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2. 

ABSTRACT. 

The effect of the interaction between free 

and forced convection upon mass transfer rates from 

spheres and oblate spheroidal bodies has been 

investigated experimentally, 

Many correlations exist for the prediction 

of mass transfer rates from single spheres by either 

free or forced convection alone. 	Little work has been 

published, however, concerning the interaction of these 

effects. 	Furthermore, there is much evidence to suggest 

that drops passing through a second liquid are often 

oblate spheroidal in shape. 

To investigate the effect of both shape and 

the interaction of free and forced convection upon mass 

transfer rates, benzoic acid bodies of five different 

oblate spheroidal shapes were dissolved in water in a 

low speed water tunnel; mass transfer rates were 

obtained by direct weighing. A schlieren technique was 

employed to photograph the flow patterns around the 

dissolving bodies. 

Eight characteristic dimensions were considered 

in an attempt to produce a single correlation for all 

five shapes. The data for Reynolds numbers greater 

than 45 were correlated with mean and maximum deviations 
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of 2.4% and 7.1% by the expression : 

Sh3  = 23.7 + 0.196 Re30.78 So1/3 45 4Re3<195 

where the dimensionless groups are based upon the 

characteristic dimension proposed by Pasternak and Gauvin. 

The increase of the Reynolds number exponent from the 

theoretical value of 0.50 for forced convection may be 

an effect of free convection. 	This conclusion is 

supported by the photographic evidence which shows 

the existence of four distinct flow regimes in the range 

0 ,1;Re3 4 195 with an influence of free convection upon 

the flow patterns around the dissolving bodies even at 

the highest Reynolds numbers employed. 

At Reynolds numbers in the range 0 ...Re3  45 

none of the characteristic dimensions employed 

successfully unified the data for all shapes. 

The dimensionless group (Gr/Re2) has been 

shown to be an important criterion in deciding whether 

either free or forced convection may be neglected in 

the calculation of mass transfer rates. 
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CHAPTER 1. 

INTRODUCTION. 

Many chemical engineering processes involve the 

transfer of mass between phases. 	In order to enhance 

this mass transfer it is desirable to increase the contact 

area between the phases and this is often accomplished by 

dispersing one phase, in the form of particles, drops, or 

bubbles, in the second phase. 	The phases are then known 

as the disperse and continuous phases, respectively. 

Systems frequently encountered are solid particles in a 

liquid or gas, liquid drops in a gas or liquid, and 

bubbles in a liquid. 

In recent years research workers have shown an 

increasing interest in the more fundamental aspects of 

the mass transfer processes involved in such systems. 	In 

particular, the precise nature of the mechanism of mass 

transfer from a single particle, bubble, or drop has been 

the subject of much theoretical and experimental study. 

The passage of drops through a second liquid may 

be complicated by such factors as internal circulation, 

oscillations, deformations, and interactions with 

neighbouring drops. 	In order to study this situation 

experimentally, with a view to gaining some insight into 

the mechanisms of the mass transfer process, as well as 

to obtaining empirical correlations, it is necessary to 
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introduce certain simplifications and to concentrate on 

particular aspects of the general problem. 	For example, 

in order to investigate the relationship between drop 

Reynolds number and continuous phase mass transfer 

coefficient, many recent researchers have considered a drop 

to behave as a solid body. 	They have then measured mass 

transfer rates experimentally by suspending a solid body 

representing a drop in a liquid stream moving at a 

controlled velocity. 	Such experiments eliminate the 

effects of internal circulation, oscillation and 

deformation. By considering a single body the effects 

of interactions with neighbouring drops are also 

eliminated. 

A further complication, not eliminated by the 

above model, may be present when drop Reynolds number, 

relative to the continuous phase, is low. 	In such 

circumstances free convective forces may have a 

considerable effect upon the fluid motion around a drop 

or solid particle, and hence upon the mass transfer from 

it. 	These forces are caused by density differences 

between the bulk fluid of the continuous phase and the 

solution formed by transfer of a component from the drop 

or particle. 	When drop Reynolds number is high, these 

free convective forces become negligible compared with 

forces set up by the relative motion of the continuous 

phase itself, 
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Previous workers who have used the solid, 

rigidly—supported model, have concentrated upon the 

situation in which free convective forces may be neglected 

and have paid little attention to ranges of Reynolds 

number in which free and forced convection might be 

expected to interact. Furthermore most of these workers 

have simplified the model one stage further by taking the 

sphere as the idealised drop shape. Although research 

has shown drops in liquid—liquid systems to be spherical 

under certain circumstances, there is much evidence to 

show that the model would be more general if the drops 

were represented by oblate spheroids 1-8. 	Useof this 

idealized shape would still include the sphere as a 

limiting case. The only workers 9'10 who have used 

oblate spheroids, have worked in ranges of Reynolds number 

where free convection is negligible and, in one particular 

instance 11 where there is free convection only. These 

investigations are of value as limiting cases when 

considering the interaction of free and forced convection. 

Workers with oblate spheroids have considered at some 

length the effect of eccentricity on mass transfer. 

They have attempted to produce a single correlation for 

all oblate spheroidal shapes by choice of a suitable 

characteristic dimension for use in dimensionless groups. 



21. 

With these considerations in mind it was decided 

to study experimentally mass transfer from oblate 

spheroidal bodies under conditions such that free and 

forced convection interact. 	The feasibility of 

correlating the data thus obtained, if possible by use 

of a suitable characteristic dimension in a manner similar 

to that successfully employed in forced convection, was 

to be investigated. An attempt was also made to discover 

criteria for deciding when free convection or forced 

convection may be considered negligible. Photographic 

techniques were employed to study the mechanisms involved 

in the mass transfer process. 
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CHAPTER 2. 

LITERATURE SURVEY. 

2.1. MASS TRANSFER THEORY. 

In September 1916 W.K.Lewis 12  presented the 

first clear statement of the so-called film theory of 

mass transfer. Lewis considered the extraction of a 

component from a solid particle by a countercurrently 

flowing liquid. He proposed that in this situation the 

liquid could be regarded as forming a thin, almost 

stationary film on the solid particle, whilst outside this 

film turbulence kept the liquid concentration uniform. 

Mass transfer was assumed to be controlled by diffusion 

through the stagnant film. As a consequence, the 

continuous phase mass transfer coefficient, kc' could be 

related to the diffusion coefficient of the transferred 

component in the continuous phase, Dv, by : 

kc 
= Dv 	 (2.1) 

The quantity L in this equation is the thickness of the 

supposedly stagnant film. 

Lewis and Whitman 13  extended the film theory 

by consideration of gas absorption. For this process 

they postulated the existence of two films, one on either 

side of the interface, each of which is thin and relatively 



undisturbed by bulk motion. These authors showed that 

the overall mass transfer coefficients based on the 

continuous and disperse phases, Koc  and Kod, could be 

related to the film mass transfer coefficients, kc  and 

kd' by : 

23. 

1 	1 
k Koc 	c  

in 
kd 

(2.2) 

1 	1 	1 

od 	 Tr ' m kc 
( 2 . 3 ) 

where m is the slope of the equilibrium line, assumed 

straight in the region of interest. The modern 

interpretation of equations (2.2) and (2.3) is that 1/kc  

and 1/kd represent resistances to mass transfer in the 

continuous and disperse phases respectively, whilst 1/K oc 

and 1/Kod represent total resistances to mass transfer 

across the interface. 

The prediction of the individual film coefficients 

has been a subject of great interest since the presentation 

of equations (2.2) and (2.3) by Lewis and Whitman. 

Prediction of kc by equation (2.1) is unsatisfactory since 

this equation is based upon the physically unrealistic 

concept of a stagnant film. Much research has been 

carried out to obtain more satisfactory models and the 

penetration theory of Higbte 14, the surface-renewal 

theory of Dankwerts 15, and the film-penetration theory 
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of Toor and Marchello 16 are the results of such work. 

Since a large number of mass transfer operations 

are based upon the passage of bubbles, drops, or solid 

particles through a continuous phase, other workers have 

attempted to predict the continuous phase mass transfer 

coefficient in terms of the relative velocity of the 

disperse and continuous phases. As it is to this end 

that the present work is directed, the results of these 

predictions will now be considered in some detail. 

2.2. CORRELATIONS BASED ON RELATIVE VELOCITY. 

Frossling 17  considered the rate of evaporation 

of a falling drop to be the result of two effects: the 

rate of evaporation which would occur by molecular diffusion 

if the drop were at rest, and an additional rate of 

evaporation due to drop motion. Mass transfer from a 

spherical drop by molecular diffusion into an infinite 

stagnant medium had already been analysed mathematically 

by Langmuir 18. Langmuir showed that under these conditions 

the rate of mass transfer is given by : 

dm 2nD v  M(P.—Pb  )d 

dt 	RT (2.4) 

In this equation d is the drop diameter, Pi  the vapour 

pressure at the interface, Pb  the partial pressure of the 

diffusing species far from the drop, T the absolute 
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temperature, M the molecular weight of the diffusing 

component, and R the universal gas constant. Equation 

(2.4) may be written in dimensionless form as : 

Shmol. = 2 
	(2.5) 

where Sh is the Sherwood number and the subscript mol. 

indicates transfer by molecular diffusion alone. 

Frossling assumed that the effect of drop motion 

was to increase mass transfer by a factor f, which he 

called a wind factor. 	In the presence of drop motion 

equation (2.4) therefore becomes 

dt 	RT 
dm _  270 M(P.-Pb  )d . f 	(2.6) 

or in dimensionless form : 

Sh = 2f 	 (2.7) 

From consideration of the boundary layer equations 

for fluid motion around a sphere, Frossling concluded that 

f is related to drop Reynolds number by : 

kRe1/2 	 (2.8) 

where k is a function of the Schmidt number, So that 

equation (2.7) reduced to equation (2.5) when drop 

Reynolds number is zero, Frossling modified equation (2.8) 

such that 

1 + kRe1/2 
	

(2.9) 
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Frossling further assumed, on the basis of heat 

transfer studies by Fohlhausen 19  and Kroujiline 20 that : 

k 	= 	C1  (Sc)m 	(2.10) 

where m was probably close to 1/3. 

This semi-theoretical approach led Frossling to 

use a correlation for mass transfer data from falling drops 

of the form 

Sh = 2 + C2  Ref/2 So
1/3 	(2.11) 

In order to verify equation (2.11), Frossling 

evaporated drops of nitrobenzene and water in an air 

stream. 	To test the assumption that the drops could be 

regarded as rigid spheres he also measured rates of 

sublimation of naphthalene spheres. 	His results, which 

covered the Reynolds number range 2 to 800 and the Schmidt 

number range 0.6 to 2.7 were correlated on the basis of 

equation (2.11) as : 

Sh = 2 + 0.552 Re1/2 So1/3 	(2.12) 

This equation may be written explicity in terms of the 

continuous phase mass transfer coefficient as : 

kc 	THcr  (2 + 0.552Sc1/3  Re1/2) (2.13) 

It is, however, more commonly written in the dimensionless 

form. 
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In a later paper Frossling 21  used the boundary 

layer equations derived by Boltze 22, to show that for a 

body of revolution with its axes parallel to flow, local 

values of the Sherwood number are proportional to the 

square root of the Reynolds number. 	This derivation was 

quite general for axisymmetric bodies with laminar 

boundary layers. 	Frossling also showed that, when the 

Schmidt number is large, local values of the Sherwood 

number are proportional to the cube root of the Schmidt 

number. 

To obtain these results Frossling transformed 

the boundary layer equations of Boltze into an infinite 

set of non-linear ordinary differential equations which 

were solved numerically to give the velocity distribution 

in the boundary layer. 	The velocity distribution was 

then used in conjunction with the diffusion equation to 

obtain a further set of ordinary differential equations. 

Frossling solved the first few equations of this latter 

set numerically and obtained a solution in series form 

for the local mass transfer rates. 

The solution for local Sherwood numbers obtained 

by Frossling cannot be used to predict local mass transfer 

rates beyond the boundary layer separation point. 	The 

local Sherwood numbers predicted by boundary layer theory 

cannot, therefore, be integrated to give overall values 
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of the Sherwood number for the sphere. 

Prossling claims good agreement between the 

predicted local rates of mass transfer from naphthalene 

spheres and the experimental results of his earlier work. 

Since this pioneer work by Frossling many workers 

have carried out similar theoretical and experimental 

research programmes. 	As a result, it has become evident 

that an equation of the form of (2.11) is not always 

successful in correlating mass transfer data. 	In 

particular free convection has been found to have a 

considerable effect upon mass transfer at low Reynolds 

numbers when the Grashof number is high 23-26.  However, 

before discussing the correlations which have been proposed 

for the more general situation in which free and forced 

convection interact, it is of interest to examine the 

expressions proposed for the limiting cases of free 

convection and forced convection alone. 	The expressions 

proposed for forced convection fall into two categories 

dependent upon whether the flow is within or outside the 

so-called "creeping flow" region. 	Although it is 

generally accepted that the creeping flow approximations 

are only valid at "very low" Reynolds numbers there is no 

universally accepted value for the upper limit of their 

applicability. 	These approximations are, however, 

frequently held to be valid for Reynolds numbers of less 

than one. 
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2.2.1. 	FORCED CONVECTION. 

i). Outside Creeping Flow Region. 

It is to this category that the work of 

Frossling belongs and subsequent workers have produced 

correlations similar in form to equation (2.11). 	Some 

workers have assumed the indices of Re and Sc of equation 

(2.11) i.e. 1/2 and 1/3, and simply used their experimental 

data to obtain values of C2  for different systems and over 

different ranges of Reynolds number. 	Other workers 

have assumed a more general form of equation (2.11), i.e. 

Sh = 2 +
3 
Ren Sc1/3 	(2.14)  

and have obtained values of both C3  and n by analysis 

of their experimental data. 	Still other workers have 

considered the contribution of the term for molecular 

diffusion into an infinite stagnant medium to be 

meaningless in the presence of forced convection. 	These 

workers have correlated their results on the assumption 

that : 

Sh = C4 Re
1/2 So1/3 
	

(2.15) 

or 	Sh = C5 Ren  Sc1/3 
	

(2.16) 

It is convenient to compare these various 

correlations by means of the following table. 



TABLE 1  

FORCED CONVECTION CORRELATIONS (Outside Creeping Flow Region) 

Author Correlation Range of System Geometry 
Re Nos. Employed of System 

Vyrubov27 Sh = 0.54Re1/ 2 200-3000 Ammonia from 
air stream 
transferred 
to ortho-
phospheric 
acid spheres 

Spheres 

Linton and28 mSh = 0.33Re1/2Sc1/3  1500-10000 Benzoic acid Spheres 
Sherwood -water 

Maisel and29 
Sherwood 

Logarithmic plot 2000-40000 Benzene 
saturated 
sand-air 

Spheres, 
Discs,  
Cylinders 

Ranz and30 
Marshall 

Sh=2+0.60Re1/2Sc3/5  2-200 Aniline, 
Benzene, 
water-air 

Suspended 
liquid 
drops 

Axel'rud31 Sh=0.82Sc1/3Re1/2  200-4000 Potassium and Spheres 
Sodium 
nitrates 
-water 

Garner and32 Sh=2+0.95ReV2Sc1/3  100-700 Benzoic acid Spheres 
Suckling -water 

LA 
Obtained by Rowe, Claxton and Lewis,38 from a logarithmic plot presented by 
the original authors. 



TABLE 1 (continued) 

Author Correlation Range of System Geometry 
Re Nos. Employed of System 

Steele and33 
Geankvplis 

Logarithmic plot 600-140000 Benzoic acid, 
Cinnamic acid, 
2 naphthol-
water 

Spheres 

Linton and34  Sh-0.582Re1/2Sc1/3  500-8000 Benzoic acid Spheres 
Sutherland -water 

Pasternak35 
and Gauvin 

Sh3=0.692Re2* 514Sc1/3  3000-15000 Cellite 
saturated with 
acetone-air 

Cylinders, 
Cubes, 
Spheres, 
Prisms 

Evonchides36  
and Thodos 

Sh=0.33Re0.6Sc1/3 1500-12000 Cellite satur-
ated with water 
or nitro-benzene 

Spheres 

-air 

Skelland and9 Sh3=0.74Re0.50  s 	Sc1/3  120-6000 Naphthalene- Oblate 
Cornish air Spheroids 

Yen and37 
Thodos 

Sh=0.358Re0'58Sc1/3 1750-8922 Cellite satur-
ated with 
water-air 

Spheres 

Rowe, Claxton38 
and Lewis 

Sh=2+0.68Re1/2Sc1/3  96-1052 Naphthalene 
-air 

Spheres 

Rowe, Claxton38 
and Lewis 

Sh=2+0.73Re1/2Sc1/3 27-1149 Benzoic acid 
-water 

Spheres 
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In table I indices of Re and Sc which are given 

as fractions have been assumed by the authors, those given 

as decimals have been obtained from experimental data. 

Since many studies of mass transfer from drops and drop 

shaped bodies have been undertaken, no attempt has been 

made to include in table I the many correlations which 

exist for other geometries, such as flat plates, nor have 

the many analogous heat transfer correlations been 

included. 

The subscript on the Sherwood and Reynolds 

numbers in the correlations presented by Skelland and 

Cornish 9 and Pasternak and Gauvin 35, refers to the 

characteristic dimension used in calculation of these 

dimensionless groups. 	These authors examined the 

feasibility of unifying mass transfer data for several 

shapes by choice of a suitable characteristic dimension 

for use in the dimensionless groups. 	Of several such 

dimensions tried, these authors found that the dimension 

defined as 

dCh  Surface area 

 

Perimeter normal to flow 

d3  in the present work, was the most satisfactory. 

ii). 	Within Creeping Flow Region. 

Friedlander 39 analysed theoretically mass transfer 

from a sphere at very low Reynolds numbers. At low 
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Reynolds numbers the equations of fluid motion may be 

linearised by the assumption that viscous forces are very 
which 

much greater than inertia forces andmay therefore be 

neglected. A solution of these linearised equations of 

motion, due to Tomotika and Aoi 40, was used by Friedlander 

to obtain a velocity distribution round the sphere. 

This velocity distribution was then used to solve the 

diffusion equation. 	On the basis of comparison of his 

theoretical solution with experimental data, Friedlander 

claimed validity of his solution up to Reynolds numbers 

of approximately 5. 	Tomotika and Aoi, however, upon 

whose solution Friedlander's analysis was based, only 

claimed applicability of their solution for Re <K1. 

Friedlander's solution may be summarised as 

Sh = 0.89 Re1/3 Sc1/3 (Re.Sc)>1000 (2.17) 

Sh = ---) —i-- Re.Sc  0.1 	(Re.Sc)<1 (2.18) In  (12Re.Sc  1  

Sh = 2 (Re.Sc)<10-1  (2.19) 

In a further paper 41 Friedlander modified his 

earlier work in the light of numerical solutions of the 

diffusion equation obtained by Yuge 42. 	Friedlander's 

solution at high values of (Re.Sc) was now presented as 

Sh 	= 0.991 Re1/3Sc1/3 
	

(Re .3c) > 100 
	

(2.20) 
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Axeltrud 31 dissolved benzoic acid spheres in 

vegetable oil at a Schmidt number of 2.3 x106. 	The 

spheres were moved along a circular path in the oil bath 

followed by a small stirrer to disperse the solution formed. 

The stirrer was assumed to have no effect upon the mass 

transfer from the sphere. The Reynolds number range 

covered was 0.1 to 2.5 and the data correlated by : 

Sh = 1.1 Re1/3 So1/3 (2.21) 

Equation (2.21) is in good agreement with the theoretical 

prediction of Friedlander for (Re.Sc);>100. 

2.2.2. 	FREE CONVECTION. 

Mathers, Madden and Piret 43 obtained approximate 

solutions to the differential equations describing free 

convection mass transfer from a vertical plate into an 

infinite fluid. 	The resultant solution was expressed 

in the form 

Shfree = 0.670 (Gr.Sc)1/4 
	

(2.22) 

To verify this theoretical solution, brass 

spheres coated with naphthalene and solid benzene were 

sublimed in air. 	The data were plotted on logarithmic 

co—ordinates as Shfree VB. (Gr.Sc). 	A single curve could 

be drawn through the data for both systems. This curve 

was expressed analytically as 
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Shfree 
	2 +0.282(Gr.Sc)0'37  (Gr.Sc)<100 

(2.23) 

Shfree 
	2 + 0.5(Gr.Sc)1/4  102‹,(Gr.Sc)<;10 6 

(2.24) 

Garner and Keey 44 dissolved spheres of benzoic 

and adipic acid in water. 	Schlieren photographs taken by 

these workers showed a thin layer of saturated solution on 

the sphere surface which thickened towards the rear pole 

causing minimum transfer there. 	At values of (Gr.Sc);>108 

however, the schlieren photographs indicated the onset of 

turbulence in this surface layer causing material to be 

convected away from the surface at a faster rate and 

hence increasing mass transfer. 	Their data, mostly 

obtained in the laminar regime, were correlated as : 

Shfree = 23 + 0.58(Gr.Sc)1/4  4 x10
64(Gr.Sc<D..5 x108 

(2.25) 

Earlier experimental work of King 45 and 

Saunders 46 who investigated heat transfer from vertical 

flat plates, had suggested the existence of two regimes 

of free convective mass transfer, laminar and turbulent, 

and that : 

Nufree Cr (GrHPr)1/4  for laminar free convection ; 
(2.26) 

Nufree OC (GrHPr)1/3  for turbulent free convection. 

(2.27) 
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On the evidence of their schlieren photographs and assuming 

the analogy between the heat and mass transfer processes, 

Garner and Keey concluded that, for mass transfer from 

spheres, transition from laminar to turbulent free 

convection occurred at (Gr.Sc) 46 3.5 x 108. 

Garner and Hoffman 47 continued the work of 

Garner and Keey by employing a wider range of sphere 

diameters and also other systems. 	Spheres of benzoic, 

salicylic and succinic acids were dissolved in water, 

benzene and n—butanol respectively. As with the work of 

Garner and Keey 44 the final correlation for overall mass 

transfer rates was subject to mean errors of about 14% 

largely attributable to the photographic technique employed. 

The onset of turbulence, as evidenced by the shift of the 

minimum local mass transfer rate from the rear pole, 

occurred at (Gr.Sc) =9=6 x 108. 	The data for the laminar 

regime were correlated by : 

Shfree = 5.4 + 0.4-40(Gr.Sc)1/4 	2x106<Gr.Sc(2x108  

(2.28) 
Sandoval 11 studied the dissolution of oblate 

spheroids, of various eccentricities, cast from benzoic 

acid. 	The solvents used were water and 40%, 50% and 60% 

solutions of propylene glycol. 	The data for all systems 

could not be uniquely represented and were correlated by : 
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for water solvent, 

0.121(Grelat )1/3  2.1x1074(0r3Sc<.1x108  Sh3free 
(2.29) 

for 40% propylene glycol solvent, 

	

Sh3 	= 7.74-0.039(Gr3Sc1.30)
1/3 

free 

6 . Ox107<Gr3 S c<5.3x108 

(2.30) 

for 50% and 60% propylene glycol solvent, 

Sh3free = 5.9+0.025(Gr3Sc1°30)1/3  

8.8x10 N,Grs S c .5x108  

(2.31) 

In these correlations the characteristic 

dimension employed was that suggested by Pasternak and 

	

Gauvin 5 	Sandoval found however, that any characteristic 

dimension which conserved true surface area was equally 

satisfactory in correlating his data. 

Sandoval's correlation for the benzoic acid - 

water system is of 

for turbulent free convection. 	This 

contradiction with 

the form suggested by earlier workers 

is in direct 

the correlation of Garner and Hoffman, 

which, though covering the range of(Gr.Sc) employed by 

Sandoval, is in a form suggesting laminar free convection. 

Sections 2.2.1 and 2.2.2 have been concerned 

with correlations presented for situations in which either 

free convection or forced convection could be neglected. 

Consideration will now be given to work specifically 

concerned with situations in which these effects interact. 
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2.2.3. 	INTERACTING FREE AND FORCED CONVECTION. 

Garner and Grafton 23 dissolved 1/2 inch diameter 

benzoic acid spheres in water in a horizontal water tunnel. 

Mass transfer was measured by a photographic technique 

which, while allowing investigation of local mass transfer 

rates, resulted in large errors, + 25%, when the local 

rates were integrated to give overall rates. 	Both 

laminar and turbulent flow were employed but no significant 

difference between the results in these two regimes was 

apparent. 	These workers correlated their data as : 

Sh = 44 + 0.48 Re1/2Sc1/3 	20(Re(850 	(2.32) 

The large constant term was attributed to free 

convection. 	The authors claim that the value 44 is in 

agreement with a free convection mass transfer correlation 

due to Wagner 48 • The latter was obtained from 

experimental work on the dissolution of sodium chloride 

plates and is expressed as 

Shfree = 0.545 (Gr.Sc)1/4 
	

(2.33) 

On this basis Garner and Grafton claimed that, 

at low Reynolds numbers, the effect of free convection 

may be regarded as directly additive to forced convection 

mass transfer. 	They proposed a final correlation of 

the form : 

Sh 	= 0.5(Gr.Sc )1/4  + 0.48 Re1/2Sc1/3  

(2.34) 

20(Re(850 
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Garner and Keey 24  extended the work of Garner 

and Grafton by investigating the dissolution of benzoic 

acid spheres in a vertical water tunnel which allowed 

either up or down flow. Working in a range of Reynolds 

number 2.3 to 255 they concluded that the minimum rate of 

mass transfer did not occur at the lowest Reynolds number. 

It was suggested that the depression in the mass transfer 

rate, with a minimum at a Reynolds number of approximately 

fifty, was caused by an interaction of free convective and 

forced convective forces. 	Data, presented as a small scale 

logarithmic plot of Sherwood number versus Reynolds number, 

fall on separate curves, between Reynolds numbers of 20 

and 250, for upflow and downflow. Extrapolation of these 

curves suggests that they would meet at a Reynolds number 

of approximately 750. At Reynolds numbers less than 20 

a single curve represents the data for both upflow and 

downflow. 

It is interesting to note that in downflow, where 

Garner and Keey expected that free and forced convective 

effects might be mutually assisted, the mass transfer rates 

were lower than in upflow where these effects might be 

expected to be mutually opposed. 

The experimental results of Garner and Keey cast 

great doubt upon the concept of additivity of free and 

forced convection effects. 
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Krischer and Loos 25 investigated the evaporation 

of water from bodies covered with filter paper into an air 

stream. 	The filter paper was kept saturated with water 

from a reservoir by capillary attraction and mass transfer 

measured by determination of the volumetric loss from the 

reservoir. 	Various shapes were used including flat plates, 

cylinders, prisms and spheres. 	The data for spheres wasovt_ 

limited to five observations in the Reynolds number range 

18 to 2400. 

