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ABSTRACT  

This thesis is in two parts: Part I is concerned with 

magnetoresistivity, Part II with susceptibility. 

The magnetoresistance of ferromagnetic metals at saturation 

can be described by analogous expressions to those used for magneto-

striction, both effects being represented by even-rank tensors. In 

practice, however, magnetoresistance measurements need careful 

interpretation because of the use of rod-shaped specimens which 

exhibit considerable shape anisotropy A complete derivation of the 

magnetoresistivity expressions is presented for the appropriate 

crystal symmetries. 

Experimentally, a potentiometer measuring circuit of 

10-9 volt/mm sensitivity has been constructed, using a temperature 

bath constant to 0.005°  Co Measurements have been performed on Ni, 

Fe, Co and Gd polycrystals and on a Ni single crystal, for various 

fields and orientations. The results have led to a significant 

improvement in the agreement between the polycrystalline magneto-

resistive coefficients and the values obtained from single-crystal 

measurements in cubic materials. In addition, all five saturation 

constants of nickel have been evaluated. This work led to the 

development, and experimental verification, of an analytical 

expression relating the forced magnetoresistance in nickel to the 

variation of resistivity with spontaneous magnetization. 

The values for ( 	)
4 
 and (Ae..) are positive for cobalt 
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and negative for gadolinium. Furthermore, ( Apo  - App  )/p is 

negative in gadolinium and the magnetoresistivity displays an H2/3 

field dependence near the Curie temperature. These results, hitherto 

unreported, fit well in the existing theories. 

In Part II, antiferromagnetic susceptibility measurements 

are reported for LiFe02  and CdMn204. The system CdxMn3.. 04  (except 

for x = 1) is found to exhibit para-/antiferro-/ferri-magnetic trans-

itions on cooling to 4.2° K. A modified Sucksmith ring balance is 

described and details of the appropriate low-temperature techniques 

are given. After a brief account of Neel ferrimagnetism (collinear-

spins), the Yafet-Kittel triangular spin theory is successfully used 

to explain the results. Two publications relating to this Part are 

submitted as Appendix III and IV. 
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CHAPTER I 

INTROtUCTION  

1.1 Summary  

Since its discovery by Sir William Thomson in 1856 the 

change in resistance which accompanies the magnetization of a ferro-

magnetic specimen has been frequently investigated. In most 

materials the magnetoresistance corresponds to an increase of 

resistivity when the current and the magnetization are in the same 

direction and a decrease when they are at right angles to each other. 

Near the Curie point, however, a negative magnetoresistance is ob-

tained with the magnetization in any direction relative to the 

euxrent. The magnitude of the change in resistivity at saturation 

magnetization is usually a few per cent ( ^v 2%) at room temperature, 

although at low temperatures much larger changes have been observed. 

Like magnetostriction, magnetoresistance is independent 

of the sense in which the field acts. Thus aand 4- both are 
unaffected by the 1800  reversal of a magnetic domain: substantial 

changes in these properties can, however, occur in the upper region 

of the magnetization curve where the changes in magnetization are 

mainly due to domain rotations (Fig. 1). Measurements have shown 

that, in general, as the applied field is gradually increased, the 

longitudimal magnetoresistance slowly rises to a saturation limit, 

but the rise is initially much slower than that of the magnetization 
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Fig. 1.  Schematic representation of magnetization and Inagneto- 
resistance of iron as a function of applied field. 
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curve and this lag persists up to the peak value (Fig. 2). In high 

fields, in the region above what is called technical saturation, both 

the longitudinal and transverse magnetoresistance decrease almost 

linearly with the field, the small negative slope being practically 

the same for all orientations - a characteristic of ferromagnetics 

shared with a few alloys. 

As pointed out by Smit(1), the observed magnetoresistance 

can, in principle, be classified into three types: 

(a) The normal effect, the increase in resistivity that is 

observed even in non-ferromagnetic metals and alloys. 

This is due to the Lorentz force acting on the conduction 

electrons, which gives them curved paths: it appears 

appreciably at low temperatures even in low fields. 

(b) This may be called the orientation effect and it results 

from the change in the direction of intrinsic magnetization 

in a crystallite. The anisotropy of the resistivity below 

technical saturation is analogous to that of the magneto-

striction, both being described by tensors that depend on 

the orientation of the magnetization vector. 

(c) The third effect is the decrease of resistivity in strong 

fields and is analogous to isotropic volume or "forced" 

magnetostriction caused by a field-induced increase in the 

spontaneous magnetization. This effect is therefore ex-

pected to be most pronouncedAust below the Curie temp-

erature and it should disappear at the absolute zero. 



When the applied field is removed, the resistivity is found 

to be somewhat greater than its value when the specimen is unmagnet-

ised. This increase of resistivity at the remanent induction is 

usually, however, a small fraction of the maximum value at satura- 

tion. For polycrystalline nickel, (2.) 	is about 15% of the 
P rem. 

saturation value(2) although in many alloys it is small enough to 

escape observation. The magnetoresistance thus exhibits some 

hysteresis when displayed as a function of either the magnetic 

field or the magnetization (Fig. 3). Special a.c. demagnetizing 

coils were used in the present investigation to overcome this effect. 

1.2 Brief survey of previous work 

The variation of resistivity with magnetic.field in 

different crystallographic directions was first investigated in 

iron by Webster(3) and by Shirakawa. The latter made measure-

ments from room temperature down to -196°  C and Gondo and 

Funatogawa(5) extended the range from room temperature to the Curie 

point. Measurements on single crystal of nickel were first made by 

Kaye(6) and later by DBring(7) both at room temperature. The 

magnetoresistance of polycrystalline nickel below saturation was 

studied extensively by Gerlach and co-workers(8) and above saturation 

at different temperatures by potter(9), who also made similar 

measurements on iron and Heusler alloys(). Magnetoresistance 

measurements on nickel and iron polycrystals were also reported by 

Natuyama(11) between -196° C and Curie temperature and by Fedenev 
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Fig. 3.  Hysteresis of resistivity as plotted 
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and Uskov(12). Among the very recent work, mention may be made that 

of Kimura and Tatsumot(o1
(7) on silicon-iron between -196° C and 

Curie point, of bhara

4 

 on single crystal of iron at low temp-

eratures, of Kikoin and Igosheva(15) and, lastly, of Coleman and 

Isin(16) who used iron whiskers in fields up to 50 kOe and in a 

temperature range from 1°  K to 1000°  K. 

There have been few measurements on hexagonal materials, 

presumably because of difficulty in getting single-crystal specimens 

of good quality and of requiring,very high field to reach saturation. 

The longitudinal magnetoresistance of polycrystalline cobalt was 

measured by Alam(17), Matuyama(11), Bates(18)  and de Mandrot(19). 

There are as yet no single-crystal measurements on either cobalt or 

gadolinium. After the completion of the work described in this 

thesis, two articles were published on the magnetoresistance of 

polycrystalline gadolinium by Llithi and GrUneisen(20)  and by 

Babushkina(21). The former is concerned only with the longitudinal 

magnetoresistance at 4.2°  K using pulsed fields up to 200 k0e: an 

oscilloscope display is used and it is claimed to be possible to 

determine, in principle, that part of the zero-field electrical 

resistivity which comes from the electron spin-wave scattering. 

The second paper deals with resistivity measurements in fields up 

to 16 kOe and between 4°  K and 400°  K: the curve of --a against 

temperature reveals two more maxima in addition to the expected 

peak at the Curie point due to the paramagnetic transition process, 

and the high temperature mcasuremonts indicate a square law 
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variation with field. The peculiarities of the magnetic properties 

of gadolinium near the Curie point have also been investigated by 

Belov
(22) who reported two magnetoresistance maxima in the temp- 

erature interval 210-290°  K, one of them corresponding to the Curie 

point. 

Among the earlier theories of magnetoresistance, mention 

may be made to those of Akulov(23), Peierls(24), Englert(25), 

Gerlach
(8), Jones and Zener

(26), Davies
(27)

, Bozorth(28), Sondheimer 

and Wilson(29), Miler(3°)1  Snoek
(31) and Smit

(32)
. Domain theory 

was first applied by Gans and Harlem(33)  and later extended by 

D8ring, Hironi and Hari(34), Parker(35) and Chikazumi(36). Among 

the later contributions are those of Hajdu(37), Kondo(38)  and Jones 

and Sondheimer(39). In this thesis the theory of magnetoresistance 

in cubic and hexagonal crystals has been developed from a phenomen- 

°logical approach on a line similar to that used for magnetostriction 
(77) 

Kaya's(6) results on the longitudinal and transverse 

magnetoresistance of nickel along the three principal crystallo- 

graphic directions were later used by Daring(?) to evaluate the 

five constants ki 	k5  of his general expression for the 

magnetoresistance in single crystal in which the easy directions 

of magnetization are the ternary axes (equation 3.42). These values 

are in good agreement with those obtained by him from his own 

measurements(7) on eight single crystals of nickel. In a similar 

way Hironi and Hori(34) derived the constants for iron from the data 

of Webster(3) and Shirakawa(4). No measurements have yet been made 
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on the temperature dependence of these five constants for nickel or 

for iron. The reliability of these earlier results in reflecting 

the true magnetic properties of the materials is discussed in the 

next section. 

1.3 Purpose of the present study  

Although many experimental studies have been made in the 

past it may be pointed out that, even for polycrystalline specimens, 

the variety of significant data that may be obtained is unfortunately 

restricted. The resistivity in a given direction can only be 

measured by establishing a uniform electric current density in that 

direction, and this may only be readily achieved by employing a long 

rod-shaped specimen. To investigate the magnetoresistance at 

various angles to the applied magnetic field it is therefore necessary 

to alter the angle between the field and the axis of the rod. Con-

sequently, for a given value of field, the geometry of the specimen 

exerts a considerable influence on its magnetic state. Except in 

very large applied fields, the magnetization will only be collinear 

with the field when the latter is applied either parallel or perpen-

dicular to the axis of the rod, and nearly all the existing invest-

igations on polycrystalline materials are concerned only with the 

measurement of the corresponding changes in the "longitudinal" and 

"transverse" resistivities, Apt, and Api  . 

It has frequently been pointed out(4°  '41)  that it is the 

difference (AP" - 	) - the so-called ferromagnetic anisotropy - 



that is the important constant of the material, rather than these 

changes in resistivity themselves. This is because, at any applied 

field, the values of Apt  and 41  depend upon the resistivity 

in the reference demagnetized state, and in many materials this 

state differs significantly from the ideal demagnetized state in 

which the ferromagnetic domains are distributed at random. However, 

it is erroneous to assume that the variation of (Ap 	- Ap ) with 

applied field characterizes the magnetoresistive behaviour of a 

ferromagnetic substance completely or that the influence of the 

demagnetized state has been completely removed by this procedure. 

In most experimental investigations of magnetoresistance 

the quantities iSpn 	and 441  are determined separately and the 

demagnetization of the specimen is also accomplished separately, the 

demagnetizing fields being applied parallel to the rod-shaped spec-

imen in one set of measurements and perpendicular in the other. 

There is therefore no reason to believe that the two demagnetized 

states are the same for each set of measurements nor that 

( Ap4  - dp4.) is independent of these demagnetized states. Even 

if a common demagnetized state can be employed, the influence of the 

reference state may not be completely eliminated for the quantities 

of fundamental importance are the fractional changes in resistivity, 

p 
, or their differences. However, since the resistance in any 

demagnetized state is, in general, large compared with the magneto-

resistance (any by ), the influence of the reference state on the 

quantity ( Lip 	- Ap )/p is not usually large. 
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A further complication is presented by the fact that AN 

and 4p1  do not exhibit saturation in high fields. At normal temp-

eratures and above the point of technical saturation, both quantities 

exhibit a uniform decrease with increasing applied field that is 

known as the forced magnetoresistance. The magnetoresistive behaviour 

of a polycrystal cannot therefore be characterized by a single 

saturation value of ( 41) 	- Apl  ). Nor is the value at a...1.2z. 

given field of significance by itself, because the geometry of the 

specimen may produce marked differences in the resulting magnetic 

state, both between different specimens and for various field 

orientations with the same specimen. It is clear therefore that 

considerable care is needed if experimental data are to be inter-

preted so as to provide an unambiguous description of the magneto-

resistive behaviour of polycrystalline ferromagnetics. It is largely 

for this reason that this work was undertaken. It was felt that 

there were some uncertainties and possibly inaccuracies in the values 

of the five magnetoresistance constants of nickel and iron in view 

of the poor agreement found, on the basis of existing data, between 

the experimental and the theoretical values of the polycrystalline 

magnetoresistance coefficient (the latter being related to the 

single-crystal constants). It is of primary importance that all 

measurements are made at saturation as this enables the constants 

to be evaluated without any need use a reference state and hence 

the uncertainty about the demagnetized state disappears. However, 

in order that the magnetization within the specimen be uniform for 
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all directions of magnetization, the surface must be one of second 

degree, i.e. an ellipsoid. Uniform magnetization is not therefore 

expected in the case of rod or bar-shaped specimens with a high 

demagnetizing factor unless the field is very large. The influence 

of the shape anisotropy of the specimen on the field dependence of 

magnetoresistance at different orientations is one missing feature 

in the earlier measurements. 

The various points mentioned above are considered while 

analysing the experimental results obtained in the present invest-

igations. This part of the thesis includes measurements on the four 

ferromagnetic materials Ni, Fe, Co and Gd (all in the shape of 

cylindrical rods) using a normal four-probe technique. A method of 

measuring magnetoresistance coefficients of cubic materials by using 

two arbitrarily shaped flat samples has been described by Mathews and 

Doherty(42), following an earlier report by Van der Pauw(43). Since, 

however, the method involves the measurement of resistivity in zero 

field and also in fields parallel and (in particular) perpendicular 

to the plane of the disc, it provides no overall advantage over the 

present method. A detailed consideration of the nature and the 

extent of demagnetizing field inside a specimen placed at different 

orientation to the magnetizing field has been made for the case of 

uniform magnetization (zero susceptibility) and is given in 

Appendix 11 . The account also describes how one piece of single 

crystal of nickel, suitably oriented, was used to give sets of 

measurements in three different crystallographic planes from which 
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all the five magnetoresistance constants can be evaluated. The 

single crystal of nickel was cut, in the form of a slice, from a 

larger piece that had been thoroughly polished and had been oriented 

and checked by the normal X-ray technique. The final results give 

lower values for the magnetoresistance constants than those obtained 

by previous workers, improve the agreement between the single-crystal 

and polycrystalline coefficients referred to earlier and have 

revealed some new and interesting facts in the case of hexagonal 

cobalt and gadolinium. These are discussed in Chapter 6. 
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CHAPTER II 

THE RESISTIVITY  

2.1 The non-magnetic reference state  

The quantity of fundamental importance is not the change 

in resistivity referred to any demagnetized state, but the 

fractional change in resistivity 	.41P- referred to the non-

magnetic state in which the magnetic interactions have been 

annihilated. This later quantity - the fractional change in 

resistance associated with the creation of the spontaneous magnet-

ization - is called the spontaneous magnetoresistance. It is 

dimensionless and, from symmetry considerations, may be expressed 

in the form 

= 'ILE = k
a1 1 + k1  S ( a2p2) + 2k2 S(a1a2P1i32) 'Q.. 	p  

2 	2 	2 
+ k3  S(ccia2) 4- k4  S(al

4p) + 2k5  s(ala2a3P1P2) 

for the case of a single crystal of a cubic ferromagnetic 

(2.1) 

material 

magnetized to saturation. Here al
,a2,  a3 are the direction 

cosines, relative to the crystal axes, of the magnetization vector 

and p is the resistivity in the direction characterised by the 

direction cosines pi, pa, p3. The operator S ( ) implies the 

summation of the three terms obtained by a cyclic permutation of 

suffixes on the expression within the brackets. This reference to 

an undeformed crystal lattice which is originally non-magnetic is 
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also used to define the spontaneous magnetostriction. Although it 

is not, of course, realisable experimentally there are, in fact, 

several ways of estimating the change in resistivity associated 

with the destruction of the spontaneous magnetization. The most 

obvious method is to measure the resistivity of a single crystal 

over a temperature range which includes the Curie point, when the 

change in resistivity may be seen superimposed on the normal in-

crease of resistivity with temperature. At temperatures reasonably 

far below the Curie point, the coefficient ko  is approximately 

O.5 whilst the coefficients ki 	k5  are usually some ten times 

smaller in magnitude (see page 146). The change in resistivity given 

by equation (2.1) is thus. substantially isotropic and does not 

depend strongly either on the direction of magnetization or on the 

direction in which the resistivity is measured. An estimate of the 

value of k
o may therefore be made from measurements on polycrystals  

and, in fact, existing data on the temperature dependence of the 

resistivity of ferromagnetics refer exclusively to polycrystalline 

materials. Further, the values of ko  obtained from measurements 

on polycrystals will be considerably closer to the single-crystal 

values than is indicated by the comparison of k
o with ki  0.o k5  

mentioned above, for more detailed calculations indicate that the 

actual discrepancy would be nearly one order of magnitude smaller 

than these latter coefficients (e.g. -0.0069 for nickel compared 

to k's 	0.055). 

Although the coefficients k
o 	

k
5 

are called the 
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magnetoresistance constants, they are, in reality, only constant 

for a given temperature and for a given value of applied field - 

it being assumed that the field is large enough to saturate the 

single crystal so that the magnetoresistive behaviour of the whole 

specimen is governed by equation (2.1). As stated earlier, the 

fractional change in resistivity, 	, decreases linearly with 
/ 

field in high fields and the rate of change 	= e'..R/01-1 is found 

to be substantially independent of the direction of magnetization 

or the direction of observation. For polycrystals, the correspond- 

ing fractional change in resistivity 	also changes linearly at a 

rate 	which is very nearly the same as the value obtained 

with single-crystal specimens of the same material.. The variation 

of resistivity with temperature is considered in detail in section 

G.3, where it is shown that it is possible to derive a relation 

connecting the temperature dependence of c4,  , and hence of 

and k
o
, with the field dependence of these quantities, that is 

with the "forced" magnetoresistance. 

2.2 The temperature dependence of the electrical resistivit of 

polycrystalline ferromagnetics  

The electrical resistivity of a ferromagnetic transition 

or rare-earth metal exhibits, in general, a conspicuous anomaly in 

the region of the ferromagnetic Curie point, the variation of 

resistivity with temperature being more pronounced just below this 

temperature than just above it. This is depicted schematically in 
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Figure 4 . Above the Curie point, Tc, that is in the region a 

to b, the temperature dependence of the resistivity is similar 

to that observed in non-ferromagnetic metals. Below the Curie 

point, the onset of ferromagnetism is accompanied by a reduction 

in the ideal resistivity, which may therefore be written in the 

form 

p = pK  (1 +V, 	 (2.2) 

where 	, a negative parameter which vanishes above the Curie 

point, depends upon the spontaneous magnetization - and hence upon 

temperature - and where pK  exhibits a resistivity which is not 

disturbed in any way by the onset of ferromagnetism. Thus pK  

represents the resistivity of the hypothetical non-ferromagnetic 

phase of the metal referred to in the previous section. The coeff-

icient V22 k
o may be regarded as being temperature dependent, the 

material passing through a succession of different ferromagnetic 

states each characterised by the spontaneous magnetization Is  

Thus, below the Curie point, kc  may be evaluated by comparing the 

resistivity of the ferromagnetic with that of a "normal" non-ferro-

magnetic metal. The difficulty involved in this procedure, however, 

lies in predicting the dependence of pK  on temperature below the 

Curie point. Several attempts were made in the past to do this. 

In 1930 Gerlach and Schneiderhahn(8) drew attention to a 

connection between the spontaneous magnetization of a ferromagnetic 

and its electrical resistance. In the neighbourhood of the Curie 

point the resistivity of nickel is reduced in an applied magnetic 



field by a quantity which is proportional to the change in magnetic 

energy. Similar results were obtained by Potter(9) for iron and 

Heusler alloy. Gerlach and Schneiderhahn assumed that the resist-

ivity of nickel could also be related to the spontaneous magnetization 

throughout the whole range of temperatures from the absolute zero 

to the Curie point. On rather incomplete evidence Gerlach concluded 

that above the Curie point the variation of resistivity with temp-

erature was linear and by extrapolating a line, such as ab of 

Figure 4, to lower values of temperatures the distance /lp was 

found to be fairly accurately proportional to the square of the 

spontaneous magnetization. It was therefore concluded that when 

the metal entered the ferromagnetic state the resistance fell by an 

amount which was proportional to the magnetic energy. 

An objection to this conclusion was put forward by Potter 

who pointed out that the extrapolated portion be of the line ab 

cannot represent the resistivity of a "normal" non-ferromagnetic 

metal since it predicts a finite resistivity at the absolute zero. 

He also found difficulty in believing that there was such a close 

connection between the resistivity and the spontaneous magnetization 

since the results of Svensson(44) indicated a sharp discontinuity 

in the temperature coefficient of resistance of nickel in a temp-

erature range as small as 0.1°  C at the Curie point, whilst measure-

ments of magnetic energy indicate that the Curie temperature is not 

sharply defined but extends over a much larger temperature range. 

Further, the resistivity curves for both nickel and iron are markedly 



27 

concave to the temperature axis above the Curie point and Potter(45)  

concluded that "this fact presumably invalidates Gerlach's extra-

polation and consequently his formal theory concerning the connection 

between resistance and energy of spontaneous magnetization". Whilst 

there can be no doubt that it invalidates Gerlach's extrapolation 

it is clear that the form of the relation between resistivity and 

Is is still open. For example, the relation 

ko 	Is'  
	 (2.3) 

may not be far from actual relationship for, although p tends 

to zero at the absolute zero, the ratio 4LE need not, since the 

resistivity of both ferromagnetic and non-ferromagnetic metals go 

to zero together. The difficulty lies in accurately measuring 

k
o at very low temperatures in order to test the validity of the 

above equation. 

The failure of Gerlach's original linear extrapolation 

is at first sight rather surprising since GrUneisen(46) has shown 

that for most pure metals the dependence of resistivity on temp- 

erature is given to a close approximation by a universal function of 

the.absolAte temperature. Grlineisen's empirical formula, originally 

derived by Bloch(47), is 

p of  g  

ae 
4 ® /T 

where 	g (7e. 4 (If ) 	 (2.4b) 
(ex 	

dx  
- 1)(1 	e-x) 

and where the characteristic temperature 	which gives the best 

(2.4a) 

Jo 
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fit with the resistivity measurements is generally close, although 

not exactly equal, to the Debye temperature for specific heats. 

Equation (2.4) predicts that the resistivity will be proportional 

to the absolute temperature, T , at high temperatures and to T5 

at low temperatures ( T <K. ID ). Experimental measurements confirm 

that p/T is sensibly constant at high temperatures for most of 

the non-ferromagnetic metals, increases with T in the case of 

noble metal and decreases with T in some of the transition metals 

(including palladium). It is thus clear that Gerlach's original 

linear extrapolation fails because, above the Curie point, the 

curve of resistivity versus temperature (e,g. for nickel) is con-

cave to the temperature axis. In conjunction with the fact that 

resistivity of the transition metals is exceptionally high, this 

indicates that there must be an additional term or contribution to 

the resistivity which itself does not obey GrUneisen's relation. 

The explanation both of the departure from linearity of 

the resistivity versus temperature curves of the transition metals 

and of the difference between the resistivity of a ferromagnetic and 

the value obtained by extrapolation from above the Curie point, was 

first given by Mott(48) Depending on whether the resistivity 

process invokes an s-d transition mechanism(48' 49)  or a spin-

disorder mechanism(544) 51,.52, 53, 54), Mott and Stevens(55)  later 

were able to draw a distinction between the band structures of close-

packed (e.g. nickel and cobalt) and body-centred (e.g. chromium and 

iron) transition metals The two cases correspond to the vanishing 



29 

of p and (1 	respectively at very low temperatures so that 

in either case the actual resistivity p disappears, 

2.2.1. The resistivity of close-packed transition metals 

Mott pointed out that the poor conductivity of these 

transition metals is due to the overlap of a narrow d-band (in 

which the atomic d functions predominate) with a more normal s-band, 

Since the d wave functions of the individual atoms overlap relatively 

little, the d-band is abnormally narrow (with a correspondingly 

large density of states) and the contribution of the d-electrons to 

the conductivity is very small. However, although almost the entire 

current is carried by the s-electrons, the vacant levels in the 

d-band have a considerable effect on the conductivity since the 

s-electrons can be scattered into energy levels both in the s-band 

(s-s transitions) and in the d-band (s-d transitions). Since the 

transition probability is proportional to the density of energy 

levels in the final state, which is large for the d-levels, the s-d 

transitions will give rise to a large scattering probability and the 

resistivity of the transition metal will be much larger than the 

normal resistivity arising from s-s transitions, 

If the transition metal, is in addition, ferromagnetic, 

Mott's theory again predicts an increase in resistivity due to s-d 

transitions. Above the Curie point this increase in resistivity 

arises in exactly the same way as it does in a non-ferromagnetic 

transition metal. Below the Curie point, however, the ferromagnetic 
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is spontaneously magnetized and the two half d-bands appropriate to 

atomic spins parallel and antiparallel to the local magnetization 

are occupied to different extents. The number of vacant levels in 

the d.-band is therefore a function of temperature and at low temp-

eratures all the levels in the parallel half d-band are occupied as 

this results in a lower potential energy. At the absolute zero the 

weight factor for the unfilled levels corresponds to only one 

direction of spin and is therefore half of what it is above the 

Curie point, Mott ascribed the reduction in resistivity which 

accompanies the onset of ferromagnetism to the decrease in the number 

of s-electrons which are able to make spin-conserving transitions 

to vacant levels in the d-bands. At low temperatures only one-half 

of the electrons can undergo s-d transitions. The resistance is 

thus smaller than that of the corresponding non-ferromagnetic 

transition metal although, of course, it is still much larger than 

that of a normal metal,in which only s-s transitions are operative. 

If these ideas are correct then the variation of pai  

with temperature should arise both from s-s and s-d transitions but 

mainly from the latter: for a non-ferromagnetic metal, pic  rep-

resents its actual resistivity. At any temperature, pic  is deter-

mined by the band structure of the metal, which is assumed to be 

sensibly unaffected by changes in temperature, and by the distrib-

ution of electrons over the energy levels, which is, of course, 

temperature dependent. For a ferromagnetic metal, pic  represents 

the actual resistivity above the Curie point, Tc  , and the 
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resistivity of the 'normal' non-ferromagnetic metal below Tc  . The 

decrease of p/T with T observed in the transition metals may be 

expected to occur when the density of states for the (unfilled) half 

d-band decreases appreciably with increasing energy resulting in a 

reduction in the scattering of the s-electrons with higher thermal 

energies. Indirect evidence for the validity of Mott's theory also 

comes from the investigations of several other workers(56,57,58) 

It is now generally accepted that for nickel (and for palladium and 

the Ni-Pd alloys) s-d transitions are mainly responsible for the 

high resistivity and for the difference between p and (2,K  

A procedure commonly adopted in the past for obtaining the 

dependence of pK  on temperatures below Tc  for nickel was based 

on the experimentally observed fact that (in Ni and Pd) the two 

resistivities are approximately proportional for an extended range 

of temperatures above the Curie point, Tc, of nickel. Further, 

nickel and palladium occupy similar positions in the periodic table: 

both elements and their alloys have about 0.6 holes per atom in the 

d-band and presumably there is a similar equality in the number of 

conduction electrons per atom. Hence by adopting the same constant 

of proportionality below Tc, a curve may be obtained which represents 

the resistivity of 'normal' non-ferromagnetic nickel 
	60,61,62) 

It has been shown by Birss and the present writer(63) that although 

this procedure is legitimate at temperatures just below Tc  it is 

invalid at lower temperatures. An alternative procedure is therefore 
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suggested whereby the constants of the two equations representing 

the resistivities of palladium, ppd, and of 'normal' non-ferro-

magnetic nickel, pNi, namely 

PPd = B1 	T + Cl T
2 
+ D1 T

3 
	(2.5a) 

P:i  = B2  g (-1-) T + C2  T2  + D2  T3  , 	(2.5b) 
(D.)2 

are first determined from the measurements of the temperature 

variation of the resistivities of these two metals at high temp-

eratures since the function g ( ) tends to unity for T )'>ICO 

The inclusion of the T2 and T3 terms in equation (2.5) is explained 

in the following way: 

According to Grttneisen's universal function, for a given 

metal, if 0 is constant, p/T should be constant at high temp-

eratures. The increase of p/T with T can be ascribed to the thermal 

expansion of the metal which gives rise to a decrease of (1]) with 

T given by 

	

1 	d 	din 	 dV 1 dV 	dtn  (11 	, .( ) (- 

	

-a-0 	
dV 	dT - / V dT 	d tn V ) 

	
(;*.  - - 	' 

where a is the volume coefficient of thermal expansion and -"0 is 

the GrlYneisen constant. At high temperatures, a)) is small and 

approximately constant, whence 

c-2 e2a T oC 	 = (1 + 2aVT) , 

whilst g (T/(g) ) = 1 in equation (2.4a) so that 

p <2C: T(1 + 2a *1) T) o 	 (2.6) 
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At temperatures of the order () and below, g is no longer unity 

and the variation of g with 	must be taken into account. For 

example, if o01 is assumed to be constant at very low temperatures 

(for which g cC (T/A))4), equation (204a) yields p oC T5/(D6  , or 

p c>C. T5 (1 4- 6a y T) 	 (2.7) 

However, the thermal expansion coefficient a vanishes at very low 

temperatures and hence so does the correction to the resistivity 

for the decrease of 
	

with T accompanying thermal expansion: 

moreover the correcting term 2cci T may already be neglected corn-

pared with unity when T falls to temperatures of the orderH or 

below. It may therefore be seen that, at all temperatures, a 

correcting term of the form CT
2 

may be added to the value 

p = B g (2) T 
	 (2.8) 

given by equation (2.4a), where B is a constant and C is the approx-

imately constant value of 2a)) B appropriate to high temperatures. 

p/T with T observed in the 

term must be applied of the 

shape of the d-band in the 

neighbourhood of the Fermi limit (Mott writes the term DT3 as 

- 	u
2 
 T (T/To

)
2 

thereby defining a "degeneracy temperature" for 
1  

the d-band, which is about 3500o K for palladium). 

At low temperatures it is found, that if the resistivity(? 
 2) 

 

of palladium is represented by equation (205a), the function g(T/(D) 

is not given exactly by equation (204b)0 A new function G(T/0) is 

therefore defined which brings (205a) into exact agreement with the 

To allow for the decrease of 

transition metals, a further correction 

form DT3, where D depends( 4) upon the 
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experimental data where G differs from g appreciably only at low 

temperatures (see Table l). The values of G so obtained may then 

be used to obtain the temperature variation of pNi  by substituting 

G for g in equation (2.5b). This would seem to be the only satis-

factory method of exploiting the similarity of palladium and nickel 

to predict pNi  from ppd  , and it may be seen that the method 

relies partly on the existence of accurate measurements of pNi  and 

pPd at high temperatures. 

The results of the application of this procedure to some 

new measurements on nickel made by this writer(63) give values of 

which are in good agreement with other values which are derived 

from theoretical calculations using the band-structure calculations 

of Fletcher(65). The new values of t,  are subsequently used (in 

section 6.3. ) for the verification of the relationship developed 

in section 6-.3 connecting the temperature dependence of 	with the 

'forced' magneto-resistance. 

2.2.2 The resistivity of body-centred transition metals  

For the body-centred metals such as chromium and iron, 

Mott and Stevens suggest that the d-band is split into two parts 

one associated with rather diffuse wave functions of tg  symmetry 

(i.e. of type xyf(r) ) and the other with compact wave functions of 

eg  symmetry (i.e. of type (x
2 
- y

2
)f(r) ). The conductivity is 

ascribed to the electrons in the tg  band and the magnetic properties 

to the eg  electrons, for Mott and Stevens suggest that these 'magnetic' 



TAMP 1  

g(T/® ) G(T/C) ) g/G 

10.0 0.9994 0.9994 1.0000 

5.0 0.9978 0.9978 1.0000 

2.0 009862 0.9862 1.0000 

1.75 0.9822 0.9822 1.0000 

1.50 0.9757 0.9757 1.0000 

1.25 0.9653 0.9727 0.9924 

1.0 009465 0.9687 0.9771 

0.9 0.9551 009593 0.9748 

o.8 0.9196 0.9476 0.9705 

0.7 0.8962 0.9281 0.9656 

0.6 0.8581 0.8945 0.9593 

0.5 0.8073 0.8412 0.9597 

004 0.7230 0.7551 0.9575 

0.3 0.5756 0.6211 0.9267 

0.2 0.3217 0.3998 0.8047 

0.1 0.04655 0.113o 0.4120 

0.05 0000311 0.02326 0.1337 

35 
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electrons do not form a band and do not contribute to the conduct- 

ivity. This model is based on the interpretation of experimental 

data for the transition metals, particularly X-ray determinations 

of electron densities(66'67'
68)

. The conclusion that the valence 

electrons may be divided into two classes - conduction electrons 

distributed throughout the metal and magnetic d-electrons localized 

near each atom - has also been reached by others, notably Griffith(69)  

and Lomer and Marshall(70). 

If these ideas are correct, the magnetic properties of the 

body-centred transition metals are due to the existence of essen-

tially localized magnetic electrons whilst current is carried by con- 

duction electrons with t wave-functions hybridized with 4s and 
g 

possibly 4p functions. The resistivity of these metals will there-

fore be mainly due to scattering of the conduction electrons by the 

disordered spins of the magnetic electrons(,51).  Thus, above the 

Curie point, the spins of the magnetic electrons will be orientated 

at random and the associated resistivity will be constant, whilst at 

the absolute zero all the spins will be aligned and this resistivity 

will vanish leaving only the small contribution of the transitions 

between conducting states. These conclusions of Mott and Stevens 

have not met with general acceptance in relation to the metal iron 

but there is little doubt that the spin-disorder mechanism is 

correctly invoked in explaining the resistivities of the rare earth 

metals such as gadolinium. For example, the resistivity of gadolinium 

follows a line such as ab of Figure -above the Curie point which 



37 

shows little dependence on temperature. This suggests that the 

increase in resistivity over that due to s-s transitions should not 

be ascribed to s-d transitions but rather to a component of the 

resistivity which is constant above the Curie point and which de- 

creases monotonically to zero as the temperature is lowered from 

T=Tc 
to T=0. 

For gadolinium, the dependence of pX  on temperature below 

the Curie point may be determined more readily than for nickel. 

For such metals, although the spin-disorder mechanism predominates, 

the resistivity arises nevertheless from a combination of electron-

phonon and electron-magnon interactions. However, above the Curie 

point the electron-magnon contribution is constant (corresponding 

to completely disordered spins) whilst electron-phonon interactions 

give rise to an additional dependence of resistivity on temperature 

which is essentially linear and of moderate slope. It is therefore 

possible to fit the experimental data at high temperatures (p = PK) 

to an equation of the form 

PGd = A3  + B3g(T/  J3)T  + C3T2  +03  , 
T3 (2.9) 

where g is given by equation (2.4b). Again, it may be noted that 

predictions of 4id  below the Curie point may only be made if 

accurate measurements of resistivity at high temperatures are 

available. The results of the application of the above equation to 

some new data on gadolinium, taken by this writer, have been described 

elsewhere(63) * 



38 

2.2.3 The influence of the Weiss molecular field on  the form of the  

curve of resistivity  versus temperature 

It is particularly instructive to consider how the form 

of the curve of resistivity versus temperature is altered by varia-

tions in a parameter Z = X Y, where Y = qI
s 

is the Weiss molecular 

field and X = H - NI is the effective internal field (N being a 

demagnetizing factor)- This variation is shown schematically in 

Figure 4. 
Curve T is the curve appropriate to Z = 0, that is to the 

hypothetical non-ferromagnetic phase of the material under invest-

igation. At the absolute zero, the separation between the levels 

in the parallel and antiparallel half d-bands of the ferromagnetic 

metal reaches a limiting value and the saturation magnetization Is  

attains its maximum value I . If this limiting separation were 
so 

assumed to remain constant at all temperatures, then the resistivity 

would only change as a result of the variation with temperature of 

the distribution of electrons over the levels. Thus if curve II is 

drawn from the relation 
P11 = PI , then it represents the resist-

ivity of an "artificial" ferromagnetic for which the 3d spins remain 

in perfect alignment at all temperatures and for which the Curie 

temperature and q are both infinite. Curve II corresponds therefore 

to Z =c113. 

Now, in reality, actual ferromagnetics exhibit large and 

finite values of q, the Weiss molecular field constant, rather than 

infinite values. Thus the resistivity curve of a ferromagnetic with 
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a finite value of q must lie between I and II, and its distance from 

II decreases as the degree of alignment increases. If an "ideal" 

ferromagnetic is considered for which q is large and finite and 

I
6 
 = Iso  for all temperatures below the Curie point, Tc, it may be 

seen that the degree of spin alignment is little different from the 

perfect alignment of the "artificial" ferromagnetic. This is 

because I_/I
so  is a measure of the degree of alignment and this 

quantity is given by a Brillouin function, one characteristic of 

which is that it changes very slowly for large values of the argu-

ment, Thus the resistivity curve for an "ideal" ferromagnetic - 

curve III - will be almost the same as curve II except that it will 

exhibit a finite Curie temperature, Te, corresponding to a finite 

value of the Weiss molecular field coefficient. Curve III thus 

corresponds to a large finite value of the parameter Z. 

