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ABSTRACT  

The up to date research in prestressed concrete has 

been briefly reviewed and conflicting opinions in respect of 

ultimate flexural strength and flexural stress-resultant 

deformation characteristic of a prestressed concrete section 

have been examined in the light of author's test results of 

two-span beams and fixed portal frames. 

Based on the usual strain-compatibility approach but on 

the assumption that the maximum moment of resistance of a section 

need not occur at any fixed value of concrete strain, a method has 

been presented to calculate the complete moment-curvature relationship, 

including the falling branch, for a prestressed concrete section. 

This requires that the stress-strain curve of concrete in flexural 

compression is completely defined. The effect of various parameters 

studied suggest that the divergence in the experimental moment- 

curvature characteristics for similar sections could result from 

the variation in the concrete strain corresponding to the peak 

stress of the stress-strain curve of concrete. 

Results of some previous tests on different types of 

statically indeterminate prestressed concrete skeletal structures 

have been reviewed and examined in the light of a theory presented 

which shows that full-redistribution, in general, would not take 

place in such structures. 

A design method has been proposed which creates conditions 

so that a statically indeterminate prestressed concrete structure 

carries the ultimate load by simultaneously developing the maximum 

moment of resistance at each of the critical sections which form 

the collapse mechanism, and at the same time maximum output from 

each such critical section is ensured. It is also shown how other 

criteria can be used. 
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The effect of linear transformation hqs been studied 

by considering both the 'equilibrium' and the 'compatibility' 

criteria. 

To substantiate the proposed design method and to study 

its merits and demerits with respect to the existing methods of 

design, four tests on two-span beams and five tests on fixed 

portal frames were carried out, which are described in some 

detail. The force-moment transducer devised to measure vertical 

and horizontal forces and moment simultaneously in frames is also 

described in some detail. 



ACKNOWLEDGEMENTS 

The work reported herein was carried out in the Concrete 

Structures and Technology Section of the Civil Engineering Department 

under the supervision of Professor A.L.L. Baker whose benevolent 

interest is acknowledged. Thanks are due to Dr. A.D. Edwards for 

his day to day guidance and interest. 

The author wishes to thank Dr. C.W. Yu and Mr. R. Loveday 

for their interest in all the experimental work and providing 

facilities in the laboratory. Thanks are due to Dr. J.C. Chapman 

and Mr. J. Neal for allowing the use of many of the equipment 

belonging to the Engineering Structures Section. The author is 

specially thankful to the Engineering Structures Section and 

Mr. J.S. Teraszkiewicz for sparing their rig for the author's 

tests on beams. 

The author wishes to acknowledge the valuable suggestions 

and assistance of Messrs. R. Loveday and N.D. Scott in developing 

the Force-Moment transducer reported in Chapter 8. 

A large number of laboratory and workshop staff were 

associated in the experimental work. The author is indebted to 

Messrs. C. Mortlock, H.G. Wilson, J.R. Turner, P. Jelus, F. Turner, 

S. Finch, J. Mepham, J. Jeffers, J. Baulch, R. Glen and J. Audsley 

of the Concrete Structures and Technology Section; Messrs. L. Tidey 

and G. Jaskulski of the Workshop section; and B. Philpot and G. Scopes 

of the Engineering Structures Section. The author is especially 

grateful to Mr. G. Jaskulski, who produced two units of the finally 

developed Force-Moment transducer,and Messrs. J.R. Turner and 

J. Audsley who were very generous with their time. 

A large number of colleagues helped the author by way 

of recording data during testing and discussions and he wishes to 

thank Messrs. D.D.O. Paranagama, R. Matheson, T. Tankut, E.A.W. Maunder, 



5 

A.K. Chatterji, K.M. Price, K.C. Michael. Messrs. Michael and 

Price were particularly generous with their time and the author 

especially acknowledges their assistance. Thanks are due to 

Mr. A.Q. Samartin Quiroga for his assistance in developing the 

equation of stress-strain curve given in Chapter 4. 

All computations were carried out on the Atlas computer 

at the University of London, Institute of Computer Science. The 

co-(peration of the staff at the Institute is gratefully acknowledged. 

The author wishes to thank the Punching Section of the 

Centre for Computing and Automation of the College for punching 

all his test data, Miss Joyce Gurr for preparing the photoplates, 

Miss Pat Kerridge for typing the thesis,and Miss Sandra Rumble 

for preparing some of the drawings. 

The author also wishes to thank his wife Usha for her 

untiring assistance in fixing gauges on many of the concrete 

specimens and arranging experimental data for punching. 

Last, but not least, the author is thankful to the 

Association of Commonwealth Universities, London, and Ministry 

of Education, Government of India for awarding a Commonwealth 

Scholarship, and State Government of Rajasthan for granting the 

leave of absence. The interest shown by Mr. B.D. Mathur, 

Chief Engineer and Mr. H.D. Gupta,Additional Chief Engineer 

is gratefully acknowledged. 



CONTENTS 

6. 

ABSTRACT 

ACKNOWLEDGEMENTS 

Page  

2 

4 

SIGN CONVENTION ;:ND NOT:ETON  	9 

CHAPTER 1 INTRODUCTION 

1.1 Introduction  	17 
1.2 Object and Scope  	22 

CHAPTER 2 EFFECT OF PRESTRESS IN A STATICALLY 
INDETERMINATE CONCRETE STRUCTURE . . • . • . 

2.1 Introduction  	25 
2.2 Apparent and absolute moment  	26 
2.3 Measure of redistribution  	29 
2.4 Moment-curvature relationship  	31 
2.5 Structures with concordant and linearly 

transformed cable profiles  	32 
2.6 Russian code recommendations  	39 

CHAPTER 3  ULTIMATE LOAD ANALYSIS OF STATICALLY 
INDETERMINATE CONCRETE STRUCTURES 	 

3.1 Principles and assumption of 
standard analysis  	43 

3.2 Basic equations  	44 
3.3 Ultimate flexural strength  	46 
3.4 Discussions in the light of 

author's test results  	52 
3.5 Moment-curvature relationship  	57 
3.6 Analysis based on moment-rotation 

relationship  	59 
3.7 Conclusions  	61 

CHAPTER 4  PROPOSED METHOD FOR THE ANALYSIS OF FLEXURAL 
STIL]f:8-RESUBINE-DEYORMATION CHARACTERISTIC OF 
PRESTRESSED CONCRETE . . . 	 

4.1 Introduction  	70 
4.2 The concrete stress-strain curve 

in compression  	71 



7r 

Page  

CHAPTER 4 

4.3 Assumptions of analysis  	75 
4.4 Derivation of moment-curvature 

relationship 	 76 
4.5 Variables affecting the moment- 

curvature relationship  	84  
4.6 Author's test results and 

tentative suggestions  	87 
4.7 Conclusions  	91 

CHAPTER 5 REDISTRIBUTION IN STATICALLY INDETERMINATE 
PRESTRESSED CONCRETE STRUCTURES 	 

5.1 Object and scope  	104 
5.2 Tests on two-span beams  	105 
5,3 Tests on three-span beams  	109 
5.4 Full redistribution, over-redistribution 

and under-redistribution  	110 
5.5 Assumptions in the proposed analysis . 	 • 	113 
5.6 Proposed theory for the analysis of 

statically indeterminate structures 
with drooping moment-curvature 
characteristic 	 114 

5.7 Analysis for two and three-span beams • 	117 
5.8 Tests on Portal frames 	. . • 	0 0 • • 	123 
5.9 Conclusions  	126 

CHAPTER 6 PROPOSED METHOD OF ULTIMATE LOAD DESIGN OF 
STATICALLY INDETERMINATE PRESTRESSED 
CONCRETE STRUCTURES 

6.1 Introduction  	130 
6.2 Analysis of a statically indeterminate 

prestressed concrete structure 	. . . . 	130 
6.3 Design approach  	134 
6.4 Inelastic deformations in the 

proposed design  	137 
6.5 Effect of a linear transformation 	.  	140 
6.6 Test results and discussions 	145 
6.7 Effect of time on redundant reactions 

due to prestress in frame F-5 . . . .  	154 
6.8 Conclusions  	155 

CHAPThit 7 AUTHOR'S TESTS ON PRESTRESSED CONCRETE TWO-
SPAN BEAMS AND FIXED PORTAL FRAMES UNDER 
MONOTONICALLY INCREASING LOAD 	 

7.1 Object and scope 	 
7.2 General description of beams 
7.3 General description of portal frames • 

157 
159 
161 



8 

Page 

CHAPTER 7  

7.4 Materials and their properties . 	. 	164 
7.5 Manufacture and curing  	166 
7.6 Prestressing  	170 
7.7 Grouting  	173 
7,8 Erection of frames  	173 
7.9 Rig and loading device for 

beam tests  	176 
7.10 Placing of beam in test rig  	177 
7.11 Rig and loading device for 

frame tests 	 177 
7.12 Instrumentation .  	180 
7.13 Description of tests  	182 
7.14 Test results  	186 

CHAPTER 8  DEVELOPMENT OF A FORCE-MOMENT TRANSDUCER 

8.1 Introduction  	245 
8.2 Measure of accuracy of a 

load transducer .  	246 
8.3 Development of an accurate 

force transducer  	246 
8.4 Development of a force-moment 

transducer ..  	248 
8.5 Calibration of force-moment 

transducer  	249 
8.6 Some aspects of design of tripods . .  	252 
8.7 Conclusions  	253 

CHAPTER 9  SUMMARY OF CONCLUSIONS 	 

REFERENCES 	  

APPENDIX 1 METHODS FOR CORRECTING OBSERVED STRESS 
RESULTANT DATA 	 

258 

261 

269 



9 

SIGN CONVENTION AND NOTATION 

All symbols have been defined where they first appear 

in the text. However, the following is the list of symbols more 

frequently used. When a symbol is used to denote the corresponding 

functional matrix in positional co-ordinates s ,bar is placed at 

the bottom of the symbol. 

SIGN CONVENTION 

Only stresses, stress-sesultants and corresponding 

deformations and applied actions, cable eccentricity (es) and 

depths measured from the extreme compressive fibres, i.e. d, 

e1, e2, and h have algebraic values. All other quantities have 

numerical values only unless otherwise stated. 

Basis:- 

Extreme fibres are denoted arbitrarily 1 and 2. 

Direct stresses: compression +ye 

tension 	-ye 

Stress-Resultants 

(a) Moment: a +ve moment is one which produces +ye stress in 

fibre 2. 

(b) Shear: as in structural analysis 

(c) Thrust: compression +ve 

tension 	-ve 

Cable eccentricity and depths 

e
s
: 	a +ve eccentricity is one which is measured in the 

direction of fibre 2. 

d, e1,  

e2 and h: depth measured from fibre 2 towards fibre 1 is +ve 

and that measured from fibre 1 towards fibre 2 is -ye. 
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NOTATION 

Stress-resultants 

P = 	Concrete prestressing force stress-resultant, or 

prestress conceived as an external force applied to 

concrete section, in general (±ve) 

P
e 
= 	initial effective prestress 

Pcr1' Pcr2 = prestressing forces at cracking in fibres 1 and 2 

respectively 

Pu 	prestress at ultimate load 

total compressive force resisted by the concrete 

compression zone 

• total tensile force resisted by the prestressing steel 

moment (absolute) 

• shear 

• thrust 

Mt  M
a = absolute and apparent moments respectively, in general 

= actual absolute and apparent moments respectively at MA' MaA 
section A 

Mu, M
au  = absolute and apparent ultimate moments respectively, in 

general 

M
u' 

M
u 	positive and negative absolute ultimate moments respectively, 

In general 
M
r 	moment at a section due to inelasticity taking place 

in the structure 

(Mu)A, (Mau).. 

(Mau)1' (Mau)n 

= absolute and apparent ultimate moments respectively of 
Section A 

= apparent ultimate moments of the first and the 

last hinge respectively 

Mcr1  M
acr 	absolute and apparent cracking moments respectively, 

in general 

Mcr1' acr1 	absolute and apparent moments respectively when 

cracking in fibre 1 commences 
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absolute and apparent moments respectively when M
cr2' acr2 

cracking in fibre 2 commences 

moments measured from the state of prestress, i.e. ITcr1' Mcr2 
including the secondary prestress moments when 

cracking takes place in fibres 1 and 2 respectively 

absolute moments due to loads (d+l) and M(d+1)'M v(d+ 1) 
v(d+ 1) respectively, applied to the elastic 

structure 

(m v(d+ 1))1' 1v(d+ 1))n 	
absolute moments at the first and the 

last hinge respectively due to load 

v(d+ 1) applied to the elastic structure 

total absolute moment due to prestress 

mo 
pure prestress moment (= Pe

s
), or moment due to prestress 

applied to the reduced structure 

M
s 	

= 	secondary prestress moment 

(Ms) 

Me  
a 

Mat i th 

 

theoretical apparent moment at the section A 

according to the elastic theory 

(Me (d + 1))n = apparent ultimate moments at the 
me ( 
av(d+ 1))1' 

first and the last hinge respectively 

due to load v(d+ 1), applied to the 

s  elastic prestressed structure (=Mv(d + 1)+ Mp) 
bending moment due to unit bi-action applied at a release 

of the reduced structure, in general 

m1 m2 	a m 	bending moments due to unit bi-action applied at 

1, 2 .. a releases respectively of the reduced 

structure 

0 	tho 
mp  = 

P I Mu 

(Ms
P
)
n 	

secondary prestress moments at the first and 

the last hinge respectively 

apparent moment calculated according to the elastic 

theory, in general 
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mp 	m.p  

No thrust due to prestress applied to the reduced structure 

thrust due to unit bi-action applied at a release of the 

reduced structure, in general 

n
1'
n
2 	

n
a = thrusts due to unit bi-action applied at 1, 2 ..a 

releases respectively of the reduced structure 

functional matrix in positional co-ordinates s and 

corresponds to 3 x a stress-resultant distributions 

due to unit bi-action applied in turn at each release of 

the reduced structure 

xt functional matrix in positional co-ordinates s and 

corresponds to the total solution for the given loading 

configuration and intensity 

xo
T  

functional matrix in positional co-ordinates s and 
- 

corresponds to the particular solution due to prestress 

Applied actions (actions relative to concrete) 

applied point load in general 

ultimate load 

self weight per unit length 

(d+l) = working load 

v(d+ 1) = factored working load to denote design ultimate load 

P, etc. = as defined above. 

Geometrical Properties 

W = 

W
u 

= 

w = 

A
c 

= 

A
s 

= 

. A
A.  

= 

a = 

gross concrete cross sectional area 

total area of prestressing steel 

= 
 of prestressing steel in the ith layer 

distance of the point of actual crushing from the 

theoretical critical section 

breadth of rectangular section 
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D. 	= 	total depth of section 

effective depth, i.e. depth of the centroid of the 

prestressing steel, measured from the extreme 

compression fibre, i.e. either fibre 1 or 2 

d. = 	depth of the centroid of the prestressing steel in the 

ith layer, measured from the extreme compression fibre li.e. either 
fibre 1 or 2 

e1' e2 	distances of the centroid of the section from fibres 1 

and 2 respectively 

e
s 

= 	cable eccentrLcity, i.e. the distance of the centroid 

of the prestressing force 	p from the centroid of 

the section 

depth from extreme compression fibre to fibre of 

zero strain, (extreme comp. fibre can be either fibre 1 or 2) 

second moment of area 

length of span 

1B' 130  etc. = lengths of the members pertaining to the 

critical sections B, D, etc. respectively 

over which inelasticity spreads 

area under the stress-strain curve of concrete 

z 	= 	distance from the theoretical critical section to 

the point of contraflexure 

Z
1 
	I/e1  

Z
2 =  I/e2 

Material Properties 

6 x 12 in. cylinder strength of concrete 

6 in. cube strength of concrete 

modulus of rupture of concrete 

fco = 
	stress corresponding to the peak of the stress-strain 

curve of concrete 

fc 	
stress in the extreme compression fibre of concrete 

c
c 

= 

c
u 

= 

cr = 
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f
s 	

tensile steel stress in general = (s.$)
) 
; also 

used to denote tensile stress in prestressing steel 
assumed concentrated at its centroid 

f si = 	tensile stress in prestressgsteel in the ith layer 

co = 	strain corresponding to the peak of the stress-strain 

curve of concrete 

E
c 	

= 	modulus of elasticity for concrete 

E
s 
	= 	modulus of elasticity for steel 

Stresses 

f 	= 	stress in general 

f
, 2 

= stresses in fibres 1 and 2 respectively due to prestress 1  

cr cr 
f
1 ' 

f
2 = changes in stresses in fibres 1 and 2 respectively, when 

cracking commences in that fibre 

Strains 

E 	= 	strain in general 

maximum strain in concrete in compression at failure cu 

c
c 	concrete compressive strain in the extreme compression 

fibre, in general (-i-ve) 

e
cl distance of the centroid of the area under the stress- 

strain curve of concrete from the zero strain 

	

e
c2 = 	

E 
C 	cl 

cP 
MC compressive strain in concrete due to prestress at the 

centroidal level of the prestressing steel 

eP = 
ci compressive strain in concrete due to prestres:3 at the 

centroidal level of the ith layer of the prestressing steel 

tensile strain in prestressing steel, in general; the 

steel assumed concentrated at its centroid (+ve) 
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E
si = 	tensile strain in prestressing steel at the ith layer; 

the steel assumed concentrated at its centroid 

es 	effective prestrain (tensile) in prestressing steel 

cr1 cr2 
ES  I ES  

= tensile strains in prestressing steel at cracking 

in fibres 1 and 2 respectively 

e
s 	tensile strain in concrete at the centroidal level of 

the prestressing steel 
1 

E = 
Si tensile strain in concrete at the centroidal level of 

the ith layer of the prestressing steel 

Deformations 

absolute and apparent curvatures respectively, in 0' 0a = 
genera1;0 when so specified also used to denote inelastic 

curvature which is the difference between the elastic and 

actual curvatures 

p 	curvature due to prestress, including the effect of 

secondary prestress moment 

0crlicr2 = absolute curvatures when cracking takes place in 

fibres 1 and 2 respectively 

e = (el, e2 	P a ) = functional matrix corresponding to 

idealized plastic rotations at a 

critical sections of the structure 

Stress-resultant-deformation characteristics 

functional matrix in positional co-ordinates s and 

corresponds to stress-resultant-deformation section 

properties pertaining to bending moment, shear and thrust 

elastic flexibility matrix of the members in positional 

co-ordinates s. 

the functional matrix in positional co-ordinates s and 

corresponds to the flexural stress-resultant deformation 

section peoperty i.e. moment-curvature relationship 



16 

k 	= 	elastic bending and thrust flexibility matrices 

respectively 

Coefficients and ratios 

a 	= 	number of indeterminancies in a structure 

total number of critical sections in a structure 

depth of the centroid of the concrete stress block 

from the extreme compression fibre, divided by the 

depth of compression zone 

Somes' coefficient to represent enhanced concrete strength 

at a critical section 

F1 F2  = bond strain compatibility factors for concrete in 

compression and tension respectively 

complementary solution coefficient in general 

complementary solution coefficient corresponding to 

prestress applied to the elastic structure 

Py(d+1) = complementary solution coefficient corresponding 

to load v(d+ 1) applied to the elastic structure 

pr 	complementary solution coefficient corresponding to 

the final inelastic curvatures which represent the difference 

between the elastic solution and final inelastic solution. 

Sc 	= 	factor to denote scope for redistribution 

Suffices and use of 

brackets 	suffices in general after the round brackets 

refer to the sections and those after the 

square brackets to the structures 
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CHAPTER 

INTRODUCTION 

1.1 INTRODUCTION 

The inelastic characteristics of structural concrete 

were recognised by the early authors of the nineteenth century 

such as Thullie, Ritter, etc., who proposed theories that incorporated 

the inelasticity of concrete. However, such studies were discontinued 

towards the end of the nineteenth century, at which time the linear 

elastic theory and the concept of stress factor of safety became 

accepted in design throughout the world. The concept of stress 

factor of safety met with some opposition at first, but the design 

formulae resulting from the linear elastic theory proved too 

attractive. A renewed interest in the ultimate strength of 

structural concrete began about 1930. Since then much research 

has been carried out with respect to the stress distribution in 

the compression zone and the ultimate strength of reinforced or 

prestressed concrete sections subject to flexure with or without 

shear and/or axial load. Excellent reviews(1'2'3) of this 

development have been published in many languages. 

Except for the work of Hognestad et al(2'4), Moenart(5), 
and Riisch(6), who studied the stress distribution in the compression 

zone of concrete through prism tests, most of the other studies
(7
'
89'10) 

were made through the interpretation of results of simply supported 

beams tested to destruction. Although the various investigators have 

made different assumptions with respect to the stress distribution in 

the concrete compression zone, they have produced formulae which 

predict the ultimate strength to a high degree of accuracy. These 

investigations, however, did not study the deformations corresponding 

to the stress-resultants and thus their results cannot be extended to 

the field of statically indeterminate structures. The conclusions 
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reached by Hognestad and Rusch were based on idealized conditions 

and take no account of shear and other restraints present in 

practice, which are discussed in Chapter 3. Cooke01)1  and 

Somes(12)  have recently reported that the gradient of the bending 

moment diagram influences the ultimate strength of a prestressed 

concrete section. Mattock(13) however, has shown that this 

gradient has little influence on the ultimate strength compared 

to its influence on the ultimate deformation. The author, in 

Chapter 3, examines his results in the light of the above work. 

Recently there have been several attempts
04'15'16) 

to 

obtain the complete stress-strain curve of concrete for both 

concentrically and eccentrically loaded prisms. There is feir  

agreement up to the point of maximum stress but beyond this the 

results differ considerably. The divergence of results is probably 

due to the method of testing and the characteristic; of the testing 

machine rather than the characteristic of concrete. 

Before 1949 little work was done on the problem of the 

behaviour of reinforced and prestressed concrete continuous 

structures in inelastic range. The early research mainly consisted 
( of a few tests by Kazinczy17)  , and Glanville and Thomas(18) on 

reinforced concrete continuous beams. These tests demonstrated 

that there was a redistribution of stress-resultants as ultimate 

load was reached and it was necessary to consider the 'inelastic' 

phenomenon for the complete understanding of the behaviour of a 

statically indeterminate concrete structure. Baker(19) suggested, 

in 1949, a method for the design of continuous beams, which 

incorporated the limited ductility of concrete and inelastic 

behaviour of steel and concrete. Since then several ultimate load 

theories(20,21, 22) have been proposed for structural concrete. 

All these theories include a compatibility requirement for 

deformations and are dependent in some form or the other on moment-

curvature or moment-rotation relationship. One of the aspects of 



19 

research in prestressed concrete has been to study such 

deformation characteristics of individual sections, mainly 

through tests on simply supported beams, to arrive at safe 

limiting values so that such information may tentatively be 

used for the ultimate load design of statically indeterminate 

structures. At present, opinions with regard to the moment-

curvature relationship for a prestressed concrete section differ. 

While one school of throught regards it as the basic relationship 

to describe the behaviour of an indeterminate structure, there are 

other investigators(23) whose tests have led them to believe that 

there is no unique moment-curvature relationship for a prestressed 

concrete section. The author's test-results and conclusions are 

set out in Chapter 4. However, it is certain that the moment-

curvature relationship has a rising characteristic with gradually 

decreasing rate of increase of bending moment with increase of 

curvature until the maximum moment is reached, when the rate of 

increase of bending moment reduces to zero. After this the shape 

of the moment-curvature diagram depends upon many factors such as 

rate of loading, reinforcement ratio, transverse binding, etc. 

and there is little experimental evidence about the exact shape 

of this portion. 

The other aspect of research has been to study the 

behaviour of continuous structures as ultimate load is approached 

and to establish ultimate load theories for statically indeterminate 

structures. 

A large number of different types of continuous prestressed 

concrete structures ranging from two-span beams to fixed portal 

frames have been tested in the past under varying degrees of scope 

for redistribution and considerable redistribution in the stress-

resultants has been observed, but the information made available 

through such tests is so varying that it does not lead to conditions 

which justify the application of the 'Simple Plattic Theory' for 
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prestressed concrete continuous structures. Based on the test-

results various investigators(1I'14'24'25'26) have suggested 

empirical methods for design of certain categories of statically 

indeterminate prestressed concrete structures. Extensive series 

of tests have been carried out at University of Leeds by Bennett 

and his co-workers, at Cambridge University by Davies and LaGrange, 

and at Indian Institute of Technology, Kharagpur by Mallick and his 

co-workers. Two different findings have emerged from these tests. 

Tests at Leeds and Kharagpur show that full redistribution in 

prestressed concrete continuous structures does not take place 

due to the limited ductility of concrete and confirm, to some 

extent, the theories put forward by Baker(20), Guyon(21), and 

Macchi(22) and the Report of Institution of Civil Engineers 

Research Committee(27). Tests at Cambridge again show that full 

redistribution does not occur. This is not taken as evidence of 

lack of ductility but emphasis is placed on the negative sloping 

portion of the moment-curvature relationship. Thus, just before 

collapse of the structure some critical sections may be sustaining 

less and less moment even though the total load on the structure 

is increasing. There is little experimental evidence to confirm 

this theory but the phenomenon of falling moment at increasing 

curvatures has been accepted theoretically and computer 

programmes(28) have been written incorporating such behaviour. 

The plastic theory of structural steel is based on the 

fact that the stress-strain curve of mild steel has a long region 

of constant stress,whereas neither the steel nor the concrete used 

in the prestressed concrete work has such a flat plateau of stress. 

But this does not disqualify the theory immediately. The necessary 

and sufficient condition for applying the theory is that if a 

structure is loaded, a stage must be reached when there are certain 

number of sections where deformation can increase without any 

changes in the stresses taking place anywhere in the structure. 
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At this stage a 'mechanism' is formed and the hinges rotate but 

the curvatures in the members between the hinges do not change 

as deflexions increase. From this point of view plastic theory 

can be applied to prestressed concrete if the moment-curvature 

relationship has a long flat region after maximum moment is 

reached, which, as stated above, may or may not be available. 

Thus on the face value it appears that plastic theory, in general, 

cannot be applied to prestressed concrete structures. Now consider 

a structure whose critical sections forming the collapse mechanism 

have maximum moments of resistance in the same ratio as the bending 

moments caused by the maximum applied load. Such a structure would 

resist the maximum load by simultaneously developing the maximum 

moment at each of the critical section and at that instant plastic 

theory would be applicable. Many prestressed concrete structures 

with concordant cable profile, tested in the past, failed in a 

manner very close to this. The behaviour of the structure immediately 

before and after this condition is unimportant, but to design a 

structure for such conditions in usual manner would be uneconomical. 

In Chapter 6 a theory has been proposed which ensures maximum output 

from each of the critical section and creates above conditions. 

In English literature the present practice of design of 

prestressed concrete continuous structures consists in determining 

the cross sectional areas of steel and concrete and cable profile 

on the basis of elastic distribution of stress-resultants at working 

load. The cable profile can either be concordant or linearly 

transformed or arbitrary nonconcordant. To ensure that individual 

section has adequate ultimate strength for certain specified factor 

times the elastic stress-resultants at working load, untensioned 

steel is added. In the past, most of the tests have been carried 

out on structures designed in the above manner. Since the cable 

profile was based on elastic stress-resultant distribution, such 

tests had the disadvantage that they did not create most severe 

conditions for redistribution. 
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The Russian practice for the design of statically 

indeterminate prestressed concrete structures consists in 

choosing an ultimate load stress-resultant distribution in 

equilibrium with the applied load semiempirically and designing 

the sections accordingly for the ultimate strength. To ensure 

a satisfactory performance at cracking load, the requisite stress-

resultant distribution is obtained by creating certain discontinuities 

by partially stressing the structure in the statically determinate 

state with eccentric hinges. The Russian practice along with its 

merits and demerits will be discussed in Chapter 2 but the obvious 

disadvantage in the Russian practice is that it only ensures the 

satisfactory performance at the specified cracking load; whether 

such a structure would always withstand the specified ultimate load 

cannot be said. 

1.2 OBJECT AND SCOPE 

The overall objective of this thesis is to examine and 

establish why, in general, full redistribution does not occur in 

statically indeterminate prestressed concrete structures and to 

present a theory which creates conditions such that the structure 

carries the ultimate load by simultaneously developing the maximum 

moment of resistance at each of the critical sections which form:the 

collapse mechanism and at the same time ensures maximum output 

from each such critical section. As an extension of the above 

theory it has been shown how the criterion o  cracking, 

or the criterion used by the Russians can be adopted for design. 

The effect of linear transformation, which has so far 

been theoretically studied(11'36,37) by considering only the 

'equilibrium' criterion has been investigated by taking into 

account both the lequilibriumlandlcompatibility'criteria.. 
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To substantiate the proposed theory and to study its 

merits and demerits with respect to the existing methods of 

design, four tests on two-span beams and five tests on fixed 

portal frames. have been included in the thesis and are described 

in Chapter 7. In order to measure the reactions of the frame,a 

special force-moment transducer which can measure precisely both 

the vertical and horizontal forces and also the moment simultaneously 

has been developed and is reported in Chapter 8. 

One explanation for full redistribution not occuring in 

statically indeterminate prestressed concrete structure is the 

'limited rotational capacity of concrete hinge'. The author by 

presenting a simple theory to describe the behaviour of a 

statically indeterminate structure with a drooping moment-

curvature characteristic, near collapse examines in Chapter 5 

the previous test results of two and three-span prestressed 

concrete beams and shows that full redistribution, in general, 

would not occur in prestressed concrete structures, which is the 

result of the drooping branch of the moment-curvature diagram for 

a prestressed concrete section. 

The stress-resultant-deformation characteristics of all 

sections must be known or assumed before any prediction of the 

ultimate strength of an indeterminate structure can be made. 

These characteristics must again be based on the material 

characteristics and in Chapter 3 the author has examined his 

test results in.  the light of the C.E.B. recommendations
(29) and 

the recent suggestions made by Somes, and Mattock. In Chapter + 

a method similar to that suggested by Davies(55) and LaGrange
WO 

has been presented for the calculation of the ultimate moment and 

the moment-curvature relationship. The results of this approach 

and of those due to the C.E.B. recommendations are compared with 

each other and with the author's test results. 
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The studies in this thesis have been restricted to 

simple planar skeletal structures, that is continuous beams and 

frames loaded monotonically in their own plane. It has been 

assumed that only flexural deformrtions are significant. The 

work described here, with suitable modifications would also be 

applicable to other loading systems and other complex planar 

and space structures. 

The criterion of ultimate load considered in this 

thesis is that of collapse, that is the ultimate load has been 

defined as the actual maximum load which the structure would 

carry under the given set of internal and external conditions. 
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CHAPTER 2 

EFFECT OF PRESTRESS IN A STATICALLY 

INDETERMINATE CONCRETE STRUCTURE  

2.1 INTRODUCTION 

In prestressed concrete, unlike the other structural 

materials, before the external loads are applied prestress itself 

sets up certain stress-resultants and deformations. The various 

terms of structural mechanics, if used in this context, would 

demand special care. For example, in the commonly used sense, 

probably on the analogy of reinforced concrete, the ultimate 

moment of a prestressed concrete section is defined as the force 

in the reinforcement times the distance between the lines of 

action of this force and the compressive force, at collapse. For 

a reinforced concrete section the ultimate moment so defined is 

the actual moment at the section and is also equal to the moment 

due to the applied ultimate load. But for a prestressed concrete 

section due to the presence of the prestress moment the ultimate 

moment so defined, although equal to the moment due to the applied 

load for a statically determinate structure, is not the actual 

moment at the section. If all we wish to calculate is the ultimate 

load for a statically determinate prestressed concrete structure, 

then the above definition suffices provided the moment due to the 

external loads is measured from the state of pure prestress. 

In a statically indeterminate structure, where the 

prestress, in addition to the pure prestress momenti also sets 

up secondary prestress stress-resultants and where for analysis 

stress-resultant-deformation characteristics are to be 

considered, the situation becomes all the more complex. 

It is obvious that the stress-resultant deformation characteristics 

or load-moment relationship for any section of a statically 

indeterminate prestressed concrete structure must include the 
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moments and curvatures set up before the application of the load. 

In some previous investigations, as discussed in Chapter 3, 

secondary prestress moments have been omitted. To facilitate 

the consideration of the moments and deformations caused by the 

prestress, following definitions are introduced. 

