
COMPUTING ASPECTS OF PROBLEMS IN 

NON.LINEAR PREDICTION 

AND FILTERING 

by 

I. G. CUMMING 

A thesis submitted for the degree of Ph.D. in Engineering 

Centre for Computing and Automation, 

Imperial College, 

University of London, 

London, S.W.7. 	 MAY 1967 



_ 2 - 

ABSTRACT 

This thesis discusses some of the computational problems arising 

in the application of modern stochastic control theory. We deal with 

continuous time systems where two typical problems are the prediction 

of the future statistical behaviour of systems and the synthesis of 

systems designed from stochastic theory such as filters. In each case, 

computational problems occur if the system is non-linear or non-Gaussian. 

The non-linear prediction problem involves solving a parabolic 

partial differential equation, the Fokker-Planck equation, and we dis-

cuss two numerical methods of solving this equation. Finding that 

these methods can only handle a restricted class of low-dimensional 

systems, we study Monte Carlo methods in the hopes of finding a more 

general solution procedure. We find these to be successful if we 

allow for accuracy limitations, and find that the theory of the Fokker-

Planck equation can be extended to include the Monte Carlo solution 

of a wider class of parabolic equations than previous methods would 

accommodate. 

Monte Carlo methods involve the simulation of a stochastic system 

on a computer, and as the problem of synthesising a given system is 

the same as simulating it on a computer, the rest of the thesis centres 

around the theoretical and practical aspects of simulation techniques. 

We find in each case that the system we must simulate is a continuous 

Markov (diffusion) process, and that diffusion processes have properties 

which distinguish them from any process which can ,be constructed on a 

computer or in the physical world (we call these physical processes). 

Thus we discuss the statistical equivalence of physical and 

diffusion processes, and show how and under what conditions a physical 

process can be chosen to approximate a diffusion process, and vice versa. 

In this way, we clarify a controversy on the interpretation of limiting 

forms of physical processes, and give an example which confirms the 

accuracy of the approximation and illustrates that diffusion approxima-

tions can provide a useful method of analysing the transient statistics 

of physical processes. On the practical side of the simulation problem, 

we discuss the choice of noise source and its proper characterisation on 

the analogue computer, and the convergence rates and efficiencies of 

discrete simulation formulae on the digital computer. 
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CHAPTER 1 

INTRODUCTION 

1.1 Scope 

This is an engineering thesis, and is, broadly speaking, an 

attempt to overcome some of the practical difficulties connected 

with the simulation, synthesis and computing problems of modern 

statistical control theory. Our aim is to develop methods, and when 

we do introduce new theoretical ideas, the tone of our presentation 

will lean towards an intuitive understanding of the ideas rather 

than mathematical conciseness or precision. The examples given 

are kept in their simplest form to ease presentation while adequately 

illustrating the point at hand. In most cases, more elaborate 

examples were worked out as computing exercises and in the te:-A, we 

state any limitations found in the various methods presented. 

The motivation of the project has come from the recent increase 

in interest in statistical control problems. Following the attention 

given to deterministic optimal control of the Bellman-Pontryagin-

Calculus of variations approach in the years around 1960, it is 

clear that the emphasis of research is once again on statistical 

systems, for hardly a system is studied nowadays which does not 

incorporate random factors into its structure. The papers presented 

at the Third IFAC Congress (London, 1966) are a good indication of 

this trend, where the majority of the papers discussed some aspect 

of identification, prediction, filtering, stability or control of 

stochastic systems. 

As in the field of deterministic optimal control, when analysing 

or constructing statistical systems, the researcher or engineer 

soon finds that large computational problems must be surmounted 

before results can be obtained or systems synthesised. The major 

emphasis of this thesis is placed on the simulation of statistical 

systems on analogue and digital computers, and we see that this 

covers a general solution to the prediction problem as well as to 
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the synthesis problem of constructing systems such as non-linear 

filters. 

This thesis does not discuss the complex identification 

problem,and assumes that the systems under discussion have 

deterministic parameters which are known exactly, and random 

parameters whose probabilistic structure is known. We formulate 

our systems as differential equations where the random and the non-

random parts are separated into different factors. We point out 

that there is clear distinction between random processes which 

exist in the physical world (i.e. processes which are physically 

realisable: we call them physical processes X(t)) and some which 

exist only in the mathematical world. In the latter category we 

consider continuous Markov processes (diffusion processes x(t)), 

which differ from physical processes in that the band-limited, 

finite-power noise of the physical process is replaced by an infinite 

power white noise. These diffusion processes are used almost 

exclusively in all branches of stochastic control theory formulated 

in continuous time, as Markov processes are much more convenient 

to manipulate mathematically than non-Markovian processes. This 

distinction between the processes which we deal with on a theoretical 

level and those which we meet in practice means that we must be 

concerned with the relation between these types of processes when-

ever theoretical results are to be implemented (or a theoretical 

problem is formulated from a physical situation). This thesis 

discusses the statistical aspects of this relation. 

1.2 Preliminaries - the Fokker Planck Equation 

This thesis begins with the prediction problem: given the past 

and present behaviour of the system, what is its future statistical 

behaviour? This problem only has a concise formulation if the system 

is Markovian, in which case the present probability density is all 

that is needed of the system's past and present behaviour to determine 

the future behaviour. Restricting our attention to continuous Markov 
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processes, we find that the future statistical behaviour of the system 

is given by the solution of a parabolic partial differential equation 

called the Fokker-Planck (FP) equation. We state the FP equation as 

follows: 

The function P(x,t), the probability density of the n -vector 

Markov process x(t), is the solution of the FP equation 

aP(x,t) _ 
at — 37 r bi(x,t)p(x,t)] a 

L 

a2 

ax.ax. [aij(x,t)P(x,t)] 
	(1.2.1) 

satisfying the initial condition P(x,t0) subject to the following 

conditions: 

(1) the first and second incremental moments of the Markov pro-

cess x(t) exist and are given by 

limit 2._ 	 l b (x,t) 	E 
= 	St 4 0 St 	

ro 
L xi x,t1  

(1.2.2) 
limit 1 and a. .(x,t) 	8,t4, 0 Ft  E[SxiSx j  Ix,t] 

2.3 

where 8x. = a. 	xi  t + 8t) - xi(t). ( 
These quantities are sometimes called the drift coefficient and the 

diffusion coefficient respectively. 

(2) the higher incremental moments are zero, which means that 

the process x(t) is coatinuous with probability one. 

(3) the partial derivatives with respect to xi  and t in 

equation (1.2.1) exist and are piecewise continuous in their arguments. 

As P(x,t) is a probability density function, it must satisfy 

the conditions 

P(x,t) 	0, 
and. 
	

S 
P(x,t) ax = 1, 

2 

• 
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where R is the entire x space. Usual derivations of the FP 

equation proceed from the assumption that P(x,to) = 8(x - x0), 

in which case the solution of the FP equation is the conditional or 

transition probability density P(x,t Ixo,t0). As the FP equation 

is linear, the superposition principle shows that the solution of 

the equation is valid for a general functional initial condition 

P(x,to), in which case the solution is not interpreted as a transition 

probability density. 

The diffusive character of the Markov process assures that 

P(x,t) is continuous in both arguments with probability one for 

t> to. A second continuity condition relates to the flux of the 

Markov process. If we interpret P(x,t) as the density of particles 

whose trajectories are an ensemble of realisations of x(t), then the 

principle of conservation implied in the continuity of the trajectories 

gives us, by Green's theorem, that the density J(x,t) of the flow 

of particles across any arbitrary n - 1 dimension surface in R is 

continuous, normal to that boundary. The component of flow 	 ( J.i 
 x,t) 

in the xi  direction is given by 

J (x,t) = bi(x,t)P(x,t) - [a .(x,t)P(x,t)] ij (1.2.3) 

and the flow density normal to say surface is given by the inner pro-

duct of J(x,t) and the unit normal of the surface. The FP equation 

is then written as 

aP(x,t)
— 	

= 
at 	ax. - div J(x,t). 

Thesecity conditions are necessary to construct solutions 

of the FP equation at points of discontinuity of b(x,t) and a(x,t). 

Examples of the use of these conditions in piecewise linear systems 

are given by Khazen [8, 19] and Merklinger [1], and we use a modifica-

tion of these conditions in Chapter 3. 
The FP equation (1.2.1) is the forward Kblmogorov equation of 

the process x(t), and we can write down the backward Kolmogorov 

equation as 
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(x,$)  bi(x,$) dPax.  

8
2P(x,$)  a..(x,$) dx.ax. 1 

where s is the backward time parameter and equation (1.2.L.) has 

the"initial" conditions P(x,sf), where s < sf. As we are interested 

in the prediction problem and seek to evaluate the evaluation of the 

system's probability density in real (forward) time, we shall restrict 

out attention to the forward or FP equation. 

Solutions of the FP Equation 

An extensive historical background of the FP equation is given 

by Merklinger [ii, and in the classic papers collected by Wax pd. 
Most of the known solutions of the FP equation have been of the asso-

aiated elliptic equation obtained by setting the left hand side of 

(1.2.1) to zero. With the added condition that b(x,t) and. a(x,t) 

are not functions of time, the solution P(x) gives the steady 

state statistical behaviour of stationary systems. The known 

stationary solutions fall into three categories: 

(1) explicit analytic solutions for the statistics of linear 

systems [101, 

(2) explicit analytic solutions for a restricted class of non-

linear systems, including piecewise linear systems [3-9], 

and (3) a numerical approximation approach to general non-linear 

systems, with attention concentrated on relay (piecewise linear) 

systems [1, 2]. 

Results of less generality have been obtained for the transient  

solution of the FP equation, for the time dependence introduces 

further analytic and computational difficulties. The known transient 

2 
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solutions can be divided between 

(1) explicit analytic solutions for the statistics of linear 

systems, conveniently expressed as linear differential equations for 

the moments of the system [11-16], 

and 

(2) analytic but usually approximate solutions for a few first 

order non-linear systems [17, 18, 21]. 

Reading the above references makes it clear that the challenge 

lies in the analysis of non-linear systems. The reason for this is 

seen in the derivation of differential equations for the moments 

of stochastic systems [74], where the simplifications afforded by 

system linearity become apparent. The infinite set of system 

moments are an equivalent statistical system description to the 

density function P(x,t), and if we can obtain an explicit solution 

for them we have obtained an explicit solution of the transient 

FP equation. If the system is linear, the equations for the moments 

are linear and first order, and are arranged in a recursive order so 

that the solutions for each moment can be obtained in a straightforward 

fashion. If the system is not linear, the moment equations may not 

be linear, but more important is the fact that the unknowns in the 

equations are no longer arranged in a recursive order, and all 

equations must be solved simultaneously. As there are an infinite 

number of equations, this cannot be done, unless we can set all moments 

beyond a certain order to zero. The convergence properties of the 

moments in general do not allow this, but in some cases, other statis-

tical descriptions of systems do (see Section 2.4). But in general, 

analytic solutions for arbitrary non-linear systems cannot be obtained. 

Also, for linear systems, spectral analysis and correlation 

techniques are available, and are equivalent to Fokker-Planck methods. 

They are often more convenient to use, particularly in the well-known 

analysis of stationary linear systems. Again, the simplicity of this 

approach does not apply to non-linear systems, and we are faced with 

using approximate numerical techniques to obtain the solution of the 

FP equation for non-linear systems. 
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1.3 Outline of Thesis 

As well as listing the main topics of the thesis, this section 

presents the origin af, and some reflection on, the more interesting 

of the points discussed in the thesis. In this way we state the 

originality of the ideas presented, and point out which topics are 

considered to be of greatest interest. 

Finite  Difference Methods (Section 2.3) This section and the next 

ono are two approaches to the numerical solution of the transient 

FP equation. Implementing the finite difference method required a 

fair amount of initial study and involved little originality. However, 

certain problems peculiar to the FP equation were met and overcome 

by somewhat arbitrary methods. The dual solution method was new and 

proved to be very helpful. -  The design of the adaptive sampling and 

alarm scheme given as an example is an interesting application of 

little used transient FP techniques. 

Hermite Transform Methods (Section 2.!) The idea of using the 

Hermite Transform is a result of an attempt to get the most concise 

description possible of a system's statistics. To this end, the 

Gram-Charlier series was proposed for near-Gaussian systems, and when 

applied to the FP equation, turned out to be a neat integral transform 

method. However, the form of system amenable to solution by this 

method was rather restricted, as only one-dimensional systems with 

smooth non-linearities could be handled efficiently. Thus this method 

was considered to be more of academic than practical interest. 

In general, this method and the finite difference method were 

felt to be rather unrewarding, in that a large effort was put into 

obtaining solutions for a small class of low dimensional systems. 

Thus methods of more generality were sought, and as a result, Monte 

Carlo methods were investigated. 

General Simulation Results (Section 3.2) When looking at Monte Carlo 

methods for solving high dimensional FP equations, it was discovered 

that the methods could be modified to solve a wide class of parabolic 

equations. A general simulation result was developed by associating 
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the dependent variable of a parabolic equation with the density of 

trajectories of a simulated diffusion process. Analogies were drawn 

between the simulated trajectories and physical properties of the 

problem which the parabolic equation describes, and concepts such as 

flux and continuity were used to specify the nature of the simulation. 

Ne found that if the parabolic equation had the form of a FP equation, 

the simulation had conserved trajectories (agreeing with the law of 

conservation of probability density), and if the simulation was 

modified to allow the number of trajectories to be time varying, other 

parabolic equations could be solved. 

Previously developed Monte Carlo methods for parabolic equations 

are based on the connection between simulated diffusion processes 

and the backward Kolmogorov equation (1.2.4), while our new method is 

based on the forward Kolmogorov or FP equation (1.2.1). There are 

conceptual differences between the two methods with the result that 

the new method can solve a more general type of parabolic equation 

than the previous method. Not enough examples were solved to fully 

test the efficiency (and hence usefulness) of the new method, but it 

may prove to be the only method of solving certain high dimensional 

parabolic equations. In addition we present several theorems relating 

to the positivity of the solutions of pargbolic equations which support 

the new simulation method of solving the equations. 

The  Relation between Continuous Markovian and Non-Markovian Processes 

(Section 2.2, Chapter 14.) To implement the results of Chapter 3, we 

have to simulate (Markovian) diffusion processes on a physical computer 

where all processes are non-Markovian. In addition, many of the 

results of 1-L'7dern stochastic control theory such as the design of 

non-linear filters are developed in the stochastic calculus (where 

processes are Markovian), but must be implemented in the ordinary 

(non-Markovian)calculus. Thus the relation between these two types 

of processes had to be studied. 

This was an interest developed jointly with J. M. C. Clark, when 

the paper of Wong and Zakai [UI] came to our attention, and was later 

promoted by discussions with K. J. Astrom. Once the differences 

between these types of processes become apparent, it became clear 
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that much of the previous work using FP techniques could be misinter-

preted when applied to physical situations, and a unified approach 

was needed to clarify the application of continuous stochastic control 

theory. 

The approach of Clark [22] was to study the convergence of the 

trajectories of physical processes to those of diffusion processes, 

which is called convergence in the mean. As we are primarily inter-

ested in the ensemble statistics of processes as opposed to the pro-

perties of the individual sample paths, we confine our attention to 

the less demanding (mathematically and conceptually) concept of con-

vergence in distribution. In this way we are able to show the convergence 

of more general physical processes (with non-stationary aria 

to diffusion processes than those considered by Clark. 	noises)  

The purpose of both Clark's work and ours is to show how diffusion 

processes can be approximated by physical processes, and vice versa. 

Stratonovich [21] also studies this approximation, and our approach 

is similar to Stratonovich's except that our approach more clearly 
44;4 

shows underAconditions we may approximate one process by another. 

Both Clarks approach and ours point out the need of characteri-

sing a physical noise process by its characteristic matrix. This 

characterisation is more complete than that used by most previous 

authors, and using this characterisation, we can resolve a controversy 

which has existed in the interpretation of physical systems with 

random coefficients. 

The main contribution of the present approach over Clark's and 

StratonovicHscentres around the convenience of matching physical and 

diffusion processes by evaluating and equating their incremental 

statistics over a small but non-vanishing time increment. The PRBS 

example of Appendix D shows that our method can provide a very 

simple method of choosing equivalent processes without, in fact, having 

to directly evaluate the characteristic matrix of the physical noise 

involved. 
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Computing Problems of Simulation (Chapters 5 & 6) The work of these 

chapters was done to illustrate the theory of Chapter L and to inves- 

tigate the practical difficulties of simulating diffusion processes 

on a computer. 

On an analogue computer (Chapter 5), we did not wish to get involved 

with the practicalities of computing, recording and general accuracy 

analysis, as this would have been a time-consuming task detracting 

attention from the main points of interest. Instead, we concentrated 

on those points peculiar to our problem - the choice of noise source 

which simulates the white noise of the diffusion process, and the 

proper characterisation of the noise source by experimental means. 

The analysis of Chapter 4. showed that different noise sources intro- 
duced different biases into simulations it a manner which depends on 

the characteristic matrix of the noise, and wo illustrate this in a 

qualitative fashion with several examples. 

On a digital computer (Chapter 6), the noise source is usually 

confined to pseudo random numbers generated on the computer, and so 

the interest centred around the choice of computing method (digital 

formula). Previous computing methods for simulating diffusion pro- 

cesses were based on a very simple formula which was not very efficient 

in terms of accuracy achieved in relation to computing time. Thus 

more efficient formulae were sought, and it turned out that the results 

of Chapter 4 allowed us to specify a general high order computing 

method of simulating diffusion processes. The convergence rates of 

these formulae were investigated, and found to be different from those 

rates met in classical numerical analysis problems. An example 

verified the theoretical convergence rates and illustrated the 

increased efficiency of the new method. 

Of the data reduction and smoothing methods used, one was 

interesting and apparently novel. It was based on the concise statis- 

tical description afforded by the orthogonal functional expansions 

of Section 2.4, and was found to preserve the lower order moments of 

the statistical data. 
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The Stochastic Calculus (Appendix A) This appendix gives an expository 

account of the properties of the stochastic calculus in a form which 

is not generally available. The stochastic calculus has been used 

recently in the control literature (e.g. Wonham's papers), yet its 

properties have only been presented in journals and books of a 

mathematical flavour (of these the book by Doob [20] seems to be the 

most readable reference, yet even it is rather formidable in tone to 

one with an engineering background.). The appendix and the separate 

note [7i] illustrates the ease of analysis which the stochastic calculus 

affords of continuous Iarkov processes, and the PRBS analysis in 

Appendix D is a good example of the power of the analysis. 

The author was introduced to the properties of the stochastic 

calculus by J. M. C. Clark, and in particular, the properties of the 

Stratonovich stochastic calculus were discovered through a translation 

of [50 obtained with the help of F. Domnin. Clark pointed out that 

the Stratonovich calculus has advantages of representation over the 

usual Ito stochastic calculus when dealing with limiting forms of 

physical processes, and this prompted the use of the Stratonovich 

form of writing diffusion processes in Chapters 4 to 6. 

Model of the PRBS (Appendix D) The pseudo random binary sequence 

(PRBS) has many advantages as a random noise source, and is coming 

into widespread use as a test signal for system simulation and on-line 

identification. But of the many recent papers on the theory and prac-

tice of the PRBS, none have fully exploited the known deterministic 

properties of the PRBS and shown how these effect the statistical pro-

perties of the PRBS. Our analysis is a step in this direction, and 

shows that systems driven by a PRBS can have some unusual transient 

properties. 

Historically, the PRBS analysis holds an important place in the 

development of the latter half of the thesis and it is interesting to 

trace the evolution of ideas. It was noticed that the PRBS had some 

unusual transient statistical properties, and as a basis of comparison, 

we sought to compare the integral of the PRBS with the Wiener process. 

'We knew, for example, that the known number of positive and negative 

bits in one period of the PRBS made the integral of the PRBS come back 
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to near zero every period while the Wiener process did not. Thus we 

wished to see how the variance of the integrated PRBS varied with time 

compared with the linear increase of the variance of the Wiener process. 

Realising that the transient variance could only be evaluated con-

veniently for continuous Markov (diffusion) processes, it was decided 

to construct a diffusion model of the integrated PRBS which incorporated 

the interesting deterministic properties of the PRBS. Knowing that a 

diffusion process is specified by two incremental moments, and prompted 

by the inherently discrete nature of the PRBS, we decided to evaluate 

the incremental properties of the integrated PRBS over a finite time 

interval equal to the discrete time quantisation of the PRBS switching 

points. Then the diffusion process which has approximately the same 

incremental properties over the same time increment was chosen as the 

model of the integrated PRBS (a physical process). This is done in 

equations (3) to (8) of Appendix D, and is the genesis of the approach 

used in the analysis of Section 4.1. 

Being a pseudo random process with a limited number of possible 

outcomes, the statistics of functions of the PRBS could easily be 

evaluated exactly on a digital computer, and in this way we could 

evaluate the exact error of the diffusion model. The fact that the 

error was found to be quite small encouraged the analysis of Section 

4,1. This analysis was a departure from the earlier analysis given 

by Clark [221, and in fact, the need of characterising a physical 

noise source by Clark's characteristic matrix is then illustrated in 

a manner independent of Clark's. 
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CHAPTER 2 

Thh DIRECT APPROACH TO PREDICTION PROBLEMS SOLUTION OF THE 

FOKKER-PLANCK EQUATION  

2.1 Fokker-Planck Equation for a Diffusion Process 

The Fokker-Planck (FP) equation for the first order probability 

density of a Markov diffusion process x(t) was introduced in 

Section 1.2. From the discussion of Appendix A, it is apparent 

that the diffusion process must be described by a stochastic, as 

opposed to an ordinary, integral or differential equation. The 

Ito stochastic differential equation (s.d.e.) for an arbitrary 

diffusion process can be written in the state vector form 

dx(t) = f(x, t) dt + F(x, t) dw(t), 	(2.1.1) 

where 	x(t) is an n-column vector of the state of the Markov 

process, 

f(x, t) is an n-column vector representing the deter- 

ministic part of the state dynamic equations, 

F(x, t) is an n x m matrix representing the random 

part of the dynamics, 

and 	dw(t) is the Ito stochastic differential of an m-column 

vector of unit parameter independent Wiener processes 

w(t). 

The state vector equation (2.1.1) would be in a more familiar form 

if divided through by dt, but the properties of dw(t) do not 

allow us to do this (see Appendix A). Nevertheless, it is useful 
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dw dt(t) to consider 	 --- or *(t) as a concept when comparing it with 

the physical noise y(t) introduced in the next section, as *(t) 

can be considered as a limiting form of y(t), and is, in fact, the 

usual definition of white noisc, 

The FP equation (1.2.1) for the process (2.1.1) is written 

down from the incremental moments (1.2.2) of the process. These are 

b.(x, t) = f.(x, 	, i = 1, n, 	 (2.1.2) 

    

and 	a. (x,t) = 	 ik (x, 	rkj  
T(x, t), 1, j = 1, n.(2.1.3)1.3) 

The diffusion process (2.1.1) can also be expressed as a 

Stratonovich stochastic differential equation (see Appendix A) 

whose i:th component is 

axi = I fi(x, t) 

: Fik(x, t) awk(t), 	(2.1.4) 

where a. denotes a stochastic differential in the Stratonovich 

sense. It should be emphasised that (2.1.1) and (2.1.4) are 

precise but differing definitions of the same diffusion process, 

and they differ in bias term only because of the different rules 

of dfining tt3 Ito and Stratonovich stochastic integral. Because 

of the simple relation between the coefficients of the Ito equation 

(2.1.1) and the incremental moments (2.1.2, 3), we will use the Ito 

definition of the diffusion process in the sequel. We will also 

introduce the Straionovich form (2.1.4) when it provides a con-

venient represeniation. 
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2.2 Fokker-Planck Equation for a Non-Markovian Process  

A continuous Markov process (synonymous with diffusion process) 

differs from a continuous non-Markovian process by the properties of 

the noise source which generates the random process. In particular, 

in comparing the Markov process noise w(t) of equation (2.1.1) with 

the noise y(t) of the non-Markovian process (2.2.1), successive 

values of the Markov noise (i.e. set t = t1, t2, t3  ... for 

t1  4;t2  <t3  ...).will be independent of each other for arbitrarily 

smalltimeincrethents,t.- ti-1, whereas successive values of the 

non-Markovian noise do lose their independence as the time increments 

are arbitrarily refined. In the stochastic process literature, this 

property of the Markov noise is expressed by stating that the process 

w(t) has independent increments (or is infinitely divisible) 

[20, pages 96 and 273]. The only continuous process with independent 

increments is the Wiener process w(t) and thus the diffusion 

process noise is Gaussian white noise. It is because of this pro-

perty of infinite divisibility that the rules of the stochastic 

calculus differ from those of the ordinary calculus. 

This property can also be seen from the correlation function 

R(T) of the noise. White noise has a delta function as a correla-

tion function, which is exactly zero for any non-zero time shift r. 

In contrast; the non-Markovian noise y(t) has a correlation function 

which is non-zero for some arbitrarily small but non-zero time shift 

T. In the frequency domain, white noise has a continuous flat power 

density spectrum at all frequencies (including infinite frequency), 

while non-Markovian noise does not have a flat spectrum at all 

frequencies. 



- 28 - 
Now consider what kind of noise can exist in the physical 

world. Proceeding from the premise that no existing noise source 

can have an infinite power, and as power is the infinite integral 

of the power density spectrum, then no existing noise source can 

have a power density spectrum which is flat at all frequencies. In 

order for the power to be finite, the noise source must have an 

upper frequency fu, above which the noise signal has no signifi- 

cant power. Also, the correlation function of such a noise source 

will have a non-zero value for some non-zero time shift T. 

These considerations lead us to the conclusion that any noise 

source existing in the physical world cannot be the Markovian 

white noise discussed above, but must be a non-Markovian noise source. 

We shall call such a noise physical noise y(t) and a random process 

involving physical noise we shall call a physical process X(t) 

(this terminology is not new: see for example [41], [22]). This 

terminology for physical processes parallels white noise *(t) 

for diffusion processes x(t). 

By the same argument, diffusion processes cannot exist in the 

physical world (Et) has infinite power, and an infinite magnitude 

at all times) but are introduced as a mathematical concept convenient 

for analysis. An example is the analysis of the pseudo random 

binary sequence [57] using diffusion processes, an analysis which 

could not be conveniently carried out by other means. 

Another indication of the difference between physical and 

diffusion processes is that all the derivatives of continuous physi- 

cal processes are finite almost everywhere with probability 1 

[21, p.124], whereas the n:th order Markov process x(t) (2.1.1) 
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does not possess a derivative (that is, the derivative is always 

infinite. Certain components only of x(t) will have a derivative 

if the corresponding rows of F(x, t) are void). 

Let us consider the physical process X(t) described by the 

ordinary differential equation 

X(t) = g(X, 	G(X, t) y(t), 	(2.2.1) 

where y(t) is an approximately Gaussian m-vector physical noise 

process which, as discussed above, must have a finite spectrum with 

which we can associate an upper frequency fu  or correlation time 

Tcor 1: 1/fu [21, p.22]. The forcing function or dynamics g(X, t) 

and noise coefficient G(X, t) are analogous to f and F of the 

diffusion system (2.1.1). We wish to have an equation which describes 

the statistical dynamics of the physical process (2.2.1), but unfor-

tunately the FP equation cannot be directly applied to this non-

Markovian process, as the derivation of the FP equation requires 

that the process be Markov*. 

However, if we can find a diffusion process x(t) which possesses 

some of the properties of the physical process X(t), then by writing 

down the FP equation for x(t), we will obtain a differential equation 

for some of the statistical properties of X(t). Later in this section 

and in Sections 4.1, 2, we will discuss what properties of x(t) and 

* 	A Markov process can be defined as a process x(t) for which 
all the information of the conditional or transition probability 
P(x(t1)1 x(t2), x(t3) 	x(tu)] is contained in P[x(t1)1 x(t2)) 

Where t1  > t2  > t3  ...yen  are points in time which can be arbitrarily 

close together. This "no after-effect" property is a result of the 
independence of the infinitely divisible noise increments mentioned 
earlier, and is essential to the derivation of the FP equation (for 
example, see [21, chapter 4]). 
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X(t) we must match in order that x(t) can be called a "diffusion 

approximation to X(t)", and we will discuss how good the approxi-

mation is in representing certain statistical properties. 

Generally speaking, there are two ways of proposing a diffusion 

approximation to the physical process X(t). On one hand we can 

represent y(t) as the output of a filter driven by white noise, 

and the extra state variables, corresponding in number to the order 

of the filter (i.e. the order of the differential equation descri-

bing it) are appended to the state variables of the system (2.2.1). 

The resultant system in extended state space constitutes a Markov 

process, and the FP equation can be applied to this system. This 

method seems to have been first discussed in the control systems 

literature by Khazen [23, 8], who shows that if y(t) has a rational 

spectral density with a denominator of degree 2k, then y(t) can 

be generated by a k:th order linear filter with white noise input. 

However, this method is at best an approximation as no physical 

process possesses a rational spectral density (or is exactly Gaussian), 

and the order of the filter generating y(t) would have to be 

extended indefinitely before y(t) would be modelled exactly 

[21, p.124]. In practice a few extra state variables would likely 

give an adequate approximation, but we shall see later that the 

addition of state variables greatly complicates the solution of the 

FP equation by the methods of this chapter. Thus we shall in most 

cases prefer the method given below which does not involve the addi-

tion of state variables to the physical process. 

The second method of obtaining a diffusion approximation to 

X(t) is to directly replace y(t) in equation (2.2.1) by white 
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noise of equal zero frequency cross spectral density, and alter the 

dynamics g(X, 	by the addition of a bias term which ensures that 

the resulting process x(t) has equivalent statistics to X(t) 

over time increments which are substantially greater than the 

correlation time T
cor 

 of the noise y(t). This method can be 

deduced from the work of Stratonovich [21, Chapter 4, Sections 7-9] 

who derives an approximate FP equation directly from the statistics 

of the increments of X(t), but the form of the recent (and equi-

valent) results of Clark [22, Chapter 2] on the approximation of 

physical processes by diffusion processes are more appropriate to 

the present argument. In Sections 4.1, 2, we will derive and 

extend Clark's results in a fashion which is more relevant to the 

present problem. 

Clark shows that, given a family of physical processes 

X(t, fu) parameterised by the noise upper frequency fu, as the 

upper frequency parameter fu  is extended to infinity the members 

of the family converge to a diffusion process x(t) in such a way 

that the second moment of the error between X(t, fu) and x(t) 

is of order f -1.* This limiting process will be called the u.  

equivalent diffusion process to X(t), and is given by the following 

Ito stochastic differential equation 

m  

dx(t) = g(x,t)dt >  Q(x,t)Akidt G(x,t)Bdw(t), 
kll 

(2.2.2) 

where Qki  is an n-column vector with i:th component 

(Qu)i  Gils Gii 	, (2.2.2a) 

This convergence is a sample path convergence, as opposed to 
the incremental statistical convergence considered in Sections 4.1, 2. 
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is an element of the constant m x m matrix given by 

limit

t  
f A = 	E[y(t) yT(s)]ds, (2.2.2b) 

u 	co 

B 	is an m x m constant matrix introduced to relate the 

independent unit parameter components of dw(t) to the 

arbitrarily scaled and cross-correlated components of 

y(t) in such a way that the integral of y(t) converges 

in the mean to Bw(t) as fu tends to infinity. (2.2.2c) 

Notes on Equation (2.2.2) and Clark's Results  

(a) The term of (2.2.2) involving Q 	distinguishes the form of 

the equivalent diffusion process from the form of the original 

physical process (2.2.1), and is called the bias term. It will be 

zero if the noise y(t) is additive noise, that is, G(X, t) = G(t), 

or if the noise :y(t) is only multiplied by those components of 

the state vector X(t) which are relatively smooth (then Q0.  = 0). 

(b) The matrix A represents the total information that we must 

have of the physical noise process y(t) in order to obtain the 

equivalent diffusion process, and has been called the characteristic  

matrix of the physical noise by Clark. The definition (2.2.2b) 

differs slightly from that given by Clark who gives 

t r 
limit1rer A 	t j j ELy(r) yT(s)] ds dr. fug  

o o 

, 
J The extra smoothing obtained by the 1r [ •  dr operator in 

Clark's definition is included to account for "quasi-stationary" 

noise processes. These are processes which are not non-stationary 
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in the normal sense (where the statistics of y(t) depend explicitly 

on t), but are processes which are non-stationary in the sense that 

statistical variations are allowed over a time period whose maximum 

is of the order of fu
-1. Thun the non-stationarity disappears 

as fu tends to infinity, but the extra smoothing is needed to make 

the limiting operation smooth. An example of such a quasi-stationary 

process is the piecewise constant process discussed by Clark [22, 

pages 24 and 84]. This process is constant over time increments 

-1 ' 
	

-1 and hence is non-stationary only over time increments f
u , u  

and as fu tends to infinity, this non-stationarity disappears. 

Without modification, Clark's analysis does not include noise pro-

cesses y(t) which are non-stationary in the normal sense, for 

example, a noise process with a time varying variance. 

Clark defines his physical and diffusion processes in the 

time interval [0, T], while we consider ours in the interval 

[co, T]. There is no conceptual difference between these approaches, 

except that Clark's is more convenient for sample path comparisons. 

He must specify initial conditions for his processes at t = 0, 

while we do not. The effect on the definition of the characteristic 

matrix A is that we use the lower integration limit of -co in 

(2.2.2b) while he uses a zero lower limit. This is inconsequential 

as fu tends to infinity, as the integral from -OD to zero of 

(2.2.2b) contributes nothing to the overall integral, and our defi-

nitions coincide for all positive t. 

If we exclude the quasi-stationary noise processes allowed by 

Clark, the noise processes considered are stationary in the wide 

sense [20, p.95], and then we can define the characteristic matrix A as 
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R(T) dT, (2.2.3) 

where R(T) is the correlation function of the stationary noise y(t) 

R(T) = E Cy(t) yT(t - T)]• 
	

(2.2.4) 

In Chapter 4, we will broaden this definition of A in two ways. 

Instead of discussing a family of physical processes parameterised 

by the noise upper frequency fu, we will be considering one parti-

cular physical process where the limit fu—>co is not taken. Then 

the characteristic matrix A will be taken simply as the integral 

on the right hand side of (2.2.3) without the limiting operation. 

This represents a change from the concept of the equivalent diffusion 

process proposed by Clark, for the A matrix of this definition does 

not necessarily remain constant under the limiting operation on the 

physical noise used by Clark. However, it is known that at least 

for some physical noise sources that the A matrix of this defini-

tion does remain constant as its spectrum is extended to infinity, 

and it is proposed in Section 4.2 that the constancy of the A 

matrix be a condition of the limiting operation on a physical noise 

source. 

The second extension of the definition will include non-

stationary noise processes, where the left hand side of (2.2.4) 

becomes R(t, T), and so the left hand side of (2.2.3) becomes A(t). 

Although the concept of a non-stationary correlation function 

R(t, T) may not be familiar, it can be defined by interpreting the 

E[. operator of (2.2.4) as an ensemble average instead of a time 

- average, in which case the non-stationarity of y(t) poses no 

difficulties. 
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(c) The definitions (2.2.2b, 0) imply that 

A + AT = B B
T
, 	 (2.2.5) 

and as far as the FP equation of (2.2.2) is concerned, B need not 

be specified as only B BT  is needed. Further, if we wish the 

system (2.2.2) to model the statistics of the physical process (2.2.1), 

then B can be chosen to satisfy (2.2.5) without regard to (2.2.2c), 

which is not a unique specification of B. However, if we wish the 

system (2.2.2) to model the sample paths of (2.2.1), then B must 

be chosen exactly as in (2.2.2c). It is noted that B in (2.2.2) 

is merely a noise scaling factor, and could be incorporated in the 

coefficient matrix G(x, t) (as in the form (2.1.1)), or in the 

Brownian increment dw(t) (see the form used in [74]). The B 

matrix has not been incorporated in these terms, but has been kept 

separate here to keep G(x, t) of (2.2.2) the same function as 

G(X, t) of (2.2.1), and to keep w(t) a unit parameter independent 

Wiener process. In Section 4.1, the relation (2.2.5) is modified when 

the physical noise y(t) is non-stationary. 

(d) Clark's prcof has required that y(t) be a Gaussian process, 

but the results of Stratonovich [21] and the more particular results 

of Wong and Zakai [24, 25] and Astrom [26] indicate that the approxi-

mation result of Clark is valid for a wide class of piecewise con-

tinuous noise processes y(t). In Sections 4.1, 2, we present an 

analysis which derives Clark's results using only the assumption 

that the physical noise process y(t) possesses a (non-stationary) 

correlation function R(t, T). The latter assumption seems to cover 

most noise processes found in practice. 
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Fokker-Planflk Equation for the Diffusion Approximation 

We can write down the FP equation (1.2.1) for the diffusion 

process (2.2.2) by noting that the incremental moments (1.2.2) are 

given by [see Appendix A, or compare with (2.1.1, 2)] 

m 

and 

b(x, t) = g(x, t)   Qkl(x' t) Akl' k21 

a(x, t) = G(x, t) B BT  GT(x, 

G(x, t) [A + AT] GT(x, t). 

(2.2.6) 

(2.2.7) 

Concerning the choice of diffusion approximation (2.2.2) 

to the physical process (2.2.1) by the method of Clark, it will 

be useful to of'-r the following intuitive statement. The diffusion 

process x(t) will be a process which will appear to have properties 

similar to the physical process X(t) to an observer who can only 

detect frequencies substantially below fu. Then the solution of 

the FP equation for x(t) will accurately give the transition proba-

bilities of X(t) over time increments substantially greater than 

Tcar • This statemen:; cannot be deduced from the results of Clark 

who speaks of the order of convergence of the family X(t, fu) 

to x(t) but does net give a bound on the error. However, the 

related statements of Stratonovich [21, pages 89, 94 and 122-126] 

substantiate the above statement. Moreover, the main purpose of the 

analysis given later in Sections 4.1, 2, apart from the extensions 

to non-Gaussian and non-stationary noise processes, is to derive 

the equivalent diffusion process in such a way that the approxi- 
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mations made in the derivation give an intuitive feeling for the 

scope and validity of the approximation. At that stage, the 

intuitive statement given above will be enlarged upon, and its 

plausibility should become evident. 

In contrast, the first method given for modelling non-Markovian 

processes by adding extra state variables to account for the non-

zero correlation time T cor of the physical noise y(t), does model 

the physical process for time increments of the order of, and 

smaller than, Tcor. Thus if this statistical information is 

required, the first method of modelling must be used. 

The results of Clark, their extensions, and their application 

to simulation problems will be discussed more thoroughly in subse-

quent chapters. The rest of this chapter will discuss two methods 

of solving the FP equation numerically, and present a simple example. 

The FP equations involved will describe the statistics of the dif-

fusion process x(t) which is an approximation to a physical 

process X(t). In the light of the comments of this section, and 

Sections 4.1, 2, the processes x(t) and X(t) will be inter-

changed without further comment, and the implicit approximations 

involved should be kept in mind. 
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2.3 Numerical Solution by Finite Differences 

It is well known that analytical solution of partial differential 

equations is feasible only in special cases. Stratonovich [21, Ch. 4, 
'Section 4] discusses the separation of variables method for one dimen-

sional cases, but the resulting second-order equation in x can only 

be solved for simple cases. Other analytical methods are discussed 

by Merklinger [1, Chapter 4] and as he comments, it becomes clear 

that our attention must be devoted to approximate numerical methods if 

non-linear examples of some generality are to be studied. 

Although semi-analytic methods can be used to aid a numerical 

solution (e.g. transform or orthogonalisation methods, Section 2.4), 

the most direct approach to numerical solution is by finite differences, 

and is the approach most commonly used for partial differential 

equations in general [27, Chapter 15]. Although much research has 

been devoted to finite difference methods by numerical analysts, the 

solution of partial differential equations on a computer is still by 

no means a straightforward operation. 

The FP equation is a linear parabolic partial differential 

equation, and an account of the problems associated with the appli-

cation of finite difference methods to parabolic equations in one space 

variable is givenbyRichtmyer [28]. As the FP equation is linear, 

we avoid many problems associated with solving non-linear partial 

differential equations, but the nature of the space dimensions of the 

FP equation, which are the spatial domains of the system (2.1.1), 

present some interesting problems. 

The author hns had experience with solving some one- and two-

dimensional'examples, and the method pertaining to a one-dimensional 

example has been reported earlier [29]. As the finite difference 

methods used are fairly standard ones in the field of numerical analysis 

the presentation of this section will be confined to a discussion of 

a few special problems associated with the FP equation, such as the 

treatment of spatial boundaries during a transient solution. To this 

end the material in [29] will be reviewed, as the one-dimensional 

case is sufficient to illustrate the techniques involved, and the 
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design example presented in [29] will be discussed as it illustrates 

an interesting application of transient FP techniques. 

In connection with the discussion of the previous section, 

the FP equation presented in [29] was only valid for systems with 

additive noise (e.g. G(X, 	= G(X) in (2.2.1 )), in which case 

it did not matter if the noise y(t) were strictly white or not. 

The quantity cr2(t) introduced in [29, page 257] should have been 
called the zero frequency cross-spectral density, which is the dT 

integral of the variance-covariance matrix R(t, T) 	

2

(t)S(T). 
, In Section 4.1 we shall see that cr2(t) is given by 

oe 

ar2(t) = A(t) 	A*(t) = I R(t, T) d . 	(2.3.1) 

In this thesis we shall allow forms of the FP equation which are 

more general than that of [29], in that we shall allow state-dependent 

(non-additive) noise processes, and so have to distinguish between 

white noise and physical noise as outlined in Sections 2.1 and 2.2. 

2.3.1 	Example of a Noisy Control System 

Let us consider the first order regulating system given by the 

following differential equation 

X(t) = -cX-c2X
3 +03  (t) 
	(2.3.2) 

as shown in Figure (2.3.1). Here X(t) is the state of the system, 

c3  (t) is the command input, and c1  c2  are the feedback coefficients. - - 
The system has the response or relaxation time [21, P. 99] 

Trel 	- gX(X)  -1 = (c1 	c2  X
2)-1  

- - (2.3.3) 

in which X2  should be replaced by the mean square value of X to 

give a realistic value to Trel. The relaxation time is analogous 

to the time constant of a first order linear system, and T
rel 

-1 

gives an estimate of the upper frequency response of the system. 



x(t) 	x3(t) 	-1 

3X3(t) 	3X5(t) 	-3X2(t) 

0 
	

0 	 0 
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Further, we shall assume the feedback coefficients can have 

random components along with a constant part 

Y.1(t) 	. 1, 2, 	(2.3.4a) 

and the command signal has a deterministic part c
3
(t) which is 

constant or slowly moving with respect to Trel
-11 and a random 

part y3(t) 

c3(t) = c3(t) + y3(t). 	 (2.3.4b) 

We shall assume that yi(t), i = 1, 3 are wide band physical noise 

sources of zero mean and correlation function R(t, T). The noise 

source y(t) will then be characterized by the matrices A(t) 

and A*(t) as in Chapter 4. 

When the system (2.3.2) is written out in the form (2.2.1), 

we find g(X, t) has the single component 

g(X, t) = 	c X(t) - c2X3(t) + c3
(t) 
	

(2.3.5a) 

and G(X, t) has the single row 

G(X, t) = [ -x(t), 	-x3(t), 	1 ]. 	(2.3.5b) 

In order to obtain the diffusion process x(t) which is equi-

valent to the physical system X(t) (2.3.2) in the manner described 

earlier, we will need the terms of equation (2.2.2). From (2.3.5b) 

we obtain the matrix 

Q(X, t) 

(2.3.6) 
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which, in conjunction with the noise characteristic matrices, gives 

the equivalent diffusion process (2.2.2). The FP equation is then 

obtained via the incremental moments (2.2.6, 7). The solution of 

the FP equation for the equivalent diffusion process will give us 

the statistics of the physical system over time increments sub-

stantially greater than T cor, the largest time shift 
T at which 

any element of R(t, r) has a significant non-zero value. 

In Chapter 5 we shall see what form the characteristic matrix 

A takes for some common noise sources, but for this chapter we will 

only consider the example given in [29]. In this case, where ci, 

c3, y1(t) and y2
(t) are all zero, the noise y(t) = y

3
(t) is 

scalar and additive, and the bias term of (2.2.2) given by A and Q 

is zero. The diffusion process equivalent to (2.3.2) is then simply 

dx(t) = 	c2x3(t) dt + C7(t) dw(t) 

as y(t) has the property 

A(t) + A*(t) = B2(t)  = (r2(t) = 2D(t), 

where B is introduced in equation (2.2.2c) and later modified to 

B(t) in equation (4.1.26), or (t) is as used in [29], and2100(t) 

is commonly called the intensity of the noise. The associated 

FP equation is given by 

aP 	t) 
	 , 	 z, p  

(x, 
2 

(x, 	= 3C2X2  PkX 2  t) 	C X3 	(x,t) + D(t) --- t) 2 ax 	3x2 

(2.3.7) 
with P(x, to) given as an initial condition at t = to. 

Although this example adequately illustrates the points of 

this section, it does not bring out problems arising when g(X, 

is discontinuous in X, or when the derivative gx(X, t) cannot 

be explicitly obtained. The case of a discontinuous g(X, t) has 

been extensively discussed by Merklinger [1]. The FP equation does 
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not hold at such discontinuities, and the solution must be obtained 

separately in regions divided by the discontinuity and then pieced 

together at the boundaries using continuity and conservation con-

ditions as discussed in Chapter 3. If gx(X, t) is not explicit, 

it must be obtained by the finite differencing method below, 

which will add to the finite differencing errors in the space 

variable. 

2.3.2 	Choice of Finite Difference Model 

Characteristically, finite difference methods divide the domains 

of the independent variables x and t of (2.3.7) into a finite 

number of discrete cells parameterised by the cell dimensions 

Ax and At. Algebraic methods are then used to solve for the 

dependent variable P at discrete points on the cell boundaries. 

The mechanics of the continuous to discrete transformation are not 

unique and are summed up in the finite difference model. In 

[28, Table I, page 93], Richtmyer gives an extensive list of pos-

sible finite difference models for the basic parabolic equation. 

Parabolic equations differ from elliptic equations by the 

presence of the time variable t in the set of independent variables. 

Parabolic equations are "initial value problems" in the sense that 

only boundary conditions for t < t1  are needed to obtain the 

solution P(x, t1) at time tl. This means that the solution is 

naturally obtained in a step-wise fashion, solving at all x for 

t successively equal to tl, t2, t3 	(ti+1  - t. = At), 

whereas for elliptic equations, all solution points may be found 

simultaneously. This property, although common to all parabolic 

equations, comes from the "Markov property" inherent in the 

problem: the solution at any space point at a given time t is 

completely specified by the solution at all space points at the 

last available time (usually t At). We will be exploiting the 

Markov nature of parabolic equations in Chapter 3. The steady 

state FP equation (Pt  = 0 in (2.3.7)) is inherently an elliptic 
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equation, although it degenerates to an ordinary differential 

equation in the one-dimensional case, and to an equation similar to 

the parabolic type for the multidimensional case where the noise 

does not excite all states. 

When the solution is obtained at successive time steps, the 

problem of solution instability may be encountered. Instability 

occurs if an error existing at one time step is magnified at sub-

sequent time steps, for then the solution will eventually be ruined 

by the growing error. As the equations involved are linear, error 

terms will grow or decay exponentially, and a stability analysis 

usually proceeds by finding the eigenvalues of the linear operator 

which propogates the solution (and error) forward one time step 

(see [28], Chapter 4). If the eigenvalues are less than one in 

magnitude, the finite difference model will be stable. 

The stability criterion is usually the main consideration in 

the choice of finite difference model. Some models will be stable 

for all values of the parameters At, Ax, but some will only be 

stable for restricted ranges of these parameter values, and in 

particular for unreasonably small values of At. The simplest 

models computationally are called explicit models, as the solution 

at each point in the new time step is expressed explicitly in 

terms of known solution values at old time steps. By contrast 

implicit models are those in which the solution at each point in 

the new time step involves adjacent unknown values in the same time 

step, as well as those from previous time steps, and so simultaneous 

equations must be solved to obtain the solution at each new time 

step. This involves techniques similar to those used for elliptic 

equations, but special considerations will allow us to use direct 

solution methods and avoid iterative techniques. In general we 

will prefer an implicit model as they are unconditionally stable, 

whereas the simple explicit model requires a severe upper bound on 

At to make them stable. 

The most commonly used implicit model is that of Crank and 

Nicholson [28, Table I, p.93, model number 2; 27, p.402; or 30 for 

the original reference]. Among the implicit models it gives a 
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reasonable compromise between (computational) complexity and 

truncation error, and is stable for all values of At and fix. 

In introducing the discrete formulation of the FP equation 

we shall use the following notation and formulae: 

Continuous 	 Discrete  

	

t 	jAt 	j = 0, 1, 2 ... 

	

x 	 x' + kAx 	k = 0, 1, 2, ... K + 1 

	

P(x,t) 	 P.(k)  

) 

	

k) 	P.(k) P(x t) 	Pj+1(  

	

3t 	 At 

)P(x,t) P.(k+1) - P.(k-1) 
3  

)2p(x,t) 	P.
3
(k+1) - 2P(k) + P.(k-1) 

3c2 	 Ax2 

(2.3.8) 

The quantity x' represents the left hand edge of the space grid, 

and the space derivatives given are the usual central differences. 

The time t = jAt is the present time at which we know the values 

P.(k) , k = [0, K+1], and the time (j+1)At is the next time point, 

at which we must solve for the values Pj+1(k).  If the coefficient 

functions g(x, t) and G(x, t) occurring in the FP equation do 

not possess analytic derivatives, as they have in the present example, 

differencing formulae analogous to (2.3.8) would have been applied 

to these functions. Applying these formulae to the FP equation 

(2.3.7) of the system of our example, and grouping the unknown 

values on the left hand side, we have the discrete equation 

- -ihP.3+1(k+1)±(1+h)P. 1(10-ihP. 1(k-1) 



- 1+5 
P.(k) 	h1 

 (k) P 
J
.(10 	h2(k) [13.(k+1) 	.(1c-1)] 

+ l'h [P.(k+1) - 2 P.(k) + P.(k-1)], k = [1, K], 	(2.3.9) 

where we have introduced the following constants and variables for 

convenience 

h -  D At (2.3.9a) 
Ax2 ' 

h
1 
 (k) = 3 At c

2 
(x' + kAx)2 , 

t and h
2
(k) - 

2A Ax c2 
(xl + kAx)3 . 

(2.3.9b) 

(2.3.9c) 

It is noted that we have applied the Crank and Nicholson 

formula only to the second derivative term (with coefficient ih) 

which is all that is necessary for stability considerations [28, p.98]. 

Young remarks that better accuracy is obtained by applying the time 

centered Crank and Nicholson formula to all terms [31, p.424], but 

it is felt that this is a small point unless the magnitude of the 

low order terms are very large compared with the second order term. 

2.3.3 	Solution Procedure and Boundary Conditions  

It is noted that equation (2.3.9) is in reality K simultaneous 

equations for K + 2 unknowns. In most parabolic equations, the 

"unknowns" Pj_0(0) and Pi4.1(K + 1) would be supplied as boundary 

conditions, but for the FP equation, these conditions can only be 

deduced from the behaviour of the system (2.3.2) at the extremes of 

its space variable X(t). Reflection on this question soon leads 

us to agree that the structure of physical systems never allows us 

to specify the probability of the systems' state near its extremes, 



although some information may be available on physical (or practical) 

constraints on the system which would be incorporated into the 

forcing function g(X, t). We are left then to select arbitrary 

methods of choosing a boundary and applying boundary conditions 

which will not affect the solLtion accuracy in regions in which we 

are interested. This means we must devise a procedure for specifying 

Pj+1 	Pj+1 
(0) and 	(K + 1) at each time stage so the solution at the 

interior points of interest Pio(k) are not distorted by the 

arbitrary choice of boundary conditions. 

Choice of Space Grid - Ax Parameter 

To choose the extent and nature of the discretisation of the 

space variable x, we must have an a priori estimate of the range 

of the significant solution, and in a manner depending on the use 

we have for the solution, accuracy requirements will influence 

our choice. For a stable control system, the probability density 

P(x, t) will vanish at values of the space variable x sufficiently 

far removed from the system's mean value, and we shall apply a 

truncation condition at "edge" points which are beyond the area 

of interest, or sufficiently far from the mean value to represent 

an essentially-zero solution value. Merklinger [1] discusses a 

transformation which gives a space discretisation with a non- 

uniformly spaced grid, which tends to concentrate solution points 

in the region of interest. This involves some extra programming 

and computation, but seems to improve accuracy in special cases. 

In this study, we are concentrating on transient analysis of system 

statistics, and the grid requirements may change during the course 

of the solution, so optimising the grid via transformations will 

be impractical in the general case. 

To proceed to a specific example, let us set c2  = 0.1 and 

let the zero frequency noise spectrum S (0) = 2D = 1.0. We 

note that the output X(t) will be symmetrically distributed about 

the mean value m
x = 0.* 	To obtain an a priori estimate of 

the steady state variance of X(t), we shall use the technique 

of statistical linearisation. The system 

In the steady state 
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X(t) 	- 0.1 X3(t) + y3(t) , 	(2.3.10) 

will be replaced by an equivalent linear system 

X(t) = - keq X(t) + y3
(t) 
	(2.3.11) 

where keq 
is an equivalent gain chosen by the method of Booton 

[32]. This technique assumes that the input to the zero-memory 

non-linearity (-0.1 X3(t) of (2.3.10)) is approximately Gaussian, 

and essentially minimises the mean square error at the non-linearity's 

input caused by replacing it with a constant gain. If the input 

to the non-linearity is X(t), and the resultant output g(X(0),, 

then 

keq E [- X . g(X)]  
E [X2j 

(2.3.12) 

If we assume X(t) is Gaussian with zero mean and variance 

V
x, then 

k 	- 01 E [X4] 	0.3 V 
eq V

x 	
x (2.3.13) 

The variance Vx now, can be found for the linear system 

(2.3.11) whose system function [33, p.328] is 

1  H(jw) = 3
w + keq 

1/keq 

 

(2.3.14) 
1 + 3 kw  

eq 

We will then assume noise input y(t) is exponentially correlated 

with cut-off frequency wo  (the approximation made later (2.3.18) 

applies equally well to any band-limited signal with cut-off frequency 

wo) so that 

-IT' wo  
R (T) = V e 

and S 
Y
(w) -  

2 Vy/wo 

1 + ( wo  

(2.3.15) 

(2.3.16) 



is the power spectral density of the noise y(t).* 

The spectrum of X(t) is then given by 

S (w) = H(-jw) S (w) H(jw) 

2 V 
= --- 

2 
wo keq 

1 

 

(2.3.17) 
[1 + (1)2- 	k )2][1 + ( 	)2] 

o  eq w  

-1 and as we have assumed earlier that wo  >) keq 
(as k

eq = 0(Trel) 

and w
o 	0(Tcor 

-1) ), the integral of Sx
(w) will be well approxi-

mated by putting wo  = op. Then X(t) corresponds to an 

exponentially correlated signal 

V 	-k IT' 

Rx(T) 	k e eq 2 
W
o  eq 

(2.3.18) 

V 
which has a variance V

x 	w
o 
k
eq 
	 (2.3.19) 

Substituting this in (2.3.13) and letting y3(t) have a unit 

spectral density at low frequencies (that is, 2 Vy  wo-1 = 1 in 

(2.3.16)), then 

keq
2 

= (0.3) 0.5 = 0.15 

and 
	

keq = 0.4. 
	 (2.3.20) 

Then from (2.3.19), we can say that the variance of X(t) will 

approximately 

o.5 
Vx = 074- = 1.25 • (2.3.21) 

* The Fourier transforms used in this thesis will be the symmetrical 
f transform [34, p.66] defined in Chapter 5, although it will often 
be convenient to use w as a parameter. 
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This is the variance of a Gaussian distribution whose tails will 

extend to about X.= t 4 , but it is also an estimate of the 
variance (as• k

eq 
was derived from a mean square criterion) of 

the non-linear system (2.3.10) which, because of its "hard" cubic 

feedback, will have an output distribution with much shorter 

tails than the Gaussian. We shall estimate, then, that the system 

will hardly ever go beyond X = t 3 , provided the initial con-
ditions specify the system well inside this range. We see later 

from Figure (2.3.5) that these a priori estimates are quite 

accurate, which lends weight to the method of statistical lineari-

sation as a rough solution check. 

In the present example, we are studying the transient statis-

tics of the system from an initial condition given by a low-variance 

peaked distribution, and the solution will expand to its steady 

state variance estimated above. We shall see later that the boundary 

condition sensitivity is reduced if the solution is near zero at 

the boundary, and thus we shall choose the boundary at X,= 1: 3. 

The number of points is chosen with regard to the accuracy 

and resolution desired in the X domain, and in the case of higher 

dimension problems storage capacity and computing effort will be 

a limitation. In the present example, Ax = 0.2 (31 points) was 

found to give sufficient accuracy for the purpose at hand. If 

extra accuracy was desired in the initial stages of the transient, 

the grid could be made adaptive to expand with the solution, but 

we shall see later that this may accentuate difficulties in regions 

of a rapidly varying solution. An adaptive grid was tried, but 

not found efficient, as all the coefficients of the linear equations 

(2.3.9) had to be recomputed at each time stage. Although one can 

often make a good a priori guess at the X grid used, it should 

be emphasized that the finite difference method does not give us 

any explicit estimate of solution accuracy, and the programmer must 

always try different values of Ax to obtain confidence in the 

solution. A good rule of thumb for experimental determination of 

accuracy is that halving or doubling the grid size will produce a 

change in solution which is of the order of the accuracy of either 

solution. 
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Solution Procedure  

Owing to the structure of the left hand side of the linear 

simultaneous difference equations (2.3.9), when they are written 

in matrix form the coefficient matrix is tri-diagonal. Because of 

this special form, where all the matrix elements are zero except 

those on and directly adjacent to the main diagonal, iterative 

techniques need not be used to solve the large matrix, and the 

following elimination type method is very efficient [28, p.101]. 

Let the solution at time j + 1 be expressed as a recursion 

relation following from right to left across the grid: 

Pj+1 
(k) 	E

k  P. (k + 1) + Gk 
, k = 0, K, 	(2.3.22) j+1 

where the recursion coefficients E
k and Gk are obtained by 

substituting (2.3.22) into (2.3.9) with the k index reduced by 

one. This has the effect of eliminating 
Pj+1(k  - 1) from (2.3.9) 

and, letting the right hand side of (2.3.9) equal the known quantity 

Dk  , we have 

1 	Dk + 2h Gk 1  P (k) - 	
-22
h  

. P. (k+1) + P. 
	1 + h 	

Ek -1 	J+1 	1 + h ih Ek -1 • 
(2.3.23) 

Comparing this expression for Pj.1_1(k) with (2.3.22), and 

equating coefficients, we have the following recursive formula 

for the E G
k coefficients, the recursion this time travelling 

from left to right: 

E
k 

- 	 
1 1 + h -01 E

k-1 

(2.3.24a) 

G
k 

_ 
Dk  + 2h G_ 

1 + h - -ffh E
k-1 

, k = 1, K + 1. 	(2.3.24b) 

The form that the boundary conditions must take is now apparent. 

.The E .G
k  series is determined when Eo and Go are supplied, 
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and then the solution Pj+1(k)  can be obtained when P. (K + 1) 

is supplied. A method described below will make the solution quite 

insensitive to choices of these constants. 

Choice of Boundary Conditions  

Of the series (2.3.24) for Ek  and G
k
, we see that Gk 

dependsonthesolutionP.(k) by way of Dk, whereas the Ek  

series is solution-independent, h being a constant. This means 

that unless other considerations apply (e.g. a symmetry condition 

on the solution), E0  can be chosen independently, and indeed we 

note that for all positive h, the series (2.3.24a) converges to a 

value E
s 

independent of E
o
. This value is found as the lesser 

solution of the quadratic equation obtained by replacing Ek  and 

E
k-1 

by E
s in (2.3.24a). The limit Es is well behaved for all 

positive h , is always between zero and one, and is reproduced in 

Figure (2.3.2) for convenience. 

Figure 2.3.2 

Variation of limiting boundary condition E
s 

with h 

The suggested approach is to let Eo  equal this limit Es, 

which will make all Ek  = E. Disregarding the effect of Go, 
 

this operation removes the effect of the left boundary altogether, 

and was found to work well with the choice of G
o 

given below. Thus 

, k = 0, K. 	(2.3.25) 
1 + h - u1 +2h 
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to 
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As the coefficients of the Gk 
series (2.3.24b) are not con-

stant, we cannot apply a similar treatment to this series, but we 

note the following points: 

(1) The G
k 

series loses its dependence on G
o 

as k 

increases, as from (2.5.24b) we have 

Gk = function (h, D1, 	Dk
) + 

 

2h   

 

k G 9 0 

 

1 + h vhEs 

 

     

     

(2.3.26) 

and the quantity in braces will always be less than one. For con 

venience this quantity is reproduced in Figure (2.3.3) below. 

+ 
/ 	- jhEs  

Figure 2.3.3 

Variation of a parameter of Gk  series with h 

We see that for values of h used in our example (h < 5, say) 

Gk  loses its dependence on Go  very quickly, and at most only one 

or two points of the solution adjacent to the left boundary(1) Pj+1 
or P. (2), will be affected by a wrong choice of G

o
. 

(2) Owing to the relative magnitudes of the solution at the 

edge and at the centre of the'grid, it turns out that Go  is much 

less than G
k near the centre of the grid. This fact lends weight 
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to the argument of point (1) above, and as the solution Pj+1

(0) 

will be very small, we shall set Go 
to an arbitrary small constant. 

This can be done in a fashion similar to a semi-permeable boundary 

by setting 

G
o 	

a G1 ,  o < a < 1 , 	 (2.3.27) 

where the G
1 

is taken from the last time stage. This procedure 

is useful during the transient solution as it allows G
o 

to change 

in a stable manner. In practice, a is quite small, 0.1 or 0.2, 

and the solution Pi41(1) depended little on this choice of a. 

(3) The technique of a dual solution outlined below will further 

reduce the solution sensitivity to G. 

Dual Solution  

The choice ofPj+1  (K + 1) at the right hand boundary is 

somewhat more critical as it has a more direct effect of the solution 

adjacent to it. As Es  < 1, errors will not be propagated too 

far, butPj+1 (K) may have a significant error caused by the choice 

of 	
P. +1 ,(K + 1). There is also the need to allow P. (K + 1) to 

change during the transient solution. As this boundary condition 

is more critical, we will avoid expressing 
Pj+1(K 

 + 1) as a factor 

of P.(K), the semi-permeable boundary method, but we note that the 

solution procedure outlined above computes P.(0) with reasonable 

accuracy (provided E is not too small or G
o 

is chosen reasonably). 

A dual method for solving the tri-diagonal matrix is proposed which 

will compute P.(K + 1) with similar accuracy. 

The right to left recursion series (2.3.22) will be supplemented 

by a left to right recursion: 

	

Pj+1 
 (k) = E

k  P'. (k - 1) + G' 	k = 1, K + 1. 	(2.3.28) j+1 



G' -  	k = 0, K. 
1 + h 

1  h E' k+1 

Dk + vhG' k+1 (2.3.29h) 
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Paralleling the relations (2.3.24) we find 

E' _ 

 

2 u  

h 	'hE' k+1 

(2.5.29a) 

 

The same remarks apply to these series, that is, 	has a steady 

state solution E' = Es, and G' 	must be chosen arbitrarily 
k+1 

(expressed as a factor a of G' of the previous stage). 

The solution at time j + 1 is now taken as an average of 

the two dual solutions (2.3.23) and (2.3.28). The edge probabilities 

+ 1) and 1141(0) are taken as the corresponding values 

of the averaged solution at time j. This procedure was found to 

greatly minimise the errors occurring at the boundary and allows 

the boundary valueS to adjust themselves in a stable manner during 

the transient solution. 

This method of dual solution has the added advantage that 

any errors caused by the application of arbitrary boundary conditions 

will be symmetrically distributed through the solution, an important 

factor if an accurate estimation of the solution mean value (or other 

odd-order moments) is desired. 

The effect of this method of applying space truncation condi-

tions was checked in the example to follow, by truncating at several 

points further in from the original boundary, and noting the change 

in the shape of the residual distribution. This shape was found 

to be virtually unchanged even for truncation points very near the 

centre of the distribution, but in this case the normalization 

operation described below was difficult to perform unless some 

information were available about the truncated tails of the distri-

bution. Thus the method of applying boundary conditions via the 

dual solution was felt to be very successful. 
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Normalisation  

A property of the probability density function P(x, 	is 

that its integral over the space x must be unity at all times. The 

continuous Fokker-Planck equation preserves this property, but the 

effect of discretization and boundary condition errors in the numerical 

solution is to make the integral drift away from unity, by a small 

amount at each time stage. It is therefore expedient to normalize 

the distribution at each stage in the solution using the rectangular 

integration rule, multiplying P.(k); k = 0, K + 1, by a constant 

factor to make 

P.(k) . Ax = 1 . 	 (2.3.30) 
k 

The accuracy of this operation depends on Ax and on the 

amount of distribution lying outside the space grid, but an error in 

this operation will only alter the P scale and not change the 

fundamental shape of the solution. In the procedure described earlier, 

we cannot use this normalisation condition to arbitrarily choose a 

boundary condition and compensate by normalising, as an arbitrary 

boundary condition will alter the shape of the solution, which 

normalising cannot correct. 

An important feature of the normalising operation is that 

the normalising factor used is an excellent indication of the average 

size of discretisaticn and boundary condition errors. If there 

were no errors, the factor would be unity, and the percentage 

difference from unity gives an average indication of the relative 

size of the numerical errors introduced at each solution stage. 

In the example to follow, this normalising factor was kept to 0.001 

of unity. 
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2.3.4 	An Application of the Transient Solution 

As an example of the use of the FP equation for dynamic predic-

tion in noisy non-linear systems, an adaptive sampling and alarm 

scheme will be designed. 

Consider the system of Figure (2.3.1), with the parameter 

values given earlier, as a regulating system to keep the system 

output X(t) at zero in the face of the noise disturbance y
3
(t). 

Suppose the system becomes dangerously overloaded if X(t) exceeds 

- 2, and we wish to estimate X(t) to determine the extent of this 

danger. Suppose that measurements of X(t) are difficult or 

costly to make, and so we will minimise the number of measurements 

taken by using the FP equation to predict the system's output between 

samples, which will determine when the next sample should be taken. 

We recall that the solution of the Fokker-Planck equation is 

the system's output probability density function, evolving with 

time, conditional on an initial value or distribution being given. 

Thus, unless prior information is to be considered, the measurement 

gives the initial distribution P(x, 0) and the solution predicts 

future system probabilities P(x, t). The measurement could be 

exact, P(x, 0) being a delta function, or could contain some known 

error or expected deviation. A common model of sampling statistics 

is to assume a normal error distribution so that the initial pro-

bability distribution is given by 

P(x, 0) = N(mx, nfc) , 	 (2.3.31) 

where the right hand side is the normal distribution with mean m
x, 

the measured value, and standard deviation n
x
, the expected 

measurement deviation. 

Following each measurement, the Fokker-Planck equation is solved, 

and the probability that the system's output exceeds the given 

bounds is found. In particular, the time at which the probability 

exceeds a limit, say 5 per cent, is found, and it is proposed to make 

another measurement when this time has passed. This "safe time to go" 

can be computed for a representative set of measurement conditions and 
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values, and the sampling mechanism could be pre-programmed to 

adjust its sampling period depending on the most recent measure-

ment. If the measured value at any instant exceeds the given 
bounds, or is such that the safety time is less than the minimum 

practical sampling period, the alarm could be given to initiate 

alternate control action or safety measures. 

Choice of At 

We have left the choice of At until this stage as it depends 

to a certain extent on the use we will make of the transient 

solution. If only the steady state solution is of interest, the 

choice of At does not affect accuracy but only the rate of con- 

vergence to the steady state solution, as the solution of the 

parabolic equation (transient FP equation) in the manner described 

in this section can be thought of as an iterative method of solving 

the associated elliptic type equation obtained by setting Pt  equal 

to zero (the steady state FP equation). When the transient solution 

is of interest, there are two main considerations, the resolution 

and accuracy desired in the time step variable, and the prevention 

(if necessary) of oscillations caused by a solution which is rapidly 

changing in the x direction. 

For the time resolution consideration, we want an estimate of 

the speed of response of the system. For this the earlier linear 

analysis is useful where we found the first order system had an 

equivalent gain k
eq 

= 0.4 (2.3.20) with which we can associate 

the relaxation time T
rel 

= k
eq
-1 = 2.5. By analogy with the linear 

system's time constant, we can deduce that a useful increment over 

which to obtain the transient sdution would be of the order of 

0.1 T
rel or about At = 0.2. This estimate is meant only as an 

initial guide, as At must always be varied to test solution accuracy, 

as no explicity estimate of accuracy is available. All we can say 

about accuracy_with respect to At is that the At and Ax 
errors 

discretisation/vary with (At)2  and (Ax)2  for the Crank-Nicholson 

formula. This gives us an estimate of the effect of refining the 

At or Ax grid, but does not allow us to separate the errors due 
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to At and Ax. Thus we must resort to numerical experimentation 

to obtain confidence in the accuracy of the solution. 

To observe the effect of At on a rapidly varying solution, 

let us look at a typical solution of our regulator example. Con-

sidering the case of a perfect measurement X = 0 we use the 

initial distribution P(x, o) = g(0). Choosing the parameters 

At = 0.2 , Ax = 0.2 we find that the solution P(x, 0.2) 

dips below zero at x = 0. ,This occurs because of the poor 
.̀1)  discrete representation of --- and — by formula (2.3.8) 
2 

when P(x, o) has the sharp discontinuity represented by 

P 	1 
o (k°) =  Ax 

k' at centre of grid, 

and 
	

Po(k)  = 0 
	

elsewhere. 	(2.3.32) 

This leads to the discrete values of the space derivatives 

k 

'zi-10(k) 

k' - 2 k' 	- 1 k' 

0 

-250 

k' + 1 k' + 2 

0 

0 

12.5 

125 

-12.5 

125 

0 

0 

x 

epo(k)  

x2 

which clearly do not form an adequate representation of the properties 

of a delta function. This leads to a negative value for P1(k') 

and overestimated values for P
1
(k' 	1) and P1(k' + 1). Further-

more, at the next time stage we find P2(k') is overestimated, 

with P2(k' - 1) and P
2(k' + 1) underestimated. This oscillation 

is stable, in the sense that it eventually dies out, but may be 

undesirable if an accurate solution is needed during the initial 

time stages. 

To reduce the size of this oscillation we note that the change 

in the solution at a discrete point k over one time step is pro- 
.-1 portional to At and has contributions proportional to (Ax) 
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and (Ax)-2. To reduce the oscillations, the solution change must 

be lessened by reducing At or increasing Ax. In the solution 

procedure outlined for parabolic equations, it is easier to alter 

At , and so 1x is usually not changed during the course of a solu-

tion unless an awkward size of At occurs. 

Figure (2.3.4) shows the transient solution for At = 0.1, 

Ax = 0.2. Here the solution point P1(k') has not gone negative 

and the oscillation is quite small by the third time step, and 

negligible by the fifth. It is interesting that this initial 

oscillation has no observable effect on the smoothness of the 

variance curve Figure (2.3.7), and so may not be undesirable in 

some cases. Also, the oscillation has no effect on solution 

accuracy once the oscillation has died away, and so in most cases 

Figure (2.3.4) Transient solution from a delta function 
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it will not be necessary to take a great deal of care in reducing 

the oscillation. 

Typical Solutions  

To determine the growth of uncertainty of the variable X(t) 

following a measurement, the FP equation (2.3.9) was solved for a 

set of initial conditions corresponding to measurements of 

X(o) = mx  = 0, 0.4, 0.8, 1.2 and 1.6, each with a measurement 

noise of standard deviation nx = 0, 0.3, 0.6 and 0.9. For 

the present purpose, solutions for negative measurements are not 

necessary, as the space symmetry of the example about X = 0 

make the negative measurements equivalent to the reflected positive 

ones. Typical solutions are shown in Figures (2.3.5, 6), the 
curves representing the evolution of the probability density function 

with time. 

Figure (2.3.5) corresponds to a noiseless measurement of mx  = 0 

giving a delta function at x = 0 (shown as coinciding with the 

vertical axis of the graph). The solution is shown to spread 

out at t = 0.5 and again at t = 2.0 , showing the increased 

uncertainty of the whereabouts of the system caused by the input 

noise. A measure of this uncertainty is the probability that the 

system is outside the range (-2, 2) shown shaded in the graph . 

This corresponds to the tolerance band mentioned above and the 

probability that the system output exceeds this tolerance is computed 

and shown in Figure (2.3.8) for the cases shown in Figure (2.3.5) 

and Figure (2.3.6). Also shown in Figure (2.3.5) (dotted line) is 

a linear Gaussian distribution of the same mean and variance as the 

solution at t = 2.0. This shows the non-linear character of the 

system which exhibits a large force constant for large deviations 

from zero, and a weak force near the origin. 
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Figure (2.3.6) shows the solution for the case of a noisy 

initial measurement, the measurement having a non-zero value of 

mx = 0.8. Thus the initial distribution is centered about x = 0.8, 

and is Gaussian with a standard deviation, given by the measurement 

noise, of 0.3. It is noticed that the symmetry of the solution is 

no longer preserved, another indication of the non-linearity of the 

system. It was found that for moderate measurement noise, the time 

scale of the solution is little affected by this noise, for the 

solution tends to expand very rapidly from a delta function initial 

condition in any case. For example, in the Figure (2.3.5) case, 

the solution had expanded to as large a standard deviation by 

t = 0.1 as the initial distributiln in the Figure (2.3.6) case (see 

Figure (2.3.7)). This is to be expected as the initial growth is 

very rapid, being caused by a relatively high diffusive force 

acting on the system. 

