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ABSTRACT 

In this thesis, the oscillation mechanism behind the transistor 

oscillator is examined. The controlling variable of the nonlinear 

action is identified to be the voltage across the emitter base junction. 

Since the oscillator is deliberately designed to produce sinusoidal 

voltages, the system can be linearized. Such a linearized system is 

characterized by the large signal "Y" parameters. 

In order to achieve oscillation the transistor has to be embedded 

with lossless elements (energy storage elements). A geometrical model 

has been constructed to relate the embedding network to the active 

device. The condition for steady state oscillation is represented 

by a locus in three dimensional space. Each point on the locus corres-

pond to an oscillator configuration. Each configuration correspond to 

a nonlinear dynamical system, whose solution is the observed oscilla-

tion generated by the circuit. In order for the configuration to be 

a useful oscillator circuit, it must satisfy the condition for soft 

excitation and have a stable limit  cycle. Methods for testing these 

conditions are suggested. The effect of dissipative loads on the 

geometrical model is studied. Amplitude and frequency sensitivity 

expressions with respect to small parameter variations are derived. 

The mechanism of frequency stability is examined. 
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Chapter 1 

Introduction 

1.1 Historical Background.  

The theory of oscillation has a long history, going back to 

the days when classical mechanics was formulated. Even the phenomenon 

of synchronization goes back to Huygens (1629-1695). He observed 

that two clocks were slightly unsynchronized when suspended on a thin 

wood board. The lack of accuracy and controllability made experimental 

investigation and exploitation of the phenomena very difficult. 

However the theoretical study of oscillatory phenomena went on and 

became absorbed into the realm of nonlinear differential equations. 

garly contributions include Lindstedti, Poincare2, Helmholtz3  and 

Lyapunov4. These pioneers laid down the foundation, on which later 

workers built up the general theories of nonlinear oscillations. 

Just prior to the 1920's the new field of electronics made its 

appearance. The design of electronic amplifiers and electronic 

oscillators posed new problems. 	Experiments on them have provided 

a wealth of results demanding theoretical interpretations. The advent 

of electronics brought renewed interests in nonlinear theory. Van der 

Poly proposed his elegant theory, which treats the type of second order 

equation bearing his name. By varying only one parameter, the transi-

tion of a system from the linear to the nonlinear domain is explained. 

The magnitude of this parameter will decide whether oscillation is to 
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be almost sinusoidal or of a relaxation nature. Noted contributors 

in this post-electronic period include Lienard
6, Krylov-B9golinbov7, 

Andronov-Witt8 etc. 

In, this thesis work is directed to the study of nearly sinusoidal 

oscillators i.e. a transistor oscillator whose output voltage waveform 

is nearly sinusoidal. From this point onwards any mention of 

oscillator is taken to mean the above type unless stated otherwise. 

Some of the problems facing the designer of transistor oscillators 

were also known to earlier workers concerned with vacuum tube oscilla-

tors. Vacuum tube oscillators were used very early on in radio 

communication. The requirements on these circuits were dependent 

on their particular applications. For example, in a power oscillator 

the magnitude of the oscillatory current is of prime importance, 

whereas oscillators used in beat-tone audio-frequency generators 

and superheterodyne receivers are required to possess a high degree 

of frequency stability. In a book by Thomas9, he listed some 

properties of which knowledge is desirable in general. These are:- 

(1) The magnitude and constancy of amplitude of the 

oscillation. 

(2) The harmonic content of the oscillation. 

(3) The efficiency of the d.c. to a.c. conversion. 

(4) The value and stability of the oscillation 

frequency. 

(5) The rate of "build-le of the oscillation. 

The problem of designing the most suitable circuit for any particular 
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purpose involves adjustment of these factors to coincide as nearly as 

possible with the requirements under consideration. He also enumerated 

the factors governing the performance of vacuum tube oscillators. 

These are:- 

(1) The conditions required to start and maintain 

oscillation. 

(2) The mechanism by which the oscillation amplitude 

is limited. 

(3) The frequency of oscillation and its dependence on 

the maintaining conditions. 

These properties were studied by many authors. Corbeiller10 was 

interested in the maintenance of oscillation in electrical circuits. 

