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Preface

In this thesis we consider three problems in two-
dimensional fluld flow, All are characterized by the fact
that the fluid considered is, at least partially, bounded
by free streamlines, The difficulties assoclated with flows
of this kind are, in addition to the normal non-linearities
in the field equations and boundary conditions, that the
boundaries tlgamsalves are unknown, being determined by the
nature of the flow they contain,

We overcome this last difficulty in the first problem
( the flow in an inviscid waterfall ) by expressing the
problem in streamline co-ordinates, that is, by using as
independent variables the stream function and a co-ordinate
forming an orthogonal net with 1t, The difficulties raised
by the non-linear boundary conditions are resolved by
employing a perturbation scheme, As this is singular, we
resort to the " method of matched asymptotic expansions ",

The third problem ( the flow under gravity in a jJet of
viscous liquid ) also involves & singular perturbation, and
80 we again resort to the above method, One of the expansions
is derived after expressing the problem in streamline co-
ordinates, The other expansion is derived by using a
tsechnique, developed in the second problem, involving a
complex variable formalism, It is shown that the Alry stress



function is what might be called the * biharmonic conjugate "
of the stream function, and this relationship proves to be
vary useful, |

The second problem ( the flow of a viscous fluid in the
neighbourhood of separation at an eige ) is included mainly
as a vehicle for developing the complex variable formalism,
The * neighbourhood " mentioned above is defined as being
the region in which the non;linea.r terma in the field
equations are negligibly amall and where the free streamline
can be considered to be rectilinear. This disposes of both
chief difficulties ih the problem,
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Part 1

On two-dimensional inviseid flow in & waterfall

Proface

The material for this section has been published in the
form of & paper, This paper is included, with one correction,
and constitutes the majority of Part 1; we make one addition,
Since this paper was written, Markland (1965) has published
some work on the same problem, though like Bouthwell ard
Vaisey (1946) (see below, pages 360 and 369 )}, his method of
attack is numerical rather than amalytical, One advantage
that Marklani's work hae over that of Southwell and Valsey,
from our point of view, 1s that like us he works with stream-
line co~-ordinates and treats the casses for which our analysis
is suitable, that 1s , cases in which the Froude number 1is ‘
greater than unity. We have used Markland's results to compare .
with our own, These comparisons are presented in figures 6, |
7, 8 and 9,

The pagination of our paper is retained, We make & slight
correction on page 362. In equations (3.3), (1) and (11)
should read
(1) vy wOons; =0, 8>1;

(11) w =-fongp=0, 0g8<1;
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On two-dimensional inviscid flow in a waterfall

By N. S. CLARKE
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(Received 6 October 1964)

This paper is concerned with the two-dimensional flow in a free waterfall, falling
under the influence of gravity, the fluid being considered to be incompressible
and inviscid. A parameter e, such that 2/e is the Froude number based on
conditions far upstream, is defined and considered to be small. A flowline
co-ordinate system is used to overcome the difficulty that the boundary geometry
is not known in advance. An asymptotic expansion based on ¢ is constructed
as an approximation valid upstream and near the edge, but singular far down-
stream. Another asymptotic expansion, based upon the thinness of the fall,
is constructed as an approximation valid far downstream, but failing to satisfy
the conditions upstream. The two expansions are then matched to give a solution
covering the whole flow field. The shapes of the free streamlines are shown for a
number of values of e for which the solutions are seemingly valid.

1. Introduction

An inviscid, incompressible fluid flows over a horizontal bed until it falls over
an edge under the influence of gravity. The flow is considered to be plane and
steady. Far upstream the fluid is of depth # and has a uniform horizontal velocity
U,, and gravity is acting vertically downwards (see figure 1). The problem is one
of finding the velocity potential ® and the stream function ¥ as functions of
position, Both ® and¥ must satisfy the Laplace equation subject to certain non-
linear boundary conditions, namely zero pressure on the free streamlines and
zero normal velocity on the bed. The basic non-dimensional parameter appearing
in the problem is ¢ = 2gh/U3, and this is assumed to be small in most of this
paper.

This problem involves a singular perturbation, the singularity occurring far
downstream. As such, it lends itself to the technique of ‘inner and outer expan-
sions’. Kaplun & Lagerstrom (1957) and Erdélyi (1961) give a general account of
this technique and also cite further references. In the present paper an expansion,
which is derived to satisfy the conditions in that part of the flow which is not
far downstream, will be known as the inner expansion, and the region in which
it is valid, as the inner region. Similarly, the outer expansion satisfies the con-
ditions far downstream, and is valid in the outer region.

The inner expansion is constructed by a perturbation scheme, in which all
lengths are referred to 2 and all velocities to Uj; this scheme may be regarded as a
perturbation for weak gravity. The first approximation is therefore a uniform
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horizontal stream. In the outer region, all lengths are referred to U3/2g and
velocities again to U, and so in this region the perturbation may be regarded as
one for small width of the fall. Here the first approximation, being hydraulic,
is of the well-known parabolic form.

It is to be expected that the inner and outer regions overlap to some extent.
By matching the inner and outer expansions in the overlap region, the unknown
constants in the outer expansion are found, and the combined solutions then
cover the whole flow field.

Southwell & Vaisey (1946) found a result for the case ¢ = 2 by relaxation
techniques, and their solution has been used for comparison purposes in figure 5.
Keller & Weitz (1957) also found a solution in the outer region, though by an
approach different from the one given in this paper. This solution was found to
agree with ours to the first approximation.
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Ficure 1. Notation.

2. Formulation

We denote the fluid velocity by Q = V®, and consider a co-ordinate system
Z = X +4Y, in which the bed is described as ¥ = —h; X < 0. Gravity is acting
in the direction of Y decreasing. The problem is to find the complex potential
F = @ +4V¥ satisfying (92/0X%+ 22/2Y?) F = 0, subject to: (i) zero pressure on the
free streamlines, (ii) zero normal velocity on the bed. The free streamlines are
unknown in terms of X and Y, but are known in terms of ¥, This suggests invert-
ing the problem to one of finding Z as a function of F, that is, of finding Z satisfy-
ing (02/0®2+ 92/0¥2) Z = 0, subject to the same boundary conditions.

To find the boundary conditions explicitly, we make use of Bernoulli’s equa-
tion: Plp+3Q%+gY = constant = U2,

where the density p is constant throughout the fluid, and the constant on the
right has been evaluated from the conditions far upstream on the upper free
streamline.

We define non-dimensional variables by

p=PlpU§; q=|Q|/Uy; z=2Zk; f=F[Gh;
and Bernoulli’s equation becomes

2p+@?+ey =1. (2.1)
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Therefore the boundary conditions are

(i) ¢=1-ey on =0, all ¢;

(H) ¢2=1l-—ey on ¥r=-1, ¢>0; 2.2)
(i) Im(flf)_l=o on Y=-1, <0
df ’ s

If we consider the problem to be in the complex f-plane, then the field equations
are satisfied by any complex function z(f). The problem is then, to find such a
function 2(f) which satisfies (2.2).

3. The inner expansion

We pose that Z(f) — zo(f)+€zl(f)+€2z2(f)+ I (31)

To find the z,(f) we substitute (3.1) into (2.2) and, comparing coefficients of e,
obtain a sequence of linear problems in each of the z,(f) in turn.
zo(f) is simply the solution in the case when e = 0, and so 2(f) = f-

4

1
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u=—-1 (1,0) u=0
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by

F1cUurE 2. The complex s-plane, showing the boundary values of the
first-order problem.

On substituting (3.1) into (2.2), and comparing first-order coefficients, we
find that «,4 = $3 on the free streamlines, where the subscript ¢ denotes differen-
tiation with respect to ¢. We therefore seek w; = u; +iv; = 5+ 1,4, subject to

i) u,=0 on ¥=0, allg;
) #,=—-% on Yy=-1, ¢=0; (3.2)
i) »,=0 on ¥=-1, #<O0.
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To solve this mixed boundary-value problem, we map the infinite strip,
0 > ¢ > —1,in the f-plane on to the upper right-hand quadrant of the s = s, +is,
plane by the mapping: s = ,/(1+e~"/). The boundary conditions then are as
given by (3-3), and as shown in figure 2.