Krischer 49 had earlier proposed that in the 

3  Grashof number for heat transfer, GrH = dChgA6T  , the 
V2  

group (dchgANT) could be replaced by -IV, where Vrn is the 

maximum velocity of free convective motion. 	It followed 

that: 
d  2 2 

GrH 
Ch Y m  

2 1.) 2 	= 1/2 Re, iree
MG X 	

(2.35) 

maximum 
where Refree is an equivalentReynolds number for the free max 
convective motion. 	Rearranging equation (2.35) gives : 

Refree = (2GrH)1/2 	(2.36) 
max 

Krischer and Loos's experiments were conducted 

such that the air stream flowed vertically downwards over 

the test bodies. 	Assuming that, under these conditions, 

the free and forced convective velocities are directly 
and that the mean free convective velocity is 1/2Vm  

additive,  these authors correlated their data in terms of 

an equivalent Reynolds number, ReE, where : 
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ReE 	= Re +-2 2G-/.1 2  (2.37) 

  

Experimental data are presented as separate 

logarithmic plots of Sh versus ReE  for each shape 

investigated. Although no conclusion can be drawn from 

the five data points for spheres, this method of correlation 

appears to be quite successful for flat plates and 

cylinders. 

Steinberger and Treybal 26  also investigated mass 

transfer from benzoic acid spheres under conditions where 

free and forced convection might be expected to interact. 

In analysing their experimental data these workers 

assumed a correlation of the form : 

Sh = A + B Ren 	(2.38) 

In equation (2.38) A was expected to be a function of the 

Grashof and Schmidt numbers accounting for free convective 

mass transfer at zero Reynolds number, and B was expected 

to be of the form 

B = 6 Seln 
	

(2.39) 

The contributions to mass transfer of free and forced 

convection were thus assumed to be additive. 

The value of n giving the minimum pooled 

estimate of variance of the data was found to be 0.62. 

The corresponding values of A and B for the systems 

investigated, i.e. benzoic acid dissolving in water, 
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40% propylene glycol solution, and 60% propylene glycol 

solution, were then correlated together with the data of 

21,23,29,30,32,43,44,50,51,52 to give earlier workers 

A = 2 + 0.569(Gr.Sc)1/4  (Gr.Sc)( 108  (2.40) 

A = 2 + 0.0254(Gr.Sc)1/ 3Sc°.244  (Gr.Sc) >108  (2.41) 

B = 0.347 Sc"312 (2.42) 

The final correlations presented were : 

Sh = 2 + 0.569(Gr.Sc)1/4 	0.347se0.312 Re0.62  

10(Re(17x103  and (Gr.Sc) / 108  

(2.43) 

Sh = 2 + 0.0254(Gr.Sc) 1/3  + 0.347Sc0'3 12 Re0.62 

10(Re(17x103 and (Gr.S(c2.)  )08  

In obtaining these two correlations Steinberger 

and T/eybal assumed a transition from laminar to turbulent 

free convective mass transfer at (Gr.Sc) = 108. 

Rowe, Claxton and Lewis 38  carried out an 

experimental programme in which benzoic acid spheres were 

dissolved in water flowing in a horizontal open channel. 

Although these workers employed similar ranges of (Gr.Sc) 

and Re to those investigated by Garner and Grafton 23, 

Garner and Keey 24, and Steinberger and Treybal 26, they 

found that their data for the benzoic acid-water system 
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could be successfully correlated on the assumption that 

free convection was negligible. 	Their correlation, which 

has also been included in section 2.2.1, was of the form 

suggested by Prossling 17  and was presented as 

Sh = 2 + 0.73 Re1/2Sc1/3 	27(Re(1149 

6x106((Gr.Sc)((32: 08  

45) 

It is evident from the correlations presented 

in this section that some confusion exists concerning the 

effect of the interaction of free and forced convection 

upon mass transfer rates. 	Some workers have concluded 

that the effect of free convection is to produce 

additional mass transfer that is directly additive to that 

caused by forced convection while others have found its 

effect negligible. 	Still other workers have found that 

the interaction between free and forced convection causes 

a reduction in mass transfer compared with that due to 

free convection alone. 

In view of the contradictory evidence of these 

mass transfer correlations it is of interest to consider 

investigations which have been carried out for the 

analogous heat transfer process. 

Acrivos 53, Sparrow and Gregg 54 9  and Sparrow, 

Eichhorn and Gregg 55, have each obtained theoretical 

solutions to the equations of motion and energy for heat 
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transfer from a flat vertical plate where both free and 

forced convection are important. 

By transforming the equations of motion and 

energy into dimensionless form, Acrivos 53 showed the 

importance of the dimensionless group (Gra/Re2 ), for 

situations in which both free and forced convective heat 

transfer are important. Assuming velocity and temperature 

profiles which were functions of this dimensionless group, 

Acrivos obtained numerical solutions to the Pohlhausen - 

von Karmen momentum integral equations at Prandtl numbers 

of 0.73, 10, and 100. 	These solutions are presented in 
1. 
2 	

v. 	(GrH/R e2) 

on logarithmic co-ordinates. 	Acrivos then compared these 

numerical solutions with the asymptotic solutions as 

(GrH/Re2) 	0 and (GrH/Re2)--)infinity, to obtain the 

values of this dimensionless group above and below which 

forced and free convection could be considered negligible. 

His results are summarized in the following table. 

TABLE 2. 

RESULTS OF ACRIVOS 53 

Prandtl 	Forced convection 	Free convection 
Number 	negligible 	negligible 

0.73 	Grll/Re2  >2 

10 	GrH/Re2  >5 

100 	GrH/Re2 > 30 

GrH/Re2  < 0.02 

  

graphical form as plots of (Nu 

[

i\ 

kRe4 • kGrH) 

tRe21 
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Acrivos adds that the choice of velocity and 

temperature profiles in his analyeie is somewhat 

arbitrary. 	Other profiles would give different ranges of 

(GrH/Re2) within which both free and forced convection are 

important. 	The results obtained by Acrivos are only 

applicable to the case of aiding free and forced 

convective flow. 

Sparrow and Gregg54  assumed velocity and 

temperature profiles which were functions of (GrH/Re2) in 

series form. 	These were substituted in the boundary 

layer equations and the energy equation to obtain a set 

of ordinary differential equations. 	These equations were 

then solved numerically at Prandtl numbers of 0.01, 1.0 

and 10.0. 	By comparing the heat flux predicted by these 

solutions with that predicted for forced convection alone, 

they concluded that, for both aiding and opposing flows, 

free convection is negligible when 

(GrH/Re2) 0.225 	0.01<Pr4(10.0 (2.46) 

Sparrow, Eichhorn and Gregg 55  also analysed 

the equations of motion and energy using assumed velocity 

and temperature profiles. 	Their solution may be 

summarised in tabular form as 
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TABLE 3. 

RESULTS OF SPARROW, EICHHORN AND GREGG55  

Forced convection 	Free convection 
negligible 	negligible 

Aiding flow 

Pr = 0.7 

Opposing flow 

Pr = 0.7 

GrH/Re2  > 16 

Separation occurs 
and no solution 
is presented 

Gr /Re2  < 0.3 

Grll/Re2  < 0.3 

Van der Hegge Zijnen 56  proposed that if heat 

transfer were occurring in a horizontal air stream, then 

the interaction of free and forced convection could be 

represented vectorially as : 

Nu2 	= Nu2 	Nuforced resultant 	free 	forced (2.47) 

Apparently on the basis of earlier experimental 

work, he claims that Nufree and Nuforced may be represented 

by the expressions 

Nufree 

Nuforced 

1 	1 = 0.35 + 0.24 GrH
/8  + 0.41 GrH

1. 
 

= 0.35 + 0.5 Re1/2  + 0.001 Re 

(2.48) 

(2.49) 

From equations (2./,8) and (2.49) he obtained : 

18 	14 21  

( 

0.24GrH  -0.41GrH 
Nuresultant - 0.35 

(Nuresultant-0.35)  = 0.5Re°  .5 

+0.001 Re 

(2.50) 
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The results of his experiments performed with a 

Platinum wire at GrH  = 0.0066 and 0.95 (Re (79.3, and with 

a brass cylinder at GrE  = 4412 and 44.5 (Re (8150, are 

presented as separate logarithmic plots of Nu vs. Re. 

The data are seen to be better represented by the equation 

for combined free and forced convection, equation (2.50), 

than by that for forced convection alone, equation (2.49). 

It is interesting to note that for the platinum 

wire, the curves for forced convection alone and for 

combined free and forced convection predict Nusselt numbers 

less than 5% different for Re) 4. The corresponding value 

for the brass cylinder is Re) 936. 	If the corresponding 

values of the group Gru/Re2  are calculated the results 

obtained are 

for the platinum wire, free convection negligible if 

GrH/Re2  ( 0.0004 ; 

for the brass cylinder, free convection negligible if 

GrH/Re2  ( 0.0005 . 

In an experimental programme, Yuge 57 investigated 

both transient and steady state heat transfer from spheres 

in a wind tunnel. 	The experiments covered the Reynolds 

number range 3.5 (Re (1.44 x105 and the Grashof number 

range 1 <GTH  < 1.05 x105. 

A plot of (Nu - 2) vs. Re on logarithmic 

co-ordinates indicates that at Reynolds numbers above 10 
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the data may be correlated by 

Nu = 2 + 0.'r93 Re1/2 
	

(2.51) 

At Reynolds numbers below 10, however, the data begin to 

fall below the correlating line of equation (2.51). 	This 

was interpreted by Yuge as an effect of free convection. 

For Reynolds numbers below 10 the author proposed a 

graphical procedure to relate the interacting effects of 

free and forced convection. 	By consideration of the 

results of previous workers 30,58,59for  free convection 

alone, Yuge obtained the correlation 

Nufree 	2 + 0.392 Gr1/4  1 (Gr (105 

NR 	0.493 Re
1/2  

1 NG 	0.392 GrH
/4 
 

Defining 

(2.52) 

(2.53) 

(2.54) 

NK  = Nu --2 
	

(2.55) 

Yuge plotted his data as NK  vs. NR. 	The resultant graph 

shows a series of similar curves for different values of 

the parameter NG. 	The Nusselt number for combined free 

and forced convection heat transfer may therefore be read 

from this graph if the Nusselt numbers for free and forced 

convection alone can be predicted. 

Pei 60 investigated the interaction of free and 

forced convective heat transfer from spheres in a vertical 

wind tunnel. 	The air stream could be directed either 
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upwards or downwards thus permitting both opposing and 

aiding flow. 

The results of this work are presented as 

logarithmic plots of (Nu/Re1/2) vs. (GrH/Re2) and 

(Nu/GrH1/4) vs. (GrH/Re2). 	In both cases the data for 

opposing and aiding flow fall on a single curve except 

in the range 0.3 ((GrH/Re2) (10 . 	In the case of 

opposing flow minima occur at (Gr /Re2) 43= 1 whilst for 
aiding flow (Nu/Re1/2) increases and (Nu/Gr1/4) decreases 

over the complete range of the investigation i.e. 

60 (Re (6000 ; 2 x103  ((GrH/Re2) (10. 

Apparently by comparison of the experimental 

data with the asymptotic solutions of Acrivos 53, Pei 

concludes that free convection is negligible when (GTH/Re2) 

(0.05 and forced convection negligible when (GrH/Re2)) 100. 

Of the heat transfer correlations presented for 

the interaction of free and forced convection, those based 

upon the group GrH/Re2  have the greatest theoretical 

justification. 	The analogous nature of the heat and 

mass transfer processes suggests that data for interacting 

free and forced convective mass transfer may also be 

successfully correlated in terms of the group (Gr/Re2). 
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CHAPTER 3. 

THEORETICAL CONSIDERATIONS. 

3.1. EQUATIONS OF MOTION AND DIFFUSION. 

In theoretical attempts to predict mass transfer 

from a single drop to the surrounding medium, it is 

common to represent the drop as non-oscillating, non-

vibrating, of constant volume, and with an initial 

temperature equal to that of its surroundings. Although 

some attempts have been made to derive a model allowing 

for internal circulation, it is common to examine 

theoretically the situation in which the drop surface may 

be considered rigid. 	Further, if the heat of dissolution 

is small, and if velocity gradients are not large so that 

the heat generated by viscous dissipation is small, the 

system may be assumed to be isothermal. 

With the additional assumptions of 

i) no influence of magnetic, nuclear, or electrical 

forces; 

ii) a Newtonian fluid; 

iii) a two component system; 

the equations of continuity, momentum, and diffusion for 

the system may be written in vector notation as 

continuity equation 61s 

IR 	p (V. -17) = 0 	 (3.1) 
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momentum equation 61  

ADt = -N7p +iDE +11:C727‘1- + 1/3 tIV(V.iT") + 2(Vp. )3P-7.; 

+(Vp.)x(Vx -Tr) - 2/3(N7/4) (S7.77) + KN7(N7.) 

4-N7K(N7.-T) 

(3.2) 

diffusion equation 62 

DCA 	+ CA  (V..7) = VP Dv 	

CA , 

P (3.3) 

In principle, since the temperature is constant, 

equations (3.1), (3.2), and (3.3), together with 

P = f (P, 

f (P, 

f (139 

Dv 	f (P, 

could be solved to give CA, f) 

cA) (3.4) 

CA) (3.5) 

CA) (3.6) 

cA) (3.7) 

29 ti° 9 Dv, K, and 7 as 

functions of position and time. 	The concentration 

gradient at a point on the body surface, and hence the 

local mass transfer rate, could then be obtained at a 

particular instant of time. 	A double integration over 

surface and time would then give the total amount of 

mass transferred in any specified time interval. 

The calculation of mass transfer by this 

procedure is dependent upon a solution of equations (3.1) 
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to (3.7). 	The complexity of these equations is such that 

an analytical solution is impossible while a numerical 

solution, even if possible, would require so much labour 

that it would be impracticable. 	It is therefore necessary 

to consider the possibility of simplification of these 

equations in such a way that they are rendered soluble 

without making the mathematical model too far removed 

from the true physical situation. 

For free and forced convection to interact, 

the bulk velocity must be low; of the same order of 

magnitude as the velocities encountered in free convective 

motion. 	At these low velocities the continuous phase, 

even if a gas, may be considered incompressible. 	The 

density, f) , may therefore be considered independent of 

pressure. 	In many mass transfer operations the 

concentration and pressure gradients are small and the 

diffusion coefficient, Dv, and the viscosity, ti which 

are weak functions of concentration and pressure, may be 

considered constant. 	It is important to note, however, 

that when free and forced convection interact, density 

cannot be considered independent of concentration. 

Free convective forces are solely due to density 

differences which exist between the solvent and the 

solution formed by mass transfer. 	Except in cases of 

fluids subject to rapidly varying forces, such as 
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ultrasonic vibrations, the bulk viscosity, K, may be 

taken as zero 61  

On introduction of the above simplifications, 

equations (3.1) to (3.7) reduce to : 

0 	(3.8) 

pD = P - 	1/3111 v cc.7 	 (3.9) 

DC 

Dt
A  CA ( 	) 	( 

where p. and D.V. are constants and 

(3.10) 

f) = f (CA) 	(3.11) 

Equations (3.8) to (3.11) are still too complex 

to be useful in obtaining solutions to mass transfer 

problems. 	Further simplification is therefore necessary. 

The major influence of the density differences 

is upon body forces, represented by the term F)E in 

equation (3.9). 	In order to achieve further 

simplification of equations (3.8) to (3.11), density 

variations may be neglected elsewhere in these equations. 

Writing the constant density of the bulk fluid as pc , and 
the variable density of the body force term as f), 

equations (3.8) to (3.11) reduce to 

V. v = 0 	(3.12) 



Dt
A 
 = DtiT  V 2 A 

p= 	( cA) 

DC 
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Po If)  = P - V P +4\7 2  5- 	 (3.13) 

Equation (3.13) may be rewritten as 

= (p— pc) ) E 	poE — 	v2 v 
(3.16) 

If the quantity Po' the pressure at a point in 

the fluid when the fluid is at rest, is introduced then, 

since 

V Po = 	Jo  g 
	

(3.17) 

equation (3.16) becomes 

Po Dt = ( f)—po ) E — V(P—P0 ) + ti.v 2  v (3.18) 

In equation (3.18) the quantity (p-100) g 

represents the buoyancy force due to density differences. 

Writing (P-P0) as PI, the set of equations representing 

the system becomes 

. 5 = 0 	 (3.19) 

Po Dt = (p—p0) g - 	+FL \7 2  V- 	(3.20) 

DCA 
Dt 	Dv  2 CA  (3.21) 

(3.22) 
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In the case of free convection or forced 

convection alone, equation (3.20) may be further simplified; 

for free convection alone there is no bulk flow and VP' 

is very small and may be neglected; for forced convection 

alone buoyancy forces are negligible and the term 

(f)-ID0) g may be omitted. 	Thus for situations in which 

mass transfer is by free convection or forced convection 

alone,the equatiotim describing the system are more simple 

than for the general case where the two effects interact. 

In addition, when mass transfer is by free convection or 

forced convection alone, equations (3.20) and (3.21) may 

often be further simplified by means of the boundary layer 

concept. 	rihen mass transfer from a rigid drop occurs in 

the presence of interacting free and forced convection, 

these two effects are normally opposed and the flow 

patterns around the drop may be expected to be complex 

and inherently unstable. 	In this situation the assumption 

of a thin boundary layer is unlikely to be valid. 

Therefore, for the situation at present under investigation, 

i.e. mass transfer from a rigid drop with interacting 

free and forced convection, it is not possible to solve 

equations (3.19) to (3.22) as has been done for forced 

convection and free convection alone. 

It is possible, however, by consideration of the 

dimensionless forms of equations (3.19) to (3.22), to 



decide which dimensionless groups may be expected to be 

of importance in the correlation of mass transfer data. 

In order to do this the following substitutions are 

introduced 

56. 

* t* Uinf. 	 =  21  
dCh 	P U  

11* 
CA  - CAo 
CAs CAo P* P —  P0  

As 
The operator V is made dimensionless by multiplication 

by dCh, i.e. 

* 	= 	dCh7 
	

and (V* )2 
	

dCh 	
2 

• 

In the above dimensionless quantitiesUinf  is the 

undisturbed bulk velocity, CAs  the saturation concentration, 

CA0  the bulk concentration, and (Js  the density of the 

saturated solution. 	With the above substitutions equations 

(3.19) to (3.21) become 

V* . v 	= 0 	(3.23) 

Dv* 	Gr 	 
DT7 	= 	 Re 2 g  p* —v* Pe* 

(V ) v * .2 -* 

DCA* 	1 
157 	Re.Sc 

(3.24) 

(N7*)2  CA* 	(3.25) 

where Gr As Po 
po 

dCh p Ch o g 
Re - ifinf.1)0 dCh  

9 

  

and Sc 

  

Po Dv 
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From this analysis it may therefore be concluded 

that : 

CA 	
f 
 ( Re.

Gr 
2 	Re, Re.Sc, t, position) (3.26) 

The mass flux of component A at the surface is 

given by 

= 	1.1
v 	b(SI

A 
qA  surface 

(3.27) 

where --- denotes differentiation in the direction of the OTT 

normal to the surface. 	This mass flux may also be 

defined in terms of the local mass transfer coefficient, 

kloc' by : 

qA = kloc (cAs - 0Ao) (3.28) 

where the surface concentration is taken to be the 

saturation concentration, C -As' 	Combination of equations 

(3.27) and (3.28) gives : 

kloc 	 CA 
70 	

1 
(CAs CAo )  • TFT- 1 surface 

(3.29) 

Introduction of the following dimensionless 

substitutions : 

CA  CAo  CA  CAs - CAo 
N* N 

dCh 
leads to 

kloc 	1 
D
v 	d Ch surface 

(3.30) 
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or 
d 	

CA 

loc •

Dv 

Ch  
6 g7 = Sh 	— 

7: 	el   surface (3.31) 

k •  

Equation (3.31) shows that the local Sherwood 

number, Shloc' at a point on the surface is the 

dimensionless concentration gradient normal to the surface 

at that point. 	From equations (3.26) and (3.31) it may 

therefore be concluded that : 

position 
Shloc = f (Re, Gr/Re2 , Re.Sc,on surface, t) 	(3.32) 

The overall Sherwood number, Sh, for the whole 

surface is then given by : 

Sh = f (Re, Gr/Re*, Re.Sc, t ) 	(3.33) 

If the mass transfer is considered to be steady 

state in the time average, the equation (3.33) reduces to 

Sh = f (Re, Gr/Re2, Re.Sc ) 	(3.34) 

Equation (3.34) may also be expressed in the more general 

form 

Sh = f (Re, Gr, Sc ) 	(3.35) 

As a result of the above analysis, the 

dimensionless groups Re, (Gr/Re2), (Re.Sc), and Sh, are 

expected to be of importance in the correlation of mass 

transfer data for situations in which free and forced 

convection interact. 	The group (Gr/Re2) represents 

the ratio of buoyancy forces to inertia forces. When 
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(Gr/Re2) is very small, buoyancy forces are negligible 

compared with inertia forces i.e. the effects of free 

convection are negligible. 	Conversely, when (Gr/Re2) 

is very large, inertia forces are negligible compared with 

buoyancy forces and the effects of forced convection are 

negligible. 

From the above considerations it is evident that 

the group (Gr/Re2) provides a criterion for deciding 

whether free or forced convection may be neglected in the 

prediction of mass transfer rates or whether both must be 

taken into account. 

3.2. 	CHARACTERISTIC DIMENSIONS. 

In principle, mass transfer data for any series 

of geometrically similar shapes may be represented by a 

single correlation in terms of the dimensionless Reynolds, 

Sherwood, Schmidt, and Grashof numbers. 	In these 

dimensionless groups any representative dimension may be 

used as a characteristic dimension. 	For example, data 

for a series of oblate spheroidal shapes of different 

size, but the same eccentricity i.e. ratio of minor to 

major axis, could be uniquely correlated by use of the 

major axis as the characteristic dimension. 

If the data have been obtained from experiments 

using a set of geometrically related though not 
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geometrically similar, shapes, the problem becomes more 

complex. 	In this case it is necessary to introduce a 

further dimensionless group reflecting the shape variation. 

The present investigation, mass transfer from oblate 

spheroids of various eccentricities, falls into this 

latter category, the shape eccentricity, e, being the 

obvious choice of additional dimensionless group in this 

case. 

Previous workers have attempted to account for 

the effect of shape by use of a shape dependent 

characteristic dimension in the Reynolds, Sherwood, and 

Grashof numbers, rather than by basing these groups on a 

shape independent characteristic dimension and introducing 

an additional dimensionless group to account for the shape 

variation. Dimensions which have been used in this manner 

are the following : 

1) the diameter of the sphere of the same 

volume as the body2,5,7,6,9,63,64; 

2) the length of the minor axis 9911;  

3) the surface area of the body divided by the 

perimeter normal to flow 9'11'35. 

4) the diameter of the sphere with the same 

surface area as the body 9'11; 

5) the arithmetic mean of the major and minor 

9 axes 11  9 



61. 

6) the diameter of the sphere of the same 

volume as the body multiplied by the sphericity of the 

" body ' 11 65 0   

7) the length of the major axis 9. 9 

8) the cube root of the product of all three 

axes 3. 

A further possible characteristic dimension, which may be 

added to the above is the geometric mean of the major and 

minor axes. 

The diameter of the sphere of the same volume 

has been widely used since it is particularly useful when 

the total drop volume and the number of drops are known. 

The drop volume and hence the characteristic dimension 

can be estimated without a knowledge of drop shape. For 

this reason it is also common to base the associated mass 

transfer coefficient upon the surface area of the 

spherical drop of the same volume, although the true 

surface area may also be used if available. 

The volume of an oblate spheroid is related to 

the semi—major and semi—minor axes, g and f, by the 

expression : 

V = 	ic f g2 
	

(3.36) 

The diameter of the sphere of the same volume 

as the spheroid is therefore given by : 

d1 = (8 f g2)1/3 	(3.37) 
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In terms of the spheroid major axis, dM' and the 

eccentricity, e, this may be written 

d1 dM 
e1/3 	 (3.38) 

The spheroid minor axis, d2, was considered as 

a potentially useful characteristic dimension by Skelland 

and Cornish 9. 	It is related to f by : 

d2 = 2f 	 (3.39) 

and to the major axis by 

d2 = dM  e 
	 (3.40) 

The total surface area divided by the perimeter 

normal to flow, d3, was successfully employed by Pasternak 

and Gauvin 35 to correlate mass transfer data for spheres, 

cylinders, prisms, hemispheres, and cubes, by the single 

expression : 

Sh3 = 0.692 Re30.514  Sc1/3 
	

(3.41) 

This expression correlated the experimental 

results with a "deviation" of 15% although no mention is 

made of whether this deviation is average, standard, or 

maximum. Pasternak and Gauvin also successfully applied 

this dimension to the results of other workers notably 

Williams 66 Powell  52, Linton and Sherwood 28 Maisel 

and Sherwood 29 and Krischer and Loos 25  

From the expression for the surface area of a 

spheroid, i.e. 



e2 
2 

4(1-e2)* 
in 
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(3.42) 

	

, 	_f  ( e2)1/2 
A = 2ng2  + it( 	 ln F) 	 ( g2 _f2 	g 	(g2—f2)1/2  

d
3 can be shown to be related to f and g by the 

following expression : 

d
3 	

g + 	f 

2 (g2  -f2 	
ln g 

g  - 
2  

(3.43) (g2-f2 yfr) 

g2 

In terms of the major axis this becomes : 

2 	+ (1-e2)°  d 	d 	1/2 + 	 3 	 In 

	

4(1-e2)-2- 	1 - (1-e2)* 
(3.44) 

 

The diameter of the sphere of the same surface 

area as the spheroid, d4, has the obvious advantage that 

the true surface area is retained. 	In terms of f and g 

and of dM and e it may be written 

d
4 	

2g2 + g  
a 

In (g2_f2) 2  

d4 = d
M  

*MP 

The equivalent expressions for d5, the 

arithmetic mean of major and minor axes is : 

d
5 

= g + f 
	

(3.47) 

d
5 	dM  (1 	12- e) 
	

(3.48) 

The sphericity multiplied by the diameter of 

the sphere of the same volume as the spheroid has been 

successfully employed in the field of multiparticle 

technology 67 
	

The sphericity is defined by 

( g 	

( g2 _f2 )* 

( g2 	) 2  g +  

( 
1 (1-e2)1 

 )1' 
1 (1-e2)* 

(3.45) 

(3.46) 
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0 Surface area of sphere with same volume as spheroid 
Surface area of spheroid 

to d1  by 

It may also 

d6 = 

d6 

The characteristic dimension, d69  is related 

d6 	= 	0 d1  

be written 

- 	 8 f g 

(3.49) 

(3.50) 

(3.51) 

2g + f2/(g2-f2  )2 

+ 	e 

In 

In 

g  

1 

+ ( g2 _f 2 )-f) 

_ (elf2)-7-z 

1 
+ (1 -e2)2  

2e 	4(1-e2)2  
• 011.1. 

1 - 	(1-e-2  )-1- 

It is interesting to note that this characteristic 

dimension, d6, is identical to that defined by 

= 6V dCh 	A 

and used by Tsubouchi and Sato 65. 

