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Abstract

The crystal structures of three natural-product
derivatives have been examined by three-dimensional X-ray
diffraction technigues.

6-(N-3enzylformamido)penicillanic acid (016H180hN28)
is an isomer of the antibiotic, benzylpenicillin, but
possesses only one ten-thousandth pgit of its antibacferial
activitj. The crystals are monoclinic with a = 19.58 Z,

b = 6.427 K, c = 13.98 X, p = 108° and spacegroup C2, with
four molecules in the unit cell. The structure, which is

shown below was determined with the aid of a graphical Patterson
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superposition technique. It is similar to those foundvby
previous X-ray studies on the penicillins except for the
position of one of the possible hydrogen-bonding groups (O').
This difference is consistent with current explanations for
the antibiotic properties of the penicillins.

The crystal structure of a spiro-cyclic derivative

of another antibiotic series, the cephalosporins, has been



19H22N1+0#32. 3H20)o

crystallizes in the monoclinic system with a = 8.063 4,

determined. This spiro compound (C

(o] o]
b= 7.184 A, ¢ = 19.72 A and [5 = 100.3°., The spacegroup is

P21 with two molecules per cell. The molecule, represented by

Ph.CHziCG.HH

AN

the diagram above, forms a novel tricyclic system and presents
many interesting aspects of structure and conformation, which
are discusséd in some detail,

Attempts have'also been made to determine the crystal
structure of zeorin acetate (032H54O3)' a member of the tri- ]
terpene series. The crystals are orthorhombic with a = 8.78 A,

o o
b = 11.59 4, ¢ = 29.15 A and belong to the spacegroup P2 2

1 1293
with four molecules in the unit cell. This compound presents
. substantial crystallographic problems and efforts have been

made to interpret its Patterson function mainly with the aid

of a relatively modern Patterson searching technique.
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CHAPTER 1

The Phase Problem and an

Introduction to the Patterson Eunction

One of the-first stages in the X-ray analysis of a crystal
gstructure is the ﬁeasurement of the intensities of the spectra
that arise from the diffraction of X-radiation by the three-
dimensional crystal lattice. Each diffracted beam can be
regarded aé the 'reflexion' of X-rays by'a partiéular setAof
parallel crystal planes. Directionally, a diffracted beam will .
depend only upon the orientation and separation of its reflecting
planes with respect to the 'unit cell' of the crystal lattice.
The intensity, however, dépends upon the type and arrangement
of the atoms with regard to these planes.,

If there are N atoms in the unit cell, the diffraction
pattern of the crystal iattice can be regarded as made up from

“the patterns of N atomlc lattices and the total wave diffracted

from the unit cell can be described by the equatlon
F(hkl) = Zfrexpl¢+ ceeene (1)
1

where F(hkl) is the 'Structure Factor' for the particular

reflexion. and fr is the 'form factor' of the rth., atom. The



form factor describes the power with which atoms of type'r
treflect' X-rays and it depends upon the atomic number and
decreases with increasing Bragg angle, €. qsr is the phase
angle of the diffracted beam from the rth. atomic lattice.

Since a crystal is periodic in three dimensions,.Bragg
(1929) has shown that the electron density ( Q) at‘any point
Xy ¥y 2 can be represented by a three-dimensional Foufier'series

of the. form

) .
Q (xyz) = _’_I_zz 2 F(hkl) exp( -21(i(hx + ky + 12)) «...(2)
V Ryt -0 '

where V is the volume of the unit cell and the function ié
everywhere continuouss A good and convenient approximation to
the structure factor is obtained assuming that gll the electron
density in the crystal occurs in spherically symmetricél_atoms.

The structure factor (equation 1) can then be written as

N
F(hkl) = E?}fr exp 21Ti(hxr +_kyr + lzr) eesese (3)

where X9 Y Z, are the coordinates of the rth. atom expressed

as fractions of unit-cell edges. Thus the expression (2) for

the electron density can be written as

LN
()(xyz) = 1222{21‘ exp=2Mi (h(x-x_)+k(y-y )+1(z-2 ))} ceee ()
ATy ¥ ¥ r
RV

The Fourier series (4) will consist of N resolved, spherically

symmetrical peaks at the positions of the atoms xr, Yoo 2, and



the number of electrons in each peak will be equal to Zr’ the
atomic number, (The Fourier in the form of equation (&) is

pertinent to the discussion of the Patterson in later sections),

Crystal gtructure analysis involves substituting the
values of the structure factors, F(hkl), into equation (2) in
order to obtain a representation of the electron density
distribution in the-unit cell. However, the structure factors
are, in general, complex quantities aﬁd the X-ray crystallo-
grapher observes intensities, which are proportional to the
square of the modulus of the structure factors, !F(hklﬂ 2. It
is the determination of the phases that constitutes the 'phase’
pfoblem' in X-ray crystallography.

One of the most successful methodsproposéd to overcome
this problem is due to Patterson (1935). He derived a Fourier
series with the coefficients, F(hkl), replaced by ’F(hkl)/z
and related the series to the inter-atomic vectors in the unit
cell. The rest of this chapter is devoted to a description of
this 'Patterson series' as it has been used extensively through-
out the thesis, Some of the simpler appliéations are also

described here.

Using for simplicity the one~dimensional series of period

'a' the equation
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o
e(x) =1 ZF(h) exp -2 i(hx) cesees (5)
a ho-ots
gives the electron density_at any point x. The density‘distri-
bution about x can also be expressed as a function of a
parameter u, i.e. Q(x + u). The total amount of material
between x and x + dx is Q(x)dx,‘which gives the weighted
distribution about x as Q(x) e(x + u)dx and tﬂe_weighted average

distribution as
|

A(u) = JQ(X) Q(x + u)dx "",'; (6)
(-]

Thus from equation (5) and utilising the property that

|
jexp -2M{i(m + n)x dx = 1 if n = -m and is otherwise

-4

zero, equation (6) gives
2
A(u) - IF(hX exp 21r lhu es e e e (7)
-..’o .
This is the one~dimensional Patterson series and the derivation
can be extended to three dimensions to give
Aluvw) = ‘ZZZZ‘F(hkl)I exp2Mi(hu + kv + 1w) ..e. (8)
hRrea-0 .
where the distribution is now a function of the three parameters
u, v, w about the point x, y, z. The general form of the three-

dimensional function is usually written as

P(uvw) = 1 ZZ Z‘F(hkl)l cos 21 (hu + kv + 1w) .es (9)
V Whes- o0
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Equation (9) differs from equation (8) for Aluvw) by a factor

of 1/V and in the use of the cosine. The former factor is merely
a result of defining the function as an average value of the
eléctron density product, and the latter because in thel absence
of fluorescence, F(hkl) = F*(Eﬁi),lso that their imaginary
components cancel. As the cosine function is even, it follows

that the Patterson function is centrosymmetric.

The physical meaning of the Patterson can be readily
seen by considering it in the form of equation (6). Thus A(u)
will only be large when both Q(x) and Q(x + u.) are large, so
that peaks appear in the Patterson corresponding to peéks in
the electron density distribution separated by a vector 'ut',
The Patterson function, then, will consist of‘a 1arge; multiple
peak at the origin (ie. the sum of the product .e(x) Q(x) for
all x), and peaks whose vectors from the origin represent
inter-atomic vectors in the crystal. Although a Fourier series
is a continuous function it is sometimgs useful to describe

the Patterson as the vector set of the electron density.
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" Properties of the Patterson

Writing the one;dimensional structure factor in the form
of equation (3), it follows that
N :
IF(n)| % = BZ' £.f_ exp 2Mih(x, - x) +eeee (10)

Substituting equation (10) in (7) gives

)
-ZZ foexp 240ih(u - (x_ -x))]
k__‘ﬁ fS>l

Au)

a™2 ZZf exp2fihu + a -2 ZZf f epo'ﬂ'lh(u-(x =x_))ees(17)

he-pt= r hsd St
rfs

The Patterson peaks thus correspond to the Fourier represent-

ation of artificial atoms with specific 'form factors'. N of
these, represented by the first term on the right hand side of
equation (11) coincide at the origin with 'form factors' of
fi; the remaining N(N-1) are situated at points I(xS - xr) with
'form factors'of frfs.
“ Thus the total number oftelectrong in the origin peak
23 Zi, and peaks corresponding to a vector between two atoms
at x; and X respectively will contain Z Z 'electrons! and th;
peak height will be roughly proportional to this product.in the
three-dimensional case. It can aiso be noted that the voluue

of a three-~dimensional Patterson peak is roughly,eight'tiﬁes

that of a corresponding peak in Q(xyz). Coupled with the fact
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that the Pattersén contains N2 peaks in the same volume as the
electron density contains N,'this means that the resolution of
the former is poor compared to‘that of the latter.

Also,‘the origin peak can be removed by using as coeffi-

cients in the summation, {Fo(h)‘a, where
N

2 2 2

|Fo(h)\ = \F(h)\ - éfr

The new series will retain all the information regarding inter-
atomic vectors and may also show peaks -that were'previously

obscured by the 1arge origin peak,

Sharpening

Patterson (1935) suggested a method of improving the
resolution of the Patterson series, which in effect attempts to
L .
transform the observed ,F(h)f terms into what they would be if
the crystal were composed of point atoms. As the different form-
factor curves are, in fact, very similar when scaled to unity,
he suggested setting up an average f-factor per electron Qf'
N
N
N
f(h) = £ (h) /
Z; T jg Zr
: =t
and the sharpened synthesis is then computed by dividing each
2 A
‘F(hﬂ term by the appropriate f%h).

Another factor to be taken into account is the thermal
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motion of the atoms. This, if isotropic and uniform for all atoms,<
tends to reduce the observed values of,F(h)[by a factor of

exp ( -B sin2 =3 /;\2)

where A~is the wavelength of the X-radiation and B a constant for
the particular crystal, which can be estimated from the intensity
data by the method of Wilson (1942). Thus, division of each |
‘(F(h)lg by

z?%(h) exp ( -2B sin2 Q'/)~2 )

willgive a Patterson.function sharpened to represent point atoms
at rest.

An undesirable result of sharpening the Patterson is the
appearance of false veaks. Equation (2) indicates that a Fourier
.series is ideally the sum of én'infinite number of terms. In
practice the number of terms is limited but the unsharpened
series converges rapidly bécause of the thermal attenuation
of the terms. {owevér, if sharpéning is applied, the importance
of these high-order terms will be greatly increased. The
trunbation of the data becomes obvious and produces series-—
termination ripples in the Fourier map.

In recent years, more empirical sharpening functions
have been used whibh attempt to compromise between resolving

power and freedom from non-convergence effects. Eor example,

Shoemaker et al. (1953) have used the function’



15

(2sin e/)\)L’ exp - 42(2sin @ NG with o = 2.2,

in the structure analysis of DL-serine. The function had a
maximum value at sin @ = 0.5sin @ _ and tended to reduce the

Fourier ripple.

The Use of Symmetry

Harker (1936) suggested that the use of the symmetry of
the spacegroup could lead tb a simplification in the interpretation
of the Patterson.

For a diad, coincident with the b axis (for éxample), the
coordinates of a pair qf afoms related by the symmetry are

x y z
-X ¥y -z
The vectors between them will have components
+ (2x 0 2z)
and the 'Harker section' in the Patterson ét\f»: 0 will contain
peaks corresponding fo vectors between all atoms related by this
symmetry element..'Equation (9) takes the form

o0 - _ '
222!F(hkl)vl 2cosZ’\'\'(hu} lﬁ),

l\’h‘c-.-ab
20 ' .
lfi{ZlF(hkl)facosa'ﬂ (hu &+ lw)}
V"\‘Qz-!‘ h'—‘& . R
‘ 0
lZZQh,lcos 214 (hu + 1w) ceeees (12)

Wiz-ob

P(uow)

1
v



16

: Q
where Ch,l = |ljalF(hkl)la. Use of equation (12) reduces.
computation to zzgt of the two~dimensional case but as three-
dimensional data are used the résolution of the Harker section
will be far better than the corresponding two-dimensional
projection. Analogous results can be derived for screw axes
but the relevant Ha¥ker plane is then displaced along the screw.
For mirror and glide planes, the summation reduces to one-
dimensional Harker lines normal to the plane.

In any Harker region there are always some extra peaks
which arise accidentally and arise from non-equivalent atoms.
Such peaks confuse the impression and are not readily_distinguish-

able from true Harker peaks.

Interpretation of the Patterson

The complexify of this-problem depends upon the néture

of the substance being examined and consequently, the methods of
solution provide one of the most diverse and interesting aspects
of cfystal structure analysis. This thesis is goncernéd‘with
organic molecules which for convenience can be divided iﬁto
two groups :

(a) Molecules containing a relatively large number of atoms
of low atomic number with only a few heavy sé&tterers.

(b) Molecules containding only light-atom scatterers.
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The interpretation of the Patterson of crystals containing
type (a) molecules is reasonably straightforward. The initial

step is the determination of the coordinates of the heavy atoms.

The Heavy Atom Method

It has been shown (page |12 ) that the height of a Patterson
peak representing a vector beéetween two atoms of atomic number
Zr and ZS respectively is roughly proportional to ZrZS. If the
crystal contains relatively few atoms of high scattering power,
the Patterson peaks of these 'heavy! atoms will stand out against
a background of smaller peaks. It is then usually a simple
matter to determine the coordinates of the heavy atoms,
especially by making use of Harker regions. if partial -
structﬁre factors, FH(hkl), are then calculated from these

positions, the total structure factor is given by
H L,
F(hkl) = F (hkl) + F (hkl)

where FL(hkl) is the strucfure factor contributipn from the
light atoms. In general, FH(hkl) will be much greatef than
FL(hkl) and the computatidn of a Fourier series using the phases
of FH(hkl) applied to the observed structure amplitudes should
‘enable.the location of light atoms. In the compqte; program

available here, a rejection test can be applied.where F(hkl)
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is excluded from the Fourier synthesis if
H
| )| < x[F_(his1)|

where x is normaily 0.25 - 0.33 and \Fo(hkl)lis the observed
structure amplitude. In this way, structure factors to which
the heavy atoms contribute'very little can be excluded from the
summation because of uncertainties in phase. In most cases,
the first Fourier map is not clear enough to locate all the
light atom peaks . The above process must be repeated several
times, using at each stage the atomic positions located inlthe
preceding map to phaée the structure factofé for the next.
Lipson and Cochran (1953) have suggested that the method works
best when the sum of the squares of the atomic numbers of the
heavy and light atoms afe approximately equal, i.e.eacﬁ group

contributes approximately équally to the average intensity.

Image Seeking

Clastre and Gay (1950), Garrido (1950), McLachlan (1950)
and Beevers and Robertson (1950) simultaneousiy qulishéd
methods for the interpretation of the Patterson which are
classed as 'superposition' methods since they involve ther
superpo&ition of one Patterson map on another, These ﬁefhods
can be applied when the proportion 6f heavy atoms in the crystal

is insufficient to determine the phases of a majority of the
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structure faétors. Since then, superposition methodé have been
fqrmalised and given a rigoroué theoretical treatmentias image-
seeking methods by M.J,Buerger, whose'work from 1950 onwards

is presented in his book, Vector Space (1959).

Considering the Patterson as the vector set of the electron
density (page 11){ solution of the Patterson can‘be'looked upon
as identifying its fundamental set. That thié can be done for
discrete points was first shown by Wrinch (1939), who ﬁsed‘
the term 'image' to describe, say, the point ab at the end of
the vector Eg, as the way point b looks from a. “Thus the
Patterson can be imagined as the superpoéition of the images -
of the structure as seen from each atom in turn, each image
being translated to the origin of the Patterson. Searching for
these images can‘be carried out graphically or by using a
digital computer.

A single peak in the Pafterson that represents a veétor
between two symmetry-related atoms is firsﬁ selected, (1ﬁ'may
be useful in this respect to predict the expected peak heights
based upon the height of the origin peak). Ror instance, this
may be a heavy-atom peak from which the heavy-atom positions

can be fonnd (at points r .,...rj). The values of the

1?

Patterson ére then compared for the set of points (r1+r, T, +Tye0

2

....rj+r) and‘? is regarded as a vector of the fundamental

set only if the Patterson at all these points is large. Buerger
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' (1959) describes three types of functions for testing tﬁe'
'vector-end' Patterson values; the product, sum and miﬁimum
functions. The product function is defined as the product of
the weighted values of the Patterson at the ends of the vectors,
and the other two functions are respectively the sum and the
minimum of these Pétterson values, This multiple comparison

is carried out right through the cell by varying the common
vector'?. In the above heavy-atom example, the weight of each
Patterson value will be the same, but if other atomic species .
are included as 'image points', the Qector-end Patterson values
must be weighted accofding to théir scattering powers. _Buérger.
discusses the merits of each imaée-seeking function and their
reiation to the electron density. He recommends the minimum
function as it is simple to use and the other two tend fo‘give
false maxima. Thus a contoured map of, say, the minimum
function can be obtained for the unique part of the unit cell,
and the peaks will represent possible atomic positions.

If two image points are used iﬂ the search, the resulting
function is said to be of rank two. Normally, this is not
enough to reveal the complete structure and a stepwise pro-
cedure has to be employed, whereby functions-of higheé rahk are
computed by using as image points, atomic positioﬁs that have
been determined from lower-ranking functions. |

Graphically, the procedure can be carried out by preparing:
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a duplicate contoured map of the Patterson on traciﬁg paper

and laying it on the original map with its origin on the selected
single-peak of the lower map. The minimum function can_then
be.contoured on a perspex sheet superimposgd on both maps. in
practiée it is difficult to prepare , by this method, minimum

functions of rank higher than two.

For structures of type (b) (page 16), contaihing no
heavy atoms, the solution of the Pétterson is generally quite
complex. The function normally consists of clusters of uh-
resolved peaks, some of which may not be distinguishable from
the background. Recognition of single peaks becomes extremely
difficult and consequently, normal image-seeking methods‘ are
unsuitable. However, in recent years, modified image-seeging
methods have been developed.for épecific uée with light-atom
structures. A description of these methods is deferred until
later (Chapter 7 ),‘priqr to the account of attempts to solve
the cryétal structure of zeorin acetate (C32H5403) by a

Patterson searching method.
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CHAPTER 2

Data Treatment and

General Crystallographic Methods Used

All intensity data were collected photographically by
the Weissenberg method using filtered CuKd.fadiation. TQo»four-
film exposures on Ilford Industrial 'G' were carried out for
each layér, the time ratio being approximately 60 : 1. Using
the equi-inclination setting fof non-zero layers, the bulk of
the data was collected about the shortest crystallographic axis,
and between one and three layers about a second axis for data
correlation. Intensities were estimated visually using éali-
brated'wedges', and inter-film scales were calculated byihand.
No corrections were applied for absorption. Unless the mass
absorption coefficient of the crystal is very high,.it is
expedient'to try to avoid making absorption corrections by
choosing a spécimen of small enough dimensi&ns. This was done
in each case and the pertinent data are given in the relevant
chapters. Primary extinction is due to the interference effects
of out-of—phase rays that have been 'back-reflected® infé the
-primary and reflected beams b& the stack of planes in the
particular reflecting position. A large reduction in.in#ensity

can occur for strong, low-order reflexions and consequently
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any suspected primary extinction was dealt With.by omitting
the reflexions from thé structure refinement.
)

A series of computer programs were used to obtain a
cbmplete set of data on one relativé scale, All the p&ograms
mentioned form part of a crystallogfaphic system for tﬁebAtlas
computer. Formulated mainly by M.G.B.Drew (1966), and named
ATSYS, this system facilitates the handling of data anﬁ en-
hances éontinuity by the option of storing both programs and
data on magnetic tape. TFurther details can be obtained from
the reference cited and the list'of references therein. In
each case, the programmer's name is given, and the author, who
fully appreciates the exasperation sometimes inVOlved,>is

grateful to them all.

