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ABSTRACT.

The effect of the interaction between free
and forced convection upon mass transfer rates from
sphercs and oblate spheroidal bodies has becn
investigated experimentally,

Many correlations exist for the prediction
of mass transfer rates from single spheres by cither
free or forced convection alone. Little work has been
published, however, concerning the interaction of these
effects. Furthermore, there is much evidence to suggest
that drops passing through a second liquid are often
oblate spheroidal in shape.

To investigate the effect of both shape and
the interaction of free and forced convection upon mass
transfer rates, benzoic acid bodies of five different
oblate spheroidal shapes were dissolved in water in a
low speed water tunnel; mass transfer rates were
obtained by direct weighing. A schlieren technique was
employed to photograph the flow patterns around the
dissolving bodies.,

Bight characteristic dimensions were considered
in an attempt to produce a single correlation for all
five shapes, The data for Reynolds numbers greater

than 45 were correlated with mean and maximum deviations



of 2.4% and T.1% by the expression :

- 0.78 & 1/3
Shy = 23,7 + 0.196 Resy Sc 45 €Re5 195

where the dimensionless groups are based upon the
characteristic dimension proposed by Pasternak and Gauvin,
The increase of the Reynolds number exponent from the
theoretical value of 0,50 for forced convection may be

an effect of frce convection, This conclusion is
supported by the photographic evidence which shows

the existence of four distinet flow regimes in the range
0 gRe3 < 195 with an influence of free convection upon
the flow petterns around the dissolving bodies even at

the highest Reynolds numbers employed.

At Reynolds numbers in the range O <Re3< 45
nonc of the characteristic dimensions employed
successfully unifiecd the data for all shapes.

The dimensionless group (Gr/Re®) has been
shown to be an important criterion in deciding whether
either free or forced convection may be ncglected in

the calculation of mass transfer rates,
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CHAPTER 1.

INTRODUCTION .

Many chemical engineering processes involve the
transfer of mass between phases. In order to enhance
this masg transfer it is desirable to increase the contact
area between the phases and this is often accomplished by
dispersing one phase, in the form of particles, drops, or
bubbles, in the second phasec. The phases are then known
as the disperse and continuous phases, respectively.
Systems frequently encountered are solid particles in a
liquid or gas, liquid drops in a gas or liquid, and
bubbles in a liquid,

In recent years research workcers have shown an
increasing interest in the more fundamental aspects of
the mass transfer processes involved in such systems, In
particular, the precise nature of the mechanism of mass
transfer from a single particle, bubble, or drop has been
the subject of much theoretical and experimental study.

The passage of drops through a second liquid may
be complicated by such factors as internal circulation,
oscillations, deformations, and interactions with
neighbouring drops. In order to study this situation
experimentally, with a vicw to gaining some insight into
the mechanisms of the mass transfer process, as well as

to obtaining empirical correlations, it is necessary to
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introduce certain simplifications and to concentrate on
particular aspects of the general problem, For example,
in order to investigate the relationship between drop
Reynolds number and continuous phase mass transfer
coefficient, many recent researchers have considered a drop
to behave as a solid body. They have then measured mags
transfer rates experimentally by suspending a solid body
representing a drop in a liquid stream moving at a
controlled velocity. Such experiments eliminate the
effects of intermal circulation, oscillation and
deformation, By considering a single body the effects
of interactions with neighbouring drops are also
eliminated.,

A further complication, not eliminated by the
above model, may be present when drop Reynolds number,
relative to the continuous phase, is low, In such
circumstances free convective forces may have &
considerable effect upon the fluid motion around a drop
or solid particle, and hence upon the mass transfer from
it. These forces are caused by dengity differences
between the bulk fluid of the continuous phase and the
solution formed by transfer of a component from the drop
or particle, When drop Reynolds number is high, these
free convective forces become negligible compared with
forces set up by the relative motion of the continuous

phase itself.
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Previous workers who have used the solid,
rigidly-supported model, have concentrated upon the
situation in which free convective forces may be neglected
and have paid little attention to ranges of Reynolds
number in which free and forced convection might be
expected to interact. Furthermore most of these workers
have simplified the model one stage further by taking the
sphere as the idealised drop shape. Although research
has shown drops in liquid=-liquid systems to be spherical
under certain circumstances, there is much evidence to
show that the model would be more general if the drops
were represented by oblate spheroids 1"'8. Uge of this
idealized shape would still include the sphere as a

9,10 who have used

limiting case, The only workers
oblate spheroids, have worked in ranges of Reynolds number
where free convection is negligible and, in one particular
instance 11, where there is free convection only. These
investigations are of value as limiting cases when
considering the interaction of free and forced convection,
Workers with oblate spheroids have considered at some
length the effect of eccentricity on mass transfer.

They have attempted to produce a single correlation for

all oblate spheroidal shapes by choice of a suitable

characteristic dimension for use in dimensionless groups,
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With these considerations in mind it was decided
to study experimentally mass transfer from oblate
spheroidal bodies under conditions such that free and
forced convection interact. The feasibility of
correlating the data thus obtained, if possible by use
of a suitapvle characteristic dimension in a manner gimilar
to that successfully employed in forced convection, was
to be investigated, An attempt was also made to discover
criteria for deciding when free convection or forced
convection may be considered negligible. Photographic
techniques were employed to study the mechanisms involved

in the mass transfer prccess.
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CHAPTER 2.

LITERATURE SURVEY.

2,1. MASS TRANSFER THEORY.

In September 1916 W.K.,lLewis 12

presented the
first clear statement of the so~-called film theory of
mass transfer, Lewls considered the extraction of a
component from a solid particle by a countercurrently
flowing liquid. He proposed that in this situation the
liquid could be regarded as forming a thin, almost
stationary film on the solid particle, whilst outside this
film turbulence kept the liquid concentration uniform.
Mass transfer was assumed to be controlled by diffusion
through the stagnant film, As a consequence, the
continuous phase mass transfer coefficient, kc’ could be

related to the diffusion coefficient of the transferred

component in the continuous phase, Dv' by :

kC = —Lz (2¢1)

The quantity L in this equation is the thickness of the
supposedly stagnant film.

Tewis and Whitman > extended the f£ilm theory
by consideration of gas absorption. For this process
they postulated the existence of two films, one on either

side of the interface, each of which is thin and relatively
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undisturbed by bulk motion. These authors showed that
the overall mass transfer coefficients based on the

continuous and disperse phases, Koc and Kod’
related to the film mass transfer coefficients, kc and

could be

kd’ by @
1 1 m
m— I et o e (2.2)
Koc kc kd
1 1 1
= = + (2.3)
od kd n kc

where m is the slope of the equilibrium line, &ssumed
straight in the region of interest. The modern
interpretation of equations (2,.,2) and (2,3) is that 1/kc
and l/kd represent resistances to mass transfer in the
continuous and disperse phases respectively, whilst 1/KOc
and 1/Kod represent total resistances to mass transfer
across the interface,

The prediction of the individual film coefficients
has been a subject of great interest since the presentation
of equations (2.2) and (2.3) by Lewis and Whitman,
Prediction of k, by equation (2.1) is unsatisfactory since
this equation is based upon the physically unrealistic
concept of a stagmant f£ilm. Much research has been
carried out to obtain more satisfactory models and the
penetration theory of Higbie 14, the surface-renewal

theory of Dankwerts 15, and the film-~penetration theory
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of Toor and Marchello 16 are the results of such work.

Since & large number of mass transfer operations
are based upon the passage of bubbles, drops, or solid
particles through a continuous phase, other workers have
attempted to predict the continuous phase mass transfer
coefficient in terms of the relative velocity of the
disperse and continuous phases, As it is to this end
that the present work is directed, the results of these

predictions will now be considered in some detail,

2,2, CORRELATTIONS BASED ON RELATIVE VELOCITY,
17

Frossling considered the rate of evaporation

of a falling drop to be the result of two effects: the

rate of evaporation which would occur by molecular diffusion
if the drop were at rest, and an additional rate of
evaporation due to drop motion. Mass transfer from a
spherical drop by molecular diffusion into an infinite
stagnant medium had already been analysed mathematically

by Langmuir 18. Langmuir showed that under these conditions

the rate of mass transfer is given by

am 2nD_M(P,-P,)d (2.4)
at RT .

In this equation d is the drop diameter, Pi the vapour
pressure at the interface, Pb the partial pressure of the

diffusing species far from the drop, T the absolute
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temperature, M the molecular weight of the diffusing
component, and R the universal gas constant. Equation

(2.4) may be written in dimensionless form as :

Shy . = 2 (2.5)

where Sh is the Sherwood number and the subseript mol.
indicates transfer by molecular diffusion alone,.

Frossling assumed that the effect of drop motion
wag to increase mass transfer by a factor £, which he
called a wind factor. In the presence of drop motion

equation (2.,4) therefore becomes :

2nD_M(P.-P, )d
dm _ v i ™ b
or in dimensionless form :
Sh = 2f (2.7)

From consideration of the boundary layer equations
for fluid motion around a sphere, Frossling concluded that

f is related to drop Reynolds number by :

£ = xRel/? (2.8)
where k is a function of the Schmidt number, So that
equation (2.7) reduced to equation (2.5) when drop
Reynolds number is zero, Frossling modified equation (2.8)
such that :

1 + ¥xRel/2 (2.9)

H
i
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Frossling further assumed, on the basis of heat

19 20

transfer studies by Pohlhausen and Kroujiline that :

k = ¢ (8¢)" (2,10)
where m was probably close to 1/3.

This semi-theoretical approach led Frossling to
use & correlation for mass transfer data from falling drops
of the form :

sh = 2+ 0, Rel/? 5613 (2.11)

In order to verify equation (2.11), Frossling
evaporated drops of nitrobenzene and water in an air
strean, To test the assumption that the drops could be
regarded as rigid spheres he also measured rates of
sublimation of naphthalene spheres. His results, which
covered the Reynolds number range 2 to 800 and the Schmidt
number range 0.6 to 2.7 were correlated on the basis of
equation (2,11) as :

Sn = 2 + 0.552 Rel/? 5c1/3 (2.12)

This equation may be written explicity in terms of the

continuous phase mass transfer coefficient as :

D
k, = EX (2 + o.552501/3 Re1/2) (2.13)

It is, however, more commonly written in the dimensionless

form,
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In a later paper Prossling 21 used the boundary
layer equations derived by Boltze 22, to show that for a
body of revolution with its axes parallel to flow, local
values of the Sherwood number are proportional to the
square root of the Reynolds number. This derivation was
quite general for axisymmetric bodies with laminar
boundary layers. Frossling also showed that, when the
Schmidt number is large, local values of the Sherwood
number are proportional to the cube root of the Schmidt
number,

To obtain these results Frossling transformed
the boundary laycr equations of Boltze into an infinite
set of non-linear ordinary differential equations which
were solved numerically to give the velocity distribution
in thc boundary layer, The velocity distribution was
then used in conjunction with the diffusion equation to
obtain a further set of ordinary differential equations.
Frossling solved the first few equations of this latter
set numerically and obtained a solution in series form
for the local mass transfer rates,

The solution for local Sherwood numbers obtained
by Frossling cannot be used to predict local mass transfer
rates beyond the boundary layer separation point. The
local Sherwood numbers predicted by boundary layer theory

cannot, therefore, be integrated to give overall values
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of the Sherwood number for the sphere.

Prossling claims good agrecment between the
predicted local rates of mass transfer from naphthalene
spheres and the experimental results of his earlier work.

Since this pioneer work by Frossling many workers
have carried out similar theoretical and experimental
rescarch programmes., Ags a result, it has become evident
that an equation of the form of (2.11) is not always
successful in correlating mass transfer data. In
particular frcece convection has been found to have a
considerable effect upon mass transfer at low Reynolds
numbers when the Grashof number is high 25—26. However,
before discussing the correlations which have been proposed
for the more general situation in which free and forced
convection interact, it is of interest to examine the
expressions proposed for the limiting cases of free
convection and forced convection alone. The expressions
proposed for forced convection fall into two categories
dependent upon whether the flow is within or outside the
so-called "creeping flow" region. Although it is
generally accepted that the creeping flow approximations
are only valid at "very low" Reynolds numbers there is no
universally accepted value for the upper limit of their
applicability. Thesc approximations are, however,
frequently held to be valid for Reynolds numbers of less

than one,
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2.2.1. I'ORCED CONVECTION.

i). Outside Crceping Flow Region.
It is to this category that the work of

Frossling belongs and subsequent workers have produced
corrclations similar in form to equation (2.11). Some
workers have agssumed the indices of Re and Sc of equation
(2,11) i,e. 1/2 and 1/3, and simply used their experimental
data to obtain values of Cy, for different systems and over
different ranges of Reynolds number. Other workers

have assumed & more general form of equation (2.11), i.e.

Sh = 2+ Cj Re® so1/3 (2.14)

and have obtained values of both 03 and n by analysis

of their experimental data. Still other workers have
considered the contribution of the term for molecular
diffusion into an infinite stagnant medium to be
meaningless in the presence of forced convection. These
workers have correlated their results on the agsumption
that :

¢ Rel/2 go1/3 (2.15)

Sh 4

or Sh = Cg Rel 50173 (2.16)

It is convenient to compare these various

correlations by means of the following table,



TABLE 1
FORCED CONVECTION CORRELATIONS (Outside Creeping Flow Region)

Author Correlation Range of System Geometry
Re Nos,. Employed of System
Vyrubov27 Sh = O.Szl,Rel/2 200-3000 Ammonia from Spheres
air stream
transferred
to ortho-
phospheric
acid spheres
Linton and®®  ®sh = 0.33Re 25¢¥> 1500-10000  Benzoic acid Spheres
Sherwood -water
Maisel and?d Logarithmic plot  2000-40000  Benzene Spheres,
Sherwood saturated Discs,
sand-air Cylinders
Renz and-v Sh=240 ,60ReY%5c¥>  2-200 Aniline, Suspended
Marshall Benzene, liquid
water-air drops
Axeltrud’t sh=0.825¢%/%Re/?  200-2000 Potassium snd  Spheres
Sodium
nitrates
~water
Garner and’2 Sh=2+0.95Re¥Y25cY?  100-700 Benzoic acid Spheres
Suckling ~water

#0btained by Rowe, Claxton and Lew1s,38 from a logarithmic plot presented by
the oxiginal authors.

0%



TABLE 1 (continued)

Author Correlation Range of System Geometry
Re Nos. Employed of System
Steele and33 TLogarithmic plot 600-140000 Benzoic acid, Spheres
Geankoplis Cinnamic acid,
2 naphthol-
water
Linton and34 Sh—0.582Re1/23c1/3 500-8000 Benzoic acid Spheres
Suthexrland —water
Pasternak o’ Sha=0.692Red *714506/3  3000-15000  Cellite Cylinders,
and Gauvin seturated with Cubes,
acetone-air Spheres,
Prisms
Bronchides Sh=0.33Re0 *65c1/3 1500-12000  Cellite satur—  Spheres
and Thodos ated with water
or nitro-benzene
-air
Skelland and?  Shy=0.74ReQ-50gcl/3 120~6000 Naphthalene— Oblate
Cornish air Spheroids
Yen and37 Sh=0.358Re0‘58Sc1/3 1750-8922 Cellite satur- Spheres
Thodos ated with
water-air
Rowe, Claxton>® Sn=240.68ReY” 2gct/? 96-1052 Naphthalene Spheres
and Lewis -gir
Rowe, Claxton?® Sh=24+0.73Rel’ 2501/3 27-1149 Banzoic acid Spheres

and Lewig

~water

*T¢
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In table I indices of Re and Sc which are given
as fractions have been assumed by the authors, those given
as decimals have been obtained from experimental data.
Since many studies of mass transfer from drops and drop
shaped bodies have been undertaken, no attempt has been
made to include in table I the many correlations which
exist for other geometrics, such as flat plates, nor have
the many analogous heat transfer correlations been
included.

The subscript on the Sherwood and Reynolds
numbers in the correlations presented by Skelland and

35, refers to the

Cornish 9, and Pasternmak and Gauvin
characteristic dimension used in calculation of these
dimensionless groups. These authors examined the
feasibility of unifying mass transfer data for several
shapes by choice of a suitable characteristic dimension
for use in the dimensionless groups. O0f several such
dimensions tried, these authors found that the dimension

defined as

Surface area

dCh - Perimeter normal to flow ’

d3 in the present work, was the most satisfactory.
ii), Within Creeping Flow Region,

Friedlander 39 analysed theoretically mass transfer

from a sphere at very low Reynolds numbers. At low
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Reynolds numbers the equations of fluid motion may be
linearised by the assumption that viscous forces are very
much greater than inertia forces agggggy therefore be
neglected. A solution of these linearised equations of
40

motion, due to Tomotika and Aoi , was used by Friedlander
to obtain a velocity distribution round the sphere.

This velocity distribution was then used to solve the
diffusion equation. On the basis of comparison of his
theorctical solution with experimental data, Friedlander
claimed validity of his solution up to Reynolds numbers

of approximately 5. Tomotika and Aol, however, upon

whose solution Friedlander's analysis was based, only

claimed applicability of their solution for Re <L 1.

I'riedlander's solution may be summarised as :

Sh = 0.89 Rel/3 5c1/3 (Re.Se) D> 1000 (2.17)
Sh = g 1n (trEsse) 0.1 (Re.S0) <1 (2.18)
Sh = 2 (Re.Scf<:1O—1 (2.19)

41

In a further paper Priedlander modified his

earlier work in the light of numerical solutions of the
diffusion equation obtained by Yuge 42. Friedlander's

solution at high values of (Re.Sc) was now presented as

sh = 0,991 Rel/3501/3 (Re.Sc)>100  (2.20)
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Axel 'rud 51 dissolved bengoic acild spheres in
vegetable o0il at a Schmidt number of 2.3 X106. The
spheres were moved along a circular path in the oil bath
followed by a small stirrer to disperse the solution formed.
The stirrer was assumed to have no effect upon the mass

transfer from the sphere. The Reynolds number range

covered was 0.1 to 2.5 and the data correlated by :

sn = 1.1 Rel/3 go1/3 (2.21)
Equation (2.21) is in good agreement with the theoretical

prediction of Friedlander for (Re.Sc) >100.

2.2.2, FREL CONVECTION.

Mathers, Madden and Piret 43 obtained approximate
solutions to the differential equations describing free
convection mass transfer from a vertical plate into an
infinite fluid. The resultant solution was expressed

in the form :

Shei..o = 0.670 (er.sc)l/4 (2.22)

To verify this theoretical solution, brass
spheres coated with naphthalene and solid benzene were
sublimed in air. The data were plotted on logarithmic

co-ordinates as Sh vs. (Gr.Sc). A single curve could

free
be drawn through the data for both systems. This curve

was expressed analytically as
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2 +0.282(6r.5¢)%*37T  (gr.sc)< 100
(2.23)

Sh

]

free

2 + 0.5(6r.50)* 10%(Gr.50)<10°
(2.24)

Garner and Keey 44 dissolved spheres of benzoic

Sh

free

and adipic acid in water. Schlieren photographs taken by
these workers showed a thin layer of saturated solution on
the sphere surface which thickened towards the rear pole
causing minimum transfer there. At values of (Gr.Sc):>108
however, the schlieren photographs indicated the onset of
turbulence in this surface layer causing material to be
convected away from the surface at a faster rate and

hence increasing mass transfer. Their data, mostly
obtained in the laminar regime, were correlated as

Sh = 23 + 0.58(6r.5c)Y* 4 x10%Gr.Sc<1.5 %108

free
(2.25)

45

BEarlier experimental work of King and

46

Saunders s who investigated heat transfer from vertical
flat platecs, had suggcsted the existence of two regimes
of frec convective mass transfer, laminar and turbulent,
and that

ocC (GrHPr)i/4 for laminar free convection ;
(2.26)

Nufree

NufreeCI: (GrHPr)i/3 for turbulent free convecti;n.
(2.27
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On the evidence of their schlieren photographs and assuming
the analogy betwecen the heat and mass transfer processes,
Garner and Keey concluded that, for mass transfcr from
spheres, transition from laminar to turbulent free

convection occurred at (Gr.Sc) £ 3.5 x 108.

AT

Garner and Hoffman continued the work of
Garner and Keey by employing a wider range of sphere
diameters and also other systems. Spheres of benzoic,
salicylic and succinic acids were dissolved in water,
benzene and n-butanol respectively. As with the work of
Garner and Keey 44, the final correlation for overall mass
transfer rates was subject to mean errors of about 14%
largely attributable to the photographic technique employed.
The onset of turbulence, as cvidenced by the shift of the
minimum local mass transfer rate from the rear pole,

occurred at (Gr.Sc) =26 x 10°. The data for the laminar

regime were correlated by :

Shere 5.4 + O.~’~L/‘;~O(Gr.Sc)1/4 2x106<Gr.Sc<2xlO8
(2.28)
Sandoval Il studied the dissolution of oblate

spheroids, of various eccentricities, cast from benzoic
acid, The solvents used were water and 40%, 50% and 60%
solutions of propylene glycol. The data for all systems

could not be uniquely represented and were correleted by s
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for water solvent,

Sha oo = 0.121(GrsSe)Y?  2.1x10%ars 502 13108

(2.29)
for 40% propylene glycol solvent,
S 7.7+0,039(Grosc L+ 30)1/3
6.Oxloz<Grgsc<3.3x108
(2.30)
for 50% and 60% propylene glycol solvent,
Shop ., = 5.9+0.025(GreSe’*30)1/3
8.8x10 &ers S o8, 5x10°
(2.31)

In these correlations the characteristic
dimension cmployed was that suggested by Pasternak and
Gauvin 35. Sandoval found however, that any characteristic
dimension which conserved true surface arca was equally
satisfactory in correlating his data.

Sandoval's correlation for the benzoic acid -
water system is of the form suggested by earlier workers
for turbulent frece convection. This is in direcct
contradiction with the correlation of Garner and Hoffman,
which, though covering the rangec of(Gr.Sc) employed by
Sandoval, is in a form suggesting laminar free convection.

Sections 2.2.1 and 2.2.2 have been concerned
with correlations prescnted for situations in which either
free convection or forced convection could be neglected.
Consideration will now be given to work specifically

concerncd with gituations in which these effects interact.
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2.2.3. INTERACTING FREE AND FORCED CONVECTION.
23

Garner and Grafton dissolved 1/2 inch diameter
benzoic acid spheres in water in a horizontal water tunnel.
Mass transfer was measured by a photographic technigue
which, while allowing investigation of local mass transfer
rates, resulted in large errors, + 25%, when the local
rates werc integrated to give overall rates. Both

laminar and turbulent flow were employed but no significant

difference between the results in these two regimes was

apparent. These workers correlated their data as :
Sh = 44 + 0.48 Re/25cY/3  20(re(850 (2.32)

The large constant term was attributed to free
convection, The authors claim that the vealue 44 is in
agreement with a frec convection mass transfer correlation
due to Wagner 48. The latter was obtained from

experimental work on the dissolution of sodium chloride

plates and is expressed as :

Sh = 0.545 (G-_r-.Sc)l/4 (2,33)

free
On this basis Garner and Grafton claimed that,
at low Reynolds numbers, the effect of free convection
may be regarded as directly additive to forced convection
mass transfer, They proposcd a final correlation of

the form :

sh = 0.5(6r.5¢)Y% + 0.48 ReZ5c1/3  20(re (850
(2.34)
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Garncr and Keey 24 extended the work of Garner
and Grafton by investigating the dissolution of benzoic
acid spheres in a vertical watecr tunnel which allowed
either up or down flow, Working in & range of Reynolds
number 2.3 to 255 they concluded that the minimum rate of
mass transfer did not occur at the lowest Reynolds number,
It was suggested that the depression in the mass transfer
rate, with a minimum at a Reynolds number of approximately
fifty, was caused by an interaction of free convective and
forced conveective forces. Data, presented as a small scale
logarithmic plot of Sherwood number versus Reynolds number,
fall on scparate curves, between Reynolds numbers of 20
end 250, for upflow and downflow. Extrapolation of these
curves suggests that they would meet at a Reynolds number
of approximately 750, At Reynolds numbers less than 20
a singlc curve represents the data for both upflow and
dovmnflow.

