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ABSTRACT 

Physical processes can often be described by a system 

of ordinary differential equations excited by random 

disturbances with short correlation times. It is shown 

in this thesis that such processes can be approximated, in 

the sense that the second moment of error is small, by 

Markov diffusion processes of the same dimension. In the 

approximation the random disturbances are characterised by 

a matrix which is an integral of their cross-correlation 

function, but which is not in general the cross-spectral 

density. If this characteristic matrix is symmetric, 

the Stratonovich stochastic differential equation of the 

diffusion approximation is similar in form to the ordinary 

differential equation of the physical process. 

In computer simulations the ordinary differential 

equation of a physical process can be used as the programm-

ing model if the characteristic matrices of the disturbances 

and the computer noise source are both symmetric and of the 

same rank. 

With the aid of diffusion approximations, much of 

the theory of the filtering of diffusion processes can be 

applied to . 	problems in the filtering of physical 

processes. 
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INTRODUCTION 

In the analysis and design of engineering systems 

with random disturbances, it is often convenient to model 

the processes involved by diffusion processes; that is, 

Markov processes that are continuous functions of time. 

The generality of diffusion processes, combined with 

their simplicity, has led to their use in many different 

fields of investigation, and in particular in those 

concerned with stochastic control theory and filtering 

theory. A diffusion process, however, if chosen to model 

the behaviour of a process over long periods of time, 

will not necessarily reproduce the behaviour of the process 

over very short periods of time; for instance, the 

realisations of many physical processes have an inherent 

smoothness, whereas those of a diffusion process are not 

even differentiable. For systems in which the distur-

bances are additive this difference between the detailed 

behaviours of an actual process and its diffusion model 

can often be ignored, but it becomes important if the 

disturbances are non-additive. The purpose of this 

thesis is to consider how, and with what justification, 

the processes that actually occur in engineering systems 

can be modelled by diffusion processes. 



We shall restrict our attention to the type of 

engineering process that has the structure of a system 

of differential equations 

X = f(X,t) + F(X,t)y, 	(1) 

where y is a vector of random disturbances, the periods 

over which each disturbance is correlated being short 

compared with the time-constants of the system. A more 

precise description is given in Section 1.5. 	The 

functions ,f and P will be assumed to be known. Processes 

that can be modelled by X(t) we shall call "'physical" 

processes. Just how the description (1) is obtained for 

any particular process we shall not go into, but often 

the difficulty is not so much how to obtain such a system 

of equations, but how to obtain a system of reasonably 

low dimension. The important thing to note is that 

physical processes as defined by (1) are sufficiently 

smooth to be differentiable at least once. 	In Chapter 

2 we shall show that a physical process can be approximated, 

in the sense that the second moment of the error is small, 

by a diffusion process of the same dimension, and we 

shall point out which of the statistical parameters of 

the random disturbances it is necessary to know in order 

for the diffusion approximation to be determined. 

Approximations of this sort have also been the concern 



of Stratonovich [20], Wang and Zakai [21,22], Astrom 

[23], and Ariaratnam and Graefe [27]. Their work will 

be discussed in Chapter 2. 

Since the development of the theory of Brownian 

motion, it has been recognised that for many purposes 

the random disturbances of a physical process can be re-

garded as "white noise" if they are additive; that is, 

if in (1) F is independent of X. 	Then (1) becomes 

= f(x,t) + F(t)n 	(2) 

where n is a "white noise" process with a correlation 

function that is a delta function. The process x is, 

in fact, a diffusion process. 	This close relation 

between the description (2) of the diffusion process and 

the description (1) of the process it approximates is 

part of the attractiveness of diffusion processes. 

However, as the rate of change of a diffusion process 

is infinite with probability 1, equation (2) is not a 

differential equation in the normal sense, and care has 

to be taken in its interpretation. This is particularly 

so if in (2) F depends on x, 

is not unique. One precise 

for then the interpretation 

definition of a stochastic 

differential equation for diffusion processes has been 

given by Ito [16]. This is written symbolically in 

the form 



dx = g(x,t)dt + G(x,t)dw 	(3) 

where w(t) is a vector Wiener process. Another definition 

has been given by Stratonovich [7]. The relations 

between these two forms of stochastic differential 

equation and also the Fokker Planck equation of the 

diffusion process are given in Section 1.4. 	If G is 

independent of x, the two forms coincide and the corres-

ponding equation (2) can be formally obtained by dividing 

(3) by dt and by taking 
dt 

to be white noise. In 

Chapter 2 the results on the diffusion approximation of 

physical processes will be derived and presented in terms 

of stochastic differential equations. A further point 

considered in Chapter 2 is which of the two forms of 

stochastic differential equation is the most suitable for 

engineering purposes, 	The properties of these two forms, 

considered as equations for diffusion processes, are 

well-known and are summarised in Section 1.4: briefly, 

the Ito stochastic differential equation is closely 

related to the corresponding equations for the probability 

densities and moments of the diffusion process it des-

cribes; the calculus of Stratonovich stochastic differ-

ential equations is like the ordinary differential 

calculus, whereas that of the Ito stochastic differential 
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equations is not. These properties have to be taken 

into account, but in the context of the diffusion 

approximation of physical processes an important consider-

ation in selecting the best form is whether or not the 

stochastic differential equation of the diffusion approxi-

mation can be obtained from the ordinary differential 

equation of the physical process by simply replacing the 

random disturbances by white noise, as we have seen can 

be done if the disturbances are additive. It will be 

shown that, although neither the Ito form nor the 

Stratonovich form satisfies this requirement in general, 

the Stratonovich form does so if a particular integral of 

the matrix correlation function of the random disturbances 

is symmetric. This matrix integral will be called the 

"characteristic matrix" of the random disturbances. Its 

symmetry for some common forms of noise process is studied 

in Chapter 4. 

Finally two general problems are considered to which 

the approximation results of Chapter 2 can be usefully 

applied. The first problem is the simulation of one 

physical process by another, where one is concerned with 

designing the simulating process so that its statistical 

characteristics are similar to those of the original 

process. 	The following questions arise: Can the ordinary 



differential equations describing the two processes be 

taken to be of the same form? What are the statistical 

parameters of the random disturbances and the generated 

noise that have to be matched? As we shall see in 

Chapter 3, the answers depend on the characteristic 

matrices of the random disturbances and noise processes 

involved. 

The second problem we consider is the filtering of 

a physical process from continuous observations of a 

related process. Me shall suppose that the filter is 

to provide an estimate of the present state of a message 

process and that this estimate is to be the expectation 

of the message process conditional on the observation 

process. This formulation is the natural one to consider 

in problems concerning the control of a physical process: 

very often the state of the process cannot be measured 

exactly and only some of the statistical parameters of 

the noise in the process are known, and an estimate of 

the present state of the process is required on which to 

base the control. 	The closely related problem of the 

filtering of diffusion processes has been studied by 

Stratonovich, Kushner and others, and we shall summarise 

the fundamental work of these authors in Chapter 5. As 

we shall see, it is relatively straightforward to derive 
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a diffusion filtering algorithm for a diffusion process; 

that is, a set of differential equations generating an 

estimate, which is itself part of a diffusion process. 

However, the input and output of an actual filter - the 

observation process and the estimate - have finite rates 

of change and so cannot be diffusion processes. 	It seems 

more realistic to take them to be physical processes and 

to base the design of a filter on a physical filtering 

algorithm for a physical process. In Chapter 6 we shall 

be concerned with the problem of deriving such an algorithm 

from the known results of the filtering of diffusion 

processes. 
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CHAPTER 1 

BASIC CONCEPTS AND PRELIMINARY DEFINITIONS 

1.1 Introduction  

In order to make the later chapters more concise, it 

is convenient to begin by defining the more frequently 

used terms and concepts. This is the purpose of this 

chapter. 	In sections 1.3 and 1.4 we give the definitions 

of the stochastic integral and the stochastic differential 

equation and summarize their properties and their relation 

with the diffusion process. In Section 1.5 we introduce 

a mathematical description of a random disturbance which 

includes several commonly used models of noise. 

1.2 No  

Throughout this work equations are written in vector 

form. 	There is no distinction in notation between 

scalar, vector and matrix quantities. 	The transpose of 

a matrix is denoted by the superfix T. The Euclidean 

norm is denoted by 1.1 	that is, if A is scalar, LAI 

is the modulus of A; if B is a vector, 0
31 2 = ;E:B.2,  

Bi 
being the i:th component of B, and if C is a matrix, 

1012  = 	Ci.2  = trace (CCT), Cu  being the ij:th element 
ij 

of C. 
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Partial derivatives are sometimes denoted by sub-

scripts: suppose x is a vector, f isavector function of 

x and A is a matrix, then fx  denotes the matrix with 

ij:th element s7f4, and <fxx,A> denotes the vector with ax 	
2  

i:th component 	ik a 	fi 	The rate of change 
• k  jk 

A. 	
xaj 

of x(t) with respect to time is denoted by i(t). 

The expectation, or mean, of a random variable X is 

denoted by EX or E[X]. 	The conditional expectation of 

X given another random variable Y is E[XIY]. 

1.3 Basic concepts  

All random variables will 'De asioumed to be functions 

of a basic random parameter Y taking values in a sample 

space, though we shall not usually indicate this dependence 

on Y. 	The phrase 'with probability 1' and the abbre- 

viation 'a.c' (almost certainly) are to be interpreted 

as:'for all values of Y, except for a set of values that 

are taken with zero probability'. 

arluxemlulEuanr1. Of the several ways of describing 

the convergence of a sequence of random variables we 

shall only need the following: if xn,x114.1,... is a 
sequence of random variables of finite second moment, 

then Xn  is said to converge to X in the mean as n 	OD 

if 
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E 	- Xj2 	O. 	(1.3.1) 

Following on from this, if we are considering the approxi- 

mation of one random variable by another or, more generally, 

one stochastic process X(t,Y) by another process Y(t,Y) 

over a period of time 0 < t < T we shall say that Y(t) is 

a 45-auroximation of X(t) if 

sup EfY(t) X(t)I 2 	02 	(1.3.2) 
0<t<T 

The Wiener process  (or Brownian motion process). We shall 

denote by w(t,Y) a vector process that is Gaussianly 

distributed for each value of t, and has independent 

increments. Also w(o) = 0, 

and for s, t ) 0 

E[w(t)-w(s)] = 0, 	E[(w(t)-w(s))(w(t)-w(s))T] = Ilt-s( 

where I is a unit matrix. This is one of the definitions 

of the Wiener process. 	Such a process is a.c. continuous 

(see [12] p.97). 

Stochastic integrals. 	Suppose f(t,Y) is a stochastic 

process such that it is measurable with respect to t and 

Y and for fixed t it is a B-measurable function of 
[w(s ,y), 0 < s < t] (see Ito [16] Section 1); then we 

shall say that f(t,Y) is admissible.  Roughly this means 

that f(t,Y) is a non-pathological function of t and I 



- 16 - 

and is independent of future increments of the Wiener 

process. 	If a(t) and F(t) are admissible processes (we 

omit the argument Y) then Ito [15] shows that integrals 

of the form 

0 
a(s)ds 
	

5 
F(s)dw(s) 

can be defined in such a way that these are also admissible 

processes and are a.c. continuous. 	The value of the 

first integral for fixed Y can be taken to be the time 

integral of a(s), but the corresponding value of the 

second integral cannot be taken to be the Stieltjes 

integral of F(s) with respect to w(s), as w(s) is (with 

probability 1) of unbounded variation. Instead it is 

defined as the limit 	(for almost all t, Y) of a sequence 

of finite sums 

E:F(ti)[w(tila)-w(ti)] 	(1.3.3) 

where 0 = t0  < t1  < . . <tn  = t. 	It is important to 

note that, in these sums, F(ti) is evaluated at the 

beginning of the corresponding partition interval [tiftila]. 

If F is evaluated at (1 -m)ti  +atila  for some fixed a (*0) 

the resulting stochastic integral is not the same as the 

Ito integral. However, the integral is well defined and 

there is a simple formula relating it to the Ito integral 
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[19]. 	The integral corresponding to m = i, that is, 

where F is evaluated at the centre of the partition 

interval, has been, studied by Stratonovich [7] whip showed 

that it can be transformed or differentiated as though 

it were an ordinary integral; this is not so for the 

Ito integral, which transforms according to Ito's formula 

(see (1.3.9)). 	Ito's stochastic integrals have the 

following properties: if a(t), b(t), F(t) and G(t) are 

admissible processes with integrable second moments then 

t 	t 
E[ 	a(s)ds] = S Ea(s)ds 

E[ ) a(s)ds( 	b(r)dr) ] = 

El 	F(s)dw(s)] = 0 

S
E[a(s)b(r)T]dsdr, 

1.3.4) 

E[ 	F(s)dw(s)( S G(r)dw(r))2] = 	E[F(s)G(s)T]ds.  

Integral processes. 	Suppose a process x(t) can be 

expressed by the integral equation, for 0 < t < T, 

x(t) = 	a(s)ds 	F(s)dw(s) 
	(1.3.:5) 

where a(s) and F(s) are admissible processes and 

0 
la(s)fds < co a.c.1 

	
T(F(s)12ds < co a.c.. 	(1.3.6T 

* In particular this satisfied if a(s) and F(s) are a.c. continuous. 
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then we shall call x(t) an integral  process. We can 

write (1.3.5) symbolically in stochastic differential 

form: 

dx(s) = a(s)ds + F(s)dw(s). 	(1.3.7) 
t 

We define the 'mixed' stochastic integral S G(s)dx(s) to' 

be the sum of integrals obtained by replacing dx in 

accordance with (1.3.7). 

For each integral process the functions a(t) and F(t) 

are unique (for almost all t and Y). We need to refer 

to them separately, It is convenient to introduce the 

following notation: we call a(t) the drift of x(t) and 

denote it by d[x(t)]; F(t) is called the dispersion of 
x(t) and w(t)T and is denoted by D[x(t):w(t)T]. 	This 

operator is defined for general arguments as follows: if 

x(t) and y(t) are scalar integral processes and Fi(t) is 

the coefficient of dw (t) in the expression (1.3.7) for 

dx(t) and Gilt) is the corresponding coefficient in Wt), 

then the dispersion of x(t) and y(t) is 

D[x(t):y(t)] = 	Z 1‘..t
-L
(t)Gi(t), 	(1.3.8) 

i 
The two arguments of the dispersion operator can be taken 
to be matrix functions, provided that their matrix product 

is meaningful. 	The special case D[x(t):x(t)T] 

(= F(t)F(t)T) we shall simply call the dispersion of x(t). 
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In the literature the terms 'drift' and 'dispersion', 

which we shall only use in the sense we have given, are 

sometimes used to refer to determinate functions that are 

more often called 'drift coefficient' and 'diffusion 

coefficient' (see the next section). 

Ito's formula [16]. 	Suppose q(x,t) is a scalar function 

with continuous second order partial derivatives in x and 

t. 	Ito's formula states that if x(t) is a vector 

integral process, then q(x(t),t) is also an integral 

process and its stochastic differential (in the notation 

of section 1.2) 

dq(x(t),t) = (qt 	qxa  i'<qxx1111T> )dt +qxFdw(t), (1.3.9) 

where a(t) and F(t) are as in (1.3.7) and are evaluated 

at t, and where the partial derivatives of q are 

evaluated at (x(t),t). 	Note that (1.3.9) is different 

from the ordinary formula for the differential of a 

determinate function in that it contains the term 

i<q ,FFT>dt. 	If x(t) has zero dispersion (F = 0) 

then this term is zero (in which case q need only have 

continuous first order partial derivatives) and (1.3.9) 

is the same as the ordinary formula. 

1.4 Diffusion processes and stochastic differential 

equations. 

Suppose now we have an integral equation 
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x(t) = 	a(x(s),$)ds + 5 F(x(s),$)dw(s), (1.4.1) 

which, written as a stochastic differential equation, 

is 

dx(t) = a(x(t),t)dt + F(x(t),t)dw(t), x(o) = 0. (1.4.2) 

It can be shown that (boob [12] p.273 or Ito [16]) if 

a(x,t) and F(x,t) are measurable, are bounded functions 

of t and satisfy 

la(xtt) 	a(y,t)I < 	$ 	1F(x,t)-F(y,t)j< 

for all x and y and for 0 < t < T, K being constant, 

then there is a unique solution to (1.4.1) and it is a 

Markov process of diffusion type with drift coefficient 

a(x,t) and diffusion coefficient F(x,t)F(x,t)T; that  

is, as h 	0 +I 

E[x(t+h) 	x(t)lx(t) = x] = a(x,t)h + o(h), 
(1.4.3) 

E[(x(t+h)-x(t))(x(t+h)-x(t))Tlx(t)=x] = F(x,t)F(x1tYh + O(h) 

and, with suitable regularity conditions, the probability 

density p(y,s; x,t) of x(t) being x, given that x(s) = y, 

satisfies the Fokker-Plantik equation 
2 

= - 2.7-658--c  [a- (x,t)p] + i 	7.74==24F41,(x,t)F. (x t),c] 
I 	ijk  v....,...,41  ...... 	jk ' - 	• 

(1.4.4) 

14'a 
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The diffusion process x(t) can also be described by 

the Stratonovich stochastic differential equation 

ax(t) = f(x(t),t)dt + F(x(t),t)aw(t) 	(1.4.5) 

where the bar over the differentials denotes that the 

integrals in the underlying integral equation are to be 

interpreted as Stratonovich integrals, which we described 

in the previous section. The relation between the Ito 

form (1.4.2) and the Stratonovich form (1.4.5) is that 

[11 

f.(Dcsj 	. al(xrt) 	
jk 
	x,t)i-crii(x,t) 

(1.4.6) 

Another form of this relation, which we shall use, is 

f(x(t),t) = a(x(t),t) - *D[F(x(t),t):w(t)] 	(1.4.7) 

where D[.:.] is the dispersion operator defined in the 

previous section. 

