GROUP THEORETIC METEODS IN

ELEMENTARY PARTICLE PHYSICS

Colin Leslie Cook Theoretical Physics Department Imperial College of Science \& Technology IOMDON SM7.

Ph.D. Degree
June 1967.

PREFACE

The work presented in this thesis was carried out in the Department of Theoretical Physics, Imperial College, between October 1963 and December 1966 under the supervision of Professor P. T. Mathews. The author wishes to thank him for his guidance and assistance.

Except where stated in the text the work described is original and has not been submitted in this or any other University for any other Degrec.

The author gratefully acknowledges the financial support provided by Shell Oil (N. Z.Ltd.) for the duration of his studies.
g.

CONTENTS

Page No.

Preface 2
Index. 3
Abstract 5
Introduction 6
Chapter 1 - ALGEBRATC AND OTHER PRELIMINARIES

1. 1 Canmical forms for simple Lie algebras 11
1.2 Hermeticity conditions 15
1.3 Generalities on irreducible representations 19
1.4 Inner and outer products 22
1.5 Symmetric group 23
1.6 Tensorial realisations of $\operatorname{SU}(n)$ 26
1.7 Canonical labelling schene for $\operatorname{SU}(\mathrm{n})$ 29
2. 3 Irreducible tensor operators 30
1.9 Phase conventions 33
Chapter $2-\operatorname{THE}$ STRUCTURE OF THE SU(6) ALGEBRA
3. 1 Commutation rolations of $\mathrm{SU}(6)$ 4.1
4. 2 Phase conventions for $\operatorname{SU}(6)$ 57
2.3 $\operatorname{SU}(3) \times \operatorname{SU}(2)$ decompositions in $\operatorname{SU}(6)$ 62
2.4 Construction of $\operatorname{SU}(3) \times \operatorname{SU}(2)$ submultiplets 65
2.5 Some special features of $S U(6)$ 74
Chapter 3 - CALCULATION OF THE CLEBSCH-GORDAN COEFFICIENTS
3.1 Some simple examples 78
3.2 Suminary of phase conventions 87
3.3 Symaetry and orthogonality properties of C_{4} G.c's 89
3.4 Details of the tabulation 93
3.5 Application of the tables 105
Chapter 4 - $S U(6) A \mathrm{HD}$ if SPIN SYMETRIES
4.1 S-spin and higher symmetries 124
5. $2 \quad$ W-spin symetry breaking 132
4.3 The Johnson Treiman relations 136
$404 \quad \Delta W \cdot 2$ selection rike 145
4.5 Summary and conclusion 154
Chapter 5 - $\operatorname{SU}(6)$ ADD CURRENT ALGEBRA
5.1 Current algebias and representation mixing 157
5.2 The $56(L=0)(+) 70(L=1)$ scheme 163
References 168

ABSTRACT

Chapter 3 of this the is contains tables giving the reduction of the $\operatorname{SU}(6)$ direct products $56(x) \overline{56}, 56(x) 35, \quad 35(x) 35$ and the partial reduction of $70(x) 7 \overline{0}$.

Chapter 3 and the preceding chapters also treat, in detail, the structure of the $S U(6)$ algebra and associated problems such as subgroup reduction as well as more technical matters such as phase conventions.

Chapter $\&$ uses special techniques to investigate the effect of 35-1ike symatry breaking on the predictions of $\operatorname{SU}(6)_{W}$ for two body scattering; we are unable to avoid some of the poor results found in the limit of exact symmetry.

The fifth chapter presents a model fer the weak interactions of baryons based upon the mixing of $56(\mathrm{~L}=0)$ and $\mathbf{7 0}(\mathrm{L}=1)$ irreducible representations of $\operatorname{SU}(6) \times 0(3)$.

INTRODUCTION

During the rast five or six years group theory, extended from the long established $S U(2)$ isospin symmetry, has provided an amaze ingly flexible and fertile base from which to initiate forays into the elementary particle ghysics battle field; in most such essays the compact $S U(3)$ symmetry has played a central role ${ }^{1}$. One of the major reasons for success thus gained has been the organizational or unifying nower of the group theoretic approach allowing as it does an at least partially integrated view of strong, electromagnetic and weak fooces; indeed it might now be claimed that the true contribution of groups or algebras is a coherent but conarse organisation of large areas of data - the earlier ideas of generalised gauge invariance ${ }^{2}$ centrasted ith, for example, a later suggestion that (especially higher) symmetry schemes may arise phenomenologically as a result of unknown interactions at a fundamental level ${ }^{3}$ indicates perhaps a changing attitude to the question of whether or not group theory itself says any thing about primary dynamics.

1. Z. Gellmann, Phys.Rev., 125, 1067 (1962)
2. See, e.g. J. Whwingers 1962 Trieste seminar lectures and also the 1963 I. C. thesis of P.A. Rowlett.
3. J. Schiringer 1965 Trieste seminar (unpublished)

Again the idea of an internal symmetry has often been easily wedded to other indeperdent physicar concepts, although at a deeper level, the more significant union of internal and space time sylmetries in a non trivial fashion has produced only deep conflict, not yet resolved.

A third reason for the popularity of group and algebraic methods has been their capacity to sustain wide ranging and detailed calculations - although these are usually of a comparative nature and always limited in their success by the inherent approximations. It is with the mechanics of calculation and sone of their results that this thesis is concerned - wo are further restricted to compact symetry schemes, or more precisely schemes where multiplets contain a finite number of particles. Non-compact systers employing representations containing an infinite number of particles have also been studied, but are not noted for ease of computation。

The SU(6) group studied here was first seen as a direct extension of the supermultiplet theory of Wigner giving a partial non reativistic oombination of internal, now $\operatorname{SU}(3)$, and space tiine symetries ${ }^{4}$. A crucial departure from Vigners work was in multiplet anignnents. The low lying baryous and mesons did not occur in the fundamental group representation (ass) the cese ior
4. F. Gursey and Lok. Radicati. rhys.Rev.Letts., 13, 173 (1964)
A. Pais ibid, 32, 175 (1964). B.Sakita, Phys.Rev., 136, Bo 1756,1962.
$S U(3))^{5}$ and the suc asses of $S U(6)$ consequently gave considerable impetus to the quark \rightarrow or composite - model of eiementary particles which does then relate the $S U(6)$ irreducible representation 6 to postulated physical states, quarks.

Our first three chapters present the matheiantics of this group and culminate in the reduction of the direct product for the most imortant 3 hysical multiplets - a new feature of $S U(6)$; carefully elaborated here, was the increased involvemenc of the unaerlying symmetris or permutation groups due to the subgroup decomposition required by the physics. We also take care with the nothious and elusive question of phases and ohase conventions.

Given the $S U(6)$.rinene an immediate problem, urgently attacked, was that of finding a relativistic counterpart, corresponding to the incorporation of the Poincare group, and not just one of its little groups, with SU(3). It was hoped that, for examele, a clearer anderstanding of symmetry breaking might result, since the mass operator, now to be included in the symmetry scheme holds in its non degenerate spectrum perhaps the key to this problea. Unfortunately o'Radfeartaighs ${ }^{6}$ theorem on
5. M.Gollmann, Phys.Letts., 8, 314 (1964)
. G.Zireig, unpublished Cern. notes.
6. L. O'Raifeartang, Mhys. 'ev., 139, B. 1052 (1965)
the impossibility of finding a discrete mass spectrum in an exact Poincare group containing sy:unetry brought this work to a negative conclusion.

Neglecting this shortcoming, considerable dovelopment of the relativistic theory occurrod. It was found moreover that many of the predictions of such schemes could be deduced from a study of certain compact subgroupse One of these was again $\operatorname{SU}(6)$, the so called $\operatorname{SU}(6)_{w}$ and in Chater ite we present our cw. calcuiarions o: tine preuictions of this group for soule two body scattering processes in the presence of various types of symmetry breaking.
a parallel line of develoment also swggested by Gcllmann ${ }^{1}$ regards the symaetry ; mperties of transidion operators to be more basic or at least simpler than those of the single particle states between which they operate and on which was built the group theoretic approach. Perhaps the most noted success in this field, that of current algebras, was the calculation of the weak axiel vector to vector coupling constant ratio ${ }^{7}$. Essentially the compact algebra $\operatorname{SU}(2) \times \operatorname{SU}(2)$ was employed so that the transition operators involved had irreducible $\operatorname{SU}(2) \times \operatorname{SU}(2)$ transformation properties whilst the (nuclear) states used were algebraically irreducible only under the isostin subalgebra, and were in fact infinitely reducible under $\operatorname{SU}(2) \times \operatorname{SU}(2)$. From this success arose atcompts
7. S.I Anlor, Phys.Rev.Ltecs., 14, 1051. (1965)
W.I. Weisberger, Phys.Rev.Letts., 14, 1047 (1965)
to approximate staipes a combination of a finite number fusually two:) of irreducible roprosentations, and in Chapter 5 we show an application of the $S U(6)$ aigebra and some of cur Tables to this question of representation mixing.

CHAPTER 1

AIGERRAIC AND OTHER PRELIMINARIES

This chapter cosprises a miscellany of results and definitionu needed in the sequence. We emphasize that there is no attempt at either an elementary or a complete discussion of the material there are far too many treatments already in existence to justify such delay. Discussion of piase conventions and of the iull nature of the dual relationship between continuous and symmetric group is perhaps less readily available and on these two questions we give more detail.

1.1 Canonical forms tor simple lie algebras

The above remarks apply especially in this section; in particular we have not thought it necessary to provide a glossary of Lie algebra terminology. The book by Jacobson treats the subject in full mathematical rigour 1,2 , whilst there also exist many well known reviews 3 . 4 .

We shall regard a Lie algebra as a set of matrices which is closed under (a) commutation of any two elements, (b) addition and subcraction of any two elements, (c) multiplication by arbitrary elements from a base field; the specification of this field is essential in the transition from algebra to group and receives brief mention below (, 1.2). Given a (matrix) basis for the
algebra all element. may be obtained by the operations (a), (b), (c). Then,
(i) There exists the ficilcwing canonical form for the commutation relations ($C_{0} R_{*}$) of a simple complex (i.e. over the complex field) Lie algebra L of rark I :- L contains a Eartan subalgebra with 1 linearly independent mutually comating elements. The remaining ('non diagonal') operators ($\mathrm{N}-1$ in number if L has order N) may be split into two sets, raising operatcr:; E_{α} anả lowering operators $E_{\sim \alpha}$ (also collectively denoted shift or ladder operators), and the C. Rs are

$$
\begin{aligned}
& {\left[H_{i}, H_{j}\right]=0, i, j=1, \ldots, 1 \quad n=1 \quad \text { i. } 1 \mathrm{ia}} \\
& {\left[\mathrm{Hi}_{i},{ }_{ \pm}{ }_{ \pm \alpha}\right]= \pm \Gamma_{i}(\alpha) E_{ \pm \alpha} \quad \text { i.1b }} \\
& {\left[\sum_{\alpha}, E_{-\alpha}\right]=2 \bar{Z}_{i} r_{i}(\alpha) H_{i} \quad \text { 1.1c }} \\
& {\left[e_{\alpha}, E_{\beta}\right]=H_{\alpha \beta}^{E}{ }_{\alpha+\beta} \text {, for any } \pm \alpha, \pm \beta \quad \text { 1.1d }}
\end{aligned}
$$

where $r_{i}(\alpha)$ is the $i^{\text {th }}$ component of the root vector $i(\alpha)$, and $N_{\alpha \beta}$ is a c-number, equal to zero unless $r(\alpha)+r(\beta)$ is a root. (2) The complete algebra is generated by a subset of elements associated with the simple roots (see especially Dynkin 2% These are the generators $\sum_{i c}$ where $r(\alpha)$ is a simple root (there are 1 of these) and for this system wo may write, with $h_{\alpha}=r(\alpha){ }^{\prime H}$
((α) a simple root

$$
\left[E_{\alpha}, E_{-\beta}\right]=n b_{\alpha \beta} h_{\alpha} \quad i r(\alpha) \text { a simple root) } \quad \text { iva }
$$

$$
\left[h_{\alpha}, E_{ \pm \beta}\right]= \pm r(\alpha) \cdot \Gamma(\beta) E_{ \pm \beta}(r(\alpha) \text { a simple root }) \quad 1,2 \mathrm{~b}
$$ and

$$
\left[E_{\alpha}, E_{\beta}\right]=N_{\alpha \beta} \mathrm{E}_{\alpha+\beta} \quad \text { as before } \quad 1.2 c
$$

(Equation 1.2c prevents 1.2a, 1.2b from forming a subalgebra) Equations $1.221 .2 b$ illustrate the remark that a simple Lie algebra of rank 1 can be viewed as 1 non-orthogonal SU(2) Lie algebras. (In the following we often ropresent an algebra by its customary physical symbol, e.g. $S U(n)$ rather than $A_{n-1}{ }^{\circ} \quad \cdots$ the smae term may 2 Hs desoribe a rolated group.) We have introduced both i: and h since this is closer to physics, e.g. in $S U(3)$ we have I_{3} and Y for H_{1} and H_{2} whereas $h_{1}=\frac{1}{2} H_{1}+\sqrt{3} / a H_{2} h_{2}=\frac{1}{2} H_{1}-$ $\sqrt{3 / 2} \mathrm{H}_{2}$ cr. 1.3.
(3) The numerical factors occurring in the commutation relations (the structure constants) are all real. The numbers $i=(\alpha)_{e} F(\beta)$ are completely deternined, for a given simple L, only upto an overall normalization constant. The comnutation relations determine only $N_{\alpha \beta}^{2}$ - for each $\alpha_{\beta} \beta \pm N_{\alpha \beta}$ must be chosen consistent with the $C_{0} R_{0}$ and consistently adhered to (ch. Behrends et al ref. ${ }^{3 \prime}$). Different allowed hoices produce isomorphic Lie algebres.
(4) Corresponding to the sets $E_{\alpha}, E_{-\alpha}$, we have the positive roots $r(\alpha)$ and the negative roots $r(-\alpha)=-r(\alpha)$. The concept of a positive root is defined with rospect to a certair arbitaly ordering or elements H_{i} in t Carion zubalgebra and is extended also to
weights in a arbitrary imreducibie reprosentation. (Recall that a root vector is a weight vector of the reguiar representation.) It is important to state inf ordering in defining highest weight, and differences exist in the literature on $\operatorname{SU}(3)$, where the condion choice is the order $\left(I_{3}, Y\right)$ used by $D \in S$ wart 5 . and by Behrends et al ${ }^{3}$ but $\left(Y, I_{3}\right)$ has also been Lised, e.g. Salam ${ }^{3}$, Rashid ${ }^{\text {4. }}$. See also 1.9.
(5) The 1 simple roots have non positive scalar products whose values may be displayed in a Dynkin diagram ; further if $r(\beta)$ is any positive root then $r(\beta)=\sum_{a=1}^{l} n_{a} r^{a}(\alpha)$ where H_{a} is a non negative integer and $r^{2}(\alpha) \quad a=1, \ldots, 1$ are the simple roots. A positive root $F(\alpha)=\sum n_{a} r^{a}(\alpha)$ is said to belong to the $k^{\text {th }}$ layer, where $k=\sum_{a} n_{a}$ similarly a negative root $r(\beta)=$
 $1=\frac{\sum}{a} f_{a} f$. The commutator of two generators π_{α}, E_{β} where $r(\alpha)$, $r(\beta)$ belong to layers $k, 1$, if non zero is in the $\pm k \pm 1$ layer where we take,$+(-)$ for positive (pegative) rootsn The concept of layer is also extended to weights in an arbitrary IR.
(6) The complex Lie algebra L comprises arbitrary linear combinations, with complex coefficients, of the N generators in ean. 1.1. For the above atructural theorens inf usa of une wing. $x \mathrm{x}$

groups it is often -ine convenient to regard this system (eqso 1.1 over the complex field) as one with $2 N$ real degrees of freedom. When we talk aboui a reai si:mple Lie algebra L we shall mean the system of eqs. 1.1 with N non complex (i.e. either real or imagina: y) parameters.

Much of this thesis is concerned with the finding and subsequent utilization of matrix solutions to the system, eqs. 1,1 of non linear algebraic equations. Standing alone the aquations do not have unicquely defined solutions - in order to ensure uniqueness (upto unitary equivalence) and to further specify the nature of the solution additional conditions will have to be imposed. The first of these, the hermeticity conditions, have little computational importance (once we have settled on finite dimensional irreducible representations that is) but considerable theoretical significance, whilst the second, the choice or specification of phase convention has no theoretical significance but is of prime importance when it comes to numerical calculation,

1.2 Hermeticity conditions

These arise when we attempt to pass from a representation of a Lie algebra to a ropresentation of an associated Lie group by a process of exponentiation. We have the complex Lie algebra L represented by a set of matrices $\mathfrak{i E , H}$, over the c mplex field, an artitrary element has uze iomm $L=\sum_{\alpha, i} X_{\alpha} E_{\alpha}+Y_{i} H_{i}, X_{i}, Y_{i} \in<$

For certain ranges of the parameters x, y it is possible to exponentiate L (the exponential converges) and we vrite $U(x, y)=\exp (i l)$ for the ropresentative of wome element, paranetrised by the set x, y of some Lie group. For infinitesimal values of these parameters (i.e. in the neighbourhood of the group identity) the equation assumes the form $U(x, y)=1+\frac{i}{L}$. The particular group thus generated may be compact or non-compact and its associated irreducible representations unitary or non-unitary. An important example is provided by the representations of compact groups, for which we have the following two theoreins ${ }^{\text {i }}$.
I. Every finite dimensional representation of a compact group is equivalent to a unitary representation.
II. In the above canonical form the compact subalgebra of L (i.e. the subalgebra whose elements exponentiate to elements of the compact group) is generated by the set $\left(E_{\alpha}+E_{-\alpha}\right)$, $i\left(E_{\alpha}-E_{\alpha \alpha}\right), F_{i}$ taken over the real numbers $(i=1, \ldots, 1 ; \alpha$ ranges over the positive roots). Thus also the compact subalgebra is real. Writing now $u=\exp i l$, $I_{\rho}=\left(x_{\alpha}\left(E_{\alpha}+E_{-\alpha}\right)+y_{\alpha} i\left(E_{\alpha}-E_{-\alpha}\right)+u_{i} H_{i}\right)$, x, y, u real $=\left(z_{\alpha} E_{\alpha}+\overline{\bar{Z}}_{\alpha} E_{-\alpha}+u_{i} h_{i}\right) \quad Z=x+E y$
the condition that be \because bitary gives $L=L^{+}$(+ denotes hormition
adjoint) or

$$
\begin{aligned}
& \mathrm{E}_{\alpha}+\mathrm{E}_{-\alpha}=\mathrm{E}_{\alpha}^{+}+z_{-\alpha}^{+} \\
& i\left(E_{\alpha}-E_{-\alpha}\right)=-i\left(E_{\alpha}^{*}-E_{-\alpha}^{+}\right) \\
& H_{i}=H_{i}^{+}
\end{aligned}
$$

Thus to obtain ropresentations of an algebra which exponentiate to unitary representations of the associated unique compact group, the commutation reletions must be solved subject to these hermeticity conditions - in this form the hermeticity conditions assume parametrization of the conpact group elements with real parameters x, y, u_{0} feeping the hermeticity conditions and the commutation relations fixed and allowing some of the associated real paraneters to become imaginary (we still have a 'real' Lie algebra) may provide a finite dimensional representation of a non-compact group. In this way one representation of the algebra will lead to remresentations of several non-homomorphic lie grouns. Changing the hermeticity conditions with respect to a given parametrization of a group will then alter the nature of the representation. For example, stanting froa the compact case and changing some parameters (here unspecified) from real to imaginary can lead to a finite dimensional non-unitary representation of a non-compact group; cuanging now the hermeticity condition on " ~associated generators from $E_{ \pm \alpha}^{+}=E_{T \alpha \alpha}$ to
 From a well known theorem it then follows that the associated commutation rolations have crly infinite dimensional solutions. The solutions obtained in the next chapters will always be subject to eqs. 1.3 ; and these then define the appropriate hermeticity conditions in a nonwcanonical besis.

From the above relationship of group and algebra it is clear that the one representation space may serve for both - we may speak of a group transformation of a basis element, or of an algebra transformation. A space which isirreducible for the group will also be irreducible for the algebra, and so: on.

We have
adoptad: a view :oint for this discussion which has enabled us to emphasize (i) the same solutions of the same C.Rs. of a given (complex) Lie algebra may serve, with multiplicati re factors real or imaginary, to provide representations of several Lie groups; (ii) the difference between these groups may be thought to lie in the group parameter space; (iii) keeping the C. Rs fixed the hermeticity conditions are very important in determining the nature of the solution.

There is an alternative viewoint, also in frequent use, 17 which does not make the factorization: eiement. of Lmibasis element of complox algebra X reai op imaginary number (i.c. all numbers are
instead taken ethe -11 real or all imaginary) and in this case the commutation relations become characteristic of the associated group as also do tho hermeticity conditionse for example consider the complex Lie algebra of $\operatorname{SU}(2):$ (we work in a non-canonical basis for which the hermeticity conditions are more easily handled).

From the first point of view we have the comutation relations

$$
\left[S_{1} S_{2}\right]=i S_{3} \quad\left[S_{2} S_{3}\right]=i S_{1} \quad\left[S_{3} S_{1}\right]=\$ S_{2}
$$

to be solved with hermeticity conditions $S_{i}{ }^{+}=S_{i}$. Then an element $L=\sum_{i} \theta_{i} S \theta_{i}$ real will exponentiate to a unitary representation of the compact $S U(2)$ - whereas if we take O_{1}, O_{2} imaginary te get a finite dimensional remresentation of $O(2,1)$. Changing now to $S_{1}^{+}=-S_{1}, \quad S_{2}^{+}=-S_{2}, \quad$ but $S_{3}^{+}=S_{3}\left(\theta_{1}, \theta_{2}\right.$ imaginary, O_{3} real) will give, with the same paraneters, a unitary representation of $O(2,1)$.

Alternatively one kecus the parameters always roal, the C. R.s for $O(2,1)$ become $\left[S_{1} S_{2}\right]=-2 S_{3}$, the others as above, and a finite dimensional IR will have $\mathrm{S}_{1}{ }^{+}=-\mathrm{S}_{1}, \quad \mathrm{~S}_{2}{ }^{+}=-\mathrm{S}_{2} \quad \mathrm{~S}_{3}{ }^{+}=\mathrm{S}_{3}$ whilst a unitary IR has $S_{i}^{+}=S_{i}$. Froal this point of view it makes sense to talk of non compact or compact generators etc. cr. 17 .

1.3 Generalities on irreducible representations

The solutions to eqs. 1 will be realised on finite dimensional vector spaces where the matrices act as linear transformations.

Infinite dimensiona? solutions of Lie algebra equations are also of importance in physics, but will not be discussed heren. We shall further focus atteniion on irreducible solutions, i.e. given the systen of matrices L and the vector space n, the representation is furmally considered as a linear mapping of $\mathrm{L} x$ if onto Mr . Ireducibility then implies that there is no subspace
 Such an irreducible matrix system we shall denote IR. The solutions or representations are to be constructed as follows:-
(1) We choose a basis in the vector space r. This involves labelling or identifying each of the basis vectors and can be achieved by demanding that the basis vectors form a set of orthonormal eigenvectors of some set of matrices (some of which may belong to L) such that no two basis vectors belong to the same eigenvalue of each labelling matrix. (The problen is to find, and to establish the seectra of such a set ~ usually one looks at subgroups of the given group.) As usual the eigenvalues are to be associated isith physical attributes, quantum numbers, draan from the physical systen which our equations are attempting to describe; it will be a matter of interest that the physical labelling so defined need not coincide with the purely mathematical solution, and moreover may not be even a complete or sufficient alternative. (2) Subject to a given ordering schenle on the weight comnonents,
the finite dimensions IR's of a Lie algebra are characterised by a single vector known as the highest weight. From this vector an appropriately labelled basis may be derived or rather defined using the ladder onerators of $\widehat{\oint} 1.1$. Alternatively see 1.5 the IR may be specified with the aid of a Young tableau; these are defined and discussed in G.Murtaza and M.A. Rasnid ${ }^{4}$ as well as in the book by Hanermesh 6 ;
igain, in place of either of these, an IR may be specified by giving the values attained in that IR by the Casimir operators of which there are 1 independent ones in a simple Lie algebra of rank 1. (It is vorth romarking that this method fails for infinite dimensional ropresentations。) Labelling by Casimir operataris is not much used in the physical literature.

A further property of the highest weight labelling is:-
(3) In the canonical scheme there are 1 IRs called 'basic irreducible modules' in ${ }^{\text {i' }}$ - these basic IRs have highest weight vector U^{a} say, of the form $U_{i}^{a}=\left[\begin{array}{l}0, i \neq a \\ \frac{1}{2}, i=a\end{array}\right] \quad a, i=1, \ldots, 1$ (the factor $\frac{1}{2}$ results from the factor 2 in eq.12a); the eigenvalue equation is $h_{i} v^{a}=\operatorname{la}_{i} v^{a}$ (no summation). Any highest weight now has the unique form

$$
u=\sum_{a} n_{a} u^{a}
$$

where n_{a} is a non negative integer. Note also that $U^{\prime}>\mathbf{U}^{2}>\cdot>U^{1}$, where $>$ means higher than.

In the followilig : $:=0$ always denote a basis vector of any representation by the ket syabol $\ddagger \alpha\rangle$ where the set α specified cuantum or labolling nuiners. (An arbitary state or vector will be exapnded in terms of these basis.) Often it will ke convenient to write for α that particle which conventionally has the quantun numbers $\alpha, e_{0} g_{n}, 1 \Pi^{+} y$ is the $I=I_{3}=1 \quad Y=0$ basis state of the $\operatorname{SU}(3)$ octet. We emphasize that physical states may be associated with \pm a basis state. See $32,2,3.2$. An alternative form for α is ($4,{ }^{*}$) where $\&$ is the dimension of the $I R$ and vepresents other labelse

Having obtained rarious IR's of the algebra we shall employ them in the standard group theoretic process of reducing the inner or direct product.

1.4 Inner and Outer products

(1) Inner product: Here we take two IR's of a group and ask which $I R^{\prime} s$ (of the sane group) appear in their inner, or direct, or Kronecmer product m in this way the inner product is expressed as a direct sum: formally we have the Clebsch-Gordan series,

$$
\mu_{1}(x) \mu_{2}=\sum_{1}(+) \mu_{i}
$$

Where ψ_{j} labels the IRs of some group (or algebra), (X) indicates direct product, and $(\underset{\sim}{ }$) direct sum. Specialising to basis vectors we write

$$
\left.\left|\mu_{1} v_{1}\right\rangle(x) \mu_{2} v\right\rangle=\sum_{i}^{\sum}\left(\mu_{1} \mu_{2} \mu_{i} v_{1} v_{2} \nu_{i}\right)\left|\mu_{i}, \psi_{i}\right\rangle
$$

where we have intre ?nod the Clebsch-Gordan coefficient ($C_{0} G_{0} c_{0}$)
 arbitrary gruyp or algebra; usually the group or algebra to which the CGc refers to will be quite clear. We depart from the deSwart notation in one respect, viz his symmetric and antisymnetric
 rather than $\overline{8}_{1}, \bar{Z}_{2}$ respectively. The suffices 1,2 , are reserved for another role. Chapter 3 is concerned with the calculation of CGics.
(2) Outer product: Here we take two IR's of different groups and ask which If's of a third group appear in their outer product:

$$
u_{1} \times \mu_{2} \quad p \cdot \sum_{i} u_{i}
$$

x denotes outer product and the symbol \uparrow emphasises that this is an embedding and one is really enlarging the representation space in going to the outer product.

We shall also use the symbol x alone, without $\hat{\imath}$. Then, as is usual, it will merely indicate the independent existence of the two component groups or alyebras.

1.5 Symmetric group

The symetric group S_{r} is the group of permutations on r objects, it is a finite group of order r! In the following we assume acquaintance with Young Tableaux (Y. T.) (cf. Rashid and Hurtaza ${ }^{4}, 6,7,10$) and their role in defining the 1 Rs of Sr .

A YT shall be deno+od $[\lambda]$ corresponding to the partition $\lambda_{1} \geqslant \lambda_{2}$, λ_{p} of r, or by the familiar array of boxes.
$[1]=0 ;[2]=[1] ;\left[1^{2}\right] \cdot[-1 ;[21]=\square$ etc
Now take r objects labelied $1,2, \ldots r$ and form the r different permutations; a given YT then constitutes a shorthand way of stating which sets of linear coubinations of these elements are invariant under permutation, i.e. the YT enables a direct construction of a coimplete basis for the associated IR. We give some examples:Group IR dia Basis function

S_{1}	[1]	1	\|1>
S_{2}	[e]	2	$\left.\left.\sqrt{\frac{T}{2}}(112\rangle+121\right\rangle\right)$
	$\left[1^{2}\right]$	1	$\sqrt{4}(112)-121\rangle)$
S_{3}	[3]	1	$\left.\sqrt{\frac{1}{6}}\langle 1123\rangle+\|231\rangle+\|312 i+\| 213\right\rangle$
			$+\|321\rangle+\|132\rangle)$
S_{3}	[21]	2	$\left.\frac{1}{2}(\mid 123)+\|213\rangle-\|321\rangle-\|231\rangle\right)$
			$\left.\frac{1}{2}(\|132\rangle+\|312\rangle-1321\rangle-\|231\rangle\right)$
	[21]	2	$\left.\frac{1}{2}(\|132\rangle-1312\rangle+\|231\rangle-\|321\rangle\right)$
			$\left.\frac{1}{2}(\|123\rangle-\{213\rangle+\|321\rangle-1231\rangle\right)$
	$\left[1^{3}\right]$	1	$\sqrt{\frac{1}{6}}(\{123\rangle+\|231\rangle+\|312\rangle-\|213\rangle-$
			- $\left.{ }^{(321\rangle}-(132\rangle\right)$

The entries under basis function have been obtained using the Young operator, a different operator for each basis function (this incidentally provides a labelling). A rucent full discussion of
the method can be from in ref. ${ }^{8}$. Note that in S_{3} the $\operatorname{IR}[21]$ is of dimension 2 and we find two equivalent orthogonal sets of basis functions; this is an example of a general result, which states

$$
\frac{\sum_{\lambda} n^{2}}{\lambda}=\mathbf{g}
$$

where the summation is over the dimensions r of different IRs of a finite group of order g. Notice also that the basis functions found by this YT prescription are not orthogonal within an $I R-$ for physical applications this generally is a disadvantage of this system, cf. also ${ }^{8}$. We can combine IRs of Sr according to the inner product. Some simple Clebsch-Gordan series are

$$
\begin{aligned}
& \square(x) \square \quad \text { in } S_{1} \\
& {[](x)=\left[\text { in } S_{2}\right.}
\end{aligned}
$$

The product of dimensions on the left is equal to the sum of dimensions on the right. some CGi's for the lower S_{r} are given in ${ }^{6}$

Some outer products are

$$
\begin{aligned}
& \square \times \square=\square \div \square \\
& S_{1} \times S_{1} \uparrow S_{2} \\
& G \times F=F T \\
& \mathrm{~S}_{\mathrm{i} 2} \times \mathrm{S}_{2} \hat{\mathrm{~A}}_{4} \\
& \square \times \square=\square \square+\square \\
& \mathrm{s}_{1} \times \mathrm{S}_{2} \hat{\mathrm{f}_{3}}
\end{aligned}
$$

We shall now see that these define inner products in $S U(n)$ and with
respect to this gre. n tie product of dimensions of the two IRs on the left is equal to the sum of those on the right.
1.6 Tensorial rualisations of $\operatorname{SU}(n)$

To avoid complication, in the following we refer to $\operatorname{SU}(\mathrm{n})$, however the results may be adapted to others of the so called classical ${ }^{9}$ series of groups.

The unitary finite dimensional IRs of $S U(n)$ may be realised on a tensor space which is a direct product, p times, of the n dimensional fundamental or defining representation space, A_{i} the (defining) group matrices are nxn, unitary, and unimodular. The product space $A^{\prime} x \Lambda^{2} \ldots x A^{P}$ of $p^{\text {th }}$ rank tensors is reducible, its reduction is accomplished with the aid of the Young operators or symnetrisers (cf. Rashid ${ }^{4,}{ }^{6}$) which act on the indices $1, \ldots p$ of the product spaces to produce tensors of definite symmetry type. (These we shall often denote $T[\lambda]$ - thus T_{G} represents a 3 rd rank tensor with [21] symbetry.) Corresponding to the appearance of $[\lambda] n$ times in the outer product $\square x \square \ldots x \square$ of $S_{1} x S_{1} \ldots S_{1} \hat{S}_{p}$ the tensor space can carry n orthogonal equivalent $I R s[\lambda]$ of $\operatorname{sU}(n)_{0}$

To obtain a basis for the $I R[\lambda]$ of $S U(n)$ construct a tensor $\mathrm{T}_{\mathbf{i}_{1.0} \mathbf{i}_{p}}$ of symmetry $[\lambda]$ each \mathbf{i}_{j} ranges fron 1 to n and the SU(n) transformations change this index value for each $\mathbf{i}_{\mathbf{j}}{ }^{\text {. Now }}$ consider all allowed sets of index values (if the tensor is antisymuetric in $i_{j}, i_{l k}$ we cannot have $i_{j}=i_{k}$ for any $i=1, \ldots, n$) and
for each such set cnatruct basis functions for the $\operatorname{IR}[\lambda]$ of S_{p} - in general a set of index values will not support a complete IR of S_{p} due to equalities awongst the index values. In this way one obtains a labelled basis for the IR[$\lambda]$ of $S U(n)$, as used by Weyl ${ }^{9}$ in his work on the classical groups; however the basis is non orthogonal and the lebels have no direct physical interpretation.

The inner product in $S U(n)$ multiplies two irreducible tensors, rank r,s say to produce a reducible tensor of rank rts - the original IR tensors were defined with the aid of $\mathrm{S}_{r} \mathrm{~S}_{\mathrm{S}}$, clearly the reduction of their direct product will involve S_{r+s} and we have the correspondence: inner product in $S U(n)$ outer product in symuetric group. Rules for the formation of Clebsch-Gordan series in $S U(n)$ are thus those for the formation of symaetric group outer product ${ }^{6,10}$. Of course these rules must be supplemented when the symmetric group does not completely reduce the condinuous group as, for example, when it is possible to form traces. For $\operatorname{SU}(\mathrm{n})$ as is well known (cf. Rashid ${ }^{4}$) any tensor can be urritten with covariant indices only so that the removal of traces in this case can be avoided. For example, in $\operatorname{SU}(3)$ the direct product $8(x) 8$ corresponds to [21] (x) [21] and is evaluated in this way, see eq. ${ }^{6}$ p. 252, to give $\overline{8}(\underset{X}{ }) 8=1(+) \underline{8}^{2}(+) 10(+) 10(+) 27$ alternatively in $\operatorname{SU}(3) \mathrm{T}, \mathrm{B} \rightarrow 8(t) 1$ and

$$
T_{0}^{0}(x) T_{1}^{a}=T T_{0}^{D}(+) T_{t \pi}^{0}\left(+T_{B}^{B}\right.
$$

We shall call the outer product in $S U(n)$ that process whereby IRs of $S U(p)$ and $S U(\underset{p}{ })$ are combined to form IRs of $S U(p q)$

$$
\operatorname{SU}(p) \times \operatorname{SU}(q) \quad \uparrow \operatorname{SU}(p q)
$$

$\operatorname{SU}(\mathrm{p}) \times \mathrm{SU}(\mathrm{q})$ is a maximal subgroup of $\mathrm{SU}(\mathrm{pq})$, i.e. there is no subgroup G of $S U(p q)$ such that we have the following scheme of strict containment: $S U(p q) \geqslant G) S U(p) \times S U(q)$. See Dynkin ${ }^{2}$.
 and define a set of j ndex values in $S U(p q)$ by $k_{s}=j_{s} j_{s}$ (no sum) $k=1, \ldots, p q \quad i=1, \ldots, 1, j=1, \ldots, q, \quad s=1, \ldots, r$. From the point of view of S_{r} tine $I R$ tensor P has, for each set of index values, definite germutation symaetry on r objects (the objects being the underlying product spaces), similarly for the tensor Q. Such tensors can thus be combined according to the inner product in S_{r}; in so doing we create an rth rank tensor with indices k_{s}, $s=1, \ldots, r$. Thus the process of outer product in $S U(n)$ corresponds to that of inner product in $S_{r}^{11,12}$.