It is interesting to note that in downflow, where
Garner and Keey expected that free and forced convective
effects might be nmutually assisted, the mass transfer rates
werc lower then in upflow where these effects might be
expceted to be mutually opposed.

The experimental results of Garner and Keey cast

great doubt upon the concept of additivity of free and

forced convection effects.
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Krischer and Loos 25 investigated the evaporation
of water from bodics covered with filter paper into an air
stream. The filter paper was kept saturated with water
from & reservoir by capillary attraction and mass transfer
measured by determination of the volumetric loss from the
reservoir., Various shapes werec used including flat plates,
cylinders, prismg and spheres, The data for spheres was (it
limited to five observations in the Reynolds number range
18 to 2400,

Krigcher 49 had carlier proposed that in the
Grashof number for heat transfer, Gry = EE@éfﬁEf s the

vz
group (dChg;BAE) could be replaced by %V?, where V,is #he

maximum velocity of free convective motion. It followed
that:
d 2 V2
Ch 'm 2
Gr, = =-g=—a1 = 1/2 Re? (2.35
H 2 Y= / free ., )
maximum
where Refree is an equivalent)\Reynolds number for the free

max
convective motion, Rearranging equation (2.35) gives

_ 1/2
Refreemx— (2GI'H) (2,36)

Krischer and TLoos's experiments were conducted
such that the air stream flowed vertically downwerds over
the test bodiecs, Agsuming that, under thesec conditions,
the free and forced convective velocities are directly

and that the mean free convective velocity is %hVm

additiv#b these authors correlated their data in terms of

an equivalent Reynolds number, ReE, where :
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I 4
Re, = Re +ET[2Gr)% (2,37)

Experimental data are pregented as separate
logarithmic plots of Sh versus ReE for each shape
invegtigated, Although no conclusion can be drawn from
the five date points for spheres, this method of correlation
appears to be quite successful for flat plates and
cylinders,

Steinberger and Treybal 26 also investigated mass
transfer from benzoic acid spheres under conditions where
free and forced convection might be expected to intecract.
In analysing their experimental data these workers

assumed a corrclation of the form :
n
Sh = A + B Re (2.38)

In cquation (2.38) A was expected to be a function of the
Grashof and Schmidt numbers accountingifor free convective
mass transfer at zero Reynolds number, and B was expected
to be of the form :

B = G Sc™® (2.39)

The contributions to mass transfer of frec and forced
convection were thus assumed to be additive,

The value of n giving the minimum pooled
estimate of variance of the data was found to be 0.62.
The corresponding values of A and B for the systems

investigated, i.e, benzoic acid dissolving in water,



40% propylenc glycol solution, and 60% propylenc glycol

solution, werc thcn correlated together with the data of
21,23,29,30,32,43,44,50,51,52

earlicr workers to give
A = 2+ 0.569(Gr.50)L/ (6r.5¢) (10° (2.10)
A = 2+ 0,0254(Gr.5¢) 356924 (gr.s0) Y108 (2;41)
B = 0.347 s5c0+712 (2.42)

The final correlations prescnted were :

0.312 0.62

Sh = 2 + 0.569(6r.Sc) 4 + 0.3478¢ ReV*

10{Re {(17x10° and (6r.sc) { 10

(2.43)

Sh = 2 + 0,0254(6r.Sc)Y3 + 0.34750-312 062

10¢Re{17x10° and (Gr.Sc))10°
(2.44)

In obtaining these two correclations Steinberger

and Treybal assumed a transition from laminar to turbulent

free convective mass transfer at (Gr.Sc) = 108.

58

Rowe, Claxton and Lewis carried out an

experimental programme in which benzoic acid spheres were
dissolved in water flowing in & horizontal open channcl.

Although these workers employed similar ranges of (Gr.Sc)

and Re to those investigated by Garner and Grafton 23,

24 26

Garner and Kecy , and Steinberger and Treybal ,» they

found theat their data for the benzoic acid-~water system

8



could be successfully correlated on the assumption that
frce convection was negligible. Their correlation, which

has also been included in section 2.2.1, was of the form

suggested by Frossling 17 and was presented as
Sh = 2 + 0,73 Rel/Z5c1/3 27(Re (1149
6x106((Gr.Sc)(3.5X108
(2.45)

It is evident from the correlastions presented
in this section that some confusion exists concerning the
effcet of the interaction of free and forced convection
upon mass transfer rates. Some workers have concluded
that the effect of free convection is to produce
additional mass transfer that is directly additive to that
caused by forced convection while others have found its
effect negligible, Still other workers have found that
the interaction between free and forced convection causes
a reduction in mass transfer compared with that due to
frce conveetion alone.

In view of the contradictory evidence of these
mass transfer correlations it is of interest to consider
investigations which hove been carried out for the
analogous heot transfer process.

54

Acrivos 53, Sparrow and Gregg , and Sparrow,

Eichhorn and Gregg 55, have cach obtained theoretical

solutions to the equations of motion and energy for heat
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trensfer from a flat vertical plate where both free and
forced convection are important.

By transforming the equations of motion and
energy into dimensionless form, Acrivos 53 showed the
importance of the dimensionless group (GrH/Rez), for
situations in which both free and forced convective heat
tronsfer are important. Agsuming velocity and temperature
profiles which were functions of this dimensionless group,
Acrivos obtainced numerical solutions to the Pohlhausen -~
von Karmen momentum integral equations at Prandtl numbers

of 0,73, 10, and 100, These solutions ore presented in

e
graphical form as plots of (Nu (Rez) - G
—— . L4 I
[ Re’%‘) Gry ( 1/ Rez)

on logarithmic co~ordinates. Acrivos then compared these
numerical solutions with the asymptotic solutions as
(GrH/Ree) —>» 0 and (GrH/Ree )» infinity, to obtain the
values of +this dimensionless group above and below which
forced and free convection could bhe considered negligible.

His results are summarized in the following table.
TABLE 2,

RESULTS OF ACRIVOS 27

Prandtl Forced convection Free conveetion
Number negligible negligible
0.73 Gry/Re® > 2
10 Gry/Re® > 5 Gry/Re” < 0.02

100 Gry/Re® > 30
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Acrivos adds that the choice of velocity and
temperature profiles in his analysie is somcwhat
arbitrary. Other profiles would give differcent ranges of
(GrH/Rez) within which both free and forced convection are
important. The results obtained by Acrivos are only
applicable to the case of aiding free and forced
convective flow.

54 assumed velocity and

Sparrow and Gregg
temperature profiles which were functions of (GrH/Rez) in
series form., These were substituted in the boundary
layer cquations and the encrgy equation to obtain a set
of ordinary differential equetions. These equations were
then solved numerically at Prandtl numbers of 0,01, 1.0
and 10,0. By comparing the heat flux predicted by these
solutions with that predicted for forced convcetion alone,

they concluded that, for both aiding and opposing flows,

free convection is negligible when :

(Gry/Re®)  0.225 0;01<Pr<10.0 (2.46)

55 also analysed

Sparrow, Eichhorn and Gregg
the equations of motion and energy using assumed velocity
and temperature profiles, Their solution may be

summarised in tabular form as
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TABLE 3,

RESULTS OF SPARROW, EICHHORN AND GREGGD?

Forced convection Free convection
negligible negligible
Aiding flow )
Pr = 0,7 Grp/Re® > 16 Gry/Re® < 0.3
Opposing flow Separation occurs
_ and no solution 2
Pr = 0.7 is presented GI'H/Re < 0.3

56

Van der Hegge Zijnen proposed that if heat

tronsfer were occurring in a horizontal air stream, then
the interaction of free and forced convection could be

represcnted vectorially as :

t

(2.47)

+ Nu®

2
Nu forced

2
Nu free

resultant
Apparently on the basis of earlier experimental

and Nu

free forced HEY be represented

work, he claims that Nu

by the expressions s

u 0.35 + 0.24 ary/® + 0,11 ex/t  (2.48)

free

It

Nu 0.35 + 0.5 Re™? + 0,001 Re (2.49)

forced

Trom equations (2.48) and (2.49) he obtained

21

¥ 1/8 1/4
40,24Gr -0.41Gr _
( i 4 = 0.5Re?*?

(N "0035) 1

Yresultant —\Nuresultant - 0.35

+0,001 Re
(2.50)
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The results of his experiments performed with a
platinum wire at Gry = 0.,0066 and 0.95 {(Re {79.3, and with
2 brass cylinder at Grg = 4412 and 44.5 (ke {8150, are
prcscented as sceparate logarithmic plots of Nu vs. Re.

The data are scen to be better represented by the equation
for combined free and forced convection, equation (2.50),
than by that for forced convection alone, cquation (2.49).

It is interesting to note that for the platinum
wire, thc curves for forced convection alone and for
combined free and forced convection predict Nusselt numbers
less than 5% different for Re)i4. The corresponding value
for the brass cylinder is.Re} 936, If the corresponding
values of the group GrH/R62 are calculated the results

obtained are

for the platinum wire, free convection negligible if
Grg/Re® { 0.0004 ;
for the brass cylinder, frce convection negligible if
2
Gry/Re® { 0.0005 .

2 investigated

In an experimental programme, Yuge
both transient and stecady state heat transfer from spheres
in a wind tunnel, The.experiments covered the Reynolds
number range 3.5 {Re {1.44 X105, and the Grashof number
renge 1 {Gry {1.05 x10°.

A plot of (Nu - 2) ve. Re on logarithmic

co~ordinates indicates that at Reynolds numbers above 10



the data may be correlated by
Fu = 2 + 0.495 Rel/? (2.51)

At Reynolds numbers below 10, however, the data begin to
fall below the correlating line of equation (2.51),  This
was interpreted by Yuge as an effecet of free convection.
For Reynolds numbers below 10 the author proposed 2o
graphical procedure to relate the interacting effeéts of
free and forced convection, By consideration of the
results of previous workers 50,58,59 for free convection

alone, Yuge obtained the correlation :

Nup . . = 2 + 0,392 Gré/4 1 {er {10° (2.52)
Defining N, = 0.493 Re1/2 (2.53)
Ny = 0.392 Gré/ﬂ (2.54)

Ny = DNu - 2 (2.55)

- Yuge plotted his data as NK VS. NR' The resultant graph
shows a series of similar curves for different values of
the parameter NG‘ The Nusselt number for combined free
and forced convection heat transfer may therefore be read
from this graph if the Nusselt numbers for free and forced
convection alone can be predicted,

Pei 60 investigated the interaction of free and

forced convective heat transfer from spheres in a vertical

wind tunnel. The air stream could be directed either
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upwards or downwards thus permitting both opposing and
aiding flow.

The results of this work arce presented as
logarithmic plots of (Nu/Rel/g) VS, (GrH/Rez) and
(Nu/GrHl/n) Ve, (GrH/Rez). In both cases the data for
oprosing and aiding flow fall on a single curve except
in the range 0.3 ((GrH/Rez) {10 . In the case of
opposing flow minima occur at (Gr /Re®) £ 1 whilst for
aiding flow (Nu/Rel/z) increases and (Nu/Grl/A) decreases
over the complete range of the investigation i,e.

60 {Re {6000 ; 2 %1077 {(Gry/Re®) {10.

Apparently by comparison of the experimental
data with the asymptotic solutions of Acrivos 53, Pei
concludes that free convection is negligible when (GrH/Rez)
{0.05 and forced convection negligible when (GrH/Rez)) 100,

Of the heat transfer correlations presented for
the interaction of free and forced convection, those based
upon the group GI'H/RG2 have the greatest theoretical
justification,. The analogous nature of the heat and
mass transfer processes suggests that data for interacting
free and forced convective mass transfer may also be

successfully correlated in terms of the group (Gr/Rez).
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CHAPTER 3.

THEORETICAL CONSIDERATIONS.

3.1, EQUATTIONS OF MOTION AND DIFFUSION.

In theoretical attempts to predict mass transfer
from a single drop to the surrounding medium, it is
common to represent the drop as non-oscillating, non-
vibrating, of constant volume, and with an initial
temperature equal to that of its surroundings. Although
some attempts have been made to derive a model allowing
for internal circulation, it is common to examine
theoretically the situation in which the drop surface may
be considered rigid, Purther, if the hesat of dissolution
is small, and if velocity gradients are not large so that
the heat generated by viscous dissipation is small, the
system may be assumed to be isothermal.
With the additional assumptions of
i) mno influence of magnetic, nuclear, or electrical
forces;
ii) a Newtonian fluid:
iii) a two component system;
the equations of continuity, momentum, and diffusion for
the system may be written in vector notation as

continuity equation 61:

B+ p(V.F) = o0 (3.1)
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momentum equation 613

p%—‘:é = =VP +Pg +UV?7 + 1/3 LV (V.¥) + 2(V U ) V7T
+(V)x(Vx 7) = 2/3(V)(V.7) + KV(V.7)

+VK(V.7v)
(3.2)

diffusion equation 623

DCA _ CA

et OV =9 (Vg (5.5

In principle, since the temperature is constant,

equations (3.1), (3.2), and (3.3), together with :

p = £ (P, Cp) (3.4)
o= £ (2, Cy) (3.5)
K = £ (P, Cp) (3.6)
D, = £ (P, Cp) (3.7)

could be solved to give Cy, P, P, it , D, K, and v as
functions of position and time. The concentration
gradient at a point on the body surface, and hence the
local mass transfer rate, could then be obtained at a
particular instant of time. A double integration over
surface and time would then give the total amount of
mass transferred in any specified time interval,

The calculation of masé transfer by this

procedure is dependent upon a solution of equations (3.1)
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to (3.7). The complexity of these equations is such that
an analytical solution is impossible while a numerical
solution, even if possible, would require so nmuch labour
that it would be impracticable. It is therefore necessary
to consider the possibility of simplification of these
equations 1n such a way that they are rendered soluble
without making the mathematical model too far removed
from the true physical situation.

Ior free and forced convection to interact,
the bulk velocity must be low; of the same order of
magnitude as the velocities encountered in free convective
motion, At these low velocities the continuous phese,
even 1f a gas, may be considered incompressible. The
density, F), may therefore be considered independent of
pressure., In many mass transfer operations the
concentration and pressure gradients are small and the
diffusion coefficient, D, and the viscosity, M, which
are weak functions of concentration and pressure, may be
considered constant. It is important to note, however,
that when free and forced convection interact, density
cannot be considered independent of concentration.
Free convective forces are solely due to density
differences which exist between the solvent and the
solution formed by mass transfer. Except in cases of

fluids subject to rapidly varying forces, such as
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ultrasonic vibrations, the bulk viscosity, K, may be

taken as zero 61.
On introduction of the above simplifications,

equations (3.1) to (3.7) reduce to

W . p(v.F) =0 (3.8)
PE = PE-VE+ 13UV (V.F) +UV3F (5.9)
A o (.8 D V(Y &) (3.10)
e ; V) = . == .
Tt A /D v D
Where’i and DV are constants and
P = £ (c,) (3.11)

Equations (3.8) to (3.11) are still too complex
to be useful in obtaining solutions to mass transfer
problems, Further simplification is therefore necessary.

The major influence of the density differences
is upon body forces, represented by the term F)é in
equation (3.9). In order to achieve further
simplification of equations (3.8) to (3.11), density
variations may be neglected elsewhere in these equations.
Writing the constant density of the bulk fluid as fDO and
the variable density of the body force term as f3,
equations (3.8) to (3.11) reduce to

V.v = 0 (3.12)
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P.Y - pE-vVr +pveF (3.13)
DCA
5 - N V26, (5.14)
p = £ (c,) (3.15)

Equation (3.1%) may be rewritten as ¢

PO%% - (P"Po)é+ Poé_VP +]..vaw7
(3.16)
If the quantity PO, the pressure at a point in
the fluid when the fluid is at rest, is introduced then,
since

VPO = po'g‘ (3.17)

equation (3,16) becomes

Dv  _ I_ - - 2 =
Post = (P-p,) 8-V (P-P) + LV? T (3.18)
In equation (3.18) the quantity (P—PO) g
represents the buoyancy force due to density differences.
Writing (P-PO) as P', the set of equations representing

the system becomes

V.¥ =0 (3.19)

Po %—‘;ﬁ = (Pp-pP,) & - VP +uUV* v (3.20)
DC,

m—-— = vaz CA (3.21)

f (cA) (3.22)

P
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In the case of free convection or forced
convection alone, equation (3.20) may be further simplified:
for free convection alone there is no bulk flow and V P!
is very small and may be neglected; for forced convection
alone buoyancy forces are negligible and the term
(F)—fjo) g may be omitted, Thus for situations in which
mass transfer is by free convection or forced convection
alone,thc equations describing the system are more simple
than for the general case where the two cffects interact.
In addition, when mass transfer is by free convection or
forced convection alone, equations (3.20) and (3.21) may
often be fTurther simplified by means of the boundary layer
concept., ‘hen mass transfer from a rigid drop occurs in
the presence of interacting free and forced convection,
these two cffects are normally opposed and the flow
patterns around the drop may be expected to be complex
and inherently unstable. In this situation the assumption
of a thin boundary layer is unlikely to be valid.
Therefcre, for the situation at present under investigation,
l.e. mass transfer from a rigid drop with interacting
free and forced convection, it is not possible to solve
equations (3.,19) to (3.22) as has been done for forced
convection and free convection alone.

It is possible, however, by consideration of the

dimensionless forms of equations (3.19) to (3.22), to



decide which dimensionless groups may be cexpected to be
of Importance in the correlation of mass transfer data.

In order to do this the following substitutions are

introduced
i‘r* - -.—{-T-.__“ o -b* — -t Uinf. ° P,_X_ _ Pl
Y - S n—— 9 =
Uinf. Ay F)Uhinf.
¢, - ¢
0 = gl p* = P-P,
As Ao

RPs ~Po
The operator ¥/ is made dimensionless by multiplication

by dChq i.e.

3¢ — ¥ R - 2 2
In the above dimensionless quantities Uinf is the
undisturbed bulk velocity, CAs the saturation concentration,

C the bulk concentration, and f)s the density of the

Ao
saturated solution. With the above substitutions equations

(3.19) to (3.21) become :

Ve Ly =0 (3.23)
S SE R RS LA
(3.24)
DCA* _ 1 (T * 2 % 25)
Dt¥ =~ T"Re.oc _) Cy (3.25
- 3 2
where Gr = Ps P_Q . M s  Re = Uine, Po den :
Po B m

_ K
and Sc = p;———-DV o



From this analysis it may therefore be concluded
that :

¢, = ¢ ( %%2 , Re, Re.Sc, t, position) (3.26)

The mass flux of component A at the surface is
given by

ac
= -D. =i

ap - &T (3.27)

surface
where ??ﬁ denotes differentiation in the direction of the
normal to the surface. This mass flux may also be
defined in terms of the local mass transfer coefficient,

b
kloc’ vy

qA = kloc

(Cpg = Cpp) (3.28)
where the surface concentration is taken to be the
saturation concentration, CAs' Combination of equations

(3.27) and (3.28) gives :

Mloe 1 &
b, TCAs- CAO) S}I surface
(3.29)
Introduction of the following dimensionless
substitutions :
¢, - C
0 = F——22 ;N = - leads to :
As Ao Ch
_X.
D a d N* . °
v Ch surface
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or

o
Ch 3% .

= Sh = - ey (3.31)
D loc 6 N surface

Tguation (3.31) shows that the local Sherwood
number, Shloc’ at a point on the surface is the
dimensionéf%s concentration gradient normal to the surface
at that point., Prom equations (3.26) and (3.3%1) it may

therefore be concluded that

position

Shy,, = f (Re, Gr/Re®, Re.Sc,on surfcce, t) (3.32)

The overall Sherwood number, Sh, for the whole

surface is then given by 3
Sh = f (Re, Gr/Re?, Re.Sc, t ) (3.33)

If the mass transfer is considered to be steady

state in the time average, the equation (3.33) reduces to
Sh = f (Re, Gr/Re®, Re.Sc ) (3.34)

Equation (3.34) may also be expressed in the more general

form :
Sh = f (Re, Gr, Sc ) (3.35)

As a result of the above analysis, the
dimensionless groups Re, (Gr/Re®), (Re.Se), and Sh, are
expected to be of importance in the correlation of mass
transfer data for situations in which freec and forced
convection interact. The group (Gr/Re®) represents

the ratio of buoyancy forces to inertia forces. When
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(Gr/Re®) is very small, buoyancy forces are negligible
compared with inertin forces i.,e. the effects of free
convection are negligible, Conversely, when (Gr/Re®)

is very large, inertia forces are negligible compared with
buoyancy forces and the effects of forced convection are
negligible,

Prom the above considerations it is evident that
the group (Gr/Rez) provides a criterion for deciding
whether free or forced convection may be neglected in the
prediction of mass transfer rates or whether both must be

taken into account.

3.2 CHARACTERISTIC DIMENSIONS.

In principle, mass transfer date for any series
of geometrically similar shapes may be represented by a
single correlation in terms of the dimensionless Reynolds,
Sherwood, Schmidt, and Grashof numbers. In these
dimensionless groups any representative dimension may be
used as 8 characteristic dimension, For example, data
for a serics of oblate spheroidal shapes of different
size, but the same eccentricity i.e. ratio of minor to
major axis, could be uniquely correlatecd by use of the
major axis as the characteristic dimension.

If the data have been obiained from experiments

using a set of geometrically related though not
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geometrically similar, shapes, the problem becomes more
complex, In this case it is necessary to introduce a
further dimensionless group reflecting the shape variation.
The present investigetion, mass transfer from oblate
spheroids of various eccentricities, falls into this
latter category, the shape eccentricity, e, being the
obvious choice of additional dimensionlcess group in this
case,

Previous workers have attempted to account for
the effect of shape by use of a shape dependent
characteristic dimengion in the Reynolds, Sherwood, and
Grashof numbers, rather than by basing these groups on a
shape independent characteristic dimension and introducing
an additional dimensionless group to account for the shape
variation, Dimensions which have been used in this manner
are the following :

1) +the diameter of the sphere of the same

volume as the body2’5’79699s63,64;

2) the length of the minor axis 9’11;

%3) +thc surface area of the body divided by the

perimeter normal to flow 9’11’35;

4) +the diameter of the sphere with the same

surface area as the body 9’11;

5) the arithmetic mean of the major and minor

axes 9’11;
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6) +the diameter of the sphere of the samc

volume as the body multiplied by the sphericity of the

body 9,11,65;

7) the length of the major axis 9;

8) +the cube root of the product of all three
axes 2 ,

A further possible characteristic dimension, which may be
added to the above is the geometric mean of the major and
minor axes.

The diameter of the sphere of the same volume
has been widely used since it ig particularly useful when
the total drop volume and the number of drops are known.
The drop volume and hence the characteristic dimension
can be estimated without a knowledge of drop shape. For
this reason it is also common to base the associated mass
transfer coefficicent upon the surface area of the
spherical drop of the same volume, although the true
surface area may also bc used if available.

The volume of an oblate spheroid is related to
the semi-major and semi-minor axes, g and f, by the
expression

v Brre (3.36)

The diameter of the sphere of the same volume

as the spheroid is therefore given by :

a, = (81 &2)L/3 (3.37)

1
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In terms of the spheroid major axis, dM, and the

eccentricity, e, this may be written :

dl = dM 61/3 (3.38)

The spheroid minor axis, d29 was considered as
a potentially useful characteristic dimension by Skelland
and Cornish 9. It is related to f by
a, = 2f (3.39)
and to the major axis by :

o = d

5 e | (3.40)

M

The total surfacc area divided by the perimeter
normal to flow, d3, was successfully employed by Pasternak
and Goauvin 35 to correlate mass transfer data for gspheres,
cylinders, prisms, hemispheres, and cubes, by the single
exprcssion 3

Shy = 0,692 Re30'514 5c1/3 (3.41)

This expression correlated the experimental
results with a "deviation® of 15% although no mention is
made of whether this deviation is average, standard, or
maximum., Pasternak and Gauvin also successfully applied
this dimension to the results of other workers notably
Williams °°, Powell 22, TLinton and Sherwood 28, Maisel
and Sherwood 29, and Krischer and Loos 25.