Figure (2.3.6) 

Time solution of Fokker-Planck equation, noisy non-zero measurement 
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As discussed above, the parameter values at At = 0.1 and 

= 0.2 were considered reasonable for the present application. 

By refining the finite difference mesh size, the accuracy was found 

to be better than 1!ro in root mean square, the errors not being 

large enough to be visible in Figures (2.3.5, 6). 
From this numerical representation of the solution, it is 

easy to calculate functions of the system's probability density 

function. An example is shown in Figure (2.3.7), being the variance 

of the distribution for the solutions shown in Figures (2.3.5, 6). 
The noiseless measurement case begins with zero variance and the 

noisy measurement case begins with the measurement noise variance 

(0.09) and in each case the growth is smooth with time. That the 

growth pattern is somewhat different in each case, however, is 

further indication of the non-linearity of the control system. 

Steady State.  

Figure (2.3.7) 

Growth of system uncertainty with time (output variance). 
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Design of Adaptive Sampling Scheme  

The adaptive sampling scheme will be designed so that when the 

probability that the system's output X(t) exceeds ±2, given the 

last measurement, is greater than 5%, another measurement will be 

taken. This time between samples depends only on the last measurement 

and the known measurement error, as illustrated in Figures (2.3.8, 9). 

To obtain the probability that the system state exceeds ± 2 as 

a function of time, the appropriate section of the solution of the 

transient FP equation must be integrated, as shown in the shaded 

portions of Figures (2.3.5, 6). The resultant function is shown in 

Figure (2.3.8) for the two measurement cases of Figures (2.3.5, 6). 
The accuracy of this function depends on the number of solution 

points outside the tolerance band, especially as the two outside 

grid points have the lowest accuracy. In the example, one third 

of the points were outside the It 2 band, and the curves of 

Figure (2.3.8) were obtained to 2% of scale accuracy. 

Figure (2.3.8) 

Probability that system exceeds tolerance band of 
	

2 
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From Figure (2.3.8) we obtain the time from the last measurement 

that the system can run before the probability of the system output 

X(t) exceeding ± 2 goes beyond the critical level of 5g. This 

time has the same units as the time in the derivative of the dynamic 

system (2.3.2). As most instruments will have a constant measurement 

error deviation, it is convenient to keep this error deviation nx 
as a parameter, and plot the elapsed time to the next measurement as 

a function of the value of the last measurement mx 
This is shown in Figure (2.3.9), and one, or a family, of these 

curves could be used in conjunction with a timer and incorporated 

into the measuring apparatus. Alternatively, if an on-line digital 

computer is used on the process, these curves could be stored and 

used in conjunction with the computer's priority interrupt system to 

Figure (2.3.9) 

Time until Pr(IXI > 2) exceeds 5% 
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time the next measurement. As a further refinement, if the on-line 

computer is updating the system model, the FP equation can be solved 

after each measurement using the best current estimate of the system 

dynamics (2.3.2). 

The curves of Figure (2.3.9) bring out one interesting and 

important point which is probably valid for a wide class of noisy 

systems. They show that for prediction purposes in stochastic 

control systems there is no advantage to using elaborate and expen-

sive techniques to obtain accurate measurements, for the added 

information obtained is soon swamped by the future uncertainty 

caused by noise in the system. This is shown in Figure (2.3.9) by 

the fact that the safety time indicated by a measurement with 

moderate noise (0.3) is very little different from that obtained 

with a noiseless instrument. For larger measurement noises of 

0.6 and 0.9, this difference is appreciable, and a reasonable 

instrument accuracy can be chosen on a basis of the system dynamics 

and the magnitude of noise in the system. 

2.3.5 	Solution for Higher Order Systems 

A solution method using finite differences has been presented 

which is a reasonably accurate and efficient one for the one-

dimensional problem. The numerical analysis and stability of the 

one dimension equation is well treated in the literature, but the 

infinite space range of the FP equation presented special difficulties 

in applying the appropriate boundary conditions. It was found that 

by applying arbitrary properties of the solution, an empirical 

method gave satisfactory space truncation properties. It was also 

noted that solution accuracy depended on the system non-linearity 

being in a form amenable to finite difference representation. 

The numerical analysis of parabolic equations in more than one 

space variable is not as well known, and the literature is usually 

confined to examining a few simple examples. The FP equation 

(1.2.1) will have as many first order derivatives )13/exi  as 

states x. of the dynamic system considered, and as many second 
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orderderivativesastherearestatesx.directly excited by the 

noise vector, given by the existing elements of the n x m matrix 

F FT(x, t) (2.1.3). A simplification is gained if the second 

order derivatives do not involve all the space variables as will 

be seen from the two dimensional examples given below. 

Two-dimensional Example : Case 1  

Consider the noisy system represented by the diffusion process 

(2.1.1) of the form 

dx
1
(t) = f1  (x1, x2, t) dt 

dx2(t) = f2(x1,  x2, 	dt + F22(x1,  x2,  t) dw2(t). 	(2.3.33) 

Here dw
1(t) = 0 and there is only a single noise input dw2(t). 

Dropping the x
1 

x
2, t parameters, this system has the FP equation 

.b17' 	 1  )2 
r 

= 	b7c--1  Ef1 	- ?,x 2 [f2 I)] + )3c 2 LF22
2 P] , 
	(2.3.34) 

2 

which only has a single second derivative term as opposed to two 

first derivative terms )P/)xi  and )Ptax2  . The same situation 

would exist if a second noise term F
21 

dw
1 were added to—the 

dx2 equation of (2.3.33) only (that is, F11and F12 remaining 

zero), as the 2x2 matrix F FT only has a non-zero (2,2) element. 

The numerical analysis of an equation of this form has not been 

found in the literature. The equation (2.3.34) is parabolic in 

the x
2 variable, but has a term similar to tLose in hyperbolic 

equations in the x1  variable. Basically there are two possible 

approaches to this problem: 

(1) assume a second derivative term in x
1 exists and treat 

the equation as a parabolic equation in two space variables, as in 

Case 2 below, or 

(2) treat the problem primarily as a parabolic equation in 

one space variable, as in Section 2.3.2,.3, and then choose the 
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free finite difference model parameters to assure overall stability. 

Preliminary enquiries [35] have indicated that there is no 

theoretical justification to prefer either approach, and the latter 

was used on an example of the form (2.3.33), as it is simpler to 

implement than the first approach. The implicit Crank-Nicholson 

scheme was used on the x
2 

variable as in equation (2.3.9) where 

the known variables on the right hand side now include a finite 

difference approximation to the first derivative )P/)xl  in the 

x
1 

variable. The implicit scheme means that no restriction is 

placed on the size of At on account of the ")2PAx
2
2 term, and 

the finite difference model parameters can be chosen to assume 

stability with respect to the hyperbolic terms. The finite differ-

ence formula used should be shown to satisfy the necessary conditions 

for stability of von Neumann [28, p.59], which are in practice 

usually sufficient conditions as well. 

The above procedure means we have a tri-diagonal matrix to 

solve for each row of the two dimensional finite difference grid 

(that is, a row for each discrete value of x
1
). This was done 

using the solution procedure of Section 2.3.3, the boundary values 

at the extremes of the x
2 

grid being found by the methods of that 

section. The solution for the two extreme rows required boundary 

conditions in the x
1 

variable, on account of the presence of the 

Waxi  term. The choice of these conditions was not found to be 

critical, and a simple reflection coefficient method was satisfactory. 

Although the above method worked satisfactorily, it is clear 

that considerably more effort was needed than the one dimensional 

example. The number of solution points and finite difference model 

constants (2.3.9a, b, c) to be stored was the square of those 

stored in the one-dimensional example, and compUting time was increased 

by this factor as well. In addition, the choice of the finite 

difference model parameters and boundary conditions were more 

difficult (and somewhat more empirical) than earlier, and the 

computer programming much more involved. 
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Two-dimensional Example : Case 2 

Consider now the more general example of the diffusion 

process 

dx
1
(t) = f1(x1,  x2, t)dt 	 i'11(_1,+ 

 
	x2, Odw1  (0 + F12(x1' x2, t)dw2(t)9  

dx2(t) = f2(x1, x2, t)dt + F21(x1, x2, t)dw1(t) -1- F22(x1, x2, t)dw2(t), 

(2.3.35) 

where each component of the state vector x is now disturbed 

directly by noise. The associated FP equation is now 

aP 
=at 	 rflP1  

1 
[f
2
P] + 

2 2 

i=1 j=1 

)2 
[(F 

m
1• P], 

(2.3.35) 

which contains, in general, three second derivative terms (as 

)2Ax
12 

and o /)x
2
)x

1 
are equivalent). This is the two space 

dimensional parabolic equation which has been treated in the litera-

ture, with the exception that the constant and first derivative 

terms of (2.3.36) usually do not appear in quoted examples. 

For this equation, a direct extension of the Crank-Nicholson 

implicit method to all second order derivatives is possible, but 

this would result in linear equations to solve with a matrix 

containing elements off the tree diagonals of the one-dimensional 

example or Case 1 above. The iterative routine needed to solve 

this large matrix is much more time-consuming than the method 

described below which maintains the tri-diagonal form of the linear 

equation matrix. 

The suggested solution procedure is called the alternating-

direction method developed by Peaceman and Rachford [36] and 

Douglas [37]. In this method, the second derivatives of (2.3.36) 

are made implicit in one direction only (say the x1  direction), 

while the derivatives in the other direction (the x2 
direction) 

are explicitly expressed in terms of known values of the solution. 

Then the simultaneous equations involved have a tri-diagonal matrix 
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as before and can be solved easily without iteration. The procedure 

must then be repeated at the next time step of equal size, with the 

difference equations implicit in the x2 
direction, but explicit 

in the x1 
direction, and the overall procedure for the two time 

is stable for any size of time step Lt. 

The computation time for this A_ternating-direction method 

is the same as for Case 1 above, but the programming associated with 

the implementation of the alternating directions and the boundary 

conditions is somewhat more complicated. A modification of the 

alternating-direction method [38] allows parabolic equations in 

three space variables to be solved by the implicit method, but this 

was not attempted. 

2.3.6 	Summary of Finite Difference Methods 

In Sections 2.3.2, 3 and 4 we have outlined an implicit 
finite difference method of solving the FP equation of a noisy 

control system of one dimension and presented an example. Although 

the numerical method involved was well treated in the literature, 

each problem encountered usually presents special difficulties, and 

some of these have been discussed for a typical FP equation. 

Few specific details have been given about the choice of the finite 
difference model parameters and the resultant accuracy obtained, as 

for any particular application, these wilt have to be experimentally 

adjusted to arrive at a suitable compromi3e involving accuracy, 

storage capacity and computing time. 

The choice of boundary conditions was the problem most unique 

to the FP equation, where in most cases, no natural boundary presents 

itself. Arbitrary conditions must be imposed to make the artificial 

boundary as unobtrusive as possible. It was found that for best 

results the boundary should be placed where the solution is smooth 

and small. This is a reasonable prospect for stable regulatory-

type control systems, and a method was described to achieve a boundary 

which did not adversely affect solution accuracy near the boundary, 

particularly when the boundary values were time-varying. 
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In Section 2.3.5 it was shown how a modified version of the 

one-dimensional implicit scheme could be used to solve two and 

three-dimensional problems. Although a few two-dimensional examples 

were solved, they were not presented, as they involved essentially 

the same methods as the one-dimension example. 

The purpose of this section has not been to illustrate new 

numerical analysis techniques, but to show some of the modifications 

which must be applied to standard techniques when specific examples 

are tackled. For example, the dual solution procedure and normali-

sation operation were found particularly helpful in solving the FP 

type of parabolic equation. To the uninitiated, the numerical 

analysis literature concerned with partial differential equations 

is rather formidable. Recent articles treat the simplest examples 

by methods of increasing subtlety, while the engineer is left with 

the older methods to solve his more complicated examples. That is, 

he becomes involved in the "folklore" of the art, which never 

appears in printed form, and finds himself developing special routines 

to meet the specific problem at hand. This is essentially what 

we have done in this section. 

Although a three-dimensional example was not attempted, this 

scale of problem would just be feasible on a modern, high-speed, 

large-memory digital computer. At this point, however, we seem to 

reach the limit of numerical analysis knowl6dge and digital computer 

capacity [39], and we shall have to seek alternative methods for 

higher dimensional problems. Recent developments in the application 

of hybrid computers to the solution of partial differential equations 

[40] seem to afford an interesting alternative to digital computer 

methods. However, the manner in which the equation dimensionality 

affects the speed and storage requirements is the same as before, 

and it seems that the scale of problem amenable to solution on 

hybrid computers is limited to the same order of magnitude as on 

digital computers. 
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2.4 ERE2121.c.AL§9222:121-1LIDE Hermite Tran rms 

2.4.1 	Characterization of a Random Process  

When considering alternative methods of obtaining a numerical 

solution for the statistical description of the vector system 

x(t) of (2.1.1), it is fundamental to enquire into the ways of 

expressing this statistical description, in the hope of finding 

a characterization which is more convenient for computing purposes. 

The characterization used in the FP equation is the first 

order -probability density function P(x(t), t), and if the initial 

conditions are a delta function, the solution of the FP equation 

gives the second order transition probabilities P(x(t),t 1 x(to) = x
o
). 

The complete characterization of the random process x(t) requires 

the infinite order probability density function (p.d.f.) 

P(x(t1), x(t2), 	t1, t2 	) for all t1, t2  ... in the 

domain of the process x(t). If the process is stationary, one of 

these time parameters ti  may be removed, and the rest replaced 

by time differences referred to this arbitrary parameter ti. 

Clearly a p.d.f. of arbitrarily large order can be reconstructed 

from a sufficiently large set of solutions of the FP equation, but 

it will not be very convenient to do this. There is no real 

impetus to construct large order p.d.f.'s, as the added information 

gained about the process x(t) by increasing the order diminishes 

rapidly with the order. Indeed, if the process x(t) is Gaussian, 

then the second order p.d.f. completely describes the process. 

Further, for many applications we will only want the information 

of the first order p.d.f. P(x(t), t) for all t of interest. 

Let us only consider the first order p.d.f. and look at different 

ways of writing it. The characteristic functiOn is often used, and 

is the Fourier Transform of the probability density function. The 

characteristic function is defined for p.d.f.'s.of all orders, but 

again only the low order ones will have significant physical meaning. 

The characteristic function has the advantage that it contains the 

moments of x in a convenient form (as coefficients of a power 

series). Thus the moments of x form a representation of the 
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random process, but corresponding to the first order characteristic 

function, there is an infinite set of moments. For the vector 

process x = [x1, x2, 	xn] there are n or nC1* first moments 

m1i(x)=E[x.], nC2 second moments m2ij  (x, x.) = E [xi  x.] etc. 

Although the significance of the moments m. decreases as i 

increases, their magnitudes usually do not diminish very rapidly, if 

at all, and many of them will be needed to form a good reconstruction 

of the characteristic function. 

An equivalent description to the moments are the cumulants 

which are the coefficients of a power series for the logarithm of 

the characteristic function. The cumulants have the advantage over 

the moments in that, if we are only going to compute the first n 

of them, we can set the higher ones to zero with less consequence 

to the convergence or accuracy of the series for the characteristic 

function. Indeed, if the process x has a Gaussian distribution, 

then only the first two cumulants are non-zero, and thus need be 

computed. Also, if the distribution of x is near Gaussian, then 

only a small number of the first n cumulants will give an adequate 

description of the process x. Clearly this is very desirable from 

the computing point of view, but we can go one step better, for 

the probability density function itself** can be expressed as a 

series whose coefficients are rapidly diminishing (and the repre-

sentation rapidly converging) for distributions which are near 

Gaussian. 

This representation is the Gram-Charlier Type A Series 

or the orthogonal polynomial series of Hermite, as discussed by 

Cramer [51, p.131 and 221]. In the presentation and example to 

follow, we will assume that the system x(t) is one-dimensional. 

Although the presentation becomes more involved, there is no funda-

mental reason why the procedure of this section cannot be applied to 

multi-dimensional systems (see.[52] and [53] for a discussion of 

nCi  is the combination operator "n choose i" 

** This is advantageous, as we will usually want the system's statis-
tical description in p.d.f. form in the end, and it is often difficult 
to obtain the p.d.f. from the characteristic function, particularly if 
the latter has only been obtained in approximate form. 
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multi-dimensional Hermite polynomials. In an interesting recent 

paper, Kolosov and Stratonovich [58] illustrate an approximate 

solution to the optimal stochastic control problem for a two-

dimensional example, by expanding the loss function in two-dimensional 

Hermite polynomials.) 

2.4.2 	Hermite Polynomial Expansions 

Consider the r:th Hermite polynomial given by 

r W 
dr 

H
r
(x) = (-1) e 	(e 	), r = 0, 1, 2, ... 	(2.4.1) 

dx 

which satisfy the orthogonality relationships 

co 
I Hr(x) 1%60 G(x) dx = r ! 	, r = s, 	(2.4.2) 

- co 	 = 0 	r X s. 

The quantity G(x) = (211")-1  e-Ix2 	(2.4.3) 

in the integral (2.4.2) is called the base of the orthogonal poly- 

nomials, and is seen to be the one-dimensional zero-mean, unit variance 

Gaussian distribution.* Hr(x) is a polynomial of degree r , and 

the first few are given below: 

Ho(x) = 1 

H1
(x) 

H2(x) = x
2 - 1 

H
3
(x) = x3  - 3x 

H4(x) = x4  - 6x2  + 3 

H
5 
 (x) = x5  - 10x5  + 15x (2.4.4) 

-d x * Hermite's original definition used the base e , but we will 
prefer this form when considering expansions related to the Gaussian 
distribution. 



co  

P(x, 	= > 	kr(t) (r!)-2  Hr(x) G(x), r=0 
(2.4.6) 

These can be obtained from the recursion formula 

H
r+1

(x) = x Hr(x) - r Hr-1(x) 9 r > 1 	(2.4.5) 

which is obtained later (2.4.26c). 

Consider the expansion of the probability density function 

P(x, t) in the infinite function series 

where kr(t)  , r = 0, 1, 2 . .. are the time varying coefficients of 

the expansion. To obtain an expossion for the kr(t)  , we multiply 

both sides of (2.4.6) by (s - Hs(x) and integrate with respect 

to x over the infinite range: 

co 	 ao 
op 

Jr 	P(x,t)(s!)-'1.1s(x)dx = ;> 	kr(t) I (1'0-  (s!) 	Hr  (x)H8  (x)G(x)dx. 
-m 	 r=0 	-CD 

(2.4.7) 

From the orthogonality relationships (2.4.2), we find that only 

one term of the right hand side series is non-zero, and that is when 

r = s. As the integral then is unity, we have an explicit formula 

for kr 

k(t) = f P(x,t) (r!)-i-Hr(x)dx, r = 0, 1, 2 .•• 
	(2.4.8) 

- co 

Note. The Hermite polynomial expansion for the probability density 

P(x, t) of (2.4.6) is somewhat different from Cramer [51, p.223] 

who includes a factor (-1)r  in both (2.4.6) and (2.4.8), and 

places the scaling factor (rp--.  of (2.4.8) into (2.4.6). The 

(-1)r  factor merely alters the sign of our odd coefficients 

k2r+1(t) compared with Cramer's, but the (r!)-2  factor changes 

the scale of the kr(t) coefficients. The scaling we have chosen 

is convenient as the functions (r:)". 2 Hr(x) G(x) appearing in 
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the expansion (2.4.6) have extrema which are the same order of 

magnitude.* This helps us j.udge the convergence of the series 

(2.4.6) by the relative magnitudes of the kr(t) series alone, 

which is an aid to deciding where to truncate the series. 

Cramer [51, p.223] has shown that the expansion (2.4.6) is 
convergent whenever the integral 

co 1 2 
17  x 
e-r 	P(x, t) dx 

-co 
exists. If P(x, t) is a zero mean Gaussian distribution with 

variance (T2, then the expansion will converge for any cr2 4: 2. 
However, in practical applications, the important question is not 

whether the series will converge or not, but whether the series 

will give an adequate representation of P(x, 	for a small 

number of the lower order terms of the series. 

The expansion (2.4.6) can be rewritten as 

co  

4  P(x, 	= 	 k (t) (r:) 	(-1)r d iG(x)],  

r=0 	dxr L  

and so the individnA1 expansion functions are scaled versions of 

the successive derivatives of the standardized Gaussian distribution. 

To become familiar with the expansion and its convergence properties, 

the coefficients kr(t) were calculated and the distribution recon-

structed using a finite number of the series terms for a selection 

of distribution functions P(x, t): 

(a) P(x, t) 	e-x2/2t? T2  varying, 

(b) P(x, 	(21T)4  e-I(x-m)2 	m varying, 

(c) P(x, t) = 2a for Ix( < a, 	a = (3)i 

* For r = 0, 10 these extrema are .399, 1.242, -.282, ±.223, 
.244,'±.210, -.223, I.197, .209, ±.184, -.198. 

(2.4.9) 

(2.4.10) 
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[1 - a ], fxi < a, a  a = (6)2.1 	(2.4.11) 

Some general comments are as follows. 

The coefficient ko(t) is equal to one for a true distribution 

function P(x, t), as from (2.4.8) we have 

co 

ko(t) = f P(x, 	dx. 	(2.4.12) 
CD 

The coefficient k1
(t) is the mean of the distribution 

P(x, t), as from (2.4.8) we have 

co 

k1
(t) = f x P(x, 	dx. 

-co 
(2.4.13) 

The coefficient k2(t) times (2)2  is one less than the mean 

square of x(t), as from (2.4.8) we have 

0) 

k2(t) = I (2) -iqx2  - 1] P(x, t) dx. 
-co 

The equations (2.4.12-14) imply that if P(x, t) is a zero mean, 

unit variance distribution, then ko(t) = 1, and k1(t) = k2(t) 

= 0. In this case, the coefficients k
3
(t) and k4(t) are pro- 

portional to the well known measures of "skewness" and "kurtosis". 

It is also noted that the convergence of the series (2.4.6) is 

most rapid for distributions of zero mean and unit variance. 

If the distribution P(x, t) has a zero mean and is symmetrical, 

then all the odd coefficients k2,41, r = 0, 1, 2 ... are identically 

zero. This is seen from the polynomial relations (2.4.4, 5) as the 

polynomial H2r.0(x) only involves odd powers of x. If it is 

known a priori, that the distribution P(x, t) has zero mean and 

is symmetrical, then only the even coefficients k2r(t) need be 

computed. 

Some specific comments on the expansions of the distributions 

(2.4.11) follow. We will use the error function 

Error (n) = 1 ( P(x, 	- Pn(x, t) 1 dx, 	(2.4.15) 
- co 

(2.4.14) 



77 ... 

where P(x, t) is the true distribution, and Pn(x, t) is the 

reconstructed version using expansion coefficients up to the n:th 

n  

Pn(x, 	
= 	 kr(t)  (r!)-7Hr(x) G(x). r=0 

Error (n) can be considered as a relative error (relative to one) 

as 	aD 

f P(x, t) dx = 1. 
- oa  

. (a) 	Zero mean Gaussian, variance 07
2 

 . 

The coefficients k
2'  k4 " . k10  were computed, and are 

given along with the error function in Table (2.4.1) below, for 

various values of the standard deviation . 

k
2 

kk  k6 k8 k10 Error (10) 

.4 -.59 .42 -.32 .24 .259 -.18 

.5 -.53 .34 -.23 .16 -.11 .102 

.6 -.45 .25 -.14 .09 -.05 .031 

.8 -.25 .079 -.026 .009 -.003 .0007 

1.0 0 0 0 0 0 0 

1.1 .15 .027 .005 .001 .0002 .0000 

1.2 .31 .19 .048 .020 .008 .0011 

1.3 .49 .29 .18 .12 .077 .013 

1.4 .68 .56 .49 .44 .40 .083 

1.6 1.1 1.5 2.1 3.1 4.5 1.13 

Table (2.4.1) 

1°'  It is noted that the series is divergent for Cr?, (2) = 1.414, 
but Error (10) was not too high even for G''= 1.4. It is also noted 

(2.4.16) 
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that the accuracy deteriorated rapidly for G below 0.6. 

(b) Unit variance Gaussian, mean m  

The coefficients k2 to k10 
 were computed, and are shown 

in Table (2.4.2) below. along with the error function for various 

values of the mean 	m. 

k2 	kk4  kk6  k7  k8  k9 k10 Error (10) 

0 0 0 0 0 0 0 0 0 0 0 

.5 .18 .051 .013 .0028 .0006 .0001 10-5 10-5  106 106  

1.o .71 .41 .20 .091 .037 .014 .005 .0016 .0005 .00006 

1.5 1.59 1.38 1.03 .69 .42 .24 .13 .06 .03 .0055 

2.0 2.83 3.27 3.27 2.92 2.39 1.80 1.27 .85 .54 .13 

2.5 4.4 6.4 8.o 8.9 9.1 8.6 7.6 6.3 5.o 1.48 

Table (2.4.2) 

It is interesting that the series for m = 2.5 is convergent*, 

but many more terms than we have calculated would have been necessary 

to give an acceptable reproduction of P(x, t). The cases m = 1.5 

or 2.0 could be taken as the rough limits of acceptability. 

It is clear that the convergence is only rapid if P(x, t) 

has a mean value near zero, and a standard deviation near one. 

This is reasonable when you consider the shapes of the curves 

(2.4.10) used in the expansion. The basic curve r = 0 is the 

pro mean, unit variance Gaussian, and the subsequent curves are 

its r:th derivatives, scaled by the factor (-1)r(r!)-- 	Thus 

if it is anticipated that the distribution to be expanded has a 

mean value greater than 1.5 in magnitude, or a standard deviation 

* The integral (2.4.9) exists for all values of m, and thus the 
series for case (b) [i.e. a-  = 1] is always convergent. 
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outside the range [0.6, 1.41*, then it will be expedient to apply 

the expansion (2.4.16) to the standardized variate 

y = 
X - (2.4.17) 

 

where m and G are the true or estimated values of the mean 

and standard deviation of the random variable x(t). 

Then the expansion becomes 

n  

P
n
(x, 	= >  kr(t)(r!)-207, Hr(   Cr  

E-ta) 	0-9 	(2.4.18) 
r=v 

where the coefficient series kr(0 are evaluated from 

co 1 
kr
(t) = 	P(x, 	(r!)-;  Hr(  1:2  ) dx. 	(2.4.19) 

-co 

To test the convergence of the series for distributions with 

unusual shape, expansions were carried out for a flat and a tri-

angular distribution. In each case they were standardized to zero 

mena and unit variance. 

(c) Flat distribution  

The even order coefficients were evaluated as follows. 

	

ko 	
k
2 	k4 	k6 	

k
8 	

k
10 

	

.80 	-.22 	-.005 	.12 	-.16 	.17 

Table (2.4.3) 

The coefficients k
o 

and k
2 were included as they should have been 

k
o 
= 1.0 and k2  = 0; the inaccuracy being due to the quadrature** 

* It appears from experimental evidence that a non-zero mean and a 
non-unit variance have independent effects on the convergence of the 
coefficient series. 

** See "Hermite quadrature" a few pages ahead. 
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used to evaluate the integrals in (2.4.8). The flat distribution 

which is contained within Ix' < (3)7  only spanned four points of 

the 20 point quadrature, and a more suitable integration formula 

could have been chosen for this case. Even so, the reconstruction 

P10
(x, t) still contained the essence of the flat distribution 

and the error function Error (10) = .26. As no odd order coeffi-

cients were used, the reconstructed distribution is also an even 

function, and the left halves of the distribution and its recon-

struction are given in Table (2.4.4) below. 

x -3.0 -2.5 -2.0 -1.5 -1.0 -e5 0 

P(x,t) 0 0 0 .29 .29 .29 .29 
P10(x,t) .001 - .011 - .007 .10 .26 .31 .29 

Table (2.4.4) Reconstruction of Flat Distribution 

For much the same reasons that the square wave is the most 

difficult waveform to expand in Fourier series from the convergence 

viewpoint, the flat distribution is likely the worst example to 

be met in expansions using Hermite polynomials. This is because the 

flat distribution is quite unlike the expansion's basic distribution 

G(x) , and also unlike the higher expansion curves dr/dxr  [G(x)]. 

That this accuracy was achieved using only four coefficients k4, 

k6, k8 and k10  , was considered quite promising. 

(d) Triangular Distribution  

The triangular distribution was also difficult to handle because 

of its sharp peak. The even coefficients are given in Table (2.4.5). 

	

k
o 	

k
2 k

10 
k 	k6 	k

8  

	

.98 	-.04 	-.13 	.10 	-.03 	-.03 

Table (2.465)  

Compared with the flat distribution, the coefficients ko  and 

k
2 are much nearer their proper values of 1 and 0, which is an 
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indication of the quadrature accuracy. The higher coefficients 

have decreased more quickly than those of the flat distribution 

[Table (2.4.3)] and the error is better at Error (10) = .09. 

The reconstructed distribution is given in Table 

again giving only the left hand parts. 

(2.4.6) below, 

x -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0 

P(x,t) 0 0 .07 .16 .24 .32 .41 

P10(x't) -.002 .006 .05 .15 .26 .33 .35 

Table (2.4.0 

Accuracy of Hermite Polynomial Expansions  

It was found from the examples above, and others attempted, that 

the accuracy of the reconstructed distribution Pn(x, t) (2.4.16) is 

closely related to the magnitude and the convergence (i.e. tendency 

to zero) of the coefficient kn(0 and its neighbours. This is 

seen from'the fact that the error is directly given by the sum of 

those terms of the series (2.4.6) involving the coefficients 

kn+1(t), 	... etc. It was found that if P(x, t) had a 

mean value near zero, and a variance near one, the convergence of 

the higher coefficients to zero was quite reliable, the main exception 

being the difficult flat distribution. 

On the basis of the author's experience, the following "rule 

of thumb" can be stated. If a relative error as defined by (2.4.15) 

is desired to be in the region of 1 or 2 per cent, then the series 

should be truncated when
n(t) is around 0.05. Generally speaking, 

if the convergence of successive coefficients to zero is rapid, this 

value can be relaxed somewhat to n(t) = .10, but if the convergencu. 

is slow, then this value must be smaller, say kn(t) = 0.02 or 0.03. 

By average rates of convergence we are referring to those experienced 

in case (a) above, for ar-  = 0.6 or 1.3. As is usual with numerical 

analysis procedures, however, it is best to treat each example as a 

special case, and to experiment with different truncation points to 



- 82 - 
gain an estimate of accuracy. In practical examples (to follow), 

	

the true distribution P(x, 	is not available, and we must 

experiment to determine the accuracy. 

Hermite Quadrature  

As well as leading to an expansion formula, the properties of 

the Hermite orthogonal polynomials lead to a numerical integration 

formula called Hermite quadrature which is very efficient compared 

with formulae derived from Taylor series expansions if the argument 

of the integral is near Gaussian in shape. The quadrature formula 

is given by 

co 2 

	

f(x) e"--°c  dx = > 	h
r 
f(xr), 	(2.4.20) 

-CID 	 r=1 

where the x , r = 1, N are the roots of the N:th Hermite poly- 

nomial and the h
r are a set of weighting coefficients. The 

reader is referred to Lanczos [54] for a discussion of quadrature 

methods, where it is shown that the weighting coefficients are 

chosen to make the numerical integration (2.4.20) exact if f(x) 

is a polynomial of degree 2N - 1 or less. This shows the connection 

of the quadrature with the polynomial expansions, for if 

1. 2 
P(x, t) = f(x) e-2)c 	(2.4.21) 

then the finite series (2.4.16) for P
n(x, t) -represents P(x, t) 

exactly if f(x) is a polynomial of degree n or less.* 

Thus the Heruite quadrature formula (2.4.20) is particularly 

suitable for evaluating integrals of the type (2.4.8) for the 
k
r(t) coefficients, for if P(x, t) is a density function which 

is suitable for expansion in the Hermite polynomial series then it 

will be approximately of the form (2.4.21), and the multiplication 

by Hr(x) in (2.4.8), increases the degree of the polynomial 

* As,in this case, f(x) can always be expressed as a linear combin-
ation 

f(x) = 	 a. H.(x). 1 a. i=0 
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f(x) by r. As we have been evaluating kr(t) up to r = 10, 

then we should use a quadrature formula for (2,4:18) which'is 

accurate for polynomials of at least the 20:th degree. As the 

quadrature (2.4.20) is very fast computationally, we can afford 

to be conservative, and the quadrature formula for N = 20 was 

used which integrates (2.4.20) exactly if f(x) is a polynomial 

of degree 39 or less. 

1 2Comparing (2.4.20) with (2.4.8) it is noted that the factor 
e of (2.4.20) does not appear explicitly in (2.4.8), but we have 

assumed P(x, t) is approximately of this foriii. Thus the f(x) 

of the quadrature formula (2.4.20) must be taken as 

2 
f(x) = P(x, t) (1.0-2  H (x) eVx 
	

(2.4.22) 

when applied to the integral (2.4.8). Again it is noted that this 

quadrature formula will only be efficient if P(x, t) .is the dis-

tribution of an approximately standardized variate x(t) [see 

(2.4.17)] with mean near zero and variance near one. If this is 

not the case, the integral (2.4.8) can be transformed by the change 
of variable (2.4.17) to make the quadrature efficient. 

The weights hr and polynomial zeroes x
r are listed in 

many numerical analysis textbooks (for example, Kopal [55, p.530]) 

but are usually given for the Hermile quadrature derived from 

orthogonal polynomials with an e-x  base. If this is the case, 

then it is easily shown that the hr  and xr  needed in formula 

(2.4.20) are obtained by multiplying both the hr  and the xr found 
in the tables by the factor (2)2.  

2.4.3 	Hermite Transformation of the Fokker-Planck Equation' 

We have seen how, under certain conditions, the probability 

density function P(x, t) can be described to a high accuracy by 

a very small number of parameters which are the coefficients of the 

orthogonal polynomial expansion of Hermite. Although these parameters 
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can be obtained directly from an equal number of the moments of the 

variable x(t) [51, p.223], and hence contain no more explicit 

information than the variable's moments, they are a more efficient 

representation than the moments as they contain the implicit 

information of the orthogonal polynomial base G(x) and the other 

expansion functions dr/axr  [G(x)]. Indeed, if a priori information 

leads us to expect that P(x, t) will have a distribution other than 

near Gaussian, then there is a wide range of orthogonal polynomials 

associated with well known distributions which are derived from the 

Sturm-Liouville 	differential equations [56] and one of these 

may form a more efficient expansion series. 

In the previous section we showed how a given distribution 

P(x, t) = P(x) could be expanded in the coefficient series 

kr(t) = kr. We will now apply this expansion to the differential 

equation for P(x, t), the FP equation, and we see that this opera-

tion is in effect an integral transform on the partial differential 

equation, for the space derivates 1174x and ePAx2  can be 

expressed as algebraic operations on the Hermite polynomials. A 

separation of variables then occurs, and we are left with an 

infinite set of linear first order ordinary differential equations 

to solve. The infinite set can be reduced to a small finite set 

by truncation of the expansion series as in the last section, and 

readily solved. 

Consider the FP equation (1.2.1) in single dimension form 

(2.4.23) 

We will assume that the incremental moments b(x,t) and a(x,t) 

can be written as, or well approximated by, a finite power series 

in x, with time varying coefficients if necessary. Then they can 

be written as 

and 

b(x,t) 	b.a.(t) x1, 

Z a(t) xi  * a(x,t) 	i 	. 	(2.4.24) 

* For the summation operators 21 of this section, the index i will 
run from zero to the 
truncation point. 

2 P(
6 	a" 

t) 
[b(x t)P(x t)] + 2 2  [a(x,t)P(x,t)]. 

ax 
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For linear systems, this representation will only involve two terms, 

e.g. bolt) and bi(t), and for many non-linear systems an adequate 

representation should be obtained with only a few more terms. The 

main exception is a system with discontinuities, such as a relay 

system, which, as in the finite difference approach, will have to 

be handled by special methods. This could involve separate solu-

tions in the continuous domains, piecing them together by appropriate 

continuity conditions across the system discontinuity, but it is' 

unlikely that this could be achieved as easily by the present 

approach than by the finite difference approach. We will say no 

more about this except to state that the success of this method will 

depend on how accurate the representation (2.4.24) is for the given 

dynamic system. 

As before, we shall write P(x, ) as 

P(x, 	= 	kr(t) (r!)- Hr(x) 0(x). 	(2.4.25) 

When the relations (2.4.24, 25) are substituted into the FP equation 

(2.4.23), the operations in the equation become space and time 

derivatives of products of series involving Hermite polynomials 

H.(x) and the Gaussian distribution G(x). It is in the fact that 

these operations reduce to simple recursion relations on the Hermite 

polynomial series that the main power of the present approach lies. 

We will present a summary of the necessary relations below. 

Relations (2.4.26)  

(a) By an induction argument on the definition (2.4.1) of Hr(x) 

it can be shown that 

Hr(x)  = r: 

I( Z) 
(..1)k xr -2k 

k=O 	2k  k! (r-2k)! 

x - r(r-1) x 	+ r-2 	r(r-1)(r-2)(r-3)  r-4 = a 	2.4 

where I(.) is the integer part of the argument. 
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(b) Differentiating (2.4.26a) gives 

dx 	= r Hr-1(x) 

(c) Differentiating (2.4.1) directly gives 

dHr(x) 
 

	

	= x Hr(x) 	Hr+1(x). dx 

Equating the right hand sides of these last two relations gives 

the relation (2.4.5). 

time 
(d) Taking the partial derivative of P(x, t) of (2.4.25) gives 

,13(x,t)  
at - 

>---  r(t) (r:)-- Hr(x) G(x), 
r 

where the dot denotes the time derivative. 

(e) Taking the partial space derivative of P(x, t) of (2.4.25) 

gives 

4(x,t),  
bx 	= > k (t)(r!) 2  1-11r  (

x) dG((xx) dHr(x)  G(x)

r  

], 
dx 

kr(t) (r!) rr +1(x) G(x), 
= 

dH (x) aG(x) 
--cr—x . = - x G(x) and 	r 	is taken from (c). dx 

dHr(x) 

as 
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(f) Repeating the operation in (e), we have 

eP(x,t)  
axe  

k 	(r!)- r+2(x) G(x). 

It is noted that the operation ax advances the H index one 

integer, and changes the sign of H. 

(g) From the formula (2.4.5) for x Hr(x) we have 

x P(x,t) = 	kr  (1-0 2  EHr+1(x) + r Hr_1(x)3 G(x), 

where H-1(x) is to be taken as zero. 

(h) Similarly 

1 2 x P(x,t) = 	k 	[Hr4.2(x) + (2r+1)H (x) + r(r-1)Hr-2  (x)]G(x) r 

This operation can be repeated to obtain xsP(x,t). It is noted 

that each multiplying by x shifts the H index up one and down 

one integer, and the Hr_i  with negative indices are set to zero. 

(i) Multiplying (e) successively by x we obtain 

aP x kr 	[Hr+2(x) + (r+1)Hr(x)]G(x), 

2 ()P x 

x3 ?:1)  •Ec- = 

1 
- kr(r!)-  2 [Hr+3(x) + (2r+3)Hr+1(x) + r(r+1)Hr-1(x)]G(x) r 

• kr(r!) [Hr+4(x) + 3(r+2)Hr4.2(x) 	3(r+1)2H(x) 
r 

+ (r-1)r(r+1)Hr_2(x)] G(x). 
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(j) The operations above for multiplying by 3ts  can be summed up as 

x Hr(x) = 

x2Hr(x) = 

x3Hr(x) = 

r+1(x) + r H(x) 

r±2(x) + (2r+1)Hr(x) + r(r -1)Hr -2(x) 

Hr4.3(x) + 3(r+1)Hr41(x) + 3r2Hr_1(x) + r(r -1)(r -2)Hr-3(x). 

Expanding the differentials in the FP equation (2.4.23) and 

dropping the (x, t) argument, we have 

dP 	db 	aP 	o a 	a aP 1 el) at = --s-2P-bFc  + 	P + Fc + 7  a bx2 cox 

Using the relations (2.4.26) and the resealed coefficient 

cr(t) = 	2 kr(t) 	r = 0, 1, 2 ... 

(2.4.27) 

(2.4.28) 

we have 

  

    

[- b 	] [->  crHr+1G]  r 

 

+ a >  c
r
H
r+2

G.  
r 

 

(2.4.29) 

61) 	a 	s e 
The multiplication of the polynomials b, 37c, a, 	and — 

e x2  by the Hr  series is carried out by the relations 

(2.4.26j). The equation (2.4.29) involving the series is separated 

into simultaneous equations, involving single coefficients 8r  on 
the left hand side, by multiplying both sides by Hs  and integrating 

over the infinite range. Then by orthogonality relations (2.4.2), 

only that term in each series involving 111 remains, and we obtain 
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the differential equation for cs(t). Repeating for s = 0, 1, 2 ... 

up to the truncation point, we obtain simultaneous equations for 

the cs(t) which are linear, and do not involve Hr(x), G(x) or 

even x itself. The elimination of x only occurs when a(x2t) 

and b(x,t) are polynomials in x. This is a considerable con-

venience and explains the use of the polynomial form for a and 

b earlier (2.4.24). One difficulty is that the equation for 

cs(t) will in general involve c5+1(t)  cs+2(t) 	(unless the 

system x(t) is linear), and the series can only be truncated at 

cs(t) by setting the higher ones to zero. But this is what we 

have done in the finite expansions (2.4.16) of the previous section, 

and the same remarks as stated there will describe the accuracy 

of the truncation, except that in this case cs  (= ks (s!)-1T) 

is considerably smaller than ks  for large s, and so will converge 

to zero more rapidly than the kr  series. 

In order to avoid an excessive number of terms in the poly-

nomial multiplication in the general case, we will continue our 

discussion with the specific example given in Section 2.3.1 with 

the parameters of Section 2.3.4. In this case 

b(x, 	= b
3  x

3, 

and 	a(x, t) = a
o. 
	 (2.4.30) 

Then (2.4.29) becomes 

 

 

> 	6r  Hr  G = 	3 1;3 x2  r 
c 
r  Hr  G 

b
3 
x3  7- crHr+1G  + ao 	 crHr+2G.  r 	 r 

(2.4.31) 

Carrying out the substitutions for xsHr(x) of (2.4.26j), and 

grouping the terms with the same H index together, we have 
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>  CT

HrG = b3 
\i) crHr+4G + 	[-3b

3 
+ 3b

3
(r+2) + o

]0r
Hr+2

G  

[-6b
3
(r+1) + 3b

3
(r+1)2]o r  H rG + >  (-3b3

r(r-1) + b
3
(r+1)r(r-1)]crHr-2G. 

r 

(2.4.32) 

Now multiply (2.4.32) by (s!)
-1 H

s
(x) and integrate over 

the infinite x range. As an example of the mechanism involved, 

the series in the first term of the right hand side becomes 

co 

> r
(s!)-1  f Hs Hr+4 

G dx, b
3  	- co 

whose elements are zero except when r = s - 4. This term then 

becomes b3  cs_4. The other terms of (2.4.32) involving Hn+i 

are treated by replacing r by s - i and eliminating the H and 

G factors. Thus (2.4.32) becomes 

6s  = b3cs-4  [- 3b3  3b3s 	s-2  [- 6b3(s+1) 	3b3(s4.1)2]cs 

+ [- 3133(8+2)(8+1) + ys+3)(s+2)(8+1)1cs+2, (2.3.34) 

where s = 0, 1, 2 ... , and those coefficients with negative 

indices are set to zero. 

This is an infinite set of linear simultaneous differential 

equations for the Hermite expansion coefficients. It is noted that 

a separation of variables has occurred, as (2.3.34) does not involve 

x, and so our partial differential equation has been reduced to 

a greater extent than some integral transform techniques do. 

As mentioned earlier, there is little difficulty in truncating 

the set of equations to obtain an easily soluble set for the first 

N Hermite coefficients. However, it was noted in the previous 

section that the Hermite expansion for P(x, t) was only useful 

if x(t) had a mean value near zero and a variance near one. For 

(2.4.33) 
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the transient solution of the FP equation, the statistics of x(t) 

will vary away from this normalized condition in general, and so 

we cannot rely upon the Hermite expansion being valid during the 

course of the transient solution. Thus we must apply the Hermite 

transform (i.e. expansion) to a normalized version of the FP 

equation. 

2.4.4 	Hermite Transformation of Normalized FP Equation 

Consider the one-dimension FP equation (2.4.23) which is the 

FP equation of the diffusion system 

dx(t) = b(x,t)dt + F(x,t)dw(t), 

where 

	

	a(x,t) = F2(x,t). 

Define a normalized variate 

y(t)  x(t) m(t)  
of(t) 	cr(t )  / 0, 

(2.4.35) 

(2.4.36) 

(2.4.37) 

2 
where m(t) and cr(t) are the mean and variance of x(t). To 

effect the transformation (2.4.37) we must obtain m(t) and cr(t). 
Differential equations far m(t) and v(t) have been derived in 

Appendix B, where v(t) is the mean square of x(t) and 

cr(t) 	[v(t) - in2(t)rk 
	

(2.4.37) 

The differential equations are 

en(t) = E [b(x,t)], 	 (2.4.38a) 

and 	i(t) = 2 E [x b(x,t)] + E [a(x,t)]. 	(2.4.38b) 

Because of the E [. ] operators on the right hand sides, these 

equations are non-random, and are not functions of x(t). It is 
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noted that if b(x,t) and F(x,t) are linear functions of x 

(making x(t) a linear system), the right hand sides of (2.4.38) can 

be expressed explicitly in terms of linear functions of m(t) and 

v(t), and the equations can be solved separately. For non-linear 

systems, however, the right hand side must be expressed as integral 

functions of P(x,t), and thus the m(t) and v(t) equations must 

be solved simultaneously with the (normalized) P(x,t) equation. 

In this case, the equations for m(t) and v(t) are no longer 

linear. 

To solve (2.4.38) and to complete the solution for the statis-

tics of x(t), we must obtain P(x,t) by solving for the distribution 

Q(y,t) of the standardized variable y(t). In Appendix B we derive 

the stochastic differential equation for y(t), showing it is a 

diffusion process with the incremental moments 

b(y,t) = q1(t) b(1'y + m,t) + q2(t)y 	q3(t), 

and a(y,t) 	q/  2.,\ a(ary 	m, t), =  

(2.4.39a) 

(2.4.39b) 

where ql, q2  and q3  are time varying functions depending on 

m(t), v(t) and cr(t): 

q1(t) = Cr(t)-1 	Cr(t) 	0, 	(2.4.40a) 

q2(t) = -iicr(t)-2  Pr(t) - 2 m(t) 171(0], 	(2.4.40b) 

and q3(t) = 	
l(t). 

(2.4.40c) 

We can now write down the. FP equation for the normalized system 

Y(t) as 

Q(y,t) 	 2 
rb(y t)Q(y 0] + v.!-!-- [a(y,t)Q(y,t)]. -

ay
_  (2.4.41) 

We can now solve this equation numerically by the Hermite 

transform method of the previous section, where we expand Q(y,t) as 



- 93 - 

Q(y,t) = >  cr(t) Hr(y) G(y). 

The distribution of x(t) is then obtained by 

P(x,t) = cr 1(t) Q( xj-ni , 

= (7-1(.0 >  cr(t) Hr(14.221-) G(3411) 
r 

(2.4.42) 

(2.4.43) 

as we had given earlier (2.4.18). 

In Appendix B the differential equations for m(t), v(t) and 

cr(t) are derived in a form suitable for numerical computation, 

and, using the 7oarameters (2.4.30) of our previous example, the 

equations are 

N  

ii(t)= (2P1)  >  cr(t) 	 hsb34r(t)ys  + m(t))3Hr(ys), (2.4.44a) 
r 	s=1 

N  

ir(t) 	(211 \  cr(t)  > 	  h[2 3O0'(t)y + m(t))4  

a(t) = [v(t) - m2(0]1- 1 

r 	s=1 
+ ao]Hr(ys), 

(2.4.44) 

(2.4.44c) 

Cs(t) = [s(s+2)(s+1)b3.40]cs+2(t) + [3s(s+1)b3m(t)0.(t)]cs+1(t) 

+ [3s2b34ht) + s(3b3m2(t) + q2(t))]cs(t) 

+ [3(2s-1)b3m(t)0(t) 	q1(t)b3m3(t) + q3(t)]cs_1(t) 

+ [3(s-1)b3  0
.2(0 + 3b3m

2(t) + q2(t) 	q12(t)ao]Gs-2(t) 

+ 13b3m(t)a(t)]cs_3(0 + [b3i(t)]cs_4(t), 	s = 0, 1, 2 ... , 

(2.4.44d) 

remembering that the cs(t) with negative indices, or indices 

above the truncation point are set to zero. The hs  are the 
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Hermite quadrature weights (2.4.20) for the function evaluations 

at the points ys. 

Solution Example  

In Figure 2.4.1 we show an example of the transient solution of 

equations (2.4.44), for initial conditions corresponding to those 
of the previous example, Figure 2.3.6. These conditions are the 

Gaussian (0.8, 0.09) curve and so we have 

m(o) = 0.8 

4r(o) = 0.3  
v(o) = 0.73 

o(o) = 1.0 
cr(o) = 0.0 r = 1, 10. (2.4.45) 

The coefficient series was truncated at r = 10, but we shall see 

later that a lower truncation point could be used. 

The equations (2.4.44) were integrated using Gill's version 

of the Runge-Kutta routine [55, p.213], with a time step At = 0.1. 

Although the Runge-Kutta method is not the most efficient of differ-

ential equation solution procedures, it has the advantages of 

(a) being a self-starting one-step method (and thus 

structurally like a Markov process), 

(b) being in most computers' program libraries, which, 

combined with (a) means it is very simple and 

automatic to implement, 

(c) being reasonably stable and accurate for the non-

linear equations (2.4.44), although one must be 
careful not to generalise on this point. 

From.(2.4.44) we have that 

o(t) = 0, 

and hence 	co(t) = 1.0, 
	 (2.4.46) 
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which is the normalization condition (2.3.30), one of the conditions 

for Q(y,t) [and hence P(x,t)] to be a probability density function.* 

From (2.4.44) we see that c1(t) and 82(t) will be zero 
[see (2.4.13, 14)] if m(t) and v(t) are determined exactly so 
that y(t) is precisely standardized to zero mean and unit variance. 

Of course this will not be so during the solution of the equations 

(2.4.44), as the m(t) and v(t) equations are not exact owing 

to the finiteness of 

equations (2.4.44d). 
the cr series of (2.4.44a, b) and of the cr 
The non-zero values of c1

(t) and c2(t) 

occurring during the solution will be one indication of the errors 

caused by truncating the cr  series. 

In Figure 2.4.1 we have plotted kr(t) instead of cr(t) 

because of their desirable scaling properties [see note following 

equation (2.4.8)]. The curves are shown for t <3.0, at which 

point their rate of change was small. The steady state values are 

shown as dotted lines, and these are zero in the case of the odd 

order coefficients. These steady state values took a long time to 

be approached (t 10), which is mainly due to the lethargy of 

the system near the origin. 

The error,as measured by the error function Error (n) of 

(2.4.15),was computed using a very accurate finite difference solution 

as a reference. This is shown in Table (2.4.7)
t
for different trunca-

tion points of the coefficient series. Also given in the table is a 

guide to the typical sizes of k1(t) and k2(t) achieved during 

the solution. 

The advantage of using the size of k
1(t) and k2(t) as an 

indication of accuracy is that they are necessarily obtained with 

the solution, and thus are always available, whereas other error 

functions must be computed separately, and are generally not available 

if a known solution is not available. After some computation, some 

confidence was gained in the use of k1(t) and k2(t) as an indica-

tion of the error magnitude, and those values of Table (2.4.7) were 

typical values. 

The other main condition, the non-negativity of Q(y,t), is not 
deducible from the c

r coefficients. 

tOn page 98. 
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Physical Interpretation of the Expansion Coefficients  

The principal advantage of using the Hermite Transform method 

of solution, is that the coefficient series kr(t) helps to relate 

the shape of the solution P(x,t) to the structure of the non-

linearity of the dynamic system x(t). We know that for linear 

systems in which b(x,t) of (2.4.35) is linear in x, and a(x,t) 

of (2.4.36) does not depend on x, the coefficient series kr(t), 

r > 1, are identically zero as the distribution of x(t) is 

Gaussian.* The existence of the kr(t) elements, then, is due 

to the system non-linearity, and we can give the lower order 

coefficients k3(t) and k
4(t) some physical meaning related 

to the form of the non-linearity of b(x,t) of (2.4.36). The 

effect of any non-linearity in a(x,t) on the coefficient series 

is not clear, and will not be discussed. In the comments below 

we will assume a(x,t) = a(t). 

As the odd order Hermite polynomials (2.4.4) contain only odd 

powers of x, and the even order ones contain only even powers, the 

expansion functions (2.4.10) of odd order will be odd functions of 

x, and those of even order will be even functions of x. Thus if 

the distribution P(x,t) is an even (or symmetrical) function 

about the mean value x = m, then all coefficients kr(t) of odd 

order will vanish as they express the asymmetry of the distribution 

referred to its mean value.** Indeed if b(x,t) is an odd function 

of x around the mean value, the distribution of x will be 

symmetrical. Although b(x,t) had this odd function property in 

the example we have quoted, the non-zero condition we have used 

caused an asymmetry to appear in the transient solution. The odd 

order k
r(t) are initially zero, as the initial condition is the 

Gaussian curve, but they grow initially as the non-linearity of the 

* The exception is when there are non-Gaussian initial conditions, 
in which case the elements of the coefficient series will tend to 
zero as several time constants of the system elapse. 

** Remember that the coefficients kr(t) are the expansion coeffi- 
cients of the standardised variable 	y(t). 
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of the system distorts the distribution as it tends towards its 

steady state mean value of zero. This effect disappears in our 

example as the steady state is reached, and the final distribution 

is symmetrical about zero. 

If b(x,t) were not an odd function about the mean value of 

x(t), then a skewness will appear in the steady state distribution 

evidenced by a non-zero value of k
3
(co) . Roughly speaking, the 

value of k
3
(t) will be proportional to how severely b(x,t) is 

away from an odd function. A distribution which has an extended 

right hand tail will have a positive k3(t) coefficient. Referring 

to P(x,t) of our example (see t = 1.0 of Figure (2.3.6)), it is 

noted that the distribution has an extended left hand tail (relative 

to m(1.0) A 0.6), and thus k3(t) has a significant negative 
value. 

The non-symmetry of the distribution is also reflected in 

non-zero values of the higher odd order coefficients, k5(t), 

k
7
(t) 	. These relate to subtler properties of the distribution 

and their physical meaning becomes difficult to interpret. The 

expansion function of (2.4.10) corresponding to the coefficient 

kr(t) has r zero crossings, and as r increases, these functions 

describe the "higher frequency" behaviour of the distribution. 

Because of the degree r of the power series associated with the 

r:th expansion function, the higher expansion coefficients have a 

relatively greater effect on the tails of the distribution than do 

the lower order coefficients. 

The even order coefficients k
4'  k

6(t) ... refer to the 

even part of the distribution P(x,t) which is different from the 

Gaussian. The most significant of these, kii(t), describes the flat-

ness or peakedness of the distribution compared to the Gaussian. 

This is seen in Figure (2.3.5) for t = 2.0 where P(x, 2.0) is 

shown with a Gaussian curve of equal mean and variance. It is noted 

that P(x, 2.0) is much flatter than the Gaussian, which indicates 

a significant negative value of k
4
(2.0). This was also noted in 

the example of Figure (2.4.1). 

The existence of the even coefficients can be traced to the 

odd function part of the system non-linearity, b(x,t), which is 
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different from b
1x. This is most easily seen when .c ..;:,t) is 

expressed as the power series (2.4.24), for then it is the coeffi-

cients b
3
(t), b

5
(t) ... which influence the even order expansion 

coefficients k (t) k6(t) 	. In our example, b
3 

was negative, 

which caused a negative k4(t), or a flattened distribution. If 

b(x,t) were a sign function (an ideal relay) then in the expansion 

(2.4.24), the coefficient b
3 

would be positive, k
4
(t) would be 

positive, and the resultant distribution highly peaked. This is 

confirmed by many of Merklinger's examples [1]. Expressing this 

effect in control systems terminology, if the system non-linearity 

is of the saturating or "soft" type, then k4(t) will be positive; 

if the non-linearity is of the "hard" type, then k
4(t) will be 

negative. Again, it is more difficult to place a physical inter-

pretation on the higher even coefficients k6(t), k8(t) ... as 

these are related to the "higher frequency" components of the 

even part of P(x,t), and especially to the tails of the distribution. 

Truncation of the Expansion Coefficients  

The smallness of the higher expansion coefficients (especially 

k
9
(t) and k10  (t) - see Figure (2.4.1)) and their lack of physical 

meaning suggested that we might get by with fewer expansion coeffi-

cients than we originally retained. Solutions were obtained by 

successively omitting (i.e. setting to zero) the highest two 

expansion coefficients, and the effect on solution accuracy is summarized 

in Table (2.4.7). 

Highest order of 	 Typical size of 

cT 	coefficient 	Error (n) 	k1 
 (t) (t) 	k

2  (t) - ---- 
kept in eqn.(2.4.44) 	 during solution 

	

n = 10 	.010 	.004 

	

8 	.013 	.005 

	

6 	.04 	.010 

	

4 	.12 	.100 

Table (2.4.7) Effect of Hermite Coefficient Series 

Truncation on Solution Accuracy 
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As anticipated, the elimination of k

9
(t) and k10(t) had very 

little adverse effect on the error function, and gave a reconstructed 

distribution P8(x,t) which was hardly discernable 'ram P
10(x,t). 

The elimination of subsequent coefficients did have an appreciable 

effect on accuracy, but depenc'ing on accuracy requirements, the 

retention of only k
3
(t) and k(t) may well provide an acceptable 

solution in conjunction with m(t) and <r(t). 

We have noted that the coefficient series can be severely 

truncated if the distribution P(x,t) is near Gaussian in shape. 

We have also noted that for separation of variables in the Hermite 

transform to be successful, the systeLl functions a(x,t) and b(x,t) 

must be expressible as polynomials, and the effect of this power 

series is to cause coupling between the coefficient equations [c.f. 

Relation (2.4.26j) and the substitution leading to eqn. (2.4.52)]. 
Thus the lower the degree of the power series for b(x,t) and a(x,t) 

the less coupling there is between the cr(t) equations. This 

likely infers that the c
r(t) series could be truncated earlier 

with less ill effects (and that P(x,t) is nearer Gaussian) if 

the power series degree is smaller, but it would be difficult to 

follow up this inference by analytical means. 

2.4.5 	Summary of Hermite Transform Method 

We have presented an infinite series functional representation 

(2.4.6) of a probability density function P(x,t) which is very 
economical of parameters when P(x,t) is similar in shape to a 

Gaussian distribution. This representation is well known in applied 

statistics as the Gram-Charlier series of Type A, but the present 

novelty lies in applying this representation of P(x,t) to the FP 

equation. This substitution is in effect a linear integral transform 

of the partial differential FP equation, which results in a complete 

separation of variables (due to the orthogonality property of the 

functional representation) and a rather neat reduction to an infinite 

set of first- order ordinary differential equations (2.4.34). These 
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can be truncated, under convergence assumptions, to form a readily 

solvable set of equations. 

The convergence properties of the functional representation 

were tested for a variety of arbitrary distributions, and it was 

found that rapid convergence cf the series representation depended 

not only on the nearness of P(x,t) to the Gaussian distribution, 

but on the nearness of x(t) to being a standardized variable (zero 

mean and unit variance). 

As the standardization of x(t) could not be assured during the 

general transient solution of the /P equation, a preliminary trans-

formation (2.4.37) had to be made to the x(t) variable prior to 

the Hermite integral transform. The combined transformations still 

resulted in an infinite set of simultaneous ordinary differential 

equations to solve, but they were no longer linear. 

It was noted that the separation of variables required that the 

system non-linearity b(x,t) and a(x,t) be of a form suitable for 

representation as power series in x. This eliminated certain 

discontinuous systems such as relay systems from consideration by 

the Hermite transform method. However the simple example solved 

earlier by finite differences was well suited to the Hermite transform 

method, and was presented in detail. It was found that solution 

accuracies of the order of one to two per cent could be obtained by 

solving only ten equations (for M(t), v(t) and k1(t) to k8(t)),  

which was very economical of storage space and computer time. 

Although somewhat better than the finite difference method in 

these respects, the initial posing of the problem and reconstruction 

of the solution were more difficult with the Hermite transform 

method, and so no preference could be stated for solution methods 

for the present example. 

Although system discontinuities could not be handled by Hermite 

transforms, there were no arbitrary space truncation conditions to 

apply in this case, these being replaced by the straightforward 

functional, expansion truncation. However, if the distribution 

P(x,t) had strange tails such that the space truncation would be 

difficult to apply in the finite difference method, a large number 

of terms in the functional expansion would have to be retained in 
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order to model the tails accurately (that is, if the tails were 

of interest, as they were in our alarm design application). 

Although extra computation was needed to reconstruct the dis-

tribution P(x,t) from (2.4.43) in the Hermite transform method, 

it was noted that infinite integral functions of P(x,t) (i.e. 

E [g(x,t)]) could easily and ,accurately be evaluated using the 

Hermite quadrature method of numerical integration, as this was 

done directly from the coefficients of the functional expansion 

of P(x,t). 

Although the form of the solution P(x,t) could not be deduced 

from the Hermite expansion coefficients without some experience, it 

was interesting that rough information about the lower order 

expansion coefficients could be deduced from the shape of the system 

non-linearity. Most of the physically important information was 

contained in m(t),(T(t), and the first odd and eren order expansion 

coefficient, k
3
(t) and k

4
(t), and if accuracy requirements were 

limited, a useful solution could be obtained by solving for only 

those quantities. The existence of the coefficients k3(t), k
4
(t)' 

k5(t) ... tell us explicitly how the statistics of the non-linear 

system differ from those of the linearized system having the same 

mean and variance. 

Compared with the finite difference case, the problem of 

system dimensionality would seem to be even more of an obstacle. 

If the variable x(t) did not need to be standardized, then the 

linear transform technique of Section 2.4.3 could be carried out 

using multi-dimensional generalizations of the basic definitions 

(2.4.1-8). We would obtain sets of linear differential equations 

involving approximately (N)n  unknowns, where N is the number of 

coefficients in one dimension, and n is the dimension of the 

system. 

However, the variable x(t) will have to be transformed to 

standardized form, and the combination of the two transforms 

would be quite formidable for higher dimension systems. Further, 

a large set of non-linear simultaneous differential equations would 

have to be solved, which would be very difficult, particularly from 
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the stability point of view. For this reason, the method of 

Hermite transforms was held to be sufficiently unpromising for 

multi-dimensional systems that no examples were attempted. It was 

noted earlier that finite difference methods were feasible for 

systems of up to three space variables, and thus are to be preferred 

to the Hermite transform method for problems of two and three 

dimensions. 

Thus for these direct methods of obtaining a system's statis-

tical behaviour by solving the FP equation, a law of diminishing 

returns applies to system dimensionality, where the effort required 

for solution increases out of proportion with the knowledge gained 

about the system when the dimensionality increases. 
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CHAPTER 3 

Simulation and the Monte Carlo Solution of Parabolic Equations  

Generally speaking, there were two main motives for studying 

the use of simulation techniques to determine the statistical 

behaviour of noisy systems. First of all, it became clear during 

the work of the previous chapter, that the direct method of solution 

using Fokker-Planck techniques could not handle problems of a very 

wide generality. Secondly, it appeared that the simulation of 

diffusion processes on a digital or analogue computer was not a 

routine matter, and would merit investigation in itself. This 

chapter will elaborate on this motivation, and then present 

theorems connecting simulation techniques to the solution of 

general linear parabolic equations, which are extensions to preVious 

results on the Monte-Carlo solution of parabolic equations. Sub-

sequent chapters will be devoted to the problem of the simulation 

of physical and diffusion processes on analogue and digital 

computers. 

3.1 Motivation for Simulation Techniques 

Limitations of the Direct Method  

The direct method of obtaining a system's statistical behaviour 

is to solve a partial differential equation, the Fokker-Planck 

equation, for the system's transition probability density function. 

In Chapter 2, we discussed two techniques for obtaining approximate 

numerical solutions of the FP equation. The finite difference 

method is the classical method of numerical solution, and has been 

well proven on a large variety of parabolic, elliptic and hyperbolic 

partial differential equations. With a little study, an engineer can 

learn the subtleties of finite difference techniques, and apply them 

to the FP equation. The second method, the Hermite transform method 
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was rather novel in the context of the numerical solution of partial 

differential equations, and was developed specifically for applica-

tion to the FP equation. Both of these methods, however, have 

limitations which restrict the form of statistical system that can 

be studied. 

The FP equation has as many independent space variables as 

states in the Markov representation of the physical system (c.f. 

Section 2.2), and this number can be quite high for practical 

systems. We have seen how the numerical solution ofthe FP equation 

becomes difficult when there was more than one space variable 

involved. In particular we have found the Hermite transform method 

to be suitable only for systems of single dimension, and that with 

liberal amounts of computer storage capacity, execution time, and 

programming effort available, problems as high as three-dimensional 

ones could be handled by finite differences. 

Clearly then, system dimensionality is a severe restriction on 

the variety of systems studied. The law of diminishing returns 

prompts us to consider ways of reducing the system's dimensionality, 

whilst retaining the pertinent characteristics of the system's 

statistical behaviour. Davison [59] has discussed a method of 

reducing system dimensionality 11 retaining the prominent eigen-

values of the system matrix, which has been shown to provide a 

significant reduction in state variables for very large systems 

with little loss of accuracy. His technique could be extended to 

stochastic systems, but is applicable only to linear systems. 

By methods analogous to those of Section 2.2, "equivalent" diffusion 

processes of lower dimension could be derived for a given non-linear 

diffusion process which would model some properties of the original 

process and be more amenable to numerical solution.. This prospect, 

however, needs further study before its practicality could be 

assessed, and likely would not be as successful as the linear case. 

Another limitation on the system studied is on the form of the 

non-linearity present in the system. Once again the Hermite transform 

method seems to be more sensitive to this limitation as we have 

noted that the non-linearity must be in the form of a power series 
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in x of reasonably low degree for the method to be successful. 

This requires that the non-linearity be quite smooth, hence elimina-

ting discontinuous (relay) systems, unless a crude approximation 

were allowed. 

For finite difference methods, it was noted that the system 

discontinuity must be amenable to finite difference representation. 

Here, smoothness will be desirable, but will not be as critically 

important as in the Hermite transform case. 

Advantages of Monte Carlo Techniques when the above limitations  

are present. 

By Monte Carlo or simulation techniques, we will be referring 

to a direct simulation of the statistical system x(t), using a 

representative noise driving signal. If the statistics of x(t) 

are collected in such a way as to form an estimate of P(x,t), 

then this can be considered as a Monte Carlo solution of the FP 

equation. In contrast to the earlier numerical methods for the FP 

equation, we will call the simulation method the indirect method of 

solving the prediction problem. 

When studying the n:th order or n state variable dynamic 

system represented by the diffusion system 

dx(t) = f(x,t) dt 	F(x,t) dw(t), 	(3.1.1) 

the Monte Carlo method requires the simulation on a computer of 

n simultaneous first order stochastic differential equations. 

This problem will be discussed in the subsequent chapters, but here 

we will compare the scale of this problem with that of the direct 

methods described earlier. 

Essentially the Monte Carlo solution proceeds in two parts 

which can be considered separately. First there is the actual 

simulation of (3.1.1), and then there is the data reduction operation 

which forms the required estimates of the statistical parameters 

of interest. This separation of computing operations is the main 

simplicity of the Monte Carlo method, for, recalling the discussion 

of the characterization of a random process in Section 2.4.1, the 
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direct methods of solving the FP equation require the computation 

of the rather complete statistical description P(x,t) in more or 

less one operation, with no short cuts to obtain a simplified des-

cription involving less effort. 

The main significance of this statement concerns the problem of 

system dimensionality, for in the multi-dimension problem, the 

dependence of the statistical parameters of each independent space 

variable x.(t) 	i = 1, n, cannot be separated in the direct 

methods, and a complete solution must always be obtained involving 

the dependence on the entire state vector x(t). Only after the 

entire solution P(x,t) is obtained can a simpler statistical 

parameter such as E [x1(t)] be obtained. By contrast, in the 

second (data reduction) step of the Monte Carlo method, the data 

reduction operations are only carried out on the independent space 

variables of interest, and the rest are ignored. For example, as 

far as the data reduction operation is concerned, it is just as 

easy to obtain E [x1(t)] for a ten-dimensional system, as for a 

one- or two-dimensional system. 

Thus if only a limited statistical description of the system 

is required a considerable saving is afforded by the Monte Carlo 

method for high dimensional systems, for it is the complete repre-

sentation of P(x,t) which requires the high storage capacity and 

long computing time. The first operation of the Monte Carlo technique 

of simulating the system (3.1.1) does not have the same magnitude of 

dimensionality problem, for the effort of simulation, roughly speaking, 

will only increase linearly with the number of system dimensions, 

whereas for the direct methods the effort increased geometrically. 

Furthermore, the number of trials needed in the simulation depends 

on the possibly limited solution requirements, and not on the dimen-

sionality of the system. 

It was mentioned in Section 2.4.1 that a complete characteri-

zation of a random process requires the time correlation information 

P(x(t1), x(t2), 	; t1, t2 	). This can only be obtained by 

the direct method by the tedious procedure of piecing together 

successive solutions obtained from delta function initial conditions, 

[i.e. we must solve for P(x(t2),t2  f x(t1) = x1) for as many 
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x
1
, t

1 
and t

2 of interest]. By contrast, this information could 

be obtained with relatively little extra work in the data reduction 

part of the Monte Carlo solution. 

As an added advantage, the simulation required in the Monte 

Carlo method is not influenced too greatly by the complexity of 

the non-linearity of the statistical system under study. What is 

more to the point is that the system should be reasonably stable so 

that its simulation on the computer will not present undue stability 

problems. 

The main disadvantage of the Monte Carlo method is the property 

of sampling statistics that the accuracy of estimators only increases 

as the square root of the number of samples taken. For example, 

if x(t) is a random variable with standard deviation or, and 

x
a(t) is the a:th realization generated by a simulation procedure, 

then the estimated quantity 

PJ  
E
N  [x(t)] = 

	

	 (3.1.2) 
a=1 

has a mean value equal to E [x(t)] and a standard deviation 

(N)- cr, provided the Monte Carlo procedure generates uncorrelated 

samples xa(t). Thus to obtain an estimate of E [x(t)] with a 

relative error of 10% (i.e. = 0.10 we will need 100 independent 

trials, but to reduce the error to tro, we would need 10,000 trials. 

These remarks apply to the effort of simulation, for the data reduction 

operation (which may be the most time-consuming) need not be 

increased in proportion, as quantising methods make the final part 

of the data reduction operation independent of the number of tra-

jectories. Nevertheless, the law of diminishing returns applies, 

and it will not be practical to obtain very accurate solutions by 

the Monte Carlo method which is more suited to obtaining quick rough 

. answers. 

Thus we have replaced the limitations on system complexity by a 

limitation on the accuracy of solution. While for many simple systems, 
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the direct method will be preferable to Monte Carlo methods, it does 

seem that many of the complex systems met in engineering will not 

be amenable to solution by the direct method, and Monte Carlo 

methods will have to be used. 

EXplicit Motives for Studying Simulation Techniques  

In addition to the reasons above, there are motives for the 

study and use of Monte Carlo methods in their own right. 

Apart from computational considerations, the main advantage of 

using simulation techniques is the insight one can gain by studying 

individual system trajectories in detail. The direct method of 

obtaining P(x,t) only examines the behaviour of trajectories in 

a collective fashion, and may miss some of the subtler points of 

interest. In other words, the solution P(x,t) is a deterministic 

function and insight into the random nature of the system can only 

be inferred through an interpretation of the function P(x,t). By 

contrast, Monte Carlo methods allow us to examine the statistical 

behaviour of the system directly. This, of course, has always 

been the power of analogue computers, but these remarks apply to 

simulation (DLL digital computers as well. 

The need to study simulation techniques as an academic exercise 

became apparent when recent papers indicated a difference between 

systems arising from physical situations and truly stochastic systems, 

when the noises involved were non-additive [18, 24]. Some computa-

tion was done to test the results of the paper by Wong and Zakai 

[24], but the extensions indicated by the results of Clark [22] 

added a greater impetus to the study of simulation methods. Further, 

preliminary enquiries among those aware of the theory indicated 

that little computation had been done to test the theory.* 

The essential computational difficulty of simulating diffusion 

processes is that white noise cannot be represented on an analogue 

* Some computational experience was mentioned in a private communi-
cation to Wonham [49] in.July, 1965, by J. Ternan of the Defence 
Standards Laboratories, Victoria, Australia, but this does not appear 
to be documented. In his thesis [60, Appendix 10], Ternan derives 
a result which is equivalent to Clark's in the scalar case. 
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or digital computer exactly, and must be approximated by a signal of 

finite bandwidth and power. This means we are simulating a diffusion 

process by a physical process, and the implications of this are 

discussed in Chapter 4. It turns out that the choice of noise 

source is the principal problem on analogue computers, and the choice 

of integration formula is the main problem on digital computers, and 

these problems will be discussed in Chapters 5 and 6. 
The data reduction part of the Monte Carlo solution will not 

be discussed, although an interesting smoothing technique was 

developed for the digital computer solution, and will be mentioned 

in Chapter 6. 