(i) u, =0 on $=0, s =1; *

=
(i) w,=—1 on §=0 0<s<1; (3.3)
@i »,=0 on s,=0, s,>0.
This problem is familiar, in that it is analogous to that of finding the complex
potential of an inviscid flow, covering the entire plane, with a pair of vortices
situated at (1,0) and (— 1, 0). The solution is well known:
7 s—1
However, it will be more helpful to solve a more general mixed boundary-value
problem, as this more general solution may be used in the higher-order problems.
Consider a complex function w, = u, +1v,, analytic in s, > 0, s, > 0, with
u,, preseribed on the positive real axis. Following Woods’s (1961) account, we
assume that
(i) v, =0 on § =0, 8 >0;
(i) wy(s) ~ O(s™) as |s| 4 o0;
(iii) w,, (s) is integrable in the ordinary (Riemann) sense on any finite (3.5)
arc of the positive real axis. (Unlike Woods we do not allow w,
to have singularities of the Cauchy type.)
If we consider the problem to be in the whole of the upper half plane, with u,,
now also prescribed on the negative real axis, then the solution is well known,
_ L7 al0)
w,(8) = 7T.J‘—no P do. (3.6)
To ensure that v, = 0 on the positive imaginary axis, we have that
’ltn(O') = n(_ o),
. . i (@ 1 1
and using this w,(8) = o fo u, (o) {m + s_:E} do. (3.7)
We return to the first-order problem. The boundary conditions satisfy (3.5),

and so using this method we recover (3.4).
By the restriction (3.5, (iii}) we have excluded terms in w,(s) of the form

il-l-l
s—1 s+1/’

which may be added to any solution without violating the boundary conditions
except at the singular point s = 1. This is because we accept only the weakest
possible singularity for s — 1, a policy justified later by the matching procedure.
Therefore the solution to the first-order problem is given by (3.4), which in terms
of the original variables, becomes

) (1+e—”f)’3—1}
=1 . 3.8
zlf o og{(l—i—e‘"f)%—}-l ( )

% see nole ok oot of Poge 6.
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When we come to the matching procedure, we will require an expression for
z,(f) as f4 00; this is then from (3.8)

z(f) ~ —%ﬁ— (%log 2) f+const. +0(e ). (3.9)

We now turn our attention to the second-order coefficient, z,. On inserting
(8.1) into (2.2), and comparing second-order terms, we have that

Tag = Y1+ 323, —yi,)
on the free streamlines. We therefore seek w, = u, -+ i, = @54 -+ 19,4, subject to
(i) uy= %(91—2’/%55) on ¢ =0, allg;

(i) wp=3y1—9ip)+8 on Y=-1, ¢>0; (3.10)
(i) v,=0 on ¢r=-1, ¢$<0.

Mapping the f-plane onto the s-plane, we find that on s, = 0, u, has a finite dis-
continuity, and singularities of the nature log?|s;, —1| and log|s;—1| at s, = 1,
but has no singularities elsewhere. Hence u, satisfies (3.5, (iii)). Also

uy = 0(s72) as |[s]| 4 oo,

and so all the conditions in (3.5) are satisfied. Therefore, using (3.7), the solution

is given by
3'&

where @(a) = }(y,—¥}s) on s = 7, o real. The behaviour of G(o) near o =1, is
given by

G(a)—-—logW ll+ —slog2log|o—1|+{H(1—0)+J(0),

where H is the Heaviside unit function, and J(o) is regular at o = 1. To re-
move this singularity from within the integral, we define the complex function

Y(8) = a(sy, 82) +1fB(51, 85) by

1 o (s—1 s—1 1
_4—”—zlog (s+l)+§rl g(s_H) o —(s—1)log (s—1)

1 1 L1
+z(s+D)logle+1) -5 5log(s+i)—5 5. (3.12)

y(s) =

The function v(s) satisfies the conditions (3.5), and G(o)—a(a,0) = Q(0),
where Q(c) and dQ(o)/do are continuousin 0 < o < co. From (3.7)

7(8)=3.fco alo, 0){i+ . }da. (3.13)

mJo o S§s-+0
Subtracting (3.13) from (3.11) we have

(s)——-lg(s+})+7(s)+ fomg(a){£?+£5;da. (3.14)
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The behaviour of z,(f) as f 4 o0, is then

177 1 1 1 T
~—l f " _ = 21— 2 [ B —nf
2(f) e+ 2(4 ﬂlog Z)f (7,2 log? 2 +2112+87r nlog2)f+const.+0(e )-

(3.15)
It is worth noting here that on the lower streamline near the edge

%~—#—@%ﬁ+mﬁh
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Ficure 3. Case of € = 0-1;

, inner solution; -- - -, outer solution.

Ficurg 4. Case of ¢ = 0-5; ——, inner solution, - - - -, outer solution.

where 4,4, are real finite constants. In both these expressions, the leading
singular terms are of order ¢#. This shows that the singularity in the first-order
term does not give rise to a more singular term in the second-order expression.

It would appear, then, that at the edge, 2(f) has no worse a singularity than that
contained in 2(f).
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The functions ,, &, ¥;, ¥, have been evaluated numerically for the upper and
lower free streamlines in therange — 5 < ¢ < + 5, and the results have been used
in the construction of the figures 3 and 4. The higher-order terms in (3.1) could
be derived in a similar manner, but we terminate the inner expansion after the
second-order term.

4, The outer expansion

Defining the complex velocity by ge—*, we know that ge=* = fn(¢4 + iy €), but
we do not know the manner in which ¢ enters this function for large values of ¢.
However, if we take UZ/2g as reference length, and U, as reference velocity, this
makes the width of the fall of order e. That is, if ¢+ is the new non-dimensional
stream function, then the flow is bounded by the streamlines ¢+ = 0, ¥+ = —e.
This narrowness is useful so long as /dy+ ~ O(1), for then we may assume little
change across the fall. We have from the boundary conditions on the free

streamlines [15=2 = —ely(d, V=2 (¢ > O). (1)

This indicates that 8/2y+ ~ O(1) far downstream, and we therefore adopt Ug/2¢
and U, as the reference length and velocity in this region. Then z+ = 2*+(f*;¢),
where
ot = 2%?: e and fr=20" g grriey.
0
We define the outer limit to be
e} 0, with ¢+ fixed ¢+ > 0; applied to zH(p*++iey;e),
whereas the inner limit was
€} 0, with ¢, fixed, ¢ < o0; applied to 2(¢+1i;e).

It will be noted that ¢ does not appear in the boundary conditions, but in the
actual boundary ¢+ = 0, ¢+ = —e.

The expression z+ = z+(f+; €) suggests that we could expand z* in a power
series of the form

2t = 2 (P+ +ief) +ezf (P +ied) + .. (4.2)
and with direct substitution of (4.2) into the boundary conditions; ¢ =1-yt
on ¥+ =0 and Y+ = —¢, we would obtain a sequence of non-linear, ordinary

differential equations for o} (¢*, 0) and y;} (¢, 0), which could be solved.
However, we approach the problem from a different viewpoint. The following
derivation is more satisfactory in that it is simpler, sheds more light on the physi-
cal problem, and leads to a series valid not only under the outer limit previously
defined, but also under two other limits.
First, we change to a less cumbersome notation, writing

r=¢=E+in; fr=1; ¢$t=o0.
We have then that log g —i0 = fn(r;¢€), and therefore, by the Cauchy—Riemann
relations, eq-'q, = —0,, (4.3)
q—IQg& = 600" (4’4)
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Also from the definitions of ¢ and ¥,

d§ = g (cosOdo —esin0dy), (4.5)
dy = g~ Y(sin Odo +ecos dyr). (4.8)

The boundary conditions are
@=1-9 on Y=0, y=-—1 (4.7)

By considering momentum flux in the £-direction, it can be shown that
0
f (plg+q)cosfdyr = const. =1+ 1e=E, (4.8)
-1

where the flow conditions far upstream have been used to evaluate the constant
on the right, and p is given by

p =5(1-7-¢"). (4.9)
In terms of the variable 3, the width of the fall is O(1), and derivatives with
respect to ¥ are Ofe), and so we may take as a first approximation that ¢ and ¢
are independent of ¢, and also that ¢ > p. Then from (4.8) we have

go ~ B secl,, (4.10)
where the subscript ‘0’ denotes the value taken on ¢ = 0. Also from (4.7) and

(4.6), g2 =1 —9, and
9 =qy1sing
dal,  *° 0

which, with (4.10) give
(g3 — B2)% + 2B2(g5 — Bt ~ 00— Afe),
where A(e) is a constant of integration.
We define A(0, €) by 0, = —A; then
o—A(e) ~ 2E3(tan A + } tan® A). (4.11)
We may now take A, rather than o, to be the independent variable, and express

all other quantities in terms of A, equation (4.11) providing the link with the
original variable. In this case we then have

go ~ EsecA, (4.12)
No ~ —H%sec?A+1, (4.13)
£, ~ Ale) + 2E2 tan A. (4.14)

(4.14) and (4.13) clearly show the parabolic form of the fall, to the first approxima-
tion. (4.14) was constructed by using (4.5).
We express ¢, 7, £ and @ in the form of Taylor series about i = 0, viz.;
q= G+ (qylo-¥+-.-.
Using (4.3)-(4.6), we can show that

g ~ EsecA— (eyf cos® A)/2E?, (4.15)
0 ~ —A— (e cos® Asin A)/2E3, (4.16)
7~ — E2sec? A+ 1+ (eyrcos2A)/E, (4.17)

£ ~ Afe) +2E2tan A + (e sinA cos A)/E. (4.18)
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To find a second approximation, we put g, = EsecA+g¢,, and neglect all
terms of O(g%), so that 9, = —E2sec?A+1—2K secAg;. On substituting these
values into (4.15) and (4.17), and then using the new values of (4.15) and (4.17)

in (4.8), we find that ¢, = — (e cos ) J4E2.
It is then easily shown that the full second-order approximations are
g ~ EsecA—(ccos ) [4E2 — (eyrcos® A) |22, (4.19)
0 ~ —A—(eyreos® Asin A) [2E3, (4.20)
7~ —E%sec? A+ 1+¢|2E + (e cos? Q) | E, (4.21)
£ ~ Ale) +2E2tan A+ (e sin A cos A) | B, (4.22)
and gg ~ cos? A/[2E%(1 — e cos® A |4E3)], (4.23)
so that o —A(e) ~ 2E3%(tan A + 3 tan® A) — e tan A). (4.24)

The equations (4.19)-(4.22) have the appearance of asymptotic expansions
under three different limits, namely

(i) €4 0 with ¢,A fixed, and A > 0,

(ii) €% oo with ¢, A fixed, and A > 0,

(iii) A4 iw with ¢, fixed, and ¢ > 0.
It should benoted thatin the case of thelimit (ii) £ = 1+ }e ~ }¢,andso¢/E <€ K.

