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ABSTRACT

The systematic variation of mneutron flux distribution
and buckling measurements as a function of fuel loading in
a sub-critical assembly (natural uranium, graphite moderated)
have been investigated in a symmetrical square configuration
at the centrec. Some control rod effectiveness studies have
been carried out on the same pattern.

The results have been correlated on the basis of
Diffusion Theory. For full assembly cases lattice para-
meters were calculated, and compéred with Syrett's model for
graphite moderated reactors and are in good agreement. The
corrclation of partially filled assembly cases (clcan core
and vacancy) was based on the concept of }cflector savings
calculated Ly both One~ and Two-group theory fornulation in
an infinite plane slab system and on Two-group heterogen-
eous theory (source-sink) for finite systems. The results
confirm that the homogenised concept of reactor lattices
(Wigner-Si;tz) holds well down to 36 (uel elemcnts. IFor
fewer numbers of fuel elements, serious deviations becoue
apparent compared with heterogeneous theory which predicts
results correctly down to 16 - 9 fuel elements. Curves
of K_ and Bi vs. number of fuel elements and rcflector
savings vs. reflector thickness have been drawn and show the
physical breakdown of the first theory. The flux distribu-

tions by hetecrogeneous theory are also much better than the.



homogenised theory for small numbers of fuel elements.
All tﬁese results (clean core) were also analysed
by mnumerical methods and compared. v
The analysis of the control rod (mild stcel;
transparent to fast neutrons) effects has been based on
(a) super-cell calculations and {(b) the heterogeneous
theory. The experimental predictions have wide varia-
tions in comparison to the super-cell calculations and
are in good agreement with heterogeneous theory if
diffusion area of the fueled lattice is used to calculate

the controlled reactivity.
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CIIAPTER 1

IHETEROGENEOUS REACTOR SYSTEMS AND METIIODS OFF ANALYSIS

1.1 INTRODUCTION

The importance of detailed knowledge of the
neutron flux distribution and the related parameters
in a reactor cannot be over-emphasised in the present-
day world. For large re.c vs the problem is simple
and can be analysed fairly easily. But then the
rcactor is not just a heterogeneous or homogenecous
mixture of fissile materials with coolant and/or
moderator. The situation is more theoretically complex
and experimentally difficult as well as hazardous
to study. Recourse, therefore, is taken to small

 sub-critical assemwmblies, which are excited by a source
and are always in a steady rather than critical state.
More complicated details will be considered in the
suéceeding sections and chapters; here it will suffice
to say that a sub-critica. isembly is a powerful tool
in the hands of a reactor analyst and it seems it
would remain so for some time to come.
‘ The following experimental investigations have
been carried out with the sub-critical assembly

(Chapter 2) available at the College.
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1) Four natural uranium fueled graphite moderated
lattices with varying diameter of the coolant channels
have been studied experimentally. Five more cases

of fully fueled assembly (Chapter 3) with varying
degreeSof homogenization were investigated.

2) Research was carried out for twenty-five partially
filled assembly cases and a few partially filled

assembly cases with vacancies were also considered.

3) Experiments to calculate the control rod effective-
ness for mild steel were carried out.

The diffusion theory has been assumed to hold in
all analyses. The experimental results have been
co¥related on the basis of
a) Unit-cell model of Wigner-Sietz and
b) Heterogeneous method of Ieinberg-Galanin.

In the first case both one-group and two-group
theory calculations were carried out,while in the latter
case only itwo-~group theory calculations were cmployed.
The full and partially filled assenmbly cases were also
analysed by solving two-group theory diffusion equations
by finite difference methods. The results have been

compared and codrelated. The control rod calculations



were based on two-group theory in both cases.

The measured relaxation lengths in combination
with the measured extrapolation lengths were used to
predict the measured value of the material buckling
and K_ for the system. The theoretical and experi-
mental flux distributions have been compared and the

relationship of all the related parameters discussed.

14
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1.2 HETEROGENEOUS REACTOR SYSTEMS

The heterogeneous reactors are characterised by
the geometric separation of fuel and moderator materials.
The fuel in such a system may appear in tﬁé form of
rods or metal plates which are distributed throughout
the moderator according to some prescribed lattice con-
figurations. In the early days of Reactor technology

heterogeneity was the basis for the maintenance of
chain~reaction with the available fuel enrichments
(natural uranium) and moderating materials (graphite

Ceslar

wilk water¥) . With the exception of heavy water, a
homogeneous mixture of fuel (matural uranium) and mod-
erator materials (C, H20) could not be made critical,

Besides the physical separation of fuel and modera-
tor, the most important feature of such systems is the
fact that they are practically thermal, i.e. most of
the fissions are caused by thermal neutrons. Physically
this means that the ratio of moderator atoms to fuel
(uranium atom or any other fissile material) is suffic-
iently large that relatively few meutrons are cap-
tured during slowing down from fission energies to
thermal energies. Thus to put?crudely the localizing

of the fuel concentration produces the following changes

relative to the characteristics of o homogenired system,
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in thermal reactors,

1) thermal utilisation is decreased (f);

2) resonance-escape probability is increased considerably (p);
3) fast-fission factor is increased (g).

The double advantaée arising from the increase in
p and € offsets the relatively small decrease in f by a
considerable margin. It may be remarked that lumping
the fuel into a fuel element (1) decreases f and (2)
increases p relative to their values, were the fuel homo-
geneously distributed throughout the moderator. Thug
the .. net result of selecting a heterogeneous system
is the maximisation of multiplication constant X_. This
becomes rather inevitable when the reactor system is to
be charged with natural uranium.

This places very great emphasis on the accurate
calculation of the four factors in K_, since even with
the best possible arrangement of fuel (natural uranium)
and moderator (graphite), the resulting multiplication
constant is greater than unity by only a few percent.

In these circumstances small errors in the estimation
of f, p. € and N are bound tq lead to large errors in

the calculation of quantities dependent on

6K = K - 1 1-2.1

K
tor example, material buckling, reactivity available

and so on. When these quantities are known with the
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required accuracy, the K for the system is known and
suitable expressions can be obtained for the effective
diffusion length, migration area of the lattice and
hence the estimates of the overall size of the reactor-
core and reflector configurations. For thermal-reactor
systems, the diffusion theory treatment of the neutron-
behaviour in the multiplying system is sufficiently
accurate provided the transport theory corrections are
applied to the diffusion coefficients, extrapolation

distances, etc.

1.3 METHODS USED FOR REACTOR ANALYSIS

The basis of reactor analysis is essentially the
fact that?; ’ | for the maintenance of a
self-sustaining nuclear chain reaction in a reactor
assembly in the steady-state, the Neutron Production
in the fissile material should balance the neutron losses
due to the absorption in the fuel, the moderator and
the structural materials and the leakage out of the
system)provided there 1s no extraneous neutron source
present. The practical possibility of a reactor

system is characterised by the "Wour-factor formula"

[oe)

The infinite nmultiplication constant K may, therefore,

be defined as the ratio of the number of neutrons
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available for absorption in the fuel in any one genera-
tion to the number of neutrons absorbed in the fuel in
the previous genecration in an infinite system which has
the same nuclear properties as the multiplyine -ystem
under consideration.

If such a reactor system is in o« cv.: . ool state
then the effective multiplication factor ix unity. The
sequence of events in the neutron life cycle in a critical
steady state may be summariscd bricfly as

. . . . 235
(1) production of fast ncut - by fission in U

238

and
fast fission in U

(2) slowing down to thermal energies and resonance
capture in U238 and leakage out of the system during

slowing down and in process (3),

(3) therma! neutivon absorption in different materials
inciu . tuel leading to production of fast neutron
i.c. process (1).

The exact and detailed kmnowledge of the last-
mentioned process is very essential for the oi
coactor system. Complete details of the competing process-
oo rzoing on in a reactor system will be discussed in
the succeeding chapters in greater detail. Therefore
one could say that the purpose of any worthwhile method
for reactor analysis is the detefmination of the conditions
under which a reactor will become critical and fairly

accurate knowledge of the neutron flux distribution in
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the reactor.

Various methods are uéed for this purpose, their
approach may be different but basically they are different
forms of one or other of the two analytical concepts
described below.

(a) Unit-cell Model of Wigner - Seitz and

(b) Source-~Sink Method of Feinberg-Galanin.

Herein they will be referred to briefly as Ilomogeneous

Method and Heterogeneous Method respectively because of

the very principles involved in the formulation of each.
A AShort description of each less mathematical details,

would suffice here.

1.4(a) HOMOGENEOUS METHOD OR UNIT-CELL MODEL OF WIGNER-

SEITZ

Originally conceived for the calculation of wave-
functions of crystal lattices, this method has been used
very extensively for reactor analysis. The essential
feature of the method is that the lattice may be regarded
as a periodic array of identical lattices, each having
a fuel element symmetrically located in it. On account
of the symmetry of the cells, a single lattice is taken
as the representative of the infinite reactor system.

The methods based on this model are concerned with the
nnalysis of any one equivalent-cell of the infinite

system. This assumes
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(1) 'ﬁhe net neutron current is zero at the boundary
of the cella

(ii) fhe source term is constant in the moderator and
zero in the fuel, while the flux fine structure is the
same as it would be in an infinite lattice with the

same type of cells;

(iii) The neutron flux distribution in the unit-cell is
obtained under the boundary conditions detailed in section
3.2.1. witﬁ the help of diffusion theory or tranéport
theory depending on the "size of the cell, Having
determined both the energy spectrum and neutron flux
distribution in the cell, the thermal utilisation and

1
resonance-escape probabilities may then be computed.

The calculation of fast-fission factor € and m is a
separate problem using the flux distribution in detail.

£ and n are combined with f and p to give the infinite
multiplication factor of the reactor system. Equivalent

cylindricalization of the actual cell (may be square,

rhombus or any other) is the most commonly used procedure,

while the fuel channel boundary is kept in-tact.
The overall nuclenr properties are the average of all the
materials present in the lattice-cell.

There are L few obvious advantages in the pro-

cedurgﬂbut serions errors may arise in the flux fine



structure. Newmarch (31) has shown that the effect
of cylindrical cell approximation in lattice calculations
is to overestimate the ratio of the flux in the modera-
tor to the flux in the fuel and has demonstrated that
it gives a flux in the moderator which is considerably
higher than in the fuel, even when the cell dimensions
in units of mean free path tend to zero; whereas, for
the case of real cells (e.g. square or hexagonal), the
flux ratio must tend to unity. Also as the actual cell
is replaced by an equivalent cylindrical one, the effect
of the cell-shape both on flﬁx fine structure and related
parameters is completely ignored. In actual practice,
a lattice cell is oftemn a square or rhombus. In the equi-
valent cell approximation the cell shape being replaced
by a circle, the high flux regions at the cormners of the
cell as shown inAtdﬁw3.2.1 are replaced by comparatively
low flux regions at the sides. This leads to an under-
estimation of the excess absorption term in the moderator;
the underestimation being least in the rhombic cell.
Clark-Newmarch's (27) and Cohen's (28) exact treat-
ment of a square-cell are variations of the same idea.
Inspite of quite a few complicated mathematical details,
their use remains limited in scope and the equivalent cell
approximation procedure stands out quite marked for its

inherent simplicity in computation and the good results



obtained Jjustify its use as such.

1.4(b) HETEROGENOUS METHOD OR SOURCE-SINK METHOD OF

FEINBERG-GALANIN

The homogenised model discussed in the last section
is based on the gross properties of the unit-cell and
all calculations resulting from the consequent relationships
have an inherent assumption that the reactor system is
infinite in extent. If the size of the multiplying
system is reduced, the unit-cell concept cannot predict
the criticality of the system with sufficient accuracy.
In these—cases the detailed arrangement of the fuel ele-
ments is an esseptial feature of the nuclear configuration
which must be included in the criticality considerations.

A model with such considerations has been developed
by Feinberg~Galanin (12, 13). .t Rere the existence of
heterogeneity is treated as such and the problem of
computing the multiplication constant of a given multi-
plying system is treated as an integral system and the
basic assumption of the Wigner-Seitz model, that the
system should be infinite, is removed. The fuel elements
are regarded as a collection of line or point sources in

, ?\wymﬁyaxmk

a matrix of moderator materiall The fast (fission)
neutrons produced by these sources slow down in the modera-
tor. Feinberg and Galanin have asgumed that the result-

ing spatial distribution of thermal neutrons may be re-~



presented by the Fermi-age solution appropriate to the
source geonmetry. Then the one-velocity diffusion equa-
tion is used to describe the distribution of thermal
neutrons in the moderator. The source term in this
context is obtained by super-imposing the contributions
from all the fuel elements in the assembly and additional
absorption term due to the fact that the fuel elements
are -sinks' for thermal neutrons. Thelproperties of

the fuel elements as neutron sources and sinks are
described in terms of "The THERMAL CONSTANT" defined as
the ratio of total net current of thermal neutrons into
the fuel element to the value of the thermal flux at the'
surface. Feinberg and Galanin used the results obtadined
from diffusion theory.

However, a neglect of?émall term by Galanin in com-
puting the lumping effect led to incomnsistent results
for various cell shape§,which 'nQ%&K[> obscured the sig-
nificance of his method. This was later pointed out by
Feinberg and elucidated by Kronrod.

The original formulation of the method as propounded
by einberg-Galanin was applicable for fuel elements
embedded in an infinite moderator mediimt. This method
has been extended to finite ﬁedia of rectangular shape
by Meetz (30) andto those of cylindrical shape by
Jonsson (16, 17). This general approach to the overall

problem is both elegant and precise; besides}the method



offers great flexibility in treating complex heterogeneous
arrays involving various lattice geometries, irregularities
in rod. size and spacing. It is also very helpful in
control rod effectiveness studies and thos€ cwee -~ of
voids and channels. However’it should be mentioned, too,
that the mathematical treatment is much more complicated
than that involved in the unit-cell method. Also the
analysis of large regular geometries by this method

offers no significant advantage over the Wigner-Seitz

model.

1.5.1 PRESENT WORK AND ITS STATUS

The diffusion theory has been used fairly extensively
by several authors as the basis for reactor analysis.
The aim of the diffusion theory in calculating the critical
size of reactors is to account correctly for the neutron
balance between production,absorption and leakage in the
steady state of the reactor. In the analysis of the
present work the validity of the diffusion theory was
assumed throughout. However, the diffusion theory para-
meters were defined in a way appropriate to heterogeneous
lattices and boundary conditions considered carefully.
In particular, it should be emphasised that, although
homogeneous diffusion equations are used, any real reactor’

system consists of a whole number of finite cells.



The lattice experiments which have been performed
to date can be summarized according to moderator, and degree
of enrichment of fuel (uranium). The fuel available
with the sub~-critical assembly at Imperial College is
Natural Uranium and that settles .the enrichment problem.
The graphite components (Appendix A-1.1) are of such
dimensions that they give a lattice pitch of 8" squa?e.
Consequently the fuel to moderator volume ratio is fixed
except for slight variations which can be created.

The experimental work reported here involves the
determination of relaxation lengths in case of partially
filled sub-critical assembly and relaxation length and
extrapolation length in case of full assembly by measufing
the neutron flux distribution in vertical and horizontal
directions. The flux distributions are. fitted to the
appropriate expressions and one arrives at a measured
value of the material buckling for the system and hence
K, for the reactor system.

The experiments had been designed to see whether the
nieasurements on small number$of fuel elements will give
sufficient accuracy in the measured parameters of a
reactor system so that the neceﬁsity of fillang the
whole assembly or the use of a critical reactor could be
avoided if possible. If this idea is practicable, then,
to what extent . : 2 The answer to that quqmﬁh

will provide a check for the extra fuel needed.



Though the BICEP group (23) have done quite exten-

sive measurements on different sizes of exponential

stacks_. little attention has been paid to the two-
s/
zone experiments. If core and reflector regions are

treated as separate, the partially filled assembly

cases could be called two-zone experiments. Only few
experiments have been carried out involving measurements
on single fuel rods and no further. .At Winfrith

King (22) has done some measurements on two-zone exponential
graphite moderated lattices on tge basis of substitution
method. In this method, measurecments are made on a

full stack of reference fuel, part of which is then
progressively replaced by test fuel the measurements
of the relaxation length being made at each loading.
Despite the fact that the measurements provide very val-
uable information about the behaviour of lattices under
the conditions, their application remains very limited

e;{fi u\t

in because there are very few institutions rich
in the availability of fissile materials of one sort
or the other for substitution purposes.

I'urther to rdduce any mathematical details the slab
system has been used leading to an inefficient use of
the available fuel.

Zink
have afso

(25) and Stuart (26)¥done some calcul:itions on single

fuel measurements. : 'The methods developed are
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excellent exercises in the mathematics of the subject

but it would appear too much to expect too accurate para-
meters from the analysis since there are very intense
variations of neutron flux over a small region so that

the assumptions simply break doﬁn. This lack of interest
in the reflected sub-critical assembly measurements is
rather surprising)cksit could be a very powerful procedure
for reactor analysis if an accurate measurement of the
relaxation length could be obtained for the system under
consideration.

With these points in mind the following experimental
measurements were carried out.

1) Measurement of b,, and kr for the fueled assembly.
This served to ascertain the accuracy of the lattice
parameters calculated by the model (7) adopted as the
basis for analysis. |

With the available graphite components (details
are given in Appendix A-1.1) four fueled assemblies of
varying channel diameter could be created. All were
investigated.

In five fueled assembly cases for control rod
effectiveness studies, flux measurements werc carried out by
creating one vacancy or by filling it with control rod
(mild steel) per 9, 4 and 2 lattices.

2) Careful and detailed considerations led to the

selection of "sqguare core vegion" in reducing the size
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of the core in the sub-critical assembly. Flux measuremenis
for four sets of 100, G4, 36, 16 and 4 fuel clements
in the central region of the assembly, were done to
find the relaxation lengths in the vertical direction
and flux measurements in the horizontal direction for
comparison with theory, and fourteen pairs of similar experi4?
men® for steelabd vacancies.

This arrangement in the text is referred to as
""The reflected core system'. Another latticeyslightly
different from one of the four lattices with 121, 81, 49,
25 and 9 fuel elements in the assembly were investigated.
3 Mild steel was used as the control rod for control
rod effectiveness studies referred to in 1) and 2) above.

The full details of these measurements will follow

in the succeeding chapters.

1.5.2 METHOD OF ANALYSIS

The thneoretical characteristic parameters for the
full assembly cases were calculated according to
Syrett's (7) model. The measured relaxation lengths
were combined with extrapolation lengths to give a measured
value of Bm2 (material buckling) and K,- The extrapolated
lengths were assumed to be the same for . vacancy
cases as'gﬂ’theif corresponding full assembly cases:
~-nine
The twmﬁy”clean" core cases were also analysed by

solving two group diffusion equations by finite difference

methods.



The twenty-five partially filled cases of assembly
were analysed on the basis of
(i) llomogencous model of Wigner-Sietz both for modi-
fied one-group theory and two-group thcory of neutrons,and
(idi) Two-group heterogencous theory of Teinberg-Galanin
for finite reactor systemsim wmodsvaley of il size,

In the first case the problcm was reduced to the
calculation of reflector savings for the particular com-
bination of core size in the assembly and the reflecctor
thickness. Then the reflected core in the assembly is
replaced by an equivalent bare homogeneous reactor system
and the mcasured relaxation lengths are combined to give
the material buckling of the system and hence the
measured value of K 1s predicted.

Two energy group analysis, on the basis of hetero-
gencous theory (source-sink) for finite reactor system
is used. The measured axial buckling is used in con-
junction with the heterogeneous set of equations to pre-

¢
dict the criticality of the system. The problem . S

treated as an Eigen-value problem where Ke is the Bigen-

1
value and the flux is the eigen-vector.

The controlrod effectiveness calculations were
carried out on i1he basis of "super-cell concept!" and the

heterogeneous concept of reactor systems. In both,

two cunergy groups of neutrons were used for analysis.
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The relevant vacancy cases were studied only on the
basis of modified one-group theory in conjunction with
super—cell calculations. IPull details of the analysis

are given in the succeeding chapters.
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CHHAPTER 2

THE APPARATUS AND TIHE EXPERIMENTAL METIIOD

2.1.1 THE SUD-CRITICAL ASSEMBLY

The general arrangement of the sub-critical assembly
is shown in FIG. (2.1.1). The graphite assembly is
of parallel shape with square cross-séection, i.e.
8' x 8" x 9 ft 3 inches high and is supported on the
6 inch thick bedplate. The graphite lattice region
consists of a 12 x 12 array of fuel channels with an 8
inch pitch. The lower 2 feet of the graphite assembly
form the pedestal, which consists of solid graphite
blocks arranged for structural stability. Its function
is to slow down and diffuse the relatively fast neutrons
emanating from four antimony-beryllium sources. The
main part of the graphite structure above the pedestal
is similar to that in an actual reactor core and it can
be stacked either with the chamels Vertica;’as shown9
or horizontal. The neutron flux measurements can be
made either in the axial or transverse directions with

the detection equipment described in section (2.2).

2.1.2 NEUTRON SOURCES

Four antimony-beryllium (y,n) neutron sources are
; . 5 2
used giving a flux of 10° n/cm™-sec

at the bottom instead of the more generally used Ra-Be or
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1l Railing

2 Corner hole
3 Fuel channel
4 Bracing

A Source Coffln
B Base Plate

C Pedestal

faging

Cd.

D

2,1.1 SUB-CRITICAL ASSEMBLY

FIiaG,
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Po-~-Be sources. The beryllium component is in the form
ol a sintered metallic sleeve, permanently located inside
a high-purity lead shielding block)built into the graphite
pedestal structure. The antimony component is in the
form of a metal slug of approximately 1.0 inch diameter
and 8.0 inches length)contained in a stainless-steel
sheath. The antimony sources are normally irradiated
in a reactor to a level of approximately 25 curies for
the Sb124 isotope. The practical advantage of this

type of neutron source is that the emission rate can

be varied by simply adjusting the position of the Sb
y-sources in the Be sleeves and this is of grcat benefit

in balancing the sources, to make the distribution "cosine!

in the assembly, ¢specially when the Sb sources vary

in stremgth. When inserted, the source centres are
1 £t from the pedestal-core interfacc. They are positioned
horizontally at the nodes of the third harmonics. When

not in use, the Sb-sources are withdrawn by a long
handling rod into lead-filled coffins, which provide

adequate shielding.

2.1.3 GRAPHITE COMPONENTS

The graphite basic raw material was purchased through
the industrial group of U.K.A.E.A. and the machining has
been carricd out by Powell Duffryn Carbon Product§ Ltd.

The basic lattice block has a .25 ins. diameter hole



34

along its axis, and a 0.0625 ins. square section cut

from cach corner along the full length of the block.
These give a 1.250 ins. square hole for flux measurements
when assembled. The overall size‘of the block is

8 x 8 x 29 inches. The square-hole channels can be
filled with square section graphite bars which are
connected B . by graphite links.

The blocks on the extreme sides of the assembly do
not have a 0.625 in. square hole along two sides of the
block so that the boundary on the outside is linear.

The density of graphite in the assembly can be
increased by inserting (i) a graphite sleeve or (ii)

a graphite sleeve and a plug. Full details of these
compouents and the nomenclature of the possible lattices
which have been imvestigated are given in Appendix A-1.1

and shown here (for referencea

pPScF PSF
O ©
A B
FUEL NOT
SHOWN
+—PSFCD)
D D

FUEL POSITION L

DIMENSIONS NOT TO
SCALE 1“1(.)..2-1-2
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Since the sleeves are slightly smaller than the
channels)they are centralised in the channels by means

of graphité collars.

2.1.4 [FUEL

The fuel consists of natural uranium slugs, 1 inch i»
diameter, 11.5 inches long and covered in aluminium of
16 " thiclkness. The slugs are loaded into aluminium
Eubes, 8 to a tube,and the tubes inserted in the channels.
In case of lattices (C) and (D), each -Fuel Element
Al. tube is located in the centre of a graphite channel
by means of three thin aluminium spiders (to match the
channel) situated near the top, centre and bottom of
the channel.

The ass. ably is completely shielded with Cd)0.0lS
in. thick?which serves to give an ideal boundary condition
and also to reduce the thermal neutron flux level in
the surroundings. Steel corner posts connected with
cross-braces support the cadmium and prevent the blocks
from shifting. The top is covered by Cd sheets and
there are four corner posts, connected by chains,

o precaniam

asVsafetyVfor the persomnel working at the top.

The physical dimensions of all components of the

assembly are given in A-1. 1.
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2.2 TFLUX MEASUREMENTS .

The flux mecasurements, to evaluate the neutron
buckling as defined by a relaxation length b11 and by a'fﬂdﬂﬁ
extrapolation length k;, are reduired in vertical and
horizontal planes. These measurements were carricd out
by a BF3 prqportional countery of the type 12EB4O.

The counter 2.5 cms in diameter is enriched to 96% of
«py/
Blo and has a sensitivity of 3*n/cm2—sec. It has been
shown previously by Brown (8),and confirmed by Macdonald
(&)?that the difference between bucklings obtained with
5 EB/40 counter and 12EB/40 is negligible. Brown
reports that the change in relaxation length caused by
the introduction of the boron counter has been measured
as 0.04 L 0.03% in a typical case. Errors causcd by
variations in the local flux depression produccd by
the counter and its cable are negligible.
7L. flectronic equipment for counting was standard one,
and special attention was paid to the reduction of
instrument sensitivity drift and spurious pulses.

The counter is rigidly attached to an aluminium
positioning rod which can be moved along the axis of The
measuring hole and can be locked at 2" axial intervals.
The positioning holes in the rod have been calibrated
and found to have a random error corresponding to less

than 0.1% of the flux for the minimum relaxation length.
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The rod is constrained in the transverse direction by

a collar just above the counter. In case of PSF (ODD)
measurements the flux distribution was measured with an
identical positioning plate but with a circular cylin-
drical cross-section to fit in the plug holes normally
occupied by fuel elements. It was necessitated as

a consequence of making a symmetrical configuration of
squares of odd numbers of fuel elements. The fuel
clements were placed in the corner-holes and the measure-
ments had to be made in the inner plug-~holes.

The overall measuring procedure has been detailed
elsewhere (29). The pulses from the counter are fed
t;gﬁnin counting unit through a head amplifier, (Fig.2.3<).The
counting equipment is the standard one (4) consisting of
main amplifier (NE 5202), discriminator (D 4019/1),

scaler (ETL 127A type 4) and an ETL 127A type 4 timing

-i-

unit. The overall dead time of the unit is (2.0 - .02)
Uusecs. Special attention was paid to the reduction

of instrument sensitivity drift and spurious counts.
With the help of filters and constant voltage trans-
formers the mains supplies to all the instruments wRye
kept constant. Since the counting system was found to
be quite stable)the bias and H.T. curves were plotted
only once in a fortnight’bﬁt the counting system was
checked very often before and after or during the actual

experiment. The reproducibility of the counting numbers
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within statistical accuracy was used as the best
criterion for the true working of the system. For
example, a repeat measurement was often done at F6 and
the analysis always gave identical relaxation lengths.

The relaxation length measurements in the z-direction
were confined to flux distribution in the constant
Cd ratio region and for reasons discussed in the next
scction. The readings in each hole were taken from
the 3'4n position (measured from the redestal-stack
interface) to 5'G" position, in 2"™intervals, this being
dictated more by boundary effects and harmonics con-

=y

siderations. Each reading was of 107 counts, correspond-
ing o a statistical accuracy of 0.316%. Since all
the four sources uscd to be balanced at the start when
the sourcces ha‘o{. been newly irradiated and the holes
chosen were almost identical : ...+ except the

o
centralV&)ﬁh[ systematic error could be checked any
time during the experiment.

The flux plots in the X and/or Y-directions were
limited to 8Y interval. To calculate the extrapolation
lengths}the maximum number of points could bhe eleven.

The measured values of the extrapolated lengths are given

in Table 2.5.1.
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2.3 HARMONICS CONSIDERATIONS

The ultimate aim of an exponential experiment 1is
to determine the material buckling of the lattice under
study from measurements of the thermal necutron flux dis-
tribution in a sub-critical assentbly in which the flux
is maintained by means of mneutron sources (1). There
are however, soue inherent disadvantages in an exponential
experiment. IFirst of all,the system is in a steady
state rather than in a critical state, higher order
eigen~lunctions would be present in the solution of
diffusion cquation. Secondly;the introduction of
sources)%o maintain the steady-state and to counteract
the excessive loss of neutrons by leakage on account of
sntaller size, will give rise to a region of non-
asymptotic £flud distribution both on the approach of the

o
boundaries andYthe source plane. Thus}theoretically
speaking}the measured thermal flux distribution will not
be free of harmonics other than the fundamental asymptotic
flux distribution.

A rigorous investigation into this problem has been
done by Macdonald (4) and also the BICEF group. The
conclusions of the BICEP (23) group could be summarised
briefly in the next few lines.

According to the group, measurements and harmonic

analysis of the flux distribution to obtain the harmonic
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coefficients and the application of harmonic corrections
to the vertical line flux distributions occupies @cfﬂ%ﬂﬁiﬁdthi
time requircd to obtain the material bLuckling

of a given Lattice. . 1imzresu1tant change in the

value of the material buckling is much less than 1%‘

~"ﬁley concluded that the effort is not worth making.

The group decided to restrict their measurecments $o .

that they have not to apply any harmonic corrections.
Macdonald (4) has dome extensive studices on tha

sub-critical assembly under investigation for the measure-

ment and reduction of harmonics and their effect on

buckling measurements. As Sﬁﬁ@& before the exponcntial

assembly is in a steady-state rather than in a critical

state, all eigen solutions of the stcady-state diffusion

equation should be considered and the equation for the

thermal flux is

Q (x,y,z) = Z s A COS(IHTLX) Os(nj‘l‘y)
mry — —
m,n=1,3,.. a 5
1
x sinh ((c L)/bmn) 3.1

sinh(c/b )
mn

which is a solution of the well-known diffusion equation

in rectangular coordinates,

-2 2
VT e (x,y,z) - *T9(x,y,z) =0 2.3.2

the origin of axes being the centre of the assembly at
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the stack-pedestal interface .

The solution (2.3.1) of the diff&&on equation 2.3.2 is
true only for positive values of =z, C is the
extrapolated height of the sub-critical assembly. The
axial bucklings are related for the vertical assembly to

the x and y direction eigen-values by the equation

2 2
2 _ 1 . .2, o om 5
Yun = - noo+ (_ + (E 2.3.3
b & a
mn
where 5 N
M 2 2 2
R e I ) 2.3.4
MR 11 a b

@ and b are the extrapolated lengths of the assembly and
they have been kept separate for the purpose of better
understanding)though they are equal in the present case.
n2 corresponds to the first harmonic. The normal pro-
cedure is to reduce the higher order functions in equation
2.3.1 to a negligible level. In the case of the expo-
nential aésembly the sources have been positioned to
remove the third harmonic, namely A31, and A13 by placing

the sources at the nodal points of the third harmonic.

a/6 * source position

FIG.2.3.1
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In this way,the harmonic A33 is removed as well.
However,the higher harmonics still remain in the present
set-up to varying degrees, if the flux distributions are

to be analysed in terms of b a and b.

11°
Attempts here have been made to correct the har-

monics)buﬁgin the present,investigatiop7Macdonald's study
is very instructive. He has done measurements for the
symmetric harmonic coefficients for the vertical fueled
and unfueled sub-critical assembly at a number of
heights, all the measurements being in fhz region of
asymptotic flux distribution. Each harmonic measurement
consisted of 81 readings taken at the intersections of

a 9 x 9 measuring hole lattice. The measurements were

fitted to the function

¢(X,y)z = ZiAmn cos (mgi ) cos (2%1) 2.3.5
a b
m,n=1,3.

Values of Amn were obtained relative to A the values

11
of a and b having been measured in a harmonic free region,
and a typical result he obtained for the solid diffusion
s*ack at a height of "2 feet" above the pedestal for the
first 16 symmetrical harmonics A17 to A71 is directly quoted

here.
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TABLE 2.3.1

[7m= 1 W 3 i 5 7
n=1 100.00 ¥ .o% | -0.25 % .05 i -1.09 ¥ .06 | -0.03 I .o7
! |
3 - 0.06 £ .05 0.08 ¥ .06 | o0.12 I .07 0.02 £ .08
1 + + + i
5 - 1.06 = .06 | -0.14 & .07 | -0.02 T .08 | -0.02 I .09
7 - 0.11 ¥ Lo7 0.01 % .08 0.21 % .09 0.00 = .o1w

- -[he only harmonic
present to a level for detection purposes is A51 and A15

at a height of 2 feet above the pedestal. About this
measurement for the two fueled stacks_,he remarks that

A15, and A51 harmonics were present in detectable

quantities at the levels measured. Ile has not quoted

only the

any figures for them, ~ wlying thereby that they could
safely be neglected.
lle has drawn curves for the experimental and theore-

tical values for the harmonic ratio (A + A15)/A11 as

51
a function of the height above the pedestal. His measure-
ments indicate that the ratio (A + A )/A, , is less than
15 51 11

or of the order 0f,0.2% at 3 feet above the pedestal
and the ratio ranges within 0.1 to 0.5% for fuel and
practically no channels, and fuel-open channels,at this
level respectively, which are the two cxtreme cases in
the present investigation. The same ratio is of the

order of 0.1 to 0.6% for the diffusion stacks -+



at 3 feet level above the pedestal interface.

The latter measurement is not of very great importance
in the present study ;»q@@éh is concerned mostly with
fuelled lattices . : In his
analysis)he remarks, that the only harmonics present in

measurable quantities were A and A the harmonic

15 51°
content was small and the experimental errors relatively
large. To overcome this he studied the ''grouped!
harmonics in the y-direction due to a single, non-central
source at various heights along the line x=0. He
introduced the harmonics simply for the purpose of
measurement and exact knowledge of their magnitudes.

Even then)his measurements indicate {hat the ratio

( /Aml) was less than 0.4% at a level of 3 feet and

AmS
stabilising at 0.2% beyond for a solid diffusion stack.
Thus)according to his measurements ,the harmonic content
present in fueled stacks for all practical purposes
were the A51 and A15 harmonics and their coefficients
are negative. The magnitude {S - of the order or
less than 0.4% relative to the fundamental at a height
of 3 feet above the pedestal and even less farther
than 3 feet.

In view of the aforementioned considerétion%,

it was decided not to

apply any harmonic corrections.,because even when it is



46

necessary to apply the corrections one should bear in
mind the following considerations pointed out by the
BICEP group.

1) The perturbations to the first harmonic cosine flux
distribution caused by the presence of higher harmonics
are, in general, only of the order of two or three times
the standard deviation of the measured value of the flux.
For this reason the harmonic coefficicnts are, in any
case, subject to large errors ( 30 - 50%) and it is
important to combine these errors with the other experi-
mental errors of the measured flux values to which the
harmonic corrections arc applied. Failure to do this
will lead {to incorrect weighting of the flux values and

can produce errors of the order of 1% in the value of the

relaxation length.

2) The calculated values of the harmonic coefficients
are very sensitive to the values used for the stack
widths. IFor example, according to the group's calcula-
tions, a change in width of 2.7 cms has been shown to
increase the coefficients by a factor of two in a parti-

cular case. It is, therefore, important that the widths

should be taken as the physical width plus twice the
mean value of the extrapolation lengths. , In the present

worlk the width is of paramount imporxrlance because

in the reflected fueled systems the flux distribution
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is no longer cosine any more. And,in fact, there is no
possible analytical solution of a square core surrounded
by a square assembly with reflector around. In the
analysis (Chapters 4 and 5) the whole idea is to determine

the size of an equivalent bare system. As such,it

seemed impossible to apply any harmonic correction .

. o to a partially filled assembly case.
3) The measurements in the harmonic plane should be
confined to the regiom of equilibrium spectrum. Measure-

ments on the DICEP stacks have shown that, while in an
individual experiment the cadmium ratio at‘{he outer
points may not vary significantly, the results of a large
number of experiments may show a systematic variation.'

In view of these considerations,the following proce-
dure was adopted throughout the measurements.

Seventeen measuring corner-hole pointsﬂshown in
FIG. 2.3.2)were selected and the thermal flux distribution

wli§ analysed for the fundamental relaxation length and

D ; :
8 F8 H8
G
E F
- 7 - 7 - 7
D6 E6 F6 GG H6
* * " ° * NOTATION EXPLAINED
centre
. . . IN FIG.2.5.1(c)
3 F G
Es 5 5
D4 F4 H4

rig. 2.3.2
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the mean of all these measurements was taken. It could

be seen that these are practically all the available
measuring holes in the central regién of the assembly.
According to Macdonald the measurements could still be
extended beyond these points and still retain the desired
accuracy but this was thought the best arrangement.
Secondly, the measurements of the flux distribution in the
vertical direction weve confined to a region of an asymptotic
flux distribution extending from 3'4" to 5'6". The

flux distribution in this region)\
has an harmonic content of the order of 0.1%,which one
can séfely neglect without much consideration. This,
however, increases to 0.4% in case of open-channel fuel
cases. - BExperience showed that the nodal points
and the central points often used to vary in the opposite

difections Lfrom the mean and therefore did cancel the

extreme variations.

2.4 SOURCES OF ERRORS IN THE DETERMINATION OF THERMAL

NEUTRON FLUX

The possible sources of error other than the harmonics

may be briefly summarised below . I~
1) Counting Statistics and Counter Drift.
5

At each position a total of 10° counts were taken  so
that the standard deviation due to counting statistics

is 0.316%. No evidence of counter drift was observed.
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Any random error Iin counter position was due only
to lateral movement of the counter caused by a small
difference between the size of the counter locating collar

and the measuring channel.

2) Dead Time of Counting Equipment
The dead time error has the maximum effect. When

the sources are mnewly irradiated the correction is of

the order of 3}%, which corresponds to an error of approxi-
mately - .03 cms for b11 = 70 cms due to the dead time
error of - .02 S This in comparison to a typical

fitting crror of 0.32 cms is comsiderced negligible.

3) Counter Position

The counter could be positioned with an accuracy
- .. .o
of - .1 cms and errors arising due to the counter position

were negligible.

i) Background

In the horizontal direction the background flux dis-
, (Ceswe)

tribution is the samel and therefore is of no consequence,
and in the vertical direction it is negligibly small.
For example)usually it was planned that the experiments
should be performed as soon as possible after the sources
have been newly irradiated,and under these conditions a
count rate of 10 to 15 thousand per =sec was rea=ounabloe

TR T I [ N I N B B TT P AN NN BN I TP ] Cry i oo ooyl v oo
2



10 counts per sec is not worth applying.

The JM26¢$§ﬁ§% }ﬂY a small harmonic correction was
excluded by selecting the position
of the measuring holes and taking the mean value of the
relaxation lengths over the whole region of the stack.
The dead time correction was always applied at each

measuring position for all flux distributions.

2.5.1  EXPERIMENTALLY FITTED VALUES OF RELAXATION LENGTIIS

AND OIF EXTRAPOLATION LENGTIIS TO THE MEASURED FLUXES

The relaxation lengths b11 were fitted to the

expression

sinh((c—z)/bll)

@ () = A

sinh@>/b11)

and for cxtrapolation length in the X and/or Y dircctions
to

¢(x) = A Cos (—a—?,-‘- : .5.2

18]

The description of the programmes.used for the purpose

is given in A-2.1 and A-2.2. The expressions 2.5.1

and 2.5.2 have been fitted to the experimentally measured
thermal flux distributions by the metihod of least square

fitting, i.e. by minimising the sum of the residuals of

the theoretical and the experimental flux distributions.
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The thermal ffTux dis=tvrvibuations have been analysed

Por hll for Nixed height: the experimental error increases
to 2-3 times in case of variable hedight analvsis as com-

parved to the Mixed heidght case.

Macdonald had done =eparate measnrements
to ind out the extrapolated height of the suab-critical assembh:
Thereflore, his independent measurcement s for extrapolation
Length Lor hedght were taken as such. A= o lest measure-—
uu:u-t) average b [ was found to be in very close agrecment

with his measuvcment, e.g.

(h) (present )
bll cn b’l , cm (ave.e of 7))
PSP GY.94h = .08 G9.92 - .07

Roadial extrapolation lengths have been detcermined
by mecasurcemeni~ in the horirvontal plane and [itiing to
the expression 2.5.2 by least squares method. The results are

e Yo L

reported in Table 2.5.1 below.
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EATRAPOLATLON LENGTIIS TN VERTICAT. AND HORTIZONTAL DINRECTTONS

T .
| LATTICE le_v(u\ia 1) -}l{(l""l(liilr ) W
Pscr 2.78 - .11 cums 2.352 - 0L cms
PSP 2.78 2 (11 cms 2.80 1 .04 cms
S 5.3 < .15 cms 3.20 2 .06 cms
OCH | 7.0 2 .2 cms O 3.80 5 .07 cms |
| ]

TABLE 2.5.1

The vegection of individual moasurcmelnnt 9, waos

carcvied out it the valuce of the residual was

2] ")
(¢ . - )T/ T > hloo
Li (Pill.l.) / i
This amounts to scetling a confidence Limit ol 95, The

resulls of measurcements o the relaxatvion leneth- in
the vertical dirvection are Labutated in Tables 2.5.2
hY
Por all coxes under investigation. T the tdrsc coluum
L= the mwumber of fuel elements <ymmetvical Iy placed in
square array i the centiral part of the subh-critical
asscubly . In vacancy cases (he apparent quoted namber
s Lhe same buat the corresponding mumber of fuel oloments
. A . 1,
have been taken out, c.g. in casce of /9 vacancy 1'SCh
quoted under 4 fuel elements the actuaal number of fuel
clements is 128 and there are =ixteen vacancics creatoed

thereby. It is sometimes written for clarvity as



CASE

No.
Fucl
Rods

14l
100
6h
36
16

No.
Fucl
Rods
144
100
6l
36
16

PSCr

of

of

b11

cm

70.378.3
Z0.304,0Q
68 996,3
0.290,4
6h.677,6
lo.244,2
57.086,3
:O. l?)a
48,841, )
£0.119,
fg.)77.)
~0.08G,0

cm

69 9185)
l .298,5
68 840,8
- .288,5
64.790,3
I nk7.5
57- &00 1
- .180,1
%9 181,4
- 130,3
{~-9)),
.087.,6

3

10" “cm”

1.420,89
Z.004,60
1.449,35
2.004,57

L. 546,13
Z.004,38
}-?)1 273
Z.004,02
2.047 42
£.003,76
2.348,66
-.003,55

-2 -
10 “cm

1.130,24
.004,58

2,63
.004,56
503,40
.004 ko
L7h2 16
.004 ,10
.033,29
.003,73
. 328,00
.003,56

PHES THD e s e 1

TABLES

10"4cm~'2

.018,9%
01)1)8
. 100,62
.016,16
.390,52
-01/199
:é 068»)/

Or_._, l)
h.191,94
—.099,u“
? 516,20
-.037,k2

i -rlJ l T[J

I~H\3

+

036 -~

2.045,58
~.015,7h
2.L10 12
-.016,22
2 .382,21
2.018,02
3.035,11
Z.022,10
4 13&,26
-.028,
5.419, )9
.036,78

-
2.5.2.