2.2 APPARENT AND ABSOLUTE MOMENT  

A combination of steel and concrete at a section, in 

general, is capable of resisting certain bending moment of 

particular sense, measured from the zero curvature, in one 

direction and some other value of bending moment of opposite 

sense in the other direction. The moment measured from the zero 

curvature is the absolute moment at the section, and in structural 

mechanics terminology is known as moment. To be more specific, the 

moment measured from the zero curvature will be called absolute  

moment and denoted by M. In the elastic range of a reinforced 

concrete structure the moment due to the applied load M(d+l)  is 

the absolute moment at the section, and the common practice of 

describingM(
d+1)  as the moment at the section is justified. But 

in prestressed concrete, even for a section of a simply supported 

beam, because of the pure prestress moment Mo , the moment due 

to the applied load M(d+i)  is not the absolute moment at the 

section, and to describe M(d4.1)  as the moment on the section, which 

is loosely done at present, is little justified. The absolute moment 

on the section in this case is equal to M(dia) o . However, if 

instead of measuring the moment from the zero curvature we measure 

it from the state of pure prestress, then M(d+l)  can be described 

as the moment at the section. But in the true sense of structural 

mechanics it cannot be called moment. To distinguish it from the 

absolute moment M, it will be called apparent moment and denoted 

by Ma 
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Thus, for a section of a statically determinate 

prestressed concrete structure in elastic state 

M = Mp 
+ M(d+1) 

or 

M 	M°  = Ma 
= M

(d + 1) 
	.... (2.1) 

or considering the structure as a whole, we have in matrix 

notation 

M-Mo = M = M 
—p 	—(d+1) 

(2.2) 

where bar at the bottom denotes the corresponding functional 

matrix in positional co-ordinates s. 

In a statically indeterminate structure, in addition 

to the pure prestress moment, prestress also sets up secondary 

prestress stress-resultants if the cable profile is nonconcordant. 

If Ms denotes the secondary prestress moment (also known as 

parasitic moment) at a section, then Ms  can have the same sense 

as that of M° or otherwise. 

Thus, for a section of a statically indeterminate 

structure in elastic state 

m  = mo ms m  
p 	p 	(d+1) 

or 

M - Mo = Ma 
= Mp M

(d + 1) 
	.... (2.3) 

or considering the structure as a whole, we have in matrix notation 

, 	o M-M = M = Ms +M 
— .100 —a —p —(d+1) 

.... (2.4) 

From equation 2.3 it is clear that if the moment at a 

section is measured from the state of pure prestress, that is 
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apparent moment is measured, then the moment corresponding to no 

external load is not zero but equal to M
s 	which can only be 

zero for a statically determinate structure or for a statically 

indeterminate structure with concordant cable profile. 

Introduction of above definitions requires the 

definition of ultimate moment to be re-examined.With reference 

to Figure 2.1 the absolute positive ultimate moment M:11-1  is 

defined as the maximum positive absolute moment which the section 

can resist and similarly the absolute negative ultimate moment M 

is defined as the maximum negative absolute moment which the 

section can resist. 

Here it will be necessary to define what is positive 

absolute moment. The moment measured from the zero curvature and 

producing positive stress in fibre 2 is defined as positive absolute 

moment and that producing negative stress in fibre 2 as negative. 

Thus, for a section of a statically determinate structure 

a ultimate load 

M
u 

= Mo + M 
p v (d+1) 

or 

lip 
M 	= 14 
Mu p v(d+1) 

or considering the structure as a whole, we have 

M 	 = M 

p(C1 +1) 

.... (2.5) 

.... (2.6) 

M -M°  is the ultimate moment defined in the commonly 
u p 

used sense and is what the various theoretical formulae calculate 

for the ultimate moment. According to the definitions introduced 

this is the apparent ultimate moment denoted by Mau 

Mau = M - Mo 
u p 

i.e. 

04,00 (2.7) 
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M
u 
 -Mo = Mau = M

s + M p 	p v(d+1) Mr .... (2.8) 
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In a statically indeterminate structure at ultimate 

load, consideration is also to be made of the inelasticity 

occuring at the various sections. If Mr  denotes the moment 

at a section due to inelasticity taking place in the structure, 

then for a section of a statically indeterminate structure at 

ultimate load 

Mu  = mo ms 
u 	p 	+ My (d + 1) -4- Mr 

or considering the structure as a whole, we have 

-N-au 	1"-Lips 	14-v  ( d + 	+ Mr 	.... (2.9) 

2.3 MEASURE OF REDISTRIBUTION 

In studying the results of tests on statically 

indeterminate structures, one is faced with the problem of 

devising a suitable parameter to define the degree of redistribution 

at the ultimate load. Various parameters have been proposed; 

Macchi(22), at the second F.I.P. Congress, defined the degree of 

redistribution as the ratio of the actual ultimate load to the 

fully plastic load; Bennett(23) defined it as the increase of 

the actual ultimate load above that for elastic distribution, 

expressed as the ratio of the difference of the loads between 

the elastic distribution and full redistribution. Consider two 

structures designed to have the same plastic load and also the 

same elastic load. If the two structures carry the same ultimate 

load, then according to the above definitions they would have the 

same redistribution irrespective of their deformations. In 

prestressed concrete, as will be seen in Chapter 6, it is often 
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possible to have structures carrying the same ultimate load but 

with different deformations. Obviously, a deformation criterion 

would be more suitable to measure redistribution. Such a criterion, 

although cumbersome for theoretical work, would be quite convenient 

for studying the results of tests. For tests on structures designed 

for the same plastic load, one such criterion may be to compare their 

load-deflection curves (Wwu  versus 6 ). Redistribution in the 

author's tests will be studied in this manner. 

For theoretical work, a criterion based on 'equilibrium' 

alone would be more convenient. By rearranging terms and dividing 

both sides byMau' we have from equation 2.8 

N.  +1)
+ Ms 

p 
1M 	 11 M 	 000 (2010) 

au 	au 

Equation 2.10 suggests that the ratio (M
v(d+1)

+M
p
)

/
/11
au 

would be some measure of redistribution at a section. 

This ratio at the first hinge divided by the same ratio at the last 

hinge would then give an idea of redistribution for the whole 

structure and can be taken as the measure of redistribution for 

the whole structure. Thus, if Sc denotes the measure of 

redistribution for the whole structure, then 

M
r 

Sc BMv(d+ 1 1))) 	
• 	t(ms ) 

P 1 
(Mau)1 

f(Mv(d+1))n 	au 
(111' ) • -p n 	(M )n 

My ( d + 1) )1 
• 	( NS ) 

 1 	(Mau)n  .... (2.11) 

 

[(Mv (d +1))n 	(Ms  ) 
P n 	(Mau)1 

where the subscripts 1 and n after the round brackets refer to 

the first and the last hinge respectively. 



Sc (me 
a v (d+1))1,1 Cmau)1 

(Ma v  
e- 
 (d÷1)

)
1 
(M

au
)
n .... (2.13) 
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If we measure all our moments from the state of pure 

prestress, then 

e  
m
v(d+1) 	Ma v (d+l) 

.... (2.12) 

where Me v (d+1) is the apparent moment at a section if the a  

ultimate load is applied to the elastic structure. 

Hence 

Equation 2.13 is the same as defined by LaGrange
(14)

2 

but obtained in a slightly different manner. Sc was called by LaGrange 

as 'scope for redistribution' and will be referred by the same term in 

this thesis. It will be noted that it is the same as Macchi's 

'disproportion factor', see reference 22. 

It will be seen from equation 2.11 that scope for redistribution 

in a structure can be varied by varying the secondary prestress stress-

resultant distribution. 

2.4 MOMENT-CURVATURE RELATIONSHIP 

The common practice to plot the moment-curvature 

relationship for a prestressed concrete section is to plot the 

apparent moment, expressed as the ratio of the apparent ultimate 

moment, versus apparent curvature. When a dimensionless 

relationship is preferred, the curvature is also expressed as the 

ratio of the ultimate apparent curvature. In structural steel or 

reinforced concrete, because of the absence of the initial moment 

like the prestress moment, there is nothing like apparent moment 

and apparent curvature and the usual moment-curvature curve relates 
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to the absolute moment and absolute curvature. Ideally, for 

prestressed concrete also the moment-curvature relationship 

should pertain to the absolute moment and absolute curvature, 

that is the moment and curvature should be measured from the 

state of zero curvature and for this reason the moment-curvature 

curves in this thesis will be plotted between the absolute moment 

and absolute curvature. However, to study as how the two plots 

would differ, for some test results they have been plotted in 

both ways, see Figures 7.25 and 7.26. The basic shapes of the 

two plots are similar and one is obtainable from the other by 

transfer of origin and modifying the constants. 

In the present investigation the ultimate curvature 

corresponding to the same ultimate moment has been found to vary 

widely from section to section. To give an idea of this variation, 

the moment-curvature relationships have been plotted between 

M/Mu  and 0. 

2.5 STRUCTURES WITH CONCORDANT AND LINEARLY TRANSFORMED 

CABLE PROFILES 

The design of a prestressed concrete element for working 

loads is essentially based on satisfying the basic inequalities, 

which represent the design conditions. The solution of these 

inequalities and the evaluation of the prestressing force and its 

eccentricity (design procedure) has, in general, been set out by 

many authors (31,32,33,34). Having fixed the sectional properties 

and prestress, it is possible to establish the cable domain. To 

obtain a concordant cable profile for an indeterminate structure, 

the problem then reduces to finding a cable profile lying within 

this domain such that 

= 0 	.... (2.14) 
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where H is a functional matrix in positional co-ordinates s and 

for a planar structure corresponds to 3rct stress-resultant 

distributions (m s n) due to unit bi-action applied in turn at 

each release of the reduced structure; 

F is the elastic flexibility matrix of the members in 

positional co-ordinates 3; and 

xo is the particular solution due to prestress. 

It is usual to neglect shear deformations and equation 

2.14 reduces to 

f 

mT  kM°ds -10 	+ 	nT L  N° ds = 0 
-p 	

,... (2.15) 

where m(= m m 	and n(= n1  n2  ...na  ) are the functional 
matrices in positional co-ordinates s and correspond to bending 

moment and thrust distributions respectively due to unit bi-action 

applied in turn at each release of the reduced structure; 

k and .0.  are the elastic bending and thrust flexibility matrices 
respectively of the members in positional co-ordinates s; and 

Mo and No are the functional matrices in positional co-ordinates -13 	-p 
s 	corresponding to bending moment and thrust distributions respectively 

due to prestress applied to the reduced structure. 

Equation 2.15 represents a (where a is the 

indeterminancy number) linearly independent equations and, except 

for very simple indeterminate structures, a concordant cable 

profile can only be established through a trial and error procedure. 

A method dealing with this procedure has been outlined by Morice(35)  

The author, however, found the following procedure more expedient 

for the particular case of monotonically increasing applied load. 

A structure has p number of critical sections which, 

in general, are in excess of its indeterminacy number a . If the 

eccentricities at (p - a) critical sections are fixed, then, 
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assuming the shape of the cable profile same as that of bending 

moment diagram, the eccentricities at the remaining a critical 

sections can be evaluated by solving equations 2.15. The 

(p - a) critical sections where the eccentricities are fixed 

should be those where the cable zone width is small and there is 

not much scope for manoeuvring. The cable profile so determined 

should then be checked for lying within the cable zone; if not, 

another trial would be necessary until it is satisfied. 

Many of the structures tested in the past
(
11
04136,37) 

had concordant or linearly transformed cable profiles based on the 

working load stress-resultant distribution, which had the 

disadvantage that full output was not obtained from all the 

critical sections. Many such structures with concorasnt cable 

profile had also the disadvantage that the changes in bending 

moments at the critical sections during loading to failure were 

approximately equal to the elastic moments due to the ultimate 

load applied to a completely elastic structure and the scope for 

redistribution was smn11. 

Remembering that Ms 0 for a concordant cable profile, 

we have from equation 2.11 

Esc]a = 
("v(d,i))1 

 

( M
au
)n 

.... (2.16) 

   

(14  v(d +1) n 

 

/1/4 Mau )1 

where suffix C after the square brackets refers to the structure 

with a concordant cable profile. 

If P
u 

is the prestress force at a section at the 

ultimate load and d is the depth of the centroid of the 

prestress from the extreme compression fibre, then 

M
au 
=kPd 

u u 

where k
u 

is a constant. 

(2.17) 
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Therefore 

(Mv(d+1))1 
[Sc j 	= 

( M vk /d+1))n 	(k
u 
P
u 

d )
1 	

(2.18) 

Equation 2.18 is true algebraically and since the sign 

convention of 'TAI' and 'd' has been defined to match with each 

other (see SIGN CONVENTION !ND NOTATION), it would hold good 

numerically as well. 

If all sections are assumed under-reinforced and have 

the same prestress, then in equation 2.18, 	(ku)1 c= (k)n 
and 

(Pu)1 (Pu)n.  
Now if d is approximately proportional to 

at a section, then from equation 2.18 	C 	would M 
v(d +1)  

be nearly equal to unity. That is, a structure with such a concordant 

cable profile would exhibit little redistribution. This was observed 

by Cooke(11)  for three-span beams and Raina(37) for two-span beams. 

The author observed this for the fixed portal frames. The frame 

F-1, which had a concordant cable profile designed in the above 

manner, had a horizontal deflection of 1.10 inches and a vertical 

deflection of 0.62 inches at ultimate load; the corresponding 

deflections for frames F-2,3,4 and 5 were 1.30 and 0.82, 2.70 and 

1.37, 1.32 and 1.00, and 1.38 and 0.975 inches respectively; 

see Figures 7.21 to 7.24. Frame F-2 had a linearly transformed 

cable profile obtained from F-1, and frames F-3 to 5 were designed 

differently as described in Chapter 7 with maximum eccentricities 

at all the critical sections of the apparent collapse mechanism. 

The linear transformation, which consists in adding a 

certain linear combination of complementary solution diagrams 

to a cable profile, alters the eccentricities at the critical 

sections and also sets up certain secondary prestress stress-

resultant distribution. Depending upon the linear transformation 

employed, redistribution is either reduced or increased and mode 

(ku Pu  d )n  
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of collapse would also change. The problem becomes quite complex 

to study in general terms by considering both equilibrium and 

compatibility criteria. Morice and Lewis(36)  considering only 

the equilibrium criterion and assuming the apparent ultimate 

moment of a section proportional to its effective depth have 

shown that no variation in ultimate load of a structure should 

occur due to linear transformation. Raina(37), on the other 

hand, has shown that a variation in ultimate load would occur 

due to linear transformation. Raina, like Morice and Lewis, also 

considers only the equilibrium criterion, but assumes that failure 

takes place by ultimate concrete strain. He expresses the steel 

strain in terms of the effective depth and concrete strain, and 

by representing the load-strain curve of the H.T. steel tendon by 

a term of a sine series obtains the apparent ultimate moment of a 

critical section after solving a transcendental equation, which 

enables him to show a variation in ultimate load due to linear 

transformation. 

Raina, for his test specimens which are described in 

Chapter 7, calculated that, as compared to beam CB-1 which had 
the parent concordant cable profile, the ultimate loads for beams 

CB-2 and 3 which had upward linear transformations should change 

by +2.0% and +5.5% respectively, and those for beams CB-4 and 5 
which had downward linear transformations by +7;9% and +21.8.% 

respectively. The corresponding figures as obtained from the 

tests are +1.35%, +4.71%, +2.42% and -12.62% respectively. 

The variation, except for beam CB-5, is practically of the same 

order as the accuracy of experimental measurements, and it 

supports Morice and Lewis's assumption. There is other 

experimental evidence(ii'14) which also supports the simplifying 

assumption for continuous beams and hinged portal frames. 

The experimental evidence(14) available for fixed portal 

frames does not support the above assumption. To the author's 
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knowledge, so far only four fixed portal frames employing linearly 

transformed cable profilps have been tested. These tests were 

carried out by LaGrange(14) at Cambridge University, who concluded 

that "in portal frames with fixed feet, linear transformations 

would almost invariably change the load carrying capacity of the 

frame". This is not confirmed by the author's tests on frame F-2 

which had a linearly transformed cable profile and carried 

practically the same ultimate load as the parent frame F-1 with 

concordant cable profile. To the author, the above statement 

appears misleading. Linear transformation which consists in adding a 

certain linear combination of complementary solution diagrams to 

a cable profile does not affect 'equilibrium' and therefore as 

long as the collapse mechanism is not changed due to linear 

transformation, the ultimate load based on 'equilibrium criteriofil 

should remain practically unaltered. To LaGrange, linear transforma-

tion meant adding linear functions to the eccentricities of the 

concordant cables and he changed the strengths of the critical 

sections in some parts of the frame by linear transformation, 

without changing the eccentricity of the cable in some other part. 

Linear transformation in its true sense cannot do this. The above 

conclusion is therefore based on a different meaning of linear 

transformation, and should be interpreted accordingly. Before 

the effect of linear transformation (in its true sense) in fixed 

portal frames is established, more experimental evidence is necessary. 

There are, however, certain odd cases, for example 

Raina's beam CB-5 which carried 12.62% less ultimate load as compared 

to the parent concordant beam, which shows that it may not always be 

realistic to consider only equilibrium criterion. The author, in 

Chapter 6, considering both equilibrium and compatibility criteria 
has tried to study the effect of linear transformation in general 

terms, but without success, and it appears that each case will 

have to be studied individually. 
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The effect of linear transformation, as pointed out 

by LaGrange(14), is not significant on factor Sc. Consider 

two structures, namely one with a concordant cable profile and 

the other with a linearly transformed cable profile obtained 

from the first. Let the two structures be assumed to carry the 

same ultimate load, i.e. M, d+ 1) is the same in both the vc  
cases. 

If d is the effective depth at any section in the 

concordant case, then the effective depth in the linearly 

transformed case would be (d + Msp  /P e), where Pe 
is the 

initial prestress. Thus from equation 2.11 we have 

Ms  

(M v(d+1)) + (Ms) 1 	p 1 	
(d + —2  )k P Pe u u 

(M 	) + (Ms) 	Ms  
v4(d +1) n 	p n 

P 
Zku d Pu

)n 
(Msk —1  

) + (Msp) 	
p uPe

)n (Mv(d+1) 1 	1 

(M
v(d=1)) + (Ms  n 	p)  n 

P 
(k
u 
d P

u
)
1 
+ (Ms  k p uP e 1 

(2.19) 

where subscript LT after the square brackets refers to the 

linearly transformed case. 

Equation 2.19 holds good algebraically in general, and 

since the sign convention for 'M' and 'd' have each been defined 
each 

to match with/other (see SIGN CONVENTION AND NOTATION), equation 

2.19 would also be true numerically if the sign of (Ms)1  is 

LT 
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related with (Mv(d+ 1))1 and  (d)1/ and that of (Ms) with 
p n 

(14
v.(d+ 1)

)
n 

and (d)n The linear transformation which numerically 

reduces the effective depth at a critical section sets up Ms  

which acts opposite to My
(d+ 1) and vice versa, with the result 

that:there is not much effect on Sc. 

2.6 RUSSIAN CODE RECOMMENDATIONS  

The Russians design statically indeterminate prestressed 

concrete structures for both working load and ultimate load 

criteria. An ultimate load stress-resultant distribution in 

equilibrium with the applied loads is assumed semi-empirically. 

The required section sizes, the area and position of steel are 

estimated throughout the structure. The critical section strengths 

are checked to ensure adequate ultimate load carrying capacity; 

an equilibrium method is used, compatibility of strain across a 

section is ignored. The assumed stress-resultant distribution is 

reduced in the ratio of allowable cracking load to ultimate load. 

The cracking moments of the critical sections are calculated on 

the basis of a concordant cable. If the cracking moments at the 

critical sections are not satisfactory, the working load stress-

resultant distribution is modified by the addition of a linear 

stress-resultant distribution, that is linear combination of 

the complementary solution diagrams. The final assumed elastic 

moment distribution due to the applied working loads now conforms 

to the cracking moments at the critical sections. The stress-

resultant distribution due to the working loads applied to the 

true structure is now determined. The difference between the 

assumed and true distributions at working loads is a linear 

distribution. 

The cracking moments were based on a concordant cable 

profile, but this profile was arbitrarily assumed. It remains 
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therefore to ensure that the secondary prestress moments are 

made equal to the difference between the assumed and true elastic 

distributions. The required secondary moments with a given profile 

is obtained by building in a specified lack of fit. The structure 

is made statically determinate by providing hinges, usually 

eccentric to the centre line of the section, and the structure 

is then partially stressed. The hinges are concreted solid, and 

the remaining prestress applied. The final secondary stress-

resultant distribution together with the elastic stress-resultant 

distribution due to the applied loads is thus made equal to the 

assumed cracking moment distribution. The effect of creep is 

allowed by applying a factor of 2 to the difference between the 

assumed and true stress-resultant distributions at working load. 

Creep is a phenomenon which is still not fully understood. 

The introduction of creep factor in the above method has resulted in 

certain empiricism. Saeed-un-din and Hall(38) have shown that 

linear creep has no effect, other than that causing loss of 

prestress, on the stress-resultant distribution set up by 

prestressing a structure in a statically indeterminate state; 

the results of author's tests are set out in Chapter 6. The 

creep factor should therefore be applied only to the stress-

resultant distribution set up during the statically determinate 

state. 

The assumed stress-resultant distribution at cracking 

load has been ensured by building in a lock of fit, and, in theory, 

such a structure would carry the specified cracking load 

satisfactorily. But, whether such a structure would always 

carry the specified ultimate load without the rupture of any 

section or the structure as a whole or part becoming kinematically 

unstable, cannot be said. 



The results of frame F-5 which was designed 

according to the above method but with creep factor applied 

to the stress-resultant distribution set up in the 

statically determinate state will be discussed in Chapter 6. 

lo 



4.2 

CURVATURE 

Fig. VI : MOMENT CURVATURE RELATIONSHIP 	FOR 	ECCENTRICALLY 

PRESTRESSED 	SECTION 



43 

CHAPTER 3 

ULTIMATE LOAD ANALYSIS OF STATICALLY 

INDETERMINATE CONCRETE STRUCTURES 

3.1 PRINCIPLES AND ASSUMPTIONS OF STANDARD ANALYSIS  

There are three conditions that any problem of structural 

mechanics or of stress analysis must satisfy:- 

(1) Equilibrium 

(2) Compatibility 

(3) Material Properties 

For a statically determinate structural system the 

problem is relatively straightforward, since conditions (1) 

are sufficient to give all the stress-resultants. Conditions 

(2) and (3) may then be applied afterwards if the displacements 

of the structure are required. But for the analysis of a 

statically indeterminate structure it is necessary to consider 

all the three conditions. This thesis is concerned with skeletal 

structures like continuous beams and frames, and for such structures 

the three requirements are satisfied as follows. 

A skeletal structure, where the member lengths are much 

greater than either of the overall dimensions of their cross section, 

is idealized into member lines with each point on the member line 

endowed with section properties in a plane at right angles to the 

member line. The section properties are obtained by integrating 

the idealized material properties over the two cross sectional 

dimensions. In a composite material like prestressed concrete, 

in addition to material properties, consideration is also required 

for their relative percentages and position, condition of grout, 

etc. The distribution of stress-resultants due to any condition 

of loading applied to this idealized structure is then found by 
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satisfying both equilibrium and geometric compatibility 

requirements. This can either be done by the 'Displacement 

(or Stiffness) Method' or the 'Force (or Flexibility) Method' 

In the displacement method the compatibility conditions used 

first give rise to equations of equilibrium, whereas in the 

force method the equilibrium conditions first satisfied lead 

to the equations of compatibility. The early treatises on 

these methods are by Jenkins(39) who dealt with the force 

method, and Argyris and Kelsey
(40) who dealt with both the 

force and displacement methods. In this thesis force method 

will be used. 

3.2 BASIC EQUATIONS 

Consider an a times statically indeterminate 

structure and let it be planar subject to planar loading. The 

compatibility requirement states that:- 

ds = 0 	.... (3.1) 

,s  

where H is the functional matrix in positional co-ordinates 

s and corresponds to 3xa stress-resultant distributions due 

to unit bi-action applied in turn at each release of the reduced 

structure; 

F is the functional matrix in positional co-ordinates 

and corresponds to stress-resultant deformation section properties 

pertaining to bending moment, shear and thrust; and 
t . x is the functional matrix in positional co-ordinates 

and corresponds to the required total solution for the given 

loading configuration and intensity, that is three total stress-

resultant distributions (bending moment m, shear s and 

thrust n) at all positions of the structure. 

[HT p- xt 
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Equation 3.1 represents a compatibility equations 

(a being the indeterminancy number) for a given equilibrium 

system. These equations are linearly independent, and provided 

F is known, they can be solved for any load conditions, including 

the ultimate load. 

This thesis is concerned with skeletal planar structures 

with planar loading, where major deformations due to the applied 

load are caused by bending, and deformations due to shear and 

thrust are neglected such that 

•... H= L ., .2  ... . i = . 	(3.2) _ — —a 
7 = K 	 .... (3.3) 

t  t  X = M 	 (3.4) 

where m is the functional matrix in positional co-ordinates s 

and corresponds to 1 x a bending moment distribution due to unit 

bi-action applied in turn at each release of the reduced structure; 

K is the functional matrix in positional co-ordinates s 

and corresponds to the flexural stress-resultant deformation 

section property, that is moment-curvature relationship at a 

section; 	and 

mt  is the functional matrix in positional co-ordinates 

and corresponds to total bending solution for the given load 

configuration and intensity. 

Thus, for the structure where only flexural deformations 

are significant equation 3.1 reduces to 

mT  K mt = 0 	'Am (3.5) 

Thus, provided the moment-curvature relationships for all 

sections are known, a solution can be found for any load condition, 

including the ultimate load. The solution is somewhat cumbersome 

if the moment-curvature-relationship is not linear, but in theory 
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it would be quite easy on a computer. Depending upon the moment-

curvature relationship, failure may be said to occur either when 

one or more cross sections rupture, or when the structure as a 

whole or part of it becomes kinematically unstable. 

3.3 ULTIMATE FLEXURAL STRENGTH  

The apparent and absolute ultimate moments as applicable 

to prestressed concrete have been defined in Chapter 2. It is the 

apparent ultimate moment which the various theoretical formulae 

estimate for prestressed concrete and which will be considered in 

this Section. 

The main difficulty in the study of the ultimate flexural 

strength of a reinforced or prestressed concrete section is the lack 

of knowledge of the actual stresses in the flexural compression zone 

of concrete at collapse. The behaviour of compression zone of 

concrete at collapse has been related by many of the investigators 

to the compressive strain scu  in the extreme comparison fibre and 

at that strain by coefficients relating to:- 

1) the average stress over the area divided by 

the strength of the concrete in direct compression, and 

2) the depth of the centre of compression divided 

by the depth of compression zone. 

The early work in this field was done by 6Jhitney(7) 

Jensen
(8) 

Gaston(9) Billet and Appleton
(1o)

, etc. Their work 

was based on the interpretation of beam test results, and, because 

of one less equation available than the number of unknowns involved, 

each of them made one or the other assumption; with the result 

their findings differed from one another. Surprisingly each of 

them produced formula:which predicts the ultimate flexural strength 

to a high degree of accuracy. The work on prisms by Hognestad et al(4) 
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Moenart(5), and Riisch
(6) has produced better understanding of the 

behaviour of the flexural compression zone of concrete and their 

results are in reasonable agreement. The conclusions reached by 

Hognestadland Rusch are based on studies made under simulated 

conditions of pure flexure, and, strictly speaking, should be 

applicable to such idealized conditions. However, their results 

when applied to reinforced and prestressed concrete beams met in 

practice have shown fairly accurate correlation. 

Naughton(41), during his investigations on two-span, 

and Cooke(11)1  on three-span prestressed concrete beams, found 

that the ultimate flexural strength of similar sections situated 

at the support or at the load point varied appreciably. The 

apparent ultimate moment of each critical section was obtained 

experimentally, and where only one section failed at collapse, 

it was obtained by continuing the test beyond the maximum load. 

It was discovered that the experimental values represented two 

separate relationships depending upon whether the section 

considered was at the support or at the load point. Considering 

only the equilibrium of forces acting on the concrete section, the 

dimensionless relationship for the apparent ultimate moment of a 

section was written by Cooke in the form:- 

	

Mau 	A f 	Y e A  fsu  

	

bd2 c. 	

) 
bds  c su  ) [ 	a  P bd cu u 

 

.... (3.6) 

 

where fsu  is the ultimate tensile stress of tensioned steel; 

3 is the ratio of maximum stress in tensioned steel to 

ultimate tensile strength (f ); 
su 

and 	a is the ratio of mean compressive stress (rectangular 

distribution) to 6 in. cube crushing strength cu. 

(The remaining symbols have the same meaning as explained 
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under 'SIGN CONVENTION AND NOTATION', but have numerical values  

only). 

Cooke, for his three-span beam series, found Y/a = 0.67 

and P for support section as 0.95, and for the intermediate span 

section which was the load point as 1.20. Naughton, for his two-

span beams, which had practically the same effective depth in all 

cases at each critical section, found the ultimate moment of 

resistance of support section about 7-18% higher than that of 

the span section. 

A number of possible reasons were advanced by Cooke for 

the above variation in his tests such as (1) reduction of the 

peak moment by dispersion of the concentrated load, (2) formation 

of a bulb of stress under the reaction plate which increases the 

flexural strength of the concrete depending upon the value of the 

reaction as found by Frocht(42) for an elastic medium, (3) increase 

in the longitudinal stress of concrete due to the presence of 

transverse stress, (4) the statistical probability that the strength 
of the section at which failure occurs will be greater at a 

concentrated load than the weakest section in a length of beam; 

this means that with an increase in the outer span length, 

probability of increase in the strength of the failure section 

becomes less. Cooke, for his beams, obtained a variety of values 

of ultimate moment of resistance for similar sections situated at 

the supports, depending upon the outer span length. He observed 

an enhancement in its value with the increase in the gradient of 

the bending moment diagram. But, somehow, instead of pursuing 

this reason, he got involved in the above reasoning; although 

the first three of them could not explain to Cooke himself the 

order of the experimental variation. 
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An examination of the load-moment curves plotted by 

Cooke for his test beams shows that moment corresponding to 

zero load is zero for all beams, whether employingacon.cordant 

qra,Unearly transformed cable profile. This would be consistent 

from test to test if it is assumed that moments were measured 

from the state of prestress, that is including both the pure 

prestress moment Mo and the secondary prestress moment M
s ; 

but such a moment will neither be an apparent moment nor an 

absolute moment. In the light of this, Cooke'e results and 

equation 3.6 may be susceptible to some discrepancy, but 

Naughton's results which were obtained from concordant beams 

cannot be disputed. However, the order of variation in them is 

somewhat less as compared to the Cooke's results. The above 

phenomenon, although first observed by Naughton, and Cooke, is 

a real one, and there must be some explanation for this. 

Somes(12) examined in detail the difference between 

the idealized conditions of Hognestad, and aisch's tests and the 

actual conditions pertaining to the concrete zone which eventually 

fails at a critical section. Hognestad and Riisch's results have 

been derived from studies in a region of pure flexure in which no 

transverse confinement other than that due to stirrups exists, 

see Figure 3.1(a). Unlike this, the compression zone of a 

critical section usually met in practice is associated with 

confinement due to the presence of loading plate or the beam 

column interconnection as shown in Figure 3.1. Somes examined 

the published work on the effect of transverse reinforcement in 

bound concrete, and postulated that for conditions typical of the 

concrete zone which eventually fails at a critical section the 

actual flexural compressive strength would be greater than that 

defined for pure flexure. According to him the enhancement results 

from the following two effects acting together., 
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1) Transverse loading on the beam sets up a local system of 

biaxial or even triaxial compression close to the section, which 

enhances the maximum moment of resistance. But the capacity of 

the member may depend upon the resistance of some section away 

from the moment peak where the transverse loading has diminished. 

2) The critical section away from the load is restrained on one 

side by a region of effectively stronger concrete while on the 

other side flexural stress falls away rapidly with the bending 

moment diagram. 

The two effects jointly serve to confine the critical 

zone, and according to Somes this confinement depends upon the 

gradient of the bending moment diagram close to and on the 

appropriate side of the section. Somes has postulated that the 

enhanced compressive strength of concrete would be equal to a 

factor X times the one defined for pure flexure, where 

D 
X = 1 + + 5(7)

2 
 .... (3.7) 

where 	D is the total depth of the section; and 

z is the distance from the critical section to 

the appropriate point of contraflexure. 

It has been suggested that the value of X should be 

restricted to 1.4 which corresponds to DA = 0.2; when D/z 

is greater than 1.4, X will be influenced by a shear-bending 

interaction, a phenomenon not yet well understood. 

Some; substantiated his postulate by comparing Mallick's
(25) 

and his experimental results with the theoretical ones. It should 

be noted that Somes's measured values of ultimate moment refer to 

the maximum moment in the beam when crushing moment of some point 

is reached, that is in the continuous beams tested by Cooke, 

Naughton, the author, etc. Somes's calculated values of ultimate 
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moment would refer to the theoretical critical section. Somes 

has, however, warned that the value of X , derived by him, 

would not be applicable to the analysis which attempts to take 

account of the displacement of the crushing zone from the peak 

of the bending moment distribution. 

Mattock(13), in November 1964, published the results 

of thirty-seven simply supported reinforced concrete beams 

involving many variables, including the distance from the point 

of maximum moment to the point of zero moment. There is some 

scatter in the measured values of ultimate moments, but nevertheless 

they show a trend similar to that observed by Cooke, and Somes, 

that is the ultimate flexural strength tends to increase slightly 

with increase in the gradient of the bending moment diagram. 

