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ABSTRACT  

A review has been made of the recent literature 

pertinent to the electrical conductivity and polarisation 

of uni-univalent ionic salts. Special attention has been 

given to the results obtained for potassium chloride. 

Pure and strontium-doped hydroxyl-free KCl crystals 

have been prepared by pre-treating the melt with 012. 

The crystals were grown by the Stockbarger technique with 

the KC1 in a graphite crucible, sealed under vacuum in a 

spectrosil vessel. 

The temperature dependence of the A.C. electrical 

conductivity of these crystals has been studied. 	To 

interpret the data, a program has been developed for the 

Atlas computer which, given the conductivity parameters, 

generates the ionic conductivity as a function of tempera-

ture. This has been used in conjunction with a minimis-

ation routine to determine values of all the parameters for 

KCl. Using the Stasiw and Teltow association theory, the. 

value of the association energy for strontium-cation 

vacancy complexes in K01 was found to be 0.42 eV. The 

following enthalpy values were also found: for cation 

vacancy migration, 0.709 eV; for anion vacancy migration, 

1.04 eV; for the formation of a pair of Schottky vacancies, 



2.26 eV. 	The correspondin g entropies were: for cation 

vacancy migration, (0.155 - 0.193) x 10-3  eV/deg.; for 

anion vacancy migration (0 .54 - 0.58) x 10-3  eV/deg.; for 

the formation of a pair of Schottky vacancies, 0.463 x 10-3  

eV/deg. 

A dramatic reduction in the extrinsic conductivity 

of the nominally pure crystals, has been observed subsequent 

to heating them in an atmosphere of oxygen and water 

vapour. 

Simple expressions have been derived for the space 

charge capacitance and conductance of doped KC1. These 

contain a blocking parameter which allows for the possi-

bility of partial discharge of ions at the electrodes. 

Extensive measurements have been made on the strontium-

doped crystals, to determine whether the predictions of 

this expression are correct. These have shown that the 

inclusion of the condition for partial blocking does not 

provide any substantial improvement in the agreement between 

the theory and the experimental data. 
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1. 	INTRODUCTION 

1.01 General introduction  

All the charge transport properties of potassium 

chloride which have been studied in this work are assumed 

to result from two mechanisms: A polarisability of the 

crystal as a whole and motion of the individual ions 

through the lattice. 	The first mechanism gives rise to 

a displacement current when an electric field is applied 

to the crystal. 	The current results from an elastic 

displacement of the ion nuclei and a displacement of the 

electrons relative to the nuclei. 	This contributes to 

the admittance of the crystal as the dielectric constant 

in a high frequency A.C. field. 

The second mechanism is the one which is largely used 

to interpret the experimental results and requires some 

justification. 	The best evidence comes from auto-

diffusion of tracer ions and from transference number 

determinations. 

The crystal structure is maintained throughout these 

experiments showing that the overall result is the movement 

of ions within their own sublattice. 	The diffusion 

experiments (Aschner,1954; Laurent and Bernard, 1957) 

clearly demonstrate this property under the influence of 



a concentration gradient. 

The transference number measurements need more careful 

examination. 	By putting three or more slices of crystal 

between metallic electrodes and passing a known charge 

through the system, it has been shown (Tubandt et al., 1931; 

Kerkhoff, 1951) that the mass of the central slice remains 

unchanged and the changes in mass of the end cylinders and 

electrodes satisfy Faraday's law. 	These results yield 

the transport number for each ion and show the conduction 

to be entirely ionic within the accuracy of the experiment. 

Thus the central slice must have allowed a net flow of ions 

of each sign in a direction appropriate to the field, by a 

mechanism invraving ions moving within their own sublattice. 

There are three processes which could lead to ionic 

mobility. 	One is the direct exchange of adjacent ions on 

the same sublattice, energetically, however, this would be 

very.  unfavourable. Another mechanism which has been 

proposed requires several ions to change place simultaneously 

in a closed ring. 	This would be more favourable in terms 

of energy requirements, than the direct exchange process. 

The third and most likely possibility involves the formation 

of lattice imperfections, enabling the ions to move with 

a lower activation energy. 	Such an imperfection may be 

created by an ion moving into an interlattice position 
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(interstitial site) leaving a vacant lattice site. 	The 

formation of such defect pairs was first proposed by 

Joffe (1923) although they are generally referred to as 

Frenkel (1926) defects. 	With these defects, the mobility 

may result from movement of an interlattice ion from one 

interstitial site to the next, ultimately to return to a 

lattice site created by another interstitial ion. 

Alternatively an interlattice ion could displace a lattice 

ion of the same sign, to form another interstitial ion. 

A repetition of this process, called the interstitialcy 

mechanism, would enable ions to move through the lattice. 

Mobility may also occur via the vacancy mechanism by which 

neighbouring lattice ions jump into the vacancy created 

by the interstitial ion. 	Another possible imperfection 

comprising a pair of vacancies may occur by the overall 

result of moving a pair of lattice ions from the bulk to 

a surface, e.g. a grain boundary or a free surface of the 

crystal. 	Mobility could follow by the vacancy mechanism 

described above. 	Creation of the vacancies in this case 

can be regarded as starting by a surface ion jumping up to 

form an element of a new or partially created surface. 

The surface vacancy then diffuses into the bulk by a series 

of subsequent ion jumps. 	If there are equal numbers of 

lattice sites for both cations and anions, as in K01, 



this mechanism alone produces equal numbers of cation and 

anion vacancies. 	Vacancy pairs created in this way will 

be referred to as Schottky defects (Schottky, 1935). 

All of these processes could contribute to diffusion 

but energy considerations suggest motion aided by imper- 

fections to be the most likely. 	Only the latter processes 

could contribute to conductivity for it is only in these 

that there can be a net flow of ions under the influence 

of an electric field. 

1.02 Equilibrium numbers of defects. 

Statistical mechanics enables a theoretical determin- 

ation of the numbers of defects in an otherwise perfect 

lattice. 	(The following derivation is based upon that 

given by Fowler and Guggenheim, 1952.) 	Consider a crystal 

A+B-  with N ion pairs in it, NA  positive ions and NB  

negative ions. 	Let the total number of lattice sites be 

N1, comprising T N1 	1.  A lattice sites and 2 N1  B lattice 

sites. 	Let the numbers of Aand B vacancies be respectively 

NA and NB
V  and the numbers of A and .B interstitials be Ni  A 

and NB. 	Then we have 

	

1.02.1 	1 T N1 = NA + NA  V  Ni  A 

1.02.2 N1  N =  
2 	B 	NB - NI 

	

1.02.3 	NA = NB = N 
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whence 

1.02.4 	A 

	

NV 	A - Ni - Ni  

Let h
A be the energy (excluding lattice frequency 

changes) required to remove an ion A from an internal 

lattice point to a new surface lattice point leaving a 

vacancy. 	Considering the ions as independent oscillators, 

as in an Einstein model, and assuming only nearest neigh-

bour frequencies are affected by the presence of a vacancy, 

let the increase in energy arising from modification of one 

degree of freedom of the frequencies of the z nearest 

neighbours to a vacancy be z(v + i)h(v.A.  - v). 	Where v is 

an integer, the vibrational quantum number and W is the 

undisturbed frequency. 	Let hBV  and z(v + i)h(VBV  -1)) be 
the corresponding quantities for an ion B. 	Similarly, let 

hl, zi(v + i)h(91 -)J) and ht, zi(v + *)h(14 -))) be the 

energies required to take an A and B ion respectively from 

a surface lattice point to an interstitial position. 

Where l A  i7  etc. are the frequencies of the nearest neigh-

bours to the defects along a line joining the defect to 

the nearest neighbour. 

Assuming the defects do not interact, the excess energy 

of this imperfect configuration over that of the perfect 

crystal is 
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1.02.5 
6 E = NVAhAV  (vi+i)hvvA  vJ  

+ NiAhiA 	E[(vk 2 +1.)hvi - (rk+2)hv A 

+ NVBhV  + 	(vn 	B +.1-)h1/V  - (vn+-Dh B  

+ 	NiBhiB  + 1..4[(vm  +i)hvl 	(vm+i)h16 

Where each vibrational state being considered is character-

ised by the vibrational quantum numbers vjp vk, vnp V
m
, 

integers which may be arbitrarily assigned. There will be 

NVA  z terms in the first pair of summations, NA  zi  in the 

second, NB z in the third and Ni zi  in the last pair. 

The total number of energetically equivalent configur-

ations in a KC1 lattice type, which has N1 interstitial 

sites, is given by 

1.02.6 

17= 	01 

	

NV
I(iNl-NV), 	NV,(1...N1 NVN  

A .2. 	Al * 	B 2 	B'' 

From 5 and 6 the complete partition 

 

N1 

 

N11.410(N1-NiA-NiP B • 

function for the crystal 

is K(T) F(T) where K(T) is that for the perfect crystal 

and 
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1.02.7 

p -1 

	

NV NiV N Ni  	AE/kT F(T) = 	A  )  

	

, A  , Bs B 	 v 0",k"n,vm -Fre- 
o 

Subject to restrictions 1 and 2 

The summations over the vibrational quantum numbers may be 

carried out first. Each may be done independently; a 

typical one is 

FI r 4_, v 
TL 	Or • -Pr )hVA  vo  

p-1 
I = 

	

	exp - 
vo  o.= 

p-1 
I-- exP 	E(Iri44)111)VA - 	' 	V  (v3-4)h 

v.
a= 
	- 	- NVz 

V,/ )-- A V 	V 	1 -exp( -ph9A  kT 
1 = exp.r -NAzh(VA- V)/2kT] -----------vr----- 1 -exp( -1211,1/kT) - 

V 
A°  

[1:-exp-hlYkT  
-exp-phvAd 

If the highest quantum number, p-1, is chosen sufficiently 

large such that exp(-phv/kT) <<1 for all T encountered, 

then the expression reduces to 

I = exp[-NITAzh(vI
-V)/2kT] 1-exp(-hJA/kT) 

NVAz 

Above 230°K, the Debye temperature for K01, where the 

Einstein approximation is valid, kT > hv and 
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V 
I .exp[-Nizh(yvA-v)/2kT] (v/q)

NAz  

V N A  
I 	exp kT

z 
A 	u(,,V 	N)) + kT log(91/0)] 2  

p_
""A 

Carrying out all the summations over the v quantum numbers 

1.02.8 

In(T) 	TTexp ET -IL"A 
1 ,Vr,V + 

2 
lzh(vV11-11) 

• kTz log(1)AA)) + N1[111+2zih(11-y) + kTzi  log(V1A)) 

• 43[4+2zh(4-V) + kTz log (9VA/V)] + Ni[hi  + 2zih(14-V) B B 

+ 	kTzi  log(vBi/V)]] 

Expressions similar to logr(T) can be shown rigorously, 

by the method of steepest descents, to have a very sharp, 

unique maximum. The total contribution to log r(T) 

comes from terms in the immediate neighbourhood of the 
V i maximum. At the maximum NA' NB' etc., take on their 

equilibrium values; since the insertion of an extra slowly 

i varying term, e.g. NA or NB n the summation does not 

alter the maximum. Thus if r(T) be abbreviated to EH 

and at the maximum NA
V  = NA , the equilibrium Ta1uc of NA j5 

given by 

7VA  
ENVA  H Vx H MAX = NVK A 	A • 

MAX 
Log rn(T) 

EH 
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may thus be equated to the log (max.term) and the condition 

for this maximum will yield the equilibrium numbers of 

defects. 

Using Stirling's formula for large factorials log N!= 

N logN'-N and Lagrange's method to determine the maximum 

of a function of several dependent variables 
V 	ol_NV 

[- 	Iheizh(9I -v) + kTz log( A) 1  + log( ---A)] 
NY 

V A 1- v  
[_ 	 hy?, 	 IN -NB 	V + izh(4-V) + kTz log(

vB
7)I + log( ----f--)3dNB  

NB 

[-
N1-Ni-N i 1/ 	VA 	A BA i hA  + -§-zihkV1 -V) + kTzi  log(v)i + log( 	dNA  

NA  

a.• 	N1- 
 

NiN-N 
+[-it Blhi+iz.h0A-11)+ kTzi  1og() + log( 	B) .'

'"B 
vi 

B Ni  
B 

-. l  
+ 	 N1  log( 	(Tr) + 	log( 	21 	) 	 = 0 _ Ny 	im. 77_V 	N1 y-N-N 4" 	41B 

	
-NA  -NB  

subject to the restrictions 

idN1 = dNvA  dNA 	B = dNv - dN 

' 	i << Assuming NI, NiA  NB
V 
' NB 	*N1  at the maximum, then iN N  

and the conditions simplify to 

[- il! fil+izh(VVA  -V) + kTz log(4)1 + log V — 
NA 

+ [- 	thY3+zh(V/B7-v) + kTz log( B)1 + log 4] 
Nv 



log EZ] 
N1  A- 

log 2N1 
NB 
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-1Zi 	A 1I-Ni-V)1 kTzi 140g0)1 2   

'91 
1-11  z.W-P"- kTzi  2-°g(-17)1 2 	B  

subject to the restriction 

dNV 	dN = dNV  - dN AABB 

One equilibrium value will be given by: 

A 
r,V 

-L  Ln 	+ zh.(VV  -V) + kTzlo gC9V/V 	A )3 + log(N/NV) El 2  A   log 'A. =0 

Therefore 

,Viv  _  exp- 	
r-V 

2  
L 	+ 	A- 	 A9) + kTz logN7A] kx n  A  

similarly 

'B/N  = exp - 	[4 2Zh(V713 	kTz log( ITA)] 

NA/2N = h exp 	[hi + izih(Vi-V) + kTzi  logNIM] 

Ni/2N = 1 exp iy [ht iZih()L-V) kTzi  log(4/9)] 

These expressions may be abbreviated to the following 

1.02.9 NVA/N = exp(-gI/kT) 	= A exp(-4/kT) 

N1/2N = 7‘. exp(-gl/kT) 	N1/2N = exp( -gl/kT) 

may be found by substituting 9 in 4 giving 
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1.02.10 

[ 	

1 /_i_V)  1 + 2 exp - Ryk5B  5A' 
1 / i,...aV)  1 + 2 exp - sr-A. kg KT -A tlill_. 

, 2 	1 = exp ET(gAV  - gBV  ) 

It is now convenient to express these results in terms of 

quasi chemical equilibrium constants, if we let 

1.02.11 

1 • V .4. gV. Ki  = exp ETkgA 	B)  P  
i KA  = 2 exp 	( gA 	 BV)  

1 i V KB  = 2 exp ET( B 	 A) 

In terms of these 9 and 10 become 

1.02.12 

V 	11+Ki / NA/N = 
	) 	wrVAT 

= L1. v
1 + KB * 

-LI I 	 2  
1 1 + KB 	B 	1 1 + K " A 

.1 1 + Km  i 	1.  1 + K 
2 

A  
Ni/ N = KA  Kl( 	'l+ KA ' 	

- KB) 	N1/N 	K1(1 + KB 
A") A  

Three limiting cases of the expressions 12 are of interest. 

1. 	If KA  << 1, KB  << 1 all the imperfections are A and 

B vacancies present in equal numbers - Schottky 

defects. 

1.02.13 

NB /N 	, 1 ( V 	V)  
= -B/-  = 	aTvgA gB/ 
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or as a quasi chemical equilibrium 

NVA.NY3/N2  = exp iy(gVA  + 

2. If KA  >> 1, KB  << 1 all the imperfections are A 

vacancies and A interstitials in equal numbers 

Cationic Frenkel defects. 

1.02.14 

/ 
NA
V
(N  = NIVN = 4'2 exp - mr(gVA  

or as a quasi chemical equilibrium 

NVA.NI/N2  = 2 exp - iy(gVA  + gl) 

3. If KA  << 1, KB  >> 1 Anionic Frenkel defects will 

predominate. 

1.02.15 

f, 	,i N/N = NiB/t = 112 exp 5̀V 6B
1  

B 	7E7B " 

Using lattice theory the following energies may be 

calculated: 

EA 	The energy required to take a positive ion from a 

lattice site to a position at rest at infinity. 

E,31.; The  energy required to take a negative ion from a 

lattice site to a position at rest at infinity. 

EiA 	The energy required to take a positive ion from 

infinity to an interstitial position. 
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EB  The energy required to take a negative ion from 

infinity to an interstitial position. 

Ec The lattice energy per ion pair. 

If volume changes associated with defect creation are 

neglected the following relations hold 

VVV hA + hB = EA + EB
V  
- Ec 

ViVi hA + hA  EA + EA 9 	hj1r3  + ht = 4 + Et 

V i V - hB  = EA  - EB + Ec ip 	hl - JA  = El - EVA  + Ec  

Table 1 summarises the results of lattice calculations 

for some alkali halides. If the dominant terms in the 

exponents of equations 11 are the h values (they will be 

more dominant at low temperatures) KBr, K01 and Na01 satisfy 

the limiting case 1 and should only exhibit Schottky 

defects. In AgBr KA  >> 1 and KB  << 1 experiment confirms 

in this case that cationic Frenkel defects predominate. 

There is no substantial experimental evidence to confirm 

The presence of Schottky defects in K01 but it is generally 

assumed the results of the lattice calculations are 

correct. For K01 at 1000°K neglecting vibrational terms 
-11.6 x 1.14 TT KA  - e 	11.B  = e-11.6 x 3.01 

The energy (gI + gDin 13 is generally referred to 

as the Gibbs free energy of formation of a Schottky 

defect, however, it is clearly apparent that it does 
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TABLE 1 

Results of theoretical calculations for the alkali halides 

Material (Ref.) EB
V  V 	-E EA  +E-

V-  ah1  II 

K01 (1) 4.655 4.900 2.393 

KC1 (3) 4.54 4.63 2.01 1.13 1.18 

Natal (3) 4.89 4.76 1.77 0.87 1.11 

Material (Ref.) Ei  El vA'A V-Ei  ' 
Tr,  

Ei+E
4  Interstitial 

(Alla) 	(h2) 

K01 (2) -1.12 0.50 3.53 5.40 1.31 1.89 

0.87 0.44 

Na01 (2) -2.26 1.62 2.63 6.38 1.26 2.16 

0.74 0.04 

KBr (2) -0.97 1.51 1.30 2.21 

0.87 0.19 

All values in the table are in eV. Where the Born 

Mayer Verwey and Born Mayer repulsive potentials were both 

used, the results for the former are put in the table. Ec  

for K01 was taken as 7.162 eV and for NaCl 7.88 eV. (Ahl) 

and (8h2) are activation energies for the movement of cation 

and anion interstitials respectively. Two values are 

quoted for each, the upper for motion in the (100) direction, 

the lower for motion in the (111) direction (interstitialcy 

mechanism). 
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not include the configurational free energy arising from 

w in equation 7. The free energy may be split into 

enthalpy and entropy terms 

1.02.16 
V gA  + gBV  =h-Ts 

where 
V h = HA  + HBV  y 

From equation 9 

s = SA + SB
V  

1.02.17 

1.02.18 

,V 	V 
V 	vA 	V 	VB = -kz 	SB  = -kz log( 77) 

HA =  A 	A + izh(VY-V) A  
TTV = hV izh(VV-V) 
"B B B 

Finally, for KCl 

1.02.19 

NV. NV  - K  _ e -(h-T:s)/kT A' B 	1 - 

1.03 CelwilentimuriDoinof1 M.92. 

If it were possible to incorporate divalent cation 

impurities into an alkali halide lattice this would 

necessarily introduce defects. Consider a strontium 

chloride ion triplet being substitutionally inserted in a 

KCl lattice. One 01-  ion and the Sr2+  ion could occupy 

an anion and cation site respectively. 	Two possibilities 



- 22 - 

remain for the extra 01-  ion. It can enter an inter-

stitial position, possibly adjacent to the Sr2+  ion to 

compensate its extra charge: or it can occupy an anion 

site, in this case it would necessarily be accompanied 

by a cation vacancy to retain the lattice structure of 
equal numbers of anion and cation sites. If the host 

lattice shows predominant Schottky disorder as in K01 the 

latter possibility is more likely. 

If the defects in the two possible cases are ionised 

from their position next to the Sr2+  ton, the energies 

required to create them on the basis of the lattice 

calculations for K01 (Table 1) are 

interstitial formation El = 0.5 eV 

cation vacancy formation (EI+EZ-E0)-43  = -2.51 eV. 

Hence cation vacancies will be predominantly introduced 

since this requires much less energy. It is generally 

true that the imperfections introduced by impurities are 

of the same type as those predominantly present in the 

pure imperfect host crystal. 	Thus one of the conditions 

for Schottky defect formation, namely KB  << 1 is equivalent 

to the condition for the introduction of cation vacancies 

by impurities, i.e. EB  > EA  Ec. 

No lattice calculations have been made to determine 

the relative stability of an impurity with a cation 
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vacancy adjacent to it as compared to an interstitial anion. 

Conductivity measurements indicate very strongly that 

impurities do introduce imperfections in the manner des-

cribed. At sufficiently high temperatures these defects 

ionise and contribute to the mobility of the lattice ions. 

1.04 Numbers of defects in KCl containin divalent 

impurities. 

Let the number of divalent impurities be Nd  and assume 

the defects introduced by these, namely cation vacancies, 

are readily ionised from the divalent impurities. Then 

using the same notation as in 1.02 and considering Schottky 

disorder only, the number of ion pairs AB is:- 

1.04.1 	N = NA = NB  - 2Nd  

and as before 

1.04.2 V  iN1  = Na  + NA + Nd 

1.04.3 	iul = NB  + NV  B 

Combining these equations 

1.04.4 V V NB = NA - Nd 

Let the partition function be K(T)A(T) where K(T) is the 

partition function for a crystal containing Nd  ionised 

impurities but otherwise perfect. Then assuming no defect 

interactions, and leaving out the steps discussed in 1.02: 



1 	Nd/N ± E(Nd/N)2  + 4 exp(-1/kT)(gVA  + 

2 exp(-4/kT) 
1.04.8 7  
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1.04.5 

A(T) NV,  v 	.11i  "  2 
17  

11. 	N V V-1.1q-L ._N V \i 	vV7(111.1  
subject to A '2" 	All 	"B''7" 
restrictions 
3 and 2 	1  

[(N:-Nd)g: 44]  

 

	 exp 

 

Then, as before, differentiating to find a maximum and 

using the condition for the dependent variables 

1.04.6 	dNV  = dNV  B 	A 

1.04.7 NVA/N = iexp(-4/kT), NIV3/N = Q exp(-4/kT) 

Substituting in 4 to find Q 

Taking the positive sign to avoid a negative result 

1.04.9 r'A/ N . Li + (1 + 9" 1' 
2/

'd 
)ii- 

d/2N  

This result and the similar one for N/N could be more B 
readily obtained using a quasi chemical equilibrium approach 

and the condition for equal numbers of lattice sites, e.g. 

