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ABSTRACT

This thesis is a theorctical and experimental study of
the deformation of inhomogenous materials by simple and pure
shear. The model adopted is that of a homogenous, Newbtonian
fluid matrix, in which are embedded rigid or deformable
inclusions. The inclusions are ellipsoidal or elliptical in
shape and the deformable ones are also assumed to be Newtonian
bodies, but they may differ from the matrix in coefficient
of viscosity.

Published work on rock deformation is reviewed to show
that rock does, in certain geological environments, approxi-
mate closely to a Newtonian body.

Equations are derived to describe the motion and changes
in shape of the inclusions (or particles as they are called)
during deformation of the model. These equations are checked
experimentally and, within the limits of the experimental
error, the results agrec satisfactorily with the theory.

The behaviour of systems containing a large number of
particles is discussed and the strains developed in the natrix
around the inclusions are exanmined.

The application of the theoretical concepts to certain
problems in structural geology, such as the rotation of crys-
tals, the development of preferred orientations and the
deformation of conglomerates, is considered. Particular
emphasis is laid on the use of the theoretical equations to
determine the finite strain in rock.
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CHAFTER I ITRODUCTION

4, GENZRLL STATEMINT
Structural geologists working in both

igneous and metamorphic rocks have for many years now recog-
nized the importance of small, marker particles such as gas
bubbles, phenocrysts, pebbles and fossils in elucidating the
state of strain in rocks. This approach is a kinematic one
and involves relating the present geometrical position of
particles to possible.movement paths during the deformation
of the whole rock mass. In otiier words, it should be possible
to estimate the strain in a body of rock from the changes in
shepe and position of individual objects in the rock, pro-
vided the initial shapes of these objects and the physical
properties of the rock and its components during deformation
are known.,

This is 1o new concept. One hundred and forty years
ago Scrope (1825) described gas bubbles in lavas " drawn out,
or elongated, in the direction of motion ....". In 1839
Naumann recognized the importance of lineation in lavas and
gneisses and made a careful mathematical analysis of changes
in the lineati.n positions with tilting of the planes in
which they are contained. Deformed fossils. were described
by Fhillips (1843%); and Sharpe (1846), Haughton (1856) and
Wettstein (1886) used the changes in shape to calculate the
amount of strain. Slaty cleavage and i1ts relation to deformed
spots, oolites and crinoid stems was studied by Sorby (1653,
1855). The deformation of pebbles was clearly recognized and
analyzed by Hitchcock, Hitchcock and Hager (18671). Heim (1878)
explained external rotations and orientation of minerals and
Reusch (1887) described elongation of pebbles by a rolling
mechanism.

Moreover, following on these early papers, there 1s now
available a vast amount of literature on the subjects men-
tioned above. Cloos (1946, 1947) reviews wmost of the work



up to 1945; in addition, EKnopff and Ingerson (1938), Sander
(1930, 1950) and Turner and Weiss (1963) also contain detailed
bibliographies.

In all this work, no one, so far as the writer is aware,
has suggested a general method using all the svailable evid-
ence for determining the states of strain in rock. The total
finite strain has been calculated from objects of known origi-
nal shape which have deformed homogenously with the surround-
ing material. However, no attempt has been made to relate the
degree of preferred orientation of rigid or non-rigid, -
deformed particles to the finite strain, 4nd, similarly,
where there has been a competence difference between an object
and its surroundings, the change in shape of thc object has
not been used. to estimgte the finite strain in the rock.

This thesis is particularly concerned with finding
methods to solve problems such as these. To do so it is
assumed that under certain conditions a rock may be consider-
ed ags an inhomogenous mass of extremely viscous: fluid. By
inhomogenous is meant that the mass of material differs from
point to point in its physical properties; in particuler the
coefficient of viscosity may vary from zero to infinity. In
detail, the model is a large body of homogenous wviscous
material in which are embedded much smailer spherical or
ellipsoidal bodies with different physical properties. The
bulk of the material will be referred to as the matrix and
the inhomogeneities as the particles. The particles may be
either rigid or non-rigid with coefficients of viscosity
greater thsn, egual to or less than that of the matrix.

The types of deformation assumed are pure shear and
simple shear. These are both plene strains in which there is
no velume change and both have a triaxial strain ellipsoid
with an intermediate axis equal to unity. Simple shear also
has a component of rigid body rotation. General strains can
always be considered as three nmutually perpendicular simple
shears of different magnitudes and so the analysis presented

(//
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here can be applied to more complex examples of strain, if
necessary.

After these opening paragraphs an explanatory list of
the nore important symbols appearing in the text is given.

In addition to those explained in the list, all symbols are
defined when they are first introduced. As far as possible
the writer has followed Nadai's (1950, 1963%) symbols for
strain analysis.

In the second part of this introductory section, some
basic concepts of rheology are outlined and applied to the
chenge with environment in the physical properties of rock.
In particular, the assumption of rocks behaving as: viscous
fluids is examined: in the light of published data obtained
from field, experimental and theoretical work and an attempt
is made to define the physical conditions under which the
assumption is valid. Coefficients of viscosity for different
rock types are tabulated and expected changes in these values
with temperature and pressure discussed. Finally, the kind
of flow occurring in extremely viscous materials is discussed.
The Reynolds Number is used to show that rocks normally
deform by laminar flow.

Chapters IIl and IV form the main part of the thesis.

In them the wmathematical theory relating the finite strain to
the changes in shape and orientation of the particle during
pure and simple shear deformaticns of the particle-matrix
system is presented together with its experimental verifi-
cation,

The theory 1s based on the fundamental equations of vis-

cous fluid dynamics for slow-motion laminar flow and the
mathematical techniques involved sre similar to those used by
other workers in the fields of suspensions and emulsions.
The analysis is divided into sections; the first deals with
the behaviour of single, rigid spheres and ellipsoids in the
two types of deformation field. Single non-rigid particles
are then considered and an analytical solution is obtained.
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for the pure shear deformation of an ellipse with its axes
parallel to the strain axes. The more general problems of
elliptical particles not aligned parallel to the strain axes
during pure shear are solved numerically with the aid of a
computer. The behaviour of multiparticle systems is then
discussed in the light of this theory. Finally, the strains.
in the matrix surrounding the particles are examined.

Wherever possible the theoretical equations are plotted
as graphs to clarify their meaning and are compared directly
with the experimental results. For the sake of convenience,
therefore, the basic experimental apparatuses and methods are
described first and followed by the theoretical and experi-
mental work.

Applications of the theory to geological problems are
described in Chapter V of the thesis. Rigid crystals which
have rotated during the deformation are used to calculate the
amount of finite strain; their use in analyzing styles of
folding is also discussed. The development of preferred
orientations during simple and pure shear of initially ran-
dom and regular assemblages of particles is correlated. with
the total strain in the rock. Deformed pebbles are also
used to determine finite strain; the significance of the
original shape of these partvicles, their position relative to
the deforming forces and the competence difference with the
mnatrix are discussed and techniques suggested to asscss and
overcome these factors. A method is suggested for determin-
ing finite strains in deformed conglomerates and the thesis
ends witl: 2 discussion on two well-known deformed conglomer
rates.

Appendix I contains the detailed experimental results.
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C. LIST OF SYMBOLS

a - length of major semi-axis of an ellipsoid) radius of a
disc.

b - length of intermediate semi-axis of an ellipsoidj
length of minor semi~axis of an ellipse.

¢ - length of minor semi-axis of an ellipsoid.

a/b - axial ratio of an ellipse.

as bi - initial semi-axial lengths of a non~-rigid ellipse.
84 bo ~ gemi-axial lengths of the infinitesimal strain
ellirse.

8y bl - semi-axial lengtihs of an ellipse after deformation.

a - axial ratio of an elliptical cross-section through an
ellipsoid of revolution.

as by ¢y, £, g5 hy, £, My, v - components of distortion and
rotation of a fluid.

4, B, C -~ constant terms which may have different meanings
in different equationsy C is also used to denote the
rate of natural strain.

A-5’ 3-5’ Ag, B2 - constant terms determined by the boundary
conditions during deformation of a non-rigid particle.

Ly B, Al, Bl - symbols in the computer programmes for The
principal reciorocal guadratic elongations of an
elliptical parsicle.

C, D, Cl, Dl - symbols in the computer programmes for the
principal reciprocal quadratic elongations of tne
infinitesimal strain ellipse. .

C., — volume concentration of particles in a particle~-matrix

v
system, .
e - eccentricity of an ellipse; e® = (a® - b%)/a®.

exp - exponential term,

f -~ subscript denoting final angle or length after defor-
mation.

i - subscript denoting initial angle or length.



J Jd~ = strain invariants.
k - constant of integraticn; also a term to describe thie
interference in a unifora laminar flow becausge of the

presence of a particle.

Ca
I

Yincar term in formula to calculate the Reynolds
Number.

In -~ natural logarithm,

ll, 12, 15, Dy Dny mB, Ny, Doy nB,— direction cosincs
between two sets of coordinate axes.

M, Mf - moxnents of couples acting on two-dimensional part-
icles in simple shear.

P - meadn pressurc.

P, - solid harmonic. function of degree n.

J - activation encrgy.

n = ¥ (x= + y°)

R - wviscosity ratio between a particle and the matrix;
also the gas constant.

Re - IKeynolds Number.

Rm - viscosity ratio between a particle and the particle-
matrix system.

t -~ time; also thickness of a folded laycer nmeassured perpen-
dicular to the layering.

T - absolute temperature; also thickness of o folded layer
mneasured parallel to the axial plane.

Tm - absolute melting tenperature.

u, v, w - components of fluid velocity parallcl to the X,
Y, 72 axes.

u'y, v', w' - components of fluid velocity parallel to the
L, 1, 7' oxes.

L, Y, 2 - coordincte axes fixed parallel to the particle
semi-axes a, b, c.

L', Y', Z2' - coordinate axes for strain or flow.

@ - apical angle in the irrotational strain box.

a' - polar anglc of an ecllipse.
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Yg — unit of simple shear; = tané,

Yy - Tate of simple shear.

§ - aongle of shear.

€ - conventional unit of strain

t - rate of strain.

€ - natural strain; = in(l + €)

% - rate of natural strain.

& - angle of plunge of particle major exis with respect
to the deformation pleane.

©' - complement of 6.

6', o', ¥V - Buler angles.
ffz - length of major semi-oxis of the stroin ellipsc.
JX: - length of minor semi-axis of the strain cllipsec.
Ay KE - axial ratio of ti:e strain cllipse.
uw = coefficient of wviscosity of a perticle.
u' - coefficient of viscosity of the matrix.
u, - cocfficient of viscosity of the purticle-matrix systeun.
p — density; also length of any line in an ellipse.
g - compressive stress.
Frx? O}y’ Org0
of the surface of the particle.

- components of stress acting on a unit area

® - oangle between the particle major axis and the Y' co-
ordinate axis in the deformation planc.

o' - complement of Q.

9y -~ 501id harmonic function of degree n.

& -~ 1interaction factor representing the interaction bot-
ween regiong of disturbence around individuzl particlces
in a multiparticle system.

w - angular velocity.

Wy W W05 = angular velocitics about I, Y, Z axncs.

- a dot placed zcbove 2 symbol indicates differentiation
with respect to timc. '
a*b - dot indicates multiplication; it is only uscd when
rcauired to eliminate ambiguity.
a/b - the slash irdicates division.
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CHAFTIER IT VISCOSITY AND THIE VISCOU3Z FLOW OF ROCKS

A, TIHTHRCDUCTICHN
In this. chapter, the viscous flow of rock

will be discussed in an attempt to deteruine the conditions
under which rock will deform os o Newtonian fluid and to
evoluate coefficients of viscosity during flow. Continuous
deformation by flow can be observed dircctly in molten or
unconsolidated materials such as lovas or mudflows but it is
not so apparcnt in decp-seated igneous or metamorphic rocks.
Nevertheless, phenomena such as oriented xenoliths and pheno-
crysts hove been interpreted s evidence for flow in mogmas
(e.g. Balk,1937) and the presence of rheomorphic structures
such 2s folds in deformed rocks is evidence for flow of
moterizl in an apporently solid condition (e.g. Carey, 1953).
Moreover, it has been shown theoretically by Haskell (1937)
that: crystalline rocks under dynamic metamorphic conditions
can deform by viscous flow.

The geological examples discussed in the light of the
results obtained in this thesis are 2ll concerned with de-
formed and metamorphosed rocks. Therefore, the poasibility
of viscous flow of rock at temperatures below the melting
point is examined in de¢tail and tihe choapter opens with a dis-
cussion on rheological models and the time strain of rock
under different crhvironmental conditions. After this, co-
efficicnts of viscosity for geological materiacls at tempera-
turcs above and below their melting points are tabuloted. The
effect of prcssurc and temperaturce on these coefficients is
considered and finally, the Reynolds Number is used to define
the proboble type of flow during rock deformetion.
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B. RHECLOGICAL MODELS AND THy TIMZI - STRAIN OF ROCKS
Eheologists use threc ideal rheological materials to

describe the behaviour of recl substances. They are:
(i) The Hooke clastic body which can b¢ represented symbol-
ically by the spring in figure la and described by the
equation

T =Gy ...(II.1)
(t is the shearing stress, Y the sheoar strain and G the modu-
lus of rigidity)
(ii) The St. Venant plastic body, symbolized by the weight in
figurc 1b and defined by the equation

T =T, ,..(IL.2)
(T, is the yicld strength of the body)
(iii) The Newtonian viscous body which is simulated by a dash-
pot (figure lc) and defined by the equation

T = Uy o.e(IT.3)
(¥ is the rate of shear and p the cocfficicnt of viscosity)

Bach of these models has by dcefinition one rheological
property only, in contrast to real substances which have all
propertics in vorying degrecs. However, by combining the
models in different ways it is possible to represcent the
observed strain behaviour of actual materials.

A generalized time -~ strain curve for rocks subjected to
a2 constant strecis is i1llustrated in figurec 2.

As soon as o dirccted load 1s applied to a test specimen,
there is an instentancous e¢lastic deformation, represcnted by
OA; this i1s followcd by a period of primary crecp, AB, during
which the rate of strain deercases; a sccondary crcep stage,
BC, in which the strain rate is constant; and a tertiary creep
stage, CD, when the rate of strain increases until the speei-
men fails. If the load is releasced before the tertiary creep
stage (at timeqto’in.figure 2) there is an immediete strain
recovery corresponding to the elastic deformation, followed by



Figure 2

Figure 3
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Symbolic and graphical representations of the
ideal rheological materials:
a) Hooke body, b) 8t. Venant body, c¢) Newbonian

body; T - shearing stress, ¥ - shear strain,
¥+ - rate of shear strain, G - modulus of
rigidity, T, - yield strength, u - coefficient

of viscosity.

Theoretical time - strain curve for rocks:

Ui - dnstantaneous elastic strain; AB - primary
crcep stage; BC - secondary creep stage;

CD - tertiary creep stage, failure occurs at D;
to - time at which applied load is released;

X - permanent deformation.

Rheological models to simulate the time -

strain of rock (after Yrice, 1964):

a) Viscoelastic or Burgers body; b) B - V body;

¢) Relationship between stress and rate of
secondary creep for viscoelastic body;

d) Relationship between stress and rate of
secondary crecp for B - V body.

4y - elastic strain; EEI% - Voigt unit;

Hop - Maxwell viscosity; w - yield strength;

0 - compressive stress; ¢ - rate of strain.
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the groducl reloxation of the strain during the primary crecp;
the sccondory crcep deformation is not rocoverxed. Primary
crecp is often called 'delayed elastic deformation' or 'elas—
tic flow'., Secondzary crcep, on the other hand, is referred to -
s 'pscudoviscous flow' becruse the stroin rate is constant
ond thce deformotion permanent:,

Various empirical equations hove been suggested to des-
cribe the above deformation pattern in rocks. They are re-
viewed by Murrell and Misrc (1962) and Robertson (1964) and
are in general similar to that proposcd by Griggs (1939, p 228)

€ = A +Blogt+Ct e (IT.4)
where e is the total strain; t is. the $ime; A, B and C are
constonts and A denotes the clastic strain component, B log
the primcry crecp and Ct the pseudoviscous flow. This relo-
tionship can not apply for very small or very large values of
#; since log t tends to + infinity as t tends to zero or
infinity.

Time¢ - strain behaviour can also be visuanlized in terms
of models constructed by combining the ideal rheological
bodies (e.g. Frice, 1964). One such model is the viscoelastiec.
or Burgers body, illustrated in figure 3o, in which the spring
(Ei) reprosents the elastic strain component; the Voigt unit
comprising the spring and dashpot in parallel (E;ﬁ%) the
primary crcep component and the dashpot (uM) the sccondory
crecep component. For long periods of time this body simulatcs
a Newtonian liquid of high viscosity (uM) which deforms per-
manently when subjected to zny stresses (see figure 3¢). It
displays in effect the long term behaviour envisaged by
Gignoux (1950) and Carcy (1953%) for rocks.

A model which considers o yield strength in rocks is the
B - V (Bingham - Voigt) body proposed by Frice (1964) and
illustroted in figurc 3b. It consists of a doshpot (HM) in
serics with o weight (w), a Voigt unit (E;EE) and 2o spring
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(Ei). The spring and the Voigt unit represent the elastic
and primary creep components of the strain but before sec-
ondary creep can commence tihne resistance of weight w has to
be overcome. Once this has been achieved, pseudoviscous
flow controlled by dashpot Ky occurs. The model therefore
represents a substance which when subjected to stresses
greater than its yield strength, w, for long periods of time,
deforms as a Newtonian liquid of high viscosity.

From this discussion it is clear that time is an import-
ant controlling factor in the deformation of rocks. Over
short time periods strains are elastic and recoverable.
Permanent deformation occurs by viscous flow only when
stresses are applied for a long time.

Environment also influences the deformation of rock and a
number of tests have been carried out by various people to
assess the effect of factors such as temperature, pressure
and the rate of strain. The results of these tests will not
be discussed in detail but for more information than is pre-
sented here, the reader can consult any of the available
comprehensive reports on rock deformation such as Griggs and
Handin (1960), Murrell and Misra (1962) and Robertson (1964).
Generally, the effect of these variables on the creep of °
rock can be summarised as follows:

(i) The rate of primary creep is increased by increases in
tenperature and stress difference but decreased by an
increase in confining pressurc,

(ii) The rate of secondary creep is increcased by increases in
temperature and stress difference.

More specifically, Misra and Murrell (1965) have suggested
that the primary creep predonminates at temperatures below
0.22 T (Tm is the absolute melting temperature of the mate-
rial) and Dorn (1957, p.264) has concluded from work on
metals that secondary creep occurs at temperatures gbove
0.5 Tm.
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Price's (1964) results. clearly show the effect of stress
differences. He found that for the rocks tested there is a
minimum stress below which only primary creep is possible.
The value of this minimum stress, which is termed the long-
term yield strength, varies between 20 and 60 per cent of the
instantaneous strength of the rocks. Secondary creep takes
place at stresses greater than the long-term yield strength.
In other words, the rocks conform to the deformation pattern
of the B - V model.

The effect of temperature on the long-term yield strength
can be deduced from the results of Misra (1962); these sug-
gest a slight reduction in strength with increasing temper-
ature.

Constant strain rate tests such as tuose usgsed by Heard
(1963) on Yule Marble provide information about the influence
of the rate of strain on deformation. At low temperatures,
slow rates of strain are required for pseudoviscous flow but
with increase in temperature faster rates are possible. For
example, Yule marble deforms by secondary creep at 400°¢
when strained at a rate less than 5"10"5 sec™! but at 500°C
the required rate can be as high as 5‘10_4 secT.

Thereforz, it appears that at temperatures below the melt-
ing point, rock approximates to an ideal Newtonian body only
when the deforming stresses operate for a long period of time
or the rate of strain is very slow. Increase in temperature
enhances the pseudoviscous flow but the deforming stresses
must be great enough to overcome the long-term yield strength
of tlie materigl.
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C. TuRMS USso TC DSCRIBE FLOW IN ROCKS
It has becen shown that
flow in rocks is very complicated and that Newtonian viscous

flow as defined by eguation II.3 is only active as a deform-
ing mechanism under spzcial conditions. The question there-
fore arises: Should one apply the term viscosity, in its
strict Newtonian and hydrodynamic sense, to the flow of com-
plex materials such as rock?

Goranson (1940) suggested that the basic differences be-
tween the ideal and complex bodieg should be emphasised by
introducing a new term for flow in solids. He proposed the
word 'mobility' with the reciprocal poise as a unit. However,
this term or its synonym 'fluidity' is already used by .
rheologists to describe flow in Bingham bodies and other com-
plex systems (Reiner, 1960a, pp. 116, 124-129), Some workers
(Handin and Hager, 1958; Donath, 1963) have used the word
'ductility' particularly to avoid implying any definite flow
relationship; and Robertson (1964, pp. 215-217) has suggested
a completely new parameter, the 'logarithmic viscosity'. It
is defined as 6/log é, where ¢ is the compressive stress and
€ the rate of strain, and has dimensions similar to those of
internal friction.

There. is definitely a need for a general term to describe
the phenomenon of flow in rock in view of the importance of
this type of deformation in structural geology and all the
above terms arec prefl{erable to the much abused "viscosity'.
However, in this thesis the assumption is made that rocks are
Newtonian bodies and therefore in the theoretical section
viscosity has its precise meaning as defined by equation II.3.
Similarly, when applying the theory to geological examples in
which the rocks appear to have been in a Newtonian condition
during deformation, the term is used in its exact sense. For
rocks deformed by flow which was probably not Newtonian,
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however, the meaning of viscosity is uscd in tue same sense
as Handin and Hager (1958) used 'ductility'.

D. CALCUL&ATICNS OF CCEFFICIMNTS OF VISCO3ITY FUK GuOLOGICAL
MATERIALS

In this section theorctical and.cxperimental
determinations of coefficients of viscosity of geological

materials will be cxamined so tuat some idea of the value of
these cwefficients for different rock types may bc obtained.
As will be shown in the theoretical scction of tianis thesis,
the viscosity ratio between two rock types being deformed
simultancously must be known if the finite strain in the
rocks is to be calculated. The results discussed here may be
of use in determining this ratio.

The thecoretical work deals with viscosity in the crust
and uppcr mantle of the carth. Ixperimental data is avail-
able on melts of natural rocks under conditions applicable
to lavas at the surfacce and magmas at depth; These results
can be comparecd with measurements on lavas in the field.
There is also information on the pscudoviscous flow of rocks
at tempcratures below their melting point and under various
Pressures.

(a) Theoretical calculations

The theory of diffusion creep
has been applicd by Gordon (1965) to the flow in the earth's
mantle. The resulbs suggest that at slow strain rates the
mantle is a Hewtonian body but they prcdict a marked change
in viscosity with depth. At shallow depths in the carth's
crust the viscosity decreases due to the rapid risc in temp-
erature and relatively low pressures; as the depth increascs,
the viscosity riscs becausc of tuoc cffeet of the incrceasing
pressure on the atomic mobility. Zharkov (1960) also prcdicts
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an increase in Newtonian viscogity with increasing pressure
in the mantle. These results arc listed in toble Io.

(b) Calculcotions from natural melts.

Newtoni~n flow in gron-
itic magmos has been demonstroated experimentally by Shaow
(1963) who worked on obsidizn - water melts 2t pressures of
1000 to 2000 bors. Morcover, o l.rge number of viscosity
determinoticns 2t very low pressures and therefore applicable
to surficicl lava flows have becn made on melts of natural
rocks. These rcsults ore summarized by Volarovich ond
Korcemkin (1937) and Birch, Schairer and Spicer (1942, pp. 131~
137). They show that viscosity can be correlated with com-
position and thet acid melts are more viscous than basic ones.

Calculations of the viscosity of two Hawaiian basic lova
flews werc made by Nichols (1939) assuming lominoar flow. The
results are similor in value to thosc quoted by Volarovich
ond Korcemkin (193%7). Likewise, Friedmon, Long and Smith
(1963) found that their laborctory dctermin~tions of viscos-
ity of melts of rhyolite zglass and water agreced well with
the viscosity of the 1953 Trident rhyodacite flow in Alaskeo,
28 colculated. from the rote of flow of the laxva. These and
other results for viscosity coefficients of molten rocks are
listed in table Ib.

(c¢) Calculations from tests on the pscudoviscous flow of

rocks.
Unfortunately, det2ils on the pscudoviscous flow
of rocks ot temperaturcs below thelr melting point are not so
cbundant. This is because relatively few workers on the
time - strain of rocks have extcnded their tests into the
field of secondary creep. They include Griggs (1939, 1940)
who worked on Solenhofen limestone, halite and alabaster;
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Roux and Denkhaus (1954) who tested quartzite; Heard (1963)
who studied deformation of Yule Marble; Frice (1964) who
obtained dats on sandstone; and Le Comte (1965) who also
worked on lalite.

The formula used to calculate the eguivalent viscosities
during pseudoviscous flow is

o= 9/3  ...(I1.5) (Grigzs, 1939, p.230)
The values of p as calculated by the authors concerned or by
the present writer from the data presented in the original
papers are listed in table Ic with relevant experimental con-
ditions.

The viscosities of the sandstones, alabaster and
Solenhofen limestone as determined by the present writer, were
made assuuing that the B - V rheological model proposed by
Price (1964) and discussed above was applicable. The experi-
mental rates of strain during secondary creep were plotted
against the differential stress. The resultant graph was a
straight line which then extrapolated to zero rate of strain
intersected the stress axis at some positive value, equiva-
lent to the long term yield strength for the rock under the
particular experimental conditions. The viscosity was calcu-
lated from the slope of the graph using eguation II.5 in the
form

wy = (O0-a)/3
where Hy is the NMaxvell coefficient of viscosity and 0;
represents the long term yield strength.

Comparison of\mM for Solenhafen limestone with the
results of Grigrms (19%9) shows theot uN:is much lower than the
reported viscosities. ©GSimilarly, uM for wet alabaster is less
than most of Griggs's (1940) values. However, the two results
obtained by Griggs at the highest difierential stresses are
less than Hay These two points did not fall on the straight
line . from which My, Was calculated but indicated that the
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Table I Viscosity coefiicients for rocis under
-varying physical conditions.
a) Theoretical values: viscosities in the crust and mantle

Basis for calculation _y (poise) Reference
Diffusion creep at 1 Ikm
depth © 10 _ 107 Gordon (1965)
Diffusion creep at 3 kn
depth 10°% - 10°®  Gordon (1965)
Diffusion creep in mantle  10%2 - 10°¢  Zharkov (1960)
b) Determinations on natural melts
Material T, F conditioéng -~u (voise) Reference
Olivine basalt 1400°¢ 1.2.10° Volarovich and
) Korcemkin (1937)
Andesite 1400°¢ 1.2-10° do.
Obsidian 1400°¢ 1.7.10° do.
Hornblende
granite 1400°C 2.0'106 do.
Rhyolite 350-850°C, sur- 3.1.10° - Friedman, Long
glass face préssures 5.1-1014 and Smith (1963)
Obsidian - 800-900°¢, 7.5-10° - Shaw (1963)
waber melt 1000-2000 bars 2,2.10°
Haterial u (poise) Reference
ilika basalt flow, Hawaii 4.%3-107  Nichols (1939)
1887 basalt flow, Hawaii 5.7.10%  Tichols (1939)
Trident rhyodacite flow, 6.5.101"  Friedman, Long

Alaska and Smith (1963)
L - viscosity |
T - temperature

I’ - pressure
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¢) Determinations from pseudoviscous flow

i) Creep tests

IMaterial T C.F. a: t i Reference
Halite 20 - 60 42,0 2600 Griggs (1939)
Bolenhofen
limestone 20 10135 5400 0.1 13 do.
do. 20 10133% 6600 0.2 2 do.
Alabaster
(dry) 23 - 98 30.0 20000 do.
Alabaster
(wet) 23 - 98 20.0 800 do.
do. ou - 122 308.0 1400 Grigzs (1940)
do. 24 - 147 110.0 o40 do.
do. 24 - 162 285.0 600 do.
do. 24 - 177 13%5.0 510 do.
do. 24 - 201 48.0 260 do.
do. 24 - 245 13.5 160 do.
do. 24 - 294 2.5 42 do
uartzite 20 - 350 21.0 26000 Roux and Den-
khaus (1954)
ii) Constant strain-rate tests
Material T C.F. b N Reference
Yule marble 25 5000 10~ 1% 107 Heard (1963)
do. 400  s0c0  107*% 107 do.
do. 500 5000  107'* 300 do.
do. 600 5000  10”+% 5 do.
do. 800 5000 107 0.02 do.
T - temperature OC; CiP. - confining pressure, bars;

€ - strain rate, sec

-

?

L - viscosity, lolqpoise;

t - time, days; © - stress, lO6dyn/sg cm,



Table I, continued
iii) B - V model
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Material T C.E. P9 t u_ Reference

Pennant

sandstone 2% - 49 12 50 Price (1964)

Wolstanton

sandstone 23 - 230 30 500 Price (19€4)

Solenhofen

limestone 20. 10133 5100 0.2 0.5 Griggs (1939)

Alabaster

(wet) 24 - 100 308 200 Griggs (1940)
T - temperature OC; C.r. - confining pressure, bars;

K - viscosity, lOl4poise; t - time, days;

0, — long term yield strength, lO6dyn/sq cm.



viscosity had decreased. This suggests that stresses of
this magnitude are too large to allow any pseudoviscous flow
but cause rapid onset of tertiary creep. IExamination of -
Griggs's. (1936, fig. 10) original curves supports this idea;
there is no significant straight line portion of the curves
and only an inflection point marks the secondary creep stage.

(e) The effect of pressure and temperature on viscosity
coefficients

The data in table I show that the experi-
mental conditions do affect the value of the viscosity co-
efficients. Therefore, before comparing coefficients for
different rock types: and so estimating viscosity ratios, the
effect of varizbles such as pressure and temperature must be
determined. One way of doing this is to use suitable theo-
retical equations.

For example, the possible influence of pressure on
Newtonian viscosity can be assessed from an equation sug-
gested by Andrade (1934):

1 1
LLE/LLl = (vl/vp)b(kl/kg)gexp(C/T(l/vE - 1/vl)..(II.6)

The subscripts 1l and p refer to atmospheric pressure and the
desired working pressure respectively; v is the molar volume;
k. the compressibility; and T the absolute temperature. The
equation implies that viscosity increases with increzasing
pressure.

A relationship between temperature and viscosity was
derived by Becker (1925) using basic statdistical mechanics.
It is

u = A exp(3/RT) ..... (I1.7)
in which A is a constant, 3 is the activation energy and R
the gas constant. The equation shows that viscosity should
decrease with increasing temperature. Moreover, because
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tenperature also appears in I11.6, the effect of increasing
pressure should be less marked at higher temperatures than at
lower ones.

Both these ecquations have been verified by workers using
geologically significant materials. For example, Dane and
Birch (1938) worked on boric anhydride glass and found that
She ratio of wviscosity at 1000 bars to the viscosity at 1 bar
was 4.5 at 359°C, but only 1.6 at 516°C. More recently, Shaw
(1963) has shown that an increase in pressure on obsidian -
water melts under magmatic conditions (SOO—SBOOC, 1000-2000
bars) results in a very slight decrease in viscosity.