(3.52) 

Use of the major axis itself as a characteristic 

dimension is equivalent to the assumption that shape has 

no effect on mass transfer. 	Nevertheless, for 

completeness it may be expressed as a further characteristic 

dimension, d7, where : 

d
7 

- 2g 	(3.53) 

d7 	
dM 
	

(3.54) 

The geometric mean of the major and minor axes, 

d8, may be written 
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d8 = (2g.2f)2  = 2(f.g)2 	(3.55) 

or 	d8 = d M  e2 
	

(3.56) 

The cube root of the product of all three axes 

of the spheroid has been used by Lewis, Jones, and Pratt 3. 

When expressed in terms of f and g or dM  and e it reduces 

to the same expressions as for d/  : the diameter of the 

sphere of the same volume as the spheroid. 

As shown above the characteristic dimensions 

d1 to d8 may be expressed as the product of the major 

axis, dM, and a particular function of the eccentricity, 

e. 	If in general, mass transfer from oblate spheroids 

may be expressed as 

Sh = f (Re, Sc, Gr, e) 	(3.57) 

where the groups Sh, Re,.and Gr are based upon the major 

axis of the oblate spheroid, the choice of a particular 

characteristic dimension is equivalent to rewriting 

equation (3.50) as 

[Sh.1P(e)] = f [Re4(e), Sc, Gr.(*(e))3] (3.58) 

where the particular characteristic dimension employed 

is related to the eccentricity by : 

dCh 	dm.* (e) 	(3.59) 

Although this approach somewhat limits the 
7 

generality of equation (3.56), a single correlation for 
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mass transfer data for oblate spheroids of different 

eccentricities in terms of a simple characteristic 

dimension would be extremely convenient. 	Such 

correlations have been presented by other workers and an 

attempt will be made to correlate the data of the present 

work in this manner. 
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CHAPTER 4. 

EXPERIMENTAL APPARATUS AND TECHNIQUES. 

4 • 1• 	INTRODUCTION. 

In Chapter 3 consideration was given to the 

possibility of the theoretical prediction of mass transfer 

rates from drops to a surrounding medium in the presence 

of interacting free and forced convection. 	It was shown 

that, although the dimensionless forms of the equations 

of motion and diffusion may be used to obtain useful 

information concerning the dimensionless groups likely to 

be of interest in this situation, the complexity of the 

equations describing the system is such that a solution 

cannot be obtained without the introduction of assumptions 

which would make the equations no longer representative 

of the physical situation. 

From these considerations it it evident that, 

with mass transfer theory in its present rudimentary 

state, the prediction of the mass transfer rates from 

drops to the surrounding medium in the presence of 

interacting free and forced convection must rely mainly 

upon empirical correlations. 	The survey of the 

literature, Chapter 2, shows, however, that a great deal 

of confusion and contradictory evidence exists concerning 
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the effect of the interaction of free and forced 

convection upon mass transfer rates. 	Furthermore, 

although there is much evidence to suggest that drops of 

one liquid falling or rising through a second liquid are 

frequently oblate spheroidal, rather than spherical, in 

shape, previous workers who have been concerned with the 

prediction of mass transfer rates from a single drop or 

solid particle in situations in which free and forced 

convection interact, have concentrated solely upon the 

spherical model. 

In the light of the above considerations it was 

decided to carry out an experimental programme to obtain 

data for mass transfer from oblate spheroidal bodies in 

the presence of interacting free and forced convection. 

In order that the effects of shape and Reynolds number 

could be accurately studied, the oblate spheroidal bodies 

were to be rigidly supported in a fluid stream flowing at 

a controlled velocity. 	This model represents the fall 

or rise of liquid drops through a second liquid but 

eliminates the effects of oscillations, deformations, and 

internal circulation, which may be present in liquid-

liquid systems. 

The system selected for the experimental study 

was benzoic acid - water. 	This system has been 
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successfully employed by previous workers 24,26,38,44,47  

for mass transfer studies at low Reynolds numbers and has 

the advantage that most of its physical properties are 

well established. 	The Grashof number of this system is 

high at room temperatures and it is therefore particularly 

suitable for studies in which the effects of free 

convection are to play an important role. 	Benzoic acid 

has the added advantage that it may be formed into 

accurately reproducible solid shapes. This subject is 

discussed in more detail in Section (4.3.1). 

When drops of one liquid rise or fall through 

a second liquid the effects of free and forced convection 

are normally opposed. 	In order to represent this 

situation for the benzoic acid — water system, in which 

free convective forces act vertically downwards, the 

oblate spheroidal benzoic acid bodies were to be supported 

in a water tunnel in which the flow was vertically 

upwards. 	The oblate spheroidal bodies were to be 

supported with their minor axes parallel to the direction 

of flow. 	The range of Reynolds numbers to be investigated 

was 0 .g:Res‘.  200; the data of other workers 24,26 

suggest that this is the range of greatest interest with 

regard to the interaction of free and forced convection 

in benzoic acid — water systems. 
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An attempt was also to be made, by means of the 

schlieren technique, to photograph the flow patterns 

around the dissolving test bodies. 	If such photographs 

could be obtained they would provide useful qualitative 

evidence concerning the velocity distribution in the 

neighbourhood of dissolving bodies in situations in which 

free and forced convection interact. 

4.2. WATER  TUNNEL. 

4.2.1. 	DESIGN CONSIDERATIONS. 

The major difficulties in the design of water 

tunnels to operate at low Reynolds numbers lie in the 

creation of a stable velocity profile and the measurement 

of local velocities. 	Steinberger and Treybal 26  

established known Poiseuille parabolic profiles by the 

use of very tall, small diameter columns. 	Use of such 

columns meant that the ratio of the sphere diameter to 

the column diameter was very high; in one case 0.497. 

7170 69 68, 	, 	, There is much evidence 61, 	to indicate that, 

at such high values of this ratio, the containing wall 

has a profound effect upon the flow patterns around the 

test body. 	This effect becomes particularly important 

at low Reynolds numbers. When conditions of "creeping 

flow" exist, i.e. when Re 4K1, theoretical analyses of 
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the simplified equations of motion are possible. 	The 

results of such analyses, summarised by Happel and 

Brenner 61, show that the wall effect is significant 

even at ratios as low as 0.1. 	Experimental observations 69  

of the terminal falling velocity of liquid drops in a 

second liquid indicate that, in the Reynolds number range 

3 <Re <1200, the effect of the wall on the terminal 

falling velocity is less than 1% for values of the drop 

diameter ratio less than 0.1. 	It is evident that, for 

low Reynolds number investigations, this ratio should be 

as low as possible. 	In the light of these considerations, 

it was decided to use a 1:12 ratio in the present work. 

Furthermore, in order to approach as closely as possible 

the ideal of an infinite medium, it was decided to employ 

a flat velocity profile rather than a parabolic one. 

In order to obtain a flat profile with little 

turbulence, Garner and Keey 24   used a contraction section 

in conjunction with screens and honeycombs. 	Although 

they used a mean velocity based on volumetric throughput 

and cross-sectional area of the test section, these 

workers do not appear to have made any attempt to verify 

that the velocity profile was, in fact, flat. 	The use 

of the mean velocity was necessitated by the' extreme 

difficulty of measuring the very low local velocities used 
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in their work. 	Nevertheless some qualitative check on 

the velocity profile would have been useful. 

The large scatter of Garner and Keey's data is 

primarily due to the photographic technique used to 

determine the amounts of mass transferred. 	However, the 

increase of this scatter with decrease of the Reynolds 

number suggests that instability of the velocity profile 

may have been a contributory cause. A new approach to 

the design of low speed water tunnels was therefore used 

in the present work in an attempt to produce a flat 

velocity profile that would be stable down to Re < 5. 

This new design was based upon the use of a packed bed. 

The use of packed beds to produce flat 

velocity profiles was suggested by the work of Arthur, 

Linnett, Raynor and Sington 72 	These workers measured 

the velocity profile across an air stream leaving a bed 

of carbon granules. 	The profile was determined by 

several methods and the effects of packing size, pre-bed 

air distribution and volumetric throughput investigated. 

The results indicated that the bed always tended to 

flatten the velocity profile and that decrease of 

particle diameter to column diameter ratio and decrease 

of volumetric throughput improved the "flatness". 	The 

pre-bed air distributors were quite crude but served to 
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illustrate that the better the pre-bed distribution the 

flatter the post-bed velocity profile. 

Although the velocities used by Arthur et al. 

were high (of the order of 3 ft./sec.) the general trend 

of their work suggested that a packed bed could be 

successfully employed in the design of a low speed water 

tunnel, particularly since considerable improvements to 

their apparatus, in respect of pre-bed distribution and 

particle diameter to column diameter ratio, were possible. 

The use of packed beds in the design of low 

speed water tunnels considerably simplifies construction 

as it obviates the need for a bulky contraction section 

and, as a stream of low intensity of turbulence is 

provided, it also eliminates the need for a series of 

gauzes to reduce turbulence intensity. 	It was felt, 

therefore, that if such a design were proved to be 

successifi the concept would be of value to future 

workers. 

4.2.2. 	STRUCTURAL DETAILS. 

The water tunnel used in the present work had 

an overall height of 4 feet 1 inch and an internal cross- 

section of 1 ft. x 1 ft. 	As schlieren photography was 

to be an important part of the work, a tunnel of square 
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cross section was necessary in order to avoid the 

distortion caused by wall curvature. A drawing of the 

water tunnel is included, fig. (1), and a photograph, 

fig. (2), shows a general view of the equipment. 

The water tunnel was constructed of 16 gauge 

mild steel flanged sections and incorporated a viewing 

section of 1/2 inch thick perspex. 	The metal sections 

were coated with a phenolic resin, "P/N Lithcote", to 

prevent corrosion. 	Samples of the material had been 

tested in saturated solutions of benzoic acid for 

several weeks without any sign of corrosion. 	The 

sectional construction of the column allowed flexibility 

when preliminary investigations of packing size, type 

and depth were carried out. 	The packing finally 

selected, on the basis of the post-bed velocity profile 

(Section 4.5.3), was a coarse grain sand, 8 to 12 mesh. 

A depth of 161 inches was used. 

Care was taken when packing the column to 

ensure that no air was trapped in the bed. 	The column 

was filled with water before the thoroughly washed, wet 

sand was introduced. 	The bed was continuously stirred 

as the packing was added. When all the packing had 

been introduced the top of the bed was levelled. 

73 Muskat 	points out that packing sand in the above 
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FIG. 2 GENERAL VIEW OF THE APPARATUS 
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manner results in an .assemblage so nearly equal to the 

minimum porosity that further agitation or compression 

produces an almost inappreciable decrease. 	The 

structure of the bed was not, therefore, changed during 

the experimental work by settling. 

gater entered at the base of the column 

through an eight armed distributor, fig. (3), constructed 

of 5/16 inch outside diameter brass tubing soldered 

into a central, 2 inch diameter, copper manifold. 

The 3/64 inch diameter outlet holes were on the underside 

of the distributor arms so that the emerging jets 

impinged onto the bottom of the column thus improving 

distribution. 	The exact number of these holes and their 

distance from the column centre line was such that the 

volumetric output per unit column cross-section was, 

as nearly as possible, constant. 	The distributor was 

tested in air, holes being added or blocked with solder 

in order to achieve as good a distribution as possible. 

The bottom six inches of the column were not 

packed and acted as a calming section. 	This section 

was followed by the packed bed supported on a heavy 

gauge wire gauze bolted between flanges. 	On leaving 

the packed bed the water passed through the perspex 
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viewing section and left the column over a weir. 	The 

weir was fitted with adjustable plates clamped against 

the outside of the column wall by 16 screw jacks, fig. (4). 

The use of these plates allowed the weir to be 

critically levelled, thus preventing disturbance of 

upstream flow patterns by preferential flow of water 

over only part of the weir. 	The weir plrtes were of 

1/8 inch x 12 inch brass strip. 	A cork gasket prevented 

leakage between the plates and the column wall. 

Even when the plates were perfectly level, a 

surface tension effect caused channelling over the weir 

at low flow rates. 	To overcome this, a strip of the 

cork gasket material was glued to the outside of the 

weir plates and trimmed flush with the top. 	This 

modification proved highly successful and once the cork 

was thoroughly wet, uniform flow occurred over the 

whole length of the weir even at the lowest flow rates 

used. 	The open topped column design allowed the test 

body to be easily introduced with little disturbance to 

flow. 	Water flowing over the weir was collected in an 

overflow section from whence it returned by gravity to 

the feed tank. 

A 1/2 inch thick, 1 ft. 104 inch square, 

aluminium plate, shown in fig. (1), covered the column 
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top and overflow sections. A 2 inch diameter hole at 

the centre of this plate permitted entry of the test 

object. 	Four 3-1- inch lengths of 1 inch x 1 inch x 

1/8 inch thick brass angle were screwed to the top of the 

plate to form a 32 inch square that was concentric with 

the 2-i inch diameter hole. 	To ensure positive and 

accurate positioning of the test body, the square end 

of the spheroid support rod, fig.(6), Section (4.2.4), 

fitted into the brass angle recess. 	Also cut into 	the 

top plate was a 6 inch diameter view hole which was 

provided with a perspex dust cover. 

The water tunnel assembly was supported on a 

frame constructed of 1 inch outside diameter galvanised 

piping and "Keeklamp" fittings. 	Lemich and Levy 74  have 

shown that free convective mass transfer is unaffected by 

vibrations unless the amplitude or frequency of the 

vibrations is large. 	As a precautionary measure, however, 

the water tunnel frame was mounted on "Tico" antivibration 

pads to damp out any vibrations which might be transferred 

from other equipment through the structure of the building. 

The pump used was also mounted on a "Tico" pad and was 

connected to the rest of the apparatus by short lengths 

of rubber hose. 

The working temperature used, 25.0°C, was 
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close to room temperature, but as a precaution against 

heat losses the metal sections of the column were 

insulated with 1/2 inch thick sheets of "Spandoplast" 

expanded polystyrene. 	The 1 inch delivery line between 

the feed tank and the column was lagged with asbestos 

rope. 

4.2.3. 	ANCILLARY EQUIPMENT. 

The feed tank was made of copper and measured 

2 ft. 6 inches x 2 ft. x 2 ft. high. 	A mercury-toluene 

switch controlled a 1 kW. heater to maintain the tank 

temperature at 25.0°C. 	Water in the tank was efficiently 

mixed by a propeller type stirrer driven by a small 

electric motor. 	In consequence, the temperature could 

be easily controlled within limits of + 0.1°C. 	To 

permit operation at 25.0°C. when the ambient temperature 

was in excess of this value, the tank was fitted with 

a cooling coil made of 1/2 inch diameter copper tubing. 

The flow of cooling water from the mains was controlled 

by a gate valve. A 42 kW. boost heater enabled the 

system to be brought rapidly to the working temperature. 

A wooden cover was fitted to the tank to prevent the 

entry of dust from the atmosphere. 

Water was pumped from the feed tank to the 



82. 

column by a Stuart-Turner No.21 centrifugal pump. A fine 

copper gauze in the pump suction line acted as a filter. 

The stainless steel impeller was designed to deliver 

500 Imp.gall./hr. against a 35 ft. head. 	As shown in 

fig. (5), a 1 inch nominal diameter by--pass line allowed 

water to be returned from the pump outlet to the feed 

tank without passing through the column. 	By combined 

operation of the gate valves on the by-pass and delivery 

lines the column throughput could be accurately controlled 

without heavy throttling of the pump. 	Some throttling 

was advisable, however, since this mimimised 

fluctuations in delivery rate. 

The delivery line was fitted with flanges 

between which was bolted one of five interchangeable 

orifice plates. 	The pressure tappings were connected 

directly to an inverted U-tube manometer. 	The 

volumetric throughput was calculated from the pressure 

difference by use of the calibration curve of the 

appropriate orifice. 	The manometer recorded pressure 

differences of up to 3 ft. of water. 	To cover the range 

3 <Re8  <200, orifices of diameters 0.15 inches, 0.33 

inches, 0.44 inches, 0.60 inches, and 0.75 inches were 

used. 

Water was returned from the column to the feed 
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tank by a 2 inch nominal diameter pipe. 	By adjustment 

of a valve on the return line, a constant head of water 

was maintained in the overflow section. 	This prevented 

the introduction of air bubbles into the feed tank by 

entrainment. 	The return line, together with all other 

piping'  was of copper. 	Brass "Instantor" fittings were 

used throughout. 

4.2.4. 	SPHEROID POSITIONING AND SUPPORT. 

The spheroid support rod, fig. (6), was 

designed to provide rigid support for the test body with 

3  minimum disturbance to flow. A 2-
4  inch long, 16 gauge, 

stainless steel rod was attached to the test body during 

casting and provided the final section of the support. 

The threaded end of this rod was screwed into a tapped 

hole in the lower end of the main support rod which, in 

turn, consisted of a 13 inch long, 1/4  inch diameter, 

stainless steel rod, turned down to 1/8 inch diameter 

for the final 3 inches. 	The 1/4 inch diameter to 1/8 

inch diameter transition was smoothly accomplished over 

a 1/2 inch length. 	The upper end of this rod screwed 

into the centre of the plane face of a 22 inch long x 

2)2- inch diameter aluminium cylinder. 	A 322: inch square 

x 1/2 inch thick aluminium plate was secured by four 
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Allen screws to the top of the cylinder. 	When the 

spheroid was in the test position, the aluminium cylinder 

and plate mated with the hole and brass angle square on 

the water tunnel top plate. A short length of 1/2 inch 

diameter aluminium rod projected from the 32 inch square 
aluminium plate and served as a handle. 

The above design positioned the test body on 

the centre line of the water tunnel at a level 

approximately half way up the viewing section. After 

preliminary investigation of flow patterns, section (4.5.3), 

an extension piece was added in order to position the 

test body at a lower point, 14 inches above the packed 

bed. 	The extension consisted of a 7 inch long brass 
rod of 1/8 inch diameter. 	By means of a tapped hole at 

one end and a turned down, threaded section at the other, 

this rod was connected between the two sections of 

support rod already discussed. 

4.3. 	PRODUCTION OF BENZOIC ACID SHAPES. 

4.3.1. 	PRODUCTION METHOD. 

Four possible methods of producing solid 

benzoic acid shapes were considered. 	These methods 

were compression, lapping, machining and casting. 
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Trial attempts to machine simple shapes from 

solid benzoic acid showed this to be a very time consuming 

operation even for a skilled machinist. 	Production of 

oblate spheroidal shapes by this method is, therefore, only 

practicable if no simpler method is available. 	The 

compression and lapping techniques have been successfully 

employed in the production of spheres by Garner et al 4,44,47 

and Rowe, Claxton and Lewis 38  respectively. 	Both 

methods depend, however, upon the random rotation of the 

shape during production and are therefore not suitable 

for the manufacture of oblate spheroids. 

Casting, after the initial manufacture of the 

moulds, provides a simple method of making accurate and 

reproducible oblate spheroidal bodies. 	The casting 

technique also allows a support to be rigidly and 

accurately attached to the body during casting. 	This 

technique was chosen for the present work. 

4.3.2. 	EXPERIMENTAL MOULDS. 

Since molten benzoic acid is a highly corrosive 

substance, readily attacking brass, aluminium and 

ordinary steels, the moulds were machined from 58J acid 

resistant stainless steel. 	All accessory parts such 

as bolts and support rods were also made of stainless steel. 



88. 

Because the effects of both shape and Reynolds number, 

upon mass transfer were to be investigated, five sets 

of moulds were manufactured, to produce oblate spheroids 

with eccentricities (ratio of lengths of minor to major 

axes) of 4:16, 7:16, 10:16, 13:16, and 16:16. 	The major 

axis was one inch in each case. 	The shapes were 

sufficiently large to enable accurate measurements of the 

weight losses to be made. 	A detailed drawing of a 

mould, fig. (7), is included. 

The hemispheroidal cavities were cut in the 

die halves with specially made, quarter-elliptical tools; 

the stainless steel blanks being 24 inches in diameter 

and 3/4 inch thick. 	The surfaces of these cavities 

were polished to produce a mirror finish with a 

tolerance of + 0.002 inches. 

Incorporated in the mould assembly, together 

with the two die sections, was a top plate, 1/2 inch 

thick and 2T inches in diameter, fitted with an L-shaped 

bracket. 	This bracket allowed the spheroid support rod 

to be accurately positioned along the line of the minor 

axis. 	A 3/4 inch diameter hole at the centre of the 

top plate served as a reservoir for excess benzoic acid 

during casting. When assembling the mould a special 

jig was used to ensure correct alignment of the two die 
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halves. 	This jig consisted of a flat plate to which 

three perpendicular pins, set at 120°  to each other, were 

attached; two of these pins were permanently fixed to the 

plate, the third was adjustable. 	The loosely assembled 

mould was held firmly against the two fixed pins and the 

adjustable pin pushed against the mould and screwed down. 

The bolts of the mould assembly were then tightened. 

An assembled mould is shown in fig. (8) together with 

its various components and samples of the five oblate 

spheroidal shapes produced. 

4.3.3. 	CASTING TECHNIQUE. 

Much preliminary experimental work was necessary 

to develop a procedure for casting bodies with 

homogeneous, crack-free surfaces, which separated cleanly 

from the mould. 	The following proved to be the most 

successful technique. 

The assembled mould was placed in an oven, set 

at 145°C, together with a funnel, the tip of which 

projected into the mould cavity through the 1/8 inch 

diameter hole in the upper die section. 	The funnel 

was made from a stainless steel capillary, cemented with 

"Araldite" into a 25 cc. glass syringe. 	The capillary 

was bent slightly so that, when its end was pushed into 
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the mould cavity, the body of the syringe remained in 

an upright position resting against the L-shaped bracket. 

The syringe body was insulated with asbestos string. 

After three or four hours, when the oven had 

reached the set temperature, a glass phial containing a 

weighed quantity .of benzoic acid crystals was placed in 

the oven. 	After a further hour, the benzoic acid, now 

molten, was poured into the funnel from whence it drained 

into the mould cavity. 	The oven was switched off after 

a further five minutes and allowed to cool overnight. 

The spheroid was then removed from the mould. 

By this procedure up to four shapes were cast 

at one time, the limitation being oven size. 	The shapes 

thus produced, with a success rate of about 80%, 

separated easily from the moulds and had, smooth, opaque, 

crack-free surfaces. 	Even small deviations from this 

procedure caused a rapid increase in the failure rate; 

the most critical factors were casting temperature and 

the length of time for which the oven was left on after 

pouring the molten acid. 

After removal from the mould the small amount 

of flash was cniefully trimmed with a razor blade and the 

shapes, wrapped in paper tissues, stored in bottles 

containing some benzoic acid crystals. 
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Garner et al.44'47claimed that the crystal 

structure of cast shapes would cause irregular 

dissolution. 	Examination of the cross sections of the 

shapes produced by the above technique showed, however, 

that the crystals near the surface were small, dense, 

compact, and of uniform structure. 	Only towards the 

centre of the bodies did the crystals become larger and 

have a more open structure. 	This accounted for the 

densities of the bodies being slightly less than the 

literature 75 value of 1.266 g./cc. for solid benzoic 

acid. 	In the present work the mass transferred was 

always less than 5% of the mass of the body and the 

uniform, dense surface region was not penetrated. 	It 

was thought that the slight variations in crystal 

structure which may have existed in the surface region 

would have had only a negligible effect upon mass transfer 

rates. 	This effect would possibly be less than that 

caused by the stratified structure produced by the 

compression techniques of Garner et al. 

4.4. 	PHOTOGRAPHIC EQUIPMENT. 

It is common practice in present clay research 

work to devise mathematical models to fit experimental 

data. 	For the mathematical model to be of any true 
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value it is essential that, as well as predicting 

experimental results, the model should be closely 

related to the physical situation which it is used to 

describe. 	In order to obtain a better understanding 

of the mechanism of mass transfer from solid shapes when 

free and forced convection interact, a schlioren 

technique 76  was employed to photograph the flow patterns 

around the dissolving test bodies. 	This techniq-ze 

depends upon the deflection of a ray of light by 

refractive index gradients normal to the ray. 

Light from a 1 kW. mercury vapour lamp, 

fig. (9), was focussed onto a pinhole by means of a ai 

inch diameter convex lens of 6 inches focal length. 

The pinhole acted as a point source and was situated 

at the focal length, 94  inches, of a 3 inch diameter 

achromatic doublet. 	The parallel beam leaving this lens 

passed through the test section and was focussed onto a 

knife edge by a 2.3 inch diameter compound lens of 8 

inches focal length. 	The knife edge was positioned such 

that, in the absence of refractive index gradients, 

part of the light was cut off. 

When the dissolving benzoic acid spheroid was 

in position in the test section, density gradients, and 

hence refractive index gradients, were set up in the 
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surrounding fluid, causing deflection of the light rays 

by amounts dependent upon local benzoic acid concentrations. 

The deflected rays either increased or decreased local 

light intensity according to whether deflection was away 

from or towards the opaque side of the knife edge. 

This resulted in light or dark areas when the image of 

the light source was focussed onto a screen or photographic 

plate. 

A Sinar bellows camera was used to photograph 

the flow patterns. 	The lens was removed and the camera 

merely acted as a support for the photographic plate and 

as the shutter, the image being focussed onto the plate 

by the lens immediately preceding the knife edge. 	This 

lens and the camera were positioned so that the image 

formed filled the 5 inch by 4 inch photographic plates 

used. 	The plates, which were Kodak 0.800 "ortho-

superspeed", were developed with Kodak D-76 developer. 

The optical system was mounted on two lengths 

of optical bench supported on platforms fixed either 

side of the water tunnel. 	This arrangement is shown 

in fig. (2). 



4.5. PRELIMINARY EXPERIMENTAL WORK. 

4.5.1. 	ORIFICE PLATE CALIBRATION. 

The orifice plates were designed closely, 

although not exactly to British Standard Specifications 

and calibration was necessary. 

By operation of a three-way cock in the water 

tunnel return line water was collected for measured time 

intervals and weighed. 	The diversion of water from the 

feed tank resulted in a slight change of head at the 

pump inlet and hence in a small change in the flow rate; 

this in turn caused a small change in the manometer 

reading. 	The mean of the pressure differences before 

and after removal of water from the recirculating system 

was used in the calibration. 	To minimise these 

variations not more than 40 lb. of water were removed in 

a single collection and the water level was adjusted to 

a constant datum in the feed tank before each collection 

and before each experimental run. 	Water was collected 

for a period of time recorded on a stop clock and 

weighed to the nearest ounce on a calibrated laboratory 

spring balance. 	All calibrations were carried out at 

25.000. 

Approximately 35 calibration points were 

97. 
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recorded for each of the five orifices and the data for 

each fitted by an equation of the form 

07 (AH)3/2 	C8 (AH) + C9 
(AH)1I2  

	

+ 010 
	(4.1) 

where F is the throughput in lb./min., (AH) the 

manometer reading in centimetres, and C7  - 010  are 

constants. 	The data were fitted by a least squares 

library programme for the University of London Atlas 

computer. 	The mean error between the measured 

volumetric throughputs and those predicted by the 

correlating equation (4.1) was less than 1% for each of 

the five orifices. 	The values of the constants in 

equation (4.1) for each of the five orifices calibrated 

are included in Appendix 2. 

