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Preface 

In this thesis we consider three problems in two-
dimensional fluid. flow. An are characterized by the fact 
that the fluid. considered is, at least partially, bounded 
by free streamlines. The difficulties associated with flows 
of this kind are, in addition to the normal non-linearities 
in the field equations and boundary conditions, that the 
boundaries themselves are unknown, being determined by the 
nature of the flow they contain. 

We overcame this last difficulty in the first problem 
( the flow in an inviscid waterfall ) by expressing the 
problem in streamline co-ordinates, that is, by using as 
independent variables the stream function and a co-ordinate 
forming an orthogonal net with it. The difficulties raised 
by the non-linear boundary conditions are resolved by 
employing a perturbation scheme. As this is singular, we 
resort to the " method of matched asymptotic expansions ". 

The third. problem I the flow under gravity in a jet of 
viscous liquid) also involves a singular perturbation, and 
so we again resort to the above method. One of the expansions 
is derived after expressing the problem in streamline co-
ordinates. The other expansion is derived by using a 
technique, developed in the second problem, involving a 
complex variable formalism. It is shown that the Airy stress 



function is what might be called the " biharmonic conjugate " 
of the stream function, and this relationship proves to be 
very useful. 

The second problem C the flow of a viscous fluid. in the 
neighbourhood of separation at an edge) is included mainly 
as a vehicle for developing the complex variable formalism. 
The ' neighbourhood " mentioned above is defined as being 
the region in which the non-linear terms in the field 
equations are negligibly small and where the free streamline 
can be considered to be rectilinear. This disposes of both 
chief difficulties in the problem. 
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Part 1 

On two-dimensional inviscid flow in a waterfall 

Preface 

The material for this section has been published in the 
form of a paper. This paper is Included, with one correction, 

and constitutes the majority of Part 1; we make one addition. 

Since this paper was written, Markland (1965) has published 

some work on the same problem, though like Southwell and 

Wilsey (1946) (see below, pages 3608=1 369 	his method of 

attack is numerical rather than analytical. One advantage 

that Markland's work has over that of Southwell and Valley, 

from our point of view, is that like us he works with stream-

line co-ordinates and treats the cases for which our analysis 

is suitable, that is cases in which the Fronde number is 

greater than unity. We have used Wetland's results to compar 

with our own. These comparisons are presented in figures 6, 
7, 8 and 9. 

The pagination of our paper is retained. We make a slight 

correction on page 362. In equations (3.3), (1) and (ii) 

should read 

(1) 	ul  41•0 on 92.1, 0„ si> 1 

u1 	-4 on s2  Op 	81 < 1  ; 
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On two-dimensional inviscid flow in a waterfall 

By N. S. CLARKE 
Department of Applied Mathematics and Theoretical Physics, 

University of Cambridge 

(Received 6 October 1964) 

This paper is concerned with the two-dimensional flow in a free waterfall, falling 
under the influence of gravity, the fluid being considered to be incompressible 
and inviscid. A parameter e, such that 2/e is the Froude number based on 
conditions far upstream, is defined and considered to be small. A flowline 
co-ordinate system is used to overcome the difficulty that the boundary geometry 
is not known in advance. An asymptotic expansion based on e is constructed 
as an approximation valid upstream and near the edge, but singular far down-
stream. Another asymptotic expansion, based upon the thinness of the fall, 
is constructed as an approximation valid far downstream, but failing to satisfy 
the conditions upstream. The two expansions are then matched to give a solution 
covering the whole flow field. The shapes of the free streamlines are shown for a 
number of values of e for which the solutions are seemingly valid. 

1. Introduction 
An inviscid, incompressible fluid flows over a horizontal bed until it falls over 

an edge under the influence of gravity. The flow is considered to be plane and 
steady. Far upstream the fluid is of depth h and has a uniform horizontal velocity 
U0 , and gravity is acting vertically downwards (see figure 1). The problem is one 
of finding the velocity potential 43,  and the stream function IF as functions of 
position. Both 1 and II' must satisfy the Laplace equation subject to certain non-
linear boundary conditions, namely zero pressure on the free streamlines and 
zero normal velocity on the bed. The basic non-dimensional parameter appearing 
in the problem is e = 2ghlUg, and this is assumed to be small in most of this 
paper. 

This problem involves a singular perturbation, the singularity occurring far 
downstream. As such, it lends itself to the technique of `inner and outer expan-
sions'. Kaplun & Lagerstrom (1957) and Erdelyi (1961) give a general account of 
this technique and also cite further references. In the present paper an expansion, 
which is derived to satisfy the conditions in that part of the flow which is not 
far downstream, will be known as the inner expansion, and the region in which 
it is valid, as the inner region. Similarly, the outer expansion satisfies the con-
ditions far downstream, and is valid in the outer region. 

The inner expansion is constructed by a perturbation scheme, in which all 
lengths are referred to h and all velocities to Uo ; this scheme may be regarded as a 
perturbation for weak gravity. The first approximation is therefore a uniform 
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horizontal stream. In the outer region, all lengths are referred to US/2g and 
velocities again to vo, and so in this region the perturbation may be regarded as 
one for small width of the fall. Here the first approximation, being hydraulic, 
is of the well-known parabolic form. 

It is to be expected that the inner and outer regions overlap to some extent. 
By matching the inner and outer expansions in the overlap region, the unknown 
constants in the outer expansion are found, and the combined solutions then 
cover the whole flow field. 

Southwell & Vaisey (1946) found a result for the case e = 2 by relaxation 
techniques, and their solution has been used for comparison purposes in figure 5. 
Keller & Weitz (1957) also found a solution in the outer region, though by an 
approach different from the one given in this paper. This solution was found to 
agree with ours to the first approximation. 

FIGURE 1. Notation. 

2. Formulation 
We denote the fluid velocity by Q = V(I), and consider a co-ordinate system 

Z = X + i Y, in which the bed is described as Y = — h; X .. 0. Gravity is acting 
in the direction of Y decreasing. The problem is to find the complex potential 
F = 1 + ilY satisfying (a2/aX 2 a+ 2/a y2)F  = 0, subject to: (i) zero pressure on the 
free streamlines, (ii) zero normal velocity on the bed. The free streamlines are 
unknown in terms of X and Y, but are known in terms of1F. This suggests invert-
ing the problem to one of finding Z as a function of F, that is, of finding Z satisfy-
ing  (a21a02+ a 2le_F 2 ) ,z  = 0, subject to the same boundary conditions. 

To find the boundary conditions explicitly, we make use of Bernoulli's equa- 
tion: 	 Plp+1Q2+gY = constant = iug, 
where the density p is constant throughout the fluid, and the constant on the 
right has been evaluated from the conditions far upstream on the upper free 
streamline. 

We define non-dimensional variables by 

p= PIpUg; q= IQVUo ; z= Z/h; f=  FlUoh; 
and Bernoulli's equation becomes 

2p+q2+ey = 1. 	 (2.1) 
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Therefore the boundary conditions are 

(i) q2  = 1— eY 
(ii) q2  = 1 —ey 

(iii) Im ryl  =0 df 

on 
on 

on 

= 
//r = 

= 

0, 	all 95; 
— 1, 	95 > 

—1, 	0 

0; 

0. 
(2.2) 

If we consider the problem to be in the complex f-plane, then the field equations 
are satisfied by any complex function z(f). The problem is then, to find such a 
function z(f) which satisfies (2.2). 

3. The inner expansion 
We pose that 	

z(f) = zo(D+ ezd) + oz2(f)+ • • • • 	 (3.1) 

To find the zn(f) we substitute (3.1) into (2.2) and, comparing coefficients of e, 
obtain a sequence of linear problems in each of the zn(f) in turn. 

zo(f) is simply the solution in the case when e = 0, and so zo(f) = f. 

A 

V •=.- 0 

—1 	(1,0) 	u=-- 0 
C, C' 	A' 

FIGURE 2. The complex s-plane, showing the boundary values of the 
first-order problem. 

On substituting (3.1) into (2.2), and comparing first-order coefficients, we 
find that x10  = -10-  on the free streamlines, where the subscript denotes differen- 
tiation with respect to 95. We therefore seek wl  =iv1 = x10 + iho, subject to 

(i)  u1 = 0  on = 0, all 95; 
(ii)  ul  = — on = —1, g5 	0; (3.2) 
(iii)  v1 =0 on = — 1, c 	0. 

B 
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To solve this mixed boundary-value problem, we map the infinite strip, 
0 	///- -1, in the f-plane on to the upper right-hand quadrant of the s = si + is, 
plane by the mapping: s = ,‘/(1 +e-"f). The boundary conditions then are as 
given by (3.3), and as shown in figure 2. 

(i) u1 =0 	on s, = 0, si  1; 
(ii) act  = - 	on 82  = 0, 0 < sl  ( 1; 	 (3.3) 

(iii) v1  = 0 	on si  = 0, s, i 0. 
This problem is familiar, in that it is analogous to that of finding the complex 
potential of an inviscid flow, covering the entire plane, with a pair of vortices 
situated at (1,0) and ( - 1, 0). The solution is well known: 

- wl(s) = yir- log (8s 1)+   . 	 (3.4) 

However, it will be more helpful to solve a more general mixed boundary-value 
problem, as this more general solution may be used in the higher-order problems. 

Consider a complex function wn  = un  + ivn, analytic in si 3  0, 82  > 0, with 
'lc?, prescribed on the positive real axis. Following Woods's (1961) account, we 
assume that 

(i) v„, = 0 on si  = 0, s2  0; 

1 (ii) W,(8) 0(8-1) as Is oo; 
(iii) wn(s) is integrable in the ordinary (Riemann) sense on any finite 

arc of the positive real axis. (Unlike Woods we do not allow w„ 
to have singularities of the Cauchy type.) 