However, available information on the pseudoviscous flow
of rocks suggests that the effect of the variables is more
complicated. Griggs' (1939, 1940) data on Solenhofen limestone
and alabaster show a decrease in viscosity with increasing
pressure, which is contrary to eguation II.6. Robertson
(1964) has extrapolated Heard's results for Yule marble and
Tfinds a similar reduction in viscosity, and Heard, himself,
points out that the differential stress required to maintain
a particular strain rate is very sensitive to temperature
variations.

These observations can be explained using the relation-
ship between activation energy and pressure determined by
Zharkov (1960, equation 5). Thies predicts a decrease in
energy with increasing pressure. From cquation II.?7, it can
therefore be deduced that,at a particular temperature,
viscosity will also decrease with increasing pressure.

Nevertheless, it is obviously very difficult to assess
with any prccision, the e¢ffect of the two variables, pressure
and temperature, on viscosity during pceudoviscoue flow.

One can only generalize that increases in either, or both,

of them will probably result in a decreasc in the coefficient
of viscosity. This is,unfortunately, not cufficient infor-
mation to allow recalculation of the experimental data,
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50 that ratios of viscosity between rocks deforming under
the same pressurs and temperature conditions may be

evaluated.

(£) The use of activation encrgies to calculate coefficients

of viscosity

It: may be possible to overcome the diffi-
culties in calculating coefficients of viscosity by using
fundamental theoretical equations such as that for the vari-
ation of viscosity with temperature (equation II.7). Work
on metals has shown that secondary creep at high tempera-
tures begins when the activation energies for creep and
diffusion are equal; this occurs at temperatures greater
then 0.5 T_ (orn, 1957, p. 264). Therefore, as more data
on activation energies for diffusion become available, they
can be used in II.7 to calculate directly viscosities for
pseudoviscous flow at suitable temperatures, provided the
constant A can be assessed.

Some idea of the value of A for Yule marble can be
obtained frow Heard's (1963) results which provide inform-
ation on both activation energies and viscosities. The
activation energy varies between 45,700 and 62,400 cal/mole.
depending on the orientation of the test specimens but the
mean value agrees well with the activation energy for diffu-
sion in calcite crystals which is 58,00C cal/mole (Haul and
Stein, 1955). Substituting this last figure for 3 in II.7
and using Heard's coefficients of viscosity at a particular
temperature, A can be calculated as follows:

At:BOOOC, [V 2-1012 poise; therefore
2.10%2 - 4 exp(58,000/1.987+107%)
which reduces to: A ~3, Similarly, at 6OOOG, A~1,5
and at 500°C, A ~ 1.2,

These results indicate that, for Yule marble, A is.

small and roughly constant.
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Le Comte (1965) has determined the activation energy of
rock salt during creep tests and finds that at 265°C (O.5Tm)
the value for  is approximately 30,000 cal/mole. Substitu-—
ting this in II,7 gives u = 1.54A'1012 poise. This 1is
significantly lower than the result obtained by Griggs (19%9)
if A is of the same order.of magnitude as for” Yule marble,
However, the activation energies for diffusion of the Na
and Cl ions are greater than Le Comte's energy of creep, the
mean value being 36,000 cal/mole. If this value ig used for
Q in II.7, the resultant viscosity is approximately .2}'&'].0]’%L
poise;, lO3 times less than that determined by Griggs. This
difference is probably due to the very muck higher tempera-
tures at which Le Comte worked.

Unfortunately the writer knows of no similar theoret-
ical work relating pressure, activation energy and viscosity.
As mentioned sbove, Zharkov (1960) predicts a decrease im
energy with increasing pressure. This is supported by
Misra's (1962) results for marble which indicated a decrease
in the activation energy from 5.9-108 dyn/sq cm. Therefore,
at higher pressures one would expect a decrease in the
viscosity as calculated from II.7.

E. THE REYNOLDS NUMBER AND THo TYYFE OF VISCUOUS FLOW IN
ROCKS.
Fluid flow is generally recognized as being of

two types: laminar, or turbulent. Laminar flow is very
smooth and, using Reiner's (1960b, p. 196) definition, there
is . no visible separation of the parts of the liquid.
Turbulent flow, on the other hand, is erratic and irregular
and separation of parts of the fluid can be observed.

The Reynolds Number is a dimensionless parameter which
can be used to determine whether the flow is laminar or
turbulent. It is defined as the ratio of inertial to vis-
cous forces. in the particular experiments; i.e.
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Re = p{’;.B/[.L ...(II.S)

where ¢ is the linear size of the fluid boldy aﬁd p the
density of the material. If Re is small (less than 1), the
flow is laminar; if it is large (greater than 1000), the
flow is turbulent. For values of Re in between these limits,
initial turbulence is possible but it will be damped out and
the flow will become laminar with time.

To decide the type of flow prevailing during conditions
of regional metamorphism, values for the variables appearing
in IT.8 must be assumed. From measurements along the San
Andreas fault, Heard (1963, p. 178) suggests. a value of
B'lO_lL’L sec”! for a geologic strain rate. The velocity of
the westward drift of America is estimated by Orowan (1965,
p. 304) to be 5-10_6 cm/sec. The rate of strain would be
less than this. Suitable values for the viscosity vary from
1012 - 1018 poise (table 1lc). Therefore, for the present
calculation, assume the following values for the variables
in II.8

— - [ 2
o m 3, &~10 10 gec l, L 1017 poise

Hence

R = 3:107%7
which is extremely small, no matter what the wvalue ol 4.
Therefore, the inertial forces can be ignored and the type
of flow will always be laminar.

Similarly, using Friedman, Long and Smith's (1963) data
for the Trident rhyodacite flow, Re is of the order of
5-10_125. The type of flow is again laminar. However, for
the much less viscous Alika basalt flow, which moved at
11 m.p.h. (Wichols, 1939), the Reynolds Number is 0.15
This suggests a dominance of laminar flow with a possibility
of turbulence, depending upon the value of ¢. It is import-
ant to note when discussing less viscous materials with rapid
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straln rates that turbulence can easily be achieved. in large
bodies.

These results corroborate those of previous workers
who have used dimensicnal analysis to show laminar flow in
lavas and dykes (Nichols, 1939; Spry, 1953) and in meta-
morphic rocks (Charlesworth and Lambert, 1964). It seems
unlikely that Schmidt's (1918, p. 296) suggestion of turbu-
lent flow for metamorphic rocks containing snowball garnets
is. tenable.

In this thesis turbulent flow is not considered at all
and the basic equations. of laminar flow are assumed to hold
for all types of deformaticn examined.

F, SUMMARY sND CONCLUSICHS
The object of this chapter was to
investigate the possibility of Newtonian flow in rocks, and

it was found that rocks do behave as viscous fluids under
certain physical conditions.

For molten rock material, experimental and field evi-
dence suggests that both surficial lavas and deep-seated
magmas are Newtonian liquids. |

At temperatures less than the melting point, it is
possible to get rock to deform by flow under most pressures
and temperatures. However, Newtonian viscosity is probably
only achieved if the stresses are applied for a long time or
the rate of strain is slow. High temperatures (greater than
0.5 Tm) and pressures facilitate the onset of pseudoviscous,
Newtonian flow. In geological terms, rocks undergoing reg-
ional metamorphism are probably in a Newtonian fluid condi-
tion.

Calculated theoretical and experimental values of the
2 and 1O1O
for molten rock, the composition of the melt, temperature

coefficients of viscosity vary between 10 poise

and pressure being the main controlling factors. For rock
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12 24

and 10
poise, depending on composition and the experimental condit-

in the solid state, viscosity ranges between 10

ions. Increases in temperature and pressure reduce the
value of the viscosity coefficient but it is not possible to
correct the experimental results for these factors, and so
conpare viscosity coefficients of different rock types
directly.

Calculations of the Reynolds Number for viscous flow in
rocks show that deformation will generally occur by laminar
flow,
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CHarTER IIT THE EXPERIMENTAL PROGRAMME

A. INTRODUCTICN

As explained previously, the development and

experimental verifilcation of the theory will be discussed
together as the one follows logically from the other. It is
therefore convenlent to describe the apparatus and techniques
used for the experimental work beiore describing the mathe-
matical theory.

The object of the cxperimental programme was to teost
the behaviour of rigid and non-rigid particles in a viscous
matrixz during pure and simple shear deformations. To do tnis
the writer desipgned and had constructcd two simple pileces of
apparatus capablc of imparting the desired deformeaticns to
material placed inside them. The simple shear apparatus
worked very successfully but, unfortunately, that for pure
shear did 2ot. It was found that when this apparatus was
filled with the matrix and the straining initiated, the
frictional resisgtance set up was so great that it locked the
box before the run was properly underway. Lubricating the
noving conponents did reduc: the resistance slightly but tog
ensure that the apparatus worked reliably would have involved
recdesigning it completely. Unfortunately, the writer did not
have gufficient time to do this and instead recourse was had
to a piece of apparatus which, like that for pure shear,
inwparted an irrotational strain but did not maintain a
constant arce, as required by pure shear. This simplex
strain box gave very satisfactory results,

The instruments used for measuring changes 1n shape and
orientation were also simple ones. 4 palr of dividers and a
ruler graduated in fiftieths of an inch were used to measure
particle dimensions and a protractor marked out in helf
degrees scived for angular measurcuents. Morc sophisticated
instrunents capable of achileving greater orders of accuracy
were not necessary in view of tne relatively large strains
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Pigure 4 Flan of the simple shear apparatus.

- aluminium "U" pieces (only half shown)

B ~ fixed perspex plate

C - moveable perspex plate

D - retaining bars

B - guide posts

F - scale, in units of O.lyé
G - threaded brass rod

i - connecting nut

I - platform in which H sits and moves freely
J - rubber barrel coupling

K - motor drive shaft and gear box

L - electric reversible motor

I1 - aluminium "U" piece in cross-section
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obtained.

The material used for the matrix was a solutiocn of
ethhiyl cellulose in benzyl alcohol because it was easy to
rrepare and a wide range of viscosities could be obtaincd by
varying the ratio of solvent to solute. The non-rigid part-
icles wure also prepared from tuis material; rigid particles
were made of dluminium or glass.

Detailced descriptions of the appsratuses and meterials
used are given in the subsequent paragraphs. These are
followed by thc experimental method, which was basically the
same for all the experiments. Finzlly, the accuracy of tihe
method 1s discussed.

B, AIFArLTUS AsD  IATIRIALS,

(a2) The simple shear bhox.

The simple shear box, the essential
featurcs of which are shown in figure 4, worked on the same
principle as Becker's (1904) "scission engine” and Ramberg's
(1959, p.l24) shearing apparatus. It consisted of 96 pieces
of 1.6 mme. thick aluminium shecting cut into "U" shapes and
clamped together to form a hollow box by two 0.67 cm. thick
plates of perspex. One of these perspex plates was fixed to
a bascboard and the other, together with the aluminivm "U's,
was constrained to slide past it by guide posts. Two retaln-
ing bars held the ends of the "U"s and the perspex plates
together and served to transmit the sheuring motion.

A small clectric reversible notor able to rotatc at
5 r.p.m. was attachned to the bascboard to obtalin constant
rates of shear. Threaded brass rods connected the driving
shaft of the motor to the retaining bars of the shear box.
In this way, thc¢ bars were moved towards or awiy from the
metor, cauwsing the aluminium "U" plates to slide past each
other. Different rates of shear were obtained by varyiang tuc

number of Threads per inch on the brass rods.
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figure 5 Simple shear deformation of a rectangle to a

parallelogram. Amount of gimple shear
v. = tan
Vg an §

(ifter Wadai, 1950, p. 146)

Figure 6 Diagram to illustrate the method of reposi-
tioning a particle at the end of & run in
the simple shear box.

A - final position at the end of the run;

B - equivalent position for the start of a

new run by shearing in the opposite

direction.
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A scule, graduated in divisions of O.lvg, where v is
the unit of shear strain as defined by Nadai (1950, p. 146)
and illustrated in figure 5, was placed on the basepozrd,
adjacent to the movceable perspex plate. When the unotor was
in usc tne maximum shear during one run was 0.7 Yo but 1.2yé
was posegible without the motor. Greatc: sheors were obtalned
by renoving the particle aften « run, replacing it in the
equivalent but opposite final position (see figure 6) and

epeating bthe run in the reversc dirccticn. By summing the

individusl strains, the effects ol large shear deformations
could be studied.

Flate 1 shows the apparetus sct up for an experinment.

The geometry of any deforwmation in the apparatus is
given by thc transformaticns.

X, = X+ v, ¥y =7 e o (III.1)

An initial unit circle stamped on tihe material in the box
has the eguation

x? + y7 =1

If the circle is transformed by equations III.1, it becornes
the stroin ellipse

2

x? + 2y xy + y(1+ v =1

[a)
=

The lengths (Jh-,j LN ) of the major and ninor seui-axes of
this ellipse can be determined using standord geometrical
methods (eg. Jaeger,1962, p.27-28). The resultant eguations
arec

D = [ /2P v 1 s v /2 L (TIT.2)
which give
S = UG /2% + 1 x 21/ (v /2)7 + 1
- v /2] .. (II1.3)

(&)




Plote T

The simplc shear 2pparatus sct up for an expe-

riment; the natrix is clready in the box.

The irrototionsl strain box ready for use; the

natrix encloscs ¢ non-rigid particle which is

to be de

left of
used in

ter and

cended te

the non-

Torned. Also in the picture to thu

the box ore some of the ancillory tools
the experinents, nomely: the coke cut-
the laorge and snnll plungers ond open-—
st tubes, which werce used for sheping

rigid vparticles.






Figure 7
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Graphs of equations III.3 - III.5, showing
the variation, with simple shear (Y ) of the
axial ratio (¥ 1/x )3 the orlentatlon of the

major axis (¢ ); and the natural strain (g).
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The oricatation of the major axis with respect to the OY
rdinate of thc simple shear is given by

0= /b + (1/2)tan" Ty /2 ...(IIL.4)

It is also convenient to have a relationship between natural
strain and simple shear. This is

YS = 2Sinh —8 .ooo(III'5>

Equations IIT.3 - III.5 are represented graphically in
figure 7.

ind effects in the apparatus are negligible sincce the
deformation conforms exactly to a theoretical simple shear.
The plates forming the shear box and tue material contained

in then all move as one body durinz thc shearing.

(b) The irrotational strain box.

0

The irrotational strain box,
similar in principle to the wire net us2d by Cloos (1955) in
his experiments on clay, was built from a design by dHr. J.G.
Raisay. .The essential features of it are shown in figure 8.
It consisted of four rigid tufnel boards hinged together so
that they formed a rhombus with varisble apical angles.

Small holes were drilled ot cqually spaced intervals ne.r the
base of cach board, Strong cotton was threaded tarough these
holes to ensurc even traansmission of strain throughout the
material in the zppsratus. The whele box wags placed on a
heavy level glass basc-plete which was well grcased with vase= .
line. U-shaped clamps which fitted over thie box znd connected
two opposite hinges served to keep the rhombus in a pargicular
position. The strain was imparted by épplying pressure on
diagonally opposite corners of the apparatus. Flute II shows
the box set up and ready for use.

The geometry of any deformation in this apparatus is
complicated because the surface arca in tiue box varics system-

atically with the apical wngle,w, from a maxinum value when
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Figure 8 Tlan of the irrotational strain box.

=

(o9)

@

b5
1

rigid tufnel sides

clamp

cotton, threaded through holes near the
base of the sides

glass base-plate

hinges

Fiqure 9 Diagram to illustrate a finite pure shear

transformation in the irrotational strain box.
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@ = 90° to zero when a = ¢° Because of this area change, it
is not possible to achieve 2 true progrucsive pure shear,
though one¢ can obtain a finite pure shsar transformation
between the initial and final pPositi.ns by ensuring that the
initial ond final areas are cguael. It is tais particular
transformation which is oi nost interest and consequently its
geomctry will be considercd in detail.

Referring to figure 9, the initial lengths clong OX and

OY are given, respectively, by

X = s*sina, y= s.cosa ...(IIL1.6)

The final lengths are

x' = sesin 8, y' = secos B ...(IIL1.7)
Consider en initial unit circle stamped in the matrix with
the eguation

XZ

+ y® = 1
After dcformation, this circle becomes the strain ellipse
2 2 _
x®/n + ¥/, = 1
From equations IIL.6 and III.7, thc lengths of tne scui-

mejor and seni-minor axes arc given by

J75'= sin B/sin<1,/7;2= cos 3/cos a ...(II1I1.8)

,/Al/x2 = tan B-cot & «e.(IIT.9)

If the initial aad final areas are to be equal, o and B wust

and

be complenentary angles. Hence

/q;_= cot a,\/ié = tan o ...(III1.10)
and

VA /Ay = cot®a ... (IIL.11)

Equationg III,10 and III.11l arc expressed graphically in
figure 10.



Tigure 10

Graphs of the equations III.10 and III.11,
showing the theoretical changes in axial
lengths, JX (curve B) ndJr‘ (curve A),
and axial ra 1o,\IK /\ (Lurve C), with the
apical angle, G, of bho finite pure shear
transformation, in the irrotational strain
box. Curve D shows the variation in axial
ratio with apical angle determined experi-
mentally by the finite pure shear transfor-
mation of a circle of diameter 6.% cm.



A
/
. i o
o d
/f
Y e
5 - —
X A pad
3 i o
{ . B / // /
e . .7/‘:'/ ,/
< —
1
|;— | -
\\‘
05 \\
X\\
~
45 40 30 25 20 5

35



- 40 =

End effects, unlike those in the siuple shear apparatus,
are quite large in the irrotational box. This is mainly due
to the arca chenge during deformaticn and, since tié volume
remains constant, the resultant friction betweoeon the matrix
solutions znd the sides and ba.¢ of the box. Hence, the
stroin varies throaughout the apparatus, as ig cvident from..
figure 11 which shows tuoe strain at different points on the
surface of t.:c solution in the box after a theoretical trans-
formation of 7\1/7\2 = 1.42. Trom the shape of the deformed
circles,: it appears that the strain is not even. homogenous
at the sides of the box. ‘ : .

Po deternine approximately the variation of the strain
in the centre of tue box with the change in apical angle, an
initinl circle of diamster 6.3 cm. was stamped onto tiae sur-
face of tiic motrix. The circle was tnen deformed over the
enge of possible apical angles and thw axisl ratios of dhe
resultant strain cllipses measured. The variation of these
axial ratios with apical angle is plotted in figure 10,
curve D's  The graph shows that tuce finite stizin in the centre
of the box varies systeuatically with tie change in angle and
is always greater than tuat predicted theoretically by
cquation III,1l.

It is possible to rceducce the end efiects by lubricating
the sides of tie box with vaseline., This is cvident from the
following table which contains data showing a significant,
but not large, reduction in bHic axial ratio of bthe struin

ellipse in the centre of tiae box if tae sides ear. groased.

Qi ) 7“1/7&2 th v 7\1/7\2 exp

ungreased greased
40 1.42 1,80, 1.80 1.65, 1.70
30 5.00 5.00, 6.05 4.85, 5.30

The importunce of e¢nd effeccts can also be reduced by
working as for away os possible from the walls and prelferably

the distance betwceen the walls and the arc: of interest should



fdipure 11 Variation of strain in the irrotational
strain box after a finite pure shear
transformation Of\/hl/Kg = 1.42. 'The
ellipses were initially circles of
diameter 5 cm. The diagram was traced
frem a photograph
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Tipure 12 Graphs showing the change, with apical
angle, ol the distance between the sides
of the box and the particle (curve x),
and the ratio of distance to particle
diameter (xx/d).
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be at lecst ten times the diameter of the area (Price,
personal communication). Since the side of the box is approx-
imately 38 cm long, the distance between the ncoregt point of
the walls and the centrc of the box, in the position of maxi-
num area, is approximately 19 cm. The dismeter of the part-
icles normally used in the experiments weas 1.7 cm and this
gives 11.4 as the naximum value for the ratico of the distance
Trom Gne walls Lo the diametcr of the ar:za of interest.
Figurce 12 shows the change in distance from the wall with
change in the apical anglce and the corresponding rcduction

in the ratio between distance and particle dianetcr. The
value oi this ratio becones less tiacn ten for angles smallexr
tian 5 Thercfore, when working with tihese deformations,
spaller particles were used,

(c) Ancillary apparatus.

Additional pieces of apparatus were
designed to meeb specific requircmecnts in the experinents.
These included glass test tubes wirich had their bazces ground
away and were used for shaping the non-rigid particles.
Wooden plungers which just fitted inside these tubes sorved
for inserting tihe particles into the matrix,

A circular netal cake cutter of diameccr 7.5 cm was used
to re-position the non-rigid particles bheing deformel by
sginple shear.

A gsimilar cutter, which had a picce of stiff wire netting
attached to its base, was used to impress rectanguler grids
on thc surface of tﬁe matrix solutions in the experincents

to determine the strains around a particle,

(d) Matrix material
Solutions of ethyl cellulose in benzyl

alcohol were uscd for the viscous nuatrix, The rheological
properties of these sclutions have been determined in detail
Osokina et al (1950). At concentraticns of less than 15
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nixtures are dewtownilan liquids. AT

Fomt

per cent solute, the
highcr concentrotions they arce non-Newtonicn liguids with
not very pronounccd anomalous viscoslties; wnd only suall
hysteresis efiects and thixotrory are obscrvod undedr varying
deformaticn rates.

The viscosity coefficicnt increascs with concencrotion
6

. . 2 . .
o ranges between 10T and 10T poise.

]

of etiiyl cellulicse @
for a mirticuler solution, tize viscosity reiiins constaant for
soile tine after preparztion of the solution but decroases
exponentially witvh rising tenperature. Lencnding on tad

grade of ethyl cellulose used difirerent viscositics will be
obtained for tiic saue concentration.

A strein - tinme curve for ethyl cellulcso - benzyl
alcourl sciubions has been published by Bell and Currie (1964,
fiz. 4b) which schowg that an initial clastic deformation
achieved through rapid loading is quickly relicved by a
viscoug creup comnponcul, during which wost of thie clasgtic

t

strain cnergy disappcars. The swall arnount of energy ronain-

for stress awnlysis. However, this property was not recguired
in the ovresent work. " The residunl elosticity is unlikely to
have affecied the experimental results obtained because the
relaxation time of the solubtions is extromcly sacll (lOO -
10T sec; Ggovsky, 1959).

The ethyl cellulosce uscd for the preparation of the
solutions was thot nmarketed by the Dow Chemical Coupuny
under the trade name "Dthocel" (standard ethoxy content, vis-
cozity grade 200). The E.F. grade Benzyl Alcobol uanufact-
urcd by J.,J. Buash aend Co. was used as solvent.

To prepare the solutions, the rcquircd proportions of
cthoecel and alcohol were nixed togethcer in a large beaker
vhich wae heoted on a sand bath. Best resulis were obitoined
if only small quantities of solvent and solute were mixed
togetiher ot once time. Bell and Currie (1964, p. 41) state
that to get a fluid free of centrapped air bubbles it is
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necessary to heat the nixture in a vacuun at 700 to 80°C for
5 to 12 hours. However, the writer prepared solutions suffi-
ciently free from air bubbles by dissolving the c¢thocel con-
pletcly, covering the beaker to prcvent evaporation of the
solvent and allowing the mixture to digest on a low flanc

for a day and then cool gradually overnight. A lonzer period
of digestion and cocling was rcgquired for the more viscous
fluids,

To construct a graph relating the coefficicnt of viscos-
ity of o solution to the proportion of ethyl cellulosc dis-
solved in it, several solutions covering o concentration
range of 15 to %5 per cent solute were carcelully prepared.
The viscosity coefficients were then debferiained using o
Perranti-Shirley cone-plate vigccometcr. This instrumcnt
measures the viscous tractlion cxerted by vac fluid during
shearingrat o constant rote and can be uscd for viscogitics
up to 107 - lO6 polse, However ut the vexry hi_h valucs,
cracking of tlhe ligquid may occur at even tiac slowest rotes

of sheor, thuce giving anomalously low resulis. licKenncll

viscomcter in detail.

The rcselts of the viscoslty -~ concentroticon devermins-
tions are plotted graphically in figure 13 together with
those of Osokina et al (1960) as calculnted by the orescant
writer from their figure 2, for comparison. Lote that these
workers uscd ctiiyl cellulese of o greater viscosity grade
than the prisent writer and nade thelr determinctions withn
a constant shear stress visconeter,

Figure 13 was used as 2 worzing curve to corrclate tic
concentration of ethyl ccllulose witn ths viscosity coeffic-
ient of tune solution. Nornally solutions centaining 22, 2
ond 50 per cent etvhocel were uscd for tue matrix in the

experinents,



Migure 13
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The relationsihip between viscosity and
conceittration for ethyl cellulose - benzyl
alcohol solutions. Graph A is taken from
Osokinea et al (1960, fig. 2) for 290 grade
ethyl cellulcose, at a shear stress U =

10 gm/cmgq Graph B was obtained by the
present writer for 200 grade ethyl cellu-
loze at 18°C and at a constant shear rate
Y= 0.1 ».p.nn,
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(¢) Particles

The rigid two-dimensional particles werce nade
from 1.6 nm thick a2luminium sheeting; they were circular and
tical in shape and had the following axisl ratios,

cccentricities aud surface aress:

/b e area a/b e area
(sq cm) (sq cm)

1.0L O.14 5.20 2.85 0.94 4,14
1.36 0.70 3%.88 3%.66 0.96 5,28
1.51 0.75 5.50 3.84 0.96 10.4%
1.92 0.85 5.3%5 4.%9 0.95 5.74
1.96 0.86 2.60 A7 L 0.98 2.57
2.70 0.93 5.76 '

The cccentricity ¢ is defined by e = \kag—Ha)/a cre o and

b are the lengths of the major and minor partlcle semiv-axes.

The rigid particles used for threc-dimensional experi-
ments were hollow glass prolate spheroids with axiel ratios
approximately 4 : 1 : 1. These ellipsoids were preparcd by

sealing off thc ends of thin-walled, soft glass tubing and

then rounding them to shope with emery paper. The dimensions
of the air bubble inside it were such 23 to cnsure that the
particle had the sane density as tune natrix and therefore
was not acted on by body forces during the experiments.

Soluticans of ethyl cellulose and benzyl alcohol,
coloured with methylenc blue dyc, were used for the non-
rigid particles. These particles were disc-shoped with
dianmeters of 1.1 or 1.7 cii and thicknesscs of 1.6 mm. The
open—ended glass test tubes and wooden plungers were used to
shepe them and greabv care was taken to ensurce that they en-
closed no air bubblcs., Their compositions, viscosity co-
efficients and corresponding ratios with the viscosity of a
22 per cent ethyl cellulose natrix solution are tabulated
below.



% ethocel u (poise) R % ethocel  (poise) R
22.0 5.0.10° 1.0  31.5 57.5-10° 7.5
26.5 12.5:10° 2.5  32.5 50.0.10°  10.0
29.5 25.0°10° 5.0  34.5 75.0-10°  15.0

(R is the ratio between the visccsity of the purticle and
the viscosity of the matrix)

C., THS SXFIRIMasNTAL PROGRAMLL

(a) Freparation of the apoaratus

Before beginning any work,
the apparatus to be used was thoroughly greased with vaseline.
The main purpose of this greeasing was to spread a thin, imper
meable seal over the surface of the apparatus and so prevent
the matrix solutions of ethyl cellulose from seeping through
possible openings. Moreover, it also served to reduce the
friction between the solutions and the sides of the irrota-
tional strain box. To achieve a satisfactory seal, all 96
“U" pieces and the perspex cond pieces in the simple shear box
had to be carefully greased and in the irrotational strain
box, great care was taken to ensure a strong s=zal between
the glass base-plate and the tufnel sides.

In addition to lubricating the boxes, other pieces of
equipment whiclhh were used to prepare and manipulate the non-
rigid particles were lightly greased with vaseline before use.
This was done to prevent the adhesion of the particle solu-
tions to these tools.

After the box had been set up, the etuyl cellulose
golution which acted as the matrix was placed in it and left
to settle for some time so that any zir bubbles could escape.
In the simple shear apparatus, the layer of matrix was at
least 2.5 cm deep,and in the irrotational strain box, enough
solution was used to ensure that, in the position of maximum
area, the cotton grid was covered by a layer of matrix 1.5
cm thick. When the matrix had settled, the irrotational
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strain box was adjusted to a suitable apical angle and
clamped in this position.

Once the apparatus had been set up with the natrix, it
was used for many experiments until the matrix required
changing.

~

(b) Experiments on single particles in the simple shoar

and irrotational strain boxes.

i) Insertion ol the particles

Initial positioning of the

particles being studied was carried out as follows. The

of the matrix so that they flosted horizontclly. Their

r axcs (or reference direction in the case of the disc)
were et at rigat angles to tihwe shear direction in the simple
shear box, or, at a sm2ll angle, ¢, to the direction of
coupression in the irrotational strain box (sec figures 1l4a,
b). In tue three dimensionzl experinents, the glass ¢llip-
soids werce similarly positioned though at some angle of
plunge, 6, to the deformation plane (i.¢. the surface of the
natrix) as shown in figures l4c, d. FPhotographe, from which
© could be calculated, were taen taken vertically above the
ellipsoids.

Flacing the non-rigid poarticles in the matrix was more
conplicated. The particles were prepared shertly before they
were requirsd and were transferred to the matrix in tue glass
tube ustd to shape them. The plunger wos then used to force
tihenm into the desired positions. The procedurs hid to be
carricd out rapidly to prevent distortion of the discs but,
if tiiie did occur, the circulcr shape could usuzlly be
corrected after insertion. Nevertheless, the initigl shapes

wecre photographed to record any devictions from circulority.



Figure 14

Fipure 15

Figure 16
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Initial positions of an ellipse and an ellip-
soid in (a, c¢) the simple shear box and (b, d)
the dirrotational strain box. Only the major
axes of the particles are shownj; ¢ 1s the angle
in the deformation plane between The major

particle axis and the CY' coordinate axis;

6 is the anglc of plunge of the major particle
axis to the deformation plane.

Diagram to show that the error involved in
ignoring the refractlion at the alr - matrix
interface is neglizgible. Using the data given
in the figure

tan 1 = a"/2h ~ 0.02 ~sgin i
The refractive index of benzyl alcohol is 1,54.
Therefore, by oSnell's Law

sin » = 1.54gin 1 = 0.01%
and r = 45!
If the eliipsoid is at a depth of 1 cm below
the fluid surface

f = tan r~ 0.01%

which can be ignored. Similarly, §' is vory

small and cen be ignored. Thercfore

il 1

a'l ~ g
and Tthe effects of the refraction at thies

interface cen be ignored.

Jlagram to 1liustrate the method of calculating
the plunge, €, of cllivpsoidal particles from
the apparent length, a', of thce major particle
axis.



camera

h>~46 cm
2a>2.5w
a'~2a.cos @
= 2 cm, say
a"< a'

= 1.8 cm, say

5  fluid

surface
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ii) Deformation procedure

Hoving positioned the particle, the
defornation wags started. The simple shearing wos generally
corried out slowly by hond unless constant strain rates were
required when the motor wis used. BSinilarly, in the irrota-
tionzl stroin box, the defornation was allowed to proceed
very slowly so that the level of the matrix remained hori-
zontal despite the chonge in surface area. HMorecover, caore
hod to be tzaken to cnsure thit the forces caousing vhe change
in shope of the box 2lways acted nlong the same lince., The
defornation was stopped after recching the required apical
angle for o finite pure shear transformeticen., Runs in the
gimple sheor apparatus normzlly continued for]ﬁé shear.

iii) Recording changes in particle shape ond position

During
the defornstion runs, the rotation and distortion of the
pwrticles werc recorded ot regular intervols.,- For the two
dimensicnal rigid porticles this was done by mecsuring the
chonge in orientation of the particles directly during the
experiments. However, changes in shape ond position of the
rigid ellipsoids and nor-rigid particles were rccorded photo-
graphically.