4.5.2. 	TEST SECTION TEMPERATURE DISTRIBUTION. 

A copper-constantan thermocouple, projecting 

from a 2 ft. length of stainless steel capillary, was 

used to explore the temperature profiles in the test 

section. 	The thermocouple junction was coated with 

"Araldite" which served to insulate the junction from 

the water and to cement the wires to the stainless steel 

sheath. 
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The local temperature measurements were carried 

out at various flow rates with the feed tank temperature 

constant at 25.0°C. 	Although the thermocouple could 

detect very small temperature changes, estimated at 

+ 0.05o0, no temperature variations were recorded within 

the whole of the test section. 	Investigations over a 

5 hour period showed no temperature variation with time. 
In view of the constancy of temperature with 

position and time, a single mercury—in—glass thermometer 

was used to measure the test section temperature during 

the main series of experimental runs. 	Two readings, 

one before and one after the runs,were taken. 	Except 

for the free convection runs where the temperature fell 

by a maximum of 0.3°C during the run, the temperature 

was constant at 25.0°C before and after all runs. 	The 

calibrated mercury—in—glass thermometer employed had 

scale divisions of 0.1°C and a range of from 000 to 50°C. 

The thermometer was as accurate as the thermocouple 

and considerably simpler to use. 

4.5.3. 	TEST SECTION VELOCITY PROFILE. 

The combination of relatively large bodies, 

the low range of Reynolds number investigated, and the 

use of water as the continuous phase fluid, resulted in 
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very small velocities in the test section (0.02 to 0.69 

cm./sec. for sphere Reynolds numbers of 4.8 to 195). 

As has already been pointed out in Section 

(4.2.1), the absolute measurement of very low velocities 

is extremely difficult. 	Use of a pilot-static tube 

would have resulted in head differences of from 10-7 to 

10-4  inches of water for sphere Reynolds numbers of from 

5 to 200. 	Since the micro-manometers and gauges used 

to record low pressure differences have accuracies 

variously reported as 77'78  + 2 x 10-4  inches of water 

and 79+5 x 10-5  inches of water, they were clearly of 

no use in the work described. 

Attempts were made to construct a sensitive 

measuring device of, the vane anemometer type. 	A brass 

foil disc with an 1/8 inch diameter hole at the centre 

was reduced with emery paper to the minimum thickness 

compatible with rigidity. 	Segmental cuts were made in 

the disc and the segments twisted to form eight equally 

spaced vanes. A hub was machined from a 1/4 inch 

diameter polytetrafluoroethylene rod. 	The top of the 

hub was turned down to 1/8 inch diameter and was a push 

fit into the hole at the centre of the vanes, the whole 

being balanced on a needle projecting into a cavity 

machined into the bottom of the hub. 	Various 
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combinations of vane angle and length, and cavity depth 

and shape were tried but although rotation of the vanes 

required very little force, no rotation was observed in 

the water tunnel even at the maximum flow rate and after 

motion had been initiated mechanically. 

Exploratory work was also carried out with a 

dye injection technique but the uncertainties of injection 

velocity, dye density, and dispersion by diffusion, 

rendered this technique unsuitable for measurement of 

the low velocities encountered. 

Observation of the dissolving test bodies showed 

that the streams of benzoic acid solution photographed 

by the schlieren technique, (Section 4.4), were also 

clearly visible to the naked eye. 	The form of these 

flow patterns was very sensitive to changes in velocity 

over the range of Reynolds number investigated i.e. 

0 <Re, < 195. 	The form of these flow patterns is N.. 

discussed in more detail in Chapter 5 where representative 

photographs, figs. (10-14), are also presented. 	At 

Reynolds numbers above approximately 30, the flow 

separation angle for flow round the sphere varied with 

flow velocity. At lower Reynolds numbers the flow 

patterns, although complex, varied characteristically 

with velocity. 	For example, the proportion of time 
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spent in upflow or downflow, the frequency of collapse of 

the wake region, and the strength of disturbances of the 

tail when this type of pattern existed, were all related 

to flow velocity. 	It was therefore possible to obtain 

a qualitative indication of the test section velocity 

profile by observation of these patterns. 

With the water tunnel top plate removed, the 

spheroid support rod was temporarily supported by two 

lengths of metal strip laid across the top of the overflow 

section. 	Thus the test body was located at the desired 

points in the column, the vertical position being 

achieved by the removal or addition of support rod 

extension pieces (Section 4.2.4) or by packing placed 

under the metal strips. 

Early investigations of thus type with Raschig 

ring packings, together with results of work by Arthur 

et al.72, indicated that the packing size should be as 

small as possible within the limitations of the pressure 

drop imposed by the pump delivery characteristics and the 

minimum fluidisation velocity of the bed. 	From these 

considerations an 8 to 12 mesh sand was chosen for 

investigation. 	The flow patterns in a 4 inch zone 

immediately above the 162 inch deep bed of this sand 

were unaffected by the position of the test body in the 
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test section. 	At the top of this zone, i.e. 4 inches 

above the bed, the first indications of a wall effect 

were noticed at Reynolds numbers less than ten. As the 

flow rate was increased, so did the height above the bed 

at which the wall effect was first detectable. 	This is 

in agreement with the concept of the flat velocity 

profile leaving the bed gradually changing into a fully 

developed laminar flow profile 80  

As a result of the velocity profile investigations 

it was decided to use the 7 inch support rod extension, 

discussed in Section (4.2.4),  in the main series of 

experimental runs. 	The test bodies were thus positioned 

in the 4 inch zone where there was no wall effect. 

In the absence of a reliable means of 

determining the absolute local velocities, and on the 

evidence of the velocity profile investigations, mean 

velocities based upon volumetric throughput and cross-

sectional area were used in the calculation of the 

Reynolds numbers. 

Evaluation of the errors involved in the 

calculation of Reynolds numbers by this procedure was 

not possible. 	The observations of the flow patterns 

suggested that at Reynolds numbers greater than ten the 

error was small. At very low flow rates, however, more 
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uncertainty exists. 	This probably accounts for the 

slightly increased scatter of the data points at these 

low flows. 

4.6. 	EXPERIMENTAL PROCEDURE. 

4.6.1. 	WATER  TUNNEL OPERATION. 

The boost heater was used as necessary to bring 

the feed tank water temperature to approximately 25.000. 

The controlled heater was then switched on, the pump 

started, and the delivery and bypass valves adjusted to 

give the maximum flow rate measurable by the manometer. 

The water level in the overflow section was kept above 

the level of the weir for two or three minutes to ensure 

wetting of the weir plates. 	The return line valve was 

then adjusted to maintain a steady water level of 1 to 2 

inches in the overflow section. 	This level was easily 

controlled and was followed from outside the column by 

means of a Ul-shaped glass tube. 	One limb of this 

glass tube passed through the top plate and dipped below 

the water surface in the overflow section while the other 

end was open to the air. 

It was normally found necessary to use the 

cooling coil to remove heat created by friction in the 
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pump and in the flow circuit, even when the ambient 

temperature was below 25.000. 	Temperature in the test 

section was measured with the mercury-in-glass thermometer 

described in Section (4.5.2). 	When this thermometer 

indicated a steady temperature of 25.000 (normally after 

1 to 2 hours), the delivery and bypass valves were 

adjusted to give the required manometer reading, and the 

return valve readjusted to keep the overflow level 

constant. A further period of 1/2 to 1 hour was allowed 

for the steady state to again be ruched before the test 

section temperature was recorded and the thermometer 

removed. 	The spheroid, which had previously been 

stored in a desiccator, was weighed, attached to the 

main support rod, and carefully introduced into the 

water tunnel. 

During the experimental runs the manometer 

reading was recorded at intervals of 15 to 30 minutes. 

Fluctuations in the manometer reading were small; the 

mean change of reading during a complete run, averaged 

over the 117 experimental runs, was 0.8percent. 	Time 

weighted means of the recorded manometer readings were 

used in the calculation of the volumetric throughputs 

from the calibration curves. 

After the required time of immersion, of from 
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50 minutes to 4-  hours, the spheroid was removed, excess 

water removed from its surface with a paper tissue, and 

stored in a desiccator to await weighing (Section 4.6.2). 

After the thermometer was replaced and the test section 

temperature recorded, the bypass valve was fully opened, 

the delivery valve closed, and the pump stopped. 

Finally the controlled heater was switched off and the 

cooling water control valve closed. 

After each run approximately two cubic feet of 

water were pumped to waste and replaced by fresh, distilled 

water; the three—way cock on the return line allowed 

direct return to the feed tank or delivery to drain. 

This in itself was sufficient to keep the benzoic acid 

concentration in the circulating water below 1 percent 

of the saturation level. 	However, to ensure against the 

build up of dust or other extraneous material, the feed 

tank was periodically drained, cleaned, and refilled with 

fresh distilled water. 

In order to change an orifice plate, the 

manometer tap was opened and water drained from the 

manometer, the delivery line, and the bypass line into 

the feed tank. After the orifice plate had been changed 

air was purged from the delivery line through a small bore 

copper bleed tube. 	To avoid the introduction of air into 

the packed bed the packed portion of the column was never 

drained. 
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4.6.2. 	WEIGHING THE SPHEROID. 

The spheroids were weighed before immersion to 

+ 0.1 mg. on a Mettler H.16 automatic, constant load 

balance. 	After removal from the water tunnel the shapes 

were dried in a desiccator for 24 hours and reweighed; 

this weight was taken as the final dry weight. 	Further 

weighings showed an approximately constant weight loss of 

0.5 mg. per 24 hours, indicating that drying was complete 

before the end of the first 24 hour period. 

Attempts to obtain a more precise final weight, 

by weighing against time over the first 24 hours, were 

unsuccessful due to the uncertainties introduced by 

repeated handling and the interruption of the overnight 

period. 	Typical total weight losses were 80 mg. for 

the smallest shape (4:16 eccentricity) increasing to 

300 mg. for the largest (16:16 eccentricity), 	Both 

these figures represent between 3 percent and 4 percent 

of the original weight of the body. 

4,7, PHYSICAL PROPERTIES AND DIMENSIONLESS GROUPS. 

The dimensionless groups of interest in 

correlating the data of the work described are the 

Sherwood, Schmidt, Grashof, and Reynolds numbers as shown 

in Chapter 3. 	The choice of physical property data for 
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use in calculating these groups is not always obvious 

and is treated in detail below. 

Schmidt Number 

 

fL 

 

D r v 

  

Since the bulk stream benzoic acid concentration 

was always less than 1 percent of the saturation value 

the density and viscosity in the Schmidt number were taken 

as those of pure water. 	The values obtained from the 

literature for the density 81 	82 and viscosity 	of pure 

water at 25.00C were 0.99707 g./cm3  and 0.8937 centipoise 

respectively. 

No comprehensive diffusivity data for the 

benzoic acid - water system has been published and it is 

usual for research workers requiring such data to use 

one of the semi-empirical correlations that have been 

8 3,84 reported 	Of these the Wilke-Pin Chang 84  

correlation has been the most favoured. 	This correlation, 

which, with viscosity in centipoise units, is of the form 

7.4 x10
-8   M2  T  Dv 	 (4.2) v 0.6 m  

where Vm is the molal volume of the solute at its normal 

boiling point, 	is the molecular weight of the solvent, 

is the viscosity of the solvent and T is the absolute 

temperature, gives the value of Dv  in the units cm2/sec. 
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Wilke and Pin Chang found that equation (4.2) 

correlated the experimental data for 123 systems with an 

average deviation of 12 percent. 	They incorporated a 

parameter, 7.13, to compensate for the solution properties 

of associated solvents, to produce a modified form of 

equation (4.2), i.e. 

1 
7.4 x 10-8 (X M)2  T 

Dv 

 

(4 .3 ) 
I.,t Vin°  • 

The parameter X was given values of 1.5, 1.9, 

and 2.6 for ethanol, methanol, and water respectively, 

whilst for non-associated solvent its value was 1.0. 	The 

modified equation correlated the experimental results 

for aqueous solutions with an average deviation of 

6 percent. 

The isolated experimental valuesof diffusivity 

which have been reported for benzoic acid - water systems 

at 25.0°C show considerable inconsistency. 	Hixson and 

Wilkens's 85  value of 11.5 x 10-6  cm.2  /sec. was 23.6% 

higher than that predicted by equation (4.3), whilst 
86 	 -6 	2 / Vasudev 	reported a value of 9.07 x 10 	cm./sec. at 

25.25°C. 

In view of the lack of consistent e:,perimental 

values and in order to maintain continuity with previous 

workers, the Wilke - Pin Chang correlation, equation (4.3), 
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was employed to obtain the value of the diffusion 

coefficient used in the present work. 	The value obtained 

for the benzoic acid - water system at 25.00C by the use 

of equation (4.3) / is 8.92 x 10-6  cm./sec. 	The value of 

molal volume used in equation (4.3), 134.8 cm3./g.mole, was 

obtained from Perry 81 	The molecular weight of water 

was taken 82 as 18.016. 

F Reynolds Number 	
v Lio dCh  
4 

The same viscosity and density values were used 

as for evaluation of the Schmidt number. 	The velocity, 

v, used was the mean velocity based upon volumetric 

throughput and test section cross-sectional area as 

described earlier. 

The choice of characteristic dimension, doh, 

for oblate spheroidal shapes is a subject of considerable 

importance and has been discussed separately elsewhere 

(Chapter 3). 	Values of the Reynolds number were obtained 

for each of the eight characteristic dimensions for each 

of the experimental runs. 

Grashof Number 

 

dCh3 p 2 g  • (Ps-P) 
P 

 

/12 

 

   

The value of P S , the density of a saturated 

solution of benzoic acid, used was 0.99766 g./cm3  as 

reported by Sandoval 11. 	Viscosity and density were 



again taken as those of pure water as in the Schmidt 

number. 

Sherwood Number 
kc dCh 
Dv 

  

The evaluation of diffusion coefficient has 

already boon discussed. 	The mass transfer coefficient, 

kc, was determined from the results of the experimental 

work by use of the relationship 

W = kc A (cs 	0o ) 
	

(4.4) 

In this equation A is the surface area of the spheroid, 

tabulated in Appendix 1, cs is the saturation 

concentration of benzoic acid which was evaluated from 

the literature 87  as 3.45 g./litre at 25.000, and co the 

concentration of benzoic acid in the recirculating water 

which was taken as zero. 	This latter assumption was 

justified since sufficient of the recirculating water 

was replaced to maintain the bulk stream concentration 

at less than 1 percent of the saturation concentration. 

The value of U in g./hr. was obtained from the total 

weight loss during an experimental run and the run 

duration. 
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CHAPTER 5. 

DISCUSSION OF RESULTS. 

5.1. 	SCHLIEREN PHOTOGRAPHS. 

The schlieren photographs are useful in the 

interpretation of the experimental data and will therefore 

be considered first. 

The schlieren photographs show that several 

flow regimes exist within the Reynolds number range 

investigated i.e. 0 ‘.- Re3  .5; 195. 	These regimes, which 

are illustrated by the representative photographs figs. 

(10-14), may be categorized as follows. 

REGIME 1. 	Free convection. 	Downward motion 

of dense solution in the form of a tail streaming away 

from the body. 	The tail was thin for the spherical and 

near spherical bodies but it became thicker for the 

flatter shapes. 

REGIME 2. Downward motion, basically in the 

form of a tail but with disturbances causing some 

scattering and occasional break up of the tail. 	The 

range of Reynolds numbers over which this regime existed 

was different for each shape. These ranges of Reynolds 

number, together with those for the other regimes, are 

included in tables (4-8). 	These tables are a qualitative 

analysis of the flow patterns observed during all the 
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Re3 = 48• 0 	 Re3 = 1 0 6 

Fig. 12 	SCHLIEREN PHOTOGRAPHS. 	e =10:16 
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Fig. 14 	SCHLIEREN PHOTOGRAPHS. e =16:16 
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RUN NO. Gr3/
pn
",3

2 
 FLOW 

REGIME 
SEPARATION 

ANGLE 
(9)s(degrees) 

0 35.5 Infinite 1 - 51 
0 36.1 Infinite 1 - 116 

3.8 36.7 1940 2 - 107 
6.5 45.7 502 3 - 3 

10.4 40.7 196 3 - 54 
13.3 42.9 121 4 <90* 2 

13.4 45.6 119 4 <90* 4 
16.6 43.3 76.6 4 <90* 5 
16.6 42.7 77.0 4 <90* 7 
21.2 47.4 47.8 4 <90* 1 

26.0 47.6 31.6 4 <90* 11 

33.3 51.0 19.3 4 90 17 

40.8 57.8 12.1 4 90 15 

52.6 65.5 7.72 4 90 22 

64.8 74.2 4.88 4 90 28 

76.6 81.2 3.50 4 90 34 
89.1 88.5 2.54 4 90 41 

98.0 92.5 2.10 4 90 JO 
7n 

112 100 1.61 4 90 50 

125 108 1.30 4 90 43 

137 112 1.01 4 90 46 

* not stable. 
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TABLE 5. 	(e = 7 ; 16) 

Re3  8h3 Gr3/Re32  FLOW 
REGIME 

SEPARATION 
ANGLE (Q ) 
(degrees)` 

RUN NO. 

0 
0 

41.7 
40.4 

Infinite 
Infinite 

1 
1 

- 
- 

109 
117 

3.6 46.5 2590 2 - 108 
6.4 47.0 807 3 - 66 
10.8 47.3 281 3 - 61 

16.9 45.7 115 4 <40* 57 
22.1 46.6 67.3 4 <40* 68 
27.2 47.9 45.5 4 45 56 

34.9 53.3 27.5 4 70 73 
43.0 54.7 18.0 4 70 71 

54.3 68.1 11.4 4 90 77 
60.6 71.1 9.05 4 90 84 
68.3 76.7 7.19 4 90 79 
75.8 82.9 5.83 4 90 86 

85.6 89.7 4.60 4 90 75 

95.7 95.3 3.69 4 90 87 
107 106 2.90 4 90 92 

117 110 2.42 4 90 93 
129 114 2.00 4 90 95 
140 120 1.70 4 90 90 

152 122 1.45 4 90 102 

163 129 1.27 4 90 98 

* not stable. 
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TABLE 6. (e = 	10 	: 	16) 
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RUN NO. Gr3/Re32 FLOW 
REGIME 

SEPARATION 
ANGLE 

(Gs)(degrees) 

0 46.2 infinite 1 - 52 
0 47.0 Infinite 1 - 115 
6.3 47.9 1310 2 - 113 
9.4 53.9 573 3 - 67 
14.6 47.8 225 3 - 59 

19.2 50.3 141 4 15 53 

22.8 51.0 100 4 45 55 

30.5 51.3 56.6 4 55 9 
38.4 53.0 35.3 4 60 13 

43.6 58.3 27.4 4 75 20 

49.5 64.0 21.1 4 80 16 
56.3 68.1 16.3 4 85 19 
61.1 69.8 13.9 4 90 26 
70.0 75.7 10.5 4 90 32 

78.0 79.6 8.54 4 90 24 

88.2 86,4 6.67 4 90 29 

96.4 91.5 5.63 4 90 23 

107 97.1 4.60 4 90 37 
117 100 3.85 4 90 36 

129 109 3.08 4 90 40 

141 113 2.57 4 90 44 

151 115 2.28 4 90 103 

156 124 2.13 4 90 47 
161 119 2.01 4 90 104 
171 125 1.76 4 90 99 

179 132 1.62 4 90 49 
188 131 1.49 4 90 106 
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Re, Sh3 

TABLE 7. = 13 	16) 

RUN NO. ("4-1,3/  /Rp3  2  -  FLOW 
REG TUE 

SLTARATION 
ANGLE 

(es)(degrees) 

0 
0 

54.0 
51.1 

Infinite 
Infinite 

1 
1 

- 
- 

111 
114 

4.5 55.3 4040 2 - 112 
11.1 55.0 638 2 - 64 

18.3 54.3 234 3 - 60 

24.2 54.4 135 3 - 69 

29.1 53.0 94.1 4 30 65 
36.5 60.8 60.3 4 30 63 

47.8 64.9 35.0 4 45 74 
58.5 68.9 23.2 4 50 72 

63.9 73.0 19.5 4 55 81 

73.2 79.9 14.8 4 60 80 

80.9 83.9 12.1 4 65 83 

92.0 89.5 9.46 4 65 78 
104 96.5 7.44 4 85 85 

115 103 6.25 4 85 76 

126 110 5.21 4 90 82 

137 116 4.24 4 95 88 

143 120 3.90 4 95 97 
147 128 3.65 4 95 105 

157 130 3.20 4 95 91 

169 136 2.77 4 95 94 
181 137 2.44 4 100 89 

191 143 2.20 4 100 96 



122. 

Re3  Sh
3 

TABLE 8. 	(e = 16 	: 	16) 

RUN NO. 2 FLOW 
REGIME 

SEPARATION 
ANGLE 

(As)(degrees) 

0 59.9 infinite 1 - 48 

4.8 62.4 5240 2 - 110 

9.9 59.0 1180 2 - 62 

14.8 61.9 534 2 - 70 

21.0 50.6 263 2 - 58 

26.1 60.5 173 3 - 10 

33.2 64.5 107 4 15 8 

41.6 65.6 68.3 4 40 6 

52.0 69.8 43.7 4 40 12 

60.1 74.7 32.7 4 45 21 

66.0 76.4 27.0 4 50 14 

73.8 82.4 21.4 4 60 18 

83.1 84.2 17.1 4 70 25 

94.6 90.1 13.2 4 80 31 

107 96.9 10.3 4 85 33 

121 108 8.18 4 90 27 

135 113 6.53 4 90 30 

155 122 5.03 4 90 35 

166 131 4.28 4 95 100 

174 135 3.87 4 95 39 

183 144 3.49 4 95 101 

192 146 3.20 4 100 45 

195 145 3.13 4 100 42 
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experimental runs of the present work. 

REGIME 3. High interaction with both upflow 

and downflow periodically predominant. 	Initially the 

upflow of the bulk fluid caused a build up of dense 

solution in the wake region behind the body. 	The bulk 

upflow velocity was insufficient to sweep this solution 

away from the vicinity of the dissolving body so that 

when the mass of dense solution was sufficient, the 

downward gravity forces overcame the upward forces due 

to bulk motion and the solution moved downwards, /past 

the body, causing the temporary establishment of a 

highly disturbed tail. 	The dense solution was dispersed 

by this disturbance and swept from the vicinity of the 

body by the bulk motion. Upflow was then temporarily 

re-established and the cycle repeated. 	The length of 

the cycle was irregular, downflow was observed to 

predominate for periods of from one minute to one hour. 

The ratio of the total time spent in upflow to the total 

time spent in downflow increased with increase of 

Reynolds number. 

REGIME 4. Upflow with a steady flow 

separation angle. 	The downward motion of dense solution 

in the wake region pushed forward the separation point, 

but instead of collapsing to form a disturbed tail as 
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in regime 3, equilibrium was reached with the upward 

forces due to bulk motion. 	Since the point at which 

equilibrium was reached depended upon the bulk velocity 

and the body shape, the separation angle was, at constant 

Grashof and Schmidt numbers, a function of Reynolds 

number. 	In  the work described the only quantity that 

was varied in the Grashof number was the characteristic 

dimension and hence the Grashof number was constant for 

each shape. 	In the case of the sphere, steady 

separation angles, es, (measured from the front stagnation 

point) of 15°  to 100°  were observed between Reynolds 

numbers (Re
3) of 33.2 and 195, the latter being the 

highest value of Re
3 used in the present work. 

Above a particular Reynolds number the effect 

of free convection may be expected to be negligible and 

the separation angle that which would be observed in 

forced convection alone. 	The value of the separation 

angle in purely forced convective mass transfer, even for 

the case of the sphere, is still the subject of some 

research and no conclusive evidence has yet appeared in 

the literature. 	Frossling 21  has solved the boundary 

layer equations for flow round a sphere and his solution, 

which was based upon the theoretical pressure distribution, 

predicts separation in the absence of mass transfer at 
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109.6°  irrespective of the Reynolds number. 	It is 

commonly assumed that the forced convective flow patterns 

and hence the angle of separation are not influenced by 

the mass flux away from the surface provided the mass 

flux is small. 	Thus, in this situation, the value of 

the separation angle in purely forced convective mass 

transfer may be assumed to be that which. occurs in the 

absence of mass transfer. 

3 Garner and Grafton 2  obtained experimental 

evidence concerning the value of the separation angle 

for dissolving benzoic acid spheres. 	They assumed that 

the position of the minimum local mass transfer rate on 

the surface of a dissolving sphere occurred at the 

separation point. 	Their experiments indicated that the 

separation angle was constant at 105°  over the Reynolds 

number range 400 to 1,000. 	Garner and Keey 24  carried 

out similar experiments to those of Garner and Grafton 

and they also found that the separation point was constant 

at 105°  over the Reynolds number range 100 to 500. 

Garner and Keey concluded from their mass transfer data 

that the effect of free convection could not be neglected 

at Reynolds numbers below 750. 	It is possible, therefore, 

that the value for the separation angle observed by both 

Garner and Keey and Garner and Grafton, i.e. 105°, did 
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not represent the limiting value of the separation angle 

for forced convection alone. 

From the work of Garner and Keey, Garner and 

Grafton, and Frossling it appears that the maximum value 

of the separation angle for a sphere observed in the 

present work, i.e. 100°9  may be less than the limiting 

value which would be observed in the absence of free 

convection. 	In view of the approximate nature of the 

values of the separation angle reported by Garner and 

Keey and Garner and Grafton it is not possible to conclude 

with certainty that the difference between the maximum 

value of the sphere separation angle observed in the 

present work i.e. 100°  and the value of 105°  observed 

by these workers was due to free convection. 

From consideration of the separation angle 

alone it appears that the maximum value of the Reynolds 

number at which there is a significant effect of free 

convection upon the flow patterns around a dissolving 

benzoic acid sphere is close to the maximum value employed 

in the present work i.e. Re3  = 195. 	It is possible, 

however, that, even when the separation angle reaches 

the limiting value for forced convection alone, there 

may be an effect of free convection upon the flow patterns 

in the wake region. 	For example the angle which is 
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formed between the stream line through the separation 

point and the tangent to the body surface at that point 

may be increased, relative to the value of this angle 

for forced convection alone, by the effects of free 

convection. 

In the case of the flattest shape, (e = 4:16), 

the separation angle moved to the equator at very low 

values of Re3; separation occurred at 90o for Re3> 30. 

Experiments with oblate spheroidal bodies in the absence 

of free convection 10  indicate that for flatter shapes 

(e = 4:16, 7:16, and 10:16) the separation angle does 

not increase beyond 90°  even at Reynolds numbers as high 

as 32,000. 	As for the sphere, however, it is possible 

that free convection influenced the flow patterns in 

the wake region even when the separation angle reached 

the limiting value of 90°. 	For Reynolds numbers in 

the range 10 <Re3  < 30 the separation angle for the 

flattest shape (e = 4:16) was between 0°  and 90°  but, 

as indicated in table 4, the separation was not stable 

and could not be assigned a specific value. 