Stratonovich's representation of a diffusion process 

has the advantage that the stochastic differential of 

a function of the process can be obtained by the normal 

formula for ordinary differentials; Ito's formula in-

volves second-order derivatives of the function. 

However, Ito's representation has the advantage that the 

equations for the moments of the process can be expressed 
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more simply in terms of it. For this reason and because 

we want to make use of the well developed theory of the 

Ito stochastic integral we shall use the Ito represen-
tation in the theoretical part of this work. We shall 

present some of the results in Stratonovich form for 

purposes of comparison. 

Stochastic differential equations can also be inter-
preted as the limits of difference equations; we demon-

strate this with a simple example in Appendix A. 

1.5 Physical processes and random disturbances  

Consider the stochastic process X(t) described by 

the vector differential equation 

i(t) = f(X(t),t) + F(X(t),t)y(t), X(0) = 0 	(1.5.1) 

where y(t) is a random disturbance. The main purpose 

of the present work is to. show that under certain con-

ditions such a process, even though it is differentiable, 

can be approximated by a diffusion process. We shall 

call this process a physical process. 

The random disturbance y(t) we shall take to be 

described by the integral equation 

t 
Y(t) = 	g(t,u)dw(u) 
	

(1.5.2) 
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where w(t) is the vector Wiener process and g(t,u) is a 

matrix. Such a random disturbance is Gaussian and 

klepends only on the past". Many of the random phenomena 

that occur in engineering, such as thermal noise in 

electrical circuits, some types of vacuum tube noise, and 

rocket engine noise, have these properties and can be 

approximated by a description of the form (1.5.2). 
We have chosen to describe random disturbances in 

this way not because it is easy to express any particular 

process in the integral form of (1.5.2) - in general it 

would not be - but because several broad classes of 
interesting processes are included in this description; 

we now list those. 

1) Approximately white stationary noise. Suppose a 

scalar Gaussian stationary process has a continuous power 

spectral density P(w), which satisfiesOrealisability" 

condition of Paley and Wiener (see [9] p.175) 

log P(5)  du, < co ; 
-CO 
 1 +  CA) 

then the process can be represented as 

t 

g(t-u)dw(u) . 	(1.5.3) 
-co 
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If t is positive and g(t-u) decays away sufficiently 
rapidly for increasing (t-u), that is, the correlation 

time of the process is sufficiently small, then we can 

ignore that part of the process produced by integration 
over negative values of time and the representation 

(1.5.3) reduces to a special case of (1.5.2). 
2) Linear diffusion processes. The model used by 

Uhlenbeck and Ornstein to describe the rate of change of 
Brownian motion (see [263 p.93) is a first-order linear 

diffusion process. 	Suppose 

dy = Cydt + Hdw p y(o) = 0 

where y and w are vectors and C and H constant matrices. 
We can verify that 

y(t) = ctec(t-19idw(u)  
0 

where the exponential is a matrix exponential. This is 

of the form (1.5.2). 

3) Piecewise constant processes. 	Consider the process 

that is constant over intervals of length it the values 
it takes in the intervals being independent and Gaussian. 

Such a process might be used in a computer to simulate 

white noise. 	If in (1.5.2), 

et,u) = ca, n-1< 	t  n+1 —E— 	< n <  -a-,  _ 	n=1,2,... 

= 0 otherwise, 
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then y(t) is a piecewise constant process of this sort. 

More general piecewise constant processes, which are 

correlated over more than one interval, can also be 

represented by (1.5.2), as we shall see in Chapter 4. 
In the next chapter, we shall suppose y(t) to be 

a.c. piecewise continuous; in Appendix B we give a 

condition on g that implies this. Otherwise we do not 

impose any restriction on the analytical properties of 

the sample paths of y(t); for instance, the diffusion 

process 2) is not differentiable, whereas the piecewise 

constant process 3) is, trivially, infinitely differentiable 

in each interval. 
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CHAPTER 2 

THE APPROXIMATION OF PHYSICAL PROCESSES 

BY DIFFUSION PROCESSES 

2.1 Introduction 

In this chapter we consider the approximation of a 

physical process by a diffusion process over a finite 

interval of time. We formulate this as a convergence 

problem by taking the random disturbance of the physical 

process to be a member of a family of random disturbances 

described parametrically by a variable a, which can be 

regarded as an *upper frequency". We can then study the 

asymptotic behaviour of the physical process as a —.4* co. 

The main result, which is given in the next section, can 

be summarised as follows. 	The physical process is 

described by 

x(t) = f(X(t),t) + F(X(t),t)y(t), 	x(o) = 0 	(2.1.1) 

where y(t) is a random disturbance of the sort considered 

in Section 1.5. 	Considering y(t) as a function of its 

flapper frequency" a, we show that x(t) converges in the 

mean to a particular diffusion process x(t) as a —4 a), 

if, among other conditions, 
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a) for positive t, 
1 t s 

lira 	SE[y(s)y(r) T3drds =A 	(2.1.2) 
aolo u o o 

where A is a constant matrix, and 

b) the integral of y(t) converges in the mean to Bw(t) 

(these two conditions imply BBT  = A + AT). The diffusion 

process x(t) is given by the Stratonovich differential 

equation 

aki(t) = fidt + 2 	F• a  F ( IT in  Ann-Anm)dt + LBi  Zig.(t) 
' 

xi(0) = 
	

(2.1.3) 

where f and F are evaluated at (x(t),t). 	The rate of 

convergence is such that x(t) is an 0(m-2)-approximation 

to X(t). 

Note the following points about the approximating 

process x(t): 

1) x(t) is the same dimension as X(t); 

2) the random disturbance y(t) is characterised in the 

approximation not only by the limit of its integral; 

that is, Bw(t), but also by the matrix (A - AT), which is 

unrelated to Bw(t); 

3) if either F(x,t) is independent of x, or the matrix 

A is symmetric, then the Stratonovich differential 

equation of the approximation could have been obtained 
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by replacing the term y(t)dt in (2.1.1) (in differential 
form) by its formal limit BaW(t). 

Both the second and third points indicate the 

importance of knowing the symmetry of the matrix A. In 
Chapter 4 we consider the symmetry of A for some common 
forms of random disturbance . As we shall see in the 
next chapter, if we are only interested in the probability 

laws of X(t) and not in its functional dependence on the 

hypothetical process w(t)1  then the random disturbance 

is completely characterised in the approximation by A, 

whether it is symmetric or not. 	For this reason we shall 

call A the characteristic matrix of y(t). 

If x(t) is a 0(a-2)-approximatian to two different 

physical processes X(t) and /OM then it is clear that 
1 

X(t) and X' (t) are 0(m-9-approximations of each other. 

Relations between their coefficients can readily be 

obtained by equating corresponding coefficients of dt 

and Ww(t) in the two versions of (2.1.3). 

In Section 2.4 we compare the results obtained in 

this chapter with similar results obtained by quite 

different methods by Stratonovich [20], Wong and Zakai 

[21,22], 	Astrom [23] and AriaratnaM and Graefe [27]. 



2.2 A theorem on the limiting farm of a physical process  

Suppose X(t) is a vector physical process 

satisfying for f in /-0,T7 the,equation 
X(t) = f(X(t) t) -1:F(X(t),t)g(a,f), X(0) = 0 

(2.2.1) 
where F is a matrix and f and y gre vectors, the 
dimension of y being N. 	In /-0,T.1 y(a,t) is An a.c. 

piecewise continuous(that is, with probability 1, 

y(a,t) is continuous in /-0,TI apart from a finite 
number of finite jumps )random disturbance of the form 

y(a,t) = ( g(a,t,$)dw(s) 	(2.2.2) 

where w(t) is a vector Wiener process and g(a,t,$) 

is a meas.orable matrix function of t and s such that 

for all positive c 

Ig(att's)1
ce-a(t-s) a 
	 for t 	s 

(2.2.3) 
0 otherwise, 

and 

c(2cmpg(apt,$)dt = B for all s .2.4) 
s 

where c is a positive constant and B a constant 

matrix. Furthermore, suppose that, as a increases, 

c
t  csEry(m,$)y(m,r)T2drds = At + 0(a-s ) (2.2.5) 
0 o • 

uniformly for tin /-0,T47, where A is a constant 

matrix and 0(a ) denotes a matrix with components 
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of order d". 

The parameter a can be regarded as a representative 

upper frequency of y(a,t). We shall call the matrix 

A the characteristic matrix of y(a,t). For 

approximately stationary random disturbances, with 

weighting functions of the form g(m,t-s)Ithe double 

integral in (2.2.5) can be simplified to a single 

integral of the correlation function of y(a,t) (see 

Section 4.1). It will generally be helpful to think 

of A as the cross-correlation of y(a,t) with the 

integral of its past. As we shall see in Lemma 2.1, 

the conditions (2.2.3,4) imply that as a increases 

the integral Sty(a,$)ds converges in the mean to Bw(t), 

so in this sense y(x,t) tends to the "white noise" 

Bw(t); we shall also see that the matrices A and B 

are connected by the relation A + AT = BBT. Let 

Fim(x,t) be the im:th component of the matrix function 

F(x,t), Fm(x,t) the m:th column of F(x,t), and Qmn(x,t) 

the column vector with i:th component . 5n(x,t)!FIFim(x,t). 

Suppose the vector functions f(x,t), Fm(x,t) and Qmn(x,t) 

satisfy the following conditions for all x and all 

t in /-°,T 7. In these conditions K is a positive 

constant, the arguments of the functions are x and t, 
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and partial derivatives with respect to x and.* are 

denoted by the suffices x and * 

f is continuous with respect to 

continuously differentiable with respect to 

x, and Ifxl<K. 	 (2.2.7) 

Fm  and Qmn  are continuously differentiable 

with respect to both x and t and IF j 
d 

1Qmn,x1Ts 	 (2.2.8) 

Either 

the functions W I  IFml, 1QmnI, IFIlind and 

Qmn, t1  

or 

are all bounded by K, 	(2.2.9a) 

< K + KIx1, kmn,t1 < K + Klx1 and 

for all alE1X(01 . t K. 	(2.2.9b) 

We have, given the alternative conditions (2.2.9a,b) 

to broaden the class of physical processes we can 

consider. 	Each condition by itself is restrictive in 

some sense; (2.2.9a) excludes from our consideration 

linear systems with stochastic coefficients, whereas 

(2.2.9b) implies that the fourth moment of X(t) is 

bounded uniformly for increasing a, a condition which, 

though plausible, is difficult to verify. 

Theorem 2.1 If conditions (2.2.1-8) hold and either 
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(2.2.9a) or (2.2.9b) holds, then for increasing a 

EIX(t) 	x(t)12  = 0(a-1) 	(2.2,10) 

uniformly for t in /0,T.7, where x(t) is the unique 

diffusion process satisfying the Ito stochastic 

differential equation 

dx(t) = f_'(x(t),t)dt + 	Gamn(x(t),t)Amndt 

(2.2.11) 

+ F(x(t),t)Bdw(t), x(0) =, 0 

and also satisfying the Stratonovich stochastic 

differential equation 

dx(t) = f(x(t),t)dt + z 44410mn(x(t),t)e-Amn—Anilviat 
(2.2.12) 

F(x(t),OBEI-wW, 

where Amn is the mn:th component of A. 

Corollary If the condition (2.2.5) defining the: 

characteristic matrix A is replaced by the condition 

ti 

g(a,,t,r)g(a,s,r)Tdsdt = A 
r 

(2.2.13) 

then (2.2.10) still holds. 
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Theorem 2.1 asserts that the physical process X(t), 

considered as a function of a, tends, as a increases, to 

a particular diffusion process, and that this diffusion 

process is an 0(a 2) - approximation to X(t). Furthermore 

the relation between X.(t), or rather y(a,t), and a5  can be:  

Quite arbitrary within the the constraints (2.2.2,4,5), 

and X(t) will still converge to the same diffusion process. 

In practice we may be concerned with finding a 

diffusion approximation for a particular physical process, 

and then it is more natural to think of a as a property* 

of the disturbance y(t) rather than y(t) as a function of 

a; that is, the inequality (2.2.3) becomes a definition 

of a. 	Similarly we can think of the conditions (2.2.L1.) 

and (2.2.13) of the corollary as defining the matrices 

B and A for a particular disturbance y(t), and hence 

defining a possible diffusion approximation to X(t). 

As we see from the corollary, if a, B and A can be 

meaningfully defined in this way, x(t), as given by 

(2.2.11), is. an 0(a 	- approximation to X(t). 

* 	In keeping with this interpretation w shall 
generally write y(t) for y(a,t) and g(t,$) for g(m,t,$). 



We note the following points about the approximating 

process x(t). 

1) x(t) is of the same dimension as. X(t). 

2) If either F(x,t) is independent of x, or A is 

symmetric, then the Stratonovich stochastic differential 

equation of the approximation x(t) can be symbolically 

identified with the ordinary differential equation of X(t) 

'by replacing y(t) in this equation by B:tt)  , which can 

be regarded as a "white noise" approximation to y(t). 

3) The drift and diffusion coefficients of x.(t) are 

respectively 

f(x,t) + 	Qmn(x,t)Amn, F(x,t)BBTF(x,t)T. 

As we shall see in Lemma 2.1, 

A + AT =, BBT. 

If A is symmetric (that is, A = IBBT) or F(x,t) is indepen-

dent of x (when Qmn(x,t) = 0), the only statistical 

parameters of the N-dimensional random disturbance y(t) 

that have to be specified in order to determine the drift 

and diffusion coefficients of x(t) are the +N(N + 1) 

components of BBT. This symmetric matrix is the 

intensity coefficient of y(t). 	In general, however, 

the characteristic matrix has to be specified, and this 
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has N2 components. 

2.3. Proof of Theorem 2.1  

First we explain three analytical techniquesthat will 

be used repeatedly in the proof of Theorem 2.1 and we 

also list some required standard moment inequalities. 

1) Equating random processes with integral processes. 

The type of random processes We are considering are those 

of the form 

Z(t) = ct  g(t,r)Q(r)dw(r) 	(2.3.1) 
'o 

where g(t,r) is a bounded measurable matrix function and 

Q(r) is a matrix admissible random process of finite 

second moment. An example of such a process is y(t) as 

defined by (2.2.1). 	Though 2(t) is a stochastic integral 

it may not be an integral process in the sense of (1.3.5) 

because the integrandin (2.3.1) depends on t. 	However, 

the related process 

Z(t:s) = 	g(t,r) Q(r)dw(r) 	(2.3.2) 

is an integral process in s for fixed t, and clearly 

z(t) = Z(t:t). 

The advantage oftequatingZ(t) with Z(t:t) is that the Ito 

calculus is applicable to .*:s) whereas it may not be to 
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Z(t). For example, we can expand E5(t)Z(t)T7 as follows: 

EZZ(t)Z(t)T7 	E/5(t:t)Z(t:t)T7 

which by (1.3.4) 

ftg(t r)E/74(r)Q(r)T7g(tyr.)Tdr (2.3.3) 

2) Changing the order of integration of iterated stochastic 

integrals. In Lemma Bl, Appendix B, it is shown that 

if gcs,r) and Q(r) are as above then with probability 1 

rt (ses 	it (tg(s,r\- ,r)Q(r)dw(r)ds = 	).(4r)dsdw(r). 
Jo )o 	Jo ir 

(2.34) 
 

We note that the right-hand integral is of the form (2.3.1) 
t 

(with g(t,r) replaced byi (s,r)ds). 	Ws shall often use 

this technique in combination with a formula such as (2.3,3) 

to obtain exact expressions for the second moments of 

iterated stochastic integrals. 

3) Special forms of Ito t s formula. 	Let U(t) and V(t) 

be matrix integral processes such that the matrix product 

U(t)V(t) is meaningful. 	In Ito's formula (1.3.9), let 

x1(t) be Uii(t), x2(t) be Vik(t) and q(x(t) ) the scalar 

product x4(t)x2(t), which is clearly a twice-differentiable 

function of 1(t) and x2(t). 	(1.3.9) becomes: 

dZITii(t)Vik(t17 = Uij(t)dVjx(t) + dUij(t)Vik(t) 

+ D /1 i..j 	3 
(t):V. ( ) 7dt 

1Xj 
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where DOii(t):Vik(t17 denotes the 

cross-dispersion of Uu(t) and Vik(t) (see (1.3.8). 