In passing we note there are two ways in which one might decompose $S U(n)$ according to its unitary subgroups. In the fundamental IR \underline{n} these correspond to splitting the representation space into (i) a direct sum, so that say the first p indices belong

to $\operatorname{SU}(p)$, the last \because holong to $S U(q)$ with $n=p+q$.
(ii) a direct product. so that the fundamental tensor in $\operatorname{SU}(n)$ is a pinduct of fundarental tensors in $S U(p)$ and $S U(q)$.

$$
\mathbf{T}_{\mathbf{k}}=\mathbf{T}_{\mathbf{p}} \mathbf{T}_{\mathbf{q}} \quad, \quad j \underline{q}=\mathbf{n}
$$

Having introduced tensors we can also, outline the relation between the highest woight and YT labelling ot $S U(n)$ IRs. of $i .3$.

Suppose the ordering scheme is defined so that $T_{1}=T_{2} \ldots$ \boldsymbol{T}_{n} where by T_{i} is meant the $i t h$ basis vector of the fundamental IR in $\operatorname{SU}(\mathrm{n})$. Hence we can arrive at the highest weight in an arbitrary [λ] by filling the first row with indices 1 , the ith with indices i (cf. Kashid ${ }^{4}$). Now view the YT coluan wise - each column on its own denotes an $I R$ and the state of each $I R$ specified is in each case the highest weight. Thus the highest weight in [入] is obtained by suming over highest weights for YT of the form $\left[1^{r}\right] \quad 1 \leqslant x \leqslant n-1$. (Recall that in $\operatorname{SU}(n)\left[1^{n}\right]$ is the scalar $I R$, Rashid ${ }^{4}$) The theforehave a $1: 1$ correspondence between the $n-1$ YTs $\left[1^{r}\right]$ and the 1 s $\left.(1)-1\right)$ basic IRs of $\operatorname{SU}(n)$, which is explicitly formulated as, for $[\lambda] \quad\left[\lambda_{1}, \lambda_{2}, \ldots \lambda_{n-1}\right]$, and using eq. 1.3a,

$$
n_{a}=\lambda_{a}-\lambda_{a+1} \quad 1.4 a
$$

1.7 Canonical labelling scheme for $\operatorname{SU}(n)$

The decomposition (i) above is important for the case $p=n-1$, $q=1$, since the chain
$\operatorname{SU}(n) \cdots-\operatorname{SU}(n-1) x U(1), \quad \operatorname{SU}(n-1) \rightarrow \operatorname{SU}(n-1) \times U(1), \ldots \operatorname{SU}(2) \rightarrow U(1)$
can be used to provids a complete set of labels for an arbitrary IR of $\operatorname{SU}(\mathrm{n})$. For example in $\mathrm{SU}(3)$ each basis vector is given definite X^{2}, X_{Y}, Y eigenvailic, and this suffices to distinguish states in an $I R-I^{2}, Y$ correspond to the $\operatorname{step} \operatorname{SU}(3) \rightarrow \operatorname{SU}(2) \times U(1$?, whilst I_{3} labels the (equivalent) IRs of $U(1)$ occurring in $\operatorname{SU}(2) \rightarrow U(1)$. Froa the point of view of $1.3(i)$, the diagonal labelling operators are the Casiiinir operators of $\operatorname{SU}(\mathrm{n}), \operatorname{SU}(\mathrm{n}-1), \mathrm{SU}(2)$ (these are not elements of the $\operatorname{SU}(n)$ Lie algebra) and the $n-1$ independent $U(1)$'s, which are elements of the algebra and span its Cartun subalgebra. Instead of using the eigenvalues of the Casimir operators as labels one may alternatively give the corresponding Young tableau - this allows a concise tabular representation of basis vectors in teras of a^{\prime} Gelfand pattern'. A full discussion occurs in a series of papers by G.E.Baird and L.C.Biedenharn ${ }^{13}$ where this labelling scheme is exploited to derive the matrix elenents of the $\mathrm{SU}(\mathrm{n})$ generators in an arbitrary IR. For explicit calculation this canonical schenie was thus more tractable than that of Weyl, and further, in the case of $\operatorname{SU}(3)$, the labels could be identified with physical labels. Unfortunately this is not so for the physical $\operatorname{SU}(6)$. See Chagter 2.

1.3 Irreducible tensor operators

These are defined and discussed in many places ${ }^{5,13,12}$, as for CGe we shall use the definitions of deSwart ${ }^{5}$. The fundamental
results are the trancfncaation law

$$
\left.T\left(\mu_{2} \gamma\right) \rightarrow U(\alpha) T\left(\mu_{2}\right)\right) u^{-1}(\alpha)=\sum_{\nu} D_{\gamma^{\prime} \gamma}^{*}(\alpha) T\left(\mu_{2} \nu^{\downarrow}\right)
$$

and the Wigner Eckart theorem of．${ }^{5} 313.2 T\left(\mu_{2} \bar{V}\right)$ is an irreducible tensor operator，belonging to the $I R \underline{w}, \alpha$ are the parameters of an arbitrary group transformation and $D_{V N}^{\beta / \alpha)}(\alpha)$ is the IR μ representative of that transformation（＊denotes complex conjugate）。 Writing $U(\alpha)=\exp .\left(i \alpha_{i} F_{i}\right)$ ，the algebraic form of the defining relation becoures（using $F_{i}{ }^{+}=F_{i}$ ）

$$
\left[F_{i}, T\left(i_{j} \nu\right)\right]=\sum_{V},\left(F_{i}\right)_{V}, T\left(\mu_{1},{ }^{\prime \prime}\right)
$$

This equation is linear in the generators，and will hold for any set obtained by a linear transformation of the set $\left[F_{i}\right]$ ．It is also clear that the generators themselves forn an irreducible set，and for then，in an abritrary tensor basis for example，

$$
\left[T\left(u_{1} y\right), T\left(u_{,}, \lambda\right)\right]=\sum_{\lambda^{\prime}} T\left(\mu_{1} v\right), T\left(\mu_{1} \lambda_{\lambda}^{\prime}\right)
$$

where $T\left(\mu_{i}\right)_{\lambda \lambda} \equiv\left\langle\left(\mu_{1} \lambda^{\prime}\right)\right| T\left(\mu_{i} \nu\right)\left|\left(\mu_{i} \lambda\right)\right\rangle \quad 1.6 a$

$$
=\left(\begin{array}{lll}
u & \| & \mu \\
\lambda & v & \lambda^{\prime}
\end{array}\right)\langle\|T\|\rangle
$$

and we have used the Wigner Eckart theoren；《UTH〉 is the reduced matrixy elenent of the generators in the regular representation．

The equation 1.6 also defines the matrix elements of the generator $T\left(\mu_{i}\right)$ in a general representation，$\underline{\mu} /(\mu=$ regular representation）：

$$
\begin{aligned}
T\left(\mu_{2} \nu\right) \lambda \lambda^{\prime} & =\left\langle: \hat{\mu}^{\prime}, \lambda^{\prime}\right)\left|T\left(\mu_{1} \nu\right)\right|\left(\mu_{1}^{\prime} \lambda\right\rangle \\
& =\left(\begin{array}{ccc}
i^{\prime} & \mu^{\prime} & \forall \\
\lambda & \forall & \lambda^{\prime}
\end{array}\right)\left\langle\mu^{\prime} \mid T_{1!} \mu^{\prime}\right\rangle
\end{aligned}
$$

$\left(\begin{array}{cc}\mu^{\prime} & \mu \\ \lambda & \mu^{\prime} \\ \lambda\end{array}\right)$ is the Clebsch Gordan coefficient for the reduction $u^{\prime}(x) \mu \rightarrow \mu^{\prime}(\pm) \ldots$ and $\left\langle\mu^{\prime}\|T\| \mu^{\prime}\right\rangle$ is the reduced matrix element of the generators in the IR μ^{\prime}. It may happen that μ^{\prime} appears more than once in the product $\mu^{\prime}(x) \psi$, then of course only one of the associated sets of coefficients will be related by eq. 1. 6 c to the matrix elenents of the generators. In any case eq. 1.6e cyhibits one of the many roles of the CGc's, in this case that of providing essentially the matrix elements of the generators in a given representation. A more exhaustive list of their varied functions is given in the Boulder 1962 lectures of Biedenharn ${ }^{3}$. The transformation law for basis states is, after deSwart,

or for the algebra

$$
\left|\left(\mu_{j} \nu\right)\right\rangle \xrightarrow{T\left(\mu_{1} \lambda\right)}\left|\left(\mu_{1} \nu\right)\right\rangle^{\prime}=\sum_{\nu^{\prime}} T\left(\mu_{1} \lambda\right)_{\nu \nu}\left|\left(\mu_{1} \nu^{\prime}\right)\right\rangle
$$

In the regular or adjoint representation the generators themselves provide the basis: $\left.T\left(z_{i}\right)\right)$ has the matrix representative $T\left(\gamma_{1} \nu\right){ }_{\lambda \lambda}$ 。 where

$$
\left.\left[T\left(p_{i}\right)\right\rangle, T\left(\mu_{1} \lambda\right)\right]=\sum_{\lambda^{\prime}} T\left(\mu_{1}^{v)} \lambda_{\lambda}^{\prime} T\left(\mu_{1} \lambda^{\prime}\right)\right.
$$

We can thus set up a maping generator \Leftrightarrow basis state, with

$$
\begin{aligned}
{\left.\left.\left[T\left(u_{1}\right)\right), m_{2} \lambda\right)\right] } & \left.\rightarrow T\left(\mu_{1} y\right)\left(u_{1} \lambda\right)\right\rangle \\
& =\lambda_{\lambda} T\left(\mu_{1} \nu\right)_{\lambda \lambda}\left|\left(\mu_{1} \lambda^{\prime}\right\rangle\right\rangle
\end{aligned}
$$

To get numerical factrins correct in the maping it is best to Work from the irreducible tensor basis, whore we can take $\left.\left.T\left(u_{1}\right)\right\rangle\right) \rightarrow C\left|\left(w_{1} y\right)\right\rangle$, and we may or may not take the overall constant C=1 of Table 2, next Chapter. In other bases the numerical factor occurring in the mapping may vary from state to state. Eq. 1.7 is very useful for obtaining generator matrix elements from the commutation relations, cf. 3.1 .

1.9 Phase conventions

The question of phase conventions is not unique to the Lie algebra commation relations; it also arises for example in deriving the representations of the symetric group ${ }^{6}$; it results from a freedon of choice analogous to the choice between righthanded and left-handed co-ordinate systens in the representations of $\mathrm{C}(3)$, the Euclidean group of 3 dimensional rotations. A transition fro: right-handed to left-handed system requires reversing the dorinition of the positive direction on of the three Cartesian axes.

We begin with the example of $\mathrm{SU}(2)$:
Commutation relations : $\left[S_{+} S_{-}\right]=2 S_{3},\left[S_{3} S_{ \pm}\right]= \pm{ }^{5} \quad$ 1.Ba Hermeticity conditions: $\left(S_{ \pm}\right)^{+}=S_{ \pm} S_{3}^{+}=S_{3} \quad 1.8 b$

Labelling operatore: $\quad S^{2}=\frac{1}{2}\left(S_{+} S_{-}+S_{-} S_{+}\right)+S_{3}^{2}$ and S_{3} with Spectra: $\quad S^{2}=s(+1) 1 \quad S=0, \frac{1}{2}, 1, \ldots$

$$
S_{3}=\text { diagonal }(S, S-1, \ldots-S+1,-S)
$$

and one fixed value of S for each IR.
The only unknown matrices are $\mathrm{S}_{ \pm}$and the equations $1.0 \mathrm{a}, 1.8 \mathrm{~b}$ are easily solved to find

$$
\left\langle s_{2} s_{3} \pm 1\left[s_{2}\left(s_{3} s_{3}\right\rangle=5 \sqrt{\left(s \mp s_{3}\right)\left(s \pm s_{3}+1\right)}\right.\right.
$$

all other matrix elements vanish. A unique solution is now chosen by taking always the plus sign in eq. 1.9 - this is the universally used Condon and Shortley phase convention: $S_{ \pm}$have non negative batrix elements in every 120

From a computational view point we start with the highest state $\left.i\left(S, s_{3}=S\right)\right\rangle$ (this may be constructed by symmetrising in a direct product of $2 S+1$ fundamental spaces, or may occur as a vector in the diroct product of two IRs) and the problem is then to obtain the remaining 2 S basis functions. The operator S_{A} is used to produce these $2 S$ stetes which have different weight (i.e. the weights are simple) and are thus orthogonal; since orthoronality does not determine relative signs there are $2^{2 \mathrm{~S}+1}$ different sets of basis functions, and $2^{3 S}$ different solutions for $S_{ \pm}$(an overall minus sign has no effect on matrix eleisents hence $\overline{2}^{2 S}=2^{2 S+1} / 2$).

Within the canonical schene a phase convention for general
$\operatorname{SU}(n)$ has been sugg ${ }^{-+\infty}$ d by Baird and Biedenharn ${ }^{13}$ and adopted by a number of other workers ${ }^{15}$. We now describe this coavention and relate $i^{\text {t }}$ in particular io the structure given in $\overline{\mathbf{3}} \mathbf{1 0}$ io The positive roots $r(i j)$, or in short (ij), $i<j$ (it is convenient to replace α by ij here) and their associated generators may be schenatically displayed as follows:
(12) (23) (n-2,n-1) (n-1,n) ist layer

The simple roots are (i,i+1) and the positive roots satisfy

$$
(i, j)=(i, i+1) \div(i+1, i+2)+\ldots+(j-1, j) \quad 1,10
$$

From $\boldsymbol{g}_{\mathbf{j}} 1$ (2) the generators $E_{i, i+1}$ gencrate the whole algebra when we include hermitian conjugation, and hence our phase convention is sufficient if it uniquely specifies this set.

The labelling subgroups can be embedded so that the simple roots of $\operatorname{SU}(i)$ are $(1,2), \ldots,(i-1,2)$ - when wo go from $\operatorname{SU}(n)$ to $\operatorname{SU}(n-1) \times U(1)$ the generators excluded are $E_{ \pm(n-1, n)} i=1, \ldots n=1$. As will be seen in the $S U(6)$ example, the commutation relations amongst the $E_{i j}$ generators take the form $\left[\bar{E}_{i j}, E_{k l}\right]=\mathcal{F}_{k j} E_{i 1}-\mathcal{S}_{i 1} \bar{E}_{k j}$ and from this it follows that $E_{k l}, 1$ fixed $k=1, \ldots, 1-1$ form a set of irreducible tensor operators (apart fron a phase which is important,)transforming like the defining IR of $\operatorname{SU}(j-1)$.

Suppose the rum=entatives of the generators of $\operatorname{SU}(n)$, m © $n-1$ are know. A basis for an arbitrary $\operatorname{IR}[\lambda]$ of $\operatorname{SU}(\mathrm{n})$ is wbtained by assembling the adfferent Its of $S U(n-1)$ specified in the decomposition $S U(n) \rightarrow S U(n-1) \times U(1)$ - in the $\operatorname{IR}[\lambda]$ the matrir $2 s$ of $S U(n-1) x U(i)$ then assume block diagonal form and correspondingly the representation space [λ] is a direct sum of subspaces irreducible under $S U(n-1) \times U(1)$. idjoining any one of the generators $E_{n-1, n}$ to the $S U(n-1) \times U(1)$ set the CRs now close on the algebra of $\operatorname{SU}(n)$, or equivalently this same operator acting on any basis vector of any invariant [under $S U(n-1) x \operatorname{U(1)]}$ subspace must lead on repeated application to all other such invariant subspaces. Hence $E_{n-1, n}$ may be used to define the relative signs of the different subspaces, or more aptly froa our point fo view, introducing overall signs between different invariant subspaces will allow variation of the signs of the matrix elements of $E_{n-1, n} \quad$ For general $\operatorname{SU}(n)$ the operator $E_{n-1, n}$ acting on a basis vector in some invariant subspace $[\alpha]$ say may lead to more than one basis vector in another subspace [β]. But the rolative signs of basis vectors within the same $S U(n-1) \times U(1)$ are fixed (by conventions adopted to get this far) and we may not nominate independently the sign of each matrix element of $E_{n-1, n}$. That me must do is remove the dependence on explicit $S U(n-1) x U(1)$ statos using the Wigner-ickart theoren :

$$
\left.\mathrm{E}_{\mathrm{n}-1, \mathrm{n}}|[\alpha], \alpha\rangle \cdot \underset{\beta}{\beta}(\underset{\beta}{\beta}(\alpha][1][\beta])([\beta], \beta\rangle \cdot\langle |[1]| \rangle\right) \quad \text { i. } 11
$$

The $\operatorname{SU}(n-1)$ CGc is : $n=0 n$; the i hase ambiguity now resides aclely in the reduced matrix element and can be resolved thore, e.g. vaird and B : enharn ${ }^{33}$ fina equations for the squares of these reduced matrix elements. Including also the $S U(n-1)$ CGc's from eq. 1. 11 they are $a b 1$ e to adjust the signs of the reduced matrix elements so that the operator $E_{n-1, n}$ has positive matrix elements, and this then constitutes a general phase convention for $\operatorname{SU}(n)$.

It $i s$ evident that in proceeding fron $S U(j)$ to $S U(j+1)$ we may in fact take any of the operators $E_{j \neq i, j} j^{i=1}, \ldots, j$ to have non negative matrix elements, but the most obvious choice, canonically, seems to be the simple generator $\mathrm{E}_{\mathrm{j}, \mathrm{j} i \mathrm{i} \text {. }}$.

For $S U(3)$, where we have the wositive root scherse
(13)
de Surart ${ }^{5}$ has defined highest weight by the order $\left(I_{3}, Y\right)$, and one is forced to identify \mathbb{I}_{13} with the isospin operator I_{+}, since the corresponding root vector $\left(\Pi^{+}\right)(\cdots(1,0)$ is now highest weight in the adjoint represontation. In order that the Condon and Shortley phase convention hold for isospin de Swart takes E_{13}, and then $\mathrm{E}_{12}\left(\mathrm{I}_{+}\right)$to have non-negative matrix elements. In going from $\mathrm{SU}(2)$ to $\mathrm{SU}(3)$ the identification of isospin matrices has changed; this could be avoided by adopting the ordering $\left(Y, I_{3}\right)$ when $\left.{ }_{i}\right\rangle$ would be highest root, and $\left.\left.\| \pi^{+}\right\rangle, \| 0^{\circ}\right\rangle$ would be simple roots,

He must next \bar{u}-izuss the consi stency of phase conventions, evidently a convention will be consistent if it produces the same cepresentatin : for the generuto.s no matter hov ting particular basis is produced, i.e. whether it occurs in the direct product of various paris of the IRs or whether it be constructed directly from the fundamental representation.

A related consistency requirement arises in the definition of complex conjugate representation. In fact if general algebraic solutions are found subject to some phase-convention then obviously that convention can be applied in any given IR - however in the absence of general solntions one should always check that the choice madc may be consistently applied to the complex conjugate 1n.

As is discussed, e.g. in ref. ${ }^{6} 5.4$, given one $t R$ of a group, others may be constricted from it, not only by forming the direct product, but also by taking the couplex conjugate, or inverse transpose matrices and these are irreducible. For groups of unitary natrices $U U^{*} 1$ implies $\left(U^{-1}\right)^{+}=U^{*}$ and complex conjugate inverse transnose are trivially equivalent, more generally iammermesh ${ }^{6}$ shows that these are always equivalent if the group supports an invariant non-singular hermition form. This is the case for non compact forms of $S U(n)$ eq. $S U(p, n-p)$. In detail, the transformation

or for the matijices cse algebra, in a hermition basis, we have

$$
\begin{gathered}
U(\alpha) \sim 1+i L, L^{*}=L \quad \bar{U}(\alpha) \quad 1-i \bar{L}=1+i\left(-L^{T}\right) \\
\text { or } L \rightarrow-L^{T}
\end{gathered}
$$

However the direct use of $L \rightarrow-L^{T}$ in our solutions of eqs. 1.1 is not allowed due to the phase convention we have adopted on the matrix elements of some $E_{i j}$ viz that certain of these be posi气ive. rie add that the transformation $L \rightarrow-L T$ on the algebra is clearly non trivial; for cample all the reights rill be reversed in sign, corresponding to the change in sign of the diagonal matrices and associated with this raising and lovering operators interchange their functions. For the canonical phase convention, where $\mathrm{E}_{\mathrm{i}, \mathrm{i}+1}$ are to have non negative matrix elements, we can now make a second trivial (Mhase) transformation by changing the signs of all matrices $\mathrm{E}_{\mathrm{i} j}$ belonging to an odd root layer. This is easily seen to be consistent with the CRs eq. 1.1 - the only one needing checking is 1.1d-and we thercby recover a solution subject to the required phase convention. In general one should always check, by inspecting the CRs, that the transformation

$$
E_{i j} \rightarrow-E_{i j} \quad E_{i j} \text { phase determining matrix }
$$

is consistent with them, and that the phase convention may therefore be extended to the complex conjugate IR. We illustrate the consequences for basis vectors with some
40.
examples:
a) $\operatorname{SU}(2) \mathrm{IR} 2$ basis vactors $\langle\mathrm{p}\rangle, 1 \mathrm{n}\rangle$; the complex :onjugation :- ensformation iake, $\left.\left.\left.1 \mathrm{p} \geqslant \rightarrow \rightarrow 1 \mathrm{p}^{*}\right\rangle, 1 \mathrm{n}\right\rangle \longrightarrow 1 \mathrm{n}^{*}\right\rangle$ and the change in siga of E_{12} in the IR $\underline{2}^{*}$ is then accomplished by taking as basis states $1 \mathrm{p}^{*} \%$, $-1 \mathrm{n}^{x_{1}}$; i.e. in more customary notation

$$
\binom{p}{n} \rightarrow\binom{\bar{n}}{-\bar{p}}
$$

Clearly :e could also have taken $\left.\left(\frac{\bar{n}}{\bar{p}}\right)=-\overline{1}_{\bar{n}}^{-1}\right)$ as basis states. b) $\operatorname{SU}(3) \operatorname{IR} Z\left(\begin{array}{l}p \\ \lambda \\ n\end{array}\right)$ The deSwart ${ }^{5}$ phase convention gives the matrices conrecting $(p \leftrightarrow n)$ and $(p \leftrightarrow \lambda)$ positive matrix elements. Under complex conjugation

$$
\left(\begin{array}{l}
\mathbf{p} \\
\lambda \\
\mathbf{n}
\end{array}\right) \quad-\binom{\overline{\mathbf{n}}}{\frac{\lambda}{\mathbf{p}}} \quad(\bar{n} \geqslant \bar{\lambda}>\bar{p})
$$

and to preserve positive matrix elenents where required we can take as basis states

$$
\binom{\bar{n}}{\frac{\lambda}{\bar{p}}}
$$

CHAPTER 3

THE STRUCTURE OF THE SU(6) ALGEBRA

In this chapter the various techniques and theoroms displayed in the preceding chaptor are used to investigate the structure of the $S U(6)$ algebra and its irreducible representations. We try to be especially careful with regard to that notorious bugbear of numerical calculations, plus and minus signs. Our aims are (1) to define a set of generators, their commutation relations and their subgrouy structure for $S U(6)$ - as a byproduct fo give in detail the rogular 35 dimensional representation;
(2) to pay special attention to the setting up of a phase convention with a specified $\mathrm{SU}(3) \times \operatorname{SU}(2)$ convention;
(3) to analyse the $S U(3) x \operatorname{SU}(2)$ structure of the $S U(6)$ IRs;
(4) to emphasize the difriculties which arise in the use of a non canonical labelling scheme for $S U(6)$.

2.1 Commutation relations of $\mathrm{SU}(6)$

We proceed by enploying three different methods to write down equivalent sets of generators and their commutation relations.
(1) One formalation of the $S U(2)$ and $S U(3) C R ' s$ is

$$
\begin{aligned}
& \operatorname{SU}(2): S_{\alpha}, \alpha=1,2,3\left[S_{\alpha}, S_{\beta}\right]=i E_{\alpha \beta \gamma} S_{\gamma} \\
& \operatorname{SU}(3): F_{i}, \quad i=1, \ldots, 8\left[F_{i,} F_{j}\right]=i f_{i j k} F_{k}
\end{aligned}
$$

where $\sum_{\alpha \hat{j} \gamma}$ is the u wai permutation symbol on three letters and the $f_{i j k}$ are given by Gell-Mann ${ }^{16}$. In the fundamental representations additionai reations hold:

$$
\begin{aligned}
& \operatorname{SU}(2): S_{\alpha} \rightarrow \frac{1}{2} \sigma_{\alpha}:\left[\sigma_{\alpha} \sigma_{\beta}\right]_{+}=2 \hat{\alpha}_{\alpha p} \quad \alpha, \beta=1,2,3 \\
& \operatorname{SU}(3): F_{i} \rightarrow \frac{1}{3} \lambda_{i}:\left[\lambda_{i} \lambda_{j} J_{+}=2 d_{i j k} \lambda_{k}+\frac{4}{3} \delta_{i j} 1 \quad 20\right.
\end{aligned}
$$

where σ_{α} are the Pauli matrices, $\lambda_{i}, d_{i j k}$ are given by Goll- Fiann ${ }^{16}$ [] denotes anticommutator. Solutions of eqs. 2.1a,b in general will not satisfy eqs. 2. $2 a(b)$ - only the commutator of a Lie algebra has invariant significance. Note however that equations similar in form to eqs. $2 a, 2 b$ do hold for the fundamental representation of any $\mathrm{sU}(\mathrm{n})$ algebra.

$$
\text { Now define } \lambda_{0}=\sqrt{2 \sqrt{3}} 1(3 \times 3) d_{o j k}=\sqrt{2 \sqrt{3}} \delta_{j k} f_{o j k}=0
$$

and consider the matrix system

$$
\lambda_{i} \times 1_{2 \times 2}, \quad 1_{3 \times 3} \times \sigma_{\alpha}, \quad \alpha=1,2,3 \quad \dot{i}=1, \ldots, 8
$$

$$
\lambda_{i} \times{ }^{\top} \alpha \quad \alpha=1,2,3 \quad i=0,1, \ldots 8
$$

x signifies matrix direct product. Using the identity

$$
\left.[A \times B, C \times D]=\frac{3}{[A C}\right] \times[B D]_{+}+\frac{3}{2}[\mathrm{AC}] \times[\mathrm{BD}]_{+} \quad 2.4
$$

and eqs. $2.1 a, b, 202 a, b$ one arrives $a t$ a set of commutation relations for the system 2.3

$$
\begin{aligned}
& {\left[1 \times x_{\alpha}^{\sigma}, 1 \times \sigma_{\beta}\right]=2 i E_{\alpha \beta \gamma} 1 \times{ }_{\gamma}^{\sigma}} \\
& {\left[\lambda_{i} \times 1, \lambda_{j} \times 1\right]=2 i f_{i, j k} \lambda_{k} \times 1}
\end{aligned}
$$

$$
\begin{align*}
& {\left[\lambda_{i} \times 1, \sigma_{\alpha} \times i\right]=0} \\
& {\left[1 \times \sigma_{\alpha}, \lambda_{j} \times \sigma_{j}\right]=2 i E_{\alpha \beta \gamma} \lambda_{j} \times \sigma_{\gamma}} \\
& {\left[\lambda_{i} \times 1, \lambda_{j} \times{ }_{\beta}\right]=2 i f_{i j k} \lambda_{k} \times \sigma_{\beta}} \\
& {\left[\lambda_{i} \times \sigma_{\alpha}, \lambda_{j} \times \sigma_{\beta}\right]=2 i \delta_{\alpha \beta} f_{i j k} \lambda_{k} \times 1+2 i E_{\alpha \beta \gamma}{ }_{i j k k} \lambda_{k} \times \sigma_{\gamma}}
\end{align*}
$$

Notice that we could have taken $\mathrm{E}_{\mathrm{\lambda}_{\mathrm{i}} \mathrm{XU}_{\alpha}}$ etc and this would alter the last $C R$ in 2.5 a above.

We now have a system of 356×6 matrices closed under commatation (by an identity similar to 2.4 the set is also closed under anticomnatation then we adjoin the unit matrix $1_{3 \times 3} \times 1_{2 \times 2}$). The theory of maximal subalgebras Dynkin ${ }^{2}$ tells us this must be the fundamental rerresentation of the $S U(6)$ algebra, and consequently we may define any reprosentation of this algebra to be given by a set of 35 matrices, in 1:1 correspondence with the set 243 , which satisfy the comatation relations 2.5. An altornative way to identify the $\operatorname{SU}(6)$ algebra is given below (eq. 2. 10). In the form eq. 2.3 the coamuting $\mathrm{SU}(3)$ and $\mathrm{SU}(2)$ subgroups are clearly displayed - We enphasize that in a general representation those matrices corresponding to $\lambda_{i} x \sigma_{\alpha}$ will be different from the direct product of $\operatorname{SU}(3)$ and $S U(2)$ representative matrices. This is exactly the difference between the $S U(3) \times S U(2)$ and the $S U(6)$ algebras or groups.
(2): In this second formulation we write the commutation relations A ...6: :
\qquad
in the usual partič: $i i_{i=g}$ nal or spherical basis. This then leads directly to an irreducible tensor basis for the algebra whose basis vector fange unier the goneiator \rightarrow basis vector of regular representation masping is a physical particle, i.e. a state with pure I^{2}, I_{3} and S_{3} as well as being $S U(3) \times S U(2)$ irreducible. Our procedure is standard.
(a) SU(2). With S_{α} as in eq. 1a define $S_{ \pm}=S_{1} \pm i S_{2}$. This gives the canonical $\mathrm{CR}_{0}\left[\mathrm{~S}_{3} \mathrm{~S}_{ \pm}\right]= \pm \mathrm{S}_{ \pm}\left[\mathrm{S}_{+}, \mathrm{S}_{-}\right]=2 \mathrm{~S}_{3}$. Now transform from Cartesian to spherical basis by setting Spherical basis Cartesian basis

$$
1(3,0)\rangle \quad+\quad 13>
$$

From the known matrix elements of $\mathrm{S}_{ \pm}$(subject to the Condon and Shortley phase convention), and the regular representation $\left(S_{k}\right)_{i j}$ $\Rightarrow-i E_{i j k}$ follow inmediately

Spherical basis Cartesian basis

$1(3,1)\rangle$	$\left.=\sqrt{\frac{\pi}{2}}(11>+i 12\rangle\right)$
$1(3,-1)>$	$\left.=\sqrt{\frac{\pi}{2}}(11\rangle-i 12>\right)$.

The desired transformation is thus accomplished by the unitary $\operatorname{matrix} E_{i}^{\alpha}$

$$
\begin{array}{ccc}
11\rangle & 12> & 13 \\
1(3,1)>-1 / 2 & -i / 2 & 0 \\
1(3,-1)>0 & \cdots & 0 \\
1(3,-1)>\sqrt{2} & -i / \sqrt{2} & 0 \\
1(3, j, j\rangle=\sum_{i} \sum_{j}|i\rangle
\end{array}
$$

The unitarity relatuoss are

$$
\bar{i}_{\alpha} E_{i}^{\alpha} E_{j}^{\alpha *}=\delta_{i j} \quad \zeta_{i} F_{i}^{\alpha} E_{i}^{\beta *}=\delta_{\alpha \beta}
$$

and the irreducible teasor basis for the generator is

$$
S(3, v)=E_{i}^{V_{i}} S_{i} S(3,1)=-\sqrt{2} S_{+}, S(3,-1)=\sqrt{2} S_{-}, S(3,0)=S_{3} \quad 2,7 e
$$

From $\left\langle(3,0) 1 S_{-} 1(3,1)\right\rangle=\sqrt{2}$ we obtain the reduced matrix elenent:

$$
\sqrt{2}=\left\langle(3,0) \pm S^{f} f(3,1)\right\rangle=\sqrt{2}\langle(3,0) \pm S(3,-1) \pm(3,1)\rangle=\sqrt{2}\left(\begin{array}{ccc}
3 & 3 & 3 \\
1 & -1 & 0
\end{array}\right)\langle 1: S\rangle
$$

so thet $\langle\| S H\rangle=\sqrt{\text { ? }}$ 。
The conmutation relations becone

$$
\begin{aligned}
{[S(3, \alpha), S(3, \beta)] } & =\sqrt{2} \gamma_{\gamma}\left(\begin{array}{lll}
3 & 3 & 3 \\
\beta & \alpha & \gamma
\end{array}\right) S(3, \gamma) \\
& =-\sqrt{2} \sum_{\gamma}\left(\begin{array}{lll}
3 & 3 & 3 \\
\alpha & \beta & \gamma
\end{array}\right) s(3, \gamma)
\end{aligned}
$$

and fror this is deduced

$$
E_{i}^{\alpha} E_{j}^{\beta} E_{k}^{\gamma *} E_{i j k}=i \sqrt{2}\left(\begin{array}{lll}
3 & 3 & 3 \\
\alpha & \beta & \gamma
\end{array}\right)
$$

The analoque of 2.2 in this basis vecomes

$$
\operatorname{IR} \underset{2}{2}:[S(3, \alpha) \operatorname{S}(3, \beta)]_{+}=-\sqrt{3}\left(\begin{array}{cc}
1 & 0 \\
\alpha ; 0
\end{array}\right) \quad 2.9 a
$$

whence $\sum_{i} E_{i}^{\alpha} E_{i}^{3}=-\sqrt{3}\left(\begin{array}{c:c}1 & 0 \\ \alpha & \vdots\end{array} 0_{1}\right)$
(b) $\operatorname{SU}(3)$: Defining the highest state $\left|P^{+}\right\rangle$of the $\operatorname{SU}(3)$ octet spherical basis by $\left.\left.\left|\prod^{i}\right\rangle=-\sqrt{\frac{1}{2}}(11\rangle+i 12\right\rangle\right)$, using the regular representation ($\left.\mathrm{F}_{\mathrm{i}}\right)_{\mathrm{jk}} \rightarrow-\mathrm{if} \mathrm{i}_{\mathbf{j k}}$ of eqs. 2.1 ib , and the deStart ${ }^{5}$ definiticns of spherical generators $I_{ \pm}, K_{ \pm}$etc and his
phase conventions ius cheir matrix elements now leads to the unitque unitary transformation e_{i}^{u} exactly analogous to eq. 2.6 a

cf. B. W. Lee ${ }^{17}$.
The irreducible tensor operator set of generators is

$$
Q(8, ;)=\sum_{i} e_{i}^{u} F_{i}
$$

The reduced matrix element 〈\|Q\|〉= $\sqrt{3}$ and analogously to the SU(2) case we have :-

$$
[Q(8, \mu), Q(8, \nu)]=-\sqrt{3}\left(\begin{array}{ccc}
8 & 8 & 8 \\
\mu & \vee
\end{array} \lambda^{a}\right) ~(8, \lambda)
$$

IR2: $[Q(8, \mu), Q(8,)]_{+}=\sqrt{5 / 3}\left(\begin{array}{lll}8 & 8 & 8 \\ \mu & ,\end{array}\right) Q(8, \lambda)-\sqrt{8} / 3\left(\begin{array}{lll}8 & 8 & 1 \\ \mu & \nu & 0\end{array}\right) \underline{1}_{3 x 3} \quad 2.9 b$ with the supplementary relations: cf. B.W.Lee ${ }^{17}$

$$
\begin{aligned}
& e_{i}^{u} e_{j}^{v} e_{k}^{\lambda^{*}} f_{i j k}=i \sqrt{3}\left(\begin{array}{lll}
8 & 8 & 8 \\
\mu
\end{array}\right) \\
& e_{i}^{u} e_{j}^{v} e_{k}^{\lambda^{*}} d_{i j k}=\sqrt{573}\left(\begin{array}{lll}
8 & 8 & 8 \\
p
\end{array}\right)
\end{aligned}
$$

$$
\left.\sum_{i} e_{i}^{u} e_{j}^{v}=\forall N_{i}^{\prime} \begin{array}{lll}
8 & 8 & 1 \\
V
\end{array}\right)
$$

