Asymptotic solutions displaying the effects of gravity and viscosity on certain flows with free boundaries.

by

N. S. Clarice

A thesis submitted for the degree Ph.D. of the University of London.

Preface

In this thesis we consider three problems in twodimensional 1luid flow. All are oharacterized by the fact that the fluid considered is, at least partially, bounded by Iree streamlines. The dificiculties associated with flows of this kind are, in addition to the normal non-linearities in the ifield equations and boundary conditions, that the boundaries themselves are unknorn, being determined by the nature of the flow they contain.

We overcame this last difficulty in the ifirst problem (the flow in an inviscid waterfall) by expressing the problem in streamline comordinates, that is, by using as independent variables the stream function and a co-ordinate forming an orthogonal net with it. The difficulties raised by the non-linear boundery conditions are resolved by employing a perturbation scheme. As this is singular, we resort to the " method of matched asymptotic expansions".

The third problem (the flow under gravity in a jet of viscous liquid) also involves a singular perturbation, and so we again resort to the above method. One of the expansions is derived after expressing the problem in streamine coordinates. The other expansion is derived by using a technique, developed in the second problem, involving a complex variable formalism. It is shown that the Airy stress

Iunction is what might be called the " binarmonic conjugate" of the stream iunction, and this relationship proves to be very userul.

The second problem (the flow of a viscous fiuld in the neighbourhood of separation at an edge) is included mainly as a vehicle for developing the complex variable formalism. The " neighbourhood "mentioned above is defined as being the region in which the non-Iinear terms in the field equations are negligibly small and where the free streamine can be consicered to be rectilinear. This disposes of both chief difficulties in the problem.
List of contents page
Part 1 on two-dimensional inviscid flow in a waterfall 5
Part 2 The separation of a viscous fluid at an edge. 12
Part 3 The two-dimensional flow under gravity in a jet of viscous liquid.............. 27
Part 1
On two-dimensional inviscid flow in a waterfall
Contents page
Preface. 6

1. Introduotion. 359
2. Formulation. 360
3. Inner expansion. 361
4. Outer expangion. 365
5. The matching procedure............................ 367
References. 369
Ditto. 11

Part 1

On two-dimensional inviscid flow in a waterfall

Preface

The material for this section bas been published. In the form of e peper. This peper is included, with one correction, and constitutes the majority of Part 1; we maice one addition. Since this paper was written, Markland (1965) has published some work on the eame problem, though like Bouthwell and Valsey (1946) (see below, pages 360 and 369), his method of attack is numerical rather than ansiytical. One advantege that Maricland's work has over that of Southwell and Vaisey, from our point of view, is that like us he works with atreamline comordinates and treats the cases for which our analysif is suitable, that is, cases in which the Froude number is greater than unity. We have used Markland's results to compare with our own. These comparisons are presented in IIgures 6, 7. 8 and 9.

The pagination of our paper is retained. We make a silght correction on page 362. In equations (3.3), (1) and (11) should read
(1)

$$
\begin{align*}
& u_{1}-0 \text { on } s_{2}=0, s_{1}>1 \\
& u_{1}-\frac{1}{2} \text { on } s_{2}=0,0 \leqslant s_{1}<1 \tag{ii}
\end{align*}
$$

On two-dimensional inviscid flow in a waterfall

By N. S. CLARKE
Department of Applied Mathematics and Theoretical Physics, University of Cambridge

(Received 6 October 1964)
This paper is concerned with the two-dimensional flow in a free waterfall, falling under the influence of gravity, the fluid being considered to be incompressible and inviscid. A parameter ϵ, such that $2 / \epsilon$ is the Froude number based on conditions far upstream, is defined and considered to be small. A flowline co-ordinate system is used to overcome the difficulty that the boundary geometry is not known in advance. An asymptotic expansion based on ϵ is constructed as an approximation valid upstream and near the edge, but singular far downstream. Another asymptotic expansion, based upon the thinness of the fall, is constructed as an approximation valid far downstream, but failing to satisfy the conditions upstream. The two expansions are then matched to give a solution covering the whole flow field. The shapes of the free streamlines are shown for a number of values of ϵ for which the solutions are seemingly valid.

1. Introduction

An inviscid, incompressible fluid flows over a horizontal bed until it falls over an edge under the influence of gravity. The flow is considered to be plane and steady. Far upstream the fluid is of depth h and has a uniform horizontal velocity U_{0}, and gravity is acting vertically downwards (see figure 1). The problem is one of finding the velocity potential Φ and the stream function Ψ as functions of position. Both Φ and Ψ must satisfy the Laplace equation subject to certain nonlinear boundary conditions, namely zero pressure on the free streamlines and zero normal velocity on the bed. The basic non-dimensional parameter appearing in the problem is $\varepsilon=2 g h / U_{0}^{2}$, and this is assumed to be small in most of this paper.

This problem involves a singular perturbation, the singularity occurring far downstream. As such, it lends itself to the technique of 'inner and outer expansions'. Kaplun \& Lagerström (1957) and Erdélyi (1961) give a general account of this technique and also cite further references. In the present paper an expansion, which is derived to satisfy the conditions in that part of the flow which is not far downstream, will be known as the inner expansion, and the region in which it is valid, as the inner region. Similarly, the outer expansion satisfies the conditions far downstream, and is valid in the outer region.

The inner expansion is constructed by a perturbation scheme, in which all lengths are referred to h and all velocities to U_{0}; this scheme may be regarded as a perturbation for weak gravity. The first approximation is therefore a uniform
horizontal stream. In the outer region, all lengths are referred to $U_{0}^{2} / 2 g$ and velocities again to U_{0}, and so in this region the perturbation may be regarded as one for small width of the fall. Here the first approximation, being hydraulic, is of the well-known parabolic form.

It is to be expected that the inner and outer regions overlap to some extent. By matching the inner and outer expansions in the overlap region, the unknown constants in the outer expansion are found, and the combined solutions then cover the whole flow field.

Southwell \& Vaisey (1946) found a result for the case $\varepsilon=2$ by relaxation techniques, and their solution has been used for comparison purposes in figure 5. Keller \& Weitz (1957) also found a solution in the outer region, though by an approach different from the one given in this paper. This solution was found to agree with ours to the first approximation.

2. Formulation

We denote the fluid velocity by $\mathbf{Q}=\nabla \Phi$, and consider a co-ordinate system $Z=X+i Y$, in which the bed is described as $Y=-h ; X \leqslant 0$. Gravity is acting in the direction of Y decreasing. The problem is to find the complex potential $F=\Phi+i \Psi$ satisfying $\left(\partial^{2} / \partial X^{2}+\partial^{2} / \partial Y^{2}\right) F=0$, subject to: (i) zero pressure on the free streamlines, (ii) zero normal velocity on the bed. The free streamlines are unknown in terms of X and Y, but are known in terms of Ψ. This suggests inverting the problem to one of finding Z as a function of F, that is, of finding Z satisfying $\left(\partial^{2} / \partial \Phi^{2}+\partial^{2} / \partial \Psi^{\cdot 2}\right) Z=0$, subject to the same boundary conditions.

To find the boundary conditions explicitly, we make use of Bernoulli's equation:

$$
P / \rho+\frac{1}{2} Q^{2}+g Y=\text { constant }=\frac{1}{2} U_{0}^{2},
$$

where the density ρ is constant throughout the fluid, and the constant on the right has been evaluated from the conditions far upstream on the upper free streamline.

We define non-dimensional variables by

$$
p=P / \rho U_{0}^{2} ; \quad q=|\mathbf{Q}| / U_{0} ; \quad z=Z / h ; \quad f=F / U_{0} h
$$

and Bernoulli's equation becomes

$$
\begin{equation*}
2 p+q^{2}+\epsilon y=1 \tag{2.1}
\end{equation*}
$$

Therefore the boundary conditions are

$$
\left.\begin{array}{rl}
\text { (i) } q^{2}=1-\epsilon y & \text { on } \psi=0, \quad \text { all } \phi ; \\
\text { (ii) } q^{2}=1-\epsilon y & \text { on } \psi=-1, \quad \phi \geqslant 0 ; \\
\text { (iii) } \operatorname{Im}\left(\frac{d z}{d f}\right)^{-1}=0 & \text { on } \quad \psi=-1, \quad \phi \leqslant 0 \tag{2.2}
\end{array}\right\}
$$

If we consider the problem to be in the complex f-plane, then the field equations are satisfied by any complex function $z(f)$. The problem is then, to find such a function $z(f)$ which satisfies (2.2).

3. The inner expansion

We pose that

$$
\begin{equation*}
z(f)=z_{0}(f)+\epsilon z_{1}(f)+\epsilon^{2} z_{2}(f)+\ldots \tag{3.1}
\end{equation*}
$$

To find the $z_{n}(f)$ we substitute (3.1) into (2.2) and, comparing coefficients of ε, obtain a sequence of linear problems in each of the $z_{n}(f)$ in turn.
$z_{0}(f)$ is simply the solution in the case when $\epsilon=0$, and so $z_{0}(f)=f$.

Figure 2. The complex s-plane, showing the boundary values of the first-order problem.

On substituting (3.1) into (2.2), and comparing first-order coefficients, we find that $x_{1 \phi}=\frac{1}{2} \psi$ on the free streamlines, where the subscript ϕ denotes differentiation with respect to ϕ. We therefore seek $w_{1}=u_{1}+i v_{1}=x_{1 \phi}+i y_{1 \phi}$, subject to

$$
\left.\begin{array}{rll}
\text { (i) } u_{1}=0 & \text { on } \psi=0, \quad \text { all } \phi ; \\
\text { (ii) } u_{1}=-\frac{1}{2} & \text { on } \psi=-1, \quad \phi \geqslant 0 ; \tag{3.2}\\
\text { (iii) } v_{1}=0 & \text { on } \psi=-1, \quad \phi \leqslant 0 .
\end{array}\right\}
$$

To solve this mixed boundary-value problem, we map the infinite strip, $0 \geqslant \psi \geqslant-1$, in the f-plane on to the upper right-hand quadrant of the $s=s_{1}+i s_{2}$ plane by the mapping: $s=\sqrt{ }\left(1+e^{-\pi f}\right)$. The boundary conditions then are as given by (3.3), and as shown in figure 2.

$$
\begin{array}{rlll}
\text { (i) } & u_{1}=0 & \text { on } & s_{2}=0, \tag{3.3}\\
s_{1} \geqslant 1 ; \\
\text { (ii) } & u_{1}=-\frac{1}{2} & \text { on } & s_{2}=0, \\
\text { (ii) } & v_{1}=0 & \text { on } & s_{1}=0, \\
s_{2} \geqslant 0
\end{array} s_{1} \leqslant 1 ; * * * * ~
$$

This problem is familiar, in that it is analogous to that of finding the complex potential of an inviscid flow, covering the entire plane, with a pair of vortices situated at $(1,0)$ and $(-1,0)$. The solution is well known:

$$
\begin{equation*}
w_{1}(s)=\frac{i}{2 \pi} \log \left(\frac{s-1}{s+1}\right) . \tag{3.4}
\end{equation*}
$$

However, it will be more helpful to solve a more general mixed boundary-value problem, as this more general solution may be used in the higher-order problems.

Consider a complex function $w_{n}=u_{n}+i v_{n}$, analytic in $s_{1} \geqslant 0, s_{2}>0$, with u_{n} prescribed on the positive real axis. Following Woods's (1961) account, we assume that

$$
\begin{align*}
& v_{n}=0 \quad \text { on } \quad s_{1}=0, \quad s_{2} \geqslant 0 \tag{i}\\
& w_{n}(s) \sim O\left(s^{-1}\right) \quad \text { as }|s| \uparrow \infty \tag{3.5}
\end{align*}
$$

(iii) $w_{n}(s)$ is integrable in the ordinary (Riemann) sense on any finite arc of the positive real axis. (Unlike Woods we do not allow w_{n}
to have singularities of the Cauchy type.)
If we consider the problem to be in the whole of the upper half plane, with u_{n} now also prescribed on the negative real axis, then the solution is well known,

$$
\begin{equation*}
w_{n}(s)=-\frac{i}{\pi} \int_{-\infty}^{\infty} \frac{u_{n}(\sigma)}{\sigma-s} d \sigma \tag{3.6}
\end{equation*}
$$

To ensure that $v_{n}=0$ on the positive imaginary axis, we have that

$$
\begin{gather*}
u_{n}(\sigma)=u_{n}(-\sigma) \\
w_{n}(s)=\frac{i}{\pi} \int_{0}^{\infty} u_{n}(\sigma)\left\{\frac{1}{s+\sigma}+\frac{1}{s-\sigma}\right\} d \sigma \tag{3.7}
\end{gather*}
$$

and using this
We return to the first-order problem. The boundary conditions satisfy (3.5), and so using this method we recover (3.4).

By the restriction (3.5, (iii)) we have excluded terms in $w_{n}(s)$ of the form

$$
i\left(\frac{1}{s-1}+\frac{1}{s+1}\right)
$$

which may be added to any solution without violating the boundary conditions except at the singular point $s=1$. This is because we accept only the weakest possible singularity for $s \rightarrow 1$, a policy justified later by the matching procedure. Therefore the solution to the first-order problem is given by (3.4), which in terms of the original variables, becomes

$$
\begin{equation*}
z_{1 f}=\frac{i}{2 \pi} \log \left\{\frac{\left(1+e^{-\pi f}\right)^{\frac{1}{2}}-1}{\left(1+e^{-\pi f}\right)^{\frac{1}{2}}+1}\right\} . \tag{3.8}
\end{equation*}
$$

* See note at foot of page 6.