By summing over j we obtain the corresponding formula 
for the ik:th component of U(t)V(t). 	So'the correspond-

ing formula, in integral form, for the matrix U(t)V(t) is 

U(t)V(t) 	U(0)1T(0) = ( /U(s)dV(s) + aU(s)V(s) 
io 

(2.3.5) 

+ Dej(s):V(syds7 

We shall come across products where one of the processes, 

say U(t), has zero dispersion and is of the form S W(s)ds, 

Then .3.5) can be written as 

itU(s)dV(s) = U(t)V(t) 	W(s)V(s)ds )0  (2.3.6) 

which can be considered as a formula for stochastic 

integration by parts. 

It is convenient tohaveaformula. for the higher- 

order moments of some processes. 	In (1.3.9) suppose 

x(t) is 	F(s)dw(s), where x, F and W are scaler; suppose 

q(x(t.) = x(t)n. 	Then on taking the expectation of 

(1.3.9) we have 

Ex(t)n 	n(n-1) E/R(s)n-2F(s)27ds (2.3.7) 
0 
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Some standard inequalities. 	We shall make use of the 

following inequalities. 	Scaler versions of the first 

two are given in /-14 7 p. 155. We give equivalent 

inequalities for matrix variables; these follow 

directly from the scalar versions by norm inequalities 

+ Yi 	IX) + IYI , and Ix -f 	IX/. 1 Yl. 

1) The Holder inequality. 	If X, Y and Z are (matrix) 

random variables and r, s, and t are positive numbers 

such that 1  -+- 1  + t
1- = 1, then r s  

1 	1 	1 
E XYZ 
	ir)F(E lyIS)S(E 	 (2.3.8) 

A similar inequality holds for double products (set Z =- 1, 

t == co ). 

2) If X4, 	Xn  are (matrix) random variables then 

EV + 	tXnI r 
	

r 	+ EIXnI P) 
for r 	1 
	

(2.3.9) 

3) If X(s) is a (matrix) random process 

E 	St  X(s)ds 12 	cEIX(a)12ds 
	

(2.3.10) 

This can be proved as follows. 	Assume X(s) is scalar 

and the right-hand side of (2.3.10) is finite. 	Then 

t 	 t t 
ti EX(s)'ds = 	2/EX(s)2  + EX(sf ).2.7asds2  

0 
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which, by the basic inequality EA2  B2) AB, 

rt 
E IX (s)X(s 41.sds 

l
t
o  

t t 
E/R(s)X(st)7dsds t  

0 0 

As X(s)X(st ) is integrable in s, st  and in expectation, 

we can change the order of integration and expectation 

(Pubini t s Theorem, rib, _71). 136). 	The last integral 

becomes E( 	X(s)ds)2  and (2.3.10) follows. 	We get 

(2.3.10) for matrix X(t) directly from the definition of 

tX(t)I2  as 	X. .(t)2. 	We note that (2.3.10) can also 

be considered as an integral version of the previous 

inequality for r=2. 

In the following two lemmas we obtain asymptotic 

bounds for miscellaneous functions of y(t) and X(t) that we 

will require'in the proof of Theorem 2.1. 

Lemma; 2.1 Asymptotic properties of y(t) and related 

functions. 	If conditions (2.2.2-5) hold and 

,e" 0 	s " 	T, then 

1) A + AT  = BBT 	(2.3.11) 

and for increasing a 



24.0 

2) Ely(t)I 2  c2 

7 a' (2.3.12) 

3) EiBw(t) - y(r)drI2  
2 

2 a
-1 (2.3.13) 

0 

G(u,r)g(u,r)Tdrdu = At 	0(a-1) 

(2.3.14) 

5) 
	Lmn(u,$)dul 

	
= 0(m 2) 	(2.3.15) 

s 

) E1pmn(t:s)16  = 0(0.-6 ), 	 (2.3.16) 

where the convergence in the last three expressions is 

uniform in t and s, and where 

G(t,r) = 	g(u,r)du 
	

(2.3.17) 

is a row vector with i:th component Lmn (u,s 

/6 mi(u s) S 	j(u,r)d1r) 
0 

gni(u,$) Gm.
J
G(u,r)dw.(r)2 

o 
and 

Pmn(t:s) 
	

L mn(r,q)drdw(q) 
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Proof. 	It is convenient to prove (2.3.12,13) first. 

Let y(t:s) be the integral process 	g(t,r)dw(r). 
o 

Then in the manner of (2.3.3) we can write 

Ely(t)I2  = Ely(t:012  

Ig(t,r)12dr, 

which from (2.2.3) 

m 2c2e-2a(t-r)dr 

2 c cts, 

and (2.3.12) follows. 	Now from (2.2.2) 

S

y(s)ds = 	g(s,r)dw(r)ds. 

As 	Ig(s,r)12 	is exponentially bounded we can change 

the order of integration and write 

y(s)ds = 	g(str)dsdw(r). 

0 



Let 

Y(t) 	Bw(t) 	y(s)ds 
	

(2.3.20) 

42 

From (2.2.4) it follows that 

op 	t 

co 
	g(s,r)dsdw(r) 	

0 

Bdw(r) 	Bw(t) 

Therefore 

t 
Y(t) 	= 	G(t,r) dw(r) 

where 	G(t,r) 
	

is given by (2.3.17). 	Note that 

IG(t9r)1 	C 

ao 
g 
 s,r)! ds 

c e
-a(t-r) 
	

(2.3.21) 

Therefore 
t 

E 
	

I G(t,r) j 2dr 
0 

.4., 	2 a.  -1 -  

and (2.3.13) follows. 	(2.3.13) implies that the second 

moments of 
	

y(s)ds 	tend, as m increases, to the 
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corresponding moments of Bw(t). 	So, as a, -->o0 

E 	y(s)ds 	y(r)Tdr..7 	BBTt.  

But by the normal rules of calculus 

t s 

y(s)ds 	y(r)Tdr 	y(s.)y(r)Tdrds 

o o 

t r 

Y(s)y(r)Tdsdr 
0 0 

and the limit of the expectation of the right-hand side 

of this equation is from (2.2.5) evidently (A AT)t, 

so 

BBit- 
	

- 	(A .4- AT)t 

and (2.3.11) follows. 

We now prove the remaining equations (2.3.14 - 16).. 

In the remainder of this section it will be understood 

that order-of-magnitude terms such as 0(a71) are bounded 

independantly of any time parameter. If we expand the 

second moment of y(t) in (2.2.5) in the manner of 

(2.3.3) we find 



-44— 

r t s r 

o o o 
g(s,q)g(r ,q)Tdqdrds 	= A(t) 	0(a71), 

which by a change in the order of integration (g is 

exponentially bounded) 

t 	s 	( s 
= 

	

	g(s,q) ) g(r,q)drdqds 
0 o 

Now from (2.2.4) and (2.3.17) 

G(s )g(2(I)T 	= Bg(390T — g(r,q)drg(s,q)T  

and so from the last two equations 

t ts 	 t s 
t G(s,cl)g(s q)Tdqds 	= 	B 	g(s,q)dqds 
V o o 	 o o 

ATt 	0(a-1). 

Again from (2.24) 

	

t s 	t 

c
c g(s,q)Tdqds = 	BTdq 

o o 	o 

t ao 

o t 
N g s,qjT  dsdq. 

But 

co 

o Ct 
g(s,a)Tdsdq 

t co 

o t 

c: c a —1  

Oe
a   a 	— (s)  
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and so 

)
o 

\ G(sol)g(s,q)Tdqds 	BBTt 	ATt 	Oka 1  ) 

= At 	0(a-1) 

by (2.3.11), and (2.3.14) follows. 

Let J(r,ci) be the matrix with ..j:th component 

(t 

J. .(r,q) 
	

t I  /-G (u,r)g .(u 	G j(u,q)gni(u0 7du mi 	nj 9  • 	 M 

Note that J(r,qj in also a function of s and t, but 

for the remainder of this proof we shall take s and t 

to be fixed. 	Let 

= e 

If follows from the bounding inequalities (2.2.3) and 

(2.3.21) on g and G that 

J(r„ra) 
	

2 act 	3(2u - r - q)du 

a 

4c 2 c 13(2s - r- (2.3.22) 
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Now let 

Rid  . .(u:r) 

r ) 1J 

J13• 
 ti9(1)dw.(q) 

c

R
1J
. .(q:Odwt(q) 

.*0 

Forfixedu,sandt andS..
1J
(r) 	are integral 

processes in r. 	By a change in the order of integration 

(which is permissible as g and G are bounded) we find that 

L mni(u' s)du 	2 R.3(s:s) 

where Lmni(us) is given by (2.3.18). 	Furthermore 

P (t:s) 	-;:Er S. .(s). 
1J 	ij mn 

So by the standard inequality (2.3.9) 

El 
	

Lmn(u,$)du 4. 	Ne 1 	ER. .(s:s 4.2  2.3.23) 

E P (t:s)6  
mn 

N10B Sij  .(s) 6  ij (2.3.24) 

We now consider the order of magnitude of the moments 
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ij ER (s:s)14  and ES. (3)6. 	In the following proof, 

C1,2"")will denote constants independent of a and any 

time parameter. 	We note in passing that Jij  satisfies 

theinequality (2.3.22) fora.,because l j. 012.  

As the same moment . inequalities will be shown to hold 

for all i and j, we shall simplify the notation by writing 

R for Rij, S for Sij  and J for Jij. 

From Ito's formula for second moments (1.3.4) 

	

E. R(u:r 2 	Ji(u,c1)2dcl 

which from (2.3.22) 

r 

c4 c 13(4s - 2u - 2q)dq 

Cl  e - 13(4s - 2u - 2r) 	(2.3.25) 

Now R(u:r) is Gaussian, so for positive integer n 

	

E R(u:r)2n  - 	(2n-1)(E R(u:02)n  

C2 a-1113(4ns - 2nu 	2nr) 
	

(2.3.26) 

N4 4: In particular E R(s:s) 	C2a.
-2 (for all i and j) and 
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so (2.3.15) follows from (2.3.23). 

moments of S(u); we have 

/ E S(u)2  = t E R(q:q)dci 

which by (2.3.25) 

1 
) P(4s - 4q)dq 
0 

 

- 	,. 
C3a 2 0,04.8 - 4u). 

Now consider the 

(2.3.27) 

Expanding Sk.t u)4  by Ito's formula (see (2.3.7) ) and 

taking the expectation we have 

E 3(u)4  = 6 	ErS(r)2R(r:r)27dr 
o 

which by further expansion of the integrand 

u r 
41112 4. M3 

 7dqdr 
o o 	(2.3.28) 

where 

ml = E /Th(q.:a)2R(r:c1)2 7 

Ma = ErS(ci)R(v.ci)R(r:q.)J(r9Q)" 
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‘ M3 	E /8(q)2  ,7-,1- 9(1)2  _/. 

We note that J is determinate and unaffected by the 

expectation operator. 	From the Holder inequality (2.3.8) 

it follows that 

M1 	(E R(q: q)14)i(E R(r:q)4)2  

which by (2.3.26) 

C4c72p/89 - 2r - 61. 7. 

So 
u r 	u r 

	

f 	
Mldgdr 

	

'4 	P /8s - 2r - 6q 7aTir 
o o 	o o 

	

--- L.,4 	for u - s. 

The integrals of M2  and M3  can be bounded similarly: 

	

M2 	(E S(g)2)2  (E R(q.: q)4)-(E R(r:q)4- f  J(r9q)i 

which by (2.3.22) (2.3.25) and (2.3.27), 

—2 C
5
a 	p(6s - 2r - 4q) 
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VS(q)2R(q:q)2R(r:q)2_7 

ErS(q)3R(q:q)R(r:q) J(r,q)..7 

ErS(q)4  J(r,q)2  7 

By making use of the Holder inequality together with 
the inequalities already obtained we see that 

where 

N1  = 

N2  = 

N3 = 

-50-- 

and, as before 
u r 

M2dqdr 
o o 

Similarly 
u r 

M3dqdr 
o o 

C,6  a-4  

C
7

-4 

So it follows from (2.3.28) that for u 	s, 

E S(u)24 
	

C8(1-4 
	

(2.3.29) 

Analysing F S(s)6 in a similar fashion, we have 

E S(s)
6 
	= 15 	ErS(r)4R1r:r)2  7dr 

s r 
15 

S 
(6N1  + 8N2 	N3  )dqdr 

o o 
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(ES(c1)14)*  N1 	(R(1:ci.)8)4  (R(r:ci)8)1" 

09a 4p(8s - 2r - 6q) 

4 (E s(q) 	(E R(q: N2 	q)
16) (E R(r:q)16)161J(r,q)/  

0 40(6s - 2r - 4q) 

and 

N311cc-4p(4s - 2r - 2q) 

It then follows from (2.3.30) that E S(s)6  = 0(a-6) and 
then (2-3.16) follows from (2.3.24). 

Lemma 2.2 Bounds of some function moments of X(t). 
Let I(x,t) be any of the following set, of vector functions 
of x and t: 

f9 Fm, Fm,t/ tn and Q,Inn,t, 

and let J(x t) be any of the set 

Fm,xf, Qmn,xf  and Qmn,xFp 

If (2.2.7,8) hold and either (2.2.9a) or (2.2.9b) holds 
for some constant 10 and for t in /-0,T 77 , 

	

Eli(x(t),t) 1 4  15 K',E IJ(X(t)lt) ( LI. 	K' 	.3.31) 

for any I and J. 
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Proof. If (2.2.7,8,9a) hold, then it follows immediately 
that 

II(x,t)I 	ici(x,t)f 

% for all x, and so (2.3.31) holds for KT = max (0, K8). 

Suppose (2.2.79899b) hold. 	Then the three functions 

f, Fm  and Qmn  are continuously differentiable in x and the 

derivative is bounded by K. So by the mean value theorem, 

f, Fm  and Qmn  satisfy the inequality 

1(0,01 g KI 

and hence the inequality 

"!=i; K1  + Kix, 

where K1  = max (K9  If(0 t) t, 	Fm(0,t) 9 

	qmn(0,t)( ) 

By (2.2.9b) Fm,t  and %n,t  also satisfy the Imt inequality. 

Any J will clearly satisfy 

I 

IJ(x,t)i 	K(K/4- K(xt ) 

Now Elx(t); 4  is bounded by K so for any I, by the 

inequality (2.3.9) 

E II(X(t),t)4  I -1,:dt- 	8(K2.4 	K EIX(t)(4  ) 

8(K14 	K5  ). 
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Similarly E 1J(X.(t),01 4 	80(1C].  + K5), and (2.3.31) 

follows. 

Proof of Theorem 2.1 Let us express X(t) and x(t) as 

defined by (2.2.1) and (2.2.11) in integral fOrm: 

rt 
X(t) = f(X(s),s.)ds + 	F(X(s)0)y(s)da 

)o 	 (2.3.32) 

t 
it  r(u) = 	f( ( ),$)ds  

CO
mn  Qmn(x(s),$)Amnds 

(2.3.33) 
F(x(s),$)Bdw(s) 

0 

The proof splts. naturally into two parts. 	In the first 

we transform X(t) by the Ito calculus into an'integral 

ecuaton of the form: 

ft 
X(t) = f(X( ),$)ds + 	m

mn(X( ),$)Amnds 

(2.3.34) 

+ 	F(X(s),$)Bdw(s) 	R(t). 
0 

The remainder R(t) is further expanded by the techniques 

described at the beginning of this section to a sum of 
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terms for which we can obtain sufficiently accurate 

estimates of their orders of magnitude. 	The orders of 

magnitude of these terms have been calculated in Lemmas 

2.1 and 2.2. 	In this way it is shown that E/R(t)12  

is 0(a-1). 	In the second part of the proof we show by 

a well-known method that the solution of (2.3.34) tends 

to the solution of (2.3.33) as a - 3 CD 0  and this completes 

the proof. 

First we note the following properties of x(t). 

By (2.2.7) f(x,t) is continuously differentiable in x 

and its derivatives are bounded by K, so by the Mean-value 

Theorem, f(x,t) satisfies the Lipschitz condition 

if(x,t) - f(x',01 IF KIx-x'I 	(2.3.35) 

for all x,x1  and all t in /-0,T 7. 	Similarly Qmn(x,t) 

and Fm(x,t) satisfy the same condition. 
	This, together 

with the continuity in i of these functions, imply the 

existance and uniqueness (with probability I) of x(t) as 

defined by (2.2.11) (see /-12 7 p.277). 	Furthermore 

(2.2.12; is indeed the Stratonovich differential equation 

of x(t); for the correction term that has to be added to 

(2.2.11) to give the Stratonovich form is - 	 . Q B .B . mnj mn mj nj 

(see /1.4.6 7), but from Lemma 2.1 	B mj 
B  nj = Amn 

Anm and (2.2.12) follows. 
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We shall make use of the fact that X(t), Fm(X(t),t) 

and Qmn(X(t),t) are integral processes of zero dispersion, 

This can be shown as follows. 	Because y(t) is a.c 

piecewise continuous in /0„T 7, y(t) - h where h is 

an a.c. finite random variable. 	This condition, the 

a.c. piecewise continuity of y(t), and the conditions, 

(2.2.7,8) imply that, with prob bility I , the function 

/-f(x,t) 	F(x,t) y(t) 7 is piecewise continuous in t 

and has continuous derivatives in x that are bounded by 

K(1 	Nh). Hence by the Mean-value Theorem this function 

satisfies a Lipschitz condition of the form (2.3.35), 

with K(1 + Nh) as the constant of proportionality. The 

usual existence and uniqueness theorem (see /18 7 Chapter 

2) can then be applied to the ordinary differential 

equation (2.2.1) and so, with probability 1, the solution 

X(t) is determined uniquely and is continuous in t. 