5.2. 	PLOTS OF SHERJOOD NUMBER vs. REYNOLDS NUYBER. 

The feasibility of unifying the mass transfer 

data for the five oblate spheroidal shapes employed by 

choice of a suitable characteristic dimension was next 
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investigated. 

The Sherwood and Reynolds numbers were 

calculated on the basis of the eight characteristic 

dimensions, d1  to d8, considered in Chapter 3. 	In the 

following discussion the Sherwood and Reynolds numbers 

are identified with the appropriate characteristic 

dimension by the subscripts 1 to 8. 	The values of the 

Sherwood and Reynolds numbers, Sh1  to Sh8  and Re/  to Re8, 

for the 117 experimental runs are included in Appendix 1. 

Figs. 15 to 22 show the various plots of the Sherwood 

numbers versus the Reynolds numbers on logarithmic 

co-ordinates. 

Some previous workers 88  have attempted to 

correlate mass transfer data for drops in terms of a 

Sherwood number in which the mass transfer coefficient 

is based upon the surface area of the sphere of the same 

volume as the drop and the characteristic dimension is 

the diameter of the sphere with the same volume as the 

drop, d1  in the present nomenclature. 	Such a 

correlation does not require a knowledge of drop shape, 

only drop volume being necessary. 	The values of the 

Sherwood numbers calculated on this basis from the data 

of the present work, Sh1f, are also included in Appendix 1. 

The plot of Shit, vs. Re, on logarithmic coordinates 

is presented in fig.23. 
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It is evident from examination of figs. 15 to 

22 that at high Reynolds numbers some of the characteristic 

dimensions employed, in particular d3  and d5, are very 

successful in unifying the data for all five oblate 

spheroidal shapes. 	For both these characteristic 

dimensions, however, the data for the five shapes begin 

to diverge below a Reynolds number, Re3  or Re5, of 

approximately 45. 	None of the eight characteristic 

dimensions is very successful in combining the data for 

all shapes at these lower Reynolds numbers. 	The 

characteristic dimension d4, which is the most successful 

in this respect, fails to unify the data at the higher 

Reynolds numbers. 	Fig.23 shows clearly that unification 

of the data for all five oblate spheroidal shapes is 

not achieved by use of the Sherwood number based upon 

the surface area of the sphere with the same volume as 

the spheroid and the characteristic dimension d1. 

For the sake of discussion it is convenient 

to denote by Re„ the value of the Reynolds number above 

which the data for all shapes are successfully unified by 

certain characteristic dimensions and to consider separately 

the regions above and below this value of the Reynolds 

number. 	The significance of this "transition" Reynolds 

number, ReTR' with respect to the various flow regimes 

discussed in Section (5.1) is also considered below. 
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5.2.1. 	THE REGION ABOVE ReTR ' 

As mentioned above, d3  and d5  are the most 

successful characteristic dimensions for combining the 

data in this region. 	The characteristic dimensions d8, 

di, and d6  each appear successful in unifying the data 

for four of the shapes but fail with the fifth. 	In the 

case of d1, the data for the spheroid with eccentricity 

7:16 is not unified with the data for the other four 

shapes whilst for the characteristic dimensions d6  and d6  

the data for the spheroid with eccentricity 4:16 is not 

unified with the data for the other shapes. 

Inspection of the data based upon the 

characteristic dimensions d
3 and d5, as plotted in 

figs. 17 and 19, suggested that the data above ReTR  could 

be correlated in the form suggested by previous 

theoretical and experimental investigations of forced 

convective mass transfer from solid bodies, 

Sh3 = C1 	
+ C

2 Re3n3  Sc1/3  

	

3 	3 

and 	Sh
y 
= C + 	n5 1/3 

1 	C
5 	2 Re

5 
5 So  

i.e. 

(5.1) 

(5.2) 

In order to compare d3  and d5  on a statistical 

basis and also in an attempt to produce a correlation of 
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the data above ReTR in the form of equations (5.1) and 

(5.2), use was made of the University of London Atlas 

computer. A modified library programme, Autocode 

programme 1000, was employed for the least squares 

method of data correlation. 	This programme was used to 

fit the observed values of two variables, X and Y, by a 

linear equation of the form: 

7m 	A + B(Xm) 
	

(5.3) 

where m is the predicted value of Ym for an observed 

value of Xm. 	The programme output included the values 

of the constants A and B obtained by minimisation of the 
m=T 

sum of squares of the residual differences, 	(y 4m)29  

M=1 

where T is the total number of data points. 	The 

predicted values of m' corresponding to the input 

values of Xm' the residual differences, and the sum of 

the squares of the residual differences were also 

included in the programme output. 	The sum of the 

squares of the residual differences may be used to 

estimate the variance, S2(21), of the observed values of 

Ym from the predicted values, 7.m, by use of the 

relationship: 

m=T 

m=1 
Y322 ) 

s2 (Ym ) (5.4) 
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where f = degrees of freedom = (T - 2). 

- The estimate of the variance, S2  (Y), is a 

measure of the deviation of the data points from the 

correlating line. An estimate of the standard deviation 

of the data points from the correlating line is obtained 

by taking the square root of S2(Y). 

Since equations (5.1) and (5.2) each contain 

three unknown constants it was necessary to adopt the 

following procedure in order to evaluate these constants 

by the use of the Autocode programme 1000. 	Considering 

firstly the correlation of the data based upon d3  by 

equation (5.1), a value of 
n3' 

n
31 say, was selected 

and the product (Re3  31. Sc1/3) calculated. 	The groups 

upon d
5 and the results are given in table 10. 

The confidence ranges of the true variance, 

Cr2(7E) at a probability level (1-2(X), can be expressed 89 

as° 

n31  

Sh3  and (Re
3 	. Sc1/3) were then used as input data 

for Autocode programme 1000, the resultant output giving 

values of C13, C23, and S2  (Sn
3
) at the selected value 

of n3 ' 
n . 	A new value of n3' n3 say, was then 31 	 2  

selected and the procedure repeated. 	The results 	of 

this analysis are given in table 9. 	An identical 

procedure was followed in correlating the data based 
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TABLE 9. 
n3  

CORRELATION OF DATA ABOVE ReTR AS Sh3 = C13
+  C

23 
Re3 Sc1/3 

Equation 
No. 

Assumed 
Value 
of n, 

C1 3 
C 
23 

S2  (Sh
3
) 90 	confidence 

range of 
Cr2(Sh-) 

5.6 0.10 -476 36.2 19.72 13,6 - 	30.6 

5.7 0.15 -285 19.2 18.53 12.8 - 	28.8 

5.8 0.20 -190 11.4 17.50 12.1 - 	27.1 

5.9 0.25 -132 7.24 16.43 11.3 - 	25.4 

5.10 0.30 -93.9 4.79 15.52 10.7 - 	24.1 

5.11 0.35 -66.6 3.26 14.70 10.1 - 	22.8 

5.12 0.40 -46.2 2.26 13.98 9.65 - 	21.6 

5.13 0.41 -42.6 2.10 13.85 9.55 - 	21.4 

5.14 0.42 -39.3 1.96 13.71 9.45 - 	21.2 

5.15 0.43 -36.2 1.83 13.59 9.36 - 	21.0 

5.16 0.44 -33.1 1.70 13.46 9.27 - 	20.8 

5.17 0.45 -30.2 1.59 13.34 9.20 - 	20.7 

5.18 0.46 -27.5 1.49 13.23 9.14 - 	20.5 

5.19 0.47 -24.8 1.39 13.12 9.05 - 	20.4 

5.20 0.48 -22.3 1.30 13.01 8.97 - 	20.2 

5.21 0.49 -19.8 1.21 12.90 8.90 - 	20.0 

5.22 0.50 -17.5 1.13 12.80 8.82 	- 19.8 

5.23 0.51 -15.3 1.06 12.70 3.75 	- 19.7 

5.24 0.52 -13.1 0.993 12.61 8.70 	- 19.6 

5.25 0.53 -11.0 0.930 12.52 8.65 - 	19.4 

5.26 0.54 -9.01 0.871 12.43 8.59 	- 19.3 

5.27 0.55 -7.08 0.816 12.35 8.51 	- 19.1 

5.28 0.56 -5.22 0.765 12.27 8.45 	- 19.0 

5.29 0.57 -3.42 0.717 12.19 8.40 	- 18.9 

5.30 0.58 -1.69 0.673 12.12 8.36 	- 18.8 

5.31 0.59 -0.01 0.632 12.05 8.31 	- 18.7 

5.32 0.60 +1.61 0.592 11.98 8.26 	- 18.6 

5.33 0.61 3.18 0.559 11.92 8.22 	_ 18.5 

5.34 0.62 4.69 0.522 11.86 8.17 	- 18.4 
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Equation 
No. 

Assumed 
Value 
of n

3 

TABLE 9 (continued) 

90;', confidence 
range of cr2(7E

3
) 

C1 
3 

C2 
3 

-1- S2  (Sn
3
) 

5.35 0.63 6.16 0.490 11.81 3.15 - 	18.3 

5.36 0.64 7.58 0.460 11.76 8.10 - 	18.2 

5.37 0.65 8.96 0.433 11.71 8.08 - 	18.2 

5.38 0.66 10.3 0.407 11.66 8.04 - 	18.1 

5.39 0.67 11.6 0.382 11.62 8.02 - 	18.0 

5.40 0.68 12.9 0.359 11.59 7.99 - 	18.0 

5.41 0.69 14.1 0.338 11.55 7.96 - 	17.9 

5.42 0.70 15.3 0.318 11.52 7.95 - 	17.9 

5.43 0.71 16.4 0.299 11.50 7.93 - 	17.8 

5.44 0.72 17.5 0.281 11.47 7.91 - 	17.8 

5.45 0.73 18.6 0.265 11.45 7.90 - 	17.8 

5.46 0.74 19.7 0.249 11.44 7.90 - 	17.8 

5.47 0.75 20.7 0.234 11.43 7.90 - 	17.7 

5.48 0.76 21.7 0.221 11.42 7.89 - 	17.7 

5.49 0.77 22.7 0.208 11.41 7.88 - 	17.7 

5.50 0.73 23.7 0.2.96 11.41 7.88 - 	17.7 

5.51 0.79 24.6 0.184 11.41 7.88 - 	17.7 

5.52 0.80 25.5 0.174 11.42 7.89 - 	17.7 

5.53 0.85 29.7 0.129 11.49 7.92 - 	17.8 

5.54 0.90 33.5 0.0963 11.65 8.04 - 	18.1 

5.55 0.95 36.8 0.0720 11.89 8.20 - 	10.4 

5.56 1.00 39.9 0.0540 12.21 8.42 - 	18.9 

5.57 1.05 42.6 0.0406 12.61 8.70 - 	19.5 

5.58 1.10 45.1 0.0305 13.09 9.02 - 	20.3 

5.59 1.15 47.3 0.0230 13.65 9.41 - 	21.2 

5.60 1.20 49.4 0.0174 14.29 9.85 - 	22.0 

5.61 1.25 51.3 0.0131 14.99 10.3 - 	23.2 

5.62 1.30 53.1 0.00995 15.77 10.9 - 	24.4 

5.63 1.35 54.8 0.00754 16.62 11.5 - 	25.8 

5.64 1.40 56.3 0.00572 17.54 12.1 - 	27.2 

5.65 1.45 57.7 0.00435 18.52 12.8 - 	28.7 
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TABLE 10. 

CORRELATION OF DATA ilBOVF, ReTR AS Shy  = C + C Ren5 Sc1/3 15 	25 	5 

Equation Assumed 
No. 	Value 

of n
3 

C1, C2 
5 

S2  (Sh
5

) 90 	confidence 
range 

cr2(sh
5
) 

5.66 0.10 -483 36.8 18.74 13.2 	- 28.8 

5.67 0.15 -289 19.5 17.55 12.4 	- 27.0 

5.68 0.20 -192 11.6 16.47 11.6 	- 25.4- 

5.69 0.25 -134 7.36 15.52 10.9 	- 23.9 
5.70 0.30 -94.7 4.86 14.69 10.3 	- 22.6 

5.71 0.35 -66.9 3.31 13.98 9.84 	- 21.6 

5.72 0.40 -46.1 2.29 13.39 9.43 	- 20.6 

5.73 0.41 -42.6 2.13 13.28 9.35 	- 20.4 

5.71 0.42 -39.2 1.99 13.18 9.28 	- 20.3 
5.75 0.43 -36.0 1.85 13.09 9.22 	- 20.2 

5.76 0.44 -32.9 1.73 12.99 9.15 	- 20.0 

5.77 0.45 -29.9 1.61 12.83 9.09 	- 19.9 

5.78 0.46 -27.1 1.51 12.75 9.04 	- 19.8 

5.79 0.47 -21.4 1.41 12.68 8.98 	- 19.6 

5.80 0.48 -21.8 1.32 12.61 8.93 	- 19.5 

5.81 0.49 -19.4 1.23 12.55 8.88 	- 19.4 
5.82 0.50 -17.0 1.15 12.50 8.84 	- 19.3 

5.83 0.51 -14.7 1.08 12.44 8.80 	- 19.3 

5.84 0.52 -12.5 1.01 12.38 8.76 	- 19.2 

5.85 0.53 -10.4 0.943 12.34 8.71 	- 19.1 
5.86 0.54 - 8.36 0.883 12.30 8.70 	- 19.0 

5.87 0.55 - 6.40 0.828 12.28 8.66 	- 18.9 
5.88 0.56 - 4.51 0.776 12.25 8.65 	- 18.9 

5.89 0.57 - 2.68 0.727 12.23 8.63 	- 18.9 

5.90 0.58 - 0.921 0.682 12.20 8.61 	- 18.8 

5.91 0.59 + 0.732 0.640 12.19 8.59 	- 18.8 
5.92 0.60 2.43 0.600 12.18 8.58 	- 18.8 

5.93 0.61 4.02 0.563 12.17 8.58 	- 18.7 
5.94 0.62 5.56 0.529 12.17 8.57 	- 18.7 



Equation 
No. 

Assumed 
Value 
of n

3 
 

TABLE 10 (contirned) 145  

90% confidence 
rank 

0 2(Sh5
) 

C1 
5 

C2 
5 

s2 (OE
5
) 

5.95 0.63 7.05 0.496 12.17 8.57 18.7 

5.96 0.64 8.50 0.466 12.17 8.57 18.7 

5.97 0.65 9.90 0.438 12.17 8.57 18.7 

5.98 0.66 11.3 0.412 12.19 8.58 18.8 

5.99 0.67 12.6 0.387 12.20 8.59 18.8 

5.100 0.68 13.9 0.364 12.22 8.61 18.8 

5.101 0.69 15.1 0.342 12.25 8.63 18.9 

5.102 0.70 16.3 0.322 12.27 8.65 18.9 

5.103 0.71 17.5 0.302 12.31 8.67 19.0 

5.104 0.72 18.6 0.284 12.34 8.70 19.0 

5.105 0.73 19.7 0.268 12.39 8.72 19.1 

5.106 0.74 20.8 0.252 12.42 8.75 19.1 

5.107 0.75 21.9 0.237 12.48 8.79 19.2 

5.108 0.76 22.9 0.223 12.54 8.84 19.3 

5.109 0.77 23.9 0.210 12.59 8.86 19.4 

5.110 0.78 24.8 0.198 12.66 8.91 19.5 

5.111 0.79 25.8 0.186 12.73 8.97 19.6 

5.112 0.80 26.7 0.176 12.80 9.01 19.7 

5.113 0.85 31.0 0.130 13.22 9.32 4.0 20.4 

5.114 0.90 34.8 0.0972 13.74 9,82 21.2 

5.115 0.95 38.2 0.0726 14.37 10.1 22.1 

5.116 1.00 41.3 0.0544 15.09 10.6 23.2 

5.117 1.05 44.1 0.0408 15.92 11.2 24.6 

5.118 1.10 46.6 0.0307 16.83 11.9 25.9 
5.119 1.15 48.9 0.0231 17.84 12.6 27.5 

5.120 1.20 51.0 0.0175 18.94 13.3 29.2 
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F 	
cr 2  (M) F 	.s2(711) 

C4,inf,f 

(5.5) 

where f and inf. are the degrees of freedom at which the 

value of the F distribution is obtained. 	Tabled 9 and 10 
include the 9(:), confidence range of the true variance, 

cr 2(77: b' ), calculated from equation (5.5). 	The significance 

of the 90% confidence range may be illustrated by 

reference to table 9 as follows. 	The minimum estimate 

of variance, S2(73'  ) occurs when the exponent of Re
3 is -  

0.78. 	This minimum estimate of variance has a value 

of11.41andq90'1, confidence range of 7.88 to 17.7. 

If the value of S2(TE5) at any other exponent of Re5, 

n
33
say, falls outside this confidence range then it may 

be concluded with 905J certainty that 0.78 is a 

significantly better exponent than n.R  for correlating 

the data by an equation of the form of (5.1). 	Table 9 

shows, however, that the estimates of variance for 

exponents of Re3 ranging from 0.20 to 1.40 fall within 

the 905', confidence range of the exponent 0.78. 	Thus 

within this range it cannot be concluded with 90% certainty 

that any one exponent is better than another. 	'Then 

correlation is based upon Re5  the minimum estimate of 

variance has a value of 12.17 and a 90:: confidence range 

of 8.57 to 18.7 as shown in table 10. 

2(Sh -- S 	) 

c of, inf 
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By a similar analysis to that described above, 

Rowe, Claxton and Lewis 38 also found that their data 

for mass transfer from spheres could be correlated by 

an equation of the form : 

Shs  = C11 + C12 ReS
n Sc1/3 
	

(5.121) 

using a large range of values of n. 	They report that 

their data can be equally well fitted by an equation of 

the form of (5.121) "with any desired value of n between 

about 0.2 and 0.8, provided the constants Cil  and C12  

are selected appropriately." 	Similar results have been 

found by Beg 10  in the analysis of forced convective 

mass transfer data for oblate spheroids. 

It is interesting to note that when correlation 

of the present data is based upon d5  the minimum 

estimate of variance, 12.17, occurs when the exponent 

of Re, is in the range 0.62 to 0.65 whereas when the 

correlation is based upon d3, the minimum estimate of 

variance, 11.41, occurs when the exponent of Re
3 
is in 

the range 0.77 to 0.79. 	This change of the exponent 

of the Reynolds number giving the minimum variance, the 

"best value of n", with change of characteristic dimension 

is explained as follows. 
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Consider the data for a single shape: a change 

from one characteristic dimension to another merely 

multiplies the Sherwood and Reynolds numbers by a constant 

factor so that the slope of the data on a logarithmic 

plot of Sh vs. Re will not be altered. 	However, if the 

data for a single shape were correlated by an expression 

of the form : 

ShCh 	013 + C
14 

ReCh Sc1/3 
	

(5.122) 

then, if the value of 013 were known, the value of n 

could be found from the slope of a plot of log(Shch 	013) 

vs. log Rech. 	In this case a change in characteristic 

dimension would result, as before, in multiplication of 

the Reynolds numbers by a constant factor but not, 

however, the values of (Shah — 013). 
	As a result, the 

slope of the data would be altered. 	Hence if the slopes 

of the data for the individual shapes are altered, it 

is highly probable that the slope of the combined data 

for all shapes would also be altered. 	The value of C13 

is unknown for the data of the present work and the "best" 

value of n must be found by the use of various assumed 

values of n to determine the value which correlates the 

data with the minimum variance. A change of 

characteristic dimension which results in a change of the 
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slope of the data for a single shape when these data are 

plotted as (ShCh  - C13) vs. ReCh would, therefore, result 

in a change of the "best" value of n for this shape. 

Hence if the "best" valu-s of n for the individual shapes 

are altered by a change in characteristic dimension, it 

is highly probable that the "best" value of n for the 

combined data for all five shapes would also be altered. 

A change of characteristic dimension would 

also increase or decrease the magnitude of the Reynolds 

and Sherwood numbers by different amounts for each shape. 

A change from d3  to d5, for example, increases the 

Sherwood number by a factor d5/d3. 	For shapes with an 

eccentricity of 4:16 the value of this factor is 1.1 

whereas for shapes with an eccentricity 16:16 its value 

is 1.0. 	When the data for all shapes are correlated 

together, this would also result in a change in the 

"best" value of n, due to the increased weighting of 

the data for the bodies of eccentricity 4:16. 

'With the variances associated with exponents 

of Re5 
ranging from 0.20 to 1.40, and exponents of Re5 

from 0.15 to 1.15, falling within the 90;:; confidence 

range of the minimum variances when the data above 

ReTR  are correlated by equations (5.1) and (5.2), the 



150. 

choice of which correlation should be presented to 

represent the experimental data is somewhat arbitrary. 

The fact that the minimum variance of the data based 

upon d3, i.e. 11.41, is less than that when the data is 

based upon d5, i.e. 12.17, does not necessarily mean 

that d
3 is a better charactertistic dimension for use 

in correlating the present data than d5. 	The magnitude 

of the variance is dependent upon the magnitude of the 

Sherwood numbers of the data points, as well as their 

scatter about the correlating line. 	As previously 

mentioned, change from d3  to d5  increases the magnitude 

of the Sherwood numbers of some of the data points and 

will, therefore, increase the magnitude of the minimum 

variance even if the scatter is not increased by this 

change. 	This point may be illustrated by consideration 

of the ranges of values of the exponents of Re3  and Re5  

which fall within the 90e/ confidence range of the 

associated minimum variances. 	Since the minimum 

variance for the d
3 

data is less than that for the d
5 

data it might be thought that the range of Re3  exponents 

with variances within the 90% confidence range of this 

minimum variance would be narrower than the corresponding 

range of Re5  exponents. 	Reference to tables 9 and 10 

shows that this is not, in fact, the case. 	For the 
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data based on d3, exponents of Re
3 from 0.20 to 1.40 have 

variances within the 905; confidence range of the minimum 

variance, 11.41, whereas for the data based on d5, 

exponents of Re
5 from 0.15 to 1.15 have variances within 

the 90c; confidence range of the minimum variance, 12.17. 

This marginally narrower range of exponents for the 

d
5 data might suggest that d5 

is a better characteristic 

dimension to use in correlating the present data than 

d
3' even though the minimum variance for the d5 data is 

greater than that for the d
3 

data. 	This apparent 

contradiction further illustrates the difficulty in 

choosing between d
3 
and d

5 
on a statistical basis. 

The above statistical analysis has only been 

carried out for the data based upon d
3 

and d5, the 

characteristic dimensions which are shown by figs.(15-22) 

to be the most successful in unifying the data above 

ReTR. 	It has been shown in Chapter 3, equation (3.44)9  

that d
3 is a complex function of eccentricity while d5, 

equation (3.48), is linearly related to eccentricity. 

It is not immediately obvious why these two apparently 

dissimilar characteristic dimensions should be successful 

in unifying the data while, d4  say, is not. 
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In order to illustrate the relationships 

between the various characteristic dimensions a plot of 

eccentricity vs. characteristic dimension is included. 

This graph, fig.24, shows that d
3 is, in fact, almost 

linearly related to eccentricity within the range of 

eccentricity investigated in the present work i.e. 4:16 

to 16:16. 	Furthermore, d5, is similar in slope to d3. 

Other dimensions are decreasingly less successful in 

unifying the data the further they are removed from the 

area contained by the lines: 

d
3 = f(e) 	(5.123) 

d
5 

= f(e) 	(5.124) 

It would appear that any characteristic dimension 

which, when plotted against eccentricity, lies within 

the area bounded by equations (5.123) and (5.124) would 

be at least as successful as either d3 or d5 in unifying 

the data above Re2R. 

In order to test whether this was in fact so, 

a line was drawn on fig. (24) lying in the area contained 

by equations (5.123) and (5.124). 	This line defined a 

new characteristic dimension, d9, which is related to 

eccentricity by : 

d9 
= ( 1.2 

2.54 
1.34 r,) A 
2.54 	',11 (5.125) 
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Reynolds and Sherwood numbers based upon d9  

wore calculated and correlated by the least squares 

procedure already described. 	The results are shown in 

table 11. 	Comparison of the estimates of variance, 

S2 (Sh
9  )' and 90 confidence ranges given in table 11 with 

the corresponding values given in tables 9 and 10 

indicate that d
9 

may also be successfully used to 

correlate the data. 	The minimum variance in table 11, 

when the exponent of Reg  is 0.60, is in fact less than 

the minimum variances of tables 9 and 10. 

It is evident from the considerations presented 

above that it is not possible to select the "best" 

characteristic dimension for correlating the present 

data on a purely statistical basis. 	Prom practical 

considerations the correlation presented should be based 

upon d3  in order to preserve continuity with the 

correlations for oblate spheroids of Skelland and Cornish 

for forced convection, and Sandoval 119  for free  

convection. 	However, even if it is decided to present 

a correlation in terms of d
3 
from practical considerations 

it is not possible to decide on a statistical basis which 

of the equations (5.8) to (5.64) should be presented. 

Many previous workers have assumed a value of zero or 2 
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TABLE 11. 
n
9 
 1 

COR R-2,LATION OF THE DATA ABOVE ReTR AS Sh9 
= C

19
+

29
Re

9 
 Sea 

EQUATION 
No. 

ASSUMED 	C1 Value of 	9 
n9  

C2 
9 

S2  (bho ) 	9(Z,  confidence 
' 	range ofcro(7E9) 

5 126 0.10 -479 36.4 18.14 12.18 28.0 

5.127 0.15 -286 19.3 16.91 11.9 26.0 

5.128 0.20 -190 11.5 15.80 11.1 24.4 

5.129 0.30 -93.9 4.83 13.68 9.63 21.0 

5.130 0.40 -45.9 2.28 12.58 8.85 19.4 

5.131 0.50 -17.0 1.15 11.68 8.22 18.0 

5.132 0.60 +2.20 0.598 11.26 7.92 17.3 

5.133 0.70 15.9 0.321 11.28 7.94 17.4 

5.134 0.80 26.2 0.175 11.74 8.28 18.1 

5.135 0.90 34.3 0.0972 12.63 8.90 •••• 19.5 

5.136 1.00 40.7 0.0544 13.93 9.81 21.5 

5.137 1.10 45.9 0.0308 15.61 11.0 24.0 

5.133 1.20 50.3 0.0175 17.66 12.4 27.2 

5.139 1.30 54.0 0.0100 20.05 14.1 30.8 
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for 013 when correlating mass transfer data by an equation 

of the form of (5.122). 	It is interesting to note that 

the data of the present work above ReTR  may also be 

correlated on either of these assumptions with a variance 

falling within the 90 confidence range of equation (5.50). 

As shown in table 9, the assumption that 013  = 0 produces 

a value for the exponent of Re3  of between 0.59 and 0.60, 

while the assumption that 013  = 2 produces an exponent 

of Re
3 

between 0.60 and 0.61. 

