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Chapter 3 of this the.is contains tables giving the reduction
of the SU(6) direct products ééié)gé, 561(x)35, 35(x)35 and

the partial reduction of Zggé)zé .

Chapter 3 and the preceding chapters also treat, in detail,
the structure of the SU(6) algebra and associated problems such
as subgroup reduction as well as more technical matters such as

phasc conventions,

Chapter L uses special techniques to investigate the effect
of 35-like symmetry preaking on the predictions of SU(6)w for
two body scatterings we are unable to avoid some of the poor

results found in the limit of exact symmetry,

The fifth chapter nresents. a model Ser the weak interactions
of baryons based upon the mixing of 56(L=0) and 70(L=1) irreducible

representations of SU(6) x 0(3).



INTRODUCTION

During the nast five or =ix years group theory, extended from
the long established SU{2) isospin symmetry, has provided an amaz=
ingly flexible and fertile base from which to initiate forays into
the elementary particle shysics battle field; in most such essays
the compact SU(3) symmetry has played a central rolei. One of
the major reasons for success thus gained has been the organizafional
or unifying nower of the group theoretic approach allowing as it
does an at least partially integrated view of strong, electromagnetic
and weak fopces; indead it might now be claimed. that the true
contribution of groups or algebras is a coherent but comrse
organisation of large areas of data ~ the earlier idcas of
generalised gauge invariance2 centrasted =with, for example, a
later suggestion that (essecially higher) symmetry schemas may
arise phenomenologically as a result of unknown interactions at
a fundamental level5 indicates perhaps a changing attitude to the
gquestion of whether or not group theory itself says any thing

about vnrimary dynamics,

i, . Gellmann, Phys.Rev., 125, 1067 (1962)
2. See, e.9. J.Schwipgers 1962 Trieste seminar: lectures and
also the 1963 I.,C, thesis of P,A, Rowlett.

3, J. Schwinger 1965 Trieste seminar (unvublished)
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Again the idez of an internal symmetiy has often been easily
wedded to other indesendent physical concepts, although at a
decper level, the more significant union of internal and space
time syumetries in a non trivial fashion has produced only decep
conflict, not yet reusolved,

A third reason for the popularity of group and algebraic
methods has been their capacity to sustain wide ranging and
detailed calculations - although these are usuxlly of a cumparative
uatuare and always limited in their success by the inherent approxi-
mations, It is with the mechanics of calculation and some of their
results that this thesis is concerned - w¢ are further restricted
to compact symmetry schemes, or more precisely schemes iwhere
multiplets contain a finite number of particles, Non- compact
systems employing representations containing an infinite number of
particles have alsc been studied, but are not noted for ease of
coumputation,

The SU(6) groun studied here was first seen as a direct
extension of the susermultiplet theory of Wigner giving a partial
nor relativistic gombination of internal, now SU(3), and space tiie
symmetriesé. A crucial departure from Wigners work was in
multiplet anignments, The low lying baryous and mesons did not

occur in the fundamental group representation (ars> the cecse ior

Le F, Gwrsey and L A, Radicati, rhys.Rev.letts., 13, 173 (19614)

A, Pais ibid, 13, 175 (1964), B,Sakita, Phys.Rev,,136, B,1756,195.
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SU(B))S and the suc~esces of SU(6) consequently gave considerable
impetus to the quark -- or composite - model of eiementary
particles which does then relate the SU(6) irreducible representation
6 to postulated physical states, quarks,

Our first three chapters vresent the mathematics of this
group and culminate in the reduction of the direct product for the
most important shyszical multiplets = a new featurc of SU(G),
carefully elaborated here, was the increased invelvement of the
unaerlying syuwaetriés or permutation groups due to the subgroup
decomposition required by the physics, We also take care with
the notwious and elusive question of phases and phase conventions,

Given the SU(6) -riaeme an immediate problem, urgently
attacked, was that of finding a relativistic counterpart,
corresponding to the incorporation of the Poincare group, and not
just one of its little groups, with su(3). It was hoped that,
for examgle, a clearer anderstanding of symmetry breaking might
result, since the mass operator, now to be included in the
symietry schene holds in its non degenerate spectrum perhaps the

key to this problenm, Unfortunately O'Raﬂ.feartaigh's6 theorem on

5. M.Gellmann, Phys.Letts., 8, 314 (1964)
.« GeZueig, unpublished Cern, notes,

6. L. O'Raifearta.gh, rhys,Pev,, 139, B.1052 (1965)
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the impossibility of finding a discrete mass spectrum in an exact
Poincare group containing sy.ametry trought this work to a negative
conclusion,

Neglecting this shortcoming, considerable developizent of the
relativistic theory cccurred, It was found moreover that many of
the prediections of such sqhemes could be deduced from a study of
certain compact subgroups. One of these was again SU(6), the so
called SU(G)w and in Chanter 4 we present ourr owa calculations o
ine predictions of this group for some two body scattering processes
in the presence of various types cf sy:metry breaking.

4 parallel line of development also suggested by Gcllmann1
regards the sywmmetry ; ~rgerties of transijtion operators to be
more basic or at least simpler than those of the single particle
states between whigh they operate and on vhich was built the group
theoretic approach, Perhaps the most noted success in this field,
that of current algebras, was the calculation of the weak axial vector
to vector counling constant ratio7. Essentially the compact
algebra SU{2} x SU(2) was employed so that the transition operators
involved had irreducible SU(2) x SU(2) transformation properties
whilst the (nuclear) states used were algebraically irreducible
only under the isostin subélgebra, and were in fact infinitely

reducible under SU(2)} x SU(2), From this success arose attcmpts

7o  S.I Adler, Phys,Rev,Ltees.,, 14, 1051 (1965)

W,I,Weisberger, Phys.Rev,Letts., 14, 1047 (1965)
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to approximate stal@e 25 a combination of a finite number {usually
two!) of irreducible mcpresantations, and in Chapter 5 we show an
application of the SU(6) aigebra and some of cur Tables to this

question of respresentation mixing,



CHAPTER _ 1

ALGERRAIC AND OTHER PRELIMINARIES

This chapter couprises a wmiscellany of results and definitions
needed in the sequence, We emphasize that there is no attempt a
eithier an elementary or a complete discussion of the material -
there are far too many treatments already in existence to justify
such delay, Discussion of puase conventions and of the Jfull nature
01 the dual relatiorship between continuous and symmetric group
is perhaps less readily available and on these two questions we
give more detail,

1.1 Canonical forms for simple Lie algebras

The above remarks apply especially in this sectionj in
particular we have not thought it necessary to provide a glossary
of Lie algebra terminology, The book by Jacobson treats the subject

in full mathewatical rigour“1‘ , whilst there also exist many well

known r‘eviews?'3 b .

We shall regard a Lie algebra as a set of matrices which is
closed under (a) commutation of any two elements, (b) addition and
subiraction of any two elements, (c)} multiplication by arbitrary
elements from a base fieldy; the specification of thig field is

escential in the transition from algebra to group and receives

brief mention below (7 1,2), Given a {matrix) basis for the



algebra all element~ may be obtained by the operations (a), (b),
{(c)o Then,

(i) There exists the fciluwing canonical form for the comnmutation
relations (CJR.) of a simple couplex (i.e. over the complex field)
Lie algebra L of rark 1 := L. contains a €artan subalgebra
with 1 linearly independent mutually cowmuting elements, The
remaining (non diagonal') operators (N-1 in number if L has order
N) may be split into two sets, raising operatcrs Ey and Lowering
operators E_y (also collectively denoted shift or ladder operators),

and the C,Rs are

[Hi,lij] = 0, i,j=1, «c0, 1 H:H 1f1a
[ni,Eia] = + I’i(c/.)E_tOt ifib
[fsa,E__OL] = rl f'i(a.)s-:i 1f1c
[E&’Eﬁj = %x§%x+ﬁ , for any + &, % B 1,14

. . . .th
where Fi(a) is the i~ component of the root vector i {g), and

N 4 is a c~number, equal to zero unless Mg) + £{3) is a root.

¢

(2) The couzplete algebra is generated by a subset of elements
associated with the simple roots (see especially Dynkin'25£ These
are the generators Z,  where f(a) is a simple root (there are 1

of these) and for this system we may write, with L gl

"(a) a simple root

[Ea’ E o h {7 (o) a simple root) io2a
)

1 = 25
R At I §



I = & W) V@) E (v (x) a simple root) 1,2b

Lhys Fup £

and

[E&, £.] as before 1.2¢

B = Bhﬁ E&+B
(Equation 1.2c prevents 1.2a, 1.2b from forming a subalgebra)
Equations 1,22 1,2b illustrate the remark that a simple Lie algebra
of rank 1 can be viewed as 1 non=orthogonal SU(2) Lie algebras,

(In the following we often represent an algebra by its customary

physical symbol, e.g. SU(n) rather than A <3

-, theé same ta=rm
nel

may alas describe a rclated group,) We have introduced both i:
and h since this is closer to physics, e.g. in SU(3) we have

13 and Y for H1 and Hz whereas h1 = %"1 +1ﬂ57§ H:2 h2 = %Hl -
N/§7é Hz. cf.§;1.3.

(3) The nuwserical factors occurring in the commutation relations
(the structure constants) are all real, The numbers v (x)e T (B)

are completely determined, for a given simple L, ouly upto an overall
norisalization constant, The commutaticn relations determine qnly
PJZ - for each a,B + I . must be chosen consistent with the C.R,

af B ™
and consistently adhercd to {ch. Behrends et al ref.>3})..
Different allowed ghoiges produce isomorphic Lie algebras.

(1) Corresponding to the szets E&, E_a, we have the positive roots
r (o) and the negative roots r{-a) = =r{a). The concept of a

positive root is defined with respect to a certair. arbitary ordering

o1 elements Hi in t.e Carign ~ubalgebra and is extended also to
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weights in a arbitrarv irreducibie representation, (Recall that
a root vector is a weight vector of the reguiar representation,)
It is important {o state il ordering in defining highest weight,
and differences exist in the literature on SU(3), vhere the comon
choice is the order (IB’Y) used by DeSwart > and by Behrends et
a1'3; but(Yglﬁ} has also been usecd, e.g. Salam{B;, Rashidgéb.
See also£;1.9.

(5) The 1 siaple roots have non positive scalar products whose
values may be displayed in a Dynkin diagram"zj; further if r(B)
is any positive root then r{(3) = é£1 n r*(a) where h, is a non

negative integer and r {a) a = 1 1 are the simple roots,

$ %
; s ﬂak . . th
4 positive root Flid)= i:bq~ﬁ~-), is said to belong to the k

layer, where k = é-na; similarly a negative root r(8) =

£
t
i'mara(u) (ma negative integers) belongs to the 1 h layer
¥
1 = 45 1m11. The commutator of two generators Ea’ E53 where r(a),

r(3) belong to layers k, 1, if non zerc is in the FTk+1
layer where we take +,(—) for positive {megative) roots,

The concept of layer is also extended to weights in an
arbitary IR,
(6} The complex Lie algebra L comprises arbitrary linear
combinations, with complex coefficients, of the N generators in
etn, lol. For the above structural theorems t.¢ uss 0 wne ccmp’ 2X

Ja
- - & [SRPERR s - - . .
iield is esscutial . suwavelr, 10i the discussion of associated
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groups it is often inv~ convenient to regard this system (eqs,

1,1 over the complex field) as one with 2N real degrees of freedom,
Yhen we talk about a real simple Lie algebra L we shall mean the
system of eqs, 1,1 with N non complex (i.e, either real or imagina:y)
parameters,

Much of this thesis is concerned with the finding and subsequent
utilization of matrix solutions to the system, egs. 1,1 of non
linear algebraic equations, Standing alone the gguations do not
have uniguely defined solutions - in order to ensure uniqueness
(upto unitary equivalence) and to further specify the nature of
the solution additional conditions will have to be imposcd. The
first of these, the hermeticity conditions, have little computational
importance (once we have settled on finite dimensional irreducible
representations that is) but considerable theorctical significance,
whilst the second, the choice or specification of phase convention
has no theoretical significance but is of prime importance when it
comes to nunierical calculation,

1.2 Hermeticity conditions

These arise when we attempt to pass from a representation of a
Lie algebra to a ropresentation of an associated Lie groun by a
process of exponentiation, We have the comglex Lie algebra L
represented by a set of matrices §E,H§ over the c mplex field, an

<
arbitrary element has wae iofu L = &ti A&Ea + Yi“i ’ gi’ Yi 64§
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For certain ranges nf the parameters x, y it is possible to expo-
nentiate L (the ex. onential converges) and we write U(x,y) = exp(il)
for the representative of .cme element, parametrised by the set
x,y of some Lie group. For infinitesimal values of these parameters
(i.e. in the neighbourhood of the group identity) the equation
assumes the form U(x,y) = 1 + iL. The particular group thus
generated may be compact or nron~compact and its associated
irreducible representations unitary or non-unitary. An important
example is provided by the representations of compact groups, for
which we have the following two theoremséi;.
1. Every finite dimensional representation of a compact group is
equivalent to a unitary reprecsentation,
I¥, In the above canonical form the compact subalgebra of L
(i.e. the subalgebra whose elements exponentiate to elements
of the compact group) is generated by the set (Ea + E—a)’
i(ElDt - E.a)’ E, taken over the resl numbers (i=t, ..., 1; a ranges

over the positive roots). Thus also the compact subalgebra is

real,
Writing now U = exp il.,
L= {x{(&E +8 )+yi(E -=E )+ uH),
x,y,u real
= (ZaEa+§aE_a+uihi) Z=x+1ly

the condition that ¥ be liary gives L = A (+ denotes hermition
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adjoint) or

. . - —
+ il = i + &
[+ =L o -
T " ‘“ - -n+
i(E =8 )= «i(E" -E )
o -0 (¢4 =X
H, = H,
1 1
s + - 1'!—1‘ -
i.es E = B gy . = H, 1.3
i b 1 1

Thus to obtain renresentations of an algebra which exponentiate

to unitary representations of the associated unique compact group,
the commutation relztions must be solved subject to these hermeticity
conditions ~ in this form the hermeticity conditions assume parae
metrization of the compact group elements with real parameters

X,¥,Up fieeping the hermeticity conditions and the commutation
relations fixed and allowing some of the associated real parameters
to become imaginary (we still have a ‘real' Lie algebra) may provide
a finite dimensional representation of a non-compact group,. In
this way one representation of the algebra will lead to representations
of several non-homomorghic Lie groups, Changing the hermeticity
conditions with respect to a given parametrization of a group will
then alter the nature of the representation, For example,

starting from the compact case and changing some parameters (here
unspecified) from real to imaginary can lead to a finite dimensional
non-unitary representation of a non-compact group; cuanging now the

hermeticity conditicn on ' . associated generators from E;a= E¥1 to



+

o
D

B = -E;a will i-rnee a unitary representation of the grcup,

From a well known theorem it then follows that the associated
commutation »alations have only infinite dimensional solutions.

The solutions obtained in the next chapters will always be
subject to eqs. 1.3; and these then define the appropriate hermeticity
conditions in a non~canonical basis,

From the above raelationship of group and algebra it is clear
that the one representation space may serve for both - we may
speak of a group transformation of a basis element, or of an
algebra transformation, A space which isirreducible for the group
will also be irreducible for the algebra, and so: on. e

- We have

adoptad : a view oint for this discussion which has enabled us to
emphasize (i) the same solutions of the same C,Rs., of a given
(complex} Lie algebra may serve, with multiplicative factors
recal or imaginary, to nrovide representations of several Lie groups;
(ii) the difference between these groups may be thought to lie in
the group parameter space; (iii) keeping the C.Rs fixed the hermeticity
conditions are very important in determining the nature of the
solution,
There is an alternative viewpoint, also in frequent use, ‘a7
which does not make the factorization: eiement. of L-rbasis element

of complox algebra X reai or imaginary number (i.c. all numbers are



instead taken eithe. ~11 rcal or all imaginary) and in this case
the commutation relations become characteristic of the associated
group as alse do the heraeticity conditions. For exammple consider
the complex Lie algebra of SU(2): ({we work in a non-canonical
basis for which the hermeticity conditions are¢ more easily handled),
From the first point of view we have the commutation relations

[51 szj = 15 [sz s3] = xsi [53 51] = }S

3 2

to be solved with hermeticity conditions Si+ = 3,. Then an

i
éiizﬁﬂﬁi L = % ois Gi real will exponentiate to a unitary
i
representation of the compact SU{2) - whereas if we take 01, 02

imaginary we get a finite dimensional representation of 0(2,1).

. * - + +
Changing now to S1 = =5, Sz = -bz, but S3 = S3 (01, 02

imaginary, 03 real) will give, with the same parameters, a unitary
representation of 0(2,1).
Alternatively one kecps the parameters always rcal, the

C.R.s for 0(2,1) become c51523 = —153, the others as above, and

s s . . 1 . + + +
a finite dimensional IR will have S1 = -Sl' 52 = ~Sz S3 = 53

whilgt a unitary IR has Si+ = bi. Frowm this point of view it
makes sense to talk of non compact or compact generators etc.

a7:

cf, .

1,3 Generalities on irreducible representations

The solutions to egs, 1 will be realised on finite dimensional

vector spaces where the matrices act as linear transformations,



Infinite dimensiona” eslutions of Lie algebra equations are also
of importance in physics, but will not be discussed here. Ve
shall further focus —atteniion on irreducible solutions, i.e,
given the system of matrices L and the vector space M, the
representation is formally considered as a linear mapping of L x
M onto i, Irreducibility then implies that there is no subspace
1'CM such that L x WICH?! where C signifies strict containment,
Such an irreducible matrix system we shall denote IR, The solutions
or representations are to be constructed as follows:-

(1) We choose a basis in the vector space !, This involves
labelling or identifying each of the basis vectors and can be
achieved by demanding that the basis vectors form a set of
orthonorial eigenvectors of some set of matrices (some of which
may belong to L) such that no two basis vectors belong to the same
eigenvalue of each labelling matrix, (The problem is to find, and
to establish the spectra of such a set ~ usually one looks at sub=-
groups of the given group,) As usual the eigenvalues are to bé
associated with physical attributes, quantum numbers, draan Irom
the physical system which our equations are attempting to describeg
it will be a matter of interest that the physical labelling so
defined need not coincide with the purely mathematical solution,
and moreover may not be even a complete or sufficient alternative,

(2} Subject to a given ordering scheiie on the weight components,



the finite dimensio:=21 IR's of a Lie algebra are characterised by
a single vector known as the highest weight. Froam this vector
an appropriately labelled basis may be derived or rather defined
using the ladder oxnecrators of‘§;1.1. Alternativelyfseeii1.5

the IR may be specified with the aid of a Young tableau, these are

b

defined and discussed in G,Murtaza and M.A.Rashid; as well as in
the book by Hamermeshi6é

Again, in place of either of these, an IR may be specified by
giving the values attained in that IR by the Casimir operators -~
of which there are 1 independent ones in a siiple Lie algebra of
rank l. (It is worth rcmarking that this method fails for infinite
dimensional representations,)’ Labelling by Casimir operatad is
not much used in the physical literature,

A further property of the highest weight labelling is:i-
(3) In the canonical scheme there are 1 IRs called 'basic
irreducible modules! inii; - these basic IRs have highest weight
vector U? say, of the form U? = [?, % p 4 aj a, i=1, sos,y 1

2,1=a
(the factor % results from the factor 2 in eq.}2a); the eigen~

value equation is han =4 g? U* (no summation). Any highest
weight now has the unique form
U = z_ n Ua 1.3a
a a

where na is a non negative integer. Note also that

U‘>-Hz7 -;Ul, where » means higher than,
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In the followii., 7¢ always denote a basis vector of any
representation by the ket cyabol § a7 where the set a specified
ouantum or labelling nusvers. (An arbitary state or vestor will
be exapnded in terms of these basis,) Often it will te convenient
to write for a that particle which conventionally has the quantum
numbers «, esgs 1 ﬂ+} is the I = I3 =1 Y = 0 basis state of
the SU(3) octet, We emphasize that physical states may be associated
with + a basis stete, See 2% 2,2, 3,2. An alternmative form for «
is (ﬁ,ﬁ) vhere g is the dimension of the IR and VY represents
other labels.,

Having obtained wvarious IR's of the algebra we shall employ
them in the standard group theoretic process of reducing the inner

or direct product,

lek Inner and Outer products

{1) Inner wnroduct: Here we take two IR's of a group and ask

which IR's (of the same group) appear in their inner, or direct,
or Kronecher product ~ in this way the inner product is expressed

as a direet suu? formally we have the Clebsch-Gordan series,

- < -

Wy = 3 Oy
where B labels the IRs of some group (or algebra), (¥) indicates
direct product, and {E) direct sum, Specialising to basis vectors

we write

R

> ”
(M1 P2 Py s 1ok

iy N N
o wy @iy = |
11 2 o \Vy ‘2\)1
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where we have intrc ¥ ~cd the Clebsch=Gordan coefficient (C,G.c.)
Q%}g%ﬁ%} = we use the zame notation as deSwarts, but entended to an
arbitrary gronp or algebrai usually the group or algebra to

which the CG¢ refers to will be quite clear. We depzrt from the
deSwart notation in one respect, viz his symmetric and antisymmetric
CGe's used in the SU(3} direct product ¥ C{)? are denoted ?;, ga

-

rather than ¥ 1,?'9 respectively, The suffices i, 2, are

reserved for another role, Chapter 3 is concerned with the

calculation of CGets,

(2) Outer product: Here we take two IR's of different groups and

ask which ITN's of a third group appear in their outer product;

By x W, T 5; By
x denotes outer product and the syuibol ?‘emphasises that this is an
embedding and one is really enlarging the representation space in
going to the outer product,
We shall also use the sywbol x alone, without ) . Then,
as is usual, it will merely indicate the independent existence of
the two component groups or algebras,

1.5 Symmetric group

The syimetric group Sr is the group of permutations on r
objects, it is a finite group of order r! In the following we

assume acquaintance with Young Tableaux (Y,T,) (cf, Rashid and

Ly 6, 7, 10

Hurtaza ) and their role in defining the IRs of Sr.



