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ABSTaACT 

Chapter 3 of this the.is contains tables giving the reduction 

of the SU(6) direct products 2§(0,26_,, 	22022 and 

the partial reduction of 70 072 . 

Chapter 3 and the preceding chapters also treat, in detail, 

the structure of the SU(6) algebra and associated problems such 

as subgroup reduction as well as more technical matters such as 

phase conventions. 

Chapter 4 uses special techniques to investigate the effect 

of 22-like symmetry breaking on the predictions of SU(6)w  for 

two body scattering; we are unable to avoid some of the poor 

results found in the limit of exact symmetry. 

The fifth chapter 9resents a model for the weak interactions 

of baryons based upon the mixing of 56(L=0) and 70(L=1) irreducible 

representations of SU(6) x 0(3). 
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INTRODUCTION 

During the roast five or 's5x years group theory, extended from 

the long established SU(2) isospin symmetry, has provided an amw4-

ingly flexible and fertile base from which to initiate forays into 

the elementary particle -,1hysics battle field; in most such essays 

the compact SU(3) symmetry has played a central role
1. One of 

the major reasons 'for successttirrus gained has been the organizational 

or unifying ~rower of the group theoretic approach allowing as it 

does an at least partially integrated view of strong, electromagnetic 

and weak forces; indeed it might now be claimed that the true 

contribution of groups or algebras is a coherent but terse 

organisation of large areas of data - the earlier ideas of 

generalised gauge invariance2 contrasted - Yith, for example, a 

later suggestion that (es,;ecially higher) symmetry schemes may 

arise phenomenologically as a result of unknown interactions at 

a fundamental level indicates perhaps a changing attitude to the 

question of whether or not group theory itself says any thing 

about primary dynamics, 

1. :;;. Gellmann, PhysaRcyv., 122, 1067 (1962) 

2. See, e.g. J."Zichwingers 1962 Trieste seminar lectures and 

also the 1963 I.C. thesis of P.A. Rowlett. 

3. J. Schwinger 1965 Trieste seminar (unpublished) 



70 

Again the idea of an internal symmetry has often been easily 

wedded to other independent physical concepts, although at a 

deeper level, the more sighificant union of internal and space 

time symmetries in a non trivial fashion has produced only deep 

conflict, not yet resolved. 

A third reason for the popularity of group and algebraic 

methods has been their capacity to sustain wide ranging and 

detailed calculations - although these are usually of a comparative 

nature and always limited in their success by the inherent approxi- 

mations. 	It is with the mechanics of calculation and some of their 

results that this thesis is concerned - we are further restricted 

to compact symmetry scnemes, or more precisely schemes where 

multiplets contain a finite number of particles. Non-compact 

systems employing representations containing an infinite number of 

particles have also been studied but are not noted for ease of 

computation. 

The SU(6) croup studied here was first seen as a direct 

extension of the sLoermultiplet theory of Wigner giving a partial 

non relativistic combination of internal, now SU(3), and space time 

symmetries4. A crucial departure from signers work was in 

multiplet anignnents. The low lying baryous and mesons did not 

occur in the fundamental group representation (alsa the case for 

4. 	F. Gersey and L.A. Radicati. 	i-hys.Rev.Letts., 13, 173 (1964) 

A. Pais ibid, 12, 175 (1964). B.Sakita, Phys.Rev.,136, B.1756,194 
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SU(3))5  and the sue.:-egTes of SU(6) consequently gave considerable 

impetus to the quark - or composite - model of elementary 

particles which does then relate the SU(6) irreducible representation 

6 to postulated physical states, quarks. 

Our first three chapters present the mathematics of this 

group and culminate in the reduction of the direct product for the 

most important physical multiplets - a new feature of SU(6), 

carefully elaborated here, was the increased involvement of the 

unaerlyrng symmetri6 or permutation groups due to the subgroup 

decomposition required by the physics. We also take care with 

the notmaous and elusive question of phases and phase conventions. 

Given the SU(6) -rlieme an immediate problem, urgently 

attacked, was that of finding a relativistic counterpart, 

corresponding to the incorporation of the Poincare group, and not 

just one of its little groups, with SU(3). 	It was hoped that, 

for example, a clearer understanding of symmetry breaking might 

result, since the mass operator, now to be included in the 

symmetry scheme holds in its non degenerate spectrum perhaps the 

key to this problem. Unfortunately 00Ratfeartaigh's
6 

theorem on 

5. M.Gollmann, Phys.Letts., 8, 514 (1964) 

G.Zueig, unpublished Cern, notes. 

6. L. OIRalfearta.gh, rhys.Rev., 139, B.1052 (1965) 
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the impossibility of f4nding a discrete mass spectrum in an exact 

Poincare group containing sylametry brought this work to a negative 

conclusion. 

Neglecting this shortcoming, considerable development of the 

relativistic theory occurred. It was found moreover that many of 

the predictions of such schemes could be deduced from a study of 

certain compact subgroups. One of these was again SU(6), the so 

called SU(6)
w and in Chatter 4 we present our• own calculat!.ons c) 

the predictions of this group for sowe two body scattering processes 

in the presence of various types of syenetry breaking. 

parallel line of development also suggested by Gcllmann1 

regards the synmetry I-e-perties of trans;ktion operators to be 

more basic or at least simpler than those of the single particle 

states between which they operate and on which was built the group 

theoretic approach. Perhaps the most noted success in this field, 

that of current algebras, was the calculation of the weak axial vector 

to vector coupling constant ratio7. Essentially the compact 

algebra SU(2) x SU(2) was employed so that the transition operators 

involved had irreducible SU(2) x SU(2) transformation properties 

whilst the (nuclear) states used were algebraically irreducible 

only under the isostin subalgebra, and were in fact infinitely 

reducible under SU(2) x SU(2). From this success arose atiempts 

7. 	S.I 4,11er, Phys.Rev.Ltees., 14, 1051 (1965) 

W.I.eisberger, Phys.Rev.Letts., 1A, 1047 (1965) 
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to approximate stal 7.s a combination of a finite number (usually 

two!) of irreducible roprcsentations, and in Chapter 5 we show an 

application of the SU(6) aigebra and some of cur Tables to this 

question of representation mixing. 
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CHAPTER 1 

ALGEBRAIC AND OTHER PRELIMINARIES 

This chapter comprises a miscellany of results and definition-

needed in the sequence. We emphasize that there is no attempt at 

either an elementary or a complete discussion of the material - 

there are far too many treatments already in existence to justify 

such delay. Discussion of phase conventions ana of the ;u11 nature 

ox the dual relationship between continuous and symmetric group 

is perhaps less readily available and on these two questions we 

give more detail. 

101 Canonical forms ior simple Lie algebras 

The above remarks apply especially in this section; in 

particular we have not thought it necessary to provide a glossary 

of Lie algebra terminology. The book by Jacobson treats the subject 

in full mathematical rigour 7  whilst there also exist many well 

known reviews.3  

We shall rogard a Lie algebra as a set of matrices which is 

closed under (a) commutation of any two elements, (b) addition and 

subtraction of any two elements, (c) multiplication by arbitrary 

elements from a base field; the specification of this field is 

esLential in the transition from algebra to group and receives 

brief mention below 	1.2). Given a (matrix) basis for the 



algebra all element- 1,L=,y be obtained by the operations (a), (b), 

(c). 	Then, 

(1) There exists the fcllLwing canonical form for the commutation 

relations (C.R.) of a simple co.aplex (i.e. over the complex field) 

Lie algebra L of rank 1 	L contains a tartan subalgebra 

with 1 linearly independent mutually commuting elements. The 

remaining ('non diagonal') operators (N-1. in number if L has order 

N) may be split into two sets, raising operatcr:; Ea  and Lovering 

operators E_a  (also collectively denoted shift or ladder operators), 

and the C.Rs are 

[1-1. 9 E.

j

] 	= 0, 	i,i = 17 ..., 1 	H ..7 ri 

I +a 

EL r.
E  ] =  

a, -a 	i 1 	1 

(- 1- pj  = l'apEa43
for any + a, + - 

.h 
where r.(a) is the 1 	component of the root vector i-(6.), and 

N_ is a c-number, equal to zero unless r(a) + r(p) is a 
00 	

root. 

(2) The coittplete algebra is generated by a subset of elements 

2 1 
associated with the simple roots (see especially Dynkin

.  4 These 

are the generators 	where r(a) is a simple root (there are 1 

of these) and for this system we may write, with ha  = r(04).11 

-(a) a simple root 

CZ 	E ]r a  = 	b 	t (a) a simple root) 	I.2a 
a -0 

12. 
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' 
E
IP 
 ] = 	go:). TO) E 	( (a) a simple root) 	1,2b 

a  
and 

[E;cc 	= 	as before 	 102c 
aP aq-P 

(Equation 1.2c prevents 1.2a, 1.2b from forming a subalgebra) 

Equations 102a 1.2b illustrate the remark that a simple Lie algebra 

of rank I can be viewed as 1 non-orthogonal SU(2) Lie algebras. 

(In the following we often represent an algebra by its customary 

physical symbol, e.g. SU(n) rather than A
n-1 	

-;.M1.1 same term 

may also describe a related group.) We have introduced both 1: 

and h since this is closer to physics, e.g. in SU(3) we have 

13  and Y for H
1 
 and H

2 
 whereas h

1 
= 2Ii1  4-,/374, H

2 
h = 111

1 
- 

1512 H2. cf,:';' 1.30  

(3) The numerical factors occurring in the commutation relations 

(the structure constants) are all real. 	The numbers C(a)er(p) 

are completely determined, for a given simple L, only upto an overall 

normalization constant. The commutation relations determine only 

2 
Nap  - for each alP 	, must be chosen consistent with the C.R. 

and consistently adhered to (ch. Behrends et al ref. 3'). 

Different allowed choices produce isomorphic Lie algebras. 

(4) Corresponding to the sets E , E 	we have the positive roots 
a -a 

r (a) and the negative roots r(-a) = -r(m). The concept of a 

positite root is defined with respect to a certain arbitary orderin 

of elements H. in t.e Cartoln '7ubalgebra and is extended also to 
1 
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weights in a arbitrqry irreducible representation. 	(Recall that 

a root vector is a weight vector of the regular representation.) 

It is important to state iAr, ordering in defining highest weight, 

and differences exist in the literature on SU(3), where the common 

choice is the order (I
31

Y) used by DeSwart 5  and by 3ehrends et 

3, 	 3, 	;4. 
al 	butkY,I

3 
 ) has also been i.sod, e.g. Salem 	, Rashid 	. 

See also 1.9. 

(5) The 1 simple roots have non positive scalar products whose 
2 values may be displayed in a Dynkin diagram ; further if r(P) 

is any positive root then r(3) = 
a=1 na  r

a
(a) where ha is a non 

negative integer and ra(a) a = 1, 	1 are the simple roots. 

A positive root f 	=.ta) '+‘41 (-N) 

layer, where k T 4 n ; similarly a negative root r((3) = 
a a 

mara(a) (i11a  negative integers) belongs to the lth  layer 
c 

1 = 	in i 
a 	

a * The commutator of two generators Ea 	where r(0), 

r(3) belong to layers k, 1, if non zero is in the  + k + 1 

layer where we take +1(-) for positive (megative) roots. 

The concept of layer is also extended to weights in an 

arbitary IR. 

(6) The complex Lie algebra L comprises arbitrary linear 

combinations, with complex coefficients, of the N generators in 

eAn, 1.1. 	For the above structural theorems i.oc use of ,oe 

1 iield is essootia. 	the discussion of associated 

is said to belong to the k
.th 
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groups it is often ;-.--tt.e- convenient to regard this system (ectso 

1.1 over the complex field) as one with 2N real degrees of freedom. 

When we talk about a real simple Lie algebra L we shall mean the 

system of eqs. 1.1 with N non complex (i.e. either real or imaginary) 

parameters. 

Much of this thesis is concerned with the finding and subsequent 

utilization of matrix solutions to the system, egs. 1.1 of non 

linear algebraic equations. 	Standing alone the equations do not 

have uniquely defined solutions - in order to ensure uniqueness 

(upto unitary equivalence) and to further specify the nature of 

the solution additional conditions will have to be imposed. 	The 

first of these, the hermeticity conditions, have little comeutational 

importance (once we have settled on finite dimensional irreducible 

representations that is) but considerable theoretical significances  

whilst the second, the choice or specification of phase convention 

has no theoretical significance but is of prime importance when it 

comes to numerical calculation. 

1.2 Hermeticity conditions 

These arise when we attempt to pass from a representation of a 

Lie algebra to a representation of an associated Lie group by a 

process of exponentiation. We have the complex Lie algebra L 

represented by a set of matrices ;E,W. over the c,  mplex feeld, an 

arbitrary element has tie Lomm L a l ee. 
 oc a 

E + Y.11 
i 

X., Y. E4 
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For certain ranges of the parameters x, y it is possible to expo-

nentiate L (the ex_.onential converges) and we write U(xly) = exp(iL) 

for the representative of 4c-mle element, parawetrised by the set 

xly of some Lie group. For infinitesimal values of these parameters 

(i.e. in the neighbourhood of the group identity) the equation 

assumes the form U(x,y) = 1 + iL. The particular group thus 

generated may be compact or non-compact and its associated 

irreducible representations unitary or non-unitary. An important 

example is provided by the representations of compact groups, for 

which we have the following two theorems' . 

Z. 	Every finite dimensional representation of a compact group is 

equivalent to a unitary representation. 

II. In the above canonical form the compact subalgebra of L 

(i.e. the subalgebra whose elements exponentiate to elements 

of the compact group) is generated by the set (E
a 

+ E
- 
 ), 

i(E-E),E.taken over the real numbers (i=1, ..., 1; a ranges 
a "a  i 

over the positive roots). 	Thus also the compact subalgebra is 

real. 

Writing now U= exp iL, 

= 
(xa a  

(E + E ) 	
ya 	a  
i(E - 	) 	u.H.), 

-a 	-a 	- 

x,y,u real 

=E + 717 E + u.h.) 	= x + Ly a 	m -a   
1 1 

+ the condition that A.T be -:iLary gives L = L (+ denotes hormition 



adjoint) or 

+ _+ E + 	= E + 
a - 	a a 	-a 

i(E
a 
- 	E ) = -1( .  - 	) 

-a 	a -a 

H. = 114.- 
1 	1 

+ i.e. E 	= E 	PS 
. = H. 

+a 1.3 

Thus to obtain re Presentations of an algebra which exponentiate 

to unitary representations of the associated unique compact group, 

the commutation relations must be solved subject to these hermeticity 

conditions - in this form the hermeticity conditions assume para-

metrization of the compact group elements with real parameters 

x,y,u0  peeping the hermeticity conditions and the commutation 

relations fixed and allowing some of the associated real parameters 

to become imaginary (we still have a /real,  Lie algebra) may provide 

a finite dimensional representation of a non-compact group. 	In 

this way one rc,i)resentation of the algebra will lead to representations 

of several non-homomorphic Lie groups. Changing the hermeticity 

conditions with respect to a given parametrization of a group will 

then alter the nature of the representation. For example, 

starting from the compact case and changing some parameters (here 

unspecified) from real to imaginary can lead to a finite dimensional 

non-unitary renresentation of a non-compact group; cu.nging now the 

hermeticity condition on ' - associated generators from E+= E 	to Ta 



= -E- will 	a unitary representation of the group. 
roc 

From a well known theorem it then follows that the associated 

commutation relations have noly infinite dimensional solutions. 

The solutions obtained in the next chapters will always be 

subject to eqs. 1.3; and these then define the appropriate hermeticity 

conditions in a non-canonical basis. 

From the above relationship of group and algebra it is clear 

that the one representation space may serve for both - we may 

speak of a group transformation of a basis element, or of an 

algebra transformation. A space which isfrreducible for the group 

will also be irreducible for the algebra, and so: on. 

We have 

adopted: a view 	for this discussion which has enabled us to 

emphasize (i) the same solutions of the same C.Rs. of a given 

(complex) Lie algebra may serve, with multiplicati,e factors 

real or imaginary, to provide representations of several Lie groups; 

(ii) the difference between these groups may be thought to lie in 

the group parameter space; (iii) keeping the C.Rs fixed the hermeticity 

conditions are very imoortant in determining the nature of the 

solution. 

There is an alternative viewpoint, also in frequent use, 

which does not make the factorization: element. of Lmi-basis element 

of complex algebra X real or imaginary number (i.e. all numbers are 
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instead taken e:Ithe- -11 real or all imaginary) and in this case 

the commutation relations become characteristic of the associated 

group as also do the her 	conditions. For example consider 

the complex Lie algebra of SU(2): (we work in a non-canonical 

basis for which the hermeticity conditions are more easily handled). 

From the first point of view we have the commutation relations 

[S1  S2] = x.53  [S2  S3] = iS
1 
 [s

3 
S
1
] = tS

2 

to be solved with hermeticity conditions .314. =S„Then an 

Garl2441 1414 L = 	0.5 0i  real will exponentiate to a unitary 

representation of the compact SU(2) - whereas if we take 01,  02 
  

imaginary we get a finite dimensional representation of 0(2,1). 

Changing now to S = -s
1, S2

+  = te, but S
3
+ 
= s

3 
(0

1' 
0
2 

imaginary, 03  real) will give, with the same parameters, a unitary 

representation of 0(2,1). 

Alternatively one keeps the parameters always real, the 

C.R..s for 0(2,1) become [S1S2] = -iS3, the others as above, and,  

a finite dimensional IR will have S1+= -Si, S += -S
2 

S
3
+= S3

vtdlstaunitaryElhass,+ = Si. From this point of view it 

makes sense to talk of non compact or compact generators etc. 

cr. 17: • 

1.3 Generalities on  irreducible representations  

The solutions to eqs. 1 will be realised on finite dimensional 

vector spaces where the matrices act as linear transformations. 



Infinite dimensiom.' .7:31utions of Lie algebra equations are also 

of importance in physics, but will not be discussed here. We 

shall further focus 'attention on irreducible solutions, i.e. 

given the system of matrices L and the vector space M, the 

representation is formally considered as a linear mapping of L x 

M onto M. Irreducibility then implies that there is no subspace 

m$CM such that L x 	where C signifies strict containment. 

Such an irreducible matrix system we shall denote IR. The solutions 

or representations are to be constructed as follows:- 

(1) We choose a basis in the vector space N. This involves 

labelling or identifying each of the basis vectors and can be 

achieved by demanding that the basis vectors form a set of 

orthonormal eigenvectors of some set of matrices (some of which 

may belong to L) such that no two basis vectors belong to the seine 

eigenvalue of each labelling matrix. (The problem is to find, and 

to establish the spectra of such a set - usually one looks at sub-

groups of the given group.) As usual the eigenvalues are to be 

associated with physical attributes, quantum numbers, drawl from 

the physical system which our equations are attempting to describe; 

it 'dill be a matter of interest that the physical labelling so 

defined need not coincide with the purely mathematical solution, 

and moreover may not be even a complete or sufficient alternative. 

(2) Subject to a given ordering scheme on the weight comnonents, 



the finite dimensim.al IR's of a Lie algebra are characterised by 

a single vector known as the highest weight. From this vector 

an appropriately labelled basis may be derived or rather defined 

using the ladder o'erators of S1.1. 	Alternatively,see 1.5 

the IR may be specified with the Ad of a Young tableau, these are 

defined and discussed in G.Murtaza and M.A.Rashid
,4 as well as in 

the book by Hamermesh" 

Again, in place of either of these, an IR may be specified by 

giving the values attained in that IR by the Casimir operators - 

of which there are 1 independent ones in a simple Lie algebra of 

rank 1. 	(It is worth remarking that this method fails for infinite 

dimensional representations.) 	Labelling by Casimir operatedsis 

not much used in the physical literature. 

A further property of the highest weight labelling is:- 

(3) In the canonical scheme there are 1 IRs called 'basic 

irreducible modules' in'
1,  - these basic IRs have highest weight 

vector 	say, of the form 0 = 
[
O
/ 	

l. iAa]  al = 1, ..., 1 
1 	1 	. = a 

(the factor results from the factor 2 in eq.)2a); the eigen- 

valueequationish.e=Ua  (no summation). Any highest 
-1 

weight now has the unique form 

U = 	n Ua  
a a 
	 1.3a 

where n
a 

is a non negative integer. Note also that 

7 1127 • Ul  where) means higher than. 

21,, 



In the followil„; 70 always denote a basis vector of any 

representation by the ket s)mbol 4 a;) where the set a specified 

quantum or labelling nu,;:bers. 	(An arbitary state or vector will 

be exapnded in terms of these basis.) Often it will to convenien' 

to write forathat particle which conventionally has the quantum 

numbers a, e.g. 1 r +yy is the I = 13 = 1 Y = 0 basis state of 

the SU(3) octet. We emehasize that physical states may be associated 

with .1- a basis state. 	See X2.2, 3.2. 	An alternative form for a 

is 	where g is the dimension of the IR and 0  represents 

other labels, 

Having obtained various IR's of the algebra we shall employ 

them in the standard group theoretic process of reducing the inner 

or direct Product. 

1.4 	Inner and Outer products  

(1) 	Inner product: Here we take two IR's of a group and ask 

which IR's (of the same group) appear in their inner, or direct, 

or Kronecher product - in this way the inner product is expressed 

as a direct sum: formally we have the Clebsch-Gordan series, 

2f-% , 

(i) = 

where aj  labels the IRs of some group (or algebra), (i) indicates 

direct product, and 0 direct sum. Specialising to basis vectors 

we write 

	

1 -41:1; (i)111 42; 	4.- = 	01 112 40U. 

	

2 '2: 	k41 ..2  
1.4 



where we have intrt.1-^ed the Clebsch-Gordan coefficient (C.G.c.) 

12.111  1/.1 - we use the saae natation as deSwart5 but entended to an 

arbitrary grolip or algebra; usually the group or algebra to 

which the CGc refers to will be quite clear. 	vie depart from the 

deSwart notation in one respect, viz his symmetric and antisymmetric 

CGcss used in the SU(5) direct product i (x) y are denoted Fs, a 
rather than i 1,F respectively. The suffices 1, 2, are 

reserved for another role. Chapter 3 is concerned with the 

calculation of CGcls. 

(2) Outer product: Here we take two IR's of different groups and 

ask which IT,'s of a third group appear in their outer product: 

x denotes outer product and the symbol I emphasises that this is an 

embedding and one is really enlarging the representation space in 

going to the outer product. 

We shall also use the symbol x alone, without i 	Then, 

as is usual, it will merely indicate the independent existence of 

the two compPnent groups or algebras. 

1.5 	Symmetric group, 

The symmetric group Sr  is the group of permutations on r 

objects, it is a finite group of order r! 	In the following we 

assume acquaintance with Young Tableaux (Y.T.) (cf. Rashid and 

6, 7, 10. Hurtaza'
L 

 ' ) and their role in defining the IRS of Sr. 



A YT shall be deno-l-gd FA corresponding to the partition >,1 	2, 

)44 p  of r, or by the familiar array of boxes. 

[1] = 0; 	C12] 	C;1; C213 = 17fj etc, 

Now take r objects labelled 1,21...r and form the r! different 

permutations; a given YT then constitutes a shorthand way of 

stating which sets of linear combinations of these elements are 

invariant under permutation, i.e. the YT enables a direct construction 

of a complete basis for the associated IR. We give some examples:- 

Group 

[1] 

[2] 

IRdim Basis function 

S
1 

S2 

1 

1 

11> 

(ii 	> 	+ i 21)) 

[12] 1 J 	(112) 	OtA 

3 [3] 1 (1123? 	+1231 	+ 13122+ 1213 
6 

+ 1321)+ 1132>) 

S, [21] 2 1(1123 	1213) - 	321)- 	1231?) 

iE i132 > +1312> -1321> -1231>) 

[21] 2 fr(1132) -1312> + 	1231) -1321j) 

-1-(1123;)-i213>+ 13211 	-1231)) 

[13] 1 N4(1123) +1231) +1312> -1213> - 

-1321> -1132)) 

The entries under basis function have been obtained using the Young 

operator, a different operator for each basis function (this 

incidentally provides a labelling). A recent full discussion of 



2 

the method can be f-yrwl. in ref.8. 	Note that in 5
3 

the IR[21] 

is of dimension 2 and we find two equivalent orthogonal sets of 

basis functi,sne; this is an example of a general result, which states 

/ n 	g 

where the summation is over the dimensions n of different IRs 

of a finite group of order g. 	Notice also that the basis functions 

found by this YT prescription are not orthogonal within an IR - 

for physical applications this generally is a disadvantage of this 

system, cf. also8. We can combine IRs of Sr according to the 

inner product. Some simple Clebsch-Gordan series are 

I ca . EJ 

car) 

en  (20 87-  .1:100e 

The product of dimensions on the left is equal to the sum of 

dimensions on the right. 

