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ABSTRACT

The thesis, which is in three parts, is concerned
with tests of hypotheses in which the exponential
distribution plays a part,

In Part I, a sample Xys Ko ooy Xn is assumed
fto be exponentially distributed., A test statist101
Tn’ is proposed to test this hypothesis based on the
ordered sample values. The distribution and other
properties of Tn are derived. The test statistic
is shown to be asymptotically normal and some further
approximations to its distribution are investigated.

The asymptotic relétive efficliency of Tn ‘'with

respect to the asymptotically most powerful test against
the alternative of gamma distributed intervals is
obtained. Some comments are made on the application of
the‘test to several independent sets of data. Finally,
a(test for an incomplete sample is outlined.

In Part IT, tests of separate families of
hypotheses are considered. Cox gave general results
for these and in the case of the log-normal distribution

versus the exponential distribution derived test

statistics and their asymptotic distributions. We give



closer approximations to the distributions of the
statistics and derive power'functions of the tests.
Cox's general methods are then used to derive tests
for the loz-normal distribubion versus the gamme
distribution. Asymptotic distributions of the fest
statistics are given and the tests.ére applied to the
~distribution of wool fibre-diameter.

In Part III, the power of the statistic T,ﬂ
(Part I), for a log-normal alternative, is compared with
that of the more specific separate family test of the
exponential distribution versus the log-normal

distribution.
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PART T

An Analysis of Departures from the

Exponential Distribution



1. Introduction

In a number of statistical problems it may be
required to test the assumption that a set of
observations comes from a Poisson series, i.e. that
the intervals between events are exponentially |
distributed. Anderson and Darling (1952) give a
unified theory of non-parametric tests which can be
used to test the assumptibn of exponentiality. Darling
(1953) and Epstein (1960) have surveyed tests for
exponentiality, the latter in conneetion with life
testing. The asymptotic relative efficiency of some
of these tests has been found by Bartholomew (1557)
for various alternatives. Lewis (1965) has proposed
a new Test and given its asymptotic relative eiffieiency
against a gamma alternative. Finally, Cox and Lewis
(1966) discuss tests and other methods connected with
series of events,

A further test, based on the ordered values of the
observations, is proposed here. Some analytical
properties of this test are obtained and other results

are indicated by Monte Carlo experiments.



Suprose the random variables Xl’ Xg’ cens Xn
are from an exponential distribution, p.d.f. Ae =

Let ’X(l)’ X(E)’ v X(n) be the ascending ordered

values., Then it is well known that

—...-;lu:-—um )1/7\ = t /’A (I’ = l’Q’Q.Q’n)&

X)) n-i+1

sy

[
it
[

(1.1)

I the observed order statistics are plotted

against tr a straight line through the origin is to

n
be expected, but if the population is of non-exponential
form a curved plot is to be expected. Shapiro and

Wilk (1965) in their test for normality found that the
orderad observations should be weighted by constants

a' a Q' z"l where V is the covariance matrix and m
the expected values of the ordered variables. Empirical
investizations show that m is a good approximation

to a. These general remarks suggest a test based on
E:trn X(r) normalized to remove dependence on the
nuisance parameter A. It is this statistic which is

considered in the rest of Part I of the thesis.
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2. The Test Statistice Tn

Consider the n ordered sample values from an
exponential distribution with X(l) £ X(E) £ ...L X(n)'
2 ol '\( — -
The differences X(l)’ *(2) X(l)’ X(}) X(E)’ . ~are
mutually independent but non-identically distributed.

The transformation

v /(o) = X1y V./((n-r+1 )} = X(r) - X(po1)

(1"=2, 33.0., n)(e.l)
gives identically distributed random variables, and

each V has the unit exponential density, e~ '.

From (2.1),

Vv Vv vV
1,y Yo r -
Xy = #l5*Ex * o tamT ) T L2
and
n n n
< s
J_,:” J\.(r) = Z XI’ = ( s Vr)/7\ .

il

| \pad
H
It

| \pad
=
H

| \pad
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We tTake as our test statistic

n n
- 0N N
=1y, X(r) tr,n}/(di_ X(r)} (2.2)
r=1 r=1
A v v
C Rl ol 2yl L U 1!
= {E— =+ (n + n_1)(n + n_l)+...+(ﬁ—-+...+l )(n+...+0}
—%(ZVQ
n n
S ST 2,3
= { 2. G, VI,]/[ L..Vr} (2.3
r=1 r=1

where Cr are constants depending on r and n. By

equating the last two expressions for Tn we find that

C1 = 1, all n
and C = 1 + 1 + + L r=2,% n
r n LR ) n_r+2, 5 5 e ¢ a3 .
In terms of tr,n
Cp = 1+ . p r=1,2,...,n (2.4)
where we define ¢ = 0, all n.

Oos1
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Since Tn is scale invariant, the nuisance
parameter, A, i1s eliminated and there is no loss of
generality if we take the observations as coming from
the unit exponential distribution.

By a well known result for weighted means (Hardy

et al, 1934, p.14)

Ypal T
. < ByTy
min a. € (———=e ) < max a v=1,2,...,01
A 5’ — A\
p,
where Eipv = constant and a_, p, > O.
Hence min Ci £ Tn < max Ci’ i =1, 2,405 N
Since 1 = Cl < 02 < .0 £ Cn = tn,n =log n+ v ,
where v = 0.5772 1s Euler's constant, we have that
1¢T £C.. (2.5)

The minimum is attained when all the infervals are of
equal length and X, # 0. The maximum is attained
when X(1) = X(z) = v+ = X(pq) =0 and Xy # 0.
Thus both tails of Tn can be used to test departures

from the exponential distribution.
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For a gamma alternative the departure is away
from the lower tail of the distribution of Tn’ we

thus use the lower tail for tests of significance.

3. Independence of Tn and §:Vi =W

Sy
i .
Theorem: T = ——+ % and W= SV, are statistically
- " g, *
i

independent.

Proof: V A" ""’Vn are independent and each is a

'].’

, n
unit exponential. Let W = ZﬁVi .
~ : 1

The joint density of the V's is

|
©

Px(vl’ V2,..., Vn)

Also the p.d.f. for W = 2. V. 1is

1
P ATV, =W) = Wi Y/ (no1) !

e, VW =w= JV,) = (1’1—1)1/wn"'l (%3.1)

T
fus Pv(vl’ i oL

—

Now transform the V's as follows:

-
i

<
+
<
+
+
<

(Un =V, + oo+ V =W, a constant) .
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PUERERY Un—l form (n-1) ordered random

variables with the Jacobian of the transformation

Then Ul’ U

being unity, and we have from (3.1) that

1 n=-1
P.E (Ugs Ugs vves Un_liw = w) =+n-1)!/w ’ (3.2)
l.e. Ul’ U2, cees Un-l are order statistics from a
rectangular distribution over (0, w).
n
Now any linear combination }:_,C.lvi can be written
1
n-1
as bw + i biUl’ and so
i=1
n n -1
L —
T o= GV )V, = b+ (Z b UM .
1 1 1

Conditionally on W = w, Tn has a distribution not
involving w, because each Ui/w is rectangular
over (0, 1). Hence T, end W = é;\G_ are independent.
Corollary.

Some properties of Tn can be found using the
facts that
a) Zcivi = T (X V,), where the factors on the right

are independent,



]
1

b. U,

z
H
]
o
+
~
1
H

(3.4)

TJ

|
l_l
l_l

~r
-

where: U{ are ordered values from the rectanzular
distribution R(0, 1), and the b, are constants.

Equating the two expressions for Tn, we have
that

b=C_9 b. = C, - C

. : i ny i=1,2,..., n-1.

Thus (3.4) can be written as

n-1
_ N~ *x
Tp = Cpt 2 (G5 - Ciyq)Uy
i=1
n=-1 =
= U
= c -y = (3.5)
=1 n-1i+1
* ® #
where O U} < U, ... £ U <1

It is awkward to use the form b) to obtain properties
of Tn (except the first moment) since this involves
products of the Ci's.

The independence of T = and jZ:Vi follows
also from a result of Pitman (1937). We suppose

that Xy Kps o eees Xp are independent random
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variables and Xy is a2 gamma variate with

-X.

m, -1
p.d.f. {e * xil }/(f1(mi)} . F(xl, KpseeesX

)

n

is a function of X 1independent of scale; 1.e.

F(kx, KX ...; kxn) = F(xl, Kps vees xn). Then
Pitman's result is that | |

E:xi and F(xl, ST xn) are independent.

This is proved by considering the characteristilc
function, g(u, v), of the joint distribution of x,
and F. It is shown that 4(u, v) factorises into a

function of u and a function of v, and hence fthe

independence of Efxi and F.

4, Null Hypothesils Distribution of Th

4.1 Some preliminary results

We require the power sums of the <€ and C
r,n r

for the moment calculations.
n \
= _ 21
LetT Sil’l = j ufn .
r=1
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There are recurrence relations like

S = 8

in =5, na1 T L S

on = So,p1 *(@/n) 8y g+ 1/n

between the Sin' Solving these, we obtain

Sip = s Sy = 2n-t,, }
" n |

Sy = 6n - 3t + 'gij(l/rz) -3 $ii (t.,.7%) \{\ (4.1)
f
z
n n |
Syn = 240 - 12t ¢ HZ(1/2°) 4 3 z}u/ﬂ) Foava

Using these results to obtain power sums for the Ci

we have that since Ci = ] + ti-l,n’ i=1,2,..., 10
k-1

%‘ Ci = 2n - tnn ;

n {
02 = - - 2 (4.2)
%‘ Ci SQn + 3n Etnn tnn E

2
5n - tnn

]

\
St /
.

Rgl=
Q
TN
B
N
s
+
N
&
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16n - &2 - 3t2 - ct__ + flj‘ 1 <+ ‘rr
: nn =~ “’nn nn 7 e ~— 2 Lf T
{(4.2)
and l
n
- )‘l‘ _ )‘l‘ - 1_3 2 5
37C; = 6on - £ - AE7 - 66T - Bht 4. .

4,2 Moments of Tn.

All moment calculations are done using the fact

that T and E?Vi are independent.
-v,

has p.d.f. e * (vi > 0)

Since each Vi

E(Tﬁ) BE(ZV,) = E{Z C, V]

1
and p = B(T) = Z > c,

where v = 0.5772 is Euler's constant.