When we come to the matching procedure, we will require an expression for $z_{1}(f)$ as $f \uparrow \infty$; this is then from (3.8)

$$
\begin{equation*}
z_{1}(f) \sim-\frac{i}{4} f^{2}-\left(\frac{i}{\pi} \log 2\right) f+\text { const. }+O\left(e^{-\pi f}\right) \tag{3.9}
\end{equation*}
$$

We now turn our attention to the second-order coefficient, z_{2}. On inserting (3.1) into (2.2), and comparing second-order terms, we have that

$$
x_{2 \phi}=\frac{1}{2}\left(y_{1}+3 x_{1 \phi}^{2}-y_{1 \phi}^{2}\right)
$$

on the free streamlines. We therefore seek $w_{2}=u_{2}+i v_{2}=x_{2 \phi}+i y_{2 \phi}$, subject to

$$
\left.\begin{array}{rlll}
\text { (i) } & u_{2}=\frac{1}{2}\left(y_{1}-y_{1 \psi}^{2}\right) & \text { on } \psi=0, & \text { all } \phi ; \tag{3.10}\\
\text { (ii) } & u_{2}=\frac{1}{2}\left(y_{1}-y_{1 \phi}^{2}\right)+\frac{3}{8} & \text { on } \psi=-1, & \phi \geqslant 0 ; \\
\text { (iii) } v_{2}=0 & \text { on } \psi=-1, \quad \phi \leqslant 0 .
\end{array}\right\}
$$

Mapping the f-plane onto the s-plane, we find that on $s_{2}=0, u_{2}$ has a finite discontinuity, and singularities of the nature $\log ^{2}\left|s_{1}-1\right|$ and $\log \left|s_{1}-1\right|$ at $s_{1}=1$, but has no singularities elsewhere. Hence u_{2} satisfies (3.5, (iii)). Also

$$
u_{2}=O\left(s^{-2}\right) \quad \text { as } \quad|s| \uparrow \infty
$$

and so all the conditions in (3.5) are satisfied. Therefore, using (3.7), the solution is given by

$$
\begin{equation*}
w_{2}(s)=-\frac{3 i}{8 \pi} \log \left(\frac{s-1}{s+1}\right)+\frac{i}{\pi} \int_{0}^{\infty} G(\sigma)\left\{\frac{1}{s-\sigma}+\frac{1}{s+\sigma}\right\} d \sigma \tag{3.11}
\end{equation*}
$$

where $G(\sigma)=\frac{1}{2}\left(y_{1}-y_{1 \phi}^{2}\right)$ on $s=\sigma, \sigma$ real. The behaviour of $G(\sigma)$ near $\sigma=1$, is given by

$$
G(\sigma)=-\frac{1}{4 \pi^{2}} \log ^{2}|\sigma-1|+\frac{1}{2 \pi^{2}} \log 2 \log |\sigma-1|+\frac{1}{8} H(1-\sigma)+J(\sigma)
$$

where H is the Heaviside unit function, and $J(\sigma)$ is regular at $\sigma=1$. To remove this singularity from within the integral, we define the complex function $\gamma(s)=\alpha\left(s_{1}, s_{2}\right)+i \beta\left(s_{1}, s_{2}\right)$ by

$$
\begin{align*}
\gamma(s)=-\frac{1}{4 \pi^{2}} \log ^{2}\left(\frac{s-1}{s+1}\right) & +\frac{i}{8 \pi} \log \left(\frac{s-1}{s+1}\right)-\frac{1}{4 \pi^{2}}(s-1) \log (s-1) \\
& +\frac{1}{4 \pi^{2}}(s+1) \log (s+1)-\frac{1}{2 \pi^{2}} \log (s+i)-\frac{1}{2 \pi^{2}} \tag{3.12}
\end{align*}
$$

The function $\gamma(s)$ satisfies the conditions (3.5), and $G(\sigma)-\alpha(\sigma, 0)=\Omega(\sigma)$, where $\Omega(\sigma)$ and $d \Omega(\sigma) / d \sigma$ are continuous in $0 \leqslant \sigma \leqslant \infty$. From (3.7)

$$
\begin{equation*}
\gamma(s)=\frac{i}{\pi} \int_{0}^{\infty} \alpha(\sigma, 0)\left\{\frac{1}{s-\sigma}+\frac{1}{s+\sigma}\right\} d \sigma \tag{3.13}
\end{equation*}
$$

Subtracting (3.13) from (3.11) we have

$$
\begin{equation*}
w_{2}(s)=\frac{-3 i}{8 \pi} \log \left(\frac{s-1}{s+1}\right)+\gamma(s)+\frac{i}{\pi} \int_{0}^{\infty} \Omega(\sigma)\left\{\frac{1}{s-\sigma}+\frac{1}{s+\sigma}\right\} d \sigma . \tag{3.14}
\end{equation*}
$$

The behaviour of $z_{2}(f)$ as $f \uparrow \infty$, is then
$z_{2}(f) \sim-\frac{1}{12} f^{3}+\frac{1}{2}\left(\frac{i}{4}-\frac{1}{\pi} \log 2\right) f^{2}-\left(\frac{1}{\pi^{2}} \log ^{2} 2+\frac{1}{2 \pi^{2}}+\frac{i}{8 \pi}-\frac{i}{\pi} \log 2\right) f+$ const. $+O\left(e^{-\pi f}\right)$.
It is worth noting here that on the lower streamline near the edge
and

$$
\begin{aligned}
& z_{1} \sim-\frac{1}{2} \phi-i \frac{2}{3 \sqrt{\pi}} \phi^{\frac{3}{2}}+O\left(\phi^{\frac{5}{2}}\right), \\
& z_{2} \sim A_{0} \phi+i \frac{2 A_{1}}{3} \phi^{\frac{3}{2}}+O\left(\phi^{5}\right),
\end{aligned}
$$

Figure 3. Case of $\epsilon=0 \cdot 1 ;$, inner solution; \cdots, outer solution.

Figure 4. Case of $\epsilon=0.5$; - , inner solution, \ldots, , outer solution.
where A_{0}, A_{1} are real finite constants. In both these expressions, the leading singular terms are of order $\phi^{\frac{3}{2}}$. This shows that the singularity in the first-order term does not give rise to a more singular term in the second-order expression. It would appear, then, that at the edge, $z(f)$ has no worse a singularity than that contained in $z_{1}(f)$.

The functions $x_{1}, x_{2}, y_{1}, y_{2}$, have been evaluated numerically for the upper and lower free streamlines in the range $-5 \leqslant \phi \leqslant+5$, and the results have been used in the construction of the figures 3 and 4. The higher-order terms in (3.1) could be derived in a similar manner, but we terminate the inner expansion after the second-order term.

4. The outer expansion

Defining the complex velocity by $q e^{-i \theta}$, we know that $q e^{-i \theta}=\mathbf{f n}(\phi+i \psi ; \epsilon)$, but we do not know the manner in which ϵ enters this function for large values of ϕ. However, if we take $U_{0}^{2} / 2 g$ as reference length, and U_{0} as reference velocity, this makes the width of the fall of order ϵ. That is, if ψ^{+}is the new non-dimensional stream function, then the flow is bounded by the streamlines $\psi^{+}=0, \psi^{+}=-\epsilon$. This narrowness is useful so long as $\partial / \partial \psi^{+} \sim O(1)$, for then we may assume little change across the fall. We have from the boundary conditions on the free streamlines

$$
\begin{equation*}
\left[q^{2}\right]_{\psi=-1}^{\psi=0}=-\epsilon[y(\phi, \psi)]_{\psi=-1}^{\psi=0} \quad(\phi>0) . \tag{4.1}
\end{equation*}
$$

This indicates that $\partial / \partial \psi^{+} \sim O(1)$ far downstream, and we therefore adopt $U_{0}^{2} / 2 g$ and U_{0} as the reference length and velocity in this region. Then $z^{+}=z^{+}\left(f^{+} ; \epsilon\right)$, where

$$
z^{+}=\frac{2 g Z}{U_{0}^{2}}=\epsilon z \quad \text { and } \quad f^{+}=\frac{2 g F}{U_{0}}=\epsilon f=\phi^{+}+i \epsilon \psi
$$

We define the outer limit to be

$$
\epsilon \downarrow 0, \text { with } \phi^{+}, \psi \text { fixed } \phi^{+}>0 ; \text { applied to } z^{+}\left(\phi^{+}+i \epsilon \psi ; \epsilon\right)
$$

whereas the inner limit was

$$
\epsilon \downarrow 0, \text { with } \phi, \psi \text { fixed, } \phi<\infty ; \text { applied to } z(\phi+i \psi ; \varepsilon)
$$

It will be noted that ϵ does not appear in the boundary conditions, but in the actual boundary $\psi^{+}=0, \psi^{+}=-\epsilon$.

The expression $z^{+}=z^{+}\left(f^{+} ; \epsilon\right)$ suggests that we could expand z^{+}in a power series of the form

$$
\begin{equation*}
z^{+}=z_{0}^{+}\left(\phi^{+}+i \epsilon \psi\right)+\epsilon z_{1}^{+}\left(\phi^{+}+i \epsilon \psi\right)+\ldots \tag{4.2}
\end{equation*}
$$

and with direct substitution of (4.2) into the boundary conditions; $q^{2}=1-y^{+}$ on $\psi^{+}=0$ and $\psi^{+}=-\varepsilon$, we would obtain a sequence of non-linear, ordinary differential equations for $x_{n}^{+}\left(\phi^{+}, 0\right)$ and $y_{n}^{+}\left(\phi^{+}, 0\right)$, which could be solved.

However, we approach the problem from a different viewpoint. The following derivation is more satisfactory in that it is simpler, sheds more light on the physical problem, and leads to a series valid not only under the outer limit previously defined, but also under two other limits.

First, we change to a less cumbersome notation, writing

$$
z^{+}=\zeta=\xi+i \eta ; \quad f^{+}=\tau ; \quad \phi^{+}=\sigma
$$

We have then that $\log q-i \theta=\mathrm{fn}(\tau ; \epsilon)$, and therefore, by the Cauchy-Riemann relations,

$$
\begin{align*}
\epsilon q^{-1} q_{\sigma} & =-\theta_{\psi} \tag{4.3}\\
q^{-1} q_{\psi} & =\epsilon \theta_{\sigma} \tag{4.4}
\end{align*}
$$

Also from the definitions of ϕ and ψ,

$$
\begin{align*}
& d \xi=q^{-1}(\cos \theta d \sigma-\epsilon \sin \theta d \psi) \tag{4.5}\\
& d \eta=q^{-1}(\sin \theta d \sigma+\epsilon \cos \theta d \psi) \tag{4.6}
\end{align*}
$$

The boundary conditions are

$$
\begin{equation*}
q^{2}=1-\eta \quad \text { on } \quad \psi=0, \quad \psi=-1 \tag{4.7}
\end{equation*}
$$

By considering momentum flux in the ξ-direction, it can be shown that

$$
\begin{equation*}
\int_{-1}^{0}(p / q+q) \cos \theta d \psi=\text { const. }=1+\frac{1}{4} \epsilon=E, \tag{4.8}
\end{equation*}
$$

where the flow conditions far upstream have been used to evaluate the constant on the right, and p is given by

$$
\begin{equation*}
p=\frac{1}{2}\left(1-\eta-q^{2}\right) . \tag{4.9}
\end{equation*}
$$

In terms of the variable ψ, the width of the fall is $O(1)$, and derivatives with respect to ψ are $O(\epsilon)$, and so we may take as a first approximation that q and θ are independent of ψ, and also that $q^{2} \geqslant p$. Then from (4.8) we have

$$
\begin{equation*}
q_{0} \sim E \sec \theta_{0} \tag{4.10}
\end{equation*}
$$

where the subscript ' 0 ' denotes the value taken on $\psi=0$. Also from (4.7) and (4.6), $q_{0}^{2}=1-\eta_{0}$ and

$$
\left(\frac{d \eta}{d \sigma}\right)_{0}=q_{0}^{-1} \sin \theta_{0}
$$

which, with (4.10) give

$$
\frac{2}{3}\left(q_{0}^{2}-E^{2}\right)^{\frac{3}{2}}+2 E^{2}\left(q_{0}^{2}-E^{2}\right)^{\frac{1}{2}} \sim \sigma-\Lambda(\epsilon),
$$

where $\Lambda(\varepsilon)$ is a constant of integration.
We define $\lambda(\sigma, \epsilon)$ by $\theta_{0}=-\lambda$; then

$$
\begin{equation*}
\sigma-\Lambda(\epsilon) \sim 2 E^{3}\left(\tan \lambda+\frac{1}{3} \tan ^{3} \lambda\right) . \tag{4.11}
\end{equation*}
$$

We may now take λ, rather than σ, to be the independent variable, and express all other quantities in terms of λ, equation (4.11) providing the link with the original variable. In this case we then have

$$
\begin{align*}
& q_{0} \sim E \sec \lambda \tag{4.12}\\
& \eta_{0} \sim-E^{2} \sec ^{2} \lambda+1 \tag{4.13}\\
& \xi_{0} \sim \Delta(\epsilon)+2 E^{2} \tan \lambda \tag{4.14}
\end{align*}
$$

(4.14) and (4.13) clearly show the parabolic form of the fall, to the first approximation. (4.14) was constructed by using (4.5).

We express q, η, ξ and θ in the form of Taylor series about $\psi=0$, viz.;

$$
q=q_{0}+\left(q_{\psi}\right)_{0} \cdot \psi+\ldots
$$

Using (4.3)-(4.6), we can show that

$$
\begin{align*}
& q \sim E \sec \lambda-\left(\epsilon \psi \cos ^{3} \lambda\right) / 2 E^{2}, \tag{4.15}\\
& \theta \sim-\lambda-\left(\epsilon \psi \cos ^{3} \lambda \sin \lambda\right) / 2 E^{3}, \tag{4.16}\\
& \eta \sim-E^{2} \sec ^{2} \lambda+1+\left(\epsilon \psi \cos ^{2} \lambda\right) / E, \tag{4.17}\\
& \xi \sim \Delta(\epsilon)+2 E^{2} \tan \lambda+(\epsilon \psi \sin \lambda \cos \lambda) / E . \tag{4.18}
\end{align*}
$$

To find a second approximation, we put $q_{0}=E \sec \lambda+q_{1}$, and neglect all terms of $O\left(q_{1}^{2}\right)$, so that $\eta_{0}=-E^{2} \sec ^{2} \lambda+1-2 E \sec \lambda q_{1}$. On substituting these values into (4.15) and (4.17), and then using the new values of (4.15) and (4.17) in (4.8), we find that

$$
q_{1}=-(\epsilon \cos \lambda) / 4 E^{2} .
$$

It is then easily shown that the full second-order approximations are

$$
\begin{align*}
& q \sim E \sec \lambda-(\epsilon \cos \lambda)\left|4 E^{2}-\left(\epsilon \psi \cos ^{3} \lambda\right)\right| 2 E^{2}, \tag{4.19}\\
& \theta \sim-\lambda-\left(\epsilon \psi \cos ^{3} \lambda \sin \lambda\right) \mid 2 E^{3} \tag{4.20}\\
& \eta \sim-E^{2} \sec ^{2} \lambda+1+\epsilon\left|2 E+\left(\epsilon \psi \cos ^{2} \lambda\right)\right| E, \tag{4.21}\\
& \xi \sim \Delta(\epsilon)+2 E^{2} \tan \lambda+(\epsilon \psi \sin \lambda \cos \lambda) \mid E \tag{4.22}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{d \lambda}{d \sigma} \sim \cos ^{4} \lambda /\left[2 E^{3}\left(1-\epsilon \cos ^{2} \lambda \mid 4 E^{3}\right)\right] \tag{4.23}
\end{equation*}
$$

so that

$$
\begin{equation*}
\sigma-\Lambda(\epsilon) \sim 2 E^{3}\left(\tan \lambda+\frac{1}{3} \tan ^{3} \lambda\right)-\frac{7}{2}(\epsilon \tan \lambda) . \tag{4.24}
\end{equation*}
$$

The equations (4.19)-(4.22) have the appearance of asymptotic expansions under three different limits, namely
(i) $\epsilon \downarrow 0$ with ψ, λ fixed, and $\lambda>0$,
(ii) $\epsilon \uparrow \infty$ with ψ, λ fixed, and $\lambda>0$,
(iii) $\lambda \uparrow \frac{1}{2} \pi$ with ϵ, ψ fixed, and $\epsilon \geqslant 0$.

It should be noted that in the case of thelimit (ii) $E=1+\frac{1}{4} \epsilon \sim \frac{1}{4} \epsilon$, and so $\epsilon / E \ll E$. However only in the limit (i) can the unknown constants, $\Delta(\epsilon)$ and $\Lambda(\epsilon)$, be determined by matching.