. 002

2.039,56
.016,25
22,08
.016,86
LAk, 94
.018,79
.099,91
.023,20
.23%,75
.030,69
. ‘t/us )!L
.039,38

[

P-A 140 11
.

e

|-+4\."I l

2.120,02
-.016,82
?.186,91
-.017,33
2, 468,90
.019,27
L1h5,56
.023,37
.284h,71
.030,91
.616,81
.039,63

N1 I RN NV



CASE SI’

No. of

Fuel RNods

14h
100
6l
36
16

CASE OCr

No. of

Fuel Rods

144
100
64
36
16

L

11

cm

23.6614
-.3356
72.0972
-.3175
99.080&
-.2850
63.7487
-.2305
§7.2593
-.1750
;1.6308
-.1362

11

cm

25-7544
-.3600
24.6497
-.3572
(2.0051
§.3152
§7.7611
-.2641
91.7472
-.2109
;6.7867
~.1692

M

MR

s

o

M

Mp

.357,56
. 004 ,6
.387.02
. 004,58
C4h7,59
. 004,48
.568,67
.004,2

706,44
. 004,00
.936,83
.003,83

[T B I S R L

1.330

Y11
..2 -
10 “cm

1.320,06
~.004,70
1.339,59
.004, 80
.387,25
. 004,55
475,77
.004,31
.619,51
.019,21
}.760,98

~-.022,12

T b L |

TABES 2050

+

1

23,81

. 004

o]

Yi1

-1 -2
10 kcm

1.742,55
<.013,60
1.794,50
-.01%4,15
1.924,46
-.01h,7

2.177,91
~.016,27
2.622,80
Z.019,21
}.101,04

Z.022,12

.y -
10 Lcm 2

2.177,62
~.017,75
2.273,1

=.018,43
2.476,01
-.019,87
2.907.,52
1.022,80
2.603,88
2.027,50
4,432,545
-.033,17

1O_thcm_2

2.317,36
Z.019,38
§.386,46
-.020,14
%-559'29
2.021,09
2.896,34
-.023,32
3-487,99
Z.027,62
%-123,98

--031,93



CASE DSTF(ODD)

No.
Fuel

121

g1

of
Rods

cm

69.0721
2.2890

Yy
-0
10 !

' . ”L'IAT b 4_(,’
SL.004, 50
i.h96,h6
- 004,37
.59%0,0862
.004 , 49
1.890,37

2.003,88

2.196,73
2.003.64

TABLES 2.5.2

Ul
Ll

M7
s ., 2
) ! 1 !
M7
1
- —
10 Cnl

3.669,3k
-.026,98
1.955,02
£.035,33



CASES QF 1/9 VACANCY

N
No. of b v 2 s ¥ 2
- . - - Y )
Fuel Rods i H ' Mmoo
-0 - I ~9 =1 -2
cm 10 “cm LO "cm O “cm
PSCFL28 67.3076 L. A85,72 2.207.35 2.227,48
VAC 10 l.2705 ~-.00%4,418 =.016,80 -.018.,2
’SCF8 65.5381 1.800,57 } °&3,03 3.271,603
VAC 1 <.1649 -.004,01 - \ 35 -.025,49
PSF128 67.1012 1.%83,65 2.201,23 2.272,84
VAC 16 -.2745 ~-.00%4,53 - onG,d; 018,61
PSFD 72 6& 98 1.551,60 2. 007 0l :.472,01
VAC 9 - .2405 .00, 34 L018,040 2.019,87
PSFD 8 45.4968 2.197,96 h.831,01 .960,57
VAC 1 -.0991 -.003,59 -.032,92 -.036,76
SF 128 #0.2314 1.384 44 1.916,68 2.228,67
VAC 16 .3195 -.004,59 o1l ,77 -.018,81
SF 32 63 0804 L. )85,28 2.513,10 2.922,179
VAC 4 l.2257 L.o0h, ~.018,6% 1.023,89
ASYMMETRY [ACTOR

PSCF 128 vAC 16 1.009 : .003

PSF 128 vac 16 1.033 + .003

PSFD 128 VAC 16 1.026 2 .003

SF 128 vacC 16 1.163 2 004

TABLES 2.5.2

N



CASE OF 1/9 STEEL

No., of
Fuel Rods

PSCF 128
STEEL 16

PSCr 8
STEEL 1

PSF 128
STEEL 16

PSFD 72
STEEL 9

PSFD 8
STEEL 1

SF 128
STEEL 16

SF 32
STEEL 4

11

cm

;5.445&
Z.1685

&9.4681
I.1210

§5-8529
-.1611

§4.0161
-.1506

&3.6271
-.0907
§1.7631
27.2166
“e 1?21

LET!

:lO—zcm"1

1.803,58
-.003,99

%.021.50
~-.003,70

1.?90,42
-.006,71

1.851,30
-.006,94

2.322,20
-.008,70

©1.619,09

.006,28

1.747,74
-.003,98

2
Y11

10-licm“2

;.252;89
"023,37
4.086,48

Z.028,30

3-205,59
-.022,69

;.427,32
-.024,25

5.392,59
"037115
2.621,45
—0023 ,63

;.054,61
".021,81

57

M 2 )
_.Z._Y

M2 t
10—4cm~2

3.287,53
-.025,52

2.130,00
-.031,08

3-309,89
"0025133

3-519,23
"0026’93

2-533,39
-.041,41

2.048.16
-.029,41

;-551,83
-.028,16

THE ASYMMETRY FACTORS IN THE PRESENT CASE ARE THE SAME AS

IN THE CORRESPONDING VACANCY CASES,

TABLES 2.5.2
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M
CASE PSCF108VAC36. -z

o

No. of

Fuel Rods

144
100
64
36
16

CASE PSCF 108 STEEL 36

- No. of

Fuel Rods

144
100
64
36
16

b11

cm

§3.205o
-.2285
§2.4394
-.2207
29-1301
-.1901
23-5117
~-.1485
§6.9293
-.1087
&1.9502
-.0835

11

cm

§4.8926
g4.6577
”01002
34.0723
-.0975
§3.4651
-.0914
§2.1520
~.0841
$0.7128
-.0755

n

10.-2cm”1

2.227,54
-.004,19
3.239,26
~.003,78
g.269,00
-.003,76
3.300,70
-.003,63
§»372'37
"003’56

456,23
-.003,41

.
TABLES 2.5.2

10“4cm"2

2-503,21
~-.018,65
3-56é,97
-.019,01
5.860,11
-.020,82
3.492,23
-.034,77
4,540,58
2.031,42
2.680,77
-.038,54

.003

58

M 2
Z

— =Y
M 2 11

10°4cm-

2

2

3.522,62
-.020,24
3.584,86
-.020,64
§.882,30'
~.022,67
$1219,30
-.027,07
§-575,79
—'034$47
§.724,82
-.042,41

10—4&(:111-'2

5.000,40
~-.020,24
2-053,14
'0038135
;.188,27
’-039136
;.334,24
-.039,85
;.671,76
-.041,98
§.079.84
-.044 ,28



CASE PSCF 72 VAC 72

No. of
Fuel Rods

144
100
64
36
16

CASE PSCF

No. of
Fuel Rods

144
100
64
36
16

b11

cm

;5.6166
-.1640
;5.1451
-.1604
;3.1196
-.1475
&9-4999
-.1220
24.9764
-.0975
§1.3376
-.0795

STEEL

b11

cm

33-9959
-.0510
33.9145
~.0506
35.4822
-.0564
24.3343
-.0529
;7.2606
-.0637
29.0452
-.0695

z_
2
Yp

10 %em™ 1

1.798,02
--003 197
1.813,40
-.003,95

.882,54
-.003,92
2.020,21
-.003,73
3-223,36
-.003,61
§.419,11
-.003,49

2

10" %em™1

%-941,53
_-003935
2.948,59

| ““003,30

5.813,31
"-003136
3.912,54
-.003,36
g.683,80
-.003,44
2.561,15
1.003,42

TABLES 2.5.2

1+

= 1.005

L w2

10" *cm

2.232.89
-.023,19
3-288,41
-.023,52
;-543,97
-.025,24
$.081,23
‘0028337
$.943,35
-.033,80
5.852,07
-.039,32

10"4cm”2

§.652,61
""-056,95
§.694,19
-.056,80
z.942,9o
-.052,36
§.482,89
-.055,97
¢.202,78
-.048,06
6.559,41
*.043,62

59

10" *em

3-249,99
_’025!25 E

;-305,81
-.025,62
;-562,72
-:027,51
§.102,83
-.031,03
§.969.50
~.037,07.
5-883,03
"043 ,25

10 “cm

§.698,39
-.062,86
§.74o,19
-.062,77
7-984,92
“-057t78
§.527,?7
-.061,75
2.240,89
-.052792-
6.594,11
X.048,07
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PSCI* 128 VAC 16 and so on. In the next columms the

-2 2 2
and (Mz /MR Yi1 ) are pretty

1 2
symbols b11, Y11’ Yqiq

well known.

The error guoted under b is the fitting error

11
but in calculating the errors in Y4 and the related
parameters take into comnsideration that it is not

one solitary measurement but an average of 17 fitted b
independently measured thermal flux distributiouns.

The details of calculation of errors Ar¢ given in the
next section.

Curve (A) shows the variation of the relaxation
length experimentally measured as a function of the number
of fuel rods and is an indication of the build-up of the
steady-state condition from the ordinary diffusion stack
condition. It is instructive to note that from the

graph we have the value of b for no fuel and the exXperi-

i1

mentally f(itted value for the diffusion stack as

CASE '.1(Graph) b, (Experiment)
PSCF 40.15 = 0.10 cms  39.8%4 % 0;07 cms
PSF 40.20 £ 0.10 cms  40.30 ¥ @.07 cms
or PSFD . .

Sk Lo.30 = 0.12 cms 48.98 Z 0.12 cms
OCF 54,50 £ 0.1h cms  54.35 £ 0.15 cms

Even though the extrapolation method is subject to
large cerrors, these values agree guite well within

reasonable accuracy of fitting error in bll‘
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A similar conclusion is reached if we extrapolate the
measured thermal flux distribution in the horizontal
direction for radial extrapolated length in comparion’

to values in Table 2.5.1. . Curve (B) is an identical
curve to the case (A) but herein the lattice under study
is PSCF and has vacancy or steel in it, one per four
lattices or two laftices, and their intefpolation to zero

number of fuel elements gives

b11 (Graph) b11 (experiment)

All Cases 40.15 ¥ 0.10 cm 39.80 X 0.07 cm.

The purpose of the curve (C) is to show the variation
of b, (relaxation length) obtained in a typical experi-
ment of 17 measurements. The letters indicate the number
of the laftice in the x-direction and integers show the
number of the lattice position, (specifically corner hole
position in the y-direction).

The curves D, E and I indicate the effect of asymme-

try factor introduced because of the streaming corrections
1}

applied to the square of the inverse of the relaxation

length (Y112). The value of the experimentally measured

axial buckling (Yllz) increases to (Mzz/MR2 Y112) hence-
oS '

forth referred to Y M"Axial".

practiealty
In case of PSCF, PSF and PSF(ODD) the points‘’coincide
on the graph - and therefore their extreme

variations as "maximum" of axial and "minimum" of 7112
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Oye indicated and the central one marked ”average"7indi—
cates the variation of 7112 over the whole spectrum of
number of fuel rods7and it is revealing that they seem
to fit a pretty well defined curve,though in case of
PSF compared to PSCF, the streaming factors have incfeased
considerably because of the removal of corner holes
(void increase a 2.5%) while in case of PSF(ODD) even the
lattice has undergone a slight change in its configuration.
The curves E and F are very clearly marked and show the
streaming effect quite distinctly and follow a similar

pattern.

2.5.2 ERRORS ARISING IN THE CALCULATION OF TIHE RELAXATION

LENGTH AND THE RELATED PARAMETERS FROM THE FLUX

In analysing the flux distribution to obtain the value

of b the standard deviation of b is taken equal to

11’ 11
the fitting error which very often ranges from 0.4 to
0.5% and the accuracy is in reasonable agreement with
dther measurements (23), Thi¢ may be due to
1) possible harmonic contributions and
2) error in countfY positioning.

The magnitude of the final error given in Table
2.5.2 depends on the number of measured flux points and
on tﬁe number of relaxation lengths ove} which the flux

is measured, Since,in a typical experiment, 17 measure-

ments of relaxation length are made the average of all
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thosc has been reported unless rejected, the error is
reduced by a factor of J17. Ih a normal distribution
(42) the probability that an observation lies within 30
of the mean 1is 0.9973.‘T%ZM the range of a distribution
conforming to the normal type is effectively 60O.

The range (x : 3.090) is the 99.8% =zone and that uan obser-
vation lies outside this range is 2 in 1000. It is *%w’

this reason that the actual fitting error in bilis

reported, which gives an idea of the fitting error in

b11 an% at the same time,a fair idea of the range within

which a measured value of b1 should lie in an experimental

1

measurement.
In this context, therefore, it should be remembered
that the standard deviation is equal to (3.09//17) of

the figure quoted in the Tables under the value of bll’
2
the relaxation length and the error in Y11 and Yllu is

calculated in a normal way. To calculate the error in
M

the axial buckling namely —ﬂg Y112’ the asymmetry factor
MOT

comes jn)which has not been measured during this study.

2

However, these measurements have been done by Macdonald (4),

and his results are

Latti M 2y 2
,attice M, /L&{

PSF 1.027 < .002
OCF 1.306 = .003

In the light of this information>the following errors
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in the asymmetry factors were assumed.

Lattice U(.Mzz/MRz )
PSCF )

pPSF ; 0.002
PSF(ODD) ;

ST : 0.003
OCF 0.004

PSCF 128 VAC 16

PSF 128 VAC 16 0.003
PSFD 128 VAC 16
S 128 VAC 16 0.004
PSCF 108 VAC 36 )

0.003

N N

PSCr 72 VAC 72

TABLE 2.5.3

The asymmetry faétors were calculated according
to Syrett's model (7) and are reported in detail in the
next chapek@y. The errors in asymmetry factors in some
cases w€® increased knowingly,since his measurements
were done with stack fueled,while in the present study
the assembly is often partially filled with fuel elements.
The errors in 7112 and MZZ/MR2 were assumed to be inter-
dependent and therefore the combined‘error in the éxial

buckling (42) was ealculated by the expression
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2 2 AX 'z 2 AYZ
O’axial = 0 2 (, 2) * q% (55 ) 2.3-3
Yi1 Y1q
where 2
. MZ 2
axital = AX = ;{R-;E Y11
2 =
AX = a Y11 2.5.4
2 Mz“
In Table 2.5.%4 the errors arising in Y., and —— Y.,

both

1) due to fitting error in b11 and

2) due to the maximum possible error of 0.5 % in b,
are given. These have been tabulatediside by side for
the sake of comparison. Only the four representative
core cases hav?'been givenythe rest have been left. In
no casc . wasvfoﬁnd that the fitting error~QA§greater
than the maximum possible error of 0.5 % in b11.

2.5.3 DISCUSSION

The conclusion which can be drawn from the present
experimental results)tabulated in Section 2.5.2 and plotted
in IPIGS. 2.5.2,could be summed up by saying that the

thal

results are accurate to the extentYan experiment ¢ aMn.
predict a measured axial and material buckling (Chapter 3)
for the neutron flux. The accuracy of the measurements
is compatible with the accuracy reported by others (4, 23).

fn ol cases . the mavimum pos=<ible crvor Jdoo o an crrorp



t— PSCF PSF

Case Y112 Mzz/an Y112 Y1 MZZ/MRZ Y112

No. of Fuel|Fitting 0.5% error|Fitting 0.5% error Fitting O0.5% Error| Fitting 0.5% LError

Rods Error in inb | Error in in b Error in in b Error in b,

b 11 b 11 b 11 in b 11

11 11 11 11

144 1.558 1.676 1.625 1.740 1.574 1.704 1.682 1.813

100 1.616 1.761 1.687 1.828 1.622 1.771 1.733 1.884

64 2.799 2.070 2.879 2.145 1.802 2.061 1.927 2.189

36 2.215 2.829 2.320 2.923 2.210 2,790 2.370 2.955

16 2.922 4,178 3.069 4,303 2.874 4.106 3.091 4,335

4 3.742 5.888 3.938 6.049 3.678 5.759 3.963 6.066

SF ocr

144 1.428 1.496 1.775 1.851 1.359 1.394 1.938 1.981

100 1.481 1.578 1,843 1.952 1.415 1.447 1.014 1.053

64 1.595 1.756 1.987 2.168 1.476 1.579 2,109 2.236

36 1.825 2.147 2.280 2.642 1.627 1.843 2.332 2.601

16 2.195 2.807 2.750 3441 1.921 2.325 2.762 3.265

4 2,641 3.636 3.317 4,441 2.212 2,866 3.193 4.008

TABLE 2.5.4

The errors in 7112 hnd (MZZ/MR2 7112) have been multiplied by (10° cm®).

~1

2
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of 0.5 cm% in the b11 has been considered. The fitting

v

error in b11 and the extrapolated length measurements

has been always less than the waximum errors qguoted in

the literature.



CIIAPTER 3

IIOMOGENEOUS REACTOR THEORY (Unit Cell Method), DERIVATION

OF CHARACTERISTIC PARAMETERS AND TIIE EXPERIMENTAL RESULTS

3.1 THE METHOD AND THE BASIC ASSUMPTIONS

The essential feature of the unit cell method of
Wigner and Seity is that it represents a typical lattice
element of a heterogeneous array by an  Eguivalent unit
cell -. The lattice ‘s regarded as a periodic array of
identical unit cells, each having a fuel element symne-
trically located in it.havimna?mhsymmetry of the cells,

a single cell may be taken as representative of the
infinite array. In this wabed, L2, Lsg, etc. are
calculatcd,and for macroscopic behaviour of the reactor,
the lattice is replaced by a homogeneous matérial having
the same characteristic values as the actual lattice.
InMcase of big coolant channels as in the present cases
streaming correctiomns in axial and transverse directions
need to be applied. Ilowever, the basic assumptions behind
this treatment are that

i the reactor is large and the neutron flux does not
change appreciably over a distance of one lattice pitch »
implying that there is no interaction between microscopic

and macroscopic fluxes;

1i) the necutron energy spectrum is the same in the finite
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reactor as in an infinite array.

In performing a calculation based on this model,
the usual.procedure is to specify that the net neutron
current at the boundary of the cell is =zero. The
neutron flux distribution in the unit cell is obtained
with the aid of diffusion theory (for more accurate work
transport theory may be used) depending on the size of
the lattice. Having determined both the energy spectrum
and spatial distribution of the neutron population in
the cell, thermal'utiiisation, resonance escape-probability,
g fast fission factor and n the reproduction constant
can be evaluated and finally the infinite multiplication
constant K_. Most of the calculations reported in this
chapter have been carried out according to the procedure
laid down by Syrett (7).

In sections 3.2 and 3.3. of the present chapter
details of theoretical calculation of flux distribution
and all the lattice parameters are given without any
reference to actual computed numbers. In section 3.4

ove given the computed results on the basis of theory
outlined in sections 3.2-3. The computation has been
carried out by the programme described in Appendix
A-2.2. The expe?imental results have been compared

with theory and discussed in the same section.
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3.2.1 CALCULATION OF FLUX AND THE LATTICE PARAMETERS

Let us consider the case of cylindrical fuel rods
embedded in a moderator with a square lattice pitch.
If we assume the uranium rods to be infinite in length ol
thén yhelattice is replaced by a cylindrical omne equi-
valent in cross-sectional area keeping the fuel chammel

boundary intact,

10!

then p2 = Eamg 3.2.1

Now we have a uranium rod of radius ag in a lattice
cell moderator of radius a - Since the production of
thermal neutrons by the slowing down process is such that
no thermal neutrons are produced in uranium and therefore,
the production rate of thermal neutrons is constant at
all points in the moderator. Thus the steady-state

diffusion equations in the uranium and moderator are

2 2
2 2 S
- N —h —— = 3]
V‘pm “m 9m D 0 3.2.3
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Solving these two equations by/usual procedure under
the boundary conditions .
i) #lux is finite and symmetrical everywhere in the
lattice.

2
ii) ¢ = @ at uré@lium-graphite interface, 1i.e.
reE gy, ao}
iii) The neutron current in and out of urnaium-graphite

interface is equal i.e.

D 6wm~D8w° 2wt r = a =
m  §r o §r a = 8 T Sy
iv) Zero current at the boundary of the lattice, i.e.
O
2. 0 at r = a_.
m §r m

The expressions for flux in Uranium and Moderator would

be
= < 9.1
Cu A ;o (nur) 0 <r < a, 3.2.4
_ S
e = CI (w r) +F K (hr)+=
m o . m o m 3
am

< r < .5
ao sr < m 3.2.5

The shape of the flux distribution would be as in Fig.

3.2, 1. (Obber SN6ibaG3w)



78

Uranium

Moderator

\_///_—I

IFlat Dist.

leyjo m [
FIG. 3.2.1

Knowing A, C, F, the flux’distribution can be

plotted.

3.2.2 CALCULATION OF THERMAL UTILIZATION

The thermal utilisation is defined as

absorption in fuel

£ total absorption in the unit cell

Since we assume that there is no net loss of neutrons
from the cell, therefore totalAabsorption in the unit
cell is equal to total thermal source term SVm, Vh

being volume of the moderator)then

" au.
f = v 3.2.6

where ' a

o
;¢ 2nr d
[ e onr ar
o

sl
i

U AV, flux in uranium =
. 9]

Tas
- o



) = . 1 (% a ) .2.7

On substitution in ecq. 3.2.6 we have

A% ” .2A
= =2 2L n
£ - \% M a J).S8 ¢ I1 N uaﬂ)
1 a0
[ e ®_oa ) ;
i _ i u o 1 (é) 3.2.7
T = V. 3=v T o)t A st
O au 1 u o

il we make use of the boundary conditions (ii) and (iii)

of section 3.2.1 for r = ag and r = a

m
S Dunu
> = ) KN o 3 - . ¥4 3.2
= L [io(umzo; = M ( V] 3 8
m m
where

T (n a JK, (" a )+K (%t a )1, (M a )
o 1 m nt o m o 1 m

n
M Gradl = T, (n a ) [0 : — : ]
' oo i noa - "o "¢
© - uo 11( mlo)hl( Y m} hl( m 0/11( mqm
Ultimately the expression for [ reduces fto
L “n E'ml
- = i hrgeamn - hd - » ! _w .2.
f 1 Vv z G A 3 )
(o] an
where
M uao 1 (Hnao)
. _ o 1o o
G = 5 . (F a7 3.2.10
1l o
(a *-a = "
}{ =_. =2 T o - C M4 R (- .
X = m am 10 ) rlo( 11 10)1\1\ m 11111 tl\LO( m 10)11(}‘1“&“1) ]
‘ 2a "T,(xw a K (u a )-1T Ot a jKk, (n a
1 noin l 7w o 1 m o 1 mm
3.2.11

X is the excess absorption term which arises due to flux

rise in the moderator and would be =zero i{ the flu. were
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flat. In general for a complicated reactor lattice

we can write

1 V. I
X = 1 + PN 1 1
f ; V.t

i, o “au

all components

Gi
T 3.2.12
o

The method can be extended to include epithermal
neutron absorption, and flux fine-structure distribution
in the lattice.

Following Syrett (7)’it is assumed that thermal
neutron spectrum is Maxwellian and the fast neutron spec-
trum follows 1/E law. It is assumed that the fast flux
is constant throughout the lattice. Westcott's defi-
nition for the neutron flux and the cross-sections is
used, which is defined as thetreaction-rate of a 1/V
detectog,having unit cross-section at a neutron velocity
of 2200 m/sec (.0253 eV}. The slow neutron group
includes only those neutrons which have a Maxwellian
velocity distribution. Epithermal absorption and
epithermal fission are associated with slowing down and
resonance absorption in the epithermal range which ex-
tends from thermal velocities to fission threshold velocity
of 6238.

a9 g
The thermal utilization factor f5 for U“B) is cal-

culated by

54

zSa " zxa

A



where zxa includes the absorption in everything other

than U=3°

and the quantity (fn) is replaced by its
numerically equivalent quantity (f5n5).

If we now expand the expression (3.2.12) it would

be written as

'% =1+ Ag o+ AL+ A 3.2.1k
5
Rt
where A = 280 (1+ﬁ u)
8 %o N
vV T (crsGg + B' )
A = g»ag . u
g vV oz N'
v (@ ')
= n “mn Bt By
11 T
VaZsg N
and
Nt o O5M g, Se
O ' 4 g
50 50 -
— ] T 5P Yy sy (b)
y - o - - 3r I3
Py H Ea Ve sg
n = T} ..g.'_f.s (T) .
5M 50 €a5 ()

B, C, G, R and S are the flux ratios defined in the

latter part of the present section.
T ™ 1is the room temperature

- 9
ﬂ50 = 2.033.
Values of g's have been taken from Tables (7).

The inverse diffusion length in graphite is cal-

culated from the expression



w (T ) 0.00933 s ./& c¢m L (a) 3.2.15
g O g

fp

T 20.4°%¢
O

i

o 1s in millibars, which is calculatcd according

to
1.52
- —_—— ' .
cg(:in air) 1.0/7)\(5g + 5 1.0691)
(b) 3.2.15

where @' is the Gleep value for A=grade reactor graphite.

'
g
C"% = 4.1 mb has been used for the graphite which is of the
~ame vintage as the graphite used in the carly BICEP

work (237. This is the quantity defined as "old Cg”

by Syrett (7). Fquation 3.2.15 is the correction to Lhe
graphite absorption cross-section on account of alir
{nitrogen) present in the pores of the graphite. The
inverse diffusion Jength for the natural uranium fucl

is

uw(To) = 0.89 5. 3.2.16

There is no need to apply any tcorvection {for Lem-

perature and enrichment for the fuel av:x:i.,laBLe (natural

A H
uranium). The parameters i » 1 and [—E—E-—] are defined
u u )\G
as
[ 2] 0.6h S (1¢ -2)
; = 3 14— R I
"\u,"'u O bu. 1+ gm} 3.2.17
2
" QG
— = 2 S8 — - 2.
[Au T ] 0.20 glvg (1 " ) 3 18



The ratio of maximum to mean flux in a uranium

rod G is given by

Io (uu‘ao )

H_ . a

HEL G = “u._o
- 2 I a

iy ag)
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3.2.19

while B,the ratio of mean flux in sheath outside fuel

~

to maximum flux in the uranium_is

2
ao 2
B= 1 * 3G [&nﬁu ] . c, 3.2.20
where C1 is'a temperature dependent constant. C, the

ratio of the flux at the outer edge of the sheath

outside the fuel to the flux at the outer edge of the

uranium)is given by

b3 \
[y ]

3G 2

C= 1+ —s7r . C¢C 3.2.21

C2 = temperature dependent constant.

Similarly for R and S

2
[y n =]
R = 1 +"_E"""}"—" - a 2 ('l - 'l ) 3-2022
3GC o a g
_ n n
Xnﬂnz ao2 X '
5= 1 [ 3 1. GCRS «x 2 3.2.23
g g

X is given by eq. 3.2.11. Symbols R and S denote ~&especlively

" the ratio of the flux at the inner edge of the moderator

to the flux at the outer edge of the sheath outside the

fuel and the ratio of the mean flux in the moderator

to the flux at the inmner edge of the moderator.
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3.2.3 CALCULATION OF FAST FISSION FACTOR

235

When U undergoes fission, fast neutrons of

average energy 2 MeV are emitted. Though the energies
.

of the prompt neutrons cover a considerable range (up
to 10 MeV) yet the majority, however, have energies of

1—-2
about W2 MeV. Those with energy above U238

fission
threshold (1.1 MeV) cause fission and the '"fast fission

factor €" is defined as

_ Neutrons slowing down past U238 fission threshold
N Neutrons produced by thermal fission

The main contribution to this fact comes from
i) mneutrons colliding with Uranium atoms in the same
fuel element, and
ii) mneutrons colliding with uranium atoms in the
neighbouring fuel elements.

The contribution from the second effect in the
Present case 1is so0 small that we can simply neglect it,
since the lattice pitch is 20.32 cm¢ and the scattering
mean free path for graphité is 2.57 cm)and it is
improbable that a fast neutron from one fuel element
would reach another flel element as a "Fast neutron"

38

fission threshold. However, in

with energy above U2 Y

closely packed lattices this would be predominant.
The main contribution to this effect in the present

lattices studied comes from the first effect and it is



thercflore sufficicatly accurate to calculate the fast
Cission factor in"a single isolated fuel element'.
Following the usual =slowing down process of fission
neutron in a ur' ium 1rod (1), we will arrrive at the
expre=s=ion for (ast fisslion factor as given below

a (l) T'[Al))

Qlvg, = 1 - ==
81 “rr Yur

== b QVar O + O ez
, 81 “8fF " “er ,
L - -~ (prap)
SuF
whevre
. 23
Q= ffraction of neutrons born with energy above U
oS
fission Lln‘esho,l(l7:u1d is takenbtequal to 0,522
po= “the probability that a fas<t fission ncutron
will make o collision inside the l'uel rod in
which it was created is given as o function
£ N i 7
ol ( u urs’ (7)
1
DY < - -1y )
| 2 Vu ul’ . Vi l"(" )
P = (]—L)) \r 3 z [l - v =2 ‘:| (Lln»(ll *_1 Y
e gl n=0 L
3.2.
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2k

8

25

The summation term is also given as a funciion of

3 ! ur

o - (1-p). The other terms have their usual
g er

slgnificance.
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3.2.4 RESONANCE ESCAPE PROBABILITY

During the slowing down process, some of the
neutrons are captured in non-fission processes (especially,

238)

U , so0 that not all the neutrons reaﬁb thermal
energies. The probability, that a neu%ggn will escape
capture in slowing down from E_ (fission‘énergy) to I

is called the resonance escape probabilitybpzfor neutrons
of energy E7and is equal to the ratio of theiélowing
down density at E with absorption to the slowiﬂgadown
density at energy E without absorﬁtion. If we céhsider
the resonances as narrow and widely spaced, then thef

expression for the resonance escape probability at

energy E can be derived (1) to be

E

’ © %mr . dE

p (B) = exp [- j BT 3.2.26

E ¢ (& &) .
ax. s
ES = macroscopic scattering cross-section which is
constant for graphite over the whole energy range
z = N o
o W auw

and if we define

E
‘\0 (e} r [
RI *= | (2 d? = Resonance Integral 3.2.27
b + L /E
E an s
- Nu
. . p(E) = exp [- gz . RI] 3.2.28
s

Where RI and have their physical significance as

Y«
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(a) NHRI = effective absorption cross-section for
resonance neutrons and
(b) C"S = removal cross-section (slowing down cross-

section) beyond the resonance region.
In a heterogenous lattice-&%athe present one the
two proce;ses are competing. IHowever the separation
of fuel elements from the moderator leads to self-
shielding of the resonance neutrons and p is considerably
higherg?;\the same proportions were intimately mixed
together. The resonance escape probability is there-

fore almost identical withVcalculation of f and is given

by the expression

V.oOX G )
U )
p(E) = exp [- L2 Rr1. —Ies un 3.2.29
Vgl (¢
B res’'m

Thus the calculation of resonance escape probability
Ce res)u

boils down to the calculation of — and RI.
, A . (wresh
Since all other quantities in the exXpression are known,
(:p- rnOt
the ratio res’'u can¥be calculated.
(¢ )
res
very reliabrf. Therefore, it is best to ignore
this, because it i1s of the order of unity - and
the expression for p reduces to
a N
p (E) = exp (- = . 2 RI) 3.2.30
114 cx

g S
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The effective resonance integral is calculated

experimentally and depends upon the surface area and
mass of the uranium materia19and can, therefore, be
written as

where A and B are constants, the units being garns,and
barns.gm.cm—z respectively. For matural uranium the
effective resonance integral (7) at room temperature
is )

R = [5.65 + 40.7 (£)] barns 3.2.32

S
M

The surface area of the fuel element includes the area

is the surface to mass ratio of the fuel (cmz/gm).

of the ends.

3.2.5 THERMAL FISSION FACTOR (n)

The average number v of fast neutrons released
per slow neutron fission is (2.5 % 0.1); but since
all neutrons captured in fuel da not necessarily lead
to fissiony the valu of 70 (thermal fission factor)
differs from v, Assuming v to be constant, the differ—

ential fission cross-section data wmay be combined with

directly measured variation of 1 with energy defined as
z
b i
n = vV 3.2.33
a

Though the value of n varies with the relative energy
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of the neutron . = for thermal reactors only thermal
neutron fission'" is predominantly important. Thus an
effective n-value in a thermal reactor spectrum can

be uniquely defined as

j(M(E) + AF(E)) Oq(E)T](E) di
n = = 3.2.34

(E) dE

I(M(E) + AF(E)) g,

where the flux distribution is given by

e(L)= M(E) + AF(E)
v 1s assumed independent of energy

L e—L/ET dE is the Maxwellian thermal

flux distributionjand F(E) denotes the epithermal fluxy

wherc h)characterises the intensity of the epithermal
compounent . . to the thermal component, which,

when integrated, yields unity. Thus the two parameters,

namely, the temperature, T, of the Maxwellian thermal

distribution and A, the relative intensity of the epi-

thermal distribution define completely the energy varia-

tion of the flux. A is given by
1
Pu
- —— C 02- 5
A = _ (a) 3 35
2
b = - no= 2.813 (b)
(um) @

and thus b = 1.345.
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Rewriting the expression for

l"
vJ (M(E) + AF(E) . 4B
Y] =
r (M(E) + AF(E) o, db
V Opg (gf + rsf) —
i - o (g + rs ) 3.2.3
ao a a
g + rs
Y = T ___.__,__....__.__f‘ C Jo 4
i = N, (g —3 ) 3.2.37
a a
n, =% - value for 2200 m/scc neutrous.
)\ 9]
b = 15 3.2.38

u
The entries of Tables (7) can be used directly to
obtain the effective value of M at a point where the

flux is characterised by a Maxwellian temperature and

a value for A.

‘ o
3.3.1 DIFPFUSION AREA LO“

The effect of lumping the materials in hetero-
geneous reactors complicates the evaluation of diffusion
area (diffusion length square) since it is difficult to
compute accurately the overall influence on the thermal
non-lcakage probability. The apparent nuclear pro-~
perties would vary with direction (due to flux arising

from various souwrces and non-symmetries in the shape and
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arrangement of the fuel lumps) and the form (2)
(1+}32L2)—1 for non-leakage would hold only approximately.
However, in case of the present lattice, under stud&, the
form (1+B2'L2')—1 would be a good approximation to the -
‘thermal non-leakage probability and it would be also
acceptable to use the general form

2 D

LS = | 3.3.1
a . .
1 1 ' L
Thus D = = 3.3.2
tr 3¢ tr * tr )
along with I__ oV =z, P o v sz (m) $ Vv 3-3-3
tr "cell tr F'F tr m m
— F— (m)
T - —_
and a¢vcell za wFVF+2a ® Vi 3.3.4

Then with the help of usual simplifications

such as Vcell“’ Vm; ® tpm
— F
© z '3
:_El- = ¢ and ——-(——r—tr o F . -é- << 1
q)F 2tr Vm

one arrives at the expression for diffusion area as

o
LO - Lm (1-f) 3_3_5

We define the average diffusion coefficimnt

for a mixture of materials in a lattice given by
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2:JV.W.m
D S~ A S . . 3.3.6

cell g V.V,
] - Jm
D
Jm

and the average macroscopic absorption cross-section .

in .the cell as

Z.(Z
- ) 'y (2 5V W) . 3.3.7
- X . - -
cell JVJWJ o
z = X . '
where %, Jo(gj + T SJ)
and WJ = wJM + wJe

By definition for all materials in the lattice

we have
Vv, 2 _ W ’
® 5 75

i‘ - . 3.3‘8.
> LV TV

VitV

VﬁE5W5

VJZﬁMWJM

V¥ 5MT 5

2 DPam

BT

%é-ﬁubstitution)of these expressions into the priginal

expression for diffusion area eq. 3.3.1 (uncorrected for

streaming) we would get



23

A A
N
[r My Jg
J

J#Ac JM J#c
Ly}
JJO = f5 3.3.9
AL
r >" \I .L'I ]
- Jfc 7 2 : a
- JM JM..

The summation does not include the gas spaces.

f)
The values of 1.2 < s Tactors have been taken from
b

EDI k] [
Tahles (7).

2

3.3-2 SLOWING DOWN AREA L
S0

The calculation of slowing down arca is analogous
to the one presented in the previous section (dif{fusion
area) in connection with the average distance travelled
by a thermal neutron from the point at which it enters
the thermal range to the point at which it is abszorhed.
ﬂere)the problem ig to compute the average distance
travelled by a neutron (fission ncutromn) while it slows
down through & given lethargy range or energy rangce.
In the casc of a heterogencous combination of the
reactor lattice, allowance has to be made in this para-
meter for the different slowing down properties of the
various materials used in the reactor.

In this case the quantity analogous to the absorption
cross—-section is the transfer cross-section from fast
group to the thermal group of neutron and it is estimated

from the slowing down process caused by scattering.
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The transfer cross-section can be shown (43) to be

Vm u} VT -
Ei < T L= T gxs ’ 3.3.10
cell 2 o

where ¢
~ =

is an average cross—-section over all the

materials in the cell. By using the volume weighted
cross~-sections and assuming that the fast flux is con-

stant across the cell, we have

(z " e
5 v
o ) & , ,
Lso = qu 3.3.11
% VJItrg)(§~ \JGJng)
= -
J VgItrJ J \ggglsJ
where
) - 84 .C .
2. 363.9° 84.6 (p +sp) 3.3.10
Sg S 2
iy
It may

be pointed out that, to be morec exact in
0 system of two-group equations, the slowing down area

should include epithermal nbsorption’bringing it 1into

Line with the corresponding definition of

LO“ (diffusion
areal.

3.3.3 CALCULATION OF STREAMING FACTORS

The presence of chalnels or cavities, whether
regularly or randomly distributed, serves, effectively,
to increase the total path traversed by a neutron from
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point of birth to point of capture (or escape from

the reactor)<fhe problem of computing fhié_increase

in path length is further complicated by considerations
of aﬁisotropyﬁM}ﬁﬁoccur in - - graphite-moderated
reactors with large parallel coolant channels, since

a neutron entering a hole at a small angle will travel
a long way before encountering any solid materials.

An elementary approach for estimating the incréase
in the average path length consists of applying a uniform
correction factor to all macroscopic cross-sections to
account for the effective reduction in density due to
the presence of holes. On this basis,the corrected
diffusion length 1. is related to the diffusion length
Loof the reactor materials without holes};\ng

L = 1 2 (149)2 ©3.3.12
Fe
Similarly for the slowing down area where ¢ is/ratio
offﬁélume of/holes to the volume' occupied by the solid
materials.

It has been shown by Behrens that the estimate
by (3.3.12) is the first order isotropic correction
for small holes in a more general result which takes
into account the distribution and shape of the holes.

According to Behrens,if we consider the case of a uni-

form mixture moderator and the fissile material, inter-



96

spersed with a random arrangement of holes of given
size and shape, then the mean square free path is

increased by the presence of the holes in a ratio

1+ 29+ (F){coth(F/Ae) + @ - 1] 3.3.13

.

where
r is hydraulic radius defined as

_ 2 volume of the hole
~ total surface area

r

3.3.14

A is the mean free path Qf-neutroh in the
s0lid material and Q is a geometric function of the shape
of the hole (the ratio of the mean square of thé.length
of straight passages through the hole to the square' |
of the mean length of such passages). If may be pointed
out that the mean passage length through any hole is |
twice its hydraulic radius, and that Q is iﬁherently
greater than unity. For a hole of givenm hydraulic
radius r and given volume ratio, ¢,~if %-becomes'very
small, the expression reduces to (1+w)2; already referred
to as the density correction. If,on the other hand,
{-is at least somewhat larger than ¢ (which is very often
the case), the hyperbolic cotangent becomes . afpdeLaialy

unity, and we may write the expressioﬁ in the form
1 + 2¢ + Qro/A 3.3.15

However}the holes in a reactor are not randoﬁly dispersed



97

throughout the lattice;but they are situated immediately
surrounding the uranium rods. This results in a lower-~
ing of the streaming (factors) correction, since fewer
thermal neutrons emerge from the rods than strike them
(owing to the capture in the uranium),and thus the

number of neutrons crossing the hole from the core to

the outer boundary is less than it would be if the cores
of the holes were not strong (fuel) absorbers, which
leads to the evaluation of ¢ and Q to be modified (Q*,9%).
This fact, therefore,brings in the nuclear properties |
(absorption) of the fuel in the application of streaming
corrections.

The treatment outlined in the last paragraph is
correct for determining the diffusion length of thermal
neutrong, it certainly does not apply in the case of
fast mneutrons. For.fasf neutrons, capture in the rods
is not a very probable event and the "Equivalent Capture
Width" of the rod may reasonably be treated as vanishing
In this case Q* and ¢* reduce to the originai values
?® and Q.

The following parameters are required for each

hole in the lattice

3.3.16

Lo volume of hole i
?i ~ volume of solid material

_2x volume of hole i
¥ = SGrface area of hole T

a;-%; for

cylindrical annuli 3.3.17
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h(a 2-g ) 1-€_A
- . T e e 3.3.18
L
3 « 57¢g
s .
= E———_;—:@—— 3'3'19
le} g
g
. &
= 3 3.3.20
1

Q, (1-8) (1= ¢ %)

)
(1-@115)

() 3.3.23
3 1

3]

The values of F(uf, ¢, and ¢, as a function of u

1
given in ( 7)

The streaming factors are then given by

* * P
174%1 . Qa¥a" 5

= 1+2((p{+(p,’f;+ ce )t -?—(

LN T
Qft @ *oqe (p *
. 1° 272 2
A e e A 2 +oa) (b) 3.3.24
gM eM
QT ¢ Q,r,%
= 1+2((pl+(p,)+ e )k -?;( :1[ 11, ; 22, ..) (a) 3.3.25
- 1 I
g
Qr ¢, Q.r @
‘ 1 2 2 2
= Spp +-13;( L1 * toee.) (b) 3.3.25
gr gF
IgM and IEF are the mean free paths for thermal and

..) (a) 3.3.24
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fast neutrons in graphite respectively and are given by

- 2-70 — 3'50 .
IgM = Sg and IgF = -§;~ 3.3-26

3.3.4 MIGRATION AREA ASYMMETRY, SLOWING DOWN AND

DIFFUSION AREAS

In a graphite-moderated reactor the isotropic
effect is very marked because the neutroms,which travel
almost parallel to the rod)and so suffer collisions .
in uranium instead of in the moderator, are not slowed
down appreciably by these collisions. Consequently)
their mean number gf slowing~-down collisions is increased.
Thisileads to the promnounced anistropic effect in this
type of reactor.

If we calculate the asymmetric effect as

2 2 2
M, Lo Smz + Lso Spz
( ) = 3.3.27
2°th L 2s +L 25
Mﬁ o MR so FR
it needs a correction fa. cor. It has been found fhat

the experimentally determined value of MZZ/MR2 very

roughly fits the empirical formula-:

£ Mzz ] ' { Mzz ]
(—=) -~ 1 L = A x[ (—==) -1
2°0 experimental 2°th theory
My . M,
3.3.28

The value of A in the present study has been taken

to be equal to 1.73 (7). Thus, knowing the "Experimental
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asymmetric factor!" we derive corrected streaming factor

as
2
7 / Mz
Syr = Smr Smz = Smm (MRz)expt.
MZ2
s - -1 £ - trseaman
S'pr™ Spr SFz™ S¥r (MR2)expt.
and hence the corresponding areas, are modified as
2 _ 2 2 . 2,
L™ = L, SMR(a) L, = LTSy, (b) 3.3.29
2 2 2 .24, _
Lgp = Lgs Spp (8)  Lgz = Loy Spy (b) 3-3.30

.
3.3.5 CORE THERMAL AND EPI-THERMAL GROUPS

The thermal group diffusion coefficients are

_ 2 V(solid)
Dyp = ZLlg V(core) (a) 3-3.31
_ 2 Vi(solid)
Dyz =% olz “Wlcore) (b)
where
r o is defined as
v,
b} 5 = T J JJ namely equation 3.3.7 for the
V. W,
jféc i

lattice materials and ¢ means that it does not apply
to gas spaces.

The fast group of diffusion coefficients are
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_ . V(solid)
Prr = Prg PR “Vlcore) °N¢ fa)  3.3.32
_ ,  V(solid)
Ppz = PpgS'rz Vicore) () 3.3.32
where
(Itr)eg Ve
DFg = . (a) 3.3.33
Q
v 10
& _ (4T 3} 2.321 x 10
7 = ()% 1n ( XA (b) 3.3.33
o [¢] .
at T = T = 293.40°K
Ve
7 - 14.385
o
and (Itr)eg = (Itr)g according to Syrett and is equal
2.57

3.3.6 REFLECTOR THERMAL AND EPITHERMAL GROUPS

For the reflector an identical set of calculatiomns
were performed,taking into consideration the obvious

changes, e.g.