6 
in . 

Some CGc's for the lower S
r 

are given 

Some outer products are 

E3 x Cl = Cil b 

x 

o xt j = 	+ 	 

S x S 	S 

	

1 	1 	2 

A x 6 1 S 

	

ti 	2 	4 

xS IS 

	

Si. 	2 	3 

We shall now see that these define inner products in SU(n) and with 

in Si  

in S2 

in a 3 



respect to this gre.rs the product of diinensions of the two IRs on the 

left is equal to the sum of those on the right. 

1.6 Tensor:n1 realisations of SU(n) 

To avoid complication, in the following we refer to SU(n), 

however the results may be adapted to others of the so called 

classical9 series of groups. 

The unitary finite dimensional IRs of SU(n) may be realised In 

a tensor space which is a direct product,p times, of the n dimensional 

fundamental or defining representation space, A; the (defining) 

group matrices are nxn, unitary, and unimodular. The product space 

Al x A2... xJ of p
th 

rank tensors is reducible, its reduction is 

accomplished with the aid of the Young operators or symmetrisers 

(cf. Rashid4'6) which act on the indices 1,...p of the product 

spaces to produce tensors of definite symmetry type. 	(These we 

shall often denote TN - thus T6  represents a 3rd rank tensor 

with [21] symmetry.) Corresponding to the appearance of [i] n 

times in the outer product 0 x 0 .. x 0 of S1x51  

the tensor space can carry n orthogonal equivalent IRs P3 of SU(n). 

To obtain a basis for the IREN] of 3U(n) construct a tensor 

4 ofsymetryp)3;eachi.ranges from 1 to n and the 

SU(n) transformations change this index value for each i.. Now 

consider all allowed sets of index values (if the tensor is anti-

symmetric in 1., i
lc 
 we cannot have i. =

k 
for any i=1,...,n) and 



for each such set c-riq+ruct basis functions for the IRDN3 of 

S - in general a set of index values will not support a complete 

IR of S due to equalities ai.onst the index values. 	In this way 

one obtains a labelled basis for the IRCa of SU(n), as used by 

Uey19  in his work on the classical groups; however the basis is 

non orthogonal and the labels have no direct physical interpretation. 

The inner product in SU(n) multiplies two irreducible tensors, 

rank r,s say to produce a reducible tensor of rank its - the 

original IR tensors were defined with the aid of S S , clearly 
r s 

the reduction of their direct product will involve 
Sr+s 

 and we have 

the correspondence: inner product in SU(n) '''outer product in 

sy-Jmetric group. Rules for the formation of Clebsch-Gordan series 

in SU(n) are thus those for the formation of symmetric group outer 

product
6'10. Of course these rules must be supplemented when the 

symmetric group does not completely reduce the continuous group as, 

for example, when it is possible to form traces. 	For SU(n) as 

is well known (cf. Rashid4) any tensor can be written with covariant 

indices only so that the removal of traces in this case can be 

avoided. For example, in SU(3) the direct product 8 (x) 8 

corresponds to [21](j[21] and is evaluated in this way, see 

eq.6  p.252, to give i)% = I (+) 82  (+) 10 (+) 10 (+) 

Alternatively in SU(3) 	8 (;) 1 and 

T 	(z,c) T = 13 () T Q.) ga 
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(8 (±) 1) 	(3(;):.) 	= (27(t)3(1)1) 	(175(1)8) (t) (1o6,-) 8) 

(t) (8(01). 

We shall call the outer product in SU(n) that process whereby 

IRs of SU(p) and SUW are combined to form IRs of SU(pq) 

SU(p) x SU(q) 
1% 
 SU(pq) 

SU(p) x SU(q) is a maximal subgroup of SU(pq), i.e. there is no 

subgroup G of SU(pq) such that we have the following scheme of 

strict containments SU(pq) ) G')SU(p) x SU(q). 	See Dynkin-. 

Now take rth rank IR tensors of SU(p) and SU(q) say P, . 	Q. , 
11 1r JI Jr 

and define a set of index values in SU(pq) by ks=isjs  (no sum) • 
k 	1,...spq i= 1,..e,p, 	s=1,...,r. 	From the point 

of view of S
r the IR tensor P has, for each set of index values, 

definite oermutation syrrAetry on r objects (the objects being the 

underlying product spaces), similarly for the tensor Q. Such 

tensors can thus be combined according to the inner product in 

Sr; in so doing we create an rth rank tensor with indices ks 
s=1„...1r. Thus the process of outer product in SU(n) corresponds 

to that of innerproduct in S
r
11,12 

In passing we note there are two ways in which one might 

decompose SU(n) according to its unitary subgroups. 	In the 

fundamental IR n these correspond to splitting the representation 

space into (i) a direct sum, so that say the first p indices belong 

sc - tilpt 	';'ercr 
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to SU(p), the last hclong to SU(q) with n = p+q. 

(ii) a direct Droduct, so that the fundamental tensor in 

SU(n) is a p:-educt of fundam-:nt41 tensors in SU(p) and SU(q). 

P
k 
= TT 

p 4 pq = n 

Having introduced tensors we can also, outline the relation 

between the highest weight and YT labelling o4 SU(n) IRs. 0A!:11/.3. 

Suppose the ordering scheme is defined so that Tl  

,T where 	meant the ith basis vector of the fundamental ri   1 

IR in SU(n). Hence we can arrive at the highest weight in an 

arbitrary N by filling the first row with indices 1, the ith 

with indices i (cf. Rashid)}). Now view the YT column wise - each 

column on its own denotes an IR and the state of each IR specified 

is in each case the highest weight. Thus the highest weight in 

D] is obtained by summing over highest weights for YT of the form 

[11-] 14: r n-1. 	(Recall that in SU(n) [1n] is the scalar IR, 

, Rashid4.' We thereforehave a 1:1 correspondence between the n-1 

YTs [1r] and the 111 1) basic IRs of SU(n), which is explicitly 

formulated as, for Dd 	and using eq. 1.3a2  

na 	= ?% ci. 	a+1 

1.7 	Canonical labelling scheme for SU(n)  

The decomposition (i) above is important for the case p=n--1, 

q=1, sine the chain 

x U(1), 	SU(n-1) -3'SU(n-ti) x U(1), 	SU(2) ? U(1) 



33, 

can be used to prov4(,-. a complete set of labels for an arbitrary 

IR of SU(n). For example in SU(3) each basis vector is given 

definite I
22  I 2Y eigenvaic:.., and this suffices to distinguish 

3 
states in an IR - 1-2Y correspond to the•step SU(3) - SU(2) x U(1), 

whilst 1
3 

labels the (equivalent) IRs of U(1) occurring in SU(2) 

From the point of view of • 1.3(i), the diagonal labelling operators 

are the Casimir operators of SU(n), SU(n-1)r.SU(2) (these are not 

elements of the SU(n) Lie algebra) and the n-1 independent U(1)1s, 

which are elements of the algebra and span its Carton subalgebra. 

Instead of using the eigenvalues of the Casimir operators as labels 

one may alternatively give the corresponding Young tableau - this 

allows a concise tabular representation of basis vectors in ter.is 

of a'Gelfand pattern'. A full discussion occurs in a series of 

papers by G.E.Baird and L.C.Biedenharn
13 

where this labelling scheme 

is exploited to derive the matrix elements of the SU(n) generators 

in an arbitrary IR. For explicit calculation this canonical scheme 

was thus more tractable than that of Wey12  and further, in the case 

of SU(3), the labels could be identified with physical labels. 

Unfortunately this is not so for the physical SU(6). 	See 

Chapter 2. 

1.G Irreducible tensor operators  

These are defined and discussed in many places
5,13,14, 

 as 

for 0Gc we shall use the definitions of deSwart5. The fundamental 
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results are the tra:-o-Prsr:aation law 

T(1111) --->U(a) T(1111)) U-1(a) = 	n (a) T(111-q4) 

and the Wigner Eckart theorem cf.5 313.2 111110 is an irreducible 

tensor ooerator, belonging to the IR It, a are the parameters of an 

arbitrary group transformation and D1.10v(a) is the IR representative 

of that transformation (* denotes complex conjugate). Writing 

U(a) = exp.(iaiFi), the algebraic form of the defining relation 

becomes (using F. = 

T(1J. V)] = 	(F.) 	T(11 - 1 ). 	1.5a 
11 	oi 	- 1 	1  

This equation is linear in the generators, and will hold for any 

setatainedtTalineartransformationof -theset[F.11. 	It is 

also clear that the generators themselves form an irreducible 

set, and for them, in an abritrary tensor basis for example„ 

[T61,1  ) .  

where 	T(11 ) 

)] = 27,1  T(y) 	6  T(111 % ) 

= ‹.(lt1 A 4  ) 	TO, 
1
V )t (100> 

(11\ 	11 	) 	T 	> v 

1.513 

1.6a 

1.6b 

and we have used the Wigner Eckart theorem; < OTH 	is the 

reduced matrix element of the generators in the regular representation. 

The equation 1.6a also defines the matrix elements of the 

generator T(11.110 in a general representation, 04= regular 

representation): 



T(2l V)
x), 	

<, = :.-,;.',10)11`(piv)1(pp%).> 

.1 4 

) ,10 fi  

(41 4 41  
/\ 	

) is the Clebsch Gordan coefficient for the reduction 

u! (3) p. -910 	and "4:111 (1Tnp.1 ) is the reduced matrix 

element of the generators in the IR 111. 	It may happen that 111  

appears more than once in the product Tit (i) p., then of course only 

one of the associated sets of coefficients will be related by eq. 

1.6c to the matrix elements of the generators. 	In any case 

eq. 1.6e exhibits one of the many roles of the CGc's, in this case 

that of providing essentially the matrix elements of the generators 

in a given representation. A more exhaustive list of their varied 

functions is given in the Boulder 1962 lectures of Biedenharn3. 

The transformation law for basis states is, after deSwart, 

(p y)% 
U(t) (110;),) =%*, (1).„)), )> 

• A 
.Or for the algebra 

.0 
j 	

T(114 	1 vgioi> 	.ET(p.1).) 1v! )) . 

In the regular or adjoint representation the generators themselves 

provide the basis: T(V) has the matrix representative T(p, 1 AA 

where 

[T(11;)j), TO. )0] . 	T(u V) 	T(11 A!). 1 A! '1 AA! 	1 

ITe can thus set up a maliping generator 	basis state, with 

32. 

1.6c 
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WO) 

?s, T(1 1, v) ,1(111  ) > 	1.7 

To get numerical factors correct in the mapping it is best to 

work from the irreducible tensor basis, whore we can take 

T(1110 7 Ci(y)? and we may or may not take the overall constant 

C=1 of Table 2, next Chapter. In other bases the numerical factor 

occurring in the mapping may vary from state to state. Eq.1.7 

is very useful for obtaining generator matrix elements from the 

commutation relations, of.j 2.1. 

1.9 	Phase conventions 

The question of phase conventions is not unique to the Lie 

algebra commutation relations; it also arises for example in 

deriving the representations of the symmetric group
6; it results 

from a freedom of choice analogous to the choice between right-

handed and left-handed co-ordinate systeos in the representations 

of 0(3), the Euclidean group of 3 dimensional rotations. 

transition from right-handed to left-handed system requires 

reversing the definition of the positive direction on one of the 

three Cartesian axes. 

We begin with the example of SU(2) 

Commutation relations : ES S- 	2s3  , [s3S4.] 	s 

Hermeticity conditions: (S 	= S- 	+ 
S = S 3 	3 

1,3a 

1.8b 
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i 
Labelling operator:' 	S2 = '2-(S 6 + S S+) + S2 and S + 3 	3 

with Spectra: 
	

S2 = S(+1) 1 
	

S = 01  y , 1,... 

S3 = diagonal (S, S-1, ... -S + 1, -G) 

and one fixed value of S for each IR. 

The only unknown matrices are Si.  and the equations 1.8a, 1.8b 
WED 

are easily solved to find 

4s1s31- its:(s,s37 = ,/(s s3  )(s s3  +1) — 
	 109 

all other matrix elements vanish. A unique solution is now chosen 

by taking always the plus sign in eq. 1.9 - this is the universally 

used Condon and Shortley phase convention: S+  have non negative 
man 

matrix elements in every If. 

From a computational view point we start with the highest state 

i(SIS3=S).> (this may be constructed by symmetrising in a direct 

product of 2S+1 fundamental spaces, or may occur as a vector in the 

direct product of two IRs) and the vroblem is then to obtain the 

remaining 2S basis functions. The operator S_ is used to produce 

these 2S states which have different weight (i.e. the weights are 

simple) and are thus orthogonal; since orthoronality does not 

determine relative signs there are 
226+1 

different sets of basis 

PS 
functions, and 2 different solutions for S (an overall minas 

2S+1 
sign has no effect on matrix elements hence 2

2S 
= 2 	/2)0  

Within the canonical scheme a phase convention for general 
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SU(n) has been sugg -c4.-:A by Baird and Biedenharn
13 and adopted 

by a number of other workers
15. We now describe this convention 

end relate it In particular 	:he structure given in.91.1 :- 

The positive roots r(ij), or in short (ij), 1.‹,j (it is 

convenient to replace m by ij here) and their associated generators 

may be schematically displayed as follows: 

(12) 	(23) 	(n-2,n-1) 	(n-1,n) 1st layer 

(13) , 	 (n-2,n) 	2nd layer 

(1,n) 	(n-1)th  layer 

The simple roots are (1,1+1) and the positive roots satisfy 

(i,j) = (1,1+1) + (1+1,1+2) + 	+(j-10) 	1.10 

From Z1.1 (2) the generators E. i+1  generate the whole algebra 

when we include hermitian conjugation, and hence our phase convention 

is sufficient if it uniquely specifies this set. 

The labelling subgroups can be embedded so that the simple 

roots of SUM are (1,2), 	(1-1,2) when we go from SU(n) to 

SU(n-1) x U(1) the generators excluded are E+tn-1,n; i=1,...n-1. 

As will be seen in the SU(6) example, the commutation relations 

amongst the Eij generators take the form C ijlEk13= 81()E114111-3kj 

and from this it follows that Ekl'  1 fixed k=1,...,1-1 form a set 

of irreducible tensor operators (apart from a phase which is 

importantOtransforming like the defining IR of SU(j-1). 
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Suppose the m,rz..entatives of the generators of SU(m), 

are know. A basis for an arbitrary IR[\] of SU(n) is 

obtained by assembling the elff,:rent Its of SU(n-1) specified in 

the decomposition SU(n) -iSU(n-1) x U(1) - in the IR[?i the matric?s 

of SU(n-1) x U(1) then assume block diagonal form and correspondingly 

the representation space DO is a direct sum of subspaces irreducible 

under SU(n-1) x U(1). 	Adjoining any one of the generators En-1,n 

to the SU(n-1) x U(1) set the CRS now close on the algebra of SU(n), 

or equivalently this same operator acting on any basis vector of 

any invariant Cunder SU(n-1) x U(1)] subspace must lead on repeated 

application to all other such invariant subspaces. Hence En-1,n 
may 

be used to define the relative signs of the different subspaces, 

or more aptly frau our point fo view, introducing overall signs 

between different invariant subspaces will allow variation of the 

signs of the matrix elements of E 	For general SU(n) the 
n-1,n 

operator E 	acting on a basis vector in some invariant subspace 
n-10 

Ca] say may lead to more than one basis vector in another subspace 

[3]. But the relative signs of basis vectors within the same 

SU(n-1) x U(1) are fixed (by conventions adopted to get this far) 

and we may not nominate independently the sign of each matrix element 

of E
n-17n 	

What we must do is remove the deeendence on explicit 

SU(n-1) x U(1) states using the Wigner-Eckart theorem : 

E 	1 [a]la 	'24(4][1
]
[3]  ) CP] 0%. < 1[0 	• ) 	1.11 n-lIn' 	p a n-1 p 

[P] 
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The SU(n-1) CGc is 	the vhase ambiguity now resideso.clely 

in the reduced matrix element and can be resolved there, e.g. 

Oaird and Eli_'enharn
13 

fine equ.tions for the squares of these 

reduced matrix elements. 	Including also the SU(n-1) CGc's fro 

eq.1.11 they are able to adjust the signs of the reduced matrix 

elements so that the operator E
n-1,n 

has positive matrix elements, 

and this then constitutes a general phase convention for SU(n). 

It is evident that in proceeding from SU(j) to SU(J+1) we may 

in fact take any of the operators E 	iml, 	j to have non 

negative matrix elements, but the most obvious choice, canonically, 

seems to be the simple generator E.  „ 

For SU(3), where we have the yositive root scheme 

(12) 	(23) 

(13) 

de Swart5  has defined highest weight by the order (131Y), and one 

is forced to identify E... with the isospin operator I since the 
13 

corresponding root vector t ii+7( -,-(1,0) is now highest weight in the 

adjoint reprc,sontation. 	In order that the Condon and Shortley 

phase convention hold for isospin de Swart takes E13, and then 

In going from 

SU(2) to SU(3) the identification of isospin matrices has changed; 

this could be avoided by adopting the ordering (Y,I3) when ! K 

would be highest root, and kjT +), 11 ,̀.° ) would be simple roots, 

E12(K+) to have non-negative matrix elements. 
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We must next 6.1eLuss the consistency of phase conventions, 

evidently a convention will be consistent if it produces the same 

,epresentati.,; for the genevato.s no matter how the particular' 

basis is produced, i.e. whether it occurs in the direct product 

of various paris of the IRs or whether it be constructed directly 

from the fundamental representation. 

A related consistency requirement arises in the definition of 

complex conjugate representation. In fact if general algebraic 

solutions are found subject to some phase-convention then obviously 

that convention can be applied in any given IR - however in the 

absence of general solutions one should always check that the 

choice made may be consistently applied to the complex conjugate 

IR. 

As is discussed, e.g. in ref.
6  5.4, given one IR of a group, 

others may be constmeted from it, not only by forming the direct 

product, but also by taking the complex conjugate, or inverse 

transpose matrices and these are irreducible. For groups of 

1 + 
unitary matrices UUzl implies (U

- 
 ) = U* and complex conjugate 

inverse transnose are trivially equivalent, more generally Hammermesh
6 

shows that these are always equivalent if the group supports an 

invariant non-singular hermition form. This is the case for non 

compact forms of SU(n) eq. SU(p,n-p). 

, 	scil I  
luuv -P.D Q 

t
41, becomes, under conplex conjugation, 

*1) 1) V 

In detail, the transformation 



or for the matrices .-f the algebra, in a hermition basis, we have 

+ U(a) --- I + iL, I • = L 	NO 1 - a = i + i(-LT) 

SI 
,T 1, j ....L, 

However the direct use of T 
in our solutions of eqs. 1.1 is 

not allowed due to the phase convention we have adopted on the 

matrixelementsofsomeE..viz that certain of these be positive. 

ice add that the transformation
T 

on the algebra is 

clearly non trivial; for example all the weights will be reversed 

in sign, corresponding to the change in sign of the diagonal matrices 

and associated with this raising and lowering operators interchange 

their functions. For the canonical phase convention, where 

are to have non negative matrix elements, we can now make a E
ili+1 

second trivial (phase) transformation by changing the signs of all 

matrices E.. belonging to an odd root layer. This is easily seen ij 

to be consistent with the CRs eq. 1.1 - the only one needing checking 

is 1.1d-and we thereby recover a solution subject to the required 

phase convention. In general one should always check, by inspecting 

the CRs, that the transformation 

E.. --> -E.. 13 	13 E.. phase determining matrix 

is consistent with them, and that the phase convention may therefore 

be extended to the complex conjugate IR. 

de illustrate the consequences for basis vectors with some 
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examples: 

a) SU(2) IR2 basis vectors 1p) , ln> ; the complex 

.onjugatifin !--Ansformation 	1p, 	1p*? , 1n) 	1n*„.> 

and the change in sign of E12 
in the IR 2* is then accomplished 

by taking as basis states 1p*,) , -121'44 i.e. in more customary 

notation 

( 

,11% Clearly we could also have taken! -1 as basis states. 

b) SU(3) 	() 
	

The deSwart 5 phase convention gives the 

matrices connecting tp 	n) and 	X) positive matrix elements. 

Under complex conjugation 

	• N) 	
' ) 

(T1 2> 	> t\  n i 

and to preserve positive matrix elenents where required ire can 

take as basis states 



CHAPTER 2 

THE STRUCTURE OF THE SU(6) ALGEBRA 

In this chapter the various techniques and theorems displayed 

in the preceding chapter are used to investigate the structure of 

the SU(6) algebra and its irreducible representations. We try to 

be especially careful with regard to that notorious bugbear of 

numerical calculations, plus and minus signs. Our aims are 

(/) to define a set of generators, their commutation relations and 

their subgroul) structure for SU(6) - as a byproduct we give in 

detail the regular 35 dimensional representation; 

(2) to pay special attention to the setting up of a phase convention 

with a specified SU(3) x SU(2) convention; 

(3) to analyse the SU(3) x SU(2) structure of the SU(6) IRs; 

(4) to emphasize the difficulties which arise in the use of a 

non canonical labelling scheme for SU(6)„ 

2.1 Commutation relations of SU(6) 

We proceed by employing throe different methods to write down 

equivalent sets of generators and their commutation relations. 

(1) One foriaulation of the SU(2) and SU(3) CR's is 

SU(2): Sa, a = 1,2,3 [Sooy = iE ySy 	2.1a 

SU(3): Fi 	i = 	8 [F. F.] = if.. F 	2.1b 
1, j 	ijk k 

410 
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where EaPT 
is the 	permutation symbol on three letters and 

the fijk are given by Gell-Mann16 	In the fundamental representations 

additiona., rc.ations hold: 

SU(2): as 	"a 	a 
. [Cr 

p
= 2 "a .0

p 	
a~y3 = 1,2,3 	2.23 

SU(3): Fi 	= 2di jk Xk+ gii1 	2.2b 

whereCi— are the Pauli matrices 6N ., i d. are given by Gl-Mann
i6 

a 	 jk 	
a 

 

[ ] denotes anticommutator. 	Solutions of eqs. 2.1a1b in general 

will not satisfy eqs. 2.2a(b) - only the commutator of a Lie algebra 

has invariant significance. Note however that equations similar 

in form to eqs. 2a12b do hold for the fundamental representation 

of any SU(n) algebra. 

Now define 	=./2/3 1 (3x3) do k 
=I-273 ,&jk foik = 0 

and consider the matrix system 

Xi x 12x21 13x3 x0-1;, 	a = 1,2,3 	2=1,...,8 

x a 	a = 1,2,3 	i=0„1", 8 

x signifies matrix direct product. Using the identity 

x 31 C x 	= .>„! CAC] x 	[AC] x 

and eqs. 2.ia,b, 2.2a1b one arrives at a set of commutation 

relations for the system 2.3 

[1 x,7(30 1 xcr]= 2iIx  
ott3Y 

E 	x 	x 13 = 2if. Nk x 1 

2.3a 

2.4 
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x 1, (7407x 	0 

L1 x „\ x7,7 2iE 'x x,7
e ccf3Y J Y 

x 11
/j 
	= 2ifijk ,sk  x (5 

	

Di  xv---00  > xv-p] = 	1 2iE 	x g- 
apY ijk k 	Y 

Notice that we could have taken ii\ixir etc and this would alter the 
a 

last CR in 2.5a above. 

We now have a system of 35 6x6 matrices closed under 

commutation (by an identity similar to 2.4 the set is also closed 

under anticommutation when we adjoin the unit matrix 1
3x3x 12x2). 

The theory of maximal subalgebras Dynkin2 tells us this must be 

the fundamental reeresentation of the SU(6) algebra, and consequently 

we may define any representation of this algebra to be given by 

a set of 35 matrices, in 1:1 correspondence with the set 215, which 

satisfy the comautation relations 2.5. An alternative way to 

identify the SU(6) algebra is given below (eq. 2.10). 	In the form 

eq. 2.3 the commuting SU(3) and SU(2) subgroups are clearly 

displayed - we emphasize that in a general representation those 

	

matrices corresponding to 	xt; will be different from the direct 

product of :SU(3) and SU(2) renresentative matrices. This is exactly 

the difference between the SU(3) x SU(2) and the SU(6) algebras or 

groups. 

(2): In this second formulation we write the commutation relations 

rya t  • )r. 9 ,57 • 

• • 	 - 

2.5a 
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in the usual partit..::. diagonal or spherical basis. 	This then leads 

directly to an irreducible tensor basis for the algebra whose basis 

Vector 1.o1igG mad:3r the v-.11ezator 	basis vector of regular 

representation maping is a physical particle, i.e. a state with 

pure 2 1
3 
and S

3 
::„s well as being SU(3) x SU(2) irreducible. 