From the expression for the surface area of a

spheroid, i.e,
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1/2!
- 2 Tngz g + (é—’;z“'fz) .
A ZTEg + (gz-—fz ).21_ 1n g - (gZ._fQ)l/Z (3042)
d3 cen be shown to be related to £ and g by the
folloviing expression :
1
2 + 2_re2V\E
ds = g+ i i [&* (g fz . (3.43)
2(g®-£° )% g - (g8-£%)%
In terms of the major axis this becomes :
1
2 2\%
dr = &, |1/2 + == L+ (=" )7 44
5 = |V amay W {To e O

The diameter of the sphere of the same surface

area as the spheroid, d4, has the obvious advantage that

the true surface area is retained. In terms of f and g
and of dM and e it mzy be written : —
] 1 z .
AR 2 2 \7Z
- )
a, = l2g® + L& . in [EX (=T (5,45)
4 (g®-£% )% g - (g°-£2)%]
? et | |2
d = d + + £ l 1 + 1"@ T » 6
4 M1Z g (1-e?)E AT - (1-e2)% (3.46)

The equivalent expressions for d5, the

arithmetic mean of major and minor axes is :

_ 1 + e
dg = dy (—-——2 ) (%3.48)

The sphericity multiplied by the dicmeter of
the spherc of the saome volume as the spheroid has been
successfully employed in the field of multiparticle

technology 67. The sphericity is defined by
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4 = surface area of sphere with same volume as spheroid
Surface area of spheroid

The characteristic dimension, d6’ is related

to dq by .
dg = £ 4, (3.49)

It may 2lso be written

d = 8 f g . (3.50)
6 5 Pt .
£°/ ¢ 2 _o2\E + (g°-f2)%
2g + (g7 -£7) in (g = (g ~f2 )%
. -1
= 1 e 1 + (1-e®)%
% = du| Tty M\ T o (o3 (3.51)

It is interesting to note that this characteristic

dimension, d6’ is identical to that defined by :

_ 6V

and used by Tsubouchi and Sato 65.

Use of the major axis itself as a characteristic
dimcnsion is equivalent to the assumption that shape has
no effect on mass transfer. Nevertheless, for
completeness it may be expressed as a further characteristic
dimension, d7, where :

d; = 2g (3.53)

d; = dy (3.54)

The geometric mean of the mojor and minor axes,

d8’ may be written :
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dg = (2g.2f)%: = 2(f.g) (3.55)

or a = d

8 (3.56)

The cube root of the product of all three axes
of the spheroid has been used by Lewis, Jones, and Pratt 3.
When expressed in terms of £ and g or dM and e it reduces

to the same expressions as for 4 the diameter of the

1
sphere of the same volume as the spheroid.

As shown above the characteristic dimensions
dl to d8 may be cxpressed as the product of the major
axis, dM’ and a particular function of the eccentricity,
e, If in general, mass transfer from oblate spheroids

may be expressed as

Sh = f (Re, Sc, Gr, e) (3.57)

where thc groups Sh, Re, and Gr are based upon the major
axis of the oblate spheroid, the choice of a particular
characteristic dimension is equivalent to rewriting

equation (3.567) as :
[sn.f(e)] = 2 [Re.yfr(e), Sc, er.(Y(e))’] (3.58)

where the particular characteristic dimension cmployed
is relatcd to the eccentricity by :

Qo = dy WP (&) (3.59)

Although this approach somewhat limits the
7

generality of equation (3.56), a single correlation for
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mass transfer data for oblate spheroids of different
eccentricities in terms of a simple characteristic
dimension would be extremely convenient. Such
corrclations have been presented by other workers and an

attempt will be made to correlate the data of the present

work in this manner.
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CHAPTER 4.

EXPERIMENTAL APPARATUS AND TECHNIQUES.

4.1.  INTRODUGTION.

In Chapter 3 consideration was given to the
poseibility of thce theoretical prediction of mass transfer
rates from drops to a surrounding medium in the presence
of interacting free and forced convection, It was shown
that, although the dimensionless formg of the equations
of motion and diffusion may be used to obtain useful
information concerning the dimensionless groups likely to
be of interest in this situation, the complexity of the
equations describing the system is such that a solution
cannot be obtained without the introduction of assumptions
which would make the cquations no longer representative
of the physical situation.

From thesce considerations it it evident that,
with mass transfer theory in its present rudimentary
state, the prediction of the mass transfer rates from
drops to the surrounding medium in the presence of
interacting free and forced convection must rely mainly
upon empirical correlations. The survey of the
literature, Chapter 2, shows, however, that a great deal

of confusion and contradictory evidence exists concerning



the effect of the interaction of free and forced
convection upon mass transfer rates. Furthermore,
although there is much evidence to suggest that drops of
one liquid falling or rising through a second ligquid are
frequently oblate spheroidal, rather than spherical, in
shape, previous workers who have been concerned with the
prediction of mass transfer rates from a single drop or
solid particle in situations in which free and forced
convection interact, have concentrated solely upon the
spherical model.

In the light of the above considerations it was
decided to carry out an experimental programme to obtain
data for mass transfer from oblate spheroidal bodies in
the presencc of interacting free and forced convection.
In order that the offects of shape and Reynolds number
could be accurately studied, the oblate spheroidal bodies
were to be rigidly supported in a fluid strcam flowing at
a controlled velocity. This model reprecsents the fall
or rise of liquid drops through a second liquid but
eliminates the cffects of oscillations, deformations, and
internal circulation, which may be present in liquid-
liquid systems.

The system scleccted for the experimental study

was benzoic acid - water, This system has been
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successfully employed by previous workers 24,26,38,44,47

for mass transfcr studics at low Reynolds numbers and has
the advantage that most of its physical properties arc
well established, The Grashof number of this system is
high at room temperatures and it is therefore particularly
suitable for studies in which the effects of free
convection arc to play an important role. Benzoic acid
has the added advantage that it may be formed into
accurately reproducible solid shapes. This subject is
discussed in more detail in Section (4.3.1).

When drops of one liquid rise or fall through
a second liquid the effects of free and forced convection
arec normally opposed. In order to represcent this
situation for the benzoic acid - water system, in which
free convective forces act vertically downwards, the
oblate spheroidal benzoic acid bodles were to be supported
in a water tunnel in which the flow was vertically
upwards. The oblate spheroidal bodies were to be
supported with their minor axes parallel to the direction
of flow. The range of Reynolds numbers to be investigated
was O gReS € 200; the data of other workcrs 24,26
suggest that this is the range of greatest interest with

regard to the interaction of free and forced convection

in bengoic acid - water systems.
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An attempt was also to be made, by mcans of the
schlieren technique, to photograph the flow patterns
around the dissolving test bodies. If such photographs
could be obtaincd they would provide useful gqualitative
evidence concerning the velocity distribution in the
neighbourhood of dissolving bodies in situsations in which

free and forced convection interact.

4.2. WATER TUNNEL,

4.2,1., DESIGN CONSIDERATIOQONS.

The major difficulties in the design of water
tunnels to operate at low Reynolds numbers lie in the
creation of a stable velocity profile and the measurecment
of local velocities, Steinberger and Treybal 26
established known Poiseuille parabolic profiles by the
use of very tall, small diameter columns. Use of such
columns meant that the ratio of the sphere diameter to
the column diameter was very highs in one case 0,497.

61,68,69,70,71 4, indicate that,

There is much evidence
at such high values of this ratio, the containing wall

has o profound effect upon the flow patterns around the
test body. This effect becomes particularly important
at low Reynolds numbers., When conditions of "creeping

flow" exist, i.e. when Re &1, theoretical analyses of
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the simplified cquations of motion are possible. The
results of such analyscs, summarised by Happel and

Brenner 61

s show that the wall effect is significant
even at ratios as low as 0.1. Experimental observations 69
of the terminal falling velocity of liquid dropé in a
second liquid indicate that, in the Reynolds number range
3 gRe < 1200, the effect of the wall on the terminal
falling velocity is less than 1% for values of the &xsp
diameter ratio less than 0.1. It is evident that, for
low Reynolds number investigations, this ratio should be
as low as possible, In the light of thesec considerations,
it was decilded to use a 1:12 ratio in the present work.
Furthermore, in order to approach as closely as possible
the ideal of an infinite medium, it was decided to employ
a flat wvelocity profilc rather than a parabolic one.

In order to obtain a flat profile with 1little
24

turbulence, Garncecr and Kecey used a contraction section
in conjunction with screens and honeycombs. Although
they used o mean velocity based on volumetric throughput
and cross-sectional area of the test scetion, these
workers do not avpear to have made any attempt to verify
that the velocity profile was, in fact, flat. The use

of the mean velocity wes necessitated by the' extreme

difficulty of measuring the very low loecal velocities ugsed
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in their work. Nevertheless some qualitative check on
the vclocity profile would have been useful,

The largec scatter of Garner and Keey's data is
primarily duc to the photographic technique used to
determine the amounts of mass transferred. However, the
increase of this scatter with decrease of the Reynolds
number suggests that instability of the velocity profile
may have been a contributory cause. A new approach to
the design of low speed water tunnels was therefore used
in the present work in an attempt to produce a flat
velocity profile that would be stable down to Reg < 5.
This new design was based upon the use of a packed bed.

The use of packed beds to produce flat
velocity profiles was suggested by the work of Arthur,
Linnett, Raynor and Sington 72. These workers measured
the velocity profile across an air stream leaving a bed
of carbon granules. The profile was determined by
several methods and thc effects of packing size, pre-bed
air distribution and volumetric throughput investigated.
The results indicated that the bed always tended to
flatten the velocity profile and that decrease of
particle diameter to column diameter ratio and decreasec
of volumetric throughput improved the "flatness', The

pre-bed air distributors were quite crude but =served to
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illustrate thet the better the pre-bed distribution the
flatter the post-bed velocity profile.

Although the velocities used by Arthur et al.
were high (of the order of 3 ft./sec.) the general trend
of their work suggested that a packed bed could be
successfully cmployed in the design of a low spceced water
tunnel, particularly since considerable improvements to
their apparatus, in respect of pre-bed distribution and
particle diamcter to column diameter ratio, were possible.

The use of packed beds in the design of low
speed water tumnels considerably simplifies construction
2s 1t obviates thec need for a bulky contraction section
and, as a stream of low intensity of turbulence is
provided, it also eliminates the need for a serics of
gauzes to rcduce turbulence intensity. It was felt,
therefore, that if such a design were proved to be
successful the concept would be of value to future

workers,

4.,2,2. STRUCTURAL DETAILS.

The watcr tunnel used in the present work had
an overall height of 4 feet 1 inch and an internal cross-
gection of 1 ft. x 1 £+, As schlieren photography was

to be an important part of the work, a tunnel of square
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cross scction was necessary in order to avoid the
distortion caused by wall curvature. A drawing of the
water tunnel is included, fig. (1), and a photograph,
fig, (2), shows a general view of the equipment.

The water tunnel was constructed of 16 gauge
mild stecl flanged sections and incorporated a viewing
section of 1/2 inch thick perspex. The metal sections
werc coated with a phenolic resin, "P/N Lithcote", to
prevent corrosion, Samples of the meterial had been
tested in saturated solutions of benzoic acid for
several weeks without any sign of corrosion. The
sectional construction of the column allowed flexibility
when preliminary investigations of packing size, type
and depth were carried out. The packing finally
selceted, on the basis of the post-bed velocity profile
(Section 4.5.3), was a coarse grein sand, 8 to 12 mesh.
A depth of 16% inches was used,

Carc was taken when packing the column to
ensure thet no air was trapped in the bed, The column
was filled with water before the thoroughly washed, wet
sand was introduccd. The bed was continuously stirred
as the packing was added. When all the packing had
been introduced the top of the bed was levelled.

Muskat 7 points out that packing sand in the above
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~

manner results in an .assemblage so nearly equal to the
minimum porogity that further agitation or compression
produces an almost inappreciable decreasc. The
structure of the bed was not, therefore, changed during
the experimental work by settling.

Yater entered at the base of the column
through an cight armed distributor, fig. (3), constructed
of 5/16 inch outside diameter brass tubing soldered
into a central, 2 inch dismeter, copper manifold,

The 3/64 inch diameter outlet holes were on the underside
of the digtributor arms so that the emerging Jjets
impinged onto the bottom of the column thus improving
distribution., The exact number of these holes and their
distance from the column centre line was such that the
volumetric output per unit column cross~section was,

as nearly as possible, constant. The distributor was
tested in air, holes being added or blocked with solder
in order to achieve as good a distribution as possible.

The bottom six inches of the column were not
packed and acted as a calming section. This section
was followed by the packed bed supported on a heavy
gauge wire gauze bolted between flanges. On lcaving

the packed bed the water passed through the perspex
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viewing section and left the column over a weir. The
weir was fitted with adjustable plates clamped against

the outside of the column wall by 16 screw jacks, fig. (4).
The use of these plates allowed the weir to be

critically levelled, thus preventing disturbance of
upstream flow patterns by preferential flow of water

over only part of the weir. The welr plctes were of

1/8 ineh x 1% inch brass strip. A cork gasket prevented
leakage between the plates and the column wall,

Even when the plates were perfectly level, a
surface tension effect caused channelling over the weir
at low flow rates, To overcome this, a strip of the
cork gasket material was glucd to the outside of the
weir plates and trimmed flush with the top,. This
modification proved highly successful and once the cork
was thoroughly wet, uniform flow occurrcd over the
whole length of the weir even at the lowecst flow rates
used. The open topped column design allowed the test
body to be easily introduced with little disturbance to
flow. Water flowing over the weilr was collectecd in an
overflow section from whence it returned by gravity to
the feed tank.

A 1/2 inch thick, 1 ft. 10% inch square,

aluminium plate, shown in fig. (1), covered the column
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top and overflow scctions. A 2% inch diamcter hole at
the centre of this plate permitted entry of the test
object. Four 3% inch lengths of 1 inch x 1 inch x
1/8 inch thick brass angle were screwed to the top of the
plate to form a 3% inch square that was concentric with
the 2% inch diameter hole, To ensurc positive and
accurate positioning of the test body, the square end
of the spheroid support rod, fig.(6), Section (4.2.4),
fittcd into the brass angle recess. Also cut into the
top platc was a 6 inch diameter view hole which was
provided with a perspex dust cover.

The water tunnel assembly was supported on a
frame constructed of 1 inch outside diameter galvanised

4
74 have

Piping and "Keeklamp" fittings. Lemich and Levy
shown that free convective mass transfer is unaffected by
vibrations unless the amplitude or frequency of the
vibrations is large, As a precautionary measure, however,
the water tunnel framc was mounted on '"Tico" antivibration
pads to damp out any vibrations which might be transferred
from other equipment through the structure of the building.
The pump used was also mounted on a "Tico" pad and was
connected to the rest of the apparatus by short lengths

of rubber hose.

The working temperature used, 25.000, was
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close to room tcmperature, but as a precaution against
heat losscs the metal sections of the column were
insulated with 1/2 inch thick sheets of "Spandoplast!
cxpanded polystyrene. The 1 inch delivery line between
the feed tank and the column was lagged with asbestos

rope.

4.,2.3. ANCILLARY EQUIPMENT.

The feed tank was made of copper and measured
2 £ft. 6 inches x 2 ft. x 2 ft. high. A mercury-toluene
switch controlled a 1 kW. heater to maintain the tank
temperature at 25,0°C. Water in the tank was efficiently
mixed by a propeller type stirrer driven by a small
electric motor, In conscquence, the temperature could
be easily controlled within limits of + 0.1°%. To
permit operation 2t 25.0°C. when th. ambient temperature
was in excess of this value, the tank was fitted with
a cooling coil made of 1/2 inch diameter copper tubing.
The flow of cooling water from the mains was controlled
by a gate valve. A 4% X7, boost heater enabled the
system to be brought rapidly to the working temperature.
A wooden cover was fitted to the tank to prevent the
entry of dust from the atmosphere.

Water was pumped from the feed tank to the
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column by a Stuart-Turner No.21 centrifugel pump. A fine
copper gauze in the pump suction line acted as & filter,
The stainless steel impeller was designed to deliver

500 Imp.gall./hr. against a 35 ft, head. As shown in
fig. (5), a 1 inch nominal diameter by-pass line allowed
watcr to be recturned from the pump outlet to the feed
tank without passing through the column. By combined
operation of the gatec valves on the by-pass and delivery
lines the column throughput could be accurately controlled
without heavy throttling of the pump. Some throttling
was advisable, however, since this mimimised

fluctuations in delivery rate.

The delivery line was fitted with flanges
betwcen which was bolted one of five interchangeable
orifice plates, The pressure tappings were connected
directly to an inverted U-~tube manometer. The
volumetric throughput was calculated from the pressure
difference by use of the calibration curve of the
appropriate orifice, The manometer recorded pressure
differcnces of up to 3 ft. of water. To cover the range
3 <:ReS £ 200, orifices of diametcrs 0.15 inches, 0,33
inches, 0.44 inches, 0,60 inches, and 0.75 inches were
used.

Water was returned from the column to the feed
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tank by o 2 inch nominal diameter pipe. By cdjustment
of a valve on the return line, a constant head of water
was maintained in the overflow section. This prevented
the introduction of air bubbles into the feed tank by
entrainment. The return line, together with all other
piping, was of copper. Brass "Instantor" fittings were

used throughout.

4.2.4, SPHEROID TOSITIONING AND SUPPORT,

The spheroid support rod, fig. (6), was
designed to provide rigid support for the test body with
minimum disturbance to flow. A 2% inch long, 16 gauge,
stainless steel rod was attached to the test body during
casting and provided the final section of the support.
The threaded end of this rod was screwed into a tapped
hole in the lower end of the main support rod which, in
turn, consisted of a 13 inch long, 1/4 inch diameter,
stainless stecl rod, turned down to 1/8 inch diameter
for thce final 3 inches. The 1/4 inch diameter to 1/8
inch dicmcter transition was smoothly accomplished over
a 1/2 inch length. The upper end of this rod screwcd
into the centre of the plane face of a 2% inch long x
2% inch diameter aluminium cylinder. A 3% inch squarc

x 1/2 inch thick aluminium plate was securcd by four
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Allen screws to the top of thc cylinder. iThen the
spheroid was in the test position, the aluminium cylinder
and plate mated with the hole and brass angle squarc on
the water tunnel top plate. A short length of 1/2 inch
diameter aluminium rod projccted from the 3% inch square
aluminium plate and served as a handle,

The above design positioned the test body on
the centrc line of the water tunnel at a level
approximately half way up the viewing section. After
preliminary investigation of flow patterns, section (4.5.3),
an extension piecc was added in order to position the
test body at a lower point, 1% inches above thc packed
bed. The extension consisted of a 7 inch long brass
rod of 1/8 inch diameter. By means of a tapped hole at
one cnd and a turned down, threaded section at the other,
this rod was connected between the two scctions of

support rod already discussed.

4.3. PRODUCTION OF BENZQOIC ACID SHAPES.

4.3.1. PRODUCTION MIETHOD.

T'our possible methods of producing solid
bengoic acid shapes were considered. These methods

werc compression, lapping, machining and casting.
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Trial attempts to machine simple shapes from
solid bengoic acid showed this to be 2 very time consuming
operation even for o skilled mochinist, Production of
oblate spheroidal shapes by this method is, therefore, only
practicable if no simpler method is available, The
compression and lapping technigues have been successfully

employed in the production of spheres by Garner et 31?4’44’47

58 respectively. Both

and Rowe, Claxton and Lewis
methods depend, however, upon the random rotation of the
shape during production and are therefore not suitable
for the manufacture of oblate spheroids.

Casting, after the initial manufacture of the
moulds, provides a simplc mcthod of meking accurate and
reproducible oblate spheroidal bodies, The casting
technique also allows a support to be rigidly and

accurately attached to the body during casting. This

technique was chosen for the prescnt work.

4.3.2, EXPOIRIMENTAL MOULDS.

Since molten bengoic acid is a highly corrosive
substance, readily attacking brass, aluminium and
ordinary steels, the moulds were machined from 58J acid
resistant stainless steel. A1l accessory parts such

as bolts and support rods were also made of stainless gtecl.
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Becavse the cffects of both shape and Reynolds numbcer,
upon mass transfer were to be investigated, five scts

of moulds were manufactured, to produce oblate spheroids
with cccentricities (ratio of lengths of minor to major
axcs) of 4:16, 7:16, 10316, 13:16, and 16:16. The major
axis was one inch in cach case, The sghapes were
sufficiently large to enable accurate measurements of thc
weight losses to be made. A detailed drawing of 8
mould, fig., (7), is included.

The hcemispheroidal cavities werce cut in the
die halves with specially made, quarter-elliptical tools;
the stainlcess steecl blanks being 2% inches in diameter
and 3/4 inch thick, The surfaces of these cavities
werec polighcd to produce a mirror finish with a
tolerance of + 0,002 inches.

Incorporated in the mould assembly, together
with the two die scections, was a top plate, 1/2 inch
thick and 22 inches in diameter, fitted with an L-sheped
bracket. This bracket allowed thce spheroid support rod
to be accurately positioned along the line of the minor
axis., A 3/4 inch dismeter hole at thc ccntre of the
top plate served as a reservoir for excess benzoic acid

during casting. When aossembling the mould a special

Jig was used to ensurc correct alignment of the two die
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halves. This Jjig consisted of a flat platc to which
three perpcndicular pins, set at 120° to each other, were
attached; two of thesc pins were permanently Tixed to the
plate, the third was adjustable. The loosely assembled
mould was held firmly against the two fixed pins and the
adjustable pin pushed against thce mould and screwed down.
The bolts of the mould assembly were then tightened,

An assembled mould is shown in fig, (8) together with

its various components and samples of the five oblate

spheroidal shapes produced,

4.,%3.3. CASTING TECHNIQUE.

Much preliminary experimental work was necessary
to develop a procedure for casting bodies with
homogeneous, crack-free surfaces, which separated cleanly
from the mould. The following proved to be the most
successful technique,

The assembled mould was placed in an oven, sct
at 14500, together with a funnel, the tip of which
projected into the mould cavity through the 1/8 inch
diamcter hole in the upper die section. The funnel
was made from a stainless steel capillary, cemented with
"Aroldite" into 2 25 cc. glass syringe. The capillary

was bent slightly so that, when its end was pushed into
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the mould cavity, the body of the syringe remained in
an upright position resting against the L-shzoped bracket.
The syringe body was insulated with asbestos string.

After three or four hours, when the oven had
reached the sct temperature, a glass phial contoining a
weighed quantity of bengzoic acid crystels was placed in
the owven, After a further hour, the benzoic acid, now
molten, was poured into the funnel from whence it draoined
into the mould cavity. The oven was switched off aftcr
a further five minutes and allowed to cool overnight.

The sphcroid was then removed from the mould,

By this procedure up to four shapes werc cast
at one time, the limitation being oven sizc. The shapes
thus produced, with a success rate of about 80%,
separated easily from the moulds and had, smooth, opaque,
crack-frec surfaces. Bven small deviations from this
procedure ccuscd a rapid increase in the failure rate;
the most critical factors were casting temperature and
the length of time for which the oven was left on after
pouring the molten acid.

After removal from the mould the small amount
of flash was crrefully trimmed with a razor blade and the
shapes, wrapped in paper tissues, stored in bottles

containing somc benzoic acid crystals.
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1.%9%7 Y aimed that the crystal

Garner ct a
structure of cast shopes would cause irreggaular
dissolution, Examination of the cross scctions of the
shapes produced by the cbove technique showed, however,
that the crystals near the surface werc small, dense,
compact, and of uniform structure. Only towards the
centrc of the bodies did the crystals become larger and
have a morce open structurec. This accounted for the
densities of the bodics being slightly less than the
liternture 2 velue of 1.266 g./cc. for solid bengoic
acid., In the present work the mass transferred was
always less then 5% of the mass of the body and the
uniform, densc surface region was not penetrated. It
was thought that the slight variations in crystal
structure which may have cxisted in the surface region
would hrve had only a negligible effect upon mass transfer
rates. This effcct would possibly be less than that
caused by the stratified structure produced by the

compression techniques of Garner et al.