Mattock did not comment on this feature; probably being small 

it did not draw his attention. However he observed another 

phenomenon, that is the increase in the maximum concrete 

compression strain with the decrease in the distance of the 

point of maximum moment from the point of zero moment, which 

resulted in increased ultimate curvatures. Mattock has tentatively 

suggested the following empirical expression for ultimate flexural 

strain of concrete. 

ccu . 0,003 + 

 

(3.8) 

 

where z is the distance from the point of maximum moment to 

the point of zero moment and is measured in inches, and 0.003 is the 

strain value used for ultimate strength calculations in the 

ACI Building Code(43), ACI 318-63 and corresponds to the region 

of constant moment. 

It would be noted that equation 3.8 is not dimensionally 

consistent. 
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The confining effect on concrete by transverse loading 

was also observed by Warwaruk(44) in his tests on ungrouted beams 

loaded at the centre of their span and by Yamashiro and Siess
(45) 

in tests on beam-column connections. 

3.4 DISCUSSIONS IN THE LIGHT OF AUTHOR'S TEST RESULTS 

It is a fact that transverse loading on a beam sets up 

a local system of biaxial or even triaxial compression, and close 

to the loading point the ultimate flexural strength is appreciably 

increased; but the load carrying capacity of the member is not 

always governed by this. In general, it would depend upon the 

resistance of some section away from the moment peak (theoretical 

critical section) where the effect of transverse loading is not 

present. The author observed in his tests, which are described 

in Chapter 7, that in two-span beams failure always took place by 

crushing of concrete away from the theoretical critical section; 

the actual distance varied slightly from test to test depending 

upon the critical section considered, and is given in Table 3.1. 

However, in the frames crushing took place very close to the 

theoretical critical sections. This was probably due to the 

method of construction and the fact that there was a discontinuity 

in the duct-tubing at each of the critical sections. For the 

frames, therefore, only the theoretical critical sections have 

been considered here. 

The maximum apparent moments measured at the various 

theoretical critical sections and at the corresponding points 

where crushing of concrete actually took place are given in 

Table 3.1 for the test beams. The values of the apparent ultimate 

moments M
au 

calculated according to the C.E.B. recommendations
(46) 

are also given in this Table. These values have been calculated by 
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takingleo = 1.05 cc  and F2  = 0.8 (see SIGN CONVENTION AND 

NOTATION), as assumed throughout the thesis. It will be seen 

that the measured moments at the theoretical critical sections 

of the test beams are about 15% higher than those evaluated 

from the C.E.B. recommendations, and that there is a general 

trend of increase in their values with increase in D 	ratio, 

which is in accordance with Somes's postulate. However, such an 

increase was not noticed for the test frames; D/z ratio varied 

largely for the various critical sections, but the measured 

ultimate moments did not show any marked variation. This 

shows that Somes's postulate would not always be true, and 

the real explanation for the increase in the maximum moments 

measured at the theoretical critical sections of the test beams 

lies somewhere else. 

Although there is a variation in the maximum moments 

measured at the various theoretical critical sections of the 

test beams, they do not show any uniform trend as noticed by 

Naughton or Cooke. For example, Naughton for his two-span beams 

always observed that the maximum moments measured at the support 

section were higher than those measured at the span sections. 

In the author's tests this was only noticed for beams B-1 to 3, 

and for beam B-4 higher moment was observed at the span section. 

Similarly, according to Cooke higher moments should have always 

been measured at the load section, but for beams B-1 to 3 they 

were measured at the support section. It appears to the author 

that Naughton or Cooke's findings are not applicable in general. 

A comparison of the maximum moments measured at the 

points where crushing of concrete actually took place in the test 

beams and frames has been made with those evaluated according to 

the C.E.B. recommendations in Figure 3.2, which shows that they 

are in reasonable agreement. The apparent ultimate moments 

according to the C.E.B. recommendations have been calculated 
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co  = 1.03 cc, pad F2 = 0.8 for beams and 0.5 for frames, 

as assumed throughout the thesis. 

The author is therefore of the opinion that failure of 

a beam takes place by crushing of concrete at a section somewhat 

displaced from the theoretical critical section and where the 

effect of loading plate has disappeared. The ultimate strength 

of this section would be equal to that evaluated according to 

the C.E.B. recommendations, but at this instant the moment 

measured at the theoretical critical section would be greater 

than that measured at the above section due to the gradient of 

the bending moment distribution. It would be appreciated that 

the value of the maximum moment measured at the theoretical 

critical section does not relate to its ultimate strength, since 

the failure does not usually occur there; it is only a 
hypothetical quantity. It would be seen from Table 3.1 that 

the distance between the actual crushing point and the 

theoretical critical section varied from 0.33 to 1.1 D, and 

on an average a value of 0.73D can be assumed. For this 

distance being fixed, it can easily be seen that depending 

upon the gradient of the bending moment distribution a variety 

of values for the maximum moment at the theoretical critical 

section can be obtained. The value of the moment which Somesis 

postulate calculates is the above hypothetical quantity, but he 

evaluates it in an indirect manner by introducing the factor X 

Figure 3.3 shows a portion of the structure between 
the points of zero and maximum moments. A is the point of zero 

moment, C the peak point of bending moment distribution and 

B is the point where crushing of the concrete occurs at collapse. 

If ADE denotes the bending moment distribution, then BD = Mau' 
i.e. the apparent ultimate moment evaluated according to 

the C.E.B. recommendations. 
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From similar triangles ABD and DI,10  we have 

tau 	a 	a
41 - a,-1 - 	- - M

au z a z 7 

Expanding the R.H.S. and neglecting higher powers 

1  we have 

bMau 
Mau z 

[ I 	
(-z
) 
J 

or 	b14  au Mau (21) (a)2  
z 	, 

CE = M
au 

oM
au 

= Mau [ 1  + 	(-)2 
	 .... (3.9) 

The apparent moments at collapse at the various theoretical 

critical sections of the authors beams calculated according to the 

above and Somesis methods are given in Table 3.1 and have been 

compared with the measured values in Figure 3.4,which shows that 

the above postulate results in reasonable agreement. 

In view of the above, the author is of the opinion that 

the explanation for the variation in the values of the ultimate 

moments of similar sections, as observed by Naughton, Cooke, Somes, 

and the author, lies in the fact that the moments were not measured 

at the points where crushing of concrete actually took place but at 

the theoretical critical sections. 

Thus, the strength of a theoretical critical section at 

collapse can be calculated either by:- 

of a 
z 
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1) the enhancement of the flexural strength of the actual 

critical section as suggested above; or 

2) the artificial enhancement of the actual concrete strength 

to give an enhanced ultimate flexural strength to correspond to 

the strength of the theoretical critical section at collapse, as 

suggested by Somes. 

There is, in addition to the phenomenon discussed above, 

the problem of enhanced concrete strength due to strain gradient 

across the cross section, which has been observed by Baker and 

Amarakone(47) and Sturman, Shah and Winter(16) It would appear, 

however, that if the actual critical section is used as the basis 

for calculating the hypothetical strength of the theoretical 

critical section at collapse, then the effect of this parameter 

is small. However, before final conclusion is reached, more 

research would be necessary. 

The concrete strain measurements could not be taken 

right up to the collapse load, for many of the strain gauges were 

damaged before the maximum load was reached. The values of 

concrete strain in the extreme compression fibre, and curvature 

were obtained from the measurement of concrete strains at three 

levels. For the test frames, except the centre of the transom°, 

the gauges were fixed about /.1"4" displaced from the theoretical 

critical sections. The values of concrete strain and curvature 

pertain to such points whereas the stress-resultants refer to the 

theoretical critical sections. This, although not accurate, was 

accepted since the distance was small and it would only have 

underestimated the curvatures and concrete strains slightly. The 

measured strain values used in Figure 3.5 therefore correspond to 
such conditions under the maximum load. But it would be seen that 

they vary from 0.0021 to 0.0083 as against 0.0035 recommended by 

the C.E.B. This shows that there is no fixed value for ultimate 
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concrete compressive strain. This was noticed by Mattock who 

suggested equation 3.8 to evaluate the ultimate concrete strain. 

In Figure 3.5 the measured concrete strains have been compared 
with those calculated according to equation 3.8. Although there 

is a considerable scatter, it shows a general trend of increase 

in the value of the ultimate concrete strain as suggested by 

Mattock, but the calculated values are considerably large as 

compared to the measured values. Mattock's equation 3.8 is based 

on the experimental results of reinforced concrete beams. The 

above disparity shows that results of reinforced concrete would 

not apply to prestressed concrete. 

Qualitatively equation 3.8 suggests that the ultimate 

concrete strain should increase with the gradient of the bending 

moment distribution. The gradient of the bending moment distribution 

provides some sort of restraint and under the effect of such a 

restraint it would be reasonable to expect concrete to crush at 

an increased ultimate strain. But it appears doubtful, or at least 

has not been confirmed by the author's test results,that concrete in 

a structure at a particular critical section, irrespective of its 

sectional properties, would crush at the same value of the ultimate 

strain. The results of author's suggestion are set out in Chapter 4. 

Figures 7.32 to 7.45 show that Somes's contention that 

when crushing occurred just away from the loading plate, the 

strains beneath the plate were frequently greater than the strains 

where crushing was taking place need not always be true. 

3.5 MOMENT-CURVATURE RELATIONSHIP 

The usual property which represents the characteristics of 

a structural material is its stress-strain relationship. Thus, 

provided the stress-strain relationships for concrete and prestressing 

steel and their relative percentages and position are known, it should 
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theoretically be possible to establish the moment-curvature 

relationship for any prestressed concrete section. This thesis 

is concerned with monotonically increasing loads where the effect 

of plasticity occuring during the previous loadings is neglected. 

That is, theoretically there should exist a unique moment-curvature 

relationship. There is relatively little experimental evidence for 

prestressed concrete of the moment-curvature relationship after the 

maximum moment of resistance is reached. But up to the maximum 

moment of resistance it has been obtained for both statically 

determinate and indeterminate structures by many investigators. 

The experimental moment-curvature relationship obtained for a 

section of a statically determinate structure rarely agrees with 

that obtained for a corresponding section of a statically 

indeterminate structure. And in the same indeterminate structure 

the moment-curvature relationships obtained for any two critical 

sections with identical sectional and material properties also 

seldom agree with each other. For example, Mallick and his 

co-workers(25 '30) at the Indian Institute of Technology, 

Kharagpur, observed for two and three-span prestressed concrete 

beams and reinforced concrete pinned portal frames that the 

ultimate curvatures measured at the first hinge were considerably 

higher than those obtained at the second hinge. On the contrary, 

the author for his beam B-4 obtained an absolute ultimate curvature 

of 0.0026 in -I  for the first hinge and 0.003 in I  at the second 

hinge, which suggests that there is no unique moment-curvature 

relationship for prestressed concrete and that arbitrary rules 

such as those suggested by Mallick do not hold good. 

The sectional and material properties of many of the 

critical sections of the beams and frames tested by the author 

were the same, and theoretically each of them should have exhibited 

the same moment-curvature relationship; but, as will be seen from 

Figures 7.25 to 7.31, they differed considerably from one another. 
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In Figure 3.6 some of the author's extreme cases have been 

compared with those obtained according to the C.E.B. recommendations. 

It will be seen that the experimental M - 0  relationships when 

compared with the C.E.B. recommendations vary widely. It is 

obvious that until and unless this variation can be predicted, 

any theoretical approach based on the moment-curvature concept 

for the analysis of a statically indeterminate prestressed concrete 

structure will bear little correlation with experimental results. 

The experimental moment-curvature relationships could not 

be obtained by the author beyond the maximum moment of resistance, 

since by that time many of the strain gauges at the critical 

sections were damaged. In future experiments it would be desirable 

to incorporate some strain and curvature measuring devices which 

remain in tact even after the maximum moment of resistance is 

reached. As discussed in detail in Chapter 6, there is sufficient 

evidence '(see Figures 7.10 to 7.18) which show that at the maximum 

load many of the critical sections had passed the maximum moment 

of resistance and were retaining moment somewhat smaller than their 

ultimate moment. If the moment-curvature relationship up to the 

maximum moment of resistance could exhibit variation as shown in 

Figure 3.6, then the variation expected beyond this, if not more, 

would at least be of the same order. Difficulties of using moment-

curvature relationship with falling branch for the analysis of a 

statically indeterminate structure has been discussed by Rosenblueth 

and Cossio
(48) 

3.6 ANALYSIS BASED ON MOMENT-ROMTION RELATIONSHIP 

Baker(20 has overcome the theoretical difficulties 

inherent in the use of the moment-curvature'relationship by 

considering the deformations over a finite length. He estimates 

the total inelastic rotation that can be accommodated over a 
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'plastic hinge' length by means of a semi-empirical formula. 

The theoretical discontinuities at a hinge positions (a being 

the statical indeterminacy number) due to an arbitrary stress-

resultant distribution in equilibrium with applied loads are 

calculated from equation 3.5. The sections between hinge 

positions are assumed to act elastically but the stress-resultant-

section property characteristic is calculated from a non-linear 

stress-strain diagram for concrete and linear-stress-strain 

relationship for steel. Account can be taken of the inelastic 

rotations, other than plastic hinge rotations, which occur at 

critical sections. The theoretical rotations are compared with 

the estimated capacity of rotation, due account being taken of 

the sign. If the theoretical rotation is in excess of the 

expected capacity of any hingelan adjustment is made to the 

assumed initial bending moment distribution.Macchi(22) has 

suggested a similar approach called the 'Method of Imposed 

Rotations'. Here inelastic rotations are imposed on an 'elastic 

structure' and the resulting bending moment distribution found. 

This distribution when added to the elastic distribution of bending 

moments constitutes the final solution. 

The above methods, in effect, assume unique moment-

rotation relationship, which has been found reasonably true in 

many of the cases. However, Mallick and Sastry
(26), in December 

1966, published the results of tests on twenty-seven three-span 

and twelve two-span prestressed concrete beams, which showed that 

the rotations measured at the first and the second hinge varied 

considerably, inspite of their similar geometric properties. Some 

of their results for three-span beams are summarized in Table 3.2. 

Although there is considerable scatter in the test results, the 

variation from one critical section to another in the same test 

is quite conspicuous and appears to result from the fact that 

there is no unique moment-curvature relationship. 
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3.7 CONCLUSIONS 

(1) The flexural ultimate strengths measured at the actual 

points of crushing of the concrete were in reasonable agreement 

with those estimated according to the C.E.B. recommendations, but 

the corresponding curvatures, concrete compressive strains 

(extreme fibre), and the flexural stress-resultant deformation 

characteristics for sections with similar geometric properties 

showed a considerable divergence. 

(2) It is suggested that the enhanced flexural strength 

at the theoretical critical sections of a prestressed concrete 

structure at collapse is the result of the displacement of the 

actual point of crushing of the concrete from the theoretical 

critical section, and the gradient of the apparent bending 

moment distribution. 
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Central 
span, 
ft 

Cube 
strength, 
lb/in2 

End 
span, 
ft 

Effective 
depth at 
load 

section, 

Effective 
depth at 
support 
section, 

in. in. 

Load 
section, 
Hinge 1 

(vii) (v) (vi) 

Rotation, rad. x 103  

Support Ratio (vii) 
section- 
Hinge 2 

(viii) 

Beam 
(cross 
section 

4 x 6 in.) 

(i) 	(ii) 	(iii) 	(iv) 

ROTATIONS AT FAILURE IN MALLICK 
AND SASTRY'S THREE-SPAN BEAMS  

3A-1 9 6 6,500 4.30 4.30 56.4o 38.6o 1.46 

3A-3 9 6 7,500 4.8o 4.8o 52.00 43.00 1.21 
3B-2 8.5 7 5,500 3.00 3.00 42.00 25.80 1.63 
3B-3 8.5 7 4,80o 4.00 4.00 37.60 30.95 1.21 
30-4 8 8 5,000 4.00 4.00 46.00 28.2o 1.63 
3c-5 8 8 6,500 4.25 4.25 66.00 38.00 1.74 
3c-6 8 8 6,500 4,00 4.00 61.0o 29.40 2.08 

30-7 8 8 5,85o 3.00 3.00- 35.6o 19.90 1.79 
3D-2 7.25 9.5 7,25o 4.00 4.00 73.60 32.10 2.29 
3E-2 7 10 7,000 4.5o 4.5o 73.8o 37.60 1.96 
3E-3 7 10 4,900 4.00 4.00 59.8o 28.40 2.11 
3E-4 7 10 6,250 3.25 3.25 62.40 31.0o 2.01 
3E-5 7 10 6,500 4.50 4.50 72.00 34.60 2.08 

3E-6 7 10 6,50o 4.00 4.00 72.80 34.0o 2.14 
3F-3 6 12 7,000 4.5o 4.5o 84.4o 35.00 2.41 

TABLE 3.2 
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CHAPTER4 

PROPOSED METHOD FOR THE ANALYSIS OF FLEXURAL 

STRESS-RESULTANT-DEFORMATION CHARACTERISTIC  

OF PRESTRESSED CONCRETE 

4.1 INTRODUCTION 

The flexural stress-resultant-deformation characteristic 

of a section is defined by the relationship between the resisting 

moment and the corresponding curvature. It was seen in Chapter 3 

that the measured maximum flexural strengths are in reasonable 

agreement with those calculated according to the C.E.B. recommendations 

but there is considerable divergence in the flexural stress-resultant-

deformation characteristics. The flexural stress-resultant-deformation 

characteristic of a prestressed concrete section depends upon the 

characteristics of prestressing steel and concrete and the sectional 

properties. The sectional properties and characteristic of 

prestressing steel can be estimated quite accurately. The major 

factor which cannot be assessed accurately is the characteristic 

of concrete. The usual property that defines the characteristic 

of a structural material is its stress-,strain relationship. The 

common stress-strain curve of concrete as recommended by the 
p (29) 

C.E.-. 	consists of either a parabolic rectangle or a parabola 

which terminates at a strain of 0.0035. This limit on strain has 

probably been fixed under the belief that as in tension concrete 

in compression also behaves as a 'brittle' material incapable of 

shortening beyond a certain value of strain. However, in actual 

tests on simply supported and continuous reinforced concrete beams, 

maximum concrete compressive strains as large as 0.015-0.05 have 

been measured by various investigators(13,15,48,49).  It appears 

that unlike structural steel, which is a strain-hardening material, 

concrete is strain-softening in compression; or in other words, the 
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stress-stress curve of concrete in compression exhibits a 

distinct maximum stress after which the stress decreases with 

increasing strain. This property results in a considerable 

difficulty. When a concrete specimen is tested in a 'constant 

load' type of testing machine, the specimen is suddenly crushed 

as soon as the maximum stress is reached. This behaviour led in 

the past to the belief that concrete behaves as a 'brittle' 

material. Similarly, when simply supported concrete beams are 

tested by applying 'constant load', the beams are observed to 

fail suddenly as soon as the strain in the extreme compression 

fibre reaches a value somewhat greater than the strain at the 

maximum stress in a compression specimen. 

4.2 THE CONCRETE STRESS-STRAIN CURVE IN COMPRESSION 

It is now widely realized that while the internal 

failure mechanism of concrete may be brittle on the microscopic 

scale, it is not brittle on the macroscopic or structural scale. 

Recently, by devising stiff constant strain-rate testing machines, 

several investigators(141550to 53) have obtained the complete 

stress-strain curve of concrete 4or both concentrically and 

eccentrically loaded prisms. There is a fair agreement up to 

the point of maximum stress but beyond this the results differ 

considerably. The divergence of results is probably due to the 

method of testing and the characteristic of the testing machine 

rather than the characteristic of concrete. The author postulates 

that like any other structural material the shape of the concrete 

stress-strain curve would always be the same. 

The stress-strain curve of concrete up to the point of 

maximum stress may be defined accurately by either of the 

following equations:- 
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E 	c ,2 
f
c 	

= f 	2 ( 	c 
CO 	e 

(C
CO 	COl 

.... (4.1) 

  

fc  

E, 
2f ( 
CO 60) (4.2) 

e 2 + 
E II 
co 

where fc is the concrete stress corresponding to concrete strain 

of a
c
; 

fco is the maximum concrete stress; and 

e co  is the concrete strain corresponding to the maximum 

concrete stress. 

The C.E.B. and many of the investigators define the 

concrete stress-strain curve up to the point of maximum stress 

by equation 4.1, and the same will be done in this thesis. For 

the descending portion the author considered equation 4.2, which 

was originally suggested by Desayi and Krishnan
(54)

, and the 

following equation: 
yk 

c 
f 	1(  
co 	co. e-  .... (4.3) 

where !c and N1 are the arbitrary constants. 

In the absence of any reliable data for the descending 

portion of the concrete stress-strain curve, the only alternative 

was to evaluate 14.and YL indirectly. The object was to obtain 

the correct stress-strain curve of concrete in flexural compression 

and the available check was that the calculated value of apparent 

maximum moment and the corresponding concrete strain in the extreme 

compression fibre and curvature reasonably agree with the corresponding 

measured quantities. To this end, the above quantities were studied 
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according to the theory presented in Section 4.4 by varying )S 

and Y1 over a wide range. Some of the results are summarized 

and compared with the C.E.B. recommendations in Table 4.1. It 

will be seen from the Table that the shape of the concrete 

stress-strain curve does not have appreciable effect on the 

above quantities and there should be additional factors 

influencing the above quantities, which will be discussed later. 

However, equation 4.3 with )e = 0.14 and 11 = 1.5 

results in somewhat better correlation with the text results. 

The curve defined by the equations 4.1 and 4.3 has been compared 

in Figure 4.1 with that obtained by Soliman(55) for an eccentrically 

loaded prism, which shows good agreement. The complete stress- 

strain curve of concrete is, therefore, tentatively defined as 

f
c 	

= f
co 	6 

) 	( c  —) _1, for c 	6 
CO 

s  

co 	co 

and 

- 1.5 
- f  

f
c

d 
	 1  for e 

C 	
6 

CO 	 CO 	 CO 

.... (4.4) 

Amongst the several equations, Soliman has recently 

defined the stress-strain curve for bound concrete in flexure 

by a parabola up to the point of maximum stress foo  and 

strain e 
co 
 followed by a straight line at a constant stress 

co 
	up to a strain of e 

cs1 
 and thereafter by a sloping straight 

line which corresponds to a strain of ea  for a stress of 

0.8fcol where 

	

fco 	0.9 cc
(1 + 0,05q") 

	

co 
	0.55 f 

co 
 x 10-6 

	

cs 	
= 0.0025 (1 + q") 
	 (4.5) 

	

s
of 	

0.0045 (1 -I- 0.85 q") 
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q" is a factor defined by Soliman to represent the effect of 

binders, and for unbound concrete q" = 0. If we consider concrete 

with a cylinder strength of about 6000 lb/in2, we have 

e co = 0.00294 which is greater than e 
cs. Clearly, it is not 

valid fo use Soliman's equation for unbound concrete with 

cylinder strength greater than 5000 lb/in2. 

Equation 4.4 defines the shape but to obtain the actual 
stress-strain curve for any concrete the values of f00  and e co 
must be defined. There is little published data on this subject. 

Many of the investigators take fcc,  as 0.8-1.0 times the 6 x 12 in. 
cylinder strength. Sturman, Shah, and Winter(16) have recently 

found that for the strain gradients considered the peak of the 

flexural curve was located at a strain about 5C% larger and at 

a stress about 20% larger than the peak of the curve for 

concentric compression. The strain gradient as mentioned in 

Chapter 3 provides some sort of restraint and it would be 

reasonable to expect concrete to carry higher strains and 

stresses. In practice there could be many restraints other 

than the strain gradient such as the cable profile, the loading 

plate, the beam-column intersection, etc. The author is of the 

opinion that in practice the peak of the flexural stress-strain 

curve would vary much more than that observed by Sturman, Shah 

and Winter. This can only be confirmed by exhaustive research. 

Alternatively, it could be verified indirectly by studying the 

flexural strengths and deformations of the critical sections of 

beams and frames tested to destruction. The latter course has 

been adopted here. 

There is little evidence to show appreciable variation 

in the peak stress. In this thesis f
co 
 taken equal to 1.05 

times the 6 x 12 in. cylinder strength gave consistent results 
throughout. 
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The value of s 
co 
 is usually taken 0.002. The author 

is, however, of the opinion that it could vary considerably from 

0.0015to0.006 depending upon the restraint present. Based on the 

study of the author's test results, tentative suggestions which 

are subject to modification in the light of further research are 

given in Section 4.6. 

4.3 ASSUMPTIONS OF ANALYSIS 

It was seen in Chapter 3 that for the critical sections 

of the continuous beams and frames tested by the author the maximum 

concrete strain corresponding to the maximum flexural strength 

varied from 0.0021 to 0.0083. This suggests that it is not 

necessary that the maximum strength of a critical section would 

always be reached by attaining a particular value of the maximum 

concrete strain, as has been assumed by most of the investigators. 

The author like Davies(55) and LaGrange(14)  is of the opinion that 

the maximum flexural strength of a section would occur at different 

values of the maximum concrete strain, which would depend upon the 

material characteristics and sectional properties. The best way to 

obtain the maximum flexural strength and the corresponding maximum 

concrete strain would be to express the apparent moment of resistance 

near crushing in terms of the variables defining the material 

characteristics and sectional properties and impose a mathematical 

argument. 

Except for the above difference, the basis followed here 

is the strain-compatibility approach used by other investigators. 

The following assumptions are made:- 

1) that only the flexural deformations are significant, the effect of 

thrust and shear force has been neglected; 
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2) the material characteristics are defined by their 

respective stress-strain relationship; the stress-strain 

relationship for steel is the same as obtained in a standard 

tension test and that for concrete would be as suggested in 

the previous Section; 

3) before cracking plane sections remain plane and usual 

assumptions of the theory of elasticity hold good; 

4) after cracking the change in the strain within the 

compression zone varies linearly with the distance from 

the zero compression boundary; 

5) changes in strain in the reinforcement may be derived by 

continuing the strain-change profile of the compression zone 

to the steel levels; due account being taken of bond conditions; and 

6) after cracking the contribution of the concrete tensile 

resistance is negligible. 

Assumption 2 in respect of stress-strain of concrete 

has been discussed in the previous Sectiohland is reasonable in 

the light of present research. Assumptions 1 and 5 are easily 

demonstrated with calculations and the remaining ones are justified 

by the actual measurements on the beams. 

4.4 DERIVATION OF MOMENT-CURVATURE RELATIONSHIP FOR  

A BONDED RECTANGULAR SECTION  

The basic moment-curvature relationship for a prestressed 

section is shown in Figure 2.1. Before the application of any 

external load there is a curvature A due to prestress. Cracking 

can take place either in fibre 	(point C) or fibre 2 (point C'). 

Over the portion CC the relationship 	is linear elastic. 

At C or C' the section cracks and theoretically there is a 

discontinuity in the moment-curvature diagram. After C or C' 
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the relationship becomes non-linear and elastic theory no 

longer holds good. 

Elastic phase 

During this phase a prestressed concrete section is 

assumed to behave according to the linear elastic theory. There 

are two particular stages, namely the prestress stage and the 

cracking stage which need to be considered. 

The deformations and stresses in a section subjected to 

flexure are shown in Figures 4.2(a) to 4.2(c). 

The effect of prestress at a section aff a statically 

indeterminate structure is to set up a moment Mp  which is 

equal to the sum of the pure prestress moment M°  and the 

secondary prestress moment M. The section at this stage is 

therefore subjected to a direct force P
e 

and a moment 

	

(M° 	ms). 

	

P 	p 

The curvature 0
p 
 produced by the prestress is 

Mo -1.-  Ms 

0 	_ 	P 	p 	 .... (4.6) 
P 	E

c
I 

where E
c 

is the elastic modulus of elasticity, which according 

to the British Standard Code of Practice 115(63) is 

E
c 	

4 + cc - 4,000  x 1o6  2,000 
.... (44) 

Stresses in fibres 1 and 2 due to prestress are 
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Cracking can take place in fibre 1 or 2. Before 

cracking commences in fibre 1, the stress in fibre I must be 
c changed by an approximation to fir  such that 

-Cr f
1 

= c
r 

 fp  .... (4.10) 

At this instant effective prestrain in steel will have 

become 
-yr f
1 es 

- 
crl 	eo 

= E
s 	s E

c 
e
l 

and the prestress force will have become 

cr1 
Pcrl P E

s e 
0 

e s 

.... (4.11) 

• (4.12) 

Similarly, when cracking commences in fibre 2 

cr1 	Ms p m°  
S ( e 	_ 

f1  
c 

= cr  — 
e
o A

c 
A
l 

Z
1 

M 

es r2 r2 p
e  + 

 
\ 

- M . -.E 
f2 	= cr 

 - es 
o Ac Z2

) Z
2 es  

• (4.16) 

.... (4.17) 

where Fr is the modified secondary prestress moment at the section. 
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Hence moment 
171cr1 

(measured from the state of 

prestress) when cracking takes place in fibre 1 is given by 

Tc1 
= Z

1  

  

ecr1  p mo s  
s 	4. 	 ) _ ..2 _ 
eo 	(Ac 
	Z 	Z 

1 1 
S 

.... (4.18) 
Lcr 

  

In a statically determinateorastatically indeterminate 

structure withaxoncordant cable profile Ms  = 0 and 17cr1  = Macr1 

Absolute moment when cracking takes place in 

fibre 1 is therefore given by 

M
cr1 

=
cr1 

+ Mo  + Ms  

Similarly, 

_ 
cr1 	o 1 

= 
P M a

s (_2 ....P.) + 
E 

ZI  c_ r- o A
c 
± Z

1 
s 	_I-- 

• (4.19) 
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o P
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Mcr2 
= Z

2  c r 	A + —2) + M°  .... (4.20) 
c Z2' 	p 

E
s t-- 	 -- 

The absolute curvatures when cracking takes place are 

and fcr  
2 + M Yier2 	E c 2  e. 

• (4.21) 

Post-elastic phase 

After cracking the strain and stress distributions in 

the section are shown in Figures 4.2(d) to 4.3(g). 

Consider an instant when the concrete strain in the 

extreme compression fibre is ec. 
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From the compatibility of strains we have (See 

Figures 4.2(d) and 4.2(e)). 

8o 

cc 	hi 
e

t
s 
	- .... (4.22) 

But as shown in Figure 4.2(g) we have 

Substituting for a t from equation 4.23,we have from 

equation 4.22 

I hi 

F2  sc di 

F
2 

C
c 

-I- 	— es -F1 
 EP  c 

.... (4.24) 

In Figure 4.2(f) is shown the stress-strain curve of 

concrete with the area under the curve up to a strain of ce  

equal to S and centroid at G. According to assumption 2 

the concrete stress block in Figure 4.2(e) is similar in shape 

to the stress-strain curve of concrete shown in Figure 4.2(f); 

the average stress in Figure 4.2(e) would be same as in Figure 

4.1(f) and is equal to S/ c 

The compressive force resisted by concrete is therefore 

C = b Ihi -S— 	 ,... (4.25) 
c 

If the stress-strain curve of steel is defined by 

fs = 	), then the force resisted by steel is 

T 	= 	A
s 
*(E 

s 
) 	 .... (4.26) 

From the equilibrium of forces acting on the section 

we have 

A Ilf(s ) = b 111 As 	s 	cc  
.... (4.27) 
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Substituting 'hi from equation 4.24 

F
2
bidi S 

A
ss) - 

F e + e -e° - F 
2csslc 

.... (4.28) 

The distance of the centroid of the concrete stress 

block in Figure 4.2(e) is 

yh - 
E-
c2  

e
c 
+ e t d 	 .... (4.29) 

The apparent resisting moment is therefore given by 

F2 	c2 
bid' Sk d 

Ma = 	 (1 	) 
F
2  ec 

 + 6
S - 1

3  
6 - F

1 1 	
E c 	Es 

.... (4.3o) 
Substituting es from equation 4.23 we have 

Ma = b ;dl d 
F S(F e + e - e°  - F eP - F 7 
2 2c s s 1c 2 c2 

(F
2 

 e 
c 
 + es- 
 s  

e°  -
1  6

13)2  
c 

(4.31) 

It would, in principle, be possible to eliminate Es  

from equations 4.28 and 4.31 and express Ma  in terms of ec  

only. Butl because of the stress-strain relationships of concrete 

and steel being non-linear, the equations 4.28 and 4.31 can only 

be solved by trial and error, which although cumbersome can easily 

be programmed for a computer. However, equations 4.28 and 4.31 

in effect gives M
a and es for an assumed value of ec.  

The absolute moment and curvature may now be calculated 

from the following expressions,and the depth of compression zone 

from equation 4.24. 
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.... (4.32) 
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Cracking 

F
2
d 

    

When cracking first takes place, the contribution of the 

concrete tensile strength to the resisting moment becomes negligible 

and there will be discontinuity in the M-0 diagram. With dead 

load or load-maintaining loading device it would be necessary for 

the steel force to increase and hence the curvature increases from 

0 	to 
0'  for M cr 

 to be maintained. At this stage the 
cr  

behaviour of the section is defined by equations 4.28 and 4.31 and 

it would be possible to get a value of e
c which gives Ma 

equal 

to Macr and hence 01  • cr 

Maximum moment of resistance 

Once M
a is expressed in terms of c it would, in 

principle, be possible to maximize Ma  by varying ec  but for 

reasons mentioned above it is not possible to do it analytically. 