GroszkowSkill  showed that in any self-maintained oscillation system 

there is a balance of both "real" and "imaginary" power. Pierce12  and 

VigoureuJ3  worked on crystal oscillators. 

Most of the phenomena of vacuum tube oscillators were understood 

by the time the transistor appeared. However the ideas of feedback 

amplifiers carried over into the analysis of oscillator circuits cause 

some confusion over the classification of oscillator circuit con-

figurations. Since there was no unified treatment many authors 

invented their own circuits:  which were later named after them. Such 

authors include Hartley14 Colpitts15, Pierce12, miner16, Lampkin2.7 

etc. These circuit configurations are shown in Fig. 1.1. 

The internal feedback in transistor can give rise to potential 

instability over a range of frequencies. 	Terminations for the 
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potentially unstable network to oscillate can always be found. Some-

times the internal feedback of the transistor might not be sufficient 

to lead to oscillation at the desired frequency with terminations 

alone. In order to realie an oscillator at this frequency, lossless 

embedding elements (external feedback) are normally employed. The 

effect of lossless embedding is to change the state of potential 

stability of the network. The effect of terminating the network 

with dissipative loads is to change its state of activity. Con-

sideration of these properties had led to the formulation of active 

two-port theory. The basis was laid by Llewellyn
18 and Mason19/

20 

and has since been extended by many authors connected with the design 

of stable amplifier gain; notably by Cheng21  and Stern22. Page 

and Boothroyd23  applied this theory to the deliberate design for 

potential instability in networks containing a transistor. 	More 

recently Spence24 has carried this one step further by his derivation 

of design expressions for the maximally loaded oscillator. 

In the works mentioned above, the transistor is treated as a 

two-port. It is characterized by the relationships between port 

currents and port voltages. Such a characterization is normally 

restricted to linear operation of the device. Mason19/20 has derived 

an expression, called the milateral gain expression U, based on the 

transistor small signal parameters. When U is greater than unity, the 

device is active and would be able to give power gain. U normally 

falls with frequency. The frequency for which U is unity, is called 

the maximum frequency of oscillation, fm. For an active device to be 
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useful as an amplifier, its power gain must be stable over the designed 

range of frequencies. The boundary between inherent stability and 

potential instability at any frequency is marked by stability factors. 

The commonly used stability factors are Stern' s22  and VenkateswaranIs25  

stability factor. They are represented by ki  and 1.1,  respectively. 

At the boundary of stability both these factors are equal to unity. 

When either of them is less than unity, the two-port is said to be 

potentially unstable and a pair of passive terminations can be found 

which will induce oscillation. 

Activity and potential instability are two valuable concepts for 

transistor oscillator design. By optimising ki  with respect to the 

lossless embedding, Page and Boothroyd were able to design for maximal 

potential instability of the network. 	If the dissipative load con-

ductance of the optimised network were less than a maximum value, then 

the network can be made to oscillate. The condition for oscillation 

is unfortunately more involved than that presented by the authors 

mentioned above. To proceed any further, a more general approach is 

required. Spence considered the case of the maximally loaded oscilla-

tor. By setting U of the network equal to unity it is possible to 

obtain expressions for maximum loads across any port of the three 

terminal active device (transistor). Spence derived expressions for 

the embedding network required to induce oscillation under this con-

dition of maximum loading. These expressions have the property that 

only invariants of the device and device self-immittances are involved; 

no feedback path needs be identified and no reference to a "common" 



20 

device terminal is required. The later property is appropriate to a 

discussion of oscillators, since in an oscillator there is no identifi-

able common terminal. 

1.2 The Condition for Oscillation  

The oscillator circuits when designed, have to be self-excited 

and self-sustAiring, i.e. when the switch of the circuit is closed, some 

arbitrary small noise impulse will start the system oscillating and 

this oscillation will ultimately reach exactly the same stationary 

state regardless of the initial conditions. 	The limit cycle in 

nonlinear theory has precisely such properties. Poincare2 showed 

that the differential equation of the form i = X(x,y); Sr = Y(x,y) 

admits occasionally special solutions represented by closed curves 

in the phase plane - limit cycles. Every trajectory beginning 

sufficiently near a limit cycle approaches it either as time tends to 

infinity or time tends to minus infinity; i.e. the trajectory either 

winds itself upon the limit cycle or unwinds from it. Three types 

of limit cycles are shown in Fig. 1.2. 