The correlation selected from equations (5.8) 

to (5.64) to represent the data of the present work above 

ReTR is equation (5.50) i.e. the equation with the 

minimum variance 

0 Sh
3 	= 23.7 + 0.196 Re3-

.78  Sc1/3 	45 	Re3  195 

(5.50) 

Equation (5.50) has mean and maximum deviations of 2.4% 

and 7.1% respectively. 

Equally satisfactory, however, on the basis 

of the 905''.,  confidence range, is equation (5.31) i.e. 

Sh
3 	= -0.01 + 0.632 Re(3)'59  Sc1/3  45 < Rem,, 195 

(5.31) 

which may be rounded off with negligible error to the 

more simple form 
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Sh
3 	

= 	0.632 Re
3
0.59 Sc1/3 
	

45$Re:;195 

(5.140) 

From the theoretical considerations of 

Chapter 3, the absence of the Grashof number in 

correlations of the form of equation (5.122) indicates 

the absence of free convection. 	The schlieren 

photographs, figs. 10 to 14, show, however, that although 

correlation of the present data above ReTR  by equation 

(5.122) is possible, free convection has an influence 

upon the flow patterns at Reynolds numbers considerably 

greater than ReTR, possibly even at Re3  = 195, the 

highest Reynolds number investigated. 	If it is assumed 

that the presence of free convection, as evidenced by 

the schlieren photographs, has an influence upon mass 

transfer rates then clearly correlation of the data by 

equation (5.122) is an oversimplification. 	The exponent 

of the Reynolds number, may, for example, be a function 

of the Grashof number when free convection is present. 

When mass transfer data are correlated by equation (5.122), 

deviation of n from 0.5, the theoretical value for 

forced convection, may therefore be an effect of free 

convection. 	In a similar way the constants C13  and C14  

of equation (5.122) may also be functions of Grashof 

number. 	It is not possible, however, to draw definite 
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conclusions concerning the effect of free convection 

upon the exponent of the Reynolds number and the constants 

013  and 014 because of the large range of values of n 

which fall within the 90% confidence range of the value 

of n with the minimum estimate of variance. 

5.2.2. 	THI-2 REGION BBLO7 ReTR. 

As previously mentioned, none of the 

characteristic dimensions employed proved to be 

successful in unifying the data in this region. 	Since  

there is no preferred dimension on this basis discussion 

will be confined to fig. 17, based on d
3' 

in order to 

preserve continuity with the region above ReTR. 

Fig. 17 includes on the Sh3  axis the limiting 

values of Sh
3 for free convection. 	These data, 

obtained in the present experimental work, are in close 

agreement with the values obtained from the correlation 

of Sandoval 11 whose apparatus was specifically designed 

to investigate free convection. 

The data for spheres below ReTR, including 

the limiting data point for free convection, indicate 

that in this region the overall mass transfer rates are 

independent of Reynolds number. 	These data may be 

represented by : 
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Sh3 = 61 	0 Re3  45 	(5.141) 

Considering the evidence of the schlieren photographs, 

fig.14, which show a great variation of flow patterns 

in the Reynolds number range 0 ‘:Re3  45, it is quite 

remarkable that the Sherwood number should remain constant 

over this range. 	It would appear that this constancy 

of the overall Sherwood number must be due to some 

compensatory variation of local mass transfer rates at 

different points on the sphere surface. 	At Re3  = 40 

the mass transfer rate at the front stagnation point 

must be increased relative to the mass transfer rate at 

this point at Re3  = 0 due to the thinning of the boundary 

layer. 	At the flow separation point, approximately 40°  

at Re3 	40, the mass transfer rate will be reduced 

relative to the mass transfer rate at this point in 

free convection. 	Further investigation of this 

compensatory effect would require measurements of local 

mass transfer rates, possibly by a double exposure 

photographic technique. 	From the data of the present 

work it may only be concluded that, for the sphere, the 

effect of forced convection may be ignored below ReTR 

and overall mass transfer rates calculated from 

correlations for free convection. 

For the other shapes the situation is not so 
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simple. 	For the flattest shape, e = 4:169  the data 

continue to fall along the projection of the unified 

data above ReTR until Re3
1-1:30 	Below this value the 

scatter of the data is such that it is not possible to 

draw definite conclusions concerning the variation of 

the Sherwood number with Reynolds number. 	These data 

appear to indicate, however, that the true relationship 

between the Sherwood and Reynolds numbers below Re3-°-- 30 

is a curve which is asymptotic to a horizontal line 

through the limiting value of the Sherwood number for 

free convection. 	Similarly the data for each of the 

shapes e = 7:16, e = 10:16, and e = 13:16, below ReTR  

indicate that the true relationship between the Sherwood 

and Reynolds numbers for each of these shapes is a curve 

asymptotic to a horizontal line through the limiting 

free convection Sherwood number for that shape. 	The 

value of Re
3 at which the data for a particular shape 

begin to diverge from the projection of the unified data 

increases from Re
3

=11- 30 for the shape with e = 4:16, to 

Re3-8-45 for the sphere. 	The scatter of the data in 

this region, however, is such that it is not possible 

to assign specific values of Re3  to the point at which 

the data for each shape begin to diverge: it is evident, 

however, that this value increases with increase in 
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eccentricity. 	Similarly it is evident that as eccentricity 

increases so does the value of Re
3 

below which the mass 

transfer rate may be taken to be that which occurs in 

free convection alone: again it is not possible to assign 

specific values to these Reynolds numbers. 

From the above considerations it is clear that 

further research is necessary at Re3<45 in order to 

determine the exact form of the relationships between the 

Sherwood and Reynolds, numbers which may only be 

qualitatively deduced from the data of the present work. 

For spherical ane near spherical bodies, however, the 

present data indicate that little error would be incurred 

if mass transfer rates at Re
3<45 were predicted on the 

basis of the correlation for free convection proposed 

by Sandoval i.e. 

Sh
3 

= 0.121 (Gr.Sc)1/3 	2.1 x107<;Gr
3Sc4(2.1x10

8 

(5.142) 

It should be pointed out, however, that the 

value of Re
3 

below which overall mass transfer rates for 

spheres may be predicted from correlations for free 

convection is a function of the Grashof number. 	Since 

the only quantity varied in the Grashof number in the 

present work was the characteristic dimension, the Grashof 

number was constant for each shape. 	The value of 45 for 



162. 

the Reynolds number below which forced convection may 

be neglected is, therefore, only valid at the Grashof 

number employed in the present work for spheres i.e. 

11.8 x 104. 	A more general criterion for deciding when 

forced convection may be neglected which involves both 

the Grashof and Reynolds numbers is discussed in the 

following section. 

(Gr
3  5.3. 	DISCUSSION OF THE PLOT OF Sh

3 
vs.   

Re 3) 

The importance of the group (Gr/Re2) in the 

correlation of mass transfer data for interacting free 

and forced convection was suggested by analysis of the 

equations of motion and diffusion. 	A plot of Sh3  vs. 

(Gr3/Re32) on logarithmic coordinates is presented in 

fig. 25. 	This plot shows that the data for each shape 

lie on a separate curve which is approximately parallel 

to the curves for the other shapes. 	The data based on 

d
5 follow similar parallel curves but when the other 

characteristic dimensions previously discussed are used 

the curves for the data of the individual shapes are 

less regularly related. 	The other characteristic 

dimensions are thus of less use in correlating the 

present data. 	This re—emphasises the importance of the 
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characteristic dimensions d
3 
and d

5 
in correlating mass 

transfer data for oblate spheroids. 	The present 

discussion will be confined to the data obtained by the 

use of d3  as the characteristic dimension which are 

plotted in fig.25. 

The curves in fig.25 may be divided into three 

regions, designated for the sake of discussion, A, B, and 

C. 	As shown in fig.25, the transition values between 

these regions, (Gr3/Re32 )A.B  and (Gr3/ 3  Re 2)13.c, are 

independent of shape. 

In regions A and C the data for individual 

shapes may be closely approximated by the straight lines 

shown in fig.25. 	Region B is clearly a transition 

region in which the data for each shape lie on a curve 

asymptotic to the limiting straight lines of regions A 

and C. 	The extrapolations of these straight lines into 

region B intersect at (Gr3/Re3)TR  45, which is very 

nearly independent of shape. 

The limiting free convection values for Sh
3 
as 

(Gr.3/lie32 ) -----> infinity, are also shown in fig.25. 	In 

the case of the sphere, the limiting value for free 

convection lies close to the horizontal line through the 

data in region C. 	As eccentricity decreases from 16:16 

to 4:16, the limiting values fall further and further 
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below the corresponding correlating line in region C. 

Thus whereas for a sphere it may be concluded that within 

region C the effect of forced convection upon the 

Sherwood number is negligible, this conclusion becomes 

increasingly less valid with decreasing eccentricity. 

The relevance of regions A, B, and C, with 

respect to the flow patterns shown by the schlieren 

photographs may be discussed by reference to tables (4-8). 

These tables show that the transition from region B to 

region C, at (Gr3/Re32)A.B = 160, corresponds to transition 

from flow regime 3 to flow regime 4. 	In the case of the 

sphere the Sherwood number is constant no matter whether 

flow regimes 1,2, or 3 predominates. 	For the other 

shapes Sh3  is constant for flow regimes 2 (within the 

range of (Gr3/Re32) investigated) and 3 but is reduced 

in the limiting case of free convection i.e. regime 1. 

This suggests that the horizontal lines drawn through 

the data for the bodies with eccentricities 4:16, 7:16, 

10:16, and 13:16 in region C are in fact an 

oversimplification. 	Although these horizontal lines 

represent the data over the range investigated it is 

probable that further research at higher values of (Gr3/Re32  

would indicate that the data for each shape fall on a 

continuous curve asymptotic to the horizontal line through 



166. 

the limiting free convection value of Sh3. 

The transition from region A to region B on 

fig.25 at (Gr3/Re-52)A.B = 16 cannot be related to a /  

change in flow regime. 	For the oblate spheroidal bodies 

with eccentricities 4:16, 7:16, and 10:16 it corresponds 

to the flow separation angle first reaching 90°, but in 

the cases of e = 13:16 and e = 16:16 the separation angles 

are 60°  and 70°  respectively. 

Workers in the field of heat transfer have 

reported values of the group (GrH/Re2) above or below 

which it is permissible to neglect forced or free 

convection. 	Although the reported values are for heat 

transfer and for various geometries other than oblate 

spheroids they may be usefully compared with the data 

of the present work. 	A synopsis of the reported values 

is given in table 12. 

Fig.25 indicates that, in the calculation of 

overall Sherwood numbers for the sphere, forced convection 

may be neglected above (Gr3/Re32 ) = 160. 	For the other 

shapes mass transfer was increased, compared with the 

limiting free convection value, even at the highest values 

of (Gr3/Re32) employed in the present work. 

In order to decide whether (Gr
3/Re32)A.B 

represents the value of (Gr3/Re32) below which the effect 



Theoretical 

Theoretical 

Theoretical 

Theoretical 

Vertical Aiding 0.73 100 
plate 

Vertical Aiding and 0.01 -->10.0 
Plate 	opposing 

Vertical Aiding 0.7 
Plate 
Vertical Opposing 0.7 
Plate 

Experi- 	Sphere 	Aiding and 
	

0 .7 
mental 
	opposing 

TABLE 12  

LIMITING VALUES OF (GrH/Re2) FOR INTERACTING FREE AND FORCED CONVECTION 

Author Free convec-
tion negli-
gible 

Forced convec- Method of 
tion negli- 	Analysis 
gible 

Geometry Sense of Prandtl 
Flow 	Number 

0.02 > GrH/Re2  

0.225> GrH/Re2  

0.3 	> GrH/Re2  

0.3 	> GrH/Re2  

0.05 > GrH/Re2  

GrH/Re2  > 100 

GrH/Re2  > 16 

GrH/Re2  ) 100 

Acrivos53  

Sparrow 
8. Gregg54 

Sparrow55  
Eichhorn 
a Gregg 

Pei60  
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of free convection upon mass transfer rates may be 

neglected, it is necessary to compare the present data 

with those of other workers. 	This comparison is shown 

for spheres in fig.26. 	The dotted curves indicate 

extrapolation of correlations obtained outside the range 

of values of (Gr
3
/Re

3
2 ) investigated in the present work. 

Fig.26 shows that the correlations obtained 

for purely forced convection which are of the form f 

Sh
3 	

= C
15 

Re
3
n  Sc m 
	

(5.143) 

appear as straight lines: these correlations have been 

plotted using the Grashof number for 1 inch diameter 

benzoic acid spheres in water at 25.00C. i.e. 11.8 x 104. 

Correlations for forced convection which are of the form 

Sh
3 	

= 	2 + C
16 Re3

n  Sc m 
	

(5.144 ) 

are also almost exactly straight lines on fig.26. 

If the data of the present work below 

(Gr3/Re32  )A .B  were to fall along the extrapolation of the 

correlations obtained in the absence of free convection, 

then it could be concluded that free convection has 

negligible effect upon mass transfer rates in this 

region. Although there is great variation amongst the 

extrapolated correlations, it is clear that the data of 

the present work lie above all of these extrapolations. 
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This indicates that the effect of free convection was to 

increase mass transfer rates even at the lowest value of 

(Gr3/Re32) employed in the present work. 	This conclusion 

is in agreement with the evidence of the schlieren 

photographs which indicate an effect of free convection 

upon the flow patterns over the complete range of (Gr3/Re32) 

investigated. 	The slope of the present data is greater 

than that of several of the extrapolations shown in fig.26. 

Many of these correlations have been obtained, however, 

by assuming a value of 0.5 for n when correlating data 

in the form of equations (5.143) or (5.144). 	This 

choice of n determines the slope of these correlations 

when they are plotted in fig.26. 

Also shown in fig.26 is the correlation for 

interacting free and forced convection proposed by 

Steinberger and Treybal 26  i.e. 

Sh = 2 + 0,569 (Gr.Sc)1/4  + 0.347 Sc°.312 Re0.62 

(5.145) 

This correlation includes an additive free convection 

term and therefore appears as a curve in fig.26. 	At 

low values of (Gr
3
/Re

3
2)' however, the effect of the 

free convection term decreases and the plot of the 

correlation on fig.26 approximates to a straight line. 

The data of the present work are seen to be in close 
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agreement with the correlation of Steinberger and Treybal 

at the lower end of the range of (Gr3/Re32 ) investigated. 

An extrapolation of the straight line portion of their 

correlation, shown as a dot-dash line on fig.26, falls 

through the present data below (Gr3/Re32)A.B' 	This 

does not indicate the absence of free convection, however 

even in the portion of the Steinberger-Treybal correlation 

which is approximated to a straight line in fig.26, the 

values of the Sherwood number predicted by equation 

(5.145) are considerably increased by the presence of 

the free convective term. 	At (Gr3/Re3
2) = 1 for example, 

which for one inch diameter benzoic acid spheres in 

water at 25.000 corresponds to a Reynolds number of 344, 

the Steinberger-Treybal correlation predicts an overall 

Sherwood number of 166.5 of which 61.5, or 37%, is the 

contribution of the free convective term. 

Sparrow, 	55  Eichhorn and Gregg 	proposed that 

free convection should be considered as having negligible 

effect upon mass transfer rates if its contribution to 

the overall Sherwood number is less than 50. 	Using 

this criterion the Steinberger-Treybal correlation 

predicts an influence of free convection up to Reynolds 

numbers of approximately 1.6 x 104 	This corresponds to 

a value of (Gr
3
/Re

32 ) of approximately 7 x 10-4  for one 
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inch diameter benzoic acid spheres in water at 25.000. 

Other workers have assumed the effect of free convection 

to be negligible at much lower Reynolds numbers than 

1.6 x 104. 	It should be pointed out, however, that the 

data of Steinberger and Treybal were obtained at Reynolds 

numbers below 1.7 x 103. 

The above considerations indicate that although 

the present data below (Gr3/Re32  )A.B  fall on straight 

lines, the effect of free convection upon mass transfer 

rates may not be negligible. 	Comparison with correlations 

for purely forced convection show that, even at the highest 

Reynolds numbers employed in the present work, mass transfer 

was increased by the effect of free convection. 	Further 

work is clearly necessary above Re3  = 200, in order to 

discover the manner in which the data in this region 

approach the limiting curves for forced convection. 

Although the above comparisons have only been 

made for spheres, the parallel nature of the curves in 

fig.25 indicate that the same conclusions regarding the 

effect of free convection may be made for the other shapes. 

In the above discussion the value of (Gr
3/Re3

2) 

above which forced convection may be neglected in the 

prediction of overall mass transfer rates for spheres 
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has been taken to be (Gr3/Re32)A.B = 160. 	Inspection of 

the data in fig.25 shows that little error would be 

incurred if this value wore instead to be taken to be 

(Gr3/Re32 
 
)TR = 45. 

	Use of the criterion (Gr
3
/Re

3
2)

TR 

may be extended to the other shapes investigated to obtain 

a simple and useful method for the prediction of mass 

transfer rates from oblate spheroidal bodies in the 

presence of interacting free and forced convection which 

may be stated as follows. 	At values of (Gr
3
/Re

3
2 ) less 

than (Gr3/Re32  )TR  mass transfer rates may be predicted by 

the expression recommended in Section 5.2.1 i.e. 

Sh3 = 0.632 Re30.59  Sc1/3 
	

(5.146) 

Above (Gr3/Re
32)TR mass transfer rates may be predicted 

by the expression proposed by Sandoval 11 for free 

convection i.e. 

Sh
3 

= 0.121 (Gr.Sc)1/3 
	

(5.147) 

Use of equation (5.147) results in little error 

for bodies with eccentricities close to one. 	The error 

increases, however, for flatter bodies: the mass transfer 

rates for an oblate spheroid with eccentricity 4:16 

predicted by equation (5.147) are a maximum of approximately 

255"; lower than those observed in the present work. 	For 

the other oblate spheroidal bodies investigated the use 
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of equation (5.147) results in 	predicted mass transfer 

rates approximately 185':), 10% and 2% lower than those 

observed in the present work for bodies with eccentricities 

7:16, 10:16, and 13:16 respectively. 

It must be stressed, however, that the above 

recommendation is based upon data obtained within the 

limits 0 	Re3 	195 and 2.15 x 104;:c Gr3  411.8 x 104  

with the Schmidt number constant at 1005. 	Further work 

over other ranges of the groups Re3, Gr3,and Sc is 

recommended in order to investigate the generality of 

the above proposal. 

5.4. 	COMPARISON ITT: PREVIOUS 17ORK. 

Pig.27 shows the data of the present work, as 

a plot of Sh
3 
vs. Re

3 
on logarithmic coordinates, 

together with all the published correlations for mass 

transfer from spheres and oblate spheroids at Reynolds 

numbers below 200. 

Rowe, Claxton and Lewis 38  found that their 

data for solid-gas systems and for solid-liquid systems 

could not be represented by a single correlation. 	They 

proposed a correlation of the form 

Sh = 2 + 017 Re1/2 Sc1/3 
	

(5.148) 

where C17 is 0.69 for mass transfer into air and 0.79 for 
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mass transfer into water. 	The correlation of Rowe, 

Claxton and Lewis for mass transfer into water is shown 

in fig.27. 	The correlation of Steinberger and Treybal 26, 

which is dependent upon Grashof number, has been plotted 

using the Grashof number for the spheres of the present 

work. 	The data of Garner and Keey 24  for spheres in 

opposing flow have been taken from the published 

logarithmic plot and converted from 30.0oC to 25.0oC on 

the assumption that Sh CC So1/3. 	In the Reynolds number 

range under consideration the Sherwood number is probably 

a function of the Grashof number as well as of the Schmidt 

number. 	Since the form of this function is not known, 

however, it is not prossible to convert the data of 

Garner and Keey except by the above crude approxiration. 

Also included in fig.27 are the correlations of Garner 

and Suckling 32 
	 23 and Garner and Grafton 	for mass transfer 

from spheres in solid-liquid systems and of Frossling 17  

for mass transfer from spheres in solid-gas systems. 

The correlation of Skelland and Cornish for mass transfer 

from oblate spheroidal bodies into a gas stream is also 

shown in fig.27. 

As found by Rowe, Claxton 	Lewis 38, the 

data for solid-gas and solid-liquid systems cannot be 

uniquely represented by a correlation of the form of 
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equation (5.148) even when mass transfer occurs by forced 

convection alone. 	At low Reynolds numbers the differences 

between the two types of system become more marked as 

the influence of free convection increases; solid-gas 

systems having Grashof numbers very much less than those 

of solid-liquid systems. 	The correlation for solid-gas 

systems included in fig.27 are not, therefore, expected 

to be in agreement with those for solid-liquid systems. 

The Skelland-Cornish correlation is included since it is 

the only published correlation for oblate spheroids. 

The Frossling correlation is included for completeness. 

The scatter of the data of the present work for 

a single shape is seen to be much less than that of the 

data of Garner and Keey which cover approximately the 

same Reynolds number range. 	Above ReTR (Re3 = 45), 

where the data are unified by the use of d3, the scatter 

of the combined data is still less than that of Garner 

and Keey's data for spheres. 	Garner and Keey claimed 

that their data indicated a minimum in the mass transfer 

rate at a Reynolds number of approximately fifty. 	Fig.27 

shows that the scatter of their data is so large that 

below Re
3 

= 100 their data may equally well be represented 

by a horizontal line. 	In this region the mass transfer 

rates recorded by Garner and Keey are somewhat greater 
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than those of the present work. 	This may have been due 

to some constant error introduced by the photographic 

technique employed by Garner and Keey to obtain mass 

transfer rates, instabilities in the velocity profile 

in their water tunnel or the stratified nature of the 

compressed spheres used by these workers. 	Further, they 

probably introduced test bodies into the water tunnel by 

opening a port-hole in the side of the tunnel and forcing 

the test object into the tunnel against the outward 

rushing jet of water. Apart from the departure from 

steady state conditions which would have resulted from 

this technique, the mass transfer which occurred before 

the body reached the test position may have been 

considerable. 

The correlation of Rowe, Claxton and Lewis was 

obtained for a horizontal water flow past benzoic acid 

spheres. 	In this situation the forces of free convection 

and forced convection are not directly opposed and mass 

transfer rates might be expected to be different from 

those obtained in the present work. 	Their correlation 

indicates, in fact, that mass transfer is slightly less 

for horizontal flow than for vertical opposing flow. 

The correlations of Steinberger and Treybal, 

Garner and Suckling, and Garner and Grafton, are shown 
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from the lowest value of Reynolds number investigated by 

these workers to a Reynolds number of 200. 	These 

correlations are all, in fact, predominantly based upon 

data obtained at Reynolds numbers greater than 200 and 

are therefore "weighted" by the data obtained outside 

the range of the present investigation. 

The slope of the present data above ReTR  appears 

to be slightly greater than the slopes of some of the 

other correlations shown in fig.27. 	It should be 

emphasized that the correlations of Rowe, Claxton and 

Lewis, Frossling, and Garner and Suckling were obtained 

on the assumption that the exponent of the Reynolds 

number was 0.5. 	The slope of these correlations on 

fig.27 are therefore fixed by this assumption. 	As 

mentioned in section (5.2.1) the increased slope of the 

present data is possibly an effect of free convection. 

It may be concluded from fig.27 that the data 

of the present work show reasonable agreement with those 

correlations of other workers which are based upon data 

for the benzoic acid - water system. 
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CHAPTER 6. 

CONCLUSIONS. 

1. Plots of Sherwood number versus Reynolds number 

showed that, within the Reynolds number range investigated, 

i.e. 0 <Re3 N..  <195, the mass transfer data fell into 

two distinct regions; above and below a Reynolds number 

of 45. 	For Reynolds numbers greater than 45 the data 

for oblate spheroidal bodies of eccentricities 4:16, 

7:16, 10:16, 13:16, and 16:16, were successfully unified 

by the use of the characteristic dimensions d
3 (the 

surface area of the spheroid divided by the perimeter 

normal to flow) and d
5 (the arithmetic mean of the major 

and minor axes of the spheroid). 	For Reynolds numbers 

less than 45 none of the eight characteristic dimensions 

employed successfully unified the data. 

2. A statistical analysis of the data for Reynolds 

numbers greater than 45 showed that when these data were 

correlated by an expression of the form 
n
3 

Sh
3 	C

l3 
+ C

23 
Re
3 

Sc1/3 (6.1) 

the minimum estimate of variance occurred when the value 

of n3  was 0.78. 	However, for any value of n3  in the 

range 0.2 to 1.4 the estimate of variance fell within 
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the 905° confidence range of the minimum estimate of 

variance. 	Similarly, when the data were correlated by 

an expression of the form 
n5  

Shy 	C1 + C Re
5 Sc1/3 	(6.2) 

5 	2
5 

the minimum estimate of variance occurred when the value 

of n5 was 0.63; values of n5 from 0.15 to 1.1 fell 

within the 905 confidence range of this minimum estimate 

of variance. 

With these large ranges of the exponents of the 

Reynolds number possible, the choice between d3  and d5  

cannot be made on a purely statistical basis. 	It was 

decided to represent the present data for Reynolds numbers 

greater than 45 by a correlation based upon the 

characteristic dimension d
3 
in order to preserve 

continuity with the correlations for oblate spheroids 

presented by other workers 9'11. 	The correlation chosen 

was that with the minimum estimate of variance, i.e. 

Sh3 	= 	23.7 + 0.196 Re0.78 Se1/3 45$cRe3".5;195 

(6.3) 

The data were almost equally well represented by the 

somewhat simpler expression 

Sh3 = 	0.632 Re
3
0.59 sc1/3 

	
45.1103 ;195 

(6.4) 
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The values of Sh
3 

predicted by equations (6.3) 

and (6.4) arc higher than the values predicted at the 

corresponding Reynolds numbers by the extrapolations of 

the published correlations for forced convection alone. 

This suggests the possible influence of free convection 

upon mass transfer rates even at the highest Reynolds 

numbers investigated in the present work. 

3. A plot of characteristic dimension against 

eccentricity showed that the two characteristic dimensions 

which most successfully unified the data for Reynolds 

numbers greater than 45, i.e. d
3 
and d5, are similarly 

related to eccentricity. 	Any characteristic dimension 

which, when plotted in this manner, is related to 

eccentricity in a similar way, would also successfully 

unify mass transfer data for oblate spheroids of various 

eccentricities. 

4. At Reynolds numbers less than 1-5 none of the 

characteristic dimensions employed successfully unified 

the data for all five oblate spheroidal shapes. 	For 

spheres the mass transfer rates were independent of the 

Reynolds number in this region; the mass transfer rate 

being that predicted for free convection alone. 	For 
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the other shapes the relationships between Reynolds number 

and Sherwood number in this region appeared to be 

continuous curves, asymptotic to the horizontal lines 

through the limiting Sherwood numbers for free convection 

alone. 	The scatter of the data points in this region 

was such, however, that 2nalysis could not be usefully 

pursued beyond this qualitative interpretation. 

5. 	Analysis of the equations of motion and diffusion 

showed that the dimensionless group (Gr/Re2) is of 

importance in the correlation of mass transfer data for 

interacting free and forced convection. 	Plots of Sh vs. 