A YT shall be denotad [ ] corresponding to the partition >\1 },)\2,
),}. p of r, or by the familiar array of boxes,

(1 = €15 [2) = (& [1°] = (3]s [2ad = (7 ete.

Now take r objects labeiled 1,2,...r and for the r! different

permutations; a given YT then constitutes a shorthand way of

stating which sets of linear cowbinations of these elements are

invariant under permutation, i.e. the YT enables a direct construction

of a coinplete basis for the associated IR, He give some examplesi-

Group IR dia Basis function
8, [1] 1 1>
5, [2] i JE (1125« 202)
[1%] 1 JE 112y - i2i3)
8y [3d 1 J_g_ (11235 +12317 + 13127+ 1213 >
+ 13215+ i132))
S, L21] 2 (1123 5+ i 213> = {3215 = [231))

(11325 +1312)> =1321) =\231)
[=1] 2 F(1132) =i312)% + 1231 ={321))
$(11235 - i213 7 + [320) =1231>)
[13] 1 x/-é-( 1123 % +1231> +i312> =1213) =
-1321> ~-\132))
The entries under basis function have been obtained using the Young
operator, a different operator for each basis function (this

incidentally provides a labelling). A recent full discussion of
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the method can he f 14 in ref,B. Note that in 53 the IR[21]
is of dimension 2 and we find two equiwvalent orthogonal sets of

basis functionz; this ig ar example of a general result, which states

n’ =g
~

i~

where the sumraation is over the dimensions r of different IRs

of a finite group of order g, Notice also that the basis functions
found by this YT prescription are not orthogonal within an IR -~

for physical applications this generally is a disadvantage of this
gystem, cf, alsoB. We can combine IRs of Sr according to the

inner product, Some simple Clebsch~Gordan series are

1 CE) O = 0 in 51

KRS Ei% = QEH in 52

F @ F GO g ins,
The product of dimensions on the left is equal to the sum of
dimensions on the right, Some CGe's for the lower Sr are given
.6
in ~,

Soime outer products are

Ox0 = M+ {3 sixsi'fsz
e R W L | - = N o
= kj hﬁ“ * E}‘ S, x 3, | 54

L A
T =L e {
0O xt ] =111+ tf s, x5, I's,

e shall now see that these define inner products in SU(n) and with



respect to this gro.» the product of dizensions of the two IRs on the
left is equal to the sum of thosc on the right,

1,6 Tengorial realisations of SU(n)

To avoid complication, in the following we refer to SU(n),
however the results may be adapted to others of the so called
classical9 series of groups.

The unitary finite dimensional IRs of SU(n) may be realised on
a tensor space which is a direct product,p times, of the n dimensional
fundamental or defining representation space, A; the (defining)
group matrices are nxn, unitary, and unimodular. The product space
Af x Ag.., th of pth ranit tensors is reducible, its reduction is
accoiiplished with the aid of the Young operators or symmetrisers
(cf. Rashidé’G) which act on the indices 1,...p of the product
spaces to produce tensors of definite sywmetry type. (These we
shall often denote T[A] = thus Tﬁ; represents a 3rd rank tensor
with [21] symaetry,) Corresponding to the appearance of [A] n
times in the outer product [J x [J .. x O of SixS1 .o xSll}Sp
the tensor space can carry n orthogonal equivalent IRs [*] of 5U(n},

To obtain a basis for the IR[AJ of 3U(n) construct a tensor
Til..ip of symmetry [&l; each ij ranges from 1 to n and the
SU(n)} transformations change this index value for each ij. Now
consider all allowed sets of index values {if the tensor is anti=
gyaietric in ij’ i

we cannot have ij = for any i=1,...,n) and

13 1k



for each such set c~nstruct basis functions for the IR[A] of
Sp - in general a set of index valuss will not support a complete
IR of Sp due to equalities awongst the index values, In this way
one obtains a labelled basis for the IR[Xl of SU(n), as used by
Weyl9 in his work on the classical groups; however the basis is
non orthogonal and the lebels have no direct physical interpretation,
The inner product in SU(n) multiplies two irreducible tensors,
rank r,s say to produce a reducible tensor of rank rts = the
original IR tensors were defined with the aid of Sr Ss, clearly
the reduction of their direct product will involve Sr+s and we have
the correspondence: inner product in SU(n) "+~ outer product in
syzmetric group, Rules for the formation of Clebsch=Gordan series
in SU(n) are thus those for the formation of symmetric group outer
product6’1o. Of course these rules must be supplemented when the
symnetric group does not completely reduce the con’iinuous group as,
for example, when it is possible to form traces, For SU{(n) as
is well known (cf, Rashidg) any tensor can be written with covariant
indices only so that the removal of traces in this case can be
avoideds For example, in SU(3) the direct product 8 (x) 8
corresponds to [21] (x) [21] and is evaluated in this way, see
eq.6 P«252, to give T(®% = 1 (+) §2 (+) 10 (+) 10 (+) 27

{" -
Alternatively in SU{(3) Tﬁ:’“ 8 {+) 1 and

'J

e

Tg(:;)T:;: C)T (+)’r L}’r-

\

ts
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(8 {1 1) & B = (27(+)8(21) (W) (B8) (1) (10¢) 8)
(+) (B{H1).

We shall call the outer product in SU{n) that process whereby

IRs of SU(p) and SU(?) are combined to form IRs of SU{pq)

su{p) x su{qg) T Su(pq)
SU{p) x SU(g) is a maximal subgroup of SU{pq), i.e. there is no
subgroup G of SU(pq) such that we have the following scheme of
strict containmentg SU{pq). G ISU(p) x SU{(g). See Dynking.

Now take rth rank IR tensors of SU{(p) and SU{q) say Pi1 ! Q
r

J1 Jdr
and define a set of index values in SU(pq) by k3=isjs {no sum)
k=1,..0,pq 1= 3,000,8, J=1,...,q9, s=1,...,r. From the point
of view of Sr the IR tensor P has, for each set of index values,
definite permutation symsetry on r objects (the objects being the
underlying product spaces), similarly for the tensor Q, Such
tensors can thus be combined according to the inner product in

sr; in so doing we create an rth rank tensor with indices ks’
S=l,4,44 s Thus the process of outer product in SU{n) corresponds
to that of inner product in Srli’lz.

In passing we note there are two ways in which one might
decowpose 5U(n} according to its unitary subgroups. In the
fundamental IR n these correspond to splitting the representation
space into (i) a direct sum, so that say the first p indices belong

N sood - »or - . .
. . . L art iy e e T IN ey mr o e e
[ T - RE-SE PO E RS T G s At TR

riarantal Tanser $v Sng
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to SU(p), the last  wzlong to SU(q) with n = p+q.
(ii) a direct product, so that the fundamental tensor in
SU({n} is a pnduct of fundansntzl tensors in SU{p)} anda SU(q).

y =TT ¥ =
l‘k olg y DA =n

ilaving introduced tensors we can also, outline the relation
between the highest weight and YT labelling o* SU(nj IRs. 6% A§?2.3.

Suppose the ordering scheme is defined so that T, ~T, ...

1 2

;.Tn where by Ti is meant the ith basis vector of the fundamental
IR in SU(n), Hence we can arrive at the highest weight in an
arbitrary [x] by filling the first row with indices 1, the ith
with indices i (cf., Rashid®). Now view the ¥T coluan wise ~ each
column on its own denotes an IR and the state of each IR specified
is in each case the highest weight, Thus the highest weight in
[N is obtained by suwming over highest weights for YT of the form
[1"] 1<¢rin-1, {(Recall that in SU(n) [1"] is the scalar IR,
Rashid%) e thereforehave a 1:1 correspondence betwecen the n~1
YTs [1'] and the lefn=1) basic IRs of SU(n), which is explicitly

formulated as, for [ [%1,>2,... }n-ﬂj’ and using eq. 1,3a,
=N e
Ba “a >a+1 ek

1.7 Canonical labelling scheme for SU(n)

The decowposition (i) above is iwportant for the case p=nei,
g=1, sincz the chain

SU(n) ~78Ui{n=1} x U(1}, SU(n-1) = sU(n-d) x U(1), ..., SU(2) > U(1)
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can be used to provide a complete set of labels for an arbitrary

IR of SU(n)., For example in SU(3) each basis vector is given
definite Ia, 13,Y eigenvaluy, aad this suffices to distinguish
states in an IR - IE,Y correspond to the-step SU(3) - su(2) x U{1},
whilst 13 labels the (equivalent) IRs of U(1) occurring in SU(2) —>U(1).
From the goint of view of § 1.3(i), the diagonal labelling operators
are the Casimir operators of SU(n), SU{n=-1),.5U(2) (these are not
elements of the SU(n) Lie algebra) and the n-1 independent U(1)'s,
which are elements of the algebra and span its Cartan subalgebra,
Instead of using the eigenvalues of the Casimir operators as labels
one may alternatively give the corresponding Young tableau -~ this
allows a concise tabular representatiom of basis vectors in terus

of a'Gelfand Qattern'. A full discussion occurs in a series of
papers by G;E.Baird and L.C.Biedenharn13 where this labelling schemne
is exploited to derive the matrix elements of the SU{(n) generators
in an arbitrary IR, For explicit calculation this canonical scherie
was thus more tractable than that of Weyl, and further, in the case
of SU(3), the labels could be identified with physical labels,
Unfortunately this is not so for the physical SU(6), See

Chapter 2,

1.0 Irreducible tensor operators

5,i3,14
]

These are defined and discussed in many places as

5

for CGc we shall use the definitions of deSwart”. The fundamental
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results are the tra-=efrramation law
T 1) »Ule) Tl U = L, D P () T, v
L a g ars = UMY a By

and the Wigner Eckart theorem cf.s ,313.2 T(uiﬁ) is an irreducible
tensor operator, belonging to the IR u, a arc the parameters of an

arbitrary group transformation and D&av

(a) is the IR j revresentative
of that transformation {* denotes complex conjugate), Writing
Ula) = exp.(iaiFi), the algebraic form of the deéfining relation

. + -~
becomes (using F.' o= hi}

EFJ'_, T(]‘LA‘;)] = \2;"’ (Fi)'l\/ 1 T(nl*-}')o 1.5a

This equation is linear in the generators, and will hold for any
set obtained by a linear transformation of the set [Fi3. It is
also clear that the generators themselves form an irreducible

set, and for them, in an abritrary tensor basis for example,

o
.

[T(ulv), (e 2] = z},‘, T‘uiv;)-. ¢ Tl ) 1.'5b

where T(uiv )'\ X Ty AV Ty i (ul}\)> 1,6a
=, %

S ‘:\,) LETH > 1.6b

and we have used the Wigner Eckart theorem; ¢ #Tw > is the
reduced matrix elemgnt of the generators in the regular representation,
The equation 1.6a also defines the matrix elements of the

generator T(1

iﬁ) in a general representation, L'fu= regular

representation);



T(u.ﬂ)))\x = Qi;‘.',)\'){T(uiv)[(ui)\)>

ITR B 1
=€\ y “\,) R TR 1.6¢

W

(?: 5 ::) is the Clebsch Gordan coefficient for the reduction
u! (g} ©wo~p! (E) eos and Aip'(lT!hﬂj> is the reduced matrix
element of the generators in the IR u', It may happen that !
appears more than once in the product ' (g) 1t, then of course only
one of the associated sots of coefficients will be related by eq.
1.6¢ to the matrix elements of the generators. In any case

eq. 1,6¢ cxhibits one of the many roles of the CGe's, in this case
that of providing essentially the matrix elements of the generators
in a given reoru:sentation, A more exhaustive list of their varied

functions is given in the Boulder 1962 lectures of BiedenharnB.

The trangformation law for basis states is, after deSwart,

j U(a’) R { _T * [
\ (u;\!)} — | ) "ﬁ;?v'v }(-,:,lvt)>
.'or for the algebra
~ T(}.!.'L.)) B ? -—
Ly TR > '%,T(“i}‘)w' vt

In the regular or adjoint representation the generators themselves
provide the basis: T(%in) has the matrix representative T(u:‘.‘v)’m\°
where

[T(y), Ta)] = oo, Tww) |, T N).
1 N i )wf 1

3

We can thus set up a ma.ping generator <> basig state, with
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CTGp), Tl = Thuw)iteA))
- % Thﬁv&ﬂ'“uix)> 1,7

To get numerical factcrs correct in the mapping it is best to

work from the irreducible tensor basis, where we can take

T(niv) - Cl(uiﬂ)) , and we may or may not take the overall constant
C=1 ¢f Table 2, next Chapter, In other bases the numerical factor
occurring in the mapping may vary from state to state,. Eg.1,7

is very useful for obtaining generator wmatrix elements from the

commutation relations, of.g 2.1,

1.9 Phase conventions

The question of phase conventions is not unique to the Lie
algebra comautation rclations; it also arises for example in
deriving the representations of the symmetric group6; it results
from a freedom of choice analogous to the choice between right~
handed and left-handed co-~ordinate uysteus in the representations
of C(3}, the Euclidean group of 3 dimensional rotations. =
transition from right~handed to left-handed system requires
reversing the dcfini?ion of the positive direction on one of the
three Cartesian axes,

We begin with the example of SU(2)

1,8a

B
i+
2]

i+

Commutation relations ¢ [S+S_] = 253 , [Sssi]

+
H i iti : S = S-
crmeticity conditions ( +) S+ S * _ g 1.8b



Labelling operatorc:* 52 = %(S+S + S_S+) + S; and 53

with Spectrat s2 = 5(+1) 1 S =0, 3%, lyees

[}

5
3

and one fixed value of S for each IR,

diagonal (S, S=1, s0s =S + 1, =5)

The only unknown matrices are S+ and the equations 1.8a, 1.8b

are easily solved to find

¢s,5.2 1(s 18,57 = /(5 % S0 1 5+1) 169

5% 115,155
all other matrix elements vanish, A unique solution is now chosen
by taking always the plus =ign in eq. 1,9 = this is the universally
used Condon and Shortley phase convention: S+ have non negative
matrix elements in every 121,

From a computational view point we start with the highest state
i(5,53=s);>(this may be constructed by symmetrising in a direct
product of 25+1 fundamental spaces, or may occur as a vector in the
direct product of two IRs) and the problem is then to obtain the
remaining 28 basis functions, The operator S_ is used to produce
these 25 states which have different weight (i.e. the weights are
simple) and are thus orthogonal; since orthoronality does not

. s . S5 R .
determine relative signs there are 23 1 different sets of basis

o

functions, and 2°° different solutions for S, {an overall minus

: . R S+
sign has no effect on matrix eleaents hence 22S = 22 1 2)e

Within the canonical schemne a phase convention for general
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SU{n) has been sugg-<+<d by Baird and Biedenharn'® and adopted
by a number of other workersls. We now describe this coanvention
=nd relate it in particular Lo the structure given:hlﬁiai H

The positive roots r(ij), or in short (ij}, i<j (it is

convenient to replace & by ij here) and their associated generators

may be schematically displayed as follows:

(12) (23) (n=2,n=1) (n-1i,n) ist layer
(i3) _ (n-2,n) 2nd layer
(1,n) (n-1)* layer

The simple roots are (i,i+1) and the positive roots satisfy

(1,3) = {i,i+1) + (i+1,i+2) + .. +{(j-1,3) 1,10
From‘éi,l (2) the generators Ei,i+1 generate the whole algebra
when we include hermitian conjugation, and hence our phase convention
is sufficient if it uniquely specifies this set.

The labelling subgroups can be embedded so that the simple
roots of SU(i) are {1,2), ..., (i=1,2) - when we go from SU(n) to

SU(n=1) x U(1) the generators excluded are E, (n =1,.,4n=1,

-1,n) *
As will be seen in the SU{6) example, the commutation relations

Eij S n L& E = s - K
amongst the Eij generators take the form Enij’ k1] SkJEil é&lrkj

and from this it follows that E

K1 1 fixed k=ly...,1~1 form a set

of irreducible tensor operators (apart from a phase which is

important,)transforming like the defining IR of SU{(j-1),
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Suppose the re.rzeoentatives of the generators of SU(m),
m in=1 are know, A basis for an arbitrary IR[\] of SU(m) is
ubtained by aqssembling the aiffuorent Iiks of SU(n-1) specified in
the decomposition SU(n)} —»SU(n=1) x U(1) - in the IR[}\] the matric:s
of SU(n-1) x U{i) then assume block diagonal form and correspondingly
the representation space {X\] is a direct sum of subspaces irrcducible
under SU(n-1} x U(1), idjoining any one of the generators Eh-i,n
to the SU(n-1) x U(1} set the CRs now close on the algebra of SU(n),
or equivalently this same operator acting on any basis vector of
any invariant [under SU(n-1) x U(1)] subspace must lead on repeated
application to all other such invariant subspaces. Hence En-i,n may
be used to define the relative signs of the different subspaces,
or more aptly froa our point fo view, introducing overall signs
between different invariant subspaces will allow variation of the
signs of the matrix elements of En-l,n' For general SU(n) the

operator E acting on a basis vector in some invariant subspace

bn-i,n
fad say may lead to more than one basis vector in another subspace
{al. But the re¢lative signs of basis vectors within the same
SU(n=1) x U{1) are fixed (by convuntions adopted to get this far)
and we may not nominate independently the sign of each matrix element

of E

ne1.n’ Jhat we must do is remove the denendence on explicit
et ]

SU(n=1) x U{1) statcs using the Wigner-Eckart theorem :

i([ajcucm
B o n=1B
(81

Vi[RI, Brec il >, ) 1,11

En-i,n‘[“]’“ 7
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The SU{(n=1) CGec is .m™>un; the jphase ambiguity now resides_s;lely
in the reduced matrix element and can be resolved there, e.g.
Saird and Bi.’ennarnf13 fina equ.tions for the squares of these
reduced matrix elements, Including also the SU{n-1) CGe's frou
eq.1s11 they are able to adjust the signs of the reduced matrix

elements so that the operator En— has positive matrix elements,

in
and this then constitutesz a general phase convention for su(n).
It is evident that in proceeding from SU(j) to SU(i+d we may

in fact take any of the operators 21, .44, J to have non

E . L1
Je-i,g
negative matrix elements, but the most obvious choice, canonically,
seems to be the simple generator E, L
3
For SU(S), where we have the ositive root schemne
(i2) (23)
{13}
5

de Swart” has defined highest weight by the order (13'Y)’ and one
is forced to identify E13 with the isospin operator I+, since the
corresponding root vector(jx+)(’u(1,0) is now highest weight in the
adjoint reprcscntation, In order that the Condon and Shortley
phase convention hold for isospin de Swart takes E13' and then
Eia(ﬂ+) to have non-negative matrix elements, In going from

SU(2) to SU(3) the identification of isospin matrices has changed;
this could be avoided by adopting the ordering (Y’IB) when ! K 3

/

. N . .
would be highest root, and iy R lt\°7 would be simnle roots,



38,

Ve must next Gl:zcuss the consistency of phase conventions,
evidently a convention will be consigtent if it produces the same
vepresentat.c : for tbe.generatoxs no matter how ths pavrticulaxr’
basis is produced, i,e, whether it occurs in the direct product
of various paris of the IRs or whether it be constructed directly
from the fundamental representation,

A related consistency requircment arises in the definition of
complex conjugate rewvresentation. In fact if general algebraic
solutions are found subject to some phase-convention then obviously
that convention can be applied in any given IR - however in the
absence of general solutions one should always check that the
choice madc may be consistently aoplied to the complex conjugate
IR,

. . 6 .
Ag is discussed, e.g. in ref, 545.4, given one IR of a group,

~
=

others may be constriucted from it, not only by forming the direct
product, but also by taking the complex conjugate, or inverse
transpose matrices and these are irreducible, For groups of

unitary matrices UUii implies (Uﬁl)+ = U* and complex conjugatc &
inverse transpose are trivially equivalent, more generally ilammermesh
shows that these are always equivalent if the group supports an
invariant non-singular hermition form, This is the case for non
compact forms of SU(n) eq, SU(p,n-p). In detail, the transformation

o

UuﬁDm'd becone t mpl 3 ti m<-w
U ' oC s, under complex conjugation, % >

yiu¥y T T TN,



or for the matiices ~f the algebra, in a hermition basis, we have

- - T
U{a) ~1 + iL, L =1 Ula) 1 -3l =1 + i(-L7)
T

DX L =5 =L

However the direct use of L-?‘-LT in our solutions of eqs., 1.1 is
not allowed due to the phase convention we have adopted on the
matrix elements of some Eij viz that certain of these be positive,

¢e add that the transformation L--—?—LT on the algebra is
clearly non trivial; for example all the weights will be reversed
in sign, corresponding to the change in sign of the diagonal matrices
and associated with this raising and lowering operators interchange
their functions, For the canonical phase convention, where
Ei,i+1 arz to have non negative matrix elements, we can now make a
second trivial (phase) transformation by changing the signs of all
matriceg Eij beloﬁging to an odd root layer. This i= easily seen
to be consistent with the CRs eq. 1.1 - the only one needing checking
is 1.1d-and we thercby recover a solution subject to the reguired

phase convention, In general one should always check, by inspecting

the CRs, that the transformation

E,, —» =&, E, ., phase determining matrix
ij ij ij

is consistent with them, and that the phase convention may therefore
be extended ito the complex conjugate IR,

de illustrate the consequences for basis vectors with some



examples?
a) suU(2) IR2 basis vactors {py , In)» § the complex
conjugation *- ansformation iuke . 1p == 1p*; , 1n) ~—%P 1in*.>
and the change in siga of 312 in the IR 2* is then accomplished
by taking as basis states 1p*; sy =In®y i,e, in more customary
notation
2 = (5)
n =p
Clearly we could also have takena-gj = -igé) as basis statecs,
R 5 . .
b) SU(3) IR3 Lg:) The deSwart ~ phase convention gives the
matrices connecting {pw—> n)} and (p=~> M) positive matrix elements.