Moreover X(t) is the limit, with probability 1, of a 

sequence /Xn(t) 7" generated by Picard iteration with 

Xn41 (t) = 	Zf(Xn(s),$) 	F(Xn(s),y(s)jas, 

X°(t) = O. 

Because f and F are continuous functions, and y(t) is 

both a Borel-measurable function of rw(a), a 75 t 7 for 
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each t and a measurable function of t and y, each Xn(t) 

is an admissible process as defined in Section 1.3. 

Thus x°  (t) is an admissible process. As we need only 

determine X(t) with probability) we can take it to be 

X °°(t). 	By (2.2.1) X(t) is an admissible process, and 

so X(t) is an integral process of zero dispersion. 	As 

Fm(x.,t) and Qmn(x,t) are continuously differentiable 
o 

processes in x, Fm( $(t),t) and Qmn(X(t),,t) are 

admissible processes and therefore Fm(X(t),t) and 

Qmn(X(t),t) are integral processes of zero dispersion. 

Except where it is ambiguous we shall emit the 

argument X(t) from functions of X(t). Our main task is 

to show that the last, integral in (2.3.32) converges to 

the sum of the last two integrals in (2.3.33). 	Let 

Y(t) be 'error' process 

Y(t) = Bw(t) — 
c

y(s)ds o  (2.3.36) 

We note the stochastic differential of Y(t) 

dY(t) = Bdw(t) — y(t)dt 

Remembering that Fm(t)„ and hence F(t), is an integral 

process of zero dispersion we can expand the matrix 

product F(t) Y(t) by Ito's formula (see (2.3.6) ). On 
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rearrangement we have 

F(s)y(s)ds = F(s)Bdw(s) + 	dF(s)Y(s) - 

o 

F(t)Y(t) 	(2.3.37) 

where the math column of dF(s) 

dFm(s) = (F m,x(s)f(s) + Fm,t(s) 
	

I.Qmn(s)Yn(s)) 
 ds. 

Later in the proof it will be shown that, of the terms on 

the right-hand side of (2.3,37), F(t) Y(t) vanishes for 
t 

increasing a and all the terms in dF(s)Y(s) vanish 

except those of the form 

t 
Qmn(s)Ym(s)yn(s)ds. 

0 

We shall expand this integral further, but first we expand 

the product Ym(s) yn(s). 	From (2.2.2) we have 

Yn(s) = So 
	g ni(s,r)dw(r). 

The definition (2.3.36) of Y(t) coincides with the 

definition (2.3.20) given in the proof of Lemma 2.1, where 

it was shown that 

lami 03,01:11N.(r) 



- 58 
-up 

where the matrix G(t,r) 	g(s,r)ds for t - rl  and 
• 

that 

I G(t,r)/ 	ca,(t-r) 

Now 	Ym 	' (s)y n(s) = Ym(s:s) yn(s:s) where Ym(s:r) and 

y(s:r) are the integral processes in r 

Ym(s:r) 

yn(s:r) 

mi' (s q)dw (q), 1  

'r 

gni(s,q)dwi(q). 
•cl 

Applying Ito's formula in the form (2.3.5), we have 

Ym(s)yn(s) = m(s:s)yn(s:s) 

= 	Gmi(s'r)gni(s,r)dr 
0 

0 
m1 .(s,r) 

•o 
gnj .(s,q)dw.(q) 

gni(s'r 
	Gnii(s,q)dwi(q) )2dwi(r) 
.0 

which we shall abbreviate to 

Ym(s)yn(s) 
	

G 	' .(s r)gni ' (s r)dr 	mn(sr)dw(r) 
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where Lmn(s,r) is a row vector, the i:th component of 

whichisthecoefficientOfdw.(r) in the second integral 

in the preceeding equation. We now compare c3  Ym(r)yn(r)dr 

with the process 

`t 

- Amndr mn(u,r)dudw(r) 7 
r 

The difference is Mmn(s) 	Pmn(t:s) where 

Mmn(s) = (r,q)gn  mi 	
r q)dq 	Amn-7dr'  

's 	r 	t 	(2.3.38) 

Pmn(t:s) = 1 /- S Lmn
(r1 q)dw(q)dr - S Lmn(u9r)dudw(02 

0 	0 	,r 

(2.3.39) 

We note that by changing the order of integration in the 

first integral in its definition (The second moment of 

Lmn (r,g) is bounded as g and G are bounded) Pmn(t:s) can 

also be expressed as 

s t 

P mn(t:s) mn(u,r)dudw(r) 

(s 

and so Pmn(t:t) = P(t:o) = 0. 	
Also M(o) = 0. 

Mmn(s) and Pmn
(t:s) are integral processes in s. 	Qmn(s) 

is an integral process of zero dispersion. 	So we can 
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expand the product Qmn(t) (Pmn(t:t) + Mmn(t) ) by 

Ito's formula in the form (2.3.4). 	On rearrangement we 

find that 

Qmn(s)Ym(s)yn(s)ds = 	Qmn(s)Amnds 

mn(s) 	L mn(u,$)dudw(u) 

+ Qmn(t) Mmn(t) 

(2.3.40) 

/-Minn* (s) + Pmn(t:s) 7aQmn(s) 
c 0 

where 

dQmn(s) 	`nn,t(s) 	Qmn, 	) x(s) (f(s  

F(s)y(s) )_7ds 
t 

i
Returning now to the integral 	F(s)y(s)ds, it follows 

0 
from (2.3.37) and (2.3.40) that 

	

L -t 
	-t 

) F(s)y(s)ds = mn 	Qmn(s)Amnas + 	F(s)Bdw(s) + R(t) 
0 	.0 	.0 

(2.3.41) 
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where 

R(t) 	S a (s)ds 	b(s)dw(a) 	c(t) 

and where 

a(s) 	I-ZFm,t(s) + Fm9x  (s) f(s)7 Ym(a) 

- Qmn,t(a) 	Qmnoc(s)  

F(a)y(s) ) 7 /Mmn(s) + Pmn(t:s) 7 

t 
b(s)  = 	,thri( s) Lmn(u,$)du 

- p(t) y(t) 	Qmn(t)Mmn(t) 

We shall now show El R(t)) 2  = 0(a71). By norm 

inequalities and the standard inequality (2.3.8) it follows. 

that 

E I a(s) I 2 t (N+N2){; ECiFm9tYm i 2 	IFm,x fY I 2 

E-(IQm 	mn 
2 	2 	2x

)  Qmn,xf 	Qmn,xFY1  

(Minn 
p 	jF 
mn 7 

where the terms are evaluated at S. If we apply the Holder 
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inequality (2.3.7) to the individual terms of this equation 

we have 

E 1a(s)1 	d= (N+N2  ) 	C(E 1 r  1 Ey 4 4 
m,t 	m 

(E  IF 	fl m,x 
E  m4 ) ,-- 

7+ 	4= / E IQmn,t 1
2 

mn  
n 	f 12  
''mn s,x 

+ (EIQmn,x  114  Ely/)1 - 7 M 2  mn 
E l Qmn,t(4 mriP )1 

4 
mn )2 
I (E1Q 	F mn,x (Ely X12) 

	

t 	, 
(EP 	7 mn 

By Lemma 2.2 the fourth moments of all the functions of 

x(s ) occurring in this inequality are bounded as 

• --->co. 	By Lemma 2.1, EY171  is 0(m-1) and Ely12 is 

0(a), where the order terms 0(.) are independent of 

ers. But Ym and y are both Gussian and time pa:?amet 

so (EY4) is 

are 0(a). 

(EPV III  7  are 

/0,TY 

0(a-1) and both (Ely, t4)2  and (Ely 112)i 

4  Al so by Lemma 2.1, (EPmn)3  and therefore 
0(a-2). 	It therefore follows that in 

Ai 	at(s) 2 	k a 1 
	

( 2 .3.42 ) 

for some constant k. 	From the inequalities (2.3.8,9) 
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K7 

Elb(s,)1 2  5' N2 g(ENmn(s)I4 1 S
s  
Lmn(u,$)dul4  )2 *  

By Lemma 2.2 the first factor in the brackets is bounded, 

and by Lemma 2.1 the second factor is 0(a72). Sol  for a 

sufficiently large constant h., 

E lb(s)12 	k m-1. 	(2.3.43) 

Similarly for sufficiently large k 

c(t)t2 ..;k m1 	(23.44) 

So it follows from the standard inequalities (2.3.8 - 10) 

that for 0 	T 

t 
EIR(t)12 	(t Ela(s) 12  4- Elb(s)12)ds 

0 
Etc(t)122 

3 (T2 	T i )ka 1  

c )1  for some constant h 1 
	(2.3.45) 

We are now in a position to show that E1X(t)-x(t)(2  

o( 	From (2.3.32) and (2.3.41) we see that X(t) 

can be expressed in the form (2.3.34). 	We note that, if 

(2.2.9b) holds,EiX(t)1 2  is bounded uniformly in t. 	If 

on the other hand (2.2.9a) holds, each of the coefficients 

f, Qmn  and Pm  occurring (2.3.34) is bounded uniformly in 
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t by K. 	So by the standard inequalities (2.3.8,9). 

t 

	

EtX(t)12  ts (2-0-02) C. 	Elf(s)I2ds 
t 	0 

Etr E mn1 	inn/  2/A 2ds flEIF (s)1 21  gds *W
t 	

ei 

5 	(211-N4-N2) (T 	kifT 	NIB 1)TK2 	- -71  

So in either case EIX(012  is uniformly bounded in t. 

Elx(t)12  is also bounded (see /12_7 p.278). 	Let 

	

SX(s) = X(s) 	x(s) 

&f(a) = f(X(s),$) - f(x(s),.$) 

and so on. 	As EISX(s)12 	2 EIX(t)1 2  + 2Elx(t)12, 

it follows from the remarks above that EISX(t)i2  is 

bounded uniformly in t by, say, k2. 	From (2.3.30,31) 

we have 

f(s) + 	mn(s)Amn- 7ds + (.; SF(s)Bdw(s) 
0 

So 

 

t 

EV(012  S (N2-04-2) /—t 	(E\gf( )12  

+ 3  E I 	Qmn(s) 21Amn12  )ds+ 
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t 

Fc EIFm(s)12  11312ds + EIR(t)12.7 	(2.3.46) 

0 

As f, Fm  and QMn  have continuous derivatives in x bounded 

by K;  it follows by the Mean-value Theorem that 

£f(s) I , IEFm(s)I and 16Qmn(s)I are all bounded 

by KI6X(s)I and so the second moments ofthese functions 

are all bounded by K2EI 6X(s)I2. 	So from (2.3.46) 

M(t) 	h1  + h2 c M(s)ds 
	(2.3.47) 

where M(t) = EIAX(t)I2;  

h1 = (N
2 +N+2)k 1 

h2 	= (N2  +N+2) 	+ TIA 12 	NIB/2_,7 

We now show that for t in /-0,T7 

M(t) 	eh2t 
	

(2.3.48) 

We proceed by induction; suppose that for t in /-0,T2 

n  M(t) 	hl 
 eh2t 	t 

-2 n! 

Then from (2.3.47) 

(2.3.49) 

	

M(t) 5  h1 + h 	(h1ah2s k2 n  —1 sn )ds 

44; 	h  t 	tn+1 h1e-2  + k2 77 
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But (2.3.49) holds for n = o as M(t) is bounded by k2. 

So (2.3.49) holds for all n and (2.5.48) follows. 	In 

particular 

EltSX(t)12 	h1eh2T  = 0(m-1). 

This is the main result (2.2.10) of Theorem 2.1. 

Proof of the corollary. We prove this by showing 

(2.2.13) implies (2.2.5). Let 

A'(t,q) 	t( g(s,q) g(r,q)Tdr 8 

q )q 

By changing the order of integration we find that 

t s 

0 0 

Ery(s)y( )2 7drds = 

= J At(t,q)dq. 

But from (2.2.13) 

t ( 

0 0 

g(8,q)g(r,Jdqdrds 

oo s 
A'(t,q) I = If f g(S1q)g(r,q)Tdrds 

t q 

which by (2.2.3) 	
OD s. 

e- 
 m(s+r-2q)drd8 

t q 

c2e-m(t-q) 
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So 

E /y(s )y(r)T  7drds - At 	A' (t 9q) - A dci 

02 	 -m(t-q)dg  

2 -1 c 	9 

and (2.2.5) follows. 
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2.4 Related work  

The problem of approximating a physical process by a 

diffusion process has been considered from different 

points of view by Stratonovich [20], Wong and Zakai [21,22], 

and Astrom [23]. 

In [20] pp.100-103, Stratonovich considers the 

approximation of a vector process X(t) where (in our 

notation) 

X(t) = pF(X(t),t) 	(2.4.1) 

and p is a small parameter, and F(x,t), for fixed x, is 

a stationary stochastic process. By expanding the 

increments and the joint characteristic function of the 

increments in a power series in p, Stratonovich shows that 

the probability density of X(t) is given by 

p = -p 	c[Epin(x,t) 	p 	FTh(x,t),Fn(x,$)]ds.p) 
m 1̀"m 	n o y'An 

;42 
+P2  2: 	t K[F (x,t),Fn(x,$)]ds.p) + 0(p3), (2.4.2) 

mn axmaxn o m  

where K[.,.] is the covariance of its arguments and x is 

a fixed parameter. 	If the 0(p3 ) terms are neglected, 

(2.4.2) corresponds to the Fokker-Plank equation of a 

diffusion process. Let us apply this very general result 
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to the special process X(t) considered in Theorem 2.1; 

we shall assume y(t) is nearly stationary (that is, 

	

g(t,u) = g(t-u)). 	The coefficients of p in (2.4.2) 

become 

	

fm(x,t) + Z 	a 	F (x t)Fnj  .(x,$)E[y.(t)y.(s)]ds nij 

and 

t 
[F .(x,t)Fnj(x,$) + Fni(x,t 	j )Fmj(x,$)]E[y.(t)y(s)]ds. 

ij o 

Note that we are free to make the second coefficient 
a2 symmetric in m and n as the operator axmxn is symmetric. 

Now y depends on the parameter a. As this increases, 

the effective correlation time of y decreases and the 

limits of the two coefficients are 

a 
f, + 	77- i .Fnj 3 A.. 3. nij `")'n. 

and 

FmiFmj(Amn Anm)  ij 

where the functions are evaluated at (x,t) and the sum 

in the second coefficient has been rearranged, as Y: being 

nearly stationary, is sufficiently regular for 

t 
E[y.(t)y.(s)]ds to be constant. 

or-) 0 	j 
But then 
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equation (2.4.2) corresponds to the Fokker-Planck equation 

of the limiting diffusion process of Theorem 2.1. 	So 

the diffusion approximation of Stratonovich and the 

limiting diffusion process given by Theorem 2.1 are equi-

valent in the sense that their probability laws are the 

same. 

In [21] Wong and Zakai consider the convergence of 

a sequence of scalar physical processes given by 

x±(t) = f(Xn(t),t) + P(Xn(t),t)yn(t), Xn(0) = X0, 

where yn(t) is scalar. 	It is shown that if yn(t) is 
it 

piecewise continuous and S y,(s)ds 	w(t) a.c. as 
o " 

n 	co, then Xn(t) 	x(t) a.c. where x(t) is a 

diffusion process which would satisfy the Stratonovich 

stochastic differential equation 

ax(t) = f(x(t),t)dt + F(x(t),t)aw, x(o) = xo. 

We see that Theorem 2.1 also gives this result if X(t) 

is a scalar process, for then the first order matrix A 

is trivially symmetric and the correction term in (2.2.12) 

is zero. 	The conditions in [21] imposed on y(t) are 

weaker than those of Theorem 2.1, and enable y(t) to be 

a quite general non-Gaussian approximation to white 

noise. Also, no assumption is made about the rate of 

divergence of P(Xn,t)yn. 	The conditions of f and F are 

The author first learne4of Stratonovich's different approach 
after the proof of Theorem 2.1. 
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similar to those of Theorem 2.1, though F is taken to be 

always positive. 

In [22] Wong and Zakai have weakened the conditions 

on f and Ft  but have taken y(t) to be a piecewise 

constant Gaussian process. Also in this paper Wong 

and Zakai have extended their result to cover a case 

where X(t) is a special vector process; we shall discusri 

this result again in Chapter 4. 

The proofsin [21] and [22] are shorter and more 

elegant than the proof we have given of Theorem 2.1. 

It is not yet known, however, if they can be extended so 

that they also cover the vector case considered in 

Theorem 2.1. 