LSCDeeeoessRsD,Diamand.

The unit cell dimensions are calculated by a least-
squares method outlined by Alexander and Klug (1954), The
method assumes that any systematic errors are a function‘of
the Bragg angle, €, so that an error term is added to the
observational equations. In this work the data were derived

from Weissenberg films.

FIFIeeeoeeee R.,D,Diamand.

Lorentz and polarisation corrections of the form



-1
(Lp)™ ' = 2%cos & / (1 + cos® 20)

are applied to a set of intensity data, where 3 is the radial

cylindrical coordinate of the reciprocal lattice point.

POLO«xvnnesn }.G.B.Drev.

Procedures can be carried out as follows:
(a) Pick out common reflexions from separate lists of data.
and print out their ratios. Common reflexions will be uéed to
calculate the inter-layer scales (b), and this list usually
indicates mis-indexing and other trivial mistakes.
(b) Calculate the inter-layer scales by the least-squares
method of Hamilton, Rollett and Sparks (1965), and apply them
to the data.

(c) Sort a list into any order and modify parts of the list.

IOLA+v:eeeees R.A.Sparks, modified by the author.

Inter-layer scales can be calculated by the method of.

24

Rollett and Sparks (1960), now superseded by the method in POLO.

Other ATSYS programs used for calculations in'thié

thesis are :=-

MATT...O.... the author.
Wilson's (1942) method is applied to estimate the

"absolute scale and overall temperature factor, from two or



three-dimensional data. The procedure ﬁsed is analogous to
that outlined by Rogers (1965). The data are output to
facilitate the plotting of the éraph of 1oge(<17 /0-2)
against sin® e /X2, where LI7 and o, are the averagé

N
values of ,F(hkl)l2 (on a relative scale) and jg fi for
' [
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shells of the reciprocal lattice extending over equal intervals

of sin2 6. The values of B, the overall isotropic temperature
factor and K, the scale to be applied to lF(hkl” are also

calculated by a simple least-squarés routine.

BOSSseeessss M,M,Harding, modified by M.G.B.Drew.

The program is basically for the calculation.of Fourier
series but includes a routine to calculate structure factors
from a set of atomic positions. An agreement analysis can
also be prepared, i.e. a list of ZFO(hkl) and 2Fc(h%cl)

and R for various groups of reflexions where R

R = Z'k I\Fol - \Fc‘
21{

i6 the scale factor and F_ the ¢alculated structure factor,

F
o

(adopting the more convenient notation), and the summations

are over the appropriate groups of reflexions.

DIDO¢eeevess Reh.Sparks, modified by the author.

Using the eigenvalue method outlined by Rollett (1965)
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the best plane through a set of specified atoms is calculated

together with the distances of other atoms from this plane.

BABA..+vss.s R.D.Diamand, modified by H4.G.B.Drew.

The program calculates structure factors from input
atomic coordinates and refines, by a block diagonal, least-
squares method, positions, temperature factors and an o#er-
all scale. The anisotropic temperaturesfactors are of the form

p ij where the contribution to the structure factor is

| 2 2 2 ‘

exp. = (&11h + P22k + P331 + ,B12hk+ /313111 +P23k1)
The method is essentially that outlined by Cruickshank (1961).
The scale, applied to Fo, is coupled with an overall temperature
factor in a 2 x 2 matrix,-and 3 x 3 and 6 x 6 matrices are

computed for positions and anisotropic vibrations feSpectively.

The function minimised is

- _ ,
jZJW (ke \Fo‘ - \Fc{ )
wﬁere J;;is the weight applied to each observation. The _
weighting scheme used is that described by Rollett (1961) where
+ . +
N:F/Fo if F_)F

Jw=1 if F°<F+

The value of F+ can be chosen frdm the agreement analysis of
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BOSS to give roughly constant values of z w (\Fok- \Fc\_)a (i.e.whA?)
over ranges of ]Fo}
The program also optionally applies a 'fudge factor'
for modification of parameter shifts.l This is particularly
useful to dampen the oscillation of non-centrosymﬁetri§_structures

whose origin is not defined.

ELSI........ R.D.Diamand and M.G.B.Drew.

Bond distances and angles are calculated and their
standard deviations. The variances of the normal equationé
obtained from BABA are used to calculate the standard deviations,
whicg are thus lower.than their true value as most of the off-
diagonal terms are ignored. The formula used for the,estimatibn
of the standard deviation,0 , of a variable X, is that of |

Cruickshank (1959) where

2, A 2
o (xr) = V.. Zw A /(m - n)
Vrr is the variance of the parameter X,y M the number of

observations and n the number of parameters refined.

A limited number of programs have been used from'phe
'X¥-Ray '63' system for the I.B.M. 7090. Thanks are extended
to the authors (mentioned in the text) and eSpecially-J.§tewart
who was thiefly responsible for making the programs availgble

at Imperial College.



CHAPTER 3

Chemistry of the Penicillins

and Cephalosporins.

The Penicillins.

That the antibiotic penicillin is produced from a mouid,
later identified as a sbrain of Penicillium ﬁotatum,'was first
observed by Fleming (1929). Penicillin is active against a large
number of organisms such as Diplococcus pneumoniae (pneumonia
_organism), Streptococcus pyrogenes (associated with scailet and
rheumatic fevers) and Staphylococcus aureus (skin infections),
but early clinical use was limited by its instability. This 'alsa
complicated the chemical work on the strﬁqture of penicillin and
a further difficulty was that certain bacteria secrete an enzyme,
penicillinase, which inactivates the antibiotic. Nevertheless,
the.potentialities of penicillin/fortfill-scale use against.many
infectious diseases led to some Qery intense work from 1940;45.
During this period of the Second World War, chemical information
was restricted and conseqﬁently, an historical account of the
structure determination is complex. The following outliﬁe of the
fundamentai chemical points, for which no references ;re given,

was taken from 'The Chemistry of Penicillin', edited by. Clarke,
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Johnson and Robinson (1949).

The first solid forms of penicillin , though stable when
dry, were soon found to be inhomogeneous, aﬁd’it was not ﬁntil
1943 that a chemically pure compound possessing the properties
of penicillin was isolated. Further stﬁdies showed that more than
one such cémpound existed, and the chemical differences_between
them soon became evident. Hydrolytic degradation of the indiv=-
idual penicillins gave, in each case, the éame sulphur-containing

amino-acid, penicillamine (I), carbon dioxide and a penillo=-

15—

(1)

aldehyde (R.CO.NH.CH.,.CH:0). The structure of (I) was confirmed

2
"by synthesis, its absolute configuration being D. The chemical
differenceS-between the penicillins were attributed to ﬂﬁe
identity of the group R in the.penilloaldehydes. This pfovided
a basis for nomenclature, so that with R % C6H5;CH2 the parent
penicillin was given thé name benzylpenicillin,

Although the penicilliné are strong monobasic‘acids, the

action of methanol on benzylpenicillin under mild éonditions,

gave a monomethyl ester of a ‘dibasic acid, benzylpenicilloic acid.
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This indicated that fhe penicillins also contain a labile, but
'masked' carboxyl group, since esterification of free carbox&li
groups normally takes place under more vigorous conditions. The
monomethyl ester of benzylpenicilloic acid was further degraded
to penicillamine (I) and the benzylpenaldic estér (II). Further
hydrolysis of the latter compound gave benzylpenaldic acid which
| CO,.CHy
|

Ph.CHZ.CO.NH.CH.CH:zzo

(11)

loses carbon dioxide to give benzylpenilloaldehydé.

These reactions are indicated schematicaliy iﬁ Figure 1,
and showed the free carboxyl.group to be associated with the
penicillamine residue, and the masked group with the penilloaldehyde.
I{ had also been demonstratéd tﬁat penicillamine yielded fhia-
zolidines on condensation with carbényl’compounds and consequently,
the monomethyl ester of benzylpenicilloic acid was formulated as

(I11), which was supported by synthesis,

s\\\
Ph.CHZ.co.NH.CH.————gH C.(CH3)2

NH —— CH

~~
002H

COZ.CH3

(I1I)



Figure 1.

C15H17N2028(002H) (Benzylpenicillin)

CHBOH‘(mild conditions)

coan
(C,H. N 0.8) ~
14718 2 2 \\\\CoacHB

A ~Methyl benzylpenieilléate

Hao-(Hg012)

. . _ COaH
"Ph.CH,.CO.NH.CH.CH=—=0 + (CH,)..CH.(SH) .CHZ
2 . 372 \\\‘NH
2
C0, +CH - |
Methylbenzylpenaldate Penicillamine
H20
CH30H + Ph.CHa.CO.NH.CH.CHO
- C0,H

Benzylpenaldic acid

rPh.CHa.CO.NH.CHa.CH====O + CO2

Penilloaldehyde
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Thus, for the organic chemists, the problem was réduced
to postulating a linkage, working from (III), that would explain
the masked carboxyl group of the penicillins. However, any
postulated structure also had to satisfy other criteria that had
arisen during the veryvexhaustive che’mica]:’work. - Three main
structural formulae were proposed, namely the oxazolone (1v),
tricyclic (V) and'b ~lactam (VI).

S
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The P -lactam structure gradually became the most populér,
and was finally confirmed by an X-ray analysis by Crowfoot, Bunn,
Rogers-Low and Turner-Jones (1949),

Two=dimensional X-ray investigations were carried out on
the sodium, potassium and rubidium salts of benzylpenicillin. The
latter:two salts are isomorphous and the Patterson series was
used to locate approximately, the metal ion positions. Unfortun-
ately, it was found fhat the heavy atoms cdntributed to only a
limited number of reflexions, so that the Fourier maps were
difficult to interpret except that the sulphur atom was located.
The éodium salt was examined by.optical methods and the derived
Fourier maps were little bettér £han those from the isomorphous
salts. However, by comparison of the two sets of Fouriers it
became. clear that the molecule existed as a 'curled' configuration,
not extended as had previously been thought, and when the results
were viewed without bias towards any of the proposed structures
(the oxazolone structure was originally taken as model), the
adoption of trial positions and subsequent refinement, led to the
b-lactam structure (VI) for benzylpenicillin. The general con-
figuration of the molecule is represented by kVII). The thia-

zolidine ring is not planar, C, lies out of the plaine of the

2

other atoms on the opposite side to C

7
out of the plane of the b-lactam ring system towards the

and similarly,lo8 projects

sulphur atom. The amide group in the phenylacetyl side-chain
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is planar and possesses dimensiona of a normal amide.

3 0,H

(VII)

The crystal structure of phenoxymethylpenicillin‘ﬁaé
been determined by Abrahamsson, Crowfoot Hodgkin and Maslen
(1963)., The molecule shows marked similarities in the general
configurations of thé thiazolidine and p-dactam rings-to those
in benzylpenicillin. The main difference is that in benzylw«
penicillin, the plane of the benzene ring is approximately
parallel to the?p.-lactam-thiazolidiné systen, whereas in phenoxy-
methylpenicillin, thg benzene ring is considerably inclined to
this system. The differences may be largely due to packing
considerations in_the crystals. |

In 6~-aminopenicillanic acid (6=APA), as determined by
Diamand (1963), the’out-of-plane atom in the thiazolidine ring
is N, which is projected on the same side of the plane as N,.
This is in coptrast to the situation in the other two pénicillins

where Cg'deviates most from the best plahe.
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The mechanism by which penicillin kills bacterial cells.

is still not clear. 'Evidence has been presented by Park and
Strominger (1957) that the antibiotic interferes with the
sjnthesis of the bacterial cell wall, by reacting preferenfially
with an enzyme binding site that normally takes part in
cell-wall synthesis. Collins and Richmond (1962) sﬁggested
. that penicillin may bind to the enzyme in preferénce toiéome

derivative of N-acetyluuramic acid (VIII). They point out that

'0\
———-—-un”//f

HOM,,Cn
| ////c;
10 —GH
\\\\C
l
NH —— CO,7—Cil

CH o, —CIl— Ot
T ’ . 5

1

s OH
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==0

I

O (VIII)
in one of the permissible conformafions of Neacetylmuramic
acid,_the carboxyl group can occupy the same position ?s that in
benzylpenicillin and similarly 03' and 0;0 in N-acetylmufamic
acid cén occupy ldentical positions to N1 and O16 in benzyl-
penicillin. They further suggest that the binding of the N-
acetylmuramic acid residue to an 'active centre' will depend
primarily on ionic and hydrogen-bonding forces, and that the high
affinity of penicillin for the active centre éould be explained
by,theAfact that the possible hydrogen-bonding group 08, has no

counterpart in Neacetylmuramic acid. Similar considerations

can be applied to the cephalosporins.
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Tipper and Strominger (1965) have suggested that penicillin
interferes with cell-wall synthesis by binding to an active

centre in preference to an acyl-D-alanyl-D-alanine (IX),. and

cily H
| \c/
CH3\C/H / \c /O .
H \\\ ~
N 0
\ ///, c— \

R

=

(1x)

not N~acetylmuramic acid., They show that similar spatiel con-

siderations apply as in Collins and Richmond's hypothesis

described previously.

6-(N-Benzylformamido)penicillanic acid (6-NBF=-PA) rep-

resented by.(X), is an isomer of benzylpenicillin but Housley

i ci C.(CH,)
Ph.CH — | l 372 .

2

(X)
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and Spooner (1965) have measured its antibiotic activity as less
than one ten-thousandth of that.of benzylpenicilliﬁ. A three-
dimensionél X-ray study (described in Chapter 4) has been under-
taken mainly to determine the positions of the hydrogen-bonding
groups. These studies have, in fact, shown thaf the carbonyl

group C - 016 is on the ‘wrong' side of the molecule, in

15
terms of Collins and Richmond's explanation, to participaté.in
possible hydrogen bonding to an active centre, and hence its

low antibiotic activity is consistent with their theory.
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'The Cephalosporins

The isolation of cephalosporin C (ceph. C) has been
described by.Newton and Abraham (1955). A species of the mould

'cephalosporium' produced a mixture of penicillin N (XI), and

S
H_

3 S 5
CH.(CH_),.CO.NH.
e ( 2)3
Cco,
2 ,
647 A COH

(X1)

another antibiotic, ceph. C. Chemical evidence given by‘-Abrgham
and Newton (1961} for the stfucture of ceph. c indicated'__a
monoamino dicarboxylic acid present as a residue of é(—amino-
adipic acid linked to the rest of the molecule by its: g—carboxyl
grbup. The infra-red absorption spectrum of the sodiﬁm salt
showed a maximum at 5.62/41, which is close to the carbonyl
strefching frequency of the P-lactam ring in the pexiicillin's.
,This fact and the results of hydrogenolysis experiments .

indicated the presence of the part structure (XII).

Wiy . S
DN N7 8]
(J.[{o (JI o(}Oc o
P ( 12)3 NH ..(

COZ o/_—'N\

(X17)
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These initial lines of enquiry were based on the assumption
that ceph. C contained the characteristic skeleton of the peni-
cillins, although the ultra-violet absorption spectrum of
" ceph. C showed a maximum at 260 gfk, which could not,be.explained
in terms of the fused four and five-membered ring system. Further
chemical work and nucléar‘magnetic resonance spectroscopy threw
more doubts on this hypothesis; which was thus rejected.

Abraham and Newton then proposed the structure (XIII),

N53+ |
CH. .CO.NH '
p H (CH2)3 CO. N}

< ¢ L
002

=]

471————_\5\\>¢;¢’ 2 3

(XIII)

which was consistent with all the chemical reactiqns, while

the 3-4 déuble bond would account for the U,V, maximum at 260 m 4L
However, the ﬁossibility of other structures, especially those
with a 2-3 doubie bond were not excluded.

Beforé any further chemical evidence became available

regarding this structure, the X-ray analysis by Crowf@ot Hodgkin
and Maslen (1961) indicated the presence of a six-membered ring
confaining sulphur., Thenceforward, the chemical and X-ray
crystallographic progress was rapid, and both finally sub-
stantiated the structure (XIII) for ceph. C. e

The full X-ray analysis was complicated by the low
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reflecting power and rapid deterioration of the crystals. Con=-
sequently, the accuracy achieved was limited buf the anal&sis
. showed that the atgms 02, 03, C#’ N5, 010 and 015 formoa Plane
with 5, about 0.6 A above the plane, and C, about 0.6 A below it.
The length of the bond C3 - Cy (1.31 X) is in agreement with its
formulation as a double bond. The carbonyl group of the amide is
nearly normal to the p-lactam ring and the protons at C6, C7 are
cis and in the same coofiguration as in the penicillins.
Lactonisation of ceph. C by hydrochloric acid at room

temperature produces another antibiotic, ceph. Cc, represented

by (XIV). The X-ray analysis of ceph. Cc (carried out by

NH.

3
S
/EH.(CHa)B.CO.NH. -

' CO2

"~ "

I
co

V4

(XIv)

0

Diamand (1963)) has confirmed the general configuration of the
molecule and provided quite accurate bond lengths, the true

o]
standard deviations probably being 0.02 - 0,03 A.

The biological activity of the cephalosporins has been

studied by Newton and Abraham (1956). Ceph. C shows only 0.1 %
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of the activity of benzylpenicillin against Staph. aureus, but

is relatively stable to peniciliinase. By analogy with the
penicillins Loader, Newton and Abraham (1961) suggested tﬁat the
substitution of, say, a phenylacetyl group for the}i—aminoadipic
acid residue in ceph. C might produce more active compounds

that Qould:still be stable to penicillinase. Treatment of

cephs C with dilute acid at room temperature produced the .ceph. C

nucleus, 7-aminocephalosporanic acid (XV), which although

NH,

/

QOaH

(xv)

biologically inactive itself, was acylated to give 7-phenylacet-

amidocephalosporanic acid (XVI), This possesses approximately

Ph. CH . CO'IqH

2 \ .

N ——CH,.0.hc
d¢¢¢r__—— -

COaH

(XvI)
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one hundred times the activity of ceph. C against Staph. aureus,

j.e. similar to benzyl penicillin but more stable to penicillinase.

Another interesting reaction of ceph. C was obéerved'by
llale, Newton and Abraham_(1961). The aéetoxy group in ceph, C
can be displaced by nucleophiles, especially hetero tertiary
bases such as pyridine. The resultlng compounds, -known as the

ceph. CA family, show increased antibacterial activity and are

represented by (XVII), X = pyridine etc.

+
NH

3
\\CH.(CH )5+ COLNH
/L
co

| —— CH— X
2 //, CH2
O .

co 2d
(XVII).
Muggleton, O'Callaghan and Stevens (1964) have prepared many
analogues of ceph. C, in which both the Oi-aminoadipié acid side-

chain and the acetoxy group were replaced. Their work led to

‘the production of cephaloridine (XVIII) (Trade name 'Ceporin’

-

.CHZ.CO.NH

(XVIII)
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Glaxo Ltd.), a hiéhly active antibiotic of low toxicity..'

Cocker et al. (1965) have replaced the écetoxy groﬁp in
ceph, C with sulphur nucleophiles such as thiourea,and Fazakerly
et al. (1965) produced spirocyclic compounds by the reaction
of certaln bidentate nucleophiles with 7-pheny1acetam1do cephalo-
sporanic acid. Nucle0phi1es such as pyrid-2-thione and thio-
uracil give products that lack the U.V. absorption maximum at
260 mp and it was suggested that the reaction, which ié_ill-

ustrated below for pyrid-2-thione, is a two-stage process.
, 3 /
SN S \ *N

7NN Nchone //"—‘N S

co, co’
\—-—-—r’/ +/ N\

o 5
. (XIX)

First, the acetoxy group is displaced from the cephalosporanié
acid derivative by the sulphur end of the nucleophile, followed
by internal Michael addition by the nitrogen atom giving
gompounds of type (XIX), with a spiro atom at the 3 position.'
The spiro compounds are dextrorotatory and possess weak:anti-

bacterial activity. A substance thought to be the thiazolinium
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Ideriyative (xx), R1, R2 = Et, H or H, Et was formed when

Ph.CH,.CO.NH : IS

2 \\\\

L N
+
0= NJ"‘"-
T .
) £ | NHR,
co5 1

(xX)

7-vhenylacetamidocephalosporanic acid and N—ethylthioufeé-were
mixed in aqueous solution at 370 for severa} days. Electro-
phoresis experiments, together with an I.R., absorption méximum

at 1610 =" 1630 cm-1 due to an ionized carboxyl group,.indicated
that it occurred as a zwitter-ion. The compound possesses

only one fifﬁeenth‘of the anti-~-bacterial activity of 7-phenyl
acetamidocephalosporanic acid against Staph. aureus (Long (1966)).
If (XX) is correct it contains two new centres of asymmetry.