A further impetus to studying simulation techniques comes from 

some recent suggestions for the practical implementation of optimal 

stochastic control theory [75, 76]. The suggestion is to use Monte 

Carlo techniques to hill climb in control policy space, and hence 

iteratively converge towards an optimal control policy. Essentially 

their approach is motivated by the same problem as ours - the partial 

differential equations of optimal stochastic control theory are 

too difficult to solve (particularly in an "on-line" mode), and a 

direct simulation of the system is used as an alternative method 

of solution. 
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3.2 The Monte Carlo Solution of Parabolic Equations 

In this section we will discuss in more detail the connection 

between the simulation of a system and the solution of its FP 

equation (forward Kolmogorov equation), and emphasize the principle 

of conservation of trajectories of the Markov process inherent in 

the FP equation. We will show that if we allow a violation of the 

principle of conservation, then simulation techniques can be used 

to solve a class of parabolic equations of wider generality than 

those fitting into the FP format (1.2.1). 

Monte-Carlo methods for obtaining approximate solutions to 

differential and integral equations'first became prominent when 

the advent of the modern electronic computer allowed large-scale 

statistical experiments to be performedtand a method of handling 

elli4tic differential equations was developed as early as 1949 by 

Metropolis and Ulam [61]. Later, as research in numerical analysis 

proceeded, Monte Carlo :7...ethods generally gave way to more efficient 

and accurate methods such as that of finite differences, and Monte 

Carlo methods were considered as brute force or last resort methods, 

if all else failed. Interest in Monte Carlo methods has never died 

out, however, and recent developments in hybrid computer facilities 

have brought Monte Carlo techniques back into a respectable position 

among numerical methods (see, for example, [62]). Also, there is 

still a large variety of more difficult problems which direct 

methods of numerical analysis have not been able to solve satisfac-

torily. 

The common method of solving elliptic and parabolic differential 

equations by Monte Carlo methods has stemmed from the backward 

Kolmogorov equation (1.2.4) of a diffusion process [63]. From the 

theory of integration over Wiener measure (or function space inte-

gration) [65, 66] has come an extension which allows the appearance 

of proportional terms in the parabolic equation not existing in the 

backward Kolmogorov equation. These same terms could be handled by 

stopping or boundary conditions on the random walks used [64, 67 

Chapter 13]. 
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The essential feature of Monte Carlo methods based on tne back-

ward equation is that the time scales of the differential equation 

and of the simulated diffusion process are in the reversed direction 

to each other. That is, if the time parameter t of the process 

x(t) increases to the right 	the real time axis, the time para- 

meter s of the backward Kolmogorov equation (1.2.4) governing 

x(t) increases to the left on the same axis. The main advantage of 

this method is that solutions to the differential equation P(xl tf) 

are obtained pointwise [i.e. P(x(tf) = xa, tf), P(x(tf) = xb, tf) 

are obtained for various xa' ` Yb  ] 
by letting the simulated trajec- 

tories run backwatds from the (present)time tf, starting at the 

desired solution point x(tf). The solution P(x(tf), tf) is 

obtained from averaging functions of the stopping conditions of 

the trajectOries. 

This method is very efficient if solutions are required at a 

few specific points only, but will be inefficient if general 

solutions P(x,t) or solutions of the form Prob [x(t) E A] are 

required, where A is a given subset of the state space of x. 

To avoid this difficulty, we will propose a method based on the 

forward Kolmogorov or FP equation which inherently obtains the 

general solution P(x,t), but may not be as efficient as the previous 

method for point solutions. 

As the time scale of the Monte Carlo trajectories is now 

coincident with that of the parabolic differential equation, we 

are in a position to draw analogies between the trajectories and 

underlying principles of the differential equation. Indeed, we may 

exploit these physical analogies to help us solve the Monte Carlo 

trajectories. For example, in solving the heat conduction equation, 

the Monte Carlo trajectories'can be associated with a modified form 

of a quantum of heat energy, an analogy which will help us choose 

the correct form of flux type boundary conditions. In addition, the 

method to be presented will handle parabolic equations of more 

generality than the previous methods, as constant terms can now be 

accommodated. Although the method to be presented will handle elliptic 

equations by allowing steady state distribution of trajectories to be 

achieved, our discussion will be directed towards the solution of para- 

bolic equations where transient aspects of the solution are of interest. 
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3.2.1 	The Fokker-Planck Equation as an Equati64-of:Conservation* 

The FP equation is derived [6, 7] directly,froM the Chapman-

Kolmogorov integral equation 

P(x2, t2  I xo, to) = 	P(x2, t
2 I x1, t ) P(x 

1 	
1, t1  J x

o
, t

o
) dx

1' 

(3.2.1) 
where the domain of integration R is the entire phase space of 

the Markov process x(t), and t1  is an arbitrary time where 

t2 > t1 > to. This integral relation of conditional probability 

densities is a definitive feature of Markov processes, but viewed 
$* 

another way, it is a strong statement of continuity and conservation 

of the individual trajectories of x(t). Figure 3.2.1 will illustrate 

this aspect of the Chapman-Kolmogorov equation. 

0 
	 -ti 

	t2 

Figure 3.2.1 Continuous Trajectories of a Markov Process 

With reference to Figure 3.2.1, equation (3.2.1) can be expressed 

in words as follows. 

The probability that the Markov process x(t) has the state 

(position) x2  at time t
2 given that it began in the arbitrary 

* A summary of the methods proposed in this and the next section is 
given at the beginning of SeCtion 3.2.3. It may be helpful to refer 
to this summary during the course of reading the next two sections. 

16' I'''.  CC...176:$% tAi.ti 	1:$1 t: Hte G 
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state x
o 

at time t
o 

is given by the sum (over all dx1) of the 

product of 

(a) the probability of the process reaching a point x1 
in 

dx
1 
 at time t

1 
after beginning at xo 

at time to 
[= P (x1, t1  I xo, to)dxi] 	and 

(b) the probability that the process then follows on from 

xi  at t1  to arrive at point x2  at time t2 
P (x

2' 
t
2 1  x

1, t
1
]. 

The intermediate intervals dx
1 

in the sum must span the reachable 

space R, and when the magnitudes of the intervals dx1 
are reduced 

to zero, we obtain the integral (3.2.1). 

With reference to Figure 3.2.1, the product of these probabili-

ties is only meaningful if 

(i) the probabilities refer to independent events. This is 

the Markov property, and means that the trajectory in region 2 only 

depends on its initial point x1  and not on the previous part of 

the trajectory in region 1; 

and (ii) both the events (a) and (b) do occur. The first event 

is the trajectory in region 1 which reaches x1, and the second 

event is the trajectory in region 2 which begins at x1. If either 

of these events do not take place (that is, a trajectory terminates 

or begins at time t1), then the product of the probabilities to 

give an element in the sum for the probability of the total trajec-

tory (from to  to t2) is invalid. The oamc rgument chows that 

th pr duct 	is n t meaningful if a trajcotory 

Nit-444o.c R at -644e t
1 
 tit point x

1
, and latapoco at a different' 

point xi  

The argument above holds for all ti  in (to' t2
) and all x1 

in R, and so if the integral relation (3.2.1) is to be a property 

of the Markov process x(t), then x(t) must be continuous in 

[t
o' 

t
2] with probability one. From another viewpoint, we can 

integrate both sides of (3.2.1) with respect to x2  over the domain 

R. If the arguments of the integral are genuine probability density 

functions, then the integral equals unity and we have a statement of 

conservation of trajectories: 



"All trajectories leaving the arbitrary point xo  at time 

to arrive at some point x2 
in R at time t

2 with probability 

one". The arguments of the integrals were shown to be valid 

probability density functions by the discussion above concerning 

the continuity of trajectories at an arbitrary intermediate time t1. 

Although Figure 3.2.1 has shown a one-dimensional diffusion 

process, the Chapman-Kolmogorov equation (3.2.1) and the discussion 

above apply equally well to the general n-dimensional diffusion 

process (3.1.1). Thus we have shown that the trajectories of a 

process whose statistics are described by a Fokker-Planck equation 

are continuous and obey a conservation principle with probability 

one. This principle, and modifications of it, is fundamental to the 

Monte Carlo methods discussed in the rest of this chapter. 

Application to Parabolic Equations  

Consider the general linear parabolic partial differential 

equation 

U
t = L(U) , t in [0, T], 	(3.2.2) 

where 	U = 11(x, t) 

atU
t 	bt (x t), 

and L(*) is a general linear second order elliptic operator*, 

involving constant, proportional, and first and second partial 

derivative terms with respect to the space variables xi, i = 1, n. 

* A definition of an n-dimensional elliptic operator could not be 
founebut we will take it to be an operator whose matrix of coeffi- 
cientsa..(x,t) of the second order terms U 	is real and x.x. 

j 
positive definite. This is consistent with the usual definition of 
the two-dimensional elliptic operator, and it ensures that the matrix 
[cc..] can be factored into the form F FT. As U 	is the same 

	

13 	 x.x. 
1 

as U 	, the matrix a can be made symmetric with no loss of generality. x .x. 
I 

	

" 	Se*. awl 4  -.P.D 6 is 	R 72 
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Then if U(x,o) is given, this is a properly posed initial value 

problem defining the solution U(x,t), And other boundary conditions 

are optional. For the time being we will assume there are no other 

boundary conditions, and will later discuss the treatment of a case 

where space boundary conditioLis are present. 

Compare the form of the equation (3.2.2) with the general 

form of the FP equation (1.2.1) 

n 
r P

t   --- Lbi  (x'  t)P] + 2 
1 	1 

   

[a..(x,t)P]. 13 (3.2.3) 
i,j 1 3 

Expansion of the derivatives on the right hand side of (3.2.3) will 

give terms involving OP/ex.6x. = PP , and P but no con- j 	x. 1 j 	I 
stant terms (independent of P). 

By judicious choice of the coefficients a..(x,t) and 

b.(x,t) of (3.2.3), it may be possible to equate the FP equation 

(3.2.3) term by term to the parabolic equation (3.2.2) for a given 

operator L(U). If this is the case, then the given parabolic 

equation can be put in the FP form (3.2.3) and it is said to be an 

equation of the FP type. The Monte Carlo solution of such an 

equation is discussed in this section. 

If no choice of a..(x,t) and b.(x,t) can equate all the ij 
terms of (3.2.3) to those of the given parabolic equation (3.2.2), 

the parabolic equation is not of the FP form. The Monte Carlo 

solution of such equations is discussed in Section 3.2.2. 

Consider a given parabolic equation (3.2.2). 

Theorem 3.2.1 	If the parabolic equation is of the FP type, then 

it can be solved by a Monte Carlo method involving the conservation 

of trajectories. 

The proof of this theorem is heuristic, and relies upon the 

discussion given earlier which showed that a process x(t) which 

was governed by the Chapman-Kolmogorov integral relation (3.2.1), 

and hence also by a FP equation, underwent trajectories in state 

space which obeyed a principle of conservation. 
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In particular, if the given parabolic equatioh is of the FP 

type, then it is the FP equation for some continuous Markov or dif-

fusion process x(t) (2.1.1) defined by the Ito s.d.e. 

dx(t) = f(x,t) dt 	F(x,t) dw(t). 	(3.2.4) 

The coefficients of this diffusion process f(x,t) and F(x,t) 

are related to those of the parabolic equation by the relations 

(3.2.5, 6). As the FP equation describes the probability density of 

the process (3.2.4), a Monte Carlo solution of the parabolic equation 

is obtained by simulating the process (3.2.4) and forming suitable 

estimates of the probability density of the simulated trajectories. 

Many simulated trajectories will be needed to obtain estimates 

with useful accuracies, and it is helpful to think of the state 

space R filled with "particles", each one of which follows a 

trajectory defined by the s.d.e. (3.2.4) with a different and inde-

pendent noise vector dw(t) driving each particle. The initial 

distribution of the particles is given by U(x,o), and the subsequent 

distribution of the particles at time t gives an unbiased estimate 

of the solution functional U(x,t) provided the trajectories can 

be simulated without statistical bias. The estimate will have to 

be suitably scaled as described in the paragraph headed "Normalization 

of Solution" later in this section. 

The conservation principle can be thought of as a statement of 

the conservation of the individual particles in the simulation, 

where each particle is an entity of matter in the state space. 

That the particles are conserved during a Monte Carlo solution of 

a parabolic equation of the FP type can be seen from a converse 

argument. 

Consider a diffusion process x(t) whose trajectory is allowed 

to terminate (or begin) within the time interval (0, T) of the 

parabolic equation. Then from the earlier discussion, this diffusion 

process violates the conservation principle inherent in the Chapman-

Kolmogorov integral equation (3.2.1). Thus the conditional probabi-

lities of the terminating diffusion process are not described by 

the Chapman-Kolmogorov equation, and as the FP equation is derived 



from the Chapman-Kolmogorov equation, the statistics of the 

terminating diffusion process are not described by the FP equation 

of the diffusion process. The converse then must be true: if we 

are using simulation methods to obtain a statistical solution to 

a parabolic equation of the FP type, then the system x(t) simulated 

must have continuous trajectories which do not terminate or begin 

during the time interval of interest. That is, the particles 

representing the realisations of x(t) obey the conservation 

principle. 

Matching of Coefficients to Find the Underlying Diffusion Process 

of the Parabolic E uation 

Essentially we must match the coefficients of the terms of 

the parabolic equation (3.2.2) directly with the corresponding 

terms of (3.2.3). It is convenient to begin with the highest 

derivative and work down. 

It was noted that the matrix of second order terms [U x.x. ] 
has as coefficients the positive definite matrix [a. (x, t ) ] 1  

andwecansimplysetthetermsa...
la(x,t) of (3.2.3) equal to 

twice these quantities. The terms aij  represent the diffusion 

coefficients of the system x(t) and are directly related to the 

noise coefficient of the diffusion process (3.2.4) by the relation 

(2.1.3) which is 

m 	• 
. F (x 	F (% t; 	 ik ' 	" 	a..(x,t) = 2 a..(x,t). 13 	 13 (3.2.5) 

As a(x,t) is positive definite, then a real matrix F(x,t) can 

always be found which satisfies (3.2.5), although the functional 

dependence on x may not be simple. 

Ifa
i.(x,t) is a function of x, then the second derivative 

on the right hand side of (3.2.3) will contribute terms containing 

and P to the equation, and these will have to be accounted x. 
foi when we match the lower order terms of (3.2.3) and (3.2.2). 

Remembering this, we.  will choose bi(x;t), i = 1, n, of (3.2.3) to 

match all the first order terms P 	of (3.2.3) with the U x. 	x. 
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term of (3.2.2). These b.(x,t) then give us the drift terms of 

the simulated diffusion process (3.2.4) 

fi(x,t) = bi(x,t), 	i =1, n. 	(3.2.6) 

Havingchosenb.andai , there is the possibility that j 
proportional and constant terms of (3.2.2) will not be matched by 

then'equation(3.2.3),Ifb.isafunctioriofxora-13  has 

a second x partial derivative, then the FP equation will have a 

term proportional to P, which may, or may not, match that of (3.2.2), 

as we have no more free coefficients to choose. Further, if (3.2.2) 

has a constant term (i.e. a term not depending on U) then it cannot 

be matched by an equivalent term of the FP equation. This outlines 

the restrictions on the form of the parabolic equation such that 

it can be written in the FP form (3.2.3) and solved by a simulation 

method with conserved Monte Carlo trajectories. To sum up: 

(i) If L(U) of (3.2.2) has coefficients of the second order 

derivatives which have a zero second x partial derivative, and 

L(U) has coefficients of the first order derivatives which do not 

depend on x, and L (U) has no proportional or constant terms, then 

(342.2) can always be put in FP form. 

(ii) If L(U) has any constant terms, then (3.2.2) cannot be put 

in FP form. 

(iii) Otherwise, it is a matter of chance whether the choice of 

a.. and b. will correctly match all terms of equation (3.2.3) to 

equation (3.2.2). 

If the linear elliptic operator L(U) cannot be put in FP form 

by the matching of coefficients (3.2.5, 6) then it can be written as 

L(U) = L(U) + V(x,t)U + W(x,t), 	(3.2.7) 

where L(U) are those terms of L(U) which are matched by the 
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choice of. coefficients (3.2.5, 6) and VU and W are residual 

unmatched terms (called proportional and constant terms respectively). 

Thus if L(U) is of the FP form, then L(U) = L(U). If L(U) 

is not of the FP form, then V and/or W will be non-zero, and 

ifa.1.orb.1 
 am functions of x, then L(U) and VU may even 

have terms not in the original operator L(U) (e.g. see equation 

(3.2.69). 

From limited experience, the author feels that many of the 

parabolic equations arising from physical phenomena of a diffusive 

nature will be of the FP form. A physical analogy for the heat 

conduction equation discussed later, will help us visualize what 

type of physical situations lead to parabolic equations not of this 

form. We will see later how to solve equations not of this form 

by Monte Carlo methods. 

Positivity of Solutions 

As we will be obtaining an approximate solution of U(x,t) 

of (3.2.2) by forming the probability density function of trajectories 

of a simulated diffusion process, it will be useful to know under 

what conditions the true solution U(x,t) is positive, given that 

the initial solution U(x,o) is positive everywhere in the finite 

subset R* of phase space R. 

Theorem 3.2.2. 

If [ 	- L] is a linear parabolic operator of the FP form, 

defined in R and time [0, T], it is an operator which preserves the 

positivity of functions U(x,t) in R* when 

R* is that subset of R which includes all of R except for 
its infinite reaches where the solution U(x,t) is assumed to be 
zero. This allows us to bound certain functions in the proof to 
follow. 
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[ 	I]U = 0, 

with the condition that U(x,o) is positive everywhere in R*, and 

that U(x,t) has the smoothness property that Ut  and xx  U 	exist 

everywhere in R for t in (0, T]. 

Feller proves this in the one-dimensional case using semi-group 

theory of functional analysis [68]. We prove the theorem in the 

multi-dimensional case using the assumption of solution smoothness. 

The elegance of the semi-group approach is that this assumption is 

not necessary, but it is not known whether Feller's proof can be 

extended to more than one dimension. 

Proof. We first show that the solution can never go negative in 

R*, and then show it always is positive in R*. 

If the solution U(x,t) is to become zero or negative sometime, 

there must be a unique time t
P 
 and place xp  in R* where the 

solution first becomes zero:"' 

U(xPI t 
P
) = 
	 (3.2.8) 

We first show that if this situation exists, the solution has a 

positive increase and thus does not go negative, and later show that 

this situation can never exist. 

Consider the value of the derivative U
t at (x , t ). As 

P P.  
x 	is the first solution point to become zero, the solution 

U(x, t ) is still positive in an arbitrarily small neighbourhood of 

x
P 
 . Then as we have assumed that U 	p (x , t 

p) exists (i.e. it is xx  
not infinite), we have the simple conditions of a smooth local 

minimum of the function U(x,t): 

There is no difficulty in extending the following argument to 
multiple points xp, or even to =.a continuous manifold of points in 
R*. In the latter case the argument to follow is applied to the 
edge of the manifold. 
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u 
• 
(x ,tP ) .01 	i 	1 n (3.2.9) 

x  1 

and U 	(xt ) 	> 0, 	= 1, n. 	(3.2.10) 
x.x. p p 

However, there is a less obvious but more specific necessary 

condition for the existence of a smooth local minimum, and this 

involves the matrix of second partial derivatives 

U = [U ] 
xx 	x.x..  

3. 
(3.2.11) 

The condition is that the determinants of Uxx 
 and its n - 1 minors 

be all positive [69, p. 6], which is also a sufficient condition 

that the matrix U 	be positive definite [70, p. 74]. xx 
Now, owing to the conditions (3.2.8, 9), the parabolid equation 

at 	(x 
P 
 , tp) becomes 

U
tp tp) = 

n  

1,j 
a.. U 13 X.X. 

(3.2.12) 

where the matrix 

[a.. U 	] X.X. 
1 3 

(3.2.13) 

is recognized as the Schur product of the matrices a and U . xx 
It is known [71] that if a and Uxx  are real, positive definite, 

symmetric matrices, their Schur product is real, positive definite 

and symmetric.* But the definition of the parabolic operator 

implies that a is real, positive definite and symmetric in R, 

and thus the matrix (3.2.13) is positive definite, and the sum of 

its elements is positive. 

Then from (3.2.12), U
t(xp1  tp) is positive, the solution 

increases at ex 
P 1 
 tp), and does not go negative. As the conditions 

(3.2.8-12) must immediately precede the first appearance of a 

* The author is indebted to W. A. Murray of the Mathematics Division, 
National Physical Laboratory, for bringing this result to his atten. 
tion. 
I'* 	tie ruw o•C 	eler-etZt4 	;s *kis% pos;Cve 	r 	o,ne 	e Isse.:+1KCer 

Ce5. 	 i$ 	 100  5 ;*;%1 C 	SC Kt; — ote-P;),.;:te. 
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negative solution, a negative solution can never occur. We now 

go one step further and show that the zero solution (3.2.8) can 

never occur. 

To see if a zero solution can occur 

the behaviour of U
t 

at x = xp  for t 

positive solution is to become zero at 

U
t(xp' t) must be negative for at least 

preceding t :  

at 	(x 
P 
 , t 

P
), consider 

tp. If the initially 

(x 
P 
 , t 

P
), the derivative 

a small time immediately 

Ut(xp, t) < 0 
	

t
q 
 t < t , 	(3.2.14) 

as U
t 

is finite. The basis of our argument is to show that the 

variation of U
t is sufficiently bounded that there exists some 

6 > 0, A > 0, such that for 

U(x
P  tP 

 A) = 6 
	

(3.2.15a) 

we have 	L(U(x p p t
p 
 A)) 	> 0: 
	

(3.2.15b) 

which violates (3.2.14). This states that U
t
(x

p1 
 t) must become 

positive before the zero solution is reached, in which case the 

zero solution is never reached. The property (3.2.15) requires the 

time continuity of U, Ux, U xx and the eigenvalues of U 
XX 

evaluated at x = x p 

We assume the existence of the condition (3.2.14) leading to 

the zero solution (3.2.8). As U
t is finite, we can put 

lUt (Xtil  t)( < 	R1, * 	 (3.2.16) 

and we have 	U(x
p
, t

p 
- A) = E < A R 
	

(3.2.17) 

The symbols I. all refer to positive bounded constants. 



-123- 

whioh states that the solution U = E. is continuous near zero. 

As 	Ut 
is also bounded in the neighbourhood of x 

P
, the elements 

of Ux 
and U 	evaluated at x = x are also continuous in 

xx 	p 
time. That is, from (3.2.9) we have 

IU 	(Xt - 	e 11 	i = 1, n, x. p p 	2  
1 

	

and also lUx.x j  (x  p' tp 	'6)  - 
Ux.x.(x.n, tp)I 	-6-  R39 

I  

(3.2.18) 

i,j = 1,n. 	(3.2.19) 

Now the continuity condition (3.2.19) on the elements of Uxx  

implies that the eigenvalues of U
xx  are continuous, for they are 

polynomial functions of the elements. Then the positive definiteness 

of U
xx  is assured for U in a small region 

for some positive 6. 

We now consider 6. in the range 

> E > 0. 	 (3.2.20) 

As a and U
xx  are positive definite in this range of E , there is 

some positive constant i  independent of 6.- such that 

i,j 
a.. U 
3. 3 X.X. 1 j 

>µ 	 (3.2.21) 

for all 6 in the range (3.2.20). Now consider the value of 

Ut 	= L(U) at (x 
P 
 , t

P 
 - 6). We write L(U) as 

L(U) = ?ft'   p.0 	+ 	a. .0 	(3.2.22) xi 	 x.x
jitj 	j 

Thecoefficients)cand Pi are functions of xand t and may 

not be continuous, but we do know they are finite in R* as we have 

assumed U
t is finite in R*. Then we can put 
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and 

(3,2.23) 

i = 1, n. 	(3.2.24) 

Now,using the inequalities (3.2.21, 17, 23, 18, 24),we can 

write (3.2.22) as the inequality 

L(u(x
P 
 , t

P 
 - 6)) > µ - 6R 	e R2 n K5, 	(3.2.25) 

for all 6 in the range (3.2.20). The important point is that 

µ is positive and independent of ei , so that as we decrease 

(= U(x , t)) in the range (3.2.20), there comes a point where the 

r.h.s, of (3.2.25) is positive. Then (3.2.15) is true for some 

> 0 and the condition (3.2.14) for a zero solution to occur is 

violated. Thus the initially positive solution can never go to zero 

at the arbitrary point x in R*, and Theorem 3.2.2 stating 

U(x, t) > 0 , all x in 	and t in (0, T] 	(3.2.26) 

is proved. 

Remarks on Theorem 3.2.2 

(a) The theorem does not disc-ss the case where the initial enrirli 

tions U(x,o) in certain regions of phase space R are zero (but 

nowhere negative). Then assuming the initial conditions are not 

c7oryw7cre zero (the solution is then trivially U(x,t) = 0, all t), 

the region R where U(x,o) = 0 is enclosed by an n 1 dimensional 

surface S where U(x,o) > 0 beyond SN. Then along S the 

conditions 

hold, and 

U(S,o) = 0 

Ux(S,o) = 0 

and 	U (S,o) 

Ut(S,o) > O. 

SetNi. 
positiveidefinite 

Then the surface 

(3.2.27) 

(3.2.28) 

(3.2.29) 

S which bounds 

the zero solution region shrinks and the region R disappears, and 

* Again we do not discuss the part of S belonging to the infinite 
reaches of R. 
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as the differential equation is first order in time, this happens 

instantaneously, as long as a is positive definite and Uxx  

exists everywhere. 

Physically, the FP equation U. 	L(U) describes the probabi- 

lity density of a continuous diffusion process x(t). Zero initial 

conditions are possible for we may exclude the possibility of x(o) 

being in R (e.g. x(o) may be known exactly and U(x,o) = S (x - x(o)) 

then). Then as long as a is positive definite everywhere, the 

diffusive forces acting upon the process are nowhere zero, and the 

infinite character of the diffusive force (x(t) always has an 

infinite velocity) assures that x(t) can reach all regions of R 

instantaneously. Then the regions K which have an initially zero 

solution (i.e. probability density) develop a positive solution at 

t = 0 (e.g. see the solution (3.2.93)). Then Theorem 3.2.2 still 

holds as we have discussed the open time interval, t in (0, T]. 

This is an ideal situation, of course, and does not hold when x(t) 

is simulated on a physical computer. Then a zero solution can exist 

for a finite time. 

(b.) The theorem does not discuss problems where UXx  does not 

exist everywhere in R for t in (0, T]. Then we can divide 

into regions where U 	exists in the interior of the regions, and 

show via the arguments of Theorem 3.2.2 that the solution is positive 

in the interiors of all the regions for all t in (0, T]. 

The solution U(x,t) can be zero at the boundaries, for there we 

are free to specify certain conditions which may include specifying 

the solution itself (see Section 3.2.5 for examples). 

(c) We have shown the positivity of solutions of n-dimensional 

parabolic equations of the FP type, given non-negative initial 

conditions, with the assumption that all the second order partial 

derivatives of the dependent variable exist everywhere. In Theorem 

3.2.1 we stated that such an equation could be solved by a Monte 

Carlo method by forming the probability density of particles which 
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underwent simulated trajectories in phase space R while obeying 

a conservation principle. But a probability density function is, 

by definition, always non-negative, and as the trajectories always 

enjoy complete mobility (as a is positive definite and the lower 

order coefficients (3.2.23, 24) are bounded everywhere) the probab-

ility density of the trajectories is nowhere zero for t > O. This 

agrees with Theorem 3.2.2 which shows that the true solution is 

positive for t > O. 

The two following positivity theorems follow directly from 

Theorem 3.2.2 and are relevant to the forms of parabolic equations 

discussed in Section 3.2.2. Once again we assume the smoothness 

conditions that U
t 

and U
xx 
 exist everywhere in R. 

[ Theorem 3.2.3 	If 	L] is a linear parabolic operator 

which preserves positivity in the manner described in Theorem 

[ 3.2.2, then the linear parabolic operator 	- L - V] also 
of 

preserves positivity, where V is bounded in R and adds a pro- 

portional term V(x,t)U(x,t) to the r.h.s. of the parabolic 

equation. 

The operator L already has a proportional term (c.f. WU in 

(3.2.22)) and as V satisfies the condition (3.2.23), the proof 

of Theorem 3.2.2 covers Theorem 3.2.3 as well. 

Theorem 3.2.4 	If [ — L V] is a linear parabolic operator at 
which preserves positivity in the manner described in Theorem 3.2.3, 

r 
ot then the linear parabolic operator L -z-. - L - V - W], where W 

adds a non-homogeneous term W(x,t) to the r.h.s. of the parabolic 

equation, preserves positivity if W(x,t) is non-negative for all 

in R and t in [0, T]. 

The proof of Theorem 3.2.2 depended on showing that Ut  was 

positive for some region arbitrarily close to U = O. Then if W 

is non-negative, the addition of W to U
t 

cannot decrease U
t, 
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and the arguments of Theorem 3.2.2 still hold. Furthermore, the 

following corollary is clear. 

Corollary 	If t is the f-i_rst time in [0, T] when W(x,t) is 

negative for some x in R, then the solution U(x,t) is positive 

for 	t in (0, t 
P
], and may (but will not necessarily) be negative 
, 

for 	t in (t p, Tj. 

Normalization of Solution 

In Theorem 3.2.1 we have stated that an approximate solution of 

[ 
	- L ] u 	o, 	 (3.2.30) 

[ d 
bt 

where 	L ] is a linear parabolic operator of the FP type, 

is obtained by forming the probability density function of simulated 

trajectories of the underlying diffusion process. But an operator 

of this type is a linear homogeneous operator, and so U(x,t) is 

also given by 

[ at - L 	U = 0, 
	(3.2.31) 

where u  is an arbitrary non-zero constant. This means that solu-

tions for U(x,t) are equivalent to an arbitrary scaling factor. 

To pursue this matter, consider 
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Theorem 3.2.5 

If U(x,t) is defined by the linear transformation (3.2.30) of 

the FP type, then the normalization quantity gAt) given by the 

integral 

,rd(t) 	f U(x,t) dx 	t in [0, T], 	(3.2.32) 
R 

is independent of time, where R is the entire domain of x. 

The proof follows directly from the principle of conservation 

of trajectories, and the interpretation of U(x,t) as the probability 

density of trajectories, for then $' is proportional to the number 

of trajectories used in the simulation, which does not vary for 

t in [0, T]. 

Corollary 

The normalization quantity gl is given by the initial condition 

I U(x,o) dx. 	(3.2.33) 
R 

This follows from the fact that the definition (3.2.32) holds for 

t = o, and the function U(x,o) is an imposed condition on the solu-

tion of (3.2.30). This means tnat the initial conditions set the 

scale of the subsequent solution, and the quantity frf combined with 

the total number of particles used in the simulation determine the 

constant weighting factor we must give each particle when we are 

reducing the statistics of the trajectories to form an estimate of 

U(x,t). That is, U(x,t) is a smoothed version of 

91 N-1  8(x - 

where N is the number of trajectories x
a(t) in the simulation 

with conserved trajectories, and S(*) is the Dirac delta function. 

More details of the solution procedure are given in Section 3.2.3. 
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3.2.2 	Simulation of Parabolic Equations not of Fokker-Planck 

Form 

We have seen from equations (3.2.5, 6) that in matching an 
arbitrary parabolic equation to the FP equation, we had not enough 

free parameters of the FP equation to match a general proportional 

term, or any constant term of the parabolic equation. Thus many 

parabolic equations cannot be put in FP form, and cannot be solved 

by a Monte Carlo method involving conservation of trajectories. 

To solve the more general parabolic equation Ut  = L(U) 

by Monte Carlo methods, we match as many terms of the parabolic 

equation as we can to the FP equation by the method of equations 

(3.2.5, 6). This operation defines the "nearest" FP equation 

of the parabolic equation (3.2.7); the parabolic equation differs 

from its nearest FP equation by the residual terms VU and W. 

The nearest FP equation defines a diffusion process (3.2.4, 5, 6) 
which is called the underlying diffusion process of the parabolic 

equation. If the underlying diffusion process is simulated with 

conserved trajectories, the probability density of the simulated 

particles gives a Monte Carlo solution of the nearest .P equation 

but not of the given parabolic equation. However, if we modify 

the simulation by allowing the birth and death of particles to 

simulate the effects of the residual terms (violating the principle 

of conservation of trajectories), the probability density of the 

simulated particles then gives a Monte Carlo solution of the given 

parabolic equation. This idea stems from a suggestion of King [72] 

who seems to be the only person to previously solve parabolic equa-

tions by simulation il forward time. This section describes how 

the birth and death of the trajectories of the underlying diffusion 

process can simulate the effects of the residual terms. 

Using the notation of equation (3.2.7) and Theorem 3.2.4, the 

general linear parabolic operator can be written as 

[ 2L 
6t 	L - V - w ] (3.2.34) 
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where 	56-t- 	L 	is that part of the operator which can be put 

in FP form, and the residual operator terms V and W give rise 

to right hand side terms 

V(x,t) U(x1t) + W(Y,t). 	(3.2.35) 

The treatment of the V and W terms will be discussed separately 

below, but as their effects are additive, there is no problem with 

combining their treatment by superimposing the techniques discussed 

below. 

Treatment of Proportional Term V(x,t) U(x,t)  

We are concerned with the parabolic equation 

U 	= L(U) + VU . 	(3.2.36) 

To observe the effect of the added term VU, consider the ordinary 

differential equation (with x a constant) 

d U(t) _ V(t) U(t) 	, U(0) = U , 
dt 

whose solution is 

I V(s) ds 
U(t) = U

o 
e°  

(3.2.37) 

(3.2.38) 

However, as U is also affected by the operator L during 

the solution, we are not allowed to isolate the effect of V over 

the whole solution by using (3.2.38), but we can look at the 

incremental effect of the V term. Over a time increment A we 

have 

U(t + A) = U(t) e[V(t)A + o(A)] 

= U(t) [1 + V(t)A + 0(A)], 
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or 	U(t + A) - U(t) = v(t) U(t)A + o(n). 	(3.2.39) 

Over this interval, the change in U(t) caused by the L operator 

is proportional to t , and thus only contributes an 0(A
2) or 

o(t) term to the VUL term of (3.2.39) and thus its effect can 

be incorporated into the existing error term o(t). Thus (3.2.39) 

is a valid expression for the change in U caused by the V term 

over a time increment A. The above argument holds for all x , 

and so we may write (3.2.39) as 

U(x, t + A) - U(x,t) = V(x,t) U(x,t)A + o(A). 	(3.2.40) 

Now, how do we modify our simulation of Ut  = L(U) involving 

conserved trajectories of the underlying diffusion process to 

include the contribution of (3.2.40)? We note that the dependence 

of U(x,t) on x is given by the density of simulated trajectories 

x(t) in the space R. In particular, each trajectory xa(t), 

a = 1, N, contributes the constant function 

rrf N 1  8(x - xa) 
	

(3.2.41) 

to U(x,t), as the sum of all contributions to U(x,t) must equal 

$ from (3.2.32). 
-1 Thus each conserved trajectory of weight $ N can be thought 

of as representing a proportion of the solution U(x,t) , as the 

solution is proportional to local density of particles. But the 

effect of the VU term (3.2.40) is proportional to U(x,t), and 

so we can associate the incremental change (3.2.40) with a change 

in each trajectory in the simulation. Thus the solution change 

VUL. + o(z) of (3.2.40), which is the cumulative effect of all 

trajectories, can be simulated by allowing each trajectory to 

contribute 

V(xa, t) 0  N-1  A + 0(A) 

to this change. Thus a trajectory xa(t) which at time t has a 
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weight 0' N, should have a new weight of 

[1 + V(xa, t)A + o(A)] yi N
1 
	

(3.2.42) 

at time t + A. 

In the Monte Carlo simulations, this growth process can be 

mechanised in two ways. The first involves conservation of the 

N trajectories, and allows the weighting factor to vary with time 

during the course of the solution as suggested by equation (3.2.42). 

The weighting factor will now be different for each trajectory 

xa(t), and we will denote it as Qa(t). Then 

and 

a
(o) = N 1  

' t 	 (3.2.43e)  
I V(xa,$)ds 

Q
a
(t) = a(o) e° 	 (3.2.43b) 

This expression can be deduced by tracing back ghe growth of U(t) 

to the contribution (3.2.38). The exponent in (3.2.43b) is essen-

tially a path integral over the trajectory of xa(s), and the fact 

that xa(s) varies over the trajectory accounts for the effect 

of the L operator on the contribution of the VU term, which 

we had neglected in deriving (3.2.38). Note that the approximation 

given by the error o(A) in (3.2.39, 40, 42) has disappeared, 

but will reappear when the integral in (3.2.43b) is evaluated numeri-

cally. 

This path integral method is essentially the same as that 

proposed by Gelfand and Yaglom [65] (and implemented by Little 

[64]) in connection with the backward operator method for handling 

proportional terms in the Schroedinger equation of mathematical 

physics. However the path integral may be difficult to evaluate, 

especially if V(x,t) is non-linear in x, and, depending on the 

equipment at our disposal, the following method involving a violation 

of the principle of conservation of trajectories may be preferred. 



- 133 - 
Instead of allowing the weight to grow to the amount (3.2.42) 

during time A, we could keep the weight constant and allow_the 

number of trajectories to grow at the same rate. As U(x,t) is 

given by the sum of the weighted contributions of each trajectory, 

we are just transferring the change in U caused by VU from the 

weights to the trajectories themselves. The new trajectories have 

the same dynamics (3.2.4) as all other trajectories, and the 

weighting factor associated with each trajectory remains at fif N-1, 

where N is the original number of trajectories in the simulation. 

It is due to the fact that new trajectories undergo dynamic movement 

once they are initiated, that coupling occurs between the contribu- 

tion of the VU term and the other terms of the parabolic operator 

L. 

The main difficulty with adding trajectories is that trajectories 

are integral entities, and if (3.2.42) calls for a growth by the 

factor 1.02 during time A, we cannot add 0.02 of a trajectory to 

our simulation. We can, however, allow a new trajectory to begin 

at (x
a
, 	with a probability 0.02, and repeat this every 

time interval A for every trajectory xa(t), or we could allow 

a new trajectory to begin at (xp  , t) for every (0.02)-1  = 50 

trajectories, where xp  is the centre of gravity of a localized 

group of 50 trajectories, and repeat this for every time interval Al  

and every group of 50 trajectories. There are obvious accounting 

difficulties with this last procedure (e.g. forming the localized 

groups and finding their centre of gravity), especially as the 

growth factor 

1 + V(xa, t) A 	(3.2.44) 

varies with time, and with every trajectory. 

Thus the first method of these two will be preferred, as it 

involves a single (and independent) probabilistic operation on each 

trajectory. This is to be compared with the previous method of 

evaluating the path integral of V(xa, s) along each trajectory. 

Note that if V(xa, t) is negative, the probabilistic method 

must allow a probability of -V(xa, t)A that the trajectory koc(t) 
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should expire during time [t, t A]. This procedure must be 

applied at every time interval A and to all trajectories :xa  

existing at the present value of time. As this procedure is only 

applied to existing trajectories, it cannot result in the appearance 

of trajectories with negative weights (as when W(x,t) terms exist 

in the parabolic equation; see later) and the positi+rity of the 

solution is preserved in agreement with Theorem 3.2.3. 

The main disadvantage of the new probabilistiC method is that 

it introduces a further degree of randomness to the Monte Carlo 

method, thus increasing the sampling error and possibly necessita-

ting an increase in sample size. On hybrid computer implementations*, 

the path integral method will be more convenient unless the function 

V(x
a, t) is difficult to generate. On the digital computer instal-

lation which was available to the author (an IBM 7090), the allowance 

for the change in the number of trajectories involved only a simple 

extension to the existing accounting and data reduction operations, 

and was considerably simpler than the evaluation of path integrals. 

Furthermore, although modern hybrid computers, such as the statisti-

cal repetitive special purpoSe machine (ASTRAC II) built by Korn 

[62], seem very suited to the Monte Carlo solution of partial differ-

ential equations, it is unlikely that this type of computer will 

become widely available for the time being. This is compared with 

the present availability of large, fast, digital computers, and it 

is suggested that the method proposed in this section is more 

suitable for digital computers. 

Treatment_ of Constant Term W(x,t)  

We are concerned with the parabolic equation 

The trajectory simulation is carried out on the analogue part, 
and the control of initial conditions and collection of statistics' 
is done on the digital part of the hybrid computer [62]. In addi-
tion, the generation of V(xa, t) and the evaluation of its inte-
gral, can be done on the analogue part [64]. The allowance of the 
probabilistic change in the number of trajectories during the sim-
ulation interval LO, T] may result in an unreasonable increase 
in the control function work of the digital part. 
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u = L(u) + w, 	(3.2.45) 

and our argument will closely follow the treatment of the propor-

tional term VU. The main difference is that the contribution of 

W to Ut 
is not proportional to U(x,t), and thus cannot be 

associated with the existing trajectories of the simulation. 

Analogous to (3.2.38) we find that the contribution to U(t) 

of W(t) is 

t 

u(t) = f W(s) ds, 	(3.2.46) 
0 

but this contribution cannot be simply evaluated for U(x,t) and 

W(x,t) at a given x, as this would ignore the coupling effect of 

the other terms in the parabolic equation. As the contribution 

(3.2.46) is independent of the trajectories, we cannot use a path 

integral method of its evaluation, but we can use a method involving 

a change in the number of trajectories as before. In [67, Ch.13, 

Section 4], Dynkin shows that a path integral type method can be 

used to handle constant (non-homogeneous) terms in the solution 

of elliptic differential equations by Monte Carlo methods derived 

from the backward operator. The implementation of this technique 

for elliptic equations has been discussed by Little [64] and 

Handler [83], but there is no indication in these current research 

works that the backward simulation method can be adapted to handle 

parabolic equations with non-homogeneous terms. 

Analogous to equation (3.2.40), the contribution of W(x,t) 

to U(x,t) over time [t, t + A] is given by 

U(x, t + A) - U(x,t) = W(x,t)A + o(t). 	(3.2.47) 

We will simulate this increase (or decrease) of U(x,t) by begin-

ning a trajectory at (x,t) with a positive (or negative) weight 
si 
 N-1 attached to it. But a trajectory xa(t) is really a con-

tribution to U(x
a  t) in the region around xa (as the trajectory 

exists at a discrete x point, but U(x,t) is continuous over x), 
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The oax) arises from taking W(x,t) as W(x., t), where x 
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and so we must include a space scaling factor in the contribution 

of a new trajectory to (3.2.47). 

Consider a unit element in the x space, R, and let W(x,t) 

W(t) over this element. Let there be p new trajectories 

which originate in the unit element in unit time. Then from (3.2.47) 

the increase in U(x,t) during A is given by 

U(x, t + 	- U(x,t) 	W(t)A = c1 N 1  p 6. 	(3.2.48) 

Thus the space scaling factor p equals 

p = N W(x,t) 	-1  

trajectories per unit time per unit space, where N is the 

original number of trajectories in the simulation and 91 is the 

initial condition scaling factor (3.2.33). 

Thus the simulation of the contribution of W(x,t) to the 

parabolic equation (3.2.45) is achieVed by the addition of 
, -1 N W(x,t) p 	trajectories per unit time and per unit space to 

the simulated trajectories. This operation can take place with 

a variety of space-time discretizations (that is, we can add parti-

cles infrequently to points in a fine space mesh Slx, or more 

frequently to points in a coarser space mesh), with the resultant 

errors being o(x) and o(t).* The compromise involved must be 

chosen with regard to the trajectory dynamics (for example if the 

diffusive force is high, then the space discretisation will be less 

important), and the space-time resolution required of the solution. 

If W(x,t) is neSative, then the trajectories added must be 

given negative weight factors, - yS N-1. Thus we can have negative 

solutions U(x, t2) only if W(x, t1) is negative for some t1  < t2, 

in agreement with Theorem 3.2.4. These negative trajectories can 

be cancelled with positive ones when they come arbitrarily close to 

each other, but this may or may not be convenient depending on the 

mechanics of the simulation and data collection procedures (3.2.50). 

(3.2.49) 
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3.2.3 	Solution Procedure  

In the last two sections, we discussed the Monte Carlo solution 

of a general linear parabolic equation. In this section we will 

summarize the methods already -Dresented, and be more specific about 

the mechanics of obtaining the solution. Later we will discuss 

some computing experience related to two interesting aspects of 

solution - the treatment of spatial discontinuities and boundary 

conditions. 

We are concerned with solving the general linear parabolic 

equation (3.2.2) where the right hand side contains first and second 

partial space derivative terms, and proportional and constant terms 

as well. The procedure is to relate this equation as far as possible 

to the FP equation (3.2.3) by choosing the coefficients aij 
	

d bi  

to match the first and second partial derivative terms of the parabolic 

equation to those of the FP equation. The coefficients aij..  and b. 

define the underlying diffusion process (3.2.4,5,6), which is 

closely related to the physical structure generating the parabolic 

equation. 

If, following this matching operation, there are no terms left 

over in the parabolic equation (we call these residual terms), then 

we say the parabolic equation is of FP form, or more specifically, 

the parabolic equation is the FP equation of the underlying diffu- 

sion process. As the solution of the FP equation is the first 

order probability density of the diffusion process (with appropri- 

ate initial conditions), then the parabolic (FP) equation can be 

solved by collecting the appropriate statistics of a simulation of 

the diffusion process. Furthermore we have shown that the implica- 

tions of transition probabilities inherent in the derivation of the 

FP equation require that the simulated trajectories of the diffusion 

process be continuous in space, and continuous over the time interval 

[0, T]. This has been called the principle of conservation of 

trajectories, and means that of all N trajectories which begin 

the simulation at t = 0, these N and no others exist at the end. 

We have seen that this implies that the normalization quantity 91((t) 

defined in (3.2.32) remains constant in [0, T]. 
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If, after the matching operation, residual terms of the parabolic 

equation do exist, then we must alter our method to take account of 

the residual terms by allowing the non-conservation of trajectories. 

These residual terms will be terms proportional to U(x,t) or 

constant terms. We still simulate the underlying diffusion process 

given by the matching coefficients a.. and b., and begin the 
a.3 

simulation with N trajectories, but we allow these trajectories to 

grow or expire in [0, T] to account for the residual proportional 

term, and/Or allow independent trajectories to be added (with positive 

or negative weights) in [0, T] to account for the residual constant 

term. 

In this case, the number of trajectories existing for t D  0 

will not in general equal N and the normalizing qtuttity At) 

will vary over [0, T]. The weight associated with each trajectory 

will, however, remain constant over [0, T] and is given by 
+-1 - 	N 	where ri = rd(o) is given by the normalizing quantity 

of the initial conditions (3.2.33). 

This.treatment of the residual terms was derived by assuming 

that the residual terms had independent effects on the solution 

over incremental time steps. The implementation of the treatment 

of residual terms involved discretization errors, which are o(A) 

for the proportional term, and o(A) and o(lx) for the constant 

term, and it was noted that extra statistical errors are introduced 

by the implementation. It was also noted that the interdependence 

of the residual and other terms was represented by the subsequent 

diffusion of the introduced trajectories. 

Justification was added to the methods presented by showing 

that they satisfied certain positivity theorems. In essence, the 

only possibility of a negative solution appearing is when the 

residual constant term W(x,t) is negative in some (x,t) region 

of the solution. 
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The Formation of Point and Functional Solutions 

We have already stated that the solution U(x,t) is obtained 

from statistical estimates of the simulated Monte Carlo trajectories. 

More details will be given in this sub-section. 

The simulation begins by taking N particles (often several 

thousand), and placing them in the space R so that their density 

corresponds to the initial solution U(x,o). Then each particle 

is allowed to move according to the dynamics (3.2.4-6), where an 

independent noise vector dw(t) is used for the trajectory of each 

particle. The simulation of these trajectories is discussed in 

Chapters 4, 5 and 6. If residual terms exist in the parabolic 

equation, then particles are added and deleted according to the 

methods discussed in Section 3.2.2., and the data collection routine 

is adjusted to cover all existing trajectories. 

Whenever information on U(x,t) is required, we note the 

positions of the particles at time t, and collect the appropriate 

statistics. For example, if an estimate of 

for a particular point x , then we choose a 

around x such that the solution U(0,t), 

relatively imiform, and we have 

U(x ,t) is required 

small region R' 

x' in R', is 

  

+ N-1 - szf  

 

    

U(x It) 1 
xa 

f dx 
R,  

(3.2.50a) 

where the sum of the xa includes all those trajectories x
a(t) 

in R', and f dx is the n-dimensional "volume" of the region 
RI 

R'. The ..; weight is normally positive, but the negative sign 

is needed to allow for the possibility of negative trajectories 

introduced by a negative W(x,t) term (3.2.47). 

Thus U(x It) is taken as a local (in the neighbourhood R') 

approximation to the scaled density of trajectories at x . In 

particular we have 

U(x tt) = 56 N 1  D(R') 
	 (3.2.50b) 
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where D(R1) is the average density of net particles*in the region 

R'. By taking R' large we lose solution resolution, but by taking 

R' small, we lost solution accuracy, and so a compromise is chosen. 

If U(x ,t) is obtained at a number of adjacent (often equally 

spaced) points x , then the resolution/accuracy trade-off can be 

further influenced by smoothing the data points obtained. ** 

In particular, the accuracy of U(x ,t) is given explicitly 

by the binomial distribution in terms of the true solution U(x,t). 

Suppose for a given neighbourhood R' of x , we have 

U(x,t) dx 
R' 	

= q(t), 	(3.2.51) 
U(x,t) dx 

where q(t) is the proportion of the solution density in R', at 

time t, and so equals the expected proportion of simulated parti-

cles in RI. Assuming the simulation to have an unbiased error, 

then each trajectory can be considered as an independent trial with 

a probability q(t) of being in R' at time t. Then out of N' 

trials*, the expected number of trajectories in R' at time t is 

q(t) N', 

and the variance of the number is 

q(t) [1 - q(t)] N'. 

(3.2.52a) 

(3.2.52b) 

The Monte Carlo solution (3.2.50) for U(x ,t) obtained by an 

averaging operation in the region R' is really forming an estimate 

g(t) of q(t) by finding the proportion of net trajectories in R'. 

In fact, a(t) is a maximum likelihood estimate of q(t), and is in 

general the best estimate of q(t) if no prior information of the 

solution is available [79, Ch.8] (in discussing filtering or smoothing 

The number of trajectories or trials in the simulation (or in a 
given region R9 is always to be interpreted as the net number: the 
number of negative trajectories arising from a negative W(x,t) is 
to be subtracted from the number of positive trajectories. The fol-
lowing error analysis assumes that the number of negative trajectories 
is small compared with the number of positive ones. 

** 	See Section 6.3. 
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techniques later, we shall see that the operation of filtering data 

is similar to including prior information). 

The estimate of g(t) is unbiased, for 

E [ q(t) ] = q(t), 	(3.2.53) 

and has a variance 

Var [g(t)] = 07 2 
	q(t) [1 - q(t)]  

4  - 	N' (3.2.54) 

Assuming N' is large, and q(t) not too small so q(t) N' is 

also large, the binomial distribution for q(t) can be approximated 

by a Gaussian distribution with the same mean and variance (3.2.53, 

54), and confidence limits for q(t) given a particular estimate 

g(t) can be readily evaluated [79, Ch.11]. These are found from 

the tails'of the Gaussian distribution, and for example we have 

Prob [1q(t) -2(01 K 1.96 	= 0.95, 	(3.2.55) 

or 	[q(t) - 1.96 q , g(t) 	1.96 Or] 	(3.2.56) 

is the 95% confidence interval for the true solution q(t) given 

the estimate q(t). Of course, 	of (3.2.54) is not known 

exactly as q(t) is not known, but the use of the estimate g(t) 

for q(t) in (3.2.54) is justified under the assumption of large 

sample sizes, N' [79, p.262]. 

The confidence interval can be used to choose the number of 

trajectories N' in the simulation and/or the size'of the region 

R', for the accuracy depends on the expected number of trajectories 

in R' (3.2.52a). As an accuracy estimate, the confidence interval 

can be used as an absolute error interval 
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or as a relative accuracy measure 

1.96 or- 

q(t) 
(3.2.58) 

The following table gives these accuracy estimates for a varying 

number of trajectories N' , and for two neighbourhood sizes which 

have values of q(t) of 0.1 and 0.01. For the non-conservation 

simulations, the value of N' may be difficult to estimate 

beforehand, but using N in its place should give an adequate 

accuracy estimate. 

N' 

Tq 

q(t) = .1 

1.96 Cr 
- 1.96 q

q  c-  

q(t) = .01 

1.96 1-  
1.96 c- 
-2  

100 .03 .06 .6 .01 .02 2 

400 .015 .03 .3 .005 .01 1 

1,60o .0075 .015 .15 .0025 .005 .5 
5,000 .004 .0o8 .o8 .0013 .0026 .26 

20,000 .002 .0o4 .04 .0006 .0013 .13 

Table 3.2.1 Estimates of Point Accuracies 

It is noted that the accuracy estimates are proportional to 
4, 

(N')-'", and are also proportional to [q(t)]-  2  for small q(t). 
The latter factor illustrates the resolution/accuracy compromise, 

for maximum accuracy (for a given N') is obtained when q(t) =', 

at which point the resolution is a minimum. 

A variation on the point solution (3.2.50) is the regional 

solution 

Prob [x(t) in RI] or I U(x,t) dx. 	(3.2.59) 
R0  

The solution procedure is identical to the point solution with 

similar accuracy considerations except that no space quantization 
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error exists in this case. However, the type of solution to which 

the forward simulation method is best suited, is a functional 

solution of the form 

g(t) 	f G(x) U(x,t) dx, 	(3.2.60) 
R 

for a given function G(x). An example would be the solution for 

the moments of x(t). The value g(t) is estimated by 

z(t) = + 
- 91 N-1 G(xa(t)) (3.2.61) 

x
a 

where the sum is taken over all trajectories and as before the 

sign (.t.) of the weight filf N-1  is determined by the origin of the 

trajectory. As mentI oned previously (3.1.2), the standard deviation 

of g(t) is (NT ) " 2  times the standard deviation of G(x(t)). This 

means that foi a relative error of 10%, only 100 trajectories need be 

simulated, whereas for 10% relative error in the point solutions 

(see Table 3.2.1), many thousand trajectories will often be needed. 

In comparison, the backWard simulation method [63, 64] is 

inefficient for calculating functional solutions (3.2.60), but 

quite efficient for calculating point solutions (3.2.50). In fact, 

the efficiencies of the methods are complementary: the backward 

method is as efficient for single point solutions as the forward 

method is for functional solutions, and the backward method is as 

inefficient for functional solutions as the forward method is for 

single point solutions. As the number of desired solution points 

increases in the point type solution, the efficiency of the forward 

simulation method increases relative to that of the backward method, 

and the break-even point is likely at about ten solution points. 
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Computing Experience 

The methods of this chapter were tested on some FP type equations 

such as the example of Chapter 2, as well as some variations of the 

heat conduction parabolic equation. The interesting aspects of the 

simulation exercise are given in Chapters 5 and 6. 
The accuracy of the estimates agreed with the theoretical ones 

given earl r. This was shown by Chi-squared tests on the variance 

of the estimates obtained. This is one indication that the trajec-

tories used are independent and unbiased. In the case of the example 

of Chapter 2, the solutions were found to be unbiased, with the 

error deviation as discussed above. 

It is difficult to discuss computing times for complete solutions 

with the Monte Carlo method as the solution time depends on many 

factors. To simulate the one-dimensional system of Chapter 2, 

approximately 30 seconds were needed on the IBM 7090 to integrate 

1000 trajectories over the time interval [0, 2] using steps of 

0.1.* This gave 310 accuracy for functional solutions of the form 

(5.2.60) but only 2010 accuracy for point solutions of the form 

(3.2.50). 

This computing time is only given as a rough example, but what 

is more interesting is the effect of system dimensionality and data 

reduction requirements on computing time. The system dimensionality 

or complexity only affects computing time insomuch as the time needed 

to integrate the differential equations are concerned. On an analogue 

(or hybrid) computer, the system equations are integrated "in 

parallel", and so provided the analogue computer has sufficient 

capacity, the computing time for the simulation is independent of 

system complexity. On a digital computer, each term of the system 

differential equation is handled "in series", and so the computing 

time is proportional to the number of additions, multiplications, 

etc. involved in the system equations. However, in some installations 

In contrast, a modern hybrid computer such as Astrac II [62] 
could integrate the 1000 trajectories in one second. 
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the simulation may be limited by the magnetic tape manipulation 

involved in processing large numbers of Gaussian random numbers, 

in which case the total computing time will be somewhat less than 

proportional to the system complexity, provided the number of system 

noise inputs remains constant. On the IBM 7090, about one third 

of the simulation time was used for tape manipulation for the one 

dimensional example of Chapter 2, but this ratio would be higher 

for computers with less high speed storage capacity than the IBM 

7090's 32,000 word capacity. 

Thus in contrast with the methods of Chapter 2, the Monte 

Carlo simulation method of determining a system's statistical 

behaviour is not seriously affected by the dimensionality or com-

plexity of the system equations. From a limited computing exper-

ience, it was found that Monte Carlo methods were not competitive 

with direct methods for one-dimensional examples, but were slightly 

better than finite difference methods in two dimensions. It follows 

that Monte Carlo methods would have a substantial advantage over 

finite difference methods for three-dimensional problems, although 

the amount of data reduction necessary in the Monte Carlo method 

must be considered. As mentioned before, Monte Carlo methods are 

likely to be the only ones at our disposal for systems of dimen-

sionality higher than three. 

3.2.4 	Example: The Heat Conduction Equation 

To illustrate the physical analogies which can be drawn between 

forward trajectory simulation methods and the solution of parabolic 

equations, the haat conduction equation will be discussed. The 

basic .equation governing the conduction of heat in isotropic 

solids is [77] 

1 U
t 

= 
Pc 

3 
E ki xi]'i 	I 

(3.2.62) 
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where 	U = U(x,t) = temperature, degrees Kelvin 

x = three dimensional space variable 

p = p(x,t) = density of the solid, gm/cm3  

c = c(x,t) = specific heat of the solid, calories/(gm °K) 

k. = ki(x,t) = thermal conductivity in direction of xi, 

calories/(sec.cm2  (°K/cm)) 

K. = K.(x,t) = k.(pc)-1 = diffusivity, cm2/sec. 

We will solve this equation by simulating a diffusion process, 

and interpreting the solution U(x,t) as the density of simulated 

trajectories x(t). This means that the particles have units of 

temperature times volume (°K cm3), the scaling factor being 

gl N. . 
As a physical analogy, the trajectories or particles can be 

considered as specific energy particles, for each particle raises 

the temperature of one cm3 of material fi N 1 degrees K. Note 

that this simulated particle is not the same as a quantum of heat 

energy (a calorie, for example), for the rise in temperature caused 

by the addition of one calorie to one cm3 of material is equal 
1 to — °K, whereas the effect of one of the simulated particles on 
Pc  

temperature is independent of pc. Thus it is useful to think of 

one particle at (x,t) as being equivalent to ref N-1 pc calories, 

although, in reality, the relationship between heat (calories) and 

temperature is only an incremental relationship. This analogy 

will be used later to choose or check conservation and continuity 

conditions, for the only physical law at our disposal is the con-

servation of heat energy, and the dependence of heat flux 

on temperature gradient. 

To match the heat conduction equation (3.2.62) to the FP 

form (3.2.3), we expand the differential of the right hand side 

of (3.2.62) and get 

1 
Zok.

1
(x) 	k. 

C 
-- pc 	X. 	u . 	pc u .x. 1. 	(3.2.63) 

L 	 x 	xix. Ut 



We do this by setting 

) K. (x) 
b.'(x,t) = 2 --TT- 1  

1 )k.(x) 
i = 1,3, pc 	xi  (3.2.66) 
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Matching the second order terms as in (3.2.5) we find 

aij (x,t) ---.21C(x,t) 	, 	i = j = 1, 3, 

= 0 	j, 
	(3.2.64) 

where K. = k.(pc)-1. As the matrix a(x,t) is diagonal in this 

case, the noise coefficient F(x,t) of the underlying diffusion 

process (3.2.4) is just the square root of (3.2.64). 

Now we must match the first order terms of (3.2.63) with those 

of the FP equation (3.2.3), which are 

3 	3  

	 bi(x,t) Px  	 P . x. 1 
(3.2.65) 

which specifies the drift terms (3.2.6) of the underlying diffusion 

process (3.2.4). 

We have now matched the parabolic equation (3.2.62) to the 

FP equation (3.2.3) as best we could, and found the diffusion process 

underlying the parabolic equation to be 

)K.(x) 	)k.(x) 
dxi 	

u X. 	
1 (t) = [ 2 ; 1 	 ] dt pc 	a xi

-1-(21C.)' dw.(t), 	i = 1, 3. 	(3.2.67) 

Following this matching, however, the FP equation (3.2.3) has 

the following residual terms left over: 

1 
:).c..
1 
 (x) 	),2K.() r 3ci  ‘ . 	pc 	)c. ) - 	 ' 	] P 	i = 1,3. 	(3.2.68) L 	( 	

/ 
i 	x.2  i 

In Section 3.2.2, we presented a first order analysis, which discussed 

the MonteCarlo treatment of proportional terms VU (3.2.36) which 

were residual terms existing in the parabolic equation. As the 

analysis was first order (that is, in A), the analysis is valid 



Case II: k depends on x; p and c do not. 

i = 1, 3, 

i = 1, 3, 

i = 1, 3, 

i = 1, 3, 

a11(x1t) = 2 Ki(x,t), 

'Ki(x,t) 

a2Ki(x,t) 
V(x1t) 

i )xi2 

aii(x,t) = 2 K.(x,t) 

)Ki(x,t) 
bi(x,t) 

ax. 

V(x,t) = 0. 

(3.2.70a) 

(3.2.70b) 

(3.2.70c) 

(3.2.71a) 

(3.2.71b) 

(3.2.71c) 
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if the residual terms (3.2.68) are taken from the FP equation, and 

placed in the narabolic equation with a change of sign. This gives 

us the residual term coefficient 

3 	2 Ki(x) 
V(x,t) = i?  E 	xi 2 

(x) ( 
pc 	J 

 ) 
Ax.  

 -1 (3.2.69) 

In the above analysis, we have allowed the generality of p, 

c and k being functions of x (the t dependence does not com-

plicate the analysis). For most heat conduction problems, all or 

some of these parameters will be independent of x, in which case 

the following simplifications occur (we will write down the equa-

tions equivalent to (3.2.64, 66 and 69): 

Case I: p or c depends on x; k does not. 
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Case III:  k, p and c independent of x. 

a..(x,t) = a.. = 2 K. , 	i = 1, 3, 	(3.2.72a)  

b. (x,t) = 0, 	i = 1, 3, 	(3.2.72b)  

V(x,t) = O. 	 (3.2.72c)  

Note that when p and c are independent of x, no residual 

terms exist, and the conduction equation is solved by a simulation 

involving conserved trajectories. But we have seen earlier that 

in this case there is a constant relationship between the trajectories 

and quantums of heat energy, and so the conservation of trajectories 

in this case agrees with the physical law of conservation of heat 

energy (assuming the material has no sources or sinks of heat 

energy). 

Also note that the equations above are only valid for sufficiently 
mtmothfunctionsK.(x,osothatthefir.standsecoridx.1 partial 

derivativesexistandarebounded.IfK.(x,t) is discontinuous 

with respect to an xi  variable, then the parabolic equation does 

not hold along the discontinuity. The simulation can be carried 

out in the separate regions of continuity, and special boundary 

conditions (to be discussed later) can be applied at the discon-

tinuity to make the simulation consistent with the interpretation 

of the parabolic equation. 

In equation (3.2.67) and the subsequent special cases, we have 

shown what diffusion processes must be simulated in order to solve 

the heat conduction equation by the Monte Carlo method of this 

chapter. We have also seen that if p or c is dependent on 

x, then the simulation will have to be modified to account for 

the residual VU term (3.2.69). Apart from the aspects mentioned 

in Chapters 5 and 6, the mechanics of the simulation are quite 
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straightforward and will not be mentioned here, but it will be 

worthwhile to discuss the effects on the simulation of auxiliary 

properties of the parabolic equation: spatial discontinuities and 

spatial boundary conditions. 

3.2.5 	The Treatment of Spatial Discontinuities and Boundary  

Conditions in the Parabolic Equation  

Spatial Discontinuities 

Although spatial discontinuities in the solution of the para-

bolic equation U(x,t) cannot exist inside the domain R of the 

equation (as we have assumed that the second order coefficient 

-a(x,t) vanishes nowhere in R), discontinuities in U 	and U 
. 	x.x j can exist in R and these occur where the coefficienti of 

the parabolic equation, or their space derivatives which appear in 

(3.2.67 or 69), are discontinuous. 

First consider genuine FP equations which describe the statis-

tics of a given diffusion process (3.2.4). In this case any dis-

continuities in the FP equation come directly from discontinuities 

in the dynamics of the system (3.2.4). An example would be the 

relay system 

dx(t) = f(sign (x), t)dt + dw(t). 	(3.2.73) 

When a trajectory xa(t) reaches the boundary x = 0, the dynamics 

of the particle undergo a step change according to (3.2.73), but 

physical considerations tell us that the trajectory xa(t) is 

conserved at the boundary, and no special conditions are to be 

applied there. Thus the parabolic (FP) equation is solved by 

simply simulating the system (3.2.73) and collecting the appro-

priate statistics of the simulation. 

Now consider a general parabolic equation whose origin has not 

been a specific dynamic system, but by the method of this chapter, 
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we have derived a dynamic system which underlies the parabolic 

equation. Although simulation of this underlying system (with 

modification if residual terms are present) does give us a Monte 

Carlo solution to the parabolic equation, discontinuities in the 

coefficients of the parabolic equation do not specify the behaviour 

of the simulated trajectories when a boundary of discontinuity 

is reached, in the same way as with the FP equation. This is 

because the physical meaning of the general parabolic equation is 

not as directly connected with the simulated trajectories as in 

the case of the FP equation. Thus in the general case we must 

rely upon whatever physical principles are inherent in the parabolic 

equation to construct suitable conditions for the trajectories to 

satisfy at the discontinuities. In the heat conduction example, 

the conservation of thermal energy or the continuity of thermal 

flux will furnish these conditions. 

In the heat conduction example, we will assume a discontinuity 

occurs along a boundary which is a two-dimensional surface in the 

solid. To simplify our argument, we will rotate the x coordinates 

(if necessary) so that the x1  coordinate is locally normal to 

the surface of the discontinuity. We shall regulate the flow of 

simulated particles across this boundary so that thermal energy 

is conserved, and thermal flux (heat flow) is continuous and the 

correct magnitude. 

Consider the material discontinuity in the x
1 

direction occur-

ring across the boundary shown in Figure 3.2.2. We assume that the 

solution derivative U
x and the material parameters k1, p and 

c to be independent 1  of x
1 

in a small region on either side of 

the discontinuity (this assumption is consistent with the first 

order analysis of particle flux to follow). These values do of 

course change abruptly at the discontinuity boundary, and we use 

the superscripts - and + to denote the values to the left of 

and to the right of the boundary respectively. 
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boundary of 

x
1 

discontinuity 

k1  

Pc 

K1 

pc 

K1  

Figure 3.2.2 Solution of Heat Conduction Equation Across a 

Discontinuity 

From the basic principles of heat conduction [77], the heat 

flux in the direction of x
1 

is proportional to the x
1 temperature 

gradient, and is given by -k1  Ux  calories/(sec.cm2).* Assuming 

no sources of sinks of heat exist1  at the boundary, then this flux 

vector must be continuous across the boundary and we have 

- 
- k1- 

 U
x1 

= 	k1+ Ux k1 calories/(sec.cm2). 
1 

(3.2.74) 

Thus the ratio of the thermal conductivities across the discontin-

uities specifies the ratio of the temperature gradients on either 

side of the boundary. 

In Figure 3.2.2, U l  is negative, and hence -k1 U
x1 
 is a x  

positive heat flux to the right (the positive x
1 direction). 

Thus the heat flow is down the gradient of temperature. 



by a trajectory density D(x
1
) particles/cm3, and local density 

gradients D  
1 

and Dx+  on either side of the boundary, through 1 
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Using our physical analogy of one calorie of heat energy 

equalling 	N(pc)-1 simulated trajectories, the thermal flux 

(3.2.74) is simulated by the particle flux of 

0-1 N(pc)-1 [
k1
-

x
-] - 0-1  N(pc+)-1  [k

1
+  U +] 

1 

particles/(sec.cm2) (3.2.75) 

Now consider the simulation of the situation of Figure 3.2.2. 

The solution U(x
1
) and its gradients U 	and U 	is simulated xi 	

x1 
 

the relationship (3.2.50b), where the units of 0'  are [°K cm3] 

and of N are [particles]. Thus from (3.2.75), the flux of 

trajectories across the boundary should be 

- 
(pc-)-1[k D  -] 

1 x
1 

= - K D 1 x
1 

particles/(sec.cm2). (3.2.76) 

or = - K1+  D + 
x
1 

particles/(sec.cm2). 

In Appendix C we have derived the behaviour of the particles 

in the simulation in the x
1 direction adjacent to the boundary, 

with the assumptions that the material parameters p, c and k 

are constant for a small region on either side of the boundary. In 

particular, we derived the flux of particles hitting the boundary 

per cm2 in A seconds from the left [0, equation (C7)] and from 

the right [0+, equation (C8)]. We find that these fluxes have a 

component due to the density of particles at the boundary D and 

a component due to 

either side of the 

due to the higher 

derivatives of k  

the x
1 gradient of density of particles on 

boundary, D 	and D
xl 
+ (there are components 

x
1 derivatives of the particle density and the 

and pc, but these depend on A3/2, A2 etc., 
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and hence contribute a vanishingly small amount to the rate of 

particles hitting the boundary as A 0). 

Thus under natural flow conditions, the net number of particles 

crossing the boundary per cm2 from left to right in A seconds is 

0- 0
+ 	r - 	r 

= ( 	DL(K 	(K1+) j 	ALKD + KF x' Tr
xi 

(3.2.77) 

where we shall assume for the moment that particles are conserved 

as they cross the boundary (i.e. pc - = pc
+). Then as K1D = KD x1 1

+ 
x

1 the second term of (3.2.77) contributes exactly the desired 

boundary flux (3.2.76) (the flux is obtained by dividing (3.2.77) 

by A), but the first term whichis non-zero if Ki 	Ki+, 

contributes an unwanted component to the net flux. This component 

can be eliminated by arbitrary conditions imposed upon those tra-

jectories which try and cross the boundary from either side. 

Suppose that Kl  is greater than K1
+
. Then 

K 	
< 1 	(3.2.78) 

K1  

is the ratio of the 0+  flux to the Q-  flux due to the boundary 

particle density D. If we reduce the f flux to a , and keep 

the 01-  flux constant, then the contributions of the left and 

right flux due to D will cancel each other*. The net number of 

particles crossing the boundary per cm2  in A seconds is (from (3.2.77)) 

a0 - 0+ = -2A [a K D 	K D -1 ]• 1 x1 1 x1 
 (3.2.79) 

We have now upset the flux due to the density gradient Dx  . 

We can restore the proper flow by magnifying the flow of particles 

• If K
1 	

K1-,the coefficient a is a lied to particles 

arriving from the right, with a = (K1  /K1+)  
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in both directions (3.2.79) by the factor p. Equating the modified 

flux (3.2.79) (divided by A to get particles/second) to the desired 

flux (3.2.76) we have 

-LaPKI Dx ipic
1 

D
x 

= -K - D 
1 	1 	1 	x

i 
 • 

Then substituting 	D 	for Dx
+ we have 

k
I 

xl 	1 

k, 
-TapK -D 	= - K 1 D  x

1 
1 x1 	1 

k1 
x1 

whence 
k 

= 2 K1-  [a Kl + K1  2+ 
 1-1  J • k1  

(3.2.80) 

(3.2.81) 

Now as we have assumed pc = pc+, p becomes 

R 	4. 2 a  > 1. 

As 13 is greater than one, the flow is magnified, and this is 

implemented during the simulation be forcing (13 - 1) more particles 

to cross the boundary than would naturally go after the reflection 

coefficient a has been applied to the Q flow. As in the case 

of the treatment of VU and W terms given earlier, this magni-

fication (and the reflection coefficient a) could be implemented 

deterministically or probabilistically, and either method was 

found to be equally convenient on the digital computer. As a 

summary, the final particle flows per cm2  in A seconds are shown 

disgrammatically in Figure 3.2.3. The factor 0 shown does not 

enter in the constant pc case just discussed,(i.e. 0 = 1 here). 
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boundary 

magnified flow (p -1)aQ 

natural flow 
Q 

net flow- 
Flow to 
right 

B 	e a p 

-a)o- 
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13 0+ 
C 

net flow+ natural flow 
	Flow to 

left 
0-1) e 

magnified flow 

Figure 3.2.3 Imposed Boundary Conditions for Ki   Discontinuity 

It can be verified that the particles are conserved at each of the 

operation points, A, B and C, and that the net left to right flux 

a p e - p e 	(3.2.82) 

is the correct value. 

Now consider the case where pc does vary across the boundary 

of the material discontinuity. When a particle crosses the boundary, 

we must ensure that it obeys the physical laws inherent in the 

parabolic equation. Recall that a particle is a quantity which 

raises one cm3  of material pi N-1 °K no matter what the pc 

of the material is, while a calorie raises one cm3 of material 
/ (pc)-1 °K. Thus if a particle in a material with the parameter 

pc 	moves into a Material with the parameter pc  , it must change 

its value by a factor 

(3.2.83) 
pa 
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so that it represents the same amount of heat energy in each 

material. 