If we consider the problem to be in the whole of the upper half plane, with un  
now also prescribed on the negative real axis, then the solution is well known, 

	

wn(s) = 	
un(T) 

	

77.  _co  U-8 
do-. 	 (3.6) 

To ensure that v„ = 0 on the positive imaginary axis, we have that 
un(cr) = /In( - cr), 

and using this 	wn(s) = o un(cr) (S- 	+s 
 1  } dcr.  c 	 o 	 (3.7) 

We return to the first-order problem. The boundary conditions satisfy (3.5), 
and so using this method we recover (3.4). 

By the restriction (3.5, (iii)) we have excluded terms in w,,,(8) of the form 
.( 1 	1  
s- 1 s + 1/ ' 

\ 

which may be added to any solution without violating the boundary conditions 
except at the singular point s = 1. This is because we accept only the weakest 
possible singularity for s 1, a policy justified later by the matching procedure. 
Therefore the solution to the first-order problem is given by (3.4), which in terms 
of the original variables, becomes 

z1, = i log {(1 e—'rf)1 — 1} 
(3.8) 

	

zp. 	(1+e—Tif)i 4- 1 

* 	see note ak fott o f tase 6 . 

(3.5) 
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When we come to the matching procedure, we will require an expression for 
z1(f) as f t co; this is then from (3.8) 

zl(f) - f2 —
17" 

 log 2) f + const. + 0(e-" f). 	 (3.9) 

We now turn our attention to the second-order coefficient, z2. On inserting 
(3.1) into (2.2), and comparing second-order terms, we have that 

x20 = -EY]. + 340-  yics) 
on the free streamlines. We therefore seek w2  = u2  + iv2  = x45+ iy,o , subject to 

(i) 	u2 = 	-AO 	on 	= 0, 	all cb; 
u2 = EY1-yio) 	on V/.  = -1, 	0; 	(3.10) 

(iii) v2  = 0 	 on 	= - 1, 95 < O. 

Mapping the [plane onto the 8-plane, we find that on s2  = 0, u2  has a finite dis- 
continuity, and singularities of the nature log2181- 11 and log Is/  -11 at 6/  = 1, 
but has no singularities elsewhere. Hence 1t 2  satisfies (3.5, (iii)). Also 

u, = 0(8-2 ) as 181 t co, 

and so all the conditions in (3.5) are satisfied. Therefore, using (3.7), the solution 
is given by 

W2(8) 	(ss 	+11) ITi  fu G(0- ) —1  ,± s 	(3.11) 

where G(c) =1-(y1-y10) on s = o-, o-  real. The behaviour of G(o- ) near c = 1, is 
given by 

G(a) --1 log2  1 cr - 11+ 277.2 log 2 log la - 11+ H(1 - + J(o-), 
47).2  

where H is the Heaviside unit function, and J(o- ) is regular at c = 1. To re-
move this singularity from within the integral, we define the complex function 
y(s) = cc(sl , 82 ) + (sv  82 ) by 

1 	 1 	1 
7( 8 ) = - 47010e (s 	+ 1) + 8 87r 	k  lo, is  

8 	1)  471.2 (s -1) log (s -1) 

1 	 1 	1 + 	(s + 1) log (8 + 1) - 2n2  log (s + i) T7.2 . (3.12) 

The function y(s) satisfies the conditions (3.5), and G(o- ) - oc(cr, 0) = 11(c), 
where fl(6) and dS2(c)Ido-  are continuous in 0 cr co. From (3.7) 

y(s) = - 	ocka, 0) (— + 	 aer. fo , 

	

o 	
, 1 

S — 	8 + 

	

1 	7  (3.13) 

Subtracting (3.13) from (3.11) we have 
J 

- 3 , 	-1\ 	r 	 1  
w2(s)  = 87r2 log  s.4- 1) +7(8)+7

i  
rj 0  n(c)  s - 

1 
 + s + Ori d°".  

(3.14) 
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The behaviour of z2(f) as f co, is then 
1( 1 	1 	1 i 

Z2 (f) ,•• - iy f 3 	4  - log 2) f 2  - (7? log2  2 + 2- 70  + — log 2) f + const. + 0(e-#f). 

(3.15) 
It is worth noting here that on the lower streamline near the edge 

2 
zl 	 2 3v77.95/ 4-0(0), 

and 	 z2  ^ A00 +. 2A
3  1 

 + 0(0), 

0 x  1 2 3 4 

—2 
FIGURE 3. Case of e = 0.1; 	, inner solution; - - - -, outer solution. 

—11 	10 x  11, 	2 	3 	4 

where A0 , Al  are real finite constants. In both these expressions, the leading 
singular terms are of order 0. This shows that the singularity in the first-order 
term does not give rise to a more singular term in the second-order expression. 
It would appear, then, that at the edge, z(f) has no worse a singularity than that 
contained in zl(f). 
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The functions xi,  x2,  y1,  y2, have been evaluated numerically for the upper and 
lower free streamlines in the range - 5 < 	+ 5, and the results have been used 
in the construction of the figures 3 and 4. The higher-order terms in (3.1) could 
be derived in a similar manner, but we terminate the inner expansion after the 
second-order term. 

4. The outer expansion 
Defining the complex velocity by ge-i8 , we know that qe-1° = fn(0 + e), but 

we do not know the manner in which e enters this function for large values of 0. 
However, if we take Ug/ 2g as reference length, and U0  as reference velocity, this 
makes the width of the fall of order e. That is, if /fr+ is the new non-dimensional 
stream function, then the flow is bounded by the streamlines itr+ = 0, 	= - e. 
This narrowness is useful so long as 0/8Vr+ 0(1), for then we may assume little 
change across the fall. We have from the boundary conditions on the free 
streamlines = - e[y(0, O]:(11  (15 > 0). 	 (4.1) 

This indicates that a lao+ - 0(1) far downstream, and we therefore adopt Utif2g 
and U0  as the reference length and velocity in this region. Then z+ = z+(f+ ; e), 
where 

z+ = —2gZ = ez and f+ = 2gF = of = 0+ + ug 	 Uo  

We define the outer limit to be 

e 4, 0, with 15+, IJr fixed 0÷ > 0; applied to z+(0+ + ie?fr; e), 

whereas the inner limit was 

e 4, 0, with 0, Vi fixed, c < co; applied to z(0 + iVr; e). 

It will be noted that e does not appear in the boundary conditions, but in the 
actual boundary ifr-F.  = 0, 	= - e. 

The expression z÷ = z+(f+; e) suggests that we could expand z÷ in a power 
series of the form 

z+ = 40+ +ieVr) +e-4 (0+ + 	 (4.2) 

and with direct substitution of (4.2) into the boundary conditions; q2  = 1 -y+ 
on Vr-F = 0 and ik+ - e, we would obtain a sequence of non-linear, ordinary 
differential equations for 4(0+, 0) and mt (0±, 0), which could be solved. 

However, we approach the problem from a different viewpoint. The following 
derivation is more satisfactory in that it is simpler, sheds more light on the physi-
cal problem, and leads to a series valid not only under the outer limit previously 
defined, but also under two other limits. 

First, we change to a less cumbersome notation, writing 

z+  = = 6+ iv ; f÷  = 7 ; ¢+= Cr' 
We have then that log g- is = fn(r; e), and therefore, by the Cauchy-Riemann 
relations, eg-1.q0. = 	836., 	 (4.3) 

= 60 0., 	 (4.4) 
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Also from the definitions of c  and 'VT, 

dg = q-1(cos 0 do' - e sin 0 c/Vf), 	 (4.5) 
= q-1(sin Oda + e eos HO). 	 (4.6) 

The boundary conditions are 
q2  = 1- v on Vi = 0, 	= -1. 	 (4.7) 

By considering momentum flux in the a-direction, it can be shown that 

(p I q + q) cos0dlii = const. = 1+4e= E, 	 (4.8) 

where the flow conditions far upstream have been used to evaluate the constant 
on the right, and p is given by 

	

p =2(1-r/-q2 ).  	 (4.9) 
In terms of the variable Mfr, the width of the fall is 0(1), and derivatives with 
respect to Vr are 0(e), and so we may take as a first approximation that q and 0 
are independent of /r, and also that q2  p. Then from (4.8) we have 

q, 	E sec 00, 	 (4.10) 
where the subscript '0' denotes the value taken on Vr = 0. Also from (4.7) and 
(4.6), qg = 1 - vo  and 

= q0 1- sin 00, 

which, with (4.10) give 
i(qP, E2 )/ + 2E2(qg - E2)i O -A(e), 

where A(e) is a constant of integration. 
We define A(o-, e) by 00  = - A; then 

- A(e) 2E3(tan A + tan3  A). 	 (4.11) 
We may now take A, rather than a- , to be the independent variable, and express 
all other quantities in terms of A, equation (4.11) providing the link with the 
original variable. In this case we then have 

qo 	Esec A, 	 (4.12) 

	

-E2 sec2 A + 1, 	 (4.13) 
go 	A(e) + 2E2  tan A. 	 (4.14) 

(4.14) and (4.13) clearly show the parabolic form of the fall, to the first approxima- 
tion. (4.14) was constructed by using (4.5). 