(Gr/Re2) based upon d
3 
and d

5 
resulted in a series of 

parallel curves for the five oblate spheroidal shapes. 

When other characteristic dimensions were employed no 

regular relationship existed between the curves for the 

individual shapes. 	This emphasises the importance of 

the characteristic dimensions d
3 
and d

5 
 in the correlation 

of mass transfer data for oblate spheroids. 

The plot of Sh
3 
vs. (Gr

3
/Re

3
2) showed thet the 

data for each shape could be represented by straight 

lines above (Gr
3/Re3

2) = 160 and below (Gr3
/Re

3
2) = 16. 

Above (Gr
3
/Re

3
2) = 160 the mass transfer rates were 

independent of the value of (Gr3/Re3  ) up to the highest 
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value of this group used in the present work i.e. 

approximately 5250. 	For the sphere this mass transfer 

rate was that due to free convection alone but for the 

other shapes this mass transfer rate was greater than 

that for free convection alone. 

Comparison of the correlations of other workers 

with the straight line through the present data for spheres 

below (Gr
3/
Re
3
2) = 16, showed that, even though the data 

fell on a straight line, the mass transfer rate was 

considerably increased from the predicted rate for forced 

convection alone. 

The extrapolations of the straight lines through 

the data above (Gr3/Re32) = 160 and below (Gr3/Re32) = 16 

intersected at a value of (Gr
3
/Re

3
2) which was 

approximately eaual to 45 for all shapes. 	For (Gr
3
/Re

3
2) 

less than 45 the data of the present work could be 

represented by the expression 

Sh
3 	

= 	0.632 Re3
0.59  Sol/3 
	

(6.4 ) 

In order to represent the data of the present work for 

(Gr3/Re32) greater than 45 the correlation for free 

convection proposed by Sandoval 11  i.e. 

Sh
3 	0.121 (Re3.Sc) 1/3 	(6.5) 

could be employed. 	Use of equation (6.5) results in little 
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error for spherical or near spherical bodies. 	For bodies 

with eccentricities 4:16, 7:16, 10:16, and 13:16 the mass 

transfer rates predicted by equation (6.5) are a maximum 

of 25;x, 180, 107: and 2% respectively, lower thin those 

observed in the present work. 	It is recommended that 

further work be carried out, in order to test the above 

method of representing mass transfer data for oblate 

spheroids in the presence of interacting free and forced 

convection, over other ranges of the Reynolds, Grashof, 

and Schmidt numbers than those employed in the present 

work i.e. 0Re3 	195 ; 2.15 x 104  ,;Gr3 	11.8 x 104; 

Sc = 1005. 

6. 	The schlieren photographs showed the existence 

of four distinct flow regimes in the Reynolds number range 

investigated i.e. 0 (Re3 	195. 	The flow patterns in 

these four regimes may be summarized as : 

1. Downflow with steady tail. 

2. Downflow with disturbed tail. 

3. .both up-and down-flow periodically 

prediminant. 

4. Upflow with a steady separation angle which is 

dependent upon the Reynolds number. 

The first three of these regimes occurred when 
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values of (Gr
3
/Re

3
2) were greater than 160 i.e. in the 

region where mass transfer rates for the sphere were those 

predicted for free convection alone. 	It is concluded 

that some compensatory effect between local mass transfer 

rates results in constant overall mass transfer rates. 

It is recommended that further work, possibly employing 

a double exposure photographic technique, be carried out 

in order to investigate the variation of local mass 

transfer rates‘ 

7. 	The schlieren photographs showed that free 

convection influenced the flow patterns around the 

dissolving bodies at values of (Gr
3
/Re

3
2) considerably 

less than 16, probably even at the lowest value of this 

group investigated in the present work. 	This supported 

the conclusion that mass transfer rates were influenced 

by free convection even at these low values of (Gr3/Re32). 

It is recommended that further work be carried out at 

values of Re3  greater than 195 in order to investigate 

the way in which the data for interacting free and forced 

convection, plotted as Sh3  vs. (Gr3/Re32)
, 
approach the 

limiting data for forced convection alone. 
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8. The value of the schlieren technique in the 

interpretation of mass transfer data has been illustrated. 

The schlieren photographs showed the complex nature of 

the flow patterns around dissolving bodies when free and 

forced convection interact. 	Attempts to solve the 

diffusion equation by the use of simple assumed velocity 

distributions are clearly great oversimplifications in 

this situation. 

9. The concept of designing low speed water tunnels 

on the basis of a packed bed has been tested and found 

to be successful. 
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APPENDIX. 1.  

TABULATED DATA. 

TABLF 13. 

CHARACTERISTIC DIMENSIONS, AREAS AND VOLUTI{ES OF OBLATE 

SPHEROIDS. 

e=10.16 e=13.16 e=16.16 e=4.16 e=7.16 

Surface Area cm2 11.184 13.301 15.141 17.788 20.268 
Volume Cm3  2.145 3.754 5.363 6.971 8.580 

d1  cm 1.600 1.928 2.172 2.370 2.540 
d2 cm 0.635 1.111 1.586 2.064 2.540 
d3 cm 1.439 1.667 1.935 2.229 2.540 
d4  cm 1.912 2.058 2.217 2.380 2.510 
d5 cm 1.588 1.826 2.064 2.302 2.510 
d6 cm 1.121 1.693 2.083 2.352 2.540 
d
7 cm 2.540 2.540 2.540 2.540 2.540 

-8 cm 1.270 1.680 2.008 2.290 2.540 

TABU', 14 

PHYSICAI PROPERTIES OF BENZOIC ACID-WATER SYSTEMS AT 25.0°C. 

PROPERTY 	VALUE 	REFERENCE 

	

cs 	3.45 g./litre 	87 

	

Ps 	0.99766 g./cm3 	11 

PH20 	
0.99707 g./cm3 	81 

'LH20 	
0.8937 centipoise 	82 

	

Dv 	8.92 x10-6 cm2/sec. 	calculated 

	

Sc 	1005 	calculated 
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TABLE 15. 

RUN 
NO. 

ECCENTRICITY 

DISSOLUTION DATA (All runs at 25.0°C.) 

FLOW 	ko  
VELOCITY 
(cm/sec) 	(cm/hr) 

RUN 
DURATION 
(hr.) 

TOTAL 
WEIGHT 
LOSS(mg) 

1 4.16 1.25 52.4 0.132 1.06 

2 4.16 1.25 47.45 0.083 0.958 

3 4.16 1.25 50.5 0.041 1.02 

4 4.16 1.25 50.05 0.084 1.01 

5 4.16 1.25 47.85 0.104 0.967 

6 16.16 3.00 174.2 0.147 0.830 

7 4.16 1.25 47.2 0.104 0.953 

8 16.16 3.00 171.35 0.118 0.817 

9 10.16 2.00 90.85 0.141 0.853 

10 16.16 3.00 160.55 0.092 0.765 

11 4.16 1.25 52.65 0.163 1.06 

12 16.16 3.00 185.2 0.184 0.883 

13 10.16 2.00 93.7 0.178 0.879 

14 16.16 3.00 202.6 0.234 0.966 

15 4.16 1.25 63.9 0.263 1.29 

16 10.16 2.00 113.2 0.231 1.06 

17 4.16 1.25 56.4 0.208 1.14 

18 16.16 3.00 218.45 0.263 1.04 

19 10.16 2.00 120.3 0.262 1.13 

20 10.16 2.00 103.1 0.203 0.968 

21 16.16 3.00 198.35 0.212 0.946 

22 4.16 1.25 72.45 0.329 1.46 

23 10.16 1.75 141.7 0.447 1.52 

24 10.16 1.75 123.35 0.363 1.32 

25 16.16 2.75 204.9 0.293 1.07 

26 10.16 2.00 123.6 0.285 1.16 
27 16.16 2.50 238.6 0.425 1.37 
28 4.16 1.25 82.1 0.414 1.66 

29 10.16 1.75 133.8 0.410 1.44 
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TABTiR 15 (continued) 

RUN ECUINTRICITY RUN 	TOTAL FLOW 	kc NO. 	DURATION WEIGHT VELOCITY 
(hr.) 	LOSS(mg) (cm/sec) 	(cm/hr) 

30 16.16. 2.50 250.35 0.475 1.43 

31 16.16 2.75 219.5 0.334 1.14 

32 10.16 2.00 133.95 0.327 1.26 

33 16.16 2.75 235.8 0.378 1.23 

34 4.16 1.25 89.9 0.489 1.82 

35 16.16 2.50 270.45 0.541 1.55 

36 10.16 1.75 155.15 0.540 1.66 

37 10.16 1.75 150.6 0.494 1.62 

38 4.16 1.00 81.9 0.631 2.07 

39 16.16 2.75 329.15 0.617 1.71 

40 10.16 1.75 169.25 0.604 1.82 

41 4.16 1.00 78.45 0.574 1.98 

42 16.16 2.25 289.7 0.687 1.84 

43 4.16 0.83 79.3 0.802 2.40 

44 10.16 1.75 175.25 0.661 1.88 

45 16.16 3.00 386.8 0.679 1.84 

46 4.16 1.00 99.05 0.875 2.50 

47 10.16 1.75 192.5 0.727 2.07 

48 16.16 3.00 158.95 0 0.758 

49 10.16 1.50 174.95 0.852 2.19 

50 4.16 1.00 88.6 0.721 2.24 

51 4.16 1.50 47.05 0 0.792 

52 10.16 2.75 112.65 0 0.769 

53 10.16 2.25 100.1 0.089 0.835 

54 4.16 1.25 45.15 0.065 0.912 

55 10.16 2.00 90.2 0.106 0.846 

56 7.16 1.75 74.1 0.146 0.923 

57 7.16 1.75 70.75 0.092 0.881 

58 16.16 3.17 164.35 0.075 0.742 

59 10.16 2.00 84.65 0.071 0.794 

60 13.16 2.50 120.15 0.074 0.783 
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RUN 
NO. 

ECCENTRICITY 

TAB1N, 	15 (continued) 

kc 

(cm/hr) 

RUN 
DURATION 
(hr.) 

TOTAL 
WEIGHT 
LOSS(mg) 

FLOW 
VELOCITY 
(cm/sec) 

61 7.16 1.75 73.25 0.059 0.912 

62 16.16 3.00 156.9 0.035 0.748 

63 13.16 2.50 134.35 0.146 0.876 

64 13.16 2.50 121.55 0.045 0.792 

65 13.16 2.50 128.35 0.117 0.837 

66 7.16 1.75 72.7 0.035 0.905 

67 10.16 2.00 95.4 0.044 0.895 

68 7.16 1.75 72.2 0.120 0.899 

69 13.16 2.50 120.25 0.098 0.784 

70 16.16 3.00 164.35 0.053 0.783 

71 7.16 1.75 84.7 0.232 1.06 

72 13.16 2.50 152.15 0.236 0.992 

73 7.16 1.75 82.5 0.187 1.03 

74 13.16 2.50 143.75 0.192 0.937 

75 7.16 1.50 119.1 0.459 1.73 

76 13.16 2.25 204.7 0.455 1.48 

77 7.16 1.75 105.55 0.292 1.31 

78 13.16 2.75 217.85 0.370 1.29 

79 7.16 1.75 118.9 0.367 1.48 

80 13.16 2.50 176.95 0.296 1.15 

81 13.16 2.50 161.7 0.258 1.05 

82 13.16 2.25 219.2 0.498 1.59 

83 13.16 2.50 185.6 0.326 1.21 

84 7.16 1.75 110.1 0.327 1.37 

85 13.16 2.50 213.45 0.417 1.39 

86 7.16 1.75 128.2 0.407 1.60 

87 7.16 1.75 147.7 0.512 1.84 

88 13.16 2.50 257.15 0.552 1.68 

89 13.16 2.50 302.4 0.728 1.97 

90 7.16 1.75 186.5 0.754 2.32 

91 13.16 2.50 287.15 0.635 1.87 
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RUN 
NO. 

ECCENTRICITY 

TABLE 	15 (continued) 

kc 

(cm/hr) 

RUN 
DURATION 
(hr.) 

TOTAL 
WEIGHT 
LOSS(mg) 

FLO7 
VELOCITY 
(cm/sec) 

92 7.16 1.75 163.65 0.578 2.04 

93 7.16 1.75 170.15 0.633 2.12 

94 13.16 2.50 300.65 0.684 1.96 

95 7.16 1.75 175.95 0.696 2.20 

96 13.16 2.25 284.4 0.768 2.06 

97 13.16 2.50 265.95 0.576 1.73 

98 7.16 1.50 171.5 0.871 2.49 

99 10.16 1.75 193.45 0.799 2.08 

100 16.16 2.50 290.15 0,587 1.66 

101 16.16 2.25 286.35 0.650 1.32 

102 7.16 1.50 161.75 0.816 2.35 

103 10.16 1.75 177.7 0.702 1.91 

104 10.16 1.75 184.65 0.748 1.98 

105 13.16 2.50 283.6 0.595 1.85 

106 10.16 1.75 202.35 0.868 2.17 

107 4.16 1.25 42.8 0.024 0.864 

108 7.16 1.75 72.0 0.019 0.896 

109 7.16 1.75 64.55 0 0.804 

110 16.16 3.00 165.45 0.017 0.789 

111 13.16 2.75 131.4 0 0.779 

112 13.16 2.50 122.25 0.018 0.797 

113 10.16 2.00 84.8 0.029 0.796 

114 13.16 4.50 203.85 0 0.738 

115 10.16 3.50 145.35 0 0.779 

116 4.16 2.00 63.9 0 0.806 

117 7.16 3.00 107.3 0 0.779 
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TABLE 16. 

REYNOLDS NUMBERS. 

RUN 
NO. 

Re1  Re2 Re3  Re4 Re
5 Re6  Re7 Re8 

1 23.6 9.4 21.2 28.2 23.4 16.5 37.4 18.7 
2 14-.8 5.9 13.3 17.7 14.7 10.4 23.5 11.8 
3 7.3 2.9 6.5 8.7 7.2 5.1 11.6 5.8 
4 14.9 5.9 13.4 17.8 14.8 10.5 23.7 11.9 
5 13.6 7.4 16.8 22.3 18.5 13.1 29.6 14.8 
6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 
7 18.6 7.4 16.7 22.2 18.4 13.0 29.5 14.8 
8 33.3 33.3 33.3 33.3 33.3 33.3 33&3 33.3 
9 34.1 25.0 30.4 34.9 32.4 32.8 39.9 31.6 

10 26.2 26.2 26.2 26.2 26.2 26.2 26.2 26.2 
11 29.0 11.5 26,1 34.7 28.8 20.3 46.1 23.0 
12 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 
13 43.2 31.6 38.5 44.1 41.1 41.5 50.6 40.0 
14 66.2 66.2 66.2 66.2 66.2 66.2 66.2 66.2 
15 47.0 18.6 42.2 56.1 46.6 32.9 74.5 37.3 
16 55.9 40.8 49.8 57.0 53.1 53.6 65.3 51.7 
17 37.2 14.8 33.4 44.4 36.9 26.0 59.0 29.5 
18 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 
19 63.5 46.4 56.6 64.8 60.3 60.9 74.3 58.7 
20 49.1 35.9 43.7 50.1 46.6 47.1 57.4 45.4 
21 60.2 60.2 60.2 60.2 60.2 60.2 60.2 60.2 
22 58.7 23.3 52.8 70.1 58.2 41.1 93.2 46.6 
23 108 79.1 96.4 110 103 104 127 100 
24 87.8 64.2 78.3 89.7 83.5 84.3 103 81.2 
25 83.1 83.1 83.1 83.1 83.1 83.1 83.1 83.1 
26 68.9 50.4 61.4 70.4 65.5 66.1 80,6 63.7 
27 120 120 120 120 120 120 120 120 
28 73.9 29.3 66.4 88.3 73.3 51.7 117 58.6 
29 99.4 72.7 88.6 101 94.5 95.4 116 91.9 



RUN 
NO. 

Re
1 

 Reg 

TABLE  	16 (continued) 

Re6  Re
7 

194. 

Re
8 

Re3  Red 
 

Re5  

30 135 135 135 135 135 135 135 135 
31 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 
32 79.2 57.9 70.5 80.8 75.2 75.9 92.6 73.2 
33 107 107 107 107 107 107 107 107 
34 87.2 34.6 78.5 104 86.5 61.1 138 69.2 

35 153 153 153 153 153 153 153 153 
36 131 95.7 117 134 124 126 153 121 
37 120 87.5 107 122 114 115 140 111 
38 113 44.7 101 134 112 78.8 179 89.3 
39 175 175 175 175 175 175 175 175 
40 146 107 130 149 139 140 171 135 
41 102 40.6 92.1 122 102 71.7 163 81.3 
42 195 195 195 195 195 195 195 195 
43 143 56.8 129 171 142 100 227 114 
A A `r- -r 160 117 143 164 152 154 187 148 
45 192 192 192 192 192 192 192 192 
46 156 62.0 141 187 155 109 248 124 
47 176 129 157 180 167 169 206 163 
48 0 0 0 0 0 0 0 0 
49 201 147 180 206 191 193 236 186 
50 129 51.1 116 154 128 90.2 204 102 
51 0 0 0 0 0 0 0 0 
52 0 0 0 0 0 0 0 0 
53 21.6 15.8 19.3 22.1 20.5 20.7 25.3 20.0 
54 11.6 4.6 10.5 13.9 11.6 8.2 18.5 9.2 
55 25.6 18.7 22.8 26.2 24.4 24.6 30.0 23.7 
56 31.4 18.1 27.1 33.5 29.7 27.5 41.3 27.3 
57 19.7 11.4 17.0 21.0 18.7 17.3 26.0 17.2 
58 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 
59 17.1 12.5 15.3 17.5 16.3 16.4 20.0 15.8 
60 19.6 17.1 18.5 19.7 19.1 19.5 21.1 19.0 
61 12.6 7.3 10.9 13.5 11.9 11.1 16.6 11.0 



NO. 
RJN Re1  Re2  

TABLE 16 (continued) 

Re6  Re7  

195. 

Re0  Re3  Re
4 

Re5  

62 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 
63 38.7 33.7 36.1- 38.9 37.6 38.4 41.5 37.4 
64 11.9 10.4 11.2 12.0 11.6 11.8 12.8 11.5 
65 31.0 27.0 29.2 31.1 30.1 30.8 33.2 30.0 
66 7,4 4.3 6.4 7.9 7.1 6.5 9.8 6.5 
67 10.7 7.8 9.6 11.0 10.2 10.3 12.5 9.9 
68 25.8 14,9 22.3 27.5 24.4 22.6 34.0 22.5 
69 25.9 22.5 24.3 26.0 25.1 25.7 27.7 25.0 

70 14.9 14.9 14.9 11.9 14.9 14.9 14.9 14.9 

71 49.9 28.8 43.1 53.3 47.3 43.8 65.8 43.5 

72 62.4 51.3 58.7 62.6 60.6 61.9 66.8 60.3 

73 40.3 23.2 34.9 43.0 38.2 35.4 53.1 35.1 

74 50.8 14.2 47.8 51.0 49.3 50.4 54.4 49.1 

75 93.7 56.9 85.3 105 93.4 86.6 130 86.0 

76 120 105 113 121 117 119 129 116 

77 62.8 36.2 54.3 67.0 59.4 55.1 82.7 54.7 
78 97.8 85.1 92.0 98.2 95.0 97.0 105 94.5 

79 78.9 45.5 68.2 84.2 74.7 69.3 104 68.7 

80 78.2 68.1 73.5 78.5 75.9 77.5 83.8 75.5 
81 68.1 59.3 64.1 63.4 66.2 67.6 73.0 65.8 

82 132 115 124 132 128 131 141 127 

83 86.3 75.2 81.2 86.7 83.8 85.6 92.5 83.4 

84 70.3 40.5 60.8 75.1 66.6 61.8 92.7 61.3 

85 110 96.0 104 111 107 109 118 106 

86 87.6 50.5 75.8 93.5 83.0 77.0 115 76.4 
87 110 63.4 95.2 117 104 96.7 145 95.9 
80 146 127 137 47 142 145 157 141 

89 193 168 181 193 187 191 206 186 

90 162 93.5 140 173 154 142 214 141 

91 168 146 153 169 163 167 180 162 
92 124 71.7 107 133 118 109 164 108 

93 136 78.4 118 145 129 120 179 119 



RUN- 
NO. 

Re
1  R e

2  

TABLE 16 (continued) 

Re6 Re7 

196. 

Re
8 

Re3  ReA  Re5 

94 181 157 170 182 176 179 194 175 
95 150 86.3 129 160 142 131 197 130 

96 203 177 191 204 197 201 218 196 

97 152 133 143 153 118 151 163 14,7 

98 187 108 162 200 177 165 247 163 

99 194 141 172 198 184 186 226 179 
100 166 166 166 166 166 166 166 166 

101 184 184 134 184 184 184 184 184 
102 176 101 152 187 166 154 231 153 
103 170 124 152 174 162 163 199 157 
104 181 133 162 185 172 174 212 168 

105 157 137 148 158 153 156 169 152 

106 210 154 187 215 200 202 246 194 

107 1-.3 1.7 3.8 5.1 4.2 3.0 6.8 3.4 
108 4.2 2.4 3.6 4.1 3.9 3.7 5.5 3.6 
109 0 0 0 0 0 0 0 0 

110 4.8 4.8 4.8 4.8 4.8 4.8 /1.8 1.8 

111 0 0 0 0 0 0 0 0 

112 4.7 4.1 1.5 4.8 4.6 1.7 5.1 1.6 

113 7.1 5.2 6.3 7.2 6.7 6.8 8.3 6.5 

114 0 0 0 0 0 0 0 0 

115 0 0 0 0 0 0 0 0 

116 0 0 0 0 0 0 0 0 

117 0 0 0 0 0 0 0 0 



197. 

RUN 
NO. 

Sh
1  Sh2 

TABLT2 	17. 

Sh6 Sh
7 Sh

8  

SHERWOOD NUMBERS. 

Sh
3 Sh,, Sh

5 

1 52.7 20.9 47.4 63.0 52.3 36.9 83.7 41.9 
2 47.8 19.0 3.0 57.1 47.4 33.5 75.8 37.9 
3 50.8 20.2 45.7 60.7 50.4 35.6 80.7 40.3 
4 50.4 20.0 45.3 60.2 50.0 35.3 80.0 40.0 
5 48.2 19.1 43.3 57.5 47.8 33.7 76.5 38.2 
6 65.7 65.7 65.7 65.7 65.7 65.7 65.7 65.7 
7 47.5 18.9 /,2.7 56.8 47.1 33.3 75.4 37.7 
8 64.6 64.6 61.6 64.6 64.6 64.6 64.6 61.6 
9 57.7 42.2 51.4 58.9 54.8 55.3 67.5 53.3 
10 60.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 
11 53.0 21.0 47.7 63.3 52.6 37.1 84.1 42.1 
12 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 
13 59.5 43.5 53.0 60.7 56.5 57.1 69.6 55.0 
14 76.4 76.4 76.4 76.4 76.4 76.4 76.4 76.4 
15 64.3 25.5 57.8 76.9 63.8 45.0 102 51.0 
16 71.9 52.5 64.1 73.4 68.3 69.0 84.1 66.5 
17 56.8 22.5 51.1 67.8 56.3 39.8 90.1 45.1 
18 82.4 62.4 82.4 32.4 82.4 82.4 82.4 82.4 
19 76.1 55.3 68.1 78.0 72.6 73.3 89.3 70.6 
20 65.5 47.8 58.3 66.8 62.2 62.8 76.6 60.5 
21 71.8 74.8 74.8 74.8 74.8 71.8 74.8 74.8 
22 72.9 28.9 65.6 87.1 72.4 51.1 116 57.9 
23 103 75.2 91.6 105 97.7 98.6 120 95.1 
24 89.5 65.4 79.8 91.4 85.1 85.9 105 82.8 
25 84.3 84.3 81.3 84.3 84.3 84.3 84.3 84.3 
26 78.5 57.4, 69.9 80.1 74.6 75.3 91.8 72.6 
27 103 108 108 108 108 108 108 108 
28 32.6 32.8 74.3 98.7 82.0 57.9 131 65.6 
29 97.1 71.0 86.5 99.1 92.3 93.1 114 89.8 
30 113 113 113 113 113 113 113 113 



RUN 
NO. 

Sh1  Sh2 

TABT,T1  	17 (continued) 

Sh7  

198. 

Sh
8 

Sh
3 

Sh
4  

Sh
y 

Sh6  

31 90.3 90.3 90.3 90.3 90.3 90.3 90.3 90.3 
32 85.0 62.2 75.8 86.8 80.8 81.6 99.5 76.6 
33 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0 
34 90.5 35.9 81.4 108 89.8 63.4 144 71.8 
35 122 122 122 122 122 122 122 122 
36 113 82.3 100 115 107 108 132 104 
37 109 79.9 97.4 112 104 105 128 101 
38 103 40.9 92.7 123 102 72.2 164 81.8 
39 135 135 135 135 135 135 135 135 
40 123 89.8 109 125 117 118 144 114 
41 98.7 39.2 88.8 118 97.9 69.1 157 78.3 
42 146 146 146 146 1.1.6 11-6 146 146 

43 120 47.5 108 143 119 83.9 190 95.0 
44 127 93.0 113 130 121 122 149 118 

45 146 146 146 146 146 146 146 146 
46 125 49.5 112 149 124 87.3 198 98.9 
47 140 102 121 143 133 134 163 129 
48 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 

49 143 108 132 151 141 142 173 137 
50 111 44.2 100 133 111 78.1 177 88.5 
51 39.5 15.7 35.5 17.2 39.2 27.6 62.6 31.3 
52 52.0 38.0 ''.-6.4 53.1 49.4 49.9 60.8 48.1 

53 56.5 41.3 50.3 57.7 53.7 54.2 66.1 52.2 

54 45.4 18.0 40.9 54.3 45.1 31.8 72.1 36.1 

55 57.3 41.9 51.0 58.5 51-.4 54.9 67.0 53.0 
56 55.4 31.9 47.9 59.1 52.5 48.7 73.0 48.3 
57 52.9 30.5 15.8 56.5 50.1 46.5 69.7 46.1 

58 58.7 58.7 58.7 58.7 58.7 58.7 58.7 58.7 

59 53.7 39.3 47.9 51.9 51.1 51.6 62.9 49.7 
60 57.8 50.4 54.4 58.1 56.2 57.4 62.0 55.9 
61 51.8 31.6 47.4 58.5 51.9 48.1 72.2 47.7 



RUN 
NO. 