This value change is implemented in the simulation by violated 

the conservation of trajectories principle (we noted earlier, at 

equation (3.2.70), that if p or c depended on x, the simulation 

would involve non-conserved trajectories). This is achieved by 

further operating on all trajectories which undergo the operations 

B and C in Figure 3.2.3: particles passing to the right of B 

are amplified by a factor 0 , and those passing to the left at 

C are amplified by a factor 0-1. This is very similar to the 

procedure we described earlier for handling a residual proportional 

term VU of the parabolic equation, and is implemented statistically 

by allowing existing trajectories to expire or new trajectories to 

begin with the appropriate probability. 

With the addition of this extra operation, we must rederive the 

flux balance equations. Consider the net flow of particles entering 

the right hand region in Figure 3.2.3 per cm2 in A seconds. We 

have from (C7), (C8) 

A 	-1.• - 13 Q+  = 0 a 13 ( 	) 2  ( K ) 	D 

K  1  - A D P 7  1 	Xi  - p 	(K1+ ) ./.  

+ -132K
1 
 ADx1 

(3.2.84) 

As before, we choose a so that the contribution from the 

particle density D vanishes. Thus equating the sum of the first 

and third terms on the right hand side of (3.2.84) to zero, we have 

a (K 
and so 

a = 

 

3.2.85)(3.2.85) 

 



13  = 1 + a < 2. 	(3.2.87) or 2 

- 158 - 

If this a is greater than one, then the reflection operation should 

be applied to particles hitting the boundary from the other side, 

for then the resulting a will be less than one. 

Now we choose p so that the contribution from the particle 

density gradient Dx  is the correct flux (3.2.76). Thus from the 

second and fourth terms on the right hand side of (3.2.84), we 

have (dividing them by 4) 

-GaPiK1 Dx 
-B1K + D + 	- K D . 

	

1 	1 x1 	

1+ x+

1  

But the left and right density gradients at the boundary are 

related by the ratio of the conductivities, and so we can replace 

DX 	by (k1 -1-/k -)D 	giving 
1 	1 x1  

eaPi Kl-  1(1+  (k1-)-1 	= K1+. 	(3.2.86) 

Now from (3.2.83), e = K
1 (k1+)-1(K1  -

)-ik1  - and so (3.2.86) becomes 

,., 2ap + 2 R = 1, 

It can be verified that these values of a and p also give the 

correct value to the net flux leaving the left hand side. Compared 

with the constant pc case studied earlier, the values of p 

found are the same (3.2.81 and 87), but the values of a (3.2.78 

and 85), differ by the factor O. As e = 1 in the constant pc 

case, the coefficients derived earlier (3.2.78, 81) can be con-

sidered as special cases of the ones just derived (3.2.83, 85, 87). 
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Boundary Conditions 

Parabolic equations are basically initial value problems, and 

often no boundary conditions are imposed on the solution after the 

initial time t = 0. This was the case for the example studied in 

Chapter 2, and indeed for most FP equations describing the statis-

tics of dynamic systems, the systems concerned do not have boundary 

conditions imposed upon them which can be readily translated into 

boundary conditions for the FP equation. Other -parabolic equations, 

however, often do have imposed boundary conditions. For example, 

heat conduction problems usually do, as the material under study is 

finite, and edge conditions are imposed on the material. We will 

continue our discussion on the heat conduction example, and show 

how boundary conditions are handled. 

From the discussion on the treatment of spatial discontinuities, 

the treatment of boundary conditions follows directly. Using the 

physical analogies given previously, we transfer the boundary con-

ditions directly into conditions on the simulated trajectories. 

Boundary conditions for heat conduction problems take two forms 

[77], the specification of the solution U on the boundary 

(Dirichlet type boundary conditions), and the specification of the 

normal heat flux (kU ) 	across the boundary (Neumann type boundary x nor 
conditions). In each case, we regulate the flow of particles across 

the boundary to satisfy the given conditions. 

For the case, where the solution U is given on the boundary, 

we consider a region directly adjacent to the boundary, and con-

tinually estimate the solution in this region by keeping track of 

the number of particles in the region [see equation (3.2.50)]. 

Then at each time step at which accounting is done, trajectories 

are forced across the boundary to keep the number of trajectories 

in the region at the proper level. This time step may be the same 

At which is the basic discretization time of the differential 

equation solution (see Chapter 6) on the digital computer, or 
multiples of it. This operation sets the number of trajectories 

in the boundary region to the exact value at each step, but still 

possesses the inherent At and Ax discretization errors of the 
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Monte Carlo method. An example of this type of boundary condition 

is given later. 

For the case where the normal heat flux is specified at the 

boundary, we regulate the flow of trajectories across the boundary 

so that the particle flux at ne boundary equals the required heat 

flux (remember, 1 particle = s6 N 1  pc calories). In principle, 

the implementation of these flux conditions is not complicated by 

arbitrarjly shaped boundaries, for only those particles crossing 

the boundary contribute to the normal flux at the boundary. However, 

in practice, the analogue or digital circuitry or logic needed to 

detect when a particle crosses the boundary is complicated by an 

unusual boundary shape. 

If the flux out of the material is larger than the desired 

flux, then particles will have to be reflected back into the material 

at the boundary. If the flux out of the material is too low, then 

extra trajectories have to be taken out of the material from a region 

near the boundary. If the boundary conditions call for a net flux 

in at the boundary, then all trajectories hitting the boundary 

must be reflected back, and extra trajectories (corresponding in 

rate to the specified flux) have to be created and set free just 

inside the boundary. An example of this type of boundary condition 

is given in Section 3.2.6. 

In addition, mixed boundary conditions of the form µ
1
U + (U)

nor 
= µ

2 can be handled by our method. The technique is to measure U 

adjacent to the boundary, and then regulate the flow of particles 

across the boundary so that the normal flux across the boundary 

equals (U ) nor = µ2  - µ1U. No method has so far been proposed 

for handling mixed boundary conditions in the backward simulation 

method. 

With the backward simulation method, Dirichlet type boundary 

conditions are handled somewhat more conveniently than by our method, 

but only certain Neumann type boundary conditions involving geomet-

rically simple boundaries can so far be handled by the backward 

simulation method [83]. In this latter case, our methods are more 

conveniently implemented, and can handle a general Neumann condition. 
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This is essentially because of the physical analogy which can be 

- drawn between the'flow of particles in the simulation and the 

physical flux which is •specified- in-the Nenmann- conditiohs. 

Physical Analogies 

We have seen that in the case of the equation of heat con-

duction, physical analogies could be drawn between the simulated-

particles and the parameters of the physical situation which the 

parabolic equation describes. These analogies allowed us to trans, 

late certain given or necessary conditions of the physical situation 

(e.g. conservation of thermal energy and specification of thermal 

flux) into conditions on the simulated trajectories. This allowed 

us to specify the behaviour of the simulated trajectories at certain 

boundaries where the parabolic equation did not necessarily hold. 

Let us look more closely at the origin of the physical analogy. 

The particles in the simulation' are quantities whose density in the 

state space R gives the value of the dependent variable U(x,t). 

This fact will often give a physical meaning to the particles. In 

`iRddition, Green's theorem connects the instantaneous flux of the 

simulated particles to the space gradient of the dependent variable 

of the Fokker-Planck equation of the underlying diffusion process 

governing the trajectories of the particles. This flux is given 

in equation (1.2.3) for the FP equation (1.2.1). The main point 

is that parabolic equations governing physical situations of a 

diffusive character (e.g.-  weather prediction equations) are usually 

derived from physical principles embodying flux concepts, and these 

physical principles connect the flux (1.2.3) to the forward Komogorov 

equation (1.2.1). Through this connection, it is felt that empirical 

methods such as given in this section can be fOund to handle unusual 

conditions on most parabolic equations. 

It is notknownwhether such a simple connection exists between 

the particle flux and the backward Kolmogorov equation (1.2.4). 

Authors who solve parabolic equations by Monte Carlo methods based 

on the backward simulation method [63, 64, 83] do not mention such 
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analogies, and hence these methods may not be able to cope with the 

discontinuity conditions discussed in this section. This may be a 

significant advantage of the Monte Carlo methods described in this 

Chapter, but the present author does not have sufficient experience 

with the backward simulation method or with the parabolic equations 

other than the heat conduction equation to comment further on this 

point. 

3.2.6 	Numerical Results of the Heat Conduction Example  

As the purpose of these examples is to illustrate the treat-

ment of material discontinuities and boundary conditions, we dis-

cuss that is essentially a one-dimensional example. This is because 

the example has boundaries and a discontinuity lying in the x2-x3 
plane, and the material parameters, initial conditions and boundary 

conditions are all independent of x2 and x3
, so that the solution 

is always uniform in x
2 and x7. Thus our simulation can be con-

sidered to be confined to a 1 cmg  cross-section of the x2-x3  

plane, and our remarks will only concern the dependence of the 

solution on x
1 and time. 

Consider a material which is homogenous in two separate regions 

as shown in Figure 3.2.4. The material  is copper extending from 
x1 = 0 to 5 cms., and material is steel extending from x1 

= 5 

to 10 ems. From standard tables [77] we find the material parameter 

values for copper and steel shown in Table 3.2.2. 

We assume that a general solution is desired as a function of 

x1 and t. For accounting purposes, the x
1 axis is divided into 

10 equal parts or cells, labelled 1 to 10. No significant quanti-

sation occurs in the individual trajectories, which are obtained to 

the accuracy of the computer, but the trajectories are quantised into 

the cells 1 to 10 when an estimate of the solution is desired. The 

solution is then estimated at the mid-points of the cells, 

x
1 = 0.5, 1.5, 2.5, ... 9.5 cms. 
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Transient Solution 

A transient solution was obtained under the following conditions: 

(a) Initial temperature U(x1, o) = 300°K for all x1. Aesuming 

each cell to have a 1 cm2 cross-section in the x2-x3 plane, the 

volume of each cell is 1 cm3. Then from (3.2.33), 0 = 3000. If 
we let 100 particles in each cell equal a temperature of 300°K, 

then N = 1000 and in (3.2.50b), 

91 N 1  = 3 °K/(particles/cm3). 	(3.2.88) 

(b) A thermal flux of 500 watts/cm2  = 119.5 calories/(sec.cm2) 

enters at the left hand boundary 1. In terms of simulated particles, 

this flux represents 119.5 N (0pc-)-1  = 48.8 particles/sec., 

entering cell 1 from the left boundary. If At is chosen as a 

multiple of (48A)71  = 0.02047 seconds, this flux can be simulated 

conveniently by adding the necessary number of particles every At 

seconds. In the present example we have chosen At = 0.2047 

seconds, and added 10 particles to cell 1 every At. Each new 

particle so added is given a position x1  = 0.0, and has the same 

dynamics and weight yf N 1 as the original particles. 

(c) The right hand boundary 3 is kept at a constant temperature 
of 300°K. This was simulated by keeping 100 trajectories in cell 

10 (by adjusting the number every At seconds) but this involves 

a Ax quantisation error, as the number of particles in cell 10 

is an approximation to the solution at x1  = 9.5, whereas the 
boundary is actually at 10.0. This error could be eliminated 

by modifying the cell spacings so that the rightmost cell was 

centred around x
1 = 10.0, but this was not done in the present 

example for the convenience of retaining simple quantised values 

of x1. 
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(d) The dynamics of the simulated trajectories are given by 

(3.2.72a) 

dx (t) = (2 K
1
)2  dw(t). 	(3.2.89) 

1 
From Table 3.2.2, (2 K1) 2  equals 1.51 for copper and 0.49 for 

steel. The dynamics which affect the particle in the x2  and x
3 

directions do not affect the trajectories in the x1  direction, 

and for the present purpose they need not be simulated. 

Equation (3.2.89) is simulated digitally by adding Gaussian 

increments to x
1
(t): 

x
1
(t + At) = x1(t)  + N(0,2K1At), 	(3.2.90) 

where N(0, 2K1At) is a Gaussian random number with mean zero and 

variance 2K
1At. As mentioned in Appendix A, and discussed in 

Chapter 6, this is a valid incremental interpretation of the 

stochastic differential equation (3.2.89). Indeed, as the s.d.e. 

(3.2.89) has no drift term and the noise dw(t) is independent 

of x1(t)
, 
then x

1(t) is a simple Brownian motion (with variance 

2K1t in this case), and the discrete simulation (3.2.90), simulates 

the statistical behaviour of x
1(t) exactly at the discrete sample 

points t = n At. Also, the random numbers used were obtained by a 

log-trigonometric transformation of a uniform variate, and were 

from an exactly Gaussian distribution [78] (the usual practice is 

to add 10 or 12 uniformly distributed numbers together, but this 

procedure does not represent the tails of the Gaussian distribution 

well. Also, most generators of uniform numbers are quite non-

uniform in the short term, and our method is less sensitive to such 

distortions than the common method.). A typical trajectory is 

shown in Figure 3.2.5. 

(e) The treatment of particles when they reach the material dis-

continuity at x
1 
= 5 has been discussed earlier in connection 

with Figure 3.2.3. In particular, we have the following discon-

tinuity coefficients: 
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(3.2.83) e = .826 
e-1 = 1.21 

(3.2.85) a = .393 
1-a = .607 

(3.2.87) p = 1.435 
p-1 = .435 

Referring to Figure 3.2.3, a particle hitting the boundary from 

the copper side undergoes the following operations: 

A: It is reflected back into the copper material with probability 

(1 - a) = .607. This decision is made by choosing a random number 

from a uniform (0, 1) distribution, and it is reflected back a 

distance such that its total path length equals the distance (3.2.90) 

it would have travelled had no discontinuity been present (this 

prevents particles piling up at the boundary and ensures a natural 

distribution of particles near the boundary). A particle has been 

reflected back into the copper material at 1 in Figure 3.2.5. 

B: If the particle is not reflected back into the copper region, 

it passes into the steel region, and with probability (p - 1) = .435, 
brings a second particle with it. Then, as pc 	Tc+, this 

particle (and the second one if it comes) must undergo a value change 

by a factor e = .826 as it crosses the boundary. As 0 is less 

than 1 in this case, this value change is implemented by allowing 

the particle(s) to pass through freely with a probability e , or 

to become extinct with probability (1 - 0). In Figure 3.2.5, a 

particle has passed through freely at 2 (and not brought another 

particle with it), but has become extinct at. 3. Note that when a 

particle does pass into another materiale  as at 2, 4 or 5, its 
speed changes by the ratio (Kn.ew old)=  0.32 or 3.1 in much 

the same way as a light ray passing into a new material with a 

different refractive index. The dotted lines in Figure 3.2.5 show 

where the particle trajectory would lie had the material discon-

tinuity not been present. 
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A particle which hits the boundary from the steel+  side does 

not undergo a reflection operation, but only two magnification 

operations: 

C: The particle passes into the copper region, and as at B, 

brings a second particle with it with probability- (p - 1) = .435. 

As the particle(s) crosses the boundary, it (they) must undergo 

a value change by a, factor 0-1 = 1.21. As 0-1 is greater than 

one, new particles must be invented and set free in the copper 

region (at 4 or 5 in Figure 3.2.5). This is implemented by 

deterministically adding I(0-1 - 1)* new particles, and adding 

another one with probability' (0 	1)  .,. 1(0-1 	1). This opera- 

tion must be carried out on the original particle and the one 

added with probability (p - 1) above. Figure 3.2.5 shows particles 

added at 5, following the transmission of the original particle 

through the steel-copper interface. If the particle had been added 

with the p operation, the particle would be one arbitrarily chosen 

and removed from the steel material (near where the original 

particle was, if possible) and set free at the new location of the 

original particle. If the particle had been added with the 0 

operation, it would be a new particle. 

A graph of the initial part of the temperature transient is 

given in Figure 3.2.6. Individual solution points are shown as 

being the average temperature in each quantised cell of 1 cm. 

length. The standard deviation of each point estimate can be approxi-

mately obtained from equation (3.2.52b). Two extreme cases are 

worked out: 

(a) Cell 1, t = 45 secs., N' = 2900 particles, q 1. 0.15. 

Standard deviation 1 19 particles 

= 57°K (4%). 
	

(3.2.91a) 

I(•) is the integer part of (•) 
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(b) Cell 9, t = 10 secs., N' = 1500 particles, q 0.07. 

Standard deviation LI 10 particles 

= 30°K (10%). 
	(3.2.91b) 

The standard deviation of other points in the transient shown lies 

between these values. Assuming the distribution of error to be 

Gaussian, the 95% confidence interval for these points is roughly 

plus or minus twice the standard deviation. Of 100 solution points 

tested, 93 fell within this confidence interval (the true solution 

was taken as the smoothed one described below), which confirms our 

method of estimating error. 

The statistical errors (3.2.91) are rather high for some 

purposes, and higher accuracy may be desired. In lieu of adding 

more points to the simulation (storage problems may preclude this), 

we may sacrifice time and space resolution to obtain a smoother 

solution. As the space quantisation of 1 cm is already quite coarse, 

let us look at the time resolution At. The At of about 0.2 

seconds was chosen with regard to the mobility of particles in 

the copper region (the particles are less mobile in the steel region 

by a factor of 0.32 - see equation (3.2.90)). With this At, the 

particles in the copper region were sufficiently mobile so that 

successive evaluations (at each At) of the number of particles in 

each cell had statistical fluctuations with low correlation, and 

yet sufficiently immobile so that the probability of a particle 

jumping two cell boundaries was kept low. The latter point is not 

important but makes accounting simpler, but the first point is 

important for the following reason. For the given Ax quantisation, 

this is the minimum value of At for which successive cell particle 

densities are reasonably independent, and so while this At may be 

much smaller than needed for solution time resolution, it generates 

the maximum amount of independent statistical information for the 

given number of trajectories N'. 

Thus if a lower time resolution can be tolerated, a smoother 

solution can be obtained by averaging successive cell densities. 

This operation introduces no bias if the time variation of the solution 
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is linear over the interval of the time smoothing. In the present 

example, solutions were obtained by averaging over 10 successive 

time intervals, and from Figure 3.2.7, we see that the solution is 

quite linear over an interval of t 5 At 4 t 1 seconds. Although 
Figure 3.2.7 shows the solution variation averaged over the entire 

steel region, the variation shown is typical of the point variations 

encountered. 

This smoothing reduces the statistical errors by about a factor 

of (10) or 3, and the smooth curves of Figure 3.2.6 were drawn 

from these points - the points are not shown, but are all within 

two line thickness of the curves drawn. Thus drawing the curve has 

entailed further smoothing, which was justified by the known infor-

mation: 

(a) The slope at the left hand edge of the curve is given by the 

imposed thermal flux: 119.5 caloriesAsec.cm ) = k U.  at x = 0, 
' A1 which for copper gives a slope of 128.5°K per cm. 

(b) As thermal flux is conserved at the material boundary the slope 

ratio. U+- is given by k
1
-/k1  = 8. 1  

If smoothing is considered as a sequential operation, that is, 

every At a new solution estimate is obtained using only past data, 

the operation can be likened to a Bayesian filtering operation. A 

proper sequential Bayesian filter works as follows: 

(1) An estimate 2(t) is obtained at time t with an associated 

probability density P[2(t) 1 t]. 

(2) Knowledge of how q(t) is likely to vary in the interval 

(t, t + At) is used to update 142(t) 1 t] to the a priori 

probability density for 2(t + At), P[2(t + At) It]. 

(3) The likelihood function obtained from data collected at time 

t + At is used to update PLa(t + At) It] into the a posteriori 

probability density for 2(t + At), 1[2(t + At)I t + At]. Using 
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this density and perhaps an associated risk function, the optimal 

estimate a(t + At) is obtained. 

Compared with the maximum likelihood method considered earlier 

(3.2.50), the difference of the Bayesian method is to include past 

data and inherent knowledge of the behaviour of q(t) via the step 

(2) above([80, Ch.3] gives a lucid comparison of maximum likelihood 

and Bayesian estimators). The Bayesian Kalman filter [80] achieves 

step (2) by incorporating an exact model of the dynamics of q(t) 

into the structure of the estimator. 

However, in many situations of applied statistics, the infor-

mation needed to carry out step (2) exactly is not available, yet 

there is often good, if empirical, motivation for incorporating 

some a priori information on q(t At) into the maximum_ likelihood 

estimator for q(t At). It is felt that it is from this reasoning 

that many empirical stbothing Or filtering operations are derived in 

practice. For example, if it were khown (or guessed) that q(t) had 

a variation with a maximum frequency content Of woi then the data 

q(t) could be filtered by an exponential filter of time constant 

Wo
-1 
 to reduce the statistical fluctuations of higher frequency 

than wo in the data (c.f. in the Kalman filter, if q(t) is 

generated by a first order system, then 2(t) is smoothed by the 

same first order filter). In our example above, we have allowed 

q(t) to have a linear variation over a range t ± 5At, and thus have 

used a smoothing filter which gives equal weighting to data 2.(t) 

over this range. This operation differs from that of the recursive 

filter in that future data is incorporated into the current estimate, 

but the main analogy to be drawn is that information other than 

that of the current data is used to obtain the current estimate. 

This is justified by proposing a structure for the change of the 

parameter q(t). 
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As mentioned earlier, point solutions (3.2.50) are not the forte 

of the Monte Carlo method, but rather functional solutions of the 

form (3.2.60) are better suited to evaluation by these statistical 

methods. This is essentially because a point solution uses the 

information of only a subset of the simulated trajectories, whereas 

the functional solution uses all the trajectories, and the statis- 

tical fluctuations involved depend mainly on the number of points 

used in the solution. In between these two situations is the regional 

solution (3.2.59) in which a large proportion, but not all, of the 

simulated points are used in the solution. 

An example of this latter type of solution is given in Figure 

3.2.7, where the average temperature in the steel region, x1  = (5, 10), 

is evaluated. The error statistics are again given by (3.2.52) 

where at t = 0, NI = 1000, q = .5, and at t = 40, N' = 2750, and 

q 1 .3. The resultant standard deviation of the temperature error 

is 10°  K near t = 0 rising to 14°  K near t = 40. Of course 

at t = 0 there is no error, and this error analysis only applies 

when individual trajectories have travelled long enough so that 

their position is relatively independent of their initial position 

(about t = 5 seconds in the steel region). In any case, the 

standard deviations given are to be taken as upper limits. Only 

every 10th solution point is shown on the graph, and so there was 

adequate opportunity for smoothing. However the graph shown was 

just drawn by eye, and the points shown are given as typical points. 

The error estimate was verified as about 2/3 of the solution points 

were with a standard deviation of the final curve (theoretically, 

an average proportion of 0.68 of the points should be within the 

standard deviation). 
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Consistency of the Monte Carlo Solution with Respect to Time  
Dependence  

It appears that owing to the material discontinuity of the 

present example, an analytic solution for the transient temperature 

is not readily available. However, the steady state solution is 

easily obtained from flux balance considerations. Thus as we cannot 

directly compare our Monte Carlo solution with a known solution, 

it is useful to consider the following argument which shows that 

the Monte Carlo method does not introduce any errors due to the 

transient nature of the problem. This implies that the accuracy 

of the Monte Carlo method during a transient solution is the same 

accuracy with which the steady state solution is obtained (for an 

equal number N' and proportion q of simulated points). We can 

then confine our accuracy discussion to the steady State Monte 

Carlo solution. 

Consider an infinite homogeneous rod of 1 cm2 cross-section 

with no heat transfer across the surface of the rod. Then we have 

linear heat flow in the x direction (dropping the subscript 1 of 

our example) which is governed by the differential equation 

Ut = K U 
X. X

, 	 (3.2.92) 

where K is the diffusivity of the material. This is the same 

situation of our example of Figure 3.2.4 if the material discon-

tinuity and boundaries were removed from our example. 

Assume the rod is initially at zero temperature, U(x,o) = 0, 

and a certain quantity of heat energy, pc calories, is released 

at x = 0, t = 0. Then by differentiation and substitution, it is 

easily verified that 

U(xf t) = (4TrKt) 2  exp(-x2/4Kt) 	(3.2.93) 

is a solution of (3.2.92) satisfying the given initial conditions 

[77, p.50]. It is noted that (3.2.93) is a Gaussian distribution 

of zero mean and variance 2Kt. 
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Now consider how (3.2.92) could be solved by Monte Carlo methods. 

The zero initial conditions means that no particles are present 

initially, and the release of pc calories at x = 0, t = 0, 

corresponds to the release of priN particles at x = 0, t = 0. 

As in (3.2.89), the parabolic equation (3.2.92) dictates that the 

particles undergo a Brownian motion given by the S.D.E. 

1 
dx(t) = (210 2  dw(t). 	 (3.2.94) 

Thus the distribution of simulated particles at time t is given 

by the Gaussian distribution with zero mean and variance 2Kt. It 

remains now to check the scaling factor of the Monte Carlo solution. 

Recall that the contribution of each particle 
xa(t) 

to the solution 

is fe N-1  8(x - xa). Thus the integral of the Monte Carlo solution 

co 

I u(x,t) dx = 	gl N 
-co 

= 1 

as there are 0-1 N particles. But the integral of the true solu- 

tion (3.2.93) is also one, and so the expected value of the solution 

obtained by the Monte Carlo simulation is given by 

11(Xyt) = (4111{t) 2  eXp(—X2AKt) 

which is the true solution (3.2.93). Thus our Monte Carlo method 

provides an unbiased estimate of the true solution. 

This argument can be extended to the case where the insulated 

rod has an arbitrary initial temperature 

U(x,o) = f(x). 	(3.2.95) 

The solution is then given by [77, p.53] 
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co 

1  
U(x,t) = ( 101-Ktr 2  J f(x') exp(-(x - x1)2/4Kt)dx' (3.2.96) 

—m 

Concerning the Monte Carlo simulation of this situation, from 

(3.2.33) we have the normalising constant fd as 

co 

= 	f(x) dx. 
-w 

The number of calories in the rod is then 0'  pc which is simulated 

by N particles. Thus the initial density of particles is 

D(x) = 	N f(x) particles/cm. 	(3.2.97) 

Now each particle in the simulation has a weight 0' N
-1 and 

undergoes the Brownian motion defined by (3.2.94). Then a particle 

starting at x = x' at t = 0, has a Gaussian distribution of mean 

x' and variance 2Kt at time t. Thus the expected value of the 

contribution of a particle beginning at x = x' to U(x,t) is 

si( N-1  (4TrKt)-2  exp(-(x - x')2/4Kt). 	(3.2.98) 

Now taking into account the initial density of particles (3.2.97), 

the expected value of the Monte Carlo solution equals the expected 

contribution of all simulated particles to U(x,t), 

by the integral of (3.2.98) times (3.2.97) over all 

co , 
J f(x1 ) exp(-(x - 30)2/4Kt)dx'. 

-co 

and is given 

x, which is 

But this is exactly equal to the true solution (3.2.96), and so our 

Monte Carlo method provides an unbiased estimate of the true solution 

for the arbitrary initial conditions (3.2.95). 

The situation we have just described is the same as our example 

of Figure 3.2.4, except that we have imposed boundary conditions at 

x
1 

= 0, 5 and 10 in our example. However these imposed conditions 

do not involve time dynamics as they were derived (e.g. Figure 3.2.3) 

to satisfy instantaneous flux balance conditions. While the imple- 
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mentation of these conditions involve statistical fluctuations 

inherent in the Monte Carlo method, the boundary conditions were 

derived so that the error in implementing the boundary conditions 

has a zero mean value at all times. Thus the imposition of boundary 

conditions in our simulation does not introduce any errors which 

are specifically due to the time dependence of the transient solu-

tion. 

With this argument we suggest that the error in the transient 

Monte Carlo solution depends only on the same simulation parameters 

N' and q as the associated steady state Monte Carlo solution 

(e.g. equation (3.2.52) for point or regional solutions). With this 

assumption, we will proceed to analyse the error of two steady-state 

solutions in more detail. 

Steady State Solution 

Consider the example of Figure 3.2.4, with the heat flux enter-

ing at the left boundary reduced to 50 watts/cm2 = 11.95 calories/ 

(sec.am2), and the solution U = 300°K is specified at x
1 = 

9.5 cms. 

instead of 10.0 cms. (this latter point eliminates the quantisation 

error in implementing the right hand boundary condition). The 

steady state solution is obtained by setting Ut  = 0 in (3.2.62) 

(remember Ux  = 0, i = 2, 3 in this example) and we have 

(pe)-' 	[k1 Ux  ] = 0 dx1 	1 

whence k1 Ux= a constant 
1 the heat flux in the x

1 direction 

= 11.95 calories/(sec.cm2). 	(3.2.99) 

Thus (3.2.99) specifies the temperature gradient in terms of 

the known heat flux in the x
1 direction (the heat conduction 

equation (3.2.62) is derived from the basic principle that the rate 

of heat flow is in the direction of, and proportional to, the local 

temperature gradient). As no heat is lost in the material between 
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x1 
= 0 and 10, the heat flux (3.2.99) is constant in this range. 

In particular we have from Table 3.2.2 

U
x
(x

1) = 12.85 
°K/cm, 	x1  = (0, 5), 

1 
 

and 	U (x ) = 103.9 °K/cm, 	x1  = (5,10). 	(3.2.100) 
x1 1  

Then as U(9.5) = 300°K, 

U(x1) 	= 300 + 103.9(9.5 - x1) °K, x1  = (5, 9.5), 

whence 	U(5.0) = 767.5°K. Then we have 

U(x1) 	= 767.5 + 12.85(5.0 i x1) °K, x1  = (0, 5), 

whence 	U(o) 	= 831.8 °K. 

Thus the particles in the Monte Carlo simulation should be distributed 

according to a ramp distribution, with one change of slope at 

x
1 
 = 5. 

Dividing up the x
1 space into 10 evenly spaced cells, and 

letting 0' N-1  = 3 as before (3.2.88), the average temperature 
and the expected number of particles in each cell is given in 

Table 3.2.3. 

Cell 
	

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 

Average 
825.4 812.5 799.7 786.8 774.0 715.6 611.7 507.8 403.9 300.0 Temperature 

E[No. of 
Particles) 275.1 270.8 266.5 262.3 258.0 238.5 203.9 169.3 134.6 100.0 

Table 3.2.3 Steady State Temperature and Particle Distribution 
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To test the Monte Carlo solution, and particularly the imple-

mentation of boundary and discontinuity conditions, the steady 

state conditions described above were simulated, and 100 indepen-

dent trials were recorded, each time tabulating the number of 

particles in each of the 10 cells. We would like to test the null 

hypothesis Ho: that the expected number of particles in each cell 

is exactly as given in Table 3.2.3. To test this hypothesis, we 

use Pearson's chi-square test for goodness-of-fit [79, p.309]. We 

form the test criterion 

 

10 (n. - E[n])2  

E[ni] 
(3.2.101) U . = 

 

 

1=1 

 

where ni  is the number of particles in cell i at the j:th 

trial, and E[ni] is the expected number given in Table 3.2.3 

assulthIglio istrue.Therliflio istrue,u.will be a chi-

square variate with nine degrees of freedom (i.e. E[uj] = 

and from standard tables [79, p.432] we can find cumulative inter-

valssuchas:"50%ofu.should be in the range (5.90, 11.4)". 

Also,ifilo.istrue,thenthevariancectn.is given by 

(3.2.52b), as this assumption is used in the - derivation of the 

chi-square distribution of u.. 

In fact, in our 100 trials, 55 of the U. found fell within 

this range (5.90, 11.4). The - success or failure of all 100 trials 

forms a binomial distribution (n = 100, p = 4) with mean 50 and • 

standard deviation•5, and so our 100 trials are quite consistent 

with the null hypothesis Ho  being true. 

Another way of doing the chi-square test is to sum the number 

of particles in cell i over the 100 tests, and form the test 

criterion (3.2.101) using these total ni's. The chi-square 

variate so formed equalled 8.23 which again shows that the experi-

mental results are quite consistent with Ho  being true. If H 

were not true, then the chi-square variate (3.2.101) would have 

a mean value considerably larger than 9.0, and H
0  would have a 

very low probability of being true. Furthermore, if Ho  were not 

true, then the variate (3.2.101) would increase indefinitely as the 
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number of trials is increased, and so the reliability of the chi-

square test increases with the number of trials. The 100 trials 

we have taken was considered to be a suitable number to give a 

high significance to the chi-square test. 

Thus we have shown statistically that it is very plausible 

that our Monte Carlo solution is an unbiased estimate of the true 

solution in the steady state. We can do no better than this, except 

to take more trials and reconfirm our statistical conclusion. 

Furthermore, we have argued that our simulation technique introduces 

no errors specifically due to the transient nature of the solution 

provided that the stochastic equations for the trajectories and 

the instantaneous boundary conditions are implemented correctly, 

which implies that the error analysis just made in the steady state 

solution also applies to the transient solution. 

The examples we have considered so far have involved the simu-

lation of trajectories with the simple dynamics (3.2.89). Our 

discussion on the error of the Monte Carlo technique will conclude 

with a look at a simulation with a more complicated dynamic equation. 

We consider heat conduction in a material whose thermal conduc-

tivity k1  varies continuously with x1, but p and c are con-

stant, as in Case II, equation (3.2.71). Again we consider only 

linear flow of heat in the x
1 direction, and from (3.2.71) the 

particle dynamics are 

oKi(xtt) 
dx1(t) -x4 	 dt 	(2K1(x,t)) 	dw(t). (3.2.102) 

We consider the region x
1 = [0, 5] with no heat flux across 

the boundaries, and the x1  region is quantised into 5 equally 

spaced cells for data reduction purposes. We assume that the 

thermal conductivity varies linearly so that 

K1(x1) = 0.1 	0.18 x1. 

The particle dynamics are then given by 
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dx
1 
 (t) = 0.18 dt 	(2K1(x1)) 	

dw(t). 	(3.2.103) 

The first term on the right hand side of (3.2.103) represents 

a constant drift of particles to the right, and the second term 

represents a dispersion which increases from left to right. It 

is this first term and the variation of the second term which 

distinguishes this example from the previous one, and we wish to 

know whether the simulation of (3.2.103) still represents the flux 

balance conditions correctly. 

It will be sufficient to consider the steady state, uniform 

temperature, situation, and see whether the simulation of (3.2.103) 

with reflective boundary conditions at x1  = 0 and 5 (as no 

heat flux passes these points) preserves the uniform temperature 

distribution. Unfortunately the integrals in the analysis of 

Appendix C are difficult to evaluate in this case, and we will 

have to be content with an experimental test to show that the net 

passage of particles past any point is zero on the average. 

A simulation was initiated with a uniform distribution of 

500 particles per cell, and the trajectories were integrated forward 

in time with the dynamics (3.2.103) until 100 independent steady 

state solutions were recorded. Our first concern is that the drift 

term of (3.2.103) should not bias the trajectories too much to the 

left or right, and this can be quickly checked by finding the mean 

value E[x1] of the trajectories in the simulation. This is 

equivalent to the functional solution (3.2.60) with G(x) = pri  x
1
, 

and as U(x,t) should be uniform in x
1 
 = [0, 5], the answer 

should be 2.5. 

Of the 500 x 5 x 100 = 250,000 solution points obtained, the 

mean value was 2.4963, an error of -.0037. But the standard devia-

tion of the error is (250,000)- 2  times the standard deviation of 

x1  (= 1.442), and is 0.0029. Thus the assumption that the mean 

value of x
1 = 2.5 is quite plausible, as 20% of points from a 

Gaussian distribution of standard deviation 0.0029 have deviations 

from the mean greater than 0.0037. 

Another check on our simulation is the chi-squaw test for a 

uniform distribution of cell densities. A typical calculation of 

the Chi-square variate u. (3.2.101) is shown in Table 3.2.4. 
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Cell 1 2 3 4 5 

n.1  487 511 494 531 477 

E[ni] 500 500 •500 500 500 

ni  - E[n.a.] -13 11 —6 31 —23 

(n. - E[n.1])2  169 121 36 961 529 

4 E[n1] 	.338 	.242 	.072 	1.922 	1.058 

Sum of last row = u = 3.632 

Table 3.2.4 Calculation of Chi-square Variate 

Of the 100 trials, 43 of them fell within the 5010 mid-range 

of the chi-square distribution of 4 degrees of freedom (50% mid-

range = [1.92, 5,39]). Alternatively, as before, a chi-square 

variate can be formed from the sum of particles in each cell over 

the 100 trials. This equalled 5.07, which is not too far from the 

expected value of 4.0 and within the 50% mid-range. Thus the 

statistical results obtained are quite consistent with the null 

hypothesis of a uniform particle distribution being true. This 

means that there is no statistical evidence that our Monte Carlo 

solution is biased in the present case. 

This sort of statistical test could be carried out under a 

wide variety of conditions on the heat conduction equation, and 

other parabolic equations as well. However, the orientation of 

the project did not justify further experimental work along these 

lines, particularly as we wish to study the simulation of more 

complicated equations than are met in the solution of parabolic 

equations. 
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3.2.7 	Summary of Monte Carlo Solutions 

In this chapter we have discussed the solution by Monte Carlo 

methods of a wide class of linear parabolic partial differential 

equations. If the parabolic equation is a Fokker-Planck equation 

of a particular system, then an obvious way of solving the para-

bolic equation is to simulate the given system. The collected 

statistics of the system then constitutes a Monte Carlo solution 

of the parabolic equation. 

In Section 3.2.2 it is shown how this method can be extended 

to solve parabolic equations of a more general form than FP equations. 

As FP equations describe the statistics of a real Markov system, 

then the simulatiOn in the Monte Carlo solution involved forming 

realisations of trajectories of the system, each of which began at 

t = t
o 

and existed during the entire time range of the parabolic 

equation. This is to say that the simulation involved the conser-

vation of trajectories. 

Although some parabolic equations like some special cases of 

the equation of heat conduction can be put in the form of the FP 

equation and solved by the same Monte Carlo method, parabolic 

equations in general cannot be put in the FP form and thus must 

be solved by a modified Monte Carlo method. The modification 

involves simulating a system which has a FP equation which is as 

similar as possible in term by term comparison to the given para-

bolic equation, and then allowing trajectories to originate and 

expire during the time range of parabolic equation, in such.a 

way as to simulate the differences between the given parabolic 

equation and its "nearest" FP equation. This latter operation 

means that trajectories are not conserved during the simulation, 

and thus only those parabolic equations which are of the FP form 

can be solved by a simulation method involving conserved trajectories. 

If the parabolic equation has spatial discontinuities or 

boundaries, the equation does not hold at these points, and the 

normal rules of simulation may not be sufficient to define the 

behaviour of the trajectories at these points. In such cases, we 

must rely on auxiliary conditions suggested by the physical nature 
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of the problem to determine the behaviour of the simulated tra-

jectories at edge or discontinuity boundaries. These auxiliary 

conditions may introduce a violation of the principle of conserva-

tion of trajectories at the boundaries, even though trajectories 

are conserved in the main part of the simulation. In the heat 

conduction equation, the physical laws of conservation of heat 

energy and the specification of thermal flux by the temperature 

gradient were used to construct the auxiliary conditions at the 

edge and discontinuity boundaries. 

Also in Section 3.2.2 we presented several theorems which gave 

the conditions under which the solution of the parabolic equation 

remained positive. The Monte Carlo solution methods subsequently 

presented agreed with the positivity theorems, for the Monte Carlo 

Solution involved the simulation of trajectories with positive 

weights except when a constant term W(x,t) which was negative 

existed in the parabolic equation. Then trajectories with negative 

weights appeared which could lead to a negative Monte Carlo solu-

tion. Theorem 3.2.4 showed that this was the only condition under 

which the parabolic equation could have a nertive solution. 

Although the positivity theorems did not consider the case where 

edge or discontinuity boundaries were present, the auxiliary con-

ditions imposed on the simulated trajectories at these boundaries 

did not introduce trajectories with negative weights if these were 

not already present in the simulation. 

Comparing Monte Carlo methods with the direct methods for 

solving parabolic equations discussed in Chapter 2, the most 

striking differences are provided by the effect of dimensionality 

and accuracy on solution effort. By dimensionality we refer to 

the number of independent variables of the parabolic equation other 

than time, and we recall that dimensionality was a severe restriction 

on the size of problem which could be handled by the direct methods. 

The most versatile of the two direct methods considered was the 

finite difference method, and in this case the storage requirements 

and computing time were proportional to the power of the dimensionality. 
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This was principally because the finite difference method required 

that the solution be obtained at all space points at each time stage, 

regardless of whether we are interested in them or not. By contrast, 

in the Monte Carlo method, the solution which is obtained by data 

reduction operations enthe simulated trajectories is only obtained 

at those points or over those space variables which are of interest. 

The solution effort, for a given accuracy, is roughly proportional 

to the number of solution points obtained, but it is likely that 

very: few more solution points would be desired for a typical large 

dimension problem than for 'one of low-dimension. Thus aMonte 

Carlo solution of a high dimension problem may entail little more 

effort than a low dimension one, provided the mechanics of simula-

tion are not unduly complicated for the high dimension problem. 

On the question of solution accuracy, the Monte Carlo method:. 

YhaSdifferent Considerations from the finite difference method. . 	• 	. 	• 	• 	. 
In the Monte Carlo method,• the standard deviation of the solution 

error was inversely proportional to the.square root of the number 

of trajectories in the simulation, while in the finite difference 

method, the solution error was proportional to the square,ofthe 

independent. variable mesh quantisation, Ax and At. Thus to 

redUce,the Solution error by a factor of 4, we must simulate 16 

times AS.many'trajectories in the Monte Carlo method, but in the 

finite difference method we must halve each independent variable mesh 

size. This means a factor of 2n+1 more solution points to compute 

and store, where n is the number of space dimensions in the problem. 

Thus for a 1-dimensional finite difference solution, we need 4 times 

as many solution points to reduce the error by a factor of 4; for a 

two-dimensional problem, 8 times as many points; for a three-dimensional 

problem, 16 times as many points, and so on. Thus only for the 

one-dimensional finite difference method is an increase in effort 

directly rewarded by a proportional increase in accuracy. For higher 

dimension:finite difference problems and for Monte Carlo methods for 

all problems, increase7of effort-is not rewarded by a proportionate`: 
. - 

increase of accuracy, and it will not in general be'feasible to 

obtain solutions of arbitrarily high accuracy. Note also that the 

accuracy considerations of the Monte Carlo method are independent 
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of dimensionality, whereas the finite difference method is again 

plagued by the curse of dimensionality. 

This chapter has only briefly looked at Monte Carlo methods for 

solving parabolic equations. The original intention was to look 

at methods of solution for the FP equation, and the Monte Carlo 

method involved a direct simulation of the continuous Markov system 

whose statistics the FP equation was describing. However, this 

idea indicated a link between diffusion processes and more general 

types of parabolic equations, and in exploring this link, the contents 

of this chapter developed. 

As a result, a new method of solving linear parabolic equations 

was developed based on the FP or forward Kolmogorov equation of a 

diffusion process. Previous Monte Carlo methods for pArabolic (or 

elliptic) equations had been based on the backward Kolmogorov 

equation and are called backward simulation methods. It was noted 

that the backward simulation method is complementary to our forward 

simulation method in some ways, but also the forward simulation 

method seems to handle problems of a wider generality than the 

backward method. Some points of comparison are listed in Table 

3.2.5. The question marks indicate restrictions on the backward 

simulation method which may be removed by future research. 

Some experimental work was presented using examples of the 

equation of heat conduction. The results supported the theory 

given earlier, but more work has to be done before the viability 

of the method is fully checked. 

In the latter phases of this thesis topic, interest has centred 

around the relation between physical processes and diffusion processes. 

This relation is particularly relevant to the simulation of the diffu-

sion processes of this chapter on a physical computer, but it turned 

out that the examples of this chapter were not convenient to illustrate 

the points of interest. Some recent developments in non-linear filtering 

did provide some useful examples, and our discussion of simulation tech-

niques will treat non-linear filtering and other examples in Chapters 5 & 6. 
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CHAPTER 4 

The Relation Between Physical and Diffusion Processes 

with Applications to Simulation  

In the last chapter, we presented a Monte Carlo or simulation 

method of obtaining an approximate numerical solution to a wide 

class of parabolic partial differential equations. The method 

involved an extension of the relation between the solution of the 

Fokker-Planck equation of a diffusion process and a direct simula-

tion of the diffusion process. 

Thus the Monte Carlo methods require the simulation on the 

computer of a diffusion process. A computer, being a physical 

device, can only represent or compute with band-limited signals, 

and so in the light of the discussion of Section 2.2, a computer 

can only represent a physical process exactly, and not a diffusion 

process. Thus to simulate a given diffusion process, we must choose 

a physical process suitable for representation on a computer which 

models the essential statistical behaviour of the diffusion process. 

Completing the circle, it is sometimes of interest to find a 

diffusion process which models the essential statistical behaviour 

of a given physical process. This approach is especially helpful 

when we are interested in the tsansient statistical behaviour of 

physical systems, for this transient behaviour cannot be simply 

obtained by analytic means for non-Markovian (i.e. rhysical) 

processes. In contrast, for Markovian (ie.•diffusion)processes 

transient F.P. techniques are at our disposal, and particularly 

simple transient solutions are obtained if the process is linear 

(see [74]; an example is given in [57]). 

Both these problems can be approached by studying the relation 

between physical and diffusion processes. This relation was intro-

duced in Section 2.2 where we discussed the results of Clark, and 

has been discussed in different forms by Wong and Zakai [24, 25, 102] 

and Stratonovich [21]. In Section 4.1 we derive approximate 
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expressions for the second order statistics for the increments of 

a physical process, and choose an "equivalent" diffusion process by 

relating these statistics to the first two incremental moments of a 

diffusion process. Our argument, although basically similar to 

Stratonovich's, emphasises the aethod of characterising physical 

noise processes introduced by Clark. Unlike Clark and Wong and 

Zakai, we are not primarily concerned with the limiting properties 

of families of physical processes, but we explore the statistical 

relationship between a diffusion process and one given physical 

process (in this sense we follow Stratonovich). In this way, we 

show what diffusion process approximately shares the statistical 

properties of the given physical process. Our results duplicate 

Stratonovich's except that 

(a) we include the non-stationary noise case; 

(b) the manner in which we introduce the approximations gives a 

different, and perhaps clearer, insight into the conditions 

under which the statistical properties of the systems are 

approximately equivalent; 

(c) owing to the structure of our formulation, our results are 

easier to apply to at least some physical systems found in 

practice. This is mainly due to our method of matching 

incremental moments (e.g. see [57]), but is also helped by 

our method of characterising physical noise processes. 

In Section 4.2 we do consider the limiting properties of families 

of physical processes but not in the rigorous fashion of Clark and 

Wong and Zakai. In determining what diffusion process coincides 

with the limiting member of a family of physical processes as the 

upper frequency of the physical noise is extended to infinity, we 

consider convergence in distribution while Clark and Wong and Zakai 

consider the more confining convergence in mean square. While their 

use of convergence is pertinent to the individual sample paths of 

the processes, our use of convergence is pertinent to the statistical 

properties of ensembles of the processes, and as such is sufficient 

to show the convergence of simulation exercises. The value of 

Section 4.2 is to show the consistency of the approach of Section 
4.1 as the upper frequency parameter of the physical noise is 
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refined, with particular reference to the method of characterising.  

the physical noise process. 

Using the characterisation we have chosen, we show that the 

limiting process is equivalent to replacing the physical noise by 

a special type of white noise 'hick preserves the parameters of the 

original physical noise. At this stage we are faced with the choice 

of stochastic calculus we use to describe the process with white 

noise, and find that the use of the Stratonovich calculus in 

conjunction with the special type of white noise gives the stochastic 

equation which is closest to the original physical equation (and 

thus can be said to be more physically meaningful than other stochas-

tic equations). We state the relation between this stochastic 

equation and the Stratonovich equation using the conventional white 

noise, and the Ito. equation. 

The results of Sections 4.1 and 4.2 are useful for choosing 

equiValent diffusion processes for physical processes found in 

practice, and in Section 4.3 we apply these results to the analysis 

of the topical example of linear systems with random coefficients. 

Our analysis of linear systems with random coefficients is an exten-

sion of the literature on the subject in the sense that we allow a 

more general form of physical noise process than previous authors. 

In Section 4.4, we rephrase the results of Sections 4.1 and 
412 so that we can choose a suitable physical process which is 

equivalent to a given diffusion process in order that the latter 

can be approximately simulated on a computer. 

We also mention the problem of simulating a given physical 

process on a computer. If the noise of the physical process cannot 

be conveniently duplicated on the computer, a suitable noise must 

be chosen which then defines a second physical process. It turns 

out that the statistical equivalence of these physical processes 

can be discussed in terms of their equivalent diffusion processes, 

and this is done in Section 4.5. 
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4.1 Choosing an Equivalent Diffusion Process for a Physical Process 

by Matching Finite Incremental Statistics  

Consider the diffusion process x(t) described by the Ito 

stochastic differential equatiin (s.d.e): 

dx(t) = f(x,t) dt + F(x,t) dw(t). 	(4.1.1) 

As x(t) is a continuous Markov process, the statistical 

properties of x(t) are completely specified by the first two 

incremental moments of the process (c.f. Section 2.1 or Appendix A) 

limit 1 	r r b(x2t) 

	

	EL x x, t j = f(xl -t) 	( 4. 1 . 2a) = qt+i,o Et 

limit 1 re and a(x,t) 	4ro Et EL qx oxT  I x,t] = FF
T
(x,t). 	(4.1.2b) St  

Now consider the physical process X(t) described by the 

ordinary differential equation (o.d.e.) 

X(t) = g(X,t) + G(X,t) y(t). 	(4.1.3) 

As X(t) is a non-Markovian process, its statistical properties are 

not completely specified by two incremental moments of the form 

(4.1.2). Indeed, the limiting operation involved in the definition 

of the second incremental 

for a(X,t) when applied 
( is of order 0(ot2  ) for 

moment (4.1.2b) results in a zero 

to physical processes, as E[ 8x 
physical processes for small St. 

value 

XT I x , t ] 

This last point was expressed by Doob in 1942 [104] who showed 

that the classical Brownian motion process for which 

E[SX SXT  l Xpt] is of order 0( 	is not physically realisable, 

and that the Brownian motion-type process occurring in practice 

is a smoothed version of the classical one. The smoothed version 

has second increments E[ 6x SxT  I Xlt] of order 0( gt2), but if 

the time increment St is made large enough, the second increment 

becomes proportional to 	rather than St2. For this to occur, 

gt must be somewhat larger than the memory time of the smoothing 
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device operating on the true Brownian noise. The second increment 

of the physical process (4.1.3) also has this property when ,t is 
chosen somewhat larger than the significant memory time of the 

physical noise y(t). This is a general property of continuous 

non-Markovian processes of the form (4.1.3). 
A condition that a continuous process be a Markov process is 

that successive increments of the process X(t2) - X(t1), 

X(t
1
) - X(t

o
) etc. are independent of each other, even as the time 

increments (t2 - t1), (t1 	to) are reduced to zero. Closely 

connected with the property of the preceding paragraph, the physical 

process (4.1.3) has successive increments which are approximately 

independent provided that the time increments are not reduced below 

St, where St. is somewhat larger than the significant memory time 

of the physical noise y(t). For time increments smaller than St, 

the increments of X(t) are no longer nearly independent and the 

process appears non-Markovian. However, if we are content to observe 

the physical process X(t) only every St time units, then it will 

appear to us to be a Markovian process. This is equivalent to 

saying we will only observe the process X(t) through an instrument 

whose upper frequency of resolution is approximately C  ot-1  . 

As the physical process X(t) appears to be Markovian over 

time increments of the order of St, and the diffusion process 

x(t) is defined by the two incremental properties (4.1.2) which 

can be written as 

E[ ,x lx,t] = f(x,t) St 	o( 	(4.1.4a) 

and E[ Sx 61'  lx,t] = FFT(x,t) St 	o( Et), 	(4.1.4b) 

for a finite time increment S t (i.e. not taking the limit 8t 4, o), 
it seems reasonable to choose a diffusion approximation to X(t) 

by matching the quantities (4.1.4) of an arbitrary diffusion process 
to E[ S X X,t] and E[8 X SXT  I X,t] of the given physical process, 
over time increments St for which X(t) appears Markovian, i.e. 

St somewhat greater than the memory time of the noise y(t). 
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This is the approach of this section, and the arguments of the two 

preceding paragraphs present a heuristic justification for the 

method, which is similar to that given by Stratonovich [21: Ch. 4, 

Sec. 7]. The justification will become clearer after the following 

derivation, when we discuss thi conditions under which the modelling 

of physical processes by diffusion processes is valid, and state 

what properties of the physical process the diffusion process is 

expected to model. 

4.1.1 	Derivation of E  SXIX,t1 for a Physical Process 

Consider the n-dimension physical process X(t) described by 

the o.d.e. 

X(t) = G(X,t) y(t) 	 (4.1.5) 

where y(t) is an m-dimension zero mean, non-stationary, physical 

noise process which is specified only by its matrix correlation 

function 

R(t,T) = E[y(t) 	 (4.1.5') 

The noise y(t) has a memory or correlation time Tcor'  which is 

defined so that R(t,T) is essentially zero for N > Tcor 
for all t in the time domain of interest. The quantity T -1  °or 
is of the order of the upper frequency fu  of the physical noise. 

We also need a quantity called the response time or relaxation time 

T
rel 

of the system [21, p.99], It is analogous*to the time constant 

of a linear system, and for the system (4.1.5) it can be defined as 

T
rel 

= E[G (2D) ] 
-1 

X (4.1.5") 

where 2D is the intensity coefficient of the noise y(t). Then 

Trel-1 is of the order of the upper frequency response of the 

* i.e. of the order of 
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system, and the ratio of Trol  to Tcor  gives the relative time 

scales of response of the system and noise. 

Compared with equation (4.1.3) we consider the physical pro-

cess with g(X,t) = 0 here, as this non-random term contributes 

no unusual properties to the increments derived below: the contri-

bution to the first increment is g(X,t) St and to the second 

increment is 0( 8t2) - thus the term g(X,t) goes over directly 

into the diffusion model. Compared with Stratonovich [21: Ch.4, 
Sec.9] we allow y(t) to be non-stationary, and compared with 

Clark [22] we allow y(t) to be non-stationary and non-Gaussian 

as well. 

To obtain an expression for E[ S X IX,t] we write the state 

vector equation (4.1.5) in component form 

Xi(t) = 

 

Gik' (X t) yk  (t) i = 1, n, (4.1.6) 

   

and consider a typical component of 8X, 

Xi(t) = xi(t + St) - xi(t), 	 (4.1.7) 

where S. is a forward difference operator operating over a time 

increment St. Integrating (4.1.6) we have 

	 t+Ft 
S Xi(t) = > f Gik(X,u) yk(u) du. 	(4.1.8) 

We can see right away that if G is not a function of X, 

E[&x I X,t] = 0, as G is then independent of y, and y has a 

zero mean value. However, the interesting case is when G does 

depend on X, and we see below how this dependence affects 

E{ Sx x,t]. 
We can express the dependence of Gik(X,u) of (4.1.8) on the 

u parameter by the integral relation 

	 u  .) G. (X,v) 
Gik 	k  (X,u) = G. (X,t) + 	 r 	ik  X. (v) dv 

J 	
.(v) 
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/1,, )Gik(X,v) 

	

+ J 	 , 
 

	

t 	) v  

and then can write (4.1.8) as 
	 t-At 

S Xi(t) = 	f Gik'  (X t) yk(u) du 
t 

t+it  
+ T I f 

Gik(x,v) 
avx.( ) X.( v ) dv yk(u) du 

J j lk 	t 	t 	J 

m  t.4- -t u )Gik(X,v) 

	

+ >  f 	v f 	 dv yk(u) du, 
k t t 

T1  + T2 + T
3 
. =  

(4.1.9) 

(4.1.1o) 

Assumption Al:  We assume that the contribution of T1  to the 
conditional expectation of equation (4.1.10) can be neglected. 
That is, we assume 

	

m 	t+ 6t 

	

E[ > 	I Gik(X,t) yk(u) du I X,t] = 0. 	(4.1.11) 
k t 

The approximation involved in this assumption relies on the 
significant memory time of each component of y(t) being small 
with respect to Qt. To see this, suppose that we can bound each 
component of the correlation function of y(t) by an exponential: 

- 1 T I Ai 
IRjk( t,T)i 	< 	M e 	, 	j, k = 1, m, 	(4.1.12) 

where M is finite and the maximum correlation time -c• cor 
The left hand side of (4.1.11) is a random variable and we 	 << St.  must 
show that it has a small mean and variance. For example, the mean 
value is 

in  t+4 

> I E[Gik(X,t) yk(u)] du. 
k 	t 	

(4.1.13) 



Then we can write (4.1.13) as 

m t+St 

	 f 
k 	t 

E[Gik(X1t)yi(t)] Cjk(t, t-u) du 	(4.1.15) 
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Now as Gik(X,t) does not depend explicitly on yk(u) for 

u t (or vice versa), we can express the correlation between 

X(t) and y(u) via their mutual dependence on the intermediate 

variable y(t). This gives an explicit functional dependence of 

the integrand of (4.1.13) on u, by using the normalized correlation 

function 

R
jk(t1T) 

Psk(t9T) = Rjk(t,o) 
e 'r I /N (4.1.14) 

which, from (4.1.14), is less than or equal to 

 	EEG (X t) y.(t)] N, k ' j 	 (4.1.16) 
k,j 	i  

providedcor (( St. Now N = T cor /5 = o(T cor),  but we 

cannot explicitly evaluate EN in (4.1.16) as we cannot eliminate 

the functional dependence on X. However as X(t) is an integral 

function of y(t'), t' 	t, and the response time 
Trel 

of X(t) 

is much greater than the memory time of y(t), the correlation 

between y(t) and X(t) is very small. This correlation goes to 

zero as T cor goes to zero, so it seems plausible that 

E[G
ikj (X,t) y(t)] = 0(Tcor ) 

but we cannot show this. Thus we shall say that the mean value 

(4.1.13) is 0(Tcor)  times a small factor. A similar argument 

would show that the mean square of the left hand side of (4.1.11) 

is 	0(T cor
2)  with a small coefficient. 

This completes our justification of introducing assumption 

Al. The expected error in the conditional increment E[ X I X,t] 

is at most 0(T ) provided cor 	Tcor 4'‹  Orel' 
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Returning to the main argument and using assumption Al, 

we substitute the value of X.(v) from (4.146) into T2 of (4.1.10). 

The equation for the increment in Xi(t) then becomes* 

 

	 t+st u 

	 J .f 
j,k t t 

ouik  
Tc- (v) 

  

 

Gjl(v) y1(v)]dv yk(u) du 

 

m  ti-st u )G  
	 f f 	ik  (v) dv yk(u) du. b v k t t 

(4.1.17) 

Assumption A2: We assume that the variations of G, Gx  and Gt  

are finite within the interval (t, t+tt). Then we can change the 

time parameter of these functions from v to t and bring them 

outside the fut  dv integral with an error of only 0(St), as • 
(v - 	<...Et. However these terms are also arguments of the 

t+ St 

f . du integral, and when this is evaluated, the contribution of 
t 

tA2 to the error of S Xi( t) is 0(St2). 

Now the second term of (4.1.17) is the same as T
1 of (4.1.10) 

with Gik(X1t) replaced by --2-1.<b
(
t
X 't)  (u - t) where (u - t) is 

0( Et). Thus this term is approximately an order smaller than T
1  

of (4.1.10) and is neglected. Equation (4.1.17) then becomes 

	 )G. 	
t+St u 

X.(t) = 	 --11(t) G (t) 	yk(u) y1(v) dv du. j1k,1 j 	ji f f 
t 	t 	(4.1.18) 

As an heuristic explanation, the validity of the approximation 

involved in assumption A2 relies upon G(X,v) and Gx(X,v) 

We continue to use equality signs in the subsequent equations, 
keeping in mind the assumptions and approximations made. We also 
write G(X,v) as G(v) when it is specifically the time parameter 
in which we are interested. 
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remaining constant for v in [t, ti-gt]. This in turn depends on 

X(v) remaining constant in this interval, and we know that signi-

ficant changes in X occur in the order of the response or relaxa-

tion time Orel 
of the system. Thus we need gt <XTrel for 

assumption A2 to be valid. 

Taking the conditional expectation(given X,t) of both sides 

of (4.1.18), and remembering that G is a non-random function of 

X, we have 

E[EXi(t) Xlt] 
	 )G 	t+St u 

	 (t) Gjl(t) f I Rici(u,u-v) dv du 

j' 	 (4.1.19) j 	t 	(4.1.19) 

where R(v,v-u) is the non-stationary correlation function of 

y(t) as defined in equation (4.1.5'). The use of the correlation 

function in (4.1.19) assumes that y(u) and y(v) are independent 

of Gx(0 and G(t), as we did in assumption Al. 

Assumption A3: First note that by putting u-v = T, we can write 

u-t 

I 14„,(u,u-v) dv 	as 	 f Ria(u,T) dT 	 (4.1.20) 
t  

in equation (4.1.19). 

Then we define the quantity 

Aki(u)  

co 
= f 

0 
(u, r) dT k, 1 = 1, m, (4.1.21) 

as the non-stationary characteristic matrix of the physical noise 

y(t). As discussed after equation (2.2.4), this definition of 

A(u) differs from the earlier definition (2.2.3), or Clark's, in 

that the limit of the upper frequency of the noise fu going to 

infinity has not been taken here. In other words, the A matrix 

defined above is the characteristic matrix of a particular physical 

noise process y(t) having the correlation function R(t,T), whereas 

the earlier definition was of the characteristic matrix of the 
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limiting member of a family of physical processes. The definition 

(4.1.21) also allows for the non-stationarity of the physical noise 

y(t), although in assumption A4 below we require that the change in 

A(t) be bounded over time intervals of St, and in Section 4.2, we 

assume that the change in A(t) is negligible over time intervals 

of 	T 
cor
. In the rest of the thesis, we shall assume that, unless 

otherwise stated, A and B (2.2.2c) are functions of time without 

necessarily writing the t parameter. 

In assumption A3 we replace the quantity (4.1.20) in (4.1.19) 

by the quantity A(u) of (4.1.21). This assumption changes 

the upper limit of the integral (4.1.20) from (u - t) to infinity, 

but we note that T 	is defined so that cor 

T 
cor 	co 

I R(ulT) dt 1  I R(u,T) dt, 	(4.1.22) 
0 	0 

and so the error involved in 1c12 is negligible for all u in the 

interval [t, t+St] except u < t + T. Thus the error is 
cor 

negligible for all but the ratio Tcor/St of the u interval, 

which means that for a fixed St, the error vanishes linearly with 

cor (i.e. the error is 0(T 
cor

) assuming the integral of the 

correlation function remains bounded). But even for u < t + T cor 
the error is not too large, for most of the value of the integral 
(4.1.22) is accumulated very near the origin, 'r = 0. In any case, 

the validity of the approximation of A3 relies upon «gt cor 
and again we note that, like Al, the error involved goes to zero 

as c 	goes to zero. cor 

Using assumption A3, the conditional increment (4.1.19) becomes 

	 )Gik 	
t4t 

E[ gyt) X,t ] - 

	

	Gi(t) 	Akl(u) du. 
	(4.1.23) 

j,k,l 
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Assumption A4: We assume that the variation of A(u) in the 

interval [t, t+ St] is bounded so that 

t+gt 

f A,,(u) du = Akl(t) St + 0( St2). 
t 

This is the same order of error as involved in assumption A2, and 

using A4 the conditional increment becomes 

1  (1  E[ S Xi(t) I x,t] =  	Gji(t) Aki(t)St, b) .k   
j,k,l 	j 

=(Qkl(xyt))i(t) St, kpl 

or in vector form 

E[ EX(t) I x,t] = 	 Qu(X,t) Aki(t) St 
k,l 

(4.1.24a) 

(4.1724b) 

where Qkl  is the n-vector introduced in (2.2.2a) as a shorthand 

way of writing the sum over j of the GXG term. Equation (4.1.24) 

is the main result we seek, as it gives an approximate value for 

the expected drift SX(t) of the physical process X(t) during 

time gt, where St is much greater than the memory time 
cor 

of the noise y(t), but much less than the response time T
rel 

of the process X(t). 

Comments on the Approximations 

Essentially the difficulty in making precise statements about 

the magnitude or even order of the errors made in the approximations 

above stems from the non-Markovian nature of the physical process 

X(t). We are evaluating the expected value of SX(t) given X(t), 

but as X is not a Markov process, the knowledge of X or its 

probability density at time t does not give us the future statistics 
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of X, as it would if X were Markov. 

y(t) may form a joint Narkov process, 

or even the structure of the generator 

exactly find the future statistics of 

The processes X(t) and 

but we are not given y(t) 

of y(t), and hence cannot 

X. 
Then the best we can do is average the contribution of y(u) 

over the interval [t, t+St], but this does not make up for the 

lack of "initial condition" information of y(t). However, despite 

the lack of precision in specifying the accuracy of the approximations 

made, the main point of the above analysis is to show that the con-

tribution of the noise y(u) to the expected drift SX(t) is 
approximately given by the semi-infinite integral of the correlation 

function of y(u), (4.1.21). We have shown that the expression 

(4.1.24) is a good 0( St2) approximation for values of T cor 
much less than St but greater than zero, and in the next section, 

, we use the fact that the approximation becomes exactly 0(c2) as 

cor tends to zero (the errors involved in Al and A3 then disappear 

4.1.2 	Derivation of EE S X S XT  I X, t1 for a Physical Process 

The derivation of the second order conditional increment follows 

that of the first order conditional increment given above, and 

involves assumptions equivalent to Al, A2, A3 and A4. The same 

remarks apply to the validity of the assumptions, and the derivation 

is outlined briefly below. 

Using the expression (4.1.8) for the increment SX j(t) and a 
similar expression for X.(t), we can write the product of the 
increments as 

tSXi(t)SX.( ) = 
k,l 

t+St 
f 	Gik  (u) yk  (u) Gjl(v) y1(v) dv du . 	(4.1.25) t   

We need not bother with the expression (4.1.9) which translates 

the time parameter from t to u and v, as there are now two 

[t, t+ St] integrals and we can directly write 
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G
ik
(u) G

jl
(v) = G

ik(t) Gjl(t) + 0( St2)0 
	(4.1.26) 

Bringing the product (4.1.26) outside the integrals in (4.1.25) 
C corresponds to approximation A2, and involves an 	 t2)0(o 	error 

which is small if St << T rel.  
Then following (4.1.19) we write the second order conditional 

increment as 

t+gt 

E[ Syt)SX.(t) I X,t] = >  G
ik
(t) G

jl(t) f R,,-,(u,u-v)dv du, 
k,l 	t 	

(4.1.27) 

where an assumption equivalent to Al assumes that G(t) is indepen-

dent of y(u) and y(v) for u,v > t. Now consider the integral 

t+St 	u-t 

Rki(u, u-v) dv = f 	Rk1(uT) dT. g t 
(4.1.28) 

The range of T in this integral always includes zero (for all 

u in [t, t+ St]), and assuming T 	<<Et, we can set (4.1.28) cor 
approximately equal to 

ti cor 	co 

I Ru(tl,T) dT 	I Ru(u,T) dT 
-T 

	

	-eo cor 
(4.1.29) 

We now define a new quantity 

lcl(u)  = f Rkl (u,T )  dT' 
	k, 1 = 1 m, 	(4.1.30) 

which can be regarded as a supplementary characteristic matrix, 

supplementary to A(u) defined earlier (4.1.21). Note that 

Ah(u) = 1 E[yk(u) yi(u-T)] dT 
- co 

and putting TI  = -Ty we have 

Aia(u) = I Ebri(u+T1 ) yk(u)] dT'. 
0 

(4.1.31) 
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Now if y(t) is sufficiently stationary over time intervals of 

cor so that we can put 

E[yl(u+Tt) yk(u)] = E[yi(u) yk(u-T1 )], T I  < T 
•••-• cor (4.1.32) 

equation (4.1.31) becomes 

co 
Ah(u) 	f Rik(u, Ti) dT ,  

0 

= Alk(u). 
(4.1.33) 

Thus we have A*(u) = A
T(u) and the information in the supplementary 

characteristic matrix (4.1.30) is contained in the characteristic 

matrix (4.1.21). In the sequel, when we refer to the characteristic 

matrix of a physical noise y(t), we implicitly refer to A(t) and 

A*(t) if the noise is non-stationary (2m
2 parameters specified), 

and to only A(t) if the noise is stationary in the sense of 

(4.1.32) (m2  parameters specified). 

Noting that 

co 
A(u) + A*(u) = f R(u,T) dT, 	(4.1.3..) 

-w 

and using the approximation (4.1.29), we replace (4.1.28) by 

[Akl(u) + Ah(u) in (4.1.27) and obtain 

t+4 

ErSXi(t)SXj(t) I X,t] = >  Gik(t) Gil(t) I [Aki(u) ALcto]du. 
k,l (4.1.35) 

This approximation is similar to A3, and the error involved is 

small provided
Tcor (K t. Again, this error approaches zero as 

cor approaches zero. 

Following A4 (an 0(8t2) error) we then obtain (analogous 

to (4.1.24a)) for the second order conditional increment of X(t) 

E[8Xi(t)SX.(t) IX,t1 = )  G. (t) G 	[Aki(t) + A* (t)] St, a 	
k,l 

i 	G. 	kl 
(4.1.36a) 
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or in vector form 

E[SX(t) SX(t)TI  I X,t] = G(t) [A(t) + A*(t)] GT(t) St. 	(4.1.36b) 

If St was not much greater than Tear, the assumption 11.1 

leading to equation (4.1.35) would not be valid, and we would find 

that E[SX5XT  I X, t] is proportional to St2. This is the property 

of physical processes noted after equation (4.1.3), and is an 

indication that the increments of X(t) appear Markovian over time 

increments St substantially larger than the significant memory 

time of the noise, T cor°  

4.1.3 	A Diffusion Model for the Physical Process  

As the increments of the physical process X(t) appear Markovian 

over time increments St ).,>T cor, a plausible method of choosing 

a diffusion process x(t) whose statistical behaviour models that 

of X(t) is to choose one whose increments 8x(t) have approximately 

the same first and second order conditional expectations as the physical 

process over the same time increment St. Approximate expressions 

for these quantities are given in equation (4.1.4), and Doob [20, 

Ch. 6, Sect. 3] shows that the existence of the local properties 
(4.1.4) defines a diffusion process, in particular the process 

x(t) given in (4.1.1). Thus it is proposed to choose a diffusion 

model for X(t) by matching (4.1.4a) to (4.1.24) and (4.1.4b) to 

(4.1.36). 

Matching the first order increments (4.1.4a) and (4.1.24) we 

choose f(x,t) to be 

f(x,t) 	Q(X,t) A(t), 	(4.1.37) 
k,1 

and matching the second order increments (4.1.4b) and (4.1.36), 



- 201 - 

we choose FF
T
(x,t) to be 

EYT(x1t) = G(X,t) [A(t) + A*(t)] GT(X,t). 
	(4.1.38) 

The quantities f(x,t) and FF
T(x,t) are sufficient to 

define the statistical behaviour of a diffusion process x(t). If 

a specific structure of the diffusion process is desired, A + A* 

must be factored into B and B
T 

so that 

B BT = A + A*, 	(4.1.39) 

and the diffusion process x(t) is defined by the Ito s.d.e. -(4.1.1) 

dx(t)
k,l Q

u(x,t) Akl(t) dt + G(x,t) B(t) dw(t). 	(4.1.40) 

The probability density P(x,t) of the diffusion process 

(4.1.40) is described by the Fokker-Planck differential equation 

n 2  r 
sT 	= 	-2- > 	[f

i  P] + 71" >  K7  L(FF
T 
)iiP]  (4.1.41) 

with suitable initial conditions P(x,t0). If P(x,t0) is a delta 

function S(x-xo
) then the FP equation describes the transition 

probabilities of the diffusion process P(x,t I xo,t0). 

The following conjecture is the main result of Section 4.1: 

The diffusion process (4.1.40) is a "diffusion model of" or 

an "equivalent diffusion process for" the physical process X(t) 

of (4.1.5) in the following sense. The solution of the FP equation 

(4.1.41) gives approximate values for the probability density P(X,t) 

or the transition probability density P(X,t X0,t0) of the physical 

process X(t), for values of t sufficiently far removed from the 

"initial condition time" t
o so that (t to)>> T cor 

. The approxi-

mation is valid as long as the response time of the physical process, 

Trel' is much greater than the memory time of the physical noise, 

ti cor. 
The validity of the conjecture comes from the assumptions made 

in the derivation of the conditional moments of the increments of 
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the physical process. We have shown that the first two conditional 

moments of the physical process and its diffusion model approximate 

to each other over time increments St which are much greater 

than r 	but much less than Trel. Thus the inequality cor 

Trel >> Tcor 
	 (4.1.42) 

is a general necessary condition that the conjecture be valid. This 

is the same condition expressed by Stratonovich [21, eqn. 4.184]. 

We could also have shown the approximate equality of higher condi-

tional moments of the increments, but only the first two were 

needed to define the diffusion model. It is the fact that the 

moments of the conditional increments of the processes (k-xo I xo'to)  
approximate to each other that shows that the transition probability 

density P(x, to+ St I xo,to) of the diffusion process (given by 

the FP equation) gives an approximate expression for that-of the 

physical process. This also implies that P(x, to+t I xo,to); is 

an approximate expression for that of the physical process for all 

t which greatly exceeds the correlation time T 	for this transi- cor 
tion probability over large time increments can be constructed from 

joint transition probabilities involving successive jumps over time 

increments of the order of St (this can be done for Markov pro-

cesses, and we know that the physical process is approximately 

Markov for increments in the order of St). Finally we extend the 

conjecture to say that P(x, tot) of the diffusion process gives 

an approximate expression for that of the physical process for an 

arbitrary initial disttibution P(x,t0), for all t for Tcor' 
this function can be constructed from a convolution of the transi-

tion probabilities (Ater the same time interval t and the initial 

distribution. 