D =D S V(solid)
MR Mg "MR V(reflector)
where
Pye = ngzé - ;%gl for T = T, 3.3.34
S = 0 for the reflector. The calculation of streaming

factors is almost identical to the core system except



102

that more streaming corrections have to be applied because
of the additional channels created on account of the
removal of fuel elements from the system. The diffusion
area and slowing down in this case becomes a simpler

problem because

2 1.2
Lo = (T) 3.3.35
g . .
2 _ 2 _ 363.9 - 84.6 (P +P)
and Lo = Lsg = 5 3.3.36

sg

where ng is given by eqn. 3.2.15 and (P + aAP) is the
same as for the core case. Full details of the con-~

sténts for the reflector are given in Appendix A-1.2.

3.3.7 TWO GROUP DIFFUSION EQUATION

The distribution of neutrons can be based on the
classification of neutron energies into "thermal!" and
"fast or epithermal energies'. In the present sghéme

the order of events may be summed up as below:-

1) Production of fast neutroms by fission in U235.

2) Fast fission in U238.

3) Resonance Capture in U238. ’

4) Fast and epithermal neutron leakage, slowing down,
capture and fission,

5) Thermal neutron capture, fission and slowing down.

This is based on the recognition that a large proportion
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of fast neutron leakage occurs at energies below the

U238

resonance region which is consistent with a system
of effective cross-section data such as that of Westcott.
Denoting epithermal (fast) flux by Vg and thermal

flux ¢ _. the two group diffusion equations are,
m q

0 Fast 3.3.37

X -z =
Dp V2¢F + Kga P FOF
[ ]
2 ~
).o - E -_— - >
Dy ¥ wm + Ioen . 0 Thermal 3.3.38

If the buckling of the system is B2, then

K

Lo

(1+82L2)(1+B2L§) o 3.3.39

where

K

w = (Epfsns) or (epnf)

g is determined by fast fissiomn in U238 produced by

238 .. ssion threshold.

neutron of emnergy such that energy > U
The resonance escape probability is fairly well-defined
since resonance capture takes place over a defini;e

energy range. However n a¥fid £ in two energy group are
not very clearly defined since absorption in fuel takes

place above and below the U238

resomance region. Anyway
an average value of f Qnd n can be calqulated for each
energy region but the weighting factors used imn obtain-
ing the average values depend upon the siie of the reactor

system through the relative neutron leakage in the two

groups.
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3.3.8 SOLUTION OF TWO-GROUP EQUATION FOR A BARE

HOMOGENEOUS REACTOR

The critical condition defined by the equation
3.3.39 is quadratic in Ba, one being real and positive
and the other being mnegative and imaginary. The general
solution of the equations 3.3.37-38 will have a linear
combination of the corresponding two roots of the cri-~
tical condition. The solution for the two neutron
fluxés can be written for a slab .reactor with a
reflector on either side and being infinite in the other

two directions y and =z.

A cos(iux)+Csin(ux)+Fcosh(vx)+Gsinh(vx) 3.3.40

11

’re

®.

e 51[Acos(ux+Csin(ux)]+52&nsh(vx)+Gsinh(vx)]

3.3.41
and &

¢ denotes the core and A, C, Flare arbitrary
const.nts which have to satisfy the boundary conditions
detailed in section 3.2 of the present chapter. ‘Sl

and S2 are the coupling constants given by

z
5, = L “(a) 3.3.42
mc 1+L71
EFc 1
and S, =z 55 - (b) 3.3.42
mec 1-v™L
v2 = uz + (12 + 15) {c) 3.3.42
L L : )



105

uz is the real positive root of the egn. 3.3.39.

In the symmetrical case under study, the reflector
thickness is zero and the two fluxes should be zero

at the extrapolated boundaries of the assembly,i.e.

(bFC = %J' - ‘pmc(i~ gJ = 0
at x = -~ a/2 so that the arbitrary constants F = C =
G = 0 and the flux distributions in the assembly without
much loss of generality c:¢ Dbe written as
ope = cos (ux) | 3-3.43
¢, = S, coOs (ux) ' 3.3.44

The comstant A has becn put equal to unity for the
purpose of normalisation of flux distribution.

It may be remarked that the real positive root
4 corresponds to the asymptotic flux distribution and
the imaginary root (-v2) to a non—ésymptotic transient
brought about by a sudden change of the boundary condi-
tions. These considerations will be taken up in
Chapter 5 in greater’detail where the case of non-
aymptotic flux distribution has also been taken into

consideration.

3.4.1 RESULTS OBTAINED FROM EXPERIMENT AND THEORY

All theoretical results and the experimentally

measured thermal flux distributions and the material
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bucklings for the various cases of fuelled (completely)
sub-critical assembly are given in Tables 3.4.1 (A to 'F).

The errors in the experimentally measured material
bucklings and the resulting K, were calculated on the
Basis of modifiéd one-group theory and correspond to
the maximum possible error of 0.5 cm% in the measured
relaxation length and an error of 0.5 cm in the width
meashrements. These errors are considerably higher
than the fitting errors reported in Chapter 2.

The asymmetry factors for the lattices under study
have not been measured. They have been calculated
according to the ;fecipe in section 3.3.4 and corrected "

by the fitting factor (7) of A= 1.73 and error has
been assumed td be of the same order of magnitude as
reported P Macdonald and in some cases somewhat more.
For example)cases PSCF, SF and OCF (Table 2.5.3) have
errors .002, .003 and .004 respectively.

The exrors in the matefial buckling hqve been cal-
culated on the principle that the flux measurements
in the horizontal direction (edtrapolation lengths)
and the vertical direction (relaxation lengths) are
independent of each other. Therefore they have been

combined directly,

The error in kK is . evaluated according to the
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dependency of errors in the material bucklings'and the

migration area, i.e.

BK ®K

2 2 © 2 2 © 2

o = Onpa~ (= )T+ © (=) 3.4.1
Ko Pm g2 M2 B

on the basis of modified ome group theory.

R

changing the graphite absorption cross-section from

The error in the migration area, O} 2 was'checkedby

L.1mb to a possible or of £ .01 mb since the other
-nuclear properties . th fuel and can are fairly wellf
known. The slowing down area did not change at all

because it is a function of the scattering cross-section
and the demnsity of graphite. The following changes

in the radial diffusion area were observed.

The particular case is PSCF, the corresponding

change in f_ is also tabulated.

5
g = 4.09 mb. o = 4.1 mb. 0 = 4.11 mb.
g g g
LRz(cmz) 301.50 301. 42 301.33
£ 0.56385 0.56369 0.56353

The rest of the parameters did mnot change.
However, the error in the migration érea comes mainly
from the uncertainty of the streaming corrections.
Therefore)a pessimistic estimate of 1.5% error in case
of PSCF and PSIF cases, and 1.75% in the case of SF

and OCF cases was pﬁ&&@, Even with these large



(A) K_(Exp.), K, (Theory), Fast fission factor, Resonance Escape Probability,

Thermal utilisation ancﬂ)5 for lattices.

Case € p VI 5 f5 K.( ﬂucfa‘) Ko (ex[ot.)
PSCF 1.02891 0.91910 2.02040 0.56369 1.,07701 1.072220
2.001312
raoF 1,02902 0.91709 2.02011 v.56538 1.07783 1.069814
}.001269
PSF 1.02902 0.91704 2.02011 0.56585 1.07867 1.068728
(oDD) ' ¥.001251
SI 1.02964 0.90560 2.01849 0.57622 1.08450 1.081987
3 . 1.001661
OCF 1.02991 0.90049 2.01779 0.57929 1.08405 1.07866;
‘ -.00159
PSCF 128 1.02845 0.92772 2.02167 0.55494 1.,07042 1.064055
VAC 16 *.001178
PSF 128 1.02855 0.92591 2.02140 0.55682 1.07190 1.063156
VAC 16 Z.001160
PSF 128 1.02855 0.92587 2.02140 0.55738 1.07294 *
(ODD)IVACIG , .
SF 128 1.02910 0.91558 2.01990 0.56907 1.08305 1.081288
VAC 16 ' Y. 001662
PSCF 108 1.,02787 0.93866 2,02333 0.54071 1.05554 1.048454
VAC 36 f.000897.
PSCF 72 1.02682 0.95870 2.02653 0.49868 0.99483 9.994239
VAC 72 -.000108

TABLES 3.4.1

8071



(B) FLUX FINE STRUCTURE

CASE

PSCF

PSF

PSF (ODD)
ST

OCF

PSCF 128

VAC 16

PSF 128
VAC 16

PSF 128
(ODD)VAC1A

SF 128
VAC 16

PSCr 108
VAC 36

PSCr 72
VAC 72

B

1.03775

1.03775

1.03545

1.02700
1.02575
1.03775

1.03775
1.03545
1.02700
1.03775

1.03775

C

1.07115
1.07115
1.06682
1.05088
1.049x

1.07115
1.07115
1.0600z
1.05088
1.07115

1.07115

R

1.01620
1.01620
1.05705
1.16365
1.17322

1.01620
1.01620
1.05750
1.16365
1.01620

1.01620

TABLES 3.4.1

S

1.31210
1.30420
1.25002
1.07274
1.05077
1.32395

1.31575
1.26020
1.07720
1.34132

1.38371

109

B'u
0.10087
0.10328
0.10334
0.11692
0.12292

0.09051
0.09270
0.09274
0.105,08

0.07730

0.05250



(c)

 CASE.
PSCF
PSF
PSI(ODD)
SF

OCF
PSCF 128

VAC 106

PSEF 128
VAC 16

PSr 128

(ODD)VACILG

SF 128
VAC 16
PSCI* 108
VAC 36
PSCF 72
VAC 72

STREAMING FACTORS

FAST

SFR

1.00858
1.02227
1.02993
1.42318
1.85186
1.00761
1.01974
1.02765
1.36824
1.00641

1.00426

SFZ

1.01381
1.04118
1.04409
1.56611
2.18901
1.01224
1.03649
1.04131
1.49114
1.01030

1.00685

TABLES 3.4k.1

THERMAL

SMR

“SMZ

AXTAL ADJUSTED
' )

SFZ

TSMZ

1.00866 1.01542 1.01889 1.01897

1.02639
1.02791
1.38247
1.80312
1.00770
1.02340
1.02624
1.33296
1.00649

1.00434

1.05088
1.04588
1.53635
1.1701;
1.01368
1.04510
1.04360
1.46549
2.00152

1.00768

5.05947
1.05755
1.68160
2.46271
1.01681
1.05293
1.05449
1.50096
1.01420

1.00956

1.06374
1.05548
1.63349
2.39790
1.01689
1.05672
1.05304
1.54995
1.01430

1.00964

110



(D) CHARACTERISTIC AREAS

CASE

PSCF
PSF
PSF(0DD)
ST

OCF

PSCF 128
VAC 16

PSF 128
VAC 16
PSFD 128
VAC 16
SI* 128
VAC 16

PSCF 108
VAC 36

PSCIr 72
VAC 72

298.83
305.42
300.05
253.34
217.35
536.10
343.60

337.84

396.76

576.17

325.32
342.25
338.44
345.00
316.14
326.56
343.59

347,18

357.32

1328.13

330.91

301.42

313.48

308,43

350.24
391.90
338.69
351.65
346.71
391.26
399.34

578.67

TABLES 3.4.1

328.11
349.87
348.56
491.00
585.45
329.05
350.37
349.59
488.90
330.24

332.32

304.50
324.88
316.70
413.84
521.18
341.78
363.09
355.76
454.95
ho2.44

581.73

111

331.46
362.61
357.91

580.15

- 778.57

332.05
361.77
358.72
568.48
332.80

334.08



(E) DIFFUSION COEFFICIENTS(CORE).

CASE

PscCr

Psr

PSID

SE

ocr

PSCF 128
VAC 16

PSF 128
VAC 16

PSFD 128
VAC 16

sr 128
VAC 16

PSCr 108
VAC 36

Pscr 72
VAC 72

THERMAL
DMR DMZ
0.90588 0.91513
0.94492 0.97930
0.93531 0.96040
1.11733 1.32021
1.26013 1.67579
0.91084 0.91916
0.94831 0.97918
0.94113 0.96570 .
1.11868 1.30078
0.91734 0.92446
0.92975 0.93466

FAST
DRF DFZ

12.91831 13.05032
13. 43444 13.92330
13.37504 13.73387
16.48596 19.47941
18.59719 24.73170
12.93910 13.05720
13.43565 13.87304
13.39781 13,74763
16.39304 19.06154
12.96514 13.06574
13.01061 13.07932

TABLES 3.4.1

i12

MZB/MRZ

1.010,214
1.036,391
1.026,819
1.181,577
1.329,871
1.009,120
1.032,535
1.026,109
1.162,777
1.007,756

1.005,291
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(r)
9 ;
Case B~ B ' Flux Ratio
m V]
- -2 ffast/Thermal
10 6cm Theory ast/Therma
PaCcr 11h.721 - 1.173 0.1009 0.0800
PSF 105.245 £ 1.080  0.1033 0.0824
PSF(ODD) 10h.611 -~ 1.079 0.0927 0.0815
SI 97.460 - 0.995 0.1169 0.1003
oCr 80.484 - 0.824 0.1229 0.1074
PSCF 128 95.928 I 1.021 0.0905 . 0.0721
VAC 16 N
PSF 128 89.963 - 0.954 0.0927 0.072
VAC 16
SF 128 2.356 = 0.973 0.1051 0.0905
VAC 16
PSCF 108 S 66.h1h < 0.721 0.0773 0.0656
VAC 306
PSCF 72 -6-324 2 0.072 0.0525 0.0450
VAC 72
TABLES 3.4.1. Measured material buckling for each
Lattice. The axial buckling corresponds to the values

given in Tables 2.5.2.
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i

- possible errors the resulting error in the calculated
K, 1s never larger than 0.15% in case of SF and in all
other cases it is always of the order of 0.1% of K_
predicted by experiment.

The experimental errors reported in the thermal
flux méasurements are the sgatistical errors corresponding
t6 a ﬁotal ccunt of 10S counts at a position, i.e.
6.316%. The error.arising due to errors in dead time,
harmonics and the other related causes have been reduced
toghegligible level by the procedure detailed in Chapter .

2.

3.4.2 CRAM - RESULTS FOR FULL ASSEMBLY CASES

The results tabulated in section 3.4.1 have been
compared with thg results obtained from CRAMydescribed
in Appendix .-2.3. The programme solves two-group
diffusion equationsby the finite difference method.
The inpul to the programme {§ the constants from the
Tables 3.4.1,and the resultant K-effectives for the
system predicted are given below and>the same quantity

obtained from experiment is tabulated below-

EXPERIMENT CRAM
PSCF 1.00%,492 %.001,312  1.005,017
PSF 1.007,411 £.001,269 1.005,588
PSF(ODD)  1.009,320 2.001,251 1.009,379
SF 1.002,322 £,001,661 0.981,736
OCF 1.00%,996 £.001,59% 0.960,947

TABLE 3.4.2
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The accuracy in K-effective from CRAM is a function
of various quantities detailed in the Appendix.
The disagreement between the results in case of SF
.and OCF is rather large} most probably due
to’ the uncertainties in the diff&ﬁon and the slowing

down areas because of large streaming corrections .

1 3
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3.4.3 DISCUSSION OF RESULTS

The experimentally measured thermal flux distri-
butions tabulated in the Tables 3.4.3 and plotted in
FIGS. 3.4.%." are in good agreement with the
predic¢tions of theory on two-group theory and the predic-
tions of CRAM based on the finite difference methods.
One-group theory and two-group theory practically co-
incide with each other, so it is not reported here.
Only the points where measurements have been carried out
are tabulated. CRAM results for thermal flux are not
quoted here since they are practically identical with
those of two-group theory. They are fabulated in
A;2.6 for comparison purposes of one-group, two-group
and the CRAM results of flﬁx distributions. The results
for various otherxcases of vacancies have not been repopt-
ed since the theory predicts onlyf;acroscopic picture,
of the flux distributions)whil%,in actual practice,there
are vacancies where the flux rises distinctly because
of the absence of fuel elements. This)howeveg,émphasiseé
the inadequacy of the homogenised methods in the case
of lattices with defects in them.

In Tables 3.%4.1 the ultimate predicteh parameter
Ke (theory) is in very good agreement with the experimental

predictions in case of SF, OCF, SF 128 VAC 16 and PSCr 72

VAC 72, reasonable in the case of PSCF, PSCF 128 VAC 16



PSCF PSF
- -
CASE TWO~GROUP EXPERIMENT TWO-GROUP EXPERIMENT :
DIST.  FAST THERMAL  TIERMAL FAST THERMAL  TIIERMAL |

T
! |
0.0 . 80.00 1000.00 1000.0053.16 82.40 1000.00'1000.00X3.16
: ‘ i .

!

' 20.32 77.38 967.28  961.2623.04 79.72 967.43 9G68.1623.06
0.GLh 69.70 871.28 871.38i2.75571.84 871.84% 872.2412.76
60.9G6 57.46 718.26: 790.11%2.28 59.29 719.46 721.9252.23
81.28 41.46 518.25 519.09-1.64 42.87 520.22 514.1471.63

1101.60' 22.75 284.33 284.96io.9o!23.66 287.09, 27h4.6950.87
| i ;

L | | P -

SF oCrF

1
i

0.0 1100.26 1000.00 iooo.ooi3.16107.42 1000.00 looo.oof3.16

20.32 97.01 967.6h 967.44%3.057103.97 967.94 . 964.3353.05

h0.G64  87.49 872.64 869.88X2.75 93.86 873.83 869.88%2.753
60.96 72.30 721.17  722.28%2.28 77.74 732.G69 722.28%2.08
81.28 52.44 523,01  521.7451.65 56.63 527.16 521.7851.65

101.60 29.18 291.01 , 288.71%0.91'31.88 296.82 288.7150.91

! l J |

TABLE 3.4.3 EXPERIMENTAL TIERMAL FLUX DISTRIBUTION 1IN

COMPARISON TO TWO-GROUP THEORY FLUXES
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and .PSCF 108 VAC 36 and not very good in case of PSIF,
PSF (ODD) and PSF 128 VAC 16 however acceptable in the
extreme limiting cases.

Case PSCIFF 72 VAC 72 is the limiting case in the
process of homogenisation)as explained in the Appendix
A~-1.2 but the Koo predicted by experiment is in such a
close agreement it is rather surprising. Perhaps the
negative and positive assumptions of one sort or the
other produce such a close experimental fit.

The seemingly irregular changes in the Flux [Fine
structure especially constants B and C,are indeed true
according to the constants .fed in the programme. At
one stage some fault in the programme was suspected and
the calculations were checked against hand calculations
and the results agreed well in accordance with the theo—
retical explanations. In the last table of 3.4.1 are
given the measured material buckling)and gé, the ratio
of fast flux to the average thermal flux in uranium
given by eqn. 3.2.14 (b) is compared to the ratio of
fast flux to the thermal flux in the lattice.

The possible sources §f error in the experimentally.
predicted values of KQ may be ascribed to the following
causes.

1) The wse of one-group modified theory to cal-

culate the K  for the reactor system is open to objection
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because in the expression

_ 2 2 2 2
K = LR Y (1 + B LSR )

[

(1 + B
m
We neglect a small term which in theory we should
not. Therefore K°° was calculated on the basis of two-

group theory and is given in the tables below for compari-

sS0N. The errors in K  are not tabulated.

K, (theory) K_Exp(ONE) K_Exp(TWO)

PSCF 1.077,01 1.072,220 1.073;494

PSP 1.077,83 1.069,814 1.071,119

PSF (0ODD) 1.078,67 1.068,728 1.069,908

SF 1.08%4,50 1.081,987 1.083,621

OCF 1.084,05 1.078,661 1.080,147
PSCF 128 VAC 16 1.079,42 1.064,055 1.065,080
PSF 128 VvAC 16 1.071,90Q 1.063,156 1.064,153
SI 128 VAC 16 1.083,05 1.081,288 1.085,080
PSCF 108 VAC 136 1.055,54 1.048,454 1.049,037
PSCF 72 VAC 72 0.944,83  0.994,239  0.994,247

‘Generally the agreement improves by 0.1 to 0.2% in all

casesS.

2) The error may well be due to’the error in the fitting

factor A=1.73.

genuineness. .

woerkers heve tried to improve upon

There is absolutely ﬁo criterioNfor its
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their works by arbitrarily changing the value of 1.73

to 1.84 (&) or 1.93 (23),but there is no such theoretical
reasoning for taking any arbitrary value of A so that it

fits pretty well'"the experiment!'. Perhaps it would be

better to fix the value of & once for all.

3) Asymmetry Factor

The information about the asymmetry of neﬁtron leakage
is deduced by measuring the bucklings in exponential
assembly with the axis of the exponential relaxation
parallel to, and perpendicular to, the axis of the
channels. This has been done for the sub-critical
assembly under study by Macdoﬁalq (7) on the basis of one-

group analysis of the experiments and the asymmetry is

M2

expressed in terms of the ratio ”EE of the migration
MR

areas in the axial and radial direction. However this

analysis is open to criticism because in experiments with
air channels vertical, i.e. parallel, to the axis of the
exponential relaxation, there may be direct streaming

from the region of high flux near the source and therefore
the éxperiments tend to underestimafe the asymmetry.

This point has been investigated by Smythe(9) and he
derives a relationship for the relative contribution M

to the flux at the height Z as
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h
i»}
D ¥ “p cosh( /b11)

¥,
M = z7 0
b z° D w  sinh (222
11 m m b
11
ro - radius of the channel at the base and
" :
= Kl( mb) Io(umb) * Kobtmb) Il(umb)
Kl(umBj Il(umro) - Kl(umro) Il(umb)
b -~ is the radius of the lattice cell of infinite

length. He did some experiments with 0.015" thick
cadmium discs at the base of the channels and agrees with
Grant's conclusion in a similar experiment that there is
no significant change in the ratio of readings taken.
However his experiments are inconclusive for various
practical difficulties in this regard.

In the author's opinion it was not reasonable to
change some constants arbitrarily so that it'fits certain
other parameters well. It was decided to accept the
results fof the full sub-critical assembly as best with
the existing methods of calculations. To support this
view was the fine agreement between theoretical and
experimental flux distributions;v Secondly, as outlined
in Chapter 1, section 1.4, the aim of the project was not to
fit one experimental result but a series of experiments
which could be done with the facility available in the
College}so that this could be taken as the basis of the

volidity of the wmethods of veactor analysis.
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CIIAPTER &

CALCULATION OF TLUX, K-INFINITY AND TIIE REFLECTOR SAVING
FOR A PARTIALLY FILLED {Core) SUB-CRITICAL ASSEMBLY ON

THE DBASLS OF ONE=GROUP TIIEORY

4.1 INTRODUCTION

In a homogencous reactor small-scale composition
is uniform and isotropic. All cross-scctions arc
independent of position in a homogencous reactor. In
a non-uniform (refleccted core reactor) recactor the cross-
sections are position dependent and the reactor calcula-
tions are morc complex than those for wniform reactors,
both in the analytical sense and with regard to the
mechanics of computation. The non-uniformity usually
consists of:
1) The presence of a reflector which serves Lo deflect
neutrons back into the fueled core amnd hence reduces
the fagt nuetron leakage.
2) The presence of control rods which serves to regulate
power level of the reactor.
3) Non-uniform fuel loadings, which increase the el fli-
ciency of the reactor by flattening the power distribution.
In the present work the sub-critical assembly comes
under the first hoading)nnmely)"Reflected core reactor'.

The material composition in such a non-uniform reactor



127

usually changes abruptly and causes a mathematical dis-
continuity. This makes the analytical treatment of the
system a difficult problem (1-3). The neutron flux at the
interface between two different materials has to adjust
itself to a status between the two different characters
if would exhibit in an infinite system composedvpurely-
of either of the two adjacent materials. The fundamental
assumptions used in the diffusion theory of non-uniform
reactor are:-
1) The diffusion balance equation can be set up in each
different material and gives the neutron flux for each
region.
2) At  the boundary between the two regions, the flux
and the current are continuous.
3) The flux is zero at the extrapolated boundary of
the external region.

To simplify the mathematical details the problem is

considered in one dimension only as a symmetrical case

-~ and the results are supposed to hold for the other dimen-

sion as well. To do this we have enough experimental

evidence to prove that the flux distribution is identical

in shape and magnitude both in X and Y-directions
and the distribution in the Z-direction is -~ ~ well-
knowil exponential. Since measurements of thermal flux

distribution (Chapter 2) for the determination of relaxaticn
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length were carried out in the central zone of the sub-
critical assembly, when the number of fuel elements used
were less, some parts of the measuring region were in the
reflector region. ' However the fitted values of b11 were
always the same within experimental error.

The difficulties ﬁn evaluatﬁﬂthe neutron flux dis-
tribution in X and Y-directions as said earlier,stem
from the fact that the multiplying and slowing-down pro-
perties of the fueled region (core) are different from
those of the reflector. The neutron energy spectrum
changes appreciably at the core-reflector interface; while
in the case of a uniformly filled reactor the neutron
spectrum remains fairly uniform (in the macroscopic sense)
and can be described mathematically by standard geo-
metric functions.

The problem in case of a reflected sub-critical
assembly is made much more complicated by the presence of
harmonics. FFurther, the smaller size of the assembly
reduces the asymptotic measuring region because of boundary
effects and the presence of the sources at the bottom.

As discussed in Chapter 2)the measurements were confined
to the asymptotic distribution of the mneutron spectrum

in the light of Macdonald's harmonic analysis.
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Slow-neutron _ Slow-neutron flux
flux with reflecton REACTOR without reflector
\\\
REFLECTOR % REFLECTOR
754
/ / -7 /
[
FIG.4.1 A typical graph of Thermal Flux in a

Reflected Core System.

IFig.4.1 shows the effect.of a reflector oun the
thermal neutron flux. For the sake of simplicity, only
thermal flux has been considered and the fast flux has
been neglected. The cross-hatched area under the curves
represents the gain in flux integral imntroduced by the
reflector. A careful consideration of this fact leads
one at once to the conclusion that for a given core
composition, the dimensions of a critical reflected core
arc smaller than those of a critical bare core. The
diffcrence between the two sizes, 6, is called the

A
Reflector Saving.
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Thus, to summarize,;the effect of a reflector outside
the core region is to reduce the bare equivalent reactor
size, ' In the present
chapter it wif be assumed that the reactor is all
thermal, i.e. there is only one energy group "Thermal®.
The solution of the diffusion equation in the core and
the reflector region would lead us to an expression for
a reflector saving for the system, the problem being treated
as a plane infinite slab system.

The "core region' would then be repiaced by an "Equivalent
bare reactor system" each side being equal to a +20.

The material buckling for such a system would be given by

2
2 M 2
m2 = 2(——) - Zsy, - Lo1.1
a+26 M,

for the sub-critical assembly with vertical air channels.
The K, for the system has been calculated by the
one-group modified expression,

2 2

K My hot.2

i
-
+
jus}

© m
Two-~group theory expression

( 2 2)(1 2 2 !
K = 1+Bm LR +Bm L ) t.1.3

e

SR

and the Age-one group expression

2 2
B “L
. _ m SR 2. 2
K = e (1+Bm LR ) _ Lot.h
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were also used for the purpose of comparison.
/KTbU?égmﬂ: the mathematical analysis,it is assumed
the neutron flux distribution @ (X,Y,Z) is separable in
assuawmplicn

three directions;for s ¥ there is ample experimental

evidence,

4.2 ONE-GROUP THEORY FORMULATION AND BOUNDARY CONDITIONS

In one-group theory the basic assumption is that
all production, diffusion and absorption takes place
at o single energy well-known in the reactor ficld as
"Thermal CEnergy'" for thermal reactors. The sourcc term
in this case is equal to the production rate (¢m2amK®
This would imply either that fission neutrons are born

thermal or that the distance it would take to slow down

btk

was exactly zero,Yto a large extent unrealistic
o 51 4

situations. Only in a fast reactor, could¥Yfind

yeacfev

a semblance of validity of this concept, whichyoperates
as a result of fissions by fast neutrons. Ilowever,
need’ to say - the picture represented is a
gross over~-simplification of the complicated situation
existing in a reflected reactor.
Writing the basic diffusion equation in steady state
for thermal neutrons in the reactor core (c) and the

—

reflector (r) regions we have (\

N
N

[p)
D v~ -3 - .
AR Lo * Kmﬁacwc = 0 .o,
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D V2 - X ¢ = 0 L.,2.2

The source term in the retflector region is zero
since it does mnot contain any fissile material. The
two eguations for the thermal flux wc and ¢, are solved

under the boundary conditions:-

a) The flux distribution is symmetrical.
bh) The flux shall be finite and non-negative.
q) The neutron flux and the neutron current are con-

tinuous across the core-reflector interface,
d) The flux is zero at the extrapolated boundary of

the reflector.

The details of the mathematical solution for the
flux in the sub-critical assembly with reflector is given

in the next section.

4.3 APPLICATION OF ONE GROUD THEORY TO THE SUB-CRITICAL

ASSEMBLY WITH A CORE IN THE CENTRAL REGION

Writing equations (n.2.1) and (4.2.2) in the core
and reflector regions for the sub-critical assembly in
reactngular co-ordinates

Lo} [p]
= ~ 7 - _ ]
v @C(X,Y,Z) + BC"CPC(X,Y,A) = 0 1.3.1

2

(e}
v wr(x,Y,z,) - W (Pr(X,Y,é) = 0 L,3.2

where
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9 a2 a2 DMZ a2
ve o= 5 =5t S b.3.3
dx oy MR Q=
The diffusion coefficients DMZ and DMR are direction

dependent because of strecaming of necutron flux inathe

vertical channels where the material buckling Bc2 and

]
ur“ (square of inverse diffusion length) are

K _—-1
@®
B 2 =

c 2

Mp

(a) L.3.4

o

mr 1
" T B T3 (b)
mr 1.

in the reflectore.
Since we assume that the neutron flux can be

separated by the principle of separation of variables:
© (X,Y.2) = X(x).Y(y).2(z) 4.3.4

This holds both for the neutron flux in the core and
the reflector regions. The equations 4.3.1 and #%4.3.2

can be written as

(8]

. a%x % 8%y . 8%z @ )
1 c 1 c cz 1 c 2 4
X = Y. 7m0 ¢ 73 * B =0 %.3.5
e ax c dy cR c d=z

Ip]
. a%x 2 %y 3%z 2 ,
) r Tz 1 r 2 ! 6
< R 5 * Z 5~ " % =0 %.3.
“r  0x S Tr dx rR r 3z

where each of the first three terms is a function of

one variable only and, therefore, it will be independent
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of the value of the other terms. Thus ,
2 2
07X . 07Y
1 c 1 c 2
T = = 3 5 = -Q (a) b.3.7
c 0x c 0y
. %7 . |
T s = ¥ (b) 4.3.7
c 07
So that
D
Bc2 - 20 2% - DCZ \(2 (c) k.3.7
" cR
[ / } //
///////i/ \// .
REFLECTOR | 'REFLECTOR

T | —
— —

7 Y
¥ /)

@

“ ar > g
/////;/i/

ye / 7
///// ’/// ///42

FIG.4.3.1. Infinite Slab Reactor with Reflector

Equation %4.3.7(a) is true since the flux distribution

o o
is identical in both X and Y-direction. a° and Y~ are

)
positive real quantities. v~ is positive since there

. . 2 .
is net inflow of mneutrons from the sources and o~ is

negative for the fact that there is net leakage of mneutrons
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FIG, 4s3.2 SUB-CAITICAL ASSuMBLY IN THu SLAB SYSTEM



in the X or Y-directiomn.
The solution along the Z-axis is the well-known

‘exponential distribution,

sinh(c-2)y

1 Tsinl (yc) (a) 4.3.8

ZC(X) = A

All the harmonics have been neglected and y is the inverse

relaxation length correspondinﬁito the fundamental.
assembly

Treating the sub-critical,as an infinite plane slab

system shown in FIG.4.3.2 (y and z being infinite))the

general solution for eq. 4.3.7 (a) in the core region

- would be written as

¢ (x) = A cos(ax) + C sin (ax)
c c c

Since the flux shall be finite, symmetrical and non-
negative, therefore,CC = 0 and the solution for the

present case in the core region would be

wc(x) = A, cos (ax) (b) h.3.8

It may be remarked that the flux distribution in the
Z—-direction is the same for the reflector as for the coreg
namely) .

sinh (C-Z) ¥y

sinh (y ¢)

Zr(z) = A

For the reflecter in the N-directiom, we solve

2

1
X ax2 r

lo)

"
1

x
o

i

Q

. The general solution

would be



X(x) = A cosh (® x) + C sinh (r_ x)
r r & r

subject to the boundary condition that the flux is =zero

at the extrapolated boundary of the reflector, i.e.

when x = % + T then
]
¢ (x) = Csinh x (3 + T -x) (b) 4.3.8
A and C in eq. %4.3.8 are arbitrary constants. A similar

solution for y-direction would exist both for the core
and the reflector;since the position of the core region
is symmetrical at the centre of the assembly it involves
only a change of the co-ordinates treating the others to
extend to infinity.

The arbitrary constants A and C can be calculated
by introducing the boundary conditions that the neutron
flux and current density shall be continuous at the

core-reflector interface, i.e.

a' a
0 (3 =0 (&) (a)
!
and iy t.3.9
aq)c(-}a') a(pr(-f- )
_ 2
D —5x— = b, —— (b)

The substitution of these boundary conditions leads

to the criticality condition,

a'
DC a tan (« 5 ) = Dr“r coth (HrT) 4.3.10

137

Consequently;the normalised thermal flux distribution
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in the core and reflector regions in the direction of

x (similarly for y) are

wc(x) = cos (ax) (a)
o ' L3, 11

o~
v

St
i

- !
C/A sih (5 + T - x) (b)

For the Z~directiomn the flux distribution is the samc
both for the core region and the reflector region,

namely,

¢ (z) = A sinh (C-7)y

N.3.12
1 Tsinh (yo) ko3

b.4.1 COMPUTATION O RESULTS

The net result of the analytical solution for the
partially filled sub-critical assembly on the basis of
one-group theory for an infinite slab reactor system
as outlined in the previous section is the critical
condition which should be satisfied for the reactor system

to be critical, namely;the equation %4.3.10 written here

as
DC 1 a'
r Dr "o 2

This equation defines the critical size of a reflected
reactor system for a specified core size a' and thickness
T of the reflector.

The decrease in the critical size of the reactor,

defined in section 4.1 as reflector saving;can be written
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T a
® =33 "3
]
or %— = (%a - 0).0On substitution in eq. %4.%.1 we have
D
! : - ¢ 1 an(E _
coth (urr) = 5 -7 « Lan(2 ad)
r r
or
Do o
tan (0d) = — . = . tank (®_T) hoh.2
Dr Mr r

Thus,we end up with a transcendental reclationship involv-
ing the critical size of the reactor (m/0) and the
reflector thickness T and the respective diffusion para-
meters for the two regions.

The following two procedures to compute the critical

size and therefore the corresponding reflector saving

can be adopted.

1) If either T, the reflector thickness, is small or
the react. core it.s large so that the quantity
ad = g-é = wall then
tan{al ) ~ a5 and .12 expression L.Lh.2 approximates
to
Dc 1
5 = —— = . tanh (& T) .4.3
D n r
r 'r
2) No approximation is used and equation 4.4.2 is solved

for critical size.

Both these methods of calculations have been used in
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the present study and the computation has been carried
out by the programme described in Aprendix A—2.4}under
the titlej"One—Group Theory Criticality Calculations".

In the first case the calculations are straight-
forward. Civen the constants Dc’ Dr’ K. and T, the
corresponding reflector saving is obtained and the
material bdckling for the system is calculated by the
relation 4.3.° (c) in combination with the measured axial
buckling from e#periment.

In the second case the equation 4.4.2 being trans-
cencen: 1l in n?turgycannot be soived directly. Two
guess values otbttaised from the fir-.t approximation (1)
for the given .ore and reflector thickness are used to

%bve a better estimate for the critical size or
reflector saving, the two being inter~dependent
The process is repeated till the required
accuracy is reached.

Having obtained the critical size and the reflector
saving for the particular combination of the core size
and reflector tlwkr.ss, the calculation nf the thermal
flux distributio:. is%fair?y casy matter. The ther.nal
flu-. distribution in core ana reflecter are calculated

by the expressions

cos {(ax) (a)

¢ C(x)

Loh. L

@ (x)

P
C/A sinh (& + 7 - x) (b)
r 2
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A is used as the normalising coustant determined by the
power level in the reactor. If we use the boundary
condition (C) of section 4.4.2, of equal fluxes at the

core-reflector interface we would get

C/A = cos (£'0)/sinh (x_T) b.b.s

The results of computations on the basis of these two
pr0cedurés are given in the next section and discussed.

The results referred to as A and B are a variation
of theﬁgirst approximation. It is seen from equation
4.4.3,Vthere are three constants which we assume should
predict the right reflector saving for a given core and
thickness, namely the constants Dc’ Dr and Nr.

The constant Dc (diffusion coefficient for the core
region) and ", (inverse diffusion length) are known quite
accurately as the average values of the materials in the
reactor core,and the latter as
reported in section 3.3.6. But there is some doubt
about the value of D (diffusion coefficient) in the
reflector region,partlv hecause of the errors in the
streaming factor. In the calculation of streaming factor
for any gaps, e.g. between plugs-sleeves, the term 2¢
is neglected in Syrett's model since it is assumed that
this is corrected for by the density correction and omnly

the term (#fQ/K ) is considered.
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Then in calculating the diffusion coefficient the
volume of solids is taken as the "Actual" volume of solids
and the gaps are then leftout for no theoretical ‘ason.
Once the process of homogenisation has been applied then
it should be considered as a "Solid" and no argument
holds for its meglect; so this leads to an under-estimation
of Dmr' Therefore the results marked "A" correspond
to the value of Dmr with volume of solids equal to the
volume of solids actually present in one lattice;while
"B" corresponds to the value of Dmr wherein the volume
of solids is equal to the "Actual homogenised volume'.
More will be said about this point in sectiom 6.7. The
results marked "C" correspond to the reflector saving
as a result of iterations of the expression 4.4.2, so that
the transcendental equation holds true. In this case
no approximation as to the size of the core or

the reflector thickness is used.

The thermal flux distributions are plotted in

graphs of FIGS. 4.4.1 for the case A. The experimental

measurements of, the flux distributions are also plotted

alongdide.

The input constants for the core are taken from

Tables 3.4.1 for the - lattices,and reflector

constants are tabulated in Appendix A-1.2. The constants
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(a) PSCF K, (Theory) = 1.07701
Ref. Ref. M 2
Case Thickness Savings|—— Y 2 g2 K. (Exp.) % Error
2 11 m ©
cm cm MR From
4 -2 b -2 Theory
10 "¢cm 10 cm
144 2.52 2.52 |2.03998| 1.14678 1.07222-.001312 -0-3472
-.01741| -.01176° _
100 | 22.84 | 20.881, ,.12208| 1.16742 1.07344%,00134 -0.3266
-.01828| -.o01211
64 43.16 | 34.5083 5.41494 1.26585 1.07969%.00147 0.2487
-.02145! ~.01365
36 63.48 La.7212 3-09992 1.49069 1.09384%.00178 1.5629
-.02923 | Z.01735
16 | 83.80 | 47.0768|4.23475| 2.17889 1.13717%.00272 5.5856
» ~.04303 | -.02826
L 1104.12 49,2309 2.57255 §.62897 1.29141%.00616 19.9068
-.0605 -.06885
PSF K, (Theory) = 1.07783
|
144 2.80 2.80 | 2.11872 | 1.05375! 1.069841%.00127 -0.7357
I.01812 | £.01080!
100 23.12 21.7253| 2.18691 1.05772\ 1.07016 f.00128 -0.7113
Z.01884 -.010941
64 | 43.4% |35.9063 2.46890 | 1.12459 | 1.07460 =.00138 -0.2997
~.02189 | 2.01206
36 | 63.76 |44.6468|3.15533 | 1.26956 | 1.08422 *.00161 0.5925
A ' -.02955 | ~.01476 |
16 | 84.08 |49.3994) 4.28471 | 1.80231 | 1.11956 £.00236 3.8713
-.04335 | =.02308
b 104.40 |51.81245.61680 | 3.86757 | 1.25651 %.00537 16.5820
-.06066 | -.05641

TABLES 4.4.1
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(A) SF K, (Theory) = 1.08450
Ref. .Ref. M'Z o B 2 % Error
Case Thickness Savings-—ﬁg P m K (Exp.) From
cm cm MR 1640mw2 Theory
14k 3.20 | 3.20 | ~2.17762 9.974598!1.08198i.00166 -0.2317
| Z.009503, .
100 23.52  20.3454 2.27313 $.0&5g5 |1.08794-.oo179 ,0-3171
i -.01083
64 43.84 34.6324 2.47601| 1.19690 1.100697.00206 1.4926
, r.01277
36 . 64.16 | 44.7593 2.90752] 1.50779 1.12684%.00264 3.9042
f.01701
16 84.48 | 51.2307| 3.60388 2.24288 1.18868%.00403 9.6063
f.02751 ,
h 104.80 | 55.0964 4.43245 §.24391 1.357022.00794 25.1281
-.05824
ocr . K, (Theory) = 1.08405
14k 3.80| 3.80 | 2.31736| 0.804838]1.078661°.00159 -0.4971
{ -.003590]
100 24.12] 19.3371 2.38646| 0.987588|1.09652 2.00197 1.1505
| ’ £.010273 |
64 B4.44 - 33.0440 2.55929 1.21639 |1.11888 I.00244 3.2133
! : -.01302 ?
36 1 64.76 43.3459 2.89634 1'63325 1.16023 £.00333 7.0275
| | £.01845
16 85.08| 50.4159 3.48799| 2.46389 1.24081 -.00513 14.4604
| “‘a02997 i
" 105.40| 54.9705 4.12398 §.52142 1.44765 £.00990 33.5515
- X.06192

TABLES &.h.1
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(A)  PSFD K, (Theory) = 1.078,67
Ref. Ref. |M 2 %Error
Case Thickness Savings —2- y,,% B 2 K, (Exp.) From
cm cm MR Theory-f
10 % cm™2 107 %cm2
121 | 12.96 12.4546 %:ézgggi %:gggéé 1.06873%.00125 —o.921é
81  33.28 29.0452 %:ggg?gi %:gg?gg 1.07226%.00132  -0.5938
49 | 53.60 40.2226 §:ggg§g; %:ggggg 1.09080%.00169  1.1241
25 | 73.92 46.6479 %:gggggi %:gfggg 1.10034%.00194 2.0093 |
9 ; 9k.2h 50.0091%:g§gg§[ %:gggig 1.174902.00355  8.9214

TABLES 4.4h.1



P5FD K = 1.07867

Ref. } A¥i~1 l B C
'I |
Thicknesd _ .-k 2 | Saving B 2 Y Savin B 2 K
H l 16 em™ | m T nE m T
| ! T I
| 12.56 2.15223 ' 11,6590 :.08748 - . 071446 12.3529 i.05235 1.069C7

|
|

33.28 | 2.29946 | 27.1899 1.,20710 1.9793G5,27.7394 1.17485 1.077186
\

53.00 12.59859 37.6534 1.57226 1.10229636.3629 1.67301 1.10991¢

|
l&.95502 \46,?146 3.30b 7 1. 217120]36.98R9 =.88531 1.726662

|
!
i 72,60 13.66934 123.6C22  1.85032 1.12222139,1442  2.43057 1.153686
\ | ]

——

—

TABLES 4 *.,1

9%t



(B)  PScCF Ky (Theory) = 1.07701

| B ! C |
tet. ]32 l 2 ‘
Case  Thickness Axial Saving m K, (Exp.) Saving Bm K, (Exp.)
I -0 .y 2 = -
cul 10 1t:m - cm 10 Lcm"‘ cm 10 1(:m 2
14 2,52 2.03928 2.52 1.14678 1.072193  2.52 1.14678 1.072193
100 11.84 2.12208 20,0540 1.21229 1.076G318  20.3990 1.19349 1.075134
Gl 3,16 2. 01494 33.1418 1.35429 1.085257 | 32.1931 1.41758 1.089241
36 63.48 3.0992 k1,029 1.64428 1.103510 374986 1.99060 1.125314
q :

161 83.80 | A.23475 45.2125 2.46045 1.154893 37.7384 3.79824 1.239111
b 104,12 5.57255  h7.2813 5.22587  1.328984 | 32,7497 11.94914 1.752234

| | 1 |

TABLES 4.4, 1

N
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(B) PSP K, (Theory) = 1.07783
! B ' C
Ref. Y
Case Thickness Axial Saving Bm“ K, (Exp.) Saving m“ K, (Exp.)
_ - , -~ - &
cm 10 “em ~ cm 10-fem~ Ciil 10"Iicm2
14k 2,80 2.11872 2.80 1.05375 1.069901 2.80 1.05375 1.069901 |
100 23.12 2.18691 20.3376 1.13199 1.075090 21.1906 1.086004 1.072043
Ol b3, 4N 2.46890 33.61i28 1.26949 1.084211 33.309 1.3854 1.085267
36 63.76 3.15533 41.7931 1.51858 1.100735 38.9243 1.79093 1.4118801
16 84 .08 o204 71 ho.oohlo 2.25246  1.149417 39.19h8 3.45786 1.229377
% iloh.&o 5.61680 48.5029 4£.80167 1.318519 33.9520 11,1372 1.738786

TABLES /t.h.1

8%t



(B) ST K, (Theory) = 1.08450

13 C
Rel. \ : .
Case Thickness Axial Saving Bm Ky (Exp. Saving Bm Ny (Exp.)
~h -0 - -0 ' -~ -0
dm 10 “cm ©ocm 10 “"cm _ cm 10 “cm
144 0.999702 | 2.17762 3.20 0.974598 1.081987 .20 0.9746  1.081987
100 . 0.987270 2.27313 18.8974 1.12558 1.0940388 19.8947 1.07001 1.,090014
G4  0.968464 | 2.470601 32,1676 1.35823  1.1142060 32.2978  1.3494h  1.11352
36 0.934933 ) 2.90752 41,3737 1.786h0  1.15029 39.0085 2.03039 1.170805

16 1 0.865249 | 3.60388  47.5846 2.7361%  1.230175  h0.3235  3.92394  1.330098

L1 0.709477 | b 43245 0 51.1752 5.22175  1.439274 . 35,4443 11.130683  1.962111
. j |
TABLES h.h.1 :

64T



(B) OCrI* K_ (Theory) = 1.08405

B : C
Ref. | o i o
Case Thickness Axdal Saving Bm J{w(h‘xp. ) j Saving Bm"' K_(Exp.)
- Y} i -4 -
ciu 10 cm cin 10 cim ! cin 10 cm T
| |
1hhy 3.80  2.31736 3.80 0.8048%4 1.078661  3.80 0.80/38 1.078661
100 2h.12 2.38646 i8.745  1.02087 1.09975 ' 18.9h27 1,00970 1.098683
O Al Nl 2.55929 32.032 1.28h12 1.125503 30.9507 1.35855 1.132778
36 . Gh.76 2.89634 h2.019 1.75711 1.171731 - 37.9636 2.14Gh4h 1.209783
f i
; !
16 ¢ 85.08 3.18719 48.872 2.67093 1.261044 39.8243 4.13391 1.104028
4 5105.&0 o ho12398 1 53,288 4.98408 1.h87119 35.3878 11.77709 . 2.151073

J |

TABLES .l

0S¢1T



TABLE t.h.3

PSCP PSI
! -
\ AGL ' AGE
| ‘ ONE WO DIFFU- ONE TWO DIFFU-
CASE ' GROUY Giour SIOXN GIROUP GRour SION
A}
1L 1.07219 1.07349 1.0742h 1.06990 1.07119 1.07183
100 . 1.07344  1.07h3h  1.07561 1.07016 1.07139 1.07211
Gl 1.07969 1.08127 1.08218 1,07460  1.07599 1.07680
36 1.09384  1.09G0%  1.09731  1.08422 1.08598 1.08703
16 1.13717  1.:4186  1.14%65 ¢+ 1.11956 1.12312  1.125206
Li1.291h1 1.31260 i.32043 i 1.25656 1.27196  1.28371
SF oCrP
1y 1.08199  1.08362  1.08482 1.07866 1.08015 1.08131
1OV 1.08794  1.08982 1.09121 1.09652  1.09876 1.100353
Gh  1.10069 1.10315 1.10499 1.11888 1.12228 1.12500
360 1.1268k  1.13075 0 1.13371 1.1602 1.166h0 1. 17146
©16 . 1.18868  1.19733  1.20412 t.2ho8:  1.25474h  1.206671
[ ho1.35702  1.38799  1.h1h75 1 ah777  1.h9592  1.5h2h)
Psy (ODD)
I—f .Tq.
; {
121 1.06873 1.06991 1.07060 ;
811 1.07226 1.07357 1.07434
hg  1.09080 1.09285 1.09408 |
25 1.10031  1.10285 1.104306 |
Lo17h9o 1.18252  1.,18733 |
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usced correspond to the radial direction.

h..2 CALCULATION OF ERRORS IN K

The calculation of errors in K_ for partially filled
sub-critical assembly is almost identical to the procedure
given in scction 3.4.1. In the case of a sub-critical
assembly the uncertainty in the experimentally measurcd
material buckling and thcerefore K is due to:-

1) the crror in the measured relaxation leungih duc to
couses fully discussced in section 2 of Chapter 2, and
2) the error in the extrapolated dimensions of the
asscemmbly in X and Y-dicvecet fon.