However only in the limit (i) can the unknown constants, A(¢) and A(e), be
determined by matching.

5. The matching procedure

We consider the limiting process, ¢ | 0 for f = m(e)f,,, with f, fixed, and
1 € m(e) €6, where the notation a(¢) <b(¢) means a/b} 0, as € 0;
a,b > 0. f,, is called an intermediate variable because;

f=mle)f, + o, as ¢ { 0 with f,, fixed,

and 7 =emle)f, + 0, as ¢ | 0 with f,, fixed.
We now assume that the set of intermediate order functions m(¢) defines an
overlap region in which the inner expansion, the outer expansion and the
exact solution are all asymptotically equal. Therefore we express the inner
expansion, in terms of the intermediate variables, for f4 co, and the outer
expangion, also in terms of the intermediate variable, for 7| 0, and compare
the two resulting expansions.

We have, from § 3, the result that for f 4 oo

z = m(€) fr, + e[ —-% m2(e) [ —:'—Tlog 2m(€) fr+ const] +O0(e*m®€)). (5.1)

Ifin (4.21) and (4.22), we express A in a double series in ¢ and o, and making use
of (4.23), we can put the outer expansion into the form,
z = e (A + 2 tan ¢y + i tan? cy) + em(€) f,, cos cy(1 —¢ tan? c,)

+ 3e2m?(e) f2 (— cos® ¢y tan ¢, + 3¢ cost ¢y (2 sin? ¢y — 1))] + O(e?m?(¢))

+[(A; + % tan ¢, — §sin ¢, cos ¢, + 2a, cos? ¢, + (% 8in2 ¢, — 2a, sin ¢, cos ¢;)) ]

+em(e) fu (3 sec? ¢, + § sin2 ¢, — § cos? ¢, — 4a, cos ¢,y 8in ¢,) + (2 sin ¢,y cos ¢,

—2a, cos 2¢,)] % cost ¢, -+ O(e2m?) + O(e), (5.2)

X for | read /.
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where ¢, is the value of A for ¢ =0 and o =0, and A(e) = Ag+eA, +....
@, is a constant to be determined and is related to A,, where

Afe) = Ag+eA +....
On comparing (5.1) and (5.2), we find that, from first-order terms
Ay+2tanc, = 0, (5.3)
tan2c, = 0, (5.4)
and we can thus deduce from these that
=0, A;=0.
We can also deduce, from the size of the terms we have neglected, that
I1<mle)<e,
and so for matching to one term, the overlap region is defined by
f=mE)fn; 1<me)<e?, 0<f, <o
On putting ¢, and A, to zero in (5.2), we have

2 = 1(e) frn— L M) 3+ (A +22)
— ity em(e) i, +Olem3(e)) + O(eim?(@)) + 0(e). ~ (5.5)

On comparing (5.5) and (5.1), the first two terms in each are the same, and from
the other terms we have that

A, +2a, =0, (5.6)
1
a = log 2, (5.7)
2
and so Ay = - log2. (5.8)

Also from the neglected terms, we can deduce that
1< me) € et
Therefore, for matching to two terms, the overlap region is defined by
f=me)fn 1<m)<e?, 0<f, <o
From (5.7) and (4.24), we find that
Ag=0, A= —%log&
Therefore by matching we have found that

Ale) = —§log2.e+0(62),
and Afe) = —%10g2.e+ O(e?).

Also, the fact that the two expansions do have the same asymptotic form in the
overlap region, provides a strong indication that our assumptions, as to the form
the expansions should take, were correct. ‘
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The determination of the constants in the outer solution provides a complete
solution covering the whole flow field. Figures 3 and 4 show this solution,
for the upper and lower streamlines, in the cases when ¢ = 0-1 and ¢ = 0-5.
In the latter case, the inner solution displays a tendency towards a reversal

-3
Ficure 5. Case of € = 2-0; comparison between our outer solution and the solution of
Southwell & Vaisey (1946). ----, Outer solution; ,» Southwell & Vaisey solution.

in the direction of the flow, a tendency which becomes more severe with increasing
e. In figure 5, the outer solution is shown to be in close agreement with the
Southwell & Vaisey solution for ¢ = 2, though, for this case, the inner solution
is such that it does not coincide with the outer solution before reversal occurs.

This work was done while the author was at the Mathematics Department,
Imperial College, London. I am indebted to Mr L. E. Fraenkel for suggesting this
problem, for his considerable guidance and encouragement during the course of
this investigation, and for his advice on the presentation of this paper. I am
also grateful to the Department of Scientific and Industrial Research for a grant
during the period of this research.
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In figures 6-9 we compare Marklani's results with our
own for the cases €= 2,0 (also included in this figure is
the Southwell and Vaisey (1946) solution), €& = 0,50,

€ = 0,125 and € = 0,03125 respectively, The agreement
between the solutions can be seen to be very close for
snall € , though a little disappointing for the cases

€ w0,5and € =2,0, especially in the light of the
olose agreament between our solution and that of Southwell
and Vaisey for the latter cass. '

REFERENCE
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by relaxation method.
Proc. Instn. civ, Engrs, 31, 78.
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Part 2
The separation of a viscous fluld at an odge
1, Introduction

We oonsider tize segparation that & viscous fluid experiences
when it encounters an abrupt change in the geomeiry of a
s0l14d boundary, Instances of such & change occur at the mouth
of a nozzle, at the brink of a waterfall or at the tralling
edge of & flat plate, The problem is gonsidered to be two-
dimensional and the fluid to be incompressible,

The problem will bs idealiged as follows; & viscous fluid
flows along a plane, inclined at an angle B to the direction
in which gravity is aocting, until it encounters the end of :
the plane, The fluid then breaks away and is bounied below |
thereafter by a free streamline, initislly in¢lined to the
plane at an unknown angle o, As we shall consider only the
flow in tho immedliate neighbourhood of the separation point,
both the solid plane and the free streamline may be considered
to be straight lines ( see figurs 1 ).

Michael (1958) treated this problem by separating the
variables in the governing biharmonic equation, expressed in
polar co-oxndinates, andi thereby foundi a number of possible
solutions, We adopt an entirely different procedure, 7he
problem is reformulated into one of finding a pair of complex



14

functions satlsfying certain bouniary values, This technique
has considerable generality, and will be utilised in Part 3
in & problem of greater originality, The present problem is
to be saen more as an illustrative example of the technique,

Moisil (1955), ani following him Langlois (1964), allude
%o this reformulation, though their approach is quite
different from the one presented here,

2. Formulation

We use rectangular cartesian co-ordinates, taking the
separation point to be the origin and the fres streamline to
be the x-axis, u and v are to be the components of the
velocity in the x and y-directions, As we are considering
enly the flow very near the separation point, we shall
naglect inertia effects, Accordingly, the equations of motion
will be the Stokes equations,

i

—_

Figure 1,
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The equations of motion, together with continuity, are

ég( = —bé_\l;l_{ *}va\k 5 ‘2.2.1)
%g = - %y% +/(A,V2V > | ‘2.2.2)
%%—( 4 %}I\é =0 3 (2.2.3)

where W is the potential of a conservative body force, in

our oase .
W= -paixcabep) -ysinbp} . (2,2,4)

(2.2.1) and (2.2.2) mey be expreased together in terms of
the astress tensor pu, as

1%5‘ ~W,. =0 5  (2.2.5)
whare .

b b oapas (2.2.6)

Pos par s (G0 305) (2,2,7)

3o, S — A 2.2.8

+ F +45u,%%é ( )

From (2,2,5) we infer the existence of an Alry stress
function, % , such that

by = 2% LW (2.2.9)
é%> ?
b= b,z - &Y {2.2.10)

&xdy
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Pa= L wwW, (2.2,10)

and from (2.2,3) we infer the existence of a stream function
} such that

DV _ o Y
Y ’ —g‘,ﬁ ==V (2.2.12)

If we subtract (2,2,6) frem {(2,2,8), and (2,2,9) from
{2,2,11) and compare the two resulting equations, and compare
(2.2,7) with (2,2,10), we have

X _ ¥ -_ 2

R g;(—gg : (2.2.13)
62
6)(63 /u (, SK> - %jﬂ):) . (2. 2.14.)