In [23, Section 8] Astrom considers a particular. 

linear system with stochastic coefficients, which in 

our notation would be the physical process 

X = -n1X + n2 + Xy1  + y2 

where yl  and y2  are stationary random disturbances and 

n1  and n2  are positive constants. He derives the Ito 

stochastic differential equation of the diffusion limit 

of this process for the disturbances tending to white 

noise. The same diffusion limit is given by Theorem 

2.1 of this chapter, provided the extra assumption is 
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made that the disturbances tending to white noise have a 

characteristic matrix that is symmetric (conditions for 
this are given in Chapter 4). 

A second point considered in [23] is the steady-state 

behaviour of a process. Astrom shows experimentally 

that the steady-state distribution of a particular 

physical process approximates the steady-state distri-

bution of its theoretical diffusion limit. Now Theorem 

2.1 does not express the steady-state properties of a 
physical process not only because its proof depends on 

the interval T being finite but also because the second 

moment of the process or its diffusion limit may be 

infinite, in which case the concept of approximation in 

the mean breaks down. However, Astrom's result, in which 

the second moment of the diffusion limit is infinite in 

the steady state, demonstrates that in some cases the 

physical process may still be approximated by its diffusion 

limit in the steady-state but in the weaker sense that 

their distributions approximate each other. 

Linear systems with stochastic coefficients have also 

been considered by Ariaratnam and Graefe [27]. In this 

paper, the authors have derived Fokker-Planck equations 

for processes described by two different types of linear 
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differential equations: in the first the coefficients 

are perturbed by ',incremental Brownian motion's ; in the 

second they are perturbed by Gaussian white noise. The 

derivations are formal, but the results are consistent 

with the Interpretation that the two different types of 
differential equations are, respectively, Ito and 

Stratonovich stochastic differential equations. 

However, the equations containing Gaussian white 

noise can also be reasonably interpreted as a limiting form 

of the ordinary differential equations describing a 

physical process. The point to be made here is that with 

such an interpretation the derivation of the Fokker-

Planck equation given in [27], depending as it does on 

the correlation functions of the noise being Dirac delta 

functions, breaks dawn. 

It is still possible to give a meaning to 'white 

noise,' in this context and to manipulate the correlation 

functions of the noise as though they were 	delta 

functions, provided that we modify the usual definition 

of a delta function. If y is a stationary random distur-

bance (see Section 4.1), then 

ri)P(t)dt = 
0 

_cop(t)dt=A+ AT  
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where p(t-s) is the matrix correlation function 

B[y(t)y(s)T]. A is the characteristic matrix of y and 

A + AT  its intensity coefficient. Any white noise 

replacement of y must satisfy at least these two relations. 

Except in the special case where A is symmetric, corre-

lation functions proportional to Dirac delta functions, 

can be chosen to satisfy only the second relation, but not 

the first, even if the convention is adopted that the 

integral of the Dirac delta function over the positive 

real line is half that over the whole real line. Consider 

instead the correlation function 

A 45(t) + AT  o+(-t) 

where o
+
(t) is a oane-sidedt° delta function with the 

property: 

S3  (t)dt = 1 

if 

m <op 	p> 0 

(for a Dirac delta function m would have to be strictly 

negative). This correlation function satisfies both 

relations. By replacing random disturbances by noise 

defined in terms of this correlation function we can 

formally manipulate the equations of physical processes 
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in the manner of Ariaratnam and Graefe in [27]. For 

example, suppose we want an equation for the mean of a 

scalar physical process 

= Y1X  Y2 
	

X(0) = (0) y 

where 	and y2  are stationary random disturbances with 

a characteristic matrix A. We replace yl  and y2  by the 

noise processes n1  and n2  with correlation function 

A 6 L 1;) + AT6;-t). 	We make the correlation between n1 

and X explicit by expressing X as an integral: 

t. 
i(t) = nl(t) 	X(s)ds + n2(t) 

o 

ni(t)[nl(s)X(s) + n2(s)]ds + n2(t) . 
o 

If we take expectations of both sides and commute the 

operations of expectation, differentiation and integration, 

this equation reduces to 

= A11m + A12 , 

where m is the mean of X. The diffusion approximation 

given by Theorem 2.1 of the physical process has a mean 

that also satisfies this equation;  and this is why the 

preceding formal derivation is justified. 	The equations 

of other moments and the moments of more general physical 

processes can be similarly derived and justified. 
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r1HA.PTF2. 3 

TIE SIMBLATTON pp ONE PHYSICAL PROCESS BY ANOTHER 

3.1 Approximation of distrilmtions 
A consequence of the diffusion process x(t), defined 

in Theorem 2.1, being the limit in the mean of the 

physical process X(t) is that the joint distributions 

and finite moments of x(t) are also the limits of the 

corresponding joint distributions and moments of X(t). 

([14] P10.157,168). 	The distributions of x(t) are deter-

mined by the drift coefficient 

f(x,t) + pmn(xlt)Amn 	(3.1.1) 

and the diffusion coefficient 

F(x,t)(A + AT)F(x,t)T 
	

(3.1.2) 

in which we have replaced BBT  by A + AT.  So we see 

that in these distributions the random disturbance y(t) 

is completely characterised by its characteristic matrix 

A. 

Suppose we want to simulate X(t) by another physical 

process X' (t) so that their distributions are approxi-

mately the same. We can do this by so choosing IOW 
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that it can be approximated by a diffusion process with 

the same drift and diffusion coefficients as x(t). 	To 

be more precise we shall call X' (t) a 6-simulation of 

X(t) if x(t) is a 8-approximation of X(t), x' (t) is a 

6-approximation of Xl(t),and x(t) and x' (t) have the 

same drift and diffusion coefficients. 	If X(t) satisfies 

(2.2.1) and the corresponding equation for X'(t) is 

denoted by primed coefficients, then it is clear that 

X' (t) is a 6-simulation of X(t) if a is sufficiently 

large and 

ft + mnQmnA = f + ElQnmAmn 
	 (3.1.3) 

lif(Af 	Al2)-"viT = F(A + AT)FT 
	

(3.1.4) 

3.2 Simulation with restrictions 

Suppose we want to simulate a physical process X(t) 

on an analogue computer (or a digital computer; see 

Appendtc A). 	The computer we shall suppose to contain 

a physical 'white noise' generator with output z(t). 

It is clearly of interest to know under what circumstances 

we can simulate X(t) by programming the computer 

directly from the equation of X(t), and by simulating 

y(t) by a rescaled version of z(t). 

This is the motivation for the following theorem. 
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Theorem 3.1. 	Suppose y(t) and z(t) are random disturbances 

of the same dimension and comparable upper frequencies a, 

and that their characteristic matrices, A and W, are such 

that A + AT and W + T are of the same rank. Suppose 

X(t) is a physical process satisfying the conditions of 

Theorem 2.1, and 

X = f(X,t) + F(X,t)y(t), X(o) = 0. 	(3.2.1.) 

Then X is 0(m4)-simulated by the physical process X' 

where 

it = f + LiGtmn[A-OWCT]nn  + FOz(t) 	X' (0) = 0. (3.2.2) 

In.this equation [.] is the mn:th element of its matrix 

argument; f, 9mn  and F are evaluated at ()Opt) and C is 

a constant matrix such that 

A + AT = C(W + WT)CT . 	(3.2.3) 

Corollary. 	If 1) F is independent of x, or 2) there is 

a matrix Co such that A = Co o  WCT , then X' satisfies the 
same equation as X but with y replaced by Coz. 

Proof. 	We note that (3.2.3) is the condition for the 

congruence of two symmetric matrices. As all symmetric 

matrices of equal rank are congruent, we can always find 

a matrix C satisfying (3.2.3). 	If X satisfies the 

conditions of Theorem 2.1, so does X. 	So both X and X' 



- 79 - 

can be approximated by diffusion processes. That one 

simulates the other then follows from the formulas 

(3.1.3,4). 	In the corollary, the first condition implies 

that Otran  = 0; a consequence of the second condition is 

that C, as defined by (3.2.3), can be taken to be Co; so 

both conditions imply that the correction term in (3.2.2) 

is zero, and the corollary follows. 

The corollary states that direct simulation of a 

physical process on a computer is possible if the noise 

is additive, or if the characteristic matrices of the 

noise and the computer noise generator satisfy a relation 

A = CWCT for some C; this last condition necessarily holds 

if the characteristic matrices are symmetric and of the 

same rank, for then they are congruent. 

A counteremample. The corollary is pointless if direct 

dimulation is always possible. We give here a simple 

example to show that this is not the case. Consider 

the scalar process 

= Y1X  Y2 

where the characteristic matrix of the vector random 

disturbance (y1,y2)T  is 
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As we shall see in the next Chapter, yl  might be a process 

piecewise constant over intervals of length a-1 and y2  

the same but lagging on yl  by one interval. If z1 and 

z2 are independent processes, the characteribtic matrix 

W of (zz2)
T is necessarily diagonal. 	To be a direct 

simulation of X, X' must satisfy an equation of the form 

X' = yiX,  + y2  

where the vector yl = Cz for some C. 	The characteristic 

matrix of y' is CWCT, which is necessarily symmetric as 

W is diagonal, and so we shall take it to be 

A' 	
c b • 

The formulas (3.1.3,4) must also be satisfied; these 

turn out to be 

ax + c = x 

2(ax2  + 2cx + b) = 2(x2  + 2x + 1) . 

There are no values of a, b and c for which these 

equations are identities in x, so X cannot be directly 

simulated. 

3.3 Congruent characteristic matrices 

If we take Co to be nonsingular, the second condition 

in the corollary of Theorem 3.1 reduces to the slightly 

stronger condition that A and W are congruent. In this 
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section we consider some of the properties that are 

common to congruent matrices. Note that the equivalence 

class of all matrices congruent to the characteristic 

matrix W of a process z can be interpreted as the class 

of characteristic matrices of all non-singular linear 

transformations of z; for, if y = Cz, the characteristic 

matrix of y is CWT. 

The congruence of asymmetric matrices is not a subject 

considered in the better known books on matrices. How-

ever, some of the necessary conditions for congruence can 

be derived fairly readily. 	Suppose A is congruent to 

W; that is, there is a non-singular matrix C such that 

A = CWOT 

then by transposition 

AT = OWTCT  

so for arbitrary 71., 

A - %AT = c(w %wT)cT g  

Let us take determinant:, then 

det 	(A- %A.2) = (det C)2det(W-MIT). 	(3.3.1) 

det(C) is not zero as C is non-singular. 	Each side of 

(3.3.1) is a polynomial of degree at most n, where n is 

the order of A. It follows that the roots of the 
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equations 

det(A-TAT) = 0, 	det(W-WT) = 0 	(3.3.2) 

are the same, and that this is a necessary condition for 

A and W to be congruent. If A and W are non-singular 

then the equations (3.3.2) reduce to the characteristic 

equations 

det( AAT-1-XI) = 0, 	det (wwT-1_%,)  = 0 
	(3.3.3) 

and then the necessary condition is that the eigenvalues 

of the matrices AAT-1 and W T-1 are to be the same. 

Note that if A is symmetric 

det(A-UT) = det(A(1-70) = (1-70ndet A 

and so all the roots are + 1. 	Similarly if A is skew- 

symmetric they are all -1. 
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CHAPTER 4 

THE CHARACTERISTIC MATRICES OF SOME COMMON 

FORMS OF RANDOM DISTURBANCES 

4.1 An interpretation of the characteristic matrix  

In the previous two chapters we have seen that 

symmetry, or asymmetry, is an important property of the 

characteristic matrix of a random disturbance. In this 

chapter we derive the conditions for which the characteristic 

matrices of some common forms of random disturbances are 

symmetric. 

The equation (2.2.5) defining the characteristic matrix 

can be written as, for t > 0 
t s 

A = lim 	5 IE[y(s)Y(r)T]dr ds. 	(4.1.1) 
cc-4.00 

We now give some simple examples to illustrate the meaning 

of the symmetry of A. We note immediately from (4.1.1) 

that if the components of y(t) are independent, A is 

diagonal and is trivially symmetric. To obtain a process 

with an asymmetric A, let us consider two scalar processes, 

yl  and y2, which rapidly reach a stationary state; that 

is)  

E[Y1(s)Y2(r))  = P12(s-r) 

0 0 
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except for values of s and r close to the origin. 

For such processes it is unnecessary to carry out 

the time-averaging as well as the ensemble-averaging in 

(4.1.1) when calculating A, and we have 

Al2 ( p„(s-r)dr 	p„(t)dt , 
" 	)-co 

(4.1.2) 

co 
A'21 	SDplo(r-s)dr N 	 P12(t)dt 

	
(4.1.3) 

It is not difficult to see how it can arise that A12 / A21; 

for instance, suppose yl  is a process with autocovariance 

function p(t) and y2  is the same as yl, but delayed by S. 

Then p12(t) = p(t+6), and as p(t) is symmetric about the 

origin, 
6 

A12 - A21 	p(t)dt 
0 

which, for values of 6 comparable to or greater than the 

effective correlation time of yl, is finite and positive. 

Therefore A is asymmetric. 

4.2 Piecewise constant Maricovprocesses and linear  

diffusion processes. 

In this section it is convenient to replace condition 

(2.2.5) by the stronger one (2.2.15.) 

	

co g(s,u) 5 g(r,u)Tdrds = A. 
	(4.2.1) 
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Consider now the process defined by the difference 

equation 

y(n+1 = Gy(po azr L w 	— w(g)], y(0) = 0, 

1
(4.2.2) 

y(t) = y(g), e 	n+1 
E 	" 

e . m 	n = 0,1,2,... 

where G and H constant matrices and the eigenvalues of 

G are less than one in absolute value. 	This process is 

Gaussian, Markov, and piece-wise constant over intervals 

of length i . When considered as a function of a, it 

possesses a characteristic matrix, obtained as a limit 

as 	oo. We have the following result. 

Theorem 4.1. The characteristic matrix of the piece-

wise constant process just defined is symmetric if and 

only if GHHT  is symmetric. 

Corollary. The process with independent steps given by 

G = 0 has a symmetric characteristic matrix. 

Proof. 	It can be verified that 

t 
y(t) = S g(s,u)dw(u) 

0 
where 

*The parameter a given here will not in general coincide with the 
upper frequency denoted by a in Theorem 2.1, but will be some 

multiple of it. 
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m-1 g(s,u) = 0, -7- < u < 7 , 	s < 5.7  

= MH 	 M+1 s < 

= aC4- 2 n-m , s < n+m+1 
a, 

The first task is to show that g satisfies the bounding 

and normalising conditions (2.2.3,4) . 	Though IGI 

is not necessarily less than one, IGmI —4- 0 exponentially 

as m 	co because the eigenvalues of G are less than 

one in absolute value. 	So g is exponentially bounded .and 

the following series is absolutely convergent: 

g(r,u)dr = I + G + 	+ Gnm(s-sn) 
0 

= (1-Gn)(1-G)-1H + GnHa(s-sn) 	(4.2.4) 
m-1 	 < s  < a m+n+1 where a < u < - a  and sn 	a = 	 = sn+1 	So 

co 
B = 	g(r,u)dr = (1-G)-1H. 

From (4.2.1) it follows that 

oo sn+1 A  = 	[mG"HB,rn (I_Gn)T + a,2GnHETGnT(s-sn)]ds 
n=o sn 

= GnHB T GnB:B Ta.nT iGnmiTGnTi 
n=o 

	

= BBT + E 
co 	co 

GnHHTGnT - 	GnRGnT  

	

n=o 	n=o 
(4.2.5) 
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co 
where R = HBT. Let U = 	GnRGnT 	The first two 

n=o 
terms in (4.2.5) are symmetric, so the symmetry of A is 

the same as the symmetry of U. U is symmetric if R is 

symmetric, and as U satisfies the relation 

U 	R = GUGT 

R is symmetric if U is symmetric. 	(I-G) is nonsingular, 

so the symmetry of R is the same as the symmetry of 

(I -G)R(I -G) T  = HHT  GHHT  

and on retracing our steps we find the theorem is proved. 

Remarks. As we have already mentioned in Chapter 2, ------- 

Wong and Zakai [22] have given the stochastic differential 

equation for the limit of a vector physical process per-

turbed by piecewise constant noise with independent 

Gaussian steps. 	If in (4.2.2) we set G = 0 we get a 

process very similar to the noise process of Wong and Zakai. 

Now from the corollary of Theorem 4.1 it follows that the 

characteristic matrix is symmetric. By making the 

matrix A in (2.2.11) symmetric, we find that the stochastic 

differential equation given by Theorem 2.1 for the limit 

of the corresponding physical process agrees with that of 

Wong and Zakai. 

(4.2.6) 
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Theorem 4.2. Let y(t) be the linear diffusion process 

dy(t) = aCy(t)dt + aHdw(t) 	y(o) = 0 	(4.2.7) 

where the eigenvalues of the matrix C have negative real 

parts. 	Then the characteristic matrix of y(t) is 

symmetric if and only if CHHT  is symmetric. 