This is the same conjecture as presented by Stratonovich 

[21, Ch.4, Sects. 7-9], and in fact he justifies it more directly 

by deriving a FP-type equation for the physical process which approxi-

mately equals the FP equation (4.1.41) when the inequality (4.1.42) 

holds. He gives an "error" term which distinguishes the FP-type 
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equation of the physical prgbess from the FP equation (4.1.41) which 

is small when the inequality (4.1.42) holds, but this error term is 

not useful for determining the error in the transition density 

function. 

In addition, StratonovicY s method depends on the time derivative 

of the cumulant function of the increment (x(t) - x
o) becoming 

constant as t - t
o 

greatly exceeds T
cor   [21: p.85], and this 

assumption precludes the consideration of non-stationary noise sources. 

Although it is possible that Stratonovich's method could be modified 

to accommodate non-stationary noises, our method accommodates them 

with virtu2lly no increase in complexity over stationary noises. 

Apart from the non-stationarity allowed, the main advantage of 

our derivation over Stratonovich's is that ours emphasises the manner 

in which the properties of the physical noise affect the drift of 

the physical process (c.f. Section 4.1.1). It is this drift which 

represents the diffei-ence between apparently similar physical and 

diffusion processes, and is fundamental to the recent interest in 

the relation between physical and diffusion processes. Our method 

clearly shows how the drift is affected by some unusual noise source 

properties, such as the property of asymmetry introduced by Clark 

(that of the matrix A (4.1.21) being asymmetrical). 

4.1.4 	Ex erimental Results 

Because of the difficulty of treating non-Markovian systems 

analytically in the time domain, the analysis above could not be 

very specific about the error involved in the conjecture of the last 

section, and in particular we could not specifically relate the 

error to the ratio Trel/Tcor. We have, however, suggested that 

this ratio is the most important parameter influencing the 

accuracy of the diffusion model, and an example will give us an 

indication of how large this ratio must be in order to achieve 

good modelling accuracy. As the modelling accuracy is very good 

(better than Tro in mean square for large T
rel 

 /T 
cor

) the example 
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below constitutes an experimental confirmation of the validity of 

the conjecture and of the usefulness of the method of transient 

analysis of non-Markovian systems. 

The example consists of a linear first order filter driven 

by a pseudo random binary sequence (PRBS) and is reported in detail 

in [57]. Although a deterministic signal, the PRBS has the properties 

of a physical noise process, y(t), and has an effective maximum 

correlation time of T 	= A, the basic bit interval.* The filter, 

being linear, has a simple relaxation time Trel  = T, the filter's 

time constant, and this parameter is associated with the physical 

process, X(t), the filter's output. 

As the transient statistics of the PRBS depend on the integral 

of the PRBS, S(t), this quantity is the "state" of the noise, and 

when forming a diffusion model for the output of the filter, X(t), 

the extra state variable, s(t), which models S(t), must be added 

to the model. As, in this example, S(t) incorporates all the 

statistical information of the noise process, the construction of 

a diffusion model for X(t) can proceed by first choosing a dif-

fusion model for S(t), and then the addition of the state variable 

x(t) modelling X(t) is straightforward. Thus the diffusion model 

is found by matching the first and second order conditional incre-

ments of S(t) to s(t) by the method of this chapter, and the 

state variable x(t) was added by simply appending the differential 

equation of the filter. This results from a special property of the 

As the PRBS is periodic, the correlation function is also 

periodic, with the same period L. However, the correlation time 

cor must be chosen only with regard to the central period of the 

correlation function, NI < 	LA. This is because the effect 

of the periodicity is to make the spectrum discrete, and does not 

change the envelope, or more specifically, the effective upper 

frequency fu  of the spectrum, which is determined by the central 

period of the correlation function. It is this latter parameter 

which influences the validity of the results of this chapter, and 

thus T cor 
= 0(f

-1
) is the effective correlation time of the central 

period of the correlation function. 
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PRBS, and for more general noise processes, the choice of a diffu-

sion model for X(t) would proceed directly by matching the incre-

ments of X(t) and x(t). 

Although we did not directly use the correlation function or 

characteristic matrix of the PRBS in evaluating the conditional 

increments, the relevance of the quantities T cor and T
rel 

given above is not diminished, and the example clearly shows the 

effect of the ratio Trel/Tcor on modelling accuracy. As mentioned 

in [57], the percentage error between the mean square of X(t) 

and x(t) is felt to be a representative error measure, and this is 

shown as a function of the filter time constant T = Trel in Figure 

4.1.1 as 

(4.1.43) 

This error function is almost exactly uniform in time, and so the 

time dependence is not shown in Figure 4.1.1. 

The function E[x2(t)] is derived in [57]. In curve 1 of 

Figure 4.1.1, the function E[X2(t)] is evaluated at the PRBS 

switching points, t = A, 2A, 3A ..., while in curve 2, E[X2(t)] 

is estimated from the continuous curve X(t) by sampling X(t) 

every A/40 time units. These estimates were obtained to a high 

accuracy on a digital computer, and the E[.] operation was per-

formed by averaging over every possible starting point of the PRBS 

(L = 127 in this case). Although the "continuous" error of curve 

2 is more appropriate to the modelling of general random processes 

by diffusion processes, it is felt that the "sampled" error of 

curve 1 is a fairer basis of judging modelling accuracy in the 

present case, because of the special property of the PRBS that it 

only exhibits randomness at the discrete points t = A, 2t, 3A ... 

For this reason, the diffusion model was formed by matching incre-

ments over time increments A, and the diffusion model s(t) was 

not expected to model the fine structure of the integrated PRBS 

between the sample points (remember that the integral of the PRBS, 

S(t), is a ramp function between the sample points, while the 
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diffusion model s(t) has the fine random structure of a Brownian 

motion between the sample points - the two are meant to be statis-

tically equivalent only at the sample points). This point is a 

result of the inherently discrete nature of the PRBS and is not a 

general property of our method of choosing diffusion processes to 

model continuous non-Markovian processes. 

With this qualification, we can judge the modelling accuracy 

by curve 1 of the Figure 4.1.1. It is noted that the error depends 

strongly on Trel/Tcor until  Trel exceeds about 3T cor when the 

error curve flattens out and remains constant. Thus Trel > 3Tcor 
could be taken as a criterion for good modelling accuracy, but it 

is perhaps more realistic to look at the quantity 

Trel 	Trel 
	(4.1.44) 

as this represents the maximum "memory" of the filter, and is thus 

more analogous to Tcor, the maximum memory of the noise, than 

Trel is. Thus our criteria for good modelling accuracy is that 

> 12 T rel 	cor (4.1.45) 

which says roughly. that the upper frequency of the physical noise 

should be about an order of magnitude higher than the upper pass 

frequency of the system. 

Thus it seems that the PRBS example is reasonable evidence in 

support of the conjecture of Section 4.1.3, but as the PRBS has 

rather special properties, experimental work should be carried out 

with more general types of physical noise and systems in order to 

test the conjecture thoroughly. However, the facilities were not 

available for making accurate (e.g. 0.1cA estimates of generalised 

random functions, and the PRBS has the distinctive advantage that 

its statistical properties can be measured exactly with a finite 

number of trials (equl to the length of the code - L = 127 in 

the example shown in Figure 4.1.1). 
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4.2 A Limiting Form of a Physical Process 

In Section 4.1, we have shown two main points. Firstly, we 

have derived approximate expressions for the incremental statistics 

of physical processes driven by band limited noise sources, and 

showed how a useful "equivalent" diffusion process could be obtained 

from these expressions. The derivation has suggested conditions 

under which the diffusion process does model the physical process, 

and we have presented an example which verified that the diffusion 

process modelled the statistics of the physical process quite 

accurately within the stated conditions. The example suggests 

that this method is a powerful method of analysing the transient 

statistics of non-Markovian systems. 

The second point is that we have shown what properties of the 

physical noise source contribute to the statistics of the physical 

process. These properties are summarised in a compact form in the 

characteristic matrices A(t) and A*(t), and as such these matrices 

form a sufficient characterisation of the physical noise source 

when we are interested in the statistical properties of systems 

driven by the noise. 

In this section, we consider a limiting operation on a physical 

process, whereby the upper frequency of the physical noise is extended 

to infinity in such a way as to preserve the characteristic parameters 

of the physical noise. With the important assumption that the 

limiting physical process is a Markov process, we show that the 

physical process converges in distribution to a particular diffusion 

process, and this diffusion process is the same as the "equivalent" 

diffusion process of the previous section. Thus the limiting 

operation shows the consistency of choosing equivalent diffusion 

processes by the method of the last section. 
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Consider the physical process X(t) defined by the ordinary 

differential equation 

X(t) = G(X,t) y(t), 	(4.2.1) 

where the m vector noise process y(t) is defined only by its 

non-stationary correlation function 

R(t,T,Tcor) = E[y(t) yT(t-T)]. 	(4.2.2) 

The maximum correlation time parameterT 	
is defined more 

cor 
rigidly than in the last section as being the maximum time shift 

ITI in equation (4.2.2) for which R(t,T'Tcor) 
 is non-zero. The 

characteristic matrices are then defined in terms of  R(t'T'Tcor as) 
T cor 

A(t'Tcor) 
 . I R(  ( t,T,Tcor ) dT, 

	 (4.2.3a) 
0 

0 

and 
	

A*(t'Tcor) = I R(t,T '
Tcor) dT. 
	(4.2.3b) 

cor 

As before, we assume that the functions G(t), Gx(t), A(t) and 

A*(t) are of finite variation in the finite time range of interest. 

Consider the following limiting operation on X(t) = X(t'Tcor)' 
We extend the upper frequency of the noise source y(t) to infinity 

in such a way that T
cor 

 tends to zero, and the noise characteristic 

parameters (4.2.3) are unaltered. The following theorem gives the 

statistical structure of the limiting physical process X(t,o). 

Theorem 4.2.1.  If T cor tends to zero in such a way that A(t,T cor) 
and 	A*(t1  Tcor) are independent of Tcor, the physical process 

X(t,Tcor) of equation (4.2.1) converges in distribution to the 

diffusion process x(t) defined by the Ito s.d.e. 

dx(t) = 	Q1-1(x't)  Akl(t) dt + G(x,t) B(t) dw(t) 	(4.2.4a) 
k,1 
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where Qkl 
 is the n vector with i:th component 

	 G
ik(x,t) 

(Qkl)i = 	

)  

x. 	Gii(x,t), 
3 

G(x,t) is the function appearing in (4.2.1), 

A(t) = A(t ,Tcor) of (4.2.3a), 

and BB
T
(t) = A(t) 	A*(t) of (4.2.3), 

(4.2.4b) 

with the assumption that the limiting process X(t,o) is a contin-

uous Markov process. The convergence is uniform in a compact set 

of X and t. 

If X(t,o) is a continuous Markov process, its probability 

density is given by the solution of a Fokker-Planck equation, and 

convergence in distribution [20, page 9] is assured if the density 

of x(t) of (4.2.4) is given by the same FP equation. That the 

limiting physical process X(t,o) is a Markov process is a subtle 

point of continuous stochastic process theory which is difficult to 

demonstrate rigorously. However, it is a common assumption that 

continuous systems driven by delta correlated noise are Markov 

processes, and as Tcor  tends to zero, R(t'T'Tcor) tends to a 

delta function (for example, Stratonovich [21, Ch.4] makes this 

assumption without comment). 

Proof: Having assumed that X(t,o) has a FP equation, we proceed 

to find this FP equation by deriving the first two incremental 

moments (4.1.2) of X(t,o). 

In Section 4.1.1, we derived E[ X IX,t] for a particular 

physical process X(t,T 
cor). 

 We follow this derivation below, noting 

how the limiting operation, T 	tends to zero, affects the cor 
assumptions and approximations made in Section 4.1.1. 

We begin with equation (4.1.10) which is the last exact equation 

in the derivation of Section 4.1.1. The error involved in assumption 

Al tends to zero as T
cor 

 tends to zero, as the limiting yk(u) 

has a zero mean value and has no correlation with Gik(X,t) for 
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u t. This is due to the delta correlation of y(t), for while 

YkWhasar"nstantane"scorrelatimwithX.(t), it has none 
with X. (t). 

Then,allowing the assumption A2 which involves an 0( i.7-.,t2) 

error, we obtain equation (4.1.18) 
t+St u 

Xi(t) =  	(t) Gji(t) f 	 f yk(u) y1(v) dv 
jpkyl 	t 	t 

where, unlike equation (4.1.18), the equality sign in (4.2.5) is a 

proper equality when the limit of Tcor  is taken. 
Taking the condition expectation of (4.2.5) and then referring 

ft  to assumption Al, the Jt  . dv integral of (4.2.5) is exactly 

evaluated as Aki(u) when T cor  equals zero, and then allowing 
the assumption A4 which involves an 0( St2) error, we obtain the 

equation 

C 2 	 Gik  
(t) G (t) A, ,1(t) 6t + o( ot ) EiSx.(t) IXtt] = 2  Tr. D. K 

j,k,l 	j 
(4.2.6) 

which is an exact equation (to the given error term) when T cor 
equals zero. Thus we have shown the existence of the limit (in 

vector form) 

Limit 	Limit 
Ef 	IX,t t o Ert-  T cor 

	 Qkl(X,t) Au(t), 	(4.2.7) 
k,1 

where Qk, is defined in (4.2.41)). 

Now, the outside limit in equation (4.2.7) is a definition of 

the first incremental moment of a continuous Markov process, and 

the inside limit implies that we are operating on the limiting 

process X(t,o), and so we recognize the right hand side of (4.2.7) 

as the first incremental moment of the Markov process X(t,o). 

In a similar fashion, we can follow the derivation of Section 

4.1.2 and find that the second order conditional increment is exactly 

du + 0( St2), 

(4.2.5) 



limit E[ 6xT  x,t = G(X,t) [A(t) + A*(t)]GT(X,t), 

(4.2.9) 

limit 
St o o 
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E[ SX(t)SXj(t) I X, t]= 
	G

ik
(t) G

jl
(t) [Aki(t) + AiIi(t)] St 

k,1 

0( st2) 	C4.2.8) 

when the limit of T cor is taken. Then the following limit 

exists (in vector form) 

which can be interpreted as the second incremental moment of the 

Markov process X(t,o). 

As X(t,o) is a continuous process, higher incremental moments 

are zero [21, page 62], and the first order probability density 

function of X(t,o) is given by the FP equation associated with the 

incremental moments (4.2.7, 9) (c.f. equations (1.2.1, 2)). But 

the diffusion process x(t) (4.2.4) also has these incremental 

moments, as 

[G B] [G B]T  = G[A + A*] GT, 	(4.2.10) 

and so the first order probability density function of x(t) is 

given by the same FP equation as X(t,o). This means that given 

the same initial conditions, the probability densities P[x(t)] 

and P[X(t,o)] are identical for t t
o. Thus the process 

X(t,Tcor) converges to x(t) in distribution, uniform in X and 

t, and the proof of Theorem 4.2.1 is complete. 

Comments on Theorem 4.2.1  

(1) If the noise y(t) is non-stationary, then it is not clear 

whether the limiting operation of letting T 	tend to zero while cor 
preserving the characteristic parameters A(t) and A*(t) also 

preserves the correct time scale of the statistical variations 

involved in the non-stationarity of y(t). The doubt exists 

because the time resolution of the delta correlated noise is different 
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from that of the original physical noise. However, for the case 

where the speed of the statistical variations of y(t) is slow 

compared with the frequency content of the physical noise, we have 

A*(t) = A
T  (t), and the time scale of the non-stationarity is not 

affected by the limiting operEtion. 

(2) It is likely that if we impose the further condition that 

t 	 t 
1.i.m. f y(s) ds = 	B(s) dw(s), 
cor o 0 	0 

(4.2.11) 

where B(t) is as used in equation (4.2.4), then the physical 

process X(t,Tcor)  converges in the mean to the diffusion process 

x(t). Convergence in the mean is a much stronger concept of con-

vergence than convergence in distribution (see footnote in fourth 

page of Appendix A), and implies that the sample paths of 

X(t,T ) converge to those of x(t). Clark [22] proves this con-

vergence for the case where y(t) is stationary and Gaussian. It 

is when y(t) is non-Gaussian that an approach such as Clark's 

becomes difficult to follow, for the r.h.s. of (4.2.11) is Gaussian, 

and it is not clear whether the signal 

t 

y(s) ds 
0 

becomes Gaussian when the limit of T cor is taken. Doob [20, 

page 98] suggests that the limiting signal is Gaussian, for he 

states that the Brownian motion process (such as the r.h.s. of 

(4.2.11)) is essentially the only continuous process with independent 

increments (the 1.h.s. of (4.2.11) is continuous and has independent 

increments in the limit as T tends to zero). However, this cor 
property is difficult to demonstrate for an arbitrary signal y(t) 

which is only specified by its characteristic matrices, and the 

convergence in the mean of X(t T cor) for an arbitrary y(t) is 

a subject for future research. 
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Other Forms  of the Diffusion Process (4.2;4)  

In Theorem 4.2.1, we have given the Ito s.d.e. for the diffu-

sion process x(t) which has the same distribution as the limiting 

form of the given physical prccess X(t). It is interesting to see 

What other stochastic equations can describe the diffusion process 

x(t). 

By multiplying equation (A22) by the noise scaling factor 

[A 	+ R1(t)], the Ito s.d.e. (4.2.4) can be turned into a kl  
Stratonovich s.d.e. for x(t) by subtracting the conversion term 

/ 	Qkl(x' LAki(t) + Ah(t)] dt 
k,1 

(4.2.12) 

from the Ito equation. Thus the Stratonovich s.d.e. for the 

diffusion process x(t) is 

	

ax(t) = 2 	 Qu(x,t) Cil l(t) - 	Ah(t)] dt 
k,1 

	

+ G(x,t) B(t) aw(t), 	(4.2.13) 

where a. represents a stochastic increment in the Stratonovich 

sense (see Appendix A). 

As mentioned in Appendix A, the Stratonovich equation has the 

advantage that it can be manipulated by many of the ordinary rules 

of calculus. For example, we could calculate the statistics of 

the conditional increments of x(t) by integrating equation (4.2.13) 

by the normal rules of calculus as in Sections 4.1.1, 2; where we 

must interpret B(t) 	of (4.2.13) as white noise with the dt
aw(t) 

 
correlation function 

	

[A(t) + A*(t)] 8(T), 	 (4.2.13) 

g(-) being the usual (symmetrical) Dirac delta function. The 

characteristic matrix of this white noise is the matrix 
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[A(t) + A*(t)], 	(4.2.14) 

which is symmetrical if the noise y(t) is stationary The first 

incremental moment of the Stratonovich s.d.e. (4.2.'13) is found by 

substituting the characteristic matrix (4.2.14) for Aki(t) in 

(4.2.7) and adding on the drift term of (4.2.13). This gives 

b(x,t)   Qkl 	
[Aki(t) + A*kl 

 (t)] 
kyl 

gki[Akl(t) 	Ah(t)],  

k,l Qkl Akl(t)' 
	 (4.2.15) 

which confirms that the Stratonovich s.d.e. (4.2.13) has the correct 

drift term (compare (4.2.15) with (4.2.7)). A similar analysis 

would show that it also has the correct second incremental moment. 

If the noise y(t) is stationary and has a symmetrical 

characteristic matrix A, or A(t) = A*(t) for non-stationary noise, 

then the Stratonovich s.d.e. (4.2.13) for the diffusion process x(t) 

has no drift term, and the equation (4.2.13) is similar in fgrm to 

the equation for the physical process (4.2.1). However, even if 

these conditions do not hold, we can construct a new type of 

stochastic equation to describe the diffusion process x(t) which 

has no drift term, and thus is similar to equation (4.2.1). This 

possibility is suggested by the freedom of defining the stochastic 

integral in various ways as in equation (A9), but instead of varying 

0 in equation (A9), we keep 0 = 2 (the Stratonovich integral) 

and modify the definition of white noise to give the diffusion process 

x(t) the correct first incremental moment. We see below that this 

is, in fact, equivalent to varying 0 and keeping the same noise. 

Define a new white noise z(t) to have the correlation function 

Rz(t,T) = SA(t,T) 	(4.2.16) 

where S A(tfT) is a modified delta function which has the properties 

1 
+ 2 

k,l 
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Y'  sA(t'T) dT = A(t), 
0 

0 
J' S A(tf -c) dT = A*(t): 

(4.2.17a) 

(4.2.17b) 

and 
	

J S' A(t 'T) dT = A(t) + A*(t), 
	(4.2.17c) 

for any arbitrarily small positive 4, where A(t) and A*(t) 

are the characteristic matrices of the physical noise y(t) of 

equation (4.2.1). Thus the new white noise z(t) has the same 

characteristic matrix as the physical noise y(t), and as far as 

the statistical properties of X(t) or x(t) are concerned, 

z(t) has the same effect as a random,forcing function of a dif- 

ferential equation as the limiting form of y(t) tends' " Tcor 
to zero. This is as far as we can take the comparison, however, 

as z(t) is Gaussian and the limiting form of y(t) is non-Gaussian 

in general (c.f. comment (2) following Theorem 4.2.1). 

The following note shows that the definition (4.2.16) is a 

proper, if unusual, definition of white noise. 

Note on Definition of White Noise  

The classical concept of white noise consists of a Gaussian 

signal with a continuous power spectral density which is uniform 

at all frequencies (the Gaussian assumption is common but not neces-

sary - we use it here to ensure that the integral of white noise 

is the Wiener process). White noise then has the correlation 

function (5.1.3b) 

OD 

R(t pT) = 2 f S(tpW) ejWT  dw = 2D(t)S(T), —co  (4.2.18) 

which is a delta function in T, and 2D(t) is the intensity matrix 

of the noise. But this delta function need not be a symmetrical 

delta function, as the spectrum is defined in terms of the correla- 
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tion function as (5.1.3a) 

co 
S(t,w) 	f R(t,w) e-jwT  ch, 

—0) 

and 

co 
I 2D(t) S(T) j'iWT  dT - ao 

co 
1 - co  SA' (t T) JiWT  dT (4.2.19) 

when 2D(t) = A(t) + A*(t) and SA(t,T) is defined as the 
asymmetrical delta function (4.2.17). Thus a flat spectrum 

S(t,w) = S(t) implies a delta correlated noise, but does not res-

trict the shape of the delta function. Indeed, the analysis above 

suggests that white noise which is used to replace physical noise 

when forming a diffusion model should in general have an asymmetric 

correlation function S(t
'
T). In Section 4.3, we note that.Anany 

authors have used symmetrical delta functions to characterise 

a white noise process, and so have not allowed their diffusion 

process model a wide class of physical processes. 

Consider now the stochastic differential equation 

3c(t) = G(x,t) z(t) 	(4.2.20) 

which is to be integrated like a Stratonovich equation, bearing 

in mind that the white noise z(t) has the property (4.2.16), 

which distinguishes it from the more usual white noise used by 

Stratonovich. We write equation (4.2.20) in the form given to 

facilitate comparison with the physical equation (4.2.1), but as 

both sides of (4.2.20) are ,always infinite, the equation should 

more properly be written as, an equation involving stochastic dif-

ferentials or integrals as in Appendix A. 
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Equation (4.2.20) can be integrated by the procedure of 

Section 4.1.1 even though the right hand side is always infinite, 

for z(t) is replaced by its correlation function, which is then 

integrated correctly even though it has a singularity. The impor- 

tant integral is the one-sided integral of the correlation function 

of z(t) in equation (4.1.19), and this is integrated exactly as 

A(t) of (4.2.17a). Then it follows directly that the first 

incremental moment of the diffusion process x(t) of equation (4.2.20) 

is equal to equation (4.2.7), which means that the new stochastic 

equation (4.2.20) describes the same process as the Ito equation 

(4.2.4) and the Stratonovich equation (4.2.13) (again one can also 

show the equivalence of the second incremental moments). 

The new stochastic equation (4.2.20) corresponds to the 

generalised stochastic equation (A9) with 

0 = e(t) = 1 A(t)  
A(t) + A*(t) 

(4.2.21) 

for the scalar noise case, and in the vector case, 0 , as well 

as being time varying, also varies with each component of the 

equation. 

The purpose of introducing the three stochastic equations 

(4.2.4, 13, 20) for the diffusion process x(t), which is statis-

tically equivalent to the limiting form of the physically realisable 

process X(t) of equation (4.2.1), is to trace the origin of some 

confusion which has arisen in the literature concerning the physical 

interpretation of stochastic equations. 

For mathematical convenience, many authors have used stochastic 

equations to describe dynamic systems when deriving the control, 

filtering,stability, etc., of the systems. Until very recently, 

most authors have implied, or at least left it open for their readers 

to infer, that their stochastic equations are term-by-term equivalents 

of limiting forms of physically realisable processes. Early authors, 

for example Kozin and Bogdanoff [105], use Ito equations, but we see 
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that these equations are similar to physical equations only when 

the noise is additive (then Q = 0 in equation (4.2.4)), Later 

authors use Stratonovich equations, for example Leibowitz [106], 

Gray and Caughey [41], and Ariaratnam and Graefe [14: II, case 2], 

but even these equations are similar to physical equations only 

when the physical noise has the property A(t) = A*(t) - see equation 

(4.2.13). 

However, in general we see that the stochastic equation which 

is similar to the associated physically realisable system is neither 

an Ito nor a Stratonovich equation, but the new equation (4.2.20). 

The new equation does not have the convenient properties of Ito or 

Stratonovich equations, and is introduced only to illustrate this 

point. 

Much of the literature on the subject has concerned linear 

systems with random coefficients (where the noise is non-additive), 

and this example is discussed in more detail in the next section. 



-219- 

4.3 Applications to Linear Systems with Random Coefficients 

Systems with random coefficients have received considerable 

attention in the literature in the last five years, since it was 

discovered that adding noise to a coefficient of a differential 

equation had a markedly different effect from adding noise as a 

simple additive term. This is because the coefficient noise gives 

a bias to the drift of the process (see equation (4.1.24)) while 

additive noise does not. (Leibowitz [106] was one of the first 

authors to demonstrate this.) Because of the analytical diffi-

culties associated with non-linear systems, the literature has been 

confined to linear systems, and more recently their stability 

properties have been discussed, as adding noise to a coefficient 

can appreciably change the stability characteristics of a system 

(again, additive noise has little or no effect on stability). 

These results are all derived in the stochastic calculus, and 

we are left with the problem of adapting them to physical situations. 

This problem has not been satisfactorily treated in the literature, 

although Gray and Caughey [41] and Kulman [103] (of the Stratonovich 

school) do make significant advances in this direction. Few authors 

suggest that physical equations should have different (bias) terms 

in them compared with the equivalent stochastic equations (Clark 

[22] is the best of the exceptions) and we are often left with the 

implication that physically realisable equations can be obtained 

by simply replacing the white noise in the stochastic equations 

by band-limited noise (and vice versa). 

For the case of linear systems with random coefficients, this 

implication is always wrong when applied to Ito stochastic equations, 

for the noise in such systems is non-additive, and a bias term must 

always be used when converting from Ito to physical equations (see 

the QA term in (4.2.4) compared with (4.2.1)). A significant 

advantage of the Stratonovich stochastic calculus is that this 

implication is true when A(t) = A*(t) (compare equation (4.2.13) 

with (4.2.1)), and so the results derived in the Stratonovich 

calculus (e.g. [106], [14: II, case 2], and Stratonovich's many 

results) can be applied without modification to physical situations 
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provided the physical noise has the property A(t) = A*(t). 

Clark's main advance was in pointing out that many physical noise 

sources do not have this property, and in these cases, Stratonovich 

equations cannot be applied to physical situations without modifi-

cation. He considers stationary noises where the condition 

A(t) = A*(t) is reduced to the symmetry of the A matrix, A = A
T. 

In Sections 4.1, 2, we extend his results under more general condi-

tions (non-Gaussian noises allowed) but weaker implications (convergence 

in distribution only) to non-stationary noise sources where Clark's 

condition A = A
T 

becomes A(t) = A*(t). 

The conclusion is that, when relating stochastic equations to 

physical equations, or vice versa, we must in general use the results 

of Sections 4.1, 2, rather than the more specific results of previous 

authors. To further justify this, let us look again at our results, 

and in particular, at the limiting operation in Section 4.2. 

We are given a particular physical process (4.2.1) and we wish 

to choose a diffusion process which retains the essential statistical 

characteristics of the physical process. To do this, in Section 

4.2 we impose a limiting operation on the physical noise y(t) 

such that the physical process X(t) retains, to a good approximation, 

the expected value of its first and second order conditional incre-

ments. We argued that this was equivalent to retaining the first 

order transition probability density of X(t) for transitions 

over a time interval greater than the correlation time of the noise. 

Looking at the limiting operation in the other direction, as Tcor  

is increased, we noted that this statistical property was retained 

to a good approximation as long as the noise memory time was 

significantly less than the system memory time. 

What we are doing in the limiting operation is forming an 

equivalence class of physical processes, each member of which 

approximately shares certain properties with the original physical 

process (4.2.1). .To what extent the members of the equivalence class 

must retain the properties of X(t) depends on the use we make of 

the members of the class (in particular, we are interested in the 

limiting member, T cor = 	In this chapter, we show that if we 

wish to maintain the first order distributional properties of X(t), 
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then the members of the limiting class of noises must retain the 

properties A(t) and A(t) + A*(t). 

In connection with the latest literature on linear systems 

with random coefficients (e.g. [26], [41], [14]), our main point 

is this: these authors use Strltonovich stochastic equations with 

a symmetrically correlated white noise, and in the sense of this 

chapter, these authors° diffusion processes only represent the 

distributional properties of physical processes possessing the 

property A(t) = A*(t). Their results would apply without modifi-

cation to all physical processes if our equivalence class of physical 

processes needed only to retain the property A(t) + A*(t) of the 

physical noises (we see Section 4.1.2 where we see that this property 

gives us the conditional expectation of the second order increment 

of X(t) - a property analogous to the dispersion of the diffusion 

process x(t)). But we see in Section 4.1.1 that in order to main-

tain the distributional properties of X(t), we must preserve 

A(t) as well as A(t) + A*(t) of the physical noise (this then 

gives the processes the correct drift as well as the correct dis-

persion). 

This repeats the conclusion at the end of the last section: 

if we are changing a physical process (4.2.1) into an "equivalent" 

diffusion process by simply replacing the physical noise y(t) by 

white noise, then we must use a special type of white noise z(t) 

which has the asymmetrical delta correlation function d 
A'  (t T) • 

- and obtain the diffusion process (4.2.20) which we pointed out 

could be written as the more conventional and convenient Ito 

equation (4.2.4) and Stratonovich equation (4.2.13). Previous authors 
who use the Stratonovich equation with symmetrically correlated 

white noise do not allow our generality, as will be illustrated 

by the example below. The distributional characteristics of a linear 

system with random coefficients will be specified by finding the 

FP equation of the limiting form of the given physical process. 



d(i-1) X(t) 

i-1 
	 = Xi(t) i = 1, n, (4.3.3) 

dt 
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Fokker-Planck Equation  for a Linear S stem with Random Coefficients 

We consider the physical process studied by Gray [15] described 

by the ordinary differential equation 

d(n) X(t) 	\>  [b. + y.(t)] 	
X(t)  y114-1 	

+ c(t), 
dt n 	 dt (4.3.1) 

where y(t) is an (n+1) vector physical noise which Gray specifies 

by its limiting correlation function 

E[y(t) yT(t-T)] = 2D S(T) 
	(4.3.2) 

involving the symmetrical delta function. His noise is stationary, 

and in our notation the right hand side of (4.3.2) equals [A + AT] cS(T). 

However, our argument is that we should specify the noise by ihe 

limiting correlation function SA(T) which involves knowing A as 

opposedtoA+Al.**Thevaluesb.and function c(t) are 

known constants and time varying functions. 

Gray's example (4.3.1) is a special case of the physical process 

(4.1.3), and it is convenient to change to the state variable nota- 

tion of (4.1.3). We put 

and find the coefficients g(X,t) and G(X,t) are 

gi(X,t) = X
i+1(t)  , i = 1, n-1,  

n  

	 b. Xi(t) + c(t), gn(X,t) = i  

** 	As Gray considers stationary noises in his example, we do also. 
The following analysis holds for non-stationary noises by replacing 
AT by A*(t), which involves knowing A*(t) as well as A(t). 
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G.ij. .(X,t) = 0 
	, 	i = 1, n-1, for all j, 

	

Gnj .(X,t) = - 	X., 	
j = 1, n 

J 

	

= 1 	, 	j = n + 1. 	(4.3.4) 

We derive the FP equation which approximately gives the proba-

bility density of X(t) by finding the diffusion process which is 

the limiting form of the physical process in the sense of Section 

4.2. To do this we must find the bias term appearing in the Ito 

equation (4.2.4) or the Stratonovich equation (4.2.13). 

The quantity (Qkl)i 
 of (4.2.4b) is zero except when i = k = n 

when we have 

(Q1,11)n  = Xl(t) , 	1 = 1, n 

= -1 	1 = n + 1. 	(443.5) 

Then from (4.2.4), the bias term appropriate to the Ito form 

of the equivalent diffusion process is 

[ > 	Xl(t) An1 Ann+1  dt, 	(4.3.6) , 1 

and from (4.2.13), the bias teem appropriate to the Stratonovich 

form is 

n  
[ 	 Xl(Ahl - Anl) - (An,n+1 - An,n+1)] dt. 	(4.3.7) 

1 

We can then write down the diffusion process equivalent to 

the physical process (4.3.4) as, in Ito form, 

n+1 

dxi(t) = gi(x1t) dt + G..(x,t)(Bdw(0).1  i = 1, n-1, 13 

and 	n 

dxn(t) = [gri(x,t)  	x1 Anl - An,n+1] dt 
	(4.3.8) 
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n+1  

 	nj
(x,t) (B dw(t))., 

where B is arbitrarily chosen to satisfy BB
T  = A + A

T
. 

Similarly the Stratonovic'a form is 

n+1 

axi(t). gi( x,t)dt + ) 	G. .(x,t) (B aw(t))., i = 1, n-12  

and 

dxn(t) 	[gi 	
1 	

n ,n+1 	AT  + 	 A 2 x (A 	- AT  ) 	-27 A 1 n1 	nl 	
1 T 	I dt 

n, n+1 
 

n+1 
\-- 

+ n.(x1t) (B aw(t)) (4.3.9) 

In the notation of Gray, this Stratonovich form becomes 

a[d(n-1)  x(t)  ir
(i-1) 

> 	[(b. + -la A. -1-  AT  )dt + (Baw(tAi_ILd 	x(t)]  

dtn-1  In 	in 
dt

i-1  

(Baw(t))n+1 
+ a AT  A 	+ c(t)]dt. 	(4.3.1„, 

n,n+1 	n,n+1 

Upon symbolic division of (4.3.10) by dt, it is interesting 

to compare the Stratonovich form of the equivalent diffusion 

system (4.3.10) to the original physical system (4.3.1). It is 

noted that if the characteristic matrix A of the noise vector 

y(t) is symmetrical, then the terms involving A in (4.3.10) drop 

out, and the Stratonovich equation (4.3.10) can be obtained directly 

from physical process (4.3.1) by replacing the physical noise 

component yi(t) by the symmetrically delta correlated white noise 

71T (B  aw(t)).. Note that the information of A + AT  is retained 
by B in the form of BBT.  

This simple term-by-term correspondence shows the convenience 

of the Stratonovich calculus if the physical noise y(t) is 

symmetrical. If the matrix A is not symmetrical, the terms 



\2 

2  
+ -9—  [[ 	 

e‘x 1,J 

n 
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involving A in (4.3.10) must remain, or alternatively, as 

suggested in the previous section, the concept of white noise 

aw(t) could be altered to a noise with an asymmetric delta 
dt 

correlation function. 

To write down the FP equation for the equivalent diffusion 

process, we use the Ito form (4.3.8) where the process° incremental 

moments are in explicit form. The drift term, or the first incre-

mental moment, is straightforward, and the dispersion term, or the 

second incremental moment a(x,t) is given by the (n x n) matrix 

GB(GB)T  = G73TGT  G(A + AT)GT  = 2GDGT  (4.3.11) 

which only has a lower right hand (n,n) element of 

     

2 >  A. .X.X. -•2 
i,j 1J J (A.1,n+1 + Ai,n+1 

)x. + 2A
n+1,n+1° (4.3.12) 

Thus the FP equation of the equivalent diffusion process is given by 

n 
ox. 

rr 
[x. pi 	LL- \,› 	b.x. + c(t) + 1.+1 	x 	1 I 

n-1 
aP 

xiAn, 

A..x.x 	/4  	(A. 	+ AT 	)x. + A 

	

j j 	I;n+ i 

	

1 	,n+1 1 n+1,n+11Pi.  i  

(4.3.13) 

The following s:T.mple example will show how this FP equation 

differs from that of Gray if the characteristic matrix A of the 

physical noise y(t) is asymmetric. 



Example  

Consider the first order ordinary differential equation 

dX(t) 
dt 	= - X(t) 	- Ji(u)X(t) + y2(t)/ (4.3.14) 

which is a special case of Gray's system(4.3.3) with n = 1, b1  = 1 

and c(t) = 0. Let the two-dimensional physical noise process have 

the asymmetrical characteristic 

example in the next chapter: 

A 	= 

matrix (5.1.15, 

1 	10 
2 11 a 

16) derived as an 

(4.3.15) 

11 a 
1 — 2 1 ka

2  , 1) 

We see g(x,t) = 	- X(t), 

and G(x,t) = 	[- x(t) 1]. (4.3.16) 

From (4.3.8) we have the Ito form of the equivalent diffuSion 

system as 

ax(t) = [- x(t) + 12 l irx(t) - 	a  j dt + G(x,t) B dw(t) 11 (4.3.17) 

where B is arbitrarily chosen to satisfy BBT = A + A
T 

of (4.2.15). 

The FP equation of (4.3.17) is 

- a) 13] 
11 

cc x + 2 (a2  + 1)]13  ]• 	(4.3.18) 

Now, treating this example in the fashion of Gray and Caughey 

and• others, we only characterize the physical noise y(t) by its 

intensity matrix 2D where 

2 	 -2-  a 

2D = A + AT = 2 (4.3.19) 
2 CL (0t2  



- 227 - 

This gives the FP equation (see Gray's equation (4)) 

 

)2 FA 2 	2 ,‘‘ 
+ 	cff x - 	x + 2 koc 	1// r J• 

3 x2  
(4.3.20) 

This equation agrees with our FP equation (4.3.18) only when 

a = 0 which is when the characteristic matrix of the noise source 

is symmetrical (two independent noises in this case). This illus-

trates why the intensity matrix (4.3.19) does not sufficiently 

characterise the stationary physical noise vector y(t) when the 

characteristic matrix A of y(t) is asymmetrical. In the non-

stationary noise case, the asymmetry condition A A
T changes 

to the condition A(t) A*(t), and the same comments as to Gray's 

insufficient characterisation of the noise apply (i.e. we cannot 

fully characterise y(t) by its intensity matrix A(t) + A*(t)). 
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4.4 The Simulation of Diffusion Processes 

In Sections 4.1 and 4.2 we have discussed the statistical 

relation between physical processes and diffusion processes by 

finding a diffusion process which statistically approximates to 

a given physical process (Section 4.1), or is statistically equi-

valent to the limiting form of a given physical process (Section 4.2). 

In some cases, we are primarily interested in the converse problem: 

given a particular diffusion process, how do we simulate it on an 

analogue computer? In other words, how do we choose a physical 

process (which can be represented to a arbitrary accuracy on a 

computer) which adequately represents the statistical behaviour of 

the diffusion process? The answer to this problem is implied in 

Clark's results or the results of this chapter, but there is no 

longer a unique solution for there is some freedom in the choice 

of physical noise source to use in the simulation. 

Consider the diffusion process described by the Ito 6.d.e. 

dx(t) = f(x,t) dt + F(x,t)dw(t) 	(4.4,1)' 

where dw(t) is the stochastic increment of the m-vector unit 

parameter Wiener process. The components dwk(t), 
k = 1, m, are 

independent of each other, but the coefficient matrix F(x,t) 

introduces cross•-coupling between the components dwk(t) and 

x.(t) , as well as introducing non-stationarity via the t para-

meter. 

In choosing a physical process X(t) to simulate the given 

diffusion process (4.4.1), we have some freedom at our disposal in 

the choice of physical noise source. The noise source must have 

sufficient degrees of independence to simulate the m degrees of 

independence of the Wiener process, but it can be a cross-correlated 

noise process provided the cross-coupling is sufficiently similar 

in form to that introduced by F(x,t) of (4.4.1) so that the 

equality (4.4.5) can be satisfied. As *(t) is a stationary white 

noise, it is simplest to choose a stationary physical noise y(t) 

for the simulation, provided the'hon-Stationarity implied in F(x,t) 
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can be represented separately on the computer. A non-stationary 

noise can be used in the simulation, but this involves a matching 

operation (see below) with theoretical and practical difficulties, 

and so will not be considered. 

Choice of Physical Process to Use in the Simulation 

Consider the physical process X(t) described by the ordinary 

differential equation 

X(t) = g(X,t) + G(X,t) y(t), 	(4.4.2) 

where y(t) is an available m-vector stationary physical noise 

process of characteristic matrix A, which has a sufficiently 

high bandwidth that the inequality of Section 4.1, T Cor Orel 
is satisfied by a reasonable margin. 

From the argument of Section 4.1.2, the physical process 

(4.4.2) has the expected second order conditional increment which .  

is approximately* 

E[ SX SXT  I X,t, cit] 	G(A + AT) GT  4:•t, 	(4.4.3) 

whereas the diffusion process (4.4.1) has the second increment 

E[6x rSxT 	F FT  cSt + o( t). 	(4.4.4) 

Clearly, then, the first step in choosing an appropriate 

physical process to simulate is to choose the function G so that 

G(A + AT) GT  = F FT 
	

(4.4.5) 

The term g(X,t) of (4.4.2) is non-random in the sense that it 
does not depend directly on y(t), in which case it contributes a 
negligible amount to the second-order conditional increment. 
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where the functions are evaluated at an arbitrary X (or x) and 

t. The equality (4.4.5) then insures that the processes X(t) and 

x(t) have approximately the same dispersion. 

A simple procedure to achieve the equality (4.4.5) is to let 

G have the form 

	

G = FC, 	(4.4.6a) 

where C is an m x m constant matrix. Then (4.4.5) becomes 

FC(A + A
T) C

T 
F
T = F FT, 

which is equivalent to 

	

C(A + AT) CT  = I, 	(4.4.6b) 

where I is the m x m unit matrix. Since the matrix (A + AT) 

is symmetrical, it is congruent to I provided (A + A
T
) is of 

rank m , and a matrix C satisfying (4.4.6b) can be found.* 

If (A + AT) has rank lower than m, the noise source y(t) is 

not sufficiently independent to represent the m degrees of 

independence of W(t). This can be remedied by making the components 

of y(t) more independent of each other, or by increasing the 

dimension of y(t). If y(t) were non-stationary, the condition 

(4.4.6b) becomes C(A + A*) CT = I , and the matrix C = C(t) 

cannot always be found. 

Having chosen G(X,t) to match the second order conditional 

increments of the diffusion process and the physical process, we 

must consider the first order conditional increments, and choose 

g(X,t) accordingly. From the analysis of Section 4.1.1, the physical 

The square matrices A and B are congruent if and only if 
there exists a non-singular matrix C such that 

C A CT = B. 

If A and B are both symmetrical and of the same rank, they are 
congruent and a matrix C can always be found 
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process (4.4.2) has the expected conditional increment which is 

approximately 

x,t, St] G 
[gi 	77. ,,ko. 3  

Ak1] 	
(4.4.7) 

 

	

[g. 	(Q ). An] cSt, 

	

1 	k,l kl I  

whereas the diffusion process (4.4.1) has the increment 

E[ Sx.i.  I x,t, 	= fi  St + o( St). 

Thus the physical process (4.4.2) will have approximately 

the same drift as the diffusion process (4.4.1) if we put 

g(X,t) = f(X,t) - 
k,1 Q1d. Al' 
	 (4.4.8) 

and the physical process which has the approximate incremental 

properties of the diffusion process (4.4.1) is then written as 

X(t) = f(X,t) - > 	Qkl(X,t) Akl  + G(X,t) y(t). 	(4.4.9) 
k,1 

To sum up, we have chosen a physical process (4.4.9) which, 

in the fashion of Section 4.1, shares approximately the same 

statistical properties as the diffusion process (4.4.1). Bearing 

in mind the assumption on the upper frequency of the physical 

noise y(t) anc the related approximations of the analysis of 

Section 4.1, we can say that a computer realisation of the physical 

process (4.4.9) constitutes a simulation of the diffusion process 

(4.4.1). 

The steps in choosing the physical process (4.4.9) are as 

follows: 

(1) Choose a convenient noise source y(t) which 
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(a) has m degrees of independence ((A + A
T
) has rank m); 

(b) has a sufficiently high upper frequency so that 

Tcor<"( Irel;  

and (c) is suitable for representing accurately on the computer 

available. 

(2) Evaluate the characteristic matrix A of the noise source, 

and choose G(X,t) by the method of equation (4.4.6) so that the 
physical process (4.4.9) has the correct dispersion or variance. 

This is essentially an operation which gives the noise y(t) the 

proper scaling factor C. 

(3) Choose g(X,t) according to equation (4.4.8) so that the 
physical process (4.4.9) has the correct drift. 
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4.5 The Simulation of Physical Processes 

Consider the problem of simulating the physical process 

X(t) = g(X,t) + G(X,t) y(t)t. 	(4.5.1) 

where y(t) is a stationary physical noise vector of dimension 

m and characteristic matrix A. This problem is trivial if the 

noise y(t) can be exactly reproduced on the computer, provided 

of course that the other terms do not produce realizability or 

stability problems. If y(t) cannot be exactly reproduced, then 

an alternative noise z(t) must be chosen, which can be reproduced 

on the computer. The new noise 2(t) must have the same number 

of degrees of independence as y(t), and should have approximately 

the same frequency content. 

The choice of a physical process X(t) involving ;E(t) which 

has approximately the same statistical behaviour as the process 

(4.5.1) can proceed by the method of Section 4.1: 

(1) we scale the noise ;L(t) correctly by matching the 

approximate expressions for the second order conditional 

increments; 

(2) we then choose the correct drift term for the new process 

by matching the approximate expressions for the first 

order conditional increments. 

To do this, we only need the characteristic matrix A of the new 

noise ,y(t). 

If you like, the choice of X(t) can be visualized in two 

parts: 

(a) by the method of Section 4.4, we construct a physical 
process X(t) suitable for representation on the 

computer which is statistically "equivalent" to the 

diffusion process found in (b) below; 

(b) By the method of Sections 4.1 or 4.2 we find the diffusion 

process which is statistically "equivalent" to the given 

physical process X(t), equation (4.5.1). 
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Each of these operations involves choosing parameters to match second 

increments and then first increments, and the end result is the same. 

Clark [22, Ch. 3] discusser the topic of this section in more 

detail and points out that the choice of X(t) is simplified if 

we can choose a noise z(t) whose characteristic matrix A is 

congruent to A, the characteristic matrix of y(t). In this case, 

the ordinary differential equation governing the process X(t) 

is simply 

X(t) = g(X,t) + G(X,t) C 	(4.5.2) 

where C is the m x m constant noise scaling matrix satisfying 

A = C A CT, 	 (4.5.3) 

and hence satisfying also 

A + AT = C(A + AT) CT 
	

(4.5.4) 

By the method of Section 4.1, we can show that the equality (4.5.4) 

ensures that the processes X(t) and X(t) have approximately 

the same expected second order conditional increment, and the 

equality (4.5.3) ensures that the contributions of Gy(t) and 

GC,z(t) to the first order increments are approximately the same, 

as Cy(t) has the characteristic matrix C A CT. The matrix C 

can be considered as a noise scaling factor, and qx(t) can be 

considered as a scaled version of the noise y(t). 

If A is a symmetric matrix of rank m, then any noise ;E(t) 

which also has a symmetric characteristic matrix A of rank m 

allows a matrix C to be found. Indeed, if we can choose ;y(t) 

according to a non-singular transformation of the form 

2.(t) = C-1  y(t) 	(4.5.5) 

then equations (4.5.1) and (4.5.2) are identical and the simulation 

is exact. This, of course, is not much different from using y(t) 
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itself on the computer, and if this is not possible then it is not 

likely that a noise of the form (4.5.5) could be represented on 

the computer. 

If A is not symmetric, then it may not be possible to find 

a suitable noise source which has a characteristic matrix A con-

gruent to A. For a computer noise z(t) with an arbitrary 

characteristic matrix A, it is still convenient to choose the 

computer noise term as G(X,t) Cy(t), for a C can always be 

found to ensure that the equality (4.5.4) holds, which scales the 

noise term properly. The noise term GCS contributes 

	 Q, (C A C
T) 
kl Icyl 

to the drift of the process X(t), and the noise term Gy 

contributes 

1Qkl Akl 

to the drift of the process X(t), where Qkl 
 is used as before, 

e.g. in (4.4.7). Thus the physical process X(t) which has the 

same drift as the process X(t) is defined by the ordinary differ-

ential equation 

X(t) = G(X,t) + / 	Qiti(X,t)(A - CACT)kl 
	G(X,t)C2(t). (4.5.6) 

k,1 

Thus to simulate the physical process X(t) involving the 

noise y(t) on a computer, we replace the noise y(t) by a noise 

Cz(t) which has as many degrees of independence as y(t) and is 

suitable for representing on the computer. The equation governing 

the system X(t) we simulate depends on the relation between the 

characteristic matrices A and C A CT of the noises y(t) and 

C 1(t) . If these are equal, i.e. condition (4.5.3) holds, the 

equation (4.3.2) is programmed on to the computer, which is simply 

the original system equation (4.5.1) with the new noise term. If 

these are not equal, then a correction term must be added to correct 



- 236 - 
the drift of the process, and the equation (4.5.6) is the resultant 

equation to program on to the computer. 

Note that we have only specified the noises y(t) and C z(t) 

by their characteristic matrices, and find by the analysis of 

Sections 4.1, 4.2 that the processes X(t) and X(t) have approxi-

mately the same probability density functions. If we are interested 

in a more detailed statistical comparison between X(t) and X(t), 

then we should choose 2:(t) so that y(t) and C z(t) have 

approximately the same correlation functions or spectral densities, 

for then the processes X(t) and X(t) will have approximately 

the same spectral properties as well as amplitude density properties. 

Again, as in Section 4.4, we have not discussed non-stationary 
processes as the matching of the parameters in (4.5.4) is not always 

possible, and the generation of non-stationary noises may not be 

convenient unless the non-stationarity has a very simple structure. 

An example would be a noise y(t) with a time-varying gain, for 

then the non-stationarity could be factored out and, in the simulation, 

a stationary noise z(t) could be used with a time-varying scaling 

factor C(t). 
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CHAPTER 5 

ANALOGUE SIMULATION 

Following the discussion in Section 4.4, this chapter will dis-
cuss the simulation of the diffusion process (4.4.1) on an analogue 

computer. In Section 4.5, it was stated that the problem of simula-

ting a physical process could be rephrased as a problem of simulating 

a diffusion process by considering the diffusion process equivalent 

to the given physical process. 

To simplify our discussion, we assume that the analogue computer 

at our disposal is an ideal one in the sense that its'elements 

perform the various functions of summing, integrating and function 

generating exactly for frequencies up to a given upper frequency. 

We then assume that the physical noise y(t) which we use, in the 

simulation has no frequency components beyond this upper frequency 

so that the physical system, (4.4.9), can be represented exactly,  

on the analogue computer. If this is not the case then a more 

complicated analysis would have to be applied using the true 

transfer functions of the analogue computer components. 

If the analogue computer components were ideal over an infinite 

frequency range and an exact white noise 17/(t) could be generated, 

then the diffusion system (4.4.1) could be simulated directly when 

put in the Stratonovich s.d.e. form. Some authors in the past have 

implicitly assumed that such a system could be built (e.g. [49], 

p.352, Figure 1), but we have seen this is not possible from the 

discussion of Section 2.2. 

With the assumption that the system (4.4.9) can be simulated 

exactly, the only point to be discussed is the choice of a suitable 

noise source y(t), and the determination of Its characteristic 

matrices A(t) and A*(t). This chapter will discuss the choice 

of y(t), and then giVe some computed examples which illustrate 

how the characteristic matrices and the bias term QA must be 

taken into account in the simulation of diffusion processes. 
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5.1 Some Useful Noise Sources and their Characteristic Matrices  

5.1.1 	Noises Generated by Linear Shaping Filters 

In general, physically realizable noise sources have spectral 

densities which are approximately rational functions of frequency. 

By factoring these functions, linear multivariable filters can 

be derived which transform a noise vector with a given spectral 

density matrix into another noise vector with a desired spectral 

density matrix [81]. Generating noise sources with arbitrary 

spectral properties is conveniently done on an analogue computer 

by this method, particularly as a number of independent noise 

components can be obtained by non-linear operations on a single 

Gaussian noise source [82]. 

As an example of this sort of noise generator, consider the 

configuration of Figure 5.1.1, where z(t) is an m-vector physical 

noise source with a known correlation function R
zz  (t1T), and y(t) 

is the desired noise vector obtained from the output of the linear 

m x m shaping filter of impulse response h(t,u). The following 

matrix relations hold for real stochastic processes: 

co 
Convolution 

Relation 	y(t) = fh(tol)z(t-u)du 	(5.1.1) 
0 

Spectral 
(5.1.2) Relation 	S

yy(t,w) = H(t,jw)Szz(t,w)H
T(t, —jw) 

co 
Fourier Transform 

S..(t,w) = J.R..(t,T)e-jyrdT 	(5.1.3a) Relations* 
-co 

co 

R.,(t,T) = 	 • f s..(t,w)ejundw. 	(5.1.3b) 
n  OD 

This Fourier transform relation is that suggested as a convention 
by Fuller [86], although our definition of R(t,T) differs from 
Fuller's in the reversal of the time shift parameter 	Our choice 
of R(t,T) follows Clark [22] and is the transpose of Fuller's 
definition when the noise concerned is stationary. 



-239- 

Linear 
Multivariable 	y(t) 
Shaping Filter 

Impulse Response h(t,u) 

Autocorrelation  

R zz(t,T) 
	

RYY (t,T) 

Spectrum 

SzZ(t,w) 
	

H(t, jw) 
	

S 
YY
(t,jw) 

Fiure 5.1.1 Generation of an Arbitrary Non-Stationary Noise 

Source 

To obtain the characteristic matrix of y(t), we need an expres-

sion for R
YY 

 (t,T). Postmultiplying (5.1.1) by y
T(t T) and 

ensemble averaging, we have 

RYY (t1T) 
	

Ery(t) yT(t-T)] 

co 

E[ f h(t,u) z(t-u) yT(t-T) du] 

= 	7 	h(t,u) R zy(tu, T-u) du. 	(5.1.4) 

Similarly, 

R (t-u, T-u) = E[z(t-u) yT(t_T)] zy 
OD 

Et f z(t-u) zT(t-T-v) hT(t-T,v)dv] 
co 

= 	R 
zz(t-u, T-u+v) hT(t-T,v) dv. 	(5.1.5) 

z(t) 
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Substituting (5.1.5) into (5.1.4) we obtain 

	

co 	CO 

R (t,T) = f h(t,u) f R (t-u, T-u+v) hT(t-T, v) dv du. 	(5.1.6) 
YY 	zz 

The characteristic matrix A(t) of y(t) is then 

co 

A(t) = f R
YY 

 (t,T) dT 

co co 	cp 
= 	I 	I h(t,u) I R zz(t-u, T-u+v) hT(t-T, v) dv du dT, 	(5.1.7) 

0 0 	 0 

and the supplementary characteristic matrix is 

0 

A*(t) = f R
YY 

 (t, T) dT 
-a) 

	

0 CO 	 eo 

= 	f 	f h(t,u) f R zz(t-u, T-u+v) hT(t-T,v) dv du dT. 
- a) o 

(5.1.8) 

Suppose that the input noise z(t) is broad-band stationary 

noise with an upper frequency much higher than the pass band of 

the filter h(t,u). Then as the noise z(t) is additive, we can 

replace z(t) by white noise with the correlation function** 

R zz(t,T) = 2 Dz(t)  S(T), 	(5.1.9) 

where 2 Dz(t) is the intensity matrix of the noise z(t). 

co 

Then as the integral f dT of (5.1.7) only has a value when 
0 

** 	Remembering the discussion on the definition of white noise in 
Section 4.2, it is immaterial here what type of delta function is 
used in (5.1.9), as the noise z(t) is additive. 
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T = u - v is positive, that is when u ?;v, we have 

OD 

A(t) = I h(t,u) 2Dz(t-u) I hT(t-u-Ev , v) dv du, 	(5.1.10) 

and similarly 

a) 	co 

A*(t) = f h(t,u) 2Dz(t-u) I hl(t-u+v v) dv du. 	(5.1.11) 

It is convenient to check the values of A(t) and A*(t) 

so obtained by the zero frequency spectral relation 

OD 

A(t) + A*(t) = 	R
YY 

 (t,T) dT, 
-OD 

= 	S 
YY
(t,o), 

= H(t,o) Szz(t,o) HI(t10), 

= 2 D (t). 	 (5.1.12) 

For the case where the input noise z(t) is white, equatiOn 

(5.1.9), this relation becomes 

A(t) + A*(t) = 2 H(t,o) Dz(t) HT(t,o). 	(5.1.13) 

Example of a Noise Source with an Asymmetrical Characteristic  
Matrix  

In the light of the results of Chapter 4, it is interesting to 
see that a simple noise source can have a characteristic matrix A(t) 

which is not symmetrical. 

Consider a two dimensional noise source y(t) in which the 

component y1(t) is generated by a broad-band noise z1(t) passing 
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through a linear first order filter of time constant 10, and the 

component y2(t) is generated by a second broad band.noise 

z2(t), 
independent of z

1 
 (t) passing through a linear first order 

filter of time constant 1. Such a noise source y(t) has a diagonal, 

and hence symmetrical, characteristic matrix. 

Now Consider the case when a certain factor a of„the channel 

1 input noise z1(t) leaks over into the input of the channel 2 

filter, as shown in Figure 5.1.2. 

z ( 	) 	 . e -.1u 
	

y
1
(t) 

	

(t) 	 e-u 
	

Y2(t)  

Figure 5.1.2  An Asymmetrical Noise Source 

The impulse response of the shaping filter is now 

   

h(t,u) = 

.le-.1u  0 

- ae u  
e-u 

u 0, 	(5.1.14) 

   

and we assume that the broad band input noise is normalised so that 

Rzz (t,T) 	g(T) I, 

or 	Dz(t) = Dz  = 	I, 

where I is the unit matrix. 
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Then by evaluating the integrals (5.1.10, 11) we find 

1 	10 

11 
a 1 

2 2 -(14-a ) 

2 7 

(5.1.15) 

= AT. 	(5.1,16) 

A(t) = A = 

and 

A*(t) = A* = 

10 
11 a 2

1. 	. -A1+a2) 

It is noted that the cross-coupling introduced by a non-zero 

coefficient a in Figure 5.1.2 causes the vector noise source 

y(t) to have an asymmetrical characteristic matrix. If the cross 

coupling coefficient a were time-varying, then the integtals 

(5.1.10, 11) would not have had the simple evaluations <5.1.15, 16) 

and A*(t) would not have equalled AT(t),. 

As a check on (5.1.15, 16), we note that 

1 
-H(t,o) = 

1 

and hence from (5.1.12) we have 

A+ A* = 
1 	a 

a 1+a
2 = 2 Dy  , 	(5.1.17) 

   

which agrees with the sum of (5.1.15) and (5.1.16). 

Checking A and A* by calc4ating the intensity (5.1.17) of 

the noise y(t) is not a complete check on A or A*, as it does 

not bring out the asymmetry of the matrices A or A*. This is to 

say that D does not contain all the information of A (or A*) 
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and hence does not sufficiently characterize the vector noise y(t) 

when the noise y(t) is used in a non-additive situation. We 

illustrated this by an example in Section 4.3. 

5.1.2 	Pseudo Random Sequences  

Maximum-length pseudo random sequences generated by linear 

digital shift registers are a useful source of random noise, and 

are receiving much current attention. A survey of the principles 

of generation and the properties of such sequences is given by 

Davies [84]. The simplest sequences are binary sequences, where 

the noise takes on the values +1 and -1, and more complicated 

sequences such as ternary sequences only have advantages over binary 

sequences in certain applications not related to their use as a 

simulation noise source [85]. 

Briefly, the advantages of pseudo random binary sequences (PRBS) 

over conventional noise generators are as follows: 

(a) they are easy to build from cheap digital binary logic circuitry 

(or simple to program on to a digital computer); 

(b) their output is not subject to drift or other variations 

associated with non-digital electronic circuitry, and the noise 

records are easily reproducible; 

(c) the bandwidth of the PRBS is easily adjusted by altering the 

clock rate of the shift registers; 

(d) the PRBS is periodic, and marking pulses are conveniently obtained 

at any points in the period to control the modes of a repetitive 

analogue computer; 

(e) the statistical properties (e.g. R(t,T)) of the PRBS are 

known exactly for a finite time record of the signal (equal to 

any multiple of the period of the signal), whereas the exact 

statistical properties of a conventional noise source are only 

known a priori over an infinite record length; 

(f) uniformly distributed or binomial sequences are obtained from 

simple operations on the shift register; 
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(g) approximately Gaussian noise Can be obtained by filtering the 

PRBS. This fact is useful in simulation exercises, as is discussed 

in more detail below. 

A study by Roberts and a_vis [87] has suggested that a filtered 

PRBS could be a useful approximation to GaUssian noise, and as such 

would be useful in simulation exercises. They consider a first 

order linear filter, and derive the autocorrelation function and 

power density spectrum of the filtered PRBS. Both these functions 

are similar in form to filtered white noise, provided the filter 

time constant is at least twice the bit interval A of the PRBS*. 

However, Roberts and Davis also determine the first order 

probability density function of the filtered PRBS experimentally, 

and find that as the value of the filter time constant is increased, 

the nearness of the density function to the Gaussian improves up 

to a certain point and then deteriorates as the filter time constant 

is further increased. This tendency away from the Gaussian density 

funbtion when the PRBS is "heavily smoothed" is rather unexpected 

as the general tendency for non-Gaussian signals is to become more 

Gaussian when they are smoothed. Indeed this is so for the filtered 

random telegraph signal [89], which has many outward similarities 

with the filtered PRBS. 

Roberts and Davis offer no explanation for this unusual 

phenomena, but the theoretical study of Tausworthe [90] and the 

experimental results of White [91] suggest an explanation. 

Tausworthe shows that n-tuples of adjacent bits of the PRBS form 

a mutually uncorrelated set of binary digits, provided that 

the length of the set n is less than or equal to the length M 

of the shift register generating the PRBS. This is an expected 

result, for any n adjacent bits uniquely define the (n+1)st 

An error has been found in Roberts and Davis' derivation of the 
autocorrelation function of the filtered PRBS [88]. However, the 
final answer they give is accurate for values of filter time constant 
T.I.S 10A, and the error does not affect their conclusions regarding 
the approximation of the filtered PRBS to Gaussian noise. 



bit in the sequence when n is greater or equal to M, but not if 

n is less than M. Illustrating this result, White [91] shows that 

the sum of these n adjacent bits in the sequence forms a good 

binomial distribution only if n is less than or equal to M. 

The connection with Roberts and Davis' results is as follows. 

Filtering the PRBS is equivalent to taking a weighted sum of adjacent 

bits of the PRBS according to the shape and length of the memory 

(impulse response = e-t/2) of the filter. When the memory of 

the filter extends significantly beyond MA, where A is the bit 

length of the PRBS, the effect of the filter is to form a weighted 

sum of more than N adjacent bits of the PRBS. As these bits are 

no longer independent, we cannot expect the weighted sum to be 

Gaussian. This effect is shown in Figure 5 of [87] where, for the 

three binary sequences tested (M = 6, 7 and 9), the density functions 

of the filtered PRBS were nearest the Gaussian when the value of the 
MA 

filtertimeconstantTequalledz75.As e
-2.5 = 0.08, this T 

could be considered as the value of time constant at which the 

filter memory begins to significantly extend beyond MA, and the 

explanation given above is supported. 

The implications of the effect of these non-Gaussian properties 

of the filtered PRBS on simulation exercises has not been fully 

assessed. It does seem that we must be careful in testing ndn-linear 
. 

systems with such signals or even linear systems when their 'higher 

order statistical properties are desired. 

A Diffusion Model for Pseudo Random Binary Sequence 

A model [57]*was constructed for a PRBS for two reasons: 

(a) there was a desire to see how the deterministic properties of 

the PRBS (as opposed to the random properties of the random tele-

graph signal, for example) affected the statistics of systems driven 

by the PRBS. The deterministic properties are the properties of 

periodicity and the fact that the total number of +1 and -1 bits 

in each period of the PRBS is known. The mechanism of drawing balls 

* Appendix D 
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from an urn without replacement was a convenient model for the 

latter property. 

(b) As the PRBS is potentially a convenient noise source for a 

repetitive simulation, there was a desire to know if the PRBS had 

any unusual transient properti3s. Continuous diffusion processes 

have significant advantages over non-Markovian processes for transient 

analysis purposes [74], and the method of Section 4.1 conveniently 

gave a Markov diffusion model for the non-Markovian urn mechanism. 

The construction of the diffusion model of the PRBS and the 

statistical analysis of the output of a linear first order filter 

driven by the PRBS has been reported in detail in [57]. The main 
conclusions are as follows: 

(1) The mean square or variance of the filtered PRBS has a discon-

tinuous time derivative at t = LA if the significant; memory 

of the filter exceeds the period LA of the PRBS. Thbs_we.must 
1 have the filter time constant T < T.  LA to ensure that this 

unusual transient effect is not present. In repetitive simulations, 

however, it is usually convenient to choose the period of the PRBS 

greater than the time of interest of the transient simulation (so 

that the computer can be reset before the beginning of the next 

period), and the unusual variance transient will not be experienced. 

(2) The transient mean square or variance of the filtered PRBS.is 

different from that of filtered white noise unless T is substantially 
LA less than —4--an , d so we should choose T less than about -2-LA   5 if 

the PRBS is to simulate the transient properties of filtered white 
LA noise. (A choice of T = -z5- gave an 8% discrepancy in transient 

mean square.) If we are not concerned about simulating filtered 

white noise, any T can be chosen, as the transient statistics of 

the filtered PRBS are known for all T [57]. 
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Characteristic Matrix of Filtered PRBS 

As the PRBS is periodic, the PRBS or functions of it does not 

possess a characteristic matrix by the strict definition of Section 

4.1, equation (4.1.21), as the semi-infinite integral of the corre-

lation function of the PRBS is not convergent. However, if we are 

LA , we can forget that it is 

record correlation functions 

matrix. 

function of the filtered 
1 Provided T4 7  LA, the expression given 

T in the range [4LA, 11A] can be used 

for the finite record autocorrelation function with the assumption 

that the function is zero outside this range. The validity of 

this assumption was confirmed by an experimental method of deter-

mining the characteristic matrix described in Section 5.2.3. The 

characteristic matrix of a vector noise source involving the PRBS 

could be calculated by methods similar to Section 5.1.1. 

using the PRBS only over one period, 

a periodic signal, and use the finite 

to obtain an effective characteristic 

For example, the autocorrelation 

PRBS is derived in [88]. 

for the shift parameter 
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5.2 Experimental Results Illustrating the Differing Biases of 

Physical Processes and Diffusion Processes  

As an experimental justification of the results of Chapter 4, 

the purpose of this section is to 

(1) illustrate that a simulation of a diffusion process by the 

"naive" method of programming the Ito stochastic differential 

equation directly on to the analogue computer may give the simulation 

a wrong bias; 

(2) predict what the proper bias should be by calculating the 

characteristic matrix of the physical noise used in the simulation; 

(3) illustrate that the simulation of a diffusion process using the 

bias calculated in (2) has the correct statistical bias. 

In sections 5.2.1-3 below, we give three examples: the first 

two involve scalar noise sources and show the need of the correction 

term, QA of equation (4.4.9). The third example uses a vector 

noise source and shows some of the consequences of using a noise 

source with an asymmetrical characteristic matrix in a simulation. 

The first example, Section 5.2.1, illustrates a method of 

determining the characteristic matrix A of a scalar noise source 

experimentally. It is seen that this is essentially a problem of 

scaling the noise properly, and in the example, this scaling affects 

the drift of the process in a simple manner. It is then seen that 

our method of determining A is most relevant to ensuring that the 

simulated process has the correct drift. 

The second example, Section 5.2.2, outlines the construction of 

a non-linear filter, and illustrates that some of the results of 

modern stochastic control theory (developed in the stochastic calculus) 

can be wrongly applied in practice unless the results of Chapter 4 

are taken into consideration. 

The third example, Section 5.2.3, illustrates a method of 

determining the matrix A experimentally for a vector noise source. 
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5.2.1 	Example Illustrating the Scaling of an Independent  
Noise Source  

We begin with a simple example for which the correct drift of 

the system is easily obtained. Consider the diffusion prOCess 

given by the Ito s.d.e. 

dx
1
(t) = Cr dw(t) 

dx2(t) = x1
(t)Ordw(t) 
	(5.2.1) 

which is the example given as an Ito stochastic integral at the 

end of the first half of Appendix A. A naive method of simulating 

this process is to divide equation (5.2.1) symbolically by dt and 

programming the resultant equation 

X (t) = y(t) 

X2  (t) = X (0 y(t) 
	

(5.2.2) 

directly on to the analogue computer using a suitable phy4caI 

noise source y(t) as a replacement for the white noise c- W(t). 

We do this below, showing that the simulation has an incorrect bias, 

and incidentally, showing that the simulation (5.2.2) is correct if 

(5.2.1) is interpreted as a Stratonovich s.d.e. 

Suppose we have at our disposal a zero mean, high bandwidth, 

stationary noise generator. Basically we must determine what para-

meters of the generator output we must measure in order that the 

statistics of the simulation be known. 

Scaling of a Scalar Noise Source  

In this section, we present a simple method of measuring the 

generator output which sufficiently characterises the noise for the 

case where the noise is scalar, or vector with independent components. 

In these cases the noise characteristic matrix A is diagonal, 

A = A
T
, and the zero frequency power spectral density of the noise, 
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A + AT  = B BT  , is the only parameter we must measure. In 

Section 5.2.3, a more elaborate method of measuring the generator 

output is presented, which characterises a vector noise source with 

cross-correlated components, so that the off-diagonal elements of 

A can be determined. 

Consider the output y(t) of a scalar noise generator (the 

components of a vector independent noise generator can be considered 

individually in this fashion). We must determine the zero frequency 

power spectral density S YY(0)  of y(t). Note that a signal with 

no delta functions in its continuous power spectrum S YY(w)  has 

exactly zero power at any given frequency wo  - thus our zero 

mean signal y(t), which has zero d.c. power (wo  = 0), does have 

a non-zero zero frequency power spectral density. Also note that 

the meter commonly found on commercial noise generators which 

measures the r.m.s. value or (total) power of the output is not 

sufficient to determine S YY(0)  unless the detailed shape of 

the power spectrum is known. 

Essentially we have a scaling problem, for the amplitude of 

y(t) must be adjusted so that y(t) of (5.2.2) models o-  w(t) 
of (5.2.1). But as we are interested in the statistics of X(t) 

which is an integral function of y(t), it is more appropriate to 

consider the matching of 

t 

I y(s) ds 	to 6- w(t). 

This is supported by the fact that Clark considers the convergence 

of the physical process (5.2.2) to the diffusion process (5.2.1) when 

the integral of y(t) converges in the mean to crw(t) [see equation 

(2.2.2c)]. 

Thus we should integrate the output of the noise generator and 

scale y(t) so that the variance of the integral equals the 

variance of aw(t) , cr2t. 	t 

( 	y(s) ds has a zero mean and in 

most cases will be near Gaussian, so the variance is a sufficient 

matching parameter). This matching is a statistical operation, and 

so ti.s many trials as conveniently possible should be carried out to 
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ensure an accurate matching. But note that non-overlapping ihore-

ments of the form 

t+St 

f 	y(s) ds 	cd[w(t + St) - w(t)] 	(5.2.3) 
t 

are essentially independent provided that St is substantially 

greater than the significant memory time of the noise y(t). This 

choice of Et entails the same considerations as in Section 4.1. 

To illustrate the independence of the increments (5.2.3), 

consider y(s) generated by a linear stationary filter h(s-u) 

whose significant memory time is Tcor  = T. Then 

y(s) = 	h(s-u) dw(u) 	,f h(s-u) dw(u), 
_ co 	 s-T 

and 

t+St 
	

t+St s 

y(s) ds 
	

j
r 	f h(s-u) dw(u) ds. 

t 	 t S-T 

Now assuming that St is much greater than Tp we can interchange 

the order of integration simply to give 

t+St 	t+St 	12+T 

f y(s) ds 	dw(u) f h(s-u) ds. 	(5.2.4) 
t 	t 

But the latter integral of (5.2.4) is independent of u and letting 

11+T 

h(s-u) ds = K, 	(5.2.5) 

we have 

t+St 	t+St 

y(s) ds 	K 	dw(u) = K[w(t+St) - w(t)]. 	(5.2.6) 
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But the right hand side of (5.2.6) represents independent increments 

for non-overlapping time segments (t, Ott), and so the left hand 

side of (5.2.6) approximately possesses this property. 

From equations (5.1.10, 11) 

co 	oo 

A(t) 	A*(t) = 	h(t,u) 2 Dz(t-u) I hT(t-u+v,v) dv du, 

and for the stationary independent noises considered in this section, 

this expression reduces to 

a' 2 
A = 	[ I h(. , to du ] 	, 

0 

where A has only diagonal elements and 2D = I for the unit 

parameter white noise *(t) used above. Then from (5.2.5)  we have 

A = 

where K2St is the variance of the increments (5.2.6) of the 

integral of the physical noise (note that the non-stationary h(t,u) 

and stationary h(s-u) weighting functions have different convolution 

integrals). 