Under complex conjugation

(B 5
L2 (

and to preservc posgsitive matrix elements where required we can

LR a1

) (n > % >3

take as basis states

/

-

TN
S—
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THE STRUCTURE OF THE SU(6) ALGEBRA

In this chapter the various technigues and theorcms displayed
in the preceding chaptar are used to investigate the structure of
the SU(6) algebra and its irreducible representations. We trf fo
be especially careful with regard to that notorious bugbear of
numerical calculations, plus and minus signs, Our aims are
(1) to define a set of generators, their commutation relations and
their subgroun structurce for SU(6) - as a byproduct we give in
detail the regular 35 dimensional representation;

(2) to vay special atiention to the setting up of a phase convention
with a specified SU(3) x SU(2) convention;

(3) to analysc the SU(3) x SU(2) structure of the SU(6) IRs;

(4) to emphasize the difficulties which arise in the use of a

non canonical labelling scheme for SU(6),

2,1 Commutation relations of SU(6)

Ue proceed by employing three different methods to write.down
equivalent sets of generators and their comnutation relations,

(1) One foruulation of the SU(2) and SU(3) CR's is

su(z): S, @ =1,2,3 ESA'S } =i 2,12

S
gt = 1B aySy

SUL3): F i .o F, F.l = if, . F
(3) g0 &= 1,..., BF, FJJ if, o 2,1b

H
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where E&’Y is the u-wal permutation symbol on three letters and
the fijk are given by Gell-Mann16. In the fundamental representations

additiona. re.ations hold:

: S 5 LG [o =] = 24 2 o)
su{2) 5, = 4 C « B]-v %ep ayB = 1,2,3 022
. LN - - ¢
SU(3): F, = A [)i>~j]+ = 2d; 4 N+ 3 &\ij1 2,2b
16

where(f& are the Fauli matrices, Mg d are given by Gelleliann

ijk
C ]+§enotes anticommutgtor. Solutions of eqs., 2.,1a,b in general
will not satisfy cgse. 2.2a(b)} - only the commutator of a Lie algebra
has invariant significance. Note however that equations similar
in fora to eqs. 2a,2b do hold for the fundamental representation

of any 3U(n) algebra,

S5 8. £ . =0

Now define }“o = /2/% 3k ojk

1 (3x3) dojk ~
and consider the matrix system

Ny X lppr Ly x0g, @ =1,2,3 2=1,...,8

2030
N xrra a =1,2,3 i=0,1,.. 8
X signifies matrix direct »roduct, Using the identity
[Ax3B, CxDl=i [Ac] x [B0] + 3{ac] x [anﬁ__ 2.4

and egs. 2,1a,b, 2,2a,b one arrives at a set of commutation
relations for the system 2,3

1 x% ,1xo] =2iE . 1 x5,
f1xv ,1x B] iy 1 X9y

Dy = 2y = 00 =288,



L5

[,\ixi,o&‘xi]xo

. . e 2,5a
(1 x0T N; xﬁ'ﬁj = 212‘0‘57 A Xy

0y x 1, »ox BJ = 2ifijk}~k xG‘B

[)\.i XQ s )\J. xe"B] = Zié}anijk)\(x 1+ 3iEa[3Ydijk'\k xQ‘Y
Notice that we could have taken i,)\lx% etc and this would alter the
last CR in 2,5a above,

We now have a gsystem of 35 6x6 matrices closed under
commutation (by an identity similar to 2,4 the set is also closed

)e

under anticommutation when we adjoin the unit matrix 13x3x 1212
The theory of maximal subalgebras Dynkin2 tells us thig must be
tne fundamental rewrcsentation of the SU(6) algebra, and conseguently
we may define any reprosentation of this algebra to be given by

a set of 35 matrices, in 1:1 correspondence with the set 2¢3, which
satisfy the comautation relations 2.5, An altornative way to
identify the SU(6) algebra is given below (eq. 2.10}. In the form
€qe 2,3 the commuting SU(3) and SU(2) subgroups are clearly
displayed -~ we emphasize that in a general represontation those
matrices corresponding to :Ni xﬁ'; will be different from the direct
product of HU(3) and SU(2) renresentative matrices. This is exactly
the differcnce between the SU(3) x SU(2) and the SU(6) algebras or
groups,

(2): In this second formulation we write the commutation relations



Lo

in the usual parti(l. Jdinsgonal or spherical basis, This then leads
directly to an irr=ducible tensor basis for the algebra whose basis
vecltor i1mage uader the goneiator —3P basis vector of regular
representation masping is a physical particle, i.e. a state with

pure 12, 13 and S3 &5 well as being SU(3) x SU(2) irreducible,

Cur procedure is standard,

(a) su(2). Hith %m as in eq. 1la define S+ = S1 + iSz. This gives

the canenical CR. [s,jsj =+8 [s,5]=c2s Now transform

30
from Cartesian to spherical basis by setting

Spherical basis Cartesian basis

1(3,0) > = + 13>

From the known matrix elements of S+ (subject ta the Condor and

Shortley phase convention), and the regular representation (Sk)ij

-z = iE, . follow imnmediately

ijk

Spherical basis Cartesian basis
1(3,1)> = <~/ ( 11>+ i 122)
1(3,-1) = S Gy -1 123),

The desired transformation is thus accomplished by the unitary

matrix Er
i
113 iz 13>
1(3,1) =-1/2 ~i/5 o 24.6a
1(3,=1)> /2 -i/Z 0

1(3,4)> =?;E



The unitarily relat.ous are

-
[l

- * : * -
PR A 2w Pt g
a i 3 ij i i74

af

ard the irreducible teasor basis for the generator is

1 1

s(3,v) = E’S s 5(3,1) = - /% s,, S(3,-1) = fE s ,s(3,0) =S, 278
From <{3,0)1 s_1(3,1) =/2 we obtain the reduced matrix element:

JZ = £(3,0)18 1(3,1)7 = /T ¢(3,0)15(3,-1)1(3,1)) =i’é(i _2 g)(\nSs‘ >
so that < USH>=/3,

The commutation relations become

T (333
[s(3,a), S(3,3)] = /2 v (B - 7 s3,m
. 3 333 .
= /% z ¢ 5 y) 3,7 2.8a
and from this is deduced
o . 333
EaE%Ek %1k =i/2 53

The analognue of 2,2a in this basis oecomes

- , 1 1o
IR_% : Eo(S,a} 5\3,5)11_ = - /% (OL 3 O) 2.9%a

T 3
i B* R - 1
whence 7B B = I3 Qx ! g)

(b) SU(3): Defining the highest state | ' of the SU(3) octet

spherical basis by \B,-":') = -./E (115;+ 112> ), using the

3 i F — i « 2,1 ¥
regular representation ( i)jk lfijk of eqs. 2,1b, and the

deSwart5 definiticns of spherical generators I , K, etc and his
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phas¢ conventions iu. cheir matrix elements now leads to the unitue

unitary transformation eg exactly analogous to eq. 2.6a

N1 2 33 s | s e o7 |08

T a1 /B i B

e 953 1

Wm0 a8 |- /2

199 .
LAY 1 2,,6b
LK* -1/2| -iJ/3

ko3 ~1/2 | -i/Z

cf. B.W,Lec>’,

The irreducible tensor operator sot of generators is
(8,5 = 2 e  F, 2,7b
i i i
The reduced matrix element Q¥ 7 = /3 and analogously to the

SU(2) case we have :-
8 8 8 N
[a8,n), 28,1 = «/3( v 32 2(8, ) 2.8b

. _ 888 881
IR3: [Q(8,n), Q(8, )]+_/'“573(n.,, I\s) Q(8,)\)~ Jé/z(n y o) Lzgg 2490

with the supplementary relations: cf. B.W.Lee17

u v oA s 888
ei e, ek fijk = L/3 (u v )é)
u

e e:J N = /5 73(8 8 8

1% % %4k V\
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Defining now the 6 x 6 matriuene

Y
133{3 X S(B,al

(
(
F;,a = % vy = 1, , 203b
é 2(8,V) x s(3,a)
7ill now lead exactly as before to the particle diagonal sct of

CRs, defined to hold for any IR 3

[F, o1 Toud = =v2C § ) Py

[Fu,o, Fv’o] = -a/§(§ 3}§a)FA,O

[Fu’oFo’ﬂJ = O

(%, o o = -3¢ f,f’\an; « B
(F, F, o) = 5/uC 3 g)(i °8 L

333,881
+ 2/3(()( 3 Y) (?L N O)FO'Y

We emphasize that the set F"a eg. 2.,3b are not yet an irreducible
Y,
tensor basis for SU(6); it is necessary to include numerical factors

with the different (p;ﬁ) components, so that for cxample recduced

matrix elements calculated from the thereby modified eqs. 2.5b,



arc the same for eac:. (u,Gﬁ Cgft of F; @ Indeed using the
b

canonical set of CRs given below and anticipating the result

egnL1S, we haue in fact for th. SU(6) embedding

St = = /% 8(3,1) —> - BT (1)
Iv = =3 28,7) —>-/2TU)

s + I+ = 2 S(3,1) Q@,T) —» T(F @)
whereﬁi'(v) denotes the amropriate SU(6) irreducible tensor

generator basis; so we may write

(/778 1 x 5(3,a)

(

T ()=( aByVv) x 2 2.3¢
(
( 26V} x s(3,a)

as the correctly normalised relation in the IR6 betwecn 3U(2) x
SU(3) and SU(6) irreducible tensor bases,

(3) Finally we rclate the canonical and SU(3) x SU(2) diagonal
forms. Keeping in mind the product naturc of the SU(3) x SU(2)
subalgebra we begin by choosing a basis for the Cartan subalgebra in

the form EQi] = {I Y,SS,I 5_YS_) (we use conventional notation for

39 33 3
the generators) where by 1353(Y53) we mean that operator which has
weight ehgual to 1353(Y53) in the fundamental representation.

(This relationshiz will not hold in any other representation,)
The ojperators ISSB’YSS evidently have simple spin and isospin

. , .. 18
transformation pronerties, and are the usual choice e.g. Palsj

but of course any two operators wvhich complete the Cartan subalgebra,

4 , could be used, The set [Qi] certainly do not corrzspond to a



canonical basis for ## ; as we shall sce this is because the embedded
SU(3) x SU(2) algebras have simple roots which arc not simple rvots
of SU(6), nor do the cigensalues of the Q in the regular
representation form normalised roots, However the positivity
property implicit in the 'ordering scheme' (';1.1) is clearly
invariant under change of scale; so we choose the order IS’Y’SS’
1,55, and determine a set [Hi], Ho=q. 3 (no summation) with
respect to which the weights in the IR35 become normali_.i roots.

The perticular order choseﬁ above is convenient since then the
highest weight is that highest SU(3) vector vhich has highest 53
component, The weighis B with respect to Qf i=1, ¢eoa, 6 in
the fundamental IR6, und the non zero positive weignts mijnﬁﬁi- mj,
i € Jj in 35 are now ecasily found by inspection, (We change our

notation siightly from ? le1, converting generator labels iu

on E+ to ij, i ?j on E, ., The hermeticity condition is then
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TABLE 1(a)
- . 1

iind e eroenll BTN R B Rl
m, p i 1/2 1/3 1/2 1/4 1/6
m,, ? 1/2 1/3 ~1/2 | =1/ | -1/6
m ,}\ o} =2/3 1/2 0 -1/3
m, » o -2/3 -1/2 0 1/3
g n -1/2 1/3 1/2 -1/l 1/6
mg n -1/2 1/3 -1/2 /4 ~1/6

) Bty bERE > Y . S me
e on 1 o} 1 o) 1/3
m o pn 1 o o 1/2 o)
e pa 1 o} o} -1/2 o}
s fzix 1 ) -1 o -1/3
my PA 1/2 1 a 1/L ~-1/6
s p'i: 1/2 1 0 1/4 1/2
gy P 1/2 1 0 w1/l ~1/2
o, pw,:\ 1/2 1 -1 -1/l 1/6
moe AR 1/2 -1 1 -1/l ~1/6
0o ,\::1 1/2 -1 0 1/k -1/2
m, g \ A 1/ -1 0 ~1/4 1/2
m, s xr} 1/2 -1 -1 1/4 1/6
., p;i c o} 1 1/2 1/3
m., %i o 1 0 ~2/3
mee ny- 0 0 1 -1/2 1/3
nye ] misj vee > m56




” . »
: . 1 - . 1
Py ny A are spin + % cuarks, p n, > spin ~z; the bar denotes

the comnlex conjugate state having diagonal cuantum numbers
negatives of the unbar:,cd .states,

Noticc that already in 35 (and m 6%) (YS3) (1353) do not
have eigenvalues e:ual to the groduct of those of SB‘QY, (13753)
By inspection one establishes the relationship characteristic of
the sU(6) algebras

W, , = m, . + t,- 3 2«10

+ + . "‘i.
ij i,i+1 m1+1,i+2 * j=1,7d
The simple roots are related to the PP and are now obtained
1

by introduction of appropriate scale and normalization factors:i-

s

In the IR6 it is easily seen that tre equation [Q,E_,] = mij i
1‘1

iae)jb is the

s

(no sum) recuires E,, o e, . vhere (e, ) =
ij iJ ijab

familiar gemerator form used by f.'.'eyl9 cf. also Rashid? (remamber
we are solving CRs of the general form wgs. 1.,1); with Hy = 9,9
and correspondingly (r..)k = qk(mij)k (no sum, k labels components)

1]
i g i3
the equations [ 130 ji]

2 rij i defining H 4 r may be used
to solve for the factors'qk. (The equations are actually for qi
but the negative solutions are discussed since they would conflict
with the ordsring scheme,) We thus obtain

1 = X il = %‘ __{-_5 = /5 i = i =
H, ye 13 i, 3/3/2 Y 113 71/5 S h[* /2 IS, 15 \/3721(53

3
2,17

and correspoendingly a set of normalised root vectors
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(1 j=14
¢ 1

(ri,i+1’ Ti,d+n ) = E‘Z J=izx1
(o otherwise

The com>lete sct of nositive roots is obtained by introducing
the numerical factors in eq. 2,11 into the set mij'

TABLE 1{b) ~ System of positive roots for SuU(6)

PrS iUt Sy

5:2201» | Hy i, | H, i, Fig
Lri6) 1 vi7E e JiT5 o Ji%
#(15) i Ji/2 o] o] 7172 0
r(26) | 23 TA7E 0 0 /172 0
r(25) i 1/2 o] ~/1;3 o] ~/i/6
r{14) Y177 /372 /173 172 | -6
r(13) EVEVE) W37z 0 Y17z | 3/2V/16
r(2y) Vi/2 W3/2 0 17z | -3/2J/1/6
r(23) Wi/z W3z Wi/3 | w172 W16
r(36) i/ X372 vi/3 | /1/2 V176
r(35) ¥WiJ2 | =372 ) WVi7z | -3/2 V16
r(46) V Wi7m | ~W3/2 o ~W172 3/2~/1/6"
r{45) e AVED ~3/2" /173 Wi7z 1/2 vyi/6
r(12) 0 0 vVi/s yi/2~ vi/6
r(3y) o] 0 /173 0 -2 vVi/6
r(56) o} o vi/3~ ~/172" Y1/6~

At this stage the algebra is not completely defined since those
structure constants corresponding to Ndﬁ in Chapter i have not been

given, Ye arbitrarily fix these by choosing for all generators
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Xy
?

E. . the representative e, . in 6. Vith [e,.,e ]l =e, % .
ij ij - ij' rs iz "rj

erjb is this gives
1 = =N

N,. ., = 1., .
ij,jk jikj 2,45
@ =L <4

all other N, . = 0
ij,mn

This choiceileads to Naq _for the subgroup SU(3) the same as chosen
5
by deSwart”,

The complete set of commutation relations are now

(=, Eijl = r(ij) Eij (r{ij) = -r(ji))

4}

[Eij’E3i3 2r{ij) A i< j 245¢

[E ] .

LB 3 =N, .
13" rs 1j,r8& 1J+4rs

1
t5)

It is now an easy matter to locate the diagonal SU(3) and
Su(2) subalgebras in terms of the canonical generators:
SU(2) : Noting that r(12) + r(34) + r{56) has component only
along H3 we take
S =E + B X S =5 X 0
- 12 34 + D56 > _ E21 + E43 + E65

then 25, [5, 81 = a(r{12) + r(34) + r(56)). H 2,13
)

[

/3 H3 as expected cf. eq. 2.11

Similarly we can easily locate and identify the commuting SU(3)

subalgebra :
= E + B v =
I+ 15 Eog I+ E13 + E24
I = B KX = E,_ +E 2o 1L



5.1e

13 = /2 i, L, = ES3 + EGI‘
. 2,14
\/SﬁY = M = -,/5,. nS L-_ = E35 + rll*6

We have used the SU(3) acnerators defined by deSwartS; one can check
that the Eij forms given for the generators do indeed lead to his
commutators, Using the relations 2.13, 2,14 and eqs. 2,52 in

the IQQ (where the represcntative matrices have the simvple multi-

plication rules:

-

®15%k T ik %% T ©

ki’

other products vanish (no sumsations)

ein = Hjjeij Heij Hiieij’
H diagonal matrix) the products I+S+ in thiz I may be evaluated
in terms of the eij’ and these relations then defined to hold in an
arbitrary IR,
We now map the gonerators onto basis states: it is clear
that within an SU(2) x SU(3) submultiplet, once we have manped
one generator into one basis state the known SU(2) and SU(3) matrix

elements determine the remainder, Hence we have three overall

constants x, y, & te solve for, associated with, example:
- ~t Yy il
s, —xi()7 T~y Is~3z\f (1>
The equation [B B J = 2r(16).H = V2H, +2/% Hy 4 JE73'HD,

becomes E16.z. &f’—’»-i)";. = =y v?‘ﬁo) + x./é??{((;(o)} + 3’\/1/3\@(0)>
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using also the hermiiicn conjugate form of the following:-

r 0.. _'?‘ n - E £ - ~

B 7 — .-»y[EGi,Hll _ /5 ” Ve (=1) 7
and

E._|t (O)?"“"-"‘E{E H_ ] ~—— '-/é'z"fb(-l)>

61-9 x- 61?3 x ! /

we obtain

or
X 3y 2 = f/% : +./§ : + 1

The relative signs arce in fact fixed by the phase convention,

b ]
[
'Y
Y]

which is defined and discussed in the next section, The solutions
for x,y,z above correspond to the factors required in equations
2,3b, 2,5b, for the iunsorial set, eq. 2.3c. The complete set

of relations are given in Table 2,

The Table gi es the image of the gencrators under the generator
basis vector masping for different labelling schemes, We have
omitted a column containing the irreducible tensor labelling,
since as emphasized elsewhere this mapping is trivial, characterised

by e&n overall constant,



TaBLZ 2

=6,

SU(3) : . Su(3) .
x5 | Cancn | Basis x3 Canon Dasis
SU(2) Vactor Su(2) Vector
® v P
S, E12+E34 ~/3 iu?(i)) K, E14 (ie{ad?
”356
s /5 1, /2]4(0) B D, ) | /R 1700
- - +
S_ Em:gzﬁ V3 J(-1) Eps -1 (=1) 7
65
D T i RN
I, E15+L'26 =/2 i Yo T f}
1] °7 X - 2 ()
I VRN | ,_(E31 Eliz) VT4
5 Vil S(-1)
I__f BoytBg, /2 7 B4 |1 (1)
. “,0
vis % /é 212 l ](. 7
3 o Lwt L0,
¥, B 5+Ey), 2/2: K7y Eg) TREEPY
-r a = i ), o ,,.0 -~
K_ 1’31“"1.2 /2 i< Y 'Z,(ESS-tLG’t) 1/,1;; i (0)7
L Rogtlg, | VEWY B3 =1
2 5|07 -0
L_ E55*E46 /Bl E36 < (1)7
< + . 1 1591y
I+'J+ E16 ,) (1)) » B(EBS—EL*G) -jz(x\ (0)>
a4 iy ot : -~ 0
IS, 3'{315'226) /|5 (0)7 § El& -|ic (-1)7
1-
L Eys - [{(=0)7
1. . 1 N
2738 f% Va1
-2E34+E56)
1 E 47 6C 1 EII
1S, 2(E12-556) z1¢ (1) /2 Hs 31w(0) 7
1. -1- T-o b l - \IJ -
LS, | /3, 3¢ (0)7 2/3(E21 SHW(=1)>
| 2E4_3+E65)
LSy | RBy -5 /54813y
LS, Bog - 1¢ )7
g 3
I_.S3 2(“51 Llsz) ) i) (0)7
1.5 E61 (5"-5-1)7
U I




ETe

“e have used standard nstation for the gquantum numbers but omitting
the redundant * on k' (i) etc, with | @(1) > being the SU(6) 33,
su(3) x su(2) (1,3), S, = % element and 12X0) > the 35, (8,3),
Y=1I =S, =0 sleneunt etc,

3

242 Phase conventions for 3U(6)

It should be clear that to completely determine the matirix
solutions of egs, 5, consistent with the embedded SU(3) x SU(2)
solutions, we have only to find some way of determining *"ie relative
signs cf SU(2) x SU(3) subspaces occurring in the decomposition of
a given SU(6) IR,

Incorporating the SU(2) Condon and Shortley and the SU(3)
deSwart phasa conveni.uns we must have the following operators
(and their hermition canjugates) with non negative matrix elements

S = &+ E + B

+ 12 34 56
= - B
I+ EIS 26
b(4 = B
. 313 + EZ&

It is evident that the canonical solution discussed in 1,9
cannot apply, (It is necessary to ‘'embed! the SU(3) x SU(2)
phase conventibns, if only becausc of the consequent simplification
in the construction and use of C,G,c tables, See next chanter, )
We can suggest two possible phase conventions
(i) As will be seen in Chapter 3 the SU(2) x SU(3) decomposition

facilities explicit construction of basic vectors in SU(3) x Su(2)
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submultiplets, in terms of the fundamental 6 and 6* entities, i.c.
quarks and antiquarks, A given IR may, however, be constructed in
various ways, corresnonding to the addition of multiples of the
variouuly namedVSU(G) scalar, or inert, unit [163 or the traced Tg.
Allowing for the prosence of these factors, it is always easy to
make a direct comparison of the same IR constructed in different
ways and hence obtain a consistent phase convention, Esscntially
this method was employed in ref.ll; its main defect is *hat it is
not easily communicable, i.e., not based on any well defined operator;
however, it was computationally very simple to apply. A second phase
convention could be set up as follows:

(ii) The SU(3) x SU(2) algebra is maximal in SU(6) - as may

be verified directly, the addition of any operator SU(6) external

to the SU(3) x SU(2) set leads to the whole algebra, Again, as
in§;1.9, W2 may use any one such operator to defire the relative :/

signs of the invariant subspaces., Ye choose H_ which applied to

5
some state {&,pIIBY; SSj) gives
O = AN = AT = ALp = AY = Ay by c 8 () n 2,16
AS ¢ 3 (g) 5

(Notice that HS’ a member of the Cartan subalgebra, is not diagonal,)

it is clear from the IRQ that we cannot demand H_ to have only

5

non negative matrix elements {(one can further check in the 35

that no member of the (9,2) ~<v an ta chosen to have solely non
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negative matrix elements) and we have to proceed as follows:
(a) Within an SU(3) x SU(2) multislet it is possible to define
a unique ordering, according to (13, Y, 53)’ supplemented by total

isospin where necessary, i.e., States of the same (1 Y,S3) are

31
ordered, highest first, according to decreasing isospin,

(b) By definition the highest weight of the SU(6) IR is alsola
highest weight of some SU(3) x SU(2) IR, and from the unigueness

of highest weights in SU(3) and SU(2) we may order disti-=-~t SU(3) x
SU(2) multiplets according to their highest weights., (This fails
whon an SU(3) x SU(2) submultiplet occurs more than once in an
SU(6) IR = we discuss this situation when it arises §;3°4).