Proof. This is similar in nature to that of the previous 

theorem. We verify that 

y(t) = 	t m°"--11)H dw(u) 

where the exponential is a matrix exponential, and so 

g(t,u) = aemC(t-u)H 	t > u 	(4.2.8) 

As the real parts of the eigenvalues of C are negative, 

igi is exponentially bounded in the form (2.2.3), [25, 

p.128]. Now 

smemc(t_u)
Hdr = (ecc0(s-u) 	I)C-1H 

and B = -C 1H. 	So from (4.2.1), setting s-u to be t, 

A = 	co mem t T(I e" ')dt 

= BBT  - U 

where 
D.= m ilea,CtimTea,CTtdt 



g2(tpu 

n+ 	n+2 
a a a 
Figure 4.1  
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A and U have the same symmetry. U is symmetric if HBT• 

is symmetric. U can be shown [24, p.125] to be a 

solution of 

CU + UCT = -BBT  y 

so HET  is symmetric if U is symmetric. HBT  and CHHT  

have the same symmetry and so A and CHHT have the same 

symmetry. This is the result we want. 

Example. Here is a direct verification of Theorem 4.1 

for the following process: 

Yi(t) = G[w(akl) - w()] 
n+1 < -y- n+2 

, 

Y2(t) = a[w(g) - w(lz41)3 

where w(t) is a scalar Wiener process. 	yi(t) is a piece- 

wise constant process with independent steps; y2(t) is 

yi(t) delayed by an interval it 	Cross sections at 

constant u of the weighting functions gi(t,u) and g2(t,u) 

of yl  and y2  are illustrated in Figure 4.1. 
a" 

gl(t,u) 
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The integral of each weighting function with respect to 

t is clearly 1. 	So 

B1 =B2 =1 
t 

The integral yo(s)ds is independent of yl(t) and so O 

A12 = 0 . 

But we know that A21 = B1B2 - Al2, so 

A21 = 1. 

2 

2 

0 
The complete characteristic matrix is 	, which is 

1 1 

asymmetric. 	The joint process (y1,y2)2  is a special case 

of the process considered in Theorem 4.1, with 

, 
G = 0 [ 0 y and H = 1*  

1 0_ 

GHHT = 10 0 is asymmetric, which by Theorem 4.1 

1 0_ 

confirms the asymmetry of the characteristic matrix. 
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CHAPTER 5 

THE FILTERING OF INTEGRAL AND DIFFUSION PROCESSES 

5.1 Introduction  

Our primary purpose in this chapter is to present 

some results on the filtering of integral and diffusion 

processes that are required in the next chapter, which is 

concerned with physical processes, but some of these 

results are of independent interest. 

Suppose that x and z are nonlinear vector integral 

processes. We shall call x the message process, z the 

observation process and the conditional expectation 

m = E[x(t) I z(tt) 	to  < ti < t] 

the estimate of x. 	Then in this chapter we consider 

two 'filtering/ problems that can be roughly stated as: 

a) find the form of the stochastic differential equation 

of m; 

b) find functions q, h and H such that q(E,t) is a 

reasonable approximation in the mean to m, in being 

the vector solution of 

dffi = h(El t)dt + H(i,t)dz . 	(5.1.1) 

Equation (5.1.1) could be interpreted as a theoretical fil-
tering algorithm, as it gives a dynamic description of how an 
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approximate estimate is generated continuously as a 

function of the observation process. However, it is a 

stochastic differential equation and so cannot be used 

directly for the design of 'physical' filters; that is, 

filters that are described by ordinary differential 

equations. We leave the discussion of this point to 

the next Chapter. 

A solution of problem (a), as we shall see, may 

serve as a starting point for the solution of (b). 

Problem (a) and the related one of finding a differential 

equation for pt, the conditional probability density of 

the message process, has been studied by several authors 

for the case where the message and observation processes 

are joint diffusion processes of the general form 

dx = a(x0z,t)dt + F(x,z,t)dw , 	(5.1.2) 

dz = b(x,z,t)dt + G(z,t)dw, z(to) = 0 (5.1.3) 

where GGT is nonsingular. In 1960 Stratonovich [1] 

obtained a differential equation for pt  for a wide class 

of Markov processes, including, in particular, diffusion 

processes for which a, b, F and G are Independent of time. 

In 1964, Kushner [2], following more closely Ito's calculus, 

derived a stochastic differential equation for pt  (for 

a, b, P and G independent of z and t). Other derivations 
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have been given by Bucy [3] (for a, b, F and G independent 

of z and t and Fe = 0) and Wonham [4] (for FG2  = 0, a 

and F independent of z). Wonham [5] has also derived 

rigorously the corresponding estimate equations for a 

message process that is a Markov step process. Recently 

Kushner [6] has derived rigorously a stochastic differ-

ential equation for the estimate m (for a, b, F and G 

independent of z and FG2  = 0). 

In the derivations of all these authors pt  or m is 

defined explicitly; that is, the conditional probability 

density or expectation of the message process for a 

finite number of observations is first constructed by 

Bayes formula and then pt  or m, or rather the equation 

describing pt  or m, is obtained by a limiting process as 

the number of observations taken into account is increased. 

For the case where the message and observation 

processes are integral processes with a.c. continuous 

drift and dispersion terms, we can derive the stochastic 

differential of the estimate in a comparatively simple 

way in which the taking of limits is avoided, provided 

that we are prepared to wake the plausible assumptions 

that the estimate is also on integral process with a.c. 

continuous drift and dispersion terms and that it is an 

integral functional of the observation process. We 
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give this derivation in Section 5.2: instead of con-

structing the estimate by Bayes formula we define it 

implicitly by two of the many identities that conditional 

expectations necessarily satisfy; these are 

YB[X1Y] = B[YX1Y] 	(5.1.4) 

E[B[XIY,OZ] = E[XIZ] 	(5.1.5) 

where X, Y and Z are random variables. By using other 

identities it may be possible to weaken the assumptions, 

though the assumption of a.c. continuity of various terms 

seems essential to our method. 

If the message and observation processare taken to 

be the diffusion processes considered by Kushner, Buoy 

or Wonham, the estimate equation obtained in Section 5.2 

is the same as the corresponding equations of these 

authors. However, from a formal comparison made in 

Section 5.3 it appears to differ in general from the 

corresponding equation of Stratonovich. In making this 

comparison we have proceeded on the assumption that the 

equation for pt  given by Stratonovich in [1] is to be 

interpreted as a Stratonovich differential equation. 

This is not stated in [1],but in a later paper [7] 

Stratonovich explains that some related equations-are to 

be interpreted in this form. However, for two important 
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problem formulations: 1) b is linear in x and z, and G 

and FGT are determinate, 2) b and G are independent of z 

and FGT = 0, the estimate equation given in Section 

5.3 agrees with the estimate equation of Stratonovich. 

It is interesting to note that, on the basis of this 

comparison, some, but not all, of the estimate equations 

given by the authors we have already cited appear to be 

equivalent to Stratonovich's equation, because the corres-

ponding problem formulations come under 1) or 2). 

It remains for us to consider problem (b) and look 

for filtering algorithms. In the last section we 

restrict the message process to be a diffusion process of 

small dispersion; that is the 2 a priori' covariance of 

the message process at any time is small. Blagovesh-

chenskii [8] has shown that such processes can be expanded 

In a power series of a small parameter and that any first 

N coefficients of this expansion form a diffusion process. 

We formally apply 'his analysis to the estimate equation 

(5.2.4) and obtain diffusion equations for the first three 

coefficients of the expansion for the estimate. 	The sum 

of the corresponding terms in the expansion form an 

approximation to the estimate of known order of accuracy. 

The equations for the coefficients do not form a solution 

of (b), as they contain non-observable forcing functions, 
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but we can use them as a basis for finding algorithms 

that do. We suggest two such algorithms and compare 

one of them with a similar algorithm given by Wonham [4]. 

5.2 The estimate equation of an integral process  

Suppose x and z are integral processes such that 

for 0 < to  < t < T, 

dx(t) = a(t)dt + F(t)dw(t), 	(5.2.1) 

dz(t) = b(t)dt + G(t)dw(t), z(to) = 0 	(5.2.2) 

and that the drifts a and b, and the dispersions F and 

G,are a.c. continuous stochastic processes with finite 

second moments. Let 

Et[-] = E[-I z(s), to < s < t] 

so that m(t) = Etx(t). 

Suppose G is determined by past z; that is, EtG(t) = G(t) 

with probability 1, and that GGT  is positive definite. 

If m is an integral process such that the differential 

of m is of the form 

dm(t) = R(t)dt + S(t)dz(t) 	(5.2.3) 

where R and S are determined by past z, and that the 

drift gm] (= R + Sb) and the dispersion D[m:wT] (= SG) 

are a.c. continuous processes with finite second moments, 
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then for to  < t < T, 

dm = Etadt + Et[x(b-Etb) T Fa.T]04T) -1(dz - Etbdt) (5.2.4) 

all terms being evaluated at t. 

Proof. The conditions we have imposed on the coefficients 

in (5.2.1), (5.2.2) and (5.2.3) imply that the second 

moments of x, z and m are finite. 	So, by the Schwarz 

inequality, E[x(t)z(t)T] is finite; but then so must be 

Es[x(t)z(t)T] with probability 1 for all s and t. 

Similarly all the conditional expectations we shall be 

considering are finite. 	The two identities, for 

to  < s < t < T, 

Esm(t) = Esx(t) 	(5.2.5) 

Es[m(t)z(t)T] = Es[x(t)z(t)T] , 	(5.2.6) 

which are generalisations of (5.1.4) and (5.1.5), are 

sufficient to determine R and S. 	From (5.2.3) it follows 

that 

Esm(t) = Es[m(s) + 	t(R(r) + S(r)b(r))dr + S(r)G(r)dw(r)] 
t s  

= m(s) + 	EJR(r) + S(r)b(r)]dr , 
S 

as Esm(s) = m(s) with probability 1, and the increments 

of w in the interval [sIt] are independent of z before 

s. Similarly 
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E x• (t) = m(s) + 5 Esa(r)dr 1  

so from (5.2.5) 

3
s  Es[R(r) - S(r)b(r) - a(r))dr = 0 	(5.2.7) 

The a.c. oantimity of a process with finite expectation 

implies the a.c. continuity of any of its conditional 

expectations, and as a and R + Sb are a.c. continuous, so 

are their conditional expectations. As (5.2.7) is valid 

for all t in [8,1] the integrand vanishes with probability 

1. 	In particular 

Es[R(s) - S(s)b(s) 	a(s)] = 0 	(5.2.8) 

From (5.2.2), (5.2.3) and Ito 'sformula for the transfor-

mation of integral processes, we have 

t  m(t) (t)T  = m(s)z(s)T  + 	[R(r)dr + S(r)dz(r))z(r)T  
is  

+ m(r)dz(r)T  + S(r)G(r)G(r)Tdr] 

So 

Es[m(t)z(t)T] = m(s)z(s)T  + 	Es[(R(r) + S(r)b(r))z(r)T  

+ m(r)b(r)T  + SWG(r)G(r)T]dr . 	(5.2.9) 

Similarly 
t 

Es[x(t)z(t)T] = m(s)z(s)T  ▪ 4 E [a(r)z(r)T + x(r)b(r)T  
3s 5  

+ F(r)G(r)T]dr 	(5.2.10) 
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We see from the identity (5.2.6) that the integrals in 

(5.2.9) and (5.2.10) are equal with probability 1. 	If 

we equate the integrands for the reasons of continuity 

we have already given, we have 

Esi(R + Sb - a)zT  - (m-x)b2  + SGG2  + FG2) = 0 	(5.2.11) 

evaluations being at s. 	In (5.2.8) and (5.2.11) the 

terms R, SI  z, m and GG2 are determined by past z and so 

are unaffected by the conditional expectation operator 

Es. 	It follows from these two equations that, evalua- 

tions still being at a, 

S = Es[x(b-Esb)2  + FG2](GG2)-11  

R = Esa - SEsb 

and by setting t = s, equation (5.2.4) follows. 

Conditional moments. It follows from Itots formula that 

any twice continuously differentiable function of an 

integral process with a.c. continuous drift and dispersion 

terms is itself an integral process with a.c. continuous 

drift and dispersion terms. 	So if h is some power of 

x, and the appropriate expectations are finite, the 

equation for the conditional moment Eth corresponding to 

(5.2.4) is 
r 	T11 dEth Etd[h]dt Et[h(b-Etb)T  DLh:z jJ(GGT  )-1-(dz-Etbdt), 

(5.2.12) 
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the drift and dispersion terms d[h] and D[h:zT] being 

given by Ito's formula. 

Remarks. 	The derivation of (5.2.4) does not really 

depend on our assumption that G is determined by past 

values of z. 	If, however, G is not determined by past z, 

the whole problem can become unrealistic. 	Suppose, for 

instance, we make the scalar observation z(t), to  < t < T; 

then in principle we can 'observe,  the sum 

Z[z(t. + o) 	z(ti)]2  i  

taken over a partition of [to,T] into intervals of length 

6. By decreasing o we can make this sum converge to 

S
G(t)2dt. 

to 

If, for sake of argument, G were 	where x is an unknown 

positive constant, this integral would be x(T -to) with 

probability 1. Then we would have an exact observation 

of x, and the equations we have been considering would 

only be meaningful for the trivial case where m(t) = x(t) 

with probability 1. This unrealistic situation occurs 

in other estimation problems and is associated, Bartlett 

([9] p.244) explains, with the Gaussianness of the 

Wiener process w(t). 
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5.3 The estimate in Stratonovich form; a comparison  

with the results of Stratonovich 

If the message and observation processes of the 

last section are taken to be the diffusion processes con-

sidered by Kushner in [2] or [6], by Bucy in [3] or by 

Wanham in [4], the equation (5.2.3) for the estimate is 

formally thesame as the corresponding equations of these 

authors. 	In this section we transform (5.2.3) into a 

Stratonovich stochastic differential equation and then 

compare it with a corresponding result of Stratonovich. 

For message and observation processes that are of the 

general form (5.1.2,3) but with the coefficients indepen-

dent of time, Stratonovich [1] gives a differential 

equation for the conditional probability density of x(t). 

It is not clear from [1] how this equation is to be inter-

preted. However, in a later paper [7] Stratonovich 

explains that some equations in [10], which are special 

cases of the equations in [1], are to be taken as 

Stratonovich stochastic differential equations. 	So we 

shall proceed on the assumption that the equation in [1] 

is also of this form. 

StratonovichVs equation. 	This is 
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r 	T r— L(a + FG VILdz - bdthP 7. 

	

613t = — 	ax. 	t 

,ax. 
2 

	

+ 	2: ax.  - 	 [(FF2  FG2WGF2)ptij  3dt 
ij 

(5.3.1) 

+ [bTW(az - ibdt) - Et[bTWaz - ibdt)flpt  p 

where [-]i is the i:th component of the contained vector 

and [-]1.-1  the ij:th component of the contained matrix. 
0 

The functional dependence of a, for instance, is a(x ,z(t),t); 

x here is simply the parameter of the conditional probab-

ility density pt; z(t) is, however, the stochastic 

observation process. W is defined to be (Ge)-'. The 

conditional expectation of x(t) is 

E X = 	)clipt(xl )dx11  

If we apply these formulae to (5.3.1) and integrate by 

parts where necessary we find that 

x = E [a t 	t 	2x(b2Wb - EtbTWEtb) FG211b 3dt 

+ Et[x(b - E b)2  + FG2]1gz (5.3.2) 

It is this equation that we shall compare with (5.2.4) in 

Stratonovich form. 

(5.2.4) in Stratonovich form. 	If the conditional expec-

tations occurring in (5.2.4) are components of some 

extended diffusion process we can transform (5.2.4) into 
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Stratonovich form by means of the formula given in 

Section 1.4. 	We assume this transformation is valid. 

To make the transformation, we insert a correction term 

-ID[H:z]dt into the right member of (5.2.4), H being the 

coefficient of dz. 

First we note that, if for all i the i:th column Ji  

of a matrix integral process J satisfies (5.2.11), then 

	

D[EtJ:z] = Et[J(b-Etb) f  D[J:z]] . 	(5.3.3) 

For 

D[EtJ:z] = 	Et[Ji:zi] 

which by (5.2.11) and the definition of dispersion 

=ZEt[Ji(b-Etb)T +1)[. JI:zT]]W(GG
T , 

	

where (GGT)i  is the i:th column of GGT. 	But W = (GGT)-11  

SO 

D[EtJ:z] ti i  [J(b - Eti  v) + D[J.:z.]3 

which is the same as (5.3.3). 

We are now in a position to determine D[H:z]. 	Set 

J to be 

(x - m)bTW + FGTW . 

Then H = EtJ, and by (5.3.3) 

D[H:4 = D[E J:z] 

= 	Et  [J(b-Et  b)] + Et 	•- D[Jz] 
	

(5.3.4) 
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It follows from the definition of dispersion that 

Et  D[J.z] = E [D[(x-m) :z2,17gb + (x-m)D[b2W:z] 

+ D[FG2W:z]] . 

But 

D[x:zT] = FGT  

D[m:zT] = Et[x(b-Etb)2  + FG2] 

and so (5.3.4) reduces to 

D[H:z] = Et[(xb 2-mb2-xEtb2+2FG2)W(b-Etb)3 + K. 

where 

K = Et[(x-m)D[b2W:z] + D[FG2W:z]] . 