For an actual ferromagnetic, q is substantially constant, 

except in a small range of temperatures at the Curie point, but Is  

varies from I 	to zero, causing a considerable variation in the so 

degree of spin alignment and hence of the resistivity - depicted by 

curve IV. Curve IV thus corresponds to constant q and variable 

Is , that is to a variable value of the parameter Z. However, an 

increase in the total field Z, leading to an increase in spin 

alignment, can be achieved not only by reducing the temperature so 

that I
s and hence Y are increased but also by increasing the 

internal magnetic field X acting on the material. Thus, if the form 

of the dependence of the curves of Figure kupon Z can be 
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ascertained, the variation of resistivity with temperature may be 

related to the dependence of resistivity on magnetic field, that is 

to the "forced magnetoresistance". This is attempted in section 6.3 , 

2.3 Resistivity in an external magnetic field  

For an ideal polycrystal, the spontaneous magnetoresistance 

associated with the creation of the spontaneous magnetization may 

be expressed in the form() 

= P 	Q cos2x R cos4x 	... 	(2.10) 

where x is the angle between the saturation magnetization vector 

and the direction in which the magnetoresistance is measured. The 

coefficients P, Q, R, ... are purely formal and subject only to the 

limitations of crystal symmetry. An advantage of formulating the 

fundamental equation in terms of the spontaneous magnetoresistance 

rather than in terms of quantities referred to the ideal demag- 
1w* 

netized state, such as crl.I., 11  = topii  /p or El=2Npi4 , is that it 

eliminates an undesirable tendency to interpret the forced magneto-

resistance in terms of a field dependence of the 2 's, quantities 
which contain a part that depends on the demagnetized state and which 

cannot therefore be field dependent. 

Experimental data are always interpreted by taking only 

the first two terms of equation (2.10), although the justification 

for terminating the series at any stage of the expansion must, of 

course, always rely upon a comparison with the experimental data 

themselves. From a consideration of the linear relationship observed 
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between the increase in resistivity and the square of the magnet-

ization for a material under substantial tension, Bozorth(6°)  con-

cluded that no terms higher than that in cos
2x need be included for the 

description of the magnetoresistive behaviour of the material. 

However, present measurements indicate a weak dependence on the 

cos4x term which will be discussed in Chapter 6. A similar expression 

is usually employed to describe the polycrystalline magnetostriction 

and, in this case, an expression of the form P Q cos2x fits the 

experimental data quite well at least for nickel. The spontaneous 

polycrystalline magnetostriction may also be obtained by averaging 

the strain in the individual crystallites over all directions. For 

cubic and hexagonal materials it has been shown that even if the 

expressions for the single-crystal magnetostriction are not limited 

to second powers of cosines of angles an expression of the form 

P Q cos2x is obtained provided that it is assumed, in this averag-

ing process, that the stress is uniform throughout the polycrystal so 

that the strains in the individual crystallites may be added together 

linearly(71). A similar procedure can be followed to derive ex-

pressions for polycrystalline magnetoresistance from single-crystal 

equations. The justification for employing a corresponding linear 

averaging process for magnetoresistance rests on the fact that it is 

the resistivities rather than the changes in resistivity that must 

be averaged and, since the magnetoresistance is usually small com-

pared with the resistance itself, the exact method of averaging is 

not very important. Thus, for instance, either resistivity or con- 



42 

ductivity can be averaged without making a significant difference 

to the resulting expression, as shown by the following approximate 

equality 

p/P0 = (1 4.) = (1 _
42. 
a 

0 	0 

1 — AC)  -1 =  ao 
o'

0  
(2.11) 

where p is the resistivity and d is the conductivity. Theoretically, 

the first method of averaging corresponds to the evaluation of the 

electric field average over a large number of individual crystall-

ites in the direction of the current assuming that the current is 

continuous everywhere. The second approach corresponds to a current 

density average assuming that the electric field is continuous. 

Assuming, then, that the polycrystalline magnetoresistance 

can be adequately represented by the first two terms of equation 

(2.10), the somewhat artificial situation may be considered in 

which a given polycrystalline specimen is placed in a given orient-

ation relative to a fixed saturating applied field. If the resist-

ivity is measured at various angles x to the saturation magnet-

ization vector then the spontaneous magnetoresistance may be expressed 

in the form 

= P 4.  (3/2) 0 s  cos2x LJ  
(2012) 

3 t--7 
where the constant Q has been replaced by — L t because of the 

2 -s 
ih••• 

familiar association of r7--- 7  with the fractional change in resist-

ance between the ideal demagnetized state and the state in which the 

polycrystal is magnetized to saturation parallel to the measuring 

direction. It should be noted that, since the angular relationship 
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between the specimen and the field is assumed to be fixed, it is 

the direction of measurement which must be varied to alter the 

angle x 

The formulation contained in equation (2.12) is incon-

venient for three reasons. First it does not correspond to the 

usual experimental arrangement in which the direction of measure-

ment remains fixed relative to the specimen and the direction of 

the applied field is varied. Secondly it does not take into account 

possible variations in the saturating applied magnetic field H and 

thirdly it does not permit a ready comparison between data obtained 

with different specimens of the same material. 

As mentioned in section 2.1, if the magnetoresistance is 

measured in high fields (but still with the same specimen) it is 

usual to observe that tE decreases linearly with field for a 

given value of the angle x . Equation (2012) may therefore be 

modified thus 

k(x,H) = t(x,H0) + (H-Ho  ) bH  H = Ho 
	(2.13a) 

or 
i1 

aP 3 2 1-1 	acc 
a(H. = P

ko 
+ (H-Ho 
	e 
) ---+ -zos x, 	

+ (H-Ho  ) H 	aH 

(2013b) 

The two unknown quantities bP/bH and 8 L 17- /bH may be determined 

by observing the rate of change with H of 1E(  (x = 0) and fz4(x = n/2)0 

In practice it may be desirable to meaaure7":, on different Ac 

specimens of the same material or - what is more likely - to compare 
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cos x 

1-7 "-) 
(2015) 
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values of 
	obtained with a particular specimen for which the 

parameter x has been altered by keeping the direction of measure-

ment fixed and varying the direction of the applied magnetic field. 

For these cases equations (2013) cannot be employed directly because 

of the dependence of the magnetic state of the ferromagnetic on the 

geometry of the specimen. However, this difficulty can be overcome 

by observing that the dependence of magnetic state on internal  

magnetic field, X, is always the same for any specimen and for any 

direction in the specimen, provided only that the internal field is 

uniform. Thus if the dependence of H of equation (2.12) is replaced 

by a dependence on the internal field 

X = H - NI , 	 (2.14) 

where N is the demagnetizing factor, then the equation 

Px  + (X - X ) 
o 8X 

0 

is obtained. Equation (2015) may be used with confidence for the 

customary experimental arrangements and also for comparing results 

obtained with different specimens of the same material provided the 

internal field is uniform. A further simplification is afforded by 

defining the values of P and ElSin equation (2.12) as those ob-

tained by extrapolation of the linear high-field portion of the 

magnetoresistance curves to zero internal field (X0  = 0). Thus 
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where it should be noted that, r,xperimentally, this equation is 

somewhat artificial since the polycrystal is not saturated at X = O. 

If measurements above the point of technical saturation reveal that 

/ax and a74_1_ /aH are exactly equal so that g- =
aH  is finite 7.7.7  „ 

a c_-, 	v LiS  
whilst 3X - 

aH 
i
s 
zero then equation (216) simplifies to - 

s  cos x , = P 	X -PP 3  r,7 	2 
6.)T • T 	

1 
4 (2.17) 
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(2.16) a5t P  3  - ces2x x= + -6--  



CHAPTER III 

TRANSPORT EQUATIONS  

3,1 Galvanomagnetic effects 

Broadly speaking, the effects that manifest themselves 

when a conductor carrying a primary current is placed in a magnetic 

field, H, define the galvanomagnetic and thermomagnetic properties 

of the conductor. When H = 0, the electrical and thermal properties 

of an isotropic conductor may be adequately described by four basic 

quantities, namely, the electrical conductivity, the thermal con-

ductivity, the thermoelectric power and the Peltier coefficient. 

In the presence ofa magnetic field, several other phenomena are 

exhibited, the most important of which are the Hall effect and 

magnetoresistance associated with the electric current, the magneto--

conductivity and thermoelectric power change associated with the 

thermal current and the Ettingehausen-Nernst effect associated with 

the flow of either current. To give precise definitions of these 

effects, it is necessary to define the conditions under which measure-

ments are taken. 

Since the present investigation is primarily concerned 

with the magnetoresistance effect in ferromagnetics, no attempt will 

be made to include thermomagnetic terms in the subseqUent develop-

ment of the phenomenological theory; in other words, it will-be 

assumed that conditions are perfeCtly isothermal so that no thermal 
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gradients exist anywhere. Of the remaining two transport phenomena, 

namely electrical conductivity and the Hall effect, the former has 

been discussed in detail in the previous chapter. The Hall effect 

in an isotropic solid is the electric field which appears perpend-

icular to the current and the magnetic field when the latter is 

applied. It will be shown that this quantity can be described by 

the antisymmetrical part of the general tensor representing the 

electrical resistivity, and hence is eliminated in the normal 

experimental arrangements to measure magnetoresistivity. 

3.2 The phenomenological description  

The fundamental equation in the phenomenological theory is 

the generalized form of Ohm's law 

E. = p..ij J.j  (i = 1,2,3) , 	(3.1a) 

where the current density and electric Enid vectors, J and E 

respectively, are represented by their components in a Cartesian 

co-ordinate system (x1,x2,x3) and where p.. is the electrical 
13 

resistivity tensor. Here, as throughout the rest of this part of 

the thesis, the standard convention implying summation over re-

peated indices has been adopted. The resistivity matrix is the 

reciprocal of the conductivity matrix, the corresponding conductivity 

tensor, Pik , being given by the inverse relation 

ji 	(i = 1,2,3) . 	(301b) 

Now a second rank tensor,, such as p.. , can be divided into a ij 

symmetrical part, p 
j  , 

	.andan.antisymmetricalpart, pij  .,so 
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that equation (3.1a) becomes 

E. = p. J.
j  + p.

a  
j. J. , ij 	1j  

where 

PuT = 	(P 	pad) = PT  ij 	ji ' 
and 

(3.2) 

(3.3a) 

= 	phi
P • (P

13 	
Phi) = 	 (3.3b) j 

It has been shown by Onsager(73) and others(74,75,76) that a 

reciprocal relationship exists for the resistivity and other 

similar coefficients which are functions of the magnetic field 

vector, H , by virtue of the property of microscopic reversibility, 

and that this leads to the results 

Pij (E) = Pji (-E) 	 (3.4a) 

0. . (H) =
31 
 (-H) 

13 — 	— 

From equation (3.3) it follows therefore that 

pTj 	i (H) = pTj 
 (-H) i  

and 

(3.4b) 

pig  (11) = -Pij 

that is, the symmetric tensor must contain only even powers of the 

magnetic field and the antisymmetric tensor only odd powers. 

For ferromagnetics, however, the magnetization is not 

proportional to the field so that it is more useful to develop the 

expressionfor. or pig 	6 	in a power series of ai  , the ik 

direction cosines of the magnetization vector, rather than in a 

power series of the magnetic field. Furthermore, in a normal 

experimental arrangement, as in the present case, it is the current 
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density that is maintained constant whilst the electric field is 

allowed to adjust itself and is determined from voltage measurements. 

It is convenient, therefore, in order to be able to correlate 

directly theory and experimental results, that the full analysis be 

given for the resistivity tensor rather than for the conductivity 

tensor. Thus, with a saturating magnetic field, H = H a (with 

components H. = H a.) applied to the crystal, it is possible to write 

pTij (a) = Pij 	ijim 
+ a. a

1  am 
 + 

aijlmno  al  am  an  ao 
 + 

(3.5a) 

and 

a 
pij 	I (a) = a.j1  a1 	i 

+ 
ajimn  a1  am  an 	1 

or, alternatively, 

E. m E. = p.j  J. + aijim  Jj  al  am  + aijlmno  J
s 
 a
l 
 am an 

 a 
1 i o 

and 

(3.5b) 

0000 	7 

(3.6a) 

E. = aij1  Jj  al  + a: 	J. a a a + 	(3..613 ijlmn j 1 m n 

Here, p7j  corresponds to the non-magnetic reference state discussed 

in Section 2.2. The higher rank tensors, are 
aijl , a  ijlm , °°' 

known as galvanomagnetic coefficients. They can be expressed 

explicitly in terms of the conductivity coefficients of the analogous 

equation 

J 
ik Ek 	ikl El 

a
1 biklm Ek al am 	' 	(3.7) 

by using the relations 

Pi  (a) 	(a) = j 	jk 	ik ' 
(3.8a) 
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wherebik is the Kronecker delta, defined by 

bik = 1 when i = k 1  

oik  = 0 when i k 	 (308b) 

Equation (3.2) indicates that the resultant electric field, E , 

consists of two parts, Ea  (with components Eai) which changes sign 

when the saturating magnetic field - and therefore the magnetization 

-isreversedandEs (withcomponentse)which remains unchanged 

on reversing the field. It will be further shown in section 3.2.2 

that these two parts represent respectively a generalized Hall 

effect and a generalized magnetoresistance. Equations (3.6) imply 

that the electric field E' depends upon the direction of the sat-

urating magnetic field but not on its magnitude. In a ferromagnetic 

or ferrimagnetic material there are generally two contributions to 

the galvanomagnetic effects - one arising from the presence of the 

spontaneous magnetization and the other from the magnetic field. 

It is the former contribution that is given by the equation (3.6)(77) 

3.2.1 Application of symmetry : definitions  

It should be noted that the tensor components occurring 

in equations (3.5) are all subject to the limitations imposed by 

the macroscopic or point-group symmetry of the crystalline material 

in question. The relation between the symmetry of a crystal and the 

symmetry of its macroscopic physical properties is furnished by 

Neumann's principle which states that any type of symmetry that is 

exhibited by the point group of the crystal is also possessed by 



every physical property of the crystal. This leads to the require-

ment that the resistivity or the conductivity tensor must be invariant 

under all the permissible symmetry operations appropriate to the 

particular crystal class. 

The starting point in the application of symmetry is the 

matrix,inaartesianco-ordinatesystem0x.(i = 1,2,3), expressing 

a right-handed rotation through an angle 0 about an axis with 

directioncosinesm.(relative to Ox.), 

x! given by(78) 

This leads to new co-ordinates 

(3.9a) 

where 

 

= 

cos 0 + m2(1-cos 0) 1 • 

m2m1(1-cos G)-m_sin 

m
3
m1(1-cos 0)+m2sin 8  

m1m2(1-cos 19)+m3sin 0 

cos 	m
2
2(1-cos 0) 

m3m2(1 -cos 0) -misin 0  

m,m
3 
 (1-cos 0)-m2sin 0 

m2  m_(1-cos 0)+mlsin 0 

cos 0 + m
2
3
(1-cos 8) 

(3.9b) 

For a rotation of the co-ordinate axes given by the above matrix, 

the components d 	of a tensor transform according to the ijk..n 

relations 

d' 
ijk..n 

where the number of 

rank of the tensor.  

1 	1 	1 ... 1 	d 	(3.10) 
ip jq kr 	nu pqr..0 

suffixes attached to 
dij ..n determines the k 

Quantities which transform according to (3.10) 

are referred to as true or polar tensors since they do not change 

sign upon a transformation that changes the hand of the co-ordinate 
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axes. Such a transformation corresponds, for example, to a com-

bination of a rotation of the axes and a reversal of their sense 

(i.e.theinversionx!=-x.). However, many physical quantities 

do change their sign upon such a transformation and therefore obey 

the transformation law 

d'ijk..n = 
	1. 1. lkr  

oa 'nu dpqr.,u ' 	
(3.11) jq 

these are referred to as axial tensors. Examples of a polar vector 

(tensor of the first rank) and an axial vector are provided respect-

ively by a displacement and a vector product of two polar vectors. 

The latter is really a true (i0 e. polar) antisymmetrical second-rank 

tensor, but in three dimensions it has only three components and can 

therefore be represented by an (axial) vector. 

Another concept of importance for the present purpose is 

that of a physical (or field) tensor, a terminology which is used 

to differentiate it from the property (or matter) tensor, such as 

the resistivity or conductivity tensor of equations (3.1). For 

example, the vectors E and J of the same equations are physical 

tensors of the first rank. The invariance of the linear equation - 

e.g. equation (3.1) - relating the influence and the resultant 

physical effect under the operation of space-inversion enables the 

property tensor to be immediately classified as polar or axial pro-

vided the physical tensors are so classified. An extension of this 

simple idea to the invariance of Maxwell's equations immediately 

yields the results that E and J are polar vectors while H is an 

axial vector. 
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A complication to the symmetry problem is introduced by 

the consideration of time-inversion, which reverses the direction 

of spin and of current whilst leaving that of charge invariant. 

Its significance arises from the fact that an orderly distribution 

of spin magnetic moment may constitute a further repetitive feature 

of the crystal (on a non-zero time-average basis) that is not in-

cluded in the description of the geometrical symmetry. This leads 

to a four-dimensional problem involving generalized transformations 

in space-time. An excellent treatment of the subject is given by 

Birss(79), who has shown that non-magnetic crystals (e.g. diamagnetic, 

paramagnetic) are time-symmetric, that is they are invariant under 

time-inversion and for these cases the time-inversion operator, R, 

is an additional symmetry operator. For ferromagnetic, ferri-

magnetic and certain antiferromagnetic crystals, R cannot be a 

symmetry operator since time-inversion reverses the spontaneous 

magnetization, but this does not preclude the combination of R and 

a spatial operator being a symmetry operator for these crystals. 

Property tensors which fall into the above two classes - invariant 

and anti-invariant under time-inversion - are designated by Birss 

as i- and c-tensors respectively. It follows from the above that 

since 'E. and J. of equations (3.6) are the components of a polar 

i-vector and a polar c-vector respectively, the galvanomagnetic 

tensors pj ijim . a 	, a
ijlmno ** , of even rank, are polar c-tensors 

whilst aijl  ' aijlmn *0 , of odd rank, are axial i-tensors. 

To determine the form of a property tensor, a practice 
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that is commonly followed is to impose successively the limitations 

of crystal symmetry on to the general tensor until all the symmetry 

requirements are satisfied. The surviving terms then determine the 

form of the tensor appropriate to the particular crystal class. The 

mathematical formulation of this process is provided by equation 

(3.10) where dijk_n  now represents a polar property tensor. 

Expressed in the more appropriate form, 

dijkoon  = d
ip

c 	d 
jq 	Cnu pqr..0 ' 

(3.12a) 

where a is one of a set of matrices (to be successively applied) 

that correspond to particular permissible symmetry operations. For 

the axial tensor, the corresponding equation may be written as 

d
ijk..n = 	ip j 6 	5.q 	5

nu 
d u 	(3.12b) 

where 11 is the determinant of the symmetry matrix C and is 

equal to 1 or - 1 for proper or improper rotations respectively. 

It is apparent that there will be as many equations as there are 

symmetry operators. However, an application of ordinary rules of 

matrix multiplication enables all the permissible symmetry matrices 

appropriate to a particular crystal class (e.g. 48 for class m3m) 

to be obtained from suitable combinations of at most four basic 

matrices, which are known as generating matrices. Since these 

generating matrices already take account of the full number of 

symmetry elements they are sufficient to secure maximum simplific-

ation in the form of the tensor 
dijk..n  The members of a set of 

generating matrices, however, are not unique for a particular 
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crystal class but may be suitably chosen from a convenient group. 

4 — 2 Three generating matrices, for the crystal class 	, 3 , 71  (Oh) 

to which the ferromagnetic metals iron and nickel belong, are 

1 0 

0 0 

0 1 

61 = —11 = 

-1 

0 

0 

0 

-1 

0 

69 = 

0 

0 

-1 

1 

7 cs7 = 

1 

0 

0 

1421= 

0 

0 

-1 

0 

(3.13) 

The numbering of the matrices is arbitrary and is taken from 

2 2 Birss(79). For crystals of the class 6 — , 	, 	(D6h  )' to which the m    

ferromagnetic metals cobalt and gadolinium belong, four generating 

matrices are 

where the x3  axis is taken to be parallel to the 

-1 	0 	0 

O 1 	0 

O 0 -1 

1.- 	
13 

i 
 
2 

43 	1 --f, 	--.2- 	0 

O 0 	1 

(3014) 

hexagonal c -axis 

of the crystal. Since the inversion, T. , is a symmetry operator in 

both these crystal classes (i.e. they are centrosymmetrical), polar 
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TABLE 2 

CUBIC SOLIDS  

Tensor 
Rank Relation among the Components No. of 	No,after 

Independent Particular_ 
Componentsization 

First 	x = y = z = 0 , 	 0 	0 

Second xx = yy = zz , 

Third 	xyz = yxz = yzx 

= 	zyx = zxy = xzy 1  

Fourth xxxx = yyyy = zzzz , 

xxyy = xxzz = yyzz = zzyy 	4 	3 

= zzxx = yyxx (3) 

Fifth 	xxxyz = xxxzy = yyyzx 

= 	yyyxz = zzzxy = zzzyx 	10 	2 

(10) , 

Sixth XxXxxx = yyyyyy = zzzzzz 

xxxxyy = xxxxzz = yyyyzz 

= zzzzyy = zzzzxx = yyyyxx (15) , 	31 	6 

xxyyzz = xxzzyy = yyzzxx 

= zzyyxx = zzxxyy = yyxxzz (15) 



Fifth yxzzz = 

yyxyz = 

yxyyz = 

xyyyz = 

xyzzz 

- xxyxz 

- xyxxz 

yxxxz 

(10) , 

(YrU:5) 

(yxyy:5) 

(xYYY:5) 

xyxxz 
(xxxy:5) 

xxxyz = - xxyxz 
= - yxxxz 

25 
	

4 

yyyxz = xxyxz xy 
yxxxz 

mcz 
(yyyx:5) 

5? 

TABLE 3  

HEXAGONAL 

Tensor 
Rank Relations among the Components No. of 

Independent 
Components 

No.after 
Particular-
ization 

First x = y = z = 0 	 0 
	

0 

Second xx = yy 

zz = zz 
	 2 

	
2 

Third xyz = - yxz , 

yzx = xzy 	 3 
	

2 

zxy = - zyx 

Fourth xxxx = xxyy xyxy yxxy 

= YYYY 
zzzz = zzzz , 	 10 
xxyy = yyxx (3) , 

xxzz = yyzz (6) , 

Sixth zzzzzz = zzzzzz 

yyzzzz = xxzzzz (15) , 

yyxxzz = xxyyzz (45) 

xxxxzz = xxyyzz xyxyzz 
xyyxzz 	(xxxx:15) , 

(continued) 
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Tensor 
Rank Relations among the Components No. of 	No.after 

Independent Particular-
Components ization 

Sixth yyyyzz = xxyyzz + xyxyzz + xyyxzz 
(::ont) 	(YYYY:15), 

yxyxyy = xxxxxx - yyyyyy xxxyxy 
• xxxyyx + xxyxxy + xxyxyx 
+ xyyxxx ~ yxxyxx + yxyxxx , 

xyxyxx = xxyxxy xxxyxy - xxxyyx 
+ xxyxyx + xyyxxx + yxyxxx 
yxxyxx 

yxyyyx = 2yyyyyy - xmxxx - xxxxyy 
xxyxxy - xxyxyx - xyxxyx 
xyyxxx + yxxyxx, 

xyyyyx = xxxxxx ~ yyyyyy ~ xxxyxy 
+ xxyxyx + xyxxyx + xyyxxx 
- yxxyxx , 

xyyyxy = 2yyyyyy xxxxxx - xxxxyy 
- xxxyyx - xxyxyx - xyxxyx , 

yxxxyx = 3yyyyyy - 2 xxxxxx xxxxyy 
xxxyyx - xxyxyx xyxxyx 

yxxxxy = xxyxyx xxxyxy + xyxxyx 
+ xyyxxx yxxyxx 

xyxxxy = 3yyyyyy - 2xxxxxx - xxxxyy 
- xxyxxy - xxyxyx xyxxyx 
xyyxxx + yxxyxx 

YYYY)c).: = xxxxxx -•yYyyyy  + xxxxyy(:9), 

YYxxYY = 2yyyyyy xxxxxx xxyxxy 
xxyxyx ~ xyyxxx yxyxxx 

xxyyyy = xxxxxx yyyyyy + xxxxyy + 
xxxyxy ▪ xxxyyx xyyxxx yxyxxx 
yyxxxx = xxxxyy + xxxyxy + xxxyyx 

xyyxxx - yxyxxx , 

xxyyxx = 3yyyyyy 2xxxxxx xxyxxy 
- xxyxyx - xyyxxx yxyxxx. 

72 	 11 
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tensors of odd rank and axial tensors of even rank vanish identic- 

ally (dijk—n = -dijk..n = 0). Tables can now be constructed 

giving the forms of the general tensors of rank 1,2,3,4,5 and 6 by 

systematic substitution into equations (3.12) of the generating 

matrices given in (3.13) and (3.14). For simplicity, only the non- 

zero components with their inter-relations are shown in column 2 

of Tables 2 and 3. In presenting these tables, the compact notations 

of Fieschi and Fumi(8o)  and Fieschi(81)  have been used according 

to which the suffixes, instead of the coefficients, are written 

down using x,ylz in place of 1,2,3. The figure (3) after xxyy in 

Table 3 denotes the three distinct relations which are obtained 

after unrestricted permutation of the suffixes. Similar meanings 

apply to the other figures. Notations of the type (yyxy:5) in 

Table 3 indicate the five permutations of the given relation subject 

to the condition that the order of the first four indices of each 

of its terms is unaltered. The notation (:9) indicates a set of 

nine equations which are obtained by nine permutations on each term 

of the given equation, the permutations on yyyyxx, for example, 

being yyyyxx, yyxyxy, yyxyyx, yyyxxy, yyyxyx, yxyyxy, xyxyyy, 

xyyxyy, yxxyyy, For axial tensors of fifth rank and polar tensors 

of sixth rank, the relations among the non-zero components are taken 

from Fieschi and Fumi. 

When the general tensors p. , a. 	, 	are identified ij ijlm 

with the resistivity tensors, a further simplification of the above 

scheme of coefficients results from a consideration of "intrinsic 
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symmetry". For example, in the term aijlm  al  am  in equation (305a), 

al  and am  are interchangeable so that aijim  = aiimi. Similarly i 

and j can be interchanged. The number of independent components 

which remains after particularisation is shown in column 4 of the 

tables, 

3.2.2 The Hall effect and magnetoresistance 

Table 2 shows that for the cubic group Oh  there is only 

one independent component for the third rank axial tensor, all the 

six non-zero coefficients being equated to one another with their 

proper sign. This takes into account the fact that the first two 

of the three indices are antisymmetric. If a linear relationship 

is assumed between the comonents of a p 	p..(a) and a , then equation 

(306b) gives 

Ea 
1 

Ea  E
2 

Ea 
3 

-a123 
a
3 

a123 a2 

a123 a3 

a123 al 

-a123 a2 

a
123 

a
1 

0 

J2 

J
3 

(3.15) 

If the second and fourth rank tensors are also included the total 

electric field E can be given in the component form 

2  El = P  • jl al23(j2a3 J3a2) 
 2\j1 

ea 
 1 
 Joa + TT 
 1a1 

E2  = p . 
• T  

2  + a123(J3al  Jia3) + hJ2  + ea2  J.a + T.)J a
2 

2 2 ' 

E
3 
= pH  J

3 a123(Jla2 J2a1) + hti3 
 + ea

3 
 J.a + 7)J.

33 
a
2 

, 

(3016) 



where 

- a2211' 	
e = 2a2323,= (a1111 - 

2a2323 - a2211)  

and the suffixes on pH  are now dropped since the resistivity in 

zero magnetic field is isotropic in cubic crystals. In a more 

compact vector form, equation (3.16) becomes 

E = pH  J + 	(Jxa) + NJ + e (J.a) a + T J , 	(3.17) 

where RH  = a123 
and T is a diagonal matrix with elements al, a2' 

and a3. Equation (3.17) can be rewritten as 

E = pH  ( J + c(Jxa) + d J + e (J.a) a + f T J ) , 
	(3.18a) 

where c = a123/pH  ' d = a2211/p'' e = 2a2323/p
m' and 

f = (a1111 
- 2a2323 

- a2211
)/p. 

The above form, which is due to Pearson and Suhl
(82) , provides the 

inverse relation to the expression developed by Seitz(83) for the 

magnetoconductivity in cubic solids, namely 

J= e E+ a(ExH) + p HE y(E0H) H+ S T E 	(3.18b) 

where, as before, the co-ordinate axes are coincident with the 

crystal axes and the Seitz coefficients are connected with the basic 

magnetoconductivity components of equation (3.7) by the relations 

at 	it 

= '511 ' 
a 
 = '123 	= b2211 , y = 2b

2323, 
 

= b1111 - 2b2323 b2211 * 

The five different nonvanishing magnetoconductivity components, 

resulting from the retention of terms involving up to second powers 

of the magnetic field, may be expressed in terms of the five galvano-

magnetic coefficients by using the reciprocal relation (vide eqn. 

3.8) 
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p.Ij (a) 6.
P 
 (a) ---= ip O 	, 	 (3.19) 

— J —  
where p..(a) and 6. (a) are given by 

Pi  (a) = pm 	i + a 	a j 	ij 	j1 1 + 1  (aijlm + aijml) ()clam' 

J 	 . 

	

.
P 
 (a) = 04!

P 
 + b. 	a

m 
 + i 

(bjP1m 
 + b 	(3.20) 

— 	J 	Jipm 	jpml) a1am 

After carrying out the summation over j and equating the two sides 

of equation (3.19) for terms in a(o), a and a
2
, the relations 

x 1 
6 = — 

K ' 
P 2 

- 
a2211 _ a123 b

123 - - 
	m  a123/(p)2 , 	b2211 - 	K 2 	x 3 

(p ) 	(p ),2 
anal b

1111 
.-= - -- 

(p
;
)
f ' 	

b
2323 - 

(pN) 

_ a232
32 + 	

(p)-) 

1.23_7 , (3.21) 

are obtained. Thus the constants of equation (3.18a) are related 

to the Seitz coefficients by the following expressions 
2 

	

e = 	(y - a;)/6w  

2 
e = _ 	7 	f = 	, 	d = 	+ 	)/6m  . 	,(3.22) 

6 	6 	6 

For isotropic media, it can be shown that 

a
1111 

= a2211 + 2a2323 ' 
	 (3.23) 

so that the parameter in equation (3.17) is zero and the equation 

reduces to the form 

E = p + 
	

(J x a) + 1 j + c (J.a) a 
	(3.24) 

Equation (3.24) indicates that the leading term in Ea  represents an 

electric field which is perpendicular to both the current density 

and the magnetic field. Ea  may therefore be associated with a 

K p = 
6 	0 
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generalized Hall voltage where the Hall coefficient, RH  (= a123),  

is associated with the nondirectional Hall effect, whilst the 

fifth rank axial tensor a.. 	gives directional contributions to ijlmn 

it. The term % J + e(J.a) a constitutes a vector which has no 

component perpendicular to both J and H. In fact, when J and H are 

perpendicular, this vector is collinear with J o Es  may therefore 

be associated with a generalized magnetoresistance. Equation (3.24) 

also indicates that the longitudinal magnetoresistance in isotropic 

solids should vanish if (2 + e) = O. For anisotropic media, Ea  is 

always perpendicular to the current (but not necessarily to the 

magnetic field) whilst Es  is not always parallel to the current. 

The analysis contained in equations (3.15) to (3.18) could 

be extended to include the dependence of the Hall coefficient on 

terms quadratic in the magnetic field, in which case the fifth rank 

axial tensor is invoked. It would then be necessary to add to the 

first component El  of equation (3.16) three terms of the form 

h(J2 3 a3 - J3  a3) a3) 	1 d'a
2 
(J
2  a3  - J3  a ) + a'a2a3 (J2a2 - J3a3)  , 

(3025a) 

where 

h = a23111 = Y2xxx  ' 

d' =-3a
13211 =

3xzyxx , 	 (3.2510) 

a' =-3a 21113 = -3Yxxxz  
The above results are obtained after particularization of the gen-

eral tensor components so that the last three of the five indices 

which correspond to the powers of the magnetic field are inter- 
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changeable on account of the intrinsic symmetry. Similar equivalent 

expressions should be added to the other two equations in (3.16)c 

It can be shown that for an isotropic medium, further limitations 

to the number of independent coefficients are brought about by the 

following sets of relations (after particularization) 

1 
a -b-c-d-i-j- -511 , 

e = f = g = 0, 	 (3.26) 

where the letters a, b, c, d, e, f, g, h, i and j are used, for 

simplicity, to denote the 10 independent relations which are 

obtained by the unrestricted permutations on each term of the 

compact expression of Fieschi and Fumi, the permutation on xxxzy, 

for example, being yxxxz, xzxxy, xzxyx, xzyxx, xxzxy, xxzyx, xmczy, 

yzxxx, yxzxx, yxxzx. A comparison of (3.25b) with (3.26) immediately 

shows that the three parameters h, d' and a' are equal to each other 

in the case of isotropic solid so that (3.25a) becomes the first 

component of the vector 

J xa 

remembering that a
2 

a
2 

a
2 
= 1 2 3 

3.2.3 Formulation of the expression for the magnetoresistivity  

As stated earlier, in many galvanomagnetic measurements 

the current density is maintained constant by applying a voltage 

between the opposite ends of a bar or a rod-shaped specimen that 

has been cut so as to be parallel to a known crystallographic 

direction. The effect of this is to produce an electric field, E, 

(3.27) 

(3.28) 



(a)  

(b)  

(c)  

Electric field 
E 

	> Current density 
J( 	) 

Fig.  5.  Diagram illustrating the definition of the 
resistivity()(d,P) in the direction of J . 
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Fig 6. Diagrams illustrating the three different -- 
orientations of the specimen of nickel relative to 
the plane of magnetization used in the measurement 
of the five saturation magnetoresistive constants. 
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in the crystal with, in general, components both parallel and 

transverse to J. The resistivity p in the direction of J is then 

defined to be the component of E parallel to J divided by J, that 

is, Eil /J. If now pi, p2, p3  denote the direction cosines of J, 

then Ji  = pi  J and the component of E parallel to J is (J.E)/J 

(Fig. 5), or, in suffix notation, (JiEi)/J. The resistivity 

p(a,2) in the direction Li, associated with magnetization in the 

direction a is, therefore, given by 
(JiE.) 	

pi. J. J. j  
P(a,2) 	- 2 	2 	p 	(a) p. p a 	(3.29) 

However, since pig  (a) pi  pi  = 0 by definition, all terms involving 

the Hall constants and their higher-order terms vanish and hence 

the effective resistivity contains contributions only from the 

magnetoresistivity part p. • (a) p.I  pj  , which is an even function 

of the a. 

33 The spontaneous magnetoresistance of the cubic crystals 

For the crystal class 	, 3 , 	the effects of particular- 

ization imposed by intrinsic symmetry on the forms of general polar 

tensors of even rank have already been summarized in Table 2. The 

spontaneous magnetoresistance is given by the expression 

g
2 	2 

ata) = oijcil)PiPj  - Pig' pp22¢2
2 
 P33P3 P23P2P3 

• P32P3P2 P31P3P1 Pi3P1P3 

• Pi2P1P2 	P21P2Pa. 

where the pii's are given, to a fourth order in the a's by equation 

ij1 j 

(3,30) 
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Pij (3.5a)-Theformsoftilegalvarlonagneticterisors.la . ijam 
aijlmno may now be conveniently displayed by setting out the 

suffixes of the nonzero components in the following schemes: 

ij 11 22 33 23 32 31 13 12 21 

11 11 110000 o 0 

(3.31) 

ij \\\\\ 

alam\ 

11 22 33 23 32 31 13 12 21 

2 a1  1111 2211 2211 0 0 0 0 0 0 

a2
2  2211 1111 2211 0 0 0 0 0 0 

a
3 

2211 2211 1111 0 0 0 0 0 0 

a2a3 0 0 0 2323 2323 0 0 0 0 

a3a1 0 0 0 0 0 2323 2323 0 0 

a1a2 0 0 0 0 0 0 0 2323 2323 

(3.32) 
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.,,,, 	
-.. ,, 

a lama  nao 

11 22 33 23 32 31 13 12 21 

a4 1 

a2
4  

a  

2 
a2a3 
2 2 a3a1 

a? a2 a22 

2 a2a3 al 

a2
2 
 a3a1 

2 a1a2  a3  

3a3  a2  

a a33 1 

3a2 al 

a33a2 

a3a3  

a2
3 
 a1 

111 

211 

211 

321 

121 

121 

0 

0 

0 

0 

0 

0 

0 

0 

0 

211 

111 

211 

121 

321 

121 
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0 

0 

0 

0 

0 

0 

0 

211 

211 

111 

121 
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0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

414 

0 

0 

661 

0 

0 

661 

0 

0 

0 

0 

0 

0 

0 

0 

414 

0 

0 

661 

0 

0 

661 

0 

0 

0 

0 

0 

0 

0 

0 

0 

414 

0 

0 

661 

0 

0 

661 

0 

0 

0 

0 

0 

0 

0 

0 

414 

0 

0 

661 

0 

0 

661 

0 

0 

0 

0 

0 

0 

0 

0 

0 

414 

0 

0 

661 

0 

0 

661 

0 

0 

0 

0 

0 

0 

0 

0 

414 

0 

0 

661 

0 

0 

661 

(3.33) 
In order to cut down the number of suffixes in the case of sixth 

rank tensors, the customary practice is to replace reversible pairs 

of subscripts by single numbers thus 

(11) . 1; (22) = 2; (33) = 3; (23) = (32) = 4; 
(13) . (31) = 5; (12) . (21) . 6, 

(3.34) 
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and this has been followed in the scheme, However, to avoid con-

fusion and for the sake of greater clarity this compact form of 

presentation of the suffixes will not be pursued elsewhere except 

in the schemes for the hexagonal case. 