5. The matching procedure

We consider the limiting process, $\epsilon \downarrow 0$ for $f=m(\epsilon) f_{m}$, with f_{m} fixed, and $1 \ll m(\epsilon) \ll \epsilon^{-1}$, where the notation $a(\epsilon) \ll b(\epsilon)$ means $a / b \downarrow 0$, as $\epsilon \downarrow 0$; $a, b \geqslant 0 . f_{m}$ is called an intermediate variable because;

$$
\begin{array}{ll}
& f=m(\epsilon) f_{m} \uparrow \infty, \text { as } \epsilon \downarrow 0 \text { with } f_{m} \text { fixed, } \\
\text { and } & \tau=\epsilon m(\epsilon) f_{m} \downarrow 0 \text {, as } \epsilon \downarrow 0 \text { with } f_{m} \text { fixed. }
\end{array}
$$

We now assume that the set of intermediate order functions $m(\epsilon)$ defines an overlap region in which the inner expansion, the outer expansion and the exact solution are all asymptotically equal. Therefore we express the inner expansion, in terms of the intermediate variables, for $f \uparrow \infty$, and the outer expansion, also in terms of the intermediate variable, for $\tau \downarrow 0$, and compare the two resulting expansions.

We have, from §3, the result that for $f \uparrow \infty$

$$
\begin{equation*}
z=m(\epsilon) f_{m}+\epsilon\left[-\frac{i}{4} m^{2}(\epsilon) f_{m}^{2}-\frac{i}{\pi} \log 2 m(\epsilon) f_{m}+\text { const }\right]+O\left(\epsilon^{2} m^{3}(\epsilon)\right) \tag{5.1}
\end{equation*}
$$

If in (4.21) and (4.22), we express λ in a double series in ϵ and σ, and making use of (4.23), we can put the outer expansion into the form,

$$
\begin{align*}
z=\epsilon^{-1} & {\left[\left(\Delta_{0}+2 \tan c_{0}+i \tan ^{2} c_{0}\right)+\epsilon m(\epsilon) f_{m} \cos ^{2} c_{0}\left(1-i \tan ^{2} c_{0}\right)\right.} \\
& \left.+\frac{1}{2} \epsilon^{2} m^{2}(\epsilon) f_{m}^{2}\left(-\cos ^{3} c_{0} \tan c_{0}+\frac{1}{2} i \cos ^{4} c_{0}\left(2 \sin ^{2} c_{0}-1\right)\right)\right]+O\left(\epsilon^{2} m^{3}(\epsilon)\right) \\
& +\left[\left(\Delta_{1}+\frac{1}{2} \tan c_{0}-\frac{1}{2} \sin c_{0} \cos c_{0}+2 a_{1} \cos ^{2} c_{0}+i\left(\frac{1}{2} \sin ^{2} c_{0}-2 a_{1} \sin c_{0} \cos c_{0}\right)\right)\right] \\
& +\epsilon m(\epsilon) f_{m}\left[\left(\frac{1}{2} \sec ^{2} c_{0}+\frac{1}{2} \sin ^{2} c_{0}-\frac{1}{2} \cos ^{2} c_{0}-4 a_{1} \cos c_{0} \sin c_{0}\right)+i\left(2 \sin c_{0} \cos c_{0}\right.\right. \\
& \left.\left.-2 a_{1} \cos 2 c_{0}\right)\right] \frac{1}{2} \cos ^{4} c_{0}+O\left(\epsilon^{2} m^{2}\right)+O(\epsilon), \tag{5.2}
\end{align*}
$$

* for 1 read /.

where c_{0} is the value of λ for $\epsilon=0$ and $\sigma=0$, and $\Delta(\epsilon)=\Delta_{0}+\epsilon \Delta_{1}+\ldots$. a_{1} is a constant to be determined and is related to Λ_{1}, where

$$
\Lambda(\epsilon)=\Lambda_{0}+\epsilon \Lambda_{1}+\ldots
$$

On comparing (5.1) and (5.2), we find that, from first-order terms

$$
\begin{gather*}
\Delta_{0}+2 \tan c_{0}=0, \tag{5.3}\\
\tan ^{2} c_{0}=0 \tag{5.4}
\end{gather*}
$$

and we can thus deduce from these that

$$
c_{0}=0, \quad \Delta_{0}=0
$$

We can also deduce, from the size of the terms we have neglected, that

$$
1 \ll m(\epsilon) \ll \epsilon^{-1}
$$

and so for matching to one term, the overlap region is defined by

$$
f=m(\epsilon) f_{m} ; \quad 1 \ll m(\epsilon) \ll \epsilon^{-1}, \quad 0<f_{m}<\infty
$$

On putting c_{0} and Δ_{0} to zero in (5.2), we have

$$
\begin{align*}
z=m(\epsilon) f_{m}-\frac{i}{4} \epsilon m^{2}(\epsilon) f_{m}^{2} & +\left(\Delta_{1}+2 a_{1}\right) \\
& -i a_{1} \epsilon m(\epsilon) f_{m}+O\left(\epsilon^{2} m^{3}(\epsilon)\right)+O\left(\epsilon^{2} m^{2}(\epsilon)\right)+O(\epsilon) \tag{5.5}
\end{align*}
$$

On comparing (5.5) and (5.1), the first two terms in each are the same, and from the other terms we have that

$$
\begin{align*}
& \Delta_{1}+2 a_{1}=0 \tag{5.6}\\
& a_{1}=\frac{1}{\pi} \log 2 \tag{5.7}
\end{align*}
$$

and so

$$
\begin{equation*}
\Delta_{1}=-\frac{2}{\pi} \log 2 \tag{5.8}
\end{equation*}
$$

Also from the neglected terms, we can deduce that

$$
\mathrm{I} \ll m(\epsilon) \ll \epsilon^{-\frac{1}{2}} .
$$

Therefore, for matching to two terms, the overlap region is defined by

$$
f=m(\epsilon) f_{m}, \quad \mathrm{l} \ll m(\epsilon) \ll \epsilon^{-\frac{1}{2}}, \quad 0<f_{m}<\infty .
$$

From (5.7) and (4.24), we find that

$$
\Lambda_{0}=0, \quad \Lambda_{1}=-\frac{2}{\pi} \log 2
$$

Therefore by matching we have found that
and

$$
\begin{aligned}
\Delta(\epsilon) & =-\frac{2}{\pi} \log 2 \cdot \epsilon+O\left(\epsilon^{2}\right), \\
\Lambda(\epsilon) & =-\frac{2}{\pi} \log 2 \cdot \epsilon+O\left(\epsilon^{2}\right)
\end{aligned}
$$

Also, the fact that the two expansions do have the same asymptotic form in the overlap region, provides a strong indication that our assumptions, as to the form the expansions should take, were correct.

The determination of the constants in the outer solution provides a complete solution covering the whole flow field. Figures 3 and 4 show this solution, for the upper and lower streamlines, in the cases when $\epsilon=0.1$ and $\epsilon=0.5$. In the latter case, the inner solution displays a tendency towards a reversal

Figure 5. Case of $\epsilon=2 \cdot 0$; comparison between our outer solution and the solution of Southwell \& Vaisey (1946), --- -, Outer solution; ——, Southwell \& Vaisey solution.
in the direction of the flow, a tendency which becomes more severe with increasing c. In figure 5, the outer solution is shown to be in close agreement with the Southwell \& Vaisey solution for $\epsilon=2$, though, for this case, the inner solution is such that it does not coincide with the outer solution before reversal occurs.

This work was done while the author was at the Mathematics Department, Imperial College, London. I am indebted to Mr L. E. Fraenkel for suggesting this problem, for his considerable guidance and encouragement during the course of this investigation, and for his advice on the presentation of this paper. I am also grateful to the Department of Scientific and Industrial Research for a grant during the period of this research.

REFERENCES

Erdelyi, A. 1961 An expansion procedure for singular perturbations. Atti. Accad. Sci. Torino, 95, 1.
Kaplen, S. \& Lagerström, P. A. 1957 Asymptotic expansions of Navier-Stokes solutions for small Reynolds number. J. Math. Mech. 6, 585.
Keller, J. B. \& Weitz, M. L. 1957 Theory of thin jets. Proceedings of the ninth International Congress of Applied Mechanics, Brussels.
Southwell, R. \& Vatsex, G. 1946 Fluid motions characterized by free streamlines. Phil. Trans. A, 240, 117.
Woods, L. C. 1961 The Theory of Subsonic Plane Flow. Cambridge University Press.

In IIgures 6-9 we compare Markland's resulte with our own for the cases $\in=2.0$ (also included in this ifgure is the Southwell and Valsey (1946) solution), $\epsilon=0.50$. $\epsilon=0.125$ and $\epsilon=0.03125$ respeotively. The agreanent between the solutions can be seen to be very close for small ϵ, though a ilttle disappointing for the cases $\epsilon-0.5$ and $\in-2.0$, especially in the light of the close agreement between our solution and that of Southwell and Vaisey for the latter case.

REFFGRTMNCE

MARKLAND E. 1965 Calculation of flow at a Iree ovarfall by relaxation method. Proc. Instn. civ. Fingrs. 31, 78.
Part 2
The meparation of a viscous fluid at an edge
Contants

1. Introduction. 23
2. Formulation. 14
3. The solution in the vioinity of the edge.. 20
Roforences. 26

Part 2

The separation of a viscous fluld at an edge

1. Introduction

We consider the separation that a viscous 2luid experiances When it encounters an abrupt change in the gecmetry of a solld boundary. Instances of such a change occur at the mouth of a nozzle, at the brink of a waterfall or at the trailing eage of a flat plate. The problem is considered to be twodimensional and the iluid to be incompressible.

The problem will be Idealised as follows; a viscous fluid flows along a plane, incilned at an angle β to the direction in which gravity is acting, until it encounters the end of the plane. The fluid then breaks away and is boumed below thereaiter by a free gtreamine, initially inclined to the plane at an unicnown angle α. As we shall consider only the flow in the immediate neighbourhood of the separation point, both the solid plane and the Iree streamline may be considered to be straight lines (see 1igure 1).

Michael (1958) treated this problem by separating the variables in the governing bihamonic equation, expressed in polar co-ordinates, and thereby foum a number of possible solutions. We adopt an entirely different procedure. The problem is reformulated into one of Inding a pair of acmplex
functions satisfying certain bounarry values. This technique has considerable generality, and will be utilised in Part 3 in a problem of greater originality. The present problem is to be seen more as an illustrative exmmple of the technique. Moisil (1955), and following him Langlois (1964), allude to this reformulation, though their approach is quite different from the one presented here.

2. Formulation

We use rectangular cartesian co-ordinates, taking the separation point to be the origin and the iree streamline to be the x-axis. u and v are to be the components of the velocity in the x and y-directions. As we are considering only the flow very near the separation point, we shall neglect inertia effects. Accordingly, the equations of motion will be the Stokes equations.

Figure 1.

The equations of motion, together with continuity, are

$$
\begin{align*}
& \frac{\partial p}{\partial x}=-\frac{\partial w}{\partial x}+\mu \nabla^{2} u, \tag{2.2,1}\\
& \frac{\partial p}{\partial y}=-\frac{\partial w}{\partial y}+\mu \nabla^{2} v, \tag{2.2.2}\\
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0, \tag{2.2.3}
\end{align*}
$$

where W is the potential of a conservative body force, in our case

$$
\begin{equation*}
W=-\rho g\{x \cos (\alpha+\beta)-y \sin (\alpha+\beta)\} \tag{2.2.4}
\end{equation*}
$$

(2.2.1) and (2.2.2) may be expressed together in terms of the stress tensor $p_{i j}$; as

$$
\begin{equation*}
p_{i j, j}-w, i=0 \tag{2.2.5}
\end{equation*}
$$

where

$$
\begin{align*}
& p_{11}=-p+2 \mu \frac{\partial u}{\partial x}, \\
& p_{12}=p_{21}=\mu\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right), \tag{2.2.7}\\
& p_{22}=-p+2 \mu \frac{\partial v}{\partial y} . \tag{2.2.8}
\end{align*}
$$

$$
(2.2 .6)
$$

From (2.2.5) we infer the existence of an Airy stress function, X, such that

$$
\begin{align*}
& p_{11}=\frac{\partial^{2} x}{\partial y^{2}}+W, \tag{2.2.9}\\
& p_{12}=p_{21}=-\frac{\partial^{2} x}{\partial x \partial y}, \tag{2.2.10}
\end{align*}
$$

$$
\begin{equation*}
p_{22}=\frac{\partial^{2} x}{\partial x^{2}}+W, \tag{2.2.11}
\end{equation*}
$$

and from (2.2.3) we infer the existence of a stream function ψ such that

$$
\begin{equation*}
\frac{\partial \psi}{\partial y}=u \quad ; \quad \frac{\partial \psi}{\partial x}=-v \tag{2.2.12}
\end{equation*}
$$

If we subtract (2.2.6) from (2.2.8), and (2.2.9) from (2.2.11) and compare the two resulting equations, and compare $(2.2 .7)$ with $(2,2.10)$, we have

$$
\begin{gather*}
\frac{\partial^{2} x}{\partial x^{2}}-\frac{\partial^{2} x}{\partial y^{2}}=-4 \mu \frac{\partial^{2} \psi}{\partial x \partial y}, \tag{2.2.13}\\
\frac{\partial^{2} x}{\partial x \partial y}=\mu\left(\frac{\partial^{2} \psi}{\partial x^{2}}-\frac{\partial^{2} \psi}{\partial y^{2}}\right) \tag{2.2.14}
\end{gather*}
$$

We now change the independent variables to $z(-x+i y)$ and $\bar{z}(=x-i y)$ (ordinarily z and \bar{z} are not independent; however 11 we consider the more general case where x and y are both complex variables, then z and \bar{z} are independent. We treat our situation as a special case of this, in which the imaginary parts of both x and y reduce to zero. In this sense z and \bar{z} are independent), then (2.2.13) and (2.2.14) became

$$
\begin{align*}
& \frac{\partial^{2} X}{\partial z^{2}}+\frac{\partial^{2} X}{\partial \Sigma^{2}}=-i 2 \mu\left(\frac{\partial^{2} \psi}{\partial z^{2}}-\frac{\partial^{2} \psi}{\partial z^{2}}\right) \tag{2.2.15}\\
& \frac{\partial^{2} X}{\partial z^{2}}-\frac{\partial^{2} X}{\partial \Sigma^{2}}=-i 2 \mu\left(\frac{\partial^{2} \psi}{\partial z^{2}}+\frac{\partial^{2} \psi}{\partial \bar{\Sigma}^{2}}\right) \tag{2,2,16}
\end{align*}
$$

Adding these two equations we obtain

$$
\begin{equation*}
\frac{\partial^{2}}{\partial z^{2}}(x+i 2 \mu \psi)=0 \tag{2.2.17}
\end{equation*}
$$

and therofore

$$
\begin{equation*}
X+i 2 \mu \psi=z \overline{F(z)}+\overline{G(z)} \tag{2.2.18}
\end{equation*}
$$

Where the analytid functions $Y(s)$ and $C(s)$ tre to be determined fres their boundary veluan.

It is worth notimg here that an $\nabla^{2}=4 \frac{\partial^{2}}{\partial z \partial \bar{z}}$, than

$$
\overline{F^{\prime}(2)}=\frac{1}{4} \nabla^{2}(x+i 2 \mu \psi)=-\frac{1}{2}(p+W+i \mu w),
$$

where ω is the vortioity, this provides a phyalem interpretation of $\mathrm{H}(\mathrm{s})$.

The boundary conditiona to be inponed are, quite generally, that on a solid boundary, the velooty reduees to zero, and

 may be oxprematia ant
on a iree utroanline $p_{1 j} D_{j}-0$ and $\nabla_{j} n_{j}-0$; on a solid boundary $\boldsymbol{v}_{1}=0$.
where n_{1} is the unit outward noxmal vector. In generni, the location of the Iree streasilne will be unimown and the
streamline itself will be ourvilinaz. To overcome this difficulty, we will denote it by the equation $y=8(x)$ and trent 8 se another unkempt dependent variable. In the partiewlacly simple orange we are considering in this mention, the free streaming is rectilinear and is given by $8 \mathbf{m}$, though the angle α remains unknown.