We now change the independent variables to z(= x+1iy) and
Z(= x-1y) ( ordinarily z and % are not independent; however
if we congider the more general case where x and y are both
complex variables, then 2 and Z are independent, We treat
our aituation as a special caae of this, in which the
imaginary parts of both x and y reduce to zero, In this
sense z and Z are independent ), then (2,2,13) and (2,2,14)
becone

Lh+ o *e;?z '"‘zf‘(esz’ ’ (2.2,15)
¥X __')C - > b’\l)
ol S (ﬁa ' (2.2.16)



Y

Adding thess two equations we obtain
2 (A+i2py) =0, (2,2.17
and therefors

Yori2uy = 2F2 + Gl - (2.2.18)

where the amalytic funaticns Fis) and G{s) are to ke
determined from thelir boundary valuss,

It is worth noting here that as V2- A“fiz’ then

i

F(2 j(\?‘(')b»r"zj,,\p) = -2 ({b+W +‘a).wS> ,

where 3 is the vortiolty, this provides a physical
interpretation of ¥{s),

The boundary conditions to be imposed are, quite generally,
that on a solid boundary, the velocity reduces to zero, and
on & free streamlins, the shear stress, the normal stress
and the normal velocity all wanish, Mathematioally these
may be exprossed as:

on & free streazline pyqny =~ O and Vyby o ;
on & solid boundary vy =0,

where n, is the unit outward nomsal vestor. In general, the
loocation of the free streamlins will be unknown and the
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streamline itself will be ourvilinaar, To overcome this diff-
fculty, we will denote it by the squation y = 8(x) and treat
B as ancther unknown dependent wvariable. In ths particularly
simple cuse we are considering in this gaction, the free
streamline is rectilinear and is given by 8 = O, though the

angle « yemains unknown,
The streess conditions Are written

n Ry + ’Flaﬂz =0 }

)y + #z:nz =0 on Y*B‘x’ »

and the cutward normal vestor is (‘2,-%) , whers s is
some length-1ike paremeter measured along the free streanm~-
ling, These eguations ars then exprossed in aiffersntial
fornm ;

(B )y v )™ o Sk)
d\'\ﬂ: R
(E:%‘; dy + (é.;%bm)ax :o} )

vhere ¥, denotes the valus W takes on the fres streamline.
On integrating thess equations { we ignore any constants of
integration, as we may add any iinear expression to X
without oontyadicting its definition )}, ws obtain

élc = - SWQ,S’(X)M
Y

¥ = - S'Ws.obx
Y

} o~ lj: S(x) .
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We combine these into one complex condition
i é_% = - S Ws(\'\- \5’(‘&)) o (2.3.39}

The velocity condition on the free atreamline is
squivalent to the oondition that the stream funotion is a
constant there, Hence

0= dy = %\}’(ollx +%}\\3.o\ﬂ o Y=Skx) ,
and so

IMS('(\%S’(X))(%&;d?’J):)} =0 emy:S(x) | (2,2,20)

On a s0lid boundary
Qv Y
S\Yg ! 5%)( - O‘ ‘2.3.21)

Ve now axpress thess conditions in terms of ¥{x) and Gig).
On differentiating (2,2,18) seperately with respect to x and
Y, and then adding and subtracting the resulting equations,
we have

(6'7( - 6’X> i_‘l}/‘(b_‘l’—&% = 2F ()

)
Pri Py izn @i ) = AT +GE)

Taking the conjugnte of the first of these, and then adding
and subtrasting this with ths asoond, we find that

'as%i +‘.%9§ = F2)+zF(» +G§R)

l}»(%_t\.’é -\‘%%c) = Blk) ~2Fl ~G'®)
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In the gensral problem, then, we have to find the analytic
functions F{x) and G{s) and the funotion 8(x) which maslefy
the following oconditions:

{1) on & fres streamline, denoted by y w 8(x)

Flz) +2F8) +FD = - Jws (1ri S0O)M 5 (2220

Im§ (- SOO)FE -28@ -T@)} =0 ;)  (2,2,23)

{11) on a s011d boundary
F)-2FR) ~G'(= =0 . (2,2.28)

3. The solution in the viginity of the edge

As previously mentioned, in this oase 8(x) 1is identioally
zero, and this of course greatly simplifies the problea, If
we write £ = r.exp(1O), then the free stremaline is denctel
by 6:= O , and the solid plans by O-1-x- ¥ . The conditions
to be applied, are

Flz) +2F) +G6) = 1paesbop)® o €20 5 (2.,3,1)

IM{ F(?-)} =0 omw B=0 | (2.3.20

Fl2)- 2F2) -G =0 o~ B:=% . (2.3.3)

In deriving (2.3.2) we have used (2.3.1) as well as (2.2.23).



. . We shall confine owr interast to the region whors r is
seall ad assume that in this region F(z) and G(z) ave
algebraioally ssall funotions of %, We therefore pose that

Fix) = Az’ ssaller terms .
An examination of {2,3.3) shows that G(s) must be of the form
G(z) = B.s™'+ smaller toras.

Weo oan mes that 1f the gravity terms are comparable with the
viscous terms, then )= 2, We shall show, however, that
possible solutions axist for O<)< 2 {in faot we ghall show
that they must exist if we are to obtain a senaible solution),
This means that the gravity toms are unimportant in the
region very near the edge., For )< 2, the boundary conditions
will be homogenecus and so only the ratio B/A will be
determined, the absolute valuss being dependent upon the flow
outside the region of wvalidity of our field equations, In
this respect, and in the final solution, thers is of course
& great similarity with the solution for the filow in the
neighbourhood of the leading edge 0f & semi-infinite flat
plate ir an unbounded fluid aws given by Carrier and Lin (1948),
Therefore considering ) for O<)\< 2 we see from (2.3.2)
that A is real and from (2.3.1) that B is aleo real and that
B = ~A, For other than & trivial solution (2,3.3) gives

R N LIV SPR L L
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That is
052}\8 _lx.eliJE + 9\_‘_\ =0

Separating the real and imaginary partss of this equation:

ces 2ZAB ~ANcer2¥ o+ (A+) =0 R (2.3.4)
sim 2% - Nem2¥ =0 , ‘2'35)

{2.3.4) can be written in the form
eet> \Y +AsimrX =0 . (2.3.6)

With ) > 0, this is positive definite on the left hand side
and hence we conolide that

Ces A¥ =0 ; Swn ¥=0
Therefore by (2.3.4) 1% is neceessary that
NS = lax) T ; ¥= iIT,xom, - -

and by (2.3.5) these are sufficient. This means that

D

L= O,-T, t 2% | T3W, - -

Of these, only %=0,-1 have any physically realiseable
significance ani s0 we have anly ths two possible sets of
solutions:

*=0 ; N "'%.'%.’g;) > (2.3.7)
K=-T ) >\= "4“’, %’%) (3.3.8)
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e oan reject the modee X\-2,%,- amd H- ;02.%,
for in thess casss there axista st least one O, in 0<H;<T-X
such that \})ng)—- o which fmplies a situation such as that
11lustrated in figure 2.

Figure 2 Qualitative aiam of the flow corvesponding
t0 the mode =0 , A= 3/,

Tne solution corresponding to )= & { that is, the solution
forced by gravity ) is also unsuilable as & leading term for
the fcllowing reasons, For \:- 2, « can assune three physically
pomsible values O41 -1 . In the last cass, the flow region
1s divided into ssctors such as in figure 2. The firast two
cases give the solutions

ol=9Q 5 \_\l: -ﬂ_ébgj_? %3)

=¥E 5 b= gswp g
&v
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The first of these can be seen 1o represcnt a flow in the
opposite direction to ths one propossed, The second case
vanighes for p:=0 (i,e, when the solid plane is parallel to
the direction of gravity). It is for thia reason that we
cannot admit this solution as a leading tem,

All the rejeoted modes may of oourse appear as highar-
order terms, but the mode )=} ,c=0 must be pressat and
dominant for Y O,

For the mode x-0X=3 we have

Fiy = Adls e 5 GE)AZ%a o am e
Triznps A{zZh 2% s - . (2.3.9)
The velocity components are, then, in polar co-oedinates
Ve = %r‘/z ( me/z ¥ 3 e 39/2> , ‘203.10)
\(9 = - %Lr'h(gu\eh_‘, wgg/z> , (2.3.11}

and the shear stress on the »olid boundary is given by
T = - AY’-V" . ‘2.3012)

The fiow pattern is given gualitatively in figure 3,
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O\

The line MN is the locus

of points where the radial
velocity vanishes, and is
inclined to the free streamline

at an angle 2008 £

Figure 3
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Part 3

The two-dimensional flow under gravity in a jet of viscous
liguid

1. Introduotion

An incompressible viscous fluid passes through & two-
dimengional orifice and then falls vertiocally, and symmetr-
loally, uwnder the influence of gravity, bounded by two free
stroamlines { see figure 1 ). At some stage balow the orifice
we take a seotion AB, aoross the jet, and confine our
interest to the region of the flow below this seotion, We
leave the msnner in which the fluid erosses AB ( i.e. the
precise nature of the velogity and stress distribution on AB)
as arbitrary,

We would, of course, have liked to solve the problem in
the whole of the filuid region, It was formulated and consid-
ered in some detall, but appearsd to be intrastable, even for
Stokes flow, basauss of the 4ifficulty arising from the
mixed non-linear boundary conditions { the unimown function
z{¢) desoridbing the boundary enters these conditions in a
non-linear way ),

Gravity will acoslerate the fluid and 30 by continuity
there will be a contragtion of the jet, thersby giving riss
to visgous streases, which will in turn produce an sffeot
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upon the velocity field, BEventually, howsver, we expect the
jat to be axtremely thin and each fluid particle to be
falling ag a solid body, 1.e. with the inertia sffects
douinating the visocus effsots,

Figure 1

We take the mass flux moross AB to bs 2Q, and so the only
parameters appearing in the préblu are Q, g, aml v,
Therefore the only dimensionless parameter is Q/» : aocord-
ingly we define the Reynolds pumber R by R = @/ , We shall
consider B to be mmll, e basic length and velooity soales
involving Q, g, and > are (vQ/q)’s amd (q@7/)"®.
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If we non-dimsnsionalise the f£leld equations with these
gquantities, and amploy a perturbation schems, based upon the
snallness of R, them the solution so obtained will be
incorreet far downstiream, We will therefors use the method of
matched agymptotic expansions, the perturbation parameter far
downstream being the thinness of the jet coupled with the
finite velooity gradients across it. The terms " inper " and
% outer " have the same significance as they did im Part 1,

The inner expansion is derived by using the complex
variable Zormalism developed in Part 2 for the Stokes equation:
and then iterating to take account of the inertis effects. |
¥e were only able to express this inner expansion in a form
that im valid at substantial distances from the initial station
AB; this is, of course, sufficient to furnish us with the
miesing vowndary conditions for the outey expansior. The
outer expansion is derived in a manner very similar in oconcept
to the derivation of the outer expansicn in Part 1, although,
because of the far more complicated algebra, the procedure ls
formalisai. In order to utiliss the thinness of the jet,
distances ani velocities are made non-dimensional with respect
to p’fsa-‘ls and ))”3%"3 .