We express q,v, g and 0 in the form of Taylor series about it = 0, viz.; 

q = go+ (MD • +.... 
Using (4.3)-(4.6), we can show that 

q 	E sec A - 	cos3 A)/2E2, 	 (4.15) 
0 	- A- (eifr.  cos3  A sin A)/2E3, 	 (4.16) 
v N - E2 sec2 A + 1 + (eV/ cos2  A)/E, 	 (4.17) 
g 	A(e) + 2E2  tan A.+ (eVr sin A cos A)/E. 	 (4.18) 
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To find a second approximation, we put go  = E see A + ql, and neglect all 
terms of 0(q1), so that vo  = - E2  sectA + 1- 2E sec Aqi. On substituting these 
values into (4.15) and (4.17), and then using the new values of (4.15) and (4.17) 
in (4.8), we find that 	ql  = - (6 cos A)/4E2. 
It is then easily shown that the full second-order approximations are 

q 	E sec A - (e cos A) 14E2  - (elk cos3  A) 12E2, 	(4.19) 
O 	-A- (ellr cos3  A sin A) 12E3, 	 (4.20) 

-E2sec2 A+ 1 +612E+ (4cos2 A)1E, 	 (4.21) 
6 — z(e) + 2E2  tan A + (eilr sin A cos A)1E, 	 (4.22) 

and 	 A. c— 	os4 A/[2E3(1 - 6 cos2  Al 4E3n, 	 (4.23) o- 
so that 	o - A(e) 2E3(tan A + tan3  A) - tan A). 	(4.24) 
The equations (4.19)-(4.22) have the appearance of asymptotic expansions 
under three different limits, namely 

(i) e 4, 0 with itc, A fixed, and A > 0, 
(ii) e t co with 0', A fixed, and A. > 0, 
(iii) A. t PT with e, ik fixed, and e O. 

It should be noted that in the case of the limit (ii) E =1+-16- fe, and so e/E E. 
However only in the limit (i) can the unknown constants, i(e) and A(e), be 
determined by matching. 

5. The matching procedure 
We consider the limiting process, e 4, 0 for f = m(e)f m , with fm  fixed, and 

1 < m(e) < e-1, where the notation a(e) < b(e) means a/b 4, 0, as e 4, 0; 
a, b 0. fm  is called an intermediate variable because; 

f = m(e) f ro  t co, as e 4, 0 with fm  fixed, 
and 	 T = em(e)f m  4, 0, as e 4, 0 with fm  fixed. 
We now assume that the set of intermediate order functions m(e) defines an 
overlap region in which the inner expansion, the outer expansion and the 
exact solution are all asymptotically equal. Therefore we express the inner 
expansion, in terms of the intermediate variables, for f t co, and the outer 
expansion, also in terms of the intermediate variable, for T 4, 0, and compare 
the two resulting expansions. 

We have, from § 3, the result that for f t co 

z = m(e)f m+ e[- -4 m2  (e) 	—log 2 m(e) f m+ const] + 0 (e2m3  (e)). (5.1) 
7T 

If in (4.21) and (4.22), we express A in a double series in e and o, and making use 
of (4.23), we can put the outer expansion into the form, 
z = e-11(6.0+ 2 tan co  + i tan2  co) + em(e)fm cos2  co(1 - i tan2  co) 

+.162m2(6)/m2 (- cos3  co  tan co  + 4,i cos4  c0(2 sin2  c0  - 1))] + O(e2m3(e)) 

	

+ [(i1  + 4, tan co  - 4- sin co  cos c0  + 2a1  cos2  c0  + 	sin2  c0  - 2a1  sin co  cos c0))] 
+ em(e)f,j(i sect co  + 2  sine c0  - 4,  cos2  c0  - 4a1  cos co  sin co) + i(2 sin co  cos co  
— 2a1  cos 2c0)] z  cos4  co  -1- 0 (e2m2 ) + 0(e), 	 (5.2) 

.x 	fat I r&8 / • 
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where co  is the value of A for e = 0 and CT = 0, and A(e) = Ao  + eAi  + . 
al  is a constant to be determined and is related to A1, where 

A(e) = Ao  + eAl  + 

On comparing (5.1) and (5.2), we find that, from first-order terms 
Ao+ 2 tan co  = 0, 	 (5.3) 

tang co = 0, 	 (5.4) 

and we can thus deduce from these that 

co  = 0, Ao  = 0. 

We can also deduce, from the size of the terms we have neglected, that 

1 < m(e) < 

and so for matching to one term, the overlap region is defined by 

f = m(e)f.; 1 < m(e) < 	0 < fm  < oo. 

On putting co  and Ao  to zero in (5.2), we have 

z =m(e)fm eno(e) + (Ai  + 2%) 

— ia1  em(e) fm + 0(e2m3(6)) + 0(e2m2(e)) + 0(e). (5.5) 
On comparing (5.5) and (5.1), the first two terms in each are the same, and from 
the other terms we have that 

+ 2cti  = 0, 

a1  = —1 log 2, 
77 

and so 	 Al = --21og 2. 	 (5.8) 

Also from the neglected terms, we can deduce that 
1 < m(e) < 

Therefore, for matching to two terms, the overlap region is defined by 
f = m(e) fm , 1 < m(e) < et , 0 < f„, < oo. 

From (5.7) and (4.24), we find that 
2 Ao  = 0, A1  = — — log 2. 
7T 

Therefore by matching we have found that 

0(e) = — log 2.e+ O(e2 ), 

and 	 A(e) — i-2 log 2.e+ 0(e2 ). 

Also, the fact that the two expansions do have the same asymptotic form in the 
overlap region, provides a strong indication that our assumptions, as to the form 
the expansions should take, were correct. 

(5.6) 

(5.7) 
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The determination of the constants in the outer solution provides a complete 
solution covering the whole flow field. Figures 3 and 4 show this solution, 
for the upper and lower streamlines, in the cases when e = 0.1 and e = 0.5. 
In the latter case, the inner solution displays a tendency towards a reversal 

y 

0  x  2 3 	4 

   

—3 
FIGURE 5. Case of e = 2.0; comparison between our outer solution and the solution of 

Southwell & Vaisey (1946). - - - -, Outer solution; 	, Southwell & Vaisey solution. 

in the direction of the flow, a tendency which becomes more severe with increasing 
e. In figure 5, the outer solution is shown to be in close agreement with the 
Southwell & Vaisey solution fOr e = 2, though, for this case, the inner solution 
is such that it does not coincide with the outer solution before reversal occurs. 

This work was done while the author was at the Mathematics Department, 
Imperial College, London. I am indebted to Mr L. E. Fraenkel for suggesting this 
problem, for his considerable guidance and encouragement during the course of 
this investigation, and for his advice on the presentation of this paper. I am 
also grateful to the Department of Scientific and Industrial Research for a grant 
during the period of this research. 
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In figures 6...9 we compare Markland's results with our 

own for the cases Sm. 2.0 (also included in this figure is 

the Southwell and Vaisey (1946) solution), 6% — 0.50 

0.125 and E 0.03125 respectively. The agreement 

between the solutions can be seen to be very close for 

small 6 though a little disappointing for the cases 

0.5 and e —2.0, especially in the light of the 

close agreement between our solution and that of Southwell 

and Vai sey for the latter case. 
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Part 2 

The separation of a viscous fluid. at an edge 

1. Introduction 

We consider the separation that a viscous fluid experiences 

when it encounters an abrupt change in the geometry of a 

solid boundary. Instances of sudha change occur at the mouth 

of a nozzle, at the brink of a waterfall or at the trailing 

edge of a flat plate. The problem is considered to be two-

dimensional and the fluid to be incompressible. 

The problem will be idealised as follows; a viscous fluid 

flows along a plane, inclined at an eaglet!, to the direction 

In which gravity is acting, until it encounters the end of 

the plane. The fluid then breaks away and is bounded below 

thereafter by a tree streamline, initially inclined to the 

plane at an unknown angle oc. As we shall consider only the 

flow in the immediate neighbourhood of the separation point, 

both the solid plane and the free streamline may be considered 

to be straight lines ( see figure 1 ). 

Michael (1958) treated this problem by separating the 

variables in the governing blharmonic equation, expressed in 

polar co-ordinates, and thereby found a number of possible 

solutions. We adopt an entirely different procedure. The 
problem is reformulated into one of finding a pair of complex 
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functions satisfying certain boundary values. This technique 
has considerable generality, and will be utilised in Part 3 
in a problem of greater originality. The present problem is 
to be seen more as an illustrative example of the technique. 

Moist/ (1955), awl following him langlois (1964), allude 
to this reformulation, though their approach is quite 
different from the one presented. here. 

2. Formulation 

We use rectangular cartesian co-ordinates, taking the 
separation point to be the origin and the free streamline to 
be the x-axis. u and v are to be the components of the 
velocity in the x and y-directions. As we are considering 
only the flow very near the separation point, we shall 
neglect inertia effects. Accordingly, the equations of motion 
will be the Stokes equations. 

Figure 1. 
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The equations of motion, together with continuity, are 

t 	7: - _.-1 -1  -4- AL 172  UV, Z))(  

0 = 	_ 2:14, + LA_ 72v 
.b. 

	
ay I 

'6V- 	7. ÷ ' a ..Y  
ax 	‘6 

) 
) 

(2.2.1) 

(2,2.2) 

(2.2.3) 

where is the potential of a conservative body force, in 

our ease 
W = -ecl{xcq%k+p) -r(4A-(01+.11)} 	• 	(2.2,4) 

(2.2,1) and (2.2,2) may be expressed together in terms of 

the stress tensor pis, as 

W) 	= 0 	(2.2.5) 

where 	

i)11 	
)=' aX 
	 (2.2.6) 

17- 	t)s• I =-7,14- (R. 	) 	 (2.2,7) 

1).2 * 
	 (2,2.8) 

e$ 1  

From (2,2,5) we infer the existence of an Airy stress 

function, 	, such that 

)1 = .21)4) 4-w 

aC
1312 .112.1 - ax63 

( 2. 2.9) 

(2.2.10) 
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e)( 	) 	 (2.2.11) 

and from (2.2.3) we infer the existence of a stream function 
kp such that 

o‘p uL  
OX 

z 	 (2.2.12) 

If we subtract (2.2.6) fran (2.2.8) , and (2.2.9) from 
(2.2.11) and compare the two resulting equations, and compare 
(2.2.7) with (2.2.1©), we have 

61 %. _ ht.L. 