It follows, using equations (3,5a), (3,31), (3.32) and 

(3.33), that 

	

2 	2 
p11 (a) = ho h1a1 + h2a1

4  h3a22  a3  , 
1, 2 2 

	

p22 	o  =h -1-ha
2
-1-ha 

	

22 	o 	1 2 	2 
4 
2 "3a3a1 	' 

	

2 	2 2 p33 (a) = ho h1a3 h2a34  h3a1a2  , 
2 

P23 (a) = P32  (a) = a2a3 (Lo + L1a1) — 

P31(5) = P13(2) = a3al  (Lo  + L1a2
2 ) 

2 
= aia2  (Lo  + L1a3) P12(a)  = P21(a)  (3.35) 

where the coefficients ho, hl, h2, h3, L
o 
and L

1  are given by 

ho = Pll 	ae211 a221111 

hl = ailll a2211 2a221111 a112211 ' 

h2 = x111111 -pa'221111 - a112211 ' 

h3 = a' 332211 - 2a221111 ' 
L
o = a2 	a' 323 	122111 ' 	Ll = a231123 a122111 

(3.36) 

Because of the multiplicity involved in some of the functions of 

a's in the expansion of equation (3.5a), the primed coefficients 

used in (3,36) are contracted forms of the corresponding tensor 

components and are similar to the scheme of subscripts set out in 

(3,31), (3.32) and (3.33). Thus for example, a2323 = 2a2323  since 

a2a3, a3al  or aia2  appears twice in aijimalam  but only once in the 
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summation implied in (3.32), 

If now equations (3.30) and (3.35) are combined, the well - 

known expression for the magnetoresistivity of cubic crystals 

results, viz: 

2 2 	2 2, 
P(aLE) = ko  + k1S(a/P1) + 2k2S(ala21322) + k3S(a10:2) 

4 2 	2 
+ k4S(agi) + 2k5S(a1a2aP1P2) , 	(3.37) 

where the saturation magnetoresistive constants ko 	k
5 
are 

connected with the tensor components through the following relations 

ko = h0 , 
	k

3 
= h

3 ' 

k1 = h1 - '13 	k4 = h2 + h3 ' 
k2 = o 
	k5  = L1 	 (338) 

3.3.1 The demagnetized state as reference state  

Equation (3.37) may also be taken to represent the 

fractional change in resistivity referred to the non-magnetic state 

in which the magnetic interactions have been annihilated. What is 

of interest, however, is 	where p is the average resistivity in 

the initially demagnetized state. As the actual distribution of 

domains in the demagnetized state is uncertain, an ideal demagnetized 

state is customarily considered in which the domains are oriented in 

equal numbers along each of the crystallographically equivalent 

directions of easy magnetization. 	thus represents the change in 

resistivity between the ideal demagnetized state and one of satur- 

ation magnetization as a single domain in the direction a. 

If the easy directions are the quaternary axes <100> , as 
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in iron, then for domains aligned parallel or antiparallel to the 

[14 direction, the change of resistivity in the direction 0 is 

given from (3.37), by 

(P)i(2) = ko  + klpi  + ic4
432
I 
	(3.39a) 

Similarly, for the ,014:51 direction 

(P)i(L) = ko  k14 

	

(3.39b) 

and for the [004 direction 

2 (p)i(2) = ko  + kg3  + k4p3 	(3.390) 

If the magnetoresistivities of all the individual domains are now 

added together algebraically with their proper weight factor, then 

the resistivity in the ideal, demagnetized state is 

1 	3. (p)i  = ko  + -3- k1  + -5  k4  (3.40) 
In a similar way, if the ternary axes are the directions.of easy 

magnetization, as in nickel, then 

1 	1 	4.  (p)i= ko  + -3- ki  + 3- k3 	K4  (3.41) 

Thus, the magnetoresistivity referred to the ideal demagnetized 

state is given by the expression 

where 

PP 
 

kliLS(44) - 

2k2S(a1a2p1p2)  

k
3 

for Fe or 

k3(s - 1) for Ni 3 
2 k 	) + —.s 4 4p 3 3 

2k5S( 	2Q (1 ‘ala2a3Nly2) (3.42) 
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2 2 	2 2 	K 	2 
s = a1a +aa + a,

2 a2  and k =k 	—k. 1 	2 3 	3 	3 	4 

This is the same form as that given by Becker and D8ring(59)  for 

the magnetostriction of cubic crystals with the coefficients 

kl, k2, k3, k4  and k5  replaced by h1, h2, h3, h4  and h5  respectively. 

The expression should be compared with equation (3.37) which gives 

the change in resistivity referred not to the demagnetized state 

but to an undeformed crystal lattice which is originally non-magnetic, 

when it is spontaneously magnetized as a single domain in the 

specified direction. 

3.3.2 Case of isotropic magnetoresistivity 

If the expression for magnetoresistivity is terminated at 

terms involving second powers of a's, then 

-4-ap  - kikS(44.2 - ) 	2k2  S(a1a2(31(32) 	(3.43a) 

By common practice, when the directions a and are both parallel 

tox(100? or <111> direction, 	is denoted by (---La) 	and (-4- 2.) p 100 	p 111 

respectively. Thus, from (3043a) 

(PTE)100 = 3 kl and (LE) 	
2 

p 111 = 7 k2 
Hence, the simplest two-constant equation of magnetoresistivity is 

app 	 p - 3  (- r)a.00ts('214.)-  11+  3  (/—p )111s(a14x2(i1132)0(3.43b)  

If now a further approximation is made namely, 

then (3043b) becomes 

1D 	3 r---; 	2 	1%  
p 	- 	1--Jok cos 	- 

(.4tLE) 	- (2LE) 	. 
p 100 	p 111 

(3.43c) 

where cos I) = aiyi  is the angle between the magnetization vector 



a
2 
1 
2 a2 
2 a3  
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and the direction of measurement. Since this expression contains 

no reference to the crystal axes, it therefore represents isotropic 

magnetoresistivity. The material then has uniaxial properties with 

the magnetization vector as axis of symmetry. For a polycrystalline 

material with random orientations of the crystallites, the same 

symmetry is observed. This is discussed in section 3.5.1. 

3.4 The spontaneous magnetoresistance of hexagonal crystals  

In this case the co-ordinate axes x
1, x2  and x3  may be 

assumed to coincide with the [i2.0), 10.0) and cplo.11 crystallo-

graphic axes. As before, the number of independent components of 

the even (except second) rank tensors are reduced by the process 

of particularization (Table 3) and may now be displayed by setting 

out the suffixes of the nonvanishing terms in the following scheme. 

ij 11 22 33 23 32 31 13 12 21 

11 11 33 0 0 0 0 0 0 

(3044) 

11 22 33 23 32 31 13 12 21 

1111 1122 3311 0 0 0 0 0 0 

1122 1111 3311 0 0 0 0 0 0 

1133 1133 3333 0 0 0 0 0 0 

continued 



11 22 33 23 32 31 13 12 21 
a a lmno 

111k  211 311 	0 	0 	0 	0 	0 	0 

122 222 311 	0 	0 	0 	0 	0 	0 

133 133 333 	0 	0 	0 	0 	0 	0 

132 232 332 	0 	0 	0 	0 	0 	0 

232 132 332 	0 	0 	0 	0 	0 	0 

121 221 321 	0 	0 	0 	0 	0 	0 

O 0 0 441 4410000 

O 0 0 0 0 441 441 0 0 

O 0 0 0 0 0 0 636 636 

O 0 0 4'11 441 0 0 0 0 

O 0 0 0 0 535 535 0 0 

4 
al 
4 a2  

a3 

2 2 a2a3 
2 2 a
3
a
1 

2 2 
ala2 
2 
al 2a3 
2 
a2a3a1 
2 
a3a1a2 

a3a 2 3 

a a3
3 
1 
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alam 

11 22 	33 	23 	32 31 13 12 21 

a2a3 

a3a1 

aia2  

0 

0 

0 

where 

0 	0 	2323 	2323 

0 	0 	0 	0 

0 	0 	0 	0 

a1212 =  1212 	2a1212 

a' 	= a' 	+ a' 1111 	1122 	1212 

0 

2323 

0 

0 

2323 

0 

0 

0 

1212 1212 

(3.45) 

For the explanation of the compact 	continued 
notation, see (3.34). 
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22 33 2.4  32 31 13 12 21 

0000000616 616 

0 0 535 535 0 0 0 0 

0 0 0 0 441 441 0 0 

o 00000626 626 

a211 = 2a111 3a222 a121 

a122 = 3a111 4a222 a121 

a221 =  6a111 - 6a  222a121 

a232 = a132 a636 

a616 = 	111 4a 	
6q22 a121 

q26 = 1 ee - 8'121 

where 

(3.46) 

As before, because of the multiplicity involved in some of the 

functions of a's, the primed coefficients aijlm' 
aijlmno are con-

tracted forms of the corresponding components of the tensors. The 

use of contracted forms alters the relation between the non-

vanishing components for hexagonal crystals. For example, the 

equation 
a1111 = a1122 4-  2a1212 for the fourth rank tensor becomes 

ailll = a1122 a1212 corresponding to a multiplicity for a
la2  of 

two. 



x112211 
a' 113333 

- ai13333 

al13322 

-113322 

-123312 
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Using equation (3.5a) in conjunction with (3.44), (3.45) 

and (3.46) and the relations among the a's, one obtains 

2 + 8L5a12  a + (L4  + ya22  a25  P11  = 

P22 = 

p33 = 
P23  = 

P31  = 

P12 = 

Lo  + (L1  L3  )a
2 + 

2 + (L5  + ya5al2  , 

2 Lo  + (L2  + 	+ (L1  + 1,5)4 

+ (L5  L3 2 3 )a2a2 ' 
2 Mo + MI (a1

2  + a2
2  ) + M2 (a1 

, 
a2a3 (NO N  1 a3) 

 
= p32 ' 

2 Ni 5) = p15  , 
2 ala2  V1,1  - L2) - (L4  - L5)a5  + 4L3  

(L2  - L3)a2
2  

+ a2 

a3  a1 o  (N' + 

2 
(al
2 
 - a2)3 	= P21 ' 

(3-47) 

2 2 	2 2 8L3a1a2 + (L4 - L3)a3a1 

where the constants are given by 

Lo = Pll a1133 a113333 

L_ = a 111 - 3'1133 	ai11111 

- a1133 + 7 -111111 

a222222 ' 
+ a,  2 222222 - 
1 
2 -222222 - 

+ -
333333 ' 

L = a' 2 	1122 
1 L = _ 	al 

3 	2 111111 

L = 2a' 4 	2 111111 

L = 	 ' 5 	2 a111111 

Mo = F13 a3333 

1 
2▪ -222222 a  t - 113333 ' 

+ a' 	_ 
112211 2 a222222 3'113333 

M1  = - 9333 a3311 - 933333 ▪ a331111 ' 

M2 = - 933333 - a331111 a333322 ' 

NO = a2323 a232311 ' 

Ni = a232311 3'133331 
	 (3,,48) 

Combining now equations (3.30) and (3.47), the expression for the 

spontaneous magnetoresistivity in hexagonal crystals may be written 
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in the form 

P(atO) = R + R p2  0 	1 

t
• !2  R3a32  (1 - 

▪ R4r R
5a3 

 (1 - 	q 

R7a3 1(agl a2132)°(3P3 
, 

+ tR8  + R9a3 	1 	2  p2  )2  

2a 	2a  2 
• R10(2alagl arj2 a22' ' (3.49) 

where the magnetoresistive constants are connected with the tensor 

components through the relations 

R
0 	L

o  , 
	R2  . L2  - L3  , 

R m L 
1 	

o , 
	

R3  = L4  L3  , 

R 	L 
4 - 1 	2 	3 

R5 	M2 - L4 
- L

3  

R2N' 6 = 	o ' 
R = aN' 

7 	1 ' 

R8 	L1  - T  - 	L2 

R - L - L 5 4  

R10 
= 2L3 	 (3.50)  

The fourth-order equation (3.49) contains only one term - that 

multiplied by Rlo  - which is characteristic of hexagonal symmetry. 

In this case eleven constants are required to describe the magneto-

resistance unless the saturation magnetization is parallel or 

perpendicular to the direction of measurement, in which case the 

number of constants involved reduces to eight. If the last term of 

equation (3,49) is omitted, the expression corresponds to cylindrical 
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symmetry since p becomes independent of the orientations of both 

a and with respect to the non-hexagonal axes. 

3.4.1 The demagnetized state as the reference state  

Following the method outlined for cubic crystals, if the easy 

directions of magnetization are parallel and antiparallel to the 

hexagonal c axis, the corresponding magnetoresistivity in the 

ideally demagnetized state may be obtained as 

2 
(p)i  = Ro  Rip3 	 (3051a) 

while if the basal plane is a plane of easy magnetization, then 

2 	2 	2 
(p)i  = Ro  Rip3  + R2  + R4p3  2(R8  + R10)(1 - p3) o (3.51b) 

Hence the magnetoresistivity, referred to the demagnetized state, 

is given, in the first case, by the expression (3.49) with the 

first two terms removed and, in the second case, by the equation 

A.2.= 	2 113  (1 - a23)1 

• t- R4  + R5 
 (1 - a3)} 

a32p32  

2 
• 6 R._73 a_ (aiPi  a2P2) a5P3  
t  

+ R8 k[31  a2¢2)2 	(1  - P23
) 	

R9 3 
a
2 
(a
1  P
i  a2p2)

2 

▪ R
10 

	

	alcx21 4- 	- 42)2 2 (1  4)  / 

(3.51c) 

Where, as before, the fractional change in resistivity has been 

considered. 



79 

3.4.2 Second-order equation for cylindrical symmetry 

The approximation involving only second-order terms in 

the a's, which corresponds to equation (3,43a) for cubic crystals, 

may be obtained by setting a3  = 0 within the four sets of square 

brackets in (3.49) and omitting the last term. The resulting ex-

pression then becomes 

a - p 	(22 R4 P)(1  - 

▪ tR03¢3  R8(ag1  a2P2) 

A similar expression for magnetostriction 

was first derived by Mason(84) who used a 

terms and obtained 

(a1¢1 a2P2) 
 

(3.52) 

in the hexagonal system 

different grouping of 

= A 	Pi 4. a2P2
)2 

- (a1
(31 + ag2) a3P3 } 

2 	2  + A
B t (1 - a3

)(1 - p3) - (alp/  + a2p2)
2 

 J- 

2 ÷ Xe  t(1 - cc-,2  ) p3  - (a1c31  ÷ a2P2) a3P3  1 .7 

 

 

• 47t (agi  a2p2) a3P3 (3.53) 

The relations connecting the constants %A, XB, AC,  XD and the 

constants appearing in equation (3.52) are 

or 

R2 = AB ' 

R4 = AC - 	' 

R = 4X - A - 6 	C A 

R8 = AA - B ' 

X = R2 R8 ' 

XB  = R2  , 

X = R
2 R4 ' 

X = (2R2  R 
D  4 	4 

▪ R6  + R8 ) 	(3.54) 

Four constants are thus required to describe the effect. It is 
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to be noted that, unlike the case of the cubic crystal, equation 

(3.52) cannot be reduced to the form (3043c) or even to the more 

general form 

P 	Q cost 	 (3.55) 

The four constants of the second-order magnetostriction equation 

(3053) have been measured by Bozorth and Sherwood(85) and appear 

to be in reasonable agreement with observations on polycrystalline 

cobalt. A difficulty arises, however, because such large fields are 

necessary to saturate the specimens. Within this limitation, 

Bozorth and Sherwood concluded that the simple equation conforming 

to cylindrical symmetry is an adequate approximation of the 

magnetostriction of cobalt. No measurements have yet been made of 

magnetoresistance on single crystals of this material but the 

present results for polycrystalline cobalt indicate approximate 

values of P and Q. This is discussed in section 6.4 • 

3.5 The magnetoresistivity of polycrystals  

If the individual crystallites in a polycrystal are 

assumed to be oriented at random over all directions, it is 

possible to derive a relationship between the single-crystal and 

polycrystalline saturation magnetoresistance constants by averaging 

equation (3.37) both for saturated and for demagnetized states. 

The details of the averaging procedure are similar to the corres-

ponding treatment of polycrystalline magnetostriction(71) and so 

only the results of this process will be quoted here. 
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3.5.1 The polycrystalline magnetoresistivity of cubic materials  

The average resistivity is 

1 	1 	1 u 27 	1 
(p) = k + 	- 5- k2  + k5  + 375- k4  - -37 k5  

o 5 

2 3 12 	3 1.  
+
5 	

+
5  k2 	 5 

+ —k
4 
+
35  k5 

 cos
2 
 11 (3.56) (  

where .0 is the angle between the magnetizing vector and the direct-

ion of measurement, The corresponding (spontaneous) magnetoresist-

ivity in the ideally demagnetized state where the domains are 

aligned in equal numbers parallel to directions of easy magnetization, 

is, for iron, 

1 (p1 = ko  + 	+ -3- k4  , 	 (3-57a) 

and, for nickel 

Cc 	= ko  + 	+ 	+ 231  k4 	(3.57b) 

This gives the change in resistance of an ideal polycrystal referred 

to the demagnetized state as 

(2.17.)  (T) (F)i  
	 _ P + Q cos 11 1) , 	(3.58) 

(p). 1 where 

2 - Q = 	+ k2  + 334 k4  + 
35 
 k5 	(3 59)  

and where, for iron, 

2 	1 	1 gt 4 	1 P = - 75- ki  - k2  + k3  - 55 k4  - 7  k5  , 	(3.60a) 

and, for nickel, 

2, 	2 „x 4 , 	k  
' P = - 	"3 35 15 "1 - k2 15 3 - 35 -4 - 35 5  

If it is possible to put k = 0 then eauation (3.58) can be put in 

a somewhat different form for 

	

= Q (cost  - 	 (3.61) 
3 
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and ( 	• ) will attain a saturation value when 7) = 0 for all the 

domain magnetization vectors, or 

(g)s  = 	= Q , giving (4) 	
t2-771

(cos
2 

7) 

An equation of the same form as (3.61) is generally taken as 

governing the saturation magnetostriction of polycrystals and is 

the one which Becker and DOring(59) obtained by assuming that the 

term in k3' representing the isotropic volume magnetostriction, 

could be neglected. This is a reasonable assumption for nickel 

and for certain nickel-rich alloys. However, the previous magneto-

resistive data, as well as the present measurements, indicate that, 

m 
even for nickel, the term in k3 cannot be neglected, so that poly- 

crystalline magnetoresistance may not be represented by equation 

(3.61) or (3,62). This is further discussed in section 6.3.1 

3.5.2 The polycrystalline magnetoresistivity of hexagonal materials  

By adopting a similar procedure to that outlined for 

cubic materials, namely by averaging the expression (3.49) for all 

random directions of the individual crystallites, the following 

relation for the saturated state may be obtained 

1 	2 , 	2 p 	4 p 	4 R 	1 
(7) = -o 	7 R1 :77 1̀ 2 15 -3 15 -4 105 5 - 15 R6 

1 	1 IQ 	16 .,0  - -3--5- R7  + --375  R,-, • o 	35 -9 + 105 -10 

+t
2 	2 	1 	3 --15- R4  + -370-5- R5  + -5- R6  + 35  R7  

+ 105 R10 , cos2  n j • 

+R 
15 8 

1 - 3) 
 

(3.62) 
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The corresponding spontaneous magnetoresistivities in the demagnet-

ized states are 

(7)1- RO 	R1 , 	
(3.64a) 

when the easy directions are parallel and antiparallel to the 

hexagonal c axis, as in cobalt, and 

1 	1 	1 
(p)i= Ro  1 Ri  + R2  + 7  R4  + 7  R8  + Rio  , 	(3.64b) 

when the basal plane is a plane of easy magnetization. 

Thus the fractional change in resistivity of an ideal 

polycrystal at saturation, when referred to these demagnetized 

states, is again given by 

(IL)  (P) - (7)

I  

. 

- 	
- 4- 

where, in the former case, 

Q cost  T) 	(3,65) 

2 	2 	4 	4 	 1 	1 	1 P = 3  R2  + 375  R3  4- ...1..)4.  R., 
+ 105 

.p,,  
75 - y

.3 R6  - -5-5- R7  + 5R8 

1 	1 6 + -5--5- R, + io--5 Rio  , 

and, in the latter case, 

1 	1 	4 p  P = - 7 R2  + -- R3  - -_-:•_- R. .1. 	4 + 105 -5 

15 
4 
R 	

1 R 	19 Th, 
8 	35 9 	105. 	' (3.6613) 

and where, in.both cases, 

2 	1 	7 Q 	R 	
1 	 8 

= 	• 	6  4- f5  R7 + 15 4 	 05 R 	5R 	15 
p

8 - 4.  21
IQ
9 - 4.  105 

t,  
'10 

(3.66c) 

It is interesting to note that in neither :68:se can ecinatipn (365) 

be put into the form of equation (3.61). 
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CHAPTER IV 

EXPERIMENTAL  

4.1 Description of the specimens  

All the polycrystalline specimens were in the form of 

cylindrical rods, 1 - 3 mm in diameter and 1.4 cm in length, and 

were supplied by Johnson, Matthey & Co. These were spectro-

graphically standardized and the results of the analysis of 

estimated impurity contents in each case are given below. 

Element Type of Impurity Quantity Present in 

Ni Si 
Fe 
Bi 
Ag 
Cu 
Ca 
Mn 

) 

Parts per Million 

7 
3 
2 
2 
1 

each less than 1 
Mg 

Fe Mn 3 
Ni 2 
Si 1 
Cu ) 
Mg ) each less than 1 
Ag ) 

Co Fe 5 
Ni 3 
Si 2 
Ca 2 
Cu ) 
Mg 
Ag 

) 
) 

each less than 1 

Na ) 

Gd 	Total rare-earth impurities less than 0.1% 
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The single crystal of nickel was available in the form of a rect-

angular slice cut from a larger piece which had been earlier 

thoroughly polished, oriented and checked in the laboratory employ-

ing the back-reflection X-ray Laue photographic principle together 

with the standard stereographic projection technique. The accuracy 

of the orientation was half a degree. The two side faces of the bar 

specimen contained the (11.1) and (110) crystallographic planes with 

the directions of the principal crystal axes as shown in Figure 6 

The dimensions of the crystal were 14 mm x 1.9 mm x 1.2 mm. 

4.2 Principle of measurement 

For the measurement of resistivity, the standard method 

using a potentiometer was employed as this has the basic advantage 

of excluding the lead and contact resistances from the final measure-

ment (Fig. 7 ). The problem was thus to measure a low voltage drop 

along the specimen with sufficient accuracy whilst monitoring the 

specimen current with the aid of a standard resistance. 

The magnetoresistance was measured in terms of the out-

of-balance voltage developed across the potential points on the 

specimen when a field was applied with the current maintained 

constant. By calibrating the output galvanometer scale in terms of 

given changes in current when the resistance of the specimen was 

maintained constant, the fractional change of resistivity in magnetic 

field could be directly related to the fractional change of current. 

Thus, 



R
s 

T 

	0 0 	 

Detector 
E2  Specimen 

Standard 
resistance 

R' , Total resistance of the potentiometer circuit 
including that of the slide wire. 

R = Resistance of the slide wire between P and P . 
.- 1 	-2 = Resistance of the galvanometer circuit between 

P and R including the resistance of the specimen 
and any • - 
and any other resistance. 

R
s = Resistance of the specimen alone. 

Fig. 7.  The basic potentiometer circuit. 



dR 
dE - I dR = E2 R s 	and 
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dI 	dRs 
dl
s 

dE = R dI = E2 I 
s , giving R  - y-- 2  s s 	s 	s  
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( 4 	) 

Since I
s 
and dI

s 
can be accurately measured, the fractional change 

of resistivity can be estimated with great precision without any 

necessity of knowing the actual resistivity of the specimen. This 

method is obviously preferable to using a null method for each 

reading as it allows considerable rapidity of operation and it 

ensures greater stability because steady conditions are maintained 

in the circuit. 

4.2.1 Theory of potential balance  

Considering the basic potentiometer circuit (Fig. 7) 

the current flowing through the galvanometer can be immediately 

calculated. From Kirchoffts laws the following equations are 

obtained: 

E
1 
= IR' I R 

E2 
= I

g
(R
g 

R) IR , giving 

E2R' - E1R I - 

   

(4.2) 

 

2 ' 
6  R' (Rg  R) R 

E 
At balance I = 0, that is 

E  -17 = 17;l  and the current I in the 
E
l  resistance R is equal to 7  , no current entering or leaving the 

galvanometer circuit. The sensitivity depends on the galvanometer 
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current that flows when a small change is made in the balance 

condition. This off-balance current can be best calculated by the 

so-called 'Compensation Theorem' which states(86) "if a network 

is modified by making a small change AR in the resistance of one 

of its branches, the current increment thereby produced at any 

point in the network is equal to the current that would be produced 

at that point by compensating e.m.f., acting in series with the 

modified branch, whose value is - I AR where I is the original 

current flowing in the modified branch". This simply means that a 

current will flow round the galvanometer circuit equal to the out-

of-balance voltage divided by the resistance of the galvanometer 

circuit including the resistance between the potential points. Thus 

ig R R whereE=-IAR 	(4.3) 

The current in the potentiometer circuit is likewise changed by 

. Using a Tinsley galvanometer (Type 4500L) of 1000 mm/µA current 

sensitivity at 1 metre scale distance and of ,lorL coil resistance, 

the value of Ig  (in a potentiometer circuit where R = 50St and 

Rg  = 150.1) for 1 µV out-of-balance voltage is 5.10-9  amp° giving 

a sensitivity of 5 mm galvanometer deflection. 

4.2.2 Some difficulties in the measurement of low voltages  

The degree of accuracy obtainable with a potentiometer is 

dependent upon the degree of subdivision of its constituent resist-

ance units that subdivide the potential gradient. However, in order 

to be able to make use of these subdivisions, special precautions 
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are necessary. One of the chief difficulties encountered is the 

thermo-electric potentials which are set up at the various contact 

points. This can be minimised by using exactly similar metals for 

both the contact faces (e.g. gold-silver alloy), by accurately 

adjusting the various resistance coils and maintaining their resist-

ance values with great precision and by using suitable materials 

(e.g. Manganin) having negligible temperature coefficient of resist-

ance. In addition, there should ideally be no thermo-electric 

effects between the various component units and the switches and 

leads which can be of copper or brass. Some of the precision 

commercial potentiometers, like Pye, Tinsley or the Diesselhorst 

pattern, incorporating these features, are quite satisfactory for 

these types of measurement. The use of nickel plated terminals is 

avoided and clean copper leads and terminals are widely used. 

For measurement at temperatures other than room temperature 

the conditions are generally less steady and it is desirable that 

the overall time of a measurement be reduced to about half a 

minute. The response time of the galvanometer should therefore be 

short. However, a very sensitive galvanometer, in general, suffers 

from large zero drift and has a larger time period, so that a com-

promise has to be made to obtain the best results. 

The use of a large current or a very long specimen to 

increase the potential drop is to be avoided because of the con-

sequent greater instability, higher heat dissipation in the material, 

associated thermo-electric effects at the potential contacts on the 
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specimen and the possibility of a prohibitive temperature gradient 

along the specimen. Thus, with a typical sample of 200 µa,resist-

ance and a safe current of 0.5 amp., it should be possible to use 

the potentiometer to measure 100 IN with an accuracy preferably 

higher than 1%. 

For magnetoresistivity measurements involving only a 1 or 

2% change in resistivity, the sensitivity of the Tinsley galvanometer 

is not quite adequate and pre-amplification of the out-of-balance 

current is necessary. This, in the present case, was done with the 

help of a split photo-cell amplifier unit with a negative feed-

back arrangement to improve stability and control. This is discussed 

in Section 4.3.3. 

4.3 The magnetoresistivity measurements  

4.3.1 Design of the sample holder  

The requirement that a uniform magnetic field be maintained 

over the volume occupied by the specimen usually places a severe 

limitation on its size, especially when measurements are to be taken 

in the region of technical saturation. Using a 7" Newport electro-

magnet with conical pole tips, a maximum field of 21,500 Oe was 

obtainable at 1" pole gap. This in turn demanded a sufficiently 

rigid specimen mounting and yet a minimum use of metal parts was 

desirable to prevent thermal fluctuations due to eddy current 

heating. 
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Several insulating materials, like ebonite, amber, bakelite, 

bees-wax, etc., were tried for making a holder but each one had to 

be subsequently rejected for one reason or another. The choice 

ultimately fell on paxolin because of its hardness (sufficient for 

the present requirement), non-reactivity and insolubility in the 

particular organic liquid (P-Xylene) which was to be used for the 

constant temperature bath. 

A 1" paxolin rod, about 1" long was drilled to ip,  depth 

and fixed with araldite at the end of a ' four-bore vitreosil tube 

as shown in Fig. 8 . The lower portion of the rod was 73" long and 

this was sliced into two halves parallel to its length with one 

piece unseparated from the main body of the holder. Two small side 

holes and slots made in the paxolin enabled two pieces of 20 s.w.go 

nichrome wire to be clamped firmly, one on each side of the vitreosil 

tube, when the cut piece of paxolin was screwed back tightly into the 

main body of the holder. These wires, which were slightly bent 

outwards on coming out of the paxolin, were spot-welded on to the 

specimen and served as the current leads. For the potential leads, 

32 s.w.ge nichrome wire with glass insulation was found to be 

satisfactory. The wires were carefully twisted together in the 

space between the specimen and the vitreosil tube and a further 

coating of shellac varnish held them rigidly in position. In 

addition to this, the plane of the loop where the wires had to be 

separated for connecting to the specimen was carefully positioned 

so as to be in the plane of the magnetic field. This, with the 
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tight binding of the wires, considerably diminished the electro-

magnetically induced voltage picked up on switching the magnetic 

field. 

4.3.2 Mounting the specimen and the dewar assembly  

The four-bore vitreosil tube carrying the specimen assembly, 

the electrical leads and the cooling arrangement (including the 

dewar flask containing a constant temperature bath) was itself 

rigidly mounted along the axis of a hollow brass cylinder, 4.5" in 

outer diameter and 18.5" in overall length (Fig. 9a ). The 

cylinder was provided with a supporting collar made of at' brass 

plate of size 7.5" square positioned at a distance of 6" from the 

top. The collar had its four corners machined as shown in Fig. 9b. 

and it could be placed over a base plate which was permanently fixed 

to the table and which was fitted with four fixing studs that passed 

through these corner holes. By allowing sufficient clearance between 

the cylinder and the holes in the table and in the base plate, the 

entire unit could be suitably positioned for correct alignment of 

the specimen and then clamped by means of the cover plate and the 

fixing nuts. The specimen-supporting tube was fixed only at the 

lower end plate of the cylinder with the help of two blocks of 

brass, one of which was always left screwed to the plate and the 

other of which was removable. The upper end of the tube had a 

comparatively loose fitting through a felt sleeve in a clearance 

hole. This arrangement protected the tube against any accidental 



95 

break due to shear imposed in assembly. 

Two identical eccentric holes, 1.5" in diameter, were cut 

in the opposite end plates of the cylinder as shown in Fig. 9c , 

and these enabled the specimen assembly to be easily removed or 

replaced without the necessity of lifting the entire supporting 

structure. Finally, a tight fitting cork at the end of the vitreosil 

tube supported the cooling system and the small dewar flask. These 

were further securely held in position by extensive thermal lagging 

(with cotton wool) of the entire space between the bottom of the 

cylinder and the neck of the dewar. 

4.3.3 The photo-cell galvanometer amplifier  

One of the most important requirements was to set up a 

sensitive current detector capable of measuring the small off-

balance current while rejecting the background noise. After con-

sidering various methods of pre-amplification, a split photo-cell 

amplifier was finally chosen because it has the advantage of 

providing its own power with no undesirable signal pick-up and, in 

addition, it can provide the necessary gain with good linearity and 

stability in the output current. Amplifiers of this type have been 

described by many workers 
	(88,89,90).  The principle of 

operation is that the split photo-cell with the two halves connected 

in series opposition delivers to a secondary galvanometer only the 

difference between the individual outputs, so that when the 

illumination of the two halves is unequal a current is produced 
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whose sign and magnitude depend respectively on the sense and amount 

of the deflection. 

The photo-cell used was of the selenium rectifier type 

(barrier layer), 27 mm by 40 mm and was split parallel to the 

shorter side. The whole optical arrangement, shown in Fig. 10 , 

was mounted on an anti-vibration platform consisting of a heavy 

concrete block resting on four cork pillars and enclosed in a hard-

board box with the inside painted black. A rectangular slit placed 

close to the focussing lens produced a sharp image on the photo-

cell, covering an area equal to that of either half of the cell. 

This gave the maximum sensitivity and linearity of response. A 

150 watt Point-o-lite was used for the source to provide a bright 

image of the slit on the cell. 

The split photo-cell amplifier described above was event-

ually replaced by a more compact commercial (Tinsley) galvanometer 

amplifier (developed from the basic design of Preston(89))but this 

was not available until a late stage in the investigation. The 

moving coil of the primary galvanometer is immersed in a liquid 

which acts as a physical damping medium and at the same time pro-

vides bouyancy for the coil. As the liquid in the closed container 

cannot move bodily, the liquid does not transmit any movement or 

external disturbance to the coil. The secondary galvanometer was 

another Tinsley type with a resistance of 511,a, a period of 2 secs° 

and a sensitivity of 1600 mm/µA at 1 metre. This was mounted at a 

convenient position, and by using a cylindrical lens the image of 
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Fig. 10.  The optical arrangement for the galvanometer 
amplifier . 
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the vertical cross wire was thrown into sharp focus on the final 

scale, 1.7 metres away. The latter arrangement further increased 

the over-all amplification of the measuring circuit. In fact, the 

gain was always so large that it had to be reduced and this was done 

partly by increasing the amount of negative feedback which, in turn, 

improved the stability, and partly by adjusting the specimen current 

which controlled the out-of-balance voltage in the galvanometer 

circuit. Several tests were carried out to determine the optimum 

balance between sensitivity and stability before actual measure-

ments were taken. 

4.3.4 aae92aptantte:aieraturetbah 

It should be pointed out that the temperature coefficients 

of resistance of most of the ferromagnetic metals are of roughly 

the same magnitude as the magnetoresistance itself. Thus, for 

dR  nickel, the value of 1 	is about 0.7% at room temperature, so 

that if the specimen temperature changes by 0.1°  C during the 

measurement involving a magnetoresistance effect of 1%, an error of 

7% is introduced. Unlike prevalent practices(3'4'5'6). 	, it was 

decided to take the specimen every time from the demagnetized state 

to the successive stages of magnetization when studying the field 

dependence of the magnetoresistance: this was in order to avoid any 

uncertainty as regards zero shift, but it involved, unfortunately, 

quite an appreciable heating effect on the specimen. Under these 

circumstances, the use of a constant temperature bath ensuring 
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thermal steadiness to within 0.005°  C was considered to be absol-

utely necessary. After an extensive search for a suitable solvent, 

the following arrangement was found to be highly satisfactory. 

Para-Xylene, a non-conducting organic solvent (density 

046; specific heat 0.397 at 30°  C and latent heat of solidification 

39.3 cals/gm at 16°  C), was used for the liquid bath and was con-

tained in a small dewar flask enclosing the specimen, as shown in 

Fig. 11 . A 1/16" copper tube was then taken through the top of 

the dewar alongside the vitreosil tube to a small spiral coil near 

the specimen holder, through which ice-cold water from a nearby 

storage tank was continuously passed. As the organic liquid has 

a melting point of 13.2°  C, this resulted in local freezing of the 

liquid in the neighbourhood of the specimen, the extent of which 

could be controlled by regulating the flow of water down the cooling 

tube. In a preliminary experiment, a flow rate of 100-120 droplets/ 

min. was found quite sufficient to keep the temperature perfectly 

steady. With this flow rate, solid Xylene formed in the upper 

part of the dewar flask with liquid below. It was important that 

the liquid should have the two phases co-existent as this helped 

in maintaining a steady temperature even when the water was not 

flowing at a uniform rate. In fact, it was estimated that neither 

the normal Joule heating of the specimen nor the magneto-caloric 

effect associated with the magnetization would produce a significant 

rise in temperature of the liquid even if the supply of ice-cold 

water was stopped for half an hour, once thermal equilibrium had 
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been attained inside the dewar. However, to keep the entire system 

running for days, a continuous flow system was used in which a small 

water pump circulated the coolant through a second copper coil 

immersed in crushed ice in a storage vessel. By using freshly 

charged accumulators of large capacity (in circuits P and Q, Fig. 14) 

and by leaving the currents on for 24-48 hours before commencing 

work, the stability of the specimen temperature was found to be 

extremely good. Under balanced condition of the bridge, the zero 

of the final output galvanometer was steady to within 1 part in 500 

for a period of half an hour. 

4.3.5 The magnet  

A water-cooled Newport electromagnet (Type E) was used, 

having conical pole tips 4.5" in diameter and a gap of 1". Rotation 

of the field was provided by mounting the magnet on a turntable, 

graduated in degrees. This, in turn, was mounted on a carriage 

which could be run on guide rails thus enabling the magnet to be 

moved clear of the dewar flask and brought back in the same position. 

For precision location of the specimen in the field, adjustments 

were made in the specimen support unit described earlier. 