Thus the characteristic matrix of linear, independent, stationary 

noise sources can be found by the simple graphical method given in 

this section. This method likely also works for non-Gaussian 

noises, as this method is just a means of relating the low frequency 

components of y(t) to that of white noise *(t), but this point is 

difficult to demonstrate. 

Experimental Results 

In the simulations of this section and the next, an Advance 

optical disc low frequency Gaussian noise generator was used which 

had an upper frequency of 50 Hz (say Toor = .02). The integral 

of the output signal was 'recorded on a pen recorder with a 20 Hz 

response, and the inCrements'(5.2.6) were calculated from the recording 
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for 40 adjacent time intervals of St = 0.25 seconds. The average 
variance of these 40 increments was found to be 0.0088, which, from 

St4  
(5.2.6), is a random variable with mean K2St and variance 2K4 40 
(standard deviation = K2St/4.5). Thus an estimate of K2  is 

0.035 t 0.007 , or an estimate of K is 0.187 t 0.02. Then in the 

simulation of (5.2.2) the generator output must be scaled by the 
0-  

factor 15:77  in order that y(t) of (5.2.2) be a valid approximation 

to Cr*(t) of (5.2.1). In other words, the generator output noise 

has the characteristic matrix whose single element is 

A = 	K2  = 	(0.035), 

while the unit parameter white noise *(t) has the characteristic 

matrix A = 

This statistical estimation of the S(o) parameter of the 

generator output was repeated for the same noise record using 

adjacent time"increments of St = 0.5. The estimated K was 0.198 

and the agreemtnt verified the independence of the successive 

increments of (5.2.3). In general, this seems to be an,attractive 

method of measuring S(o), as the method is simple and depends little 

on the upper frequency response of the recording apparatus. 

Using 0- = 0.187 for convenience in (5.2.1), the system 

(5.2.2) was simulated on a TR-48 analogue computer, and the curve of 

Figure 5.2.1 was recorded for X2(t), using the same noise record 

that we used to estimate K above. The integral of this noise 

record is X
1  (t) and is also shown. 

Now, (5.2.2) is an ordinary differential equation and can 

integrated by the normal rules of calculus. We have 

t 

X2  (t) 	f x1  (s) y(s) ds, 

t 

X1(s) dX1(s), 
0 
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t 

x12(t), 	(5.2.7) 
0 

assuming zero initial conditions. 

But X (0 has the statistics of a Wiener process in the large, 

whose mean square equals ar2t. Thus 

Ea
2  (t)] = iE[X 2(0] = Acr2t = 0.0175 t • -- 

(5.2.8) 

This mean value 0.0175 t is drawn in Figure 5.2.1, and appears 

to be a good estimate of the mean value of the particular curve 

X2  (0 shown. This curve was typical of many obtained, but unfortunately 

it was not convenient to obtain statistical estimates on a large scale 

on the analogue computer to obtain a good estimate of E[X2  (t)]. 

However, our point here is that E[X2  (0] of (5.2.2) does not equal 

E[x2(t)] of (5.2.1), for x2(t) has a zero mean value (see (A6b)) 

while X
2 
 (t) = 	I2(t) is always positive and so has a non-zero 

mean value. 

Thus in order to simulate the diffusion process (5.2.1) 

correctly, we must modify the physical process (5.2.2) so that 

E(X
2  (t)] = E[x2(t)] (5.2.7),  = 0.* But from 	 X2  (t) = 12(t) 

provided the analogue computer operations are performed accurately 

(the multiplication of X1(t) and y(t) in (5.2.2) likely 

introduces the largest error), and X
1  (t)is a good approximation 

r to a Wiener process with ELX12  (t)j = cr2t. This latter point 
illustrates the importance of scaling y(t) as we did, for we 

took care to ensure that 

tilt 

.f 	y(s) ds = X1  (t St) - X1  (t) t 

has the correct mean square increments. 

We are already ensured that E[X (0] = E[x
1(t)] = 0 as 

y(t) has a zero mean value, and as discussed in Section 4.1, a dis- 
crepancy in mean square between the physical and diffusion process 
does not exist provided y(t) is scaled correctly. 

X 2(s) 
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Thus E[X
2  (0] = icr2t in (5.2.2), and it is clear that we 

can modify the system (5.2.2) to make E[X2(t)]= 0 by putting 

X2(t) = X2  (0 -3ae2t. Then with X1(t) (= X1(t)) unaltered, 

the ordinary differential equation generating X(t) is 

X1  (t) = y(t) 

2(t)X 	= — icr2  4- X1(t) y(t), 	(5.2.9) 

and a simulation of (5.2.9) on an analogue computer should provide 

an unbiased estimate of the diffusion process (5.2.1). 

We see that this result agrees with the general result of 

Section 4.4. Relating the diffusion process (4.4.1) to the present 

example (5.2.1), we note 

f(x0t) = 0, 

F
11(x't) = Cr 

and 	P
21(x,t) = 1(t). 	(5.2.10)  

t 

As we have scaled y(t) so E[ ,f y(s) ds] = 0-2t, we have A = icr2, 
0 

and from (4.4.6b), C = Gr-1. Then from (4.4.6a), 

G11(X,t) = 1, 

and 	G21(X,t) = X1(t). 	(5.2.11) 

Also from (4.4.7), 

(01 = 

and 
	

(Q)2 = 1, 

which leads to the bias term QA 

 

(5.2.12) 
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in (4.4.9). Then (5.2.11) and (5.2.12) result in the equivalence 

of the physical processes (4.4.9) and (5.2.9), which, from the 
results of Chapter 4, indicate that (5.2.9) is the correct physical 
process to simulate the statistics of the diffusion process (5.2.1.). 

This is illustrated by the experimental run of Figure 5.2.1, 

for X2(t) of equation (5.2.9) equals X2(t) of equation (5.2.2) 

(the curve is so indicated in Figure 5.2.1) minus the ramp 1 CT2t 

(also shown in Figure 5.2.1 as E[X2(t)]). Subtracting these two 

curves appears to give a good zero mean signal and so this limited 

experimental evidence indicates that the physical process (5.2.9) 

is the correct process to simulate the diffusion process (5.2.1). 

Further experimentation on a digital computer confirmed that X2(t) 

of (5.2.9) is a random signal chosen from a distribution of mean 

zero and variance 	(cr2t)2 (the correct variance). 

5.2.2 	Construction of a Non-Linear Filter 

The mathematical convenience of the stochastic calculus has 

led to its use in the formulation and solution of a number of pro-

blems of filtering and optimal control of continuous stochastic 

systems (see, for example [92-99], [49]). Essentially we have the 

problem (mentioned only by Wonham of the above authors) that the 

physical situation that the formulation treats must be described 

in the stochastic calculus and the solution obtained in the stochastic 

calculus must be translated into the ordinary calculus so that such 

a controller or filter can be built. This problem has been discussed 

theoretically by Clark in the context of filtering problems [22, 

Chapter 6], and in this section we illustrate how such a filter 
should be built. An example of a non-linear filter derived by 

Wonham [49], is convenient for our purposes. 
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Consider a random telegraph signal x(t) 	± 1 with zero 

mean value and an expected number of transitions per unit time of 

v. The signal x(t) is observed by an instrument with additive 

white noise 

31;(t) = x(t) 	p *(t) 	(5.2.13) 

and the filtering problem is to obtain the best estimate of x(t) 

given all past measurements, R(s) , s t. This estimate is 

conveniently summarised in the "sufficient statistic" 

P(t) = Prob[x(t) = +1 1 R(s)] - Prob [x(t) = -1 I R(s)]. 	(5.2.14) 

Assuming the transitions to be Poisston distributed, x(t) is 

a Markov process (continuous in time but not in state), and,,the' 

integral of the measurements E(t) = ft  ii(s)ds is ,a continuous 

Markov process given by the Ito s.d.e. 

d2(t) = x(t) dt + p dw(t). 	(5.2.15) 

Then 27(t) is the"measurement state". 

A physical process which x(t) approximates is one in which 

the transitions are Poisson distributed except that a lower limit 

is•placed on the interval between successive transitions (this puts 

an effective upper frequency limit on the physical process corres-

ponding to x(t)). However, as the measurement noise p W(t) of 
(5.2.13, 15) is additive, there is no problem in interpreting 

x(t) 	p w(t) 
	

(5.2.16) 

as an ordinary differential equation governing the physical instru- 

ment when 11Y(t) is not strictly white. 

Although x(t) is not a diffusion process and thus cannot 

be described by an Ito s.d.e., it is a non-linear process in the 

sense that the density of x(t) is non-Gaussian. Thus the optimal 



- 259 

filter generating p(t) of (5.2.14) is non-linear, and Wonham 

gives the Ito s.d.e. governing the filter as 

dp(t) = 	2v p dt - P-2p(1-p2) dt + 32(1-p2) di(t) 
	

(5.2.17) 

where di(t) is the measurement (input to the filter) in the form 

(5.2.15). 

The filter is non-linear as evidenced by the (1-p2) term in 

(5.2.17), but what is more important from our point of view is that 

the noise in (5.2.17) is non-additive. This is seen by combining 

(5.2.17) and (5.2.15) to give 

dp(t) = - 2 v p dt - p-2p(1-p2) dt + p
-2(1-p2) x dt 

+ p -2(1-p2) p dw(t), 
	 (5.2.18) 

where the last term of (5.2.18) represents non-additive noise. 

Thus care must be taken in converting the Ito s.d.e. (5.2.17) for 

the non-linear filter to an ordinary differential equation so that 

the filter can be simulated or constructed. This difficulty does 

not arise in the construction of linear filters (Kalman filters) 

where the noise is additive in the filter equations [100]. The 

same remarks apply to linear vs. non-linear stochastic control 

problems, except that the control (and filtering) of linear systems 

with stochastic coefficients [94] entails the same considerations 

as non-linear control problems in the context of this chapter, 

as the noise is non-additive. 

We now use the results of Section 4.4 to show what physical 
system we must construct in order to obtain the correct filter as 

represented by the Ito s.d.e. (5.2.17). In the notation of equation 

(4.4.1), we have from (5.2.18), 

f(p,t) = - 2 v p - p-2p(1-p2) + p-2(1-p
2
)x 
	(5.2.19) 

and F(p,t) = p-1(1-p2). 	 (5.2.20) 
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As the noise in (5.2.18) is scalar, we can simply put G(p,t) = F(p,t), 

and we only have to be careful to scale the physical noise y(t) 

properly so that it approximates to the unit parameter white noise 

*(t). From the last section we see that this scaling makes the 

characteristic matrix of y(t), A = 

Then from (4.4.7), 

QA = - 0-2 P(1-P2), 	(5.2.21) 

and the physical process (4.4.9) corresponding to the diffusion 

process (the filter) (5.2.18) is 

P(t) =- 2 v P + p-2(1-1,2) x  

p
-2(1-P2) p y(t). 	(5.2.22) 

But, as mentioned earlier, the "physical" observation x(t) + p y(t) 

(5.2.16) can be considered equivalent to the "white noise" observa-

tion (5.2.13) and so the ordinary d.e. for the filter is 

P(t) = - 2 v P(t) + 13-2(1 	P2(t)) i(t) 
	

(5.2.23) 

where i(t) is the observation driving the filter. This equation 

can be compared with the ordinary d.e. obtained by using the terms 

of the Ito s.d.e. (5.2.17) directly: 

P(t) = - 2 v P(t) - 13-2  P(t) (1 - P2(t)) 

 

 

- 	2 	- 
+ 132  (1 - P (t)) x(t). (5.2.24) 

From the results of Chapter 4, equation (5.2.23) should give the 
correct, and equation (5.2.24) should give an incorrect physical 

approximation:to the non-linear filter (5.2.17). 
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The filters of equations (5.2.23) and (5.2.24) were simulated 

on a TR-48 analogue computer. The random telegraph signal x(t) 

was obtained from a bistable (t 1) circuit driven from the zero 

crossings of a zero-mean low frequency Gaussian signal [101, 

Chapter 10], and the mean switching rate was v = 0.35 switches 

per second. The noisy measurement X(t) was obtained by adding 

the noise of the last section to x(t). The scaling factor p 

corresponds to K or cr of the last section, and in this section, 

the generator output was doubled, giving p = 0.374. 

Figures 5.2.2,-and 5.2.3, show simulations of equations 

(5.2.23) and (5.2.24) respectively, using the same noise record 

and random telegraph signal. When P(t) is close to t 1, 

the filter is quite confident that it has the right answer. 

Comparing the two filters qualitatively, we see that the filter of 

equation (5.2.24) is less sure of itself in the "steady state" than 

the filter of equation (5.2.23), although each filter seems equally 

quick in recognising that a switch has occurred. 

More quantitatively, the mean square estimation error suggested 

by Wonham [49, equation (28)] was evaluated for each filter. For 

the record shown, the filter of equation (5.2.23) had a mean square 

estimation error of 0.26, while the filter of equation (5.2.24) had 

an error of 0.38. Wonham derives the theoretical mean square 

estimation error of the proper filter described by the Ito s.d.e. 

(5.2.17) and gives it as 0.27 for the parameters of the present 

example [49, Figure 2]. Wonham also gives the mean square estimation 

error of the best linear (Wiener) filter as 0.35. Thus we see that 

the mean square estimation error of the filter of equation (5.2.23) 

is very close to the theoretical error, but the error of the filter 

of equation (5.2.24) is considerably higher, and'is even worse than 

the best linear filter. 

Although it is difficult to place estimates of accuracy on 

the filter performance data given above, we can at least be confident 

from Figures (5.2.2) and (5.2.3) that the mean square estimation 

error of the equation (5.2.23) filter is lower than that of the 

equation (5.2.24) filter. But by definition, the optimal filter 

(5.2.17) must give the lowest mean square estimation error, and so 
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of the two filters simulated, equation (5.2.23) is the better 

approximation to the correct filter. To this extent, the experi-

mental evidence of the example of this section substantiates the 

theoretical results of Chapter 4. Digital computer simulations 

confirm this with a higher confidence. 

In [49] Wonham gives a block diagram for an analogue implementa-

tion of his optimal non-linear filter (5.2.17). He programs it 

directly from the Ito equation (5.2.17), that is, the filter of 

equation (5.2.24), and states that this is to be an ideal analogue 

device for generating p(t). Although the meaning of "ideal analogue 

device" is open to various interpretations, if it is to be interpreted 

as an analogue device which obeys the normal rules of calculus (i.e. 

integration) over an infinite bandwidth, then it would solve 

Stratonovich s.d.e.'s correctly but not Ito s.d.e.'s. But the limiting 

form of equation (5.2.23) (as the noise bandwidth is extended to 

infinity) is the Stratonovich s.d.e. for the optimal filter, and the 

limiting form of (5.2.24) is the Ito s.d.e. for the optimal filter. 

With this assumption, the conjecture stated by Wonham that an ideal 

analogue device should be programmed according to the Ito equation 

is wrong. Bypassing the speculation on the properties of an ideal 

analogue device, the results of Chapter 4 and this section indicate 
that a practical analogue device should be programmed according to 

the Stratonovich-like equation (5.2.23) and not according to the 

Ito-like equation (5.2.24). 

Recently Wonham [96] has reversed his earlier conjecture, and 

suggests that an analogue device should be programmed according to 

the Stratonovich equation for the filter. This agrees with our 

present results. He quotes (private communication, June 1965) 

experimental work of Ternan, which, although unreported, is likely 

coincidental with, and contemporary with (February-April 1965), the 

present authors' experimental work. Later, Wong and Zakai [102] and 

Kulman [103] also support the new conjecture. Other authors such as 

Ariaratnam and Graefe [14], Gray and Caughey [41], Caughey and 

Dienes [13], and Leibowitz [106], who do not specifically mention 

physical processes (in our sense), support the conjecture insofar 
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as they use Stratonovich equations as opposed to Ito equations to 

describe systems driven by ideal white noise (the inference being 

that we should program a computer directly from their equations). 

None of these authors, however, consider the simulation of a 

stochastic system using a vector physical noise source with an 

asymmetrical characteristic matrix. The next section will illustrate 

how simulation results can be biased if care is not taken over the 

possible asymmetry of a vector physical noise source. 

5.2.3 	Example using an Asymmetrical Noise Source  

In the last two sections we considered the simulation of 

examples with scalar noise sources. We found that if we wished to 

simulate a diffusion process described by an Ito s.d.e., the naive 

method of programming the Ito equation directly on to the computer 

gave results with a wrong bias, while programming from the associated 

Stratonovich equation gave correct results. 

Having learned this lesson (along with the authors mentioned 

at the end of the last section), let us consider an example of a 

diffusion process with a vector noise source and see what happens 

when we try and simulate it by programming the Stratonovich equation 

directly. 

Consider a special case of the example discussed by Astrom [26]: 

the diffusion process described by the Ito s.d.e. 

dx(t) = x(t) dw
1  (t) 	dw2(t),  (5.2.25) 

where O(t) is a two-dimensional white noise with the intensity 

matrix 

.2 

(5.2.26) 2 D = 
15 

.2 	1 

(this means that the noises *
1(t) and *2(t) have the same 

co-spectral density and have a small cross-correlation). Then from 
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(A22) (where the matrix 2D is the identity matrix) we can change 

the Ito equation (5.2.25) into a Stratonovich equation by 

subtracting the bias term 

2 

k,l 
	Q D dt = (D11

x  D
12

) dt 
	

(5.2.27) 

from the Ito equation. The resultant Stratonovich s.d.e. for the 

diffusion process x(t) is 

ax(t) = 	(D11 x(t) 	D12)dt 	x(t) awl(t) 	aw2(t), 

(5.2.28) 

and we shall simulate the diffusion process x(t) by programming 

the ordinary differential equation 

X(t) = - Dil  X(t) - D12  + X(t) y1(t)  + y2(t) 	(5.2.29) 

directly on to the analogue computer, using a two-dimensional noise 

source y(t) which appears to have the property (5.2.26). 

A Filtered PRBS Noise Source  

Following the discussion of Section 5.1.2, we use a filtered 

PRBS as a primary noise source. We use a 15 stage shift register 

which generates an L = 32,767 bit code, driven at a clock frequency 

of 2.16 kHz giving a bit period of A = 0.463 msec (then LA = 15.2 secs.). 

The filter we use has a time constant of T = 4 msec, which equals 
8.7 A (this is close to the value 6A which gives the best Gaussian 

signal), giving the noise a correlation time,Tcor = 20 msec. 

As a second noise source, we take a delayed version of the 

filtered PRBS. We take y1(t) off the first stage of the shift 

register and y2(t) off the last (15th) stage, both channels 

being filtered as above. Then 

y2(t) = y1(t - 
	(5.2.30) 
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where TI = 14A = 6.5 msecs. Then from [88], the correlation 

coefficient between y1(t) and y2(t) is approximately 

-6.5/4 = 0.198. 

This was confirmed experimentally by evaluating integrals of the 

form 

1 
IL 

LA 

y.(t) 	(t) dt 
0 	

Yj it j = 1, 2 	(5.2.31) 

on the analogue computer, where the value 0.185 was obtained for 

the normalised cross-correlation. 

Now, on the face of it, it would seem that this two-dimensional 

noise source has the right correlation properties to simulate the 

white noise with the intensity (5.2.26). It is not suggested that 

this noise source is a sensible one to use for this example, as the. 

fact that y2(t) is merely a delayed version of y1(t) hints that 

this two-dimensional noise source has unusual properties. 'However, 

it is a convenient noise source to illustrate the following point: 

we cannot characterise a physical noise source by its intensity, or 

even by its zero-shift correlation function, as we might be tempted 

to do from the following argument. 

Authors, e.g. [14, 41], who give Stratonovich s.d.e.'s for 

diffusion processes define the noise in such equations, e.g. W(t) 

in (5.2.28), by its correlation property 

R(T) = E[W(t) *T(t 	T)] = 2 Dg(T) 
	

(5.2.32) 

where g(-) is the Dirac delta function. They state, or imply, 

that when their equation describes a physical situation, the relation 

(5.2.32) is approximately true (see also Astrom [26. p. 318], but 

he does not use Stratonovich equations). That is, the high bandwidth 

physical noise y(t) (which it(t) models in the Stratonovich equation) 

appears to have a delta correlation function when viewed at the 

relative time scale of the physical system. 
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Now consider the filtered PRES noise source y(t) which we 

propose to use in the simulation of (5.2.25 or 28) by computing with 

the equation (5.2.29). According to the implications of the current 

literature, we must ensure that y(t) approximately has the property 

(5.2.32), where D is specified in (5.2.26). The important point 

is this: the implication is that the correlation function R (T) 

of y(t) should have an area of 2D, concentrated in a small region 

about the origin. Thus we should measure the zero frequency spectral 

density of y(t), and the noise can then be scaled properly. We 

show in this section that this is an insufficient characterisation 

of the physical noise. 

It is possible to go one step further in error. It is sometimes 

not convenient to measure the spectral density of a physical noise. 

The correlation function is computed instead, and the noise source 

is scaled to have the property (5.2.32) via its correlation pro-

perties. Now our primary noise source has a correlation time of 

20 msec and y2(t) is shifted by 6.5 msec, giving a joint maximum 

correlation time of 26.5 msec. We will likely be interested in 

the system X(t)'s behaviour over intervals in the order of hundreds 

of milliseconds to seconds, and so the correlation equipment at our 

disposal likely only has a time shift resolution of say 100 msec. 

Using this equipment, the noise correlation function appears to be 

a delta function with R (0) proportional to 

1 	.185 

.185 

The temptation now is to apply an arbitrary scaling technique (such 

as applying the technique of Section 5.2.1 tO one component of y(t)), 

and decide that our noise source, after scaling, has the intensity 

matrix 

2 D 	= -2- 
Y 	15 

.185 
.185 	1 

(5.2.33) 
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The Simulation of Equation (5.2.29)  

Using this noise source, the equation (5.2.29) was programmed 

on to the TR-48 analogue computer, and curve 1 of Figure 5.2.4 was 

obtained. Now, according to our method of characterising the noise 

source, the components y1(t) and y2(t) have the same statistical 

properties and so the statistics of the simulation should not be 

affected by interchanging y1(t) and y2(t). This was done, and 

curve 2 of Figure 5.2.4 was obtained for X(t) using the same 

portion of the PRBS noise record and the same initial conditions. 

It is noticed that curves 1 and 2 have a distinctively different 

drift, as their separation increases linearly with time. In fact, 

as we have used the same noise record, the separation is deterministic,. 

and the curves shown are typical of many obtained. The simulations 

in the curve 1 group had a mean value near zero, while the simula- 

tions in the curve 2 group. had a mean value close to the ramp 

function 0.05t, which is curve 3 shown in Figure 5.2.4. 

Thus the simulations using the original noise source, and using 

this noise source with reversed components, have different drifts, 

.and so both of the arrangements cannot be correct simulations of 

the given diffusion process x(t). Our point here is not to show 

experimentally which arrangement gives the correct simulation, but 

to show that curves 1 and 2 have different drifts, which is not 

predicted by our method of characterising the noise source. To 

trace the origin of these differing drifts, let us characterise 

the noise y(t) by the method proposed in Chapter 4. 

Experimental Determination of the Characteristic Matrix of a Vector  
Correlated Noise Source  

The ij:th element of the characteristic matrix A is given 

as (see equation (4.1.21) but here y(t) is stationary) 

a) 
Aij 	1. )] 	 (5.2.34) Y 

Putting s = t - T and interchanging the integral and the expecta- 
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tion in (5.2.34) we have 

t 

A..ij = E[Y1  .(t) 	.
J  Y
(s) ds] 

a) -  

= E[yi(t) Yj(t)] 

where 	Y.(t) = . 
YJ

(s)  ds. 
-co 

(5.2.35) 

(5.2.36) 

Now, y(t) is a stationary signal, but Y(t) is not a sta-

tionary signal (it behaves like a Wiener process in the large), and 

so for the purpose of computing the statistical average (5.2.35) it 

is convenient to replace Y(t) by a stationary signal Y() so that 

E[y(t) Y(t)] 	E[y(t) Y(t)] . 	(5.2.37) 

Writing (5.2.35) as 

t 
Er_.(t)  f [1 	e-a(t-s) 	e-a(t-s)1,.(e) ds] LJI 	 JJJ  

-co 
= E1 E2 

(5.2.38) 
where 

E
1 

t 

E[Yi(t) I [1 _ e-a(t-s)] y  . (s) ds], 
-co 

t 

. and E2 = E[y.(t) r e-a(t-s) Yj(s) ds], -p 

(5.2.39) 

(5.2.40) 

or a = 1), the 

is effectively zero as long as e-a(t-s)  t 1 

(for t - 
8  > Tcor ' E[y(t) y(s)] = 0). 

e-aTcor = .98 (i.e. aT cor = .02 

contribution of E
1  to (5.2.38) can be neglected 

we see that the term E
1 

for t•-•:s less than ti cor 
Thus If we choose a so that 

and from (5.2.40) we find 

t 
A13..  E

2 	ElYi(t) f e-a(t-s) ' 	I  
-co

s) ds] YjA  (5.2.41) 
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= E[yi(t) Yi(t)] 

where 

t 

7.(t) e-a(t-s) f yi(s) ds. (5.2.42) 

The signal Y.(t) is recognized as the output of a linear first 

order filter of time constant a-1  whose input is the signal 

srj.(t). Thus in making the replacement Y(t) = Y(t) of (5.2.37) 

we replace the integral of y(t) by a filtered y(t). The filter 

behaves like an integrator for past inputs up to wcor  time units 

ago, and then beyond that, tends to "forget the past". Thus Y(t) 

is a stationary signal which behaves like Y(t) as far as evaluating 

the statistical average (5.2.35) is concerned, and being stationary, 

the average can be conveniently performed by integrating: 

A-. = 	.f. 	.(t) Y.(t) dt. 	(5.2.42) ij 	T 	YI 

The integral in (5.2.42) was performed on the analogue computer 

and is shown in Figure 5.2.5 for the evaluation of A
21,  A11' 

and 

Al2, which are estimated as the slopes of the average lines drawn 

(averaged over 10 seconds). The curve for A22 
is indistinguishable 

from the A
11 curve and is not shown. The fact that the curves 

are never far from their average slopes attests to the stationarity 

of the product in the integral (5.2.42), and the fluctuations near 

the end of the curves (t = 8 to 10) indicate the confidence interval 
in estimating the slopes. The vertical scale of the graph is 

arrangedsothattheestimateofAii is read directly as the value 

of the ramp at t = 10, and the estimates are 

A
21 = 0.061 

A11 = A22 = .033 

Al2 = '0055  

with a confidence interval of about I.  .001 on each estimate. 

Writing these values in a form suitable for comparison with D 
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of (5.2.33), we have 

1.0 	.17 

(5.2.43) 1 A = 	1
2  . 15 

1.83 1.0 

The accuracy of the relative magnitudes of the components of 

this matrix can be checked from the theoretical correlation function 

of y(t) [88]. A typical component R21(T) is shown in Figure 5.2.6, 

and other components are shifted or transposed versions of the curve 

shown. 

a 6.5 msecs 

Figure 5.2.6  Normalised Correlation Function of Two Dimensional 

Noise Source 

The curve is very nearly made up of exponential segments whose time 

constant is that of the filter, 4 msecs., and the relative sizes of 
and A21  are found by the relative areas marked 1, 2, Al2, A11,  

and 2 plus 3. These are 0.198, 1.000, and 1.802. As these values 

are within the confidence limits we had assigned to the component 

of the matrix in (5.2.43), the validity of our experimental method 

of evaluating the components of the characteristic matrix A is 

verified (apart from a possible scaling factor error . To check 
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this we would have to know the exact values of many of the analogue 

computer and PPM generator components. However, in this section 

we wish to illustrate the effect of having Al2  and A21  different 

from D
12 

and D21, and so we will not go into this point). 

The Statistics of the Physical Process (5.2.29)  

Having found the characteristic matrix of the physical noise 

y(t), we can evaluate the statistical behaviour of the physical 

process X(t) of equation (5.2.29). In particular, we are inter- 

ested in the drift of the process (i.e. E[X X,t]), and how it 

is affected by interchanging y1(t) and y2(t). 

The noise terms of (5.2.29) contribute a positive drift given 

by equation (5.2.27) with Ak, replacing Dkl  (c.f. equation (4.1424), 

and adding this to the non-random drift in (5.2.29) we get 

E[SX I X,t] = N1 - D11 ) X(t)  + Al2 - D121  8t 	(5.2.44) 

where A is given in (5.2.43) and D in (5.2.26). Thus we have 

E[SX I X,t] = - 
30  
49-1 	

= 
St 	- 0.001 St . 	(5.2.45) - 

Now, if the noises y
1(t) and y2(t) are interchanged, the 

system drift becomes 

E[SX I X,t]E
(A22 - D22) X(t) + A21  - D

21 
 ]St 

1.63038 t 	0.054 gt, =  (5.2.46) 

which is quite different from the essentially zero drift of (5.2.45). 

These figures agree well with the observed drifts in Figure 5.2.4, 

where the drift of .curve 1 is near zero but slightly negative, and 

the drift of curve 2 was estimated as 0.050 t (curve 3). 

The diffusion process x(t) we are trying to simulate has a 

zero drift and-in fact we see from our method of calculating A 
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that it was rather fortuitous that the first arrangement of noises 

gave a near zero drift (A12 was only near D12 because of the 

exponential shape of the correlation function, Figure 5.2.6). 

The only point we wish to make here, is that the characteristic 

matrix A must, in general, be evaluated for a physical noise 

process, for unless this matrix is symmetrical, the information 

in the intensity matrix D is not sufficient to specify the 

statistics of the simulation. In fact, our primitive method* 

of calculating D (leading to (5.2.33)) did not even evaluate the 

intensity correctly, for from (5.2.43), 

1 2D = A + AT 	
15 =' — (5.2.47) 

The matrix (5.2.47) only has a rank of one, which means that our 

two-dimensional noise source does not have sufficient degrees of 

freedom to simulate the two-dimensional white noise W(t) of the 

diffusion process (this confirms our earlier suspicion that our 

noise source is not a very suitable two-dimensional noise source). 

To sum up, if we have a noise source at our disposal which has 

a symmetric characteristic matrix, then a diffusion process can be 

simulated by programming the Stratonovich s.d.e, for the diffusion 

process directly on to the analogue computer, using a properly 

scaled version of the noise source, which only involves the intensity 

of the noise, 2D. If the noise source has an asymmetrical charac-

teristic matrix, correction terms have to be added to the drift of 

the Stratonovich equation which involves the characteristic matrix 

of the noise, A. In this case, the Stratonovich equation has no 

advantage, and in Section 4.4 we give the correction terms pertinent 
to the Ito form of the equation of the diffusion process. 

This method of calculating the intensity 2D by evaluating 
R(0) would only have worked correctly if each component of the cor-
relation function had the same shape. 
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Thus unless it is known that a noise source has a symmetrical 

characteristic matrix (e.g. it may be known that the components 

are all independent of each other), the characteristic matrix A 

must be evaluated. If the correlation function R(r) of the noise 

is known, then A can be fount' from the integral definition 

(4.1.21). If this is not the case, then the characteristic matrix 

A can be evaluated experimentally by the simple, and seemingly 

accurate, method given in this Section. 
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CHAPTER 6  

Digital Simulation 

Many of the interesting points concerning the relation between 

ordinary differential equations and stochastic differential equations 

can be demonstrated on an analogue (or hybrid) computer, and some of 

these points (particularly those concerning the role of the noise 

characteristic matrix) have been illustrated by examples in the 

previous chapter. On a dic1tal computer, we usually use random 

numbers as a physical noise source when simulating high frequency 

random phenomena, and so this chapter will not dwell on the choice 

of noise source or the evaluation of characteristic matrices. Our 

main interest lies in the choice of digital formulae for solving 

ordinary differential equations involving the random number noise. 

We choose two suitable formulae, and discuss their efficiency and 

convergence rates. 

Although many of the techniques used in the data reduction part 

of digital simulation were conventional, one interesting technique 

was developed, and is presented in Section 6.3. This was a smoothing 

technique used in estimating functional solutions from random data, 

and takes advantage of the efficient representation of functional 

information afforded by orthog,,nal expansions. 

6.1 Digital Noise and the Form of the Ordinary Differential Equation 

Consider the problem of simulating the diffusion process x(t) 

described by the Ito stochastic differential equation 

dx(t) 
= f(x,t) + F(x,t) dw(t)  dt dt (6.1.1a) 

on a digital computer. Here W(t) is the formal derivative of a 
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unit parameter, independent component, m-vector Wiener process, 

and we use this notation as opposed to the more accepted dx, dw, 

notation to facilitate comparison of equation (6.1.1) with ordinary 

differential equations. The diffusion process x(t) is also 

described by the Stratonovich stochastic differential equation 

ax(t 
dt) 	f(x,t) - 	> 	Q(x,t) + F(x - t) aw dt  (t) 

k,1 
 (6.1.1b) 

where Q (x
' 
 t) is the n-vector given in equation (A11'b). 

kl  
The noise W(t) in equation (6.1.1) is theoretical white 

noise with an infinite amplitude and a flat power density spectrum 

of unity extending to infinity. As mentioned before, such a noise 

process is not physically realisable, and must be replaced by a 

physical noise process which is suitable for computing purposes. 

This turns the stochastic differential equation into an ordinary 

differential equation. 

On a digital computer, approximate solutions of ordinary dif-

ferential equations are obtained at sample points nat, n = 0, 1, 2... 

where At is a discretization time or step length associated'.With 

the numerical formula used to solve the ordinary differential 

equation. The mechanics of obtaining the solution do not specify 

the value of the solution between the sample points, nor (except 

in special cases) is the value of the derivative used between the 

sample points. 

In Chapter 4, we showed that the first order probability density 

of x(t) was well approximated by an appropriate physical process 

X(t) provided Tcor < Trel 
and the physical noise was characterized 

by the matrix A. We also showed that the transition probability 

density (or second order probability density) of x(t) was well 

approximated by that of X(t) for transitions over time increments 

St 	somewhat higher than but approaching T 
cora Connected with 

this is the fact that the power density spectrum of x(t) is well 

approximated by that of X(t) for frequencies up to approximately 

(again provided 	in which case the spectrum will cor 	T <4 Trel' cor -1 be small at f = Tcor anyway). 
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Thus for accuracy and spectral resolution considerations, 

cor of the physical noise should be chosen'as small as possible, 

and in any case much less than Trel. But we noted above that 

the noise y(t), being a term on the right hand side of the dif-

ferential equation, is samplec1 every At time units, and so for a 

given At* the physical noise is given a maximum frequency content 

by making the samples y(nAt) independent (or minimum T ) cor 
of each other. As 

venient to use pseudo random 

values y(nAt), generated by 

mentioned in Section 3.2.6.  

a zero mean Gaussian noise, it is con- 

zero mean Gaussian numbers for the 

a computer algorithm such as that 

We describe below how the variance of 

w(t) is 

the Gaussian random numbers is chosen. 

We have specified the structure of the physical noise y(t) 

at the sample points t = nAt, but in order to know what ordinary 

differential equation we are solving, we must know the structure 

of y(t) between the sample points. The specification of this 

inter-sample point structure is arbitrary, and we shall assume 

that the noise y(t) is constant between the sample points. 

That is 

y(t) = y(nAt) 
	

nAt 	t L (n+1)At. 	(6.1.2) 

The following argument suggests that this choice of structure is 

a natural one. As the noise y(t) is piecewise constant, the 

integral of y(t) is piecewise linear. Now, being interested 

in the properties of X(t) which is an integral function of y(t), 

we must match the integral of y(t) to the integral of the noise 

*(t) it is replacing, i.e. to the Wiener process w(t). If the 

Wiener process is specified at t = nat, and no information is 

given about its behavior between these points, it seems natural 

to approximate the Wiener process.by joining the sampled values 

w(nAt) by straight lines. The integral of the piecewise constant 

y(t) does this, and to this extent the choice of the piecewise 

constant structure is a natural one. 

factors concerning the choice of At are discussed later. 
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This matching can be used to choose the variance V of the 

random numbers y(nAt). The integral of y(t) has increments over 

time At of zero mean value and variance V tt2. Then, as the 

Wiener process w(t) has increments of zero mean and variance At, 

we must choose V so that 

V = E[y(nLt)2] = At-1. 
	(6.1.3) 

The analysis of Chapter 4 can be used to show that the ordinary 

differential equation using the piecewise constant structure of 

y(t) with the variance (6.1.3) has the same incremental statistics 

(to,the accuracy of Section 4.1) as the diffusion process described 

by the Strataglovich s.d.e. having the same terms as the o.d.e. 

For example, consider the simulation of the linear diffusion process 

given by the Stratonovich s.d.e. 

ax(t) 

	

	dw(t) 
a x(t) + b x(t) dt 	 dt 	' 

or by the Ito s.d.e. 

dx(t) 
dt 	= (a + "ff b2) x(t) + b x(t) dw(t)  dt 

(6.1.4a) 

(6.1.4b) 

We propose to simulate x(t) by using the o.d.e. 

X(t) . a X(t) + b X(t) y(nAt) 	(6.1.5) 

obtained directly from the Stratonovich equation (6.1.4a). The 

noise y(nAt) has the piecewise constant structure introduced 

above, and so for nAt t 4: (n+1)At we can write (6.1.5) as 

X(t) = c X(t), 	 (6.1.6) 

where . c is a,Gaussian random number of mean a and variance 

b2  At-1. Integrating (6.1.6) over At we find 
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AX(nAt) = X((n+1) At) - X(nAt) 

X(nAt) [ecAt  - 1] 

= 	X(nAt) [cAt + -g• c
2 

At
2 	

SOO ] , 
	 (6.1.7) 

Then 

E[AX(nAt) 1X(nAt)] = X(nAt) [aAt + 2 b2At] + o(At), (6.1.8) 

which, to the indicated error magnitude, is the correct first 

increment of the diffusion process (6.1.4). Also, from (6.1.7), 

AX2(nAt) = X2(nAt) [c2  At2  + 	], 

and 

E[AX2(nAt) IX(nAt)] = X2(nAt) [b2  At] + o(At), 	(6.1.9) 

which again, to the indicated error magnitude, is the correct 

property of the diffusion process (6.1.4). 

Thus by arguing along the lines of Section 4.1 we have shown 

that the ordinary differential equation (6.1.5) is a correct 

simulation of the diffusion process (6.1.4), an argument which is 

also demonstrated below for general (non-linear) processes. Thus 

if a physical process is formed by replacing white noise by piece-

wise constant noise, the equation we must work from is the 

Stratonovich s.d.e. of the diffusion process. This point is con-

firmed by Wong and Zakai [249  102] who show that such a physical 

process converges in mean square to the diffusion process given by 

the term-by-term equivalent Stratonovich s.d.e., as At goes to 

zero, when the increments of the integral of y(t) are related 

sample pathwise to the increments of the Wiener process (we have 

only related these increments statistically, and as a result only 

obtained convergence in distribution - see Section 4.2). If the 

physical noise y(t) has some other inter-sample point structure, 

such as a linear interpolation, the equivalent o.d.e. can still be 

obtained directly from the Stratonovich equation (as the independent 

white noise source is symmetrical) but the simple scaling method 
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we have used may no longer be convenient, and the following more 

general method can be used. 

To investigate the scaling of the noise y(nAt) further, 

let us calculate the characteristic matrix of the noise. The 

correlation function of the pjecewise constant noise has the tri- 

angular form shown in Figure 6.1.1, where V is the variance of 

y(nAt) and At is the inter-sample time. For a vector independent 

piecewise constant noise source, the cross-correlations are all 

zero, and each component of the noise has the autocorrelation 

function shown. Then the characteristic matrix is A = VAt I (6.1.10) 

0 
	

At 

Figure 6.1.1 Correlation Function of Piecewise Constant Noise 

Now consider the simulation of the diffusion process (6.1.1) 

by computing with the o.d.e. obtained from the Stratonovich s.d.e. 

(6.1.1b): 

1 
X(t) = f(X,t) - 2 

k,1 
Qu(X,t) + F(X,t) y(t), 	(6.1.12) 

using the piecewise constant noise y(t) discussed above. To 

scale the noise correctly (i.e. choose its variance V), we evaluate 

the second order conditional increment of the physical process 

(6.1.12). From Section 4.1.2, 

r 2 I ELQX X,t] 1 F (A + AT) F
T 

At. (6.1.13) 

(6.1.11) 
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But from equation (6.1.1) the diffusion process x(t) has 

r ELAx2  I lx,tj = F F
T 
At + o(At), (6.1.14) 

and so from (6.1.11) we must specify the noise variance as 

V = At
-1 
	 (6.1.15) 

With this choice of noise variance, we see from Section 4.1.1 

that the approximate first order conditional increment of the physical 

process (6.1.12) is 

E[AX IX,t] 	f(X,t) At 	 (6.1.16) 

which agrees with that of the diffusion process (6.1.1). Thus to 

simulate the diffusion process (6.1.1) on a digital computer using 

a step length of At time units, we solve thelOrdinary differential 

equation (6.1.12) which is obtained directly from the Stratonov 
aw(t)
ich 

s.d.e. of the diffusion process by replacing the white noise - dt 
by a physical noise y(t) which consists of independent piecewise 

constant segments At long, each with a variance of At-1. 

6.2 Digital Solution of the Ordinary Differential Equation and 

Conver.splice to the S.D.E. 

Having chosen a physical process (o.d.e.) to model the diffusion 

process (s.d.e), we must consider the second problem of choosing a 

suitable algorithm for obtaining an approximate solution to the o.d.e. 

on the digital oomputer. As this second operation also involves an 

error (which depends on At), there are two steps in the convergence 

of the digital computer simulation to the diffusion process, and 

these are shown diagrammatically in Figure 6.2.1. 
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- 281 - 

\- 3_ 

Figure 6.2.1: Steps in the Convergence of a Digital Computer 

Simulation to a Diffusion Process 

In the analogue computing in Chapter 5, we had assumed that 

the physical process was simulated exactly, and so the question of 

convergence along step 2 in Figure 6.2.1 did not arise. Then we 

were only concerned with step 1, and in Section 4.1 we presented an 

analysis which showed what parameters affected the convergence in 

distribution along step 1. In this section, we review the considera-

tions affecting the convergence along step 1, and show how the choice 

of digital computer algorithm affects the convergence along path 2. 

Using a simple formula for simulating s.d.e.'s directly, the formu-

lation of the physical process in Figure 6.2.1 can be bypassed, and 

convergence along path 3 can be considered. 

6.2.1 Convergence of the Physical Process to the Diffusion Process 

(Path 1) 

In Section 4.1 we evaulated approximate expressions for the 

first and second conditional increments of a physical process over 

a time increment iSt, and showed how these parameters apecified an 

"equivalent" diffusion process whose statistical behaviour was 

approximately the same as that of the physical process. In particular, 
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we showed that, for a fixed St, the error in evaluating the expres-

sion E[ SX I X,t] was proportional to T cor (c.f. Al and A2), and 

that, discounting this error, the expression was the same as that of 

the equivalent diffusion process (to the stated St accuracy). This 

implies that the expected value of the increment in X(t) converges 

to that of x(t) with an error term proportional to 'cor'  As the 

increment is proportional to St, then the statement above implies 

that the linear error between the expected values of X(t) and 

	

x(t) (from a common starting point) is also 0(T 	). cor 
This point can be confirmed by following an analysis of Franklin 

[107]. He considers a sampled data model of a diffusion process with 

additive noise and considers the convergence of expected values of 

the sampled data model to those of the diffusion process and finds 

the convergence to be 0(4), i.e. 0(T ) . That is, he shows cor 

E[P6(X(0)] = E[0(x,t))] 	0(Tcor) as r 	0, (6.2.1) cor 

for a sufficiently smooth function 0:(.). His proof can be 

extended to non-additive noise, although the transformations he 

uses in the proof then become time-varying, with a considerable 

loss of simplicity. 

Franklin's digital model is, in effect, a direct simulation 

of the diffusion process without specifying the particular physical 

process that we have in Section 6.1, and so his convergence is 

along path 3 in Figure 6.2.1. Nevertheless, his digital model is 

a physical process and can be considered to use the piecewise con- 

stant noise we use, and so the convergence he proves is closely 

related to the convergence along path 1 in Figure 6.2.1. Indeed 

we see later that his digital model is related to our physical process 

by being a suitably biased forward difference method of solving the 

o.d.e. of our physical process, and so the error in simultion must 

be at least as large as that of our physical model. By this token, 

the convergence along path 1 of Figure 6.2.1 for expected values of 

functions of X(t) to those of x(t) can be no worse than 0(T ). 
cor 
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The convergence (6.2.1) is difficult to demonstrate experimen-

tally, for it involves forming a statistical estimate of a statis-

tical parameter*(the 1.h.s. of (6.2.1)) which is itself subject to 

sampling error. Instead it is more convenient to investigate 

sample path convergence on the computer, which is the kind of 

convergence considered by Clark [22]. 

As our physical noise is Gaussian and stationary, Clark's 

results can be applied to the convergence along path 1 in Figure 6.2.1 

(in [22, Chapter 4] he considers such a piecewise constant noise 

process). He shows that the mean square error in sample paths is 

of order 0(T cor) that is 

E[cx(t) — x(0)2] 
	

0(5 cor). 	(6.2.2) 

But the diffusion process x(t) (and the limiting X(t) process) 

is a process whose increments x(t+Lt) - x(t) are of the same 

order as the square of the increments. Thus it seems plausible 

that we can infer from (6.2.2) that the linear error in sample 

path is also 0(T ) 
cor 

X(t) I 	= 0(T 	) cor (6.2.3) 

and not 0(T 2) as might be suggested by taking the square root car 
of (6.2.2). The following experimental evidence supports the con-

vergence rate (6.2.3). 

Experimental Test of Sample Path Convergence  

Consider the simulation of the diffusion process given by the 

Ito.s.d.e. 

dx(t) = 	x(t) dt + a(1 + x(t)) dw(t), 	(6.2.4a) 

which is another example studied by Astrom [26, ex. 2]. From 

(6.1.1b) the Stratonovich s.d.e. for this process is 
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ax(t) = 	[x(t) + 	a2(1 + x(t))] dt 

+ a(1 + x(t)) aw(t), 
	(6.2.4b) 

and from (6.1.12), the o.d.e. using pieoewise constant noise for 

the physical process whose statistics approximate those of the 

diffusion process (6.2.4) is 

X(t) 	[X(t) + 2a2(1 + X(t))] + a(1 + X(t)) y(t). (6.2.5) 

As y(t) is constant in the interval t = [nit, (n+1)At), 

equation (6.2.5) can be rearranged to give the following first order 

linear constant coefficient ordinary differential equation 

X(t) = - [1 + 4. a2.- a y(nAt)] X(t) - a a2  + a y(nAt) 

µ1  (nit) X(t) + µ2(nAt). 

This equation can be solved explicitly in the At interval to give 

111(nAt) 	µ,(nAt) 	-µi(nAt)At 
X((n+1)At) = 	 + [X(not) - -=,----c 1 

Vada) - e 	. µ
2(nAt) 	1 	(6.2.6) 

Now to test the convergence of the sample paths of the physical 

process (6.2.5) to those of the diffusion process (6.2.4) as a 

function of At, we must consider a particular realisation of the 

Wiener process w(t). Then for a given At, we choose y(nAt) as 

y(nAt) = At-1  [w((n+1)At) w(nAt)] 	(6.2.7) 

so that the integral of y(t) equals w(t) at the sample points, 

and the continuous curve converges to w(t) in the mean as At 

goes to zero. That is, as we refine At, the integral of y(t) 

more and more closely resembles the particular realisation of w(t) 

we have chosen, and as a result, we are in a position to compare 

the convergence of the sample paths of x(t) to X(t). The piece-

wise constant. y(t) (6.2.7) is the same as that we had chosen 

earlier (6.1.2), except that before we had only matched the integral 



- 285 - 

of y(t) to the Uener process statistically. 

Clark [22] and Wong and Zakai [24, 102] show that the sample 

paths of X(t), (6.2.5), converge in the mean to the sample paths:of 

x(t), (6.2.4), for the choice of physical noise (6.2.7). Having 

accepted this, our interest lias in testing the rate of convergence, 

and this can be done by computing trajectories using the formula 

(6.2.6) for successive refinements of Lt. 

This was done for a particular Wiener process w(t) record 

10 seconds long. The values X(n), n = 1, 2, ... 10, were computed 

using (6.2.6, 7) for At successively equal to 1, 0.1, 0.01 

and 0.001. The trajectory with the finest subdivision, At = 0.001, 

was taken as x(t) and the other trajectories were compared with it 

at the integral values of time, and the error function on the l.h.s. 

of (6.2.3) was evaluated. Table 6.2.1 gives these error values for 

three different noise standard deviations. 

Each entry in'the table is an average of 10 points and so the 

standard deviation of each entry is approximately 10.'2 or 0.33 

times the entry. Within these limits, the entries in the table 

(scanning horizontally) are proportional to 1t for each of the 

three noise ratios tested. 

This is clearly seen from the linear relationship of the log-log 

plot of Figure 6.2.2, where each line drawn has a slope of 1, 

indicating that errors are proportional to At1. Then as t,.cor = At 

for the piecewise constant noise y(nAt), we have experidentally 

verified the convergence rate 0(rcor)  of (6.2.3). 

Remarks 

The contents of this section (6.2.1) are an early look at a 

new and rather complex field - the convergence of a particular 

ordinary differential equation to a stochastic differential equation, 

For this reason, the comments we have made must be regarded as being 

somewhat speculative in nature, and much more work remains to be 

done on both theoretical and experimental lines to establish meanings-

ful and practical norms of convergence. 
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As a problem in numerical analysis, the difficulty is that we 

are dealing with a random equation, but above all, an equation 

which has an unusual incremental property when the "At tends to 

zero" limiting properties are studied. This is the property that 

the increments Ax and the square of the increments (Ax )2  are 

both of the same order of magnitude, 0(At), when conditional 

expectations are taken and At approaches zero (the property 

E[AxIxIt] = 0(At) is due to the non-random part of the process, 

and the property E[(Ax)2 1x,t] = 0(At) is due to the random 

part of the process). As the equation for x(t) is random, error 

terms which result when we try and simulate the equatiOn only have 

a meaning when expectations are taken, but because of the unusual 

order of magnitude property of the increments of such processes, 

the usual concepts of numerical analysis cannot be appliedAo 

stochastic equations. New outlooks, such as that provided by 

Franklin [107], are needed. Our analysis of Section 4,11  and that 

of Stratonovich [21], is similar in philosophy to Franklin's, and 

all three' approaches illustrate the difficulty of making quantitative 

statements about the error of diffusion approximations. 

Thus the error analysis of diffusion approximations is still in 

an early development stage, and although we have made some progress, 

much work remains to be done. At this stage, numerical experimenta-

tion must he relied upon to determine the reliability of solution, 

and in this vein, the theoretical and experimental results of the 

next section comparing the order and efficiency of digital integra-

tion formulae are the most concrete results of this chapter. 

6.2.2 	Discrete Approximation to the Ordinary Differential 

Equation (Path 2)  

We now turn our attention to the problem of obtaining an 

approximate solution to the ordinary differential equation (6.1.12) 

on a digital computer. We are now interested in the convergence 

along path 2 in Figure 6.2.1. This is a more conventional problem 
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in numerical analysis than that of the previous section, yet the 

particular o.d.e. (6.1.12) with piecewise constant noise has 

some special properties connected with the lack of smoothness of 

the r.h.s. which bear special consideration. 

The Order of Digital Approximations to 0.D.E.'s  

Consider the problem of obtaining an approximation on a digital 

computer to the solution of the o.d.e. 

X(t) = G(X) y(t), 	(6.2.8) 

which is the same as equation (6.1.12) with the non-random terms 

removed. On the computer, approximate solutions to (6.2.8) are 

obtained over discrete time steps At long. Over a single time 

increment, the increment in the true solution of (6.2.8) can be 

written as the Taylor series 

AX(t) = X(t + At) - X(t) 

1 -  = x(t) At 	m' x(t) At2  + 1  x(t) At3  + 

(6.2.9) 

provided all the higher derivatives on the r.h.s. exist. These 

derivatives are all evaluated at t, the beginning of the At 

interval. 

To obtain an approximation to X(t + At) given X(t) which 

is accurate to an error term proportional to Atn+1, we must use a 

digital formula for AX(t) which agrees with (6.2.9) for a11 terms 

on the r.h.s. of (6.2.9) up to and including the Atn  term. Then 

provided the (n+1):th derivative of X(t) is bounded in the 

interval [t, t+At), the error in AX(t) will be of order 0(Atn+1). 

Such a formula is called an n:th order formula. 

The simplest formula uses only the first term on the r.h.s. 

of (6.2.9), and is the first order Euler (or forward difference) 

formula: 
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AX(t) = X(t) At = G(X(t)) y(t) At. 	(6.2.10) 

The formula is particularly simple to program, as the r.h.s., Gy, 

is known explicitly. However, the accuracy of the Euler formula is 

often too limited for a given amount of computing, and so higher 

order formula are usually used. 

Multi-step Formulae  

Higher order formulae which directly use the terms on the 

r.h.s. of (6.2.9) are sometimes inconvenient, as the higher 
• • 	 ••• 

derivatives X(t), X(t), etc., may not be explicitly available. 

They then have to be obtained by differencing methods, and an 

efficient way of doing this is to express these higher derivatives 

as functions of X(.0) and X(t'), where t' = t - At, t 2At, etc. 

These quantities are readily available as they have already been 

evaluated at previous time steps. Such formulae are called multi!-step 

formulae, as they utilize the value of X and X at points other 

than in the current time step [t, t + At). 
.0 

For example, we can write X(t) as 

X(t) 	[x(t) 	x(t - at)] at-1, 	(6.2.11) 

from which we get the second order formula 

AX(t) = [ 	x(t) - 2 x(t - at)] At. 	(6.2.12) 

Now for such a formula to have second order accuracy, we do not 

require that X(t) be bounded in [At, t + At) as we would for a 

second order formula based on the series (6.2.9). Instead we 

require that X(t) be bounded over the double interval 

[t - At, t + At) so that the substitution (6.2.11) is correct 

up to second order terms in (6.2.12). But our particular o.d.e. 

(6.2.8) does not have this property, as y(t) is only continuous 

over single time steps, and so the formula (6.2412) is not a second 

order formula when applied to the o.d.e. (6.2.8). 
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This is true in general for multi-step formulae. The 

accuracy of multi-step formulae depend on the smoothness of the 

derivative X(t) over more than one time step At. But equations 

such as (6.2.8) which involve a piecewise constant noise y(t) 

have derivatives X(t) which are discontinuous at the sample points 

t = n At. Then the usual error analysis does not apply to multi-step 

formulae applied to such equations, and the error is indeterminate. 

Thus multi-step formulae cannot be used to obtain high order 

solutions to equations involving piecewise constant noise. 

From another viewpoint, the random numbers y(nAt), n = 0, 1, 2 ... 

are independent of each other, and so values of X(t) of (6.2.8) 

over successive time intervals are uncorrelated with each other. 

But multi-step formulae using expansions such as (6.2.11) use the 

relation between X(t) at previous successive time steps to estimate 

higher derivatives needed in the higher order formulae, This approach 

is invalid in the present example, for as successive values of 

X(nAt) are uncorrelated, they contain no information on the higher 

derivatives in their neighbourhood. 

This criticism does not apply to single step formulae, as they 

do not use any past information of X(t) when obtaining the, solu- 

tion in a particular time step. In this sense, single step formulae 

are conceptually similar to the Markov Processes we are simulating, 

for the statistics of the future solution step AX(t) are,given 

entirely by the present state X(t) and not by any past state 

information. 

Single Step Formulae  

The Order of Single Step Formulae when Applied to the O.D.E.  

with Piecewise Constant Noise Terms  

With this justification, we restrict our attention to single 

step formulae for solving o.d.e.'s such as (6.2.8) involving piece-
wise constant noise terms on the r.h.s. We have already given the 

simplest single step formula, the Euler first order formula (6.2.10), 
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and of the various higher order single step formulae, those based 

on the Runge-Kutta method are the most commonly used [108, p.211; 

55, p.195].* In this section we consider the order of convergence 
of single step formulae when applied to the o.d.e. (6.2.8). 

Considering equation (6.2.8), we replace the piecewise con-,  

stant noise y(t) by a Gaussian (0, At-1) random number c in 

the interval [t, t+At). Then in equation (6.2.9) we have the 

following values for the derivatives: 

X(t) = c G(X) 

X(t) = c Gx(X) X = c
2 G2(X) 

X(t) = c2[G2  (X)] xX = c
3  G

3
(X), 

and in general 

X(n)(t)  = en  Gn(X), 
	(6.2.13) 

where Gn(X) is a function depending on G(X) and its higher 

derivatives, but not depending on' c. The we can write (6.2.9) as 

AX(t) = G(X) cAt + G
2(X)c

2At2 	G3(X)c3At3 
	

(6.2.14) 

and we know from our earlier discussion that for a particular con-

stant c, an n:th order formula computes AX(t) correctly up to 

terms involving Atn  in equation (6.2.14). 

Now let us look at the order of convergence of such formulae. 

In normal concepts of convergence, the parameters of the o.d.e. 

such as c and the functions G
n(X) in (6.2.14) are kept constant, 

and we evaluate how the error in AX(t) behaves when At is 

The discussion in the rest of this section pertaining to the 
Runge-Kutta formula apply equally well to other higher order single 
step formulae, except that the efficiencies of each formula will be 
different. 
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refined. However, in our context, the o.d.e. (6.2.3) is meant to 

simulate a diffusion process, and as reasoned in Section 6.1, we 

should make the noise y(t) as high frequency as possible, and' 

this is done by assigning a new random value to c every At.
W 

Then for this special equation, .our concept of convergence• must 

be altered to allow c to depend on 'AV, as At is refined. 

Then the dependence of the various terms in equation (6.2.14) 

on At is not the same as the At
n factor whichExplicitly appears 

in (6.2.14). However, the digital formula still computes AX(t) 

to an accuracy depending on those factors Atn  which do explicitly 

appear in (6.2.14), as the formula is derived from the Taylor series 

expansion on which (6.2.14) is based. 

To be more precise, we look at two kinds of convergence: sample 

path convergence and statistical convergence. In sample path 

convergence we are interested in the magnitude of the error in 

computing AX(t). But AX(t) and its errors are statistical quanti-

ties, and so we must take the expected value of the magnitude of 

the error in order to obtain a useful error norm. 

If the Taylor series expansion (6.2.14) is truncated after the 

Atn  term, the resultant error in evaluating AX(t) can be expressed 

as 

1 	n+1- n+1 - • Error
n 	G 	(X') c 	t- • ! (n + 1)!,n+1 (6.2.15) 

where X' = X(.0) for some t' in the interval [t, t+tt], 

provided that Gni.1(.) is bounded in the interval (unless the 

contrary is specifically mentioned, we always assume our Taylor 

series expansions are validated by this sort of bound). Then 

the error of a general n:th order formula is proportional to 

(6.2.15), and we may write it as 

Errorn  =d+1 (X') cn+1  Atn+1, n (6.2.16) 

where "d'n+1(X°  is again some bounded function independent of c. 

The expected'magnitude of the sample path error is then E 
I Errn 

* This means that as At is refined, the o.d.e. in the middle box of 
Fig. 6.2.1 varies. In this sense, the convergence along path 2 is not a 
normal concept of convergence. 
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To evaluate this we note that c is a zero mean Gaussian random 

variable, independent of the other quantities in (6.2.16), with 

the following properties: 

E IC I 
	

(2/rr) 2  At  

E 1C21 = At-1, 

E 101 
	

(8/Tr) 2  At" ' -1  

= 3 At-2, E c4 

and in general 

E I cn  I 	= ISP = 	At -n  2 

Then from (6.2.16) and (6.2.17) we have 

n+1 

E lErrni = ISP = 	At 2  . 

* (6.2.17) 

(6.2.18) 

Now for digital formulae applied to smooth o.d.e.'s we noted 

that the order of the formula was defined to be one less than the 

power of At appearing in the truncation error. By analogy, we 

define the order of sample path convergence of formulae applied to 

o.d.e.'s involving piecewise constant noise as being one less than 

the power of At in (6.2.18). This new order of convergence of 

digital formulae is shown in the last column of Table 6.2.2., where 

the first two columns are the normal definition of order of the 

formula and the power of At in (6.2.18). 

We now look at the statistical convergence of the digital 

formulae. In simulation exercises, we are interested in evaluating 

functions such as E[gf(X)] which we estimate by simulating many 

trajectories of X(t) and forming the appropriate average. For 

• = ISP = denotes "is proportional to" 
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certain functions 91( • ) we can tolerate an error in X(t) [or 

AX(t)] as long as it is unbiased, and so for statistical conver-

gence (or convergence in distribution) we take as an error norm 

1E (Errn)) 	 (6.2.19) 

which is the magnitude of the ensemble average of the error in 

AX(t). Thus in contrast to the sample path error, we are now 

interested in the size of the expected error instead of the expected 

value of the size of the error. 

We now remove the absolute value signs in (6.2.17) and find that 

E(cn) = 	n odd , 

and 
	

E(cn) = ISP = At-n/2 
	

n even. 	(6.2.20) 

If n is odd (n+1 is even) we then obtain from (6.2.16) 

the error norm (6.2.19) as 

n+1 

1E (Errn)) = ISP = At 2  , 	n odd, 	(6.2.21a) 

but if n is even, the expression becomes zero. But the error 

term (6.2.15) of the truncated Taylor series is a composite error 

term which includes the error of all the higher order terms which 

have been truncated, and if the Atn+1 term has a zero mean value 

because n is even, then the Atn+2 term does not have a zero mean 

value. Then the error can be written as 

1E (Errn)) 
	

= ISP = 	cn+2 Atn+2, n even, 

and from (6.2.20), this becomes 

n+2 

1E (Errn)) 
	

= ISP = 	At 2 	n even. 	(6.2.21b) 

The resultant order of the formula in the sense of statistical con-

vergence is given in Table 6.2.3. This order is higher than that 
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of sample path convergence (Table 6.2.2) by one half, for digital 

formulae which are normally of even order (such as the 4th order 

Runge-Kutta (RK)). 

In summary, we see that when solving o.d.e.'s such as (6.2.8) 

which have terms which depend on At (the variance of y(t) 

equals At-1), the order of the truncated terms in the Taylor 

series (6.2.9) is different from the power of At which appears 

in (6.2.9). The result of this is that digital formulae which 

are "order n" when applied to smooth o.d.e.'s become less than 

n:th order when applied to o.d.e.'s involving piecewise constant 

noise. The new order depends on whether we are considering sample 

path error or statistical (ensemble average) error, and is given 

in Tables 6.2.2, 3. 

The Euler Formula  

From Tables 6.2.1 , 2, we see that the Euler formula when applied 

to (6.2.8) has an error which is proportional to At - that is, it 

is a zeroth order formula. By normal o.d.e. standards, this means 

that the formula is not consistent. That is, as At goes to zero, 

the solution of the discrete formula does not tend to the solution 

of the continuous equation (6.2.8). In that case, the Euler formula 

cannot be used as a digital approximation to the o.d.e. along path 2 

of Figure 6.2.1, when simulating diffusion processes. Let us look 

at this point further, and see if we can alter the Euler formula so 

that it can be used to simulate diffusion processes. 

Consider the example of simulating the diffusion process 

(6.1.4) by applying the Euler formula to the o.d.e. (6.1.5). Then 

applying (6.2.10) to (6.1.6), we have 

AX(t) = X(t) c At, 	(6.2.22) 

where c is a Gaussian (a, b2At-1) random number. Taking the 

conditional expectation of (6.2.22) we have 

E [AX X(t)] 	= 	X(t) [a At] 	(6.2.25) 
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which is not the correct property (6.1.8) of the diffusion process 

(6.1.4). This illustrates that the Euler approximation (6.2.22) 

does not converge to the solution of the o.d.e. (6.1.5) which does 

have the property (6.1.8). This is because the Euler formula has 

omitted the At term 7 b2  At X(t) in (6.1.8) which came from 

the At2 term of (6.1.7). 

Thus in order that the Euler formula can be used to simulate 

diffusion processes, the conditional expectation of AX(t) must 

be obtained correctly. We note that the diffusion process x(t) 

described by the Ito s.d.e. (6.1.1 a) 

dx(t) f(x,t) + F(x,t) *(t) dt = 

has the increment 

E [Ax1x(t)] = f(x1t) At + o(At), 

and that the Euler approximation to the solution of the o. 

• 
X(t) = f(X,t) + F(X,t) y(t) 
	

(6.2.24) 

has the increment 

E [AXIX(t)] = f(X,t) At + o(At), 	(6,2.25) 

when y(t) is a zero mean signal independent of X(t). Also if 

y(t) is a piecewise constant process with a variance of At-1  then 

the Euler approximation to the o.d.e. (6.2.24) has the second 

conditional increment 

r 2 I E LAX X(t)] = F FT (X,t) At + o(At) (6.2.26) 

which is the correct property of the diffusion process. 

We thus conclude that if we wish to simulate the diffusion 

process (6.1.1) on a digital computer using the Euler formula, 
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we must apply the Euler formula to the o.d.e. (6.2.24) which is 

obtained directly from the Ito s.d.e. (6.1.1a) by replacing the 

unit parameter white noise w(t) by a piecewise constant noise 

y(t) which has a zero mean value and a variance of At
-1. From 

the consideration of the first two incremental properties (6.2.25, 26) 

we do not require that y(t) be Gaussian, but as the signal W(t) 

it is replacing is Gaussian, better accuracy will be obtained if 

y(t) is Gaussian (particularly with regard to the accuracy of the 

higher moments). 

Remarks  

Referring to Figure 6.2.1, the simulation of a diffusion process 

by the Euler method does not consist of the paths of convergence 

shown as 1 and 2. This is because the physical process (6.2.24) does 

not converge to the diffusion process (6.1.1) (in the sense of 

Section 4.2), and also because the Euler solution does not converge 

to the solution of the physical process (6.2.24). Thus the Euler 

simulation method can be considered as a direct simulation of the 

diffusion process, as shown along path 3 of Figure 6.2.1. 

However, the accuracy of the Euler method (in obtaining the 

property (6.2.25), for example) depends upon the smallness of the 

truncation error of the Euler formula applied the o.d.e. (6.2.24), and 

depends upon the inequalityTcor 4.1  Trel being satisfied (or then 

the properties (6.2.25, 26) would not ensure accurate simulation). 

Thus the convergence along path 3 of Figure 6.2.1 entails the same 

considerations as the convergence along paths 2 and 1. 

The use of the Euler formula to simulate stochastic differential 

equations has been known for some time, and is sometimes called the 

Maruyama approximation to the s.d.e. (see [102], or [109] for 

Maruyama's paper). It is the method used by Astrom [26] and Franklin 

[107], and as far as the author knows, no other method for the 

digital simulation of diffusion processes has been reported. 
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Higher Order Formulae  

In [26], Astrom simulates a diffusion process using the Euler 

method in which he has to use a very small step length At. The 

impetus for the work of this section came from this paper, with 

the hope of showing that stochastic differential equations could 

be simulated on a digital computer more efficiently using higher 

order formulae. 

Referring to Figure 6.2.1, we know that the exact solution 

of the o.d.e. (6.1.12) is a proper simulation of the diffusion 

process (6.1.1) as long as T or << Trel (path 1). The question 

now is: how accurately must we solve the o.d.e. (6.1.12) on the 

digital computer in order that the approximate solution so obtained 

is also a proper simulation of the diffusion process (6.1.1) (path 

2 is now also involved)? 

The answer is in two parts. Returning to our example (6.1.4), 

we see that to obtain the correct first incremental property (6.1.8), 

the o.d.e. (6.1.6) must be solved correctly up to and including 

second order terms in the expansion (6.1.7). That is, our digital 

computing formula must use the 2 c2  At2  term in (6.1.7) so that 

the bias 2 b2  At appears in (6.1.8). It is easily verified that 

this is a general rule: in order for the convergence along path 2 

of Figure 6.2.1 to be consistent, we must use a digital formula 

which is at least of second order when referred to smooth o.d.e.'s. 

Referring to Tables 6.2.2, 3 we see that this ensures that the 

order of the formula when applied to the o.d.e. with piecewise 

constant noise is greater than zero (see third column), which 

ensures its consistency. 

Secondly, we must choose a step length At which is low enough 

so that the incremental properties (6.2.25, 26) are obtained with 

sufficient accuracy. This refers to the errors in path 2 of Figure 

6.2.1, and is a point which is best investigated experimentally. 

An example is given below. 
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To sum up, if we wish to simulate the diffusion process (6.1.1) 

on a digital computer, there are two possibilities. Firstly, we 

may use simple forward differences (the Euler formula), working 

directly from the Ito s.d.e. (6.1.1a) and replacing *(t) by 

Gaussian (0, At-1) random numbers. Secondly, we may form an 

o.d.e. from the Stratonovich s.d.e. (6.1.1b) replacing *(t) by 

piecewise constant noise with a random, Gaussian (0, At
-1
) 

amplitude, and solve the resulting o.d.e. on the computer using 

a single step formula which is at least a second order formula. 

The following experimental results illustrate that for some diffu-

sion processes, the first method is more efficient in respect of 

computing time, and for others the second approach is better. 

Euler vs. Runge-Kutta Formulae  

Let us compare the efficiency of the Euler method and the 

o.d.e. method (using a fourth order Runge-Kutta formula) of simulating 

the diffusion process (6.1.1). Two points are noticed: 

(a) If F(x,t) = 0 in (6.1.1), the diffusion process reduces 

to a deterministic process, whose simulation is a classical numerical 

analysis problem. Then the Euler method has an 0(At2) error and 

the Runge-Kutta (RK) method has an 0(At5) error, and it is well 

accepted that the RK method is more efficient of computing time 

for all but the most trivial examples, even though the RK formula 

requires about four times as much computation as the Euler formula 

for a given At. 

(b) If f(x,t) = 0 and F(x,t) = constant, the diffusion 

process reduces to a Wiener process, whose statistics are represented 

exactly (at t = nAt) by adding Gaussian random numbers. That 

is, we use the o.d.e. 
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which both the Euler and RK formulae compute exactly for any At. 

Then as the Euler formula is simpler, it is more efficient. 

However, general diffusion processes fall in between these two 

extremes of a purely deterministic process and a Wiener process, and 

either method may be more efficient. 

Some computational experience has indicated that the choice of 

methods generally depends on the relative sizes of the drift term 

f(x1t) and the random term F(x,t) W(t) in equation (6.1.1). 

For low noise values, the RK method was more efficient, and as 

the relative size of the random term was increased, there came a 

"break-even" point, beyond which the Euler method was more efficient. 

However, this effect depended on the particular form of each equation 

studied, and no general. rule could be stated. Numerical experimenta-

tion has to be.relied upon to determine the more efficient method 

(and best At) for each particular example. Below, we discuss an 

example of JVtrom ([26], Figure 6, Table 2; or our equation (6.2.4) 
with a = 27) and show that the RK method combined with a particular 

choice of At is the more efficient method for this example. 

To test the efficiency of computing formula, we shall begin 

by duplicating the results of Astrom. We simulate the o.d.e. 

X(t) = - X(t) + 2 	(1 + X(t)) y(t) 	(6.2.27) 

(obtained directly from the Ito s.d.e.) using forward differences 

over a step length of At = 0.002, and estimate the steady state 

density P(x) by averaging over 50,000 adjacent solution points. 

The density P(x) was estimated in the interval Ix, < 1 by 

quantising x in 0.05 steps, and the root mean square error was 

found over these 41 estimates (Astrom [22, eqn. 77] gives the true 

density of the diffusion process x(t)). 

Next we use the alternative method of simulating the o.d.e. 

X(t) = - 2 X(t) - 1 + 22(1 + X(t))y(t) 	(6.2.28) 
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(obtained directly from the Stratonovich s.d.e.) using a fourth-

order Runge-Matta formula. We begin with At = 0.002, but realise 

that the RK method allows a much larger At to be used before 

any significant error arisea in integrating (6.2.28) over At. As 

a result, we compare the Euler and RK methods for a variety of At 

values, each time keeping the number of samples equal to 50,000 

to keep the computational effort constant. 

The RMS error in the estimated density function was evaluated 

in each case, and is plotted in Figure 6.2.3 against a logarithmic 

At scale. Up until At = 0.002, the errors in the Euler and the 

RK methods are equal, as the truncation error in each formula is 

negligible*. Beyond At = 0.002, however, the error in the Euler 

method becomes higher than that of the RK method, as the truncation 

errors of the first order Euler formula begin to become significant. 

The truncation errors of the RK formula do not become significant 

until beyond At = 0.2 (see Figure 6.2.4), hence the error using 

the RK method continues to decrease up to this point. 

The conclusions are as follows. For a fixed number of samples, 

it is best to use as large a At as possible so that the maximum 

amount of independent statistical information is generated. The 

memory time of the system, 
Tre1' is about 2 time units, and so from 

this point of view, we should take At = 2. However, the statistical 

error between the physical process (6.2.28) and the diffusion 
process (6.2.4) is appreciable unless the condition 

Tcor4< morel 
is satisfied (c.f. path 1 in Figure 6.2.1). We learned from the 

PRBS example in Section 4.1.4 that the error involved in path 1 

of Figure 6.2.1 became small when Tcor  was less than about 

0.1 'r' 4. rel 
Combining these two considerations, we decide that At = 0.2 

is the best choice of At. Now the main point is this: errors along 

The error in this region is almost all due to the finite record 
length, for, as Tcor  is much less than Tel  (1 2), the error 
involved in path 1 is very small. Thus as At increases in this 
region, a larger record length is used (record length = 50,000 At), 
and more independent information is used in the statistical estimate 
of the density function. 
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path 2 in Figure 6.2.1 are small for this value of At using the 

RK method, while for the Euler method, a much smaller At has to 

be used to keep the truncation errors small. An indication of the 

truncation errors involved in integrating equations (6.2.27) and 

(6.2,28) by the Euler and RK methods respectively is given in 

Figure 6.2.4, where the number of correct decimal places (a logarith- 

mic error scale) is plotted against log At. 