	

d• 	c5x
4  
, 	) 	(2.2.13) 

	 ay) 
eA) 	 (2.2.14) * 

We now change the independent variables to z(en xiiy) and 
x-iy) ( ordinarily z and. z are not independent; however 

if we consider the more general case where x and y are both 
complex variables, then z and are independent. We treat 
our situation as a special case of this, in which the 
imaginary parts of both x and y reduce to zero. In this 
sense z and I.  are independent ), then (2.2.13) and (2.2.14) 
became 

62 % +  
2)-Vi 

sic ei)4,  
1.1. 55-? 

(2,2,15) 

(2.2.16) 



11 

Addi these two solstices we obtain 

71..x4) o 	 (2.2.17) 

Ore 

4-; 21.4= z F(z) t Utz) (2.2.18) 

where the analytic functions i(s) a 0(s) are to be 
determined fres their botaidar, values. 

It is worth noting here that as V2 = 4- then 2.1. 

Ft(z) 	72  (11.,+:1 2 JA,.0 	- 	W +1)4 v1/4S) 

where i is the vortioity, this provides a physical 
interpretation of f(s). 

The boundary conditions to be imposed are, quite generally, 
that on a solid boundary, the velocity reduces to zero, and 
on a free streamline, the shear stress, the nozmsl stress 
and the normal velocity all vanish. ilathematicall these 
say be expressed as: 

on a free streamline plinj me 0 amt vinj 

on a solid boundary rri 	0 s  

where ni is the unit outward nozsal vector. In general, the 
location of the free streamline will be unknown and the 



streamline itself will be ourvill 	o owe:roam this diff- 
iculty„ we will denote it by the eqms 	y $(x) and treat 
S as another unknown dependent variable. in the rartioularly 
simple cage we are considering in this section*  the free 
streamline is rectilinear and is given by S 0, though the 
angle 04 remains unknown. 

The stress conditions are written 

tit n, 

cl>2.1 	4-  

2. n2. = 

112. r O - 

end the outward normal veotor is (t)-#) where s is 
sone length-like parameter 1110611Uted along the free stream. 
line. These equations are then expreieed in differential 
form; 

(b_22..c 	vs's) aAj  + (t:4) okot 

O6)6  sIC clj fax  Ws ) 0\X. 
%3 

S(N) 

rbete We  denotes the value W takes on the fres streamline. 
On integrating these equations t we ignore am, constants of 
Integration, as we may add any linear expression to 
without contradicting its definition ), we obtain 

on y y1  

Nisis5/(x) cux. 

ws.doc 

 



these into one complex oondition 

6% +.1 	- Ws ( is,N)) odic • ax ay (2.2.19) 
The velootiry condition on the tree streaaline is 

~wgnirraleat to the oonittion that the strewn function is a 
constant there. Hence 

014) , +-5)..i) .014i 	(s-v‘. 	scx.) <SX 
so 

Vc )}= d is•vt. 	SN) 	(2.2,20) 

d boundary 

ot ax 
= . 	 (2.2.21) 

We now *sprees these conditions in terns 	) and G(s). 
differentiating (2.2.18) seperately with respect to x libd 
and then ^Wiwi and subtracting the resulting equaitions. 

we have 
(61 	 - F(z) 

Taking the conjugate of the first of these, and then adding 
awl subtracting this with the wand* we find that 

p(2.) z_ WCZ +- 

	

.3)( 	j  

	

ap,(t 	Ftz.) _z_F/(2.) 	el/co . 



we have to find the analytic 
unction 8(x) which satiety 

In the general problem, 
lunation. 1ns) and O(s) 
the following onalitions 
(1) ou a Ire* streamline denoted. by y 2(z) 

F(z) ÷z Fi(z) 1-  C Cz> = - iv4s (14-; s'(x))dix 

MN 	(Hi SI(X))(FC2) 	 7(7;) ---27Ft  )1 0 ; 

) es s solid boundary 

F (z.) - z. 	(7-) - 

(2.2.22) 

12.2.29 

(2.2.24) 

3. 	The solution in the vielnity of the edge 

As previously mentioned, in this emirs 8(x) is identioally 
woo  and. this of worse greatly sispliftes the problem. If 
we write s r.exp(I 0, than the free streamline is denoted 
by 0= o , saa the solid plane b18  .7c-ck= 	The **edition* 
to be elied, are 

Ftz-) -kr2 051(00) )(2  ewe ̂  o 3 (2.3.1) Z Ff(z) 	'(z) 

Fca)1 (2.3.2) 

2.F1(z) - Czqz) =o 	ay... 9 	. 0.'4) 

ID dotting (2.3.2) we have used. (2.3.1) as well as (2,2,23). 



interest to the region where r is 
that this region Vs) and Ws) are 

Woolly small functions of s. bi therefore pose that 

Vs) 	A.sx-i- smaller terms 

of (2.3.3) shows that G(s) 
	

the MX 

G 	B.sx+1+ smaller terms 

We oan 	if the gravity terms are comparable with the 
viseous terms, then A= 2. We shall show, however, that 
possible solutions exist for 0<)‘< 2 (in feat we shall show 
that they must exist if we are to obtain a sensible solution).  
This means that the gravity terms ere unimportant in the 
region very near the edge. For > < 2, the bouodary conditions 
will be homogeneous and so only the ratio WA will be 
determined, the absolute values being dependent upon the flow 
outside the region of validity of our field equations. In 
this respect, sal in the final solution, there is of course 
a great similarity with the solution for the flow in the 
neighbourhood of the leading edge of a seal-infinite flat 
plate in an unbounded fluid as given by Carrier and Lin (1948). 

Therefore considering for 0< X< 2 we see fro. (2.3.2) 
that A is real, and from (2.3.1) that p is also real and that 
B 	A. For other than a trivial solution (2.3.3) gives 

eJAIL 



Thatis 
e 	>•'s 	a 	+ # 1 	= 

Separating the real and imaginary parts of this equation: 

ela% 2?% IS — cer )- ) (2.3.4) 

(2.3.5) 

(2.3.4) can be wri ten in the form 

ece XY 4- As41.  A:2- sic 	 0 

With X> 0, this is sitIvo definite on the left handsid e 
and hence we conclude that 

ct6,M5 =0 	; sA 	o 

Therefore by (2.3.4) it is neaseseary that 

= 	12.n.4-1) 	; 	-k• 2"it 	- - • 

and by (2.3.5) these exe sufficient. This means that 

o4 = 	0) 	 - - • 

Of these,, only ix.ol-Tc have any physically reellseable 
significance and so we have only the two possible sets of 
solutions: 

=o 	 ) 2 , 	2 5. ) 	 (2.3.7) 

	

X . J, a 6 	 (2.3.8) 



1s 	rale the 	 -11) and 'X 	•  
for in these cases there exists at least one ei in 0<9.i<r-cx 

such that ‘1) 0i) = o ithich implies a situation such as that 
illustrated in figure 2. 

2 	qualitative diagram of the flow corresponding 
to the mode 	, A = 31n.. 

The solution corresponding to >‘:-- 2 ( that is, the solution 

forced b  gravity) is also unsuitable as a leading term for 
the following reasons. 'or A= 2, 	oan seas three physically* 
possible values 0)+1, 	. In the last case, the 	region 
is divided, into sectors such as in figure 2. The first two 
oases give the solutions 

o 	• 

ti) 	 SAAF) (02. 



The first of t 	ow be seen to represent a flow in the 
opposite direetion to the one proposed. The swami case 
vanishes for p=o (i.e. when the solid plane is parallel to 
the direction of gravity). it is for this reason that we 
cannot admit tide solution as a leadinq term. 

All the 'Wasted sodas fila)r of 'mum appear as higher- 
er terms, but the mole 	=et be present and 

dcminant far r4/ 0. 
For the mole cx-01 / 4 ----1 we have 

F (z) - A e2-4-. 	 (z) -A 	+- 

- A z 	36- + • - 	(2.3.9) 
The velocity components ar then, in polar co.oelinstes 

v„ 	A el o31 (341 5 c c. 399/0 , to- 

vo  = - 	 ". r'12. 	tfhi- sA',",19/, 

and the shear stress on the solid boundary is given bar 

-c 	- A cv"x- 	 (2.3.12) 

The flow pattern is given qualitatively in figure 3. 

(2.3.10) 

(2.3.11) 



The line MN is the locus 

of points where the radial 

velocity vanishes, and is 

inclined to the free streamline 

at an angle 2cos 113. 

25 

Figure 3 
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Part 3 

The twomdinensi 	 In a Jet of viesnotur 
11 uld 

1. Introduction 

An inompressible viscous fluidpasses through a two-
dimensional orifice and. then falls vertically. and sysesetr-
loony, under the influence of gravity, bounded by two free 
streamlines ( see figure 1 ). 	awe stage below the orifice 
we take a section Al, &Oross the jet, end opaline our 
interest to the region of the flow below this section. lie 
leave the mow in *blob the fluid *roue* Al i.e. the 
precise nature of the veloeity and stress distribution on-Al) 
as arbitrary. 

we would, of course*  have liked to solve the problem in 
the whole of the fluid region. It was formulated and consid.. 
erg in some dotal, but appeared to be inflatable*  even for 
Stokes flow, because of the difficulty arising tree the 
nixed ocin-linear boundary conditions t the unbamown function 
s(t) describing the boundary enters these oenditions in a 
mean-linear way ). 