The pfospects of deterﬁining the detailed stereochenmistry
of this molecule by any means other than X-rays seemed poor.
Thisycarthreesdimensional X-ray determination has beenvcérried.

. out to determine the stereochemistry at the asymmetric centres,
and to study the conformations of this new tricyclic sy§f§m. The

results, which are reperted. in Chapter 5, indicate that (XX)
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is essentially correct, but should be written more precisely

as (XXa).

Ph.CH,.CO.NH

2 ‘\\\\?

0=

(xXa)
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CHAPTER 4

The Crystal Structure of

6-(N-Benzylformamido)penicillanic Acid

Preliminary Data

The crystals were prepared and the compound charaéterized
by J.R.Housley and D.F.Spooner of the Boots Pure Drug Co. Ltd.;
Nottingham and supplied to the author by J.F.Collins of the
Medical Research Counecil, Mill Hill, London. After treating
6-benzylaminopenicillanic acid at room temperature with aﬁ
ethereal solution of acetic formic anhydride, 6-liBF-PA was.
crystallized from ether/light petraleum (40° - 60°) at 0° ¢ -
mainly as clusters of ill-formed,monoclinic needles, elongated
along [01d]. The solution in dioxan is dextrorotatory with
[?qlgS = +351°. The structural formula and numberipg scheme

are shown in the pull-out diagram inside the back cover.
Formula 016H1804N23 Molecular w§1ght (formula) = 335
Mass absorption coefficient for CuKel =185 em™

" Unit=-cell dimensions
o - ' o . o
a 19,58 (0,01 A), b = 6,427 (0,003) A, c = 13.98 (0.006) A

P

o
108.0° (0.1), V = 1673 AB, Z =4 F(000) = 704 electrons.



b7

Dobs(by flotation) = 1.33 g.cm-3 D = 133 g;.cm"3

calc

Absent Spectra:
only among hkl for h + k = 2n + 1

The compound is optically active, so that the spacegroup is
uniquely determined as C2. _1580 independent reflexions were
estimated visually and correlated from six layers collected
abput the b axis and reflexions from the zero layer abqut:the
¢ axis. The crystal used for the-collection of the main axis
data had.the approximate dimensions 0.50 x 0,15 x 0,10 mm. and
in view of the value of the absorption coefficient(18.5 cm-1)
absorption corrections were considered unnecessary.

A Wilson plot based on three-dimensional data was
calculated by MATT and is shown in Figure 1. The aata were
divided into 17 shells, each containing 90 - 110 reflexions.

Unobserved reftexions were included as lF

unobs l = 2/3|F.min"

whereIF . l is the minimum .observable value of( F‘ at the

min : s

appropriate point in reciprocal space. The least-squares
method gave B = 2,98, K = 145.9 and the results from the graph
are B = 2.64, K = 159.2.(After structure refinement the final

scale was found to be 131.4) _'

Structure Determination

The four sulphur atoms in the unitcell give rise to

+ . -
- 5ix § = S inter-vectors which overlap to give ¥ ihree
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' Figure 1. 6-HBF-PA Wilson plot bascd on three-dimensional data.
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distinct pealks in the three-dimensional Patterson. 1In terms
of the coordinates x, y, z of one of the sulphur atoms their
positions are given by

2

O

y 22

1+
> N o

’_12—’0
2X + %, %y 2z
Only the first peak need be considered:as the second and third
are merely related to the origin and first peaks respecti&ely
by the C=face cenfering of the spacegroup.

The [O1Q] Patterson projection waé computeq with éach
\Flz term modifiéd by its value of (Lp)-1 as a crude sharpéning
function, The position of the 5 - S peak could not be un-
ambiguously assigned , and of the four most likely peaks, the
highest was éhosen to give the tentative sulphur position of
X = 0,205, y = 0.6, z = 0,208 (Coordinates of the peak were
eétimated by Booth's (1948) method.). |

A solution of the crystal structure directly from the
sulphur positioq was attempted using the FATAL program written
by J.qulett for the Mercury computer,. The program was uSed
to calculate structure factors from the above sulphﬁr position,
then compute a three-dimensional Fourier map and finally to
search the Fourier map for peaks above a certain height.  Six
additional peaks were recognised possessing geometry reasénably

consistent with that of a fused b =lactam=thiazolidine ring

systems However, when the additional positions were input to
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a second FATAL run, the R value increased from 0.58 to 0,62

and the resulting peaks showed no indication of any fufthér

_structufal«details. The method was therefore abandoned

' (Only two of the additional peaks were near final atomic:positions).
In order to check the position of the sulphur at;m; a

three-dimensional Patterson function” was computed using as’

sharpening function
1, A, exp ( 3 sin® @ /) 2)
T he : A

where ? is the form factor for sulphur and the resulting Patterson
is specifically sharpened for sulphur peaks. The S - S peak
was easily located in the Harker section P(u, 0, w) and gave
the poéition of the sulphur atom as x = 0,206, y = 0.0, z = 0.214,
which is close to that derived from the ([ 010] Patterson
projection. It was thought that the fATAL method may have

failed because the sulphur atom was not heavy enough to determine
unambiguously enough of the phases, the ratio za Zﬁ to

izzgi being only 0.27.. Even though Fourier methodsg apélied
carefully, ﬁay have led to the solution of the structure, it
was felt that superposition methods would provide a simpier
route. |

Duplicate copies of the (u,w) sections of the sharpened,

three-dimensional Patterson were prepared on tracing papér and
contoured at arbitrary but'mﬁfor@ inktervals, The origin.of:the

zero section was then laid on the S - S peak of the duplicate



51

and the minimum function pldtted on a perspex sheet by arawing
the minimum contours of coincident peaks in the superposed
Pattersons. The other sections were vaired off with their
duplicates using an identical u,w displacement. The resulting
minimum function was of rank two as the proéedure was equivalent
to selecting as image points the two sulphur atoms at x = 0.206,
y=0y, z = 0,214 and x = -0,206, y = 0, z = =0.214, i.e. related
by a diad. Thus the origin of the ﬁinimum function waé situated
half-way along the u,w displacement. |

Figure 2 is a composite diagram derived from all the
sections of the minimum function. The mirror plane of the
Patterson spacegroup, C2/m, is not eliminated in this function,
which contains a pseudo mirror plane through y = ©. Although
this rendered the y coordinates ambiguous, the main structural
features of the molecule were recognisable, as shown in Fipgure 2.
However, the structure near'N14 was ambiguous, though the
cluster of peaks to the left of this strongly suggested fhe
location of the Sepzene ring, giving the molecule a curled
conformation as in benzylpénicillin. (This was in fact later
vindicated).

Three-dimensional structure factor and Fourier calculations
were carried out including the fourteen positions marked in
Figure.z. The Fourier map, in which the pseudo mirror plane

was now eliminated, gave unambiguous peaks for all 23 atoms, and
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indicated that 09 and 016 had been misplaced. The details

near N14 were clarified and showed that C_ . and O16 (diagram

15
inside back cover) were projecting 'down' as seen in Figure 2.
The suggested position of the benzene ring was confirmed. Before
starting least-squares refinement, a Fourier map phased on all
23 atomic positions.was calculated and when deriving the

revised atomic positions, double shifts were applied to the

observed peak positions as recommended by Donohue (1950).

Refinement

Rollett's.Nercury program for the least-squares réfine;
ment of parameters was now used to refine the atomic‘coord-
inates and isotropic temperature factors for all 23 atoms. The
method is essentially that used in BABA and described briefly
in Chapter 2. Rollett's weighting scheme 2 was used and checks
were made at various stages of refinement with an agreemeﬁt
analysis program written by G.A.Mair and the bond distances
and angles program of R.A,Sparks.

The course of the refinement is shown in Table 1. ‘At
cycle A6, all the thermal parameters were converted into their
anisotropic form but only the sulphur coordinates and thermal
pa;ameters refined. The anisotropic refinement was then |

continued including all atoms and switched to the Atlas program



Table 1. The refinement process for 6-NBF-PA

~ Cycle = R - g ZW'Aa x 'IO'L’L
Il 0. 308 16419
12 0.225 10393
I3 0.188 8184
I4 0.179 7134
15 0.167 58138
A6 0,154 4622
AT 0.140 3544
A8 0.105 1314
A9 0.099 990
A10 0.127 3177
A1l 0.102 2154
A2 0. 096 1951
Al3 0. 095 1912
- Al4 0.095 1894
A15  0.109 2398
A16 0.106 2197
Al7 0.106 - 2179
A18 0.106 . 2169
A19 0.103 2038
A20  0.101 1989
A21 0.100 1984
A22 0.100 1982
A23 0.100 1981
A24 0.100 1981
A25 0.100 1980
A26 0.100 1980
A27. 0.100 1980

=
i

‘isotr0pic refinement

A = anisotropic refinement .
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BABA at A8.(The T+ vglue in the weighting scheme was inadvertently

decreased at A8 but corrected again at A10). During cycles

A12, A13 and A14 it was noted that little convergence was taking

place and that the refinement was oscillatory. ?hus 164 un-

observed reflexions were included at %Fmin and a fudge factor

of 0.75 applied. 7The process was again disturbed at A18 when

the calculated positions of the 18 hydrogen atoms were iﬁcluded

in the structure factor calculations but not refined. Hydrogen

atom positions were calculated on an X-Ray '63 program written

by D.F.High, assuning staggered conformations for the Qghand

010 methyl groups. An earlier difference Fourier shOWed.ﬁeaks

at or near the calculated hydrogén atom poéitions varying in

height from 0.1 to 0.6 e/X;Bbut the difference map exhibited

ripple as high as 0.5 ¢/ 23 and cannot be taken as conclﬁsive

evidence for the hydrogen atom.pqsitions - the positions of

the methyl hydrogens were especially ill-defined.
Suﬁsequent.refinement was extremely slow, and ét A27 the

coordinate shifts were less than one tenth of their standardv

deviations, so that refinement was ceased.

Results and Discussion

The final atomic coordinates are shown in Table 2,

together with their standard deviations, and the anisotropic



Table 2. Atomic coordinates snd standard deviations for

6-(N-benzylformamido) penicillanic acid (fiactional values).

X Y © oz oy o, o,
N1 0.19398 0.19816 0.36500 0.00027 0.00135 0.00042
C2 0.12891 0.06769 o.342é8' 0.00035 0.00140 0.00056
€3  0.11559 -0.01477 0.23186  0.00035 0,00200 0.00056
S4  0,20502 -0.00849 0.21308  0,00009 0.00058 0.00014
C5 0.23075 0.21859 0.28823  0.00036 0.00160 0.00054
C6 0.30337 0.22048 0.37611  0.00034 0.00161 0.00054
7 0.25648 0.16794 0.44425  0.00033 0.00163 0.00055
08 0.26642 0.12197 0.52951 . 0.00027 . 0.00123 0.00038
c9 0.08592 -0.22774 0.22020  0.00057 0.00203 0.00087
C10 0.06584 0.13802 0.15406  0,00051 0.00232 0.00066
Cll 0.06760 0.19723 0.35791  0.00034 0.00166 0.00057
012 0.01415 0.07078 0.36209  0.00030 0.00118 0.00058
013 0.06669 0.38004 0.36511  0.00031 0,00127 0.00056
ﬁ14 0.35902 0.07255 0.37699  0,00029 0.00116 0.00047
C15 0.35506 -0.12767 0.39730 - 0.00041 0.00166 0.00064
016 0.39630 -0.26675 0.38916 - 0.00030 0.00122 0.00050
 C17 0.41454 0.14853 0.33327  0,00036 0.00157 0. 00060
C18 0.38742 0.15183 0.21828  0.00043 0.00177 0.00070
C19 0.38852 -0.02767 0.16578  0.00066 0,00256 0.00079

€20 0.36315 -0.03048 0,06097  0,00089 0.00299 0{00085



?

Table 2 ° coﬁtinued

X Y /
€21 0.33591 0.15432 0.01082
€22 0,33318 0.33570 0,06531
023 0.36263 0,33517 0.16991

' o

c-'x Yy 'O—Z
0.00090 - 0,00327 0,00096
0.00077 0.00299 0.00100

0.00064 0,00219 0.00090
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Table 3, Anisotropic temperature factor

6-NBF-PA.

N1

c2

C3
54
C5
cé
C7
08
C9
C10
C11
012
013

N14

c15

016
c17

c18

c19

c20

pu

0.00076
0.00126
0.00141
0.00172
0.00152
0.00120
0.00098
0.00184
0.00359
0.00269
0.00106
0.00162
0,00176
0.00124

0,00172

0.00218

0.00130

0,00217

0.00529

0.00867

-

0.02892
0,01857
0.02953
0.03483
0.02347
0.02536
0.02762
0.03298
0.02473
0.04859
0.02594
0.02382

0.02437

0.01738
0.02048
0.02204

0.02296

0.02514

0.03373

' 0.04386

s
0.00363
0.00476
o.0048é
0.00469
0.00402
0.00431
0.00436
0.00399
0.00924

0.00430

0.00489.

0.01028
0.00946
0.00475
0.00591
0.00804
0.00553
0.00696

10.00658

0,00607

Pas

0700141
-0, 00145
-0.00397
-0.00725
0.00054
-0.00098
-0.00276
-0.00110
-0.01337
-0.00059
-0.00133
-0.00654
-0.00154
-o.odoso
0.00442
0.00320
-0,00036

0,00902

0.00307
0.00664

coefficienfs for

pr

0.00102

0.00197

0.00060
0.00226
0.00170
0.00205
0.00128
0.00168
0.00471
~0. 00052
0.00132
0.00458
0.00332
0.00186
0.00222
0.00501
'0.00255

0.00442

0,00461

0.00731

b
0. 00000
-0.00075
0.00063
-0.00134

~0300120

-0.00169

-0300011
0.00392
-0.00704
0. 00300
-0.00227
~0.00344
0.00069

-0,00105

-0, 00121

~0.00156

0.00236

0.00438

-0,00130
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Table 3 continued

b B b

C21  0.00713 0.06227 0.00677
~ C22  0,00495 0.06718 0.00829

c23 0,00408 0,03213 0,00831

pr o P

0.00839 0.00559 -0.00320

0.02674 0.00268 0.00124

0.01258 0.00387 0.00236

~ A1l temperature factors in this Table are positive-

definite.
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Table 4. 6-NBF-PA observed and calculated structure factors

( x 100) in the order
* h k

1 el |F | ol (radians)

Unobserved reflexions are marked f , and the reflexions

not inluded are :=-

N N NN N a A o O O
O O O O W W aa O O
EE G VI AN [ ¥ [ W ¥ B A IR N

n

as they were all obscured by the backstop.
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-0.477
2,747
3.097
-0.540
1.937
-0.917
1,408 4
2.953

2,670
1,507
-0.421
0.935
2.369

2,547
-0.761 4+

3.142
0.000
3.142 ¢4
3.142
3.142
3.142
0.000
3.142 +
3,142
0,000
0.000
0.000
3.142
3.142
3.142 ¢
0,000
0.000

0.192
~2,8083
2.870
0.107
-1,007 ¢
0.720
2,036
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0
1
e
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e
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1024
872
651
329
416
394
558
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686
565

e3
186
831
421
723
405
394
797

1007

1058
469
595
410
197

23
308
496
492
758

1122
897
723
422
457
390
607

4

712
Sl
b
176
8290
397
741
43
420
709
11:3
11n8
530
876
419
249
3
254
526
553
578
2y2
899
329
°
147
1201
72%
163
352
59
996
4.3
431
256
2
495
309
376
150
652
318

3.120
0.343
-0.242
3.078
2:904
=2.16%
0.031

1.923
-1.801

-2.190
-3.102
0.654
-0.266
2.254
-2.070
-2.756
0.964
-0.897
2.202
2.911 .
-1.578
0.270

=0.495
-1.024
1.698
«2.559
2.788
0.192
=2.470

0.000 t
0.900
3.142
3.142 ¢
3.142
0.000 t
0.000
3.142
3.142
3.142

-0.99%
2.804
2,354
2.937

-0.479
0.691
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Table 5. 6-NBF-PA intra-molecular bond distances and their

estimated standard deviations in Angstrom units.

Bond | Bond
Nl -C2  1.476 (0.009) N14 - 17 1.485 (0.008)
N1 -0C5  1.471 (0.008) €15 - 016 1.233 (0.011)
N1 - CT  1.387 (0.008) C17 - €18 1.529 (0.012) -
c2 - C3 1.576 (0.011) €18 - €19 1.371 (0.018)
C2 -~ C11  1.529 (0.009) " 18 - ¢23 1,371 (0.017)

€3 -S4 1.850 (0.005) | cig - €20 1.3§4 (0.015)'
C3 - C9 1.476 (0.017) €20 - C21 1,398 (0,026)
C3 = C10 1.563 (0.014) C21 - €22 1.403 (0.026)

S4 - C5 1.778 (0.010) €22 - €23 1.396 (0,018)
C5 - C6  1.566 (0.009) -

C6 - CT  1.551 (0.008)

C6 - N14  1.443 (0.009)

cT - 08 1.184 (0.009)

Cll - 012 1.342 (0.009)

C11 - 013 1.180 (0.013)

N14 - €15 1.325 (0.013)



Table 6. 6-NBF-PA intra-moleculsr bond angles and their °

standard deviations in degrees.

G2 - N1 - C5 118.6 (0.6) C6 - N14 - C15 123.é.(i.1)
C2 - N1 - C7 125.6 (0.7) C6 - N14 - €17 115.3 (0.5)
C5 - N1 = C7 94.9 (0.5) C15 - N14 - C17 120.4 (0.9)
N1 - C2 - C3 105.8 (0.7) N14 - C15 - 016 126.9 (1.5)
Nl - €2 - C11  108.9 (0.5)  ©2 = 011 = 012  109.5 (0.5)
€3 -2 -0C11 114.9 (0.8) €2 - 611 = 013 126.1 (1.3)
C2 - C3 - S4 104.7 (0.5) 012 - C11 - 013 124.4 (i.4).
02 =03 =C9  111.1 (1.1)  N14 - C17 - €18 112.1 (0.8)
C2 - C3 - C10 110.5 (0.8) €17 - C18 - €19 119.6 (1.3)
S4 = €3 = C9 . 111.2 (0.7) €17 - C18 = ¢23 119.1 (1.3)
S4 = €3 = €10 107.5 (0.6) 019 - G18 - 023 121.4 (1.7)
C9 - C3 - C10 111.5 (1.4) €18 - C19 -~ C20 ;éo.9 (1.7)
C3 - S4 - C5 | 92.4 (0.4) €19 - €20 - €21 118.2 (1.7)
Nl - C5 - S4 104.2 (0.6) €20 - €21 - €22 120.4 (2.6)
Nl - C5 = C6 >87.6 (0.4) €21 - €22 = €23 119.6 (1.9)
S4 - C5 = C6  119.5 (0.8) €18 = €23 = €22 119.2 (1.7)
€5 = C6 - CT 85.1 (0.5) N1 - c7 - C6 9103 (0.4)
C5 - C6 —= N14 120.1 (0.7) N1 - ¢7 - 08 132.0 (1.1)

C7T - C6 = N14  116.1 (0.6) 6 - ¢7 - 08 136.7 (1.1)
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Figure 3. 6-NBF-PA bond distances and angles.