	

1.04.10 V 	 / 2 NA'NB/N = K1 

	

1.04.4 	NV  = NV   N B A D 
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Eliminating NB between 4 and 10 yields 9 immediately, then 
NB
V  may be found immediately from 10. 

1.04.11 N/N - K N/NV  NB  /N 	A 

1.05 Defect interactions. 

The two treatments given in 1.04 and 1.03 ignore inter- 

actions among the defects. 	It is clearly possible in the 

case of doped crystals that there might be strong inter-

action between the doubly charged impurity ion and its 

accompanying vacancy. For large separations the defects 

can be regarded as point ch ges, cation and anion vacancies 

being virtual negative and positive charges respectively. 

In this case the interaction energy relative to infinite 

separation can be expressed as 

2 

-8 r 

where e is the static dielectric constant of the crystal 

and r the separation. 

When determining the interaction energy for small 

separations, lattice theory must be used to take into 

account the polarisation of individual ions. Bassani and 

Fumi (1954), using Born-Mayer lattice theory, have 

calculated the decrease in energy relative to infinite 

separation of a cation vacancy on the next nearest 



- 26 - 

neighbour position to a divalent cation, E1. 	Similar 

calculations have been made by Tosi and Airoldi (1958) for 

the binding energy of a cation vacancy on the fourth 

nearest neighbour position from a divalent cation, E2. 

The results of these calculations together with the binding 

energy of a cation and anion vacancy on nearest neighbour 

sites, E3  (Tosi and Fumi, 1958) and on third nearest 

neighbour sites, E4 (Tosi and Airoldi, 1958); are 

summarised in Table 2. 

TABLE 2 

Theoretical association energies for complexes 

Lattice E3(eV) E4(eV) Impurity E1(eV) E2(eV) 

NaC1 0.6 0.28 CdC12 0.38 

CaC12 0.38 

Sr012 0.45 0.41 

KC1 0.72 0.38 CdC12 0.32 

CaC12 0.32 

S.:ca12 0.39 0.49 

The surprising fact that E2  > El  for K01/SrC12  arises 

from the strong polarisation of the Cl-  ion lying between 
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the Sr2+  ion and its cation vacancy. This particular 

result is confirmed qualitatively by e.p.r. measurements 

on Mn2.1" in NaC1 and KC1 (Watkins, 1959; Watkins and 

Walker, 1956). 	These experiments show a similar 

inversion of E1 and E2 in going from NaCl to KC1. 

1.06 Calculation of defect concentrations in an impure  

crystal with association. 

Considering only divalent cation doping of a crystal 

showing predominantly Schottky defects. Let the mole 

fractions of cation and anion vacancies be x1  and x2 

respectively. Let the mole fraction of impurities and 

complexes be c and xk respectively. 	The complex is to 

be regarded as a tightly bound impurity vacancy pair. 

On the basis of 1.05 the ground state of the complex can 

be taken as having an association energy El  and the 

first excited state, an energy E2. Applying the mass 

action law to the quasi chemical equilibrium, 

unassociated 
impurity ion 	unassociated vacancy 4:t:  vacancy complex 

-Xk 	 x1 
	

xk 
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1.06.1 	xk  
= K2 7777 

In addition the condition derived in 1.04 will hold 

	

1.06.2 
	

K1  = x1x2  

Since the lattice configuration must be maintained there 

will be equal numbers of cation and anion sites, hence 

	

1.06.3 
	

xl x2 = c - xk 

The number of cation-anion vacancy pairs may be treated 

on the same basis as the impurity complexes. If their 

concentration at equilibrium is xp  then 

1.06.4 
- 

K3 x1x2 

The presence of vacancy pairs does not affect the condition 

3; hence they will not affect the concentrations of 

unassociated vacancies at equilibrium. Vacancy pairs 

will not contribute to conductivity since they are a neutral 

species. 	From equation 1 

x1K2c 

Combining this with 2, 

1.06.5 Xk 
= K1K2c 777 

xk 1+x1K2 



-29 - 

Eliminating xl  using 5 and 2 in equation 3 

K1 	K1K2c 

2 - x2 = 	x2+k1K2 

K1 	x2c 
x = x2 2 x2+K1K2 

1.06.6 

1.06.7 

(K1-4)(x2 K1K2)  

x 	+ x22  (c + K1  K2  ) 2  

= 

x2K1  - K24.  = 0 

This cubic may be solved for x2  in terms of K1  and K2.  

The corresponding value of xi  is obtained by substituting 

x2 in equation 2. 

The equilibrium constants K2  and K3  could be inter-

preted on the basis of statistical thermodynamics but 

with present knowledge could not be evaluated. K2 will 
be of the general form (Lidiard, 1957) 

1.06.8 	K2 = E z e- 3s/kT 
where zs and -.15,'s are the number of orientations and the 

Gibbs free energy of association (although +Sii  is referred 

to inmost of the literature as the association energy) 

respectively for a complex in its sth state. In a Kel 
lattice zo  = 12, z1  = 6. 	The entropy of association is 

usually assumed to be zero since it cannot be determined 

accurately and is probably small. 
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If the vacancy is to be regarded as associated only 

when it is in the second nearest neighbour position to 

the Sr2+  then 

1.06.9 
	

K2 = 12 S AT 

This is the expression for K2(T) first given by Stasiw 
and 7eltow (1947). On the basis of the values of El  and 

E2 this assumption is not valid; according to the calcu-

lations the first two terms would be 

1.06.10 
	

K2 
= 12e 0.39/kT 	6e0.49/kT 

Deviations from ideality of the mixtures of component 
defects may be taken into account by introducing activity 

coefficients. 	In equations 1 and 2, xi,x2  and c are 

replaced by xlfi, x2f2, and cfi. The activity coefficients 

may be derived using the Debye-Hackel theory developed 
fb r dilute solutions (Lidiard, 1954,a) . The results are 

1.06.11 Log fl  = log f2  = log fi  = 
2 

 

where g the Debye-Heckel screening constant is given by 

1.06.12 y2 	87tq2xl 
V E 

R is the separation below which a vacancy impurity pair 
are to be regarded as complexed, q the charge on the ion, 

V the volume per molecule of the pure salt and E the 

dielectric constant of the crystal. 
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Lidiard has examined the solution of equations 1, 2, 

3, 11 and 12 for a model containing a high impurity con-

centration such that x2 << x1. In addition he assumed 

coulombic interaction at all separations and only ground 

state complexes, hence 

1.06.13 e2 

ii2ta 
7-4 kTo 

where a is the undisturbed anion-cation separation. The 

solution obtained in terms of the degree of association 

p = xk/c is 

	

T_ 	2(2m12)1.(To/T) [(1-p)cft 
1.06.14 	12c exp[e= 	 

(1-p)2  1+402)2[(1-P)oTo/T]2  

For a given reduced temperature T/To, the expression gives 

a slower rise of p with concentration and a well reduced 

limiting value at high concentrations. It also indicates 

a more rapid decay of p with increasing temperature. 

Allnatt and Cohen (1964) have attempted to take into 

account the long range coulombic interactions in a more 

sophisticated way, by means of cluster expansions of the 

partition function. The technique is similar to that 

first used by Mayer to obtain virial coefficients for a 

non-ideal gas. For coulombic interactions, however, the 

convergence of terms in the virial expansion is very slow. 
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Allnatt and Cohen conclude that application of the 

Debye-Mckel theory at temperatures below 50000 and con-

centrations greater than 10-4  mole fraction should be 

viewed with caution. They cannot, however, estimate the 

accuracy of the simple theory in these regions. This 

limitation excludes application of their theory to most 

conductivity work. 

1.07 Statistical theor of canductivi in a KC1 lattice. 

For a crystal in which Schottky defects predominate 

the ionic mobility arises from ions jumping into adjacent 

vacancies on their own sublattice. Regarding the vacancy 

as the mobile unit, the probability per unit time w that 

it jumps in the (100) direction may be obtained from 

statistical mechanics (Wert, 1950). 

1.07.1 	w = 4 v exp(-bekT) 

Where v is the frequency with which the next nearest 

neighbour ions to the vacancy vibrate against it and A g 

is the free energy required to raise one of these ions 

from its equilibrium position to the energy col in the 

direction of the vacancy. The factor 4 arises from there 

being 4 ions which can jump into the vacancy enabling it 

to move a distance a (the anion-cation separation) in the 

(100) direction. 
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For a negative ion vacancy in an electric field E 

along the (100) direction, the height of the col will be 

reduced by an amount ieaE. The col will be increased 

by the same amount in the opposite direction. Thus the 

probability per unit time that the anion vacancy jumps in 

the direction of the field will be increased to 

	

1.07.2 
	

wv = 4 v exp iT (6g ieaE) 

The probability with which the vacancy jumps against the 

field will be reduced to 

	

1.07.3 
	weo 4 V exP 	k g + 	

„..c,‘ 

Thus the net probability with which such vacancies jump 

in the direction of the field will be 

1.07.4 

w = *1  w" = 4 VexP( -Aig/kT)[exp(eaE/2kT) -exp( -eaE/2kT)3 

	

1.07.5 	a w = 2 w sinh(eaE/2kT) 

The mobility µ or the velocity per unit field with which 

the vacancy moves in the direction of the field will be 

	

1.07.6 	P = 6.1J a/E 

For the fields used in practice Eae << kT thus 

1.07.7 4w". 2 w 	+-1 
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1,07.8 	 w = wea3/kT 

Therefore 

	

1.07.9 	µ = Wea2/kT 

The same result would be obtained for fields applied along 
different axes of the crystal, due to the cubic symmetry 

of the KOl lattice. 

The electrical conductivity arising from the motion 

of the anion vacancies will be 

4Nx,e2a2 

	

1.07.10 	c2 = Nx2eP' = 	 \I exp(-Ag/kT) 

Where N is the number of K+  ions per unit volume and x2  is 
the mole fraction of anion vacancies. Using the subscript 
1 to denote cation vacancy properties and 2 to denote the 

anion vacancy parameters, the total conductivity for both 
carriers will be 

al 4. 02  

whence 

1.07.11 

1.07.12 

o = N(x14,411  + x2eµ2) 

2 
= , NkTe2  Exiviexp(-Agl/kT) + x2N)2exp(-Ag2/kT)] 

This result may be combined with the expressions for xl  
and x2 found in 1.04 (neglecting association). Two 
limiting cases of 1.04.9 and 1.04.11 are of special interest. 
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1) xl  x2 >> c, i.e. when the impurity mole fraction 

is much less than that of the thermally produced defects. 

This will be true in pure crystals at high temperatures. 

In this case 1.04.9 and 1.04.11 reduce to 1.02.13. 

Using the notation of 1.02.19 

1.07.13 

4Na2e2 
- 	kT  [Viexp 	 gi) + v2exp — ryk 2, 	A g2 1 	1.1...„2 

J.s.1- 	
\ 

Writing A gl  and g2  in terms of entropies and enthalpies 

= 	— T 

A g2  = A h2  T ids2  y 

1.07.14 

4Na2e2 
a 	kT exp(s/2k)Niexp-ii7(.1-h+ A h1-T A el  )+V2exp-1  (it+A122- 

T As2)] 

Now if V2.....V1  =V, A 	s2  = As and 16h2'viihi  = Ls h 

1 .07 .15 

2e2N 	1 
kT 	exp m(s+2/1s) exp 	if(ih + h) 

and a graph of log aT against 1/T will be a straight line 

of slope -(*h + Ah)/k. 

2) x 	>> 1 	x2. 	In general this will be satisfied 

at low temperatures, when the impurity content is much 
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higher than the thermal defect concentration and 

1.07.16 

a  _ 4Na2e2  r 
kT 	LI)le exp(- ts,g1/kT)] 

1.07.17 

_ 4Na2e2  Vic exp(i1s1/10exP(-1Shi/kT) 
kT 

A plot of log aT against 1/T will be a straight line of 

slope -4h1/k. 

On the basis of these two results a log aT versus 

1/T plot will comprise two straight lines linked by a region, 

"the knee", where neither approximation holds. This is 

roughly true for the experimental data. The slope of the 

high temperature line-(Ah +ih) is the greater. The 

conductivity is said to be "intrinsic" in this region, since 

the position and slope of the line will be independent of 

impurity content. The conductivity in the low temperature 

region is referred to as "extrinsic", because the position 

of the straight line plot will be a function of impurity 

content. 

The full expression for conductivity using the simple 

Stasiw and Teltow association theory may be obtained by 

substituting xl  and x2  from 1.06 into 12. Clearly impurity 
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vacancy association will only affect the extrinsic con-

ductivity. To estimate the effect an expression will be 
derived for the conductivity concentration isotherm when 
x1 >> x2 is satisfied. Using the simple association 

theory 

1.07.18 

1.07.19 x k  
RITEZEJ = K2 

eliminating xic  between 18 and 19 

= K2x1 xl 

A short cut to the isotherm can then be taken in the 
following way: 

1.07.20 

But from 17 and 11 a = Nepax, 

K 2 
1.07.21 	c = 	 

	

2a2 2 	11-6µ 

	

N e 111 	1  

Equation 21 shows that the isotherms are parabolic. The 

effect of association on the log aT versus 1/T plot will 

be to make the extrinsic region slightly concave towards 

the 1/T axis. 

2  
2 N e2  µ, 

c 	= 	K2x1 `N 2e 
	µ2)  x1(RV" , 	1 
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It is convenient to express the simple association 

theory of conductance, without approximations, in terms 

of more readily available experimental parameters. These 

are the mobility ratio g( = 42/111, y = xl/ko  and the 

intrinsic conductivity 00  = Nexo(p, + 42 ). Then for 

Schottky disorder, as before 

2 K1 = xlx2 = xo 

xi - x2 = 	xk 
x k  

K2 xl(c-xk) 

1.07.22 

1.07.23 

1.07.24 

In general 
a = Ne(xipi  + x242 ) 

(41 + 42)Bc0: = 41(x1/k0 )+ 4 x2Ao)  

1.07.25 a 
4Y"144-  a 

2 a - 	2— (1 + pf) + [+ fiA2  - f6 2 7 a 

solving for y 

1.07.26 

Using the relation 1.06.6 obtained by combining 2, 3 and 

1 
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,22, 	,2„ 
"" = (K1 - "2)f"-A-2 	"1"2) 

 

and expressing it in terms of the parameters defined above 

(y2  - 1)(x2 + K1K2) 

(y 	 )(xo 	- + vK2  K1  1xo  ) y  

1.07.27 

_ 	1 x 	(y 7.)(l + yK2K12) 

When interpreting experiments / is obtained first 

in the best possible way, this generally involves approxi- 

mations. 	Then y is derived from 26 using direct measure- 

ments of a and 00. By plotting yAy - 	in equation 
	

( 
27 against y, where c is the analytical concentration of 

impurities, a straight line should result with intercept 

xo. 	The slope of this line yields K2. From equation 

25 

= Nepaxo(y + 0'/y) 

Using the xo  and y values, estimates of pi  as a function 

of temperature may be made. All the conductance parameters 

are obtainable from these results. This treatment was 

first given by Stasiw and Teltow (1947) and later reviewed 

by Lidiard (1957). 
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Lidiard (1957) has included the effect of long 

range coulombic interactions upon mobility. He considered 

a model which satisfies the condition x1 >> x2 and derived 

p using the Debye-Hilckel association theory mentioned in 

1.06. The mobility was then modified according to 

Onsager's theory developed for ions of a finite size. The 

final expression is 

1.07.22 

ple 
a = ( 	)c(1-p)[1 2 27a2 

+) 

3/  
ir„ 

2211==.012.12  .--] 
(1+24)(4-2+24) _ 

where 24 = 4(1(2)c*(1-10)*(Td/T)2  

It must be emphasised that this expression is derived 

assuming coulombic interactions at all ranges down to 

nearest neighbour separation. Diagrammatic plots of 

(c/ma) versus ma, where m = 2a3b1e = 1/41Ne (a is the 

anion-cation separation), are shown in Fig.l. The hori-

zontal line (1) c/Mo = 1 will be obtained if there is no 

association (equation 17). A straight line (2) of inter-

cept 1 and gradient K2  represents the result expected on 

the basis of the Stasiw and Teltow association theory 

(equation 21). 	The curve (3) represents equation 22. 

The mobility µ of a species s is related to its 

self diffusion coefficient Ds  by the Nernst-Einstein 



FIG 1 
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relationdhip 

	

1.07.23 	µs/Ds  = qs/kT 

where qs  is the charge on s. In terms of the conductance 

cs  and the concentration Ns  this relation may be rewritten 

	

1.07.24 
	

as/Ds  = Ns s  q2/kT 

Ds is related to the tracer diffusion coefficient DTs by 

DTs = f sDs 

Where fs is the correlation factor arising from the 
distinguishability of tracer ions; its value depends upon 

the jump mechanism and the nature of the lattice. For 
tracer diffusion via vacancies in a KC1 lattice fs = 0.7815 

(Compaan and Haven, 1956). 	The above relation does not 

hold in the presence of vacancy pairs which contribute to 
diffusion but not to electrical conductivity. 

From studies of the temperature and concentration 
dependence of the diffusion coefficient for divalent 
impurities substitutionally incorporated in an alkali 
halide lattice; it is possible to obtain association 
energies for impurity vacancy complexes. This approach 
is reviewed by Lidiard (1957). 
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1.08 Previous experimental work. 

A comprehensive summary of early experimental results 

may be found in the theses of Allnatt (1959) and Haycock 

(1962). An excellent review at the time is that given 

by Lidiard (1957) who reexamined almost all the previous 

results in the field of ionic conductivity. Table 3 

summarises activation energies from KCl conductivity plots. 

Most of these were obtained by merely drawing tangents 

to a plot of log aT or log a against 1/T. The parameters 

found in the only comprehensive analyses of the conductivity 

of alkali halide single crystals are given in Table 4. 

Etzel and Patterson (1958) identified absorption bands 

at 185 mµ in NaCi and 204 mµ in KC1 as arising from OH-

ions. They further showed that when CaC12  was added to 

NaCl or SrC12 to KCl the absorption band was absent. The 

presence of the OH stretching frequency in the infra red 

of the doped crystals indicated that hydroxyl groups were 

still in the crystal despite the absence of the U.V. 

absorption. Doping of NaC1 with Cd012  did not affect 

the 185 mµ band. 	These results were interpreted as a 

destruction of the OH-  band in the U.V. by the divalent 

cations Sr2+  and Ca2+  with the possible formation of 

Ca0H+  or Ca(OH)2. 	If this is so the presence of OH-

should affect the conductivity of crystals doped with 
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TABLE 3 

and diffusion in KCl 

Activation Energy (eV) 
Extrinsic 	Intrinsic 

	

0.99 	2.02 

	

0.89 	2.06 
1.99 

Activation energies for conductance 

(1) Conductance 
Phipps and Partridge (1929) 
Lehreldt (1933) 
Brenneoke (1940) 
Kelting and Witt (1949)(+0a012) 0.79 

11 	ft 	ft 	 (+SrC12) 0.86 
11 	If 	11 	 (+BaC12) 0.94 

Wagner and Hantelmann (1950) 
(pellets + Sr012) 0.78 1.82 

Aschner (1954)(and diffusion) 0.68 
Kobayashi and Tomiki (1960) 0.75 
GrUndig (1960)(+0aC12) 0.77 
Biermann (1960) 0.79 
Pierce (1961)(+Sr012) 0.76 
Kanzaki et al. (1962) 0.83 
Grtndig (1965) 	 2.01-1.79 
Dreyfus and Nowick (1962) 	0.84 	1.95 

(average of literature values) 

(2) Anion Diffusion 
Laurent and Bernard (1957) 	2.0 
Ewles and Jain (1957) 	1.86 
Barr et al. (1960) 	1.9 	2.6 

(3) Cation Diffusion 
Arnilear and Chemla (1956) 	1.74 
Laurent and Bernard (1957) 	1.5 
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Sr2+ or Ca2+. Later work (Patterson, 1962) showed a 

sharp increase of the 204 mg band in K01 crystals drawn in 

the presence of an 02  + H2O atmosphere. The intensity 

of the band increased in proportion to the time the melt 

was exposed to this atmosphere. This increase was 

ascribed to a hydroxyl-rich layer on the melt created by 

continuous reaction between the salt and the moist oxygen. 

A series of qualitative observations have been made 

by Litty (1963) relating to simultaneous measurements of 

conductivity and optical absorption. He found that KO1 

crystals grown from melts with the composition 2 x 10-3  

mole fraction KOH and 1 x 10-3 Ca012 had a lower extrinsic 

conductivity than those grown without the addition of 

KOH. After treating the doubly doped conductivity 

specimens with chlorine at 700°0 and just under an atmos-

phere pressure, the conductivity rose by a factor of about 

10. This corresponded to a value similar to that for 

the crystals singly doped with 1 x 10-3  0a012  and grown in 

air. The chlorination also diminished the OH stretch 

absorption in the infra red. Prom analytical and optical 

measurements Lfity deduced that Ca2+ and OH-  combined in 

the ratio 1:2 probably forming Ca(OH)2. If this species 

occupies two lattice sites, as suggested by Lttty on the 

basis of its size, the Ca2+ would no longer contribute to 
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the extrinsic conductivity. His argument that the re-

action in the solid would release a vacancy pair which 

could contribute to diffusion is incorrect. Any excess 

vacancy pairs released by such a reaction would merely be 

destroyed by diffusion to a surface. Their concentration 

is only governed by the relation 1.06.4. Lty concludes 

that all crystals grown in air show a lower extrinsic 

conductivity than corresponds to their true cation 

impurity content. In his air-grown crystals, using 

analytically pure material, later chlorination showed that 

only between 3 and 300 of the impurities contributed to 

the conductivity. Redfern and Pratt (1964) have attempted 

to dope Nan with anions using Na2SO4  and Na202. The 

only effect, a depression of the extrinsic conductivity, 

suggests that the result of doping has been to introduce 

OH-  or 02- and reduce the effective cation content. 