The stress conditions are written

$$
\left.\begin{array}{l}
p_{11} n_{1}+\phi_{12} n_{2}=0 \\
p_{21} n_{1}+\phi_{22} n_{2}=0
\end{array}\right\} \quad \text { on } y-B(x)
$$

and the cutmare norma vector is $\left(\frac{d y}{d s},-\frac{d x}{d s}\right)$, where s is sow langth-1ike pmemetor measured along the free stream Ins. These equations are then expressed in differential form :

$$
\left.\begin{array}{ll}
\left(\frac{\partial^{2} x}{\partial y^{2}}+w_{s}\right) d y+\left(\frac{\partial^{2} x}{\partial x \partial y}\right) d x & =0 \\
\left(\frac{\partial^{2} x}{\partial x \partial y}\right) d y+\left(\frac{\partial^{2} x}{\partial x^{2}}+w_{s}\right) d x & =0
\end{array}\right\} \text { on } y=s(x)
$$

where ${ }^{\text {H/ }}$ denotes the value takes on the free streamline. On integrating these equations (we ignore any constants of integration, as we may add any linear expression to X Without contradicting its definition), We obtain

$$
\left.\begin{array}{l}
\frac{\partial x}{\partial y}=-\int w_{s} \cdot s^{\prime}(x) d x \\
\frac{\partial x}{\partial x}=-\int w_{s} \cdot d x
\end{array}\right\} \quad \text { or } y=s(x)
$$

Fe examine these into one complect ounitition

$$
\begin{equation*}
\frac{\partial x}{\partial x}+i \frac{\partial x}{\partial y}=-\int W_{S}\left(1+i s^{\prime}(x)\right) d x . \tag{2.2.19}
\end{equation*}
$$

The velocity condition on the tree atreamilne is equivalent to the condition that the atropin function is a constant there. Hence

$$
0=d \psi=\frac{\partial \psi}{\partial x} d x+\frac{\partial \psi}{\partial y} \cdot d y \quad \text { on } y=S(x)
$$

and 80

$$
\operatorname{Im}\left\{\left(1-i S^{\prime}(x)\right)\left(\frac{\partial \psi}{\partial y}-i \frac{\partial \psi}{\partial x}\right)\right\}=0 \quad \text { on } y=S(x) \text {. (2.2.20) }
$$

On a solid boundary

$$
\begin{equation*}
\frac{\partial \psi}{\partial \psi}-i \frac{\partial \psi}{\partial x}=0 . \tag{2.2.21}
\end{equation*}
$$

We now express those conditions in teams of $\bar{T}(\mathrm{~m})$ and $G(\mathrm{~s})$. On difforantiasing (2.2.18) separately with respect to x and Y. and thea adding and subtracting the resulting equations, we have

$$
\begin{aligned}
& \left(\frac{\partial x}{\partial x}-i \frac{\partial x}{\partial y}\right)+i 2 \mu\left(\frac{\partial \psi}{\partial x}-i \frac{\partial \psi}{\partial y}\right)=2 \overline{F(z)}, \\
& \left(\frac{\partial x}{\partial x}+i \frac{\partial x}{\partial y}\right)+i 2 \mu\left(\frac{\partial \psi}{\partial x}+i \frac{\partial \psi}{\partial y}\right)=2\left(\overline{F^{\prime}(z)}+\overline{G^{\prime}(z)}\right) .
\end{aligned}
$$

Taking the conjugate of the first of these, and then adding and subtracting this with the abscond, we find that

$$
\begin{aligned}
\frac{\partial x}{\partial x}+i \frac{\partial x}{\partial y} & =F(z)+z \overline{F \prime(z)}+\overline{G^{\prime}(z)} \\
2 \mu\left(\frac{\partial \psi}{\partial y}-i \frac{\partial \psi}{\partial x}\right) & =F(z)-z \overline{F^{\prime}(z)}-\overline{G^{\prime}(z)}
\end{aligned}
$$

In the genaral problan, then, we have to fin the analytic
 the Eolloming oomaitions:
(1) on tree streamine, denoted by $y=g(x)$

$$
\begin{aligned}
& F(z)+z \overline{F^{\prime}(z)}+\overline{G^{\prime}(z)}=-\int W_{S}\left(1+i S^{\prime}(x)\right) d x ;(2.2 .22) \\
& \operatorname{Im}\left\{\left(1-i S^{\prime}(x)\right)\left(F(z)-z \overline{F^{\prime}(z)}-\overline{G^{\prime}(z)}\right)\right\}=0 ; \quad \text { (2.2.23) }
\end{aligned}
$$

(14) on a aclid boundany

$$
\begin{equation*}
F(z)-z \overline{F^{\prime}(z)}-\overline{G^{\prime}(z)}=0 \tag{2.2.24}
\end{equation*}
$$

3. The wolution in the viainity of the eage

An provioumily mantionot, in this case $g(x)$ is Identicaily zero, and this of courne grentiy adrplifier the problen. It
 by $\theta=0$, and the molsd plane by $\theta=\pi-\alpha=\gamma$. The coveditions to bo applied, are

$$
\begin{align*}
& F(z)+z \overline{F^{\prime}(z)}+\overline{G^{\prime}(z)}=\frac{1}{2} \rho g \cos (\alpha+\beta) x^{2} \text { on } \theta=0 ; \tag{2.3.1}\\
& \operatorname{Im}\{F(z)\}=0 \quad \text { on } \quad \theta=0 ; \\
& F(z)-z \overline{F^{\prime}(z)}-\overline{G^{\prime}(z)}=0 \quad \text { on } \theta=\gamma . \tag{2.3.3}
\end{align*}
$$

$$
(2.3 .2)
$$

In corriving (2.3.2) we have used (2.3.1) as woll at (2.2.23).

We deall confine ow Interent to the region where \mathbf{x} is coal2 ard asmen that in this rogion $F(x)$ and $O(x)$ aro afgobraionly gmall functions of s. Wo therofore pose that

$$
F(x)=A 5^{\lambda}+\operatorname{maller} \text { terme } .
$$

An exmination of (2.3.3) sbows that $G(x)$ mat be of the form

$$
G\left(z^{2}\right)-\mathbf{n}_{n} z^{\lambda+1}+\text { manler texms. }
$$

We can wee that il the gravity texm are comparabis with the Vecous terms, then $\lambda=2$. We shail show, however, that possible solutions adet for $0<\lambda<2$ (in fact we shall shom that they mast exist if we are to obtain a gensible golution). This means that the gravity teras are uniuportant in the region very mear the edge. For $\lambda<2$, the boumdery comititions W111 be henogeneous and 50 only the ratio B/A will be determined, the abaolute valuns being depondent upon the Now outaide the region of validity of our field equations. In thie respect, and in the Iinal solution, there it of course a great ginilarity with the solution for the flow in the nel ghbourinood of the leading edge of a semi-infinite that plate in an uboumied tiula an given by Carrier and Lin (1948).
theretore considering λ for $0<\lambda<2$ we soe Irom (2.3.2) that A is real, and from (2.3.1) that is is aleo roat and that B m-A. For other than a srivial solution (2.3.3) gives

$$
e^{i \lambda \gamma}-\lambda e^{-i(\lambda-2) \gamma}+(\lambda+1) e^{-i \lambda \gamma}=0 .
$$

That 18

$$
e^{i 2 \lambda \gamma}-\lambda e^{i 2 \gamma}+\lambda+1=0
$$

Separating the real and imaginary parts of this equation:

$$
\begin{array}{ll}
\cos 2 \lambda \gamma-\lambda \cos 2 \gamma+(\lambda+1)=0, & (2.3 .4) \\
\sin 2 \lambda \gamma-\lambda \sin 2 \gamma=0, & (2.3 .5)
\end{array}
$$

(2.3.4) can be written in the form

$$
\begin{equation*}
\cos ^{2} \lambda \gamma+\lambda \sin ^{2} \gamma=0 \tag{2.3.6}
\end{equation*}
$$

With $\lambda>0$, this is positive definite on the left hand side and hence we conclude that

$$
\cos \lambda \gamma=0 \quad ; \sin \gamma=0
$$

Therefore by (2.3.4) it is necoemary that

$$
\lambda \gamma=(2 n+1) \frac{\pi}{2} \quad ; \quad \gamma= \pm \pi, \pm 2 \pi, \cdots
$$

and by (2.3.5) these are sufficient. This means that

$$
\alpha=0,-\pi, \pm 2 \pi, \pm 3 \pi, \cdots
$$

O1 these, only $\alpha=0,-\pi$ have any physically realisable significance and wo we have only the two ponutble sets of solutions:

$$
\begin{array}{ll}
\alpha=0 ; \lambda=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \cdots & \quad(2.3 .7) \\
\left.\alpha=-\pi ; \lambda=\frac{1}{4}, \frac{3}{4}, \frac{5}{4}, \cdots .3 .8\right) \tag{2.3.8}
\end{array}
$$

Te arn raject the modas $\lambda=\frac{3}{2}, \frac{5}{2}, \cdots$ and $\lambda=\frac{1}{4}, \frac{3}{4}, \frac{5}{4}, \cdots$ Lor in thess exses there axiets at least one θ_{j} in $0<\theta_{j}<\pi-\alpha$ such that $\psi\left(\theta_{j}\right)=0$ which inplies a stuation such as that Illustrated in 2igure 2.

Pigure 2 Qualitative diagram of the flow oorresponding to the mode $\alpha=0, \lambda=3 / 2$.

The solution corresponding to $\lambda=2$ (that is, the solution forced by gravity) is also unsultable as a leading toma for the following reawona. For $\lambda=2, \alpha$ can aswure three phyeteally poasible values $0,+\frac{\pi}{2},-\frac{\pi}{2}$. In the last case, the flen region is diviusd into seetora such as in tigure 2. The firet two casers give the solution

$$
\begin{array}{ll}
\alpha=0 ; & \psi=-\frac{g \cos \beta}{6 \nu} y^{3}, \\
\alpha=+\frac{\pi}{2} ; & \psi=\frac{g \sin \beta}{6 \nu} y x^{2} .
\end{array}
$$

The first of these can be seen to represent a flow in the opposite direction to the one proposed. The second cate vat shes for $\beta=0$ (ice. When the solid plane is parallel to the direction of gravity). It if for this reason that we cannot admit this solution an a lending tome.

A11 the rejected modes may of course appear as higherorder termly, but the mode $\lambda=\frac{1}{2}, \alpha=0$ mast be presuat and dominant $10 r \mathrm{I} \downarrow 0$.

For the mode $\alpha=0, \lambda=\frac{1}{2}$ we have

$$
\begin{array}{ccc}
F(z)= & A z^{1 / 2}+\cdots \quad ; G(z)=-A z^{3 / 2}+\cdots, & \text { and } 00 \\
& x+i 2 \mu \psi=A\left\{z \bar{z}^{1 / 2}-z^{3 / 2}\right\}+\cdots, & (2.3 .9)
\end{array}
$$

The velocity component axe, then, in polar oo-celinates

$$
\begin{align*}
& V_{r}=\frac{A}{4 \mu} r^{1 / 2}(\cos \theta / 2+3 \cos 3 \theta / 2), \tag{2.3.10}\\
& v_{\theta}=-\frac{3 A}{4 \mu} r^{1 / 2}(\sin \theta / 2+\sin 3 \theta / 2), \tag{2.3.11}
\end{align*}
$$

and the shear stress on the mold boundary it given by

$$
\begin{equation*}
\tau=-A r^{-1 / 2} \tag{2.3.12}
\end{equation*}
$$

The flow pattern is give a qualitatively in figure 3.

Figure 3

Daferenoes

CARAYBR C. F. AIE C. E. 1946 On the nature of thebomalary layer near the leading odge of a flatplate. Guart. 4ppl. Math. 6, 63.
LAMCLOIS W. E. 1964 Slow Vigoous How Collier-Macmillan.
MIGEAM D. H. 1958 the eepartition of a Veocus Liquidat a thratigt edge. Mathematima 5 .
 Populare Romine. Tound V, 10.
Part 3
The two-dimensional flow under gravity in a jet of viscous 11quid
Contents page

1. Introduction. 28
2. The inner expansion 32
2.1. Formulation 32
2.2. The zero-order approximation. 33
2.3. The first-order approximation. 36
2.4. The second-order approximation. 37
2.5. The third-order approximation. 39
3. The outer expansion. 41
3.1. Formulation. 41
3.2. The derivation of the equations for $q_{i j}$. 45
3.3. The solutions of the equations for $q_{1 j}$. 47
4. The matching procedure. 55
Appendix A. 65
Appendix B_{0} 68
References. 72

Part 3
The two-dimansional zlow undor grevity in a jet of viscous 11quid

1. Introduotion

An incoupreasible viscous fluid passes thround a two dimenelonal orifice and then talle vertically, and mymatrioally, under the influance of gravity, bounded by two free stroanlines (gee tigura 1). At some atage below the oritice we take a meotion AB, acrose the jet, and confine our intereat to the ragion of the zlow below this enotion. We leave the manner in which the fluid orouses AB (i.e. the preal ee nature of the veloosty and atreas distribution on AB) at arbitrary.

We would, of course, have 12ked to molve the problem in the whole of the fluid region. It was formulated and oonidered in ence detail, but appeared to be intraetable, oven for Stokes flow, becoume of the ditziculty arintig tricm the mixed non-linenr boumdaxy conditicas (the unkown funetion $\mathrm{z}(\mathrm{t})$ dosoribing the boumiary entern those conations in a nom-1inear way).

Gravity will aconlerate the nutd and go by conthnulty there will be a contrmation of the jet, thereby giving site to viscous etrasses, which will in turn produce an offect
upon the velocity kield. Brentually, herever, we expect the Jot to be axtrenely thin and eech Niuld particle to bo failing as a solla body, 1.e. With the inertia offects dominating the viscous effecte.

We take the mass 12 ux merose $A B$ to bo $2 Q$, and mo the only paramotore appearing in the problen are $Q_{\text {. }}$ s, and ν. Therefore the only dimenoionless parameter is Q / ν : wocont-
 ooneidor F to be manl. The bato length and valootty moales inrolving Q, g and 25 are $(\nu Q / g)^{1 / 3} \operatorname{and}\left(g Q^{2} / 25\right)^{1 / 3}$.

If we non-dimansionalise the Iield equations with these quantities, and euploy a perturibation scheme, based upoa the salalness of B, then the solution so obtained will be incorreat far downstream, We will therefore use the method of matched asymptetic expanaions, the porturbation parameter far downatream being the thinness of the jet coupled with the finite velooity gradients across 2t. The terms "inner " and " outer " have the ame algniticance as they did in Part 1.