The porticle axial lengths and the orientation of the
najor axcs were ncasured directly from the photograophs.
Howcver, the plunge of the c¢llipsoids had to be cnlculated
from the apparent length of the ellipsoid major cxis. This
was done ~ssuming thot the effects of refraction ot the
rintrix - cir interfece can be ignored. Lefercnece to figure
15 shows that tinis assumption ie valid for the prescent experi-
ments bocouse the photographs were token vertically above the
parbicles ot o helgnt greot enough to reduce thc angles of
incidence and refraction to ncgligible amounts. The formula
relating the apparent length, o', of the particle major =2xis
to the cngle of plunge, 0, is then derived as follows:



In figurc 16, the egquation of the ellipse with respect
to &, Y coordinates is
x” (a®s5in®6 + bZcos®8) + 2xy(a® - b?)sin 6-cos 6
v? (a2®cos®s + b%sin®6) = a®b® ,..(III.12)
The length &' is equal to twice: the abscissa of the point of

vertical tongency x5, To obtain the coordinates of X5

differenticte ITI.12 with respect to y and let dx/dy equal
zero, Then

v = -x(a® - b®)sin 6.cos 6/(a%cos®6 + bfsin®e)

Substituting this for y in III.12 ond simplifying gives

X = i\/azcosae + DPgin®e

Hence the apparent length

' = 2/a®cos® ey + bPain®s

[4¥

which ¢an also be written

a' = 2a¢/1 - ¢®sin®e  ...(III.13)

=J4a® - a'?/2ae e (ITI.14)

Lquation III.14 wos used to cilculzte the ancle of

Thercfore

plunge 6 of the nmajor axes of the ellipsoidnl porticles from
the aproarent ~nd true lengths of the nmojor oxis (o' ond o
respectively) and the eccentricity of the porticle,

iv) DRepositioning particles at the end of 2 deformction run

At the end of each run in the simple sheor apparctus the
particles were rinoved from the motrix and reopl.ced in the
equivalent position for shearinz in tii¢ oprosite direction,
2¢ shown in figure 6.

For non-rigid porticles, however, this repositioning
process was ratucer complicated. First, the approximate
ajor 2nd ninor porticle axiol lengths and the oricntation

of the major ~xis were mcasured. The particle and its
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immediate natrix environnent were then isolated from thoe rest
of the material in the box by enclosing thewn in 2 larre cake-
cutter. TFinclly, by turning the cutter slowly, the particle
and mrtrix were rotzated into the required position. The cutter
was carefully removed and the shipe 2nd orientztion checked to
ensure thot it cgreced. with the measurenments before reposition-
ing. If therc was a discrepancy betwecn these initizl and
final neasurements, the particle was gently pushed into the
correct shape. It wos found thot this procedure ensured the
ninimun cnount of particle distortiom during repositioning.
However, particles which werc elongated to such an extent that
the lengths of their major oxes nearly equnlled that of the
diameter of the cutter could not be repositioned in this way,
beccuse the distortion during rotaticn was too gre~t and the
particle ccquired o sigmoidnl shape. When this stage wes
reached, the experinent was discontinued.

Rigid particles in the irrot~ational strain box were also
rcnoved :t the end of cach purc shear tronsformation -~nd re-
placed in cquivalent positions for the deformaticn in the
opposite direction. However, deformed non-rigid. particles were
removed and reploced by undeformed ones after the box had been
adjusted to o new 2pical angle. The new particles were then
subjected to cnother finite pure shear transformation.

v) [Deroincting the experiments

The cxperiments were stopped
after sufficient informction had been obtoined to check the
theorcticl ejurticns. In the simple shear btests on twe
dimensional rigid particles cnough runs were corricd. out to
rotote the prrticles through 180°. Sinilarly, in the irrotat-
ioncl stroin cxperiments, the twe dinmensionnl porticles were
studied until they had cpproached close to the stable position
parollel to the direction of elongation. The bechaviour of the
rigid ecllipsoidcl particles was not examinced in such detail as



these experiments were difficult o perform and very time-
consuning. #As mentioned above, tue simple shear tests on non-
rigid particles were stopped when the particles became too
elongated to be repositioned. In the irrotational strain box,
the maxinum deformation applied to the non-rigid particles was
that corresponding to an apical angle of 15°. Working with
smaller angles than this was very difficult.

(¢) Deformation of a larpge number of non-rigid particles by

simple shear

It will be shown in the theory chapter that
the relative concentration of particles with respect to matrix
controls the viscosity ratio between the particle and particle-
matrix system and that the ratio decreases with increasing
particle concentration. To test the importance of this factor,
a series of experiments was performed in the sinplce shear box
on particle - matrix systems with thce following particle con-
centrations (in volume per cent): 3, 6, 9, 12, 15, 23. The
detailed experimental mecthod is outlined below.

l/ A rectangular grid was laid out on the basc of the empty
shear box. This grid was used as a guide during the insertion
of the particles to ensure that they were regularly distributed
throughout the natrix.

2/ A ¥nown volune of matrix solution (22 per cent ethyl
cellulose in benzyl alcohol) was placed in the box and allowed
to settle.

5/ The. required ndmber of particles were prepared from a 29.5
per cent ethyl cellulose - benzyl alcohol solution, giving a
particle - matrix viscosity ratio cqual to 5 at very low
particle concentrations. The particles wero cylindrical in
shape and had a constant volume.

4/ The particles werc inserted in the previously planned
positions using the method for single discs as dcscribed above.
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5/ Fhotographs were taken vertically above the particles to
record zny initiel deviations from circularity in their
shape. The height at winich ‘the photographs were talen was 4
‘feet sbove the boxj this was sufficient to mske negligible
any apiarent eccentricity due to the particles not belng
directly beneath the camera.

6/ The system was tuen dz=formed slowly by shearing through
an amount of lys. Photographs were taken zfter O-5Ys shear
and 2t the final position.

7/ Trom the photograprhs the change in particle shepe and the

orientation of the major particle axis wsre determined.

(d) Determination of the streins developed in the matrix
n

around a sinpgle particle during deformatio

A series of
experiments was carried out to determine the struins develop-
ed in the matrix around rigid and non~rigid particles, during
deformatcion in the simple shesr and irrotatvional strein
boxes. The purpose of the experiments was to reslaie the
strain pattern around the particle to the tUype of deformation
which had produced it and to correlate the respective distor-
tions in the particle and ths metrix with the viscosity
ratio. The experimentz wsre performed using non-rigid
particles with viscosity ratios of 2.5, 5.0 and 10.0, a rigid
disc and & rigid 2 : 1 ellipse. The method was &s follows.
l/ The required apparatus wes set up and the matrix solution
emplaced. The irrotational strein box was adjusted to an
apical anszle of 320.

2/ If & non~rigid particle was being tested, 1t was inserted
into the matrix in the normal meunner.

3/ The wire netting attached to tne base of & ceke cutter
was lightly sprayed with slov~drying white paint. It was

then firmly and gquickly pressed against the suriecs of the



matrix and the particle, so that the particle was roughly in
the centre of the resultant grid.

4/ If a rigid particlec was being used, it was now placed in
the centre of the grid.

5/ Photographs were taken of the initial position.

6/ The system was then deformed through an amount of lYé in
the simple shear box or to the equivalent apical angle of 320
require for a finite pure shear strain in the irrotational
apparatus. These deformations impart approximately the same
finite strain (/i;?i; = 2.6 ) to the particle - matrix system
and hence the results from the two boxes can be compared
directly.

7/ Photographs were taken of the final position,

8/ From the distortion of the grids, the strain at diffecrent
points around the particles was calculated using the lMohr con-
struction. '"T'low vectors" showing the direction of movement
of the matrix during the deformation were also determined
from the undistorted. and distorted grids.

D. ACCURACY AWD PRuCISION CI THE RiSZULTS

The order of -
accuracy in the experiments is not high, mainly becausec of
the simple measuring instruments used. Linear dimensions
were determined with a pair of dividers and a ruler divided
into fiftieths of an inch (cguivalent to 0.5 mm). Therefore
it was quite casy to estimate to 0.25 mn and the minimum
experimental error is suggested to be hi 2.5 por cent: for a
particle axis 1 cm long. Obviously the c¢rror will be smaller
for axcs with lengths grcater than 1 cm.

The protractor used for angular mecasurements was gradu-
ated in half degrees but it is unlikely that the experimental
error 1is as small as this. Probably ilo is @ better estimate,

e¢specially for the measurements made directly during the
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experiments and not taken off photographs. This mcang that
when small changes in orientation were mcasured the proport-
ional c¢rror was very large. The determination of thc plunge
of the c¢llipsoids involved several assumptions which probably
increascd the error; in thesc cxperiments therefore it was
assumecd to be + 50. Moreover, a larger error, cstimated to
be. + 20, occurred in the determination of the orientation of
non-rigid particles which had not becen highly deformed
because 1t was very difficult to find the exact position of
the major axes in these particles.

The precision of the experimental method was determined
from the rcsults of a number of cxperiments carried out on
two-dimensional rigid particles during simple shear. The
results werce treated statistically and are tabulated in
dppendix I, From thesc tables it is scen that the mcan
value of %% mewusurements ofi the angular rotation of a disc
during lYS shear was 27.5°. The range was 1° and the co-
efficient of variation 1.7 per cent. The number of measure-
ments on elliptical particlcs was much less (n = 4 to 8) and
the corresponding coefficient of variation and roange much

arger. The moximun value of the range in any one set of
measurements is 4° but the mean valuc of all the ranges 1is
only 1.50. This is less thon the range due to an experi-
mental crror of + 1° and therefore it is concluded that the
precision of the method is satisfactory.

None of thc other groups of experiments was repeated as
often as those for rigid particles in simple shear. However,
a1l of them were repented at lecst twice and it is suzgested
that the order of occuracy znd precision discussed ~bove arc
applicable to their results.
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CHAPTER IV  THEORETICAL AND EXFERIMENTAL ANALYSIS OF THE
MOTION OF FARTICLES DURING DEFORMATION OF THE
PARTICLE-MATRIX SYSTENM

A, INTRODUCTION
In this chapter, the behaviour of rigid and

non-rigid particles in a matrix, during deformation by pure
and simple shear is examined theoretically and experimentally,
assuming that both particles and matrix are viscous fluids.

The theory is developed along the lines of previous work
on suspensions and emulsions, especially that of Jefiery -
(1922) and Taylor (1932, 1934). Jeffery derived equations of
motion for rigid ellipsoidal particles in a viscous fluid,
during deformation of the suspension by laminar flow. His
method, which gives results for a simple shear deformation,
is extended by the present writer to a pure shear type of
flow. Taylor considered the deformation of drops of one vis-
cous fluid suspended in another, assuming that the drops were
so small that they remained nearly spherical under the action
of surface tension forces. This assumption is not made in
the present work and the resultant equations are applicable
to larger particles and greater deformations. DMany people
(e.g. Cerf, 1951; Trevalyan and Mason, 1951; Bartok and Mason,
1958, 1959; Rumscheidt and Mason, 1961) have extended and
tested experimentally the results of Jeffery and Taylor.
However, good agreement with the theory was only obtained
for rigid spherical particles and for small deformations of
non-rigid particles.

Moreover, the approach adopted in this previous work was
different from that in the present thesis, being mainly con-
cerned with the effect the presence of the particles had on
the properties of the suspension, particularly the viscosity.
Although this factor is considered here, the main emphasis
is placed on the kinematical behaviour of a particle during
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deformation &nd its dependence on the finite strain involved.

(a) Assumptions and bagic equations

In tae section on the vis-
cous flow of rock it was shown that rock can under certain con-
ditions behave as a hignhly viscous fluid and deform by laminar
flow with a small Reynolds llumber. Thercfore, in the tueoreti-
cal analysis to follow, it is essumed that both particles and
matrix are extremely viscous fluids and as sucih obey The funda-
mental equations of viscous fluid dynamics. These include the
avier-Stokes equations of fluid motion and the ecuation of
continuity, which express, respectively, tine relations of con-
servation of momentum and conservation of mass of the fluid.

It is also necessary to assune that there is no slipring
at the particle - wmabtrix interface, non-rigid particles dsform
into ellipses of constant area; and that normel and tangential
stres:es are continuous across the surface of the non-rigid
particles.

The systems of coordinate axes used to desscribe the defor-
mation by fluid flow ancd the parvicle wmotions during the defor-
wation are illustrated in figure 17. The threc rectangular,
cartesian coordinate axes ., ¥, 7 have taeir origin at the cen-
tre of tne particle and are fixed parallel to the perticle axes.
They, therciore, move wich tue particle during the deformation.
The £, ¥, %' coordinate axes, also with their origin at tne
centre of the particle, describe the undisturbed motion of the
fluid.

2elationships with respect to either of thesc coordinate
systcus can be transferred frowm one to the other by the follow-
ing systvem of direction cosines:



QO
X'
Y
= /

Pigure 17 The two systems of rectangular coordinate axes
used in the theorstical anualysis.

L1y ¥, 77 - ases for describing the undisturbed
fluid motion; they remain fixed in direction
throughout the deformstion.

iy, Y, 7 =~ axes fixed parallel to tue parvicle
axes and robtaving with it during the deformation.

O - the origin for both sets of axes; it is

situated st thc centre of the particls.
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i.c. X = llx' + mly’ + nlz'
y = lex' + mgy’ + ngz’ ceeeeo(IVL2)

Ze

3

For cach point in the fluid, the components of velocity

4

~

z = l,x' + may' +n

parallel to the L', Y', Z' axes are
u' = ax'/as, v' o= dy'/dt, w' = dz’/dt .....(IV.3)

In terms of these velocity components, o simple snear defor-
mation 1s described by the csguations

u' :~ ‘?“sy" 'V" = O, VJ‘ = O OQOOQQ(IV.4)

Similarly the equations for pure shear are

! t

u' = Cx', v' = =Cy’, w =0 .....(IV.5)
whers C 1s a constant. The significance of this constant is
found by integrating equations IV.5 for a point in btae fluid
with initisl coordinctves (1, 1, 1), i.e.:
(b %! '
G| dt = } dx /x' = ~I dy /3
1 41
“herefore,
Ct = lnx' = -1ln y’
During pure shear, the area in the deformation plane remains
constant, i.e. x'y’ = 1, and so
C=(1/t)ln x'

The term 1ln x' is c¢quivalent to the natural strain and C
Lo

therefore represents the rete of natursl strain, €. Zquations
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IV.5 can be written

1 . 1

u = EX [} v = -Ey’, V‘J' = O ..--..(IV.58)

The first assumption made above is that thic deformations
will sctisfy the basic equations of viscous fluid dynamics.
The zeneral Mavier-Stokes equations for fluid motion are very
complicated (see Pai, 1956, pp. 26-41) but for flows at very
small Reynolds rumber, they can be greatly simplified by igno-
ring the body forces eiud assualing & slow-moving viscous, incom-
pressible fluid. Then the equations are

uv?u' = aplax’, uv?v' = 3p/ay', wVW = op/3z’
A (AN Y
where p i1s the mean pressure and

2 2

T2 = 9%/ox' % + 3%/ay'? + a%/0z"' "

i'he otuer fundamcental equation of interest is the eguation

of continuity of fluid motion;
au'/ax' + Aavi/ay + aw'/9z" = 0 .ev..(IV.7)

It 1s ezsily saown that the simple and pure shear flows
(equations IV.4, IV.5) satisfy waesc fundawmental equations.

The layout of the rest of this charter is as follows.
First rigid particlss are dealt with in a simple and then a
pure snear field. Then, the deformation during pure sheer of
a non-rizid ellipse with itvs axes parallel to the strein axes
is analyzed. An ellipsc not &aligned rerallel to the:ze axes 1s
consicdered after this and finally the deforuction of non-rigid
digce during simple sheer is exeamined.

The eguations for sinsle perticles are then applied to
systems contalning a larze number of particles snd tiae chepter
ends with ¢n examination of the strains in the matrix around
a particle duringz deformation.

ixperinentel resulis for tesvs on the validitcy of the

theoretical eguations arc described at the end of sech gection.
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B. THE BEHAVIOUR OF RIGID PARTICLES DURING DEFORMATION
BY SIMPLE SHEAR

Einstein (1906, 1911) and Jeffery (1922)
have previously investigated this problem and obtalned general
solutions to describe the motion of particles completely.
However, to get thelr results, these writers had to resort 4o
a complicated mathematical analysis which there seems little
point in reproducing here. Instead an elementary, less exact,
approach will be adopted and applied to specific examples

of the problem.

(a) Motion of a disc

Consider first the case of a disc of
small but finite thickness, floating in the deforming viscous
matrix (figure 18). The fluid forces acting on the disc can
be resolved into normal and tangential forces. Clearly, the
sum of the normal. forces is zero and, therefore, there is no
translation of the disc relative to the fluid. However, the
tangential forces set up a couple causing the disc to rotate
about its centre 0.

The area on which these tangential forces act is ma (arc
AB + arc OD), if the disc is of unit thickness. The length
of arm of the couple is 2a and the shearing stress of the
fluid is T= by g- The moment of the couple acting on the

disc is therefore:;
M o area-length of.arm-shear stress
i€ I = 2ra® x= zqcazuys

This moment M must equal the moment of the frictional
couple acting on a disc, radius a, which i1s rovating in the
fluid with constant angular velocity w. ILamb (1932, p. 588,
equation 4) gives this moment as

Moo= o 2
Mf = =4ua“w



g in the 'Y defor-

flocting
The rodius

Tigurc 18 Rotation of o disc
wobtlon plons durins siuple
of the disc 1s a and wvhe length of crm of ©ng
coupnle ccting on the dilizc 1s Za. ;
roferencs dircction
flow axis.

lics peoween the

disc ona vhe OF'

Qotovion of on ellipsc floaviang in vhae defor-
The length
the cllipss

whaen

1. tlcn plons during siaple ghear.

of the couple =rm, 2L; chonmss oS
rovates, from 2b, wacn @ = to 2a

0
co7, ’
snd

o = 0°,
L, b o=~ semi-coxicl lengtas of the mojor
minor oxcg of tho gllipse.
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The negative sign can be ignored «s it only indicates the
retording action of the fluid on the disc. Then, equat

M and Hf results in

s = "\w
‘\ S <

i.¢. d{ré/dt = 2 do/dt  ....(IV.8)
winich, if the time foclor is eliminated, gives on integration:

.I,-S = 2(D onll(ITVT/g)

Eguation IV.3 is the scac s thot derived initvially by
Binstein (1906, 1911) for smull spheres. However, cquation
IV.C is of more procticcol use beccuse 1t relotes finite shecrs
and rotations instead of rctes of these displacemcnts.

(b) lotion of zn ellinss

The motion of & toin ellinpticel cylin-
der ccn be determined in ths same way .s above. agoin, the
tangenticl shearing forces of the fluid set up o couple on thae
cylinder but the length of couple arm variss a6 thne ellipse
rotcotess, os shown in figure 19. At cny orienwvotion o the length
of tne couple arm is cclculoted as follows.

The ecguation of the ellipse with respect to the moving
coordinavs axes is

%%/ + g3/ =1 ....(IV.10)
The reclationsinip betwecn the fixed ond moving axes 1s

~
L

X'sino® + Tcos o )
LI ) '(I.V.o ]—l)
{cos 9 - Y'sin o

Y
substituting IV.11 in IV.10 ond rearranging gives

x'®(1 - e¢®sin®u) + y'%(1 - c¢®cos®e)

- 2e®x"y'cos ¢.5in 9 = a®(l - ¢?) ... (IV.12)
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The lengtn of the couple arm is twice the ordincte of the
point L (i.c. Ey{) at whaich the tengent to the surfice of thes
cllipsc is horizgntal. To obvaln this, difficrentiate IV.1l2
with respect to x' cnd set 4y /dx' c¢qual to zsro. Then IV.12
pecoms s

x' = y'e®sing.cos o /(1 - ¢®sin®0) ....(IV.13)

[alpome

Substituting IV.13% in IV.12 cond simplifying gives

yi = all - ¢?sin®o .....(IV.14)

The longth of arc, 3, and hencu the “reo on walch tae
fluid cects positively is rroportionzal to yi, i.e.:

8 = Kyy ....(I7.15)

wherc ¥ 1s a constant.

There is no exact formula for the perimeter or lengoh of
arc of an ¢llipse. Normalily these quentitics cre svaluated
from e¢lliptic integrals of the second kind (Lezcndre’s .5 func-
tion) which cannot be solved cnzclytically but mey be computed
numncrically. Tables of values for % functions are cveilable
(e.g. Johnke and Zmde, 1943) which can be used to ev:iluate

-+

lengths of =zrc for particulcr ¢llipses. TYowsver, Uhe present

)

analysis roeguirecs a gensral solution for cny c¢llipsc cnd so to
solve the problem ossunme, crbitrarily, thatv thoe constant K in
IV.15 is equal to x/2. 'Then

5 = (x/2)afl - ¢%sin®0 ....(IV.16)

Thils implics thet at eny instant during rotction of the par—
ticle the fluid acts on a rectangular seguent of o circle with
radius yt and thaet too mean value for S during rotavion of the
porticle through 900 will be onc quarter the perimetsr of the
gllipsc.

assuming unit particle thickness, the arca sxposcd to the
fluid is 285 end tho moment of the couple acting on the ellipse

is
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i o arcaclength of crm-shezr stress

=

i.e. = 2xa®(l - ezsinzm)u?s

This wmoment must ¢qucl the moment of the frictional coupls,
hf, retarding cn ¢lliptical cyliuder rototing in o viscous
fluida with angular velocity w. Goodicer (1934) has shown e to
consist of two ports:

a pressure torque = Zruw(a - b)?
and ¢ viscous btorgue = Lmuwab

Thersfore, the total torque is

RN

I 2auw(a® + 5%

f:

aquating £ cnd Mf gives

w = [a®?/(a® + bg)]?s(l - ¢%sin®9)

0 . r
i.e. j do/(l - ¢?sin®e} = [a?/(a® + bz)]g Sy . .(IV.17)
0 0

Iorforming the integration rcsults in
[1/J/1 —-g%] arc tan [(1 - ¢®)tan o]
= [a%/(a® + b))y,

wilch can be rearrcnged to
ten ¢ = (a/b)tan [abys/(az + b%)] ... (IV.18)

Tais 1s the same eguation as that derived by Jeffery
(1922, cquction 43) for cn ¢llipsoid with its Z axis parallel
to the Z' axis of flow. It rslotes the change in orientation
@ To tne finitoe simple shacur Yt



Figure 20

Rotation of an ellipsoid of revolution during,
gimple shear.

6 -~ the angle of plunge of the major axis
ol the ellipsoid to the deformation plane.

® - the angle of orientation of the major
axis of the ellipsoid; it is measured between
the OY' axis and the projection of the major
axis onto the deformation plane.






- 69 -

(c) liotion of aon ¢llipsoid of revolution
The cquations of

motion for em ellipscid of revolution cannot be desvermincd as
cuslly cs the two dimcnsional examples considored cbove and,
ingtead of deriving cn independent solution, rcecourse will be
Jeffery's (1622) results.

Referring to figurc 20, Jefféry s equation coannccting the

nad

T

j O

anglc of orientation © eond tac ecmount of simple shecr is iden-—

tical with IV.18 cbove (Jsffcry, 1922, cquaotion 48). lMoreover,
thae plunge of the mojor semi~cxis of the ¢llipsoid chonges with
orientation ¢ according to thc equation

tan®8' = a®b?/[k®(a®cos®e + b?sin®e)]
(Jeffery, 1922, cquction 49) where ' = 90° - is tho comple-

wment of vhe plunge, 6, and k is ¢ constant of intcgration.
This equation can be written

cot 8 = cot ai/J& - ezsinam e (IVL19)

where 81 is the plungec when ¢ = OO, cot 6; is the constant of
integration cnd tuc axial ratio a/b is always cclculated with
b equal to unity.

U P
Lig

(d8) Bignificance and ¢xperimental verification of

cquctions of motion
In this section the significeance of the

equations derived above, together with the results obtained
from cxperiments performed to check them, will be¢ discussed.
i) Two dimensional particlus

Dealing with the two dimcnsional
parvicles first, the relevant ¢quetions for & disc and an
113

(0]
l_l
s
[43]
C
o
i~
[©]

Y = 2(0 lll'.(IV.g)

and tan ¢ = (a/b)tan [abys/(c.2 + b3)] ....(IV.18)
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Note that IV.18 reduccs to IV.9 if a = b.

The grophs of these ecquations are plotted in figurs 21
for different values of a : b and for ¢ ranging from --90O to
90°. TFrom the graphns it is clecr that the disc will rotate a*t
a constant rate during the shearing but that the angular velo-
city for the ellipses varies from e maximum when ¢ = 0° (i.e.
at right ongles to the shear dircction) to a winimum when ¢ =
i900 (parallel to the sheer direction). Moreover, the tendency
for the ellipscs to rotate oub of the dirsction of shearing
decreases with increasing eccentricity of the particle cnd a
very large shear indeed is required to rotate a 5 ; 1 cllipse
& significant amount.

This conclusion. is clearly shown in anothcr way by consi-
dering the differenticl form of c¢quation IV.17 which can be

writion

dw/dys = [a®/(a® + b®)][1 - e®sin®v] ...(IV.172a)
If 0 = 0°, dao/dyg = a®/(a® + %) ....(IV.17b)
If ¢ = 905 do/dy = b?/(2% + b?) ....(IV.17c)

Substituting values for the particle axicl ratio a/b in
equations IV.1l7b and IV,.17¢c gives the following results:

a/b dw/dys (v=0%) dW/dYS (0=90%)
1.3 0.639 0.27%
1.5 0.692 0.308
2.0 0.800 0.200
3.0 0.200 0.100
4.0 0.941 0, 059
5.0 0.990 0.010
From this toble it is obvious that once in the ¢ = 90°

positicn, very eccentric ellipsss require o large amount of
shear to displace them.
A number of experiments were performed in the simple shear
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Rotation of two dimensioncl particles during

simple shcar. ©Solid grophs are plotted. fron

the theorctical equations IV.9 and IV.18.

The

doshed curves 2rs for the mecn experimental
results listed in Appendix I, tables I to VI
The axial ratios of the particlss represcnted

by the curves are:

A-13:1,3-1.01:1, C-
D=-2.70 : 1, T -4 ; 1, F =~
G-53:1, H- 4,71 : 1, I -
J-1.%6 : 1, K-2:1, L -

® — the anglc of orientation
axis of the porticle with respect
flow oxis.

Yg ~ anount of siwuple shear

5 1
3.6

1.%3 .
1.94

of the
to the

1
1
1

major
oxY"
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box on circular and elliptical particlss to test these equa-
tions. The results of these exXxperiments werc treated statisti-
cally and mean grephs of rototion ocgainst simple shear were
constructed for each particle. These graphs are also shown in
figure 21. The nmethod of constructing the grophs 1s given in
Appendix I with the stotistical data.

Comperison of the thcorctical and experimental graphs
shows that they have the scme shapes but thet gencrally the
equctions predict o more ropid rotation than that observed
experimentally. The agrecment between the curves for circular
particles is good but with increasing eccentricity the ellipges
do not rotate out of, or into, the shearing direction (¢ =
i90°) as readily os expected. _

This retardation in the zone of small rotations is quite
possibly due to errors in measurement. For excmple, referring
to tabls IV (a ; b = 2.7) in Appendix I, it is scen thot the
rongs in measurement of an initicl rotation of 2° from o = —90O
is 1.50, which is greater thon the discrepconcy betwesn the the-
oreticcl and experimental curves. This initial discrepancy
will noturally be magnified with increasing shear and rotation.
Differcnces bstween theory ond experiment arce even morc liksly
to occur with ellipsses of greoter axial ratio than 2.7, os the
initial rotations will be equal to, or less than, the range of
experiaentcl error. '

However, if thc diffcerences were solsly duc to cerrors in
meosurcments, somc experimentol results should show more rapid
rotation than thot predicted theoretically. This was not
obssrved in any of thc experiments from which the graphs in
figure 21 were calculated, which suggests thot other errors not
considered in the treatacnt of thoe results ucy hove boen intro-
duced during the sxperiments, possibly in tha'measurement of Yge

Nevertheless, it 1s fclt thot the good egrceoment betwesn
thc theoretical and sxperimentcl curves for the disc and the
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Stercogrophic plots of squaotion IVL.1G showing
with orientotion,

A
N

Pigure
the voriation of plunge, 6,
for the following ¢llipsoilds of revolutiong
a=-1,%% 1,1, B - 1.5 : 1 : 1,

D -4 ; 1 : 1.

Ws
C-2 ;1. 1, :
Also plotted in figurc D cre results of oXperi-

carricd out 1n the siuplc sheor apparatus

pents
on 4 ; 1 ; 1 ¢llipsoids. The detzlled results
ors listed in tablc VII, Appendix I.



15

45

} 90

15

15

45

90

15

15

30

45

40

75

15

30

45

40

75

90

(2]

30

15

60

60

75

90

15

30

45

40

75

90

15

30

45

40

75

90



- 74 -

léss cccentric cllipses, cud the foct thot ths curves have the
sanc sanope, indicate that the sguations ars probably corrcct.
ii) Three dincnsional particlcs

The equations dcescribing the

motion of ¢llipsoids of rovslution during simple she=r core

(a/b)ton [abys/(cg + b2)] ...(IV.18)

ot
(8]
1
S
i

i
cot 8 cot Gi//l - ¢®sin®p ...(IV.19)

squation IV.18 hos buen discussed in detoil obove for two
dinsnsionol particlos and here gives the chcnge in orientotion
¢ of tac acjor axis of the ollipsoid, as mcasurcd in the defor-
motion plane.  Bguotion IV.19 correlates thc change in the angle

of plunge of the mojor axis with the change in g.

N

C

Togsther, tho twe sguations inply thot during siuple she-r,
cn ¢llipssid of revolution, plunging ot soou angle to the defor-
aation plaone, will rotote in . sphoricnl elliptical orbit about
the 2' axis, perpondicular to the dsforantion plons. This is
cloerly brought out in figure 22 in which IV.19 is plotted on
quadrants of sterconcts for ¢llipscids »f different cccentri-
city. Froa the graphs, it is secn thot the plunge of the major
oxis decrensces from 2 naxioun clong o = 07 to = miniaua along

o = 90°. Morgover, thu rote of carnge of plunze incrcases with
incrcasing particle cccentricity.