Although no significance is generally attached to it, 

Etzel and Patterson (1958) found that Ca012  additions to 

NaC1 destroyed a fluorescent centre present in crystals 

grown in oxygen. The fluorescence was later attributed 

to an 0-2  molecule ion located on an anion site (Kdnzig 

and Cohen, 1959; Rolfe et al., 1961). 	The 02 fluores-

cence is also present in KBr and KO1 crystals grown in 

oxygen. Additions of Cd012  to NaC1 did not affect the 
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0-2  fluorescence. 

In view of the above findings, conductance data 

aimed at determining association energies for impurity 

vacancy complexes should be viewed with caution. The 

presence of OH-  could have two obvious effects. It might 

reduce the active concentration of doping agents, e.g. 
Sr2+ and Ca2+ below the analytical concentration. In 

addition spurious temperature dependence of conductivity 

could arise fromassociation of impurity - 0H-  complexes. 

GrMndig (1963) obtained extremely pure hydroxide 

free crystals by the zone refining of KCl and KBr in 

graphite crucibles. Both the crucible and starting material 

were chlorinated at high temperatures to destroy Mr and 

remove impurities as volatile chlorides. GrUndig (1960) 

has estimated values for the association energies of 

calcium-vacancy complexes. In KC1 the association energy 

was 0.52 ±0.04 eV (cf. Table 2) and in KBr 0.56 ± 0.04 eV. 

These values are obtained as twice the difference of the 
high and low temperature slopes of a plot of log a versus 

1/T in the extrinsic region. Grttndig justifies this 
procedure for association energies of 0.5 eV, his doping 

levels of 3 - 50 x 10-5 mole fraction and when the low-

temperature tangent is taken below about 100°C. However, 

considerable precipitation is probably occurring at this 
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temperature and the method is likely to overestimate 

association energies. In addition plots of log aT 

versus 1/T should have been used to conform with the con-

ductivity theory in 1.07. A rough estimate of the 
correction is given below. 

A4" F1  = 40,TY1 14F/141  

By plotting log T against 1/T the correction term is 

-0.04.x2 which would further reduce the association energies, 

and not inconsiderably. 

In a more recent paper GrUndig (1965) has demonstrated 

the necessity of considering both anion and cation contri-
butions to conductance in the intrinsic regions of KCl and 
KBr. For a very pure crystal of KC1 the tangent to a plot 

of log a versus 1/T at the highest temperature in the 
intrinsic region has a slope 2.01 ± 0.03 eV whereas just 

above the knee the slope is 1.79 ± 0.03 eV. For KBr the 

high temperature slope is 2.06 ± 0.03 eV, the low temper-

ature gradient is 1.67 ± 0.03 eV. Clearly the intrinsic 

region must be represented as a sum of two exponentials, 

using the full expression 1.07.13. Grtlndig assumes that 
one slope represents a temperature region where anions 

dominate, the other a region where cations dominate. Then 

from 1.07.14 the difference in the slopes for KC1, 



- 48 - 

0.22 eV = I A  h1  A1421 , similarly for KBr 11011  4012  -1 

0.39 eV. In this case Geindig points out that plotting 

log a rather than log aT does not greatly influence the 

result. This is due to the smaller temperature difference 

between the points at which the slopes are taken. The 

curvature in the intrinsic region and its interpretation 

have been noted before (Allnatt and Jacobs, 1962). 

Relative contributions of anion conductance a2 and 

cation conductance al are usually expressed in terms of 

transference numbers. The cation transference number ti  

and that of the anions t2 being defined as 

1.08.1 
1 t1  = Q2  = 1 t2 

the total conductance being a = al  + a2. 

Several direct measurements of t1 in KC1 have been made by 

electrolysing crystals and pellets. A summary of 

previous results as a function of temperature is given by 

Allnatt and Jacobs (1962), they include transference 

numbers obtained by a more complete analysis of the 

curvature in the intrinsic region. The most unambiguous 

results are those of Kerkhoff (1951), carried out on single 

crystals. He accompanied the transference number deter-

minations with conductivity measurements before and after 
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electrolysis. Only in this way can it be shown with 

certainty that values are significant in that they are 

determined in the intrinsic region. Kerkhoff's experi-

mental procedure involved using Ba012  protective cylinders 

which might have diffused into the KO1 increasing tl. 

In fact the temperature at which the knee occurred rose 

considerably as a result of electrolysis. The most recent 

determination (Haven, 1964) yielded a value of t1  = 0.46 

at 600°0 in comparison with Kerkhoff's value of 0.71 at 
the same temperature. Haven gives very little detail 

except to say the measurement was in the intrinsic region 

and apparently no aliovalent protective crystals were used; 

for this reason it is probably a more reliable value. 
Qualitatively these results are valuable. They show that 

t1 = 1 in the extrinsic region, confirming an aspect of 

the interpretation of conductance data. In addition 

Faraday's law is obeyed indicating that the conduction is 

purely ionic. 

Etzel and Maurer (1950) interpreted their conductivity 

data for the system NaCi + Cd012  by means of a least 

squares fit to equation 1.07.21. From the coefficients of 

a and a2 they were able to determine the cation vacancy 

mobility ELl and  the association constant K2 as functions 
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of temperature. These yielded Ahl  = 0.85 eV and 
'S (for the Cd-vacancy complex) = 0.24 eV at 403°0 and 
0.25 eV at 256°C. Ilidiard (1957) re-interpreted Etzel 

and haureris data using 1.07.22. This yielded a better 
fit to the experimental results with an association energy 
of 0.34 eV. The improved fit suggests that long range 
caulombic interactions may be affecting the conductivity. 

Rolfe (1964)has carried out a complete analysis of 
the conductance of KBr doped with K2003  and Ca012. The 
K2CO3 was found to be sufficiently soluble at high temper-
atures to produce anionic conductance in the extrinsic 
region. No attempt was made to free the calcium doped 
crystals of Or. The results were treated using the 
Stasiw and Teltow association theory outlined in 1.07. 

The mobility ratio id was found by comparing the temperature 
dependence of the anionic and cationic extrinsic regions 
neglecting association. At high temperatures it was 
assumed association effects were negligible. The log 1 
versus liT plot was extrapolated to lower temperatures 
providing the necessary range of values. The parameters 

quoted by Rolfe are included in Table 4. By plotting 
log K2  against 1/T Rolfe managed to obtain S in terms of 

an enthalpy 0.46 eV and an entropy 1.51 x 10'4  eV/deg. 
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This value is lower than that obtained by Gritindig suggest-

ing the criticisms of his treatment are correct. In 

fact, with the estimated correction, Grandies value 0.48 

eV is in excellent agreement with that of Rolfe. Rolfe 

concluded his results did not j%Zstify an attempt to inter-

pret them using the more elaborate association theory 

including long range coulombic interactions. 

TABLE 4  

Experimental conductivity parameters 

Material 	h(eV) s(10-3 Ah/(eV) 
eV per hl 
deg.) 

As1(10-3/Sh2(eV)As2 

	

eV per 	(10-3  

	

deg.) 	eV per 
deg.) 

KBr + K2003 	2.53 0.854 0.665 
	

0.87 

KBr + CaBr2 
(Rolfe,l964) 

K01 + SrO12 	2.30 	0.69 	0.75 
	

0.114 	2.45 	1.75 
(Allnatt and 
Jacobs, 
1962) 

A similar treatment of data for the system KC1+SrC12  

has been carried out by Allnatt and Jacobs (1962) (Table 4) 

and Jacobs and Maycock (1963,a). The mobility ratio was 

determined from a plot of log aT against 1/T. A tangent 

to this plot was drawn just above the knee and assumed to 
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represent the cation contribution. 	This procedure is not 

legitimate since the curvature in the intrinsic region is 

slight. 	It is possibly for this reason that the values 

of S' which were obtained decreased with increasing temper-

ature from 0.43 at 300°K to 0.2 eV at 900°K. Hydroxide 

impurity might have been an additional factor affecting 

this result. The K01 was treated at 500°C with HCl prior 

to crystal growth. This might not have removed all the 

hydroxide for although the crystals showed no 204 mA 

absorption the Ca-OH complexes apparently do not absorb in 

this region. Additional evidence for the presence of OH- 

comes from the plot of a agllinst c. 	The isotherms of both 

Maycock and Allnatt cut the concentration axis above the 

origin, suggesting some of the Sr2+  was complexed. 

A combination of DC conductivity and dielectric loss 

measurements have been made on a quenched crystal of KC1 

doped with Ca012  annealing at 144°C (Nimomiya, 1960). 

The number of vacancy pairs was found to be proportional 

to the number of free vacancies raised to the power 1.92. 

A value of 2 would be expected on a kinetic basis since 

the number of free calcium ions is equal to the number of 

free vacancies. 	This is true in the presence of OH-  or 

precipitate. 



-53- 

The effect of pressure up to 9000 Kg/cm2  upon the 

conductivity of Kal+BrC12  and NaC1 + Ca012  has been studied 

by Pierce (1961). 	The activation enthalpy for motion of 

cation vacancies Ahl may be regarded as comprising an 

internal energy U1  and a PAV1  term. The pressure 

dependence enables an estimate to be made of the activation 

volume A Vi., For cation vacancies in KCl &V.1.  = 7.0 cc/ 

mole, in NaC1 4011  = 7.7 cc/mole. Pierce points out 

that there is an uncertainty in the interpretation since 

the pressure dependence of the association energy is not 

known. 

Dreyfus and Nowick (1962) have replotted conductivity 

data for K01 and Nan from a number of sources. They 

obtain the best values for the slopes in the intrinsic 

aid high temperature extrinsic regions of a log oT versus 

1/T plot (Table 3). 	Thus their values of 4h, are obtained 

neglecting association which can be important at the 

highest temperatures in the extrinsic region. 	Their 

interpretation of the intrinsic region ignores the possi-

bility of anion conductance. 

An excess conductivity of KCl and KBr subjected to 

plastic deformation (Camagni and Manara, 1965) has been 

interpreted as possibly arising from interstitial anions. 

The extremely low activation energy for motion, 0.35 eV 
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in both salts is compared with Tharmalingam's calculated 

energies for the interstitialcy mechanism (Table 1). 

This mechanism involves displacement of a lattice ion by 

an interstitial ion. 

Morrison et al. (1965) have conducted anion diffusion 

experiments on NaC1 using an isotopic exchange method. 

They conclude that vacancy pairs contribute to diffusion 

in both the intrinsic and extrinsic regions. An analysis 

of the intrinsic region, as defined by conductance measure-

ments, was made in terms of two exponentials. One of the 

terms, the diffusion coefficient arising from anion 

vacancies was 1.1 e-1.92/kTan2,/sec., the other, for 

vacancy pair diffusion, was 363 e- 2.37/kT 21 cm /sec. Morrison 

points out that the presence of vacancy pair diffusion 

has obscured the correct interpretation of most of the 

previous experimental data, including that for KC1 (Barr 

et al., 1960). According to the Nernst—Einstein 

relation (1.07.24) the activation energy for diffusion by 

anions in the intrinsic region is A h2 + ih (1.07.15). 

Using Etzel and Maurer's (1950) result for h from conduc-

tance measurements, Morrison obtains a valUe of 0.9 eV for 

Ah2' This may be compared with the calculated value of 

1.11 ev (Table 1). 	2.37 eV is also in fair agreement with 

the calculated value of the activation enthalpy for an 
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anion jumping into a pair, 2.54 eV and a cation jumping 

into a pair, 2.73 eV (Tharmalingam and Lidiard, 1961). 

A similar analysis of diffusion data in conjunction with 

conductance measurements would enable the Nernst-Einstein 

relation to be tested for KCl. Laurent and Bernard 

(1957) attempted to measure cation diffusion coefficients 

by the same technique but there are experimental 

difficulties and their value (Table 3) is extremely low. 

Values for the impurity vacancy association energy' 

may be derived from the concentration and temperature 

dependence of the diffusion coefficient for the impurity 

(Lidiard, 1957). 	Keneshea and Fredericks (1965) have 

studied the diffusion of Cd2+  in KC1 using tracer techniques. 

They obtain a value of 0.51 eV for the cadmium-vacancy 

association energy, this is somewhat higher than the 

calculated value of 0.32 (Table 2). 	The association 

energy for the Pb2+-vacancy complex, found using the same 

method (Keneshea and Fredericks, 1963) varied between 

0.58 eV at 373°C and 0.41 eV at 500°C. 

1.09 Polarization phenomena. 

When a D.C. electric field is applied to a crystal, 

a number of charge separation processes can occur in the 

time interval before the inertia of the ions allows them 

to flow through the lattice giving rise to the conductance 
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described in the last section. At even longer times the 

possibility of a macroscopic polarisation arises if the 

charge carriers, namely the vacancies and ions, are unable 

to discharge at the electrodes. 	This latter process is 

called space charge polarisation. Individual mechanisms 

can be identified by studying the time dependence of the 

current resulting from application of a D.C. field (e.g. 

Dreyfus, 1961). Alternatively, A.C. fields may be used 

when the admittance of the crystal is studied as a function 

of frequency. Since an extensive review of early work on 

D.C. polarisation has been given by Allnatt (1959) only 

the more recent results are considered here. 

An impurity-vacancy complex constitutes an electric 

dipole capable of adopting different orientations. In 

the absence of a field reorientation can be either by 

exchange of the M2+  ion and the vacancy with a probability 

w2 per unit time or by the vacancy jumping from one nearest 

neighbour cation site to another with a probability wl. 

In the presence of an electric field these probabilities 

will be modified as described in 1.07. Equations may be 

derived for the rates of change of each group of equivalent 

orientations with respect to the field. 	The steady state 

solution of these for an A.C. applied field represented by 

E = Eoe
iwt, enables the complex polarisation per unit 
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volume of the crystal to be calculated (Lidiard, 1957; 
1954?b). This polarisation P is given by 

1.09.1 
2a2e2xkNEoexp(iwt) P 

3kT[1 + its/2(wi+w2)] 

where a is the anion-cation separation and xkN the number 

of complexes per unit volume. The current density due 

to the complexes will be 

dP 1.09.2 	j = CI 
2a2e2xkNE0exp(iwt)[it.)+4)2/2(wl+w2)] 

3kT[1 +LJ2/4.(wl+w2)2] 

In addition there will be a current density J2  arising 

from the free vacancies and the displacement current. 

	

1.09.3 	J2 = oEoexp(iult) + (iGic/4n)Eoexp(if4t) 

where c is the static dielectric constant of the crystal. 

The complex dielectric constant (E1  - iE2) (FrOhlich, 

1958) may be identified by equating the total current 

density to the formal expression for the current density. 

	

1.09.4 	J1 jr J2 = (i61/47 1- 
	

2]Eoexp(i0t) 

Thus 

1.09.5 C1  = E. + 
8a2e2x n 

3kT[1 +C42/4(w1+w2)2] 
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2 8a e2  xkNic c.4.)/2(wi  + w2) 
1.09.6 (.2 = (41co/L) + 	 

1 + 	2/4(w1+w2) - 3kT  

The contribution of the dipoles to Ci  is negligible so the 

dielectric loss angle 8 is given by 

1.09.7 

81a2e2xkNurt 
tan 8 = (e2A1) = (47co/we) + 	 

3EkT (1+ C.) 2.Z2) 

where 	= 1/2(w1  + 

When the contribution from the vacancies 4Ic0/WE is sub-

tracted, the expression for tan 6 has identical frequency 

dependence to that for a Debye loss characterised by a 

single relaxation time 't . 

The results of extensive measurements of tan 6 for a 

number of alkali halides have been given by Dryden and 

Meakins (1957). 	In all cases the value of 6) at the 

maximum absorption frequency, characterised by Q = 1" f 

could be expressed in terms of the temperature as 

4, max  = 27cAexp(-tt EAT) 

Results for KCl were 

K01 + Ca012 
	E = 0.64 eV 

KC1 + Sr012 	AE = 0.67 eV 
	

A = 8 x 1012/sec. 

K01 + Ba012 
	AE = 0.70 eV 
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Clearly this dielectric loss can only be observed when 

there are a substantial number of complexes present. This 

restricts measurements to below about 10000. 	The tech- 

nique has been extended by Cook and Dryden (1960) and 

Dryden (1963) to study the kinetics of aggregation of 

dipoles in quenched crystals. 

Dreyfus (1961) has studied the dielectric loss arising 

from impurity vacancy complexes, using D.C. techniques. 

A Debye loss should give rise to an exponential current 

decay on application of a D.C. field. Dreyfus observed 

such a decay in NaC1 crystals doped with MgC12, Mn012, 

CaCl2, Cd012 and 8,1.012 at temperatures below 0°C. 	From 

the temperature dependence of the relaxation time, he 

obtained activation energies for the motion of vacancies 

on sites adjacent to the impurities. 	These varied between 

0.705 eV for Sr2+  and 0.661 eV for Mg2+. A discussion is 

given of the theory for relaxations arising from next 

nearest neighbour and fourth nearest neighbour vacancies. 

It is concluded that the activation energy for Mg2+ corres-

ponds to the motion of fourth nearest neighbour vacancies, 

whereas for all the other impurities, next nearest neigh-

bour relaxations were being observed. 

Kessler and Marini (1965) have observed a dielectric 

relaxation in alkali halides at temperatures between 400 
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and 100°0 using a frequency of 1 kc/Sec. The maximum 

was displaced to lower temperatures with increasing 

impurity content. The magnitude of tan 6 for the 

relaxation process was found to be independent of impurity 

content but proportional to the crystal thickness. The 

latter observation suggests that the loss arises from 

space charge formation; however, no further explanation 

is given. 

A Debye type of relaxation has also been found in KCl 

at temperatures above 65000 and in the frequency range 1 

to 10 megacycles/sec. (Sastry and Srinivasen, 1963). 

The results were interpreted using the simple Debye theory 

(FrChlich, 1958), in other words a single relaxationytime 

was assumed. The real and imaginary parts of the dielectric 

constant are given by 

	

1.09.8 
	e co  + 	)/(i+  2,0 ) 

	

1.09.9 	
4.5.2 	

(C 8—eco  )(4)the 

2 	W 	 2 2 1 +cd I 

According to the Debye theory the difference between the 

low and high frequency limits of El  is 

2 
1.09 .10, 	E- 	E S 	CO 

where n is the number of dipoles per unit volume and µ 
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their dipole moment. 	El and E2 were obtained from 

measurements of capacitance and conductance. The maximum 

value of (2  occurs when COT= 1, es -C oo  may be found 
by subtraction of the conductivity contribution from this 

maximum value. Sastry assumed the loss arose from vacancy 

pairs and obtained their apparent concentration by assign-

ing them a dipole moment ea, where a is the anion-cation 

separation. The temperature dependence of n and 'Y 

were found to satisfy the equations 

1.34  
n = 7.4 x 1027 e kT  am-3  

-13 116-0,4 = 2.98 x 10 	e 	sec. 

The calculated value (Tharmalingam and Lidiard, 1961) of 

the activation energy in KC1 for an anion jumping into a 

vacancy pair is 1.15 eV and for a cation 1.30 eV. 	These 

are in fair agreement with the experimental value of 1.04 eV. 

There is also good agreement between the calculated energy 

to create a vacancy pair 1.28 eV and the enthalpy associated 

with n, 1.34 eV. However, the magnitude of n is implaus-

ibly large, at 775°C n = 3.21 x 1021cms-3  or 20% of the 

concentration of ion pairs. A similar result has been 

found for KBr (Maurer, 1963). In order to account for 

the anomaly Boswarva and Franklin (1965) extended the simple 
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theory to include internal field corrections, but were 

still unable to account for the large value of n. There 

is independent evidence for the existence of vacancy 

pairs at these temperatures. This comes from the latest 

diffusion experiments, the details of which have been 

given already. 

Sutter and Nowick (1963) have carried out D.C. polar-

isation measurements on NaC1 in the temperature range 

400°  to 2000. It was found that current time decay curves, 

on application of a potential and on its removal, could 

be superimposed. Ohmb law was obeyed for the entire decay 

curve using applied potentials between 20 and 200 volts. 

Sutter and Nowick conclude that since the superposition 

principle and Ohmls law are obeyed by the decay, the 

potential distribution within the crystal is linear. 

This suggests that the polarisation is not due to the 

formation of a space charge by blocking at the electrodes. 

The space charge polarisation theory of Jaffe (1933) pre-

dicts substantial non-linearity for the voltages used in 

these experiments. There is a possibility that the charge 

carriers are blocked at mosaic boundaries distributed 

throughout the crystal. On a macroscopic scale the 

potential distribution could then be linear. This inter-

pretation requires the decay conductance and its steady 
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state value at infinite time to be related. Additional 

experiments made by Sutter and Nowick suggested they were'  
completely unrelated. 

An alternative explanation is that the polarisation 

arises from an alignment of dipoles. For a simple Debye 

process the conductance should decay exponentially with 

time whereas the time dependence found by Sutter and Nowick 

obeyed the relation 

1.09.11 	o(t) - 	at-n  

where a(t) is the conductivity at time interval t after 

application of the potential and am  is the final steady 

state conductivity. No definite conclusions could be 

drawn but the authors proposed the dipoles could arise 

either from small regions of higher conductivity or from 

polarisation of charge clouds surrounding dislocations 

(Eshelby et al., 1958). 	If these interpretations are 

correct, the final steady state conductivity is the true 

conductivity of the vacancies. Parker (1954) has studied 

the same polarisation in NaC1 and KCl. His results do 

not agree with this more recent work in that he found the 

rate of decay depended upon the applied voltage. Conse-

quently Parker attempted to interpret his data using the 

space charge polarisation theory. 
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A polarisation found at temperatures above about 550°C 

in pure and doped KCl has been interpreted in terms of the 

space charge polarisation theory (Jacobs and Maycock, 19630b; 

Allnatt and Jacobs, 1961). A.C. measurements of the 

equivalent parallel combination of resistance and capaci-

tance of the crystal were made at different frequencies. 