The inner expansion is derived by using the ocmplex variable Iormalism developed in Part 2 for the Stoker equation: said then iterating to take sasount of the inartis affects. We were only able to express this innor expanaion in a form that is valid at substantial distancem from the initial atation AB; this is, of course, surficient to furaich us with the missing boundary conditions for the outer mpansion. The outer expanition is dorived in a manner very simallar in ooncegt to the derivation of the outer axpansion in Part 1, although, begase of the far more eomplicated algebra, the proeedure is formall sci. In ofder to utiliss the thinness of the jet, distances ana velocities are made non-dimensional with reapect to $2^{2 / 3} g^{-1 / 3}$ and $2^{1 / 3} g^{1 / 3}$.
strictly mpaicing, tixe two expanaions should be devaloped cide by side and matohnd at each stage beiore procoeding to the subsequent stage. However, in viem of the fact that the
two mpansiona are doriven by moh ditioront methois. eeveral terme of the imner mpanston are derived herc before the outar expansion te eonetdered. Whare a ateg in one oxpansion is dependent upon the provioue stage in the other axpanilion, this will be noted and explained in the taxt.

Erown (1961) gave detaile of tone exporimental work on Viscous sheets and in an appendix to this paper Taylor gives * derivation of the equation of motion of a che-itmensional Viscous jet uniler gravity. This equation is the mame equation as the one we derive for the leniling termof our outer expanston, though the methois of derivation are very disolimilar. Maruo (2958) molved Tayler's equation numertoally, though by acxanhat imprecies methods. Hin molution is virtumily Indistinguishable muntically ircie the corxeot wolution but In one region it is construoted upon a conoeptusily false basis. Here we solve the equation maiytioaily and, on examination of this genaral solution, find that there are serfous diEticulties associated with any numerical molution.
2. The inner expansion
2.1. Tomulation

We take O, the midi-point of $A B$, to be the origin of coordinates, and using reotangular cartesian comordinates wa take the X -ards to be in the aipection of gravity (1.0 . along the inne of symmetry) and the Y-axis in the direction OB. We denote the ocmponants of the velocity in the I and I directions by y and \vee. Hon-dimensional variables are definal by $(x, y)-(\nu q / g)^{1 / 3}(x, y):(0, y)=\left(g q^{2} / \nu\right)^{1 / 3}(u, v):$ $p=P g(\nu Q g)^{1 / 3 p}$,
(3.2.1)
where P is the prassure, normalisad that $P=0$ outside the sluid ragion. P. gand vs are rappotively, the flutd density, the meceleration due to gravity and the kinematic Viscosity, all assumed to be constant. We define, as the only dimenstonless parametsr apparing in the problem, a Reynolde number $A=Q / 2$ and consider this to be mail. It we denote the veloaity vector by $q=(u, v)$ then we express the Navier-stokes equations in terms of the non-aimensional variables

$$
R(\underline{q} . \nabla) \underline{q}+\nabla p=\underline{i}+\nabla^{2} q \quad, \quad \text { (3.2.2) }
$$

Whare 1 is the gravity term, equivalent to (1,0). The condition for contimuity becomes

$$
\begin{equation*}
\nabla \cdot \underline{q}=0 . \tag{3.2.3}
\end{equation*}
$$

the boundary conditiong to be epplied are that the thear strese, the nomml strose and the normal velootty are all zero on the free streanilnes. ts the free streamilnes are also unknown we ahall desote them, in view of mymotry, by $y= \pm S(x ; R)$.
2.2. The zero-onter approxination

The dopendent variables are tunotions of x, y and R. We assume that wo can expand ap and 5 in a series in f (or In functions of A$)$ and that the first term in aech will be independent of R. We obtain the zero-order Iteld equations formally by putting $B=0$ in (3.2.2) and (3.2.3):

$$
\begin{array}{ll}
\nabla p_{0}=i \\
\nabla \cdot q_{0}=0
\end{array} \quad(3.2 .4)
$$

The equations (3.2.4) are, of course, the Stoken equations.
We now recosil the teobnique in Part 2, and on the baste of this we construct a almonsionless Airy tunction X_{0} and a dimensionless mtrean fuaction ψ_{0}, and hence two anmiytio tunotions $r_{0}(s)$ and $G_{0}(s)$ moh that

$$
\begin{equation*}
x_{0}+i 2 \psi_{0}=z \overline{F_{0}(z)}+\overline{G_{0}(z)} . \tag{3.2.6}
\end{equation*}
$$

By uging the results of Part $2(2)$, onar problem is to tind
$F_{0}(z), O_{0}(z)$ and a curve $y-S_{0}(x)$ summon that

$$
\begin{align*}
& F_{0}(z)+z \overline{F_{0}^{\prime}(z)}+\overline{G_{0}^{\prime}(z)}=\frac{1}{2} x^{2}+i \int x S_{0}^{\prime}(x) d x, \tag{3.2.7}\\
& \operatorname{Im}\left\{\left[1-i S_{0}^{\prime}(x)\right]\left[F_{0}(z)-z \overline{F_{0}^{\prime}(z)}-\overline{G_{0}^{\prime}(z)}\right]\right\}=0, \tag{3.2.8}\\
& \text { on } y=S_{0}(x) .
\end{align*}
$$

We can was iron (3.2.7) and (3.2.8) that, if a solution exists, then for large values of x we must have

$$
F_{0}(z) \sim O\left(z^{2}\right) \quad: G_{0}(x) \sim O\left(z^{3}\right) \quad: s_{0}(x) \sim O\left(x^{-2}\right)
$$

The last of these, though not at first obvious, may be obtained by putting $g_{0}(x) \sim O\left(x^{-n}\right)$ into (3.2.8) (choosing the negative power to ensure continuity) and finding that $n=2$. Hance on putting

$$
\begin{aligned}
& z_{0}(z)-a_{0} z^{2}+\text { asallar terms } \\
& G_{0}(x)-b_{0} x^{3}+\text { aniler terms } \\
& s_{0}(x)-a_{0} x^{-2}+\text { miler terms }
\end{aligned}
$$

and inserting these into (3.2.7) and (3.2.8), we ind that $a_{0}=3 / 8$ and $b_{0}=-5 / 24 . c_{0}$ remains undetermined, at (3.2.8) and the imaginary part of (3.2.7), from which c_{0} could be determined, are both homogeneous in 0_{0}. However, by the way in which the quantities were made dimensionless, the free streamline are denoted by $\psi= \pm 1$, end so by considering the mass flux across any section we require that

$$
\begin{equation*}
\int_{0}^{S_{0}(x)} u_{0}(x, y) d y=1 \tag{3.2.9}
\end{equation*}
$$

Reorlising that $u_{0+i} V_{0}=\frac{1}{2}\left(F_{0}-2 \overline{F_{0}^{\prime}}-\overline{G_{0}^{\prime}}\right)$, we my use this in (3.2.9) to find that $a_{0}=8$.

The orror involved in negieoting the gmaller terne is of order x^{-6} times the retained tems, and so for a senomd approximation we put

$$
\begin{aligned}
& F_{0}(z)=a_{0} z^{2}+a_{01} z^{-4}+\text { mallez termy, } \\
& c_{0}(z)=b_{0} z^{3}+b_{01} I^{2-3}+\text { maller terms, } \\
& s_{0}(x)=c_{0} x^{-2}+o_{01} x^{-4}+\text { mall } \theta \text { terms. }
\end{aligned}
$$

Again, on imearting thase into (3.2.7) and (3.2.8), we tima

$$
a_{01}=-76 / 5: b_{01}-548 / 15 \quad: c_{01}-3792 / 25
$$

The orror sgain is $\mathrm{O}\left(\mathrm{x}^{-6}\right)$ timea the mallest of the retained terms. Nurther terme in the expansion may be calculated in the same way, but we shall not do so here.

As can be ssen, there ars no arbitrary texms involved in this solution at any stage and yot we have not speoified any initial conditions. This objeotion may be overocue by intexpreting this solutico as a "particular" solution forcad by gravity to which we may add "ecuplementary" solutions (by analogy with the termis as used in the theory of ilnear boundary-vilue probleas; as remariced previously this problem Is non-ilinear becane of the form of the boundary conditions). For laxge values of x, those ecuplementary solutions must be of lower order than the partioular aolution. If we introduce into Y_{0} a term $\alpha_{0} z$, and into $\mathcal{E}_{G_{0}}$ a sern $\beta_{0} z^{2}$, wo find irom
(3.2.7) and (3.2.8) that $\beta_{0}=-\alpha_{0}$ and that a term $-64 \alpha_{0} x^{-3}$ must be introduced into $s_{0}(x)$. In addition it gives riwe to terms $2 \alpha_{0}^{2}$ and $-2 \alpha_{0}^{2} z$ in \bar{F}_{0} and σ_{0} and aterm $384 \alpha_{0}^{2} x^{-4}$ in g_{0} and so on. α_{0} remains arbitrary and may only be detexmined irom the initial oonditiona, the solution to the zeroorder problea, writtion in the foxm of en oxpanaion for large x, is then

$$
\begin{align*}
F_{0}(z)= & \frac{3}{8} z^{2}+\alpha_{0} z+2 \alpha_{0}^{2}-\frac{76}{5} z^{-4}+\frac{1026}{5} \alpha_{0} z^{-5}+\cdots, \quad \text { (3.2.10) } \tag{3.2.10}\\
G_{0}(z)= & -\frac{5}{24^{3}-\alpha_{0} z^{2}-2 \alpha_{0}^{2} z+\frac{548}{15} z^{-3}-\frac{1026}{5} \alpha_{0} z^{-4}+\cdots,} \begin{aligned}
S_{0}(x)= & 8 x^{-2}-2^{6} \alpha_{0} x^{-3}+3.2^{7} \alpha_{0}^{2} x^{-4}-2^{11} \alpha_{0}^{3} x^{-5}+5.2^{11} \alpha_{0}^{4} x^{-6}, \\
& -3.2^{14} \alpha_{0}^{6} x^{-7}+\left(7.2^{15} \alpha_{0}^{6}+\frac{1742)}{15} x^{-8}-\left(2^{20} \alpha_{0}^{7}-2^{7} \frac{749}{15} \alpha_{0}\right) x^{-9}+\cdots,\right.
\end{aligned} \text { (3.2.12) } \tag{3.2.11}
\end{align*}
$$

When we ocme to matolit the inner and outer expanaion we shall want a form of u_{0} for large x on the line of symmotry (the matehing for v_{0} and the oft-contre terate of u_{0} is autcmasticaily accomplished wen we matoh u_{0} on $y=0$). Dhis I: then, tran (3.2.10) and (3.2.11)

$$
\begin{equation*}
u_{0} \sim \frac{1}{8} x^{2}+\alpha_{0} x+2 \alpha_{0}^{2}+\cdots \tag{3.2.23}
\end{equation*}
$$

2.3. The tirat-order teproximation

At this stage we could calculate the dominant term of the
outer expmation, matching it to $(3.2 .13)$ in oraer to fix an aribitraxy constant in the outer araneton. It zould then
 ordarim, the imate expenting for and p must be of the tom

$$
\begin{aligned}
& \underline{q}=\underline{q}_{0}+R^{1 / 3} \underline{q}_{1}+R^{2 / 3} \underline{q}_{2}+R \underline{q}_{3}+R^{4 / 2} \underline{q}_{4}+\cdots,(3.2 .14) \\
& p=p_{0}+R^{1 / 2} \phi_{1}+R^{2 / 3} \phi_{2}+R \phi_{3}+R^{4 / 3} p_{4}+\cdots .
\end{aligned}
$$

Aso It is oniy the matching that can toroe the exiatamoe of
 We 部all ignore these tumis, rathor than ineluie them and their manifentations in tha higer-order epproximationg, oniy 10 thatr oftecte to be orralented upon 10 omal matching. With g_{2} and p_{2} absext, it is egtin only the matening that torces the axiftance or ma and p_{2}. Those temme we ahall mee, are prosent. Theae asgertions mill be elaborated later: we turn now to the meonementer aproxdmations.
2.4. The Eoeond-ander epproxiration
 problea exe

$$
\nabla p_{2}=\nabla^{2} \underline{q}_{2}
$$

and

$$
\nabla \cdot \underline{q}_{2}=0
$$

Therefore, again employing the technique in Part 2 , we construet X_{2} and ψ_{2}, together with $X_{2}(s)$ and $O_{2}(s)$ such that

$$
x_{2}+i 2 \psi_{2}=z \overline{F_{2}(z)}+\overline{G_{2}(z)}
$$

The boundary whll exporience a shift of oxder $\mathrm{a}^{2 / 3}$ (A.e. shal the toxm

$$
S(x ; R)=S_{0}(x)+R^{1 / 3} S_{1}(x)+R^{2 / 3} S_{2}(x)+R S_{3}(x)+\cdots,
$$

and so in the boumiary conditions we mast also tnolute the zero-oricer torma at they will contribute some teme of oxder $\mathrm{z}^{2 / 3}$ to the atress and velocity covilitions on the nem boundary. The total boundary oonaltions are then
$\left\{F_{0}+z \bar{F}_{0}^{\prime}+\bar{G}_{0}^{\prime}\right\}+R^{2 / s}\left\{F_{2}+2 \overline{F_{2}^{\prime}}+\bar{G}_{0}^{\prime}\right\}=\frac{1}{2} x^{2}+i \int x\left(S_{0}^{\prime}+R^{2} b S_{2}^{\prime}\right) d x$, $\operatorname{Im}\left\{\left[1-i\left(S_{0}^{\prime}+R^{2 / 3} S_{2}^{\prime}\right)\right]\left[\left(F_{0}-2 \bar{F}_{0}^{\prime}-\bar{G}_{0}^{\prime}\right)+R^{2 / 3}\left(F_{2}-2 \bar{F}_{2}^{\prime}-\bar{G}_{2}^{\prime}\right)\right]\right\}=0, \quad$ (3.2.25) on $y=a_{0}(x)+z^{2 / 3} g_{2}(x)$.