When the sub-critical assembly is full with fucl
clements it is a =~imple ma. v of catculating how much
the resulting crror is. But when the sub-critical
assembly Jj partially Cillcd with the Cucl ond thoere
is retlector surrounding the core, mathematicalty there
is no analytical solution for the sy<tem in three diwmen-
sions and consequeuntly we do not kunow the coxact material
buckling for the system. Thus the material buckling
bLecomes a complicated function of the geomelry ol the
sy=stem and the uncertainty a: such is not in t(he experi-
ment (o ind the relaxation = ghh acensately bue in the
theory used for the analvsis. llence, it i- very important

to di=tinguish between cn experimental crror in ko or
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material buckling and the theoretical error in the said
quantities. At the moment our interest is in the cxperi-
mental errors involved)nssuming that the theory adoptecd

is the n'i:ght one for the analysis.

Therefore in the calculation of errors it was assumed
that measurement of the relaxation length in the axial
direction is independent of the measurcments in the X or
Y-directions. The combination of errors then ouwards
is almost the same as in the casze ol the sub-critical
assembly full with fuel elcocments=. HMowever from the
theoretical point of view the inaccuracies arce roducoed
to zero. For examplo)in the calculation of the reflector
saving it is assumed that thgrc ix no cerror in the analysis
and hence it should give the right inswer. Bui, the
attitude in the present analysis could be swuummed up,

"MMad we the possgibility to mea=ure the width o the =ub-
critical asgsembly with reflector outside in N and Y
directions so that in combination with the relaxation
length measured it could give the material buckling of the
svsten, then what error could we have expectled in the
experimental results so obtained?' Since the propos=ition
is ratheyr hypothoticnl’v it wag assumed that the
cquivalent width ol the reactor canteculated by the addition
o1 refllector savings is subjeclt Lo an crror ol 0.5 cms,

the same waxispum evror s we assuwie in an experiment with
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fully fuecled sub-critical assembly. The accuracy which

the programme , Appendix A-2.4. , assume is very high

=0
(10 cml.

The errors in b11 and equivalent width are then
combined in the normal way, secction 3.%. As It was

found in the case of full assembly CEISOS?thC crroy

introduced due to measurcments in the N and Y-dircection

was= very small, never more than 0. 1. of the error due to

crrotr in b .
11

Only representative values of the widths

vere taken for the purposce. Thus the crrors quoted in

Aall R, 's 1in Chapters 4 and 5 correspond to the widths

given by the core size and the corresponding reflector
savings with an assumed crror of 0.5 cm-~. for case A.

Tt was found that contribution due to the error

in b in the resulting material buckling and h calculated

1l

accurate bot less revealing calculations were done for

)
errors in hk_ and Bn . Only the errors= in the Tipvst
1

(o]

sel for W_, B 7 and avial buckling are tabulated. while
m 7

14

in the Jatter case they have been omitted, The errors

arising due to errors in thickness T have not been con-

A

sidered because the crror in the function tanh{l o due

to ervors in thickness is diminishingly =mall.

was the most dominant. Therefore no more pedontically
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.l .3 DISCUSSION O TIE RESULTS

(a) Let us first of all consider the results quoted

in section A.h.1 all together. ‘vaiously the best

results with reference to the measured thermal flux‘dis—
tribution, best known values of the parameters, specili-

cally material buckling and K_ etc.)start to deviate
seriously when the number of fuel elcments is less than

36 in case of PPSCF, DPSF and PSF(ODD),>whjle in case of

ST and OCF, the process of degeneration starts from

Gh fuel elements downwardg. The latter case could con-
veniently be ascribed to tﬁe inaccuracies in the streaudng(}«&@)
corrections and thus the corresponding characteristic
constnntslare not known to the desired accuracy.
Therefore the discussion would be concerned with the
first three cases, namely PSCF, PSF and DSF(ODD). The
thermal flux has been plotted in FIGS. 4.4.1 and it can
be secut that the flux distribution calculated theoretically
is in absolutely close agreement in case of W%, slightly
allected necar the core-reflector boundary in case of 100
fuel element=. The differences in flux distribution

are quite large when the number of iuel elcements is 64

or less, and Jheve 1% no relationship when the number
of fuel elements is 4. These deviations could be
explained by considering the flux plots as a function of

the number off fuel elements in conjunction with curves
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for Kw vs number of fuel rods and that of Bm“ vs nuuber
of fuel rods.
First of all if the calculation of refllector savings

is true then the material buckling defined as

()
=
2 - O (..E..__)2 - .1.\.{4__. >
m - = ‘\TTios 2 Yiq-
R

should be constant and be independent of the number of
fuel ec¢lements in the sub-critical assembly. The (act,
that it remains fairly constant over the range 144 to
]

Gh fuel eclements and starts to break down seriously
when the number of fuel elements. is reduced below 30,
proves thalt the calculation and the concept of reflector
savings is true. Below this number it is not the method
but that the basic physical assumptions in the analysis
break down.

In the theoretical analysis the problem is treated
as infinite plane slab system, implying that the dimensions
1y and z-directions are infinite. Mathematically it
has the significance that there is zero [flux curvature
in these two directions and consequently there is no
loss of neutrons from the reactor systen. Thus in reducing
the size of core-region in the assembly,we increase the
loss of neutrons and consequently the material buckling
increases leading to the increase in the value ol I

needed to make the system critical under the prevailing
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conditions.
However,it is fortuitous combination of assumptions
that the results are quite consistent over a wide 1ange

of fuel elecments,’

The rapid fall of thermal flux in comparison to
the experimentally measured flux distribulion is due to
the fact that thg basis of one group theory is not truc
that "all events Lleading to the production of thermal
neutrons take -placc at a single energy!'. This will

Le considered in some detail in the next chapter.

(L) XNow considering the individual sets of data and
the computed results, for thesets A and D the reflector
savings have been calculated Ly the expression

DC

b
e

tanh (Tn ) ol
"

while in case of (C) by solving the transcendental
cquat ion,

D, 2% tan(a % - pow coth (¢ T)

C 2 r el

for 5 in case of given thichness and core-size.
‘In B the increase of Dr reduces the reflector saving orx
indirectly increases the radial leakage in the reflcctor
region; therefore the agreeanent gets worse betweenn Lheory
and experiment in comparison with the set A. In case

(S

of” 100 fucl clement« the re=<ults For PSCE and PPSE and
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PSF(OUQ) &1 the agrecment between theory and experiment
is dmproved; while the agrcement in case of C Ls

the worst as cowpared to A and B shown in FIG.h. b1 (A,1B)
sjnceyin accordance with theory, neither the analytical
agsumptions are absolutely true nor the use ol con-
sequent results should be absolutely true. However
derivation of the eqn. 4.4 is a simple approach to the
problem and has certain opposing processces (Chapter 3)
going on so that the agrecment is guite closc.

In section 3.4.3 it was remarkhed that the basis of
modilied oune group theory to compute K  arce approximate
only. With that point iun mind) all the results for A
cases have been tabulated in Table 4.%4.3 for ihe sake
ol conpurison, in the use of modified one-group theory
in compari=on to two-group and age-diffusion theories.
The material bucklings and the relevant constants arve
the same for the computation of K. The expressions
for K, used are h.l.2-4, The agreement berween Lheo-
retical and experimental values ilmproves considerably
in case of full assembly case, 100 and 64 fuel elements,
and the apparent disagreement in other cases is due to
the neglect of other theoretical and physical reasons,

which will be discussed in the next chapter.
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CIIADPTER 5

CALCULATION OF TLUXN, K-INPPINITY AXND TiIE REFLIECTOR SAVING
FOR A PARTLALLY PILLED (Core) SUB-CRITICAL ASSEMBLY ON

TIE BASLS OF "IWO-GROUP TlHioRy™"

5.1 TOIMULATION OF TWO-GROUDP TIHEORY DIPFFUSION EQUATIONS

ALL the introductory remarks of the last chapter
apply to the present chapter, except that here we will
consider the two cucrgy groupsy) namely,thecrmal and fast.
Two-group theory i1s one of the most widely uscd methods
for calculaling criticality in a thermal 1recactor.

To cuan be applicd to a reflected rcaclor and takes
cccount of the slowing down process more trigorously than
does the modified onc-group thecory ot the last chapter.
In order to sel up the two-group neutron halance equations
in the core and tl.e reflector regions,we follow Syrett's
model (7) in ordering the sequence of events briefly

summar i-cd below.

13 DProduction of fast peutrons hy [ission causcd by
) . 235 L L 5 ¥
thermal nceutrons in U and fast (Cission in U .

, , . 238

2) Resononee capture i L fast neutron leakage

and slowing down of fast neutrons.
3) Thermel nceutron capture. leading to the pirocess

(1) and the parasitic absorption as well.
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The ordering of cvents in the two-group model is
inn Line with the wse of Westcott's formalism of effective
cross~-scctions. The ncutron-balance c:ruations f{or ihe

core region for (he two cnergy groups cair be written as

D, 7T - . o Ko = O .l
fc RS cc¥re ®© e Tme :
)
7 T n -y o DR S 70 I = 0 Delal
uic e Tnic Tic Le¥le ’

£, m and ¢ stand Cor fTast, thermal aud core vegions
respectiively.

I we ~ubstitute g e from ¢ - 5.7.2 in co. S.1.1
or vice versa,the resulting fourth order differential
cquation would be identical in ¢ e O P showing thaot
any particualar solution of @ e has o corraesponding =solutcion
for the Tast flux ov vice versa.

fffect ol resonance escape probability is assumed
to be dncluded fin ko and thevetore the transfer cross-
section from fast fTux to thermal is the sawe in the two

equations.

The fluxes in the vreflector vegion can be wrilten

as
)
D. 7T 7ot = 0 5.1
e Ve er e o- 1.3
a2
'-\—7 % — « e ;/_ . L‘ - O 5 - 1 - ’k
mr BRTINN mro g I'r [r 2

There is mo source term in the fast group for the

reflector because there is mno l'uel in the reflector region.
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The process of regeneration, absorption and leakage
could be followed much more clearly with referencce to
'IG.5.1.1 wherein the competing processes going ow in
such a system are shown diagramatically. Details of
the melhod of solving these (owr differcutial cquations

arc given in the next section.

CORE REFILECTOR
![ ]
; F'asl currecunt Fast leakage
Las{ " lc : o -
i
Neutrons i . \ .
S l] Ow AL ‘ : Slowing

ot | 5

S SO

,‘
T
; J: ‘,
| U '
; fission . . :
Thermal ! T me i *
. ) | i
N A ~ i —  _ L -
Nocuflrons | , Lo & T —
; hermal currcnt ¢ Thermal lLeakage

|

Flc. 5.1.1

TWO-GROUPY REGENERATTION, ABSORPTION AND LEANAGE PROCESSES
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1

-2 SOLUTION OF' TwO-GROUP DIFIPUSTION EQUATIONS 1'OR ILUXES

IN THE SUB-CRITICAL ASSEMBLY \ND CONDITION IPOR

CREFICALLLY

In the present section,as in the last chapter, the
problem oi the sanarc core in the square asscembly
(reflector core system) will be reduced to the case of
"inCinite plane system?, : The assumption ix partly
tru(:;/;spec:i_f“jcn].ly, the ;4a,ﬁt'

(n)’["[thu flux distribution in x and v divecctions$:is iden-

tical Lecause of the gymmetrical position
ol the corce, is in [avour of this assumption while
(1)l M&f\a{&&e solution of such a core reflectad
svi=tem in two dimensions 1s impossibt v; chv(\'s .cvaeu“Ms)C'\i.

Ilowever there was ample experimental evidence to
support thaoav this can be assumed to be rue {for o <quare
care ol rceasonnble (section 5.3.0) dimensions.

weiting the two-group equations for thermal and [Last
fluxes iun the core and the reflector regiou (scction 5.1)

in rectangular coordinates, we hove

T NLY L) - > (N, Y .7 e 2 W (N.Y.,2) = O 5241
ch "L,l‘c(\ x.7) {c "L‘c(\’l £ vh, e mck Y 2) -
"o ( ; ) (
VAL XY,/ )~ Y L4 . . . S = 5.2.2
Dmc T e Y, 7)) me "nie (XY 5) i re e NLYL ) 05
S (YL NUYLZ) = 0
V7 A './; - o ‘," ‘.,{ = '—-2.
DL‘r *ro P rr .(.‘r& > ' 2 3
2 ) 5 ¥ 3 !
7 .Y, 7 ¢ \ 2)+8 5 (N,Y,/) = 5.2.
me L"uu‘(‘\’& [ gHTSgY (X, Y. 2) fr' {i (X, Y, 7) 0 g .



ALL of the balonce equations arc

excepting the fast flux equation Lovr

solution to an inhomogeneous differential equation
to the swun of the solution to its homogencous pairt

a particular solution in accord with the nature of

inhomogeneous part, i.c.

CF - C%;‘homo. 'rct)pal‘ticular.

inhomogencous

the veflcector.

The
i~ cqual

and

the

The homogencous= part=s ol the fowr balance ecqguations atc

9 12
Vch(_\.l./,) - BL,I‘C(\_‘Y,/,) )
2 . , 2
VT (N.Y.Z7) Bre (LY. 24) = 0
e HIS
(It is assuwed bucklings Tor the fa=t and thermnl
in the core are cogun l,)
'R 2]
i an N\ I I3 \ : —
/ ,“(.\,1.[,) e ¢(N,Y.Z) = O
2 , o 2
TTC o (NLyLs) - 2T e (0YLs) = 0
110N v i
Substituting cquationu= 5.2.5 and 5.2.0 in the fast
thicrmal caguat.iions {or the core. we have
( - )
(D, BT+ oK A =
lic 410 Ko me’ mc 0

Le

o
- (D BT«
e

Lo o “me T e

Claxes

[

~
.

|
.
[e
.
ce

and

Qcading to the determinant for o mnon-trivial solution and

the criticality condition is
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p] 3 (D] L

ro

- 9.

~l
.

[++]

-y

This is a second order cquation in BT and has got two

2 3
roots 17 (real, positive) and VY (ncgative and very Large ).
The problem is to find the geometrical dimen-ions which
give a geometrical buckling satisfying the boundary con-
ditions outlined in scction %4.2 for the necutron rluxes
at the inlerface and at the extrapolated bOuudaries;
besides tlm't) the flux should be symmetrical and non-
negative.

Making usce of the fact that

(N, Y. Z) = X(x) Y(y) 7(2)

cnd rewriting the core cequations 5.2.5-0.

) 0
T oY D 2
1 SR e ! ¢ 11'(' "2C 07 ) 2
N = lr E S B Ey i 13 i O ({) )
Lc axT RS S FRC §72~
52.2.10
© )
T TN (9}
t e i N 1nu_- . D.\IZC ar- 2
\ = ‘ }_ T3 i 1) 5 B = O (1))
me 2x" me Oy o MRC @2~
The =vstem under study is not "plane infinitc sLlab':

it is (inite in all directions and to complicate anjiafs
ther« are neuitvron sources aib the hottom of the sub-critical
assembly., Ilowever we proceced with our asswuptions as
before. 1

Since cach term in the equations 5.2.10 (a,b) (s

independent ol the other,
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. q 0
L2 Nyl
L 0/ fe B 1 4/ me B Y2
Z 2/ L2 -
fc Q. /mc 37
) )
VAT Il it
T ' U { ¢ Yf‘c 12
Ot = ==
N . L 2 o 2
¢ N lt_u gy

il is the radial leakage in x-dircction corrcesponding
to asymptotic flux distribution. Therefore the

material buckling of the system ix

3= = 207 = yT -—/-(—, (¢} D5.2.10
iy
Now con=idering the solution in the direction ol ~x or
v, the general solution to the core cquation- ¢ s &
lincar combination of the two solutions corresponding
3]

[}
to 7 wond -V, salis{ying the boundary conditionsz.

The solutions would be

.‘(ﬁ‘(\') = A cox (\) C cosh (vw) (u) S.oatt
\_m”(\_) = D’,i A ocos (an) 1 5, C ocosh {v~) (b, S.2.11
b -

o values of s Qi SL.oare
The valuc > . el >, 1

‘ o
I
| P
) ‘Pue RO i o
5,075 - = ~ (c) S.o01d
BN T - - =
MRIC l?!)\ L= LJR(: il
2
. Dine e | '
2, =5 . —_ . —— (d) 5.2.11
= MRC O LT,e 1-lne v

showd k-

The foact that the lux distributions ¥ symmetrical and

non-uegative in the core, has been applicd as the boundary



conditions.
Solution in the Z-direction both for the corc and £evr
the reflector regions for the equations 5.2.5-8 is

sinh(c-z)y

z(z) = All sinh(cy)

(9
.
o
[ ]
U
2

The criticality condition (5.2.9) rewritten for
the two groups
12 L2 ) 2] 9 > ) a3
K, = (1+BR“LSR”—y“LSZ“)(1+BR“LR“—Y“L2;)
relates the production and absorption of neutrons to the
leakage and Flux curvature in the core of the sub-critical
assembly. This gives two values for the radial flux curva-
ture?u2 being the real root and-Jﬁ the imaginary omnc.
The real 1root is positive and very small and the other is
negative but of very large magnitude. Physically the
positive valuc describes the asymptotic distribution of
the fast and the thermal [fluxes, cos (.x}, while the
negative root corresponds to the non-asymptotic flux
distribution, cosh (vx), or is the transient solution
for the f(lux distribution ncar the intertace of the core
and the reflector. This is as a consequence of the
fact that the nuclear properties of the core and the
reflector are completely different from edch other.
HHowever this transient dies out in o distance ol the order

of a migration length from the {why-%oee . Then the
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Tlux distribution settles down according to the propertics
of’ the reflector region.

The asymptotic solution of the core [lux is physically
realizable since,on cxtrnpolation)it reduces to zero at

the cextrapolated boundary of the assembly’while the

transient solution is not. Therefore we can associlatce
the two in a linear combination only. Regarding the

magnitude of the roots)we have to assume a trial value of

-

LT and then

'n T
since we do not know the critical paramcter K, in the
criticality conditions, which we have Lo calculate
eventually.

Now the cquations 5.2.7-8 for the fast and thermal
fluxes in the reflector reogion written in reclangular

co-ordinates by making use of

PIN,Y,Z) = XN(x) Y(y) 7(z)
arec
2 [}
- 7 <)
1 & er 1 O\.rl ] D["Zf i o - _ .,:—) .0 (1)
- [5) 3] 2} e - !
e ax”~ Yfr gy~ DFRr “er no I
o 5.2.13
LC N ooy Pare 10 332 2
~ . U . ;LY _ fad _
§ 5 Y ) D &) mu 0 (L)

X 2 o Z / .
mr Ox mr gy MR "mr =z



The solution for the flux in the x-direction as

before is

4 : = [ 3T a . - - C ¢
hfr(x) = [ sinh ORI T x ) (a)
A
Y ) = C i nl a'op : " 5.0, 14
hmr(x) = G sinh umr(2 ¢ T X ) 5.2.1%4
A a' a
r S3 I sinh ufr(2 + T x ) (L)
where the coupling constant 53 is
. DFl{r 1
S, = e . . (¢)
3 MR L.o
' SR
(22 )
l@lx‘
2 1
and w7 = —/—— ()
v (-
SRy
2 1
and  » = = (e)
my B
R

It way be remarked that the [(lux distribution in
the z-dircction is the same as for the core regiot.
he same expressions for the flux distribution in the
y-dircction would hold true except for the values of y's
in place of x's because of the symmetrical position of
the core in the sub-critical assembly. The thermal and
the Cast neutron flux distributions in the core have been
obtained under the conditions that the Clux is finite,
syvmmetrical and non-unegative,while those for the reflector
region have been obtained under the boundary condition

that the (luves go te zero 2t the extrapolated boundary
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o’ the assewmbly. IHowever it is assumed that fast and
thermal fluxes have the same extrapolation lengths.
To £ind the counstants A, C, I' and G we apply the

boundary condition of cqual current and ecqual Cluxes

at the corc-reflector interlaces both {or fast and thermal

Fluxes in the two regions, i.e.

: 2 = © a
Yoo (5 ) =9 05)
and o L
9 jI‘(:(Q ) g ’['1“(2 )
D_LL‘ . - D[‘ T
0 . g«

similarly for thermal {lTuxcs.
For a non-trivial solution of the resulting four
equations for the arbitrary constants A, C, I' and G,

by Cramer's rule the determinant so formed should be

equal to zero. britten in full it would be
X Y -7, 0
Sl}x Sgl —b3A1 42
LA = = 0 5.2.15
Y' lrl _])’ Z,! O
! 171
SlX' SJY' ]2'41' —1)2L:',1
| PRy D
where ])1 = T : P, = 5
I'Re = MRc
X = cog (ux)

Y = cosh(vx) 5.2.16



w4

LJO
-

P |
. i

= sinh HL‘I‘ = + T - x)
. ol

= sinh ®* (= + T - x)
mr "2
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The prime indicates the corresponding derivations. All
these functionszx are evaluated at the "Core-Reflector
- . { ' .
Interface, 1i.0. x = = . To solve Lhe determinant
(5.2.13) it becomes casyv il the following notatioun is
uscd. '
Xl
o= = = o= tan (ix)
AN
R \ .
Po=  vianh (v v = =-#n. coth (n. T)
( f fr ( 1
5 = - coth (» T)
i mr
C, = 5, (p.y =8)
i 1P
€, = 5, (B- p,0)
C. = = J, (C) - J)
3 3 o
Then the value of the determinant on expansion can be
written
L= D D, (C,-C +C,) (=) 5.2.17
Mie CFRe U1 2 v 2 /
where
C?D')D B C‘,)I)IY i G,
o= = — 2
Cl C: i C3
The coupling constants S‘l and 3, have to be modiliced
to take into account the curvaturce ol the necutron-f{lux

distribution

in the

axdial

and y-direct :.L()l].ﬁ')

so thal in
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expressions f(or Sl and S

“»
2]
M T
2 -2 2 P 2
I = yl = 2u - -——_"TYJI (a)
)
: 5.2.18
2 =2 —2 L 1
and vT o=V = T P (L)
| - L~
SR R
2 ;
where u is any guessed value. Then the exproessionn
5.2.15 is dterated so that 220. In the end having

obtained 1 and v, the radial bucklings (guessed values)
for the fluxes, it boils down to ite‘atﬁHS.Q.lS, details
are given in Appendix A=-2.5, for improved guesses ol u
so that

= 0 5.2.19

Or at best has the lecast possible value for the combina-
tion of T (reflector thickness) an'l the cquivalent sirze
of the bare critical system (a' + 23) where 5 ig (he
reflector saving for the rvcflected core-system under
study. The value of 11 or {a + 285) which satisfies the
condition 5.2.19 is taken as the equivalent size of the
bare critical system and the material buckling is cal-

culated so that

3
. M7
2 i~ 2 z 2 - .
13 = 2 ,qr_) - - Y 5.2.20
11 oD -
M
R

and thu‘infinitu multiplication constant K is calculated

by the relationship below
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: o 2 2 2 ) 2. 2 .
K, = (12 L,7=y7L, ) (120 Lap =Yg, ) 5.2.21
5.7 COMIMITATTON DETATIES AND RESULTS

The mathematical solutions of the four ditfferential
cquations 5.2.1-%4 have bLeen programmed (Appendix A-2.5)
to =solve the critical condition in the form of delermi-
nant 5.2.15 for given reflector thickness and core size.
1t may be mentioned that,having obtainecd the general
~olution in the rLorm of equations 5.2.11 (a,b) and 5.2.14(a,
l)))_it is purely a geometrical problem and involves the
interplay between the core and the reflector. This Is
done by making these four cquations (last sectiion} to
satisfly Che coudition of ecqgual [luxes and equal currents.
Thie input constants Cor the two-group criticality
cnlculations ave takenn for the core Lrom Tables 3.4.1
and for the veflector Trom tables i Appendix A-1.2,
The results are marhed "A' aund 'DY for the same rcasons
as i oscction A.Nt.ly slu)cifi(:;.\lly)'L’ho diffu=sion coeffi-
clents Dmr and DJ‘I‘ correspond to homogenised graphite
volumes~ but not to the actual volume of the solid graphite,
Pove in casc of I3,

» Vi{solid)
MR O V(lattdice)

) =
nmr me

V( Sobteh ) = volume of ihe homogeniscd graphite. The

computed vesults are tabulated in Tables 5.3.1 along with




~

K s

fast and thermal CLux disgtributions at some represcenta-
tive po;Lnts) for comparison with experiment for twenty-nine

Tables 5.3.02

clean core cascsa Algso we given the constants A,C,I', cte.in

7

the case of the case PSCI (A-set) to give a general idea
about their magnitudes. The flux plots lor 5-DSCI
cases (100, G, 36, 16, & fuel rodé casecs) arce glven
i FLGs. 5.3.1. The flux distribution= in all other
casces are almost identical in shape though diffecrent
110 magnitudes and are therefoyrce omitted. The parameter
Ay, vs. number of fucl rods is also plotied aloug with the
graph of veflector thickness {(T) vs. core sizce and
reflcctor sav.Lngs,clemllate«l both omn omne~sroup theory
and two-group theory for the sake of commarison in the
case ol PSEF (PsT (0DD) is also included). The graph
giving the material buckling vs. nunber of fuel rods
i Omitted)because 1t is almost identical to the one
given in FIG. h.h.1 except Cor slight differences in mag-
nitude.

The ervors quoted in Kk, are the same as in Chapter
' for the reasons given there. The errors in the avial
and material buckling are nolt tabulaoted here to avoid
duplication every =so oftemn. The error in the calcula-
tion of reflector =aving is approxiumately zero ('IO—()cm)
according Lo theory =o il is not quoted herc. In set-B

e ¢ D rror N o
cvenn the criod Al I\C’i) s omitted.



PsCI
TWO-GROUP TIILORY RESULTS

REFLECTOR N L
rf-,, . | 0 ! 2
CASE Mdicw i3 ’ 13
| 100 =& Axial |Shving M N l Sowving o g,
! UL o ;'j_F)ILc 1_:-3:7’) L i 6!}(‘ ;_1—12 Ci o \m’l‘c l:.lz
Ex&& 0.52 :.osggci 2,52 1,185 78 L0730l 0051 2,50 1.00678  1.073494
100 20, L olsi2208 20 18 1, 13880 1.072937-.001340 | 20.605 1.20428 1.075813
Gl b, O o ohalbolhlah 9m8 1, 2361 1.079333f.oo1471 33.709  1.3417h 0 1.08h007
36 G3.hE 53,0998 L1 770 1 .57680 1.1017232.001781 | L0.436  1.7hGio 1. 10994k
16 83.00 E.:j&?g%kz.zrh 2.77337 1.1821992.002719 | 42,065 3.1192h 1. 190366
I 30412 L5755 hoL9i1 TL58982 1.5347732.006155 | £0.020 £.98184  1.56543%
pPsr : !
Lahly CL80 2.1 t87al 2,80 FL05375 1.071119i.00127o | 2,80 1.05375  1.071119
100 23002 2008691 122,206 1,03051 1.069524%.001279 20,884 T.iensh 10070400

-

6! L3 bl 2.6890 36,216 1.10569 1.074687%.001376 | 3h. 168 1, 25879 5.033502

36 63.76 3.15533 {46.280 1.38616 .0940585.001606 | ii.6Go  1,62760  1.i0796G7
’ 16 81,006 o288 7d [, 80h0 2.1:6904 1.17047of.002358 Lo,832  2,92726  i.094130
o 10,0 5.601681 4520312 6.96290 1.515058%.005368 | 10.839 8.52563  1.565548

TABLES 53.3.1

€81



PSF(ODD)

RETFLECTOR A B
- ‘ . L = . - |
CASE Thickness Axial S5oving 1 Ko Saving 1 K
FUEL e o ;)_j'xcm": f cin ;_;o"ji"cm"? cht “';_O——['!'k ,"13
?
101 i2.96 L, i5203 f F2LTO6 SL.028ME 1L066707-000025 0 10,066 11,0048 1.071271
51 373.38 Vool f 20710 i.06250 :.o71019f.oo;3ﬂf SOL1Rn L Th37 1.,077155
49 53.00 2. 59859 i 1,196 1.38379 4.0929725.00:09¢] 38.228  1.36708 i.102966
25 Ta.90 3.669540 ? FRU R T L.6006G2 1., :217852.001938 hoLohs o 0L 09577 4.137869
f 9 Gl o . G5500 { La.726 L 00676 1.:80&99f.u03552;h:.12% oToasil 1.310437
|
144 3.2 CL1T7TOR ©3.20 0.974596 1.08362:12.001661  3.20 0.974598 1.083621
100 23.52 2.07343 2i.590 0.978194 1.083935-.001768] 20. 120 L. 05049 1.09089§
6k 3.0 2.h7601 | 36.0060 1.10805  1.095325-.0020064 33.793  1.20267 4.10790&
36 6. 16 1.90752 0 hLL032 1.50175  1.1302112.,004032 ko.312  1.0085C4 i. 149301
i6 SRS 3.00388 | 16,269 2.63886 1.2339671.00403: 15.952  3.1587h  1.265720
Iy 104,30 e, h3ahs | t7.039 L4371 1.613074-.007939 15,315 8.03082 1.675585

TABLES 5.3.1

Vet



ocr

RERLECIOR B
: oy
]51“ 151_‘~
CASLE  Thiciness }‘ VRN - K Saving N K,
. -—/'. -t _/ —_
CIPURL cil ~ 1O [ Cli Y cy 7 Ciit 210 I’gm“
| 1
i
q i
1hl 3.00 CL31T30 ! S.00 0 0.00406386 0 1.060147-.00159  3.080 0.804838 1, 080“‘7\
100 Gl i 2.30646 0 126,829 02905640 1.0904352.00i965) 20,213 0.959952 5.093821|
| G Lty 1l 9, T5000 5L 5690 1.09736 1.-11001117000»’3& 3.94L 1.18906  1.116216
30 61170 "’§§3’f {{M—.i»a? 1.:3_7(%3 139155 7.003333 23.(»8 12079 1.6(15558
N 65.08 30709 thal521 2071901 1.2 2770—.00’)3_31 L7 500 3.050:06  1.298108
! 105,00 . 12390 \-’:éé.ﬁ:-}i'(;.338 o 1.7117272.009900| t7. 600 7.57915 1.740749
L i

TADBLLES ©.

[N
.

SQt
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A-SBT
CONSTANTS FOR CRITICALITY
CAnE A C h G o s, S
i 2 3
rscr
100'0.53&:20 -0.000010 0.079399 9.032287 12,7000 12,747 -15.5406
6 0.2906007 -0.000079 0.02000 10 12655 12.030 —13.705 n
30 0.220595 -0.000470 0.006R20  2.133277 12,506 -13.359 "
16 00187073 -0.002569 0.002073  1.3555528 12.090 -13.071 "
Gloo152418 ~0.013758 0.000641  0.933968 10.662 =1L1.h17 "
1
s
‘1oo§o.h99938 -0.000011 0.079312  6.765010 12.340 -13.723 -15.097!
6N 0.280712 -0.000086 0.021318 1.038h22 12.312 -13.6G88 n
3G 0.210h247 -0.000197 0.006859  2.121305 12.208 -13.560 n
16 00177677 =0.002G10 0.002292  1.530018 11.820 13,087 "
o509 0 013400 0.007310 0 0.938491 10,456 —11.h32 L
st (0Obb)
121 1.0298886 -0.00003 0.212324 19.0283838 12.205 -13.805 =15.495
Gi 0.73336037 -0.000032 0.39059  53.036032 12,2750 —13.790 "
L9 0.243890 -0.000207 0.012080  3.091376 i2.130 ~13.Gh; "
25 0UL190506 ~0.00LE33 0003992 1L oA 11,988 =13.456 "

9 0.161065 -0.005394 0.001332 L2 1310 11.202 -120508 L ;
|
|

S]¢\ ‘V
100 0.467285 =0.000016 0.095511  $.833734 10,176 11,078 14,923
Gt 0L 2350697 —0.,000120 DLOZ9I6T L1063 0L 132 —13.993 o !
36 0106269 ~0.000C31 G.0L1020  2.339899  9.999 —13.742 " :
1O 0L 1532728 —0.002960 0.004366  1.097333  9.935 -13.062 "
I 0.123572 ~0.013323 0.001622  1.072308 8.387 -11.209 L
ocCk |
100 0.463979 ~0.000021 0.102105 8.940216  9.540 -14.015 —1h.486 |
6@ CL23782 ~0.000157 0.032897  4,187893 0 9.h72 —13.86G7 " i
3600177876 ~0.000771 0.013265  2.622637  9.306 -13.313 n
16 0. 140166 -0.003369 0.003634 1.781821 8.928 -12.731 "
O 115163 -0.013961 0.002220  1.136333 7.913 -10.76h "o
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PSCr PSCF-100
[ i |
'CASE | TWO-GROUP LXPT. TWO-GROUP EXPT. '
DIST. CPAST  TIERMAL  PHERMAL FAST TIERMAL  TIERMAL ?
0.0 8V.00 1000.00 1000.00-3.16 78.95 1000.00 iOOU.UOij.lq
20.32 77.38 967.28 9Gtr.2053.00 7C.31 9G6G.33  970.i523.07
BO.GA G9.70 871.28 870.208%2.75 68.56 8G5.3G6 871.G81n. 76
6u.9o§37.h6 716.26  720.2812.28 56.22 712.06 721.34%2.28
81.28@&1.&6 518.25  519.0921.60 4o0.11 508.09 315.1911.63
101.60i22.75 284.33 284.9610.9 | 21.32 270.12 302.51%0.96
‘ ]
DSCI-Gh PSCE-36
0.0 79.13 1000.00 1000.0025.1( 79.62 1000.00 1000.0053.16
20.32 7C.07 0 9GL.57  96L.07I3.00 75.79 0 932034 9G3.6913.05
hO.Gh 67009 853,08 86GA. 1312073 ch.67 813, f30.07%2.72
GU.G 53.76 679.74  708.4870.20 W7 32 598.10  8oo. 03-h 53
81.28 36.00 453.55 368.0311.80 11.76 60G.hi  GGo.oofa. 53
101.60 8.7 334002 367.2h51.00G0 3,60 330.27 |
i‘ |
PSCEl-16 PSCE -4
0.0 80.39 1000.00 984.86-3.1¢t T3.401 9453.53 870.1840.75
20.32 70148 930.64  979.10-3.09 G8 840.81 970.3553.06
BOo Gl 57.58 732,80 1000.00I3.160 10,30 908.68 1000. 0U-3.46
60.9G6 ih.33 805.83 94G.6912.99 5.38  GGG.TT  830.37%9.63
81.28 4,70 340,14 G78.56120 00 Fo77 o h2hi33 58h.68%1. 85!
101.60 1.4 280.65 361.3451.1 0.38 163.87 315.15%1.0(

!

|

TABLES 5.3,
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PSr PSF~-100
%Asm MWO-GROUD 1IXPT. TWO~-GROUDP EXPT. }
DIST. FAST TIERMAS THERMAL FAST  TIERMAL TIERMAL

0.0 82.40 1000.00 1000.00-3,16 81.03 1000.00 1000.00<3,
20.32 79.72 967.43 968.16%3.06 78.36 966.97 973.42-3.04
hOLGh T1.8h 871.84 870. °4i2.76 20.30 870.07 873.475a.77

C 609G 59,29 TI9UAG 721.92712.23  37.99  T15.70  7i5.7251.62
81.28 ho,87 3520.22 51&.1&—1.63 .63 s1h.o0 511.8121.62
101.60 23.66  287.09 274.6920.87 22.56 278.40
‘ |
PSI-64 PSE-306

0.0 4Gt1.17 1000.00 1000. 00-3.;( 81.51 1000.00 Looo.ouf3.;6
20.32 786.19 9G3.35 975.%323.08 T77.70 953.73 963.0;f3.uh
B0.Gh 69.47  856.10 867.75%0.74%  GG.G3 819. 863, 39iﬂ
60.96 35.66 686.12 713.52-2.26 49.31 (09, 7091600, 52
81.28 37.75 465.88 571.0821.80 12.80 G6oi.52 hjj.BBLN.U,
101.60  9.33  36h.79 ool 3ho W

IN
PSE-16 DS -4
—

0.0 8$1.99 1000.00 999.43-3.16 74.02 939.62 876.06-2.77
20.32 76.17 933.33 966.37-3.05 62,05 Sho.co 0 96 .9323.04
OO 59,00 7h2.81 1000,00-3.16  17.32  913.00 1000.00-3.106
GO.96 15.%9 822,450 948.2873.00 5.92  679.86 320,121, 5y
81.28 s5.25 3563.10 673.68-2.13 2,01 h37.22 573.52-1.81

101.60 . 1.66 292,87 0.63 221.350

TABLES

5.3.2




TALBLE

5.3.2

PSF-121 PsSr-81
CAsl T TWO-GROUD EXUT. | TWO-GROUI EXPT.
DLsT. TFAST  TIIERMAL TS IRMAL (F\ST PITERMAL THERMAL
(211
0. 16 80.87 1000.00 1ooo.noi“.1c‘8u.39 1000.00 Juou.ooi3.16
30.48 75.38  934.67  940.G7L2.97 75.31 931.00 941.4552.98
50.80 63.37 808,35 8Jh.dl—). 8 6h.33 797.78 810.68-2.56
7L.012 50,88 629.210 0 (31.07<2.80 hv.29  (609.32  625.64-1.98
91.%% 33.07 408.97 N1i0.202i.30 30.66 379.22 hh&.lof o
E11.76 130100 16204 163.1370.32, 6.71 209.05 1.35620.67
1 i
Pelr-49 P51l -25
— -
10.16 8i.41 1000.00 1000.00-3.16 81.23 1000.00 1000.00-3.16
30.8 74.75 918.51 921.88X2.91 72.03 889.63 929.2hk-0.94
50.80 G1.97 762,19 8Ol. 3)— .33 5h 060 681039 9ti.31-2.88
7iLl2 W2 Sshao83 0 Toolosiolor thoiG 730090 852750057
91 PEat3 0 507043 33u.3::1.68 .72 AGT.33 0 5323.7121.66
111.76 3,00 206.62  215.9350.68  1.20 180.93  202.9820.64
L | l
PSF-9
I
10.16 79.32 982.39  921.7922.92 These experimental (lux
30.08 65.72 0 O16.3 1O00.H0=-3 .16 di=tributions correspond
56.80 16007 Di3.90 0 967.65-3.12 to the line v=10.16 cm away
TiLto o 50700 657,20 TOZ2.TE22.0 0 Mo centre line while
9734 P.920 390089 4700 1M-1.57 theoreticel numbers at
A11.76 1 0.5 8,06 1860 18-0 39 v=o.
L
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SF SF-100
CASE TWO-GROUD EXDT. | Two-GROUD BXI'T.
DIST FAST  TIHERMAL TIIERMAL gFAST TIERMAL  TIIERMAL
. cm i ‘
C.0 ]100.26 1000.00 1000.00I3.16 98.26 1000.00 1ooo.oof3.16;
20.32 | 97.01  967.64 967.44%3.057/94.98 966.63  967.%173.06
oG s 87.49  872.64  869.88%X2.75(85.36 868.74 869.88%2.75
| 60.965 72.30 721.17 722.28%2.28170.04 712.87 722.28%0.08
84,28 ) 52.4k 523.01  521.7471.65130.05 509.43 521.7471.65
101,60 29,18 291.01 288.71%0.91(26.71 271.99 313 _)fo.91i
| l J
SF-Gl SF-36
| |
. 0.0 | 98.39 1000.00 1000.00%3.16 (99.21 1000.00 1000.0033.16
20.32 | 94.96  963.28 966.7553.06 .94.70 935.25 962. 5i3.04
40.6&% 84%.3% 855.82 869.63%2.77 81.57 825.08 890.98%2.82
60.96 . 67.51 685.54 730.1472.28 60.99 G21.38 870.15%2.75
81.28  45.71 464.98 607.0G31.65 19.54 G6G.29 757.88%2.39
101.60 | 13.97 373.06 408,48i1_29| 7-17 381.63  h4k.39T1.41
i | |
SF-16 Sr-1
. | |
0.0 | 99.17 1000.00 9{2.67f2.84§82.73 908.31 833.2322.6h
- 20.32 | 92.60 939.55 912.02%2.88 [71.37 833.39 934.02%2.95
0.6 | 73.68  76G6.34 Looo.oofz.L6i2h.3o 951.69 1000.0023.16
60,96 | 23.70  902.2%  990.74%3.13 9.98 750.11 846.3512.68
;81.28 9.50 650.16 7h0.91l2.34 4.0k 507.56 608.06f1.92}
101.60  3.52 352.15 408.73%1.29| 1.48 267.55 333.34f1.05i

TABLES 5.3.2
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OCF OCF-100
CASE TWO-GROUD EXDT. TWO-GROUP LEXDT.
DIST. FAST  THERMAL  TIERMAL FAST TIHERMAL  TIERMAL
i cin
0.0 107.42 1000.00 1000.00%3.16 104.81 1000.00 i000. 00:3.16 .
20.32 103.97 967.94 9Gh.33%3.05 101.26 966.21 969.>/;3 06
LO.GH 93.86 873.83 876.63Z2.79  90.88 867.13 b77.28 0,77
60.96  77.7% 732.69 728.7310.28 0 71035 709.45 72 L0850, 28
81.28  56.63 527.16 522.6321.65  532.79 503.84 3:2.32f1.65
101.60 | 31.88 296.82 291.3720.92 | 27.67 261.19 316.2251.00
i |
OCr-064 ocCr-36
— ! @
0.0 105.41 1000.00 1000.00<3.16 106G.32 1000.00 1000.0053.16 |
20.32 101.45 962.56 975.85i3.08 L0t A1 930,82 969.08%3.06 |
LO.GL 89.87 833.06  870. 8012 87.13 823.17 91h.5152.89
60.96 T1.3h 679.73 739.67%2.34h  Gh.78 G18.14  890.8922.82
81.28  A17.82 .60 616.8221.95 22,55 667.08  792.87-2.51 |
101.60i15.81 366.83  hi19.7251.33 8.84  389.57 4G9.2151.48
| 1 |
oCr-16 OCk -4
| r |
0.0 105.87 1000.00 892.09%2.81  86.31 905.4L 9h0. 79f2.97j
20.32 98.83 9ho.7h 897.77i2.84 ’ 7h.59 837.06 937.3G%2.96
Lo.Gh  78.57 T71.00 995.9h13.15 @ 27.68 958.94 1000.00-3.16;
60.9G 127,52 915.16 1000.0073. 16 12.30 772.22 858.Gh%a.71
1 81.28 1 12,00 671.88 750.65%2.40 5.36 5334.06  616.90%1.95 |
101.60  4.70 372.38 hoh.2851.34 | 2.10 288.21 * |
i
TABLES 5.3.2



. v
TR T,

S

TS

(APSTITVWION)

g00 |

600 |

400,

200(

PSCF-/00

. TWO GROUP
/. EXPT.

