.00 " 

V2 = 82.34 cc/m014 



296. 

Fig A8.9 Freon in Benzene at 250C,Total extension(cms.) 
vs Total dosage(cc.) 
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297. 

Freon in Cyclohexane at 25°C. 

Table A8.10 Experimental Data 

Dose V. 
(cc) 

V(tot) N x104  
(mola 

N x104  
(tot) 

la 
(ems) 

lb 

(tills) 

va 

2 

vb 
2 

I 1.68 (1.68) 0.686 (0.686) 2.198 (2.198) 92.88 (92.88) 

II 1.72 3.4o 0.702 1.338 2.101 4.298 86.76 89.76 

'III 1.78 5.18 0.727 2.115 2.165 6.379 86.33 87.44 

IV 1.70 6.88 0.694 2.809 2.064 8.461 86.22 87.32 

v 1.80 8.68 0.735 3.544 2.134 10.545 84.17 86.26 

Columns superscripted as in previous tables 

V2 calculated from the slope of 1 kerns) vs V(tot),in cc. 
Plot is given as Fig A8.10 

V2  = (dl/dV)slope  x 70.986 cc/molC. 

= 9.23/7.50 	It 	11 

V2 =87.36 cc/mole. 
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Fig A8.10 Freon in Cyclohexane at 25°C,Total extension(cms.) 
vs Total dosage(cc.) 
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299. 
Freon in n-Heptane at 25°C. 

Table A8.11 Experimental Data. 

Dose V. 

(cc) 

V(tot) N x104 
(mold 

N x104 
(tot) 

1a 

(ems) 
Ib 

(cmoi , 
Va Vb 2 

. 

I 1.96 (1.96) 0.800 (0.800) 2.453 (2.453) 88.89 (88.89 

II 1.55 3.51 0.633 1.433 2.090 4.397 95.7a 88.93 

III 1.38 4.89 0.564 1.997 1.612 6.175 82.92 89.64 

IV 1.61 6.49 0.658 2.655 1,583 7.780 69.74 84.95 

V 1.56 8.05 0.637 3.292 1.965 9.773 89.43 86.06 

Columns superscripted as in previous tables 

V2 calculated from slope of 1b(cms) vs V(tot),in cc. 

Plot is given as Fitt A8.11 

V2 "di/dV)slope x 70.986 cc/mol4= 

= 6.24/5.00 	tl 

V2 = 88.59 cc/mo%T. 



300. 

Fig A8.11 Freon in n-Heptane at 25°C,Total extension(ems.) 
vs Total dosage.(cc.) 
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Freon in i-Octane at 25°C. 
	301. 

Table A8.12 Experimental data. 

.... 
Dose V. 

( 	cc) 

V(tot) X x10
4 

(mole* 

N x104 
t) (to 

J 1a  

(cm) 
3.
b  

(cmR: 

a a 
V2 

I 1.27 (1.27) 0.519 (0.519) 1.516 (1.516) 85.57 (85.67 

II 1.77 3.04 0.723 1.242 2.236 3.728 89.66 87.02 

III 1.54 4.58 0.629 1.871 1.865 5.585 85.96 86.54 

IV 1.78 6.36 0.727 2.598 2.249 7.805  89.68 87.09 

V 1.87 8.23 0.764 3.362 2.214 10.002 84.01 86.25 

Columns superscripted as in previous tables 

V2 is calculated from the slope of 1
b(ems) vs V(tot)t in cc. 

Plot is given as Fig A8.12 

V2  = (dl/dV)slope  x 70.986 cc/mole 

= 8.00/6.55 	" 	11 	11 

V2  . 86.70 cc/mole.?  
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Fig A8.12 Freon in i-Octane at 250C,Total extension(cms.) 
vs Total dosage(cc.) 



303. 

Sulphur Hexafluoride in Benzene at 25°C,(1st Seiies.) 

Table A8.13 Experimental Data. 

Dose V. 
(cc.) 

_ 

V(tot) H x104 
(moles 

N x104 1a 
(ems) 

. 