Cur procedure is standard. 

(a) SU(2). With 
a  
S as in eq. la  define S.0  = S1 	iS

2
. 	This gives 

the canonical CR. [S3  S+  = S+ ES+1 S 3 = 2S3
. 

_ 
from Cartesian to spherical basis by setting 

Spherical basis 	Cartesian basis 

Now transform 

1(3,0) > 	 + 13> 

From the known matrix elements of S (subject to the Condor and 

Shortley phase convention), and the regular representation CSk  ).. 

iEi 	
follow immediately 

jk 

Spherical basis 	Cartesian basis 

1(3,1)i 	( 11 > 	i 12> ) 

1(31-1)) 	( 11> - i 12 >). 
The desired transformation is thus accomplished by the unitary 

matrix El! 

11, i2> 13 

1(3,1)) 	-25 -ift 0 2.6a 

1(3,-1)) 	0 - 0 2 

1(31-1015 -irf 0 

1(37  ',))) 	= . 4 Z. 1 1 7. 
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The unitarily relat....n.s are 

• a a* 	E EP*  = 
a 
E
i  Ej 

= ij 	i 

and the irreducible t=“sor basis for the generator is 

s(3,V) 	EVS 6 S(31 1) = 
	S 	S(31-1) = 	s_,s(3 ,o) =s3 	2.7a 

From <(3,0)1 S1(311)2 =./1-  we obtain the reduced matrix element: 

= <(310)1S J(311)> =4'e.,..(3,0)1S(31-1)1(3,1)> =0(. 21.  63)<ItS1., 

so thLt ‹,1S4 

The commutation relations become 

	

Es(31a)1  s(3,0] = ,P1 Y  (3 : 	S(3,Y) 

= 1  (3 P  3 3  Y) 3(3,y) 
Y a 

and from this is deduced 

Ea  E'; E: E: E 
i j k ijk ./2 	 0 ( 3 y ) cc  

The analogue of 2.2a in this basis oecomes 

Ar t' 	°) IR 2 : [S(3,a) S(3113)-11.. = 	" 'a :3 0' 

whence 	Erl  E`. = 	
a 
(1 	

o
0)  

(b) SU(3): Defining the highest state' p+) of the SU(3) octet 

spherical basis by 111, j = - A (ii, i 1 2> ), using the 
regular representation (F.). 	-if 	of eqs. 2.1b, and the 

	

jk 	ijk 

deSvart5 definitions of spherical generators I+'1- etc and his 

2.8a 

2.9a 
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phase conventions 10., their matrix elements now leads to the unique 

unitarytransformationel.l exactly analogous to eq. 2.6a 

1 2 3 4 5 6 7 

i . i 4.  " .4. .,/r: .- i .../E 

r  0 ..,/ 
1 

1  - ) 1 ./.1 ..±A 

i. ,.0 ., 

tic') -1 l'.  -i .12 

1 

1K co , -112 "'IA 

I 1 7:°> -1/2 iin 

i K-  ) -i,/-2-  

cf. B.W.Lee17 

The irreducible tensor operator set of generators is 

Q(80) = eu. F  
3. 1 1 

2.7b 

The reduced matrix element 	Qii 	=j5 and analogously to the 

SU(2) case vie have :- 

- 	, EQ(8,10, Q(81)))] = -1/3(11
8 8 

 Via)  =,(80.) 	2.8b 

IRA: [Q(8,0, Q(8, )J1_ =1-57-3-(
8  
31 .81, 8s) Q(8,>)- ig/3( v 8 8 1

u0) 13x3  2.9b 

with the supplementary relations: cf. B..Lee17 

e. u e 	x* fiik = 
;A.  (8 8 8a) . j  eke 

e1
e
J n d. jk = 

i5/,j (8 8 8...11  
c i 

2.6b 



e, 
V e" mr,8 8 1, 

1). -N,  

Defining now the 6 x 6 matri.:r 

( 1
3x3 

 x S(3,a) 
(  

ilm 
= 

( 
Q(8
'
v) x 11̀ >x2  

( Q(8,--‘3) x s(3,a) 

Trill now lead exactly as before to the particle diagonal set of 

CRs, defined to hold for any IR : 

= - 3 3 3) F [F , , F0:3] 1-2:( 0 a 	 a p Y oY 

[F, F ] = - Z(8  8 8a)F 
11  /0 	Vt° 	p. ))), 	Alo 

[F F = 0  
11,0 0,13 

[F 	F J ....I-30 8 8 ai 
1190 -.1,a t 

EF
ota

Fy$13 = 	(3 3  )F 
a P Y v,Y 

EF
11,0c 

F
v1 

	3/,I3 	11(8 8 80F  
3 a  u p, 

-../5A(3 3 3)(8 8 8s)F 
Y 11  -));\ 

+ 2/3(3 3 3)(8 8 1)F ;3  Y 	"t' 	oY 

We emphasize that the set F, 	eq. 2.3b are not yet an irreducible 

tensor basis for SU(6); it is necessary to include numerical factors 

with the different (11.1.'') components, so that for example reduced 

matrix elements calculated from the thereby modified eqs. 2,5b, 

17 

3b 

2, 5b 



are the same for eaLL (11,0 cilL of 
V  
F 	Indeed using the 

ia 
canonical set of CRs given below and anticipating the result 

(414‘10.15; WLsAaae 	lad; 404 ti SU(6) embedding 

- 	S (3 1 1) ---1> „nittf. (1)) 

	

\/* 	 (o,1*)). 	- 	T Ft+ ) 

s 	2 S(311) Q(8, () 	1(3'+(1)) 
where" O) denotes the aipropriate SU(6) irreducible tensor 

generator basis; so we may write 

(1775i x S(31a) 

	

T (13)44  ( 0.(811) x 
	 2.3c 

( 2 (1(S;%)) x S(37a) 

as the correctly normalised relation in the IR6 between SU(2) x 

SU(3) and SU(6) irreducible tensor bases. 

( 3 ) Finally we relate the canonical and SU(3) x SU(2) diagonal 

forms. Keeping in mind the product nature of the SU(3) x SU(2) 

subalgebra we begin by choosing a basis for the Cartan subalgebra in 

the form ECIA = (131YIS 
s 2  
,I,S,YS,,) (we use conventional notation for 

) 

the generators) where by 13S3(YS3) we mean that operator which has 

weight equal to 13s3(YS3) in the fundamental representation. 

(This relationshi7; .411 not hold in any other representation.) 

The operators 
I3s3'YS3 

evidently hava simple spin and isosilin 

• transformation sdro-lerties, and are the usual choice e.g. Pals/8  

but of course any two operators which complete the Cartan subalgebral  

44-,couldbeusec ertainly do not correspond to a 
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canonical basis for # ; as we shall see this is because the embedded 

SU(3) x SU(2) algebras have simple roots which arc not simple roots 

ofSUMI nordotheeigehialuesoftheQ.in the regular 

representation form normalised roots. However the positivity 

property implicit in the 'ordering scheme' ( 	is clearly 

invariant under change of scale; so we choose the order I31Y S31 

13S31YS3  and determine a set CHi], k = gOk  (no summation) with 

respect to which the weights in the /R22 become normali....:d roots. 

Ths t;articular order chosen above is convenient since then the 

highest weight is that highest SU(3) vector which has highest S3  

component. The weights mi  with respect to Q; i = 1, 	6 in 

the fundamental I4$0  and the non zero positive weignts m..='n.- m., 
IJ 1  3 

i < j in 22 are now easily found by inspection. (We change our 

notation slig,,tly from ? 1.1, converting generator labels 

on Ei.a  to ij, i 	on ;Lie  The hermeticity condition is then 

(E. 	= E...) 13 	JI 
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TABLE 1(a)  

Weight Physical 13  Y 	S3 
13s3 s3  

vector 	label 

m2 

m3 
m4 
ra
5 

ra6 

m15 

4126 
m25 

m14 
m13 
.41

24 

m23 

m36 
M35 
M46 
m45 
m1.2 
m
34 

1"56 

1/3 
1/3  

-2/3 
-2/3 
1/3 
1/3  

0 

1 
1 

0 

• • • 

1/2 

0 

0 

1/2 

-1/2 

0 

1/4 

1/4  
.1/4 

-1/4 

-1/4 

1/3 
0 

O 

-1/3 
—1/6 
1/2  

»1/2 

1/6 

-1/6 

-1/2 

1/2 

1/6 

1/3 

.2/3 
1/3 

1 
0 
0 

—1 

O 

0 

—1 
1 
0 
0 
-1 
1 
1 
1 

136 

) '56 



!lo  

p9  n, ," are snin + cuarks, p nt  X spin 4; the bar denotes 

the complex conjugate state having diagonal quantum numbers 

negatives of the unbar/-ed Aates. 

Notice that already in 22 (and m 6*) (YS3) (13S3) do not 

have eigenvalues eual to the ixoduct of those of S3  0Y, (yS3) 

By inspection one establishes the relationship characteristic of 

the 61J(6) algebra; 

M.. = 	M + a • 	. j 114-1 1+1 i+2 	j-1 
2.10 

The simple roots are related to the m 	and are now obtained 
i,i+1 

by introduction of appropriate scale and normalization factors:- 

In the IR6 it is easily seen that the equation C.i1E 	= m
ij

Eij 
(nosum)recuiresEij aeij where (e.j )

ab 
 = 0ia jb is the 

i  

familiar ge9erator form used by 'ey19 cf. also Rashid!*  (remamber 

we are solving CRs of the general form logs. 1.1); with 
	

= clOk 

and correspondingly (r..)
k 
 = q (rn

ij
)k (no sum, k labels components) 

k  

the equations [E.., E..] = 2 r.. .11 defining H 	r may be used 
13 J1 	13 

to solve for the factors qk. 
2 

(The equations are actually for qk 

but the negative solutions are discussed since they would conflict 

with the ordering scheme.) We thus obtain 

H1  = 	H = "4-  /3 /2 	H = 1-17:j= 	S II = 1572 YS 
3 	2 	- 	3 	3 h4 	3 3 	3 

2.1Z 

and correspondingly a set of normalised root vectors 
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( 1 	j = 

11-1,  (r.
1 	r j +1 ) = 	(-1 	j =iftl 

( 0 	otherwise 

The com7deto sot of 1:ositive roots is obtained by introducing 

the numerical factors in eq. 2.11 into the set m... 3.3 

TABLE 1411) System  of oositive roots for SU(6)  

Root 	H
1 Vector 

H
2 

H H43   

r(16) C 0 11/2 s/1/3 l//6 

V(15) 	, /1/2 0 0 41/2 0 

1r(26) 	i).,,;9772i 0 0 V1/2  0 

r (25) 11/2 0 -Vi3 0 - 

r(14) 1/1/2  11/3/2 /1/3 il-1/2 4.1/1/6 

r(13) iii7Y-  ili3-7-  0 1/4772r-  3/2 11/6 
r(24) 11:17a W372—  0 -1/-1-72 -3/2 /1/6 

r (23) I/172-  I/VI-  -:vit3 -17-1-7Y *11/6 
r (36) i/VT: -WET '/1/3 -1/i/ --L67 
r(35) 1/17 -VW 0 1160/1/2 -3/2,40T 
r(46) itrIT?: .-a7 0 -1/vri-  3/2,/1/6 

r (45) iviTc 40575 -1/1/3 f/1 7T-  1/2 11/6 
r(12) 0 0 /1/3 /1/2 V1/6 

r(34) 0 0 lin- 0 -2 /1/6 

r(56) 0 0 /1/3 -/1/2 V1/6 

At this stage the algebra is not completely defined since those 

structure constants corrosponding to N4 
in Chapter 1 have not been 

given. We arbitrarily fix these by choosing for all generators 



Eu therapresentativeeu in  6. With [e..le rs3  = eis irj  

erj ; this gives ma 

N..= 1 = 
1J 2Jk 	ji,kj 

all other N.. 	= 1.3 2mn 

This choice leads to N for the subgroup SU(3) the same as chosen 
cc?, ' 

by deSwart5. 

The complete set of commutation relations are now 

CE, Eii2 = r(ij) Eij  (r(ij) = -r(ji)) 

= 2r(ij) 	< j 	 2.5c 13 

[E..,E 	= N. 
ij rs 	ij 

E 
lrs ij+rs 

It is now an easy matter to locate the diagonal SU(3) and 

SU(2) subalgebras in terms of the canonical generators: 

SU(2) : Noting that r(12) r(54) r(56) has component only 

along H
3 
we take 

Si- = E12 E34 E56 	S-  = E21 "I" E43 E65 

then 2S3 
	" 
= r5 S j = 2(r(12) + r(34) + r(56)). H 	2.13 

= 2,5 H
3 
 as expected cf. eq. 2.11 

Similarly we can easily locate and identify the commuting SU(3) 

subalgebra : 

= 1115  
-26 K = E + E 

13 24 

I 	= E51  11.,62 	K = E31  +  E42  
2.14 

53. 

2.12 



13  = 	L 	E 	E6
453  

13M = Ai = 	 L = E
35 
 + 

i7'46 

WellaveusedtheSUWeeneratersdefinedbydeSwart5.0ne can check 

thattheE.forms given for the generators do indeed lead to his 
ij 

commutators.. 

the IR6 (where the rem'esontative matrices have the simple clulti-

plication rules: 

	

e..ije.jk = eikl 	e. 
i
e 

	

J kJ 	eki/  

other products vanish (no sum.liations) 

= ii a 	He. = ij 	JJ IJ 	ij 	11 lj 

	

H diagonal matrix) the products 	in this IA may be evaluated 

in terms of the e. , and these relations then defined to hold in an lj 
arbitrary IR. 

We now map the generators onto basis states: it is clear 

that within an SU(2) x SU(3) submultiplet, once we have mapped 

one generator into one basis state the known SU(2) and SU(3) matrix 

elements determine the remainder. Hence we have three overall 

constants x, y, z to solve for, associated with, example: 

S+  --iFIctic(i) 	7.4.--ip y(51-7 	1 + s +-4 ze(1) 

The equation E f l6,2613 = 2r(16).H .../ECI1 +22/5‘ ..,
H, 	 U. - 

becomes E16.z.,r-f_iy;  ...,.. _, Ale, + „ 2 3-,,,(0);:i. grvi125.1.(0)›. 

54. 

2.14 

Using the relations 2.13, 2.14 and eqs. 2.5a in 
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using also the hermition conjugate form of the following:- 

.. 
E61 	 y

gt[E
61/  H1  ] 
	 y2 ••• 

Y 3 
I j' -1) 

and 

E61 
0Q(o)) 	A[E61' H3  ] , 	x  

we obtain 

x
2 
: y

2 
: z

2 
= 

or 

x : y : 	= +/3 + /2 : + 1 	 2.15 

The relative signs are in fact fixed by the phase convention, 

which is defined and discussed in the next section. The solutions 

for acortz above correspond to the factors required in equations 

2.3b, 2.5b, for the 4.,...nsorial set, eq. 2.3c. 	The complete set 

of relations are given in Table 2. 

The Table gi es the image of the generators under the generator 

basis vector m:.:-,ping for different labelling schemes. 	We have 

omitted a column containing the irreducible tensor labelling, 

since as emphasized elsewhere this mapping is trivial, characterised 

by an overall constant. 
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TABLL 2 

I SU(3) 
x 

SU(2) 
Canon Ba4is 

Vector 
SU(3) 

x 2) SU( 
Canon Basis 

Vector 

S+ 

S3 
 

S 

1+ 
13 
I... 

-ei= 

V 

K 

Lt 

. 1 + S+ 
1+s3 	! 

I+ ••• s 

13S+ 
13s3 

1
3s., 

I..S+  

i_s3  

IBS .... 

L1/74, 1•°' 

E12+E34 
+1356 

/T. ii
i  ...J 

E21  +E ,43 
4-'%3 

E15  +.1:g20  ,. 

,/3 I: 

E51+E62 
12.  1-i2 

+E E1324 
1.:,.31+EL2 

E 	+13, 53 	u4 
E35+E46 

E16 
-.3. •(E15-E2 	) 

E25 

c ) i(E12 -E5v  
st,1-114 

i(Z21 

252  

i(E,51  -E6 , 
E61 

..../3-1/2(1) 

A2ly(o)) 

131(0(-1)) 

I/2 iii +) 
I Do? 

Alit -7 
it  • (o ) 

-1/5 	IC+) 

1.2.  ( ic. 	-7  

-VLiii;°s? 

- 	11 

. r- -(1)) 

.../115) (0)? 

I it  (-0) 

.i.A(1) W 
-- -lis.st 	/ (o) 

/,0 (-1), 

1{) (ir ) 

- /5,7,',-(o)7 
/i 

7 " 	. 	. i.•1. ,) I 

K S + + 

ti + s3  
E +S — 

K S+ 

i':. s3 - 
ii. 	s ... 

L +S + 

L+  S3  
L S + 
L S+  

L S3  
L S 

i•IS + 

:1s3  

111S ... 

E14 

i(E13-E24) 

E23 

E
32 

NE31-E42) 

E41 

E
54 

-NE33-E64) 

E63 
E36 

1, (E35  -E 40 , ) 

5
45 

2 1IL 	- v3 	12 	' J- .  
-2E

34 +E
50 ,) 

1 
j2 H5 
/ 27(E 	- 3 	21 

2E0+E65) 

i !C. (1)7 

-Vi.  ii"- (0)? 

- /ic+, (-1) 

1 	
-/-1-, ., 	...- 	. 

sA1S I I< (CY)  

1 R(-1) 7,  

It•c). 	(1)) 

-04114:-,c)(0)-, 

-1 lc:-  (-1) -, 

1-4.°(1),  

-A-1 -R)  (0 ) ' 

-174?(-1) 

-V 	( t-(1)' 

it ,,p(o) 7 

12-1 '°(-1) 
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We have used standard notation for the quantum numbers but omitting 

the redundant on k (%) etc, with 02(1)) being the SU(6) 22, 

SU(3) x sU(2) (1,3), S3 	element and 1A0)› the 22, (8,3), 

Y = I2 S
3 

0 element etc. 

9 2 Phase conventions for SU(6) 

It should be clear that to completely determine the matrix 

solutions of eqs. 5, consistent with the embedded SU(3) x SU(2) 

solutions, we have only to find some way of determining 4%e relative 

signs of SU(2) x SU(3) subspaces occurring in the decomposition of 

a given SU(6) IR. 

Incorporating the SU(2) Condon and Shortley and the SU(3) 

deSwart phase convemLions we must have the following operators 

(and their hermition car gates) with nun negative matrix elements 

S 	E
12 

B
34 

4. E
56 

I+ 	
E 	E 
15 26 

E
13 

E
24 

It is evident that the canonical solution discussed in 1.9 

cannot apply. 	(It is necessary to 'embed' the SU(3) x SU(2) 

phase conventions, if only because of the consequent simplification 

in the construction and use of C.G.c tables. See next chapter.) 

We can suggest two possible phase conventions 

(i) 	As will be seen in Chapter 3 the SU(2) x SU(3) decomposition 

facilities explicit construction of basic vectors in SU(3) x SU(2) 
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submultiplets, in terms of the fundamental 6 and 6* entities, i.e. 

quarks and antiquarks, A given IR may, however, be constructed in 

various ways, corresondilij to the addition of multiples of the 

, 
variously named SU(6) scalar, or inert, unit [1.

6 
 j or the traced fc. 

Allowing for the 7resence of these factors, it is always easy to 

make a direct com,larison of the same IR constructed in different 

ways and hence obtain a consistent phase convention. Essentially 

this method was employed in ref.
11; its main defect is +1-lat it is 

not easily communicable, i.e. not based on any well defined operator; 

however, it was computationally very simple to apply. A second phase 

convention could be set up as follows: 

(ii) 	The SU(3) x SU(2) algebra is maximal in SU(6) - as may 

be verified directly, the addition of any operator SU(6) external 

to the SU(3) x SU(2) set leads to the whole algebra. 	Again, as 

oe may use any one such operator to define the relative 1: 

signs of the invariant subspaces. Ue choose H
5 
which applied to 

some state p,IIII3Y; S337' gives 

C=A= AI = AI
3 
. AY =

3 
	Au c 8 (ii)u 	2.16 

AS c 3 (X) s 

(Notice that H5, a member of the Cartan subalgebra, is not diagonal.) 

It is clear from the IR6 that we cannot demand H
5 

to have only 

non negative matrix elements (one can further check in the 22 

that no member of the (.c!,7 	-an ta chosen to have solely non 
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negative matrix elements) and we have to proceed as follows: 

(a) Within an SU(3) x SU(2) multilet it is possible to define 

a unique ordering, according to (13, Y, S
3
)
' 

supplemented by total 

isospin where necessary, i.e. States of the same (I3,Y,S3) are 

ordered, highest first, according to decreasing isospin. 

(b) 	By definition the highest weight of the SU(6) IR is also a 

highest weight of some SU(3) x SU(2) IR, and from the uniqueness 

of highest weights in SU(3) and SU(2) we may order dist4-I-t SU(3) x 

SU(2) multiillets according to their highest weights. 	(This fails 

whon an SU(3) x SU(2) submultiplet occurs more than once in an 

SU(6) IR - we discuss this situation when it arises %,43.4). 

(c) 	Applying now the o3erator H
5 
 to a decreasing, ordered, set 

of basis vectors in the highest SU(3) x SU(2) submultiplet will lead 

into other submultilets. 	Let (1111(7j) be the highest submultiplet 

and let (It C7) be some other submultiplet. 	Then we define 115
J   

to have positive matrix elements between the highest possible state 

in (III  1) and the highest of the so determined states in 
(pai

r(7-.) 

(in general of course this will not be the highest state of (u., 
'J 

i.e. in this sequence the first non zero matrix element of 11
5 

is taken positive by convention. 

If GAItiyin51(111,y?... o for all basis vectors in 
(u1 1) 

 

we proceed to the next highest submultiplet and so on. In this way 

from the irreducibility of the SU(6) IR, and the maximality of 

SU(3) x SU(2), all relative signs can be determined. 
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This method was first employed (tho' not fully described) by 

Schulke; however it is there erroneously stated that both 11 4 
and H

5 
 may be treated in this way. A third paper on SU(6) 

Clebsch-Gordan coefficaents20, does not state the phase convention 

used. 

In detail for the 22 we have : 

The highest state leading out of (8,3) isil<
+
(0)7 (octet states are 

+ + _o 0 0 0 - 
ordered 	,K ,K 	s Y IC lc 07  ). 	Then mapping F16 

H5  t !<÷(0)> 	[3-15, ../i(E13-E24)] = 4 13+E24) 
—4 4- 1.-c 	if we have (E

1324) —4 -19 1K4-› 

This fixes the (8,1) overall phase. For the (1,3) 4e must choose 

ivu(1)„) in (8,3), and then, on defining E12+E54+E56  --4 	ovi)i 

H5  0,u(1)7  —4, [I5 .14(E12-2E34  +E56)] 

Z I ̀n-12.1-  'k  -34 	E56 )  

= 	6 [2(E,2+E34+E56) - (E
12 

-2E
34

+F,
56

)) 

,k,51  t 	1 -0( 1  ), 
Ue close this section with a discussion of the IR6* although 

since this contains only one SU(3) x SU(2) multiplet its structure 

is already decided by SU(2) and SU(3) phase conventions . 

The weights of the IR6 are shown in Table la - the basis 

states are denoted by the customary quark label. Under complex 



as E. . 	1,7 
13 
(a) In a non self conjugate IR these matrix elements of 

Thus 

conjugation these :ix states become p 	n c n. The 

Condon and Shortley convention will require the introduction of a 

relative minus sign between each spin doublet and the deSwart 

convention will require relative minus sign between p and n2  

states, cf. 	1. 	Hence we take as basis states in 6* 

5, 
7 

-n, n 	 2.17 

It is between these states then, that the operators S+, 

1+, + will have non negative matrix elements; the complex 

conjugation operation changes the sign of the basis elements in the 

Cartan subalgebra, 	1.9, and further it is not possible to eliminate 

this sign change with a second trivial phase transfc.--ation such 

r
5 

which are posicive by definition will be negative by definition 

in the complex conjugate IR. cf. $2.4. 

(b) In a self conjugate IR, special care must be taken since 

then the convention will require both positive and negative matrix 

elements in the same IR. cf. A 2.4. 