These were compared with the predictions of the A.C. space 

charge polarisation theory developed by Macdonald (1953) 

and Friauf (1954). The theory was originally proposed by 

Jaffg (1933). To take into account the non-linear potential 

distribution in the crystal a solution must be found for 

the equations of detailed balance. The concentration of 

charge Carriers in a volume element of the crystal will be 

governed by diffusion, migration in the local electric 

field and by generation and recombination of the carriers. 

For the case of neutral centres dissociating to give 

positive and negative charge carriers, the rate of change 

of the concentration of negative carriers will be given by 

1.09.12 
	an = kinc  - k2np 

where no is the concentration of neutral centres, p the 

concentration of positive carriers and n the concentration 

of negative carriers. This is combined with the expressions 

obtained by considering the flux of carriers into a slab 

of unit cross section and thickness Ox, arising from 
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diffusion and motion in the electric field E(x,t). The 

equations of detailed balance are, 

a2 	a f 1.09.13 	ff = kinc  k2np + 	
a 	

- gp  akpE) 

1.09.14 an _ 	
8ax'

2n 	/ 
7T - 'lnc k2np 31-(--10 	aknE)  

and for the neutral centres 

1.09.15 
	anc = kinc  + k2np 

where Dp, gp and Dnpp.n are the diffusion coefficients and 

mobilities for positive and negative charge carriers 

respectively. These equations together with Poisson's 

equation, 

1.09.16 	ax = (4%e/E) (P-n) 

may be used to determine the carrier distributions for a 

given set of boundary conditiona. One condition equates 

the applied potential to the total potential drop in the 

crystal. For a sinusoidal applied voltage this is 

1.09.17 	V1exp(iwt) = E(x,t)dx 

where L is the length of the crystal and the frequency. 
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Macdonald, who gives the most complete and accurate 

analysis, considered the case of completely blocked 

electrodes. 	This necessitates the second condition, of 

zero current at the electrodes expressed by 

1.09.18 	µ pE Dp 	- 0 ax 
X = Op L 

1.09.19 an  µnnE + ,n ax = 0 

Approximate solutions to these equations have been 

found by linearising them, assuming that n, p, no  and E 

are all of the form 

1.09.20 n(x,t) = no(x) + n1(x)eiub  

When the additional assumption 

it follows that Eo = 0 and no,  

is made that no  (x)= po(x) 

po  are independent of x. 

Macdonald's solution (1953) is extremely complicated and 

left in a complex form. 

Jacobs and Maycock found that for the case of doped 

K01, assuming the positive carriers M2+ were fixed and 

only the cation vacancies mobile, Macdonald's solution 

reduced to give a space charge capacitance: 

1.09.21 	= kCoo 	ow L 

This is the solution for complete dissociation of the 

M•14.111 
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neutral centres, i.e. impurity-vacancy complexes. For 

snall dissociation 0 is merely reduced by a factor of 

1/12. 

For pure KCl Jacobs and Maycock found their data gave 

straight line plots of 14)0 against 1/b in agreement with 

21. For doped KCl the plots were slightly curved. 

However, the magnitude of 0 as calculated from 21 for the 

doped crystals was greater than the experimental value by 

a factor of 2 to 4, the agreement being better at lower 

temperatures. The capacitance of the pure crystals was 

almost that expected when calculated for one carrier and 

snail dissociation. A disturbing feature is that the 

measured capacitance of the pure crystals determined 

previously (Allnatt and Jacobs, 1961) was less by a factor 

of 2. 

An experimental technique has been developed recently 

(Bucci and Fieschi, 1964) known as ionic thermoconductivity. 

A potential of several hundred volts is applied across a 

crystal at about 000. The crystal is cooled with the 

field present. At about 125°K the field is removed and 

the temperature raised at 0.2°K/sec. Any dipoles present 

in the crystal will havebeen aligned by the field. As 

the temperature is raised these relax and a current flows. 

The measured current is plotted against the temperature. 
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Current peaks are obtained, the area: of which can be 

related to the concentration of a pIrticular species, its 

dipole moment and relaxation time. Bucci and Fieschi 

identified a peak corresponding to strontium vacancy com-

plexes, the diminution of this peak after X-irradiation 

has been correlated with colorr centre work (Beltrami, 

Cappelletti and Fieschi, 1964). In later work by 

polarising at higher temperatures Bucci and Riva (1965) 

have identified two peaks as corresponding to the polaris-

ation found by Sutter and Nowick (1963) and the space charge 

polarisation observed by Jacobs and Maycock (1963,b). The 

results are rather qualitative and no activation energies 

are given for the relaxation processes. 

1.10 Conclusion. 

The primary object of this research was to determine 

the association energy for the Sr2+-vacancy complex. In 

order to do this strenuous efforts were to be made to 

eliminate the two factors which may have influenced previous 

determinations. These are the presence of OH-  and the 

very approximate nature of the data analysis. The use of 

an improved method of treating the results should yield 

a more accurate complete set of conductance parameters 

for K01. 
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High-temperature A.C. polarisation effects were also 

to be studied with the intention of determining whether 

they arose from space charge polarisation. To further 

this end it was hoped that a close examination of the best 

available theory, that of Macdonald, might aid in 

rationalising some of the previously unexplained obser-

vations. 
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2. EXPERIMENTAL 

2.01 Preparation of single crystals. 

2.01.1 The crystal growing  furnace. 

The furnace (Fig.2,A) comprised a vertical silica 

tube of 2.5” nominal bore, wound in four sections and 

surrounded by firebricks, the whole being enclosed within 

a syndano box 38 x 39 x 46 cm. The tube of length 44 cm. 

was wound with 9 turns/Inch of 18 S.W.G. Kanthal Al wire, 

the resistances of the top and bottom windings were each 

7 ohm and those of the upper and lower centre windings 

were each 12 ohm. 	The two top sections were connected 

in series and supplied by an 8 amp variac. The ratio of 

the current through these two sections was controlled by 

a 145 ohm variable resistance connected in parallel with 

the 12 ohm winding. Exactly the same arrangement was 

provided for the bottom two windings. The temperature of 

the furnace was controlled by electronic equipment des- 

cribed by Roberts (1951). 	The primaries of the two 

variacs were connected in parallel and the controller 

functioned by switching a resistance in or out of the 

primary circuit. 

The temperature controller sensing element consisted 

of a platinum resistance thermometer comprising 1.5 metres 
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of 0.01 cm. diameter platinum wire, wound into a single 

spiral and inserted in a twin 2 mm. bore alumina tube. 

This arrangement made the thermometer virtually non-

inductive. The temperature of the furnace was measured 

with a Pt/Pt-Rh thermocouple inserted from the top of the 

furnace tube. 

The top of the furnace was sealed by a removable 

firebrick plug, drilled to accommodate the thermocouple 

tube and controller sensing element. 	To enable visual 

inspection the bottom of the tube was covered with a pyrex 

plate which entered the furnace tube and was held in place 

by a readily detachable sheet of syndano, the centre of 

which was drilled out 1 cm. less than the bore of the 

furnace tube. 	Two pyrex plates were used, one with a 

hnle in the centre to accommodate the rod (Fig.2, D), used 

to support the crystal growth vessel, the other with no 

hole in it was used when heating K01 for the chlorination 

prior to growth. 

By adjustment of the variacs and parallel resistances 

a gradient of 38°C/cm. was produced in the middle of the 

furnace. 	The settings were, top variac 100 V, resistance 

shunting the upper centre winding 93 ohms bottom variac 

30 V, resistance shunting the lower centre winding 45 ohm. 

The formation of this sharp freezing gradient, necessary 
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for crystal growth, was assisted by a platinum foil coated 

nichrome baffle (Fig.2, B), situated in the centre of the 

furnace. 	This was supported on a 2117 inch nominal bore 

silica tube, slid into the main tube and resting on the 

pyrex plate described above. 

2.01.2 	Crystal growth. 

For growth in silica the high purity quartz container 

shown in Fig.3A was used. This was 78 mm. long and 

26 mm. internal diameter with a basal projection of length 

15 mm. and internal diameter 2 mm. Most of the crystals 

were grown in specpure graphite crucibles (Fig.3B) supplied 

by Johnson Matthey or Morganite. Two grades of graphite 

were used, one designated EYC 110 (less than 5 ppm 

metallic impurities), the other EY 9 had a slightly higher 

impurity content. These were of overall length 153 mm. 

with an internal diameter of 24 mm. and a wall thickness 

of 3 mm. 	The base of the crucible was thicker to allow a 

hole of length 10.8 mm. and diameter 2 mm. to be bored in 

the bottom. When in use, the graphite crucible was 

sealed in a high purity quartz container, the top and 

bottom of which is shown in Fig.30. The container top 

was 15 mm. long and the bottom 185 mm. with a bore of 

31 mm. Before using, all the silica vessels were immersed 

for half-an-hour in a mixture of 1 part HP and 10 parts 
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HNC3' they were then rinsed with de-ionised water and 

finally immersed in it for at least one hour. 

Before inserting the 1011  the graphite crucibles were 

cleaned in the following way. 	The crucible was sealed 

inside the quartz container which was attached to the 

vacuum line via a B10 quartz socket so that it was 

positioned inside the furnace (Fig.2). 	(All the joints 

and taps on the vacuum line were greased with KEL F, a 

halogenated hydrocarbon grease supplied by the Minnesota 

Mining and Manufacturing Co. This was fairly resistant 

to attack by C12.) 	The baffle and support tube were 

removed from the furnace and the container evacuated using 

an Edwards rotary oil pump and a mercury diffusion pump 

with liquid nitrogen traps. The crucible and container 

were heated to 900°C under vacuum when one atmosphere of 
012, measured with a spiral gauge, was adaitted through 

the drying tower (3 parts Ba(C104)2  + 1 part Mg(C104)2) 

(Fig.2,F). 	The dried C12  was passed through porous glass 

frits, just above the drying tower, to prevent carriage 

of the drying agent to the crucible. After about 2 hours 

the 012  was flushed out of the line with dry 02-free N2. 

The N2 was passed over reduced Cu at 700°C (Fig.2,H), 

then through a drying tower (Fig.2,G) and a porous frit. 

The container was re-evacuated for an hour, the furnace 
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switdhed off and the vacuum let down, with the purified N2. 

It was hoped that in this way metallic impurities in the 

graphite would be removed as volatile chlorides. 

On cooling the crucible container was detached from 

tae vacuum line and the graphite crucible filled with 

50 g. of K01, using a long funnel to ensure the salt 

entered the crucible. 	(Specpure KC1 was supplied by the 

Koch Light Co.) 	The container was rejoined to the line 

and very slowly heated to 560°C under vacuum to allow 

H2O to be pumped off the KC1. At this temperature one 

atmosphere of 012  was admitted and the temperature raised 

to 800°C, well above the MP of KC1, 770°C. 	The molten. 

KC1 was kept under 012  for about 2 hours to destroy anionic 

impurities. Finally the furnace was switched off and 

when the KC1 had solidified the 012 was flushed out with 

purified N2 and the container re-evacuated. On cooling 

it was sealed off under vacuum ready for crystal growth. 

For growth the sealed container was cemented with 

alumina onto a nickel block of overall length 3 am. and 
diameter 3 cm. 	The block had a conical impression in 

the top with a hole in the centre to accept the basal pro- 

jection of the crucible container. A stainless steel 

rod (Fig.2,D) 6.5 mm. in diameter was attached to the 

block and the lower end held in the chuck of a gearbox 
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(Fig.2,E). 	The container was positioned above the 

baffle and the furnace switched on at the settings in 2.01.1 

and left overnight to allow thermal equilibrium to be 

achieved. After ensuring the baffle temperature was 7700C 

the thermocouple was removed since it acted as a consider-

able heat sink and the gearbox switched on. This lowered 

the container at a rate of 2 mm./hour. Finally, when the 

container was well below the baffle, the furnace was 

switched off and allowed to cool slowly. 	The crystal con- 

tainer was removed and smashed with a hammer allowing the 

graphite crucible, containing the crystal, to be removed 

intact. When growing directly in silica, the same 

procedure was used to chlorinate the KCl and grow the 

crystals. 

Considerable time was spent in an attempt to purify 

KC1 for crystal growth. An apparatus was constructed 

from high purity quartz which was supported inside the 

furnace. This consisted of two chambers, an upper and a 

lower one, each separately connected to the vacuum line 

and separated by a quartz frit. KCl was melted in the 

upper chamber and prevented from passing through the frit 

by maintaining a positive pressure of 012  or N2  in the lower 

chamber. The KCl was chlorinated by allowing 012  to pass 

through the frit and bubble through the molten salt. The 
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Cl2 was flushed out with N2 and metallic potassium intro-

duced to the upper chamber through a capillary. It was 

hoped this would dissolve in the KC1 and displace divalent 

impurities which would form a surface slag. The KC1 

was then filtered through the frit into the lower chamber, 

retaining the slag and some of the melt in the upper 

Chamber. The lower chamber was shaped in the form of a 

crystal growth vessel and could have been evacuated and 

drawn off ready for crystal growth. However, the potassium 

would not dissolve in the melt at the pressures which it 

was possible to attain so this method was abandoned. 

2.02 Analysis of crystals. 

The crystals doped with strontium chloride were 

analysed in the manner described by Allnatt (1959). 	To 

avoid errors arising from concentration gradients in the 

crystal boule the actual specimens used for conductivity 

measurements were analysed. The instrument used for the 

analysis was a Philips X-ray diffractometer type PW 1051, 

fitted with a sodium chloride analysing crystal. Concen-

tration standards containing 60, 50, 30, 20, 10, 5 and 

0 x 10-5 mole fraction of strontium were used. These were 

prepared by dissolving known weights of Sr012  and KC1 in 

distilled water, evaporating to dryness over a steam bath 

and finally drying at 100°C. The specimens to be analysed 
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and the standards were powdered in an agate mortar before 

use. One of the standards was evenly distributed over 

a thin mylar window 2 cm. square and mounted in the 

diffractometer. 	Ten successive one minute counts of the 

fluorescence of the strontium K line (2G = 15.09o) were 

made. These were followed by ten one minute counts of 

the background (28 = 16.00°). 	The excitation was from 

a tungsten target with a tube potential of 40 kv and a 

filament current of 20 ma. This counting procedure was 

repeated for all the standards and the unknowns. 

A graph was plotted of the mean of each set of ten 

counts for the standards against their strontium concen-

trations. The concentrations of strontium in the conduc- 

tivity specimens were found from this graph. 	Since 

considerable variations were observed in the one minute 

counts for some of the specimens, the entire counting 

procedure was repeated together with a third determination 

for the two lowest doped samples. 	The counts (less the 

background) for the unknowns and their corresponding concen-

trations determined from the appropriate calibration graph 

are collected in Table 5. 
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TABLE 5 

Strontium analysis of the doped conductivity 

specimens 

Run 
No. 

Mean of Counts/ 
minute 

Mole fraction o; 
strontium x 10-3 

Average 
mole 
fraction 
x 10-5 

8 335 233 264 12.8 9.7 11.0 11.1 

14 414 376 423 15.9 15.5 17.5 16.3 

13 500 576 19.3 23.8 21.5 

15 724 538 27.7 22.2 25.0 

11 696 673 26.5 27.7 27.1 

12 869 1215 33.3 50.0 41.7 

Although great care was taken with all the analyses, 

the reproducibility was not as good as that found by 

Allnatt (1959). 

2.03  111922112aailaal. 
Pieces of single crystal about 3 mm. thick and 8 mm. 

square were cleaved out of the grown crystal and their 

dimensions measured. These were mounted in the support 

shown in Fig.4 and originally designed by Allnatt (1959). 

The electrodes, cut out of platinum foil, were 18 mm. in 

diameter with a piece of foil left projecting for making 

a contact. The tip of a 13% Pt-Rh thermocouple wire was 
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spot welded on to the centre of the back of each electrode 

and a thermopure Pt wire spot welded on to the foil 

projection. 	Circular pieces of mica 2 mm. in diameter, 

with radial cuts in them, were slipped between the foil and 

the Pt-Rh wire. 	These acted as insulators ensuring the 

Pt-Rh wire only contacted the Pt foil at its centre. 

The crystal was placed between two such electrodes and 

the whole sandwiched between two alumina discs A, 20 mm. 

diameter and 4 mm. thick with radial grooves cut in them 

to accommodate the Pt-Rh leads. 	This arrangement was 

held together between two spectrosil plates B, (20 x 49 x 

3 mm.) under the light pressure supplied by the tungsten 
0 

springs D (28 mm. long). 	The pressure was adjusted by the 

screw F which was threaded into one of the nickel plates 

E and made finger tight. The support was freely sus-

pended from two tungsten rods G, sealed into a silica 

head which was attached to a vacuum line. Two sets of 

thermocouple wires (Pt, 13% Pt-Rh) were also sealed into 

the head with soda glass. 	Inside the cell these were 

spot welded on to the electrode leads and surrounded by 

silica tubes to prevent shorting. Outside the cell they 

were enclosed in shielded polythene insulators and the 

ends dipped into four mercury cups. The supporting 

framework was enclosed in a jacket comprising a high purity 



FIG 4. 
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quartz tube, 55 mm. nominal bore and 460 mm. long with a 

B55 quartz socket on the end. 	This was attached to a 

B55 cone on the silica head. Picene was used to provide 

a vacuum tight seal. The bottom of the jacket was 

narrowed and attached via a B10 quartz cone and a tap to a 

bubbler containing di,-n--butyl phthalate. 	The jacket was 

surrounded by an earthed nickel shield and the furnace 

lifted into position round the tube and supported by a 

dexion stand. 	The top and bottom of the jacket lay out- 

side the furnace and were water cooled to prevent picene 

from running out of the joints. 	The cooling tubes also 

prevented overheating of the support springs D, situated 

just below the B55 joint. 

The only change made in the design used by Allnatt 

was an increase in length of the high purity quartz rods 

and tubes C. These were extended to make the overall 

length of the support 38 cm. A corresponding Increase was 

made in the length of the cell jacket. This enabled 

higher temperatures to be used without any danger of picene 

running out of the upper joint. 

Great care was taken to ensure the interior of the 

conductivity cell was kept clean and the entire electrode 

assembly was put together with nickel tweezers. 	The 

alumina discs A, providing the main insulation, were 
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boiled three times in aqua regia for periods of several 

hours, and finally boiled for similar lengths of time in 

three lots of deionised water. 	The 3acket was rinsed out 

with HF and soaked in deionised water. All the thermo-

couple leads in the cell were rinsed and flamed off. 

Before each run the entire cleaning procedure was repeated 

and new electrodes were constructed. 

The vacuum line was similar to that used for crystal 

growth. 	The cell could be evacuated to 10-6 mm. Hg. 

White spot oxygen-free nitrogen (provided by the British 

Oxygen Co.) could be passed through a drying tower of 

Ba(C104)2  + Mg(C104)2, over reduced copper at 70000, 

through a porous frit and into the head of the conductivity 

cell via a cardice trap. Continued passage of the nitrogen 

could be achieved by opening the tap at the bottom of the 

cell and allowing the nitrogen to flow out through the 

bubbler. 

The furnace was a silica tube 12.390  long and nominal 

bore 3"  wound in three sections with 2.49 ohm/yd. 

nichrome wire. 	The two end sections were of 28 turns at 

8/inch and the middle section was 24 turns at 7 turns/inch. 

The three sections were connected in series and supplied 

by an 8 amp variac. The current through each section 

could be controlled by three variable resistances, each 
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connected in parallel with a winding. The tube was mounted 

in a syndano box filled with vermiculite and surrounded 

by earthed aluminium foil to provide a poor emission sur-

face and reduce 50 cycle Ilpick-up" by the A.O. bridge. 

The temperature regulator was the same as that des-

cribed in 2.01.1 but it was found that a far more stable 

temperature could be achieved by winding the platinum 

resistance thermometer directly on to the furnace tube 

beneath the heater windings. The thermometer was non-

inductively wound and insulation from the furnace windings 

was provided by mica sheets, held in place by asbestos 

paper. With this arrangement the regulator responded very 

rapidly to variations in temperature near the heater 

windings. Asbestos wool plugs were inserted at the top 

and bottom of the furnace tube to provide the insulation 

necessary for this arrangement of the temperature regulator 

sensing element. 	The temperature could be held constant 

to within 0.2 deg. at 680°C for periods up to 6 min., which 

is ample time for taking a measurement of temperature and 

resistance. For periods of 40 min. the temperature was 

stable to within 1°C. 	The long term stability was useful 

for measuring frequency dependence of capacitance and 

better than that achieved by Allnatt (1959) and Maycock 

(1962) who used the sensing element described in 2.01.1. 
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2.04  24.2.46.142. 
Conductance and capacitance measurements were made 

using the A.C. bridge shown in Fig.5. 	The bridge 

components are listed in the accompanying description of 

Fig.5. 	The output from the bridge was applied to a 

battery driven transistor amplifier A. This type of 

amplifier minimises A.C. "pick-up" . 	The parallel-T 

filter F cut out most of the 50 cycle "pick-up" before 

the signal was applied to the y plates of the oscilloscope. 

A signal of the same frequency and phase as the input 

was applied to the x plates. The balance condition when 

the y component is zero may be expressed as 

R(crystal) = aRi  

C(crystal) = (Cf  + Cl  + C2  -aCc)/m 

where R and C are the crystals equivalent combination of 

resistance and capacitance, neglecting lead capacitances 

and a is the bridge ratio. 

All the bridge connections were made using coaxial 

cable with the sheath earthed and all the components were 

shielded. As described in 2.02 the conductivity cell 

and furnace were clad with earthed shields. In addition 

all the metallic components near the cell were earthed. 

The input was via a 2.0_ shielded transformer and the y 

plates of the oscilloscope were at a floating potential. 



FIG 5 

CR6 
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Component values - Fig.5. 

All bridge resistances were precision Sullivan non-

inductively wound except the Tinsley decade box. 

R1 	Sullivan decade box (11"4111:1 ohm) 	Tinsley low 

inductance decade box (5278 L.F.5) 1.11 x 107  ohm. 

R2 	I K 	R3 	100 K 

R 	10 K 	R5 	1 K 

R6 	Pye decade box (11, 111 ohm). 

R7 	10K 	R8 	1K 

R9 	100 ohm 

S1' S2 Yaxley switches (ceramic base). 

0 	Advance oscillator (a). 

A 	Amplifier. 

F 	Filter (parallel-T). 