Gravity will accelerate the fluid and so by continuity 
there will be a contraction of the jet, thereby giving rise 
to viscous stresses*  which will in turn produo• an offset 



Figure I 

upon the 
jet to be extremely t 
falling as a solid body 
dominating the vigoous 

however*  we impact the 
ad particle to be 

with the inertia effects 
s. 

we take the mass flux across AB to be 2C4, 	so the only 
parameters appearing in the problem are tit  go  aid . 
Therefore the only dimensionless parameter is WIT accord-
ingly we define the Reynolds number It b  R so WIT We shall 
*onside? B to be =all. Ilia basic length awl islocity scales 
involving Q.  go. NA 	are 63Q1913 awl (10.1/- )"3  • 
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if we non-dimensionaltse the field equations with these 
quantities, and. 	loy a perturbation scheme, based upon the 
smallness of 	then the.  solution so obtained will be 
incorrect fax downstream. We will therefore use the method of 
matched asymptotic mansions, the perturbation parameter far 
downstream being the thinness of the jet coupled with the 
finite velocity gradients across it. The terms ° inner ° and 

outer " have the seas significance as they did in Part 1. 
The inner expansion is derived by using the complex 

variable formalise developed in Part 2 for the Stokes equation: 
and then iterating to take account of the inertia effects. 
lie were only able to egress this inner expansion in a form 
that is valid at substantial distances free the initial station 

this is, of course, sufficient to furnish us with the 
missing boundary conditions for the outer expansion. The 
outer expand= is derived in a manner very similar in swept  
to the derivation of the outer expansion in Part 1„ although, 
because of the far more *replicated algebra, the procedure is 
formalised. In order to utilise the thinness of the jet, 
distances ani velocities are assle noopdlisensional with respect 
to 	and 	. 

Strictly speaking, the two expansions should be developed 
side by side and matched at each stage before proceeding to 

the subsequent stags. However, in vise of the fact that the 



e derived by 	OM methods, 
the inner 	ei are derived here before 

the outerexpansion is considered, Where a step in one 
expansion is dependent upon the previous stage in the other 
expansion*, this will be note& eat implained in the text. 

grown (1961) gave details of some experimental work on 
viscous shoots and in an appendix to this paper Taylor girn 
a derivation of the equation of motion of a one-dimensional 
viscous jet under gravity. This equation is the same equation 
as the one we derive for the leading termori our outer 
expansion, though the methods of derivation are very dissial ar. 
Kazuo (1958) solved Taylor's equation numerically, though 
by somewhat imprecise methods, His solution is virtually 
indistinguishable numerically fres the correct solution but 
in one region it is construeted upon a coneeptusaly false 
basis. Here we solve the equation ensiytioally and, on 
examination of this general solution, find that there are 
serious difficulties associated with any numerical solution. 



2. 	 ion 

2.1.Formulation 

la take 0, the mid-point of 	to be the origin of ao-
ordinates, and using rectangular certesian Coordinates we 
take the Loads to be in the direction of gravity ( i.e. 
along the line of symmetry) and the 1.a cis in the direction 
OB. We denote the components of the velocity in the L and Y 
directions by U and. V. Non-dimensional variables are defined 
by (X,Y) ()Y0t)//3(x,y) (110V) (g42&)1/3(u,v) 

P 	P el-N/0113P, 	 (3.2.1) 
where P is the pressure, normalised so that P 0 outside 
the fluid region. e g and Is ars respectively, the fluid 
density, the acceleration due to gravity and the kinematio 
viscosity, all assumed to be constant. we define, as the 
only dimensionless parameter appearing in the problem, a 
Reynolds weberB i• V-15' and consider this to be small. If 
we denote the velocity vector by - (u,v) then we oxprOso 
the Navier-Stokes equations in terms of the non-dimensional 
variables 

°k(ct.s7)ct, t 	 (3.2.2) 

3hsre I is the gravity term, equivalent to (1 0) . The 
condition tar continuity becomes 

V. et. .o. 	 (3.2.3) 
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The bouvlary conditions do be applied are that the *hew 
stress, the normal stress aid the normal velocity are all 
sere on the free streamlines. As the free streamlines are 
also unknown we shall denote them. in view of symmetry. by 

S(x;R). 

2.2. The 

	

The dependent iables are 	ivy and R. We 
airs that we oan moat st, p and S in a series in R ( or 
in functions of R) and that the first term in each will be 
independent of R. We obtain the zerowarder field equations 
formally by putting R 0 in (3,2.2) and (3.2.3) 

	

+ c7 0 
	 (3.2.4) 

%0V. 	= 0 
	

(3.2.5) 

equations (3.2.4) are, of coarse. the Stokes equations. 

We now recall the teohnique in Part 2, and on the basis cif 
this we construct a dimensionless Airy function 7(0 and a 
dimensionless stream function 	. and hence two analytic 
functions r(a) am %c  (z)such that 

	

1C,s+ 240  z Fo  CZ) r 	q0(z) 	(3.2.6) 

By using the results of Part 2(2). our problem is to find 
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70(4 	(s) and a curve y 	(x) such this* 

F0 (z) z Foqz) +.47T) 	xS(;(x)dx 	(3.2.7) 

1 -‘sct.(x)]EF8(.2-.)-zp,;(2.) - 	3 = 0 	(3.2.8) 

en 	**? 30(x). 
We cen see from (3.2.7) and (3.2.8) that, if a solution 
ate, then for large values of x we must have 

16 0 O(s) 	%(s) N o(s3) 	- 80(x) 	o 

The last of these, though not at first obvious, nay be 
obtained by putting 	Oben) into (3.2.8) ( choosing 
the negative payer to ensure oontlnuit ) and Boding that 
n 2. Hence 012 putting 

Yo(z) or 4022  + molter terms • 
Cre(E) •• bos3  +-  smaller terms 
80(4 *00 01.2  +-  maa.ter terms s  

end inserting these into (3.2.7) and (3.2.8), we find that 
• 3/8 and bc, 00.5/24. co  remains undetermined, as (3.2.8) 
and the Imaginary part of (3.2.7) „ from which co  could be 
determined, are both homogeneous in eo. However*  by the way 
in which the quantities were made dimensionlesss  the free 
streamlines are denoted by 	and so by considering the 
mass flux amoss any  section we require that 

So(x) 
u,° (x, 44,) c1 ‘.3  = 	1 	 (3.2.9) 0 
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1,10-tiVo  = (F0  --Z.F1 -Q) , We way use this in 
(3.2.9) to find that co  8 

The error involved in neglecting the smaller terms is of 
order x-6  times the retained tango  and so for a second 
approximation we put 

Fo(r) aos 	4  + bier terms, 
Go(s) bos3  boie-3  smaller terms, 
00(4 " 001.2+ 001:C8  smeller terms. 

Against  on inserting these into (3.2.7) and (3.2.8) o  we full 
atxt ist -76/5 	bcol " 548/15 	001 a/ 1792/15. 

The error again is 0(x) times the smallest of the retained 
terms. farther terms in the ontransica may be calculated in 
the same Ilayo  but we dual not do so here. 

Jur can be seen, there are no arbitrary terms involved in 
this solution at arty stage end yet we have not specified acy 
initial conditions. This objection may be (maraca's by 
interpreting this solution as a °particular* solution farad 
by gravity to which we may add "omplesentazyn isolations 
( by analogy with the terms as used in the theory of linear 
boundary-value problems; as remarked previously this problem 
is non-linear because of the form of the boundary conditions). 
For lens values of x, these complementary solutions must be 
of lower order than the particular solution. It we Introduce 
into rb a tans aoz and into wqo  a term poz2.  we find trot 



(3.12.7)03.2.8) that ft„--0(6 	that a tens -kkoc0 )<-3  
suit be introduced into 0,,(x). t addition it gives rise 
to terms 2 and - zocz. in r and cio  and a tam 38A-a: x-* in 
So and so on. 040 remains arbitrary and may only be deter- 
mined from the thitial ocaditices• The solution to the *zero- 
order problem. written in the form of an expansion for large 
x, is then 

Fo (z) = .3. z:z  + etc z. 4-2.54 - 76  z,-4  i WI' oc r 5  + • - - - - 	) 	(3.2.10) $ 	 -. 	5 	°  

46(..z) = -.24- 5  e -okde -.2o z-  + 5231. Z-3  - 102.60(0Z.-ti- - - ' 	) 	(3.240 IS 	---g- 

Z0  (-/L) --: 8>C1 -2.6c1,0X-5 -3. -Z'4'(55  +S. z"octx' 
-3.2.*.c: x-7  + (7- 22'4 +1114)x-z-WW- 27  ill c(.3)it)4" .. - IS 	 )5 

When we acne to match the inner and outer expansions we 
shall want a form of uo  for large x on the line of *poetry 
( the matdiing for vo  and. the off-centre terms of uo  is 
automatically accomplished when we mateh u0  on y 0 ). This 
is then, from (3.2.10) and (3.2.11) 

lit  es., 1- gxz +s=4oX Jr  iota -1- . (3.2.13) 

2.3. The first-order approximation 

At this stage we could ealoulate the dominant tern of the 

(3.2.12) 



outer expansion,. matching it to :(t-4..13) in order to fix an 
arbitrary constant in the outer mansion. It would then 
appear that, if the two empanelons are to watch to higher 
Orders, the inner expansions for 4, and p must be of the form 

oi, 	zy3 A. , 	R grs R-4'' '1-4+  
R,va 4 	a $ .t_ 

Also it is only the zaatchi that OM force the existence of 
l mad pi. As we shall see, skl, ani pi  vanish identically. 

We shall ignore these tensity rather than include them and 
their manifeetations in the higher-order approximations. 
only for their effects to be meditated. upon formal matching. 
With al  and pi  absent, it is again only the matching that 
forces the existence of g2 and p2. These terns, we shall see, 
are present. These assertions will be elaborated later: we 
turn now to the secondr.order approximations. 