1b 

(ems) 
V
ab 
2 2 

I 1.30 (1.30) 0.532 (0.532 1.789 (1.789) 97.49 97.49 

II 2.19 3.49 0.895 1.427 3.026 4.804 98.05 97.71 

r.1,  

III 2..06 5.55 0.842 2.269 2.528 7.670 98.00 98.00 

Iv 1.58 7.13 o.646 2.915 2.052 9.773 92.09 97.19 

V ' 1.54  Pt  wo607 0.630 3.545 2.137 11.766 98.34 96.22 

Columns superscripted as in previous tables 

V2 is calculated from the slope of 1
b(ems) vs V(tot),in 

cc.The Plot is given as Fig A8.13 

V2 =-- (dl/dV)slope x 70.986 cc/molt. 

= 11.5/8.4 
	

It 	11 	II 

V2 = 97.07 cc/molt 



304. 

Fig A8.13 Sulphur Hexafluoride in Benzene at 25°C,Total 
extension(cms.) vs Total dosage(oo.)--Series 1. 
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305. 

Sulphur Hexafluoride in Benzene at 25°C.(2nd Series) 
Table A8.14 Experimental Data. 

. 
Dose V. 

(cc.) (tot) 
V(tot) N x10

4 

(mold 
N x104 

. 
1a 

(cms) 

1b 

(cms) 
va 2 vb 2 

1 1.67 (1.67) 0.683 (0.683) 2.328 (2.328) 98.81 (98.81: 

11 2.97 4.64 1.214 1.897 4.205 6.436 100.41 98.36 

III 1.46 6.10 0.597 2.494 1.948 8.281 94.59 96.26 

IV 2.11 8.21 0.863 3.357 2.967 11.073 99.67 95.62 

Columns superscripted as in previous tables. 

V2 is calculated from the slope of 1
b(ems) vs V(tot),in 

cc.The plot is given as Fig A8.14 

V2 = (d1/d V)slope x 70.986 cc/mole 

= 8.15/6.00 

V2_ 96.42 cc/m010 



306. 

Fig A8.14 Sulphur Hexafluoride in Bentene at 25°C,Tohl 
extension(cms.) vs Total dosage(cc.)--Series 2. 
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307. 

Sulphur Hexafluoride in Cyclohexane at 25°C. 

Table A8.15 Experikental Data 

1 
Dose V. 

( 	cc) 

V(tot) N x104  

(molal 
N x104 

(tot) 
1a 

(ems) 
lb 

(cms) 
Vab 
2 

I 1.52 (1.52) 0.621 (0.621) 2.128 (2.128) 99.34 (99.34 

II 1.79 3.31 0.731 1.352 2.646 4.745 104.94 101.71 

III 1.66 4.97 0.678 2.030 2.367 7.232 101.24 103.28 

IV 1.58 6.55 0.645 2,675 2.028 9.286 91.15 100.64 

Columns superscripted as in previous tables. 

V2 is calculated from the slope of 1b (ems) vs V(tot) l in cc. 
The plot is given ab Fig A8.15 

V2 = (dl/dV) x 70.986 cc/moX, 

3. 9.0/6.3 I' 	ft 

V2 = 101.41 ce/moll, 



308. 
Fig A8.15 Sulphur Hexafluoride in Cyclohexane at 2543, C, 

Total extension(cms.) vs Total dosage(cc.) 
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309. 

Sulphur Hexafluoride in n-Heptane db25°C. 
Table A8.16 Experimental Data 

k 

Dose V. 
(cc.) 

V(tce N x10
4 

(mole9 
N x10

4 

(tot) 
la 

(curs) 

1b 

(cmo) 
Va  
2 Va  2 

I 1.48 (1.48) o.6o4 (0,604) 2.146 (2.146: 102.93(102.93 

II 1.64 3.12 0.670 1.274 2.356 4.484 101.94 102.03 

III 1.82 4.94 0.743 2.017 2.632 7.164 102.69 102.96 

Iv 1.62 6.56 0.662 2.679 2.315 9.482 101.37 102.61 

Columns superscripted as in previous tables. 

V2 
is calculated from the slope of 1 (cms) vs V(tot),in cc. 

The plot is given as Fig A8.16 

x 70.986 cc/mallV2 = (dl/dV)slope 

= 7.95/5.50 " 

V2 42'102.61 oc/mole 



310. 

Fig A8.16 Sulphur Hexafluoride in n-Heptane at 25°C,Total 
extension(cms.) vs Total dosage(cc.) 
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311. 
Sulphur Hexafluoride in i-Octane at 25°C. 

Table A8.17 Experimental Data 

Dose V. 
(cc.) 