) 09 \"us
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température factor coefficieﬁts are shown in Taﬁle 3s The
observed and calculated structure factors are listed in.Téble L,
the final R value being 0.100., Bond distances and anéles and
their estimated standard deviations were calculated by ELSI

and are shown in Tables 5 and 6, and in Figure 3.

Configuration of the Molecule

Figure 4 is a projection of the 6-(N-benzylformamido)-
pénicillanic acid molecule down the b axis, as determined‘by ’
the analysis. the projection down the c axis is shqwn‘inv
Figure 5., With the exception of the N-benzylformamido side-
chain, the structure of the molecule is similar to those found
for the other penicillins mentioned in'Ghapfer 3.

The benzyl group in the side-chain is curled round
towards the fused ring system as’in benzyl penicillin, but its
position in 6~-NBF-PA is slightly different, It can be expressed
as an imaginary rotation , of appfoximately 90? of the benzyl
group about the bond N14 - C17 in the direction of the sulphur
atom. The least-squares planes through the groups of atoms in
the molecule have been calculated with DIDO and are éhown in .
Table 7. The amide group in the side-chain is planar, Although
the deviations are not as low as would be expected (Table.?a),'
and orientated approximately normal to the plane of the P-lactam

ring. The dimensions of the group are consistent with those

g
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Figure 4. 6-NBF-PA projected down the b axis




vi-ore 5, 6-FBFP-PA projected down the ¢ axis.
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& .
Table 7. Deviations (A) of the atoms in 6~NBF-PA from the
calculated least-squares planes. Atoms marked with § were
not included in the calculation of the plane. Z d2 is the

-]
. Gn
sum of the squares of the deviations from the plane(m A )

a. Amide b. Benzene i{;ing
> 8?2 0.00943 T, 42 = 0.00297
Atom Beviation - Atom Deviation
cé -0,043 C17 -0.020
15 0,017 c18 0,007
016 -0.033 c19 0.002
N14 0.075 €20 0,005
C17 -0.015 ' c?21 0.000
c22 -0.032
C. '?hiazolidine ﬁing c23 0.040
2 %= 0.00014
Atom Deviation d. ~lactam e, b»lactam
C3 -0.004 2 dz‘.E 0. 01858 2 d2 = 0.00002
c2 0.007 ‘ '
t -
N1 -0. 008 Atom Deviation Atom Deviation
c5 0.004 N1 0.072 N1 -0, 001
c5 -0,089 c6  -0,001
54 & . 0.729 c6 0,057 o7 0.004
C17 0,008 08 ~0,002
08 -0,047

©65 § 0.209



of a normal resonafing amide. 016 is cis to the benzyl group
and C15 is trans to the proton at C6, which is opposite to
the analogous position in the other penicillins.

In terms of Collins and Richmond's explanation of the
biological activity of the penicillins, 016 is on the 'wrong'
side of the moYecule with respect to the other polar groups
 (N1, 013, 08) to form a possible hydrogen-bonding system with
a protein substrate similar to that postulated for N-acetyl-

muramic acid and the penicillins. As pointed out by Hunt and
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Rogers (1964), 016 can only be brought into the required position

by rotation about C6.- N14 followed by cis-trans isomerization

of the amide group. This combination seems improbable even in

physiological solutions; the rotation would be hindered by the
size of the benzyl group and the isomerization would require
energy equal to the resonance energy -of the amide, (Wheland
(1955) estimates this value as 17 - 60 K cal./mole but with

a large degfee of uncertainty). Hence, the low antibacterial
activity of 6~NBF-PA is consistent with Collins and Richmondts
theory, and, it should be noted, with;Tipper and Strominger's
view that penicillin binds to the active centre in preference

to a substituted D-alanyl-D-alanine.

Packing
The uniteell contents and the adjacent molecules in

the 6-NBF-PA crystal are shown projected down the b axis in
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Fipgure 6 and down the ¢ axis in Figure 7. Some interémbi—_
ecular distances are shown in both diagrams and distances less
than 3.25 Z are shown in Table 8. Atoms related to those in
Table 2 by the symmetry of the spacegroup are referred‘to by

terms in parentheses following the atom name.

The distances between the atoms 016 and 012 (x + %,

: o
¥y - %, z) of 2,665 A strongly suggests a hydrogen bond between

these two atoms. This is supported by the bond lengths in the
carboxyl group, C11 - 012 (1.342 X) and C11 = 013 (1.180 X)
which agree quite well with the values of 1.358 z and 1.233 K
given by Sutton (1965) for the unionized form. The reéult is
that the molecules related by centering form an approximatély
linear hydrogen~bonding syétem roughly along the ab diagénals.
that this is a 'criss-cross! arrangement can be seen ffom.
Figure 7.

The general packing arrangement is similar to that
described for potassium benzylpenicillin by Crowfoot et al.
(1949) and for phenoxymethylpenicillin by Abrahamsson et al.
(1963). The polar groups are on one side of ﬁhe molecule
and the hydrocarbon parts on the othef, so that the molecules

make contact with one another in -alternate polar and non~ .

polar layers, which in 6-NBF-PA are parallel to the a axis.
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Figure 6. Crystal structure of 6-NBF-PA projected down

the b akis



The crystal structure of 6-NBF-PA projected down the ¢ axis.

Ficure
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: )
Table 8. Inter-molecular distances in 6-NBF-PA in A,

The atomic positions are related to those in Table 2 by the

terms in parentheses which are :-

)
(2)

I

%"xiy""';.'o 1-2

X+ 3y ¥ =% 2

1l

(3)=X+'2"y+?'9z

N1 - 08 (1) " 3,080 C11 - 016 (1) 3.398
66 - 08 (1) . 3.37h 013 - C15 (1) 3.200

c7 - 08 (1) 2,992 013 - 016 (1) 3.417

08 - 08 (1) 3.331 016 - 012.(2) 2.665
08 = ¢15(1) 3.286 €17 - 012 (3) 3.293

C11-.615(1) 3.#79 €17 - 013 (2) 3.351



The Thiazolidine and B-Lactam Rings
{

Diamand (1963) has tabulated the bond lengths and
angles of the penicillin nucleus from the determination of
thé crystal structures of 6-APA, potassium benzylpenicilliﬁ
refined by Rollett and Vaciago, phenoxymethylpeniqillin and
p~bromo-phenoxymethylpenicillin by Watson. Most of the values

are in good agreement with those_listed in Tables 5 and 6 for
' o)
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6-NBF-PA. The shortening of the bond C3 - C9 (1.476 (0.017 A))

is probably not significant in terms of the real standard
deviations, aﬁd there is no apparent reason for the distoftion
of the angle €3 - C2 - C11 (114.9°%) from the tetrahedral value
of 109° 28 .

The thiazolidine ring has four atoms, N1, C2, C3 and C5

)
in a plane (Table 7c¢) with Sk 0.729 A below this plane viewing

the molecule down the b axis as in Figure 4. This conformation

is different to that of the thiazolidine rings in the 6ther
penicillins. As mentioned in §hapter 3y in benzylpenicillin
and phenoxymethylpenicillin C2 is the out-of-plane atom,in the
latter case by 0.51 Z on the opposite side of-the plane to'C7.
In 6-APA, N1 deviates from the best plane through the other
four atoms by 0,42 Z, on the same side of the plane as»Nﬂh..
The smaller value for the angle C3 - Sk - C5 (92.4°) compared

with 96°- 97° in the other penicillins probably results from

this conformational difference.
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Although the bond 54 - €5 (1.7738 Z) is only & e.s.a.'s
lover than the average value of 1.817 X, given by Sutton.(ﬁ965)
for a single C = S bond, S4 - C3 (1.850 Z) is 7 e.s.d.'s higher.
This asrees with the values for the other penicillins except
potassium benzylpeniéillin for which Rollett and Vaciago give
Sk -~ €5 (1.65 Z) and S84 - €3 (1.82 K). The lengthening of the
bond 54 - C3 has been discussed by Diamand (1963) . By considering
the mean value fér this bond length and its true standard
deviation from previous déterminations, he tentatively suggests
84 - C3 has a bond length in the range 1.8&IZ to 1.87 X.-The
value in 6-NBF-PA lies in. this rangé. |

The non-planarity of the P -lactam ring can be seen
from Table 7d, the deviation of C5 from the calculated plane
being as high as 0.089 Z. Table 7e shows that by excluding Cc5
from the least-squares caléulation, thé'cyclic amide! atoms
N1, C6, C7 and 08 lie in a plane well within the limits of
experimental accuracy, with C5 0,204 X out of the plane on the
same side as Si. -This is similar to the arrangement in S-APA,
phenoxymethylvenicillin, ceph. Cc and the 3-spiro-thiazolinium
derivative (Chapter 5) where the deviations of the put-of-
plane atom vary from approximately 0414 Z to 0.25 X. .In'each

~case it is the atom bonded to the sulvhur atom that lies out

of the plane,

As Diamand (1963) has mentioned, the tendency of the group
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Co ~ Cg
s L
Og/ T>c,

to be planar, so that resonance can occur in the cyclic amide,
is’probabl& opposed to some extent by the tendenéy of the.five-
(or six) membered ring to adopt its most stable conformation.
This will result irn C5 being pulled out of the plane of the
p-—lactam ring. That resonance occurs to some extent in 5-NBF-
PA is indicated by the length of the bond N1 - C7 (1.387 Z),
which is nearer to the value of the C - N bond length in anmides
(1.333 z) than the accepted value of 1.472 Z for a C = N
single bond. The angle C2 - N1 - C5 (118.6%) sugrests that

N1 is tending to planarity.
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CHAPTER 5

The Crystal Structure of
(35,45,6R,7R)~2'-Amino~3"'~ethyl-2'~-thiazolinium-4'-spiro-

3-(7-phenylacetamidocepham-l-carboxylate) trihydrate

Preliminary Data

The crystals, which were supplied by Dr.A.G.Long of
Glaxo,Ltd., and prepared as indicated on page 4, were colouf-
less monoclinic needles. The crystallographically unique axis,

b, was parallel to fhe needle axis and the crystal selected for‘
data collection had the_approximate dimensions 0.6 x 0.2.x D413 um.
The structural formula and numbering scheme aieqshown‘in*fhe

diagram inside the back cover.

Formula C19ﬂ28N40 Molecular Weight (formula) = 483

752
Mass absorpfion coefficient for CuKaV/&.=~25.5 cm-1

Unit-cell dimensions
. ’ o o} ’ - (o]

a = 8,063 (0.008) A, b = 7.184 (0,008) A, ¢ = 19.72 (0.02) A

o)

p = 100.3° (0.2) V = 1123 A3, Z =2, F(000) = 516 electrons

3 D = 144 g.cm-s‘

_Dobs(by flotation) = 1.45 g.cm cale

Absent Spectra: only among OkO for k = 2n + 1
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As the compound is dextrorotatory (page #3), the spéce—

group is uniquely determined as P2,. 2269 independent reflexions

1
were estimated visually using three intensity wedges to acc-
. ommodate spot-shape changes from layer to layer. The data
were correlated from six layers collected about the b axis and
three about the a axis, using LOLA for the determination of the
inter-layer scale factors; It was considered that the value of
/a/and the ;rystal dimensions rendered absorption corréétions
unnecessary ( for data collected about the a axis,a crystal
was sliced normal to the needle axis to give a rough cube of
side 0.3 mm). |

Figure 1 shows the Wilson plot calculated for three-

dimensional data‘including the unobserved reflexions at]Funobs‘
§wmink The data were divided into 22 shells each contﬁining
80 = 120 reflexions. The least-squares method gave B = 2.95,
K = 100.4. Trom.the graph, the best line through the points
in the middle of the sin” 8/} ° range gave B = 2.91, and the

intercept gave K = 104.6 (The final scale after structure

refinement was 101.2)

Structure Determination

1. Location of -the Sulphur Atoms

The four ‘'sulphur atoms in the unit cell give rise to
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Figure 1. 3-Spiro-thiazolinium derivative Wilson plot based

- 90

-10-0

-0

on three-dimensional data.

o o4 0-2 09 0.4
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six centrosymmetrically related pairs of S - S inter vectors.
In each six, two correspond to peaks in the three-dimensional
t
Patterson, occuring in the Harker section at v = %, and the T
remaining four correspond to two peaks of double weight at
g = Xor Tq T 297 2%

X, + X

1 21Y1_y2+%!_z + Z

1 2

where Xq1 Tq0 24 and X539 Yor 2, are the positions of the two
independent sulphilr atoms. A three-dimensional Patterson was

computed with coefficients sharpened by the function
1 . exp (35in2 e /y2)
/42 A

A
where f is the formfactor for sulphur. Four peaks were recopnisecd
which complied with the conditions described above and gave :
the following fractional coordinates for the sulphur atoms :
X N z

0.155% 0 0,069
0.395 :0.182 0.293

o
The distance between these two positions, 4.7 A, seemed reason-

able assuming the approximate geometry of ceph. Cc as determined

by Diamand (1963)

2, Location of the Light Atoms
The ratio of the sum of the squares of the scattefing

powers of the sulphur atoms to that of the light atoms is 0,39
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and Fourier methods were used to locate the positions of the
light atoms. The first Fourier map, phased on the coordinates
of the sulphur atoms revealed five additional peaks, one of

. which was subsequently found to have been misplaced. Thrge
further Fouriérs enabled the assignment of all thirty-twol
positions and the calculated and observed structure factors
showed an overall agreemeﬁt factor, R, of 0.29. .During the

course of the analysis, reflexions for which

‘Fo\<0.25 x IFCI where k = Z_\_Fi

A

were omitted from the Fourier calculations, and double shifts
were applied to the estimated coordinates before input to the

next stage, as recommended by Donohuie (1950)

Refinement

Four cycles of isotropic, block-diagonal, least—Séuares
refinement reduced R to 0.114 and a maximum coordinate shift of
- 0,03 Z. At this stage a bond-distance calculation indicated
sensible bond lengths and a difference Fourier confirmed that
the postulated structure was éubstantially correct. An agree-

ment analysis was used to check the validity of the inter-

layer scaling and that the choice of'F'+ = 1500 in the weighting

scheme produced falrly constant values of ZWAZ over ranges
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of ]Fo\.

The progress of the structure refinement is shown in
Table 1. It should be noted that the R value associated with
a particular cycle was calculated from atomic coordinates
before refinement. Agreement analyses and molécular geonetry
calculations were used to check the course of the refinement
after cycles 18, A10 and A16.

Four further cycles of isotropic least squares (15 to
I8) produced very little convergence and so for input to A9,
the individual isbtropic temperaturevfactors were converted té
the equivalent anisotropic form and refinement Eontinued_on all
32 atoms, applying a fudge factor of 0.8 to all paraméter shifts.
At cycle A11, two reflexions (1 0 2 and 1 O 7) were omitted
for suspected extinction and 214 unobserved reflexions included
at-%Fmin, where F . is the minimum observed value of F at
the relevant sin2 e, After cycle A16, a difference Fourier was
calculated and suggested the positions of all hydrogen étoms
except one bonded to C6, two bonded to C15, the three methyl-
group hydrogens at C23 and the six of fhe three water molecules.
The location of two peaks near N29 in approximatelykthe correct
orientation suggested the presence of the group =NH;; However5
the peak heights in the difference map varied from 0.13 to

o

0.3 el 3, and -as the dlfference Fourler still exhlblted

ripple of the order 0.2 eA =3 these positions were not taken as



Table 1. The refinement process for the 3-spiro-thiazolinium-

7-PAC derivative, I = isotropic, A = anisotropic refinement.

 Cycle  Agreement 52,w152110‘4 Maximum coord—
Number Factor, R ‘ inate shift (A)

11 0.289 35503 0.15
I2 0.175 ‘ 14427 0.20
13 . 0.133 7340 0.05
14 0.114 5991 0.03
15 0.113 5485 0.01
16 0,112 - 5370 0.01
17 0.11é 5357 , 0.005
18 0.112 5353  0.002
A9 0.112 5366
A10 0.089 3487 0.014
A1l 0.082 | 3034 0,008
A12 0.083 2634 0.014
Al3 0.081 2441 0. 007
A4 0,081 2420 0. 004
A15 0.081 2 - 0.002
A16 0.081 2408 0.002
A17 0.077 2073 0.009
418 0.075 1963 ~0.003
Al9 0.075 1955 0.0015

A20  0.075 1950 0.0008
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conclusive proof of hydrogen atom positions.

Using a program written by D.F.High for the I.B.}. 7090,
hydrogen positions were calculated assuming the staggered
conformation for the methyl group at C23. The observed and
calculated positions are shown in Table 2, excluding those of
the water molecules. They show good agreement except for the atom
bonded to C20. Alllthe calculated hydrogen positions listed
in Table 2 were included in subsequent structure-factor calc-
ulations with isotropic temperature factors 1.5 times those to
which the hydrogen atoms are bonded. The hydrogens of the
watef molecules Were not included as it was consi&efed thét
their positions could not be well enough defined by stereo-
chemical considerations.

Refinement waé considered complete after cycle A20 when
the position shifts were about one tenth of their standard
deviations. Structure factors Qere qalculated from the positions
outpﬁt from A20 to give a final R value of 0.075. The‘calculated
and observed structure factors are listed in Table 3a.. |

A difference Fourier was calculated from the structure:
factors listed in Tgble ECHin an attempt to locate the hydfogen
atoms of the water molecules. The map exhibited a ripple up
to about 0.17 ez-3 and the areas around the oxygen atom ﬁositions

gave no indication of the hydrogen atoms.
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Table 2. Observed and calculated hydrogen positions(in fractional

coordinates) for the 3-spiro-thiazoiinium-?-PAC derivative,

Atom. Bonded Calculated Observed
to- x y z X y -z

H1 c2 0.475 0.632 0.201 0.421 0.625 0.200
H2 c2 0.453 0.872 0,178 0.438 0,383 04167
H3 ch 0.052 0.674% 0.235 0,054 0.675 0,233
Lk co6 0.271 0,608 0.363

HS  C7  0.460 0,331 0.37%  0.417 0.350 ° 0.383
H6 co 0.167 1.012 0.186 0.167 1.000 0,133
H? c9 -0.017 0.882 0.152 0.000 0.875 0.150
H8  N13 0.67% 0.586 0.311  0.646 0.600 0.308

H9 €15 0.979 0.488  0.317
H10 €15 1.050 0.368 0.397 , .
H11 €17 1.090 0.540 0,485 . 1.083 0.500 0.500

H12 C18 1.329 0.387 0.567 1.375  0.450 0.550
H13 €19 1.444 0,090 0.539 1.438 0.000 0.542
H1+ Cc20 1.319 -0.,073 0.428 1.542 -0.150 0,400
H15 €21 1.089 0.080 0.346 1.125 0.133 0,367
H16 c22 0.199 0.407 0.033 0.167 0,350 0,067
H17? ¢c22 0.248 0,364 0.124 0.250 0.350 0.117

H18 ©23 0.495 0.284 0.067
H19 €23 0.48% 0.449 0.038
H20 €23 0.544 0.537 0.123
H21 N29 0.248 0.612 -0.041 0.229 0.600 -0.027
H22 N29 0,191 0.849 -0.054 0.188 0.850° -0.050



kTable 3@. The 3-spiro-thiazolinium-7=-PAC derivative observed

and calculated structure factors ( x 100) in the order

1 ‘Fo{ ‘Fc‘ ol (radians)

Unobserved reflexions are marked T' sand 0 O 1 and O O 2

were obscured by the backstop. The two reflexions omiptited for

suspected extinction were

j=
P’J

RN IS

1 0 2 6003 8419 0.000

-
o
-1

5789 8266 0.000
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- Results and Discussion

The atomic coordinates of the non-hydrogen atoms and
their standard deviations are shown in Table 3§, and Table 4
lists the anisotropic temperature factor coefficients. ELSI
was used to calculate the intra-molecular bond distancés and
angles and their standard deviations shown in Tables 5 and 6.
The intra-molecular bohd distances and angles are also shown
in Figure 2. That the estimated standard deviations ére too
low can be seen from the dimensions of the benzene ring, in
which the C - C bond lengths range from 1.34 Z to’1.43;z ’
indicating that the e.s.d.'s in Tables 5 and 6 have been under—

estimated by perhaps a factor of three. This is, no doubt due

to the block-diagonal approximation of the least-squares progran.