Y.y
X

1 A 1 4 i o IZ4
0 ’ 16" 24" 32" 40 48 56
SISTANCS wiRUb C.LiTn. G AS5_LBLY
FIG, 5.3.1 sXPurlioNTil AND PHLORSTICAL TH.ANAL PLUA DIST.I=UPIoNs

CH TWC GrOUP THLOAY

6T



TV INTH

[CASTAIVAION) YNTd

&00

600,

400,

200

PSCF- 64

1 1

1 TWO GROUP

1. EXPT

1

A
X

0 g"

PIG, %, 3,1 SXPoRIMsNTAL AND THuOR&TICAL THAMMAL wLUX DISTAISUTICNS OF
TWe

JROUY

4

/6 24"

»: I (; T a’\IV’ Cﬂd i’." : i.( 4.%

7

32" 40
SLHTRG OF ASSwiiLY

Til.0RY

18

o

56

’”

COT



-
'y

CITYMION) YNTd TYRYTH

noe
o

(a:

0
1mm-~=*Q§¥§; PSCF - 36
'\\\\ 74 l. TWO GROUP =&
S 11. £EXPT. X
goo|
500 |
400
200
0 8’ /6" 28" 56"

24 32 40"
DIGTANCL ol Unliinde O AS.‘)QL\.B.EY

FIG, 5,%,1 SxPuRINENTAL AND TH&OALTICAL THeiwAL FLUX DISTAIBUTIONS
CN TWO GnOUP THmUKY

761



1000 3

gwa.%

ot

HrI
&
AN
©
T

oMY YATA TV
B
)
S S

2 4
v

S
S.

(amsT

|

[

81, /611”"

Q

DIGTANG: FaCk

PSCF-/6
11

[N S

I TWO GROUFP &
11 FXPT. X

" o o

¥
24n 32 40
CuNTRe OF astukBLlY

v

SOLPARISCE CF
P AL

il

PHACKRATICAL (TWO-G10UP) AND
L4 DLUCTRISUTICN

’” 2t

48 56



A
Q

TASTTVHQN) ¥NTS TEIHTHL
)
S

(@
o
S

PSCF - 4

1. 7TWO GROUP X
11.EXPT. X

1 L i 1 1

" i»r 173 4

/6 24" 32 40 48
OIS ThkGs Fals CuNTHe Us ASSLABLY

fAFSALuanTAL AND TH.ORLTICAL Tillioal LU SInTAIcUurIons
Qi TV Al UE Thoae Y

96T



ALINTANT -¥

1.500 b —
poas
n
\ \
Lol
1, 40n. \\ 1
\ 1

l.onoLfM__“‘_h4
20

FI1G,5,2,1

- i —— 1 I ————
CA3 Symbol
PSCF X
PSF oo
PSKF(0ODD) v
-
SF S
OCF @]
4}.
r
l
{

(RS S — ST AU
40 6o éu <Eé
Ho Of FusLl noUDi

K—INFINITY AS 4 FUNCTION OF FUSL RODS

L
loo

ldo

261



=00

sty w7 Ic

250 ] N 50
3 El\\
T}'\\Kk
200( ) -.40
CASc SAVING
1501 WU wrOUP B +30d,
ONz GROUP o N
=
CCORZ sIzi * H
<
¢p]
ldo] T20%
£
O
x|
=
N .
N 3
50 1 ! +4lo
J
,/ \
/
=i T gh T — 6 b 16v 1zb ©
ALFLLCTOA THIOLNL33 (T) Cuws
FIG, _.Z3.1 RuFLeCTOA SavIas ON ONw—-GrROUP(C) AND THO-GROUP (B)

THEORY AND COn. Sl VS Reila 0TOR THICKNESS

861



199

5.4 DISCUSSION O RESULTS

A close examination of the tables and graphs in
Chapters 4 and 53 would couvince that two-group theory is
a distinct impgovement over the modified onc-group treat-
ment of o reflected core system, Since the behaviour
of diffcrent (meaning different channel diameters) core
cascs is almost identical)only representative case of
PSCI" or I’SF would be pointed out.

Let us consider the flux plots first. In FIGS. 4.4.1
it was scen that the thermal flux distribution follows
a cosine-distribution in the core defined by @ and dis-
tribution from the core—reflector interface up to the
boundariecs of the assembly is given by the hyperbolic
sine defined in Chapter 4, i.e. sinh (Mr(%l* T - x)).

On the basis of one-~group theory we ncglect all events
comnected with the slowing down process and the fact that
the necutrons are not born thermal. Thercfore it does
not make anydifference in this regard that the thermal
flux distribution in the mncighbourhood of the core-recgion
should be affected in some way.

The nuclear properties of the core and the reflector
arc entirely different, Therefore, the passing of the
core region must have some bearing on cntering the reflector.

Physically we understand that the thermal flux must show
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a rise after having passed the core-reflector interface
=ince on approaching the reflecctor there is no absorption
due to the absence of the fuel from the region. The

only absorption in the reflector is due to its ouwn

abgsorption which 1is B

vexry small comparcd to
the absorption in the fucl. This is taken account of
in the two-group theory. . The boundary conditions
that neutron luxes and currents are equal at the inter-
faces impliecs that the bLehaviour of neutrons is passcd
over from onec region to the other. Now 4,in the corc
region fast and thermal fluxes are so distributed that

they fLollow the relationship

© . = A cos (ux) + C cosh (vx) 5.1

@ 3,4 cos (ux) & 8,C cosh (vx) S.b.0.

me 1

The counstant S, C turns out to be positive and is in
—
accordance with the physical interpretation that the term
(3,C cosh (yx)) corresponds to the non-asymptotic Clux
distribution st the core-reflecctor interface, aud con-
a
sequently hastpositive contribution to make to Lhe overall
asymptotic flux Jdistribution. However this term should
dic out iu a distance of the order of migration length.
Wl the Core

Thi= thermal flux rise is’therofore7due to the Llow¥ofl
thermalised noutrons) which lecaked out of
the core-regionols ’2—0\94( neuwlvons .
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Then the thermal f{lux follows the exponentials
defined by equations 5.2.14(a,b) in the reflector.

Further’it may be argued that the thermal flux,
according to theory,does not follow the experimental
results strictly. About that it might suffice to say
that the diffusion theory parameters are defined in a way
appropriate torﬁeterogeneous nature of the lattice
(Chapter 3) under the boundary conditions defined in

section 3.1; the homogenigsed parameters are used in the

diffusion equations. It should be remembered)ho“ever,
that the actual lattice system consists of a finite
number of lattice cells, The theory assumes that
neutron absorption can occur at gll points up to the

core-reflector interface, while in practice fuel absorp-

1.

tion ceases some 10 cms from the approach of the core-

reflector interface;' therefore the experimentally
measurcd thermal flux is bound to be higher. It is For
this reason that the term 52C cosh (wvx) cannot
entirely cope with the situation on the theoretical side.
The agreement between theory and experiment is quite

clear in the case of 100 fuel elements, less in the case

¢

of 64 fuel elements}and starts to deviate secriously for



36 and less number of fuel rods. For these cases the
actual theory seems to break down. Because when the
number of fuel elements is less than 36 or equal to 36,
the core region is more like a cylinder than a
"plane slab." It was thought advisable to analyse this
region of fuel elements on the basis of am equivalent
cylinder. It was left, so that the correlation of
theoretical and experimental results should remain con-
sistent.

The value of K_ predicted by experiment is quite
consistent and is in agreement with theory down to 36
fuel elements in case of PSCF, PSF and PSF (ODD), while
in case of SF and OCF it starts to deviate from 64 fuel
‘elements downwards. Then the curve (specially PSCF,
PSF cases) bends rather sharply at 36 fuel elements and
for 4 fuel elements even the scale needs to be modified
and shows the complete breakdown of the concept of unit-
cell model and that of the concept of reflector savings
as well on the basis of the model adopted here. This
sudden rise in K  and therefore material buckling is
due to excessive leakage from the system of reference
discussed previously in section 4.4,

The last graph)showing the variation of reflector
savings as a function of reflector thickness, is very

instructive. The curves (C) (reflector saving on the
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basis of one-group theory) and B (reflector saving on the
basis of two-group theory) show the variation of reflector
saving with change of reflector thickness. In casc of
onc-group theory, the curve continues to show a rise
(though small comparatively for larger thickness) while

in case of two-group theory, the curve starts to show a
decrease in the reflector saving, which obviously is not
truc.

In case of one-group theory we neglect fast neutron
events altogether while in two-group theory we take that
into consideration as well. The agreement between theory
and experiment improves precisely for this reason when
the number of fuel elements is greater than 36 but when
the size of the core is reduced beyond expectation of the
unit-cell model it overestimates the outward leakage
as well. This shows the 1imit to which we can extend
the homogenised model and the consideration of reflcctor

us
savings as the basis for analysis. Also)it tellsVihat
the basic physical changes do not correspond to the
theoretical details. In a simple but precisc manner

we are, therecfore, led to the belief that 36 .

fuel elements is the absolute minimum “NuwWmp-ey = one

should have to perform any worthwhile exponential experi-

meitt in 2N assembly of the size under study.
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CIIAPTER 6

ANALYSIS OI* TIIE HETEROGENEOUS REFLECTEl! REACTOR SYSTEMS

ON THE BASIS OF TWO-GROUT IIETEROGENEOUS TIIEORY

6.1 INTRODUCTION

The heterOgeﬁ%us method of reactor analysis is
characterised by its explicit consideration of the indi-
vidual fuel anq/br control rods in the reactor core, as
opposed to the usual methods which consider an equivalent
homogenised problem. This detailed consideration of
the fuel elements with regard to the flux distribution
in a reactor is bound to give accuracy in calculating
reactivity and power distribution within a core,.as a
function of the configuration and the characteristics of
fuel and or control elements.

Tt was earlier pointed out in Section 1.4(b) of
the first chapter that if the size of the multiplying
system is reduced, the unit-cell model cannot predict
the criticality of the system with sufficient accuracy.
Therefore the detailed arrangement of the fuel elements is
an essential feature of the nuclear configuration which
must be included in the criticality consideration. In
the present work we are faced precisely with this problem.
The analytical models used to compute the flux distributions

and reactivity of a "square' core surrounded by reflector
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of square shape, have becn outlined in Chapters 4 and 5

on the basis of homogenised modcl o1 one group and two
group of neutrons respectively.

At every step in the analysis of such a sytem one
has to assume something which actually is not the case.
Though in many cases the contributions from the factors
under assumption are often very smal;,yet the argument
remains that we study a simplified picture of the system.
Since the very [irst reports by Peinberg anc Galanin g
the fundamental equations relating the absorption in the
fuel rods, thermal diffusion and slowing down kernels
have been based on the group diffusion theory and Fermi-
Age slowing down kernels for the appropriate geometry of
the wources of neutrons. It is only recently that re-
course to more than one energy group has been taken.
Papers by Jonsson (16) and Aurbach (32) arc the latest
on the subject. Therefore, it was decided to analyse
the present experiments on the basis of two group hetero-
geneous theory instead of the conventional one group
theory in conjunction with the Age theory.

The heterogeﬁ%us reactor theory in two-group diffu-
sion approximation defines two basic parameters for the
lattice which specify the nuclear characteristics of the
fuel elements, namely vy, (thermal constant) and n (the

maltiplication constant).
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The thermal constant is defined as the number of
thermal neutrons absorbed in the fuel element per unit
thermal neutron flux on‘the fuel element surface. Thus
¢th is the total number of neutrons absorbed, wm being
the asymptotic thermal neutron flux defined by thé
diffusion theory.

The multiplication comstant n is defined as the
number of neutrons produced per neutron absorbed in the
fuel element. Since the fast fission factor £ is not
calculated separately,n is actually taken equal to g9
wheré the value of € is taken in the present study from
‘Chapter 3 for the cases under study. The vaiue for P;
the resonance escape probability, was also taken from
the values given in Chapter 3 for each case.

"The finite size of the'reactor system is character-
ised by the axial and the radial bucklings, ~The axial
buckling will cause axial leakaée in the moderatoxr and
streaming in channels and the radial buckling will produce
a flux asymmetry around the axis of an eccentric rod,
resulting in radial leakage and streaming. A second
effect associated with finite syétems is the energy
depen?ence of the extrapolation lengths. It may be
negligible in case of large reflected s&stems but in the
case of small exponential assemblies the effect may not

be negligible for the evaluation of critical bucklings.
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The fuel elements are taken as the line neutron sources
for fast neutrons and sinks for thermal neutrons.

The theoretical details of the two group diffusion
equations are given in Section 6.3 of the present chapter.
And the results are given in Section 6.7, the relevant
details of computation and input data are given in Section
6.4-5 and in Section 6.6 experimental arrangement for

discussion

thermal flux measurement at the fuel is described. The/

of results in the present analysis follows in Section 6.8

of this Chapter.

6.2 CYLINDRICALISATION OFF TIIE SUB-CRITICAL ASSEMBLY

In the heterogenous method, the reactor is regarded
as an array of sources embedded in a great lump of modera-
tor so that its heterogenous nature is taken into account
explicitly. A reflector, therefore, requires no special
treatment in this theory, provided it is made of the same
material as the moderator. It is only regarded as a
piece of the moderator which does not contain any sources
or sinks other than its own absorption properties. F'rom
this consideration one can see that a lattice,whether
regular or irregular,is of no significance and tends to
lose the special importance attached in the homogenised
concept of Wigner-Sietz.

To derive definite conclusions from the experimental

measurements it was absolutely necessary to have a programme
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which wrould handle the calculations successfully within
the desired accuracy, #nd that it should have been
tested separately that the procedure (the very method
for solvi#g diffusion equations) Adopted does give the
rigﬁt answers.

In this respect the heterogeﬂ%us theory ié'pretty
well-sknown for complications ih-computing and a slight
error in the computing process might lead to absolutely
discouraging results. Secondlx,ccmputingvand programming
is only a means to the end and it is not an end in itSelf;
Initially attempts were made to write a programme for
the heterogeneous calculationé‘in autocode for the
London University Atlas computes,for the square assembly,
but it was not very successful. In the process a pro-
gramme‘for IBM-7044 computer by Ngslund (21) of Swedish
Atomenergi became available and an IBM~7090 computer
facility Became available at the College as well.:

Though Ngslund had not done much computing with the
program@e for exponential cases, | - Ngslund and Jonsson
(16) haé.done quite complicated calculations for the
criticality and power distribution in a héavy water
moderated reactor core. They were perfectly satisfied
with the numerical method(aA-~3.2) used for the purpose.
fherefore the programme was made suitable to run on the
IBM~7090 and it was decided to forego the/?xplicit shape

of the sguare sub-critical assembly in favour of an



209

equivalenf cylinder. A few initial runs seemed to give
very promising results and the change to cylindricalisation
of the square sub-critical assembly did not affect the
result as such. Thus it was decided to treat the sub-
critical assembly as an equivalent cylinder and proceed
with the analysis of the experiments. "

An additional advantage of this choice was - that
infinite sums of cosines and sines could be avoided in
favour of Bessel's functionswhich are much faster con-
verging functions than the cosines or sines. Consequently
there is much less comparative truncation error.  The
equivalent radius of the sub-critical assembly was taken

equivalent to the buckling of the system corresponding

to the extrapolated boundary of the assembly as given

below. ,
CASE | a R
cms. cms.
 PSCF 248.88 134.7143
PSF 249, 44 135.0158
SF : 250.2%. 135.4488

" OCF 251. 44 136.098%4

, . .
The extrapolation lengths in the radia14direction
are given in Sectiom 2.5.1 of Chapter 2. in some pre-
limihary runs the radius equivalent éo cross-sectional

area was tried but it underestimated the leakage and

therefore it was mot tried any further.
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)
In the succeedingsections there are the theoretical and

computing details with the results obtained.

6.3.1 HETEROGENEOUS TWO-GROUP TIEORY FOR A TINITE

CYLINDRICAL REACTOR

Two group diffusion theory will be used to describe
the ncutron-balance in a reactor system as regards the
absorption, lecakage and reproduction in a&stendy—state.
The basis of the heterogeneous method is an analytical
solution of the diffusion equation 6ssumed to hold in
the nioderator. The solution is subject to boundary con-

ditions on the moderator surface i.c. the fuel-moderator

interface. The basic assumptions are given below:
. . _ . al o .
i) The problem is a two-dimensiony one. This is achieved

by assuming that the solution of the diffusion equation in
three dimensions for the neutron balance can be scparated
into two functiomns; one describing the f(lux distribution

in z-direction and the second in r,¢ plane, that is
9 (r,z) =) 4(z) 6G.3.1

where ¥ is a plane-polar vector with components ? and ¢ .
In the casc of the sub-critical assembly, the ax.al flux
distribution is well-lknown to be

sinh (c-z)y
7(z) = ZZ A on

mone1,3 .. mr slnh(Ymno)
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The harmonics have been included in this equation more

to distinguish that this is the inverse relaxation length
and is not to be confused with r. which is a planc-polar
vector and also to make iL distinct from the thermal

constant Yn or YhA

ii) The fuel rods are line sources of fast ncutrons aund
line sinks ol thermal neutrons. The number of fast neu-
tronx emitted by ithe fuel element for cvery thermal necu-
tron absorbed is 7. This assumption implics that the
neutron-rilux in the vicinity of a fuel rod posscssoes
axial symmetry and is true il the distance between fuel

clements is much larger than their dimension.

1ii) ‘The number of thermal neutrons absorbed by the

tuel element is proportional to the flux at its surfacec.
‘I'he constant of proportionality, i.e. the thermal constant
Yy is assumed to depend only on the nature of the fuecl

and the moderator.

iv) The reflector which may have a finite size must have
the same physical properties as the moderator, i.e. there
cannot be two types of moderators, onc inside the core

and the other one acting as a reflector outside. The
restriction of an infinite reflector is removed by working
with finite Pourier-Bessel Transforms when solving the

diffusion cquation in the moderator.



212

(v Two-CGroup Theory is valid for the necutron flux in
the moderator at least at some distance Lrom the {uel

clements.

G.3.2 DERIVATION OF TIE CRITLICAL CONDLITION AND TIIE FLUX

DIsSTRIBUTLION

The two-group diffusion equations for the neutron

balance in the system can be written for the fast group

N
o —_ 1 — 1 ) —_ —_— -
= . - — 1 2 lr .z - = 0
v wi(r,A) T Tl(r,é) + T Ei_nnYnmﬁn r.z)0\r ru)
in mi n=1
6.3.2
and foxr the thermal flux
D hY
2 — 1 —_— nf b J—
v ‘f"qkrwz)———,—,-—-@o(r,y)-%-ﬁ—l——,c—— L L.Cln\l‘;z) -
- L= = ms ut =1
m
1 N
- - - __- A - ._—._.. -~ ( . .
,uwzn(r 7z)&(r rn) 0 .3.3

D .
ms n=1

11 refers to the parameters of the nth fuel elcment.

@ and ¢ are the fast and the thermal fluxes at nth

in on
fuel element.
Fast absorption in the fuel clements is neglected but
a correction can be applied by the age in the actual
lattice instead of Tm. In pr?ﬁgiﬁleuthe fast absorptions
in the rods should be accounted fof by a delta function

sink term similar to the last term in equation (6.3.2

which gives the source of fast neutrons as'-a sum of con-



tributions of all fuel elements in the reactor. M 1 is
n 2n
the number of fast neutrons emitted by fuel element number

= A4 is the number

n with position vector T+
b -’ Ynon 2n

o3
of thermal neutrons absorbed by the nth rod,q>2n being
the thermal flux at its surface. It is to bLe pointed
out that L. is not the real (measured) flux but is the
asymptotic flux given by diffusion theory and therefore
the thermal constant o should bLe calculated to give the
true number of neutrons absorbed when combined with
this flux. It will be discussed in Section 6.4 of the.
present chapter.

Substituting equation 6.3.1 in equatiomns 6.3.2 and
6.3.3 we can w—-ite

I8}

) - 1 —-— — —
-1 PR - - N
Ve )= =9 (T i 2o 0 Y, 9, (T)B(E-T ) = O 6.3.h

and

20 @) L ) ~ Dyp N =
Ve,(P)- =5 9, (P —5— Y e (¥} -
L m ms n=

N

1 —_— = —
-5 ) Yo, (BFO(TIT ) = 0 6.3.5
ms n=1
where _ M 2
I . 1 _ (= 2
T T MR2 Y1
and
1 1 2
— c—— ...Q-Y
2 |2 11
m
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)
Proper account will be taken of the cases when —5 < QYllu
. IJ“
as described at the end of the prescent scction. m
To solve the equations 6.3.01 and 6.3.5 we Lirst
com...der the solution for the fast group in the form of
a lMourier series of the type
3.20 ime
v lr) = ‘o ® g {T) e 6.3.6
M= - ,
1t we make this substitution in equation (6.3.74) it
splits dinto an infinite number of cequations for the
Fourlicr components ¢ Al('r) subject to the boundary con-
1
dition that the fast lux vanishes at the extrapolated
houndary of the reactor, i.c.
qv’.l(R) = 0, the equation 6.3.4 can then Lbe written
ta o' e
T dr dr- 2 Pqm ¥ T $1im
. N P!’E
i - ! - ~img’ o -
271D Z Tn¥n% 5(r x-'n)(" deg! = 0 6.3.7
mf =1
1f the finite lFourier-Bessel transform of the fast flux
© hkni) in the interval (o,R) is defined to be (18)
R
;o (2, | (x) T (x g )dx 6.3.8
? =i - S STTRES ukai -3
I o
whexre Fu is a root of the transcendental equation
Jy (R E. ) =0 6.3.9
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Then at any point of (o,I!) at which the function wlm(x)

is continuous

[s} > r
- =5 E ¢ (g.)
wlm(X) T R™ 1 © El

.Ju(x ii)

12 6.3.10

' .
\JH(Rgi;\
where the sum is taken over all the positive roots of
equation (6.3.9). It may be mentioned that this is a
limiting case of the m e general (inite Hankel TransCorm.
r .
¢ (z.) (19) defined as

M

Q

£(g,) = J x £x) J (x gi) dx 6.3.11

o

in which éj is a root of the transc@ndental equation ,

J'(aia) + 11 Ju(gi a) = O 6.3.12

-
I
=1 1)

then at any point of the interval at which f(x) is

continuous

o ) ,
211 51 fu(gi) Ju(x gj)
i=

f(x) = E; . —_—— 6G.3.13
a” 1 2 - 42 .
noe(g " - A5 BJU(agi““

where the sum is taken over all the positive roots of the
equation (6.3.12). Following Jonsson (16, 17) the solu-

tion of cquation (6.3.4) can be written as
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1 N (! r-—ng )
9, \¥) = 3 £ o Yoo (xr ) K - _
1 27 mf n=i BB 2n" o J?
R
-] lm((P-(.P ) rn Km(_;>
- z e I ) lm(~-——) = } G6.3.14

m= - T ,\/—'LT lm(—;)

v T

(lel(:f:,*n) is the thermal flux at the nth fuel element.
To solve the equation (6.3.5) for the thermal flux and

the criticality condition, the fast lux cpln(;”i from the

nth rod is substituted in equation ((3.3.5), so that
N
¢, &) = L LPln(r)
n=1

The ultimate solution of equation (6.3.5) will be

N

r) - oy ) Y (1 - 1 (%v.L .
¢,(F) = n;zl Y@, (r,) v F (¥.L,T) £ (¥ L)} 6.3.15
o0 X
where Y]n = ﬂn(l’ 7 )
m
- 1 \}‘:‘F"n[ @ im¢p -(Pn)
fn(wqjl) = _’:-Tﬁ)—'— Ko(""—]/—‘— - ) e
ms m= =
R
r K (%)
I (X)) o4y mlL 6.3.16
I L ni b, I (5)
m L
and
- 1 - QHf —_— '
F ik, T) = - fr o .L) - b £ r,T)] 6.3.17
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The thermal sink and the fission to thermal source
kernels, namely fn(;,L) and an;,L,t) are so normalised
that they have unit thermal modecrator ébsorption in an
infinite moderator.

The equation (6.3.15) gives the criticality condition
when r = T (it is co-ordinate not Yn) where K = 1, 2, ...N,
resulting in N linear homogeneous equations for the un-
known fluxes ¢K(rK\. The Cramer's rule of vanishing
determinant give: the critical parameter T (Eigenvalue)
for the critical system. The corresponding Eigenvector

will give the number of thermal absorption in the fuel

elemeuts, when multiplied by n (the therrinl constant).

When T¥ . the diffusion kernel £_(r,L) is replaced So
that E:; : a_ and
I n
£ T\L) = —— K (iﬁ) 6.3.18
n ' 271D o'L

where an is the radius of the fuel element n.

In case of 4= in equation (6.3.5) becoming imaginary

2
L
the Bessel functions X and I (modified) change according
to
S ¢ :
In(z) = i J11 (i 2) {a) 6.3.19
(4 - .n . _ E__- n
Yh\lx) i (i In(x) n( 1) Kn(x) )
(b) 6.3.19
in particular for n = 0O

I, (x) = J (1 x) (a) 6.3.20



and

Y (ix) = i T_(x) - %l&o(x) (b) 6.3.20

Otherwise the essential form of the Bessel function

v
remains the same, or one could start with the new equa-
tion and get the solution on the same lines.

The general solution of the equations 6.3.2 and
6.3.3 has been programmed by N;slund (21) both for the
case of 3-dimensiondf and two-dimensiondal heterogeneous
systems. The programmatical details regarding input?
output and the method of calculations has been discussed
in detail in Appendix I1IIT. Originally the programme
has been written and used for the computer IDBM-704k4.
This was made suitable for use on the College computer

IBM-~-7090. Details of the results obtained are given

in Section 6.7 of the present chapter. {

G.h.1 TIHERMAL CONSTANT (Yh)

As referred to earlier in Section 6.3 the neutron
flux is the same at every point on the surface of the
fuel element.r In case of cylindrical fuel elements
it implies that the flux is independent of the azimuthal
angle. Since the neutron current into the fuel element
is proportional to the neutron flux on its surface, the
constant of proportionality, i.e. the thermal constant,

can be defined as
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Yn = ratio of total net current of thermal neutrons
into the fuel element to the value of the

thermal flux at the surface 6.4.1

Ir kaK) is the net current of thermal neutrons at the
surface of the rod at y (the direction of neutron current
is taken as positive when directed outward), then

Y = - Ei—i%—i;fgz 6.4.2

n (0] I‘K
where @(rK) is the thermal flux at the surface of the
fuel elcment of radius a - Note that this expression
is for unit length of rod.

The thermal constant can be calculated with varying
degreeSofl accuracy, based on diffusion theory to one based
on the transport theory formulation. The calculation is
simple on the basis of diffusion theory and since all
along diffusion theory has been supposed to be valid,
therefore it was thought reasonable to calculate Yn by
the diffusion theory. - The calculation uses the unit-cell
concept as described in Chapter 3. By applying the con-
tinuity conditions for both the net current and the flux
at the surface of the fuel rod, it is necessary to con-
sider only the flux distribution on the inside of the
fuel elcment. This is given by.the differential equation
(3.2.2) and the solution to this equation in cylindrical

coordinates is given by (3.2.4), namely



o
o
(=

¢ (a jJ = A I {(n a) 6.4.3
o u o

where the requirement, that the neutron flux is finite

at the centre, has been applied. The net current is

. - - t = = M A - ‘_[..’
J(ao) RN (ao) AD S UFT( ulo) 6.h.40

Substitution of (6.4.3) and (6.4.4) into (6.4.2)

gives
u
2m a L 1 o
Y = —=2- . = 7 6.4.5
- u Io' u’o
®oag Il(Huao)
if we put G = g T a7 * Disadvantage factor
— o u’uol
I
then
2+ 1
Y, = T A a ' 6.0.6
G

where we can use G and Eﬂu'from Chapter 3 already cal-
culated and the thermal constant used in the calculations

is 1.564,639.

G6.4h.2 THUERMAL MULTIPLICATION CONSTANT (1)

The value of M calculated in Chapter 3 cannot be

5
used directly in the present calculation since ﬂs does
not correspond to the-natural uranium. The value ofn ,
however, was derived from n5 as below.
By definition
%
5%

n . = Vv -—-—————————‘ ' 60’&-7
nat. E‘Sa 4 280
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n
or
1
7 - -2 S S
nat. v ESa Zao 6.4.8
1+ 5
50
n v %
5 = ( __2_._5,1.‘_)
5a
5 - N 5
5a Ng J5q (8,5 + ¥i,5)
” 80 = Ng 8o
B'u
r = —_—ZE because A = B u/b
1+ g
and b = 1.345

O refers to the cross-sections at thermal cnergy of
neutrons.

The value of ﬂs and &u have been calculated in
Chapter 3 and they have been directly used herec to cal-

culate the value of 7n and they are tabulated here
natural

for various cases. The value of 7 ‘being used in the

present context is (nG%q%ince the fast fission factor

is not calculated in the heterogencous method of calcula-

r

tions. The value of p, the resonance escape probability,

was directly taken from Chapter 3 for each lattice.



TABLE 6.4.1

CASE Bu 1"5 '{‘,nat. n =Tn
pscr 0.10087 2.02040 1.290531 1.327840
PSF 0.10328 2.02011 1.290359 1.327805
PSED 0.10334 2.02011 1.290359 1.327805
SI 0.11692 2.01849 1.289394 1.327612
ocCr 0.12292 2.01779 1.288978 1.327531
Pscr 128 0.09051 2.02167 1.291287 1.328024
VAC 16

PSFD 128  0.09274 2.02140 1.291127 1.327988
VAC 16

SIF 128 0.10508 2.01990 1.290234 1.327780
VAC L6

Pscr 108 0.07730 2.02333 1.292276 1.328292
VAC 36

INPUT CONSTANTS
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6.5.1 CALCULATION OI' DIFFUSTION COEFFICIENTS AND

CHARACTERISTIC AREAS

(a) THERMAL DIFFUSION COEFFICIENT AND DIFFUSION AREA

FOR THE MODERATOR

In the present case the evaluation of the diffusion
coefficients and diffusion area for the moderator does
not present any special problem which it does in case

of homogencous model. Unless otherwise stated,

from Syrett'smethod for thermal neutrons

I -, - .00933 8§ .5 6.5.1
Lg g g g
Gg in millibarns
- .
and D = L. 5 = Q.951 6.5.2
mg g ag Sg

and the values in the radial direction are corrected

Tor strcaming

B . visolids) : -
Dam = Dmg SMR v(lattice) 6.5.3
2 2 . 5. A
IAR = Lg bMR 6.5.0

(L) SLOWING DOWN AREA AND DIFFUSION COEFFICIENT FOR

FAST NEUTRONS IN THE MODERATOR

The slowing down area uncorrected for streaming
for the moderator is calculated by the expression
2 363.9 - 84.G (P +AD)

58 S 2
g




where (PP + D) is the value for the core and is equal

to 0.107 and

!
oS .
g i
The fast diffusion coefficient DF@ is given by
by, - Sl T
IFg 3 v,
Xtr = transport mean free path
= 2.72/5g | 6.5.0
- and
\7) 1 v 2 3N ) -
v& = u= vT In [ Vﬁ“ Me\)J 6.5.7
o o MTovo
at room temperature T = 293.40K
A
Vv
== = 14.385 and u = 2.813
o
They are corrected for streaming in the same way as
for thermal neutrons di.e.
B . v (solids)
Per % Ppg PFrR vV (Tattice) ° (a) 6.5.8
2 2 6.5.8
sk = Lig Sen (b) -5.
The unknown quantity'Sg, other than the streaming factors

correspond to graphite homogenised up to the can surface
in cach casc. lTowever, it may be remarked that the problem

of hote$ogencity is the two region "One'. Since the core
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has got fuel rods embedded in it and,therefore, the
basic characteristic parameters do change to some extent.
Because of this consideration and those due to the large
channels leading to the inaccuracy in the calculction

of characteristic arcas, cight different sets of data
werc used to predict the computed results. F_These are

detailed in Section (6.7 and discussed.

6.5.2 STREAMING FACTORS

Basically the method of analysis does mot make any
distinction between an infinite moderator or infinite |
moderator embedded with fuel elements distributed in any
manier . The distinction between the fuel regiom and the
moderator region is made by the fact that in the fuel
region there is source of fast neutrons and additional
sinks because of excessive absorption of neutrons by the
fuel. The analysis is carried out under the appropriate
boundary conditio:r s * the fuel-moderator interfaces.
Now, therefure, the problem becomes specially complicated

in case of graphite-moderated systems by the fact that

taking out the fu :nt from the body of the
moderator creates vacancies. There are two choices
()
eithertto £ill the vacancies)or (b) leave them as they

are and apply streaming corrections. In case of water-mod.
systems there is no problem because there does not exist

any streaming due to the large channels. In the first



by filling the vacancies we deliberately change the pro-
perties of the moderator,which is evidently an unwanted
situation since in the analysis it is assumed that the
moderator and the reflector are the same While in the
second case we can try to correct the constants by the
streaming factors. The following two types of corrections
were applied.
1) On the basis of Syrett's model.

The streaming gactors were taken direct from
Chapter 3 for the core and the volume of solid was taken
equal to the solid graphite volume plus fuel and can

volumes.

2. Streaming factors due to Leslie.

A Tuel rod inserted into the moderator in the hetero-
gencous theory is regarded as defining a surface on
which appropriate boundary conditions have to be satisfied.
In the present case only radial streaming will be con-
sidered because axial streaming is a single-cell problem.
Leslie (15) has calculated the radial streaming by the
introduction of dipoles as well as sources at the lattice
points epd derives an expression for the radial streaming

factor given below

1 + BW' 3
Sp 7 + 0 (w'”) 6.5.9
(1-w'")(1 -=Bw")
Ta .
where w' = —2— , p is the pitch of the lattice,

p-
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ag is the radius of the hole

and

B = ,} [1 _}_——-——-—-—a o 1 6.3-10

This definition of B is due to Carter and Javis (33).
Galanin and Kuckorov (34) have deduced an equivalent
result by the same method and thus the expression (6.3.9)
is the best available approximation to the radial stream-
ing factor. )
Theoretically expression (5;3.9) is all very well but

this represents an idealised situation of a cylindrical

hole of circular cross{section and infinite length in

an infinite block of moderator. But in actual practice
Mg v Inan
everything is finite and thereW“% be ¥ one hole
awt
ineahlatticed For example in case of PSCF there is one

circular hole at the centre of the lattice and two
cylindrical ones due to spaces between plug-sleeve and
sleeve-block excluding the small space between the blocks
and corner rods used to fill the corner holes. This com-
plicbtes the very definitgon of B. The question is what
should be takenvas the radius of the equivalent hole.”

There are the following three possibilities:
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(a) ' (b)
FIG. 6.5.2.1
(a) A1l the gas spaces are summed together and an
cyuivalent radius of the hole is calculated.

(b)) In g the term

a 1
0 —
ag - £ N P
1+ 72 =
. a
i=1 Q

is summed for all holes when the radius is the case of
an annular channel | taken as the differcnce of the

inner and the outer iadii of the gas space.

{c) All holes are treated in situ. It means fthat the
term
n
WB = Z wiBi
i=1

where W and 3 correspond to each hole independenﬁ%of
- i
the other. It is supposed that' each hole is making its

own contribution to the overall effect of streaming.

On this basis for the case PISCIF under consideration,

following values were found
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PscCr a b c
Sp = 1.1246G731 1.09363%4 1.091671

In (a) the effect is over-estimated, (b) is somewhat

un-realistic because w the void factor has been considered

a
constant and (c¢) seems to bel! nmuch more rcalistic approach.
avk
Thorefore) through! the assumption (c) was taken and

oS
the streaming factors, henceforth referred to)Leslie's

streaming factor, were calculated. The sircaming
factors which werc used in the calculations both according
to Syrett (for core) and Leslic are tabulated in Table
G.5.1, along with the experimentally calculated streaming
Factors in combination with bll for diffusion stacks and

o

]
theoretical value of L, = 2598 cm”.



COMMON CONSTANTS

CASE

pPscCr
PSF
PSrD
SF

ocr

S {exp)

V RATIO

V RATIO

0.960,4h1
0.935,61
0.935,61
0.811,37

0.770,43

b
’Zlo

1l

-
(o &}

1.008,66
1.026,39
1.027,91
1.382,47
1.851,86

TADBLE G.5.1

Sr(L)

1.091,067

1.153,7

A

1.

—
.

1 —
o i
N Ul
~1 (@]
W =

-
»

o)
Vi
ra
\J
ta
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Sy (EXP)

.215,93
1.204,38
1.204,38
1.775,99
2.174,36

= experimentally measured value of diffusion

area

= thcoretical value

= 2k

.2
98 cm”.

V(solids including

fuel § can)

V(l.attice)

corresponding to I _=h.1 mb.

a
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G.6.1 MEASUREMENT OF THERMAL NEUTRON FLUX AT THI FFUEL

ELEMENTS

The basic usefulness of the heterogencous method
of recactor analysis lies in the fact that the neutron
flux distribution is treated as a spatial problem depend-
ing upon the position of the fuel and moderator in com-
parison to the situation in case of homogenised model (unit
cell model of Chapter 3) wherein we replace the reacting
system by an "equivalent homogenised nmaterial” having
the same characteristic nuclear properties as the actual
lattice. Therefore, the flux distribution calculated
at any point in this is the result of the overall average
of the material, which excludes the consideration of the
fact that "the actual lattice is heterogcneoqs with
finite size of fuel, can and coolant chanuel surrounded
by the moderator; even which (the moderator) is not

scd
perfectly¢in the present lattices under study.

Thus to compare the theoretical prediction, an
attempt was made to measure the thermal ncutron flux
at the fuel elements. Since in the theoretical calcu-
lations it is assumed that the neutron flux is uniform

over the fuel region treated as a line source.

Recourse to measurement of thermal neutron flux
in between tiwo slugs (though the flux is higher at that

point because of the absence of fuel and aluminiwm being
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in place instcad) by Indium foils was talen. In the
trial cases it was found impractical for a singlc person
to carry out the experiment for the delicate naturec of
some 8 feel long uranium fucl rod placed in thin cylinder
of aluminium. Besidesothe statistical accuracy left
nmch to be desired, at the same time radiation hazard
was large. With these considerations the idea to mca-
surc the neutron flux "inside the fuel element™ was given
up in favour of an approximate measurement of thermal
flux "At the fuel element” (on the surface of the fuel
W wWog

can) butbpractical for a single person to carry out the
measurement in a day for one particular case involving)
sny)fifteen measurements.

The experimental details of flux measurcments arec
given in the next scction. They were carried out in

}” X 3/8" machined in the graphite plug surround-

channel
ing the fuel element. As can be seen from the dinen-
sional details given in Appendix A—1.1;the space between
the can and the inner radius of the plug is 0.073 cu.

In the cxperimental arrangement it was designed to reduce
this (distance between detector and fuel) as much as
possible. lHlowever in between the two being gas spaceii
did not thermalize thg neutron spectrum, so it was

thought not to contributec any appreciable error in the

experimental measurement.



G.0.2  EXPERIMENTAL ARRANGEMENT

The complete details of the experimental arrangement
arc schematically shown in FIGS. 6.6.1-IL. The neutrons
were detected by a BF3 proportional counter, of active

length 5 cms and 0.625 cms diameter (1/4") Type 5 LB 70/0,

20th Century Electronics Ltd. The sensitivity of the
eps/
counter is 0.11/n/cm”/sec. The pulses f{rom the counter

were fed to the electronic equipment shown in IFIG.2.2.1

FIG.6.6.1(A) and (B) show the BF, counter in posi-

3
tion. (A) is the plan view of the counter as positioned
in the channel and (B) details the position of the
counter beside the fuel element. The counter was fitted
to the end of an aluminium rectangular rod,of dimension
1/ x 3/8" x 6", at the bottom by means of a locating
shoe, so that the counter is securcly and tightly held
alongside the rod in the plug channel machined for the
PULrposc. The rod was identically calibrated with? the

proportional counter BI, Type 12 EB/40 described in

3
section 2.2. The counter is secured tight in the shoe
by the screw Sl'
FIG. 6.6.3(A) a%d (%) shows the '"Driving plate
used to rotate the fuel rod and plugs
ussombly?’by means of "Quick release clip"., shown in

FIG.6.6.%(A) and (B). The diagrams are sufficiently

descriptive. The small curved part in FIG.6.06.4(B) shows
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the place whence . the cable from the counter comes out
of the driving platc assembly and is then fed to the
pre—amplitCicr.