The power supply to the magnet was derived from a 400 volt 

d.co generator whose field was regulated by means of a voltage 

divider unit arranged near the working table. For up to 200 volt 

input, the magnet current was usually altered or reversed with the 

aid of a suitable control panel consisting of a network of series 
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R1  = 6oA Shunt 
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Rs  = 0.4C2  
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R11 = o.80 
R15  = .0-80 
R11 = 0.80 
R14  = 0.80 
R 35  = o.80 
R10  = roA Shunt 
R5, = 12.50 

... 
R16  = 0'51-1 	 R36  = 1.291-2 
R„ = 0.50 	Ras  = 1.2912 
R20 = 0.5a 	R17 = 1.29n 
R 24  = crsa 	Ras  = 1.291-2 • 
R22 = 0.51-2 	R39  = 1'202 

.R23  = 0.5n 	R40 = 1.29n 
R24  = 0•5a 	R41  = 1.29n 
R25  = co8f1 	Rea  = P290 
R21  = roA Shunt 	Rea = 1.290 
R27  = o.80 	R„ = 161-2 
R26 = 0.8L1 	R4, = 3A Shunt 
R29  = ron 	R44  = 4.0-1 
R30  = z.o0 	Re7  = 1.5A Shunt 
R31  = von 	R 4 6  = 1000 
R32  = roi) 	 R40  = r.oA Shunt 
R 33  = Yon 	 Rfio  = 2001-2 
R 34  = VOCI 	 R51  = 0.3A Shunt 

Si  .--- single-pole is-way (make-before-break) 
SI  = single-pole 19-way (make-before-break) 
Sa  = single-pole 16-way (make-before-break) 
S4  = two-pole 	2-way (break-before-make) 54  .--, single-pole 15-way (make-before-break) 
S4  = two-pole 	2-way (break-before-make) 
84  = two-pole zo-way (break-before-make) 

R62 = 4000 
R63  = 	5A Shunt. 
R54  = 8680 
R65  = 1.6KCI 
R66  = 3.3K0 
R57  = 6.6K0 
R56  = cro3A Shunt 
R69  = 13/{0 
R40  = 20K0 
R41  = 40K0 
R62  =. 86'8Kr1 
R43'= 1661{0 
R64  = 334K0  
R66  .= 6601W 
Res  = 1.31VID 
R67  = 2M0 
R.. = 41‘40  
Re. = 8.71110 

Fig. 12.The control unit  for the electromagnet. (After 
Birss and Brown 87) ).  
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and shunt resistors. This is shown in Fig. 12 

In Fig.13 the field calibration of the magnet is given 

for a 1" pole gap. In the range 30 - 40 amp., current was drawn 

only for a short period, about 15 secs., and this enabled a few 

measurements to be made at high fields without overheating the magnet. 

With the size of the pole tips and the gap used, the field was 

estimated to be constant to better than 0.6% over a central spherical 

region 1.5 cm in diameter. A high uniformity of field is, of course, 

necessary to prevent large translational forces on the specimen. 

4.3.6 The circuit arrangement  

The general circuit arrangement is shown in Fig. 14. P was 

the main driving circuit with a number of suitable resistors in 

series and parallel combinations to provide the necessary coarse 

and fine control of the specimen current. A standard oil-filled 

2 a resistor and a commercial Pye potentiometer (Cat. No. 7568) 

were used to monitor the current. The potentiometer, which has a 

range from 0 to 1.7 volts can be read directly down to 111V. Current 

standardization in the potentiometer circuit is independent of the 

potentiometer setting. There are three test circuits which can 

be selected by a double pole switch, The accuracy of the slide wire 

is half a division and that of the range multiplier is 0.02% at 

20°  C. 

The voltage developed across the specimen in the absence 

of the magnetic field was balanced, by current regulation in the 
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auxiliary circuit Q, with the backing voltage developed across the 

standard 0.1f2._ resistor. This current could again be monitored by 

means of the Pye potentiometer. The auxiliary circuit also provided 

a satisfactory means of compensating for thermal e.m.f.'s in the 

circuits. Any departure from zero of the current in the test circuit 

R was indicated by the primary galvanometer G1  in conjunction with 

the photo-cell amplifier (the negative feedback loop being as shown). 

An out-of-balance current in R produced by the change of specimen 

resistance on application of the magnetic field could then be either 

reduced to zero each time by varying the specimen current or else 

the deflection of the galvanometer G
2 could be recorded and related 

to a resistance change by means of a previous calibration. As 

dR shown in Section 4.2, the fractional change of resistance 	was 

then immediately given in terms of the fractional change of current 

dI 
. The latter method was preferred for ease of operation. The 

change dI in the current and the actual current I was always cal-

culated from the voltage drops across the standard 212_ resistor. 

Since the circuit arrangement was capable of providing compensation 

for stray e.m.f.'s in the circuit, this resulted in considerable 

simplification since current reversals in the circuit were found 

unnecessary except for occasional checks. The overall sensitivity 

of the whole arrangement was better than 103 mm/0 or 10-9 volt/mm 

on the final scale, with an input resistance of 45.0- and a typical 

specimen current of 30 - 50 mA. The noise level was down to 1 mm 

or 10-9 volt and good stability was obtained with extensive thermal 
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lagging of the different parts of the circuit and with the use of 

the liquid temperature bath. Under favourable conditions, the drift 

was found to be less than 2 - 3 mm per hour. 

4.5.7 The use of a demagnetizing coil  

With the large 7" electromagnet and the type of power unit 

used, it was found difficult to reduce the residual remanent field 

below about 25 - 30 Oe and so to demagnetize the specimen completely. 

Since magnetoresistance is measured as a fractional change in the 

resistivity due to magnetization in a field, this remanent magnetiz-

ation of the specimen could produce an error or uncertainty of 

about 2 - 5% in the measurement, An a.c. Helmholtz-type demagnet-

izing coil, capable of producing a maximum field of 100 Oe at the 

centre of the system, was therefore set up to demagnetize the 

specimen completely using the a.c. field. This coil was mounted in 

such a way that it could be easily removed to place the magnet in 

position and then replaced when the specimen was to be demagnetized 

by it. A 3 amp. variac with series resistors formed a convenient 

regulated power unit for the coil. 

With all the supplies switched on and the system in a 

steady state, the technique of measurement consisted of first de-

magnetizing the specimen, removing the coil, adjusting the zero of 

the scale after balancing the various potentiometer circuits and 

monitoring the specimen current by reading the voltage across the 

fixed resistor of 2S11„.. The magnet was then placed in position and 
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fixed at the desired orientation relative to the direction of 

measurement. On applying the field, the sense and magnitude of 

deflection on the scale was noted after checking the constancy of 

the specimen current. The field was then slowly brought down to 

zero with few reversals at the last stage to demagnetize the 

specimen in the existing field. Next, the magnet was removed, the 

demagnetizing coil brought in and the whole operation repeated for 

the next reading. This sequence of operations produced one point 

on one experimental curve, such as those depicted in Fig. 17 

However, by suitably arranging all the control panels to be near at 

hand, it was possible to keep the time for one such measurement 

down to about a minute. 
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CHAPTER V 

EXPERIMENTAL RESULTS  

5,1 Introduction  

The experimental results are described under individual 

headings for the four ferromagnetic materials investigated, namely, 

Ni, Fe, Co and Gd. A detailed analysis is given for the cases of 

nickel and gadolinium, which are representative of solids belonging 

to the cubic and hexagonal crystal classes respectively. 

5.2 Magnetoresistivity  

Fig.15 shows a typical calibration graph of the secondary 

galvanometer scale deflection against the change of specimen current, 

d10 The departure from linearity generally increased with increas-

ing feedback, so that an optimum working condition had to be deter-

mined by altering the various adjustable parameters, e.g. the 

specimen current, the resistance in the primary galvanometer circuit, 

the degree of negative feedback, the galvanometer shunt resistance 

and so on. In Fig. 16 is shown a plot of the secondary galvanometer 

deflection when a specimen of nickel was subjected to a constant 

magnetic field of 7000 Oe and the field was gradually turned through 

360°. From this graph it would appear that the longitudinal magneto-

resistance effect is much less affected by a small change in the 

orientation of the field than is the transverse effect. This 
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criterion was utilized for checking the correct alignment of the 

specimen relative to the electromagnet. 

5.2.1 Iron 

Fig.17 shows the magnetoresistivity of polycrystalline 

iron as a function of the applied magnetic field up to a maximum 

field of 21,500 Oe. The curve marked 0 corresponds to the long-

itudinal magnetoresistance (x = 0 where x is the angle between the 

field and the specimen axis) and that marked 90°  to transerve effect 

(x = 90°). Intermediate positions are indicated in the same way. 

The graphs reveal the existence of considerable shape 

anisotropy in the rod-shaped specimen. Saturation is reached at 

about 2000 Oe when x = 0 but for increasing x the peaks become 

wider and move more towards the high field region. It can be seen 

that the low-field magnetoresistance below saturation is considerably 

affected by this orientation effect. Above the region of technical 

saturation, however, the specimen exhibits an isotropic 'forced' 

magnetoresistance effect ( 	4-) that is practically independent 

of the direction of magnetization. The values of the slopes for the 

longitudinal and transverse cases are found to be (at 273°  K) 
V 

4.18 x 	8 Oe-1 

	

,•%t = - 4.41 x l0`8 Oe-1 
	

(5.1) 

The difference in the two values, which is about 5%, is unlikely 

to be due to experimental error only and may probably be attributed 

to two, more possible, causes. These are 



03 

02 

APPLIED MAGN9TIC FIELD ( H ) IN KILO-OER 

4 	5 

. 	 . 
Fig. 17. Flagnetpresistivity _of polycrystalline2,.ir on as functions of field and orientation 

_ 	of the field relative to the specimen axis. 

O 

- 0'1 

--,24 
2.3 	24

7  



(a) the high demagnetizing field (A.111,000 0e) operating at right 

angles to the rod may prevent the true slope from being reflected 

in the curve within the range of fields studied, and 

(b) there may be a genuine contribution to the forced magnetoresist- 
av 3 	1(-.1  s 

ance from the term — x 7  (2.16) which implies that the coefficient 2 e 
Q is a weakly field-dependent parameter° 

in the next chapter. 

Fig. 18 shows the magnetoresistivity as a function of 

corresponding to saturation in zero (equivalent) internal field. In 

evaluating the demagnetizing field for various orientations, the 

simplest case of uniform magnetization has been considered. The 

demagnetizing field (which is not collinear with the direction of 

magnetization except when the field is parallel or perpendicular to 

the axis of the rod) was calculated from the demagnetizing factors 

along the three principal axes, DD D (where D + D + D = 1). 
x y z 	x  y z  

These latter values were obtained from the existing works on cylind-

rical rods(91,92,93). The points for the experimental curve of 

Fig. 18 were taken from Fig.17 after correcting for the demagnet-

izing field appropriate to the particular field orientation, so that 

all magnetoresistivity values are referred to the same magnetic 

state, i.e. saturation in zero field. The significance of the 

solid and broken curves of Fig. 18 is discussed in the next chapter. 

5.2.2 Nickel  

As before, the magnetoresistivity of polycrystalline nickel 

This is discussed further 

x, 
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as a function of field for various values of x is depicted in Fig. 19. 

Saturation is reached below 1000 Oe when x = 0 and, unlike the case 

of polycrystalline iron, the peaks in subsequent magnetoresistivity 

curves do not show any substantial shift towards higher field as 

the angle is gradually increased. The transverse magnetoresistance 

shows no positive peak and attains its saturation value at about 

3000 Oe, i.e. the demagnetizing field of the material. 

The forced magnetoresistance in nickel is found to be more 

isotropic than in iron. The values of the slopes for the longit-

udinal and transverse cases are 

,r  - 1.71 x 10-7 0e-1 

- 1.68 x 10-7 0e-1 
	

(5.2) 

with a difference of nearly 1.7%. 

In Fig. 20 is shown the values of saturation magneto-

resistivity as a function of x at zero (equivalent) internal field. 

The open circles represent the points taken from Fig. 19 after 

correcting for the demagnetizing field appropriate to the particular 

direction of magnetization in a manner similar to that described 

for iron. The significance of the solid and broken curves in the 

figure is discussed in the next chapter. 

Figs. 21, 22,23 show the three sets of graphs for the 

single crystal of nickel which was obtained when the plane of 

magnetization was the (111), (110) and (112) crystallographic planes 

respectively. The measurement of magnetoresistivity in these three 
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discrete planes, the corresponding measuring directions being each 

time in a 	direction enabled, for the first time, the five 

saturation magnetoresistance constants to be evaluated on the same 

crystal, as is shown in section 6.3.2, While the general features 

of the polycrystalline magnetoresistance are retained in the sets 

of graphs for the (111) and (110) planes, they vary considerably in 

detail as the direction of magnetization changes relative to the 

crystallographic axes. The case of transverse magnetoresistance 

depicted in Fig. 23 is one in which the field and the direction of 

current are always mutually perpendicular to each other. As in the 

polycrystalline material, the single crystal forced magnetoresistance 

decreases linearly with field and is found to be substantially 

independent of the orientation of the field. The rates of decrease 

of ts  with H for 

f  
V--.2(111)=  

` 11j(111)1-- 

the three sets of measurements are 

-1.86 x 10-7  0e-1 ( 	) ' 	= 

-1.78 x 10-7 0e-1 ( A.)(11) 

1.88 x 10-7Oe -1 , 

1.90 x 10-7Oe -1 , 

..,j 
( 1)(11o) = - 1.88 x 10-7  0e-1  , 

40) 1.72 x 10-7  0e-1  n   ( 	 )(110) - - 

As before, the geometry of the specimen and the principle 

ment made it necessary to correct these results for the demagnet-

izing effect before any accurate calculations of the constants could 

be attempted. The case of an infinitely long specimen of rectangular 

cross-section has been discussed in Appendix II where an expression 

was developed for the demagnetizing factor when the plane of magnet- 

(5.3) 
of measure- 
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ization is perpendicular to the axis of the bar. This represents 

the experimental condition for the case of transverse magneto-

resistivity except that the specimen is of finite length and the 

field is turned between two positions in which it is first parallel 

to one side of the rectangular cross-section ( 4111> direction)and 

then to the other ( <110> direction). Taking again the simplest 

case of a uniformly magnetized isotropic medium, the demagnetizing 

factors Dx  D y  , Dz  along the three principal axes were calculated 

from the expression developed in Appendix II , namely 

2 
- 1 1 4nD = 2 1.4 tan --+ 2p In p + 	In (1 + p2)1 7 

(5.4) 

where p = ratio of the two adjacent sides of the rectangular section 

of the bar. The demagnetizing field Hi  could then be evaluated for 

any arbitrary direction of magnetization I inside the body. Fig. 24 

shows a typical variation of Hi/I with the angle of orientation of 

the magnetization vector from <110> direction for the case of the 

actual specimen. 

In Figs. 25, 26 are shown the results which are obtained 

from Figs. 21, 22 after the necessary corrections have been made 

for the demagnetizing fields: the values are plotted against the 

angle between the direction of measurement and the direction of 

magnetization. Fig. 27 is plotted the same way as Figs. 25, 26 , 

but the angle is now measured from the <111>direction. In all the 

three cases, the same magnetic state has been preserved by maintain- 
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ing the same zero (equivalent) internal field assuming that the 

magnetization is uniform in all directions inside the specimenn. 

The associated solid curves are derived after applying Fourier 

analysis to the experimental data to get the best fit. The values 

of the coefficients so obtained are then used in the final evaluation 

of the five magnetoresistance constants discussed in section 6.5.2, 

5.,2c5 Cobalt  

In Figs.28, 29 are given the results for the magneto-

resistivity of polycrystalline cobalt before and after annealing to 

a temperature of 1050°  C in vacuo and using two different specimens 

of diameters 1 mm and 2 mm respectively. In both cases a positive 

magnetoresistance in high fields is obtained even when the direction 

of measurement is transverse to the field. This behaviour is rather 

different from that shown in the earlier results of Bates(18) on 

many high-coercivity cobalt alloys which reveal negative magneto-

resistance in most cases irrespective of whether the field is 

parallel or perpendicular to the direction of current. It may be 

seen that the annealing has little effect on the values of the 

magnetoresistivity. 

Figs, 30, 31 give the magnetoresistivity versus angular 

parameter x of the field after correction for the demagnetizing 

field, The solid curve is obtained from the application of 

an 	analysis to be described in section 6.4. 
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5.2.4 Gadolinium  

The magnetoresistivity curve for polycrystalline gadolinium 

is shown in Fig,32 . It may be seen that the difference between the 

longitudinal and transverse effect is very much smaller than for 

cobalt or the other materials investigated, and that it is negative 

rather than positive. The results also indicate a greater field 

dependence than obtained hitherto. This is to be expected, as the 

forced effect, largely responsible for the increase of domain 

magnetization in high fields, is more important near the Curie temp-

erature (T
c 

 2920 K) and as the present investigation was carried 

out at 273°  K. 

Fig. 33 gives the plot of magnetoresistivity values taken 

from Fig, 32 after correction for the demagnetizing fields. The 

solid curve, as before, is derived from the application of the 

Fourier analysis to these data. This is described in section 6.5. 
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CHAPTER VI 

DISCUSSION OF THE RESULTS  

6.1 Introduction  

The isotropic 'forced' magnetoresistance above the region 

of technical saturation does not affect appreciably the values of 

the magnetoresistance coefficients since the rate of linear decrease 

with H (=-4 is small and is practically independent of the 

direction of magnetization. Since, however, a considerable influ-

ence is exerted by the geometry of the specimen, the range of field 

over which the linearity is observed can be quite small unless the 

field is taken to a very high values The associated large demag-

netizing field thus becomes an important factor in the final inter-

pretation of the results particularly where the coefficients are to 

be determined by changing the direction of saturation magnetization. 

This is also important when attempting to estimate the value of 

P (2,12) in the polycrystalline magnetoresistance expression (see 

also sections 3.5.1 and 3,5.2) for cubic and hexagonal materials. 

In the preceding chapter, a procedure has been outlined for the 

derivation of the 'magnetometric' demagnetizing factor and of the 

internal field for the type of specimens used in the present 

investigations. The results so obtained on the basis of this cal-

culation are now discussed under separate headings 
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6.,2 Iron 

6.2.1 Polycrystal  

The experimental results of the preceding chapter give 

the values (vide equation (2.13b) ) 

DP - 4.18 x 10-8  0e-1  
ar_n 

L.,,As  
- o.227 x 10-8 0e-1  (6.1) 

assuming that the observed difference between the rates of change 

with H of 't(x = 0) and t (x = n/2) is attributable to the weak 

field dependence of the coefficient of the cos2x term in the ex-

pression for the spontaneous magnetoresistance of a polycrystalline 

material. 

The value of this coefficient can, however, be determined 

by reference to the experimental results shown in Fig.18 , which 

was obtained in the following manner. Inspection of the family of 

curves in Fig. 17 clearly shows that except for the longitudinal 

and transverse cases the graphs for the intermediate positions do 

not exhibit a true linear effect even at the maximum value of the 

applied field, but are still influenced by the geometry of the 

specimen. Consequently, a very large field is necessary in the 

case of iron if an accurate calculation of the magnetoresistivity 

coefficients is to be attempted. Subject to this limitation, 

however, the experimental data were taken from the graphs of Fig. 17 

at a constant external field of 22,000 Oe. These values were then 

extrapolated back to zero internal field by using the demagnetizing 
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data for the various orientations of the specimen and the mean value 

for the rate of linear decrease of *. with H. The latter was ob- 

i.' 
tained as the mean of the two values 

!-;11 
and 1 	The open 

circles in Fig.18 represent the final results obtained and sub- 

2 immediately of these into the expression P 	cos x immediately 

gives gives 

P = 	0.00063, 	Q = 0.00411 . 	(6.2) 

The graph of this expression is given by the broken curve, which 

reveals only approximate agreement with the open circles. Fourier 

analysis was therefore carried out to get the best fit with the 

experimental points. This was attempted in the case of iron as in 

all the other materials. The theoretical curve is then given in 

the form 

x 100 = A B cos2x C cos 4x 	‘.. 	(6.3) 

where the coefficients A, B, C have the values 

A = 0.1801 , 

B = 0.1974 

C = - 0.03467 . 	 (6.4) 

The solid curve of Fig. 18 is given by equation (6.3) with the 

first three terms included while the dash and dot curve represents 

the graph that would be obtained if the third term were omitted. 

A comparison of the three curves with the experimental points 

clearly indicates that the magnetoresistive behaviour of poly-

crystalline iron is not adequately represented by retaining only 

the cos2x term in the series expansion. The value of C which is a 

measure of the coefficient of cos4x term is about 17% of that of B 
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and is of the opposite sign. 

For iron, the five saturation magnetoresistance constants 

have been given as(34)  

ki  = 0.00153, 	k2  = 0.00593 , 

k
3 
 = 0.00194, 	k

4 
= 0.00053 , 

k
5 

= 0.00269 . 	(6.5) 

Substitution of these data in (3059) and (3.60) gives the following 

values for P and Q 

p = 0.00'114 	, Q = 0-00458 	, (6.6) 

so that 

3.02 	. (6.7) =

P

P  

This may be compared with the theoretical value of -2 which is 

obtained by putting lc; = 0, in which case P = - for cubic 

materials. The experimental value of Q given in (6.2) for the 

polycrystalline material now gives (with P =-0.00114 from (6.6) ) 
, 

- 2061 	 (6.8) 

Since any attempt to evaluate P involves reference to the initial 

demagnetized state, any comparison with the expression containing 

single crystal constants can be only approximate, and the agreement 

found for Q, on the basis of the present analysis, is quite 

satisfactory. 

If the simplest two-constant expression for magneto-

resistivity is considered (3.43), the polycrystalline saturation 

value in the longitudinal direction can be related to the corresp-

onding single crystal values along the <100> and <111> directions 

by the expression 
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_ 
3 - 5 p ) 	

(2.-T.) 
loo 5 p  111 

(6.9) 

 

are taken from Webster(3) for (-) 	and (1?-2.) 
P  100 	p  111 

The relation (6.9) is compared with the results 

as well as the present measurements on poly- 

It will be seen that subject to the uncertainty 

In Table 4 , date 

and Shirakawa(4). 

from the previous 

crystalline iron. 

of the initial demagnetized state, the agreement is generally poor, 

so that the magnetoresistance is not fairly represented by a two-

constant equation in the case of iron. 

6.3 Nickel 

6.3.1 Polycrystal  

Fig.19 shows that the magnetoresistivity curves of 

nickel, unlike those of iron, decrease fairly linearly with field 

for all values of x from 0 to 900  in the region of the maximum 

field used and further that the forced effect is practically iso-

tropic. The graph corresponding to that of Fig. 18 was therefore 

constructed by referring to Fig. 19 at a zero (equivalent) internal 

field corresponding to saturation. This is shown in Fig. 20. 

Application of Fourier analysis to the data of Fig.20 gives, as 

before, an expression of the form (6.3) in which the coefficients 

A, B and C are found to have the values 

A = 0.56 , 

B = 1.141. 

c = - 0.0834 . 	 (6.10) 



TABLE 4  

,A0) Comparison between the experimentally observed values of 	from 

polycrystalline measurements and those obtained from the relation 

(12-) = 2  (La) 
P  s 5  p 100 5  p 111 

Calculated 	Pollcrystal 
(—Z1E-) 	

P 	
Ref,No. 	(Ap., _En 	Ref.No. 

100 	111 	p 's 	
p

s 3
% 

Fe 0.05% 0.40% 0.260% (3)  0.324% (11) 

0.005% 0.48% 0.288% (4)  0.281% (4) 

0.348% Present 
work 

Ni 1.971% 2.424% 2.243% (6) 2.155% (6) 

1.756% (11) 

1.63% Present 
work 
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The broken curve in Fig.20 represents equation (6.3) when only the 

first two terms are retained. Expressed in power series of cos 2x 

the corresponding values of the coefficients become 

Q = 0.00228., 

p = - 0.0058. 	 (6.11) 

The solid curve is obtained as a result of the inclusion of the 

cos 4x term and gives a better fit with the open circles. It will 

thus be seen that the magnetoresistive behaviour of polycrystalline 

nickel, unlike that of iron, is closely represented by the two-term 

expression, although for an exact calculation it may be necessary 

to include the cos 4x term. The value of C which is a measure of 

the cos 4x term is about 8% of that of B and is of the opposite sign. 

Table 4 further shows that the agreement between the 

experimentally observed value of (- )forpolycrystalline material 

and that obtained from (6,9) from measurements on single crystals 

is rather poor so that, for nickel, the two-constant equation 

(3.43b) depicting the magnetoresistivity should be regarded as only 

approximate. This is further confirmed by the fact that in nickel 

the value of
3 
 is definitely not zero (section 6.3.2). 

In Table 6 are given the values of the five saturation 

magnetoresistance constants of nickel obtained from the present 

investigation., On substituting these data in equations (3.59) and 

(3.60), the values of P, Q and -- 	are obtained. These are 

summarized in Table 5 along with the measured values of Q and of 

P Q  the ratio 	for polycrystalline nickel. It is certain that the 
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TABLE 5 

Values of the coefficients of the expression 	= P + Qcos2x 

as determined from measurements obtained from single crystal constants. 

For NICKEL. 

Polycrystal 	Single Crystal 

Ref. No. 	Q 	From equations (3.59) and (3.60) 
P Q  

Ref. No. 

(25) 	0.0305 	(6) 	-0.00757 0.0371 -3.9 

(7) 	-o.00419 00254 -5.1 

Present 
work 0.02285 Present 

work 
-0.00207 0.0215 -9.3 
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P + Q . ratio,  p 	is nowhere near to -2 as predicted by the simplified 

theory, so that the neglect of the 0 term is not justified in 

representing the polycrystalline magnetoresistance of nickel. 

6.3.2 Single crystal 

The magnetoresistance at saturation is measured as the 

difference between the changes in resistivity when the crystal is 

magnetized to saturation in the fixed measuring directionZt12;)and 

when saturated at right angles to that direction so as to be 

independent of the initial domain distributions. The two chosen 

planes of magnetization are the (111) and (110) planes corresponding 
\ 

to the two adjacent faces of the rectangular shaped crystal, as 

shown in Fig. 6 . The third setting is when the specimen axis and 

the plane of magnetization are perpendicular to each other, that is, 

the measuring direction is againZ11> but it is always transverse 

to the field, 

It has been shown in Appendix I" that the dependence of 

magnetoresistivity on the directions of the magnetization vector at 

saturation, when measured from the q11> direction in the first two 

cases and from the <111> direction in the third case, can be ex-

pressed in the following respective forms 

(AiL) 
(111)Plane = Al  + B1  cos 2 1.) + 01  cos 4 	, 	(6.12) 

(4) (011)Plane  A2  + B2  cos 2 I) + C2  cos 4 T1 

+ D2  sin 2 r) + E2  sin 4 	(6.13) 

and 
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(4E) (711) Plane = A3  + B3  cos 2 e + 03  cos 4 e , 	(6.14) P  

where the constants Ai, Bi, Ci  (i = 1, 2, 3) and D2, E2  are given 

in terms of the magnetoresistivity constants kl 	k5  by the ex-

pressions within the brackets in relations (I ..;.3), (I.-6a) and 

(I-4-10a) respectively, 

In actual practice, the field was applied in various 

directions from 0 to 90°  (in steps of about 10°) and the magneto-

resistivity was measured in the fixed irection4.112>. This enabled 

the constants BI., Ci  to be evaluated using standard Fourier analysis. 

It was not necessary to extrapolate the results back to zero internal 

field as the disposable constants A. are not needed in the evaluation 

of the k's. 

It may be noted that any one of the three B's, referred 

to above, is related to the other two by virtue of the fact that the 

cases 0 = 90°  (<110> direction) and 0 = 0 ( 4:111>direction) in the 

third setting correspond to 1.) = 90°  in the first two settings 

respectively. One is consequently redundant and there are only five 

independent equations connecting the five magnetoresistive constants. 

The occurrence of the sine and cosine terms in equation 

(6.13) indicates that the expression can still be written down in 

terms of an even function of 1, namely 

feven(1)  = [f(”) 	f(-0} 

= A
2 B2 cos 2 1 	C2 cos 4 T1 , 	(6.15) 

where feven(r)) is the mean of the two values of the function for .41. 

Fourier analysis was, however, performed on the data taken from 
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TABLE 6  

Comparison of the values of the five saturation magnetoresistance 

constants of nickel obtained from previous and present measurements. 

D5ring'( 6 \ 

1928 
airing(?) 
1938 Present work 

k1  0.063 ox654 0.0589 

1 2 
0.029 0.0266 0.0192 

1c3  -0.036 -0.0320 -0.0382 

k4  -0.051 -0.0540 -0,0416 

k
5 

 00014 0.0200 0.00755 
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Fig.22 and the numerical value for the coefficient of cos 4 so 

obtained was used to represent C2. The final five equations 

connecting the five saturation magnetoresistance constants with the 

numerical values of B1,  C1, 
 C2,  B3,  C3 are thus 

k1 1 1 + 73- k2  + 7  k4 	k5  = 0.01201, 

"4- 
, 

+ 7 " 
1, 
5 	= - 0.0007358 , 

717  k5  = - 0.001929 , 

k1-k2 1 ,R 1 	k5  = - 0.0004359 12 	24 '3 24 '4 

k 	I,  0.004345 k3 32 4 - 	- ITT 5 = (6.16) 

Solution of these five simultaneous equations gives the values 

shown in Table 6. The previous values obtained by D:1ring from his 

own measurements(7) and those taken by Kaya(6) are also given for 

comparison, the latter also being shown under Daring. It will be 

seen that the present values tend to be lower, and that k
3
, the 

term usually neglected in magnetostriction, is definitely not small. 

6.3.3 Forced Magnetoresistance  

Referring to Fig. 4 , if the variation of 	with spont-

aneous magnetization in zero applied magnetic field (Z = qIs  = S ) 

is expressed as an arbitrary function of the product qis, thus 

PIV - PI  - 	

PI 
- f(qIs ) = f(S ) , 	 (6.17) 

then the forced magnetoresistance may be calculated as follows: 

Replacing f(qIs) by f(Z) since the forced magnetoresistance 



only occurs when X 7 0, one obtains 

at1 8PIV af(Z) 
aH _ 

  
p 	aX 	ax 

af(z) aZ 
- aZ aX 

- (1 + 
dI 

az 

11+8 

= 

(6.18) 

where q is assumed to be independent of X and I is given by the 

relation 

I = I
s 

- a
o
/H - b

o
/H
2 

- <.. + BH 

I
s 
• BX , 	 (6.19) 

in sufficiently high fields(59). As stated earlier, the term BX is 

due to the increase in spontaneous magnetization caused by the 

increased alignment of spins in a domain in high fields. Equation 

(6.18) relates the forced magnetoresistance to the variation of 

dI resistivity with Is and to the forced magnetization-- = B. 
dX 

For polycrystalline nickel, the values of B and of 3= are 

known for a number of different temperatures near the Curie point, 

so that it is possible to test the validity of equation (6.18) over 

an extended temperature range provided that the term af(z)  is 

accurately known. The first step is to deduce the form of the 

function f(qI
s
) and this may be done by referring to the experimental 

and the 'normal', non-ferromagnetic curves for nickel as discussed 

in sections 2.2.1 and 2.2.3. The numerical values of 	, so ob-

tained(63), are plotted along with those of Is in Fig. 34 against 

temperature and it may be seen that for X = 0 the relation 

( 	= (A - C x 	)112 
	

(6.20) 
C 
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149 



150 

T 
is closely followed over a large temperature range in which -t-r- Is 

the reduced temperature (Tc  = Curie temperature) and is the 

T reduced magnetization ( = o 	Equation (6,20) can be expressed 
,0 

()X=0 = (A1  - C1  T) /1
2 

= (A
2 
- C2 T) 5

2 
o,T 

= (R UT)(0c10,T)2  

where d = density, 

(6.21) 

	

U = C
2 	Cl 	1  
2 2 - 2 2 2 - 2 2 2 

	

qd 	qdc„.4w  

and where (qd) is taken to be substantially independent of temp-

erature over this range(94)o  

The application of an external magnetic field in addition 

to the Weiss molecular field has the effect of slightly increasing 

the magnetization and consequently producing a further drop in the 

anomalous resistivity below the Curie point (cf. -5- aP x- in equation 
(2017) ). The contribution to arising from the second factor for 

any given H and T is generally small compared to that from the 

first except at temperatures approaching the Curie point, where X 

becomes comparable to and even greater than (qIs) and where the 

intrinsic magnetization is most strongly affected by the applied 

field. 

Thus, in so far as it can be assumed that the introduction 

of X in equation (6.21) in addition to qIs  does not significantly 

alter the form of the function f(Z), it is still possible to write 

in the form 

x T
c 



S = 2 pIV - PI  PI 	 
Cin 

Ts IV 
C 

+ dI) 
q dX 

giving 2 

d PIV 	86o T 
aT 

(6025) 
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()z  = f(Z) = (R - UT) Z2  , 	(6.22) 

Hence, 

af(z) 
_ 2Z (R - UT) - UZ2  6T  DZ 

2  

	

z 	) 	uz2 aT aS 

(qI ) 2 
04. X=0 	DS az 

C1n
2 

2 
717— 	— a T  qd  

aT 

From equation (6.18) 
2 

1 dI 2 
(TT -5a).5.°  

	

- Is ( ' z2
)
X=0 	ao-o T 

aT 

if X <<ciis  

(6.23) 

(6.24) 

Experimentally, a measurement can be made of the dependence of forced 

magnetoresistance on field, and the slope of this curve is 

apIV PI — I 
S = 	— 	1E, 

pIV 	ax 	pIV .v.k. 

Ailattempt has been made to evaluate q from the above relation 

using the present data on magnetoresistance and electrical resist-

ance of nickel. Thus, taking 

1 	0,5051 at 273°  K; C = 2063 x 10-4; pIV 
I 	

1 4. 

Doo T 112----0.0275deg-1(;954=1.2067 x 10-4 Oe-1 (95) 

d = 8.89 gm/cc at 273°  K; 	= 0.947, and S = 1.69x10-70e-1, 

the value of q is found to be 17,182. The equation, however, leads 
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to a negative value for q at two higher temperatures, 476°  K and 

551°  K, at which the forced magnetoresistance has been previously 

measured(9). Although this anomaly could be due to inaccuracies 

in the estimated values of S (which obtained by using a comparatively 

low field of 7000 Oe), it is more probable that the form of the 

function f(Z) ceases to be correctly represented by the equation 

(6.22) at these temperatures. It is reasonable to believe that the 

slope of the f(Z)/Z2 versus T graph increases more rapidly than that 

given by (6.22). Similarly, equation (6.25) is also not expected to 

give reliable value for q from low temperature measurements. 

Taking J = 2t  which gives the best theoretical fit with 

the experimental curve for the variation of spontaneous magnetization 

with temperature below the Curie point, T
c, the value of q, as cal-

culated from the equation 

(J 1) g4Bqiso  
T
c 
- 	 

3k 

is 18,500(6°1). The present magnetoresistance measurements thus 

give an appropriate value for the Weiss molecular field constant. 

6.4 Cobalt 

The theory of domain magnetization requires that (- L2) P 
and (I2) extrapolated to zero effective field from measurements 

P 

made in strong fields should have opposite sign. Bate's measure-

ments(18) on many high-coercivity cobalt alloys, however, give 

negative magnetoresistance irrespective of whether the field is 

parallel or perpendicular to the direction of the current. The 
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present measurements, on the other hand, give mostly positive values 

for all orientations of the field from 0 to 90°. The use of two 

specimens, 1 mm and 2 mm in diameter, yielded the same results and 

the main features of the curves were retained when the latter 

specimen was thoroughly annealed at 10500  C for two hours in vacuo, 

The open circles shown in Fig. 30 represent the values of 

(2) for the non-annealed specimen as taken from Fig. 28 at a 

constant internal field of 14,000 Oe. In view of the very limited 

range over which the experimental curves of Fig.28 exhibited 

linearity, any attempt to extrapolate the resistivity values back 

to zero internal field was thought to be rather unrewarding. The 

lack of saturation is seen to be more pronounced with increasing 

values of x because of the high demagnetizing field operating in 

this region. For this reason, the last few experimental points in 

Fig. 30 were considered to be somewhat unreliable and a curve 

fitting was attempted only for the range 0 - 70°. The associated 

solid curve is given by the equation 

(SE) x 100 . A -I- B cos 2 x 4. cos 4 x 7 	(6.26) 

where 	A = 1.213 

B = 0,841 

C = - 0.130 

As is seen, this gives a good fit with the experimental points over 

the range considered. 

Fig. 31 shows the results for the annealed specimen and 

the corresponding effects are found to be somewhat smaller. The 
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solid curve is again represented by equation (6.26) where the values 

of the coefficients are now 

A = 1,351 

B = 0.625 

C = 0.099 

and give a good agreement with the experimental points except for 

x 	90°. The associated dotted curves in Figs.30 and 31 are 

obtained when only the first two terms of (6.26) are retained. The 

annealing process has slightly narrowed the gap between the solid 

curve and the values of (22-) in the region x 	90°. The value of 

Q as determined on the basis of the simple expression P Q cos
2 x 

is thus found to be 0.0125 for the case of the annealed specimen. 

At present, there are no measurements available of the constants of 

equation (3.66c) so that this value cannot be directly compared with 

the theory. 

6.5 Gadolinium 

The magnetic behaviour associated with the exchange inter-

action effect between conduction electrons and unpaired electrons 

localized on particular atoms in a crystal is most significant in 

the rare-earth metals, like gadolinium. Here the 4f electron shell 

is incomplete, and near the Curie temperature it is further shielded 

by the outer shells from the influence of the neighbouring atoms. 

Thus the randomly oriented spins can appreciably scatter the con-

duction electrons giving rise to an additional term in the resist- 
(96) 

ivity expression. Applying Matthiessen's rule,,the total resist- 
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ivity may be written as 

PT A  Pideal lattice Pimpurity Pspin-disorder° 
 (6.27) 

The extra resistance due to spin-disorder scattering may be ex-

pected to decrease markedly upon some kind of ordering of the spins 

and thus to cause a resistivity anomaly below the Curie temperature 

as discussed in section 2.2.2. However, above the Curie temperature 

should be temperature independent and can be eval- 
Pspin-disorder 

uated from the rest. Earlier measurements on the electrical 

resistivity of gadolinium (63)  show little dependence ot temp-

erature above the Curie point and hence support the mechanism of 

spin-disorder scattering. 