4.4, PHOTOGRAPHIC EQUIPMENT,

It is common practice in prescnt day research
work to devisc moathemetical models to fit experimental

data, For the mathematical model to be of any true
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value it is cssential that, as well as predicting
experimental results, the model should be closely
related to the physical situation which it is used to
describe, In order to obtain a better understanding

of the mechanism of mass transfer from solid shapes when
free and forced convection interact, a schlicren

6 wos employed to photograph the flow patterns

technique
around thce dissolving test bodies. This technigie
depends upon the deflection of a ray of light by
refractive index gradients normal to the ray.

Light from & 1 kW. mercury vapour lamp,
fig. (9), was focussed onto a pinhole by means of a 2%
inch diameter convex lens of 6 inches focal length.,
The pinhole acted as a point source and was situated
at the focal length, 9% inches, of a 3 inch diameter
achromatic doublet. The parallel beam leaving this lens
passed through the test section and was focussed onto a
knife edge by a 2.3 inch diameter compound lens of 8
inches focal length. The knife edge was positioncd such
that, in the absence of refractive index gradients,
part of the light was cut off,

hen the dissolving benzoic acid spheroid was

in position in the test section, density gradicnts, and

hence refractive index gradients, were set up in the
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surrounding fluid, causing deflection of the light rays
by amounts dependent upon local benzolc acid concentrations.
The deflected rays either increased or decreased local
light intensity according to whether deflection was away
from or towards the opagque side of the knife edge.
This resulted in light or dark areas when the image of
the light source was focussed onto a screen or photographic
plate,

A Sinar bellows camera was used to photograph
the flow patterns. The lens was removed and the camera
merely acted as a support for the photographic plate and
as the shutter, the image being focussed onto the plate
by the lens immediately preceding the knife edge. This
lens and the camera were positioned so that the image
formed filled the 5 inch by 4 inch photographic plates
used., The plates, which were Kodak 0,800 "ortho-
superspeed”,; were developed with Kodak D-76 developer,

The optical system was mounted on two lengths
of optical bench supported on platforms fixed either
side of the water tunnel. This arrangement is shown

in fig, (2).
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4.5, PRELIMINARY EXPERIMENTAL WORK.

4.5.1. ORIPICE PLATE CALIBRATION.

The orifice plates were designed closely,
although not exactly to British Standard Specifications
and calibration was necessary.

By operation of a three-way cock in the water
tunnel return line water was collected for measured time
intervals and weighed. The diversion of water from the
feed tank resulted in a slight change of head at the
pump inlet and hence in a small change in the flow rate:
this in turn caused a small change in the manometer
reading. The mean of the pressure differences before
and after removal of water from the recirculating system
was used in the calibration, To minimise these
variations not more than 40 1b. of water were removed in
a single collection and the water level was adjusted to
a constant datum in the feed tank before each collection
and before each experimental run. Water was collected
for a period of time recorded on a stop clock and
weighed to the nearest ounce on a calibrated laboratory
spring balance. All calibrations were carried out at
25,0°¢C.

Approximately 35 calibration points were
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recorded for each of the five orifices and the data for

each fitted by an equation of the form :

Fo= Gy (am)¥? Cg (AH) + ¢4 (am)t/2
+ Cig (4.1)

where ¥ is the throughput in 1b,/min., (AH) the
manometer reading in centimetres, and 07 - clO are
constants, The data were fitted by a least squares
library programme for the University of London Atlas
computer., The mean error between the measured
volumetric throughputs and those predicted by the
correlating equation (4.1) was less than 1% for each of
the five orifices. The values of the constants in
equation (4,1) for each of the five orifices calibrated

are included in Appendix 2.

4.5.2, TEST SECTION TEMPERATURE DISTRIBUTION.

A copper—~constantan thermocouple, projecting
from a 2 ft, length of stainless steel capillary, was
used to explore the temperature profiles in the test
ysection. The thermocouple Junction was coated with
"Araldite' which served to insulate the junction from

the water and to cement the wires to the stainless steel

sheath,
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The local temperature measurements were carried
out at various flow rates with the feed tank temperature
constant at 25,0°C, Although the thermocouple could
detect very small temperature changes, estimated at
+ 0.05°C, no temperature variations were recorded within
the whole of the test section. Investigations over =a
5 hour period showed no temperature variation with time.

In view of the constancy of temperature with
position and time, a single mercury-in-glass thermometer
was used to measure the test section temperature during
the main series of experimental runs, Two readings,
one before and one after the runs,were tzken, Except
for the free convection runs where the temperature fell
by 2 maximum of 0,3°C during the run, the temperature
was constant at 25,0°C before and after all runs. The
calibrated mercury-in-glass thermometer employed had
scale divisions of 0.,1°C and a range of from 0% to 50°C.
The thermometer was as accurate as the thermocouple

and considerably simpler to use.

4.5.3, TEST SECTION VELOCITY PROFILE.

The combination of relatively large bodies,
the low range of Reynolds number investigated, and the

use of water as the continuous phase fluid, resulted in
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very small velocities in the test section (0.02 to 0.69
cm./sec. for sphere Reynolds numbers of 4.8 to 195).

As has already been pointed out in Section
(4,2.1), the absolute measurement of very low velocities
is extremely difficult. Use of a pilot-static tube
would have resulted in head diffcrences of from 10 to

1074

inches of water for sphere Reynolds numbers of from
5 to 200. Since the micro-manometers and gauges used
to record low pressure differences have accuracies
variously reported as 77,18 +2x 10™% inches of water
and 79i5 x 1072 inches of water, they were clearly of

no use in the work described.

Attempts were made to construct a sensitive
measuring device of the vane anemometer type. A brass
foil disc with an 1/8 inch diameter hole at the centre
was reduced with emery paper to the minimum thickness
compatible with rigidity. Segmental cuts were made in
the disc and thc segments twisted to form eight equally
spaced vones. A hub was machined from a 1/4 inch
diameter polytetrafluoroethylene rod. The top of the
hub was turned down to 1/8 inch diameter and was a push
fit into the hole at the centre of the vanes, the whole

being balanced on a necdle projecting into a cavity

machined into the bottom of the hub. Various
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combinations of vane angle and length, and cevity depth
and shape were tried but although rotation of the vanes
required very little force, no rotation was observed in
the water tunnel even at the maximum flow rate and after
motion had been initiated mechanically.

Exploratory work was also carried out with a
dye injection technique but the uncertainties of injection
velocity, dye density, and dispersion by diffusion,
rendered this technique unsuitable for measurement of
the low velocities encountered.

Observation of the dissolving test bodies showed
that the streams of benzoic acid solution photographed
by the schlieren technique, (Section 4.4), were also
clearly visible to the naked eye. The form of thesc
flow patterns was very scensitive to changes in velocity
over the range of Reynolds number investigated i.e.
0 $Res ,g 195. The form of these flow patterns is
discussed in more detail in Chapter 5 where recpresentative
photographs, figs. (10-14), arec also presented., At
Reynolds numbers above approximately 30, the flow
separation angle for flow round the sphere varied with
flow velocity. At lower Reynolds numbers the flow
patterns, although complex, varied characteristically

with velocity. For cxample, the proportion of time



102 o

spent in upflow or dovnflow, the frequency of collapse of
the wake region, and the strength of disturbances of the
tail when this type of pattern existed, werec all related
to flow velocity. It was therefore possible to obtain

a qualitative indication of the test sceetion velocity
profile by observation of these patterns.

With the water tunnel top plate removed, the
spheroid support rod was temporarily supported by two
lengths of metal strip laid across the top of the overflow
section. Thus the test body was located at the desired
points in the column, the vertical position being
achieved by the removal or addition of support rod
extension pieces (Section 4.2.4) or by packing placed
under the metal strips.

Early investigations of thus type with Raschig
ring packings, together with results of work by Arthur
ct al.72, indicatcd that the packing size should be as
small as possible within the limitations of the pressure
drop imposed by the pump delivery characteristics and the
minimum fluidisation velocity of the bed. From these
considerations an 8 to 12 mesh sand was chosen for
investigation. The flow patterns in a 4 inch zone
immediately above the 16% inch deep bed of this sand

were unaffcected by the position of the test body in the
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test section. At the top of this zone, i.e. 4 inchcs
above the bed, the first indications of a wall effecct
were noticed at Reynolds numbers less than ten, As the
flow rate was increased, so did the height above the bed
at which the wall cffect was first detectable. This is
in agreement with the concept of the flat velocity
profile leaving the bed gradually changing into a fully
developed laminar flow profile 80.

As a result of the velocity profile investigations
it was decided to use the 7 inch support rod extension,
discussed in Section (4.2.4), in the main scries of
experimental runs, The test bodies were thus positioned
in the 4 inch zone where there was no wall effect,

In the absence of a reliable means of
determining the absolute local velocities, and on the
evidence of the velocity profile investigations, mean
velocities based upon volumetric throughput and cross-
sectional area were used in the calculation of the
Reynolds numbers.,

Evaluation of the errors involved in the
calculation of Reynolds numbers by this procedure was
not possible. The observations of the flow patterns

suggested that at Reynolds numbers greater than ten the

error was small, At very low flow rates, however, more
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uncertainty exists. This probably accounts for the
slightly incrcased scatter of the data points at these

low flows.

4,6, EXPERIMENTAL PROCEDURE.

4.,6,1, WATER TUNNEL OPERATION.

The boost heater was used as nccessary to bring
the feed tank water temperature to approximately 25.,0°¢,
The controlled heater was then switched on, the pump
started, and the delivery and bypass valves adjusted to
give the maximum flow rate measurable by the manometer,
The water level in the overflow section was kept above
the levcl of the weir for two or three minutes to ensure
wetting of the weir plates, The return line valve was
then adjusted to maintain a steady wvater level of 1 to 2
inches in the overflow section. This level was casily
controlled end was followed from outside thc column by
means of a U]—shaped glass tube. One 1limb of this
glass tube passed through the top plate and dipped below
the water surface in the overflow section while the other
end was open to the air.

It was normally found necessary to use the

cooling coil to remove heat created by friction in the
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pump and in the flow circuit, even when the ambient
temperature was below 25,0°C. Temperature in the test
section was measured with the mercury-in-glass thermometer
described in Section (4.5.2). When this thermometer
indicated a steady temperature of 25,0° (normally after
1 to 2 hours), the delivery and bypass velves were
adjusted to give the required manometer reading, and the
return valve readjusted to keep the overflow level
constent, A further period of 1/2 to 1 hour was allowed
for the stcady state to again be reached before the test
section temperature was recorded and the thermomcter
removed., The spheroid, which had previously been

stored in a desiccator, was weighed, attached to the

main support rod, and carefully introduced into the

water tunnel,

During thce cxperimental runs the manometer
reading was recorded at intervals of 15 to 30 minutes.
Fluctuations in the manometer recading were small; the
mean chang. of reading during a completc run, averaged
over the 117 experimental runs, was O,8pcrcent, Time
- welghted means of the rccorded manomcter readings were
used in the calculation of the volumetric throughputs
from the calibration curves.

After the required time of immersion, of from
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50 minutes to 4% hours, the spheroid was removed, excess
water removed from itg surfoce with 2 paper tissue, oang
stored in a desiccator to await weighing (Section 4.6.2).
After the thermometer was replaced and the test section
temperature recorded, the bypass valve was fully opened,
the delivery valve closed, and the pump stopped,

Finally the controlled heater was switched off and the
cooling water control valve closed.

After each run approximately two cubic fzet of
water were pumped to waste and replaced by fresh, distilled
water; the three~way cock on the return line allowed
direct return to the feed tank or delivery to drain.

This in itself was sufficient to keep the benzoic acid
concentration in the circulating water below 1 percent

of the saturation level. However, to ensure against the
build up of dust or other extrancous meterial, the feed
tank wes periodically droined, cleaned, and refilled with
fresh distilled watecr,

In order to change an orificc plate, the
manometer tap was opened and water drained from the
manometer, the dclivery line, and the bypass line into
the feed tenk, After the orifice plate had been changed
air was purged from the delivery line through a small bore
copper bleed tube. To avoid the introduction of air into
the packed bed the packed portion of the column was never

drained,
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4.6,2. WEIGHING THE SPHEROID.

The spheroids were weighed before immersion to
+ 0.1 mg. on a Mettler H,16 automatic, constant load
belance. After removal from the water tunncl the shapes
were dried in a desiccator for 24 hours and rcweighed:
this weight was taken as the final dry weight. Further
weighings showed an approximately constant weight loss of
0.5 mg. per 24 hours, indicating that drying was complete
before the end of the first 24 hour period.

Attempts to obtain a more precise final weight,
by weighing against time over the first 24 hours, were
unguccessful due to the uncertainties introduced by
repeated handling and the interruption of the overnight
period. Typical total weight losses were 80 mg. for
the smallest shape (4:16 eccentricity) increasing to
300 mg. for the largest (16:16 eccentricity), Both
these figures represent between 3 percent and 4 percent

of the original weight of the body.

4.7, PHYSICAL PROPERTIES AND DIMENSIONLESS GROUPS.

The dimensionless groups of interest in
correlating the data of the work described are the
Sherwood, Schmidt, Grashof, and Reynolds numbers as shown

in Chapter 3, The choice of physical property data for
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use in calculating these groups is not always obvious

and is treated in detail bhelow.

M

P,

Since the bulk strecam benzoic acid concentration

Schmidt Number

was always less than 1 percent of the saturation value

the density and viscosity in the Schmidt number were taken
as those of pure water. The valucs obtained from the
literature for the density 81 and viscosity 82 of pure
water at 25.0°C were 0.99707 g./cm® and 0.8937 centipoise
respectively.

No comprehensive diffusivity data for the
benzoic acid =~ water system has been published and it is
usual for rescarch workers requiring such data to use
one of the semi~empirical correlations that have been

4
reported 8)’84.

Of these the Wilke-Pin Chaeng 84
correlation has been the most favoured. This correlation,

which, with viscosity in centipoise units, is of the form :

8 1
M° I (4.2)

_ 7.4 x10°
by = 0.8

-

KTy
where Vm is the molal volume of the solute at its normal
boiling point, M is the molecular weight of the solvent,

M is the viscosity of the solvent and T is the absolute

temperature, gives the value of D in the units em® /sec.
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Wilke and Pin Chang found that cquation (4.2)
correlated the experimental data for 123 systems with an
average deviation of 12 percent. They incorporated a
parameter, Xp, to compensate for the solution properties

of associated solvents, to produce a modified form of

equation (4.2), i.c.
-8 i
7.4 x 10 (x_ M=
Dv - O{g (4.3)
v,

The parameter Xp was given values of 1,5, 1.9,

and 2.6 for ethanol, methanol, and water respectively,
whilst for non-associated solvents its value was 1.0. The
modified equation correlated the experimental results

for aqueous solutions with an average deviation of

6 perccnt.

The isolated experimental valuesof diffusivity
which have been reported for bengzoic acid -~ water systems
at 25,0°C show considerable inconsistency. Hixson and
Wilkens's °° value of 11.5 x 10°° cm® /sec. was 23.6%

higher than that predicted by equation (4.3), whilst
6

P

Vasudev °° reported a value of 9.07 x 10~ cm3/sec. at
25.25°¢,

In view of the lack of consistent exnperimental
values and in order to maintain continuity with previous

workers, the Wilke - Pin Chang correlation, equation (4.3),
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was employed to obtain the value of the diffusion
coefficient used in the present work. The value obtaincd
for the benzoic acid - water system at 25,0%¢ by the use
of equation (4.3) is 8.92 x 107° em?/see.  The value of
molal volume used in equation (4.3), 134.8 cm/g.mole, was
obtained from Perry 81. The molecular weight of water
was taken 82 as 18,016,
v P don

H

The same viscoslity and density values werc used

Reynolds Number

as for evaluation of the Schmid+t number. The velocity,
v, used was the mean velocity based upon volumetric
throughput and test section cross-sectional area as
described earlier.
The choice of characteristic dimension, dch’

for oblate spheroidal shepes is a subject of considerable
importance and has been discussed separately elsewhere
(Chapter 3). Values of the Reynolds number were obtained
for each of the eight characteristic dimensions for each
of the experimental runs.
i P° & (PyP)

p P

The value of st’ the density of a saturated

Grashof Number

solution of benzoic acid, used was 0.99766 g./cm’® as

reported by Sandoval 11. Viscosity and density were
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again taken as those of pure water as in the Schmidt

number,

Sherwood Number —

The evaluation of diffusion coefficient has
already becn discussed. The mass transfer coefficient,
kc, was determined from the results of the experimental

work by use of the relationship :

W o= kA (cS -c ) (4.4)

o
In this equation A is the surface area of the spheroid,
tabulated in Appendix 1, cq is the saturation

concentration of benzoic acid which was evaluated from
87

the literature as 3.45 g./litre at 25.,0°C, and ¢, the
concentration of bengoic acid in the recirculating water
which was teken as zero, This latter assumption was
Justified since sufficient of the recirculating water
was rceplaced to maintain the bulk stream concentration
at less than 1 percent of the saturation concentration.
The value of ¥ in g./hr. was obtained from the total

welght loss during an experimental run and the run

duration.
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CHAPTER 5.

DISCUSSION OF RESULTS.

5.1, SCHLIEREN PHOTOGRAPHS.

The schlieren photographs are useful in the
interpretation of the experimental data and will therefore
be considered first.

The schlieren photographs show that several
flow regimes exist within the Reynolds number range
investigated i.e, O <Re3 < 195. These regimes, which
are illustrated by the representative photographs figs.
(10-14), may be categorized as follows,

‘ REGIME 1, Free convection. Downward motion
of dense solution in the form of a tail streaming away
from the body. The tail was thin for the spherical and
near spherical bodies but it became thicker for the
flatter shapes.

REGIME 2, Downward motion, basically in the
form of a tail but with disturbances causing some
scattering and occasional break up of the tail. The
range of Reynolds numbers over which this regime existed
was different for each shape. These ranges of Reynolds
number, together with those for the other regimes, are
included in tables (4-8), These tables are a qualitative

analysis of the flow patterns observed during all the
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TABLE 4. (e = 4 : 16)

Shs GrB/ReBQ FLOW STPARATION RUN WO,
REG IME ANGIE
(G)S(degrees)

35.5  Infinite 1 - 51
36.1 Infinite 1 - 116
38,7 1940 2 - 107
45,7 502 3 - 3
40,7 196 % - 54
42,9 121 4 < 90% 2 .
45.6 119 4 < 50* 4
4%.3 76,6 4 <90% 5
42,7 77.0 4 < 90% 7
47.4 47.8 4 <L 90* 1
47.6 31.6 4 <90% 11
51.0 19.3 4 90 17
57.8 12,1 4 90 15
65.5 T7.72 4 90 22
74.2 4 .88 4 90 28
81.2 3.50 4 90 34
83.5 2.54 4 90 41
92.5 2,10 4 90 78
100 1.61 4 90 50
108 1.30 4 90 43
112 1,01 4 90 46

*¥ not stable.
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TABLE 5. (e = 7 3 16)
Rey Sh, Grs/Rex” FLOW ~ SEPARATION  RUN NO.
: REGIME  ANGIE (8)_
(degrees)”

0 41.7 Infinite 1 - 109
0 40,4  Infinite 1 - 117
3.6 46.5 2590 2 - 108
6.4 47.0 807 3 - 66
10.8  47.3 281 3 ~ 61
16.9 45.7 115 4 <40% 57
22.1 46,6 67.3 4 L 40% 68
27.2 47.9 45.5 4 45 56
34.9 53.3 27.5 4 70 73
43.0 54.7 18.0 4 70 71
54.3 68.1 1144 4 90 71
60.6 71.1 9.05 4 90 84
68.3 76.7 7.19 4 90 79
75.8 82.9 5.83 4 90 86
85.6 89.7 4.60 4 90 75
95.7 95.3 369 4 90 87
107 106 2.90 4 90 92
117 110 2.42 4 90 93
129 114 2.00 4 90 95
140 120 1.70 4 90 90
152 122 1.45 4 90 102
163 129 1.27 4 90 98

¥ not stable.
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TABLE 6. (e = 10 3 16)
Res Sh Gr3/3e32 FLOW SEPARATION RUN NO,
REGIME ANGIE
(QS)(degrees)

0 46,2  Infinite 1 - 52
0 47.0 Infinite 1 - 115
6.3 47.9 1310 2 - 113
9.4 53.9 573 3 - 67
14 .6 47.8 225 3 - 59
19.2 50.3 141 4 15 53
22,8 51,0 100 4 45 55
30.5 51.3 56.6 4 55 9
38.4 53.0 35.3 4 60 13
43,6 58,3 27.4 4 75 20
49.5 64,0 21.1 4 80 16
56.% 68,1 16.3 4 85 19
61.1 69.8 1349 4 90 26
70.0 75.7 10.5 4 90 32
78.0 79.6 8.54 4 90 24
88,2 86,4 6,67 4 90 29
96.4 91.5 5,63 4 90 23
107 97.1 4,60 4 90 37
117 100 3.85 4 90 36
129 109 3.08 4 90 40
141 113 2.57 4 90 24
151 115 2.28 4 90 103
156 124 2.13 4 90 47
161 119 2.01 4 90 104
171 125 1.76 4 90 99
179 132 1,62 1 90 49
182 131 1.49 4 90 106
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TABLE 7. (e = 13 ¢ 16)
Re, Sh Gr./Re,” FLOW TPARATTION RUN NO.
g 3 3703 REG TUE ANCIT
(GS)(degrees)
0 54,0 Infinite 1 - 111
0 51.1 Infinite 1 - 114
4.5 55.3 4040 2 - 112
11.1 55.0 638 2 - 64
18.3 54 .3 234 3 - 60
24,2 54 .4 135 3 - 69
29,1 58,0 94.1 4 30 65
36,5 60,8 60.3 4 30 63
17,8 64,9 35.0 4 15 T4
58.5 68.9 23,2 4 50 72
63.9 73.0 19.5 4 55 81
73.2 79.9 14,8 4 60 80
80.9 83.9 12,1 4 65 83
92.0 89.5 9.46 4 65 78
104 96.5 Te44 4 85 85
115 103 6.25 4 85 76
126 110 5.21 4 90 82
137 116 4.24 4 95 88
143 120 3.90 4 95 97
147 128 3.65 4 95 105
157 130 3.20 4 95 91
169 136 2.77 4 95 94
181 137 244 4 100 89
191 143 2.20 4 100 96
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TABLE 8, (e = 16 2 16)
Re Shy  Gry/Re, FLOV  SEPARLTION  RUN NO.
REGIME ANGL:E
(GS)(degrees)

0 59.9 infinite 1 - 48
4,8 62.4 5240 2 - 110
5.9 56,0 1180 2 - 62

14.8 61.9 534 2 - 70
21.0 58,6 263 2 - 58
26,1 60.5 173 3 - 10
33.2 64.5 107 4 15 8
41.6 65.6 68.3 4 40 6
52.0 69.8 43,7 4 40 12
60.1 747 32.7 4 45 21
66,0 76 .4 27.0 4 50 14
73.8 82.4 2l.4 4 60 18
83,1 84,2 17.1 4 70 25
94.6 90.1 13.2 4 80 31
107 96.9 10.3 4 85 33
121 108 8.18 4 90 27
135 113 6.53 4 90 30
155 122 5.03% 4 g0 35
166 131 4,28 4 95 100
174 135 3.87 4 95 39
183 144 3.49 4 95 101
192 146 3.20 4 100 45
195 145 3.13 4 100 42
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experimental runs of the present work,

REGIME 3. High interaction with both upflow
and downflow periodically predominant, Initially the
upflow of the bulk fluid caused a build up of dense
solution in the wake region behind the body. The bulk
upflow velocity wag insufficient to sweep this solution
away from the vicinity of the dissolving body so that
when the mass of dense solution was sufficient, the
downward gravity forces overcame the upward forces due
to bulk motion and the solution moved downwards, vast
the body, causing the temporary establishment of a
highly disturbed tail, The dense solution was dispersed
by this disturbance and swept from the vicinity of the
body by the bulk motion. Upflow was then temporarily
re—established and the cycle repeated. The length of
the cycle was irregular, downflow was observed to
predominate for periods of from one minute to one hour.
The ratio of the total time spent in upflow to the total
time spent in downflow increased with increase of
Reynolds number,

REGTINMT 4. Upflow with a steady flow
gseparation angle. The downward motion of dense solution

in the wake region pushed forward the separation point,

but instead of collapsing to form a disturbed tail as
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in regime 3, equilibrium was reached with the upward
forces due to bulk motion. Since the point at which
equilibrium was reached depended upon the bulk velocity
and the body shape, the separation angle was, at constant
Grashof and Schmid?t numbers, a function of Reynolds
number, In the work described the only quantity that
was varied in the Grashof number was the characteristic
dimension and hence the Grashof number was constant for
each shape, In the case of the sphere, steady
separation angles, 98, (measured from the front stagnation
point) of 15° to 100° were observed between Reynolds
numbers (RGS) of 33.2 and 195, the latter being the
highest value of Re3 used in the present work.