It is, however, quite easy on the computer. 

Several layers of steel 

It has so far been assumed that the resultant of the 

steel forces coincides with the centroid of the steel. The 

assumption is reasonable if the steel is situated in layers 

close to one another but if the steel layers are spread n11  

over the section the assumption is not correct. Because of the 

linear strain distribution across the section,the deeper layers 
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are stressed more and the resultant of the steel forces does not 

coincide with the centroid of the steel. In such a case it would 

be necessary to consider each layer separately. 

Figure 4.3(a) shows a section with n layers of steel. 

The strain and stress distributions in the post-elastic stage are 

shown in Figure 4.3(b) and 4.3(c). 

Considering layers 1 and i we have from the compatibility 
of strains 

ec 	!hi 

 

.... (4.34) 41 	I hi 	Id1I 

ec 	ihl  • (4.35) et 
si 	Idi l 	Iht 

Eliminating ih! from equations 4.34 and 4.35 we have 

I d. 	I dil 	I dil 
e • 	(4.36) SiI 	d1  1 c esi 

Equations similar to 4.23 for the 1st and ith layers are 

1 	o 	p 
CI

2 
 (6al - cal — ri sci) Sii • (4.37) 

F2 (e si  - 6°si  F1 ePci  ) ' 

Substituting 6;1  and st. from equations 4.37 and si 
4.38 we have from equation 4.36 on simplification 

Idl l 	di  1 	1  
F
2 [ 	F1, I dil 	ec 	37 F2  (6s1 - Estsi 

	

	- F1cg1)] 

F 
65a. 	1 C  Cl 

a. 	P. 
1 .... (4.39) 

= 
C Si • (4.38) 
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Idil - I dil 	I dilo 
+ F E

p
, a. F

2 	I 
	 e

c 	d
1 	

(e
s1 	1 c-i 

 

+ 	F 6  
Si 1 CI 

.... (4.40) 

I P. 	dil 	 (4.41) 
FaTT 

n 
> 	Asi Si (ai + Pi E si )  = 	 

F e 	+ e 	- eo 	F ep 
i = 1 	 2 c 	s1 	sl 	1 c1 

.... (4.42) 

where *.1 	 Si is the function relating the strain e 	to the steel 

force f 
Si 
. 

n 

ef_ 	 *. 	+ 	e ) ( d. - 
a 	i = 1 	si 	s1 

F2  e  c2 
d
1  

F2 c  + e - e°  - F eP 2 c sl s1 1 c1 

 

(4.43) 

Now in a manner similar to that mentioned above it is 

possible to eliminate esl 
from equations 4.42 and 4.43 and express 

M
a 

in terms of sc. 

4.5 VARIABLES AFFECTING THE MOMENT-CURVATURE RELATIONSHIP 

The basic equations that govern the M-0 relationship in 

the post-elastic phase are 4.28 and 4.31, and 4.42 and 4.43. They 

are dependent on the section properties, the bond strain compatibility 

factors F
1 and F2 

and the stress-strain relationships for steel and 

The equations 4.28 and 4.31 will therefore reduce to 

F2bld1 
S 
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concrete. As mentioned earlier, the section properties and stress-

strain relationship of steel can be assessed quite accurately. F1  

is usually taken equal to unity, which is supported by research and 

is reasonable. Thus, the only factors that could lead to the variation 

observed in the author's test results are F2 and the stress-strain 

relationship for concrete. The latter in the light of Section 4.2 

would only vary by change in the co-ordinates of its apex. 

Before these parameters are studied, it would be desirable 

to examine whether a perchance variation in the prestress or the 

concrete strength at the different critical sections with similar 

geometric properties could have resulted in the observed variation. 

The effects of variation in the prestress and the concrete strength 

by ±15% have been studied in Figures 4.4 and 4.5 respectively. For 
reasons that will be obvious later the other parameters were fixed 

as 	eco = 0.002, f co = 1.05 c
c
, and F

2 
= 0.8 for beams and 0.5 

for frames. It will be seen that the variation in concrete strength 

has some effect on the curvature corresponding to the ultimate 

moment. The variation in concrete strength also results in the 

variation of the maximum flexural strength. 	Since the measured 

maximum flexural strengths of the different critical sections with 

similar geometric properties were practically the same, the above 

factor cannot be taken to account for the observed variation in 

the moment-curvature relationships. 

We are now left with F
2' 

and c
co 
 and fco 

 only. For 

the reason given above, f
co 
 should have practically the same value at 

all the critical sections with similar geometric properties, which 

means that f
co  would be related to the cylinder strength c

c  by 

the same factor; f 	taken equal to 1.05 cc 
gave consistent co 

results throughout. The factors that need to be considered are 

therefore F
2 and s co. The measured quantities available for 

checking are the maximum apparent moment of resistance and the 

corresponding curvature and concrete strain in the extreme compression 
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fibre. Now if the variation of F
2 

and e 
co 
 confirms the 

observed data, then the author's postulate and the theory 

presented in Section 4.4 would seem reasonable. 

The variations of F
2 

and e
co 
 have been studied 

in Figures 4.6 and 4.7 where the theoretical ultimate apparent 
moments and the corresponding curvatures and concrete strains 

in the extreme compression fibre have been plotted against F2; 

results for F
2
< 0.2 were found to oscillate and have not been 

included. It will be seen from Figures 4.6 and 4.7 that F2 
has little effect. In the tests the value of F2 

 should have 

lain between 0.2 to 1.0. Extensive research would be necessary 

to determine factor F
2 

for different bond conditions. In the 

present investigation the diameter of the duct-tubing used in the 

frame members was small and bond with the grout was not expected 

as good as that in the beams which had a comparatively larger 

diameter duct-tubing. A value of F2  equal to 0.8 for the 

beams and 0.5 for the frames gave consistent results throughout. 

In Figures 4.6 and 4.7 the results have been calculated 
for e = 0.002 and 0.004 only. They show a large variation in 

co 
the curvatures and concrete strains and little variation in the 

ultimate flexural strengths. It appears to the author that the 

value of e
co 
 varied considerably at the different critical sections 

in the author's tests, which resulted in the different M-0 relation-

ships for identical sections. The authors extreme experimental M-06 

relationships for similar sections have been compared with the 

corresponding theoretical M-0 relationships obtained by taking 

different values of s
co 
 in Figures 4.8 and 4.9, which show a 

reasonable agreement throughout and confirm that the M-0 

relationships for sections with similar geometric properties 

cnild  vary by virtue of change in 
eco. 
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4.6 AUTHOR'S TEST RESULTS AND TENTATIVE SUGGESTIONS  

The experimental moment-curvature relationships for the 

various critical sections of the authors continuous beams and 

frames are given in Figures 7.25 to 7.31. Working backwards the 

author has determined the values of 6 	which result in 
co 

theoretical M-0 relationships that have a fairly reasonable 

agreement with the measured relationships. The results of such 

an analysis for the critical sections with similar geometric 

properties are given in Table 4.2, which along with the values 

of 	s 
co  gives the resulting theoretical maximum moments of 

resistance and the corresponding curvatures and concrete strains 

in the extreme compression fibre. The corresponding experimental 

results are also given in this Table. Comparison between the 

flexural strengths is extremely good except f•or the cases where 

grouting was not satisfactory. The comparison between the curvatures 

and concrete strains is not so good,but if we take into account the 

fact that the curvatures and strains correspond to moments lying 

between 0.89-0.98 of the maximum moments, and that for many of the 

critical sections, as pointed out in Chapter 3, they pertain to 
the points displaced :4.4. in. from the critical sections, and 

represent under-measured values, then the curvatures would also 

show a fairly reasonable agreement, but the concrete strains do 

not show such a good agreement. The explanation for this, to the 

author, lies in the fact that near collapse there is some redistribution 

in the concrete stress block, with the result the neutral axis rises 

and for the same curvature the concrete strain in the extreme 

compression fibre gets somewhat reduced. This, in other words, 

amounts to the fact that near collapse the strain distribution in 

the concrete compression zone does not remain linear, as assumed. 

The experimental strain distribution near failure in the compression 

zone was non-linear, although it could reasonably be approximated to 

a linear variation. 
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Table 4.2 has been prepared with a view to examine 

whether the test results could lead to any pattern which may be 

useful for analysing statically indeterminate structures. It 

was postulated that the value of sco  is varied by the presence 

of a restraint - the more severe the restraint the higher the 

value of P
co
' The restraint in a prestressed concrete structure 

- 
results from the following:- 

1) The beam-column interconnection, 

2) The gradient of the absolute bending moment 

distribution at failure, 

3) The transverse gradient of the strain 

distribution on the section, 

4) The structural configuration, 
5) Truss action. 

The critical sections of the test beams included in 

Table 4.2 had identical geometric properties. It will be seen 

from Table 4.2 thatl except those of beam B-3, for all the critical 

sections of beams s 	varies from 0.002 to 0.004. The value of 
co 

co for the critical sections of beam B-3 is 0.006, which is 

rather high as compared to those for the other similar critical 

sections. It is difficult to exactly find out the reason for 

this. However, an examination of the experimental M-0 diagrams 

for the critical sections of beam B-3 shows that the range of the 

initial linear portion is somewhat less 	compared to that for 

the other similar critical sections. This suggests that the 

prestress available at the critical sections of beam B-3 was less 

than that available at the other critical sections. A reduction 

in prestress has an effect of shifting the M-0 diagram towards 

right (see Figure 4.4). It appears to the author that the results 

of beam B-3 are misleading and should not be considered. From the 

other results it would be reasonable to assume that for the 

critical sections of the test beams eco' 
on an averagetwas 
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0.003. The restraint conditions of the various critical sections 

were practically similar and to have the same value foris 
ca 

reasonable. 

The critical sections of the test frames included in 

Table 4.2 had identical geometric properties. It will be seen 

from the Table that for the critical sections other than C, 

the value of c 	is 0.006 in most of the cases. The restraint 
co 

conditions at these critical sections, i.e. A, D
1 

D
2 

and E 

were practically similar from test to test and it is reasonable to 

obtain the same value for 6
co 
 The restraint conditions at the 

critical section C varied from test to test, which resulted in 

the variation of e 	for this critical section. The factors co 
contributing towards the restraint at the critical section C 

were practically same except for the 'gradient of the absolute 

bending moment distribution at failure', which was sharp in the 

case of frames F-4 and 5 and shallow for F-3 by virtue of positioning 

of the prestressing cable (see Figure 7.5). Thus the restraint available 

at C in F-4 and 5 was more severe than that in F-3, and to obtain 

a 	equal to 0.00-6,005 for F-4 and 5 and 0.0015 for F-3 seems co 
reasonable. Similarly, the restraint conditions available at 

the critical sections A, D1, D2  and E of the test frames 

were more severe than those for the critical sections of the test 

beams, and to obtain sco  equal to 0.006 for the frames and 0.005  

for the beams also seems reasonable. 

The author's experimental data is too meagre to make 

any recommendations. However, based on the author's limited 

experimental evidence the following tentative suggestions are 

made, which are subject to modification in the light of further 

research. Depending upon the actual restraint conditions, the 

following values for s
co  may be assumed:- 
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Characteristics of restraint 	Suggested COE 

1. SEVERE RESTRAINT such as those met 

at the beam-column intersections 

of frames 

2. MODERATELY SEVERE RESTRAINT such as 

those met at the loading plates of the 

continuous structures but with 

additional restraint due to prestress-

ing cables 

3. MODERATE RESTRAINT such as those met at 

the loading plates of the continuous 

structures 

4. LITTLE RESTRAINT such as those met at 

the loading plates of simply supported 

beams 

0.006 

0.0045 

0.003 

0.002 

5. VERY LITTLE RESTRAINT such as those met 

in the region of constant moment 	0.0015 
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4.7 CONCLUSIONS 

(1 ) 
	

The theory presented for the analysis of flexural 

stress-resultant-deformation characteristic of a prestressed 

concrete section shows that the maximum moment of resistance 

of a section would not occur at any fixed value of concrete 

strain in the extreme compression fibre, and requires the 

stress-strain curve of concrete in flexural compression to 

be completely defined. 

(2) The stress-strain curve of concrete which is 

tentatively suggested to be defined by equations 4.4 shows 
reasonable agreement with Soliman's experimental curve for an 

eccentrically loaded prism. 

(3) The divergence in the experimental moment-curvature 

relationships for sections with similar geometric properties 

could result from the variation in the concrete strain 

corresponding to the maximum stress of the stress-strain curve 

of concrete, which depends upon the degree of restraint 

available at a particular critical section. 



TABLE 4.1  

EFFECT OF CONCRETE STRESS BLOCK ON ULTIMATE FLEXURAL STRENGTH AND CORRESPONDING DEFORMATIONS  

(eco = 0.002, fco  = 1.05 cc 
F2 = 0.8 for beams and 0.5 for frames) 

2f 
fc 	= 

C.E.B. (parabolic 

...._ 	. 

,6c 

Concrete stress 
block 

rectangle) 

Apparent 
ultimate 

moment, lb in, 

127,700 

(87,100) 

corresponding 
curvature, 

in-1  

corresponding 
max. concrete 

strain 

0.0020 

(0.0027) 

0.0035 

(0.0035) 

, 

127,000 
(86,200) 

0.0023 
(0.0031) 

0.0040 
(0.0041) 

kl!----) 
co 

1 

CO

6 

() + 
2 

6 
CO 

fc  -.: f co. 

f 	= f 	e-0.08 
C 	CO 

) 	(ec 	)2], for e 4e 
C 	CO 

for 	e >e 
C' CO 

129,200 

(87,500) 

0.0026 

(0.0035) 

0.0045 

(0.0045) 

[2.( C-9--e  
CO 

6  
CO 

4 
1"-- z-' 
6r 

 - - l'.] 	1  
_ 
CO 

(Continued) 



Table 4.1 (Cont.) 

Concrete Stress 
block 

Apparent 
ultimate 

moment, lb in. 

corresponding 	, 	corresponding 
curvature, 	I 	max. concrete 

in- 1 	strain 

F 	ec 	
(119 )1 ) f 	= f 	f2( 6 	"<' e 

128,600 
(87,100) 

	

0.0023 	0.0041 

	

(0.0035) 	(0.0045) 

COI 	E 
C 	col 	e 

f 	= f 	e-0.121---- 

- s 
CO 

1-13  - 

,f or C 	CO 

C 	CO 
for 	6 LE- 	j , 	i 6 

CO 	C 	CO 

) 	(6
c 
 --)
2  

127,800 

(86,700) 

0.0023 	0,0041 

. 	(0.0034) 	(0.0045) 

fc  = fco 1?sc  6 CO 	CO 
r.cc -1 -0.161— - 

, ,for 	s C--e j-,-.: 	CO 

2  
f 	=f 	e 	i e 
c 	CO 	-CO 	. , 	for 	e_:-•-- e 

C 	CO 

f 	F2 -42....) 	(Cs_.)21 	e- e f 	= 	_ .for 
127,900 
(86,900) 

0.0026 	0.0046 
(0.0039) 	(0.0052) 

c 	co:- 	6 	6 

	

- 	co 	CO 

11 _
f
a - -0.14 e.

F 
1  ' 	co 

.-1 

1.5for 
f 	=fe c 	co 	-co 

6 c>'  6 co 

Figures without brackets refer to the beam section, i.e. 4 x 6 in. concrete section with 
3 No. 0.276 in. dia. prestressing wires at 4.3 in. effective depth; and those with 
brackets refer to the frame section, i.e. 3i x 6 in. concrete section with 2 No. 0.276 in. 
dia. prestressing wires at 4.1 in. effective depth. 	 ‘04 



TABLE 4.2  

COMPARISON OF EXPERIMENTAL  AND THEOREAICAL (PROPOSED  METHOD) ULTIMATE FLEXURAL STREN3THS 
AND CORRESPONDING CURVATURES AND CONCRETE STRAINS IN EXTREME COMPRESSION FIBRE  

;Struct Critical 
section 

s 
co 

Theoretical 

Mau 	0 at M__ 

lb in. 	in  
8
c 
at 

Mau 

Experimental 

Max. 0 M
au 

lb in. 	in 

Max. ec  Characteristics 
Remarks of restraint 

B-1 D' 0.002 128,000 .0026 .0046 112,000 .0017 .003 moderate 	grouting not 
satisfactory 

B-2 DI 0.0015)avg. 126,000 ,00D2 .004 129;000 .0046 70046 It 

D 0.004).0027 134;000 ,OC4 0.01 135,000 - - It 
B. 0.002 128,000 .0026 .0046 135,000 .0019 .0033 It 

B-3 D o.006 139;000 .0078 .016 136;000 .0044 .0058 ft 

EL 0,006 139;000 .0078 ,.016 135;000 .0053 .007 ti 
13,4 D 0,004 134;000 .0054 0.01 130l000 .003 .0042 II 

B 0.003 131,000 ,0039 .007 138,000 .0026 .0045 it 
F-2 A. 

a &D 
1 	2 

0,006 

0,006 

95,000 

957000 

.011.8 

.0118 

.018 

.018 

87,000 

86;000 

.0071 

.0069 

.008 

„0074 

Severe 
If 

4Vg. 
h 0.006 95;000 .0118 .018 90;500 .005 .0075 1, 

F-3 A. 0.006 951000 .0118 .018 90;50o .007 .0059 it 
c 0,0015 86;000 ..0028 .c.-)75 851000 .0013 .0021 Very little 

D2 0.006 95l000 .0118 .018 79,500 .0067 .0062 Severe 	grouting not 

F-4 
E 
A 

0,006 
0,006 

95;000 
95,000 

.0118 

.0118 
.018 
.018 

92;000 
907000 

.007 

.008 :(())00761-1 
IT 	satisfactory 
tt 

a 0,004 91,000 .0079 .011 89,500 .0049 .0047 moderately 
severe 

D
1  0.006 95;000 .0118 .018 92,5W .0084 .0072 Severe D2  0.005 93;000 .010 .015 92,000 .006 .0041II 
E o.006 95;00o .0118 .018 91;000 .0062 .0060 it 

F...5 A. 0.004 91;000 .0079 .011 90,500 .003 .0035 11. 
C- 0.005 93;000 .010 .015 93,000 .co4 .0039 moderately severe 
D 0.006 95;000 .0118 .018 851000 .0049 .0049 Severe 	grouting not 
E2  0.006 95,000 .0118 .018 97,500 .0056 .0067 II 	satisfactory 

Note The experimental curvatures and concrete strains in the extreme compression fibre are 
under-measured values since they correspond to moments lying between 0.88-0.98 of the 
maximum moments and were measured in many of the cases at points displaced 44. in. from 

the critical sections. 
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CHAPTER 5  

REDISTRIBUTION IN STATICALLY INDETERMINATE  

PRESTRESSED CONCRETE STRUCTURES  

5.1 OBJECT AND SCOPE  

The up to date research in statically indeterminate 

prestressed concrete structures subject to monotonically increasing 

load, that is all loads are increased in proportion from zero load 

to the ultimate load, consists of a large number of tests on 

different types of structures ranging from two-span beams to 

fixed portal frames. The results of such tests show that?  in 

general, full redistribution does not take place in prestressed 

concrete structures. The object of this Chapter is to establish 

why, in general, full redistribution does not occur in statically 

indeterminate prestressed concrete structures. One explanation of 

this phenomenon could be the 'limited rotational capacity of concrete 

hinge' but, for many of the tests experimental results do not agree 

with those predicted by an analysis based on this concept. 

The author here examines if the moment-curvature 

relationship with a drooping characteristic, as set out in 

Chapter 4, can explain all the test results satisfactorily 

without imposing restriction on rotational capacity of a concrete 

hinge. The difficulty in verifying this approach for two and 

three-span beams lies in the fact that in the majority of the 

cases moment-curvature or load-moment curves have not been 

obtained well past the maximum load. It has therefore been 

done here in an indirect manner. First it is postulated that 

prestressed concrete structures behave according to the moment-

curvature relationship with a falling branch. It is then shown 

that in such a case a statically indeterminate structure would 

carry ultimate load with 'over-redistribution' and rarely with 
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Ifull-redistribution'; and mathematical conditions necessary for 

'over-redistribution' are set up for various conditions of failure. 

If the conditions typical of the various tests reasonably agree 

with these theoretical conditions, then it would mean that the 

postulate is reasonable. 

To this end, it is necessary that conditions typical of the 

various tests on two and three-span beams are first established, 

which is done in Sections 5.2 tnd 5.3. 

5.2 TESTS ON TWO-SPAN BEAMS  

Early tests on two-span prestressed concrete beams were 

, carried out by Guyon(21) Morice and Lewis
(36) Bennett(

24)
, etc.  

who observed practically full redistribution in almost all cases. 

LaGrange(14), in June 1961, published the results of an 

exhaustive series of tests on prestressed concrete beams and frames. 

All his beams and frames had either concordant or linearly transformed 

cable profiles. All his two-span beams had each span equal to 

7 ft 6 in. and were loaded at mid-spans. Beams 139 and 146 
were loaded in both spans and had a concrete section of 2i x 4 in. 

with 2 No. 0.2 in. diameter prestressing wires; beams 159, 164, 

165, 182, 196 and 167 were loaded in one span only and had a 

concrete section of 3 x 7 in. and 4 wires of 0.2 in. diameter. 
Redistribution was complete in beams 139 and 146; beam 139 failed 

by the formation of all the three hinges simultaneously and beam 146 

by the formation of first hinge at the support. The remaining beams 

failed without full redistribution and had the first hinge in the 

span. 

Except beam 167, LaGrange's beams with concordant cable 

profiles had the disadvantage that the cable profiles were obtained 

by making the eccentricities at the critical sections proportional 

to elastic moments due to loads. Thus LaGrange's tests, to, some 
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extent, can be criticized for not being carried out under severe 

conditions for redistribution. However, beam 167 had a straight 

cable profile along the centroidal axis and factor for scope for 

redistribution Sc was 2.37. This beam failed in a manner similar 

to other beams loaded in one span. 

LaGrange, however, noted that whether full redistribution 

took place or not, the maximum loads carried by beams with linearly 

transformed cables were practically the same as that carried by the 

parent beam with the concordant cable profile. 

Mallick(25), in November 19621  published the results of 

tests on twenty-one two-span prestressed concrete beams tested at 

the Indian Institute of Technology, Kharagpur. Three of the beams 

failed prematurely and, since no ultimate moments were reached, they 

were not included in the final analysis. Four of the beams were of 

T-section (three inverted T) and the remainder were of rectangular 

cross section. Except beams P11, 13 and 17 which were loaded in one 

span only, all beams were loaded symmetrically by single concentrated 

load in each span. Each span was 7 ft 6 in. and the position of the 
load from the central support varied from 0.27 to 0.73 of the span, 

giving a large variation in Sc. Redistribution is reported to be 

complete in all beams except P3 and P6 where, it should be noted, 

the first hinge was formed in the span. In beams P3 and P6 loads 

were applied at 0.73 of the span from the .central support and Sc 

was 1.9 for P3 and 1.17 for P6. Beams T2 to 4, in which the 
effective depth was 2.5 in. at the central support and 4.5 in. 

under the load points, need a special mention. Sc varied from 

2.40 to 3.36 and still full redistribution took place. 

Beams T2 and 3 had nearly the same cube strength and were 
identical in all respects except that T3::. has -4. in. diameter mild- 

steel stirrups at 3.5 in. pitch and T2 had no shear reinforcement. 
The ultimate loads carried by them were 8,900 and 8,200 lb respectively. 

The increase in load was due to the slight increase in the ultimate 
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strength of the load section of beam T2. This shows the order of 

accuracy one should expect in practice for concrete structures. 

Naughton(41), in November 1963, published the results of 

four prestressed concrete beams continuous over two spans each of 

10 ft. Each beam had a constant rectangular cross section of 

4 x 6 in. and was loaded symmetrically about the central support. 

Beams El and E3 were loaded at 6 ft 3 in. and beams E2 and E4 at 
7 ft 6 in. from the end supports. Each beam was prestressed with 

3 wires of 0.276 in. diameter and had a 4 in. diameter mild steel 

bar in each corner. The effective depth of the prestressing wires 

at all the critical sections in all beams was kept equal to 4 in. 

The only parameter varied was the cable profile in between the 

critical sections, which was curved over the central support in 

between the load points in all beams but was straight in the 

remaining length for beams E3 and E4 and curved for beams El and EL 

Each beam was tested as a concordant beam, and concordancy was 

obtained by adjusting the relative heights of the supports. The 

value of Sc for beams El and E3 was 1.65 and that for EE and E4 

was 2.54. Naughton's tests were thus carried out under quite severe 

conditions and still they showed full redistribution. All beams, 

except E3 which failed prematurely by rupture at load point due to the 

breaking of the weld in the untensioned steel, failed by the 

formation of the first hinge at the support. 

Naughton also observed that the variation of cable profile 

in between the critical sections did not appreciably affect the crack 

pattern or the general behaviour of the beams. 

Raina(37), in March 1966, published the results of six 

prestressed concrete beams which were continuous over two equal 

spans each 9 ft and loaded at the centre of each span. Each beam 
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had a cross section of 4 x 6 in. and was prestressed with 3 No. 

0.276 in. diameter wires. Beams CB-1 and 6 had the same 

concordant cable profile and were similar except that CB-6 

had some untensioned longitudinal steel. Beams CB-2 to 5 

had linearly transformed cable profiles obtained from CB-1. 

Full redistribution was obtained in beams CB-1 to 4 and 6, but 

beam CB-5 carried an ultimate load of 6,500 lb only as against 

7,440, 7,540, 7,790 and 7,620 lb carried by beams CB-1 to 4 

respectively. Beam CB-5 failed by the formation of the first 

hinge at the support section. The moment measured at the mid-

span at failure was 154,800 lb in. as against its calculated 

apparent ultimate moment of 181,400 lb in. 

In the author's two-span beams, which are described in 

Chapter 7, full redistribution was obtained in all cases except 

beam B-1 which failed by the rupture of the span section for 

reasons mentioned in Chapter 7 and will be excluded here. 
Beams B-2 to 4 had similar geometric properties at all the 

critical sections; the only parameter varied was the cable 

profile in between the critical sections. Beams B-2 and 4 

failed by the formation of both the support and span hinges 

simultaneously, and beam B-3 had the first hinge at the support. 

From the above it is clear that, in general, full 

redistribution in two-span beams does not occur and whether 

full redistribution would occur or not is not governed by Sc 

or the relative rotations at the various critical sections, as 

also pointed out by many others(14'36).  Excluding Raina's beam 

CB-5, there seems to be only one difference to the author between 

the tests in which redistribution was complete and those where it 

was not, namely the difference in the place of the first hinge. 

In Mallick's beams P3 and 6 and LaGrange's beams 159, 164, 165, 

182, 196 and 167 in which full redistribution did not take place 

first hinge was formed in the span. 
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5.3 TESTS ON THREE SPAN BEAMS  

The early tests on three span prestressed concrete beams 

were carried out by Macchi(22), who did not dbserve full redistribution. 

These tests, however, had the disadvantage that the evaluation of the 

ultimate flexural strengths of the critical sections was made by 

using control tests and not from the measurement of the redundant 

reactions. Another series of early tests on three-span beams was 

carried out by LaGrange(14) who observed practically full 

redistribution. 

The exhaustive series of tests on three-span prestressed 

concrete beams consist. of sixteen tests by Cooke(11) at the 

University of Leeds and twenty-seven tests by Mallick and Sastry
(26) 

at the Indian Institute of Technology, Kharagpur. These tests were 

carried out under symmetrical conditions of load and span and 

covered several outer and inner span lengths with one or two 

concentrated loads in the inner span, or a concentrated load in 

each outer span. The overall cross section of all beams was 

4 x 6 in; the other parameters varied were the cable profile and 
the effective depths at the critical sections. Full redistribution 

has not been reported in Cooke's tests, except beam 15 in which two 

concentrated loads at 17 in. on either side of the centre of the 

inner span were applied and the first hinge was formed at the 

supports. In the remaining beams, where only a single concentrated 

load at the centre of the inner span was applied and the first hinge 

was formed in the span, full redistribution was not observed; when 

ultimate load was reached, the moment measured at the support section 

varied from 0.86 to 0.96 of the ultimate flexural strength, which 

was actually measured by continuing the tests beyond the ultimate 

load. 

On the other hand, in the majority of Mallick and Sastry's 

tests practically full redistribution has been reported. In these 
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tests, whether full redistribution was complete or not was assessed 

by comparing the measured ultimate load, and moments at the critical 

sections with the corresponding calculated quantities. The measured 

ultimate load, expressed as the ratio of the calculated ultimate 

load varied from 0.87 to 1.04 and the apparent moment measured at 

the second hinge at ultimate load, expressed as the ratio of the 

calculated apparent ultimate moment varied from 0.86 to 1.00. If 

due consideration is made to the order of accuracy of such calculations, 

the above variation is practically of the same order as observed by 

Cooke. Cooke's conclusion is based on the measured ultimate flexural 

strengths and is more refined but, as pointed out in Chapter 3, 

Cooke's measured moments had the inconsistency that they were not 

measured from the same datum. To the author, the difference in the 

two conclusions is merely of interpretation and both series of tests 

do show that, in general, full redistribution does not take place in 

three-span prestressed concrete beams. It would be noted that 

wherever full redistribution did not take place, the first hinge 

was formed in the span. 

5.4 FULL-REDISTRIBUTION, OVER-REDISTRIBUTION AND 
UNDER-REDISTRIBUTION  

Tam 'full redistribution' has so far been used in the 

sense normally implied in structural steel work, that is if the 

ultimate load of a statically indeterminate structure is equal to 

the plastic load, then the structure is said to have exhibited 

'full redistribution'. On the other hand, if the ultimate load 

of a statically indeterminate structure is less than the plastic 

load, the structure is said to have not exhibited 'full redistribution'. 

In these definitions nothing is specified about the actual moments at 

the various critical sections at collapse. Since the moment-curvature 

relationship for mild steel has a long plateau at the maximum moment 

of resistance (the effect of strain hardening is usually ignored), it 
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is implied that the moments at the critical sections at ultimate 

load would either correspond to the flat plateau or the rising 

portion. In the light of theoretical moment-curvature relationship 

of Chapter 4 and the experimental load-moment or load-deflection 
curves, it would be appropriate to assume that the moment-curvature 

relationship for prestressed concrete has a drooping characteristic 

after the maximum moment is reached. In such a case the situation 

would be different. In the case of 'full redistribution' being not 

complete, it is not necessary that the moments at some of the 

critical sections correspond to the peak point and those at the 

remaining ones to the rising portion of the moment-curvature 

diagram. 'Full redistribution' in a prestressed concrete structure 

would only occur if at collapse the moments at the critical sections 

which form the collapse mechanism are at the peak of their respective 

moment-curvature diagrams. In practice it would be quite rare, 

unless specially aimed at, and, in general, some of the critical 

sections which form the apparent collapse mechanism are beyond the 

peak i.e. on the drooping portion of their respective moment-

curvature diagrams whilst the others are either at the peak or on 

the rising portion of their respective moment-curvature diagrams. 

In the light of the meaning assigned to 'full-redistribution', 

this state can be described as 'over-redistribution'. The state 

when some of the critical sections which form the apparent collapse 

mechanism are at the peak of their respective moment-curvature 

diagrams whilst the others are still on the rising portion would be 

called as 'under-redistribution'. Obviously the state of under-

redistribution cannot take place in a statically indeterminate 

prestressed concrete structure. However, if the slope of the 

drooping portion of the moment-curvature diagram for most of the 

critical sections which form the apparent collapse mechanism is 

shallow and the collapse takes place when the moment at any of 

the critical sections of the apparent collapse mechanism is still 

on the steep rising portion, then 'over-redistribution' can be 
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mistaken for 'under-redistribution'. Similarly, if failure takes 

place when the moments at some of the critical sections of the 

apparent collapse mechanism are on the shallow drooping portion, 

and the moments at the remaining critical sections of the apparent 

collapse mechanism are on the shallow rising portion of their 

respective moment-curvature diagrams, then 'over-redistribution' 

can be mistaken for 'full-redistribution'. In order to determine 

whether 'full-redistribution' or 'over-redistribution' takes 

place in a test, the moment-curvature relationships for the critical 

sections which form the apparent collapse mechanism should be 

obtained right up to the maximum load. As pointed out in Chapter 3, 

it is not possible to do so through the usual methods of measuring 

local curvatures. The alternative is to obtain load-moment curves 

for all the critical sections well past the maximum load, but such 

relationships have been published for a few investigations only. 

In the absence of such data there is no confirmatory basis. If 

the slope of the drooping portion of the moment-curvature 

relationship for the earlier hinges is shallow over a long length, 

then it is very likely that the effect of over-redistribution 

remains unnoticed and itisrertqtaken as full-redistribution. In 

such a case, sometimes, even from'the load-moment curves, it is 

not possible to detect the effect of 'over-redistribution', since 

it may be of the same order as the order of accuracy of 

experimental work. 