T 	Sullivan balanced and screened transformer. 

E 	Sullivan decade attenuator (600 ohm) (T network). 

Cf 	Sullivan air condenser (0.859/8), 61 pF. 

Cc 	Sullivan air condenser (0.855/S), 390 pF. 

CI 	Sullivan mica decade condenser (C.2099), 1F. 

C2 	Sullivan air condenser (C.500D), 1290 pF. 
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The shielding reduced mutual capacitative and inductive 

interaction and minimised A.C. "pick--up". 

To minimise the effect of stray capacitances to earth 

a Wagner earth was incorporated in the bridge circuit. 

By simultaneously balancing the bridge (using R1  and C2) 

and balancing point D of the bridge with the Wagner earth 

(throwing S2  and using Cw  and R6), a balance condition was 

systematically approached such that points B and D though 

not directly connected to earth were at earth potential. 

All the condensers were shielded with the low potential 

side, point D on the bridge, connected to the screen, thus 

at balance all the screens were at earth potential. 

The frequency of the signal applied to the bridge 

could be varied between 125 cps and 50,000 cps. Below 

125 cps the bridge was unusable due to signal reduction 

by the parallel-T filter. 	The ratio arm switch SI  

allowed one of three ratios, 1:1, 1:10, 1:100, to be 

selected. An attenuator E enabled a range of discrete 

voltages to be applied to the bridge from 0.0045 V to 45 V. 

For resistances up to 107 ohm, the measurements were made 

at 1 kc/sec; for resistances above this a 250 cps frequency 

was employed. For all capacitance measurements (except 

when voltage dependence was being studied) and resistances 

up to 106 ohm 1.42 V were applied across the bridge. 
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For resistances between 107 and 108 ohm, 2.53 V was used 

and for higher resistances, 45 V. 

The bridge was checked against standard resistances 

and capacitances. Resistances up to 105  ohm were measured 

using the 1:1 ratio, the accuracy was 0.05% from 250 to 

10,000 cps and less than 0.2% at 50 kc/sec. For resis-

tances between 105 and 106 ohm measured on the 1:10 ratio 

arms, the accuracy was less than 0.4% below 1 kc/sec., 

1% at 10 kc/sec., but dropped to 39% at 50 kc/sec. For 

resistances between 106 and 107 ohm on the 1:100 ratio 

arms the accuracy was 0.4% below 1 kc/sec. but dropped to 

27% at 10 kc/sec. To extend the range of measurement up 

to 109  ohm a low inductance decade resistance of 107 ohm 

was connected in series with Rl' 	This resistance was of 

poorer quality than Ri  but by working at 45 V and 250 cps 

1% accuracy was obtained on the 1:100 ratio arms. 

Capacitance was only measured using the 1:1 ratio arms 

since for resistances above 105 ohm the space charge 

capacitance was rather small. Absolute values of 

capacitance above 100 pf could be measured to within 1% 

using applied potentials of 1.4 V but at 0.08 V the 

accuracy dropped to about 10%. However, since the space 

charge capacitance is the difference of capacitance 

measured at a given frequency and the geometrical capaci-

tance (i.e. that measured at a high frequency), the accuracy 
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of measurement is only dependent upon the incremental 

accuracy of the capacitances and the frequency independence 

of the measurement. 	The frequency dependence was checked 

using standard resistances of typical values from 103  to 

105 ohm and the variation from 250 cps to 1 ke/sec. for 

capacitances greater than 100 pf was less than 0.05% rising 

to 0.5% between 1 kc/sec and 50 kc/sec. 	The accuracy 

decreased for applied potentials less than 1.4 V. 

The bridge was found to be sufficiently accurate 

for most of the errors to arise from temperature control. 

It was for this reason that the modification of the 

temperature regulator (2.03) was made. 

2.05 Experimental procedure. 

The crystal was mounted in the conductivity cell as 

described in 2.03. 	The cell was evacuated and the 

temperature slowly raised to 250°C to pump off moisture 

and allow it to condense in liquid nitrogen traps. At 

this temperature the purified nitrogen was slowly admitted. 

When the pressure reached one atmosphere the tap at the 

bottom of the conductivity cell was opened allowing a 

gentle stream of nitrogen to flow out through the bubbler. 

The temperature was raised to 680°C and the furnace 

resistors adjusted to obtain zero temperature gradient 

between the thermocouple-electrodes on either side of the 
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crystal. The crystal was annealed at this temperature 

for several days until its resistance dropped to a con-

stant value (pre-anneal measurements were taken for some 

crystals but this is made clear where the results are 

presented). Resistance and capacitance at 1 kc/sec. and 

capacitance at 300 cps were measured as the temperature 

was decreased. The regulator was set to a particular 

value and when the temperature had stabilised the thermo-

couple leads from the ice junction were inserted in the 

mercury cups near the cell head. The temperature was 

measured, the thermocouple leads removed and replaced by 

the shielded leads from the A.C. bridge, allowing the 

resistance and capacitance at 1 kc/sec. to be measured. 

This was repeated several times in quick succession until 

two or more identical (resistance to within 0.2%) consecu- 

tive pairs of readings were obtained. 	These were 

averaged to obtain a final value. The capacitance at 

300 cps was then measured, before lowering the temperature 

for the next set of readings. When these measurements 

had been completed on a doped crystal the temperature was 

raised to 6800C again. 	The capacitance and resistance 

were then measured as a function of frequency (and in some 

cases voltage) at several fixed temperatures. At the end 

of a run the dimensions of the crystal were measured again. 
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The frequency scale on the Advance oscillator was 

rather coarse and for the first hour or so after switching 

on, the output frequencies did not correspond exactly with 

the scale reading. 	To overcome these two sources of 

errors  use was made of the small but inevitable 50 cycle 

'pick-ups which appeared on the oscilloscope. Frequencies 

were chosen which were simple multiples of 50 cps. 	These 

were then located precisely by turning the frequency 

selector until the superimposed 50 cycle ripple became 

stationary. It was found that this procedure (used to 

obtain all the frequency dependence data recorded here) 

cansiderably reduced the scatter in a plot of capacitance 

against frequency. 
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3. RESULTS  

3.01 Conductivity measurements on 'pure' crystals in 

the intrinsic region. 

Fig.6 shows the reproducibility achieved in the 

intrinsic region of the log 9T versus 1/T plots for a 

series of crystals. 

run numbers. 

Run No. 

The curves are 

Table 6 gives details 

TABLE 6. 

designated by their 

of the crystals used. 

Crucible Material KC1 

1 

4 

A.R. twice recryst. 

Light's specpure 

spectrosil 

graphite (Morganite 
EY9) 

5 Light's specpure graphite (Morganite 
EY9) 

6 Light's specpure graphite (Morganite 
EY9) 

9 38 times zone refined 
in HC1 

silica 

10 Light's specpure graphite (Johnson 
Matthey BYO 110) 

The material for all the crystals except that for run 9 .  

was chlorinated in the molten state. 	The crystal used 

for run 9 was cleaved from a section of a zone refined 

ingot donated by the U.S. Naval Research Laboratory. 
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Before commencing measurements all the crystals were 

annealed in the conductivity cell at 650 to 680°C until 

the resistance at a fixed temperature was reproducible to 

within 1%. The procedure took several days during which 

the resistance always dropped. This may be interpreted 

in terms of two processes resulting from plastic flow 

of the crystal under the spring pressure holding the 

electrodes in place. Electrical contact with the electrode 

will be improved by a levelling out of steps on the crystal 

surface. Also, the crystal will be slightly distorted in 

a way such as to reduce the thickness and increase the 

area. Both of these are cooperative in increasing the 

apparent conductivity. 

TABLE 7  

Run 	Before run 	Log (oT) 	After run 	Log (oT) 
using 1/A 	using 1/A 

1 cm 	A cm before before run 	1 cm A cm 	after after run 

4 0.2905 0.9407 -2.170 0.2892 0.9440 -2.173 

5 0.3393 0.7650 -2.192 0.3305 0.7083 -2.170 

6 0.3775 0.6326 -2.119 0.3603 0.6728 -2.166 

Table 7 shows conductivity values calculated at 

103/T = 1.1/°K using crystal dimensions before and after 

the run. Clearly there is considerably more scatter in 

log aT using the pre-anneal dimensions. All the 
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conductivity values quoted here, other than those in 

Table 7 were calculated using dimensions taken after the 

run. There is the further complication of sublimation. 

This is apparent from some of the dimensional changes 

and the sublimate of KCl in the cool part of the conduc-

tivity cell. However, the reproducibility after annealing 

suggests that it is not sufficiently rapid to affect the 

dimensions during the short time spent at high temperatures, 

once the run was commenced. The same annealing procedure 

was used for doped crystals. These also showed an 

asymptotic drop in resistance, to which a contributory 

factor may have been slow dissolution of impurities. 

The curvature in the intrinsic region is clearly 

exhibited in Fig.7. Hence no attempt has been made to 

measure a gradient for these plots. 

3.02 Conductivity measurements in the extrinsic region  

oflpure'crystals. 

When the nitrogen stream through the conductivity cell 

was replaced by oxygen, the conductance in the extrinsic 

region for run 5 decreased by a factor of 3 after passing 

oxygen at 616°0 for 22 hours. To investigate this effect 

further, a modification to the vacuum line was made so as 

to enable gas to be either passed directly into the 

conductivity cell from a cylinder or to be bubbled through 



- 93• - 

de-ionized water before entering the cell. Fig.8 dhows 

the extrinsic plots for run 6 after being subjected to 

the sequence in Table 8 . Although numerous conductance 

measurements were made in the intrinsic region throughout 

the whole time the crystal was exposed to oxygen and 

water vapour, absolutely no change was noted from that 

measured previously in an atmosphere of dry oxygen-free 

nitrogen. On removing the crystal it was found to be 

etched on the sides where it was directly exposed to the 

surrounding atmosphere. This etching made the surface 

of the sides appear whitish and considerably reduced the 

transparency of the crystal when viewed through them. 

TABLE 8. 

Points on.graph 

■ 

cr 

0 
O 

Treatment. 

Dry 02-free nitrogen 

16 hours'white spot' N2  at 62000 

+ 19 hours at 460°C. 

+ 65 hours 'white spot' N2 at 

608°C. 

+ 14 hours wet N2  at 608°C. 

+ 136 hours wet N2 at 608°C. 

+ 38 hours wet 02 at 608°C. 

+ 18 hours wet 02 at 608
oC. 
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In Fig.9 the conductivity at 103/T = 1.6/°K is plotted as 

a function of time spent at the highest temperature. 

The slope of a tangent of the log aT versus 1/T plot 

for run 6 taken at the highest temperature in the extrinsic 

region is 0.k70 eV . This is noticeably lower than most of 

the previous values for 6121  (Table 3). 

Calcium analyses and estimates of other impurities 

were made for some of the crystals used for conductivity 

measurements. The results are given in Table 9 together 

with an analysis of twice recrystallised A.R. material, 

the same batch used for growing crystals used in runs 1 and 

3. 	The analyses were made by atomic absorption photo- 

metry and carried out by Dr. R. Black of the U.S. Naval 

Research Laboratory. 

TABLE 9. 

Results of analyses for trace impurities. 

Impurity 	AR. 	Run 3 	Run 1 	Runs 4'  5  
and 6. 

Ca 	2 ppm 	4+ ppm 	3.5 ppm 	3-  ppm 

Ag (relative 	1 	2 	3 
values) 

Al 	very low 	trace considerable 

Na 	none 	none 	traae 

Si 	none 	none 	none 

Ni 	trace 	trace 	trace. 

Cu 	none 	none 	trace 
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The samples are labelled by ran numbers appropriate to 

conductance cleaves taken from the same crystal. Since 

the concentrations approach the lower limit of the analy-

tical technique the numerical results are 1: 1 ppm but the 

order is probably correct. The increased Ca, Al and Ag 

content of the crystals used for runs 1 and 3 over that of 

the starting material indicate that impurities have been 

leached out of the growth vessel. This result is vali-

tatively confirmed by the conductivity meaaurements. Run 

10 showed the lowest conductivity in the extrinsic region 

and the crystal was grown in what was stated to be the 

purest graphite, J.M.EYC 110 containing less than 5 ppm 

metallic impurities. This purity is achieved in part by 

flUorination of the crucible at 250000 after the machining 

is completed. 	At the other extreme the extrinsic region 

for run 3 extended to 103/T = 1.05/°K. The crystal for 
this run was grown in a Morganite EY9A graphite crucible 

which had not been purified after machining. The 

extrinsic conductivity of run 6 lay between these two 

extremes in agreement with the purity of the EY9 graphite 

crucible, which although fluorinated, is not stated to 

have as high a purity as EYC 110. 

U.V. spectra of the 'pure,  crystals before and after 

conductance measurements, including the 02  treated specimen 
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from run 6, showed no absorption down to 190 mg. This 

indicates the absence of OH-  and also substantial amounts 

of cationic impurities such as lead and thallium. There 

remains the possibility that impurity-OH-  complexes were 

present in the crystals. 	Etzel and Patterson (1958) 

found these could only be detected by the OH stretch 

frequency in the infra red. Unfortunately the conductivity 

specimens were too thin for I.R. measurements. 	The OH 

absorption, being very weak, requires extremely thick 

crystals for its detectian. 

Tables 10, 11 and 12 list the conductivity data for 

runs 6, 9 and 10. 	The extrinsic region of run 6 was used 

to estimate the background concentration of impurities for 

one of the doped crystals, run 8, grown in a similar 

crucible and using the same batch of Light's specpure KCl. 

Similarly run 10 yields the background for the doped runs 

11, 12, 13, 14 and 15, using a different batch of 101 and 

the purest graphite crucibles. The data from run 9, 

which has a long intrinsic region was used together with 

that from runs 6 and 10 for a fitting procedure to obtain 

the conductivity parameters. 
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TAME 10  

Run 6 

10 /T -log CT 10 /T -log aT 10 /T -log CT 

1.0833 2.0007 1.2950 3.8516 1.5848 4.9498 

1.0999 2.1676 1.3188 3.9710 1.6122 5.0515 

1.1175 2.3436 1.3411 4.0709 1.6453 5.1773 

1.1350 2.5180 1.3663 4.1760 1.6785 5.3030 

1.1538 2.7101 1.3924 4.2672 1.7153 5.4376 

1.1718 2.8843 1.4135 4.3494 1.7569 5.6164 

1.1911 3.0707 1.4405 4.4409 1.7887 5.7346 

1.2097 3.2411 1.4672 4.5367 1.8292 5.8943 

1.2305 3.4129 1.4968 4.6387 1.8741 6.0755 

1.2532 3.5854 1.5258 4.7396 1.9169 6.2571 

1.2754 3.7341 1.5572 4.8488 1.9690 6.4740 

TABLE 11 

Run 9  

103/T -log aT 103/T -log oT10 3/ iT -log aT 

1.0411 1.5831 1.1979 3.2223 1.3552 4.7283 

1.0568 1.7515 1.2151 3.4012 1.3790 4.9341 

1.0721 1.9207 1.2372 3.6121 1.4053 5.1492 

1.0893 2.0999 1.2552 3.7829 1.4331 5.3676 

1.1057 2.2746 1.2654 3.8899 1.4614 5.5999 
1.1221 2.4548 1.2862 4.0804 1.4926 5.8266 

1.1401 2.6388 1.3082 4.2838 1.5207 6.0137 

1.1605 2.8455 1.3312 4.5058 1.5540 6.2177 

1.1789 3.0339 
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TABLE 12  

Run 10 

103/T -log aT 103/T -log aT 103/T -log aT 

1.0413 1.5426 1.2173 3.3562 1.4225 4.9546 

1.0568 1.7094 1.2366 3.5500 1.4487 5.0656 

1.0721 1.8760 1.2585 3.7479 1.4782 5.1728 

1.0890 2.0501 1.2791 3.9296 1.5054 5.2734 
1.1076 2.2445 1.2999 4.1307 1.5354 5.3665 

1.1234 2.4179 1.3235 4.3255 1.5679 5.4768 

1.1413 2.6000 1.3461 4.5031 1.6093 5.6137 

1.1599 2.7897 1.3712 4.6823 1.6478 5.7374 

1.1786 2.9734 1.3973 4.8290 1.6639 5.7921 

1.1973 3.1601 
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3.03 Conductivity of Sr21-  doped crystals. 

Typical plots of log aT versus 1/T are shown in 

Fig.10 for runs 12 and 14. Graphs for the other runs 

were similar to these. 	The curvature due to association 

as described in section 1.07 is clearly demonstrated by 

the increasing divergence from the dotted tangents. Points 

taken at the highest temperatures for run 14 just show the 

beginning of an upward curvature into the intrinsic region. 

The range of measurements was restricted on the high 

temperature side by the onset of sublimation and at low 

temperatures by precipitation of the Sr2+. The criterion 

used to ensure that precipitation was not occurring was 

reproducibility of conductance after 16 hours at a particular 

temperature. It would have been desirable to extend the 

range of doping. However, the inaccuracy of the Sr2+  

analysis prevents the measurement of concentrations lower 

than those used here and with higher concentrations 

precipitation considerably limits the temperature range of 

the measurements. 

Fig.11 is a plot of Sr2+ concentration against conduc-

tivity at 103/T = 1.1/°K for all the doped crystals. 

Each point on the graph is labelled by its run number. 

The plot includes run 15 for which carbon electrodes were 

used, the details of which will be given in 3.04. It is 
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clear, however, that at this temperature there is no 

detectable difference between the measured conductivity 

using carbon electrodes and that using platinum electrodes. 

All the concentration determinations for the conductivity 

specimens are plotted and the points for each run are 

linked by a line to indicate the errors involved in the 

analysis. Clearly the method used to measure the concen-

tration was not very satisfactory and probably introduced 

errors far greater than those arising from the measurement 

of specific conductivity. A straight line has been drawn 

through all the points since their scatter does not justify 

any attempt at drawing a curve. In any case at this 

temperature the curvature due to association would be slight. 

The fact that a straight line through the origin fits the 

data, is good evidence for the effective removal of OH-

or any other anions which might complex with the Sr2+. 

Ideally the line should cut the conductivity axis at a point 

corresponding to the conductivity of the unavoidable 

impurities, but since the mole fraction of these is w 10-6 

this intercept would be negligible on the scale in Pig.11 
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Run 8 

TABLE 13 

103/T -log aT 103/T -log oT 103/T -log CT 

1.0693 1.4301 1.2338 2.0758 1.4189 2.8532 

1.0849 1.4928 1.2547 2.1585 1.4462 2.9721 

1.1024 1.5612 1.2746 2.2453 1.4745 3.0976 

1.1192 1.6276 1.2962 2.3347 1.5034 3.2286 

1.1374 1.6971 1.3195 2.4295 1.5324 3.3569 

1.1554 1.7657 1.3429 2.5269 1.5645 3.4990 

1.1743 1.8391 1.3680 2.6343 1.6029 3.6683 

1.1921 1.9129 1.3934 2.7398 1.6343 3.8134 

1.2127 1.9931 

TABLE 14 

Run 11 

103/T -log aT 103/T -log aT 103/T -log aT 

1.0423 0.9148 1.2216 1.6233 1.4546 2.6154 

1.0606 0.9899 1.2427 1.7071 1.4915 2.7838 

1.0767 1.0554 1.2625 1.7882 1.4839 2.7549 

1.0927 1.1176 1.2844 1.8792 1.5108 2.8786 

1.1083 1.1784 1.3074 1.9811 1.5402 3.0087 

1.1246 1.2430 1.3275 2.0633 1.5724 3.1594 

1.1414 1.3094 1.3519 2.1686 1.6024 3.2987 

1.1621 1.3875 1.3746 2.2691 1.6383 3.4714 

1.1815 1.4648 1.4012 2.3767 1.6816 3.6763 

1.2011 1.5413 1.4262 2.4917 
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TABLE 15  

Run 12 

-TOW -log aT 	10 /T -log aT 	10 /T -log CT 

1.0431 0.7232 1.1943 1.3241 1.3959 2.1849 

1.0583 0.7839 1.2144 1.4054 1.4215 2.2986 

1.0740 0.8464 1.2328 1.4823 1.4462 2.4102 

1.0901 0.9101 1.2565 1.5801 1.4782 2.5540 

1.1070 0.9752 1.2793 1.6767 1.5127 2.7138 

1.1253 1.0460 1.3016 1.7726 1.5425 2.8487 

1.1407 1.1112 1.3258 1.8738 1.5741 3.0023 

1.1572 1.1758 1.3472 1.9747 1.6042 3.1465 

1.1739 1.2432 1.3699 2.0731 

TABLE 16 

Run 13 

103/T -log aT 103/T -log aT 103/T -log aT 

1.0465 0.9535 1.2212 1.6433 1.4321 2.5417 

1.0613 1.0154 1.2401 1.7224 1.4595 2.6609 

1.0746 1.0697 1.2622 1.8112 1.4884 2.7927 

1.0915 1.1365 1.2850 1.9048 1.5163 2.9192 

1.1095 1.2058 1.3074 1.9999 1.5468 3.0561 

1.1272 1.2735 1.3312 2.1006 1.5773 3.2007 

1.1442 1.3404 1.3560 2.2069 1.6096 3.3517 

1.1630 1.4167 1.3824 2.3259 1.6418 3.5027 

1.1819 1.4916 1.4067 2.4297 1.6743 3.6562 

1.2015 1.5671 
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TABLE 17  

Run 14 

103/T -log aT 103/T -log aT 103/T -log aT 

1.0501 1.2081 1.2296 1.9321 1.4689 2.9301 

1.0658 1.2811 1.2482 2.0040 1.4979 3.0580 

1.0823 1.3536 1.2700 2.0915 1.5296 3.1955 

1.0975 1.4154 1.2950 2.1930 1.5587 3.3234 

1.1147 1.4830 1.3203 2.2927 1.5924 3.4800 

1.1323 1.5503 1.3420 2.3808 1.6232 3.6260 

1.1510 1.6220 1.3654 2.4795 1.6623 3.8083 

1.1693 1.6925 1.3895 2.5797 1.7016 3.9900 

1.1877 1.7645 1.4161 2.6930 1.7347 4.1483 

1.2082 1.8438 1.4416 2.8130 1.7712 4.3342 
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For comparison the data obtained by Allnatt (1959) has 

also been plotted. A line through these points parallel 

to that through the present data cuts the concentration 

axis at c = 4.2 x 10-5. 	This may indicate that Allnatt 

had not effectively removed OH-  and an approximately 
constant concentration of this was creating an inactive 
concentration ( 	x 10-5) of Sr2+  in all his crystals. 