Above a particular Reynolds number the effect
of free convection may be expected to be ncgligible and
the separation angle that which would be observed in
forced convection alone, The value of the geparation
angle in purely forced convective mass transfer, even for
the case of the sphere, is still the subject of some
research and no conclusive evidence has yet appeared in
the literature. Frossling 21 has solved the boundary
layer equations for flow round a sphere and his solution,
which was based upon the theoretical presgsure distribution,

predicts separation in the absence of mass transfer at
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109,6° irrespective of the Reynolds number, It is
commonly assumed that the forced convective flow patterns
and hence the angle of separation are not influenced by
the mass flux away from the surface provided the mass
flux is small, Thus, in this situation, the value of
the separation angle in purely forced convective mass
transfer may be assumed to be that which occurs in the
absence of mass transfer.

23

Garner and Grafton obtained experimental
evidence concerning the value of the separation ancle
for dissolving benzoic acid spheres. They assumed that
the position of the minimum local mass transfer rate on
the surface of & dissolving sphere occurred at the
separation point. Their experiments indicated that the
separation angle was constant at 105° over the Reynolds

24

number range 400 to 1,000, Garner and Keey carried

out similar experiments to those of Garner and Grafton

and they also found that the separation point weas constant
at 105° over the Reynolds number range 100 to 500,

Garner and Keey concluded from their mass transfer data
that the effect of free convection could not be neglected
at Reynolds numbers below 750. It is possible, therefore,

that the value for the separation angle observed by both

Garner and Keey and Garner and Grafton, i.e. 1050, did
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not represent the limiting value of the separation angle
for forced convection alone.

From the work of Garner and Keey, Garner and
Grafton, and Frossling it eppears that the maximum value
of the separation angle for a sphere observed in the
present work, i.e, 100°, may be less than the limiting
value which would be observed in the absence of free
convection, In view of the approximate nature of the
values of the separation angle reported by Garner and
Keey and Garner and Grafton it is not possible to conclude
with certainty that the difference between the maximum
value of the sphere separation angle observed in the
present work i.e. 100° and the value of 105° observed
by these workers was due to free convection.

From consideration of the separation angle
alone 1t appears that the maximum value of the Reynolds
number at which there is a significant effect of free
convection upon the flow patterns around a dissolving
benzoic acid sphere is close to the maximum value employed
in the present work i.c. Re3 = 195. It is possible,
however, that, even when the separation angle reaches
the limiting value for forced convection alone, there
may be an effect of free convection upon the flow patterns

in the wake region. For example the angle which is
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formed between the stream line through the separation
point and the tangent to the body surface at that point
may be increased, relative to the value of this angle
for forced convection alone, by the effects of free
convection,

In the case of the flattest shape, (e = 4:16),
the scparation angle moved to the equator at very low
values of Re3; separation occurred at 90o for Re§> 30,
Experiments with oblate spheroidal bodies in the absence

10 indicate that for flatter shapes

of frece convection
(e = 4:16, 7316, and 10:16) the separation angle does
not increase beyond 90° even at Reynolds numbers as high
as 32,000, Ag for the sphere, however, it is possible
that free convection influenced the flow patterns in

the wake region even when the separation angle reached
the limiting value of 90°. For Reynolds numbers in

the range 10 <:Re3 < 30 the separation angle for the
flattest shape (e = 4:16) was between 0° and 90° but,

as indicated in table 4, the separation was not stable

and could not be assigned a specific value.

5.2, PLOTS OF SHERVOOD NUMBER vs. REYNOLDS NUMBER,

The feasibility of unifying the mass transfer
data for the five oblate spheroidal shapes employed by

choice of a suitable characteristic dimension was next
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investigated.

The Sherwood and Reynolds numbers were
calculated on the basis of the eight characteristic
dimcnsions, dl to d8, considered in Chapter 3, In the
following discussion the Sherwood and Reynolds numbers
are identified with the appropriate characteristic
dimension by the subscripts 1 to 8. The values of the
Sherwood and Reynolds numbers, Sh1 to Sh8 and Re1 to ROS,
for the 117 experimental runs are included in Appendix 1,
Figs. 15 to 22 show the various plots of the Sherwood
numbers versus the Reynolds numbers on logarithmic
co-ordinates.

Some previous workers 88 have attempted to
correlate mass transfer data for drops in terms of a
Sherwood number in which the mass transfer coefficicnt
is based upon the surface area of the sphere of the same
volume as the drop and the characteristic dimension is
the diameter of the sphere with the same volume as the
drop, dl in the prescnt nomenclature. Such a
correlation does not require a knowledge of drop shape,
only drop volume bcing necessary. The values of the
Sherwood numbers calculated on this basis from the data
of the present work, Shlf’ are also included in Appendix 1,
The plot of Ship Vs. Rel on logarithmic coordinates

is presented in fig.23,.
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It 1s cvident from examination of figs. 15 to
22 that at high Reynolds numbers some of the characteristic
dimensions cmployed, in particular d3 and d5, are very
successful in unifying the data for all five oblate
spheroidal shapes., For both these characteristic
dimensions, however, the data for the five shapes begin
to diverge below a Reynolds number, Re3 or Re5, of
approximately 45, None of the eight cheracteristic
dimensions is very successful in combining the data for
all shapes at these lower Reynolds numbers., The
cheracteristic dimension d4, which is the most successful
in this respect, fails to unify the data at the higher
Reynolds numbers. Pig.,23 shows clearly that unification
of the data for all five oblate spheroidal shapes is
not achieved by use of the Sherwood number based upon
the surface area of the sphere with the same volume as
the spheroid and the characteristic dimension dl.

For the sake of discussion it is convenient
to dcnote by RGTR the value of the Reynolds number above
which the data Tor all shapes are successfully unified by
certain charactcristic dimensions and to consider separately
the regions above and below this value of the Reynolds
number., The significance of this "transition" Reynolds
number, RGTR’ with respcct to the various flow regimes

discussed in Scction (5.1) is also considcred below.
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5.2.14 THE REGION ABOVE ReTR'

As mentioned above, d3 and d5 are the most
successful characteristic dimensions for combining the
data in this region. The characteristic dimensions d8,
dl, and d6 cach appear successful in unifying the data
for four of the shapes but fall with the fifth, In the
case of dl’ the data for the spheroid with eccentricity
7:16 is not unified with the data for the other four
shapes whilst for the characteristic dimensions d6 and d8
the data for the spheroid with eccentricity 4:16 is not
unificd with the data for the other shapes.

Inspection of the data based upon the
characteristic dimensions d3 and d5, as plotted in
figs. 17 and 19, suggested that the data above ReTR could
be correlated in the form suggested by previous
theoretical and experimental investigations of forced

convective mass transfer from solid bodies, i.e,

Sh = C

, .
5 s Re, 5 501/3 (5.1)

n
Re 5 Scl/3 (5.2)

and Sh = (
5 5 5 5

In order to compare d3 and d5 on & statistical

basis and also in an attempt to produce a correlation of
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the data above Repp in the form of equations (5.1) and
(5.2), use was mode of the University of London Atlas
computer, A medified library programme, Autocode
programme 1000, was employed for the least squares
method of data correlation, This programme was used to
fit the observed values of two variables, X and Y, by a

linear equation of the form:

A+ B(X,) (5.3)

it
]

m

where Ym is the predicted value of YIn for an observed
value of Xm. The programme output included the values
of the constants A and B obtained by minimisation of the

m=T
sum of squares of the residual differences, :E}Yﬁ—Ym)e’
m=1

where T is the total number of data points, The
predicted valueg of Tm, corresponding to the input
valuesg of Xm’ the residual differences, and the sum of
the squarcs of the residual differences were also
included in the programme output. The sum of the
squares of the residual differences may be used to
estimate the variance, SZ(Y), of the observed values of
Y from the predicted values, Tm, by use of the

relationship:s

= 82T ) (5.4)

m=T _
n=1 Z( Ym B Ym ) -
i T
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where £ = degrees of freedom = (T - 2),

The estimate of the variance, 82(?), is o
measurc of the deviation of the data points from the
correlating line. An egtimate of the standard deviation
of the data points from the correlating line is obtained
by taking the square root of 82(T).

Since equations (5.1) and (5.2) each contain
three unknown constents it was necessary to adopt the
following procedure in order to cvaluate these constants
by the use of the Autocode programme 1000. Considering
firstly the correlation of the data based upon d3 ny
egquation (5.1),Ia value of nz, Nz Say, wWas selected
and the product (Re3n31 . 301/3) calculated, The groups

11
51

. 801/3) were then used as input data

Sh., and (Re3

5
for Autocode programme 1000, the resultant output giving
values of C, , C, , and 82(§E ) at the selected value
13 23 3

of ny, n, . A new value of n,, n say, was then

3 31 3 32
selected and the procedure repeoted, The results of
this analysis arc given in table 9. An identical
procedure was followed in correlating the data based
upon d5 and the results are given in table 10,
The confidence ranges of the true variance,

C72(§E) at a probability level (1-2d ), can be expressed 89

ass
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TABLE 4.
_"""""‘"'_' 3 1/3
CORRELATION OF DATA ABOVE ReTR AS Sh3 = 013+ 023 Re3 Se
Equation Assumed Cq C, 82(553) 90% confidence
No. Value 3 3 range_ of
of 1 CVQ%ShB)

5.6 0.10 ~476 36,2 19,72 13,6 - 30,6
5.7 0.15 ~285 19.2 18.53 12.8 - 23,8
5.8 0.20 =190 11,4 17.50 12,1 - 27 .1
5.9 0.25 -132 7.24 16.43 11.3 - 25.4
5.10 0.30 -93.9 4.79 15.52 10.7 - 24 .1
5.11 0.35 -66.,6 3,26 14.70 10.1 - 22,8
5.12 0.40 ~46,2 2.26 13.98 9.65 - 21.6
5.13 0.41 ~42,6 2,10 13.85 9.55 - 21.4
5.14 0.42 -39.3 1.96 13.71 9.45 - 21.2
5.15 0.43 ~36,2 1.83 13.59 9,36 - 21,0
5.16 0.44 -33.1 1.70 13.46 9.27 - 20.8
5.17 0.45 -30,2 1.59 1%.34 9,20 - 20,7
5,18 0.46 -27.5 1.49 13.23 9.14 - 20.5
5.19 0.47 ~24.8 1.39 13.12 9.05 - 20,4
5.20 0.48 ~22.3 1.30 13.01 8,97 - 20.2
5.21 0.49 -19.8 1.21 12.90 8.90 - 20.0
5.22 0,50 -17.5 1,13 12.80 8.82 - 19,8
5.23 0.51 =-15.3 1.06 12.70 8.75 ~ 19.7
5.24 0.52 ~-13.1 0.993 12.61 8.70 - 19.6
5.25 0.53 ~-11,0 0.930 12.52 8.65 - 19.4
5.26 0.54 -9.01 0,871 12.453 8.59 - 19.3
5.27 0.55 -7.08 0.816 12.35 8.51 - 19.1
5.28 0.56 =-5.22 0.765 12,27 8.45 - 19.0
5.29 0.57 -3.42 0.717 12.19 8.40 - 18.9
5.30 0.58 ~1.,69 0.673 12.12 8.36 - 12.8
5.31 0.59 -0,01 0.632 12.05 8.31 - 18.7
5.32 0.60 +1.61 0.592 11.98 8.26 - 18.6
5.33 0.61 3.18 0.559 11.92 8,22 - 18.5
5.34 0.62 4,69 0.522 11.86 8.17 - 18.4




TABLE 9 (continued)
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Bquation  Assumed Cy C, S2(§E3) 90% confidence

No. Value 3 3 range of

of ng CT2(§E3)
5.35 0.63 6.16 0.490 11.81 8.15 - 18.3
5.36 0,64 T.58 0.460 11.76 8.10 - 18.2
5.37 0.65 8.96 0.433 11,71 8.08 - 18,2
5.38 0.66 10.3 0.407 11,66 8,04 - 18,1
5.39 0.67 11.6 0.382 11,62 8,02 - 18.0
5.40 0.68 12.9 0.359 11,59 7.99 -~ 18.0
5.41 0.69 14,1 0.338 11.55 7.96 - 17.9
5.42 0.70 15.3 0.318 11.52 7.95 - 17.9
5443 0.71 16.4 0.299 11.50 7.93 - 17.8
5.44 0,72 17.5 0.281 11.47 7.91 -~ 17.8
5.45 0.73 18,6 0.265 11.45 7.90 - 17.8
5.46 0.74 19.7 0.249 11.44 7,90 - 17.8
5.47 0.75 20.7 0.2%4 11.43 T7.90 -~ 17.7
5.48 0.76 21.7 0.221 11.42 7.89 - 17,7
5.4 0.77 22,7 0.208 11.41 7.88 - 17.7
5,50 0.78 23.7 0.196 11.41 7.88 -~ 17.7
5.51 0.7% 24,6 0.184 11.41 7.88 - 17.7
5.52 0.80 25.5 0.174 11.42 7.89 - 17.7
5.53 0.85 29.7 0.129 11.49 7.92 - 17.8
5.54 0.90 33.5 0.0963 11.65 8.04 - 18,1
5.55 0.95 36,8 0.0720 11.89 8.20 - 18.4
5.56 1.00 39.9 0.0540 12.21 8.42 - 18.9
5.57 1.05 42,6 0.0406 12.61 8.70 -~ 19,5
5.58 1,10 45.1 0.0305 15,06 9.02 - 20.3
5.59 1.15 47.3 0.0230 13.65 9.41 - 21.2
5.60 1.20 49.4 0.0174 14.29 9.85 - 22.0
5.61 1.25 51.3 0.0131 14,99 10.3 - 23.2
5.62 1.30 53.1 0.00995 15,77 10.9 - 24.4
5.63 1.35 54.8 0.00754 16.62 11.5 - 25.8
5.64 1.40 56,3 0.00572 17.54 12,1 - 27.2
5.65 1.45 57.7 0.00435 18,52 12.8 -

287
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TABLE 10.

N - _ U5 1/%
CORRELATION OF DATA ABOVH RGTR AS Sh5 = 015+ 025 R65 Se
Equation Assumed Cq C, 82('3_5) 90% confidence

No, Valuc 5 5 range

of ng o'z(ShB)

5.66 0.10 ~-483 36,8 18.74 13,2 - 28.8
5.67 0,15 -289 19.5 17.55 12.4 - 27.0
5.68 0.20 ~192 11.6 16.47 11.6 - 25 .4
5.69 0.25 -134 7.36 15.52 10.9 - 23,9
5.70 0.30 -94 .7 4,86 14 .69 10.3 - 22.6
5.71 0.35 ~-66,9 3.31 13.98 5.84 =~ 21l.6
5.72 0.40 -46,1 2.29 13.39 9.13 - 20,6
5.73 0.41 ~42,.,6 2.13 13,28 9.35 - 20.4
5.74 0.42 -39.,2 1.99 13.18 9.28 -~ 20.3
5,75 0,43 -36,0 1.85 13,09 9,22 =~ 20,2
5.76 0.44 -32.9 1.73 12.99 9.15 - 20,0
5.77 0.45 ~-29,9 1.61 12.83 9.09 ~ 19.9
5.78 0.46 -27.1 1.51 12.75 9.04 =~ 19.8
5.79 0.47 -21.4 1.41 12.68 8.98 =~ 19.6
5.80 0.48 ~-21.8 1.32 12.61 8.93 = 19.5
5.81 0.49 -19.4 1.23 12.55 8.88 - 19.4
5.82 0.50 ~17.0 1.15 12.50 8.84 - 19.3
5.83 0,51 -14.7 1.08 12.44 8.80 =~ 19.3
5.84 0.52 -12.5 1.01 12,38 8.76 - 19.2
5.85 0.53 ~10.4 0.943 12,34 8.71 - 19.1
5.86 0.54 - B8.36 0.883 12,30 8.70 =~ 19.0
5,87 0.55 - 6.40 0.828 12.28 8,66 - 18.9
5.88 0.56 - 4,51 0.776 12,25 8.65 - 18.9
5.89 0.57 - 2,68 0,727 12,23 8,63 = 18.9
5.90 0.58 - 0.921 0.682 12,20 8.61 - 18.8
5.91 0.59 + 0.782 0.640 12,19 8.59 - 18.8
5.92 0.60 2.43 0,600 12,18 8.58 -~ 18.8
5.93 0.61 4,02 0,563 12,17 8.58 =~ 18.7
5.94 0.62 5.56 0.529 12.17 8,57 =~ 18.7
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Equation Assumed cq ¢, 82(§H5) 90% confidence
No. Value 5 5 rangc
of ng T * (8h;)

5.95 0.63 7.05 0.496 12.17 8.57 - 18.7
5.96 0.64 8.50 0.466 12.17 8.57 - 18,
5.97 0.65 9.90 0.438 12,17 8.57 - 18.7
5.98 0.66 11.3 0.412 12.19 8,08 - 18.8
5.99 0.67 12.6 0.387 12.20 8.59 - 18,8
5.100 0.63 13.9 0.364 12.22 8.61 - 18.8
5.101 0,66 15.1 0.%42 12.25 8.63 - 18,9
5.102 0.7C 16,3 0.3%22 12.27 8,65 - 18.9
5.103 0.71 17.5 0.302 12,31 5,67 - 19.0
5.104 0.72 18,6 0.284 12,34 8,70 - 19.0
5.105 0.73 19.7 0.268 12.39 8.72 - 19,1
5.106 0.74 20,8 0.252 12.42 8.75 - 19.1
5.107 0.75 21.9 0.237 12.48 8.79 - 19,2
5.108 0.76 22.9 0.223 12.54 8.84 - 19.3
5.109 0.77 2%.9 0.210 12.59 8,86 - 19.4
5.110 0.78 24 .8 0,198 12,66 8,91 - 19.5
5.111 0.79 25.8 0.186 12.7% 8.97 - 19.6
5.112 0.80 26,7 0,176 12,80 5.01 - 19.7
5.113 0.85 %1.0 0.150 13.22 9,32 - 20.4
5.114 0.90 34 .8 0.0972 13,74 9.82 - 21.2
5.115 0.95 38,2 0.0726 14.37 10.1 - 22,1
5.116 1.00 41,3 0.0544 15,09 10.6 - 23,2
5.117 1,05 44,1 0.0408 15,92 11.2 - 24,6
5.118 1.10 46.6 0.0307 16,83 11.9 - 25.9
5.119 1.15 48,9 0.,0231 17.84 12.6 - 27.5
5.120 1,20 51.0 0,0175 18,94 13.3 - 29.2




S2

)

U
ny

o

T

|

) o s .52 (5E)

Aq,f,int,

where £ and inf. are the degrees of frecdom at which the
value of the F distribution is obtained. Tables S and 10
include the 90% confidence range of the true varience,

a 2(§E), calculoted from equation (5.5). The significence
of the 90% confidence range may be illustrated by

reference to table 9 as follows, The minimum estimate

of variance, SZ(§53), occurs when the exponent of Re3 is
0.78. This minimum estimate of variance has a value

of 11.41 and a 90% confidence range of 7.88 to 17.7.

If the value of sg(§55) at any other cxponent of Res,
Ny S2Y, falls outside this confidence range then it may

be concluded with 90% certainty that 0.78 is a
gsignificantly better exponent than n33 Tfor correlating

the data by an cquation of the form of (5.1). Table 9
shows, however, that the estimates of variance for
exponents of Re3 ranging from 0.20 to 1,40 fe2ll within

the G050 confidence range of the exponent 0,78, Thus
within this range it cannot be concluded with 90% certainty
that any one exponent is better than another. Yhen
corrclation is based upon Re5 the minimum estimatce of
variance has a valuc of 12,17 and a 90% confidcnce range

of 8.57 to 18,7 as shown in table 10.
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By a similar analysis to that dcscribed above,
Rowe, Claxton and Lewis 58 also found that their data
for mass transfer from spheres could be correlated by

an equation of the form

Shg = C + C.. Re ! gol/3 (5.121)

12 S

using a large range of values of n. They report that
their data can be equally well fitted by an equation of
the form of (5.121) "with any desired value of n between
about 0.2 and 0.8, provided the constants 011 and 012
are selected appropriately.” Similar results have been

10

found by Beg in the analysis of foreced convective

mass transfer data for oblate spheroids.

It is interesting to note that when correlation
of the present deta is based upon d5 the minimum
estimate of variance, 12.17, occurs when the exponent
of RGE is in the range 0.62 to 0.65 whcreas when the
corrclation is based upon d3, the minimum estimate of
variancc, 11.41, occuirs when the exponent of Re3 is in
the range 0,77 to 0.79. This change of the exponcnt
of the Reynolds number giving the minimum variance, the
"best value of n", with change of characteristic dimension

is explained as follows.
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Consider the data for a single shape: a change
from one characteristic dimension to another merely
multiplies the Sherwood and Reynolds numbers by a constant
factor so that the slope of the data on & logarithmic
plot of Sh vs. Re will not be altered. However, if the
data for a single shape were correclated by an expression

of the form :

_ n 1/3 3
Shy, = C13 + 014 Rey, Sc (5.,122)

then, if the volue of 013 were known, the value of n
could be found from the slope of a plot of 1og(ShCh - 013)

vs. log Re In this case a change in characteristic

Ch*
dimension would result, as before, in multiplication of
the Reynolds numbers by a constant factor but not,
however, the values of (ShCh - 013). As a rcsult, the
slope of the data would be altered. Hence if the slopes
of the data for the individual shapes are altered, it

is highly probable that the slope of thc combined data
for 211 shapces would also be altered,. The value of 013
is unknown for the data of the present work and the "best”
value of n must be found by the use of various assumed
values of n to determine the value which correlates the

data with the minimum variance, A change of

characteristic dimension which results in a change of the
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slope of the date for a single shape when these data are
plotted as (ShCh - 013) vs. Rey, would, therefore, result
in a change of thc "best" value of n for this shape.
Hence if the "best" valu.s of n for the individual shapes
are altered by a change in characteristic dimension, it
is highly probable thot the "best" value of n for the
combined dete for all five shapes would also be altered.
A change of characteristic dimension would
also increase or decreasc the magnitude of the Reynolds
and Sherwood numbers by different amounts for each shape.
A change from d3 to d5, for example, increases the
Sherwood number by o factor d5/d3. For shapes with an
eccentricity of 4:16 the value of this factor is 1.1
whercas for shopes with an eccentricity 16:16 its value
is 1.0. hen the data for all shapes ore correlated
together, this would also result in a2 chaonge in the
"best" value of n, due to the increased weighting of

the data for the bodics of eccentricity 4:16.,

Vith the varionces associated with exponents
of Re3 renging from 0.20 to 1.40, and cxponents of Re5
from 0,15 to 1,15, falling within the 90% confidence
range of the minimum variances when thce data above

Repp are correlated by equations (5.,1) and (5.2), the



choice of which correlation should be presented to
represent the cxperimental data is somewhat arbitrary.
The fact that the minimum variance of the data based
upon d3’ i.e. 11.41, is less than that when the data is
based upon d5, i,e., 12,17, does not necessarily mean

that 4, is a better charactertistic dimension for use

3
in correlating the present data than dS' The magnitude
of the variance is dependent upon the magnitude of the
Sherwood numbers of the data points, as well as their
scatter about the correlating line. As previously
mentioned, change from d3 to d5 increases the magnitude
of the Sherwood numbers of some of the data pointe and
will, therefore, increase the magnitude of the minimum
variance ceven if the scetter is not increased by this
change. This point may be illustrated by consideration
of the ranges of values of the exponents of Re3 and Re5
which fall within the 90% confidence range of the
assoclated minimum variences. Since the minimum
varience for the d3 data is less then that for the d5
data it might be thought that the range of Re3 exponents

with variances within the 90% confidence range of this

minimum variance would be narrower than the corresponding

range of Re5 exponents, Reference to tobles 9 and 10

shows thet this is not, in fact, the case. Tor the
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date bascd on d3, egxponcnts of Re3 from 0,20 to 1.40 have
variances within the 909, confidence range of the minimum
variance, 11,41, whereas for the data based on d5,
exponents of Re5 from 0.15 to 1.15 have variances within
the 90% confidence range of the minimum variance, 12.17.
This marginally narrower range of cxponents for the

d5 data might suggest thaot d5 igs a better characteristic
dimension to use in correlating the present data than

d3, even though the minimum variance for the d5 data is

greater theon that for the d, data. This apparent

3
contradiction further illustrates the difficulty in

choosing between d3 and d5 on a statistical basis.