Cadolinium, which is ferromagnetic below 290°  K, has a 

close-packed hexagonal structure (c/a ranging from 1.59 at 370°  K 

to 1.599 at 130°  K, which is not far from ideal close packing 

c/a = 1.633(97)) and a magnetic moment corresponding to 7.511
B 

per 

atom at the absolute zero. The susceptibility follows closely the 

Curie-Weiss law at high temperatures, while at lower temperatures 

definite magnetic ordering effects have been observed(98) 

Magnetostriction measurements on both polycrystals and 

(99.40.1.:;43) 
single-crystals by various workers'.  ' 	indicate a linear 

'forced' variation with field at temperatures well into the ferro-

magnetic region, a normal square law dependence at temperatures well 

above the Curie point and a two-third power law variation near the 

Curie temperature. Assuming a field-independent susceptibility 

above the Curie point, the relation between volume magnetostriction 
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and the magnetic field can be immediately derived from the thermo-

dynamic relation connecting the pressure dependence of magnetiz-

ation to magnetostriction, thus 

( aw
) 

	(ai)  
8P 	7 

P,T 	H,T 
(6.28) 

where w = 117 	With =AH where 7,, is a constant, equation (6.28) 

gives on integration 

AV 	DX 2 
- 	( - aP  H V  

(6.29) 

Belov's theory(I°I°) on the other hand indicates that near the Curie 

temperature, the magnetization and the magnetostriction are given 

by 

A + Bc
2 
= H/C 	and 	ie = const x c

2 
, 	(6.30) 

where a = magnetization per gm. and X = U/1. This means that an 

H
2/3 

dependence of A. is expected. The measurement of the temperature 

dependence of the magnetoresistivity
(21) 

 indicates a similar It 

variation at temperatures above 346° K. Since the susceptibility 

at these temperatures is field independent, this means that 

L-1L oc7v2H2 c( c2 , 	 (6.31) 

implying a square law relation between the magnetization and magneto-

resistance. The present investigations give a large 'forced° 

magnetoresistance effect, being near the Curie temperature, and 

the negative slope is found to be substantially isotropic for all 

orientations of the field as can be seen from the following values 

al.' 	= 	5,79 x 10-7  oe-1  

aH 	= - 5.96 x 10-7  0e-1 
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Ap - apt 
Unlike all previous cases, the difference ( it 	1) is found to be 

to 

negative which is one of the most important features in the present 

investigation. Such behaviour has been reported by Bates
(18)

n 

his measurements of magnetoresistance on cast alnico, but for a 

different reason. In the present case a longitudinal field might 

induce a greater ordering of the spins near the Curie temperature 

and the shape-anisotropy of the specimen may also be important. 

In Fig, 33 are given the values of 	as taken from Fig. 32 

after correcting for the demagnetizing field so as to correspond to 

the saturation magnetic state at zero internal field. The dotted 

curve is obtained by the direct evaluation of the values of P and 

Q from the data of (I?:4 
P " 

and 	without attempting a Fourier 

analysis. The solid curve results from Fourier analysis in which 

the cos 4 x term is included and the value of the coefficient of 

this term is found to be about 10% of that of the cos 2 x term and 

tkp 
is of the opposite sign. In view of the enlarged scale of the --- 

axis, the difference between the solid curve and the magnetoresist-

ivity value at x = 90°  corresponds to about 4%. This difference 

can be explained by the fact that near the Curie temperature the 

magnetic field has a pronounced ordering effect on the randomly 

oriented spins, and that a more rigorous calculation of the demagnet-

izing field therefore becomes necessary in order that the values of 

under consideration should conform to the same magnetic state 

of the material. It is also felt that a still higher field is 

desirable to get the true saturation effect. 
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The dependence of magnetoresistance on field at this 

temperature (273° K) is found to be more near to H
2/3 

than to H. 

This is depicted in Fig. 35 in which the relationship between 

and H
2/3 is seen to be almost linear above the low field 

region up to the maximum value of the field used- In this respect, 

and in relation to the earlier finding of an H
2 

variation at high 

temperatures, the magnetoresistivity of gadolinium has been found 

to follow the corresponding magnetostriction behaviour rather 

closely. 
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PART II 

CHAPTER VII 

INTRODUCTION 

7.1 Summary  

The subject of exchange interactions in magnetic materials 

has been extensively investigated since the first introduction of 

the theory and concept of 'ferrimagnetism' in 1948 by N4e1(1)  to 

describe the magnetic properties of a group of developing, technically 

important, ferromagnetic oxide materials - the ferrites. The subject 

was further stimulated by the appearance of neutron diffraction as 

a powerful means for observing magnetic order in ferro-, ferri- and 

particularly antiferromagnetic materials(2'3'4)  and by the develop-

ment, lately, of the MLssbauer technique(5'6)  as an additional 

experimental tool in such investigations. 

According to N6ell  the simplest ferrimagnetic material is 

composed of two inter-penetrating sublattices and with interactions 

only between nearest neighbours (non.). A sublattice is defined, in 

such a case, as constituting all the magnetic ions of a given kind 

on a given type of site, and these ions are all grouped together as 

a single magnetic unit in the description of their magnetic behaviour 

The negative exchange interaction between the two sublattices causes 

their spins to align in an antiparallel manner resulting in a net 



-161 

magnetic moment equal to the difference between the two individual 

sublattice magnetizations. If, however, the two moments are equal, 

the net magnetization is zero giving rise to what is called 'anti-

ferromagnetism', a state which was earlier postulated by Neel(7) and 

Van Vleck(8) Antiferromagnetism may therefore be regarded as a 

special case of balanced ferrimagnetism. Landau(9)  first stressed 

the phenomenological similarity of ferro- and antiferromagnetism in 

respect of spin ordering below the thermal transition point and 

suggested the existence of the Neel point analogous to the Curie 

temperature. 

The theoretical model of antiferromagnetism or ferri - 

magnetism is such as to give a detailed account of the ordering of 

the spin moments and how the degree of order changes with temperature 

and the effect this has on the magnetic and thermal properties such 

as susceptibility, magnetic anisotropy, specific heat and changes in 

lattice parameter with temperature. In view of the importance of 

the molecular field theory of antiferromagnetism as the groundwork 

for all subsequent developments, a brief account is included in 

.Chapter VIII starting with a generalization of the Weiss theory of 

ferromagnetism. 

Since Neel's original hypothesis, the term ferrimagnetism 

has been extended to include materials with more than two sub-

lattices and those with triangular, spiral or canted spin arrange-

ments. In the Neel model(7) there is no allowance for any crystal-

line anisotropy. Van Vleck(8) postulated the presence of some kind 
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of anisotropy forces whose magnitude, however, was just sufficient 

to keep the axis of the antiferromagnetism along this direction but 

was negligibly small in comparison with the strong exchange couplings. 

Nagamiya(10)  and Yosida(1a) have explicitly introduced an anisotropy 

energy term in their theory to explain the discrepancy between the 

theoretical predictions and the experimental results. 

Neel in his original treatment also showed how the exist-

ence of next nearest neighbour (n.n.n.) interactions would partly 

account for the difference observed in many cases between the Neel 

temperature and the asymptotic Curie temperature which is obtained 

from the extrapolation of the Curie-Weiss law. More recent studies 

(2) of the effect of non.n. interactions made by Van Vleck 	, Street(13), 

Smart(14)  and Anderson(15)  reveal that the type of order which sets 

in below the Neel point is primarily determined by the non.na inter-

actions if the latter is predominant over the n.n. interactions. 

While it is reasonable to anticipate that the molecular 

field in antiferromagnetism or in ferrimagnetism has the same basic 

origin as in ferromagnetism, that is, in a quantum mechanical 

exchange interaction, a consideration of the magnitude of the spin 

aligning forces in many compounds (e.g. Mn0 and MnS) leads to the 

conclusion that the interaction is not of a simple direct exchange 

type. For instance, in most ferrites, the cations are separated by 

much larger distances than those necessary, on the bases of Slater-

Bethe curve(16), to account for the observed degree of couplings 

between adjacent spins. It must therefore be concluded that the 
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exchange interactions occur indirectly via non-magnetic oxygen ions. 

This mechanism, now called super-exchange, was first introduced by 

Kramers(17)  in an attempt to account for the results of adiabatic 

demagnetization which indicated that small exchange couplings 

existed even between ions separated by one or several diamagnetic 

groups. The theory has since been developed further by Anderson
(15) 

and Van Vleck(12), Another mechanism in which the oxygen ion plays 

an important role is the double-exchange proposed by Zener(18) to 

account for the interaction between adjacent parallel spins via an 

oxygen intermediary. Zener's theory, therefore, does not explain 

the negative interaction in ferrites but may be a contributing 

factor to the observed ferromagnetic (positive) interactions in 

certain manganites and cobaltites. A somewhat different indirect 

exchange interaction (negative) has been proposed by Goodenough
(19) 

to account for the partial covalent or homopolar bonding between 

cation and anion in spinel-like structures and is called the semi-

covalent exchange interaction. 

A description of several important crystal structures in 

non-metals which illustrate many significant features of magnetism 

is given by Goodenough(20). The most important of these, from the 

point of view of antiferromagnetism, may be summarized as: the 

rocksalt (e-g. MnO, NiO, Fe0, cal) and zinc-blende (e.g. chalcopyrite 

CuFeS2) type of lattices in the cubic crystal structure, corundum 
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type (e.g, Cr20 a-Fe203) in the rhombohedral structure, rutile type 

(e.g. MnF2, FeF2, CoF2, NIP2, Mn02) in the tetragonal structure, and 

the CdC12  (e,g. FeC12, CoC12, NiC12) and NiAs (e.g. CrSb, MnAs, MnBi) 

types in the hexagonal structure. Ferrimagnetism, on the other hand, 

has been widely studied in oxides and compounds having crystal 

structures of spinel (e,g0 ferrites with general formula MOFe203), 

and garnets (e.g. compounds with general formula 2R3X2(ZO4)3 where R 

is usually a large ion such as calcium, yttrium or a rare-earth, and 

X and Z are transition elements), hematite-ilmenite, mineral magneto-

plumbite (e.g. M type compound with general formula M0.6Fe
203 where 

M represents a large divalent ion such as Ba2+, Sr
2+

, Pb2+ 
	. 
), 	NiAs- 

type compounds and finally in perovskite-type oxides (e.g. of general 

formula MFe0
3 

where M is a large metal ion such as La3+, Ba2+ or 

Sr
2+
). 

The discovery of the fact that some antiferromagnetic 

materials also exhibit weak ferromagnetism (the historical example is 

a-Fe203) set a new trend in the development of the antiferromagnetic 

theory and eventually led to the concept of the canted spin medhanism. 

According to this theory, first proposed by Dzialoshinsky(21)  and 

later supported by Moriya(22), the magnetic moments of the anti-

ferromagnetic sublattices are not exactly antiparallel but are turned 

towards each other resulting in a net moment which is perpendicular 

to the antiferromagnetic axis. However, a canted spin arrangement is 

possible only if the magnetic crystal symmetry is the same as that 

when the spins are antiparallel. For a-Fe203, Dzialoshinsky showed 
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that this condition is satisfied when the moments lie in the basal 

(111) plane above the Morin transition(23) at about 250° K, and is 

not satisfied when the spin orientationri4(2) 	is along the ternary 1111.1 

axis below this transition. 	suggested that Dzialoshinsky's 

idea could be extended by assuming a general model of a canted 

antiferromagnetism with unequal sublattice moments but there is yet 

no general acceptance of this. Quite apart from this phenomeno-

logical approach, two mechanisms were suggested by Moriya to explain 

the origin of the canting of the spins, which are different in 

materials like N3F2(25)  and in materials like a-Fe203 or the ortho-

ferrites(26). The first requires the presence in the crystal of two 

non-equivalent sites for the interacting magnetic ions. The 

crystalline field acting on the ions in the two sites is then 

different and hence the magnetocrystalline easy direction of magnet-

ization is different for the non-equivalent ions, energetically 

favouring spin canting. The second mechanism invokes the combined 

effects of the spin-orbit and the super-exchange interaction 

phenomena and leads to a term in the anti-symmetric exchange inter-

action of the form D. £S, X S,. This term tends to align the two 

interacting spins S. and S. perpendicular to each other and perp-

endicular to the constant vector D..
13. For a -Fe203, D lies along 

the ternary i1111 direction. Other antiferromagnetic materials 

exhibiting weak ferromagnetism include MnC0
3
(27)

' 
CoC0

3
(27)

' 
Kmnp3(28) 

and OrF
3
(29)0 

The problem of canted spin in ferrimagnetism has been dis- 
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cussed by Dwight and Menyuk(30) in their study of the magnetic 

properties of single-crystal samples of hausmannite Mn304  which is 

known to become ferrimagnetic at about 42°  K. Compounds of mixed 

2 
cadmium manganites,which have the general formula (Cc 	

1+ 
x'""2 4 

and are isomorphous with Mn304, are the materials which have been 

studied in the present investigations. In addition to these, the 

antiferromagnetic behaviour of the ordered and disordered phases of 

lithium ferrite, LiFe02, has also been studied. Both types of 

materials were in the form of crushed single-crystal powder. The 

present investigations have led to some new and interesting results 

which are included in the discussion. In particular, the generally 

complex susceptibility curves of the manganite compounds, all of 

which have a tetragonally distorted spinel-like structure, call for 

a detailed account of some of the more advanced theories of ferri-

magnetism and of the possibility of the simultaneous existence of 

ferro- or ferrimagnetic and antiferromagnetic phases. For example, 

as first observed in the Co-Co0 system(31), the rotational hysteresis 

or the shifted hysteresis loop is now believed to be the result of 

the exchange interaction that acts across the interface between the 

antiferromagnetic and ferromagnetic single-domain particles. Inter-

facial exchange interactions have also been found to be present in 

antiferromagnetic-ferromagnetic and ferrimagnetic-ferromagnetic 

systems
(32) 

As stated earlier, one of the most important groups of 

ferrimagnetic materials is the ferrite by which is understood 

materials of the composition MFe204, where M is a divalent metal ion 
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and Fe is a trivalent ferric ion. These materials form the spinel 

structure in which the oxygen ions are much the largest, occupying 

most of the volume, and in themselves form a close-packed cubic 

array. The cation sites are of two kinds, called respectively 

tetrahedral, or A, sites each of which is surrounded by four oxygen 

ions and octahedral, or B, sites each of which is co-ordinated by 

six oxygen ions. A unit cell consists of eight formula units; 

of the 64 tetrahedral sites, 8 are occupied, while of the 32 octa-

hedral sites, 16 are occupied. Each anion site is co-ordinated by 

one A site and three B sites. Furthermore, the occupied A sites form 

in themselves, two interpenetrating fcc lattices having an edge tat 

(equal to that of the unit cell) which are displaced relative to 

each other over a distance-4  in the direction of the body diagonal 

of the elementary cube. The occupied B sites, on the other hand, 

lie on four fcc lattices with side 'a' which are displaced relative 

to each other over a distance (J2/4)a in the direction of the face 

diagonal of the cube. 

In the normal spinel structure, the 8 divalent ions occupy 

the A sites and the 16 trivalent ions occupy the B sites. In the 

inverse spinel structure, half of the trivalent ions are on the A 

sites while the other half plus the 8 divalent ions are on the B 

sites. Intermediate arrangements are also possible and are called 

'partially inverted'. Ferrimagnetism implies the existence of at 

least two non-identical sublattices, A and B and usually at least 

three different exhange interactions JAA, JAB  and JBBO A simplif- 



168 

ication, however, is sometimes afforded by the fact that the divalent 

metal ion is non-magnetic, e.g. Zn, Cd0 There is thus only one type 

of interaction, namely B-B in the case of a normal spinel. Nee]. in 

his theory of ferrimagnetism(1)  assumed the existence in the material 

of one type of magnetic ion only, of which a fraction appeared on 

the A sites and the other fraction on the B sites. An unequal 

distribution of the ions may occur if there are unequal numbers of 

sites on the two sublattices, or if there is some kind of site 

preference which is generally determined by (a) the size of the ions 

involved (b) the electron configuration of the ion and (c) the 

symmetry and strength of the crystalline field at a site. It is 

obvious that with two or more different types of magnetic ions in 

various mixtures between the A and B sites, there can be a very large 

number of sublattices which may be needed to describe the system 

properly. For example, with two non-identical ions on the A sites 

and further two different types on the B sites, there could be a 

total of ten different interactions that would in general require ten 

molecular field constants. In the present investigations on the 

ordered phase of LiFe02, a total of 16 sublattices has been con-

sidered. However, in many cases it is often found possible to 

suppress a large number of them and still get an adequate description 

in terms of a smaller number of sublattices. 

The simple Neel theory, based on a two sublattice model, 

is quite adequate in illustrating many important general features of 

ferrimagnetism but unfortunately does lead to conflict with the third 
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law of thermodynamics in the prediction of a finite slope of the net 

magnetization curve at the absolute zero. Yafet and Kittel(33) 

removed this difficulty by extending Neel theory to accommodate the 

postulate of a triangular spin configuration. In this, the A sub-

lattice is divided into two interpenetrating fcc lattices while the 

B sublattice is similarly divided into four such interpenetrating 

sublattices. Neglecting anisotropy, they showed that the four B 

sublattices could be lumped together to form two equivalent sub-

lattices. Yafet and Kittel found, among other possibilities, that 

when the A-A or B-B antiparallel interactions become comparable to 

the A-B interactions, the two sublattice magnetizations no longer 

remain exactly antiparallel but make an angle with each other. There 

is thus a resultant magnetization on that site and it is this which 

sets antiparallel with the magnetization of the other site. The tri-

angular spin arrangements predict a linear increase in net magnet-

ization with field at high field and also at low temperature - an 

important point of difference from that of Neel theory - and still 

give values of reduced magnetization of the same order of magnitude. 

The Yafet-Kittel theory has been applied qualitatively by Gorter to 

several series of ferrimagnetic compounds(34). Lotgering(35) 

discussed the possibility of one or more transitions from one type 

of magnetic ordering to another during the course of heating and 

found evidence for the triangular configurations in MnCr204' Peer
2
0
4 

and possibly NiCr204. Neutron diffraction data, however, have 

given mixed evidence for such a theory. For example, Prince(36) 



120 

concluded that the data on CuCr
2
0
4 
are in agreement with a tri-

angular arrangement, while Pickart and Nathans(37) found no such 

evidence in nickel and manganese ferrite-chromites whose magnet-

izations are abnormally low and therefore easily accountable by 

this theory. On the other hand, Jacobs(38)  studied a series of 

tetragonally distorted spinel compounds MO.Mn203  (where M = Mn, Co, 

Zn and Mg) and obtained results in good agreement with the triangular 

model. The Yafet-Kittel theory is further discussed in section 8.5 . 

It was suggested by Kaplan(39)  that the possible spin 

configurations in cubic spinels can be a magnetic spiral (or 

helical) in which case the ground state has a lower energy than 

that given by the triangular arrangements. In other words, the spin 

vector rotates as one advances from one magnetic ion to the next 

retaining, of course, the same sense and magnitude for its component 

along a given direction. The Yafet-Kittel type configurations were 

shown to be the stable ground state only under appropriate conditions 

for cubic spinels which are tetragonally distorted(0). A helical 

spin configuration is also proposed by Yoshimori(41)  in relation 

to the antiferromagnetic spin structure of Mn02  and further 

evidence comes from other workers(42,43,44) 

Finally, mention may be made of the concept of super - 

super -exchange in explaining some of the dominant magnetic exchange 

interactions involving two oxygen ions or one oxygen and one dia-

magnetic ion between the pairs of paramagnetic cations. This type 

of exchange interaction has been suggested by Osmond to account for 
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the antiferromagnetic ordering in ilmenite, MnTiO
3
(45) and also in 

the magnetic structure of spinels containing paramagnetic octahedral 

cations but diamagnetic tetrahedral cations(46) 

7.2 Purpose of the present study 

Interest in the magnetic behaviour of lithium ferrite, 

LiFe0
2' arises mainly because of the apparently complicated nature 

of the phase transformation between its two crystallographic forms, 

a disordered rock-salt structure (a-LiFe02) and an ordered tetragonal 

structure. According to latest investigations carried out by 

Anderson (J.C.) and Schieber(47)1  the final ordered phase is the 

y-phase, into which the unstable disorderd a-phase transforms via 

an intermediate body-centred tetragonal form, called the (3--phase. 

The y-phase, in turn, disorders to form the a-phase. Fayard(48)  

and Collongues(49), on the other hand, proposed the sequence 

a .—N (3  where the c3 	a process proceeds via a less ordered 

y -phase. 

Neutron diffraction and 148ssbauer study experiments () 

have revealed antiferromagnetic spin arrangements both for the 

ordered y -phase in which there is cation order similar to that in 

chalcopyrite, CuFeS2, with a Neiel temperature at 315° and for 

the a-phase with a transition temperature in the region of 900  K. 

The former corresponds to a magnetic superstructure of tetragonal 

symmetry with 4- and - spins alternating in the (001) planes, while 

the latter gives antiferromagnetic ordering in the (111) planes, the 
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spins being ferromagnetically coupled in the individual planes., 

Previous magnetic susceptibility measurements in the 

transition region, however, had either failed to reveal any anti-

ferromagnetic peak or given unusually large values for the magnetic 

moment of the Fe3+ ion when calculated from the Curie-Weiss law(51) 

This, according to the present investigation, may be attributed to 

two reasons. Firstly, there is always present in the samples a 

minute trace of ferro- or ferrimagnetic impurity like LiFe508  which 

is reflected by the manifestation of a spontaneous moment in the 

magnetization versus field graph, and which renders the inter-

pretation of the magnetic results difficult, and secondly, the 

previous measurements were not extended up to a sufficiently high 

temperature to get a true slope of the susceptibility graph. It was 

therefore decided to prepare a fresh sample of these materials and 

measure the magnetic susceptibility of all the three phases over an 

extended temperature range and as a function of field from 4-100013  IL 

The remanent magnetization, however, could not be entirely eliminated 

and was assumed to be due to the presence of approximately l 

of LIFe
5
0
8 

which would not be observed in the X-ray analysis, 

Transition temperatures were observed at 420  K for a and p phases 

and at 295°  K for the y phase after making necessary corrections 

for the impurity. The generally antiferromagnetic behaviour of all 

the three phases are consistent with the earlier neutron diffraction 

results(5°) and yield values of the magnetic moment for Fe3+  that 

are in good agreement with the theoretical value. The departure 
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from Curie-Weiss law, which is observed above the transition temp-

erature for up to a certain range, has been discussed in the published 

results of these investigations(52)  (Appendix IIIje 

The second part of the work is devoted to the experimental 

.study of the magnetic properties of powder compounds of the series 

CdxMn3_x04. As stated earlier, these compounds are isomorphous to 

hausmannite,  Mn304, and are formed by partial to complete substitution 

of the paramagnetic Mn ions by diamagnetic Cd ions in the A 

sites of Mn304' This series was chosen for study because 
Mn304 is 

known to become ferrimagnetic at 42° K(53) and has a saturation 

moment at absolute zero which is nearly half of that predicted by 

the Nesel model of ferrimagnetism and is generally attributed to 

Yafet and Kittel angles on the B sites(50'58'4 . Jacobs(58)  

observed the high field differential susceptibility in the series 

CoxFin
3-
x94' znxmn3-xo4 and MgPhi3-.94 as further evidence for 

triangular arrangements. The case of diamagnetic ions occupying the 

A sites appears to be particularly interesting since at the end 

point x = 1, both ZnMn204  and MgMn204  are found to exhibit anti-

ferromagnetism on the basis of susceptibility(54)  and neutron 

diffraction(55)  experiments. In addition to these results, uni-

directional anisotropy is also found in these two mixed manganites 

(0 x < 1) when the material is cooled down to low temperatures in 

the presence of magnetic fields of several kilo-oersteds(55). This 

suggests the existence of interactions between ferrimagnetic and 

nearly antiferromagnetic regions brought about by the random 



174 

distribution of diamagnetic cations among the tetrahedral sites and 

again points to the antiferromagnetic ordering of the spins. 

It will thus be clear that with non-magnetic ions 

occupying most of the A sites, the predominant B-B exchange inter-

actions have a direct influence on the magnetic behaviour of the 

substance. The cadmium manganite series thus provides a further 

excellent means to test the validity of the Yafet-Kittel theory and 

may even probe the applicability of the theory of spiral spin con-

figuration in similar structures. In particular, the much larger 

size of the cadmium ions compared to that of Zn or Mg may have a 

significant effect on the super-super-exchange interactions if the 

latter prove important or may act as a more effective screen in the 

formation of the isolated clusters of the magnetic ions on the B 

sites. In either case, a departure from the usual antiferromagnetic 

behaviour at low temperatures may be expected. Another interesting 

feature is provided by the fact that the antiferromagnetic suscept-

ibility may remain temperature independent below the Neel point in 

some cases with the spinel-like structure having only diamagnetic 

cations on the A sites. The antiferromagnetism of zinc ferrite 

is shown to exhibit this feature(56) which was explained on the 

assumption of negligible anisotropy in the plane perpendicular to 

the tetragonal c-axis. On rather incomplete experimental evidence, 

Rosenberg and Nicolae(57) had suggested that CdMn
2
0
4 
also exhibit 

temperature-independent antiferromagnetic susceptibility. The 

present investigations over the temperature range 4 - 1000° K have 
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revealed a generally complex behaviour with more than one transition 

temperature. The results are given in the published paper(58), a 

reprint of which is attached to this thesis (Appendix IV). 
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CHAPTER VII I 

ANTIFERROMAGNETISM AND FERRIMAGNETISM 

8.1 The generalization of the Weiss molecular field theory of  

antiferromagnetism  

The starting point for the theoretical description of a 

co-operative magnetic phenomenon (ferro-, ferri- or antiferro-

magnetism) is the quantum mechanical exchange interaction of the 

Heisenberg-Dirac-Van Vleck model on the origin of the Weiss molecular 

field. According to this model, the exchange interaction energy 

th 	
j h V. between the spins of the 1 and 	atoms or ions in the crystal, ij 

which are neighbours, is given by 

V..=- 2 J S . S. 	 (8.1) 3.3 

J being the exchange integral. In the general treatment of the anti-

ferromagnetic theory, an atom or ion of a given sublattice is con-

sidered to be surrounded by a number of neighbours, some of which 

may belong to the same sublattice and some to others, so that the 

Weiss field acting on this ion depends upon the various sublattice 

magnetizations and may be expressed by the usual summation con-

vention as 

Ht H 	"b.lj M
j 
 (j = 112,3,...0„n) 
	(8.2) 

th. where M is the magnetic moment of the 3 sublattice, n is the 

number of sublattices considered and the h. .'s are the Weiss 

molecular field coefficients and are a measure of the strength of 
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the exchange interaction between the spin of an ion from the ith 

th sublattice with that of an ion from the . sublattice and expressed 

by the equation (8.1). For this to be more realistic, S should be 

replaced by the mean value, (S )
Av 

 , which is proportional to M.; 

the interaction then acts as an effective field due to magnetization 

of the sublattice containing j. In other words, the customary 

practice is to replace all the spins except the one under consider-

ation by their averages and treat the statistical behaviour of this 

onespinalone.Foranantiferremagneticmedium,b..13 
 is negative 

(.  -lb. .1). 2.3 

It may be pointed out that equation (8.2) is only useful 

if all the ions on a given sublattice have the same spin; if each 

sublattice contains equal numbers of positive and negative spins 

thenclearlyM.=0 and the equation is not helpful unless the sub-

lattice is further divided. 

At thermal equilibrium, the average value of the spin S. 

is 	(S.)Av  = S B s3  (a.) 7 	 (8.3) 

where S is the total spin quantum number, Bs(aj) is the Brillouin 

functionanditsargumenta.isgiven by 

a. = Sg pB Heff/kT 
	

(8.4) 

Here 

eff Hint 
H  H 	= H. 	+ 	 (8.5) 

	

i 	applied ° 

The external field is included for the purpose of calculating 

th 

	suscept- 

. ibility. The 3 sublattice magnetization is therefore given by 

M. = constant x S B 
s3  
(a.) , 	(8.6) 

3  



178 

which, for small values of the argument a., reduces to 

eff 
M. = y 

H 
	, 	 (8.7) 

where all the constants are included in the symbol y. Equation (8.7) 

holds for each sublattice separately. At high temperatures, the 

spontaneous magnetization is zero and the Curie temperature, Tc, is 

obtained by substituting the Weiss fields from equation (8.2) for 

th Heff in equation (8.7) and putting T = T
c. For the i sublattice, 

one therefore obtains 
b.. M. 

M. 	11
i  2

'3 	3  - 0 
Tc  

The resulting set of n homogeneous linear equations in M, however, 

are not all independent and will give a non-zero solution for the 

sublattice magnetizations if the determinant of the coefficients of 

M is zero. In general, this determinantal equation yields more than 

one solution for T.  The kind of magnetic ordering which actually 

exists below the Curie temperature will be that which corresponds to 

the highest value of Tc  as this gives the lowest energy at the 

absolute zero. 

8.2 Case of the simplest antiferromagnet  

Van Vleck theory(8) deals with the simplest case, namely 

that of a body-centred cubic lattice in which there are two sub-

lattices, one comprising the corner positions and the other the body 

positions. This arrangement has the special feature that the 

nearest neighbour of an ion or atom on sublattice 1 always lies on 

(j = 1,2,3,....,n) e 	(8.8) 



the corresponding exchange integral J.. is readily obtained by 
C59) 

ij 

equating the two expressions of the exchange Hamiltonian, containing 

A relationship between the Weiss molecular field constant 	and bid  
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sublattice 2 and vice versa. The internal field on one sublattice 

is then given entirely by the average magnetization of the other. 

8.2.1 Behaviour above the Neel temperature, TN  

For the usual values of the applied field, the approx- 

imation made in equation (8.7) is true and this yields 

M1  = (H + b11 
MI + b12 

M2)),  /T , 

M2 = (H + b11 M2 + b12 
M
1
) /T , 	(8.9) 

where the same type of ions are involved in the two sublattices. 

On adding these two equations and solving, one gets 

M1 M2 C Susceptibility ? = 	a 	T + 	
(8.10) 

where 

2µ$gS(S + 1) 
C = 2)t - 2 3k 
	 (8011a) 2 

after substituting the value of Y, and where 
2 2 

g [1.B  S(S + 1) 

	

= -(b11 b124= -(b11 b12) 	3k (8.11b) 

thetermstl
1J
..andb..respectively. This yields 

2z?.
bij 2 2 

	

g 	

=(8.12) 

where z is the number of neighbours involved. Equation (8.11b) may 

therefore be expressed as 

e = 

	

2 	
S(S + 1) . 	(8.13) 3k (z'J11 zj12)  

The antiferromagnetic Neel point, TN, is obtained from equation (8.8) 



as 

giving 

Hence, 

- 2TN/C 	b12  

b12 	b
11 

- 2TN/C 

2 	t  TN  = iC (bil 	b12)  = 3k 

e 	b12 + b11 	zJ12 + z1,111  

= 0  

zJ12) S(S  

18o 

(8.14a) 

1)' 
(8.14b) 

(8.15) TN 	b12 - b11 	zJ12 - zit).11 

The effect of the intra-sublattice interaction is therefore to make 

e, the Curie-Weiss temperature, different from the Neel temperature. 

If, however, the intra-sublattice (n.n.n.) interaction becomes too 

large in comparison to the inter-sublattice (n.n.) interaction, 

the simple two-sublattice arrangement becomes unstable. This is 

discussed in section 8.2.2. 

8.2.2 Susceptibility below the Neel temperature 

Van Vleck postulated the existence of some kind of easy 

axis of spontaneous antiferromagnetism below the Neel point and con-

sidered the effect of an applied field parallel and perpendicuThr 

to this preferred direction. Thus for H = 0, one obtains from 

equation (8.6) the two expressions 

tSgl-LB ( 	M + M = constant x S BS1 	kT -1311 1 b12 M2 

, g1-1B M2 = constant x S Bs SkT  (b11 
M2 + b12 M1  

,(8.16a) 

,(8016b) 
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By symmetry, Ml  = - M2  = M, so that 

Sgg 

[ 
M = constant x S B 	---E- (b11 	Fi - b12 ) l , 	(8.16c) 

giving the same magnetization curve as ferromagnetism for the two 

sublattices separately. It follows therefore that at the absolute 

zero all the spins will be set parallel or antiparallel to H in the 

case of parallel susceptibility and the field induced magnetization 

will be zero, that is, A = 0. 

When H is perpendicular to the antiparallel spins, the 

field tends to rotate the sublattice magnetizations and this is 

opposed by the molecular field (Fig. 36). Since H<<Heff, the 

parallel molecular field, to a first approximation, is constant at 

Heff = (b
11  - b12  )M while the perpendicular molecular field is given 11  

by Hel!f  = H + (b11  + b12) bM where 8M is the change produced in M 

by the application of H. Hence 

H + (bl, + b12) 6121 

Hti 	= M 	(b11  b 12-514 	
(8.17a) 

which gives 

7. 	2 bM 	1 i\i= 	= - 	= constant. 	(8.17b) 
12 

The perpendicular susceptibility thus only depends on the inter-

sublattice interaction. The susceptibility of the powdered sample 

is now given by (averaging over all random crystallites) 

A poly 	A usin20 + 71 cos% = A-11 + -g- 7S. k. 	(8.18) 

It follows,therefore, that at the absolute zero 	= of 	at ' Xpoly 

the 114e1 point. The experimental support to Van Vleck theory is 
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Fig. 36.  Diagram illustrating the perpendicular 
susceptibility, 	. 

(a0 
	

(b) 

Fig. 37. Antiferromagnetic spin arrangements in a 
bcc lattice: (a) First kind of order (b) 
Second kind of order. 

(b) 
	

( c ) 

Fig. 38.  The three possible kinds of magnetic ordering for 
a fcc lattice: (a) First kind of order (b) Second 
kind of order (Mn0 structure) (c) Third kind of order. 114) After Smart 
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provided by the results of Bizette, Squire and Tsai(60)  on MnO 

although an attempt to fit the results of MnSe into the theory 

failed. Nagamiya, Yosida and Kubo(61) have given a list of most of 

the antiferromagnetic materials studied in which the value of 

2\-(0)/7,(TN) can be seen to vary from 0.2 to 0.93. It is thus clear 

that some antiferromagnets.behave more like the predictions of the 

Van Vleck theory than do the others and that these latter type of 

materials require a more rigorous theory involving the anisotropy 

field and the use of more complicated lattices. Anderson(15) has 

pointed out that with more than one antiferromagnetic axis within 

a single domain, it is possible to account for the ratio A(0)/A(TN) 

being different from 3 
Fig. 37a gives the spin arrangements for the bcc structure 

of the foregoing discussion in which the plus and minus signs 

indicate moments aligned parallel and antiparallel to the easy 

direction respectively. However, no antiferromagnetic compounds 

are known in which the magnetic lattice is body-centred cubic. The 

second kind of order, shown in Fig. 37b results when the intrasites 

interaction becomes comparable to the intersites interaction (long 

range order) and is antiferromagnetic. The arrangements now need 

four sublattices to describe the magnetic behaviour. Following the 

same procedure as that outlined earlier, it is easy to show that 

the ratio of the Curie-Weiss temperature, e, to the Neel temperature, 

TN, is given by 
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b 	+ b.. G 	
12b. 

 ii  - 	where T 	Cb T
N 	b.. 	' 	N - 

- 
2  
-1 

al 
11 

(8019) 

and corresponds to the fact that the spin arrangements with the 

highest N;e1 point give the stable solution. Thus for b < b 12' 

equation (8014b) gives a larger value for TN  and e/TN  lies between 

1 and 3 while for bii> 1  b12  the second kind of ordering is stable. 

An example of the latter is provided by the rutile structure (body-

centred tetragonal) in which the corner atoms are the n.n.n.'s to 

the body-centred atom and the corresponding interactions are the 

important ones. 

8.3 The face-centred cubic structure 

Anderson(15) extended the Weiss field treatment to the more 

complicated case of the fcc structure and showed that this should be 

divided into no less than four sublattices having the property that 

each sublattice contains four none's in each of the other three and 

six n.n.n.'s in its own. Smart(14), in a further generalization of 

Anderson's method, suggested that while the method of subdivision 

depends on the symmetry of the specific lattice, there should be 

enough sublattices so that a given atom has neither nearest nor next 

nearest neighbours on its own. The fcc lattice was accordingly 

divided into 8 fcc sublattices. This division is particularly 

important for the Mn0 structure in which, according to neutron 

diffraction studies(3), any Mn2+  ion has six parallel and six anti-

parallel non.'s whereas the six n.n.n.'s are antiparallel. Hence 
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the important interaction which produces the antiferromagnetism is 

between the n.n.n.'s and is provided by the super-exchange. 

The inclusion of a sufficient number of sublattices in a 

generalized treatment such as given by Smart has the advantage that 

the Curie temperature for a specified type of magnetic ordering may 

be obtained directly without solving the determinantal equation. For 

instance,iftheirrteractions,B_
3
Is, are all defined as positive and 

2. 

the signs of the interactions are explicitly given by the notation 

e13 .., where e.. = + 1 denotes whether the i-j neighbour interaction 3.3 — 

is ferromagnetic or antiferromagnetic, and if the ordering is further 

specifiedbytherelationS.=(11..
23

) S. 
	

1.
j  

where 	= + 1, then one 
i 

may write 

 

= e..
3.3 	13 b.. (8.20a) 

and 

 

i+j 

 

Tc =(8.20b) iij  eij  bij  

it 

which are equivalent to equations (8.11b) and (8014b). Thus A and 

T
c may be obtained directly once the molecular field coefficients 

and the type of ordering are assigned. Fig. 38 shows the three types 

of antiferromagnetic order possible in a fcc lattice with only n.n° 

and non.n. interactions. The first kind of ordering occurs if the 

n.n.n0 interactions are ferromagnetic. The third kind occurs if 

34 b(n...n.)/b(n.n.n.)›. 	, otherwise it is of the second kind as observed 

in MnO. In addition, 0/TN  is found to lie between 1 and 5 for the 
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fcc structure. It may be pointed out that while Tc  depends on the 

type of magnetic ordering below the order-disorder transition point, 

e only indicates the effect of the internal field in aiding (e = ve; 

ferro-) or opposing (0 = ve; antiferro-) the applied field which 

tends to align the moments. It is interesting to note that the 

usually accepted procedure to look for the highest Neel point assumes 

the impossibility of transitions from one type of magnetic order to 

another at some intermediate temperature unless the molecular field 

(m.f.) coefficients are temperature dependent such as those due to 

thermal changes of the lattice parameters. Thus, the simple m.fo 

theory cannot explain such complex behaviour as ferro- or ferri-

magnetic-antiferromagnetic transitions etc. in the simple Bravais 

lattices described above. 