According to the above, the cases of incomplete 

redistribution so far described are the cases of 'over-redistribution' 

in which the moments at some of the critical sections of the apparent 

collapse mechanism were either on the steep rising portion or on 

the steep drooping portion of the respective moment-curvature 

diagrams. 

The phenomenon of 'over-redistribution' was first 

observed by LaGrange(14), but at present, to the author's knowledge, 
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there is no satisfactory method of analysis which considers this 

phenomenon. The author has here presented a theory which takes 

into consideration this phenomenon to describe the behaviour of 

a statically indeterminate prestressed concrete structure. This 

has been illustrated by applying to two and three-span beams, 

since the author wanted to interpret the test result of such 

structures only. The same can, however, be applied to other 

structures as a part of an extensive thesis on the subject. 

5.5 ASSUMPTIONS IN THE PROPOSED ANALYSIS  

(1) The 'Compatibility criterion' in a statically indeterminate 

structure at any stage is governed by the curvature distribution along 

the structure for the corresponding load stage. In the light of the 

theoretical moment-curvature (M-0) relationship set out in Chapter 4, 
and the experimental load-moment and load-deflection curves, it would 

be appropriate to assume that the moment-curvature relationship for a 

prestressed concrete section has a drooping characteristic. Thus, 

for a statically indeterminate prestressed concrete structure at an 

instant when some of the critical sections have reached their 

maximum moments of resistance, for any further increase of load 

some of the critical sections will be on the drooping portion and 

the others on the rising portion of their respective moment-curvature 

diagrams. There is little experimental evidence showing the 

distribution of curvature along the structure when a critical 

section is on the drooping portion of the M-0 diagram. In the 

light of experimental evidence shown by Edwards(34) for simply 

supported reinforced concrete beams, it would be reasonable to 

assume that when the moment at a critical section corresponds to 

the drooping position of the M-0 diagram, then the moments at all 

the sections between the adjoining points of contraflexure will be 

decreasing but with increased curvatures over the cracked length., 

It will be further assumed that corresponding to such small 
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increase in curvature (which is accompanied by decrease in 

moment) at a critical section, increase in curvature at any 

section in the adjacent cracked length is linear, and the 

changes in elastic curvatures over the uncracked length are 

neglected. Similarly, for the critical sections where the 

moment will be increasing, it is assumed that corresponding 

to a small increase in curvature at a critical section, the 

increase in curvature at any section in the adjacent cracked 

length is linear, and that changes in elastic curvatures over 

the uncracked length are neglected. 

(2) After the instant when some of the critical sections 

have reached their maximum moments, changes in curvatures at' 

the critical sections other than those forming the apparent 

collapse mechanism areassumed small as compared to those at the 

critical sections forming the apparent collapse mechanism and 

are neglected. 

(3) The moment-curvature relationship for a critical section 

is assumed continuous on either side of the peak moment, which is 

reasonable in the light of Chapter 4. 

5.6  PROPOSED THEORY FOR THE ANALYSIS OF STATICALLY 
INDVIERMINATE STRUCTURES WITH DROOPING MOMENT-
CURVATURE CHARACTERISTIC.  

Consider an a times statically indeterminate planar 

structure subjected to planar proportional loading and where only 

the flexural deformations are significant. Up to the instant 

when one or some of the critical sections have just reached their 

maximum moments of resistance and the others are still on the 

rising portion of their moment-curvature diagrams, its behaviour 

can be established by any well known method by satisfying both 

'compatibility' and 'equilibrium' requirements. If the various 
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loads acting on the structure can be expressed as ratios of load 

W, then at any stage subsequent to the above for an increase of 

load bW moments at some of the critical sections will be 

increasing, whereas at the others they will be decreasing such 

that 
a 1-1 

bW = 	k. SM. 	 'sem (501) 1 1 
1 

where k.'s are the (a + 1) constants defining the equilibrium; 

and 	SM. 	is the change in moment at the critical section i 1 
due to load bld. 

During the application of load bW, curvatures at 

critical sections which are undergoing increasing moment or 

decreasing moment corresponding to the falling branch of the 

M - 0 diagram will be increasing. 

If o0;i is the change in curvature at the critical 

section i due to the application of load OW, then 

dm i 

I5M" = (77)M. 	T7 "i .... (5.2) 

where superscript i after the round brackets denotes the 

critical section i; and 

Ivy.  is the absolute bending moment at the 

critical section i just before the application of load SW. 

Substituting equation 5.2 in equation 5.1, we have 

a -I-1 

i  dM t  
40S. S W 	= /\ 	ki  (-0)

mi 
= Ti-i.  6 0± 	(3.3) 

......_1 
i 

For 'compatibility' requirements to be satisfied 

Jim
T 

b0 ds = 0 	 ....0 (5.4) 

•s 
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1 

For W to assume a stationary value, 

.... (5.7) ram, "m.I  = FL K. 1 
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where m is the functional matrix in positional co-ordinates 

s and corresponds to 1 x a bending moment distributions due to 

unit bi-action applied in turn at each release of the reduced 

structure; and 

00 is the functional matrix in positional co-ordinates 

s and corresponds to change in curvature distribution over the 

structure due to load OW. 

In the light of assumption (2) made under Section 5.5, 

can be expressed in terms of ofL(i = 1 	a+ 1). Thus 

equation 5.4 represents a equations in 601(i = 1,2 .. a + 1) 

unknowns and can be solved in terms of say 601, i.e. equation 5.4 

yields 

00i 	= ci  6  01 	(i = 2,3 .. a + 1) 	.... (5.5) 

where c. is a constant. 

Substituting equation 5.5 in equation 5.3, we have 

a+1 

OW = 	k.1 c.J. 	)M = 	6°1 i 

or 

1 

a 1 

K. (divi  \717)1,1. . F
1 

 
.... (5.6) 

where K, = k. c.. 
1 I 

w 
In the limit, O 

	dW 	and equation 5.6 yields 
bp 	dp1 

+1a  

dW = 0 
1 
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and since minimum value is the trivial case, this is the 

necessary and sufficient condition for W to be maximum. 

Hence W will be maximum when 
a+1 

ki (70M. = TT. ' 
dM 

1 
	 (5.8) 

1 

Equation 5.8 is true for any stage after the instant 

when some of the critical sections have just reached their 

maximum moments of resistance whereas the others are still on 

the rising portion of their moment-curvature diagrams. Hence, 

starting from this instant and proceeding by step by step 

increment method, maximum load W will be obtained when 

equation 5.8 is satisfied. This can either be done on a 

computer, or by a semigraphical method after drawing the 

moment-curvature diagrams for the various critical sections 

forming the apparent collapse mechanism. 

5.7 ANALYSES FOR TWO AND THREE-SPAN BEAMS 

Case (i) Symmetrically loaded beam with two 

equal spans 

Consider a symmetrically loaded beam ABC of two equal 

spans loaded at D' and D; see Figure 5.1. Consider a stage 

subsequent to the instant when the first hinge has just passed 

its maximum moment and the second hinge is still on the rising 

portion of its M - 0 diagram. Let R13  and MD  be the absolute 

moments at B and D respectively at this instant. If 6MB  and 

6% are the small changes in absolute moments at B and D 

respectively for a small increase in load OW, then from equilibrium 

we have 

p(1 -p) OWL = 6 MD  + p 	 .... (5.9) 
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"D = (70 D 
M RD 

60D 
.... (5.12) 
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In the light of Section 5.5, for the beam in which 

the first hinge is formed at the support section, the bending 

moment and curvature distributions along the beam before and 

after the application of load 6W can be assumed as shown 

in Figure 5.1. 

For 'compatibility' requiretents to be satisfied 

J121 	

ds = 0 

i.e. - 2 
1 	1 ,(

I) 	 (5.10) —60
B 	 2 + 2. —6x)- 	p 	= 

Here it is assumed that the centre of gravity of 

curvature distribution over the cracked length near D coincides 

with the critical section D, which is reasonable since the 

difference will be of second order. 

From equation 5.10 we have 

1
D 

60B = 2p— 601 (Numerically) 1
B 

.... (5.11) 

and 

6 M
B 
= dMB 	

60B M =
B 

iD
dM   

2 pr ( )
B 
	6 OD  from eq. 5.11 
M = M

B 	.... (5.13) 

Substituting equations 5.12 and 5.13 in equation 5.9, 

we have 

dM 	dM 13 (1 - 13 )614 L = [r D 	ID 2p2 	(u)
B  

M = ND 	B 	M = F-IB 
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For reasons given in Section 5.6, W will be 

maximum when 

dM D 	2 ID dM B (-74) 	+ 2 p 	(7) 	o dp  
M=MD 	B 	M = FIB  

.... (5.14) 

If B is the first hinge to form, then in equation 5.14 
dM B (470 will pertain to the drooping portion of the moment-

curvature diagram for the critical section B and will be negative, 

and (5)D  will pertain to the rising portion of the moment-curvature 

diagram for the critical section D and will be positive. Thus, in 

such a case W will be maximum when 

(44)D  _ 2p2 1D ,dM)  B kug 	(Numerically) 

4g) M  = MD 	B P  M = 

(Rising portion) 	(Drooping portion) 	.... (5.15) 

For the prestressed concrete sections usually met in 

practice, the slope of the falling branch of the M - 0 diagram 

for some length adjacent to its peak is nearly constant and is 

smaller than that of the rising portion near the peak and since 

13  <1 and 1D/1B =4 1, equation 5.15 for usual values of p will 

be satisfied when MD  is nearly equal to its ultimate flexural 

strength. In the tests referred to in Section 5.2, 3 was about 

0.5 and in equation 5.15 2p2 /D/43  was approximately equal to 
0.5, which explains why the moment at the critical section D at 
collapse was nearly equal to its ultimate flexural strength. The 

slope of the falling branch of the moment-curvature diagram, except 

for the heavily over-reinforced sections, is shallow for some length 

adjacent to the peak moment, and in such a case by the time maximup 

moment is reached at D, the moment at B is not substantially 

reduced, with the result the ultimate load carried by such beams 

is nearly equal to the plastic load. This, with the exception of 

Raina's beam CB-5, explains why the two-span beams in which the 
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first hinge was formed at the support carried practically full 

plastic load. Raina's beam CB-5, as against its overall depth 

of 6 in., had an effective depth of 1.86 in. only at the support 

section and constituted a heavily over-reinforced section in so 

much so that even the pure prestress moment equal to 

1.14 x 18,390 = 21,000 lb in. was set up in the same sense as 

the elastic moment due to loads. At ultimate load, moments 

measured at the support and mid-span sections were 47,600 and 

154,800 lb in. respectively. These moments, like Cooke's moments 

(see Chapter 3), did not include the secondary prestress moments, 

which was +47,700 lb in. at the support aection and +23,850 lb in. 

at the mid-span section. With the addition of these to the 

measured moments, the apparent moments at ultimate load work out 

to +100 lb in. at the support section and +178,650 lb in. at the 

mid-span section. If due consideration is made to the fact that 

the pure prestress moment at the support section had the sense 

same as that due to loads, then the apparent ultimate moments of 

support and mid-span sections, based on Raina's calculations, work 

out as 12,300 and 181,400 lb in. respectively. This shows that the 

apparent moment reached at mid-span at collapse was practically 

equal to its ultimate flexural strength. But at this time, due to 

over-redistribution the apparent moment at the support section was 

reduced well below its ultimate flexural strength, which resulted 

in collapse at a load lower than the plastic load. The fact that 

the support section was unloading is borne from Raina's graph 29 

(see reference 37); but, as it is plotted for moments excluding 

the secondary prestress moments, the effect is not so conspicuous. 

If D is the first hinge to form, then in equation 5.14 
dM 

(dp) D will correspond to the drooping portion of the moment- 

curvature diagram for the critical section D and will be negative, 
dM and (Ts)B  will correspond to the rising portion of the moment-

curvature diagram for the critical section B and will be positive. 
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That is, in such a case W will be maximum when 

dM B 	1 	(dM)D (Numerically) d 113)m Tca. 	2p2 11) O m  = 710  

1
B 

(Rising portion) (Drooping portion) 	.... (5.16) 

Remembering that for the prestressed concrete sections 

usually met in practice the slope of the falling branch of the 

M - 0 diagram for some length adjacent to its peak is nearly 

constant and is smaller than that of the rising portion near 

the peak and since p 	1 and 1
B 	

1, equation 5.16 for 

usual values of p can be sasisfied when the moment at D has 

just passed its maximum value and that at B is still far behind 

its peak. For Mallick's beams P3 and 6, in which full redistribution 
was not reached, p was 0.27 and in equation 5.16 1/232 1D/1B 

was approximately equal to 7, which explains why these beams 
failed with moment at the critical section B less than the 

ultimate flexural strength. 

Case (ii) Two-span beam loaded in one span 

obay,..first hinge in span 

Consider a two-span beam ABC loaded at point D at 

a stage subsequent to the instant when the critical section D 

has just reached its maximum moment and the critical section B 

is still on the rising portion of its M 0 diagram, see 

Figure 5.2. In this case 'compatibility' requirement yields 

1
D 

'5°B = P -17 6°D .... (5.17) 

and equation 5.14 takes the form 

(15
)
B 

M = M
B 

(Rising portion) 

	

1 	dM _ 	(Numerically) 

	

02 1 	()D 
 

D 	 M = RD  
1B 

(Drooping portion) 	.... (5.18) 
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Equation 5.18 is similar to equation 5.16 and for 

reasons given before can be satisfied for prestressed concrete 

sections usually met in practice when the moment at the critical 

section D has just passed its peak and that at the critical 

section B is still far behind its peak. For LaGrange's beams 

159, 164, 165, 182, 196 and 167, in which full redistribution was 
I not reached, p was 0.5 and if DAB  is approximated to 0.8, 

then in equation 5.18 1/p 2 1D/1B  is approximately equal to 5, 
which explains why the moment at the critical section B at 

collapse was less than the maximum moment of resistance. 

Case (iii) Three-span beam loaded in central 

span - first hinge in span 

Consider a three-span beam ABB'C with equal end spans 

and loaded at point D in the central span at a stage subsequent 

to the instant when the critical section D has just reached its 

maximum moment of resistance and the critical sections B and B' 

are still on the rising portions of their moment-curvature diagrams; 

see Figure 5.3. In this case 'compatibility' requirements yield 

133  
(1 - p) 	so (Numerically) (5.19) 6°B r= 	IB  

60B,  = p 
1D 

B 
SOD  (Numerically) 	(5.20) 

and equation 5.8 takes the form 

(1 - p )2 1D  (7)B   + B2 1D (dM)B1 	dM D 7 ' 	if `TIT 	4. 	.... = 0 
B 	M =I 	 B 	M . KB, 	M_ MD  

.... (5.21) 

For Cooke, and Mallick and Sastry's beams p was 0.5 

and critical sections B and B' were identical, so that 

equation 5.21 reduces to 
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12 D dM)B 

M = MB  
= 0 	.... (5.22) 

Since D is the first hinge to form, (  )
,D 

will 
dM 

be negative and (77)
B 
 positive such that at ultimate load 

dM B 
(7) M 

(Rising portion) 

2 1B  (dM)D 
1
D 
,a7  M = M

D 

(Numerically 

(Drooping portion) 	.... (5.23) 

In equation 5.23 1B/1D  will be near about unity, 

depending upon the ratio of the outer and inner spans, and for 

reasons given before explains why full redistribution was not 

reached in Cooke, and Mallick and Sastry's beams. 

dM 
Since the coefficient of (-- 

dO)
D  was nearly 2, it was 

quite likely that the moment reached at the critical section B 

at collapse was not very much different from its maximum moment 

of resistance, and being a marginal case could lead to the 

inconsistency pointed out in Section 5.3. 

3.8 TESTS ON PORTAL FRAMES 

With the exception of LaGrange's tests(14) on six 

fixed portal frames, all reported experiments on prestressed 

concrete portal frames have been carried out without the 

measurement of redundant reactions. The tests in which reactions 

were not measured were carried out by Morice and Lewis(36)  

Guyon(21)  Pietrzykowski(56), and Edwards
(34), which, as 

ascertained from visual inspection and by comparing the measured 

ultimate loads with the calculated ones, showed practically full 

redistribution. 

All portal frames tested by LaGrange had a span of 

7 ft 6 in. and a height of 5 ft and were loaded vertically at 
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the centre of the transome and horizontally from left to right 

at the transome centroidal axis. The ratio of the vertical to 

horizontal load was 2. All members had an overall section of 

3 x 6.5 in. and were prestressed with 4 No. 0.2 in. diameter 
wires. The strengths of the critical sections were varied by 

changing the effective depths by adding linear functions to the 

eccentricities of the concordant cable profile which was straight 

in between the critical sections. If the critical section 

identification is done as adopted for the author's frames 

(see Figure 7.9), then for frames P3 and 6 which had concordant 
cable profiles the effective depths at A, B2, B1, C, D and E, 

were 3.26, 3.79, 3.44, 4.32, 4.35 and 4.26 in. respectively. 
It would be noted that this profile does not satisfy equation 

2.15. However, the secondary prestress moments set up were small 

and it is reasonable to regard it as concordant cable profile. 

Frames P3 and 6 had concordant cable profiles and were 
similar except that concrete in P6 was 303 stronger than that in 

P3. Behaviour of both the frames was essentially the same and 

there was only a difference of 6% in their maximum loads. Collapse 

occurred at sections C and D
2 

only, but at that instant moment at 

section E was almost equal to its maximum value and that at A was 

about 0.78 of its maximum flexural strength. The ultimate loads 

carried by P3 and 6 were 8,050 and 8,550 lb respectively. 

In an attempt to make the strongest possible frame, in 

P4 the effective depth at the four sections where the elastic 

moments due to loads were the highest, that is at A, C, D and E 

was increased to the possible maximum of 5 in. and that at B2  
reduced to 2.46 in. This frame also failed with the collapse of 

critical sections C and D and at that instant moment at A was 

only about 50% of its maximum value. The maximum load was 

9,750 lb. 
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In frame P5 the effective depths at A, B2, B1, C, 

D and E were changed to 2.50, 5.00, 4.65, 4.26, 3.25 and 

3.25 in. respectively. The frame failed at a load of 6,550 lb 

as a complete mechanism with the formation of hinges at A, C 

D
2 and E. 

In frame P7 the effective depth at all the critical 

sections except C was increased to 5 in ; at C it was reduced 
to 3.3 in. The result was that when section C reached its 
ultimate moment, the rest of the structure was still strong 

enough to carry further load. Maximum load carried was 

8,750 lb, which was reached when the section D
1 also failed 

but by then the moment at C was reduced to 90% its maximum. 

In frame P8 the effective depth along the length AB 

was reduced to 2 in. and that at the other critical sections 

increased to 5 in. This resulted in the failure at C and D 
and at this instant the moments at E and B

1 were also near their 

maximum flexural strengths. This frame carried an ultimate load 

of 9,950 lb. 

On the other hand, author's all portal frames 

(except F-3), which are described in Chapter 7, failed as 
mechanisms by the formation of hinges at A, C, D and E. Frames 

F-1 and 4 failed by the formation of all hinges almost 
simultaneously but in F-2, 3 and 5 the maximum loads were 
reached when some of the hinges had a_Lready started unloading, 

see Figures 7.14 to 7.18. 

From the above it would appear that LaGrange's frames 

behaved somewhat differently from the author's frames. This was 

the result of design and will be discussed in Chapter 6. These 

tests, however, bring out clearly that, in general, full-

redistribution in statically indeterminate structures would not 

take place, unless specially aimed at, and the ultimate load is 

usually reached with over-redistribution. 
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5.9 CONCLUSIONS  

1) All test results can be explained satisfactorily 

on the basis of moment-curvature relationship with a drooping 

characteristic as set out in Chapter 4.. 

2) Full-redistribution, in its strict sense, cannot 

occur in a statically indeterminate prestressed concrete 

structure unless all the critical sections forming the collapse 

mechanism reach their maximum flexural strengths simultaneously. 

3) The two and three-span beams which have been reported 

to undergo full redistribution can be accounted for by the 

assumption of a moment-curvature characteristic which has a 

shallow negative slope adjacent to the peak moment. 
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CHAPTER 6  

PROPOSED METHOD OF ULTIMATE LOAD  

DESIGN OF STATICALLY INDETERMINATE  

PRESTRESSED CONCRETE STRUCTURES  

6.1 INTRODUCTION  

The basic equations that a statically indeterminate 

skeletal structure must satisfy at any load stage, including the 

ultimate load, were set up in Chapter 3. In prestressed concrete 

it is necessary that while applying equations 3.5 due consideration 
is made for the prestress moments and corresponding curvatures. The 

moment-curvature relationship of a prestressed concrete section is 

linear elastic up to cracking and thereafter it is nonlinear; it 

has a rising eharacteristic up to the maximum moment of resistance 

and then it starts drooping down. It is difficult to use the moment 

curvature relationship with a drooping characteristic in an analysis. 

The author has here presented a theory for the design of statically 

indeterminate prestressed concrete skeletal structures so that the 

structure corrisathe ultimate load by simultaneously developing the 

maximum moment of resistance at each of the critical sections which 

form 	the collapse mechanism, and at the same time maximum output 

from each such critical section is ensured. In this connection and 

in respect of studies made in Sections 6.4 and 6.5 the author wishes 
to acknowledge the help rendered by Edwards(57). 

The proposed method has the advantage that the structure 

would carry full plastic load, and there is no necessity to consider 

the drooping portion of the moment-curvature relationship 

6.2 ULTIMATE LOAD ANALYSIS OF A STATICALLY INDETERMINATE 

PRESTRESSED CONCRETE STRUCTURE  

In the work that follows it will be assumed that only 

the flexural deformations are significant and the portion of the 
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moment-curvature relationship which need to be considered is 

C'AOCD only, see Figure 2.1. In this diagram C'AC represents 

the linear elastic phase and CD the non-linear phase. In an 

ultimate load analysis it is often convenient to separate the 

variation of the bending moments due to inelastic deformations 

from the distribution for elastic conditions, which is often 

known or easily established by standard methods. If inelastic 

deformations at a load stage are known in a structure, then the 

total solution can be obtained by superimposing their effect on 

the elastic structure for which solution due to loads is already 

established: Loads for a statically indeterminate prestressed 

concrete structure, in general, consist of prestress and applied 

loads. Thus for load v(d+1) we have from equilibrium 

M = M 	+ m p 	+ M + m p + m p 
v(d + 	--v(d + 1) 	p 

.... (6.1) 
where M is the functional matrix in positional co-ordinates s 

and corresponds to the absolute bending moment distribution at 

the given load v (d+ 1); 

v(d+ 1) is the functional matrix in positional co-ordinates 

s  and corresponds to the bending moment distribution due to load 

v(d+1) applied to the reduced structure; 

m (= m1  22  .. m a) is the functional matrix in positional 
co-ordinates s and corresponds to 1 x a bending moment 

distributions due to unit bi-action applied in turn at each 

release of the reduced structure; 
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Ev(d+ 1) is the column matrix and corresponds to a 

complementary solution coefficients for load v(d+1) applied 

to the elastic structure; 
0 
Mp  is the functional matrix in positional co-ordinates s 

and corresponds to bending moment distribution due to prestress 

applied to the reduced structure; 

p is the column matrix and corresponds to a complementary 
—P 

solution coefficients for prestress applied to the elastic structure; 

and 

p is the column matrix and corresponds to a complementary 
—r 

solution coefficients due to the final inelastic curvatures which 

represent the difference between the elastic solution and the 

final inelastic solution applied to the elastic structure. 

From compatibility 

k M 
d + 1) ds + 

	— 	— m kmp 
—v(d + 1) 

ds + 

T 
	

T 	s 	 T 
k M ds + 	m kmp ds + 	m km p ds + 

—P 

T 	
ds 	0 	 .... (6.2) 

where k is the functional matrix in positional co-ordinates s 

and corresponds to the elastic bending flexibility of the members, 

see Figure 2.1, and 

g is the functional matrix in positional co-ordinates s 

ane corresponds to inelastic =nature distribution, see Figure 2.1. 
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But 

k M c) 	ds 	m kmp 	ds = 0 
v(d + 1) 
	

-- v(d + 1) 
- s 

• • 1. • (6.3) 

and 
	

f-  T 	o 
- — m k M ds 	m kmp ds = 0 	(6.4) 

Therefore from equation 6.2 we have 

	

T 	 T 
m km p ds + 	m 95 ds = 0 

-r 

-1 
or 	p. 	 (6.5) 

✓ -r 

T  
where F = 	m k m ds 	 (6.6) 

T 
and Jr 

= 	g ds 	 (6.7) 

s 

Considering moments at the critical sections, we 

have from equation 6.1 

M= M 	+M +m(p 	+ p + p 
v (d + 1) 	p 	v (d 1) 	p 	r 

0 	 0 
or M-M = Ma = M 	+ m 

p 	 v ( d + 1) P 
+ p + p 

v(d + 1) 	p 	r 

(6.8) 

Equation 6.8 together with equations 6.3, 6.4 and 6.5 
infers that specified apparent moments at the critical sections can 

be obtained by equilibrium of the applied loads alone, provided 

secondary prestress moments are set up accordingly. 
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Equations6.1 and 6.2 are the basic equations for a 

statically indeterminate prestressed concrete structure and can 

be used for any problem of design or analysis, provided all 

critical sections are on the rising portion of their moment- 

curvature diagrams. In a problem of analysis it would be seldom 

that all critical sections are on the rising portion at collapse. 

In design, however, this can be overcome as suggested in Section 6.3. 

6.3 DESIGN APPROACH 

The object of any design approach is to determine a 

rational, directed evolution of a structural system which performs 

the specified purposes and satisfies certain criterion. There are 

usually two important criteria: (1) cracking (2) ultimate load. 

Whatever criterion is used, after fixing the design loads the 

problem is to ensure that the structure would withstand them as 

specified. 

If a structure is proposed to be designed for the 

ultimate load criterion, then an ultimate load stress-resultant 

distribution in equilibrium with the applied load is established. 

The required section sizes, the area and position of steel are 

calculated at the critical sections involved in the equilibrium 

criterion to ensure adequate ultimate load carrying capacity. The 

lengths over thich inelastic deformations take place can then be 

approximated by marking off the cracking moments. In the work that 

follows, it will be assumed that all the critical sections involved 

in the equilibrium criterion reach their ultimate flexural strengths 

simultaneously, that is all such sections are at the peak of their 

moment-curvature relationships. It will be further assumed, for 

simplification, that the moment-curvature relationships for the 

sections in the inelastic zone adjacent to a critical section are 

the same as for the critical section itself. The moments-curvature 



135 

diagrams for the critical sections can be established according 

to the theory set out in Chapter 4. 

The solution to the compatibility equation 6.5 is 

thus found, that is pr  is known in equation 6.8. The only 

unknown in equation 6.8 is p which can be evaluated. 

The area dnd position of steel at the critical 

sections involved in the equilibrium criterion were fixed while 

fixing their ultimate strengths. The required area and position 

of steel in between the critical sections and also at the critical 

sections not involved in the equilibrium criterion can now be 

established from equation 6.4; due care may be taken that this 

does not result in the change of collapse mechanism. 

Thus from equation 6.4 we have 

-1 0 
-F 

 
4 

p 
.... (6.9) 

in that case equation 6.10 reduces to 

4 im k o = 	M ds + 	n g 
r T 	o 	i T 

N ds 
o 

-P Js p 
is 

	p .... (6.11) 

where n (= El  Lle  ... n u) is the functional matrix in positional 

co-ordinates s and corresponds to 1 x a thrusts due to unit 

bi-action applied in turn at each release of the reduced structure; 

is the functional matrix in positional co-ordinates 

and corresponds to elastic thrust flexibility of members; and 

0 	r T 	0  
where 	A= 	fm k H ds 	.... (6.10) 

-I) 	1 — — —13  ..,s  

It may be more accurate to also take into account 
o the deformations due to axial force while calculating 	, and 4
p  
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0 

N is the functional matrix in positional co-ordinates s 
-T 

and corresponds to thrust distribution due to prestress applied 

to the reduced structure. 

A statically indeterminate prestressed concrete 

structure designed in this manner not only carries full plastic 

load but, as shown in Section 6.4, will also exhibit small 
inelastic deformations. 

If cracking is the criterion of design, then a 

cracking load stress-resultant distribution in equilibrium with 

the applied load is established. The required section sizes, the 

area and position of steel at the critical sections involved in the 

equilibrium criterion are calculated to ensure adequate cracking 

load carrying capacity. If cracking moment of a critical section 

is calculated by allowing some inelasticity, then in a manner 

outlined above, pr  can be evaluated from equation 6.5 otherwise 

-r is equal to zero. Thust the only unknown in equation 6.8 is 
ps which can be calculated and set up by varying the area and 

position of steel in between the critical sections and also at 

the critical sections not involved in the equilibrium criterion, 

by means of equation 6.9; care may be taken that it does not 

result in cracking at any other section. 

If one wishes to design a statically indeterminate 

prestressed concrete structure on a criterion similar to the 

Russian code, then an ultimate load stress-resultant distribution 

in equilibrium with the applied load is assumed. The required 

section sizes, the area and position of steel are calculated at 

the critical sections involved in the equilibrium criterion to 

ensure adequate ultimate load carrying capacity. The assumed 

stress-resultant distribution is reduced in the ratio of allowable 

cracking load to ultimate load. The cracking moments of the 

critical sections involved in the equilibrium criterion are 
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calculated on the basis of the concordant cable. If the cracking 

moments at the critical sections are not satisfactory, then the 

above stress-resultant distribution is modified by superimposing 

a secondary prestress stress-resultant distribution. That is, 

in equation 6.8 p can be evaluated by putting p
r 

= 0 such 

that Ma ' ‹: M
acr  everywhere. It remains to ensure that p 

so calculated is set up. This can be done by means of 

equation 6.9 by varying the area and position of steel in between 

the critical sections and at the critical sections not involved in 

the equilibrium criterion; care may be taken that it does not 

result in cracking at any other section or change of apparent 

collapse mechanism. 

The above method, as compared to the Russian 

practice, has the advantage that required secondary prestress 

stress-resultant distribution is set up in a statically 

indeterminate state and is not subjected to linear creep. 

It would be appreciated that, unlike the proposed 

criteria, Russian criterion does neither optimize from cracking 

point of view nor does it ensure that the structure would withstand 

the specified ultimate load; it is rather an arbitrary design in 

between the two proposed criteria. It is reported that the Russian 

code recommendations are based on exhaustive test results and are 

found satisfactory in practice. The results of the author's test 

on the frame designed according to the Russian practice are set 

out in Section 6.6. 

6.4 INELASTIC DJ 	ORMATIONS IN THE PROPOSED DESIGN  

Consider the same concrete structure prestressed in 

two different ways; structure 1 stressed with a concordant cable 

profile and structure 2 with a nonconcordant cable profile in a 

manner outlined in Section 6.3 for ultimate load criterion. 
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Let the geometric properties, that is the section and prestress 

at the corresponding critical sections be the same in the two 

structures. 

Let the two structures be subjected to the same 

collapse load, and let the moment-curvature relationship of 

each of the critical sections forming the collapse mechanism be 

idealized with a long flat plateau at the maximum moment of 

resistance. In the light of discussions made in Chapter 4 it 

is not strictly true; but for the under-reinforced sections it 

is reasonably accurate, since the slope of the drooping portion 

adjacent to the peak moment is small for some length. 

Let us postulate that there is an idealized plastic 

hinge rotation 8 in the concordant case, where 8 = (431'92  .. ea) 

is a functional matrix in positional co-ordinates s and 

corresponds to the idealized plastic rotations at a critical sections. 

The total bending solutions for the two structures 

are 

.... (6.12) 

    

ps 

L -p  J 2 m  [ -I-1  2 au 
= M 

2 	 1)(d + 1) 
+ m p 

--v(d + 1) 
+ M 

 

(6.13) 

where suffices 1 and 2 after the square brackets refer to 

structures 1 and 2 respectively. 

Since the corresponding critical sections of the 

two structures have the same geometric properties, and structure 1 

has a concordant cable profile, 
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and F s 

L P 
Therefore, subtracting equation 6.12 from 

equation 6.13, we have on simplification 

[ -Pr J 1 	[-Pr 1  2 s E  

 

.... (6.14) 

 

From compatibility we have for the two structures 

and 

T 
m k m 

mT k 

f s 

[12-  r J1 

m [ P  -"r 

m 

i 

ds 

T 
e 

2  

= 

ds 

f mT  

0 

+ 	i'LJ 

s 

ds 

[g j 2  ds = 

.... 