For the second moment we have

B(T2) E(( ¥ V,)?) = BU(Y € v,)?)
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i.e. E(TR)E(Z VZ + 2 > V.V.}
n ;1 sy i3

= E{ Z_c:?i v? +2 2 C.C.V.V.)

i>J L
. 2
and p,é‘ = E(T_) =(2Zc® +2 3 c,C.}/tn(n+1))
n i isy 173

(205 + (Z2¢,)%)/(n(n+l))

Therefore 202 (s )2
. C.
py = var(T ) = =—— - L (2.4)
e " n(n+l) n?(n+1)
~ l +
= {n+ t, - t2 (143) } An(n+d)j

.‘2
nn nn _ _hn + O(logqn).
5

n n n

(4.5)
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By a similar argument

E[(Zv.)B} = E[ZV.3+ 357 VBVL, + T V.V.V. ]
1 SR T3 ISR P2V
= n(n+l)(n+2),
Also

B((%C,V,)7) = BIZ.CIVD + 33 c2c V3V, + S C,C (0, V, V.V

1£y YL iy IR

- 65c2 + 65°¢c2c. + . C.C.C
2-C5C, + « C;C.0
* ify 19 ik Y

it

257c] + (e (X CE) + (Tcy)” .

These lead to

Cerel  e(Ee)(Eed)  MEc)’ (4.6)

—— o

M3 3
n{n+1) (n+2) nZ(n+1) (n+2) n’(n+l) (n+2)
The exact value of Y1 the coefficient of skewness, is
obtained from (4.4) and (4.6). Using the results of
section 4,1 we obtain the following approximations:-
3 _ a2
2(tnn 32+ 6)

>
_ .._.g, _ nn - + O(log n) (1_1_'7)

n 1’13 n

k

}
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2 £ _6t2 43t 43 5,
and v, = u}/ug _ _&_ (1 --po_nnZ’nn 7y o(lo; ).
/n 2n 5
h
(4,8).

For the fourth moment, similar arguments show

that
B(($V,)"] = n(n+1)(m+2)(n+3)
and

E{(ZCiV) }—25‘04+?05 CEC + 935 0202
iZy T iy * Y

)4

¥ 6 2_ c2c.c + (5C,
1£5A I
= (Tept + (2T eR) + 8(Z e (T ) + 3T CF)?
+ 620?.
From these we find that
by = > | (n-6)(5c)* - 2n(n-6)(sc,)?(£c2)

n(m&ﬂm@ﬂn@)

L 2508 - Bn?(3¢,)(%0D) + e T | .

-3

(4.9)
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We can find an approximation to the kurtosis by
expressing (4.9) in inverse powers of n and using

the results of section 4.1. Then

!

. &
n2 nn_ 1’11’1

- 2 _ _8¢2 >
By = my/up {11+8t 8¢2 +7t

logAQ) . » (4.10)

+ 0Of >

n

From (4,8) and (4.10), Y, —> 0 and B, — 3

as n —>» ® . These suggest that the distribution of

Tn fends asymptotically to normality. This will be

proved formally in section 5.

The approximations to the mean and variance of
Tn are very good even ior small n; but for yl and
Yo n has To be large to give great accuracy.

4,3 Exact Distribution Function of Tn

This section is based on a result by Gurland

(1948), This states that if X, X Xn have

2,---,

joint distribution function F(Xl, X ,...,xn) with

2

corresponding characteristic function ﬁ(tl,te,..., tn)
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and G{x) is the distribution function of

(al Xy + ver + a X, )/(o X +..+ b X ), 8158550005 Bp5

bl’ bg,..., bn real numbers, then if
JL
P . b.,x. <0} =0
(2 byxy < 0)

dt

tla,-b,x),..,,t(a _=b %))
G(x) + G(x-0) =1 - l_%ié{ (al 1X) (an nk)
wl £

(4.11).

Tn satisfies the above conditions and in this

case if

P{T, < x} = F(x)

&_ﬁit(cl'x)""’t(cn'x)}

F(x) + F(x-0) = 1- — ¢ - dt
i t
(4.12)
The characteristic function of X4 xg,..., X is
n
B(ys Tgsenns tn) = J_21{1/(1-3L*cj)} .
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We need to evaluate

- f dt .

t[l-it(crx)?[_1-it(cg-x)j e {l-it(Cnexﬂ
This is done by considering a semi-circular contour
in the upper half plane and indented at the origin.
The number of poles inside this contour depends on
the range of x and after some calculation of

residues we obtain the distribution function

n-1 n-1
- (e -x) w (x-Cpp)
R(x) = 2 kL - L5 £0 (4.13)
2 t - 1 -
jzl(ckn Cjn) ? (Cjn Ckn)

i

where 7 means that j = k 1is omitted and Ckn is

written for Ck to emphasise the dependence on n.
In (4.13) the summation over k 1is continued as
long as X - C >0, k=1, 2, ..., n=1. Writing

kn
(4.13) a little more specifically we get
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( 0 Cx <1 (h.1M)
? (x-1)21 _ .
; = Fl(.z\. 3
g (C2n ln)(CEQ ln) (Cnn ln)
|
§ 1 <x¢ C2n
|
i (X_an)n—l
Fl(X) + * - FQ(X)}
i (Cp CQn)(Cjn- 2n) oo nn_CEH)
i
F(x) =/ Cop £ % £ Oy
\
i n-1
§ . (X_Cn—l,n)
(Cla_ h;l,n)(CEn_Cn—l,n)'"(Cnn_ n—l,n)

Foop(x)s € p&xgCy
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An alternative form of the distribution function can
be obtained by considering a semi circular contour in
the lower half plane. 1In this case, for say
cn-ln x < Cnn’ there is only one pole inside the
contour and Fn_l(x) has only one term lnstead of
n-1 as in (4.14). Then

n-1
(Cpp®)

(X) = 1 3
(C

nn—cl,n)"‘(cnn—cn-l,n)

< x < C._ . (4.15)

Similarly, Fn_g(x) hag two terms instead of n-2,
and so on.

The form of F(x) makes it difficult to obtain
the percentage points of Tn when n 1is large.

The distribution function F(x) can also be
obtained from results of Anderson (1942) on the serial

correlation coefficient of lag 1,

r = (xlx2 XXy o + xnxl)/(xl + oee. + xn).

Pyke (1965) shows that if Yyse+es ¥, are indenendent
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exponential random variables with E(yi) =1 and

S = Yy b eee Vs and D, = yi/S

then (D D .s Dn) is distributed as the set of n

1 et
spacings determined by n-1 1independent random
variables uniformly distributed over (0,1). Durbin

(discussion of Pyke, 1965) indicates that
r o= aiDi s Where a; are constants.

Hence F(x) can be obtained from Anderson's results

on the distribution of r.

5. Asymptotic Normality of Tn

Theorem:

'I‘rl is asymptotically normal, N(2, %)

Proqﬁ:

We employ Lindeberg's form of the Central Limit
Theorem which states that if [,, [,s..., 7 are
non-identically distributed random variables then,

1,: “él +...+-'[_,n is asymptotically normal if

1im g = O,
N=>®
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where p5 = Z:pf, 02 =:Zj0i , and pf = E }ﬁ -uii

2 _ 4 \2

of = E( [;-u;)

4 59, R 7,
Let = > CV. = .
=i+ =1 1
o S _ - o i — 2 _ - 2

Then (&) = 2¢; =2en-t , (%) =¥ 0% = 5n-t2
The third moment of %4, is p? where
p; = E §L1~C113 = C? B(1V,-117)

_V.
e 1(vi - lP_dvi

= (12e‘1-2)c?

g rn—

Therefore p3 = Z"Pz = (12e-1—2) EZC?
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Thus Lindeberg's condition is satisfied and
Z.C;V, ‘tends to normality with mean } C; and
variance z.C%.
Now consider

H, = 2G4V, - (ZC)(ZEV,/n).

Then E(%_) = 0, o%(& ) = 20 - (Z¢;)%/n.

Since ZCiVi tends to normality and EVi/n tends in

probability to 1, ‘En tends to normality and

11 £ N(o, 1) (5.1)

where -= means that the random variable tends in

distribution to the stated distribution.
‘ n
Let 1} = zf_(vi/n). Then E(¥{ ) =1, and @} -— 1

in probability as n —» 00.

If F(%' ) 1is the distribution function of ;;é,
“n

then F( g ) — F(E') = N(C, 1) as n —» oo.

‘?:"
Zn ""% F( sy, )3 Oi'e-
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36V, - (26 (2 Vv, /n)

— 2 N0, 1)
I
S v, /n) [ivcg - (T )2/n)
( »Vl/ n) \V" {’""Cl ( “Cl) /l’lj
2 GV v C Y Cc2 - (¥ C.)%/n
or T = X B N i 1 iy,
""Vi 1 n®

Letting n — o T/ 2> N(2, %’1)’

or [(T_-2) -E> N(o, 1).
The asymptotic normality of Tn can also be shown
to follow from some general results of Pyke (1965) on

the limiting distributions of functions of spacings.

6. Approximations to the Distribution of Tn

The rate of convergenc% of Tn to normality is

slow | = 4/ /n + o(n~ 2) ! and the distribution

L7y
function of Tn is in an open form, hence various
approximations to Tn were tried. Aﬁ Edgeworth
Series approximation proved very good, but others

were adeguate and so are briefly outlined here.
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Suppose a random variable X 1s the ratio of

two random variables U, W3 then

Pr(X = U/W < v} = Pr{U-vW < 0}

By =V By
j{ci - 2v cov(U,W) + v2c§ }

.»'\.aﬂi(— ) (6'1)
where ®© 1s the standard normal probability integral
and uu, ci are the mean and variance of U etec.

5.0V, - (>‘c> v, /n)

If T) = == , s , then
( Zv./n) Jisc (ZC )2/n}

Tﬂ i&b N(0,1). From (6.1) and a little manipulation

we find that

N
Pr{Tﬁ < v} ~ & o) . (6.2)
¥ 14v2 /n)
This gives a better approximation to The distribution
of Tg than N(0,1) does.

Another useful idea is the relation between fthe

coefficient of variation, C, and the skewness, 7v,.

For T , v, % 8C, and for (Tn-l), Y, 5 4G,
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For a log-normal distribution, Y, = 3C + CB. This
suggests that a log-normel might be an adequate
representation of (Tn-l). This is specially so for
small n and an empirical investigation is done on
this in section 7.