Values of log oT versus 103/T for the five runs which 

were analysed are collected in Tables 13-17. 

3.04 Capacity measurements. 

Extensive measurements were made on some of the doped 

crystals in order to determine the capacitance as a 

function of frequency of the A.C. applied field, temper- 

ature and Sr2+ concentration. 	Macdonald's space charge 

polarisation theory (1.09) is the most complete but his 

equations are very general and cumbersome; the solution 

was therefore re-derived and simplified for the case of 

KC1 in the required temperature and frequency regions 

yielding a space charge capacitance per unit area, 0`, 
given by 

3.04.1 
C  = (251Zi 
P 	c ' 

° 	L 
[1 + 	

1602 -1 
tr oo  

where E. is the low frequency dielectric constant, L the 
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length of the crystal and co  the number of Sr2+  ions per 

unit volume. The data are illustrated by plotting them 

according to this equation, neglecting the second term 

in the square brackets which is small compared with unity. 

When this is done the expression is the same as that used 

by Jacobs and Haycock (1963,f)) and referred to in 1.09. 

From 1.07.17, when association is neglected, 
i  

a(T)00c(1/T)e-AtIh 'T  thus plots of log (C T3/2) versus 

1/T should be straight lines of slope 24111/k. Fig.12 

shows this presentation of the data for run 12, the two 

lines are for capacitances measured at 1000 and 300 c/sec. 

Equally good straight lines were obtained for all the 

runs; the slight divergence at low temperatures could be 

due to errors in measuring the geometric capacitance. 

The geometric capacitance was measured at high frequencies 

'•,50 kc/Sec. and subtracted from the low frequency 

capacitance to obtain C which is then equivalent to Cp. 

In Table 18 0h1 values taken from these graphs are com-

pared with those obtained from the conductivity data over 

the same temperature region. Clearly these are not 

strictly 4111  values since they will be affected by 

association but they should be in error by the same amount 

for both the conductivity and capacitance in the same 

temperature region. 
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TABLE 18 

Run 	tihi from gradient of log (0T3/2)vs till, from 

300 c/sec. 	1000 c/sec. 

11 	0.737 eV 	0.725 eV 	0.776 eV 

12 	0.753 eV 	0.769 eV 	0.786 eV 

13 	0.736 eV 	0.742 eV 	0.776 eV 

14 	0.733 eV 	 0.772 eV 

From 3.04.1, neglecting association L2C of co3/2  

at a constant temperature. 	Since a = cow,'  a plot of 

log L2Cp  versus log a should be a straight line of slope 

1.5. Fig.13 shows points obtained from five runs at 

103/T = 1.1/°K, each point being labelled by its run number. 

Graphite electrodes were used for run 15; these were two 

discs of specpure graphite, 3 mm. thick and 13 mm. in 

diameter, positioned between the crystal and the platinum 

electrodes. The graphite was Johnson Matthey grade 1 

material J.M.21/91 containing less than 5 ppm impurities. 

Measurements on this crystal were confined to frequency 

dependence of the capacitance and a few conductivity and 

capacity measurements at selected temperatures. However, 

the same annealing procedure was performed before making 

the final measurements. In all cases where it was 

fE9440.21 
os a vs 1/T 
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observed the capacitance fell during the high temperature 

anneal. For runs 12 and 15 the capacitance at 1500 c.p.s. 

dropped by a factor of about 3. With such large changes 

occurring any plot comparing magnitudes of C for various 

crystals might be expected to show scatter as in Fig.13. 

The results in this figure show a trend in the right 

direction but the slope of the line is 3.17. 

The approximate form of 3.04.1 predicts the frequency 

dependence of Op  at a fixed temperature. to be of the form 

(.00 oc lAJ. Fig.14 shows the results for run 12 at a 

series of temperatures. The plots are almost straight 

lines but show definite curvature; an extrapolation of 

the high frequency points appears to go through the origin 

as required. 

Several attempts were made to determine whether the 

capacitance being studied here showed any variation with 

the applied A.C. voltage. Within the experimental error, 

however, no voltage dependence of the capacitance was 

observed for applied potentials between 0.04 and 45 volts. 

As each measurement of capacitance as a function of 

frequency was accompanied by a resistance measurement, 

this amounted to a very thorough search for frequency 

dependence of resistance. Where platinum electrodes were 
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used, the resistance of the doped crystals increased by 

about 1% in going from 1500 to 125 c/sec. Although this 

change was too small to be studied it was definitely 

present. 	However, when graphite electrodes were used 

(run 15) a variation over the same frequency range of about 

10% was observed prior to annealing. This is still rather 

small but the results are plotted in Fig.15 as log t1(1/R) 

against log f where A(141) is the increase in conductance 

at a particular frequency f, over that measured at 1500 

c/sec. After annealing the variation in resistance from 

1500 to 125 c/sec. dropped to about 3%. 
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4. DISCUSSION 

4.01 General comments. 

Fig.6 shows the very good agreement in the intrinsic 

regions of the conductivity measurements from runs 4, 5 

and 6. This reproducibility is also apparent from the 

conductivity values at 103/T = 1.1/°K (Table 7) where the 

variation in a is only 2%. The crystals for these three 

runs were grown in carbon (Table 6). The two crystals 

grown in silica, runs 1 and %have a noticeably lower 

conductivity, the difference being far greater than the 

experimental error in an individual measurement. It is, 

however, possible that such an error could arise from a 

poor contact between the crystal and the electrodes. 

There may be some significance in the fact that there is 

better agreement among crystals grown in crucibles made 

of the same material but it is not possible to come to any 

definite conclusions. Very great care was taken to ensure 

that good contact with the electrodes was achieved on 

the doped crystals. On the basis of these earlier runs 

on pure KCl it was felt that it was probably better to 

apply sufficient pressure to the electrodes to cause a 

little distortion of the crystal, rather than run the risk 

of a pour contact. 
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Graphite was chosen as a crucible material for all 

the crystals except that used in ru.n 1 for it was found 

that a far greater degree of crystal perfection was 

obtained than for crystals grown in silica. Although no 

dislocation counts were made, silica grown crystals often 

had curved cleavage planes and multi-faceted surfaces, 

both of which were absent in the crystals grown in graphite.  

A further reason for using these crucibles was that it 

would be thermodynamically more favourable for the chlorine 

to oxidise anionic impurities in the presence of carbon. 

The two disadvantages of graphite are its greater impurity 

content over that of silica and a tendency for the crystals 

to twin as a result of nucleation on the relatively rough 

crucible walls. 	For the doping levels used, the 

impurities in the purest graphite available (Johnson 

Matthey EYC 110) were insignificant. 

The curvature in the intrinsic region (Fig.7) cannot 

be represented by an expression such as 1.07.15, containing 

only one exponential term. Furthermore it is unlikely 

that this curvature is an experimental artefact since it 

has been noted previously (Allnatt and Jacobs, 1962; 

Grandig, 1965). 	The simplest interpretation of this is 

in terms of anion and cation vacancies with sufficiently 

similar mobilities to necessitate the retention of the two 
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exponentials in 1.07.13. The mobilities must be slightly 

different in order that the approximation 1.07.15 dhould 

not hold. Allnatt and Jacobs assumed that a tangent 

to the low temperature end of the intrinsic region 

represented the contribution of the cations. As outlined 

ti in 1.08 Grandig obtained ih, 	iSh21 = 0.22 eV by 

simply taking the difference of high and low temperature 

slopes of the intrinsic region. 	This technique of 

drawing tangents is open to criticism (Rolfe, 1964). 

Since the curvature is relatively slight, there is no 

genuine criterion as to where tangents should be drawn to 

represent a given physical situation. The inaccuracies 

inherent in this method are shown by the complete lack 

of agreement between f A.h1 	h21 	obtained by Grtindig 

and the same quantity derived from the results of Allnatt 

and Jacobs, namely 1.70 eV (Table 4). 

In this work (4.02) the results have been analysed 

according to the complete expression 1.07.12 in conjunction 

with values of x1 and x2 derived from 1.06.7 and 1.06.2. 

The dramatic fall in extrinsic conductivity after 

exposure of the crystal to water vapour and oxygen (Figs.8 

and 9) has not been reported before. Unfortunately, in 

these experiments the results show that sufficient care 

was not taken to introduce definable atmospheres and 
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identify their individual effects. Thus the drop in 

conductance after exposure to white spot' nitrogen might 

be due to traces of water or oxygen or a combination of 

the two. In a normal conductance run both of these 

impurities are removed from the nitrogen before allowing 

it to enter the cell. 

There are two obvious interpretations of the effect 

of oxygen and/Or water vapour. 	Either there is 

diffusion of some species from the gas phase into the 

crystal bulk which prevents impurities from contributing 

to the conductivity, or the crystal surface adjacent to 

the electrodes is attacked producing an interfacial 

resistance. The latter explanation is unlikely since it 

would require strict limitations on the conductance of the 

layer as a function of temperature. The layer conductance 

would be required to have the same type of temperature 

dependence as K01 in the extrinsic region but be lower in 

magnitude (Fig.8), whereas at high temperatures it would 

have to be much larger than the bulk conductance of K01 

in order to explain the constancy of conductivity in the 

intrinsic region. 

On the basis of results outlined in 1.08 the depression 

of extrinsic conductivity might arise from complexing of 
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the impurities with OH-  diffusing into the crystal. 

The OH-  may be formed on a crystal surface thus 

	

4.01.1 
	

H2O + Cl-  .->. OH-  + HCl 

One objection to this is the lack of an OH-  absorption 

band at 204 mg; for although impurity-OH-  complexes show 

no such absorption, there would have to be a substantial 

proportion of substitutional OH-  to impurities, before 

diffusion processes enabled complexing of 93% of the 

impurities (Pig.9). 	In support of this, although reaction 

1 probably occurs in the melt in the presence of oxygen 

(Patterson, 1962), there have been no reports of the 

introduction of OH-  by simply heating a crystal in an 

atmosphere of water vapour and oxygen. A reaction between 

molten NaC1 and dry oxygen with the liberation of chlorine 

	

has been observed by Otterson (1960). 	Two possible 

processes are 

	

1.04.2 	02 + Cl- 	02-  + 2012 

	

1.04.3 	202  + 201- 	02- + 012 

The evidence for 2 has already been given (1.08) but there 

is no obvious reason why 0-2  should reduce the extrinsic 

conductivity. However, 02- could combine with M2+ to 

form a complex occupying two lattice sites with the loss 
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of a vacancy. The only evidence for 02-  in alkali 

halides comes from Watkins (1959) who attributed an e.s.r. 

spectrum in Mn2+ doped KCl, NaCi and LiC1 to a manganese 

ion adjacent to an ion such as S2- or 02 . There is a 

further possibility, namely that H2O may be diffusing 

directly into the K01. 	Such a process has been studied 

recently by Penley and Witte (1964) and Grandig et al. 

(1965). If H2O diffused through the KCl only reacting 

with some 142+  ions to form M(OH)2 or MO this would account 

for the lack of an OH-  band at 204 mµ. Such a scheme 

would not be unreasonable on chemical grounds. 

The work of Kummer and Youngs (1962) suggests there 

is a tendency for Ca2+  in NaCi to concentrate in regions 

near the surface. However, the results were obtained 

using what was likely to be polycrystalline NaCl or at best 

very imperfect crystals. This combined with the high 

doping levels used makes it possible that CaCl2  may have 

been precipitating over the large surface area exposed to 

the acetone which they used to leach out surface 0a012. 

It would be interesting to carry this work a stage further 

as some interest has been shown in the theoretical inter-

pretation of the result (Ailnatt, 1964). Since X-ray 

fluorescence arises from a thin region near to the surface 

exposed to the X-ray beam it might be possible to assess 
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surface concentrations of e.g. Sr2+  in large single 

crystals of KC1. To obtain a better understanding of 

the present work an experiment could be devised in which 

the conductance of a large single crystal of KC1 doped 

with Sr012 was measured before and after exposure to 

oxygen and water vapour. All the outer surfaces of this 

crystal could then be cleaved off and the conductance of 

the interior portion remeasured. If the extrinsic con-

ductivity of the centre section showed a similar drop to 

that of the crystal as a whole, Sr2+  may be diffusing to 

the surface and reacting with 02  or H20; this could be 

verified by X-ray fluorescence analysis of the outer 

sections of the crystal. If the analysis showed no excess 

concentration then the drop in conductance could be 

ascribed to complexing with anions throughout the entire 

crystal. Alternatively the centre section may have a 

specific conductance similar to that of the original 

crystal before exposure to 02  + H20. This would indicate 

the process was confined to a surface region and arose 

from a reduction of surface conductance. 
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4.02 Treatment of conductivity data.  

There is no exact, direct analytical procedure which 

can be employed to determine the conductivity parameters 

from the available data. As mentioned in 1.07 a deter-

mination of the mobility ratio 0 = µ2/µ1  usually involves 
approximations, an exact method is, only possible when 

> 1 then from 1.07.25 and 26, 0/00  exhibits a minimum 

given by a/o0  = 2477(1 + 0). Unfortunately in KC1 51 < 1 

and the method does not apply. The only attempt at 

determining 0 for KC1 has been described above and involves 

the somewhat dubious procedure of drawing tangents to the 

intrinsic region. Rolfe (1.08) with the additional 

information provided by anion doping had to neglect 

association at high temperatures in the extrinsic region 

in order to find p1 for KBr. 
For these reasons it was decided that a better approach 

might be to compute theoretical log (aT) versus 1/T curves 

and obtain the parameters by fitting these curves to the 

experimental results. In order to achieve this an auto-

code program was written for the Atlas computer (the 

actual program is given in Appendix 1). The fitting was 

accomplished using Atlas Routine 970 (Rossenbrook, 1960) 

provided by the London University Institute of Computer 

Science. 	This routine, based on the method of steepest 
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descents, will find the position of the minimum of a 

function of several variables. To fit the data the 

function F was to be minimised 

4.02.1 

F=100 [ E [log (aT) calculated - log (aT) 
experimentalj-

where L is the number of data points. The way by which 

log (aT) was calculated, starting with the conductivity 

parameters is as follows. K1 and K2  were computed from 

the expressions 

1.02.19 	= e-(h-Ts)/kT 

1.06.9 
	

K2 = 12eV T  

The cubic equation, 

1.06.7 x3  + x22(c + K1K2) x2  K1  -K2 K
2 = 0 2  

was then solved for x2 using the numerical values of 

K1, K2 and the mole fraction of divalent impurities c. 

In order to determine the nature of the roots of 7 the 

discriminant A was examined 

4.02.2 

	

= K22KI 	(c+ 

	

12 1 - tP

- (c 	

T Kl 

+ K K )3K K 	1 
2 1 	2 1 - 77

(c K 2 
K1 )

272 
-1 
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The only positive term in 1 is 1411; on collecting 
8 	2,4 similar terms this is reduced to rr  K2R1. By comparison 

3  with the term, - 47 K1, it is seen that a sufficient 

condition for A to be negative is 

2 1> 2KK2, 

Typical values of Ki  at the highest temperature are about 
-10 10 	and K2 'NI  5 x 103 for S = 0.5 eV and with these 

values the condition is fulfilled. Since the discriminant 

is negative, the cubic will have three real roots and may 

be solved by the trigonometrical method. The solution 

is 

4.02.3 

2 	, 

X2 = [3`K14 	
4(c + K2K1)2 ]] costi(2nn ± 0)] - 4(c + K2K1) 

K1-  
[IC21 	21 K2  - gm(c + K2  K1 )

3  - "9.-(c + K2K1)1513/2 ) where Q = cos 

[K1 '5.(c K2K1)2]  

By Descartes' rule of signs the cubic 1.06.7 will have 

1 positive and 2 negative roots; clearly it is the 

positive root which is required. 	This root will occur 

for the maximum of the three values for the trigonometrical 

term in 3, since the remaining term is negative; it was 

obtained by setting n = 0 and finding the value of Q 

between 0 and %/2. Although this method is correct it 
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failed in the extrinsic region when x2  is a small differ-

ence of two relatively large numbers represented by the two 

terms in the expression for x2. This was overcome by 

obtaining x2  at the highest temperature using the above 

equation; x2  at the next temperature was found by 

Newton's method using x2  from the highest temperature as 

a starting value. This procedure was repeated for all 

the following determinations, the previous value being 

used as a first approximation for Newton's method. To 

ensure this technique was working, a print out of x1, x2, 

K1 and K2 was obtained for a pure crystal and the crystal 
with the highest doping level. The cubic was found to 

be satisfied at all temperatures when the appropriate 

values were substituted in it. Having found x2, the 

value of xI was obtained from 

1.06.2 
	

K1 = x1x2 

The mobilities of the defects were computed from 1.07.9 
thus 

4.02.4 

4.02.5 

4ea2o -1  e-(Ahl-Tasi)/kT k   

4ea24 -2 ,-(11h2-T iis2)/kT 41,2  - 	k  

Since it is not clear what numerical values should be 
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inserted for V" and V 2 they were both set equal to 

9= 4.25 x 1012sec-1. This value is the frequency for 

transverse vibrations in 1(01 as determined from I.R. 

absorption measurements (Barnes, 1932). One might 

anticipate that the actual frequencies would be less than 

Vbut in the absence of more precise information no 

accurate values could be used for 1)1 and V2. The value 

used for V has no effect on any of the parameters except 

As1 and As2 and a self-consistent correction for this 

can be made later. Log (CT) was then obtained from the 

expression for aT which is, 

aT Ne(Tµlxi  + Tµ2x2) 

There are in all 8 conductivity parameters 611 1, 

As12 ti,h,2/  Lis2 	/ h,s 5 and c. 	This is a large number 

for a fitting routine and the final answer is slightly 

dependent upon the initial guesses and the order in which 

the parameters are varied by Routine 970. The main 

program was written in such a way as to allow any desired 

order of the parameters to be chosen, and each parameter 

to be either held constant or varied. The initial 

approximate parameters were based on Allnatt's results 

(Table 4). 	&si  and L1, s2 needed to be corrected since 

the value of a (equations 4 and 5) was taken by Allnatt 
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to be the cation-cation separation, af2; whereas it 

should be the anion-cation separation, a (the distance 

travelled in the direction of the field, 1.07.6). 	In 

addition, V= V1 = V2 was taken as 4.51 x 10
12  sec-1  

by Allnatt. With these two corrections in the pre-

exponential of 4 the value of /s. s, becomes 

103  tisi  = 0.114 - 103k ln(i x 4.25/4.51) 

tisl  = 0.179 x 10-3  eV/deg. 

A number of different values of Ah2  and Qs2  were tried 

as considerable errors could be introduced by Allnattis 

method of finding these. This is shown above where 

- 6h21 found by Grilndig and by Allnatt are vastly 

different. 

Values for the parameters were found by fitting the 

data for the pure crystals used in runs 6, 9 and 10. Run 

9 was included in the hope that the long intrinsic region, 

showing definite curvature, would enable a better estimate 

of As2  and Ah2  to be arrived at. It was found 

necessary while doing this to prevent the fitting routine 

from making c negative, for when this occurred the program 

faulted as the inverse cosine in 3 went out of range. 

To rectify this a large number was put into P whenever c 

went negative; the fitting routine recorded this as a 
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bad fit'and so made c positive again. The only other 

difficulty encountered was with run 9. Since there is 

very little extrinsic conductivity data for this run the 

data fit is very insensitive to 	. Thus S had to be 

held constant to prevent the fitting routine from changing 

it drastically .in an attempt to alter F. The final fit 

was obtained from a program in which F was minimised for 

each crystal for all eight cyclic permutations of the 
fitting order of the parameters, one of which is h, s, 

Cp it,  h1, 4Sip iSh2 p bh S 2 • 	Having found a set of para-

meters yielding the lowest F values for the three pure 

crystals, the data for each of the doped crystals was 
fitted allowing only &sip Ahl  and 3 to vary. The value 

of c was fixed at the average of the two values determined 
by X-ray fluorescence and the other parameters were held 

at the average values from fitting the data for the pure 
crystals. All six permutations of order of the three 
parameters were tried for each run. Finally c was allowed 

to vary in addition to &sip Ahland $ and fits were 
obtained for the four cyclic permutations of !I, c, tihi, 
11 s1. 

The accuracy with which the theoretical curve of 

log OT versus 1/T fits the data is demonstrated in Figs.16 

and 17 for the pure crystal used in run 6 and Figs.18 and 
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and 19 for the data from run 8; the best fit is plotted 

in each case. The parameters and F values for the best 

fits of the pure crystals are listed in Table 19. The 

value of 	for the best fit of run 6, was 0.430 eV. 

Where several fits are almost as good they are all 

included in Table 19. 

TABLE 19  

Conductivity parameters obtained from the best 

fits of the data for the pure crystals. 

Run F 
h 

(eV) 

s 

(10-3  
eV/deg.) 

Ah1 

(eV) 

As1 

(10-3  
eV/deg.) 

LSh2  

(eV) 

bis2 

(10-3  
eV/deg.) 

6 1.42 2.252 0.463 0.711 0.156 1.045 0.543 

9 2.12 2.250 0.461 0.708 0.156 1.071 0.551 

9 2.16 2.250 0.461 0.709 0.155 1.062 0.544 

9 2.17 2.250 0.460 0.709 0.155 1.060 0.542 

10 1.54 2.276 0.462 0.708 0.156 1.016 0.535 

10 1.58 2.273 0.466 0.708 0.155 1.021 0.535 

Average of means 
for each run 

2.259 0.463 0.709 0.155 1.043 0.541 

Every fit which was obtained is not included as variations 

in the parameters for a given run were less than the 

overall variations in Table 19. Values of log (a1T) and 
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log (a2T) computed from the best fit parameters for run 

6 (Table 19) have also been plotted in Fig.16. 	Two 

observations may be made from these. 	The first is that it 

is not valid to draw a tangent to log (aT), just above the 

knee and assume it represents log (alT) (4.01). 	The 

second stems from the curvature of the log (alT) and log 

(a2T) plots above the knee temperature. 	This demonstrates 

that the impurities are influencing conductance above the 

knee since when xl  >> c, plots of log (alT) and log (a2T) 

Should be straight lines. This is confirmed by the 

experimental data (Fig .8) which shows that although the 

knee is at about 103/T = 1.3/°K results taken after oxygen 

treatment indicate the conductivity is only intrinsic 

above 103/T = 1.2/°K. 