2.4. The seconi-order approxbation 

Br (3.2.14) the field equations for the second-order 
problems are 

V ot„ 

V. 01,2, = o . 



win employing the technique in Part 2, we 
costs 	Y,7_ and 1/1. *  together with lik(s) and 02(5) such 
that 

1,4.; zA), = z KrzT) 

'fir ms will experience a shift of orb22/3  
1.0. 8 has the tea 

S DC; 	S 0 (x) + R."1S, (x) -1--Q243  •C (X) +R.S3 	- 	) 

and so in the houplary conditions we suet also include the 
sere -order terns as the will contribute ease tune of order 
R2/3  to the stress ard. velocity cooditions on the new 
boundary. The total boculary conditions are then 

+ RY2{ Fz  tz.T2./ 	-,f3 	2,x.2  4- E (5,;+R.-2-6s‘.)0Lx, 

[i -; ) +2212(F17X/_ -&0]  

On y as So (X) +R2/382(4. 
Using hints from the *sidling ire look fora solution of 

the form 
C12.Z* 4- Sn'Vetit-er 	YA. 

q2(2.) = b, zs +- small ex 	rww.S,  
Sx(x) = 	Cy + s tyva,11.er +-eAervt,S 

Substituting these values into (3.235) • taking oars to 
absorb all the terse fro the sero•orter terse Web stain 
03. 311264 , we find that )32,. -al  ad cl.-- -6LKL-2.uhere ct2. rosins 



purpo r the aecond-order 
contribution to u on the line cifsymmetry is 11213(a24,...). 

is determined fray the outer expansion by matching. The 
terms, moiler in so  asy be found in the sane way as before. 

r 

Here the Inertia terms 
field etiwnione awe 

(R-D.v)ct,, 	7_1) 	71cl.3  

ot, a 	o 

In Appendix A we develop a proeedure which allows us to 
extend the complex variable formalism of Part 2 to the 13th  
iteration. By the results of 41MM A,  we ealletruet 
and 

 
13 such that 

17,0-; 

i.e. 1/3-1--; 24, = z F3(z) Wz) -, -.10(tz6- 37.c 2. 4- 112'2.2- 62e lee) , 

where again 73(5) and. G() are miutown analytic funotions. 
We have retained only the leading toms of ucrivo  as only 
these will contribute to the leading terms of 73  and, 0. 

The total borndsxy erudition. to the order C in R 

zif,) ko--; 

R io (5z2- bzi 3E92.  



required are then 

	

Fok, + 	Etz.f-2-t-&..!2  +-RiS +z?‘-1-&-  +12 21- bzr 40 2+2. 

+1/ 	+go -z2-1) zi++-t DEc - 	(S + 	 y 
(3,2.16) 

14 -i 	 ) 	 ) 

	

) 	(6zs -422. 1--sz22. 3  - So 	+ 10 Es), =- 

80(4 +R2/302  + Ra (x) 
The solutions are here forced by 	inertia terra and. so 
we look for solutions of the form 

(Z) = 0.3 ZS  4- g rvk_cx.114x -1-2Arfts , 
(2,) 	bs z.6 	souN114r 47.e.vvA,S, 

S3  (x) = C-3X 4- Sill a UV' ie-rtAs 

Substituting these into (3.2.16), and again collecting all 
terms of order R from the lower-order terms arising from the 
boundary shift„ we find that 

-zo b3 2-10 c - 

The leading contribution to u on the line of symmetry is 
'P. 2- 9 XS 

We could in principle pursue our calculations further, 
but in view of the similarity of method and the absence of 
any salient results we will, divert our Interest to the outer 
=Pension. 



3 The outer expansion 

3.1. formulation 

Tar downstream we moot the jet to become 	thin and 
the variations in the veleettlee esti stresses *erase it to 
beetwie 

We define non-dimensional variables by 
(Z, T) "")331311s(ii.0 
p  aip rillshea 

(tip V) a' olq"(fi,4i) 
-5: ell  lita)t 

(3.3.1) 

Whew* (x•y) 
-1/3/\ and p R p, 

The quantities denoted by capital letters are as in the 
inner problem. 	• the dimensional stream function, is 
made non-dimensional as in (3.3.1) so that the free stream- 
lines are again denoted by \\)=-1-  1 R ern 11113 is the Reynolds 
number, as defined in the inner problem. The way in which 
we lake T non-dimenatonal does not, of course, nom F of 
order unity in the region eonsidered ( unlike ( ), but this 
is immateria1 as we shall be treating as a deposient 
variable in what follows. We dual now omit the symbol 13 
for convenience, end restore it when we cone to match the 
two enensions formally. 

As before the free streamlines are unknown in teas of 
x and y, but are given by ‘1= -±1 . We will therefore consider 



the problem to be in the ..plezte 	5 es (p, aq) ). Sere 
9 is defined by: 

cp .11 x on the line of symmetry, sat the lines 9 •• *mutant 
are everywhere orthogonal to the lines ;up constant. That 
is, 6? aced itkp constitute an orthogonal curvilinear oe-ordinate 
system. 

If we put q (u2+-A then the velocity oesponents 
with reapeot to ( 	Sp) are (q,0) whereas those with respeot 
to (2,y) were (u 	(gems A ,-qsine) this defines the 
angle 0 

The two planes are linked by the following tzenefornation 

x= 0 	IA-V ) 	(3.3.2) 
ct_LO c41  , 	(3.3.3) c‘, 

The are length parameter associated with A. is (1  sad 
that with q  , we denote by h. The formal definition of b is 

ant so b could be derived in texas of q and 
e from (3.3.2) and (3.3.3). This is, however, an arduous 

task and not particularly illuminating: we adopt an alter' 
native approach. Consider a constant vector ( without arty 

loss of generality we shall use the vector 0:, which in 
this problem is representative of gravity ). In tho 

.1t
k 	zo

- 	) 	e ) 
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As the 	of V x is unity's -4, 0a ( the sign being 
implied b (3.3.2))*  and therefore 

x = 	(oste s-vo. e) • 

we know that V, x and V. V x both vanish identically, aid 
therefore expressing these in the -Sane we  bare 

kcp(V) 1 ca- ( ks4AA6) = 0 	(3.3.4) 

h(st0) - 	( -kczcO) 7-0 	(3.3.5) 

equations we may deduce quite 	ly*  that 

1:a-c\/9/(ct19v) 	 (3.3.6) 

R., 9 cp I °V 	 (3. 3* 7) 

*ere the subscripts denote differentiation with respect 
to the variable indicated. 

An interesting oasparison any be drawn here with the 
outwit problem of Part 1. Squations (3.3.2) and (3.3.34 
defining streamline oo.ordinates. we direct parallels with 
those of Part 1 ( equations (4.5) aryl (4.6) )4  owl (3.3.4) 
and (3.3.5) bear a very strong reseablance to the Cauohy- 
Bleann equations ( equations 4.3) aid  (4.4) of Part n• 
Row Venn we *all not have a nasentam integgal equation 
bemuse of the symmetry of the present problem, *id so we 
shall have to use the full lavier.litoltes 'qualms, These 



become in the ...plane 

01/11+ .gp? = f\te,40 -1- R,-2q/k,41.-,..tw( vl-..,) 	) (3.3.8) 

(3.3.9) 

The equation of continuity is automatically satisfied by 
the use we have made of the stream funotion as an independent 
variable. We have then,. the four equations (3.3.6)-(3.3.9) 
for the four unlatowns q, h, p and G • 

The boundary conditions are particularly sisp e s frog 
the stress tensor we can calculate that the zero shear and 
normal stress conditions to be applied on tpr-±1 • are 

c1,13 	o 	 (3.3•10) 

- a 6cp 	 (3,3.11) 

or, in view of the fact that we shall not be oonsidering the 
region in which q could vanish on the free streamline, and 
as h is non-sero*  133.10) beccmes 

(A/1-9,) =-- 0 	 (3.3.12) 

Bras sysesetry considerations, it can be seen that q, b, 
and p will be even functions of ‘p ass 0 will be an odd 
function of q) , and hence of R 	( as in the field equations 
13 ant kl) always appear in conjunction with one another ). 
We therefore pose that 
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- co t R24)2.047_ tz4 y4-01,4 	— 	(3.3.13) 

	

h, = I + R2.12  fit2 4- R9- vt- 	
) (3.3.10 

R4AV t>1. 	. 	43.345) 

Ro? 	R5‘P 92 4- 	 • (3.3.16) 

Although Si and 4  attend, one another in the field equations, 
R does not Appear explicitly with 4  in the designation of 
the boundary. We therefore assert that the coefficients of 
fi) in (3.3.13)-(3.3.16) will be functions of cf. sicl B. 
When we match the outer *mansion and the inner ex;pansion, 
it becomes apparent that the coefficients must have the form, 
to take a typical example 

0 (9; R) = go 0 (GO i- lz,"5ctoi(T)+Ielq,02.(w)-1-- 	.(3•3•17)  

3.2. The derivation of the equations for thi  eta. 

we use the equations (3.3.6) and (3.3.7) Dal the bona cry 
conditions (3.3.11) and (3.3.12) to obtain relationships 
between the ooeffloients in the expansions of the four 
dependent variables. The expressions (3.3.13)-(3.3.16) 
together with (3.3.17) and its aouaterparts are eubstituted 

into (33.0 and (3.3.7) and coefficients of compared. 



tearrangement that 

(j) 	coo 43 

(ii) ell = qo, /420-0 -2qpict;3014 	eta.) 