The eqs. 2.17 may be summarised by 

1q- ) = (-1) 	icy 
Ao-A 2.13 

	

whereAo = 	S3 of the highest antiquark state (Q I
3 
	Y) 

	

= 
	5

3 
of the antiquark state q 
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Due to the additivity of the weights I39 
 Y,S., equation 2 then becomes 

a general rule for constructing the complex conjugate basis state, 

although of course the fre.?dom of an overall minus sign still remains. 

Taking this plus one in g we see that for quark states we may 

omit the 1 ) indicating basis vector (by definition) but we may 

not do so for antiquark states, 1.  6 p 2 
	 = -p etc. 

The:manner in which these (-1) phase factors arise can also 

be seen thus; given any basis a  11 • • • 
	for a unitary TP. then 

unitarity implies that as + i3 + • • 0 

	 ; is a scalar, (where 

- denotes complex conjugate) so that any generator applied to this 

expression gives r:;ero. Choose in particular a generator postulated 

by convention to have all its matrix elements non negative - then 

clearly since the action of this generator in the IR containing 

a,D,... introduces only + signs (or zero), then the action, (or 

representative) of the same generator in the IR ccntaining a,D • • • 

must introduce minus signs, i.e. &,5,.., must be related to a 

basis, consistent with the given phase convention, by some factors 

-1. 

2.3 SU(3) x SU(T) decompositions in SU(6) 

Following the ideas outlined in (0 1.6 the SU(3) x SU(2) 

structure of an SU(6) IR derives from the symmetric group 

Clebsah-Gordan series. 	This was pointed out in ref.
11 

ar.O. has 

. 2i 
also been given 	eiactice one complements this method 
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with others; we give some examples : 

(1) 	6 	(3,2) 	E --- (5,2) 
6 	G = 	0 1 	(312) (x) (5,2) = (8 (-;) i, 3 (;) 1) 

so that 22 —4(8,3) 0 (811) C.4j) (1,3) 

(ii) ze has YT [21] 

Using the C.G. series for5
3 

[21] (_ [3] (x) [21], [21] (X) [21], [21] COI [13] 

z2 -4(10,2) ( (8,i) 0 (8,2) 0 (1,2s; 

[3]  (i) [21] 	[21] (-3) [3] 	[21] (ii) [21] [13] (k) [a] 

(iii) 	T..731-1  73' b..22 (.-- 	35 G...) i 

.!tA  
.. 	T - 	-,, 	'O. 	x:1'..' 	) ..-j- 	0- 	Q _ xS v 6 

(-.)Q 	xS , ; 	:Al  4-:: ,„ xS 

T is an SU(6), C!., 5 SU(3) and SU(2), tensors 

(21 CF,) 3 (..:) i; 5 6) 3 (D i) (1-) (8 G) 1; 1) 

CD 	(io 0 8; 3) 

Whence subtracting out 35 (4.) 1 we obtain 

.0.2 —4/(27 5 (i) 3 (;) 1) (t) (10,3) 0 (T5,3) (i) 2(8,5) 0 

(8,1) () 	3.) 

Notice that (8,3) occurs twice in Am; thus already the SU(3) x 

SU(2) labels are insufficient for labelling states in an SU(6) IR. 

We give below at the SU(3) x SU(2) content o' a number of 

su(6) IRs. 	Furtii_r ti,ou.Lation is given in H.Ruegg et al
21
. 
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TABLE 3 : 

,1  SU6  I • R. :EY. . Ti (-4,(;) content 

(64; 7+5+34.1), (35; 5+3), (55; 5+3), (27; 7), 2(27; 5), 

3(27; 3), (27; 1), (10; 5+3+1), (75; 5+3+1), (8; 7), 

2(3; 5), 2(8; 3), (3; 1),(1; 7+3) 

(35; t+2),  (27; 6), 2(27; 4), 2(27; 2), (10; 6), 2(10;4), 

2(10;2), (10;4+2), (8;6), 3(3;4), 3(8;2), (1;4+2) 

(35;64.4), (27;4+2), (10;6+4+2), (1-6;2), (8;4+2) 

(27;5+3+1), (10,3), (15;3), (8;5),(8;3), (80),(10+1) 

(27;3), (-1.0;5+3+1), (7700), (8;5), 2(313), (2;i), (1;3) 

(27;3), (10;1), (15;54-3+1), (8;5), 2(8;3), (80), (1;3) 

(27;1), (10;3), (TO;3), (8;5), 2(80), OW, (45+1) 

(10;2), C;4+2),(42) 

(10;4)„ (8;2) 

(8;3+1), (1;3) 

(1;1) 

2695; [65] 

1114; [4213] 

'700; [514] 

405; [424.1 

280; [313] 

X";  [32233 

189; ael2] 

z;  [21] 

_; [3] 

22; 0214] 
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20 4 Construction of SU(3) x SU(2) submultiplets  

Using again the symmetric group we can construct explicit 

SU(3) x SU(2) states appea.-ing in an SU(6) IR. 	This is exploited 

further in the next chapter, here we obtain the SU(6) 3 quark 

states, and quark-antiquark states. We employ the 115 
phase con-

vention, but revert to the alternative in Chapter 3. pl,nt, 
, 

denote SU(3) quarks, pin,;\ and p n >s the spin up or spin down 

SU(6) quarks. We shall have to °multiply' SU(3) and SU(2) 

basic states together to construct SU(6) entities and this we 

represent by e.g. pl 

When several factors occur it is of course important to preserve 

the order. 	Thus piz.I .N1  tii/ 	= p nX ptnixti 1\ 4,, 	= p n 	etc 

(it is this order upon which the sytimetrie group operates). 

We use the sy.:1.ietric group basis functions given in § 1.5, but with 

D. nt -  or I t  At replacing the numeric labelling. 

Soave important matrix elements are :- 

6 : I n = 	p,,\ =0 	Im p =n 	.1... n0. =0 

K+ )h. = Pt 	= 0 	l p = X 	n, > = 0 

and similarly for spin down states. 	 2.19 
A 

S IN. 	 A, 

	

+p = p 	G 	= n +ri 	 Std = X 	Si.  p,n,), = 0 

	

^, 	 A S_p = p 	S-  n = n S \ =1 	
^, 

	

\ 	S_ p, n, =0 
, ,.... 

	

- 	- _ 6 : 	li.p-  = -n 	Ii.n,?.. = 0 	I...n 4. = -p 	I..", :>, = 0 
INN 

2.20 
= - A ;C n 

9  = -p 	= 0 
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and similarly for spin up states 

s
+ 
 p = ..p 	S ti = 	S T = 	S.i. 	= 0 etc. 
• 

(i) IR„g.  

[3] C [3] (0 [5], [21] (X) [21] 

i.e. 	56 

Highest weight 

as (1014) 

= 	IN 

() 

(A') > 9 

(8,2) 

SU(5) x su(2) 

 

Pt  iPt i 1311  

 

= P t  Pt  Pt  • 

i.e. 	,e 
.ppp which is Lanifestly SU(6) [3] symmetric. 

The highest weight of the (8,2) multiplet is ‘‘,..."1-()? 

14-(10 	19! t 
J\s`. 

=(p' ; p'— — X P' p') x 	—4t” ) 
A 

PAP 	P - Pek13 + ;\.13 P 

We now apply the symiaetriser corresponding to aLl to project 

out the 261[5], component of [21) (i) [21]. 

Thus abc -(abc) 	abc + bca + cab + bac + cba + acb 

aab --"2(aab) 74' 2 aab + 2 aba + 2 baa 

Similarly 
A 	N 	 A 

13 ;\ 	PP - P,p 	PP 	i 2(1)pi') - (1)10) - (p13) + 2 (pp)) 

4(PP)̀) - 2(13;)) 

(due to symi-17.etrization, we would get the same result starting with 

the other [21j S3  IR 	cfi 1.5) 



eigenvalue 
of 

3 5 

state 	A 	 A 

	

p 
	 n 	n 

	

-1 	-2 	2 	-1 

Normalizing 

5. 1"(n) = 	2 (2(1311 ) 	(PPis)) 

The choice of plus or minus sign is fixed by the phase convention. 

Using eqs. 2.19 we find 

y () = 3  (PP>k) 

'*+(-1) :> = 	((pp) + (pi; .N.)) 
2 Instead of n

5  it is convenient to use 
6 ‘/-

3 
 115  since this has 

integral eigsnvalues in 6 and g : 

Writing P = 6,47; N
5'  the action of this operator on a product of 

quarks is found simply by adding up the P weights of those quarks: 

P tr'(1)) = 	(pp)) — 2 (pcifs)) 
3 

Hence our phase convention requires 

+(?;) •? + 1  (2 (pp>) - (il;-0)) 
3‘,/2 

The remaining 2§.  states may now be obtained with SU(3) and SU(2) 

operators. 
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(ii) 

70 --=,;/ (20,:-.0 (0 (8,4) 0 (8,2) (+) (1,2) 

(a) (10,2) 	FT' 
SU(3) 	SU(2) 

Highest weight 	(plpip.) 
	

X 	 I - 

PPP - PPP 

Since in fact 1 	. 	r 
	

Lj 	there is no need to 

apply an IR.70 [21.] symmetriser and we take, in an obvious notation: 

	

70, N'(;)> = 	CP 331) where Cab] = ab - ba 

(b) (8,4)"-a 	LIT A 

Highest weight 	(13'\' P• 	ft‘  

= EP1OP 

Again [21] symaetrization is unnecessary and we take 

	

7121 .  ) = 	Cr1P 

...172(802.4-(Z? ) 7 	= 	qp.\3i, coap + up/Ai)) 

(c) (8,2) 

Highest weight 
	

(P'x',51 	xeptpl) 	( 141 4:1\4) 

p \p - PP - 	P 	),PP 

This time we must apply the (21.] projection operator : 

with the prototype abc 241 ) [ab]c [cb]a we get 
A 

"' [1:11P ]  > 	EP>31i3\ 	CPX3P 

and we must take 

	

= 	4 (Cp'p.) + COJ; - 



(d) (112) 
/", sf. 

Highest weight 	([p,n + C^1-11p 	xl (f)i 	27/4) 

[pni 	Cpni 	+ Cj, rdP 

(where (ab) = ab ba) 

1 
so that the corresponding basis vector is 4- st times this. 

We now fix signs with our phase convention: 

For this we need the following basis state in 22(10,2), Catained 

by the action of SU(3) operators on the highest weight. 

(10,2) Y*4-(0 ; .01k ( [p;),I + [p>Jp + 

then 11(10,2)1 +()) =11 	Epa\ + 4EpAp 2Ex?)]p) 

so that we must take 

1.72(1G4Y (Ds) = + 
	

Cp),]p 	Cia,\]p) 

and 

792(8,2)(k)) = /1 (CPIAN + 	- EP3p) 

in order that these two basis states have podtive scalar product 

with P1(10,2) 71.+(') j 

From the selection rules eq. 2.16 for P we see that the 

relative sign of the (1,2) multiplet may be determined by applying 

F to the state 1(3,4) h,3(, ) 	lie find 

i (8,4) IN)› = 2,- (4[0a 4[piIn - 11;)an 

16Wp + 	+ [nOk + 01/33) 

C9, 

A tr 
+ /Dim) + ,aLn:Nip 
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and derive 

22(112)iS°(fl1) = 	([pn 	[Pn];>. + [A]p) 

Note: (1) Using the equivalent orthogonalcyR a second equivalent 

orthogonal 70M can be constructed. 

(2) Related to this care must be taken to ensure that one 

always constructs , embers of the same z2 as in 

(a),.. (d) above; hence the choice of spin function 

in (d). 	In general one can use orthogonality to decide 

which _3IR to use. 

(iii) IR.20 --4 (8,2) (J) (1,4) 

corresnonding to 

E133 	c_ C211 (g) [21], C133 (;) [21] 

(a) (8,2) highest weight CP' ?\'.1131  ((4) 	- 2' f\i') 

Cr'JP 	Cl; ]p 	2C1 

Applying the [13] syLletiser: abc --;;[abc] = abc + bca + cab - bac 

- cba - acb we get 20(8,2) e(1)7;" =4 [p  ?PA. 
o 

We shall need the state /\ (T2-) for the phase convention and 

this is t20(8,2)/(11)› = . (Cpn'A + ltiv./13 - iEaW). 

(b) (124) highest weight 	[1)1 A'n1] 11(1` 

[13,\n] 

1 :•SPin 	rot • -- 	— 
3 

/a (Epi,n3 + Er;.n.1 + Cp7413) 

([13] symmetrization is unnecessary). 

P. 1 20(8,2) A°( 	= 	(tkEpn:i 	+ [pil;,3) 



So we must take 

i 20(1,4) 	= 	[P>'11] 

(ix) The IR.22 

Highest weight =; j*  (1))  = p n 

Filling out the( ,3) coamonent the highest state which is not an 

eigenstate of r is I ie. (0)) 	( 	+ 137.) 

P 	A(13--1-  /4) 

So we must take k lc 	= /f(p7. + 

The highest state in (8,3) for which P can have non zero matrix 

element with (1,3) is 	. 	We find 

= -1 (P• 	+ nn) 

Pr(0)7 = -1 (217; 
	

+ 2nn) 

J6 

"1.. [4(PP .1-)s 	nn) -2(pp 	il + nn 
v46 

So that we must take 

ty(i), 	= 	(pp 4- 	4- 11;1 )1 

(v) The IR.1 : This has YT [1
6J 

and we may represent it as 

, LP p 	ni where 	denotes antisymetry under interchange of 

any two quarks. 

Expanding 

[pi 	PCP >,\\ nri] - 	nrifr'p] +), nnppl 

+ n[ripp'sx] - nEPPPra 



,T(lpilf?) -1 P)(P:, 

ilf 	7   
= v-6-‘131 •  1313 

, - 1;;t, V.1+1)4:7 %>,..) - 	i• 	n 7%) 

7 
nn nn) 2.18 

	

2 	, Let 1p)=11-iff);\,- nn), then using S+  I+  IC 

r4N. A n) = ✓5  LP X`Pn] 	° 
n) 	41, r pn] 

5 

	

j\'>= ./7.1 	 [Pp>, 

So that 

we obtain x 
5 I 

"2,  
r,41 

In Table h tre summarise the results of this section, giving 

the highest vector in each SU(3) x SU(2) multiplet of the five 

IRs discussed, together with those for the second orthogonal 

equivalent 72. 
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TABLE 4 : 

221  

20 

1 

SUM 
IR 

SU(3) x SU(2) 
highest vector 

(1.0 14)i N44.+(-;-) 7 

(8,2) 

; 223'1141  U0 	( ) 

103;:ik. 	) 

t (8,2) C().7 

(1,2)(2(i) 7 

(812)"L÷ (1) 

(1, 4)s°(i) 

P 

(13 7; + p 

_ 3  (pia + X a + 

1(1,1) x° 1 	• A 	"'". 	A 

A. (pp + pp +>0%+ 	+ nn + 

PPP 

1 C2(pp 	— (p1)>)..1 

✓ CPP-11,  

Cp>ap 

— 	(CpiAx 4.)3 — ClajP) 

-(p) -(pn)p) 

(is,X)n-(iori),\-(ri)p-in)p) 

372.  

Quark structure 



2,5 Some  special  features of SU(6) 

We conclude by emphasizing that the departure from a canonical 

formalism in SU(6) has introduced some special features. 

(1) The Cartan subalgebra is not diagonal in the physical (SU(3) x 

SU(2)) basis used - this is highlighted by our use of an element of 

as a ladder operator; associated with this, SU(6) has introduced 

no new quantum numbers of a linear or simply additive type. Of 

course it is still true that SU(6) invariance is much mnre restrictive 

than SU(3) x SU(2) invariance. 

(2) The SU(3) x $U(2) subgroup labelling of states in an SU(6) 

IR is not sufficient to distinguish all states of all IRs - thus 

there may be more th,n one vector in an IR having a given SU(3) x 

SU(2) transformation, although of course such degenerate vectors 

will be differentiated if we include the complete SU(6) group of 

transformations. The general canonical solution to the labelling 

problem for SU(n) has been enunciated by Racah
2 and is also discussed 

13  in ref. . 	lithin a given IR the Cartan subalgebru is to supply, 

for SU(n), n-1 labelling operators and a further 1(n-1)(n-2) 

independent operators commuting with themselves and also with 

are then needed, ;',n(n-1) in all. 	(The SU(n) Casimir operators 

provide a further n-1 labels sufficient to distinguish inequivalent 

IRs.) 	In SU(6) ue need then 15 operators and our SU(3) 	qU(2) 

provide only coven (bei'i 	and SU(2) Casimirs together aith 
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12 13, Y 3) - a further eight operators and their spectra, 

commuting Ath these seven but not with any of the five SU(6) 

Casimirs are therefore recoired. Given these one could then attempt 

a general algebraic solution for SU(6) generator matrix elements 

and CGc's - such an undertaking seems academic from the physicists 

view point, the elementary techniques develoed in this thesis are 

largely adequate for his needs. However it is interesting to 

note that there is now a partial solution to an identical problem 

for a different group viz SU(4) decomposed according to SU(2) xSU(2). 

See ref.
22
. We could also note that non canonical decompositions 

of SU(n) are 1)erha:.s the rule rather than the exception in physics. 

Thus the chain SU(n) 	Otn) provides (an incomplete) labelling 

useful in nuclear physics27. Using methods described in this 

thesis it is easy to establish for SU(3) -4 0(3) that the generator 

embedding may be taken as S 	0: 	 *) 3 = 213 
 for the 

generators of the 0(3) subgroup, and that in this basis 1+  transforms 

like an S3  = 2 S = 2 tensor. Eignestates of the pair S2,S3  

in general are not eigenstates of Y (this is obvious from the form 

for S+) and so in this decomposition we /lose' one of the diagonal 

quantum numbers, in contrast to the situation for the SU(2) x U(1) 

decomposition. 

This degeneracy does become more troublesome when 	formulae 

for the SU(6) grmiL are -" - 	There, clearly, it is essential 
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to label (i.e. distinguish) all states in an IR. 	The practical 

solution has been, following Bog and Singh
23 

to introduce a 

second decomosition chain SU(6) D.  U(1) x SU(2) x SU(4) 	U(1) x 

SU(2) x SU(2) x SU(2) the two chains together have sufficedi  . 

in those multiplets so far discussed
23
. 

Thus, in brief, it is the product rather than the sunk, subgroup 

decomposition of SU(6) which introduces an unaccustomed aspect of 

an SU(n) group. In the next chapter we further exploit this 

novelty to calculate some SU(6) Clebsch-Gordan coefficients. 
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CHAPTER 3 

CALCULATION OF THE CLEBSCH-GORDAN COEFFICIENTS 

This cha'1ter deals with the reduction of the direct or inner 

product in SU(6) in the following cases :- 

i) 22  (s)  31 " 1 (i) 25F .( a-  22 (:70 1.114 (t) 284a 

ii) (i) 22 = 	79. (4 1124 	70°  

iii) 26 (0 Z = 1 (1) 22 (+) 122 0 2695  

iv) 22 (;) i = 0 12F  022a  (+) 

(an extensive list of specific Clebsch-Gordan series for SU(6) mey 

be found in H.Ruegg ek.. al
21
). 	Complete tables for the series 

(i) (ii) and (iii) were first published in ref.
11
; for the series 

(iv) we extract only the coefficients associated with the . 

octet parts of the two Al's since only these will be needed in 

some work on m;resnntation mixing discussed in Chapter 5. The 

tables can be found in 53.I1. 	In X •  3 1 we introduce some notation )  

and definitions and discuss the method of calculation of CGc's, and 

in 93.2 wegather together all phase conventions operative in our 

work. 7) 3.3 deals with fundamental symmetry and orthogonality 

properties. 	3.4 treats cases (i)-(iv) above and in r.3•  5 we add 

a brief note on use and application of the tables. 
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3.1 Some  simple examples 

Let 

:Z 	2.1;1/4  (it 	Y I2I • 	S 	( 	(12 C.71; 
l' i 1 1' 	1 1 13* 	13/ 9 	21  2 2 j 

Y 12  I 
2 	PI 2 *

s 
 2 3 3 

be two normalised basis vectors of two SU(6) IRs,.(11, .L1. We 

have exhibited all the necess....:i labels, note especially i)j 

which have no group theoretic definition and enter when the SU(3) x 

SU(2) labelling is not by itself unique. Then we write 

\ 

'.>j* 	
i 	11)i .. 	(1L2 C-23j 

kY 	
S3 Y2412  412  S3 3 1 13 3 	3 3 

YI 

P.
Y

sk 

Y 121 s
3 	1) 3 	,. 	(ILY  Clk; YI2 1

3 
S
3 

as a detailed expression of the Clebsch -Gordan series 

L n '4 V 

11. 1(0:) denote the dimension of the SU(3) (SU(2)) IR involved 

YIYI are employed when the direct product is not simple reducible, 

e.g. for SU(6) yi when n.„Ir is 	1 in eq. 3.2 

3.1 

n,„ 7r 	3.2 
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YI2I3 3 are the usual SU(3) and SU(2) quantum numbers; we 

shall often represent YI2I
3 

by the single symbol J. 

We require the number r, Clebsch-Gordan coefficients, 

/ ?‘ I 	
2 	gl 

/
(1-1Y: 7)k 

(u'1 
15Pi 	(1 (7-1)j 

11I12I13S13 	
Y I2I S 

9 
2 2 2.3  3 	

YI I
3
S
3 

in the four cases mentioned in 3.0. As has already been remarked 

we may not employ general SU(n) solutions since these are given in 

the wrong (canonical) basis - our calculations can be viewed as 

establishing a transformation frow this basis to the SU(3) x SU(2) 

basis in some special cases. Since the states used are eignestates 

of SU(3) and SU(2) the SU(6) direct product must satisfy the SU(3) x 

SU(2) direct product relations. Thus for SU(3) x SU(2) alone we 

have 

(lit' 1);  \j1.1313 	1 (112C72); -4 2s23 

Y 	n- 

•%/2 	 ; V  S3 	303 i 2 	
2  S, 
3 

and the question then becomes: if the states on the left hand side 

are promoted to SU(6) eigenstates, how are the SU(3) x SU(2) 

states on the right hand side in turn distributed amongst the 

various terms of the SU(6) direct product. 	In brief, we may 

appearing in eq. 3.1 
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extract from an SU(6) CGc an SU(3) and SU(a) CGc and it is necessary 

to calculate only the residual quantity: 

4-\ 1 
	

)2 	i\• 
\Yt 

u n nY  
2 	r-1. 	

k 	
‘) 1 1 i 	(112Yj 	(1j7) 

I 
	

= 	S S ) LNI 	) 	 , 
43  23 3 1 2 	22i 

N/ s 	

Ni2s23 
	s3 

 
1 13 

3.4 

We need the last factor, 

/ Xi 	X2 1  

( (u'3 1)i (112VJ  

 

which we call a unitary scalar factor (usf), and which is the 

new number given by 6:.1(6). Only the usf need be tabulated, the 

full CGc can then be reconstructed with the aid of SU(3)5t25  and 

SU(2) tables - unfortunately in comi,utation we have had 4•4.  

the full CGc. 

We give two elementary examples : 

(0 6 (x) 6. 

The coefficients may be written down immediately from Table 4. 

From 	'35 (8,3) f(1). 	= p n 	1 P) 	? 

6 C- 35 
we deduce 	

(pa Xt(1)) 	= 1. 

(we use an obvious shorthand form for the labelling quantuia numbers) 



.25.(''3 11); ii 

we have 
( 6 
	g 
p 

so that (6 
(3,2) 

From 

= -fif(p; + P;';) 

-/-1( (p') I 	+ l 1;)1n)) (cf. 	2.4) 

11 35) 
(3,2) II 31 	= -1  

35`) = 
n 2 

by the factorization ffroperty it follows that 

6 6 	35 	6 g 35 	3 

(3,2) (3,2) K (8,3) n$+(1)) 	(p  
sU(6) 	n u  su(3) 

2 3,-1 
1 1 
2 a  su(2) 

where the subscri2t indicates the relevant group; using now the 

Su(3) and Su(2) tables252 	
3 8 

(
(3,2)(3 

-6
2) 

11 35) = 1 

Similarly fro 

81. 

013); 	= 1 	R. 

	

-/5413  P 	 '+ n n) n 

 

 

/1. In>Cn)) 

we have 6 g 35 
() ' /1  p p 	3 

and therefore /6. 
t/ 	

11 	35 
t3,2) 32 4 (1,3)11 

 
+1  

Finally, from 

' 1); 	= 	(pp + 	+ 	+ nn + 

, 	- 
it(11:3117)-p'10 



/ 

^,- 

62 

we find 

6i 	1 	6 	gdi (
p p

o) =‘,/,7 so that (
0,2) (5,2)4 (1,1)) 

= +1. 