Mror every measurement of the thermal flux at the
fucl elcment 4 readings of 100 seconds cach were taken
around the fucl at an angle of 90O from the position of
the first. The first reading was always such that the
counter faced the centre of the assembly. To ecnable the
countter to be taken at four positions of 900 the fucl
element and the plug assembly were locked together with
gquick velease clip while the upper two plugs with channel
machined are themselves joined to each other with two
aluminium dowels and a similar arrangement for the small
pitug and driving plate at the top. Thus by simply
stiding the yuick release clip over Ythe fuel element
and engaging the driving plate assembly any rotation of
the fuel element was transmitted to the graphite contain-
ing the counter in position all along.

The dead time of the counter was measured to bé
(20.69 ¥ 1.93) microseconds by the two source technique.

The sources of crror in the determination of flux
may be briefl;, suumarized due to the following causes: -

1) Statistical Error. For each measurement of thermal

Llux + rcadings of 100 seconds were taken around the fuel



element and the statistical accuracy corresponded to
within a range ‘a? 0.16% to 0.32%. For lower counter
rates, however, it deteriorated gtill further when the
number of counts per second decreascd on the approach
of Dboundaries of the assembly.

) Frror duce 1o error in the dead time of the counter.

The standard error in the dead time is 1.93 usec which

infroduces e neglegibe  evvov mly T Couvm‘ua +als .

The error introduced due to the crrors on account
of thesé two causes is comparatively small as com-~
parcd wilh the error due to the averaging process ovelr
the whole region.

‘ic total sum of crrors due to all these
causes was usually of the order of 0.5% and, thercfore,
this was taken as a representative figure forr the erivor

quoted in the measured thermal flux distributions.

6.7 DETAILS OF INPUT DATA, R:SULLS Cif COMPUTATION

AND SAPERIMENTS

The dinput (with regard to experiment) is precisely

the same as given in Chapter 2 in full details, speccifically

the measured axial buckling and the extrapolation lengths

in the horizontal direcction in the form of extermnal

boundary condition of zero flux. From then on the problem
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boils down to solwﬂfthe set of homogemeous equations
defined by the eq. 5.3.15 for K = 1, ... N number of
fuel elements, the condition for criticality being the
vanishing of the determinant. Since fast absorption
and slowing down in the elements has been mneglected,
the input data and cpmputing problem becomes sinmpler.

The problem is treated as an Bigen value problen.
The complete details of the method of solving the deter-
minant and the related parameters ¢iye given in Appendix-III
and the programme "HETERO" used for the purpose is
described in fuller detail.

As it can be seen from the description of the input
data for the programme the constants, for example, co-
ordinates, Yh (thermal constant), n(the multiplication
factor in the form of (ne) and various other input para-
nmeters for a certain lattice remain the samq’with the
exception of the '"Moderator constants!. We exclude
the comsideration of axial buckling and the extermnal
boundary condition as kinown parameter for a particulanr
lattice case under investigation.

IIad the system under study been a homogencous
mixture of fuel and moderator,or even water-moderated,
the problem would have been rather simple. In the
present casge it is graphite with Dbig or small channels and

the problem does not end up there. It is complicated
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by the fact that it is not solid, but has

spaces in between two components designed to build up

the lattices for investigation. Thus 1t amounts to

applying corrections here and there for strecaming gaps

ete.

Additional complications in the moderator constants

QY2 duc to varying size of the core region in the assembly.

Consequently two cxtreme Caéés arc¢l) constants conform

to the core region entirely or 2) the counstants arec

"clean" reflccector parametcers. In the present analytical

model the first possibility is out of the question because

ol the basis of theory. The second is reasonably good,

and the strecaming factors are the main unhnown parameters.

However it should be remembered that the problem ix

2 two-region "one!" while we have to give parametcrs

for the moderator.

In view of these comnsiderw.tions the following cight

sets ol data for the moderator were tried, namcly DMR’
) : ' o
'[/ = < 1 L, ‘-’- alue ¥ ] = i B I 'V‘C i 4
DFR R md Lo, The value of ISR i1s known fairly
accurately . ’ while the others,

specially thermal diffusion coefficient and area, arc the
controlling parameters in the whole set of homogencous
equations and,to put it precisely, are not known very

accurately, All of them were so changed that they



remained consistent in respect of anisotropy, ctc.

SsET-1. In this case the constant Sg corresponds
to density of graphite homogenised up to the surface of
the camn. Streaming factors arc taken for the respcctive
core cases from sectiom 3.%.1.

SET-2. It was remarked in section n1./1.7 that in
calculation of reflector constants (3.3.6) volume of
solid Ls taken cqual to the actual volume of the graphite
present in the lattice while the process of homogenisation
includes the gaps. There dis no valid reason for this
s.ilnce the process of hoﬁogenization does imply & solid
ol reduced density spread over a greater Aolume and
then when it comes to calculating diffusion C()l’lh"t.’lll‘tﬁ
the process is reversed. There is no valid argument
to support this. Thercefore in this sct the diffusion
coelficients (reflector) were adjustced so that they
correspond to the volume of graphite homogeniscd.

however, rcemain

) 2
The corresponding areas LR and LSR ,

unchanged. This set of data is marked B in Appendix
A-1.2 and elsewhere in the text referrcd to as "SET T3,

SET-3. They aré\cntirely rellcctor constants ,
calculated according to the Syrett's model in the text,
referred to as "SET A" and nre given i A-1.2.

SET-. This differs from Set 1 in respect of
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application of streaming correction. In this case
&L was
Leslice's streaming factors were used andéassumed that

the streaming due to thermal and fast neutrons is the

¥
Sane .

SET-5 and SET-G. Correspond to the theoretically
calculated values of diffusion (both thermal and fast)
cocflicients and the corresponding diffusion area as
basgically defined (1,2,3). However slowing down area
)

is precisely the same as in Set-1 (I, . In Set 5

So
the streaming corrections are from section 3.3.06 for
core and in Set 6 streaming factor duec to Leslie has
becen uscd. Tt is assumed that thermal annd fast strcam-
ing factors arce eyual.

A8 ]
SET-7 and SET-8. These are such that LSO“ corres-

[>)
pound to Sg as in Set-1, and theoretical value of LO“ .
is used to calculate the streaming factor in conjuuction
with the measured value of relaxation length in Table

2.5 and extrapolation length for the assembly when there

is 1o fuel in it by the relation

M O“
! . 2 ity 2 -
— = 3 vy - 2(2) G.7.1
R My a

where a is the extrapolated dimension of the asscmbly

and Y is the corresponding inverse relaxation length

(o Fuel)

for the 'L:xt‘ti(:(;/u.nder study. The extrapolation Llengths
arc given in PTable 2.5.2. In Set-7, Dm ard DFQ correspond
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to Sot—ﬂ)‘ while in Sq}—g they correspond to Scet-5.
inally the ratio -vl;= 11.385 dis common in all

o
cases, The streaming factors used are tabulated in

section 6.5 in table 6.5.1 but they have been reflerred
to their original sources for clear understanding.

The corresponding volume ratios are tabulated as well
therein - the eight sets of constants arc given in
Tables 6.7.1.

ALL the results so computed giving the KCFF ffor
the system have been tabulated in Tables (6.7.2 and
plotted in case of Set-2 for all cases for the purposec
ol comparisoll. Since, as it can be secen, thé values
ave a little in excess of unity (rcasons discussed in
next scction) and the system is in steady-state, they
have been normalised to mnity and re-tabulated in
G.7. 3 for the purposc of compardison.

The measured thermal flux and theorctical flux
vialues normalised to 1000 are also plotted in FILIGS.
G.7.1 and tabulated in Tables 6.7.4. The discussion
of the results is given in section 6.8. The built-in
accuracy in the programme f(or the Ligen-value (k)

= cft
is 10—6 and that in Ligen-vector is 0.1 per cent.
Since from theoretical point of view these limits are

qui te ncaurate) ﬂ\ea are omitted from tabulation.
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Khe Bessel functions J'= and Y's avce periodic
Tfunctions and in certain combinations of the genceal
solution it eventually lecads Lo the square root ol o
negative number, a situation which cannot be realiscd
in practice. Thereflore, for that particular

combination of axial buckling and (J_/J.m )} the results

are ot reasonable and are not guoted. They e indicated

by o ~tar all through the scts.

Phe intindite sum in the expression 6.3. 101 hax
- - .II -
bheoenr trmreated at 30 .'nld) accordine to Noasl unf]’:}.‘l VoS
ab=olule accuracy throughout the core.

In case of Tobles (6.7.2-3, in casc ol lattice DPSF

(ODD) denoted as PPSFD the number of fuecl elements in the

central region is i2i, 81, etc. They are shown at the
left-hand side of the Keff gquoted. The rcason is that

the lattice is alwmost identical to PSP «nd the number of
fuel elements involved is nearest to the adjacent colurm

of 5.



CASE

PsCI
rsr
PSiD
Sk
oCcr

PsCF
Psle
PSI'D
SIe
ocr

rscr
Db
PSID
Sr

N7

| S U
PSsaeD
s
ocr

0.911,824
0.931,014
0.923,393
1.244,818
2.629,709

0.971,625
1.013,680
1.014,079
1.335,740
1.567,285

0.933,148
0.948,931
0.955,239
1.240,674
1.519,298

0.988,749
1.045,550
1.046,556
1.378,129
1.628,617

DFR
SEY-1

12.504,396
12.717,470
12.812,76%
17.575,22

22.955,384

SET-2

13.272,0506
13.794,866
13.800,327
17.581,317
20.117,227

SET-3

12,746,478
12.913,717
12.999,588
16.330,01
19.501,269

SET-4

13.560.548
14.339,565
14.355,239
18.900,834
22.336,224

TABLE 6.7.1

327.43
349.37
351.99
638.52
928.46

337.00
359.39
359.73
524,81
G34.80

337.00
359.39
359.73
504,81
634.80

354,140
394.31
394.75
684.98
979.03

2688.45
2856.91
2861. 14
5047.29
7437.00

277743
299,24
2955.066
Lh8.92
5571.19

2777.43
2919, 24
2955.66
hh8.92
5571.19

293%4.89
321102
3211.93
5573.97
8043.20

2l



CASE

PsCr
PSE
PSED
sI
ocr

bPscr
PsE
PSID
S
ocr

rscr
PSI
PSID
sr
ocr

Lscr
PSF
PSFD
SF
ocr

DMR

0.854,4187
0.869,1006
0.870,393
1.163, 145
1.523,587

0.92,818
0.976.430
0.978,020

L28h,519
1.649,801

1.102,%404
1.091,%433
1.091,433
1.599, 154
1.965,248

1.005,657
0.980,373
0.980,373
1.129,098
1.259,605

DFR
SET-5

12.276,582
12.437,611
12.530,808
17.20%,776
22.483,386

SET-06

13.039,340
e 06,09
1t.052,662
18.478,403
23.707,912

SET-7

15.119,3006
1 .968,8h2
14.968,842
22,004,104
26.953,027

SET-8

14,427,699
14.086 ,k79
14.086,%479
16.223,428
18.098,620

TABLE 6.7.1

327.42
319.37
351.99
638.53
928.46

354.40
394.31
39074
G84.98
979.03

394,74
411.61
hi1.61
796.82
1090.15

397.25
395.69
395.69
602.10
747.39

I\e)

2503.71
2667.10
20676.29
4570.20
6569.87

2709.76
2998.05
3001.33
5051.22
711h.50

3037.39
3008.55
3008.55
h436.82
5h31.55

3037.39
3008.55
3008.55
Lis3G.h2
5431.55

ol



TWO GROUP IIETEROGENEOUS RESULTS
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SET-1
CASL pscr Psr PSFD SI OCF
100 1.012,170 1.017,126 1.018,461 ¥ 0.999,412
121
64 1.010,890 1.016,288 1.018,392 1.015,212 1.007,446
81 ~
36 1.004,996 1.013,754 1.004,899 1.015,023 1.013,545
49 ‘
16 0.948,907 1.002,472 * 1.005,988 1.031,195
25
h 0.882,908 0.937,899 0.985,356 0.933,368 1.040,570
9
SET-2
CASE PPSCF PSI PSFD ST OCF
100 1.008,193 1.010,964 1.011,729 * 1.003,474
121
64 1.007,349 1.010,518 ° 1.011,835 * 1.004,812
81
36 1.002,608 1.009,153 0.998,534% 0.996,770 0.995,573
49
16 0.985,733 1.001,293 * 0.969,65% 0.972,800
25
' 0.897,007 0.953 084 0.987,880 0.854,990 0.847,534
9

TABLE 6-7-2
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SET-3
ICASE - PsCr PSF PSFD SF OCF
iioo 1.012,380 1.017,642 L 1.017,752 = 1.006,430
. 6h ; 1.011,620 1.017,335 121.017,930 * 1.007,850
36 | 1.007,061 1.016,237 ?1.004,955 1.004,548 0.998,858
1645 0.990,602 1.008,966 * * 0.978,565 0.976,588
/t ? 0.903,273 0.962,668 25.995.420 0.867,270 0.852,930‘
| ’ |
SET~4
T | r
CASL pscr PSF PSED ST OCF
100 1.010,580 1.013,444 1.013,69% 1.006,610 1.000,791
j 6l 1.010,698 1.014,638 12;.01u,66h 1.011,570 1.010,2067
36 1.008,435 * ?1.003,187 1.015,480 1,020,064
16 0.998,364 1.022,136 l-?.0211,130 1,017,784 1.048,409
o 0.938,782  1.034,446 23.019,589 1.015,166 *
|
SET-5
|
'CASE - PSCF PSP PSFD Sy OCF
l
{100 | 1.010,751 1.016,407 424.017,101 * 1.002,688
G4 1,008,708 1.014,836 1.016,669 1.009,378
36 1.000,607 1.010,0065 81.002,18& 1.008,983 1.012,275
P16 * 0.991,939 4?.004,480 0.990,822  1.020,687
i k| 0.845,880 0.895,706 2%.965,178 0.898,968 0.987,754

TABLE 6.7.2.
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SET-6
CASE PSCF PSF DPSFD SP ocr
100 1.008,715 1.013,094 1.013,471 * 0.991,835!
Gl 1,007,946 1.013,530 121.01&,075 1.009,216 1.000,042
36 1.003,052 1.014,153 ?1.001,597 1.010,105 1;005,870@
16 0.984,915 1.010,721 ;2 * 1.002,8t4 1.021,341i
Iy 0.887,846 0.977,613 3.001,h56 0.952,893 * 4{
SEP-7
CASE PSCF PSF PSID ST OCF {
]
100 0.998,4k77 1.000,217 1.000,700 * 0.9%4,983
6 0.999,530 1.000,755 121.001,35& * 0.950,803
306 0.999,455 1.001,670 88.988,&84 0.963,4068 0.9117,926j
16 0.994,775 0.998,790 43 * 0.943,61% 0.935,719
ly 0.956,396 0.966,923 25.989,615 0.834,557 0.809,0067
SET-8
CASE PSCF PSF PSFD SE ocF
100 1.007,970 1.012,927 1.013,387 * 1.013,333
Oh 1.009,254 1.013,424 121.014,014 * 1.015, 341
36 1.009,659 1.014,215 81.001,581 1.009,688 1.009,138
16 1.005,977 1.011,258 * * 0.987,592 0.991,355
Iy 0.970,544 0.980,404 22.002,300 0.883,602 0.873,441

TABLE 6.7.2
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HETEROGENEOUS RESULTS

o
1
—

SET-1

CASE PSCF PSF PSED Sk ocr
100 1.000,000 1.000,000 1.000,000 i.ooo,ooo
Oh 0.998,735 0.999,176 0.999,932 1.000,000 1.008,039
36 0.992,912 0.996,848 0.986,684 0.999,813 1.014,141
16 0.973,065 0.985,593 * 0.990,914 1.031,801
4L 0.872,292 0.922,107 0.967,495 0.939,082 1.041,182

*  The original
equal to 0.999,412.

K is mearly equal to unity specifically

SET-2

I

CASE PSCF Psre PSFD SI® OCF ‘
100 1.000,000 1.000,000 1.000,000 * I .000,000
6l 0.999,163 0.999,559 1.000,105 * 1,001,334
36 0.994,460 0.998,209  0.986,958 1.000,000 0.992,126
16 0.977,723 0.990,434 * 0.972,796  0.969,432 |
s 0.889,716 0.942,748 0.976,428 0.857,761  0.844,660

4k

The original

K for this case =

0.996,770

SET-3
CASI PsScr LST PSrD s ocr

100 1.000,000 1.000,000 1.000,000 ¥ 1.000,000
121

Gl 0.999,249 0.999,698 1.000,175 * 1.001,411
81

36 0.994,746 0.998,619 0.987,426 1.000,000 0.992,476
1*9

16 0.978,488 0.991,471 * 0.974,135 0.970,349
25

Iy 0.892,227 0.945,979 0.978,058 0.863,344 0.847,481

TABLE 6.7.3
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SET &4
CASE PSCI PSEi PSFD SIE ocy
100 1.000,000 1.000,000 1.000,000 1.000,000 1.000,000
121
64 1,000,117 1.001,178 1.000,957 1.004,927 1.009,469
81
36 0.997,878 * 0.989,635 1.008,812 1.019,833
49
16 0.987,909 1.008,577 1.010,295 1.011,101 1.047,581
25
L 0.928,954 1.020,723 1.055,815 1.008,500 *
9
SET-5
CASE ’SCF ST PSFD SI oCF
100 1.000,000 1.000,000 1.000,000 = 1.000,000
6k 0.997,979 0.998,454 0.999,575 * 1.006,672
36 0.989,964 0.993,760 0.985,338 1.000,000 1.009,561
16 * 0.975,927 0.987,591 0.982,001 1.017,950
o 0.836,883 0.881,248 0.948,950 0.890,964 0.985,106
SET-06
CASE Pscr PSF PSED Sr ocr
100  1.000,000 1.000,000 1.000,000 * i.ooo,ooo
64 0.992,238 1.000,431 1.000,596 1.000,000 1.008,277
36 0.994,386 1.001,045 0.982,839 1.000,880 1.01%,150
16 0.976,405 0.997,658 ¥ 0.993,686 1.029,749
't 0.880,175 0.964,977 0.988,144h 0.94%h,191 *

&

The original K =

0.991,835.

TABLE 6.7.3
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L

SET-7
CASE PSCF PSK PSFD SF ocr
*
100 1.000,000 1.000,000 1.000,000 * 1.000,000
121
6 1.001,054 1.000,558 1.000,654 * 1.006,159
81 N
36  1.000,979 1.001,453 0.987,793 1.000,000 1.003,11%
119
16 0.996,292 0.998,573 * 0.979,393 0.990,197
25
4y 0.957,855 0.966,713 0.988 923 0.866,201 0.856,171
9 .
* Original K for these two cases is
K
SF 0.963,468
OCI 0.944 ,983
SET-8
CASE PSCF Psr PSID ST OCI
—
100 1.000,000 1,000,000 1.000,000 * 1.000,000
121
64 1.001,274 1.000,491 1.000,619 * 1.002,317
81
.36 1.001,676 1.001,272 0.988,350 1.000,000 0.996,193
11:9
16 0.998,023 0.998,352 * 0.978,116 0.978,638
. 25
L 0.962,870 0.967,892 0.989,060 0.875,124 0.862,237
9

TABLE 6.7.3



CASE PSCF-100 PSCF-6X
|
POSITION| THEORY  EXPERIMENT ' THEORY EXPERIMENT
Fe 1000.00Q 1000.00i5.06771000.00 1000.00%5.00
F 933.76  937.67%4.39 | 929.16  933.1774.67
Fy 807.32 809.99%4.05 798.42  800.21%4.00
| Fy 636.25 623.37f3.125 647.21 640.17%3.20
F, 446.95 410.93%2.05
Eg 869.74  881.13%4.40 862.37 867.841h.34
By 748.69  766.13%3.83  736.18 742.0733.71 !
. By 583.25  591.3872.95  591.75  595.73%2.98 |
B 399.09  388.6571.94
1 Dy, 635.89  656.33%3.28  624.02 635.21%3.18
D, 482.76 511.9222.55 1486.89 510.28%2.55
| D, 309.16  334.46%1.67
G 345.64  400.83X2.00 @ 354.36 401.97%2.01
. c, 187.72  259.82%1.30
B, 53.37 204.68%X1.02
| PSCF-36 PSCF-16
Fg - 1000.00 1000.00-5.00 | 999.54 1000.00%5.00
g ' 924k.61  918.94%4.59 | 970.60 986.73%%4.93
Fy 821.16 820.43%4.10
Eg 853.27 852.9634.26 | 835.62 950.05%4.75
By, 754.65  764.26%3.82
Dy, 654.62 670.28%3.85

TABLE 6.7.4
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6.8 DISCUSSION OF THE RESULTS

Detailed scrutiny of the results %abulated in
section 6.7 and the corresponding spread of the values
6f Keff predicted in Eombination with the flux plots shown
in FIG.6.7.1. will comnvince that "Heterogenoues Two-
group treatment is a distinct improvement over the whole
range of fuel loadings in case of "all lattices investi-
gated" as compared to homogenised concept.
(a) However there are discrepancies here and there which
could possibly be due to the reasons discussed below.

(1) Thermal Constant. In section 6.4.1 the ex-

pression (6.4.5) is based on the fact that the flux is
independent of the azimuthal angle, implying that the
neutron flux is the same at every point on the surface

of the fuel element. In case of small core it is
however an approximation'oniy because there are rapid
variations of flux on account of excessive leakage.

The definition of Yn should therefore be modified to

take into consideration this physical aspect of the situa-
tion. Or the heterogeneous technigue suggested by Klahr
(20) for the determination of Yy, may be more realistic.

(2) Resonance Escape Probability (p). The chief

advantage in the change from homogeneous to heterogeneous
systems is the marked increase in 97as remarked)in section

1.2. The increase of £ being less pronounced because
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the system under study has natural uranium as fuel and
this can be calculated (section 3.2.3) accurately. In
any critical core system, however, the resonance escape
probability changes from one group of fuel elements to
the next and more so in the case of a reflected core -
system.

An element near a reflector, for example, would have
a bigger resonance probability than the same element in
an infinite lattice of similar elements because neutrons
may bypass the resonance region while slowing down in the
reflector. Precisely for this reason p increasesrip
ca'se of small number of fuel rods but it has been kept
constant for the sake of fair comparison. Therefore
it is felt that the results in case of 4 and, in some
cases, 16 fuel elements can be improved upon by taking
into consideration this change.

(3) The cylindricalization may have some bearing

in case of 100 fuel elements but for less it is fairly
good supposition.

(4) Streaming Factors. The basic streaming para-

meters, specifically SMR and SFR are the most disturbing
ones and the errors may well be due to the inaccuracies

in the streaming factor.

(b): Now let us consider all the results of 8-sets in

comparison to each other. All the sets can be grouped
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with regard to criticality parameter in the following
categories.

Cat cvory-i. Sets 2, 3, 5 and 8. All vary in a
reasonabl 3 way and are very good results.

Category-11. Sets 1, 6 and 7. The results are
very reasonable and good when the graphite is fairly
solid but they start to show inaccuracies in some cases
of SI' and OCF.

Category-111. h. This is the worst set in com-
parison to the rest and is entirely inconsistent except
for absolutely solid graphite case PSCF.

To study the systematic variation of these sets
three representative curves, I'IG.6.7.1, A, B, C have
been plotted in their order of degeneracy. The sets
selected are Set-2 (Curve A), Set-1 (Curve B) and Set-k
(Curve C).

In this context it should be remembered fhat Set-2
corresponds to the reflector data defined B (A-1.2)
in text, Set-1 and 4 correspond to the graphite den-
sity humogenised up to can surface; thermal diffusion
coefficients etc. correspond as given in section 6.5.1
But the difference between the two is that the streaming
factors in Set-1 are directly taken from Chapter-3

(for core) while in Set-! streaming factors are taken,

in accordance with Leslie's formulation as detailed in
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section 6.5.2(2). These two sets were specifically
designed to see the effect of increased streaming factors.
In Set~1 the effect of streaming as a consequence of
(i) correction for density and (ii) streaming factors
starts to deviate seriously in the case of extreme
channeled case and this, therefore, puts a limit on
channel diameter up to which the homogenization can be
extended; while in the case of Set-~/4 the strcaming
corrections start to show up their effect as soon as the
graphite 1is not %uﬁi solid. It is, therefore,
~'\J:'f‘e'ljt,ﬁthat Leslie's formula overestimates streaming cor-
rections. Set-3 is less accurate in comparison to Set-2.
The results of Sets 5 and 6 are very instructive
because this is the simplest possible approach to the
problem and the results are absolutely consistent and
good and the effect of some incorrect parameters is
shown in case of OCF-16 (specifically streaming correc-
tions) fuel elements. There arc no fitted parameters

as in Syrett's model (7), e.g. u _, etc. All that

D
e mg
is required is the microscopic absorption cross-section,
a fair knowledge of slowing down area and so on.
In Sets 7 and 8 the streaming factors are the exXperi-
mentally calculated ones as explained before and Set-8

again emphasizes the simple approach detailed in the

last paragraph. . While Set-7 starts to deviate very
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seriously in case of SF and OCF cases, which is more
probably due to excessive leakage on account of streaming

corrections.

(c) Thermal Flux Distribution at Fuel Elements.

Considering the flux plots and the table 6.7.4
giving the measured thermal flux distribution and the
theoretical values, it seems that the effect of cylindri-
calisation of the assembly is maximum in the case of 100
fuel elements. However, predictions of flux on the
line elose to the centre line are fai?ly accurate.

The agreement between theory and experimknt improves as
the number of fuel elements is reduced. This is the
mgjor advantage in going over to heterogeneous theéry
from the homogenised concept. As has been shoﬁn in
Chapters 4 and 5, the agreement gets worse from 64 fuel
elements and downwards, while in this case it improves
considerably.

As a concluding remark it can be said that these
results can still be improved upon by considering the
reasons given in (a) of this section. However, even
the neglect of various factors does not affect the results
seriously. ‘

It is felt that the Set-2 (defined in the text B
and given in A-1.2) is the best for heterogencous

calculations of the present type. This conflfirns



the basic fact of the theory that fuel treated as a
source-sink does not affect the properties of the modera-
tor constants and the constants can be used directly

for the purpose of analysis.
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CHAPTER 7

CONTROL ROD CALCULATIONS .

7.1 INTRODUCTION

One of the many attributes ascribed to hetcrogen-
eous methods of reactor analysis is the study of control
rod cffectiveness. The simplicity of the control element
analysis lies in the fact that no additional information
is required for calculations except that if we can give
the requisite properties of the control rod, provided
the conditions for the diffusion theory to hold, do not
brealk down seriously. The method treats the control
rods as additional sinks of neutrons with no source term.

With this point in mind, some measurcments for con-
trol rod effectiveness were carried out. The control
clement used was mild stecl. In one set of experiments
one control rod was increased per eight fuel eclements,
in the vacancy created by removing the 9th fuel rod

as shown (a) below, (refer FIG.A-%~1).

Control rod ¢ ¢ ¢
—— o
» & S Fuel Rod
L [ ] [}

(a) FIG.7.1.1



® f ?
“ _—Fuel rod ~ Control rod
Control rod I'uel rod
° © £
(L) (c)

PrG.7. 1.1

In the 2nd and 3rd set once control rod was inserted
per three fuel elements, in the vacancy crcated by re-
moving the tth and 2nd fuel rod position as .in (L)
and (¢) of FIG.7.1.1.

The relaxation length measurcments werce carriced
out with and without the control rods in the sub-critical
assembly.

The relevant results of measurements are tabulated
in section 2.5.2 of Chapter 2 bearing the name of
"vacancy" or "steel!" with the name of the latticeo.

To be more explicit they are:

1) PSCF VACANCY and STEEL for full stack and 36 fuel
1rod configuration.

2) PSI VACANCY and STEEL for full stack, 3l-fuel rods
and 9 fuel rod casges.

3) SF VACANCY and STEEL for full assembly, 36G-fucl
rod cascs.

t)  DPSCF VACANCY and STEEL (1/4), i.c. denoted in the



tables as PSCF 108 VAC or Steel 36. 6 pairs of cases

from 4 to 144 fuel rods, and
5) as &) aboveébut in this half fuel and half vacancy

was assumed to be the case of full assembly.

The measurements for 4) and 5) are plotted in FIGS.
‘2.5.2 (B) of the same chapter; the rest have not been
plotted because they are only omne or two points on the
curve and it’s correlation on the graph will be rather
obscure.

| The basis of analysis for the control rod effective-
ness was based on the‘”two—group super-cell? calculation
and the heterogeneous method outlined in Chapter 6.
Consideration of the two methods will be given in sectltions
7.2.2 and 7.3 and the experimental, along with the theo-
retical, results are given in 7.2.3 and 7.3)respectively.

Their critical assessment is given in section 7.5.

7.2.1 THERMAL EXTRAPOLATION LENGTII FOR MILD STEERL

The most important parametersin the control rod
effectiveness calculation are the extrapolation distances
Kl and kz defined by the boundary conditions of the neu-
tron diffusion equations. The accuracy of any computo-

tion depends mainly on the true cstimate of the extra-

polation lengths into the control rod.



In the present study it will be assumed that the
control rod is tramnsparent to the fast neutrons and there-
fore the boundary condition that the fast flux gradient

at the channel wall of the control rod is zero, i.ec.

Solr)
(=1 0 7.2.1

I =1
(o)
and thereforc

g (r)
aq)(l‘) = >\_ = K 7.2.

-
ur

[ K]

r=r
O

where ry is the radius of the control rod.

The problem of thermal extrapolation length has been
studied extensively by Kushneruik, Kusneruik and, McKay,
and Davison and Kushneruik (37). Ghafoor (38) has cal-
culated the thermal extrapolation length on the basis of
the method proposed by Kushneruik and McKay and a correction
recomuended by Kushneruik. The extrapolation length
for thermal neutrons is a function of the geometry and
nuclear properties of the control rod. Kushneruik and
McKay have solved the integral transport eguation by a
variational approach for a circular cylinder in a purely
scattering medium assuming sources at infinity and obtained

the expression for the thermal extrapolation length as



!
%} = §E - g(ro/ﬂj 723

where Kg is defined as

=X, 7.2.4
lere v = radius of the control rod
Kz = thermal extrapolation length for mild steel
£ = mean free path in the surrounding medium
(graphite)
B = blackness, i.e. fraction of neutrons inci-

dent on the channel wall which are absorbed
in the rod,
and g(ro/ﬂ) is a function depending only on the relative
size of the cylinder, i.c. ro/£ and such thaot g(ro/ﬁ)
is zcro when ro/£ is zero and g(ro/ﬁ) increcases mouo-—
tonically to 0.623 as ro/£ increases to infinity.
It is relevant to remark . that a similar expression
obtained by Carter (39) by the application of multiiple

collision methods developed by Stuart (206),

Ao d 2

7 = 3377 7.2.5

z 3873 (r=e2
is in crror ~4ince the function f(ro/f) is simply

replaced by a constant (2/3) and neglects the considera-

tion of the size ol the control rod element.
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Instead of getting involved in a separate ficld,

of various methods for the calculation of extrapolation
lengths, etc. (rom the present study, the valucs of ex-
trapolation lengths forxr miid steel were directly taken
from Ghafoor (38) who has investigated the interaction
of conlrol rods in a nuclear reactor lattice and

carried out the experimental measurecments at the College
sub-critical assembly. IIis values for thermal cextra-

polation lengths arec
Kusheruik-McKay Experimental Value
A, = 17.467 cm 22.10

The estimate of the scattering mean free path
reqgquired for the purpose was made according to the re-

comuendations of Grant (24).

7.2.2 CONTROI, ROD EFPECTIVENESS ON TIII BASIS O SUPER-

CELL CALCULATIONS

The theoretical estimate of the recactivity céntrolled
were made using the so-called Super-cell method (45).
Briefly described it considers any zone of a reactor
where there is an array of control rods on a !''square
super-lattice. It is assumed that the zone is infinite
in all directions, so by symmetry, each control rod lies
on the central axis of an infinitely long squarc super-

lattice. The neutron-current across the face boundaries
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of the lattice is everywhere zero. The square lattice
is replaced by a circular cylinder ol equal cross-
sectional arca,as is normally done in the case of
lattice calculations. The two-group diffusion equations
‘are solved inside the super~lattice cylinder for the
geonetrical buckling Bcz knowing the thermal extrapola-
tion length at the control rod channel wall under the
additional boundary condition of zero flux gradients

at the outer boundary of thé super-lattice. The super

lattice under investigation is shown in- I'IG.7. 1.

+~———Boundary of the

super~-lattice

1 R
o)

/.

Radiug of the

control rod (a)

////// Fucl Red

Super-Cell Radius

SCALE REDUCED Control rod
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Let N be thie number of f(ucl channels per one

control rod, the cquivalent super-cell radius 1is

~1
.
{>
.
(oY

2 2
TR™ = Np

p is the pitch of the lattice.

Assuming that the equivalent radius R is less than
the core radius and the space between the control rod
(radius ro) and the super-cell boundary is filled with
a homogenised material having the same nuclcar proper-
ties as the reactor lattice, the two-group steady-

state equation can be written

o
va“@f(r) - % + K. % @ =0 T.2.7

f¢f ® Tam 'm

9]
o o - L9l &
m7 @m(r) mem * Efwf 0 7.2.8

Their general solution in the radial direction is

AT (B v) o+ BY (B r) +CI O r) + DK (¥ r) (a)

AT

¢ o = ,51(;\\10(801‘) + BYO(BCr)) 4452((:10(\5&)-eDhO(z‘Cr )) 7.2
(b)

The values of S1 and S, are the reciprocals
of the oncs defined in Chapter 5, section 5.2
h’hile

2 2 1 1
Y. o= BT+ (=5 =) 7.2.10
LR LSR

)
B characterises the leakage of neutrons f{row the




supcer-cell while the overall flux-shape in the rcactor

remains the same. The equations 7.2.9 (a,b) are solved

under the boundary conditions
A}

¢

m
a‘Pm = A (a)
or

A = thermal ncutron extrapolation distance into the

control rod.

0o}
(=—2) =0 (b)

L2001
£ -0 (¢)

that the control rod is transpa¥ent to fast neutrons.

awf

(Or )r =R = 0 (d)

Briminating A, B,C and D from equations 7.2.9 we¢ would

obtain
| | I, or )Y (B R) -~ Y (B r )T (B R)
?;'E:'J(BF)Y(BR)YTBr)J(BRT
. | 1 w R )1\ (¥ R)m (Yl J I (Y 1{)
?T? Si: ) “l CY r )I\ (Y lt)—dx (Y r )Jj (y 1{)

1 1 S
A F;T - g:] = 0 IR

Bgquation 7.2.12 is solved for Bc by trial and errvror.
The neutron absorption in the control rod is, therecifore,

n
represented by an cquivalent leakage given hy{3g, from
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the super-cell.

7.2.3 THEORETICAL AND EXPERIMENTAL RESULTS

In this section the experimental and theorectical
results obtained on the concept developed in section
7.2.2 will Dbe given.

The calculations for the purpose were carried out
Ly a programme practically identical to the onc described
in A-2.5, except for minor changes because ol the
rclations concerned.

The basis of control rod cffectiveness study in
an experiment with the sub-critical assembly is the
fact that the equation

)
IJ ) 7-

o 2 2
sp "Y11 sz

rn "Y11 -13

[

2
K, = (1+B "L

=]

2 2
LZ )(1+Br L

must be satisficd in the vertical dircction,
where
B is the radial geometric buckling appropriate
to the external boundary condition
is the axial buckling which satisflfies lhe above
condition.
In ﬁodificd onc-group thecory the material buckling is -

2
M

2 Z 2

= - ——— ~ -0 I
By B g 2 Yy (-2. 1%
My

When a control rod is inserted the overall flux

]

shape remains the same but it has to satisfy additional



boundary conditioms at the surface of control rods in
cach super-lattice. This results in additional radial
, , . 2 . . -
lcakage characterised by Bc defined by eguation 7.2.12.
Since the materials buckling of the rcactor system
is unchanged before and after the introduction of the

2
control rod the vy, =~ (square ol inverse reclaxation length)
Yi1 1

takes up . a value which satisfies the equations
7.2.13 and 7.2.1%. The mcasured change in the relaxa-
tion Length is, therefore, taken as the additiomnal

radial lcakage; symbolically we can write

(8]

A 2 Mz 2

8 (B_7) = —( Cyii) ( 2 )

' M= stecl ~ V11 ’‘vac
Y >
[p)
2 M:/ ) 2
5B, = —= . Y14 7.2.15

}ﬁtu

The dimensions of the assembly are assumed to be

the same in both cases, thereforc,

2 2

A B = B~

and for comparison of cxperiment with theory

o

M
2 Z 2

= ‘ ~ " 2 15
ﬁ - 2 - AYll 70_.],)

I
The results of computation and experiment are given in
Table 7.2.1 (a). The results reported are only for the

experlimental value of extrapolation length (22.10 cm)
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given in section 7.2.1?for the extrapolation length

(17.467 em) they do not change -$0 - much as to warrant

M 2
reporting. The errors quoted for —EE AY112 are
Mp
entirely experimental errors corresponding to the fittiung
-
error in b in the corresponding cases,for reasons

11

given in section 7.2.4.

To find the reactivity controlled we need the
original Kw of the system so that when the control rods
are inserted, the recactivity controlled may be calculated.

To calculate the K_ of the system when there are
vacancies, the method of calculating reflector savings
given in full detail in Chapters 4 and 5 wa4 used and
the results of computation are given in Table 7.2.1(DB).
Only the material bucklings and K for the system are
quoted ,other terms being understood with reference to
previous interpretation of the cases. The errors in
the material bucklings and Ky Tor two-group theory are
not quoted because of repetition (Chapter 2).

The reflector savings used to calculate K, for
the system were used corresponding to the A case of

Chapter 4, i.e. given by

D

C
5 = ﬁ;-Lr tanh (% T)

The reason for this choice was the behaviour of a
pdrtially filled sub-critical assembly on two-group

theory as shown in the last section of Chapter 5,
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4 . 2 2
LATTICE CASE THEORETICAL M S/MT Y
2 - -2 -6 -2
Bc x 10 cm x10 cm
ESCF 128 (1/9) 156.33 106.01%1.690
PSCF 32 " 130.76 85.54%1.32
PSI 128 " 135. 40 103.71%1.64
PSFD 72 " 116 .86 1oh.72%1.64
0 SFD 8 " 126.12 43.43%0.65
SI 128 " 234.66 81.95%1.48
ST 32 " 136.92 62.97%1.01
=1 -
144 PSCF (1/4) SET x10 x10
144 1/2 20.0848 2.47782.0394
100 " 19.9887 2.41683%.0385
64 " 19.7439 2.2960%.0355
36 " 19.4812 2.8149%, 0423
| 16 " 18.8810 1.0960%.0164
I " 18.1690 0.3550%.0052
PSCF (1/2) SET
144 1/2 14.2678 5;4484i.081?
100 n 14.2053 5.4344% . 0812
Gh " 1h.5245 I.9650%.0743
36 " 15.3576 3.8821X.0575
16 " 16.5398 2.2714%,0336
L " 17.6050 0.7111%.0965

TABLE 7.2.1 (A)




pscr 108 vaC 36

NO.OF

IFUEL

RODS
144
100
64
36
16
Ly

ONE-GROUP

IIIQ K.w
x10_4c52
0.6641%7 1.04846%.00089
0.681314 1.04971%.00092
0.754987 1.05508%.00103
0.999886 1.07295-.00140
1.712970 1.12498%,00250

L. o20246

PSCI* 72 VAC 72

14l
100
64
36
16
b

-.063232
-. 064784
0.271887
0.337618
1.180308
3.780434

1/9 VACANCY CASES

PSCr 128 0.959279

VAC 16
PSCF 32
VAC 4
PSIF 128
VAC 16
PSIF 72
VAC 9
Psr 8
VAC 1
SF 128
VAC 16
SI* 32
VAC I

1.28893
0.899628
0.893868
2.52939
0.923550

1.34579

1.30805%.00654

0.99424%,00011
0.99%10%.00039
1.002482. 00047
1.03076%.00060
1.107532.00216
1.344402.00611

1.06405%.00118
1.08607.00165
1.063162.00116
1.06224%.00117
1.17612%.00364
1.08124%X.00166

1.11845%.00248

TWO=GROUP

B 2 K,

1
<10 4em2
0.6641k7 1.0490L4
0.750792 1.05552
0.791958 1.058061
1.137870 1.08472
2.371560 1.18044
7.359260 1.60834
-.062232 0.99425
0.05258 1.0048
0.180335 1.01649
0.693017 1.06406
2.246730 1.21438
7.887190 1.83814
0.959279 1.06508
1.416670 1.09683
0.899628 1.06415
0.996806 1.07061
L.077650 1.30408
0.923550 1.08292
1.408130 1.12773

TABLE 7.2.1 (D)

w
oo
=

K

[o<]

(Theory)
1.05554

1"



specifically the curve between reflector thickness vs.
reflector saving which shows the break-down of the
concept of reflector saving at a certain stage (36 fucl

rods).

73 HETEROGENEOQUS METHOD FOR TIIE CONTROL ROD EFFECTIVENESS

AND THE COMPUTED RESULTS

The study of control rod effectiveness on the bhasis
of heterogeneous reactor amalysis is not very different
from that of the actual lattice with fuel elements
embedded in the moderator. The only thing which has
to be taken into consideration is the fact that:

1) the control rods are additional absorbers of thermal
neutrons and
2) the resonance escape probability is equal to unity.

The absorption property of the control rod is

characterised by the thermal comnstant for the control

rod defined

2nr D

Yh - ;\0 m 7.3.1
where
A = thermal neutron extrapolation length into

the control rod
_— the diffusion coefficient for the moderator;

in the present case it is the radial diffusion

coefficient.