Strictly speaking, the two expansions should be devaloped
elde by side apd matched at each atage bafore procesiing io
the subsequent stage. However, in view of the fsot that the
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two expansions sre derived by such different methods,
several terms of the inner expansion are derived here before
the outer expansion is considered, Where a step in one
expansion im dependent upon the previouvs stage in the other
sxpansion, this will be noted and explained {n the taxt,
Hrown (1961) gave detalls of some exporimental work on
viscous sheets and in an appendix to this papsr Taylor gives
a derivation of the equation of motion of a che~-dimensionsl
visoous jet unlder gravity. This equation is the same equation
as the one we derive for the lesling termiof our outer
expansion, though the methods of derivation are very dissimilar
Maruo (1958) solved Taylor's equation numerically, though
by somewhat imprecise methods, His solution 1s virtually
indistinguishable mmerically from the correot solution but
in one region it 1s construsted upon & conoeptuslly falss
basis, Bere we solve the equation analytioally and, on
sxamination of this general solution, find that there are
seriocus difficulties associated with any numerical solution.
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2. The inner expangion

2,1, Formulation

Wa take O, the mid-point of AB, to be the origin of co-
ordinates, and using rectangular cartesian co-ordinstes wa
take the X-axis %0 be in the direotion of gravity { 1.0.
slong the line of symmetry ) and the Y-axis in the dirsctien
0B, We denote the componants of the valogity inthe X amd Y
direstions by U and V., Non-dimensicnal variables are definad
v &= vy ¢ @Y = @)1 0w

p= pgl{vy/g)l/3p, {3.2.1)
whers P is the pressure, normalised so that P = O cutside
the fluid region, 0 , B andy are respectively, the fluid
density, ths acceleration due to gyavity and the kinematio
viscosity, all assumed to be oconstant, We define, as the
only dimensicnless parametar appesaring in the problem, &
Reynolds mmber R = /5 and consider this to be saall, If
wa denote ths velocity vsetor by g = {(u,v) then we express
the Navier-Stokes equations in terms of the non-dimensional
variablea

k(ﬂ,_V)Cl + Vb= i rV2a , {3.2.2)

ihere § is the gravity term, squivaleat to (1,0), The
condition for contimuity becomes

V.OL :-0. {30203,
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. The boundayy conditions to be spplied are that the shear
etress, the normal stress ani the normal velosity are all
gero on the free streamlines, As the free sireamlines are
algso unknown we shall denote them, in view of symmatry, by
y = r 8(x;R).

2.2. The zero-order approximation

The dependent variables are funotions of x,y and R, Ve
assume that we can expard g, p and S in & sertes in B { or
in funotions of R ) and that the first term in each will be
independent of R, We cbtain the zero-order field equations
formally by putting R= 0 in (3.2.2) and (3.2.3) :

Vbo = L + Vg, > {3.2.4)
Vidos O (3.2,5)
The equations (3.2.4) are, of gourse, the Stokes equations.

We now recall the teohnique in Part 2, and on the basis o
this we construct a dimensionless Alyry function %o and &
dimensionless stream function ., , and hence two analytic
functions Fy(s) and G,(z) such that

‘x’o“’.‘i\"o :2FK = r Go(2) . (3.2.6)

By using the results of Part 2(2), cur problem is to f£inmd
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Fo(x), G,(z) and & curve y = S5(x) such that

Fol) +2RB) +&R) = he +ilxsdtodx , (32,7
Im3 [ - 0][Rol)- 27 -G} =0,  (3.2.8)

on y = Syix). , ,
Wo osn sse from (3,2.7) and {3.2.8) that, if a solution
axiste, then for large values of x we muat have

To(s)~ O(®) 1 Gy~ Olz®) 1 §,(x) ~ Ox®) ,

The last of these, though not at first obvious, may be
obtained by putting Solx) ~ O(x"P) into (3.2.8) ( choosing
the pegative power 10 ensure contiouity ) and finding that
D = 2. Henos on putting

Folz) wBy2 + wmaller tems ,

Gpin) = boaz + emaller terms ,

Bo(x) = 992“24— mualler torms ,
and inserting these into (3.2.7) amd (3.2,8), wa find that
8, = 3/8 and b, = ~5/24, oy remains undetermined, as (3,2.8)
and the imaginary part of (3,2.7), from which ¢, eould be
deterninel, are both homogeneous in ¢,. However, by the way
in which the quantities were made dimensionless, the free
stresmlines are denoted by Y=+ | , aad so by consldering the
mass flux soross any ssction we require that

Se(x)
f Moltydy = 1. (3.2.9)
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Regalling that  UoriVo:- % (Fo-2F5 -GJ) , we may use this in
{3.2.9) %o find that o, = 8,
~ The error involveld in negleoting the mner terme is of
ordar x5 timos the vetained temss, and so for a sooond
approximation wa put

Fole) = agza + aola’4 + smaller tovms,

Golz) = »053 % bolz"':" + mmaller tems,

Bo(x) = 0 X %4 053270 + memlior terns,
Again, on inserting thase into (3.2,7) and (3.2.8), we Zinmd

By = =76/5 @ by = 548/15 : o, = 3792/15.

The srror again is O(x"°) times ths mmallest of the retalnsd
terma. Further torms in the expansion may be m!milated in
tha same way, but we shell not do a0 here,

As oan he saen, there ars no arbitrary terms involved in
this solution at any atape and yet we have not speoified any
initial econditions, Thia objsation mey be overoome by
interpreting this soluticn as a "particular" solution forosl
by gravity to which we may add "oomplementary" solutions
( by analogy with the torms as used in the theory of lineap
boundary-value prcblems; as remaricsl previously this problea
is non-1inear because of the form of the boundary Mt&cus)
For large values of x, thess complemantary solutions muat be
of lower order than the partioular solution., If we introduce
intc Foa tarm .z , and into G, & tern p.z*, we find from
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(3.2.7) and (3.2.8) that p--«. and that & terms -c4 o X2
must be introduced inte 8,(x), In addition it gives rise

to terms 207 apd -2:02 in Fp and G, and & tem 334X 4n
8, and 0 on, o, resains arbitrary and may only be deter-
minad from the initial oonditions, The solution to the zoro-
order problem, written in the form of an expansion for large

x, is then

R = %z," +Roz +20t5 ~ -%’z,"*—} .____‘?‘051 AoZ 34 oo - ’ (3.2,10)
= -5 5% _ - e} - - '

Gole) = 5,202 -237 + $A8 7P - 1026y 2N - - ,  {3.2.11)

Jl¥) = 8x2 -2%oX 3 3. 2T X -2 w2y S 6.2 F e

) {3.2,12)
-3.2%e xT 4 (1258 +'7‘_9s3)x‘*—(12°e<5 2" T )N e 32
&

¥hen we come t0 matoh the inner and outer expansions we
shall want a form of u, for large x on the lins of symmetry
( the matehing for v, and the off-centre terms of u, is
automatioally accomplished when we matoh uy ony = O ), This
is then, fram (3.2,10) amd (3.2.11)

Uon —é—xl FhoX 4 ARG A --- . (3-2-’-3}

2,3. The first-order approximation

At this stage we could ¢aloulate the dominant term of the
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outer expansion, matching it to (%:2.3) in order to fix an
arbityary constant in the cutsr expansion, IS would then
appasr that, il the two expangicns are 1o watoh to higher
orders, the inner expansions for g and p xust be of the form

T = Ao + ®%4, ¥R, 4 ROax R¥*q 4 - s (3-3.14)
1} - % + R‘\Jaqb\ N Rn/;,‘); + R‘Fs + R4”§>a,+--~-- )

Also 1t is only the matohing that can force the existsnoce of
2y avd py. As we shall ses, gy and p, vanish identically.

Wa shall ignore thess terms, rather than include them and
their manifestations in the higher~oxder approximations,
only for their effects to be sradieated upon formal matching,
With g, and p, absent, it is again only the matohing that
forces the existencs of g, and p,. These lerms, wo ahall ses,
are prasent. These assertions will be elaboratod later: we
tuzn now tc the satond-oxdor approximations,

2.4. The soconi-order approxization

By (3.2.14) the field equations for the second-order
problem are

Y*’* = Vzolr_z )



18

Therefora, again employing the technique in Part 2, we
construct Y, and |, , together with Fp(s) and Up(s) such
that

Yarizd, = 2R + Gal2)

The boundary will expsrience a shift of omaw
{ 1.0, 8 hay the form

SIGR) = Sol(®) + RMS(x) +RM™BS,(x) +RS3(X)+ -~ ),
and 30 in the boundary conditions we must also includs the
goro~ordar termz ae they will sontribute scme termms of oxder
5/3 1o the stress and velooity conditions on the new
boundary. The total boundary conditions are then
{RorafovGiE +RAJR 2B v@o) = 32 i {x(s54R%s Yok,
Imi[, 5wl ) [(ho-27-80) #R70(5-5R-80)] 2o, (3.2.35)
on y = 8o(0) + K80,

Using hints from the matehing we look for a solution of
the form

F.R= a,z% +  smaller +evms,

Q—,_(z_): b,z5 4+ smalev jeyms,

Q,(x)= Ca + Smaller termg.