8.4 Ferrimagnetism 

In a ferrimagnetic material, the sublattices into which the 

magnetic structure is divided are not identical because there are 

different kinds of magnetic ions, different types of crystallographic 

sites for the ions, or both. Unequal numbers of magnetic ions on 

the sublattices may also contribute to the lack of symmetry. Neel, 

using the simplest two-sublattice model, assumed the existence of one 

type of magnetic ion only, of which a fraction A, appeared on the A 

sites and a fraction 1/ on the B sites, so that 

% 	= 1. 	 (8.21) 

For a normal spinel, X = 0, µ = 1 whereas for an inverse spinel, 



= = 0,5,. In general, the AB interaction is negative and is 

much stronger than either AA or BB interactions, each one of which 

may in principle be positive or negative but apparently positive for 

a great number of ferrimagnetic materials. The local field at sub-

lattice, say, 1 is thus opposite to the magnetization of sublattice 2 

and the magnetizations at the two sites are antiparallel. 

In the theoretical treatment of ferrimagnetism, the custom-

ary practice is to denote the molecular field coefficients correspond-

ing to the three types of interactions by the notations n, na, and 

np respectively, where n is taken as a positive quantity and a plus 

or minus sign is used explicitly to indicate whether the AB inter-

action is positive or negative and where the parameters a and p are 

given by 

AA interactions a - 
AB interactions 

r.4  BB interactions  
- AB interactions 

(8.22) 

The m.f. analysis of a simple ferrimagnet thus becomes formally the 

same as that for an antiferromagnet and a similar procedure yields 

the expression for the susceptibility in the paramagnetic region 

(with - ve AB interaction) as 

1 1 T2  - nC(Xa up)T Aun2C2(ap - 1)  
T 	AlInC(a 	p 4. 2) (8.23a) 

T 0 
C 	 T -e' s (8.23b) 

where 

0 = - Cn(2Aµ - A2a - µ20 , 	(8023c) 

0' 	21AuC (2+a+ p) 
	

(8.23d) 
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and 	= n2,\.µC 	+ a) - p.(l + (3)1 2 	(8.23e) 

The last term of the equation (8.23b) has no ferromagnetic counterpart 

and gives the characteristic parabolic shape of ferrimagnetism-. The 

forms of the I/A versus T curves for the various cases, namely 

J = 0 (para-), J > 0 (ferro-) and j< 0 (antiferro- and ferrimagnetism) 

are now depicted in Fig. 39 together with the geometrical inter-

pretations of the parameters of the equation (8.23b). The curve (b) 

is for a ferrimagnet with an antiferrornagnetic Neel point above the 

Curie temperature. The influence of the short range order which may 

persist even after the Curie temperature has been shown by Smart(62) 

to result in a smaller slope for the IA versus T curve than that 

obtained from the Weiss field approximation and consequently in a 

lowering of the Curie point. 

The ferrimagnetic Curie temperature, Tc, may be calculated 

by putting equation (8.23a) equal to zero at T = T
c. Alternatively, 

the numerator in the equation may be put in the form 

(8.24a) 

+ 44 I , 	(8.24b) 

4 + 4 1 (8.24c) 

If the two sublattices are identical, then ;N, = µ = -- and a = p in 

which case 5 = 0 and the hyperbola reduces to a straight line with 
e / Tc. It is easy to show that if the AB interaction is positive, 

the 1/A versus T curve is again of the parabolic form where the 

where 

(T 	Tc)(T - T') = 0 	, 

Tc  = 2 Cnt  a 	4p + 	\/(Aa 4p)2  

and 

T' = 4 Cn c 	- {a% + 4p - \/-(;\,a 4p)2  
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0 
Fig.. 39.  Schematic diagrams of the forms of the 16‘, vs T 

curves for a pars-, ferro-, ferri- and an 
antiferromagnetic material. Curve (b) shows a 
ferrimagnetic with an antiferromagnetic Neel point 
above the Curie point. 

Fig. 40.  The six possible forms of spontaneous magnetizni.on 
curves on a two sublattice theory. (After Neel 	). 
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associated parameters may be directly obtained from equations (8023a) 

to (8.23e) by applying the transformations n -n, a --p -a and 

(3-* 	This also results in the interchange of the expressions for 

Tc and T' but in this case e = Tc when the two sublattices are 

identical, and this result corresponds to the case of ferromagnetism. 

The condition for obtaining ferrimagnetism is that To  should 

be positive which implies, from equation (8.24b), that either a,p 

are both positive or 

up < 1, for negative a and p. 	 (8.25) 

The physical significance of this is that large negative AA or BB 

interaction is unfavourable for ferrimagnetism. In fact, Neel(1)  

suggested that the material remains paramagnetic at all temperatures 

under this condition - a prediction which is considered somewhat 

unlikely since for strong interactions one would expect some kind of 

ordering at low temperatures. This is further considered in 

section 8.5.1. 

8.4.1 The spontaneous ma.Enization 

For the spontaneous magnetization, one is interested in 

the values of the sublattice magnetizations in the absence of an 

external field. For a general case, these are given by the expressions 

g1 	1  (a nM gB 5 	-1- MA = X glgB 51 Bst 	kT 	A n M B) ' 	(8.26a)  

g2 gB S2  
MB = g 82gB S2 Bs 	kT 	° n MA -1- 11  

	

MBI ' 
	(8026b) 

The variations of MA  and MB  with temperature thus depend on the 
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relative magnitudes of N, a and p and will, in general, be different 

for the two sublattices since the arguments of the Brillouin 

functions involve different combinations of the sublattice magnet-

izations and the m.f. coefficients. Hence the form of the resultant 

magnetization curve can be quite anomalous, particularly in the case 

of negative AB interactions. The problem was considered by Neel who 

obtained six possible forms of spontaneous magnetization curves 

under various combinations of N, a and p. These are shown in Fig. 40 

with Neel's original notations. It will be seen that type Q is of 

the 'normal° form° An experimental P-type curve is found in NiCr
2
0
4 

and in some mixed ferrite-aluminates(3463) while the R-type temp-

erature dependence is observed in most of the commercial ferroxcube 

III materials(64) A magnetization curve of type N or V, exhibiting 

a zero net moment at some temperature below the Curie temperature 

was first observed by Gorter(34) and the existence of the compens-

ation point was first experimentally demonstrated by Gorter and 

Schulkes(65). Later, Bertaut and Pauthenet(66) found similar results 

in various kinds of ferrimagnetic iron garnets. 

8.4.2 Limitations of the Neel theory 

It will thus be apparent that the Neel theory explains 

quite satisfactorily many of the salient features of ferrimagnetism. 

However, there are also discrepancies. For example, the slope of 

the 1/k T curve, calculated from the high temperature region, 

does not generally give a correct value for 1/C as predicted by the 
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theory. One probable explanation may be that a given magnetic ion 

behaves differently in its magnetic properties on the A and B sites. 

If the orbital contributions to the magnetic moments are not fully 

quenched, this may lead to different g values. Also, the distrib-

ution of magnetic ions between A and B sites may be a function of 

temperature. Neel himself tried to remove some of the difficulties 

by assuming a temperature variation of the molecular field coefficients. 

The ambiguity regarding the choice between a positive and a negative 

AB interaction is, however, ruled out by consideration of the values 

for spontaneous moments at low temperatures (which in most of the 

ferrite and other ferrimagnetic materials are far less than those 

which simple summations of the two moments will give) and also by 

direct neutron diffraction experiments. The most important theor-

etical objection to the Neel theory comes from the fact that 

magnetization curves of the types M, R and V, displaying non-zero 

slopes of dM/dT at 0°  K, violate the third law of thermodynamics. 

This difficulty was later removed by Yafet and Kittel('33)  (hereafter 

referred to as Y.K.). 

8.5 The Y.K. theory  

Y.K. extended the Neel theory to take into account the 

antiferromagnetic exchange interactions within the two magnetic 

sublattices. Accordingly, the A and B lattices were further divided 

into two more sublattices, Al, A2  and B1, B20 Actually, the B lattice was 

subdivided into four fcc lattices, Bi, Bz, B3, B4, all having the 
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same side as the spinel unit cell. The sub-division was carried 

out on the assumption that the order in both A and B lattices is 

determined by the n.no interactions only. Any given ion from Al  

then has four nom's from A2  while an ion from, say, Bi, has six 

n.n.'s, two from each of the other three B! s. It will thus be 

clear that the interactions between any two Bi s, which are of the 

super-exchange type P-X-Q (where X is the intermediate anion and 

the angle PXQ is 900), are all identical. 

It is perhaps worthwhile to consider here the relative 

strengths of the other interactions since super-exchance predicts 

strongest and weakest interactions at angles of 1800  and 900  

respectively and is also determined by the distances of the cations 

from the anion. On this basis, the next favourable BB interaction 

is that between the face-centred ion of say the Bi sublattice and 

the nearest corner ion of the B2 sublattice where the angle is 1250 

and the two distances are 1; 1.73 where the values are obtained after 

1 dividing by the shortest distances, i.e0 is  a.13 for A-X and .- a for 
B-X(35). For increasing distances, the interactions cease to be 

of the super-exchange type because of the screening effects of the 

surrounding ions and other mechanisms such as super-super-exchange, 

symbolized by the notation P-X-X-Q, must be invoked. 

On the A sites, the inter-sublattice interaction is again 

via super-exchange in which the angle is 700  and the cation dis-

tances are 1;1.92. The non.no interaction between the corner ion 

and the face-centred ion on a given sublattice is considerably 
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weaker, the angle being 118°  and the distances being 1.92;1.92. 

For the AB interactions, the angles are more favourable; 

for instance, that between the corner ions of the Al 
	1 
and B' sub-

lattices is 125°  with distances 1:1; that between the face-centred 

ion on A
l 
and the corner atom on B2 is 180°  with distances 1;1.73 

and so on. The general conclusion is that the intersites inter-

actions are stronger than those within the sublattices, and further, 

that the interactions between ions in the A sites are weakest of all. 

The possibility of an angle occurring between the spins on the Al  

and A2 sublattices is therefore considered rather unlikely
(35) (see 

also section 8.5.1 (2c))e  

Following Lotgering(35) if M and Mb, denote the magnet- -a. 

ization vectors of the sublattices A. and B! respectively and if n, 

na
1  , 
	nag, np'l'  np2 are the Weiss constants for the interactions 

AiAi, A.A./i, B!B! and BIB /i  respectively, then the molecular 1
fields on the six lattices may be written: 

H 	= - nM 4. a M 1 —a1 	2 —a2  

n 	(a - a2) Ma 	1, (8.27a) I 	2) 
—al 	a. 	a. 

 

b' 

	

1 
- n 	M Pi 41 	(114 b 

- n 	(Pi - 	) 	—a. 
M 	(3

1 	1 
(8027b) 
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in which all the interactions are taken as negative and where 

a Of.. a [3,  < 1 	2' 1 	2 

also, M should be 
a2 

(8.27a) and (8027b) 

other then 

Since M should be parallel to H and so 
—a 	—a. 

parallel to H , it follows from equations 

that if M and M are not parallel to each 
-G. 
1 	—e2 

rx2 T I 2.41 = 	; 
similarly, if the vectors Mb, are not parallel 

1. 

2 a. m +c3 	=00 

For simultaneous angles on both A and B sites, 

is 

a2  p,  = 1 . 2 

(8028a) 

then 

(8028b) 

the condition then 

(8.29) 

For arbitrary a2  and 	this situation therefore does not arise. 

Equation (8028b) further implies that for angles appearing on the 

B sites, all configurations with the same resultant magnetic 

moment have the same self-energy and also the same exchange energy 

1 
Mb, respectively collinear. The four sublattices By 

2 4 
B' are therefore equivalent to two

, 
B
1 
and B2, referred to earlier 

and these are associated with the magnetization vectors 4 and Mb  
1 	2 

respectively, where 

Mb  = 2 
1 

Mb = 2 1.  
2 	

4:b 
 

(8.30) 

in the presence of the A lattices. Thus one can make Mb„ Mb, and 
3 

B'B' 
2' 3' 
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8.5.1 Ground state at 0°  K  

Y.K. considered the interactions within the A and B 

lattices to be separately antiferromagnetic in which case the four 

molecular field equations are 

	

l 	1 2-2 -1 
--b 	, 
2  

H
e 
 =ntaikia  1-aMa  - Mb 	M -  

= n a41  

	

2 	1 
4- alEa

2 
- 4

1 
 III3.2 I , 

H = 

	

,1 	t-  E1  — m 2 + P1Mb1 + p2Mb2  1 A 
H 	=n II- Ila - M le PA 

	

---b2 	-1-P1 1 	-e2 	1 	1mb2 .1 

where p p2 are connected with the primed coefficients by the 

relations 

PI  = 2 (Pi + P) 	P2 = 	(8.32) 

Lotgering(35)  assumes al  = 13j = 0 and obtains 0, a2n, 	2n, p2n and 

n respectively for the five interactions. Furthermore, the constants 

a, p of the simple two sublattice model of Neel are related to the 

new constants by the expressions 

a = 2 (a1 	a2) ; 
	

P = 	(P1 	P2) 
	

(8c33) 

The exchange. energy is given by 

E = - i 1 Hi  .M. -a 

= 
 -q

a1 
M2 

1 i-a2 -e
M
1 
.Ma

2 
+p1  m

2

1 4. P2 
E'101- 42 -s 	- 	-ti 

- (M + M )° -s
2 	(4 + 	

(8.34) 
-al 	1  42) 1 1 

Assuming that the .sublattices are saturated at 0°  K and that one 

kind of magnetic ion occupies the A and the B sites, then 

(&31) 
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Ma/Mb Vp. = y where y changes from 0 to 1. Equation (8.34) thus 

reduces to (Fig.41) 

E = - n Mb 	a2  cos 20) y2 	(pi  - B2  cos 24)) 

+ 4y sin m sin W 	(8,,35) 

The values of 0 and ' that minimize the energy can be readily 

obtained by applying the usual rule for finding the minima of a 

function of two variables. The results are summarized below 

(1) when a2 p2 > 1, 
0  . 	. 0, the doubly antiferromagnetic 

arrangements constitute the ground state for all y with each site, 

in turn, becoming antiferromagnetically ordered at its character-

istic Curie temperature TcA  and TcB. The configuration may be 

expressed by the notation 	(Fig. 43 a) 

(2) when a2 p2 < 1, three possibilities arise! 

(a) 0 = 471, sinT = y/ \f32\ 	for 0 < Y <102\ , the ground 

state then has the triangular spin arrangements, symbolized by 

with angles on the B sites. The value of sink{)  is also given by 

the equation (8028b)0 The physical meaning of the condition 

\(32\ ;>Ma/Mb  is that the molecular field of B2  acting on B1  is 

stronger than the field of Al  (or A2) acting on Bl. 

(b) = 1) = 4% for c32 	y < 1/ la2\, this is the 116e1 

ferrimagnetic state ,1,1'  in which the spins at the two sites are 

antiparallel to each other (collinear spins). The ordering takes 

place at the Curie temperature Tc  given by equation (8024b) or (8.38c). 

(c) = 4%, sin ca = 1/ a2\  y for y > 1/02\ ; this con- 

figuration with the angle on the A site and symbolized by 	, occurs 
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1 
Ma - 	 2T 

given from equation (8.7) as 

X C Ha  
(8.36a) 

1 9 

when 1,0(2\ > Mb/Ma  and the corresponding Curie temperature is given 

1 by U3) Tc = µ Cn (p + 1'2\ 

8.5.2 Evaluation of the Curie temperatures  

At high temperatures, the various sublattice moments are 

P C Hb
l  M

b1 - 
2T (8.36b) 

   

The possible Curie points can be determined by finding what temp-

eratures allow non-zero solutions for Ma and Mb 
 in accordance with 

the rule 

the form 

where 

set out in 

	

U 	a2 

	

a2 	U 

	

-1 	-1 

	

-1 	-1 

	

U 	= a 	- 1 

(8.8) 

2T 

	

-1 	-1 

	

-1 	-1 

	

V 	P2 

V 

and V = (31  

The determinantal 

= 0 	, 

2T 

equation is then of 

(8.37a) 

The equation may be 
XCn - 

factorized into the form 

(U - a2) (U 	a2) (V - (32) 	+ 2p2  

giving four solutions 

4 ) = 0, 	(8.37b) 
U a2 

TcA = 	Cn 1 (al  - a2) , 	 (8.38a) 
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Tc 	I Cn [I 01 - P2) 	
(8.38b) 

T
c 	

= Cn.[ Xa 	+ 	- 4)2  44 	(8,38c) 

The last one is the same as equation (8.24) and becomes the only 

Curie temperature if al  = a2  ; pi  = p2. The kind of magnetic 

ordering which appears below the highest Curie point is, as shown by 

Y.K., not always such as to lead to the lowest state at 0°  K. Thus 

considering the case a2p2 	1, if T
c 
is the largest root and the 

ferrimagnetic arrangement 	is the ground state, then only one 

transition (at Tc) occurs, On the other hand, if TcA 
is the largest 

root and the triangular arrangement with the angle on the B site is 

the ground state, the spin configurations may undergo four successive 

transitions as shown in Fig. 42 . The first phase is the one in 

which there is an antiferromagnetic order of the A spins whereas the 

B spins are in a paramagnetic state and this is followed by the 

other types of ordering as the substance is gradually cooled down 

to 0°  K. If, however, Tcli  is the highest root and the triangular 

configuration with the B site angle is the ground state, there are 

two transitions starting from the state in which the A site is 

paramagnetic and the B site is antiferromagnetic (Fig.43 b)';, It is 

this possibility which has been taken into account in the discussion 

of the experimental results on Cdxn3-x04. The derivation of the 

above results leads to one important conclusion, namely, that a 

direct transition from the triangular arrangement to the paramagnetic 

state is not possible and that at least one intermediate state must 
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exist. Another interesting point is that the Y.K. theory allows 

transitions among the various configurations at different temp-

eratures without the assumptions of temperature-dependent inter-

actions. This may be compared with the theoretical investigations 

by Smart(67) who suggested that magnetic phase transitions between 

ferromagnetism and antiferromagnetism, or between two different 

kinds of antiferromagnetic ordering, would occur only if the mole-

cular field coefficients vary with temperature. 

8-5.3 Comparison between the Neel theory and Y.K. theory  

By putting al  = pi = 0 (i.e, considering only the intersub-

lattice interactions), it can be readily derived from equations 

(8.32), (8.33) and (8.35) that the N4e1 ferrimagnetism occurs when 

, 8 
a (3 <, 2 2 3 7 (8.39) 

whereas 

The Y.K. 

the Neel 

Y.K. theory predicts collinear spins only when a2 
p2  

ferrimagnetic region is thus considerably smaller than 

region. This difference arises because of the neglect, by 

Neel, of the antiferromagnetic arrangements within the A or B sites. 

Thus, if the paramagnetic state is to have as low an energy as an 

antiferromagnetic state either on the A or B site, then clearly 

from equation (8.35), al  = a2  = a and pi  = p2  = p; in other words, 

no subdivision of the A or B lattice is possible. The two cases 

are illustrated in Fig. 44 in which the regions of unsaturated N4e1 

lattice magnetizations are indicated by the dashed arrows. The lack 

of saturation in the Neel case is also responsible for a non-zero 
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entropy at 00  K, giving a non-zero slope of the net magnetization 

versus T curve referred to earlier. 

8.6 The helical (dr spiral) spin configurations for the cubic and  

the tetragonally distorted cubic spinels  

It has been shown that for large enough AA and/or BB 

interactions compared with the AB interaction (all negative), the 

triangular configuration would have appreciably lower energy than 

that of the Neel collinear spins and would also explain the lower 

spontaneous magnetizations observed in many ferrimagnetic materials. 

For the special case of zero AB interaction, Anderson( 68)  showed 

that there would be no long-range ordering of the B spins in a 

cubic spinel and that for non-zero AB interaction there should also 

be no long-range ordering of angles between the spins. The latter 

argument was based on the assumption that the Y.K. state has the 

minimum energy. 

However, Kaplan(39) and later, with his co-workers()  

made a detailed study of the ground state problem and showed that the 

Y.K. configurations do not minimize the exchange energy in the cubic 

spine'. In their treatment, the sublattice assumptions are all 

withdrawn and only n.n. AB and BB antiferromagnetic interactions with 

one spin type, SA, on the A sites and one, SB, on the B sites (normal 

spinel) are considered. The method is based on the generalized 

approach, made by Lyons and Kaplan(39), to the Luttinger-Tisza(69)method 

for finding the rigorous minimum of a quadratic form - in this case - 
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the classical Heisenberg exchange energy function. The mathematical 

analysis is lengthy and complex and so only the results are summarized 

here, By introducing a single exchange parameter, u, defined by 

u  3  j  

4  "IBB SB 	 (8.40) 
AB SA 

Lyons et aL(40) showed that in the cubic spinel, the Neel con- 

8 . 
I figuration is the ground state for only u < uo  = 	n which case 

it is locally stable (i.e. for all arbitrary small deviations of the 

spin vectors from their direction in the configuration, the energy 

increases). The important derivation is that for all BB interactions 

large enough to destabilize the N6e1 alignment, a ferrimagnetic 

spiral spin configuration has considerably lower energy than that of 

any previously known configuration, including the collinear and tri-

angular models. A magnetic spiral is referred to as ferrimagnetic 

or antiferromagnetic depending on whether the net moment is non-zero 

or zero. In the former case, all the spins lie on a cone of semi-

vertical angle o but the spin vector rotates as one advances from 

one magnetic ion to the next according to a definite phase relation. 

When co = n/2, the antiferromagnetic spiral results. These are 

illustrated in Fig. 45 . Over the range 	< u < u" = N1.3, it 

was shown that the ferrimagnetic spiral has a propagation vector in 

the *[110] direction, is locally stable and, possibly, is the ground 

state. For u > 1.3, the spiral is definitely not the ground state 

and over a finite range of -u in this region, the calculations 

indicated the existence of spin ordering which is much more complex 
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than the magnetic spiral. However, the method succeeded in proving 

that the spiral provides the lowest energy of all the known spin 

configurations and in addition, yielded a rigorous lower bound to 

the ground state energy. A comparison of the three types of models 

discussed so far is given in Fig. 46 . 

In a further extension of the generalized treatment to a 

class of tetragonally distorted spinels, Kaplan et al.(40) showed 

that the Y.K. triangular configuration can be the stable ground state 

for certain limited ranges of AB and BB interactions starting from 

the boundary of the Neel region. As is known, the tetragonal dis-

tortion in the spinel is caused by the fact that most A site cations 

are too large to be filled in the relatively small A sites without 

expanding the sites. This expansion is accomplished by a displacement 

of the four neighbouring anions away from the cations along their bond 

axes and by a possible simultaneous shrinkage of the anions in the B 

site octant. The distortions are of two types, one for which c/a (1 

as in CuCr04
(36) 

and the other for which c/a > 1 as in Mn304(70) 

In both materials, experimental evidence for the existence of the 

Y.K. state has been reported, the former by Prince(36) and the 

latter by Jacobs(38). 

Outside the Neel and Y.K. stability region, the ground 

state is shown to be an antiferromagnetic [100], spiral for most parts 

of the limited ranges of AB and BB interactions which were considered. 

Furthermore, Menyuk et al.(40)  examined the corresponding stability 

regions for temperatures approaching the highest transition temp- 



206 

erature and concluded that in tetragonal spinels neither Y.K. nor 

ferrimagnetic-spiral configurations can exist at the highest trans-

ition temperature. In other words, ferrimagnetic material with a 

non-collinear ground state at 0°  K must possess at least two trans-

itions. It is interesting to note that these conclusions were 

earlier derived in connection with the derivation of the Y.K. theory 

(section 8.6.2). The results of neutron diffraction on manganese 

chromite have been reported by Corliss and Hastings(71) to be in 

good agreement with the postulate of a ferrimagnetic spiral rather 

than a triangular ground state, and the presence of more than one 

transition temperature. The experimental results, on mixed cadmium 

manganites, reported in this thesis, seem to substantiate these 

predictions by providing additional evidence. 
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CHAPTER IX 

EXPERIMENTAL  

Introduction 

Many methods are now available for determining the 

magnetic susceptibilities of weakly magnetic materials, following 

the classical works of Faraday, Curie and Gouy. The modern devices 

are either improvements of the earlier methods employing the principle 

of a force balance with sensitive optical or transducer operated 

indicator systems( 72,73,74175176177178179,80)  or are so-called 

vibrating coil and vibrating sample magnetometers
(81'8283'84) The 

use of a strain gauge balance and of an electromagnetic balance 

using a differential transformer have also been reported, the 

former by Lundquist and Mayers(85) and the latter by Scheringer(86) 

and Butera(87). Strakhov and Shan'tsze(88), on the other hand, have 

used a ferro-electric sensor element in place of a Hall transducer 

to give greater sensitivity and stability of operation. 

9.2 Theory of the force balance  

Despite certain disadvantages arising from the use of an 

inhomogeneous field, the Faraday method of measuring susceptibility 

is still one of the best of the existing measuring techniques where 

only small samples are available. The method depends simply on 

measuring the force experienced by the material when it is placed 

in a magnetic field gradient. It can be shown (see, for instance, 
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Bleaney and Bleaney(89) ) that the x-component of the force on the 

sample with magnetic moment I is given by 

Fx  = Ix(aHx/3x) + Iy(aHy/ex) + Iz(aHz/ax) 	(9.1) 

If the material has a volume susceptibility x, and volume V, its 

moment I will be 

I = A.,V H. , 	 (9.2) 

where H.s., 
 the field inside the sample, is given by 

= 	- N 	, 	 (9.3) 

assuming that the shape of the sample is such as can be described 

by a demagnetizing coefficient N. Thus 

Fx - + " 	 (IIx x/ax Hy  3H ax + Hz  8H/ax) 

7C,V 
= 	ax 

H2 
) ° (9.4 ) 

If the field is so arranged as to give a large value of ally/ax 

2 
while the quantities efi/ex and eli

2
/ax are negligibly small, then 

a  'AN 
V 

( a T12 1  
Fx = 2  1 + N3x -y ° 

Since, with the values of Ai  (10-3  or less) ordinarily encountered, 

NX‹..,(1, the magnetic field inside the specimen can be taken to be 

the same as the value measured before the specimen was introduced. 

Hence the x-component of the force becomes 

a 2 
F
x 
= 	 V 	Hy  ) ax  

= 4 g  m (ax  4- H2y  ) where 

(9,6a) 

= susceptibility per gm° 

and m = mass of the sample in gm. 	 (9.6b) 

Strictly speaking, equation (9.6a) is correct for a sample of 

infinitesimal size. For a finite sample, one obtains 

(9.5) 
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F
x 	

-2- X 	(.1- H2) dV 	 (9.7) 3x y 

The integration should be carried out in cases where large field 

gradients and large specimens are used to increase the sensitivity 

and accuracy. Experimentally, a simplification is provided by 

making H Kly/ax constant over the specimen and this is accomplished 

by using shaped pole-faces in the electromagnet, 	The main 

difficulty arises from the fact that the value of Hy  3H 8x is 

usually constant over only a rather small volume in the case of a 

large field gradient, and different specimens must therefore be 

placed accurately in the same position relative to the field to 

obtain correct results. 

An alternative approach is that due to Gouy which provides  

a better method if large quantities of a substance are available. 

The specimen is made into a long cylinder of uniform cross-section 

with one end hanging between the poles of a magnet. The vertical 

force in the x direction is then found, by integrating equation 

(9.4) over the length of the specimen, to be 

F 	a); (H 	) 	
' 

H2 	 (9.8) 
l 	2i   

where a is the cross-section of the rod and H
1, 

H
2 
are the values 

of the field at the lower and upper ends of the rod respectively. 

If H
2 
 K< Hl, only the homogeneolis field at the centre of the magnet, 

H1, need be known, although the force is developed from the inhomo-

geneity of the field. 

It is, perhaps, of some interest to discuss the relative 

merits of the two methods before arriving at a final decision as to 

which is to be used. For the same material, the Gouy method gives 
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greater sensitivity, but it is often difficult to make specimens 

in the form of a long cylinder of uniform cross-section and density. 

With the small quantities of powdered samples available in the 

present investigation, the Faraday method was the obvious choice. 

The small size of the sample was also helpful in realizing an 

almost constant H aHy/ax over its volume and enabled studies of 
y

field and temperature dependences of the magnetic susceptibility to 

be easily made. In addition, with the Faraday method, the Honda 

correction(90) for ferromagnetic impurities can be applied much 

more accurately. The great advantage of the Gouy method is that it 

permits absolute measurement of susceptibility to be made with con-

siderable accuracy. By contrast, a precise knowledge of the value 

and the variation of the non-uniform field and of the position of 

the sample in the Faraday method is difficult to obtain (and relative 

measurements with respect to a known sample are usually carried out). 

9.3 The Sucksmith ring balance  

9.3.1 Design requirements 

Having selected the Faraday method, the problem was now 

to make a decision on the type of balance to be constructed. To 

make a rough estimate of the magnitude of the force involved, it 

1%.1 	-4 would be seen that for /1 -- 10 emu/gm, H = 5 k0e and 

8H/ex 2'2 103  0e/cm, the force is 500 dyne per gm of the sample. 

With about 50 mgm of the specimen placed in the inhomogeneous field, 

the total force is only 25 dyne and the balance should be sensitive 
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enough to detect at least 0.1 dyne and preferably 0.05 dyne. The 

force detector should be capable of recording this in the presence 

of a standing load of about 5-10 gm caused by the weight of the 

suspension and other ancilliary attachments. Though sensitive 

versions of torsion balances or chemical balances can be made to 

fulfil these requirements, it was decided to set up a modified 

Sucksmith ring balance equipped with a split-photocell amplifier 

device to give the desired sensitivity and accuracy. The advantages 

of simplicity, ease of operation and a quick-reading device suitable 

for measurements in varying temperatures and fields are all com-

bined in this balance, while the major problems of mechanical 

vibrations and theiJal instabilities such as drift can be overcome 

to a large extent by the use of suitable materials. 

The design requirements for the balance should also in-

clude the necessary adjustments to be made for its use at low temp-

eratures down to liquid helium and at high temperatures up to about 

1000°  K. The magnet used was a large 7" Newport electromagnet. 

Although a specially designed low-temperature cryostat and a small 

high-temperature furnace were used to keep the pole-gap to a minimum, 

it could not be reduced to less than 2" owing to heat insulation 

problems associated particularly with the high temperature,measure-

ments. Using about 20 amp current per coil, fields of the order of 

9 k0e and 6 k0e were obtained at the centre of the pole-gap and at 

the edge of the (cylindrical) pole-tips respectively. In a pre-

liminary experiment using a Hall probe, the region of maximum 

H 8H/8x was found to lie on a radius about one cm outside the edges 
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of the pole-tips and in the plane bisecting the pole-gap. The value 

of H 3H/3x was about 12 x 106  0e2/cm. 

9.5,2 The balance  

The ring was made from a -' wide and 0.006" thick phosphor-

bronze strip and supported by an adjustable hook as shown in Fig. 47. 

A circular disc of 'dural' alloy, i" thick and 14" in diameter 

formed the base plate which had its top side finely turned on a lathe. 

The support for the ring and for the lifting mechanism for the 

calibrating weight was provided by means of a brass strip, 1" wide 

and 
 t
1 ' thick, bent into a U-shape as shown in Fig.47 , and screwed 

into the base plate. The diameter of the ring was 10 cm. Two con-

cave mirrors, each of focal length 50 cm, were attached to the ring 

at M
1 
and M2 where the lines joining the mirrors to the centre of 

the ring made angles of 49°  with the horizontal - the condition for 

maximum sensitivity(91). An electromagnetically operated lever 

arrangement placed the calibrating weight (30 mgm) on the mica 

shelf P attached to the lowest point of the ring. The weight was 

kept hanging away from the balance when not in use, by means of the 

spring Q. 

The base plate was mounted on the top of a rigid dexion 

frame using foam rubber pads for the anti-vibration mounting. The 

arrangement considerably reduced- mechanical vibrations. In addition, 

the balance was provided with a system of eddy current damping by 

means of four aluminium discs which were attached to the suspension 

and held in the narrow gap of each of four small galvanometer- 
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magnets. The suspension, about 90 cm in overall length, consisted 

of three separate pieces. The top part was made of thin brass wire 

ending in a hook and this in turn supported the other two pieces 

which were quartz. By fusing the quartz tube into the shape of a 

tiny ring or hook at the end, the pieces could be easily joined 

together or dismantled. By this arrangement, any disturbance im-

parted to one end of the suspension was found to be greatly attenuated 

while travelling to the other end. It was thus possible to maintain 

the specimen holder freely in suspension inside the narrow space of 

the 1 cm diameter vacuum tube enclosing the specimen. The weight of 

the whole suspension assembly was about 4-5 gm. A glass bell-jar, 

12" in diameter and fitted with an L-shaped rubber gasket was made 

to sit under a vacuum seal on the base plate when the pump was in 

operation. All connections to the inside of the chamber were made 

through holes cut in the base plate and sealed by Edward's standard 

metal flanges, joints and o-rings. Plate 1 gives a general view of 

the balance and the optical system. 

9.3.3 The optical system 

The optical part of the balance consisted of a 4V, 8 watt 

lamp assembly and a split photo-cell amplifier device both rigidly 

mounted on either side of the balance at approximately the same 

height as the mirrors. A rectangular slit placed close to the 

focussing lens produced, after reflections at the two mirrors, a sharp 

image on the photo-cell covering an area equal to that of either half 

of the cell. This resulted in maximum sensitivity and linearity of 
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.response of the photo-cell. The principle of operation of the 

photo-cell has been. described in section 4.5.5 of part I of this 

thesis. The recording galvanometer in this case was a Cambridge 

type (L-371173), of resistance 850J/ and period 304 sec and of 

4500 mm/pA current sensitivity and 20,000-a damping resistance. 

The photo-cell used was of the selenium rectifier type (barrier 

layer), 27 mm by 40 mm and was split parallel to the shorter side. 

The damping resistance was equally distributed between the two 

halves of the photo-cell circuit as shown in Fig.47 . With an 

unregulated 4V a.c, supply to,the primary lamp and a uniform light 

intensity over the spot focussed on the photo-cell, the overall 

performance of the galvanometer amplifier was found to be quite 

satisfactory. The stability and degree of freedom from zero drift 

were further improved by covering the whole optical system in card-

board boxes with their insides painted black. The stray light from 

the room or the associated temperature fluctuations had no effect 

whatsoever on the photo-cell and the thermostatic stability of the 

balance was attained easily and quickly without any external power 

regulation. 

9.3.4 The measurement technique  

Fig. 48 shows the relationship between the net photo-

current and the displacement of the light spot across the cell; 

it exhibits linearity for the full range of the scale. However, in 

actual practice, much larger deflections had to be dealt with so as 

not to alter the sensitivity and a null method was considered 
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necessary. This can be achieved in two ways, namely, by counter-

balancing the magnetic pull on the specimen with the force exerted 

on a small current-bearing coil by a permanent magnet or, secondly, 

by moving the photo-cell unit parallel to itself until the zero of 

the reading scale is restored. While the former method incorporates 

the basic advantage of the latter, that is, it brings the light-

spot to the same position on the photo-cell each time, the sensit-

ivity of the balance is generally reduced by the connection of the 

current leads to the moving parts of the balance. If however, the 

displacement of the specimen is so small that H Wax can be made 

substantially independent of x, the second method is preferable to 

the first. With an estimated value of x of about 10-3  cm corres-

pending to a 1 mm shift of the light on the photo-cell, the con-

dition of constant H aH/ax is sufficiently maintained to justify 

the use of the second method. The photo-cell was therefore mounted 

on a metal frame which could be moved vertically upward or downward 

on a guide track, its movement being recorded by means of a micro-

meter. For convenience of zero adjustment, a transverse motion of 

the photo-cell was also provided by setting up the unit on a 

travelling stage. The device thus measured the actual shift of the 

light spot at the cell rather than the galvanometer deflection and 

no tacit assumption regarding the proportionality of the photo-

current to displacement was necessary. 

9.3.5 The sensitivity of the balance  

The smallest force detectable was about 0.08 dyne which 
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corresponded to less than 5 x 10-5 emu in magnetic moment or 10-8 cgs 

in susceptibility for a 1 gm sample in a field of 6 k0e. The 

accuracy in measurement of susceptibility was estimated to be 

1 - 1.5%. 

9.3.6 The specimen holder 

Several attempts were made to design the most suitable 

sample holder which could easily be operated within the narrow space 

available and be made of quartz or silica. The help of a competent 

glass blower was necessary to make one that was satisfactory for 

the purpose. As shown in Fig. 1+9, the lower end of the quartz 

suspension tube was first blown into a wide-necked outer tubing. 

A slot was then cut inward from the end of the quartz tube and this 

had a right angle bend as shown. A small quartz capsule measuring 

12 mm by 1.9 mm was drawn out of a larger piece and a tiny hook 

was attached to it near the open end. The capsule containing the 

sample could then be held in position by the hook entering the slot 

and a close-fitting outer case prevented the capsule from moving. 

The overall diameter of the assembly was just less than 6 mm which 

left a clearance of about 2 mm between the capsule and the inner 

wall of the vacuum enclosure. The specimen holder had a thin wall 

to give poor thermal insulation to the material under study. In 

actual experiments, the mass of the specimen used varied from 40 mgm 

to 100 mgm and this covered approximately lengths of 4 to 8 mm 

inside the capsule. 
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9.4 The magnet and the power unit  

All measurements were done using a Newport 7" electromagnet 

with a pole-gap of 2". At the maximum power of 6 kilo-watt, this 

gave a field of 6 kOe at the edge of the pole-tips and a field 

gradient of 2 x 103  0e/cm that was substantially constant over the 

length of the specimen. The magnet was mounted on a trolley running 

on rails which allowed it to be removed from the rest of the apparatus 

when placing the specimen in position. For precision location of the 

sample in the field, vertical and sideways movements of the magnet 

were also provided by including a sliding base, fitted with levelling 

screwbolts, between the magnet turntable and the trolley. The whole 

arrangement thus provided extreme flexibility in three dimensions in 

addition to the rotatory motion afforded by the turntable. 