(iii) AU: 	 Ctin2:1/°a;0 

(iv) f'•%1 —11:41 -3.-cticbilta.-40ctiolba4:cimictis% 
Here 0* denotes differentiation with respect to cp 

larly using (3.3.11) and (3.3.12) we find that 

1>cio 	— 2-ct;oo 

(Ti) 	10 ' 	Ct31 	 Ste. ) 

(vii) 	61/2 	gin A2-  ° 

(VIII) 66= C ,01 T17-0 1-  Gip 	 et 

We now edbetituto the values gives in (1)-(vi11) into 
(3 3.13)-(3.3.17) and thence into (3.3.8) ( and at a later 
stage into (3.3.9) ) end comparing coefficients of R, we 
find. that 

	

4 ct,t/T'D  - 4q,0019,00  ctoocitt;0  -I- 	0 	) (3.3.18) 

	

(cgyo gq;0/61,00cILN + (4 q;IJ/c);,)- 	MI110))(3.3.19 



4? 

where 	M, -0 

1\1 1 6t(014/01 (1-%°1/(M)--Pzligq1/(14 t414j 	, 	(3.3.20) 

etc 

3.3. The solutions of the equations for 41 3  eta. 

By the relationships (1)-(vill) and their higAer.order 
counterparts, we may express the coefficients of R y in the 
exPansions (3.343)-43.3.16) solely in terms et the functions 
qoi( (I) )„ aM these functions are given by the solutions of 
the differential equations (3•3•18)./(.0-3-20).  Therefore1  b7 
solving these equations we will obtain a solution to the 
problem in the outer region. We now derive emot solutions 
for goo  and qa  by analytic) nekt4 aid indicate how the 
higher-order functions way be obtained, 

Firstly we will make a slight transformation of the 
variables to simplify the arithmetic. We put IT in 42/3.0-
end go •• 41/3.1(0. rn terms of these variable*, (3.3.18) 
heoomes 

- 	co - ro-Fa 4-1 = o 	(3.3.21) 

where 0' now denotes differentiation with refit to cr. 
This is the form in *lob Tailor ( 000 Brown (1961) ) 
expressed his equation. Similarly (3.3.19) homes 
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- 	 mricto 	(3.3.22) 

the M(o-) here being the direct tr *maim of the %(T) 

in (3.3.19). 

We first consider,equation (3.3.21), which is of a type 

discussed by los (1926 p.325). By the substitution f, w • .1 

the equation is reduced to the canonical fora 

W" = w'lfw 1-wifv3 +w"-

lace gives a first integral of this equation  

(IN3 /+.02' 

where k is a constant of integration. We change the 

independent variable for tepporary cogrrenience by writing 

giving 
(,w-t-t} 

Putting 1,34-- 	, we have 

okt 

which is a form of .MW's equation. Following the standard 
procedure for solving this equation,we put 

=4:5716 	avd then  
v oar 

OLI-7  - 

213 	to give 

(3.3.23) 
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which is Aires equation and therefore 
7/-= 	C A-;,(r) 	(r) • 

Retracting our steps through the substitutions, we find that 

the general efolution of (3.3.21) is given by 

1 j  _ 	{ .2!! I" Cgtz.v3(G4441-i-Dz.;11_241105:00  ,_ 
 - 11  - 1  

NI 	(r4k) (c-i-k) Le,* Les (5-44z.)1+-zsq.2.-N6--00.1 ) (3.3.24) 

where the 0' associated with the Airy functions denotes 

differentiation with respect to •t;he arguments of these 

functions, 
Tor the particular solution which satisfies the conditions 

of our problem) we must assign values to k and the ratio G:D. 

Pro the matching we must Impose the condition that f 	0 

at 0-  so 0. We must have then, fro: (3•3.24), that 

{cIti/009 4--D12410e)1  2  - 
is infinite. Lc. A-Z IWO 	Cie) J 

Where k*e• 21.1/3k. The caly way in which this expression can 

biome infinite ( other than for infinite et  a case which we 

disregazd. ) is for 

Ai (0) 1- b CWO 0 

therefore 

.2-:/3 	c  Loz.)9g(r) -ADOlf)&W) 2   	2.-v.363.44) 
to)A, (r) - Pot9az,(f)J 
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It we allinifike for trig time being, that els such that Ai (k 
le 110*zero, then on examining the asymptotic behaviour of 

(k%r) for small and large values of a- we find that 
(leor)> 0 for small positive cr • and 

fo(kx•r)< 0 for large positive 0-  • 
Also we may easily deduCe from (3.3.24) that 

'mat is#  for va ass of cr for *high fo  "0 we have that •PO , 
and. using (3.3.21), that f i  +1. Bence we can see that fo  
can never cut the r-axis as all interseotions are tangential 
and points of local minima. We therefore conclude that fo  
has a singularity in the region 0< cr<co. In this problem we 
do not admit singularities of ci in the finite part of the 
field. We therefore assert that 

(k4) = o . 	 (3.3.25) 
Then to  is given by 

2.-91  k,  2(  
• (3.3.26) gl(r) Ael.r) 

Trcm (3,3.25) we can see that k may take any of an infinite 
set of negative values k0, k1, k2, etc.. for  as given by 
(3.3.26),1s qualitatively ass in figure a. 



04) 	Otz) 	 (IQ 
	 t) 

Figure 2 

To exclude the oscillatory behaviour in is particular 
problem we will choose k to be ko  ( keg -2.94583....). 
For small MUM of a- it fo  has the fora 

+t- 	- • • 	 (3.3.27) 

It is Iran the second tern of this expression that, on 
matching, we can assert the form the inner expansion must 
take. That is, it is the term in 1)4  of rioo  which forces the 
existent* of the term R 3g2 of the inner expansion. Alm 
large values of cr 

goo  es, + 5:4; 1-  • 

showing that the fluid does imieed fall ultinstely as a 
solid body. 

A discussion of the singular solution is given in Appenlix 
Bo  together with a criticism of Maruol a numerical solution. 

We now turn to consider the solutions of (3.3.22). Firstly 



consider the hasogeneous equation 

- (40 +.2-VA) + (1(1,2114; 	0 - 	(3,3,28) 

1 	0, (3.3.28) is in fact the **plate equation for fi; 
and as fl  is a perturbation of A" and the equation for 4 
does not contain cr explicitly, we expect 4 to be a solution 
of (3.3.28). It is easily verified by substitution that this 
is in fact the ease. 

On putting fn  #4* tlefn  and using the foregoing property of 
ft, (3.3.28) becomes 

Tn + 	- 	40 If° TYki  "-1. o 	(3.3.29) 

ego **Orono (3.3.26) In the form 

= - 046.to%T_Arzfa(r) -rbc;?Cr)] 

sad therefore a first integral of (3.3.29) is 

Tyx` = O /POI  (kit kl/] 

we ignore constants of integration as we are seeking only 
particular solutions of the equation*  and will multiply 
these solutions by arbitrary constants when considering the 
general solution of the equation. 

Taking ths logarithm of the 'Accession for fo  

tocAz 2.41 Pt;, - -to (Add- 	, 
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and di errentiating this with repeat to re  we have that 

4-01f„ 121; 	i-2:93  A-01(A,',1 '-rA•i,z) 

ard therefore 
6I„Tr, 
TO- 

/1231i, 	rAi” 	. 

On int 	ing this equation 

Tn = 	IDA;.1 (4;,2- - rAre) +- A411 

or on rearranging tales 

Tn ?' -1  Al.;  IVAi ITO 

Therefore two linearly independent solutions of the 
homogeneous equation are vi ie. 4 and. v2 mo A14 .120413. The 
first of those is of order o- 1̀2 for large cr but the *soon& 
le avonentially large at infinity. 

Returning to the inhologeneous equation; we do tot admit 
solutions that are emwenentially large at infinity. and so 
following Courant and Hilbert (1953) we define a Green's 
function as follows 

freers W 

-v,(0-)v2(.)/W(t) 
vi(t)vi(a)/ w(t) 

an ($0,4 



ion of (3.3.22) with the correct 
is givers by 

4'100 = S0 	 okr + /n 10 (0") . (3.3.30) 

The general solution of the first-order equation is 

(3.3.31) 
where L Is to be determined from the matohiug. 

We should note here that the outer expansion is not really  

restricted to the case of vanigongly small Reynolds number 
for it also has the appearance of an asymptotic expansion 
for .0? too . It is, of course, on/y In the former case that we 
can match it with the present inner ration. Also in the 
present problem it seems physically reasonable to exclude 
any oscillatory behaviour in the solution. If, however, we 
were considering a situation in which the inner problem was 
quite different, then the resection of oscillatory solutions 
would be open to question. 



4. 	The matching procedure 

lying on the matohing to provide the boundary 
Otis for the equations for 	of the outer 044081,11, 
end to show the necessity of 22 in the inner expansion. We 
MVO seen from the outer expansion that a knowledge of the 
veloolty on the line of symmetry uniquely deteridnee the 
entire flow field in the outer region and so we only need 
to match the two expansions on that line. 

Tollowing the procedure as expounded in section 5 of Part 
1, we oonsider the limiting process, R4,  0 for x m(R)xso 
with xa  fixed. and 1<< m(R)<Kir1/3. 	is called an 
Intermediate variable because 

x • NIOrm  Too with xm  fixed ant II y 0, and 
611  2k-̀ 413 11 3m(11)xeel/ 0 with x fixed. and Et Q. 

We now express the inner and outer Expansions in terms of the 
intermediate variable, the former for x too and the latter 
for o 0, and then cospare the two resulting expansions, 
trent section git es have  for x too 

U, = $ A1.10Z) x.21vi +.0to IA( f),) Xyvl 

+ 	a, m40z)x,;1*, 1 . - 

2:4  ms(R.) An‘c 	- 



As 	we do not know the form for u as gives,bT the outer 
Vision because we do Zeit iC/301/ the boundary coalition to be 
applied MT= 0, However, we assert that it must have the 
same leading tem as that provided by the inner expansion. 
That is in terms of the lateraediate variable, the outer 
expansion has a lung tea -60(1)4. Rephrasing this in 
the outer variables, we have that 

10 	crl ws 64,0 
. 	rear have the bourdazy condition for ffro  

to 7- 0 	ak 

On using this coalition to solve the arrr3uation for 
have ( equation (3.3.27) ) that, for moll 

cr +- 	cr + 	- (3.4.2) 
Tram the teas in (3.4.1) that we a/gloated, we find that 
for matching to one two the overlap domain is defined by 

m(R)xyti  ; 1<<m(R.)<< R-ms 	o< 	co 

We nay now express the outer eripenelon in terms of the 
intermediate variables, using (3.4.2) and the terse fren I 

in120z) 	i2°13120011,14.(R)4 +279  RY*W62.) X ;1•$• -i- • • - • 

(3.4.3) 
{2. 241 AI 	+- - • 

+ 



The tore in the.  second line arises from fl. We now compare 
(3.4.3) with (3.4.1). Firstly we see! as =pasted., that the 
leading terms in ofteh are identical. The next lazgest terns 
will be those of order m(11) in 1acon(B)<Or219, and those 
of ord.,: B2/34401) in Ir2/9<<m(11)<<It-1/3; equating the 
former terms we have 

(3.4.4) 
From the nesPootet terms we can /haw that for matching the 

/ terms of orders AR) and m(X), there is an overlap domain 
defined tor 

mCR)Xm 	I<<m(ct)<< p.-149 ' O<Xlvt<oo . 