A chi-squared approximation was also tried. Let
T, = AXi + b, where A, v, b are constants, We
obtain these constants by fitting the first three
moments of T and Xi. A few values were plotted
and compared with the empirical distribution of Tn.
The it was quite good and would be adequate for most
practical purposes. However, if great accuracy is
desired this approximation would entail a lot of
calculation since v, the degrees of freedom of X%,
is fractional.

Evaluation of the exact values of the skewness and
kurtosis of Tn showed that these values were small
for sample values as small as 5. Thus an Edgeworth
Series expansion would give a good approximation to the
distribution of Tn. In this case, if

T - E(Tn)

\/( var Tn)

X =



_33_

we can represent the p.d.f. of Tn by

_ Lye
| (x) = §-E—— {1+Yl H, + 2 H, + "1 H, + } (6.3)
g - J,é.TE 6“‘ 5 '271' )-l- —T—é 6 e .3

where Hr(x) (r = 1,2,...) are Hermite polynomials.

We can use a Cornish-~Fisher expansion to express x in
By o

terms of a standard normal variate, ¢ , and vice~versa.

If a is a one-sided per cent point of Tn we have

l.2
((D 'PCD e-——2-u
a = J g(u)du = | e du
b'd vE, 42m
and
= M1 .. To .3 M 23 ee
x = 5 + = (5%-1) + = (§7-33) - —=(22’- 5% )+...
oy 3
1 (6.4)
to order n~t at least, since vy, = O(n.z) s
Yy = O(n_l).
Also -
S r\‘/l o 'Y2 3 rYl 3 ~
£= X~ == (x%-1)= == (x7-3x)+ —=(4x7-7x)+... (6.5)
5 o 36
1

to order n at least.
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Equation (6.4) is useful in calculating percentacge
points of T and (6.5) can be used ir T = 1is
known and the corresponding percentage point is
required using standard normal integral tables, A
comparison using these methods was deone and the

results are summarised in Table 7.3.

7. Empirical Results,

Variates from an exponential distribution mean
unity were generated on a computer. The procedure
was that used by Clark and Holtz (1960).

The statistic, Tn’ was calculated from a
sample of n exponential variates. For each n,
5000 samples of Tn were then generated for different
values of n and the moments and frequency
distribution were obtained. A summary of the sampling
. moments together with the exact values is given in
table 7.1l. Frequency histograms were drawn and from
these a normal approximation was quite good for about
n> 3C. For small n the distribution was skew so a
logarithmic transformation was made, T' = log(T-1).
The empirical distribution of T' was studied for

n =5, 10 using sample sizes of 1000. The results

n



are given in table 7.2.

of T
n

distribution function oi
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Empirical percentage values

were also obtained by plotting the empirical

Tn on normal probability

paper and using graphical interpolation. A few of
These values are given in table 7.3.
Table 7.1. Moments of Tn
Skewness XKurtosis

n Mean (L) Var (ue) (Vl)~ (B,)
5 Exact 1.54%3 0.0342 0.3268 2.8393
Sample  1,54%09 0.0326 0.3319 2.9241
10 Exact 1.7071 0.0318 C.4015 3.153%2
Sample  1.7053 0.0312 0.4417 3.2259
30 Exact 1.8668 0.0188 0.3762 3.2505
Sample 1.8673 0.0189 0.3373 3.1066
50  Exact  1.9100  0.013% 0.3368 3.2182
Sample 1.9091  O,0l34 0.3417  3.3665
100 Exact 1.9481 0.0077 0.2761 3.1576
Sample  1.9485 0.0078 0.2%96 %.0866
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Table 7.2. Moments of Té = log(Tn—l)

n Mean Var Skewness Kurtosis
5 ‘Exact’ -0,7105 0.2308
Sample -0.6805 c.1361 -0,787S 3,9714
10 ‘Exact’ -0.3907 0.0880
Sample -0.3656 0.063%5 -0.2727 3.,1016

Moments of Tn are from samples of 5000, and those
for Tg are from samples of 1000.

In table 7.2, the 'exact' moments are approximate
analytical solutions obtained from the exact momenté
for Tn'

From table 7.1 agreement between sampling and
analytical moments is very good. For 42 for instance,
the sampling error is roughly f@?ﬁ, which is 0.035
for N = 5000.

The closeness of the sampling moments to the
exact ones suggests that the empirical percentage
values of Tn obtained from the sampling distribution
will be guite reliable as estimates of the exact

values,
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The log transformation gives for n = 10, a
reasonably good normal fit but for n =5 the it
seems to be worse than the simple normal fit for
Tn' This suggests that perhaps for n between 10
and say 25, a log-normal approximation is adequate.
Values of n less than 10 will, in practice, not
give enough information for a satisfactory inference
on the underlying distribution,

A comparison of the empirical percentage points
of T_, the asymptotic distribution of T _,N(2, %l-),
and the normal approximation using the exact mean
and variance was done by plotfting on probability
paper. It was found that N(2, %) was a good
representation of Tn for values of n greater than
100, Cornish-Fisher series approximations using
(i) two moments, (ii) three moments, (iii) four
moments were obtained and the results are given in
table 7.3, together with some exact values of the
percentage points of ’I‘n which are generated by an
iterative procedure on a computer.

A few graphs of some of these comparisons are

given at the end of this section in Figs. T7.l.



- 38 -

Table T.3., Comparison of Various Percentage Point

Approximations- of Tn'

Cornish-Fisher Series.

(1) (11) (111)

n p 2 moment 3 moment 4 moment Empirical Exact
5 .01 1.113 1.157 1.172 1.180 1.173
.05 1.239 1.256 1.256 1.264 1.260
.50 1.543 1.533 1.533 1.528  1.531
95 1,848 1.865 1.865 1.860 1.871
.99 1.974 2.018 2.004 1.583 2.007
10 .01 1.29%3 1.345 1.351 1.348 1.%48
.05 1.414 1.434 1.435 1437 1.431
.50 1.707 1.695 1.695 1.695 1.695
.95 2.000 2,021 2.020 2.022 2.021
.G9 2.122 2.174 2,168 2.172 2.172
30 .01 1.548 1.586 1.585 1.586 1.584
.05 1.641 1.656 1.657 1.658 1,657
.50 1.867 1.858 1.858 1.860 1.858
.95 2.09% 2.107 2.106 2.107 2.106
.99 2.186 2.224 2.225 2,217 2.224
50 .01 1.642 1.671 1.670 1.6566
.05 1.721 1.732 1.73%2 1,734
.50 1.910 1.504 1.904 1.505
.95 2.100 2.111 2.110 2.108
.9% 2.178 2.207 2.208 2.212
100 .01 1.744 1.76% 1.762 1.758
.05 1.804 1.811 1.811 1.812
.50 1.948 1,944 1.044 1.544
.95 2.093% 2.100 2.100 2.102
.92 2.153 2.172 2.172 2.175




- 29 =

A few things emerge clearly from table 7.3.
For n > 30 (possibly, even for smaller n) fthere is
a difference of not more than one in the third decimal
place between the three and four moment Cornish-
Fisher Series. Except for the upper and lower one per
cent points, the three moment series is good even for n
as low as 5. The exact values for n =5 show good
agreement with the four moment approximation and the
exact values for n = 10 agree well with the three
moment series. We can infer, therefore, that the
three moment approximation will béoome even better
for larger n,as n = 30 shows, and hence will e
accurate enough for all purposes. However, for most
statistical tests the two moment approximation (i.e. the
normal approximation using the exact mean and variance
of Tn) will be adequate.

The empirical values agree very well with the
exact values, especially when n = 10. This is not
too surprising since sample sizes of 5000 were used.
For this sample size and n = 10, the standard error
of the mean is about 0.0025, the variance has a much
smaller error, Y1 has a standard error of aboutb

0.0%5 and Yp &an error of about 0.07. Presumapbly
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some of these errors cancel out to produce the very
good agreement. Similar remarks also hold when

n = %0.
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8. Illustrative Example and Table of Coefficients,

An example illustrating the test is now given.
The test statistic is

_n
b 11 Z.

~ X)) - (8.1)

The date are operating hours between successive
failures of alr conditioning equipment in aircraft
(Proschan, 1963) and are ordered here: n = 30

1 3% 5 7 11 11 11 12 14 14 14 16 16 20 21
23 k42 47 52 62 71 71 87 90 95 120 120 225
246 261, |

From (8.1), Tjo = 2.0747.

The standardised variate is

Taking yl, fThe skewness., into account, the normal
deviate is 7 = & - %l £2 .1) = 1.435.
Referring to normal probability integral tables,
this is at the 7.6 per cent level of significance for
a one-~sided test. Hence the data is reasonably
consistent withenunderlying exponential distribution,

as Proschan also concluded.
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In this example the calculations, including
those of the coefficients, tr’n,were done on a
computer. In this case the exact values of the
moments of Tn can be evaluated as well. The tr,n
have been tabulated for n = 1,2,..., 10 by
Gupta (196f)). For the purposes of this test and the
incomplete sample test outlined in section 10 a short

table of coefficients, for n up to 30, is given

in Table 8.1.
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9. Power of Tn against a Gamma Alternative.

If the inftervals between events, Xi’ are
independent and distributed as gamma variates with

density

£(x) = (A% x®71 e/ (a) (a > 0) (9.1)

it is possible to obtain the asymptotic relative
efficiency (A.R.E.) of the test T, with respect to
the asymptotically most powerful test (Moran, 1951)

based on the statistic

Vi

M = -2 > 1og(xi/f),

.

1

where X 1is the sample mean of the Xi’
By conditional distribution arguments (Lewis, 1965)
it can be shown that since the distribution of
X/(X +Y) 4is independent of (X + Y) where X, Y
are gamma variables
n

E{X(i)/(;E:X.)]

i=1 *

E{X(l)]/{n E(Xi)}

!

E{X(i)}/{n a] H
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where tThe Xi are from a standardised gamma
distribution. Using the density function for order

statistics, we have

(SRS

n
naB(T; a) = 2. ¢ E(X,.y)
{o3 1.m (1)
re e n! el n-i
=+ x £(x) 2 B4 n - (F(x)} "7 (1-F(x))
‘o L 1=1 (1-1) ! (n-i)}
I.ACO n
= . 1N .
=i x £(x) 52 ity b(n: i,p) dx {9.2)
‘o i=0

where Db(n: i, p) is the probability of 1 successes
in n binomial trials, and p = F(x) 1is the
probability of success.