(c) Applying now the ozerator H_ to a decreasing, ordered, set

5
of basis vectors in the highest SU(3) x SU(2) submultiplet will lead

into other submultitlets, Let (”1'C§) be the highest submultiplet
and let (uj, 53) be some other submultinlet, Theit we define Hs
to have positive matrix elements betweun the highest possible state
in (ul G;) and the highest of the so determined states in (pj G})
(in general of course this will not be the highest state of (pj§ 53),)
i.e. in this sequence the first non zero matrix element of H

5

is taken positive by convention,
Ir VLG T a- = vSi 1 g
ija j){ 5\(u1, 1) /= 0 for all basis vectors in (ul 1)
we proceed to the next highest submultiplet and so on, In this way

from the irreducibility of the SU(6) IR, and the maximality of

SU(3) x SuU(2), all rclative signs can be determined.
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This method was first employed (tho' not fully described) by
Schulke;l‘i however it is there erroneously stated that both H4
and H5 may be treatcd in this way., A third paper on SU{(6)
Clebsch-Gordan coefficientszo, does not state the phase convention
used,

In detail for the 35 we have :
The highest state leading out of (8,3) is*;(f(O)? (octet states are

+ + _o - - . &
ordered \ , v 4 ic a0 s VO,QQO,}& , M ). Then mapping P + (1)

(" o (s - ] = (=

> 2 2 "+ 1 (s /+
— 2\/% 1~ > if we have (E13+E24) —b N/g1i\ >

This fixes the (8,1) overall phase, For the (1,3) e must chcose

jw{1)> in (8,3), and then, on defining Eyo*Bs, *Bog - ~/3 {@(1) >
{ y 5 l i -
Hsgw(i) y —> g, ~Z(E,, 2B, +E56)]
- - (E. + LE,L +E_)
6 12 34 56

1
=~ [2(E

-
L

+E34+E56) - (E12 -2E34+E56)]

R ) R W)Y

We close this section with a discussion of the IRG* although
since this contains only one SU(3) x SU(2) multiplet its structure
is already decided by SU(2) and $U(3) phase conventions ,

The weights of the IR6 are shown in Table 1a - the basis

states are denoted by the customary guark label, Under complex
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conjugatioss these ~ix states become 5-\§é,; < » n<~ﬁ. Tha
Condon and Shortley convention will require the introduction of a
relative minus sig. between each spin doublet and the deSwart

convention will require relative minus sign between p and n,

—

states, cf. ¥ 1.9 Hence we take as basis states in &*

- -z 7

Py -f:, = Ay ‘7\: ";'1 n 2,17

It is between these states then, that the operators Si,
I+, + will have non negative matrix elements; the complex
conjugation operation changes the sign of the basis elements in the
Cartan subalgebra, § i,9, and further it is not possible to eliminate
this sign change with a second trivial phase transfotv.iation such
- ~E_ .. Thus
as E, , —— 3
1]
{a} In a non self conjugate IR these matrix elements of
“5 which are positive by definition will be negative by definition
in the complex conjugate IR, cf,. § 24 be
(b In a self conjugate IR, special care must be taken since
then the convention will require both positive and negative matrix
elements in the same 1R, ai.ébz.g.
The eqs. 2,17 may be summarised by
- A=A
gy = (-1) 14 3% 2.13
where/\o = ¢ + 53 of the highest antiquark state (Q = 13 + 5 Y)
A =2+ 53 of the antiquark state g



Due to the additivity of the weights 1 Y,S3 equation 2 then becomes

39
a general rule for constructing the complex conjugate basis state,
although of course the frecdom of an overall minus sign still remains,
Taking this plus one in § we see that for quark states we may
omit the t ) indicating basis vector (by definition) but we may
not do so for antiquark states, \g* s* v = ;; etc,

The: manner in which these (~1) phase factors arise can also
be seen thus: given any basis a,B,... ~» for a unitary TR, then
unitarity implies that oa + 38 + ... +%3 is a scalar, (where
~ denotes cowplex conjugate) so that any generator applied to this
expression gives mero, Choose in particular a generator postulated
by convention to have all its matrix elements non negative - then
clearly since the action of this generator in the IR containing
®,8yeee introduces only + signs (or zero), then the action, (or
representative) of the sane generator in the IR ccntaining &,E ses
must introduce wminus signs, i.e. ®,B,... must be related to a .z}
basis, consistent with the given phase convention, by soume factors
~1,

2.3 SU(3) x 8U{2} decompositions in SU(6)

Following the ideas outlined in 1,6 the SU(3) x SU(2}
structure of an SU{6} IR derives from the syumetric group ...
Clebsch=Gordan series, This was pointed out in ref.11 and has

. .21 - . .
also been given in o I graclice one complements this wtethod
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with others; wec give some examples
(i) 6 — (3,2) & — (3,2)
6@3E = 31— 3,2 & G2=613 w1

so that 35 — (8,35} () (8,1)(H (1,3)

(ii) 70 has YT [21]

Using the C.G, series for 53 :
21 <. 031 (o C24d, [21] Go) [21d, [213 (xb [1°]
70 —3 (10,2} (D 8,4 (&) (8,2) (&F (1,2}

(31 & [21] (211 () (31 [21] &) [z21l [2°] (x) [3]

1) To D w3 @ 1

— = L i {
- i [ [ tando o b o 3aY 1
T e Q = -+ - S5,
oa T f_ﬂ L.LU X Vi (_) Q - xS B
- w3 LS O
(9 Q G xS H oy, xS i

T is an SU{6}, 22, 5 SU(3) and SU(2), tensors
~@Y D8y 5M3®D ) 6 M1, 1)

(4 (1B (3 8, 30 & (10 D 8, 3)
Whence subtracting out 35 (5) 1 we obtain
505 —3 (27, 5 {© 3 {0 1) &) (10,3) (x) (36,3) () 2(8,5) &)

(8,1) () (1,5 {¥) 1)

Notice that (8,3} occurs twice in 405; thus already the su(3) x
SU(2) labels are insufficient for labelling states in an SU{6) IR,

Ye give below at the SU(3)} x SU{2) content o~ a numter of

su(6) IRs, Furtis.r tevusation 1s given in H.Ruegg et a121.
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TABLE 3 :

) .
iSUGI.R.:[Y.TJ (:1,97) content

26955 [63%1 | (64; 7+5+3+1), (353 5+3), (35; 5+3), (275 7), 2(27; 5),
3{273 3}, (275 1), (10; 5+3+1), (10; 5+3+1), (8; 7},

2{3; 5), 2(8; 3), (83 1),(1; 7+3)

11343 (42171 | (355 we2), (275 6), 2(27; &), 2(27; 2), (10; 6), 2(104),
2(10;2), (T0;4+2), (336), 3(534), 3(&;52), (154+2)
[51%] (35;6+0), (2734+2), (1036+4+2), (10323, (Gj4+2)
L4053 [n2¥l | (2735+3+1), (10,3), (?5;3), (8;5), =2(€;3), (8;1),(1;5+1)
280; [313] (2733}, (2035+3+1), (1031), (8;5), 2(533), (831), (133)
280; [3%2°] (27333, (1031), (1055+3+1), (835), 2(8;3), (8;1), (133)
189; 1% (27313, (1033), (10;3), (8;35), 2(8§3), (831), (135+1)
703 [21] (10523, (E34+2), (132)

_56; (3] (1032}, (&32)

355 [21%] | (8;3+1), (133)

(231)




2.4 Construction of SU(3) x SU(2) submultiplets

Using again the sysrietric group we can construct explicit
SU(3) x SU(2) states appea:;'ing in an SU(6) IR, This is exploited
further in the next chapter, here we obtain the su(6} 3 quark

states, and quark-antiquark states, We emgloy the H_ phase con-

5
vention, but revert to the alternative in Chapter 3. p',n',p!
denote SU(3) quarks, p,n, N\ and f) n ’)« the spin up or spin down
SU(6) quarks, We shall have to ‘'multiply! SU(3} and SU{(2)

basic states together to construct SU(6) entities and this we
represent by e.g. p' ™ =1p; pY =P etc.

When several factors occur it is of course important to preserve
the order, Thus p'u'y 1479 =p nA , PNV =pn ,\ etc
(it is this order upon which the sywmetric group opera.tgas).

We use the sgyuetric group basis functiovns given in § 1,5, but with
p',n', X' or A,V replacing the numeric labelling.

Some important matrix elements are :=

§: I n=p, I p,A =0 I_p=n I_n,x =0

O

K+ N =p, ¥ np=0 Kp = AN En,A =0
and similarly for spin down states, 2,19
A » A
S,p =D LpoEn SN =X S, Pyyp =0
~ A A ”~ a~ N
Sp =p Sn =n S_N=MN 5_p,nr =0
- - - % - -
8: I1p =-n Inpx=0 In=-p Ip,x-=0
_ . 2,20
Ap ==X En=0 Iy =-p Kpn=20
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and similarly for spin up states

-
r,, o -

s, b= S Re-h 5 =en s, p, A, =0 ete,
(i) 1IR,56 :
(31 ¢ (33 (& [31, (211 &J (213
ices 56 = (10,4 (&) (8,2)

Highest weight = il T‘é’))

Su(3) x Su(2) ijp' p'g p'i x li’ﬁ]":f_\

LSS

p'»'" p' .

ice- oy
18 "(2) ) = ppp which is manifestly SU(6) [3] symetric.

The highest weight of the (8,2) multiplet is |3 (3)>

3 ()>w ln" ‘"‘i’"

(p'; p' - X p! p') x (P4 - 471 )

fi

kS

~ s A
PAD = ZNDP - PAD + NDPD

]

e now apply the symmetriser corresponding to Il to project
out the 56,[31, comnonent of [21] ad (21].
Thus abc —>{abc) = abc + bca + cab + bac + cba + ach

aab —> 2{aab) = 2 aab + 2 aba + 2 baa
Similarly

pAP ~APp ~ PAp + P pp = 2(ppr) ~ (ppr) - (poA) + 2(ppp)
oS T Rt = q(pp)) - 2(ppN)

(due to symzetrization, we would get the same result starting with

the other [211 5, IR . cf8 1.5)

3



Normalizing

+ 1 (.’.’.(pﬁ;\) - (ppr))
/2

The choice of plus or minus sign is fixed by the phase convention.

Using egs. 2,19 we find
*+ 1
LY (*3) ? = /3 (ppp)

v @) = 2 (esh) + BN

Instead of !is it is convenient to use 6,./-% H_ since this has

3 5

.

integral eigenvalues in § and §

= ‘idt'ﬁ‘g%'ate . N A
eigenvalue P P ‘/\ :. n n
»" of I
3
6 \/EHB =P
1 -1 -2 2 1 -1

2 . s
Writing P = 6/-5 H the action of this operator on a product of

I's,
quarks is found simply by adding up the P weights of those quarks:

PIY=(3)y = 2 (4 (pp/";J -2 (Pg}"))
3

ilence our phase convention requires

(2T = +_\_}..<2 (o)) - (phx)
3/2

The remaining 56 states may now be obtained with SU(3) and SU(2)

operators,
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(ii) 70
70 —= (20,0) () (8,4) (¥) (8,2) (¥) (1,2)

P 3

(a) (10,2) ~ IO N !F

sSU(3) su(z)
A
Highest weight ~~ {p'p'p') x M-
~ FaN
= PPppPp -~ PPP
Since in fact |7{V i « y%ﬁ = ‘E}T‘ there is no nead to

apply an IR.70 [21] synmetriser and we take, in an obvious notation:

{zg, N*(3)> =% [» plp where [abl ¥ ab - ba

) B, o~ s G

Highest weight {p' ' p* - ap'p')

Again [21] symaetrization is unnecessary and we take

0@ = 1 vh [ppdy

i

SZOBIE) Y = 2 vE (Tpxlp+ [odlp + [N

() (8,2) ~ = » &

AN
Highest weight (p'»5' = \'p'p') x ( T “¢"‘)
7~ F A,
= prp- Xbp - Brp + Nopp

This time we must apply the [21] projection operator :
o
with the prototype abc L:ll-> [ablc + [cbla we get
A, A ~
-lpzl > - [pXlp + [pXp

and we must take

1202533 = x£ve (el + [pXp - [aNB)

g - ™
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E oo

@) (1,2) o~
Highest weight ~ ([pAln + Canlp + [npl™) x{(?i)? - 2™)
~ [pnl ) = [prl>* + [nnlp

{(where (ab) = ab + ba)

. 1 ] .
so that the corresponding basis vector is i~/g times this,

We now fix % signs with our phase convention:
For this we need the following basis state in 70(10,2), cbtained
by the action of SU(3) operators on the highest weight,
*+,4 ~ 1 A R -\]
| (20,2) ¥ ") =% ([ppl >+ [pndp + [iplp)
‘-7=+ 1 . ‘. A
then PX10,2)Y (1)) =% (=2 [pplr + 4lpNp -~ 2Dnplp)

80 that we must take

120G,5605 ()Y = + /3 (CaNp + (pxlp + [5NIp)
and
170(8,2)Z7(4)y = - /% (CpbIx + [pAID = [pXIp)

in order that these two basis states have podtive secalar product
: 1.‘::+ 4 -
with P{(10,2) ¥ (%) ;
From the selection rules eq. 2.16 for P we see that the
relative sign of the (1,2) multiplet may be deteriined by applying
P to the state \(8,&) 'NEES A We find

A ~ A
| (8,8 @)Y = 2 (<4[pNIA -#0p¥In - 3[5XIn + $[n>ID + HnNp

+ nAlp + [np]& + [nﬁ]} + [npI™)
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and derive

70(1,2){5°()y = + /2 ([pal > = [pnl> + [xAlp)

Note: (1} Using the equivalent orthogonalg IR a second equivalent

3
orthogonal 70IR can be constructed,
(2) Related to this care must be taken to ensure that one
always constructs i 2abers of the same 70 as in

(a},s. (d} above; hence the choice of spin function

in {(4), In general one can use orthogonality to decide
(iii) IR.20 —3 (8,2} (&) (1,1)

which IR to use,

corresponding to
[+] ¢ [21] () [211, (123 () [24]
A .
(a) (8,2) highest weight Cp' N1p! ()i - 2l
= [prdp + [ppp ~ 2[pr1p
spplying the [13] sy:inetiser: abc — [abcl = ahe + beca + cab - bac

£ = /¢ o pAL

-<'+(

1\

- cba - achb we get | 20(8,2)
We shall need the state}\o(%) for the phase convention and

this is | 20(8,2)K°{#)> = 2. ([pn:] + $[ppnd - #[pnrl).

s

(b) (1,%) highest weight [p*a'n'] T

Cppnl
S.spin 3 b~ % ';-'./% (Cprnl + [p\nd + [pind)
([13] symmetrization is unnecessary).

P. | 20(8,2) N°{1) D =-;‘- (4lpnad —[3nd + [pal)



So we must take

(20(1,4) 2°2) ) = = /& [pnl]
(ix) The IR.35
Highest weight =; _f(i)“’ = p §
Filling out the(ﬁ,B) component the highest state which is not an
cigenstate of ¥ is \!<+((3)7 = "‘%(-p-) + b’:)

P (0)7- =3 /AN + 55)

So ve must take | |f\+> = - /5(px + f):;)
The highest gtate in (8,3) for which P can have non zero matrix
clement with (1,3) is {+(1)7 . Ve find

)Y = -1 (7 = 23N + nA)

J6
Pl!ﬁ(ﬁ)? = -2_. (ZPP- -2-% ‘;’\'il\ + 21’1?1)
/6

-1 - ~ - - -
= = [u{pp +>* + nn) -2{(pp - 22~ + nn)]

So that we must take

\@(1) > = --\/51,- (pp +2'+ nn)
(v) The IR,1 : This has YT [16] and we may represent it as
A hY

[pp arn n], ‘whore [ 1 denotes antisymetry under interchange of
any two quarks,
Expanding

AP W A “ ~ S AN
CppNnnl = pfpynn] = p0» nnpl +X § nnppl

’~ L Ao A PR
=nz[nnppr] + nlnpep»»] = nlppi nl



~J
A
&

- . - ~ . ~ ~ 1
Let {p}:»/%ﬁ)j\; nnl}, then using S, I ¥, we obtain \pJ = J;f X

[p,a:inr'ﬁ
- 1 oprer “ 2 Al
in) = /‘gl [(prwpnl (nd = ~/'5'l Ep Aopnl

- - Y . . A
Vo= \/';j:, [’;p,\mﬂ N7 = \/-;'1 [pp/\m;]

So that
1 - ~ /- e T DY :»_ o A~
1 =vZ(pnpl =1 2{p> wom INANM AN - R+ n)
=yl‘g'(p’; 4 2;33 +%N+\X 4 o+ nn) 2,18

In Table % we summarise the rcsults of this section, giving
the highest vector in each SU(3) x SU(2) multiplet of the five
IRs discussed, together with those for the second orthogonal

equivalent 70,



TABLE o ¢

T
SU(6) | Su{3) x su(2) i
IR I highest vector Quark structure
{0, 8 ) 7| ppp
5 3
1(8,2) 275 7 1 [a(pps) - (ppN]
{0t 375
~ ;-5(26,':3_-)??:\‘*4’*(%)7 /% [oplp
LG @y | vt [elp
Y ' R ~
1(8,2) T () - ‘/% (Lpplx + [pnip = [pxp)
1(1,2)5°(3) > /3(Lpnl> - [pnl> + [ alp)
\(10,2) ¥ T3> /%(2ppp - (pD)p)
V8, T @) > | V3(zeph - (2Np)
ity . ) ) )
1(8,2) T > s (200t + 2Np = (GBIN ~(ppB ~(pAyp)
1(1,2)8°G) > v (-pMn + (RN + (FAIn=(Pnir=GR)p+(ndp)
| (8,2)% (1) » VEARSON
20
(,ws°@) > b -2 (pand
1(8,3) 7 (1)> p A
\e8,1) n* > “/h (pF +ph)
35 | (1,3) @0(1) v - /% (pia +)\3~ + n';;)
i ] U, ©> VA (65 + pp + 27 B34 nd v )

|
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2,5 Some special featurcs of SU(6)

We conclude by emphasizing that the departure from a canonical
formalism in SU(6) has iniroduced some special features,
(1) The Cartan subalgebra is not diagonal in the physical (SU(3) x
SU(2)) basis usad ~ this is highlighted by our use of an element of
f} as a ladder operator; associated with this, SU(6) has introduced
no new gquantum nusbers of a linear or simply additive type. Cf
course it is still true that SU(6) invariance is much more restrictive
+han SU{(3) x SU(2) invariance.
(2) The SU(3) x SU(2) zubgroup labelling of statcs in an SU(6)
IR is not sufficient to distinguish all states of all IRs - thus °
there may be tiore thc= one vector in an IR having a given su(3) x
su(2) transformation, although of course such degencrate vectors
will be differentiated if we include the complete SU(6} grocup of
transformations, The general canonical solution to the labelling
vroblem for SU(n) has becn enunciated by Racah® and is also discussed
in ref.ls. Within a given IR the Cartan subalgebra is to supply,
for 5U(n), n-1 labelling operators and a further #(n-1)(n-2}
independent operators commuting with themselves and also with
are then needed, :n{n-1) in all. (The SU(n) Casimir operators
provide a furthor n~1 labels sufficient to distinguish inegquivalent
IRs, )} In su(6; je need then 15 operators and our SU(3) x SuU(2)

provide only seven (bein~ <1(2) and SU(2) Casimirs together with
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2

1 ¥,S_} = a furthar evight operators and their spectra,

’13! '3

commuting «ith thes: scven but not with any of the five SU{(6)
Casimirs are thercfore reguired, Given these one could then attempt
a general algebraic sciution for SU{6) generator metrix elements

and CGe's -~ such an undertaking seems academic from the physicists
view point, the elsmentary techniques devcloned in this thesis are
largely adequate for his needs, However it is interesting to

note that there is now a zartial solution to an identical problem
for a different group viz SU(4) decomposed according to SU(2) xSuU(2).
See ref.zz. We could also note that non canonical decompositions
of SU(n) are serha~s the rule rather than the exception in physics.
Thus the chain SU(n)} =» O(n) provides (an incomplete) labelling
useful in nuclear physics27. Using methods described in this
thesis it is ecasy to establish for SU(3) —> 0{(3) that the generator
= 21, for the

3 3

generators of the O(3) subgroup, and that in this basis I+ transforms

embedding may be taken as S =./2 (K+ + L:) 5

like an 53 =2 S = 2 tansor,. Eignestates of the pair 52,53

in general are not eigenstates of Y (this is obvious from the form

o

for a+) and so in this decomposition we "lose' one of the diagonal
quantum numbers, in contrast to the situation for the SU(2) x U(1)
decomposition,

This degeneracy does become more troublesome when kz2s. formulae

for the SU(6) grous are ¢ -_.icsed, There, clearly, it is essential
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33
[

to label (i.e, distingnish) all states in an IR, The practical
solution has becn, following Beg and Singh23 to introduce a
second decomnwosition chain SU(6) 7 U(1) x SU(2) x su(y) D> U{i) x
SU(2) x SU(2) x SU(2) = the two chains together have sufficad,’ .
in those multiplets so far discuSscdzB.