Notice how important it is to employ basis vectors in the expansion 

in order to obtain the correct signs - Clebsch -Gordan coefficientJ 

always refer to basis states. 

(ii) A second less trivial c ample is provided by 6 (g) 6 = 

21 0 	:2. has YT [2] and SU(3) x SU(2) content 21 = (16,3) 0 

(3,1) :.15-  has YT [12] and SU(3) x SU(2) content 12 = (6,1) 	(,3) 

The weight diagrams are, neglecting spin degeneracy, 
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The highest state of 21 is the product of the highest states of 

the two factors 6. Using 	to denote application of a ladder 

operator and neglecting nc-malizations we now have 

21 highest 

We can now use 

A 

= PP ;"" 	+ PP a. (pp) ---> (pN) + (p) 

P (introduced in (;) 2.4) to transfer from (6,3) to 

(511) (p )s)  + (i1/40 	3(:4) - 3(M. 	This last state is orthogonal 

to (p).) + (p}), has spin zeros 	I-spin i and by our phase convention 

we thus take 1 21 (3,1) -I- 	2((13%) - (P)). 

We can thus calculate the two usfs 

6 

(3,2) 

6 
(0,2) 

6 	, 	21 

(3,2)0(6,3))  

6 	21 

(3,2) 	3.1.1  

6 

= (P 

1. 

6 

(p 

6 

P 

1. 

6 

21 	3 	3 

Pp)SU(6)(P 	P 

1 	= 

21 	:1  3 

0,1)highest p 

6 -1 	2 

PP
)
SU(3) 2 

3 	3 
highest) 

2 

2 

-1 
• •  

) 
-::11j.t21  

2 2 1
)
-1 

`2 	0 S0(2) 

= +1 

One can check that the same usf results from the use of any term 

in the direct product expansion e.g. P;',  in 21(3,1) above. 

For 12 we note that PP - PP 
A, 

= Epp! has the correct quantum numbers 

for the highest vector, and is orthogonal to all 21 states. 

, 
Taking 	15 highest 	=1-1-EPi3J 	7 ilk(Ep,g + [`,;]) 

3 	(El) 	[>ii] ). So we take 



= 	1.- 	s +1 

6 6 15 	3 3 3 -1 
(P 	EPWL(6)(P t• *L(3) 

2 
(1 a 

2 

2 

3 
) 
-1 

SU(2) 

84,, 

15(513); Pi` S3=0  > = i(CP/q + 	using 	we then have 

115(5,3) highest) = /iC0J. 

The udfaffealow 

6 6:: 15 
(
32 32 61

) = 

6 6 15 
(32 32 53)  

3 3 6 -1 	2 1 -1 6 6 15y 
'') 	( 	( 	) P p (PO 	P p pp SU(6) 	SU(3) -2  2  ° sign) 

	

= 	/2. 	= +1 

Alternatively we could have calculated basis vectors in 21 and 

1.a  directly, without using ladder operators ; 

1(613) highest L LID ' 
	 ••• 

	

21(5,1) highest 	 ErS ? ci4:1 

= COJ 	by direct multiplication 

Similarly 

12(6,1) highest) 

CP 113 

112(5,3) highest' 	('`) 	
f 

CP X) 

Normalising these basis vectors we obtain the same results as 

before - notice that this second direct method was very simple here 

since it was not necessary to apply aymetrisers for the SU(6) 

symmetry. Summarising, to calculate the usfs we had only to 



C.i. 

calculate one basis vector from each (u,T) multiplet in each SU(6) 

found in the direct product, the CGc then enter as normalization 

and orthogonality factors. In the first method we used ladder 

operators, drawn from the algebra and this is in fact the standard 

method mentioned by Racah2 and employed e.g. by Rashid4   - in the 

second method (which has been employed in the actual usf calculations 

which follow) direct construction has enabled us to dispense with 

such ladder operators. 

The advantage of this latter method is only seen in more 

complicated situations; the important ladder operator P haP 7'7(7) 

octet transformation properties with the consequent selection 

rules eq.2.16. 	It toes not in general produce a pure SU(3) x SU(2) 

state e.g. acting on (8,3) in A22 it can produce a vector with non 

zero projection into every (ttr) submultiplet, and one must then 

use SU(3) and SU(2) ladder operators and orthogonality to isolate, 

in a straight forward but tedious way, the required pure l'µ0 

vector. Of course ladder operators with pure transformation 

properties, but not in the SU(6) algebra, can be found: 

e.g. Ps = 
<
z T((813) v10) T((8,3) -V10) has a su(3)=o, As=2,o 

Poi = 	T((8,3).N.ia) T((1,3),O, -a) has AS=0 

but again these are complicated objects with which to work. 

On the other hand the orthodox method has the advantage 

that the correct phases within the SU(6) multiplet are a byproduct 



of the calculation -..-hereas in our case, if we were to employ the 

P convention throughout, as in Ch.2.4, they must be adjusted after 

construction. 

Again our method will always give directly the quark antiquark 

composition of a vector, whereas conventionally to reduce the direct 

product one needs only the matrix elements of the ladder operators 

in the factor or component, representations; however as mentioned 

in Ch.2.2 this explicit quark structure provides us with a simple 

alternative means of arriving at a consistent phase convention. 

Thus for example 22 (J 22 the quark-antiquark structure of gi 

is T a)  , the lower--boxes hold quarks, the upper antiquarks. 

One 22 apnears as a ....ace of this L22, which we show symbolically 

by r 
CAL 
	• Comparing with the structure of 22 given in Table 4 

we see that for the direct product we may take (the 25 tense's is 

clearly symmetric in its 22 components, hence the labels to) 

135;(873) highest) ^J 
a 
 + (pa) (n,a) 	3.5a 

,e..... C 350; (8,1) highest > N ... (pm)(na) - (lia)eili.) 	3.5b 
a 

(35? ; (1,3) highest) nJ / 
,.; 

'°' (pa)G70 - (),a)6c7) - (nagrici) 3.5c 
a 

where the a summation is over all states in 6 and effects the 

trace. Since as belongs to 1, and all operators in the algebra 

produce zero Lhen operating upon it, it is clear that, once 

normalis_d, the above states will provide a consistent (in the sense 



of Ch.2c2) basis for 22. 	Notice that we have arranged signs so 
c7 

that
a 
 ma, eq. 2.18, is indeed the correct scalar quantity. 

This then is the meth3d we have adopted, looking at (i)- (iv) 

of Ch.3.0 are see that only the IRs 22, 2.§., -,c4 and MI) occur on 

both sides of the equations, so only for these was the method of 

obtaining consistency invoked. 

3.2 	Summary of phase conventions  

In work with Clebsch-Gordan coefficients three different 

phase conventions enter. 

(i) The convention determining the matrix elements of 

generators - i.e. fixing the solution to eqs. 1.1. 	This has nol,  

been fully discussed in 	2.2, 3.1. 	For our SU(6) tables 

we have adopted the P convention for the IRs 22, 25, z2, 20; for 

all other IRs the relative signs of (471 vectors have bee- ralosen 

arbitrarily but,, in the case of 405, consistently in the two 

relevant cases. We have already remarked that against the 

advantage in computation afforded by this convention must be set 

the disadvantage of lack of communicability, i.e. it would not be 

easy for other workers to construct other SU(6) tables consistent 

with our own. 

(ii) In each IR in the direct product there is still an 

overall sign to be fixed which can be considered as the relative 

sign betfaen different SU(6) IRs occurring in the product space. 

E7. 
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Thus e.g. for the highest states of 21 or 12 we could have taken 

-pp or -[pp] respectively and this would then alter the CGc but 

not the matrices of the generators. To resolve this ambiguity we 

always take, in the highest state of the product IR, that CGc 

coupling highest I1 
	

I
13  S1  S2  S

i  in that order, within highest 

(111 1) 

	Si, 

(1t2Cp, to be positive. 	Labels 1, 2 refer to the page 
2  

order of the factor states. Thus e.g. we take 

,6 6 211  
;7 0 i.e. basis vector + pp 

%p p highest 

and 

i.e. 

6 6 15 
(p p highest)7 0 (rather 

L basis vector + ,/2E  [6]. 

t
,6 6 15 than D 

p highest) 0) 

This is a direct extension of the usual procedure, cf.5. 

(iii) 	A third phase convention enters when we assign physical 

particles to multiplets. A 
Already we have seen that if p, p„ 	n 

are basis vectors for 6 then their antiparticles, defined ;.:o be the 

complex conjugate state may not be immediately taken as basis state 

for 6. 	In self-conjugate representations the situation is more 

involved. Complex conjugation here mars basis states into basis 

states 	a phase according to eq. 2.18. 	If we want the same 

ooerator also to map particle 	+ antiparticle it is therefore 

evident that we may not take particle 	1 basis vector, for 

all particles. For exa:aple for 22, from Table 2, we can easily 
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see that the mapping /canonical' generator —4 + particle does 

have the desired - ro)erty particle —4 + antiparticle under complex 

conjugation, and using the mapping canonical generator 

basis vector ye can therefore determine the appropriate signs for 

particle —4 basis vector. Ile emphasize that it clearly is not 

necessary to arrange this added convenience of behaviour under 

complex conjugation for single particle states - but it does help 

to avoid more book-kee;ling on + signs. 

3.3 S et and ortho onalit roserties of C,G.c. 

These are fully discussed in deSwart5, Ch.14, and in the 

following Ire use his notation. Discussions for a general compact 

28 group are found in rai. . We have 

(i) 	, 	, yt 
i Xi >%2 
/ 

(v.I  711 i (t2  V'2  ) ( t-Y(79 ,  

"1 51 
	''2 S.., 

.1.3 	
43 V S , 

t  \Y  
%

6/)
2 

( 

2.1 (  (e,t2c;) (u Ci-  ) (P IY  (7) 	1 

-N/ s 	V S 	

,- 

V S 

' 1 1 

2 23 1 13 	3 
7-  yi 

3.6a 

2  

-s 
2 23 

3.6b 
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3.6c (-71 7) 

-)6/-s3  
21-523  

1,1p 
	 have values -IA and in general depend only upon 

(%'11 >+2').) - an exception to this occurs for 3 I in the case of .?  

Op degeneracy, cf. Ch.3.4(1). In eq. 3.6c we have used \, )47. 

to represent the dimensionality of the respective IRs whilst. 

1 = I 13 	Yi  S13  and A-1 is the value of /\ for the highest A 	 1 

vector of ).11  cf. cOso 5. 	Using the factorization property and 

equations analogous to 3.6 for SU(3) and SU(2) we may rewrite eqs. 

3.6 in terms of usfs only: 

Y 1  

(qi) ( Y470) 	07C7 

= 	c2 

)1 

e4  
3 

(setting 

' 1(...1) 

j +j -j 
*(2 	(..1) 	1 	2 	/ 
) 3 

Cr= 2j 	1 	etc.) 

\ 2 

(1122  ) (11iy 1 

X2 
' 

(1-1J1)  G272)1( 

(P.F1)(11•Q-)11(i2a2) 

(1:(0-) ) 

\Y'  
r‘ 

(Y.̀
;)  

X2-r' 

3.7a 

3'7/3 

3•7e 

B. A. 
.)k2  



),V 1  ) 
2 / 11  

In 3.7c t:c have absorbed in It a constant factor (-1) 
J2 

, Li 

charge of highest vector in 	resulting from a slight deviation 

of our definition of 2  fi m that o4 deSuart5  whose corresponding 

phases are here renresented by 51 3. 

Given say the set of usfs for >i (x) ('‘.2  it is 

elementary to calculate the factors 	, e.g. 

By convention (1) of 3  3.2 

X2 	>,1 

0 (11  7 	c--  ) 	) 
I 	22)  

Nt/
2
5
23 	

/
1
S
13 

4 S
3 

where (-AO S3) :7 highest in 1),,Y  and 
2 

•-•/ S13;  

), 211  
but this CGc = 

1 (it 	) 	) Oa') r 	1 1 	2 2 

S 
1 13 

vi
2S23 

`,/ 

by definition of Y.:1 1. 	The latter CGc is known by hypothesis 

whammy° can determine the sign of 1. 
The tables we construct must be consistent with these 

symmetry properties which therefore provide some checks on our 

calculations - we include subsidiary tables giving some of these 



TABLE 10 - Some factors 

S. C. 

S 1 

35 (_) 35 

fah 

z2 6,0 279_ 

t 

La 1 

280 -1 

280 -1 

189 1 

NSF  -1 

25.D .1 

1 1 

700 1 

1134 -1 

70 -1 

2695 1 

M22 1 

1 

1 

3.21. 1 -1 1 
1 -1 1 

N.B. These factors may fail in the case of multiple (V occurrence. 



'0"")(p.t7 ) 1 1 	2 2 

93. 

4L second important general property (which also firovides us 

with a check) is the orthogonality of the CGcs resulting from their 

constituting a real orthogunal transformation from one basis, that 

of the product, to another, that of its reduced or direct sum 

form. Again these are adequately discussed in deSwart, here we 

merely emphasize that the SU(3) and SU(2) internal summations (i.e. 

'magnetic' quantum number summations) can be carried out to leave 

us with the simple relations for the usf: 

,\2 

) 	V11.1Yc.T1  2 

leo .C12.r2! 

/Ati  • 

3.8a 

7—  / 	2 	̀i 

(11.1.71. ) (z.20-2) 	(11Y ,c7  

Yi 	k r o 	v 

gt.)4 gea- 
S 	s • 14yA,  ./y"v 

g Ts- G  \-1  

3.8h 
In brief these equations imply our tables shall 

consist of rows and columns of orthonormal vectors. 

3.4 	Details of the tabulation  

(i) 	(x) 

We re:resent 35 by the mixed second rank tensor 

notice that considered as q'q this is not really irreducible since 



9 4. 

e.g. 'r - 	1 	1 = /"ix 0̀ tiC(0)7+1 /-1,tv-4)7+-1 	S (0))+D°.? 

3.9 

(this equation is obtained by inverting the equations summarised 

in Table 4 for the quark structure of 22 and I.) and the term Xo 
is a member of I. Really 22 is represented by a traceless tensor 

3 I 
T
B ( 3 5 ) = T - 	; C C • A 	A 6  T

C 
 = i/6 Xof but in practise it 

is more convenient to omit the traces and simply ignore (i.e. nut 

equal to zero) the factor 	wherever it occurs, instead of 

explicitly subtracting it out. 

The direct product is now partially reduced by operating (i.e. 

applying the symmetrl- group outer product) independently on upper 

and lower indices: 

(*) 	= T t T _ 	Tt3 (1+7) T 

Ile find T rr  

 

W2 	M (..t) 1  

 

2130 (.)22 

T H- 	280 

189 e G 

The 22 traces appearing in the first and last tensors (they are 

equivalent) are obviously symmetric under interchange of constituent 

states, whilst the reu.a4ning two (also equivalent) will be anti- 
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symmetric under such interchange. Further, this opposition in 

symmetry will automatically make the two 22 traces orthogonal and 

so we have al.ready (in a s.:andard fashion) dispensed with the 

problem of double occurrence of 22 in 22 (x 22. 

Using Table 4 we can now construct 35F  (antisymmetric) 

and 35D  (symmetric) and 1 vectors in terms of quarks (an example 

of this already occurs eqs. 3.5) and using these equations such 

as eq. 3.9 derive the various usfs. 

It remains to discuss 122, 280, 280 and 189, for Alhich the 

main feature is the double occurrence in each one of (8,3). 	:fie 

describe the construction of basic vectors in this case :- 

SU(6) IR 	Contributing SU(3) x SU(2) tensors 

1H. x s 	Q x s 	Q , xSp L... 	di 	t.5 	17= 

C5.7. 
280 	 Q1.33 x S 	 x St2a 	%-t 	x Lo- 

s.- 	, (43-  x S • , 	x s 

189 	 x S 	, 	x 	, Q, a  x S 

This list demonstrates that we can in each case construct three 

linearly independent (8,3) basis rectors using our method; it is 

necessary to take traces on the Q and S tensors to arrive at the 

correct SU(3) x SU(2) transformation properties. e.q. 

17n 

	

s.  VI 	
Q 

28o 



and similarly for 2 in SU(2) e.g. in A22 

6 	'c 	A A 

Q  )1a. 
s

1 	
(plqi )( ni.,,i83D4I 17 

z: 
 

= 2(p....)((n5) - (4))+ (p)+)((ii;%) - (ii)) 	etc. 

However none of these (8,3) vectors will be orthogonal to the 

(83) terms occurring in their 35 traces. The extraction of 

these traces is then effected by forming orthogonal combinationsi  

e.g. in A22 	find that, symbolically, 

(1,71 
0 

S 
*U; 3.10a 

and 

117 

 

I.13 	14 
s 	S 	) 

 

 

3Q,13  S 
it 

3.10b 

arc an orthogonal 'Air which are also orthogonal to the 22 (u3) 

vectors already constructed. Such orthoganalizations and normalizatiop 

are always most easily carried out using explicit quark structures 

of the basis vectors; when these have been obtained one then 

resubstitutes for a sufficient number of 221' 222  states to enable 

all the usfs to be extracted. 

From eqs. 3.10 :re can also see how the 4
3 symmetry property 

fails to hold 	the case of multiple occurrence. 	Indeed under 

complex conjugation we generate a minus sign in 3.10a and a plus 

sign in 3.10b, one (8,3) multiplet is thus 'normal' and the other 

'abnormal'. 	(In fact by calculation 3.10a is abnormal.) This 



This contrasting bell,:viour represents, perhaps, the best possible 

resolution of the (8,3) ambiguity (it holds also in the cases of 

280, 280 and 189) - however when the multiplicity is greater than 

two such a procedure is inadequate. 

The final rt:sults appear in Table 5. 

(ii) 	(x) 
Here the tensor mIlltiplication and partial reduction is given 

by 
Ts, (i) 	= Trj 4.1 	• 	 (4.-) 

with T.3 5 	
700 (t) 

t-.117.1. 

11:a ij) 	(t) ZQ 

Again the tmc Ifts 22 are equivalent in SU(6) and they appear 

because we use To 
1-11 for the IR 22. 

Once more one Proceeds by calculating first the basis vectors 

associated with trace terms viz 51 and Q, and these may then be 

used when it comes to extracting traces in the 1134 and 722.IR's 

We reproduce the calculation for 5..k: 

.5& 	T 	 rti-f 	I and 156(10,4) highest> 	+(PPP) 

.. in Tf..CL: 	we represent this state by 	 .(pppq)q 	there 

( ) denotes complete symmetry corresponding to the Y.T.C4j. 

Expanding - (ppp) 	3 „e__(ppcdpi 

The first term has the factor t Xo
> and is omitted. For the rust 



we obtain 

(t3(13P13)105 N-  (13:4314 + (111))11S. + (PI;5)1:l + (P1m)Pii + (1313A)Pild 3 5 ( 

3. .0 

as normalised basis 7ector. 	(In computing the normalization it 

is important to remember that pp has norm,/2' 
 not 1, by our rule of 

6 

ignoring X cf. eq. 3.9) Rewriting now eq. 3.10 in terms of 26.  

,5 	6) 
and 22 states (using Table 10 	t we obtain the usfs (111,7i) 35 11  

% (10
5
4) 

Similarly 156(8,2) highest), 	2(pp\) - (p;,/\) 	from Table 4, so 

in this direct product we take 

156(8,2) highest'', "- 	2(ppq)i - (pi;Aq)4 

Omitting complete factors /I qq we find 

	

1 	V 
2(ppq)5.72 	2(133,q)p - (01q)>.4 	(pTci)Pg7i — (01)11(7. 

9 /5 

as the normalised basis vector, and from it we obtain the usfs 

( 56 	35 II I ) 
.., P8 2 ' 

	

. 	r)  

The complete set of usfs are given in Table 6. 

(iii) 	(x) 

Here the tensorial multiplication is 

T 	(x) T = %171.21 

with t1.--> — ar (qrs)(ii s) s 

2695 + 19.2 

S: 
highest ?'--+ 	(qrp)(q r ri) 



990 

( 1p02 highest> - 	(qpp)(inri) 

12695  highest.)- 

We have been careful to construct 01 basis vectors consistent 

with those ap:earing in22 (x) 22 and the complete set of results 

appears in Table.7., 

(iv) z2 (x) 70 

What we shall require for our work in Chapter 5 is in fact the 

matrix elements of the generators in the IR.70. One way to arrive 

at these is to compute the coefficients for 291(x)70 	35 and 

then use the 
3-2 symmetry of 

	
to obtain the desired coefficients 

Corresponding to the occurrence of 22 twice in 70 (x) z2 we can 

construct two 35 tensors in the tensor product viz. 

(351)Dc  = T E(LB)CJ T
[(AB)D] 

(35X:  = T [(AC)B] TE(AB)D3  

where [(AB)C] = (AB)C 	(CB)A. 

We can proceed as in the above examples to extract two sets 

of usfs. Unfortunately the basis vectors we construct in doing 

this are not orthogonal or equivalently the orthogonality relation- 

eq.3,8a is not satisfied (since we are considering only the 22's ye 

are not able to test the relation eq.3.8b). 	Given two linearly 

independent vectors it is a simple matter to derive an orthogonal 
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pair, but this is not the end since we shall require matrix elements 

of the generators; one of 	orthogonal sets of usfs must serve 

as in equation 1.6c. 

One way to arrive at the required sets of usfs is to solve thJ 

commutation relations: thus for example we have from Table 2 : 

[T(p+), TO7)2 = -T(4°) . ETt5*(0), T(Sr(0) 

We have two unknow:ls, the reduced matrix element 4.70 hTtt70 -7 

and the mixing angle (4- by which we must mix our two orthogonal 

sets of usfs 	order to obtain one set corresponding to generator 

matrix elements. Taking an appropriate matrix element, such that 

:cod T(no )1{3 = 0 allows us to neglect the reduced matrix element 

and solve directly for the mixing angle. 

In this way with a, b labelling our two sets of orthogonal 

usfs found indirectly from 221, 222  and tabulated in Table C, taking 

Costa a + SinO b as the generator set pre get the equation 

(Exa• Sin 0-)2 = 0 
4 

Whence we obtain the required sets given in Tables 9 once again 

we use F to denote the generator usfs. 

An alternative method is to recall that we know the matrix 

elements of some generators e.g. charge, isospin etc. from the 

SU(3) x SU(2) decomposition. Again by taking linear combinations 

one can adjust a and b to reproduce the correct physical situation 

26 
cf. 



In Table::,9 vs present the data for the product z2 (x) y2 

22F  (t) 
	

The 2  f-ctors required for z2 x 22 --44! z2 

may be found in Table 10, 

TABLE 8 .- 
^-^ 

101.. 



3 3 

- 3 

0 

0 

0 

TABLE 3 

• 

(0 (8 , 1 ) (8 ,3 ) 

(35)17 b (35)2  (35)1s: (35)2 

(201 2) , (10,2) 

(10,2) (8,4) 

(10,2) (8,2) 

(10,2) (1,2) 

(8,4) (10,2) 

(8,4) (8,4) 

(8,4) (8,4) 

(8,4) (8,2) 

(8,4) (8,2) 

(8,4) (1,2) 

0 

0 

4; 1/3  
+/2 

4 

0 

0 

0 

j2 6 

0 

__2 
16 3 

0 

0 

8 6 

.2 A 
8 2 

0 

0 

0 

0 

0 
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4 3 
2 

'f 
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0 

/2 
3 3 

0 

0 

0 

5 j1 
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j2 
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3 

/3 

—16 
A  
3 
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24 v3 

u 0 

12  A3 

l/t 

_Z 
24 5 

0 

8
s  

0 
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G
a 

C 3  ITO, 

J2 2 3 
A 

3 3 

0 

i2 
3 6 
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0 

1,A  
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0 
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3 	6 
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0 
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0 

8s 
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TABLE 9 - Unitary Scalar Factors for Z0(070 	(351(-0352  

(Octet parts) 

35f i 35z 
1 

70 (i) 70 (8,1) (8,3) (8,1) (8,3) V 

(10,2) ; (10,2) 

(10,2) 	(3,4) 

(10,2)(8,2) 

(10,2) 	(1,2) 

	

4(8,4) 	(10,2) 

(8,4) 	(8,4) 

(8,4) 	(8 ,4) 

(8,4) 	(8,2) 

(8,4) 	(8,2) 

	

8,4) 	(1,2) 

(8,2) 	(10,2) 

(8,2) 	(8,4) 

(812) 	(8,4) 

(8,2) 	(8,2) 

(8,2) 	(8,2) 

(8,2) 	(1,2) 

(1,2) 	(10,2) 

(1,2) 	(8,4) 

(1,2) 	(8,2) 

(1,2) 	(1,2) 

iii 

0 

0 

0 

0 

o 
2 

,/i1
i 

0 

0 

0 

0 

0 

0 

0 

_ j.
11 

0 

0 

0 

0 

0 

J' 11 3 	 11 
1 J.1.2 

' IA 
1I  10 
3 -- 11 

0 

- 1 ,i1.0 
3 v ii. 
0  

a _a 
3 	11 

10 1 ,k....  
3 	11 

./  _a 
3 v 	11 

1 	2 ./.._ , v 11 

1 ./19. 
3 v  11 
10 ,✓j....... 3 	11 

- .1.,/. 
3 	11 

0 

3 '
...a 	,...2. 