(5.3.5) 

(5.3.6) 

So the resulting Stratonovich stochastic differential 

equation for the estimate m corresponding to (5.2.4) is 

dm = Et[a = 2x(b211/b - Et  2WEtb) - FeWb]dt 

+ Et[x(b-Etb) 2  + FGT]wak - int . 	(5.3.7) 

Stratonovich's equation (5.3.2) and our equation 

(5.3.7) are equivalent only if 

K = 0. 

It is not difficult to show that this is so for the 

following two important special cases: 
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1) the observation process is linear and the correlation 

between the Itacise0 on the observation and message 

processes is determinate; that is, b is linear in x 

and z, and G and FGT  are determinate; 

2) the observation process has no dynamics and there is 

no correlation between the "hoisesifon the observation 

and message processes; that is, b and G are independent 

of z and FGT = O. 

5.4 Filtering algorithms  

Let us suppose that the message process is a 

diffusion process, its dispersion is small, and the 

random spread of its initial value is also small; that 

is, 

dx = a(x,t)dt + pF(x,t)dw, x(to) = c + pr, 	(5.4.1) 

where p is a small parameter, c is a constant and r a 

random variable of finite second moment. The message 

process is evidently a function of p; Blagoveshchenskii 

[8] shows that, if a and F are sufficiently smooth, it 

can be expanded as a power series in p and that any first 

N coefficients of this series form a diffusion process. 

If we take continuous observations of z where 

dz = b(x,t)dt + G(t)dw, 	z(t0)=. 0 	(5.4.2) 
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and FGT = 0, then the observation process will be a 

function of p and so m, the estimate of x, will be too. 

One might conjecture that this estimate can also be 

expanded as a power series in p: 

m = mo  + mip + 2m2p2  + 	+ N
I 

1  

RIT  being a remainder with bounded second moment. Clearly 

the sum of the first N terms of this series form a 

0(pN)- approximation to the estimate. If we can find 

a set of equations such that the only forcing term is the 

observation process z and such that some of the generated 

variables are 0(pN)- approximations to the terms mipi  

in (5.4.3), then these equations taken together with 

(5.4.3) constitute a solution to the problem (b) posed 

in section 5.1. 

In the remainder of this section we shall formally 

derive a set of such equations that will give us an 

0(p3)- approximation to the estimate. 	The method for 

obtaining higher order approximations is similar, but 

then the equations are considerably more complicated. 

We start by finding the diffusion equations satisfied by 

the differential coefficients of x with respect to p. 

Let a function of p and its first and second differential 

coefficients, all evaluated at p = 0, be denoted by the 

suffices 0, 1 and 2 respectively. Then differentiating 

(5.4.3) 
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(5.4.1) with respect to p we have 

d.x0  a0  , dtx0(to) 
	

(5.4.4) 

dx]. 	axoxidt + Fodw, xl(to )  = r) 	(5.4.5) 

dx2 	<axx0/ ix"T>dt + alcox2dt + F X- dw 

x2(to) = 0 
	

(5.4.6) 

where the operator < (-)xx' xx2> is the differential 
v.. 	a2 
L.., x.x. 	 ( ) axiaxj  

The validity of these 
Note that x0  is a determinate process. 

As the observation process depends on x, and x 

depends on p, the expectation operator Et  also depends 

on p. We list some of the more obvious properties of 

this dependence. 
1) 	If Et and x are sufficiently smooth functions of p 

it follows from the linearity of Et that 

operator 
of x. 

, xi  being the i:th component 

equations is proved in [8]. 

(Etx)0  = E x tO 0 , 
(Etx)1    = Etlx0 + Et0x1 

and so on. 
2) 	If c is a function of time and not of p, 

Etc  = C 

and so from (5.4.7) 

(5.4.7) 
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Et = C  e Etlc = Et2c = 0 . (5.4.8) 

3) Let us write 

as E. 	Suppose u 

is independent of  

the a priori expectation operator E.4. 
"0 

is part of a diffusion process which 
i p and such that D[u:zT  ] = 0, then 

EtOu(t) = Eu(t) 1 
	(5.4.9) 

for, if p = 0, x is determinate; so the observation 

process z is independent of u and contributes no new 

information about u. 

We now derive equations satisfied by the differential 

coefficients of E . For a process u as defined above 

the conditional expectation Etu satisfies, by (5.2.4), 

dEtu = Etgu]dt + (Et[ubT] EtuEtbT)W(dz-Etbdt), 

Et  u(t 0 ) = Eu(t0), 	(5.4.10) 
O 

where W = (GGT)-1. 	In this equation b(x,t), z(t) and 

the operator Et  are functions of p. With the aid of 

(5.4.4)-(5.4.9) we can show that 

(Et[ubT] - EtuEtbT)0  = 0 

(T[ubT] - EtuEtbT)1  = (E[uxT] -

and 

EuEx1
T)bT  x0 

(dz - Etbdt)0 = (b0 Et0b0 )dt + Gdw 

=Gdw . 
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If in (5.4.10) we get p = 0, we obtain an equation that 

just reinforces our somewhat intuitive argument that 

EtOu = Eu. 	If we differentiate (5.4.10) for 

set p = 0, we have, using the above equations 

dEtiu = Etid[u]dt + (E[uxT] - EuExT)bTeGdw  

Etlu(to) = 0 . 0 
 

p and then 

(5.4.11) 

The equations for the higher order differential coefficients 

of Et can be found in the same manner, but we shall not 

need them. 

The differential coefficients of the estimate. From 

(5.4.7) and (5.4.9) it follows that the coefficients 

mb = Etoxo = Co 

mi 	Etlxo Etoxa = Exi 
	(5.4.12) 

m2 = Et2x0 + 2Etlx1 + EtOx2 = 2Etlx1 + Ex2 

and from (5.4.5), (5.4.6) and (5.4.11) evaluated at 

p = 0 that 

dEx1  = ax0  Ex1  , dtEx/(to) = Er 1  

dEx2 = <axx0' E[xixI]>dt + ex0Ex2dt, Ex2(to) = 0 , 	(5.4.13) 

T T 
dEtlx1 = ax0Etlx1dt + (E[xixT] - ExiExi)bxeGdw 9 

Et, 1x1(to) = 0 0 
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and 

dE[xlxI]= (ax0E[ xlxI] + E[xixT]aTco  + Fo4)dt . 

If v is the conditional covariance of x; that is 
r 	i v = EtLxxTj EtxEtx

T 
1 

then we find that 

vo  = vl  = 0p v2  = 2(E[xixf] - ExlExT) 	(5.4.14) 

We see from the equations (5.4.12) - (5.4.14) that equations 
for the differential coefficients of m can be conveniently 

written as 

mo  = x0, (dx0  = a(xopt)dt, x0(to) = c), 

dml = ax0m1 dtp 	ml (to)= Er y 	

(5.4.15) 
mT 

dm2 = (ax0m2 <axxOf 	' m 1'1
\)A
"
+
" 

+ v2bx0WGdw, 
	m2(to ) o 

where 

dv2 =aTx0v2 +v2-xa_0 + 2F00  FTdt 

v2(to) = 2 Cov[r] . 

	

Filtering algorithms. 	The equations (5.4.15) cannot be 

used as they stand as a filtering algorithm for the 

estimate, for the forcing term dw is not 'observable,. 

However, we note that this forcing term only occurs in 



the equation for m2, and for an 0(p3)- approximation of 

the estimate we need only an 0(p)- approximation to m2. 

It is not difficult to show that the 'observable,  term 

dz - b0  dt is an 0(p)- approximation to dw.1  

From a physical point of view it would be desirable 

for p only to occur in its natural place as a coefficient 

of F, for then it would be unnecessary to measure p 

explicitly. 

These considerations suggest the following two 

filtering algorithms; it is not difficult to show with 

the analysis of this section that both these algorithms 

give 0(p3)- approximations to the estimate.2  

1) 	The first is for the case where Ex(to) = c: 

0 = a(x0,t) 
	x0(to ) = c 

and. 

= ax0Ov + Ov ax0 	P
2 F
OF0 ti Ov(to) E[p2r2] 

i

(5.4.16) 

dSm = axem dt + i<a olov>dt 

+ by b 0  W(dz - bodt) 	om(to) = 0 x 

where, as before, the suffix 0 indicates evaluations at 

x0. 	x0  + Om is the 0(p3)- approximation to the estimate. 

Note that xo  and Ov are determinate and so can be calcul-

ated separately from Om, and that the stochastic processes 

Om and z only occur linearly. 
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2) A more compact but nonlinear algorithm is 

= axv + vaTc p2FFT 	v(to) = Cov[x(to)] 

dm = adt + 	<axxlv>dt + vioTcW(dz - bdt) 
	

(5.4.17) 

m(to) = Ex(to) 

where the underlining indicates evaluations at m. The 

estimate of x is 0(p3)-approximated by m. 

In these two algorithms by and v are 0(p3)-approxi-

mations to the conditional covariance of x, which is 

itself of order p2. 	It is interesting to note that the 

equations defining by and v do not depend on the statistics 

of the observation process z. 	This implies that the 

difference between the covariance of x if no observations 

are made (or the observation noise is infinite) and the 

covariance of x conditional on the observations z is of 

order p3 and can be neglected. 

A related algorithm. in any application of these algorithms 
it would be necessary to analyse more thoroughly the errors 

involved, and in particular to investigate the dependence 

of the errors on time. It may be found that the period 

of time over which the approximations are acceptable can 

be extended by retaining in the algorithms same of the 
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terms of order p3. This point is illustrated by an 

algorithm suggested by Wanham [4]. If applied to the 

process x of this section it generates a 0(p3)-approximation 

to the estimate and an approximation to the conditional 

covariance of possibly greater accuracy. It is similar 

in form to the algorithm (5.4.17) though it contains terms 

that are order p4. If the message and observation process 

are linear and Gaussian, Wonham's algorithm coincides 

with the exact filtering algorithm of Kalman and Bucy, 

whereas ours do not. 	It is reasonable to suppose, there-

fore, that for nearly linear processes Wonham's algorithm, 

if compared to ours, generates acceptable approximations 

over a longer period of time. 

The general case. For more complicated message and 

observation processes or for more accurate approximations 

the analysis we have given is more suitable for checking 

the accuracy of postulated algorithms than for deriving them. 

However, on inspecting (5.4.17) we see that this algorithm 

could have been derived by discarding from the exact 

equations for the estimate and conditional covariance all 

terms of order p3. This is roughly the method used by 

Wonham in [4], though his criterion for discarding is 

different. In this way more general filtering algorithms 

might be generated. 
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CHAPTER 6 

THE FILTERING OF PHYSICAL PROCESSES 

6.1 Introduction  

In the last chapter we considered the estimation of 

one diffusion process given a continuous observation of 

another, and derived a filtering algorithm in the form 

of a stochastic differential equation. 	In this chapter 

we consider the similar problem of estimating a physical 

process given a continuous observation of a second physical 

process and we derive a filtering algorithm that is an 

ordinary differential equation. Calling the message and 

observation physical processes X and Z respectively, the 

problem ist 

find a differential equation 

M = h(M;t) 	H(M,t)i 	(6.1.1) 

such that h and H are continuous functions, 

and a differentiable function q(M(t),t) that 

is a reasonable approximation in the mean to 

the estimate of X 

E[X(t)1Z(s), to  < s < t] . 

This problem is more realistic than the corresponding 

problem (b) of the last chapter in that the message 

process, the observation process and the approximate 

estimate all now have piecewise continuous velocities, and 
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that (6.1.1), being an ordinary differential equation, 

can be simulated by a practical filter. In the remainder 

of this chapter we suppose that X and Z are joint 

physical processes satisfying the conditions of Theorem 

2.1 and such that for to  < t < T, 

(6.1.2) 

Z = g(X,Z,t) + G(Z,t)y, 	Z(to) = 0 	(6.1.3) 

where GGT  is positive definite and the random disturbance 

y is such that the characteristic matrix A satiufies 

the relation A + AT = I. So that we may make use of 

Theorem 2.1 we suppose that the random initial value X(to) 

has been generated by some physical process. 	The 

diffusion processes that are the limit of X and Z for 

increasing a, (see Theorem 2.1) we shall call x and z, 

respectively. 

6.2 Physical processes considered as integral,processes. 

The message and observation process, being physical 

processes, are integral processes , 	but 

for the same reason their dispersions are zero. The 

estimate equation (5.2.4) for integral processes was 

derived under the assumption that the observation was of 

positive definite dispersion, and so this result cannot 
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be applied directly to X and Z. If the random disturbance 

y is also an integral process of positive definite dis-

persion, then Z is an integral process of positive definite 

dispersion. 	Now, as Z is a.c. finite there is no differ- 

ence between the expectation of X conditional on past 

values of Z (and Z(to)) and the expectation of X conditional 

on past values of Z. 	So we can redefine the observation 

process to be Z, and from (5.2.4) obtain an equation for 

the estimate of X. Unfortunately for our purpose , the 

dispersion of y will enter this equation as a coefficient. 

This term is determinate and increases with a. 	It would 

be attractive to derive filtering algorithms directly 

from this estimate equation, but so far the author has 

been unable to do this. 

6.3 A procedure for obtaining practical filtering  

algorithms 

A practical filtering algorithm can be derived by 

creating a sequence of approximations in the following way: 

1) X and Z are approximated by the diffusion processes 

x and z by means of theorem 2.1; 

2) The estimate E[X(t)IZ(s), to  < s < t] is approximated 

by E[X(t)lz(s), to  < s < t], which in the notation 

of the last chapter is EtX(t); 
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3) EtX(t) is approximated by Etx(t); 

4) with the methods of Section 5.4 a stochastic 

differential equation depending on z is derived, 

from which an approximation to Etx(t) can be 

generated; 

5) finally, by means of Theorem 2.1, this equation is 

converted into an ordinary differential equation 

depending on Z; this is the filtering algorithm 

from which the final approximate estimate can be 

generated. 

The second step in this sequence is based on the 

major assumption that, if two observation processes 

approximate each other, then the two corresponding con-

ditional expectations of any random variable also 

approximate each other. So far the author has been 

unable to find a sufficiently general set of conditions 

for which this assumption is valid. The problem is 

analogous to the simpler one of determining the conditions 

for which E[UiYn] converges to E[U(Y] if Yn  converges 

to Y; U, Y and Yn  being scalar random variables. 

However, we can prove convergence for the following 

special cases; the proofs are given in Appendix 0: if 

U, Y and Yn  are either (1) discrete random variables 

taking a finite number of values independent of n, or 
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(2) Gaassian variables of positive variance, and if Yn  

converges to Y in probability, then E[UlYn] converges 

to E[UiY] in the mean. 

These examples suggest that there is a broad class 

of processes for which the second step of the sequence 

is reasonable. 

An application. We now follow through this procedure in 

more detail for message and observation processes of the 

form: for to  < t < T. 

= f(X;t) + pF(X;t)y, Cov[X(to)] = 0(p2), (6.3.1) 

Z = g(X,t) + G(t)y, 	Z(to) = 0 	(6.3.2) 

where p is a small parameter and FGT  = 0. We are pre- 
1 

pared to neglect terms that are either 0(p3) or 0(77); 

that is, terms for which the square root of the second 

moment is of these orders. 

It follows from Theorem 2.1 that X and Z can be 
1 

0(m-9- approximated by x and z, where 

dx = [f(x,t) + p2K(x,t)]dt + pF(x,t)dw 
	

(6.3.3) 

dz = g(x,t)dt + G(t)dw, 	z(to) = 0 
	

(6.3.4) 

where the i:th component of the vector K is 

OWN 
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Ka. . = F4Fj 8x. 	nAmn (6.3.5) 

The value of x(to) is a 0(m9- approximation to X(to). 

It follows from this that Etx(t) is a 0(m-2)- approximation 

of EtX(t), for by the Holder inequality, 

ElEtX(t) 	Etx(t)12  < E[Et  IX(t) - x(t)I 2] 

= EIX(t) 	x(t)f 2  = 0(m-1) . 

We now apply the procedure of Section 5.4, to derive a 

filtering algorithm, in the form of a stochastic differ-

ential equation, for Etx. The only difference between 

the message process considered in Section 5.4 and the one 

considered here is that, relative to (5.4.1), (6.3.3) 

contains the extra term p2Kdt. This introduces extra 

terms into the filtering algorithms. One possible 

filtering algorithm, which corresponds to (5.4.16), is 

X0  = f(xo,t) , 	x0(to) = EX(to) , 	(6.3.6) 

61 = fx0 	x 6v + 6vf  0  + p
2
F00 FT , 6v(to) = Oav[X(to)], (6.3.7) 

and 

dem = fx0  Omdt + 2<fxx0,  6v>dt + p
2Kodt 

(6.3.8) 
+ ovec0(GGT)-1(dz - g0dt), 6m(t0)= 0 

where, as before5the suffix 0 indicates evaluations at 

x0+6m is a 0(p3)- approximation to Etx(t). 
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It only remains now to carry out the fifth step of the 

procedure: the conversion of (6.3.6), (6.3.7) and (6.3.8) 

into a set of ordinary differential equations. Forthe 

particular filtering algorithm we have chosen this is 

relatively straightforward, for xo  and Ov are determinate 

functions and so the equation for Om is of the form 

don = Ci(t)omdt + 02(t)dt + C3(t)(g(x,t)dt + G(t)dw), 

(6.3.9) 

in which we have expressed dz explicitly. As we see 

from (6.3.2) and (6.3.9) On and x form a joint diffusion 

process to which we can apply Theorem 2.1 and obtain 

approximating physical processes. A 0(m4)- approximation 
1 

to x is of course X; the corresponding 0(m-2)- approximation 

to Om is given by 

= C1  (t)aldt + C2(t)dt + C3(t)(g(X,t)dt + G(t)ydt) 

01(to) = 0 , 	(6.3.10) 

which happens to be of the same form as (6.3.9), as the 

dispersion of OVI is determinate. But the term in the 

brackets is Zdt and so we can write 

61.4  = fx06E 2<fxx0v6v>  P2K0 
(6.3.11) 

6"IO(WT)-1(i g0), 6M(to)  = 0 
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By combining all five of the steps of the procedure, we 

see that xo + Ox is a sufficiently accurate approximation 

of the estimate of X and that (6.3.6), (6.3.7) and 

(6.3.11) together form a filtering algorithm that satisfies 

the conditions we posed in Section 6.1. 