Defining now the 6×6 matriver

$$
\bar{F}_{v, \alpha}=\begin{align*}
& \left(1_{3 \times 3} \times S(3, \alpha)\right. \\
& \left(Q(8, \nu) \times 1_{2 \times 2}\right. \\
& (Q(8, v) \times S(3, \alpha)
\end{align*}
$$

will now lead exactly as before to the particle diagonal set of CRs, defined to hold for any IR :

$$
\left[F_{o, \alpha}, F_{o \beta}\right]=-\sqrt{2}\left(\begin{array}{lll}
3 & 3 & 3 \\
\alpha & \beta & \gamma
\end{array}\right) F_{o \gamma}
$$

$$
\left[F_{\mu, o}, F_{y, o}\right]=-\sqrt{3}\left(_{\mu}^{8} 88^{8} \lambda_{a}^{a} F_{\lambda}, o\right.
$$

$$
\left[F_{\mu, 0} F_{0, \beta^{j}}=0\right.
$$

$$
\left[F_{o, \alpha} F_{V, \beta}\right]=-\sqrt{2} \cdot\left(\begin{array}{lll}
3 & 3 & 3 \\
\alpha & \beta & \gamma
\end{array}\right) F_{v, \gamma}
$$

$$
\left[F_{\mu, \alpha} F_{\nu, \beta}\right]^{2 / 4}\left(\begin{array}{lll}
3 & 3 & 1 \\
\alpha & \beta & o
\end{array}\right)\left(\begin{array}{lll}
8 & 8 & 8 \\
\alpha & \gamma_{i}
\end{array} F_{\lambda}\right.
$$

$$
-\sqrt{576}\left(\begin{array}{lll}
3 & 3 & 3 \\
\alpha & \beta & \gamma
\end{array}\right)\left(\begin{array}{lll}
8 & 8 & 8 \\
1 & \nu & \lambda_{i}
\end{array}\right) F_{\gamma} \gamma
$$

$$
+2 / 3\left(\begin{array}{lll}
3 & 3 & 3 \\
\alpha & 3
\end{array}\right)\left(\begin{array}{lll}
8 & 8 & 1 \\
\% & 0
\end{array}\right) F_{o \gamma}
$$

We emphasize that the set $F_{\%, \alpha}$ eq. 2.3b are not yet an irreducible tensor basis for $\operatorname{SU}(6)$; it is necessary to include numerical factors with the different ($\mu,>$) components, so that for cxample reduced matrix elements calculated from the thereby modified eqs. 2. 5 b ,
are the same for eacis (μ, σ) f t of $F_{\nu, \alpha \text {. Indeed using the }}$ canonical set of CRs given below and anticipating the result Gq.in2.15, we have it fact, for the SU(6) embedring

$$
\begin{aligned}
& S *=-\sqrt{2} S(3,1) \rightarrow-\sqrt{3} \mathbf{T}(甘(1)) \\
& I *=-\sqrt{2} \cap\left(3, \pi^{+}\right) \rightarrow-\sqrt{2} \mathbf{T}\left(1^{+}\right) \\
& S: I+=2 S(3,1) Q\left(8, \pi^{+}\right) \rightarrow T\left(S^{+}(1)\right)
\end{aligned}
$$

where $T(V)$ denotes the apropriate $S U(6)$ irreducible tensor generator basis; so way write

$$
T(\beta)=\left\{\begin{array}{l}
\{\sqrt{2 / 3} \pm \times S(3, \alpha) \\
(Q(8, v) \times 1 \\
(2 Q(\xi, V) \times s(3, \alpha)
\end{array}\right.
$$

as the correctly normalised relation in the IR6 betweon $\operatorname{SU}(2) x$ SU(3) and SU(6) isroducible tensor bases.
(3) Finally we rolate the canonical and $\operatorname{SU}(3) \times \operatorname{SU}(2)$ diagonal forms. Keeping in mind the product nature of the $\operatorname{SU}(3) \times \operatorname{SU}(2)$ subalgebra we begin by choosing a basis for the Cartan subalgebra in the form $\left[O_{i}\right]=\left(I_{3}, Y, S_{5}, I_{3} S_{3}, Y_{3}\right)$ (we use conventional notation for the generators) where by $\mathrm{I}_{3} \mathrm{~S}_{3}\left(\mathrm{YS}_{3}\right)$ we mean that operator which has weight equal to $\mathrm{I}_{3} \mathrm{~S}_{3}\left(\mathrm{XS}_{3}\right)$ in the fundamental representation. (This relationshiz sili not hold in any other representation.) The ojerators $\mathrm{I}_{3} \mathrm{~S}_{3}, \mathrm{YS}_{3}$ evidently have simple spin and isoginin transfomation promerties, and are the usual choice e.g. Fais ${ }^{18}$ but of course any two operators which complete the Cartan subalgebra, \#, could be used. The set $\left[Q_{i}\right]$ certainly do not corresjond to a
canonical basis for $\#$ ；as we shilll see this is because the embedded $S U(3) x \operatorname{SU}(2)$ algebras have simple roots which aro not simple roots of $\mathrm{SU}(6)$ ，nor do the eigeritalues of the Q_{i} in the regular representation form normalised roots．However the positivity property implicit in the＇ordering scheme＇（ 1.1 ）is clearly invariant under change of scale；so we choose the order I_{Z}, Y, S_{3} ， $\mathrm{I}_{3} \mathrm{~S}_{3}, \mathrm{YS}_{3}$ and determine a set $\left[\mathrm{H}_{\mathrm{i}}\right], \mathrm{H}_{\mathrm{k}}=\mathrm{q}_{\mathrm{k}} \mathrm{O}_{\mathrm{k}}$（no summation）with respect to which the weights in the IR35 become normalinこう roots． The Earticular order chosen above is convenient since then the highest woight is that highest $S U(3)$ vector which has highest S_{3} component．The weighis m_{i} with respect to $Q_{j} i=1, \ldots, 6$ in
 $i<j$ in 35 are now oasily found by inspection．（We change our notation siigitly from $\tilde{\beta} 1.1$ ，converting generator labels $\pm \alpha$ on $E_{ \pm \alpha}$ to $i j, i S_{j}$ on $E_{i j}$ ．The hermeticity condition is then $\left.\left(E_{i j}\right)^{+}=E_{j i}\right)$

TABLE 1(a)

Weight rector	Fhysical label	I_{3}	Y	S_{3}	$\mathrm{I}_{3} \mathrm{~S}_{3}$	yS_{3}
m_{1}	p	1/2	$1 / 3$	1/2	1/4	1/6
m_{2}	-	1/2	1/3	-1/2	$-1 / 4$	-1/6
m_{3}	λ.	0	$-2 / 3$	1/2	0	$-1 / 3$
${ }^{1}$	$\hat{\lambda}$	0	$-2 / 3$	-1/2	0	1/3
n_{5}^{4}	n	-1/2	1/3	1/2	$-1 / 4$	1/6
${ }^{5}$	n	$-1 / 2$	$1 / 3$	-1/2	$1 / 4$	$1 / 6$
	$-m_{1}>m_{2}>\cdots>m_{6}$					
${ }^{11} 16$			0	1	0	1/3
	$\mathrm{p} \overline{\mathrm{n}}$	1	0	0	1/2	0
${ }^{10}$	ph	1	0	0	-1/2	0
	pn	1	0	-1	0	$-1 / 3$
25	$p \bar{i}$	1/2	1	4	1/4	$-1 / 6$
${ }^{m 11} 14$						
${ }_{13}{ }_{13}$	p ${ }^{\text {P }}$	1/2	1	0	1/4	1/2
${ }^{14} 24$	¢ $\hat{\mathrm{p}}^{\text {i }}$	$1 / 2$	1	0	$-1 / 4$	-1/2
	$\hat{\mathrm{p}} \bar{\lambda}$	1/2	1	-1	$-1 / 4$	1/6
${ }^{23}$	$\cdots \overline{\mathrm{n}}$	1/2	-1	1	-1/4	-1/6
${ }^{m} 36$	in					
${ }^{10} 35$	$\lambda \bar{n}$	1/2.	-1	0	$1 / 4$	-1/2
${ }^{\text {m }}{ }_{4} 6$	S	1/3	-1	0	$-1 / 4$	1/2
${ }^{4}{ }_{45}$	$\dot{\lambda}$	$1 / 2$	-1	-1	1/4	1/6
${ }^{4} 12$	p $\overline{\hat{p}}$	0	0	1	1/2	$\begin{array}{r} 1 / 3 \\ -2 / 3 \end{array}$
${ }_{0}^{12}$	$\lambda \hat{1}$	0	0	1	$\begin{gathered} 0 \\ -1 / 2 \end{gathered}$	
mm_{56}	$n{ }^{\text {m }}$	0	0	1		$1 / 3$
	$\mathrm{m}_{16}>\mathrm{m}_{15}>\ldots>\mathrm{m}_{56}$					

 the comolex conjugate state having diagonal cuantum numbers negatives of the unbarrod states.

Notice thet already in 35 (and n $\left.6^{*}\right)\left(\mathrm{YS}_{3}\right)\left(\mathrm{I}_{3} \mathrm{~S}_{3}\right)$ do not
 By inspection one establishes the relationship characteristic of the $s u(6)$ algebra;

$$
m_{i j}=m_{i, i+1}+m_{1+1, i+2}+\ldots+m_{j-1}, j
$$

The simple roots are related to the $\mathrm{m}_{\mathrm{i}, i+1}$ and are now obtained by introduction of appropriate scale and normalization factors:In the IR6 it is easily seen that tre equation $\left[Q_{i}, E_{i, i}\right]={ }_{i n}{ }_{i j}{ }_{i j}$ (no sum) recuires $E_{i j} \alpha \theta_{i j}$ where $\left(e_{i j}\right)_{a b}=\delta_{i a} \delta_{j b}$ is the familiar gererator form used by :"eyl ${ }^{9}$ cf. also Rashid ${ }^{4}$ (remamber we are solving $C R s$ of the general form wis. 1.1); with $H_{k}=q_{k} \mathbf{k}_{k}$ and correspondingly $\left(r_{i j}\right)_{k}=q_{k}\left(m_{i j}\right)_{k}$ (no sum, k labels components) the equations $\left[E_{i j}, E_{j i}\right]=2 r_{i j}$.ll defining $H+r$ may be used to solve for the factors q_{k}. (The equations are actually for q_{k}^{2} but the negative solutions are discussed since they would conflict with the ordsring schene.) We thus obtain

$$
H_{1}=\sqrt{2} I_{3} \quad I_{2}=\frac{1}{3} \sqrt{3 / 2} Y \quad H_{3}=\sqrt{1 / 3} S_{3} H_{4}=\sqrt{2} I_{3} S_{3} H_{5}=\sqrt{3 / 2} \mathrm{YS}_{3}
$$

and correspondingly a set of normalised root vecturs

$$
\left(r_{i, i+1}, r_{j, j+1}\right)= \begin{cases}(1 & j=i \\ \left(-\frac{1}{2}\right. & j=i \pm 1 \\ (0 & \text { otinerwise }\end{cases}
$$

The complete sot of positive roots is obtained by introducing the numerical factors in eq. 2.11 into the set ${ }^{11}{ }_{i j}{ }^{*}$

TABLI 3(b) - System of positive roots for SU(6)

Root Vector	H_{1}	H_{2}	H_{3}	${ }^{1} 4$	H_{5}
r(16)	$\sqrt{1 / 2}$	0	$\sqrt{1 / 3}$	0	$\sqrt{1 / 6}$
(15)	$\sqrt{3 / 2}$	0	\bigcirc	$\sqrt{1 / 2}$	0
r(26)	$\cdots \sqrt{1 / 2}$	0	0	$-\sqrt{1 / 2}$	0
r (25)	$\sqrt{1 / 2}$	0	$-\sqrt{1,3}$	0	$-\sqrt{1 / 6}$
$r(14)$	$\frac{1}{2} \sqrt{1 / 2}$	$\frac{1}{2} \sqrt{3 / 2}$	$\sqrt{1 / 3}$	$\frac{1}{2} \sqrt{1 / 2}$	$-\frac{1}{2} / 16$
r (13)	$\frac{1}{2} \sqrt{1 / 2}$	$\frac{1}{2} \sqrt{3 / 2}$	0	$\sqrt{2} \sqrt{1 / 2}$	$3 / 2 \sqrt{1 / 6}$
$r(34)$	$\frac{1}{2} \sqrt{1 / 2}$	$\frac{7}{372}$	0	$-\frac{1}{2} \sqrt{1 / 2}$	$-3 / 2 \sqrt{1 / 6}$
r(23)	$\frac{1}{2} \sqrt{1 / 2}$	$\frac{1}{2} \sqrt{3 / 2}$	$: \sqrt{1 / 3}$	$-\frac{1}{2} \sqrt{1 / 2}$	$\frac{1}{2} \sqrt{1 / 6}$
$r(36)$	$\frac{1}{3} \sqrt{1 / 4}$	$-\frac{1}{4} \sqrt{3 / 2}$	$\sqrt{1 / 3}$	$-\frac{1}{2} \sqrt{1 / 2}$	$-\frac{1}{2} \sqrt{1 / 6}$
r (35)	$\frac{1}{2} \sqrt{1 / 2}$	$-\frac{1}{2} \sqrt{3 / 2}$	0	$\frac{1}{2} \sqrt{1 / 2}$	$-3 / 2 \sqrt{1 / 6}$
$r(46)$	$\frac{1}{2} \sqrt{1 / 2}$	$-\frac{1}{2} \sqrt{3 / 2}$	0	$-\frac{1}{2} \sqrt{1 / 2}$	$3 / 2 \sqrt{1 / 6}$
r (45)	$\frac{1}{2} \sqrt{1 / 2}$	$-\frac{1}{2} \sqrt{3 / 2}$	$-\sqrt{1 / 3}$	$\frac{1}{2} \sqrt{1 / 2}$	$1 / 2 \sqrt{1 / 6}$
r (12)	0	0	$\sqrt{1 / 3}$	$\sqrt{1 / 2}$	$\sqrt{1 / 6}$
r (34)	0	0	$\sqrt{1 / 3}$	0	$-2 \sqrt{1 / 6}$
r (56)	0	0	$\sqrt{1 / 3}$	$\sqrt{1 / 2}$	$\sqrt{1 / 6}$

At this stage the algebra is not completely defined since those structure constants corrosponding to $N_{\alpha \beta}$ in Chapter 1 have not been given. We arbitrarily fix these by choosing for all generators
$E_{i j}$ the representative $e_{i j}$ in $\underline{6} . \quad$ With $\left[e_{i j}, e_{r s}\right]=e_{i s} \bar{Y}_{r j}-$ $e_{r j} \oint_{i_{s}}$ this gives

$$
N_{i j, j k}=1=-N_{j i, k j}
$$

$$
\text { all other } \mathrm{N}_{\mathbf{i j}, \mathrm{mn}}=0
$$

This choice, leads to N_{α} for the subgroup $\operatorname{SU}(3)$ the same as chosen by deSwart ${ }^{5}$.

The complete set of conmutation relations are now

$$
\begin{aligned}
& {\left[E, E_{i j}\right]=r(i j) E_{i j}(r(i j)=-r(j i))} \\
& {\left[E_{i j}{ }^{\prime} E_{j i}\right]=2 r(i j) \cdot H \quad i<j} \\
& {\left[E_{i j}, E_{r s}\right]=N_{i j, r s} E_{i j+r s}}
\end{aligned}
$$

It is now an easy matter to locate the diagonal SU(3) and SU(2) subalgebras in terms of the canonical generators:

SU(2) : Noting that $r(12)+r(34)+r(56)$ has component only along H_{3} we take

$$
S_{+}=E_{12}+E_{34}+E_{56} \quad S_{-}=E_{21}+E_{43}+E_{65}
$$

$$
=\therefore \sqrt{3} H_{3} \text { as expected cf. eq. } 2.11
$$

Similarly we can easily locate and identify the commuting SU(3) subalgebra:

$$
\begin{array}{ll}
I_{+}=E_{15}+E_{26} & K_{+}=E_{13}+E_{24} \\
I_{-}=E_{51}+E_{62} & K_{-}=E_{31}+E_{42} \tag{2}
\end{array}
$$

$$
\begin{array}{ll}
I_{3}=\sqrt{2} u_{2} & L_{+}=E_{53}+E_{6 L_{4}} \\
\sqrt{3 / 24}=M=\sqrt{2} \overline{i n}_{3} & L_{-}=E_{35}+\bar{r}_{46}
\end{array}
$$

We have used the $S U(3)$ generators defined by deSuart ${ }^{5}$; one can check that the $E_{i j}$ forms given for the generators do indeed lead to his commutators, Using the relations 2.13, 2.14 and eqs. 2.5a in the IR6 (where the remresontative matrices have the simple maltiplication rules:

$$
e_{i j} e_{j k}=e_{i k}, \quad e_{j i} e_{k j}=e_{k i}
$$

other groducts vanish (no sumiations)

$$
e_{i j}^{H}=H_{j j} e_{i j} \quad H e_{i j}=H_{i j} e_{i j}
$$

H diagonal matrix) the products $I_{+} S_{+}$in this In may be evaluated in terms of the $e_{i j}$, and these relations then defined to hold in an arbitrary IR.

We now map the gonerators onto basis states: it is clear that within an $\operatorname{SU}(2) \mathrm{x} \operatorname{SU}(3)$ submultiplet, once we have marped one generator into one basis state the known $S U(2)$ and $S U(3)$ matrix elements determine the romainder. Hence we have three overall constants x, y, z to solve for, associated with, example:

$$
\left.S_{+} \rightarrow x|f(1)\rangle \quad x_{+} \rightarrow y\left|\pi^{+}>\quad I_{+} S_{+}>z\right| f^{+}(1)\right\rangle
$$

The cquation $\left[E_{16}, E_{61}\right]=2 r(16) \cdot H=\sqrt{2 H} 1+2 \sqrt{3} H_{3}+\sqrt{2 \sqrt{3}}{ }_{5}$

using also the hemition conjugate form of the following:-

$$
\left.E_{61}\left|T^{\circ} ; \rightarrow-\sum_{y}^{2}\left[E_{61}, H_{1}\right] \rightarrow-\sqrt{2} \frac{z}{y}\right| \rho^{-}(-1)\right\rangle
$$

and

$$
E_{61}|\varphi(0)\rangle-\frac{\sqrt{6}}{x}\left[E_{61}, H_{3}\right]-\sqrt{2} \frac{z}{x}|\rho(-1)\rangle
$$

we obtain

$$
x^{2}: y^{2}: z^{2}=3: 2: 1
$$

or

$$
x: y: z=+\sqrt{3}:+\sqrt{3}:+1
$$

The relativa signs are in fact fixed by the phase convention, which is defined and discussed in the next section. The solutions for x, y, z above correspond to the factors required in equations $2.3 b, 2.5 b$, for the winsorial set, eq. 2.3c. The complete set of relations are given in Table 2.

The Table gi es the image of the genurators under the generator basis vector maping for different labelling schemes. We have omitted a colvmn containing the irreducible tensor labelling, since as emphasized elsewhere this mapping is trivial, characterised by en overall constant.

TABLE 2

$\begin{aligned} & \operatorname{su}(3) \\ & x \\ & x \\ & \operatorname{su}(2) \end{aligned}$	Canon	Basis Vector	$\begin{aligned} & \operatorname{su}(3) \\ & \mathbf{x} \\ & \operatorname{su}(9) \end{aligned}$	Canon	Basis Vector
S_{+}	$\begin{array}{r} E_{12}+E_{34} \\ +E_{56} \end{array}$	$-\sqrt{3}\|\varphi(1)\rangle$	$\mathrm{K}_{+}{ }_{+}$	${ }^{\text {E }} 14$	$11^{+}(1) 7$
S_{3}	$\sqrt{3} \mathrm{H}_{3}$	$\sqrt{3}(\varphi)$	${ }_{\sim}^{4} \mathrm{~S} 3$	${ }^{\frac{1}{2}}\left(\mathrm{E}_{13}-\mathrm{E}_{24}\right)$	$-\sqrt{\frac{1}{2}}\left\{k^{+}(0)\right\rangle$
S_{-}	$\mathrm{E}_{21}+\mathrm{E}_{4.3}{ }_{65}$	$\sqrt{3}\|\varphi(-1)\rangle$	${ }_{5}{ }_{+}{ }^{\text {S }}$	${ }_{23}$	$-\left\|\ll{ }^{+}(-1)\right\rangle$
I_{+}	$\mathrm{E}_{15}{ }^{+\mathrm{E}_{26}}$	$-\sqrt{2} 17^{+} ?$	$\mathrm{K}_{-} \mathrm{S}+$	E_{32}	－ $\mathrm{i}^{-(1)}$
I_{3}	$\sqrt{2} \mathrm{H}_{2}$	$10^{\circ} 7$	$\mathrm{K}_{-} \mathrm{S}_{3}$	${ }^{2}\left(\mathrm{E}_{31}-\mathrm{E}_{42}\right)$	$\sqrt{\frac{1}{2}} \mathfrak{k}(\mathrm{c}) 2$
I_{-}	$E_{51}+E_{62}$	／217－＞	K＿S	${ }_{4}{ }_{4}$	$\|K,(-1)\rangle$
$i=\frac{\sqrt{3}}{2}$	$\sqrt{2} \mathrm{Hi}_{2}$	$\left.\right\|^{(0)}$			
${ }^{5}$	$\mathrm{E}_{13}+\mathrm{E}_{24}$	$-\sqrt{2}\left(K^{+}\right)$	$L_{+}{ }_{+}$	E_{54}	$\left(10^{\circ}(1)\right.$ ）
K＿	$\mathrm{E}_{31}+\mathrm{E}_{42}$	$\sqrt{2}$ に示	$\mathrm{L}_{+} \mathrm{S}_{3}$	$\frac{1}{2}\left(E_{53}-E_{6 l}\right)$	$\sqrt{2} \frac{1}{1} K^{\circ}(0) ?$
L＋	$\mathrm{E}_{53}+\mathrm{iz}_{6}$	$\sqrt{2} ⿺ 𠃊 ⿻ 丷 木 斤 欠^{\circ}$	${ }_{+}^{+}{ }^{5}-$	E_{63}	$-k^{2}(-1)>$
${ }^{\text {L }}$	$\mathrm{E}_{35}+{ }_{4}{ }_{46}$	$\sqrt{8} \mid \mathrm{K}^{\circ}$ ？	$\mathrm{L}_{-} \mathrm{S}_{+}$	E_{36}	$\left.\mathrm{K}^{\circ}(1)\right\rangle$
$\mathrm{I}_{+}{ }^{\text {S }}$	E_{16}	$\left.1,{ }^{+}(1)\right\rangle$	$\mathrm{L}_{-} \mathrm{S}_{3}$	${ }^{2}\left(E_{35}-E_{46}\right)$	$\left.-\frac{1}{2} \right\rvert\, k^{0}(0)>$
$\mathrm{I}_{+} \mathrm{S}_{3}$	${ }^{\frac{1}{2}}\left(\mathrm{E}_{15}-\mathrm{E}_{26}\right)$	$-/ \frac{1}{2}\left\|j^{+}(0)\right\rangle$	${ }^{2}$ S	E_{45}	$-\left\|<^{\circ}(-1)\right\rangle$
$\mathrm{I}_{+} \mathrm{S}_{-}$	E_{25}	$\left.-10^{+}(-0)\right\rangle$			
			${ }_{\mathrm{Hi}}^{+}$	$\begin{aligned} & \frac{1}{\sqrt{3}}\left(\mathrm{E}_{12}\right. \\ & \left.-2 \mathrm{E}_{34}+\mathrm{E}_{56}\right) \end{aligned}$	$\left.\sqrt{\frac{1}{2}}\right\|^{\omega(1)}$
$\mathrm{I}_{3} \mathrm{~S}_{+}$	${ }^{\frac{1}{2}\left(E_{12}-E_{56}\right.}$ ）	$-\sqrt{2}\left\|\rho^{c}(1)\right\rangle$	aiS_{3}	$\stackrel{1}{2}^{4}{ }_{5}$	$\frac{1}{2}\|\sim(0)\rangle$
$\mathrm{I}_{3} \mathrm{~S}_{3}$	$\stackrel{1}{2}_{\sqrt{2}}^{4}$	$\frac{1}{2}\left\|5^{\circ}(0)\right\rangle$	MS＿	$\begin{aligned} & 2 / \frac{1}{3}\left(E_{21}-\right. \\ & \left.2 E_{43}+E_{65}\right) \end{aligned}$	$\left.\left.\sqrt{1}\right\|^{1} \omega(-1)\right\rangle$
$\mathrm{I}_{3} \mathrm{Si}_{-}$	$\frac{1}{2}\left(E_{21}-E_{65}\right)$	$\sqrt{\frac{1}{2}} \cdot \beta^{\beta}(-1)>$			
$\mathrm{I}_{-}{ }_{+}$	${ }^{\text {E }} 52$	$-1 b^{-}(1) 7$			
$\mathrm{I}_{-} \mathrm{S}_{3}$	${ }^{\frac{1}{2}\left(E_{51}-E_{62}\right.}$ ）	$\sqrt{2}\left\|j^{\prime \prime}(0)\right\rangle$			
I＿S	E_{61}	$\left\|3^{-(-1)}\right\rangle$			

rie have used standard notation for the quantum numbers but omitting the redundant \because on $k^{* \%}(i)$ etc, with $\left.\backslash Q(1)\right\rangle$ being the $\operatorname{SU}(6) 35$, $\operatorname{SU}(3) x \operatorname{SU}(2)(1,3), S_{3}=\therefore$ element and $|\alpha(0)\rangle$ the $35,(8,3)$, $Y=I^{2}=S_{3}=0$ eleneint etc.
2.2 Thase conventions for SU(6)

It should be clear that to completely determine the matrix solutions of eqs. 5, consistent with the embedded $\operatorname{SU}(3) \times \operatorname{SU}(2)$ solutions, we have only to find some way of determining ${ }^{\text {+1ie }}$ relative signs of $S U(2) \times S U(3)$ subspaces occurring in the decomposition of a given $S U(6)$ IR.

Incorporating the $\operatorname{SU}(2)$ Concion and Shortley and the $\operatorname{SU}(3)$ deSwart phase conventous we must have the following oyerators (and their hermition conjgates) with non negative matrix elements

$$
\begin{aligned}
& S_{+}=E_{12}+E_{34_{4}}+E_{56} \\
& I_{+}=E_{15} \div E_{26} \\
& x_{+}=E_{13}+E_{24}
\end{aligned}
$$

It is evident that the canonical solution discussed in 1.9
cannot apply. (It is necessary to 'embed' the $\operatorname{SU}(3) \times \operatorname{SU}(2)$ phase conventions, if only because of the consequent simplification in the construction and use of C.G.c tables. See next chapter.)

We can suggest two possible phase conventions
(i) As will be seen in Chapter 3 the $\operatorname{SU}(2) \mathrm{x} \operatorname{SU}(3)$ decomposition facilities explicit construction of basic vectors in $\operatorname{SU}(3) x \operatorname{SU}(2)$
submultinleis, in terms of the fundamental 6 and 6* entities, i.c. quarks and antiquarks, A given IR may, however, be constructed in various ways, corres rondiny to the addition of multiples of the variously named $\operatorname{SU}(6)$ scajar, or inert, unit $\left[1^{6}\right]$ or the traced T_{o}^{α}. Allowing for the prosence of these factors, it is always easy to make a direct comsarison of the same IR constructed in different ways and hence obtain a consistent phase convention. Essentially this method was employed in ref. ${ }^{11}$; its main defect is +hat it is not easily communicable, i.e. not based on any well defined operator; however, it was compatationally very single to apply. A second phase convention could be set wi as follows:
(ii) The $\operatorname{SU}(3) \times \operatorname{SU}(2)$ algebra is maximal in $\operatorname{SU}(6)$ - as may be verified directly, the addition of any operator $S U(6)$ external to the $\operatorname{SU}(3) \times \operatorname{SU}(2)$ set leads to the whole algebra. Again, as ing 1.9, we may use any one such operator to defire the relative at signs of the invariant subspaces. Ue choose H_{5} which applied to some state $\left\langle\lambda, \mu_{2} I_{3} X ; \quad S_{3}\right\rangle$ gives

$$
\begin{aligned}
0=\Delta \lambda=\Delta I=\Delta I_{3}=\Delta Y=\Delta S_{3} ; & \Delta \underline{M} \text { c } 8(\underset{S}{ } \mu \\
& \Delta S \text { с } 3(x) \mathrm{x}
\end{aligned}
$$

(Notice that H_{5}, a nember of the Cartan subalgebra, is not diagonal.) It is clear from the IRG that we cannot demand H_{5} to have only non negative matrix elements (one can further check in tise 25 that no member of the ($\because,-)$ - -i wan ta chosen to have solely non
negative matrix elements) and wo have to proceed as follows:
(a) Within an $S U(3) \times S U(2)$ multiglet it is posaible to define a unique ordering, accordirg to $\left(I_{3}, Y, S_{3}\right)$, supplemented by total isospin where necessary, i.e. States of the same $\left(I_{3}, Y_{3} S_{3}\right)$ are ordered, highest first, according to decreasing isospin.
(b) By definition the highest weight of the $S U(6)$ IR is also a highest weight of sone $S U(3) x \operatorname{SU}(2) \mathrm{IR}$, and from the unigueness of highest weights in $S U(3)$ and $S U(2)$ we may order distinn $S U(3) x$ SU(2) maltinlets according to their highest weights. (This fails whon an $\operatorname{SU}(3) \times \operatorname{SU}(2)$ submultiplet occurs more than once in an $S U(6) I R-w e d i s c u s s$ this situation when it arises \oint 3.4). (c) Applying now the operator H_{5} to a decreasing, ordered, set of basis vectors in the highest $S U(3) \times S U(2)$ submultiplet will lead into other submultiplets. Let (μ_{1}, σ_{1}) be the highest submultiplet and let $\left(\mu_{j}, \sigma_{j}\right)$ be some other submultiplet. Theil we define H_{5} to have zositive matrix elements betwen the highest possible stato in $\left(\mu_{1} \sigma_{1}\right)$ and the highest of the so determined states in $\left(\mu_{j} \sigma_{\mathbf{j}}\right)$ (in general of course this will not be the highest state of (μ_{j}, σ_{j}) i.e. in this sequence the first non zero matrix element of H_{5}
is taken positive by convention.
If $\left\langle\|_{j} G_{j}\right) \| H_{5}\left|\left(\mu_{1}, \sigma_{1}\right)\right\rangle=0$ for all basis vectors in $\left(\mu_{1} \sigma_{1}\right)$ we proceed to the next highest submultiplet and so on. In this way from the irreducibility of the $S U(6) I R$, and the maximality of $S U(3) \times S U(2)$, all rolative signs can be determined.

This method was first employed (tho' not fully described) by Schulke; ${ }^{19}$ however it is there erroneously stated that both H_{4} and H_{5} may be treatod in this way. A third paper on $S U(6)$ Clebsch-Gordan cocríicients ${ }^{20}$, does not state the phase convention used.

In detail for the 35 we have:
The highest state leading out of $(8,3)$ is $\left\langle K^{+}(0)\right\rangle$ (octet states are

$$
\begin{aligned}
\mathrm{H}_{5}\left|\mathrm{~K}^{+}(\mathrm{O})\right\rangle & \rightarrow\left[\mathrm{H}_{5},-\frac{1}{2}\left(\mathrm{E}_{13^{-E}}-\mathrm{E}_{4}\right)\right]=-\frac{3^{3}}{4}\left(\mathrm{E}_{13}+\mathrm{E}_{24}\right) \\
& \longrightarrow+\frac{1}{2} \sqrt{{ }_{2}^{2}}\left|\mathrm{~K}^{+}\right\rangle \text {if we have }\left(\mathrm{E}_{13}+\mathrm{E}_{24}\right) \rightarrow \mathrm{a} / 2\left|\mathrm{~K}^{+}\right\rangle
\end{aligned}
$$

This fixes the $(8,1)$ overall phase. For the $(1,3)$ fe must chcose $\{\omega(1)\rangle$ in $(8,3)$, and then, on defining $E_{12}+E_{34}+E_{56} \rightarrow \sqrt{3}|Q(1)\rangle$

$$
\mathrm{H}_{5}\left(w(1) ; \rightarrow\left[\mathrm{H}_{5},-\frac{1}{6}\left(\mathrm{E}_{12}-2 \mathrm{E}_{34}+\mathrm{E}_{56}\right)\right]\right.
$$

$$
=-\frac{1}{6}\left(E_{12}+4 E_{34}+E_{56}\right)
$$

$$
=-\frac{1}{6}\left[2\left(E_{12}+E_{34}+E_{56}\right)-\left(E_{12}-2 E_{34}+E_{56}\right)\right]
$$

$$
\rightarrow \sqrt{\frac{1}{3}}(\underset{\sim}{ }(1)\rangle-\sqrt{\frac{1}{6}}(w(1)\rangle
$$

We close this section with a discussion of the IRG* although since this contains only one $S U(3) x$ SU(2) multiplet its structure is already decided by $S U(2)$ and $\{U(3)$ phase conventions .

The weights of the TR6 are shown in Table 1a - the basis states are denoted by the customary quark label. Under complex
conjugation these rix states become $\overline{\mathrm{p}} \dot{\hat{p}}<\overline{\mathrm{p}}<\overline{\hat{t}}<\overline{\mathrm{n}}<\overline{\mathrm{n}}$. The Condon and Shortley convention will require the introduction of a relative minus sig: between each spin doublet and the deSwart convention will require relative minus sign between p and n, states, cr. $\$ 1 . \%$. Kence we take as basis states in $\underline{6}^{*}$

$$
\bar{p}, \quad-\bar{p}, \quad-\bar{\lambda}, \overline{\hat{\lambda}}, \quad-\bar{n}, \quad \bar{n}
$$

It is between these states then, that the operators $S \pm$, It, \pm will have non negative matrix elements; the complex conjugation operation changes the sign of the basis elenents in the Cartan subalgebra, $\oint 1.9$, and further it is not possible to elininate this sign change with a second trivial phase transfonation such as $E_{i j}-$ - $_{i j}$. Thus
(a) In a non self conjugate IR these matrix elements of ${ }^{1 i} 5$ which are posicive by definition will be negative by definition in the complex conjugate $I R$. cf. 3.4 .
(b) In a self conjugate IR, special care must be taken since then the convention rill require both positive and negative watrix elements in the sane iR. ci. 2.4.

The eqs. 2.17 may oe suamarised by

$$
\left.1 \bar{a}\rangle=(-1)^{A_{s}-\wedge} \quad 1 q\right\rangle^{*}
$$

where $\mathrm{N}_{0}=1+S_{3}$ of the highest antiquark state $\left(Q=I_{3}+\frac{1}{2} Y\right)$
$\Lambda=2+S_{3}$ of the antiquark state q

Due to the additivity of the weights I_{3}, Y, S_{3} equation a thea becomes a general rule for constructing the complex conjugate basis state, although of course the frevdoa of an overall minus sign still remains. Taking this plus one in $\underline{6}$ we see that for quark states we may onit the $1>$ indicating basis vector (by definition) but we may not do so for antiquarlc states, $\left.1 \underline{6}^{*} \hat{\mathbf{p}}^{*}\right\rangle=\overline{\hat{p}}$ etc.