Figure 6.2.4  Sample Path Accuracy of Euler and Runge -Kutta Formulae 
Applied to Stochastic Equations 

If the ordinates of Figure 6.2.4 were truncation error, then 
the slopes of the lines shown would be close to 1 and 2i for the 

Euler and RK methods, indicating convergence rates of 0(At) and 

0(At) respectively. This agrees with our theory, as summarised in 

Table 6.2.2. 
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From the point At where the graphs of Figure 6.2.3 separate 

(i.e. the truncation errors of the Euler method become significant 

above At = 0.002), we draw the dotted lines in Figure 6.2:4 and 

deduce that two decimal place accuracy is a minimum standard to 

ensure that errors in distribution due to truncation error are small. 

We also see that this accuracy is obtained in the RK method by a 

At = 0.2. A factor of 100 separates these two At's, and so the 

RK method is much more efficient even though the RK formula requires 

four times as much computation per time step as the Euler formula. 

Another point in favour of the RK method is that At = 0.2 

is the "break point" governing acceptable accuracy in both the 

convergences in paths 1 and 2 of Figure 6.2.1, and in this sense, 

the RK method is well matched to our method of approximating diffu-

sion processes by physical processes. In fact, for a particular 

form of o.d.e., the At for a given truncation error is proportional 

to 'Vrel'  and in this case for the acceptable truncation error 

we have At = 0.1 
Orel   for the RK formula, but At = 0.001 T 

for the Euler formula. This illustrates the suitability of the RK 

method for our example, but these ratios will depend on the parti-

cular form of the equation as well as the relative size of the noise 

term. In the author's experience with other examples and other 

noise ratios, it was found that the Runge-Kutta method was more 

efficient than the Euler method except then the system was heavily 

dominated by the noise (when the average size of the random term 

F was greater than about five times the size of the non-random 

term f in equation (6.1.1)). 

On the digital computer, we can confirm the effects noted in 

Chapter 5 with a high degree of statistical confidence.* Essentially 

we were trying to show that ordinary differential equations to be 

programmed on to the analogue computer must not be obtained directly 

from the Ito s.d.e. of the diffusion process (we called this the 

naive method), but must be obtained from the s.d.e. by the methods 

of Chapter 4 (this reduced to using the Stratonovich equation 
directly if the noise was scalar or vector symmetrical). On the 

digital computer, the RK method parallels the analogue computer 

* But at the expense of long computer runs. 
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method, and we can confirm the results of Chapter 5 using our present 
example by computing with the o.d.e. (6.2.27) obtained from the Ito 

s.d.e., and with the o.d.e. (6.2.28) obtained from the Stratonovich 

s.d.e., in each case using the RK method. 

The latter of these two possibilities is what we have already 

done, and the resultant error in distribution is shown in Figure 

6.2.3. Keeping N = 50,000, and using the best value of At = 0.2, 

we apply the RK method to equation (6.2.27), and find the RMS 

error in distribution,to be 0.21. As the resultant histogram was 

statistically smooth, we deduce that this large error cannot come 

from random fluctuations (the error of 0.02 when simulating equation 

(6.2.28) under these conditions gives an idea of the size of the 

error due to random fluctuations in the sample), and conclude that 

equation (6.2.27) is the wrong o.d.e. to simulate. 

Comparing equations (6.2.27) and (6.2.28), we see that equation 

(6.2.27) has a substantial positive drift compared with equation.  

(6.2.28) for all values of X greater than -1. The effect of this 

error in the drift term is clearly seen in Figure 6.2.5, where the 

simulation of equation (6.2.27) by the RK method gives a distribution 

which is heavily biased to the right of the true density function, 

while the simulation of equation (6.2.28) gives a distribution 
which seems to have an unbiased error. In each case, the curves shown 

are sketched through the histogram points. 

The non-linear filter of Section 5.2.2 was simulated on the 

digital computer using the RK method, and the same effect was noted. 

When equation (5.2.23) was used (the Stratonovich equation), the 

theoretical performance of the optimal filter was achieved with a 

high statistical confidence (mean square estimation error = 0.265 

-.01, theoretical = 0.27). In contrast, when equation (5.2.24) 

was used (the Ito equation), the filter performance was substantially 

lower (mean square estimation error = 0.365 ±.01). 

Thus using a digital computer, which is a convenient tool for 

collecting and analysing statistical data, we have confirmed the 

results of Chapter 4. The analogue computing of Chapter 5 was 
interesting, as the analogue can represent a variety of physical 
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noise sources exactly, and is thus a more realistic simulation 

tool than the digital computer. However, the analogue itself cannot 

conveniently collect and analyse statistical data, and so a hybrid 

computer would be the best tool to continue experimental work 

related to the results of Chapter 4. More examples should be 

tried, particularly using noise sources with asymmetrical charac-

teristic matrices. 
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6.3 Digital Data Smoothing by Orthogonal Functions 

In the course of studying Monte Carlo or simulation methods on 

the digital computer, a useful data smoothing technique was developed. 

The technique is applicable to function type solutions such as the 

probability density function P(x) and advantage is taken of the 

orthogonality property of certain polynomial expansions. The idea 

came from the Hermite coefficient representation of density functions 

discussed in Section 2.4. 

Consider the problem of forming an estimate of the probability 

density function P(x) from statistically generated data. The 

usual technique is to quantise the x space into a convenient set 

of finite cells, and form the histogram of the quantised data. The 

main difficulty is that we must choose a compromise between smooth-

ness and resolution, given a particular amount of data. For example, 

consider the estimation of the height P of an element of the 

histogram of width Ax. If there are N trials in the simulation, 

and n of these fall in the cell of width Ax, then a suitable 

normalised estimate P is 

n 

 

(6.3.1) NAx • 

Assuming the trials to be independent, the number n is from 

a binomial distribution and 

E [n] = N P Ax, 

Var [n] = N P Ax (1 - P 4x), 

where P is the true solution somewhere in the cell. Then we have 

E [P] = P, 	 (6.3.2a) 

and Var [P] = P(1 - P Ax)  
N Ax 	• (6.3.2b) 
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Thus for solution resolution* we need a small Ax and for solution 

smoothness (low Var [P]) we want a large Ax. Our point here is 

that we may not be able to make the solution as smooth as we would 

like because of resolution or restrictions on the amount of data 

available. 

Then we must find other ways of smoothing the solution, which 

gives a smooth estimated function P(x) but retains the essential 

features of the statistical data. The following method based on 

orthogonal polynomial expansions smooths the function P(x) while 

leaving the first n moments of x unaltered. 

6.3.1 	Orthogonal Polynomial Expansions 

Let P(x) be expressed by the infinite functional series 

expansion 

OD  

P(x) = 	kr  Jr(x) g(x), 	(6.3.3) 
r=0 

where k
r 

is a constant, Jr(x) is a polynomial of degree r, 

and g(x) is a non-negative weighting function closely related to 

the expected shape of the function P(x). The polynomials Jr(x) 

can always be found by the Gram-Schmidt orthonormalisation process 

so that the following orthonormality relations hold: 

co 

	

Jr(x) Js(x) g(x) dx = 1 	r = s 
- co 

	

= 0 	r s 	(6.3.4) 

A convenient numerical procedure for finding the coefficients of the 

* 	One way of expressing solution resolution is that any functions 
E 
[ 
F(x)] which are to be estimated from the unquantised data, become 

E F(x + 0(Ax)] when estimated from the histogram. For example, the 
second moment of x is estimated too high by 

12 
.21._ Ax2 

from the histogram, if the quantisation intervals are equally spaced. 
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polynomials Jr(x) is given in [1$Q] 'where the basis functions fi  

are taken as the linearly independent set of polynomials 1, x, x
21  x3, 

In Section 2.4, we used the Gaussian- curve as the welighting function 

g(x) and found the polynomials Jr(x) to be (r!)Hr(x), where 

Hr(x) were the Hermite polynomials. 

From (6.3.3, 4), we find that the coefficients kr 
are given by 

co 

kr = I P(x) Jr (x) dx , 	r = 0, 1, 2, ...., (6.3.5) 
- co 

but as P(x) is the density function of x, equation (6.3.5) can 

be written as 

k
r 

= E
r(x)]. 
	(6.3.6) 

This latter expression is particularly convenient for estimating 

kr from data x. 

Our smoothing method is based on the following assumptions: 

(a) the expansion (6.3.3) is convergent, and the reconstructed 

function 

n  

P
n
(x) = > 	kr  Jr(x) g(x) r=0 

(6.3.7) 

is a good approximation to P(x) for low values of n. 

(b) the "high frequency" information in P(x) is contained in the 

higher expansion functions Jr(x) g(x), r > n, so that P
n
(x) 

is a smoother function than P(x). 

In section 2.4, we discussed the validity of these assumptions 

when P(x) was near to the Gaussian in shape and the expansion 

was the Hermite polynomial expansion. Although not much is known 

about the expansion (6.3.3) for arbitrary weighting functions g(x))  

it seems reasonable that if g(x) is close to P(x) in shape, then 

the expansion (6.3.3) is quickly convergent. Cramer [51] verifies this 

for certain orthogonal polynomial expansions, and for an arbitrary 

weighting function g(x), the assumption can quickly be checked 

• • • 



cp 

f xm  Jr(x) g(x) dx. r=0 - 

m 
E ix J = (6.3.9) 
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computationally such as we have done in Section 2.4.2. 

In general, the functions Jr(x) g(x) contain more points of 

inflection (or maxima and minima) the larger r is made, as Jr(x) 

is a polynomial of degree r. For example, for the Hermite poly-

nomials Hr(x) and the Gaussian curve G(x), the functions 

Hr(x) G(x) had r zero crossings. In this sense, the functions 

Jr(x) g(x) are. less smooth for increasing r, and the reconstructed 

function P1(x) of (6.3.7) is more smooth the lower we choose n. 

Finally we show that the first n moments  of x are correctly 

contained in the reconstructed density Pn(x). Writing the m:th 

moment of x as 

E 
	

f p(x) xm dx, 
	

(6.3.8) 
CD 

which from (6.3.3) can be written as 

But as the polynomials Jr(x) are linearly independent, we can 

express xm as 

m 

cs  js(x), 	 (6.3.10) 

wherethrt s aro tuLiquely detiend croeflaitatipi, Then (6.3.9) becomeis 

E [xm] 

CO m  

k
r s -s (x) Jr(x) g(x) dx. 	(6.3411) 

-CD s=0 

But from the orthogonality relations (6.3.4), the integral (6.3.41) 
only has a value when r = s, and then (6.3.11) can be written as 

m 

E[xm] =. 	 k c r r r=0 
(6.3.12) 

That is,' the coeffiqients kr, r> m, are not used to calculate 

E [xm] , and we could work back through equations (6.3.11) to (6.3.8). 

to show that 

xm 
= >  e=0 
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Jr(x) g(x) dx 
r=0 	-OD 

OD 

= f pn(x) xm dx 	 (6.3.13) 
-co 

provided n m. Of course, we note that the coefficients kr  as 

found by (6.3.5) are independent of how high we truncate the series 

(6.3.3) to get the finite series (6.3.7), which is another result 

of the orthogonality relations. 

6.3.2 	Data Smoothing by Finite Expansions  

Consider the problem of estimating the probability density 

function of a system x(t) by simulating the system and obtaining 

N samples of x at time t. As discussed in Section 3.2.3, each 

sample xa(t) contributes a delta function si N 1  o(x xa(t)) to 

the estimate of P(x,t). This, of course, gives a pathologically 

unsmooth solution estimate P(x,t), and so we usually average the 

delta functions in a region to obtain point (3.2.50) or histogram 

solutions (6.3.1). 

An alternative smoothing procedure which does not involve the 

type of x quantisation as the point solutions is one which expands 

the estimate P(x,t) in the orthogonal polynomial series (6.3.3). 

As 0' = 1 for probability density functions (c.f. (3.2.22)), we 

write P(x,t) as 

a 

1 N 	0 (x - xa(t)). (6.3.14) 

Then to find the coefficients kr(0 of the expansion, we substitute 

(6.3.14) for P(x) in (6.3.5), and obtain 

OD N  

r(t) = I >  
-OD a 

= N-1 
	

Jr(xa(t)), 	r = 0,1,2,..., (6.3.15) 

N 1  S (x xa(t)) Jr(x) dx, 
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which is recognized as the expected value of Jr(x) (6.3.6) at 

time t. 

The coefficients kr, r = 0, 1, 2, ... can be evaluated 

simply by forming the expected value (6.3.6) using each sample 

xa(t) as in (6.3.15). However, if N is very large, this may be 

a time-consuming operation, and quantising methods can be used to 

estimate P(x,t) at suitable points and then the integral (6.3.5) is 

evaluated numerically. The quantisation here can be very fine 

compared to that discussed earlier (6.3.1), for we are not concerned 

about solution smoothness at this stage, and can choose Ax quite 

small to keep the 0(Ax) errors small. As discussed in Section 

2.4.2, the numerical integration of (6.3.5) can be done very effi-

ciently if the point estimates P(xr, t) are obtained at the zeroes 

of the Gaussian quadrature formula associated with the weighting 

function g(x) and the orthogonal polynomials Jr(x) ,of (6.3.3). 

The main advantage of the orthogonal polynomial representation 

(6.3.7), is that the information in each successive expansion 

function Jr(x) g(x) is independent information, which means that 

the coefficients kr, r = 0, n, are not a function of n, the 

truncation point. This means that we can compute kr  by the 

formula (6.3.15) without knowing beforehand where we will truncate 

the series. However, as the data is random, the coefficient series 

ko, k1, k2, 	computed from (6.3.15) will not have the nice 

convergence properties that the series evaluated from the true 

(smooth) density function P(x) (see (6.3.5) - we have chosen the 

weighting function g(x) so that the series for P(x) is quickly 

convergent. As in Section 2.4.4, it may be necessary to normalise 

the data x
a(t) to assure this convergence.). 

This is the basis of our filtering method: the true density 

P(x) is represented by a few coefficients which are nicely con-

verging. But we notice that the coefficient series evaluated from 

the random data do not converge, and after the first few coefficients, 

they appear to take on random values. We conclude then that the 

first few coefficients obtained from the random data contain all the 

information we want in P(x,t), and that the higher coefficients 

contain information which is essentially random error resulting from 
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the finite sample size. With this justification, we truncate the 

series for P(x,t) to obtain Pn(x,t), which is then a smoother 

estimate of P(x1t) than P(x,t). 

Thus the series is truncated using a priori knowledge or 

assumptions on the convergence rate of the true density function 

P(x,t). In view of this, it is useful to look into the origin of 

the random components of the coefficients, and in particular, to 

see how their size is affected by the sample size, and how their 

size affects the accuracy of the reconstructed distribution. 

Expansion of Samples from the Gaussian Distribution 

To investigate this point, it is convenient to choose an 

expansion whose coefficients are purely random: the expansion of 

P(x,t) by the Hermite polynomial series (2.4.6) when x(t) is 

a Gaussian (0, 1) random number. Then k
o 
= 1 and all higher 

coefficients should be zero, but in fact have a zero mean random 

component due to the finite sample size N. 

The coefficients k
1 

to k
10 

were computed for samples of 

N = 500 to 10,000 Gaussian random numbers. The root mean square 

values of these coefficients are plotted in Figure 6.3.1 as a 

function of N to a log-log scale. 

Sao 	/000 	2.4000 	Soot 
	10000 

Sample Size N 

Fig. 6.3.l RMS Value of Expansion Coefficients. 
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The slope of the line drawn through the points is -0.65, which 

indicates that the variance of the error in the coefficients is 

proportional to N-1.3.  As Jr(x) is a function with a fixed 

variance, the theory of sampling statistics suggests that the 

variance of kr should be proportional to N-1. The convergence 

of the coefficient error with respect to sample size N that we have 

observed is somewhat higher than the theoretical figure, but it is 

not an inconsistent estimate considering the number of points in 

Figure 6.3.1. 

We also observed that the variance of the coefficients kr 
was independent of r, which is because the variance of Jr

(x) is 

independent of r. This is a result of the scaling of the form 

of Hermite polynomial expansion we have used (see the note following 

equation (2.4.8) - the functions are normalised as in (6.3.4)), which 

also means that the error in the reconstructed distribution Pn(xf t) 

caused by an error in kr, r < n, is independent of r. 

With this assumption, we proceed to look at the error in the 

reconstructed distribution as a function of the sample size N. 

The density P(x,t) was estimated at the abscissae x = - 4.8(0.3)4.8 

by forming the histogram of cell width 0.3 and by filtering with the 

Hermite polynomial series, keeping coefficients up to k10. 

A typical estimate of the Gaussian density is shown in Table 

6.3.1 where N = 2000 data are used. The true density is also given 

in thotable and an error measure, consisting.of the absolute error 

in the ordinates averaged over the 33 abscissae shown, was evaluated. 

For this exaillple, the error in the histogram was .058 and the error 

in P
10(x,t) was .020. In forming 1510

(x,t) we first evaluated 

the mean and variance of the data as 

Mean = -0.013 

Variance = 1.012 

Then the data were normalised to zero mean and unit variance, and 

the Hermite expansion coefficients were found for the normalised 

data as follows: 
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ko 

k1 o k2 kk  
_1 	6  

kr, 	k k10 

     

1.00000 -.00005 -.008 -.024 .009 -.054 .044 -.017 .022 -.004 -.030 

The type of smoothing afforded by the reconstructed distribution 

Plo(x,t) can be judged by the entries in Table 6.3.1. The density 

P10(x,t) has exactly the same first 10 moments as the data, and so 

smoothing is not achieved by lowering the variance of the estimates 

of these moments. The higher moments, however, are altered, by 

limiting the maximum frequency content of Plo(x,t). The highest 

reconstruction function J.10(x) g(x) of (6.3.7) has 11 maxima 

or minima, of which only 7 are of appreciable magnitude, and so the 

function P10(x,t) cannot follow the 33 degrees of freedom of the 

histogram. In this sense, adjacent values of the histogram are 

smoothed*, but in a way which does hot involve any discretization 

of the x variable. 

The error measure was evaluated for the histogram and for 

P10(x,t) for various numbers of data, N = 500 to 10,000, and is 

shown in Figure 6.3.2 as a function of the RMS value of the expan-

sion coefficients. It is noted that a linear relationship exists 

between the size of the expansion coefficients and the error in the 

estimated density P10(x,t), a result which is expected from the 

linear expression (6.3.7) for P10(x,t). The same linear relationship 

holds for the error in the histogram which shows that the error 

in the histogram and the error in P10(x,t) are linearly related, 
by a factor of about 2. 

Another effect observed was that for a fixed N, the error in 

Pn(x,t) was proportional to n 2. This is a consequence of the 
independence of the coefficients kr  and the normalization of the 

expansion functions. Thus adding another term kn  in the expansion 

adds another function which has the same varianceastandis independent 

.....,..•••••••••••auvaay 

The actual smoothing process is more complicated than this, as 
seen from the form of the orthogonal polynomial expansion. It is 
difficult, however, to make a more precise illustrative statement 
than this. 
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of, the previous expansion functions. 

Thus from our exercise of smoothing the density of Gaussian 

random numbers by our orthogonal polynomial series, we have gained 

a feeling for the errors caused in the estimated density by intro-

ducing random components into the coefficients of the expansion 

series. It is clear that the series kr 
should be truncated as 

soon as the mean value of the coefficients reaches zero. This 

point can be determined from an a priori knowledge of the true 

density P(x,t), or by repeating the experiments and noting the 

statistical properties of each coefficient. Also, via Figures 

6.3.1, 2 we have related the error in'the estimated density to the 

number N of data used in the experiment, for a fixed number; of 

expansion coefficients. Further, this error depended on the square 

root of the number of random expansion coefficients used, and as 

long as enough coefficients are used to accurately represent the 

true density, the error should be independent of the shape of the 

true density. These considerations help us to choose the number 

of coefficients n in the expansion, and the number N of data to 

collect in the statistical trials. 

Example of Chapter 2 

To illustrate these methods, we study the example of Chapter 

2. From Section 2.4.4, we recall that the expansion coefficients 

up to k8  were needed to give a good representation of the true 

solution P(x,t), and to be safe we shall choose k10  as our upper 

limit. We decide on a reasonable error limit, say .02, and see from 

Figures 6.3.1, 2 that N = 5000 should estimate the density function 

to this accuracy. 

Figure 6.3.3 shows the results of a typical run, using the 

initial conditions of the example of Figure 2.3.5. The equations 

were simulated by the Runge-Kutta method with a step length of 

At = 0.1, and Figure 6.3.3. gives the estimated solution at t = 

The finite difference solution of Figure 2.3.5 is accurate to better 

than 1%, and is taken as the true solution P(x,t). Also shown in 
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Figure 6.3.3 is the histogram obtained from the 5000 data and 

Ax = 0.3, and the estimate 1510(x1t) of the Hermite polynomial 

expansion. 

It is clearly seen that the estimate is10  (x' 
 t) is much smoother 

and at most points closer to the true solution P(x,t) than the 

histogram. Averaged over the 21 points x = -3.0(0.3)3.0, the 

histogram had an average absolute error of 0.031, while the smoothing 

afforded by the polynomial expansion. reduced the error to 0.014. 

These error figures are consistent with those of Figure 6.3.2, 

and once again we see that the polynomial smoothing cuts the errors 

in the estimated density down by a factor of 2. 

The mean and the variance of the 5000 data are 

Mean = 0.001 

Variance = 1.249 

and the expansion coefficients of the normalised data are 

k1 	k
2 	k 	k 4 	6 k7  k8 	k10 

1.00000 .0006 .00007 .0007 -.105 .007 .066 -.013 -.023 .017 -.001 

Fig. 6.303 Monte Carlo Solution of Fig. 2.3.5 Example. 
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We, of course, know that the true solution has a zero mean and is 

symmetrical, and so we could introduce further smoothing by setting 

the odd coefficients equal to zero. This cannot be done for general 

polynomial expansions (6.3.3), however, as the orthogonal polynomials 

Jr(x) for a general weighting function g(x) do not separate into 

odd and even functions of x as the Hermite polynomials do (c.f. 

equation (2.4.4)). 

We conclude that the smoothing of estimates of density functions 

obtained from simulated data can be usefully achieved by expanding 

the estimated density in orthogonal polynomial expansions, and 

truncating the series. The method relies upon having an a priori 

estimate of the shape (not mean or variance) of the true density 

function so that a quickly convergent orthogonal polynomial expan-

sion can be chosen. This representation of the estimated density 

function has the advantage of using few parameters and the smoothing 

procedure does not alter the lower order moments of the data. The 

price we pay is in extra computing time to evaluate the expansion 

coefficients, and the success of the method may depend on the impor-

tance of computing time (from (6.3.15) we note that the time taken 

to evaluate the first n expansion coefficients is roughly that 

needed to estimate the first n moments of the data ). 
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CHAPTER 7 

CONCLUSIONS  

We have already given summaries at the ends of most sections, 

and in some oases we have pointed out the limitations of the present 

work and indicated the needs for future investigation. In this con-

eluding chapter we review the highlights of the present work and 

indicate the most promising avenues for future work. 

Our work begins with the prediction problem and we attempt to 

obtain numerical estimates of the future statistics of non-linear 

stochastic systems. The direct approach is to use the Fokker-Planck 

equation: a parabolic partial differential equation whose initial 

conditions are the present probability density of the stochastic system 

and whose subsequent time solution gives the future probability density 

of the system. 

In Chapter 2, numerical methods are presented for solving the 

FP equation on a digital computer. The first method was the classi-

cal numerical method of finite differences and the second was an 

integral transform method of some novelty using orthogonal polynomial 

expansions. Although the finite difference method was the better of 

the two methods for general problems, both methods suffered from the 

following limitations: 

(a) The class of stochastic system whose statistics could be predicted 

by these methods is quite restricted. The most severe restriction is 

on system dimensionality, and the solution of problems of even second 

dimension is not a routine matter. The highest dimension problem 

that the finite difference method has been known to solve is a three 

dimension one, and the integral transform method is felt to be imprac-

tical for problems of higher than one dimension. In addition, the 

form of the non-linearity affected the solution, and in general, the 

smoother the non-linearity is, the better the accuracy is that can 

be obtained. 
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(b) In connection with the dimensionality aspect, we can easily reach 

the limit of computer size and speed. For even two dimensional pro-

blems, a computer of large storage capacity and high computing speed 

is needed to obtain useful solution accuracies. Although larger and 
faster computers are becoming more available, this does not speak well 
for the generality of the method. 

(c) The background knowledge which must be gained to use these methods 

oan be quite considerable. To someone whose main speciality is not 

numerical analysis (or applied mathematics), several months of study 

are needed to learn the basic principles of partial differential 

equation solution, and even then the newer methods for two and three 

dimension problems are diffioult to follow. Thus an engineer having 
to estimate statistical behaviour of a system faces a large diver-

sionary study before he can obtain useful results. Again, this is a 

major drawback of a method which hopes to have wide appeal. 

Apart from the research problems in numerical analysis, a useful 

research topic would be to investigate the effect of the reduction of 

system dimensionality on the accuracy of statistical descriptions of 

the system. In general, as the dimension of a system is increased, 

less usefUl information is contained in the behaviour of the each 

additional component of the state vector added, and one intuitively 

feels that all the pertinent information could be summarised in a 

few components. The problem of dimensionality reduction has already 

been studied in the context of multivariable control problems, for the 

problems of choosing control algorithms (particularly optimal control 

ones) are also plagued by the curse of dimensionality. It has been 

found that the deterministic behaviour of some large systems oan be 

well approximated by that of low dimension systems, and we must see 

if the same is true for the statistical behaviour of noisy systems. 

The analysis of Chapter 4. is one step in this direction, for there we 

approximate an n dimension physical process by an n dimension 

diffusion process. But the physical process can sometimes be represented 

as a diffusion process of dimension higher than n (c.f. Section 2.2), 

and the n dimension diffusion process can be considered as a 
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reduced-dimension approximation to the high dimension system. The 

analysis of Section 4.1 then pertains to the statistical accuracy 

of suoh an approximation, and the analysis could be extended to 

pursue this matter. 

In the hopes of relieving some of the limitations described above, 

simulation methods are investigated for studying the statistical 

behaviour of noisy systems. This entails two main theoretical con-

siderations, that of the relation between diffusion processes and the 

solution of parabolic equations, and that of the relation between 

diffusion processes and physically realisable processes. 

In Chapter 3, the first of these questions is considered. We 

detail the connection between the simulation of a diffusion process 

anzi the solution of the process' FP equation, and point out that the 

simulation constitutes a Monte Carlo solution of the FP equation. 

We show that the derivation of the FP equation requires that the 

trajectories of the simulated diffusion process are continuous or are 

conserved in the sense that they do not lgegin or end within the time 

interval of the simulation. We deduce that any parabolic equation 

which can be written in the form of a FP equation has a diffusion 

process associated with it, so that the parabolic equation is the 

FP equation of the diffusion process. Then a Monte Carlo solution 

for such a parabolic equation can be obtained by simulating the 

diffusion process in a simulation with conserved trajectories. 

In general, parabolic equations do not have the form of FP 

equations, but we show that for any given parabolic equation, a FP 

equation can be chosen which is nearest to the given equation. The 

diffusion process associated with the nearest FP equation is called 

the underlying diffUsion process of the given parabolic equation, and 

we show that a Monte Carlo solution of the parabolic equation can be 

obtained by a modified simulation of the underlying diffusion process. 

The modification consists of forcing the density field of simulated 

trajectories to grow and decay by allowing the trajectories to ter-

minate or new ones to begin within the time interval of the simulation. 

This violation of the principle of conservation of trajectories which 
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we had observed when solving FP equations accounts for the differences 

between the general parabolic equation and its nearest FP equation. 

In this way we could solve a general parabolic equation by simulation 

techniques. We show under what conditions the solution of parabolic 

equations remains positive, and we see that the mechanics of the simu-

lation assured positive solutions under these conditions. We point 

out that parabolic equations usually arise in physical situations in 

which a random element of a diffusive character is present, and what we 

are doing in our Monte Carlo solution procedure is simulating the 

diffusion process which is inherent in the situation which the 

parabolic equation describes. We pursue this analogy for the example 

of heat conduction in a solid, and show that the simulated trajectories 

are a specific form of heat energy. We see that the conservation of 

trajectories in the simulation agrees with the conservation of thermal 

energy in the interior of the region where the parabolic equation is 

defined, and we can use the principle of the conservation of heat 

and the 'specification of thermal flux to specify the behaviour of the 

simulated trajectories at boundaries where the parabolic equation is 

not defined. 

We present numerical results which give no indication that the 

solution method has any bias in the steady state, and argue that the 

solution method does not introduce any transient errors into the solu-

tion, apart from the At quantisation necessary on the digital computer. 

We show that the estimated solutions have accuracies agreeing with 

the laws of sampling statistics, and that these laws present the major 

obstacle of the Monte Carlo method. This is that the accuracy of the 

estimated solutions depends on the square root of the number of simulated 

trajectories or trials, and so the limitation of computer size and 

speed restricts the accuracy of solution that can be attained. To this 

extent one of the limitations discussed in connection with the direct 

solution of the FP equation is still present, but the other two limita-

tions concerning system complexity and mathematical background necessary 

are largely removed. We also note that modern hybrid computers to a 

great extent relieve the remaining limitation. 

The future work on this topic should proceed initially along 

experimental lines, preferably with a suitable tool as a hybrid 

computer. We have presented a general theory concerning the Monte 
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Carlo solution of parabolic equations, but have not established the 

practicality of the method. Other investigators, however, have 

established the practicality of Monte Carlo methods, and the points 

we must investigate is where the mechanics of our simulation differ 

from theirs. The difference is in the implementation of boundary con-

ditions and the non-conserved trajectories. It is these points Ahich 

allow our Monte Carlo method to tackle certain parabolic equations 

that the previous Monte Carlo methods could not. 

In Chapter )+, we discuss the relation between diffusion processes 

and processes which are physically realisable (physical proceises). 

The distinction between these two types of process is necessary, as 

diffusion processes are random processes involving the theoretical 

concept of white noise, and as such cannot be exactly duplicated in 

practice. However, as diffusion processes are continuous Markov pro-

cesses (physical processes are not), they have advantages of mathe-

matical convenience which make it desirable to approximate physical 

processes by diffusion processes for analysis purposes. For example, 

we can write down parabolic equations to describe the statistics of 

diffusion processes and extend this concept into a general connection 

between parabolic equations and diffusion processes. Also, in order 

to perform the simulations of diffusion processes required in Chapter 

3, we have to convert them to physical processes so that they can be 

represented on a computer which is a physical device. 

In Section !, el, we investigate the relation between physical and 

diffusion processes by evaluating their incremental statistics. Dif-

fusion processes have increments which are Gaussian in the small, 

and thus their statistics are described by two incremental moments. 

These incremental moments are precisely defined quantities whenthe 

time increment St is set to zero, but for a non-zero t these 

quantities are specified to a first order accuracy (i.e. they are 

given as b(x,t) St 	o( St)). We find that these quantities can 

be evaluated for physical processes to the same  accuracy provided the 

upper frequency of the noise generating the physical process is sub-

stantially higher than the maximum frequency content of the output 
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of the process. In effect, this criterion ensures that the physical 

process has properties which are nearly Markovian, justifying the 

approximation of the physical process by a diffusion process (or vice 

versa). 

Our approach in Section/4.1 is conceptually similar to Stratonovich 

Pal, except that we use a different form of equation to describe the 
physical process which conveniently separates the physical noise into 

a separate factor. In this way, we can characterise the noise process in 

dependent1yofthe physical process equations, which is a convenience 

when evaluating the properties of alternative noise source choices. 

The characterisation we use is that introduced by Clark, and our 

analysis clearly shows that this characterisation contains exactly 

the minimum number of parameters needed to specify the statistics of 

the physical process. This chargeterisation and the separation of 

the noise factor allow us to consider non-stationary noise sources 

which Stratonovich does not consider, and our analysis shows the need 

of the criterion on the noise and process upper frexpencies more clearly 

than Stratonovich's. 

In partioular, we emphasise the convenience of choosing appro-

ximating diffusion processes for given physical processes by evaluating 

the approximate incremental moments of the physical process and con-

structing the diffusion which has the same moments. The effectiveness 

of the method is illustrated in Appendix D,  where we analyse the 

transient statistical properties of a filtered pseudo random binary 

sequence (PRBS). This example illustrates the ease of choosing the 

diffusion approximation by matching the finite increments, and illu-

strates the power of analysis (particularly transient) afforded by 

the Markov property of the diffusion process (here we use the stochastic 

calculus, outlined in Appendix A). The example illustrates the accu-

racy of using the statistics of the diffusion process to approximate 

those of the physical process, particularly as a function of the ratio 

of the upper frequencies of the noise (the FRES) and the process 

(the output of the filter). 

In Section 4..l, we considered a physical process generated by 

a physical noise source which was characterised by a set of parameters, 

and that provided the upper frequency of the noise was ztufficiently 
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high, the physical process could be approximated by an equivalent 

diffusion process. In Section 4.2, we consider a limiting operation 

on the physical process whereby the upper frequency of the physical 

noise is extended to infinity in such a way as to preserve the 

characteristic parameters of the noise. We then find that the. limiting 

physical process, assuming it is a Markov process, converges in 

distribution to a diffusion process which is the same diffusion process 

as we had chosen in Section 4.1 to approximate the statistics of the 

physical process. This means that the method of choosing approximating 

diffusion processes of Section 4.1 is consistent in the sense that 

the error in approximating the statistics of the physical process 

goes to zero as the main error parameter (the ratio of the upper 

frequencies of the noise and the process) reaches its limit (infinity). 
We show that there are various ways of writing equations for dif-

fusion processes which depend on the definition of white noise and 

on the interpretation of the stochastic integral. We point out that 

these various interpretations of stochastic equations has led to 

ambiguities and contradictions in the recent literature, particularly 

when writing Fokker-Planck equations for processes involving white 

noise. The ambiguity has usually centred around whether the 

white noise equations given are to be interpreted as Ito stochastic 

equations, or limiting forms of physically realisable equations (for 

example, Stratonovich equations). In Section 4.3, we show what form 

this ambiguity takes when dealing with linear systems with random 

coefficients, and show that the ambiguity can be removed by specifying 

the (limiting) physical noise by its complete set of characteristic 

parameters as well as specifying the type of stochastic equation we 

use. 

In Sections 4.1, 2, we discuss the approximate equivalence of 

diffusion and physical processes in terms of their statistical pro- 

perties. A major application of this theory is in simulation problems, 

where we hope to duplicate on a computer the statistical properties 

of a particular random system. But a computer is a physical device 

and can only duplicate physical processes, and so if we wish to simulate 

a diffusion process on a computer (for example, to apply the Monte 

Carlo methods of Chapter 3), we must first convert it to a physical 



-324- 

process with equivalent statistical properties. In Section 4.4, 
we apply the results of Section 4.1 to this problem and show how, 

given a particular diffusion process to simulate, we can choose a 

physical process which is suitable for implementing on an analogue 

or digital computer. We see that this is essentially a problem of 

choosing a suitable noise source, scaling it properly, and then adding 

an appropriate bias term to assur3 the correct statistical properties. 

To do this, we need only evaluate the characteristic parameters of 

the noise source we have chosen. 

In Section 4.51  we show how a given physical process can be 
simulated on a computer. If the given physical process cannot be 

represented directly on the computer itself, the results of Section 

4.1 can be used to choose another physical process which has approximately 

the same statistical properties as the given process. Again, we see 

that we must only know the characteristic parameters of the noise 

sources concerned. 

Future work based on Chapter 4 should aim towards cleaning up 
the analysis of Section 4.1 in the hope of making more precise state- 

ments on the statistical error involved in approximating one process 

by another. Indeed, even the concepts of statistical error and 

statistical convergence are not well established, and it is not clear 

what norms or criterion we should apply when stating that "one process 

statistically approximates another". The error analysis of Section 

4.1 is complicated by the fact that the derivation which matches the 

processes' statistics manipulates the incremental statistics of the 

process, while we are usually interested in the error in the statis- 

tics of the process itself, as opposed to its increments. Stratonovich's 

analysis suffers from this same problem, but Clark's analysis [22] is 

more direct as it does discuss the error in the process itself (even 

his analysis, though, does not bound the error, but only gives an 

order of convergence). A useful addition to Clark's work would be to 

extend it to the non-stationary and non-Gaussian physical processes 

which are considered in Chapter 4 of this thesis. 
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In Chapters  5 and 6, we present some of the practical aspects 

involved in simulating diffusion processes on analogue and digital 

computers. This is equivalent to the problem of building a physical 

system which has been derived and specified in the stochastic calculus, 

and we show how to build an optimal non-linear filter which is an 

example of some of•the interesting results of modern stochastic control 

theory, 

Chapter 5 concentrates on analogue computing, and we see that the 

main problem is solved when we choose an appropriate noise source and 

evaluate its characteristic parameters. Two common noise sources are 

discussed, and we give practical methods of evaluating their character-

istic parameters. In addition, some experimental results illustrate 

that significant errors can occur in simulations if the results of 

Chapter 4 are not followed. In particular, we show that the performance 

of the non-linear filter can be considerably below the optimum if the 

filter is not built correctly. 

Chapter 6 pertains to digital computing, and concentrates on the 

choice of numerical formula used to solve the ordinary differential 

equation (o.d.e.) describing the physical process which approximates 

the given diffusion process. We find that the particular o.d.e. used 

to simulate diffusion processes has a Taylor series incremental expan-

sion which is unusual in its dependence on iNt, the digital time 

increment. This alters the convergence rates of the various numerical 

formulae used to solve o.d.e.'s, and we explicitly give the new con-

vergence rates. We reason that single step formulae must be used to 

simulate diffusion processes, and some experimental results with the 

Euler and Runge -EUtta formulae confirm the convergence rates mentioned 

above. 

Previous authors have only used the Euler formula to simulate 

diffusion processes, and we use the results of Chapter 4 to show that 

higher order formulae can be used as well. We give experimental evidence 

to show that the higher order formulae can simulate diffusion processes 

more efficiently than the Eupler formula, except when the diffusion 

process is heavily dominated by the random terms. 
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The convergence rate discussed above refers to the convergence 

of the digital formulae to the true solution of the o.d.e., as opposed 

to the convergence of the statistical approximation presented in 

Chapter 4. In Section 6.2.1, we do discuss this latter convergence, 

but once again, we cannot make statements of any certainty. We give 

various arguments which suggest that the convergence in distribution 

is proportional to the inverse of the upper frequency of the physical 

noise, and give limited experimental evidence to confirm this. As 

mentioned earlier, much more theoretical as well as experimental 

work is needed to investigate this convergence. 

In general, the experimental results of Chapters 5 and 6 have 
confirmed the theory of Chapter 4 with a certain degree of confidence 

(the most certain statement we can make is that the results introduce 

no statistical evidence that the theory of Chapter 4 is not correct). 

This experimental work should be continued, particulary with other 

examples, to establish the theory with a higher degree of confidence. 

A statistical analysis computer such as a special purpose hybrid 
computer would be particularly useful in this respect. 



- 327 - 
APPENDIX A 

THE STOCHASTIC CALCULUS 

' Al. Stochastic Integrals and Integral Equations 

The normal rules of calculus, based on the Riemann or Stieltjes 

concept of the integral, are defined in such a way that they can 

treat functions which satisfy certain smoothness or boundedness 

conditions. When we wish to treat functions which are not smooth, 

that is, are not differentiable or are of unbounded variation, then 

we must use rules of calculus based on different definitions. This 

new calculus has been called the stochastic calculus, and has been 

discussed by (among others) Bernstein, Doob, Ito and Wiener. The 

most complete accounts of the stochastic calculus appear in the 

books by Doob [20] and Skorokhod [73], although their arguments are 

usually confined to scalar examples. 

The rules of the stochastic calculus, and a comparison with 

the ordinary calculus, will be discussed in terms of the integral 

or integral equation. Other rules, such as differentiation and the 

manipulation of differential, come directly from the concept of 

the integral, and will be mentioned later. The rules of the 

stochastic calculus, as discussed by the authors above, will be 

referred to as the Ito calculus. Some new rules for treating 

stochastic equations are due to Stratonovich [50]. As the latter 

rules have some interesting advantages in connection with the 

topics of this thesis, they will also be discussed below, and will 

be referred to as the Stratonovich calculus. 
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A.1.1 The Ito Stochastic Integral 

Consider the ordinary integral (for the time being, in the 

sdalar case only) 

t 

X(t) = X(o) 	f F(s) y(s) ds, 	(A1) 
0 

in which the integrand F(t) y(t) is continuous with a bounded 

derivative (that is, the integrand satisfies normal Lipschitz 

conditions. The following argument can be extended to functions 

F(t) y(t) with a finite (or even countable) number of discon-

tinuities, as long as the functions remain bounded.) We will 

associate the function y(t) with a band limited smooth physical 

noise process, as discussed in Section 2.2. 

The 1iemann definition of the definite integral of such smooth 

functions is as follows [42, p.101]: 

Let the interval (o, t) be divided into n intervals by 

inserting the points of subdivision ti  in such a way that 

0 < t1 
	

to-2< tn.1  < t. 
	(A2) 

Let 
 

ei  . be any point in the interval of length At. = t. 	t. . I-1 
Then 

X(t) = X(o) 4.  l imit n-)-ock 
1=1 

F(01.) y(E0i) Ati 	(A3) 
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provided that the limit assures that the maximum Ati 
tends to 

zero. Clearly, setting ei  equal to ti-1  or ti  makes the sum 

in (A3) analogous to the simple forward or backward difference 

formulae for solving differential equations, and the Riemann 

definition shows that forward and backward difference methods give 

the same results in the limit for arguments which are smooth 

functions. 

Now consider the replacement of the physical noise y(t) 

of (Al) by white noise. White noise is defined here* as the 

formal derivative of the Wiener process w(t), and as such does not 

exist physically as it is everywhere infinite (or, w(t) is of 

( unbounded variation). As y(t) = dw dtt) is now always infinite, 

the concept of the Riemann integral is not valid, and we must define 

a new integral to deal with such functions. This definition of the 

stochastic integral has been given by Ito [43] and a presentation 

of its properties is given in Doob [20, Ch. 9]. We will give some 

pertinent properties below. 

Let w(t) be the unit parameter Wiener process such that 

w(o) = 0, and for any t > s, 

E [ w(t) 	w(s) ] = 0, 	(A4) 

E [ (w(t) 	w(s))2  ] = t - s, 	(A5) 

* In Section 4.2 we shall allow a more general definition 
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and the expected value of the product of any non-overlapping incre- 

ments is zero (that is, the Wiener process has infinitely divisible 

independent increments). The Wiener process is continuous with 

probability one, but is not differentiable, and so we will prefer 

to write the stochastic integral analogous to (A1) in Stieltjes 

form. Let the interval (o, t) have the partition (A2). Then 

the Ito stochastic integral is defined as (with x(o) = 0) 

t 

x(t) = f F(s) dw(s) = l.i.m. 
0 

F(ti_i ) pd(ti) 	w(ti-1)] 	(A6) 

where, 

as n tends to infinity the maximum ©ti  4,  0.* Note that the 

summation formula corresponds to that of the forward differences 

mentioned earlier in connection with the Riemann integral. The 

d. of (A6) is to be interpreted as a stochastic increment in the 

Ito sense (see the discussion on differential equations later). 

The stochastic integral (A6) has the mean and mean square 

t 

,E [x(t)] 	= E [ f F(s) dw(s) ] = 0, 	(A7) 
0 

* l.i.m. or "limit in the mean" or "mean square (111.s4 convergence" 

is one of the strongest of the concepts of stochastic convergence 

[44, p.136 or 45, p.598]. If xn  is a stochastic process and 

l.i.m. xn 
= 

11-4- co 
x then 

n-f- co limit E [ (xn  x)2] = 0 	and 

E 	(xn  - xm)2] < µ for all n, m > no, 

where n0  ( to exists for any arbitrarily small but positive 
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t 

E [x2(t)] = E [ I F(s) dw(s) 32  = f F2(s) ds. 	(A8) 

The integral on the far right hand side of (A8) is a normal 

Riemann integral, and its existence is a necessary and sufficient 

condition for the existence of the stochastic integral (A6). 

The stochastic integral (A6) is usually presented in the 

more general form where F(t) is allowed to be a random function 

F(w, t). Then the definition (A6) becomes 

x(t) = F(w,$)dw(s) = l.i.m. 	 F(w(t.1-1 )lti-1 )[w(t.) - w(ti-1)] 
0 

(A6a) 

The mean value (A7) is unchanged, but the mean square (A8) becomes 

t 

E [x2(t)] = f E [F2(w, s as. 	 (A8a) 
0 

The properties (A7, A8, A8a) are a direct consequence of the 

forward differences used in the definition (A6, A6a) involving a 

limiting operation on a finite difference representation of the 

integrand. From (A6a), a typical term in the limiting sum for 

E [x(t)] is E [F(w(ti...1), ti-1)[w(ti) - w(ti_1)]]. But 

F(w(ti_1), 
ti-1)  depends only on the past w(s), 	ti_i, and 

so is independent of the forward increment [w(ti) w(ti_1)]. 

Further, as w(t) is an infinitely divisible random process [20], 

then this independence is preserved even as the limit of the 

maximum At 4. 0 is taken. Then as the Aw(ti) inkrements 

(A4) have zero mean, (A7) follows. 
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Similarly, a typical term in the product sum for E[x2(t)] is 

E [F(w(t. 1 	)[w(t.) 	w(t. )]F(w(t. ),t3-1 	ti_i )[w(t.) - w( 	)]]. i-1 	 J-1   

Again, owing to the independence of increments of w(t), this term 

only has a non-zero contribution for i = j, in which case, from 

(A5), the squared Aw(ti) increment can be replaced by its mean 

valueAt..Then the limiting sum becomes the normal Riemann 

integral (A8) or (A8a). 

In a similar fashion, we can define the Ito stochastic integral 

equation 

t 

x(t) = f F(x(s),$)dw(s) = 1.i.m. 
0 

F(x(ti-11-1)[w(t.) w(ti..1)], 

(A6b) 

where the sum on the right hand side is the limiting forward 

difference sequence as before, and the integral equation can be 

solved by the method of Picard iterations.* This process x(t) is 

still a martingale, that is E [x(t)] = 0, but the expression 

for the mean square 

t 

E [x2(t)] = f E [72(x, s)] ds 	(A8b) 

is itself an integral equation and cannot be readily evaluated in 

general. 

•• 

* See [20, p.279] 
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^,,'.2. 

 

The Generalization of the Stochastic Integral 

- The Stratonovich Form  

Noting that the definition of the stochastic integral using 

the forward difference sum (A6) is rather arbitrary, it is possible 

to consider other definitions. Astrom [46] and Gray and Caughey 

[41] have suggested a generalized stochastic integral defined by 

t 

x(t) . f F(w(s), s) dw(s) 
0 

= 1.i.m. >  F(Ow(ti_i) + [1 - O]w(ti),ti_igw(ti) - 

(A9) 

where e = [0, 1]. The case 0 = 1 is the previous forward differ-

ence definition (A6) of the Ito stochastic integral, and the case 

0 = 0 is a backward difference definition, with other values of 

0 giving linear combinations of these extreme definitions. We 

will see that, unlike the Riemann integral, the value of the 

stochastic integral (A9) depends on the value of e. 

Of these definitions, the Lost useful is that of the central 

difference 0 = F, for it gives the integral the same expected 

value as the corresponding Ricmann integral. This definition has 

been discussed by Stratonovich [50] and thus we will call 

t 

x(t) = 	F(w(s), s) aw(s) 

  

w(t. )1-w(ti) 
F( 	:1'1

2 	, ti) [w(ti) 	w(ti_1)] 	(A10) = l.i.m. 
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the Stratonovich stochastic integral, where a. of (A10) is to be 

distinguished from d. of (A6) and is a stochastic increment in 

the Stratonovich sense. 

The Stratonovich integral has the same mean square value (A8a) 

as the Ito integral, but it is no longer a martingale as 

E[x(t)] = 	F(w(s),$)aw(s)] = f 	(w(s),$)]ds. 	(All) 

This result can be seen by expanding a typical term in the sum 

(A10) about w(ti-1)' 
and we have 

w(t. ) + w(ti) 
F( 	1-1 2 	, ti) Aw(ti) 

aF 	At. 
= F(w(t

1. 	),t. 	)3Aw(t.)-1-0(Ati). -1 1 	1 •?ild 	1-1 1-1 	1 2 	i-1 	1 

The first term on the right hand side is the same term as in the Ito 

definition and has a zero expected value, but the second term has 

an expected value 

E 

which leads to the Riemann integral on the right hand side of (A11). 

Analogous to (A6b) we can define the Stratonovich integral equation 

t 

x(t) 	f F(x(s), s) aw(s), 	 (A10a) 
0 

which has the same mean square value (A8b) as the Ito integral 



- 335 - 
equation, but a mean value of 

E[X(t)] = 4 sr E{F 	(x(s), a)] CIS. 
0 

A.1.3 Vector Stochastic Integral Equations 

The definition of the Ito and Stratonovich integral equations 

(A6b) and (A10a) as limits of forward and central differences 

respectively extend directly to the vector case where 

x(t) 	is an n-vector, 

F(x(t), t) is an n x m coefficient matrix 

and w(t) 	is the m-vector unit parameter independent Wiener 

process, with w(o) = 0 and for t 	s, t' > s', 

E[wi(t) 	wj(s)] = 0, 	all i, j, 	(A1+0 

ERwi(t) wi(s))(wi(t1) wi(s1))] 

= Minimum [(t' 	s), (t - s')]* 	i = j, 

= 0, 	 (A5') 

The Ito integral equation for x(t) 

t 

x(t) = I F(x(s), s) dw(s), 
0 

has a zero mean value (that is, x(t) is a martingale) and a 

* Either of these arguments is set to zero if it is negative. 
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mean square value 

t 

E[x(t)x(t)T] = f t[FFT(x(s), s)] ds. 
0 

(A8'b) 

The analogous Stratonovich stochastic integral equation has 

this same mean square value, but x(t) no longer a martingale, as 

it has the mean value 

E[x(t)] 

t 

E[ f vx(s) 	aw(s)] 
0 

t 

f Er 
0 k,l 

(s)] ds, 	(Alfa) 

where Otki(s) is the n-vector with the i:th component 

Fik(x(s) s) ik  
Ix 	Fj1(x(s),$) . (All'b) 

Thus the normal integral 

f 
0 ko. 

Ski(s) ds 

is the difference in bias between apparently similar Ito and 

Stratonovich integral equations, or from another viewpoint, this 

integral will be the difference between Ito and Stratonovich 

integral equations for the same diffusion process x(t). This 

integral must be subtracted from the Ito integral equation to turn it 

into a Stratonovich one, or added to a Stratonovich integral equation 

to turn it into an Ito equation for the same process. 
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A.1.4 Example  

A simple example will illustrate that the rules of the 

Stratonovich stochastic calculus resemble those of the ordinary 

calculus, but those of the Ito stochastic calculus do not. 

Consider the Ito stochastic integral 

t 

x(t) 	f w(s) dw(s), 
0 

which, from (A7) has a zero mean value. In comparison, consider 

the Stratonovich stochastic integral 

t 

x(t) 	w(s) dw(s), 

which, from (A11) has a mean value of it 

Now if w(s) were a smooth function so that we could interpret 

either of these integrals as a normal integral (in Stieltjes form), 

then we would have 

x(t) = . 'w2(t), 

which from the property (A5) of the Wiener process has the mean 

value It. The Stratonovich form of the stochastic integral has 

this same mean value, but the Ito form does not. 
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A2. Stochastic Differentials and Differential Equations 

[20, Ch.6, Sect. 3; 49, Appendix I] 

A.2.1 The Ito Stochastic Differential Equation 

If we allow F(s) in (A1) to be also a function of X(s), 

then differentiation of the resulting integral equation leads to 

the ordinary differential equation 

• • 
X(t) = F (X(t), t) y(t). 	(Al2) 

As before, the same equation with y(t) replaced by white noise 

is not meaningful, as y(t), and hence X(t), would be everywhere 

infinite. However, we gave the resulting equation a meaningful 

interpretation as a stochastic integral equation (A6b). As in most 

cases, though, it is more convenient to consider differential 

instead of integral equations, we will write the stochastic equation 

(A6b) in symbolic form as 

dx(t) = F (x(t), 	dw(t). 	(A13) 

We will discuss the vector case, where w(t) is an m vector 

of independent unit parameter Wiener processes (A4', A5'), x(t) 

is an n vector diffusion process, and F(x(t), t) is an n x m 

coefficient matrix. We will include a drift term f(x(t), t)dt 

in (A13), although this term contributes no unusual properties. 

Then (A13) becomes the Ito stochastic differential equation [47, 48] 
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dx(t) = f(x(t), t)dt + F(x(t), t) dw(t). 	(A14) 

the d. operator in equation (A14) is an Ito stochastic differen-

tial, and is different from the operator with the same symbol in 

the ordinary equation (Al2). The equation (A14) cannot be divided,  
.1. 

by dt as dw(t) is 0(dt2), and thus the equation does not specify 

the value of the time derivative of x(t). Loosely speaking, 

equation (A14) gives the size of the deterministic and random con-

tributions to x(t + dt) - x(t) during a small time increment dt. 

The equation (A14) has a unique solution x(t) which is a con-

tinuous diffusion process provided f(x(t), t) and F(x(t), t) 

are bounded functions of t and satisfy Lipschitz conditions with 

respect to x(t). 

The diffusion process x(t) has the local properties 

t+At 

E [Ax(t) I x(t)1 = f f(x(s), s)ds + o(At312 ), 	(A15) 
t 

t+At 

and E [Ax(t) Ax(t)T  I x(t)] = f F FT(x(s),$)ds + 0(At2 ), (A16) 
t 

where A is a forward difference operator. 

These local properties are more commonly expressed in their 

limiting form as the first and second incremental moments of the 

diffusion process x(t): 

b(x, t) = 	ot 	E [Ax(t) 	x(t)] = f(x(t), t), 	(A17) 
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a(x,t) = lAit.mi(t) 	
r 

6i ELAXWAX(01 x(t)] = F F
T
(x(t),t). (A18) 

These first and second incremental moments form a unique des-

cription of the diffusion procoss x(t). That higher incremental 

moments are zero assures the continuity of the diffusion process, 

and that a(x, t) of (A18) is not zero assures that x(t) is a 

Markov process. 

A.2.2 The Stratonovich Stochastic Differential Equation 

In a similar fashion, the Stratonovich stochastic integral 

equation (A10a) can be written in symbolic form as the Stratonovich 

stochastic differential equation 

ax(t) = g(x(t),t)dt F(x(t),t)aw(t). 	(A19) 

We have included the drift term g(x(t),t)dt and will consider the 

vector case as in (A14). As we have kept the same noise coefficient 

matrix F(x(t),t) as in (A14), the diffusion process x(t) des-

cribed by the Stratonovich equation (A19) shares the same second 

incremental moment (A18) with the Ito equation (A14), but has the 

different first incremental moment 

m 

b(x, 	= g(x(t), t) + 	Q(t), 	(A20) 
k71 

where Q(t) is the n vector given earlier (A11'b). Thus if 



- 341 - 

the Ito equation (A14) and the Stratonovich equation (A19) are to 

define the same diffusion process, we must have 

f(x(t), t) = g(x(t), t)+ * k 
	

Q(t). 	(A21) 
,1 -- 

Thus  the quantity 

Q(t) dt 	(A22) 
kll 

can be regarded as a conversion term which can be added to the 

Stratonovich equation (A19) to turn it into an Ito equation for the 

same diffusion process, or subtracted from the Ito equation (A14) 

to turn it into a Stratonovich equation for the same process. In 

this thesis, the quantity (A22) is often called the bias term, as 

it represents the relative bias in the drift terms of equivalent 

Ito and Stratonovich equations. 

A.2.3 Example  

The following scalar example [49] will illustrate the differ- 

ing rules of the Ito and Stratonovich oalculus in differential 

form. 

Consider the diffusion process x(t) given by 

x(t) = ew(t), 	 (A23) 
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where w(t) is a scalar unit parameter Wiener proCess (A4, A5). 

What is the Ito stochastic differential equation for x(t)? 

Remembering from (A6) that the Ito calculus is based on the forward 

difference operator, we can in';erpret the Ito stochastic increment 

dx(t) as 

dx(t) = e w(t + dt) 	w(t) .. e 

where ew(t + dt) = e 
w(t) + dw(t) 

Then 	dx(t) = ew(t)[edw(t) 1] 

w(t)r = e 	Ldw(t) + (dw(t))
2 	(dw(t))3  

2 	+ 	6 	. • . • ]. (A24) 

Taking the conditional expectation of both sides we have 

E[dx(t) x(t)] = x(t)[i dt + O(dt2)], 

and so the first incremental moment (A17) of x(t) is 

b(x, t) = 	x(t). 

Similarly from (A24), 

(A25) 

(dx(t)2  = x2(t)[(dw(t))2  + (dw(t))3  + 	], 

and 
	

Ei(dx(t))21 x(t)] = x2(t)[dt + 0(dt2)]. 

Thus the second incremental moment (A18) of x(t) is 

a(x, 	= x2(t). 	(A26) 
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Then by comparison with (A14), (A17) and (A18), we can write 

down the Ito stochastic differential equation for x(t) as 

dx(t) = "ix(t) dt + x(t) dw(t). 	(A27) 

Paralleling this derivation, we see from (A10) that the 

Stratonovich increment ax(t) can be interpreted as a central 

difference increment, and so from (A23) we have 

ax
(t)= e

w(t + idt) 
- e

w(t idt) 

and as 

aw(t) = w(t + idt) w(t idt), 

we have 

ax(t) = 
ew(t - idt) + aw(t) 	eirt(t idt) 

ew(t idt)[aw(t)  (aw(t)) =  
2 

+ 
(aw
-- ) 

(t 
- 17--

)  
- 	]. 

Now we can write 

ew(t iat) = ew(t) 	w(t) 
- 7 e 	aw(t) + 0(w(t))2, 

and so we have 

ax(t) = (ew(t)  - 'iew(t)  aw(t)][aw(t) + (awr2  ] + 0(aw(t))3, 

= ew(t)  aw(t) + 0(aw(t))3. 
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Then, once again passing to the limit via the system's incremental 

moments (A20), (A18), we arrive at the Stratonovich stochastic 

differential equation for x(t) 

ax(t) = x(t) aw(t). 	(A28) 

As F(x(t), t) = x(t) in this case, the scalar a(t) = x(0, 

and the process x(t) of equation (A28) has the first incremental 

moment (A20) 

b(x, t) = 	x(t), 	(A29) 

and from (A18), the second incremental moment is 

a(x, t) = x2(t). 	(A30) 

Then by comparing incremental moments (A29, 30) with (A25, 26), we 

see that equations (A27) and (A28) represent the same diffusion 

process. We could, of course, have written down (A28) from (A27) 

by simple reference to the conversion term (A21, 22). 

Note that if (A27) and (A28) were to be considered as ordinary 

differential equations (after dividing by dt) and integrated by 

the normal rules of calculus, the Ito equation (A27) would lead to 

the wrong solution 

x(t) = eit + w(t), 

while the Stratonovich equation (A28) leads to the correct solution 
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x(t) = ew(t). 

This example again illustrates that Stratonovich equations can 

be manipulated according to the rules of the calculus of smooth 

functions, while Ito equations cannot be handled by these rules 

[50]. However, the Ito form has the advantage that a system's 

incremental moments are expressed explicitly in terms of the co-

efficients of the differential or integral equation, and so we 

will usually prefer to use the Ito form of stochastic equations. 
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APPENDIX B 

THE NORliALIZED FP EQUATION 

(see Section 2.4.4) 

Consider the scalar stochastic differential equation 

dx(t) = b(x, t)dt + F(x, 	dw(t) 	(B1) 

where a(x, t) = F2(x, t), and b(x, t) and a(x, t) are the first 

and second incremental moments of the diffusion process (B1). 

Let m(t) = E [x(t)] 	 (b2) 

then 	dm(t) = d E [x(t)] = E [dx(t)] 

E [b(x, t)] dt. 	(B3) 

Thus the differential equation for m(t) is 

it(t) = E [b(x, t)]. 	 (B4) 

Let v(t) = E [x2(t)]. 	 (B5)  

Then 	dv(t) = d E [x2(t)], 

= E [d(x2(t))], 	 (B6) 

= E 	(x2(t)) b(x, t)] dt 

2 
+ z E [ ("••-• (x2(0) a(x, 	dt, 	(B7) 

2 E [x b(x, 	dt + E [a(x, t)] dt. 	(B8) 
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Thus the differential equation for v(t) is 

v(t) = 2 E [x b(x, 	+ E [a(x, t)]. 	(B9) 

For a discussion of the rules of the Ito stochastic calculus 

which lead to the formulae (B3) and (B7), the reader is referred 

to Appendix A, or more specifically to [74]. 

Let cr(t), the standard deviation of x(t), be defined as 

Cr(t) = Ev(t) 	m2(t)] 	 (B10) 

If we assume the variance cr2(t) is never zero, we can define 

the normalized or standardized variable y(t) by the transformation 

Y(t) _ aSLL;ati cr t) 	• (B11) 

We will derive the stochastic differential equation for 

y(t). Noting 

x(t) = 0-(t) y(t) + m(t), 	 (B12) 

we have (dropping the t parameter) 

dx = 40-dy + y der + dm, 	(B13) 

as C(t) has no dispersion. Thus 

dy 	= -1 L  r dx y d6 - dm]. 	 (Bik) 

From (B10) we have 

dor = i4Y-1  [dv - 2 mdm], 	 (B15) 



and so 

-1 dy = cr L r b(x, t) dt + F(x, t) dw 

y(v - 2 m M) icr-1  dt 	M dt]. 	(B16) 

Now if we assume m, v,cr, ti, v are known functions of time (in 

reality they must be obtained simultaneously with the statistics 

of y(t)) then we can write the first and second incremental moments 

of the diffusion process (B16) as 

b(y, t) = qi  b(.7y + m,t) + q2  y + 
	

(B17) 

a(y, t) = q12a(ay + m,t), 	 (918) 

where b(x, t) = b((ry + m,t) is the first incremental moment of 

the x(t) process (B1), and a(x, 	= a('ry + m,t) is the second. 

The quantities q1, q2  and q3  are the time functions 

q1(t) = 6-1(t), 	 (B19a) 

q2(t) = 	0:-2(t) [Ii(t) - 2 m(t) 1(t)], 	(B19b) 

and 	q
3
(t) = - cr-1(t) Mt). 	 (B19c) 

It is noted that b and a are polynomials in y if b and a 

were polynomials in x (and of equal degree in y). 

Let Q(y, t) be the density function of the normalized 

variable y(t). As y(t) is normalized, Q(y, t) will have a 

concise representation in the Hermite polynomial expansion 

Q(y, t) 	cr(t) Hr(y) G(y). 	(B20) 
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(gy, t) obeys the FP equation (2'.4.41) associated with the incre-

mental moments (B17, 18), and it will be convenient to obtain a 

numerical solution for Q(y, t) by the Hermite transform method of 

Section 2.4.3. 

Using the parameters values b = b
3 
x3  and a = ao and 

noting that 

and 

1;b 

Eic'r = 3  ql 
b3ry 

2 
e 

737. =2 
Oly = 0, 

we have from (2.4.29) 

• c r  Hr  G = - L r 3 q b
3 

(wy + m)2  + q
2 r 

c r  Hr  G 

[ b
3(TY M)3 + q2y c13 

c H G r r+1 

2 q1  ao 	crHr+2G.  (B21) 

3b3 y2 
 6b 

3  
(rimy - 3b

3
m2 - q2] >  crHrG 

rbr2 3 7"- y + 3b3crmy2  + (3b3
m2 + q2)y + gib?3 + q3] 	c rHr+1G  r 

.1 
2 c112 ao crHr+2G.  r 

Using the relations (2.4.26j) for 
Y811r(Y)  and collecting terms of 

equal H index together, we have 

. 
cr  Hr 

 G = [-3b 4T2r(r-1) + (r+1)r(r-1)1y2] 	crHr-2G 

m)2 	
q2, 

r 
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+ (-6mbr + (r+1)r3b3ma] > crHr -1G  

r + L-3b
3
T
2  (2r+1) 3b3m

2 - q2 + 3(r+1)2b3T2  + (r+1)(3b3m
2 + q2)j/r  c HG r r 

▪ [,-6mb
3
or+ (2r+3)3b

3
mar+ q1b3m3  + q3] >crHr+1

G 
r 

+ [-3b3T2 
 + 3(r+2)b

3
a2  + 3h3 	' m2  + a + ia1  2a 

crHr+2G  

+ [3133ma] > rHr+3G r 

[ b342] >__ crHr+4G. (B22)  r 

Multiplying by (s!)-1  Hs(y) and integrating over the infinite 

y range, we use the orthogonality relations (2.4.2) to eliminate H 

and G from (B22), and obtain the simultaneous non-linear equations 

for the coefficients cs(09 

as 	= f-3(s+2)(s+1)b <r2 	(s+3)(s+2) (s+1)b 7 2 ] c 
3 	3 	s+2 

+ [-15(s+1)b3m0-  + 3(s+2)(s+1) b3m0.] owl  

• [-3(2s+1)bf2  - 3b3m2 
q2  3(s+1)21)3452 + (s+1)(3b3m2  + q2)] cs 

+ [-6b3mT+ 3(2s+1)b3mdr+ q1b3m3  + q3] cs-1 

+ E-3b3a2  + 3sb3c2  + 3b3m2 + q2  +2 q1
2  aoj cs-2 

+ [3b
3
mA c

s-3 
+ rb34'] cs-4 	9 	S = Oy 1, 2 ..., (B23) 
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remembering that these ci  whose indices are negative or above the 

truncation point are set to zero. These equations must be solved 

simultaneously with those for m(t) and v(t), (B4) and (B9). 

The latter equations can be solved numerically by using the expansion 

for P(x, t) and Hermite quadrature. From (B4) we have 

m(t) = f b(x, t) P(x, t) dx. 	(B24) 
- co 

Now P(x, t) can be written as 

P(x, t) = ct -1(t) Q 
(X 	111 
k 	 , 4) (B25)  

q--1(t) 	c 
r  Hr 	cr (L=-11 ) G(Ii-zja). 

r 
(B26)  

  

CD 

f 	b(x, °7 -1(t)c r(t)Hr 
 (LIJR)G(&=.2) dx, 

.ff 	o- 
-a) 

Thus 	th(t) 

 

	 f b(cry + m, t)ar(t)Hr(y)G(y) dy, 
r 

(327) 

as dx = a- dy. OT(t) and m(t) are constant during the integral.) 

Now (827) is in the form (2.4.20) for Hermite quadrature and so 

N  

= 	(210 2  > cr(t) > 	h
s[b(17ys + m, t)H r (ys  )]. 	(B28) 

From (B9) we have 

CD 	 a) 

“t) 	21kbk, t)P(x, t) tilt + 1 a(x, t)P(x, t) dx, 
.»di) 

r 	s=1 



cr(t) >  h s  b3  (orT(t)ys + m(t))3Hr  (ys  ), 

hs[2b3(cr(t)ys+m(t))4+ao]Hr(ys), 

6(0 = (2n)i  

ir(t) = or(t) 

s=1 

s= 

352 - CC 
C r(t) f [2xb(x, t) + a(x, (:—.11 )G( 3-c:12-)q4-1  dx,. 

r 4r 
-co 

co 

cr(t) 	D(Ty + m)b(lry + m, t) + a(ay + m, t)]Hr(y)G(y) dy, 
-co • 

= (21r) 

 

c
r
(t) 	 hs[2(ry

s
+m)b(ry

s
+m,t) + a(Ty

s
+m1t)]Hr(ys) 

8=1 

  

(B29) 

Now, substituting in the parameters of our example, b(x, t) = b3x
3 

and a(x, 	= a
o 

we have the equations 

.and 

T(t) = .[v(t) 	m2(t)]k 	 (B30) 
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APPENDIX C 

Calculation of Flux Hitting Boundary in Heat Conduction Problem 

[Section 3.2.5] 

Consider a simulation of the heat conduction equation with 

the parameters of Case III, equation (3.2.72). The dynamics of 

the particles in the simulation are given by 

dX.1(t) = (2Ki) 2  dWi(t) 	= 1, 3 
	

(ci) 

where K
2 

and K
3 
 are constants and K

1 
is constant except 

across the discontinuity in Figure 3.2.2. The dynamics in each 

coordinate axis are independent of each other, and so the motion 

of the particle in the x
1 

direction is given only by 

dx1  (t) = (2K1  ) 2  dw1(t). 
	 (C2) 

Let us calculate the number of trajectories which hit the 

boundary in Figure 3.2.2. from the left in A seconds. From 

the properties (A7) and (A8) of the Ito s.d.e. (C2), in time A 

the change in x
1 

is a Gaussian random variable with zero mean 

and variance 

07 	= 2 K-
1 
 A. 2 	 (c3) 

Consider a particle to the left of and a distance y from 

the boundary. Then the probability that it will cross the boundary 

in the next A seconds is 

z2 
cip 

Prob[Ax
1 > y] = f 

    

 

2 
1 dz , 

 

(21T)a- 

 

= erf (a; y). 	(c4) 
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Now if D(y) is the density of particles at a distance y from 

the boundary, then the number of particles hitting the boundary 

per cm2  in A seconds is 

co 

= Lf D(y) erf 	y) dy. 

Now from Figure 3.2.2 we can set D(y) = D - y D: . 
Al 

Then 

co 	co 

Q-  = f D erf(a-a)dy 	f y D-  erf(orly)dY, 
0 	0 

xi 

and integrating once by parts we obtain 

co 	co 

Q
- 

- f D y d(erf(0-,y)) + 	f y2 

0 	 0 
D d(erf(a-,I)). 
xl 

(c5)  

(c6)  

But d(erf(r,y)) = - G(T,y) dy, where 
2 

variance, distribution of the Gaussian random 

Then 

variable y. 

G(T,y) is a zero mean, 

OD 	CO 
1 r = 	D y G(0,y) dy 	2 J y

2 
G(0",y) dy 

x1  

= D (21r) 	1  D-
x 
 2 

1 

from the properties of 
(c3 

in the value of 11- ), ,Awe 

boundary from the left 

the Gaussian distribution. Substituting 

find the number of particles hitting the 

per cm2 in A seconds.is 

= ( 
K-  A 1. 
1 	2 ) D 	- 

-g-  K1 A Dx 7r 
(C7) 

The first term of (C7) is the number of particles hitting the 

boundary due to the density D at the boundary, and the second 

term is the number due to the density gradient D 	at the left DX 

hand side of the boundary. 
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Following through a similar argument for the particles to 

the right of the boundary in Figure 3.2.2, we find the number of 

particles hitting the boundary from the right per cm
2 
in A 

seconds is 

Q 	
A 
)

2 74- 
( 	D + 	e A D+  Tr 	 1 	xi  

(c8) 

as D(y) is now D + y. 
xi  
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APPENDIX D 

A White Noise Model of a Pseudo Random Binary Sequence  

NOTE 

This Appendix was initially prepared as a separate report, 

and so it is self-contained in its use of symbols, references, 

and numbering of equations, pages, sections and appendices. In 

this respect, continuity is lost with the rest of the thesis. 
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A WHITE NOISE MODEL OF A  

PSEUDO RANDOM BINARY SEQUENCE  

OWNING 

Centre for Computing and Automation, 

Imperial College, 

London, S.W.7. 

MARCH 1967 

Abstract  

A maximal-length pseudo random binary sequence (PRBS) is 

modelled by a modified white noise, and the model is useful for obtaining 
the transient statistics of integral functions of the PRBS, such as the 

output of a dynamic system with a PRBS input. As an example, the 

transient mean and mean square of a filtered PRBS are derived, and an exact 

simulation verifies that these quantities are determined accurately by 

our method. This example is of current interest because of the possibility 
of using a filtered PRBS to approximate a low frequency Gaussian noise 

source in simulation exercises, and the transient statistics derived in 

this paper help to compare the filtered PRBS with Gaussian noise when they 

are used in transient situations such as in a repetitive mode simulation. 

The method of transient analysis used here arises from a new 
method of approximating continuous non-Markovian processes by continuous 

Markov processes. The method appears to be a useful way of deriving the 

transient statistics of non-Markovian systems. 
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GLOSSARY OF SYMBOLS  

A 	amplitude of PRBS 

a 	inverse of filter time constant T 

e the exponential constant 

[.] 	expectation operator 

f,F,G 	arbitrary scalar functions of a random variable x and 
time in Appendix A 

G(t) 	time function of a PRBS realisation 

L number of bits in maximum length PRBS = 2M  - 1 

M 	order of PRBS = number of shift register stages needed 
to generate PRBS 

m.(t) 	mean value (e.g. of y(t)) 

n,V 	non-negative integers 

0(.) 	"of order eaual to" 

o(.) 	"of order higher than" 

P a probability 

P 	= dtd used as l/p in Figure 1 to denote an integrator 

r,u,v 	dummy= integration parameters in Appendices 

r(t) 	white noise model of PRBS 

S(t) 	an integral used in urn model of PRBS 

s(t) 	diffusion model of S(t) 

time constant of first order linear filter 

t time 

t* 	t (modulo L.%) 

v.(t) 	mean square value (e.g. of y(t)) 

W(t) 	unit parameter Wiener process 
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x(t) 	a diff1:don process 

y(t) 	model of filtered PRBS 

z(t) 	ideal white noise 

a step function of time, defined in equation (B71) 

$5. 	an inclement operator 

A 	duration of one bit of PRBS 

time shift 

PRBS 	a maximum-length pseudo random binary sequence 
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1. Introduction 

In a recent paper, Roberts and Davis (1966) show how a filtered 

mrximal-length pseudo random binary sequence (PRBS) can be a useful approximation 

to band limited Gaussian noise. Thus a filtered PRBS is a convenient noise 

source for system test signals or simulation exercises and one must relate 

the variance of the filtered PRBS to the noise source it is simulating (which 

could be considered as the same filter being driven by white noise). In a later 

note, Roberts (1966) shows that if the PRBS is used to replace white noise 

directly (with equal low frequency power spectral density) an error in the 

steady state variance of the filtered noise will occur, particularly if the 

filter has a long im,1 constant T compared with the PRBS bit interval A. 