Fig.20 shows t1  the transference number for the cation 

vacancies, computed from the best fit parameters for runs 

6, 9 and 10. For comparison the values obtained by 

Kerkhoff and the single value of Haven (1.08) are also 

included. Now from 1.08.1 

tl  = 1/(1 + a2/a1) 

thus when c << x1 i.e. at high temperatures for a pure 

crystal, this may be combined with the two terms from 

1.07.14 giving 
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tl  = 1/ fl + exp[T( A s2— Asi ) + Ahl—Ah2 ]/kT} 

This condition should be well satisfied for runs 10 and 9 
at the highest temperatures but small variations in As,'  

As2f Ah2 and -  Ah1 will have a considerable effect upon 

t1 which is sensitive to the relatively small differences 

in these parameters. This largely accounts for the lack 

of agreement of the high temperature data in Fig.20; 

however, for run 6 the impurity level is iifficiently high 

to affect t1 up to temperatures at least as high as 

103/T = 1.2/°K. Of the three sets of data, that for run 

10 is probably the most reliable. The measurements for 

this run extend to higher temperatures than those for 

rim 6 giving more scope for the fitting routine to deter-

mine accurate values of Ah2 and As2' the effect of 

anion conduction being significantly more dominant in 

this region. In addition run 10 had an extremely good 

fit over the intrinsic region. Although the measurements 

for run 9 also extend to high temperatures, the fit for 
this was not as good as that for run 10, probably because 

there was very little data in the extrinsic region to 

help locate the parameters. The single value found by 

Haven agrees well with the data for run 10. 	This may 

be somewhat fortuitous but it seems very clear that 
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Kerkhoff,s values are too high. These lie on a curve 

almost parallel with that for runs 10 and 6 in a region 

where impurities are still influencing t1. This would 

indicate that the crystal used for his measurements was 

more impure than that used for run 6. This observation 

is confirmed by the conductivity measurements taken by 

Kerkhoff after performing his transference number measure-

ments. These show the knee at 103/T = 1.2/°K, whereas 

for run 6 it was at 103/T = 1.3/°K. 

From equation 1.02.17 

s = -kz[ln( VIA)) + ln( 4/V)] 

Thus assuming VI = vB = )J 9  it is possible to calculate 

the ratio of the frequency of the nearest neighbours to a 

vacancy along the line joining the vacancy and nearest 

neighbour centres V,  to their frequency in the absence 

of the vacancy 	. Using the average value of 

s = 0.463 x 10-3  eV/deg.(Table 19) 

v/vi = 1.56 

This may be compared with the values of 1.96 for KCl 

(Allnatt and Jacobs, 1962), 1.32 for Nan (Etzel and 

Maurer, 1950) and 1.51 for KBr (Rolfe, 1964). 	If V is 

taken as 4.25 x 1012/sec, which is the frequency of trans-

verse vibrations in KC1 as found from absorption measurements 



-127- 

(Barnes, 1932), then V,  = 2.72 x 1012/sec. 

The presence of a vacancy will probably reduce the 

vibrational frequency of the next nearest neighbour ions, 

though not to the same extent as it affects the nearest 

neighbours. However, a lower limit for the effective 

frequency of the next nearest neighbours to the vacancy 

may be obtained by equating it to b". 	(This is a some-

what inconsistent approach since the derivation of the 

expression used to calculated Vt (1.02) only assumed 

nearest neighbours were affected but this will not affect 

the fact that VI is a lower limit). Par consistency 

upper limits may be calculated for Asi  and 6s2, the only 

two parameters dependent upon the value taken for the next 

nearest neighbour vibrational frequency. The upper limits 

are 

103As 1 

3 A 10 S 1  

tisi  

similarly 

6'82 

= 0.155 + 103k In (4.25/2.72) 

0.155 + 0.038 

0.193 x 10-3 eV/deg (upper 

0.579 x 10-3  eV/deg (upper 

limit value) 

limit value). 

The concentrations of impurities in the pure crystals, 

as found from the fitting procedure are for run 6, 
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1.75 x 10-6; for run 9, 6.7 x 10-8; and for run 10, 

4.2 x 10-7 mole fraction. 	These are in the correct 

order according to the relative positions of the extrinsic 

regions. 

Table 20 lists the average values of the parameters 

for the doped crystals. The range refers to the F values 

for which an average was taken; thus a range of 5% means 

that the average is over all the fits with an F value 

within approximately 5% of that for the best fit for that 

particular run. Included within these averages are the 

parameters obtained when c was allowed to vary. The 

variations in '5 and L h1 when c was allowed to vary were 

well within those when c was fixed at the analysed values. 

It is clear from the scatter in Fig.11 that c was not 

known very precisely. To show this did not significantly 

affect the determination of 5 and Alai, Table 21 lists 
average values of the parameters obtained in an earlier 

fitting run. For these, the value of c was fixed at that 

determined by the first X-ray fluorescence analysis (Table 

5) and the other parameters were fixed at 4112  = 1.00 eV, 

As2  = 0.472 x 10-3  eV/deg, h = 2.28 eV, s = 0.469 x 10-3  

6V/deg. The general agreement between these two sets 

of values demonstrates that ! and 6h1 are not very 
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TABLE 20  

Conductivity parameters obtained by fitting the data for 

the Sr2+ doped crystals 

Run Range F No. 
aver- 
aged 

hi(eV) s1(10.̀ 43  
eV/deg.) 

(eV) 

8 1% 0.995-1.02 5 0.707 0.143 0.434 
5% 0.995-1.02 5 0.707 0.143 0.434 

0.995-1.42 10 0.710 0.149 0.434 

11 1% 1.75 -1.77 4 0.717 0.171 0.408 
5% 1.75 -1.78 7 0.709 0.164 0.417 

1.75 -2.36 10 0.709 0.163 0.417 

12 1% 1.39 -1.41 4 0.719 0.183 0.398 
5% 1.39 -1.51 7 0.706 0.171 0.411 

1.39 -2.71 10 0.708 0.169 0.410 

13 1% 1.56 -1.58 4 0.702 0.171 0.432 
5% 1.56 -1.64 8 0.705 0.173 0.429 

1.56 -2.18 10 0.709 0.171 0.423 

14 1% 1.92 -1.94 4 0.708 0.149 0.427 
5% 1.92 -2.02 .7 0.707 0.147 0.429 

1.92 -2.24 10 0.709 0.149 0.430 

Average of all the fits 0.709 0.160 0.423 

Mean of the 1% range averages 0.710 0.163 0.420 
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TABLE 21  

Conductivity parameters obtained by fitting the data for 

the Sr2+ doped crystals 

Run Range F 	aver- 6h1(eV) 
aged 

6n(10-3. 
aideg) 

(eV) 

8 1% .908-.917 3 0.702 0.130 0.436 

11 0% 1.74 3 0.714 0.170 0.414 

12 0% 1.34 2 0.717 0.198 0.409 

13 0% 1.50 4 0.711 0.186 0.426 

14 0% 1.89 2 0.706 0.145 0.429 

Averages 0.710 0.166 0.423 
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dependant upon a precise knowledge of c and the other 

fixed parameters. The reason for this is that the fitting 

procedure determines 	from the temperature dependence of 

conductivity rather than the concentration dependence as 

In the analytical methods (1.07). Since the conductivity 

is apparently relatively insensitive to concentration 

dependence of association compared to temperature dependence, 

the errors in c become less important. However, Qs1 is 

rather more dependent upon an accurate knowledge of C. 

Below the knee changes in Lei  merely displace the extrinsic 

region as a whole relative to the log aT axis; this is 

exactly what changes in c do in the absence of association. 

Thus one might expect to find more scatter in 4s1 from 

run to run when c is not known accurately. In agreement 

with this the fits for which c, when varied lay closest 

to the straight line in Fig.11 (within 6% of values on 

the line) had the following values for .s1: run 8, 0.154; 

run 11, 0.155; run 12, 0.155; run 13, 0.155; run 14, 

0.155(10-3  eV/deg.). These are virtually identical to 681  

obtained by fitting the pure crystals. 

The results in Tables 20 and 21 show that 

increases slightly as the concentration of impurities 

decreases. This may indicate that long range coulombic 

interactions are having some effect on the degree of 
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association (Lidiard, 1957) but the evidence is not very 

substantial. The average value of 5 = 0.42 eV lies 
between the theoretical values of the association energies 

El  and E2  (Table 2). These calculations indicate that 

excited states of the complex should be considered 

(1.06.8 and 1.06.10) but this would have introduced 

additional parameters which, judging by the excellent fit 

of the temperature dependence, is apparently not necessary. 

To show the effect of association Pig.21 is a plot of the 

fraction of impurities complexed p = 	o against 1/T. 

The computed curve is for one of the fits of run 12 with 

c = 4.17 x 10-4  mole fraction, 3= 0.426 eV and the 

remaining relevant parameters equal to the average values 

from Table 19. 

4.03 Develo•ment of the A.C. s•ace char •e ca•acitance 

In an attempt to reconcile some of the disagreements 

between the capacitance results and the predictions of 

Macdonald's space charge capacitance theory outlined in 

1.09 (the lack of agreement will be demonstrated in 4.04), 

the theory was extended to include partial discharging 

of ions at the electrodes. The case of partial blocking 

has been considered before by Chang and Jeff& (1952) but 
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their expression does not satisfy Poisson's equation and 

has been criticised by Macdonald (1953). Friauf (1954) 

has also considered discharging of ions but although his 
treatment satisfies Poisson's equation, he does not give 

an explicit formula for the space charge capacitance. 
Instead his results are presented as a series of lengthy 

complex expressions from which he computes values for a 

few special cases applicable to AgBr. 
The expression obtained here is specifically for doped 

K01. Only negative charge carriers (cation vacancies) 

are assumed to be mobile and the generation and recombin-

ation of these carriers is neglected as in Friauf's treat-

ment. The effect of generation and recombination was 

examined by carrying out the calculation below, retaining 

the two extra terms in 1.09.14, but in the absence of a 

knowledge of kisand k2  approximations cannot be made to 

determine whether a simple expression is obtainable. 

The equation of detailed balance for the cation 

vacancies, neglecting generation and recombination is 

from 1.09.14 

2 
= D(11- N  ) 	P f7( 

ox 

where n(x,t) is the number of vacancies per unit volume 

and µ and D are respectively their mobility and diffusion 

4.03.1 
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coefficient. Poisson's equation relates the electric 

field E(x,t) to the charge distribution and is 

4.03.2 	ax = 3(c0  - n) ax  
where co is the number of dissociated Sr2+  ions per unit 

volume and p = 4weA (e is the electronic charge and E. 

the dielect3ic constant). One boundary condition for the 

solution of 1 and 2 (1.09.17) is 

4.03.3 
	

V1 e
iwt = 11E(x,t)dx 

where V1e
rt represents the sinusoidal applied voltage 

and the length of the crystal is L. The final boundary 

condition introduces the partially blocked electrode. 

Equations 1.09.18 and 1.09.19 no longer apply, instead the 

current at the electrodes is assumed to be proportional 

to the excess concentration of cation vacancies 	&11 

over that existing for zero applied voltage. Consider 

the crystal under the conditions in Fig.22a. In this 

diagram the direction of the field relative to the x 

direction is consistent with the derivation of 1. The 

flux F of negative charges through the crystal in the 

positive x direction is 

4.03.4 an F = -D-- ax 



22a Ci )  
C RYSTAL 

FIG 22 
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and thus the current in the crystal j due to the vacancies 

is 

4.03.5 an  j = eD-- + pnEe ax 

The discharge current at x = L and 0 is given by 

4.03.6 

j(L,t) = -peLn(L,t)D/L 

j(0,t) = peQn(0,t)D/L 

where p is a dimensionless parameter which may be Inter-

preted (Friauf, 1954) by considering a symmetrical free 

energy barrier of height 40i/ to exist at the electrodes. 

Thai the current flowing across the crystal surface at 

x = 0 will be 

4.03.7 
	

j(0,t) = An(0,t)ea voe-WITAT 

and the blocking parameter is therefore 

4,03.8 p 6W/kT = a Vo(L/D)e- 

where a is the interionic distance and Vo  the vibrational 

frequency of an ion in the lattice. Clearly for a com-

pletely blocked electrode p = 0 and for a completely 

free electrode p = a, . The boundary condition may be 

found by equating the cation vacancy current in the crystal 

adjacent to the electrodes to the discharge current across 



-136 - 

the electrodes thus 

4.03.9 

I pnEe + ex = -oeLn(D/h) 

pnEe + 13411  = pe 6/1(DM ex 

atx= L  

at x = 0 

Since the equations 1 and 2 are non linear the current 
through the crystal will contain all harmonics of the 

applied potential. However, for small voltages such that 

eV1 << kT the proportion of higher harmonics to that of 
the fundamental will be small. It is, therefore, a valid 
approximation for small voltages, to neglect the higher 
harmonics (this procedure is adopted throughout the 

literature) and assume that n and E are of the form 

	

4.03.10 	n(x,t) = no(x) + ni(x) i"  

	

4.03.11 	E(x,t) = E0(x) + Ei(x)eiut  

Following Macdonald (1953) it is now assumed that no (x) = 
co and is thus homogeneous throughout the crystal. As 

a consequence of this assumption Eo(x) = 0. Thus 10 and 

11 become 

4.03.12 

4.03.13 

n = co + nle
iwt 

E = E eiwt 
1 
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On substituting these expressions in 1 and retaining only 
the linearised part of the equation 

4.03.14 
2 d n

1 = (ion1 - µco 7.1.-)/p dx  
By substituting 12 and 13 into 2 

4.03.15 
dEl  

-pn, dx 
Consequently 14 simplifies to 

d2n1 4.03.16 ---7 = " AcoP )nl/b  dx 
Substituting 12 and 13 into 3 and 9, and using 12 for An 

L 
4.03.17 	V/  E1cbc 

0 

4.03.18 
tin 

" Ho El  + D--- o 	dx = 	n1 

dn1 
oEl + 	= 	n1  

at x = L 

at x = 0 

The equations 15 to 18 may now.  be  solved to find 
Equation 16 is of the general form 

2n1 
--r- = m2n1 dx 

The general solution of this equation is 

n1(x)  • 
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n1 = A el:11h mx B cosh mx 

However, n1  must be antisymmetric about the centre of the 

crystal (Fig.22b) as the time dependence is merely given 

by multiplying by a sinusoidally varying factor. Thus 

only the sinh function may be retained and this must have 

its origin at the centre of the crystal. The solution 

will therefore be of the form 

4.03.19 	n1  = A sinh m(x - L/2) 

gc,P + i6J 
4.03.20 	where m = ( 	D  

The value of A may be determined as follows. From 15 

and 19 

1 = fAsinh m(x L/2)dx + K 

4.03.21 	= DA cosh m(x - 1/2) + K  

The integration constant K may be eliminated by substitution 

in 18 

4.03.22 pco[- IA cosh m(x-L/2) + 	= -41  + N1) at x.1 

Substituting 19 into 22 and putting x = L 

4.03.23 

A Peni3  
K = " 	cosh(mL/2) 

geo m  
itZE. sinh(P) - Dm cosh(mL/2)] 

gcP 
K c 	

o 
cosh(mL/2) 	- 	tanh(mL/2) + m31 

0 
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A may now be found by substituting 21 into 17 

4.03.24 
[goo 

cosh m(x-L/2) + 	cosh(mI/2) m  V1  = A Pco 

D[E. tanh(mL/2) + 	dx 

Carrying out the integration 

4.03.25 

••• 

A = -V 1 
rilef, 

2
(51  

sinh(m 	La T1/2) - 	- cosh(mL/2)i. - D] 
o m  

-1 
Ft- sina(mn/2)] 

o 
This may be simplified by substituting for m2  using 20 
4.03.26 

-1 2 	itffi sinh(m.T.V2)4 + 	coth(mL/2) + 2P--] mp co 	 co_ 

The current density j(x,t) within the crystal will be 
given by the sum of the displacement current (1.01) and 
the current due to the motion of vacancies thus 

4.03.27 
j(x,t) = 	aE + e[lInE + D 

The total current density J, flowing into the crystal may 

be obtained by taking a space average over the whole 
crystal thus 

1 
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4.03.28 	J = j'i(x,t) 4/ fax 
0 	0 

Using 3, 12 and 13 to carry out the integration 

4.03.29 

Ji  = YlV, = 	14.1  + [gcoV, + D {n1(L)  - n1(o)1] 

For convenience this may be written as 

4.03.30 it)C eµco 
Y1 = lar" + 

where Z 	fn, (L) n1(4 

Y1 is to be regarded as the complex admittance of unit 
area of the crystal, viewed as one lumped circuit element 
and may be equated to the equivalent parallel combination 
of conductance and capacitance, G + iu0'. 	Thus the 

canductance G comprises a term corresponding to the 

crystal conductance in the absence of polarisation, namely, 
gcoe/t and the real part, (14)13, of Z. 	The capacitance 

0' is composed of the capacitance in the absence of 
microscopic charges 4E/4/G and the imaginary part of Z 
divided by 6.) . 	The latter component is the space charge 
capacitance ap  and is found experimentally by subtracting 
the high frequency capacitance ilbiall,fram the total 

capacitance. 	The expressions for 	and (1/1).1)  are 

thus 
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4.03.31 	WO, = Im(Z) 

	

4.03.32 
	

(1/R)32  = Re(Z) 

From equation 19 

4.03.33 

Substituting 26 for A 

4.03.34 

 

2A sinh(mL/2) 
1 

-1  z  = 44
m'  
2O iwi 	22.1 + 	coth(mL/2) + 	

j 

In order to separate the real and imaginary parts of Z 

it was found convenient to let 

4.03.35 	m = A + iB 

4.03.36 	coth(m112) = P + iH 

(This A is not to be confused with the A in 33 which 
will not appear in any of the following expressions). 
In terms of these abbreviations 

4.03.37 
2 -1 
as 2eDm2 ritaIt 

Z = 	1.76--k A + iB)(11 	+ 2p +a   1.w°  
0 

Substituting 20 for m2  in the brackets and collecting 

terms 
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4.03.38 

eD Z = 	2 m2 	
lak --- [ 77--(BF + AH) + 3(2+p) + 	(AF-BH + p")] -1 

o 	 µco 

This expression was rationalised; the result with 20 
substituted for the remaining m2 term is 

4.03.39 

Z= -  

+ it)[-t*(BF+AH) + P(2+p) 11P(AP-BH+p/i)] 

(A)
2 

 L2 (A24.232 )(1,24.H2 ) 4. (32( 24.0 2 	aa, k2+p)(BF+AH) 
("0)2 	

pco 

+ 2AF - 2BH) 

The values of A and B were determined by expressing 

20 in its trigonometrical form and using De Moivre's 

theorem to find the square root. The result which may 
readily be checked is 

4.03.40 

A + iB = 
2 	„2 	. 	 1,)  2 PcoP 	4.   ) 2D 	' 	 ) + 1] + i[(1 

(1100P)` 	 (11e0P) 

1] 

F and H were found by rationalising coth m11/2 with A + iB 

substituted for m thus 

t 1  2T  
-4.11.4p(BF + AH) + p2pc0(2+p) 4-'14-AF-BH+p/t) Pco 
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r  iH  = (eL(A+iB) 	1)/(eL(A+iB) 	1)  

F + iH = -- cos(LB)ela  + 1 + i sin(LB)eLA  
cos(LB)e A  - 1 + i sin(LB)eLA  

Multiplying the top and bottom by the complex conjugate 

of the denominator 

.2LA - 1 - 2i sin(LB)eLA  F + iH 	LAr 1 + e LeLA  - 2 cos LB] 

Multiplying top and bottom by e-LA  and collecting terms 

4.03.41 	F + iH = (sinh LA - i sin LB)/(cosh LA - cos LB) 

In order to simplify the expression for 0i)  obtainable 

from 39, numerical values were computed for A, B, F and H 

for the conditions under which the experimental data were 

obtained. To aid the substitution of numbers, the 

Nernst-Einstein relation 114) = e/kT (1.07.23) was used to 

eliminate D, and µ was expressed in terms of the conduc-

tivity µ = o/coe. The value used for t (to be precise, 

the permittivity) was 5.21 x 10-12  F/cm, for et1.602 x 

10-19  coulombs and for k,1.380 x 10-23  3/°K. From 40 

with 3 = 47ce/t and (4) = 27cf where f is the frequency of 

the applied voltage in c/sec. 
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4.03.42 

27ce2 

	

	1c 
A + iB 	kTe°) 	[0- + #6)

2
) + 	+ 

For o = 10-5  (ohm cm)-1  and f = 1000 cps 

4.03.43 

i[0. 	()2 ) 	
!I 

-1] 

(f €/2o)2 	6 x 10-8  << 1 

This approximation holds well for f < 104  cps and a > 10-6 

(ohm cm)-1, the maximum value for these limits being 

,N4,6 x 10-4. 	Thus it is valid to write 

27ce2c 
Ary kr2( 1---Fre) 

For co = 3 x 1018/cm3 corresponding to a mole fraction of 

^4 2 x 10-4 and at T = 650oC, 

4.03.45 	A = 3.84 x 10 

From equation 42 

4.03.46 

B = (27ce2c0ATC)-1.1 11 + (ft/2 

6 

Since (fC/20)2  << 1 the binomial expansion may be used and 

the expression simplifies to 

4.03.47 	B = (2ice2co/kTC)i fe/2r2a 

For f = 500 cps, T = 65000, o = 10-4  (ohm am)-1  and co  

3 x 1018/cm3. 

4.03.44 
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4.03.48 	B = 7.86 

With these two approximations in 41 

4.03.49 	F ^.1 sinh LA/cosh LA ^4 1 

4.03.50 	H nv sin LB/cosh LA no 0 

since whatever the value LB, sin LB and cos LB must lie 

between 0 and 1 and will be negligible compared with sinh 

LA A4 cosh LA eNa eLA. 	The hyperbolic terms will be very 

large; for Lev 0.4 ems they will be of the order e105. 