The c¢quatiosns wore tested sxpsrinentally using the 4:1: 1
gloss cllipsoids and the simple shecor apporztus, the cacnges in
plunss boing colculated frow squatisn III.14. These results
~re plotted in figure 22D cnd ocgrec fairly well with thosc prc-
dicted thsorctically, cspeciclly when it is reucmbored thot
there is a relatively large crror involved in the determinction

of thc plunge.
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iii) Other experiaents on tws dimensional porticles in the

siuiple shgar apparatus
In addition tu predicting the notion

cf particles during siwmple sheor, the cquotions IV.9, IV.18 and
IV.19 also imply thot the physical conditions under which tho
cxperiucvnts are carricd out do not affcet the porticle behovi-
our, providced thct the initicl assumption of 2 slow-moving,
viscous fluid for the motrix and ¢ resultant sucll Reynolds
Nuaber for the cxporiusnts, is ast. To verify this conclusion,
s¢veral exporinments werc perfornced to examinc ths effect, on
articls rotations, of the sizc of the porticls, the viscosity
of thc mrtrix ond the r~ts 2f shear at which the deforaction
takcs ploce.

The results of those cxpericents are listed in tables IT,
IIT and IV. Fronm tablc II, it is clear thet the acount of roto-
tion during shear is indcpendent of the sizc of the particles,
2s shovn by the wetted surficc creo. Sinilarly, the dota in
toble IIT show that on 84~fold increoss in thc viscosity coof-
ficicnt of the natrix hos no sffect on the porticle rotations
nor dcos o ten-fold increcsc in the rate of shoor (table IV).

Thersfore, it can be concluded thot the size of the porti-
cle, thc viscosity »f the wotrix and the rote of sherr do not
affeect the behaviour of the porticles. Morcover, provided thot
the Roynolds Number for the experiments is always snell, this
conclusivn should apply to other experinmesnts on rigid -ond non~

rizgid porticles in both types of apparatus.
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Tabls IT Rotation of ¢llipticcel porticles of diffcront sgizos

during 0.7y, sheor in o 30% notrix solution, =t o
.constant shsar rato.

/b A o° /b A o
1.96 2.60 29, 30 1.92 5.3%3 9, 30
2.85 4014 %%, 32 2.70 5.76 5%, %%
3.66 5.2 55, 55 .84 10.43 33, 35
4.71  2.37  z4, 34 .29 5.74 34, 35
/b is ths oxicl patis of tho particlcy A is the surface
areo in cn®y o is ncosurcd fron tho pysition 9 = 0°.

Table IIT Rotation of particles embodded in ethyl cclluloss -
benzyl clcohol nctrix solutions, with different

viscesitics, during lys siuple sheceor.

Solution @i
A 27.0
B 27.5
C 27.5
D 28.0
A = 15% notrix s»olu
B - 25% natrix solu
C - 30% notrix solu
D - 35% antrix sclu
0 = rotation of 2
Oy = rotrtion of o
Oz = rototion of 2

02

(DO

2 3

11.0 5.0

10.5 -

11.5 5.0

11.0 4.0
ticnsg u = lO5 poiss,
tiony u = 104 poisc
tiony p = 2.9-104 PO 133G
biony u = 8.4+107 poisa

porticle with axicl ratis of 0,99

o particle with axial rotio of 1.94

o particls with oxio2l rotio of 2.70

) . C . 0
® 1s always wcasurcd frow the position ¢ = G0,
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Table IV Rotation of elliptical particles in a 30% ethyl

cellulose solution during O.75ys shear at different

shear

rates.
a/b

1.01
1.92
2.70
3.66
4,49

0
Ca
21
31
33
s
35

a/b is the particle

from ©
G, — rotation
Oy - fotation
¢ - rotation
0q - rotation

= 0°.
during
- during
during

during

shear

shear awv

shear

shear

o
20
31
53
54
55

20 17
30 2

5% 2%
34 55
35 %6

axial ratios © is measured

c.
Oo® W

rate of OrOQlBYS sec,_"1

rate of 0.0005%y_ sec
rate of 0.00026y sec™t
rate of O.OOOlBTS sec_l
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C. THZ BEZAVIOUR O RIGID R.RMICLDSs DURIMG DESFORLLTION
3Y #URS SHELR
(a) Derivation of the general equations of motion
The motion of

rizid particles during deformation by pure shear can be deter-
mined using Jeffery's (1922) basic equations as follows:

The undisturbed wmocion of the fluid in the nesighbourhood
of & particle is described by The zeneral equations;

U= 38X + Oy + gz + N2 ~ vy

v = hx + by + fz + vx - £z ...(IV.20) (Jeffery,

ation 2
w=gx+ fy + cz + 5y - nx equation 2)

The verms u = dx/dt, v = dy/dt, w = dz/dt are the undisturbed
velocity components for each point in the fluld parallel to the

X, Y, 4 axesy a, b, ¢, 1, h, £, m, v are components of dis-

&8s
tortion and rotation of the fluid.

The general equations of motion for any zllipsoid subject-
ed only to forces exerted upon it by any fluid motlon are jyiven

by (b® + cg)wl
(c? + a®o,

(a® + bz)w5

]

b(g + £ + (% - £)

~/

+ a2<n - 5) ~¢-(I—V¢21) (Jef—
fery, eqn. 37)

c?(n + g

Il

a’(v + h) + b%(v - h)

ll

[fay

where a, b, ¢ are the lengths of the semi-axkes of the ellip-
soid.and Wiy Woy wB are Ghe respective rates of rotation of
the ellipsoid about its own X, ¥, Z axes.

To determine the components of distortion and rotation
during a pure shear deformation, differentiate equations IV.2

with respect to tiwe. This gives

— R .
u = llu + WV W

v = 1l.u' + m.v o+ n.w' ... (IV.22
el el
w=1l,u + m,v' + n,w
5 5 5
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substituting equations

u = CllX' - ley

v = ClEX' - szy

w = Cl,x' - Cm,y
5 2

and using transformations IV.l1l
fluid motion near the particle
coordinete axes become

u = Cll(llx +ly o+ laz)
v = 012(llx - 12y + 152)
W = ClB(llX + 12y + 152>

- le(mlx
- Cm2(mlx
- CmB(le

V.5 into IV.2Z results in

the equations of undisturbed

with respect to the particle

TNy * maz)
toony F maz)
oyt QEZ)

e (IV.23)

These equations are equivelent to IV.20 and eguating

coefficients

the terms for the components of distortion and

rotation are obtained. They are:
a=0C(1,° - mlz), b = (1.7 - n.®), ¢ 0(152 - m53}
£ C(l215 -~ mgma), g = (lll5 - myng)
h =011y, - myn), 7 = =y =0

Subztituting these values into IV.21 results in the eqguations

of motvion of

(b? + cz)wl = C(b? -

(c? + az)w2

(a® + bz)w5

2 2
c(a® - b*)(1, 1, -

any ellipsoid during a pure shear deformation;
2

c )(lzl5

3(c? - az)(1115 - mlmB) ce o (IVL28)

11'12 [l

3)

mlmz)
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(b) HMotion of a two dimensional particle
The motion of a two

dimensional particle lying in the deformation. plane is equi-
valent to that of an ellipsoid with one axis, Z say, perma-
nently parallel to the Z' axis of the pure shear flow, as in
figure =Z%. The direction cosines between the two sets of
coordinate axes are

1, = cosg’, l2 = cos (90 + o'), l5 = 0

o, = cos (90 - @'), m, = cos v iy = 0

np = 0y = ng o= 0

[

Therefore, equations IV.Z4 reduce to
2 2 - 5 -
(b® + ¢ )wl =0 1.6, wy =0
(c? + a®)wy, = 0 1.6, ws = 0« (IV.25)

(a® + bz)w5 = -C(a® - b®)sin 20

It has been shown that C is equivalent to the rate of
natural, strain, €. Also, w5 is the spin about the particle Z
axis (i.e. do'/dt). Hence IV.25 can be written

(1/sin 20')de'/dt = =[(a® - b®)/(a? + b?)]Jag/dt

If the time factor is eliminated, this can be integrated

W E
f -
j do /sin 2¢' = =[(a?® - b?®)/(a® + bz)]f‘de (IV.26)
o) J0

1

where @i end ¢, are the initial and final particle orienta-

i
tions. ©Garrying out the integration gilves

In tan op - ln tan of = [(a® - b®)/(a® + b®)](-2%)
' oo (IV.27)
The relationship between the strzin ellipse axial ratio
and the natural strain for a pure éhear is

2e = 1n /xl/x2 .o (IV.28)

Using this relationship and the angle ¢ between the major axis
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of ean c¢ilipse, or an ellipsold with its
l¢l to the Z' flow dirsction,
g

paral
9 shear deformation.

syetem of Euler anglces, ', o', ¥ used to
tne position of tThe axes of an ellipgoid

of revolution during o pure shesr deformation.
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of the particle and the O0Y' flow direction. to define the
particle position, instead of the angle ¢', IV.27 becomes

In cot vy = 1n cot o, + [(a® - b®)/(a® + b))

1n ‘/>\2/hl ... (IV.29)

This egquation relates the initial and final particle posi-
tlons to the amount of pure shear deformation. The signifi-
cance of thz equation will be discussed in detail after the
equations describing the behaviour of ellipsoidal particles
have been derived.

(c) Motion of an ellipsoid of revolution

Now consider the more
general case of =an ellipsoid of revolution sligned at any
orienvation to the fluid flow. The position of the e¢llipsoid
with refercnce to the fixed axes of flow can be described
completely by a system of three angles such as the Tuler
angles illustrated in figure 24. In the diagram, the origins
of the moving and fixed aXes coincide at 0y and the X'Y' plane
(the deformation plane) and the YZ plane intersect in some
line 0N (the line of nodes) which is perpendicular to the
Z2°7Z plane. The Euler angles are:

6° - the angle between the X and Z' axesg it can. have
values between 0° and 130°.

©' ~ the angle between Y' and ON; it can have values
betwesn 0° and 5600.
¥ - the angle betwesn the ¥ axis and 0Ny it also can

0
have valuss between 0° and 3607,
In terms of vhese angles, the angular velocities about
the £, Y, 7 axes are, respsctively,

vt 1 \
= COE +
wy W Y

¢'sin 0 <sin ¥ + §'cos ¥ ...(IV.3%02)

i

WA
[t

@' 'sin €@ +cos ¥ = 4'sin ¥

¥z
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Similarly, the direction cosines between the two sets of
coordinate exes become;

= =
WM Mo =

i

}_l

no

m
5
0y

-3in 68'+cos ¢

cos VYesin ¢ + cos 6'+sin Vrcos o'

! !

-sin Yesin @' + cos €'.cos ¥Y.cos ©

sin 8'-gin ¢’ «s.(IV.30Db)
cos Wecos @ = cos 0'+ sin Vesin o'
~-sin Vecos ¢' - cos 6 -cos VYesin g'

It

cos 8', 0, sin @'-sin V¥, ny = sin 6'.cos V¥

If the particle is an ellipsoid of revolution about the

>

deformation,

X axis, the YZ plane is circular znd at any instant during the

the Y axis can be considered to coincide with the

line of nodes,

®1

1y

1

\M

e
ny

It

ON3 i.e. ¥ = 0. Then eguatbtions IV.30 becoune

$'cos g' + W, W, = 8, Wz = ¢ 'sin @

1
-s8in 6'+cos ¢', 1, = sin 8',

cos 6'scos ¢, my = sin 6 +sin o', «. . (IV.3L)

i

cos ¢, Wy = =COS 6'+-sin o'

cos 8', n, = 0, Dz = sin o'

Suostituting IV.31 into equations IV.24 and remembering

that b = ¢ for an ellipsoid of revolution, results in ths

following eqguations of wotion:

2b2(s'cos g' + ¥) = 0O

(a® + b2)g' = -(a?® -~ b2)Cc(-sin g +cos @'+ cos?y’

(a?

+ sin @' +cos © *sin?y")

+ b®e’'sin 6" = (a® - b®)C(- sin B'-cos ¢'-

sin ¢' - sin 8'+cos ¢'«ain ¢')

These equations can be rsarranged and reducsd to

S

e ?

d'cos ' + ¥ =0 ...(IV.32)
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6 /sin 2¢ = ~[(a® - b2)/(a? + b?) ]  ...(IV.33)

26'/sin 26' = [(a® - b®)/(a® + b?)]cos 2¢' °F
e o (IV.34)
Dividing IV.3%% by IV.34 results in the relationship:
o'cot 2¢' = -28'/sin 20" ....(IV.35)
Bquation IV.3%2 implies that tnere is no spin zbout the
X axis of ths ellipsoid.
Bquetion IV.3%3 can be written

©, €
£ -
do'/sin 20' = -[(a® - b®)/(a® +'b2)]g de
o 0
1
which on integration gives
ln tan ¢y - ln tan 0 = [(a® - b®)/(a® + b®)](~2¢)
Using equations IV.28 and substituting the angle ¢ for ¢'

(see figure 24), this becomes
ln cot vy = ln cot w4 + [(a® - b3®)/(a® + b®) ]
ll’l v ?\.2/7\.1 --o-(IVu36>

To find the variation of ©' with o', invegrate IV.35.

oL 0]
£ il
d6/sin 267 = g cot 20 -d¢'
' []
04 0
Therefore
In tan e; - 1ln tan ei = -(1/2)(1n sin 2@%

- 1n sin 2¢i)

1.6, tan 6./tan 6 = sin/2m£/sin 20}

Referring to figure 24, it is seen that 6 is the complement
of the angle of plunge, 6, of the major axis of the ellipsoid.
In terms of this angle, 6, and the angle ¢, the above equa-

tion can bs wrivten
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cot ef/oot 6, = Jgin Ewi/sin wa .. (IV.37)
This equation is meaningless 1f the initial direction of

plunge is 0° or 900. For these two cases, equation IV.34
0°, i.e. @' = 90°, IV.34 is

must be used. For ¢
28'/sin 2¢' = -[(a? - b2)/(a® + b?)]%

which, on integration and rearranging in terms of the plunge
and the axial ratio of the strain ellipse, becomes

In cot 6, = 1n cot 6; + (1/2)[(a® - b2)/(a? + b2)]-

1n VAs/Ay  ....(IV.382)
2771 .
Similarly, for o = 900, the change in plunge is
In cot 6, = 1n cot 8; - (1/2)[(a? - b?®/(a?+ b2)]-
1n JXE/KI ee..(IV.38b)

The equations IV.36, IV.%7 and IV.3E& describe the
change in plunge and orieantation of any ellipsoid of revo-
lution during pure shear.

(d) Significance and experimental verification of the

gquations of motion

The significance of the equations
derived above to describe the motion of rigid particles in A
viscous matrix during a pure shear deformation will now be
discussed.
i) Two dimensional particles

The relevant cquation for a two
dimensional particle lying in the deformation plane is

ln cot ¢p = ln cot ¢ + [(a® - v?®)/(a® + ©?)]"
In Vhy/h ... (I7.29)

If ¢. = OO, i.e. the major axis of the ellipse is

i
parallel to the Y' flow axis,

1ln cot Op = oD and 0p = o°
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for all finite amounts of strain.
3imilarly, if ¢y = 90°, i.e. the major arxis is parallel
to the X' flow axis,

1n cot 9p = ~o and wf = 900

for all finite amounts of strain.

Therafore, the two positions of elliptical axes parallel
to the flow or strain axes are stable.

Furcvhermore, if a = b, i.e. the particle is circular,
0p = 0 and ths particle does not rotate during the straining.

To snhow tiae effect of pure shsar on ellipses not aligned
parallel %o either of the deformation axes, squation IV.29 is
plotted grarhically in figure 25 for ellinses with axial
ratios of 2 : 1 and 5 ; 1, assuming different initial angles
of ¢. The graphs show that with increesing deformation, the
long axes of the ellipses rotete towards tiue u' flow direc--
tion, i.e. the direction of elongation, but become¢ parallel
to it only after an infinite amount of strain. The result of
incrcasing particle eccentricity is more rapid rotation to-
wards the u’' direction.

Also plotted in these figures are the results obtained
experiunentally for ellipses in the irrotational strain box.
Frow tnese graphs, it is seen that the particies follow the
same type of curves as predicted but rotate too rapidly.
Nevertneless, they do not rotate into the direction of elon-
gation, which agrees with the theory.

The recson why the ellipses rotete more rapidly than the
theory predicts is probably connected with the box not impar-
ting & true pure shear and, especially, witn the fect that
the strain in the box i1s not uniform throughout. The dashed
experimenval curves in figures 25 correlate rotation with the
axial ratio of ths strain ellipse calculated theoretically
for tae pure shear transformetion. However, i1if rotation is
plotted ageinst the axial ratio for the local strain ellipses

arounG tae particle, measurcd from the experimental zraph in
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Rotation of (4) 2 ; 1 and (B) 5 : 1 ellip-
tical psrticles during pure shear.

The sclid graphs are plotted from egua-
tion IV.29; the dashed sxperimenval curves
correlate rotation and the axiel ratio of ths
strein ellipse for a fiuite purs snear trans-
formetion in the irrotational strain boxg
the black dots are exverimental points rela-
ting rotetions and the local strain ellipse
axiel ratios, measurcd from the graph D in
figure 10.

The detailled experimsntal results ars
listed in table VIII, Appendix I.
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figure 10, the agreement betwesen theoretical end experimental
results is much better, thereby providing good evidence that
equation IV.29 is correct.

ii) Three dimensional particles

The equations describing the
motion of an ellipsoid of revolution ars

In cot 0y = 1ln cot gy + [(a® - b®Y/(a® + b®)].
1n ‘/7‘2/7‘1 ... (IV.36)

cot 64/ cot 6; = sin'2®i/sin 2op  +..(IV.37)

In cot 64 = 1n cot g + (1/2)[(a® - b®)/(a® + b?) ]
1ln Jxa/xl ...(IV.38)

Bquation IV.%6 1s the same as the equation for the rota-
tion of two dimensional particles during pure shear, which is
discussed above and plotted in figure 25.

The change in plunge of the ellipsolds orientated in the
stable positions (¢ = 0°, o = 90°) is given by equations
TV. 38. The graphs of these equations are shown in figure 26
for 2 ; 1 ; L and 4 ; 1 ; 1 ellipsoids. The plunge of parti-
cles with their major axes parallel to the direction of shor-
Tening increases during deformation, while that of those para-
llel to the direction of elongation decreases. The more
eccentric the particle, the more rapid is the rate of change
in the angle of plunge.

The cnange in plunge for ellipsoids in positions other
the stable ones, is given by squation IV.3%7. If ei = 0% or
900, then ef = 0° or 900 for all changes in ¢. However, for
other valueg of B85 the plunze increases to a maximum at ¢ =
QEO and then decreases as the particle rotates towards ¢ =
900. This is clear from the graphs of equation IV.37 which
are plotted in figure 27 for different values of 65

These conclusions were checked experimentally in the
lrrotational strain box using the 4 ; 1 : 1 zlass ellipsoids
and the results are also plotted in figures 26 and 27. There



Figure 26 The change in plunge of (&) 2 : 1 : 1 and (B)
2y 1 : 1 ellipsoids orientated in the stable
positions at different initial angles of
plunge, during pure saear. The solid graphs
are calculated from equation IV.38a, the thick
lesned graphs from IV.3%8b.

The black dots in (3) ars experimental
poinws determined in the irrotationzal strain
box on a 4 ; 1 ; 1 ellipsoid, initielly
clunging at 250 along the direction of shor-
tening., The light, dashed curves parallel
to the theoretical greph for this ellipsoid,
demarcate a zZone of experinental error of
* 2 in the plunge.

"he data for the experimental pointe are
listed in table IX, Appendix I.
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Fizure 29

The change in orientation, ¢, and plunge, 6,
of ellipsoids, during pure shear, calculated
from eguation IV.%7. The dashed curves, i,

2, C, D, are plotted from results obtained on
a4 ;1 1 glass e¢llipsoid in the irrotstion-~
al strain box. The data for the experimental
points are listed in tsble IX, Appendix I.
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is fairly good agreement between the theoretical and experi-
ental graphs but the curves for the simultaneous wvariation
in plunge and rotation suggest thet the plunge may change
more rapidly than predicted. However, this is more likely

to be due to the changes in the fluid level and the surface
area of the matrix during straining. Note that the theoreti-
cal finite strain, not the local strain, is used to plot the
results; this is because the glass ellipsoids are much smal-
ler than the two dimensional ellipses and so are not greatly
affected by the end effects in the apparatus.

Note also that when using equation IV.2%6 to calculate
the change in orientation,for an ellipsoid plunging at some
angle © to the deformation plane, the major and minor axial
lengths of the elliptical cross-section in the deformation
plane must be used for the wvalues of a and b, and not the
axes of the ellipsoid itself. Assuming that b = 1, these

values vary with the plunge according to the equation:

a = 1//1 ~ e2%cos”s  ...(1IV.39)

where & i1s the ratio of the major and minor axes in the ellip-
. . . - \ o =
tical cross—-section. When 8 = OO, a = a; whaen 6 = 907, a = l.
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Pure shear deformation of a non-rigid ellip-
Tical particle wnich has its axes parallel to
the strain axes.

u', v' - fluld velocity components in
the metrix.

u, v - fluid velocity components in the

particle.
85 s b. - semi-axial lengths of the
rarticle before defornation.

Ly, W = viscosity coefficients inside
anc outside the particle.
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D, T3 DEFORMATION OF NON-RIGID PaRTICLZES DURING FURE 3SHIAR
(a) Introduction

This section deals with the deformation,
during pure shear, of a siangle circular or elliptvical non-
rigid particle embedded in a fluid matrix. Roth matrix and
particle are assumed to be Newbtonian bodies and have viscosity
coefficients vu' and u respectively. The analysis is developed
in two dimensions and the particle lies in the deformation
plane with its axes parallel to the pure shear flow axes. In
other words, the X, Y and I', Y' coordinate axes coincide and
can be considered as a single system of coordinates X, Y.

The components of fluid velocity parallel to these X, Y axes
are, respectively, u' and v' in the matrix and u and v in the
particle, The difference in the fluid velocities inside and
outside the particle is a function of the viscosity ratio,
R = u/u'.

Referring to figure 28, the particle is described, in
its initial form, by the equation

xz/ai2 + yz/bi2 =1 ...(IV.40)

where a; and b; are the original semi-axial lengths and
a; = 1/b,.
During deformation of the particle-matrix system by pure

snear, the particle changes shape into another ellipse
x?/a® + y&/b? = 1 ...(IV.41)

where, because the area remains constant during pure shear,
a = 1/b.

This ellipse indicates the strain in the particle, if the
initial shape is known, but it does not give the strain
ellipse for the pure shear deformation of the particle-matrix
system as a whole. The eqguation of this finite strain ellipss
is

xz/xl + ya/x2 = 1 ...(IV.42)

where xl and K2 are the principal quadratic elongations of
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the strain, /{i and fié are the semi-axial lengths and
I = 1.

It 1s the object of the analysis in this section to find
a relationship between the change in particle shape, as given
by edquation IV.41, and the finite pure shear strain, as given
by IV.42. To do this, the method developed by Taylor (1932,
1934) to determine the deformation of small drops of one
liguid in another, is used.

First, the cownponents of fluid velocity inside and out-
side the particle are calculated in general terms by means of
Lamb's (193%2) method of spherical harmonic analysis. These
components of velocity must be equal at the boundary between
the partvicle and the matrix because there is assumed to be no
slippingz at the particle-matrix interface. In addition, iv
is also assumed that there is continuity of stresses across
the inverface. Using these assumptions, and the fact that
the area of the elliptical particle remaings constant, the
constents in the terms for tune veloclty components can be
determined, and, hence, the velocity components in the parti-
cle and the matrix and at the boundary between the two.
Knowing the boundary velocity conditions, the change 1in shape
of the particle during the deformation. can be found and
directly related to the amountv of strain in the particle-~
natrix systemn.

(b) The general equations for the velocity components
A general

method for analyzing the slow wmotion of viscous, incompres-
sible fluids has been developed by Lamb (1922, pp. 594-597)
in Terms of spherical harmonic functions. The method assumes
that the components of fluld velocity can be considered as
consisting of three types of terms describing the pressure
distribution in the fluid, an irrotational motion and a
vortex motion. The vortex motion terms disaprear when consl-

dering any two dimensional flow and the components of
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velocity, U, Vv, can be described by the general agquations

- — 2 ap on+3% P
3 =_%:z r —n . nr 8 5 nl
o4l2(on+tl) ax (n+1)(2n+1)(2n+3) 3% reB*
'Bon
+j;‘TT‘
—_aX A LI ( IV. 45’8.)
_ [ .2 3 2n+3 p
5 =_%é> r _n_+ nr iL‘ “nf;l
n4—|2(2n+l) 3y (n+l)(2n+1)(2n+3) 3y < -
LN
+:E-f:§
0y | eo o (IV.430)

in which X and y refer to the rectangular coordinate axes,

2 = %% + y® and U is the coafficient of viscosity of the

T
fluid. The terms in the first square bracket concern the
pressurs distribution, p:=;§ Dy in the fluid, where Py is a
solid harmonic function of degree n. The terms in the second
8quare bracket represent the irrotational motlion existing in
a field of uniform pressure. The function 0, is also a solid
hermonic function of degree n and, moreover, beacause 1t des-
cribes an 1lrrotational fluid motion, can be considered as the
veloclity potential of the flow. The velocity potential is

related to the velocity components by the equations

U= 90/3%, V = 30/3y ....(IV.44)

(¢c) Choice of functions Q0 and P, for the flows 1in the

particle and the matrix

To find the velocity components
u and v for any particular flow, suitable functions for P
and 0y muss be chosen and substituted into =squaticons IV.43,
The cholce of these functions 1is arbitrary and is normally
made by trial and error, depending upon the type of flow and
the solution required. In the present case, one of the func-
tions mé,for the flow in the matrix, can be obtained using
the relatvionship IV.44.



In the matrix, the equations for the pure shear flow are

u' = €x, v' = - Ey ....(IV.5a)

Substituting these in IV.44 gives

3o’ /dx = ex, 3u'/3y = -€y

and this pair of partial differential equations has a
solution
o5 = (8/2)(x% - y®) ....(IV.458)

This is one of the reguired functions. Corresponding
with 1t, there must be a complementary solid narmonic func-
tion to satisfy the general relationsnip

T r2n+l.w '

@n -n-1

(Lamb, 1932, p. 111)

5 24 2 -
i.e, 015 = B_zo7(x® - ¥v3)/r° ... (IV.45b)
where 3_5 is a constant determined by the boundary conditions
and p = b/Jl ~ e?cos?a' zives the length of any line in an
ellipse which has a' as its polar angle.
The cholce of the other required functions for 0, and B,

1s made 1n a similar manner. Taylor (19%2) has shomm that
the aprropriate forms to give a satisfactory solution are

pl5 = MA_BQE(XQ - ¥3)r7 ... (IV.45¢)

for the pressure distribution outside the pecrticle; and
05 = BE(XZ - v2), py = uAap-a(xg - ¥2) «..(IV.46)

for the irrctational {flow and pressure inside the particls.
The constants A_B, BE’ A2 are again determined by the boun-
dary conditions. 1In Taylor's original functions, the radius
of the drop apreared, instead of the length p, because he was
working with small drops assumed to remain spnerical.

Substituting the equations IV.45 into IV.43 gives the
componsnts of velocity outside the particle as



ut o= (1/2)A;5p5x(x2 - yz)/r5 +
B_5p5[-5x(x2 - ¥ /r’ + 2x/r’] + Bx
v o= (l/E)A_BpBy(x2 - yz)/r5 + e oo (IV47)

3_595[—5y(x2 - y)/27 - 25/x°] - &y
Similarly, from IV.46 and IV.4%, the velocity components
inside the particle are

u = Ay  P[(5/21)xr® - (2/21)x(x® - y®)] + 2Box
v = AT (=5/21)yx® - (2/21)y(x® - y®)] - 23y
ee o (IV.48)

(4) Determination of the components of stress in the

particle and the maetrix
It is also necessary to Xnow the

components of stress inside and outside the particle. These
can be obtained from relationships derived by Lamb (1932, pp-
O -

506-597) for the components of stress, e 2 G}y, Chy» 2CLOSS
a unit area of the surfece of a sphere. The gensral two

dimensional expression for o, is

rx
Py = N|.n-l o 9Py N 2n®+4n+3 pent 3,
T Zon+l 3% (n+1)(2n+1)(2n+3)
2 -,f-f‘--r- v 2 (n—l)-_-riﬁj
5% pebri / 2% |

There is a similar expression for ny.
Maylor (193%2) has shown that these reduce outside the
particle to
/ol = 3 / 5 _ S Y 51 _
rq./r A_zp”[x/r 4x(x® - y*)/r”]
2lox/r” - 5x(x? - y2)/r'] + 2ex
.o (IV.492)

83_5p
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o/t = A—595[~y/r5 - 4y(x® - y3)/2°] -
83_g0”[-2y/r7 - Sy(x® - y*)/r’] - 2ty
« oo (IV.49D)
and inside tThe particle to

ra. /uo= hopTB(16/21)r%x - (19/21)x(x” - y?)

+ 4B x «+.(IV.508)
roiy/u = Agp-2(16/21)r3y -~ (19/2)y(x? - ya)_
-~ 4B,y e..(IV.50Db)

(e) Determination of the constants oY A;B, Bps 3_3
' The follo-
wing conditions at the boundary r = p can be used to deter-
mine the constant terms in equations IV.47 and IV.48;
l/ Continuity of velocity; i.e. u=u'y, v = v',
2/ Constant area of the particle. The area of the ellip-

tical particle is given by the formula
A = ’Kab

Differentiating this with respect to time gives the rate of
chanze i1n the area during deformation

4= x(ab + ba)
Therefore, for constant area
ab +'Ba =0
Also, at the boundary r = p along the X and Y axes, respec~
tively,

5/ Continuity of normal stresses.
l/ at = p, IV.47 and IV. 48 reduce to

u' = [(1/2) & 5 - 5B z]x(x” - y3)/(x" + 7%)

+ (@B_, + é)x

P,
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vi o= [(1/2)A 5 ~ 5B_;ly(x® - y%)/(x® + y®)
- (2B_5 + &)y

u = (-2/21)ax(x® - y2)/(x? + y®) +
[2B, + (5/21)A2]x
v = (—2/21)Agy(}{3 - y3/(x® + y®) -

[ﬁBg + (B/El)ﬂz]y

Therefore, u = u' and v = v' if

(1/2>A_5 ~ 53 3 = (-2/21)45  ...(IV.51)
and 2B 3 + £ =23, + (5/21)4, ....(IV.52)
2/ Along the X and Y coordinate axes at the boundary between
the particle and the matrix, the rates of changs in tne
lengths of particle axes are equivalent to the componsents of
fluid velocity parallel to the axes. In other words,
at r = p

a = u, b = Vy, @ =X, b =y.

Therefore, eqguations IV.48 can be written

(5/21)hya - (2/21)asa(a? - b?)o™2 + 2B,a

I

a

b (=5/21)A,b - (2/21)A,b(a® - b2)p™? - 2B,b

Therefore
ab + ba = (-4/21)ajab(a® - b%)p™% = 0

if A2 =0 +..(IV.53)
5/ At r = p, equations IV.4C¢ reduce to
Ty = u'(A__5 - 163_5 + 2e)x/p -

4 (A_y = LOB_3)x(x? - v2)/o?

il

0.