Uning hinte Prom the matehing me look for a solution of the form

$$
\begin{aligned}
& F_{2}(z)=a_{2} z^{4}+\text { smaller terms }, \\
& G_{2}(z)=b_{2} z^{5}+\text { smaller terms } \\
& S_{2}(x)=c_{2}+\text { smaller terms } .
\end{aligned}
$$

Subatituting these vaiues into (3.2.25), taking care to absorb all the tome from the soromorer texit wich contain $A^{2 / 3} \cdot g_{2}(x)$, we find that $b_{2}=-a_{2}$ and $c_{2}=-64 a_{2}$ where a_{2} reains
mideternined. For matching purposes the geooni-order contribution to u on the 11 ne of apmetry is $A^{2 / 3}\left(a_{2} x^{4}+\ldots ..\right)$. a_{2} is determined from the outer expansion by matching. The terms, mailer in z, may be found in the mane way as before.
2.4. The thixd-oxider approximation

Here the inertia terms mace their If ret appearance. The Stela equations are

$$
\begin{gathered}
\left(q_{0} \cdot \nabla\right) \underline{q}_{0}+\underline{p_{3}}=\nabla^{2} \underline{q}_{3}, \\
\nabla \cdot \underline{q}_{3}=0
\end{gathered}
$$

In Appendix A we develop a procedure which allow us to extend the ocmplex variable formalize of Part 2 to the $n^{\text {th }}$ iteration. Dy the romilte of Appendix A, we ocnutruct X_{3} and ψ_{3} much that

$$
\begin{aligned}
\frac{\partial^{2}}{\partial z^{2}}\left(x_{3}+i 2 \psi_{3}\right) & =\frac{1}{4}\left(u_{0}-i v_{0}\right)^{2} \\
& =\frac{1}{2^{10}}\left(5 z^{2}-6 z \bar{z}+3 \bar{z}^{2}\right)^{2}
\end{aligned}
$$

$$
\text { 1.e. } X_{3}+i 2 \psi_{3}=z \overline{F_{3}(z)}+\overline{G_{3}(z)}+\frac{1}{2^{10}}\left(\frac{5}{6} z^{6}-3 z^{5} \bar{z}+\frac{11}{2} z^{4} z^{2}-6 z^{3} z^{3}+\frac{9}{2} z^{2} z^{4}\right) \text {, }
$$ whore again $y_{3}(s)$ and $G_{3}(\mathrm{~m})$ are women analytic functions. We have retained only the lemiling tomas of no-ivo as only these will contribute to the lowing term of I_{3} and C_{3}. The total boundary comiltions to the order (in A)

required are then

$$
\begin{align*}
& \left\{F_{0}+z \overline{F_{0}^{\prime}}+\overline{G_{0}^{\prime}}\right\}+R^{2 / 3}\left\{F_{2}+z \overline{F_{2}^{\prime}}+\overline{G_{2}^{\prime}}\right\}+R\left\{F_{3}+z \overline{F_{3}^{\prime}}+\bar{G}_{3}^{\prime}\right\}+R z^{-1 \prime}\left\{-6 z^{5}+40 z^{4} z\right. \\
& \left.+72 z^{3} \bar{z}^{2}+80 z^{2} z^{3}-30 z \bar{z}^{4}+10 z^{5}\right\}=\frac{1}{2} x^{2}+i \int x\left(S_{0}^{\prime}+R^{2 / 3} S_{2}^{\prime}+R S_{3}^{\prime}\right) d x, \tag{3.2,16}
\end{align*}
$$

$$
\begin{aligned}
& \operatorname{Im}\left\{[1 - i (S _ { 0 } ^ { \prime } + R ^ { 2 } B S _ { 2 } ^ { \prime } + R S _ { 3 } ^ { \prime })] \left[\left(F_{0}-z \overline{F_{0}^{\prime}}-\bar{G}_{0}^{\prime}\right)+R^{2 / 3}\left(F_{2}-z \overline{F_{2}^{\prime}}-\bar{G}_{2}^{\prime}\right)\right.\right. \\
& \left.\left.+R\left(F_{3}-2 \overline{F_{3}^{\prime}}-\overline{G_{3}^{\prime}}\right)+R z^{-1}\left(6 z^{5}-4 z^{4} \bar{z}+8 z^{2} \bar{z}^{3}-30 z \bar{z}^{4}+10 \bar{z}^{5}\right)\right]\right\}=0, \\
& \text { on } y=8_{0}(x)+z^{2 / 3} g_{2}(x)+8_{3}(x) .
\end{aligned}
$$

The solutions are here forced by the incrita terms and so W- look tor volutions of the tox

$$
\begin{aligned}
& F_{3}(z)=a_{3} z^{5}+\text { smaller terms }, \\
& G_{3}(z)=b_{3} z^{6}+\text { smaller terms } \\
& S_{3}(x)=c_{3} x+\text { smaller terms } .
\end{aligned}
$$

Substituting these Into (3.2.16), and again collecting all terra of order firm the lown-oxter term an arising from the boundary shit, we Ind that

$$
a_{3}=-2^{10} ; b_{3}=-\frac{5}{6} 2^{-10} ; \quad c_{3}=-1 / 8
$$

The leading contribution to u on the line of bymetry is

$$
R 2^{-9} x^{5}
$$

Wa could in principle pursue our calculation further, but in view of the similarity of method and the absence of any callant renault we will divert our interest to the outer expansion.

3 The outer expengion
3.1. Tomulation

Far downstrean we expect the jet to become very thin and the variations in the velooities and strassos acrosm it to beocme mall.

We define non-dimensional variables by

$$
\begin{array}{ll}
(x, y)=\nu^{2 / 3} g^{-1 / 3}(\hat{x}, \hat{y}) & :(0, v)=\nu^{1 / 3} g^{1 / 3}(\hat{u}, \hat{v}): \\
p=\rho_{\nu^{2 / 3}} g^{2 / 3} \hat{p} & : \quad \underline{I}=\mathbb{E}_{2} \psi \tag{3.3.1}
\end{array}
$$

Whases $(x, y)=R^{-1 / 3}(\hat{x}, \hat{y}),(u, v)=A^{-2 / 3}(\hat{u}, \hat{v})$ and $\mathrm{p}=\mathrm{a}^{-1 / 3} \mathrm{p}$.
The equantities denoted by capital letters are as in the inner problear. 亚 , the dimensional strasm funotion, is made non-dimentional an in (3.3.1) so that the froe atranmlines are again denoted by $\psi= \pm 1 . \mathrm{A}=\mathrm{Q} / \mathrm{v}$ is the Reynolds number, as dofined in the inner problem. The way in whioh we make Y nom-dimenstonsi doen not, of courso, make \hat{y} of order unity in the region considered (unliko \hat{z}), but this is dmaterial as we mball be treating \hat{y} an a dependent varisble in what follows. We mail now oult the symbol 0 for conveniesee, and reatore it whon we come to match the two expansions formally.

As before the fres stremplines are unknom in tome of x and y, bat are given by $\psi= \pm 1$. We will therefore conalder
the problem to be in the ζ-plane, where $\zeta-(\varphi, \mathcal{R} \psi)$. Here φ tin defined by:
 are orarywhere orthogonal to the lines $\mathrm{R} \psi$ - constant. That in. φ and $\psi \psi$ constitute an orthogonal curvilinear oo-oxilinte system.

If we put $q=\left(u^{2}+7^{2}\right)^{\frac{1}{2}}$, then the velocity components with respect to $(\varphi, R \psi)$ mure $(q, 0)$ hereat those with respect to (x, y), ware $(u, v)=(q \cos \theta,-\operatorname{cin} \theta)$; this datives the angle θ.

The two planet are Inked by the following transformation

$$
\begin{align*}
& x=\varphi+R \int_{0}^{\psi} \frac{\sin \theta}{q} d \psi^{\prime}, \tag{3.3.2}\\
& y=R \int_{0}^{\psi} \frac{\cos \theta}{q} d \psi^{\prime} \tag{3.3.3}
\end{align*}
$$

The are length parameter associated with $\mathrm{A} \psi$ is a^{-1} ami that with φ. We denote by h. The formal definition of h is $\mathrm{h}=\left\{\left(\frac{\partial x}{\partial \phi}\right)^{2}+\left(\frac{\partial y}{\partial \varphi}\right)^{2}\right\}^{1 / 2}$. and th could be derived in texts of q and θ iron (3.3.2) and (3.3.3). This is, however, an arduous task and not partiowianly 112 min mining: we adept an el ternative approach. Consider a oonstant vector (without any lose of generality te shall ute the vector $\nabla \mathrm{x}$, which in this problem is representative of gravity). In the ζ-plane

$$
\nabla x=\left(\frac{1}{h} \frac{\partial x}{\partial \varphi}, \frac{a}{R} \frac{\partial x}{\partial \psi}\right)=\left(\frac{1}{h} \frac{\partial x}{\partial \varphi}, \sin \theta\right) .
$$

An the modulus of $\underline{\nabla} x$ in unity, $\frac{1}{h} \frac{x}{\partial \varphi}=\cos \theta$ (the sign being implied by (3.3.2)), and therefore

$$
\underline{\nabla} x=(\cos \theta, \sin \theta)
$$

We know that $\underline{\nabla} \wedge \underline{\nabla} \times$ and $\nabla \cdot \underline{\nabla} \times$ both vanish identically, and therefore expressing these in the ζ-plane we have

$$
\begin{align*}
& \frac{\partial}{\partial \varphi}\left(\frac{\cos \theta}{q}\right)+\frac{1}{R} \frac{\partial}{\partial \psi}(h \sin \theta)=0, \tag{3.3.4}\\
& \frac{\partial}{\partial \varphi}\left(\frac{\sin \theta}{q}\right)-\frac{1}{R} \frac{\partial}{\partial \psi}(h \cos \theta)=0 . \tag{3.3.5}
\end{align*}
$$

From these equations we may deduct, quite simply, that

$$
\begin{align*}
& h=R q_{\varphi} /\left(q^{2} \theta_{\psi}\right) \tag{3.3.6}\\
& h_{\psi}=R \theta_{\varphi} / q \tag{3.3.7}
\end{align*}
$$

where the mberoripts denote differentiation with respect to the variable inalionted.

An interesting comparison may be drawn here with the outer problem of Part 1. Equations (3.3.2) and (3.3.3). defining stronaline coordinates, are direct phrailola with those of Part 1 (equations (4.5) and (4.6)), and (3.3.4) and (3.3.5) bear a very strong semblance to the CawingRiemann equations (equations (4.3) and (4.4) of Part 1). However we mall not have a momentum integral equation because of the symatry of the prostant problem, and 00 wo shall have to use the full Ravier-stokes equations. These
bevene in the ζ-plane

$$
\begin{align*}
q \frac{\partial q}{\partial \varphi}+\frac{\partial p}{\partial \varphi} & =h \cos \theta+R^{-2} q h \frac{\partial}{\partial \psi}\left\{\frac{q}{h} \frac{\partial}{\partial \psi}(q h)\right\}, \tag{3.3.8}\\
-q^{2} \frac{\partial h}{\partial \psi}+\frac{\partial p}{\partial \psi} & =\frac{R \sin \theta}{q}-\frac{1}{q h} \frac{\partial}{\partial \varphi}\left\{\frac{q}{h} \frac{\partial}{\partial \psi}(q h)\right\} . \tag{3.3.9}
\end{align*}
$$

The equation of continuity in automatically satiafied by the use we have made of the atream funotion as an independent variable. We have then, the four equations (3.3.6)-(3.3.9) for the four umknowns q, h, p and θ.

The boundary condtiona are partioularly simple : from the stress tensor we can calculate that the zero shear and normal stress conditions to be appiled on $\psi= \pm$. are

$$
\begin{align*}
& R^{-1} q h \frac{\partial}{\partial \psi}(q \mid h)=0 ; \tag{3.3.10}\\
& p=-\frac{2}{h} \frac{\partial q}{\partial \varphi}, \tag{3.3.12}
\end{align*}
$$

or, in Fier of the fact that we shall not be considering the region in which q could vanish on the free streamiline, and as h is non-zero, (3.3.10) becomes

$$
\begin{equation*}
\frac{\partial}{\partial \psi}(a \mid h)=0 \tag{3.3.12}
\end{equation*}
$$

From symmetry conalderations, it can be zoen that q, h, and p will be even functions of ψ, and θ will be an codd function of ψ, and hance of $R \psi$ (as in the Ifold equantions R and ψ always appear in conjunction with one another). We therefore pose that

$$
\begin{array}{ll}
q=q_{0}+R^{2} \psi^{2} q_{2}+R^{4} \psi^{4} q_{4}+\cdots & ,(3.3 .13) \\
h=1+R^{2} \psi^{2} h_{2}+R^{4} \psi^{4} h_{4}+\cdots & ,(3.3 .14) \\
p=p_{0}+R^{2} \psi^{2} p_{2}+R^{4} \psi^{4} p_{4}+\cdots & ,(3.3 .15) \\
\theta=R \psi \theta_{1}+R^{3} \psi^{3} \theta_{2}+\cdots & (3.3 .16)
\end{array}
$$

Although E and ψ attempt one another in the flail ovations, F does not appear explicitly with ψ in the designation of the boundary. We therefore assert that the coefficients of R ψ in (3.3.13)-(3.3.16) will be functions of q and . When we natch the outer expansion and the inner expansion, it beocses apparent that the coefficient e must have the form, to take a typical example

$$
q_{0}(\varphi ; R)=q_{00}(\varphi)+R^{1 / 3} q_{01}(\varphi)+R^{2 / 3} q_{02}(\varphi)+\cdots .(3.3 .17)
$$

3.2. The derivation of the equations for $q_{1 j}$ ate.

We use the equations (3.3.6) and (3.3.7) and the boundary conditions (3.3.21) and (3.3.12) to obtain relationships between the coofitcicnts in the expansions of the tour dependent variables. The expressions (3.3.13)-(3.3.16) together with (3.3.17) and its oomterpartie are wibetituted into (3.3.6) and (3.3.7) and coottiotente of A ocupared.

We find on wove rearrangement that
(1) $\theta_{10}=q_{00}^{\prime} / q_{000}^{2}$,
(11) $\quad \theta_{11}=q_{01}^{\prime} / q_{00}^{2}-2 q_{01} q_{00}^{\prime} / q_{00}^{3} \quad$ otc.,
(111) $h_{20}=\frac{1}{2} q_{00}^{\prime \prime} / q_{00}^{3}-q_{00}^{12} / q_{00}^{4}$,
(iv) $h_{21}=\frac{1}{2} q_{01}^{\prime \prime} / q_{00}^{3}-\frac{3}{2} q_{00}^{\prime \prime} q_{01} / q_{00}^{4}-2 q_{00}^{\prime} q_{01}^{\prime} / q_{00}^{4}+4 q_{00}^{\prime 2} q_{01} / q_{00}^{5}$ otc.

Here (${ }^{\prime}$ denotes differentiation with respect to φ. similarly using (3.3.11) and (3.3.12) we find that
(v) $\quad p_{00}=-2 q_{00}^{\prime}$,
(vi) $p_{01}=-2 q_{01}^{1}$ to. ,
(vii) $\quad q_{20}=q_{00} h_{20}$,
(visit) $q_{21}=q_{01} h_{20}+q_{00} h_{21}$
otc.
We now substitute the values given in (i)-(vili) into (3.3.13)-(3.3.17) and thence into (3.3.8) (and at a later stage into (3.3.9)) and comparing ooofricieate of R, we sind that

$$
\begin{gathered}
4 q_{00}^{\prime \prime}-4 q_{00}^{\prime} / q_{00}-q_{00} q_{00}^{\prime}+1=0,(3.3 .28) \\
4 q_{0 n}^{\prime \prime}-\left(q_{00}+8 q_{00}^{\prime} / q_{00}\right) q_{0 n}^{\prime}+\left(4 q_{00}^{\prime 2} / q_{00}^{2}-q_{00}^{\prime}\right) q_{0 n}=M_{n}(\varphi),(3.3 .29)
\end{gathered}
$$

3.3. The solutions of the equations for $q_{1 j}$ oto.

By the relationships (i)-(vili) and their higher-order counterparts, we may exprese the coerficients of $\mathrm{R} \psi$ in the expansions (3.3.13)-(3.3.16) solely in texns of the funations $q_{01}(\varphi)$, and those functione are given by the solutions of the differential equations (3.3.18)-(3.3.20). Therofore, by solving thete equations wo will obtain a solution to the problea in the outer region. We now derive exact solutions for q_{00} and q_{01} by analytio manns and indicate hom the higher-order tunctions may be obtained.