The: manner in which these (-1) phase factors arise can also be seen thus: given any basis α, β, \ldots for a unitary $T R$, then unitarity implies that $\alpha \bar{\alpha}+3 \bar{\beta}+\ldots+\bar{b}$ is a scalar, (where - denotes complex conjugate) so that any generator applied to this expression gives zero. Choose in particular a generator postulated by convention to have all its matrix elements non negative - then clearly since the action of this generator in the IR containing α, β, \ldots introduces only + signs (or zero), then the action, (or representative) of the same generator in the IR containing $\bar{\alpha}, \bar{\beta} \ldots$ must introduce ainus signs, i.e. $\bar{\alpha}, \bar{\beta}, \ldots$ must be related to a \cdots basis, consistent with the given phase convention, by some factors -1.
2.3 SU(3) x SU(9) decompositions in SU(6)

Following the ideas outlined in 1.6 the $\operatorname{SU}(3) \times \operatorname{sU}(3)$ structure of an $S U(6)$. IR derives fron the symmetric group ... Clebsch-Gordan series. This was pointed out in ref. ${ }^{11}$ arai has also been given i: ${ }^{2 i}$. I. siacifice one complements this method
with others; we give some examples :
(i) $\quad 6-(3,2) \quad 6-(3,2)$

$$
\underline{6}(\underline{0} \underline{\underline{\sigma}}=35(\pm \underline{1} \rightarrow(3,2)(\underline{x})(\overline{3}, 2)=(8 \emptyset 1,3(1)
$$

so that $35 \longrightarrow(8,3) \leftrightarrow(8,1) \oplus(1,3)$
(ii) ZO has YT [21]

Using the $C_{0} G_{0}$ series for S_{3} :

$$
[21]<[3](x)[21],[21](\underline{x})[21],[21](x)\left[1^{3}\right]
$$

$$
\underline{70} \longrightarrow(10,2) \Theta(8,4)(+)(8,2) \biguplus(1,2)
$$

$3[21] \quad[21](x)[3] \quad[21](2)[21]\left[1^{3}\right](x)[3]$
(iii) $\quad T$ 罗 $=10535(\pm 1$

T is an $\operatorname{SU}(6),{ }^{2} \operatorname{SU}(3)$ and $\operatorname{SU}(2)$, tensors
 (+) ($\overline{10}(4) 8 ; 3) ~(4)(10(4) 8 ; 3)$
Whence subtracting out $35(+1$ we obtain

Notice that (8,3) occurs twice in 405; thus already the SU(3) x SU(2) labels are insufficient for labelling states in an SU(6) IR.

We give below at the $\operatorname{SU}(3) \times \operatorname{SU}(2)$ content or a number of $\operatorname{SU}(6) I R_{s}$. Furtis.r tinusation is given in H.Ruegc et al ${ }^{21}$.

$$
\begin{aligned}
& (8,1)(+1 ; 5(\underline{1}) 1)
\end{aligned}
$$

TABLE 3 :

$\mathrm{SU}_{6} \mathrm{I} . \mathrm{R}_{6}:[\mathrm{Y} . \mathrm{T]}]$	$(\%, \sigma)$ content
2695; [63 ${ }^{\text {c }}$]	$\begin{aligned} & (64 ; 7+5+3+1),(35 ; 5+3),(35 ; 5+3),(27 ; 7), 2(27 ; 5), \\ & 3(27 ; 3),(27 ; 1),(10 ; 5+3+1),(10 ; 5+3+1),(8 ; 7), \\ & 2(0 ; 5), 2(8 ; 3),(3 ; 1),(1 ; 7+3) \end{aligned}$
1134; [421] ${ }^{3}$	$\begin{aligned} & (35 ; 4 \div 2),(27 ; 6), 2(27 ; 4), 2(27 ; 2),(10 ; 6), 2(10 ; 4), \\ & 2(10 ; 2),(\overline{10} ; 4+2),(3 ; 6), 3(8 ; 4), 3(6 ; 2),(1 ; 44+2) \end{aligned}$
'700; [51 ${ }^{4}$]	$(35 ; 6 \div 4),(27 ; 4+2),(10 ; 6+4+2),(10 ; 2),(0 ; 4+2)$
405; [$\left.4_{4} 2^{4}\right]$	$(27 ; 5 \times 3+1),(10,3),(8 ; 3),(8 ; 5), 2(8 ; 3),(0 ; 1),(1 ; 5+1)$
280; [31 $\left.{ }^{3}\right]$	$(27 ; 3),(10 ; 5+3+1),(\overline{10} ; 1),(3 ; 5), 2(0 ; 3),(3 ; 1),(1 ; 3)$
280; [$\left[3^{3} 2^{3}\right]$	$(27 ; 3),(10,1),(\overline{10} ; 5+3+1),(8 ; 5), 3(8 ; 3),(0 ; 1),(1 ; 3)$
189; $\left[\left[^{2} 1^{2}\right]\right.$	$(27 ; 1),(10 ; 3),(\overline{10} ; 3),(0 ; 5), 2(8 ; 3),(3 ; 1),(1 ; 5+1)$
70; [21]	$(10 ; 2),(0 ; 4+2),(1 ; 2)$
56; [3]	$(10 ; 4),(0 ; 2)$
35; [21 $\left.{ }^{2}\right]$	$(8 ; 3 * 1),(1 ; 3)$
$1 ;$	(1; 1)

2.4 Construction of $\operatorname{SU}(3) \times \operatorname{SU}(2)$ submultiplets

Using again the sym:etric group we can construct explicit SU(3) $x \operatorname{SU}(2)$ states appea;ing in an $S U(6)$ IR. This is exploited further in the next chapter, here we obtain the SU(6) 3 quark states, and quark-antiquark states. We employ the H_{5} phase convention, but revert to the alternative in Chapter 3. $p^{\prime}, n^{*}, \lambda$, denote $\operatorname{SU}(3)$ quariks, p, n, λ and $\hat{p} \hat{n} \hat{X}$ the spin up or spin down SU(6) quarks. We shall have to 'multiply' $\mathrm{SU}(3)$ and $\mathrm{SU}(2)$ basic states together to construct $S U(6)$ entities and this we represent by e.g. $p^{\prime} \hat{r}=p ; \quad p^{\prime} j=\hat{p} \quad$ etc. When several factors occur it is of course important to preserve
 (it is this order upon which the symetric group operates). We use the syanetric group basis functions given in $\oint 2.5$, but with $p^{\prime}, n^{\prime}, \lambda$ or \uparrow, \downarrow replacing the numeric labelling.

Some important matrix elements are :-

$$
\begin{aligned}
& k+\lambda=p, \quad O_{f} n, p=0 \quad k_{\infty} p=\lambda \quad K_{2} n, \lambda=0
\end{aligned}
$$

and similarly for spin down states.

and similarly for spin up states

$$
s_{+} \bar{p}=-\overline{\hat{p}} \quad s_{+} \bar{n}=-\bar{n} \quad s_{+} \bar{\lambda}=-\overline{\hat{\lambda}} \quad s_{+} \overline{\hat{p}}, \overline{\hat{n}}, \hat{\lambda}=0 \text { etc. }
$$

(i) $\mathbf{1 R} .56:$.

$$
[5] \subset[3](x)[3],[21](x)[21]
$$

i.e. $\quad \underline{-}=(10 ; 4)(+(8,2)$

Highest weight $=4 N^{* i+}\left(\frac{3}{2}\right)>$

$$
\begin{aligned}
\operatorname{SU}(3) \times \operatorname{su}(2) & p^{\prime} \mid p^{\prime} p^{\prime} \\
= & p^{\prime} p^{\prime} p^{\prime} \cdot \hat{1} \hat{p} \uparrow
\end{aligned}
$$

ie.

$$
\left.1 N^{i+\cdots}\left(\frac{3}{2}\right)\right\rangle=p \text { pp which is manifestly } \operatorname{SU}(6) \text { [3] symmetric. }
$$

The highest weight of the $(8,2)$ multiplet is $\left|\Sigma^{+}\left(\frac{1}{2}\right)\right\rangle$

$$
\begin{aligned}
\Sigma^{+}\left(\frac{1}{2}\right)> & \sim \frac{p^{\prime}\left[p^{\prime}\right.}{\lambda^{\prime}} \frac{\hat{p}^{\prime}+}{p} \\
& =\left(p^{\prime} \lambda p^{\prime}-\lambda^{\prime} p^{\prime} p^{\prime}\right) \times(\hat{\uparrow} \hat{\imath}-\downarrow \hat{\imath}) \\
& =p \hat{\lambda} p-\lambda \hat{p} p-\hat{p} \lambda p+\hat{\lambda p} p
\end{aligned}
$$

We now apply the syminetriser corresponding to $\square 1$ to project out the $56,[3]$, component of [21] [21].

Thus $a b c \longrightarrow(a b c) \equiv a b c+b c a+c a b+b a c+c b a+a c b$

$$
a a b \longrightarrow 2(a a b) \equiv 2 a a b+2 a b a+2 b a a
$$

Similarly

$$
\begin{aligned}
& \hat{p} \hat{\lambda} p-\lambda \hat{p p}-\hat{p} \lambda p+\hat{\lambda} p p \rightarrow 2(\hat{p p} \hat{p})-(\hat{p} \hat{p})-(\hat{p} \hat{p})+2(p \hat{\lambda}) \\
& =4(\hat{p p} \lambda)-2(\hat{p} \lambda)
\end{aligned}
$$

(due to symmetrization, we would get the same result starting with the other [2II] S_{3} IR . cf $_{5} \delta_{1.5)}$

Normalizing

$$
\left.E^{+}\left(\frac{1}{2}\right)\right\rangle=\frac{ \pm}{\sqrt{2}} 1(2(p p \lambda)-(p p \lambda))
$$

The choice of plus or minus sign is fixed by the phase convention. Using eqs. 2. 19 we find

$$
\begin{aligned}
& \left.i y^{*}+\left(\frac{3}{2}\right)\right\rangle=\sqrt{\frac{1}{3}}(p p \lambda) \\
& \left.i y^{+}\left(\frac{1}{2}\right)\right\rangle=\frac{1}{3}((p p \hat{\lambda})+(p \hat{p} \lambda))
\end{aligned}
$$

Instead of $!_{5}$ it is convenient to use $6 \sqrt{\frac{2}{3}} H_{5}$ since this has integral eigonvalues in $\underline{\sigma}$ and $\underline{\bar{\sigma}}$:

Writing $P=6 / \frac{2}{3} I_{5}$, the action of this operator on a product of quarks is found simsly by adding up the P weights of those quarks:

$$
P\left|X \div\left(\frac{1}{2}\right)\right\rangle=\frac{2}{3}(4(p \hat{\lambda})-2(\hat{p p i}))
$$

sience our phase convention requires

$$
\left.\left|\sum^{+}\left(\frac{1}{2}\right)\right\rangle=\frac{+1}{3 \sqrt{2}}(?(p \hat{p}\rangle)-(p \hat{n} \lambda)\right)
$$

The remaining 56 states may now be obtained with $\operatorname{SU}(3)$ and $\operatorname{SU}(2)$ operators.
(ii) 70

$$
70 \rightarrow(10,3)(t)(8,4)(i)(8,2)(+)(1,2)
$$

(a) $(10,2) \sim \underset{\operatorname{SU}(3)}{\square+\square}$

$$
=\quad \hat{p} \hat{p} p-\hat{p} p p
$$

 apply an IR.70 [21] symatriser and we take, in an obvious notation:

$$
\left|7 \mathrm{G}, \mathrm{~N}^{*}\left(\frac{1}{3}\right)\right\rangle=\sqrt{\frac{1}{2}}[\mathrm{p} \hat{\mathrm{p}}] \mathrm{p} \quad \text { where }[\mathrm{ab}] \equiv \mathrm{ab}-\mathrm{ba}
$$

(b) $(8,4)$ \square
Highest weight

$$
\begin{aligned}
& \left(p^{\prime} \lambda^{\prime} p^{\prime}-\lambda^{\prime} p^{\prime} p^{\prime}\right) \hat{i} \hat{\imath} \\
= & {[p \lambda] p }
\end{aligned}
$$

Again [21] symmetrization is unnecessary and we take

$$
\begin{aligned}
20\left(\sum^{*}\left(\frac{3}{2}\right)\right\rangle & = \pm \sqrt{ } \frac{1}{2}[p,] p \\
\therefore\left|\underline{20}\left(3 L_{2}\right) \Sigma+\left(\frac{3}{2}\right)\right\rangle & = \pm \sqrt{\frac{1}{6}}([p, \lambda p+[p \hat{\lambda}] p+[\hat{p} \hat{\lambda}] p)
\end{aligned}
$$

(c) $(8,2) \sim \square \times \square$

$$
\text { Highest weight } \begin{aligned}
& \left(p^{\prime} \lambda^{\prime} p^{\prime}-\lambda^{\prime} p^{\prime} p^{\prime}\right) \times(\hat{\jmath} \hat{\imath}-\downarrow \hat{\imath} \hat{)}) \\
= & \hat{p} \hat{p}-\lambda \hat{p} p-\hat{p} \lambda p+\hat{\lambda} p p
\end{aligned}
$$

This time we mist apply the [av] projection operator : with the prototype abc $\xrightarrow{[21]}[a b] c+[c b] a$ we get

$$
-[\hat{p} \hat{p}]\rangle-[p \lambda] \hat{p}+[\hat{p} \hat{\lambda}] p
$$

and we must take

$$
\left.\mid 20]^{+}\left(\frac{1}{2}\right)\right\rangle= \pm \sqrt{\frac{1}{6}}([\hat{p p}] \lambda+[p \lambda] \hat{p}-[\hat{p} \hat{\lambda}] \hat{p})
$$

(d) $(1,2) \quad \because \theta \times E$

Highest weight $\left.\sim\left([p \lambda] n+\left[\lambda_{n}\right]_{p}+[n p] \lambda\right) x(1!) \hat{i}-2 \hat{\uparrow} \uparrow\right)$

$$
\begin{aligned}
- & {[\hat{p n}] \lambda-[\hat{p}]\rangle+[\lambda \hat{n}] p } \\
& (\text { where }(a b) \equiv a b+b a)
\end{aligned}
$$

so that the corresponding basis vector is $\pm \sqrt{\frac{1}{6}}$ times this.
We now fix \pm signs with our phase convention:
For this we need the following basis state in $70(10,2)$, contained by the action of $\operatorname{SU}(3)$ operators on the highest weight.

$$
\left.\left|(10,2) \mathrm{y}^{*+}\left(\frac{4}{2}\right)\right\rangle=\sqrt{\frac{1}{6}}([\hat{p p}]\rangle+[p\rangle p+[, \hat{p}] p\right)
$$

then $\left.P(10,2) \mathrm{Y}^{+i+}\left(\frac{1}{2}\right)\right\rangle=\sqrt{\frac{1}{6}}\left(-2[\mathrm{pp}] \lambda+4\left[\mathrm{p}^{\prime}\right] \mathrm{p}-2[\lambda \hat{p}] \mathrm{p}\right)$
so that we must take

$$
\left|70(, 64) \Sigma^{+}\left(\frac{1}{2}\right)\right\rangle=+/ \frac{1}{6}([p \lambda] \hat{p}+[p \lambda] p+[\dot{p} \lambda] p)
$$

and

$$
\left|\underline{\underline{O}}(8,2) \Sigma^{+}\left(\frac{1}{2}\right)\right\rangle=-/ \frac{1}{6}\left(\left[p_{\hat{p}}^{\hat{p}}\right] \lambda+\left[p_{i}\right] \hat{p}-[p \hat{\lambda}]_{p}\right)
$$

in order that these two basis states have positive scalar product with $\mathrm{P} \left\lvert\,(10,2) \mathrm{X}^{*}{ }^{+4}\binom{4}{3}\right. ;$

Front the selection rules eq. 2. 16 for P we see that the relative sign of the (1,2) multiplet may be determined by applying F to the state $\left.\left.\mid(3,4) \wedge^{\circ}(\rangle\right)\right\rangle$ We find

$$
\begin{aligned}
& \left|(\delta, 4) \Lambda^{o}\left(\frac{1}{2}\right)\right\rangle=\frac{1}{3}\left(-\frac{1}{2}[p \lambda] \hat{n}-\frac{1}{2}[p \hat{\lambda}] n-\frac{1}{2}[\hat{p} \lambda] n+\frac{1}{2}[n \lambda] \hat{p}+\frac{1}{2}[n \hat{n}] p\right. \\
& \quad+\frac{1}{2}[\hat{n} \lambda] p+[n p \hat{\lambda} \hat{\gamma}+[n \hat{p}] \lambda+[n p] \lambda)
\end{aligned}
$$

and derive

$$
\left.\left.\left.70(1,2) ; S^{\circ}\left(\frac{+}{2}\right)\right\rangle=+\sqrt{\frac{1}{6}}([p \dot{n}]\rangle-[\hat{p n}]\right\rangle+[\gamma \hat{n}]_{p}\right)
$$

Note: (1) Using the equivalent orthogonal $S_{3} I R$ a second equivalent orthogonal ZOIR can be constructed.
(2) Related to this care must be taken to ensure that one always constructs : sabers of the same 70 as in (a),.. (d) above; hence the choice of spin function in (d). In general one can use orthogonality to decide which \int_{3} IR to use.
(iii) MR. $20 \rightarrow(8,2)(i, 4)$
corresponding to

$$
\left[x^{3}\right]<[21](x)[21],\left[1^{3}\right](x)[21]
$$

(a) $(8,2)$ highest weight $\left[p^{\prime} \lambda^{\prime}\right]^{\prime}((\hat{⿲}) \hat{i}-2 i(\downarrow)$

$$
=[p] p:[p \lambda] p-2[p \lambda] \hat{p}
$$

Applying the $\left[1^{3}\right]$ symetiser: $a b c \rightarrow[a b c]=a b c+b c a+c a b-b a c$

- cha - alb we get $\left\langle\underline{2}(8,2) \Sigma^{+}\left(\frac{1}{2}\right)\right\rangle=\sqrt{6}[\mathrm{p} \hat{\mathrm{p}} \lambda]$.

We shall need the state $\Lambda^{\circ}\left(\frac{1}{2}\right)$ for the phase convention and

(b) (1,4) highest weight $\left[\mathrm{p}^{\prime} \lambda^{\prime} n^{2}\right] \hat{\imath} \hat{\imath}$
[$p, \lambda n]$
$\left.\therefore \operatorname{spin} \frac{1}{2}<p\right] \pm \frac{1}{3} / 2([p ; \hat{n}]+[p \hat{\lambda}]+[\hat{p} ; n])$
($\left[1^{3}\right]$ symmetrization is unnecessary).
P. $\left.\left|\underline{20}(8,2) \wedge^{0}(2,3)\right\rangle=\frac{1}{3}(4[p n \hat{A}]-[\hat{p}\rangle n]+[\hat{p} \hat{n}]\right)$

So we must take

$$
\left(20(1,4) \vdots\left(\frac{2}{2}\right)\right\rangle=-1 \frac{1}{6}\left[p \lambda_{n}\right]
$$

(ix) The 1R. 35

Highest weight $\left.=j_{j}^{+}(1)\right\rangle=p \overline{\hat{n}}$
Filling out the (, 3) component the highest state which is not an eigenstate of $\overline{\mathrm{F}}$ is $\left|\mathrm{k}^{+}(0)\right\rangle=\frac{\hat{2}}{(-\mathrm{p} \bar{\lambda}+\hat{p} \bar{\lambda})}$

$$
P K^{+}(0) y=-3 / \frac{1}{2}\left(p_{\lambda}+p_{\hat{\lambda}}^{\bar{\lambda}}\right)
$$

So we mast take $\left(K^{+}\right)=-/ \frac{1}{2}\left(p \bar{i}+\hat{p^{\hat{i}}}\right)$
The highest state in (0,3) for which P can have non zero matrix element with $(1,3)$ is $|W(1)\rangle$. We find

$$
\begin{aligned}
& |\omega(t)\rangle=-\frac{1}{\sqrt{6}}\left(P^{\bar{A}}-2 \lambda+n \bar{i}\right) \\
& \left.P^{n \prime \prime}(\phi)\right\rangle=\frac{-1}{\sqrt{6}}\left(2 \ddot{\vec{P}} \times x^{\bar{n}} x^{\bar{n}}+2 \overrightarrow{n n}\right)
\end{aligned}
$$

So that wo must take

$$
|\varphi(1)\rangle=-\sqrt{\frac{1}{3}}(\bar{p} \bar{p}+\lambda \bar{i}+\bar{n})
$$

(v) The $I R_{\mathrm{o}} 1$: This has $\mathrm{YT}\left[1^{6}\right]$ and we may remresent it as $[\mathrm{p} \hat{\mathrm{p}} \mathrm{A}: \mathrm{n} \dot{\mathrm{n}}]_{\mathrm{z}}$, whore [] denotes antisymetry under interchange of any two quarks.

Expanding

$$
\begin{aligned}
& -\hat{\lambda}[\text { nnpp } \hat{i}]+n[\hat{n p p} \hat{\lambda}]=\hat{n}\left[\operatorname{pan}^{n} n\right]
\end{aligned}
$$

Let $|\bar{p}\rangle=\sqrt{\frac{1}{5}}\left[\frac{p}{p} \backslash \hat{n}\right]$, then using $S_{ \pm} I_{ \pm}{ }_{ \pm}$we obtain $|\overline{\hat{p}}\rangle=\sqrt{\frac{1}{5}} x$

So that

$$
\begin{aligned}
& =\frac{1}{6}\left(p_{i}+\hat{p} \bar{p}+\hat{\lambda} \hat{i}+\bar{x}+n \bar{n}+\hat{n} \bar{n}\right) \\
& \text { 2. } 18
\end{aligned}
$$

In Table the sumarise the rosults of this section, giving the highest vector in each $S U(3) \times \operatorname{SU}(2)$ multiplet of the five IRs discussed, together with those for the second orthogonal equivalent 70.
$\underline{T A B L E}_{4}:$

2.5 Some special features of SU (6)

We conclude by emphasizing that the dejarture from a canonical formelism in SU(6) has inisoduced some special features.
(1) The Cartan subalfebra is not diagonal in the physical (SU(3) x SU(2)) basis used - this is highlighted by our use of an element of \# as a ladder operator; associated with this, $\operatorname{SU}(6)$ has introduced no new quantum numbers of a linear or simply additive type. Of course it is still true that $\mathrm{SU}(6)$ invariance is much more restrictive than $\operatorname{SU}(3) \times \operatorname{SU}(2)$ invariance.
(2) The $\operatorname{SU}(3) \times \operatorname{SU}(2)$ subgroup labelling of states in an $\operatorname{SU}(6)$ IR is not sufficient to distinguish all states of all IRs - thus there may be more thon one vector in an $I R$ having a given $\operatorname{SU}(3) \mathrm{x}$ SU(2) transformation, although of course such degencrate vectors will be differentiated if we include the complete $\operatorname{SU}(6)$ group of transformations, The general canonical solution to the labelling problem for $S U(n)$ has been enunciated by Racah ${ }^{2}$ and is also discussed in ref. ${ }^{13}$. Within a given IR the Cartan subalgebra is to supply, for $\operatorname{SU}(\mathrm{n}), \mathrm{n}-1$ labelling operators and a further $\frac{1}{2}(\mathrm{n}-1)(\mathrm{n}-2)$ independent ojerators conmuting with themselves and also with are then needed, $n(n-1)$ in all. (The $S U(n)$ Casimir operators provide a further $n-1$ labels sufficient to distinguish inequivalent IRs.) In $\operatorname{SU}(6)$ need then 15 operators and our $S U(3): \operatorname{SU}(2)$ provide only seven (beinc cri(z) and SU(2) Casimirs together with
I^{2}, I_{3}, Y, S_{3}) - a further eight operators and their spectra, commuting with these seven but not with any of the five SU(6) Casimirs are therefore required. Given these one could then attempt a general algebraic solution for $\operatorname{SU}(6)$ generator metrix elements and CGc's - such an undertaking seems acadenic froa the physicists view point, the elementary techniques develoyed in this thesis are largely adcquate for his needs. However it is irteresting to note that there is now a partial solution to an identical problen for a different group viz $\operatorname{SU}(4)$ decomposed according to $\operatorname{SU}(2) x \operatorname{sU}(2)$. See ref. ${ }^{22}$. We could also note that non canonical decompositions of $\operatorname{SU}(\mathrm{n})$ are perhas the rule rather than the exception in physics. Thus the chain $\operatorname{SU}(\mathrm{n}) \rightarrow$ (n) provides (an incorillete) labelling useful in nuclear physics ${ }^{27}$. Using methods described in this thesis it is easy to establish for $\operatorname{SU}(3) \rightarrow O(3)$ that the generator embedding may be taken as $S_{ \pm}=\sqrt{2}\left(K_{ \pm}+L_{\Psi}\right) S_{3}=2 I_{3}$ for the generators of the $O(3)$ subgroup, and that in this basis X_{+}transforns like an $S_{3}=2 \mathrm{~S}=2$ tensor. Eignestates of the pair $\mathrm{S}^{2}, \mathrm{~S}_{3}$ in general are not eigenstates of Y (this is obvious fron the form for $S_{ \pm}$) and so in this decomposition we 'lose' one of the diagonal quantum numbers, in contrast to the situation for the $S U(2) \times U(1)$ decomposition.

This degeneracy does becone more troublesome when masi formulae for the $\operatorname{SU}(6)$ groply are to .-issen. There, clearly, it is essentiel
to label (i.e. distinguish) all statos in an IR. The practical solution has been, following Beg and Singh ${ }^{23}$ to introduce a second decongosition chain $\operatorname{SU}(6)$) $U(1) \times \operatorname{SU}(2) \times \operatorname{SU}(4) \supset U(i) \times$ $\operatorname{SU}(2)$ ix $\operatorname{SU}(2) \times \operatorname{SU}(2)$ a the two chains together have sufficad. . in those multiplets so far discussod ${ }^{23}$.

Thus, in brief, it is the product rather than the sum, subgroup decomposition of $\operatorname{SU}(6)$ which introduces an unaccustomed aspect of an $\operatorname{SU}(\mathrm{n})$ group. In the next chapter we further exploiさ this novelty to calculate some $\operatorname{SU}(6)$ Clebsch-Gordan coefficients.

CHAPTER 3

CALCULATION OF THE CLEBSCH-GORDAN COEFFICIENTS

This chanter deals u ith the reduction of the diroct or inner product in $S U(6)$ in the following cases :-

$$
\begin{aligned}
& \text { i) } \quad 35(x) 35=1(+) 35 p(+) 35 \mathrm{p}(+) 184(+) 280(+) 280(+) 405 \\
& \text { ii) } \quad 56(x) 35=56(+) 70(+) 1134(+) 700 \\
& \text { iii) } 56(x) \overline{56}=1(+35(+) 405(+2695 \\
& \text { iv) } 70(i) \overline{70}=1(+35 F(+) 35 \mathrm{~F}(+) \ldots
\end{aligned}
$$

(an extensive list of specific Clebsch-Gordan series for $\operatorname{SU}(6)$ mey be found in H. Ruegg ei al ${ }^{21}$). Complete tables for the series (i) (ii) and (iii) :/ere first published in ref. ${ }^{11}$ for the series (iv) we extract only the coefficients associated with the . ", octet parts of the two 35^{\prime} s since only these will be needed in some work on representation mixing discussed in Chapter 5. The tables can be found in 33 . 毒 In $\widehat{8} 3.1$ we introduce some notation and definitions and discuss the method of calculation of CGc's, and in $\hat{9} 3.2$ ie gather together all phase conventions operative in our work. 3.3 deals with fundamental symmetry and orthogonality properties. $\$ 3.4$ treats cases (i)-(iv) above and in 3.5 we add a brief note on use and application of the tables.

3.1 Some simple examples

Let

$$
\begin{aligned}
& |x\rangle=\left|\lambda_{1},\left(\mu_{1} \bar{r}_{1}\right)_{i}^{j} \quad Y_{1} I_{1}^{2} I_{13} ; \quad s_{13}\right\rangle,|x\rangle \nmid \lambda_{2},\left(u_{2} \sigma_{2}^{\circ} j_{j} ;\right. \\
& \mathrm{Y}_{2} \mathrm{I}_{2}{ }_{2}, \mathrm{I}_{2_{3}}, \mathrm{~S}_{2_{3}}>
\end{aligned}
$$

be two normalised basis vectors of two SU(6) IRs, λ_{1}, λ_{2}. We have exhibited all the necess. $; \boldsymbol{y}$ labels, note especially i, j which have no group theoretic definition and enter when the $\operatorname{SU}(3) x$ SU(2) labelling is not by itself unique. Then we write

$$
|x\rangle(x)|x\rangle=\left\{\begin{array}{ccc}
\lambda_{1} & \lambda_{2} & \lambda^{Y} \\
\left(\mu_{1} \Gamma_{1}\right)_{i} & \left(\mu_{2} \sigma_{2}\right\}_{j} & \left(\mu^{Y}\right)_{r} \\
Y_{1} I_{1}^{2} J_{13} S_{3} & Y_{2} I_{2}^{2} I_{23} S_{3} & \text { II }^{2} I_{3} S_{3}
\end{array}\right)
$$

as a detailed expression of the Clebsch-Gordan series

$$
\lambda_{1} \text { (} \lambda_{2}=\sum_{V}\left(+n_{n} \lambda_{V} \quad n_{v} \geqslant 1,2\right.
$$

$\mu_{i},\left(\sigma_{i}\right)$ denote the dimension of the $\operatorname{SU}(3)(\operatorname{SU}(2))$ IR involved γ, γ^{\prime} are employed when the direct product is not simple reducible, egg. for $\operatorname{SU}(6) \gamma^{\prime}$ when n_{+}is >1 in eq. 3.2
$\mathrm{YI}^{2} \mathrm{I}_{3} S_{3}$ are the usual $\mathrm{SU}(3)$ and $\mathrm{SU}(2)$ quantum numbers; we shall often represent $\mathrm{YI}^{2} \mathrm{I}_{3}$ by the single symbol ${ }^{\prime}$.

We require the number, Clebsch-Gordan coefficients,

λ_{2}
$\left(y_{1} \sigma_{1}^{-}\right)_{j}$
$Y_{2} I_{2}^{2} I_{2} S_{3}$
$\left.\begin{array}{c}\lambda^{\gamma \prime} \\ \left(\mu^{\gamma}, T\right)_{k} \\ Y^{2} I_{3} S_{3}\end{array}\right)$ appearing in eq. 3.1
in the four cases mentioned in 3.0. As has already been remarked we may not employ general $\mathrm{SU}(\mathrm{n})$ solutions ${ }^{24}$ since these are given in the wrong (canonical) basis - our calculations can be viewed as establishing a transformation frow this basis to the $\operatorname{SU}(3) \times \operatorname{SU}(2)$ basis in some special cases. Since the states used are eignestates of $S U(3)$ and $S U(2)$ the $S U(6)$ direct product must satisfy the $S U(3) x$ $\operatorname{SU}(2)$ direct product relations. Thus for $\mathrm{SU}(3) \times \operatorname{SU}(3)$ alone we have

$$
\begin{align*}
& \left.=\sum_{\mu^{\gamma}, \cdots,}\left(\begin{array}{lll}
\mu_{1} & \mu_{2} & v_{1}^{\gamma} \\
v_{1} & \nu_{2} & \nu
\end{array}\right)\left(\begin{array}{lll}
1 & \sigma_{2} & S_{13} \\
s_{2} & S_{3}
\end{array}\right) \right\rvert\,\left(\mu^{\gamma(-)} ; v s_{3}\right\rangle
\end{align*}
$$

and the question then becomes: if the states on the left hand side are promoted to $S U(6)$ eigenstates, how are the $\operatorname{SU}(3) \times \operatorname{SU}(2)$ states on the right hand side in turn distributed amongst the various terms of the $S U(6)$ direct product. In brief, we may
extract from an $S U(6)$ CGi an $S U(3)$ and $S U(2) C G C$ and it is necessary to calculate only the residual quantity:

We need the last factor,

$$
\left(\left.\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
\left(\mu_{1} \sigma_{1}\right)_{i} & \left(\mu_{2}^{\sigma}\right)_{j}
\end{array} \right\rvert\, \begin{array}{c}
\lambda^{\gamma} \\
\left(\mu_{\sigma}\right)_{k}
\end{array}\right)
$$

which we call a unitary scalar factor (fsf), and which is the news number given by $\mathrm{SO}(6)$. Only the fsf need be tabulated, the full Ge can then be reconstructed with the aid of $\operatorname{SU}(3)^{5,25}$ and SU(2) tables - unfortunately in computation we have had to .alculute the full CGi.

We give two elementary examples :
(i) $6(x) \overline{6}=1$ (\dagger) 35

The coefficients may be written down immediately from Table 4. From $\quad\left|35(8,3) \boldsymbol{q}^{+}(1)\right\rangle=p \bar{n} \equiv|\mathbf{p}\rangle|\hat{\mathbf{n}}\rangle$
we deduce $\left.\quad \begin{array}{lll}6 & \overline{6} & 35 \\ \mathrm{p} & \overrightarrow{\mathrm{n}} & \mathrm{g}^{+}(3)\end{array}\right)=1$
(we use an obvious shorthand form for the labelling quantum numbers)
by the factorization property it follows that
where the subscript indicates the relevant group; using now the $\operatorname{SU}(3)$ and $\operatorname{SU}(3)$ tables ${ }^{25},\left(\left.\begin{array}{c}6 \\ (3,2)(\overline{3}, 2)\end{array} \right\rvert\, \begin{array}{l}35 \\ 83\end{array}\right)=1$

Similarly fro a

$$
\begin{aligned}
25(0,1) ;{\left.\|^{+}\right\rangle=}^{+} & -/ \frac{1}{2}(\overline{\mathrm{n}}+\hat{\mathrm{p}} \overline{\mathrm{n}}) \\
& \left.-/ \frac{1}{2}((\mathrm{p}\rangle|\overline{\mathrm{n}}\rangle+\mid \dot{p})|\overline{\mathrm{n}}\rangle\right) \quad(\mathrm{cf} .32 .4)
\end{aligned}
$$

we have $\quad\left(\begin{array}{lll}6 & \frac{6}{n} & 35 \\ p & \frac{n}{n} & \pi\end{array}\right)=-\sqrt{\frac{1}{2}}$
so that

$$
\left(\begin{array}{c}
6 \\
(3,2) \\
(3,2)
\end{array} \| \frac{35}{31}\right)=-1
$$

Froial

$$
\begin{aligned}
35(13) ; \varphi(1)\rangle & =-/ \frac{1}{3}(p \overline{\hat{p}}+\lambda \overline{\hat{i}}+n \overline{\hat{n}}) \\
& \left.\equiv-/ \frac{1}{3}(-|p\rangle(\bar{p}\rangle+(\lambda) \overline{\hat{n}}\rangle+|n\rangle(\dot{\hat{n}}\rangle\right)
\end{aligned}
$$

we have $\left(\begin{array}{lll}6 & \stackrel{6}{6} & 35 \\ p & \stackrel{\rightharpoonup}{p} & (\rho(1)\end{array}\right)=1 \frac{1}{3}$
and therefore $\left(\begin{array}{lll}6 . & 6 \\ (3,2) & 32\end{array} \|(1,3)\right)=+1$
Finally, from

$$
\begin{aligned}
& \left|\underline{1}(1,1) ; x_{0}\right\rangle=/ \frac{1}{6}(p \bar{p}+\bar{p}+\lambda \bar{x}+\hat{\lambda} \bar{i}+n \bar{n}+\bar{n} \bar{n})
\end{aligned}
$$

$$
\begin{aligned}
& -|\hat{\mathrm{n}}\rangle \hat{\hat{\mathrm{n}}}\rangle)
\end{aligned}
$$

we find
$\left(\begin{array}{lll}6 & 6 & 1 \\ p & p & x^{0}\end{array}\right)=\sqrt{\frac{1}{6}}$ so that $\left(\begin{array}{cc}6 & 6 \\ (3,2) & (3,2) \|(1,1)\end{array}\right)=+1$.
Notice how important it is to employ basis vectors in the expansion in order to obtain the correct signs - Clebsch-Gordan coefficients always refer to basis states.
(ii) A second less trivial e ample is provided by $6(x) 6=$
$\underline{21} \oplus 15: \underline{21}$ has $Y T[2]$ and $\operatorname{SU}(3) \times \operatorname{SU}(2)$ content $\underline{21}=(6,3) \oplus$ $(\overline{3}, 1): 15$ has $\mathrm{YT}\left[1^{2}\right]$ and $\operatorname{SU}(3) \times \operatorname{SU}(2)$ content $15=(6,1)(4)(\overline{3}, 3)$

The weight diagrams are, neglecting spin degeneracy,

The highest state oi 2 is is the product of the highest states of the two factors 6. Using \longrightarrow to denote application of a ladder ogerator and neglecting nc--malizations we now have

We can now use P (introduced in 2.4) to transfer from $(6,3)$ to $(\overline{3}, 1)(\hat{p} \hat{\hat{l}})+(\hat{p} \hat{\gamma}) \xrightarrow{p} 3(\hat{\lambda})-3(\hat{\mathbf{p}}\rangle)$. This last state is orthogonal to $(\hat{p} \hat{\prime})+(\hat{p}\rangle)$, has spin zero, I-spin $\frac{1}{2}$ and by our phase convention we thus take $\left|\underline{21}(\overline{3}, 1)-\frac{1}{2} 2 \frac{1}{2} ; \frac{1}{2}\right\rangle=\frac{1}{2}((\hat{p} \hat{\lambda})-(\hat{p}, \lambda)$. We can thus calculate the two usfs

$$
=1.1,1=+1
$$

$$
=\sqrt{2} \cdot \sqrt{2}=+1
$$

One can check that the same usf results from the use of any term in the direct product expansion e.g. $\hat{\mathrm{p}}$; in $\underline{21}(\overline{3}, 1)$ above. For 15 we note that $\mathrm{pp}-\hat{p}=\left[\mathrm{p}=\left[\begin{array}{l}\hat{p}\end{array}\right]\right.$ has the correct quantum numbers for the highest vector, and is orthogonal to all 21 states.
 $3 \sqrt{2}([p \hat{N}]-[\hat{p}])$. So we take

$$
\begin{aligned}
& \left.|\underline{15}(\overline{3}, 3) ; p\rangle S_{3}=0\right\rangle=\frac{1}{2}([p \hat{\lambda}]+[\hat{p}, \lambda), \text { using is we then have } \\
& \mid 15(\overline{3}, 3) \text { highest }\rangle=/ \frac{1}{2}[p \lambda] .
\end{aligned}
$$

The usfeffollow

Alternatively wo could have calculated basis vectors in 21 and 15 directly, without using ladder operators :

Similarly

Normalising these basis vectors we obtain the same results as before - notice that this second direct method was very simple here since it was not necessary to apply symuetrisers for the $S U(6)$ symmetry. Summarising, to calculate the usfs we had only to

$$
\begin{aligned}
& =[\mathrm{p} \hat{\mathrm{p}}]
\end{aligned}
$$

$$
\begin{aligned}
& =[p \lambda]
\end{aligned}
$$

$$
\begin{aligned}
& =[\hat{p} \hat{\lambda}]-[\hat{p} \lambda] \text {, by direct multiplication }
\end{aligned}
$$

$$
\begin{aligned}
& =-\sqrt{2} \cdot 1 .-\sqrt{2}=+1
\end{aligned}
$$

calculate one basis vector from each (u, σ) multiplet in each $S U(6)$ I: found in the direct product, the CGc then enter as normalization and orthogonality factors. In the first method we used ladder operators, drawn from the algebra and this is in fact the standard method mentioned by Racah ${ }^{2}$ and enployed e.g. by Rashid ${ }^{4}$ - in the second method (which has been employed in the actual usf calculations which follow) direct construction has enabled us to dispense with such ladder operators.