0 

(6.15) 

(6.16) 

In equations (6.15) and (6.16) g represents the 

inelastic curvature due to the same final bending moment distribution 

and therefore 

[ 	2  

Hence subtracting equation 6.16 from equation 6.15, 
we have on simplification 

[ Er J I 
-1 T 

= - F m 8 
-1- 2 

 .... (6.17) 

Substituting for L.H.S. from equation 6.14, we have 

[2pi 2 
-1 T 

-F me .... (6.18) 

0 
1 
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Equation 6.18 shows that the plastic hinge rotations 

in the concordant case can be done away by setting up an appropriate 

secondary prestress moment distribution; or in other words equation 

6.18 infers that a statically indeterminate structure prestressed in 

a manner suggested in Section 6.3 for ultimate load criterion would 

exhibit less deformations than the corresponding structure 

prestressed with concordant cable profile. The idealized plastic 

rotation 8 in a statically indeterminate structure represents the 

fact that such a structure would carry the ultimate load with over-

redistribution. Therefore equation 6.18, in general, infers that 

a statically indeterminate structure prestressed in a manner 

suggested in Section 6.5 for ultimate load criterion would exhibit 

less deformations than the corresponding structures which carry 

the ultimate load with over-redistribution. 

6.5 EFFECT OF LINEAR TRANSFORMATION 

In several cases cable profile in a statically 

indeterminate prestressed concrete structure is obtained by 

linear transformation of the parent concordant cable profile. 

In the past considerable experimental and theoretical research 

has been carried out to study the effect of linear transformation 

on ultimate load. The theoretical studies, to the author's 

knowledge, have so far been made by considering only the 

'equilibrium' criterion. The author here examines this by 

considering both the 'equilibrium' and 	'compatibility' 

criteria. 

Consider the same concrete structure prestressed in 

two different ways; structure 1 has a concordant cable profile 

and structure 2 a linearly transformed cable profile obtained 

from structure 1. 

Let the two structures be assumed to carry the same 

collapse load, that is Mv(d+ 1) is the same in both cases. 
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From equilibrium we have for the two structures 

au 1 
= M 	+ m 

1)(d + 1) .... (6.21) 

 



142 

and 

where 	Mv(d+1)  
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co- 

ordinates s and corresponds to the absolute bending moment 

distribution due to ultimate load v(d + 1) applied to the 

elastic structure. 

• Substituting for Mau's from equations 6.19 and 

6.20 in equations 6.21 and 6.22, we have on subtraction and 

simplification 
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If it is assumed that all sections have a moment-

curvature relationship which has long flat plateau at the maximum 

moment before and after linear transformation then from 

compatibility we have for the two structures 
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Subtracting equation 6.24 from equation 6.25, we have 

after simplification 

and 
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Hence from equations 6.23 and 6.26 we have 

This is a general expression relating p
10 
 set up in 

the linearly transformed case with the inelastic curvatures and 

plastic hinge rotations taking place in two structures and shows 

that if the two structures carry the same ultimate load, then the 

inelastic curvatures and plastic hinge rotations in the linearly 

transformed case would depend upon the secondary prestress moment 

distribution set up on linear transformation. If 	[8]
2 
 for 

any critical section is large and the moment-curvature 

relationship for it has a falling branch with sharp slope, then 

it may be possible that the ultimate load carried by the linearly 

transformed case is appreciably different from the parent concordant 

case, as it happened in the case of Raina's beam CB-5 whichIcompared 

to the parent concordant beam,carried only 86% load. 

It is not possible to take equation 6.27 any further. 

However, if we consider a two-span beam and assume that the positions 

of the first and the last hinges do not change, then 

and equation 6.27 reduces to 
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For a two span beam F
-1 is a 1 x 1 matrix which 

is positive definite; therefore equation 6.28 shows that if the 
[ps3  i 1 2  

effective depth at the first hinge is reduced, that is 

has a sign opposite to the sign of rotation, then plastic 

hinge rotation at the first hinge in the linearly transformed 

case would be greater than that in the concordant case. Similarly, 

if the effective depth at the first hinge is increased, then 

[ps 	would have the same sign as that of rotation and in 
P- 2 

this case plastic hinge rotation at the first hinge in the linearly 

transformed case would be less than that in the parent concordant 

case. In other words, it amounts to the fact that linear 

transformation that increases the effective depth at the first 

hinge reduces redistribution, and linear transformation that 

reduces the effective depth at the first hinge increases 

redistribution. This does not appear strictly in line with the 

conclusion of Cooke(11) and Raina(37) that a structure with a 

concordant cable profile exhibits minimum redistribution, any 

linear transformation produces greater redistribution. However, 

LaGrange(14) test results for beams 159, 165 and 182 clearly bring 

out the above fact. If redistribution is measured as the difference 

between the elastic and actual apparent moments at the first hinge 

at ultimate load, expressed as percentage of its apparent ultimate 

moment, then beam 159 which had the parent concordant cable profile 

showed a redistribution of 10%. Compared to this, beam 165 where 

the linear transformation increased the effective depth at the 

first hinge showed a redistribution of 2.5%, and beam 182 where 

the linear transformation reduced the effective depth at the 

first hinge showed a redistribution of 21%. 
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Cooke and Raina's moments, as pointed out earlier, 

suffer from the disadvantage that they have been measured from 

the state of prestress, i.e. including the secondary prestress 

moments and it appears to the author that the above inconsistency 

is more of interpretation rather than reality. 

6.6 TEST RESULTS !ND DISCUSSIONS 

Tests on five two-span beams and five fixed portal 

frames are described in Chapter 7. The test results are now 

discussed in the light of the theories presented. 

Beams CB-1 and B-1  

Beam CB-1 was tested by Raina and had a concordant 

cable profile with an effective depth of 4.46 in. at the support 
and 4.20 in. at the mid-span sections. The cable profile in between 

the critical sections was straight. This beam failed at an ultimate 

load of 7,440 lb, and the first hinge was formed at the support. 

Full redistribution was practically reached. Bdam B-1, tested by 

the author, was designed frith the same prestress and the same 

effective depths at the corresponding critical sections, but the 

cable profile in between the critical sections was varied 

(see Figure 7.4) by means of equation 6.9 so that the secondary 

prestress moments set up were +10,300 lb in. at the support and 

+5,150 lb in. at the mid-span sections. The first hinge in 

beam B-1 was formed in the span, which showed that by setting 

up an appropriate secondary prestress stress-resultant distribution 

the mode of collapse can be controlled. Because of the dislocation 

in the position of the duct-tubing during casting, the actual 

effective depths as verified after sawing, were found 4.1 in. 

at the support and 4.3 in. at the mid-span sections. This would 

mean that the secondary prestress moments set up were in excess 

of what is required according to the theory set out in Section 6.3. 
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It was also found that grouting was not efficient through the 

central duct of this beam; the left hand span was especially 

bad. Further, this was the author's first beam of the series, 

and the two spans were loaded by a single hydraulic cabinet, 

so that as soon as the first hinge was formed in the left hand 

span, the total load applied to the structure was determined by 

the response of the left hand span. The result was the left hand 

span ruptured at a load of 6,640 lb. Full redistribution was not 

complete; the ultimate load carried was 94.7% of the full plastic 

load. This was considered to be the result of bad grouting and 

loading arrangement, and will not be discussed further. 

The load-moment relationships for these beams are 

given in Figures 7.10 and 7.10a. Figure 7.10a is same as graph 

25 of reference 37 and has been reproduced with the vertical scale 

halved so as to facilitate comparison with the author's test 

results for beam B-1. The curvature and concrete compressive 

strain (extreme fibre) distributions along beam B-1 at a load 

of 0.945 Wu  are shown in Figure 7.32. 

This test demonstrated, at least qualitatively, that 

secondary prestress moments play an important role in the ultimate 

load behaviour of a statically indeterminate prestressed concrete 

structure. Taylor(58)  pointed out the effect of secondary prestress 

moments on the disproportion factor at the Symposium on the Strength 

of Concrete Structures, London, May 1956. The true significance of 

these moments was, however, not appreciated at this Symposium(59) 

These two beams were designed for practically the same 

ultimate load, and the best way of comparing the redistribution in 

the two cases is to compare their load-deflection curves ( W/W versus 6), 

but the load-deflection curve for beam CB-1 is not available. The 

load-deflection curve for the author's beam B-1 is given in 

Figure 7.20. However, the measured rotations for each critical 

section are available for beam CB-1, and therefore redistribution 
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in this case has been assessed by comparing the load-rotation 

curves for the span section, see Figure 7.19. The points 

between which the rotations were measured by Raina, and the 

author were not identical, although they were close to the 

same sections. The comparison between the relationships shown 

in Figure 7.19 should therefore be taken as approximate. However, 

it does demonstrate that the deformations in a structure with 

secondary prestress stress-resultant distribution set up as 

proposed in Section 6.3 are less compared to those in the 

corresponding structure with a concordant cable profile. 

The crack patterns of these beams are shown in 

Plate 7.5, which shows that cracks were spread over a longer 
length at each of the critical sections of beam CB-1 (concordant). 

Beam B-2 and B-3  

Both these beams had the same effective depth of 4.3 in. 

at each critical section and were prestressed with the same 

effective prestress, so that the geometric properties of all the 

critical sections were similar. The cable profile in between the 

critical sections was varied (see Figure 7.4) by means of 

equation 6.9 such that no secondary prestress moments were set up 

in beam B-3, and secondary prestress moments set up in beam B-2 

were +17,300 lb in. at the support section and +8,650 lb in. at 

the mid-span sections. 

Beam B-2 carried an ultimate load of 7,760 lb and 

failed by practically the simultaneous crushing of concrete at 

the critical sections B and D'. On the other hand, in beam B-3 

first crushing of concrete started at B, which took place at a 

load of 7,600 lb, and the beam finally failed at a load of 8,220 lb 

by the crushing of the concrete at D. Theoretically, beam B-2 

should have carried a higher ultimate load but the experimental 

ultimate load was higher for beam B-3. This was an experimental 
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scatter normally expected in concrete structures. The fact that 

beam B-2 carried the ultimate load with full-redistribution and 

beam B-3 with over-redistribution is clearly borne by their 

load-moment relationships (see Figures 7.11 and 7.12). When 

beam B-3 was carrying the ultimate load, the moment at the 

first hinge was reduced below its maximum value. Since there 

was not a conspicuous decrease in moment at the critical 

section B, the ultimate load carried by beam B-3 was not different 

from its plastic load. If the measuring instruments were not 

sensitive enough., then the effect of over-redistribution in this 

case could have remained unnoticed and mistaken for full-

redistribution, as pointed out in Chapter 5. 

Beams B-2 and 3 were similar to the four beams 

tested by Naughton, except that beam B-2 was tested with certain 

secondary prestress moment distributions set up, whereas the other 

beams were tested as concordant beams. Naughton concluded that 

the variation of cable profile in between the critical sections 

did not affect the behaviour of the beams. It means that the 

simultaneous formation of hinges in author's beam B-2 was due 

to the setting of secondary prestress moment distribution and 

supports the theory set up in Section 6.3. 

Wi The load-deflection curves ( /Wu 
versus 6) for beams 

B-2 and 3 are given in Figure 7.20, which confirms the theory set 
out in Section 6.4. The curvature and concrete compressive strain 

(extreme fibre) distributions along beam B-2 at a load 0.983 Wu  

are shown in Figure 7.33 and those for beam B-3 at a load of 
0.953W

u 
in Figure 7.34. They also show that beam B-2 carried 

the ultimate load with less deformations than beam B-3. 

The crack patterns of these beams are shown in 

Plate 7.5, which shows that cracks were spread over a longer 

length at each of the critical sections of beam B-3 (concordant). 



149 

Beam B-4 and LaGrange's beams 159, 165 and 182 

Beam B-4 was loaded at the centre of one span only 

and was similar to LaGrange's beams 159, 165 and 182. Beam B-4 

had the same effective depth of 4.3 in. at the critical sections 

D and B and constituted a more severe case than any of LaGrange's 

beams which had either a concordant cable profile (beam 159) based 

on the working load stress-resultant distribution or a linearly 

transformed profile obtained from the parent concordant profile. 

LaGrange's beams failed by the crushing of the concrete in the 

span only; the moment reached at the support section at collapse 

varied from about 0.93 to 0.96 of the ultimate apparent moment 

and the ultimate load was always less than the plastic load. The 

author's beam B-4, on the other handl. failed at a load of 8,060 lb 

by practically the simultaneous crushing of the concrete at both 

the support and the span, and the beam carried full plastic load. 

Beam B-4, as mentioned in Chapter 7, had the cable profile in 
between the critical sections varied (see Figure 7.4) and a 

secondary prestress moment of -57,560 lb in. at the support 

section and -28,780 lb in4at the span sections were set up. 

This test again confirmed the theory set out in Section 6.3. 

The load-moment and load-deflection curves for 

beam B-4 are given in Figures 7.13 and 7.20 respectively; the 

curvature and concrete compressive strain (extreme fibre) 

distributions along the beam at a load of 0.945 Wu  in Figure 7.35, 

and the crack pattern under near.maximum load in Plate 7.5. 

Frames F-3, 4 and 5  

All these frames had the same prestress and same 

effective depth of 4.1 in. at all the critical sections involved 

in the equilibrium criterion, i.e. at A, C, D and E, but they were 

prestressed and designed so that the secondary prestress moments 

given in Table 7.3 were set up. Frame F-3 had an arbitrary 
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nonconcordant cable profile and was partially stressed on the 

ground and partially stressed in the test rig; the cable profile 

in between the length BC was raised so as to result in a reduced 

stiffness of the transome over the length BC where there was nearly 

a constant positive bending moment distribution at collapse. 

However, to ensure that the frame did not have a mode of collapse 

other than that of frames F-4 and 5, the knee at B was strengthened 

by an angle iron at the time of testing. Frame F-4 was designed 

according to the theory set out in Section 6.3 and the secondary 

prestress moments given in Talbe 7.3 were set up by varying the 
cable profile in between the critical sections. However, it was 

not possible to set up the requisite secondary prestress moment 

distribution within the bounds of the structure. The moments given 

in Table 7.3 are therefore slightly less than what required 
according to Section 6.3. Frame F-5 was designed according to the 

Russian code of practice and the secondary prestress moments given 

in Talbe 7.3 were set up as a result of partially stressing the 

structure in a statically determinate state and partially in 

statically indeterminate state. The secondary prestress moments 

required to correspond to the ultimate load stress-resultant 

distribution scaled down in the ratio of cracking load to ultimate 

load could not be set up within the bounds of the structure, and 

the secondary prestress moments given in Table 7.3 are slightly 
less than what required according to the Russian specifications. 

The cable profiles employed in the three frames are shown in 

Figure 7.5. 

Frames F-4 and 5 failed through the beam and sway 

mechanism by the crushing of the concrete at A, C, D and E; the 

ultimate loads carried were 3,960 and 3,970 lb respectively, which 

were nearly equal to the corresponding plastic loads. In frame 

F-3 at a load of 3,850 lb i.e. 97.8% of the plastic load there 

were no signs of crushing at C, although excessive crushing had 

already started at A, D(D2) and E and the beam had swayed 
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horizontally by about 2.7 in., i.e. about 100% more compared to 

the other frames. At this instant the whole system became so 

unstable that the load had to be taken off. It will be seen from 

Figure 7.16 that at this instant the moments at the critical 

sections E and D(D
2
) had already started decreasing and that at A 

was at its peak with a trend to decrease. It appears to the author 

that the frame could not take further load since at this instant. 

condition given by equation 5.8 was reached. Frame F-3 differed 

from frames F-4 and 5 in the sense that the secondary prestress 
moment at C was set up in a direction opposite to the direction 

of elastic moment at C due to applied loads and the transome was 

made flexible by virtue of positioning of the cable profile. 

Frame F-3 was therefore quite an extreme case to carry ultimate 

load with full-redistribution and it should not be surprising 

that it did not carry full plastic load. Its behaviour, however, 

confirms author's postulate set out in Chapter 5. 

The ultimate load behaviour of frames F-4 and 5 was 
essentially the same; the moment at collapse at each of the 

critical sections forming the collapse mechanism was practically 

equal to its ultimate flexural strength (see Figures 7.17 and 7.18). 

The only difference was in the order of first cracking at the 

various critical sections and the order of formation of hinges 

(crushing of concrete). The order of formation of hinges in 

frame F-4 was C, E, A, D(D
1 

and D2
) whereas in frame F-5 it 

was E and D2, A and C; the first hinge in frame F-4 was formed 

at a load of 3,775 lb and that in frame F-5 at a load of 3,750 lb. 
Compared to this, the first crushing of the concrete in frame F-3 

took place at D(D2) and E and at a load of 5,475 lb only. 

The secondary prestress moment distribution was 

appreciably different in the three frames, and the variation in 

the order of first cracking at the various critical sections and 

the formation of hinges can be attributed to this. The similarity 
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of the ultimate load behaviour of 	frames F-4 and 5 can be 

explained by the fact that the secondary prestress moment went 

some considerable way is satisfying equations 6.2. Neither case 

was the required one for theoretical full-redistribution, but 

both cases could correspond to over-redistribution which had an 

ultimate load nearer the plastic load, and which was less severe 

than that of the corresponding structure with a concordant profile 

or a profile as that of frame F-3. This view is confirmed by the 

load-deflection curves of the three frames (See Figures 7.23 and 

7.24). 

The fact that the deformations at ultimate load were 

least in frame F-4 and maximum in frame F-3 is clearly brought 

out by their load-deflection (W/Wu 
versus b) relationships, 

according to which the horizontal and vertical deflections at the 

ultimate load in frames F-3 to 5 were 2.74 and 1.35, 1.18 and 0.94 

and 1.40 and 0.98 in. respectively. The formation of hinges was 

also spaced slightly more closely in frame F-4 and 5 than in 

frame F-3 (see Figures 7.16 to 7.18). 

Yct the time of collapse there were distinct signs of 

crushing of concrete at each of the critical sections forming the 

collapse mechanism. At node D crushing was observed both in the 

transome and the column in frame F-4,but in frames F-3 and 5 it 

was seen in column only, which, as verified by sawing the transome 

and the column at D1 and D2 
after testing, was the result of bad 

grouting in the columns of frame3F-3 and 5 near the critical 

section D. 

The deformed shapes and crack patterns of these frames 

under near maximum load are shown in Plates 7.8 to 7.10 inclusive, 

and the curvature and concrete compressive strain (extreme fibre) 

distributions along the frame under near maximum load in Figures 7.38 to 

7.4641./.75.Y.nclusive. The crushing of the concrete seen at B in 

frame F-3 took place during unloading of the frame and should not 
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be taken into account. It will be seen that cracking at the dry 

mortar joints was confined to a single crack which was as wide as 

133- in. in certain cases. Cracking in the transome was spread over 

a longer length in frame F-3, which, as mentioned above, was the 

result of its reduced stiffness. 

A comparison of the above frames with those tested by 

LaGrange(14) shows that the difference in the two series was that 

certain precalculated secondary prestress stress-resultant 

distributions were set up in the author's frames, which, in the 

author's view led to near full-redistribution in his frames 

F-4 and 5. 

Frames F-1 and 2 

Frame F-1 was designed in the conventional manner on 

the basis of working load stress-resultant distribution with a 

concordant cable profile. The cross sectional area of concrete 

and prestress in all the members were same as those in frames 

F-3 to 5. The effective depths at the critical sections A, B, 

C, D and E were 3.31, 3.035, 3.37, 3.75 and 4 in. respectively. 

Frame F-2 was same as F-1 except that its cable profile was 

obtained by linear transformation of the concordant cable profile 

of frame F-1. The effective depths so obtained in frame F-2 at the 

critical sections A, B, C, D and E were 4.1, 1.8, 2.575, 4.1 and 

4.1 in. respectively. The cable profiles in between the critical 

sections were straight in both the frames and can be seen in 

Figure 7.5. 

Both frames F-1 and F-2 failed as a beam and sway 

mechanism by the crushing of the concrete at A, C, D and E 

(see Figures 7.14 and 7.15 and Plates 7.6 and 7.7); the ultimate 

loads carried were 3,160 and 3,180 lb respectively, which were 

nearly equal to the corresponding plastic loads. The similarity 

of the ultimate load can be attributed to over-redistribution which 

had an ultimate load very near to the plastic load. This, for 
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frame F-2 can be clearly seen in Figure 7.15. At ultimate load the 

moment at the critical section C was well past the maximum moment 

and those at the other critical sections were slightly under or equal 

to their maximum moments. 

The loads at which the first cracking at the various 

critical sections was seen differed slightly in the two frames, but 

the order of formation of hinges was practically the same. The first 

hinges in frame F-1 were formed at A, D2  and E at a load of 3,080 lb 

and additional hinges at Di  and C, whereas the first hinges in 

frame F-2 were formed at D2 and E at a load of 3,060 lb and 

additional hinges at A and C. This similarity of behaviour was 

the result of linear transformation which although changes the 

characteristics of the critical sections also sets up secondary 

prestress stress-resultant distribution accordingly. 

The load-deflection curves for frames F-1 and 2 are 

given in Figures 7.21 and 7.22, and the curvature and concrete 

compressive strain (extreme fibre) distributions along the frames 

at under near maximum loads in Figures 7.36, 7.37, 7.41 and 7.42. 

The crushing of the concrete at node D was observed in 

both the frames in both the transome and the column. 

Compared with the ultimate loads carried by frames F-4 

and 5, the ultimate loads carried by frames F-1 and 2 are only 80%. 
This shows that by designing the frame according to the theory set up 

in Section 6.3, or according to the Russian code of practice an additional 
output of 25% can be obtained from the same concrete and prestress. 

6.7 EFFECT OF TIME ON REDUNDANT REACTIONS DUE 

TO PRESTRESS IN FRAME F-5  

The secondary prestress stress-resultant distribution 

in frame F-5 was set up as a result of partially stressing it in a 

statically determinate state with mechanical hinges placed eccentrically, 
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and partially in a statically indeterminate state. The reactions 

set up in the statically determinate state are reduced in time 

due to linear creep. With a view to study the variation in such 

reactions with time, frame F-5 was left untested for two months 

after final stressing and the reactions were measured regularly 

at each foot of the frame. The horizontal and vertical thrusts 

and moment measured at the right foot are plotted versus time in 

Figure 7.46, which shows that with time the vertical and horizontal 

thrusts tended to reduce, whereas the moment started increasing. 

Such studies, to the author's knowledge, have not been made in the 

past, except for two-span beams, where there was only one 

redundant reaction, and it cannot be said whether it was an 

experimental scatter or an actual phenomenon requiring investigation. 

In the present case above variations were quite consistent over the 

whole period except for the first 7 days, which may be the result 

of losses due to relaxation, shrinkage of grout, etc., and it was 

assumed that the reactions recorded on the test day were actually 

available. 

6.8 CONCLUSIONS  

(1) Linear transformation can result in an ultimate load 

which is much less than the ultimate load carried by the parent 

structure with a concordant cable profile. The actual solution 

can only be obtained by considering both the 'equilibrium' and 

the 'compatibility' criteria. 

(2) The author's tests on two-span beams and fixed portal 

frames show that a statically indeterminate prestressed concrete 

structure, in general, carries ultimate load with over-redistribution 

and rarely with full-redistribution, unless specially aimed at. 
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(3) The secondary prestress moments play an important 

role in the behaviour of a statically indeterminate prestressed 

concrete structure; and if set up as suggested in Section 6.3, 

they can create conditions so that the structure carries the 

ultimate load by simultaneously developing the maximum moment 

of resistance at each of the critical sections which form the 

collapse mechanism, and at the same time maximum output from 

each critical section is ensured. 

(4) The deformations of such a structure at collapse 

are less compared to those of the corresponding structures which 

carry the ultimate load with over-redistribution. 

(5) The conventional method of design of statically 

indeterminate prestressed concrete structures based on the 

working load stress-resultant distribution with a concordant 

or a linearly transformed cable profile is not, in general, 

economical. 



157 

CHAPTER 7 

AUTHOR'S TESTS ON PRESTRESSED CONCRETE TWO-SPAN BEAMS 

AND FIXED PORTAL FRAMES UNDER MONOTONICALLY INCREASING LOAD 

7.1 OBJECT AND SCOPE 

The overall objective of this investigation was to study 

the effect of secondary prestress, and to compare the ultimate load 

behaviour of statically indeterminate prestressed concrete structures 

designed according to the theory presented in Chapter 6 with those 

designed in the conventional manner, or according to the Russian 

practice. 

An ideal test-programme for such an investigation would 

have consisted in testing to destruction a large number of different: 

types of structuresfor various loading conditions and designed 

according to different methods, but this would be beyond the scope 

of any one thesis. The test-programme was therefore restricted 

according to the available time, and the facilities available in 

the laboratory, but at the same time it was ensured that it covered 

a representative range of statically indeterminate structures. From 

the point of view of mode of collapse, indeterminate skeletal 

structures can be classified as: 

(1) Continuous Beams and 

(2) Frames. 

The collapse mechanism of a continuous beam is a special 

case in that collapse occurs, in general, with the formation of three 

hinges in any one span. The partial mechanism thus formed can only be 

combined with other partial mechanisms in other spans The failure 

mechanism for frames, on the other hand, can either be complete or 

partial, but, in any case, is a combination of the basic mechanisms. 
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The test-programme was therefore designed to consist of (1) Series A -

Continuous Beams and (2) Series B - Frames. The structures included 

in each series were designed according to the 

(i) conventional method with concordant or linearly 

transformed cable profile; 

(ii) theory presented in Chapter 6; and 
(iii) Russian practice. 

Because of the limited period of availability of the 

test rig, the Russian method could not be applied to test-series A. 

For Series A, it was thought advisable to extend the test-

series recently carried out in the Department by Raina(37).  This  

test-programme consisted of two-span beams loaded at the centre of 

each span; the beams had either concordant or linearly transformed 

cable profiles designed in the conventional manner. This had the 

advantage that, without duplicating the work, a comparison was made 

between the behaviour of beams designed by the different methods. 

To cover more severe conditions, in one of the beams load was 

applied in one span only. The loading arrangements are shown in 

Figures 7.1 and 7.2. 

The simplest frame structure which may fail by the 

combination of basic mechanisms with the total number of hinges 

greater than three is a portal frame with fixed ends. Therefore 

test-series B consisted of fixed portal frames loaded proportionally 

as shown in Figure 7.3. All reported experiments on the prestressed 

concrete continuous structures wlere detailed stress-resultant-deformation 

studies have been made, to author's knowledge, consist of two and three-

span beams only, and therefore, in addition to fulfilling the above 

objective, the proposed tests were also intended to throw some light 

on the ultimate load behaviour of such structures, about which little 

experimental evidence is, at present, available. 

The most common method of setting up a secondary prestress 

stress-resultant distribution is through linear transformation of a con- 
cordant 
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cable profile. This method has the disadvantage that the effective 

depths of the critical sections are also changed. Thus two effects 

have to be studied simultaneously, a fact which may lead to error. 

Such studies in the past have led to conclusions(59)  which are not 

confirmed by the present investigation. In order to study the effect 

of secondary prestress, it was considered necessary to maintain the 

geometric properties of the critical sections constant whilst the 

secondary prestress stress-resultant distribution is set up. Tests 

on frames F-3 to 5 (labelling of the test frames has been described 

in Section 7.3) provided sufficient data for such a study and no 

additional tests on this account were included in test-series B. 

In test-series A, such studies were made for two cases, namely 

(i) beams designed on the basis of stress-resultant distribution 

at working load; and 

(ii) beams designed by aiming maximum output at ultimate load 

from all the critical sections forming the apparent 

collapse mechanism. 

The effective depths at the critical sections in case (i) 

were fixed on the basis of working load design outlined in Section 2.5, 

whereas in case (ii) each critical section forming the apparent 

collapse mechanism had the maximum effective depth that could be 

conveniently accommodated. In either case the cable profile in 

between the critical sections was so varied that secondary 

prestress moments as given in Table 7.2 were set up. 

7.2 GENERAL DESCRIPTION OF BEAMS 

Reference will be made to five continuous beams tested by 
(37) Raina 	and four tested by the author. Raina labelled his beams as 
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CB-1 to/5 and they will be referred to here also by the same 

labelling. The author's beams have been labelled B-1 to 4. 

All beams had a constant rectangular section, 6 x 4 in. 

overall and, except B-4 where the load was applied at the centre 

of one span only, were loaded at the centre of each span. Each 

beam measured 19 ft 6 in. overall and consisted of two 9 ft spans, 

and 9 in. overhang at either end support. 

Each beam was provided with the same shear reinforcement 

as used by Raina, so as not to make it a variable parameter; it 

consisted of two rows of 4  in. diameter mild steel bent into a 

sinusoidal wave form with peaks at every 10 in. centres, thereby 

giving 2 legs every 5 in. This arrangement had the advantage that 

it avoided the lateral confining effect of usual stirrups. To avoid 

any failure in anchorage zones, 6 in. length at either end of each 

beam was reinforced with nominal grills made from the steel used 

for shear reinforcement. 

6 in. cube strengths of concrete used in beams CB-1 to 5 

were 8,000, 7,760, 7,860, 7,730 and 7,910 lb/in 2  respectively and 

those for beams B-1 to 4 are given in Table 7.1, along with the 

strengths of other control specimens. 

Each beam was post-tensioned with three 0.276 in. diameter 

wires in circular duct-tubing such that a total effective prestress 

of about 18,390 lb was available on the day of test. Beams CB-1 to 5 

were designed in the conventional manner, that is the cable profile 

was based on the stress-resultant distribution at working load. CB-1 

had a concordant cable profile and CB-2 to 5 had linearly transformed 

profiles obtained from the cable profile of CB-1; the cable profile in 

each beam between the critical sections was straight. Beam CB-1 had an 

effective depth of 4.46 in. at the support section and 4.20 in. at 

the mid span sections. The corresponding depths for beams CB-2 to 5 

were 5.00 and 3.93, 5.50 and 3.68, 3.00 and 4.93, and 1.86 and 5.50 in. 

respectively. 
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The effective depths at the critical sections of beam 

B-1 were fixed as those of CB-1, that is 4.46 in. at support 
section and 4.20 in. at the mid span sections, but the cable 

profile was varied such that requisite secondary prestress stress-

resultant distribution was set up. In beams B-2 to 4 the effective 
depth at each critical section was kept same equal to 4.3 in. and 

the cable profile in between the critical sections varied to obtain 

the requisite secondary prestress stress-resultant distribution. 

In beam B-4, within the bounds of the structure, it was not possible 

to set up the requisite secondary prestress stress-resultants by 

the variation of cable profile, and the difference was set up by the 

adjustment of the support levels at the time of placing the beam in 

the test-rig. The cable profiles employed in beams B-1 to 4 are shown 
in Figure 7.4. Details of the effective depths at the critical 

sections, together with the secondary prestress moments set up-1. are 

summarised in Table 7.2. 

7.3 GENERAL DESCRIPTION OF PORTAL FRAMES  

Five portal frames labelled F-1 to 5 were cast and tested. 
The frames were made up of five precast elements, the transome, two 

columns and two base feet. All members were of rectangular section, 

the transome and columns 6 x 32 in. overall, the base feet 152-4: x 6 in. 
overall with a 3 in. deep tapered slot at the centre of the bottom face 
in full width. This slot was proeided to accommodate the prestress 

bearing plate and anchors, and thus keep them clear of the top plate 

of the reaction-transducer; it had a width of 64 in. at the inside 
face and 64 in. at the transducer face. Each base foot had a length 
of 3 ft 2 in. and was reinforced longitudinally with 4 No. 2  in. 
diameter mild steel bars at both top and bottom and was reinforced 

transversely with common two-legged stirrups made from 4 in. diameter 

cold worked steel at 2,1 in. centres. To avoid any anchorage failure, 

reinforcement designed according to C.and C.A. Report No. 9(60) and 
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13(61) was provided in the central 6 in. width. General view of 

the reinforcement arranged for frame F-1 is shown in Plate 7.1. 

The precast elements were made continuous by post-

tensioning with joints formed of 3  in. dry mortar packing. The 

height from the top of the base feet to the centre line of the 

transome was 4 ft 6 in., the span between the column centre lines 
was 9 ft. 

Shear reinforcement was calculated according to 

MacGregor(62) for frame F-4, Which was expected to carry the maximum 

load, and provided in all frames so as not to make it a variable 

parameter and avoid any shear failure. It consisted of a single 

row of -4. in. diameter mild steel bent into a rectangular wave form 

with peaks at every 8 in. centres, that is one leg every 4 in. This 
arrangement had an additional advantage over the sinusoidal wave form 

that all legs were vertical and did not contribute anything towards 

resisting longitudinal bending moment. 

The end six inches of all transomes were reinforced with 

nominal grills made from 3/16 in. dinpPter mild steel to avoid any 

anchorage failure. In frames F-1, 2 and 4 no reinforcement other 
than the above was provided, but in frames F-3 and 5, which were 

intended to be stressed with mechanical hinges at the column 

junctions with the base feet and at the right hand end of the 

transome, the end six inches of the columns adjacent to these 

points were also provided with nominal 3/16 in. diameter mild 

steel grills to avoid any accidental cracking during the first 

phase of stressing. This could result in certain confining effect 

on concrete but was ignored, since we were more interested in the 

lengths immediately adjacent to the junctions, where it was only 

dry mortar packing. 