V(tot) N x104 

(mole 
N x104 
(tot) 

l
a 

(cms) 
l
b 

(ems) 
Va 2 Vb 2 

I 1.65 (1.65) 0.674 (0.674) 2.431 (2.431) 104.58 (104.58 

II 2.38 4.03 0.972 1.646 3.354 5.993 100.(75 104.49 

III 1.61 5.64 0.657 2.303 2.468 8.346 108.9 105.06 

Iv 1.58 7.22 0.645 2.948 2.169 10.447 97.49 102.73 

V 0.98 8.2o 0.400 3.348 1.439 11.833 104.29 102.46 

Columns superscripted as in previous tables 

V2 is calculated from the slope of 1b(ems) vs V(tot),in cc. 
The plot is given as Fig A8.17 

V2, = (dl/dV) x 70.986 co/mol.. 

11.65/8.00 

V2 = 103.38 co/Molt 



312. 

Fig A8.17 Sulphur Hexafluoride in i.Octane at 25°C,Total 
extension(cmsT) vs Total dosage(cc.) 
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313. 

Hydrogen in Benzene at 25°C. 

Table A8.18 Experimental Data 

Dose V. 
(cc.) 

V(tot) N x101  
(mola 

N x 1 
(tot) 

la 
(ems) 

1b 

(oms) 

a V2 Vb  
2 

I 2.79 (2.79) 1.139 (1.139) 1.388 (1.388) 35.33 (35.33 

II 2.97 5.76 1.213 2.352 1.518 2.863 37.27 35.29 

III 2..72 8.48 1.111 3.463 1.470 4.303 38.35 36.02 
..., 

IV 2.26 10.74 0.923 4.386 1.041 5.282 32.70 34.91 

Columns superscripted as in previous tables 

V2 is calculated from the slope of 1
b(cms) vs V(tot),in cc. 

Plo.t is given as Fig A8.18 

V2  = (dl/dV) x 70.986 oo/mP:Ule 

m 4.98/10.00 

V2  = 35.35 cctholidt. 
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315. 

Hydrogen in Cyclohexane at 25°C. 

Table A8.19 Experimental Data. 

Dose V. 

(cc) 

V(tot) 
L 

TT x 40 

(mole, 

- 
N x104 

(tot) 

1a 

(cms) 
lb. 

(ems)  

Va 2 Vb 2 

I 2.45 (2.45) 1.001 (1.001) 1.437 (1.437) 41.66 (41.66' 

g-- 

II 2.94 5.39 1.201 2.202 1.740 3.151 42.00 41.48 
1 

III 2.84 8.23 1.160 3.362 1.593 4.750 40.28 40.96 

IV 2.65 10.88 1.082 4.444 1.416 6.116 37.94 39.90 

Columns superscripted as in previous tables 

-V2 is calculated from the slope of 1
b(ems) vs v(tot),in cc. 

Plot is given as Fig A8.19 

V2 = (dl/dV) x 70.986 cc/molit 

= 5.79/10.00 II 
	

Ifl 

V2 = 41.10 cc/molt, 



3
1
6
.
 

Fi
g 

A8
.1

9 
Hy

dr
og

en
 i

n 
Cy
cl
oh
ex
an
e,
To
ta
l 
ex
te
ns
io
n(
cm
s.
) 

vs
 T
ot
al
 d
os
ag
e(
cc
.)
 



317. 
Hydrogen in n—Hentane at 25°C 

Table A8.20 Experimental Data 

Dose V. 
(cc.) 

V(tot) N x104 

(mol4 
N x104 
(tot) 

la 

(ems) 
lb 

(ems) 

a V2 
b V2 

I 2.84 (2.84) 1.160 (1.160) 1.969 (1.969) 49.21 (49.21. 

II 2.60 5.44 1.062 2.222 1.424 3.433 38.87 44.79 

III 2.52 7.96 1.029 3,251 1.388 4.702 37.70 41.93 

Iv 2.90 10.86 1.184 4.435 1.894 6.552 46.37 42.82 

V 2.78 13.64 1.135 15.570 1.739 8.201 44.42 42.68 

Columns superscripted as in previous tables 

V2 is calculated from the slope of 1
b(ems) vs V(tot),in cc. 

Plot is given as Fig A8.20 

V2  n (dl/dV)slope  X 70.986 cc/mol.e. 

= 	6.08/10.00 u 	,s 	tt 

V2 = 43.16 cc/mol.e 
	I 
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319. 