The power unit for the magnet was designed and built by 

E. M. Wareham (Measuring Systems) Ltd. specifically to give a 

stabilized current supply, with very low ripple content, up to 

6 kilo-watt. It essentially consisted of a series of condenser 

banks and silicon controlled rectifiers (SCR) in which the stored 

energy derived from the rectified input voltage was used to deliver 

power to the load. The output current had a short term stability 

better than 2 mA (minute to minute), long term stability (hour to 

hour) better than 10 mA and a regulation of less than 0.1% for a 

10% change of either mains input voltage or load voltage. Plate 1 

gives a general view of the magnet in position. 
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9.5 Low temperature measurements 

The low temperature measurements involving the use of 

liquid helium made it necessary to set up a complete helium con-

servation system including a storage vessel, transfer syphon, cryo-

stat, low pressure gas storage, compressor and high pressure gas 

cylinders. 

9.5.2. The design of the cryostat 

The conventional helium cryostat based on a double-dewar 

design was unsuitable for use with a narrow pole gap. The most 

promising of the new designs consists of an inner dewar of which 

only the upper portion is surrounded by a liquid nitrogen jacket(92)  

The liquid helium in the lower part is shielded by a copper cylinder 

which is suspended from, and cooled by, conduction to the nitrogen 

reservoir. Thus there are only three walls separating the working 

space in the lower portion from the outside and these can be 

arranged to be close together resulting in considerable reduction 

in the size of the lower portion'. Although metal dewars enable 

further economy of space, it was decided to make a glass dewar for 

reasons of inherent simplicity, economy of construction and ease of 

disassembly for cleaning, etc. The final dewar, made of Pyrex, is 

shown in Fig. 51 . The nitrogen jacket runs down to the point at 

which the cryostat narrows, thus giving an adequate storage volume 

for the liquid. Below this level, the shielding is provided by 

the copper cylinder made from 0.012" thick sheet and rolled into 

the desired shape and size. It was important that the shield did 
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not touch any part of the inner or outer wall of the dewar when 

finally assembled. A ground flange joint in the outer glass near 

the top permitted easy demounting as well as a support for the 

assembled dewar during use. Since, however, Pyrex is somewhat 

permeable to helium gas, a side vacuum line with a tap was provided 

which enabled evacuation of the gas from time to time. An oblique 

tap was found more satisfactory as the large pressure difference 

caused by liquid helium between the inlet and outlet sides of the 

tap sometimes opened up fine leaks along the curved portion of the 

greased surfaces of the ordinary tap. For the flange joint at the 

top, Edwards high vacuum silicon grease was found satisfactory as 

this has a greater heat stability over a temperature range of -40°  C 

to 200°  Co It was however found that the close proximity of the 

flange joint to the open end of the nitrogen reservoir resulted in 

freezing of the grease due to prolonged exposure to the cold nitrogen 

vapour and also by conduction developing occasional leaks in the 

vacuum. To off-set this, a small 10 watt heater coil with a thermo-

couple regulated power supply was set up which maintained the neck 

of the dewar at a substantially uniform temperature. Plate 2 shows 

the disassembled dewar parts. The cryostat was sealed at the top 

by means of a metal cap which rested against a rubber washer over 

the flanged end of the innermost vessel and was clamped together by 

terry clips. The transfer syphon into the cryostat was introduced 

through one of the two off-centre holes made in the cap while the 

other hole was connected to the gas return pipe through a valve. 
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9,5.2 The heat loss_,: in the cryostat  

Although it is often difficult to calculate accurately the 

total heat loss in cryostats unless the physical properties of the 

various materials operating at temperatures vastly different from 

the ambient temperature are well known, a rough upper limit can 

always be quoted. The main factors contributing to the heat loss 

in the present arrangement are summarized below together with their 

estimated value in each case: 

(i) the radiation across the vacuum space - the heat transfer 

by radiation between the innermost wall at 4.2°  K and the 

adjacent wall at 77°  K is found to be equal to 

4.28 x 10-3  watt. 

(ii) the conduction down the neck of the vessel - this is 

estimated to be about 0.0133 watt (from room temperature 

to 4.2°  K), 

(iii) the conduction down the central it' german-silver tube - 

taking the average value of the thermal conductivity as 

0.18 between 300°  K and 4°  K, the corresponding heat trans-

fer is calculated to be 0.14 watt, 

(iv) the room temperature radiation entering the german-silver 

tube along the optical reflection path - assuming a 

perfect specular reflection from the inner wall of the tube, 

this loss is estimated to be 0.0408 watt. In practice, 

isolation from room temperature radiation can be effected 

by means of a bend in the tube or insertion of a small 

radiation baffle. 
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(v) conduction through the low-pressure exchange helium gas 

inside the german-silver tube or inside the cryostat - 

the total heat transfer in the latter case is calculated 

to be 0.442p watt approximately where p is the pressure 

of the gas in microns. For p = 10-6 cm of Hg, this is 

equal to 0.0044 watt. The heat loss in the former case is 

estimated at 0.026 watt for a pressure of 10 microns 

which indicates that helium can be conveniently used for 

the exchange gas without seriously impairing the thermal 

insulation, 

(vi) Joule heating in and conduction through the electrical 

leads - the total loss is estimated at 0.014 watt. 

The total heat leak to the cryostat system thus comes to 

0.243 watt which is equivalent to 208 cal/hour. If it is assumed 

that this quantity of heat is all used to evaporate the liquid, it 

would mean that 320 c.c. of liquid helium would boil off per hour 

neglecting the fact that the cold evaporating gas cools the wall 

of the german-silver tube and the vessel's exit and thereby reduces 

the heat leak. On the other hand, if there were complete heat 

exchange with the outflowing gas so that the latter had increased 

its enthalpy from 4.2°  K while gaining heat from the various sources 

described above and had finally left the vessel's exit at room temp-

erature, the liquid would have evaporated at a rate of only 4.2 c.c. 

per hour. In the actual experimental set up, test measurements showed 

that, after precooling to 4.2°  K, an initial filling of 200 c.c. of 

helium would last for about 3 - 4 hours. The heat exchanger for the 



Plate 1. Showing a general view of 
the balance, the dewar and 
the 7" electromagnet. 

Plate 2. Showing the disassembled 
parts of the helium dewar. 
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out-flowing gas consisted of a perforated copper shield, half way 

down the neck of the vessel and closely fitting the inside of the 

dewar. The empty space above the heat exchanger was filled with a 

block of foamed polysterene leaving narrow passages for the transfer 

tube and for gas collection.  

9.5.3 Access to the specimen  

The lower end of the german-silver tube (63 cm long, 

1.1 cm i,d., and 0.008" thick) was soldered to a copper end cap 

which consisted of two pieces with a truncated joint as shown in 

Plate 3. The whole unit was 7.5 cm long and 1.8 cm in o.d. and 

provided an effective thermostatic bath for the specimen. The 

pieces could be sealed together by means of vacuum grease or low 

temperature solder, e.g. Wood's metal, in which case the lead solder 

used for fixing the upper piece to the supporting tube remained 

intact. Access to the specimen was obtained by undoing the low 

temperature seal and then taking the capsule out of the specimen 

holder. 

9.5.4 The transfer syphon 

Owing to the close proximity of the balance to the cryo-

stat assembly, the transfer syphon had to be provided with a demount-

able coupling. For reasons of low cost, simplicity of construction 

and good insulation properties, it was again decided to make a glass 

transfer tube of the desired specifications. The demountable 

coupling was effected by using a standard glass B14 cone and socket 

which were made double-walled and fused to the respective main tubes 
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as shown in Fig. 50. The diameter of the shorter section of the 

syphon was made smaller than that of the other part so as to fit 

into the limited space inside the cryostat and yet offer no sub-

stantial resistance to the flow of the liquid. The co-axial tubes 

were thin walled 'Pyrex' separated from each other by insulating 

spacers of triangular shape, used sparingly along the tube. The 

differential thermal contraction between the inner and outer walls 

of the syphon was not serious and this was taken account of by allow-

ing some looseness between the spacers and the outer casing so that 

the contraction did not subject the assembly to undue stress. In 

addition to this, the tube was thoroughly annealed before silvering. 

Although the syphon was permanently sealed off after initial 

evacuation and worked perfectly well under the efficient "getter" 

action of the liquid helium, it needed re-evacuation after some 80-

100 hours of use when it tended to go 'soft' due to slow diffusion 

of the gas inside the evacuated annulus This was observed as form-

ation of cold spots at each spacer position during the transfer, 

indicating heat leaks. It was found desirable to mount the socket 

portion of the union on the low pressure side to ensure a free flow 

of helium. By sealing the exterior of the union with a rubber sleeve 

or sellotape, the enclosed gas prevented the liquid from flowing 

outward. The use of vacuum grease for the ground glass surfaces of 

the union was not helpful as the grease hardened on cooling and 

cracked causing leaks to the coupled system., 

The dimensions of the glass syphon are given in Fig. 50 . 

The tube was found to start transferring liquid in about 5-7 minutes 
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and in a typical run about 800- 	of helium would be consumed in 

precooling the cryostat and the syphon and in collecting about 

200 c.c. of liquid in the cryostatt. In cases where the liquid level 

had fallen low enough to need refilling, some helium was inevitably 

used up in this operation as the relatively warm gas, blowing out of 

the syphon tube, caused evaporation of a considerable quantity of 

helium already present in the vessel. For this reason, the transfer 

was generally carried out in one single operation after which all 

magnetic measurements were started° 

9.5.5 Level indicator 

The level indicators were of two types, (i) a rubber 

diaphragm level finder for use in the Dupree Swift Duplex storage 

vessel and (ii) a carbon resistor and thermistor for use in the cryo-

stat. 

It has been lmown for some time( 'c3)  that thermal oscilla-

tions may occur in a narrow gas filled tube which has one end at 

room temperature and the other at the temperature of liquid helium, 

A dipstick probe working on this principle was reported earlier  

and Fig. 52' shows the design of the probe used here. When the open 

end was gradually lowered into the storage vessel, oscillations 

began to occur and then decreased abruptly in intensity (about 60%) 

and frequency (about 30%) upon touching the liquid surface. The level 

was detected by feeling or watching this sudden change in the 

vibration of the diaphragm and the level could be measured to within 

1 mm with care. With a smaller diameter tube than that used here, 



Plate 3.  A view of the detached copper end-cap which 
encloses the specimen holder; the lower narrow 
tube holds the thermistor which is also shown 
in the photograph. 
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the loss of helium was found to be less but the air occasionally 

got frozen inside the tube stopping the oscillations altogether. 

With a larger diameter tube, the intense oscillations could disturb 

the level so much that no reliable indication of level was possible. 

The second device depended for its operation on the high 

(negative) temperature coefficient of resistance of a carbon resistor 

at low temperatures and also on the fact that electrical heating is 

greater when the resistor is in the helium gas than when it is in 

the liquid(95). The heating current is rather critical because 

when it is too low, the resistor does not heat up sufficiently in 

the gas and when it is too high, it heats up even when inside the 

liquid. 

Fig. 53 shows the bridge circuit used for the 4812-carbon 

resistor used here. The latter was fixed to the german-silver tube 

at the appropriate height and was thermally insulated from it. The 

bridge was balanced when the liquid filled up to that level and the 

out-of-balance current produced the deflection as soon as the 

resistor came out of the liquid. 

A highly sensitive sensing element - a thermistor with 

a greatly reduced energy gap - was later set up for level indication 

near the specimen as well as for use as a supplementary means of 

temperature measurement below 20°  K. The thermistor, supplied by 

Keystone Carbon Company, 'LS:A. was in the shape of a small disc 

0.1" in diameter and fitted with two silver leads. It had a nominal 

resistance of 11.6f/ at 90°  K rising to 2086 M-0. at 4.2°  K with a 

standard tolerance figure of about 20%. The sensitivity increased 
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nearly proportionally to 1/T
2 
and the high value of resistance at 

low temperatures eliminated the need for correction for lead resist-

ance. The large temperature coefficient together with the very low 

specific heat of the material below 20°  K permitted a temperature 

increment of only a few degrees above the environment (corresponding 

to a transition from liquid to vapour phase) to be sufficient to pro-

duce a large signal. For the purpose of temperature measurement, 

its resistance was determined by comparison with standard known 

resistances in the circuit as shown in Fig. 54. The calibration 

curve of the thermistor is given in Fig. 56 . 

Plate '3 shows the method of mounting the sensor element 

to the specimen enclosure. A perspex rod with two small holes 

drilled right along the length was used for holding the disc and for 

taking out the connections. The unit could then be supported by the 

copper head which was permanently soldered to the copper enclosure 

of the specimen. Thus good thermal contact was ensured. 

9.5.6 Temperature measurement and control 

The temperature of the sample was measured using a copper-

constantan thermocouple from room temperature down to 77°  K and a 

thermocouple of silver containing 0 37 atomic percent gold and gold 

containing 2.1 atomic percent cobalt, from 77°  K down to 4.2°  K. 

Below about 20°  K, the latter was supplemented by the thermistor 

thermometer described in the previous section, The thermo-electric 

power of the silver-gold gold-cobalt thermocouple is about 16 µV at 

20°  K decreasing linearly with temperature below that point. Since 
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the composition of the alloy is known to be far less homogeneous 

than that of the pure metals, the thermocouple was re-calibrated 

(reference junction at liquid oxygen temperature which is 90
0 
 K) 

against the copper-constantan thermocouple (reference junction 0°  C) 

over the temperature range 90°  - 77°  K and independently at the 

freezing point of nitrogen (63°  K), boiling point of liquid helium 

(4.2°  K) and finally against the semiconductor resistance thermometer 

over the range 4o2 - 10° K. By a combination of the analytical and 

graphical results, a smooth curve was finally drawn covering the 

entire range of low temperatures and which served as a satisfactory 

secondary standard for the same sets of thermocouples. The use of 

low temperature for reference improved the accuracy of measurement 

since now a much smaller voltage had to be measured within the 

desired limit than when the reference junction was at 0°  Co 

The thermojunction was soldered to the copper enclosure 

to achieve a good thermal contact with the metal surface, the temp-

erature of which was closely followed by the specimen due to its 

immediate vicinity, to the radiation effect and to conduction through 

the exchange helium gas, All electrical leads were taken out of the 

cryostat cap through holes pricked in a rubber bung which was fitted 

into a side tube and then sealed with wax. 

The measuring equipment for the thermocouples consisted 

of a Diesselhorst thermoelectric-free potentiometer (type 3589R), a 

thereto-electric free reversing switch (type 4092), an auxiliary 

compensator to cancel spurious e.m.f.'s in the circuit, built-in 

photocell galvanometer amplifier (Tinsley 5214) and a liquid oxygen 



235 

bath for the reference junction. The galvanometer amplifier increased 

the overall sensitivity by a factor of about 200 to give 3-4 cm de-

flection for a change of 1 p,V in input voltage. This actually far 

exceeded the present requirements in sensitivity as will be clear 

from the following illu7,tration. The silver-gold gold-cobalt thermo-

couple gave an e.m.f. of 2.288 mV at 4.2°  K with the reference 

junction at 9o0  K. For a sensitivity of 5% at 4.2°  K, this voltage 

needed to be measured to about 0.003 mV, that is, to a precision of 

1 part in•760. The measuring equipment was in fact capable of 

detecting 1 part in 10
4 corresponding to a sensitivity of 0.5% or 

to a change of temperature of 0.02°  K at 4.2°  K. 

It would thus appear that the best use of the sensitive 

detector was only possible when all sources of spurious e.m.f.'s and 

temperature drift were eliminated from the circuit. One source of 

error was the possible slight variation in the temperature of the 

reference junction caused by fluctuations of the vapour pressure of 

the boiling oxygen. A suitable pressure control device - the Cart-

esian manostat(96)  - was therefore set up and is shown in Fig. 55 • 

In operation, the pressure above. the liquid oxygen was set up at the 

desired control pressure by opening the tap Pc Then R was closed 

and any fluctuations, subsequently developed, was smoothed down by 

the let-off valve. With this arrangement, the oxygen temperature 

was stabilized to within 0.01°  K. Screened copper leads were used 

for the connection between the reference junction and the potentio-

meter and in the amplifier circuit while the thermocouple wires 

were carefully lagged and protected against irregular heating or 
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cooling. 

Control of temperature was mainly achieved by providing a 

suitable thermal link between the copper enclosure and the level of 

liquid as it dropped below the height of the enclosure. This con-

sisted of two 20 S.W.G. copper wires hanging from the bottom of the 

metal, so that conduction along the wires tended to keep the specimen 

chamber at the temperature of liquid helium against the heat loss 

The large thermal mass of the chamber also contributed towards a 

very slow rise of temperature. This arrangement was quite satis-

factory and hence no provision was made for a heater. The practice 

usually followed was to cool down the specimen to 4.2°  K and then to 

make measurements as the temperature gradually rose to 300°  K. In 

a typical run, the temperature would rise at a rate of 0.2°  K/min 

between 8°  - 16°  K, 0.5°  K/min between 26
o 
- 42

o 
K and about 

0 
1 K/min between 45°  - 65°  K. 

9.5.7 The helium conservation system 

The evaporating helium gas was collected by connecting 

the outlets of the storage vessel and the cryostat to the main gas 

return pipe, (Fig. 57). 	Standard ip,  Edwards diaphragm 

valves were used for the various controls. The low pressure storage 

consisted of polythene gas holders, each of 1 cubic meter capacity 

and of a concertina-like construction with heat sealed joints. 

Connection between the bags and the pipe line was made through 1" 

diameter nylon embedded P.V.C. tubings. For pumping the gas into 

the high pressure cylinders, a 'Bristol' Duplex high pressure air 
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compressor, type 308/BM4S was used. This is a 4-stage air-cooled 

compressor capable of giving an output pressure of 2000 lb/sq. in. 

(140 atmos.). Taking a simple 1 to 1000 ratio for the conversion 

of 1 litre of liquid helium into gaseous phase at N.T.P., this would 

mean that about 6 litres of the liquid could be used to fill up a 

200 cu.fte cylinder at this pressure. 

To prevent oil from the compressor getting into the cylind- 

ers, an oil-trap was inserted in the high pressure line. This had 

a pressure release valve which was operated to let the compressed 

air in the pipe flow back into the gasholder when the cylinder had 

to be disconnected. 

9.5.8 Experimental procedure at low temperature  

The first step in the use of liquid helium was to ensure 

a leak-proof vacuum system both inihe specimen chamber and in the 

cryostat. The removal of all traces of helium gas from the inside 

of the dewar was important and this was done by alternate evacuation 

and admission of air. Before syphoning in liquid helium, the cryo-

stat was precooled by filling the outer jacket with liquid nitrogen. 

Some nitrogen was also poured into the helium space to speed up the 

rate of cooling. Since however, it was neither easy nor convenient 

to remove the excess liquid from the narrow portion of the dewar 

after precooling, only a small quantity of nitrogen was used, the 

size of which was soon determined by experience. The precooling 

operation usually took two to three hours. The transfer syphon was 

then gently introduced inside the cryostat and the storage vessel. 



239 

The two pieces of the syphon were now joined together and all leaks 

sealed off carefully. With the outlet valve of the storage vessel 

shut, an overpressure was immediately built up inside and this 

forced the liquid through the syphon into the cryostat and a large 

volume of cold gas began to appear. On a few occasions, the trans-

fer tube was choked by ice but this happened only when the system 

cooled down before all traces of air or nitrogen could be replaced 

by the helium gas. At the outset, the football bladder, which was 

used to provide the overpressure, was inflated hard and a gentle 

touch on it was sufficient to increase the transfer rate of the 

liquid. When the transfer was too fast, this was regulated by 

opening the outlet valve of the storage vessel. The initial 

syphoning was done rather slowly in order to ensure that the cold 

gas had sufficient time to cool the contents of the cryostat before 

being driven out. This was checked by the observation that no ice 

was formed on the cryostat head or the gas return tube. As soon 

as the temperature reached 4.2°  K, liquid began to collect in the 

bottom of the. dewar and this was accompanied by a drop in the 

pressure. The bladder was then squeezed to increase the rate of 

flow. The transfer was preferably completed in one operation as a 

refilling at a later stage always involved evaporation of a con-

siderable portion of the liquid already present in the vessel. In 

a typical run, it took about 10 minutes to cool the syphon before 

liquid began to collect in the dewar. After the transfer was com-

pleted, the syphon was left attached to the cryostat until all 

measurements were finished. The practice of keeping a continuous 
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watch on the readings of temperature indicators was a great help 

while the transfer operation was being carried out. 

A small quantity of helium gas, of about 5 - 10 micron 

pressure was introduced in the balance chamber to provide a better 

thermal link with the specimen. The exchange gas did not interfere 

with the normal functioning of the cryogenic system. The suscept- 

ibility measurements were not started until preliminary tests had 

revealed that the specimen had reached the helium temperature. 

Some difficulties were experienced in making good soft soldered 

joints between the two copper surfaces of the end cap enclosing 

the specimen. Due to unequal strains set up on cooling, leaks were 

sometimes opened up when the system was tested in liquid nitrogen. 

However, by fresh attempts with properly tinned surfaces a satis- 

factory result was obtained. Since oxygen is strongly paramagnetic, 

it was necessary to ensure that the specimen chamber was free from 

leaks and the exchange helium gas had effectively replaced the air 

of the chamber. 

The various samples investigated were all cooled down to 

liquid helium temperature in the zero magnetic field and the 

measurements were taken both as functions of field and temperature. 

In cases where the samples became ferrimagnetic at low temperatures, 

e.g. Cd0.4Mn20504, a small hysteresis was found to be present and 

accordingly the specimens were demagnetized before making measure- 

ments in the presence of the field. The balance was calibrated 

only at room temperature using standard materials, e.g.FeN114(304)e  '121120, 
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and for various magnetic fields. Diamagnetic correction for the 

sample holder was applied, wherever necessary, in the calculation 

of the susceptibility. Since the thermistor showed some magneto-

resistance effects in the measuring field the latter was switched 

off before making any temperature measurements. 

9.6 High temperature measurements  

Measurements at high temperatures were carried out using 

a specially designed water-cooled furnace which is shown in Fig. 58 . 

A long silica tube, 0.62" o.d. and 31" in length, provided the core 

of the furnace and also acted as the vacuum enclosure for the 

specimen. The lower end of the tube was wound with the heater coil, 

which lay between two layers of alumina paste and the unit was com-

pletely detachable from the rest of the furnace. The heating 

element extended over 7" giving a hot zone length of about 3" 

inside the tube. Twin bore alumina tubes were embedded in the paste 

and these served to carry the electrical leads. The whole assembly 

could be easily introduced into another silica tube, 0.99" i.d. 

and 11" long. The latter was permanently fixed in mica-fil 

(vermiculite) to give a surrounding insulation, 5/16" thick, con-

tained in a brass cylinder, 1.86" i.d. and 12" long. Two syndano 

spacers were used for holding the sheath centrally. The furnace 

was water cooled by making the metal case doubly jacketed. This had 

a wider cylindrical top and a narrower bottom with the water pipes 

running along two opposite ends so as to enable the lower portion 

to get into the 2" pole gap of the magnet. All metal joints were 
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silver soldered which had to be done by a careful process of 

selection and controlled heating. 

For the high temperature measurements, the german-silver 

tube was replaced by the silica tube and was sealed at the top by 

an 0-ring pressure seal. The rest of the furnace could then be 

quickly assembled by sliding the metal case from underneath and 

closing the gap between the two silica tubes with glass wool or 

other heat insulating material. The support to the furnace was pro-

vided by an adjustable clamp the holder of which was screwed into 

the table. The temperature was measured with a Chromel-Alumel thermo-

couple, the thermojunction being fixed right inside the core of the 

heating element. A preliminary magnetic measurement using pure 

nickel had indicated that the thermocouple was recording the correct 

temperature of the specimen in spite of being located outside the 

tube. In actual measurements, sufficient time was allowed (20 

30 min) for the sample to attain temperature stability after each 

new setting of the furnace current. 

Tests carried out with this furnace showed that a temp-

erature of 1000°  K could be attained by only 450 watt power and that 

with a water flow rate of 1 litre/Min the outside temperature was 

within 30°  C at this power dissipation. The balance section, however, 

had to be shielded from the heat radiation from below and this was 

done by setting up a radiation baffle as shown in Fig. 47. It con-

sisted of two parallel discs of copper and aluminium, each of 10" 

diameter, and spaced about 1 cm apart. The copper disc at the top 

helped in stabilizing the temperature of the ring and thus improved 
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the zero stability of the balance. 

9.7 Differential thermal analysis (D.T.A.)  

The method is based on the detection of the heat evolved 

or absorbed when a material, on being heated or cooled, undergoes 

physical or chemical changes involving changes in specific heat(97) 

A temperature difference AT is thus established between the material 

under test and an inert reference substance, both of which are 

heated or cooled side by side at uniform rate. Two thermocouple 

systems are usually employed to determine the temperature difference 

as well as the actual temperature of the inert sample (pig. 59 a). 

Exothermic and endothermic reactions of the test sample are thus 

observed and recorded as series of peaks and valleys in the con-

tinuous plot of 4T against To 

The experimental arrangements for carrying out such tests 

at high and low temperatures are shown in Figs. 59band59 . As the 

primary task in the analysis was to provide supplementary evidence 

to the results of the susceptibility measurements on some materials, 

the present D.T.A. investigations were made on a much simpler scale. 

Basically the equipment consisted of a sample container with two 

adjacent cells, a heating or cooling block, a suitable d.co amplifier, 

temperature measuring equipment and an X-Y recorder. The furnace 

should be preferably programme controlled to give a uniform heating 

rate. 
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CHAPTER X 

CONCLUSIONS  

PART I 

The objective at the commencement of the project was to 

investigate the field dependence of the magnetoresistance of the 

ferromagnetic materials and to determine what the influence the 

geometry of the specimen has on the magnetoresistivity, especially 

at low fields. To obtain a clearer insight into the problem, a 

detailed theoretical analysis was carried out which led to the 

derivations of sixth-rank tensor expressions for the saturation 

magnetoresistivity of cubic and hexagonal materials, for both 

single crystals and polycrystals, together with their inter-relation-

ships in the two cases. This material is presented in Chapters II 

and III. The measurements were performed on rod-shaped specimens 

of Ni, Fe, Co and Gd, using static fields of up to 21,500 Oe and a 

liquid bath of para-Xylene which was cooled by a continuous stream 

of ice-cold water (an arrangement which provided a temperature 

constant to within 0.005°  C)0 A pair of Helmholtz-type a.c0 de-

magnetizing coils were used to demagnetize the specimenccompletely. 

The various points discussed in section 1.3 about the care needed to 

provide an unambiguous description of the magnetoresistive behaviour 

were fully taken into account in interpreting the experimental 

results. 

It was discovered that the usually accepted practice of 
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representing the polycrystalline magnetoresistance of cubic materials 

by an expression of the form P Qcos
2x was reasonably accurate for 

nickel but not for iron. In the latter case, a further term of the 

form Rcos4x, gave a much better fit with the experimental data when 

Fourier analysis of the latter is used. The coefficient R was 

found to be about one-sixth of Q in magnitude for iron. In both 

cases, however, the simple two-constant (kl  and k2) equation of 

magnetoresistivity gave poor, or only approximate, agreement with 

the polycrystalline values at saturation (Table 4).. On the other 

hand, the experimental values of Q, for both iron and nickel, gave 

better agreement with those derived from the single-crystal satur-

ation constants than hitherto obtained (Table 5). The values of the 

constants for iron were taken from previously published data while 

for nickel original measurements were made which, incidentally, 

provided an excellent opportunity to study the forced magneto-

resistance effect. 

The single crystal, in the form of a rectangular bar, was 

cut along the ‹.211;>axis with the two adjacent side faces lying in 

the -.1111 and 5L110). planes. Measurements of the magnetoresistivity 

in these two planes and also in the 211 
j 
 plane at right angles to 

the axis of the specimen gave three sets of data which were just 

sufficient to evaluate the five saturation magnetoresistive constants 

of nickel (equation 6.16). The new values of the constants are 

lower than those previously obtained (Table 6) and give excellent 

agreement for Q, when compared with the polycrystalline measurement 

carried out in the present investigation. 
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The other aspect of the investigation of cubic materials 

was the 'forced' magnetoresistance, which is analogous to the iso-

tropic linear effect in volume magnetostriction. Both are caused 

by a field-induced increase in the spontaneous domain magnetization. 

The forced magnetoresistance in iron, unlike that in nickel, was 

found to be influenced slightly by the orientation of the field 

relative to the specimen axis. However, in view of the high demag-

netizing field associated with the transverse magnetization in iron, 

it was considered likely that the anisotropy arose because the 

specimen did not exhibit true saturation within the range of the 

fields studied. It proved possible, in the case of nickel, to 

correlate theoretically the forced magnetoresistance with the forced 

magnetization and with the variation of resistivity with the 

spontaneous magnetization. The final expression, so developed, 

contains the Weiss molecular field coefficient, q, (equation 6.25) 

and the substitution of the appropriate experimental data in that 

equation yields the value q = 17,200. This compares favourably 

with the figure of 18,500 obtained from the Curie temperature and 

by taking J = 2 _1(60)  

In all measurements on the rod-shaped specimens, the 

demagnetizing field was found to influence the magnetoresistive 

behaviour considerably. Extrapolation of the results to zero 

internal field (so as to correspond to the same magnetic state at 

saturation) was accomplished by considering the case of uniform 

magnetization for all orientations of the specimen axis relative to 

the field. 
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In the measurements on hexagonal materials, (L) and 

were found to have the same sign even when these values were 

extrapolated to the zero effective field. In cobalt, the magneto-

resistance was found to be positive over the entire range of the 

field irrespective of the angle of orientation of the specimen axis 

relative to the field. For gadolinium, the ferromagnetic anisotropy, 

(6p it - 4ol.)/p,was shown to have a negative value - an important 

result of the present investigation. Similar behaviour was reported 

by Bates(18) in his measurements of magnetoresistance of cast alnico, 

but for a different reason. In the present case, the resistivity 

anomaly is considered to be associated mainly with the exchange inter-

action between the conduction electrons and the unpaired electrons 

localized in the 4f shell. The extra resistance arising from the 

spin-disorder scattering is therefore affected by an external field, 

particularly near the Curie temperature, but above it, the resist-

ivity should remain temperature-independent. As the Curie point 

of gadolinium is 289°  K and the present investigation was carried 

out at 273°  K, a longitudinal field can be imagined to induce a 

greater ordering of the spins than a transverse one. 

Finally, the dependence of magnetoresistivity of gadolinium 

on field (H) at 273°  K was shown to correspond more nearly to H
2/3 

than to H. This is in good agreement with the Belov's theory(100) 

which predicts a similar H
2/3 

variation in magnetostriction near 

the Curie temperature. In this respect, and in relation to the 

earlier finding of an H2 variation at high temperature(21), the 

magnetoresistivity of gadolinium follows the corresponding magneto- 
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striation behaviour very closely. 

PART II  

The experimental results together with the relevant graphs 

and discussions relating to this part of the thesis are given in the 

two attached reprints on LiFe02 
 and CdxMn3-04 (referred to as 

Appendix Mend IV respectively). The diagrams, contained therein, 

have not been reproduced in the thesis, the bulk of which has 

thereby been reduced. The results on Cd
x
M
n3-x04 

are, however,further 

discussed here in order to bring out the main aspects of the present 

investigation. 

As mentioned in sections 7.1 and 7.2,the magnetic measure- 

ments on Mn304  support the Y.K. configurations at 0°  K. According 

to the helical spin theory(4°), a tetragonally distorted cubic spinel 

can have the triangular arrangement but the stability exists only 

for a limited range of the ratio of BB to AB interactions. The 

Y.K. angle on the B site is given by the expression sin 'f = 1/ 112(m0413), 

where MA  -iNpBgSA  and MB  = NI/BgSB  (taking the 'spin-only' values 

for the moments and assuming g to be constant). Thus, if an applied 

field large compared with the anisotropy field of the crystal can 

alter the canting angle T , a linear increase is to be expected in 

the net magnetization (given by the expression gSA(1 - 1/1(321) ) with 

field. Such a high-field differential susceptibility was observed 

by Jacobs(38) n Mn
3
04 at low temperatures and in pulsed fields of 

up to 140 k0e, but not in Fe304. This is generally taken as 

evidence for the triangular model. In the case of Fe304, the Neel 
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collinear spin arrangement is believed to be the stable state at 

o K. Another fact lending support to the Y.K. configuration is 

that the saturation moment of Mn304  is found to be 1.56 µB  per 

molecule(38) whereas a simple antiparallel alignment of moments on 

1 the A and B sites would lead to a value of 15 - 2x4\= 3µB  per 

molecules It is therefore concluded that the B site moments must 

be divided to give this reduced magnetization. 

The gradual replacements of the lin
2+ ions on the A sites 

by the non-magnetic divalent ions, Zn
2+

, Mg
2+ 

or Cd
2+

, has the 

effect of weakening the AB interaction compared with the BB inter-

action. If it is assumed that the Y.K. state still minimizes the 

energy, then the above process will result in a decrease in the B 

site angle and a lowering of both the A site moment and the net 

magnetization. It is suggested here that the highest transition 

temperature corresponds to the antiferromagnetic ordering on the B 

sites with the A sites remaining paramagnetic. However, as is seen 

from Fig. 2a of Appendix IV , the if 	vs. T curves do not show 

minima at the Neel point but decrease rapidly with decrease in 

temperature. This effect may be explained by taking into account 

the presence of Mn
2+ 

ions on the A sites. In fact, these ions are 

very much diluted when x tends to 1 and they are assumed to remain 

paramagnetic down to the lowest transition temperature, that is, the 

ferrimagnetic Curie point. The paramagnetic contribution to the 

susceptibility increases in importance as the concentration of the 

magnetic ions on the A sites increases and there is some evidence 

for this in the results. 
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If the above ideas are correct, then it should be possible 

to express the susceptibility at high temperatures by an equation 

of the form 

C 
T + ± T 

where C and C' are the Curie constants for the Mn'' and Mn ions 

respectively and 0 is the asymptotic Curie temperature for the Mn 

ions only. Moreover, C and 9 should not vary significantly as the 

value of x is decreased from 1. In Fig. 60 , the inverse suscept- 

ibility given by the above equation has been plotted as a function of 

T together with some of the experiWntal points taken from Fig. 2t 

in Appendix IV and using the following values for the constants in 

cgs units; C = 193.4 x 10-4; C' = 45 x 10-4. 22 x 10-4, 9 x 10
-4 

and zero for the cases x = 0.4, 0.6, 0.8 and 1.0 respectively. The 

Values of C and 0 are obtained from ete ex=perimental curve for 

x = 1, over the temperature range 200 - 600°  K, where the Curie- 

Weiss law is found to be strictly observed. The deviation of the 

experimental points from linearity at very high temperatures 

suggests the possible onset of crystallographic phase transformations 

and it may therefore be ignored in the present discussion. 

The temperature-independent antiferromagnetic susceptibility 

below the Neel point was considered by Sinha and Sinha(98) for the 

case of tetragonalized spinels having only diamagnetic cations on 

the A sites. Their conclusion was that if the exchange interaction 

in the (001) plane is stronger than that in the (010) plane, the 

molar susceptibility below the Neel point can be written in the 

formX.14  = 0.3752 x z(J
12 

k 
J13

) ' where J
12 

 and J13  denote the BB 
+  
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interactions between cations which lie in the (001) and (010) planes 

and where z = 2 for such a model,- Also, the asymptotic Curie temp-

erature is given as 

e - 
2S(S + 1)  z(J12  + 2 

J13)  

3 	• 

Assuming that the above two equations are correct, an estimate of 

J12  and J13  may be made from the present experimental data. Thus, 

if -AM  - 46,5 x 10
-4 and 0 = 470°  K then 

J12
/k = - 22°  K ; 	J

13
/k = 18°  K. 

These values for CdMn204  may be compared with those obtained by 

Blasse(99) (J12/k = - 42°  K and J13 
 /k = - 5°  K) from his measure-

ments on ZnMn204  and by Rosenberg and Nicolae(57) from their 

measurements on Cd0.en2.?04. Both investigators used the expressions 

for ji,m  and 0 given above in their calculations. Blasse, however, 

considered his value of 0 to be not very accurate because a Curie-

Weiss law behaviour was found only at very high temperatures. 

Rosenberg and Nicolae's data of J, on the other hand, contradict 

Sinha and Sinha's assumptions. On the basis of the present values 

of the two interactions, it seems unlikely that the model of a 

one-dimensional antiferromagnet such as the Ising linear-chain con-

sidered by Blasse, will correctly represent the magnetic structure. 

With C = 193.4 x 10-4, the magnetic moment of the Mn3+ 

ion is found to be 4.71 µB  as against the calculated value of 

4.90 µB, assuming a 'spin-only' moment. Using the constants for 

the case x = 0.4, the Mn
2+ 

moment is obtained as 3.84 µB  which is 

also somewhat lower than the calculated value of 5.92 µB. The lower-

ing of the Curie constants (also observed by Blasse in the system 



255 

ZnMn
x
Fe
2-
0
4
) may be ascribed to various causes, such as (a) the 

clustering of the Mn3+  ions as a result of increasing isolation 

imposed by the diamagnetic matrix of the Cd ions, (b) the temperature 

variation of the molecular field coefficients, (c) the non-quenching 

of the orbital moment of the magnetic ions, and so one However, in 

view of the complexity of the problem, no attempt will be made at 

further discussion 

A physical picture of the temperature-independent suscept-

ibility has been outlined in Appendix IV. It may be suggested that, 

provided there are few magnetic ions on the A sites, the paramagnetic-

like susceptibility behaviour of CdMn204 below the second transition 

can be explained, at least partly, by the presence of these ions. 