5 + 168_5 = 2e)y/p -

b’ (b_g = 108_5)y(x* - y%)/p?

and equations IV.50 to
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ul(16/21)4, + 4B,]x/p ~
(19/21)nh,y(x® - v2)/0°
ul(-16/21)4, - 4B,]y/p -
(19/21)uA2y(x2 - ye)/p5

Therefore, for continuity of stress

., _
v (A.__5 1638_

3

Bu' (A 5 = 108_3) = (19/21)uh,

-+ 28) = u[(16/21)4, + 4B,]

i€, y.'(5A._5 - 563_5 + 2?} = u[(55/21)A2 + 4B5]

oo (IV.54)

Solving equations IV.51 ~ IV.54 gives tae required

values of the constants;

Az = 10B_3 =
By = 0, By = (5/2)E/(2R + 3)

_105(R - 1)/(2R + 3)

where R = u/u' is the viscosity ratio.

ve (IV.55)

() Derivetvion of the eguations for the change in shape

of ths particle

If the sbove values for thc constants are

substituted into equations IV.47 and IV.48, the cowponents of

velocity inside and outside the particle are found vo be

u

u
v

Wwhen r

i

[(5/2)e/(2R + 3)]x
~5/2)8/(2% + 3) ]y

é[(R ~ 1)/(2R + 5)][—5p5X(X2 -

5p5X(X2 - ya)/r7 - 2p5x/r5] + Bx

yz)/t5 +

.. (IV.5639

e[(R - 1)/(2R +3)1[~5p 5(x? =~ y2)/2° +
Sp2r(x? ~ y2)/r’ + 205y/r5] - &y

[(

Dy

..« (IV.56D)

these expressions become
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u=u' = [58/(2R + 3)]x
v =v' = =[5e/(2R + 3)]y

To obtain the change in shape of the particle, introduce

e (IV.57)

the polar coordinates X = pcos a'y, y = psin a', where p =
b/J1 ~ e?cos®a' and o' is the polar angle, into IV.57. Then

u [52/(23 + 3)1[b/ /L - e?cos?a’ Jcos a' ..(IV.Bé)

v = -[58/(2Rn + 3)1[b/Y1 - e?cos?a’ Jsin a'

Along the line a' = 09, p = a and u = da/dt at the
boundary of the particle. Therefore

| da/at = [5/(2R + 3)]ade/dt
1e€. da/a = [5/(2R + 3)]de

This eguestion can be integrated between limits as follows;

a € _
g da/a = [5/(2R + 3>J[ as
ai 0
The result is

1o (a/ay) = [5/(2R + 3)J5  ...(IV.59)

Similarly, along the line a' = 90°, p = b and v = db/dt.
Therefore

In (b/by) = =[5/R +3)]e ....(Iv;60)

To get the change in axial ratic of the particle during
the deformation, subtract IV.o0 from IV.59;

| 1n (a/ai) - 1n (b/bi) = 10e/(2R + 3)
i.e. a/b = (a;/b;)exp[108/(22 + 3)]

In terms of +the relationship IV.28 betwsen the axial
ratio of the pure shear strain ellipse and the natural strain,
this equation can be written

1a (a/b) = 1n (ai/bi) + [5/(2r +3)]1ln Jll/Kg
v (IV.61)
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Figure 29 Varigtion in the axial ratio of
clrcular particle during pure sh
by eguation IV.61l.
a/b - particle axial ratio.
Jll/xg ~ axial ratio of the

Ttrain e¢llipse.

4

&

R -~ viscosity ratio between
znd the matrix.

non-rigid

&
ear, as given

pure shear

the particle
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(g) Significance and experimental verification of the

gquation for the change in shape of the particle

Bguation

IV.6L gives the change in axlal ratic of an elliptical par-
ticle embedded in a viscous matrix, during a pure shear defor-
mation of the particle-matrix system, assuming that the
particle has its axes aligned parallel to the strain axes and
ellowing for a difference in the viscosities of the particle
and the matrix. The effect of increasing vizcoslity contrast
between the particle and the matrix is clearly to reduce the
changz in shape of the particle. For exampls, 1f the part-
icle is rigid, R = oo and there is no change in particle shape
for all fTinite amounts of strain. If R = 1, the particle has
the same viscosity as the matrix and acts as a strain ellipse
during the deformation. Tor values of R between O and 1, the
particles are less viscous than the matrix and deforum more
rapidly than the particle-matrix systemn.

These considerations are clearly i1llustrated in figure
29, in which equation IV.61l is expressed graphically, assuming
an initielly circular particle and different values of R.
The most striking feeture of these graphs is the marked effect
an increase in R has in reducing the changs in shape of the

(=]

particle during a certain amount of finite strain. It is
that for values of R greater than 10, the particle-

matrix system has to experience very large strains to achleve

clesxr

a significant increase in the particle axial ravio.

To Hest the validity of ths above theoretical conclu-
sions, scveral experiments were carried out in the irrote-
tional strain box, using etihyl cellulose solutions of known
viscosities to represent both particles and matrix. The
resulis are plotted graphlcally in figures %0a-%0f, together
with the relevant theoretical zraphs.

From these graphs, it 1s obvious that the conclusions
drawn about the importance of the viscosity rati~ in control-
ling the perticle deformation are correct. loreover, tnere
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Variation in the axial ratios of initially
circular, non-rigid particles during finite
pure shear transformations in the irrotational
strain box.

The solid straight lines are calculated
from IV.61l; the dashed lines parallel to them
demarcate the zone of experimental error
assuming errors of + 0.5 mm in measurement of
the axial lenzths and + 0.5° in the apical
angle from which the strain ellipse axial
ratios are calculated.

Crosses indicate points which satisfied
the conditions of constant areay the dots
show points which did not.

Sxperiments were performed using parti-
cles with large (1.7 cm) and small (1.1l cwm)
diameters. However, the results did not vary
significantly with the size of the particle.

a/b - particle axiesl ratio.

j{;?{é - axial rstio of the strain
¢lliprse for the finite pure shear transfor-
nation, .

a) R 1, b) R 2.5, ¢) R =5

d) R= 7.5, ) R 10, £) R = 15

The detailed experinental results are

i
It

I

listed in table X, sAppendix I.
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1s good agrsement between the theory and experimental results
until the particle axial ratio reaches a value of about 2 ; 1L
However, beyond this point, the particles deform more rapidly
than expected.

It was at first thought that this increase in the
rate of elongation of the particle was due to end effects in
the apraratus, as discussed in chapter III, and so, to over-
come this, smaller particles were used in the experiments.
However, the results showed no significant difference when
compared with those for larger particles.

Another possible explanation is that the molecular
structure of the ethyl cellulose ~ benzyl alcoaol solution
forminz the particle becomes anisotropic with increasing
deformation and the solution,.therefore, becomes less viscous.
This would cause a reduction in R with a corresponding inc-
rease in the rate of particle deformation. However, one
would also expect the viscosity of the matrix to change in
the same way, but it apparently does not do so to the same
extent.

T is therefore not possible to decide definitely why
the particles deform more rapidly than expected. The reason
may be connected with the experiments not being performed in
a true pure shear field; it wmay be that the properties of the
meterials being used change after a large strains or the
boundary conditions assumed in obtaining the theoretical
solution may not hold after a large change in the particle
shape.
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E. TURS SHEAR DSFORLATION QF AN ELLIFTICAL PARTICLE WITH ITS
AXE5 NOT NECESSARILY FARATLEL TO THE STRaIN AXES
(a) Introduction
The theory developed in the previous section

applies only to circular particles or ellipses orientated
parallel to the deforming stresses. If the axes of the
ellipse are not coincident with the stress directions, the
deformation will result in a rotation as well as a change in
shape. To find an analytical solution to this problem is
extremely difficult. However, a numerical solution has been
developed from the assumption that, for infinitesimal strains,
the effect on the particle can be considered as a pure shear
deformation followed by a rigid body rotation. The rotation-
al component will disappear once the particle is aligned
parallel to either of the strain axes. The total finite
strain is obtained by summing the infinitesimal strains.

The metnod is outlined below.

(Note - the notation used in this and the following
section need not necessarily conform with that used elsewhere
in the thesis. This is mainly because only alphanumeric
symbols can be used in the language used for programming.
Where symbols are used in a different sense; they are defined
either in the text or in a diagram.)

(b) Initial conditions

The initial position of the eliiptical
particle, which lies in the deformation plane, is shown in
figure 3la. as before, X', Y' are tne pure shear strain axes
and £, 1 are axes fixed parallel to the major and minor
particle axes and rotating with them. The initial lengths
of the particle axes are 2a; and 2bi. With respect to the
X, Y axes, the equation of thne ellipse is:

2 2 2 S _
x /ai + y /bi =1



Figure 31

b)

d)
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Diagrams to illustrate tne numerical method of
calculating the pure shear deformation of a
non~rigid ellipse with 1ts axes not parallel
to the strain axes.
Initial position of the ellipse.

a5 s bi ~ major and minor semi-axial lengths
of tus particle.

0; - angle between ths major axis of the
particle and the ¥' pure shear axis.

iy, u' - viscosities of the particle and
matrix, respectively.
Infinitesimal pure shear strain ellipse.

a bo - semi-axial lengths of the ellipse.

H
Par%icle after superimposition of the
infinitesimal strain ellipse.

) bl ~ new semi-~axial lengths of the
particle.

h&C, A&D - points of intercept of the
ellipse on the X' and Y' axes.

6 - angle between the particle major axis
and the X' pure shear axis.
Mohr circle construction for the ellipse in
figure c.

Al, Bl - principal reciprocal quadratic
elonrations.
Fosition of the ellipse in figure c after
the rigid body rotation component.

0p - final angle between the major particle
axis and the Y' pure shear axis.
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This can be written

2+ By? =1 ...(IV.62)

AX
where 4 = l/aig, B = l/bia e (IV.623)
With respect to the X', ¥Y' coordinate axes, this equa-
tlon becomes

x'g(Asinami + Bcoszmi) - 2x'y'"(B - A)sinwi-cosui
+ y'z(Acosz<% + Bsinzwi) = 1
which can be simplified to

hix’g - 2y'x'y' o+ x§y'2 = 1 ...(IV.63)

toL Al 2l &
where AX Asin 0y * Bcos 0y
. = hcos®y, + Bsin®y, ...(IV.
ky cos®v; + Bsin®e, (IV.63%a)
Y= (B - A)si L .
e (: 4)sin 0;:C0S

The following invariant properties, which will hold
throughout the deformation of the ellipse can be formulated
in terms of 4, B, K%, K& and y'.

T o8 LA
dl = Kx + hy = A k)

J2 = KXK&
and £ and B can be expressed as functions of Jl and J2:

A, B = (Jy + /J12 ~ 4J2)/2 e (IV.BLD)

(¢) Celculation of the infinitesimal strain ellipse for

- . .(IV.648.)
- ' " = AR

a pure shear

Consider a circular particle of unit radius
and the same viscosity, and viscosity ratio with the natrix,
as the ellipse IV.62. This circle is deformed into the
infinitesimal strain ellipse by a pure shear apilied parallel
to the X', Y' axes, as in figure 31lb. The equation of this
infinitesimal strain ellipse is:

t 2/ 2 t 2 2 _
X /aO + y /bO =1
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This can be written
Cx'?2 + Dy'® = 1 ... (IV.65)
where c = 1/a03, D = 1/boa ee o (IV.65a)

are the principal reciprocal quadratic elongations.

In terms of the viscosity ratio between the particle and
the matrix, the lengths of the semi-axes of the strain
ellipse are given by equations IV,59 and IV.60, i.e.:

Il

a
0

b
0

sxp[5e/(2R + 3)) | (1y.66)
exp[-5/(2R + 3)]
and the equation of the axial ratvio of the ellipse is

In (a /b)) = [5/(2R + 3)1(28) ...(IV.67)

(d) Superposition of the strain ellipse on the particle
The

effect of superimposing the strain ellipse on the particle

ellipse i1s given by the transformations

x,' = aox', yi' o= boy' e . (IV.68)

1
Substituting IV.68 in IV.63 results in the equation

' ' 2 [T I ' ! ' 2 _
7\X<Xl /aO) - ey X Jy /aObO + Ky(yl /bo) =1
This can be rearranged to

A Cx'® — 2¢'x'y! o+ h&Dy'z =1 ...(IV.69)

using the fact that for pure shear CD = 1.

Bguation IV.€9 represents the new elliptical shape of
the particle, shown in figure 3lc. To calculate the semi-
axial lengths (a;, by) of this ellipse, eguations IV.64 are
used as follows:

The invariant terms oi the ellipse are

I

Iy C(Asin%@i+ Bcoszmi) + D(Acoszwi + BSinzmi)

s 2 2 A 2 -
Jo = C(Asin®e; + Bcos®e;)D(Acos®p; + Bsin®g; )
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The terms on the right hand sides of these equations are

substituted for Jl and J2 in IV.64 to obtain two new recip-

rocal gquadratic elongations;
4,8 = (3 * /Jl2 - 43,)/2

from walcn the semi-axial lengths of the ellinse are given by
a; = l/Al, by = 1/B1 e o (IV.71)

To find the new orientation, @, of the particle major
axis, consider the Mohr construction (see Brace, 1961) of the
¢llipse IV.69, as shown in figure 31d. From this diagran

tan 26 = Y’/[(Al + Bl)/E - KiC]
Which, by meking use of Jl (IV.64a), can be written

tan 20

v /[0 + agD)/2 = AC]
27" /(AgD = A40)

It

i.6. tan 206
After somé rearrangement and reduction, this becomss
tan 20 = 2(3 - A)sin 0, .cos @i/[B(Dsinz(Di -

Ccosaoi) - A(Csinzmi - Dcoszoi)] < (IV.72)

from which the angle 6 can be obtained. The required orien-
tation ¢ is the complement of this angle; i.e.

o = 90° = 8 v.e..(IV.73)

(e) Addition of the rigid body rotation
For particles with R

not equal to 1, 2 rigid body rotation accompanying the
infinitesimal pure shezr has to be added to the orientation
given by IV.73, To find the final orientation after this
rigid body rotation, use is made of equation IV.29 of the
rigid particle theory, which in terms of the present notatvion

can bes written

In cot vp = ln cot g + [(alz - blz)/(alz + blz)]'
(-2g)
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i,e. cot 9, = cot w/exp[QE(Bl - 4)/(By + &£)] .. (IV.74)

(f) Computation and significance of the results
A programme

to do the above calculations has besn written in FORTRAL I
for the IBM 7090 computer. The flow diagram of this prog-
ramme 1is shovm in figure 32. The data fed into the computer
are values of R and the initial axial lengths (hl, AE) and
orientation (q&) of the ellipses. The calculations are then
carried out in the following order:
l/ # subprogramme DEFORM computes the reciprocal guadratic
elongations, C and D, for specific values of R and &. The
size of the increment € depends on the value of R; if R = 1,
& large value of € can be chosen, because there is no rigid
body rotation involved in the deformation and the programme
merely solves the superposition of two ellipses; if R is not
equal to one, € is very small.
2/ & subprogramme UNITY converts the axial lengths of the
particle to reciprocal quadratic elongaticns &£ and B such
that AB = 1. This makes the invariant J2 always equal to 1.
5/ 4 subprogramme AXES calculates the strain invariants and
computes the new semi-axial lengths (RTA, RTB) and axial
ratio (ARATIO) of the deformed ellipse; sums the infinitesi-
mal strains e to obtain the finite natural strain (STRAIN)
and converts this to the axial ratio (BELLIF3) of the finite
strain- ellipse.
4/ The angle 6 is then calculated and the new orientation o
of the major axis is found.
5/ If R is not equal to 1, a subprogramme SBROTN computes
the rigid body rotation and the final orientation Ops

By a series of DO-LOOF3, these calculations are repeated
for successive increments of & until the totzl finite strain
experienced by the particle-matrix system, reaches a set
value, or the particle major axis becomes oriented very clos2
to ¢ = 90°,
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Figure %2 Flow diagram of tue programme to compute the
pure shear deformation of non-rigid ellipses,

'

nov aligned parallel to the strain axes.
2



READ R, )\];
/\2; ®; IMAX;
KMAX;LMAX

caLL DEFORM;
CALCULATES C, D
FOR GIVEN R, €

T

SET K=

|

CALL UNITY;
CONVERTS X], )\2
TO A,B

K=K+l

SET L=}

l

SET § = 157—¢ -

|

SET STRAIN=O

I

SET RNO=0

i

caL AXES;
COMPUTES RTA RTB,

ARATIO, A,B, STRAIN,
ELLIPS

I

CALCULATE ¢

T

N

cALL SBROTN:
COMPUTES ¢,

SET B = B,

l

SET A= AI

i

SET f=157- saf

SET @, = ¢

P =1:558

RNO=RNO ¢+ 04

—

WRITE R; A; A,
@ €; C; D:STRAIN:

ELLIPS; RTA. RTB:

ARATIO; @ 4°

1

CONVERT gof T0 ‘(“




nd

Figure 37

_]_]_5_

fure shesr deformetion paths for R = 1

ellipses which do not have their particle

axes parallel to the strain sxes. The dashed

curves are contours of tne pure shear natural

strain} the contour interval is € = 0.1 units.
2/b - particle axial ratio.

@ - angle betwecn the ¥ strain axis and

the major axis of the particle.
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The results obtained from the computer were plotted gra-
phically as in figure %3, which shows the changes,with defor-
mation, of the shape and orientation of ellipses of any axial
ratio for R = 1. The solid curves in this figure are the
deformation paths followed by a particular ellipse while
being strained. The dashed curves are contours of natural
strain with a contour interval of € = 0.l. Both sets of
curves are symmetrical about ¢ = 450.

£11 ellipses whicih have initlal orientations between 0°
and 450 become less eccentric during deformation and rotate
towerds the direction of elongation. However, when the ori-
entations of the major axes pass through ¢ = 450, the parti-
cles enter into the field of elongation and become more
gccentric as they rotate towards ¢ = 900. All the particle
major axes approach very near to this final position but only
become parallel to it after an infinite amount of strain.

One interesting conclusion which may be drawn from the
graphs 1s that the initial shage differences between particles
iz altered during the deformation. For example, consider
particles with initial axiel ratios 2 : 1 ané 4 ; 1, orien-

150. The followingz table shows the approxi-

tated along o
mate changes in shape and position during deformation.

& °%% 3 % /B

0 4.0 15 2.0 15 2.00
0.1 3.4 ce 1.7 24 2.00
0.2 3.0 32 1.5 3% 2.00
0.% 2.9 435 1.5 53 1.0
Q.4 3.0 55 1.7 66 1.75
0.5 3¢5 65 2.0 75 1.65

However, the change 1s not as marked for particles
initially oriented at o = 45°, This is shown by vhe follow-
ing data.
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o o

_E A 4 _B_ ’8 AB

0 3.0 45 1.5 45 2.00
0.1 3.1 56 1.6 6l 1.95
0.2 3.5 66 1.8 7 1.95
0.3 4.0 7% 2.1 78 1.90
O.4 4,8 79 2.6 82 1.85
0.5 5.8 82 3.2 85 1.80

Similarly, the reduction 1n the ratio of i1ndividual
particle shapes will be less marked as the initisal orienta-
tions approach ¢ = 900, and along this direction there will
be no change in the ratio A/B during the deformation.

The effect of an increase 1n the viscosity ratio between
the particle and the matrix 1s well i1llustrated in figures
34a, b. These graphs show the changes,during deformation, of
the shape and orientstion of initially 2 : 1 ellipses aligned
at ¢ = 45°, for different values of R.

In figure 34a, the change in axial ratio of ths particle
is plotted against the natural strain and it is clear that,
with increasing R, there is a rapid decrease in the defor-
mation experienced by the particle. Similarly, there is a
reduction in the changes in orientation of the major axes of
the ellipses with increasing R, during the early stages of
the pure shear (figure 34b). However, because all the ellip-
ses rotate towards the o = 900 position, these i1nitial dif-
ferences are reduced with ilncreasing strain and, eventually,
after an infinite amount of pure shear, all ellipses will
have their major axes parallel to o = 900.

The combined effect of these cnanges in shape and
orientation are shown in figure 35. These graphs are the
deformation paths of the ellipses and show clearly the
marked effect an lucrease in R has on the behaviour of the
particle.
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Figure 34 Graphs to show the effect of increasing
viscosity ratio, R, on the pure shear
deformation of 2 ; 1 ellipses, initially
at 450 to the strain &xis.

a) The change in axial ratio (&/b) with
natural strain (g).

b) The change in orientetion (¢), of the
rarticle major axis with respect to
the Y' pure shear axis, with natural
strain (&).

The numerals next to the curves
indicate the value of the viscosity

ratio, R, used to calculate the graphs.



1

\ T [

s /

RUER) AN
/ NAAR

VLD NN
/// ////N,/ //

B\ AN
O\ DN
/If N\

10

0-8

0-6

02



Figure 35

_11’7_

Pure shear deformation paths for initially
2 : 1 ellipses, aligned at o = 45° to the
7' strain axis.

The graphs conbine the results shown
in 7igures 34a, b and were compubed numeri-
cally using the indiceted values of the
viscosity retvio, R. Bach point on the
curves represents an interval of 0.1 € in
the natural strain of the pure shear.

a/b - particle axial ratio.

v ~ orientation of the major particle
exls with respect to the Y' pure shear axis.
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. SIMPLE SHEAR DEFOR:ATION OF NON-RIGID GIRCULAR PARTICLES

(a) Introduction

The problem of the deformation of non-rigid
particles is similar to that discussed in the previous sec-
tlon and is also difficult to solve. Taylor (1934) found a
solution for very small drops of one fluid suspended in ano-
ther. This analysis indicated that the drcps would deform
and rotate into the shearinz direction. Experiments showed
that once in this position, the deformed drops remained there
and kept a constant shape.

To solve the problem for larger particles, the present
writer has had to develop a numerical solution similar to
that described above for ellipses in pure shear. The method
uses the fact that a simple shear deformation is essentially
a pure shear combined with a rotation (Nadai, 1950, p. 149).
The pure shear component acts along axes at 45° to the shear-
direction (figure 36a) and the natursl strain describing it
is given by equation III.10, which for infinitesimal strains
reduces to

= xy/2 e (TT75)

Similarly, the rigid body rotation component of an infini<-
tesimal simple shesr is v /2 or & radians.

(b) Initial deformation of the particle
Referring to figure

Z6a, the equation of the initially circular particle with
respect to its own X, Y axes is:

2>
x® + y% = 1

Deform this circle through a very small amount of shsar,
T The associated pure shear changes the circle To the
infinitesimal strain ellipse in figure 3%6b. It hes the
zquation;

xz/aoB + yz/boz =1 ...(IV.76)
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Figure 26 Disgrams to illustrate the numerical method
for deteruining the simple shear deformation
of an initieally circular, non-rigid perticle.

a) Initial position.
X', Y'' - axes of simple shear.

X', ¥' - axes of associated pure shear.

X, T - particle axes.

Ly ' =~ viscosities of particle and natrix,
respectively.

The particle has unit radius.

b) Infinitesimal pure shear deformation of

the particle.

8y bO - major and minor semi-axial lengths
of the elliptical particle.

® - orientation of the major axis of the
ellipse to the Y'' simple shear axis.

c) Infinitesimal rigid body rotation of the

ellipse through an sngle ¢ radians



4
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which is the same as IV.65 and, hence, has reciprocal guad-
ratic elongations C and D. The orientation of the major axis
of the ellipse with respect to the simple shear Y'' axis is

0
0y = 457,

Similarly, in terms of tue viscosity retio R between the
particle andéd the surrounding matrix, the lengths of the semi~
axes and the axial ratio are given by equations IV.66 and
Iv.e7.

After the pure shear, the ellipse is rotated through &
radiens. The transformation equations for this are

X = X'cos € + y'sin e

J e o (IV.77)

y = ~x'sin e + y'cos &
oubstituting IV.77 into IV.76 gives

(x'cos € + y'sin E)g/ao2 + (-x'sin g +

yicos 8)%/b % = 1
which is the equation of the ellipse in figure 3%6c, with
reference to the X', ¥' pure shear axes. This equation can
be rearranged into the same form as equation IV.63%, l.8.:

W' ov'x'y' ¢ aly'®f =1 ...(IV.78)

X <
where N, = hcos®e + Bsin®e |
K}'= Asin®® + Becos®e  ...(IV.78a)
y' = (B - A)sin £-cos €
- 8 ! - ¥ 2
and 4=1/a® B=1/b

With reference to the Y'' simple shear axis, the new
orientation of the ellipse is ¢ = =/4 + & radians.
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(c) Superposition of the next infinitesimal pure shear
The

infinitesimal strain ellipse for the pure shear component of

the next increment 1n simple snear is described by equation
IV.76. BSuperposing this ellipse on IV.78 1s carried out by
the transformations

o ! = T ! =
Xy a,%s ¥y boy
and results in the equation of a new ellipse;

K:CX,H _EA{"X!yf + ?\.

' 2 .
X T:Dy' =1

J
This is the same ellipse as IV.5Q and, following the same
procedure as before, its semi-axial lengths a7y b, and
orientavion 6 can be calculated from

a1 Dy =v/t2/(le */I7 - 4350 ] 0 L (TIV.79)
tan 20 = 2(B - s)sin E.cos &/[B(Dcos® - Csin®e) -

4(Ccos®e ~ Dsin®e)] ...(IV.80)

(d) addition of the rigid body rotation component

To apply the
solid body rotation, an angle € must be added to 6. Then,
the nsw anzle between the particle major axis and tne pure
shear axes 1s

w= 6+ € .. (IV.ED)

The final orientation, ¢, of bthe wajor particle axis with
of

respect to the Y' coordinate the simple shear is

0= /4 +w ...(IV.82)



Pigurs %7 Flow diagrem of tne programme to compute
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the simple shear deformation of non-rizid

discs.
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Figure %8 Siumple shear deforwmatlon paths for initially
circular, non~rigzid pzrticles with different
viscosity retios. The solid curves are
deformation paths and were calculated nuase-
rically using the relevant value of R. The
dasned curves are lines of equal simple sheary
the value of Tg for each line i1s indicated
next to it.

a/b - particle axial ratio.

® - origntation of ©vhe particle major
zxis, with respect to the ¥' simple shear
axis.
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(e) Computation and significance of the results

The calcula-
tions outlined above are carried out for succesive small
increments of shear. The flow disgram for the prozgramme 1is
drawn in figure 3%7. Values of R are fed into ths computer
and the computations are then performed in ths sawme manner as
outlined 1n the previous sectlon, for ellipses deforming in
pure shesar.

The results obvained from the coamputer are plotted gra-
paically in figure %8. The solid graphs are deformation
paths for initially circular particles with different values
of R. The dashed curves are lines of equal simple shear,
with a contour interval of 0.5 Yge From these deformation
paths, it 1s clear that, for a given amount of shear, an
increase in R results in a smaller change 1in shape and a
greater rotation.

It is possible to check the reliability of the method of
computing these deformation paths by comparing the data )
obtained for R = 1, with that calculated from the theoretical
equations for the geometry of simple shear (equations III.3
and ITI.4);

Palg = Lferg/a? o v v /21 Gr/2)® w1 - v /2]

and 0o = w/4 + (l/2)tan"l(ys/2)
This is done in the table below.
f o} T o)

Ts 1/ pum Y num /hl/AE_Eé ® th
0 1.00 45,00 1.00 45,00
1 2.62 58.29 2.6¢2 58.28
2 5.83 67.50 5.8% ©7.50
3 10.91 7%.16 10.91 7%.16
4 17.94 76.72 17.94 76.72
5 26.95 7%.10 26,97 79.10

It 1s clear that the results obtalned numerically cor-

respond remarkably well with the correct theoretical values.
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ixperimental and theoretical deformation
patns for particles deforming by simple
shear.

The continuous curves are¢ calculeaioed
tuneoretlically and the liszhit, deshed curves
parallel to them indicate tbe zone of
egrror, assuming errors of +0.5 mm in measure-
ment of the axial lengths, and +”° in the
orientation of the major particles axis.

Cutting these curves at right angles are
tne dashed lines of eqgual simple shear; the
value of Yg Tor each line 1s indicated next
to 1t.

The values of R for the theoretical
curves and the eXperiments are as follows:

A) R=1, B) R= 2.5, C) R=5
D) R= 7.5 ®) R =10, F) R = 15.

The experimentel points indicate the

particle axial ratio (a/b) and the orienta-

tion of 1ts major exis (v ) after 0.25 v+ _ or

l
]

0.5 Y units of shear. The brezks in the

expewlrental curves are due to repositioning
of the particle et the end of each run in the
simple shear box.

The crosses indicave results obtained
during one set of experimentsy the dots are
he results of another set. The detailed
experimental results are listed 1in table XT,
Appendix T,






(f) Experimental checks on the deformation paths

Several
experiments were carried out in the simple shear box on the
deformation of initially circular, non-rigld particles. The
results of these experiments are plotted graphically in fig-
ures 394 - 39F, with the relevant theoretical deformation
paths and contours of equal siear. The light, dashed curves
parallel to the deformation paths demarcate the zone of expe-
rimental error, assuming that, at the end of each run, the
particles are rotated into the exact equivalent positions
However, it is clear from the experimental curves that this
has not happened and tasre is obviously an error 1lntroduced
during the repositioning of the particles. Facnk experimental
point indicates the axial ravio and orientation of the parti-
cle major axis after a certain amount of simple sihear. HNorm-
ally wmeasurements were taken after a shear of 0.5 Ygo though
for the R = 1 and some of the R = 2.5 experiments, vhe inter-
val was 0.25 Yo

The results obtained on particles with viscosity ratios
of R=1 and R = 2.5 agree very well with the theoretical
deformation paths. The more viscous particles also deform
as predicted during the early stages of the deformation.
Jowever, with increasing Ygr the particles elongate mors
rapidly and rotate more slowly than expected. This may cor-
respond with the similar rapid elongation observed during
the deformation of particles in pure shear, and may also be
attributed to the particles becoming anisotropic with
increazing deformation.

Yevertheless, it is evident that with increasing visco-
sity ratio between the particle and the matrix, there is &
marked decrease in the change in shape and a corresponding

incrsase in the rate of rotation.
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G. THE DEFORMATION OF SYSTEMS CONTAINING A LARGE NUMBER
OF PALETICLES EMBEDDED IN A VI3COUS MaTRIX

(a) Introduction

The behaviour of systems containing a large
number of particles in a viscous matrix, diring simple and
pure shear deformations, will now be discussed in the light of
the previously developed equations of motion for single par-
ticles, assuming that the Newtonian conditions for which those
equations were derived still hold. This assumption is gene-
rally valid for suspensions of particles up to gquite large
concantrations (30 per cent, HMoore, 1965, p.20). However, at
higher concentrations or, if the particles are asymmetrical
in shape, at relatively low coucentrations, the rheological |
properties of the suspensions may change to those of a non-
Newtonian body with variable viscosity. This effect is iwmpor-
tant, especially 1f the particles are non-rigzgid and are
changing shape during the deformation.

In the following section, the behaviour of systems of
rigid particles is discussed, assuming the equations for
isolated particles can be applied to them. In general,; the
individual particles should behave as predicted, provided
that the concentration of parvicles is not so great that they
come into contact witih one anotaer. If the particles ars
ellipsoidal, taey develop preferred orientations which will
affect the mean viscosity of the particle-matrix system.

Then, systems of noun-rigid particles are considered.