The Configuration of the Molecule

The view of the molecule as shown in Figure 3 was derived
from the final atomic coordinates by redefining their values
with respect to the plane of the atoms S1, C6 and C4. TFigure 3
shows that in the crystal at least, the molecule exists in a
rather extended configuration'as opposed to the curled forms
of beﬁzylpenicillin and 6-NBF-PA. The asymmetric centres at
C6 and C?7 are both R, (using the ‘terms for chirality pfoposed

and defined by Cahn, Ingold and Prelog (1966)), which is the
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Table }b.Atomic coordinates and standard deviations output
from cycle A20 for the 3—spiro—thiézolinium—?—PAC derivative.

(fractional values)

X Y 7 o, o, .
S, 0.40182 0.81764 0.29429  0,00019 0.00027 0.00007
C, 0.39849 0.75748 0.20363  0,00066 0.00092 0.00028

C, 0.21655 0.71990 0.16468 0.00060 0.00088 0.00026

Cj 0.12234 0.58335 0.20692  0.00062 0.00084 0.00026
N.  0.24289 0.48782 0.26052  0.00052 0.00077 0.00021
Cg 0.33625 0.58921 0.32018  0,00073 0.00098 0.00026
o 0. 46553 10.42010 0.33023  0,00070 0.00098 0.00028
Cq 0.36282 0.35330 0.25995  0.00066 0.00092 0.00027
Gy 0.11601 0.90107 0.15082  0.00071 0.00091 10.00030

S.. 0.15464 0.99421 0.06962  0.00021 0.00027 0.00008
C.. 0.20262 0.77005 0.04416  0.00063 0.00096 0.00027
0.23123 0.64606 0.09555  0.00056 0.00070 0.00021
0.64054 0.46150 0.33197  0.00058 0.00090 0.00025
C,, 0.76334 0.34013 0.35927  0,00078 0.00111 0.00034
c 6.93905 0.40895 0.35974  0.00083 0.00156 0.00048
Ci¢ 1.07545 0.31144 0.41139  0.00081 0.00131 0.00033
C,. 1.14044 0.40453 0.47206  0.00099 0.00140 0.00040
C o 1.27654 0,31844 0.51807  0.00106 0.00179 0.00036
C.. 1.33923 0.15357 0.50272  0.00110 0.00164 0.00038

Cpo 1-27030 0.06257 0.44115  0,00107 0.00154 0.00042

Cpy 1.14061 0.14745 0.39573 ©.0,60893 0.00130 0.00037
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Table 3bcontinued
X Y v/ a’x Cr;' cr;

C,, 0.27546 0.45226 0.08176  0.00067 - 0,00084 0.00028

023 0,46137 0.42789 0.07739 0.00077 0.00116 0.00033

C,, =0.01397 0,45690 0.16453  0.00062 0.00088 0.00028

O25 ~0,10451 0.53246 0.11447 0,00050 0,00068 0.,00020

026 -0,02332 0,29427 0.18508 0.,00054 0400072 0,00024

0, 0.38446 '0.23180 0.21984  0,00051 0.00068 0,00020

O,g 0.72824 0,18588 0.38048  0.00065 0.00099 0.00036
Nyg 0.21564 0.73742 -0.01975  0.00059 0.00082 0,00022

Oy 0.70759 0.08559° 0.19846  0.00062 0.00082 0,00029

0. 0.69064 -0.12790 0,08104  0.00069 0.00087 0,00024

0, 0.83998 -0.17257 0.30179 ~ 0.00080 0.00108 0.00036
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Table 4. 3-Spiro-thiazolinium-7-PAC derivative anisotropic

temperature factor coefficients

B

B,

b

o

o

b

S, 0.01324 0.01220 0.00187 -0.00206 0.00054 -0.00504
G,  0.00903 0.01125 0.00197 0.00026 0,00086 —Q,00217
¢,  0.00734 0.01075 0,00164 -0.00223 0,00090 —~0.00045
04 0. 00786 10.00808 0.00158 -0,00056 0,00030 0.,00101
N5 0.00926 0.00950 0.00148 -0.00042 0.00068 -0.00296
Cc  0.01284 0.01248 0.00127 -0.00205 0.00099 —0.00650
c7 0.01100 0,01362 0.00160 0.00103 0.00022 =0,00552
Cg  0.00975 0.01222 0,0DE66 0.00068 0.00067 —0,00319
Cq  0.01071 0.00948 0,00217 -0.00085 0,00101 0.00188
S0 0-01699 0.00784 0.00258 0.00162 0.00185 0,00242
€,y 0.00803 0.01461 0.00178 0.00190 =0.00030 -0.00442
N, 0.01089 0.00809 0,00134 =0,00034 0.00134 0,00126
Ny, 0.00968 0.01821 0.00186 0.00190 10,00021 -0,00072
Cjq 0-01317 0.01506 0.00264 0.00395 0.00071 0.00166
c15 0. 00995 0.93357 0.00476 0.01450 0.00175. 0.00231.
C,g 0.01310 0,02097 0.00245 0.00450 0.00145 -0,00224
Cy7 0.01874 0.02357 0.00293 -0.00231 0.00341, 0.00332
'c18 0.02237 0,03500 0,00215 -0.00224 0.00032 0.00438
Cjg 0.02146 0,03230 0.00236 0.00161 0,00001 0.00536
C,p 0402163 0.02569 0.00304 0.00097 0.00220 0.01332
C,y 0.01679 0.02045 0,00264 -0.00189 0.,00030 0.00571



Table 4 continued

22
23
24
25
26
27
28
29
30
k3]

All temperature factors in this table are positive definite.

ﬁu

0,01081
0.01271
0. 00816
0.01222
0.01310
0.01206
0.01386
0.01151
0.61459

0.02132

0.02324

Brn

0.00798
0.01931
0.01076
0.01287
0.01081
0.01117
0.02159
0.01258
0. 01452
0.01960

0.02141

b

0.00188
0.00236
0.00194
0.00195
0.00302
0.00211
0. 00582

0.00150

0.00415

0.00238

0.00524

s

-0,00108
-0.00047
-0.00154
-0.00138

0. 00097

-=0400107

0.01169
. 0,00179

~0.00145

0.00452

n

0.00220
0.00400
0. 00022

-0.00012
0. 00058
0.00071
0.00399
0. 00099
0.00483
0,00261

.0. 00543

b,

0.00277
0.00858
-0.00327
~0.00492
-0.00694
0.00150
0.00008
~0.00395
-0.00280 .

0.00092

-0. 00097
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o .
bond distances and estimated standard deviations in Angstroms.

Bond

S1 - Cc2
S1 =6
C2 - C3
C3 - C4
C3 - C9
C3 - N12
C4 - N5 -
C4 - C24
N5 - C6
N5 - 8
C6 - C7
C7T - C8
CT - N13
C8 - 027
C9 - 810
S10 - C11
C11 - N12
€11 - N29
N12 - C22
N13 - C14
€14 - C15

1.835 (.005)

'1.825 (.007)

1.553 (.007)
1.568 (.007)
1.532 (.009)
1. 487 {.006)

1.472 (.007) |

1.550 (.008)
1.471 (.007)
1. 369 (.008)
1.590 (.009)

1.558 (.007)

1.437 (.007)
1.211 (.007)
1.813 (.005)
1.751 (.007)
1.338 (.007)

1.306 (.006)
1.475 (.008)

1.351 (.009)
1.507 (.010)

Bond
Cl4 -
Cl5 -

C16 -

€16 -

C17 -

18 -

19 -

20 -
c22 -
c24 -

c24 -

028
C16
c17
c21
Cc18
C19
c20
c21
23
025

026

1.233 (.010)
1.529 (.011)

1.389 (.010)

1.348 (.012) .
1.433 (.012);
1.343 (.016)

1.403 (.011)

1.390 (.011) -

1.527 (.008)

1.243 (.008)



bond angles and standard deviations in degrees.

c2
s1
c2
c2
c2
Cc4
Cq
c9
c3
€3
N5
C4
C4
C6
cé
c6

08

v v
N5
c7

S10 - C9 - C3

1
c2
C3
C3
€3
c3
c3
c3
C4
C4
c4
N5
N5
N5
7
7
T
c8
c8

'c8

cé
6
C4q
C9
N12
C9
N12
N12
N5
c24

. 024

cé6
c8
c8
c8
N13
N13
CT
027

027

96,1 (0.3)

111.8 (0.4)

110.5 (0.5)

| 111.3 (0.6)

107.0 (0.5)
109.6 (0.6)
112.9 (0.5)

105.4 (0.59.
110.7 (0.52 -

116.4 (0.6)
115'3,(0'5)

121.4 (0.5)

134.5 (0.8)

95.5 (0.5)

83.8 (0.4)

117.7 (0.7)
116.7 (0.6)

92.3 (0.4)

134.3 (1.0)

133.4 (0.8)
107.6 (0.5)

i

C9 = S10 - C11

510 - C11 - N12

$10 - C11 - N29

N12 - G11 - N29

C3 - N12 -~ Cc22

C3 - N12 - C11

Cl1 - N12 - Cc22

C7 - N13 = C14

N13
N13
c15
c14
C15
€15
C17
C16

c17

" c18

c19
C16

N12

Cl4
Cl4
C14
c15
€16
c16

C16

o1y

c18
C19
c20
c21

c22

c15
028

028

c16

C17

c21

c21
c18
C19
c20

c21

c20

€23

Table 6. 3—Spiro-thiazolinium-?-PAC derivative intra-molecular

.89;7 (0.3)

114.3 (0.7)

- 120.5 (0.6)

125.1 (0.7)
124.6 (0.6)
115.2 (0.5)
120.2 (0.7)
121.1 (0.7)
114.2 (0.7)
121.7 (1.1)
124;1 (1.1)
114.9 (0.7)
118.0 (0.8)

110

120.8'(1.1)

121.0°(1.1)

117.8 (0.9)

©120.9 (1.4)
119.9 (1.3)

119.3 (1.0)
121,0 (1.2)

113.0 (0.6)
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Table 6 continued

C4 - C24 - 025 "~ 115.6 (0.6)
C4 - €24 - 026 117.0 (0.7)
025 - C24 - 026 127.5 (0.9)



Figure 2.

lengths and angles.
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The 3-spiro-thiazolinium-7-PAC derivative bond
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. same as in all previously determined cephalosporins and
'penicilliné. The asymmétrjc centre at Ch is S,‘whereas the'
corresponding centres in benzylpenicillin, phenoxymethylpenicillin
and 6-NBF-PA possegs the opposite chirality, R. Using thé

same notation, the spiro atom at C3 is S. It was the difficulty
of describing the configuration at C3 that led the auvthor, with
the assistance of Dr.A.G.Long (1956), to adopt the Cahﬁ-Ingold-
Prelog notation which gives the name (33,45,6R,7R)-2'-anino-
3'-ethyl-2'-thiazolinium-#'—spiro-3f(7-pheny1acetamidocepham-
L-carboxylate) trihydrate, where the 'cepham' system, suggested

by Morin et al. (1962) is shown in Figure k4.

Pigure 4., The cepham system

The analysis has shown that the ethyl group (€22, C23) is bonded

to the cyclic nitrogen atom (N12) of the thiazolinium group.
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The Thiazolinium Ring

DIDO was used to calculate the least-squares planes
through sets of atoms in the modbecule, and the results are
shown in Table 7.

The atous C3, 810; 11, N12, C22 and N29 form a plane
(Table 7a), the average deviation from the plane being 0.01 z,
and C9 lieé 0.45 X below the plane looking at the ﬁolgcule
as seen in Figure 3., The bond C9 - S10 (1.813 X) is in good
agreement with the average value of 1,817 X for a single'C -5
bond given by Sutton (1965). However, S10 - C11 (1.751 X) is

approximately 9 e.s.d.'s shorter than this and nearer to the
o] . : ,
value of 1.718 A in the conjugated, heterocyclic compound thiophen.

Sutton gives the average C = N bond length in conjugated hetero-
cycllcs as 1.339 Z with which the bond C11 - N12 (1.338 A)

is in good agreement, and C11 - N29 (1.306 Z) is approx1mately‘
5 e.s.d.'s shorter. ‘

These results suggest that the thiazolinium system can

be represented as in Figure 5, N29 being probably hydrogen

Figure 5. The thiazolinium ring.



116

bonded (see pagelLLJ - The bond lengths of the carboxyl group,
cak - 025 (1.243 A) and 024 - 026 (1.243 Z) indicate that it
is present in the ionized form (C - 0 = 1.26 & (Sutton)), so
that the analysis substantiates the electrophoresis and infra-
red data that suggested the compound occurs as a zwitter-ion.
The carboxylate ion is also. planar (Table 7e).

The bond angle C9 - 510 - C11 (89.7°) agrees quite well
with the C = S - C angle in thiophen ( 91.3), although the
comparison is questionablé as thiophen is completely conjugated.

The angle N12 - C22 - €23 (113.0°) differs significantly from
| the equilibrium value of 109° 28'. This can be exPlainea by
reﬁulsion between the C23 methyl group and the TT electrons at

o
N12, the distance N12 « C23 being 2.503 A,

The Tetrahydrothiazine Ring

The atoms S1, C2, C3, C4, N5 and C6 form a distorted
- boat conformation with C2 and N5 at the prow and stern. '?he
boat is distorted in that the bond S1 - C6 is far from parallel
to C3 - Ch. This can be seen in Figure 3; for an undistorted
boat, the atoms S1, 03, chk and C6 would be in a plane, - whereas
C3 actually lies 0,656 A above the plane through the other
three atoms.

The reasons for the preferred boat conformation inifhe

crystal structure are difficult to assess. One explanation



may be that the chair form would?éggérate the cha?égéhgf'ﬁhé
thiazolinium system and the carbdkylate ion. Whether thié is
the case was diffiqult to decide by constructing models, espec-
ially as it is not known where the chargé is concentrated;in
fhe thiazolinium group. The shorteéf inter-atgmic disténces

o
relevant to this point are given below in A

C11 = 025 3.492
C11 - c2h . 3.902
N12 - Cc2h 2.927
N12 - 025 = 2.915 '

Changing the model from the boat to the chair form moved 025

away from N12 but did not noticeably affect the N12 -lcah

distance, though it did bring the gxocyclic ethyl group into

crowding with the (3-lactam-tetrahydrothiazine ring system,

Even in the boat conformation, the ethyl group is quite close
o

to C2 and 027 as shown by the distances C2 - C23 (3.537 A),
- (o] (o] Q
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Cc2 - c22 (3.273 A), C22 - 027 (3.137 A) and C23 - 027 (3.299 A4).

Another close contact that may affect the conformationl
of the six-membered ring is that between the group g//CZZ and
the carboxylate ion. YThe distance C22 - C24 is 3.080 A, and
one of the C22 hydrogen atoms points towards the carboxylate
ion. This probably accounts for the fact that the angles
C3 = Cb - c2k (116.4°) and N5 - Ch - c24 (115.3°) are both

approximately 10 e.s.d.'s from the tetrahedral valué and the
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distortion may be favoured in that it results in a partial
staggering of the bonds C3 - N12 and Ch - c2k. It is also
possible that the role of the water molecules in the crystal
could contribute to the stability of a partiéular conformér.
As will be described later, the water molecules enter into
a hydrogen-bonding scheme that includes N29, 025 and 026..

The high degree of overcrowding that has been described
- may result in restricted rotation of the carboxylate ion
around the bond C4 - C24 and possibly accouﬁt for the low anti-
bacterial activity of the spiro compound, in that it wouig be
difficult for either 025 or 026 to acquire a 'penicillin-like®
position. Rotation would be especially hindered by the close
contacts between 025 and C22 (3.293 Z), 026 and 027 (3;267_2)
and C9 and 025 (3.199 Z). |

The rest of the dihensions in the tetrahydrothiazine
ring are unremarkable. The bonds S1 - C2 (1.835 Z) and 31 - C6
(1.825 Z) are not significantly different from the value given
by Sutton (1.317 Z) for a C - 8 single bond and the valuerf
1.80 Z determined by Diamand (1963) for'ceph. Cc. The dimensions
of the ionized carboxyl group agree well with those 1isted by

Sutton, for example in the tartaric acid ion and the zwitter-

ion, L-threonine,
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‘The p-Lactam Ring

The bond lengths and angles of the b-&actam ring in
the 3-spiro-thiazolinium-7-PAC derivative.are similar to those
determined fpr 6-1IBF-PA. The length of the bond C6 - C7 (1.590 X)
~is possibly not significént in terms of the real standard
deviations; previous crystallographic work has not indicated
a bond significantly longer than the accepted value of 1.539 X.

The least-squares plane through the atoms of the ﬁ-lactam
ring including 027 shows deviations between 0,02 and 0.10 Z
(Table 7b). However, the atoms N5, C7, C8 and 027 form a plane
well within the expérimental accuracy, with C6 projectiﬁg 0;245 X
out of the plane on the same side as S1. This arrangement
agrees with that found for 6-NBF-PA.

That resonance takes place to a certain extent in the
cyclic amide is shown by the bond length N5 - C8 (1.369 X) and
the angle Ch4 - N5 - C6 (121.4°) indicates the corresponding
tendency for N5 to be planar. However, the nitrogen atoﬁ in
the 3-spiro-thiazolinium-7-PAC derivative has achieved a greater
degree of planarity than the>eorresponding atom in 6-NBF-PA,
as shown by the sum of the angles round both atoms (351o and
3#00 respectively); This is probably because the six-membered
ring in the spird cephalosporin possesses more degreés of

freedom than the thiazolidine ring, so that planarity at N5

can be achieved without exerting a great deal of strain at C6.
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o
Table 7. DEviations (A) of the atoms from the calculated

least-squares planes. Atoms marked with * were not included

o]

in the calculation of the plane. 2 d2 is the sum of the squares
. . ,
of the deviations (A) from the plane.

(a) Thiazolinium Ring (b) (S ~Lactam Ring
Z, 4% = 0.00089 S a2 = 0.02569
Atom Deviation | Atom Deviation

810 -0.001 N5 -0.080

c11 -0.020 C6 . 0.104
N12 -0.008 | c7  -0.063

N29 0.017 . c8 -0.023

c3 0.013 ‘ 027 0.062

ca2 -0.002

c9 = -0.451

(d) Benzene Ring
(c) # ~Lactam Ring : fE:dz - 0.00040
Z d2 = 0.00010 Atom Deviation

Atom Deviation , o C¢16 -0,008

N5 0.002 ' c17 0.000

c? 0.002 | | c18 0.003

c8 -0.009 c19 0.003

027 0.004 c20 -0.011

c6 = 0.2u45 | c21 0.014

C15 * 0.091
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Table 7 continued

(e) Carboxylate Ion ' ‘ (f) Amide Group

2 a® = 0.00011 Zda = 0.00107
Atom ' Deviation Atom Deviation
025 -0.,003 ' ' N13 . 0,025
c2k 0,009 Cc1k -0,002
026 -0,003 028 0.006
ch ~0.002 | Cc15 -0.011

c7 - -0.,017
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The Phenylacetamido Side Chain

The amide- group is planar (Table 7f) and the bond lengths
are consistent with those of a normal résonating amide. The angle
N13 = C14 = €15 (114.2°) is 8 e.s.d.'s from the expected value
of 120°, and C14 - C15 - C16 (114.9°) is 7 e.s.d.'s above the
tetrahedral value. %hese results can be explained by repulsive
forces between the carbonyl electrons and the T electrons of
the benzene ring, the distance C16 - 028 being 2.900 Z. The
extended form of the side chain.which results in this close.

contact is probably stabilized by packing conditions in the

crystal.