All frames were loaded by a vertical load at the mid point 

of transome, and a horizontal load acting from left to right at the 
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level of the centroidal axis of the transome. The design ratio 

of the horizontal load to vertical load was 1.5 throughout. Frames 

F-1 and 2 were designed in the conventional manner with cable 

profiles based on the working load stress-resultant distribution. 

F-1 had a concordant cable profile and F.,2 a linearly transformed 

one obtained from F-1. Effective depths at the critical sections 

are given in Table 7.3. The cable profile in between the critical 

sections was straight. Frame F-3 was originally intended to be 

stressed according to the Russian practice. Howeirer, it was 

subsequently decided to use the last frame in the test series 

for the Russian method so that a study could be made of the effect 

of creep on the secondary prestress stress-resultant distribution 

set up as a result of partially stressing it in a statically 

determinate state. Frame F-3 was then treated as a test specimen 

with an arbitrary non-concordant cable profile. It had the same 

effective depth, 4.1 in., at all the critical sections forming the 

apparent collapse mechanism as that in frames F-4 and 5, but, 
unlike F-4 and 5 which had stiff transomes, it had a flexible 
transome, by virtue of cable positioning. The test on such a 

frame was considered to provide suitable data for studying the 

problem of redistribution. The secondary prestress stress-resultant 

distribution in F-3 was kept appreciably different from those in 

F-4 and 5 by stressing the transome separately on the ground. In 
frames F-4 and 5 the effective depth, at each critical section of 
the apparent collapse mechanism was kept the same, that is 4.1 in. 

so that maximum output could be obtained at ultimate load. The 

cable profile in between the critical sections was varied as shown 

in Figure 7.5 to obtain the requisite secondary prestress stress-
resultant distribution. 

All frames were stressed with a nett total prestress of 

18,000 lb such that after losses an effective prestress of about 

17,000 lb was available on the day of test. Frames F-1,2 and 4 
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were fully stressed in a single stage after dry mortar packing the 

junctions between the precast elements. The transome of F-3 was 

stressed and grouted on the ground and frame erected. The junctions 

of the precast elements were then dry mortar packed and the columns 

stressed in a single stage. Frame F-5 was stressed in three stages. 

Its transome was first stressed and grouted on the ground and the 

whole frame erected with mechanical hinges firmly glued at places 

shown in Figure 7.6. The junction between the column and the left 

hand end of the transome was then dry mortar packed and each column 

stressed in a statically determinate state with a nett prestress of 

9,000 lb. The junctions of the precast elements where mechanical 

hinges were inserted were then packed with dry mortar, and the 

columns further stressed in the statically indeterminate state to 

a nett total prestress of 18,000 lb. 

A summary of the secondary prestress moments set up at the 

critical sections- forming the apparent collapse mechanism is given 

in Table 7.3, together with the effective depths. 

The section 6 x 31 in. for members was chosen such that it 

was a fairly reasonable representation of the practice in industry 

for such structures, and had an average compressive stress of about 

800 lb/in 2  due to prestress. 

7.4 MATERIALS AND THEIR PROPERTIES 

Rapid hardening cement (ferrocrete) was used for casting 

of all beams, and frames F-4 and 5, and in dry mortar packing. 

Frames F-1 to 3 were cast with ordinary Portland cement. Cement 

Fondu was used for grout. 

Thames valley river aggregates were used throughout. The 

maximum aggregate size was - in. except for beam B-1 where it was 

1 in., as used by Raina. The aggregate was obtained by mixing 55 

parts by weight of i in. down to 3/16 in.with 45 parts by weight 
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of 3/16 in. down to No. 100. The latter was obtained by mixing 

three parts by weight of 3/16 in. down to No. 25 with one part by 

weight of No. 25 down to No. 100, and it also constituted sand 

used for dry mortar packing. 

The concrete was designed to have a 56 day 6 in. cube 
strength of 9,000 lb/in2  and 6 in. diameter by 12 in. cylinder 
strength of 6,000 lb/10. The aggregate cement ratio was 4.0 and 

the effective water cement ratio 	0.515. The dry mortar packing 

had a sand cement ratio of 2.0 and water cement ratio of 0.36. The 

grout had a water cement ratio of 0.375 for the frame members and 0.40 

for the beams, and in both cases a commercial expanding agent was used. 

Each beam: and control specimens were cast with two batches, 

and each frame and control specimens with three batches of concrete. 

The control specimens were 3 No. 6 in. cubes, 3 No. 6 in. diameter 
by 12 in. cylinders and 3 No. 4 x 4 x 20 in. prisms. The results of 
all the control specimens tested one day after the major test are 

given in Table 7.1. The beams were cast in two layers; the first 

batch was used for the lower layer and 1 No. cube, 2 No. cylinders 

and 1 No. prism and the second batch for casting the upper layer and 

remaining control specimens. In the case of the frames the first 

batch was used for one of the base feet and 1 No. cube and 1 No. 

prism. The second batch was used for casting the transome, columns, 

and 2 No. cubes, 2 No. cylinders and 2 No. prisms. The third batch 

was used for casting the other base foot and the remaining control 

specimens. 

The 0.276 in. diameter high tensile steel wire used was 

manufactured by Richard Johnson and Nephew Ltd. It was tested in 

the laboratory; the load-extension curve obtained was identical to 

that provided by the manufacturer. The material characteristics 

and the load-strain curve are given in Figure 7.7. 

Corrugated C.C.L. duct-tubing was used in the beams, which 

had practically no strength; but for the frames the only commercially 

available i in. outer-diameter duct tubing was the seamless cold-drawn 
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tube. This had much greater strength (ultimate 1.64 tons) than was 

desired. It was accepted on grounds of delivery, cost and the fact 

that it was discontinuous at the column junctions, and at the other 

critical sections located in the transome, it would be made 

discontinuous by sawing it through and connecting the two ends by 

means of rubber tubing, as seen in Plate 7.1. 

The 2  in. diameter steel used as longitudinal reinforcement 

in base feet, and 27 in. diameter steel used for shear reinforcement in 

all members other than base feet was all mild steel with yield stresses 

of 48,700 and 66,200 lb/in2  respectively. The 4  in. diameter cold-

worked steel used for shear reinforcement in base feet had a 0.2% of 

proof stress of 56,000 lb/in2. 

7.5 MANUFACTURE AND CURING  

All members were cast in rectangular steel moulds 

consisting of 3/16 in. thick channel sections for bottom shutter. 

The beams were cast on a 4 in. face, as done by Raina. This, 
although somewhat unsatisfactory as explained later, was accepted 

since these beams were also intended for a comparative study with 

Raina's beams. All frame members were cast on their side, that is 

on the 6 in. face for the reason that, unlike simply supported beams, 
the same member had different compression or tension faces at adjacent 

critical sections. For example, the compression face at the mid span 

of the transome becomes the tension face at the ends. If such members 

were cast on the bottom 3i in. face, then conditions obtainable in the 

compression faces of two adjacent critical sections would have differed, 

since the compression face which had formed the bottom part during 

casting was well compacted, whereas the compression face which formed 

the top part during casting was rather less compacted. Steel moulds 

with 6 in. width and 	in. in. depth were not available in stock, and 

one was obtained by packing the lower 	in. depth of the 7 x 6 in. 
mould with timber treated with three coats of plastic paint. It was 
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important that timber formed a flat bottom with depth of the mould 

above the top of the timber as 3 in. To achieve this for subsequent 

castings, the timber had to be replaned, reset and repainted every time. 

The cable profiles changed directions frequently and sharply 

in the test specimens. It was of the utmost importance that all duct-

tubing was accurately positioned. To this end, special types of duct-

holders as shown in Plate 7.2 were devised. Type A and B were used for 

the beams; type A where the duct-tubing was required to be supported 

from dropping down and type B where the duct-tubing had a tendency to 

lift. Type C and D were devised for the frames; type C for the 

transome and type D for the columns. 

The positioning of the duct-tubing in the beams was carried 

out as follows. The base shutter was placed level with an approximate 

height of 8 in. clear of the ground. Wherever the profile changed 
direction, holes were drilled in the base plate to receive duct-holders. 

Type A duct-holders were then held at the requisite heights, and loosely 

locked by means of two nuts, one at the top and another at the bottom of 

the shutter. Three lengths of C.C.L. duct-tubing (which was - in. diameter 

for beams B-1 and 2 and 4-  in. diameter for B-3 and 4) through which 

prestressing wires had previously been passed, were laid on the holders 

already fixed, and held by means of thin binding wire. Type B duct-

holders passing over the duct-tubing were then fixed at the requisite 

heights, and locked like type A. The heights of all duct-holders were 

again checked, and adjustment, if any, made before finally locking them 

firmly. The shear reinforcement, which was bent previously, was laid 

and held by tying it with the duct-holders. The steel cages for the 

end blocks were then slipped from the ends, and side shutters erected 

and bolted. The end plates, which were previously drilled accurately, 

were also likewise slipped from the ends, and bolted. 

For the frames, the positioning of the column duct-tubing 

which was in the transome end blocks and base feet posed a further 

practical problem. It was of the maximum importance that all  such 
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duct-tubing was very accurately positioned so that the correct 

mating and alignment took place on assembly. To this end, special 

type of mild steel buttons which had a depth'of i in. and diameter 

equal to the internal diameter of the duct-tubing were made. 

Wherever the column duct-tubing passed through the transome or 

the base feet, these buttons were screwed down to the inner faces 

of the side shutters through holes previously drilled in an accurate 

manner. Exact lengths of such duct-tubing were sawn and slipped on 

to the buttons while erecting the side shutters. This arrangement 

worked very satisfactorily, and it was possible to assemble frames 

to an accuracy of 1i in., as ascertained by measuring the lengths 

of two diagonals. 

The duct-tubing was held to the required profile by means 

of the duct-holders placed wherever the profile changed direction. 

In the transome at the mid span and the end critical sections the 

discontinuity, similar to that Obtainable at the column junctions, 

was affected by laying the duct-tubing in four pieces connected by 

rubber tubing; two central pieces of about 54 in. and two end pieces 

of 6 in. were used. To hold these pieces in correct alignment 

additional duct-holders were necessary, which were placed sufficiently 

away from the critical sections. The duct-tubing was somewhat stiff 

to be aligned to the correct profile through tensioning of the duct-

holders, especially where it had sharp curvatures. In such cases, it 

was roughly bent to the required profile on the ground, and the final 

alignment obtained by applying tension through the duct-holders. In 

frames F-1 to 3 the column duct was straight, and no duct-holder was 

used. Mild steel rods i in. diameter and threaded at both ends were 

passed through the duct-tubing and tensioned against the shuttering. 

These rods had a two-fold purpose; to keep the tube positioned in 

the end plates and to stiffen and position the tube along the length. 

The process of erecting shutters for the frame members was 

similar to that described for the beams. The important difference was 
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In the manner of holding the duct-holders. Unlike the beam duct-

holders, they were held through the side shutters. Two lengths of 

duct-tubing, through which the prestressing wires had previously 

been inserted, were passed through the duct-holders positioned close 

to their intended locations. The duct-holders were then held to one 

of the side shutters clamped to the base shutter. The other side 

shutter was slowly brought near, care being taken that the studs of 

the duct-holders passed through their respective holes and the 

column duct-tubing, if any, slipped over its respective button. 

A general view of the formwork for frame F-1 ready for casting is 

given in Plate 7.1. 

The concrete was mixed in a five cubic feet horizontal 

drum type mixer. 'Allam' external vibrators were used for the beams, 

and 'Tremix' internal poker vibrators for the frame members. The 

control specimens were cast at the same time. The cylinders were 

cast with about 3/16 in. depth unconcreted for capping, which was 

done next day with plycolay. The specimens were covered with wet 

hessian and plastic sheeting for about 48 hours after which the side 
Shutters were removed and wet hessian and plastic sheeting replaced. 

After a total of seven days the members were removed from the shutters 

and left to air dry. Because of long lengths, the beams were removed 

from the base shutter after applying a nominal prestress, and lifting 

them at four points by a special carrier beam. 

Owing to the complex nature of the project, it was not possible 

to test the specimens at the same age. The beams, and frames F-4 and 5, 

which were tested comparatively at an early age, were cast in rapid 

hardening cement such that all specimens had approximately the same 

strength on the test day. 

To check the effectiveness of the duct-holders, certain 

sections of both beams and frames were at random chosen and sawn after 

tests. Maximum variation in the effective depths from the intended 

values was less than 2%. This was considered very satisfactory and 

further verification of the effective depths was not considered necessary. 
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7.6  PRESTRESSING  

Prestressing of the frames was carried out in the test 

rig and the redundant reactions set up due to prestress were 

measured. The beams were tested in the rig belonging to the 

Engineering Structures Section of the Department. The rig was 

available for a short period, just sufficient for testing only. 

The prestressing and grouting of the beams was therefore carried 

out before hand outside the rig. In beams B-1, 2 and 4 large 
secondary prestress moments creating tensile stresses greater 

than the permissible values were set up. These beams required 

special care during stressing and transportation. The beam with 

nominal prestress was placed on three temporary supports in 

practically the same manner as that designed for the test, and 

stressing carried out. As prestressing continued, precalculated 

dead weights were gradually applied at about 6 in. off the centres 

of the spans so that at no stage excessive stresses were created. 

The beam was grouted next day in the same position. It was unwieldy 

to transport the beam along with the dead weights. While transporting, 

the dead weights were replaced by small screw jacks at the centres of 

the spans. These jacks were previously calibrated in the standard 

Amsler compression machine and tensioned against the carrier beam, 

so that they applied the required load on the specimen. The beam 

was transferred and aligned in the test rig with the screw jacks 

and carrier beam in position. The screw jacks were removed only 

after applying the equivalent dead weights at 6 in. off the centres 

of the spans. These dead weights were allowed to remain until the 

load applied during the test was sufficient to keep the stresses due 

to prestress within the permissible limits. 

The prestress was measured throughout by using a previously 

calibrated force transducer between the stressing jack and its quick-

release grip. The prestressing wires had sharp curvatures, and it 

was desired to verify the prestress applied at the critical sections. 
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To this end, PL30 electrical strain gauges manufactured by 

Messrs. Tokyo Sokki Kenkyujo Co., Limited were fixed to the 

prestressing wires of beams B-1 and 2. In each beam three wires 

in a single horizontal layer were used. It was preferred to fix 

gauges to end two wires. Two gauges at 4 in. on either side of 
each critical section, that is in all six gauges for each wire were 

used. The gauges were waterproofed and mechanically protected by 

using Fleming compound. No special exits were provided for the 

leads; they were taken out through the duct-tubing and a groove 

in the concrete face of the bearing plate, and connected to an 

amphinole plug fixed to the bearing plate. The gauges were 

primarily used for measurement of strain at the time of stressing, 

but it was also hoped to obtain a strain history during loading. 

Readings were taken by means of a Peekel strain box connected 

through a multi-switch junction box. Some of the gauges were 

damaged at the time of stressing; the record obtained from the 

remaining ones was also inconclusive. Recourse was therefore 

taken to verify friction losses in some other way. It was done 

by applying the requisite prestress at one end and measuring the 

available prestress at the other end by means of another jack and 

force transducer. After applying the requisite prestress at one end, 

the other end of the wire was pulled by using a special restressing 

stool designed to fit the wire layout. As soon as the anchor started 

pulling away from the bearing plate, which was verified by using a 

0.0015 in. feeler gauge, the force in the force transducer at this 

end was measu2ed. The difference accounted for the losses due to 

friction and elastic shortening, and compared favourably with the 

theoretically calculated figure based on the coefficients given in 

B.S. Code No. 115(63). As a further check extension was also 

measured, which tallied within reasonable limits with the calculated 

one. In all subsequent work losses were calculated theoretically, 

and prestress applied accordingly. 
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A number of reasons are possible for the inconsistent 

behaviour of the electric strain gauges fixed to the prestressing 

wires; the technique of fixing gauges; the high values of strain; 

etc. The Fleming compound or any other similar compound used to 

protect the gauge makes a firm contact with the gauge and leaves an 

undulating surface at the outside. Such a surface, if it comes in 

contact with the surface of the duct-tubing during stressing, will 

exert considerable friction. This, on account of contact between 

the gauge and the protective glue, will be transmitted to the gauge 

and upset the strain readings. Because of the sharp curvatures, 

the chances of the gauge not coming in contact with the duct-tubing 

were little in the present case, and the above inconsistency can be 

explained as above. However, before any conclusive evidence is 

established, some research with improved technique for fixing such 

gauges will be necessary. One of the ways to improve the technique 

could be to protect the gauge without subjecting it to frictional• 

force. It is hoped that Price's findings(64) which are aimed at 

developing such a technique in the Department will be useful for 

future. 

All members except the columns were stressed from both 

ends. The beams were stressed by first stressing the central 

wire approximately to its required prestress and anchored off. 

The other two wires were then similarly stressed and anchored 

off one by one. The wires were then restressed to the exacit 

value by using the restressing stool and shims of various sizes 

down to 0.002 in. For the frames the transome wires did not 

pose any practical difficulty since the two wires were along the 

minor axis and the wire nearer to the centre of the member was 

stressed first. The column wires were symmetrical about the 

minor axis but asymmetrical about the major axis. The stressing 

of any one wire at a time would have resulted in an asymmetrical 

prestress causing excessive tensile stresses across the minor axis, 

especially at the dry mortar joints. This could have been avoided 
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by stressing both the wires simultaneously by using two jacks. 

To stress both the columns simultaneously, four jacks were necessary; 

but only two jacks were available. The stressing of the frame was 

therefore done in stages. First, about one-quarter of the final 

prestress was applied simultaneously to the two diametrically 

opposite wires in the two columns and anchored off. The remaining 

two wires in the columns were then similarly stressed and anchored 

off. The transome was then similarly stressed with about one-

quarter of its final prestress. The procedure was repeated with 

half and full prestress by using restressing stool and shims. 

Attempts to measure the loss of prestress due to creep 

and relaxation were inconclusive, and in all work it was assumed 

that the intended prestress was available on the test day. 

7.7 GROUTING  

Grouting was carried out by means of a high pressure 

hand pump through the grout-holes especially provided in the 

bearing plates. Grouting was done on the day following the 

final stressing; the time from grouting to testing varied, 

but in no case was it less than 7 days. 

7.8 ERECTION OF FRAMES 

The precast frame members were assembled in the test rig. 

It was of the maximum importance that the reaction-transducers, 

jacks and the frame all lay in the same plane. The plane of the 

test rig was established by means of two plumb bobs suspended at 

about 5 ft 6 in. on either side of the centre line of the rig. 
Each plumb bob was suspended through a fine hole drilled in the 

centre of a small bolt which was screwed into the bottom of the 

rig-transome along its longitudinal axis. These bolts served as 

permanent marks for all subsequent alignment. The plumb lines 
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when transferred to the floor, established the line for the 

reaction-transducers. Further success of erecting the frames 

correctly depended upon how accurately the two reaction- 

transducers were aligned transversely, since all subsequent 

erection was carried out with reference to them. To this effect, 

transverse lines at 4 ft 6 in. on either side of the centre line 
and at right angles to the above line were marked. These established 

the lines along which the longitudinal and transverse axes of the 

reaction-transducers were aligned and levelled on three levelling 

screws especially provided for this purpose in their base plates. 

When the top plates of the two transducers were set to the same 

level, which was verified by means of a Dumpy level reading up 

to 0.001 in., the levelling screws were locked and the whole 

transducer raised on four bolts screwed through holes provided 

at the corners of the base plate. This enabled plaster of paris, 

which was laid on polythene sheeting in a thick layer, to be 

slipped under the base plate. The four bolts were then removed, 

and the whole transducer was allowed to rest on its levelling screws. 

The levels were again verified, and the plaster of paris allowed to 

harden for 48 hours. The transducers were then firmly bolted to the 
floor by means of box and I-sections. This arrangement was left 

untouched for all frames. 

The base feet were seated on the top of the respective 

reaction-transducer and aligned both longitudinally and transversely. 

The tops of the base feet were then levelled both longitudinally and 

transversely by means of shimming plates used underneath. The levels 

were checked by means of a Dumpy level and difference, if any, made 

good by using shims of various sizes down to .005 in. Each foot was 

then tightly held down to the top plate of the transducer by means 

of 4 No. i in. diameter bolts and 2 No. 4 in. thick plates; see 
Drawing 7.1. The columns supported on the wedges were then erected 

vertically with their axes in line with the axes of the base feet 
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and held down temporarily at about three-quarters height by 

means of four brackets operated from two angles fixed to the 

rig. The levels of the column tops were checked and difference, 

if any, made good through wedges provided at their feet. The 

transome nominally prestressed previously was then raised on the 

Sherper hydraulic lift and placed on the top of the columns with 

x 2  x 4 in. long metal pieces in between to allow for dry mortar 
packing. The column wires were then threaded from the top. The 

transome was then supported on two screw jacks resting on the angle 

irons fixed to the rig, and destressed. To cover the wires in 

between the spaces for the dry mortar packing the column duct-

tuning was cast - in. projecting and on to these 7/116 in. long 

metal rings were fed before erecting the columns. In frames F-4 

and 5, where the cable profile had sharp curvatures, the wires in 
the column duct-tubing were inserted before casting and the columns 

erected with the wires inside. The transome in such cases was placed 

on the column tops by supporting it on the overhead crane as near to 

the rig as possible and bending the projecting wires such that the 

transome slid over them, when lowered slowly. 

The frame was ready for dry mortar packing. The joint was 

dry mortar packed firmly in part length with wedges in position, 

using temporary wooden shutters. When this was slightly set, the 

wedges were taken out and whole joint dry mortar packed firmly. 

The curing of the dry mortar packing was carried out.for 72 hours 

by covering it with wet hessian and plastic sheeting. The time of 

prestressing varied, but in no case it was carried out before 

72 hours from the placing of dry mortar packing. 

The height, length and diagonal dimensions of all frames 

were recorded. The maximum difference in the lengths of the two 

diagonals never exceeded 
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In frame F-5 three mechanical hinges, one at each of 

the column feet and one at the top of the right hand column, 

were used, see Figure 7.6. The mechanical hinge used is shown 

in Plate 7.2. The bottom plates of the hinges were fixed to the 

base feet at the required eccentricities with certite, and left 

for a few hours to set. The top hinge-plates were then placed, 

and the columns erected, as explained above, with wedges in 

position. The space, if any, between the top hinge-plate and 

the bottom face of the column was packed with fibre glass and 

certite. The top hinge was also fixed in a similar manner. 

7.9 RIG AND LOADING DEVICE FOR BEAM TESTS  

A general view of the test rig is given in Plate 7.3. 
It was an internal reaction frame. The bottom girder formed the 

base for the beam supports. The end beam supports had roller 

bearings, and the central one a rocker bearing such that a 

symmetrical freedom in the longitudinal movement was possible. 

Under each bearing, a bearing type force transducer was used to 

measure the reaction. To avoid any eccentric transfer of load to 

the transducers, a spherical seating was used at the top of each 

end transducer; the central transducer, for stability reasons, 

had the rocker plate tightly fitted. The transducers were 

positioned at 9 ft centres along the longitudinal axis of the 

bottom girder and rollers adjusted such that they were immediately 

above the transducers. This ensured that each span of the beam 

was 9 ft and loads were transferred centrally to the transducers. 
All the three supports were then set at the same level by machining 

the plates resting on the spherical seatings to the exact required 

thicknesses. 

Two jacks were used, which were fixed to the bottom flange 

of the rig girder. Each jack had an arrangement to move lengthwise 

and sideways. This enabled the jacks to be moved clear of the beam 
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while placing it in the rig with the carrier beam on. Each jack 

was a standard 20 ton Amsler jack coupled to a standard Amsler oil 

cabinet, which was worked on half range. For beam B-1 both the 

jacks had a common oil supply, but subsequently each jack was 

connected to a separate cabinet. For beam B-4, where load was 

applied in one span only, the second jack was used to hold the 

outer end of the other span from lifting. 

7.10 PLACING OF BEAM IN TEST RIG 

The jacks were moved clear of the beam, and the beam 

together with the carrier beam and screw jacks was placed in the 

rig. Owing to the long length of the beam, some casting errors 

were involved and it was not always possible to position it correctly. 

The criterion used was that the beam centre line should coincide with 

the centre lines of rollers and rocker to + 1/16 in. The jacks were 

again moved and fixed such that they were in the plane of the beam, 

and the loads were applied at the requisite points. No spherical 

seating was necessary, since Amsler jacks incorporate ball seatings 

at either end of the ram. To avoid concentration of stress, 

2 x 4.x 4 in. thick mild steel plates with a layer of felt paper 

at the concrete face were provided under each jack and at the top 

of each support. 

The dead weights were then added, and the carrier beam and 

screw jacks taken off. At this stage it was important that stress-

resultants caused by the self weight of the beam, the applied dead 

weights, and the secondary prestress were set up in the beam. This 

was effected by packing steel shims down to .003 in. under the 

supports. The secondary prestress moments set up at the critical 

sections are given in Table 7.2. 

7.11 RIG AND LOADING DEVICE FOR FRAME TESTS  

The test floor of the laboratory is designed to form the 
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lower member of an internal reaction frame. Steel uprights are 

bolted to the floor and the test rig is completed by the fixing 

of a steel transome. The holding down bolts in the floor are 

on a 3 ft square grid. 

Four uprights were placed at 3, 15 and 3 ft centres. 

These were connected at their top by an 8 x 17 in. deep steel box 

girder. The twin supports, that is those at 3 ft centres, were 

braced at a height of approximately 3 ft 6 in. by a box girder 

of similar dimensions as those of above; see Drawing 7.1 and 

Plate 7.4. 

The loading system was designed to apply constant vertical 

load at the mid point of the transome, and constant horizontal load 

acting from left to right at the level of the centroidal axis of 

the transome. There were separate oil circuits for each load and 

consisted of standard Amsler oil cabinets. Provision was made to 

accommodate a 3 in. side movement and 2i in. vertical movement of 

the concrete frame. In addition to the above jacks, there was a 

horizontal follower unit for the vertical jack. It consisted of a 

sealed unit of a pair of horizontal jacks with one jack (termed A) 

placed towards the right at the level of the centroidal axis of the 

transome, and another jack (termed B) at the level of the horizontal 

sliding plate of the vertical jack. 

The design ratio of the horizontal load to vertical load 

was 1.5, and it was important that at all stages, including the 

ultimate load, the two loads were applied in the same ratio. By 

using Amsler jacks coupled to Amsler oil cabinets, this could have 

been easily achieved, including the last few load stages before 

collapse when the readings were proposed to be taken on the automatic 

scan of the data logger (Solartron), and it was not possible to check 

the ratio through readings on the appropriate force transducers. But, 

because of their sizes, they were abandoned in favour of lap jacks 

designed by the Engineering Structures Section of the Department. 
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These are compact, and have very little friction; when coupled 

with separate Amsler oil cabinets, they formed a satisfactory 

loading system. It was possible throughout to stick to the above 

ratio within ±2%. The vertical jack was mounted on a sliding 

plate. This was the same arrangement as used by Edwards(34) and 

could accommodate 4 in. of movement about its mean position. The 
follower unit was also the same as was used by Edwards(34) and had a 

20-ton Blackhawk jack, at either end. 

Each horizontal jack at the transome level had a dead 

weight and pulley arrangement for being lifted up at the time of 

stressing the concrete transome. 

Before the frame was loaded, the jack A was brought into 

contact with the concrete frame by means of an extension unit, and 

the jack B brought into contact with the sliding base of the 

vertical jack by means of a similar extension piece. When the 

load was applied, the frame was deflected sideways and oil was 

displaced from jack A to jack B. The vertical jack thus moved 

through the same horizontal distance as the concrete frame. The 

frames were primarily intended to be tested under the monotonically 

increasing load and only the follower unit moving the vertical jack 

towards the right was incorporated. However, to ascertain that all 

critical sections had reached their ultimate strengths, the test 

was continued well past the maximum load, and, owing to friction, 

the vertical jack could slide back easily towards the left without 

a follower unit. 

An attempt was made to minimise the large bending stresses 

that might be induced into the rams of the horizontal jacks at 

transome level by providing a vertical roller bearing between the 

concrete frame and the spherical seating of the force transducer. 

A general view of the jacking arrangement is given in Plate 7.4 

and Drawing 7.1. 
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7.12 INSTRUMENTATION 

Complete load-stress-resultant-deformation history was 

necessary to assess a fairly accurate picture of the behaviour 

of tested structures, as ultimate load was reached. Since only 

short term loading was to be investigated, the length of any one 

test programme was restricted to that which could be carried out 

in one day. The stress-resultants at any load stage were obtained 

by measuring all applied loads and reactions by means of load 

transducers, or directly reading on the Amsler cabinets. 

Measurement of reactions in excess of the redundancy number 

provided checks on the accuracy of data and enabled its adjustment 

logically, as set out in Appendix 1. The curvatures and 

longitudinal strains in the extreme compression fibre were deduced 

by measurement of longitudinal strains in concrete at three 

levels in the compression zone on both sides of the member. A 

fairly long lencth exceeding the inelastic region was covered with 

gauges at each critical section so that curvature distribution 

along the structure could be plotted with reasonable accuracy. 

On grounds of cost and other conveniences, Demec gauge points 

were used for the beams and Japanese PL30 electric gauges for 

the frames. In addition to these, deflexions by means of dial 

gauges or linear potentiometers, and slopes by means of 

clinometers were measured. 

In an investigation of this type it is essential that 

all measuring devices are extremely accurate. The development of 

load transducers of requisite standard presented many practical 

difficulties, which are described in some detail in Chapter 8. 

All readings were taken either by means of Peekel strain 

box or data logger manufactured by Messrs. Solartron Electrical 

Group Ltd. which read up to :11 division. 

In the beam tests the applied load was read directly on 

the Amsler cabinets working on the 10 ton range. An Amsler jack 
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coupled to an Amsler oil cabinet forms Grade 1 loading equipment, 

and in the present case read up to 0.005 ton i.e. about 10 lb. All 

the three reactions were measured by means of bearing type force 

transducers connected to a Peekel strain box. Each end force 

transducer was of 10 ton capacity, and the central one of 25 ton 

capacity; they had repeatability within t 1 division, and 

sensitivities of about 0.3 and 0.1 division per pound respectively; 

linearity as assessed on the basis of first differences was within 

-2.5%. It was necessary that the Amsler cabinets and the force 

transducers were calibrated with the same standard. The transducers 

which wore calibrated in the standard Amsler compression machine were 

checked by loading them by means of the jacks and hydraulic cabinets 

used in the tests, and the two calibrations were found to tally within 
+1  
-go, which was considered satisfactory. 

In the frame tests the applied load was measured at three 

positions; at the vertical jack, and at each of the horizontal jacks 

at the transome level. All three force transducers were of 5 ton 
capacity with repeatability within 1- 2 divisions. The vertical 

force transducer had a sensitivity of about 1.57 divisions per 

pound and the horizontal ones of about 1.18 divisions per pound. 

The linearity as assessed on the basis of first differences was 

within 12%. The three reactions at each foot were measured by 

means of a specially devised force-moment transducer, which is fully 

described in Chapter 8. This had nine force transducers, which 

formed three tripods. Their outputs when suitably combined linearly 

gave both the vertical and horizontal reactions, and moment. Each 

of the force transducer used for the purpose was of 2.5 ton capacity 

and had a sensitivity of about 1.6 divisions per pound; the 

repeatability was within 1- 2 divisions and linearity, as assessed 

as the basis of first differences, within 

The mid span deflexions of the beams were measured by means 

of the dial gauges having a 2 in. travel and the smallest division of 
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0.001 in. The support deflexions which were measured with the 

dial gauges reading up to 0.0001 in. were found insignificant. 

The horizontal and vertical deflexions of the frames 

were measured by means of linear potentiometers having 4 and 3 in. 
travels respectively. The vertical potentiometer was fixed to the 

vertical jack so that it could move horizontally as the frame 

swayed, and the point of application remained the same. The 

vertical movement was measured at 2 in. left of the mid point of 

the transome, and the horizontal movement at the face of the anchor 

plates of the transome. The linear potentiometers were calibrated 

three times in a 0.0001 in. micrometer calibration unit; the 

linearity as assessed on the basis of first differences was within 

-3°./0, and sensitivity varied from 8,400 to 15,900 divisions per inch. 

The support deflexions and rotations were measured by means of dial 

gauges and clinometers reading up to 0.0001 in. and 0.000025 radians 

respectively. The deflexion of the mid point of the rig transome 

was measured with a 0.0001 in. dial gauge and was found insignificant. 

Slopes near some of the critical sections were measured by 

means of clinometers, originally used by Bremner(65) 

The longitudinal strains in the beams were measured at 

i, 1 and 12 in. depths from the extreme compression fibre, and 

4 in. Demec demountable extensometer, which read up to 10 microstrains, 
was used. In the frames the corresponding distances were I, and 

1i in. and electric strain gauges connected to the Solartron, which 

read up to 1 microstrain were used. The measurement at three levels 

had the advantage that it enabled the calculation of the strain 

distribution across the section through the Method of Least Squares, 

which smoothens out the experimental errors to a certain extent. 