Thus, in brief, it is the product rather than the sum, subgroup
decomposition of SU{6} which introduces an unaccustomed aspect of

an SU(n) group, In the next chapter we further exploit this

novelty to calculate some SU(6) Clebsch-Gordan coefficients,



CHAPTER 3

CALCULATION OF THE CLEBSCH-~GORDAN COEFFICIENTS

This chaster decls with the reduction of the dircect or inner

product in SU(6} in the following cases i~

i) 35 @35= 1) 35 O 35, (1) 18y () 280 (280 @ 405
ii) 56 (x) 35 = 56 (+) 70 (+) 1134 () 700
iii) 56 (x) 56 = 1 (¥ 35 (v 105 (&) 2695
w) 7078 = 135, O35 () ...,

(an extensive list of specific Clebsch-Gordan series for SU(6) mey
be found in H.Ruegg e: alzi). Complete tables for the series

(i) (ii) and (iii) were first published in ref.11; for the series
(iv) we extract only the coefficients associatcd with the ."))
octet parts of the two 35's since only these will be needed in
some work on rozresentation mixing discussed in Chapter 5, The
tables can be found in 83.% In §,3.1 we introduce some notation
and definitions and discuss the method of calculation of CGe's, and
in‘§ 3.2 we gather together all phase conventions ojerative in our
work, f? 3¢3 deals with fundamental symmetry and orthogonality
properties, § 3ely treats cases (i)~(iv) above and in 355.5 we add

a brief note on use and application of the tables,
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Some simple examples

let

o, e 2 . N Ol .
‘ LU “1)‘ (ﬁ )i Y1111132 513> ) { Y/:‘/Z! (111'2':'2)5’

Y 12_1_,S

be two normalised basis vectors of two SU(6) IRs le, Do VWe
have exhibited all the necess~.; labels, note espeg¢ially i)j

which have no group theoretic definition and enter when the SU(3) x

SU(2) labelling is not by itself unique. Then we write

"“““’ M >\2 N

)
a2 ’ 1 < Y " )
X/(ar) Y7 f' g"'i 1)i ‘("2 Z)j (n u\')k j -
\ 21 / .
Y I J S YXJ S YITI_S
i1 13 3 2€ 23 3 33 /
¥
uY,CTQR
Y 121 S \
33 ‘\/\Y' W' 7 vr? I s, >
as a detailed expression of the Clebsch-Gordan series
A @A =L @an, n, % 3.2
v

i’«:) denote the dimension of the SU(3) (SU(2)) IR involves!

Y,Y' are employed when the direct product is not simple reducible,

e.g. for SU(G) Y' when n__is Y| in eq. 3.2
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Y1213S3 are the usual SU(3) and SU(2) quantum numbers; we

shall often represaent YIQI by the single symbol J.

3

We require the numbers, Clebsch-Gordan coefficients,

/ M )‘2 )\Y'

- (n G Y~
(pihl)i tnifz)j (n ")k | . _
appearing in eq. 3.1
\ Y. 1%1. s Y 1’1 s Y121 s
Rt B T P T "2 2573 373

in the four cases mentioned inf;s.o. As has already been remarked

k&

we may not employ general SU(n) solutions2 since these are given in
the wrong (canonical) basis - our calculations can be viewed as
establishing a transformation frowm this basis to the SU(3) x SU(2)
basis in some special casges, Since the states uscd are eignestates
of SU(3) and SU(2) the SU(6) direct product must satisfy the SU(3) x

5U(2) direct product relations. Thus for SU(3) x SU(2) alone we

have

\ (ulo“l); \Jtlsf‘.:,;) & { {312\’72); N 2523 >

e 1 3 Y o ~

SR Dy ety s .
A DA PR VAR *
oY i

and the question then becomes: if the states on the left hand side
are promoted to SU(6) eigenstates, how are the SU(3) x SU(2)
states oa the right hand side in turn distributed amongst the

various terms of the SU(6) direct product., In brief, we may
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extract from an SU(6} CGc an SU(3) and SU(2) CGc and it is necessary

to calculate only the residual quantitys

Y'

| M N2 PN L
!‘{ Ty WM Gy ) (;1 :‘3 O tY)Qi 7). (3‘1 )
. | 13253 1 2 1122
\ 1715 v3323 v s,/ /\Y'

W, 3ok

We need the last factor,

P . . YI
W A2 g }\
( 0y (”‘292)5 W)

thich we call a unitary scalar factor (usf), and which is the

new number given by 5J(6), Only the usf need be tabulated, the
full CGc can then be reconstructed with the aid of SU(3)°'2? ang
SU(2) tables - unfortunately in comjutation we have had *¢ .alculute
the full CGe..... .. . . . C e e
We give two aelementary examples :

(i) 6 (x) & = i@ 35

The coefficients may be written down immediately from Table 4,

From 135 (8,3) 9?(1)7 = pn = \py \A>
6 & 35
we deduce (p A §ﬁ(1)) = 1

{(wve use an obvious shorthand form for the labelling quantuu numbers)
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by the factorization =Zroperty it follows that

6 4 v 35 6 2 35 3 .3' 8 -1
(5.2) (5 0)[( 8.5 = ¢ te.3) (= .4)
) yo 12? p n ,? (1) su) P " " su(3)

1 2 1
¢ B su(2)

where the subscrint indicates the relevant group; using now the

6 6
, ,2) I gg’“

2
SU(3) and SU{2) tables 5, ((3’2)(5

Similarly from
I8 - F - Y
135(7,1); §} » = ~/4(pn + pn)

~/A(p>1RY +| PoIn) (cf.‘g 2.4)

we have (6 § 35.) = 1
pn ¥ T VE
so that 6 & 1y 35
(5,29 G,z I 370 = -1

From

135(13); € ()7 = ~Ap b + ¥+ nd)

-~ .

= _/%(-;pﬁ\;) +§})&ﬂ?+ in>n>)

we have 6 ,§ 35 - /3
(p. P @(1)) - /3
and thercfore ,G6. 8 35 y _
(5,2) 32 300 =+

Finally, from
ig(l,l); X7 = /%(pﬁ + pp +*Y 2N + nn + fn)
1 - N 7 . - RN -:‘ b
/ZUPIPI =R DY =Ny R+ N « hyn?

-n>h>)
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vwe find
6 & 1 1 6 6 1
(p p xo) =\/g so that ((3’2) (3,2)“(1,1)) = +1,

Notice how important it is to employ basis vectors in the expansion
in order to obtain the correct signs ~ Clebsch-Gordan coefficient.s
always refer to basis states,

(ii) A second less trivial ¢ ample is provided by § x) 6 =

21 () 15 + 22 has YT [2] and SU(3) x SU(2) content 21 = (6,3) (&)
(3,1) : 15 has YT [1°] and SU(3) x SU(2) content 15 = (6,1) (+3 (3,3)

The weight diagrams are, neglecting spin degeneracy,

/",\_ 4
]
- [ - ~.-,._’-€._._m.-.._._ et e e et i+ e it i
ik ]
I' " /’
~ F o
5 _r[ }
i i \ -
\‘\ I/ ' \ / Y
\ i £ -
. ! p
N\ / i \ ,
~, I 1 Y s
AR ’/ : )" ‘\ ’/
-.\ "; - . 7
: / .
/ : ya
L3 . -
/ ; o
/ ; | y
Y : ' 3 #
8 \ ;
AN ’/ K e
v i \/
- JEUN J - /.‘.- - e o o -A‘._..—....._A\_._ [— - el %
! \ ' // e -
? P / < L >
N .
// \ : - -
/ S o
/ b | s \\ _
; A
O VA .k
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The highest state of i is the product of the highest states of
the two factors 6, Using — to denote application of a ladder
owverator and neglecting ncrmalizations we now have
. S— EA A [£% }-\u - \, N

21 highest =pp = pp + pp = {pp) ==> (p») + (p)
We can now use P {introduced in é 2.4) to transfer from (6,3) to

- ’ s A P N A > -
(3,1) {p») + (pp} —> 3(5&) - 3(ppM. This last state is orthogonal
to (pp) + (5}), has spin zero, I-spin 3 and by our phase convention

we thus take 1 21 (3,1) -3 2% 30 = %((ﬁ&) - (5)0)-

We can thus calculatc the two usfs

6 6 . 2 6 6 21 3 3 6 -1 2 2 % -1
(5,2) 3,2 16,37 =% p pp’su(6)p » wlsux % & 2suea)
& 1g 1. 1 - +1
6 6 21 6 6 21 13 3 3 -1
( 20 = 0% 5 ominesd o nichest)s ©
3,2) (3,2) % 31 p ~ (3,1)highest p / highest's ",

(2 1y-1
3 <3 o’su(2)

3 0/—'1 \/;-; = +1

One can check that the same usf results from the use of any term

1l

/'\

in the dircct product expansion e.g. p ; in 21(3,1) above,

’ N A
For 15 we note that vp ~ pp = [pil has the correct quantum nunbers
for the highest vector, and is orthogonal to all 21 states,.

Taking 15 highest =./3[pp] = /Hpd + Dopl) ~—

5 /A pN - [};3). S0 we take
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P
\15(3,3); p}\S3=Oj> = ([pM + [S}]), using 5+ we then have
115(3,3) highest? = /3[p)l.

The usfsiféllow

6 6:15 _ 6 615 . 336 -1 221 =1
Gasa 6) Gp (pfs‘);U(G)(p P pp)SU(B)(-z} H °)sv(g)
= -~/-'}. 10-\/§ = +1
6 6 15 6 6 15 33 3 -1 223 -1
(oo no 22) = (2 )« ) ( )
3232 33" ° 0 hloWgy) P MPhsy(s) 4 Vsu(e)

= /3. /2.1 = +1
Alternatively we could have calculated basis vectors in 21 and

15 directly, without using ladder operators 3

21(6,3) highest ~ LIS ~ &oqm oS @0 - ey

—y

T

21(3,1) highest ~ U3 =~ &g~ sy ~ X
» "
= [pX] - [p*}] , by direct multiplication

Similarly

| 15(6,1) highest) ~ |4 ~ W= S
[r 5]

. - ',’“ 111;:}
115(3,3) highest> - {4 ~ G g » > ff) AL

- L

]

{pal

Normalising these basis vectors ve obtain the same results as
before ~ notice that this second dircct method was very simple here
since it was not necessary to apply symaetrisers for the SU(6)

symmetry, Summarising, to calculate the usfs we had only to



calculate one basis vector from each (u,qj multiplet in each su(6)

IR found in the dircet product, the CGe then enter as normalization
and orthogonality factors. in the first method we used ladder
operators, drawn from the algebra and this is in fact the standard
method mentionad by Racaha and employed e.g. by Rashid4 - in the
second method (which has been employed in the actual usf calculations
which follow) direct construction has enabled us to dispense with
such ladder operators,.

The advantage of this latter method is only seen in more
complicated situations; the important ladder operator P has “J(3)
octet transformation properties with the consequent selection
rules eq.2,36, It Jnes not in genecral produce a pure SU(3) x Su(z)
state e.g. acting on (8,3) in 405 it can produce a vector with non
zero projection into every {(1,C) submultiplet, and one must then
use SU(3) and SU(2) ladder operators and orthogonality to isolate,
in a straight forward but tedious way, the required pure (pi7)
vector, Of course ladder operators with pure transformation

properties, but not in the SU(6) algebra, can be found:

€ege P! iéﬂK(S,B)*AO) T((8,3) ~V,0) has A SU(3)=0, AS=2,0

Pt T((8,3)V,a) T((1,3),0, -a) has AS=0

but again these arc complicatcd objects with which to work,
On the other hand the orthodox method has the advantage

that the correct shases within the SU(6) multinlet are a byproduct



of the calculation <hereas in our case, if we were to employ the
P convention throughout, as in Ch,.2.4, they must be adjusted efter
construction,

Again our method will always give directly the quark antiquark
composition of a vector, whereas conventionally to reduce the direct
prqduct one needs only the matrix elements of the ladder operators
in the factor or component, representations; however as mentioned
in Ch,2,2 this explicit quark structure provides us with a simple
alternative»means of arriving at a consistent pghase convention,

Thus for example 35 (g} 35 the quark-antiquark structure of LOF

N
is T I ! the lower-boxes hold quarks, the ugper antiquarks,

One 35 appears as a .wace of this 405, which we show symbolically

BH

by | . Comparing with the structure of 35 given in Table 4
we see that for the direct product we may take (the 25 tenser is

clearly symmetric in its 35 components, hencc the labelip)

;35‘);(8,3) highest> -’ 2& + (pa) (nx) 3.5a
| 35,5 (8,1) highest> ~ - () (03) - (Ba) (b)) 3.5b

- () (p3) - G BRR) - (na)(Aa) 3.5¢

at o

(35,3 (1,3) highesty w

where the o summation is over all states in Q and effects the
trace, Since aa belongs to 1, and all operators in the algebra
produce zero when operating upon it, it is clear that, once

normalis.d, the ahove states will provide a consistent (in the sense
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of Ch.2.2) basis_fop 35. Notice that we have arranged signs so

-

.,

that ﬁ; a&, eqs 2,18, is indeed the correct scalar quantity.

This then is the meth>d we have adopted, looking at (i)- {iv)
of Ch,3.0 we see that only the IRs 35, 56, 70 and 405 occur on
both sides of the equations, so only for these was the method of
obtaining consistency invoked.

32 Summary of phase conventions

In work :rith Clebsch-Gordan coefficients three different
phase conventions enter,

(i) The convention determining the matrix elements of .l
generators -~ i,e, fixing the solution to eqgs. 1,1, This has ncw
been fully discussed in . . 242, 3,1, For our SU(6) tables
we have adopted the P convention for the IRs 35, 56, 70, 20; for
all other IRs the relative signs of (u,?7 vectors have beg~ rhosen
arbitrarily but, in the case of 405, consistently in the two
relevant cases, We have already remarked that against the
advantage in computation afforded by this convention must be set
the disadvantage of lack of communicability, i.e, it would not be
easy for other workers to construct other SU(6) tables consistent
with our own,

(ii) In each IR in the dircct product there is still an
overall sign to be fixed which can be considered as the relative

sign beti 2en different SU(6) IRs occurring in the product space,



Thus e,g. for the highest states of 21 or 15 we could have taken
~p» or =[p}l] rempectively and this would then alter the CGec but

not the matrices of the geaerators, To recsolve this ambiguity we
always talke, in the highest state of the product IR, that CGe
coupling highest I1 12 113 S1 S2 513, in that order, within highest

(ulﬁi), (”zz;)’ to be positive., Labels 1, 2 refer to the page

order of the factor states, Thus e.g. we take

6 6 21 ~ . .
(p p highest 7 © i,e, basis vector + pp
and
6 6 i5 6 6 15
(p 3 highest) 7 0 (rather than (3 o highest) 7 0)

i.e, basis Vector-Pvég [ppl.

This is a direct extension of the usual procedure, cf,”,
(iii) A third phase convention enters when we assign physical
particles to multiplets, Already we have seen that if p, §, see n
are basis vectors for § then their antiparticles, defined o be the
complex conjugate state may not be immediately taken as basis state
for 5. In self-conjugate representations the situation is more
involved, Complex conjugation here mavns basis states into basis
statcs ith a phasc according to eg. 2,18, If we want the same
onerator also to map particle ) + antiparticle it is thorefore

evident that we may not take particle —=>+ 1 basis vector) far

all particles, For exauple for 35, from Table 2, we can easily



394
see that the mapping 'canonical! genvrator —> + particle does
have the desired ironerty partiéle —> + antiparticle under comnlex
conjugation, and using the mapping canonical gcnerator
basis vector we can therefore determine the appropriate signs for
particle -~ basis vector, lle emphasize that it clearly is not
necegssary to arrange this added convenience of behaviour under
couplex conjugation for single particle states - but it does help
to avoid more book-keening on * signs.

3.3 Symmetry and orthogonality properties of C,G.c.
5

These are fully discussed in deSwart™, Ch,14, and in the

following e usc his nqtation. Discussions for a general compact
. .28
group are found in rof, We have

(i} LY

!
/M e AN /! ¥ >‘1 /\

// (21.16;) (1.:,%0‘2‘) (uY\)‘) = _)’ ( (‘;12‘*;) (ulc'l) (uY,l?’) / 3.6a

- v
k ‘/1313 Vo 525 Vs 259.3 "1513 Vs
| < - =Y.
/ D1 e / N\
</ /
: = IR s
_o5y | Gy (u,3) W) 3+6b
-V o -V =S )



20,

AN T =Y
i N1 -
/ A Aa
,;)/ A /\ o /
AT hN , - - =Y —
- g(_i) L ‘ (u1 1) (w3) (;3,2 ._,2) 3.6c
\‘ .y \ -V Y .5
N _- v1513 v S, 205,
o e, ¥
‘)i, :,é, ):}', have values ¥1 and in general depend only upon

(,\1,'}‘2,)«) - an exceptio:} to this occurs for g ,)', in the case of
(up degeneracy, cf, Ch.3.4{(1). 1In eq. 3.6c we have used » W,
to represent the dimensionality of the respective IRs whilsl

= + % v 8 R ighect
/\1 113 2 Y1 513 and Al is the value of A\ 1 for the highect

vector of A

2q0 cf, «l so.s. Using the factorization property and

equations analogous to 3,6 for SU(3) and SU(2) we may rewrite egs.

3.6 in terms of usfs only: (setting G = 2j + 1 etc,)

Y Y

' \ N TR PO P ; '
Mo > ): “ g’i(-1)a‘+‘jz ‘7 p2 Pt N » 3.78
(uiq-l) (p.gc_z) (}LY(T’ \(1).2'3'2) (ui\'f'l) (uYU")

— — —YO .
Jyri,mig N py A \
= G5ty ( |
0,5 GPN G/ 5.7

S YA A

H
. . i
= £8 % ] '
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In 3,7c we have absorbed in ‘g,', a constant factor (mi)Q, ¥

<4

charge of highest vector in 21 resulting from a slight deviation

5

4 -
e e 2 . .
of our definition of ~ fi om that oé deSwart” wvhose corresponding

42
¢ r »
phases arc here represented by | 11 5,_,, b
Given say the set of usfs for >\ (x) )\ _-’ZL//;}E it is
elementary to calculate the factors g', e.g,

By convention (i) of gB.Z

) T
Ao M A \
\
] =1 (Ly
o] £ (pzc'z) (ui 1) ((1(7)/!
N,
Vatay Vi1 V55
where | (V%) VS > ir highest in \Y nd Vv vy 0
l 4 « 3 - g / a 2 ) >/ 1,
S, ™ S, 3
23 15

e M Pa PR
: - ‘ \
1 / {111‘)1) (ugﬁ‘z) ()

Vg ‘s WA
113 g 23

by definition of ‘:f',i.

PR

The latter CGc is known by hypothesis ,
vhence ve can determine the sign of il.

The tables we construct must be consistent with these
syrutetry properties which therefore provide some checks on our

calculations « we include subsidiary tables giving some of these



TABLE 10 - Soue factors <§'1

"1 2 s
35 (D 35 405 1
280 -1
280 ~1
189 1
35p -1
35, 1
£ 1
56 (x> 35 700 1
1134 -1
70 -1
56 1
56 (x) 356 2695 1
405 1
35 1
1 1
70 &) 70 350 1 -1 1
35. 1 -1 1

N.B, Thesc factors may fail in the case of multiple (1 _J) occurrence,



A second important general property (which also provides us
with a check) is the orthogonality of the CGcs rasulting from their
constituting a real orthogunal transformation from one basig, that
of the groduct, to another, that of its rcduced or direct sum
foria, Again these are adequately discussed in deSwart, here we
merely emphasize that the SU(3) and SU(2) internal summations (i.e,
'magnetic! quantum number summations) can be carried out to leave

us with the simple relations for the usf]

/\ \ g Sle!g)kh.

/‘(/Al.. S"O*O’

3.8a

\ DYDY "i‘/\Y' \/xl /3

f (2,5, 2, G}) Y'-':nhk (n,

1
\':"‘ YR
('p-i 1),(;.42‘13)Y

\
{5
)(;Lz o (uryot )

N ) N\ ' XYW 3
s : (A L2
Y PSP PN Sant St Ser

|

!
@(u\ )G 20;}’ (J,v)k ‘*‘i‘?‘"i"“é?;’ @Ee) §« o Sup
So.o" %6‘ ¢/

N ¥tk
In brief these equations imply our tables shall
3.8b

consist of rows and columns of orthonormal vectors,

Sels Details of the tabulation

(i) 35 (x) 35
We re.rcsent 35 by the mixed second rank tensor

notice that considercd as q'a this is not really irreducible since



“p = / AL /-G-{u.(o),:w /-‘w(o)u /~(‘(/+‘é\5 (0))+% \“°

(=Y e Y T

& ﬁf‘

3.9
(ihis equation is obtained by inverting the equations summarised
in Table 4 for the quark structure of 35 and 1) and the term X,

is a member of 1, Really 35 is represented by a traceless tensor

o'\- "\

C
Te

of A

o0
“e

(35) = TB - 'é'gru =6 X, but in gractise it

is more convenient to omit the traces and simply ignore (i.e. put
equal to zerol) the factor X% whierever it occurs, instwad of
explicitly subtracting it out.