The advantage of this latter method is only seen in more complicated situations; the important ladder operator P hap $\mathrm{J}(3)$ octet transformation properties with the consequent selection rules eq. 2.36. It ines not in general produce a pure $\operatorname{su}(3) x \operatorname{su}(\pi)$ state e.g. acting on $(8,3)$ in 405 it can produce a vector with non zero projection into every (μ, σ) submultiplet, and one must then use $S U(3)$ and $S U(2)$ ladder operators and orthogonality to isolate, in a straight forward but tedious way, the required pure ($\mu, 1$,) vector. Of course ladder operators with pure transformation properties, but not in the $S U(6)$ algebra, can be found:

$$
\text { e.g. } \begin{aligned}
p^{\prime} & =\sum T\left((8,3) V_{2},\right) T\left((8,3)-V^{\prime}, 0\right) \text { has } \Delta \operatorname{SU}(3)=0, A S=2,0 \\
P^{\prime \prime} & =T((8,3) V, \alpha) T((1,3), 0,-\alpha) \text { has } \Delta S=0
\end{aligned}
$$

but again these are complicated objects with which to work. On the other hand the orthodox method has the advantage that the correct phases within the $S U(6)$ multiplet are a byproduct
of the calculation rhereas in our case, if we were to employ the P convention throughout, as in Ch .2 .4 , they must be adjusted after construction.

Again our method will always give directly the quark antiquark composition of a vector, whereas conventionally to reduce the direct product one needs only the matrix elements of the ladder operators in the factor or component, reiresentations; however as mentioned in $C_{h .2} 2$ this explicit quark structure provides us with a simple alternative means of arriving at a consistent phase convention. Thus for example 35 (y) 35 the quark-antiquark structure of 405 is T, the lower boxes hold quarks, the upper antiquerks. One 35 appears as a imace of this 405, which we show symbolically by T LI Comparing with the structure of 35 given in Table 4 we see that for the direct mroduct we may take (the 35 tensor is clearly symmetric in its 35 components, henco the label! $\%$)

$$
\begin{aligned}
& \langle 35 ;(8,3) \text { highest }\rangle \sim \sum_{\alpha}+(p \alpha)(\overrightarrow{\hat{n}} \bar{\alpha}) \\
& 135_{0} ;(8,2) \text { highest }>\sim \frac{\bar{\alpha}}{\alpha}-(\Gamma \alpha)(\bar{n} \bar{\alpha})-(\hat{p} \alpha)(\overline{\hat{n} \alpha}) \quad 3.5 b \\
& 135_{0} ;(1,3) \text { highest }>\sim \sum_{\alpha}-(p \alpha)(\bar{p} \bar{\alpha})-(\lambda \alpha)(\overline{\hat{\gamma}} \bar{\alpha})-(n \alpha)(\overline{\hat{n} \alpha}) \text { 3. } 5 \mathrm{c}
\end{aligned}
$$

where the α sumation is over all states in 6 and effects the trace. Since $\alpha \bar{\alpha}$ belongs to 1 , and all operators in the algebra produce zero when operating upon it, it is clear that, once normalis.d, the ahove states will yrovide a consistent (in the sense
of Ch.2.2) basis for 35. Notice that we have arranged signs so that $\sum_{\alpha} \alpha \bar{\alpha}$, eq. 2.18 , is indeed the correct scalar quantity. This then is the metr. od we have adopted, looking at (i)- (iv) of $C_{h} .3 .0$ we see that only the IRs $25,56,10$ and 405 occur on both sides of the equations, so only for these was the method of obtaining consistency invoked.

3.2 Sunmary of phase conventions

In work :rith Clebsch-Gordan coefficients three different phase conventions enter.
(i) The convention dotermining the matrix elements of $\because=$ generators - i.e. fixing the solution to eqs. 1.1. This has ner been fully discussed in , 2.2, 3.1. For our SU(6) tables we have adopted the P convention for the IRs $35,56,70$, 20; for all other IRs the relative signs of (\because, π) vectors have been rhosen arbitrarily but, in the case of 405 , consistently in the two relevant cases. We have already remarked that against the advantage in computation afforded by this convention must be set the disadvantage of lack of communicability, i.e. it would not be easy for other workers to construct other $\operatorname{SU}(6)$ tables consistent with our own.
(ii) In each IR in the direct product there is still an overall sign to be fixed thich can be considered as the relative sign betr sen different $S U(6)$ IRs occurring in the product space.

Thus e.g. for the highest states of 21 or 15 we could have taken -pp or $-[p]$ rempectively and this would then alter the CGc but not the matrices of the gemerators. To resolve this anbiguity we always take, in the highest state of the product IR, that SGe coupling highest $I_{1} I_{2} I_{13} S_{1} S_{2} S_{13}$, in that order, within highest ($\mu_{1} 1_{1}$), ($\mu_{2} Z_{2}$), to be positive. Labels 1,2 refer to the page order of the factor states. Thus e.g. we take

$$
\left(\begin{array}{lll}
6 & 6 & 21 \\
p & p \text { highest }
\end{array}>0 \text { i.e. basis vector }+\mathrm{pp}\right.
$$

and

$$
\left(\begin{array}{cc}
6 & 6 \\
\mathbf{p} & 15
\end{array}\right)>0\left(\text { rather than }\left(\begin{array}{ccc}
6 & 6 & 15 \\
\hat{\mathbf{p}} & \mathrm{p} \text { highest }
\end{array}\right)>0\right)
$$

i.e. basis vector $+\sqrt{\frac{1}{2}}[p \hat{p}]$.

This is a direct extension of the usual procedure, cf. ${ }^{5}$. (iii) A third phase convention enters when we assign physical particles to multiplets. Already we have seen that if $p, \hat{p}, \ldots \hat{n}$ are basis vectors for 6 then their antiparticles, defined do be the complex conjugate state may not be immediately taken as basis state for $\overline{\mathbf{6}}$. In self-conjugate representations the situation is more involved. Complex conjugation here majs basis states into basis states :ifh a phase according to eq. 2.18. If we want the same operator also to map particle $\rightarrow+$ antiparticle it is thorefore evident that we may not take particle $\longrightarrow+1$ basis vector) for all particles. For exarale for 35 , from Table 2, we can easily
see that the mapping 'canonical' generator \longrightarrow + particle does have the desired oronerty farticle $\longrightarrow+$ antiparticle under complex conjugation, and using the mapping canonical generator basis vector we can therefore determine the appronriate signs for particle \longrightarrow basis vector. We emphasize that it clearly is not necessary to arrange this added convenience of behaviour under conplex conjugation for single particle states - but it does help to avoid more book-keeging on \pm signs.

3.3 Symmetry and orthogonality proverties of C.G. C.

These are fully discussed in duSwart ${ }^{5}, \mathrm{Ch} .14$, and in the following tre use his notation. Discussions for a general compact group are found in rof. ${ }^{28}$. We have

$\int_{1}, S_{2}^{\prime}, y_{6}^{\prime}$, have values $\geqslant 1$ and in general depend only upon ($\lambda_{1}, \lambda_{2}, \lambda$) - an exception to this occurs for $\zeta_{3} \frac{1}{3}$ in the case of (μ_{f}) degeneracy, cf. $C_{h} \cdot 3.4(1)$. In eq. 3.6 c we have used $\lambda_{1} \lambda_{2}$ to represent the dimensionality of the respective IRs whilst $\Lambda_{1}=I_{13}+\frac{1}{2} Y_{1} \div S_{13}$ and $\bar{\Lambda}_{1}$ is the value of Λ_{1} for the highest vector of λ_{1}, cf. also ${ }^{5}$. Using the factorization property and equations analogous to 3.6 for $\mathrm{SU}(3)$ and $\mathrm{SU}(2)$ we may rewrite eq. 3.6 in terms of usps only: (setting $\sqrt{5}=2 j+1$ etc.)

In 3.7 c we have absorbed in ${ }^{2} 3^{\text {a constant factor }(-1)} \overline{\overline{2}}, \overline{\mathrm{c}}=$ charge of highest vector in λ_{1} resulting from a slight deviation of our definition of $?_{2}^{\prime}$ fl that of deSwart ${ }^{5}$ whose corresponding phases are here represented by $\zeta_{1}, \zeta_{2}, S_{3}$.

Given say the set of usfs for $\lambda_{1}(x) \lambda_{2} \rightarrow\left\langle/ \operatorname{lin}^{\delta}\right.$ it is elementary to calculate the factors g_{1}, e.g. By convention (i) of 9.2

$$
0<\left(\begin{array}{lll}
\lambda_{2} & \lambda_{1} & \lambda^{\gamma} \\
\left(\mu_{2} \sigma_{2}\right) & \left(u_{1} \sigma_{1}\right) & \left(i_{1} \gamma\right) \\
\gamma_{2} s_{23} & v_{1} s_{13} & v s_{3}
\end{array}\right)
$$

 $\mathrm{S}_{23} \geqslant \mathrm{~S}_{1_{3}}$ i
but this CGC $=\underbrace{}_{1}$

$$
\left(\begin{array}{ccc}
\lambda_{1} & \lambda_{2} & \lambda^{\gamma} \\
\left(\mu_{1} \sigma_{1}\right) & \left(n_{2} \sigma_{2}\right) & \left(\mu_{\sigma}^{\gamma}\right) \\
\gamma_{1} s_{13} & { }_{2} s_{2} & \gamma s_{3}
\end{array}\right)
$$

by definition of ${ }_{3}^{\prime}$. The latter CGi is known by hypothesis, whence we can determine the sign of ζ_{1}, I°

The tables we construct must be consistent with these symmetry properties which therefore provide some checks on our calculations - we include subsidiary tables giving some of these

TABLE 10 - Soue factors SY.

	\because	'i	32	33
35 (x) 35	$\because 405$	1		
	280	-1		
	280	-1		
	189	1		
	35	-1		
	${ }^{35}{ }_{0}$. 1		
	1	1		
56 (x) 35	700	1		
	1134	-1		
	70	-1		
	56	1		
56 (x) $\overline{56}$	2695	1		
	405	1		
	35	1		
	$\underline{1}$	1		
70 (x) 70	${ }^{35}$	1	-1	1
	350	1	-1	1

N.B. These factors may fail in the case of multiple (4) occurrence.

A second important general property (which also provides us with a check) is the orthogonality of the CGcs resulting from their constituting a real orthogonal transformation from one basis, that of the product, to another, that of its reduced or direct sura form. Again these are adequately discussed in deSwart, here we merely emphasize that the $S U(3)$ and $S U(2)$ internal summations (ie. 'magnetic' quantum number summations) can be carried out to leave us with the simple relations for the psf:

$\left(\mu_{1}\right),\left(3_{2} \sigma_{2}\right) \gamma$
 $\lambda, \gamma^{\prime}, \mu, \boldsymbol{H}$

In brief these equations imply our tables shall
$3.8 b$
consist of rows and column of orthonormal vectors.

3.4 Details of the tabulation

(i) 35 (x) 35

We rearesent 35 by the mixed second rank tensor
notice that considered as $\psi \bar{q}$ this is not really irreducible since

$$
3.9
$$

(this equation is obtained ky inverting the equations summarised in Table 4 for the quark structure of 35 and 1) and the term X_{0} is a member of 1. Really 35 is represented by a traceless tensor $T_{A}^{B}(35)=T_{A}^{B}-\frac{1}{6} \mathcal{S}_{i}^{i} \sum_{C}^{C} T_{C}^{C} ; \quad \overline{\bar{C}} T_{C}^{C}=\sqrt{6} X_{0}$, but in practise it is more convenient to orit the traces and simply ignore (i.e. put equal to zero) the factor X_{0} wherever it occurs, instead of explicitly subtracting it out.

The direct product is now partially reduced by operating (i.e. applying the symmetr: - group outer product) independently on upper and lower indices:
 We find $T \frac{T \pi}{15} \rightarrow 405 \Theta 35 \Theta 1$ $T \frac{B}{\square} \rightarrow 380(\pm 35$

The 35 traces appearing in the first and last tensors (they are equivalent) are obviously symmetric under interchange of constituent 35 states, whilst the remarning two (also equivalent) will be anti-
symmetric under such interchange. Further, this opposition in symmetry will automatically make the two 35 traces orthogonal and so we have alweady (in a scandard fashion) dispensed with the problem of double occurrence of 35 in 35 (x^{3}) 35 .

Using Table L_{2} ye cenn now construct 35_{F} (antisymmetric) and 35_{D} (symmetric) and 1 vectors in terms of quarks (an example of this already occurs eqs. 3.5) and using these equations such as eq. 3.9 derive the various usfs.

It remains to discuss $405, \underline{280}, \overline{280}$ and 189 , for which the main feature is the double occurrence in each one of $(8,3)$. describe the construction of basic vectors in this case :-
$\mathrm{SU}(6)$ IR Contributing $\mathrm{SU}(3) \mathrm{x} \operatorname{SU}(2)$ tensors
405

280

280

189

This list demonstrates that we can in each case construct three linearly independent $(8,3)$ basis ectors using our method; it is necessary to take traces on the Q and S tensors to arrive at the correst $\operatorname{SU}(3) \times \operatorname{SU(2)}$ transformation properties; e.q.

ㅇ

B
B
and similarly for 3 in $S U(2)$ e.g. in 405 :

$$
\left.=2\left(\hat{p}^{\prime}\right)(\bar{n} \bar{n})-(\bar{n} \bar{p})\right)+(p \lambda)((\hat{n} \hat{n})-(\bar{n} \overline{\hat{h}}) \text { etc. }
$$

However none of these $(8,3)$ vectors will be orthogonal to the (83) terms occurring in their 35 traces. The oxtraction of these traces is then effected by forming orthofonal combinations, e.g. in 405 find that, symbolically,
and
aro an orthogonal peir which are also orthogonal to the 35 (33) vectors already constructed. Such orthognnalizations and normalizatio: are always most easily carried out using explicit quark structures of the basis vectors; when these have been obtained one then resubstitutes for a sufficient number of $35_{1}, \frac{35_{2}}{}$ states to enable all the usfs to be extracted.

From eqs. 3.10 :re can also seo how the \mathcal{Y}_{3} symmetry property fails to hold $i:$ the casc of multinle occurrence. Indeed undar complex conjugation ge generate a minus sign in $3.10 a$ and a plus sign in 3.10 b , one $(0,3)$ multiplet is thus 'normal' and the other 'abnormal'. (In fact by calculation $3.10 a$ is abnormal.) This

This contrasting betwiour rearesents, perhaps, the best possible resolution of the $(0,3)$ ambiguity (it holds also in the cases of $\underline{289}, \underline{280}$ and 189) - ho:rever when the multiplicity is greater than two such a procedure is inadequate.

The final resulics appear in Table 5.
(ii) 56 ($\mathbf{x}) 35$

Here the tensor maltiplication and partial reduction is given
by
with TY $700(\pm) 56$

Again the two IRs 56 arc equivalent in $\operatorname{SU}(6)$ and they appear because we use T_{\square}^{\square} for the IR 35.

Once more one proceeds by calculating first the basis vectors associated with trace terms viz 56 and 70 , and these may then be used when it comes to extracting traces in the 1134 and 700 . IRs We reproduce the calculation for 56:

$$
\left.56 \sim T^{\square} \text { and } \mid 56(10,4) \text { highest }\right\rangle \quad+(\mathrm{ppp})
$$

\therefore in T we represent this state by $+\sum_{q}(p p p q) \bar{q}$ where
() denotes complete symaetry corresponding to the Y.T.[4].
Expanding $\cdots(\mathrm{ppp}) \sum_{q} q \tilde{q}+3 \frac{\sum_{q}}{q}(p p q) p_{q}$
The firgt term has the factor $\left|X_{0}\right\rangle$ and is omitted. For the rest
we obtain

$$
\frac{1}{3} \sqrt{2}(3(p p p) p \bar{p}+(p \sim \dot{p}) p \dot{\hat{p}}+(p p \lambda) p \bar{\lambda}+(p p \hat{\lambda}) p \hat{\hat{\lambda}}+(p p n) p \bar{n}+(p p \hat{n}) p \hat{i}\}
$$

as nomalised basis rector. (In computing the normalization it is important to ronember that $p \bar{p}$ has norm $\sqrt{\frac{5}{6}}$, not 1 , by our rule of . ignoring X_{o} cf.eq. 3.9) Rewriting now eq. 3.10 in terms of 56 and 35 states (using Table ψ_{4}) we obtain the usfs $\binom{56}{\left(\mu_{1}, ~ T_{1}\right.} \mu_{2} T_{2} T_{2}(10,4)$) Similarly $\mid 56(8,2)$ highest $>+2(p \hat{\lambda})-(p \hat{\psi} \lambda)$ from Table 49 so in this direct product we take
$156(8,2)$ highest; $\sim+\sum_{q} 2(p p \hat{q} q) \bar{q}-\left({ }_{p} \hat{q} \lambda q\right) \bar{q}$
Cnitting complete factors $\sum_{q} q \bar{q}$ wo find
$\frac{1}{9 \sqrt{5}} \frac{\bar{\gamma}}{\bar{q}} 2(p p q) \lambda \bar{q}+2(p \dot{\lambda} q) p \bar{\lambda}-(\rho \hat{p q}) \lambda \bar{q}-(p \lambda q) \bar{p} \bar{q}-(\hat{p} \lambda q) p \bar{q}$ as the normalised basis vector, and from it we obtain the usis $\left(\begin{array}{cc|c}56 & 35 & 5 \phi_{1} \\ \mu_{1} & \mu_{2}{ }_{2} & 8_{2}\end{array}\right)$

The complete set of usfs are given in Table 6.
(iiii) $56(x) \overline{56}$
Here the tensorial multiplication is
$T_{\text {mi }}(x) T^{1 D I L} \longrightarrow 2695+405+35+1$
with $1 \underline{1}>\cdots \sum_{\operatorname{ars}}(\operatorname{rrs})(\bar{q} \bar{r} \bar{s})$
$\mid 35$ highest $>\sim+\sum_{q_{1} r}(q r p)(\bar{q} \bar{r} \overline{\hat{n}})$
(L:05 highest $\rangle+\frac{\sum_{q}}{q}($ qup $)(\bar{q} \bar{n} \bar{n})$

We have been careful to construct 405 basis vectors consistent with those apearing in 35 (x) 35 and the complete set of results appears in Table. 7. :
(iv) 70 (x) $\overline{70}$

What we shall require for our work in Chanter 5 is in fact the matrix elements of the generators in the IR_{8} 70. One way to arrive at these is to compute the coefficients for $70(x) \overline{70} \longrightarrow 35$ and then use the ξ_{2} symmetry of $\mathfrak{3}$. to obtain the desired coefficients Corresponding to the occurrence of 35 twice in $70(x)$ 긍 $\%$ can construct two 35 tensors in the tensor product viz.

$$
\begin{aligned}
& \left(35_{1}\right)_{C}^{D}=T[(/ B) C] T^{[(A B) D]} \\
& \left(35_{2}\right)_{C}^{D}=T[(A C) B] T^{[(A B) D]}
\end{aligned}
$$

where $[(A B) C]=(A B) C-(C B) A$.
We can roceed as in the above examples to extract two sets of usfs. Unfortunately the basis vectors we construct in doing this are not orthogonal or equivalently the orthogonality relationeq.3,8a is not satisfied (since we are considering only the 35's ve are not able to test the rolation eq.3.8b). Given two linearly independent vectors it is a simple matter to derive an orthogonal
pair, but this is not the enc since we shall requiro matrix elements of the generators; one of c•• orthogonal sets of usfs must serve as in equation 1.6 c .

One way to arrive at the required sets of usfs is to solve th. commutation relations: thus for example we have from Table 2 :

$$
\left[T\left(\pi^{+}\right), T\left(\pi^{-}\right)\right]=-T\left(0^{0}\right)=\left[T\left(S^{+}(0), T\left(5^{\infty}(0)\right)\right]\right.
$$

We havo two undcnoms, the reduced matrix element <70 if 11707 and the mixing angle t by vhich we must mix our two orthogonal sets of usfs : order to obtain one set corrosponding to generator matrix elements. Taking an appropriate matrix element, such that $\langle\alpha| T\left(\pi^{\circ}\right)|\beta\rangle=0$ allows us to neglect the reduced matrix element and solve directly for the mixing angle.

In this way with a, b labelling our two sets of orthogonal usfs found indirectly from $35_{1}, \frac{35}{2}$ and tabulated in Table E, taking $\operatorname{Cos} \theta a+\operatorname{Sin} \theta \mathrm{b}$ as the generator set we get the equation

$$
\left(\frac{\cos \theta}{/ 2}-\frac{5}{4} \operatorname{Sin} \theta_{2}^{2}=0\right.
$$

Whence we obtain the required sets given in Tables 9 once again we use F to donote the generator usfs.

An alternative method is to recall that we know the matrix elements of some generators e.g. charge, isospin etc. from the $\operatorname{SU}(3) x \operatorname{SU}(2)$ decomposition. Again by taking linear combinations one can adjust a and b to reproduce the correct physical situation cf. ${ }^{26}$.

In Table te present the data for the product $70(x)$ 70 \longrightarrow
$35_{F}(+) 35_{D}+\ldots \quad$ The ξ_{2} frctors required for $70 \times 35 \cdots 20$ may be found in Table 10.
table 8 :-

TABLE 8

70 (x) 70	$(8,1)$			$(8,3)$			
\%	(35) ${ }_{1}=$ a	(35)	5	$(35)_{1} \equiv \stackrel{a}{\sim}$	$(35){ }_{2}$	b	γ
(10,2) , (10,2)	$-\frac{1}{2} \sqrt{3}$	$-\frac{1}{3} \sqrt{\frac{5}{3}}$	$-\frac{1}{4} \sqrt{6}$	0	$-\frac{1}{3} \sqrt{\frac{5}{3}}$	$-\frac{1}{2} \cdot \frac{5}{6}$	
$(10,2)(3,4)$	0	0	0	$-\frac{1}{2} / \frac{5}{6}$	0	$\frac{1}{8} / \frac{5}{3}$	
$(10,2)(8,2)$	$\frac{1}{4} \times 1 \frac{5}{6}$	$-\frac{1}{3} \sqrt{\frac{5}{6}}$	$-\frac{5}{16} \times \frac{5}{3}$	$-\frac{1}{4} v_{5}^{5}$	$-\frac{1}{3} \sqrt{5}$	$-\frac{3}{16} \sqrt{\frac{5}{3}}$	
$(10,2)(1,2)$	\bigcirc	0	0	0	o	0	
$(8,4)(\overline{10}, 2)$	0	o	o	$\frac{1}{2} \sqrt{\frac{5}{6}}$	0	$-\frac{1}{8} \sqrt{\frac{5}{3}}$	-
$(8,4)(8,4)$	$-\frac{1}{4} \sqrt{\frac{5}{3}}$	$\frac{1}{3} \sqrt{\frac{5}{3}}$	$\frac{5}{8} \sqrt{6}$	$-\frac{5}{12} \times \frac{1}{3}$	$\frac{3}{3} \sqrt{\frac{1}{3}}$	$\frac{25}{24} \cdot \sqrt{\frac{2}{3}}$	${ }^{8}$
$(8,4)(8,4)$	$-\frac{\sqrt{3}}{4}$	$-\sqrt{\frac{1}{3}}$	$-\frac{3}{8} \sqrt{\frac{2}{2}}$	$-\frac{1}{4} \sqrt{\frac{5}{3}}$	$-\frac{1}{3} \sqrt{\frac{5}{3}}$	$-\frac{3}{3} \sqrt{5}$	0_{a}
$(8,4)(8,2)$	0	0	0	$-\frac{1}{3}, \frac{5}{6}$	$-\frac{2}{9} \sqrt{6}$	$-\frac{1}{12} \sqrt{\frac{5}{3}}$	${ }^{3}$
$(8,4)(8,2)$	0	0	0	0	$\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{2} \sqrt{\frac{1}{3}}$	8_{a}
$(8,4)(1,2)$	0	0	0	$-\frac{1}{6} \sqrt{\frac{1}{6}}$	$\sqrt{9} \sqrt{\frac{1}{6}}$	$-\frac{7}{24} \times \frac{1}{3}$	

TABLE 2 cont ${ }^{1}$ d.

$(8,2)(\overline{10}, 2)$	$-\frac{1}{4} \sqrt{\frac{5}{6}}$	$\frac{1}{3} \sqrt{ } \frac{5}{6}$	$\frac{5}{16} \sqrt{\frac{5}{3}}$	$\frac{1}{4} \sqrt{\frac{5}{6}}$	$\frac{1}{3} \sqrt{\frac{5}{6}}$	$\frac{3}{6} \sqrt{\frac{5}{3}}$	
$(8,2)(8,4)$	0	0	0	$-\frac{1}{3} \sqrt{\frac{5}{6}}$	$-\frac{3}{9} \sqrt{\frac{5}{6}}$	$-\frac{1}{12} \sqrt{\frac{5}{3}}$	8_{s}
$(8,2)(8,4)$	0	0	0	0	$\frac{1}{3} \sqrt{ } \frac{2}{3}$	$\frac{2}{2} \sqrt{\frac{1}{3}}$	3
$(5,2)(8,2)$	0	0	0	$-\frac{1}{6} \sqrt{\frac{2}{6}}$	$\frac{2}{3} \sqrt{\frac{5}{6}}$	$\frac{5}{24} \sqrt{2}$	ξ_{s}
$(8,2)(0,2)$	$\sqrt{\frac{1}{6}}$	$\frac{2}{3} \sqrt{\frac{1}{6}}$	$\frac{1}{4} \sqrt{\frac{1}{3}}$	$\frac{1}{2} \sqrt{\frac{1}{6}}$	0	$-\frac{3}{3} \sqrt{\frac{1}{3}}$	3^{3}
(8,2) $\{1,2)$	$\div \frac{1}{4} \sqrt{\frac{1}{6}}$	$-\frac{1}{3} \times \frac{1}{6}$	$-\frac{5}{16} \checkmark \frac{1}{3}$	$\frac{5}{12} \sqrt{\frac{1}{6}}$	$\frac{1}{3} \cdot \sqrt{\frac{1}{6}}$	$\div \frac{1}{40} \cdot 1 \frac{1}{3}$	
$(1,2)(\overline{10}, 2)$	0	0	0	0	0	0	
$(1,2)(8,4)$	0	0	0	$-\frac{1}{6} \checkmark \frac{1}{6}$	$-\frac{4}{9} \sqrt{\frac{1}{6}}$	- $\frac{7}{24} \times \frac{1}{3}$	
$(1,2)(8,2)$	$\frac{1}{2} \sqrt{\frac{1}{6}}$	$-\frac{1}{3} \sqrt{\frac{1}{6}}$	$-\frac{5}{16} \times \frac{1}{3}$	$\frac{5}{12} \sqrt{\frac{1}{6}}$	$\frac{1}{3} \times \frac{1}{6}$	- $\frac{1}{43} \times \frac{1}{3}$	
$(1,2)(1,2)$	0	0	0	0	0	0	

TABLE 9 - Unitary Scalar Factors for $70(x) 70 \rightarrow\left(35_{1} \xrightarrow{(+) 35} 2\right.$
(Octet parts)

	35F		35		
70 (x) 70	$(8,1)$	$(8,3)$	$(8,1)$	$(8,3)$	${ }^{\prime}$
$(10,2),(\overline{10}, 2)$	$\sqrt{11}$	$\frac{1}{3} \sqrt{ } \frac{5}{11}$	$-\frac{1}{4} \sqrt{ } \frac{5}{22}$	$\frac{5}{6} \sqrt{22}$	
$(10,2)(3,4)$	0	$\frac{1}{3} \cdot \frac{10}{11}$	0	$-\frac{13}{24} \sqrt{ } \frac{5}{11}$	
$(10,2)(6,2)$	0	$\frac{1}{3} \sqrt{11} 11$	- 16	$\frac{7}{48} \sqrt{ } \frac{5}{11}$	
$(10,2)(1,2)$	0	0	0	0	
$(8,4)(\overline{10}, 2)$	0	$-\frac{1}{3} \sqrt{10}$	0	$\frac{13}{24} \sqrt{ } \frac{5}{11}$	
$(8,4)(8,4)$	0	0	$-\frac{1}{8} \sqrt{ } \frac{55}{2}$	$\frac{-5}{24} \sqrt{\frac{11}{2}}$	s
$(8,4)(8,4)$	$\frac{2}{\sqrt{11}}$	$\frac{2}{3}, ~ \sqrt{11}$	$\frac{7}{8} \sqrt{22}$	$\frac{7}{24} \sqrt{22}$	a
$(8,4)(8,2)$	0	$\frac{1}{3} \sqrt{ } \frac{10}{11}$	0	$-\frac{1}{12} \sqrt{ } \frac{5}{11}$	s
$(3,4)(3,2)$	0	$-\frac{1}{3} \sqrt{ } \frac{2}{11}$	0	$\frac{-5}{6} \sqrt{ } \frac{1}{11}$	a
$(8,4)(1,2)$	0	$+\frac{1}{3} \sqrt{ } \frac{2}{11}$	0	$+\frac{3}{8} \sqrt{ } \frac{1}{11}$	
$(8,2)(\overline{10}, 2)$	0	$-\frac{1}{3} \sqrt{ } \frac{10}{11}$	- $\frac{1}{16} \sqrt{55}$	$\frac{-7}{48} \sqrt{ } \frac{5}{11}$	
$(8,2)(8,4)$	0	$\frac{1}{3} \sqrt{10} 11$	0	$\frac{-1}{12} \sqrt{ } \frac{5}{11}$	s
$(8,2)(8,4)$	0	$-\frac{1}{3} \sqrt{ } \frac{2}{11}$	0	$-\frac{5}{6} \sqrt{11}$	a
$(8,2)(8,2)$	0	0	0	$-\frac{1}{24} \sqrt{55}$	s
$(8,2)(8,2)$	$-\sqrt{11}$	$-\frac{1}{3} \cdot \frac{2}{11}$	$\frac{1}{4} \sqrt{11}$	$\frac{13}{24} \sqrt{11}$	a
$(8,2)(1,2)$	0	$-\frac{1}{3} \sqrt{\frac{2}{11}}$	$+\frac{1}{16} \sqrt{11}$	$+\frac{5}{16} \quad \frac{1}{11}$	
$(\overline{1}, 2)(\overline{10}, 2)$	0	0	0	0	
$(1,2)(8,4)$	0	$+\frac{1}{3} \sqrt{ } \frac{2}{11}$	0	$+\frac{3}{8} \cdot \frac{1}{11}$	
$(1,2)(8,2)$	0	$-\frac{1}{3} \times \frac{2}{11}$	$+\frac{1}{16} \checkmark 11$	$+\frac{5}{16} \sqrt{11}$	
$(1,2)(1,2)$	0	0	0	0	

3.5 Application ot the Tables

The only new facture of the Tables, and one which might cause confusion in their application, is that associated with the unresolved labelling problem. However, to illustrate thoix. . rather tortuous, if elementary, use we first reduce the direct product of a proton-like (spin up) state and a neutral-psin-1ike state
(we use the static su(6) π° assignment)

$$
=\sum\left(\begin{array}{ccc}
2 & 1 & 2 \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{ccc}
8 & 0 & 1^{\gamma} \\
\gamma_{1 \frac{1}{2}}^{2} & 010 & 1 I^{3}
\end{array}\right)\left(\begin{array}{cc}
56 & 35 \\
82 & 81
\end{array} \left\lvert\, \begin{array}{cc}
\lambda^{\gamma} \\
\left(\mu^{\gamma}, 2\right)
\end{array}\right.\right)
$$

$$
\cdot\left|\lambda^{\gamma}\left(\mu^{Y}, 2\right) ; 1 I_{2}^{1} ; 2 \frac{1}{2}\right\rangle
$$

We must sum over $\underline{\lambda}=56, \underline{70}, \underline{1134}, \underline{700}$

$$
\begin{aligned}
& \mu^{\gamma}=27 \quad 10 \\
& I=\frac{2}{2}, \\
& \frac{1}{2}
\end{aligned}
$$

The relevant Cor's ane

$$
\operatorname{SU}(2) \quad\left(\begin{array}{ccc}
2 & 1 & 2 \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right)=1
$$

$\operatorname{su}(3)$

For the unitary scalar factors we look at the 8281 rows of Table
6: the following are relevant:-

	$(27,2)$	$(10,2)$	$(10,2)$	$(8,2)$	$(8,2)$
700	$-\sqrt{\frac{1}{2}}$	$\sqrt{1}$	$\frac{1}{2}$	$-\sqrt{3}$	$-\frac{1}{4} \cdot \sqrt{3}$
$(1134)_{1}$	$\frac{1}{2}$	0	$-\sqrt{3}$	$-2_{2} \sqrt{2} \frac{3}{22}$	$-\frac{1}{2} \sqrt{\frac{15}{29}}$
$(1134)_{2}$	$-\frac{1}{2}$	$\frac{1}{2} \sqrt{\frac{3}{2}}$		$-\frac{1}{2} \sqrt{ } \frac{3}{11}$	$\sqrt{35}$
$(1134){ }_{3}$				$-\frac{3}{4} \sqrt{ } \frac{1}{2}$	$\sum_{k}^{2} \sqrt{\frac{1}{10}}$
70				$-\frac{1}{4} \sqrt{2}$	$-\frac{1}{l_{t}} \cdot \frac{1}{2}$
56				0	$\sqrt{ } \frac{2}{15}$

For example the $I=\frac{1}{2},(27,2)$ component of the direct product is written, onitting redundant labels
$\left(|p\rangle(x)\left|p^{0}\right\rangle\right)(27,2)=\sqrt{60} \frac{1}{60}\left[-\frac{1}{2}|700\rangle+\frac{1}{2}\left|(1134)_{1}\right\rangle-\frac{1}{2}(1134)_{2}\right]$
In all, the product state has non zero components in 21 orthogonal states occurring in the reduction - clearly in expansions such as occur in the use of the Jigner Echart Theorem in scattering rulations
the sheer labour involved is considerable. Fortunately other methods are availak e, see next. Chapter. Notice in the above that for different μ the vectors $\left(\mu_{1} 2\right){ }_{i}$ in 1134 with the same i are in no way especially related - they all occur in the same IR. 1134.