It is obvious that the mean viscosity of such a system and,
hence, the viscosity ratioc waich controls the particle defor-
nation, will vary with the number of particles present. An
equation to calculate this variation 1n the viscosity ratio
with particle concentration is derived and then checked expe-
rimentally. The preferred orientations which may be developed
during the deformation of the particles will also affect the
mean viscosity of the systemy; these too are discussed, thougn

only in general terms.
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(b) Bystems of rigid particles

i) Simple shear

In the section dealing with rigid ellipsoids

in & simple shear field, it was shown that an isolated parti-
cle rotated in a spherical elliptical orbit about the Z2' axis,
The rate of rotation varied from a maximum, when the particle
was aligned along the ¢ = 0° direction, to a nminimun, along
G = 900. 3imultaneously, the angle of plunge of tae parfticls
major exis decreased from a maximum to a minimum value. Thus
the particle would take a grezser time to pass tarougn the
X'Z' plane at o = 90° than it would tarough any other point
on its orbit, and, because tine plunge of 1ts long axis 1s a
minimum alonzg this direction, the particle major axis would
approach perallelism with the X' direction of the siwple shear.

sssuming that the individual particles in a nulti-
particle system being deformed by simple shear behaved 1in
thie manner, one would expect a preferred orientation of par-
ticle long axes to be set up parallel to the i' flow direc-
tion. The degree of this preferred orientation will clearly
depend on thne ellipsoidal axial ratios and should be best
developed for the more eccentric particles. ilorgcover, once
it is set up, the degree of preferred orientation should
remain stetistically constant despite the fact that particles
will be entering and lecving the zone of orientation
continuously.

lason and Manley (1956) have calculated from Jeffery's
(1922) equations that, once this statistical equilibrium pos-
ition hes been reached, the integral distribution function
giving the fraction of particles having an orientation between

Qo = 0° and o = wo is

P(o) = (1/2x)tan” [tan ¢/(a/b)] ...(IT7.83)

where ¢ ranges between 0 and Z=.
These workers were not able to define a similar function
P(e) for the eguilibrium distribution of plunges along the
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shearing direction, thougn they did show experimentally +hat
this distribution was set up for highly elongate particles
(a/b > 20) after a great amount of shear (more than 2300
rotations per particle).
AT high particle concentrations, it is possible in a
simple shear field for one particle to aprroach sufficiently
closse to another for thelr robtation fields to interact.
Mason and ifanley (1956¢) found that the effect of this inter-
action wes to change the orbits of the particles and they
suggested that, eventually, this would result in a steady state
distribution of orientations and plunges. In other words, the
particles would achieve stable positions parallel %o some
direction in the flow field. The writers do not specify what
direction this is but from the fact that the statistical pre-
ferred orientation 1s set up paraliel to the ' axis, one
would expect the stable positilion to be in This direction,
as well. Towever, Jeffery (1922) postulated thet in a simple
shear flcow field, ellipsoids should adopt a stable orientation
with thelr major axes parallel to the Z' flow axis. ¥e could
suggest no mecnanism whereby this stable position could be

aciuleved but proposed it because 1t would satisfy the require-
ments of minimum energy in the system and would reduce the
viscosity to a minimum.

ii) Pure shear

The equations of motion of a single ellipsoidal

particle during a pure shear deformation show that a particle
will, in general, rotate towards the direction of elongation
of the strain. &t the same time, the plunge of the particle’s
major axis increases until it 18 orientated along the ¢ = 450
direction, after which it decreases as the rotation proceeds
further. No rotation occurs during the deformation, if the
particle 1s oriented parallel to either of the strain axes.
However, the plunge of the major axis of a particle in this
position will either increase, along the direction of compres-

sicn, or decrease, along the direction of slongation.
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The rste at which changes in orientation and plunge
occur increases witn lncreasing particle eccentricity. uore-
over, the general result of these conbined motions will be
that the particle tends to become parallel to the X' strain
axis and to lle in the deformation plane. This will not
happen, of course, if the particle is aligned along the dirsc-
tlion of compressiony in this cass, the particle will tend to
lie parallel to the 7Z'axis.

Assuming that these equatbtions of mobtions are applicable
To The incaividusal particles in a mulbi-particle system, it is
clear vhat during & pure shear deformation the majority of
the particles rotate towards the direction of elongation.
This resulvs in a preferred orientation of particle major axes
being set up parallel to this direction. At first, the
degree of this preferred orientation depends upon the saape
of the perticles, because the more sccentric ones rotate
faster. However, with continuing strain, this factor becomes
unimportant as particles of all shapes approach ths end
position.

In addition to the major zone of concentration of par-
ticles around the X' axis, those particles initially aligned
along tihe direction of shorvening, develop a lesser zone of
prreferred orientation parallsl to the Z' axis.

The thneorstical equations governing the particle motions
predict thnat complete parallelism between particle major axes
and the I' or Z° flow direction will only occur aftver an
infinite amount of pure shear. Therefore, tue degrese of pre-
ferred orientation is always ilncreasing and will never reach
a position of statistical equilibrium. For thls rezson, it
1s not possible to calculate an integral distribution func-
tion corresponding to IV.83 for simple shear.

The effect of particle interactions in systvemns contain-
ing a high concentration of particles during rpure shear has
not, so far as the writer is awars, been investigated, elther
experimentally or theoretically. However, frowm the results



_]_5]_...

obtained by kason and Manley (1956) for simple sinear deforma-
tions, one would expect interactions to change the orienta-
tions and plunges of the perticles concerned. If the plunge
wele lancrsased, this could eventually lead to the particles
approaching the stabls position with their major axes parallel
to the 7' axis. Similarly, if plunges wsre decreased, the
probable end position would be parallel to the X' axis. Thus,
the effect of the interactions way be to enhance tas develop-
ment ol the preferred orientations.

iii) Viscosity of solutions of rigid particles

To determine
the effect of the presence of a nuuber of particles on {the
viscosity of the particle-matrix system, consider first a
single particle suspended in & uniformly flowing fluid. The
presence of the particle causes a disturbance in the flow 1n
the region immediately - surrounding it. This disturbance
increcases the resistance of the fluid to the flow deformation
and, hence, increasegz the viscosity coefficient. If more
thaan one particle is present, the region of disturbance de-
pends on the volume and number of the particles and, thers-
fore, the mean viscosity of a suspension will depend on the
volume concentration of the particles. Einstein (1906, 1911)
derived the followlng eguation to describe this effect for

suspensions of rigid spheres.

Lp = u' (1l + ka) oo (IV.84)

where Mo is the viscosity of the suspension; u' the viscosity
of the continuous phase (i.e. the matrix); C, tne volume
concentration of the dispersed phase (i.e. the particles);
and k is a constant which describes tae interference with the
flow and, theoretically, has a value of 2.5.

For szuspeasions of ellipsoids of revolution, Jeffery
(1922) suggested a similar equation but k could vary in wvalue
2.5 to infinity, depending upon the eccentricity of the
particles. This increase in k is due to the fact that an
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ellipsoidal particle will sweep through a volume much greater
than its own, as it rotates in the fluid and, hence, will
produce a greater region of disturbance in the flow.

Both Binstein and Jeffery assumed tnat the suspensions
were so dlspersed that the distance betvtween the particles was
infinitely great compared to their diameters. If, however,
the particle concentration increases so that the modification
in the flow produced by one particle extends into the field
of a neighbouring particle, the resistance tc flow (and hence
the constant k) is increassd still more.

To allow for this effect, Happel (1957) introduced an
interaction factor, &, which was proportional to the volume
concentration of the particles, Cv' Using this factor and
assuming that the particle interference fields intersact at
even the greatest dilutions, Tinstein's equation IV.84 for

suspensions of rigid spheres becomnes

Hp = w'(l + 5.5®Cv) e (IV.85)

The above discussion shows that the msan viscosity
depends upon the voluae of fluid disturbed during the rota-
tion of the particles. This volume will obviously decreass
as the degree of preferred orientation of the particles inc-
reases and the viscosity of the system should, therefors,
decrease accordingly. The minimum value of the viscosity
will be reached when the particles achieve a stable position,
or the statistical equilibrium degree of preferred orienta-

tion 1s seU up.
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(c) Systems of non-rigid particles

i) Simple shear

The results of the theoretical and experimen-
tal work on the deformation of single non-rigid particles
during simple shear show that the pérticle will deform and
rotate tvowards the X' flow direcwcion. 4 particle with the
same viscosity as the matrix will regquire an infinite amount
of shear before it becomes parallsel to the ¥’ flow axis. How-
ever, with increasing viscosity contrest, the change in shape
of the particle decreases and the rate of rotation increases.
Consequently, a relatively viscous particle (R = 15, say)
may rotave into, and through, the shearing direction, quite
rapidly.

It follows from these arguments that, in systems contai-
ning a large number of non-rigid particles, one would expect
a preferred orientation to be set up parallel to the X' flow
axis. For particles with a aigh viscosity contrast to the
matrix and which rotate through the shearing direction quite
easily, this preferred orientation will be one of statistical
equilibrium, as described above for rigid particles. However,
it 1s unlikely that less viscous particles will be able to
rotate out of the shearing direction, once they are parallel
to it, because of the large amount of shear rcguired. There-
fore, these particles will develop a stable preferred orien-
tation. % 1is possible that for very low viscosity ratios,
the particle major axes may no’s become parsllel to the shear-
ing direction); nevertheless, they still should have taeir
long axes parallel to sach other, if they werc originally
of similar shape.

ii) Pure shear
The theory for a single non-rigid particle in
pure shear shows that, if its axes are aligned parallel to

either of the strain axes, the particle will be elongated in
the dirsction of elongation of the strain ellipse. If its
axes are not initially parallel to the strain axes, the
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particle rotates towards the direction of elongation. 3imul-
taneous with the rotation, the axial ratio of the particle
decreases until an orientation of ¢ = 450 1s reached, eafter
which it increases. Thus, the end result i3 for tue particle
to approach parallelism with the direction of elongation and
To increase in eccentricity. The rates of rotation and elon-
gation increase s the viscosity ratio between tas particle
and the matrix is reduced.

Applying thcse observations to systems containing a large
number of particles, it is clear that during pure shear a pre-
ferred orientation will be set up perallel to the direction
of elongation of the strain. Initially, the degree of this
preferred orientation will be greatest for the least viscous
particles but, because all particles rotate towards the same
direction, this difference will disappear as the strain con-
tinues. However, the less viscous particles will always be
much more eccentric in shape than the more competent
particles.
i1i) The viscosity of systems containing non-rigid particles

It was shown in the section on rigid particles that the
mean viscosity of a particle-matrix system is proportional to
the volume concentration of the particles. Tnis effect is
very isportant for systems of non-rigid particles, becauss
the deformation of the individual particles depends on the
viscosity ratio between the particle and the system. In the
single particle theory, the viscosity of the systeun was assu-
med to be that of the matrix solution. However, this is
obviously not valid in multi-particle systems and so an
attempt will be made to correct for the effect of tane
particle concentration.

Binstein (1906, 1911) in his work on the viscosity of
suspensions of rigid spheres, showed that the mean viscosity
depended cnly on the solid harmonic function pLB’ appearing
in the equation of fluid velocity IV.43. Using this fact,
Taylor (1G632) extended Zinctein's analysis to suspensions of



small fiuid drops held approximately spherical by surface.
tension forces. His resultvant equation was

bp = 4 [T+ (1/2)C,(5R + 2)/(R + 1)] ...(Iv.é6)

The same procedure can be followed to determine the
viscosity of systems containing larger particles, not neces-
sarily affected by surface Gension forces.

From equation IV.45c it is clear that p ,; is proportion-
al to the constant A__ which, in turn, hasg a Talue given by

5
a_y = =5[(R - 1)/(2R + 3}](2e) ...(IV.55)
For rigid srheres with R =00, this equation reduces to

where tihe npumber 2.5 is the value of the coefificienyv k
appearing in the Binstein equation IV.84. Hence, for fluid
spheres not subject to surfuace tension forces, k = 2.5 must
be replaced in equation IV.84 by

k= 5(R - 1)/(2R + 3)
i.e. the minstein equation iz modified to

by = w1+ 50,(R - 13/(2R + 3)]  ...(IV.57)

This eguation agrees wich that obtained by “ashin (quo-
ted by Reiner, 1960b, p. 214) for the analogous problem in
elasticity theory; i.e. the incrsase in the shear modulus of
one elastic material by the presence of spherical inclusions
of another.

The increase in viscosity dvue to the interaction botween
regions of disturbance in the flow around the perticles has
not been considered in deriving IV.87. To allow for this
effect, it will be assumed that Happel's interaction factor
for rigid spheres is also valid for non-rigid particles.
Inserting this into IV.87 results in the following equation

T w'l1 + 5¢C (R - /(2R + 3)] +..(IV.88)
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Figure 40 Graphs of equation IV.89, showing the vari-
ation in viscosity ratio with particle
concentration.

Rm - viscosity ratic between the
individual parvicle and tue particle-matrix
system. NE

Cv - volumc concentration of the

particles in the system
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which gives the viscosity of the particle-matrix systemn.
In calculating the deformation of the individusal parti-

cles, 1t 1s the viscosity ratio

R, = w/ug

which is the controlling factor. To obtain Rys IV.883 can be
modilfied to

R = R/[1 + 58C_ (R - 1)/(2R + 3)] ...(IV'.89)

from which 1t appears that Ry is always less than R, 1f R > 1,
and 1t decreases with ilncreasing 4 and Cye

The decrease 1in Rm with 1lncreasing particle concentra-
tlon 1s well shown in figure 40, irn which equation IV.8S 1is
plotted graphically for differsnt 1lnitial values of Rpe To
calculate these graphs, the numerical values of & at diffe-
rent concentrations va as tabulated by Yappel (1957, table I.
Note that Happel uses the symbol ¥ for &) were used. Concen-
trations greater than Cv = 0.5 were not considercd because
above this level friction effects due to interparticle con-
tacts become large and the resistance to shear very much
greater than predicteds 1.e. Rm 1s greatly decreased.

From the graphs 1in figure 40, several conclusions can
be drawn. First, it is obvious that significant reductiocns
in the viscosity ratio, controlling deformation of the indivi-
dual particles, can be achieved by increasing the particle
concentration., In tals way, 1t 1s apparently possible for
Rm o become less than 1% 1.e. a particle~matrix systen can
have & viscosity greater than the particles alone, because of
the interaction between the disturbed regions of flow around
the particles. If R is initially less than 1, Rm increases
in value with CV and may become greater tnsn 1. However, for
such values of R, there is a concentration for waich Rm
becoines negative, according to equation IV.39. This shows
that the equation does not hold realistically over a wide

range of values.



Fipure 41 The effect of incressing volume concen-
tration on particls deformetion.

i) Theoretical deformation peths for initially
circular particles deforming during simple
shear.

Experimental points 1 to © glve the
mean perticle axial ratio (a/b) and orien-
tation (¢ ) after 1 vy shesr, for different
particle volume concentrations (CV). The
data for each point is listed in table 111,
Appendix I.

The zone of experimental error 1is
indicated by the dashed curves parallel to
the Yg = 1 contour; the assumed errors are
+0.5 mm in the axial lengths and +3° in
the orientation.

B) Theorctical and experimental variation of
viscoslity ratio, Rm, and particle concen-
tration, Cv' The solid curves are celcu-
lated from equation IV.89; the dashed curve
iz tae experimental one. Toints 1 to 6
relats the value of Rm to CV. Rm was
determined from figure A, by extrapolating
from points 1 to 6 onto tae Yg = 1 curve.



a/b
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25
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iv) Experiments to observe the effect of increasing

concentration on particle deformation

A series of experi-
ments were carried out in the simple shear box to observe the
increase in particle deformation with increasing concentra-
tion and, in particular, to check eguation IV.89. The
particle-matrix systems used had a viscosity ratio of R = 5
at CV = 0 and the concentration range covered was 3 to 23
per cent.

From photographs of the deformed particles, a mean axial
ratio and orientation of the major axis was determined at
egach concentration. These were then plotted on the theore-
tical deformation paths for particles deforming during
simple shecr (figure #414). It is clear from this graph that
there is a significant increase in the particle axial ratio
with increasing concentration. The change in angle of orien-
tation is very erratic but allowing for the larze range in
measured values and the experimental error, ¢ appears to
remain relatively constant.

To find tae wvalue of Rm at each concentration, thse
experimental points are extrapolated back to tne Yo = 1
contour. Then, the value of the viscosity ratio &at tnese
points 1is Rm tor the particular concentration. These values
of R, and Cv are plotted in figure 418 for comparison with
the theoretical curves. The results show that the sxperimen-
tally cetermined values of Rm decrease much more rapidly,
with increasing concentration, than expected.

+t 1s not surprizing that there is this discrepancy
between the experiment and the theory. The discussion on
equation IV.90 showed thet 1t wags unrealistic over large
ranges of R. Horeover, Wappel (1%Y57) suggested the inter-
action factor @ to explain the viscosity of suspensions of
rigid spheres. The particles in the present experiments are
non-rigid and become elliptical during the deformation and soO
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1t is quite probable that the boundary conditions used to
ootzin ® may no longer hold. However, both the Lheoretical
curves 2nd the experimental results emphasize that the visco-
sity ratio decrecses rapidly with increacsing volums concen-
vration of the particles., This is important when estimating
the aeforwation of systems containinz a large nuimber of par-

1t

ticles. ©Purthcirmore, it is suggested that ths curves in
figure 40 can be ussed to esvinmase Rm’ if CV is known, providedl

that 1t is realized that this value of Rm may be too high.

C

¥, OIRAINS DEVELOFED IN 75 MATRIX 4ROUND A SINGLE PaRTICLE
DURING DiFORMATION BY PURE OR STM:ILy 3T8aR

(a) Introduction
In this section, the varisations in strain

taroushout the matrix,during the deformation of & particle-
matrix system, are considered. It is obvious that since a
parsicle causes a rezion of disturbance to bs set¢ up in the
uniform ilow field, the deforastion in tlie wetrix immediately
gurrcunding the particle will be diffecrent from thatv experien-
c2d by material outside the region of disturbsuce. Towever,
it is very difficult to calculate theoretically this varia-
tiocn in ©ohe strain. Considering a pure shear, for exanple,
one would have to solve equations IV.56 for the fluid veloci-
tles outside the particle for differ-nt vsalues of x &and 7.
Jence, the stream lines sround the particle could be construc-
ted and from these the required strains could be obtained.

An easier method than this is to calculate tac strains
experimencally from ths distorvion of rectangular grids,
stanped onto the surfioce of the matrix. This 1s thes approach
adozted here and the results obuvained are described in the
following subsection. Iforsover, from the initiel and final
snape of a grid, the displacement vectors of the matrix
during the deformation can be constructed. These are impor-
tant because they reflect the type of deformaetlion which has

occurred. They are also discussed in the iollowing secvion.



Figure 42

Tre wajor and minor szmi-eaxes of

local strein ellipses, developed around
a ricid disc of dicmeter Z.5 ¢

O =

R simple shezx,
,]k-,jhg - major and ninor semi-exes of
the strein ellipse for the sinmple snear

ceformation.

local stroin axzs were detbermined from
the distortion &t eaca point of &
rectangular mrid, using toe Lohr con-

structvion.
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(b) Strains snd movement directions in the matrix
The strains

in tae wmatrix were deteruinzd from a distorved rectangular
grid by using the iiohr construction (see Brace, 1961). at
eacn point on tae grid, the chanzges in the right angls and
the initial loagths of the lines were measured. These obser—
vatbions were then used to construct a kohr circle, from which
could be detvermined tue orientation and magnitude of the max—
iaum and minimum principal streins at the point. The method
1s tedious and time-consuning and the calculations nave only
been carried out completely for the strains developed around
a rigid disc, during 0.5 Yg simple shear. The resultant
diagram is 1llustrated in figure 42.

Adxamination of tals figure shows theat the strain due to

the presence of the particle is grestest in the mavrix

[=5
=3
,)
._:

nedietely surrounding it, and that this zone of disturbance

tencde for a distance approximetely equal to the radius of
the disc. Wwithin this zone, tune axial rajios of the local

rein ellipses are gencerclly zrester tonsn those elsewhers
ir tihe matrix. IHoreover, the principel strain axes are def-
lected from tae mean orieantation towards a 1line, which passes
through tvae centre of the disc and 1s parallsl to the mejor
principal axis cf the strain ellirse for the simple shear.
Towever, apart frow these o:servations, 1¢ does not aprear
that the disc has signiiicantly affscted the strain in the
matrix.

Diagrams showing-the movement of the metrix, during
deformation of ths pearticle-umabtrix system, are in many ways
nore weaningful than thoss sinowing the actual streains around
the particle. These diagrams are casily constructed by join-

ing tae initial and final sositions of all points on tne

U)

-]
rectensgular grid. They, taerefore, show the direction eand
magnitude of the movemsnt in the matrix.

In figures 43 and 44, several suci movement diagrams are
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igure 43

pooliionia RutbultuNUi 4

The displacements in toe metrix arcund a
sarticle during & pure shear transforuwetion
DOX.

n
The diagrans on the lelt are of tae

.

in tne i1rrotational streir

adlstorted rectangulsr griasy those on the
rignt show the dispiacensnt vectors obtained

from the inivial and

5
All disgrams are for the sams amount of
strain, nausly J“l/%ﬁ = 2.6

The vizcoslty ratios ars es follows;

A, B-R=2.5, C, D-R= 5

L, ¥~k = 103 G, T - rigid disc;
I, J - rizid 2 ; 1 ellipszs.
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shown, btogether with the distorted grids from which they were
constructazd. These figures clearly illustrate the ayperbolic
and laminar flow fields for purec and simple shear, respect-
ively. Eoreover, 1t appears that the distortion in tae flow
figld around the particle dspsnds on the viscesity ratio.
fdor particles with R = 2.5, the disturbancs in tae flow is
slizht and dies out very rapidly. However, with increasins
R, vThe distortion in +the movewment vectors incresascs and is
guite marked for the rigid particles. The areal cxtent of
tine rezion of disturbance appears to depend, in part, on the
type of deformation. In simple shear, the disturbance dics
out qguickly and hasz generally disappeared within a distance
gqual §o one particle radius. aowever, the distortsd grids
around the particles in taz irrotational strain box, suggest
that the dlsturbance affects a much greaver area in tails
type of dsiormation. For example, the distortion extends
along the direction of elongation for at leest a distance
gqual to tas lsngth of the major axis of the parvicls
It 1s rossible that the distortion of tihe matrii around

the particle could be used vo cstimate the viscosgilty ratio
between vhe particle &nd ths matrix. TFlow or movement lines
arounca ¢gie particles with the sawe order of viscosity as
the metrix, should only be sligntly refracted. around tue

nors viscous purticlss, however, ths rsfractvion should be
more merged. In this wey, an c¢stimate of the velue of R

can be meds



Figurs 44
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Tne displacements in the netrix around a

partvicls during sinmple sheear.

diegrams on tie lelit illustrate the

distorted rectenguler grids; those on tne
right show the displecemsnt véctors obtaliaed
from the initial and final positions of &all
points on the grids. The dotted ends of the
vectors sre vne iwitial positions.

Thne viscosity ratios bstwecn each par-
ticle and the matrix, and the anouant of
aeformation are as follows:

4, B - R = 2.5, 1 tg snear.

C, D -2 =5, 1 Y shear.

B, F~R= 10, 1 shear.

G, H - pigid disc, 0.5 Y shear.
I, J - rigic¢ 2 :» 1 ellipse,

0.5 T shear.
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CHAFTER V GEQLOGICAL APPLICATIONS

A. ROTATED CRYSTALS aS JUANTITATIVS STRAIN T.iDICaTORS

(a) Isolated crystals

i) Frevious work

Rotated crystals of minerals such as garnet, albite,
kyanite, staurolite, choritoid and magnetite have often been
used as criteria for shearing movements along suitatle sur-
faces such as schistosity, cleavage and bedding planes. Recta-
tion may be indicated by distortion of tne material arcund
the crystal or by helicitic structures within the graias.
These latter structures may be planar, indicating crystal
growth pricr to the suiearing, or curved in a spiral form sug-
gesting that growth and aoveunent were contemporaneous. The
spiral forms have been described as "snowball" or "pin-wheel"
structures in the literature (e.g. Flett, 1912, p. 111; Enopff
and Ingerscn, 1938, p.35).

The first person, known to the present writer, to use
rotated porpnyroblasts for determining quantitative amounts of
slip or shear strain in a rock was Schaidt (1918) who sug-
gested the simple model of a swvhere rotating between two rigid
planes, as in iigure 45. According to this nodel, the amount
of shear is related to the angle of rotation by the equation

fg = oradians ... (V.I)

Becke (1924), Mugge (1930) and in recent years Osberg
(1952 ».93) and Zwart (1960, 19%3) are amons the many workers
who have used this formula. The equation provides only a
minimum value for the amount of simple shear and allowances
have to be made for fectors such as slipping between the par-
ticle and the boards, which umay retard the rotation. Zwart
(1963, p.345) for example, found the maximum angle of rotation
of porithyroblasts in a series of kyrenean schists to be 900,
indicating a shear of approximately 1.6 units. To this
amount he added 2 units to allow for what he termed the
breaking effect of frictional drag and a further 2 units to



N
Figure 45
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The model of a sphere bebtwesn twe rigid
planes, suggested by Schmidt (1918) to deter-
mine quantitative amounts of zhear from rota-
ted porphyrcblasts. (After Spry, 1963)
Initiel position; the circle has unit radius.
noved to the left and the bottom plane to the
right and the sphere has rotated through an
an angle of ¢ =v./2 radians. The total slip
between the woints a and b is 2¢; the planes
are two units apart. Thereifore, thce amount
of simple shecar 13

Y, = ten £ = ®



2¢
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ounpensate for th. rotardution que vo fletsening.  There-

Q

fore, the total shearing strain was found to be ruughly Yy =
6.

Nobody, so far as the writer is aware, has allowed for
the effect of eccentricity of the crystal shape in making
guantitative calculations of strain. Obviously, when using
crystals of nminerals such as garnet, which mey approximate to
a sphere, the shape factor is unimportant. However, Zwart
(1960, p.178) in discussing orientations of andalusite,
staurolite and cordierite porphyroblasts, notes that round oxr
sguare crystals are rotated more than those which are ellip-
tical in shape and highly elongate ones show no rotation at
all.

Spry (1963) reviews most of the work dealing with ro-~
tated porphyroblasts and suggests that instead of the Schmidt
formula, a more accurate method for calculating the shear
strain from "snowball" garnets is to measure the visible
length of the spiral path form:zd by the inclusions in the
crystals. The shearing causing the rotation is approximately
30 per cent greater than this length. The method 1s suppoced
to 3give a vaiue for Ts almost twice as large as that obtaine<h.
from the Schmidt eguation. However, in comparinz the two
methods, Spry (1963, table on p.220) has miscalculated by a
factor of two, the shear according to equation V.I and by cor-
recting this 1t is found that the Schmidt model gives a
slightly greater value for the shear than does the spiral
length.

An explanation for the occurrence of eqguidimensional pozr--
phyroblasts which have apparently been rotated in a pure shear
flattening field was suggested by Ramsay (1962, pp.322-324),
Because the particles are circular in shape, they must remain
stationary dur.ng this type of deformation but any external
planar features not parallel to either of the strain axes
rotate passively, thus causing the angular difference between
the internal helicitic trails and the external schiistosity.



Yhotomicrograpn of two rotated garnet
porphyroblasts (x 15)

(Reproduced by permiscion of
Mr. Tom Sibbald.)
Diagram to show the method of measuring
the angle of rotatbtioi: between the inner-
most portion of the snowball trails (Si)
and the mean direction of the external
schistosity (8,
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The angular rotation is determined by Wettstein's (1886, p.33
formula

tan ¢, = tan minl/xg veoo (V.2)

Note that rotations of more than 900 caniiot be obtained in
this way.
ii) The suggested viscous model

The model propoged in this
thesis, namely rigid particles embedded in a viscous fluid,
is in the writer's opinion a more realistic one than those
discussed above and removes to a great extent the need for
arbitrary guesswork about retarding forces. In a simple
shecar deformation, the necessary equations to calculate the
amounts of strain are

tan ¢ = (a/b)tan[abys/(az + b®)] ....(3IV.18)
Tfor elliptical particles and

Yg = 20 ....(IV.9)

for circular ones. Equation IV.9 is similar to the Schmidt
formula but gives twice the value of s for a specific rota-
tion @,

The equation for describing the particle rotation in a
pure shear field is

In cot v, = 1n cot ¢4 + [(a® + b®/(a® + b?) ]
In JKE/kl ...(IV.29)

Wote that rotation cannobt exceed 90° and that for circular
particles the zquation reduces to O; = @p, i.e. there is no
rotation. Jixternal schistosity in the matrix also rotates
during pure shear according to equation V.2.

Therefore, to calculate the amount of strain, the axial
ratio of the crystal is measured and the angle between the
internal and external schistosity planes or between the major
axis of the particle and the external schistosity. These va-

lues are taen substituted into one of the above egquations,

\
/.
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Table V uantitative estimates of the amount of simple
shear in a rock, made from rotated crystals.

Reference Porphyrcblast 0° A B C
Schmidt (1918) Graphite 155 2.70 - 5.40
Garnet 173 3,04 - 6.08
Osberg (1952) Albite 90 1.57 - 3,14
Spry (1963) Raglan garnet 144 2,50 2.20 5.00
Schichallion garnet 144 2.50 2.44 5.00
Zwart (1963%) Andealusite, garnet, 90 6.00¢ - %14

staurolite, etc. _
¢o - angle of rotation measured between the internzal
and external schistosities, assuming that
shearing has occurred along the schistosity
planes.

A -~ shear calculated according to equation V.1
(Schmidt model).

B - shear calculated according to Spry's method of
measuring the spiral length. The unit shear is
then calculated by dividing the measured length
by the diameter of the porphyroblast.

C -~ shear calculated according to equation IV.9
(viscous model).

* — includes allowances for retarding forces.



depending upon the type of deformation, and the strain is
calculated.

To i1llustrate the technigyue, consider the two garret
crystals shown in plate III. The garnets contain curved
inclusion trails indicating that they have grown during
rotation. The crystals are aprroximately circular and the
angle between the innermost portion of the trail and the
mean direction of the external schistosity is 162°. Because
this is greater than 900, the rock has probably experipnced
a simple shear deformation. Therefore, from equation IV.9Y,
the amount of simple shear is Yg = 5.6.

The data of other workers has been recalculated in a
similar manner and the results are listed, together with the
original estimates, in table V.

iii) Use of a_large number of crystals

Qoviously, when working
in the field, as much data as possible should be obtained
about the rotations of individual crystals together with their
relative positions to each other and in the host rock as a
whole. In this way it should be possible to obtain a picture
of the general movement pattern during the deformation.

Zwart (1963) examined schists ranging from Cambro -
Ordovician to lLower Devonian in age from the Central Iyrences
and meacsured 300 rotated crystals in samples covering the
whole area. The maxinum rotation was 900; smaller angles
than this were attributed to the elliptical shape of the
crystals but were not used in the calculations. Zwart con-
cluded that the rocks had been sheared by an amount of 6 yg
but probably much more information about the shearing move-
ments could have been obtained by considering all the mea-

surements together with particle shapes and positions,
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figure 46 A minor fold from the Stgir Schists, Switzer-
land, containing garnet porphyroblasts (Hun-
bers 1 - 9) wnhich have an internal schistosity
not parallel to the external schistosity.
Scale - actual size.
(Reproduced from Chedwick, 1965, fig. 59,
by permission of Dr. bBrian Chadwick.)

a, b) Graphs showing the variation of thiicknesses
T and t for the lithological units I and 11,
around the fold. 7T is measured parallel to
the axicl plane; t 1s measured perpendicular
to the layering.