The direct product is now gartially reduced by operating (i.e.
applying the symmetri~ group outer product) independently on upper

and lower indices:
e @ 1. = Tiﬁ & 'rB ) T!E ey '.rﬁ
I xﬂ3(¢) o 2Ty g
We find T = —> 405 (&) 35 () 1
13— B0 @ 35
Py —
T~ 280 (+) 35

i N
Ty o~ 1B @®ss @1
The 35 traces appearing in the first and last tensors (they are

equivalent) are obviously symmetric under interchange of constituent

35 states, whilst the rewa.ning two {also equivalent) will be anti-



@5

symmetric under such interchange, Further, this opposition in
symmetry will automatically make the two 35 traces orthogonal and
so we have already {in a standard fashion) dispensed with the
problem of double occurrence of 35 in 35 (Q) 35.

Using Table L we cen now conmstruct 35, (antisymmetric)
and 35D (symmetric) and 1 vectors in terms of quarks (an example
of this already occurs eqs. 3.5) and using these equations such

as eq. 3.9 derive the various usfs.

It remains to discuss 405, 280, 280 and 189, for which the
main feature is the double occurrence in each one of (8,3). e

describe the construction of basic vectors in this case -

su(6) IR Contiributing SU(3) x SU(2) tensors
D D I v o B
493 *ﬂsxsm,‘h,xsg » 4 x 8@
(xS r T 7 i
280 e " X bil‘:l s Wapn X S‘IA s 3 X S,_i
— L i ‘e iz d 13
280 S X S, Qg xSy, g x Sy
L 3 SN " 3 e
189 xS, D xS,y R x Sy

This list demonstrates that we can in each case construct three
linearly independoent (8,3) basis vectors using our method; it is
necessary to take tiaces on the 4 and S tensors to arrive at the
correct SU(3) x SU{2) transformation properties, e.q.

KN = i E

~

8 ¢ Mi 0 vk g



and similarly for 3 in SU(2) e.g. in 405 :
%) 13 z AR -

- N _

Gy Sq 1 (prq" i (M )nqrilI

= 2(e ) (D) - (BB))+ (M (N - (A N)  ete.

However none of these (8,3) vectors will be orthogonal to the
(83) terms occurring in their 35 traces. The oxtraction of
these traces is then effected by forming orthoyonal combinations,

e.ge in 4O5 we find that, symbolically,

! (S et i
Yy g - rw S 3,10a
and
- 117 [ . v . q ,,‘3 ‘_'3 )
3 X! S oo 54 = 53 +a.5 S T 3,10b

arc an orthogonal wair which are also orthogonal to the 35 (3)
vectors already constructed. Such orthognnalizations and normalizatio::.
are always most easily carried out using explicit quark stiructures
of the basis vectors; when these have becn obtained one then
resubstitutes for a sufficient number of 251, 35, states to enable
all the usfs to be extracted,
From egs, 3.10 we can also sec how the n§3 symmetry property
fails to hold ix the casc of multiple occurrence, Indeed under
complex conjugation we generate a minus sign in 3.10a and a nlus
zign in 3,10b, one (§,3) multiplet is thus 'normal?! and the other

'abnormal?, (In fact by calculation 3.10a is abnormal,)} This



This contrasting betfaviour regresents, perhaps, the best possible
resolution of the (8,3) ambignity (it holds also in the cases of

280, 280 and 189} - howvever when the multiplicity is greater than

two such a procedure is inadequate,
The final resulis appear in Table 5.
(ii) 56 Go 35

Here the tensor multiplication and partial reduction is given

by )
" a , N
Loz (x:) T O = T, Q) Tij‘.’.-.:y
. o - PN
with T . 700 l'd'.) 5_6_

fhmt

T 7 234 (2 56 (4) 70
Again the two IRs 55 aré equivalent in SU(6) and they appear
because we use‘Tg for the IR 35.

Once more one nroceeds by calculating first the basis vectors
associated with trace terms viz 56 and 70, and these may then be

used when it comes to extracting traces in the 1134 and 700.IRs

e reproduce the calculation for 56:

1,
1]

56 ~ T gy and [56(10,4) highest> - +(ppp)
P - . S -
oo in Ty i we represent this state by + CT(pppq)q vhere
{ ) denotes complete symmetry corresponding to the Y,T.[4].
N ¢ < - X -
Expanding -~ {opp) da.qq + 3 ﬁ_(ppq)pq

The firet term has the factor | Xo>> and is omitted. For the rcst



we obtain

W

S

\J'l‘l\'J
o

! 3(ppp)pn + {onplop + (ppriph + (pp&)pf\ + (ppnlpn + (ppﬁ)pﬁ'é

3¢ O
as normalised basis —ector, (In computing the normalization it
is important to rcmember that pi; has norm \/g, not 1, by our rule of

- ignoring X cf. eq. 3,94 Rewriting now eq. 3.10 in terms of 56

35 "

and 35 states (using Table i, ) we obtain the usfs ((“1' ) %(10,4))

Similarly {56(8,2) highest> .« + a(ppf\) - {puN  from Table L, so
in this direct product we take
{56(8,2) highesty ~ +% 2(ppiadd = (sdrala

Cmitting complete factors % qa we find

‘ v
#— % 2{ep )>~q + 2(pr)px - (ppaIng -~ (p?\q)pq - {(P>qlpq

as the normalised basis vector, and from it we obtain the usfs

The complete set of usfs are given in Table 6,

(iii) 56 (x) 56

Here the tensorial multiplication is

oy D SV
T (_}ﬁ_) T =T o, = 2695 + 405 + 35 + 1
with (1> ~ = {ars){q r s)
1> g are) @

. > - = 3
\ 35 highest>~+ qL} {grp){q r n)
1



59,

\ -7
{ 405 highest> - + % (qpp) (gnn)
| 2695 highest™> ~ {ppyJ {AnR)

e have becn careful to construct 405 basis vectors consistent
with those apsearing in 35 (x) 35 and the complete set of results

appears in Table.7,.

Gv) 70 x) 70

Yhat we shall require for our work in Chapter 5 is in fact the
watrix elements of the generators in the IR,70. One way to arrive
at these is to compute the coefficients for zg(x)§§ ~=> 35 and
then use the iz symmetry of ,_§3. to obtain the desired coefficients
Corresponding to the occurrence of 35 twice in 70 (x) Z§ we can

construct two 35 tensors in the tensor product viz,

(35,00 = T [(zB3c) oL (AR

{(aB)D]

[}
]

(352)2 [{ac)B} T

where [(AB)C] (ABYC -~ (CB)A,

1

We can sroceed as in the above examples to extract two sets
of usfs, Unfortunately the basis vectors we construct in doing
this are not orthogonal or equivalently the orthogonality relation-
eq.3,82 is not satisfied (since we are considering only the 35's wve
are not able to test the rclation eq.3.8b), Given two linearly

independent vectors it is a simple matter to derive an orthogonal
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pair, but this is not the end since we shall require matfix elements
of the generators; one of c*'r* orthogonal scts of usfs must serve
as in equation 1.6¢c,

One way to arrive at the required scts of usfs is to solve thLe

comnutation relations: thus for example we have from Table 2 :
+ P o ¥ .
(o), o)1 = -T(°) = [T(y (o), T(§ () )]

Ye have two unknowss, the reduced matrix element (70K TH 707
and the mixing angle ¢ by which we must mix our two orthogonal
sets of usfs 7  order to obtain one set corresponding to generator
matrix elements, Taking an appropriate matrix element, such that
<§a{T(n°)1B),= 0 allows us to neglect the reduced matrix element

and solve directly for the mixing angle,

In this way with a, P labelling our two sets of orthogonal
usfs found indirectly from 35,, 35, and tabulated in Table £, taking
Cos® a + 3in® b as the generator set we get the equation

Cos@ 5 Sin &- 2
( - s ——) = O

2
Whence we obtain the required sets given in Tables 9 once again
we use F to dcnote the generator usfs,

An alternative method is to recall that we know the matrix
elements of some generators e.g. charge, isospin etc, from the
SU{3) x SU{2) decomposition., Again by taking lincar combinations
one can adiust a and b to reproduce the correct physical situation

cf. 26.
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In Table:Y we prescnt the data for the product 70 (x) 70 —>

ZEF ({) ‘EED + a0 The 32

may be found in Table 10,

TABLE 8§ -

f~ctors required for 70 x 35 —= 70




TABLE &

70 x) 70

(10,2) (16,2)} -4

{i0,2) (8,4)
(10,25 (8,2}

(10,2) (1,2

(8,4) (10,2)
(8,4) (8,t)
(8,4) (8,4
(8,4) (8,2)
(8,4) (8,2)

8,4} (1,2)

T2 1 |' s b
O WWiw
S Q

A P e

\Di? i

4o}




TABLE & cont'd.

(8,2)
(8,2)

(8,2)

(1,2)

(10,23
(8,4’
(8,4)
(8,2)

(C,2}
{2,2)

(10,2)
(8,4}
(8,23

(1,2
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TABLE 9 ~ Unitary Scalar Factors for 'Z_O(}'c};a - (3_5_L(ﬂ35?

{Octet parts)

10k,

' 35¢ 352
70 (x) 70 (8,1) 8,3) | (8,1)| (83) |
| (10,2) (T0,2)| /2 %/ﬁ - iJag 2./
(10,2) (8,4) 0 %‘/'}3' 0 "-3-24&
(10,2)(5,2) 0 %\/-:-(13 '1'%“/5“\2 L%‘/Z%
(10,2) (1,2} 0 0 0 o
k(8,4) (10,2) o - %\/-}% 0 é%JT%
(8,4) (8,4) 0 0 -3/ gﬁﬁ} s
(8,5) (8,4) \/-;-1 %J—& %‘/2_; -214\15 a
(8,4) (8,2) ¢ -;-J-}Qi- 0 - 22 s
(8,1) (8,2) o -3/ £ o 25 2 a
(8,4) (1,2) 0 + é‘/ﬁ 0 g_\/ﬁ_
(8,2) (10,2) | 0 -3/3 |- R %Jﬁ
(8,2) (8,4) 0 -;-\/%91- 0 %Jﬁ s
(8,2) (8,4) c - -;-Jl—f 0 «gJ;.;. a
(8,2) (8,2) o 0 0 - -2-;1;\/55 s
(8,2) (8,2) - S --;.«/.5. .[.1*\/.1.% .?i\/é a
(8,2) (1,2) 0 - %/l—f N 1_2,/11 N .l.g ,:1.1.1
(1,2) (10,2) 0 o 0 0
(1,2) (8,4) o .;. 2 o . %‘/ﬁ
(1,2) (8,2) 0 -% .i:‘l% + _%\/11 . _{g _1_1_
(1,2) (1,2) 0 0 0 0
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3.5 Application or tne Tables

The only new fcature of *he Tables, and one which might
canse confusion in their application, is that associated with the
unresolved labelling =sroblem, However, to illustrate thair...~
rather tortuous, if elementary, use we first reduce the direct
product of a vroton-like {spin up) state and a neutral-pién-like

state

56 35 N

‘p+(%)3(3§jlﬂ / 82 8,1 (uY,fv* {,\Y'(u?r)\)ss‘/\
AEICONN M N
A
]J,‘YG‘\?SS

(we use the static SU(6) ¥ ° assignment)

N a\[8 & n*‘) 56 35

\N/21
L % 0 %/t o10 135 82 81 ;l (Y 2)

. (/\Y'(u",z); 134 2>

Ve must sum over >\ = éu, 70, » 100
Y ey - >
L = 2 0 8
1 27 10 1 s 8a
I =3, 1
2 2

The relevant CGe'ls are

TN
> o
o [
B H
~ e’
[}
[%Y

su(z)

[\
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I = é 1 1
(& 8 -ED'): a3 =3
124 o010 113} y
I=7% i - , 1 _:.5. _1_'
‘/60 ‘/12 ‘/20 ‘/13

For the unitary scalar factors we loock at the 82 81 rows of Table

6: the following are relevant:-
i ] ]
(27,2) | (10,2} (10,2) (8_,2) i (8,,2)

700 i /2 i -‘/i -2
i, | § | o -4 |- | 3B
Quw, | -3 | 33 i |
(1134), - -?:J;’g %/;})

56 0 -1—2

For example the I = %, {27,2) component of the

written, omitting redundant labels

direct product is

Q”@)“’o?)fw,z) =vzm [~/2 17005 + 31021340 > - Y(1134)) )

In all, the product state has non zero components in 21 orthogonal

states occurring in the reduction - clearly in expansions such as

odcur in the usc of the Jigner Echart Theorem in scattering rclations
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the sheer labour involved is considerable, Fortunately other
methods are availal e, sce nevt Chapter. Notice in the above
that for different p the vectors (uiz)i in 1134 with the same i
are in no way especially related - they all occur in the same IR,
3134,

A second calculation, more amenable to Clebsch Gordan methods
is extraction of the ratios of gspecific coupling constants - a
famous exampie i; the DiF ratio of the coupling of pseudoscalar
pions to baryons, Using a 35(83) assignment for the pions,
(one best exrlained by i spin, sce next chanter) we calculate

+ -
for the P {) = t° - §7{}) vertex :

56 56 35 j
5 82 82 8_3 /
_ o= pidy Fy o
P 56 56 35
82 82 33
a
p ity sty we /.
2 2 3 5 8 Bs 56 56 35 )
_UE 2 of \pt 3" n% \s2 e H 8.3
( 5 2 3) 8 ¢ 8 56 Egb 35\
r & o pr p 7/ \82 82 8.3
. -3 1 2
Va0 "3 V% = 3
3 1 s 2
D) 3 .V3
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Concerning the Wigner~Zckart Theorem, its use in two body 'elastic!
scattering leads to the:following equations (assuming the scattering

matrix S to be an SU(6) scalzr operator).

s 700V A TN |5 15 ug7300050 X b BTN
N T R W/ Y Vs
R AN sy W7, Ok i
ANY'PY v, v, v/ N\, v, N

Ny Y03V

x KA sl X
Since the scattering is elastic)\1=»3, ;\th& say = we emphasize
now, that in the summation cross terws in the redundancy label,
i are not included -~ one can imagine these (qui ag in fact distinguishec
by soue operator which an SU(6) scalar must respect, i.e, in the
above S cannot cause i — j transitions, This conclusion also
points to a real difficulty of our labelling scheme ~ if the scattering
is not elastic we have to ensure nonetheless that the (uﬁ)i
appearing in.a common product state are in fact always the same
basis vector, One way to do this is to calculatc the generat§rs
in the two equivalent IRs under comparison, altcrnatively the method
adopted here (for 405 (83)1) was again by a method of direct

comparison of basis vectors,
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CHAPTER 4

5U{(6) AND ¥ SPIN 3Y.HETRIES

This chapter contains a discussion of the SU(G)W higher
symmetry groupj noting that for A4 body processes with one notable
(but unreliable see§‘4.2) exception the grou; is poorly favoured
by experiment, we investigate the consequences of relaxing the
system by allowing soue specified sywmetry breaking. In particular
we discuss the Johnson-Treiman relation and the AW £ 2 sclection
rule ~ we use tensor methods,

k.12 ¥W-spin and higher symmetries

The SU(6)w schane first materialised29 as a subgroup of the

higher groun SU(6,6) orlﬁ(iz)so. The origins of this relativistic

system and in particular the use of SU(6,6) rather than the‘minimal
(with respect to SU(3)}) graup SL(6,C) are discussed in refs.si.

The commutation ralations appropriate to SU(6,6) can be obtained,

—-—

on adonting the sixtecn L x 4 matrices,l r, of the Dirao algebra
as a basis for the fundamental IR of the U{(2,2) subgroup, by
constructing the fundemental twelve dimensional renresentation as a
. r‘ v & . §
direct produvct r X }‘ exactly as in 3.1,
It was first proposed30 to use finite dimensional reprasentations

of SU(6,6) to accommodate physical particles, the represcntations

then became unitary reprcsentations of an inhomogeneous SU(6,6),



15U(6,6), which was the semi-direct product of SU(6,6) and a spacec
of 143 commuiing 'translation! operators. The complete structure,
including the SU(6,6) field equations ensuring a positive definite
norm and defining independent particle states was closely analogous
to that used in defining irreducible unitary represcntations of the
roincare group via the Lorentz group. An essential difference
however lay in the occurrence of surplus momenta, 139 in total,
which would be needed for writing invariant equations, and
amplitudes, but for which there was neither physical evidence nor
interpretation, Denoting an SU(6,6) 12 x 12 group element by 5 and
PB = ?;a Proc( rm)i,:, rm = rr X).a, then the only physical
monenta are Mo and one must consequently limit the allowed symmetry
transformations to those which do not transform to an unphysical
realm 3
s¢sT = #' B = mwm

and P! can be obtained from P by a Lorentz transformation.

Indoad the view noint first adopted (e.g. first two papers
of ref.20) wvas to ignore momentum completely - the SU(6,6) matrices
merely transformed the field indices; this reflected the static
SU(6) situvation where spin was supposed completely decoupled from
the orbital motion for a spin—% particle, This occurs only for

free particles and is demonstrated by the Foldy-Wouthuysen trans-

formaticn, In this chapter our description will apply to the
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case in which the physical roincare group is a subgroup of ISU(G,G);
we shall not discuss the alternative approaches (sce also 23)

employing infinitc dimensional unitary representations of a homogeneous
higher symmetry group, cf. Ruegg et a121, Fronsda117; 33.

e procexd now Lo exploit the analogy with the Poincaré'group:
single particle states are classified according to the appropriate
'little group' of ISU{6,6). The little group of a mocmentuwa véctor
Pﬁ is that subgroup of ISU(6,6) for which sps™'=r (i.e. transformations
of the little group do not change the reference frame), For
massive one particle states we can choose as !'standard vector?
the usual rest frame four-momentum (m,o0). The little group then
satisfies SYOS"'=Y0 and can easily be located as, in Y terminology,
%(1:Xo) x G: where GZ generatc a subgroup of SU(6,6) which plays
the role of, and is isomorphic to, non-relativistic SU(6)_. .,

The little group is thus S{(U(6) x U(6)) ~ it gives the spacc time
degeneracy of «n ISU(6,6) multiplet; the field equations are
designed to prescrve this degeneracy for moving one particle state,
The corresponding little group in P, the Poincaré group, is of course
su(z2},

For systems composed of two particles the little group,
relating to the total four-momentum, will not be the same as that of

the separate particles (although there may be isomorphism}. it is

clear that we can choose a frame (one in which the two 3-momenta are
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collinear, conventionally the '3' direction,)} when the intersection
of the two sonarate little groups is given by those S for which
- -t
= 8 = i 5U(6) ;
SYOS Yo' SY3o Y3' This subgroup of U(6) x U(6) is 35U( )w’
under SU(G)W -— sus) x SU(Z)W the generators of the SU(3) are
those of the physica. SU(3) viz )?, whilst those of SU(E)W are,

in Y terminology,

W, = ui Vo= pi = 3i i W, W.)= iE, . U
Jl “1YQYBY 1 Vg = “1YOY3Y1’ Ws alYin’ with [ ilej 1 ijk’k

The important groperty of SU(G)W, and that which lead to its
discoveryzo, is that all the generators commute with the generator
of Lorentz transformations in the collinear, '3' direction; this
follows from

[N YYgl=0=00, Y] a=0,.8
sthere %iYoY is the Lorentz generator, This proverty distinguishes

3
SU(G)w froa non~relativistic SU(6) , which contains SU(2) with

generators %1Y9Y3’ XivY. Y

1 = &
5Yq giYin, such that only [SB’Y0Y3] A

and has two imgortant consequences:

(i) Since the generators of bU(G)w are unchanged for arbitrary
motion in the '3! direction we may couple in the usual direct product
way the represcentations describing two particles in an arbitrary
collinear statc of motion, Such freedom does not exist for little
groups, of ¥, vhere the coupling of two particles with spin is
complicated by the occurrence of orbital angular momentus, or

equivalently, the generators of the two little groups do not coincide
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in P, It is also evident that the matrix elements of SU(6}w
generators satisfy the following equation:

LAY o\Gwabb_\ vio) =~pjiG a% ) Vp' > Lol

~ - w '~

where {xv) (X' }) refer to SU(6)w labels of a state and p , p' ,
are two collinear momenta obtained by a given boost in the '3t
direction, Gwab is any generator of SU(G)W.
(ii) The application of a simpler symaetry in special cases leads
to immediate, simpler, tests of the theory =~ assigning particles
to irrcducible rerescntations of SU(6)w we can apply this group to
a studyyof the vertex function, a function of two indegsendent
momenta, or to the casc of forward or backward two body scattering
processes, where again the one SU(G)w group will be relevant to both
initial and final states; (the general procedure might be to be
expand the ampliiude in terms of U(6) x U(6) partial waves),
It is the second example, that of seattering, which concerns us
here,

We can again find an analogy in the Poincare group; there,
for collinear motion, the intersection of the little groups of two

massive particles is O,, generated by Js, the '3' component of total

o1
angular momentun, In a given frame we may classify states acgording
to irreduciblq (one dimensional) unitary representations of Oa,

labelled by m, However, under a space rotation the m value will

change, according to the usual rotation matrices,
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< s :

E R RN T L2
so that a state |js™> belonging to the IR m of 02 under rotation
in general becomes a reducible sum of IRs m', 02 invariance for
the four noint function implies of course J3 conservation, and this
holds for any direction of motion, but only in the collinear case
are J3 IR asgignments invariant, Notice also that there is no
conflict with unitarity which would relate the collinear scattering
amplitude to a product of non collinear amzlitudes through the

symbolic equation:

R
% Tfi = a5 Tnf Tni ko3

We prefer then to adopt this point of view of unitarity
in SU(G)W; this is similar to that of Pais31 who considers it a
'matter of language whether or not SU(6)w igs compatible with unitarity,
The group makes no claims concerning non forverd directions....?.
But it should be noted that in the SU(6)w case the unit operator
:%ln7<;n* occurring in the unitarity relation, viewed as a unit
operator in ISU(6,6) is distorted due to the limitation of the sum
%; to physical momenta,
Continuing with our discussion of SU(G)w we now briefly
relate SU(2) and SU(2) :
The maximal compact subgroup of SU(2,2) is SU(2) x SU(2},

locally isomorphic to 0(4), and contains as subgroups both SU(2)

and SuU(2)}
w
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Groun Generators
: . If . 1 s . .
SU(2) x su(z) a(L+Y°)1Yin x 4(1-70)1YBY£ iydpdym=1y0043
Ao i ox N Lo bt
~ N
Su 3i
(2)8 21'\'in Lo Lb
Mo+ N
b 13 13
su(z)W 21Y Y, Yz, 217073Y1, 2iY,Y, Lol

We see that

5 = = M + N
S5 i3 5 + Ny heda
w+ = z:;+ - N+ L4e5¢

The finite dimensional unitary irreducible recprescentations of
SU(2) x #U(2) are labelled by = pairsof non negative integers and
half integers {m,n) corresponding to ‘the two commuting SU(2)!s
f, gf As expalined by Lipkin17 quarks (antiquarks) transform
solely under E(E) ~ this is decided by the appearance of %(1:Yo)
as a positive or negative energy projection operator, The_S spin
content of (m,n} is clearly (from eq.4.4b) s = m+n, m+n-1,.. m-n
and from eqe. Le5a it follows that this must also be the W~-spin
content,

From eqs. 4L.5b,c, we sec that for IRs of the form (u,0) there

is no distinction betwesn 5 and W spin eigenstates, but for IR's

of the type (o,n) we have, under subgroup reductions,
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15,8,7 = 078w s

3 4e6

where 5 = W m n 33 = I»'!B = n3 and we have arbitrarily chosen an

overall phase by scttiig \Sih > =+ \W,n> (as usual \p,v>

denotes + basis vector for the vector v of the IR 3 of the group

specified),

For a general IR (u,n) we may now write
n n s

D .
lS&S3> =5 (03 ng ng S3 ) (m,S3 . ]n’n3>

j’ )n-ng ( m n S ) ( )n-n3 .
= = el @y Se-n, S ((-1 tn n>)
Sa S !
g 5 g Sg0 1T t3
E n-n,j m n m n W
= (-1) ( )y (. R
" S -~ S S - W_=S ?
1"3 T T S S S T B S 3

Le7
and a similar equation for \Uai{s)
As an example we consider the 11,6 and 10,0> subgroup
states of the IR{%',?;), corresponding to the quark-antiguark

composite; by straight substitution in eq,., 4.7 we obtain :-

S spin state

W spin state

(1,15 = 1,1

11y=17% = - 11,17
11,0 » - ~ 10,07

10,0

1l

- 11,0 >
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Further discussion of the relation betireen S and W spin occurs in34’35
- the latter also arrives at a relation of the form eq. 4.7.