The above statistical analysis has only been
cerried out for the data based upon d3 ond d5, the
characteristic dimensions which are shown by figs.(15-22)
to be the most successful in uwnifying the data above

Re It has been shown in Chapter 3, equation (3.44),

TR*
that d3 is a complex function of eccentrieity while d5,
equotion (3.48), is lincarly related to eccentricity.

It is not immediately obvious why these two apparently

dissimilar characteristic dimensions should be successful

in uwnifying the data while, d4 say, is not.
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In order to illustrate the relationships

between the verious characteristic dimensions a plot of
eccentricity vs. characteristic dimension is included.

Pnis graph, fig.24, shows that 4, is, in fact, almost

z 1
linearly related to eccentricity within the range of
eccentricity investigated in the present work i,e., 4:16
to 16:16, Furthermore, d5, is similar in slope to d3.
Other dimensions are decreasingly less successful in

unifying the data the further they are removed from the

area contained by the lines:

a f(e) (5.123)

3

dg

It would appear that any characteristic dimension

f(e) (5.124)

which, when plotted against eccentricity, lies within
the arca bounded by equations (5.123) and (5.124) would
be at lcast as successful as either d3 or d5 in wnifying
the data above RGTR.

In ordecr to test whether this was in fact so,
a line was drawn on fig. (24) lying in the area contained
by equetions (5.123%) and (5.124). This line defined a
new choracteristic dimension, d9, which is related to

eccentricity by
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Reynolds and Sherwood numbers based upon d9
were calculated and correlated by the lcast squores
procedurc alrecady described. The rcsults are shown in
table 11, Comparison of the estimates of variance,
82(559), and 90% confidence ranges given in table 11 with
the corrcsponding values given in tables 9 and 10
indicate that d9 may also be successfully used to
correlatc the data, The minimum variance in table 11,
when the exponent of Reg is 0,60, is in fact less than

the ninimum variances of tables 9 and 10.

It is evident from the considerations presented
above that it 1s not possible to select the "best™
characteristic dimension for correlating the present
datce on a purely statistical basis. FProm practical
considcerations the corrclation presented should be based
upon d3 in order to preserve continuity with the
correlations for oblate spheroids of Skelland and Cornish 9,
for forced convection, and Sandoval 11, for frece
convcetion. However, even if it is decided to present
a corrclation in terms of d3 from practical considerations
it 1s not possible to decide on a statistical basis which

of thc equations (5.8) to (5.64) should be presented.

Many previous workers have assumed a value of zero or 2
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TABIE 11.
g 1
CORRSTATION OF 7HE DATA ABOVE Regp 43 Shg = Cp + O, Reg Sc”
EQUATION ASSTMED c, s%(Shy) 90, confidence
No., Value of 9 9 range of*? (§H9 )
"9
5.126 0.10 =479  36.4 18.14 12,18 - 28,0
5.127 0.15 =286 19,3 16,91 11.9 - 26.0
5.128 0,20 =190  11.5 15.80 11,1 - 24.4
5,129 0.30  -93,9 4.83  13.68  9.63 - 21,0
5.130  0.40  -45.9 2,28  12.58  8.85 - 19.4
5.131 0.50  -17.0 1.15  11.68 8,22 - 18.0
5.132  0.60  +2,20 0,598 11.26  7.92 - 17.3
5,133 0.70 15.9  0.321 11.28  7.94 - 17.4
5.154 0.80 26.2  0.175 11.74  8.28 - 18.1
5.155 0.90 34.3  0.0972 12,63 8,90 - 19.5
5.136 1,00 40.7 0.0544 13.93  9.81 - 21.5
5.137 1,10 45.9 0.0308 15.61 11.0 - 24.0
5.138 1,20 50.3  0.0175 17.66 12.4  ~ 27.2
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Tor 013 when correlating mass transfer data by an equation
of the form of (5.122). It is interesting to note that
the data of the present work above RGTR may also be
correlated on cither of these assumptions with a variance
falling within the 904 confidence range of equation (5,50).
As shown in table 9, the assumption that 013 = 0 produces
a valuc for the exponent of Re3 of between 0.59 and 0.60,
while the assumption that 013 = 2 produces an exponent
of Re3 between 0.60 and 0.61.

The correlation selected from equations (5.8)
to (5.64) to rcpresent the data of the present work above
Repp is equation (5.50) i.e. the equation with tho

minimum variance

_ 0.78 « 1/3
Shy = 23.7 + 0.196 Res. st/ 45 L Rez 195
(5.50)

Equation (5.50) has mean and maximum devieations of 2.4%
and 7.1% respcctively.
Equally satisfactory, however, on the basis

of the 909 confidence range, is equation (5.31) i.e.

- 0.59 ¢,1/3 _
8h; = =-0.01 + 0.632 Re; Sc 45&Re £ 195
(5.31)
which mey be rounded off with negligible error to the

more simplce form ¢
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Shy = 0.632 Re,0*%9 gol/3 45€Re 195
(5.140)
From the theoretical considerations of
Chapter 3, the abscnce of the Grashof number in
correlations of the form of equation (5.122) indicates
the absence of free convection. The schlieren
photographs, figs, 10 to 14, show, however, that although
correlation of the prescnt date above RGTR by equation
(5.122) is possible, free convection has an influence
upon the flow patterns at Reynolds numbcrs considerably
greater then RGTR’ possibly even at Re3 = 195, the
highest Reynolds number invcestigated., If it is assumed
that the prescnce of frce convection, as evidenced by
the schlicren photographs, has an influence upon mass
transfer rates then clearly correlation of the data by
equation (5.122) is an oversimplification., The exponent
of the Reynolds number, may, for exemplc, be a function
of the Grashof number when free convection is present,
When mass transfer data are correlated by equation (5.122),
deviation of n from 0.5, the theoretical valuc for
forced convection, may therefore bc an effect of frce
convection, In a similar way the constants 613 and 614
of cquation (5.122) may also be functions of Grashof

number, It is not possible, however, to draw definite
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conclusions concerning the effect of free convection

upon the exponent of the Reynolds number and the constants
013 and 014 bececause of the large range of values of n
which fall within the 90% confidence range of the value

of n with the minimum estimate of variance.

5.2.2,  THG REGION BELOY Repsr.

As previously mentioned, none of the
characteristic dimensions employed proved to be
successful in uwnifying the data in this region. Since
there is no preferred dimension on this basis discussion
will be confined to fig. 17, based on d3, in order to
preserve continuity with the region above ReTR‘

Fig., 17 includes on the Sh3 axis the limiting
values of Sh3 for free convection. These data,
obtained in the present experimental work, are in close
agreement with the values obtained from the correlation
of Sandoval 11 whose apparatus was specifically designed
to investigate free convection,

The data for spheres below ReTR’ including
the limiting data point for free convection, indicate
that in this region the overall mass transfer rates are
independent of Reynolds number. These data may be

represented by
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Shy = 61 0 L Res K 45 (5.141)
Considering the evidence of the schlieren photographs,
fig.14, which show a great variation of flow patterns
in the Reynolds number range O gRe3 < 45, it is quite
remarkable that the Sherwood number should remain constant
over this range. It would appear that this constancy
of the overall Sherwood number must be due to some
compensatory variation of local mags transfer rates at
different points on the sphere surface, At Re3 = 40
the mass transfer rate at the front stagnation point
must be increased relative to the mass transfer rate at
this point at Re3 = 0 due to the thinning of the boundary
layer. At the flow separation point, approximately 400
at Re3 = 40, the mass transfer rate will be recduced
relative to the mass transfer rate at this point in
free convection. Further investigation of this
compensatory effect would require measurements of local
mags transfer rates, possibly by a double exposure
photographic technique. From the data of the present
work it may only be concluded that, for the sphere, the
effect of forced convection may be ighored below ReTR
and overall mass transfer rates calculated from
correlations for free convection.

For the other shapes the situation is not so
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simple. For the flattest shape, e = 4:16, the data
continue to fall along the projection of the unified
data above Repp until ReB:E:BO. Below this wvalue the
scatter of the data is such that it is not possible to
draw definite conclusions concerning the variation of
the Sherwood number with Reynolds number. These data
appear to indicate, however, that the true relationship
between the Sherwood and Reynolds numbers below Reaik 30
is a curve which is asymptotic to a horizontal line
through the limiting value of the Sherwood number for
free convection, Similarly the data for each of the
shapes e = 7:16, e = 10:16, and e = 13:16, below Reqp
indicate that the true relationship between the Sherwood
and Reynolds numbers for each of these shapes is a curve
asymptotic to a horigontal line through the limiting
free convection Sherwood number for that shape. The
value of Re3 at which the data for a particular shape
begin to diverge from the projection of the unified data
increases from ReB:éEBO for the shape with e = 4:16, to

Re,=8=45 for the sphere. The scatter of the data in

3
this region, however, is such that it is not possible

to assign specific values of Re3 to the point at which
the data for each shape begin to diverge: it is evident,

however, that this value increases with increase in
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eccentricity. Similarly it is evident that as eccentricity
increages so does the valuc of Re3 below which the mass
transfer rate may be taken to be that which occurs in

free convection alone: again it is not possible to assign
specific values to these Reynolds numbers.,

From the above considerations it is clear that
further research is necessary at Re3<:45 in order to
determine the exact form of the relationships between the
Sherwood and Reynolds numbers which may only be
qualitatively deduced from the data of the present work.,
For spherical anc¢ near spherical bodies, however, the
prescecnt data indicate that little error would be incurred
if mass transfer rates at Re3<:45 were predicted on the
basis of the correclation for free convection proposed

by Sandoval i.e,

Sh, = 0.121 (Gr.Sc)l/? 2.1 x107<Gr3Sc<2.1X108

3
(5.142)

It should be pointed out, however, that the
valuce of Re3 below which overall mass transfer rates for
spheres may be predicted from correlations for free
convection is a function of the Grashof number. Since
the only quantity varied in the Grashof number in the
present work was the characteristic dimension, the Grashof

numbcr was constant for each shapec. The value of 45 for
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the Reynolds number below which forced convection may

be neglected is, therefore, only valid at the Grashof
number employed in the present work for spheres i.e.
11.8 x 104. A more genceral criterion for deciding when
forced convection may be neglected which involves both
the Grashof and Reynolds numbers is discussed in the
following scecction.

Gr3

o 2f o
Re3

D5e3, DISCUSSION OF THE PLOT OF Sh3 VS,

The importance of the group (Gr/Re®) in the
correlation of mass transfer data for interacting free
and forced convection was suggested by analysis orf the
equations of motion and diffusion. A plot of Sh3 VS,
(GrB/RGBQ) on logarithmic coordinates is presented in
fig. 25. This plot shows that the data for each shape
lie on a scparate curve which is approximately parallel
to the curves for the other shanes. The data based on
d5 follow similar parallel curves but when the other
characteristic dimensions previously discussed are used
the curves for the data of the individual shapes are
less regularly reclated. The other choracteristic
dimensions are thus of less use in correlating the

present data. This re-emphasises the importance of the
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characteristic dimensions d3 and d5 in correlating mass
transfer data for oblate spheroids. The present
discuggion will be confined to the data obtained by the
use of d3 as the characteristic dimension which are
plotted in fig.25.

The curves iﬁ fig.25 may be divided into threc
regions, designated for the sake of discussion, A, B, and
C. Ag shown in fig.25, the transition values between
these regions, (GTB/RGBQ)A.B and (GTB/RGBZ)B.C’ are
independent of shape.

In regions A and C the data for individual
shapes may be closely approximated by the straight lines
shown in fig.25,. Region B is clearly a tronsition
region in which the data for each shape lie on a curve
asymptotic to the limiting straight lines of rcgions A
anc C, The extrapolations of these straight lines into
region B intersecet at (Gr3/Re3)TRéE45, which is very
nearly indcependent of shape.

The 1limiting frec convection values for Sh3 as
(GrB/ReBZ)-—4> infinity, are also shown in fig.25. 1In
the case ol the sphere, the limiting value for free
convection lies close to the horizontal line through the
date in region C. As eccentricity dccreases from 16:16

to 4:16, the limiting values fall further and further
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below the corresponding correlating line in region C.
Thus whercas for a sphere it may be concluded thet within
region C the effect of forced convection upon the
Sherwood number is negligible, this conclusion becomes
increasingly less valid with decreasing eccentricity.

The relevance of regions A, B, and C, with
respect to the flow patterns shown by the schlieren
photographs may be discussed by reference to tables (4-8).
These tablcs show that the transition from region B to
region C, at (GTS/RGSE)A.B = 160, corresponds to transition
from flow regime 3 to flow regime 4. In the case of the
sphere the Sherwood number is constant no matter whether
flow regimes 1,2, or 3 prcdominates, For the other
shapes Sh3 is constant for flow regimes 2 (within the
range of (GrS/Re32) investigated) and 3 but is reduced
in the limiting case of free convection i.e, regime 1,
This suggests that the horizontal lines drawn through
the data for the bodies with cccentricities 4:16, 7:16,
10:16, and 13%:16 in recgion C are in fact an
oversimplification. Although these horizontal lines
represcnt the data over the range investigated it is
probable that further research at higher values of (GrB/ReBQ)
would indicate that the data for each shape fall on a

continuous curve asymptotic to the horizontal line through
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the limiting frce convection valuc of Sh3.

The transition from region A to region B on
fig.25 at (GIB/ReBS)A.B = 16 cannot be related to a
change in flow regime. For the oblate sphcecroidal bodies
with eccentricities 4:16, 7:16, and 10:16 it corresponds
to the flow scparation angle first reaching 900, but in
the cases of e = 13:16 and e = 16:16 the separation angles
are 60° and 70° respectively.

Workers in the field of heat transfer have
reported values of the group (GrH/Reg) above or below
which it is permissible to neglect forced or free
convection, Although the reported values arc for heat
transfer and for various geometries other than oblate
spheroids they may be usefully compared with the data
of <the present work. A synopsis of thc reported values

is given in tablc 12.

Fig.,25 indicetes that, in the calculation of
overall Sherwood numbers for the sphere, forced convection
may be neglected above (GrB/ReBQ) = 160, Tor the other
shapes mass transfer was increased, compared with the
limiting free convection value, even at the highest values
of (GrB/Re32) employed in the present work.

In order to deocide whether ((}1'3/Re32)A.B

represents the value of (Gr3/Re32) below which the effect



TABLE 12

LIMITING VALUES OF (GrH/Rez) FOR INTERACTING FREE AND FORCED CONVECTION

Pree convec-

Forced convec-~

Method of

Sense of Prandtl

Author tion negli- tion negli- Analysis Geometry Flow Number
gible gible

Acrivos®? 0.02 >Gry/Re? @ry/Re® > 100 Theoretical Vertical  Aiding 0.73 —> 100
plate

Sparrow 0.225:>GrH/Re2 — Theoretical Vertical Aiding and 0.01 —->10.0

R Gregg54 Plate opposing

Sparrow55 0.3 :>GrH/Re2 GrH/Re2 > 16 Theoretical Vertical Aiding 0.7

Eichhormn o Plate

g Gregg 0.3 :>Grh/Re —_— Theoretical Vertical Opposing 0.7
Plate

Pe10 0.05 D>ery/Re® Gry/Re? >100  Experi- Sphere  Aiding and 0.7

mental opposing

*LO9T
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of free convection upon mass transfer rates may be
neglected, it is necessary to compare thc present data
with those of other workers. This comparison is shown
for spheres in fig.26. The dotted curves indicate
extrapolation of correlations obtained outside the range
of values of (GrB/Resg) investigated in the present work.
Pig,26 shows that the correlations obtained

for purely forced convection which are of the form :

Shy = Oy ReBn gc I (5.143%)

appear ag straight lines: these correlations have been
plotted using the Grashof number for 1 inch dicmeter
bengoic acid spheres in water at 25.000. i.e, 11.8 x 104.

Correlations for forced convection which are of the form :

Shy = 2+ 0, Re;l Se B (5.144)

are also almost exactly straight lines on fig.26.

If the data of the present work below
(GIB/RGBZ)A.B were to fall along the extrepolation of the
correlations obtained in the absence of free convection,
then it could be concluded that free convection has
negligible effect upon mass transfer rates in this
region, Although there is great varistion amongst the
extrapolated correletions, it is clear that the data of

the prescant work lie above all of these extrapolations.
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This indicates that the effect of free convection was to
incrcase mass transfer rates even at the lowest value of
(Gr3/3e32) employed in the present work. This conclusion
is in agreement with the evidence of the schlicren
photographs which indicate an effect of free convection
upon the flow patterns over the complete range of (GrB/ReBZ)
investigated. The slope of the present data is greater
than that of several of the extrapolations shown in fig.26.
Many of these correlations have been obtained, however,
by assuming & value of 0.5 for n when correlating data
in the Torm of equations (5.143) or (5.144). This
choice of n determines the slope of these correlations
when they are plotted in fig.26.

Also shown in fig.26 is the correlation for
interacting free and forced convection proposed by

Steinberger and Trecybal 26 i.c.

0.312 0.62

Sh = 2 + 0.569 (¢r.sc)/* 4 0.347 sc Re
(5.145)

This correlation includes an additive free convection

term and therefore appears as a curve in fig,.26. At

low values of (GrB/ReBB), however, the effect of the

free convection term decreases and the plot of the

correlation on fig.26 approximates to a straight line,

The datz of the present work are seen to be in close
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agreement with the corrclation of Steinberger and Treybal
at the lowcr end of the range of (Gr3/Re32) investigated.
An cxtrapolation of the straight line portion of their
corrclation, shown as a dot-dash line on fig,26, falls
through the present data below (GIB/RGBQ)AOB' This

does not indicate the absence of free convection, however:
even in the portion of the Steinberger-Treybal correlation
which is approximated to a straight line in fig,26, the
values of the Sherwood number predicted by equation
(5.145) are considerably increased by the presence of

the free convective term., At (GrB/ReBZ) = 1 for examplc,
which for one inch diameter benzoic acid spheres in

water at 25,0°C corrcsponds to a Reynolds number of 344,
the Steinberger-Treybal correlation presdicts an overall
Sherwood number of 166,5 of which 61.5, or 37%, is the
contribution of the free convective term,

55 proposed that

Sparrow, BEichhorn and Gregg
free convection should be considered as hoving negligible
effect upon mass transfer rates if its contribution to
the overall Sherwood number is less than 5%, Using
this criterion the Steinberger~Treybal correlation
predicts an influence of free convection up to Reynolds

numbers of approximately 1.6 x 104. This corresponds to

a value of (GrB/Re32) of approximately 7 x 10-4 for one
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inch diameter benzoic acid spheres in water at 25.0°¢C.
Other workers have assumed the effect of frce convection
to be negligible 2ot much lower Reynolds numbers than

1.6 x 104. It should be pointed out, however, that the
dota of Steinberger and Treybal were obtained a2t Reynolds
numbers below 1.7 x 103.

The nabovec congiderations indicate that although
the present data below (GrB/RGBZ)A.B fall on straight
lines, the cffcet of frec convection upon mass transfer
rates may not be negligible. Comparison with correlations
for purely forced convection show that, even at the highest
Reynolds numbers employed in the present work, mass transfer
was increcased by the cffect of free convection. Further
work is clearly neccssary above Re3 = 200, in order to
discover the manner in which the data in this region
approach the limiting curves for forced convection,

Although the above comparisons heave only been
made for spheres, the parallel nature of the curves in
fig.25b indicate that the same conclusions regarding the

effect of free convection may be made for the other shapes.

In the above discussion the value of (GrB/ReBZ)
above which forced convection may be neglected in the

prediction of overall mass transfer rates for spheres
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has been token to be (GTB/R832)A.B = 160, Inspection of
the data in fig.25 shows that little error would be
incurred if this value were instead to be taken to be
(GTB/R832)TR = 45, Use of the criterion (GTB/R632)TR
may be extended to the other shapes investigated to obtain
a simple and uscful method for the prediction of mass
trensfer rates from oblate spheroidal bodies in the
presence of interacting free and forccd convection which
may be stated as follows. At values of (GrB/Re32) less
than (GTB/R632)TR mass transfer rates may be predicted by

the expression recommended in Section 5.,2.1 i.e.

Shy, = 0.632 Res0"79 5c1/3 (5.146)
Above (GrB/R032)TR mass transfer rates may be predicted
by the cxpression proposed by Sandoval 11 for free
convection i,e,

Sn, = 0.121 (Gr.se)t/? (5.147)

3
Use of equation (5.147) results in little error
for bodies with eccentricities close to one, The error
increascs, however, for flatter bodies: the mass transfer
ratcs for an oblate spheroid with eccentricity 4:16
predicted by equation (5,147) arc a2 maximum of approximately
25¢, lower than those observed in the present work. For

the other oblate spheroidal bodies investigated the use
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of equation (5.147) results in predicted mass transfer
rotes approximately 18%, 10% and 2% lower than those
observed in the present work for bodies with eccentricitics
7316, 10:16, and 13:16 respectively.

It must be stressed, however, that the above
recommendation is hascd upon data obtoined within the
limits 0 {Res§ 195 ond 2,15 x 10* g 6ry € 11.8 x 10*
with the Schmidt number constant at 1005. Further work
over other ranges of thce groups Res, GrEsand Sc is
recommendcd in order to investigate the generality of

the above proposal.

5.4, COMPARISON ‘'ITH PRUYVIQUS WORK.

Fig.27 shows the data of the present work, as
a plot of Sh3 Vs, R93 on logarithmic coordinates,
together with a2ll the published correlations for mass
trensfer from spheres and oblate spheroids at Reynolds
numbers below 200,

38 pound thet their

Rowe, Clexton and Lewis
date for solid-gas systems and for solid-liquid systems
could not be represented by a single correlation. They

proposed a corrclation of the form s

sh o= 2+ 0y, Rel/2 go1/3 (5.148)

where 017 is 0,69 for mass transfer into air and 0,79 for
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mass transfer into watecr. The correlation of Rowe,
Claxton and Lewis for mass transfer into water is shown
in fig.27. The correlation of Steinberger and Treybal 26,
which is dependent upon Grashof number, has been plotted
using the Grashof number for the sphcres of the present
work. The data of Garner and Keey 24 for spheres in
opposing flow have been taken from the published
logarithmic plot and convertcd from 30,0°C to 25.0°C on
the assumption that Sh & Sc¢/3,  In the Reynolds number
rangc under considerntion the Sherwood number is probably
2 function of the Grashof number as well as of the Schmidt
number, Since the form of this function is not known,
however, it is not prossible to convert the data of
Garner and Keey except by the above crude approxiration.
Also included in fig.27 are the correlations of Garner
and Suckling 52 and Garner and Grafton 23 for mass transfer
from spheres in solid-liquid systems and of TFrossling 17
for mass transfer from spheres in solid-gas systems.
The correlation of Skelland and Cornish E for mass transfer
from oblate spheroidal bodies into a gas stream is also
shovm in fig.27.