One of the most attractive features of using the PRBS for simulation 

purposes is its repeaability, as a typical simulation exercise might involve 

repeated trials on an iterative system using the same noise record. As well as 

the digital computer implementation mentioned by Roberts (1966), this type of 

repetitive simulation is conveniently accomplished on an analogue computer, as 

the reset-integrate modes can be easily slaved to a reference bit of the 

PRBS. 

With this application in mind, it will be useful to know the transient  

statistics of the filtered E27;5. As a continuous signal, the PRBS is non-

Markovian, and as such it is difficult to obtain equations for the transient 

statistics of functions of the PRBS. Using a new method, we construct a 

continuous Markov process (a diffusion process, or a process driven by ideal 

white noise) which accurately models integral functions of the PRBS. 

A continuous Markov process has advantages for transient analysis, as 

differential equatie':= are reaaily eUained for the statistics of the process. 
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Thus our method of choosing a diffusion process which approximates a non-

Markovian process (physical process) constitutes a useful tool of analysis 

for non-Markovian processes. 

We use the diffusion model to derive the transient mean and mean square 

(and thus variance) of the filtered PRBS. We find that these transient 

statistics have interesting properties if the significant memory of the filter 

is as long as the period of the PRBS. An exact simulation of the filtered 

PRBS is used to show the accuracy of the diffusion model. The model also 

provides a comparison between the PRBS and white noise. 

2. Construction of Model of the PRBS 

Urn mechanism 

The pseudo random binary sequence is a deterministic sequence which 

has some of the properties of a proper random sequence. We begin by constructing 

a discrete random process which preserves the most striking deterministic 

property of maximum length pseudo random sequences - the property that the total 

number of positive and negative bits in one period of the sequence is known. 

A random process which preserves this property is the mechanism of drawing 

labelled balls from an urn without replacement. 

We consider a maximum length PRBS generated by an M stage shift register, 

with bits of amplitude + A and - A held during the bit interval of A time 
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units. The sequence contains L = 2M  - 1 bits and is periodic with a period 

of LA time units. In each period there are 2M-1  positive bits and 2M-1  - 1 

negative bits, which gives the PRBS a mean value of A
. It is convenient to 

assume for the moment that the sequence has an equal number of positive and 

negative bits, and thus has a zero mean value. This assumption, which is re-

moved later without any ensuing error, considerably simplifies the equations 

to follow. 

Consider an urn which initially contains L balls, half of which are 

labelled + A and half labelled - A. We draw the balls randomly from the urn 

every A time units and do not replace them. The random sequence of length L A 

so produced has considerably more degrees of freedom in terms of possible out7 

comes than the pseudo random sequence (,e.g. the PRBS has a maximum run of M bits 

while the urn mechanism may have a run of i.L bits), but it turns out that the 

statistical properties of such a sequence closely model those of the PRBS. 

The fundamental property of the urn mechanism is that at any given time 

the probability of the next ball (bit) being 	A depends on the ratio of 

positive and negative balls left in the urn at that time, which is also 

characterised by the sum of nositive and negative balls already drawn. At time 

n A, define the "sum" S(nA) as 

nA 

S(nA ) = 	1 G(t) dt 	n = 0, 1, 2, 	L 	(1) 

where 	G(t) 
	

= • A represents the ball drawn at each sampling instant 

n A and is constant over the next A time units. Then at time n A there are 

S (n )  L 	
A 

n balls remaining in the urn, of which there are 	more - A balls A 

than + A balls. Thus we have 

P(n A) = Prob [G(t) = 	A j S(nA )1  

	

J 	, 	t = (nA , nA + A ) 

= S (n  A )  
2 AA (L - 

(2) 
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We note the following points about the urn mechanism: 

1. The urn mechanism is a discrete Markov process as its probabilistic 

dynamics are given by the present state of the process S(nA) in equation (2). 

Later an analogous quantity s(t) will be the state of the continuous Markov 

process which approximates to this discrete process. 

2. S (LA) = 0 with probability Tie. 

3. The effect of the urn mechanism is to randomise the starting point 

of the PRBS. That is, in the transient situations which we consider in the 

sequel, the starting point of the PRBS is not known a priori. 

Diffusion Model 

Although S(n A) is a discrete Markov process when considered at the 

sample points t = nG , n = 1, 2 ... , when considered as a continuous  

function of time S(t), it has the characteristics of a non-Markovian process 

(e.g, it is differentiable almost everywhere). For the purposes of transient 

analysis, we wish to model S(t) by a continuous Markov or diffusion process s(t). 

A diffusion process is a random process obtained by exciting a 

continuous dynamic system with ideal white noise. As white noise is always 

infinite in amplitude, integral functions of white noise such as diffusion 

processes are never differentiable and so cannot be described by ordinary 

differential equations, Instead we use the stochastic calculus, and we describe 

diffusion processes by Ito stochastic differential equations (s.d.e.), whose 

relevant properties are given in Appendix A. 

In particular, a diffusion process is completely specified by two 

infinitesimal incremental properties (A5) and (A6), which are often expressed as 

the first two incremental moments (A5') and (A61 ),.. A continuous non-Markovian 
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process does not have a second incremental moment (A6') as the right hand side 

, of equation (A6) is O(8t2) ill that case. However, quantities analogous to the 

incremental moments of a diffusion process can be defined for a continuous non-

Markovian process by considering the increments (A5) and (A6) over a finite time 

increment and not taking the limits indicated in (A5') and (A6'), Then we can 

construct a diffusion process to model the continuous non-Markovian process by 

matching the finite increments (A5) and (A6) of the two processes. This technique 

of forming diffusion models for physical processes is thought to be new, and is 

described in a more general context by Cumming 1967 c. 

In the present example, the diffusion process s(t) is matched to the 

non-Markovian process S(t) by matching the finite increments (A5) and (A6) over 

the time increment A, the PRBS bit interval. This time increment is chosen as 

this is the minimum time increment over which the PRBS (or urn mechanism) 

exhibits random properties. This is because the discrete urn mechanism only 

undergoes random changes at the time points t = n p, and we see later that the 

diffusion model approximates the integral properties of the PRBS most accurately 

at the sample points t = nA . 

Define the finite increment of S(t) over a time increment A from time 

t = n A as 

8 S (nA ) = S ((n+1) A ) 	S (n A). 	 (3) 

Then from equation (1) , 	8 S (nA ) = -▪ AA with the associated probabilities 

given by P(nA ) of equation (2) and 1 - P(nA ). Then corresponding to the 

finite increments (A5) and (A6), we have 

E[ 8S (nA )1S (nA )1 	= AA (2P (nA ) 	1) 

• _ 	S (n0)  A 
nA 	(4) 



-6 
	

365 

and 

process 

	

E 	[ ( IS S (nA ))2 1 

Then ignoring the error 

s(t) 	with the increments 

f (s, t) 

	

and 	F2 (s,t) 

S (33.6) 	= 	(A2 A 	) 	A 	. 

terms given in (A5) and (A6), the diffusion 

(4) and (5) has the coefficients 

s(t) 

(5)  

(6)  

(7)  

= 3 L A - t 

= 	A2  A 	. 

Then, referring to (A1), the diffUsion process s(t) is described by the Ito std.e. 

d s (t) = 1 
L A 

 

I 
2 

s (t)dt + A A dw(t), 

s (0) = o , t = [o, LA] , 

 

 

(8) 

where w(t) is a unit parameter Wiener process, and it is convenient to consider 

) 
W(t) - dwelt) as white noise (with unit power spectral density in[power per dt 

cycle per unit time] units). The stochastic integral (Doob, 1953) equivalent 

to equation (8) is 

t 

s(t) = AA (t - LA ) f Cu - L A)-  dw(u) , t = [ol  LA] , 	(9) 
0 

which illustrates that the diffusion process s(t) which models the integral 

of the zero mean PRBS is an integral function of white noise (replace dw(u) 

by w(u) du in equation (9)). 

White Noise Model of the PRBS  

The model of the zero mean PRBS is the derivative of s(t) which can 

be obtained by formally dividing the Ito s.d.e. (8) by dt. At this stage we 

A add the positive bias E  which we had neglected in constructing the urn 
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s(o)=o 

 

y(o)=0 

      

Y(t)  

a 

ztts) (t)  

1 
LA-ts  

s(t) 

Model of PRBS 	 Filter 

Fig 1. 	Continuous Model of a Filtered PRBS 
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mechanism, and we make the model valid for all positive time by imposing the 

periodicity property of the PRBS. This is done by introducing the cyclic time 

parameter 

t * = t (modulo L A ) $ 

and we shall see later that s(t) = s(t*  ). 

The PRBS is then modelled by the modified white noise 

r(t) - 	
s(t)  

LA - t* 
+ 	A+ z(t*  ) 	t> o (10) 

where s(t) is defined by equations (8) or (9) and is the integral of r(t) -$ 

and z(t* ) = A Al W(t*  ) is a periodic white noise with a flat power spectral 

density of A2 A. An ideal circuit generating r(t) is given in Figure 1, 

where the value A = 1 is used. 

Diffusion Model of the Filtered PRBS  

The model of the PRBS, r(t), is a modified white noise, and integral 

functions of r(t) are diffusion processes. Because of the method of constructing 

the model by forming a discrete urn model S(t) for the integrated PRBS and 

then forming a diffusion approximation s(t) for S(t), the white noise model r(t) 

is not meant to model the fine structural properties of the PRBS, but integral 

functions of r(t) are meant to model integral functions of the PRBS. Such a 

function is the output of a filter driven by a PRBS. 

Consider the output of a linear first order filter of time constant 

-1 a 	whose input is a PRBS. This situation is the same as that considered 

by Roberts and Davis (1966) except that our filter has a gain of T 'over their 

filter. The diffusion model y(t) of the filter output is obtained by passing 

r(t) of equation (10) through the filter 13.2;a  as shown in Figure 1. The Ito 



3 6 ? 
-8 

s.d.e. for the diffusion process y(t) is 

dy(t) = ( - a y(t) L:(t)t* 	
+ ▪ dt 	dw(t*) , 

t,. o 	Y(°)  = yo 
	(n) 

which must be solved simultaneously with equation (8) remembering that s(t) = s(t*). 

t
J 

-a(t-u) 
The equivalent stochastic integral for y(t) is y(t) =  e 	r(u) du , 

e-a(t 	u) [ 	s(u)  
L 	- 11*, 	

A , + 	J du 
0 

t 
+ f e-a (t-u)  Ad dw(u. 	) s* „ ti 0 f 	 (12) 

0 

where u*  = u (modulo LA ). Equation (12) illustrates that y(t) is an integral 

function of r(t), or that the filter output is an integral function of the PRBS. 

3, 	Statistics of the Integrated and Filtered PRBS  

By the methods discussed in Appendix A, the statistics of s(t) and 

y(t) can be obtained from their stochastic equations, (8) and (11) or (9) and 

(12). As s(t) and y(t) are linear functions of white noise, they are Gaussian 

and only their first two moments need be evaluated. 

Statistics of Integral of PRBS  

For convenience we consider the statistics of s(t) of equations (8) or 

(9), which is the integral of the PRBS less the bias t . 

Let m
s (t) = 	E [s(t)1 (o) = 0 ]. 

Then from equation (Al2), dropping the t parameter, 
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m 
ms  = 	L 

s  
t 	 (o) 	o 	t 2.1( o, LL -  

from which we have ms (t) = o 	t = to, LA3 . 	 (13) 

This result is also easily deduced by applying equation (A7) to (9), as 

E tf (8: 01 = o in the stochastic integral (9). The mean value of the integral 

of the model of the PPBS with bias :;:- A L equals  L  'A-.. t. 

Now let vs(t) = E Es2(t)ls(o) = o ] 0 

Then from equation (A13) we have 

+ A2  A 	v- (o) = o, 	t = C o, LA] , 

which has the solution 

A"." = A2"1" = lo, LA 	(14) 

Equation (14) is also the variance of the integral of U:ao zero mean 

A 
PRES or of the PR2S with bias 71,- . The curve its(t) is a parabola with a 

be corr.:pared with the variance ( A2 ) t  of the Wier process or Brownian motion 

obtained by deleting the urn model property represented by the feedback. 

s (t) LQ 
 t in equation (8). Thus the integral of the PPBS is only a good 

approximation to a Brownian motion or random walk.  for values of time t much 

less than the period LA 

From equation (14) we note that v (Lb) = 0 which means that s(LA ) = 0 
s 

with probability one, as we should expect from the cyclic pro 'ability 0=7 tiz:.^ 

noise * (t) of equation (8) is periodic, it 

is easy to deduce that s(t) is periodic, that is s(t) = s(t*  ). Then 

equations (8), (9), (13) and (14) can be made valid for t>LA by replacing 

A2A2L  
maximum value of 	occurring at the half period t = z LA 	It can 
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t and u on the right hand sides by t and u • 

It is noted that the PRBS amplitude A is simply a scaling factor 

appearing linearly in the forcing functions of the equations for s(t) and r(t), 

equations (3)0  (e),)!:  (11) and (12), and will appear as a factor A2  in all 

variance or mean square equations such as (14). With this in mind, it is 

convenient to set A = 1 in all subsequent equations. 

Statistics of the Filtered PRBS  

In Appendix B we have derived the mean and mean square of y(t), the model 

of the filtered PRBS, assuming yo  = 0. A similar analysis could be carried out 

for any dynamic system driven by the PRBS, but as we see from the comments 

following equation (A13), a direct solution cannot be obtained for the moment 

equations if the system is non-linear. 

The main results are the expressions for the mean and mean square of the 

filtered PRBS derived from the continuous diffusion model. The expression for the 

mean m (t) is given as 

m (t) = aL -- (1 - e-at) 	t 	0, I 

and is due solely to the bias 1  - entering the first order filter. No unusual 

effects are caused by the periodic or urn mechanism properties of the PRBS. 

The expression for the mean square v (t) is 

(t) = 	[(1  — 1)(1 — e-at) + 	2L
1 aI,Q  )(1e-2at)j , t E:),LA3, (B4) 

a2I 

The equation numbers (B2), (B4) etc. refer to Appendix B. 
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and for t>LA , vy(t) involves functions of this initial cycle curve, and is 

given by 

v (t) 	= v (t* ) Ci + 2 p(N)  e-aLA] + v (LN) p2(N) 
e-tat* 

2 	 -at) 	(e-at*_ (1  3(N) 	1) 	ee_aLA), (1310) 
a2L 

where t 	= (N+1)L, ), 	t* 	= t (Modulo LA ), 

and 

f3(N) = 	1 - e N = 	0, 1, 2 .... 	(B7') . 	. 	. 

1 	e-aLA 

This expression is plotted in Figure 2 for 	L = 127, A = 1 and various 

values of the filter time constant. It is convenient to parameterise the time 

constant as a multiple of LA , for the unusual properties of v (t) are only in 

evidence if the memory of the filter exceeds LA . This is seen in our example 

(the memory of the filter being given by its weighting function e at), for if 

-aLA 1 0 then p(N = 1) 1 and the second LA cycle of v (t) will be equal 

to the constant steady state value p2v (LA ) = v (LA) of (B12). Furthermore, 

if e-a"  1 0, then the transient part of vy(t) of (B4) will have died away by 

t = LA, and equation (B4) can be considered to hold for all time. For a first 

order filter, the significant memory extends to about 4 time constants or 4/a. 

Thus for curves 4, 5 and 6 of Figure 2, the filter memory is shorter than LA , 

and v (t) is essentially smooth for all time. 

If the filter memory exceeds LA, as in curves 1, 2 and 3 of Figure 2, 

v (t) will have successive discontinuous derivatives at t = LA 2LA„... NLA 

until 13(N) reaches the constant p of (B8). Also, v (t) loses its 

dependence on t* at a rate depending on the convergence of p(N), and so when 

p(N) = p , the mean square of y(t) is equal to its steady state value of 
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v (steady state) = p2 v (LA).   (312) 

As p(N) converges to a constant as e-aNLA  converges to zero, and 

e
-aNLA 

is a discrete form of e-at0  the filter's memory, we are left with the 

expected result that we must wait for a period equal to the significant memory 

of the filter for the filter's initial transients to die away before a stationary 

signal y(t) is obtained. However, unless y(0) is randomised according to 

its steady state distribution (i.e. y(0) is set equal to py(LA) = Y(Nlarge14'))' 

this transient will exist, and we have used our analysis to show the form of the 

transient for a particular initial value, y(0) = 0. Further, by evaluating the 

function E [y(t*) y(t* +I.)] in a manner similar to Appendix C, we could derive 

the entire transient second order properties of y(t), that is, its transient 

correlation function. This function would become stationary in the same way as 

v (t) above, and would be a periodic function of ¶ , with period LA. 

We can illustrate that the unusual transient properties of the 

statistics of y(t) are due to the periodic and urn model properties of the 

PRBS by comparing our continuous model of the filtered PRBS with the same model 

with these periodic and urn model properties removed, which is essentially the 

same filter with white noise input. This is done in section 5, and we see that 

the filter with white noise input does not exhibit these unusual transient 

effects. 

4. Accuracy of the Diffusion Model 

As the diffusion model y(t) of the filtered PRBS is Gaussian the error 

in mean square is considered to be a reasonable and sufficient measure of 
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accuracy of the model in distribution! As the model is primarily meant to 

represent the filtered PRBS at the sample points t = nA , n = 0, 1, 2 	, 

the main error check of the transient results was carried out at these points. 

The accuracy of equations (B4), and (B10) for the mean square of y(t) 

was checked by simulating the PRBS and filter output exactly on a digital 

computer at the sample points t = nA , and forming v (nA ) by ensemble 

averaging over all possible starting points of the PRBS. The M = 7, L = 127 

PRBS was used and A was arbitrarily set to unity. 

The percentage error between v (t) and the true mean square at the 

sample points is shown as curve 1 in Figure 3, as a function of filter time 

constant T. The error over the transient curve was almost exactly uniform in 

time and so the time dependence of error is not given. For values of T beyond 

2A:  the absolute percentage error remains at less than 1% and the error 

finally settles down at -0.80% for all T beyond the scale of the graph 

including the integrator case, vs(t). 

Two comments are relevant to this error curve. Firstly, the modelling 

accuracy is good only for values of filter time constant greater than 2 A. 

This agrees with the conditions given by Cumming (1967 c) for good modelling 

accuracy—that the significant memory time of the system (equal to about 4 T 

in the present example) must be substantially greater than the significant 

At least this is so when the filtered PRBS itself is near Gaussian (see 
section 5 or Roberts and Davis, 1966), but when T is large and the filter 
output non-Gaussian, other _error measures may have to be checked, depending 
on the use to which the model will be put. The expression (T2) for the mean 
value of the filtered PRBS is exact. 
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correlation time of the input noise (equal to A for the PRBS). Thus the in- 

equality T>2A satisfies this criterion by a reasonablt, margin. 

Secondly, by changing L andA it was confirmed that the error for 

1 
large T is very nearly constant at a factor of - 

1  ( E  equals - 0.79% in 

the example illustrated). But from Cumming (1967 b, equation (29)) we see the 

1 	1 
PRBS has a low frequency power of E  (1 E) concentrated at discrete frequencies 

1 separated by rz- cycles/unit time, which averages out to the equivalent of a 

1 
continuous power density spectrum of (1 + T.) A . Thus it is reasonable that 

the white noise which replaces the PRBS in our diffusion model should have this 

power density spectrum instead of the value A used in equation (8) which we 

obtained via the second increment of equations (5) and. (7). Increasing the 

power. of the model noise from to (1 + 	A would largely cancel the error in 

mean square quoted above)  but this would be difficult to justify from the 

method we have used to choose a diffusion model. In any case, if greater model 

accuracy is desired, all noise terms (i.e. dw(t) in equations such as (8) 

1 11- 
and (11)) can be multiplied by the factor (1 + E  /2. This would not effect 

the m(t) equations, and would multiply the v(t) equations by a factor of 

( + 1) in the same way as the noise scaling factor A we have dropped. 

The accuracy of the mean square of the diffusion model of the filtered 

PRBS was also checked against the continuous mean square of the true filtered 

PRBS, and is shown as curve 2 in Figure 3. The continuous mean square was 

estimated by sampling an exact simulation of the filtered PRBS every 40  A 

time units and averaging over all starting points of the PRBS. Again the 

error was uniform in time, and in the steady state (t> 4 T) the error of the 

estimate in the simulation was checked using the known steady state mean square 

(see Cumming, 1967 b, equation (20)), and was equal to 0.02%)  uniform in T. 
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As seen in Figure 3, the diffusion model does not represent the mean 

square of the continuous filter output as well as it does the sampled filter 

output, except for T>50 A (beyond range of graph) when curve 2 falls just 

below 1%. This is because the white noise model of the PRBS does not represent 

the fine structure of the PRBS, but as seen from the method of constructing 

the model, the diffusion model is meant to represent integral functions of the 

PRBS at the sample points t nA 	n = 1, 2, 	(remember that the integral 

of the PRBS is a ramp function between the sample points, while the integral of 

the modified white noise has the fine random struc&ure of Brownian motion - 

the two are meant to be statistically equivalent only at the sample points). 

This point is a result of the inherently discrete nature of the PRBS and is 

not a general property of our method of choosing diffusion processes to model 

continuous non-Markovian processes. 

5, Comparison of PRBS with White Noise 

Through equation (10) or Figure 1, the PRBS can be explicitly compared 

with white noise z(t) of power per cycle per unit time of A ( -7 more accurately 

A (1 L)). The following points are noted: 

1 1. The PRBS has a small positive bias equal to E  . 
2. The PRBS is periodic with period equal to L A as represented by the periodic 

time parameter t *̀ 

3. The PRBS has the urn model property represented by the first term of 

equation (5) or the feedback loop in Figure 1. 

The effect of one or both of the last two points is to reduce the 

effective power of the PRBS compared with white noise when used as a test 
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signal at the input of a system. This effect is dependent on the bandwidth 

of the system and has been noted earlier by Roberts (1966) who compares the 

steady state variance of filtered white noise with that of the filtered PRBS. 

Using the present analysis we can compare the transient variance of filtered 

white noise with that of the filtered PRBS. 

This comparison is made in Appendix B, where equation (B141 ) give6 

the variance of white noise of power density A passed through a first order 

filter of time constant T = a-1. Equation (B4') gives the analogous 

expression for the filtered PRBS for t =[ 0, LA], and for t > LA the 

expression for the variance can be deduced from equation (B10) for the mean 

square. 

Comparing these equations, we see that the variances of the filtered 

aLA PRBS and filtered white noise are essentially equal when—T is substantially 

greater than one. For L = 127 and T = a-1  = 5A, the difference in the 

transient variances is a maximum of 8%, but for larger values of filter time 

constant, this difference increases substantially. Furthermore, for T> 25A 

the unusual discontinuity effects of Figure 2 are noticed in the variance of 

the filtered PRBS which are not present in the filtered white noise. 

In the steady state, this disparity of variances can be cancelled by 

applying a scaling factor to the PRBS. However, owing to the extra transient 

term in (B4') compared with (B14') and the discontinuity effects noticed when 

T> 25A , the disparity in the transients of the variances cannot be simply 

cancelled. Thus when using the PRBS to simulate white noise in a situation 

where the transient statistics are of interest, we must approach the results 

with caution if the effective time constants of the system under test are 

greater than 5A (or > 0.039 L A for an arbitrary value of L). 
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Another property of the filtered PRBS which distinguishes it from 

filtered white noise has been brought out by Roberts and Davis (1966). This 

property is that beyond a certain value of filter time constant T, further 

increases in T make the first order probability density function of the 

filter output less and less like the Gaussian distribution. The distribution 

of the PRBS itself is Concentrated at + 1 and - 1, and as the PRBS is more 

heavily filtered, we should expect the distribution of the filtered PRBS to 

tend uniformly towards the Gaussian in much the same way as the smoothed 

random telegraph signal does (Worsham and Fuller, 1958). Roberts and Davis 

show experimentally that as the value of the time constant T is increased, 

the proximity of the distribution of the filtered PRBS to the Gaussian 

increases up to a certain value of T = T', and then decreases for higher 

values of T. 

An explanation of this property is suggested by a theoretical result 

of Tauswo7the (1965) who shows that sets of m adjacent bits of the PRBS can 

be considered as a set of statistically independent variables only for m less 

than of equal to M, the number of stages in the generating shift register. 

Near-Gaussian distributions are formed by summing independent variables, and 

when the effective memory time of the filter extends beyond Mp , then the 

filter (which is forming a weighted sum of the input) is summing variables 

which are no longer independent, and the resultant output distribution can no 

longer be expected to be near Gaussian. Thus the distribution of the filtered 

PRBS should be nearest the Gaussian at Ti 	0.4 MA . This is in close 

agreement with the experimental findings of Roberts and Davis. This effect 

was first pointed out by White (1966) in connection with summing adjacent bits 

of the PRBS to form a binomial distribution. 
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The diffusion model we propose for the PRBS (and the linear filter out-

put) is Gaussian and so it does not possess the non-Gaussian property 

discussed above. Indeed, the model accuracy is at a maximum for large values 

of T when the true signal tends away from the Gaussian. 

6. Conclusions 

As a random noise source, a maximal lengtl. pseudo random binary 

sequence has two unusual properties. These are the non random properties of 

a) being periodic, and b) having a fixed (and almost equal) number of positive 

and negative bits in each period. These properties give the PRBS some 

advantages for use as an input signal in testing dynamic systems, but at the 

same time we must appreciate how these properties can introduce unexpected 

effects into the system's statistics. In this paper we present a continuous 

diffusion model which is useful for determining the transient statistics of 

systems which are driven by a PRBS. 

The non-random properties of the PRBS are incorporated into a discrete 

urn mechanism, and then by a new method, a continuous Markov (diffusion) 

process is chosen which models the urn mechanism, which is non-Markovian 

when considered as a continuous process. As diffusion processes are more 

convenient to analyse, particularly for transient properties, than continuous 

non-'Markovian processes, the construction of diffusion models for non-Markovian 

processes is a convenient tool of analysis of physical random phenomena. 

r2ne analysis was applied to a PRBS put through a linear first order 

fliter. A PRBS of 127 bit length was used as an example, and the model 



379 
-19- 

represented the transient mean square statistics of the filtered PRBS at the 

switching points of the PRBS to 'it ter than 1% accuracy, provided the filter 

time constant was not too short compared with the PRBS bit interval. For short 

values of the time constant, the upper frequency of the input noise (the PRBS) 

is not sufficiently higher than the pass band of the system (the filter) for 

modelling accuracy to be maintained. It was also noted that the diffusion 

model represented the mean square of the continuous filter output less accurately 

than the discrete output, but perhaps still sufficiently accurately for some 

purposes. 

The white noise model of the PRBS provides a comparison between the 

PRBS and white noise. We see that the transient statistics of the filtered 

PRTS can be quite different from that of filtered white noise, a factor which 

could be important in repetitive-type simulations. 
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Appendix A 

Stochastic Equations  

A diffusion process x(t) = x(t, w) which depends on a unit parameter 

Wiener process w(t) can be defined by the Ito stochastic differential 

equation (s.d.e.) (seel for example,Wonham, 1965, Appendix 1) 

dx(t) = f(x,t) dt + F (x,t) dw(t) 	x(o) = o. 	(A1) 

This equation does not have the properties of an ordinary differential 

equation (e.g. it does not specify the value of the derivative of x(t)), and 

some authors prefer to regard it as a symbolic way of writing the better known 

stochastic integral equation (Doob, 1953) 

t 	 t 
x(t) = j f(x,u) du + 	j F(x,u) dw(u). 	(A2) 

0 	 0 

Interpreting S. as a finite forward difference increment over the 

time tncrement St, the diffusion process x(t) has the following local 

properties 

Sx(t) = f (x,t) St + F (x,t) 8w(t) + o(St), 	(A3) 

and 	(Sx(t))2  = F2  (x,t) (e.w(t))2 	+ o(St). 
	(M) 

As 8x and (8x)2  are random variables, equations (A4) and (A5) are formal, 

and in particular, the error terms in these equations only have a precise 

meaning when conditional expectations are taken. Then we have, 

E [ Sx x, t 	= 	f (x,t) St + 	o (St), 	(A5) 

and 	E [(8x)21 x, t] 	= 	F2 (x, t) St + o (St), 	(A6) 
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as 0'02  is a random variable with mean St and standard deviation 27  St. 

Even though the standard deviation of (802  is the same order as the mean, 

we can neglect the random part of (802  if we are only interested in integral 

functions of Sx (that is, if we are only interested in x(t)), as the 

contribution of the random part of (8w)2  to the integral becomes negligible 

by the central limit theorem.t It is the fact that the first term on the right 

hand side of (A6) is 0(80 that distinguishes the stochastic calculus from 

the ordinary calculus, for the ordinary calculus applies to smooth functions 

for which E [(Sx)21 x, t ] = 0 (St2). 

The incremental properties (A5) and (A6) of the diffusion process 

(Al) or (A2) are more commonly given as the first and second incremental 

moments 

and 

	

Limit 	1 

	

84o 	St 

	

Limit 	1 

	

Stlo 	St 

E [Sx ix,t] 	= f (x,t), 

E [(Sx)21 x, t] = F2  (x, t). 

(A5')  

(A6')  

Equations for other properties can be written down directly from the 

stochastic integral equation (Doob, 1953); for example 

t 
E [x(t)] = f E [f(x,u)] du 
	 (p) 

0 

t 
and 	E [x2 (t)] = [f E [f(x)  u)] du ] 	E [F2(x,u)] du. 	(A8) 

0 	 0 

Equations for the Moments of x(t) 

Consider a function of x , G(x). By Taylor's series, a forward 

increment in G(x) is written as 

2 

For a more detailed explanation justifying this point, see Kushner (196, 
Appendix 1.) 
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G 	= 	Gx Sx + 	Gxx  (Sx)
2 	o ((Sx)2) 	(A9) 

where the subscripts denote partial derivatives. 

Taking the conditional expectation of both sides of (A9) and using 

the properties (A5) and (A6) of the conditional x increments, we have 

E[SGIx, t ] = Gy.  f (x,t) St + z Gxx  F2  (x,t) St + o (St), (A10) 

as (Sx)2  and St are the same order for stochastic increments. Taking the 

expected value of both sides of (A10), interchanging the E ['] and S 

operators on the left hand side, dividing both sides by St and passing to 

the limit St ,,0, we have 

d E
t 
 [G] = E [Gx  f (x, t) 	2 + 	E [GXX F

2 (x,t)] d  (All) 

as E [E 05(31 x,-0] = E [SG] = 8 E "i]. Equation (All) is an ordinary 

differential equation which can be used to find the moments of x(t). Setting 

G(x) successively equal to x and x2 , we have 

d E [x]  
E If (x, t)] , (Al2) 

dt 

 

and 
	

d E [x2] = 2 E [K f (x,t)] + E [F2(x,t)]. 	(A13) 
dt 

These differential equations are usually easier to handle than the corresponding 

integral equations (A?) and (A8). However, they are only easy to evaluate if 

f(x,t) and F(x,t) are constants or linear functions of x , in which case the 

right hand sides of (Al2) and (A13) involve only the unknowns E [x] and 

E [x2] . Otherwise these equations will be imbedded in an infinite set of 

simultaneous differential equations for all the moments of x. 

A more detailed derivation of these equations, including the differential 

equations for the moments of a vector diffusion process is given by Cumming (1967a). 
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APPENDIX B 

Derivation of Mean and Mean Square of Filtered Signal y(t)  

Consider the joint diffusion process [L(t), y(t)] in the 

interval [0, L A] 

ds(t) —s(t) t 	dt + 	dw(t) 
	

s(0) = 0; 

1 
dy(t) = (- a y(t) _ —Eitl_ 	1 	t 

) dt + 6 '
P  dwkt), a # 0, y(0) = 0. L A- t 

From equations (13) and (14) we know 	ms(t) = 0 

vs(t) = A [1 - LtA ] t. 

Let y(t) = E [y(t) 1 y(0) = 0] . 

Then by the methods of Appendix A, we have 

dm
v 

dt = - a m + 1 y 	L 

whence 

m (t) = _1 (1 e-at). aL 

m(0) = 0 

(B2) 



33 
-B2- 

Let 	v sy(t) = E [s(t) y(t) j s(0) = 	0; y(0) = 0] . 

Then by a formula analogous to (A9) for the differential of a 

product 

6(sy) = sbY + y 6,  s + bs 8 y + 0(6  s2) + o( &y2) 

we obtain the differential equation for v sy(t)  (see Cumming, 1967 a, 

for more details) 

• dv 

dt-v 
 s 	1 	1 L 	v 	+ 	- L  t 	v (o) = 0. (- a 	sy 	' sy 

(1 	e  - at).  Solving we have v (t) = LA t - 
sy 	aL ... (B3) 

It is easy to deduce that v sy(t)  is periodic in LA with 

v sy(nIA ) = 0, 	n = 0, 1, 2 ... i.e. we can replace t by t*, 
and also that (B2) holds for t > LA without replacing t by t*. 

Let y(t) = E [y2(t) 1 y(0) = 0, 	s(0) = 0 

Then 

it 
	 2v sy 	2 --a- = - 2 a v 	-E my  + A dt 	L A - t 

or 

dv 

dt + 2a v = 	aL 
2 	1 

(1 - 	) ( 1 - 0-at) +A, v (o) = 0. 

Solving we have 

aLp 
Y 
(t) 	= 	Ft L 

 _ ,N (1  _ e 	
2 	2L 

—at) 	_ 	) (1 	e--2at 
L.\ 

a2L 

(B4) 
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By subtracting the square of the mean (B2), we obtain a simpler 

expression for the variance 

Vary(t) = 2 F (1 	/.1 
+ 	+ 	-,k1 - e 	

N  ]. e-at) 	-tat)  
-- 	(B41) 2 4 a2L 

Solution for v (t) for t >LA 

To solve for y(t) and the statistics of y(t) for t >LA, 

we will use the periodic property of Z(t*) or dw(t*).  

Writing y(t) of equation (6) as a stochastic integral 

t 

y(t)  = jr e-a(t-u) [ 	S(u*)  ] du - LA - u* 	L 

t j, e-a(t-u) dw(u*)  
0 

... (B5) 

where u* = u (modulo LA). 

Now consider t in the semi-open interval [NLA, (N + 1)Li). 

Then 

t = NLA + t* 

u = nLA + u* 	n = 0, 1, 2 ... N. 

Breaking the integrals of (B5) into LA time segments, we have 

0 
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y(t) = 

- B4 - 

N-1 LA 
e-a(NLA - nLA + t* - 

o n= 
h(u*) du* 

t* 

+ j
r 

e-a(t* - u*) h(u*) du* 
0 

N-1 LA 

e-a(NLA - nLA + 

	 0 n=0 

*) 
dw(u*) 

t* 

e-a(t* - u*) dw(u*) ... (B6) 

0 

where h(u*) = 	u* 
	+ 17 • 

Noting that the second and fourth terms of (B6) sum to y(t*), and 

e-at*e-a(N-n-1)LA on bringing 	out of the remaining integrals, these 

latter integrals become the integrals for y(LA). Thus 

N-1 

y(t) = y(t*) + 

 

e
-at*e-a(N-n-1)LA y(LA) , 

n=0 

or 

y(t) = y(t*) 	P(N) e-at*  y(LA) 	... (B7) 

where 
N-1 	N-1 

p(N) = e-a(N-1)LA :5-- eanLA= 	e -anLA 1 - e-anLA  
-aLA 	... (B7') 

n=0 	n=0 	1 e  

In the steady state, P(N) approaches the constant p = 	1  
_aLA (B8) 
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Taking the expected value of (B7) we have 

m (t) = m (t*) + P(N) e-at*  m (LA) , 	... (B9) 

which,upon substitution of P(N) of (B7'), does not depend on t*, 

verifying that (B2) holds for t >LA. 

Squaring (B7) and taking the expected value we have 

v (t) = v (t*) 	p2(N) e-tat* v (LA)  

+ 2P(N) e-at*  E [ y(t*) y(LA) ], 

where E [ y(t*) y(LA) ] has been evaluated in Appendix C, equation 

(C2). Then 

v 	= 	v (t*) [1 + 2p(N) 	v 
Y‘ 
(LA) p2(N) e-2at* 

2 p(N)(1 1)(1 e-at*)(e-at e-aLA),  

a2L 	L 
... (B10) 

where v (t*) and v (LA) are taken from (B4). 

A simpler expression is obtained for v (t) at the cycle points 

t = NLA, where (with t* = 0) 

v (NLA) = p2(N) v (LA), 	 ... (B11) 

which approaches a constant as p(N) approaches p of equation (B8). 
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Steady  State Solution of vyLL)2...21.112.ES±11a__  

From (B10), (B4) and (B8) we have 

v 	
2 1-,1 „ 	-at* 	1 	aLA 

y
(t
1arge 

) 
' 
. 
2L-  	 2 

1)0 - e 	) + )(1 	e
-2at*)] . 

a L 	 2L 	4 
 

• [ 2e-aLA  2 	1 
1 + 	

r, 
1 	e-aLAJ

1 a 
77 	- 1)(1 - 

e-aLA 	1 	1 ) 	
2 

(. 	d 
2L 

iL4.61)(1 e-2aLA 

	

T, 
	+ 

ir  e
-2at* 

+ 2  F Lo 	e  -aLA)21 a2L 	- 1)(1 -  
-at*)(e-at* 

- 
e-aLA)( 	1 	

)] 
1 e

-aLA 

= 	
2 p

2 
V(t*) , 

a
2
L 

where V(t*) = 	- 1)(1 	
e-at*)(1 	e-2aLA)  

4_ 	(1 
2L 
 2,11

)
/
1 - 

e -2at*)(1 	e-2aLA)  

	

2 	4 

-aLA)e-2at* 	 1 	aLA)(1 	-2aLA
)e
-2at* + 	(.1 	1 ) ( 1 

e  

	

L 	 2 - 2L 	4 	- e  

+
1 	

1)(1 - e
-aLA

)(e
-at* 

 - e
-aLL 

e
-2at* 

+ e
-a(t*+LA)

) 

= 	- 1)(1 - e-a")(1 	e-aLA)(1 	e-a1.6)  
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4.  (.2 
2L 
 aLA)(1  e-2aLA)  

1 	 . 	* + 	- 1)(1 - e-ALA  Je-at   (1 + e 

- 	1  - 1)(1 	e-aLA)e-aLA 

= 	- 1)(1 e-aLA 
2 	

N(1 e-2aLA)  
2L aLA  

y 
a2L f = 	v kLA). 

Thus 	vy(t1arge) = p2 v (LA) ... (B12) 

Comparison of y(t) with Filtered White Noise  

Consider the output z(t) of a filter of weighting function eat 

and input Z(t) + -1 • This situation is the same as the PRBS model L  

with the periodicity and urn model properties removed. Then analogous 

to (B5) we have 

t 	 t 
-a(t-u)   y(t)  = 	

J e r -a(t-u) du + 	Jr e  dw(u). 
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Then from (A10) and (A11) we have 

m y(t)  = 	(1 	e-at)  
aL 

which is identical to m (t), and 

... (B13) 

t 

v et) = [1 	e-at)  ]2 4.  A 
j e-2a(t-u) du 9 

0 

= 2 [ 	e-at)  
aaL  L 

 

21, 	
e-2at)  ]. ... (B14) 

 

This expression can be compared with (B4) or, more conveniently, 

the expression for the variance of y(t) 

Vary(t)= 	[2.e 	e-tat)  ] Vary(t)  (B14, ) 

can be compared with (B41). 



LA 

- f -a(Li-u) E[Y(t*)s(u)]  
t* e 	LA u 	du  

APPENDIX C 
	3qa 

Evaluation of E [y(t*) y(LA) ]  

We write y(..) in stochastic integral form (B5), and break the 

range of integration for y(LA) into two parts about t*. Then we have 

t* 	 LA 
r -a(LA-t*) -a(t*-) 	-u y(LA) = J e 	u -- h(u)du + fe-a(LA)  h(u)du 
o t* 

t* 	 LA 

A2 Jr e-a(LA-t*)e-a(t*-u)dw(u) + 	j'e-a(LA-u)dw( u) , 
o t* 

LA 	LA 

e 	* -a(LA-t*) 	 e-a(LA-u) y(t ) + 	e  -a(LA-u 	dw(u). h(u)du + = 
t* t* 

(ci) 

Then E [y(-0) y(LA) 

LA 
= e-a(LA-t*)v (t*) + E [y(t*) f e a(LA-u)h(u)du] 

t* 

as the last integral of (C1) has zero mean (see (A10)) and no cor- 

relation with y(t*) as the lower limit of integration is t*. Then 

E[y(t*)y(Lt)] 
= e-a(LA-t*)v (t*) 

LA 	(t*) e-a(LA-u) 11Y1-- du 
t* 

where E[y(t*)S(u)] has been evaluated later, equation (C3). 
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Then 

LA 	m (t*) 
E[y(t*)y(LA)] = e-a(LA-t*)v (t*) 	e-a(LA-u)E_z____ 	1 (1 - e)j -at*.1 —du 

t* 	aL 

a(t*-LA) 	1 - 1)(1 	e-at*)(1 	ea(t*-LA)).  

(C2) 

Evaluation of E [y(t*) S(u) 	, 

Breaking the range of integration for S(u) in two parts at t*, 

we have for y(t*) and. S(u) 

t* 	t* 1 
y(t*) = I e-a(t*-v )h(v)dv + p2  f e-a(t *-r)dw(r) , 

0 	 0 

1 

	

	2 

t* 

S(u) = A (u LA)
r 
	 dw(r) + A2(u - LA) f 	1 	dw(r) 

o t*  r - LA LA  

4 

ThenE[y(t*) S(u)] = E[1. + 	1. 4 + 

The terms 	E [1 . 4 + 2 . 4 ] drop out as' 4 

= e 	v (t*) + 
a"L 

2 . 	+ 2 . 4 ] . 

has zero mean value (A10) 

and no correlation with random variables depending on w(r) for r <t*. 
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The term E[2. ] is the expected value of the product of two 

stochastic integrals, and is given by a generalization of (A11), or 

refer to Doob[3] p. 429, eqn. (2.2) where dF(r) = dr , and we 

t* 

E [2 ..2] = A e-at*(u - LA) f e 	 r LA dr / 
0 

t* 

	

* 	a(r - LA) -at A e • (u LAeLA 
j,  e)e r 	LA d(r - LA) 
0 

E[i 	E[ 1..t e-a(t*-v)E2q Now 	 1  dw(r) l]d • 
0 	 0  r - LA 	L 

t* 

A (u LA) ..r  r LA 1 	dw(r) 1. -  
0 

The part of the first integral involving 1  - is a determinate integral 

and the expected value of its product with the latter zero mean 

stochastic integral is zero. We can change the order of integration 

of the remainder of the first integral by setting 

t* v 	 t* t* 
I .1 dw(r) dv = f f dv dw(r) 
o 0 	o r 

and we have 

	

t* 	t* 	t* 
t* ia 	1  

r LA 
E[1 . 	= ErAe-a (u  LA) f r 1 	

J'e -vdv dw(r) . Jr 	dw(r)] -  

= E[Ae 

	

t* 	 t*  
- ear  ]dw(r) jthar) 	 

	

Lo 
J
r 	ri ea t% 1 

a 	dw(r)] r - LA r - LA L  

have 
ar 
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Using the formula for the expected value of the product of two 

stochastic integrals again, we have 

t* 

Ell . 	= Le-at (u - LL) f 	1 	
[1 eat*1 ear] dr 

o (r - LA)2  a 	
a 

= Le-at* (u LA) [ 
t* 

eat*(.. 	1  ) 1 /  ear  
LA t* LA' - 	 dr].a o (r  - LA)2  

Now t* ar 1 f 	e 	, dr = : eaLA t;ea(r-LA)  d(r - LA) 
a  o (r - LA)' 	o (r - LA)2 

t* .1 	
A L 
r_ ea(r-LA) 1t*+ eA aL .f e a(r-LA) a   = e

aL 

r - LA Jo 	r - LA d(r - LA).  0 

The integral of the last term cancels out the contribution of E[2. 1], 

and we obtain 

E [Y(t*) S(u) ] = 

*-) 	aLA rl at*1 	1 	) 	1 aLAr_ ea(t LA 	e- Ae 	(u-LA ) 	e 	(- LA t* - LA' 	a
e 	

L t* LA 	-LA ] ] 

* A(u - LA)  r 	 1 	e 
-at 

1 
a 	L  LA 	t*  *". LA 	t* - LA 	LA 

(L 	u)  (1 e-at*).  
aL ... (c3) 
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ABSTRACT 
The properties of the Ito stochastic differential equation give a simple 

derivation of differential equations for expected values of arbitrary functions 
of stochastic systems. In particular, differential equations for the moments 
of the system are. derived. It' is cautioned that care must be taken when 
applying these results to noisy systems occurring in practice. 

§ 1. INTRODUCTION 

CONSIDER a continuous-time, continuous-state stochastic system with 
state vector x(t). Assuming the system state x(t) constitutes a Markov 
process, then the independence of successive increments of the noise 
process generating x(t) allows us to derive differential equations for the 
expected value of arbitrary functions of x(t) and time t. The most common 
application is in the derivation of differential equations for the moments 
of x(t). 

A stochastic system which is a continuous Markov process (a diffusion 
process) is described by an Ito stochastic differential equation (s.d.e.). The 
properties of Ito equations are discussed in detail by Doob (1953, Chaps. 6 
and 9), and the properties we need are given in eqns. (4) and (5) below. In 
this note we shall consider the system x(t) defined by the Ito.  s.d.e.: 

dx(t) = f (x,t)dt + F(x,t)dw(t), 	 ( 1 ) 
or in component form : 

dxi(t) = f i(x,t)dt 	Fik(x, t) dw k(t), i = 1,n, . 	(1'):  

where 
x(t) is the n-dimension state vector of the system, 
x(0), or its probability density function P(x, 0), is given, 
f (x,t), F (x,t) are the known system dynamics, with components or. 
• elements f i  and 4, 

d. is a stochastic increment in the Ito sense (Doob 1953, p. 273), 

all sums, e.g. E, have a lower limit of 1, and the indicated upper limit,. 

t Communicated by Dr.. A. T. Fuller 
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and 
w(t) is an nt-dimension Wiener process with the following incremental, 

properties 

	

E[dwi(t)] = 0, 	 i = 1, m,. 

E[dwi(t) dw;(t)] =2Dij(t) dt, i,j = 1,7n, 
or 

E[dw(t) (dw(t))T] = 2D(t) dt, 

where ( .)T denotes the transpose of the vector, or matrix argument. The 
Ito s.d.e. (1) usually assumes w(t) is a unit parameter Wiener process, in 
which case 2D(t) = I, the identity matrix. The present choice of Wiener 
process allows arbitrary scaling and cross-correlation of the noise sources 
in a convenient form. The present form is equivalent to one in which the 
2D(t) factor is 'absorbed into- the F matrix, and w(t) i,.8 a'unit parameter. 
Wiener process. The formal derivative of w(t) is the common concept of 
white noise; and in the present notation, 2D(t) is the intensity matrix or 
the uniform power spectral density matrix of the white noise (in units 
of (noise)2  per cycle per unit time (Fuller 1963)). 

Some authors prefer the symmetrical form of stochastic equation 
introduced by Stratonovich (1966): 

771 

	

ClXi(t) =fi(x, t)  dt + E  Fik(x,t) dwk(t), i = 1, n, 	(1
n ) 

Ic 

where d. is a stochastic increment in the Stratonovich sense. The relation, 
between the Stratonovich s.d.e. (1") and the Ito s.d.e. (1') when they 
define the same diffusion process x(t) is that 

" "'" aFik(X)t)  

	

fi(x,t) = fi(x,t) +E E 	Ffi(x, t) D4.0), i = 1, n. 

	

j k,1 
	ax 	

F• 

The probability density P (x ,t) of the system (1) satisfies the Fokker—
Planck differential equationj: 

OP 	
— 
, a • 	a' 2 

791- 	 Pl 	 [(FDET)ij p], 	 (2). 
i 	xi 	 ij a/Xi.  l/Xj 

with suitable initial conditions P(x, 0). The notation ( 	denotes the.  
2,:jth component of the matrix aremment. 

Consider an arbitrary function G(x, t) whose partial derivatives Oxixi  and 
01  are jointly continuous and bounded on any finite interval of x and 
The expected value of G over x space, E[0], is given by the integral of GP 
over all x. E[G] is then a function of time, and a differential equation for 
E[0] can be obtained by multiplying both sides of (2) by G and integrating 
by parts to eliminate the x dependence. This technique seems to have been 

In the sequel we will drop the (x, t) parameter dependence, with the under-
standing that all functions of f (x, 1), .10(x, 1)z  D(t), P(x, t) and G(x, t) are to be 
evaluated at these points. 
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first mentioned by ]3ogdanoff and Kozin (1962) in connection with the 
moments of linear systems, and has been used by several authors since—,  
for example, Ariaratnam and Graefe (1966) and Sancho (1965). 

The purpose of this note is to present an alternative method of deriving 
a differential equation for E[G]. The method given below uses the 
incremental properties of the Ito s.d.e. (1) directly, and avoids the 
procedure of integrating the Fokker-Planck eqn. (2) by parts. Although 
the method we present below is not a difficult result of continuous 
stochastic process theory (for example, see the related result of Skorokhod 
(1965, p. 96)), we introduce it here as a simpler method than that in 
current use in the engineering literature. 

§ 2. THE GENERAL RESULT 

Consider an arbitrary function of x(t) and t, G(x,t), whose partial 
derivatives have the finite properties mentioned above. In this Section 
we derive a differential equation for the expected value of G(x, t);  E[G]. 
Interpreting S . as a finite forward increment operator over the time 
increment St, we expand SG(x,t) by Taylor series and obtain: 

n SG = E G Sx•+- E Gs Sxi Sx • + Gg St + o(5x5xT)+ o(St), 	(3) 
t 2 • • 	3 	• y2 

.where the subscripts ; and t denote partial derivatives, and o(.) denotes 
`of order higher.  than ( . )'t. 

To take the expected value of (3) we will need the following properties-
of - the Ito s.d.e. (1):. 

E[SxIx] = f St +o(St) 	 (4) 
and 

E[Sx Si'.  I x] = 2F DFT St + o(St). 	 (5) 
From the property (5) we see that Sx SxT and St are of the same order 

for the diffusion process (1), and so we will absorb the error term o(Sx SxT) 
of (3) into o(St). Then taking the conditional expectation of (3) given x, 
we have : 

BOO x] = E Gs-A& +I' Gx,x ,(FDRT ).0.  St +Gi at +o(St), 	(6) 

as G is a non-random function of the (random) variable x. Then taking 
the expected value of (6) we have, as E[E [S GIs]] = E [8 G]: 

2L 

E[SG] = EE[Gx,fi ]St + E[Gx,xj(FDFT)ii ]St+ E[GI ]St+ o (St), • (7) 

provided the distribution of x(t) is such that the indicated expected values 
exist. Now (7) is a non-random equation, and so when we divide by St 
and pass to the limit St 0, and.  interchange the linear E[.] and d. 

j For example, o(St) denotes terms with the limiting property: 

limit 0(50 = 0. 
st-).o 81 
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operators on the left-hand side, we obtain the ordinary differential 
equation: 

Xi 
4. 	j`i'lj(F.P.P.);j1+ E[G0 ] 	(8) 

-for the expected vAlkke a flee function G(x, t), where -d. is now the usual, 
difi,_xential operator of ordinary differential equations. 

§ 3. EQUATIONS FOR THE SYSTEM MOMENTS 
The formula (8) is useful Cm' obtaining differential equations for the 

moments 9nciA,..,,,,(t) of order N of the system (1), where 

clx,".4„(1) = E[G(x(t))], 
G(x(t)) = xici(t)x,c2(t) .•.. x„c.(t), 	 ( 91 
c1, c2 , 	cn  are non-negative integers satisfying 
c1d-c2+...+0„ = N, N = 1,2,..., 

and 
G is no longer an explicit function of t (i.e. 	= 0 in (8)). 
In particular, the equations for the first few moments are: 

First moments G(x) = xi 
ELM; 	 (10) 

second moments G(x) = x.12  or xi  x;  
91tc,..2(t) = 2E[xi f i ] + 2E[(FDFT)ii ], 	 (11 a) 
Thei_tej_i(t) = E[x;  f j  + x j  + 2E[(FDFT)i, j1; - 	 (.11b) 

Third moments G(x) = xi3  or xi2 x;  or xi  x j  xi. 
= 3E[x.12 fi ] + 6E[xi(EDFT)ii ], 	 (12 a) 

91bci=2,c3=1(0 = E[2xi  x j fi  + 	+ 2E[x j(FDFT)ii+2xi(FDFT).0 ], 	(12 b). ..  

?kJ-Lei-1,4=1M = E[X j  Xkli 
-1-2E[X k(FDFT )ii+ x j(FD.FT )ik + Xi(FDFT ) jd. (12 c) 

In each .case, suitable initial condition ;  are obtained from x(0) or 
P(x, 0). 

The higher moments follow by substituting the appropriate function (9') 
of G(x) into (8). On the assumption that/ (x, t) and ..F(x, t) can be expressed 
as polynomials in x with time-varying coefficients, the expected values on 
the right-hand side of the moment eqns. (10)-(12) reduce to linear functions 
of the moments (9). Then the eqns. (10) to (12) and all higher order ones. 
form an infinite set of simultaneous linear first-order differential equations 
for the moments. 

These are not very useful equations, however, unless the simplification 
of system linearity applies. The system (1) is said to be linear-if f (x, t) and, 
F (x,t) are linear functions of x (or trivially independent of x). Only in 
this case does the equation for the Nth-order moment involve moments 
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of order N or less on the right-hand side, and eqns. (10), (11), ... can be. 
solved explicitly for increasing N. Furthermore, if f(x,t) is linear in x 
and F(x, t) independent of x, then x(t) will be Gaussian and, only the first 
two moments will be .neededt. 

§ 4. EXAMPLE: MOMENTS OP A SECOND-ORDER LINEAR SYSTEM 

As an example, consider the second-order linear system with stochastic 
coefficients discussed by Ariaratnam and Graefe (1965, p. 247, eqn.. (24)), 
where, in terms of the coefficients of eqn. (1): 

f,= x2 , 
f2  =—a1 x1-a2 x2,.  

Fin = 0, i..= 

21 = 1, 
F22  = - 

F23  = - X2. 

Then from (10) we have the first-moment equations:; 

= ETA] = mo,i(t), 
ko,i(t) = 	= — a1  mi,o(t) — a2mo,1(t), 

and from (11) the second-moment equations 

1h2,0(t) = 2mia(t), 
41211(1) = mo,2(t) — 	— a2m1,1(t), 

#to 2(1 ) = 2D22m2,o(t) + 2(2D23 — a1)  m1,1(t) + 2(D33 — a2) 	(t) ,  
+ 2D11 — 4D/0  21,0(t) — 4D13 n60,1(t)•. 

• The last equation points out misprints in a result of Ariaratnam and 
Graefe (1965, p. 247, eqn. (27)) and the same result of Sancho (1965, p. 524). 
The factor 2 immediately preceding D23  in eqn. (13) is missing in each of 
these papers. 

§ 5. CONCLUSIONS 
This note derives a differential equation for the, expected value.of 

arbitrary function G(x, t) of a continuous stochastic system x(t) and time.. 
It is assuMed that the stochastic system is Markov and is defined .by an 
Ito stochastic differential eqn. (1). The differential equation for E[G] is.  
obtained simply by substituting the coefficients of the stochastic system (1)' 
into the general result (8). 

By choosing functions G(x, t) according to eqn. (9), differential equations 
are obtained for the moments of the stochastic system x(t). Equations for 
the first three moments have been written down in eqns. (10) to (12) and 

t Non-GauSsian initial conditions *ill make x(t) temporarily non-Gaussian, and 
more moments may be needed. 

(13)- 
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equations for the higher-order moments follow directly. For a givei,, 
stochastic system, the moment equations are obtained from the coefficient13•:,  
of the Ito s.d.e. defining the system, by substituting the coefficients 
the appropriate eqns. (10) to (12). This procedure, and the derivatio4 
which led to it, is simpler than the earlier method of Bogdanoff an 
Kozin (1962) which involved integrating the Fokker—Planck equation by 
parts. 

It should be emphasized that the results of this note (and the method 
of Bogdanoff and Kozin) come from the properties of continuous Markov,-.: 
processes, as represented by the Ito s.d.e. (1). However, the system x(t 
of eqn. ( 1 ) has properties which preclude the system from being physically.;`.; 
realizable (for example, x(t) is nowhere differentiable). The system x(t) 
exists only as a mathematical concept, convenient for analysis purposes, 
and any continuous stochastic process arising in physical or engineering 
situations has certain smoothness properties which prevent it from being 

continuous Markov process. A good. account of the differences between 
continuous Markov (diffusion) processes 'and physical processes has been 
given by Gray and:Caughey (1965) and Kulman (1966),3and recent research 
has indicated that under certain conditions a physical process can be 
approximated by a diffusion process. The nature of this approximation 
has been studied in detail by Clark (1966), and some extensions and 
examples are given by Cumming (1967). Using such an approximation, 
an approximate expression for the moments of a physical random process 
can be obtained by the methods of this note. 
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This note derives the output autocorrelation function and power 

density spectrum of a maximum length pseudo random binary sequence 

passed through a linear first order filter. This derivation points 

out an error in an earlier paper by Roberts and Davis. • 
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1, Introduction  

We consider a maximum length pseudo random binary sequence (PRBS) 

x(t) obtained from an N stage shift register with a digit period of 

seconds. The PRBS has an amplitude of +1 or -1 and a period 

Lb =,(2N  - 1)0 seconds. 

We consider the output y(t) of a linear firstr 	order filter of 
T%-t,CYCne •isj 

- impulse response g(T) = ae aT where T = a-1 seconds is the time constant 

of the filter. We derive the cross-correlation 0y . (s), the output 

autocorrelation 0 (s), and the output power density spectrum 0 (f) when 

the input to the filter is the PRBS x(t). 

This has been done previously by Roberts and Davis El] , but an 

omission has restricted the range of values of filter time constant 

over which' their result is accurate. Sections 2 and 3 below will 

parallel'Ahe derivation in reference [1] . 



f(T — kLb), 
=- 00 

2. Cross-correlation and Output Autocorrelation Function 

'From equation (1) of reference [1] , the output autocarrelation 

function 0 (s) is given by a double convolution of the filter impulse 

response and the input autocorrelation function Ox(T): 

co co 
s  a  e_a(u_s) 	 aT 

0(s), = 	0x(u Ti) a e» 	 dTi] du 

.s 

(1) 

As 0 (s) is an even function and periodic with period L6, it must only 
v. small e 

be evaluated over the interval 0:: S 422L6. The interior integral in 

brackets in equation (1) is the cross-correlation function 

0yx (u) = E Pi) x(t u)..] 	 (2) 

and will be -evaluated first, .The autocorrelation of the, input PRBS is 

A.A.14‘.  

L 4.  1 

Pix(T) -L + L6 (3) 

where f(T) = u_2(T 6) - 2u_ (T) + u_(T - 6), 

u-2(T) being the unit ramp function.. The last term of equation (3) 

consists of an infinite series of triangular spikes centred at T = kL61  

k = -cal  ... -1, 0, 1, 2 w 	. For example the central spike (k = 0) oo  

is 

	

f(T) = 6 	I'd I 
	-6 	6, 

	

= 0 	elsewhere. 
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Cross-correlation function  

The cgltss-correlation function (2) must be obtained for all 
(1.);+t, revq.c.1. 

positive u, but it is also a periodic functionAand so must only be 

evaluated for 0.4 u 4iLE). It is convenient to evaluate this function 

seperately in 3 segments; 

	

Segment 1, 15 	u 4-Lo - O. 

The integral for the cross-correlation function 

o4 

	

0 (u) = 	0x.(u - -r3.) a e-6*T1 d-r . 	1 

1 
consists of a constant - r coming from the same term of equation (3) 

plus a contribution obtained from the.convolutiOn of the filter 

1 weighting function a e 	and all those'triangular spikes appearing 

in (3) for which Ica; 0. The central spike (k ='0) contributes 

L + 1 2 
ao  (cosh (0) 1) e-au 

to the integral (4), and(each of the other spikes (k = -1, -2, ... -Q0) 

contribute eakLE time's the quantity (5).to the integral (4). But the 

contribution of all these spikes can be grouped together by the infinite 

. series property 

-akLO 1  e  

1 - e 

Thus the sum of all contributions to the integral (4) is 

(4)  

(5)  



	

0 (u) = - I: , 1 L + 	2 cosh(ab) - 1 -au 

	

yx
+ 

L 	
e 	

e -aLb 	2 u 	Lb - 8. 	(6) 

This is essentially. the same expression.obtained by Roberts and 

Davis, [1] equation (2). However they do not evaluate O (u) over • - 	yx, 

the following two segments. 

Segment 2, 0.54 

A portion (8 - u long) of the k = 0 spike of Ox(u 	is now to 

the left of T •= 0 in the integral (4). In this case, it is convenient 

to rewrite (4). as. 

.00 
-a 

0 (u) = 	01c(u -T)ae yX 	
T1 

Ti d - 

u--!b 	 u-b 

The first integral of (4') now includes the whole of the k = 0 

spike along with all negative k spikes as before, and its evaluation is 
• 

given by equation (6) as the e au factor of (6) automatically allows 

for the change in the low r integration limit of'(4').• The second 

integral of (4') is/ 

o 
L-4-1 	 -aT 

ic (6 - u T) a e 
T1 

u-b 

+ 1 	I[ u 	ja(118))] 9 
	 (7) 

and subtracting (7) from (6)we have 

:÷ -Flame 	2terr. 	C 	i±S 	(etc 

Cow r~ ioikt coy, 	k S _e 	c_i cte. GO. 	ire 	e 	( a ) 

0 - T1 
• -at1 a e T

1 
• 	(41) 



° 	(U) Yx 
_- 1 

L + 1 

L+ 1 	2 'cosh(a6) - 1 	 -au 

6)] (8) 

L 

1 
a6 

a6 	1 	e-aL6 	e  

a(u - 6) - 1 + e-a u  L 

o u. 6. 

Segment 3, L6 - 6 u 4  LO. 

A portion-(u L6 + 6 long) of the k ='+1 Spike of Ox(u T1) is 

now  to the right of Ti  = 0 in the integral (4), but in evaluating (4) 

to obtain the result (6) we had not included any contribution of the 

k = +1 spike. Thus to equation (6) we must add this contribution of 

part of the k = +1 spike, which is 

u LS + 
•L-P-I  

T 0 
''' (u,-L6+6-t)ae ""d'r 1 	1 

_ L 	1 1 	1 _ -a(u - Lb + 6) 1 

	

L 6 	a u - L6 + 6 — •  (9)  

Then adding .(9) to.(6) we obtain 

0  (u)  = 1 L+ 1 	cosh(a6) - 1 -au 
Yx 	L L ab 	 e-aL6 e  

L + 	1 +.-17ia7  filku - L6 6)- 1 e-a(u 	6)d 

 

L6 7  e) 	u 

 

(10)  
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Output.autocorrelation function 

To find the output'autocorrelation function we must evaluate the 

integral (1) 

4:33 

0 (s) = 
S
a e

-a(u.- s) 	
yx(u) du 

over the range 0 s iLb, taking care to use the appropriate segment 
ixrci)‘;te 	am.? 	- 

of the periodic function 0 (u) over the 	 'S yx 

integral. The integral .(11) can be broken into 3 parts 

0 (s) = I1 
 (12) 

where Ij  is the contribution—to (11) of the j:th segment of the function.  

0yx (u), remembering that each, segment is infinitely repeated along the 

u axis at intervals of Lb. 

It is convenient to evaluate the integral (11) for 3 cases of the 

shift parameter s. 

Case 1, s.= 0 

The integral I1  of (12) is obtained by integrating (11) over the 

infinite series of segments of the u axis 

b + kLb 	Lb - + kLo, 	k = 0, 	2 	 



_ 8 _ 

The first term of this series (i.e. k = 0) is 

Lb b 

1,0 = a e-au 0 (u) du, yx 

where 0 (u) is taken from equation (6). The result is yx 

1 1 -a(L6-6) -e-ab 	L + 1 1 cosh(a6) 11  -2a6 -e  -2a(L6 - 6)1 I1,0:  7 L e 	L a6 1 e-aL6 

Subsequent terms in this series are 

I1 = 

Lb - 6 + Ica). 

6 + kL6 

e-  au eau  0 (u) du, 
Yx 

k = 1, 

 

 

-aka) I1,0 

as 0 (u) = 0 (u + 	As before, the'infinite series has the yx 	yx 

evaluation 

= 
k=0 

0 
llk 	e-aL6 (15) 

Paralleling this development for I1,  2 is found by first evaluating 

       

       

6 

...: 1
1.7 I 	= 	e-au 0 (u) du 

2,0 	yx 
L + 1 1 cosh(a6) - 1  e-2ab1. j L a6 1 - e-aL5  

0 

      

L 	
a6 

+ 1 [ 	-2a6\] e (1 e  ) 
- 	2a6 

(i6) 

where 
	

(u) comes from equation (8) and'the rest of the series sums 
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to give co 

- 2.0  I 	
T 

2 = 	-2,k - 1 	e -aLb k=0 

(17) 

• Similarly, L5 

I
310 

= 
	

a 

Lb - 5 

e -au 0Yx (u) du 

1 r e-aL5 
=  

e-a(L5 - 

L + 1 1 cosh(ab) -1  
L a5 1 - e 

-2a(Lb - 	
e-2aL5 ] 

L L 	+ 	%-,';' tab 
1 [ -aL5 	1 	-a (L5 - - e-a(Lb + b))] 1  

(18) , 

where 0 (u) comes from equation (10) and the rest of the series sums yx • 

to give 
I 

(19) 

 

1 - e k=0 

Summing the 3 segments (12) using the results (13) to (19) we 

.obtain the mean square value of the filtered, PRES y(t) 

0 (0) 	L+ 1 1 cosh(a5) - 1  (1 + e-aL5) y 	L ab 1 - e-aLb 

L + 1 ( 
	a 
..sinh(a.5) 	1 - 1) - (20) 



-10- 
r 

Comparing this result with equation (4) of reference l 
7 
 the 

6  

factor (1 e-aL6) in the first term of equation (20) is missing in 

Ll • -)This means the results are equivalent.  only for sufficiently 

large values of aLb. In the example discussed in 113 the value 

L = 127 is used, and the result given is only accurate for filter time 

constants T = a 	10b. 

Our result has been checked computationally by simulating the.  

filtered PRBS exactly on a digital computer (i.e. to 8 digit word-length 

accuracy), and estimating 0y(0) by sampling. y(t) every-41-0-5 seconds. The 

result (20) was checked for L = 127 and values' of filter time constant 

in the range .64 T 2005, and the accuracy of 0 (0) was better than 

0.1%, uniformly in T, where 0.1% was the order of accuracy of estimating 

0y(0) in the simulation. 

The result (20) for the mean square value of the filtered PRBS has 

also been checked independently in [2] where an approximate expression 

for the transient statistics of a filtered PRBS is developed (in contrast, 

no approximations are made in the' analysis of this note). The agreement 

with equation (20) is better than 1% except for low values of the filter 

time constant (T .c., 256) when the relevance of the results of [2) to 

equation (20) diminishes (the results of [2] approximate the mean 

square of the sampled filter output, y(nb), n = 0, 1, 2 ...., while the 

present results represent the mean square of the continuous filter 

output, y(t)). 

'Case 2, 0 LS, s< bo 

The integral (11) can be broken up into 2 parts, 



9fy(s) = a e-a(u - s 0yx (u) du - a e-a(u - s (u) du. 	(21) yx • 

° 

The first integral of (21) is recognised as eas  0y(0), and the second 

integral is evaluated using 0 (u) from (8). This is similar to 
Yx 

equation (16) and has the result 

a e -a(u s) -  0 (u) du = yx 
L + 1 1 'cosh(a6) - 1  
L a6 1 - e-aL6 

-as as - e 
• 

L + 1 as - (1 - e 	2a6 
-as 	e°6 	-2as, 	s as 

L e + 	- 	) - -6- e '  

 

- L (1 _ 
eas). 

• (22) 

 

• Adding eas  times 900) of equation (20) to equation (22) we obtain 

(s) = L 	1 cosh(a6) - 1  (1 	e-a(L6 - 2s 	-as. 
L a6 1 - e-aL  6 

• 

L + 1 [sinh(a.6 - as) 
a6 	(1 - -2) 	1 

L 	 L' s 4 6. 	(23) 

Case 3, 6.4 s iL5. 

The integral (11) can be broken up into 3 parts, 

0,1 

0 (s) (u) du - a a e-a(u - s)  e-a(u 
Yx 

 

0 

s 

a e / -a(u - s) 

6 

yx (u) du 

Sd (u) du. 	 (24) • yx 
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The first integral of (24) is eas  0 (0), and the second integral is the 

same as equation (22) with an upper integration limit of 5 instead of s. 

This contribution to (24) equals 

• 
L + 1 1 cosh(ab) - 1 r e-tab] as L + 1. as r  . e

ab 
- 1 	e - 	e 	1 - 	(1 - e-2ab L adi 1 - e-aLb tab 

1 r e-ab ri 	 eas 
L • 

(25) 

The third integral'of (24) is similar to equation (13) and its 

contribution to (2L-) equals 

L 
L  
+ 1 ab 
	 L 

1 cosh(ab) -. 1 [l e-2as - e-tab 	e 	- 	ei as 1 F -as 	-ab 1 eas.(26)  

1- 

Summing eas times 	(0) of equation (20) to equations (25) and (26) we 

obtain 

0 (s) 	L 1 1 cdsh(a6) - 1 (1 	e-a(Lb - 2s)) e 	- 
-as 1 + 	-- 

Y 	L 	ao 1- e  aLb 	L' - 

b 	s 41L5. 	 (27) 

This result is the same as that for Case 2, equation (23), except 

that the middle term of (23) is not present in (27). 

.Equations (23) and (27) for the autocorrelation function of the. 

filtered PRBS can be compared with equations (3b) and (3a) respectiVely 

of reference [1] . It is noted that the factor (1 e-a(Lb - 2s)) in 

the first terms of equations (23) and (27) does not appear in reference 

[13 . Again this restricts the range of values of filter time constant 

T over which the expressions (3a) and (3b) of reference [1] are 

accurate. Equations (23) and (27) have been checked computationally for 



-'13 

= 127, b T g.ei 2006 and0 s 56 and were found to be correct to 

within the accuracy of the simulation (0.1%). 

It should be mentioned that the examples.  quoted by Roberts and 

Davis [1] involvea values of filter time constant in the range 

0.96 T 6.86 and as their results are accurate over this range, the 

results of the present nate do not affect the discussion and conclusions 

given 'in [1] . 



Lb 	
nr T 

x(T) 2Lo dT,  
2 (28) 

3.. Out-out Power Spectrum 

  

 

The power density spectrum (f) of the PRBS x(t) can be found 

from the Fourier transform of the periodic autocorrelation function 

Ox(T), equation (3). The transform relation for the discrete spectra 1.., 

is 	[3, page 12.1 	
LE) 

	 4..y.sa YiN e \ t*Cd -;:"re re. 	La 

2 

0 

where r is any integer. Evaluating this expression gives 

2 
. rn 

0 Lr) = --- u (f) 4 774 / ...% 	1 	 L+  1 iein -17  	, uo(f - yi), 
L2 o 

	

.„., 	L • .r.x 	 rn 

	

= -.... 	L 

(29) 

r/O 
' r ' where u (f - 	is a unit impulse function centred at f = o 	Lb 	 'Lb°  

The power density spectrum 0 (f) of the filtered PRBS y(t) can be 
Z.Y 

obtained by multiplying the inpllt spectrumI(f) of equation (29) by the 

square of the modulus of the complex system function 	 of the 1 + j2nfT 

filter (as in reference [1] ), or by Fourier transforming the output 

autocorrelation function 0 (s) of equations (23)'and (27). Either 

method giveS the result 

2 
co 

nr 	
rn) 

L ' 

 1 1.1' • 	:L._  L + 1 sin 
y 

p L 	 (f) = 	,..(f) + ..L 	-77 -74 
• rn 

r= -0 L 	L 	1 +  
r/0 	/ 

1 

(2nr 	Lb 2 1)2 ‘uo(f - --11) 
L, 	ao' 

(30) 
• 

 



4.4 ,4=4.AaA 
The input and output power spectra of equations (29) and (30) 

indicate misprints in the similar equations given by Roberts and Davis 

[11. In equations (5) and (7) of Ell , the denominator immediately 

following the summation sign is L instead of L2. 

The expression (30Y'for theoutput power spectrum was checked by • 

summing the series of equation (30) for. ir14250 for the range of 

filter time constants 5C::T 2008. The resulting value of signal 

power obtained agreed with the mean square value of y(t), equation (20), 

to within 0.1%, uniformly in T. 
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