Thus for the control rod we define

_ 2'”:aoD}.\IR
Yh = X
N = 0
P = 1

and the rest of the two-group heterogeneous theory of
Chapter 6 is directly applicable to the present section
in full with the above-mentioned modifications. The
results‘of the present calculations are given in Tables
7¢2.2. while the definition of moderator constants is
given below:-
A correspond to the graphite density hdmogenised
up to the surface of canj; volume of the solid
includes volume of the fuel and can and the streaming
factors are taken for the core given in Tables 3.
B These are completely reflector comnstants defined
in the comntext as "A",
The case B (by using Pure reflector constants "AM)
was necessitated for the sake of comparison with the

super~cell calculations. given in the previous section,

Prxpi = % reactivity calculated by Xz = 22.10
(experimental value) and
— o . S . ] = -1
Py = ¢ reactivity controlled by Xz 17407

(KusheriuksMcKay 38).
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CASE B' L, ns Mpat P nlen, o)
PSCrr 128 vAC 0.090,51 2.021,67 1.291,287 0.927,72 1.328,292
1 16
PsSrp 128 VAC 0.092,74 2.021,40 1.291,127 0.925,87 1.327,988
11 v 16
SI* 128 vAC 0.105,08 2.019,90 1.290,234 0.915,58 1.327,780
111 16
PSCF 108 vVAC 0.077,30 2.023,33 1.292,276 0.938,66 1.328,292
1V 36
; YTI(Iileanal. Co.)
|
, 2 2 . .
(CASE| V RATIO | Ly Lsr Py Prr ¥ ok ¥ pxpn
E Ag 0.957,60|2685.50| 328.46[0.912,813(12.503,208{0.417,011(0.329,589
1 5
B 0.942,86 (2764.38]336.55|0.929,585(12.703,116| 0.424,61310.335,645
_ |
Al 0.933,768/2863.14| 352.66]0.930,071[12.758,237|0.424,895:0.335,821
11
Bl 0.919,0262940.54 358,.71(0.949,164({12.927,469}0.133,61740.342,715
A 0.813,73004842. 44 632.99(1.222,341(17.187,627|0.558,416|0.441,351
111
B|0.798,99%4312.37|513.73]1.185,927|15.684,936|0.541,780|0.%28,203
A1 0.955,293269%4.93(329.7510.911,851[12.490,142]0.416,571|0.329,242
1V
B |0.942;853(2764.14( 337.01{0.925,174(12.649,236(0.422,658|0.334,052

TABLE 7.3.1

(A)



(r)
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(B) X
SErT
CASE VAC STEEL STEEL 2oy -
EXPIL MKY EXPII KMKY
PSCF 32 VAC | 1.007,518 | 1.047,323 | 1.039,6067] 3.9508|3.1909
4
PSFD 8 VAC | 0.984,785 | 1.033,331| 1.025,883| 4.9296|4.1733
1
SI" 32 VAC 0.998,863 | 1.032,058 | 1.023,078 3.2164|2.4243
!t
(A)
PSFD 8 VAC | 0.97%,750 | 1.020,599 | 1.013,368| %.7037(3.9618
1
SI" 32  VAC 1.006,669 | 1.049,111 | 1.039,676| k.2161{3.2788
!
TABLE 7.3.1 (B)
PSCI 108 VAC or STEEL 36
("> rukL
100 1.014,328 | 1.119,632 | 1.099,240{10.3817 |[8.3712
Gl 1.013,813 | 1.120,682 | 1.100,64710.5413 {8.5651
36 1.007,156 | 1.100,744 [ 1.081,8349.1923 |7.h147
16 0.986,832 | 1.059,913 | 1.042,64| 7.4056G [5.6557
4 0.864,943 | 0.907,379 | 0.894,77414.9062 [3.4489
(B) PSCF 108 VAC or STELEL 36
100 1.015,872 | 1.123,650 |1.102,91410.6094{8.5692
6h 1.015,859 | 1.125,322 [1.104,93010.7811|8.7680
36 1.010,476 | 1.106,811 [1.087,515|9.5336|7.6240
16 0.993,742 | 1.070,249 [1.052,486|7.6988|F5.9114
L 0.885,494 | 0.932,617 |0.919,167(5.3217|3.8027

TABLE 7.3.1 (C)




7.4 COMPARISON OI' RESULTS PROM "SUPER-CELLY" "IIETEROGENEOUSY

TYPE OF CALCULATIONS AND EXPERIMENT

For comparison purpose of the controlled effectiveness
on the basis of two theories outlined in the last two
scctions, the percentage reactivity controlled in cach
case was calculated.

(a) In case of super-cell calculations, we know the
theoretical leakage characterised by BC2 due to the intro-
duction of the control rod and the experimental leakage

2
M ) !
7 2 as a consequence of the two exponential

—5 AY..
)
A = 11

L . N , - .
eXperinents performed before and after the introduction
of the control rod. This i1s the change in leakage on

the assumptions laid down in section 7.2.02. The reacti-

vity controlled is given by
Reactivity = (leakage x migration area) 7ol

This is then expressed as a percentage of the total
reactivity of the system before the introduction of
control rod. These results are given under column 1
of Tables 7.4.1.

(b)) In case of heterogeneous method)to predict the
reactivity controlled}use is made of the fact that?for

a clean core of a givan size, the critical parameter
(A-IIT) is determined for the system. On the inser-

Kppp

'

tion of control rods, the new critical parameter KEFF
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SUPER~CELL
THEORETICAL EXPERIMENT  IETEROGENEOUS
po% po%
LATTICE  CASE 1 11 1 11 B A
Pscr 128 1/9 9.82 5.06 6.65f1.60 3.h2 * *
rscr 3z " 8.0k nh.14 5.28%1.53 2.72 3.95 *
PSF 128 " 8.98 5.00 6.88%1.58 3.45 4.93 *
PSFD 72 " 7.71 3.84 6.91X1.57 3.4k * *
PSFD 8 " 0.75 0.38 2.59%1.49 1.29 £ 470
SpP 128 n .19.10 8.49 8.56%1.81 3.81 * *
SI 32 " 10.78 h.79 4.96Y1.61 2.20 3.22 h.22
PSFC 108 VAC and STEEL 36 ,
100 1/ 139.76 76.50 17.24%1.59 9. n4 * -
100 n 138.93 76.05 17.16%1.56 9.39 10.61 10.38
6/ o 136.53 74.73 15.9651.55 8.74% 10.78 10.5h
36 "o 132.47 72.51 12.34%1.52 6.75 9.53 9.29
16 n 122.45 67.02 7.11¥1.49 3.89 7.70 7.41
I " 101.31 55.45 1.98f1.47 1.08 5.32 4.91
PSCF 72 VAC and STEEL 72
10 1/2 130.73 83.04 49.92%1.50 31.71 * *
100 " 130.18 82.69 49.80%1.49 31.63 * .
6L " 131,99 83.84 45.12%1.50 28.66 * .
36 " 135.73 86.22 34.31%51.48 21.79 # *
16 " 136.05 8G.42 18.68%1.4:8 11.87 * *
L " 119,30 75.78 4.82%1.46 3.06 * *

TABLE 7.4.1
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"so that the reactor is critical" is calculated. There~
fore the control rod effectiveness in terms of percentage
reactivity controlled will be given by

K - K.
o = ETE EFF 100 7.0,

Kepp

The results are given in Table 7.4.1 under columms
(A,B) for each set of data in each case. The errors in
the rcactivity calculated in the experimental predictions
correspond to the sum of % errors in axial bucklings
in experimental determination of the relaxation lengths.

The significance of the results given under Colunn
11 in Tible 7.4.1 will Dbe discussed in the following

lincs.

7.5 DISCUSSION

Let us consider the results of super-cell calcula-
tions first.
(a) These results can be sub-divided into two categories:
(i) 1/9 cases and (ii) 1/4 and 1/2 cases. In the case
of the first category (1/9) case, the reactivity controlled
given under column 1 of the tables in section 7.4, the
measure of agreement with the experimental predictions,
is within reasonable limits (45), these calculations

can predict. Considering each case separately PSCF

(128, 32), PSF 128 and PSKFD (72,8) is quite satisfactory.
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While in the case of SF 128 and 32 fuel cases (16 and

4 steel rods respectively) the deviations are quite large.
The category (ii) in both the sets just do not bear

any rcsemblance to the experimental results. The

leakage (ﬁcz) or the reactivity being relative terms only,

the scale of difference is too large. @ There are many

sources of error in the theoretical predictions which

could be briefly summarized as below:

1) LError in thermal extrapolation length used.

2) Neglect of fast neutron absorption.

3) The extent of assumptions previously described in
Section 7.2 do not hold exactly.

)  There are intense spectrum changes over a small
core recgioi.

5) The basis of the super-cell calculations,that the

zone is infinite in all directions and that the control
true.
rod lies on the axis of an infinitely long square, 1s not/

In the present case a control rod is put at the corner

of the squarc in case of 1/4 and in line in case of

1/2 as shown in section 7.1 except in case of 1/9.
Quite a few more defects can be related in this
context.

Since all these aforementioned assumptions in most

o’ the cases under study do not hold, so one could expect

these large variations in respect of the predictions of
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experimental results. The experimental results

cannot be contested because there is sufficient experi-
mental as well as theorctical evidence to support the
basis of experimental procedure (Chapters 2 and 3).

It is believed that there is another basic reason for
this discrepancy which will be discusssed in the next

part of the present section.

(b) The predictions of heterogeneous theory for rcactivity

are consistent IF considered independently; but in

comparison to experiment there are large differencces.
Since the heterogeneous theoretical predictions

are based on the experimental results(measured axial

bucklings) and if we believe that the heterogencous

thecory is right, then we should have expected agreement

between the two. All through this analysis and others

(16, 17) absolute agrecment between theory and experiment

on this concept has always been obtained. Therefore

it is Telt that "to derive the reactivity controlled

from experiment" is suspect. In this respect it should

be mentioned that in deriving a figure for reactivity

the following additional information has been made use of:

‘i) MZZ/MR2 (asymmetry factor),

ii) Original reactivity in terms of K_.

and iii) the migration area nﬁ )

The asymmetry factor is fairly accurately calculated
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and for that matter in the present case ol PPSClI 128 VAC
or steel 16 it is of the order of unity anway. Therc-
fore this canunot affect the results.

Secondly’thc original reactivity (Km) is very close
to the theoretical value as tabulated in scetion 7.2.3.
Even the use of the theoretical valuc does not make
any difference. Thus the error cannot certainly be
attributed to these two factors. ITowever, when the
number of fuel elements concerned is very small then
serious deviation due to this (K_) recason could be
expected. It was precisely for this reason that the
one-group reflector saving concept for the corresponding
vacancy cases was used to predict K of the system.
Though the correctness in K, (Chapters & and 5) is for
different reasons. Therefore the use of migration

2}
area (MR“) to calculate reactivity may be in error.

It 1is felt that to calculate the reactivity controlled
as the product of leakage and migration arca is in error
if we assume that the control rod does not absorb fTast
ncutrons. Becausce such a control rod is transparent
to any fast neutrons and therefore in a super-ccll leakage

>
(BC“) it is only the thermal neutrons which are affected
by the presence of the control rod.  Consequently the
leakage propertics of the fast neutrons are not affected

at all Ly the introduction of a control rod.

v
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This is further substantiated by the fact that if
we usc the one-group super-ccell formulation to calculate
BCQ and neglect the fast neutron absorption as has been
done in the prescnt analysis’ fhe resultant value of
502 is not affected to any appreciable extent. Thus
with these considerations in mind the reactivity is re-
defined as the product of diffusion area (core) and

)
M~ 2 2
. ) F
("2 /JH BY |4 ) and

Lealkage characterised by 502 or
retabul ated under the colunm 11. The error in experi-
mental value is not quoted but is given in the left-hand
colunm, ¢

Now if we compare the columns 11 of super-cell,
experiment and heterogeneous reactivity results, they
show excellent agreement, in case of 1/9 cases. In
the case of 1/h cases the agreement between heterogeneous
theory and experiment remains gooq)whilc in the'case ol
super-cell vs. experiment it is mnot changed at all except
for magnitudes. In 1/2 cases of the hetefogcneous
theory the results could not be compared for the same
reasons as given at the end of section 6.7.1. The 1/4
casecs are plotted in FIG.7.5 for the purposec of comparison.
The experimental error is rather large because we arc
interested in the differences of very small quantities
and the percentage crrors are added on successively

(axial buckling). The sudden fall of reactivity predicted
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by experiment becomes apparent because of excessive

increase of K_ in the corresponding vacancy casc,since

T

it tends to be inaccurate after 36 fuel elements downwards.
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CHAPTER 8

RESULTS FROM NUMERICAL METIIODS AND COMPARISON WITH ONE-

AND TWO-GROUP HOMOGENISED THEORY AND HETEROGENEOUS THEORY

8.1 INTRODUCTION

The details of the fueled assembly (fully or partially
analysis

filled) casé%/have already been given in Chapters 3, 4,
5 and 6. The basis of analysis have been:
1) the concept of reflector savings based on one-and
two-group theories of neutrons in a reactor system; and
2) two~-group heterogeneous theory for finite systems
based on the explicit consideration of fuel as sources
of fast neutrons and sinks for thermal neutrons.

In this case it had not been possible to analyse
the full fueled assembly cases because of geometrical
conditions. However, the criticality predictions showed
that for the heterogeneous system 16 or more :
fuel elements is practically infinite and there is no
practical advantage in using more fuel for the purpose.
Thus it (full assembly cases) does suffice to say that
for the purpose of comparison with other theories 100
fuel element case is equivalent to the corresponding full
assembly case.

All these twenty-nine "clean core" cases have also

been analysed on
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the basis of numerical methods based on the "finite
difference methods" as detailed in Appendix A-2.3. (CRAM).
This has been variously referred to in the text and it

is thought advisable to present all resultspspecifically’
the criticality parameter and the flux distribution for

the system in each case.

8.2 INPUT DATA FOR CRAM o~

The programme CRAM (44) briefly described in Appendix
A-2.3 is fairly commonly used (22) programme for the
solution of multigroup diffusion equations by finite
difference methods for reactor analysis. The reactor
is divided into a number of homogeneous regions and the
programme computes the critical value of K.

All fueled cases of the sub-critical assembly have
been solved in two dimensions X and Y by indicating
"GEOMETRY XY" in the GC (General Constants) card. The
measured axial buckling (Chapter 2) has been used to
take account of the 3rd direction (Z) in theu}orm of net-
flow of neutrons into the system because of the presence
of neutron sources at the bottom. The sign of the
axial buckling being negative, since the term [ (axial
buckling)(Diffusion Coefficient)] will be added to the
absorption in each group. Because of streaming correbl-

tions in the radial and axial directions, the anisotropic
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diffusion coefficients were used.
The problem has been treated as symmetrical about
the Y-axis and the boundary conditions under which the

two-group diffusion equations

< F")

0. - - =0 8.2.1
D)Vie, - A0 v g%y

2 8

are solved, are

1)zero current at the internal boundary and
2)zero fluxes at the extermnal boundary of the assembly.
12-mesh points of 10.16 cms were used in all cases.
The core constants are taken from Tables 3.4.1 in
Chapter 3 and the reflector constdnts‘given in Appendix
A-1.2,. Both (he sets marked‘A and B were used.
llowever for the purpose of valid comparison only the
constants set-A should be considered. The size (width)
of the assembly corresponded to the extrapolated lengths
in combination with the physical width of the assembly.
The measured extrapolation lengths and axial bucklings
are given in Tables 2.5.1 and 2.5.2 of the second chapter

respectively.



3.3 RESULTS AND DISCUSSION

All the theories referred to in section 8.1 have
two experimentally measured parameters common, specifically
1) Relaxation lengths and
2) Extrapolation lengths.

Other co;e and reflector constants are also common
with the exception of heterogeneous theory moderator
bonstants. Because it is in the nature of the hetero-
geneous theory that "the homogenised parameters of a
lattice cannot be used", fherefore)the nearest equi-
valent case for valid comparisons is the set-3 of section
6.7 which are the constants set-A defined in Appendix
A~1.2. The case SF is corresponding to set-{ since
in the case of set-3 the programme did not work properly
for all cases. .

The figures given in the tables are the criticality
parameters K on the basis of one-~, two-group theory,
heterogeneous theory and the critical constants K as
predicted by the programme of A-2.3. Since all the con-
stants in the theories are the same (specifically size

mnd axial buckling), in theory they should predict the

same critical constant. As it can be seen from Appendix

A-2.3 the critical comnstant K is the ratio of the theo-
retical infinite multiplication comnstant to the experi-

mental value which will be predicted in combination with
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the mecasured material buckling of the reactor system.

So all K_'s of the Chapters 4 and 5 for Set-k* have been
normalised with the theoretical value of K as reference
for criticality. The measured axial bucklings are
quoted alongside in the first column and no error is
given because they have been already given and discussed
in detail in the 2nd Chapter. Only the values for the
purpose of representation have been given here. As
usua%yfirst column denotes the number of fuel elements
in the asscmbly and the other symbols are the familiar
ones. The resultant critical comstants are given in
Table 8.3.

Before considering the critical evaluation of each
theory in comparison to the other,let us consider the
criticality comnstant as predicted by the numerical methods
given in Table 8.3 under CRAM A and B. The figures
under the heading A and B correspond to reflector con-
stants set-A and set-B (A-1.2) in combination with core
constants given in Table 3.%4.1. Obviously the set-A
reflector constants gi?é better results as compared to
the set-B.

In the first three setq,PSCF, PSEF and PSFQ’thc
critical constant K predicted,is a very good fit down to
36 (PSCF), 16 (PSF) and 25(PSFD) cases of fuel eleménts

in the assembly. Therefore}it seems to imply that the
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PSCF
CRAM
CASE AXTAL ONE TWO-~ HETERO. A B
.Gk =2| GROUP GROUP THEORY
x10 "cm
14k 2.040 | 1.004492] 1.003275 * 1.005617] 1.005017
100 2.122 | 1.003276| 1.003762 | 1.012380{ 1.005629| 1.003002
6l 2,415 10.997519| 0.997848 | 1.011620{ 1.002886| 0.998132
36 3.100 | 0.984611] 0.977568 | 1.007061| 0.996469] 0.989227
16 4,235 10.947099| 0.911023 | 0.990602| 0.978885| 0.968420
i 5.572 | 0.833981] 0.701739 | 0.903273| 0.893273| 0.879563
PSF
144 2.119 | 1.007411| 1.006266 * 1.005588| 1.005588
100 2.186 | 1.007164| 1.007766 | 1.017642| 1.007193 | 1.002472
6l 2.469 | 1,003006| 1.002925 | 1.017337| 1.006373| 0.997486
36 3.155 | 0.994110| 0.985167 | 1.016266 | 1.005656 | 0.991320
16 4,285 | 0.962730| 0.920852 [ 1.008966 | 1.001517 | 0.977521
L | 5.617 | 0.857766| 0.711412 |0.962668 | 0.973142 | 0.921704
PSFD
121 2.152 | 1.009302( 1.009322 [1.017752 | 1.009379 | 1.007583
81 2.300 | 1.005973 | 1.007144 {1.017930 | 1.008142 } 1.002427
g 2.599 | 0.98888%4 | 0.986915 |1.004955 | 0.993324 | 0.984270
25 3.669 | 0.980303| 0.961566 * 1.000002 | 0.986543
9 4.955 [ 0.918094 | 0.842383 |0.995420 | 0.978595 | 0.960322
SF
144 2.178 1.602322 1.000812 * 0.981730 10.981730
100 2.273 | 0.996839 | 1.000521 * 0.977498 (0.970782
64 2.476 | 0.985293 | 0.990118 |1.009211 |{0.967620 (0.955725
36 2.908 | 0.962425 ] 0.959555 |1.010112 [0.947434 (0.930180
16 4.433 1 0.799181 1 0.672152 (0.952894 (0.739229 {0.712866
cont..

TABLES 8.3.1
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OCF

14k 2.317 | 1.004996 | 1.003613 * 0.960947 | 0.960947

100 2.387 | 0.988626 | 0.994163 | 1.006430 | 0.945138 | 0.941942
Oh 2.559 10.968867 | 0.976610| 1.007850 | 0.926626 | 0.920751
36 2.896 | 0.934340 | 0.935207 | 0.998858 | 0.893691 | 0.885563
16 3.488 10.873665 | 0.845085| 0.976588 | 0.833142 | 0.823037
& Lo124 10.748775 | 0.633308 | 0.852930 | 0.636187 | 0.627152

TABLES 8.3.1
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consideration of an average flux over the mesh point

for a small core is approximation anly. This is in
accord with the physical reasoning)becaus% for a very
small core)there are intense flux variations over a

small region and it is bound to over-estimate the leakage
from the reactor core. IHlowever, it is to be pointed out
that the void ratio in these three cases is =~ 6% and

8% respectively.

In the case of SFF and OCF results these imply that
the lattice parameters are not correct even for the full
assembly. Because even for full assembly the numerical
methods fail to predict criticality wﬁich obviously
is due to incorrect streaming corrections,_and hence
inaccurate characteristic arecas.

The under estimation is less in case of SI’ and
quite substantial in case of OCF.

Since in the present analysis the mesh-point spacing
and other characteristic constants were kept identical
to the solid graphite cases, perhaps change of mesh
spacing might help to improve the results. Obviously
this is due to over-estimation of the neutron Ileakage
{from the reactor system, because the flux distribution
is assumed to be constant over a mesh-region as detailed
in A-2.3. But from physical point of view there is flux

variation (macroscopic) in addition to local flux variation

1)
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(Chapter 3) due to the presence of fuel in the region.
Now let us consider all the theoretical results
in comparison to each other. First of all it would bec
right to say that the heterogeneous theory over-estimates
the criticality to some extent. It is very difficult
to estimate exactly because of the boundary (cylindrical-
isation of the sub-critical assembly) effects and for
this precise reason the critical constant was normalised
(Table 6.7.3) to the maximum to give a fair idea of the
point where serious deviation starts to becomec apparent.
The quumerical method (CRAM) predicts the criti-
cality of the system much better than its counterpart
in the homogenised field of reactoranalySisjwhere the
numerical method (SF and OCI cases) fails to prodict
the criticality parameter in combination with ihie measured
axial buckling. The two theories,namely one~ and two-~
group theory, are very good in comparison to numerical
method for large channels. The one-group theory con-
tinues to predict a comparatively correct answer with
regard to two~group theory at a cost of the neglect of
various other physical reasons. Two-group theory is
equally instructive in that it shows the physical break-
down of various assumptions (FIG.5.3.1 last).
Finallybthe heterogeneous theory seems to predict

the best parameter down to 16 fuel eclements in almost all
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cases and in case of PSFD even 9 fuel elements, it is
0.9954 only 0.46% less than the criticality constant
(unity) for a critical system.

For the purpose of comparison,the critical counstants
of all theories are plotted in FIG.8.3(\) and since the
variation of all the rest is identical except (or magni-
tudes they have not been considered.

The (lux distribution predictions of heterogenceous
theory can not be compared with those of the rest since
this predicts the flux over the fuel region while the
others (homogenised) represent the macroscopic picture
of the (lux shapec. Theretfore, heterogeneous thecory
is not considered in this context. The flux predictions
of CRAM, two- and one-group thecory are tabulatcd in
Appeﬁdix A-2.0 and only representative five flux plots
for PSCF 100, 64, 36, 16 and &t fuel clements are shown.

The relationship of theoretical one~ and (wo-
group flux distributions has already been discusscd in
the. appropriate places. Here they are plotted to
show the Limitations of each. The thermal flux dis-
tiibution predicted by the numerical methods is by far
the best in comparison to experiment. The deviations
become apparent only when the number of fuel elcments
is 36 and less. This can be improved upon by sclecling

appropriate mesh-spacing. In this regard it is reasonable
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to say that the numerical methods are comparable to those

of the heterogeneous theory.
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CHAPTER 9

CONCLUSIONS

The purpose of the present project has been to
investigate the bLehaviour of a sub-critical assembly as
a function of fuel loading. The theoretical and experi-
mental results have been discussed in each chap%er
separately. The broad outline of the conclusions

reached can be summed up bLriefly as below.

1) The experimental measurements of relaxation lengths
and extrapolation lengths carried out over the vast
spread of lattice arrangements leads to the conclusion
that a sub-critical assembly is and will remain a power-
ful tool for reactor‘analysis unless a reactor facility
is available for the purpose.

2) The computed parameters, namely relaxation lengths
and extrapolated length from flux measurements, verify
the fact that the size of the assembly is quite large
for measurements of the relaxation length in an asympto-
tic region so that the accuracy in the fitting process
is much less than the maximum experimefital error due to
other causes.

3) Neglect of harmonics and restricting the measurements
to a region away from boundary effects give satisfactory
agreement with previous measurements (4) wherein all

harmonics have been considered.
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L) In full assembly cases (in some cases only in an
implied way) the agreement between theory and experiﬁent
is very good.

5) The process of homogenization has been extendgd to
the limit (half fuel taken out but implying assembly is
full); even then the unit-cell concept retains its
integrity and is in marked agreement with the experimental
predictions.

6) The experimentally measured axial and material
bucklings are within the limits of accuracy, an exponential
experiment can predict. |

7) The measurements of criticality comstants for four
clean core cases with varying size of coolant channels
are in accord with already established methods (7) of
calculation.

8) The calculated parameters (7) have been used to
predict the behaviour of a partially fueled assembly,
which in turn have been used to predict the critical
parameters of a large reactor.

9) A simple approach to the case of a partially fueled
assembly on the basis of one-group theory does give
satisfactory results within its limitations.

10) A rigorous treatment (two-group theory) of the
reflected core assembly shows improvement over the simple

approach. llowever the approach is very instructive and
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revealing in that one can sec the physical breakdown of
the basic assumptions.
11) The measured thermal flux distributions are in
good agreement if the number of fucl elements is at least
6h. With anything less than this number of fuel element
process of degeneration sets in.
12) The numerical methods predict the behaviour of the
reactor system under investigation fairly well if the
void ratio in the lattice does not exceed 8%.
13) The experimentally measured and theoretically cal-
culated flux distributions (itwo-group and numerical

1in extrcecme cases
methods), though strictly not in agrecementy ,do emphasize
the excessive leakage [from a small core,reflected system,
which indirectly shows the importance of a reflecctor
outside the core through the increase of cross-hatched
arca under the integral curve,.
1)  Analysis of the cases under study on the basié of
two~group heterogeneous (source-sink) theory for finite
systems has been much more satisfactory than its counter-
part method of analysis. *
[5) The radial diffusion coefficient (thermal and fast)

fhere}ore

haveybeen defined for a reflector (7) in a more realistic
way. These diffusion coefficients in conjunction with

heterogeneous theory predict the Ejigepn-value much more

satistfactorily than all the sets tried. However}for

cases
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neérly full assembly cases this definition improves the
agreement between theory and experiment in most of the
cdses (set-B).

16) In going over the heterogenecous methods,the flux
distribution for less number of fuel elements is much
more satisfactory than in the case of homogenised concept
and is in very good agreement with experimental measure-
nents. '

17) The chief advantage in heterogeneous analysis is
the control rod effectiveness study. The homogenised
concept of a reactor super—l;ttice is suitable for very
large reactors when the amount of absorber present

is comparatively small. Even then,the predictions have

a wide range of variation. But in case of heterogeneous
theory the smaller size {(not excessively small) does

not arffect the results significantly.

i It may be added as a final remark that heterogeneous
method of reactor analysis is best if the number of

fuei elements involved is small ﬁnd/or if it concerns

the control rod effectiveness investigations. But for
very large reactors there is no practical advantage in
doing these sophisticated calculations; the homogenised
concept of a lattice does present the basic ch;;acter—

istics fairly accurately and there is no difference

between the two theories.
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The present theoretical analysis is not absolutecly
complete in all respects. The possible improvements may

be briefly listed below,

1) The partial fuel loadings of the assembly cases,&ud~

the analysis on the basis of one-and two-group theorygo
seriously wrong in all respects vhen the number of fuel

elements is less than 36. The results should, therefore,

be analysed by comsidering the core as a '"cylinder"

-rather than a "slab" for 36 or a lesser number of fuel
elements.

2) In case of hetsrogeneous analysis some account

should be taken of the boundary effects.

3) The increase in resonance escape probability for

a small core surrounded by a reflector should be con-

sidered. At least this fact alone will account four

serious deviations in the results for 4 and in some cases
for 16 fuel elements.

It) Finallyiit is to be said that in the present analysis
the therm%l\constant in heterogeneous calculations has

Comlar :

been kep%?w It may well be instructive to kcep 1 constant

and thermal constant vy, is treated (46) as Eigen-value.

This would certainly he;p to check the accuracy in the

value of the thermal constant.



NOTATTION

Indices

F of f Past

g a graphite or geometrical
c core

M or m thermal

n o can or number

o diffusion area, Or uraniumn
u g ur anium

R radial

S slowing down

Z axial

r reflector ev raddal

List of Symbols

A!B1C’

Arbitrary constant
diffusion coefficient
neutron energy
arbitrary constant
constants '

modified Bessel functions of the
first kind

modified Bessel functions of the
second kind

Bessel functions of the first kind
Bessel functions of the second kind
length squared
migration arer

densit
effectivern. ofyelement 'i' to

reference wensity

thermal

wode of

FundamewXal 3 ivlaxqtoh
cj‘; ‘ (Q‘he‘ W

Westeott | bax

&ﬁﬁ\gﬂnwﬂkm

W Cwi- Sec.
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resonance escape OF €ollision probability

source term or constant

infinite multiplication constant
Eigen value

microscopic cross-—-section
macroscopic cross-section

2 Void A
neutron flux n/cm-gEr A CTIETD] ratio

reflector saving (cm)
relfector thickness (cm)

width of fuel region in the partially
filled assembly case (cm)

extrapolated width of the assembly (cm)
buckling (cm™2)

fundamental mode axial buckling
migration area asymmetry (MZZ/MRZ)

linear extrapolation length (cm)

-average logarithmic energy decrement

fundamental mode radial buckling (cm™2)

higher mode radial buckling.

Other notation is explained in the text.
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APPENDIX-T

A-1.1 NOMENCLATURE OF THE LATTICES

To facilite the understanding of the various terms
used in the text to denote various lattices and to avoid
verbosity of writing the same expression again and again,
certain notation has been used. The following letters

in this context have special importance:

N = ©No Fuel

P = Plug

S = Sleeve

C = Corner or channel depending upon its relationship
0O = Open

F = Fuel

D = ODD (not very often used)

B = Block.

It may be noted specially B, C, P and S are the inlals
of the graphite components used

to build-up the lattices under study. Since B (block)

is the basic unit with which a lattice is constructed

and is present in all cases, thereclore it is omitted

from the name of the lattice. The letters P, S and

I' denote the presence of the respective components in

the cell. The letter N is often used to imply the

negation of fuel. Even if I is written and N is there
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it would mean that there is NO fuel in the sub-critical
assembly.
In one case of fueled lattices the lattices of
squares of odd numbers were also possible, so the word 0dd
is sometimes attached to the name of a lattice since the
corresponding K_ etc. change from its counterpart. Now
it remains to make clear the significance of C. C may
denote "Corner hole filled with graphite'"or it may mean
"channel" in conjunction with "Open'. With this notation
following lattices will be frequently mentioned in the
text.
A lattice name below would imply the presence of
PSCF = plug-sleeve-corner-fuel (meaning that these
components of the lattice are present, the block
being understood to be there).
PSF = plug-~sleeve~fuel are present while the corner
holes are empty.
SF = sleeve-fuel (no plug and mo corner filling).
OCF = open-channel-fuel (means plug and sleeve have
been taken out of the lattice and no corner tilling).
These are the four main lattices and placing N
before F will negate the presence of fuelj;at the same time
it would retain its identity, e.g. OCNF means open channel
No Fuel lattice; to put it briefly, only blocks con-

stitute the lattice. It seems difficult: but was found
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to be most useful in the present study. Sometimes
numbers with notation will tell the '"number of fuel
elements" in the stack.

In this sense the notation PSCF-64 means the
lattice is PSCF and only 64 fuel elements are present.

It may be meﬁtioned that why it has been necessary
sometimes in the text to distinguish between PSF-100 and
PSF-81 as PSF~100 and PSF (ODD) -81 or more precisely
PSFD~-81, is that in the case of PSF, the fuel rods are
placed at the centre of the fuel lattice while in the
case of PSF(ODD) or PSF 81 the fuel position is not at
the centre of the lattice but in the corner hole position
which is normally used for flux measuring purposes.

In the control rod effectiveness studies, a variety
of vacancy cases w{l§ investigated. For that the
notation adopted was to put VAC instead of vacancy and -
write how many vacancies there are. For example, in the
case of full sub-critical case PSCF let us suppose we
create one vacancy per nine.fuel lattices, then it 1is
understandablé to say PSCF 128 VAC 16; meaning that in
the case of PSCF case there were 16 vacancies created
in a matrikrofv128 fuel elements in the sub-critical
assembly. And if the <vacancies have been filled with
steel it is as easy to write PSCF 128 Steel 16, and so on.

This notation has been made clear diagrammatically in



324

FIGS- A"'l.lo
The dimensions of the graphite and fuel components
are given below.
Dimensions:
Lattice pitch = 8'.0
Equivalent radius = 4O
1) Block 8' square with 4.25" diameter hole

with 0.625" corner squarese.

Density = 1.751 gm/c.c.

2) Sleeve. Outer radius = 3.875"
Inner radius = 3.375"
Density = 1.6906 gm/c.c.
3) Plug. Outer radius = 3.357"
Inner radius = 1.220"
Density = 1.748 gm/c.c.
L) Corner square hole side = 1.25" ) :
Density = 1.748 gm/c.c.
5) Cine. The inner radius of the inner aluminium

can was assumed equal to the outer radius ol urandium

fuel and the aluminium was homogenised up to the outer

diameter of can = 1.0625"n,
Density = 99,.99% pure
Reference density = 2.73 gm/c.c.
6) Fuel. 17" diameter slugs of 18.59 gm/c.c. density.

Length of one slug is 11.56" and there arec 8 slugs in one

fuel element.



A-1.2 THE PROCESS O IHOMOGENISATION AND REFLECTOR

CONSTANTS

The basis of the unit cell model is the study of
homogenised cell in a reactor systen. In the case of
graphite moderated reactors there are always holes and
gas spaces for one reason or another. To represent the
parameters of such a'cell a graphite of reduced density
is supposed to exist so that the recaction rates remain
constant while fhe gas spaces do not show up as defects
in the system. It is therefore very important to under-
stand the extent to which the process of homogenisation
has been applied and the limit to which this process

works out. In the next few lines in each lattice the

formula for homogenisation has been written.

1) In case of PSCF

(Block area)pr)+(sleeve area)(DSl)+(plug area)(p?g)

D - =
PSCEF
+ sqg.hole area)(ﬂsq)
Total lattice area-area of inner circle of plug
S = 1.013,56G8.
PSCF )
N = density of graphite while the subscript is the

component referred.



2) PSF

(Block area)(pn)+(Sleeve area)(gsl)+(plug area)(st)

AL

Tpsr - . )
Total lat. area ~ (plug inner circle area)

]
SG 0.987,841

Pslt

H

3)  Psr (0DD)
(Block area) (L, )+(Sleeve area)(ESl)+(plug area)(gps)

~ =

PSFD Total lat. area - (sq. hole area)

S 0.993,474

Gpsrp

Note Ppsp # PPSFD because the sq. hole area # plug

inner circle areae.

4) SP
. ) (Block area)(pp)+(Sleeve area) (pyq)
SE Total lat. area~ (inner sleeve area)
S. = 0.983,961. ‘
SE
5) OCF
(Block area)(pB)
Pocr )
Total lat. area - (inner block area)
S = 1.028,719.
OoCcF

6) One VACANCY per nine lattices. Only for one
lattice the process is written;for others it would be

similar
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(Bl.area)(pﬁ)+(51.area)(051)+(P1.area)(93g)

?pSCcr128vVAaci6 _
plug inner
Total lat.area-(plug inner area)+ area

9

7) In case of one vacancy per four and two lattices,
9 in the above relationship will be replaced by 4 and 2
respectively.

The core constants are given in Chapter 3 and
reflector constants (7) are tabulated in this section for

reference.



REFLECTOR CONSTANTS
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\—~CASLES
Vv{(SOLID)
Dam Dz Dpr Dyz VIREF)
PSCNF 0.933,148 0.959,450 12,746,478 13.105,757-0.942,858
PSNP 0.948,931 1.001,730 12.913,717 13.632,229 0.919,026
PSNF(ODD)| 0.955,239 1.008,372 12.999,588 13.722,657 0.919,026
SN 1.240,674 1.609,367 16.330,041 21.182,857 0.798,994
OCNF 1.519,298 2.240,942 19.501,269 28,764,091 0.754,508
B-CASES
PSCNF 0.971,625 0.999,012 13.272,056 13.646,149 0.981,735
DSNF 1.013,680 1.070,081 13.794,866 14.562,406 0.981,735
PSF(ODD) 1.014,079 1.070,485 13.800,327 14.567,935 0.975,636
SNF 1.335,740 1.732,683 17.581,317 22.805,975 0.860,216
OCNF 1.567,285 2.311,724 20.117,227 29.672,620 0.778,340

TABLES

A.1.2




REFLECTOR CONSTANTS (STREAMING FACTORS)
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A-CASES ) 2
AzLAShS S. S S St M /2
B-CASES MR MZ/SMZ IR/SFZ Fz z TR
IPSCNF 1.054,806 1.084,537 1.050,779 1.080,397 1.028,187
1.072,422 1.064,369
PSNF 1.072,540 1.132,215 1.064,460 1.123,686 1.055,640
1.107,890 1.091,730
PSNI 1,085,826 1.146,222 1.077,648 1.137,590 1.055.622
(oDpD) 1.121,601 1.105,247
SNF 1.606,615 2.084,055 1.542,200 2.000,498 1.297,171
1.888,430 1.759,601
OCNF 2.178,187 3.212,794 2.038,987 3.007.,477 1.474,986
2.787,183 2.508,785
DIFFUSION AND SLOWING DOWN AREAS
2 ' 2 2 2 2 2
%5%%%%% Lp Ly Lor Lsz Ly lg,
2 2 2 2 2 ,
cm cm cm cm (o111
PSCNF 2777.-43 2855.72 337.00 346 .50 2633.12
320.71
P SNF 2049, 24 3113.34 359.39 379.39 2749.77
. 337.63
PSNF 2955.66. ~ 3120.06  359.73 379.74 2722.04
0
{opp) 333.81
SNF LL8.92 5771.01 524 .81 680.76 2769.12
340.30
OCNF 5571.19 8217.43 634.80 936.32 2557.72
311.33

TABLES A-1.2
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A-CASES REFLECTOR CONSTANTS
D D D D V(SOLID)
CASE MR M7 FR Fz V(REF)
PSCNF 0.929,585 0.952,927 12.703,116 13.022,090 0.942,858
128 vAC , :
16
PSNF128{0.943,603 0.990,459 12.851,683 13.489,846 0.919,026
VAC 16 ; '
PSF(ODD)0.949,164 0.990,269 12.927,469 13.569,033 0.919,026
128 VAC
16 ,
SNF 128]1.185,927 1.497,362 15.684,936 19.803,936 0.798,994
VAC 16
. |PSCNF  |0.925,174 0.94%4,958 12.649,236 12.919,722 0.942,853
1108 vac
36
PSCNF7210.916,953 0.929,979 12.549,056 12.727,327 0.942,858
VAC 72
~ _B~CASES REFLECTOR CONSTANTS
PSCNF 0.969,916 0.994,270 13.254,248 13.587,061 0.983,764
128 vaAC .
16
PSNF 1.010,073 1.060,229 13.756,981 14.440,097 0.983,764
128 VvaAcC
16
PSF(ODD ]1.010,380 1.060,523 13,761,222 14.444,163 0.978,299
128 VAC .
16
SNTF 1.208,981 1.526,469 15.989,836 20.188,905 0.814,525
128VAC
16
PSCNF 0.967,806 0.988,501 13.232,107 13.515,057 0.986,299
108 vaAC
16
PSCNPF 0.963,644 0.977,333 13.188,044 13.375,392 0.990,867
72 VAC
72

TABLES A-1.2




REFLECTOR CONSTANTS

(STREAMING FACTORS)
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A-CASES
B-CASES
t ' 1 2 2
CASE Smr SR SpRr Spz MM
PSCNF , 1.048,611 1.074,941 1,045,040 1,071,285 1.025,110
128VAC
16 4.064,213 1.057,080
PSNF 1.064,317 1.117,167 1.057,161 1.109,655 1.049,656
128VAC
16 1.095,627 1.081,314
Psrr.. 11.076,001 1.129,401 1,068,770 1.121,811 1.049,628
(opD)128
VAC 16 1.107,636 1.093,174
SNF12811.508,485 1.904,626 1.455,007 1.837,105 1.262,609
VAC 16 1.742,450 1.635,495 |
PSCNF |1.040,955 1.063,214 1.037,940 1,060,135 1.021,384
108VAC
36 1.054, 146 1.048,116
PSCNFF |1.027,072 1.041,662 1.025,095 1.039,657 1.014,2006
72 VAC '
72 1.035,719 1.031,766
REFLECTOR CONSTANTS
DIFFUSION AND SLOWING DOWN AREAS
A-CASES :
B-CASES
2 2 2 2 2 2
CASE LR cm2 LZ cm2 LSR cm2 LSZ cmZLo /LSO cm2
PSCNF | 2764.38 2833.79 336.55 345.00 2636.23
128VAC16 322.04
PSNF128 |2937.42 3083.28 358.41 376.20 2759.91
VAC16 339.03
PSF(ODD). | 2940.54 3086.47 358.71 376.51 2732.8%4
128VAC1LO 335.62
SNriz8 4312.37 S444.83 513.17 647.94 2858.74
VAC16 352.70
'SCNF10812755.94 2814.87 335.98 343,17 2647.51
VAC36 323.70
PSCNF72 |2742.00 2780.95 334,82 339.58 2669.73
VAC72 326.6{

TABLES A-1.2
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APPENDIX II

A-2.1 SINH AND COSINE FITTING

Practically,all the calculations reported have
been dome, some on the Mercury and Atlas Computers of
University of London (mostly sinh and cosine fitting
and some preliminary calculations on heterogeneous
recactors) and the rest of the calculations on IBM-7090
computer at the College. | The programmes (mostly) used
for the purpose are described in_this Appendix an@ the
next one.

(&)

Programme§;haVe been written to fit experimental
flux measurements to the following functions by -least
squares fitting.

1)  Sinh Fitting.
sinh{(c-z )Y)

wi(zi) = A STan(7e) A-2.1.1

for ¥, A and c.

This is Ehe function expressing the theoretical
variations of neutron flux perpendicular to the source
plane in an exponential assembly. The constants A, ¥,
and ¢ are to be estimated from a series of measurements
of flux @ at various heights z, - The expression A~2.1.1
is made linear by expanding the function as a Taylor

series and considering only the first derivatives.
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a¢i (awi @5
q,i(A.oc,Y,) =¢O(Ao,ao,yo)+ng—)6A + (53 ) ba +(aY ) Oy
o (] o
A-2.1.2
where a = cy
and o refers-to the first guess values. Rewriting the
equation and changing the notation
= -0
m, = aiéA + bi6a+ciéy A-2.1.3

The equation for the sum of squares of residuals is
formed and differentiated w.r.t. each variable to give
the normal equations. These are solved for 0A, ba
and 6&v.

It was always found that fixing the height does reduce
the fitting error approximately by a factor of.2 so the
fitted values of b11 cérresponding to the best fitted
value of ¢ was always taken.

The standardudeviations of ¢ and b11 are estimated
on the basis of the following assumptions.

1) The function is linear within the range of the
standard deviations.

2) The variables are independent. However it was
found that b11 and ¢ are very strongly interdependent
and for this reason ¢ was fixed and had previou:ly been
fitted to cosine distribdtions by Macdonald and average

of ¢ corresponding to a large number of results was taken.

3) The net influence of combinations of positive or
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negative deviations of points from the best fit line
does not affect since their effect will be balanced by
other positive deviation. The details of the calcula-
tions of errors may be found in Macdonald's work (4).
The initial guesses of y_ (1/b11) and c, are fed
into the computer as data, together with‘flux values)
and the programme uses these to calculate an initial
estimate of AO. Tﬁen the analysis for HA, &a and-éYk
follows for improvements over the guessed values and
the process is repeated until the correction factor 6y
is <0.01% of Y. Usually 2 to 3 interations are sufficient
for the convergence to be reached and if the conditions
~detailed are not reached then the whole process is
repeated again with the last values of the constants.
The out-put consists of the related parameters
during each cycle with the residﬁal sum and on reaching
convergence the standard deviations of the fitted para-
meters and the standard deviation of the flux from the

theoretical values.

2) Cosine Fitting.

@;(x) = A cos (Bx,) A-2,1.4

for A and B.
The fitting procedure is basically the same as
detailed in (1) of the present section. The cosine-

function is non-linear and an initial value of B is
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obtained from the stack width and an estimate of the
extrapolation distance. The value of AO in the present
case was simply taken as the largest flux value read
into the computer.

Again in this case, the computer outr * ~onsists of
the values of the fitted parameters in each cycle and
when convergence is reached;the standard deviations of
the fitted parameters. TYhere are additional
refinements; the flux could be read in for (1) and (2)
either as a flux with given variance, or as a "time"
for a given number of counts. The relevant calcu-
lations are carried out by the computer.

These two programmes were written for the Atlas
and/or Mercury Computer and they have been superseded by
a sub-routine "DPARFIT! (40), which is a Fortran IV sub-
routine designed to fit a set of up to 50 experimental
observations by the method of least squares fitting
procedure to a theoretical expression which may contain
2, 3 or 4 parameters, the values of which.are to be
optimised to give the closest fit to the experimental
points. The chief advantage in this sub-routine is that
the expression to be fitted is supplied by the user in
the form of a sub-routine and therefore is very useful
in this respect. Consequently there is no distinction

between a SINH FITamd a COSINE FIT: it is just a matter
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of giving the proper function.