A second calculation, more amenable to Clebsch Gordan methods is extraction of the ratios of specific coupling constants a a famous example is the $D: E$ ratio of the coupling of pseudoscalar pions to baryons. Using a 35(83) assignment for the pions, (one best explained by $i I$ spin, see next chapter) we calculate for the $P^{+}\left(\frac{y}{2}\right)-\pi^{0}-P^{-1}\left(\frac{1}{2}\right)$ vertex:

$$
\begin{aligned}
& D=\left(\begin{array}{ccc}
56 & \overline{56} & 35 \\
82 & 82 & 8 s^{3} \\
p^{+}\left(\frac{1}{2}\right) & \bar{p}^{+}\left(\frac{1}{2}\right) & \overline{I I}^{0}
\end{array}\right) \\
& F \quad\left(\begin{array}{ccc}
56 & \overline{56} & 35 \\
82 & 82 & 8 a^{3} \\
\mathrm{p}^{+}\left(\frac{1}{2}\right) & \overline{\mathrm{p}}^{+}\left(\frac{1}{2}\right) & 7^{0}
\end{array}\right) \\
& =\underbrace{\left(\begin{array}{ccc}
2 & 2 & 3 \\
\frac{1}{2} & -\frac{2}{2} & 0
\end{array}\right)} \underbrace{\left(\begin{array}{ccc}
0 & 8 & 8_{\mathbf{s}} \\
\mathbf{p}^{+} & \mathbf{p}^{+} & \pi^{0}
\end{array}\right)\left(\begin{array}{lll}
56 & 56 & 35 \\
82 & 82 & 3_{\mathbf{s}}{ }^{3}
\end{array}\right)} \\
& \left(\begin{array}{ccc}
2 & 2 & 3 \\
\frac{1}{2} & -\frac{7}{2} & 0
\end{array}\right)\left(\begin{array}{ccc}
8 & 0 & 8_{a} \\
\mathbf{p}^{*} & \bar{p}^{+} & \pi^{0}
\end{array}\right)\left(\begin{array}{lll}
56 & \overline{56} \\
82 & 82 & 35 \\
8_{3} 3
\end{array}\right) \\
& =\frac{-\sqrt{ } \frac{3}{20}+\frac{1}{3} \cdot \sqrt{6}}{1}=\frac{3}{2} \\
& \sqrt{12}-\frac{1}{3} \cdot \sqrt{\frac{2}{3}}
\end{aligned}
$$

Concerning the Wigner-Eckart Theorem, its use in two body 'elastic! scattering leads to the following equations (assuming the scattering matrix S to be an $S U(6)$ scalar operator).

$$
\begin{aligned}
& \left\langle\lambda_{1},\left(\mu_{1} G_{1}\right), \nu_{1}: \lambda_{2}\left(v_{2} \sigma_{2}\right) \nu_{2}\right| s\left|\lambda_{3}\left(\mu_{3} \sigma_{3}\right), \nu_{3}: \lambda_{4},\left(\mu_{4}^{u_{2}}\right), \nu_{4}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& x\left\langle\lambda^{Y^{\prime}}\|s\| X^{\prime \prime}\right\rangle
\end{aligned}
$$

Since the scattering is elastic $\lambda_{1}=\lambda_{3}, \lambda_{2}=\lambda_{4}$ say - we emphasize now, that in the sumation cross terus in the redundancy label, i are not included - one can imagine these ()$_{i}$ as in fact distinguiskec by some operator which an $\operatorname{SU}(6)$ scalar must respect, i.e. in the above S cannot cause i - j transitions. This conclusion also points to a real difficulty of our labelling scheme - if the scattering is not elastic we have to ensure nonetheiess that the $(\mu)_{i}$ appearing in a common product state are in fact always the same basis vector. One way to do this is to calculate the generators in the two equivalent IRs under comparison, alternatively the method adopted here (for $405(83)_{i}$) was again by a method of direct comparison of basis vectors.

Tabli: \quad V. - Unitary scalar fuetors $\left(\begin{array}{cc||c}35 & 35 & \lambda_{\gamma} \\ \mu_{1} \sigma_{1} & \mu_{2} \sigma_{2} & \mu_{\gamma} \sigma\end{array}\right)$ for the C.G. series.
$\underline{35} \otimes 35=1+\underline{35}+\underline{35} F+\underline{180}+\underline{280}+\underline{280}+\underline{405}$.

$(27,3)$

| $\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$ | (405) | (280) | (280) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8,$3 ; 8,3$ | 0 | $\sqrt{\frac{1}{2}}$ | $-\sqrt{1}$ |
| 8,$3 ; 8,1$ | $\sqrt{\frac{1}{2}}$ | $\frac{1}{2}$ | $+\frac{1}{2}$ |
| 8,$1 ; 8,3$ | $\sqrt{\frac{1}{2}}$ | $-\frac{1}{2}$ | $-\frac{1}{2}$ |

$(27,1)$

$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	$(40 \overline{5})$	(189)	$\lambda_{\gamma^{\prime}} \mu_{\gamma}$
8,$3 ; 8,3$	$\frac{1}{2}$	$\frac{1}{2} \sqrt{3}$	
8,$1 ; 8,1$	$-\frac{1}{2} \sqrt{3}$	$\frac{1}{2}$	

$(10,3)$				
$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	(405)	(280)	(189)	$\lambda_{\gamma^{\prime}} / \mu_{\nu}$
8, 3; 8, 3	$\sqrt{\frac{1}{2}}$	0	$\sqrt{\frac{1}{2}}$	
8, 3; 8, 1	$\frac{1}{2}$	$\sqrt{\frac{1}{2}}$	$-\frac{1}{2}$	
8, 1; 8, 3	$-\frac{1}{2}$	$\sqrt{\frac{1}{2}}$	$\frac{1}{2}$	

$(10,1)$

$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	(280)	(280)	$\lambda_{\gamma^{\prime}} / \mu_{\gamma}$	
8,$3 ; 8,3$	$\frac{1}{2}$	$\frac{1}{2} \sqrt{3}$		
8,$1 ;$	8,	1	$-\frac{1}{2} \sqrt{3}$	$\frac{1}{2}$

Tabie V. (cominucd).
($\overline{10}, \overline{5}$)

(10, 3)

(10, 1)

$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	(280)	$(\overline{280})$	$\lambda_{\gamma^{\prime}} \mu_{\gamma}$
8,$3 ; 8,3$	$-\frac{1}{2} \sqrt{3}$	$-\frac{1}{2}$	
8,$1 ; 8,1$	$-\frac{1}{2}$	$\frac{1}{2} \sqrt{3}$	

3)											
$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	$(405)_{1}$	(405) ${ }^{2}$	$(280)_{3}$	(280) ${ }_{2}$	$(280)_{1}$	(290) ${ }^{2}$	(189) ${ }_{1}$	(189) ${ }^{\text {a }}$	$(35)_{D}$	$(35)_{r}$	λ_{y}
8, 3; 8, 3	0	0	$-\frac{1}{2} \sqrt{\frac{2}{11}}$	$-\frac{5}{6} \sqrt{\frac{5}{11}}$	$\left\|-\frac{1}{2} \sqrt{\frac{2}{11}}\right\|$	$-\frac{5}{6} \sqrt{\frac{5}{11}}$	0	0	0	$-\frac{1}{3} \sqrt{\frac{5}{2}}$	$8{ }_{8}$
8, 3; 8, 3	0	$\frac{1}{4} \sqrt{5}$	0	0	0	0	0	$\frac{1}{2} \sqrt{\frac{1}{2}}$	$\frac{3}{4}$	0	$8{ }_{8}$
8, 3; 8, 1	0	$-\frac{1}{4} \sqrt{\frac{1}{2}}$	$-\frac{1}{2} \sqrt{\frac{1}{11}}$	$\sqrt{\frac{5}{22}}$	$\frac{1}{2} \sqrt{\frac{1}{11}}$	$-\sqrt{\frac{5}{22}}$	0	$-\frac{1}{4} \sqrt{5}$	$\frac{1}{4} \sqrt{\frac{5}{2}}$	0	8
8, 3; 8, 1	$\frac{1}{2}$	0	$\frac{1}{2} \sqrt{\frac{5}{11}}$	$\frac{1}{2} \sqrt{\frac{1}{22}}$	$\frac{1}{2} \sqrt{\frac{5}{11}}$	$\frac{1}{2} \sqrt{\frac{1}{22}}$	$\frac{1}{2}$	0	0	$-\frac{1}{2}$	$8{ }_{\text {a }}$
8, 1; 8, 3	0	$-\frac{1}{4} \sqrt{\frac{1}{2}}$	$\frac{1}{2} \sqrt{\frac{1}{11}}$	$-\sqrt{\frac{5}{22}}$	$\frac{1}{2} \sqrt{\frac{1}{11}}$	$\sqrt{\frac{5}{22}}$	0	$-\frac{1}{4} \sqrt{5}$	$\frac{1}{4} \sqrt{\frac{5}{2}}$	0	8_{s}
8, 1; 8, 3	$-\frac{1}{2}$	0	$\frac{1}{2} \sqrt{\frac{5}{11}}$	$\frac{1}{2} \sqrt{\frac{1}{22}}$	$\frac{1}{2} \sqrt{\frac{5}{11}}$	$\frac{1}{2} \sqrt{\frac{1}{22}}$	$-\frac{1}{2}$	0	0	$-\frac{1}{2}$	$8{ }_{\text {a }}$
8, 3; 1, 3	$\frac{1}{2}$	0	$-\frac{1}{2} \sqrt{\frac{5}{11}}$	$\frac{2}{3} \sqrt{\frac{2}{11}}$	$\frac{1}{2} \sqrt{\frac{5}{11}}$	$\frac{2}{3} \sqrt{\frac{2}{11}}$	$-\frac{1}{2}$	0	0	$\frac{1}{3}$	
1, 3; 8, 3	$-\frac{1}{2}$	0	$-\frac{1}{2} \sqrt{\frac{5}{11}}$	$\frac{2}{3} \sqrt{\frac{2}{11}}$	$-\frac{1}{2} \sqrt{\frac{5}{11}}$	$\frac{2}{3} \sqrt{\frac{2}{11}}$	$\frac{1}{2}$	0	0	$-\frac{1}{3}$	
8, 1; 1, 3	0	$-\frac{1}{4} \sqrt{5}$	$\frac{1}{2} \sqrt{\frac{10}{11}}$	$\frac{1}{2} \sqrt{\frac{1}{11}}$	$-\frac{1}{2} \sqrt{\frac{10}{11}}$	$-\frac{1}{2} \sqrt{\frac{1}{11}}$	0	$\frac{1}{2} \sqrt{\frac{1}{2}}$	$\frac{1}{4}$	0	
1, 3; 8, 1	0	$-\frac{1}{4} \sqrt{3}$	$\frac{1}{2} \sqrt{\frac{10}{11}}$	$\frac{1}{2} \sqrt{\frac{1}{11}}$	$\frac{1}{2} \sqrt{\frac{10}{11}}$	$\frac{1}{2} \sqrt{\frac{1}{11}}$	0	$\frac{1}{2} \sqrt{\frac{1}{2}}$	$\frac{1}{4}$	0	

Tame V. (contimucd)

$(8,5)$

$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	(405)	(280)	(280)	(189)	$\lambda_{\gamma^{\prime}}$
8,$3 ; 8,3$	$-\sqrt{\frac{1}{6}}$	0	0	$-\sqrt{\frac{5}{6}}$	μ_{γ}
8,$3 ; 8,3$	0	$\sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{2}}$	0	8_{a}
8,$3 ; 1,3$	$-\frac{1}{2} \sqrt{\frac{5}{3}}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2} \sqrt{\frac{1}{3}}$	
1,$3 ; 8,3$	$-\frac{1}{2} \sqrt{\frac{5}{3}}$	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2} \sqrt{\frac{1}{3}}$	

(1,5)

$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	(405)	(189)
8,$3 ; 8,3$	$\sqrt{\frac{1}{3}}$	$\sqrt{\frac{2}{3}}$
1,$3 ; 1,3$	$-\sqrt{\frac{2}{3}}$	$\sqrt{\frac{1}{3}}$

Table ' V_{0} (conlinued $)$.
$(8,1)$

$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	(405)	(280)	(280)	(189)	$(35)_{p}$	$(35)_{F}$	$\lambda_{\gamma^{\prime}}$
8,$3 ; 8,3$	$-\frac{7}{4} \sqrt{\frac{1}{6}}$	0	0	$-\frac{1}{4} \sqrt{\frac{1}{3}}$	$-\frac{1}{4} \sqrt{\frac{15}{2}}$	0	μ_{γ}
8,$3 ; 8,3$	0	$\frac{1}{2} \sqrt{\frac{1}{2}}$	$\frac{1}{2} \sqrt{\frac{1}{2}}$	0	0	$\frac{1}{2} \sqrt{3}$	8_{a}
8,$1 ; 8,1$	$-\frac{3}{4} \sqrt{\frac{1}{2}}$	0	0	$\frac{3}{4}$	$\frac{1}{4} \sqrt{\frac{5}{2}}$	0	8_{s}
8,$1 ; 8,1$	0	$\frac{1}{2} \sqrt{\frac{3}{2}}$	$\frac{1}{2} \sqrt{\frac{3}{2}}$	0	0	$-\frac{1}{2}$	8_{a}
8,$3 ; 1,3$	$\frac{1}{4} \sqrt{\frac{5}{3}}$	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2} \sqrt{\frac{5}{6}}$	$-\frac{1}{4} \sqrt{3}$	0	0
1,$3 ; 8,3$	$\frac{1}{4} \sqrt{\frac{5}{3}}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2} \sqrt{\frac{5}{6}}$	$-\frac{1}{4} \sqrt{3}$	0	

(1,3)

$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	(280)	(280)	$(35)_{p}$	$(35)_{F}$
8,$3 ; 8,3$	$\frac{1}{3} \sqrt{\frac{1}{2}}$	$\frac{1}{3} \sqrt{\frac{1}{2}}$	0	$\frac{2}{3} \sqrt{2}$
8,$3 ; 8,1$	$-\frac{1}{2}$	$\frac{1}{2}$	$-\sqrt{\frac{1}{2}}$	0
8,$1 ; 8,3$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\sqrt{\frac{1}{2}}$	0
1,$3 ; 1,3$	$\frac{2}{3}$	$\frac{2}{3}$	0	$-\frac{1}{3}$

Table: V. (continucol).

$(1,1)$

Table VI. - Unitary sealur factors $\left(\begin{array}{cc|c}50 & 35 & \lambda_{\gamma^{\prime}} \\ \mu_{1} \sigma_{1} & \mu_{2} \sigma_{2} & \mu_{\gamma} \sigma\end{array}\right)$ for the C.G. series. $56 \otimes 35=60+70+1134+700$.
$(35,6)$

$(35,4)$

(35, 2)

(27.6)

$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	(1134)
10,$4 ; 8,3$	-1

Table VI.(conlinucd).
$(27,4)$

| $\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$ | (700) | $(1134)_{1}$ | $(1134)_{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 10,$4 ; 8,3$ | $-\frac{1}{2} \sqrt{\frac{5}{6}}$ | $-\frac{1}{2} \sqrt{\frac{3}{2}}$ | $-\frac{1}{2} \sqrt{\frac{5}{3}}$ |
| 10,$4 ; 8,1$ | $\frac{1}{2} \sqrt{\frac{1}{2}}$ | $-\frac{1}{2} \sqrt{\frac{5}{2}}$ | $\frac{1}{2}$ |
| 8,$2 ; 8,3$ | $-\sqrt{\frac{2}{3}}$ | 0 | $\sqrt{\frac{1}{3}}$ |

$(27,2)$

$\mu_{1}, \sigma_{2} ; \mu_{2}, \sigma_{2}$	(700)	$(1134)_{1}$	$(1134)_{2}$
10,$4 ; 8,3$	$-\sqrt{\frac{1}{3}}$	$-\sqrt{\frac{2}{3}}$	0
8,$2 ; 8,3$	$-\sqrt{\frac{1}{6}}$	$\frac{1}{2} \sqrt{\frac{1}{3}}$	$\frac{1}{2} \sqrt{3}$
8,$2 ; 8,1$	$-\sqrt{\frac{1}{2}}$	$\frac{1}{2}$	$-\frac{1}{2}$

$(10,0)$

$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	(700)	(1134)	$\lambda_{\gamma^{\prime}} / \mu_{\gamma}$
10,$4 ; 8,3$	$\sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{2}}$	
10,$4 ; 1,3$	$\sqrt{\frac{1}{2}}$	$-\sqrt{\frac{1}{2}}$	

(10, 4)

Tables VI (contimucd).
$(10,4)$

$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	(700)	$(1134)_{1}$	$(1134)_{2}$	(50)
10,$4 ; 8,3$	$\frac{1}{6} \sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{2}}$	$\frac{1}{2} \sqrt{\frac{1}{6}}$	$\frac{2}{3}$
10,$4 ; 8,1$	$-\frac{1}{2} \sqrt{\frac{5}{6}}$	$-\sqrt{\frac{3}{10}}$	$\frac{3}{2} \sqrt{\frac{1}{10}}$	$2 \sqrt{\frac{1}{15}}$
10,$4 ; 1,3$	$-\frac{1}{3} \sqrt{2}$	0	$-\sqrt{\frac{2}{3}}$	$\frac{1}{3}$
8,$2 ; 8,3$	$\frac{1}{3} \sqrt{5}$	$-\sqrt{\frac{1}{5}}$	$-\sqrt{\frac{1}{15}}$	$\frac{2}{3} \sqrt{\frac{2}{5}}$

(10, 2)

$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	(700)	$(1134)_{1}$	$(1134)_{2}$	(70)
10,$4 ; 8,3$	$\sqrt{\frac{1}{6}}$	$\sqrt{\frac{1}{6}}$	0	$\sqrt{\frac{2}{3}}$
10,$4 ; 1,3$	$-\sqrt{\frac{1}{6}}$	$-\sqrt{\frac{1}{6}}$	$\sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{6}}$
$8 ; 2 ; 8 ; 3$	$\sqrt{\frac{1}{6}}$	$-\sqrt{\frac{1}{3}}$	$-\frac{1}{2} \sqrt{\frac{1}{2}}$	$\frac{1}{2} \sqrt{\frac{1}{2}}$
8,$2 ; 8,1$	$\sqrt{\frac{1}{2}}$	0	$\frac{1}{2} \sqrt{\frac{3}{2}}$	$-\frac{1}{2} \sqrt{\frac{1}{2}}$

Tamed VI (conlinued).

$(\overline{10}, 2)$
$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$
8,$2 ; 8,3$
8,$2 ; 8,1$

$(8,6)$

$(1,2)$

| $\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$ | (1134) | (70) | γ_{2} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8,$2 ; 8,3$ | $\frac{1}{2}$ | $-\frac{1}{2} \sqrt{3}$ | |
| 8,$2 ; 8,1$ | $\frac{1}{2} \sqrt{3}-\frac{1}{2}$ | | |

Tablevi (cominued).
$(3,4)$

$(8,2)$

Talbin VII-Unitary sculur fuctors $\left(\begin{array}{cc|c}56 & \overline{56} & \lambda_{\gamma^{\prime}} \\ \mu_{1} \sigma_{1} & \mu_{2} \sigma_{2} & \mu_{\gamma} \sigma\end{array}\right)$ for the C. G. series. $\underline{56} \otimes \underline{56}=\underline{1}+\underline{35}+\underline{405}+\underline{2695}$.
$(64,7)$

(64, 5)

$(64,3)$

(64, 1)

(35.5)

$(\overline{35}, 5)$

$(35,3)$

(35, 3)

(27, 7)

Tabrar VII (cont'd)
(27, 5)

$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	$(2695)_{1}$	$(2005)_{2}$	(405)	$2 \sqrt{\frac{2}{15}}$
10,$4 ; \overline{10} 4$	0	$\sqrt{\frac{7}{15}}$		
10,$4 ; 8,2$	$-\sqrt{\frac{1}{2}}$	$\sqrt{\frac{7}{30}}$	$-2 \sqrt{\frac{1}{15}}$	
8,$2 ; \overline{10}, 4$	$-\sqrt{\frac{1}{2}}$	$-\sqrt{\frac{7}{30}}$	$2 \sqrt{\frac{1}{15}}$	

$(27,3)$

| $\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$ | $(2695)_{1}$ | $(2695)_{2}$ | $(2695)_{3}$ | (405) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10,$4 ; \overline{10}, 4$ | 0 | 0 | $\frac{1}{3} \sqrt{2}$ | $-\frac{1}{3} \sqrt{7}$ | |
| 10,$4 ; 8,2$ | $-\sqrt{\frac{1}{2}}$ | $-\sqrt{\frac{1}{10}}$ | $\frac{1}{3} \sqrt{\frac{14}{5}}$ | $+\frac{2}{3} \sqrt{\frac{1}{5}}$ | |
| 8,$2 ; \overline{10}, 4$ | $-\sqrt{\frac{1}{2}}$ | $\sqrt{\frac{1}{10}}$ | $\frac{-1}{3} \sqrt{\frac{14}{5}}$ | $-\frac{2}{3} \sqrt{\frac{1}{5}}$ | |
| 8,$2 ; 8,2$ | 0 | $-2 \sqrt{\frac{1}{5}}$ | $-\frac{1}{3} \sqrt{\frac{7}{5}}$ | $-\frac{1}{3} \sqrt{\frac{1}{5}}$ | |

$(27,1)$

$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	(2605)	(405)
10,$4 ; 10,4$	$\sqrt{\frac{1}{15}}-\sqrt{\frac{14}{15}}$	
8,$2 ; 8,2$	$-\sqrt{\frac{\mu_{\nu}}{15}}$	

(10, 5)

Ξ

Taisin VII (cont'd)
(10, 3)

| $\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$ | (2005) | (405) |
| :---: | :---: | :---: | :---: |
| 10,$4 ; 8,2$ | $\sqrt{\frac{1}{5}}$ | $2 \sqrt{\frac{1}{5}}$ |
| 8,$2 ; 8,2$ | $1-2 \sqrt{\frac{1}{5}}$ | $-\sqrt{\frac{1}{5}}$ |

(10, 1)

(10, 3)

| | $\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$ | (2605) | (405) | $\lambda_{\gamma^{\prime}} / \mu_{\gamma}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8,$2 ; \overline{10}, 4$ | $\ldots \sqrt{\frac{1}{5}}$ | $-2 \sqrt{\frac{1}{5}}$ | | |
| 8,$2 ; 8,2$ | $-2 \sqrt{\frac{1}{5}}$ | $\div \sqrt{\frac{1}{5}}$ | | |

$(8,7)$

(10, 1)

$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	(2695)	λ_{y}, μ_{y}
8,$2 ; 8,2$	-1	

Thblis VII (cont'd)

$(8,5)$
$\mu_{1}, \tau_{1} ; \mu_{2}, \sigma_{2}$
10,$4 ; \overline{10}, 4$
10,$4 ; 8,2$

Thable VII ${ }^{\text {. }}\left(\right.$ cont ${ }^{\prime} d$)
$(8,1)$

$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	(2605)	(405)	(35)	\%
10, 4 ; $\overline{10}, 4$	$\sqrt{\frac{1}{15}}$	$-\sqrt{\frac{1}{10}}$	$\sqrt{\frac{5}{6}}$	
3, 2; 8, 2	$\sqrt{\frac{3}{5}}$	$\cdots \sqrt{\frac{2}{5}}$	0	8_{8}
8, 2; 8, 2	$-\sqrt{\frac{1}{3}}$	$\cdots \sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{6}}$	$8^{\text {a }}$

(1, 3)

$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	(2695)	(35)	$\lambda_{\gamma^{\prime}} / \mu_{\gamma}$
10,$4 ; \Gamma, 4$	$\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{5}{3} \sqrt{\frac{1}{3}}$	
8,$2 ; 8,2$	$\frac{5}{3} \sqrt{\frac{1}{3}}$	$\frac{1}{3} \sqrt{\frac{2}{3}}$	

(1, 5)

$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	(405)	$\lambda_{\gamma^{\prime}} / \mu_{\gamma}$
10,$4 ; \overline{10}, 4$	1	

(1, 1)

$\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}$	(405)	(1)	$\lambda_{\gamma^{\prime}} \mu_{\gamma}$
10,$4 ; \overline{10}, 4$	$\ldots \sqrt{\frac{2}{7}}$	$\sqrt{\frac{5}{7}}$	
8,$2 ; 8,2$	$\div \sqrt{\frac{5}{7}}$	$\sqrt{\frac{2}{7}}$	

CHMPTER 4
GU(6) AND SPIN SY IETRIES

This chapter contains a discussion of the $S U(6)_{w}$ higher symmetry group; noting that for 4 body processes with one notable (but unreliable see 4.2) exception the group is poorly favoured by experiment, wo investigate the consequences of rolaxing the system by allowing sone specified syanetry breaking. In particular we discuss the Johnson-Treiman relation and the $\Delta N \notin 2$ selection rule - we use tensor methods.
4. 2 V-gpin and higher symmetries

The $S U(6)_{w}$ schene first materialised ${ }^{29}$ as a subgroup of the higher groun $S U(6,6)$ or $\tilde{U}(12)^{30}$. The origins of this relativistic system and in particular the use of $\operatorname{SU}(6,6)$ rather than the minimal (with respect to $S U(3)$) graup $S L(6, C)$ are discussed in refs. ${ }^{31}$. The commutation relations appropriate to $S U(6,6)$ can be obtained, on adonting the sixteon $\& x \psi_{2}$ matrices, $\bar{f} r$, of the Diraio algebra as a basis for the fundeaental $I R$ of the $U(2,2)$ subgroup, by constructing the fundamental twelve dimensional representation as a direct product $\operatorname{Tr}_{x} \lambda^{\alpha}$ exactly as in ${ }^{\circ} 3.1$.

It was first proposed ${ }^{30}$ to use finite dimensional representations of $S U(6,6)$ to accommodate physical particles, the ropresentations then becane unitary reprosentations of an inhonogeneous $S U(6,6)$,
$\operatorname{ISU}(6,6)$, which was the semi-direct product of $S U(6,6)$ and a space of 143 conating 'translation' operators. The complete structure, including the $S U(6,6)$ field equations ensuring a positive definite norm and defining indopendent particle states was closely analogous to that used in defising irreducible unitary representations of the roincare group via the Lorentz group. An essential difference however lay in the occurrence of surplus momenta, 139 in total, which would be needed for writing invariant equations, and amplitudes, but for which there was neither physical evidence nor interpretation. Denoting an $S U(6,6) 12 \times 12$ group element by S and $F_{A}^{B}=\sum_{F_{2}} P_{r \alpha}\left(F_{r \alpha}\right)_{A}^{n}, \quad \Gamma_{r \alpha}=\Gamma_{r} x \lambda^{\alpha}$, then the only physical momenta are fuo and one must consequently limit the allowed symuetry transformations to those which do not transform to an unphysical realm :

$$
S \not \not S^{-*}=\not{ }^{0} \quad \not p=Y_{\mu} \gamma_{\mu}
$$

and Fil can be obtained fron P by a Lorentz transformation.
Incoed the view point first adonted (e.g. first two papers of ref. ${ }^{30}$) was to ignore momentum completely - the $\operatorname{SU}(6,6)$ matrices merely transformed the field indices; this reflected the static $S U(6)$ situation where spin was supposed completely decoupled from the orbital motion for a spin- $\frac{1}{2}$ particle. This occurs only for free particles and is dononstrated by the Foldy-Wouthuysen transw formation. In this chapter our description will apply to the
case in which the physical roincare group is a subgroup of ISU(6,6); wo shall not discuss the alternative approaches (see also ${ }^{23}$) employing infinitc dimensional unitary ropresentations of a homogeneous higher symmetry group, cf. Ruegg et al ${ }^{21}$, Fronsdal ${ }^{17 ;}$;

Te proceed now to exploit the analogy with the poincare group: single particle states are classified according to the appropriate 'little groun' of $\operatorname{ISU}(6,6)$. The little group of a momentun vector P_{i}^{B} is that subgroup of $\operatorname{ISU}(6,6)$ for which $\operatorname{SPS}^{-1}={ }^{[1}$ (i.e. transformations of the little group do not change the refurence frame). For massive one particle states we can choose as 'standard vector' the usual rest frame four-momentum (m, \circ). The little group then satisfies $S \gamma_{0} S^{-1}=\gamma_{0}$ and can easily be located as, in γ terminology, $\frac{1}{2}\left(1+Y_{0}\right) \times G_{a}^{b}$ where G_{a}^{b} generate a subgroup of $\operatorname{SU}(6,6)$ ifhich plays the role of, and is isomorphic to, non-relativistic $\operatorname{SU}(6)$. The little group is thus $S(U(6) \times U(6))$ - it gives the space time degeneracy of $\operatorname{in} \operatorname{ISU}(6,6)$ multiplet; the field equations are desi ned to nrescrve this degeneracy for moving one particle state. The corresponding little group in P, the Poincaré group, is of course su(2).

For systems composed of two particles the little group, relating to the total four-momentum, vill not be the same as that of the separate particles (although there may be isomorphism). It is clear that we can choose a frame (one in which the two 3-monenta are
collinear, conventionally the ${ }^{\prime} 3^{\prime}$ ' direction,) when the intersection of the two soparate little groups is given by thoso S for which $S \gamma_{0} S^{-1}=\gamma_{0}, \quad S Y_{3} S^{-1}=\gamma_{3}$. This gubgroup of $U(6) \times U(6)$ is $S U(6)_{W}$; under $\operatorname{SU}(6)_{w} \rightarrow \operatorname{SU}(3) \times \operatorname{SU}(2)_{w}$ the generators of the $\operatorname{SU}(3)$ are those of the physica: $\operatorname{SU}(3)$ viz λ^{α}, whilst those of $\operatorname{SU(2)}{ }_{w}$ are, in γ terminology, $W_{1}=\frac{1}{2} i \gamma_{0} \gamma_{2} \gamma_{3}, \because_{2}=\frac{1}{2} \gamma_{0} \gamma_{3} \gamma_{1}, \quad W_{3}=\frac{1}{2} i \gamma_{1} \gamma_{2}$, with $\left[W_{i}, W_{j}\right]=i E_{i j k} k$ The important property of $\operatorname{SU}(6)_{w}$, and that which lead to its discovery ${ }^{29}$, is that all the generators commute with the generator of Lorentz transformations in the collincar, '3' direction; this follows from

$$
\left[\lambda^{\alpha}, \gamma_{0} \gamma_{3}\right]=0=\left[W, \gamma_{0} \gamma_{3}\right] \quad \alpha=0, \ldots 0
$$

Where $\frac{1}{2} i \gamma_{0} \gamma_{3}$ is the Lorentz generator. This property distinguishes $\operatorname{SU}(6)_{W}$ fros non-relativistic $S U(6)$, which contains SU(2) with generators $\frac{1}{2} i \gamma_{2} \gamma_{3}, \frac{1}{3} i \gamma_{3} \gamma_{1}, \frac{1}{2} i \gamma_{1} \gamma_{2}$, such that only $\left[S_{3}, \gamma_{0} \gamma_{3}\right]=0$, and has two important consequences:
(i) Since the generators of $s U(6)_{w}$ are unchanged for arbitrary motion in the ' 3 ' direction we may couple in the usual direct product way the represontations describing two particles in an arbitrary collinear statc of motion. Such freedom does not exist for little groups, of \bar{x}, where the coupling of two particles with spin is complicated by the occurrence of orbital angular monentun, or equivalently, the generators of the two little groups do not coincide
in 5. It is also evidont that the matrix elements of $\operatorname{SU}(6)_{\mathrm{w}}$ generators satisfy the following equation:

$$
\left\langle\lambda \nu \mathcal{O}_{\sim}\right| G_{w} a^{b}\left|\lambda v^{2} 0\right\rangle-\lambda \sim p_{j} G_{w} a^{b}\left|\lambda v^{\prime} \underline{p}^{\prime}\right\rangle
$$ where (\hat{N}_{v}) ($\lambda^{\prime} v^{\prime}$) refer to $S U(6)_{w}$ labels of a state and $p, \underline{p}^{\prime \prime}$, are two collinear momenta obtained by a given boost in the '3' direction. $G_{w} a^{b}$ is any generator of $\operatorname{SU}(6)_{w}$. (ii) The application of a simpler symmetry in special cases leads to immediate, simpler, tests of the theory - assigning particies to irroducible recesontations of $S U(6)_{w}$ we can apply this group to a stadys of the vertex function, a function of two indesendent momenta, or to the case of forward or backward two body scattering processes, where again the one $S U(6)$ group will be relevant to both initial and final states; (the general procedure might be to be expand the amplicude in terms of $U(6) \times U(6)$ partial waves). It is the second example, that of scattering, which concerns us here.

We can again find an analogy in the Poincare group; there, for collinear motion, the intersection of the little groups of two massive particles is O_{2} : generated by J_{3}, the ' 3 ' component of total angular momentum. In a given frame we may classify states according to irreducible (one dinensional) unitary representations of O_{2}, labelled by m. However, under a space rotation the malue will change, according to the usual rotation matrices,

$$
|j m\rangle \rightarrow \sum_{m} f_{m}{ }_{m}^{j}\left|j n^{\prime}\right\rangle
$$

so that a state $($ iiil $)$ belonging to the $I R I$ of O_{2} under rotation in general becomes a raducible sum of IRs m^{\prime}. 0_{2} invariance for the four moint function implies of course J_{3} conservation, and this holds for any direction of motion, but only in the collinear case are J_{3} IR assignments invariant. Notice also that there is no conflict with unitarity which would relate the collinear scattering amplitude to a product of non collinear amplitudes through the symbolic equation:

$$
\eta_{m i} T_{f i}=\sum_{n} T_{n f}^{*} T_{n i}
$$

We prefer then to adopt this point of view of unitarity in $S U(6)_{W}$; this is similar to that of Pais ${ }^{31}$ who considers it a 'mattrar of language whether or not $S U(6)_{w}$ is compatible rith unitarity. The group makes no claims concerning non fortard directions....'. But it should be noted that in the $S U(6)_{w}$ case the unit operator $\sum_{n}(n><n * \quad$ occurring in the unitarity relation, viewed as a unit operator in $\operatorname{ISU}(6,6)$ is distorted due to the limitation of the sum \sum_{n}^{-}to physical momenta.

Continuing with our discussion of $S U(6)_{w}$ we now briefly relate $\operatorname{SU}(2)_{\mathbf{w}}$ and $\mathrm{SU}(2)$:

The maximal compact subgroup of $\operatorname{SU}(2,2)$ is $\operatorname{SU}(2) x \operatorname{SU}(2)$, locally isomorphic to $O(4)$, and contains as subgroups both $S U(2)$ and $S U(2)_{w}$:

Group	Generators	
$\operatorname{SU}(2) \times \operatorname{SU}(2)$		
	$\sim \sim$	4.4a
$\mathrm{SU}(2){ }_{s}$	$\frac{1}{2} i \gamma_{i} Y_{j}$	4.046
	$4+N$	
SU(2) ${ }_{W}$	$\$_{3} i \gamma_{0} \gamma_{2} \gamma_{3}, \frac{1}{2} i \gamma_{0} \gamma_{3} \gamma_{1}, \quad \frac{1}{2} i \gamma_{1} \gamma_{2}$	4.4 c
We see that		
	= $\mathrm{M}_{3}+\mathrm{N}_{3}$	4.5 a
	$\pm{ }_{ \pm}$	4.5b
	- ${ }_{ \pm}$	4.5 c

The finite dimensional unitary irreducible representations of $S U(2) x \operatorname{SU}(2)$ are labelled by pains of non negative integers and half integers (in, n) corresponding to the two commuting $S U(2){ }^{\prime}{ }_{s}$ H, No As expalined by Lipkin ${ }^{17}$ quarks (antiquarks) transform solely under $:(N)$ - this is decided by the appearance of $\frac{1}{2}\left(1+\gamma_{0}\right)$ as a positiva or negative energy projection operator. The S spin content of (m, n) is clearly (from eq. $4.4 b$) $s=m+n, m+n-1, \ldots m-n$, and from eq. 4.5 a it follows that this must also be the W-spin content.