Eguation (9.2) can be evaluated by using the

approximation

t. = =log(l- i/n) + 0(1/n®)

i,n
and taking the rth moment of the binomial to be
approzimately niph (r = 1,2,...) .

n 2 >
-1 : . P2 .
3 > M = et v e

Hence D 2. 1 ti,n b(n: i,p) = n(p+ =t 3 Food)
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Now

where v = 0.5772.

This can be evaluated and from (9.2) we have that

*

a ) ‘; _
g&—;E(T, a) a1 = 0.5

to a first order.
The variance of T at a = 1 is % asymptotically,

and using results of Bartholomew (1957), we obtain

(Tl geria) 1% /l8mmia) ° ]
\ (P : "~ N
A.R.E(T; M) = 1im e ‘a=l) /ida o=l

n->c0] V(Tla=1) / v(Mla=1) }

0.388 s . (9.3)
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The above result is obtalned assuming that T
is asymptotically normal under the alternative gamma
hypothesis; this follows from results of Progcpan
et al (1964). Bartholomew (1957) found the A.R.E.
of tests for a =1 based on the statistics

n

i=1
A -
and @ = ;i/:lixi - X\/(Qn X)»

with respect to the test based on M, to be 0,3 and

0.63, respectively. Lewis (1965) found

ARE.(S, M) = 0.694
£ -
where 8' = 2n -2 7 i X(i)/(n X).
i=1

These results seem to show that T 1is not very
powerful, at least against a gamma alternative. A
Gloser look at (9.3) reveals that the variance of T
fends to its 1imiting value slowly and this is a major
factor in producing the low value of 0.388., If we
replace the asymptotic variance of T by the exact

value it ig found, as in table 9.1 below, that the
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relative efficiency of T is much higher for small
and moderate values of n, The other factors in

(©.3) alsc increase the value of the notional relative
efficiency, though not to the same extent as the
variance of T. From Table 9.1 the efficiency (e) is
given approximately by

e = 0.338 + 9.45/n. (9.4)

Table 9.1. Notional Relative Efficiency of T _ .

Limiting

Variance

ee—e——— 5,848 3,145 2,099 1.771 1.507 1.295 1
Exact

Variance

'Relative
Efficiency' 2.2690 1.220 0.815 0.687 0.585 0.502 0.388

An empirical comparison of the powers of the
tests T and S' was done, for a gamma alternative
(a =2, A=1 in (9.1)). For various values of n,

]

T and S were calculated for the same sample and

100 different sets for each value of n were generated.
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The empirical distributions of T and S' were then
plotted on arithmetical probability paper (Figs. 9.1).
These plots give a description of the behaviour of
the two tests under the alternative gamma distribution
for all possible significance levels., At any chosen
level of significance the power bf either test can be
read of{, A short summary is given in table 2.2 below.
The general conclusion‘from the probability plots is
that for values of n up to about 35 T has higher
power than S'. Beyond this value of n, S' takes
over. These results are for a gamma alternative, but
presumably similar results hold for other alternatives.
With the well known objections to the use of the
statistic M, particularly its sensitivity to
recording errors for short intervals, the above is a
good point in favour of T.

The statistic, T, has been applied to some other
data and these suggest that T might have high power
against a wide class of stationary alternatives, in

particular renewal alternatives.



Remarks of Durbin (discussion of Pyke (1965)) on the

power of the 8' test apply equally to T.

Table ¢.2. Empirical Power of T and S',

N 10 20 30 40
Significance : o ) . T, , o o
level % 1% sk 1% 5% 1% 5% ik
T JA0  L12 .56 .20 .71 A1 0,78 .50
s! 15,02 A3 110 .69 34 .83 .55

The Probability Plots.

The test statisties T and Sé were scaled so
that under the null hypothesis each was N(0,1).
Samples from the gamma distribution (a = 2, A = 1),
i.e. with p.d.f. xe ™, were generated and Tn,Sé
calculated for the same sample of n(n = 10,20,30,40).
For each n, 100 values of Tn and Sg were
computed and the empirical cumulative probability
obtained for intervals of 0.2. These were then
plotted. We expect the better test statistic to have

a plot farther away from the null N(0,1) line.
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10. Extensions of the Test, T .

10.1, Combination of Tests of Significance.

The fact that the sum of chi-squared variables
is also distributed as chi-squared can be used to
combine the results of tests on several independent
sets of data. The tests could be about the same
hypothesis, with observations taken at different
periods of time.

Suppose we have r sets of data containing
Ny Nyseess O ohservations. Let Tl’ Tg,..., Tr
be the values of the statistic, normalised by the

appropriate means and variances, so that

T, = N(0,1) o (1i=1,..., 7).

Then a simple combination of the r separate tests is

r
r , i1 1

A test using this can be performed in the usual way.
We obtain a more sensitive test against a common
alternative by using
2 _ i 2
X = (Tl + Ty +ooot Tr) /r | (10.1)

-
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mince this takes account of the signs of the T's,

Now consider a more general form of (10.1). Take
1

. z -
T = {W oot err}/{(Elwi) ) : (10.2).

W lTl
By an argument similar to that used in finding the
asymptotic relative efficiency it turns out that, to
a first order, the optimum weights required are
independent of ni(i = 1,..,,'r). Hence (10.1) is
the best test within the family (10.2). Further,
since {E:Ti/ Jr}] 1is a standard normal variate, we
can also use normal distribution tables in the usual
way. |

If all the sets of data except one come from an
exponential distribution, a good test statistic will
be either Max (Ti) or Min (Ti). Tables of
percentage points for the extreme deviate are provided
by Pearson and Hartley in their Biometrika Tables.
(Tablé 25).

k3
10.2. Incomplete Sample Test, T .

In life testing and other situations, n items'
might be put on test and the experiment stopped when

r observations are made. If the intervals between

AT
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failures X, Xg,..., Xr have an exponential

-~ distribution of unknown mean, 6, the maximum

likelihood estimate of € 1is

r

6 = { ;;i X3y * (n-r) X(r)}/r, (r = 1,2,00., n) {10.3)

where X(i) (i =1,..., r) are the ordered values of
the Xi' To test the assumption that the first r
observations come from an exponential distribution we

take as our test statistic

T T
rE _ ( %;1ti,n x(i)}/{ zgix(i) + (n-r) x(r)] (10.4)
T (r) r ‘ -
- U2 e vV TV, (10.5)
where, as before, Vi = (n-i+1)ﬂjx(i) - X(i-l)? »

T
and the constants Ci n Dow depend on r as well as
2

i and n.

Equating coefficients in (10.4) and (10.5) we obtain

nelt) - % Foua b (10.6)
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and
. (r) _,_ . (r) 1 1
(n'l+l)ci,n = (n"l+2)ci—l,n - (5 ¥ vee + n-i+2)
= nC,(P) - ..]; - (.]; + ._..];._) _(.];,. + g )
l,n n n n-=1/°" Tt T neid2/
This simplifies to give
C(r) 1
n - i+
Cgrl)’l = ti—ln+ l,n ] l—l,gyo-ag r
- ? n-i+l
ooy
ni{l-
S A __l.n’ (10.7)
? n-i+l
where the Ci n are the coefficients of Vi for the
2

complete sample test given in (2.7).
As before, the independence of T and PR
follow and by the same method the moments of 7 can

be obtained as

¥y _ 1S5 (v)
b= E(TT) = % %gi " (10.8)
(r) t -
n r,n n N (1")
=1+ rcl,n - T tr,n Ll—cl,nj
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and | -2

Foey [T
n, = V(T¥) = il 0P . ii=l e (10.9).
2 r(r+l) r?(r+l)

It is difficul? To obtain explicit expressions
for the variance and other moments of T put in
view of the results on the power of the T test it is
plausible that the T test also has high power for
small and moderate values of n, against similar
alternatives. Most of the results on the T test
would apply to The T  fest with proofs following
similar 1ines. Thus, T# s a normal variate with
mean and variance as above. It can be used to fest
incomplete samples from thé exponential distribution
and table 10.1 is provided for this purpose.

As an illustration of the 7% test an example
given by Epstein (1960, Part II) is considered. Twenty
items are placed on test and The ftest is discontinued
after 11 failures occur. The fTimes befween failures
in ascending order are 1, 3, 3, 5, 5, 5, 7, &, 13,
13, 16.- n =20, r = 11,
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The test statistic is

!
—

Th,eo = U2 Fi00 ()0 20 Xy + %))

it

0.1827 .

From table 10.1, the mean and variance are 0.1886 and

0.0128, and the standardised normal variate is thus
Z = -0.458g.

The sample is thus accepted as coming from an
exponential distribution. Epstein reached the same

conclusion.



TABLE 10.1.

Ln1?3ﬂ“1

)
S0

WO

0.
0.

)

D,
0.

0, o

oy

U’I

;

MEAN AND VARTANCE oOF T%

01443
0.
- D

4028

L0080

ﬁﬂibb4di

0.1212

L0811
0045 .-

0581

0018’

0437 .
0034

0187
27414

0158 0.
0589 4
001471
0497 .

0.6095 © 0.0136 - 0.0201° " 0,4856 :
. 0.1253__ 0.2382. 0.4?o4r,_q_]auz,m 1. 6296”
,.OOSSaF* 128 70,0166 0.0337. 0.1R47-
0.0921  0.1697 0.2922 __ 0.4907.

040070 - 0.0112. 0.0152 a ; 00375 "0'18?9}:

”i?gaﬁgélﬁﬁ?ﬂ BQGDWT A

7554
0.0032
0.17055

16871 0.2642

0.3685




0.0051

0.0168

0.0031

G,54R09 -
0.,0000

..0.0136.
-0.7589
0.0012
0.0281 - 0.
_0.0118

0T0180ﬂ
0.0081

0.0269
4.0904 -
0. 00?87

ﬁ_.0019 .
0.0211
0.n158
040990
o 00017

S 0.0194

TABLE 10.1 (Continued)

107677
0.0046
0. 1680

. U 0302
"0 6440 .
0. oouz_fr
20,0241
D.0267. -

“0.5230 .-

0.0462

Q;QQZEM,MWMM«WM
0.0215. L0246

0.9727

LALIE

0, 0518'
ano4ﬁam
TN LVBRB19 -
0.0048
00312

0.0412

N, 6122if:

0. 1080:;;¥&7”

0 0092

2958

£0.0081

.0.0072
L0063
_N.0683

1706
_3.0065
0. 0549
. 0.0599
0.8790

 fU 0370 1

0. 402/

0. 01us,:w’

The first line (or two lines) for each n, represents the mean values, and the

next line (or two lines) the variance of T




PART 1II

TESTS OF SEPARATE FAMILIES OF HYPOTHESES
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Tests of Separate Families of Hypotheses.