Substituting thess values into (3,2,15), taking care to
absorb all the terms from the zero-order terms which ocontaln
B2/3,8,(x), we find that b, ad c,--(ua, where o, remains



39

undetermined, For matohing purposes the sedond-order ‘
contribution to u on the line of symsetry is 32/3(%1&....).
8, is determived from ths outer expansion by matching, The
terms, ssaller in #, may be found in the same way as hefore,

2.4. The third-oxrder approximation

Hore the inertia temms make theiy fivst appearance, The
field egquations are

[t

(%V)@_o + Yt’s V‘lq__fg 5

V%g = O

In Appendix A wa develop a2 procedurs shich allows us to
extand the omplex variable formalism of Part 2 to the o'l
iteration. By the results of Appendix A, we construct 7.
and ; such that

L [heriak) = 5 (uemive)”

"

oo (522- bz7 +322)"

1.8, "ﬂzai—i 2\?3 = zB{2) + G +3‘?o(%z"~3>7§‘2 +%z‘*22—62323+%z,‘2“’>,

where again 1'3(3} and Gy(x) are unknown analytic funotions.

We have retained only the leading terss of u,-iv, as only

these will contribute to the leading terms of Fy and &5,
The total boundary oonditions to the order { in R )



required are then
{ R +2}:, . @:(,) } N R%’% i~ ,rz’;'*:/,;—'ca i- -ﬁl{% +z_§'1-§3’} +R 2:"{_ bz .,4,0 243

TR2T 48022330224 HOEE F =13 +i (( X (S& + R3S 4RS, Yo, -
(3.2.16)
o D= 5008 s ) (Roe-52) (e 052

(B2 ~G¢ ) +R2" (b25-42Y2 12223320 25% +loz“)]} =0,

on y = 8,(x) + B/ 28,(x) + B8, ().
The solutions are here forced by the inertia terms and so
we look for solutions of the fom

Fa2) = 0325 + smaller tevms,

Galz) = bzz® + emaller  fevms,

S3(x) =  Cax + smaller ferms.
Bubstituting these into (3,2,16), and again ocolleoting all
terns of oxder R from the lowsr-order temmas arising from the
boundary shift, we find that

A= -2'° . by-= —% 2-'° - Ca =-'g

2

The leading contribution t0 u on ths lins of symmetry is
| R279%S
¥a could in principle pursue our calculations further,
but in view of the similarity of method and the absence of
any salient results we will divert our interest to the outer

expansion,
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% The outer expansion
3.1. Fomulaticn

Far domnstream we expect the jot to become very thin and
the wariations in the velocities and straosses asross it to
beccme mmall, _

Ws define non-dimensional variasbles by
(£,0 =545%,H : OW =GN

Pw Fu“"”g“’-‘* P : T =Huy . (3.3.1)

mascs (x,y) = KM3@,9 , (o =536
and pw 3.
The quantitios denoted by eapital letters are as in the
inney problem. T , ths dimensional strsam funotion, is
made non-dimensional as in (3.3,1) s0 that the free stream-
lines are again denoted by V=1)|, R= Q/x5 is the Beynolds
nwsbey, as detined in the inner problam. The way in whioh
we mako ¥ non-dimensional does not, of course, make ¥ of
order unity in the region considersd { unliks % }, but this
is imuaterial as we shall be treating ¥ as a dependent
variable in what follows, We shall now omit the symbod ()
for conveniente, anl restore it when we come to match the
two expansions formally,

As before the fros streamlines are unknown in teyas of
x and y, but are glven by y-X| . We will therefors consider
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the problem to be in the {~plane, where = ( ¢, RV ), Here
¢ im detined by:

Q= X on the 1line of symtry, anrd the lines ¢ =~ constant

are everywhere orthogonal to the lines Ry = constant. That

im, ¢ apd Ry oconstitute an orthogonal curvilinear oe-oxduuto -

systen, ,

I waput qm (u2+ vz)*, then the veloecity components 5
with respest to (@, Ry) are {q,0) whereas those with respect -
to {x,y) were (u,v) = (qoos©,-qsinS); this defines the
angle o . ,

The two planes are linked by the following transformation

x= @+rf Wldy’, (3.3.2)
= REY mOay’ . (3.3.3)

The arc langth parameter associated with Ry is g 1 am
that with @ , we danote by h. The formal definition of h is
h ={%7+237 1", and so b could be derived in terms of q amd
o from (3.3.2) and (3,3.3). This is, however, an arducus
task and not particularly illuminating: we adopt an alter-~
native approach., Consider a constant vector ( without any
loss of generslity we shall use the veotor V x, which in
this problem is representative of gravity ). In the ¥-plane

oo (BB ER) ()
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As the modulus of V x is unity, J,;g’é?:cme { the sign being
implied by (3.3.2)), apd therefore
Vx= (o0, 5 0)

We know that Y Vx amd V.Vx both vanigh identically, and
therefors expressing these in the L ~plane we have

So(20) rd,(asime) -0, (3.3.4)
§z9 (9__%9 - % Sy (Rew®) =0 (3.3.5)

From these squations we may deduge, quite simply, that
A= Roe/(9*0y) {3.3.6)

Ap = ROg /o, (3.3.7)

whare the subscriptss denote differentiation with raespect
to the wariable indicated,

An interesting oomparison may be drawn here with the
outer provles of Part 1, Equations (3.3.2) amd (3.3.3),
defining streaamline oo~ordinatas, are direct parallels with
thoss of Part 1 { equations (4.5) and (4.6) ), and (3.3.4)
and (3,3.5) bear a very strong ressmblance to ths Cauohy-
Rismann squations { equasions {4.3) and {4.4) of Paxt 1).
Howavar we shall not have a smomentum integral equation
bsoauss of the sysmstry of the pressut problem, and s0 we
shall have to use the full Navier-Stokes squaticns, These



bsoome in the <~plane

3
%5%6%)

=q oh 43P . Ramd (3.3.9)
L& 5] - Bed -GS  kSN)
The squation of gontinnity is asutomatioally utisﬁad vy

the use we have made of the stremn funotion as an independant
variable, We have then, the four equations (3.3.6)-(3.3,9)
for the four unknowns q, h, p axi G,

The boundary coniitions are partioularly simple : from
the stress tensor we can caloulate that the zero shear and
normal stress conditions to be applied en (=], are

o

hoex O +Q“2q/}\,6 { 20 0v ) } "37376)

1

R™ oh 25 v () =0 (3.3.10)
b=- 2 % ; {(3.3.11)

or, in view of the fact that we shall not be considering the
region in which g could vanish on the free streamline, and
as h is non-zero, (3.%.10) bascomes

From symmetry considerations, it can be ssen that q, b,
apd p will be even functions of | , and © will be an cdd
funotion of | , and hence of Ry ( as in the fisld equations
R and U always appear in conjunstion with one another ).

We therefores pose that
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G= Qo + RWQ2 +RAP4O, + - - , (3.3.13)
e | o+ RV A, FRYY s+ - ) (3;3;14)
Ds bo+ RAWha + R¥WHbs - , (3;3;15)
D = RYO + R3O, »+ - © {3.3.16)

Although R and » attend cne snother in the field eguations,
R does not sppeay axplisitly with @ in the designation of
the boundary. e therefore mssert that the cosfficlents of
RY 1in (3.3,13)-(3.3.16) will be functions of @ and R,
¥hen we match the outer expansion eni the inner expansion,
it benomes apparent that the goelficients must have the form,
to take a typioal sxample

40(9;R) = Qool®) + R0 (@) +R 0 (c0) +---  (3e3417)

3.2, The derivation of the equations for a4 eta,

We use the equations (3,3.6) and (3.3.7) and the boundary
conditions {(3.3.11) and (3.3.12) to obtain relationships
betwoan the coefficlents in the expansions of the four
dependent variables. The expressions (3.3,13)-(3.3.16)
together with (3,3.17) and its counterparts are substituted

into (3.3.6) and (3.3.7) and cosfficients of R ocmpared,
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We find on some rearrangement that

(1) S = 9lde

(11) O = %01/0%0 20000 40 oto. )

(111)  h20® 3400/43 - Ao/ |

(tv) 4 =é%r'>"/q§;%%qo./q(,’g—zqgoq;,/%ﬂ%‘%/qg oto. .

Here ()! denotes differentiation with reaspect to ¢ .
Similarly using (3.3.11) and (3.3.12) we f£ind that

tv) Poos - 29es

(vs) Por = =20 sto.

{vit) Qa0 = Geoilro |

(v111) g,-9%018as + o Ras eto.