From eqs. $4.5 b, c$, we see that for $I R_{s}$ of the form ($1 ., 0$) there is no distinction betweon S and W spin eigenstates, but for IR's of the type ($0, n$) wo have, under subgroup reductions,

$$
\left|S_{2} S_{3}\right\rangle=(-1)^{n-n 3} \quad\left|W_{3}\right\rangle
$$

$$
4.6
$$

where $\tilde{S}=W=n \quad S_{3}=W_{3}=n_{3}$ and we have arbitrarily chosen an overall phase by settiixg $\left|S_{\hat{q}} n\right\rangle=+|V, n\rangle$ (as usual $|\mu, v\rangle$ denctes + basis vector for the vector ν of the IR μ of the group specified).

For a general IR (a, n) we may now write

$$
\left\langle S_{0} S_{3}\right\rangle=\sum_{n_{3}}\left(s_{3}-n_{3} n_{3} S_{3}\right)\left|m, S_{3}-n_{3}\right\rangle\left|n_{1} n_{3}\right\rangle
$$

$$
=\frac{\sum_{n_{3}}}{i-1)^{n-n} 3}\left(\begin{array}{ccc}
m & n & S \\
S_{3} n_{3} & n_{3} & S_{3}
\end{array}\right)\left(a, S_{3}-n_{3}\right\rangle\left((-1)^{n-n_{3}} n_{n_{i} n_{3}}\right)
$$

$$
=\sum_{W_{1} n_{3}}(-1)^{n-n_{3}}\left(\begin{array}{ccc}
m & n & s \\
S_{3}-n_{3} & n_{3} & S_{3}
\end{array}\right)\left(\begin{array}{cc}
m & n \\
S_{3}-n_{3} & n_{3}
\end{array} W_{3}=S_{3}, n_{1}, H_{3}\right\rangle
$$

and a similar equation for $\left[\mathrm{H}_{2} \mathrm{H}_{3}\right\rangle$
As an example we consider the 11,0\rangle and $10,0>$ subgroup states of the $\bar{I} R\left(\frac{1}{2}, \frac{7}{2}\right)$, corresponding to the quark-antiquark composite; by straight substitution in eq. 4.7 we obtain :-

S spin state		$\frac{W \text { spin state }}{}$
$\|1,1\rangle$	\equiv	$\|1,1\rangle$
$\|1,-1\rangle$	\equiv	$-\|1,-1\rangle$
$\|1,0\rangle$	\equiv	$-10,0\rangle$
$\|0,0\rangle$	\equiv	$-11,0\rangle$

Further discussion of the relation bettreen S and V spin occurs in ${ }^{34,35}$ - the latter also arrives at a relation of the form eq. 4.7. It should also be noted that it has subsequently been possible to arrive at the concept of W spin invariance as deriving from rotation and inversion invariance ${ }^{36}$ - the only new contribution arises from transitions which are forbidden by $\Delta W=0$ (mod.2) ${ }^{37}$ i.e. a process forbidden under $U-s p i n$ invariance by $\Delta V=2$ would not be forbidden by rotation and purity invariance alone. Further discussion of this specific higher symatry prediction is given in Ch. 4.4.

4. 2 W-spin syametry breaking

Our interest in V -spin and $\mathrm{SU}(6)_{\mathrm{w}}$ is to test the stability of some of the predictionsof this group for the 4 noint function under various modes of sy:wetry breaking. Here we investigate the type of symmetry breaking needed and also our method of calculation.

The computation of exact symuetry predictions may be thought to proceed by consiructing all possible 'Lagrangian' terms relevant to the process under consideration and invariant under the given symmetry. For mass terms, e.g. exact symmetry predictions rosult from the scaiar term in $\underline{\mu}$ (x) $\overline{\underline{\mu}}$ and this will always give equal masses - similarly for higher n-point functions where now generally more than one scalar term exists. In group-theoretic language we apply the Uigner-Eckart theoren to a scalar oferator. In a broken
symmetry one allows specific non-scalar transofrmation properties to the Lagrangian - either we may use the Wigner-Eckart theoren, or, as is more customary, we may introduce a 'spurion' and construct. again scalar Lagrangians only one tern of rhich will be physical. The question of whether the same spurion should apply to different n-point functions has bean investigated for $S U(3)$ e.g. in the work of Dashen and Frautschi ${ }^{38}$ for $n=3$ and 4 - for $S U(3)$ there is ample evidence that $j=Y=0 \quad \dot{H}=\mathrm{B}$ transformation properties give significant and dominant symuetry breaking contributions to processes with $n=2,3,4,5$ (for $n=5$ sec e.g. 39). Making the assumgrion of n-independence the easiest way to search for symuetry breaking terms is to try to fit $n=2$ mass terms with the various allowed spurions - since it is the mass terms :hich give the clearest and most accessible indications of syanetry breaking, although of course in the $S U(6)$ schene they supposedly refer to $S U(6)$ r rather than $\operatorname{SU}(6){ }_{W}$
h number of people have considered mass formulae in $S U(6)$ two papers especially relevant to our work are those by Harari and Liplkin, and Harari: and Rashid ${ }^{40}$ who conclude:
(i) It is not possible to fit the observed baryon and meson mass spectra with the same mass operator in cach case. In parti= cular the octet $I=Y=0$ part of an $S U(6) 405$ tensor is required in the baryon but not in the meson case.
(ii) The major contribution to SU (3) symetry breaking in both casos comes from an $\bar{I}=Y=0$ octet component of a 35.
(iii) Terms which break SU(6) but not SU(3) symmetry may be as important as those which break both symmetries.

Indeed, their considerations applied without adaption to baryon-iaeson scattering suggest that four types of spurion should be invoked viz $(8,1)$ components in 35 and 405 and $(1,1)$ components in 189 and 405. A moments reflection suggests that a completely general investigation would not be sufficiently predictive to warrant the labour necessitated - as a first investigation we consider the effect of 25 only spurions on some specific processes. Further in SU(6) there does not seam to be any reason to consider only $=0$ spurions - whereas in $\operatorname{SU}(6) \quad J=0$ was essential - in the following we use at different times three sorts of spurion :$9 \quad \operatorname{SU}(6) \quad \mathrm{SU}(3) \times \operatorname{SU}(2){ }_{W} \quad \mathrm{I} \quad \mathrm{W}_{3}$

35	$(8,1)$	0	0	4.8 a
35	$(1,3)$	0	0	4.8 b
35	$(8,3)$	0	0	4.8 c

There is one further form of symmetry breaking which we investigate below: $S U(6)$ evolved by combining $S U(3)$ and $S U(2)$ in a minimal way; houcver $\operatorname{SU}(3)$ itself is not nearly as well satisfied as the isospin-hypercharge symaetry group $S U(2) \times U(1)$. Thus in
testing the validity of combining a purely internal symetry $[\operatorname{SU}(3)]$ with a space time symmetry $\left[S U(2)\right.$ - or $\left.\operatorname{SU}(2)_{w}\right]$ we should (ia the face of bad prodictions) try the effect of combination at the $\operatorname{SU}(2) \mathrm{x} U(\pm)$ level $i . e$. we should investigate the consequences of exact $\operatorname{SU}\left(4_{4}\right)_{w} \mathrm{SU}(2)_{w}$ symmetry. This bears some similarity to an $\operatorname{SU}(6),{ }^{3} x \dot{g}$ spurion. It is as well to note however that $\operatorname{SU}(4)_{w} x \operatorname{SU}(2)_{w}$ is a subgroup of $\operatorname{SU}(6)_{w}$ and therefore cannot deliver results which flatly disagree with the predictions of the larger group. In the following we shall be concerned to avoid a bad SU(6) prediction for the ratio of two forward scattering amplitudes - it would seem that re may not expect $\operatorname{SU}\left(4^{4}\right)_{w} x \operatorname{SU}(2)_{w}$ to predict a different ratio but at best that it may no longer be possible to form a ratio.

Finally the mode of calculation: the introduction of symmetry brcaking via a spurion (or any other method) means we require CG tables sufficient for the direct product of five SU(6) IRs. The tables of $C_{h} 3$ are not enough and instead we resort to tensor methods - in our opinion in any case mole suited to calculations involving more than tinree $S U(6)$ Iis. Thus we represent the meson $\operatorname{SU}(6)_{6} 35$ tensor as :-

$$
N_{A}^{B}=\frac{1}{\sqrt{2}}\left[\int_{\alpha}^{\beta} H_{a}^{b} \div \frac{1}{2} s_{\alpha}^{\beta}\left(\lambda_{a}^{o b}+v_{a}^{b}\right)\right]
$$

where M, V, V represont $(8,1),(1,3),(8,3)$ components of the 35 and

$$
\left(V_{0}\right)_{a}^{b}=\left(\begin{array}{ccccc}
\sqrt{\frac{1}{6}} \gamma & +\sqrt{\frac{1}{2}} \pi^{0} & \pi^{+} & \kappa^{+} \tag{1}\\
\pi & - & & & \sqrt{\frac{1}{6}}\left(-\sqrt{\frac{1}{2}} \pi^{0}\right. \\
\pi^{-} & & & \kappa^{0} \\
& & & -2 \sqrt{\frac{1}{6}} \eta
\end{array}\right)
$$

according to the W-S spin slip.
(We could note that a phase convention, additional to those at the $\operatorname{SU}(3) \times \operatorname{SU}(2)$ level, and corresponding to that discussed in Ch. B_{h}, 象 has been arbitrarily chosen here by fixing on relative plus signs betweon M , if and V ; clearly any relative sign is allowed.)

Similarly one may write down the tensor wave function of the 56 (for a fairly complete tabulation of tensor wave functions see Fuegg et al ${ }^{21}$).

We represent our symmetry breaking by components $f_{\alpha}^{\beta} \lambda_{a}^{8 b}$, $\sigma_{a}^{3 \beta} \delta_{a}^{b}, \quad \sigma_{3 \alpha}^{\beta} \lambda_{a}^{8 b}$ of the spurion tensor s_{A}^{B} for the three possibilities $(8,1),(1,3),(8,3)$ respectively. The calculation then involves evaluating tensor contractions - although it will be seen that in some cases (short cuts' do exist.

4.3 The Johnson-Treiman relations

An early success of the gin containing higher symatries was the prediction of the following relation for the differences in total cross-sections for the scattering of pseudoscalar mesons on proton targets:

$$
\begin{equation*}
\Delta \mathrm{p} \pi^{+}=\Delta \mathrm{K}^{\circ}=\frac{1}{2} \Delta \mathrm{pk} \mathrm{k}^{+} \tag{4611}
\end{equation*}
$$

where $\Delta \mathrm{pm}=\bar{\sigma}_{\text {tot }}(\mathrm{p}+\mathrm{m} \rightarrow \mathrm{p}+\mathrm{m})-\sigma_{\text {tot }}(\mathrm{p}+\bar{m} \rightarrow \mathrm{p}+\bar{m})$

$$
\mathrm{p}=\text { proton, } m=p \text { s.meson. }
$$

These equations have come to be known as the Johnson-Trciman relations ${ }^{42}$. They were first obtained in static $\operatorname{SU}(6)_{\sigma}$. Using our tables in the direct channel for

$$
56+35 \longrightarrow 56+35
$$

since the IR 1 occurs four times in 56 (x) 35 (x) 56 (x) 35 there are four independent amplitudes or reduced matrix elenents $A_{i}=\langle\lambda \|$ T\| $\lambda\rangle$ with $\rangle=56,70,1134$ or 700 corrosponding to $56(x) 35=56(+70(+1134(+) 700$. The Johnson-Treinan relations in $S U(6)$ then follow via the ofical theorem since the amplitade dir̂̂̂erences Apm given in eqn. 4011 aro proportional to

$$
A=5 / 18 A_{700}-\frac{3}{20} A_{1134}-\frac{1}{12} A_{70}-\frac{2}{45} A_{56}
$$

In fact there is a simpler way to arrive at eqn. 4.11 which we shall describe and exploit below.

Since the same relation also holds in the W-spin formatison doubts about the applicability of $\mathrm{SU}(6)_{T}$ were relieved - the relation was first checked for incident meson momentura in the range 5-30 Bev/e. In any case there was a tendency for this prodiction to be accejted as important evidence in favour of the $\operatorname{SU}(6)_{w}$ and SU(6,6) syssetries. However the following points must be emphasized:
(i) The Johnson-Treiman relations can be derived in other models viz (a) exact $S U(3)$ symmetry plus dominance of the meson baryon scattoring amplitude at high energies by a purely F coupled vector meson Ruegge trajectory ${ }^{43}$, (b) the quark model (SU (3) invariance is not assumed here $)^{44}$. On the basis of either of these models it is perhaps surprising that eqn.4. 11 hold (roughly) dorn to energies $\sim 10 \mathrm{Bev} / \mathrm{c}$ incident meson lab momentum. (Fut see below for comparison with experimental data.)
(ii) It has been very clearly emihasized by Harari ${ }^{17}$ that any evaluation of the predictions of $\operatorname{SU}(3)$ containing symmetry schemes must allow breaicing of SU(3). Further in the case of the baryonmizeson systen dopartures froin exact symmetry may be as high as 20-30\%. For eqn. $4 .: 1$ Harari finds that exact $\operatorname{SU}(3)$ plus experimental information that in-elastic processes are small implies that Δ pas $=0$ (experimentally $\Delta \mathrm{pm} \sim 5 \mathrm{mb}$) - the simplest way out of this is to conjecture that the $S U(3)$ symuetry breaking is confined to the in-elastic amplitudes ${ }^{45}$.
(iii) We have argued briefly above that $\operatorname{SU}(6)_{w}$ may not flaunt unitarity as blatantly as has been suggested - however the simplest physical inter retation of the group theory, that one particle vector meson exchange (producing no conflict with unitarity) is obviously inadequate since such amplitudes have zero imaginary gart. (This is not so for the Regge model where e.g. the f trajectory can
produce an imaginary part.) It has been shown ${ }^{45}$, by rather involved argument that the inclusion of two particle intemediate states (i.e. two interiediate $35^{\prime \prime}$ s in the crossed channel) does not affect the prediction if one assumes each 3 particle vertex invariant under its om $S U(6)_{w}$ - so that consistency with unitarity exists to a higher degree than is suggested by superficial examination. Notice that one might hope to pick up this result with a breaking spurion since non collinear 2 particle states aro breaking W-spin conservation. We find below for a siaple $=1$ 35 spurion tizis hope is not realised.
(iv) The comparison vith experiment has been made in a nutber of places, Ruegg et $21^{21,} 44,46$. Quite apart from the dificiculties of correlating symatry predictions with experimental data the conclusion reached here denends upen the node of comparison. The (pn) cross-sections themselves are of the order of 20-30 millibars their differences about 15% of this. Naturally if the differences are compared directly the agreement seems poorer ${ }^{4^{6}}$ than if wo rewrite the relations in terms of suas, 21,44 . Anyway the best possible figure seems to be about 3% departure froa eqn. 4.21 (v) It is generally agreed that the relation

$$
\Delta p k^{+}=\Delta p_{1!}^{+}+\Delta p k^{\circ}
$$

is always better satisfied than eqn. 4.11. The above relation rosults froa $\operatorname{SU}(3)$ alone on the assumption of octet dominance in
the annihilation channel ${ }^{47}$.
With (ii) above in mind we now compute the effects of 35 type symaretry breaking on the Johnson-Tr iman relations. de denote the spurion by s and find that there arc eighteen different ways of forming an $S U(6)_{W}$ scalar frosi \bar{B}, B, H_{1}, H_{2} and S by saturation of tensor indices; this agrees with the number calculated directly by comparing terms appearing in the diroct products 56 (x) 56 and $35(x) 35(x) 35$. (The higher direct moduct reductions needed for this are now tabulated in Euegg et al ${ }^{21}$.) The general amplitude now has the foria ($\left.\bar{B} \cdot \prod_{1} H_{2}\right)_{A}^{B}$ where we suppose ${ }^{\prime} I_{1}$ and B to absorb the initial meson and baryon, and H_{2} abd \bar{B} to create the final states, and the indices $A_{1} B$ dcpend on S. We can represent the effect of time reversal, T, on theso amplitudes by $\mathrm{B}_{\mathrm{ABC}} \longleftrightarrow \bar{B}^{\mathrm{ABC}},{ }_{1 D}^{\mathrm{E}} \longrightarrow \mathrm{M}_{2 \mathrm{E}}^{\mathrm{D}} \quad$ corresponding to the interchange of initial and final particles and their creation and annihilation ozerators. Notice that the transformation also changes momenta and spins so that one must take care in rejecting T antisymaetric combinations in $\operatorname{SU}(6)_{w}$ space that T antisymetric combinations in spin space may not be forued, cf. ${ }^{48}$. For the baryon meson 暗的em this is the case. Note also that we automatically have parity invariance.

In this way fo find the following twelve amplitudes must be considered for baryon-iaeson scattoring subject to 35 -like symunetry
breaking. (The nuaber trelve compares with that of thrity-four which
result -arter tiac reversal invariance - for the sane systen in $S U(3)$ with $I=Y=0$ oct:it symaetry breaking ${ }^{49}$.
$\therefore: \bar{B}^{A B C} D_{D E F}{ }_{1}{ }_{A}^{D}{ }_{D_{B}}^{E} S_{C}^{F}$

$c: \bar{B}^{A B E}{ }_{B} \operatorname{CDP}_{A} S^{C}\left[i_{1} M_{8}\right]_{B}^{D}$
$\mathrm{D}_{ \pm}: \quad \overline{\mathrm{B}}^{\mathrm{ABC}} \mathrm{D}_{\mathrm{DBC}}\left(\left[\mathrm{H}_{2} \mathrm{~N}_{2}\right]_{ \pm} \mathrm{S}+\mathrm{S[}\left[\mathrm{H}_{1} \mathrm{H}_{2}\right]_{ \pm}\right)_{A}^{D}$
$\mathrm{E} \pm: \overline{\mathrm{B}}^{-\mathrm{ABC}} \mathrm{B}_{\mathrm{DBC}}\left(\mathrm{I}_{1} \mathrm{M} \mathrm{I}_{2} \pm \mathrm{in}_{2} \mathrm{SM}_{1}\right)_{A}^{\mathrm{D}}$

$\mathrm{G} \pm: 3^{\mathrm{ABC}} \mathrm{B}_{\mathrm{ABC}}\left[\left(\mathrm{M}_{1} \mathrm{H}_{2} \mathrm{~S}\right) \pm\left(\mathrm{M}_{2} \mathrm{H}_{1} \mathrm{~S}\right)\right]$
$\mathrm{H}: \overline{\mathrm{B}}^{\mathrm{ABC}} \mathrm{B}_{\mathrm{DBC}} \mathrm{C}_{6}^{\mathrm{D}}\left(\mathrm{H}_{1} \mathrm{H}_{2}\right)$

$$
\left(M_{1} M_{2}\right)=M_{1_{A}}^{5} H_{2_{B}}^{A}
$$

By inspection we see of these twelve all except three $A, B+$, contain either the meson or baryon tensors couzled into a 35 or 1, and also that only B-, $D-, E-, G-$ are antisymetric in ${ }_{1}$ and M_{2} 。

But we now notice that only antisymetric (in i_{1} and A_{2}) amplitudes can contribute to $\Delta p a, 43$ since by our convention a
 contributes to $p+\|^{m} \rightarrow p+\pi^{-\quad}$, we look now at the four antisymnetric terms.

Of these D - and E - have the factor $(\overline{D B})_{B}^{A}$, and using the octet part of the 26 tensor

$$
\mathrm{B}_{\mathrm{ABC}} \sim \mathrm{E}_{\mathrm{abr}} \mathrm{E}_{\alpha \beta} \mathrm{T}_{\mathrm{c} \mathrm{\gamma}}+\operatorname{cycle}(\mathrm{abc}, \alpha \beta \gamma) \quad 4.13 a
$$

we find
$(\bar{B} B)_{B}^{A}($ octetmoctet zarts)

$$
\begin{align*}
& \left(-2(N)_{b}^{a}-L_{i}(T N)_{b}^{a}\right) \sum_{\beta}^{\alpha}+b_{b}^{a}\left(4_{2}(N N) \lambda_{\beta}^{\alpha}-N_{N}^{\alpha} N_{\beta}\right) \\
& +2\left(\cdot\left(T_{5}^{s}\right)_{b \beta}^{a \alpha}+5(N \vec{N})_{b \beta}^{a \alpha}\right)
\end{align*}
$$

(extracting traces via

where \sim signifies zero trace on the free indices, we can arrive at the faniliar results $=D+\frac{2}{3} F$ coupling for $(\tilde{N N})_{b \beta}^{a \alpha}$ and wure F coupling for $\left.(\tilde{\operatorname{Lin}})_{b}^{a} \delta_{\beta}^{\infty}\right)$

Similarly using the iv spin identification of the nseudoscalar
 alyays label rospectively, $S U(3)$ and $S U(2)$ vectors). Corresponding
to our thrce possiblesurions there are now two cases to consider (i) the $V=0$ spurion gives a factor A, as also does $\left(T_{3}\right)^{2}$ fron $M_{2} i_{2}$ so its overall meson W spin factor is $\mathcal{S}_{\beta}^{\alpha}$ and this selects the U spin singlet (pure F) term from $\overline{\mathrm{B}}$. (ii) for $w=1\left(\sigma_{3}\right)^{3}=\sigma_{3}$ and we get the vector part of $\bar{B} B_{i}$ hence in this case the $\operatorname{SU}(3)$ coupling does not have the form $[\mathrm{N} N]_{-}\left[{ }_{1} \mathrm{M}_{2}\right]_{-}$ci (i) but only $\left(\alpha\left[\overline{\mathrm{K}} \mathrm{i}_{+}\right]_{+}[\overline{\mathrm{N} N}]_{\text {_ }}\right.$ and so only the weak form, (v) above, of the Johnson-Treiman relation will result froa D- and E- :hilst G- gives no contribution.

Inserting now the λ^{8} factor the following three types of SU(3) amplitude can occur in D-, E-, G-:

$$
\begin{aligned}
& \begin{array}{l}
\text { SU(3) amplitude } \\
(N W)\left[\left(i_{1} 2^{3}\right)-\left(i_{2}^{i n} \lambda^{8}\right)\right]
\end{array} \\
& \Delta \mathrm{p} \mathrm{It}^{+} \\
& \Delta \mathrm{pk}{ }^{+} \\
& \Delta \mathrm{pk}{ }^{\circ} \\
& \text { 0 } 6 \\
& 6 \\
& \left(\operatorname{NN}_{1} \lambda^{8} H_{2}\right)-\left(\mathrm{NH}_{2} \lambda \mathrm{H}_{2}\right) \\
& \begin{array}{lll}
2 & -4 & 0
\end{array} \\
& \left(\mathrm{FN}_{1} \lambda^{8} \mathrm{Fi}_{2}\right)-\left(\mathrm{MN}_{2} \lambda^{B_{i_{1}}}\right) \\
& \begin{array}{lll}
0 & -2 & -2
\end{array}
\end{aligned}
$$

From the above ab ve it is clear that no linear combination of the three (SU(3)) am:litudes can give non-trivial (Δ pail $\neq 0$) JohnsonTreiman relations, and this then follows also for D-, E-, G-. We discuss the amplitude B- in more detail: exjand the tensor wave function

$$
\phi \equiv B^{A_{B}^{5}}{ }_{C D P}{ }^{i i_{1}} C_{A}^{C} i_{L_{B}}^{E} M_{3 E}^{D}
$$

$$
\begin{aligned}
& \text { retaining only spin- } \frac{1}{3} \text { baryon - spin } \frac{1}{2} \text { baryon teras. }
\end{aligned}
$$

$$
\begin{aligned}
& +\left[\left(\mathrm{MH}_{1} \mathrm{~N}\right)\left(\mathrm{H}_{2} \mathrm{H}_{3}\right)\right] \quad \times \quad\left[\left(\mathrm{Ma}_{1} \mathrm{~N}\right)\left(\mathrm{Hi}_{2} \mathrm{H}_{3}\right)-\left(\overline{\mathrm{N}}_{1} \mathrm{NL} \mathrm{H}_{2} \mathrm{H}_{3}\right)\right] \\
& +\left[\left(\mathrm{Ni}_{1} M_{2} \mathrm{M}_{3} \mathrm{~N}\right)\right] \quad x \quad\left[\left(\mathrm{MM}_{1} M_{2} M_{3} \mathrm{~N}\right)-\left(\mathrm{TH}_{1}\right)\left(\mathrm{N}_{2} \mathrm{H}_{3}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& +\left[\left(\bar{N}_{i} ; 3_{3} 1^{N}\right)\right] \\
& x\left[\left(\mathrm{NM}_{2} \mathrm{H}_{3} \mathrm{H}_{1} \mathrm{~N}\right)-\left(\mathrm{N}_{2} \mathrm{H}_{3}\right)\left(\mathrm{N} 4_{1}\right)\right]
\end{aligned}
$$

The above exhibits the $S U(2)_{w} \operatorname{xU}(3)$ structure of the $\operatorname{SU}(6)$ scalar amplitude \varnothing explicitly - the $\mathcal{G U}(2)$ factor is always written first, and evey factor is a tensor trace.

We now arrive at the predictions of B- by permuting on the meson labels 1,2,3, and so establish in a straightforward way that the spurions $48 \mathrm{~b}, \mathrm{c}$ give no contribution to $\Delta \mathrm{par}, \mathrm{M}=\mathrm{I}^{+\quad}, \mathrm{K}^{+}$, $\mathrm{x}^{\mathbf{o}}$ whilst ${ }_{4} 8$ a contributes to $\Delta \mathrm{pk}{ }^{+}$only so that in this case neither relation holds.

We conclude
(i) Non trivial Johnson-Treiman relations do not survive under symmetry breaking of any of the three types listed above. (ii) Their weak for:a 47 and (v) above does hold with a $:=1$ SU(3) singlet 35 spurion.
$4.4 \Delta W$ Selection rule
We now turn to some predictions of exact $S U(6)$ first listed in 50 which were soon shown to be in gross contradiction with experiment ${ }^{51}$.

In ref. ${ }^{50}$ it was shown how a number of processes of the form baryon+meson \rightarrow baryon+meson proceed via just one $S U(6)_{w}$ amplitude. We may easily locate these processes by looking in the 'crossed channel' as above - of the four cross-anplitudes, 1, 35 (twice) and 405 only the latter allows transfer of quantum nuabers charge 72 or $|W(W+1)| \geqslant 6$, or both so that all processes characterized by such
exchanges (in the crossed chennel) must all be proportional to one amplitude, $i 405$.

(b) reactions of the form $P+B \longrightarrow P+D$
when crossed become $P: P \longrightarrow \overline{\mathbf{Z}}+D$
with $1 f$ spin couplings
$1(x) 1 \rightarrow \frac{1}{2}(x) \frac{3}{2}$
For ps mesons, P, the coupling $C G$ is now $\left(\begin{array}{lll}3 & 3 & \pi \\ 0 & 0 & 0\end{array}\right) W=1,3,5$, but $\left(\begin{array}{lll}3 & 3 & 3 \\ 0 & 0 & 0\end{array}\right)=0$; thus there is common to both sides only $\mathrm{H}=2$ and so again only 405 exchange is possible.

It is clear that those processes excluded from a 1 or 35 channel in the owact symmetry case must again be excluded for a $W=0,{ }^{8}$ spurion which conservos charge and W spin but that 35 channels, in the case (b), will be admitted by a $W=1$ spurion. We begin with the $W=0 \quad \lambda^{3}$ spurion and thus nead consider only $A, B \pm$. For $B \pm$ ith $S_{i=}^{B}=\int_{\alpha}^{\beta} \lambda_{a}^{8 b}$ the W spin parts are \cdots unnodified from $z_{i=}^{\beta}=\int_{i}^{3}$. Let

Writing $\Delta=3 \lambda^{\ominus}=$ diagonal $(1,1,-2)$ we find for the $\operatorname{SU}(3)$ parts

$$
[: \Delta]_{+}=2 i-3 \times\left(\begin{array}{lll}
0 & 0 & K^{+} \\
0 & 0 & K^{0} \\
K^{-} & \bar{K}^{0} & \frac{-4}{\sqrt{6}}
\end{array}\right)
$$

$$
\begin{aligned}
& \text { def. }=2^{\mathrm{Ni}}-3 \mathrm{n}!+3 \mathrm{~N} \\
& \text { Similarly } \\
& {[\mathrm{H} \Delta]_{-}=-3\left(\begin{array}{ccc}
0 & 0 & K^{+} \\
0 & 0 & K^{0} \\
-K^{-} & -\bar{K}^{0} & 0
\end{array}\right)} \\
& \text { def. } \\
& =-3 s^{\prime \prime}
\end{aligned}
$$

Then

$$
\begin{align*}
& B_{*}=4 B\left(M_{1}\right)-3 B\left(i_{2}\right)-3 B\left(M_{1} M_{1}\right)+3 B\left(M_{1} N\right)+3 B\left(i_{2}^{N}\right) \\
& =4 B\left(M_{1} H_{2}\right)-3 B\left(\mathrm{H}_{1} \mathrm{Hi}_{2}\right)-3 \mathrm{~B}\left(\mathrm{H}_{2} \mathrm{Mi}_{1}\right)
\end{align*}
$$

since the factor N roduces an $S U(6) S_{A}^{C}$ which vanishes against the $405(\mathrm{BB})_{C D}^{\mathrm{AB}}$

Similarly

$$
\mathrm{B}-=-3 B\left(\mathrm{~N}_{1} \mathrm{~S}_{2}^{\prime \prime}\right)+3 \mathrm{~B}\left(\mathrm{~N}_{2}^{i{ }_{1}^{\prime \prime}}\right)
$$

The overall effect of symuetry breaking is to roplace one at a time in B of eq. E. 14, the $S U(3)$ matrices $k i$ by $\frac{11}{2}$ or $\frac{1}{2}$ - and thus can be computed directly from the exact symetry amilitudes (which unfortunataly vere not published in ${ }^{50}$, only their aquares
appearing). In this way, using notation of ref. ${ }^{50}$ we obtain the following predictions:

No.	Process	Amp. 1^{2} $=11^{2}$	No.	Frocess	$\begin{gathered} \text { Amp. } 1^{3} \\ =\|8\|^{2} \end{gathered}$
1	- $\mathrm{K}^{-} \mathrm{pl} \mathrm{l}^{+}{ }^{+}$)	3	2	$\left\langle\mathrm{K}^{-} \mathrm{p} \mid \mathrm{K}^{\circ} \equiv^{\circ}\right\rangle$	3
6	K-p $p^{+} \varepsilon^{-}$,	168	3	$\mathrm{KK}^{-} \mathrm{p}\left\|\mathrm{K}^{+} \bar{\Xi}^{-}\right\rangle$	12
9		24	4	$\left\langle\mathrm{K}^{-} \mathrm{p} \mid \mathrm{K}^{+0} \equiv{ }^{\circ}\right\rangle$	129
10	$\left\langle\mathrm{K}^{-} \mathrm{p} \mid \mathrm{TH}^{+} \mathrm{Y}^{-\times}\right\rangle$	96	5	$\left\langle\mathrm{K}^{-} \mathrm{plK} \mathrm{K}^{*+}{ }^{-}\right\rangle$	4^{8}
11		54	7	$\left\langle\mathrm{K}^{-\mathrm{p}} \mid \mathrm{K}^{\mathrm{O}} \equiv{ }^{*} \mathrm{O}\right\rangle$	34
12	K-plz ${ }^{*}{ }^{\text {\% }}$,	2	8	$\left\langle\mathrm{K}^{-} \mathrm{p}\right\| \mathrm{K}^{+} \#^{*}>$	86
15	$\mathrm{KK}^{-} \mathrm{p}^{\prime} \mathrm{p}^{+} \mathrm{y}^{*} 7$	168	13	$\mathrm{ni}^{-\mathrm{plK}}{ }^{*} \equiv^{*} \mathrm{O}$	168
16		3	14	$\mathrm{Ki}^{-} \mathrm{p}\left(\mathrm{n}^{+}{ }^{+}{ }^{*}>\right.$	163
27		129	30		3
22	$\left\langle\mathrm{H}^{-} \mathrm{p}\left(\mathrm{F}^{\mathrm{O}} \mathrm{Y}^{* O}\right\rangle\right.$	12	31	$\left\langle\mathrm{F}^{-} \mathrm{p} \mid \mathrm{IN}^{*+}{ }^{\circ}{ }^{\circ}\right\rangle$	57
23	$\left\langle\mu^{-} \mathrm{p} j \mathrm{r}^{+} y^{*}{ }^{*}\right\rangle$	96	35	〈 $\overline{\mathrm{K}}^{\mathrm{O}} \mathrm{p}\left\|\mathrm{K}^{+} \mathrm{E}^{\circ} \mathrm{O}\right\rangle$	24
25		168	36		340
26	$\left.\left.\langle \| 1{ }^{+} \mathrm{p}\right\|^{+} \mathrm{y}^{*+}\right\rangle$	24			
32	W. $\left.\mathrm{N}^{\mathrm{o}} \mathrm{plCr}{ }^{*+}\right\rangle$	4			
33		12			
34		12			

lo.	Process	\|Amp \equiv \equiv		
18	$\left\langle\\|p\\| \pi^{-}{ }^{*}+\right.$	24		
19	$\left\langle\Pi^{-} \mathrm{d} Y^{+0}{ }^{+}\right\rangle$	4		
20		103		
21	$\left\langle\mathrm{F} \boldsymbol{p} \boldsymbol{p} / \Pi^{+}{ }^{*}\right\rangle$	288		
24	$\left\langle\mathrm{in} \cdot \mathrm{p} \\|^{+} \mathrm{N}\right\rangle$	504		
27	$\left\langle{ }^{+} \mathrm{pf} \mathrm{n}^{+} \mathrm{N}^{+}\right.$,	24		
28	$\left\langle\\|{ }^{+} \mathrm{p}\right\| 1^{0} \mathrm{~N}^{*++}$	36		
29	$\left\langle\left.\mathrm{Tl}^{+} \mathrm{p}\right\|^{+} \mathrm{N}^{++}\right\rangle$	12		

There are three distinct sets of amrlitudes, each proportional to linear combinations of $A, B \pm$.

With

$$
\begin{align*}
& \alpha=20+430-A \\
& \beta=-3+4-4 \\
& \gamma=B B+A
\end{align*}
$$

the proportionality (to $\alpha, j^{\prime}, \gamma$) factors within each subset are then the same as in ${ }^{50}$. Notice a general sum rule $\alpha-2 \beta-\gamma=0 \quad 4.20$

Turning to the experimental data given in ${ }^{51}$ we sec that the symmetry breaking has not significantly changed the bad predictions. Data is given for $1,2,3,5,9,10,28$ in the forward and backward directions - now only the subsets $2,3,5 ; 1,9,10 ; 28$
afford comparison. But this still includes the predicted ratios $2=5,2: 3,2110$ and $9: 10$ disagreuing by factors of $10 \sim 100$. Evaluating the sum rule 4 - 20 in the forvard direction it is seen to be violated for the coabinations

$$
\begin{array}{lll}
\gamma=28 & \beta=1 & \alpha=2,3,5 \\
\gamma=28 & \beta=9 & \alpha=2 .
\end{array}
$$

One reason for these poor predictions has been pointed out in ${ }^{51}$. Consider for example the processes

$$
\begin{array}{r}
0: X^{-}+p \rightarrow \pi^{-}+Y^{+} \\
10: H^{-}+p \rightarrow H^{+}+Y^{*-}
\end{array}
$$

The first can proceed via K^{*} exchange as determined by the peripheral model known to have some validity in this situation, whilst the second involving $\Delta 4=-2$ is not peripheral in nature (no I spin 2 mesons are known to exist) and may be expected accordingly to be damped. Indeed we have

The $\Delta U f 2$ selection rule does not seem to be valid in the forward direction - however if we were to allow a $W=1$ spurion sone atuplitudes are decoupled, e.g. in eqn. 4.21 above 35 -1ike channels are opened for $\mathrm{K}^{-} \mathrm{p} \rightarrow \mathrm{m}^{-4+}$ but not for $\mathrm{K}^{-} \mathrm{p} \rightarrow \mathrm{A}^{+} \mathrm{Y}^{*}-$. We have
also checked that in this case it is no longer possible to form ratios for 1:10 and betreen 2,3, and 5.