11. Introduction.

In two recent papers Cox (1961, 1962) proposed
tests for separate families of hypotheses. It is
desired to test a composite null hypothesis, Hf say;
against an alternative hypothesis Hg which is
separate from H? in the sense that an arbitrary
simple hypothesis in Hf cannot be obtained as a
limit Qf simple hypotheses in Hg. '

Suppose Yl’ Yg,..;, Yn are independent and
identically distributed and have p.d.f. (¥, a)
under H, and g(¥, B) under Hg‘ Cox proposed

f
tests based on the logarithm of the likelihood ratio

I, = Jlog

E@»IQ)

. where &, B denote the maximum likelihood estimates

f

Irf Hf is the null hypothesis and Hg is tThe

alternative, the test statistic considered was

of the parameters under H and Hg respectively.

T, = Lfg - E@(Lfg),



)

where E@ (Lfg

p.d.f. (¥, a)
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is the expected value under the

A
. Now under Hf, B converges in

probability to B, and
[ yfiog g(X. 8, |
Ea! D = 0, B=108),a=Togl) .
2| By |
Writing
dlog £(Y,a)
%1 day 3% =
& = log g(Y.B), G dlog g(¥,B) .
= 108 giL.E)>» = s =
! By 28, BiPy  2p,

etc.

Cox showed that T

y?1og £(¥,a)

Sa; Sa

J%log a(¥Y,B)

r is asymptotically normally

distributed with zero mean and variance

2

VQ(E}= n{Vg(F—G) - 2. = 1.

i Vg(Fal)

L]
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When Hg is the null hypothesis and H the
alternative the test statistic is

T = L . - Ea(L
g gt E(gf)

This is again asymptotically normally distributed
with zero mean and varlance

Ca(GFG )

B
T - V. (G-F) - 7.

E( ) 1’1{ .@.( T - (GB.) }

1

Here O converges in probability to g -

We can therefore consider

1
2

L= T/UT)IR L TL= T/N(TIR, as

L
2

approximately N(0,1) variates and perform tests in

the usual way.

f

departure from Hf in the direction of Hg.

Similarly, a large negative Té indicates departure

A large negative value of T indicates

from Hg in the direction of Hf. A large negative
value of T (or Tg) and a large positive Té (or T%)
would indicate that the sample is consistent with |

neithér H nor H .
r g
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In the specific case when H is the hypothesis

f
that the p.d.f. is log-normal and Hg that the p.d.f.
is exponential,test statistics Tf and Tg were
derived and fheir large sample variances obfTained.

We now Investigate the adequacy of the
aéymptotic results for the log-normai versus
exponential case. We also derive power functions of
the tests Tf, ’I‘g when the other hypothesis serves
as the alternative. The methods indicated above are
Then used to derive tests when Hf is the hypothesis
that the p.d.f. is log-normal and Hg is that the
p.d.f. is gamma. Finally, we apply the tests to some

data on wool fibre~diameter considered by Monfort

(1964).

12, The Log-Normal Distributlon versus the Exponential

Distripbution.

12.1 Adequacy of Asymptotic Null Distributions

of T and Tg’

f

In this section we use Taylor Series expansions

to obtain corrections to the asymptofic results

obtained by Cox (1961). We derive power functions of

the tests Tf, Tg and give some empirical resulfts.
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Suppose Yl’ Y2,..., Y are independent and

n
identieally distributed. The null hypothesis ,Hf is

that the p.d.f. is log~normal. and the alternative, Hg

is that the p.d.f. 1s exponential, i.e.

' 1 (log ¥ - @9)%

Het f(y,2) = exp (- — -}
y [27a, 2a,

H,: ey, B) pl VP

A ~ o ~
Here al, Gn are the sample mean and variance of

VAl
log Yi respectively, and B 1is the sample mean of

~ Ctl+(l/2)c12
the Yi' Under Hf B converges to Ba = e .
For Hf we have the test statistic
st log(@/ﬁﬁ)
~ ~n
3 2
2 A 1/\2
{_e - 1 - s, - Eaz:}
(12.1).

Asymptotically, Tf has a standard normal distribution,
N(0,1). For the distribution of Tf in finite samples
we require closer approximation to the mean and

variance.



1
& ) :
. r 2 A, 1}:‘ i
Writing A =]e © -1 -a, - 5&5{ . (12.2)
- we have from (12.1) that
or. ¥ A 3f A A2, 8 A
=, L2, 8L LA 2e?14,)1og(B/By)
3 T BT = ¢ 2 >
1 2
3 Q
92r _ d8r Bf _ _ismey, 93f A2 24
b/\z - (}I\),\. - Oy a_‘,\g - A (B )’ a/‘ Ba - ( l O.g),
ay Pao, B a)94d,
3 4 3 G
= 2
é'f\h =-u£: e 2—1-32), édf = 8¢ 2-1-32)
602265 28 6ag 2

& R . a A
+ z’-l;—(e 2 -1-3,)% log(B/py) = 287(e 2-1)1log(B/By).
(12:3)

Now expanding f(:) about a;, @y, B, and leaving
out zero terms and those of order three and higher we

have
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A A 221 1A 2 32f
+ (8- ) (8y-ap) =+ 5(Gy-0,) 342
1% %2

)2 2Ly L. . (12.4).

In the derivatives of the function f(+) we replace

AN AN AN A . .
Qs Qs B by Qs qz, Ba. Taking expectations in
(12.4) and noting that E(ﬁl) =a;, E &2) _ n-1 a s
n
A
E(B) = B,» Wwe have from (12.3) and results of Cox
(1961, p.115) that
-3 ¥ - -2
E{f(4,,8,,B)} = - =— (e “-1-a,) + O(n"").
172 5 2
n
o
1 e 2-l--a2 ¢-%
Hence E(Tf) = - — + 0(n <) -
2n 1
a =
2



- 75 -

A graph of this correction to the mean of Tf is
given in Fig. 12.1.

The Taylor Series expansion for the variance of
f(+) is rather complicated and appears to converge
slowly. The result is therefore not very useful and
is not given here. Instead empirical results on the
variance of Tf are given in section 12.3.

Now suppose Hf and Hg change roles so that
the null distribution is thé exponential and the log-

normal the alternative.

We now have the test statistic

A 1 A - . 1 !
(a.+5log d,-log B} -Y¥(1)-zlogV'(1)
U = 2 - 2 (12.6)
& 0.532/ /n

a = 3 W 5 = !
where o; —> @ .a log B +W (1), a,— a, g V(1)

B —> B, W(x) =% {1og1(x)}) and W' (x), y''(x)
dx
etc.,, are derivatives of Ww(x).

TLT is also a standard normal statistic.

<
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Let g(&l, &2, @) = ‘&1 + %
Then

g _ .. e __1 og _ _
36,y 36, 28, B

d2g _ 2Pz g _ Bzgé _
BYAY-] A A A h/\ 2 %A N
6a7 5a10a2 balaﬁ oa, B
0%s _ _ 1 o£g L

We o3 W PR

™

(12.7)

. nd
Now expanding g(+) about (al’Bs, ag’ﬁgﬁ) to 2

order and leaving out zero terms we gefb

A

g(alsaéag) = g(al’ﬁ:ag,aaﬁ) + (9, -

S

+ (8y-ay o) 9 . (B-p) 2& + %(aé-a2»5)2

3
~ w A
A, e

non

(12.9)
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where the derivatives are evaluated at a sy Q
. 1,8 72,8

and P. Taking expectations in (12.8) we obtain

«

Ele(8,,a,,8)) =V (1)+5log \'(1)- -21—- v
T oan( ¥R

1
+ O(ne).

Hence from (12,6)

Attt
E(’l‘)-------—l————-{0-5+L(——)—---}Jro(l )

g 0.532 0 4Py (L)P _3/2
L 20886, ol (12.0)
Jn n

Here again the analytical result for the variance of
Tg is not useful. Howevef, some empirical results

are given in section 12.3.

12.2. Power Functions of the Test Statistics.

It is possible to obtain the power of the test

f
p.d.f. is exponential, Similarly, the power of T

T against the alternative hypothesis, Hg’ that the

g
against the alternative, Hf, can be obtained. We
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assume that the distributions of T. and T, under

the respective alternatives are normal,
We require the mean and variance of Tf when
the p.,d.f. is exponential., Using series expansiocns

and the notation introduced earlier, we have

E(f(&l:agsé\)} = E(f(al’g:agjﬁxa)*'. . 0}

' '
. i} t J
= CA(WaR )RR L [ABY'(3/+%wﬂ)(e“ ~le YY)
R on 2n '

+ Aol (et cawt)) - A
2n 2n

'

\ys H 1+2(\y1 )2 ]{QAB(GY 1 H\P')—BAB(eW'—l"?‘ )2(\}}+-% \f‘)

8n

+

+ 2A5(e‘w-—‘l)(=f’+ %—‘V')} + O(r_1—2)

= —0.0055 + 27221 | o(n2)

n
o 1
where A = (ew -1~ - %(’V')Z}_ 2,
Therefore 3
B(T,|H) = -0.2255 fu + L-7221 , o(n™2 ) , (12.10)

Jn
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The series expansion method for the variance appears

to be successful, even to first order, and we have

)af

Q

V(£(8,,8,,B)) = V(£(ay gsay gsB)+(E; teus )

YL ), WU OV)Z AT )%, BRI
n Ya n <y, n 9B

2f 2 _ (\'(()2]
" Gape, Ve T2
1 Azf 2 {\}!'”4—2('\[/')24'. ’}2
+ E(aag) {HOL‘O— n2 <E

(EE_)? BV ha(¥)24()2/n)
24,0B n®

-+

+ %L- (%—2—5)2 (Booy- BY/n2) + ...
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' af If \ 2B, > QB
vif(-) o+ 2=k ( ) (&) + ( )( 2u
n baz 38 elodal 3” l}r&
f  d3r S D3¢ Of  J3f
+ , + 2 — ~+ -
“120 Y4 Thae T MM 35 damr 102 Tda, ofe
2 P 9% 1
‘ Y Azf ;\)f 52f
+ 2(Rypp= — ){ )+ :
1200 2 T8, 284, 2034, 082
of d2r dr 33r
+ 20999 37 W vy
111 C\’B 5&13&‘2 003 OB 0B
N J2r 'azf‘)i‘ﬂ 'Y”{\V“"" (¥ ')24+ (Y 2/1,]}1q
138, 08, éag.L 130 n?
A2f >|2f '\}.‘!IB2 (\“Qf 62
+ 2y, — & A+ (n i ) ( .
121 Jaj0f, o4,k ME 3G, 84, 0%
= E + 9"‘ oo (12 oll)
n n?
where |ooq = E{(&l~al)2(&2—ag)2} etc., and
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B = AZ}‘l_}_\f/l_‘_l{. tre ARY-]
= iy’ e2(¥Y')2)

w! 1
[1“2A2(W+%V”)(ey -l—v')+A4(w+%ﬁ“)2(eW _1_gﬂ)2}]
w2 {ytezy (v v (¥ e v

= Q0.1473,

The expression for C is rather complicated and
difficult to evaluate. However, neglecting the term
in C does not seem to affect the power calculations
very much.