¥o now substitute the values given in (1)-({viii) into
(3.3.13)-(3,.3,17) snd thenos into (3.3.8) ( and at a later

stage into (3.3.9) ) and camparing cosfficients of R, we
find that
40y - 4000100 - QooQdo +) =0 , (3.3.18)

4‘%1:\ - (qloo fg%/%)%én + (4 ’2/ 2 _%)qpn; M“[cq)){3o3.19)
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mxa M) =O b

M= ol (1-800/42) +490 881 /93, +4400 [ Q0 (3.3.20)
4

3.3, 'The solutions of the equations for 9, sto,

By the relationships {1)-{viii) and their higher-order
counterparts, we nay express the coefficients of Ry in the
expansions (3.3,13)-(3.3,16) soiely in torms ef the funotions
Q1 %), ant these funotions are given by the solutions of
the diffarential equations (3.3.18)~(3.3.20), Thevefore, by
solving these equations we will obtain a solution to ths
problem in the outer region, We now derive exact solutions
for ¢,, and Qo3 by analytic means and indicate how the
higher-crder functions say be obtained,

Firstly we will make a alight tvansformation of ths
variables to stzplify the arithmetic, We put ¢ = 4%/3.o
and q, = 41’ 3,:(0-), In torms of thess variables, (3,3.18)
becomss

L N Y SN R (3.3.22)

whers ()' now denotes differentiation with respect to o,
This is the form in which Taylor { mes Brown (196)) )
expressad his equation, Similarly (3,3.19) besomes
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B - (b (B2 2= Male) | (33,22

the My(c) here being the direct transformation of the M ()
in (3,3,19). .

We tirst consider equation (3,3.21), which is of a type
discussed by Ince (1926 p.325). By the substitution 2, = u"l,
the equation is reduced to the canonical form

W= W W (3.3.23)

Ince gives » first integral of this equation as

(W) = 2w (wWwre+R)

where k is a constant of integration, We change the
independent varisble for temporary convenienve by writing
o= t~k giving
dw 11V o 2 (Wrt) .
(441 - s tort)

Patting 1+b:= W2 , We have
R I N
%%é = 5("0 b) )

which is & form of Rloatti's eguation, Following the standard
procedurs for solving this equation,we put

~_ =11 dy
VQ"" Ao~
+I“V -~

d—:—y —FV =0
o )

and then bL:- 2”3 to glve
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which is Atry's equation, and therefore
V= CAlr) +DBI) .

Retracing our steps through the substitutions, we find that
the general solution of (3,3.21) im given by

) - N { [CAVY_:L"-’* mhﬂa-])&iz“”z(mz)]i\ ,}*l .
> " (o) | (ovR) | Sz (5+)] +DB (2% (5+k)) - (3.5.20)
where the ()' associated with the Alry functions denotes
differentiation with respect to the arguments of those
functions,

For the partioular solution which satisfies the conditions
of our problem we must assipgn values to k and the ratio O:D,
From the mutching we must impose the condition that £, = 0

8t C = 0, We must have then, frem (3,3.24), that

[cAi/(lz*) +D e«-’aeo]z _
¢ A (R¥) +D Bi (k¥)

is infinite,

where k'= 2°2/3x, The only way in which this expression can
become infinite { other than for infinite kK, a oass which we
disregard ) is for

cAi(rR¥) =D Ri(R¥) = O

theresfore

Lo 2%/1 0 8u9Alo) -ARDBOYV. ] . v
/ {ww)A;tw—-Acm*)&cr)) ff o bR
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I we assume, for the time being, that k™is such that A1(x*)
is non-gzero, then on examining the asymptotic behaviour of
tgfk*,r) for surll and large values of o-we find that
Folk*,%) > O for small positive O , and

£,(k*, 7)< O for large positive o ,

Also we may sasily deduss from (3,3,24) that

o = J}:(\«r%""{:—i—%).

That is, for valuss of o~ for which £, =0 we have that £, =0 ,
and using (3.3.21), that f)'=+1, Hence we can ses that f,
¢an never cut the r-axis as all intersections are tangential
and points of local minima, We thersfore conclude that 98
has a singularity in the region0<o<co, In this problem we
do not admit singularities of q in the finite part of the
fleld, ¥We therefore assert that
Ai(R¥) =0 . {3.3.25)
Then £, 1is given by
&0 = 2-“5 A{z(‘(')
A () ~ e AT
From (3,3.25) we can see that k may take any of an infinite
set of negative values k,, kl' k», eto.. 1,, as given by
{3.3.26),1s qualitatively ne in figure 2,

(3.3.26)
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Figure 2

To axclule the ossillatory bshaviour in this partioular
problem we will ohooss k to be k, { ko= =2,94583....).
For suall values of o , f, has the form

§o~ 2ot eh oot ad oS 1 oo : (3.3.27)

It is frem the second tam of this expression that, on
matching, we can assert the form the inner epansion must
take. That is, it is the temm in g¢* of Qyo which forces the
existencs of the tem B2/ Jgo of the inner expansion, For
large values of o
Boo~ *+ 129 + - :

showing that the fluid does indeed fall ultimately as &
s0lid bedy.

A discussion of the singular solution is given in Appendix
B, togethsr with & criticism of Maruo's numerical solution,

We now turn to consider the solutions of (3.3.22). Firstly
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mﬁd@r the hoewogeneous aquation
- (b b+ o2 308 <0 - (3.3.28)

As My = O, {3.3.28) 1s in fact the eomplete equation for f;;
and as !1 is a perturbation of f,, and the equation for £,
does not contain o explieitly, we expect £} to be a solution
of (2,3,28), It is easily verified by substitution that thia
.48 in faot the case,

On putting f, =~ £3.%, and using the Zoregoing property of
f{‘)t {3.3.28) vecomes

T+ U - fo - A I o (3.3.29)
Wo oan expross (3,3.26) in the form

fo = -8 log] Al30n) -rA*(0]
and therefore a first integeal of (3.3.29) 1=

T = R/ -rAn)

We ignore constants of integration as we are sesking only
partioular solutions of the equation, and will multiply
these solutions by arbitrary constants whan considering the
general asolution of the equation,

Taking the logarithm of the expression for £,

'{N% -fb = "é 80%2, +l'<m%/\{ - '{Og LA(!l-rAiz> ,
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and differentiating this with respsct %o r, we have that
folfo = XPA A v AR (A -eA?)

and therefore

dln . 2R Ay D) [T2h (M- cA?) + 437

On integrating this squation, we have
Tos =28 [T2Ad (AL~ eA?) #5327,

Gr on rearranging torms
Ta = -2 Ai i‘"g/bﬁago’ ¢

Therefors two linssrly independeant solutions of the
homogensous equation are vy = 2 and Vo w M*.!ﬁ/AQ. The
first of these is of order s> for large o but the sscond
i exponentislly large at Infinily.

Returning to the inhcmogensous equation; we do not adait
solutions that arve expenentially large at infinity, and so
following Courant snd Hilbert {1953) we define a Green's
function as follows

\ ~V\(0')Vz(§)/W(§) ; o9
(T(U')g) =
-V(wel)/wE) 5 os ¥
whers W 1s ihs Wromskian (v,vh -vivo),
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The most general solution of (3,3.22) with the correot
behaviour at infinity is given by

$o) - | GEEMAEIOE + Andi) . (3,350
The general solution of the f1ret-order squation is

O hD) - ARG, (3.3.3)
where A; is to be determined from the matching.

We should note here that the outer oxpansion is not really |
restricted to the oase of vanishingly small Beynolds number,
for 4t also has the appearance of an asymptotic expansion
for @ foo ., It im, of course, only in the former cuas that we
can match 1t with the present inner expansion. Also in the
present problem it ssoms physioally reascnsble to exclude
any osoillatory behaviocour in the solution, If, however, we
wore considering a situation in which the inner problem was
quite differsnt, them the rejection of cssillatory solutions
would bes open to gqusstion,
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4. The matching proceiure

. We are relying on the matohing to provide the boundary
conditicns for the equations for Q,y of the outer axpansiocn,
and to show the neceasity of g» in the inner axpansion. We
bave geen from the outer expansicn that & knowledge of the
velooity on the line of symmetry uniguely determines the
entire flow field in the outer region and so we only nsed
to match the two expansions on that lins,

Following the procadure as expounded in section 5 of Part
1, we consider the limiting process, RV C for x = m(R)x,,
with x, fixed snd 1<< m(R) << 833, x 15 called an
intermediats variable bacause

x = M(B)x, Moo  with X, fixed snd RV O, and
o= 243 B 30 (B x4 © with xy f1xed and BV O,

We now exprass the inner and ouler sxpansions in terms of the
intomedlate variabls, the formar for x7Too and the lattsr
foro Vv Q, and then ccapare the two resulting expansions,

From seoction 2, we have for x Too

W= Lam (R +olo MR Xm 208 + -~
{3.4.1)

FRP] a mA R + - -
+R L2 wmS(R)xm + - - 1

,‘ Y e



As yot we do not know the form for u as given by the outer
expansion heoauss we do not know ths boundary condition to be
applied ato- O, However, we assert that it must have the
same leading torm as that provided by the inner expansion,
That 1s, in terms of the intermediate variable, the outer
expansion has a leaiing term “éla(mﬁ. Rephrasing this in
the outer variablss, we have that
bv 167 as olo )

and hence we have the boundary comiition for f, (anticipated
in '3.3.) Lro b e20
On using this condition to solve the equation for £,, we
have { equation {3.3.27) ) that, for small

R i G
From the terms In (3.4.1) that we negleatel, we £ind that
for matching to one term the overlap domain is defined by

X= m(R)Xm ; 1K< M(R)<< R » 0< Xm< o0

We may now express the outsr expansion in temus of the
internedlate variables, using (3.4.2) and the terms frem f,;
W= [3m(R)¥m %izohkoR%‘m"’(R\x.{‘{ +2ORMR) Xm + -+ - -
{3.4.3)
F L2 A m(R) Xm 4 - ]
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The term in the sscond line arises from f;. We now compare
(3.4.3) with (3.4.1). Firstly we see; as expected, that the
lesding terms in each are idantical. The next largest temms
will be those of order m{B) in 1«m(BI<H 2/, and thoss
o2 oxder B/3utR) 1n B8/ %n(r) «H1/3; equating the
former teyms we have

N | A 2w, (3.4.4)
From the neglected terms we can ghow that for mateching the
torms of orders n°(R) and m(E), there is an overlap domain
datined by

¥= m(R)Xm ; 1K< MR)<K< R - D<xm<o0

It 13 from tho matohing &t this ordar that we are justified
in posing the forms (3.3.17) and that the terms Q1 ote. are
directly dependent upon the initial conditions of the inner
problem,

The next largest terms { in x«n(a)«n"a*’ 2) will pe thome
of order REIMIR) and 80 ot comparing (3.4.1) amd {3.4.3)
we 2ind that

0= FAERR, (3.4.5)

and again from the neglected terms, the overlsp domain for
matohing to three terms is defined by

X = MRIXm ; 1< M(R)<< RTE 5 0< xm <0 .