A-2.2 CALCULATION OI' LATTICE PARAMETERS

All the basic lattice parameters calculated on the
basis of the theory outlined in Chapter 3 have been
carried out by a programme written in the Nuclear Power
Group, Imperial College, for the computation of the
lattice parameters of graphite moderated, gas cooled

reactors for the Atlas Computer. The programme can

" pe used for the calculation of the lattice parameters of

reactors with enriched uranium fuel, with or without
canning material, the material being aluminium, iron
or maguax. The fuel elements can be hollow with or
with;ut inner case.
The input data are the lattice cell dimensions,
density of the materials, operating temperature, data
for streamimg and any other data required for calculations.
The out-put from the programmne has been given in
Chapter 3 section 3. Specifically, the constants are
Ky f5’ 5o €, p, flux-fine structure ratios, diftfusion
and slowing down areas, without or with streaming
corrections applied in radial and axial directions accord-

ing to the asymmetry factor A = 1.73 in the relation

2 2
M M
[((=)-1)] = 1.73 [(==)

- 1] ATT2.2.1
M"'Re.xpt, 1\2 theory
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S S and SFR are cal-

The streaming factors S MZ' °FR

MR’
culated according to the recommendations of Syrett,

namely that the sheathing material geometrical constants
should be calculated for volumes including any part of

the end-cap which protrudes into the streaming channel.
The effect of gaps between graphite blocks and control

rod holes on modifying L2 and L52 is partlycompensael by
defining Sg as an effective graphite density detailed

in Appendix A-1.1. Thus in the streaming factors defined
by the equations 3.3.24 (a,b) and 3.3.25 (a,b) the
contribution‘&%’should be omitted for control rod holes
and Wigner gaps, but the term (Qrw/I) should be included
for the holes and gaps associated with one lattice cell.
Values of Q for holes of varying |1 are given in Bernoist's
report (41). The running time for the computer is -

approximately 10 seconds per set of data.

A-2.3 CRAM (44)

The programme CRAM solves the multi-group diffusion

equations

2
D v - A
g

+ = QO A~-2.3.1
I Q 3

g% g
The source term Qg is made up from scattered and fission
neutrons as

Q =5’ (c! +{-:-XF')¢' A-2.3.2

&g &g
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The multi-group eguations are solved by finite difference
methods. The reactor is divided into a number of homo-
geneous regions, and an approximation to equation A-2.3.1
is made in each region. The programme computes the
critical valpe of KX and can handle many othes calculations
o{ complex nature.

The terms in equations A-2.3.172 are defined as
A - Absorption cross-section in group g, including

removal by scattering.

Dg —~ Diffusion coefficient in group g.

Cég— Cross-section for scattering from group g' to
group g.

Fg - IPission source in group g.

K - Effective multiplication of system defined as

K, (theory)
K =

K, (experiment)

The value of K_ (exp) which would be expected if
measured where K (theory) is presumed to be known.
Xg - I'ission spectrum

wg - Neutron flux in group g, not normalised.

The input constants were taken from the two-group
model due to Syrett (7) so it would be advisable to
identify the various constants in equations A-2.3.1.
If we write the equation A-2.3.1 for the two encrgy

groups of neutrons



where X

for

Writing the two-group

A

1917 K

¢
2%2

1 for fast necutron fission spectrum

Syrett's model we have

2

D VW -~
WL

F

D, VW

M

Identifying C1

o

o

so that

C

- . W

12

M T

5 KT
o+ K B,

+

as R1 and C

Drr

2

K (theoryZ M

K,(theory)

MM FwF

thermal neutron fission spectrum.

equations according

= 0 -

= 0 -

as R2 we find that
(a)

(b)

(¢)

(a)

- K ({expt)

to

(R

(R
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A-2.3.3

A-2.3.3

A"’2.-3 iy

Normally the programme expects the input cross-
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sections in microscopic form isotope by isotope but in
the present use macroscopic cross-sections were fed
directly. However in this case the mix routines built
in the programme become degenerate.

The finite difference method may be briefly

summarized as below,

2

c b
IZ
3 0 1 XY

d a !

L
«——AX— .

Il
FrIG.A-2.5.1 THE X-Y MESH

The reactor is divided into a number of regions
and the macroscopic cross-sections in each region are
assumed to be counstant. This implies that the core-
reflector interfaces have to be at the end of a mesh

t

point. The boundary of each region must be lines of

constant X and constant Y as shown in Fig.A-2.5.1. The
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programme computes the average flux in each region which
is supposed to be the same as the flux at the mesh-point.
Point.O in the Figure has neighbours 1, 2, 3, 4 and
equation A-2.3.1 is integrated over the volume |
(x = 3 X5 y=2%471). The result of various approximations
for the terms szw s Ay etc. leads to an expression for
the multi~group equation A-2.3.1 as

D, (¢ ~w )S, , 5é(w2—wo) Sy . 5é(¢3—¢0)53

11 12 13

+ I - Ap V + QV =0 A-2.3.5
and the source term
- - ' XSFé 1
Q = g' (ng + == ) g0 A-2.3.6
where Sq = S2 = AX
S5 = 8y = Ay
and V  =AXAY.

The programme allows the boundary condition of zero-
current and zero-~flux by defining a number A=0 or a

o say)e. A typical input data set

very high number (10
consists of defining the mumber of energy group, control
type, geometry, anisotropy, bucusling (axial, sikcéilhe

programme solves the multi-group diffusion equations,

in two dimensions
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this could be omitted if so required), definition of mesh
points and boundary condition, isotropic data, definition
of core region and reflector ,(if present) and the last
card should define the spectrum in two energy groups

Sp 1.0 Q. This should be followed by the cards for
out-put required. If there is another set of data to
follow, there should be a card with NEXT. ’

In the present analysis it was found necessary to

use the ACCURACY card which defines the accuracy

A A A AQ A

1 2 3 5

In control type 1 problem the sfeady state will be

reached if (MAX" etc. defined on next page)

Max™ - Min" < A,
Max™ - 1.0. < A -

3

AR - An+1 < .A1

and for iterations other than those in an acceleration

cycle, the current estimate of K is multiplied by

(I+1)(\x~1) 20 A5 + 1

I = number of points in X direction divided by 10.

This will gradually adjust K to its correct value and in
the present case A5 was reduced from its built-in value
of 0.05 to 0.01. The bullt-~in values of the accuracy
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constants are
A A A A4 A

1 -T2 3 5
. 0005 . 0005 . 0005 .0001 0.05

In control type 1 A& is not used. Any of them can
be over-written, e.g. ACCURACY .001 .002 will over-write
A, and A_ but not A

1 3 5°

the value of A5 had been reduced to 0.01 for strict

. A4 and A In the present study
convergence.

The card can be omitted if not required and should
be placed after the General Constants card.

The values of Maxn and hn are defined as

I(n) = z [‘Pz(is-jigvn)J
i,j,g
n -1.3
A = (/" H*®
and
Maxn = Max ‘P(i ’jagvn)

‘P(iajig':n’]-)]-
i,j,8

Similarly Min™.

The out-put comnsists of a print of the input, a
figure of K when steady state has reached, defines mesh~
pointsyand the flux distributions for both fast and thermal
fluxes are given.

The programme uses the following tape units.
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IBM-7090 Programme. Logical Tape Units

Programme Tape 4
Coefficient Tape 7
FLUX ONE 9
FLUX TWO 10
OFFF LINE Output 3
DUMP 6
INPUT 2
Chain Intermediate 5

The programme runs under Fortran Monitor Control
system.Tape 6 is required unless a dump is called for.

At the moment the programme has been in almost
constant use during the last one year and there have been
practically no difficulties in its use. A set of
6 PSCF cases normally takes 21.5 minutes of the computer,
while in case of SF or OCF with large channels and large
streaming corrections the time increases to 27.1 and
31.4 minutes rsspectively which increases particularly
due to the cases with small (4, 16) number of fuel ele-

ments. The computed results have been quite satisfactory.
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A-2.4 ONE GROUP THEORY CRITICALITY CALCULATIONS

The programme has been written for the IBM-7090
computer. The programme consists of % sub-routines and
é fairly big programme. The fun;tion of two sub-routines
is to write the name of the programme and the title
card. The third one calculates the function defined
by the equatdion A-2.4.5 below and the fourth calculates
and writes the flux distribution in the core and the .
reflector on the basis of modified one-group theory.

The basis of the programme is the criticality con-

dition obtained in Chapter 4, specifically

D
=—— a tanh (»_T) , A-2.54.1
D : r

tan (ab) = rnr

and the approximation defined as
D

C
D x
r r

5 = tanh (an) A-2.4.2

where & is the reflector saving corresponding to a
particular thickness of reflector surrounding a core of
given size.

First the reflector savings are calculated according
to the expression A~2.4.2 and then all the related para-
meters, namely material buckling for a given axial buckling,
equivalent core size of the bare homogeneous reactor,

K, on the basis of modified one-group theory, two-group

theory, etc. and the corresponding errors are calculated
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and written. The thermal flux distributions according

to the expression

¢, = cos (ax) A-2.4.3
g. = C/A sinh (§'+ T - x) A-2.h.h
C/A = cos Ogla)/sinh (urT)

ove calculated and written.

Then the programme goes into a very big loop for
iteration, then all the above said calculations are
repeated if the number of cases is more than one. After
each iteration the flux distribution for that configura-
tion will be written with number of the fuel elements
being written at the top of the next page.

The iteration is based on the principle that we
give two guess values to the independent parameter, say to
reflector saving or the corresponding radial buckling in
one direction. In the programme reflector saving ﬁas
been taken as independent parameter. It is assumed that

4
they should have given the function defined as

D .
£f{y) = tam (0d) =~ (3‘3- . £ tamn (e T))a A-2.4.5
r r
= 0
If it is mot , then let L be the . {teration number,

the correction to the last value will be
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£o(y) ((£.(x) - 1

£y 1 y)

Lo D)

CN A-2.4.5

it

The process is continued till the desired built-in
accuracy of 10_6 cm in reflector‘saving is reached;
Qften 44t to 5 iterations have been enough. This process
is repeated till the num%er of given cases is finished.

At the end of this cycle it would expect one card
with one number (Dr) and repeat the ca;culations up to
the calculation of reflector saving etc. by the expression
A-2.3.2 and wili ' T expect a new set of data
(no flux distribution for this change is given); this
corresponds to the set-B defined in the text.

Tﬁe input to the pragramme are the core and the
reflector characteristic counstants namely diffusion
coefficients, diffusion and slowing down areas, number
of cases, number of the fuel elements, corresponding
reflector thickmesses and axial bucklings. The oﬁbeut
consists of, the input exactly written on the output
tape and then already mentioned calculations done'and
are written on the out-put tape.

The time for one set of 06 éases is usually ~1.0

minute on IBM-7090 computer.
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A-2.5 TWO-GROUP THEORY CRITICALITY CALCULATIONS

This programme is also written for the IBM-7090
computer. It consists of ten sub-routines and one
controlling programme. All the computed resulis reported
in Chapter 5 have been calculated with the help of this
programme ., Since the two-group theory reflected corc
system calculations are quite complicated, so the pro-
gramue has been designed to calculate everything so
that it should never fail to give an answer. The
experience with other programmes showed that it is
advisable to have all the practical locations available.
The input dala are the familiar core and reflector
constants, core size, reflector thickness, axial buckling
and so on.

The programme will:

1) Write all the input on the out-put tape.

2) Do calculations to see the form of the function
(discussed in the latter part of the section) and
plot it on the out-put tape.

3) Iterate for the criticality condition equation
(5.2.17) to hold.

I) Calculate the constants and give the two fluxes

and fluxes plotted on the out-put tape.

1
~—’

Then wait for {he next problem or finish up.



The basis of the criticality condition is the
S%lution of the four differential egquations. for the
two fluxes in the core and the reflector regions for
plane slab in one dimension. The conditions of equal
currents and fluxes at the core-reflector interface
gives the criticality conditio; in the form 6f deter-
minant defined by equation 5.2.15. This being a com-
plicated function of various quantitieé, it is solved
by iteration procedure as given in section A-2.%4.
So that the determinant is equal to =zero, (%10-8) and
the corresponding accuracy in U is usually ~ 10~ cm”1
(uz being the radial buckling in x or y direction), the

flux is calculated by the equations

wfc(x) = cos (ux} + C/A cosh (vx) A-2.5.1
(pmc(x) = 8, cos (ux) + C/A S2 cosh (vx) A-2.5.2
[}
¢ o (x) = F/A sinh (n, (3 + T - x) ) A-2.5.3
Y ; a', o o
‘Pmr(k) = G/A sinh (ﬁnr 5 + T - x)) +F/A S,
. at
sinh (n . (5 + T ~ x)) A-2.5.4

The flux plots as well as flux values of the fluxes
at an interval of 5.08 cms are also given.

To detail the function of each sub-routine is a
lengthy process; however the most important ones are:

1) POINTS (DIN, NR) Given number of points and



location of the variables. This routine will plot
the graph.
2)  DETRME (CMEW). If the value of u = % is given,
it will give the corresponding value'of .the determinant.
3) ROTATE (MAX). It does the main function of itera-
tion, and would see that the nuﬁber.of iterations does
not exceed the given number MAX.

) FLUXDPT. It will calculate, plot and writc the two
fluxes corresponding to distances, normalise them to
Maximum as 1000 and find the flux ratios ctc.

Much of the out-put can be avoided if not required
by giving certain numbers as negative.

One set of 5-cases normally takes 1 to 2 minutes
however depending upon the type of problem and constants
involved. During.its use the iteration process has

never failed to converge to the required accuracy.
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As2.6 TABLES OF FLUXES FROM ONE-GROUP,

TWO-GROUP THEORY AND CRAM (FINITE DIFFERENCE

METHODS)

The thermal flux distributions calculated omn the

basis of onec-group and two-group theory have been shown
alongside experimental values.

in graphs in Chapters 4 and 57 Ilere are tabulated the
Tlux distributions at representative points from CRAM
(finite difference methods) as well, and they have been
shown in graphs in Chapter 8 (for 5 representative cases
of PSCF (100, 64, 3G, 16, 4)) for the sake of comparison
ﬁith experimentally measured thermal Tlux distributions.
The calculated fast fluxes from CRAM and two-group
theory are also quoted.

The flux values quoted corres?wmi to values at
points where measurements cannot be done. Since the
mesh points in CRAM are so designed that the flux dis-

tribution is given at these points.



COMPARISON OF ONE~-GROUT,

TWO-GROUY, CRAM FLUXES

3

3

PSCPF
ONE
CASE TWO~GROUP GROUP CRAM
Distance FAST TIIERMAL | THERMAL | TIIERMAL FAST
cms
5.08 79.83 | 997.9% | 997.9% | 1000.00 | 78.90°
25.40 75.92 | '949.0L | 949.04 950.99 | 75.03
hs,72 .67.04 838.04 838.04 839.74 66.25
6G.04 53.78 672.20 672.20 673.54 53. 1%L
86.36 36.99 | 462.38 h62.38 463.26 36.55
106.68 17.78 | 222.31 222,31 202,067 17.57
PSCF 100
5.08 78.78 997.90 997,86 1000.00 78.87
25.710 74.83 947.67 947.41 949.83 74.90
45.72 65.87 | 834.38 | 832.97 836.21 | 65.89
66.04 52.50 | 0665.05 | 662.27 667.97 | 52.37
86.36 35.62 | 451.19 | A4G.85. 560.71 | 34.88
106.68 13.21 253.08 203.25 255.00 12.90
PSCI*F 64
5.08 78.95 997.65 997.63 1000.00 78.86
25.40 7h.52 ghki.72 g941.22 945.53 Th, o
4, 72 64.50 815.30 813.74 . 825.11 6. 18
66.04 49.65 627.86 624.81 662.80 h7.77
86G.36 21.47 528.86 388.74 545,60 21.04
106.68 6.17 | 280.46 | 169.61 289.16 6.25
PSCF 36
5.08 79.37 | 997.00 | 997.0% [1000.00 | 78.30
25.40 73.66 925.86 926.87 940.08 7247
h5.72 60.86 766.53 769.54 827.53 57.71 -
66.04 27.16 | 743.17 | 536.07 792.76 | 26.48
86.36 8.85 542,24 312,72 588.52 E.94
106.68 2.54 257.07 136 4L 283.42 2.65

TABLES A-2.6
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Pscr 16
ONE
CASE TWO-GROUD GROUPD CRAM
Distance FAST THERMAL| THERMAL| THERMAL FAST
cms
5.08 80.01 995.61 995.87 982.2 72.0L9
25.40 71.22 892,39 898.33 943.35 62.43
hs5.72 32.89 921.76 671.80 |[1000.00 29.13
66.04 10.86 745.66 LoB8.67 851.01 “9.77
86.36 3.54 478 .43 250.07 573.61 3.25
106.68 1.02 216.93 109.10 268.91 0.95
P’SCF 4
5.08 72.67 936.94 993.43 884.13 L5,3%h
25.40 37.40 | 1000.00 810.75 |1000.00 20.90
hs.70 21.50 955.20 536.06 925.57 6.45
66,04 .08 603.77 342,06 725.15 2.09
86.36 1.33 368.54 199.54 484 .08 0.69
106.68 0.38 163.67 87.06 228.28 0.20
PSEF
5.08 82.24 | 997.95 | 997.95 |1000.00 | 81.11
25.10 768.22 | 949.27 | 949.27 | 951.20 | 77.15
h5.72 69.12 | 838.74 | 838.74 | 8LO.4L | 68.17
66,04 55.51 673.59 673.59 674.91 54.7h
86.36 38.28 LGh,55 464 .55 h65.4h2 37.75
106.68 18.56 225.26 225.26 225.60 18.30
PSIr-100
5.08 80.86 997.93 997.89 [1000.00 81.04
25.40 76.86 948.56 947.12 950.54 77.02
hs5.72 67.79 836.53 835.18 838.53 67.88
6G.0h 54,23 669.25 666.60 672.45 5h .16
86.36 37.09 hsz.77 458.62 h68.24 | 36.38
106.68 14,17 261.15 210.69 263.24 13.96
PSF-64
5.08 80.98 997.70 997.68 [1000.00 80.93
25.1t0 76.53 92,94 942,60 947.18 76.19
L5.72 66.46 819.07 818.02 830.01 66.21
66.04 51.52 635.19 633.12 67h.22 49.69
86.36 2.91 540.32 399.64 561.1k 22.74
106.68 6.79 289.90 176.38 301.82 7 .04

TABLES A-2.6



PSr-36
ONE -~
CASE TWO-GROUP GROUP CRAM
Distance FAST THERMAL | THERMAL | TIIERMAL FAST
cms
5.08 81.27 977 .09 977.15 | 1000.00 79.99
25.40 75.59 928.02 929 .18 oht, 13 7h,23
h5.72 2.83 773.13 777.5h 841.97 59.58
66 .0k 28.84 756.16.:| 549.08 816.97 28.43
86.36 9.72 557.18 322.93 616.27 {10.05
106..68 2.88 | 267.73 140.53 302.08 | 3.10
PSFr-16 |
5.08 81.63 995.79 966.08 955.67 70.91
25.540 72.96 896.53 903.42 927.53 61.40
h5.72 3L .64 933.66 68%.50 1000.00 29,80
66.04 11.84 763.07 440.62 868.66 10.50
86.36 3.99 Lol , 84 259.14 596.10 3.66
106.68 1.18 227.35 114.37 284 .36 1.12
PSF-4
5.08 73.30 933.40 933.89 867.07 L1.h2
25.40 38.71 | 1000.00 819.28 897.21 19,84
hs.72 13.25 862.70 546 .94 947,71 6.45
66.0n .53 617.32 352.07 758.94 2.20
86.36 1.53 380.68 207.06 515.49 0.76
106.68 O.Lks5 171.44 91.39 247,02 0.1309
PSr-121
5.08 81.37 997.95 997.93 1000. 00 81.52
25.40 77.39 949,14 948.77 951.01 77.53
hs5.72 68.135 838.34 837.21 839.83 68.46
66.04 54 .86 672.79 670.57 673.84 5/ .90
86.36 37.77 4163.30 459,83 4oh. 4o 37.70
106.68 18.23 223.56 218.85 227.50 17.83
PSr-81
5.08 81.43 997.83 997.81 1000.00 81.53
25,40 77.22 96,27 945.67 948.63 77.2
Lhs,72 67.68 829,43 827.55 833,11 67.62
66.04 53.47 | 655.37 | 651.69 666.06 | 52.85
86.36 35.57 436.10 430.37 480.80 32.41
106.68 10.02 281.84 191.88 284.57 10.0%

TABLES A-2.6
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PSr-49
r B
CASE TWO-GROUP GgggP CRAM
Dlj;gnce FAST THERMAL | THERMAL | TIIERMAL  FAST
5.08 82.04h | 997.44 | 997.23 |1000.00 | 81.7h
25,10 77.02 936.58 | 936.48° 943.33 | 76,647
Ls,72 65.69 799. %« 799.10 823.82 6h.51
66.01 £8.99 597.15 | 596.49 695.12 3.06
86.36 15.14 564.34 356.72 587.24 15.23
106.68 .49 283.06 | 157.46 296.83 .70
PSF-25 i
5.08 82.11 996.52 996 .65 1000.00 79.09
25.4h0 75.15 91%.20 927.35 946.99 71.68
hs.72 59.68 731.19 740,50 886.56 50.72
66.0L - 18.54 780.18 488.69 867.94 18.16
86.36 6.25 531.0%4 287.48 612.98 6.38
106.68 1.85 248.43 127.90 294.31 3.21
PSF-9
5.08 80,83 983.54 995.09 890.24 59.19
25.40 68.98 860.38 879.64 ' 911.82 L5,025
4;.72 22.05 948.95 610.61 983.56 15.46
6G.0h 7.54 714.20 393.16 802.21 5.34
86.136 2.54 4Lho L7 231.28 52,17 1.85
106.68 0.75 204.10 102.09 258.01 0.57
SF
5.08 100.05 999,97 997.97 1000.00 99,04
25.40 95.20 | 949.59 949.59 951.51 | 9%.24
k5.72 84.19 | 839.74 839.74 841.42 | 83.33
GG .0k 67.73 675.55 "675.55 676.86 | 67.04
86.36 416.88 467.63 467.63 468.48 46,40
106.68 23.00 229 /Lt 229.44 229,77 22.76
SF-400
5.08 98.05 [997.90 " 997.86 1000.00 | 99.20 ‘
25.40 93.15 948.02 546.95 948,88 9li.11
L5.72 82.03 834,87 831.54 833,20 82.56
66,04k 65.43 665.99 659.48 661.75 65.27
86.36 Ly h7 452,67 Lo, 50 Lo b7 £3.19
106.68 17.97 251.96 201.52 232.78 17.54

TABLES A~2.6

6



SF-64

. , ONL-
CASE TWO-GROUI GROUD CRAM
Distance FAST THERMAL | THERMAL | THERMAL FAST
Cclls
5.08 98.36 997.69 997.63 1000.00 99.32
25.%40 92.94 9o, 82 ol 1,3 9h5.73 93.64
hs5.72 80.67 818.73 B81h.,12 806.17 80.55
66 .0oh o.h7 634,54 625.56 663.91 60.03
86.306 30.12 543,11 393.79 527.08 30.60
106.68 10.27 299,04 179.47 287.20 11.46
SIF-306
5.08 98.93 997.18 997.15 1000.00 98.25
25.%0 2.19 930.38 929.63 946.36 90.96
h15.72 77.06 780.43 778.00 847.53 2.91
66 .04 38.62 789.54 555.75 806.67 39.41
86.36 15.46 603. 30 339.33 621.82 17.76
106.68 5.27 | 301.39 154.65 315.55 G.63
SF-16
5.08 98.76 996.18 996.23 963.24 87.25
25.540 88.96 906.15 907.17 941.59 75.52
h5.72 4.2 987.55 701.71 1000.00 1,47
66.0% 18.95 848.32 473.19 885.32 18.92
86.36 7.58 577.045 288.92 626.50 8.38
106.68 2.59 276. 14 131.67 307.76 3.10
ST-4 '
5.08 82,01 903.52 994 .1 902.17 55.83
25.40 47,29 998.32 |1838.63 1000.00 30.16
45,72 19.46 910.24 590.902 940.10 12.79
6G.0n 7.98 690.6G0 398,48 755.07 5.64
86.36 3.19 LhG.7 213.30 ' 515.99 2.7
106 .68 1.09 209.05 110.88 250.30 0.79"
oCPF
5.08 107.20 997.99 997.99 1000.00 {106.25
25.40 102.05 950.006 950.006 952.97 [101.15
h5.72 - 90.36 841.2 8h1.23 842.89 89.56
66 .04k 72.88 678.406 678.46 679.75 2.22
86.36 50.72 72,20 h72.20 473.03 50. 206
106.68 25.31 235.606 235.606 235.96 25.07

TABLES A-2.6




OCrF'-100
ONE

CASE TWO-GROUP GROUP CRAM

Distance| FAST THERMAL | THERMAL | THERMAL FAST

cms .

5.08 104.58 997.88 997.82 1000.00 106.94
25.40 99.2 oh7.37 9hG.07 94 8. 19 101.37
hs.72 87.28 832.85 828.80 830.97 88.7h
66 .0 69.38 662.05 65h.13 657.24 69.88
86.36 h6.78 hh6.s52 L. 16 Il bl L5.89

106.68 19. 14 oLk3 .54 194,91 221.05 18.92
" OCF-Gh

5.08 105.16 997.65 997.57 1000. 00 107.30 |
25,10 99,25 9h1.71 939.72 9415.03 101.00
k5,72 85.87 815.28 809.09 823.92 86.52
66.0h 66.05 627.86 615.81 657.89 6h.06
86.36 2.45 530.33 383.63 507 .48 33.63

106.68 11.81 196.17 179.18 6h8.2 13.52
0Cr-36

5.08 106.01 997.16 997.08 1000.00 105.95
25.10 98.68 929,72 927.73 947 .00 97.86
hs.70 82.24 778.43 772.19 849.68 78.09
66 .0k “hoo17 78G6.48 549,71 793.h1 13.82
86.36 18.16 606.23 341.96 613.27 21.46.

106.68 6.61 310. 26 159.71 317.89 8.59
OCF-16

5.08 105.42 996,26 996. 16 973.69 93.4h
25.040 9. 94 908.00 905.53 955,17 80.68
hs.72 50.60 994 .12 702.01 1000. 00 16.09
66.0 22.43 864.15 183.31 887.05 23.06
86.36 9.66 599.80 300.66 63G.32 11.10

106.68 3.51 194 .56 140, 42 319.91 L. o
COr -4

5.08 85.57 901.0%4 994,139 920.49 60.18
25. 40 50.73 996.86 843.67 1000.00 33.83
h.72 22,62 921.76 608.66 936.72 15.81
66.0L 10.02 714,93 119,08 757 .94 7.63
86.36 k.32 472.55 260.68 522.56 3.62

106.68 1.57 227.16 121,45 258.49 1.43
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APPENDIX III

HETERO~-PROGRAMMME
BASIC TIIEORY O THE PROGRAMME
As3.1

The programme is essentially the same as described
by Ngslund (21) with the exception offgew minor changes
to make it suitable for use on the computer IBM-7090
at the College. The programme had not been used for
the cases involving measurements on the sub-critical
assembly (exponential cases). However it had been
used extensively by Jonsson (16) for quite complicated
calculations involving power-distribution in heavy-water
moderated reactor, burn-up calculations, etc. Therefore
it was thought to use the programme with its sub-routines
involving Matrix calculations as such so that much
trouble involving the testing of Matrices,numerical
method and Iteration process could be avoided.

. The mathematical details have been given in Chapter 6
sccetion 6.} sonly the relevant equations are quoted here.

The diffusion equation solved in the programme both
for two or three dimensions are

1 N

v, (T,2) - %¢1(?,z) - = T (A
n
mf n=1

f 5(F-F, ) = 0

A.3.1.1
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D
2 —_ 1 — mf —
v wz(r,z) - —§w(r,z) S wl(r,z) -
L m ms
N
01 L (A)® 8(xr-T.) =0 A-3.1.2
n n
ms n=1
The boundary conditions are
(91(1212) = (Pz(Raz) = 0 (a)
¢ (r,i) = o (rH) =0 (b)
A-3.1.3
£ n n
(a)) = Y11 %1 " Yip Pon  (€)
S 11 n
(ay) = “Yp1 ¥4 * Yap oy (d)
where
- nyY
Y12 - __R__2_2_ (e)
eff

The general solution of the equations A-3.1.1 - 2

applicable to the present situation can be written (17)

_ ¢y _y B ny 3.1.L
2D pPix = i ;“1 Fag () Lovgy @ tYip o 9,0 A-3-1-4
B : _ ni np
2MDg 2k = i i Fox Y11 ®npYio o ny)
Tz 2 ny ol g
+ f (L%) {Yqi @

nk nu—YZE ni
A-3.1.5

where
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5 \rn-rﬁ o r ry
an(L ) = Ko (_—f—_-) - m Im (L ) Im (L
Km (%) Yo i.6
___-(—B:)— « COS m((pn - (P:K) ‘A"B- 1.
nt L
1 2
; 2 ——{r (L%) - £ _(T)} A-3.1.7
nk 17/ 2 nk - "mK
L
2
M
D G R L (a)
MR 11
A"30118
2,.-1 2,-1 M72 1 .2
(L") = (Lm) - —45 (E—_) (b)
MR 11
P 1K = fast flux at element K
sz = thermal flux at element K.

The solution to the homogeneous equations defined
by equations 6.3.14 and 6.3.15 or their equivalents
A-3.1.4-5 is calculated in the programme for the greatesi

inherent value K, (Eigen-value).

£f
If ¥iq = 0 and Yio = 0 i.e. absorption of fast neu-
trons in the element and the slowing down of neutrons
inside the fuel is zero, which in case of natural uyranium
is practically the case, the fast flux can be eiiminated
from the set of homogeneous equations and that simplifies

the calculations to a large extent. However ,to take

into consideration the fast fission factor the N -value was
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multiplied by the fast fission factor as calculated in
Chapter 3 section 3.2.3 and the theoretically calculated values

of £ are tabulated in section 3.%.1 of the same chapter.

A.3.2 NUMERICAL METHOD FOR K (EIGEN-VALUE) AND EIGEN-

VECTOR (THERMAL FLUX)

The matrix equation A-3.1.5 to b: solved in the pro-
gramme can be written as

(FA - K(fX + 1)) o

H
o
-

1
W
.
ra
L]
-

or

(A - K(B + 1)) ¢ 0 A-3.2.2

n

The method of straightforward%inverting the matrix
(B+1) is not very useful here because the dimension of
B is often very high. Instead the power iteration method

is used by putting

I (A - KB) ¢, A-3.2.3
2 - for thermal flux is omitted to avoid confusion.
Using an approximate value for Kn = K + AKn in equation

A-3.2.3 a term of the form (AKn B @n) is involvedjand’to
compensate tha?’a term awn is added to compensate for
that disturbance where ¢ will be the criterionfor con-

vergence ,and we get

2

® pe1 (A-KB)wn -4 KBe 4+ o4 A=3.2.4

putting
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c e
= I Ay, = B (a)
¥n ;90 i%
A-3.2.5
<] e
.- = I b : A = ¢ Bb . (b)
J iji N j 9 id
where
wje = ELEigen-vector for the matrix (A-KB)
wje = Eigen-vector for the matrix B and
. C . e . .
hj s hj are the corresponding LEigen-values.
From equations (A-3.2.4 and A-3.2.5)
= & ) ¢ < . - € -3.2.¢
(Pn+1 - Bibji ¢, (Kj + o -4 Kn K, ) A=3.2.6
J i
As condition for absolute convergence
c e
- - A
ji Bibji (Kj a - AK K. 7)., A
J
< ] =
A
c DR -t 1
281‘011 (,° + o - 8K K,
7, me
i J1
where jg#£ 1
<i; Bi b11
Lt
Kie is the desired eigen-value. Therefore con-

vergence will be reached if



K.© + a - oK K ©
J n 1
< 1 jg#1
C e
K1 + 0 - AKn K1
This will hold if
o > AK K, ¢ - K.
n 1
AI{II (<] C
- > - -3.2.
ox a > % K.nK1 + K1 A-3 7

n

Now choosing 2 quite large, o.. gets a series of
1 1

0] which should

n+2

approximation for the flux o Phit?

converge to the desired cigen-value.
n
By the use of 62 proce.. .ccording to Naslund (1)
the best approximation is

e 1’n+1
4 g C - ——————— — - -
K . = K 4 - A-3.2.8

In the programme,equation A-3.2.8 is used to calcu-
late the eigen-value; following choices have been made:
(i) Equation A-3.2.5 namely

AR
n

- +1
I\n+1 - Kl YT s

is used to calculate the eigen-value.
(ii) &« = 0.5 K s
n

. . . e -
where s is an approximation for K1 according to

I\111'—1 = I\‘1 * A]\n+1

+

((A-Knn)wn) ® 0

364



365

o . Kn+1 = X o~ (K1 + A Kn)s
if wnwn = 1 is taken.
A K
The factor 7 = 0.5 has been taken which is rela-
n

tively large and is Kkept constant to make ~Sure' that the
largest cigen-value will " always be positive in equation

A—Bo?.a-[‘:-

(i1i) 0.5 < a < 2, where 'a' the relaxation parameter
is defined as below. By choosing 2 large enough}one
gets a sequence of approximations for the eigen-vector
mn, wn+1, wn+2 which converges to the desired eigen-vector.
By using Aithen's 62 process, one defines a Relaxation

parameter "at

(iv) In the computation the vector M, is used, which
1"
according to Naslund leads to gain in computing time;

the eigen-value is the K(effective) of the system.

A-3.3 DESCRIPTION OFF THE I'ROGRAMME

The total number of sub-routines and the links in-
cluding the parent programme is 85. There is one parent

link which controls 5 links.
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Parent
Link
1
Link 4 Link Link Link Link
I II I1T v \%
Input Output Matrix 3~dimension 2-dimension
Link Link Linlk Itﬁggﬁlon Link

riG.a-3.3.1
Briefly the description of the various links is:

LINK T. INPUT LINK.

It consists of one sub-routine which controls the
input of the programme with 32 subsidiary routines.
To facilitate the read-in of the input-data they are grouped
and the first "three letters" of the headings (punched
in columns 1-3) of the sub-routines are in the memory
and therefore only the first three letters of the hecading
are important;in the rest of the card columns one could write
anything. Each data group is preceded by a card with
heading.

Each of the data constants takes up 10 peositions and
is punched as adjusted on the right. Blankg are taken
as zeros and each name below makes one card if mnothing

else 1s stated. The names with all the three letters
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- in capitals must be given without fail otherwise the
programme will fault. The names of the input-data sub-
routines are

TIT, PRO, MOD, COO, Res, ELE, Cor, Ope, Pow, Bur, Rar,
Acc, Out, Imc, Axx, Lra, Cra, Fou, STA, END, Sto, Tem,
Dum, Rel.

The following group remains in the computer memory
after the finish of the calculations until they are read-~
in afresh.

PRO, MOD, COO, Res, Cor, Ope, Pow, Bur, Acc, Out, Lra,

Cra and Tem.

LINK TI. OUT-PUT LINK.

It contains ten sub-routines with one sub-routine
controlling the rest. This link gives the out-put as
requested in the sub-routine OUV (sce description) or as
required in various input sub-routines. Details of the
out~-put that can be requested is given in the description
of the dinput for the sub-routine OUT.

Out-put from t .e programme consists of the basic
input data as well as the conditions which the input
data implies. For example it will print out number of
groups, co-ordinates of the fuel and or control rods,
accuracy etc. The word out-put link implies the calcula-

tion of

(i) resonance escape probability defined by thg
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expression

_ n m
NV N RI_ N . Tim
- 1n p = 5 Tﬂ~_7 . I a,
T i=1 & i=1 * &nrjm

(ii) Thermal neutron flux, power distribution, etc.
(iii) Durn out, axial form factors for flux and power.
Radial form factors for flux and power besides a huge

number of variations of other requisites.
LINK III. MATRIX LINK consists of 15 sub-routines.

LINK IV. 3-DIMENSION ITERATION LINK consists of

12 sub-~routines.

LINK V. 2~-DIMENSION ITERATION LINK comnsists of

12 sub-routines.

These three links are the main body of the programme and,
as their name imblies)Linls carxry out the formation
of the clements as required, whether the case is two,sgv
three, dimensional and or an exponential casc. An

exponential case cannot be 3-dimensional for obvious

reasons. In addition there are two more sub-routinecs
with the parent link. No link can intcrcommunicate
directly ewmcept through the parent link. The parent

link along .ith its two sub-routines is accessible to

all the links and the coumon numbers arc also available
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through the common statement ,otherwise the links are
independent from one another.
The following input sub-routines have been used all

along and brief description of each is given here.

i) TITle is used for identification of the input data
group and the card after TIT can have any alpha-numerical
text which is copied direct on to the out-put tapec.
ii) PROblem is used to specify which type of problem is
to be treated.
l-card.

N u C] fas exp d dim

1-10 11-20 21-30 31-40 41-50 51-60 G1-70

N = number of fuel groups

4 = maximum number of Fourier components.

s = axial symmetry or not.

fas= fast absorption and slowing down in the fuel clements
or not.

exp= case exponential or otherwise.

d = no significance at present.

dim= case 2~dimensional or 3-dimensional.

Letter One ~ implies yes and O means no and the

data #0 need to be given only. Liimits on i1the problem

are

(a) N < 150

(b) o< 6t (1+s) - s.
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(c) N(u+s) < 1500 (s+1)
(d) dim >  exp.

(iii) DMODerator.

D, T 1,2 h R
ms mf m m

1-10 11-20 21-30 31-40 L41-50 51~-60

The symbols are self-explanatory, except that

(Ileight of reactor if exp = O

o

M
z

.

No negative sign is to be attached with the axial buckling

2]

5 Y4

(
(
(
(
(

it exp =1

since in the programme it is assumed that it is megative,
otherwise the programme will just make a mess of the
whole situation. The first four constants correspond

to the radial direction.

(iv) COOrdinates.

This sub-vroutine gives information about the lattice
geometry and composition of the fuel, control rods, etc.

1-Card ey bx by
2-Card (gl). (ga). (gt)‘ x/ Y/S

1-10 11-20 21-30 31-40 41-50
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where
i =1, N therefore N cards.
The significance of the symbols is

X,Y

= lattice Lype

= type of the element in the group
= number of the group

= number of elements in the group
= pitch in the x~direction

= pitch in the y-direction

H

co-ordinates of one element in the group.

The following combinations of g and g, are possible.

Type Axes of Type Permitted number
Symmetry of
e 0 gazl
(
— —

2 1 1 ga~l or g =2

N o - ro= ) =1

2 2 rect. 8, 1, g == ox gd !
( 3 3 hex. g =1, g,=3 or ga=6
(

[ L * C t = :l» ~ =
( 1 t rect. 8, 1, S, t ox g, 8
( ‘
; = y o= =12
i 6 6 hex. g =1 g, 6 or g, 1

A typical lattice arrangement for g={ and hois

shown in FIG. A-3.3.1.

(v)

RESonanace Escape Probability.

This sub-routine was not used to help calculate p

which could be donejbut was only used to feed the values of p.
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1 Card g, nk
2a Card (g ) D i=1, N N cards
nj i
2b Card -1
The cards 2(a,b) are given if pt = ! and nK = 0

as explained.

( 0 p is given as a function of burn out
pt = E only if dim = O

E 1 p is calculuted or read-in

( 0 p is read-in. or element groups not read-
nkK = E in p is set = 1

En>0 p i1s calculated with n cores.

The card 2b 1s only required if the resonance escape
probability is not to be given for one or more number
of element groups. 'or example in the case of control
rods p is one. In this case when p for ihe number of
fuel elements is finished, a card with negative sign wiil

tell that p for the rest is equal to 1.

(vi) LLEment Group.

This sub-routine gives input data for each type of
element which haS been given in coordinates. Only the
relevant cards will be explained.

In the present study it was assumed that there is
no absorption of fast neutrons in the fuel and there is
no slowing down inside the fuelgwhich simplifies the input

considerably.
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1-Card
gt el
2a a v n ao A
2b Y14 Va1
only if fas = 1 and dim = 1
2c R1 N Vcell
only if pt = 1 and nK > 0. (Res).
24 n Yh % r
only if dim = 1 if eK = 3 X and F are
di-cretionary
2e Ni i i i Fi 12 Ylli Yot

i =1, K, K< 50; K> 3

This concerns burn-up calculations
2f -1
(2e-f) only if dim = O
if pt = 1 p 1is discretionary
if fas= O Y11 and Y, o are not neceded.

2a to 2f are given if eK #£ 1

3a a Y

3b Y11 Yoi
only if fas = 1

3a and 3b only if eK = 1.

g = type of element (COO)
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O Fuel element
1 Control rod
ek = 2 Fuel element with given n(Keff)
3 Dummy fuel element.
1-3 cards are repeated for each fuel element. The last

is given

4 -1

Maximum of 10 fuel types (including control rods and so on)
can be read in.

On closer examination of these cards we will find
that if we do not calculate p with the programme we need
to give only
a = radius of the fuel rod in card (2a)
or radius of the control rod in card 3a.

Y = thermal constant
n = multiplication constant for the fuel under study.
The other numbers in the cards could be left blank

is
implying zeros but ig/safe to put 1 in each columm.

(vii) CORrection.

This shows if the correction has to be applied for
the finite size of the fuel rod or the correction is to

be omitted.

} only if 1c = 2



0 Linear sources

1c = 1 Cylindrical sources with radius as in ELE

2 Cylindrical sources with radius which is read in.
gt = type of element
ac = radius

(viii) ACCuracy

1 E‘:fou E‘:flux 1max lc
1-10 11-20 21-30 31-40
%fou = I\'eff(u) - Keff('Ll+ )
£ if the mean value of the absolute deviation
flux

between the LEigen-vector in two successive

interations is less than € the iterations

fiux’
are terrupted. This happens only when con-
vergence has reached
imax the maximum number of iterations to the eigen-
value.
ic = 0 1£—imax has been reached. Then the calculations

are interrupted and the calculations continue
with the last K-value as if convergence had been
reached.

The built-in accuracies are

E‘:fou = 0
€flux ° 0.01
i = 200
max

i = O

C
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1f data is omitted these values hold.

(ix) QUT-put.

This is used to indicate what additional output
is required other than the K-effective value and the
flux distributions. Since the intcrest was in these two

parameters this was not used at all.

(x) STArt.

To initiate the final calculations the sub-routine
STA is read-in. When this is read-in a ‘calculation is
made as to whether this has not happened before .
in the calculations
1) p
2) The T MATRIX-
3) The A MATRIX provided FOU (increase of Fourier
component) has been read before and dim = O.
k) The Eigen-value and flux distribution.

5) If anything more has been requested in OUT.

(xi) END
The reading of END means that calculations of the
previous set has been finished and the control sets every-

thing at zero, after which a new TITle card is looked for.
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PIG. A-3.3.1 LATTICE TYPES

LATTICE SYMMETRY

g = l}_‘

LATTICE SYMMETRY

Centre of
Assembly

A TYPICAL CASEkh OF
PSCIr 27 STLREEL 9

Centre of Assembly

NILY TIIE OCTAT IS SIHOWN

® [s] [ o P (=}
\\ //

o ’ [ o & I

N /
™~
o] o] o
[ 4 [ ] // ’ -
>
[ ] L4 [ ® L4 -
/ \

» o// ¢ . ©
e \

* / [ ] » . 2 -

AN

Control Rod

Fuecl
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A-3.4 OPERATIONAL INSTRUCTIONS

Tape units 1-10 are used; and individual tapes’
carry out the following operations.

1 Used as working area for different results. »

]

Store Matrix F.

3 Store Burn-up Data.

Ly Store Matrix Lambda.

5 FFor Input (DEC).

5  For Out-put (DEC)

7 - Store DUW (REL) DATA. In the programme this tape is
called 8.

11 Store Eigen-vector (FLUX).

If the programme is already loaded on tape then the
tape is loaded on B6. Loading time by ZIEDIT has been
found to be of the order of 1.4 to 1.6 minutes and
ordinarily simple 5 sets of data, wherein the number of
fuel elements involved is 100, 64, 36, 16 and 4 takes
3.6 to 3.8 minutes. There is no simple correlation of
time since it is very strongly a function of N the
nunmber of element groups and the conditiomning of the

matrices involved.
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