As a further illusiration subgroup roduction techniques, and a propros of some remariss in $\mathrm{Ch}_{\mathrm{h}} 4.2$, we evaluate the prediction of the $\operatorname{SU}(4) \times \operatorname{SU}(2)$ subgroup of $\pi U(6)_{w}$ for the ratio $9: 10$, eqn. 4. 21. The decomposition approriate to this case is defined in 6: $(\hat{p}, \hat{p}, n, \hat{n}, \lambda, \hat{\gamma})$ to be that subgroup of unitary unimodular 6×6 matrices which act sevarately and independently on (p, n, n, n) forming a 4 of $\operatorname{SU}(4)$ and (λ, \hat{i}) forming $a \underline{2}$ of $\mathrm{SU}(2)$. In the language of eqn. 2. 5 a we replace the λ^{\prime} s by isospin T^{\prime} 's to get $S U(4)$ as a completion of $S U(2)_{I} X S U(2)_{T H}$, whilst the W spin matrices alone ropresent the remaining $S U(2)$ factor. Note that the decomposition of 6 is this time in the form of a tensor sum, rather than a tensor roduct. For the explicit decompositions we find

$$
\operatorname{SU}(6) \quad \operatorname{SU}\left(L_{2}\right) \quad x \quad \operatorname{SU}(2)
$$

$Y_{.} T_{0}[3] \rightarrow[3] .(+)[2][1](+)[1][2]:(+) \cdot[3]$

$$
\sim 56 \rightarrow(20, i)(t)(10,2)(t)(4,3)(+)(1,4)
$$

and for 35 :

$$
35 \rightarrow(15,1)(+)(1,3)(+)(4,2)(+)\left(4^{*}, 2\right)(+)(7,1)
$$

To locate physical particles we need W spin-isospin properties. For $S U(4) \rightarrow O(2)_{I} x S U(2)_{W}:$:e have (under now a product decomposition) $10=[2] \rightarrow(3,3)(+)(1,1)$

$$
4=[1] \rightarrow(2,2)
$$

so that in $\operatorname{SU}(4) x \operatorname{SU}(2)$

$$
\begin{aligned}
{[2][1] \rightarrow[(3,3)(+)(1,1)](x)(1,2) } & =\left(3,4(+)_{2}\right) \leftrightarrow(1,2) \\
{[1][1] \rightarrow(2,2)(\underline{x})(1,2) } & =\left(2,1(+)_{3}\right)
\end{aligned}
$$

the last entry on the right gives the (I, \underline{W}) representation. Hence we obtain

$\mathfrak{S U}(4) \times \mathrm{SU}$ (2)	(I, W)	Particles
$(20,1)$	$(4,4)(t)(2,2)$	N^{*}, N isoplets
$(10,2)$	$(3,4(t) 2)(t)(1,2)$	$\mathbf{Y}^{*}, \Sigma_{,} A^{*}$
(2,3)	(2, 4(t)2)	E*. \because
$(1,4)$	$(1,4)$	2
$(15,1)$	$(3,1(+) 3)(\pm)(1,3)$	\$ π, physicalwisoplets
$(1,3)$	$(1,3)$	physical φ
$\left(l_{2}, 2\right)$	($2,1(+) 3)$	K*, K
$\left(4_{*}^{*}, 2\right)$	$(2,1(+) 3)$	
$(1,1)$	$(2,1)$	x°

In the right hand column the physical, are defined as members of $\operatorname{SU}\left(4_{k}\right) \mathrm{x}$ SU(2) IRs - this corresponds to the comionly accopted treatment of wim φ mising.

To count amslitudes for $\mathrm{K}_{\mathrm{p}} \rightarrow \mathrm{T}^{*}$ wo consider the direct product

$$
\left(4_{x}, 2\right)(\underline{x})(20,1)(\underline{x})(\overline{10}, 2)(\underline{x})(15,1)
$$

The SU(2) part $\sim 2(y) 1(x) 2(x) 1$ contains one scalar. In SU(4) we have

$$
\begin{aligned}
4^{*}(x) 20 & =\left[1^{3}\right](x)[3] \\
10(x) 15 & =[2](x)\left[21^{2}\right] \\
& =\left[41^{2}\right](+)[321](+)\left[31^{3}\right](+)\left[1^{2}\right] \\
& =70(4) \underline{6}\left(+11^{2}\right](+)\left[31^{3}\right]=70(+) \underline{6}
\end{aligned}
$$

Therefore there are two $\operatorname{SU}(4)$, and so two $S U(4) \times \operatorname{SU}(2)$ amplitudes. We further write

$$
\begin{aligned}
& (10,2) \sim Y_{(A B) \hat{C}} \equiv Y_{a b, \alpha \beta, \gamma} \\
& \rightarrow Y_{(a b)(\alpha \gamma)}+\sqrt{ } \frac{1}{3}\left[\xi_{\alpha \gamma} Y_{(a b) \beta}+G_{\beta \gamma} Y_{(a b) \alpha}\right] \\
& (20,1) \sim P_{A B C} \\
& \rightarrow N_{(a b c)(\alpha, \gamma)}+\frac{1}{3}\left(\varepsilon_{a b^{2}} \beta^{3} N_{o} \gamma^{\prime}+\sum_{b c} \sum_{\beta \gamma}{ }_{a, \alpha}+\varepsilon_{c a} \varepsilon_{\gamma \alpha}^{N} N_{b, \beta}\right) \\
& (15,1) \sim A_{A}^{B} \rightarrow \sigma^{i}{ }_{a}^{b} \sigma_{\alpha}^{j \beta} S_{i j}+\sqrt{2} \sigma_{a}^{i}{ }_{a}^{b} S_{\alpha}^{j} \pi_{i}+\frac{\sqrt{3}}{2} S_{a}^{b} \sigma_{\alpha}^{i \beta} f_{i} \\
& \left(4^{*}, 2\right) M_{B}^{A} \rightarrow K_{\beta}^{a, \alpha}+\sqrt{\frac{1}{2}} \delta_{\beta}^{\alpha} K^{a}
\end{aligned}
$$

On the left above n, B, C etc, $\hat{A}, \hat{B}, \hat{C}$ etc are respectively $S U(4)$ and $\operatorname{SU}(2)$ indices - we replace the $\operatorname{SU}(4)$ indices by $J U(2)_{I} \times S U(2)_{W}$ indices a, b, c and a, β, γ respectively and reduce to $i \operatorname{sospin} x W$ spin normalised vectors, egg.

$$
\begin{aligned}
& Y_{(a b)(\alpha \beta \gamma)} \sim Y^{*} \operatorname{spin} \frac{3}{2} \text { isospin } 1 \text { state } \\
& Y_{a b, 6} \sim \operatorname{spin} \frac{1}{2} \text { isospin } 1 \text { state etc. }
\end{aligned}
$$

An independent pair of tensor amplitudes are now seen to be:

$$
A_{1}: K_{\hat{B}}^{A} P_{\left(C_{2}\right) B} \bar{Y}^{(C))_{B}^{E}} \pi_{A}^{E}
$$

$$
A_{2}::_{B}^{A} P_{(A C D)} \bar{Y}(C D) \hat{B}_{\Pi_{E}}^{-D}
$$

Inserting now the factoss, draw from the above reductions, appropiate to eqn. 4.21 we find that A_{1} does not contribute to eithor procoss, whilst $/ 2$ (as it now must) preserves the unwanted factor 4 .

405 Summary and conclusions

In this Chapter we have glanced at $S U(6)_{w}$ symmetry brealsing with two opposing hopes in mind - viz to find spurions which retain the symmetric Johnson-Treiman relations but destroy the class of iredictions hinging on $\Delta: / F_{2}$. To keep apecial significance for the idea of W soin invarinnee we might further have hoped to accomplish this by breaking onyy the $\mathrm{SU}(3)$ part of the scheme.

In none of their aims have we been successful - a $\quad .=1=1 \mathrm{JU}$ (3) singlet 35 swurion mroved most acceptable, giving the weak JohnsonTreiman relation and eliminating those predictions running contrary to the peripheral model and experinent - certainly the lattor, for any semblance of agreenent with experiment, domand that the interaction must be reducible in $S U(6)_{w}$. Of course, there is a precedent for such roducibility - in $S U(3)$ the (strength) hierachy strong - mediun strong - weak and electronagnetic forces corresponds to incareasing reducibility of the lagrargian. But an analogous inference here that docuplet production processes are depressed in strength with respect to other, W spin conserving, reactions is
clearly unaccoptable. On the other hand a success of the $\Delta W: 2$ rule has been pointed out by $01 s^{52}$ who observes that since reactions

$$
\Pi+N \sim \quad, \quad \Delta \div \theta \quad \frac{3}{2} \text { baryon resonance }
$$

proceed through just one amplitude the ratio of isospin amplitudes is determined (there arc two different isospin channels open $\left.I=\frac{1}{3}, \quad I=\frac{3}{2}\right) . \quad$ Using

$$
\frac{\sum^{-} \mathrm{p}\left|n^{-} N^{+}\right\rangle}{\left\langle A^{-} p \| H^{\circ} J^{\circ}\right\rangle}=-\frac{2}{3} \text { (by computation) }
$$

and the 㫙igner-icigart theorem for isospin :

$$
\begin{aligned}
& \left.\Delta A^{-} N^{+} N^{+}\right\rangle=\frac{1}{3} A_{2}-\frac{2}{3} / \frac{2}{5} A_{3} \\
& \left\langle\pi^{-} p \| N^{o}\right\rangle=-\frac{1}{3} / 2 A_{2}+\frac{1}{3} / \frac{1}{5} A_{3}
\end{aligned}
$$

one finds that

$$
\frac{A \frac{1}{2}}{\frac{1}{2}}=\sqrt{2}
$$

Olsson remarks that this agrees well with the value 3.4 ± 0.3 deduced from experiment - but we emphasize that this calculation is model dependent and in particular assumes S wave isobar production. Ne note also that this prediction is clearly invariant under the type of $\mathrm{SU}(3)$ symmetry breaking introduced in Ch. 4.4 since the ratio $-\sqrt{2} / 3$ is not thereby destroyed.

Despite this one success we feel forced to conclude that our
main aim has not been achieved - the introduction of some $S U(3)$ breaking into the $V^{(6)}$ w schere for 2 body scattering processes neither preserves the Johnson-Treiman relations nor invalidates the $\Delta W \neq 2$ disagreenent with experiment.

CHAFTER 5

SU:E) AND CUPRENT ALGEBRA

Abstract

In g. $_{6} .1$ we prepare the ground for the calculation, in §.5.2 of the following oarameters associated with the weak interactions of the baryons. (i) the renormalised weak axial vector coupling constant, gA and the D / F ratio of the weak current. (ii) the baryon anomalous magnetic moments. (iii) $N-N \cdot *$ exial vector transition constant, $G *$ (iv) The πN^{*} is electromagentic transition moment. The 'calculation' reduces to adjusting the amount of mixing of two $S U(6)_{w} \times O(3)$ IRs and the system is too flexible to allow any sienificant conclusion.

\subsection*{5.1 Current algebras and xepresentation mixing}

The concert of an algebra of currents has been central to the successful study of brolsen symmetries. That exact and broken symetries could consistently shure the same algebraic structure (i.e. commutation relations) was first emphasized by Gell Mnnn 53 and develoned into a non relativistic thoory of symmetry breaking by Fubini and Furlan ${ }^{54}$ - relativistic formulations were soon available ${ }^{55}$. Without doubt the major success of this body of work has been the Adler-feisberger ($A-W$) calculation ${ }^{56}$ of the ronormalization

of the woak axial vector coupling constant $\dot{g} A$, defined in Adlers' notation by

$$
\langle N(q)| J^{+}|N(q)\rangle=\frac{i_{N}}{q o} G_{v} \bar{U}_{N}(q)\left(Y_{\lambda}+g \dot{i} Y_{k} Y_{5}\right) J^{+} U_{N}(q)
$$

where j is the weak baryon current responsible for $\Delta S=0$ leptanic decays.

For our own purposes ve would like to emphasize the following points about this fa:ious $n-W$ calculation, summarised in the following equation

$$
1-\frac{1}{g_{A}^{3}}=\frac{4^{2} N}{\left.2 K^{N} N T_{0}\right)^{2}} \frac{1}{\pi} \int_{D_{N}+N W^{2}-A_{N}^{2}}^{\infty}\left[\sigma_{0}^{ \pm}(\%)-J_{0}^{-}(W)\right]
$$

where $T_{0} \pm(f)$ is the total cross-section for scattering of a zero mass $\| \pm$ on a proton at centre of mass energy $W, K^{N} \overline{11}$ is the fionk form factor of the nudeon etc.

> The transition operators (chiralities in Adiex.'s:
notation 9 whose matrix elesents between proton and neutron give a measure of g are assumed to obey the (chiral) algebra of $\operatorname{SU}(2) x$ SU(2). However no statement is made about the $\operatorname{SU}(2) \times \operatorname{SU}(2)$ properties of the particle states p, n - only the conventional isospin subgroup assignments to irreducible representations aro made. (ii) This omission renders the algebra, alone, impotent; to comilete the calculation information is drawn from experiment with the aid of the PCAC hypothesis, in Aclereg notation

$$
v_{\lambda}^{j} \lambda_{2}^{\operatorname{la}}=\frac{-i M_{N} \frac{2}{H} g \Lambda}{g r}(0)
$$

where gr is the rationalised renormalised pion-nucleon coupling constant, ψ_{π}^{a} is the renormalised pion-field, etc. This allows to relate the generator matrix elements (in what really is an infinitely reducible $S U(2) x \operatorname{SU}(2) \operatorname{IR})$ instcad to experimentally measurable $\pi-p$ total cross-sections (tho' an extrapolation to zero pion mass is required).

The injection of experimental numbers in this way, with the resultant degree of accuracy ($\sim 5 \%$ in the $g A$ calculation) engendered considerable confidonce in current algebra calculations forbroken symmetries.-
(iii) Since the symmetry is not exact the transition onerators, its generators, become time dependent, and this was translated into an energy dependence or non-covariance of the g A sum rule. Following the suggestion in rof. ${ }^{54}$ the sum rule was evaluated in the limit of infinite momentuin of the external one particle state, and the use of this frame has later come to be seen as equivalent to a fully relativistic approach cf. 57 .

On the basis of a quark model with an $S U(3)$ triplet of spin- $\frac{1}{2}$ quarks the largest algebra one ean envisage is that of $U(12)$ with current densities transforming as the appropriate quark bilinears. We must take care to distinguish Lorentz transformation properties froi. those of the connact algebra, the distinction being a Yo factor in the bilinear corresponding to the use of the anti-
cormutator

$$
\left\{\psi_{\alpha}^{\prime}(x), \psi_{\beta}^{t}\left(x^{\prime}\right)\right\}_{t}=t=S_{\alpha \beta} \delta^{3}\left(\alpha-x^{\prime}\right)
$$

rather than $\left.\left\{\psi_{\alpha}\left(x^{\prime}\right), \bar{\psi}_{\beta}\left(x^{\prime}\right)\right\}_{t^{\prime}=t}=\left(\gamma_{0}\right)_{\alpha \beta}\right\}^{3}\left(x-x^{\prime}\right)$. When we take matrix elements between single particle states at infinite momentua two woll known factors enter ${ }^{57,58}$.
(i) Certain densities have their matrix elements damyed by a factor E^{-1} and so do not appear when $p \rightarrow \infty$. The rule is that those $U(12)$ elements survive which commute with Yor $_{3}$, the generator of Lorent:s transformations in the p dircction. Omitting the $\operatorname{SU}(3)$ factors there are

$$
1, \gamma_{1}, \gamma_{2}, \gamma_{1} \gamma_{2}, \gamma_{0}, \gamma_{3}, \gamma_{5}, \gamma_{1} \gamma_{5}, \gamma_{2} \gamma_{5}
$$

(ii) Amongst these 72 ($=8 \times 9$) 'good' charges of $U(12)$
certain equalities appear for their matrix elements - essentially because $\mathrm{Yo} \mathrm{\gamma}_{3} \sim$ unit operator on infinite momentum States. Thus we get

1	\sim	$\gamma_{0} \gamma_{3}$
$\gamma_{1} \gamma_{2}$	\sim	γ_{5}
$\gamma_{1} \gamma_{5}$	\sim	γ_{2}
$\gamma_{2} \gamma_{5}$	\sim	γ_{1}

and the $U(12)$ algebra thus degenerates into that of $U(6)_{W}$ represented in its space-time components by the left hand column cf. $\sqrt[3]{5} 4$.

In this way the $U(6)_{w}$ algebra concains the chiral algebra relevant to the calculation of $g A$.

Representation mixing presents an alternative at (ii) above. It was known that the pure 56 baryon assignment does provide an alproximation to some parameters, e.g. it gives $g A=\frac{-5}{3}, d / f=\frac{3}{2}$ $G^{*}=/ \frac{8}{3}\left(\right.$ hee 17). (ise following table for experimental estimates of these numbers. $)$ Again it was observed that in the $A-W$ equation 5.2 dominant contributions were mado to tho inteoral term (the renormalization correction) by some low lying resonancos whinh might be fitted into a higher symmetry multiplet. In deciding which representations to mix one is thus guided by the $\mathrm{SU}(6)$ classification of the baryon resonances - it has been shown by Dalitz ${ }^{59}$ that the bracket of negative parity rosonances lying above the $N *-\frac{3}{2}$ can be best fitted into a $70(\mathrm{~L}=1)$ multiplet. This classification uses the quark model and introduces an orbital quantum number L to cover the relative motion of the three constituent quarks. However difficulties arise when we attempt to relate this to an $\operatorname{SU}(6)_{W}$ current algebra in the infinite momentum frame ${ }^{57}$ since only in the rest frame can W spin and L couple like S and L to give total J thereby identifying the physical particles. Outside of the rest frame the non vector character of W may be expected to interfero with this simple procedure - it was first suggested ${ }^{57}$ that possibly this was only an apparent complication and the coupling could be
effected as in the static case. However Lipkin et al ${ }^{62}$ have arguad that we are indeed faced with a serious limitation here, and later work by Dashen and Gell-iann ${ }^{66}$ seems to confirm this. In any case it must be remarked that an additional orbital degree of freedom has to be introduced into the scheme if it is to allow non zero anamolous magnetic moments - this follows from the CabibboRadicati ${ }^{60}$ identification of the anomalous magentic moment operator in terms of the expectation value of the elsctric dipole operator betweon infinite monentua states (the Dirac moment term receives a damping factor $1 / E$.

An alternative remesentation of the magnetic moment operator uses the Lorentz tensor parts of the W spin vector and then, to make contact with electromagnetism, relates the tensor divergences to the vector field operators (PCTC) and uscs the custoary assumption of vector dominance of the electronagnetic folm factors. This approach has been discussed by Gato et ai E^{2}.
5.2 The $56(L=0)(+70(L=1)$ Mixing scheme

The $7 \mathrm{C}(L=1)$ IR decomposes into the following ($1 ; 2 J+1$) multiplets : $(10 ; 4,2),\left(\underline{0} ; 6,4^{2}, 2^{2}\right),(1 ; 4,2)$ - note in particular the existence of two spin $-\frac{1}{2}$ octets so that including the 56 contribution we have three spin- $\frac{1}{3}$ octets requiring two mixing angles. This greatly reduces the predictive power rendering it impossible, e.g. to obtain a relation between $g A$ and D / F, one of the successes of other mixing schenes ${ }^{62}$.

We write, for the octet baryon, in a helicity diagonal representation,

$$
\begin{align*}
|B\rangle_{2} & =\cos \theta|56\rangle_{\frac{1}{2}}+\sin \theta\left[\cos p\left(/ \frac{1}{3} p 0(82)\right\rangle_{\frac{1}{2}}-/ \frac{2}{3}|70(82)\rangle_{-\frac{1}{2}}\right) \\
& \left.\left.+\operatorname{Sin}\left(\gamma\left|\frac{1}{2}\right| 70(8,4)\right\rangle_{\frac{3}{2}}-/ \frac{1}{3}|70(8,4)\rangle_{\frac{1}{2}}+/ \frac{1}{6}|70(8,4)\rangle_{-\frac{1}{2}}\right)\right]
\end{align*}
$$

θ measures the $56-70$ mixing, $(f$ that between the two $J=1$ octets occuring in the angular mowenturn direct products $\frac{3}{2}(x) \frac{1}{2}$ (x) 1 for $70(i,=1)$. The suffix gives the $U(6)$ contribution S_{z} to the helicity $h\left(\frac{1}{2}\right.$ above as designated on the left) - the orbital contribution is defined by $1_{z}=h-S_{z}$. Using the tables of Chapter 3 and the Wigner-Eckart theoren for generators(which, as emphasized by Gellmann leaves us with no overall scale factor or unknown reduced matrix element - those of the generators which enter here are

$$
\left.\left\langle 70\left\|35_{\mathrm{F}}\right\| 70\right\rangle=3 / \frac{11}{6} \quad\langle 56\|35\| 56\rangle=3 / \frac{5}{2} \quad 5.6\right\rangle
$$

we find for the 70 contributions

$$
\begin{array}{rlr}
\left.\mathrm{g}_{\mathrm{A}}\right|_{70} & =\frac{1}{9}(\mathrm{~s}-\therefore \sin 2(-3 \cos 2 y) & 5.7 a \\
\mathrm{D}+\left.\mathrm{F}\right|_{70} & = & 5.76 \\
\left.\mathrm{G}_{\mathrm{A}}^{*}\right|_{70} & =\frac{6 \sin 3 y}{2-8 \sin 2 y-3 \cos 2 y} & 5.7 \mathrm{c}
\end{array}
$$

These can now be colabined with the 56 contributions as laid out in the following Table :-

TABLE 1

θ	φ	g_{A}	D/ $(\mathrm{D}+\mathrm{F})$	$\mathrm{G}^{*}{ }_{\text {i }}$
0	-	1.66	c. 60	$1.63\left(=\frac{6}{3}\right)$
90	-30	0.83	0.73	± 1.08
90	-1.0	1.084	0.63	± 1.01
90	- 50	1.16	0.57	± 0.97
38	-15	1.18	0.63	1. $4_{4}{ }^{2}$
1.5	-25	1.18	0.64	1.37
55	-35	1.18	0.63	1. 24
Experi		1.18	0.65 ± 0.05	1.1 ± 0.1

For a given 70 mixing angle 2 te: in eqns. $5.7 \mathrm{a}, \mathrm{b}$ we may employ

to the $\pm \operatorname{spin}$ for G_{A}^{+}at $\theta=90$. For $\theta \neq 90$ we tabulate only those G_{A}^{*} resulting froa the positive $\underset{\sim}{70}$ contribution since theys give a better fit. We insert an elementary remark on the calculation of D:F ratios such as in this Chapter, since confusion may arise due to alternative normalizations. Using the conventional notations we have

$$
\langle i| F^{k}|j\rangle=F \text { ifi.jk }+D \text { dijk defining } D: F
$$

The f's and d's play the role of unnomalised reduction coefficients since

$$
\sum_{i j} f_{i j k} f_{i j l}=3 \delta_{k l}, \quad \sum_{i j} d_{i j k} d_{i j 1}=\frac{5}{3} \delta_{k 1} .
$$

In a higher symnetry scheme using CGcs we calculate

$$
\langle i| F^{k}|j\rangle=(S+a\rangle x\langle\text { reduced matrix element }\rangle
$$

where S, a are CGes referring to nortalised synnetric and antim symuetric octet products

Clearly we have $\frac{s}{a}=\frac{D}{F}$ when ifijk $=$ dijk otherwise we must take care to convert from one scheae to the other, e.g.
$i_{i}^{\mathbf{j} \mathbf{j k}} \quad d_{\mathbf{i} \mathbf{j k}}$

$\left\langle\mathrm{A} j^{\mathrm{em}} \mid \mathrm{p}\right\rangle$	1	$\frac{1}{3}$
$\langle n\| j^{\mathrm{em}}\|n\rangle$	0	$-\frac{2}{3}$
$\langle p\| 1^{+}\|n\rangle$	2	2

So in our case no conversion was necessary.
The anowalous magnetic monents are calculated assigning M , the magnetic monentroperator, the $U(6)$ transformation properties $35(3,1)_{1}= \pm 1$ (and in $\left.\operatorname{SU}(3) \sim \alpha\right)$. We must calculate the matrix elements of $\because i \pm 1$ corresponding to transverse moiientum transfer (the momentu'3 is infinite in the collinear direction) neccessarily non zero according to
$\quad \underset{\sim}{i} \underset{\sim}{q} \times\left. j^{\text {em }}(q)\right|_{q=0} ^{q}=$ momentum transfer

Since 70 (x) 25 contains 70 twice thore are in all three reduced matrix elenents to consider $\left.\langle 70 H 35 \| 70\rangle,\left\langle 70 H 35^{\prime \prime} 70\right\rangle_{2}\right\rangle$ and $\langle 70\|35\| 56\rangle$ (the fourth $\langle 56\|35\| 36\rangle$ does not enter by the Wigner-Eckart theorem on L, and represents one of the motives for allowing mixing with orbital excitation). We find

$$
\left.\mu_{A}(\text { proton })=-i_{A} \text { (neutron }\right)=\text { const. } \operatorname{Sin} 3 \theta \operatorname{Cost} 0 \text { OlB5 } \| 56>5.9 a
$$

or equivalently

$$
\alpha_{M}=0.75
$$

where $\alpha_{i t}=\frac{D}{D+i^{2}}$ gives the $D: F$ ratio of the anomalous magnetic moments from factor F_{2} and experimentally has the value 0.774^{6}. Of course this result has been found earlier by current algebra methods ${ }^{64}$.

We are not able to make any prediction concerning the $\mathrm{N}-\mathrm{N}^{*}$ iil electromagnetic transition moment μ^{*} due to the presence of the elements $7035 \quad 70_{1,2} \quad$ - However an alternative schewe, cf. Lippin et al ${ }^{62}$ involving no decuplet mixing, and giving $\hat{G}_{\hat{A}}^{*}=1,15$ would predict

$$
\because * \frac{1}{10}-\frac{2 / 2}{3} \mu(\text { proton }) \quad 5.10
$$

to be compared with the experimental value $1.3 \frac{2 / 2}{3} \mu$ proton ${ }^{65}$.
We thus find the $56(L=0)(\pm) \quad 70(L=1)$ system advocated by Dashen and Gellurann ${ }^{57}$ adequate but inconclusive - however some decuplet mixing does sean to be necessary.

REFERENCES

1. Lie Algebras - N. Jacobson, Wiley \& Sons, 1962.
2. See also:

> E.B. Dynkin, American Hath. Soc.Trans., Series 1, Vol. 9 and Series a, Vol. 6
> Differential Geometry \& Symmetric Spaces - S. Helgason, Academic Press, 1962

Lie Groups for Physicists - R.Hermann, Bengamin, 1966
Group Theory a Spectroscopy - G. Racah, 1961. Cern reprint of 1951 Princeton lectures.
3. R.E.Behrends, J.Dreitlein, C.Fronsdal $\hat{\propto}$ B. W. Lee, Rev. ${ }^{\text {od. Phys., 34, 1, (1962) }}$
A. Salam in the 1962 Trieste Seminar, Voluae (IAEA)

Lie Groups for Pedestrians - H.J.Lipkin (North Holland)
Unitary Symetry - P.A.Carruthers, Interscience Tracts, Vol. . 27
L. C.Biedenharn in Lectures in Theoretical Physics, Vol.V Boulder 1962, (John Wiley i: Sons)
4. There are also four Imperial College theses which may be used to supplement the notes of Chapter 1 - Y. Ne' emen, 1962; P. i. Rowlett, 1963; 汸A.Rashid, 1964; G.Murtaza, 1966.
5. J.J.de Swart, Rev.Miod.Phys., 35, 916 (1963)
6. Group Theory and its application to Physical Processes -
M.A.Hammermesh, Pergamon Press (1962)
7. Ropresontation Theory of the Symmetric Group - G. B. de Robinson, Edinburgh U.P.
8. D.A.Tompkins, Phys.Rev.Letts, 16, 1058 (1966) and Journ. Iath. Phys. to be published.
O. The Classical Groups - H. Weyl, Princeton U.P.
10. The Theory of Group Characters - J.Littlewood, Oxford, $U_{4} P_{\text {. }}$
11. C.L. Cook : G.riurtaza, Nuovo Cimento, 39, 532 (1965)
12. K. L. Whippman, Journ. Math. Phys. , 6, 1534 (1965)
C.Itzykson i: \because.Nauenberg, Rev. Aod. Phys., 38, 95 (1956)
C. Hagen \& A.J.iacfarlane, J.ilath. Phys., 6, 1355 (1965)
13. L.C.Biedenharn, J. Fath. Phys., 4, 436, (1963) G.E.Haird 2 L.C.Biedenharn, ibid, 4, 1449, 5, 1723, 5, 1730, 6, 1847
14. Irreducible Tensorial Sets - U.Fano \& G. Racah, Academic Press Angular iomentum in Quantun Fiechanics - A.R.Edmonds, Princeton, U. F_{0}.
15. J.G.Kuriyan, D.Lurie, E A.J.iacfarlane, J.Math. Phys., 6, 722 (1965)
N. Mukunde \& L.K. Pandit, J. Iath. Phys., 6, 746 (1965)
16. m. Gell-Mann - The Eightfold Way, CTSL 20; Phys.Rev., 125, 1067 (1962)
17. Refer to articles in Trieste 1965 Seminar Volume (IAEA)
18. A.Pais, Phys.Rev.Letts., 13, 175 (1964)
19. L. Schulke, Zeit.fur. Physik, 183, 424 (1965)
20. J. C. Cartor, J.J. Coyne ix S.Meshkov, Phys.Rev.Letts, 14, 523 (1965), ibid, 14, 《50(E) (1965)
21. H.Ruegg, N. Ruhl T.S.Sunathanam, Cern preprint Th. 709 (1966) cf also Lagen $\because:$ Macfarlane, Itzykson \& Nauenberg, ref. 12 and Jean Ginibre, JMath. Phys., 4, 720 (1963)
22. W. Hoshinsky : J. G. Nagel, Phys.Letts., 5, 173 (1963)
23. W. i.B.Beg is V.Singh, Phys.Rev.Letts., 13, 418 (1966) ibid, 13, 509 (1966)
R.W.Griffith, Phys.Rev., 139, B. 667 (1965)

C-H. Chan \& N-H. Xuong, Phys.Rev. , 142, 1132 (1966)
24. J.G.Nagel \&oshinsky, J.Nath. Phys., 6, 682 (1965)
T. A. Brody, rooshinsky \& T.Renero, J.jlath. Phys., 6, 1540 (1965)
25. Poinamee i: F. Chilton, Rev.iod. Phys., 36, 1005 (1964)

See also: I.S.Gerstein \& K.T. Iiahanthappa, Nuovo Cimento, 36, 409 (1965) for non-octet $S U(3)$ isoscalar factors.
26. Cao Chi \& L.G.Tkachov, Sov.Journ.Nucl. Phys., 2, 762 (1966)
27. See e.g. ri.Resnikoff, Nuclear Physics, 63, 632 (1966)
28. J.R.Derome, J. Vath. Phys., 7, 612 (1966)
N. Hasuda, Nuovo Cimento, 36, 693 (1965)
29. W.J.Liplcin 2 S. Eshkov, Phys.Rev.Letts., 14, 670 (1965)
K.J.Barnes, Phys.Rev.Letts., 14, 798 (1965)
30. A.Salan, R.Delbourgo in J.Strathdee, Proc.Roy.Soc., 284i, 146 (1965)
A.Salara, R. Delbourgo, N.A. Rashid \& J. Strathdee, ibid 285in, 312 (1965)
30. Soe also the very complete review article in ref. 17.
31. See the review article of raf. 30 , also that of Ruegg et al ref.21. See also: A.Pais, Rev.riod.Phys., 38, 215 (1966)
32. Matthews : GFeldman, Annals of Physics, 40, 19 (1966)
33. S.Coleman, Phys.Rev., 138, B. 1262 (1965)
34. K. Ahailed, S.A.Dunne, M. Aiartinis is J.R.Poston, Phys.Rev., 142, 995 (1966)
35. H. Harari, D.Horn, fingler, h.J.Lipkin \& S.Meshkov, Phys.Rev., 146, 1052 (1966)
36. H.J.Lipkin Ê S.Meshkov, Phys.Rev., 143, 1269 (1966)
37. D.Horn, Phys.Rev. : 150, 1218 (1966)
38. R.F.Dashen \& S.C.Frantschi, Phys.Rev., 137, B. 1318, B. 1331 (1965)
39. I. \because. Bar-Nir e H.Harari, Phys.Rev., 144, 1363 (1966)
40. H.Harari \&: H.J.Lipkin, Phys.Rev.Letts., 14, 570 (1965)
ibid (E) 14, 650 (1965)
H. Harari e:.A.Rashid, Phys.Rev., 143, 1354 (1966)
41. See the remarlss of Dyson in "Symuetry groups in nuclear and Particle physics" ed. F.W.Dyson, W.A.Benjamin Inc.
42. K.Johnson © S.B.Treiman, Phys.Rev.Letts., 14, 189 (1965)
43. R.F.Sawyer, Fhys.Rov.Letts., 14, 471 (1965)
44. H.J.Lipkin © F.Scheck, Phys.Rev.Letts., 16, 71 (1965) H.J.Lipkin, ibid, 16, 1015 (1965)
45. H.Harari \bar{i} H. J.Lipkin, Phys.Rev.Letts., 15, 983 (1965)
46. V.Barger \& ...O1sson, Phys.Rev.Letts., 15, 930 (1965)
47. V.Barger \& \because.H.Rubin, Phys.Rev., 140, B. 1365 (1965)
48. II. Ruegg, Nuovo Cimento, 41A, 576 (1966)
49. if. Konura \& Y. Tomozawa, Phys.Rev.Letts., 12, 493 (1964)
50. J.C.Carter, J.J.Coyne, S.meshkov, D.Horn, i. Kugler \& H.J.Lipkin, Phys.Rev.Letts., 15, 373 (1965)
51. J.D.Jackson, Phys.Rev.Letts, 15, 990 (1965)
52. iartin G.O1sson, Phys.Rev.Letts., 15, 710 (1965)
53. M.Ge11-, ann, Phys.Rev.125, 1067 (1962)
54. S.Fubini i: G.Furlan, Physics Vol.1, 229 (1965)
55. S.Fubini, Nuovo Cimento, XLIIIA, 1.75 (1966)
V.A.Alessandrini, A.A.Beg \& L.S.Brown, Phys.Rev., 144, 1136 (1966)

W. I. Weisberger, Phys, Rev, Letts., 14, 1047 (1965)
57. Mi.Gellmiann E R.F.Dashen, 1966 Coral Gables Conf., to be published
58. B. Renner, Lectures on Current Algebras, RHEL/R 126 to be published
59. R.H.Dalitz, Proc.Oxford Conf. September 1965
60. N. Cabibbo $£$ L.A.Radicati, Phys.Letts., 19, 697 (1966)
61. R.Ademollo, $i_{.}$Gatto, G.Longhi \& G.Veneziano, Phys. Letts., 22, 521 (1966)
62. The foilowing papers cover most of the simple mixing schemes investigated:-
H. Harari, Phys.Rev.Letts. 16,964 (1966) ibid 17, 56 (1966)
62. I.S.Gerstein : D.W.Lee, Phys.Rev.Letts., 16, 1060 (1966) Phys.Rev., 152, $14_{1} 18$ (1966)
G.Altarelli, R. Gatto, L. iaiani \& G.Preparatu, Phys.Rev.Letts. , 26, 918 (1966)
N. Cabibbo \because H. Ruegg, Phys.Letts., 22, 85 (1966)
R. Gatto, L. Ha anian $\&$ G.Preparatu, Phys.Rev.Letts., 16, 377 (1966)
H.J.Lipkin, H.R.Rubinstein \& S. Meshkov, Phys.Rev., !', 148, 1605 (1966)
T.S.Santhana :- Phys.Letts., 21, 234 (1966)
63. N. Brene, B. Hellesen : . . Roos, Phys.Letts. ,1344 (1964)
64. S.Fubini, G.Furlan, C.Rossetti, Nuovo Cinento, 40, 1171 (1965)
65. R.H.Dalitz : D.G.Sutherland, Phys.Rev., 146, 1180 (1966)
66. R.F.Dashen \& ...Gell-itann, Phys.Rev.Letts., 17, 340 (1966)