The matohing at this order provides the justification for the
ccaments and the forms posed 4n seotion 2.3,.
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In tigurs 3 we show £,(c) and compare it with 2 , %o
which it asymptotes. It can be ssen that fg does in faot
approach 126 vary slowly. Aleo in figure 3 we show gtc)
which is essentially Qo Rormalised for Couparison PuUrposes
by ’&m - 4” 350 and then expressed in terms of known functions
as follows: , K o
from the relationships (111) and (vii) of section 3.2. we

have that
ANV

a:zo" é%/% —a’{‘g./a’; ’
and 80 Golo) = H[ 2 - 230202

= —él %;‘2(11300) =T %:3%21(11_;:0) ’

axd as - N[ (W) -r]

.- 21}3 al A_;’)). _ 2__7_,3 Ol. A{’ 1
0 =7 T VN, - — - .
d b4 Of (A" 6 MY‘A-Q
= _,-%:le 2::_\13 _ 2\'5 AL_;’ _‘?;o_l ]
b +o A L2
Therefore

)
oo us Ay p/
| %0- 51,5:01[?"‘2'“-;;’\;0} )
and hence, using the result thas

' ,
{-9- = 220 .& + '\Fo p
o A

we may evaluate g,. Also, from the last expression we may
evaluate f3(c), a constant multiple of which gives 01 (o).
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This ia shown in figure 4, togethey with '/Go to which
i1t aaymptotsa, ‘

From figure 3, we can seo that g,, which 1s the leading
tora showlng the variatiom of velocity aoross She flow, has
bagome insignificsnt, as compared with £,, for valuss of o
graater than 3. This shows that, sven for substantial wvalues
of R, the velooity distribution across the jet rapidly
bacomes uniform, The fact that g,(c) and other higher-order
terma are singular at the origin is not unexpected; it shows
that the onter expansion, as well as the inner expansion,
rosulis from a singular perturbation, We expeot the inner
expansion to be applicable in the region where the singul-
srities of the outer expansion have a significant effect.
Figure 4 provides an illustration that the leading term, ‘o*
also dominates on the line of symmetry not only for RVO
but also for o oo ,

From (3.3.2) and (3.3.3) we bave, on termipating the
oxpannions immediately pricr 30 the first appearance of
terms oontaining any arbitrary constants depeming upon
initial comlitions, that

Q - 24)310._1_ _‘15.212.:\\,2_!3;/_?02} 3

/5\ = AREIRG/L] .

Figures 5 snd 6 chow the shupe of one of the Iree sireaxlines
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( the other being the mirror image in the X-axis ) for the
cases R=1 and R = 0,5 , The expressions 1l-term and 2-term
outer indicate whether we have omitted or included the R-
dependent term in the expression for x. The ‘upstrean
singularity in the outer expansion manifests itself in the
R-dependent terms, Also in figures 5 and 6 is displayed the
first term of the inner expansion, suitably expressed in
terms of the outer variables, Unfortunately the only form in
which we were able to express the inner expansion is also
unsuitable for small x, This fact, as we have previously
remarked, reduces the inner expansion to playing the role
of providing boundary coniitions for the outer expansion,

In the preparation of these figures, considerable use hag
been made of the tables of Alry functions by Miller (1946).
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Appendix A

Extension of the complex varlsble formalism to the nth
iteration '

We extend the technique we developed in Part 2 for the
Stokes equation to take account of the inertia terms, This
extension is then used in section 2,4, of Part 3,

The Navier-Stokes equations are given by (3.2.2)

R{a.V)a +V = 4 + V29 ,

and continuity by V.o =0

—

If we denote 1 by-VW,then writing the Navier+Stokes equations
in full, we have

RLwaw +vou 4+ 9% . oW
[_ b)( +£" S"k+v2\k)

Y
AN 4 vov b - - owW 2
RS_\LS_X_P V63] +a\j 2 +V2v

and using continuity, these may be written

"3_‘A2+5\*V +Op W 4 >
RLE 9] 3 = 58 3

SV Fav ‘;~<11> ~dwW
RLER 1 Y "8 éx) é)ﬁtag)

and therefore
iwza— R\x—W} +6§ &) - ’RW} =0, (A

ax“w*“) -Ru V} \j{—wz%{{w—w}w‘ (42)
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Following Muskhelishvili (1963 p.104), equation (Al) 1s the
necessary and sufficient condition for the existence of a
function (0, (x,y) such that

2L, _ _

S.‘—ﬁ = }3 ’\—2%:( -W -—'QU\? ) (AB)
L L (v, v

22 = (6\5-%5_)() +Ruv . (M)

Similarly the equation (A2) is the necessary and sufficlent
condition for the existence of a function (2.(x,y) such that

A0, - — (dw LAV (A5)
o (%-3 + ) FRuv 5
9L . - 2V W —Ry* (46)
L b+ 3 RvV*.
Comparing (A4) and (A5) we have
6__.5_1\ = éé_l‘
3% oy

and hence the existence of a function X (x,y) such that

b_LX' = -Q) ) B_'X = D—z
S DX
Therefore we have from (A3), (A4) and (A6) that
A* X
S 2.0V - 2
Sy P+ Y - - RW,
- bjl(‘ = A\ AN -
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We can see that % 1s an Airy stress function very similar
to those in Parts 2 and 3 but with the inertia terms on the
right, A

We now proceed as in Part 2, changing the independent
variables to z and Z and derive the new form for the fisld
equations

2 (nr2) = FR(u-iv)® (A7)
or L, (X+i29) =aR (W) (18)

As in the main text we pose that X and { be expressed
by the formal expansions

L= ZRBY )y 2RIy,

J"O

This gives for the (n+ B)th-order equations

0 N (Q(VI+3+;’2 n+a) = = %o __Y)l %_\P""l

In section 2.4, of Part 3 we require this result for the
case when n= O, that is

2 (e #i2) == (8- £ faerive)
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The singular solutions of (3,3,21) and Maruo's numerical
solution

We have seen from section 3.3. that the general solution
of (3,3.21) which takes the value £, = O at¢ = 0, 1s given

7 - 2 "5/{ [%: () At (v) - A () B (”]2- r}
By (9 As (0) —Ai(r*) i)

with k™ and r as defined in section 3,3.,. We have also shown
that if A1(k¥*) ies other than zero, then £, has a singularity
in0<o<vo , the exact location depending on the value
assigned to k., For small values of -, f, has the asymptotic
forn fo ~ 10? +pko? +%US+ . {B1)
This 18 the same form as for the non-singular solution,
though in this case the coofficient, k, of O ias necessarily
different, It i1e apparent that if we had attempted to obtain
a solution by numerical integration, starting atl - O, then,
bacause of even the slightest of rounding errors, we could
never keep to the non-singular solution we wanted, but would
always veer onto a singular solution,

For large values of 0 , fg-{26 regardless of the value
of k ( other than thosse satisfying AL(k¥) = O ), The singular
solutions of f, are qualitatively as in figure 7, though the

origin of co-ordinates and the sharpness of the peaks will



Figure 7

vary with k,
We can now see that by refusing to admit a singularity,

we have effectively refused to admit the negative possibility
in the choice of behaviour at infinity,

Maruo tried to integrate numerically forwards from( = O,
but encountered the singularity, ( although he never mentions
boundary conditions, the details of his working indicate
that the condition f, = 0 atC= O was tacitly assumed for so
long as 1t was convenient), He then derives a series solution
for small 5, similar in essence to (Bl), though omitting
the possibllity of a term in 0% . At large O he assumes +20
to be the leading term and lterating on this derives a series
solution for large 0-, Starting at some substantial wvalue of O
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he integrates numerically backwards towards smallo, On
experienceng some difficulty in patching his numerical
solution onto the series solution for small O, he relaxes
the unsgpoken boundary condition at the origin and arrives
at a solution resembling that in figure 8.

i

e

N..To .$

q|

Figure 8

As we have remarked earlier, in this particular problem,
choosing the behaviour at infinity is the same in practice

( though not in principle ) as rejecting solutions with
singularities in 0<6<oo , In the absence of an analytic
solution we could have refined Maruo's procedure, starting
at infinity and integrating backwards to0 = 0, We could have
avoided the difficulty that Maruo experienced in satisfying
the boundary conditions at the origin by noting that the
leading term for large 0" is +{2(c+c) where ¢ is an arbitrary
constant, depending on the conditions at the origin. The
independent variable can then be changed 0 t = (03¢, and
then the backward integration carried out until we reach
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the value f, = O, The value of ¢ can then be chosen so that
I, = O at o = O, Conslderable accuracy must be maintained
throughout this integration as we would still have to find
the value for k from this numerical solution,
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