- 11-2+  3 	11 

0 

+ 1  J-3  3 	ii. 

- 13 i---11 

0 

4 	22 

0 

0 

0  

- 1 ja 
8 	2 

z✓_a f  
8 	22 

0 

0  

o 
- j..,„ 

16 " -'-' 

0 

0 

0 

1 1
13  

	x ,/11 

-1  4/11 
16 

0 

0 

+ 716 Ill  

0 

,5 J...2 
6 	22 

-22 . /_.2 
24 " 11 

-2; v-2. 
48 	11 

0 

1.3 ,...2, / 
11 24  v✓ 

-..12. 24  ii-1 
2 

-Z✓_2 v 
24. 	22 

1-2  --1 11 12  

Z.5.1/4/-1 
6 	11 

l  8 	11 

-2.  _ i 5.  
48 v  11 

1 ./... 
12 v  11 

'2 j-i 
6 	11 

-%/55 24 
ii ./2. 
24 v  11 

-2 7(1 
16 	11 

0 

+ 2,/ 1  8 	ii 

4. -216 ji.11 

0 

s 

a 

s 

a 

s 

a 

s 

a 

1040 



105. 

3.5 Application of tne Tables 

The only new feature of the Tables, and one which might 

ca'ise confusion in their application, is that associated with the 

unresolved labelling f•roblem. However, to illustrate their 

rather tortuous, if elementary, use we first reduce the direct 

product of a oroton-like (spin up) state and a neutral-p*en-like 

state 

V156 	35 

p{(2 ), (x)( tr) = 	8,2 	821 (ILY,G-) 	••119' 	83/  

ip4.  (2 ) 	MO  

ILYc S3 

(we use the static SU(6) Et
o assignment) 

( 2  
=L 

2\  8 Y` \ 	56 35 1, >1.' 

0 	I Vir.-} 010 142 	\82 81.I (p: 22) 

' . 	Y (p.Y 
12); 141 	> 

WC must sum over A 

Y 

= 51, 70, 1134, 222 

= 27 10 10 8
s  8a  

2 2 

The relevant CGc's are 

su(2) 



27 	10 	10 	8a 	8a 

8 	8 	11Y);  

112 010 1Ii 

-,/1  

	

3 	3 

1  ✓ - 112 4̀  

	

60 	0 	
/ 
" 12 

For the unitary scalar factors we look at the 82 81 rows of Table 

6: the following are relevant:- 

700 

(1134)1  

(1134) 
2 	! 

(134)3  

56 

(27,2) (10,2) (10,2) (85,2) (8a,2) 

1 
2 

2 

1 
2 

70 1 

A 4-- 
2 

0 

a A 
2 	2 

1 
2 

- 12 2 

- 12 
4 

_ 2 si_.2
22  2 

_ 1 "..1. 
2 	11 

-
2 A 
4 	2 

A 
4 2  
0 

_ a *A 
G. 	3 

_ I. vl.... 
2 	21 

55 
2 44-1. 
/- 	10 

_ 1J1 4 	2  

%ill" 

For example the I = 	(27,2) component of the direct product is 

written, o.nitting redundant labels 

Q
p-A0111°))(27,2) 	c,/i 1700 + it(1134)1) — 2(1134). _ti 

In all, the product state has non zero components in 21 orthogonal 

states occurring in the reduction - clearly in expansions such as 

odour in the use of the Wigner Ec4art Theorem in scattering relations 



8 o 3a /56 56 35 
+ _+ 
P 	P 	\ 82 82 	8a3 

( 2 	2 

3. ) 4- -4 

the sheer labour involved is considerable. Fortunately other 

methods are availed _e, see nPyt Chapter. 	Notice in the above 

that for different It the vectors (1112)i  in 1121 with the same i 

are in no way especially related - they all occur in the same IR. 

1131.  

A second calculation, more amenable to Clebsch Gordan methods 

is extraction of the ratios of specific coupling constants - a 

famous example is the 32F ratio of the coupling of pseudoscalar 

pions to baryons. Using a 22(85) assignment for the pions, 

(one best ex2lained by U spin, see next chayter) we calculate 

for the P+(?,- ) - Tr°  - 	• vertex 

56 56 35 ) 

82 82 8s3  

i;+(1) 
0 ti 

56 56 35 

82 82 a3 
p+Q 	+ ) 

	41  0 

2 2 3 8 8 8s 56 56 35 

2 
1, 
2 

n 	p+  P 	
e 1 82 82 3s3) 

137. 

-+ V2  20 	3 . 6 

✓ .; 
12 	

v/
3 3 .  

2 



108. 

Concerning the Tiigner-Eckart Theorem, its use in two body 'elastic' 

scattering leads to the following equations (assuming the scattering 

matrix S to be an SU(6) scal:Ir operator). 

NJ\ (p. 	 : X 	u 1 1 	1 	 2
(1: '77 ".•?, 2 	3

) 3 - ' ( • 4 4) 	>  

2 g \3 n4 XA 

11 g-2,  (Jr). 	11.3G; 11,7-4  

-V . Ni 	NI4 
2 

x < X Yl li s II X)1i 

Since the scattering is elastic)11=7\3,
/ 
 =: 
2 /4\ say we emphasize 

now, that in the summation cross terms in the redundancy label, 

i are not included - one can imagine these 	as in fact distinguished 

by so-,:e operator which an SU(6) scalar must respect, i.e. in the 

above S cannot cause i 	j transitions. This conclusion also 

points to a real difficulty of our labelling scheme - if the scattering 

is not elastic we have to ensure nonetheless that the 0,'I 

appearing in a common product state are in fact always the same 

basis vector. One way to do this is to calculate the generators 

in the two equivalent IRs under comparison, alternatively the method 

adopted here (for 1105 (83)i) was again by a method of direct 

comparison of basis vectors. 

L 1Y 



35C) 35 =. 1 

(27, 5) 

II" Gr° II" (12 (405) 

8, 	3; 	8, 	3 1 

(27, 1) 

P2 ,  62 

8, 	3 

(405) (189) P1 0  61; 

8, 	3; 
1 
2 V3  

8, 1; 8, 1 - - 
2 

1 

(10, 3) 

4- 36D  + :15F  4-189 

(27, 

+ 280 + 280 + 405 

3) 

/42 ,  a2 (405) (280) (280) A 

1 
8, 	3; 	8, 	3 0 

2 

1 
8, 	3; 	8, 

2 1-2 

1 1 
8, 	1; 	8, 	3 

/2 2 - 2 

(10, 5) 

Pi,  61; /t2,  (280) A 
Ftv 

8, 	3; 	8, 	3 1 

(10, 1) 

TABLE. 
( 35 

- Unitary scalar factors 
/1161 

35 

l'262 

A y.) 
for 	the C.G. series. 

t y a 

109. 

Pl, (11; 	/12 ,  (12 (405) 

1/ - 
/
2  
1 

(280) 

0 

(189) 

1 
ri 

Ay , 
/iv 

Pi, 61; /IV a2 (280) (280) Ay. _,,---
,----- Ft?  

8, 	3; 	8, 	3 
1 
2 
- 

1 
2A/r1 8, 	3; 	8, 	3 

8, 	1; 	8, 	1 --1 -.01 
2 

1 
- 
2 ' 8, 	3; 	8, 	1 

1 
-_- 
2 . - 

-V
2  
1 1 
-- 

2 

1 
---: 
2 8, 	1; 	8, 	3 

1 
2 
--- 

1/1 
2 



(10,3) • (10, 5) 

/1k , al ; //2, 62 (405) (280) (180) 

8, 3; 8, 3 —1/--- 0 
2 

1 1 
8, 3; 8, 1 — 

2 --2-  

1 
8, 1; 8, 3 --7  —I— -, 

2 2 2 

pl, o•i; /iv  az (280) (280) Ay, 
%/iv 

1 1 
8, 3; 8, 3 — — APS — 

2 2 

8, 1; 8, 1 
2 2 

141 , 61; /12 , t72 (230)1  
ILA 

8, 3; 8, 3 

     

110. • 

       

       

TABLE V. (COnantled). 
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.\ 
.. t..... .. . 

• ~' .• #- ' 

~ "1:, •. .:... \' ; 

,,\0." 

C'" \:' 

. '" 

.:, 

.. 

, . 
I 

";"';' 

..... 

, .. 

h.-!:,·~f;·'· ' ... _-.:." 

"->- ..".:-•• _ •• 'It.. ___ :... ... ...:.._~~._ 
..: '; ~ :~~ ., 

~. 

(8,3) 

8. 

PH a,; p" a, (4051, (405), I (2S0h I (280), I (2801, (iISO), (ISOh (189), (35). I (35), I~ 
, r-I - r:- I! 

1~! 51! 51 11 / 2 I 51 / 5 I I 1 115 
I 83-83 0 01-- ---1---1-,--1-1 0 I 0 0 --/=-I , • , 2 11' 6 ll: 2 111 6 11 I 3 2 I 

,-----i--' __ I I I I i ___ _ 

1 II! 'l~:1 3 I i 
I 

- v'5 0 0 I 0 00 - - - 0 i 
4: , I 2 2 I 4 I I 

1 Ii I 1 l/Ti 1/51 1 1 (d 1/ 5 
II I 1 - 1 ~- 1----1/- -- -, -! - I ~I - f - 0 -- ,,15 - -, 0', 8 

I 4:' 21 2 111 22i 2 11 22) I' 4: 4, 2 !. 

-1 -I 1 1/s1 1 Vll~1 '1/' 5 I. 1 liT II 1 I II I 1 :--
8 3- 8 1 - 0 - -, - -: - -I - - - I 0 0 -- 8 
, " 2 I 2 '11 2 22: 2 '11

1

2 22 ! 2, !___' 2 I __ a 

I 1 ~ 1 VTI 15 : 1 /T I / 5 ill _I 1 is I 
8,1; 8,3 0 1-- - - -, -1' -'--1- 1-1 0 1--v5 -1/- 0 4: 2 2 11 22 2 11 ,22 4: 4 2 

. i I I I • I 

8, 1; 8, 3 '--!.-I--o-I ~ 1 / 51 ~ 1 / 1 i 2.1/ 5! 2.1/ 1 I -~ 0 0 _ ~ 1---
2 2 V lL 2 V 22 2 11 , 2 22, 2 2 I ! I I I 

1 I--l-lil 2 1/ 2 i 1 l5\i 2 1/ 2 il: 1 I I 1 1-
8,3; 1,3 2' 0 ,-2Yui sVilf"2 Yil

l 
sVul-2' I 0 I 0 -s I 

1 I 1 1"51 2 '2' 1 1/51 2 I 21 1 1 1---
, 1,3; 8,3 -2' 0 1-21111 S-Vll-2Vn s-lui 2 0 0 -s I 
I ,I 1 I I !: I __ 

I 1 1 VIOl 11/Tll 1 VIOl 1 liT II llll I 1 1 8 1· 1 3 ' 0 -- V5 - -[ - --- -!-- - 0 - I ~ I - 0 
!L I __ '~'_' __ : 4: I 2 ll! 2 ~I 2 111 2 111 2 2 <1 ___ _ 

I 1 3- S 1 I 0 !1-~V5 -!..ljIO:-~l/~i 2.l/10
!1 2.1/~1 0 2.1[£ 2. 0 

• "! 4 2 11'1 2 III 2 11 2 V 11 2 V 2' 4 
I I I 

8. 

8, 3; 8, 3 o Sa 

8, 3; 8, I o 

8. 

c, ' 

"./\ ,'. .. ";\' :..: ,~( . ":' 

i 

I 

I' 

I 
I 

.... .... .... 
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(1, 5) 

P1, al; /112 ,  a2 (405) (189) 

8, 3; 8, 3 3 1/3i 

1 , 3; 1, 3 
-- 

p 
3 3 

r  

A y, 
Pr 

TABU: V. (continued) n aimed) 

8, 5) 

Pi, a1; P2' a2 (405) (280) (280) (189) 
• 

A y, 
ILY 

8, 3; 8, 3 — i/-6 
1 

0 0 
.15 

-6-  . 8, 

8, 3; 8, 3 0 	. 
14_11 0 8a  

8, 3; 1, 3 — 1 -1[1:i..  1 1 1 1 ii, 
2-  1 	3 -2-  -- -i -2-  -i V 

. ' 	1 1 11 
1, 3; 8, 3 -- - fi 3 -- -2-  -2-  2 
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TABLE " V .(continued). 

(8, 1) 

itel,  al; p2 ,  d2 (405) 

7 
— Ty_6 

1 

(280) (280) (180) (35)D  

— 
4 
1 -/T-5 

2 

(35)F  ,, 
tc y  

8, 	3; 	8, 	3 -- - 
3 

--0 8,  

8, 	3; 	8, 	3 0 0 — 
1

Vfl 
2 

 8a  

8, 	1; 	8, 	1 — 0 0 3 
-4- 

_1 
4 

Vig 
1 	2 

8, 

8, 	1; 	8, 	1 0 
1 
-i 

/2 
ti 

/ 
{
/2 

-i 	2 
0 0 

1 
— -2-  

8a  

8, 	3; 	1, 	3 — 
3 
- 

1 
-- 

1 
-2- 4 1/32 

1 

1, 	3; 	8, 	3 1  
T 
/ 
i 

1 	1 
— —9 2 

— 1 - 
— 

5 
- 

1 
-- 1/3-  4 

1, 3) 

113. 

/Li; d1; /Iv '72 (280) (280) (35)/3 (35)F 

8, 3; 8, 3 

• 
, w  -- „: 

0 
2 	,__ 
_17.2 3 

8, 3; 8, 1 
1 

— 
2 

1 
-i 

1/1 

— V :9 
0 

8, 1; 8, 3 
1 
--• 2 

-- 
  - 

1/1 - 

V -i 0 

1, 3; 1, 3 
2 
'T 

2 
-i 

0 
1 

— -3- 

A y , 
ily 



1 

(700) PI; 01; P2 , 62 

10, 4; 8, 3 

56 	35 	A y.) 	• 
TABLE VI. — Unitary seitiar factors 	 for the C.G. series. 

111,71 P2021. Pya 
560 35 ,---- 56 + 70 + 1134 + 700. 

(35, 2) 	 (27.6) 

( 134) /(1, (11; /(2 (12 

10, 4; • 8, 3 —1 1 10, 4;. 8, 3 

Pl , (71; P2, 02 (1134) A 

TABLE V. (continued). 

Pl , (71; P2 , 6 2 (1) Ar  (405) (189) 

Py 

5 

21 

•i/Lf 
2 i• 7 

-/
2 — 

6 
2 Y-35  

2 
5 

36 21 

—2 

8, 3; 8, 3 

8, 1; 8, 1 

1, 3; 1, 3 

114. 

(35, 4) 

01; 11 2; 62 (700) 

10, 4; 8, 3 
1- / 

2 

10, 4; 8, 1 
1 
2 

(35, 6) 



Pi,  cri; 	P2, cr2 (700) (1134)1  (1134)2  

10, 4; 8, 3 -r3- 
. 

/-, 0 

8, 2; 8, 3 
____, 

6 

 -V-1i 2 

2 1 	3 

1 

 2 
V;-3. 

8, 2; 8, 1 
2 

1 

2 

1 
__ 2  

/11, al; P2, 02 (1134) A , 

8, 2; 8, 

TABLE V / .(conlinued). 

(27, 4) 

   

    

115. 

Pl , Cri; P2,  62 (700) (1134)2  (1134)2 

10, 4; 8, 3 
----2-  

1 -/5 

—6 

1 • 

— —2-  

p  s 
2 

1 
— — 2 

176- 

3 

16, 4; 8, 1 
1' 

2 -2-  

1 

2 

J i 
— 
2 

8, 2; 8, 3 
— 

7 -,--2 

--
0  

4 

(27, 2) 

10, 0) 
	

(TO, 4) 

Pi, cri; P2> 62 (700) (1134) A / 
t.), 

10, 4; 8, 3 r- lifL 
2 2 

10, 4; 1, 3 
14 



116. 

TABLE VI (continued). 

A 

/iv 

(10, 4) 

Pi; al; 	Ilz; o (700) (1134)1  (1134)2  (60) 

10, 4; 8, 3 
yi -1/

i  
2 

6 	2 23 

10,4; 8, - 1 -117 P-10 To 2  —15 

1 	_ 2 1 
10, 4; 1, 3 — 3 A/2 

— -IA, 3  

1 _ A _ 2 
8, 2; 8, 3 —3 1/5' 

i-,--  p 
/ 5 I 5 3 5 

(10, 2) 

1121$ 61; 112 21 62 (700) (1134)1  

10, 4; 8, 3 
A Y-1  6 

10, 4; 1, 3 — li  i 6 
_ /17.  

7 6 

6 i 

8, 2; 8, 1 
/ 

/  0 

(1134)2  (70) 

0 
/ 2j 

y 3 

1
1 16 /1  



(TT), 2) (1, 4) 

I I 	; 11; 	11 2 ,  72  (700) (1134) p i , al ; p„ 62  (1134) 2. )„,, 

1 8, 	2; 	8, 	3 1 
8, 	2; 	8, 	3 

2 

1 1 
8, 	2; 	8, 	1 

2 —2 V3 
(8,6) 

P1, (Ti; /12' 62 

10, 4; 8, 3 

( 1134 ) by  j 
zpv  

—1 

(1, 2) 

111 , o  r 	62  (1134) 

1 
8, 2; 8, 3 	

2 

, 2; 8, 1 

TABLE 'VI (continued). 
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TABLEVI (rmilinuer1). 

(8, 4) 

  

118. 

    

112. , cri ; 	it„ cr2 	• 

10, 4; 	8, 	3 

(700) (1134) 	; ; 	(1134), (1134), (70) A.,„ 
ily 

1 	5 
--1/— 2 	6 0 ____.1 

2 
V-15 

-171: 
1 - 

_7 ,-1-  
/71-  
/ 2-1 77 4 .  

10, 4; 	8, 	1 2 
_3_11 	i 	:3 -/5 
2 	174 	: 	Ti , 

_ 

—7 

. 
. 	1 	/ 
77  4 \ d7 

8, 	3 
1 

— 
1 

6 0 
i 
I 2-1/1 

1 	2 i 	14 
. __ 

21 
+10 
1 	4 t; 	3 $ 

8, 2; 	8, 	3 
6 

— 	—6 
1 5 

2  
G 	1 

21 43 
8a  

8, 2; 	1, 	3 5 — 	— 
YY 

— — 
/1 

3 
J." 
— 2 

5 
— 21 

5 1 	1 
— — 42 — 

"- 2 
1 -/77 

6 

(8, 2) 

111 , (11; 1i3t 

10, 4; 8, 3 

8, 2;, 8, 3 , 

(700) (1134)1  (1134), 

2  

7 1 1 
12 2 	k 	22; riE 

(1134), (70) (56) 

• 8,, 

8, 2; 8, 1 

8, 2; 8, 3 
..1 

1i V  ; 
1 _ 5 

9 	22 2 55 — 4 
! 	9 	i 	7 -r• 

1 
 y 	30 

1 _ 3773' — 4 V3 — 72- 22j-- 11 

15 
27 

5 	2 	1
t 	

V 1 1 
55 2 15 72 

8a 

0 8, 

8a 

3 
- f 2 	4 

9 1 11 
4110 4/2  



56 56 ;11/  TABLE VII -Unitary scalar actors 	 for the C. G. series. 
pi n", N2 d2I  py  

560 56 ----, 1 -I- 35 + 405 H- 2695,  
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CHAPTER it  

SU(6 )  AND W SPIN ZLIIETRIES 

This chapter contains a discussion of the SU(6)w 
higher 

symmetry group; noting that for 4 body processes with one notable 

(but unreliable sees 4.2) exception the group is poorly favoured 

by experiment, we investigate the consequences of relaxing the 

system by allowing some specified spametry breaking. In particular 

we discuss the Johnson-Treiman relation and the AU / 2 selection 

rule - we use tensor methods. 

4.1 W-spin and higher symmetries  

The SU(6)
w 

scheme first materialised
29 as a subgroup of the 

higher group SU(6,6) or (12)30.V 	The origins of this relativistic 

system and in particular the use of SU(6,6) rather than the minimal 

(with respect to SU(3)) group SL(6,C) are discussed in refs.
31. 

The commutation relations appropriate to SU(6,6) can be obtained, 

on adopting the sixteen 4 x 4 matrices,1 r, of the Dirad algebra 

as a basis for the funda,aental IR of the U(2,2) subgroup, by 

constructing the fundamental twelve dimensional renresentation as a 

direct product 1r X ›,c1' exactly as in 

It was first proposed30 to use finite dimensional representations 

of SU(6,6) to accommodate physical particles, the representations 

then became unitary representations of an inhomogeneous SU(6,6), 
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ISU(6,6), which was the semi-direct product of SU(6,6) and a space 

of 143 commuting °translation' operators. The complete structure, 

including the SU(6,6) field equations ensuring a positive definite 

norm and defining independent particle states was closely analogous 

to that used in defining irreducible unitary representations of the 

icincare group via the Lorentz group. An essential difference 

however lay in the occurrence of surplus momenta, 139 in total, 

which would be needed for writing invariant equations, and 

amplitudes, but for which there was neither physical evidence nor 

interpretation. Denoting an su(6,6) 12 x 12 group element by S and 

r, = 
r 	

P xx 	)a, ra 11  , 	r-  . 1-
r 
 X )4,a

9 
 then the only physical 

J;. 	r 	 ra 	i  

momenta are Puo and one must consequently limit the allowed symmetry 

transformations to those which do not transform to an unphysical 

realm : 

S S 	= X 9 

and Pt can be obtained from P by a Lorentz transformation. 

Indeed -the view point first adopted (e.g. first two papers 

of ref.
30

) was to ignore momentum completely - the SU(6,6) matrices 

merely transformed the field indices; this reflected the static 

SU(6) situation where spin was supposed completely decoupled from 

the orbital motion for a spin-1 particle. This occurs only for 

free particles and is demonstrated by the Foldy-Wouthuysen trans-

formation. In this chapter our description will apply to the 
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case in which the physical roincare group is a subgroup of ISU(6,6); 

, 
we shall not discuss the alternative approaches (see also 23 J 

employing infinite dimensional unitary representations of a homogeneous 

higher symmetry group, cf. Ruegg et al21, Fronsdal17: 32. 

e proce:d now to exploit the analogy with the Poincarergroup: 

single particle states are classified according to the appropriate 

'little group' of ISU(6,6). 	The little group of a momentum vector 

P. 	is that subgroup of ISU(6,6) for which SPS
_ t 

 =1.-  (i.e. transformations 

of the little group do not change the reference frame). For 

massive one Particle states we can choose as 'standard vector' 

the usual rest frame four-momentum (m,q). The little group then 

-1 
satisfies syos =yo and can easily be located as, in y terminology, 

;(1-0(o
) x G

b 
where G

b 
generate a subgroup of SU(6,6) which plays a 	a 

the role of, and is isomorphic to, non-relativistic SU(6),:- . 

The little group is thus S(U(6) x U(6)) - it gives the space time 

degeneracy of an ISU(6,6) multiplet; the field equations are 

desined to preserve this degeneracy for moving one particle state. 

The corresponding little group in P, the Poincare group, is of course 

SU(2). 

For sys+ems composed of two particles the little group, 

relating to the total four-momentum, will not be the same as that of 

the separate particles (although there may be isomorphism). 	It is  

clear that we can choose a frame (one in which the two 3-momenta are 
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collinear, conventionally the t3,  direction,) when the intersection 

of the two separate little groups is given by those S for which 

SY
o
s =yo, Sy

3
s =y

3
. This subgroup of U(6) x U(6) is SU(6)w; 

under SU(6) [v 	SU(j) x SU(2)
w 

the generators of the SU(3) are 

those of the physical SU(3) viz 1 (1  whilst those of SU(2)w 
are, 

in Y terminology, 

1. 