Hydrogen in i-Octane at 25°C. 

Table A8.21 Experimental Data. 

Dose V, 
(cc.) 

V(tot) N x104 
(mole4) 

N x104 

(tot) 
1a 

(ems) 
1b, 

(ems) 
Va 2 Vb 2 

I 2.18 (2.18) o 890 (0.890) 1.509 (1.509) 49.15 (49.15: 

II 2.73 4.91 1.115 2.005 1.745 3.252 45.37 47.02 

III 2.88 7.79 1.176 3.181 1.875 5.104 46.22 46.52 

IV 2.74 10.53 1.119 4.300 1.719 6.845 44.53 46.15 

V 2.65 13.18 1.082 5.382 1.551 8.348 41.56 44.97 

Columns superscripted as in previous tables. 

V2 is calculated from the slope of 1
b(ems) vs V(tot) 

in cc.The Plot i8 given as Fig A8.21 

V2 = (dl/dV) x 
70.986 CC/MOJA. 

= 8.00/12.30 

= 46.17 cc/mole. 
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321. 

Deuterium in Benzene at 25°C. 

Table A8.22 Experimental Data. . 

Dose V. 

(cc.) 

V(tot) N x10
4 

(mold 

N 	x10!i.. 

(tot) 

1a 

(ems) 

1b 

(cms) 

Va 2 Vb 2 

I 3.30 (3.30) 1.348 (1.348) 1.518 (1.518: 32.65 (32.65 

II 2.97 6.27 1.213 2.561 1.274 2.841 30.45 32.16 

III 
... 

2.84 9.11 1.160., 3.721 1.356 4.212 33.89 32.82 

Columns superscripted as in previous tables. 

V2 is calculated from the slope of 1
b(cms) vs V(tot),in cc. 

The plot is given as Fig A8.22 

V2 = (dl/dV) x 70.986 co/moll 

= 6.10/10.00 " 

V2 = 32.72 co/mol-C. 
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323. 

Deuterium in n-Heptane at 25°C. 

Table A8.23 Experimental Data 

Dose V. 

(cc.) 

V(tot) N x10
4 

(molee 

N x104 

(tot) 

la 

(ems) 

lb 

(ems) 

Va2 V
b 

I 3.18 (3.18) 1.299 (1.299) 1.819 (1.819) 40.59 (40.59 

II 3.25 6.43 1.327 2.626 1.847 3.698 40.35 40.82 

III 3.09 9.52 1.262 3.888 1.789 5.542 41.10 41.32 

Iv 3.13 12.65 1.278 5.166 1.879 7.338 42.62 41.17 

Columns superscriptee as in previous tables. 

V2 is calculated from the slope of 1
b(ems) vs V(tot),in cc. 

The Plot is given as Fig A8.23 

V2 = (dl/dV)slope 
x 70.986 cc/mole 

= 5.80/10.00 	It If 

V2 = 41.17 cc/mole 



3
2
4
. 

Fi
g 

A8
.2

3 
De

ut
er

iu
m 

in
 n

-H
ep

ta
ne

 a
t 

25
°
C,
To
ta
1 
ex
te
ns
io
n(
cm
s.

) 
vs

 T
ot

al
 d

os
ag
e(
cc
.)
 



Deuterium in i-Octane at 25°C. 
	325. 

Table A8.24 Experimental Data. 

Dose 

. 

V. 
(cc.) 

V(tot) N x10 
(molt 

N x104 

(tot) 

La 
1
a 

(cms) 

1b 

(cms)  

. 

V2 
b V2 

I 2.81 (2.81) 1.148 (1.148) 1.703 (1.703) 43.01 (43.01: 

II 2.95 5.76 1.205 2.353 1.732 3.461 41.67 42.64 

III 2.86 8.62 1.168 3.251 1.725 5.250 42.81 43.23 

Iv 2.8o 11.42 1.143 4.664 1.739 6.967 44.11 43.3o 

V 2.70 14.12 1.103 5.767 1;663 8.582 43.71 43.14 

Columns superscripted as in previous tables. 

V2 is calculated from the slope of 1
b(cms) vs V(tot) 

in cc.The Plot is given in Fig A8.24 

V2 = (dl/dV)slope 
x 70.986 cc/mo141.,  

= 7.50/12.35 	U 

V2  = 43.11 cc/mol& 
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