The general 	If the message and observation 

processes are of the more general form (6.1.2) and (6.1.3), 

or if we require more accurate approximations, the 

stochastic differential equation generating the approxi-

mation to Etx is generally nonlinear and contains terms 

depending on z as well as x. However, the processes 

generated by these equations together with x and z form a 

joint diffusion process. So we can still apply Theorem 

2.1; the resulting ordinary differential equation, in 

which the forcing functions are Z and Z, is the required 

filtering algorithm. In converting the stochastic 

equation into an ordinary equation correction terms are 

generally introduced. This did not occur in the above 

example as the equations involved are linear in the 

random variables. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

It has been shown in Theorem 2.1 that with certain 

assumptions a physical process can be approximated by a 

diffusion process of the same dimension. 	The most 

interesting assumption is, roughly, that the matrix 

integral 

1 rt cs 
E[Y(s)Y(r)ndrds 

o o 

of the vector random disturbance y(t) of the physical 

process is approximately equal to a constant matrix A for 

values of t comparable to the time-constants of the process.  

This matrix, which has been called the "characteristic 

matrix" of y(t), plays an important role; it is this 

matrix rather than the matrix generalisation of the "mean 

power per unit bandwidth" that characterises the random 

disturbance in the probability distributions of the 

diffusion approximation. Moreover, if the characteristic 

matrix is symmetric, the differential equation obtained 

from that of a physical process by replacing the distur-

bances by "white noise" can be precisely interpreted as 

the Stratonovich stochastic differential equation of a 

diffusion approximation. 



-123 - 

In [20] Stratonovich has demonstrated that the 

probability density of a physical process with stationary 

random disturbances of short correlation time approxi- 

mately satisfies an equation of Fokker-Planck type. 

Theorem 2.1 is based on different assumptions but is 

closely related to this result; in particular Stratonovich's 

result implies that some such term as the characteristic 

matrix has to be defined. 	In its formulation Theorem 2.1 

is more in line with the theorems on the relation between 

ordinary and stochastic differential equations given by 

Wong and Zakai in [21,22]. 	In these theorems, however, 

the models chosen for the random disturbances happen to 

possess symmetric characteristic matrices; in this 

situation the significance of the characteristic matrix 

is lost and the proofs in [21,22] do not require its 

definition. 

The somewhat artificial assumption that the distur-

bances are Gaussian was made in Theorem 2.1 to simplify 

its proof. 	Stratonovich in [20] and Wong and Zakai in 

[21] did not have to make this asgamption. 	This suggests 

that it is unnecessary and that Theorem 2.1 might also 

hold for general non-Gaussian disturbances; this would 

make the result much more use:7u1. 
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In the simulation of physical processes the symmetry 

of the characteristic matrix is important. To simulate 

a process, an analogue computer can be programmed directly 

from the equations of the process if either the random 

disturbances of the process are additive or the charac-

teristic matrices of the disturbances and the computer 

noise source are congruent to each other. 	This second 

condition is satisfied if both the characteristic matrices 

are symmetric, and this is the form of the condition that 

is of practical interest. 	If these conditions are not 

satisfied it is generally necessary to include extra terms 

in the equations used for programming the computer. 

Similar problems arise when simulating processes on digital 

computers; these have been mentioned only briefly in this 

thesis and have yet to be investigated. 

A vector random disturbance has a symmetric charac-

teristic matrix if its components are independent or if 

its matrix correlation function is an even function of 

time. 	Other conditions, for random disturbances that 

are linear diffusion processes or piecewise constant 

Gaussian Markov processes,have been derived in Chapter 4. 

By approximating physical processes by diffusion pro- 

cesses we can apply to the problem of filtering physical pro- 

cesses some of the results of the themorof filtering diffusion 
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processes, which has been studied by several authors 

for different formulations. Many of their results can 

be summarised in one general formula. This is an Ito 

stochastic differential equation satisfied by the estimate 

of the message process, which we have taken to be its 

mean conditional on the past values of the observation 

process. An apparently novel derivation of this estimate 

equation, based on the implicit properties of conditional 

moments, has been given in Section 5.2. 	There are some 

minor discrepancies between this equation and the corres- 

ponding equation of Stratonovich's [1]. 	Similar stochastic 

differential equations can be derived for other conditional 

moments of the message process, but it is not usually 

possible to choose from these a set that make up a 

diffusion filtering algorithm; that is, a finite set of 

stochastic differential equations describing the estimate, 

in which the observation process is the only forcing 

function. However, filtering algorithms giving approxi-

mations to the estimate can be derived by perturbation 

methods; this has been demonstrated in Section 5.4. 

We can carry over these results to physical processes 

by making a series of approximations. 	The procedure has 

been discussed in Chapter 6. 	The steps that have to be 

taken, and the points that have to be considered, are 
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illustrated in Figure 7.1. 	The estimate equation given 

in Section 5.2 applies equally well to message and 

observation process that are just integral processes; 

that is, processes that are sums of indefinite ordinary 

and stochastic integrals. Physical processes are 

integral processes, and it would be attractive to derive 

the physical filtering algorithm for these processes 

directly from the corresponding estimate equation, thus 

avoiding the chain of approximations required in the 

derivation we have given. 	There are certain difficulties 

to this approach, but it should be a point of further 

research. 

Parts of our derivation of the physical filtering 

algorithm have not been fully justified; in particular 

the assumption has been made that, if the physical 

observation process is approximated by a diffusion 

observation process, the corresponding conditional means 

of the message process approximate each other. 	This is 

certainly true for some special cases; it would be . 

interesting to know whether it is true more generally. 

Altogether, thought  the derivation is on a sufficiently 

sound mathematical basis to make it worthwhile to test the 

resulting filtering algorithms experimentally. It is 

only then that their usefulness can be finally judged. 
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Figure 7.1 	The derivation of physical filtering algorithms 
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APPENDIX A: STOCHASTIC DIFFERENCE EQUATIONS AND THE 

APPROXIMATION OF A PHYSICAL PROCESS 

Stochastic differential e uations. 	The Ito and Stratonovich 

stochastic differential equations can be interpreted as 

the limits of finite difference equations. To illustrate 

this we summarise a simple example given by Kushner [2, 

Appendix 1]. 	Suppose x(t) = ew"), where w(t) is a 

scalar Wiener process. 	Then over an interval of time 

[t, t+Ot] the increment of x(t) is 

ox = x(t+Ot) - x(t) 
	

ew(6w + 26142  + ...) 

= x(6w + 26w2  + ...) • (A.1) 

Note the order of magnitude of the terms in (A.1): the 

means and standard deviations of 6w3 and the higher powers 

are o(6t); the mean of 6w2  is 6t and its standard 

deviation is ,T36t; and the mean of Ow is zero and its 

standard deviation (1-6t. 	This suggests that the solution 

of the difference equation 

Ow = x(Ow + 26w2) 
	

(A.2) 

which is (A.1) with the o(6t) terms neglected, might 

converge in the mean to x(t) as et 	0 	This is indeed 
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so. Moreover, on integration, the effect of the random 

part of 6w2  accumulated over all the intervals vanishes 

as 6t 	0, and so the solution of the difference 

equation 

6x = x6w + ixot 	(A.3) 

also converges to x(t). 

The Ito equation of x(t), obtained by differentiating 

x(t) by Ito's formula, is 

dx = xdw + ixdt , 	 (A.4) 

which can be considered to be the limiting form of (A.3). 

The backward difference 

6gx = x(t) - x(t-6t) = cw(t) 
	

- e-6,w) 

= x(61w - i61w2  + ...) 

and so the central difference 

3X = *(Ox + oix) = x(VIN + °(6t)) . 

As for the forward difference equation, the solution of 

the central difference equation 

bx = x6w 	(A.5) 

converges to x(t) as ot 	0; this equation matches 

the Stratonovich equation of x, which is 

Mc = xw . 	(A.6) 
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ARproximation of a phyaLaaulauE. Suppose X(t) is the 

physical process given by 

= XY 	x(o) = 0 . 	 (A.7) 

y is a continuous disturbance approximating white noise; 

that is, the integral of y approximates in the mean a 

Wiener process w(t). As y is continuous we can integrate 

(A.7) in the usual way to get the solution 

X(t) = 
cy(s)ds 
e 

If we make the assumption that y is also Gaussian, then 

it is not difficult to show that X(t) is approximated in 

the mean by the diffusion process x(t) = ew(t). 	For this 

particular example, and for other scalar examples, if 

we multiply the differential equation of X by dt and 

replace ydt by aw, we obtain the Stratonovich equation 

of the diffusion approximation x. However, the differ-

ential equation of a vector physical process and the 

Stratonovich equation of its diffusion approximation do 

not in-Oneral have this equivalence (see Chapter 3). 

The simulation of X (or its diffusion approximation)  

on a digital computer. Suppose we want to simulate X 

(that is, generate a process with similar statistical 

characteristics) on a digital computer, on which we can 
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generate a sequence of independent Gaussian random 

variables Bn, each of zero mean and unit variance. There 

are several ways of doing this. 	First consider the 

forwtxd difference formula 

xn+1 xn = xn2Z111 	
, 	(A.8) 

v- Now 4- R Jh behaves exactly like a Wiener process r=o r' 
wI(fth), and it follows from our previous remarks about 

(A.3) that, as the step length h is made smaller, the 

solution xn  converges to a process of the form x10(nh) 

which is a simulation of x and therefore of X. This is 

one way of simulating X. Another way is to first 

simulate X by a continuous process XI, which is a known 

function of the variables Rn, and then generate approxi-

mations to this on the computer. For instance, consider 

X+ = Xin 	 (A.9) 
"0 

Rt where yh  is a step process which takes the value 
0 

t7E-0- 

in the interval [nho, (n+l)ho]. 	Then X,  simulates X, 

the error depending on the size of h0 (see Chapter 3). 

For any set of realizations of the Rt, (A.9) is an 

ordinary differential equation which can be integrated by 

the normal integration formulas to give an approximation 

to XI. 	The accuracy of this approximation depends on 
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the ratio of the integration step length to ho  and on 

the order of the integration formula. If the step 

length is taken to be ho, we cannot use the first-order 

forward-difference formula, which is (A.8) without the 

term ixnho, as its solution would not converge, for 

decreasing ho, to that of (A.8). 	It seems reasonable 

to suppose, however, that second and higher order formulas, 

with step lengths ho, would give a solution converging to 

XT. 
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APPENDIX. B: ITERATED STOCHASTIC INTEGRALS 

Lemma. BI: 	This is a slight extension of a theorem of 

Boob's /-12 7 p. L130. 	Let g(s,r) be a bounded 

measurable matrix function of s and r in /0,t3 Let 

Q(r) be an admissible matrix random process such that 

E1Q(r)12  is bounded in /5, T7. 	Then the processes 

I(u) 	g(s,u) Q(u)ds 	(B.1) 

J(u) = 	g(u,r) Q.(r)dw(r) 	(B.2) 
0 

are admissible processes in u and have bounded second 

moments, and 

t t 	t s 
g(s,r)Q(r)dsdw(r) = 	g(s,r)Q(r)dw(r)ds (a.c) 

o r 	o o 
(B.3) 

Proof. We can suppose without loss of generality that 

g(s,r) = o for r; s.. 	All the integrations can then be 

taken over the period /-0„t7. 	g(s,u), being measurable 
t 

and bounded, is integrable, so S g(s,u)ds is measurable 

with respect to u. 	Q(u) is admissible; that is, it is 

measurable with respect to u and Ct)(the basic probability 

parameter) and for fixed u it is Borel-measurable in 
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rw(r)„ o r gu 7. So the product of these two terms, 

which is I(u), is also admissible. 	That EII(u)i 2 is 

bounded follows from the boundeness of ElQ(u)1 2. For 

fixed u, J(u) is a well-defined stochastic integral 

which can be taken to be Borel-measurable in /-w(r), 

0 	r c u_7. 	Moreover E/J(u)1 2  is bounded. 	To show 

that J(u) is admissible we have to show it is a 

measurable function u and y. As g(u,r) is measurable 

and bounded it can be expressed as the limit, for almost 

all u and r, of a sequence of finite. SUMS 

f1.11  (u) h1.1  (r) 

where f. (u) and h. (r) are measurable bounded functions.. 

Let 

h (r) Q,(r)dw(r) 

Jn(u) is clearly measurable in u and Y. Now 

Eij(u) 	a.n(u)12 

g(u,r) - 	fn(u)hr.13.  (r)1E 1Q(r )1 2dr, J.  

0 	 (8.5 
for almost all u as n--> oo. 

a-11( u) = 	fri. 
(u) 1 1 



s
t 

-138- 

This implies that J(u) is also measurable in u and 

so it is admissible. 
t 

The left side of (B.3) is 	I(r)dw(r) and the 

c
right side is 	J(s)ds. 	As I(r) and J(s) are 

0 
admissible with bounded second moments these integrals 

are well defined. Let 

In(r) = 	f 	fin.(s)d4Ain.  (r) Q(r). 

0 

Clearly 

. In(r)dw(r) 	Jn  ksAs. 	(B.6) 

0 	 0 

By the inequality (2.3.10) 

7-ks)ds 	Jn(s)ds12  

fS E1J(s) Jn(s)12ds 

which by (B.5) tends to zero as n --> a); that is, 

J(s)ds = 1.i em 	Jn  ( s )ds 
o 	n --)r co o 

Also 	t 

E 	I(r)dw(r) - 	In(r)dw(r)12 

0 
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c
El 1(r)- In(r)I 2dr 

  

/g(s,r) -Z 	i fn(s)hn(r) 7ds12  ElQ(0\2dr i 	- 
0 	0 

 

> 0 as 

	

So c 	t  I(r)dwr = 1.i.m. 	In(r)dw(r). 	As equality in 
n -)co 

	

o 	0 
the mean implies equality with probability I, (B.3) follows 

from (B.6). 

co. 
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APPENDIC C: THE CONVERGENCE OF CONDITIONAL 

EXPECTATIONS 

Lemma Cl: Discrete variables: If U, Y and Yn  are discrete 

random variables taking only a finite number, of values 

independent of n, and if Yn  converges to Y in probability 

as n increases, then E[UlYj converges to E[U)Y] in the 

mean. 

Proof. As E[UlYn] is bounded uniformly for n by maxjU 

we need only prove convergence in probability. Let 

pijk  be the probability that U, Y and Yn  take the values 

j and k respectively. As the values Y and Yn take 

are independent of n, convergence of Yn  to Y in probab- 

ility implies that pijk  vanishes if j k. 	So considering 

only those values of the conditional expectation that 

occur with non-vanishing probability; that is, where 

Yn = Y = h andihh  does not vanish, then 

E[UIY=h] - E[UlYn=h] 

 

i D. 1k -lk n.  ii 1'1-01  
.27 
ij 

n  
x-ijh ik Pihk 

ihk i(P' P  .h Pijgrall? iikm  
n  n 

ijkm l'ahlemjh 
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The denominator in this expression does not vanish as 

n increases, but the numerator does. 	So those values of 

the conditional expectations which occur with non-vanishing 

probability converge. 	The result we require follows. 

Lemma 02: Gaussian variables. If U, Y and Yn  are 

Gaussian variables of positive variance and Yn  converges 

to r in probability for increasing n then E[UlYn] converges 

to E[U1Y] In the mean. 

Proof. For Gaussian variables convergence in probability 

and In the r:th mean for any r are equivalent, so we 

need only prove convergence in the first mean. As U, Y 

and Yn are Gaussian 

E[UlYn] = EU + VU(VYn  -1(yn - EY) 

E[U1Y] = EU + VU(VY)-1(Y EY) 

where V is the variance operator. Thus 

EIEEUlYn] - E[UlY]l < VU(VY) -1(ElYn  -YI + lEYn-EY1) 

+ 6.VU(E1Yni 	(EYni) 

where (Vyn) -1  = (VY) -1  + o. As Yn  and Y are Gaussian, 

ElYn  Y1 	lEYn  -EY' and 6 all vanish for increasing n, 

so the right member of the inequality vanishes. Thus 
E[UIYn] converge4 to E[UlY] in the first mean. 
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