As found by Rowe, Claxton =nd Lewis 38, the

deta for solid-gas and solid-liquid systems cannot be

uniquely represented by a correlation of the form of
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equation (5.148) even when mess transfer occurs by forced
convection alone, At low Reynolds numbers the differences
between the two types of system become more marked as
the influence of free convection inecreases; solid-gas
systems having Grashof numbers very much lecss than those
of solid~liquid systems. The correlation for solid-gas
systems included in fig.27 are not, thereforce, expected
to be in agreement with those for solid-liquid systems.
The Skelland-Cornish corrclation is included since it is
the only published correlation for oblate spheroids.
The I'rossling correlation is included for completceness.
The scotter of the data of the present work for
a single shape is seen to be much less than that of the
data of Garner =nd Keey which cover approximately the
same Reynolds number range, Above ReTR (Re3 = 45),
where the dota are unified by the use of d3, the scatter
of the combined data is still less than that of Garner
and Keey's data for sphercs. Garner and Keey claimed
that their data indicated 2 minimum in the mass transfer
raete at a Reynolds number of approximately fifty. Fig.27
shows that the scatter of their data is so large that
below Re3 = 100 their data may equelly well be represented
by a horizontal line., Iin this region the moss transfer

rates recorded by Garner and Keey are somewhat greater
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than thosc of the prescnt work. This may have beecn due
to some constant crror introduced by the photographic
technique employed by Garner and Keey to obtain mass
transfer rates, instabilities in the velocity profile

in their water tunnel or the stratificd nature of the
compressed spheres used by these workers, Further, they
probably introduced test bodies into the water tunnel by
opening a port-hole in the side of the tunnel and forcing
the test object into the tunnel against the outward
rushing jet of watecr. Apart from the departure from
steady state conditions which would have resulted from
this technique, the mass transfer which occurred before
the body reached the test position may have been
considerable,

The corrclation of Rowe, Claxton and Lewls was
obtained for a2 horizontal water flow past benzoic acid
spheres. In this situation the forces of free convection
and forced convection ore not direcctly opposed and mass
transfer retes might be expected to be different from
those obtained in the present work. Their correlation
indicates, in fact, that mass transfer is slightly less
for horizontal flow than for vertical opposing flow,

The correlations of Steinberger and Treybal,

Garner and Suckling, and Garner and Grafton, are shown
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from the lowest velue of Reynolds number investigated by
these workers to a Reynolds number of 200, These
corrclations are all, in fact, predominantly based upon
data obtained at Reynolds numbers greater than 200 and
are thercforc "wcighted" by the data obtained outside
the range of the present investigation.

The slope of the present data above ReTR appears
to be slightly grcater than the slopes of some of the
othcr correlations shown in fig.27. I+ should be
emphasized that the correlations of Rowe, Claxton and
Lewis, Frossling, and Garner and Suckling were obtained
on the assumption that the exponent of the Reynolds
number was 0.,5. The slope of these correlations on
fig.27 arc thercfore fixed by this agsumption. Ags
mentioned in section (5.2.1) the increased slope of the
present data is possibly an effect of free convection,

It may be concluded from fig,27 that the data
of the present work show reasonable acgrecment with those
correlations of other workers which are based upon data

for the bengoic acid - water system.
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CEAPTER 6.

CONCLUSIONS .

1. Plots of Sherwood number versus Reynolds number
showed that, within the Reynolds number range investigated,
i.e. O \<‘Re3 6195, the mass transfer data fell into
two distincet regions; above and below a Reynolds number
of 45, For Reynolds numbers greater than 45 the data
for oblate spheroidal bodies of eccentricities 4:16,
7¢16, 10:16, 13:16, and 16:16, were successfully unified
by the use of the characteristic dimensions d3 (the
surface arca of the sphcecroid divided by the perimeter
normal to flow) and d5 (the arithmetic mecan of the major
and minor axes of the spheroid). For Reynolds numbers
less than 45 none of the eight characteristic dimensions

employed successfully unified the data.

2. A statistical analysis of the data for Reynolds
numbers greater than 45 showed that when these data were

correlated by an expression of the form :
n
3
Sh = C + C Re 801/3 (6.1)
3 1 2 3
3 3
the minimum estimate of variance occurred when the value

or Nz WaS 0.78, However, for any value of Nz in the

range 0,2 to 1.4 the estimate of variance fell within
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the 0% confidence range of the minimum cstimate of
variance, Similarly, when the data werc correlated by

an expression of thc form :
n

shy, = 0 + G, Re55 sc1/3 (6.2)
5 5

the minimun estimate of wvarience occurred when the value
of ng Was 0.63; wvalucs of ng from 0,15 to 1,1 fell
within the 90% confidence range of this minimum estimate
of wvariance.

With these large ranges of the exponcnts of the
Reynolds number possible, the choice between d3 and d5
cannot be made on & purely statistical basis. It was
decided to represent the present deta for Reynolds numbers
greater than 45 by a correlation based upon the
characteristic dimension d3 in order to preserve
continuity with the correlations for oblate spheroids

9,11

presented by other workers The eorrelation chosen

was that with the minimum estimate of variance, i.e.

). 1/3
Shy = 23,7 + 0,196 Re?-78 g5o1/3 15 KR 195
(6.3)
The data were almost ecually well represented by the
somewhat simpler expression 3
_ 0.59 1/3 )
Shy = 0,632 Rey Sec 15K Re K 195
(6.4)
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The values of Sh3 predicted by equations (6.3)
and (6.4) arc highcr than the values predicted at the
corresponding Rcynolds numbers by the extrapolations of
the published correclations for forced conveetion alone.
This suggests the possible influence of free convection
upon mass transfer rates even at the highest Reynolds

numbers investigated in the present work.

3. A plot of characteristic dimension against
eccentricity showed that the two characteristic dimensions
which most successfully unified the data for Reynolds
numbers greater than 45, i.c. d3 and d5, are similarly
related to eccentricity. Any charactcristic dimension
which, when plotted in this manner, is related to
eccentricity in a similar way, would also successfully
unify mass transfer date for oblate spheroids of various

eccentricitics.

4. At Reynolds numbers less than 15 none of the
charactcristic dimensions employed successfully unificed
the date for all five oblate spheroidal shapes. For
spheres the wess transfor rates were independent of the
Reynolds numbcr in this region; the mass transfer rate

being that predicted for free convection alone. For
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the othcr shapes the relationships between Reynolds number
and Sherwood number in this region appcared to be
continuous curves, asymptotic to the horizontal lines
through the limiting Sherwood numbers for free convection
alone., The scatter of the data points in this region

was such, however, that -nalysis could not be usefully

pursued beyond this qualitative interpretation.

5. Analysis of the equations of motion and diffusion
showed that the dimensionless group (Gr/Re®) is of
importance in the correlation of mass transfer data for
interacting free and forced convection. Plots of Sh vs,

(Gr/Re® ) based upon d3 and d. resulted in a series of

5
parallel curves for the five oblate spheroidal shapes.
When other characteristic dimensions were employed no
regular relationship cxisted between the curves for the
individual sheapes. This emphasises the importance of

the characteristic dimensions d3 and d5 in the correlation
of mass transfer data for oblate spheroids.

The plot of Sh, vs. (GrB/Re32) showed thet the

3
dato for each shape could be represented by straight
lines above (GrB/Re32) = 160 and below (GrB/Re32) = 16,
Above (GrB/Re32) = 160 the mass transfer rates were

independent of the value of (Gr./Res” ) up %0 the highest
3 3
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value of this group used in the present work i.e,
approximately 5250, For the spherec this mase transfer
rate was that due to free convection alone but for the
other shapes this mass traonsfer rate was greater than
that for free convection alone.

Comparison of the corrclations of other workers
with thce straight line through the present date for spheres
below (GrS/Resz) = 16, showed that, even though thec data
fell on a straight line, the mass transfer raote was
considerably increased from the predicted rate for forced
convection alone,

The extrapolations of the straight lines through
the date above (Gr3/3e32) = 160 and below (Gr3/Re32) = 16
intersectcd ot 2 value of (Gr3/Re32) which was
approximately equal to 45 Tor all shapes.  For (Gr3/Re32)
less than 45 the date of the present work could be

represented by the exprcssion

Sh, = 0.632 Re, 009 gcl/3 (6.4)

3 3

In order to represent the data of the present work for
(Gr3/3932) grcoater than 45 the correlation for free

convection proposcd by Sandoval 11 ieCe

Sh., = 0.121 (Re3.80)1/3 (6.5)

could be employed. Use of equation (6,5) results in little



185.

error for spherical or near spherical bodics. For bodies
with ccecentricities 4316, 7:16, 10:16, and 13%3:16 the mass
tronsfer rotes predicted by equation (6.5) are a maximum
of 25%, 18%, 105 and 2% respectively, lower thrn those
observed in the present work. It is recommended that
further work bc carried out, in order to test the above
method of representing mass transfer data for oblate
spheroids in the presence of interacting free and forced
convection, over other ranges of the Reynolds, Grashof,
and Schmidt numbers than those employcd in the prescnt
work i.e. 0 Rey 195 5 2.15 x 10" ory 11.8 x 10%;
Sc = 1005.

6. The schlieren photographs showed the existence
of Tour distinct flow regimes in the Reynolds number ronge
investigated i.e. O gRe3 €195. The flow patterns in
these four regimes may be summarized as
1. Downflow with steady tail,
2. Downflow with disturbed teil,
3, DBoth up-and down-flow periodically
prediminant.
A, Upflow with a steady separation angle which is
depcndent upon the Reynolds number.

The first threce of these regimes occurred when
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values of (GrB/ReBZ) were greater than 160 i.e. in the
reglion where mass transfer rates for the sphere were those
predicted for frec convection alone, It is concluded
that some compensatory effect between local mass transfer
rates results in constant overall mass transfer rotes,

It is recommended that further work, possibly employing

a doublc exposure photographic techniquc, be carried out
in order to investigate the variation of local mass

tronsfer rates,

Te The schlieren photographs showed that free
convection influenced the flow patterns around the
dissolving bodies at volues of (GrB/ReBQ) considerably
less thnn 16, probably even at the lowest value of this
group investigated in the present work. This supported
the conclusion that mags transfer rates were influenced
by free convection even at these low values of (GrB/RGBZ).
It 1s recommended that further work be carried out at
values of Re3 greater than 195 in order to investigate
the way in which the data for interacting free and forced
convection, plotted as Shs vs. (GrB/ReBZ), approach the

limiting data for forced convection alone,
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8. The %alue of the schlieren technique in the
interprctation of mass transfer data has been illustreted.
The schlicren photographs showed the complex nature of

the flow patterns around dissolving bodies when free and
forced convection interact. Attempts to solve the
diffusion cecquation by the usc of simple assumed velocity
distributions are clearly great oversimplifications in

this situation.

9. The concept of designing low speed water tunnels
on the basis of a packed bed has been tested and found

o be successful.
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APPENDIX, 1,

TABULATED DATA.,

TABLE 13,

CHARACTERISTIC DIMENSIONS, AREAS AND VOLUMES OF OBLATE
SEHEROIDS.

c=/4,16 e=7.16 e=10,16 e=13,16 e=16.16

Surface Area cm® 11.484 13.301 15,444 17,788 20,268

Volume Cm® 2,145 3.754 5.363 6.971 8.580
aq em 1.600 1.928 2.172 2,370 2.540
dy cm 0.635 1.111 1.588 2.064 2.540
d3 cm 1.439 1.667 1.935 2,229 2.510
d4 cm 1.912 2,058 2,217 24380 2.540
d5 cm 1.538 1.826 2,061 2,302 2,540
dg cm 1.121 1.693 2,083 2.352 2.540
d7 cm 2,540 2.510 2.540 24540 2,540
dg Gl 1.270 1.680 2,008 2,290 2.540
TABIE 14

PHYSICAT, PROPERTIES OF BENZQIC ACID-VATER SYSTEMS AT 25,0°C.

PROPERTY VALUE REFERENCE
c, 3.45  g./litre 87
Ps 0.99766 g./cm’ 11
PHZO 0.99707 g./cm> 81
}#HQO 0.8937 centipoise 82
D, 8.92 x10~° cmz/sec. calculated

Se 1005 coleculated
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DISSOLUTION DATA (All runs at 25.0°C.)

RUN ECCENTRICITY RUN TOTAL FLOW k
NO. DURATICON WEIGHT VILOCITY ¢
(hr.) LOSS (mg) (cn/sec) (em/ar)
1 4,16 1.25 52.4 0.132 1,06
2 4,16 1.25 47 .45 0.083 0.958
3 4,16 1.25 50.5 0.041 1.02
4 4,16 1425 50.05 0.084 1.01
5 4,16 1.25 47.85 0.104 0.967
6 16.16 3,00 174.2 0.147 0.830
7 4,16 1.25 47.2 0.104 0.953
8 16,16 %.00 171.35 0,118 0,817
9 10.16 2.00 90,85 0.141 0.853
10 16.16 3,00 160.55 0.092 0,765
11 4,16 1.25 52.65 0.163 1.06
12 16,16 %.00 185.2 0.184 0,883
13 10.16 2.00 93.7 0.178 0.879
14 16.16 3.00 202,.6 0.234 0.966
15 4,16 1.25 63.9 0.263 1,29
16 10.16 2.00 113.2 0.231 1.06
17 4,16 1.25 56.4 0.208 1.14
18 16,16 %.00 218.45 0.263 1.04
19 10.16 2.00 120.3 0.262 1,13
20 10.16 2.00 103.1 0.203 0.968
21 16,16 %.00 198,35 0,212 0.946
22 4.16 1.25 72.45 0.329 1.46
2% 10.16 1.75 141.7 0.447 1.52
24 10.16 1.75 123,35 0.363 1.32
25 16.16 2.75 204 .9 0.293 1.07
26 10.16 2.00 123.6 0.285 1.16
27 16.16 2.50 238.,6 C.425 1.37
28 4,16 1.25 82.1 0.414 1.66
29 10.16 1.75 133.8 0.410 1.44
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TABILE 15 (continued)

RUN ECCTNTRICITY RUN TOTAL FPLOW k
NO. DURATION WEIGHT VELOCITY ¢
(hr.) 108S(mg) (cm/secc) (cm/hx)
30 16.16. 2,50 250.35 0.475 1.43
31 16,16 2.75 219.5 0.334 1.14
32 10,16 2.00 133.95 0.327 1.26
23 16,16 2.75 235.8 0.378 1.23
34 4,16 1.25 89.9 0.489 1.82
35 16,16 2.50 270.45 0.541 1.55
36 10.16 1.75 155.15 0.540 1.66
37 10,16 1.75 150.6 0.494 1.62
38 4,16 1.00 81.9 0,631 2,07
39 16,16 2.75 329.15 0.617 1,71
40 10,16 1.75 169,25 0.604 1.82
41 4,16 1.00 78.45 0.574 1.98
42 16,16 2.25 289.,7 0.687 1.84
43 4,16 0.83 79.3 0.802 2.40
44 10.16 1.75 175.25 0,661 1.88
45 16,16 3.00 386.8 0.679 1.84
46 4,16 1.00 99.05 0.875 2.50
47 10.16 1.75 192.5 0.727 2.07
48 16,16 3.00 158,95 0 0.758
49 10,16 1.50 174.95 0.852 2.19
50 4,16 1.00 88,6 0.721 2.24
51 4,16 1.50 47.05 0 0.792
52 10,16 2.75 112.65 0 0.769
53 10,16 2.25 100.1 0,089 0.835
54 4,16 1.25 45.15 0.065 0.912
55 10,16 2,00 90.2 0.106 0.846
56 7.16 1.75 T4.1 0,146 0.923
57 7.16 1.75 70,75 0,092 0,881
58 16.16 3,17 164 .35 0.075 0.742
59 10.16 2.00 84,65 0.071 0.794

60 13.16 2,50 120,15 0.074 0.783
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TABLE 15 (continucd)

RUN ECCENTRICITY RUN TOTAL FLOW k
NO. DURATTON WEIGHT VELOCITY ©
(hr.) 10SS(mg) (cm/sec) (cm/hr)
61 7.16 1.75 73.25 0.059 0.912
62 16,16 3400 156,9 0.035 0.748
63 13,16 2.50 134.35 0.146 0,876
64 13,16 2.50 121.55 0.045 0.792
65 13,16 2.50 128.35 0.117 0.837
66 7.16 1.75 T2.7 0.035 0.905
67 10,16 2.00 95.4 0,044 0.895
68 7.16 1.75 T2.2 0.120 0.899
69 13,16 2450 120,25 0,098 0,784
70 16.156 3,00 164,35 0.053% 0.783
71 7.16 1.75 84.7 0.232 1.06
72 13.16 2.50 152.15 0.236 0.992
73 7.16 1.75 82.5 0.187 1.03
74 1%.16 2.50 143.75 0,192 0.937
75 7.16 1.50 119.1 0.459 1.73
76 13,16 2.25 204 .7 0.455 1.48
77 7.16 1.75 105.55 0.292 1.31
78 13,16 2.75 217.85 0.370 1.29
79 7.16 1.75 118.9 0,367 1.48
80 13,16 2.50 176.95 0,296 1.15
81 13,16 2,50 161.7 0.258 1.05
82 13,16 2,25 219.°2 0.498 1.59
83 13,16 2.50 185,6 0.326 1.21
84 7.16 1.75 110.1 0.327 1.37
85 13,16 2.50 213 .45 0.417 1.39
86 7.16 1.75 128.2 0.407 1,60
87 7.16 1.75 147.7 0.512 1.84
88 13.16 2.50 257.15 0.552 1,68
89 13.16 2.50 302 .4 0,728 1.97
90 7.16 1,75 186.5 0.754 2.32

a1 13,16 2.50 287,15 0.635 1.87
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192,

RUN  ECJOTNTRICITY RUN TOTAT PLOW k
NO. DURATION WEIGHT  VELOCITY ¢
(hr.) L0SS(mg) (em/sec) (em/hr)
92 7.16 1.75 163.65 0.578 2,04
9% 7.16 1.75 170.15 0.633 2,12
94 13.16 2.50 300.65 0.684 1.96
95 7.16 1.75 175,95 0.696 2,20
96 13,16 2.25 284 .4 0.768 2.06
97 13.16 2.50 265,95 0.576 1.73
98 7.16 1,50 171.5 0,871 2,49
99 10.16 1.75 193.45 0.799 2,08
100 16.16 2.50 290,15 0,587 1.66
101 16.16 2,25 286,35 0.650 1.82
102 7.16 1.50 161.75 0.816 2.35
103 10.16 1,75 177.7 0.702 1.91
104 10.16 1.75 184 .65 0.748 1.98
105 13.16 2.50 283,6 0.595 1.85
106 10.16 1.75 202.35 0.868 2.17
107 4,16 1.25 42,8 0,024 0.864
108 7.16 1.75 72.0 0,019 0,896
109 7.16 1.75 64.55 0 0.804
110 16.16 3,00 165.45 0.017 0.789
111 13.16 2.75 131.4 0 0.779
112 13.16 2,50 122.25 0.018 0.797
113 10.16 2,00 84.8 0,029 0.796
114 13,16 4.50 203,85 0 0.738
115 10.16 3,50 145,35 0 0.779
116 4,16 2,00 63.9 0 0.806
117 7.16 3.00 107.3 0 0.779




RUN

TABLE

16,

REYNOLDS NUMBERS .

Re

193 LJ

o 1 ey 3 4 5 Reg 7 8
1 23,6 9.4 21,2 28.2 23.4 16.5 37.4 18.7
2 14 .8 5.0 13,3 17.7 14.7 10.4 23,5 11,8
3 7.3 2.9 6.5 8.7 7.2 5.1 11,6 5.8
4 11,9 5.9  13.4  17.8 14.8 10.5 23.7  11.9
5 18,6 7.4 16,8 22,3  18.5 13.1 29.6 14.8
6 41,6 41.6 41,6 A41.6 41.6 41.6 41.6 41.6
7 18.6 7.4 16,7 22,2 18.4 13.0 29.5 14.8
8  33.3 33.3 33,3 33,3 33,3 33,3 33,3 33,3
9  34.1 25,0 30.4 36,9 32.4 32.8 39.9 31.6

10 26,2 26.2 26,2 26,2 26,2 26.2 26,2 26.2
11 29,0 11.5 26.1 34.7 28.8 20.3 46,1 23.0
12 52,0 52,0 52,0 52,0 52,0 52.0 52,0 52,0
13 43,2 31.6 38,5 44,1 41.1 41.5 50.6 40.0
14 66.2 66.2 66,2 66,2 66.2 66.2 66.2 66,2
15 47.0 18.6 42.2 56.1 46.6 32.9  74.5 37.3
16 55,9 40.8 49.8 57.0 53.1 53.6 65,3 51.7
17 37.2 14.8 33,4  44.4  36.9 26,0 59.0 29,5
18 T4.4 T4 TA. TAGA T4 TAWE ThA 744
19 63,5 46.4 56,6 64.8 60.3 60.9 T4.3 58,7
20 49.1 35.9 43,7 50,1 46.6 A7.1 57.4 45.4
21 60,2 60.2 60.2 60.2 60.2 60.2 60,2 60.2
22 58,7 23,3 52,8 70,1 58,2 41.1 93,2 16.6
25 108 79.1 96,4 110 103 104 127 100
24 87.8 64.2 78,3 89.7 83%.5 84.3 103 81,2
25  83.1 83.1 8%,1 83,1 83,1 83.1 83,1 83.1
26 68,9 50.4 61,4 70,4 65.5 66,1 80,6 63.7
27 120 120 120 120 120 120 120 120
28 73.9 29.3 66.4 88.3 T73.% 51.7 117  58.6
29 99.4 T2.7 88,6 101 94,5 95.4 116




RUN
NO.

16 (continucd)

Re

4

R05

30
31
32
33
34
35
36
37
38
39
40
41
42
43

A4

e

45
16
A7
18
49
50
51
52
53
54
55
56
57
58
59
60
61

175
107
40,6
195
56.8
117
192
62,0
129

147
51.1

15.8

4,6
18.7
18.1
11.4
21,2
12.5
17.1

Te3

135
94.7
80.8
107
104
153
134
122
134
175
149
122
195
171
164
192
187
180

206
154

22.1
13.9
26.2
33.5
21.0
21.2
17.5
19.7
13.5

135
94 .7
75.2
107
8645
153
124
114
112
175
139
102
195
142
152
192
155
167

191
128

20,5
11.6
24 .4
29.7
18,7
21,2
16,3
19.1
11.9

Lol BB O S S T A% T o
o N TG R e
L]

(No)

Y
=

135
94 .7
92.6
107
138
153
153
140
179
175
171
163
195
227
187
192
248
206

236
204

25.3
18.5
30.0
41,3
26,0
21.2
20,0
21.1
16,6




TABIE 16 (continuecd)

195.