Firstiy wo will make a alight transormation of the variables to almplity the arithnotic. We put $\varphi=4^{2 / 3} . \sigma$ and $a_{0}=4^{1 / 3} .1(\sigma)$. In texwe of these variables, (3.3.18) becomes

$$
\begin{equation*}
f_{0}^{\prime \prime}-f_{0}^{\prime 2} / f_{0}-f_{0} f_{0}^{\prime}+1=0, \tag{3.3.21}
\end{equation*}
$$

where ()' now denotes dieforentiation with rempent to σ. This is the form in which toylor (woe Brown (1961)) expressed his equation. Similariy (3.3.19) beocmes

$$
f_{n}^{\prime \prime}-\left(f_{0}+2 f_{0}^{\prime} / f_{0}\right) f_{n}^{\prime}+\left(f_{0}^{\prime 2} / f_{0}^{2}-f_{0}^{\prime}\right) f_{n}=M_{n}(\sigma),(3.3 .22)
$$

the $H_{n}(\sigma)$ here being the direct transformation of the $\mathcal{M}_{\mathbf{n}}(\varphi)$ in（3．3．19）．

He fleet consider equation（3．3．21），which is of a type discussed by Ines（Ige6 p．325）．Dy the substitution $1_{0}=w^{-1}$ ， the equation is reduced to the canonical form

$$
\begin{equation*}
w^{\prime \prime}=w^{\prime 2} / w+w^{\prime} / w+w^{2} \tag{3.3.23}
\end{equation*}
$$

Inge gives ant at integral of this equation as

$$
\left(w^{\prime}+1\right)^{2}=2 w^{2}(w+\sigma+k)
$$

where i is 弯 constant of integration．We range the independent variable for temporary convenience by writing

$$
\begin{array}{ll}
\sigma=t-k \quad \text { giving } \\
& \left(\frac{d w}{d t}+1\right)^{2}=2 w^{2}(w+t) .
\end{array}
$$

Putting

$$
\begin{aligned}
& w+t=\widetilde{w}^{2}, \text { we have } \\
& \frac{d \tilde{w}}{d t}= \pm \frac{1}{\sqrt{2}}\left(\widetilde{w}^{2}-t\right),
\end{aligned}
$$

which is form of Itcetti＇s equation．Following the standard procedure tor solving this equation，we put

$$
\widetilde{W}=\mp \sqrt{2} \frac{1}{\hat{v}} \frac{d \widetilde{v}}{d t}, \text { and then } t=2^{1 / 3} r \text { to give }
$$

$$
\frac{d^{2} \tilde{v}}{d r^{2}}-r \tilde{v}=0
$$

which is Al dy's equation, and thexatore

$$
\tilde{V}=C A i(r)+D B_{i}(r)
$$

Entraining our steps through the substitutions, we Ind that the general solution of $(3.3 .21)$ in given by

$$
f_{0}=\frac{1}{(\sigma+k)}\left\{\frac{2^{1 / 3}}{(\sigma+k)}\left[\frac{C A_{i}^{\prime}\left[2^{-1 / 3}(\sigma+k)\right]+D B_{i}^{\prime}\left[2^{-1 / 3}(\sigma+k)\right]}{C A i\left[2^{-1 / 3}(\sigma+k)\right]+D B i\left[2^{-1 / 3}(\sigma+k)\right]}\right]^{2}-1\right\}^{-1}, \quad(3.3 .24)
$$

Where the ()' aspeaiated With the AIY functions denotes
 Junctions.

Fox the particular volution which eatisfies the conditions of our probian we must assign values to k end the ratio C:D. From the matching wo must 2 mons the condition that $\dot{z}_{0}=0$ th $\sigma=0$. We mug have then, 1 ram (3.3.24). that

$$
\left[\frac{C A_{i}^{\prime}\left(k^{*}\right)+D B_{i}^{\prime}\left(k^{*}\right)}{C A_{i}^{\prime}\left(k^{*}\right)+D B_{i}\left(k^{*}\right)}\right]^{2}-k^{*} \quad \text { in infinite }
$$

Where $x^{*}-2^{-1 / 3} x$. The only way in which this expression can beecue infinite (other than for infinite x^{*}. ores which we aimregend in tor

$$
C A i\left(k^{*}\right)+D B_{i}\left(k^{*}\right)=0
$$

therefore

$$
f_{0}=2^{-1 / 3} /\left\{\left[\frac{B_{i}\left(k^{*}\right) A_{i}^{\prime}(r)-A_{i}\left(R^{*}\right) B_{i}^{\prime}(r)}{B_{i}\left(k^{*}\right) A_{i}(r)-A_{i}\left(R^{*}\right) B_{i}(r)}\right]^{2}-r\right\} ; \quad r=2^{-1 / 3}(\sigma+k)
$$

It we assume, for the time being, that $k^{*} 1 \mathrm{~s}$ such that $\mathrm{Al}^{\left(k^{*}\right)}$ is non-zero, then on examining the asymptotio behaviour of $F_{0}\left(k^{*}, r\right)$ for mall and large values of σ we tind that $f_{0}\left(k^{*}, r\right)>0$ for ganall ponitive σ, and $f_{0}\left(k^{*}, r\right)<0$ for large positive σ. Also we may asily dexiuce from (3.3.24) that

$$
f_{0}^{\prime}=f_{0}^{2}\left(1+\frac{2^{2 / 3}}{f_{0}} \sqrt{r+\frac{2^{-1 / 3}}{f_{0}}}\right) .
$$

That is, for valuer of σ for which $s_{0}=0$ we have that $x_{0}^{\prime} m$, and using (3.3.21), that $x_{0}^{\prime \prime}-+1$. Hence we can see that x_{0} can never cut the r-axis as all interseotions are tangential and pointe of locsi minima. We therefore conclude that f_{0} has a singularity in the region $0<\sigma<\infty$. In this problem we do not admit singularities of Q in the sinite part of the field. We therefore assert that

$$
\begin{equation*}
A_{i}\left(R^{*}\right)=0 . \tag{3.3.25}
\end{equation*}
$$

Then t_{0} is given by

$$
\begin{equation*}
f_{0}=\frac{2^{-1 / 3} A_{i}^{2}(r)}{A_{i}^{12}(r)-r A_{i}^{2}(r)} \tag{3.3.26}
\end{equation*}
$$

Fra (3.3.25) we can see that k may take any of an infinite sot of negative values k_{0}, k_{1}, k_{2}, etc.. k_{0}, as given by (3.3.26), is qualitatively as in figure 2 .

Mgure 2

To excluie the onciliatory behaviowr in this particular problem we will ohoose k to be $\mathrm{k}_{\mathrm{o}}\left(\mathrm{k}_{0}=-2.94583\right)$. For mall values of σ, f_{0} mas the tomm

$$
\begin{equation*}
f_{0} \sim \frac{1}{2} \sigma^{2}+\frac{1}{12} k_{0} \sigma^{4}+\frac{1}{8} \sigma^{5}+\cdots \tag{3.3.27}
\end{equation*}
$$

It in irem the second tom of this axpression that, on matching, we oan semert the form the inner axpension muat take. That is, it if the term in φ^{4} of \hat{C}_{00} which forcea tho exintence of the texm $\mathrm{A}^{2 / 3} \mathrm{y}_{2}$ of the inner expansion. For large values of σ

$$
\hat{q}_{\infty} \sim+\sqrt{2 \varphi}+\cdots
$$

showing that the Iluid does Indeed fell ultimately as a solld body.

A discusetion of the singular solution is given in Appendix B, together with e exitioisa of Maruo' numerical solution.

We now tuen to consider the solutions of (3.3.22). FIrstiy
comelier the homogeneous equation

$$
\begin{equation*}
f_{n}^{\prime \prime}-\left(f_{0}+2 f_{0}^{\prime} / f_{0}\right) f_{n}^{\prime}+\left(f_{0}^{\prime 2} / f_{0}^{2}-f_{0}^{\prime}\right) f_{n}=0 \tag{3.3.26}
\end{equation*}
$$

A. $M_{1}-0,(3.3 .28)$ in in fact the complete equation for I_{1}; and an f_{1} in a perturbation of f_{o} and the equation for f_{0} does not contain σ explicitly, we expect z_{0}^{\prime} to be a solution of (3.3.28). It is easily verified by substitution that this is in trot the aras.

On patting $I_{n}=\dot{L}_{0}^{\prime} \cdot 2_{n}$ and using the foregoing property of fo: (3.3.28) becomes

$$
\begin{equation*}
T_{n}^{\prime \prime}+\left\{2 f_{0}^{\prime \prime} / f_{0}^{\prime}-f_{0}-2 f_{0}^{\prime} \mid f_{0}\right\} T_{n}^{\prime}=0 \tag{3.3.29}
\end{equation*}
$$

Te an express (3.3.26) in the fora

$$
f_{0}=-\frac{d}{d \sigma} \log \left[A_{i}^{\prime 2}(r)-r A_{i}^{2}(r)\right],
$$

and therefore a first integral of (3.3.29) is

$$
T_{n}^{\prime}=f_{0}^{2} /\left[f_{0}^{\prime 2}\left(A_{i}^{\prime 2}-r A_{i}^{2}\right)\right]
$$

We ignore constant e of integration as we are seeking only particular solutions of the equation, and will multiply these solutions by arbitrary constants when ocabidering the general solution of the equation.

Taking the logarithm of the expression for t_{0}

$$
\log f_{0}=-\frac{1}{3} \log 2+2 \log A_{i}-\log \left(A_{i}^{\prime 2}-r A_{i}^{2}\right)
$$

and aztexentiating this with zarpect to t. we have that

$$
f_{0}^{\prime} / f_{0}=2^{2 / 3} A_{i}^{\prime \prime} / A i+2^{-1 / 3} A i^{2} /\left(A i^{1 / 2}-r A i^{2}\right),
$$

and theretore

$$
\frac{d T_{n}}{d \sigma}=2^{2 / 3} A_{i}^{2}\left(A_{i}^{12}-r A_{i}^{2}\right) /\left[2 A_{i}^{!}\left(A_{i}^{\prime 2}-r A_{i}^{2}\right)+A i^{3}\right]^{2} .
$$

On integrating this aquation, we have

$$
T_{n}=-2 A A^{\prime} /\left[2 A i^{\prime}\left(A_{i}^{\prime}{ }^{2}-r A i^{2}\right)+A i^{3}\right],
$$

or on remrranging texas

$$
T_{n}=-2 A_{i}^{\prime} f_{0}^{2} / A_{i}{ }^{3} f_{0}^{\prime}
$$

Therefore two 2 neperly inderendent solutions of the
 tires of these is of onder $\sigma^{-1 / 2}$ tom lamge σ but the mecond 1\% exponentisily lazg at intinity.

Roturning to the Ininemogencots equation; wo do not afint molutions that ero expemantially large at intintty, and so following Cownat and Mismert (1953) we detine a Grom's function at tollows

$$
\left(\sigma(\sigma, \xi)= \begin{cases}-V_{1}(\sigma) v_{2}(\xi) / W(\xi) ; & \sigma \geqslant \xi \\ -V_{1}(\xi) V_{2}(\sigma) / W(\xi) ; & \sigma \leqslant \xi\end{cases}\right.
$$

The moat general solution of (3.3.22) with the eorreet bohmilour at infinity is given by

$$
f_{n}(\sigma)=\int_{0}^{\infty} G(\sigma, \xi) M_{n}(\xi) d \xi+A_{n} f_{0}^{\prime}(\sigma) \cdot(3.3 .30)
$$

The general solution of the firet-order equation is

$$
\begin{equation*}
f_{1}(\sigma)=A_{1} f_{0}^{\prime}(\sigma) \tag{3.3.31}
\end{equation*}
$$

Where A_{2} it to be determined from the matching.
He should note hers that the outer expansion is not really restricted to the case of vanishingly mail Reynolds number, for 4 also has the appearance of an ampaptotic expansion for $\varphi \uparrow \infty$. It is, of course, only in the comer case that we can match it with the present inner expansion. Also in the present problem it seems physically reasonable to exclude any ouatilatory behaviour in the solution. II, however, we were considering a situation in which the inner problem was elite different, them the rejection of osellistery solutions would be open to question.
4. The matching procedure

We are relying on the matching to provide the boundary conditions for the equations for $\hat{q}_{o l}$ of the outer expansion, and to show the necessity of as in the inner expansion. We have seen from the outer expansion that a knowledge of the velocity on the line of mymotry uniquely determines the entire flow field in the outer region and so we only need to match the two expansions on that ling.

Following the procedure as expounded in section 5 oi Part 1. we consider the limiting process, $\mathrm{Q} \downarrow \circ$ for $\mathrm{r}-\mathrm{m}(\mathrm{R}) \mathrm{x}_{\mathrm{mp}}$ with x_{m} fixed and $1 \ll m(R) \ll x^{-1 / 3}$. x_{m} is ailed an Intermediate variable beanie
$x=m(R) x_{1 n} \uparrow \infty \quad$ with x_{1} fixed sen $R \downarrow 0$, and

We now express the inner ard outer expansions in terns of the intermediate variable, the former for $x \uparrow \infty$ and the latter for $\sigma \downarrow 0$, and then compare the two resulting expenatons. From section 2 , we have for $\mathrm{x} \uparrow \infty$

$$
\begin{aligned}
u= & {\left[\frac{1}{8} m^{2}(R) x_{m}^{2}+\alpha_{0} m(R) x_{m}+2 \alpha_{0}^{2}+\cdots\right] } \\
& +R^{2 / 3}\left[a_{2} m^{4}(R) x_{m}^{4}+\cdots \cdot\right] \\
& +R[2.4 .1) \\
& +\cdots
\end{aligned}
$$

A. yot we do not mow the form for u at given by the outer uppangion becaute we do not knew the boundayy condition to be applied at $\sigma=0$. Kovever, we assart that $\mathbf{i t}$ must hava the mame leading tern at that providet by the inmor expansion. That in, in texme of the intermodiate variable, the outer
 the outer variablea, we have that

$$
f_{0} \sim \frac{1}{2} \sigma^{2} \text { as } \sigma \downarrow 0
$$

and honce we have the boundiary condition for \dot{F}_{0} (antlolpated \ln (3.3.)

$$
f_{0}=0 \text { at } \sigma=0
$$

On untig thit contition to soive the equation tor \boldsymbol{f}_{0} we have (expation (3.3.27)) that, for amall

$$
\begin{equation*}
f_{0} \sim \frac{1}{2} \sigma^{2}+\frac{1}{12} k_{0} \sigma^{4}+\frac{1}{8} \sigma^{5}+\cdots \tag{3.4.2}
\end{equation*}
$$

Hram the tenma in (3.4.1) that we meglected, we tind that for matcining to one tave the overlas demaln is dotinet by

$$
x=m(R) x_{m} ; 1 \ll m(R) \ll R^{-1 / 3} ; 0<x_{m}<\infty
$$

Wo may now express the outer expandion in texms of the Intermadiate variables, waing (3.4.2) and the terme ixem f_{1};

$$
\begin{aligned}
u & =\left[\frac{1}{8} m^{2}(R) x_{m}^{2}+\frac{1}{3} 2^{-20 / 3} k_{0} R^{2 / 3} m^{4}(R) x_{m}^{4}+2^{-9} R m^{5}(R) x_{m}^{5}+\cdots\right] \\
& +\left[2^{-2 / 3} A_{1} m(R) x_{m}+\cdots\right]
\end{aligned}
$$

$$
+\cdots \cdot
$$

57

The term in the beoond Line arisos from f_{1}. We now ocapare (3.4.3) with (3.4.2). Mrstly we mee; as axpected, that the Ioading texme In each mre Identieal. The next largest texms will be thome of oxder $n(D)$ in $1 \ll m(B) \ll H^{-2 / 9}$, and those of oxior $\mathrm{R}^{2 / 3} 3^{4}(\mathrm{~A})$ in $\mathrm{H}^{-2 / 9}\left\langle<\mathrm{m}(\mathrm{R}) \ll \mathrm{E}^{-1 / 3}\right.$; equating the Lormer texms we have

$$
\begin{equation*}
A_{1}=2^{2 / 3} \alpha_{0} . \tag{3.4.4}
\end{equation*}
$$

From the negleoted temas we oan ghom that for matehing the terms of order $m^{2}(A)$ and $m(A)$, there is an overiap domain dellna by

$$
x=m(R) x_{m} ; \quad 1 \ll m(R) \ll R^{-2 / 9} ; 0<x_{m}<\infty .
$$

It is from the matohing at this onder that we are justified.
 direotiy depenient upon the initial cenditions of the inner problem.
 02 order $\mathrm{A}^{2 / 3} \mathrm{~m}^{4}(\mathrm{R})$ and 50 or ccupazing (3.4.1) and (3.4.3) we Ind that

$$
\begin{equation*}
a_{2}=\frac{1}{3} 2 T^{20 / 3} k_{0}, \tag{3.4.5}
\end{equation*}
$$

and again from the nogleoted texas, the ovarlap domain for matoning to three temas is derined by

$$
x=m(R) x_{m} ; 1 \ll m(R) \ll R^{-1 / 6} ; 0<x_{m}<\infty \text {. }
$$

The matohing at this orior provides the juatificstion for the ccuments and the forme posed in seotion 2.3.0