Packing and Hydrogen Bonding

In the following discussion,vatoms_that are related
to those of Table 3bby the symmetry of the spacegroup are
referred to by terms in parentheses following the atom symbol.
Some close-contact distances are shown in Figure 8
which is a projection of adjacent.unit cells down the b axis.
Inter-molecular distances less than 3.5 A are listed in Table 8,
including those between the oxygen atoms (030, 031, 032) of
the three water molecules. |
The moleculeslof the spiro compound'lie diagonallj

across the cell; therarrangementsaround the screw axes at

4



Crystal structure of the
spiro compounnd projected
down b.

¢eclL



Table 8.

o

o

Inter-molecular distances (A) less than 3.5 A in

the c¢rystal of the B-Spiro—thiazdlinium—?-PAC derivative.

The terms in parentheses following the atom name relate the

position of the atom to the values listed in Table*3b.The’

~first term describes the symmetry relation where

o/
1/

Xy

=X,

Y 2

A
Yy = 2

-2

and the other terms give the number of cell tramnslations in

the directions x, y and z respectively.

Vector
31 = 027
c2 - 027
c2 - 030
N5 - C15
£9 - 026
c9 - 027
C9 - 031
510 - g22
8510 - N29
N13 - 032
€15 - 032

Symmetry

(0/0 1 0)
(0/0 1 0)
(o/0 1 °0)
(0/=1 0 0)
(0/0 1 0)
(0/0 1 0)
(o/=1 1 0)
(0/0 1 0)
(1/0 1 0)
(0/0 1 0)
(0/0 1 0)

Distance

3.310
3.426
3. 445
3,445

3.157

3,336
3,466
3,428
3. bl
3.193
3.26h

Vector
cah - N29
025 - 031
025 - N29
026 - 030
026 - N29
027 - 030
028 - 032
030 - 031
030 - 032
031 - N29
€18 - 028

Symmetry

(1/0
(0/-1
(1/0
(0/-1
(1/0

0

1

o}

o}

o}

" Distance

0)

.0)

0)
0)

0)

(1/1 0 0)

(1/2

1

)

3412

12k

2.954

2,666
‘2.689
3.376
2.909
3.217
2.760
2.820
3.035
3.317
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z = 0, 1 etc. concern the polar groups, whereas thé Screw axes

at z = 1/2, 3/2 etc. are surrounded mainly by the non-polar

benzyl groups. ‘The close contacts around the screw axis at

x = %, z = 3 are between the benzene rings and the p ~lactam

rings though the distances are quite large as shown in Figure 8.
The oxygen atoms of the three water molecules are located

(Figure 3) such that the cephalosporinsmolecules in adjacént

unit cells are linked in all three crystallographic dinec£ions

by hydrogen bonds. The network so formed can be seen in

Figure 9, which is a projection down the a axis. The ppsitioné

of the atoms shown in Figure 9 are related to those in Table 3b

as follows :

CB11 = C11 (1 » x, ¥ = 3, =2)

CC11 = C11 (1 =%, ¥ + % =2)

caz2h = c24 (1 + x, y, 2)

0425 = 025 (1 + x, ¥y, 2)

0A26 = 026 (1 + x, ¥, 2)

NB29 = N29 (1 - x, ¥ - %, ~2)

NC29 = N29 (1 - x, ¥ + 2, -2)

0A30 = 030 (x, ¥ + 1, 2)

OA31 = 031 (x, ¥ + 1, 2)

0A32

032 (x, v + 1, 2)

. , A o
030 appears to be tetrahedrally bonded to 032 (2.820 A),

) o 0
031 (2.760 A), 026 (1 +x, ¥y, 2z) (2.689 A) and 027 (2.909 A).
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Figure‘9. The 3-spiro-thiazolinium-7-PAC derivative hydrog;én
bonding system projected down the a axis
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‘The angles around 030 are shown in Figure 9. Pimental and |
McClellan (1960) have tabulated the known data for the A
0 -H ......;O distances and the o JAPPIY « PO angles for
water in organic crystals. The values vary over a wide range;
the distances from 2,65 Z to 2.99 K, and the angles from 83°
to 1200, and the values associéted with 030 are in good agree-
‘ment with this range. If the hydrogen bonding is as suggested,
the'hydrogen atoms bonded to 030 must lie approxima&ely in
the’directions of 027 and 026 (1 + x, ¥y, 2).
The atoms surrounding 031 are 025 (1 % x, ¥y = 1, 2)
(2.954 Z), N29 (1 - x, ¥y - %y =2z) (3.035 K) and 030 (2.760 X).
N12 (1 + %, ¥y, 2) is toofar from 031 (4.101 K) to take part in
~any hydro en bonding. The location of two possible hydroggn
atoms bonded to N29 has been described on page 89. For the
calculation of the position of H21 (1 - x, ¥ - %, =-2) (Table 2),
it was assumed that a linear hydrogen bond existed between .
031 and ¥29 (1 ~ x, y - %, -2). The assumption for the.calc-
ulation of H22 was that the atoms 031, C11(1 - x, ¥ - &, ~-2)
and the‘hydrogen atomiwould form a trigonal‘arrangement around
W29 (1 - x, y = %, =2). The observed and calculated positions
agree well, and the observed position of H21 (1 = x, ¥ - %, -2)
lies 19° off the line N29 (1 - x, g - 3, -2z) - 031 and that of
H22 (1 - x; Yy - %, -z) is situated 7° from-the line
N29 (1 = %, y = %, =2) = 025 (1 + x, ¥, 2z). ¥%hus, the hydrogen

atoms bonded to 031 probably lie in the directions ofVOBO and
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025 (1 + %, ¥y 2). ,
The distances 032 - 028 (3.217 K) and 032 - N13 (x, ¥y - 1,

z) (3.193 K) sugzest that weak hydrogen bonding may exist
' befween these atoms. The angles around 032 are shown in Figuré_
9 and only 030 - 032 - 026 (74°) lies out of the range given

by Pimentel and bcClellan, and the two lone pair orbitals of

028 will not be pointing Qell towards 032, resulting in only

a weak hydrogen bond. The calculated and observed posifions

of the hydrogen bonded to N13 (x, y - 1, z) are situated
respectively 28° and 17° off the line 032 - N13 (x, y - 1, 2),
‘which indicates that the hydrogen atoms bonded £o 032.aré-
orientated towards 030 and 028.

R The hydrogen-bondingbnetwork that has been described

must contribute substantially to the stability of the;crystal,
-and as‘mentioned on page I possibly pla&s an important part

in stabilising the observed boat conformation of the tetra-

hydrofhiazine ring.
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CHAPTER 6
The Chemistry of Zeorin

As mentioned at the end of Chapter 1, atfemptsAhaVe
been made to solve the crystél structure of zeorin acetate, a
compound containing only carbon, hydrogen and oxygen (03235&03)
and derived from the natural product zeorin, a member of the
triterpenoid series. The chemical work, which is briefly
described in this chapter has established the structure of
zeorin fairly well and shown that it is derived from a unique,
saturated hydrocarbon zeorinane. The proposed structure of

zeorin fits in well with the theory of squalene as the bio-

genetic precursor of the triterpenoids.

That zeorin is a component of foliaéeous lichens was
recogﬁised by Hesse (1906) and Zopf (1909) bﬁt its chemistry
received little attention until Asah;na and Akagi (5938) |
demonstrated that it belongs to the triterpenoid series: and
has. the formula 030H5202. Mild acetylation pfoauced the:i
mono-acetate, zeorin acetate, and Asahina and Yosioka (1940)
showéd that more vigorous acetylation gave anhydrozeorin acetate,

by elimination of the elements of water from zeorin acetate.

This indicated that zeorin contained a tertiary - OH group.
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Zeorin, when heated with alcoholic hydrochloric adid ga&e a
dehydration product, zeorinin, which also formed a monoacetate
-and when oxidised vwith dichromate gave a ketone, zeorininone
(030H480),indicating the presence in zeorin of a secondary - OH
~ group.
These conclusions were substantiated and extended by
Barton and Bruun (1952). Infra-red data for zeorinone (produced
"by chromic acid oxidation of zeorin) indicated a cyclohe#anone
part—strncture,‘but the oxygen atom could not be at the C3

position, which is most common in the ﬁriterpenoidsvand shown

in (I), as zeorinone is unreactive to normal carbonyl reagents

)

and reduction. Dehydration of zeorin hcetate gave zeorinin
acetate or an isomer, isozeorinin acetate, depending upon the
reaction conditions. The infra-red absorption spectrum of iso-
zeorinin acetate (probably equivalent to the anhydrozéqriﬁ'
acetate of Asahina and Yosioka) indicated the presence of a
methylene group as :>==0Hé, hence the tertiary - OH of zeorin

N

as )’CMe - OH. That zeorin is not a simple derivative of a

known triterpene was demonstrated by the preparation of
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zeorinane, the unique and fuliy saturated hydrocarbon.

The above and other important reactions of zeorin and
its derivatives are shown in Figure 1.

After further work, Barton, de Mayo and Orr (1958)

proposed the structure (II) for zeorin.

OH

(11)

Ozonolysis of crude isozeorinin acetate gave a methyl ketone
with the loss of one carbon atom, indicating the part—strudture

(III) in isozeorinin acetate (that the E ring is five-membered

L

(111)

is shown in the following section). The ozonolysis also

produced acetone which suggested the presence of the
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isopropylidene isomer (IV) in the crude starting material.

y

(IVv)

Recognition of the ketone (V) was made by further oxidation

:;: ~o
(V)
of the product with trifluoro peracetic acid to give the S'

lactone (VI) by the following mechanism.

' | CFy.coyzlt [‘o.. :
o
\\' \ o248 .coch,

.; i T

(VI)
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(V1) was recognisdd as a $ _1actone from its infra-red spectrum,
and its formation indicated that the E ring must be five- -

membered. Hence zeorinin was assigned the part-structure (VII)

(viz) -

where the double bond of isozeorinin,(III), has migrated into
the E ring. |

Other oxidative experiments on zeorinin~a09tatq using
osmium fetroxide and.lead tetra-acetate, resulted in the 1:5

diketone (VIII). Barton et al. predicted that (VIII) should

(VIII)

undergo a reverse Micheel addition, to give after oxidétidn,

‘the diketone (IX). The product from the action of alkali in



O
(1X)

ethylene glycol on (VIII) followed by‘oxidation showed a.
single band in the I.R. spectrum at 1703 cm-q, characteristic
of a cyclohexanone structure and confirming that the D ring
must be six-membered,as in (IX).

The probable idenﬁity of the C ring was determined by
studies on neozeorininone, obtained frqm'acid isomerisaﬁion
of zeorininone. By analogy with other rearrangements inAthe

triterpenoid series, neozeorininone was assigned the structure

(x).

© (x)

This was supported by oxidation of neozeorininome with chromic

135
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acid to give three products'whose spectral properties couid be

explained in terms of the part-structures (XI), (XII) and (XIII).

Q

(X1) (X11) (XI111)
Selenium dioxide oxidation of neozeorininone afforded a conjupated,

heteroannular diene (XIV), which was converted into an aldol

AN

condensation product via the dialdehyde (XV). The formation

.(XIV)

(xv)
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of an aldol condensation product and its probable structure,

)
(XVI) for the parent diol, and together with the reactions so
HO OH

deduced from spectral properties, excluded the partial structure

(XvI)
far, suggested the part-strhctufe (XVII) for the C, D and E

rings in zeorin,

CHi CH ] .
\ \ / \CI\LGZOJ

H

¢
_H-;__L

n

/
\

F oW
vrr)
The secondary - OH group is located at the C6 pqsition
in the B ring. This was demonstrated by dehydration of deoxy-
zeorin (obtained by hydrogénolysis of zeorin) to give, as main’

product, a compound represented by the part-structure (XVIII).

(XVIII)
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Chromic acid oxidatiqn of this unsaturated hydrocarbon gave

an e(¢-unsaturated ketone (XIX), which was stable to the action

o

(X1X)
- of bromine and selenium dioxide, in agreement with the absence
in (XIX) of a replaceable ol-hydrogen atom, and suggesting that

the B ring possesses the part-structure (XX).

C

N

~

| B c

HC

c— \C/
o S AN
H OH

(xx)

The structure of the A and B rings was further su?ported
by the fact that Asahina and Yosioka obtained 1 ¢ 2 : 5 trimethyl

naphthalene (XXI) from zeorin. It is not likely that the C

(XXI)
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and D rings would have given this product.

Barton, dé Mayo and Orr (1958) then suggest that it is
'attractive' to flace the part-structure (XVI) and tﬂe‘A and‘B
rings together as implied in sfructure (II)'so that the bio-.
genesis of zeorin, with squalene as precursor,(XXII), can be
represented by the cyclisation of squalene followed by re-~

arrangement and hydroxylation, as follows :

ZEORIN

kudl."ﬂ’{ |q,“'c'n~
—
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Structure (IT) has also received support from the -

elucidation of the structure of hydroxyhopanone (KXIIi), a

(XXIII)

triterpenoid  obtained from dammar resih. This compound,'
studied by Dunstan et al. (1§57), Schaffner et al. (1957) and
Fazakerley, Halsall and Jones (1959) forms a series of compounds
analogous to zeorinone. By consideration of the molecular
rotation changes between fhe derivatives, it is suggested that
seven ;f the niﬁe_asymmetric centres in zeorin can be assignéd
as in hydroxyhoﬁanone, only the stereochemistry at C17 ana c21

being ambiguous. Thus zeorin can be written as in (XX1V), the.
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- OH at C6 being ol-equatorial, as suggested by the ease of
aéetylation. Similarities between the zeorin and hydroxy-
hopane series have also been pointed out by Huneck (1961).
Wolff - Kishner reduction of zeorinone produced 6;deoxyzedrin,
which was shown by physical methods to be probably identical

to hydroxyhopane. Huneck (1963) used nuclear magnetic‘rgsqnance
spectroscopy on zeorin acetate to deduce that the proton-at

c6 is ﬁ -axial, and that the protons atvC17 and C21'are both

p -axial.

Thus, the chemical work that has been described establishes
the structure of zeorin fairly well, but it was felt that a
- confirmation of the structural details was desiréble. Two
crystalline derivatives of zeorin were initially supplied
by Professor D,H,R.Barton of this department, with a view to
determining the crystal sfructure by the Heavy-Atom methoa. Howe—
ever, both zeorin iodoacetate and zeorin-m-iodobenzoatei
deteriorated very rapidly when exposed to X-rays.

Crystals of zeorin acetate, again supplied by Professor
Barfon,did not deteriorate noticeably when expoéed to X-rays
for long periods. Although lack of a heavy atom in the crystal
would cause substantial crystallographic problems, it was

felt that the postulated structure and stereochemistrj of the

molecule would provide a useful starting point in an X~réy



142

analysis by Patterson searching techniques. It was considered
that if the method had proved sucbessful, it might have been
applicable to similar compounds in the triterpene series and

. in the steroids.

Another possible means of determining the crystal -
structure of zeorin acetate was by one of the 'Direct Methods'
of phase determination (e.g. Harker and Kasper (1947), Sayre
(1952), Hauptman and Karle (1953)) but these methods are
difficult to apply to non-centrosymmetric crystals. Zeorin
acetate is-iﬁ fact noncentrosymmetric (spacegroup P2.2.2)

1171
and of the two possible centrosymmetric projections, down a
o o
(8.78 A) and b (11/59 A) preliminary investigations (Chapter 8)
indicated that the former was an inconvenient 'edge-on' view

of the molecule and a considerable degree of overlap would

occuriin the latter.
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CHAPTER 7

Interpretation of the Patterson

for Complex Structures

In recent years there have been basically tﬁo different
approaches towards interpfeting the Patterson of mdlecqleé
containing a large number of similarly weighted atoms. .Ali
the methods are dependent upon the use of a high-sPeed'digital
computer, | -

If no reasonable assunptions concerniﬁg ﬁhe structure
of the molecule can be made, it may be possible to achieve a
solution by the use of an image-seeking function to compare
for each point in the unit cell (x,'y, z), values of the
Patterson corresponding t§ all vectors between x, y, = and its
symmetry-related points. Iidighell and Jacobson (1963) have
used this method which they call Vector Verification; if all
the vectors have corresponding peaks in the Patterson, then the
point'may define an approximate atomic location. The validity
Af all sugéested positions can then be tested b& coﬁputing
vectors between them and searching the Patterson for the
corresponding peaks.
| Simpson -et al. (1963) made use.of the Symmetry Minimum

Function (SMF) in the solution of the structure of iso - B

18220
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The method is essenfially the same as that of Vector Verifi-
cation and was used first to locate trial atomic positioné,

and then, in conjunction Qith normal image-seeking procedures

to locate the rest of the molecule. Methods along similar

lines have been developed by other authors (Alden et al. (1964),
Hamilton (1965)).

The.second approach to the problem of Patterson inter=-
pretation is to nresuppose that the molecule contaiﬁs a fragment
of approximately known internal geometry. Such a method has
been described by Nordman and Nakatsu (-1963), Nordman and Kumra
(1965) and more recently by Nordman (1966).

The orientation of the molecular fragment in the unit
cell can be expressed in terms of three Eulerian angles ¢ s 12/ ,1/’
with respect to a Cartesian system, fixed in relation to the
crystallographié axes; The position Gxo, Yo zo) of one aﬁom
of the fragment is then required to define uniquely the locatién
of the entire group in the unit cell. The vector set of ‘the
moiecular fragment is computed over ranges of ¢>,9’f?’, and
at each angular combinétion the Patterson values at the ends
of the vectors can be examined by an image;seeking function.

Nordman and Nakatsu chose the mingmum function

Mp(¢.9 ,”L{/) = Min.(P,, .P2’°""'pr)

where p is the number of vectors in the vector set and P? is
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the value of the Patterson at the end of the p'th. vectof; The-
vaiues of ¢ ,€9,1P in this'orientation search' that give ﬁeaks
in the three-dimensional minimum function may then define
\possible orientations of the molecular fragment in the unit cell.
To find possible &alues of the positiénal parametef
(xo; Yo zo), a second search (location search) of the Patterson
is carried out, but this time computing Qectors between atons
in the suitably orientatgd fragment and their symmetry-
.related positions. Vectors within a particular fragmeﬁt are
‘excluded as they have already been considered in thg orientation
search, so the vector set used will comprise Harker and éenéral
vectors. ©Selecting any arbitrary values as startiné pbint_
(unless there is evidence of a limited range)‘the search ranges
are succeSsive values of x, y, 2z along the three-Cartesian axes.
The search is less than three-dimensional whenever the origin
of the unit ceil is arbitrary in one or two dimensions. If
tentative values 6f X1 Yoo Z, can be found, the rest of the
molecule can be identified by normal image-seeking techniques
or by Fourier methods. Nordman (1966) has described improve-
ments to the method that include the aséignment of vector
weights, and a vector refinement procedure to maximise and
differentiate between different 'fits' that may be obtained in
practice.

A similar method which presupposes a known molecular
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fragment has been developed by Hoppe (1957) and is tefmea

the Convolution Molegule‘Method. It is poésible to calculate

the !'partial Pattersons'rcdrresponding to both vectors wifhin

. a molecular fragment and those between symmetry-related ffagments.
The resulting 'convolution molecules' are termed 'even-indexed!'
and 'mixed-indexed' respectively as they are calculated‘by‘
Fourier summations using as coefficients FiF; and FiF; whefe

Fi' Fj are 'molecular structure factors'.