It should also be n.ted that it has subsequently been possible
to arrive at the concept of W spin invariance as deriving fromn
rotation and inversioun invariance36 - the only new contribution
arises from transitions which are forbidden by QWEO'(mod.3)3? iece a
process forbidden under Y-spin invariance Ey AW=2 would not be
forbidden by rotation and purity invariance alone, Further
discussion of this specific higher symwetry prediction is given in
Chelelie

L.2 UW—gpin syanetry breaking

Our interest in W-spin and SU(G)w is to test the stability of
some of the predictionsof this groub for the 4 point function under
various modes of syutetry breaking, Here we investigate the type
of syumetry breaking necded and also our method of calculation,

The computation of exact syuwretry predictions may be thought
to procecd by consiructing all possible 'Lagrangian' terms relevant
to the process under consideration and invariant under the given
syrmetry,. For mass terms, e.g. exact syumetry predictions rcsult
from the scalar term in p (é) E and this will always give equal masses
- similarly for higher n-point functions where now gencrally more
than one scalar term exists. In group-theoretic language we apply

the Wigner-Eckart theorem to a scalar orerator, In a broken
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syametry one allows specific non-scalar transofrmation properties
to the Lagrangian -~ either we may use the Wigner-Eckart theorem, or,
as is more customary, we may introduce a 'spurion' and construct'
again scalar Lagrangians only one torm of which will be physical,
The question of vhether the same spurion should apply to different
n-point functions has becn investigated for SU(3) e.g. in the work

38

of Dashen and Frautschi” for n=3 and 4L - for SU(3) there is amnle
evidence that t=Y¥=0 =0 transformation properties give significant
and dominant symuetry breaking contributions to processes with

39).

n=2,3,4,5 (for n=5 sec e,g. Making the assumption of
n-independence the easiest way to search for symmetry breaking
terms is to try to fit n=2 mass terms with the various allowed
spurions -~ since it is the mass terms 'hich give the clearest and
most accessible indications of syumetry breaking, although of course
in the SU(6) schene they supposedly refer to SU(6),_ rather than
SU(G)W.

A number of peonle have considered mass formulae in SU(6) -
two papers especially relevant to our werk are those by Harari and
Lipkin, and ilarari: and Rashid®® uho concludes
(i) It is not possible to fit the observed baryon and meson
mass spectra with the same mass operator in cach case, In parti=

cular the octet I=Y=0 part of an SU(6) 405 tensor is required in

the baryon but not in the meson case,
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(ii) The major contribution to SU(3) symmetry breacking in both
casos comes from an I=Y=0 octet component of a 35.

(iidi) Terms which break SU(6) but not SU(3) symmetry may be

as important as those which break both symmetries,

Indeed, their considerations applied without adaption to
baryon-iieson scattering suggest that four types of spurion should
be invoked viz (8,1) components in 35 and 405 and (1,1) components
in 1§2 and 405, 4 moments reflection suggests that a completely
general investigation would not be sufficiently predictive to
warrant the labour necessitated - ag a first investigation we
consider the effect of 35 only spurions on some specific processes,
Further in SU(G)W there does not secm to be any reason to consider
only #=0 spurions =~ whereas in SU(6) J=0 was essential -~ in the

following we use at different times three sorts of spurion :~

9 su{6} su(3) x su(z)W I W,
35 (8,1) o o L.8a
35 (1,3) 0 o L48b
35 (8,3) 0 o L.Se

There is one further form of symmetry breaking which we
investigate below: SU(6) evolved by combining SU{3) and SU(2) in
a minimal way; however SU(3) itself is not nearly as well satisfied

as the isospin-~hypercharge symmetry group SU(2) x U(1), Thus in
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testing the validity of combining a purely internal symmetry
[su(3}] with a space time syumetry [SU(2)_. or SU(Z)WJ we should
(in the face of bad prcdictions) try the effect of combination at
the SU(2) x U{1) level i,e, we should investigate the consequences
of exact SU(Q)W x SU(Z)W symmetry, This bears some similarity to
an SU(6) )? x S spurion, It is as well to néte however that
SU(Q)W x SU(Z)w is a subgroup of SU(G)w and therefore cannot deliver
results which flatly disagree with the predictions of the larger
groun, In the following we shall be concerned to avoid a bad
SU(G)w prediction for the ratio of two forward scattering amplitudes
-~ it would seem that we may not expect SU(l*)w x SU(E)w to predict
a different ratio but at best that it may no longer be possible to
form a ratio,

Finally the mode of calculation: the introduction of symmetry
breaking via a spurion {(or any other method) means we require
CG tables sufficient for the direct product of five SU(6) IRs.
The tables of Ch, % are not enough and instead we resort to tensor
methods ~ in our opinion in any case more suited to calculations
involving more than three SU(6)} Iis, Thus we represent the meson

SU(6)w 35 tensor as :-

B ioe8b 1 B, b, b
”i =/2 L aﬂa e ‘Ja( }a“i * Vau 49

where M,¥,V represent (8,1), (1,3), (8,3) components of the 35 and
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. s 3 ’
o) = [ 2 + /2 P T K"
o ;/%\( - /-% N K° 110
. -2 /%‘{

according to the W=S spin slip.

(Ve could note that a phase convention, additional to those
at the ?U(B) x SU(2) level, and corresponding to that discussed
in Ch.éhgék has been arbitrarily chosen here by fixing on relative
pPlus signs between M, W and V§ clearly any relative sign is
allowed, )

Similarly one may write down the tensor wave function of
the QQ {for a fairly complete tabulation of tensor wave functions
see kuegqg et alzi).

We represent our syumetry breaking by components 82 }?Z,

GBi bg, (;"35 }\32 of +the spurion tensor Sffor the three
possibilities (8,1), (1,3), (8,3) respectively. The calculation

then involves evaluating tensor contractions -~ although it will be

seen that in some cases fgshort cuts® do exist,

43 The Johnson=Treiman relations

An early success of the gpin containing higher symmetries
was the prediction of the following relation for the differences
in total cross-scctions for the scattering of pseudoscalar mesons

on proton targets:
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Ap :‘f+ = _A'p!:o = % Apk+ hell

where Apm = tot

(p+m -—> pem) - G;ot(pﬂ; ~> p+m)
p = proton, m = PS.meson,

These equations have coime to be known as the Johnson-Treciman
relationsgz. They were first obtained in static SU(6). ,
Using our tables in the direct channel for

% + 35 — 36 + 35
since the IR 1 occurs four times in 56 (x) 35 (x) 56 &) 35
there are four independent amplitudes omr reduced matrix elements

A,\ = <A TIHXY with h = 56, 70, 1134 or 700 corrcsponding to

56 (x) 35 = 56 (+)} 7¢ (37 1134 (+) 700. The Johnson-Treiman

relations in SU(61?4 then follow via the ogxtical theorem since the
amplitude differences Opm given in eqn., 4,11 arc proportional to

§ = 4 --3-. h _——1- 3 _—-2-
b = 5/18 4 0 - 2 Y13, T T2 “0 "8 “s6

In fact there is a simpler wey to arrive at eqn. L.11 which we shall
describe and exnloit below,

Since the same rclation also holds in the W-spin formalison
doubts about the applicability of SU(G)q_ were relieved - the
relation was first checked for incident meson momentu: in the range
5-20 Bev/e. In any case there was a tendency for this prodiction
to be accepted as important evidence in favour of the SU(G)w and

Y

SU(6,6) sysuetries, However the following points must be emphasized:
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(i) The Johnson=Treiman relations can be derived in other
models viz (a) exact SU(3) symmetry plus dominance of the meson
baryon scattering amnlitude at high energies by a purely F coupled
vector meson Ruegge trajectorygs, (b) the quark model (SU{3)}
invariance is not assumed here)gé. On the basis of either of these
models it is perhaps surprising that eqnilfe11 hold (roughly) dovn

to energies -~ 10 Bev/c incident meson lab momentum,. (5ut see below
for comparison with experimental data,)

17 that

(ii) It has been very clearly emghasized by Harari
any evaluation of the predictions of SU{3) containing symmetry
schemes must allow breaking of SU(3)., Further in the case of the
baryon=iteson systen dopartures from exact symmetry may be as high

ag 2030/, For eqneleil Harari finds that exact SU(3) plus
experimental information that in-elastic processes are small imnlies
that Apu=0 (experimentally Apm ~ 5 mb) - the simplest way out of

this is to conjecture that the SU(3) symuetry breaking is confined

to the in-elastic amplitudesks.

(iii) We have argued briefly above that SU(G)w may not flaunt
unitarity as blatantly as has been suggested - however the simplest
pvhysical interyretation of the group theory, that one particle vector
meson exchange {producing no conflict with unitarity) is obviously

inadequate since such amplitudes have zero imaginary vart, (This

is not so for the Regge model where e.g. the (:trajectory can
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produce an imaginary part,) It has been shownhs, by rather
involved argument that the inclusion of two particle intermediate
states (i.e. two intermediate 35's in the crossed channel) does

not affect the prediction if one assumes each 3 particle vertex
invariant under its own SU(6)W - so that consistency with unitarity
exists to a higher degree than is suggestced by superficial examination,
Notice that one might hcpe to pick up this result with a V-spin
breaking spurion since non collinear 2 particle states arc

breaking W-s»in conservation. We find below for a siuple W =1
35 spurivn tiis hope is not realised.

(iv) The compar:ison with experiment has been made in a nusber

of places, Ruegg et a121’ bl Aﬁ.

Quite apart from the difficulties
of corrclating sywietry predictions with exgerimental data the
conclusion reached here depends upon the mode of comparison, The
(pm) cross-sections themselves are of the order of 20-30 millibars
their differences about 15 of this., RNaturally if the differences
are compared directly the agrcement seems poorerl*'6 than if sre

21,44.

rewrite the relations in terms of sums, Anyway the best
possible figure seems to be about 3% departure from egn. Le.11
(v) It is generally agreed that the relation

Hpk” = Apgt o+ Apko Lel2

is always better satisfied than eqn. L.11, The above relation

rosults froi SU(3) alone on the assumption of octet dominance in
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lli?.

the annihilation channe
With (ii) above in mind we now coumpute the effects of 35

type symmetry breaking on the Johnson~Tr iman relations, e

]

denote the spurion by 3 and find that there are eighteen different

ways of forming an SU(6)w scalar from ﬁ, B, ;1’ Fi_ and S by

saturation of tensor indices; this agrces with the number calculated

directly by comparing terms appearing in the dircet products

56 (x) 56 and 35 (x) 35 (x) 35. (The higher direct product
2
reductions necded for this are now tabulated in Buegg et al 1.)

The general amnlitude now has the fora (Bmu Ma)? where we suppose

1

1y and B to absorb thz initial meson and baryon, and li_ abd B to
[~

create the final states, and the indices A_B dcpend on S, We

1
can represant the effect of time reversal, T, on thesc amplitudes
= ABC . 2 b
Ermaaine. ¢ oY i - : s -~
by By &> B ' Bup M, corresponding to the inter

change of initial and final narticles and their creation and
annihilation oyerators; Notice that the transformation also changes
momenta and spins so that one must take care in rejecting T anti-
symaetric combinations in SU(6)w space that T antisywietric combinations
in spin space may not be formed, cf.éB. For the baryon meson s¥&tem
this is the case, Note also that we automatically have parity
invariance,

In this way we find the following twelve amplitudes must be

considered for baryon-aeson scattcring subject to 35-like synmnetry
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breaking, {(The nusber twelve comwares with that of thrity-four which

result ~_after time reversal invariance - for the same system

in SU(3) with I=Y=0 octut synmetry breakingég.

A 5% i) war sy

B+ 3 "P‘BPBCDr}ui E‘*zs]ig + 5% CDPr-igg =g g
C 3 ﬁABPBCDPSic}iiMQ’]g

D+t ﬁABCnDBC([mngJ_ts + S['.”-‘xj_ivig]i)i

Be s 5B 00, 2 MZSMI)?.

Fo 5% L018),)) + (i8]

G+ @ :’SABCBF&C[ G1,4,5) + (M,04,8)]

ne 5% 57 (i)

pBC”L ‘1Tn

... B .C.B . C.
where, [miuz]i A = Mg Moo # Mgl Mg

A

. 5.
G1 £ )= My ¥gp

2
By inspection we see of these twelve all except three A B+,
contain either the meson or baryon tensors coupled intec a 35
or 1, and also that only B-, D-, E~, G- are antisysnetric in Ml

and Mz.
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But we now notice that only antisyametric {(in Hl and Hz)
amplitudes can contribute to Apm,l*3 since by our convention a
tein EpTE*ﬂé_ will coniribute to p+b —= p+ T whereas pplri ?+
coniributes to p+W ——Fp+W , we look now at the four antisymietric
terms,

Of these D= and E~ have the factor (EB)B , and using the octet

part of the 56 tensor

- T = ! r " -~ £
BABC E br th rcY + cycle (abc, apy) Lel3a

we find
(ﬁB)g (octet-octet —arts)

(-20)2 = LN 3

ca TNy C % _ o
5 *5p (4,(FN) 53 uﬁ“Na)

+ a(- (T >a“’3‘ + s(nﬂ)gg) Le13b

(extracting traces via

-~7
Mt - (AN . 2 ga(Nm“ + -(\m + 245 ()

bH b3 5 b )9

~
where signifies zeroc tirace on the free indices, we can arrive

at the familiar resulis = D + 2p coupling for (Nﬁ)zg and wure

=8 e )] >
F coupling for (I-‘I‘-’)bSB.

Similarly using the W sgpin identification of the nseudoscalar

mesons we extract from it factors Ml I 3B sz 573& (ab,af

1"i

always label raspectively, SU(3) and SU(2) vectors), Corresponding
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to our threce possiblec¢iurions there are now two cases to consider

(i) the W=0 spurion gives a factor ‘ , as also does

— 32 o . . P
('J3) from M, il so ile overall meson W spin factor is Y g and

this selects the ¥ spin singlet (pure F) term from iB.

3

(ii) for w=1i { 5%} = ﬁ% and we get the vector part of B3
hence in this case the SU(3) coupling does not have the form
EENJ_ﬁﬂimz]_ cf (i) but only (a[ENlF+ BLNN]_ and so only the weak
form, {v) abovc, of the Johnson-Treiman relation will result froi
D~ and E- whilst G- gives no contribution,

Inserting now the i}? factor the following three types of

SU(3) amplitude can occur in D=, E-, G- 3

SU(3) amglitude Apf{ Apk+ Apko
BIF G 28 .. 8, :
(NN £(u1m2k J- (hzul )\,] o 6 6
(NN )?LE ) - (e, Aa) 2 -l 0
1772 2 3
= 8 - O
{f\NLii N 1'12} - (rsl-u-.z /\ &11) (4] -2 -2

From the above ab.ve it is clear that no linear combination of the
three (SU(3)) amrlitudes can give non-trivial (Apa £ 0) Johnson~
Treiman relations, and this then follows also for D-, E-, G-,

We discuss the amplitude B- in more detail: exjpand the tensor

wave functicn

; big © ol NP
‘cop M1 A M2 "3g
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The above exhibits the SU(Z)waU(B) structure of the SU(6)
scalar amplitude @ exilicitly - the 3U(2) factor is always written
first, and evey factor ls a tensor trace,

Ye now arrive at the predictions of B- by permuting on the
meson labels 1,2,3, and so establish in a straightforward way that

+ + 0

K, X

the spurions L8b,c give no contribution to Apwm, i={ , s

whilst 4e8a contributes to bpk+ only so that in this case neither
relation holds,

We conclude §
(i) Non trivial Johnson-Treiman relations do not survive
under syuwmetry breaking of any of the three types listed above.
(ii) Their weak for:;_slﬂ and (v) above does hold with a w=1

SU(3) singlet 35 spurion,

Loty AW#A2 Selection rule

We now turn to some predictions'of exact SU(6)w first listed
. o . . . s .
in 2 which were soon shown to be in gross contradiction with

. 51
experiment

50 ,

In ref, it was shown how a number of processes of the form
baryon+meson —>baryon+meson proceed via just one SU(G)w amplitude,
We may easily locate these processes by looking in the fcrossed
channel' as above - of the four cross-amplitudes, 1, 35 (twice) and

LO5 only the latter allows transfer of quantum numbers charge 3z 2

or \‘vJ(Wu)H(S, or both so that all vrocesses characterized by such
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exchanges (in the crossed chennel) must all.be proportional to
one amplitude, 4405,
eeg. (a) W 4p — ¥ 227 has Uflcroased = 2;
(b} reactions of the form P+ B —~— P + D
when crossed become P + P —> B+D

with ¥ spin couplings 1 {é) 1 = 1 &) %

334

000 ¥=13,5 but

For ps mesons, P, the coupling CG is now (
(g g g)=0; thus there is common to both sides only W=2 and so
again only 405 exchange is possible.

It is clear that those processes excluded from a 1 or 33
channel in the cxact symmetry cgse must again be excluded for a
W=0, 8 spurion which conserves charge and ¥ spin but that 35

channels, in the case (b), will be admitted by a W=1 spurion,

0
We begin with the W=0 }3 spurion and thus necd consider only

. B .p .8b .
A, Bt , For Bt with 5 = No /\a the W spin parts are :.
- R 3
unmodified from bﬁ =§)ﬂ . Let
A PR = AB . lv.t. n
}J(i’iil"lz) :_—-": \3B} cD l'ilc }12B [i. 1[}

O
Writing D=3 X' = diagonal (1,1,-2) we find for the SU(3) parts

o o K"

}
X i
0], =2 -3 x o o «x° |

- R %‘( /
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\/..é. ? 0 ]("' /% ‘\(l
= % "‘ 337 ‘ 0 e l t
%i=3(' O q% ( K v% t
e 0 - .].' ! l -
\® O F 2/ { Ve
A
(Fhere 1(' = % ( .) &
def, = 2M - 3w' + 3N Le15
Similarly o o k)
hal =3 o o x°
-~ -K° o
def,
e ~3mt 4.'16
Then
B, =4 B(Mii'-lz)—B i:‘a(i':ii-ié)-B B(,;gMi)+3 B(M1N)+3 B(\»igN)
A B(r&ii\iz)—B B{¥ 1Mé)-3 B(;vizMi) ‘ L.17

sincz the factor N “roduces an SU(6) E;i which vanishes against the
= AB

405 (08)

Similarly

- = «3 B o NI .
? 7 *3(111 2) +3 B 2 1) 4,18

The overall effect of symuetry breaking is to replace one at a
time in B of ed, L.ik the SU(3) matrices Mi by s or 4Y - and
thus can be comauted directly from the exact symmetry amplitudes

(svhich unfortunately were not published in 50, only their squares
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following »nroedictions:

In this way, u:ing notation of ref,

50
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we obtain the

No, Process 1Amp.ia No. Frocess \Amp.{3
T T Z$y
1 JeTpi ) 3 2 [ ptr® =5 3
6 L&Hps » 168 3 (<K plk™ 7> 12
9 kpl ;¥ 24, 5 REpIETZS 129
10 kx ol ye" > 96 5 PQ{"p‘;;:**'z} L8
11 K pn®Y % 54 7 <& piC 7% 2,
12 K p\ Y*°7 2 8 /\I{—p[}{+ .3"7 )
15 KK p F+Y*-7v 168 13 | w pl ez, 168
16 | p|E%> 3 1 {piv T ETS | 168
17 kn Pl E %y 129 30 [Eopin'=° » 5
22 |¢hplE°Y %> 12 31 (%I =05 57
23 {4 pl A A 96 35 [ R%p(x" £ﬁ°7 24
25 <‘il-p\i‘<*+Y*-> 168 36 K pu;* -.;“3‘7 2L0
26 (u+p\l'-".+‘[$§- oL
32 K%Y Y &
35 g% S 12
31, KZ%i 'Y % 12
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loe ! Process iAmp.l2
= 1Y
- - ¥y
18 | supif N 24
- _ \'-i-
19 |HEEy b

- o, %o
20 /& Pl N 2 108
- o+ F N
21 /R plu N 7 288

+

2k |oiTpN S | S0
¥y &

27 | 'plan D 24

28 | a*e N S| 36

20 |Qi'prw TS| 12

There are three distinct sets of amplitudes, each proportional

to linear combinations of A, B+ .