Thus the approximations 49 and 50 are very sound and will 

be valid for all the experimental data, in fact they will 

hold for all frequencies for which a space charge 

capacitance can be measured. 

Using 49 and 50 together with 31 and 39 and neglecting 

B2 in comparison with A2 (45 and 48) 

4.03.51 

113(A 	p/L) - 3(2+p) + 6)LB/µco  
L 02(241))2 2fla4JLS2+p)  

0 

4.03.52 

20(µc0)2 [ 	1 - (2/LA) + #42/µ000A) 
p 402L2A  

1 + (
pµc
uri)

2 
 (2+p)2  - c-752(2+p)+(2A+p/h)p/A 

C . 	2e[ 
[L2A2  + pL(2A+p/L)].  

( µoo )2 
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The magnitudes of the terms in the numerator may 

now be compared. From 45, for L = 0.4 cm, 

	

4.03.53 	2/LA " 10-6  

Using 45 and 48 and the corresponding values used to obtain 

these 

	

4.03.54 	t3B/µcoglA = E:fB/20A = 2.65 x 10-11  

Both these terms are negligible compared with 1 and were 

dropped. Comparing terms in the denominator, those not 

involving p are 1, 4(RllcoM1)2  and -413Bµco/43LA2. 

Using the typical values above 

	

4.03.55 	-4PBµco*LA2  = -80B/CfLA2  = -5.47 x 10-7  

	

4.03.56 	(231100*LA)2  = 32(0AtftA)2  = 3.21 x 10-1  

55 may be neglected in comparison with unity but 56 must 

be retained. The terms with p as a factor are the same 

as 53, 56 and half of 55, of these three only p(2Pµc0AJLA)2  

need be retained. The terms with p2 as a factor are 

l/A2L2  and (G311c04)11)2, and from above the first term is 

negligible compared with the second. With these approxi-

mations and using the expressions 44 and 47 for A and B, 

4.03.57 
2 = cckTyi 	r 	ick 	a 
Ll + 	T 	(2+p)2]-1 

P 	rcr  	co (A) L 
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This is the final expression for the space charge capaci-

tance per unit area, which will be used in the next section 

in an attempt to interpret the experimental data. It is 

worthy of note that all the approximations used to derive 

57 from 39 improve as the frequency tends to zero, so a 

zero-frequency limiting polarisation capacitance can be 

obtained from 57. This is 

4.03.58 	Co  = e(0:co/kkT) 2/(2 + p) 2 

When p = 0 (i.e. for complete blocking) this reduces to 

Macdonald's (1953) zero-frequency capacitance for blocked 

electrodes and complete dissocation. 	The term outside 

the square brackets in,57 corresponds to that used by 

Jacobs and Maycock (1963, b) to interpret their data but 

it would not be valid to neglect the rest of the expression 

which becomes increasingly importance if p is large (e.g. 

if p Ad 10 ) . 

By substituting 39 into 32 an expression for the 

polarisation conductance per unit area may be obtained 

4.03.59 

(1/R)p  
2e(pc0)2  -6314313 + p2p,c0(2+p) + (A+p/L)UhAtoo  
co  2L3A2 E 	nkT 402  1 + 	. 	- 	(2+p)2 

C co Co 21,2e2 
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This may be approximated for KCl in the experimental 
frequency range giving 

4.03.60 

202(11c0)3(2+p) 
(1/R)p 	21)3A2 
	/r, + su . 	402 	to 4. p)2] 

L.-L.  	co 	W 21, 'e2  ‘ a)  

On substituting for A (44) and 0 
4.03.61 

(1/R)p  8o3nkT(2+0 Al 4.  ELT . 
G)21,3e200 	E. co 

2+p)2] 

Using 57 this conductance may be expressed in terms of 

the space change capacitance thus, 

4.03.62 

(1/R)p  = -(2+p)(2o/Le)(IckT/E,c0 )*Cp  

4.04 Treatment of capacitance data. 

The most direct test of equation 4.03.57 is via the 

frequency dependence for a doped crystal. Thus a plot 

of 1402C against lAY should yield a straight line of 

slope (2+p)2/e(Cco/kkT)2  (= 1/b0) and intercept 

( 	)iL2e/402. tilco/ickT 	Moreover, according to the very 

approximate equation used by Jacobs and Maycock (1963,b) 

this line should have the same intercept but zero gradient. 

Fig.23 shows the data for run 13 taken before the high 
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temperature anneal and with increasing temperature. In 

Fig.24 the data for the 666.9°C isotherm is replotted 

together with that measured after a high temperature 

(4,680°0) anneal. 	The theoretical lines for two p values 

have also been included in this figure. The theoretical 

data were computed using C = 5.73 x 10-12  F/cm, this being 

a theoretical high temperature value (60000) (Havinga, 

1961). On the basis of these results the theory seems to 

provide but a very crude approximation to the actual 

behaviour although it does predict a capacitance of the 

correct order of magnitude (contrast Frianf, 1954). 	0( 

Now from 4.03.8, the Nernst-Einstein equation 1.07.23, 

and the expression for the cation vacancy mobility 1.07.9, 

L (6g1.-6W)/kT 
P  = 4a e  

Since a, the lattice parameter is 3.13 x 10-8, L/4a is of 

the order of 107. 	Thus ArW must be considerably greater 

than Agl, otherwise the value of p will be very large 

and there will be no blocking. As a consequence p should 

increase with increasing temperature and since the 
1 

gradient of the isothermal plots 64:, (2 + p) 2T2, their 

dlope should also be greater at higher temperatures. From 

Fig.23 this is the reverse of the observed behaviour of a 

tangential slope at a particular frequency; the same is 
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true of the data taken after a high temperature anneal. 

Unfortunately this prevents any realistic estimate of p 

from these plots. However, if p is extremely small, 

10-2 to 10-3 then over the experimental frequency range 

C will be insensitive to variations in p and additional 

effects may be causing this contradictory behaviour. 

The same type of frequency dependence was exhibited 

by the data from run 15, for which carbon electrodes were 

used (Fig.25). 	The one noticeable difference between 

these results and those obtained using platinum electrodes 

is in the magnitude of the capacitance. 	The crystals 

used for runs 15 and 13 had roughly similar conductance 

and impurity concentration (Fig.11) but Figs.24 and 25 show 

the results for run 15 are much closer in magnitude to the 

predicted value. 

Fig.26 shows the frequency dependence of C exhibited 

in the same manner as that used by Jacobs and Maycock 

(1963, b), together with the theoretical plots for a series 

of p values. 	The fact that the experimental plots are 

almost linear shows that this method of displaying the 

data is apparently not a very stringent test of the form 

of the frequency dependence. 	Finally, Fig.27 shows log C 

plotted against log f for run 13 at two temperatures. 

The experimental plots are almost linear and the slopes 

for the data taken after annealing are -1.90. Over the 
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same frequency region the slopee of the theoretical plots 

for completely blocked electrodes are -1.99. 	Clearly 

a value of p > 0 does not improve the agreement with the 

observed frequency dependence. 

On the basis of these results the theory only accounts 

for the frequency dependence in an extremely approximate 

manner. 	The introduction of partial blocking does not 

seem to have improved the agreement. One possible 

explanation of -the observed behaviour within the framework 

of the present theory is in terms of a distribution of p 

values over the crystal electrode interface. 	(Strictly 

this makes the problem a three-dimensional one with 

fields and concentration gradients at right angles to the 

direction of the applied field.) 	If a portion of the 

crystal surface was in perfect contact with the crystal 

(piNd 0) this could account for the experimental results 

being generally lower in magnitude than is predicted. If 

the remainder of the crystal surface was in varying degrees 

of contact with the electrode, the total capacitance would 

have to be written as a sum of capacitances given by 

4.03.57 but with the appropriate area and p value. 	Such 

an expression would not necessarily have the same frequency 

dependence as 4.03.57. 	The reduction in capacitance on 

annealing could then be explained largely in terms of the 
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development of a better crystal electrode contact. 	A 

similar reduction of capacitance with time has been 

observed by Friauf (1953) for AgBr. Although no attempt 

was made to verify this suggestion quantitatively, it is 

not inconceivable that the experimental plot in Fig.26 

could be constructed from theoretical curves similar to 

those shown but suitably adjusted to reduced areas. 	The 

scatter of points in Fig.13 also demonstrates the lack of 

a tendency for the magnitude of the capacitance to achieve 

a definite limiting value as a result of annealing. 

The only feature which shows good agreement with the 

theory is the temperature dependence of the capacitance 

(Table 18) which obeys the predictions of the simple 

expression used by Jacobs and Naycook (1963, b). However, 

they plotted log C versus 1/T rather than log (0T3/2) and 

did not attempt to obtain activation energies as their 

plots showed a high degree of curvature, more than may be 

accounted for by leaving out the T3/2 factor. 	The straight 

line plots obtained in this work suggest an effective p 

value near to zero in agreement with the conclusions from 

the frequency dependence. 

Fig.28 shows the frequency-dependent resistance for 

run 15 at 612°C prior to annealing. According to 

4.03.61 this plot should be linear. 	The theoretical lines 
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for three values of p, calculated according to 4.03.61, 

with the appropriate crystal area, show that the magnitude 

of the polarisation conductance is approximately correct 

but the frequency dependence shown by the data is not as 

predicted. However, the experimental plot is nearer to 

a straight line than the similar presentation of capaci-

tance. No great significance may be attached to these 

results since the variation in resistance was extremely 

small. However, the logarithmic plot (Fig.15) shows the 

empirical relation 6,(1/R) QC 1/60 is approximately 

obeyed which agrees with the result found by Allnatt and 

Jacobs (1961) using platinum electrodes but a very highly 

doped crystal with 7 x 10-3  mole ratio Sr2+ 	The reduction 

in L(1/R) on annealing (3.04) may be interpreted as an 
improvement of electrical contact between the crystal and 

electrode, consistent with the similar interpretation of 

the reduction in 0
P
° The fact that both A(1") and 

C were both greater when graphite electrodes were used 

seems to indicate that graphite makes a poorer contact 

than platinum. 

Thus the theory accounts for the temperature depen-

dence of capacitance and approximately predicts the correct 

frequency dependence and magnitude; it also predicts 

the correct order of magnitude of b,(1/R). 	These results 
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make it not unreasonable to assume the origin of the 

polarisation lies in the formation of a space charge at 

the electrodes. 	Some of the lack of agreement may be 

due to the approximations involved in linearisation of 

the initial differential equations. Thus the neglect of 

harmonic terms is only valid if eVl/kT << 1. To satisfy 

this the measuring voltage should have been well below 

0.08 volts. Although this condition could not be satis-

fied, within the limits of experimental error, no 

variation in capacitance or resistance was observed between 

voltages of 0.04 and 45. The rather simple form assumed 

for the rate of discharge at the electrodes (4.03.6) does 

not represent rectification. 	The neglect of this possi-

bility was also necessary as a result of the linearisation 

which requires ni(x) to be antisymmetric about the centre 

of the crystal. 

A straightforward way of resolving the problem of 

whether the lack of agreement with the predicted capaci-

tance stems from partial discharge;  would be to use 

blocking electrodes. This may be done by inserting layers 

of dielectric material between the electrodes and the 

crystal but would create considerable practical difficulties. 

The dielectric layers would have to be extremely thin and 

preferably of a high permittivity so that their total 
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capacitance may be negligible compared with that of the 

crystal. In addition they would have to be inert with 

respect to the crystal and electrode and have a high 

electrical resistance at temperatures up to e,..0 68000. 

Such an experiment was attempted using mica as the 

dielectric but a sufficiently thin layer was not used 

and its impedance was much too high. 
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APPENDIX 1  

The computer program used for fitting conductivity 

data to the theoretical expression is given below. 	It 

was written in Extended Meraury Autocode for the London 

University Atlas computer. A title and part of some input 

data for run 6 are included to help clarify some of the 

remarks to be made on the program. The program utilises 

a minimisation routine (Routine 970), which may be obtained 

from the London University Institute of Computer Science. 

Chapter 1 of the program is a private post mortem 

which prints out the contents of some of the registers, 

starting with the present values of the parameters. 	This 

is only entered if the program faults. 	At the start of 

Chapter 0 the input data is read in and Routine 970 

entered. 	F is calculated starting at label 1). At 

label 2) the parameters:and F Value for each minimum found 

by Routine 970 are printed out and the accuracy of fit is 

tested (see below). 	That part of the program below label 

20) puts increasingly larger numbers into F when c is made 

negative by Routine 970. This has the effect of making 

the Routine correct c back to a positive value. 

A brief explanation of the form of input and output 

data follows. 
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Input  

a) The constants N, 91, ))2, e, a, 103/k are read 

in this order into the registers Wo, W1,...,W5  

b) A jump label S' is read which initially must be 6. 

c) The number of data points is read into L followed by 

the ratio of length: area for the crystal, which 

goes into H. 	The experimental data is then read in 

the repeated form of a temperature in degrees centi-

grade, the first one goes into register Co y followed 

by the corresponding resistance of the crystal which 

goes into Go. 	Thus the data occupies the registers 

o to  gL-1 and Go to GL-1* 
d) A jump condition is read into T' which initially is 

set to 1. 

e) The number of parameters to be varied is read into N. 

f) An integer in the range 0 to 7 is read into I' followed 

by the value of the parameter h, which goes into YIP . 

This reading order is repeated for all the possible 

integers and all the initial 'guesses' of the para- 

meters. 	The order of the parameters must be h, 103s, 

.*5 	c, A h1, 103  tisl, Ah2, 103As2, but the integers 

can be in any order; they specify the order in which 

the parameters are to be varied by Routine 970. 

Thus the first parameter to be varied will be the one 
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with the integer 0 directly preceding it, i.e. it will 

be in register Y0. 	If e.g. N has been read as 3. then 

only the parameters in registers Yoy Y1, Y2 will be 

varied in this order. 

g) The steplength used by Routine 970 for varying the 

parameters is read into F. 

h) The required accuracy of the final fit is read into 

A. The condition used to stop the fitting program 

is 

1F2  - F11 /F2  < A 

where F1  is the final fit F value and F2  is the 

preceding fit F value. 

This completes the input of the first group of data. 

Having executed this, more data may be read in starting 

with the jump label S' (the constants are only read in the 

first time). 

1) If S7  is read as 6 and T' as I a complete set of 

new data must be read exactly as above, starting at b).  

2) If S' is read as 6 and T,  as -1 then only new experi-

mental data is read in, the remaining data being the 

same as before. 

3) If S' is read as 6 and T,  as 0, experimental data, 

accuracy and steplength must be read in again. 



4) If SI is read as 7 then the number of parameters to 

be varied, the parameters, the steplength and 

accuracy must be read. 

5) If SI is read as 8 a new steplength and accuracy must 

be read in. 

6) If SI is read as 50 the program ends. 

Output. 

The parameters appear in the order in which they were 

varied followed by the value of F appropriate to them. 

Several lots of parameters and F values are printed out, each 

corresponding to a minimum found by Routine 970. Finally, 

when two consecutive F values satisfy the accuracy con-

dition specified in register A, the exact F value for the 

last set of parameters is printed out again (it might not 

correspond precisely to the F value immediately preceding 

it, this stems from the way Routine 970 is written). 	This 

is followed by the experimental data and data calculated 

from the last set of parameters. The data appears in 

headed columns (see the caption in Chapter 0). 	The columns 

labelled experimental and inverse temp are log aT and 103/T 

respectively, computed directly from the experimental data. 

The difference between log GT calculated from the parameters 

and the experimental value is in the column labelled 
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calc.-exptl. 	In addition calculated values of log aiT, 

log a2T, t, and p(=xk/c) are also printed out. 

PROGRAM 

JOB 
LSCIIPFI, BEAUMONT MINIMISATION 
COMPUTING 50000 INSTRUCTIONS 
OUTPUT 
0 LINE PRINTER 4000 LINES 
STORE 32 BLOCKS 
COMPILER EMA 

MAIN 	1200 
AUXILIARY ((WOO) 
DEPTHO 
DUMP SO 

ROUTINE 970 
H 

TITLE 
MINIMISATION OF PARAMETERS 
(FOR IONIC CONDUCTIVITY) 
CHAPTER I 
A-4.1w 
B-4.100 
C-4.100 
D-4.100 
U-3-100 
X-4100 
V-4..100 
Z-->.100 

11.4.4 
G-4.100 
H-.›.100 
W-4.10 
Y-41O  

RUN 1/2 7/7 

I)NEWLINE 
CAPTION 
PRIVATE POST MORTEM 
0=0(1)7 
NEWLINE 
PRINT(Y0)0,10 
REPEAT 

NEWLINE 

0=0(1)4 
NEWLINE 
PRINT (W0)0,10 
REPEAT 

NEWLINE 

NEWLINE 
PRINT  O)0010 
PRINT V0)0010 
PRINT ZO)0010 
NEWLINE 
PRINT10,10 
PRINT BO 0,10 
PRINT DO 0,10 
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ACROSS5/b 
CLOSE 

CHAPTERO 
VARIABLES 1 

F2=0 

V11)120 
K=0(1)5 
READ(WK) 
REPEAT 

5)F2=0 
READ(W) 
SI)=S') 
JUMP(S,) 

6)READ(L) 
L=L-1 
READ(H) 
K=0(1)L 
READ(CK) 
DK=OK+273.18 
EK=1000/DK 
READ(GK) 
GK=XIJOG(DKH/GK) 
AK=0.434295GK 
REPEAT 

READ(T1 ) 
JUMP9,0>T, 
JUMP8,T'=0 
7)RE4D(N) 
READ(11) 
READr1,) 
READ. J.1._.) 
READ YtT, 
READ 
READ YK,) 
READ L') 
READ(YL')  

READ Mt) 
READ YM') 
READ N') 
READ YN') 
READ 0') 
READ YO,) 
READ P') 
READ YP') 

8)READ(F) 
READ(A) 
9) M=0 
T)=1) 
S)=2) 
Q1=0 
JUMPEOWN(R970) 

NEWLINE 4 
CAPTION 
LOG SIGMA1 T 
INVERSE TEMP 
EXPERIMENTAL 

P 

K=0(1)L 
NEWLINE 
PRINT VK)0/4 
PRINT ZK 0,4 
PRINT EK 0/4 
PRINT BK 0,4 
PRINT AK)0/4 
PRINT UK)0 /4 
PRINT HK)0/4 
PRINT XK)0/4 
REPEAT 
JUMP 5 
50)END 

LOG SIGMA 2 
LOG SIGMA T 
CALL-EXPTL 
T1 

There are no carriage return line feeds in the actual 

program caption. 
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1)F=0 
A'=XSORT(3) 
K=0(1)L 
W=XEXP(Y31115-T1'W5EK) 
10=XEXP(YK"EKW5) 
W"=12W1  
JUMP10,K>0 
X1 =YL"-I-WW1  
Y=XSQRT(0.3333333X"Xl+W 
Y'=YYY 
X9 =0.33333333E' 
X=WWW'.-2X9X9 X"-WX" 
X=1.5A"X/F 
B'=XMOD(X) 
JUMP2003'>1 
X=XARCCOS(X) 
X=XCOS(0.333,333X) 
X=2XY/Ac 
X=X-X1  
10)C=XX 
D=XC+CY111+CWW" .4TX 
D1=3C-1-2XWW"-M+2XYLI 
E=X-D/D' 
D=MMD(E -X) 
D=D/E 
X=E 
JUM211,0.0000001n 
JUMP10 
11)X1=W/X 

HK=X-X1  
HK=14.11KALI 
Y'=XEXP(YN1W5-.YM'EKW5) 
Y'=4000W3W4W4W1Y'W5 

Y=XED(YP'W5-.EKY0IW5) 
Y=4000W3W4W4W2YW5 

Y'=W0W3Y1X1  
VK=XLOG(Y') 
VK=0.434295VK+18.7953105  

Y=WOW3YX 
ZK=XLOG(Y) 
ZK=0.434295ZK+18.7953105 
G=Y"-FY 
XX=Y'/G 
Z=XLOG(G) 
BK=0.434295Z+18.7953105 
UK=BK-AK 
F=F+UKUK 
REPEAT 

RETURN 
2)NEWLINE 
NEWLINE 
K=0(1)N 
PRINT(YK)0,4 
REPEAT 
B=XSQRT(F) 
B=100B 
NEWLINE 
PRINT(B)0,4 

-0 
JUMP3,F2=0 
M=M+1 
JUMP4,M>9 
F1=F 
B=XMOD(F2-.F1) 
B=B/F2 
JUMP4,A>B 
F2=F1 
RETURN 
3r2=F 
RETURN 
4) R=0 
RETURN 
100)ACROSS1/1 
20)Q,=W+1 
JUMP 100,Q'>10 
NEWLINE 
620,3 
PRINT(W)1,0 
PRINT(R)1,0 
K=0(1)7 
PRINT(YK)043 
REPEAT 
F=100Q' 
RETURN 
CLOSE 
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1.6166,22 	4.25,12 	4.25,12 	1.6021,-19 	3.139,-8 

6 	33 0.5355 

649.9 4.951,4 
636.0 7.161,4 
621.7 1.057,5 
607.9 1.555,5 
593.5 2.381,5 
580.2 3.501,5 
566.4 5.291,5 
553.5 7.712,5 
539.5 1.126,6 
524.8 1.645,6 
510.9 2.276,6 
499.0 2.938,6 
485.1 3.798,6 
472.5 4.701,6 
458.7 5.878,6 
445.0 7.115,6 
434.3 8.470,6 
421.0 1.026,7 
408.4 1.256,7 
394.9 1.557,7 
382.2 1.927,7 
369.0 2.428,7 
357.8 3.010,7 
347.1 3.740,7 
334.6 4.895,7 
322.6 6.410,7 
309.8 8.550,7 
296.0 1.260,8 
285.9 1.625,8 
273.5 2.295,8 
260.4 3.400,8 
248.5 5.050,8 
234.7 8.100,8 

1 3 
3 	2.285 
4 0.477 
5 0.425 
0 1.42,-6 
6 0.708 
7 0.224 
1 1.02 
2 0.594 

11.6049 
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0.05 	0.05 

7 	3 
3 	2.285 
4 0.477 
5 1.42,-6 
6 0.708 
7 0.224 
2 1.02 
1 0.594 
0.05 0.05 
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