The even~indexed convolution molecule may then be used
in an orientation search and the mixed=indexed function in«a
translational search as described for the prefious method. - In
theory, the degree of fit at each orientation and translation
could be judged by subtracting the convolution molecule from
the Patterson value (both on the same scale) at all poinﬁs.in
Patterson space and then summing separately, the positive and
negative differences. A large negative sum is unacceptable
but a large positi&e value merely indicates that-additionél
peaks are present in thé Patterson due to vectors not accountéd
for in the coﬁvolution molecule, However, this is impracticablé
in terms of computing time (automated by Huber (1965)) and so
the procedure is limited to the maxima of the convolution
molecules. The weight of each'vector is naturally takén into

account by virtue of using the peak heights in this way.
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The Computer Programs Used

In view of the structure proposed for zeorin as a
result of chemical evidence (Chapter 6), it seemed reasonable
to attempt an interpretation‘of the Patterson of zeorintacétate
by an approach in which this information could be utilized.,
The A, B, C, D, and E rings most probably form a rather rigid
system, parts of which would be suitable to define a molecular
fragment, The automated version of the Convolution Molecuie
method was not available buf Dr. Nordman of the University
~of Michigan kindly supplied the listings of computer progfams
similar to those used by Nordman and Nakatsu.(1963). Slight
modifications have been made and the programs are now'avail-
able for use on the I.B.M. 7090 at Imperial College. The
three distinct programs are written mainly in MAP. (Macro
Assembly Programming Language) with several FORTRAN IV sub-
routines for input and output.'

Orientation Search

A flow diagram is shown in Figure 1.
1. The relative coordinates of the atoms in the molecular
fragment are input to the program as unweighted Cartesian

vector components (A), together with three Eulerian-angle search

ranges (for convenience the angles q’,9,1k will be written
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as A, B, C) and the precomputed Patterson (section 5, page IS| ),

which is stored in the computer in a packed format.

2. The search ranges are inputas nine angles :=

(i) The values through which the fectors are initiaily.
rotated to fhe starting point of the search (INA, INB, INC).

(ii) ?ne values bj which A, B, and C are to be sﬁccessively
incremented (DELA, DRLB, DELC)

(iii) The final :¥aliiesof the thrée angles (EINA,_FINB, FINC).
The system is shown in Figure 2, where X, Y and 2 ére the
Cartesian axes of Patterson space. The input vectors are first
rotated ébout the X axis through INA. This rotation also'moves
the Y and Z axes to Y' and Z' in the YZ plane, making angles
of INA with the original axes. Then follows a rotation Qf INB
about Y', which also rotates the X-axis through INB to give the
X*'' axis. The third rotation of INC is about X" to give the

vectors their starting orientation for the search.

3. Further rotations are best described by the three nested
loops shown below, which also include the starting orientation.

Rotate about the X axis, by INA(DELA)FINA to give a Y! axis

teeteiiinncenans Y'eiiiian, INB(DELB)FINR4} ...t X'"ooos,
Cevereeieereiee XMeuveen.. INC(DELC)FT IS (b
Calculation
REPEAT
Reset C = INC
REPEAT —
Reset B = INB

REPEAT _
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Figure 2. The Eulerian angles.




151 .

b, At each orientation, the appropriately transformed Cartesian
vector componeﬁts are converted to fractional crystal CO§rd-
inates, which aQe,adjﬁsted to lie in the range =% to +% by
successive addi£ion or subtraction of unity, and then their
signs are changed according to the Patterson symmetry, i.e. 2/m
for monoclinic and mmm for orthorhombic spacegroups. Yhe vectors
are then expressed in sixtieths. as this, at the moment, is the
only permissible grid interval. The Patterson values at>the
ends of the vectors are then evaluated by linear interpolation
between four neighbouring grid points,-and.the two minimum
values are stored in the print bands LOW and NEXT, which are

subsequently printed out to give the rotational minimum functién.

5. The routines for reading and packing the Patterson function
in core storage require that the Patterson be initiall& ihput
on punched cards in a strict format. This is rather unsatis-
factory in that it limits each Patterson value to two digits
(otherwise the number of cards becomes excessive). . A better
‘approach would have been to revise the input routines to accept
off I.B.M. magnetic tape, a Patterson with a larger raﬁge of
vaiues. Unfortunately, no satisfactory Fourier program Qas avail-
able and so it was found expedient to calculate and stofe the
Patterson on I.C.T. magnetic tape using BOSS, and then punch
the required cards 3y a simple Atlas program,"Patterson 3earch

Punch'{fsp).
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Location Search

A flow diagram is shown in Figure 3.
_ o A
1. A set of Cartesian coordinates (A) of the molecular fragment

-are input to the program together with one or more possible sets

- of Eulerian angles A, B and C, obtained from the orientation

search. Up to three symmetry-element matrices are input_for
the generation of the equivalent positions of the fragment,
. and also three search fanges as follows :-

(i) The initial values in fractional coordinates to be added
to the input positions (INX, INY, INZ).

(ii) The values by which the positions are to be incremented
along the crystallographic axes (DELX, DELY, DELZ).

(iii) The final values (FINX, FINY, FINZ).

‘Affer input of the Patterson and rotation of the fragment
through the Eulerian angles,\the‘Cartesian coordinateé are
converted to fractional values and the fragment then moved to
some arbitrapyy starting point by addition of INX, INY,lINZ

to its atomic positions.

2. One or more symmetry-related fragments are then generated
and the unique vectors between them and the original fragment
are computed, The vectors are adjusted and vector-end Patterson

values interpolated and printed as in the orientation search.

3. The fragment is then moved in the crystallographic
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directions through the specified searchbranges.and (2) is
repeated at every stage. The process can be described by '

three nested loops as follows :-

INX(DELX)FINX——
INY(DELY)FINY T
INZ(DELZ)FINZ
Calculation

REPEAT

Reset 2 = INZ
REPEAT —
Reset Y = INY i

REPEAT rmeed

Superposition

A flow diagram is shown in Figure 4.
1. The positions of the known ﬁolecular fragment (plus:the
symmetry-related positions if required) are input as fractional
coordinates together with the search ranges INX, Y, Z; DELX,

Y, Z; FINX, Y, Z and the Patterson function.

2. Vectors from input positions to the point INX, INY, INZ are
computed, then adjusted and the Patterson values interpolated

and printed as in the previous two programé.

3. The process is repeated by computing vectors from the input

positions to all the points generatéd by the search ranges
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Superposition program.



156

as follows :=

INX(DELX)FINX =
INY(DELY)FINY —
INZ(DELZ)FINZ
Calculation
REPEAT

Reset Z = INZ
REPEAT —_—
Reset Y = INY
REPEAT

4. The minimum function is printed as parallel sections up
an optional crystallographic axis, in a form suitable for

contouring.,

Further details of the programs are described in
"Patterson Search Programs' by Hﬁnt (1966). Many difficulties
were initially experienced in attempting to generélise and
make the progfams available for any I.B.M. 7090/7094 installation.
It soon became evident‘that the programs hgd been written
mainly for one. spacegrowp, P2/m, and consequently many routines
were, in the authbr's opinion, illogical énd unnecessary;when
applied to other symmetries. Changes have been nmade in a wa&
to make most use of what was already given, and the result
(as.the flow diagrams indiéate), isia rather inefficigntA
séquence ;f operations. Nevertheless, the compﬁting times on

the I.B.M. 7090 are quite realistic, for example an orientation
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search with 66 vectors (i.e. all the vectors within a molecular
fragment of 12 atoms) over 7000 angular combinations took
approximately 25 minutes, though increasing the number of vectors
above this value leads to excessive computing times...The ’
location search and the superposition programs are'bofh

approximately as fast as in the example given.
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CHAPTER 8

An X-Ray Investigation of tha

Crystal Structure of Zeorin Acetate.

Preliminary Data

The crystals were colourless orthorhombic laths,.,
elongated along [100] with (001) prominent. The dimensions
of the crystal selected for data collection were approximately
0.40 x 0.15 x 0.12 mm. The structural formula proposed by

Barton, de Mayo and Orr (1958) is shown in Figure 1.

"

O.COCH;

Figure 1. The proposed structure of zeorin acetate.

Formula Molecular Weight (formula) = 486

O32754%3
. ‘ ' . . o ‘ o
Unitcell Dimensions . a =8.78 (0.02) A, b = 11.59 (0.02) A,

0 [} :
¢ = 29.15 (0.0) A, V= 2967 A%, Z =4, F(000) = 1080 e.
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Mass absorption coefficient for CuKa7u= 5.2 ém-1

Dobs (flotation) = 1.09 g.cm-s D = 1.09 g;.cm-3

calc

Absent spectra only among

hOO for h = 2n + 1

i

v 0kO for k = 2n + 1

001 for 1 = 2n + 1

L1}

so that the spacegroup is uniquely determined as P212121&.
Intensityldata for the layers Okl to 7kl were estimated visually
using three graduated wedges to take adcount of spot-shape
changes on the higher layers. In view of the dimensioﬁS'of the
crystal used and the low value of the absorption coefficient,
corrections for absorption were considered unnecessary. The
data were correlated by comparison with reflexions common to
h0l, giving a total of 2490 independent reflexions. |

The Wilson plot based oﬁ three~dimensional déta is
shown in Figure 2. The data were divided into 25 shells each
containing 110 - 140 réflekions,and unobserved reflexions
"were included as zero. The abnormality in the curve is not
surprising in view of‘the étructure proposed for zeorin
acetate. It is eQident from the Patterson (Figﬁre'})-that
many inter-atomic vectors accidentally coincide so that at
certain sin2 & values the intensity averages will be abnormally

\

high. The least-squares method gave B = 3.2, K = 23,7 and



,
o
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s"‘lo ___’
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=30

Figure 2.  Zeorin acetate Wilson plot based on three-

dimensional data.

160



161

the graph B. = 3.8, K = 25.8.

The approximateilength ofAthe triterpenoid nucleus
(i.e. the A, B, G, D and E rings) is 12 2 and the lengths of
the a and b axes (8.78 Z and 11.59 Z) are too short to acébmmé-
- date this dimension inéluding the side chain. This strongiy
suggests that the length of the molecule lies in the ¢ direction.
A brief examinatién of the crystals with a polarizing miéfo-
scope and quartz wedge showed nc>na> n, (where n is the re-
fractive index alonp the axial direction denoted by the suffix)
but the birefringencies were not 1arge: This éonfirméd'fhat‘the
mdlecﬁles.have their longest dimension parallel fo ¢ and
suggested that their planes are roughly parallel to (010).

The latter conclusion was corroborated by the observation that

the two strongest reflexions are from (020) and (021).

Visual Examination of the Patterson

The unsharpened,‘three-dimensional Patterson function

~ is shown in-Figure 3 on pages 162 to 70 s, computed as sections
normal to-the a axis (the axes have been labelled i, v and z).
The function is on an arbitrary scaie and contéured at levels of
50 starting at O. The computation did not include the term
F(OQO)2 énd the negative parts of the Pptterson have not been

contoured, though to avoid ambiguity the areas within the .
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Figure 3.

Zeorin acetate

unsharpened Patterson.
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broken contours are negative,
The height of the origin peak on an arbitrary scale
.is 2000 and this is proportional to .zgfi = 5592. Thus, the
. [ .

peak heights corresponding’$e:single inter-atomic vectors

should be approkimately te

. Vector Peak Height
C=-C 14
C=-0 , 17
0 -0 - 24

These peaks will‘be indistinguishable in the negative areas
of the Patterson, and are dwarfed by Multiple peaks.

The set of points corresponding approximateiy to the
postulated structure of the A, B, C and D rings is shown in
Figure %a. The system is puckered and the points marked ( @ )
are regarded as above the plane of the paper. figure kv is
the vector set of the points in Figure h4a; it férms three
parallel 'sheets' and in broadside view the points make up'an
eqﬁilateral triangular mesh. These in the central.sheéf are
tstrongest' and form the larger mesh of side % 2.4 Z. The points
in the other two sheets are mirror images, offset by roughly
0.5 Z and approximately 1.5 Z apart . Peaks in the Patterson
correspdnding to the outef sheets will probably not bé as
easily distinguished as those in the central layer.

The Patterson does, in fact, exhibit a broad, flatfish

region of high density around the origin . It is fairly well
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3

Vs

Figure ba,” The postulated structure of the A4, B, C and D rings.
The system is puckered, atoms marked ( @ ) are

regarded as being above the "plane of the paper.

o] o o]
® ® ® @

o o (o] (o]
(o] (o] o o

® ® ® ®
(o] o o) (o]

o o © o
o ® ® ®

o] o o]

Figure 4Yb. Part of the vector set of the points in'Figqre.4a.,
Points marked ( ® ) lie in the central sheet
Points marked ( o ) represent *superimposed points

athwart the central sheet.
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confined to the (u, 6, w) plane, so all the molecules in the

cell must be roughly normal to b. The peak clusters around

(uy %, w) and (4, v, w), presumably between the b and a screw-

~ related molecules also confirm the general alignment.
In the u = O section of the Patterson (page /63 ), the
strong peak labelled (1) was attributed to the accumulation

of vectors of the type Y, in Figure 4a and peak (2) to.thdse of

1
type ;;. The length of the vectors from the origin to these
peaks (2.4 Z and 4.9 Z respectively) agrees with the calculated
distances across the cyclohexane rings: The strong peak'(B)
(pages le5 énd k6 ) was attributed to vectors of fhe typef?; in
Figure ha, its distance from the origin being:2.5 K.'_Thus,

the origin peak and peaks (1) and (3) form the equilateral

triangular mesh associated with the points in the central

layer in Figure 4, Their positions suggest two possible
orientations for a zeorin acetate molecule as shown in Firures

5a and 5b.

The projection of the vector from the origin to peak (3)

‘on to (001) makes an angle with (010) of approximately,dl = 30°,
With the %id of Dreiding models it was apparent tha% this peak

could arise from two possible orientations of the molecule‘seen
'énd-on' as in Figures 6a and 6b.(the vectors marked are as in

Figu;e 43). If the orientation is similar to that shown_in

Figure 6b, then there should be a peak in the Patterson



a
N
— c
I
(a)
a
A
(v)
Figure 5. Two suggested orientations for zeorin acetate

in 'broadside' view,
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(a)

(b)

Figure 6. Idealized 'end-on' view of the A, B, C and D rings..
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o
approximately 1.5 A from the origin, on or close to the a

axis and corresponding to ;Z.' No such peak was discernible,
However, assuming an orientation similar to that in Flgure 6a,
it was possible to locate Patterson peaks correspondlng to the
vectors.?; and'j;. These peaks, (4) and (5) are shown in'
Figure 3 on'pages 65 and (b4 , their distances from the 6rigin

_ o - o
being approximately 1.6 A and 1.5 A respectively.

The Use of Patterson-Searching Techniques

The method and computer programs used have been des-
cribed in Chapter 7.

As shown in Figures 4a and 4b, the vector set of a single
molecule (postulated) consists of three parallel sheefs (con-
sidering the ring system only). The peaks in the Patterson
correspondlng to the inmost sheet are the strongest and there
should be several less than 3.4 A (i.e. they will be clear of
inter-molecular vectors). Although the longer vectors are
more sensitive to angular changes, they mayrwn into the région
-0f inter-molecular vectors and be difficult to disentangle. It
therefore seemed advisable at first to deal only with thp.:;
shorter and medium-length vectors.

Considering only the rings A, B, C and D, they form
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an approximately centrosymmetric group with vectors foo
numerous and too long to use in initial searches.  Computing
time becomes excessive with more than about 78 vectors (i.e.
all the vectors between 13 atoms). A pyclohexane:ring is too
small a unit and occurs too often either as complete or iﬁ-
complete rings. A decalin ring is possibly acceptable but it

was decided to use the group

as the computing times would still be reasonable and it would
possibly be more selective than the ten-atom group; it can
occur four times in the molecule.and possibly more éonSidering
the five-membered ring and other substistuent groups.

As the unit cell contains four symmetry;related moleculeé,
‘the region roﬁnd the origin in the Patterson céntains sets of
peaks corresponding to four overlapping sets of intra-molecular
vectors. However, this is implicit in the_mmm symnmetry of the
Patterson so that only one quadrant of space need be seafched.
Any multiple fits are then due to repétition of the search group
within one molecule.’ |

v
1

The structure of me%hjl melaleucate iodoacetate (Eigurev7)
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determined by Hall and Maslen (1965), was used to define ﬁhe

€o,CH;

T.cHho,

 Figure 7. Structural formula of methyl.melaleucate iodoa@etate.

geometry of a molecular fragment. The bond distances of the
A, B, C and D rings are shown in Figure Sa, which also gifes
the approximate orientation of the molecule projected ddwn‘[@1@] .
The naming of the axes in Figure 8a is not the same as that

given by Hall and Maslen. The a and ¢ axes‘haVe been iﬁter-

' changed so that the orientation is similari~to ohe postulated‘

for zeorin acetate. Hall and Maslen noted that the degree of
substitution at carbon atoms bears a direct relationship to

the lengthening of the C - C bonds.  Long range steric effects
may also account for some of the abnormal bond lengths and angles.
As the substitution ig zeoriniacetaté (Figure 8b) is probably
very similar to that in mgthyl melaleucate iodoacetate, except

at C3, it is reasogable té assume that the geometry of fhe‘

A, By C and D rings of the two compoundé will not differ to a

great extent,
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0,.Ch,. T .

~
O

(a)

(b)

Figure 8. (a) Bond lengths in methyl melaleucate iodcacetate.
|

{ (b) The A, B, C and D rings in the postulated structure

of zeorin acetate.
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Work with the Unsharpened Patterson

Orientation Search

As the unsharpened Patterson had given an approximate
orientation of the molecule, it was decided to proéeed with the
unsharpened function for the search. This was computed on a
31 x 31 x 31 grid and punched on cards with PSP. As mentioﬁed
in Chapter 7, input format requires not mnore thaﬁ two digits
for each Patterson grid point. Gonseqqpntly, the Patterson as
shown in Figure 3 was scaled down so that most values-felll
wifhin the range =48 to +48. Each value was then adjuééed by
addition of 48 to give the range O to 96. Any negatives were
punched as O and those above 99 (mainly in the origin peak)
as 99. The origin peak was not removed, which would reduce the
power of the search in thaﬁ the Patterson values ét thé ends of
the vectors between édjacent atoms would be obscured by the
origin peak in some orientations. In Figure 3, only peak (5)
(of those visible) was affected in this way and it was con-
_sidered that this would have little effect on thé positién of
the.minimum, especially as it is the coordinatés of the longer
vectors that are more susceptible»to angular changes and hence
define the position of the minimum more accurately.

The 66 vectors between the atoms C1 - C11, C14 of methyl

melaleuecate iodoacetate (Figure 8a) were input to the orient-
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ation search program (although they form rather a deformed group,
espeéially about C3 and C5). Increments of 10° were initially
employed to make computing time practical.