Sh
1  Sh2 

TABLE 17 (continued) 

Sh Sh
7 

199. 
S1 18  Sh3 Shy, Sh

y 

62 59.2 59.2 59.2 59.2 59.2 59.2 59.2 59.2 
63 61.7 56.3 60.8 64.9 62.8 64.2 69.3 62.5 
64 58.5 50.9 55.0 58.7 56.8 58.0 62.7 56.5 
65 61.3 53.8 58.1 62.0 60.0 61.3 66.2 59.7 
66 51-.1 31.3 47.0 58.0 51.5 47.8 71.6 47.4 
67 60.6 1-1,-.3 54.0 61.8 57.6 58.1 70.8 56.0 
68 54.0 31.1 16.7 57.6 51.1 47.1 71.1 17.1 
69 57.9 50.4 51.4 58.1 56.2 57.1 62.0 55.9 
70 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0 
71 63.4 36.5 54.8 67.6 60.0 55.6 83.5 55.2 

72 73.2 63.8 66.9 73.5 71.1 72.7 78.5 70.7 
73 61.7 35.6 53.3 65.9 58.4 51..2 81.3 53.8 

74 69.2 60.2 65.1 69.5 67.2 68.6 74.1 66.8 

75 104 59.9 89.9 111 98.4 91.3 137 90.6 
76 109 95.3 103 110 106 109 117 106 

77 79.0 45.5 68.3 81.3 74.8 69.3 104 68.8 

78 95.3 83.0 89.6 95.7 92.6 91.6 102 92.1 

79 88.9 51.3 76.9 94.9 81.2 78.1 117 77.5 
80 85.2 74.2 80.1 85.5 82.7 84.5 91.3 82.3 
81 77.8 67.8 73.2 78.1 75.6 77.2 83.4 75.2 

82 117 102 110 118 114 116 126 113 

83 89.3 77.8 84.0 89.7 86.8 88.7 95.7 86.3 

84 82.4 47.5 71.2 87.9 78.0 72.3 108 71.8 
85 103 89.4 96.6 103 99.8 102 110 99.2 

86 95.9 55.3 82.9 102 90.8 84.2 126 83.5 
87 110 63.7 95.5 118 105 97.0 146 96.3 

88 124 108 116 124 120 123 133 120 

89 146 127 137 146 141 144 156 141 

90 110 80.4 121 149 132 123 184 122 

91 138 120 130 139 134 137 143 133 
92 122 70.5 106 131 116 108 161 107 
93 127 73.4 110 136 121 112 168 111 

94 115 126 136 145 141 114 155 140 



RUN 
NO. 

Sh1  Sh
2 

TABLE 17 (continued) 

Sh6  Sh7  

200. 

Sh8 
Sh3  Shy

, 
Sh
5 

95 132 76.3 114 141 125 116 174 115 
96 152 132 143 153 148 151 163 147 
97 128 111 120 129 124 127 137 124 
98 150 86.3 129 160 142 131 197 130 
99 140 103 125 143 133 135 161- 130 

100 131 131 131 131 131 131 131 131 

101 144 144 144 144 144 144 144 144 
102 141 81.4 122 151 134 124 186 123 
103 129 94.3 115 132 123 124 151 119 
104 134 97.9 119 137 127 129 157 124 
105 136 119 120 137 133 135 146 132 
106 147 107 131 150 140 141 172 136 
107 43.1 17.1 38.7 51.5 42.7 30.2 68.4 34.2 
108 53.9 31.0 46.6 57.5 51.0 47.3 70.9 46.9 
109 48.3 27.8 41.7 51.5 45.7 42.4 63.6 42.1 
110 62.4 62.4 62.4 62.4 62.4 62.4 62.4 62.4 
111 57.5 50.1 54.1 57.7 55.8 57.0 61.6 55.5 
112 58.8 51.2 55.3 59.1 57.1 58.4 63.1 56.8 
113 53.8 39.4 48.0 55.0 51.2 51.7 63.0 49.8 
114 54.5 47.5 51.3 54.7 52.9 54.1 58.4 52.7 
115 52.7 38.5 47.0 53.8 50.1 50.6 61.7 48.8 
116 40.2 16.0 36.2 48.0 39.9 28.2 63.8 31.9 
117 46,8 27.0 40.5 50.0 14.3 41.1 61.7 40.8 



TABLE 18. 	 201. 

SHERwOOD NUMBERS BASED ON SURFACE AREA OF SPHERE OP SALT 

VOLUME. 

RUN 
NO. 

Sh
1f 

RUN 
NO. 

Sh
if 

RUN 
NO. 

Sh
1f 

RUN 
NO. 

Sh
lf 

1 75.3 31 90.3 61 62.4 91 139 
2 68.2 32 88.6 62 59.2 92 139 
3 72.6 33 97.0 63 65.2 93 145 
4 71.9 34 129 64 59.0 94 146 
5 68.8 35 122 65 62.3 95 151 
6 65.7 36 117 66 61.9 96 153 
7 67.8 37 114 67 63.1 97 129 
8 64.6 38 147 68 61.5 98 170 
9 60.1 39 135 69 58.3 99 146 

10 60.6 40 128 70 62.0 100 131 
11 75.7 41 141 71 72.1 101 144 
12 69.9 42 146 72 73.8 102 161 
13 62.0 43 171 73 70.3 103 134 
14 76.4 44 133 74 69.7 104 140 
15 91.8 45 146 75 118 105 138 
16 74.9 46 178 76 110 106 153 
17 81.1 47 146 77 89.9 107 61.5 
18 82.4 48 60.0 78 96.1 108 61.3 
19 79.6 49 154 79 101 109 55.0 
20 63.2 50 159 80 85.8 110 62.4 
21 74.8 51 56.3 81 78.4 111 57.9 
22 104 52 54.2 82 118 112 59.3 
23 107 53 58.9 83 90.0 113 56.1 
24 93.3 54 64.9 84 93.8 114 54.9 
25 84.3 55 59.7 85 104 115 55.0 
26 81.8 56 63.1 86 109 116 57.4 
27 108 57 60.3 87 126 117 53.3 
28 118 58 58.7 88 125 
29 101 59 56.0 89 147 
30 113 60 58.3 90 159 



202 . 

GRASHOF 

TABLE 	19. 

) 

e=13.16 e=16.16 

NUMBERS ( 25.0°C . 

e=10.16 e=4.16 e=7.16 
Gr1  x 10-4 2.96 5.18 7.10 9.62 11.8 
Gr2  x 10 0.185 0.991 2.89 6.35 11.8 
Gr3  x 10-4  2.15 3.35 5.24 8.00 11.8 
Gr4 	A x 10 ' 5.05 6.29 7.87 9.73 11.8 
Gr5  x 10  2.89 4.39 6.35 8.81 11.8 

Gr5  x 10 4  1.02 3.51 6.53 9.39 11.8 
Gr7  x 10  11.8 11.8 11.8 11.8 11.8 
Gr8 x 10 " 1.48 3.13 5.85 8.67 11.8 

PRODUCT OF GRASHOF 

TABLE 	20. 

CHMIDT NI_TUBERS 	( 25.0°C . ) 

e=16.16 

AND S 

e=4.16 e=7.16 e=10.16 e=13.16 
Gr1xScx10 7  2.97 5.21 7.44 9.67 11.9 
Gr2xScx10-7  0.186 0.996 2.90 6.38 11.9 
Gr3xScx10-7  2.16 3.36 5.26 8.04 11.9 
Gr, xScx10-7  5.07 6.33 7.91 9.78 11.9 
Gr5xScx10-7  2.90 4.42 6.38 8.86 11.9 
Gr6xScx10-7  1.02 3.53 6.57 9.44 11.9 

Gr7xS cx10-7  11.9 11.9 11.9 11.9 11.9 

Gr8xScx10-7  1.49 3.44 5.88 8.71 11.9 



203. 
TABLE 21. 

GRASHOF NUMBERS DIVIDEi'D BY REYNOLDS NUMBERS SQUARED. 

RUN 
NO. 

Gr1  
Re12  

Gr2 Gr3  Gr4  Gr5  Gr6  Gr7  Gr8 
Re32 Ree Re52 Reba Re7217-c? 

1 53.2 21.1 47.8 63.5 52.7 37.2 84.4 42.2 
2 134 53.4 121 161 133 94.2 213 107 
3 559 222 502 668 554 391 8C'7 443 
4 133 52.7 119 159 132 92.9 211 105 

5 85.2 33.8 76.6 102 84.5 59.7 135 67.6 
6 68.3 68.3 68.3 68.3 68.3 68.3 68.3 68.3 
7 85.6 34.0 77.0 102 85.0 60.0 134 68.0 
8 107 107 107 107 107 107 107 107 
9 63.5 46.4 56.6 64.8 60.3 60.9 74.2 58.7 

10 173 173 173 173 173 173 173 173 
11 35.1 13.9 31.6 42.0 34.9 24.6 55.8 27.9 
12 43.7 43.7 43.7 43.7 43.7 43.7 43.7 43.7 
13 39.6 28.9 35.3 40.4 37.6 38.0 46.3 36.6 
14 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 
15 13.4 5.33 12.1 16.0 13.3 9.40 21.3 10.7 
16 23.7 17.3 21.1 24.2 22.5 22.7 27.7 21.9 
17 21.4 8.50 19.3 25.6 21.2 15.0 34.0 17.0 
18 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 
19 18.3 13.4 16.3 18.7 17.4 17.6 21.5 17.0 
20 30.7 22.4 27.4 21.3 29.2 29.5 35.9 28.4 
21 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 
22 8.59 3.41 7.72 10.3 8.52 6.01 13.6 6.82 
23 6.32 4.62 5.63 6.45 6.00 6.06 7.39 5.84 
24 9.59 7.01 8.54 9.79 9.11 9.20 11.2 8.87 
25 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1 
26 15.6 11.4 13.9 15.9 14.8 14.9 18.2 14.4 
27 8.18 8.18 8.18 8.18 8.18 8.18 8.18 8.18 
28 5.42 2.15 4.88 6.48 5.38 3.80 8.61 4.30 
29 7.49 5.47 6.67 7.64 7.11 7.18 8.76 6.92 
30 6.53 6.53 6.53 6.53 6.53 6.53 6.53 6.53 



RUN 
NO. 

Gr1  
Re 2 

TABI1E 21 (continued) 

Gr6 
17662 

Gr7  

204. 

Gr8  Gr2 	Gr3  Grp  Gr5  

Re22  76732  Re42 Re52 Re72 Re82 

31 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 
32 11.8 8.63 10.5 12.1 11.2 11.3 13.8 10.9 
33 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 

34 3.89 1.54 3.50 4.65 3.86 2.72 6.17 3.09 
35 5.03 5.03 5.03 5.03 5.03 5.03 5.03 5.03 
36 1.32 3.16 3.85 4.41 4.10 4.11- 5.05 3.99 
37 5.17 3.73 4.60 5.27 4.91 1.96 6.04 4.78 

38 2.34 0.927 2.10 2.79 2,32 1.64 3.71 1.85 

39 3.87 3.87 3.87 3.87 3.87 3.87 3.87 3.87 
40 3.46 2.53 3.08 3.53 3.29 3.32 4.04 3.20 

41 2.82 1.12 2.54 3.37 2.80 1.98 1.48 2.24 
42 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 
13 1.44 0.573 1.30 1.72 1.43 1.01 2.29 1.15 
44 2.88 2.11 2.57 2.94 2.74 2.77 3.37 2.67 
45 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 
46 1.21 0.481 1.09 1.45 1.20 0.849 1.92 0.96 

47 2.39 1.74 2.13 2.11 2.27 2.29 2.79 2.21 

48 

49 1.82 1.33 1.62 1.86 1.73 1.75 2.13 1.68 

50 1.79 0.709 1.61 2.13 1.77 1.25 2.83 1.12 

51 

52 

53 158 116 141 162 151 152 185 146 

54 218 86.5 196 261 216 153 346 173 

55 113 82.3 100 115 107 108 132 104 
56 52.7 30.4 45.5 56.2 19.9 46.3 69.4 45.9 
57 133 76.8 115 142 126 117 176 116 

58 263 263 263 263 263 263 263 263 

59 252 184 225 258 240 242 295 233 
60 249 217 234 250 242 247 267 241 
61 326 188 281 347 308 286 	429 284 
62 1180 1180 	1180 1180 1180 1180 	1180 1180 



TABLE 21 (continued) 
205. 

RUN Gr
1  Gr2 Gr- Gr4  Gr5  Gr6  Gr7  Gr8 NO. Te12  1/-, 22  Re? Re72  Re 42  Re52  Re62  

Re82  
63 64.1 55.8 60.3 61.4 62.3 63.6 68.7 61.9 
64 678 590 638 681 658 673 726 655 
65 100 87.1 94.1 100 97.2 99.3 107 96.6 
66 933 538 807 996 884 820 1230 813 
67 643 470 573 656 611 616 752 594 
68 77.9 44.9 67.3 83.7 73.7 68.4 103 67.8 
69 144 125 135 144 140 143 154 139 
70 534 534 534 534 534 534 534 534 
71 20.8 12.0 18.0 22.2 19.7 18.3 27.4 18.1 
72 24.7 21.5 23.2 24.8 24.0 24.5 26.5 23.9 
73 31.8 18.4 27.5 34.0 30.1 28.0 41.9 27.7 
74 37.3 32.4 35.0 37.4 36.2 37.0 39.9 36.0 
75 5.32 3.07 4.60 5.68 5.04 4.67 7.01 4.64 
76 6.65 5.79 6.25 6.67 6.16 6.59 7.12 6.42 
77 13.1 7.58 11.1 14.0 12.4 11.5 17.3 11.5 
78 10.1 8.76 9.46 10.1 9.77 9.93 10.8 9.71 
79 8.32 4.79 7.19 8.88 7.87 7.30 11.0 7.25 
80 15.7 13.7 14.8 15.8 15.3 15.6 16.9 15.2 
81 20.7 18.0 19.5 20.8 20.1 20.5 22.2 20.0 
82 5.54 4.82 5.21 5.56 5.38 5.50 5.94 5.35 
83 12.9 11.2 12.1 13.0 12.5 12.8 13.8 12.5 
84 10.5 6.03 9.05 11.2 9.91 9.19 13.8 9.12 
85 7.91 6.89 7.14 7.95 7.69 7.85 8.48 7.64 
86 6.74 3.89 5.83 7.20 6.38 5.92 8.88 5.88 
87 4.27 2.16 3.69 4.56 4.04 3.75 5.63 3.72 
88 4.51 3.92 4.24 4.52 4.38 4.47 4.83 4.35 
89 2.59 2.26 2.44 2.60 2.52 2.57 2.78 2.51 
90 1.97 1.13 1.70 2.10 1.86 1.73 2.59 1.71 
91 3.41 2.97 3.20 3.42 3.31 3.38 3.65 3.29 
92 3.35 1.93 2.90 3.57 3.17 2.94 4.41 2.92 
93 2.30 1.61 2.42 2.98 2.65 2.45 3.68 2.44 



RUN 
NO. 

Gr1  
Re 12  

TABLE 21 (continued) 

Gr6  

Re 62  
Gr
7 

7672 

206. 

Gr 8 Gr2  Gr
3 

Gr5  
Re 22  Re 32Re42 Re 52 13.e82 

94 2.94 2.56 2.77 2.95 2.86 2.92 3.15 2.84 

95 2.31 1.33 2.00 2.47 2.19 2.03 3.04 2.01 
96 2.33 2.03 2.20 2.34 2.27 2.32 2.50 2.25 
97 4.15 3.61 3.90 4.17 4.03 4.12 4.45 4.01 
98 1.47 0.849 1.27 1.57 1.40 1.29 1.94 1.28 

99 1.97 1.44 1.76 2.02 1.88 1.89 2.31 1.83 
100 4.28 4.20 4.28 4.28 4.28 4.28 4.28 4.28 

101 3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49 
102 1.68 0.968 1.45 1.79 1.59 1.47 2.21 1.46 

103 2.56 1.87 2.28 2.61 2.43 2.45 2.99 2.57 
104 2.25 1.64 2.01 2.30 2.14 2.16 2.63 2.08 
105 3.88 3.38 3.65 3.90 3.77 3.85 4.16 3.75 
106 1.67 1.22 1.49 1.71 1.59 1.61 1.96 1.55 

107 1630 646 1460 1940 1610 1140 2580 1290 

108 2990 1720 2590 3190 2830 2630 3940 2610 

109 

110 5240 5240 5240 5240 5240 5240 5240 5240 

111 

112 4290 3740 4040 4310 4170 4260 4600 1150 

113 1470 1080 1310 1500 1400 1410 1720 1360 

114 

115 

116 

117 

= infinity (free convection runs) 
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APPENDIX 2. 

ORIFICE PLATE CALIBRATION CONSTANTS. 

TABLE 22 

Orifice 
Diameter 
inches 

CALIBRATION CONSTANTS 
i 

C
7 

C
8 

C
9 

1 
C10 

0.15 -0.001 -0.015 0.393 -0.013 

0.33 -0.000 -0.006 2.052 -0.033 

0.44 -0.007 0.139 2.796 1.598 

0.60 -0.005 0.058 6.987 0.141 

0.75 -0.024 0.327 11.366 3.112 



208. 

BIBLIOGRAPHY. 

1. Hughes, R.R,, and Gilliland, E.R., Chem.Eng. Prog., 

V48, 497, (1952). 

2. Klee, A.J., and Treybal, R.E. A.I.Ch.E.Journal, 
172, 444, (1956). 

3. Lewis, J,D., Jones 9  I., and Pratt, H.R.C. 
Trans.Inst.Chem.Engrs., V29, 126, 

(1951) 

4. Weaver, R.E.C., Lapidus, L., and Elgin, J.C. 
A.I.Ch.E.Journal, V5, 533, (1959). 

5. Hu, S., and Kintner, R.C. 

A.I.Ch.E.Journal, Vl„ 42, (1955). 

6. Licht, W., and Narasimhamarty, G.S.R. 
A.I.Ch.E.Journal, V1, 366, (1955). 

7. Keith, F.W.Jr.„ and Hixson, A.N. 

Ind.Eng.Chem., V47, 258, (1955). 

8. Elzinga, E.R.Jr., and Banchero, J.T. 
A.I.Ch.E.Journal, V7, 394, (1961). 

9. Skelland, A.H.P., and Cornish, A.R.H. 
A.I.Ch.E.Journal, V9, 73, (1963). 

10. Beg, S.A. 	Ph.D.Thesis, Imperial College, London (1966) 

11. Sandoval, A.H. 	M.Sc.Thesis, Imperial College, London 
(1965). 

12. Lewis, W.K. 	Ind.Eng.Chem., V8, 825, (1916). 

13. Lewis, W.K., and Whitman, 
Ind.Eng.Chem., V16, 1215, (1924). 

14. Higbie, R. 	Trans.Amer.Inst.Chem.Engrs., V.31„ 365, 
(1935). 

15. Dankwerts, P.V. 	Ind.Eng.Chem., V43, 1460, (1951). 



209. 

16. Toor, H.L., and Marchello, J.M. 
A.I.Ch.E.Journal, V4, 97, (1958). 

17. Frossling, N. 

18. Langmuir, I. 

19. Pohlhausen, E. 

20. Kroujiline, G. 

21. Frossling, N. 

Gerlands.Beitr.Geophys., V52, 170, 
(1938). 

Phys,Rev., V12(2), 368, (1918). 

Z.angew.Math.Mech., V1, 115, (1921). 
8 	123 

Tech.Phys.(U.S.S.R.), V3, 284:, (1938). 

Lands Asskr.N.F., V36, No.1-, (1940). 

22. Boltze, E. 	Thesis, Gottingen, (1908). 

23. Garner, P.H., and Grafton, R.W, 
Proc.Roy.Soc., A224, 64, (1954). 

24. Garner, F.H., and Keey, R.B. 
Chem.Eng.Science, V9, 119, (1958). 

25. Krischer, 0., and Loos, G. 	Chem.Ing.Tech., V30, 
31, 69, (1958). 

26. Steinberger, R.L., and Treybal, R.E. 
A.I.Ch.E.Journal, V6, 227, (1960). 

27. Vyrubov, D.N. 	J.Tech.Phys. Moscow, V9, 1923, (1939). 

Canadian Defence Research Board 
Translation Sept. (1949). 

28. Linton, I.H.Jr., and Sherwood, T.K. 
Chem.Eng.Prog., V46, 258, (1950). 

29. Maisel, D.S.9  and Sherwood, T.K. 
Chem.Eng.Prog., V46, 172, (1950). 

30. Ranz, W.E., and Marshall, W.R. 
Chem.Eng.Prog., V48, 141, 173, (1952). 

31. Axel'rud, G.A. Zh.Prkl.Khim.Leningrad, V27, 1446, 
(1953). 



210. 

32. Garner, F.H., and Suckling, R.D. 

A.I.Ch.E.Journal, V4, 114, (1958). 

33. Steele, L.R., and Geankoplis, C.J. 

A.I.Ch.E.Journal, V5, 178, (1959). 

34. Linton, M., 

35. Pasternak, 

36. Evonchides 

37. Yen, 7.C•, 

and Sutherland, K.L. 
Chem.Eng.Science„ V12, 214, (1960). 

I.S., and Gauvin, W.H. 
A.I.Ch.E.Journal, V7, 254, (1961). 

9  S., and Thodos, G. 
A.I.Ch.E.Journal, V7, 78, (1961). 

and Thodos, G. 
A.I.Ch.E.Journal, V8, 34, (1962). 

38. Rowe, P.N., Claxton, K.T., and Lewis, J.B. 
Trans.Inst.Chem.Engrs„ V43, 14,(1965). 

39. Friedlander, S.K. A.I.Ch.E.Journal, V3, 43, (1957). 

40. Tomotika, S., and Aoi, T. 
Quart.J.Mech.Appl.Math., V3, 140, 

(1950). 

41. Friedlander, S.K. A.I.Ch.E.Journal, V7, 347, (1961). 

42. Yuge, T. 	Rep.Inst.High Speed iolech., Tohoku Univ., 
V6, 143, (1956). 

43. Blathers, W.G., Madden, A.J. and Piret, E. 

Ind.Eng.Chem., V49, 961, (1957). 

44. Garner, F.H., and Keey, R.B. 
Chem.Eng.Science, V9, 218, (1958). 

45. King, 1.J. 	Mech.Eng., V54, 347, (1932). 

46. Saunders, 0.A. 	Proc.Roy•Soc., A1729  55, (1939). 

47. Garner, F.H., and Hoffman 	J.M. 
A.I.Ch.E.Journal, V7, 48, (1961). 



211. 

4-8. Wagner, C. 	Journal Phys.Colloid Chem., V53, 1030, 
(1949). 

49. Krischer, 0. Die wissenschaftlichen Grundlagen der 
Trocknungstechnik 

Springer-Verlag, Berlin (1956) p.130. 

50. Krainers, H.A. 	Physica, V12, 61, (1946). 

51. Houghton, H.G. Physics, V4, 419, (1933). 

52. Powell, R.W. 	Trans.Inst.Chem.Engrs., V18, 36, (1940) 

53. Acrivos, A. 	A.T.Ch.E.Journal, V4, 285, (1958). 

54. Sparrow, LM., and Gregg, E.L. 

Journal App.Mech., V26, 133, (1959). 

55. Sparrow, L.M., Eichhorn, R., and Gregg, E.L. 

Phys.Pluids, V2, 319, (1959). 

56. Van der Hegge Zijnen, B.G. 

App.Sci.Res., A6, 129, (1956). 

57. Yuge, T. 	Trans.Am.Soc.Mech.Engrs., C82, 214, (1960). 

58. Allander, C.G. Kungel, Techniska Hogskalans 
Handlinger, Nr.70, (1953). 

59. Yamagata, K. 	Trans.Soc.Mech.Engrs., (Japan), 

V9; No.37, 132, (1943). 

60. Pei, D.C.T., 	A.I.Ch.E.Symp.Series 59, V61, 57,(1965) 

61. Happel, J., and Brenner, H., 

.flLow Reynolds Number Hydrodynamics", 
Prentice-Hall, N.J. (1965). 

62. Bird, R., Stewart, W., and Lightfoot, E. 

"Notes on Transport Phenomena" Chapman & Hall, 

London, (1958). 

63. Warshay, M., Bogusz, E., Johnson, M., and Kintner, R.C. 

Can.Journ.Chem.Eng., V37, 29, (1959). 



212. 

64. Pasternak, I.S., and Gauvin, W.H. 

Can.Journ.Chem.Eng., V30, 35, (1960). 

65. Tsoubouchi, T., and Sato, S. 

Chem.Eng.Prog.Symp.Series No.30, 
V56, 269, (1960). 

66. Williams, G.C. 	Sc.D. Thesis, M.I.T. (1942). 

67. Drown, G.G., and asscoiates. 

"Unit Operations" Wiley Sons Inc. New York 
(1950). 

68. Um), S., and Kintner, R.C. 

A.I.Ch.E.Journal, V2, 420, (1956). 

69. Strom, J.R., and Kintner, R.C. 

A.I.Ch.E.Journal, V4, 153, (1958). 

70. Newton, I. ''Mathematics Principa", Univ.California 

Press, 1934, p.31-8. 

71. Fagan, A.M., and Happel, J. 

A.I.Ch.E.Journal, V6, 55, (1960). 

72. Arthur, J.A., Linnett, J.7., Rayner, Mrs..T.J., and 
Sington, 	P.C. Trans.Faraday Soc., V46, 270, (1950). 

73. Muskat, M. 

	

	"Flow of Homogeneous Fluids Through 
Porous Media" McGraw-Hill, New York, 

(1937), p.14. 

74. Lemich, Re, and Levy, M.R. 

A.I.Ch.E.Journal, V7, 21-0, (1961). 

75. 'Handbook of Chemistry and Physics 39th Ed. 
Chemical Rubber Publishing Co. London (1957),p.791 

76. Holder, D.W., and North, L.J. 

Notes on Applied Science No.31 (Schlieren Methods) 

H.M.S.O. (1963).. 

77. Stanton, T.E. 	Proc.Roy.Soc., A85, 366, (1911). 



213. 

78. Stanton, T.E. 	Proc.Roy.Soc,„ A97, 413, (1920). 

79. Barker, M. 	Proc.Roy.Soc., A101, 435, (1922). 

80. Schlichting, H., "Boundary Layer Theory", 4th Edition, 
McGraw-Hill, New York, (1962),p.168. 

81. Perry, J.H., ed., "Chemical Engineers Handbook", 
3rd Edition, McGraw-Hill, New York, 

(1950), p.175 & p.538.  

82, Lange, N.A., "Handbook of Chemistry", 10th Edition, 
McGraw-Hill, New York, (1961), p.1668 & 

p.326. 

83. Othmer, D.P., and Thaker, M.S. 

Ind.Eng.Chem., V45, 589, (1953). 

84. Jilke, C.R., and Pin Chang, 

A.I.Ch.E.Journal, V1, 264, (1955). 

85. Hixson, A., and 7ilkens, H. 

Ind.Eng.Chem., V25, 1196, (1933). 

86. Vasudev, A. 	Dissertation Abstracts, V25, 1079,(1964) 

87. Bourgoin, R. 	Ann.Chim.Phys., V15, 161, (1878). 

88. Skellend, A.F.H., and Wellek, R.M. 
A.I.Ch.E.Journal, V10, 491, (1964). 

89. Volk, U. 	''Applied Statistics for Engineers", 
McGraw-Hill, New York, (1958), p.152. 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213