7.13 DESCRIPTION OF TESTS 

The critical section identification used for the beams is 

to name the three supports as A, B and C, and the mid spans as Dland D 

(figure 7.8) when viewed from other side of the loading cabinets, see 
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frames is to name the nodes as A to E inclusive 

(Figure 7.8) when viewed from other side of the loading cabinets, 

see Plate 7.3. The identification system used for the frames is 

to name the nodes as A to E inclusive (Figure 7.9) as viewed from 

the data logger, see Plate 7.4. 

The first load increment for the beams was the self 

weight, prestress and dead weights. The reactions measured at 

the time of placing the beam in the test rig were inclusive of 

the effect of the dead weights. To obtain the stress-resultant 

distribution due to the self weight and prestress only, it was 

necessary to deduct the effect of the dead weights, which was 

obtained by subtracting the reactions recorded after the removal 

of the weights from those recorded before their removal. This 

was justified since the beam was still untracked and the principle 

of superposition was applicable. 

The first load increment for the frames was the self 

weight. The reactions due to this were small, and, if measured, 

would be unreliable since the accuracy of a load transducer for 

the first small load is little and also they would have been 

subjected to drift, for the erection of the frame continued for 

3-4 days. For this and other practical reasons it was decided 

to ignore them being small. The first load increment considered 

was, therefore, the prestress. Reactions due to the prestress 

were measured by means of a Peekel strain box and recording of 

the measurement continued till the test day. This enabled the 

study of the effect of creep on prestress. For reasons similar 

to those given for the beams, frame F-4 was stressed with certain 

horizontal load applied by means of screw jacks, previously 

calibrated. The procedure adopted to obtain the effect of the 

dead weights in the beams could not be applied in this case, since 

the value of the horizontal load was continuously varying on 

account of deformations due to prestress and creep. The horizontal 

load could therefore be estimated approximately and the secondary 

prestress moments given in Table 7.3, which were obtained by 
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deducting the effect of such horizontal load from the measured 

values, should be considered as approximate only. However, they 

compare fairly well with the theoretical values. 

All beams and frames were tested under proportional 

loading. The load was applied in steps of 15% of the expected 

ultimate load in the early load stages nearly up to cracking. 

Thereafter, it was reduced to about 1C%. As deformations became 

excessive towards collapse, the load increment was further reduced. 

Except B-41  all the beams were loaded by applying equal 

loads at the centres of the two spans simultaneously. It was 

seldom that both the spans failed simultaneously. After one 

span had failed, the other span was loaded until it also failed 

so that the ultimate flexural strengths of all the critical 

sections were measured. Unlike the other beams, B-1 failed by 

the rupture of section DI. The test was continued like the other 

beams until all the critical sections failed, and their ultimate 

strengths measured. The critical sections of beams B-1 were sawn 

through after the test; it was found that grout had not gone 

through the central duct. The difference in failure in this case 

is attributed to bad grout and loading arrangement. The two spans 

in this case were loaded through a single cabinet. As soon as the 

first hinge was formed at D', the total load applied to the structure 

was determined by the response of the left hand span. The result was 

the left hand span ruptured at a load of 6,640 lb, 

The design ratio of horizontal to vertical load was 1.5 

for all frames. During the tests, this ratio was adhered to 
+ 

within -2%, but after the correction of the data it varied within 

±4%. All frames except F-3 failed through a combined beam and 

sway mechanism by the formation of hinges at A,C,D and E. At the 

maximum load distinct signs of crushing of concrete were visible 

at all the critical sections. In frame F-3 at a load of 

3,850 lb there were no signs of crushing at C, although excessive 
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crushing had already started at A,D and E, and the frame had 

swayed by 2.7 in., that is about 100% more as compared to the 

other frames. At this instant the whole system became so 

unstable that load had to be taken off. The ultimate strength 

of the critical section C was then obtained by slightly 

increasing the ratio of the vertical load. The ratio of the 

horizontal to the vertical load at the time of crushing at C 

was 1.33. 

At node D crushing was observed both in the transome 

and the column in all cases, except frames F-3 and 5; the 

maximum moments reached at the critical section D in F-3 and 5 

were also somewhat less than those reached at the other critical 

sections which had practically the same effective depth. The 

column and transome of frames F-3 and 5 were therefore sawn at 

the node D after the test. It was found that the grout had not 

properly gone through the column ducts, which explained the above 

difference of behaviour. 

In all beams and at the critical section C of all the 

frames (except F-5), crushing of concrete took place in the 

region of bending moment diagram with shallower gradient. In 

frame F-5, however, crushing of concrete took place in the region 

CD where the bending moment diagram has a steeper gradient. 

The deformed shapes of the structures along with the 

crack pattern under near maximum load are shown in Plates 7.5 

to 7.10 inclusive. 

Both the test rigs behaved well under load conditions. 

0.001 in. dial gauges were placed at nodes B and D in the plane 

at right angles to the plane of the frame; the maximum recorded 

values of deflexions were 0.07 and 0.20 in. respectively. The 

maximum deflexion of the rig transome was observed as 0.0215 in. 
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7.14 TEST RESULTS  

It was seldom that the measured reactions and applied 

loads satisfied the equations of equilibrium. It was necessary 

to apply smallest possible corrections to the measured values such 

that they satisfied all the equations of equilibrium. In the past, 

either the data was left uncorrected(37) or the above corrections 

made by trial and error04) or the error was distributed in an 

arbitrary mannerWI). In the present case the number of quantities 

involved were large and any of the above procedures was neither 

convenient nor rational. Lagrange's method of undetermined 

multipliers which logically makes such corrections easily possible 

was used. This gave very consistent results and is described in 

Appendix 1. 

It was mentioned in Section 7.6 that the beams were 

stressed outside the test rig. The conditions at the time of 

stressing were somewhat different from what they would have been 

if the beams were stressed in the test rig. Therefore to record 

concrete strains after stressing would have been of little value. 

Attempts to relate the 'Demec' readings taken before stressing with 

those taken after the beams were correctly placed in the test rig 

were also inconclusive due to changes of temperature and humidity 

to which the specimens were subjected. Unfortunately, at that time 

the temperature and humidity system of the laboratory had broken 

down. The gauges over the dry mortar packing of the frames were 

not fixed until after the stressing had taken place. Thus actual 

curvatures corresponding to the prestress were not measured, although 

the prestress moments were known. The curvatures corresponding to 

the prestress were extrapolated by continuing downward the initial 

linear portion of the moment curvature diagram obtained for the 

applied loads. This had the advantage that the curvature 

corresponding to the prestress so obtained excluded the effect 

of creep. 



187 

The important results obtained from the tests are presented 

in Figures 7.10 to 7.46 inclusive and consist of the following. The 

loads at which visual cracking and crushing of concrete occurred are 

also marked on the appropriate Figures. 

(1) Load-Moment Relationships for the critical sections 

(Figures 7.10 to 7.18) 

(2) Load-Rotation Relationships for beams CB-1 and B-1 

(Figure 7.19). 

(3) Load-Deflection Relationships (Figures 7.20 to 7.24) 

(4) Moment-Curvature Relationships for the critical sections 

(Figures 7.25 to 7.31). 

(5) Curvature and Strain Distributions along the structure 

near collapse (Figures 7.32 to 7.45). 

(6) Prestress Redundant Reactions versus Time Relationships 

for frame F-5 (Figure 7.46). 

The graphical representation of horizontal movement of 

nodes B and D of the frames is almost identical and an average 

value has been given. The actual values obtained, however, enabled 

the relative movement of the two nodes to be examined. Before 

cracking node B moved towards node D, and after cracking node D 

moved away from node B. The measuring devices were sufficiently 

sensitive to record this effect even at low cracking loads. 



Struct 6 x 12 in. 
cylinder strength 

Avg.cyl. 
strength 

6 in. cube strength 

CONCRETE 	CONTROL 	TESTS 

rupture Avg. 
M. of R. 

cyl.str. 

(all results 

Avg.cube 
strength 

in lb/in2) 

Modulus of 
cube str. 

B-1 5790  588o 545o 5706 8470 9150 8400 8673 747 716 - 732 0.66 

B-2 5800 5690 6450 5980 8770 9150 8580 8833 866 726 692 761 0.68 

B-3 5800 6350 616o 6103 8700 876o 8510 8657 735 695 713 714 0.70 

B-4 5920 6010 614o 6023 8520 884o 8950 8770 725 713 670 703 0.69 

F-1 6o5o 6180 6180 6137 9200 9580 9400 9393 888 666 1032 862 0.65 

F-2 5920 6150 6470 6180 8700 9100 8910 8903 - - - - 0.70 

F-3 6650 6510 6150 6437 8950 878o 9510 9080 974 917 974 955 0.71 

F-4 6250 673o 6740 6573 995o 9510 10100 9853 610 743 893 749 0.67 

F-5 6240 6510 630o 6350 9600 895o 9340 9296 98o 1040 1015 1012 0.69 

Avg.0.68 

TABLE 7.1  
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Design 
Struct 	description 

CB-1 	concordant cable profile 

based on working load 

design 

B-1 	Geom. properties of the 

critical sections as 

those of CB-1 but cable 

profile designed as per 

the proposed theory 

B-2 	As per the proposed 

theory 

B-3 	Geom. properties of the 

critical sections as 

those of B-2 but 

concordant cable profile 

B-4 	As per the proposed theory 

(loaded at D only) 

Critical 
section 

Effective 
depth, in. 

Secondary 
prestress 

moment, lb in. 

D' 4.20 0 

B 4.46 0 
D 4.20 0 

D' 4.3 5,150' 

B 4.1 10,300 

D 4.3 5,150 

D' 4.3 8/650 

B 4.3 17,300 

D 4.3 8,650 

D' 4.3 0 

B 4.3 0 

D 4.3 0 

DI 5.1 -28,780 
B 4.3 -57,560 

D 4.3 -28,780 

TABLE 7.2  
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PRESTRESS MOMENTS IN TEST FRAMES 

moment, lb in. 

A 3.31 660 

C 3.37 -30 

D1 3.69 -110 

D2 3.65 -90 

E 4.00 330 

A 4.10 -12,200 

C 2.57 -14,000 

D1  4.06 -7,300 

D2  3.98 -6,500 

E 4.10 1,200 

A 4.10 -12,500 

C 4.10 -5,500 

D1 3.98 2,000 

D2 3.98 2,500 

E 4.10 3, 500 

A 4.10 -5,400 

C 4.10 21,300 

Di  4.10 12,500 

D2 4.10 1o,400 

E 4.10 -23,200 

A 4.10 -5,100 

G 4.10 

D1  4.10 1,600 

D2  4.10 900 

E 4.10 -10,900 

Design 	critical Effective Secondary 
description 	section 	depth, in. 	prestress 

F-1 	Concordant cable profile 

based on working load 

design 

F-2 	Linearly transformed 

cable profile obtained 

from F-1 

F-3 	Arbitrary nonconcordant 

with geom. prop. of the 

crit. sections as those 

of F-4 and F-5 

F-4 	As per the proposed 

theory 

F-5 	As per the Russian Code 

of Practice but with 

prop of p geom. rop of the crit. 

sections same as those 

of F-4 and F-3 

TABLE 7.3  
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Fig. 7-2: LOADING FOR BEAM 	B-4 
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CHAPTER 8 

DEVELOPMENT OF A FORCE-MOMENT TRANSDUCER 

8.1 INTRODUCTION 

In the present investigation all applied loads (except 

those in the beam tests) and reactions were measured by means of 

load transducers. The use of such a device for measuring an axial 

tensile or compressive force is very common and needs no comment. 

However, the development of an accurate force transducer suitable 

for this investigation posed many practical problems, which will 

be described here in some detail. 

The reactions at each base foot of the portal frame 

comprised of a vertical force, a horizontal force and a moment. 

LaGrange(14)  made an attempt to measure these reactions; his 

method consisted of measuring only the restraining moment and the 

horizontal force at each foot by means of two ordinary load capsules. 

His arrangement was somewhat cumbersome and unreliable. As LaGrance 

pointed out, the arrangement of capsules allowed restraining moments 

to be measured in one direction only. It had the further disadvantage 

that the horizontal reaction, which plays a most important role in the 

evaluation of stress-resultant distribution, was measured as the 

difference of two large quantities, and the whole system had only 

one equation to check the accuracy of the data. In the present 

investigation it was decided to measure all the six reactions so 

that the accuracy of the data could be checked against the three 

equations of equilibrium, and the errors adjusted logically. In 

order to measure the three reactions simultaneously, a special load 

transducer capable of measuring both the vertical and horizontal 

forces, and moment was devised. 
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8.2 MEASURE OF ACCURACY OF A LOAD TRANSDUCER 

For the present investigation it was important that all 

load transducers were extremely accurate. Accuracy of a load 

transducer can be judged by the degree of repeatability it exhibits. 

It was desirable to have repeatability to ±2 divisions (data-logger 

scale). Linearity, although not so essential, would considerably 

facilitate the calibration of the instrument, and the analysis of 

the experimental data. 

True repeatability in as much that the same readings were 

obtained under the same load was not obtained. However, repeatability 

of the change in readings corresponding to the given loads was obtained 

within the desired accuracy. 

8.3 DEV0A.OPMENT OF AN ACCURATE FORCE TRANSDUCER 

Calibration tests on certain force transducers revealed 

the following unexpected facts. The force transducers which had 

reasonable repeatability for three calibrations carried out on the 

same day did not repeat to the same extent when calibrated on 

different dates; for example, a transducer which was calibrated 

on March 21st, and March 25th, 1966 in the 1.75 ton range of the 

standard Amsler compression machine had Solartron data logger 

outputs of 4302, 4305 and 4316 (average 4308) divisions on March 

21st, and 4262, 4255 and 4266 (average 4261) divisions on March 

25th. These transducers had duralium cores and 'Tinsley' gauges 

fixed with 'Araldite' cement. A newly manufactured transducer with 

a core made from duralium and gauged with Japanese gauges using 

Japanese cement, C.N. adhesive, had different calibrations in 

tension and compression; the output in compression being about 

5% less than that in tension. A similar phenomenon was also 

observed while calibrating the transducer described in Section 8.4, 



247 

when it was gauged with Japanese gauges using C.N. adhesive. For 

an applied horizontal load, the tripod in tension had about 7% 
higher vertical output than the two tripods which were in compression. 

Because of the other complexities involved in, this transducer, it was 

not possible to draw any conclusion from this, but it did suggest a 

thorough study of the load transducers before they were used in the 

present investigation. 

A force transducer with a core manufactured from duralium 

and gauged with 'Budd' metal film strain gauges, using 'Aralditel 

strain gauge cement, was found to have repeatability within -+2 

divisions and linearity as assessed on the basis of 'first 

differences' within 4--Zi). This transducer had practically the 

same calibration in both compression and tension, and also satisfied 

the test of repeatability in terms of reading on the data logger, 

that is for any loading process it had practically the same reading 

on the data logger for the same load. All load transducers used in 

the frame tests were produced in the above manner in the Department. 

Early attempts using 'Budd' gauges were not very successful; 

at a tensile strain of about 3500 microstrains the transducer 

exhibited drift. This was eliminated by first etching the surface 

with phosphoric acid and restricting the tensile output to about 

3000 microstrains, which is a low output according to the manufacturer's 

recommendations but one which resulted in a very satisfactory performance. 

It is therefore suggested that the cores for load transducers should be 

designed such that the stress does not exceed one-third the 

proportional limit and the tensile output is restricted to about 

3000 microstrains and the compressive output to about 4000 microstrains, 

unless special precautions are taken for fixing the gauges. 

The above studies could not be pursued further because of 

the time involved. They do, however, draw attention to the 

importance of choice of gauges, core material, cement and workmanship 
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in the development of an accurate load transducer. Since a load 

transducer is a basic measuring device in any structural test, 

and without its reliability all studies through its use would be 

of little value, further research would be useful. 

The standard Amsler loading machine, which is a Grade 

machine, was chosen as the standard for calibration, but it was 

soon discovered that even this machine had calibrations differing 

by i% when used on different ranges. This error was accepted 

provided all the measuring devices used in any particular test 

series were calibrated in this machine using the same loading range. 

8.4 DEVELOPMENT OF A FORCE-MOMENT TRANSDUCER 

The tripod which is the simplest type of space structure 

has been used by many(66'67) as a transducer for measuring the 
three components of a force acting at a point. It was conceived 

that if three such tripods were fixed between two plates such that 

their apexes formed a triangle, then they could be used to measure 

the six components, that is three forces and three moments acting 

at a point. A force-moment transducer to measure the six components 

has been developed at the Wayne State University by Lebow
(68) by 

force and moment separation with strain gauges. The principal 

difference between the two methods is that the present investigation 

uses a force transducer measuring axial compression or tension as 

the basic unit, and obtains the six components by suitable linear 

combination of their electrical outputs, whereas Lebow's basic 

unit is a strain gauge recording either direct or flexural or 

torsional strain, and the six components are obtained by 

combining their outputs. It is difficult to say which would 

form a better transducer without trying each type in similar 

conditions. The latter which is solely based on the position 
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and alignment of the strain gauges may pose more practical 

difficulties for the same accuracy. 

The present investigation was concerned with planar 

frames and only three components, namely the horizontal and 

vertical components of force,and moment acting in the plane 

of the frame were required. Theoretically, they could have 

been obtained by using only two tripods, but in the event of 

any force acting outside the plane of the tripods the whole 

system would have become unstable. Three tripods arranged as 

shown in fig. 8.1 with ao  = 9 in. were therefore used. Details 
of the transducer are given in Drawing 8.1 and its complete 

assembly is shown in Plate 8.3. 

8.5 CALIBRATION OF FORCE-MOMENT TRANSDUCER 

Referring to Figure 8.1, we have 

9 

V t7). >". x, 	 .... (8.1) 

1 

 

11
1-(x5 + x 2 	6 "8 "9 - x2 x3)+ xl - x4 - 

 

H 0Q. .... (8.2) 

   

  

(m 	lino) c 4,180 (8.3) 

  

If the applied load consists of a vertical load only, then 

according to equation 8.2 the electrical output represented by - 

[1 
2
(x
5 
 + xr  + x8  + x9  - x2  - x3)+ x1 x4 - x7 	must be zero. 

Similarly, if the applied load consists of a horizontal load only, 

then by virtue of equation 8.1 electrical output denoted by 
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x.,i  must be equal to zero. In the early stages of development 
1 

of the transducer, Japanese gauges manufactured by Tokyo Sokki 

Kenkyujo Co. Ltd. were used. It was found that while the 

transducer was calibrated for vertical force V, equation 8.2 

was satisfied within 2%; but while calibrating it for horizontal 

force H, equation 8.1 was not satisfied even within 10%. This 

was serious and meant that the principle of superposition would 

not apply, and it would be necessary to calibrate the transducer 

for V, H and M all acting simultaneously. This would have 

posed considerable practical difficulty. 

The only difference in the behaviour of the tripods in 

the two calibrations was that all tripods were in compression while 

the vertical load was applied, whereas at the time of the horizontal 

load tripod 1-2-3 was in tension and tripods 4-5-6 and 7-8-9 

were in compression. There could be many reasons for the above 

discrepancy such as different behaviour of tripods in tension and 

compression, different gauge factors of strain gauges or their 

alignment, different calibrations of strain gauges in compression 

and tension, etc. For want of time, it could not be pursued to a 

final conclusion. It was, however, decided to use all 'Budd' 

metalfilm strain gauges from the same lot and commence the 

calibration:, from the basic unit, that is each leg before being 

assembled into the tripods was calibrated and so was each tripod 

and then finally the complete force-moment transducer. 

Each leg was therefore calibrated in the standard Amsler 

loading machine in tension or compression depending upon what it 

would resist in the actual tests. Where it was not easily possible 

to foresee, each leg was calibrated in both compression and tension. 

The two calibrations were practically the same, which led to much 

simplification. Then the legs were assembled; a complete tripod 

is shown in Plate 8.1. The tripods were then calibrated by 
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positioning them in the manner they would be placed in the actual 

tests. All tripods resisted horizontal force acting from left to 

right but the vertical force was either tensile (tripod 1-2-3) or 

compressive (tripods 4-5-6 and 7-8-9) and accordingly calibra-

tion of each tripod was carried out. The calibration of a tripod 

in compression is shown in Plate 8.2. If H and V denote the 

expected maximum horizontal and vertical forces acting at the tripod 

ball in the tests, then the tripod was calibrated twice for the 

vertical load with H = 0,2H and H, and similarly for the horizontal 

load with V = 072V and V. The same linear calibration was obtained 

for the corresponding cases. The individual leg calibrations had to 

be slightly adjusted in order to be compatible with the tripod 

calibrations. This was probably due to the machining or assembly 

errors, bending effects, etc. The tripods were then fixed between 

two plates to form the force-moment transducer, see Plate 8.3. To 

prevent any damage occuring during transportation or testing, four 

1 in. diameter columns were fixed to the top plate with specified 

clearances at their bottoms. When the transducer is not in use the 

gaps are wedged to prevent damage to the transducer. During the 

test the wedges are removed, and the loads transmitted through the 

tripods; load exceeding the permissible value would close certain 

gaps, which would be reflected on the electrical output, and help 

to prevent the transducer from being damaged. 

The transducer was then fixed in position as intended in 

the tests, and checked three times by applying a horizontal load; 

see Plate 8.4. The transducer had linear and consistent behaviour 

throughout and equation 8.1 was reasonably satisfied, but to match 

with the individual tripod calibrations small factors had to be 

applied. This was, probably necessary to cater for the assembly and 

other practical errors and restraint caused by the top plate which 

modifies the bending effects otherwise exhibited by the individual 

tripod. 
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In the tests two such transducers were used and each of 

them behaved consistently throughout. The sensitivities of the 

leg transducers varied between 1.56-1.59 divisions per pound, and 

it was possible to record horizontal and vertical loads to the 

extent of about 0.41.  and 0.57 lb respectively by individual tripod. 

8.6 SOME ASPECTS OF DESIGN OF TRIPODS  

The sensitivities of a tripod to measure the three 

components of a force can be adjusted by varying the angle of the 

legs. Ideally, the angle should be such that the tripod measures 

all the three components with equal sensitivity., In the present 

case the ratio between the vertical and horizontal components 

varied greatly and without changing the angle in each tripod, it 

was not possible to obtain the same sensitivity for the two 

components. On the grounds of manufacturing convenience all 

tripods had the same angle. 

The accuracy of a tripod depends upon having very small 

deformations so that geometry does not change under the application 

of load. Other things being equal, the deformations of a tripod 

depend upon the degree to which the ends of the legs are restricted 

from movement. Welding which accomplishes this without much 

complication could not be used since the legs were manufactured 

from duralium. Tests on the tripod with legs fixed by means of 

screws but with or without dowels showed that the use of three 

dowels in a total of six screws reduced the vertical deflection 

by about 50%. It was therefore decided to locate the ends of 

the legs in slots with 0.002 in. clearance as shown in Drawing 8.1. 

Tripods produced in this manner behaved satisfactorily. 
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8.7 CONCLUSIONS 

1) The accuracy of a load transducer should be thoroughly 

checked at an interval of a few days before use in tests. 

2) A reasonably accurate transducer measuring axial 

compression or tension may be obtained by working to about 

one-third the proportional limit of the core material, and 

restricting the tensile output to about 3000 microstrains and 

the compressive output to about 4000 microstrains, unless special 

precautions are taken in fixing the gauges. 

3) Amongst different gauges 'Budd' metalfilm strain gauges 

gave the most satisfactory performance. 

4) The accuracy of the proposed force-moment transducer 

depends upon having very small deformations of tripods so that 

geometry of the system does not change with the application of 

load. The deformations of a tripod, other things being equal, 

depend upon the degree to which the ends of the legs are 

restricted from movement. 
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Tripod Transducer 

PLATE 8.1  

Calibration of Tripod Transducer 

PLATE 8.2  
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Force-Moment Transducer 

PLATE 8.3  

Calibration of Force-Moment Transducer 

PLATE 8.4 
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CHAPTER 9 

SUMMARY OF CONCLUSIONS 

The conclusions derived from each stage of the work have 

been listed at the end of the appropriate Chapter. However, the 

following is a summary of the more important points. 

(1) The flexural ultimate strengths measured at the actual 

points of crushing of the concrete were in reasonable agreement 

with those estimated according to the C.E.B. recommendations, but 

the corresponding curvatures, concrete compressive strains 

(extreme fibre), and the flexural stress-resultant-deformation 

characteristics for sections with similar geometric properties 

showed a considerable divergence. 

(2) It is suggested that the enhanced flexural strength of 

the theoretical critical sections of a prestressed concrete 

structure at collapse is the result of the displacement of the 

actual point of crushing of the concrete from the theoretical 

critical section, and the gradient of the apparent bending moment 

distribution. 

(3) The theory presented for the analysis of flexural stress-

resultant-deformation characteristic of a prestressed concrete 

section shows that the maximum moment of resistance of a section 

would not occur at any fixed value of concrete strain in the 

extreme compression fibre, and requires the stress-strain curve 

of concrete in flexural compression to be completely defined, 

including the falling position. The following equations are 

tentatively suggested 

f
c 

= f 
co 2 ( cc  

co 

E
C 
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and 
-0.14 

f = f e co 

Cc 
EGO 
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7  for C >12...8  CO 

      

(4) The above theory for the calculation of the complete 

moment-curvature relationship, and the experimental load-moment 

and load deflection relationships for the critical sections of 

the tested structures establish that the moment-curvature 

relationship for a prestressed concrete section has a drooping 

branch after the maximum moment is reached. 

(5) The divergence in the experimental moment-curvature 

relationships for sections with similar geometric properties could 

result from the variation in the concrete strain corresponding to 

the maximum stress of the stress-strain curve of concrete, which 

depends upon the degree of restraint available at a particular  

critical section. 

(6) It is concluded that, in general, full redistribution 

will not take place in a statically indeterminate prestressed 

concrete structure. Test results can be explained satisfactorily 

by the theory presented, which assumes that the moment-curvature 

characteristic of a prestressed concrete section has a drooping 

branch after the maximum moment is reached. 

(7) It has been shown by tests on two-span beams and fixed 

portal frames that by setting up a suitable secondary prestress 

stress-resultant distribution, conditions can be created in. a 

statically indeterminate prestressed concrete structure so that 

it will carry the ultimate load by simultaneously developing the 

maximum moment of resistance at each of the critical sections 

forming the collapse mechanism, and at the same time maximum output 

from each such section is ensured. 

For practical engineering purposes the theory presented 

provides a simple and economical solution for the design of such 

structures at ultimate load. 
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(8) The deformations of such a structure at collapse are 

less compared to those of the corresponding structures which 

carry the ultimate load with over-redistribution. 

(9) The conventional method of design of statically 

indeterminate prestressed concrete structures based on the 

working load stress-resultant distribution with a concordant 

or a linearly transformed cable profile is not, in general, 

economical. 

(10) Linear transformation can result in an ultimate load 

which is much less than the ultimate load carried by the 

parent structure with a concordant cable profile. The actual 

solution can only be obtained by considering both the 'equilibrium' 

and the 'compatibility' criteria. 
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APPENDIX1  

METHOD FOR CORRECTING THE OBSERVED  

STRESS-RESULTANT DATA  

Let the total number of reactions and applied loads 

measured in a teat be m. If x.(i = 1,2 ..a) are the required 

corrections to the measured quantities, then they must have values 

such that 	x. 2 is minimum and at the same time they must 

satisfy the equations of equilibrium. 

Let the equations of equilibrium be denoted by 

0r (x1' x2 ." xm)  = 0 (r = 1, 2 ... k) 
	

0144/4. (1) 

and let 

1 
It
2 

— 
	

f(X12 x2  *04 xm) 	 4••• (2) 

According to Lagrange's theorem of undetermined multipliers 

we can find k numbers (3 i(i= 1,2 .. k) as well as m values of the 

variables xi(i=1,2..m) which satisfy 

(i) the k equations at 1 and also 

(ii) m equations 

+ —1 13 
g
2 

ax 	rl ax 	2 ax is 	S 	S 
• 4 • = 0(s = 1, 2 	m) 041,4 (3) 

and for m such values of the variables X3..(i= 112 m) the 

value of f(x1'x2 '• 
xm) is a stationary value. 

The effect of equation 3 is that if pi(i =1,2 k) exists, 
then 

of 
ax
s 

= 0(s = 1, 2 ... m) 
	

(4) 
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But equations 4 represent the m normal equations 
obtained from function f(x1'  x2  xm 

 ). These are true only if 

f (x1  x2  .. xm) is minimum. That is, the values of xi( = 1 12 in) 

so obtained are the values of corrections which make 
1-3 

›... x2. the minimum and also satisfy the k equations of 
1 

equilibrium at 1. 

This will now be illustrated by applying to the data 

of the frame tests. 

By using the individual tripod calibrations the outputs from 

the three legs of a tripod can be expressed as horizontal and vertical 

components acting at the centre of the tripod ball. Since the balls of 

all the tripods of a force-moment transducer are at the same level, the 

horizontal components can be combined into one. Thus the various 

measured forces W.( i = 1,2 9) would act as shown in Figure 1. 
1 

If 	x.i( i =1,2 9) are the required corrections, then 

the normal equations are 

x. = 0 	weight = 	= 1, 2 	9) 	(5) 

where 1 
w. 
1 

is the weight of the corresponding observation. 

For equilibrium to be satisfied 

x1 - x4 - x5 - 	- x8  = 	+ Wk  + w5  + W7  + 1418  ) 
) 
) x2  - x3  x6  - x

9 	
WWW 	 ) 

) 
-x2bo + x3bo + x4(2- a0  - Co) x5(2 4- a0- c0) 	) 	(6) 

) 1 	 1 -x6( h + ho  0  ) - x7(2 + a0  c0) - x8(2- a0  c0) 	) 
) 

-x9(h*h0- b0) 1 	) 

Wbo 
-W3bo  -W4  (-2- ao  - co)  ) 

) 
-W5  (2. + a0  c0) + W6(h+h0  b0) + W7  (2 + ao  + c0) 	) 

) 
+W8  (2-- - a0 + co) + w9 (h + h0  - b 0) 	) 
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Equations 6 are equivalent to k equations at 1. 

Differentiating equations 5 and 6 and forming equations 
similar to those at 3, after taking due account of weight of 
equations 5, we have 

xi 	 ) 

Pi = 0 	 ) 
W1 	 ) 

) 
x2 	 ) 

7; 
	
P2 + P3 bo = ° 	) 

) 
) 

f.c.2 + — P.3 bo 	= 0 w3 	P2 

x4 
+ 13,1 - p3 (.J7  .•' ao 	co) w4 

5  

x6 + p2  + p3  (h + ho  - bo) 
w6 

x?  

+ Pi 	133 + 	+ co) id? 	(-1  + a  2 o 

x8 + B1 + P (2.- — ao  + co) w8 	' 	3 2 

xn  
7 
w9 
• 132 	p3  (h + ho - bo) 

) 
) 
) 

= 0 ) 
) 
) 
) 

0 ) 
) 
) 
) .... 	(7) 

= 0 ) 
) 
) 
) 

= 0 ) 
) 
) 
) 

= 0 ) 
) 
) 

= 0 ) 

..9) from equation 7 into Substitutingx.(i = 1,2 

equation 6, we have 

A11 A12 A13 131 

A21 A22 A23 P2 
A
31 

A
32 A33 133 

B1  

B2 

B
3  

or 	 A p 	= B 	..s. (8) 
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A11 = wi "4 "5 w7 w8 

Al2 = 0 

A13 	= -wk(7- ao  - co ) - w5 2  (1+ ao  c o  ) + w72  + ao  + co  ) 

+w8(2- ao + co) 

A21 = 0 

A22 w2 w3 w6 w9 

A23  = -w2b0  - w3b0  +(w6 +w9)(h+ho -bo) 

1 	 1 A31 	= 	1 ao  - co) - w5(-a+ ao  co) + w7  (2+ ao  + co) 

4-cr8 2  (-1 - ao  + co) 

A32 	= -w2bo - w3bo + (w6 + w9)(h+ ho  -bo  ) 

1  
A33 	= w2bo2 + w3bo2 	4 + w, (-2- ao  - c o)2 + w5(2+ ao  - co )2 

+ w6(h+ho  - bo)2  + w (-1+ 7 2 ao + co
)2 

+ w8(2- ao + co)2  

+ w9(h+ ho  - b ) 2 

B1 	= 	+ WI+  + 1113  + 1,17  + w8  

B2 	= -W2 + W3 + w6 + W9 

1 B3 	= w2bo  - w3b0  - W4(7- ao  - co) W5 2  (-1 +ao  -co  ) 

1 +w6(h+h o  -b  o  ) +W7 2  (-1  +ao  +c o  ) +W8 (2—ao  +co  ) 

+W9(h+h o  -b o) 

Thus evaluating pis from equation 8, xj(i=1,2•.m) 
can be obtained from equation 7. 
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