Hence to a first order,

V(TN H) = 0.1473 +o(%) . (12.12)

Now suppose that the standard normal deviate
corresponding to a level of significance o is xa.
This is in fact negative since under Hg’ Tf is
negative and we consider one sided significance levels.

Then the power of the test Tf under Hg is
‘ la—u

Po = B ) s for a level of significance a

o

where @ and o2 are given by (12.11) and (12.12),

1 X %/2"

and where &(x) = — f e/ au.
. |
Ve

d

COo
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Simplifying the last expression, we get

P, = Ppa(n) = 8(2.606 A, + 0.5875 m - 4.487/ /n)

(12.13).
In particular, if we take a = 0.05, then A, = ~-1,64,

and .
Py = 5(-4.273 + 0.5875 JT - 4.487/ /%) (12.14),

Table 12.1 gives this function.

A point of interest is the value bf n which gives
50 per cent power, For a 5 per cent level of
significance we have that if n® is the appropriate
sample number

E(Tf{Hg, n*) = -1.64.

From (12.10)
nt = 67.
The distribution of Tg under the log-normal

hypothesis can now be obtained. For this we have

B(g(8,,8,,8)) = Blglay,a,8,) + «..)

1
§(log Q

a
2
2-a2) + &3, O(l—).
2n n?
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Thus
E(T 'H.) = = JE'ENJ+ Lo A l(a -log a, )+ ;—(B-eag)}
giip! = rT o 208 p\Gp~08 Gp /T T
0.53%2
+O(.-..]Z-¢—=
3/2

= =1,8783 fﬁ'{%(a2~log ag)—0-3283 + %E(B-e

We also have that

Vig(8,,8,,8)) = V(e ,a,,8,) + (8 -0;) f%— + oeee )

ol
[0 4
Le?2-L - 2ay) + o(i-a-) ,
and
frr _ n
V(TgHy) = gzEsm V(e
% 1 1 |
= %.5290(e °- 5 - 20,) + 0(2) (12.16) .

Under the log-normal hypobthesis Tg is negative and if



Aa is the normal deviate corresponding to a level of
significance a, the power of Tg against this
alternative 1s

P (n) = &(U)) (12.17)

A, + 0.9392 j’ﬁ(ag-log a.- 0.6566)

2

where Un =

v

[ , %o
13.5290(e 2= % - 20,))

and W, 02 are given by (12.15) and (12.16).

If «

0.0% then Kd - -1.6%, and we get

; =1.64 + 0.9392 /n (a.-log a,- 0.6566)
B (n) = 8 9% In (% 2 } - (12.18)
a ]

2

A / /
v J03.5290(e - 5 - 20,)) /

PO}

Table 12.2 gives this function for various values
of Qn and 1.

In the present case we obtain 50 per cent power for
Tg at the 5 per cent level by noting that
E(ngﬁf,nx) = -1.64,.where 1 is the sample number

required to achieve this power.
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Substituting this in (12.15) gives

fe %2 y
}I?; _ 0.8725 # /10.7613 - (3-e “)(a,-log o, - 0.6566); .

- 0.6566

a, - log o

2 2

A graph of n® is given in Pig.12.2. From this there
. 1is a local maximum, n* = 25 at a2 = 1.15. For
a, <1 n* decreases steeply and for oy > 3> n*

2

increases'sharply.' This apparently paradoxical fact
can be explained since for large a, the log-normal
and exponential get quite 'close' to each other and

very large sample sizes would be required to

distinguish one from the other.

Power Functions of Tests (5 per cent Significance Level)

Table 12,1. Null: Log-Normal, Alternative:Exponential; T,

L

n .20 50 70 100 120 150 170

Power
(Pf(n)} 0.00% 0.227 0.544 0.875 0.960 0.995 0.999
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Table 12.2. Null: Exponential, Alternative:

Log-Normal, Tg

agq 20 = 30 50 100 150

0.5 03802 0.9%9 0.986 1,000 1.000

1.0 0.409 .556 .T64 0.964 0.996

1.5 0.540 .629 752 .907 .966

2.0 0.63%3 . 702 .800 .919 ,966

3.0 0.698 755 .831 .926 .966

In table 12.1 the rather low value, 0.004 for Po

when n = 20 arises because under the alternative, the

variance of T, is small, 0.1473%, and the mean of

f

T is not 'far' from that under the null.

f
Teables 12,1 and 12.2 indicate that Tg has
high power, against the stated alternative, even for
small n (and especially for small Ays Gy <1 say).

The power of Tf is low for small n but rises

steadily, and from n = 120 or so it generally has

higher power than T .
g



- 87 -

12.3. Empirical Results

In this section empirical investigations are

made into the adequacy of the asymptotic distributions

T
tests, Hf and Hg serving as null and alternative

of T and Tg’ as well as the power functions of these

hypotheses, and vice versa.

The test statistics are

= 1 s
Tf = ,n 3 T
2 A 1r242
(e 2- 1 - &, - 2&2)
- ‘:"ﬁ .. l 3 N 1 " A
T = =2 (¥(1)+ = logw'(1l)- d,- =log a.+ log B}
g 0.532 2 1 2 2

+ 1.8783 JA (0.3283 + G, + slog G,- log Bl.

Random deviates, u, from the standard normal

distribution (i.e. a; = 0, a, =1) were generated

u

on a computer. Taking ¥y = e gave random deviates,

y, from a log-normal distribution. Using these we

have

U, . T¥ SUu 2, Yy
al = 3 (12 = - ( ) ) B = »
n n n Il
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where n is the sample size,

T. and Tg' were then calculated under the log-

£
normal hypothesis, Hf. 500 trials for various sample
values n were obtained and from these the first four
moments of Tf and Tg ‘were found. Since the shape
of the log-normal curve depends on aé another value
was tried; a, = 2 was obtained by multiplying the
deviates from the standard normal by /2 . From these
normal deviates we therefore got resﬁlts on the null
distribution of Tf and that of Tg under the
alternative,

Random deviates from the unit exponential

distribution, ¥y, (B = 1) were then generated.

Letting v = log ¥,

- .
A _ Z_vi A _ 1 v .o ~ P N _ Z yi

Oy = —, o, == 3y ve2 - (a,)%, B = w—=
1 n 2 n i 1 n

Here again 500 trials were obtained for various n

and the moments of T, and _Tg were calculated under
the exponential hypothesis, Hg’ From these we
obtained results on the null distribution of Tg and
fhe distribution of Tf under the alternative.
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The results are summarised in Tables 12.3 -12.6
_below together with some of the analytical results

obtained in sections 1l2.1 and 12.2.



Table 12.3. Null Distribution of T

f
{ LR H
B(Tp|Hp) V(Tp}He) v1(TpiHyp) B (T H,)
n a2=l a2=2 a2=l q2=2 a2=l a2=2 a2=l a2=2
x Empirical  ~0.098 -0.149 0.490 0.293 0.822 0.930 4.215 4,687
207 Apalytical -0.172  -0.%18
Empirical  -0.074 -0.125 0.647 0.436 0.938 1.156 4,185 L4.72%
50
Analytical -0.109 ~0.201
Empirical -0.110 -0.148 0.69% 0.505 0.591 0.94% 3,635 4,553
100 '
Analytical -0.077 ~-0.142
Empirical -0.074 -0.114% 0.752 0.564% 0.53% 0.806 3.823 4.277
150 - : : ,
Analytical -0.063% =0.116
Empirical -0.027 -0.072 0.862 0.680 0.580 0.785 3.903 4.038
200
Analytical -0.055 -0.100
® The results for n = 20 are from 1000 trials.

The others are from 500 trials.

- 0g -
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Table 12,4, Null Distribution of TR'

n E(T,H) V(T HY) vy (T H B (T 1K)

Empirical -0.414 0.701 0.438 4,933

Analytical ~0.462

Empirical ~-0.,258 0.869 0.609 3,901

50

Analytical ~0,292

Empirical -0.183 0.906 0.688 4,251
100

Analytical -0,207

Empirical -0.13%5 ~ 0.996 0.481 %.896
150

Analytical -0.169

* The results for n = 20 are from 1000 trials. The

others are from 500 trials,
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Table 12.5. Distribution of T

under alternative H

£ Iz
! i m | i
n E(Tfiﬁg) V(Tf;Hg) vl(Lngg)Bg(ngHg)
Empirical ~0,837 0.170 1.400 9.286
20*
Analytical  -0.623 0.147
Empirical ~1.471 0.140 0.220 3,400
50
Analytical  -1.351 0.147
Empirical ~2.155 0.13%0 -0.010 3.455
100
Analytical ~2,083% 0.147
Empirical -2,688 0.143 0.427 4,011
150

Analytical ~2.,621 0.

147

X,

The others are from 500 trials.