It is from the matohing at this order that we are justified. 
in posing the forms (3.3.17) and that the terms poi  etc. are 
directly dependent upon the initial conditions of the inner 
problem., 

The next largest terms tin 1«m(R)«r /9  ) will be those 
of order R 3mit(R) and so on cceparing (3.4.1) ani (3.4.3) 
we find that 

) 	 (3.4.5) 
and again from the neglected terms, the overlap &main for 
matching to Ulm, terms is defined by 

= m(k)xtv, 	i<< tn(R)<< 	0<xy“ao 
The matching at this order provides the justification for the 
ca scents and the forms posed. In section 2.3.. 



with 5-8-  * to 
be seen that fo does in fact 

approach a& wary slowly. Also in figure 3 we mho" go(a- ) 
which is essentially 40, normalised for comparison purposes 
by A 	41/3  anti Um expressed in terms of known functions 
as follows; 
from the relationships (i.iI) and (vii) of section 3.2. we 
have that 

and as 

	

A 11 A a 	Ai l  " 3  
4ao 	• 2 6) C143ti 	(If m / 61,  cm 

6.13  (Cr) 	- 2  4.2 2  401  

• -1  02 (If 	 ko) 32. M-2 	c) 	64 01' 

	

'11 	L g1/07-  r  
- 	 2-243 	

401 

	

tati- a("' Ai 	16 
2:24i .2:m1 .211 	tal 

L -F 	7g, 
Therefore 

	

- 1 o L 	9243  A'')) tO 31 -f 	Al 

using the result that 

• 2.213  

JO 

we may evaluate go. Also*  from the last expression we may 
evaluate fi!)( a) *  a constant multiple of which gives n, (a.). 
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n fide 4, together with 	to which 

it symptotee.  
From figure 3, we oam see that go, whidh Is the loading 

term showing the variation of velocity across the flow, has 

bottom, insignificant, as compare with fo„ for values of a-

greater than 3. This shows that, even for substantial values 

of B, the veloolty distribution across the jet rapidly 

beaomes uniform. The fact that safcr) mg other higher-order 

terms are singular at the origin is not unexpected;  it  Chows 
that the outer expansion, as well as the inner expansion 

results from a singular perturbation. We expect the inner 

expansion to be applicable in the region where the singul 

arities of the outer expansion have a significant effect. 

Figure 4 provtles an illustration that the leading term, fo, 
also dominates on the line of symmetry not only for li\VO 

but also for 6- Too . 

rrom (3.3.2) anl (3.3.3) we have, on terminating the 

expansions imsediately prior to the first appearance of 

terms containing any arbitrary constants depenling upon 

initial coalitions, that 

+ 	' 

.27'3  Llz•P/$0] 

Tigures 5 mil 6 dhow the she of one of the free streamlines 



( the other being the, mirror image in the x-axis ) for the 

cases R .01 and R im 0.5 . The expressions 1-term and 2-term 

outer indicate whether we have omitted or included the Rp. 

dependent term in the expression for x. The upstream 

singularity In the outer expansion manifests itself in the 

R-dependent terms. Also in figures 5 and 6 is displayed the 

first term of the inner expansion, suitably expressed in 

terms of the outer variables. Unfortunately the only form in 

which we were able to express the inner expansion is also 

unsuitable for small x. This fact, as we have previously 

remarked, reduces the inner expansion to playing the role 

of providing boundary conditions for the outer expansion. 

In the preparation of these figures, considerable use has 

been made of the tables of Airy functions by Miller (1946). 
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Figure 5 
Case R 

1-term outer 
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3 	 Ai- 	 6 	7 	S 	9 
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1-term outer 

0.7 - 

t3 
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Figure 6 

Case R — 0.5 
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Appendix A 

Extension of the complex variable formalism to the nth 

iteration 

We extend the technique we developed. in Part 2 for the 

Stokes equation to take account of the inertia terms. This 

extension is then used in section 2.4. of Part 3. 
The Navier-Stokes equations are given by (3.2.2) 

(°.7)01, 	k 
	

'Vat, 

	

and continuity by 	V. 0, 

If we denote by-VW„then writing the Navier+Stokes equations 
in full, we have 

R(_tx6v,  +vs)A.A-] 	72„ ax <3 65c ax 
Il_vc6V

63 ay Y 	= 	-1- 	v  

	

'e°< 	ay 
and using continuity, these may be written 

and therefore 

E-4 L 
_Ru:1-2\Af )  

ax 6‘.3 6x 

-0\f )- Ruv + 6 2S.V. -R\11-V4/ ° (A2) 
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Following Muskhelishvili (1963 p.104), equation (Al) le the 

necessary and sufficient condition for the existence of a 

function .(11(x,Y) such that 

6/11 	 fkkA2 45‘, 	ax 

6-0-1 - 	((-)-LAay  + 6X -1-Rv/ 

Similarly the equation (A2) Is the necessary and sufficient 

condition for the existence of a function SI,(x,y) such that 

(A3) 

(4) 

aaZ  
ay 
ant 
6x 

(A5)  

- 	 - R Nix . ,t 
(A6)  

Comparing (A4) and (A5) we have 

611„ 
ax 

and hence the existence of a function 1, (x,y) such that 

	

2)\ 	 ax 

Therefore we have from (A3), (A4) and (A6) that 

2./(' 	 - TZkiJ 
ax 6 ‘ 1- 

	

'X. 	 - 

	

)0‘) 	,; 	6X 	uY 

ay 
-1) ±2 av - \ I - h17 
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we can see that 	is an Airy stress function very similar 

to those in Parts 2 and 3 but with the inertia terms on the 

right. 

We now proceed as in Part 2, changing the independent 

variables to z and atx1 derive the new form for the field 

equations 

Or 

00 

	

	
.
27,  

z_31  (ix ti 	= R (lit-iv)2' 

(x+,)-) 	(,A.g1)2' 
c22' ez 

As in the main text we pose that 7, and kk be expressed 

by the formal expansions 

2C 	R'13 .1X; 	 7,,,/3 (pi  

This gives for the (n+3)th-order equations 

02  
7(rif3f 1 -2- fl.+3) az 

 

()Ali 	n  
Z. 	et 

 

In section 2.4. of Part 3 we require this result for the 

case when n 0, that is 

- 	io  
511. 	4-1' }111) (U — iV )2  4. 0 0 

(A7)  

(A8)  



Appendix B 

The singular solutions of (3.3.21) and Maruo's numerical 

solution 

We have seen from section 3.3. that the general solution 
of (3.3.21) which takes the value fo  0 ato-= 0, is given 

by 
4-0, 2-'13. [& (Iv ) /3(r) /6t (W011/-4 (012_ 

LTA (WO A; (r) -A 1 (ki() sloe) 

with kland r as defined in section 3.3..  We have also shown 

that if Ai. (k) is other than zero, then fo  has a singularity_ 

in0<o--<00„ the exact location depending on the value 

assigned to k. For small values of o-  fo  has the asymptotic 

form 	
-1(rz 	4-t--crs+ 	(El) 

This is the same form as for the non-singular solution, 

though in this case the coefficient, k, of (Y4  is necessarily 

different. It is apparent that if we had attempted to obtain 

a solution by numerical integration, starting atni3O„ then, 

because of even the slightest of rounding errors, we could 

never keep to the non-singular solution we wanted, but would 

always veer onto a singular solution. 

For large values of o' fcr-A-23:  regardless of the value 

of k ( other than those satisfying Ai (k*) 0 ). The singular 

solutions of fo  are qualitatively as in figure 7, though the 
origin of co-ordinates and the sharpness of the peaks will 
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r 

Figure 7 

vary with k. 
We can now see that by refusing to admit a singularity, 

we have effectively refused to admit the negative possibility 
in the choice of behaviour at infinity. 

Maruo tried to integrate numerically forwards fromtrom 0, 
but encountered the singularity, ( although he never mentions 
boundary conditions, the details of his working indicate 
that the condition fo  - 0 at Till 0 was tacitly assailed for so 
long as it was convenient). He then derives a series solution 
for small cr, similar in essence to 031), though omitting 
the possibility of a term in 00-#  . At large 0 he assumes-Fr21i 
to be the leading term and iterating on this derives a series 
solution for large a-  Starting at some substantial value Of Cr 
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he integrates numerically backwards towards smallcr. On 

experienceng some difficulty in patching his numerical 

solution onto the series solution for walla-, he relaxes 

the unspoken boundary condition at the origin and arrives 

at a solution resembling that in figure 8. 

0 -o ff  

Figure 8 

As we have remarked earlier, in this particular problem, 

choosing the behaviour at infinity is the same in practice 

( though not in principle ) as rejecting solutions with 

singularities in 0<ts<oo . In the absence of an analytic 

solution we could have refined Maruols procedure, starting 

at infinity and integrating backwards to6..0. We could have 

avoided the difficulty that Maruo experienced in satisfying 

the boundary conditions at the origin by noting that the 

leading term for large 0' is t42(c+c) where c is an arbitrary 

constant, depending on the conditions at the origin. The 

independent variable can then be changed to t Cr-44, and 

then the backward integration carried out until we reach 
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the value fo  0. The value of 0 can then be chosen so that 

fo  a. 0 at (rm. 0. Considerable accuracy must be maintained 

throughout this integration as we would still have to find 

the value for k from this numerical solution. 
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