%8? Rel Rez Re3 Re4 Re5 Re6 Re7 Re8
62 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
63 38.7 33.7 36,1 38.9 37.6 38,4 41.5 374
64 11.9 10.4 11,2 12.0 11.6 11.8 12.8 11.5
65 31,0 27.0 29,2 31.1 3041 30.8 3%.2 30.0
66 7.4 1.3 6.4 7.9 7.1 6.5 9.8 6.5
67 10.7 1.8 9.6 11.0 10.2 10.3 12.5 9.9
68 25.8 14,9 22,3 27.5 24 .4 22.6 34,0 22 .5
69 25,9 22.5 24,3 26,0 25,1 25.7 277 25.0
70 14,9 14.9 14.9 11 .9 14.9 14.9 14.9 14.9
71 49.9 28,8 43.1 53,3 A7.3 43,8 65,8 43,5
72 62.4 54,3 58.7 62.6 60,6 61.9 66,8 60,3
] 40,3 23.2 349 43.0 38.2 35.4 5%.1 35.1

4 50,8 414.2 47.8 51.0 49,3 50.4 5444 49.1
5 93.7 56,9 85.3 105 93.4 86,6 130 86,0
76 120 105 113 121 117 119 129 116
7 62.8 36,2 5443 67.0 59.4 55.1 82.7 54,7
78 97.8 85,1 92.0 98.2 95.0 97.0 105 94,5
19 78.9 45,5 68.2 84.2 .7 69,3 104 68.7
80 78.2 68,1 13¢5 8.5 5.9 175 83.8 7545
81 68,1 59.3 64.1 63,4 66,2 67.6 73,0 65,8
82 132 115 124 132 128 131 141 127
83 86.3 175.2 81.2 86.7 83,8 85.6 92,5 83.4
84 70.3 10.5 60.8 75.1 66,6 61.8 92.7 61.3
85 110 96.0 104 111 107 109 118 106
86 87.6 50.5 5.8 93.5 83.0 77.0 115 76 .4
87 110 63.4 95,2 117 104 96.7 145 95.9
83 146 127 137 AT 142 145 157 141
89 193 163 181 193 187 191 206 186
90 162 93.5 140 173 154 142 214 141
91 168 146 158 169 163 167 180 162
92 124 T1.7 107 133 118 109 164 108
93 136 8.4 118 1415 129 120 179 119




196,
175
130
196
147
1673
179
166

194
197
218
163

Re6
179
131
201
151
165
186
166
184
154
163

Re5
176
142

Re/1r
160
204
153
200
198
166
184
187
174
185

16 (continucd)
182

Re3
170
129

TABLE

Re2
157
86.3
177
133
108
141

Rel
181
150

94
95

RUN

NO.

197

X8\
[@N]

184

247
226
166
184
231

177
184
166
184

113
162
172
166

166

152
187
194
166
184

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

A
Loy

166
162
172
153
200

152
152

101
124
133
137
154

176

157
168
152
194
3.4
3.6

199
212
169
216
6.8

174

156

202
3.0
3.7

1‘02
3.9

5.1

158
215

162

148

187
3.8
3.6

1.7
204‘

170
181
157
210

L

<t

<

4‘07 501
6.3 7.2 6.7 6.8 8.3 6.5

5.2

1.1
0]

117



TABLT

17.

SHERWOOD NUMBIERS .

197.

ﬁgﬁ Shy Sh,, Sh Sh, Sh Shg Shr Sh8
1 52.7 20.9 A ot 63,0 52.3% 36.9 83.7 41,9
2 47.8 19.0 13,0 57.1 A7 .4 33.5 75.8 3'7.9
5 50.8 20.2 45,7 60,7 50,4 35.6 80,7 40.3
4 5C0.4 20,0 45,3 60,2 50.0 35.3 80,0 10,0
5 18,2 19.1 43.3 57.5 17.8 33,7 76,5 38.2
6 65.7 65.7 65.7 65.7 65,7 65.7 65,7 65.7
' 7.5 1.9 4247 56.8 17.1 33.3 5.4 577
8 51,6 64.6 64.6 61.6 64,6 61,6 641 .6 61,6
9 577 12.2 51.4 58.9 54.8 55.3 67.5 53.3
10 60,6 60.6 60.6 60.6 60.6 60.6 60.6 60.6
11 53,0 21.0 A7.7 63,3 52,6 37.1 81,1 12,1
12 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9
13 59.5 “345 53.0 60.7 56.5 57.1 69,6 55.0
14 76 .4 7644 76.4 76 .4 76 .4 6.4 76.4 76.4
15 64.3 25,5 57.8 76,9 63.8 45,0 102 51.0
16 71,9 52.5 64,1 1344 68.3 69.0 81.1 66.5
17 56.8 22,5 51.1 67.8 56,3 39.8 90.1 45.1
18  82.4 82,4 82.% 82.4 82,4 82,4 82,4 82,4
19 16 .4 55.8 68,1 78.0 72.6 13.3 89.3 70.6
20 65,5 .8 58.3 66.8 62.2 62.8 76,6 60.5
21 741.8 1.8 1.8 1.8 7448 4.8 178 1.8
22 72.9 28,9 65.6 87.1 72.4 51.1 116 57.9
23 103 75.2 91.6 105 97.7 98.6 120 95,1
24 8C.5 65 .4 19.8 91.4 85.1 85.9 105 82.8
25 ST 84,3 81.3 84.3 813 84.3 8443 8L.3
26 78,5 57.% 69.9 80.1 74.6 75,3 91.8 72.6

27 103 108 108 108 108 108 108 108
28 22,6  %2.8 71,3 98.7 82,0 57.9 131 65.6
29 97.1 71.0 86,5 99.1 92.3 93.1 114 89.8

30 113 113 113 113 113 113

113




198,

TABLE 17 (continucd)
§g§ Shl Sh2 Sh3 Sl’l/1r Sh5 Sh6 Sl’l,!7 Sh8
31 90.3 90.3 90,3 90.3 90.3 90.3 90.3 90.3
32 85,0 62.2 75.8 86.8 80.8 81.6 99.5 76.6
33 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0
3. 90.5 35,9 81,4 108  89.8 63.4 144  71.8
35 122 122 122 122 122 122 122 122
36 113 82.3 100 115 107 108 132 104
37 109 79.9 97.4 112 104 105 128 101
38 103 10.9 92.7 123 102 72.2 164 81.8
39 135 135 135 135 135 135 135 135
40 123 89,8 109 125 117 118 174 114
41 98,7 39.2 88,8 118 97.9 69.1 157 18.3
A2 146 146 146 146 146 116 146 146
4 120 ATe5 108 143 119 83.9 190 95.0
44 127 93.0 113 130 121 122 149 118
45 146 116 146 146 116 146 146 146
46 125 19.5 112 119 124 8743 198 98.9
AT 140 102 124 143 133 134 163 129
18 60.0 60.0 60.0 60.0 60.0 60,0 60.0 60.0
49 1418 108 132 151 141 142 173 137
50 111 a2 100 133 111 78.1 177 88.5
51 39.5 15.7 35.5 AT7.2 39.2 27.6 62.6 31.3
52 52.0 38,0 6.4 53.1 4964 49.9 60.8 18,1
53 56.5 411.3 50.3 57.7 53.7 51.2 66,1 52,2
54 45 .4 18.0 40.9 43 5.1 31.8 72,1 36.1
55 57.3 41.9 51.0 58.5 51.4 54.9 67.0 53.0
56 55.4 31.9 1749 59.1 52.5 18.7 73,0 48,3
57 52.9 30.5 15.8 56.5 50.1 46.5 69.7 46,1
58 58.7 58.7 58.7 58.7 58.7 58.7 58.7 58,7
56 53.7 39.3 4749 51.9 51.1 51.6 62.9 A9.7
60 57.8 50.4 5% 4 58.1 56.2 57.4 62,0 55.9
61 51.8 31.6 AT et 58.5 51.9 18,1 72,2 AT




17 (continucd)

199.
§g§ 5k, 5k, Sk Sh, Sh Shy Sh., Shy
62 59,2 59.2 59,2 59,2 59,2 59,2 59,2 59,2
63 61.7 56.3 60.8 64.9 62.8 64,2 69.3 62,5
64  58.5 50.9 55.0 58,7 56,8 58,0 62,7 56.5
65 61.8 53,8 58,1 62,0 60.0 61,3 66,2 59,7
66 T4 31.3  47.0 58,0 51,5  47.8  Tl.6  AT.4
67 60.6 4+.3 51.0 61.8 57.6 58,1 70.8 56,0
68 54.0 31,1 46,7 57.6 51.1 7.4 T71.1 7.1
69 57.9 50.4 L.t 58.1 56,2  57.1  62.0 55.9
70 62,0 62,0 62,0 62,0 62,0 62,0 62,0 62,0
71 63.4 36.5 54,8 67.6 60,0 55.6 83,5 55,2
72 73.2  63.8 66,9 73.5 71.1  72.7 18,5 70,7
73  61.7 35.6 53.3 65.9 58.4 1,2  B8l.3 53,83
1 69.2 60.2 65.1 69.5 67.2 68,6 74,1 66,8
75 104 59.9 89.9 111 98.4  91.3 137 90.6
76 109 95.3 103 110 106 109 117 106
77  79.0 45.5 68.3 81.3 74.8 69,3 104 68.8
78  95.3 83.0 89.6 95,7 92.6 91,6 102 92,1
79 88,9 51.3 76.9 94.9 81,2 78,1 117 77.5
80 85.2 74.2 80.1 85.5 82,7 84.5 91.3 82.3
8l 77.8 67.8 73.2 78.1 75.6 77.2 83.4 75.2
82 117 102 110 118 114 116 126 113
83 89.3 77.8 84,0 89.7 86.8 83.7 95.7 86,3
&4 82,4  47.5 71.2 87,9 78,0 72.3 108 71.8
85 103 89.4 96,6 103 99.8 102 110 99.2
86 95.9 55.3 82,9 102 90.8 81,2 126 83.5
87 110 63.7 95.5 118 105 97,0 146 96,3
88 124 108 116 124 120 123 133 120
89 146 127 137 146 111 144 156 141
90 140 80.4 121 149 132 123 184, 122
91 138 120 130 139 134 137 143 133
92 122 70,5 106 131 116 108 161 107
93 127 73.4 110 136 121 112 168 111
9% 126 115 141 144 155 140

136




200,

TABLE 17 (continued)
ﬁgg Shl Sh2 Sh3 Sh4 Sh5 Sh6 Sh7 Sh8
95 132 76,3 114 141 125 116 174 115
96 152 132 113 153 148 151 163 117
97 128 111 120 129 124 127 137 121
98 150 86.3 129 160 142 131 197 130
99 140 103 125 143 133 135 164 130
100 131 131 131 131 131 131 131 131
101 144 114 144 144 144 144 144 144
102 141 81.4 122 151 134 124 186 123
103 129 Te3 115 132 123 124 151 119
104 134 97.9 119 137 127 129 157 124
105 136 119 128 137 133 135 146 132
106 147 107 131 150 140 141 172 136
107 13.1 17.1 38.7 51.5 12,7 30,2 68.1 54 42
108 53.9 31.0 16,6 57.5 51,0 7.3 70.9 16,9
109 1843 27.8 1.7 51.5 45.7 1244 63,6 12,1
110 62,41 62.4 62,4 6244 62.4 62.4 62.4 62,4
111 57.5 50.1 51.1 57.7 55.8 57.0 61.6 55.5
112 58.8 51.2 55.3 59.1 57.1 58.4 63,1 56.8
113 53.8 39.4 418.0 55.0 51.2 51,7 63.0 19.8
114 54.5 47.5 51.3 54..7 52.9 54.1 5844 52.7
115 52.7 38.5 A7.0 53.8 50.1 50.6 61,7 48,8
116 40,2 16.0 36,2 48.0 39,9 28,2 63,8 31.9
46,8 27.0 40,5 50,0 1.3 61.7 410.8

117

4’1;1

]



TABLE 18, 201,

———— o

SHERYOOD NUMBERS BASED ON SURFACE AREA OF SPHERE OF SANE

VOLUME .

1 1543 31 90.3 61 62.4 g1 139
2 68.2 32 88.6 62 59.2 92 139
3 72,6 33 97.0 63 65.2 93 145
4 71.9 34 129 64 59.0 94 146
5 68.8 35 122 65 62.3 95 151
6 65.7 36 117 66 61.9 96 153
7 67.8 37 114 67 63.1 97 129
8 64 .6 38 147 68 61,5 98 170
9 60,1 39 135 69 58.3 99 146
10 60.6 40 128 70 62,0 100 131
11 5.7 11 141 71 72.1 101 144
12 69.9 12 116 72 15,8 102 161
13 62.0 4% 171 73 70.3 103 134
14 7644 wh 133 e 69.7 104 140
15 91.8 45 116 5 118 105 138
16 4.9 46 178 76 110 106 153
17 81,1 7 146 77 - 89.9 107 61.5
18 82.4 418 60,0 78 96.1 108 61,3
19 79.6 49 154 79 101 109 55.0
20 63.2 50 159 80 85.8 110 62.4
21 18 51 56.3 81 T8.4 111 57.9
22 104 52 54.2 82 118 112 59.3
23 107 53 58.9 83 90.0 113 56,1
24 93.3 Ha 641.9 84 93.8 114 549
25 B4 . 55 59.7 85 104 115 55.0
26 81.8 56 63,1 86 109 116 57 .4
27 108 57 60.3 87 126 117 53.3
28 118 58 58.7 88 125
29 101 59 56.0 89 147

30 113

60 58,3 90 159




202,

TABLE 19.

GRASHOF NUMBERS (25.0°C.)

e=4,16 e=7.,16 e=10.16 e=1%,16 e=16.16

6r, x 1074 2,96 5.18 7.40 9.62 11.8
eér, x 107% 0,185  0.991 2,89 6.35 11.8
6ry x 107% 2,15 3,35 5.24 8.00 11.8
er, x 107" 5,05 6.29 7.87 9,73 11.8
6rs x 1071 2,89 4239 6.35 .81 11,8
Gre x 1077 1,02 3,51 6.53 9.39 11.8
6r, x 107" 11,8 1.8 11.8 13.8 11.8
6rg x 1077 1,18 3,43 5.85 8.67 11.8
TABLE 20.
PRODUCT OF GRASEQT AND SCHMIDT NUEBERS (25.0°C.)
e=/4,16 e=7,16 e=10,156 e=1%,16 e=16,16
Gr,xScx10” | 2,97 5.21 7,44 9.67 11,9
6r,xSex10”/  0.186  0.996 2,90 6.38 11,9
6r x8ex10T! 2,16 3 .36 5,26 8,04 11.9
6r,xScx10”! 5,07 6.33 7.91 9.78 11.9
GrgxSex10 | 2.90 4,42 6.38 8.86 11,9
GrexSex10”! 1,02 3.53 6.57 9.44 11.9
GroxSex10” | 11,9 11,9 11.9 11.9 11.9

Gr8X80x10_7 1.49 3 A0 5.88 8,71 11.9




GRASHOF NUMBERS DIVIDAD BY REYNOLDS NUMBERS SQUARED.

TABLE

21,

203,

ggﬁ Efl Gr, Gr3 Gr4 Gr5 Gre Gr7 EEQ
Re12 Re22 Re32 Re42 Re52 Re6z Re72 Re82

1 53,2 21,1 AT7.8 63.5 52.7 37.2 84,4 12,2
2 134 5344 121 161 133 1.2 213 107

3 559 222 502 668 554 391 827 443

4 133 52.7 119 159 132 92.9 211 105

5 85,2 33.8 76,6 102 84.5 59.7 135 67.6
6 68,3 68,3 68.3 68,3 68.3 68,3 68.3 68.53
' 85.6 34.0 T7.0 102 85.0 60,0 134 68,0
8 107 107 107 107 107 107 107 107

9 63.5 46.4 56,6 61.8 60.3 60.9 e 58.7
10 173 173 173 173 173 173 173 173
11 35.1 13.9 31,6 12,0 1.9 24,6 55.8 27,9
12 13.7 A3.7 1347 23,7 43.7 13.7 A3.7 A3.T
13 39.6 28.9 3543 10.% 37.6 38,0 16,3 36,6
14 27,0 27.0 27.0 27,0 27.0 27,0 27.0 27,0
15 13.4 5.33 12.1 16.0 13.3 9.40 21.3 10.7
16 23,7 17.3 21.1 24.2 22.5 22,7 27.7 21.9
17 21,4 8,50 19.3% 25,6 21,2 15.0 34.0 17.0
18 21 .4 21,4 21.4 21.4 21.4 21.4 21.4 21.4
19 18.3 13.4 16.3 18,7 17.4 17.6 21.5 17.0
20 30.7 22.4 274 21.3 29.2 29.5 35.9 28,4
21 32,7 32.7 32.7 32.7 32,7 32,7 32,7 32.7
22 8,59 3.41 7,72 10.3 8.52 6.01 13,6 6.82
23 6.32 1.62 5.63 6.45 6.00 6.06 T¢39 5.84
24 9.59 7.01 8.54 9.79 g.11 9.20 11,2 8,87
25 17.1 17,1 17.1 17.1 17.1 17.1 17.1 17.1
26 15,6 11.1 13.9 15.9 14.8 11.9 18.2 11 .4
27 8,18 8,18 8.18 8.18 8.18 8.18 8,18 8.18
28 5.12 2,15 /.88 6.18 5.38 3.80 8,61 1.30
29 7.49 5.,47 6,67 7.61 7.11 7.18 8,76 6.92
30 6.53 6.53 6.53 6.53 6.53 6.53 6.53

6.53




TABEE 21 {continucd)
0. ko oph mh omh ool ot wl ol
1 2 3 4 5 6 =T 8

31 1%.2 13.2 13.2 13.2 13.2 13,2 15.2 132.2
32 11.8 8.63 10,5 12,1 11,2 11,3 15.8 10.9
33 10,3 10.3 10.3 10.3 10.3 10.3 10.3 10.3
34 3.89 1.54 3.50 4,65 3,86 2,72 6,17 3,09
35 5,03 5,032 5.03 5.0% 5.03 5.0% 5.03 5.03
36 1e32 3,16 3.85 4.41 1,10 .11 5.05 5.99
37 5.17 3.78 4.60 5.27 4,91 +.96 6.04 4.78
38 2634 0.927 2,10 2.79 2,32 1.64 3.71 1.85
39 3.87  3.87 3.87 3.87 3.87 3.87 3,87 3.87
40 3.46  2.53  3.08 3,53 3,29 3,32 4,04  3.20
41 2482 1.12 2.54 3,37 2.80 1.98 4 o4 8 2.24
42 3,13 3413 5,13 5.13 3413 3.13 3.13 3.13
13 1.44 0,573 1.30 1,72 1.43% 1.01 2.29 1.15
g 2.83 2,11 2,57 2.94  2.,7F  2.77  3.37 2.67
45 35420 3.20 3.20 3.20 3,20 3.20 3420 3.20
16 1.21 0.481 1,09 1.45 1,20 0.819 1,92 0.96
A7 2.39 1.74 2.13 2.11 2.27 2.29 2,79 2.21
4_8 * * 7‘é >* * k3 * ¥*
49 1.82 1.33 1,62 1.86 1.73 1.75 2.13 1,68
50 1.79 0.709 1,61 2.13 1.77 1.25 2,83 1.42
51 ¥ ¥ * * % * ¥ *
52 * * * * ¥* * »*

53 158 116 141 162 151 152 185 146
54 218 86.5 196 261 216 153 346 173
55 113 82.3 100 115 107 108 132 104
56 52.7 30.4 45.5 56,2 49.9 46.3 69,4 45.9
57 133 76€.8 115 112 126 117 176 116
58 263 263 263 263 263 263 263 263
59 252 184 225 258 240 242 295 233
60 249 217 234 250 242 247 267 241
61 3206 188 281 347 308 286 129 284
62 1180 1180 1180 1180 1180 1180 1180

1180




205.

TABLE 21 (continued)
o, i Grp o Gmy o Gry o Grg o Grg  Gr,  Oxg
Rel RCZE Re32 Re¢2 Re52 Re62 Re72 Re82
63 64.1 55.8 60.3 614 62.3 63,6 68.7 61.9
64 678 590 638 681 658 673 726 655
65 100 87.1 94,1 100 97.2 99.3 107 96,6
66 933 538 807 996 884 820 1230 813
67 613 470 57% 656 611 616 752 594
68 779 14,9 67.3 83.7 13477 68.4 103 67.8
69 144 125 135 144 140 143 154 139
70 534 534 534 534 534 534 H34 534
71 20,8 12,0 18,0 22,2 19,7 18,3 27.. 18.1
72 24.7 21,5 23,2 24,8 24,0 24,5 26,5 23,9
73 31.8 18.4 27.5 34,0 30.1 28.0 41,9 277
71 37.3 32.4 35.0 374 36,2 37.0 39.9 36.0
75 5.32 3.07 4460 5.68 5.04 1.67 7,01 4.64
76 6.65 5.79 6.25 6.67 6,16 6.59 T7.12 6,42
77 13.1 7.58 11,4 14,0 12,4 11,5 17.3 11.5
78  10.1 8,76 9.46 10.1 9.77 9.93 10.8 9.71
79 8,32 4,79 7.19 8.88 7.87 7.30 11.0 T.25
80 15,7 13.7 11.8 15.8 15.3 15.6 16.9 15.2
81 20,7 18,0 19,5 20.8 20,1 20.5 22,2 20,0
82 5.54 reB2 5.21 5.56 5.38 5.50 5.94 5.35
83 12,9 11,2 12,1 13.0 12,5 12,8 13,8 12.5
84 10.5 6.03 9.05 11,2 9.91 9.19 13,8 9,12
85 7.91 6.89 Telht 7.95 7.69 7.85 8.48 7.64
86 6.74 3.89 5.83 7.20 6.38 5.92 8.38 5.88
87 1,27 2.46 3.69 1,56 1.04 3,75 5.63 3.72
88 4.51 3.92 4,241 1.52 4,38 L AT .83 1.35
89 2.59 2.26 244 2,60 2.52 2,57 2,78 2.51
90 1.97 1,13 1,70 2,10 1,86 1,73 2,59 1.71
91 311 2,97 3.20 3.42 3,31 3.38 3,65 %.29
92 3435 1,93 2.90 3457 3417 2.94 4,11 2,92
93 2,30 1.61 2,42 2,98 2,15 3,68

2,65
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TABLE 21 (continucd)

%g? Gr1 Gr2 Gr3 Gr4 Gr5 Ezé Eﬁl Efﬁ
Relz Re22 Re32 Re42 Re52 Re62 Re72 Reg?
94 2.94 2.56 2.77 2.95 2.86 2,92 3,15 2.84
95 2.31 1.33 2,00 2 47 2.19 2,03 3.04 2,01
96 2.33 2,03 2.20 2.34 2,27 2.32 2.50 2.25
97 4415 3.61 3490 17 4,03 1.12 4.45 1.01
98 1.47 0.819 1.27 1.57 1.40 1,29 1.94 1.28
99 1.97 1.44 1.76 2,02 1.88 1.89 2.31 1.83
100 1.28 1,28 1.28 41,28 4.28 4,28 41,28 1.28
101 3.49 3449 3.49 3,49 3.49 3449 3.49 3.49
102 1.68 0.968 1,45 1.79 1.59 1.47 2,21 1.46
103 2.56 1.87 2,28 2.61 2,43 2445 2,99 2.57
104 2,25 1.64 2.01 2,30 2.14 2,16 2,63 2,08
105 3,88 5438 3.65 3.90 3477 3.85 4,16 3.75
106 1.67 1.22 1.49 1.71 1.59 1.61 1.96 1.55
107 1630 616 1460 1940 1610 1140 2580 1290
108 2990 1720 2590 3190 2830 2630 3940 2610
109 ¥* ¥ ¥* ¥ ¥ * ¥* ¥
110 5240 5240 5240 5210 5210 5240 5240 5240
111 * * ¥ * * +* 3 *
112 4290 3740 4040 4310 4170 4260 4600 1150
113 1470 1080 1310 1500 1400 1410 1720 1%60
114_ * ¥* * * ¥* * *
115 *# * ¥* * * ¥* ¥ %
116 * * * * * * * *
117 3 * * * * * ¥*

]

infinity

(free convection runs)
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APPENDIX 2,

QRIFICE PLATE CALIBRATION CONSTANTS.

TABLE 22
Orifice CALIBRATION CONSTANTS
Diameter f 1
inches 07 08 09 010
0.15 -0.,001 -0.015 0.393 -0,013

0.75 -0.024 0.327 11,366 3.112
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