A.P. - axial plane.
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(b) The variatisn in rotation of crystals abouls @ fold

i

The dilferences in rotation expurienced by ciystals
distributed around some seclogical struciures is eadllJ
understood when counsidsrin: folding. HMoreover, Hhe scnse
of rotation can heln t. decipher the folding moczanism
and tie amount of rotatioan ca. give & quantitative

stimate of the strains invelved.
again, it is Zwart who has done most work in sais

field. T*n ais 1990 paper (pp. 178-179), he uses the sense
and amount of rotation to deduce two types of deiormation

tlhie rocks he was discussingz early shear folding;
followed by later concentric foldiig. In a very recent
paper, Zwart and Oele7 (1966) describe magnetite crystals
rotated about axes parallel to tne fold axis and use then
¢ type oi deformation i an over-turncd

[y

to interpret *
Rocroi magsif. The argument is vaguc

9}

i

o

enticline in

o

but rfrom ktae sense of rotation, which appears to Le
hearin:. .overvents along cleavaze plancs

[0}

connected with
develceped in the puylillitic rocks durii: compression, it
13 concluded tiat oihz folds aze oi a flattened ilexuze type -
Th:sc results are also cowmpared with a similar-type fold
(described by Lansheinrich, 1964) in which pyrite crysvals
are rotated in the copposite scnse.

Instead of discussins the above examples in detail,
the potentizl of usinzg rotated crysitals te azalyze foldin,
will be demonstrated using data taken from the fold rep-
resented in figure 4€. 7This diagram shows the profile
section of a uinor fold from Btgir Jchists, Lu.manier
switzerland. Thie rock is a gainct schist and corntains
porph,robl asts which are unusual in that they are not
equidimensionzl in shape but have axial ratios between
2+ land 2.5 : 1. The schistosity trails enclosod in  he
crystals are planar, indicating pre-del:rmational growth
under static conditions; they lie at diiferent angles to
the external schistosity but are parallel to “he majox

axes of the crystals.
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Figure 47 Diagrams to illustrate a2 similar fold necha-
nism for the formation of the fold in figure
46.
a) Initial position
b) 4 similar fold formed by shearing parallel to
the axial plane.
@ - angle of orientation of the major
axis of the crystal.
@' - angle of dip on the limbs of the fold.
The variation in simple shear sbout the fold

(@]
~

in figure 46, ésauming that it was formed by
a similar fold mechanism.

The numbers wlotted next to each porphy-
rovlast are the cmount of Y, 288 calculated
from the present vosition 01 the crystal
using egquation IV.18. The maximum shear on
the limbs is calculated from eguation V.3.
The relevant data regquired for the calcula-
tions are listed below.

Garnet Axial ratio gf Ng—
1 2 : 1 29 0.96
2 2.4 1 40 0.96
3 2.5 : 1 32 0.71
4 2 1 45 1.15
5 2 : 1 43 1.09
6 2 1 26 0.87
2 2 : 1 30 . 0.70
8 2.5 : 1 30 0.67

Maximum Yq from the dip of the limbs = 1.43
(Angle of dlp = 55
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To get an initial idea of the mechanics of formation
of the fold, the conventional methods as described by Ramsay
(1962) were used. These involve measuring thicknesses para-
llel to the axial plane (T) and perpendicular to the bedding
plane (t) for different lithological units. TIigures 46a, b
show the change in these parameters about the fold. The
thickness T is relatively constant aleng layer II but is
distorted in layer I by the presence of the rigid crystals.
The valuss for t are approximately constant except for a
marked increase about the axial plane.

The constant value for T in layer II suggests that the
fold may be of a gsimilar-type, which agrees with the conclu-
sions reached by Chadwick (1965, p. 129) for folds of this
age in the Iukmanier region. However, the fact that ¢ is much
greater in the hinge of the fold than it is on the liabs
indicates a flattened flexure type of fold (Ramsay, 1962,

p. 316). The relative positions of the porphyroblasts around
the fold can be used as follows to determine which of the
folding mecnanisms is more likely to have operated.

Consider first the possibility that the fold is a simi-
lar fold, formed by shearing parallel to the present axial
plane and let the imitial position be as in figure 47a. The
bulk of the rock is assumed to be in a homogenous, viscous
conditicn and the rigid crystals lie with their long axes
parallel to thz layering, which behaves passively during the
deformation. To form the fold, differential shearing move-
ments are applied symmetrically about the axial plane and at
right angles to the layering, as in .figure 47b. The position
of any particle relative to the layering now gives & measure
of the .amount of shearing strain it has experienced. Ideally
one would expect the maximum shear on the limbs of the fold
and zero shear at the hinge. Hence, with refercance to
figure 47b, the dip on the flankgs of the fold, o', indicates
the maximun shearing strain during the deformation. The value
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of the maximu: shear is given by the equation

Y. oy = tED @' ...(V.3)  (Wadai, 1950, p. 146)

T

Using this model -rd assuming that tie axes o

]

rotation are parallesl to the fold axis, the shear around
each ;arnet has bszen caiculated from equation IV.18. The
resulss are plotvted in figure 47c and there appears to be
no systematic variation in the shear around the foid.
Crystals in tie hinge zone indicate values for y_ similar
to those on the limbs. Moreover, &ll the Yq valuss
calculated from v..e crystals are si nificantly less than
the maximum shear indicated by the dip of tue licbs. 1hils
almost certainly implies that the model. of an ideal similar
fold is not corrsch.

T¢ analyze the fold in terms of the flattened flexure
model, it is first nccessary to deteimins the amount of
flattening. This is dome using the graphs published by
ramsay (1962, fig. 7). The thickness t 1s measurcd at a
point on tie Zold, expressed as a fraction of the thickness
in tae blnuc and plotted against the dip at the point of
measure.cnt. Cnly twoe such points could be obtained for
the present iolcd becsuse of its straight limbs. Dowv.ver,

both these poinzs fell on the graph for 50 p.ur cent Tlatitening

The next step in the procedureis to unflatton the fold
by this amount. This .as carried out for the writzr by

Ir. F. dudleston whose Lielp 1s gratefully aclnowledged.

The regultant fold is ghown in figurc 48a. The limbs are
etill strei ht and dip at approximately 550. During thae

unflattening, the porphyroblasts rotate and tnelr new
rositions are calculated from IV,.29 using the :mown vealues
of 0 p and a strain e.lipse axial ratio of 2 : 1. T.e ney
orientations are alsc plotted in figure 48a. It is clear
that 211 the porphyroblassts now lie witix their major axes
dipping at a sligntly lower angle than the beddiang. they
could hase reechesd this position as a result of eli

the bedding planes during tire initlal folding.



Tigure 48 a)

rance of the fold in figure 456

2
after unflatteninzg by an amount of 50
T

c
The limbs now div at 550 and the now

orientations of the porphyroblasts are
as follows:
Garnet ji Garnet QS
1 238 5 31
27 6 26
5 21 7 21
4 33 8 20

b) Diagram to illustrate the bedding plane

slip along the straight-limbed section

of the fold duriag the initiel folding.
Ys is the amount of zimple shsar
durin;g the bedding plene slip
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The amount of this siip alonz tne straight portion of
the limbs is riven by the tangent of the anzle oi dip of
the limbs (see¢ fig. 48b) i.e. for vhe present fold v, = 0.70
&lons the limbs.

Because the fold consists mainly of t.ue straiznt limbs,
unfolding it so that the layers become horizental involves
applyin: a simple shear of this magnitude in the opposite
sense to thet shown in figure 4&€b. The porrhyroblasts
rosate durin.. tois shearing and Saeir final orientations
can b. calculated frem cguation IV.18. The results are as

follows :

¢arnet & Garpet e
1 +1. 5 +5
2 -2 6 -1
2 -7.5 7 -5
4 6 8 -7.5

+
& 8 lics betwesa tize major axis oif the porphyroblast
nd the luyering. rositive angles are measured in 2l
anti-cloc.wise sense:; unegative an_1ss in a clocitise sense.
T ulaticns show that t.e porghyroblasts were

C
"ore folding witi: saeir major axes approximutely

‘.._

F

-

W

@]
A ]
Hy =

oriented bg
parallel to, or at low angles to, the layering. It was
previou:ly mensioned that thie internal schis”osity was
warallel o the major axis oi the porphyroblasts. Thersfore
unfla-tening and unfolding has rescored an agpioximate
parallelisw bebween the internal and external schistosities
Mhis strongly su.gests That ths flattened Ilexure fold

riodter 1Ls correct.

P

B. WOy DLVALCLMGHT OF PREXSIROD OnI HTaTICHS i HOGITS

% was sho'm in tioe section on deformaticn of

particle-zmatrix systems containiny a larie number of
particles that during pure and simple shear delormations
preferred orlentations of the particle major axes would
be se¢T ul. Thisz is obviousyiy of sreat importance in



- 160 -

the development of preferred orientations of porynyroblast
pebbles and other particlss in igneous nad Uevenorpric
rocks. Indeed, Jeifery's (1922) theory on the molion of
ellipsoids has often been quoted as an explanatica for toe
development of mreferred orientations ¢f minerals (e.z.
Knopff and Ingerson, 1958, Pp.1%35-136: Turner and YWelss,
1965, pp. %23-%25) and recencly there has appeared & par
by Bhattacharyyva (1986) who uses Jeffery's equationz and
the experimen-ar results ¢f Mason and ais co-workers
(¢.g. Mason and Sartok, 1959) to explain parsllelism between
mineral lineations and flow directions in rocks. Orient-
ations i stones in till have been explained in a ciwilar
way by Glen, Jo.ner and Jest (1957) who have also constructed
a rose diazram for tune long axes of 2 : 1 : 1 eilipsoids
iliustrating the stable trelferred orientation parelilel to
tihe shearing direction.

dowevszr, so Iar as ui:e prcscnt writer Ls aware,
no one has attempted to correlate tne degree ol pueferred
orisntation of +ie particles witix the amount ol .inite
strain, as Flinn (1962, pp. %5°-400) has done ifor wreielred
orientations of lines znd planes in a homogenous material.
“n attenpt to do this is made in the followinz sections
using the equation. previously derived to daescribe the
bzhaviour of t..e parvicles. Must, rigid ellipsoids are
congidered aund The chanes, durling pure &aad siwplz shear,

of iniviall m randon and rejuler Jistributicns ol

of particles are exawnined and related to the finite strain.
Then, »referred orisntations of “ua—ri;id g_livses,
developed during pure shear, are discussed az 0D chnEanies
in shape and orientaticn relavszd ©o the streiun.
(a) i&ijid particles

The rizid paiticles are assumed to be 2 ¢ 1 ¢ 1
ellinsnius. Tae o iniviiel distributions of the rlunges of

£ ey

the major axes of Those particles witn respect te the



Figure 49 Stereographic »rojections of the plunges
of the major axes of 2 ¢ 1 : 1 cllipsoids.
(Lower hemisphere, Wulff net)
a) Random diagram, 100 points.
b) Regular diagram, S8 points.
® - orientatlion between the particle
major axis and the O0Y' axis, measured in
the X'Y' deformation plane.
'y Y', 4' - strain axes.
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deformation planes are showm in figures 49a, b for
randomns and resular orientations respectivel:.

The random diagraa was constructed :irom tables of
random numbers. The first nunber appearinz in a column
was taken as the plunge of the wajor axis and the second
number as the direction of plunge. Numbers greater than

90 were ignored. In this way 25 random points were

allocated to each <uadrant of the stereonset. The diasranm,

so obtained, contained several areas oi concentratvion
of plunzes; the most marked of these is about the 4
strain axis.

The re_ular liagram was prepared by placaiany she
Tracing paper over & plece oIl centimetre graph raper and
selecting voints at :e;ular intervals. Conseguently,
there are no areas of conconitration of plunges on this
diagran.

The chantes in whe position of these poinvs during
deiormation of th: systems were calculaved as follows.

Pirst, tie axial ratio oi tie elliptical cross-section

in the deformatiocn plane was calculated for the particle
from eguation IV.BQ. Then, usinz this axial ratio, the

chanse in orientation ¢ during a definite amount oi strzin

was calculated from either eguation IV.18 or IV.350,
depending upon %t.c tyw: of dvformation. Thoe change in
plunze @ curing the rotation was dstermined from eguatio
IV.19 or IV.37. The axial ravio at this asngilc of plunge

was then chicked to sec whether it had changed

sufiiciently to =zffecy the amount oi rotation siganiiicantly.
I this dis hazppen, the calculavtion wag rereated for &

1= incremaents oF

-J ‘i

srxaller incren.nt of strain, Formall
0.5 Y, or 0.5 & wers used. a1l “he calculations could
be done ranidly by reading off rotations from .raphs

suc:: as those in figures 21, 22, 25, 26 and 27.

The effecty of a simple shea: deformation on the

particle dissributions is illustrated in figuves 50a - 50f



!
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Figurc 50 ©Sterecographic projections showing the changes
in the initially random and regular distribu-
tions of plunges of particle major axes ({iz-
ures 49a, b) during simple shear. The amounts

of simple sheer for each diagram are

a, b) v, =1; ¢, d) v, =2
e, I) Y, = 3.
® - angle of orientation between the

particle major zxis and the 0Y' axis.
Tt

Aty X', 4' - axes of simple shear,
(Lower hemisphere, Wulff net projections)
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Stereographic projections showing the changes
in the initially random and rcgular distribu-
tions of plunges of particle major axes (fig-
ures 49%a, b) during pure shear. The exial
ratios of the strain ellipses for each diagram
are

2, B) N/ = 2.7
C, d> /}\1/7\2 = 5.7
e, £) /N/X, = 11.0

® - angle of orientation between the
partic.¢ major axis and the OY' axis.

L', Y', 4' - axes of pure shear

(Lower hemisphere, Wulff net projections)






for valuss of Yo =1, 2 anc 3. These ster

show that, as o»r.dicted in the theore
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a significant praierred oricnvation .
and tiie directicn of this orientation rotates itoward the
shearing direction ( ¢ = 90’} Thig is +tre diresc

the stable de _ree of Lreferred orientatiorn; it has not
gquite been rzachcd aiter a shear of 57\3 but the intensity
c¢f orienvation iz near its maximunm valus.
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flie chanoes in

particle wnajor axgs during ture shear are shown in Jigur

Sla - 51f., Jae applied straeiz e.lipses have axial ratiocc
2.7, 5.7 and 11, I

as pradicitcd wiieore

e Uy e

3 c¢clear IZron sne fizusrcs Gha
a sigrnificant rreferrzd orient-

N

1
ation of major axcg is buvilt up parailel to the direction
of elongation of the strain ellipse and hat thce depree
ol this preferrcd orientation increases with increasing
deformation.

The pure shear strain ellipses have axial rmatios
approximatel; egqual to the strains duriw: simple shear of
1Y,
figures 5C and 21 is possible. To facilitate tals con-

"3

2%¥ ani 3 Y . O ereiore direcct comparison betwee

parison coatour diagrams have been prepared for the
plunges aster v = 3 and Kl/ KP = 11 deiormation., Ihess

dia_ rams are skovn in iigures 52 The degroc oL naxinun
conceantrati .t is arp.oximately the same o1 both Lypes

of deformatlion tnouz. Thye zene ol c.ncentration 1: smaller

in tre pure shear dicgrams, illustrating well the teniency
to form & point concentration oi major axes parallel to
gt direction ol eclongat.on. The development ol minor
erred orientations abeut the 57 axis during doth types

Kal
L
oif de¢lozmation is welil dbrouwzht out in tae plots ol the

inicially reguler digvrobutions. IZowever, in ¢ randon
clegremes, vols orieuration 1t hilden by tie initial
preferred oricontation parallel © the J' awxis.



Figure 52 Contour diagrams of figures 50e, f; 5le, f
showing tne concentrations of particle nmajor
axes which are developed during simple shear
(figs. a, b) and pure shear (figs. c, d).

The amount of simple shear is 3 Y
the pure shezr strain ellipse has an axial
ratio MKI/KE = 11.0

The contour intervals are O - 1%;

2 - U4y 5 - %y > T






- 167 -

It is clear from figures 50 and 51 that there iz a
definite correlation bevween the degree of preferred orien-
tation and the amount of deformation. Therefore, it shoulid
be possible tc estinate the magnitude of a pure shear defor-
mation from the final degree of preferred orientation,
provided that the initial fabric is known. In ginmple shear,
however, the maximui preferred orientation may be set up
early in the defcrmetion and not be changed appreciably by
later shearing. Therefore, only a minimum value for the
shear strain can be obtained. However, if the zone of
preferred orientavion has not resched its stable position,

a more exact estimate of the strain can be made. Non-
parallelism between the shearing direction and the zone of
maximum concentration of particle axes would indicate that
the stable orientation has not yet been set up.

(b) Non-rigid particles

The theory describing the bshaviour
of non-rigid particles has only bezsn worked cut in two
dimensions and, therefore, it is not possible to discuss
the effect of changes in plunge of particle long axes.
Nevertheless, significant conclusions about the developuent
of rreferred coxrientaticns can be drawn from the twe dimen-
sional examcles of ellipses changing shape and rotating
in the deformation plane.

Dealing with the pure shear deformation first, defor-
mation paths for non-rigid ellipses with different viscosity
ratics to the matrix have been shown previously in figures
33 and 35. From graphs such as these, it is pessible to
construct diagrams showing changes in shape and orientaticn
for asseublages of ellipses of known axial ratio and
positions. This has been done for R = 1 particles with
initial axial ratios of 2 : 1 and major axes orientated



Figure 5%
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Diagrams to show the development of preferred
orientations during pure shear of initislly
2 : 1 ellipses, with viscosity ratio R = 1.
The lensths of the lines 1 - 7 give,
the axial ratio of the ellipses and their
directions give the orientation, ¢, of the
major axes to the Y' pure shear axis. ILines
which end in dashes are too long to fit in
the diagram.
The strein ellipse oxial ratios are

a) M/n =15 b) I/, = 2.7
c) A /r = 5.7 Q) /Kl/%2 - 11,0
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at ¢ = 0%, 159, 309, 259, 50°, 75° and 90° (see fizuve
5%a), ‘e cranscs in shawe anda orientaticns of shese
¢lliypses duriang pure sheay were determined from fizure 33
end are plotted in figures 53b, ¢, d. The lengths of
linzs 1 to 7 in these fizjures give the axial ratio. of
the ellipse and thelr direction gilves the orisntatvion
of tixe major axis with respect to the strain axes after
the relcevant amount of pur- shzar.

The axes of ellipses 1 and 7 do not rotate. The
gccentricity of 1 decreases vntil eventually its axial
ratio beccrnes cgual to uvnity. Turts:r delormation unakes th

inivial major axi: the minor &axis @nd the ellipse is
clongatad alon; Tae O 90° dirzction. The eccentricity

or ellipse 7/ increases coovcinually., Cllinses T0 6 all
rotate rapldly towards tihie direction of eion.ation of

cize purc shear. While ¢ 1s less than 450 their eccentricity
decreases but once passsd thig direction the  elongate.
Mhes The elfect of the pure shear deiormation is to build
up very rarnidly a marked preferred orientation of particle
lony eaxes aboub thne majco:. strain axis.

Sinzilar diagrams for ellipses with a viscosity ratio
to tae parvicle-natrix syster of Rm = 5 are ghown i: fizure
54. As expected, the gifect of the increase in the
viscosity ratio is to retard tie rotation snd changze in
shape of *the ollipses. evertchceless there is st:ll a
naried Jegree of nreferred oriintation develot about
the direction oI e.ongation.

The development of prefierred orientations of non-
rigid particles during simple shear cannct be examincad
in sucs devadl bocazuze sae theory has been .evelowved forx
ini-ially circular particles only. fowever, 1T was showi

in the btheoretical disc

Sy

that a pyrnferred

develoy parallel fo the
wey ag for rizid partic

ion on multiparticle systens
ation of marticle long axes shiould

shearin: dircection in The sane
les, preovided theze is & compiilice

&



Figure 54

- 170 -

Diagrams to show the preferred orientations
developed during the pure shear deformation
of initielly 2 : 1 ellipses, with viscosity
ratio R = 5.

The lengths of lines 1 - 7/ give the
rarticle axial ratios and thelr directions
cive the orientation, ¢, of the major axes
to the Y' pure shear axis.

The axiel ratios of the strain ellipses
are

a) fi?‘ig 1; b) Jxl/,\-é = 2.7
c) Jxl/xg = 5.7; &) /xl/mg = 11.0

I
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difference vetween tue part
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forces. It is common .actice

ce Tor them wae
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conzlomerates and there cars ave

train

diilabls

£

n ooy use of deformea

in rocks include lack
zbble

rticlas

shapes, the relative

par pYel whrix and

ti respoect to the deformin:
to considexr wazsz factous

sev:iral papers and

theses in whic: usntitative amounitis of strain have baen
discussed (e.z. Uehncrt, 1939; Oftedanl, 1948; Xlinn 1956;
Taverne -imith, 19623 Higsins, 18045 Hossack, 1965. )
liowever, because bthe allovancos made are Lo a jreater or
lesser extent arbitrar;,, thz finel results ere nscegsarily
subjecvive. Obviously, i will be inpozsible to remove
comrletely all thic arbitrary agsumptions requires lor Hie

detersinaticn of Iinite strain Zrow changes in pauble shajo.
verciielzss, in This section methoss of surwmountin: some
of the diidiculti.s involv:ed will be discussad =ud il is

aoped that they will provi.e Jor bottoer cstimates oi straln.

(a) Competence 4d

this tiizsis provides a

thod for

[y

‘e Gheory develown in
assessin the Impors.uce
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of and & meawns oi overcoming the second of *.eg above

mentioned diificulvies, namely the competonce dirferst

\U

ne
betwoen par;icls and matrix. I the rocks nswve de.orimed
S

under conditicrs in which they Lzhave 23 viscous rluids,
then toe theory iundicates that ©o obTain si-nificant

particle deiormation, the parvicle-matrix viscosity ratio
c .0 &, nieferably of the order of 10 : 1 or
loss. loreover, if it is pno:isitlz o deterwine tals ratio,
zraphs such as those iilustrated in fisurse 29 can be ussed
to calculate the finive strain in the rock, Irom the
deformod veoble axial ratio, whoreas in bhe papeis cited
above tue sivain in tie uebbles only has vle:n deternined.
It would oe foolisii, ho.ever, to suggest that the

0

uval detevrination of thre viscosiv: ati

[N
63}
[%]
s}

casy
matbt: .. The viccous hehseviour of rocws neg Deen discussea
s

ovhalned

(@]
O
i)
[E5
(@]
=]
2
]
()

in chapter Il and velues 21 viscosity efficics
exserimentally for diiferen’t rock types undcr varyLn COn-—
ditiong were listed in table 1. _-waminaticon of tuese

results shows variation in viscosity cociiicients bvetween

-

lO15 and 1O22 poise, wnhich implies vhat & is several orders
of masnitude groster than that prisivted
de=formation. xouever, most «. thse de

madce av relatively low bemperatures and voessures and

it is quite likely thet uvnder conditioas wiich are nmore

..)

realistic geologicall , such as tirose rcquired for regi-nal

metanorinisnm, coefiicicncs of viscosity fo:x different rock

types would decr:zase =and posnsivliy tend to too sams order
of ma_nitude. wevertheless, it .aust be concluded that the
svailable ey.erinsntal data ou roci viscosities is unlikely
to be of muci use 1n calculating .
A omore fruitful approach is the examination of the
ual rocks themsclves with veszard to assessing the
train in ths indivi.ual components. It was pointed out
in the theowvetical section on th. strains developsd in

the @ atrix, that thoe distortion around & particle could
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Table VI Composition and axial ratios of deformed

neobles

Febble type ~xial ratio Reference
wuertz (volcanic) 1 1 to lehnert (1939)

2 1
Coarse quartzite 5 1
fine quartzite & 1
Jense greywacke 10 1 to

12 1
Greywacke schist
and shale 183 1
uartz 6 : 1 Higgins (1964)
Juartg~-biotite-
gneiss 10 1
Augsan gneiss 1C 1
Schist and
amphibolite 15 1
Granite 8.6 Z.1 1.1 JJalton et al (1964)
uartzite 15.8 3.4 1.0
Granite 2.3 : 1.0 Tavener-Smith (1962)
uartzite 9 1.0



ed to estimate rousghly *tie viscosity ratio. Thus

S

pvebbles around vwhich thiz schistosity or sedimentary

layerinys is only slipatly distorted, would have had a low

ccntrast to che satriw. around tiie more compitent
v

zetion should be more narked.

is mossible te determine approximate viscosiuty
Cerent rock types under deformation
hed data on the shipes of pebblas
ons in thne same delformed conilon ©
The Zi:st person unown to toe writer to describe llffereLces
in deformation of pubbles of diifferent composition w
tichnert (1939, pp. 250 - 255) in his paper on tae
Jlesentucler netaconglowzrate Thig inicrmation has becen
SUuPlLWPNt ¢ recently by Hiwozins (1584, pp. 167 - 130
from obscrvations on the Lebendun conzlomerzte in Switzer-
land. The resul’s of these two workers and ounzrs wio have
eported siwmilsy data are sumuarized in table VI.

To calculabts the viscosit, ratios betwse.. diiferint
rock tyres irvonr She do.o.med vewil: shapes 1t will
assumed That the webbles werc crizinally spherical. This
is alwost ccortainly not truc but 1T is necossarny
of lack of lmowsledge apout bLioe initial siepss. (Thiz point

will be Jiscussed iu nore detail in tac followin section.)

It iz els. asscen:d that petbles in the ssmez con_lomeratic

layer have exijericenced the same applicd strain.
from the pravious theory, the relevant eguatioan for

the deformaticy oi wmebil:s A 1is
[5/(2R,+ 3)]10g /2 /Ay o . (IV.61)

(56 /2y + 3u,)] log/a /s

log (a/b)

waere W, 1s tho vigcosicy of toe peobble, T tic viscosity

e
of *ne surrounding coulomeratic maverial; L o= u./u
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oimilarly fow poeble B
log (a/b)g = [Suy/(2up + %)) Log (2 /0,
There:ore
log (a/b)A/lov (a/b,B (EuB + 3u )/(EuA + Bpm)
Thiis equavion can be arranged to
uB/pA = log (a/b) /log (a/b)B

(3/2R))[1 - log (a/b),/log (a/b)g] ..(V.4)

eran’

=1

wiiich gives the viscosit: ratio tetween peubles of difl

G N
conpositicn under deiormatisn conditiuns

Tor sxample, substitutins iohnert's measureaenis on
its in

quartzite and shale vecble axisl ratios in V.4 res
Uope/Men = 12255/0.903 - (3/2Rg)(1 - 1.255/0.903)
= 104 + Oo6/PLSh

Assune 1 < Rsh.<ﬁOO, i.e., tue sizle pebble is morc coupetent
Ehe nmetrix.  Then
1.4 < ‘uqte/‘ush < 2

which indicates that tac 7iscosity xyatic of fuartzite
shale undcey metamorphic deformafion conditicns 18 0i the

0 icted oxder of ma mivule. Gimilar cel-
culztiions nave Lcen wnade for Hns viscosit, ravtlog bebwee
other rucn types using wie deta listed in rable VI Tho
resulos 2ye xziven in vable VII.
~ote that in carrying Out‘the calculeations, B has
zlways boen tanen as t.e nore competent ro S
iniicated by the pebble axial ratios). Sli . tly different

regults an obhainzd 1f 4 1s talken tc nave e grzacox
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Tgable VIT Viegcosity ratios calculated from the deformed
pebble shapes listed in table ¥i

Pebble types Viscosity ratio Eource reference

Volcanic quartz/
fine quartszite 3 -6 Ilehnert (1939)
Coarse quartzite/

fine quartzite 1.5 - 1.75

Tine quartzite/

greywacke 1.15 - 1.4

Greywacke/shale 1.2 - 1.5

Tine quartzite/

shale 1.4 -2

Juartz/gneiss 1.2 - 1.75 Higzins (1964)
Gneiss/schist 1.5 - 1.7

Juartz/schist l1.65 - 2.6 .
Granite/quartzite 1.2 - 1,55 Walton et al (1964)
Granite/quartzite 2.6 - 5 Tavener-Smith (1962)

Table VIIY Viscosity ratlos for different rock types

relative to 2 shale or schist mnatrix.
Rock type Viscogsity ratio 2ource reference
shale 1.0 Iiehnert (1959)
Greywacke 1.2 - 1.5
Fine quartzitc 1.4 - 2.0
Coarse quartzite 1.8 - 3.5
Volcanic quartz 4.2 - 12.0
Schist 1.0 Higgins (1964)
Gneiss 1.5 - 1.7
uarts 1.7 - 2.6



viscosity ratio beccause the arbitvary limits assumed for

S b
R, now a,.pl, to the wmore compstent of the pehile TypES.

I: view of the assumptlon wade, thise values should o0uly
s s & zul.e. ecalculations based ol as many
petble measurenents as possible should obviously be wade

o) cone availalle.
f l.ehnert acnd IIi.gins in table VII can be
to ~ive the viscosity ratio for indivicuel T
tive o a sianle or schist matrix. Thes resulsd
ivn boble VIITL.

neentration oi pebbles in the conjiomsrates
from which tie measurcnents are made does 10T 2C
retios cbiained because tnhese compare only the viscosities
of tuae two perbls rock tyres. However, when using the
viscosity ratios to calculate strain in another con.iom:iiat.
in whicn pebble 3 occurs in matrix a, the pecble ccncen-
tration must obviously be considered, because with lncreas-—

]

5

io
ing numbir on nebbles the mean viscosity of the conglon-
d and hence the viscosity ratio Rm is
b

eratc 15 increase

dzcrsased.

ficult Co make sllowance
for the initicl snapce of the varticlcs but & gualitative
ea curn 26 leaogt be otwained. Telc. pmce to stintard coxts
scdimzntary rocis (e.g. Twenizofel, 1
showsr that €. folilowinn factors are anong
aficct +the fingl =obhl. shapes: Original form ol thc
ock fra-menv; tu: striocture and toxtule ol the pebble
o)

material; Goe duranilit £ e matorizl durin’ abraslon;

The distonce travellsd siviong

-

cond the wonvironments To.o and in whaich

it is finalls

Ui these factors, the first three can he directly



corralated wit.. she rock tope and they contIdo., Lo a

c
certain extent, L.+ iinal pecble forn. Doy examnle,
(1522) has sthowa that ilat, discoida. vebbles

11lat in shane

O L
ller=shaced rorms wers derivaed Irom inatiaelly

~ - ~—
and tThat 1o s 5
- 8 TR R oY e e £ e 3 -3 e g SRR B
longate fra jacnts.  Tuz ghedes of tie inltial fragnints
Ty R - ~ = o T B —— -~ oy A = 3 e Pa
are obvicusly relsted To Tos struacturle &na texture O

the rock matzrial and one would expec: iaminaced rociks tO

zive risc to Iflat viubles aud howmozenous, non-sciistose

- .- N : - . ~1 -— A . -y
rocks sguch as guartzite to result in spacicidel forms.