With o0 = 204 4003« <A
B = =i+ = ~A 4,19
Y = B+ + &

the proportionality {to a,ﬁ,Y) factors within each subset are theq

the same as in 50. Notice a general sum rule ¢« - 23 -~ Y = O 4,20
Turning to the experimental data given in 51 we sec that

the symmetry breaking has not significantly changed the bad

predictions, Data is given for 1,2,3,5,9,10,28 in the forward

and backward dircctions = now only the subsets 2,3,5; 1,9,105 28
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afford comparison, But this still includes the gpredicted ratios
235, 233, 1130 and 9:10 disagreuving by factors of 10~1G0,.
Eva

Evaluating the sum rule 4-20 in the forward direction it is seen to

be violated for the combinations

Y 28

I
il

1 o = 2,3,5

»]

28

Y s 9 o

4]
]
X
.

1l

One reason for these poor predictions has been pointed out

. 1 .
in > o Consider for example the processes

- .- - *y
voe FEN A ¢ "'—>' 'ﬁ + X
- + * -
100: if +p —>H +Y
The first can groceed via I* exchange as determined by the peripheral
model known to have some validity in this situation, whilst the
second involving Al = =2 #s not peripheral in nature (no I spin 2:

mesons are known to exist) and may be expected accordingly to be

damped, Indeed we have

<Kpliy 'y 8

N experimentally
{Kpw¥ » 1
Le21
but 4
- SU
i by exact (6)w

The AJ£ 2 seclection rule does not seem to be valid in the
forward direction - however if we were to allow a ¥W=1 spurion soue

assplitudes are decoupled, e.g. in eqn. 4.21 above 35-like channels

+

are opened for & p = n—Y“ but not for K p 7 Y-, We have



algo checked that in this case it is no longer possible to form
ra}ios for 1310 and between 2,3, and 5,

As a further illusiration subgroup reduction technigues, and a
propros of some remarks in Ch,L.2, we evaluate the prediction of the
su(y) x SU(2) subgroun of SU(G)w for the ratio 9:10, eqn., hL.2i.
The decomposition approzriate to this case is defined in 6 :
(p,ﬁ,n,ﬁ,},;) to be that subgroup of unitary unimodular 6 x 6 matrices
which act senarately and independently on {p,g,n,h) forming a 4
of Su(y) and (},?) forming a 2 of »U(2), In the language of egn.
2.5a wo replace the )}s by isospin T 's to get SU(4) as a completion
of 5U(2), x SU(2),, whilst the ¥ spin matrices alone represent the
remaining SU(2) factor, Note that the decomposition of 6 is this
time in the form of a tensor sum, rather than a tensor product,
For the explicit deconpositions we find

Su(6) - suln) x su(2)
YT, [31 — (3], (+} (2101 () [2102): (%) .[3]
~ 56 == (20,1) (&) (10,2) () (4,3) () (1,8)
and for 35 3
33 =3 (15,1) {0 (1,3) @ (1,2) @ @*,2) G} (4,1
To locate nhysical particles we need VW spin~isospin progperties,

For SU(4) ~——3 SU(Z)I x SU(Z)w we have (under now a product

decomposition) 10

il

(2] —> (3,3) (+) (1,1)

{11 —» (2,2)

&



so that in SU(4) x su(2)
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(2101 — [(5,3) () (1,1)] &) (1,2) = (3,4(x)2) GD (1,2)
{21013 —> (2,2) {» (1,2)

= (2, 1(+)3)

the last entry on the right gives the (I, W) representation.

Hence we obtain
SU()x SU(2)
(20,1)
(10,2}
(,33
(1,4)
(15,1)
(1,3)
(4,2)
(4*,2)

(1,1)

In the right hand column the physical

(1,

(4,4)(+) (2,2)

(3, &()2) () (1,2)
(2, u(x)2)

(1,4)

(3, 1(1)3) () (1,3)
(1,3)

(2, 1(:)3)

(2, 1{+)3)

{z,1)

b}

Particles

N#/N isoplets

Y, :iy/\ i

ot "

e

& W, physicalWisoplets
physical (& "
K*, K "
ﬁ*’ |74 1t
x°

are defined as members

of SU(4) x SU(2) IRs - this corresponds to the cowmmionly accepted

treatment of (v e e mixing.

To count amnlitudes for Xp —, | Y* wc consider the direct

product

(1+,2) (x) (20,1) (x) (10,2) (x) (15,1)

The SU(2) part ~ 2 (x) 1 (x) 2 (x)} 1 contains one scalar, In

SU(L) wve have
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i

(%) ) 31 =[] () [32%] = 20 100
[2] (x) [21°]

[:1%] (&) [321] (¥) [32°] (2) [1*)

70 () 64 (+) 10' (3) 6

5* {x) 20
10 {x) 15

1l

Therefore there are two SU(4), and so two SU(4) x SU(2) amplitudes,
Ye further write

ST Y
(10,2) ~ Yimye = Yapap,y

1 o R
¥ (ab) @) V3 Py Yandp * Gy Ylabda ]

(20,1) ~ P, oo

i .. -~ . e
- 1 : N
=73 (abe) (a5Y) " 3 (‘hb?aﬁNo’Y szbc\c‘cﬂl\la,cx * \CcaiYa b,B)

B _ o i b_jBe~ V3 ib ¥3¢b 3- (
(15,1) MHy TTEGT LY asij * - ga it 2da K

2'a

Hn

o

2

i . l\j'" ——— 7 l (‘ a
(u%,2) - 2 >‘h s *V3 8

s

o
B

A A
On the left above n., }C etc, A,B,C

etc are respectively SU(L)

and SU(2) indices - we replace the SU(4) indices by SU(Q-)I x -'SU(Z)w

indices a,b,c and «,3,Y rcspectively and reduce to isospin x ¥ spin
normaliscd vectors, e.g.

Y . Y* .3 . .
() epy) © spin 5 isospin 1 state

Y . w spin # isospin 1 state etc.
ab,‘u

An independent pair of ten: .or amplitudes are now secn to be:d

) = (cD)B_2
‘ KA P(car) TA
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A
A = (CZ)B--D
4 s X
oty Pruemy ¥ Vg

Inserting now the factox's. drawn from the above reductions,
apnrouriate to egn, L,21 we find that A1 does not contribute
to cither process whilst A (as it now must) preserves the
' &a

unwanted factor I,

4.5  Summary and conclusions

In this Chapter we have glanced at SU(6)w symmetxry breaking
with two opposing hopes in mind - viz to find spurions which retain
the symmetric Johnson-Treiman relations but destioy the class of
nredictions hinging on AU#2, To keep special significance for the
idea of W spin invari.nce we might further have hoped to accomplish
this by brezking oniy the JU(3) part of the scheme,

In none of thecir aims have we been successful = a W=1 3U(3)
singlet 35 snurion proved most acceptable, piving the weak Johnson-
Treiman relatiom and eliminating those predictions runniing contrary
to the perisheral model and experiment - certainly the latter, for
any seanblance of agrecment with experiment, domand that the inter-
action must be reducible in SU(6)w. Of course, there is a
precedent for such roducibility - in SU(3) the (strength) hierachy
strong - medium strong = weak and electromagnetic forces corresponds
to incxreasing reducibility of the lagrargian, But an analogous
inference here that dscuplet production processes arce depressed

in strength with respect to other, W spin conserving, reactions is
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clearly unacceptable, On the other hand a success of the AW42

52

rule has becn nointed out by Olsson” who observes that since
reactions

M+ Mo o+ A R A~ % baryou tesonance
proceed through just one amplitude the ratio of isospin amplitudes

is determined {t!erc arc two different isospin channels open

I=%, I= g). Using

- - +
. .
ZQD —E‘HON O> = _'/g. (by computation)
Zn phw i*75

3

and the Wigner~=chart theorem for isospin :

I o 1 2 ,2
oot N® S = S A1 - = /= A
VAL ! > 5 M 3/5*%
- 0...0 i i ,1
T N* = = 2 AL = fEA
/1 PLT NS 3 /2 Ay 3 /3 %
one finds that ﬁi - \/10
i
2

Olsson remarks that this agrees well with the value 3.4 * 063

deduced from experiment =~ but we enphasize that this calculation

is model dependent and in particular assumes 3 wave isobar sroduction,
de note also that this srediction is clearly invariant undor the

type of SU(3) symmetry breaking introduced in Ch.4.l since the

ratio -\/573 is not thoereby destroyed,

Despite this cne success we feel fowced to conclude that our
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main aim has not been achieved ~ the introduction of some SU(3)
breaking into the Sl'(6)w schere for 2 body scattering orocesses
neither vrescrves the Johnson-Treiman relations nor invalidates

the AWA£2 disagreerent with experiment,
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CHAFrTER 5

SUE} AND_CURRENT ALGEBRA
In g.S.l we nrepare the ground for the calculation, in
§.S.2 of the following arameters associated with the weak
interactions of the baryons.
(i) the renormalised weak axial vector coupling constant,gh

and the D/F ratio of ithe weak current.

(ii) the baryon anomalous magnetic moments,
(iii) N-N-¥* zxial vector transition constant, G*
(iv) The M=N* .i3 electromagentic transition moment,

The 'calculation' reduces to adjusting the amount of mixing of
two SU(6)w x 0(3) IRs gnd the system is too flexible to allow any

significant conclusion,

5.1 Current algebras and representation mixing

The conce::t of an algebra of currents has been central to the
successful study of brolken symmetries, That exact and broken

symmetries could consistently shure the same algebraic structure

53

(i.e. commutation relations) was first emphasized by Gell Mann

and develoned into a non relativistic thceory of symmetry breaking

S5k

by Fubini and Furlan - relativistic formulations werce soon

availableﬁs. ¥Without doubt the major success of this body of work

has been the Adler-.eisberger (A-W) calculation56 of the rconormalization
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of the weak axial vector coupling constant gA, defined in Adlers!

notation by

My

NI IN(@) > = a—é 6, Dylad (% + ga YhYS)J‘*UN(q) 5.1

where J is the wealk baryon current responsible for AS=0 lentmic
decays,
For our own purposes we would like to emphasize the following

points about this fauious -W calculation, summarised in the following

equation

<2 o

I .

: N WaW + . -
1 - —% = " TNT .8 - -v{§~f; q;(f) -:Ts(ﬂ)] 562
gA 21‘1:1 !(TD) [ Blag+M W-P"ng
where S‘Oi {(#) is the total crossz-section for scattering of a mero
NI, .

massT{i on a wroten at centre of wass energy W, K " is the giont
forma factor of the nudeon etc.
(i) The transition operators (chiralities in Adier’s:

notation?uhoae wmatrix elements between proton and neutron give a
measure of g/i are assumed to obey the (chiral) algebra of SU{2) x
SU(2)., However no statement is made about the SU(2) x SU{32)
properties of the narticle states p,n - only the conventional
isospin subgroup assignments to irreducible representations arc made,
(ii) This omission renders the algebra, alone, impotentj;

to complete the calculation information is drawn frowm experiment

with the aid of the PCAC hypothesis, in Adler's notation

A i@l ghn - a
Nt SR L ; S \Q - 5%
T NI *

grii  (0)
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where gr is the rationalised renormalised pion-nucleon coupling
constant, (e? is the renormalised pion-field, etc, This allows
to relate the generator matrix elements (in what really is an
infinitely reducible SU(2) x SU(2) IR) instcad to experimentally
measurable T =~p total cross-sections (tho' an extrapolation to
zero pion mass is required),

The injection of experimental numbers in this way, with the
resultant degree of accuracy (~ 5% in the gA calculation) engendered
considerable confidence in current algebra calculations forbroken
syrmetries,=
(iii) Since the symmetry is not exact the transition operators,
its generators, become time dependent, and this was translated into
an energy dependence or non-covariance of the gA sum rule, Following
the sugoestion in ref.54 the sum rule was evaluated in the limit
of infinite momentum of the external one particle state, and the
use of this frame has later come to be seen as equivalent to a
fully relativistic approach cf.57.

On the basis of a quark model with an SU(3)} triplet of spin~}
guarks the largest algebra one ean envisage is that of U(12) -
with current densities transforming as the appropriate quark
bilinears, We must take care to distinguish Lorentz transformation
properties fro. those of the couwpact algebra, the distinction being

a Yo factor in the bilinear corresponding to the use of the anti-
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commutator
Ci) i 3 )
N’tx(x)’ Wé )")gt'=t Egaﬁ"g) -xt)
rather than Sﬂﬁa(ﬁ), §7ﬁ(;!)<t'=t = (YO)QB.&S(X-x')'

when we take matrix elements between single particle states at
infinite momentun two well known factors enter57'58.
(i) Certain densities have their matrix elements damwed by
a factor E-i and so do not appear when p — oo, The rule is
that those U(12) elements survive which commute with YoY3, the
generator of Lorents transformations in the p dircction, Omitting
the SU(3) factors there are

1, Yl’ Yz, Yle, YO’YS’ Ys, Yle, Y2Y5 S5.4a
(ii) Amongst these 72 (=8 x 9) 'good' charges of U(12)
certain equalities appear for their matrix elements - essentially

because YoY, -~ unit operator on infinite momentum States, Thus

3
we get
1~ Y°Y3
2 7Y% 5.4b
\AS -,
YZYS ~ Y1

and the U(12) algebra thus degenerates into that of U(6)w represcnted

in its space~time components by the left hand column cf.j? Lal.
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In this way the U(G)W algebra contains the chiral algebra relevant
to the calculation of g4,

Représentation mixing presents an alternative at (ii) above,
It was knowvn that the pure §§ baryon assignment does provide an
approximation to some parameters, e.g. it gives gA = %? , d&/f = %
G* = /% (kee 17)° (ee following table for experimental estimates
of thesc numbers.) Again it was observed that in the A-W equation
5.2 dominant contributions were made to the integral term (the
renormalization correction) by some low lying resonancos which might
be fitted into a higher syumetry multiplet, In deciding which
représentations to mix one is thus guided by the SU(6) classification

59 that

of the baryon resonances ~ it has been shown by Dalitz
the bracket of negative parity resonances lying above the N*- %

can be best fitted into a ZQ(L=1) multiplet, This classification
uses the quark model and introduces an orbital guantum number L to
cover the relative motion of the three constituent quarks. However
difficulties arisc when we attempt to relate this to an SU(G)w

57

current algebra in the infinite momentuan frame since only in the
rest frame can W spin and L couple like S and L to give total J
thereby identifying the physical particles. Outside of the rest
frame the non vector character of W may be expected to interfereo

57

with this simple procedure - it was first suggested”’ that possibly

this was only an apparent complication and the coupling could be
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effected as in the gtatic case, However Lipkin et a162 have arguad
that we are indeecd faced with a serious limitation here, and later
work by Dashen and Gell—ﬁannGQQems to confirm this, In any case

it must be remarked that an additional orbital degree of freedom
has to be introduced into the scheme if it is to allow non zero
anamolous magnetic moments - this follows from the Cabibbo~
Radicati60 identification of the anomalous magentic moment operator
in terms of the expectation value of the elsetric dipole onerator
betwecn infinite momentwa states (the Dirac moment term receives a
damping factor 1/E),.

An alternative resresentation of the magnetic moment operator
uses the Lorentz tensor parts of the W spin vector and then, to
make contact irith electromagnetism, relates the tensor divergences
to the vector field operators (PCIC) and uscs the custouary assunption

of vector dominance of the electromagnetic foim factors, Ihis

€

approach has beecn discussed by Gato et al o
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52 The §§(L=C) (E) 70{1.=1) Mixing scheme

The 76(L=1)} IR decomposes into the foilowing (p; 2J+1)
multiplets : (105 4,2), (8; 6,4?,22), (13 4,3) - note in particular
the existence of two spin -} octets so that including the 56
contribution we have three spinei octets requiring two. mixing
angles, This greatly reduces the predictive powefhrendering it
impossible, e.g. to obtain a relation between g\ and D/F, one of

- 62
the successes of other mixing scheues

We write, for the octet baryon, in a helicity diagonal

representation,
(B); = Coso \567_5_ + 5in@ [Cosg( /-;: \70(82)7% - /‘;-{70(82),‘;_%)
. 1 .
+ Singd /7] 70(8,4}>2 - /-;-'\70(8,4)7% + /%!.70(8,4»__1‘_)] 5¢5

2
© measures the ég-zg mixing, Y’that between the two J=} octets
occurring in the angular mowentuw: dircct products % (g) i, 3 (g) i
for 70(i=1j}, The suffix gives the U(6) contribution 5, to the
helicity h {} above as designated on the left) - the orbital
contribution is defined by 1z = h-Sz. Using the tables of Chapter 3
and the Wigner~Eckart theoren for generators(which)as emphasized
by Gell-.ann leaves us with no overall scale factor or unknown
reduced matrix element = those of the generators which enter here
are

CTON35, 4707 =3 /2 456 1354 56 = 3 /2 5.6 )



we find for the 70 coniributions

gA {70

2
D+F | 70

6 {70

~
- 2
re.

9

it

% Sin 2f-= 3 Cos 2y )

6 Sin 3 ©

2~ 8 Sin 2¢:~ 3 Cos 2(.
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S5e7a

570

5.7¢

These can now be coizbined with the i contributions as laid

out in the following Table :~

I

TABLE 1
; ) @ 9, 5 D/(D+F) G*,
0 - 1,66 C.60 1,63 {= /-‘,;;'-)
20 30 0.83 0.73 + 1,08
50 =10 1,04 0,63 + 1.01
90 =50 1.16 0.57 + 0,97
38 -15 1,18 0,63 P
1_1_.5 -25 i . 18 09 61& 1. 37
55 -35 1,18 0,63 1,24
Experiment 1,18 0.65+0,05 lalt Ol

For a given 70 mixing angle 2% in eqns, 5.7a,t we may employ

either ¢0 or ¢ &\

in ean,5.7c, and this corresponds rzspectively
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to the + spin for GE at 8 = 90, For 6 £ 90 we tabulate only
those GZ resulting frou “he positive 70 contribution since they«
give a better fit, We insert an elementary remark on the
calculation of D3F ratios such as in this Chapter, since confusion
may arise due to alternative normalizations. Using the conventional
notations we have

CilF[§ S =F ifijk + D dijk defining D:F,

The f's and d's play the role of unnormalised reduction coefficimnts

since
i’f £ = %3¢ Zd d =§.r"
i ijkijl gkl' ij ijkijl 3“5k1 *

In a higher symmetry scheme using CGcs we calculate

(i\Fk{j‘; = (S + a) x <reduced matrix element>
where S, a are CGes referring to nornalised symmetric and anti-
syuiietric octet products
e.g. 56 35 56

s ~v( e s 82)

‘V1 Vz V‘3

D
Clearly we have E =7 when ifijk = dijk otherwise we must take

care to convert from one scheme to the other, e.g.

i“}ijk 9; 5k
.em 1
LHI VY 1 3
. 2
Ly i n> Y -3
3
4p|f\n7 2 2
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30 in our case no conversion was necessary.
The ano..alous magnetic moments are calculated assigning N}
the magnetic momantﬁoperator’ the U(6) transformation properties
3‘5(.’3.,1)}1z =+ 1 (and in SU(3) ~ Q). Ve must calculate the
matrix elements of :i + 1 corresponding to transverse moiientun
transfer (the momentum is infinite in the collinear direction)

neccessarily non zero according to

. '.\‘
fi, . x §™(q) 5.8

\Q:;.; q=0
~ .
q = momentun transfer
Since 70 (xJ 35 contains 70 twice thcre are in all three
reduced matrix elettents to consider ¢70 \l 35\ 702 s <704 350 7027
and {70 1135 #56 )  (the fourth ¢ 56' 35136 does not enter by

the Uigner-Eckart theorem on L, and represents one of the wotives

for allowing mixing with orbital excitation), We find

n, (proton) = - 3, {neutron) = const.Sin28Cos( P 0lB5 456 > 5.%

or equivalently

« oy = 0.75 5.9b
where « = ;_F gives the D:F ratio of the anomalous magnetic
6
moments from factor F, and experimentally has the value 0,774 3-

2

or course this result has been found earlier by current algebra

methods&*.
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We are not able to make any prediction concerning the N-N*
1i1 electromagnetic transition moment u* due to the presence of the
elements 70 35 701'2 . However an alternative scheue,
cf. Lippin et a162 involving no decuplet mixing, and giving Gﬁ = 1,15

would predict

on/0
n* ~ I%“ - ?éﬁ w{proton) 5,10
2/2 65

to be compared with the experimental value 1,3 —5— 1 proton
We thus find the 56(L=0) (+) 70(L=1) system advocated by
57

Dashen and Gell~iann”’' adequate but inconclusive - however some

decuplet mixing does secn to be necessary.
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