	

= -2:1Y0Y2Y3, 	= baY0Y3Y1, w3  = tiy1y2, with [Willy= iEijk-Jk  

The important property of SU(6)w, and that which lead to its 

discovery29, is that all the generators commute with the generator 

of Lorentz transformations in the collinear, 130  directions this 

follows from 

	

C 	YoY3] 	= 	YoY3
]C,  a = 0, .. 

where iiyoy3 is 
the Lorentz generator. This property distinguishes 

SU(6) fro non-relativistic SU(6) , which contains SU(2) with 
w 

generators liY Y 	7-1Y 
2 3' 	3Y  1' liY1Y2,  such that only Cs3'YoY3]  C.,  

and has two important consequences: 

(i) 	Since the generators of MJ(6)
w 

are unchanged for arbitrary 

motion in the 131  direction we may couple in the usual direct product 

way the representations describing two particles in an arbitrary 

collinear state of motion. Such freedom does not exist for little 

groups, of F, where the coupling of two particles with spin is 

complicated by the occurrence of orbital angular momentum, or 

equivalently, the generators of the two little groups do not coincide 



in P. 	It is also evident that the matrix elements of SU(6) w 

generators satisfy the following equation: 

<XN)olGwabiMilo> --,,,',X-x;p1Gwabl X \lip'? 

where (kw) 4.1.011 ) refer to SU(6) labels of a state and p pl 
, - 

are two collinear momenta obtained by a given boost in the t31' 

direction. Gwa
b 
is any generator of SU(6)

w
. 
 

(ii) The application of a simpler symmetry in special cases leads 

to immediate, simpler, tests of the theory - assigning particles 

to irreducible reiresentations of SU(6)
w 
we can apply this group to 

a study.'of the vertex function, a function of two independent 

momenta, or to the case of forward or backward two body scattering 

processes, where again the one SU(6)
w 

group will be relevant to both 

initial and final states; (the general procedure might be to be 

expand the amplitude in terms of U(6) x U(6) partial waves). 

It is the second example, that of scattering, which concerns us 

here. 

We can again find an analogy in the Poincare group; there, 

for collinear motion, the intersection of the little groups of two 

massive -.;articles is 0
22 generated by 33, the '34  component of total 

angular momentum. In a given frame we may classify states according 

to irreducible (one dimensional) unitary representations of 02, 

labelled by m. However, under a space rotation the m value will 

change, according to the usual rotation matrices, 



3 
• 

:'; ijr0 

so that a state ijia--) belonging to the IR m of 02  under rotation 

in general becomes a reducible sum of IRs m'. 0
2 
invariance for 

the four point function implies of course J
3 

conservation, and this 

holds for any direction of motion, but only in the collinear case 

are J
3  IR assignments invariant, Notice also that there is no 

conflict with unitarity which would relate the collinear scattering 

amplitude to a product of non collinear ami:litudes through the 

symbolic equation: 

= 4_ T* T T
fi 	n nf ni 4.3 

lie prefer then to adopt this point of view of unitarity 

in SU(6)
w this is similar to that of Pais31 who considers it a 

Imatt'ir of language whether or not SU(6)
w 

is compatible with unitarity. 

The group makes no claims concerning non forward directions....'. 

But it should be noted that in the SU(6)
w case the unit operator 

Insx ns. occurring in the unitarity relation, viewed as a unit 

operator in ISU(616) is distorted due to the limitation of the sum 

to physical momenta. 

Continuing with our discussion of SU(6)
w 

we now briefly 

relate SU(2) and SU(2) : 
w 

The maximal compact subgroup of SU(2,2) is SU(2) x SU(2), 

locally isomorphic to C.,(4), and contains as subgroups both SU(2) 

and SU(2) 
117 

129. 
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Grono 

 

Generators  

;k(1-1-Yo  )iY.Y.x4(1-Y o )iYYm  i/ji'm=i* ..13 

x N 	 4.4a 

SU(2) x SU(2) 

SU(2)
s ziYiY. 

N + N 

1. 	1- SU(2)
w 	1:1Y Y Y 0 2 3 	

1.
' 	YoY3Y1' 22Y12 

We see that 

S
3 
 = 	- N

3 
+ N

3 	
4.5a 

S = il + N 	 4.5b + 	+ 	+ - 	... 

W = N 	N 	 4.5c 

The finite dimensional unitary irreducible representations of 

SU(2) x :3U(2) are labelled by pairs of nun negative integers and 

half integers (mln) corresponding to the two commuting SU(2)is 

H, N. As expalined by Lipkini7  quarks (antiquarks) transform 

solely under id(N) - this is decided by the appearance of 2(1+Y o) 
NM 0 

as a positive or negative energy projection operator. The S spin 

content of (mln) is clearly (from eq.4.4b) s = m+n, m+n-1,.. m-n 

and from eq. 4.5a it follows that this must also be the W-spin 

content. 

From eqs. 4.5b,c, we see that for IRs of the form (r.1,o) there 

is no distinction betwem S and W spin eigenstates, but for IR's 

of the type (00) wo have, under subgroup reductions, 

4.4b 

4.4c 
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4.6 

where S = V/ n S
3 
 = I3 = n

3 
and we have arbitrarily chosen an 

overall phase by settiag I S oh > = 	1W,n) (as usual 11a.,11> 

denotes + basis vector for the vector .1) of the IR of the group 

specified). 

For a general IR (:.i n n) we may now write 

(SS 	= 	(..›3 3 
ri3 	S3  ) (m, S3-n3> 1nin3) 

N; in n S 	 n-n ,e__ .  .4)n3 I
S- n 	n, S 

n- = 	 ) t .1,S3-n3) ( (-1) 	3knitn3)) \_ n3 	3 , , 3 
n-n 	m 	n S 	m 	n 	W 

:1 ,iln3 
(-I) 	3 S3-n3 n3 s3) (S3-n3 n3 W3.--S3)1V/113) 

4.7 

and a similar equation for 1I/ 3 7 

As an example we consider the 11,0> and 10,0> subgroup 

states of the .111:11D, corresponding to the quark-antiquark 

composite; by straight substitution in eq. 4.7 we obtain :- 

S spin state 	 W spin state  

I1,1 ,,... 	= 	11,17 

I 11-17 	- - 	- i 1,-1? 

1 1,07 	- 	- 1 0,07 = 
10,0 7 	-= 	- 11,0 
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Further discussion of the relation between S and W spin occurs in34'35  

- the latter also arrives at a relation of the form eq. 4.7. 

It should also be mted that it has subsequently been possible 

to arrive at the concept of W spin invariance as deriving trail 

rotation and inversion invariance
36 

- the only new contribution 

arises from transitions which are forbidden by alia (mod.2)37  i.e. a 

process forbidden under '•i-spin invariance by AW=2 would not be 

forbidden by rotation and purity invariance alone. Further 

discussion of this specific higher symmetry prediction is given in 

4.2 W-spin swametry breaking  

Our interest in W-spin and SU(6)w  is to test the stability of 

some of the predictionsof this group for the 4 point function under 

various modes of sy.t-se-try breaking. Here we investigate the type 

of symmetry breaking needed and also our method of calculation. 

The comi-Jutation of exact sytmiletry predictions may be thought 

to proceed by constructing all possible 'Lagrangian' terms relevant 

to the process under consideration and invariant under the given 

symmetry. For mass terms, e.g. exact symmetry predictions result 

from the scalar term in a  (F) 	and this will always give equal masses 

- similarly for higher n-point functions where now generally more 

than one scalar term exists. In group-theoretic language we apply 

the Uigner-Eckart theorem to a scalar operator. In a broken 

•••• 
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symmetry one allows specific non-scalar transofrmation properties 

to the Lagrangian - either we may use the Wigner-Eckart theorem, or, 

as is more customary, we may introduce a 'spurion' and construct. 

again scalar Lagrangians only one term of which will be physical. 

The question of whether the same spurion should apply to different 

n-point functions has been investigated for SU(3) e.g. in the work 

of Dashen and Frautschi38 for n=3 and 4 - for SU(3) there is ample 

evidence that 1=Y=0 IL=8 transformation properties give significant 

and dominant symrietry breaking contributions to processes with 

n=2,314,5 (for n=5 see e.g. 	39). Making the assumption of 

n-independence the easiest way to search for symmetry breaking 

terms is to try to fit n=2 mass terms with the various allowed 

spurions - since it is the mass terms which give the clearest and 

most accessible indications of symmetry breaking, although of course 

in the SU(6) salsa° they supposedly refer to SU(6)~ rather than 

SU(6)
w 

A number of people have considered mass formulae in SU(6) - 

two papers especially relevant to our wcrk are those by Harari and 

Lipkin, and Marari,_ and Rashid° who conclude: 

(i) 	It is not possible to fit the observed baryon and meson 

mass spectra with the same mass operator in each case. In parti-

cular the octet I=Y=O part of an SU(6)A22 tensor is required in 

the baryon but not in the meson case. 
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(ii) The major contribution to SU(3) symmetry breaking in both 

cases comes from an I=Y=0 octet component of a 22. 

(iii) Terms which break SU(6) but not SU(3) symmetry may be 

as important as those which break both symmetries. 

Indeed, their considerations applied without adoption to 

baryon-meson scattering suggest that four types of spurion should 

be invoked viz (8,1) components in 22 and A22 and (1,1) components 

in 189 and D2 	moments reflection suggests that a completely 

general investigation would not be sufficiently predictive to 

warrant the labour necessitated - as a first investigation we 

consider the effect of 	only spurions on some specific processes. 

Further in SU(6),w  there does not seem to be any reason to consider 

only ,1=0 spurions - whereas in SU(6) J=O was essential - in the 

following we use at different times three sorts of spurion :- 

9 SU(6) SU(3) x SU(2)w  I W
3  

22 (8,1) o 0 4,8a 

22 (1,3) 0 0 4.8b 

22 (8,3) o 0 4.8c 

There is one further form of symmetry breaking which we 

investigate below: SU(6) evolved by combining SU(3) and SU(2) in 

a minimal way; however SU(3) itself is not nearly as well satisfied 

as the isospin-hypercharge symmetry group SU(2) x U(1). Thus in 



testing the validity of combining a purely internal symmetry 

[Su(3)3 with a space time symmetry CSU(2), or SU(2)
wJ 
 we should 

(in the face of bad :?.redictions) try the effect of combination at 

the SU(2) x U(1) level i.e. we should investigate the consequences 

of exact SU(4)w  x SU(2)w  symmetry. This bears some similarity to 

an SU(6) 	x \ spurion. It is as well to note however that 

SU(4)w  x SU(2)w  is a subgroup of SU(6)w  and therefore cannot deliver 

results which flatly disagree with the predictions of the larger 

group. In the following we shall be concerned to avoid a bad 

SU(6) prediction for the ratio of two forward scattering amplitudes 

- it would seem that we may not expect SU(4)w  x SU(2)w  to predict 

a different ratio but at best that it may no longer be possible to 

form a ratio. 

Finally the mode of calculation: the introduction of symmetry 

breaking via a sourion (or any other method) means we require 

CG tables sufficient for the direct product of five SU(6) IRs. 

The tables of Ch. 3 are not enough and instead we resort to tensor 
methods - in our opinion in any case more suited to calculations 

involving more than three SU(6) Els. Thus we represent the meson 

SU(6)  22 tensor as :- 

1413 	1 r 	1 	_ 	ob 	
v
b)i -- .71 	cc"a 	a ( 	+ a \- 	a 
	 4.9 

where M2U,V represent (821), (1,3), (8,3) components of the 22 and 

135. 
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li K 

-IT° No 

-2 4y) 

4.10 

according to the U-S spin slip. 

(We could note that a phase convention, additional to those 

at the SU(3) x SU(2) level, and corresponding to that discussed 

in Ch.14,44 has been arbitrarily chosen here by fixing on relative 

plus signs between M, W and V; clearly any relative sign is 

allowed.) 

Similarly one may write down the tensor wave function of 

the 56 (for a fairly complete tabulation of tensor wave functions 

see Ruegg et al21). 

We represent our symmetry breaking by components 

b 	(3 \ Z.-% 	 41 
3a 6 al 	6

- 
3a ^ a of the spurion tensor S A for the three 

possibilities (8,1), (1,3), (8,3) respectively. 	The calculation 

then involves evaluating tensor contractions - although it will be 

seen that in some cases Oshort cuts' do exist. 

40 	The Johnson-Treiman relations  

An early success of the spin containing higher symmetries 

aas the prediction of the following relation for the differences 

in total cross-sections for the scattering of pseudoscalar mesons 

on proton targets; 

R 8b 
a /\ a' 
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tip 	= 	= a Apk
+ 	

4.4,11 

where Apm = p( +In —> per) - 	(p4p+r7i3 tot 	tot 

p = proton, m =„s.meson. 

These equations have come to be known as the Johnson-Treiman 

relations 	They were first obtained in static SU(6),,--. 

Using our tables in the direct channel for 

2.2 
since the IR 1 occurs four times in 5.6 (x) 	() 2k (x) 22 

there are four independent amplitudes orreduced matrix elements 

= 	TWQ with = 2k, 22, 2424 or me corresponding to 
(x) 22 = 	0 22 (+) 1134 (+) 222. The Johnson-Treiman 

relations in SU(6),- then follow via the optical theorem since the 

amplitude differences 6pm given in eqn. 4.11 are prouortional to 

- -2  A A  = 5/18 A700 
20 

1134 — 
1 	- --a  
12 470 45 A56 

In fact there is a simpler wer to arrive at eqn. 4.11 which we shall 

describe and exploit below. 

Since the same relation also holds in the W-spin formaiison 

doubts about the applicability of SU(6)1_ were relieved - the 

relation was first checked for incident meson momentum in the range 

5-20 Bev/e. In any case there was a tendency for this prediction 

to be acce)tsd as important evidence in favour of the SU(6)
w and 

SU(6,6) sy-fsi,etries. 	However the following points must be emphasized: 
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(1) 	The Johnson-Treiman relations can be derived in other 

models viz (a) exact SU(3) symmetry plus dominance of the meson 

baryon scattering amr,litude at high energies by a purely F coupled 

vector meson Ruegge trajectory°, (b) the quark model (SU(3) 

invariance is not assumed here; 0.14 . On the basis of either of these 

models it is perhaps surprising that eqn.4.11 hold (roughly) dolin 

to energies ti  10 Dev/c incident meson lab momentum. 	(rut see below 

for comparison with experimental data.) 

(ii) It has been very clearly emphasized by Hararil7  that 

any evaluation of the predictions of SU(3) containing symmetry 

schemes must allow breaking of SU(3). Further in the case of the 

baryon-meson system donartures from exact symmetry may be as high 

as 206630r. For eqn.4.11 Harari finds that exact SU(3) plus 

experimental information that in-elastic processes are small implies 

that Apmw0 (experimentally 4nm - 5 mb) - the simplest way out of 

this is to conjecture that the SU(3) symmetry breaking is confined 

to the in-elastic amnlitudes45. 

(iii) We have argued briefly above that SU(6)w may not flaunt 

unitarity as blatantly as has been suggested - however the simplest 

physical interretation of the group theory, that one particle vector 

meson exchange (producing no conflict with unitarity) is obviously 

inadequate since such amplitudes have zero imaginary part. 	(This 

is not so for the Regge model where e.g. the rtrajectory can 



produce an imaginary part.) It has been shown45 by rather 

involved argument that the inclusion of two particle intermediate 

states (i.e. two intemediate 22's in the crossed channel) does 

not affect the prediction if one assumes each 3 particle vertex 

invariant under its own SU(6)
w 

- so that consistency with unitarity 

exists to a higher degree than is suggested by superficial examination. 

Notice that one might hope to pick up this result with a u-spin 

breaking spurion since non collinear 2 particle states are 

breaking W-spin conservation. We find below for a simple 7 = 1 

spuriun this hope is not realised. 

(iv) The comparison with experiment has been made in a number 

of places, Ruegg et al
21

1 
44' 46. Quite apart from the difficulties 

of correlating sym:.etry predictions with experimental data the 

conclusion reached here depends upon the mode of comparison. The 

(pm) cros-3-sections themselves are of the order of 20-30 millibars 

their differences about 15 of this. Naturally if the differences 

are compared directly the agreement seems poorer
46 

than if we 

rewrite the relations in terms of sums,
21 44. Anyway the best 

possible figure seems to be about 3% departure from eqn. 4.11 

(v) It is generally agreed that the relation 

Apk, = Apat' + Apk° 	 4.12 

is always better satisfied than eqn. 4.11. The above relation 

rosults frod SU(3) alone on the assumption of octet dominance in 
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the annihilation channel47. 

With (ii) above in mind we now compute the effects of 22 

type symmetry breaking on the Johnson-Tr iman relations. kt
r  e 

denote the spurion by S and find that there arc eighteen different 

ways of forming an SU(6)
w 

scalar from 5" 130 WandS by 

saturation of tensor indices; this agrees with the number calculated 

directly by comparing terms appearing in the direct products 

51 	and 52 (z) 22 W22. (The higher direct product 

reductions needed for this are now tabulated in Sklegg et a121.) 

The general amI)litude now has the form (EBN1Z.4
2
)
A 

where we suppose 

and B to absorb the initial meson and baryon, and 112  abd B to 

create the final states, and the indices AB depend on S. We 

can represent the effect of time reversal, T, on these amplitudes 

- 
-1D 

ABC ;I: by 13ABC‘,.--"7„ 	1121  corresponding to the inter-, 

change of initial and final particles and their creation and 

annihilation olerators. Notice that the transformation also changes 

momenta and spins so that one must take care in rejecting T anti-

symmetric combinations in SU(6) space that T antisym-aetric combinations 

in spin space may not be formed, cf.48. For the baryon meson staitem 

this is the case. Note also that we automatically have parity 

invariance. 

In this way we find the following twelve amplitudes must be 

considered for baryon-meson scattering subject to 22-like symmetry 
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breaking. 	(The number twelve compares with that of thrity-four which 

result -.:after tiiae reversal invariance - for the same system 

in SU(3) with I=Y=0 	symiaetry breaking -!L9 

-I,BC D .0, F 
" : 3 	13DEFi'l.t% 11213 SC 

...ABP 	C, D -1LBP 	C 	D 
B+ : B Bcrapil,  Cs j±a 4. 3 3CDPII2A [S131* B 

-ABT 	C 	D 
C  : 3 3CDPSACA1M93B 

D+ : (D.J.M2] S + GC;111,123+) 'DBC 	... A 

E+ : 
5ABC0 	(, Ali H sm )D 

DDC 1 2- 2 1 A 

F  : 73.°31DBCE(111S)"21:‘ 	(M2S)M1:)13  

G+ 	B 	M M S) + 	A S )] a3CC(  1  

H : BC3CB 	.2)3  (t 	) 
DBC - 1 2 

where, Ck1
1 

B 
B =i•11f D1 2c  2142AC  klicB  

A 
(1.4 1112) 	= 141.41. £'

1213 

By inspection we see of these twelve all except three A,B+, 

contain either the meson or baryon tensors coupled into a 25, 

or 1, and also that only B-, D-, E-, G- are antisy.ametrie in Ai  

and M2. 
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But we now notice that only antisymmetric (in 11
1 
 and 

2) 

amplitudes can contribute to Apm,43  since by our convention a 

- _+ - 
term ppfli  7

2 
will conL‘ibute to p+1.1:

+ 
whereas ppr7

1
tr
2 

contributes to p+II" ---i7p+ir, we look now at the four antisymmetric 

terms. 

,m Of these D- and E- have the factor ti.35/
B 
 and using the octet 

part of the 51 tensor 

B 	E 
ABC 	abr EaP cY + cycle (abc, aPY) 

we find 

(5B)" (octet-octet 7:arts) 

(-2(h' )b b(11N)ab) a  +`
a
b 	

W (i(RN 	- ?RaN ) 
o 	p 	P 

+ 2,(0"7,1-!).'"a 	
bp 

+ m(NFo a) 
by -1  

(extracting traces via 

4.13a 

4.1313 

-NJ 
Riaa = (RN)aCt 	 .ba(N

-a 2 
	
1aa N), + -CNN) b bp  

where signifies zero trace on the free indices, we can arrive 

2 at the familiar results ;= D + -F coupling for (NR)aa  
3 	

bP and pure 

F coupling for (nN)a  g' p ) • 

Similarly using the W spin identification of the pseudoscalar 

b 	b mesons we extract from 
I.1'2 

factors Ni
a 3a

, N2a  '0 3ap  (ab,aP 

always label respectively, SU(3) and SU(2) vectors). 	Corresponding 
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to our three posUblesYuriona there are now two cases to consider 

(i) 	the 1 =0 zpurion gives a factor 	, as also does 

% 
( T. ; 

3 2 
	M

18  
from 	'1

9 
 so 	overall meson Id spin factor is k and 

" 

this selects the W spin singlet (pure F) term from BB. 

(ii) 3  for w=1 NI
3
/ =

3 
 and we get the vector part of 5B; 

hence in this case the SU(3) coupling does not have the form 

ENNLE111142]...  cf (i) but only CxERN.If + 13[EiN]_ and so only the weak 

form, (v) above, of the Johnson-Treiman relation will result from 

D- and E- whilst G- gives no contribution. 

Inserting now the h8 factor the following three types of 

SU(3) amplitude can occur in 0-, E-, G- 

SU(3) amplitude 

fl 
(NR)CCii1i';20'' 	(1.-21711 	1)] 

( NriA
1 

)!,31:i
2
) - 	(Nil 	

ACil
1
) 

N 	
f? 

( FIM1 -
J\ i'l

2
/ - 	(71ii.:2 / \ L'il1 

 ) 

APCI
4.  

0 

o 

0 

Aple.  

6 

-4 

-2 

Apk°  

6 

0 

-2 

From the above ab.ve it is clear that no linear combination of the 

three (SU(3)) amplitudes can give non-trivial (Apm / 0) Johnson- 

Treiman relations, and this then follows also for D-, 	G-. 

We discuss the amplitude B- in more detail: expand the tensor 

wave functicn 

-.ADP 	C E 
B 	I•12  

CDP A 13 aE 



retaining only spin-.1 baryon - spin baryon terms. 

r 	(%)(11
1 
 )(L4 23)4-(11NM

2
II
31

)4-071NoNe) 

0=E(7m)y:;1
)(-
2
I.
3
)-  

+E(Ry3 i1N)-(FlpiN) 

C 2ii3)] 

(PM
2
H
31

N)+(PM1 NM23 N.) 

-(RA
1
N) (ri

2
ri
3

)-(171-i
2
N
3
)(NN

1
) 

  

.1, 

-(14)(Aim
3
)-(RNm

1 
 )(A 

3
)-(nNr1)(:;) 

+C(nM
2  M2 3

N)-(171;
2
M
3
N) 

'  
(114

1
M
2
M
3
04.(17;:i
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M
3
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1
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2
M
3
N)( 

I
)-(114

1
)(N:4

2
m
3
) 

14' 

+CCM
1
Pi
23

:N)-(FEN) 

ti-;2,13 	x  

(Ret FI 	N)+(7:Li NA 	) 
1 2 3 	2 5 

-(Fin N)(1; M )-(FIN 	Nm 
1 	2 	)( 2 3 )  

+[(17MiN)(M23) 	x UnM1ll)(E2M3)-(P1,11Nii2 )] 

4.[(17M1M M3N)] 	x C(ily2M3N)-(14N1)(N.;2  i3)] 

+C (FRI
2
M
3
E
1
N)-(114 '

3
N) 	(11ivi2]3m1N)+(Rm293mi1) 

Cm )j 	-(N
2
M
3
N)(n

1)-(114 
	)(M ) 
2 3 

m
31N)] x [(nm m A N)-(fin2M3)01 1)] 2 3 2 

+[(E*11
2
M
3
N)(;i)3 x E(gm2m3N)(1`11

)-(R1 M 	)j 
2 3 2 



The above exhibits the SU(2)wxSU(3) structure of the SU(6) 

scalar amplitude 0 	- the 3U(2) factor is always written 

first, and evey factor is a tensor trace. 

Ue now arrive at the predictions of B- by permuting on the 

meson labels 1,2,3, and so establish in a straightforward way that 

the spurions 48b1c give no contribution to Apra, M .W 
+7 K+I Ko  

whilst 4.8a contributes to ilpk+  only so that in this case neither 

relation holds. 

We conclude 1 

(i) Non trivial Johnson-Treiman relations do not survive 

under arimietry breaking of any of the three types listed above. 

(ii) Their weak for.,147  and (v) above does hold with a -=1 

SU(3) singlet .32 spurion. 