Trvs when working in a delormed cornslouerate a gualitative
idea of tue o.iginal shans csn be obuained from wiie com-
position of t.¢ pedil.e.

uantitative cerrections for orininal shapc can only
be made usinz data obtainsd from ueasurenents on un-
defoxmed petbles of a similar compnsition and caviroamentil
nistory to the deiormed Jnes. 1t doces aot ssen to matver
rocnts are nade ol recont pebu

ndeforned extensions

s C
cf t:ic observat;on, it snouwld be feasible to deiine
c

nas

Leen obrtaincd.
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was explained by thz quartzites or granites having a greaver
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the diffcrence is probably duse te the mere ¢llipsoid

ougft to r v ratios #Zivzn in table

VIT allowins for ar initial zar

view of t.e scanty dats 2nd tenuous a
il

the calcol.fions are made, this seen:

monment.

Iinitial zhape ig particu-

larly impo:tant when considering the orientation of bixe
particlcs with respect to the deformin: Iorces. .5 shown
previously in thz scsction cn the development of zirefe.rzd
orientations, pedobles with thsir major axes parallel to
ths direction of sguorfening will become less eccentiic in

shape whils tl.ose alizned parzllel to the directicn of
clongation will increase 1n ellipticity.

Jith this in mind, Hi-zins (1964, pp.

I zecbhble zhpes can
estlt in t.is manner. Howevow, in tioe oplailon ol the

writzr, these dicrams are risleadins because they tend To
cmpnasise vie possible discrepancies in pebble shape

snd iznore tne more important foact that wmost of Lhe pebbles

will bo rapidly reoriented iuto the dizection of zlongation
snd will bocome very much ore cccenbhric.

Tnerefores, tTo ovarcene iniltial orientation eif
the zowe of sriatest preferred orientation of the pedble
najor axes should be found. This dirsctic: of orientation

is most likely to be parallel to the direction of
7]



- 1380 -

elongation, if the stress field causing the deformation was
an irrotational one. Then, the most eccentric pebbles in
this zone should be used for any finite strain determinations
bectuse they will probably have becn aligned closest to the
direction of elongation during the deformation.

D. A rROCLOURL FOR ANALYZING D.FORMED CCONGLOMIRATES
On the
basis of the sbove discussion the following procedure is

suggested for the detecrmination of finite strain in

deformed conglomerates.

1) Record the maximum, intermediate and minimum axial
lengths, the trend and plunge of the major axes, the
composition of the pebbles and the surrounding matrix, and
the relative concentration of pebbles to matrix.

2) Find the direction of the zone of maximun nreferred
orientation of the pebbles and from such factors as the
symmetry of the pebble chapes, the presence or absence of
rotated particles and the major regional structures, decide
whether the rocks have undergone a rotational or irrotational
deformation.

3) To overcome the initial orientation factor use the
data from pebbles aligned parallel to the direction of
greatest preferred orientation and showing maxipunm
eccentricity.

4) From tne composition of the pebbles and matrix try
to estimate the viscosity ratio R, using the relationships
given in tables VII and VIIT.

5) Also from the composition or from measurements on
undeformed pebbles, try to estimate the original shaie of
the pebbles.

6) Using the graphs in figure 40, determine the viscosity
ratio R from the concentration of pebbles in tne conglo-

meratcc.
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7) Allowing for a mean initial shape and the viscosity
ratio, use the theoretical graphs in figure 29 or equation
1lV.61 to obtain the finite strain in the rock from the
deformed pebble axial ratio,

8) Repeat for pebbles of different composition, if
possible,

9) The finite strain can be checked by determining the
degree of preferred orientation and comparing it with those
theoretically predicted in figures 53 and 54.

E. COMMENTS ON SOME DEFCQRIED CONGLOMERATES
Since Hitchcock, Hitchcock and Hagers' (1861) account
of elongated and pargllel pebbles in deformed conglomerates

in Vermont, a large number of reports on pebble deformations
and preferred orientations in conglomerates has been
published in the geological literature. Most of tihe observers
supplying this data have been content merely to record pebble
shapes and parallelism of major axes to some structural
direction in the host rocks, but occgsionally, use has been
made of the pebbles to deduce information about the type of
deformation that has acted on the rock. In this section two
well-known conglomerates, which have been examined in detail
by other workers, will be discussed in the light of the
observations made above on pebble deformation and the
development of preferred orientations.

(a) The Bygdin conglomerate, Norway.
This conglomerate occurs in the Valdres Sparagmite

of Central Norway. After deposition of these sediments

they were overthrust by a large nappe and deformed and
metamorphosed. A schistosity was developed in the rocks

and pebbles now lie with their major and intermediate axes
in the schistosity plane. In addition the major axes are
oriented parallel to a pronounced lineation which is assumed
to indicate the direction of thrusting.
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Oftedahl (1948) concluded that the pebble deformation
was due to a simple shearing parallel to the schistosity
plaﬁes during the thrusting of the nappe over the conglomerates.
To explain the fact that the pebbles now lie in the schiStosity
plane, he had to postulate an additional external rotation,
occurring simultaneously with the shearing but of unknown
origin. From the above discussion of particles deformed
during simple shear, it is clear that g viscosity contrast
between pebbles and matrix would account for the additional
rotation in the assumed plane of shearing and the development
of the preferred orientation. However, this preferred
orientation would be a statistical one and not all the
pebbles need have their major axes parallel to it.

From the observations of other workers (eg. Strand, 1944;
Flinn, 1961; Hossack, 1965) it is clear that the type of
deformation involved is more complicated than that proposed
by Oftedahl. The intensity of deformation increases away
from the thrust plane as would be expected from & component
of simple shear along the thrust (Flinn, 1961) but the
morphology of the pebbles, which vary in shape between
flattened pancakes, rod-like cigars gnd triaxial ellipsoids,
cannot be explained by this mechanism alone, Flattening
perpendicular to the thrust plane is the dominant type of
pebble deformation according to Hossack, and Flinn reports
that it is particularly prominent gdjacent to the thrust plane

Moreover it is an irrotational type of deformation, and the
previous discussion on pgrticles deforming in pure shear
showed that a rapid development of preferred orientation was
possible in irrotational deformations. This would help
explain why the pebbles lie in the schistosity plane.

Therefore, in gddition to the shearing set up by the
overthrusting of the nappe it seems as though compressional
forces have been at least partly responsible for the deform-
ation of the conglomerates and the associated development
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of preferred orientations. This is probably still too simple
a picture of ivhat has actually happened because both Flinn
and Hogsack have shown from pebble symmetries that the type
of deformation varies throughout the area.

(b) The Funzie Conglomerate, Shetland
The structure anc defor-

mation of theFunzie conglomerate has been discussed in detail
by Flinn (1956) who also showed in later papers (1959. 1961)
that it was similar in genesis, style of deformation and meta-
morphism but not in constituent materials, to the liorwegian
conglomerates descrited above.

In the Funzie conglomerate, pebbles occurring immediately
below the thrust plane have, as in the Bygdin conglomerate,

a flattened pancake form. These pebbles grade into triaxial
ellipsoids with the intermediate axecs equal to the diameter
of the spherec of equivalent volume. With increasing distaunce
beneath the thrust plane, the intermediate pebble axes show

a shortening of 10 per cent relative to the diameter of the
equivalent sphere.

The most significant aspect of the conglomerate is the
systematic variation in pebble shape over the area. The
variation is due to an increase in deformation across the
region, reilected by increasing clongation and a greater
degree of preferred orientation of the elongated axis. for
example, in the northern, least deformed part of the arca
the standard deviation of the trend of pebble major axes is
160, and in the southern, highly deformed region, it is only
59, These general observations are strikingly similar %o
those predicted in figures 53 and 54 for pebbles deforming
in pure shear.

Flinn, in his discussion, rejects pure shear as a defor-
mation mechanism for the conglomerate partly because of the
petrofabric girdles formed by the mica flakes in the '
pebbles and partly because there appears to have been
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deformation along all three strain axes. If a pure shear
mechanism had operated there would have been no shortening
along the intermediate pebble Y axis.

However, both shear and the triaxial "einengung'" deform-
ation proposed by Flinn are irrotational strains, and so one
would expect the pebbles to behgve in roughly the same way
in both kinds of deformation field, Moreover, the observed
reducticn along the intermediate strain axis is small (10 per
cent). Assuming that this can be ignored, the deformation
becomes equivalent to a pure shear. Therefore, the present
shapes and orientations of the pebbles can be used to determ-
ine quantitatively the strain experienced by the rocks,
provided that adequate allowance is made for initigl pebble
shapes and competence differences. In view of the close
correspondence between the theoretical predictions and Flinn's
field observations, an attempt will be made to perform this
calculation.

The original shape can be estimated from pebbles
observed in modern beach deposits. Flinn provides data on
mean axial lengths for quartzite pebbles from a beach in
Shetland (table 1, p. 488, locality BA). Using this infor-
mation, the mean ratio of maximum to minimum pebble axes is
approximately 2:1. It is also stated in the paper that the
pebbles are probably more competent than the matrix, For
the sake of convenience a viscosity ratio R=5 will be assumed.
The pebbles in the original conglomerate probably also hed
an initial degree of preferred orientation; this is difficult
to estimate, but if it is ignored the initial situation is
similar to that in figure 54. ]

In Flinn's gone of minimum deformation (zone VI) the
ratio of maximum to minimum pebble axes varies as follows.
Liocality Axial Ratio Locality Axial Ratio

C25 2.9 C34 2.9
Cz26 5.0 C35 2.8
ca7 2.9
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(Localities are plotted on figure 2 in Flinn's paper; axial
ratios are given in table 1)

No data is given in the tgbles on the variation in the
trend of the major pebble axes but in the next least deformeua
zone, the standard deviation of the trend is 16° (table 2,
locality C30).

In the area of magximum deformation (zone II) the pebble

shapes are as follows:

Locality Axial ratio Locality 4xial ratio
C10 7.5 C12 5.0
Cll 5.8
The standard deviation in the trend of the major axis

is 5°.

Figure 54 predicts a theoretical maximum pebble axial
ratic of %:1 and .a range in prefeifred orientation of '
¥ 50° after a finite strain of 2.7:1. A pebble axial ratio
of 5:1 with a range of preferred orientation of z 15° is
obtained after an 11:1 pure shear. The range in the preferred
orientations would probably be less if an initial sedimentary
fabric is taken into account.

Therefore, if the assumptions are correct, the Funzie
conglomerate has experienced a pure shear type of deformation
of which the strain ellipse axial ratio increased from
approximately 3:1 in the least deformed area to 11:1 in the

most deformed part.
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SUMMARY AND CONCLUSIONS

1) This thesis is an analysis of rock deformation, assuming
that a rock can be considered as an inhomogenous viscous fluid.
In detail, the model is & body of homogenocus viscous matrix
in which are embedded much smaller, spheroidal or ellipsoidal
particles. The particles may be rigid or non-rigid, with a
coefficient of viscosity greater than, equal to, or less than
that of the matrix. Both the matrix and the non-rigid
particles are assumed to be Newtonian bodies.

2) Published work on the viscous flow of rock iz reviewed

to try and define the coanditions under which the assumption
of Newtonian flow is valid. It appears that rocks in a mol-
ten state are probably Newtonian fluids. However, at temp-
eratures Lelow the melting point, rock only conforms to a
Hewtonian body if it is subjected to deforming stresses for

a long time, or if the rate of strain is very slow. Increascs
in temperature and pressure enhance the Newtonian flow and

it is suggested that rock deforms as a Newtonien body during
regional metamorphism., The type of flow during the deforma-
tion is generally laminar.

3) In the theoretical section, the changes in shape and posi-
tion of the particles during deformation of the particle-
matrix system, is examined using the theory of slow-moving
viscous fluids. The types of flow considered arc eguivalent
to pure shear and simple shear deformations.

4) The equations of motion for a single, rigid ellipsoid in

a viscous matrix duringz simple shear are
(a/b)tan[abys/(aa + b?)] ....(IV.18)

cot 61/11 - e®gin®y ... (IV.19)

tan o

cot 6

The equaticns give the change in orientation, ¢, and plunge,
O, of the major axis of the ellipscid, during a finite simple
shear, Y- They indicate that the particle will rotate in a
spherical elliptical orbit about an axis perpendicular to the
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deformation plane. The rate of rotation is greatest when the
major axis is at right angles to the shear direction, and
least when it is parallel to the shear direction. The plunge
decreases from a maximum at right angles to the shcar direc-
tion to a minimum parallel to it.

5) The equivalent eguations of motion durinz a pure shear
deformation are

In cot 9, = 1ln cot ¢, + ((a® - b®#)/(a® + b2%)]"
1n /7‘2“1 ...(IV.%6)

cot 6/ cot 6; = Vsin 2¢,/sin 205 ...(IV.37)

In cot 6, = 1n cot &; + (1/2)[(a® - »?)/(a® + b?)]-
1n ”‘2/"1 cee.(IV.38)

The eguations imply that there is no change in orientation o

of the particle major axis, if this axis is parallel to either
of the strain axes. In these positions, the plunge of the
axls either increases, 1f the axis is parallel to the direc-
tion of shortening in the system, or decreases if it is
paraliel to the direction of elongation.

At other orientations, particles rotate so that they
tend to lie with their major axes parallel to the direction
of elongation, although they only achieve this position after
an infinite amount of strain. Simultaneous with this rota-
tion, the plunge of the major axis increases, at first, and
then decreases, so that the particle tends to lie with its
major axis in the deformation plane, though, again, this
positicn is only reached after an infinite pure shear.
6) The eguation for the change in shape of a non-rigid, ellip-
tical particle, which lics in the deformation plane for pure

shcar and has its axes parallel to the strain axes, is
1n (a/b) = 1n (a;/bs) + [5/(2R + 3)j1n VA /n

eeo o (LIV.B1)
The equation implies that R, the viscosity ratio between the
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particle and the matrix, greatly affects the deformation of
the particle, during pure shear of the particle-matrix system.
If R is less than 1, the particle changes shape more rapidly
than the pure shear strain ellipse; if R is equal to 1, the
particle is equivalent to the strain ellipse; if R is grea-
ter than 1, the particlc changes shape more slowly than the
strain ellipse. With increasing R, the amount of finite
strain required to cause a significant change in the particle
shape increaces very rapidly.

7) The pure shear deformation of non-rigid particles not
aligned parallel to the pure shear axes 1s analyzed numeri-
cally. The results show that these particles deform. and
rotate, simultaneously, towards the direction of elongation.
The change in shape and rate of rotation decrease with an
increase in the viscosity ratio. The end position parallel
to the direction of elongation is only reached after an
infinite amount of pure shear.

8) The simple shear of non-rigid particles lying in the defor-
mation plane is also solved numerically. Only circular
particles are considered. The results show that particles
deform and rotate simultaneously. With increase in R, the
change in shape decreases and the rotation increases,

during a given amount of simple shear.

9) The equations of motion for the rigid particles and th:
changes in shape of non-rigid particles, during simple shear
and pure shear, are checked experimentally in the simple shezr
box and the irrotational strain box. Solutions of ethyl
cellulose in benzyl alcohol are used for the matrix and non-
rigid particles. The rigid particles are made of aluminium
or glass.,

The results for the rigid particles agree satisfactorily
with theory. Non-rigid particles deform as predicted until
they have an axial ratio of approximately 2 : 1, after waich
they elongate more rapidly than expected.



- 189 -

10) The behaviour of systems containing a large number of
particles is discussed in the light of the results for a
single particle. }

Daring simpie shear, a preferred orientation of particle
major axes 1is set up parallel to the shearing direction. .
Because the particles rotate continuously, this preferred
orientation remains statistically constant.

In pure shear, a major zone of preferred orientation
is set up parallel to the direction of elongation; simul-
taneously, a minor preferred orientation rs developed paral-
lel to the axis perpendicular to the deformation plane.

The number and volume of particles present in the matrix
affect the mean viscosity of the particle-matrix system and,
also, the viscosity ratio, which controls the particle defor-
mation. This variation of viscosity ratio with concentration
of particles is given by the equation

R, = R/[L + 58C (R - 1)/(2R + 3)] ...(IV.£9)

where Rm is the ratio of the viscosity of an individual
particle to the viscosity of the particle-matrix systcm; &
is a factor which allows for the interaction between regions
of disturbance in the flow arow:d the particles; and CV is
the volume concentration of the particles. The results of
experiments to check this equation suggested that the ratio
Rm changes even morec rapidly than predicted.

11) The strains developed in the matrix around a particle
were examined experimentally and diagrams, which show the
displacement of the matrix during the deformation, were con-
structed., These clearly illustrate the symmetry of the flow
field. lMoreover, the distortion in the flow around the par-
ticle can be used to estimate the value of the viscosity
ratio between the particle and the matrix.

12) Geological applications of the theory.

a) rrevious work on the use of rotated crystals as strain
indicators is reviewed and it is suggested that the model of
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a particle rotating in a viscous fluid is & more realistic
one than those previously used. Calculations of the amount
of simple shear are made from the rotation of porphyroblasts
in metamorphic rocks, using the equation

4 = 20 radiaas ...(IV.9)

b) The use of rotated porphyroblasts in analyzing folds is
discussed. A minor fold, which from conventional measuring
techniques could be either a similar-type fold or a flatten=d
flexure fold, is exanzined. The present orientation of the
porphyroblasts, with respect to the schistosity, indicates
that the fold is a flattened flexure fold.

¢) The developuent of preferred orientations in rocks is
discussed. Diagrams showing the changes in initially random
and regular distributions of particles, during simple and
pure shear deformations, are constructed and the degree of
the preferred orientation is related to the amount of finite
strain.

d) The use of deformed pebbles to estimate strain is dis-
cussed. The shapes of pebbles of different composition, in
the same deformed conglomerate, are used to estimate visco-
sity ratios between difierent rock types, during deformatinr
Knowing this ratio, eguation IV.61 can be used to relate the
pebble shape to the axial ratio of the finite strain ellipsc.

The shape of the pebbles is important. If it is not
possible to correct for this by'making measurements on unde-
formed pebbles, it is suggested that the composition of the
deformed pebble can be used to obtain a rough idea of the
initial shape: homogenous, non-schistose rocks should give
rise to round pebbles; schistose rocks to flat pebbles.

The initial orientation of the pebble axcs is also
important, because the change in shape of the pebbles depends
upon the orientation of their axes to the strain axes. IH
an irrotational strain field, it is possible to overcome this
by using pebbles lying parallel to the direction of grectest



- 1901 -

preferred orientation, because this direction is most likely
to be closest to the direction of elongation.

e) A procedure is suggested for analyzing deformed
conglomerates.

f) The results obtained by previous workers on the Bygdin
and Funzie conglomerates are discussed in the light of the
theory developed in this thesis. By assuming a pure shesa
deformation of the Funzie conglomerate, the variation in
the finite strain between the least and most deformed out-
crops is calculated from the present pebble shapes and
orientations.
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APPENDIX I THE EXFERIMENTAL RAESULTS

a) The rotation of two dimensional particles durin:

simple shear

i) Calculation of the mean experimental curves in figure 21

For each experiment performed, a graph relating the
rotation, ¢, to the finite simple shear,._, was constructed.
In this way, several graphs were obtained™for each particle
used in the experiments. The mean experimental curve was
then calculated as follows:

1) From the origin (wi = =909, v =0) the rotation

during a set amount of sheaTing (v, = 70.5 or 1.0) was read
from all the experimental graphs i8r a particular ellipse.

2) The mean rotation (X,) was then determited and the
new particle orientation (mf =9y + xl).

3) Starting at this value of ¢! = ¢., the rotation
during another increment of shear wad read from the graphs
and the mean value (xg) calculated.

4) ig was then added to o) to get the new mean orien-
tation, o 4%

__ 5) ©Starting at this value ¢! = 0}, the mean rotation
(x2), during a futrther increment 5f shgar, was found. Hence,
a éew orientation, w%, was calculated.

6) The procedure was repeated until ¢p Was equal to
Zero.

o 7) Thg mean curves were then plotted for ¢ ranging from
-90~ to +9OO, using the fact that they should be symmetrical

ii) Statistical results for the mean experimental curves
in figure 21

Table I Curve B; particle with axial ratio = 1,01 : 1.

fumber of readings, n = 33

Mean rotation during 1 YS shear, x = 27.5
Standard deviation, s = 0.762

Coefficient of variation, v = 1.71%

Range, w = 1°.



Table IT Curve J; particle with axial ratio 1.36 : 1.

O

o} o}

Yoo o=zel  zel X n 5 v wl_
0.5  90.0  80.5 9.5 8 0.50 5.3 1.5
1.0 80.5 70.0 105 & 0.59 5.6 2.0
1.5 70.0 8.5 11.6 8 1.12 9.7 3.5
2.0 58.5 k5.8  13.0 8 1.00 7.7 3.5
55  45.5  30.0 15.5 8 0.7l 4.6 2.5
3.0  30.0 13.0  17. g8 0.92 5.4 3.0
5.5 13.0 -5.0 18.0 8 0.75 L.z 2.5

Table ITII Curve L; particle with axial ratio = 1.94 : 1
(nean of ellipses with axial ratios 1.92 and 1.96)
O P VAR SO 5 vis o wl_
0.5 90.0 84.5 5.5 7 0.47 8.5 1.5
1.0 34.5 78.5 6.0 8 0.61 10.2 1.5
1.5 78.5 72.0 6.5 8 0.47 7.2 1.0
2.0 72.0 64,0 8.0 8 0.04 8.0 2.0
2.5 64.0 54.0 10.0 8 0.61 6.1 2.0
5.0 54.0 40.5 13.5 7 0.43 3.2 1.0
3.5 40.5 22.5 18.0 7 O.47 2.0 1.5
4.0 22.5 0.5 22.0 8 0.97 4.4 3.0
Table IV Curve D; particle with axial ratio 2.70 : 1.
. e’ = B n s o w
0.5 90.0 88.0 2.0 7 0.59 29.5 1.5
1.0 88.0 85.5 2.5 7 0.3%9 15.5 1.0
1.5 85.5 83.0 [2.5 7 0.46 18.5 1.5
2.0 832.0 80.5 2.5 7 0.42 16.9 1.0
2.5 80.5 77 .5 3.0 7 0.33 10.9 1.0
3.0 7.5 74.0 3.5 7 0.33 9.4 1.0
3.5 4.0 69.5 4.5 7 0.59 15.1 1.0
4.0 69.5 63.5 6.0 7 0.57 9.4 1.5
4.5 63.5 55.0 8.5 7 0.80 9.4 2.5
5.0 55.0 43,0 12.0 7 0.91 7.5 2.5
5.5 43,0 25.5 17.5 7 1.30 74 3.5
5.0 25, 0.0 25.5 7 1.10 4.3 4.0
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: 1

Table V Curve F; particle with axial ratio = 3.66
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Table VI Curve H; particle with axial ratio = 4.71
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b) The rotation of 4 :

1
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: 1 ellipsoids in simple shear,

Table VII Results for the experimental durves in figure 22D.

a)

o]

g, @
0 -2
0.5 28
1.0 -

¢) The rotation of two dimensional particles in the

6O

36

28

b)

0
cu°6

-2 4
23 37
35 33

c)

o]
Q

-3
13
2k

i

£\

e

0o o

d)

o}
@
41

56
6l

6O

40
36
35

e)
o

44

25
63

&°
35
31
25

irrotational stiain box.

Table VIII Results

2 1
(o) [e]
M2 g VM g @ o
1.00 1.00 15.0  45.0
1.25 1.40 19.0 50.0
1.45 1.80 2%.5  54.0
1.80 2.60 56.0 60.0
2.15 3.50 31.0  64.0
2.55 4.60 37.0  67.0
3.20 6.20 45.0 71.0
3.70 8.40 45.0  74.0
.60 12.00 49.0  79.0
1.00 1.00 75.0
1.60 5.15 78.0
1.90 .85 81.0
2.30 4.00 £2.0
2.65 5.10 83.0
3.30 .00 85.0
4.00 9.80 86.0
4,75 13.00 89.0

d) The rotation of 4 : 1

4

01

)

o]
¢

58
&5
70

O
9

45.0
25.0
60.0
66.0
76.0

7500
€0.0

0°
23
18
15

for the experimental curves in figure 25

: 1 ellipsoids in the irrotetional

strain box.

Table T Results for the experimental curves in figures
26 and 27.

26)

RS
OOO' O

27
60
25
35
50

i)
o0 @

60 37
75 25
80 22

278
(D .

7
8

5

)

0

8
5

6

27C)

O
()

49
56
68

20
16
15

27D)

o
0

30
35
nly

woo | %



e) The deformation of non-rigid particles in the

&/

°/

204 -

irrotational strain box

Jxl/xg ai/bi

1,42 1.02
1. 74 0.95
2,16 0.95
5,75 1.0%
3. 00 1.0%
L. 00 0.9L
1.42 1.0%
1. 74 1.01
2,16 1.00
5,75 1.00
1,42 1.00
1.74 0.99
2.16 1.06
2.72 1.00
3. 00 1.05
460 0.9%
5.80 1.00
1042 0.99
1.74 0.99
.16 0.9%
3. 00 0.97
4.60 1.0%
5,80 1.00
1.42 0.97
1.70 1.00
2,16 0.97
2. 00 1.03
4260 0.98
5.90 1.00
1,42 0.97
1,74 0.97
2.16 1.01
3. 00 1.00
4,60 1.00
5.80 1.00
a;/b; -

Ay a/b
10.4 1.46
19,1 1.67
19,1 2.34
16.7 2,77
16.0 4,00

9.6 5.00
15,6 1.44
13,0 2.82
11.9 3,05
2%.0 1.35
24,3 1.48
2%.5 1.63
29,7 1.84
3% .4 1.80
24,2 2.77
24,0 3, 4l
10.7 1.17
11.4 1.28
11.4 1.52
11.6 1.81
11.2 3, 44
13.0 6.66
11.9 1.12
1043 1.18
11.2 1.30
11,2 1.67
11,0 2.52
1500 2.62
11.4 1,08
11.2 1.12
11,1 1,25
13.0 1.69
11,2 1,84
12.5 1.49

initial. axial. ratio.

a/b - final axial ratio

a/b* - final axial ratio, Gorrected for

As

s A - initial and final area factors

Table X Results for the experimental curves in figures 30a-f.

A a/bt
12.3 1.43
25.4 1,77
240 2,46
19.5 2.72
17.7 %.88
12.8 5,32
14,8 1.40
a4 1.71
14.9 2.82
16.1 3.05
25.0 1.%5
26,0 1.49
28.0 1.54
35.6 1.84
43,3 1.71
34,0 2,80
21.2 3.4
10.5 1.19
12.2 1.30
11.1 1.58
12.2 1.86
15.8 5‘0 55
13.0 6.66
11.9 1.16
10.7 1.18
11,7  1.33
11.% 1.62
11.1 2+56
12.8 2.62
11,7  1.11
11.5 1.16
11.3  1.2%
13.9  1.69
11.0 1.84
13,9  1.49

initial shape.



- 205 -
Table X, continued.

/kl?kg ai/bi A a/b A a/b*

1 .

8/ 1.42 1.05 3%, 0 1.10 33,0 1,04
1.74 1.00 35,0 1.11 26,0 1.11
2.16 1.00 21.5 1,19 22.0 1.19
2.60 0.99 28.0 1.21 29,0 1.22
%, 00 0.96 Z4.,0 1,22 23,5 1.27
4,10 1.00 26,5 1.38 28, 5 1.38
4,60 0.97 25,0 1.37 20,5 1.42
£y 1,42 1.00 2%.0 1.09 23,0 1.09
2,16 1. 00 24,0 1.10 24,0 1.10
%, 00 1.02 23,5 1.18 24,0 1,15
.60 0.98 oh, 5 1.25 24,5 1,27
7.50 1.07 22.5 1.30 23,0 1.22

f) The deformation of non-rigid particles in the siumple
shear box

Table XI Results for the experimental curves in figures 39A-~F

Yo a/b o> a/o" a/b o>  a/b’
LY 0 1.00 45 1,00
0. 25 1.27 46 1.27
0,50 1.59 51 1.59
0475 2,046 55 2,04
1.00 2.52 B8 2,52
By 0 1,01 45  1.00 1.00 45 1.00
0.50  1.40 53 1.38 1.35 50 1.35
1.00 1.8 61 1.83 1.76 56  1.76
1R 1.92 55  1.89 1.75 57  1.75
1.25 2.30 60 2.27 - ~ -
1.50 2.60 64 2.56 2.%33 64 2,33
1,75 2.02 65 2.97 -7 - -
2.00 2,48 67 3,43 2.94 67 2.9
oR - - - 3.02 66  3%.02
2450 - - - 3.28 69 3,28
3,00 - - - 1,00 72 4,00

R indicates that the particle has been
repositioned



Table XI, continued.

C/

‘YS .

0
0.50
1.00

5 00

0.50
1.00

1R
150
2.00
2R
2. 50
3.00
3R
3750
4,00
4R
4,50
5.00

a/b-

0.99
1.16

1.39
1.40

1.68
2.06

1.87
2.21
2.55

DN VR
FW0~J
O O\N

F o oo
omE
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a/b’

1,00
1.17
1.40
L.42
1.70
C008

1. 89

45

22
62

56
o
66

66
70
73

67

7l

71
73
45

58
27

69

)

80
74

77

74
77
79
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Table XTI, continued.

yg ab o al’ a/b- 0° a/b"
E, 0 1.00 45 1,00 1.00 45 1.00
0250  1.15 51 1.15 1.10 51 1,10
1.00 1.27 60 1.27 1.21 59 1.21
1R 1.27 58 1.27 1.19 55 1.19
1.50  1.42 65 1.42 1.%23 62 1.33
2.00 1.60 68 1.60 1.2 67  1.42
oR 1.62 68 1.62 1.39 66 1,39
2.50  1.82 on  1.82 1.56 70 1.56
3. 00 - - - 1.66 75 1.66
3R 1.89 74 1.89 1.64 74 1.64
3,50  2.00 76  2.00 1.70 77 1470
1,00 2.18 79 2.18 1.79 79  1.79
4R - - - 1.77 75 1.77
.50 - - - 1.80 79  1.84
5.00 - - - 1.99 85 1.99
F, 0 1.04 45 1,00
0.50  1.17 57 1.13
1.00 1.22 &6 1.18
1R 1.23 58 1,19
1,50 1.35 62 1.29
2.00 l.45 67 1.39
oR 1.49 67 1.43
2.50  1.57 o4 1.51
3.00 1.70 79 1.63
IR 1.66 80 1.59
3,50 1.76 82 1.69
1.00 1.75 & 1.68
R 1.82 85 1.80
4,50  1.87 87 1.80
5.00 1.90 90 1.83

g) The effect of increasing volume concentration on particle
- deformatien

Table XII Results for the experimental points in figures 41
o)

Point .EK? a/b range 9 range EE
1 3 1o 44 0.04 59 1 5
2 6 l.45 0.12 61 2 5
3 9 l.55 0.19 60 5 4
4 12 1.68 0.21 57 6 3
5 15 1.73 0.23% 57 10 2.75
6 23 2.07 0.82 63 6 2
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