This is, however, considered to be unlikely, and an alternative 

explanation has been given in terms of the appearance of a canted 

spin structure. A more extended study of CdMn204  may be necessary 

fully to confirm this point. 

Finally, it may be pointed out that the Yafet-Kittel 

triangular model has been shown to be a stable state at 0°  K for a 

tetragonalized spinel only for a limited range of the ratio of BB 

to AB interactions(4C 	Above this range, the spin ordering trans-

forms to an antiferromagnetic spiral, which in turn soon destabilizes 

to pass on to a far more complex system as the BB interaction'con-

tinues to dominate. Whilst the existence of a helical or spiral 

spin model does not impair the validity of the above discussions, 

the complexity of the spin structure may, perhaps, account for some 

of the discrepancies obse,nred between the theory and the results 

presented here. 
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APPENDIX I 

Derivationsof the expressions for mcgnetoresistivity in the 

(111), (01-.1) and 0211) planes which are used to evaluate the five 

saturation magnetoresistance constants of nickel:- 

The direction cosines al, a2, a3  and pl, (32, (33  respectively of the 

magnetization vector, 0Q, and of the direction of current i used 

for measuring the resistance, OP, relative to the crystallographic 

axes, x, Y Z'1 are given by Fig. 61a , 

P1 = sin 0. cos 0 , 

C32 =" sin 0. sin 0 , 

{33  = cos 0 , 

a, = cos 7) . sin 0 . cos 0 + sin 7) (cos 0. cos o. cosy 4- sin o. siny), 

a2  = cos n . sin 0 . sin 0 + sin 7) (cos 0. sin 0. cos - cos 0. sinT), 

a3  = cos 7) . cos 0 - sin r) . sin 0 . cosy-1 	(I -1) 

Equation (1.-1) in conjunction with (3.42) gives a general expression 

for the magnetoresistance in any direction of a cubic crystal for 

which the easy directions of magnetization are the ternary axes. 

k1 ° k
5 
are the five saturation magnetoresistance constants to 

be evaluated. The general expression is now applied to the three 

specific cases: 

(a) In this case,4-211) is the measuring direction and the magnet-

ization vector is contained in the (111) plane. Hence Y is fixed 

and is given by Fig .6.1 b 

cos =12 • 5  , 2 sin 1,1) = -5- 
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Fi7. 	. Schematic diagrams illustrating the various:angles 
occuring in Appendix I 

r. 

,.. Diagram illustrating the calculation of the 
demagnetizing field.of a rectangular bar -,for uniform 
magnetization. 



Also 

sin 0 = 	; 
1 cos 	= 4-6. , 
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2 ,1 cos es = 	= _ \J5  ; 	0 	cos 

Substitution of these values in equation (I -1) gives 

= -  
2 al  = 	cos 	, 

132 	; 	a2 = 	(13 sin 1  4- cos 70 

P3  = 46 	 3 = 4-26; (cos II  _ 41 3  sin n) , (I -2) 

where 71 is the angle between the magnetization vector and the 

direction of measurement. Combining now the relations (I -2) and 

(3.42) and arranging in terms of cos21 and cos4-0, the saturation 

magnetoresistance is given by 

1  
p 	- (-6 k2 r2 k3)  

1 	
1 4 18 

1 
+ (-6 1  + -3- k2  + -9- k. + 	k5) cos2t) 

A I  + t-37: k4  + 	k5) casco-) 	(I -3) 

= Al + B1 
cos 21 + 1  cos 4T) , 	(I'.-4) 

where the values of the coefficients Al, B1, C1  are given by the 

expressions within the corresponding brackets. 

(b) The direction of measurement is again (211> but the magnet-

ization vector now lies in the (Oil) plane. The value of 4)  is now 

given by 

cos 141  = 	; 

 

sin 

 

The p's are the same as before but the a's now take the values 

1 
a1  = 	

(sin - V2 cos 0, 
43 
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, sin n a2  = a3  = 43- sin n 4-- xjf  cos n) , 	(1 —5) 

Introducing these values in the expression (3.42) and arranging 

in the form of sine and cosine terms, the saturation magneto-

resistance is given by 

La ( „ _ 1 	1 	11 	1 
P 	\12 "2 + 12 kl - 7 k3 4.  32 k4 + 7 k5) 

1 	x 5 + cos 21) (-ff  kl  4. 5 -j...7  k2  - -21  --4- k3  + T2- k4  + ,-., 1 ; k5) 

+ cos 4n (i k3 .4g  k4  ---." k5) 
2 	2 	2 x 5 2 . ▪ sin 211 ( -- k1  -g- k2 12  k3 - 	K4  + 	k5) 

2 x 2 	2 
4. sin 4n ( 24 k3 'fa k4 	k5)  

= A
2  + B2 cos 2t 	02  cos 4n + D2  sin 27) E2  sin 4n 

(I -6b) 

cosB
2
s 	

C2 
= A2 + 	cos (2n 	

cos 
- e) + 	, cos (4.9 -A), (1 -7) 

where 
B2 cos 6 - ; 

(B2

2 
 + D2) 

C 
cos A- 	2  - 2  

(C
2 4. E2) 

and the coefficients, A2, B?, G2, D2, E2, are given by the expressions 

within the corresponding brackets. As before -0 is the angle between 

the magnetization vector and the direction of measurement. 

(c) As before, the direction of measurement is fixed in the <211> 

direction but the magnetization vector now lies always in the (11) 

plane. Since the latter is always perpendicular to the former, 

n = 900  and so if 0 is the angle the magnetization vector makes 

with the (111> direction (Fig.61b) , then 

(I -6a) 
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cos 	= 	sin e - g cos e , 

2 
sinT = N 51- sin e+A cos e . 

are the same as before but the values of a's are given by 

al  = T13- cos 0 

a2  = T-2- sin 0 + 1  cos 0 , 

1 4., u n a3=-42 sa.11 	+
3  
— cos 0 , (I -8) 

and also, agi  + ag2  + a3P3  = 0 . 	(I.-9) 

Substitution of the relations (1 -8) and (1 -9) in equation (3.42) 
gives 

p  

p 
1 1, 	1 if 	11 x 	7 1, 	1 1, ) 

- 12 -1 - 7 -2 - 7 
k
3 - 7 -4 - -5' 

	

1 1, 	1 x 	1 	1 

	

+ cos 20 ( s+  12 -1 - 12 -2 + 7 k3 	k4 	k5) 

cos 4e
32 
 k 	 5 + 	4 144 k5)  

(I.-10a) 

= A3  + B3  cos 20 + C3  cos 4 e , 	(1 -10b) 

where the constants A3, B3, 03  are given by the expressions inside 

the corresponding brackets. It is to be noted that the cases 

0 = 90((011> direction) and 0 = 0(<111> direction) correspond to 

= 90°  in the first and second positions of the crystal respect-

ively. 

The P I S 
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APPENDIX II  

The demagnetizing factor of a uniformly magnetized iso-

tropic medium in the shape of an infinitely long bar of rectangular 

cross-section:- 

If a ferromagnetic body of irregular shape is brought 

into a uniform applied field, H , the magnetising force, Hi, inside 

the material, differs in magnitude from the applied field and varies 

in direction throughout the body in an unknown manner. For a 

uniformly magnetized body, the relation is given by 

H. = H - NI , 	 (II-1) 

where the demagnetizing field, NI, is assumed proportional to the 

intensity of magnetization I and is co-directional with Hi  and H. 

Except in the special case where the specimen is magnetized to 

saturation in very strong fields, uniformity of magnetization is 

possible only for homogeneous, isotropic bodies whose surfaces are 

of the second degree, although Hi  and I are not necessarily in the 

same direction as H. 

Inside any ellipsoid, the field Hd  due to magnetization 

alone (putting H = 0 in (II-1) ) is co-directional with I for 

magnetization along the three principal axes; taking these com-

ponents as
x 
 , I 

y  , Tz  along the co-ordinate axes x, y, z, the com-

ponents of the demagnetizing field due to magnetization I are 

therefore NxIx, NyIy' NzIz respectively where Nx, Ny' 
N
z 
are the 

corresponding demagnetizing coefficients of the ellipsoid and are 
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determined by the ratios of the principal axes. It is thus clear 

that except for the sphere, the resultant field Hi  due to magnetiz-

ation alone will not be co-directional with the intensity I. Using 

the demagnetizing factor, defined as D = N/4it, the relations among 

the three components are 

N 	N 	N = 4 	or 

D

x 	y 	z 	1c, 	 (II-2a) 

-1-D =l. x y z 

	

	 (II-2b) 

1 For a sphere, Dx  = Dy  = Dz  = 71 for an infinitely long bar or 

cylinder, D = D = -, Dz = 0, whilst for an infinitely long flat Dx y 
plate magnetized perpendicular to its surface, Dx = DY 

 = 0, Dz = 1. 

It has been shown (see, for example, Jeffreys and Jeffreys
(78)

) 

that the potential of a magnetized body at any external point, in 

general, is given by the equation 

T D (1) T a (1, 	a 	1.  
U = crt"-x ax 'T' 	-y ay '7' 	iz  -67 (7)i  dxdydz , 

(II-3) 

where Ix, Iy, Iz  are the components of magnetization I at the point 

x,y,z of the magnetized body. For a uniformly magnetized body, the 

magnetization is solenoidal and (II-3) reduces, by the familiar 

volume-to-surface integral transformation, to the form 

I cos 0 U = 	 dS , (II-4) 

where e is the angle between the direction of magnetization and the 

outward-drawn normal to the element dS of the surface. If the 

magnetization of the body is not uniform, the potential is then given 

by a distribution of magnetic charges throughout the interior of 

volume-density p together with a distribution over the surface of 
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surface-density as expressed in the following relation 

U= 	2- dr + 	
J 
 r dS a 	(II-5) 

When the point P 	n , 5) at which the potential is 

being calculated, is outside the region of integration and provided 

that the integrand has at all points of the region and for all values 

of say, 	a differential coefficient with respect to 	which is 

a uniformly continuous function of 	throughout the region, it can 

be shown that the differential coefficient of the integral is the 

same as the integral of the differential coefficient. 

At interior points, however, the integral expressions are 

generally improper since the factors l/rk become infinite within the 

region of integration. The integral is convergent for k 4.. 3, di-

vergent for k > 3 and may be divergent, semi-convergent or convergent 

for k = 3. Differentiation under the integral sign is permissible 

only when the integrals both before and after differentiation are 

convergent. 

By considering a small spherical cavity of surface S2, 

surrounding the point P inside a magnetized body of(outside)bounding 

surface S
1, the potential at this point may be written as 

U = U
1 
+ U2 , 
	 (II-6) 

where 

U
1 
= 	dS and U2 = 

.S's
1 	2 

U2  = 
5 	

C rai.r sin U do  
r 

''2 

dS 

But 
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f:
2 

k r dO do , 	 (II-7) 

where o is the azimuthal angle. 

Thus U2 
vanishes as r--> O. This result is true even if 

the surface S2 
is not spherical and so the only contribution is 

from S1 
i.e. from U 

In the case of a uniformly magnetized bar, magnetized 

along the x direction perpendicular to its axis (Fig.62), the field 

at the point P (f7L Th -5) due to pole densities of + 6 on the faces 

x = + a, 	4:.74  b, is then given by 

=  4
b (+Q0 

7R7 (r-l)  dY 
dz 

o _00 

remembering that ax (7) _ _2_ 	This gives 

= 26 c_tan 	a  -1 b -  

The average demagnetizing field over the interior of the body is 

obtained as 
2 b a 

)av 	ab - 	F s.  dr) d 
o Jo "C 

By solving this integral, it may be shown that 

(II-9) 

- tan-1 a  (II-8) 

i>av  = 11  2b2 	In (1 + p2) + p tan-1  -I; } ab 	P 
1  

_ a
2 
In (1 + 2--2  ) - 12  2 	In (1 + p2) 

P 

2 
= 26 4 tan-1 21+ 2p In p + 

,
±"=-2— ln (1 + p2)1, 

(II-10a) 

= 4n Dc , 	 (II-10b) 

L 
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where p = a — and D = demagnetizing factor. This gives the expression 

(5.4) appearing on pcge 123. Since Dz = 0 for an infinitely long 

1 bar, the values of D for p = pl  and for p = — add to unity in the 
P1 

above expression. For any arbitrary direction of magnetization, 

a
x 
=6 sin 0 cos 0 

5 = 6 sin 0 sin 0 

z = c cos 0 

and if D
z = 0, the demagnetizing 	field is given by 

Hd = 4n \( D
2 
 a x2  + D 

2 
 d 

2 
x  

= 4n 6 sin 0 Dx
2 

- (2Dx 1) sing 0 2 

and this makes an angle T with the x direction where 
D 

- tan W --Z tan 0 = tan o (71611- - 1) Dx 
since 	D 	D = 1 . x y 

(II-11) 



APPENDIX III 

J. Phys. Chem. Solids Pergamon Press 1965. Vol. 26, pp. 1555-1560. Printed in Great Britain. 

THE MAGNETIC SUSCEPTIBILITIES OF LiFeO2 
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Abstract—The temperature and field dependence of susceptibility for a, p and y phases of LiFeO2 
have been measured. Transition temperatures are observed at 42°K for a and p and at 295°K for y 
phases, which are identified as Neel temperatures. The temperature dependence of .susceptibility 
curves show departures from Curie—Weiss behaviour for each phase. This is explained in terms of 
short-range ordering of Fe and Li ions in the cases of a and The y structure is ordered and the 
Weiss molecular field theory is applied to it, using a 16-sublattice model. The results of the calculation 
illustrate the limitations of the Weiss model in this structure. 

INTRODUCTION 
FOLLOWING an earlier investigation, by ANDERSON 
and SCHIEBER,(1) into the morphology of LiFeO2, 
magnetic susceptibilities have now been measured, 
in the range 4-1000°K for the three crystallo-
graphic phases a, f3 and y. 

The a form is a rock-salt structure whilst /3 is a 
body-centred tetragonal structure, both with dis-
ordered metal ions. These show antiferromagnetic 
behaviour at low temperatures both with transitions 
at 42°K. The y structure is ordered and has a 
transition temperature at 295°K + 5°K. In each 
case there are deviations from the 'normal' type 
of susceptibility. The limitations of the Weiss 
molecular field theory in respect of the y-phase 
structure are pointed out. 

APPARATUS AND SAMPLES 
The samples were powdered single-crystals, 

grown from a flux as described by ANDERSON and 
ScHIEBER.(2) Heat treatments were carried out to 
produce the three phases as described in ref. (1), 
the same samples being used as were the subject of 
the X-ray investigation. 

Measurements were made on a Sucksmith ring 
balance, in conjunction with a split-photocell 
amplifier device, detecting a minimum magnetic 
moment of 10-4  e.m.u. corresponding to a sus-
ceptibility of 10-8  c.g.s. for a 1 gm sample in a 
field of 6 K Oe. A 7 in. electromagnet provided 
fields up to 6 kG across a 2 in. gap. Calibration of  

the balance was carried out using six different 
materials for which accurate susceptibility values 
were available in the literature. 

Temperature measurement in the range 
4.2-300°K was provided by means of a gold-
cobalt/gold-silver thermocouple, using liquid oxy-
gen as the reference point. Above 300°K a 
Chromel-Alumel thermocouple was used. Esti-
mated accuracy of temperature measurement was 
±0.25°K in the range 20-60°K and ±0.1°K 
elsewhere. Accuracy in measurement of suscepti-
bility was estimated at 1-1.5%. 

RESULTS 
In Figs. 1, 2 and 3 are given the field-dependence 

of magnetization curves, for the three phases, over 
a range of temperatures. Extrapolation of these 
reveal, for each phase, a remanent moment ao at 
absolute zero, so that the magnetization may be 
represented by a = ao H. At room temperature 
the values of ao are 0.542 e.m.u./gm for a, 0.615 
e.m.u./gm for 13 and 0.484 e.m.u./gm for y. 

From Fig. 3 the temperature-dependence of ao 
for the y-phase has been deduced and is plotted 
in Fig. 4, from which it is seen that ao falls to zero 
at 960°K. This result strongly suggests that the 
remanent moment is due to a ferromagnetic im-
purity having a Curie temperature of the order of 
960°K. The possible ferromagnetic impurities are 
Fe304  or LiFe508. These have Curie temperatures 
of 585°C and 670°C respectively, so that LiFe508  
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is the most probable of the two. The remanent 
moment of 0484 e.m.u./gm in y would be 
accounted for by approximately 1% of LiFe5O8, 
which would not be observed by X-ray analysis. 

It is assumed that this type of impurity is present 
in all the samples despite the apparently higher 
Curie temperature observed for ao. On this basis, 
curves of reciprocal susceptibility as a function 

Flo. 1. Magnetization, e, as a function of field and temperature 
for oc-LiFe02 

05 10 15 20 25 30 35 40 45 50 55 60 
(H) FIELD IN KILO-OERSTEDS 

no. 2. Magnetization, a, as a function of field and temperature 
for ft-Lin:02. 
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temperature have been deduced from Figs. 1, 2 
and 3 with the remanent moment contributions 
subtracted; the results are shown in Figs. 5, 6 
and 7 for the a, /3 and y phases respectively. 

In the cases of both a and fi there is a transition 
at 42°K. However, the Curie—Weiss law of 
susceptibility above the transition temperature is 
only properly obeyed above about 250°K, and 
calculations for this part of the curves yield a 
moment for the Fe3+ ions in the cc-phase of 5.91 
Bohr magnetons and in the P-phase of 5.48 Bohr 

10 

V- Li Fe 02  

1 

cn 0.4 
E  

0 
0 100 200 

FIG. 4. Remanent moment, ao, as a function of tem-
perature for y-LiFeO2. 

magnetons. For the y-phase the Curie—Weiss law 
is obeyed above the transition temperature and 
yields a moment for the Fe3+ ions of 5.94 Bohr 
magnetons in good agreement with the theoretical 
value of 5.92 for Fe3+ ions. 

DISCUSSION OF RESULTS 
Neutron diffraction and Mossbauer data on the 

a and y forms of LiFeO2  have been published by 
Cox et al.(3 ) They give a magnetic structure for a 
at low temperature in which the spins are coupled 
ferromagnetically in [111] planes but alternate 
planes are antiparallel giving a net antiferromag-
netic distribution, as shown in Fig. 8(a). They 
found some evidence of a tendency for Fe and Li 
ions to order on alternate [111] planes. From the 
Mossbauer data they obtained a transition tem-
perature in the region of 90°K, compared with 
42°K from the present measurements. This dis-
crepancy, together with the departure from the 
Curie—Weiss law between 42°K and about 250°K 
in the present measurements could be accounted 
for by assuming that some spin-ordering, possibly 
in local clusters, may occur at higher temperatures 
due to a proportion of the ordered Fe—Li distribu-
tion proposed by Cox, but that complete spin-
ordering with a disordered Fe—Li distribution 
cannot occur until the true transition temperature 
of 42°K is reached. 

The fl-phase exhibits similar behaviour to that 
of the cc-phase and, in the absence of neutron 
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Fin. 5. 5. Reciprocal susceptibility as a function of temperature 
for cc-LiFe02. 

300 	 400 	 500 

diffraction data, a speculative model of the spin 
distribution, obtained by interpolation between the 
known 9: and y distributions, is shown in Fig. 
8(b). This is based upon the assumption that the 
predominant interaction is the negative super-
exchange through 180°, via an oxygen ion, be-
tween Fe ions. This leads to an arrangement with 
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Pic. 6. Reciprocal susceptibility as a function of tem-
perature for fl-LiFe0a. 
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Fin. 7. Reciprocal susceptibility as a function of tem-
perature for y-LiFe02. 

• 

the spins ferromagnetically coupled in [110] planes 
and antiferromagnetically between adjacent [110] 
planes. The possibility of Fe—Li ordering in these 
planes, as in the case of a, clearly exists and would 
account for the departure from the Curie—Weiss 
law between the transition temperature and 250°K. 

m 
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The y structure, as reported by Cox et al., is 
given in Fig. 8(c), and is characterized by anti-
ferromagnetic coupling in the basal plane, with a 
magnetic symmetry I42d. From Mossbauer data 
they obtained a transition temperature in the 
region of 290°K, in good agreement with the 
present result of 295°K. The form of the sus-
ceptibility curve, however, departs markedly from 
that normally expected; comment on this is pro-
vided in the next section. 

(D.  Fe 

0.0 

(b) 	 (c) 

Fic. 8. Spin distributions for (a) ce-LiFe02, (b)13-LiFe02, 
(c) y-LiFe02. Structures (a) and (c) are from Cox et al.( 3 ) 

THEORETICAL CONSIDERATIONS 
VAN VLEcK(4) and MEL(5) have given a general 

treatment in terms of molecular field theory of 
antiferromagnetism, based on a two-sublattice 
model. P. W. ANDERSON(6) has generalized this 
treatment by the use of four sublattices and the in-
clusion of next-nearest neighbour interactions, and 
has dealt specifically with the face-centred cubic 
structure. YAFET and KITTEL(7) have applied the 
four-sublattice model specifically to ferrites and 
SINHA and SINHA(8) have considered the spinel  

structure. In all these treatments a Weiss internal 
field model is used. For n lattices, the field ex- 
perienced by the ith lattice is given by 

n  n 
t= _j 	 (1) 

3=1 

where /V/5  is the magnetic moment of the jth sub-
lattice. It should be noted that such an equation is 
only useful if all the atoms on a given sublattice 
have the same spin; if each sublattice contains 
equal numbers of positive and negative spins then 
/if'  = 0, and the equation is not very valuable. 

The y-phase has a chalcopyrite structure with 
the magnetic unit cell four times as large as the 
ordinary crystallographic unit cell and containing 
16 Fe atoms. As a result each iron atom can be 
associated with one of .16 interpenetrating simple 
cubic sublattices, each of which has all atoms of the 
same spin. Following P. W. Anderson the moment 
of the ith sublattice is given approximately by 

Hieff  
— y• 	 (2) 

Then, in the absence of an external field, from 
equation (1), 

16 
TMi = y bii•Mj 	 (3) 

Equation (3) has a solution in which not all 1115  are 
zero only for certain values of T, and the highest 
such value corresponds to the transition tem-
perature T, for that arrangement of spins which 
gives the lowest energy at temperatures less than 
Tc. If we assume that each M5  is either parallel or 
antiparallel to the z-axis, in accordance with the 
symmetry I42d to which the y-phase belongs, then 
the coefficients bij are scalars and Te  is y times the 
highest eigenvalue of the matrix (big ). If only the 
sixteen nearest neighbours of each iron atom are 
assumed to interact appreciably with it, then if the 
sublattices are suitably labelled the matrix 
B = (b tj ) has the form 

B=  r6  

8 
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where a, /3, 8 and y are 4 x 4 matrices. If we assume 
that the interaction between second-neighbour 
iron atoms is the largest in magnitude of all the 
interactions considered, and is antiferromagnetic, 
then the state of lowest energy is just that found by 
Cox et al. for the y structure, in which second-
nearest neighbours have opposite spins. This state 
is quadruply degenerate because of an arbitrariness 
in the choice of the x, y and z axes, but in one of 
these states there is a positive spin on all Fe atoms 
in the first eight sublattices and a negative spin on 
the other eight. Thus if each set of eight is treated 
as a single sublattice, the two-lattice theory of Van 
Vleck can be applied and we should expect the 
Van Vleck form for the temperature dependence 
of susceptibility. 

Since in the a and p phases the metal atoms are 
disordered, it is not practicable to apply to them 
a theory depending on long-range order. Some 
antiferromagnetism associated with short-range 
order would be expected, so that it might be pos-
sible to relate the magnetic properties of these 
phases with the deviations of the y-phase from the 
Van Vleck theory. 

CONCLUSION 
All three phases of the lithium ferrite LiFeO2  

have been shown to be antiferromagnetic at low  

temperatures. A remanent moment in each has 
been ascribed to an impurity, possibly the magnetic 
spinet LiFe5Og. It has been shown that the y-
phase, having a chalcopyrite structure, departs 
from the simple Van Vleck theory of antiferro-
magnetism. Possible reasons for this deviation 
require further investigation. 
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ABSTRACT 
The magnetic susceptibilities of cadmium manganites, (Cdza+Mn,_2÷) 

Mn23+04, have been measured between 4.2°K and 1000°K as functions of field 
and temperature. All the samples except x= 1 become ferrimagnetic at low 
temperatures and show three transition points. As the temperature is lowered, 
the first transition corresponds to paramagnetic antiferromagnetic ordering 
and the second to the appearance of a canted spin structure. The lowest 
transition corresponds to the appearance of spontaneous moment. Between 
the first and second transitions the susceptibility remains temperature 
independent, a feature which becomes more evident as x is increased. The 
presence of each transition is confirmed by differential thermal analysis. 
The generally complex behaviour is explained in the light of the existing 
theories. 

§ 1. INTRODUCTION 

THE magnetic properties of manganites having the general formula 
(Dx2+1\1111--x2+)Mn23+04, where D is a diamagnetic cation, have been 
studied. widely (Bongers 1957, Jacobs 1959, Jacobs and Kouvel 1961, 
Rosenberg and Nicolae 1964). These compounds are isomorphous with 
the mineral hausmannite (Mn304) and are characterized by replacement of 
the Mn2+ ions on the tetrahedral sites by Zn.2+, Mg2+ or Cd2+. The crystal 
structure is a tetragonally distorted. spinel with c/a -,1•15 (Jacobs and 
Kouvel 1961, Mason 1947) with only Mn.3± ions on the octahedrally 
coordinated B sites, the A sites being randomly occupied by Mn2+ and 
diamagnetic ions (Dunitz and Orgel 1957, Goodenough and Loeb 1955, 
Wojtowicz 1959). Yafet and Kittel (1952) have proposed a model for 
low temperatures in which the spin distribution is described in terms of 
four sub-lattices, on two of which the spins are parallel and on the other 
two they are canted, so that there is a net triangular spin arrangement. 
On the basis of measurements down to 77°K, Rosenberg and Nicolae (1964) 
have suggested that the cadmium manganites exhibit, instead, antiferro-
magnetic behaviour as predicted by Sinha and Sinha (1962). This was for 
tetragonalized spinels having only diamagnetic cations on tetrahedral 
sites, and involves a spin arrangement on the octahedral sites giving rise 
to a temperature-independent antiferromagnetic susceptibility below the 
Neel point. 
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§ 2. MEASUREMENTS AND RESULTS 

Samples of Cd„.Mn(3„)04  were prepared with x= 0.4, 0.5, 0.6, 0.7, 0.8, 
0.9 and 1.0. All samples were checked by x-ray analysis and were found 
to have approximately the same tetragonal distortion from spinel structure 
with a = 8.0741, c = 9.554 k and cla= 1.18 for Cd1VIn204. Measurements 
on this compound by Sinha et al. (1957) gave a = 8.22 A, c = 9.87 A. and 
cfa =1.2. The magnetic measurements were carried out on a Sucksmith 
ring balance capable of measuring a minimum magnetic moment of 
10-4emufg with better than 1.5% accuracy. The field was provided by 
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a 7 in. electromagnet producing a maximum field of 6 koe across the sample. 
The susceptibility values are given for 01H per gram, rather than for the 
incremental susceptibility. 

Magnetization was measured as a function of temperature by cooling 
the specimen to 4.2°K in zero field and then making measurements in a 
fixed field of 5220 oe as the temperature rose to 300°K. A water-jacketed 
furnace provided the means for high temperature measurements up to 
1000°K. Magnetization was also measured as a function of field from 
zero to 6 koe at 4.2°K, 77°K and at room temperature. 

In fig. 1 (a) are shown magnetization versus field curves, taken at room 
temperature, for samples with x = 0.4, 0.5, 0.6, 0.7, 0.8 and FO, from which 
it will be seen that there is a linear increase of magnetization with field 
throughout the range in agreement with normal paramagnetic behaviour. 
Figure 1 (b) shows the magnetization plotted against various values of 
x at H = 5800 oe taken from the previous graph. In figs. 2 (a) and 2 (b) 
the reciprocal of susceptibility (1 Jxg ) is plotted as a function of temperature, 
in a field of 5200 oe for samples with x = 1.0, 0.8, 0.6 and 0.4. Below 
— 70°K, these curves exhibit typical ferrimagnetic behaviour with Curie 
temperatures of < 4°K, 5°K, 15°K and 24.5°K respectively. In the range 
80-100°K, there appears a range of temperature-independent susceptibility 
which progressively increases in temperature range as x increases from 
0.4 to 1.0. For each sample this region ends at 99°K, after which 1/xg  
increases with increasing temperature. This is taken to be a transition 
temperature from an ordered spin arrangement to the paramagnetic state 
and is referred to as the first transition. However, this characteristic 
was not evident when measurements were repeated in a field of 3000 oe. 
The curves also exhibit deviation from linearity at high temperatures 
which becomes more pronounced with increasing x, suggesting the possible 
onset of crystallographic phase transformations. For CdMn2O4, this 
occurs at about 670°K, a temperature which gradually moves towards 
higher values as x is decreased (fig. 2 b). 

In figs. 3 (a) and 3 (b) are shown susceptibility versus field curves for 
x = 0.4, 0.6, 0.8 and 1.0 at 77°K and 42°K respectively. At 77°K the 
susceptibility tends to drop markedly in low fields. Figure 3 (b) gives 
results below the Curie temperature for each sample and is typical of 
ferrimagnetie behaviour which decreases in magnitude as x increases 
from 0.4 to 0.8, with the exception that the low field initial susceptibility 
for x FO decreases with decreasing field in a normal antiferronaagnetic 
manner. Magnetization curves as a function of temperature at a fixed 
field are shown in fig. 4 for the various compounds, at temperatures near 
to the Curie points. The evaluation of Curie temperatures from the slope 
of these curves is considered unreliable because the maximum available 
field is not sufficiently high and determination from the temperature 
intercept of each 1 /Ag  versus '1' curve is preferred. As is seen from the 
graphs, the presence of Cd on the spinel A sites has a marked effect upon 
the Curio temperature. Within the range of the present investigation, 
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the dependence of the Curie temperature upon the Cd concentration shows 
a strictly linear relationship as in fig. 5. However, fig. 6 shows that the 
variation of the spontaneous magnetization with x is non-linear. This 
behaviour is discussed later. 

Differential thermal analysis was also carried out on the present samples 
in the temperature range 77°-1000°x and the results appear to be in good 
agreement with the magnetic measurements. Below room temperature, 
two peaks were obtained, at 95.2°K and 86.2°K for x= 1, but only one 
asymmetric peak at 91•7 ° K for all x < 1 was observed. Further, for x = 1, 
the first peak at the higher temperature is about seven times bigger than the 
second peak and of the opposite sign. These results suggest that two 
different kinds of magnetic transformation are involved as the temperature 

a. 
X 

z 
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Fig. 5 

Variation of the Curie temperature, Te, with the cadmium concentration x 
in the samples CdxMna_z04. 

is gradually lowered. The absence of a double peak for x< 1 may be 
explained by the low resolution of the D.T.A. method and corresponds 
to the super-imposition of the two peaks. High temperature D.T.A. on 
Cd.Mn204  had initially shown a peak at 465°x and a sharp discontinuity 
at 763°K but subsequent runs involving approximately the same hours of 
heating as in the case of susceptibility measurements indicated a broad 
discontinuous peak at about 600°x which is ascribed to crystallographic 
phase change. 

The crystal structure of CdMn204  below the order—disorder transition 
temperature was further investigated by x-ray powder photograph taken 
at 77°x. The low temperature camera consisted of a simple Laue plate 
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employing the back reflection technique and an arrangement for a fine 
stream of liquid nitrogen to flow constantly over the rotating specimen 
during the exposure time. A comparison of the photograph with that 
taken at room temperature showed that no crystallographic phase 
transformations occur in this temperature range. McGuire et al. (1952) 
have reported a kink in the l/ versus T curve for NiCr204  at 310°K 
where the unit cell is found to change from cubic to tetragonal ; such a 
transformation does not occur in the present compounds. 

§ 3. DISCUSSION OF RESULTS 
A conclusion of the Yafet-Kittel theory is that the transition from a 

triangular spin arrangement to a paramagnetic state must be via an 
intermediate state. There are two possibilities for this intermediate 
state : 

(a) an antiparallel Neel ferrimagnetic state for the A and B sub-lattices ; 
(b) a state in which the A lattice is paramagnetic and the B lattice 

antiferromagnetic. 
The former cake should lead to normal antiferromagnetic behaviour 

with a negative slope to the l/x curve over the intermediate range. In 
the present case this range corresponds to a temperature-independent 
susceptibility so that the second possibility would appear the more probable. 
In this connection we refer to the differential thermal analysis results 
(D.T.A.). As the temperature is lowered the first transition corresponds 
to a lowering of entropy, which could be accounted. for by the appearance 
of antiferromagnetic ordering on the B sites. The second transition 
corresponds to a slight increase in entropy which would be expected if 
there appeared a canted or spiral spin arrangement on the B sites. For 
both the first and second transitions it is assumed that the A sites remain 
paramagnetic. 

The temperature-independent susceptibility would be accounted for, 
neglecting the A site contribution for the moment, if the antiparallel 
spins all lie in planes having low crystalline anisotropy. This is known 
to be the case in Mn304  in which the spins all lie in the x-z planes where 
the y direction is ono of high anisotropy (Dwight and Menyuk 1959). 
When this is the case the antiparallel pairs of spins will be able to 
minimize their energy in an applied field by turning perpendicular to it, 
when the field is sufficiently high to overcome the (small) anisotropy in the 
plane. This would mean that the susceptibility measured is always x 
which, in accordance with the Neel theory, is temperature-independent. 
There would be a paramagnetic contribution to the susceptibility from the 
A sites, of increasing importance as the concentration of magnetic ions 
on the A sites increased and there is some evidence of this in the results. 
This behaviour and. spin configuration aro of the typo predicted by Sinha 
and Sinha (1962) for tetragonalized spinels, but it should be noted that 
the Sinhas' calculation is not in agreement with that of Yosida (1953) 
which is generally accepted as correct. 
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Below the second transition temperature the susceptibility increases as 
temperature falls, reaching a maximum at the Curie temperature, 
providing there are some magnetic ions on the A sites, below which a 
spontaneous moment appears, which rapidly increases as the temperature 
falls further. In the region between the second transition and the Curie 
temperature the paramagnetic-like susceptibility behaviour may be 
ascribed to lack of long-range order on the B sites. For the special case 
of zero A—B interaction, Anderson (1956) has shown that no long-range 
ordering of the B spins in the ground state is possible in a cubic spine! and 
that there is also no long-range ordering of angles between spins. When 
x=1, the A site ion has no magnetic moment and, in the absence of any 
appreciable long-range order, the magnetic configuration of the B sites 
in CdMn2O4  may be likened to groups of four magnetic ions which are 
exchange coupled amongst themselves but are isolated in a diamagnetic 
matrix, if super—superexchange is neglected. Thus only local structures 
are involved rather than a cooperative phenomenon among many ions. 
Following Jacobs and Kouvel (1961) it can be argued that if the local 
structures exhibit weak net magnetization, behaving like canted or spiral 
antiferromagnets below the transition temperature and making differing 
angles with the field direction, it is possible that an applied field can 
align them to produce a net spontaneous magnetization. A subsequent 
paper by Kaplan (1960) however, points out that, for mixed compounds 
like D,..Mn3_x04, it is reasonable to expect that the comparative importance 
of the B—B interaction, with regard to magnetic properties, is due to the 
weakening of the A—B interaction by the diamagnetic ions. This mechanism 
might therefore be expected to operate in all the present compounds and 
would be expected to lead to a fall in susceptibility in low fields, as is 
observed (fig. 3 a) at 77°K, above the Curie temperatures. 

At the Curie temperature it is assumed that the A sites become ordered 
and that long-range order then appears on the B sites, leading to a ferri-
magnetic state in all but the CdMn2O4  case where there are no magnetic 
ions on the A sites. 

On the basis of simple molecular field assumptions , the variation of 
spontaneous moment with the substitution of non-magnetic ions in A 
sites should follow a linear decrease. This assumes that the interaction 
field of A site ions on B site ions is proportional to the net A site moment. 
With the applied field of 5200 oe, the observed moments are shown in 
fig. 6 from which it is seen that this proportionality is not fulfilled 
However, in view of the very high uniaxial anisotropy field in Mn304  
crystals at 42°K( — 70 koe) (Dwight and Menyuk 1959), it is clear that 
saturation measurements on polycrystalline samples will require very 
large fields. Assuming the absence of anisotropy fields exceeding 70 koe, 
the spontaneous moment of Mn304  was found by Jacobs to be 
1.56 ± 0.04 /LB/molecule at 42°K by extrapolation to H = 0 from measure-
ments taken with 170 kG pulsed fields. In the present work the 
spontaneous moments were measured in comparatively low fields but do 
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show a linear variation within the range of investigation. For the sake of 
comparison, values of magnetic moments calculated from the hysteresis 
loop curves of Jacobs and Kouvel (1961) measured at 1.8°K for various 
manganite compounds in 5 koe field are plotted alongside our experimental 
values for cadmium manganite, and are in good agreement. 

§ 4. CONCLUSION 
The complex behaviour of the reciprocal magnetic susceptibility of the 

cadmium manganites as a function of temperature indicates the existence 
of three transition temperatures. As temperature is lowered the first 
transition corresponds to paramagnetic/antiferromagnetic ordering and 
the second the appearance of a canted spin structure. The lowest transition 
temperature corresponds to the appearance of a spontaneous moment and 
is taken to be a ferrimagnetic Curie temperature. The susceptibility is 
independent of temperature between the first and second transitions and 
is accounted for by the assumption that the B-site spins are all antiferro-
magnetically ordered in low-anisotropy planes. Between the second 
transition and the Curie temperature there is evidence of the absence of 
long-range order, the magnetic properties being accounted for by a model 
postulating local clusters of canted or spiral antiferromagnets. 
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