In fIgure 3 we now $\mathbb{I}_{0}(\sigma)$ and compare it with $\sqrt{2 \sigma}$. to which it agypototes. It amp be em that f_{0} does in fat approach $\sqrt{2 \sigma}$ vary slow ny. Also in figure 3 we mow $\mathrm{g}_{0}(\sigma)$ which is essentially \hat{q}_{20}, normalised for ocuparison purposes by $\hat{\mathrm{O}}_{\mathrm{go}}-4^{1 / 3} \mathrm{~B}_{\mathrm{g}}$ and then expressed in terms of know functions as Lollowa:
from the relationships (iii) and (vii) of section 3.2. we have that

$$
\hat{q}_{20}=\frac{1}{2} \hat{q}_{00}^{\prime \prime} / \hat{q}_{00}^{2}-\hat{q}_{000}^{12} / \hat{q}_{00}^{3},
$$

and so

$$
\begin{aligned}
& \quad g_{0}(\sigma)=\frac{1}{32}\left[f_{0}^{\prime \prime} / f_{0}^{2}-2 f_{0}^{12} / f_{0}^{3}\right] \\
& =-\frac{1}{32} \frac{d^{2}}{d \sigma^{2}}\left(1 / f_{0}\right)=-\frac{2^{1 / 3}}{64} \frac{d^{2}}{d r^{2}}\left(1 / f_{0}\right),
\end{aligned}
$$

and as

$$
\begin{aligned}
& f_{0}^{-1}=2^{1 / 3}\left[\left(A_{i}^{\prime} / A_{i}\right)^{2}-r\right], \\
& g_{0}=-\frac{2^{2 / 3}}{64} \frac{d^{2}}{d r^{2}}\left(\frac{A_{i}^{\prime}}{A_{i}}\right)^{2}=\frac{2^{-2 / 3}}{16} \frac{d}{d r}\left[\frac{A_{i}^{\prime}}{A_{i}} \cdot \frac{1}{f_{0}}\right] \\
&=-\frac{2^{-2 / 3}}{16}\left[\frac{2^{-1 / 3}}{f_{0}^{2}}-2^{1 / 3} \frac{A_{i}^{\prime}}{A_{i}} \frac{f_{0}^{\prime}}{f_{0}^{2}}\right] .
\end{aligned}
$$

Therefore

$$
g_{0}=-\frac{1}{32} \frac{1}{f_{0}^{2}}\left[1+2^{2 / 3} \frac{A_{i}^{\prime}}{A_{i}} f_{0}^{\prime}\right],
$$

and hence, using the result that

$$
\frac{f_{0}^{\prime}}{f_{0}}=2^{2 / 3} \frac{A_{i}^{\prime}}{A_{i}}+f_{0}
$$

We may evaluate so. Also, Iron the last expression we may evaluate $f_{0}^{\prime}(\sigma)$, a constant multiple of which gives $\cap(\sigma)$.

This As shown in tieure 4, together with $1 / \sqrt{2 \sigma}$ to which it a ayaytotes.

Frow Itgure 3, we can wee that g_{o} which 2a the lewding tam howing the variatins of velocity aorosm the flow, has boeome insignificant, as compared with f_{0}, for values of σ graater than 3. This hows that, oven $10 \times$ mbstantial values of A, the velooity aistribution across the jet rapiAly beccones uniform. The swot that $g_{0}(\sigma)$ and other Migher-oxier terme are singular at the origin is not unexpented; it shows that the outer expansion, as well as the innar expansion, remults ircm a singular perturbation. We expect the inner expansion to be applicable in the region viere the siagularltien of the outer expasion have a signiticant effect. IHgure 4 provides an illumation that the leeding term, I $_{0}$ " aso doalnates on the line of symetry not only for $\mathrm{A} \downarrow \mathrm{O}$ but also for $\sigma \uparrow \infty$.

From (3.3.2) and (3.3.3) we have, on terminating the expangions imediately prior to the tiret appearance of texms oontaining any arbitrary oonstants doponiling upon initial conditions, that

$$
\begin{aligned}
& \hat{x}=2^{4 / 3}\left[\sigma+\frac{1}{32} R^{2} \psi^{2} f_{0}^{\prime} / f_{0}^{3}\right] \\
& \hat{y}=2^{-2 / 3}\left[R \psi / f_{0}\right]
\end{aligned}
$$

Higures 5 and 6 show the shape of one of the Iree stremines
(the other being the mirror image in the \hat{x}-axis) for the cases $R=1$ and $R=0.5$. The expressions 1 -term and 2 -term outer indicate whether we have omitted or included the $R-$ dependent term in the expression for \hat{x}. The upstream singularity in the outer expangion manifests itself in the R-dependent terms. Also in iigures 5 and 6 is displayed the first term of the inner expansion, suitably expressed in terms of the outer variables. Unfortunately the only form in which we were able to express the inner expansion is also unsuitable for small x. This fact, as we have previously remarked, reduces the inner expansion to playing the role of providing boundary conditions for the outer expansion. In the preparation of these figures, considerable use has been made of the tables of Alry functions by Miller (1946).

Appendix A.
Extension of the complex variable formalism to the $\mathrm{n}^{\text {th }}$ iteration

We extend the technique we developed in Part 2 for the Stokes equation to take account of the inertia terms. This extension is then used in section 2.4. of Part 3.

The Navier-Stokes equations are given by (3.2.2)

$$
R(\underline{q} \cdot \nabla) \underline{q}+\nabla p=\underline{i}+\nabla^{2} \underline{q}
$$

and continuity by $\quad \nabla \cdot \underline{q}=0$.
If we denote 1 by $-\nabla$, then writing the Navier-Stokes equations in full, we have

$$
\begin{aligned}
& R\left[u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right]+\frac{\partial b}{\partial x}=-\frac{\partial W}{\partial x}+\nabla^{2} u, \\
& R\left[u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}\right]+\frac{\partial p}{\partial y}=-\frac{\partial W}{\partial y}+\nabla^{2} v,
\end{aligned}
$$

and using continuity, these may be written

$$
\begin{aligned}
& R\left[\frac{\partial u^{2}}{\partial x}+\frac{\partial u v}{\partial y}\right]+\frac{\partial p}{\partial x}=-\frac{\partial w}{\partial x}+\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial y}\right), \\
& R\left[\frac{\partial u v}{\partial x}+\frac{\partial v^{2}}{\partial y}\right]+\frac{\partial p}{\partial y}=-\frac{\partial W}{\partial y}+\frac{\partial}{\partial x}\left(\frac{\partial v}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{\partial v}{\partial y}\right),
\end{aligned}
$$

and therefore

$$
\begin{align*}
& \frac{\partial}{\partial x}\left\{-p+2 \frac{\partial u}{\partial x}-R u^{2}-w\right\}+\frac{\partial}{\partial y}\left\{\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)-R u v\right\}=0 \tag{AI}\\
& \frac{\partial}{\partial x}\left\{\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)-R u v\right\}+\frac{\partial}{\partial y}\left\{-p+2 \frac{\partial v}{\partial y}-R v^{2}-w\right\}=0 \tag{AQ}
\end{align*}
$$

Following Muskhelishvili (1963 p .104), equation (Al) is the necessary and sufficient condition for the existence of a function $\Omega,(x, y)$ such that

$$
\begin{align*}
& \frac{\partial \Omega_{1}}{\partial y}=-p+2 \frac{\partial u}{\partial x}-w-R u^{2} \tag{AB}\\
& \frac{\partial \Omega_{1}}{\partial x}=-\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)+R u v . \tag{4}
\end{align*}
$$

Similarly the equation (AR) is the necessary and sufficient condition for the existence of a function $\Omega_{2}(x, y)$ such that

$$
\begin{align*}
& \frac{\partial \Omega_{2}}{\partial y}=-\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)+R u v, \tag{AS}\\
& \frac{\partial \Omega_{2}}{\partial x}=-p+2 \frac{\partial v}{\partial y}-W-R v^{2} \tag{Ab}
\end{align*}
$$

Comparing (A4) and (A5) we have

$$
\frac{\partial \Omega_{1}}{\partial x}=\frac{\partial \Omega_{2}}{\partial y} \text {, }
$$

and hence the existence of a function $\chi(x, y)$ such that

$$
\frac{\partial x}{\partial y}=\Omega_{1} \quad ; \quad \frac{\partial x}{\partial x}=\Omega_{2} .
$$

Therefore we have from (A3), (A4) and (A6) that

$$
\begin{aligned}
\frac{\partial^{2} x}{\partial y^{2}} & =-p+2 \frac{\partial u}{\partial x}-w-R u^{2} \\
-\frac{\partial^{2} x}{\partial x \partial y} & =\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)-R u v \\
\frac{\partial^{2} x}{\partial x^{2}} & =-p+2 \frac{\partial v}{\partial y}-w-R v^{2}
\end{aligned}
$$

We can see that X is an Airy stress function very similar to those in Parts 2 and 3 but with the inertia terms on the right.

We now proceed as in Part 2, changing the independent variables to z and \bar{z} and derive the new form for the field equations

$$
\begin{equation*}
\frac{\partial^{2}}{\partial z^{2}}(x+i 2 \psi)=\frac{1}{4} R(u-i v)^{2} \tag{AT}
\end{equation*}
$$

or $\quad \frac{\partial^{2}}{\partial z^{2}}(x+i 2 \psi)=R\left(\frac{\partial \psi}{\partial z}\right)^{2}$.
As in the main text we pose that χ and ψ be expressed by the formal expansions

$$
\chi=\sum_{j=0}^{\infty} R^{j / 3} \chi_{j} \quad ; \quad \psi=\sum_{j=0}^{\infty} R^{j / 3} \psi_{j}
$$

This gives for the $(n+3)^{\text {th }}$-order equations

$$
\frac{\partial^{2}}{\partial z^{2}}\left(x_{n+3}+i 2 \psi_{n+3}\right)=-\sum_{j=0}^{n} \frac{\partial \psi_{i}}{\partial z} \cdot \frac{\partial \psi_{n-i}}{\partial z}
$$

In section 2.4. of Part 3 we require this result for the case when $n=0$, that is

$$
\frac{\partial^{2}}{\partial z^{2}}\left(x_{3}+i 2 \psi_{3}\right)=-\left(\frac{\partial \psi_{0}}{\partial z}\right)^{2}=\frac{1}{4}\left(u_{0}-i v_{0}\right)^{2}
$$

Appendix B
The singular solutions of (3.3.21) and Maruo's numerical solution

We have seen from section 3.3. that the general solution of (3.3.21) which takes the value $f_{0}=0$ at $\sigma=0$, is given by

$$
f_{0}=2^{-1 / 3} /\left\{\left[\frac{B_{i}\left(k^{*}\right) A_{i}^{\prime}(r)-A_{i}\left(k^{*}\right) B_{i}^{\prime}(r)}{B_{i}\left(k^{*}\right) A_{i}(r)-A_{i}\left(k^{*}\right) B_{i}(r)}\right]^{2}-r\right\},
$$

With k^{*} and y as defined in section 3.3.. We have al so shown that if $A 1\left(k^{*}\right)$ is other than zero, then f_{0} has a singularity in $0<\sigma<\infty$, the exact location depending on the value assigned to k. For small values of σ, f_{0} has the asymptotic form

$$
\begin{equation*}
f_{0} \sim \frac{1}{2} \sigma^{2}+\frac{1}{12} k \sigma^{4}+\frac{1}{8} \sigma^{5}+\cdots \cdot \tag{B1}
\end{equation*}
$$

This is the aame form as for the non-singular solution, though in this case the coefficient, k, of σ^{4} is necessarily different. It is apparent that if we had attempted to obtain a solution by numerical integration, starting at $\sigma=0$, then, because of even the slightest of rounding errors, we could never keep to the non-singular solution we wanted, but would always veer onto a singular solution.

For large values of $\sigma, \mathbf{1}_{0} \sim-\sqrt{2 \sigma}$ regardless of the value of k (other than those satisiying $A_{i}\left(k^{*}\right)=0$). The singular solutions of f_{0} are qualitatively as in ilgure 7, though the origin of comordinates and the sharpness of the peaks will

vary with k .
We can now see that by refusing to admit a singulerity, we have effectively refused to admit the negative possibility in the choice of behaviour at infinity.

Maruo tried to integrate numerically forwards from $\sigma=0$, but encountered the singularity, (although he never mentions boundary conditions, the details of his woriding indicate that the condition $f_{0}=0$ at $\sigma=0$ was tacitly assumed for so long as it was convenient). He then derives a series solution for small σ, similar in essence to (B1), though omitting the possibility of a term in σ^{4}. At large σ he assumes $+\sqrt{2 \sigma}$ to be the leading term and iterating on this derives a series solution for large σ. Starting at some substantial value of σ
he integrates numerically backwards towards small σ. On experienceng some difficulty in patching his numerical solution onto the series solution for small σ, he relaxes the unspoken boundary condition at the origin and arrives at a solution resembling that in figure 8.

Figure 8

As we have remarked earlier, in this particular problem, choosing the behaviour at infinity is the same in practice (though not in principle) as rejecting solutions with singularities in $0<\sigma<\infty$. In the absence of an analytic solution we could have refined Maruo's procedure, starting at infinity and integrating backwards to $\sigma=0$. We could have avoided the difiliculty that Maruo experienced in satisfying the boundary conditions at the origin by noting that the leading term for large σ is $+\sqrt{2(\sigma+c)}$ where c is an arbitrary constant, depending on the conditions at the origin. The independent variable can then be changed to $t=\sigma+c^{2}$, and then the backward integration carried out until we reach
the value $f_{0}=0$. The value of c can then be chosen so that $\mathbf{f}_{0}=0$ at $\sigma=0$. Considerable accuracy must be maintained. throughout this integration as we would still have to find the value for k from this numerical solution.

References

BROWN D. R. 1961, A study of the behaviour of a thin sheet of moving liquid. J. Fluid Mech. 10 , p 297.

COURANT R. \& HILBERT D. 1953, Methods of Mathematical Physics, vol 1. Interscience Publishers.

INCE E. L. 1926, Ordinary Differential Equations, Longmans, Green and Co.

MARUO H. 1958, Private comunication with G. I. Taylor.

MILLER J. C. P. 1946, The Airy Integral, British Association for the Advancenent of Sclence, Mathematical Tables, Part volume B, C. U. P.

MUSKHELISHVILI N. I. 1963, Some Basic Problems of the Mathematical Theory of Elasticity. P. Noordhoff.