The results for n = 20 are from 1000 trials.,



Table 12.6. Distribution of Tg under alternative Hp
z z; f i !
a2=1 a2= a2=l a2=2. a2=1 q2:2 a2=l a2=2
 PBmpirical  -1.614% -2.399 0.558 4,112 -1.289 -2.060 6.882 8.871
207
Analytical =-1.506 -1.809 0.770 10.245
Empirical -2.379 -4.029 0.590 5.845 -1.152 -1.579 6.169 6.403
50
Analytical -2.319 -3.735 0.770 10.245
Empirical -3.,246 -5.815 0.581L 6.241 -0.710 -1.050 L4.532 h.797
100 | .
Analytical -3.254 -5.,695 0,770 10.245
Empirical -3.992 -7.307 0.649 7.713 -0.668 -1.000 4.487 4.438
150 ' -
Analytical -3%.970 -7.312 0.770 10.245
Empirical -4.625 -8.592 0.727 8.713 -0.708 -0.921 L4.494 4,128
200
Analytical -4.580 =8.346 0.770 10.245

¥ The results for n = 20 are from 1000 trials, the othersare from 500 trials.
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Some of the empirical investigations were
repeated using different sets of random deviates and
the results were generally in agreement with those
guoted above.

In all cases the analytic mean values agree with
the empirical ones allowing for sampling errors. The
variance of Tf in the null case seems to approach
unity rather slowly while that of Tg in the null
case 1s reasonably fast. Agreement between empirical
and analytic results is good for the distributions of
Tf and ‘I'g under the respective alfternatives, except
when Qs is large (in which case n has to be large,
say n > 100, for good agreement). This means that
the power functions given will be generally reliable.

A number of broad conclusions can be drawn from
the foregoing results. For both Tf and Tg the
corrections to the means given in section 12.1 are good
and can be nused when the nature of the test reguires
greater accuracy than the asymptotic results. The
empirical results on the variances also appear to be
guite reliable. For most purposes however, the

asymptotic results for T would seem adequate for

f
n as low as 50. PFor Tg the correction to the mean
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is relatively large and can reasonably be ignored only
for n > 100, say; however, the asymptotic null
variance seems adequate for all n. However, the
sample size at which the asymptotic results are
adequate will generally depend on the degree of

accuracy desired for the tests.
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13. .The Log-Normal Distribution versus the Gamma

Distribution.

13.1. The Test Statistics and Their Distributions.

We now use the general methods proposed by Cox
(1961, 1962) to derive a test of the log-normal
distribution with the gamma distribution serving as
an alternative against which high power is desired.

Suppose Y Y are independent and

l’---’ n
identically distributed. Let the null hypothesis H

f
be that the p.d.f. is log-normal, namely,
(log y - a,)?
f(y, @) = —3— expl - 13
y J(2may) 2
(13.1)
and let Hg be the hypothesis that p.d.f. 1s gamma,
namely,
Bp By ¥, Pp-1 By ¥
g(y,B) = (=) exp (- ) (13.2).

B, [ (By) " By By
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Now Ql’ 32 are the éample mean and variance of the
log Yi and we obtain ﬁl, 82 from the maximum
likelihood equations for the gamma distribution.

From the likelihood function under the gamma
distribution we obtain

él = ¥, the sample mean of the Y.,

and 62 is given by

log By, - w(B,) = log By - a; (13.3)
where W(x) = %E (log " (%)].

The log liklihoods are

Lf(ﬁ) = -—% log (eTrae)--g - n 31
and A
Lg(é) = n 62 log (%2) - n log f’(§2)+n &l(éé-l)
1
FaN
-n 62.
The log~likelihood ratio is
A A n ~ n Ba
Lf(g)-Lg(E) = - 5108(277G2)- 5 - nﬁeilog(g~)-l}
1

4+ n log rT(é ) -~ nd, B (13.4),
_ 2 1 72

A
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Under H _, the log-ncrmal hypothesis,
B I;.

A al+%a2 ~
51 — Bl,a = e s Oy Qg a, - a, and

A
By, — Bz,a where log Bz,a - \y(se,a) = log 5l,a' ay

=§u (13.5).

Now
f(y,a) (log y-a,)® B
log —————— = - %log(QTTaE)-a - - Belog(—g)
g(y:Eg ) _ aag Bl
- By
+ log['(By) - B, log vy + “E“ »
1

where ﬁl, 62 are to be evaluated at Bl,a’ Bz,a‘
We now take expectations under the log-normal

dilstribution to obtain
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Thus under H the tTest statistic is

f.’
T, = Lfg - Eé(Lfg)
P & . A A 2 ~oA
= n{B, 4(log ~=2= + @ -1) - B (log == -1)- a,B,
E B ”
l,a ﬁl
A
"(B,)
+ log [tP) ) (13.6)
or equivalently
R B, . (8,)
T./n = B, &(1l0g B, a- 26,-1)-B (log == + & ~1)+10g B
f 2,a 2,0 272 2 A 1 r(
Bl 52’a)
(13.7)
We now reguire the asymptotic variance of Tf. To
do this we write F = log f(¥, a), G = 1log g(¥,B)
so that
F = -2 (1log £(Y, a)] etec.
a, \ =’ =
3 da,
J
Then, ( )2
log Y-a
F-G = - & log(2na, )~ ————2— -B log(B,/B, )+10gl(B,)
2 2 2 2/ "1 2
20,
2
BoY
-B, log ¥ + —— (13.8)

By
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log Y-a (log Y-a,)®
and F, = —_—1 F, = - %a + 1
1 a, 2 2 2a§

In (13.8) B,» B, are to be replaced by

°‘1+%‘°‘2
Bl,a = e and BQ,a is given by (13.5).
Under the lognormal hypothesis, Hf, the

‘variances are glven by

— - 2
V(Fa ) = l/ag; V(Fa ) = l/(Eag) s
1 2
a
_ a2 e _ 1
Va(F-—G) = B3 o (e =1 - ccg) agﬁesa + 5.

The covariances are

o ‘ . ~
C, | F-G, F | = EQL(F—G)FC‘ |
_ 1 1

= O »
-
c,[7c, 7, |= =& [(F-0)F ]
2 R
_ agﬁg, -1
2a,
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Hence the asymptotic variance of Tf is

2 - 2 -
cz (F-G, F, ) cz (F-G, P, )

V(T )e n(V (F-G) - —= L .= 2. )
) a Va(Fal) va(Fag)
_ 2 %o 1.2 (
= n(E e 2-l-ay- 32)1. 13.9).

Thus to a first approximation we can carry out a test
by treating Tf,/[V(’I‘f)}l/2 as having a standard
normal distribution N{0,1) under H,, negative values
being expected under Hg.

The roles of Hf and Hg are now interchanged
so that the gamma distribution is the null hypothesis.
Here, 81 —_— @ .,p = E(log v), 62——> Gy g = V(log vy),

A A
Bl——> 51, 62 —_— 62 and 21l moments are evaluated

under Hg, the gamma hypothesis. Thus we have

o g = W(By) - log(By/B) oy 5= W(By). (13.10).
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Thus _Lg(é)—Lf(Q) is given by (13.4) and

f(y,a.) (log y-a.)®
log -—--—----—-—------—---'B = - %log(?nag)— L —Bglog(Bg/Bl\)
g(y,B8) 2a,
- 52y
+ log ['(B,) - By, log ¥y + —=— .
Bl
Therefore
T r(y,a.) | , .
EB % log e B } = = ‘2]:' lOg (Qﬂaz B) - % - 62 10{5(.62/613
- g(y:_B__) J ’
The test statistic is
Ty = Lyp - EE(Lgf)
s
n ag 7~ o
= 5 log( ) + nBQ(al—al’g) (13.11)
a
2:B
or equivalently,
~
1 %2 2o )
Tg/n = 5 log(a ) + Bg(al-—al’g . (13%.12)

2,B
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To obtain the asymptotic variancée of Tg we
require (G-F) which is given by (13.8). We also

have that

Under the gamma hypothesis, these give

VB(GBl) = B,/B% » VB(GBQ) = M'(B,)- 1/B,s

'\.},"!!(62) + 62‘\{/"(52) 1

Va(G-F) = B2 ¥'(B,) + - i

hev'(py)yz V(B

Also, Cg [G-F,Gsl] = Eg {KG-F)GBl}
= O’
and
Ca(G—F,GBQ)
(log Y-a.)® - BLY
- ¢ [ (1og v-1/p)), L 4 p, log ¥- 2~ |
\ 2(!2 51 '
I A By W' -1,

2 ¥

Be‘
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Hence the asymptotic variance of Tg is

A A YWER; 2
V(T ) _ n{ \}J (62) _ 62{ W (52)] . %

B (By))% HUW'(BL) 1B, Y (By) 1)

)

n g(B,), say. 1 (1%.13)

Thus, under Hg y Tg/{nﬁ(ﬁg)}Q has asymptotically @
standard normal distribuﬁion, and negative values are
expected under Hf.

The above results are a generalisation of the
Tests between the log<-normal and expénential
distributions given by Cox (1961, 1962) and considered
in Section 12, the gamma distribution having ftwo

parameters to be estimated as against one for the

exponential distribution.

Special Case - One parameter gamma.

If instead of the two parameter gamma, we have a

standardised gamma distribution parameter m, where

-y _m=-1
cE ¥y __

["(m)

gly, m) =
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the Tf test statistic 1s much simpler. The
results follow from thnse above on putting Bl = BE = M.

The maximum likelihood estimate of m is given by
o
y(m) = a; .
FAS
8T =
Under H., m —> mg where f(ma) a, .

The fTest statistic, with log-normal as null is

()

(m

T, =n log

Fa N
¢ + n(l—al) (m-ma)

!

)

a
with an asymptotic normal distribufion of zero mean

and variance

a
n{m= (e 2~l—a2— %ag)}.

With the gamma distribution as. null, the fTest

statisftic is

"
T == 1o

& 2 5 Ay A

with asymptotic normal distribution of zero mean and

variance

n{v/iit(m) o Wt (p) )R . 1
L4{\y7(m)}2 4[‘{'(m)}2{m'y‘(m)-l] 2
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13.2., Approximations to Functions Required for the

Tests.

In order to carry out the above tests values of
log | '(x) and its derbvatives, the polygamma functions,
are required. These functions are tabulated by
Davis (1933, 1935) and Brownlee (1923). The tables
are given at intervals not always suitable for the
application of the tests. We therefore give series

expansions for the functions required. Generally,

B l=2n
1 1 M Bopn X
log[7(x) = 5 log(en) + (x- 3)log #-x + ) _——
' n=1 2n(2n-1)
-2m=1
+ O(x )
m B
W(x) = log x - Iy 2ngymeny, o(x~2M=2y  (1%.14)
2x n=1 2n
dn {‘\P’(X)} — (_)n—l[(l’l-l)i + 1’11
Xn xn 2xn+l

n>0 (13.15)

2m+n }s
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where B, and Br(x) are Bernouilli numbers and

functions, respectively.