4.4 	All 9  Selection rule 

We now turn to some predictions of exact SU(6)
w 
first listed 

in 
50

which were soon shown to be in gross contradiction with 

experiment 

In rof.5°  it was shown how a number of processes of the form 

baryon+meson ---Pbaryon+meson proceed via just one SU(6)w 
amplitude. 

We may easily locate these processes by looking in the 'crossed 

channel' as above - of the four cross-amplitudes, 1, 22 (tvrice) and 

A22 only the latter allows transfer of quantum numbers charge /-2 

or tW(Wil)i),61  or both so that all processes characterized by such 



For B+ with S 

_Fi 	3 
unmodified from 	. 

_ 

Let 

the W spin parts are .,13b 
a A, B+ — • 

exchanges (in the crossed channel) must all be proportional to 

one amplitude, 2:405. 

e.g. (a) t +p 	has /(crozseo0= 2. 

(b) reactions of the form P + B 	P+ D 

when crossed become P P 	+ D 

with If spin couplings 	1 (x) 1 ---> a  (i) 

3 3 W 
For ps mesons, P, the coupling CG is now(0 0 0) W = 1,3,5, but 

(0 0 0 
3 3 3 )=0; thus there is common to both sides only 11=2 and so 

again only A/22 exchange is possible. 

It is clear that those processes excluded from a 1 or 22 

channel in the exact symmetry case must again be excluded for a 

W 	
8

=0, 	spurion which conserves charge and W spin but that 3.1 

channels, in the case (b), will be admitted by a W=1 spurion. 

We begin with the W=O 	spurion and thus need consider only 

r!!!! % AB 	A 
"ii"2j 	"Bj  CD "1C N2D 

Writing A= 	= diagonal (1,1,-2) we find for the SU(3) parts 

( 0 	0 

K." 7 c) 

le 

4.111 
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0 

= 0 

lt 

) ( where ,e f 
` 

def. = 2M - 3W, 	3N 4.15 

Similarly 	0 	0 

C1 A7 	= -3 0 	0 1.:() 

-Ro 

def. 

o 

-3:111  4.16 

Then 

B 	= 4 B(111 
	

. )-3 13( 	;40)-3 BC; M1)+3 B(m
1 
 N)+3 BC; N) 

2 	2  1  

= 4  B(,, 1N:2)-3 B(M 1 WO-3 B(14 2 r111) 2  4.17 

since the factor N Iroduces an SU(6) 
C which vanishes against the 

A22 (53)AB CD 

Similarly 

B- 	= -3 B(N
1. 2 
:-4.n) +3 B(.; 

2;1") 	
4.18 

The overall effect of symmetry breaking is to replace one at a 

time in B of eq. 4.14 the SU(3) matrices Iii by 2,2 or :.E; - and 

thus can be computed directly from the exact symmetry am”litudes 

(which unfortunately :?ere not published in 50, only their squares 



appearing). In this way, wing notation of ref.
50 we obtain the 

following :predictions: 

No. % Process 2 i Amp .1 
-. 	ta t`-

1  

No. e Procss 
,1  , 

\ Amp. t 
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Ho. 	Process 	Amp.' ,. 

iY1 _ 	_4_ ___________....—______ 	-____ 

18 	.4p pi ri- N 	24 
zi.131   N+07 	4 

6f-PlifPN*°? 
	

108 

45 pf.pN / 	288 

PIVN 	504 

6"1 P f rt ,+ 	
24 

	

+ 0 *++ 	36 4i1 P 	N 

++ 
.4.1( 	It'n 	2 

	12 

There are three distinct sets of am;litudcs, each proportional 

to linear combinations of A , 13+ . 

With 	a = 22A- 	-A 

-A 	 4.19 

Y = 0154. r A 

the proportionality (to a20,Y) factors within each subset are then 

the same as in 50. Notice a general sum rule a - 23 - Y = 0 4,20 

Turning to the experimental data given in 
51 
 we see that 

the symmetry breaking has not significantly changed the bad 

predictions, 	Data is given for 1,2,3,5,9,10,28 in the forward 

and backward directions - now only the subsets 2,3,5; 1,9,10; 28 

1490 

19 

20 

21 

24 

27 

28 

29 
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afford comparison. But this still includes the predicted ratios 

2t5, 2.13, itiO and 9:10 disagreving by factors of 10-100. 

Evaluating the sum rule 4-20 in the forward direction it is seen to 

be violated for the combinations 

Y = 28 P = 1 a = 2,3,5 

Y = 28 = 9 a = 2. 

One reason for these poor predictions has been pointed out 

in 51. Consider for example the processes 

	

+ p 	+ y 

10 : 	p 	"V+  Y 
_ 

 

The first can proceed via Y.* exchange as determined by the peripheral 

model known to have sone validity in this situation, whilst the 

second involving A,t = -2 ins not peripheral in nature (no I spin 2 

mesons are known to exist) and may be expected accordingly to be 

damned. Indeed we have 

 

ICp I it 	4.8 

KICp Ift Y.c-7 	1 
experimentally 

by exact SU(6)w  

 

but 
4.21 

The M 2 selection rule does not seem to be valid in the 

forward direction - however if we were to allow a W=1 spurion some 

amplitudes are decoupledt  e.g. in eqn. 4.21 above 22-like channels 

are opened for -1.'7p 	n Y but not for R p 	We have 
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also checked that in this case it is no longer possible to form 

raiios for 1:10 and betuoen 2,3, and 5. 

As a further illustration subgroup reduction techniques, and a 

propros of some remarks in Ch.4.2, we evaluate the prediction of the 

SU(4) x SU(2) subgroup of ZU(6)w  for the ratio 9:10, eqn. 

The decomposition apnroriate to this case is defined in 6 : 

to be that subgroup of unitary unimodular 6 x 6 matrices 

o 	, 
which act se-.:arately and independently on (p,p,n,n) forming a A 

of SU(4) and (;\,) forming a 2 of :,U(2). 	In the language of eqn. 

2.5a wo replace the >'s by isospin 'r 'sto get SU(4) as a completion 

of SU(2)1  x SU(2),J, whilst the W spin matrices alone represent the 

remaining SU(2) factor. Note that the decomposition of 6 is this 

time in the form of a tensor sum, rather than a tensor product. 

For the explicit decompositions we find 

	

su(6) 	SU(4) x SU(2) 

	

Y.T. [3] 	[3]. (+) [2][1] 0 [1][21 (t) .C3] 

(20,1)  0 (10,2) (t) (4,3) (;) (114) 

and for 22 : 

22 --, (15,1) CO (1,3) (i) (4,2) (i) (44,2) (±) (4,1) 

To locate physical particles we need W spin-isospin properties. 

(under now a product 

(+) (1,1) 

:U(2)1  x SU(2)w  we have For SU(4) 

decomposition) 10 = [2] (3,3) 

A = (13 (2,2) 
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so that in SU(4) x SU(2) 

[2][1] ---1 C(3,3) 	(1,1)] () (1,2) = (3,4(02) 0 (1,2) 

[1][13 - 	(2,2) 60 (1,2) 	= (2, 1(103) 

the last entry on the right gives the (I,W) representation. 

Hence .:.,e obtain 

3U(4)x 3U(2,) (I,W) ) 	 Particles 

(20,1) isoplets14  (414)(t) (2,2) 	N*1  

(10,2) 	(3, 4k:02) (0 (1,2) 	Y*, ; /\ " 

(1,4) 	 (1,4) 	:-...L 

(15,1) 	(3, 1(+)3)  (i) (1,3) 	F,F, physicalleisoplets 

(1,3) 

(4,2) 

(4*,2) 

(1,3) 

(2, 	1(1.03) 

(2, 103) 

physical 

K*, K 

ro, V 

0 11 

it 

If 

(1,1) 	(1,1) 	x°  

In the right hand column the physical , are defined as members 

of SU(4) x SU(2) IRs - this corresponds to the comiionly accepted 

treatment of 	e mixing. 

To count amplitudes for NI)---=-21fY* we consider the direct 

product 

(! 22)  (x) (20,1) (i) (10,2) Os) (15,1) 

The SU(2) part 	2 (0 1 (t) 2 () 1 contains one scalar. In 

SU(4) we have 
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(i) 20  I= [13] (0 [3] 	= [412) (0 [313] = 22:4:)101  

10 W j = [2] (4) [212] 

= [412] (±) [321] (-0 [313] CO [12] 

= 29. 	(4) lot () 6 

Therefore there are two ;AJ(4), and so two SU(4) x SU(2) amplitudes. 

tle further write 

(10,2) 	Y (AB)C 	ab,a3,Y 

(ab)(c0Y) 	E iccY Y(ab)13 	Y(ab)a j  

(20,1) p LBC 

 

— 
(abc) WY) 3 ab 

.N
o'Y 

N 
c fiCY 	+ ca Ya 

N 
 130 

 ) 

b r-TiPc,  
a 	a "i 	2'')  a " a (15,1) ").i-AB  

 

b c7jP 
+ a a ij 2 

 

_ a a 	1 ca —> Pa 	+ tf" 	a 
-1  

 

  

A A A. 

 

On the left above A,BIC etc, A,B,C etc are respectively SU(4) 

and SU(2) indices - we replace the SU(4) indices by X(2)1  x SU(2) 

indices a,b,c and 	respectively and reduce to isospin x W spin 

normalised vectors, e.g. 

Y(ab)(c0Y) " Y* spin isospin 1 state 

spin 11 isospin 1 state etc. 

An independent pair 

A : P 1  3 (CDE) 

of tow:or amplitudes 

(c))Bir  
II A 

are now seen to be: 
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A 

A 	4- 	P 	11 A 	— (CL)13--JJ 
2 	t CACD) Y 	E 

Inserting now the factors. drawn from the above reductions, 

appropriate to eqn. 4.21 we find that A
l 
does not contribute 

to either process whilst +0  (as it now must) preserves the 

unwanted factor 4. 

4.5 	Summary and conclusions  

In this Chaeter we have glanced at SU(6)w  symmetry breaking 

with two opposing hopes in mind - viz to find spurious which retain 

the symmetric Johnson-Treiman relations but destroy the class of 

predictions hinging on L42. To keep special significance for the 

idea of W spin invari_nee we might further have hoped to accomplish 

this by braking only the 3U(3) part of the scheme. 

In none of their aims have we been successful - a =1 3U(3) 

singlet 3.2 s'urion :^roved most acceptable, giving the weak Johnson-

Treiman relation and eliminating those predictions running contrary 

to the peri-.1heral model and experiment - certainly the latter, for 

any semblance of agreement with experiment, demand that the inter- 

action must be reducible in SU(6)w 	Of course, there is a 

precedent for such reducibility - in SU(3) the (strength) hierachy 

strong - medium strong - weak and electromagnetic forces corresponds 

to increasing reducibility of the lagrargian. But an analogous 

inference here that ducuplet production processes arc depressed 

in strength with respect to other, W spin conserving, reactions is 
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clearly unacceptable. On the other hand a success of the AW-42 

rule has been loointed out by Olsson52 who observes that since 

reactions 

Tr 4- m 	A 	2  baryon autlance 

proceed through just one amplitude the ratio of isosuin 

is determined Were are two different isospin channels open 

I 	• I  .2' 	Using 

   

(by computation) 
o 

131g- d*  7 
3 

and the taigner-ckart theorem for isospin : 

_4- 	1 lit pi N* i = • AA - A A, 
▪ 2  3 5 t 

- 	 0 
(.4 	PI it

0 
 N*.s? =  3/2 + 3 5 

/1  % 
3 	d   

one finds that 	AI 	
= 

A5 
2 

Olsson remarks that this agrees well with the value 3.4 4.  0.3 

deduced from experiment - but we emphasize that this calculation 

is model dependent and in particular assumes S wave isobar production. 

We note also that this prediction is clearly invariant under the 

type of SU(3) symmetry breaking introduced in Oh.4.4 since the 

ratio -V2/3 is not thereby destroyed. 

Despite this one success we feel foreed to conclude that our 



main aim has not been achieved - the introduction of some SU(3) 

breaking into the SV(6) scheTe for 2 body ocattering proceoses 

neither preserves the Johnson-Treiman relations nor invalidates 

the AITA disagree,rent with experiment. 

156. 
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CHATER 5 

SWC) AND CURRENT  ALGEBRA  
_ . . 

In g.5.1 :re nropare the ground for the calculation, in 

4.5.2 of the following )arameters associated with the weak 

interactions of the baryons. 

(i) the renormalised weak axial vector coupling constant,gA 

and the D/F ratio of the creak current. 

(ii) the baryon anomalous magnetic moments. 

(iii) N-N* axial vector transition constant, G." 

(iv) The N.L;V* 	electromagentic transition moment. 

The 'calculation' reduces to adjusting the amount of mixing of 

two SU(6)
w x 0(3) IRs and the system is too flexible to allow any 

significant conclusion. 

5.1 	Current algebras and representation mixing  

The concet of an algebra of currents has been central to the 

successful study of broken symmetries. That exact and broken 

symmetries could consistently share the same algebraic structure 

(i.e. commutation relations) was first emphasized by Gell Mann55 

and developed into a non relativistic theory of symmetry breaking 

by Fubini and Furlan54 - relativistic formulations were soon 

available55. Without doubt the major success of this body of work 

56 has been the Adler-jeisberger (A-W) calculation of the ronormalization 
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of the weak axial vector coupling constant jA, defined in Adlersl 

notation by 

ist!  
<N(q)pIN(g)s) = 

qo v 
G 	(q)(YN  g:.

5 
 UN (q) 

where j is the weak baryon current responsible for AS=0 lejb*ic 

decays. 

For our own purposes we would like to emphasize the following 

points about this fanious A-W calculation, summarised in the following 

equation 
" 

'N 
\ 	

udw 
oz _;,...i\NV-  g ri am 	t, 0 ) 	11  ,.. D 	

r 
'.,N+141, W2-r4;s2i 	0 	0 

where,-;--0  •11'.- (W) is the total cross-section for scattering of a zero 

...Nn mass-IT—
+ 
 on a 9roton at centre of mass energy ti, .4 	is the iiont 

form factor of the nudeon etc. 

(1) 	The transition operators (chiralities in Adler-/s' 

notation,whosa i=latrix elements between proton and neutron give a 

measure of wl are assumed to obey the (chiral) algebra of SU(2) x 

su(2). However no statement is made about the SU(2) x SU(2) 

properties of the particle states p,n - only the conventional 

isospin subgroup assignments to irreducible representations arc made. 

(ii) 	This omission renders the algebra, alone, impotent; 

to comidete the calculation information is drawn from experiment 

with the aid of the 	hypothesis, in Armes-'t notation 

j 
:eaa - Tr ir  -in\iit gA ,..  t 	NH 

gr.7:: 	(0) 

5.1 

5.3 
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where gr is the rationalised renormalised pion-nucleon coupling 

a 
constant, tz,11- is the renormalised pion-field, etc. 	This allows 

‘ 

to relate the generator matrix elements (in what really is an 

infinitely reducible SU(2) x SU(2) IR) instead to experimentally 

measurable lr-p total cross-sections (tho' an extrapolation to 

zero pion mass is required). 

The injection of experimental numbers in this way, with the 

resultant degree of accuracy (%,%.i,  in the gA calculation) engendered 

considerable confidence in current algebra calculations forbroken 

symmetries.- 

(iii) 	Since the symmetry is not exact the transition operators, 

its generators, become time dependent, and this was translated into 

an energy dependence or non-covariance of the gA sum rule. Following 

the suggestion in ref.54 the sum rule was evaluated in the limit 

of infinite momentum of the external one particle state, and the 

use of this frame has later come to be seen as equivalent to a 

fully relativistic approach cf.57. 

On the basis of a quark model with an SU(3) triplet of spin -1 

quarks the largest algebra one can envisage is that of U(12) - 

with current densities transforming as the appropriate quark 

bilinears. We must take care to distinguish Lorentz transformation 

properties fro those of the compact algebra, the distinction being 

a Yo factor in the bilinear corresponding to the use of the anti- 
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(?\
= (0' 	

-;s1) 

= (Y0)03  3()(..)0). rather than stycc(tj, Sp(?./)\t t=t 

when we take matrix elements between single particle states at 

infinite momentum two well known factors enter57/58. 

(i) Certain densities have their matrix elements damped by 

a factor E-1 and so do not appear when p 	oo. The rule is 

that those U(12) elements survive which commute with YoY3, the 

generator of Lorent-, transfordlations in the p. direction. Omitting 

the SU(3) factors there are 

1, Yi, Y2, Y1Y2, Yo,Y5, Y5, Y1Y5, Y2Y5 	 5.4a 

(ii) Amongst these 72 (=8 x 9) 'good' charges of U(12) 

certain equalities appear for their matrix elements - essentially 

because YoY3 --..., unit operator on infinite momentum States. Thus 

we get 

YoY3  

Y1Y2 
	Y5 	 5.4h 

Y1Y5 
	.04-• 

Y2Y5 
	 Yi  

and the U(12) algebra thus degenerates into that of U(6)
w 
 represented 

in its space-time components by the left hand column cf.F 4.1. 
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In this way the U(6)w  algebra contains the chiral algebra relevant 

to the calculation of gA. 

Representation mixing presents an alternative at (ii) above. 

It was known that the pure 	baryon assignment does provide an 

approximation to some parameters, e.g. it gives gA = —5 
3 d/f = 2 

G* = /1  (tpe 
17 

3 	). 	(:lee following table for experimental estimates 

of these numbers.) Again it was observed that in the A-W equation 

5.2 dominant contributions were made to the intnoral term (the 

renormalization correction) by some low lying resonaneoa txhinh 

be fitted into a higher sylametry multiplet. 	In deciding which 

representations to mix one is thus guided by the SU(6) classification 

of the baryon resonances - it has been shown by Dalitz59 that 

the bracket of negative parity resonances lying above the N*- 

can be best fitted into a 70(L=1) multiplet. 	This classification 

uses the quark model and introduces an orbital quantum number L to 

cover the relative motion of the three constituent quarks. However 

difficulties aria:: when we attempt to relate this to an SU(6)
w 

current algebra in the infinite momentum frame57  since only in the 

rest frame can 1J spin and L couple like S and L to give total .1 

thereby identifying the physical particles. Outside of the rest 

frame the non vector character of W may be expected to interfere 

with this simple procedure - it was first suggested57 that possibly 

this was only an apparent complication and the coupling could be 

mioht 
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effected as in the atatic case. However Lipkin et a1
62 

have argued 

that ve are indeed faced with a serious limitation here, and later 

work by Dashen and Gell-i
.
:unn

66  
seems to confirm this. 	In any case 

it must be remarked that an additional orbital degree of freedom 

has to be introduced into the scheme if it is to allow non zero 

anamolous magnetic moments - this follows from the Cabibbo- 

Radicati
6o 

identification of the anomalous magentic moment operator 

in terms of the expectation value of the electric dipole operator 

between infinite momentula states (the Dirac moment term receives a 

damping factor 1/E). 

An alternative rejresentation of the magnetic moment operator 

uses the Lorentz tensor parts of the W spin vector and then, to 

make contact Irith electromagnetism, relates the tensor divergences 

to the vector field operators (PCTC) and uses the customary assumption 

of vector dominance of the electroalagnetic form factors. This 

approach has been discussed by Gate et al . 
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5.2 	The 56(L=C) 	72(,1) Mixing scheme 

TheM(L=1) IR decomposes into the following (R; 2J±1) 

multiplets : (10; 4,2), (8; 6,42,22), (1; 4,2) - note in particular 

the existence of two spin a  octets so that including the 56_ 

contribution we have three spin-1 octets requiring two mixing 

angles. This greatly reduces the predictive power rendering it 

impossible, e.g. to obtain a relation between gA and D/F, one of 

the successes of other mixing schemes62. 

We write, for the octet baryon, in a helicity diagonal 

representation, 

B>.1 
1 = Cos9 56A Sin0 [Cosy( /3 170(82)),3_, - /2.170(80)› 1) 

3 

1 	1 • Sidt1( /-
1 
 170(87 2  /-3  i70(8' 	y 01  + /-

6  3
/4 70(8

' 
 4)› 1)] 

C 2  
2 

measures the 26-70 mixing, (( that between the two J4 octets 

occurring in the angular momentum direct products 2  () 1, 2  

for 70(L=1). The suffix gives the U(6) contribution S
z 

to the 

helicity h (i above as designated on the left) - the orbital 

contribution is defined by lz  = h-Sz. Using the tables of Chapter 

and the Wigner-Eckart theorem for generators(which as emphasized 

by Gell-,,ann leaves us with no overall scale factor or unknown 

reduced matrix element - those of the generators which enter here 

are 

C70 II 35F  it 70) = 3 41 
	

4,56 it 35 41 56) = 3 	5.6 ) 

5.5 

1- 6c. t 
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we find for the 71 contributions 

1 g 
A 1 

7 0 -9 	Sin 2( 	3 cos 2 y ) 	 5.7a 

Di 	 6 Sin 2 IC  
DI-F 1 70 	2- 8 Sin 'ay- 3 cos 2 , 

G*1.1  (70 	3 / 3 	4 co - Sin ) 

These can now be cotbined with the 	contributions as laid 

out in the following Table :- 

TABLE 1 

0 CIA 	BAD+F) 	j 	G*
A 

0 . 1.66 c.6o 	1.63 (= /-) 
3 

90 -3o 0.83 0.73 + 	1.08 

90 -40 1.04 0.63 + 	1.01 

90 -50 1.16 0.57 + 	0.97 

38 -15 1.18 0.63 1.4;4  

45 -25 1.18 0.64 1.37 

55 -35 1.18 0.63 1.24 

Experiment 1.18 0.65+0.05 1.1+ 0.1 

For a given 70 mixing angle 2k(` in eqns. 5.7al b we may employ 

either 4C or t(-11 in ean.5.7c, and this corresponds mIspectively 

5.7b 

5.7c 
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to the + spin for G!' at 8 = 90. For 8 j  90 we tabulate only 

those G resulting fro..1 ,he positive 72 contribution since they.. 

give a better fit. tale insert an elementary remark on the 

calculation of D:F ratios such as in this Chapter, since confusion 

may arise due to alternative normalizations. Using the conventional 

notations we have 

e_ilF(j -2 = F ifijk + a dijk defining D:F. 

The f's and d's play the role of unnorralised reduction coefficients 

since 

= lj ijk 1j1 	kl' d d = r  Jijk ijl 	3 c'Skl 

In a higher symmetry scheme using CGcs we calculate 

<1\ Fk 
	

= (S + a) x <reduced matrix element> 

where Si  a are CGcs referring to normalised symmetric and anti-

syntuetric octet products 

56 	35 	56 

S NJ ( 82 	83 	8
s
2 ) 

v1 	v2 	v3  

D 
a F 
= 	when ifijk = dijk otherwise we must take 

care to convert from one scheme to the other, e.g. 

i ijk 

<F4 fink 10 	1 

/ ni j4111 n 7 	0 

Cpl In) 	 2 	 2 

e.g. 

Clearly we have 

d
ijk 

1 
3 

2 
3 
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So in our case no conversion was necessary. 

The ano-alous magnetic moments are calculated assigning 

the magnetic momentr-operator the U(6) transformation properties 

35(7,1))1z  = -.1- 1 (and in SU(5)^- 	We must calculate the 

matrix elements of + 1 corresponding to transverse momentum 

transfer (the momentura is infinite in the collinear direction) 

neccessarily non zero according to 

Ai 	i 	x jem(q) q=0 
	 5.8 

".0 

q = momentum transfer 

Since z2 (x) 22 contains 22 twice there are in all three 

reduced matrix elements to consider (70 350 70? •  <70 0 3511  702? 

	

and <:70055 H56 ? 	(the fourth ,!...515% 1  35 4136, does not enter by 

the aligner-Eckart theorem on L, and represents one of the iliotives 

for allowing mixing with orbital excitation). We find 

	

11. (proton) = 	A(eutron) = const.SinTaCos01135 456,  5.9a n - 	0  

or equivalently 

a 	= 0.75 

0
F  where m = D+ gives the D:F ratio of the anomalous magnetic 

5.9b 

moments from factor F
2 

and experimentally has the value 0.774 63. 

Of course this result has been found earlier by current algebra 

methods
64
. 
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We are not able to make any prediction concerning the N-N'` 

id electromagnetic transition moment u* due to the presence of the 

elements 70 35 701,2 	However an alternative schewel  

cf. Lippin et a1
62 

involving no decuplet mixing, and giving CI = 1.15 

would predict 

u(proton)10 
	 5.10 

2 
to be compared with the experimental value 1.3 2/ — 11 proton 65 

3 

We thus find the 26(L=0) (+) zg(L.1) system advocated by 

Dashen and Gell-Hann57 adequate but inconclusive - however some 

decuplet mixing does seem to be necessary. 
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