The highest peak in the rotational minimum funétion'
had LOW = 41, (0 in Figure 3 corresponds to 48 in the Patterson

used for the search), NEXT = 43 with 4 = 0°

, B = 60° and
C = -10°, and correéponds approximately to a clockwise rotation,
bg 60° about the b axis,of the A and B rings (as shown in

Figure 8a), to give the orientation shown in Figure 9. This

-

>P

—————+c
Vv
Figure 9,

corresponds quite closely with a possible position suggested
by the preliminary investigations of the Patterson. Other peaks
in the minimum function with LOW % 36 occurred in the Euler-

angle ranges

B = =70%to -60° ¢ = 10°
A = =30° to 4+ 20° B = =30° to -20° ¢ = 20°
B= 85 to 95° ¢ = 30°

The first peak may be accounted for by a fit with the B/C rings
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as shown in Figure 9.
The incrément was reduced to 5° and the Patterson
searched over ranges that included all four peaks. The
minimun values for the latter three still remained at approxlmately
36, but for the first peak were LOW = 42, NEXT Lz, Decrea51ng

the increment to 1° showed that this peak was in fact triplet

with
A°  B° ¢°  LOW/NEXT
0 58 14 b3/43
-1 61 =13 k3/43
-1 ' 52 -1k b1/

Two of these peaks could be accounted for as repfesenting the
fit of the molecular fragment with the A/B and C/b‘rings
respectively, suggesting that the C and D rings are as shown
in Figure 9. Uhe third peak which is fractionally weaker may
‘represent the partial fit with a single ring and its appendages.
However,‘the boundaries between the three peaks are ill-defined
and the differences between the assumed and actﬁal geometry
must be a factor that contributes to this effect.‘

The orientation of the molecular fragment with A eAOO,
B = 58° and C = -14° is shown projected down the b axis in

Figure 10a,and down the c axis in Figure 10b.
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Figure 10a. The molecular fragment

projected down b

Figure 10b. The atoms Cq,,CS, 010,

09 and 011‘pr03ected down ¢
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Location Search

For the sbapegroup P212121, this process can bé éarried
out by two separate two-dimensional searches. With the
molecular fragment in the orientation A = Oo, B = 580 and
C = =14°, the Patterson function was searched along thgvx and
Y directions, computing vectors between the fragments related
by the ¢ screw. The appropriate rangés were -

INX, ¥ = 0.0 DELX, ¥ = 0.01 FINX, Y = 0.50
The increments are approximately 0.1 Z_and the mearching was
carried out in the unique part of the unit cell; |

The translational minimum function is shown in Fipgure 11.
Only the values of LOW are contoured at the levels 36, 40, 42
and 44. The background level was generally between 25 and'32.
Thé peak heights agree quite well with those of rotational |
ninimum function but as can be seen, the function is poorly
resolved especially in the X direction, although the highest
values are confined to two narrow ranges in the Y direction,
from 0.34% to 0.37 and 0.07 to 0.10. |

The translatibnal search computing vectors across the
a screw tended to confirm the ranges for the Y values shoﬁn
in Figure 11. Outside these ranges the minimum function was

generally of the order 25 to 32 although there were, in

places, peaks as high as 39. The function also suggested that



Figure 11. Translational minimum function in the Y and 2

directions.
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two different Z ranges, 0.40 to 0.4%4 and 0.36 to 0.38, are.
assoclated with the two peaks at Y = 0.0? to 0.10 and Yu=-6.34
to 0.37 respectively. A third search computing vectors

across the b screw did little to define the minimum more
clearly and gave a minimum function in which the peak heights
were generally lower than in the other two searches.

In an attempt to find unambiguously, the translétional_
parameters (xo, Yoo zo) (page I+t ), two three—dimensionél:‘
‘searches were carried out. Both were over the complete_x
range (0.0 to 0.5) but with different ¥ and Z ranges corres-.
ponding to those suggested by the two-dimensional minimum
functions. The resulting peak heights (background level
= 30 to 34) were generally lower than those in the two-

dimensional maps. The four highest peaks are shown in Table 1.

Table 1. The highest peaks in the three-dimensional, trans-

lational minimum function.

Peak X Y Z LOW/NEXT
A 0.14 0.34 0.37 39/39
B 0.14 0.07 0.43 39/40
c 0.08 0.33 0.39 39/39
D 0.23 0.08 0.43 38/39

Table 1 shows that the differences between the heights
of the four peaks are very small and thus from the resultslso

far it was felt that the original Patterson was not sharp‘

186
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enough to define, unambiguously, the translationél parameters
Xor yb, Z e However, two three-dimensional Fourier maps were
computed using the coordinates of the two highest'peéks in
Table 1 (A and B) as values of X1 Yo 2, for.the structure
factor caleulations. The agreement between the observed aﬂd
calculated structure factors (scale of 20,0 apélied‘to Fo) was
0.55 in each case, It was difficult to interpret the Fourier
map derived from the coordinates of peak A in a way:consistent
with the expected geometry of the zeorin acetate molecﬁlé.

The Fourier derived from peak vaas a little more encouraging
and gave tentative positions for 18 atoms: as shown schematically

* in Figure 12. The peaks corrcsponding to the atoms marked 12

and 16 in Figure 1A were extremely weak. An attempt was

Figure 12,

made to refine these coordinates by the Fourier Refinement

program of the X-Ray 163 System. This program, writton by

JeR.Holden calculates the 27-point block Fourier around each.
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atonic pésitions, estimates the coordinates of the point of
maximum electron denSity within the block and then repeats

the process with these peak positions as new atomic coordinates.
The method, when applied to the 18 positions in Figure;12,
reduced the R value to only 0.52 and some of the inter-—

atomic bond lengths attained unacceptable values, The shifts
of the atomic positions were unsystematic and did not indicate
“that the group as a whole ought to be moved in any partlcular
d1rect10n.‘ A difference Fourier derived from the orlglnal

positions was similarly uninformative.

2. Work with the Sharpened Patterson

In view of the'ambiguity in the determination of the
translational parameters, X9 Y9 2 that has been described,
the method was repeated using the Patterson function sharpened
to point atoms at rest by the modification

2
A2 . exp (6 sin” €, 2)
12 . e 23

AN : :
where f is the formfactor for carbon. The resulting Patterson

did not exhibit any serioug diffraction ripple except in the
neighbourhood of the origin peak and the zeroth section ' is

shown in Figure 13 which can be compared with the corresponding

section of the unsharpened Patterson on page Ms; A shérpening



" Bection x = O
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Figure 13.

Zeorin acetate
sharpened Patt-

erson.
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function of the type
-
exp ( 6sin” & /) 2)

similar to that used by Nordman and Nakatsu (1963), did not
produced any marked differences between the sharpened’andv

unsharpened Pattersons.

Orientation Search

During the course of the work with the unsharpened
Patterson,thére were indications that the distortion of the
nolecular fragment may have contributed to the poor resolution
of the minimum functions. Consequently, the ten atoms com-
prising the B and C rings of Hall and Maslens's (1965)
determination of methyl melaleucate iodoacetate were selected
as molecular fragmént. ‘In the orientation search, vectors
between adjacent atoms were exclﬁded to avoid the effects of
the #ipple near the origin peak. The approximate orientation
of the.molecule had been fairly well defined,'as described in
the preceeding sections and so the rangés af the rotationgl
seafch were limited to A = -30o to +30°, B = -90°‘to +90° and
¢ = -50° to +50°.

The minimum function showed four strong peaks for which 
LOW and NEXT were approximately 36 and 37 respectively compared

with the backgroundlevel of 10 - 25 (0 in Figure 13 was adjusted
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to 36 for the search). After decreasing the angular increments

the values shown in Table 2 were obtained for the fourlpéaks,

Table 2. Rotational parameters of the fourAhighest peaks -

in the minimum function.

Peak A° B° c® LOW/NEXT
1 -5 -70 10 36/37
2 +7 . =59 - 23 37/39
3 -2 b7 =35 - 39/k0
b 1 57 =19 37/38

although the angles could not be fixed within + 2°. The orient-
ation of the molecular fragment defined by the parameters of
peak 2 in Table 2 is shown projected down the b axis in Figure
14a and down the ¢ axis in Figure 14b and roughly agreés”with>
the positions deduced in the earlier work. The valugs 6f
the angles 0(1 = 390 and 0(2 = 28° can be compared with the
corresponding angle of 300 obtained from peak (3) in the un-
sharpened Pa;terson. | |
Table 2 shows that the ﬁeaks occur in two pairs 1,2
and 3,4 related to each other by a rotation of approximatgly
120° about the b axis. The differenceé between peaks 1 and 2
"can be explained by the fits of the molecular fragment with
the A/B and C/D rings fespectively, simiiar to the situation
described for the unsharpened search (there were also three

peaks with LOW 2532 in the ranges A = -5° to +5°, B = =10° to
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+10%, ¢ = =10° to +25° which may have been due to fits with

the B/C rings and the A and D rings plus appendages, but they
were not investigated further). However, the differences between

peaks 1 and 2 are in this case quite marked and strongly'Suggest
that the molecule is situated in the unit celi as shown iﬂ'

Figure 15. This is different from that sugéested by the Fourier

a

Figure 15.

maps derived from the unsharpened Patterson,

Using Dreiding models it was seen that with the moiecular
. fragment in theorientatién corresponding to peakv2 (Figures
14a and 14b), the position of peak 4 is equivalent to an
approximate rotation of the group through 180° about the ¢ axis.
The relationship betwéen peaks 2 and hroccurs-because the ten
atoms of the molecular fragment approximately form a centro-

symﬁetric set. Rotating the vectors through 180° about a
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Fipure 14b. Atoms'c5, C

C11’

down C.
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Figure 14a. The mol-
ecular fragment Pro-

jected down the b axis.

9, C109
052 and 013 proaec#ed
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crystallographic axis and making all their signs positive:
to deal with the symmetry of the spacegroup, will give a set
of vectors nearly, but not quite, equivalent to the original

set. Peak 1 must be related to peak 3 in the same manner.

Location Search

The translational minimum function derived from the.
search along the Y and Z directions with the molecular fragment
in the orientation A = 7°, B = -59° anﬂ C = 230 contained a
large number of peaks with LOW = 32 to 39 compared with the
backgroundlevel of 15 - 25. However; the ﬁumber of péaks was
far too large to enable any unambiguous assignment of values
to the translational parameters Yoo zo. It wa: noticed that :hés
peaks occurred at very regular intervals, 0.7 A in Y-ahd 1.2 A
in %, The search along X and 2 showed a similar phenomenon
the intervals being 0.4 Z in X ;nd 1.2 Z in Z. These repeat
distances are approximately dne half of the projected infef-
atomic distances in the molecular fragment shown in Figures 1la
and 14b. In order to try and reduce this effect, the positions
were calculated for a molecular fragment comprising two trans
decalin rings both in the orientation A = 7°, B = 59° and '
¢ = 23°, and-joined at C8 - C9 as in Figure 15. In the
resulting translational minimum functions the'periodicity‘was

not reduced to any marked extent.
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Attempts were made to interpret these resﬁlts by
postulating partial fits between the molecﬁie fragment and
the postulated structure of zeorin acetate, as the former.was
- translated along fhe crystallographic directions in the orient-
ation shown in Figures 14a and 1kb, and taking into'accoﬁnt
packing considerations. These methods proved abortive énd as
it was becoming almost as difficult to interpret the trans-
lational minimum function as it would be to visually interpret

the Patterson, the method was abandoned.

Conclusion

In retrospect, there are several factors that mayihave
contributed to the failure of this Patterson search technique
as a method for the determinétiqn of the crystal struéture
of zeorin acetate.

Certainly for sfructures that have been solved by this
method, the geometry of the molecular fragment has béén well
defined, The two alkaloid structures analysed by Nordman and
Nakatsu (1963) and Nordman and Kumra (1965) contained'planar
oxindole and indo}e groups rgépectively and the solution of a
pyrethosin derivative by Nordman and Gabe (1965) was attained

using an isoxazolone group and three other atoms as molecular
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fragment. 'In both the sharpened and unsharpened work on
zeorin acetate the rotational parameters A, B and C were n§t
well defined, which must have resulted in part from the
differences between the geometry of the trans decalin rings in
methyl melaleucate iodoacetate and zeorin acetate. The vector
refinement program.described by Nordman (1966) would probably
be useful in this respect but was not available for tﬁis work,
The 'periodicity! that was noted in the translational
minimum function during the work.on the sharpened Patterson
- suggests that more serious difficulties are present. Altpough
it was not recognised at the time, this effect was alsovpresent
in the unsharpened work, but to a less marked extent. It was
felt that the effect was due to the fact that the molecular
fragment must consist of at least a trans decalin ring éystem,
as this is the most well-defined feature of the molecule. Lhe
structure postulated from the chemicai evidence contaips three.
~ such systems of the A/B, B/C and C/D rings and a similar system
| in the part structure defined by the D/E rings. It was con-
ceivable that the 'periodicity' could be reduced by using a
molecular fragment comprising a larger number of atoms, though
the results in this respect were disappointiné. In the previous
structure determinations to which this method has been applied,
the compounds have all‘possesséd only one, unique part structure

that was used as molecular fragment and their unit cells con-
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~tained only two molecules (i.e. spacegroup P21.in each casg).

The Convolution Molecule method that‘has been develobed
by Hoppe (1957) and described briefly on page 145 offers an
alternative approaéh to the determination of the structur? of
zeorin acetate that would possibly not involve some of the
difficulties encountered here. Attention is, in fact, now being.
turned towards this method.

It aoes seer that this method is not seridusly depéndent
upon an accurate knowledge of the geometry of a moleculér fragment.
Huber and Hoppe (1965) have described the structure determination
of the steroid, ecdysone, in which a ring junction initially
assumed to be trans fused was later shown to be cis. Howéver,
it is not clear whether the 'périodicityﬂ effect would be a
problem. The Convolution Molecule method would also overcome
a defect in the Pattersoh search technique used here, that of
‘applying vector weights, Howéver, it should be a simﬁle mod-
ification fo incorporate a scheme similar to that déscribed‘by

Nordman (1966) into the Patterson search programs.



198

References

Abraham and Newton‘(1955), Biochem.J., 79, 377

Abrahameson, Crowfoot Hodgkin and Maslen (1963), Biocﬁem.J;, §§,514

Alden, Stout, Kraut and High (1964), Acta Cryst., 17, 109.

Asahina and Akagi (1938), Ber., 71, 980.

~ Asahina and Yosioka (1940), Ber., 22; 242,

Barton and Bruun (1952), J.Chem.30c., 1683.

Barton, de Mayo and Orr (1958), J.Chem.Soc., 2239.

Beevers and Robertson (1950), Acta Cryst., 3, 164,

Booth (1948), 'Fourier Technique in X-Ray Organic Analysis',
Cambridge, University Press, page 62. |

Bragg (1929), Proc.Roy.Soc., 1234, 537.

Buerger (1959), 'Vector Space', Wiley, New York.

Cahn, Ingold and Prelog (1966), Angew.Chem.Internat., 5, 385.

Clastre and Gay (1950), Compt.rend.,230, 1876. |

Cocker, Cowley, Cox, Eardley, Gregory, Lazenby, Long, Sly and
Somerfield (1965), J.Chem.Soc., 5015.

Collins and Richmond (1962), Nature, 195, 142.

Crowfoot, Bunn, Rogers-Low and Turner-Jones (1949), 'The
Chemistry‘of Penicillin', Princeton, University
Press, page 310. |

Crowfoot Hodgkin and Maslen (1961), Biochem.J., 79, 393.

Cruickshank (1959), 'International Tables for X-Ray cfystallo;

graphy', Vol.2, Kynoch Press, Bifmingham.



199

Cruickshank (1961), 'Computing Methods and the Phase Problem
in X~-Ray Crystal Analysis', Pergamon Press, Oiford,
Paper 6,

Diamand (1963), D.Phil. fhesis, University éf,Oxfoid.

Donchue (1950), J.Amer.Chem.Soc., 72, 949.

Drew (1966), Ph.D. Thesis, University of London.

Dunstan, Fazakerly, Halsa#l and Jones (1957), Croat.Chem. Acta,
29, 173.

Fazakerly, Halsall and Jones (1959), J.Chem.Soc., 1877.

Fazakerly, Gilbert, Gregory, Lazenby and Loﬁg (1965), Paper
submitted to the Autumﬁ‘Meeting of the Chemical‘
Society at Nottingham.

Fleming (1929),'Brit.J.Exptl.PatHol., 10, 226.

Garrido (1950), Compt.rend., gég,‘i878.

Hale, Newton and Abraham(1961), Biochem.J., 79, 403,

Hall and Maslen (1965), Acta Cryst., 18, 265. |

Hamilton, Rollett and Sparks (1965), Acta Cryst;ylé,;129.

Hamilton (1965), Acta Cryst., 18, 866.

Harker (1936), J.Chem.Phys., k%, 331,

Harker and Kasper (1947), J.Chem.ths., 15, 882.

Hauptman and Karle (1950), Acta Cryst., 3, 101.

Hesse (1906), J.pr.Chem., 73, 113. |

Hoppe (1957), Acta Cryst., 10, 750; Z.Electrochem., 61, 1076.

Housely and Spooner (1964), Private communication.



200

a

“

Huber (1965), Acta Cryst., 19, 353.

- Huber and Hoppe (1965); Ber., 2§, 2403,

Huneck (1961), Ber., 94, 614.

ﬁuneck and Lehn (i963), Bull.Soc.Chim.France, 1702.

Hunt and Rogers (1964), Biochem,J., 93, 35c.

Hunt (1966), Technical Report, X-Ray Lab., Chem.Dept., Imperial
College.

Klug and Alexander (1954), 'X-ﬁay Diffraction Prbcedures'; Wiley,
New. York, page 467. . |

Lipson and Cochran (1953), 'The Crystalline State', Vol. 3,
Bell, London, page 206.

Loader, Newton and Abraham (1961), Biochem.Jd., 79, 408.

Loﬁg (1966), Private communication.

McClachlan (1951), Pro?.Nat.Acad.Sci. U.S.A., 37, 115.

Mighell and Jacobson (1963), Acta Cryste, 16, 4h3.

" Morin, Jackson, Flynn, and Roeske (1962), J.Amer.Chem.Soc.,
ﬁ’ia 3400. ’ ‘

Muggleton, O'Callaghan and Stevens (1964), Brit.Med.J., g, 1234,

Newton and Abraham (1955), Nature, 175, 548,

Newton and Abraham (1956), Biochem.J., 62, 651.

Nordman (1966), Traﬁsactions of the American Crystallogrgphic
Association, 2, 29.

Nordman and Gabe (1965), Private communication,

Nordman and Kumra (1965), J,Amer.Chem.Soc., 87, 2059.



201

- Nordman and Nakatsu (1963), J.Amer.Chem.Soc., 85, 353.:
Park (1958), Biochem.J., 70, 2p.
Park and Strominger (1957), Science, 125, 99.
Patterson (1935), Z.Krist., 90, 517.
Pimentel and McClellan (1960), 'The Hydrogen Bond', Freemaﬁ,
San Francisco. |
Rogers (1965), 'Computing Methods in Crystallograﬁhy', Pefgamon
Press, Oxfofd, Chépter 16.
“Rollett (1961); 'Computing Methods and The Phase ?roblem in
, X-Ray Crystal Analysis', Pergamon Press, Oxfo:d;‘Paper 9.
Rollett (1965), 'Computing Methods in Crystallography', ﬁeigamon
Press, Oxford, Chapter 8. '
-Rollett and Sparks (1960), Acta Cryst., 13, 273.
Sayre (1952), Acta Cryst., 5, 697.
Schaffner, Caglioti, Arigoni, Jeger, Fazakerly, Halsall apa
Jones (1957), Proc.Chem.Soc., 353.
AShoemaker, Barieau, and Donohue (1953), Acta Ciyst,, é, 241,
'Simpson, Falting, Dobrott and Lipscomb (1963), J.Chem.Phys.,
39, 2539. |
Sutton (1965), ‘'Interatomic Distances', Supplement, The Chemical
Society London Special Publication Number 18.
Tipper and Strominger (1965), proc.Nét.Acad.Sci. U,S.A.‘_', 54, 1133,
Wilson (1942), Nature, 150, 152.
Wrinch (1939), Phil.Mag., 27, 93.

Zopf (1909), Annalen, 364, 273.

......



. - - l . N,,—C,,

Strugtural formﬁla for the B—Spiro—thiazolinium-?-PAC v

derivative.



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202