We find that it is adequate fto take

log | (x) = 0.91895 + (x- %)log X=X + e (13%.16)
60x
and for fw(x),vmngx) and ¥V'''(x) to take the
first three terms of (13.14) and (13.15) with the
appropriate values of n.
We also obtain an approximation to the variance -

of Tg’ ng (62) from

r 14...2_...12_434-544-...
4(x) = % Kl_ 3x  18x ox 36x . (13.17)
(1+ 24+ 2 L o . 2

L.

In table 13.1, below, a comparison of thgse
approximations with the exact values is given. In
Figs. 13.1 - 13.3 we give graphical representations of

some of the functions. Table 13,1 shows that the
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approximations are good even for small x, say 5. The

graphs simplify the use of the tests since g(x), Bo o
2

and some of the other functions required can be read

off directly.

Table 1%.1. Comparison of Approximations.

X logi(x) W(x) y'(x) VW''(x) ¢''"(x) A(x)

Exact 3.178 1.506 0,2213 -0.0488 0.0214% 0.0395

5
Approx 3.165 1.509 0.2213 -0.0488  .0214  .0397
g FXact 8.518 2.016 0.1331 -0.0177 0.0047  .0235
Approx 8.517 2.017 0.1331 =-0.0179  .0047  .0233
Exact 12.802 2.252 0.1052 -0.0111 0.0023  .0185

10

Approx 12.795 2.252 0.1052 -0.011l1 .0023% .0183

13,3, An Application of the Tests.

We now apply the above results to fibre~diameter
measurements on wool tops, (Monfort, 1964). Monfort
had fibre-diameter results on eight lots of combed

slivers comprising reference wools of the International
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Wool Textile Organisation. He obtained the means,
coefficients of variation (C.V) and other parameters
necessary for fitting either a log-normal or gamma
distribution to each lot, Two methods were then used
fo assess how well the two distributions fitted. The
first was a X® test and the second was Cox's
graphical method (Monfort, 1964) in which plots of

Yy versus C.V s Yo Versus C.V. are made and
compared to thé null plots for the log-normal and
gamma distributions.

In order to apply the tests given in Section 13.1,
logarithms of the observations were taken and the
means and variances ai, aé obtained from them. We
give some details of the calculations for the first

lot, A, and summarise the other results below,

Lot A.

Yalues of the parametcrs are glven in Table 13.2. From
these we have that under the log-normal hypothesis Hf,

The estimated standard error of 'I‘f is
4,725 x 10_3, leading to an equivalent normal deviate
of 0.408, This indicates. good agreement with the

log~normal distribution., Under the gamma hypothesis,
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Hg’ we obtain

Te = -0.009556.

The estimated standard error is 3.652 x 10"3,
and we have an equivalent normal deviate of -2.616.
There 1s thus quite strong evidence of a departure
from the gamma distribution in the direction of fthe
log-normal.

We‘give the values of the necessary parameters
as well as the normal equivalent deviates and

significance levels attained by the test statisties in

the tables below.



Table 13,2,

Estimates of Parameters for Wool Topns

)

+op 1 .8 ap % .8 Bo/By By Bo,a
A 2,8876 2.8874  0.04579 0.04716 1,182 21.71 21.87
B 3.019%  3.0193 .04998 .04999  0.9763 20.49 20.04
v 3.1369  3.1347 06343 .07054  0.6167 14.67 15.80
T 2.2066  3.2070 .O7hhT 07377 0.5486 14.05  13.46
E 33436 3.3436 07168 LO7T165  0.4927 ‘14,45 13,98
I z,4116 3.4110 07712 07815  0.4223 1%.29 13,00
G 34375 34376 07555 .07566  0.4247 13.71 13,27
H %.5803 3.5836 .07990 L06884 0.4034 15.02  12.55

- 11 -
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In all cases where the log-normal is accepted
A . A
62,8 > 82 while for the gamma 62,8 < 62. These
seem to be true as long as (ﬁz -Bs a) is not too
large. For top H the difference appears to be Too

large and neither distribution fits the observations.



Table 13.3. Significance Tests for the Wool Tops

No. of Log~Normal, Hf Gamma, Hg Log Max
To observa-~ Like- Like~
P tions ~ lihood lihood
n Normal Level of Normal Level of Lf Ratio
Deviate Significance Deviate 8ignificance & eL
A 600 +0.408 682 -2,616 ¥E 008 +3,372 29
B 600 2.998  *% 503 +0.635 528 ~3.612 1/37
I
¢ 600 +0.9%6 348 4772 ¥ o001 +9.294 10,830 .
'._I
D 600 ~5.511 *¥¢.001 ~0.153 .880 ~3.126  1/23 ‘f
E 430 -2 452 ® 015 +0.104 .916 -2.871 1/18
F 450 -2.468 ® 014 +0.,%17 749 -3.659 1/39
¢ 450 _2.146 *,032 ~0. 446 652 -1.733 1/6
6
H

450 -7.239  *¥%¢ 001 +4.960 **¢. 001 ~13,901 =1x10"
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In table 13.3 the significance levels given are

BE to indicate

two sided and we use © and
significance at the 5 per cent and 1 per cent levels
regspectively.

From table 13%.3% we conclude that tops A, C belong
to a log-normal distribution, tops B, D, E, F, G
belong to a gamma.distribution and top H belongs to
neither. These conclusions agree generally with those
obtained from the graphical plots of Monfort, though
in that case they are not as clear cut.

Top H illustrates the point made by Cox (1961)
that one hypothesis, Hf say, serves as null and the
other, Hg serves as a possible alternative. In this
case tThe Tf test shows that there is a departure
from the log-normal in the direction of the gamma;
this apparently goes too far and the Tg test indicates
a departure from the gamma away from the log-normal
distribution.

The above procedure is more sensitive than that
of %% for estimating agreement between two
neighbouring distributions. To illustrate this we

quote a table, 13.4 given by Monfort (1964) and compare

this with table 13.3 above.
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Table 13.4. X2 Tests for the Wool Tops.

Fitting
Depgrees
Top of Log-Normal Gamma
Freedom -
X2 g?ggifgiance X gi;iifggance

A 8  8.64 0.50-0,30 11.89 0.20-0.10+
B 9 7.52 > 0.50 7.07 0.70-0.50
c 11 10.57 0.50-0.30 19.84 ¥0.05-0.01
D 12 14.51 0.30~0.20 3.60 > 0.50
E 13 18.99 0.20-0.10 15.05 0.50-0.30
F 14 18.38 0.20-0.10 15.44  0.50~0.30
G 14 17.62 0.3%0-0.20 18.12 0.30-0.20
H 18 60.56 ** ¢ 0.01 38.55  *¥%¢0.01

From this table, a log-normal fit only is accepted for
C and H Dbelongs to neither distribution, but the
other tops A, B, D, E, F, G are taken as having
distributions consistent with both the log-normal and

the gamma.
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PART TIII

COMPARISON OQF TESTS
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14, Comparison of a 'Separate Families' Test and T,-

A point of some interest is the comparison of the
power of Tg, Cox's likelihood ratio test (Section 12)
and that of T, the order statistic test (Section 2),

. against a log-normal alternative. Since Tg is
based spgcifically on the exponential distribution
as null and the log-normal as alternative we would
expect it to be more powerful than T which is
constructed with only vague alternatives in mind.

For a log-normal alternative, the usual analytic
methods for calculating the power (or A.R.E.) of T
either break down or are difficult unless drastic
approximations are used. We therefore do a simulation
experiment for the empirical power.

We consider the log-normal distribution with p.d.f.

1 (log vy - oy)%
f(y) = ————— exp { - ], v >o.
y./(EnGQ) 204

Deviates from this distribution are generated for
a = 0 and different values of Ay the shape

parameter. For these values of a, and some values of

2
n, the sample size, the statistics, T and T, are

<
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calcﬁlated. For each combination of Gy and n;

100 sets are generated and T and Tg calculated.

In order to compare the‘performance of T +to that of
other 'vague alternative' tests Lewis's statistic

S' (S8ection 9) and Moran's M statistic (which is
asymptotically most powerful for a gamma alternative;
Section 9) are computed for the same sets of data., The
cumulative probabilities for the various tests are
then plotted on arithmetic probability paper to obtain

the power for all possible significance levelsfFlgs-l‘F)-

Probability Plots

As in the case of the power for Tn (Section 9)
the power of each test can be read off for any
significance level. The further away the cumulative
plot is from the null, H¥(0,1), line the more
powerful the test under the alternative.

For a 5 per cent significance level the power of
the various tests are given in the table below.

The statistics are

T, = 1.8783 /A (0.3283 + &) + % log &, - log B)
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— n
Th = [éii tron X<r>]/{fi1 X}

n n
St =2n - {2 5 r X(I’)]/{ E Xr}

r=1
ey 1 -
M=-2 >_ log (Xr/i), X==22X.
Y=l

A1l the statistics were scaled so that they were
N(0,1) under the null,

Table 14.1. Power of Tests Against Log-Normal

Alternative - 5 per cent Significance Level

I »5 50 100 20 50 100 20 50 100

T 4 .83 5,98 .49 .87 $.98 .71 >.98 >.98

i\ 20 .36 .56 .61 .92 .98 .79 .97 .90

s' ,19 .28 .36 .68 .95 >».98 .90 >.98 .98

M .09 .17 .21 .54 .76 .97 .80 >.98 .98
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The power of the tests investigated above depend
on Oy, the shape parameter of the log~normal
distribution. From Fig, 12.2 the value of «, (in
the range 0-3.5) requiring the largest sample size
to achieve 50 per cent power 1s approximately a, = 1.
For this value of a, (a2 = 1) Tg is a lot more
powerful than T or either of S' and M, as would
be expected. However, when a, = 2 or a, = A, Tg
does not do so well. For n =20, T  and S' seem
to do much better than T,. For n2 50, the difference
in power could be accounted for by sampling errors.

On the whole Tn does much bettér than M which
is the asymptotically most powerful test against a
gamma alternative.

For the log-normal alternative, the performance
of Tn compared to S' gets better as n increases,
particularly when a, = 1. This is the reverse of
what happens for the gamma alternative (Section 9) and
suggests that, at least for some alternatives, Tn will

be a good test statistic even when n 1is large.
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