Any system in which the oscillatory phenomenon starts spontaneously 

from rest and reaches its stationary state on the limit cycle is said 

to exhibit soft-excitation. 	The stationary state of such systems does 

not depend on the initial conditions but depends uniquely on the para-

meters of the system, i.e. the final stationary solution is uniquely 
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determined by the differential equation. Graphienlly the soft 

excited oscillation is represented by a trajectory unwinding from 

an unstable focus point F into the limit cycle C. This case is 

shown in Fig. 1.3a. There is also the dual case of the trajectory 

unwinding from a semi-stable limit cycle into a stable focus point 

as shown in. Fig. 1.3b. In this case soft excitation will not be 

possible. Any sustained oscillation in a physical system has the 

same nature as a limit cycle. 

The concept of the limit cycle is a powerful one in explaining 

oscillatory phenomena qualitatively. Many attempts had been made 

to establish a criterion for the existence of limit cycles in non-

linear systems. However these criteria e.g. Palacareis index test 
26 

and Bendixson's negative criterion cannot be applied to transistor 

oscillator design. Although classical methods connected with the 

study of limit cycles are not directly applicable here, the line of 

thought and the qualitative model of the oscillation mechanism which 

they have created are useful as a mental framework to refer to while 

searching for a new approach. 

The oscillation mechanism involves a stationary state and an 

unstable initial state (unstable focus point). Growing oscillation 

in the vicinity of the focus point has a small amplitude which increases 

exponentially. This initial state can be described by a linear equa-

tion. In linear network theory, Laplace transformation can be applied 

and the superposition of signals holds. Within the linear framework, 

concepts of immittances and complex frequencies can be used to fascilitate 
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analysis. One of the most powerful tool available for investigating 

the stability of linear systems is the Nyquist27  frequency plot. It 

is instructive to review Nyquist's method briefly. In order to do 

this, we refer to Fig. 1.4. Nyquist had shown that the stability 

of any linear system can be investigated graphically by plotting some 

characteristic quantity of the system in the complex frequency plane. 

Nyquist's criterion for the system shown in Fig. 1.4 will be stated 

as follows:- 

If the function G(jw) = 1 - H(jw)K(jw) is plotted 

on the complex plane for all real frequencies w 

running from -pato +010, the number of times this 

locus encircles the origin is equal to N(z) N(p), 

where N(z) is the number of zeros of G(s) with positive 

real parts, N(p) is the number of poles of G(s) with 

positive real parts. 

If the above system is to possess any self induced oscillation, then 

the equation below must be satisfied. 

j1 	- H(s) K(s) 	x(t) = 0 	(1.1) 

The only possible values of the complex frequency variable "s"„ which 

can lead to non-zero solutions for x(t) are those which satisfy the 

equation, 

G(s) = 1 - H(s) K(s) = 0 	(1.2) 

If all roots of equation (1.2) have negative real parts, the system will 

be asymptotically stable; if at least one of the roots has a positive 
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real part, the system will be unstable. 

Bode28 developed the idea of the return difference and expressed 

it in terms of the network matrix: 

G(s) 	= 	 (1.3) 

o 
where 44 and A  represent respectively the determinant of the total 

network matrix and the same determinant with the feedback element set to 

zero. This is illustrated in Fig. 1.5. In this example the feedback 

element ya  will be set to zero i.e. 	= At 
y =0 21 

° For all non zero values of 	= 0, the condition for G(s) = 0 will 

be equivalent to having a singular matrix for the network. 

A(s) = 0 	 (1.4) 

The quasi stationary state can be obtained by setting s = jw, 

(1.5) bk(jco) = 0 

Equation (1.5) forms the basis of the linear design theory. It will 

be shown in this thesis that a linear theory of transistor oscillator 

is not adequate. 
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1.3 Aim of the Thesis  

At the present time transistor oscillators cannot be designed 

satisfactorily without resort to empirical methods, and the intuition 

of the experienced designer. Hafner29 has called oscillator design 

an art. Although experienced circuit designers can obtain good 

results using empirical methods, it is however desirable to have 

a design theory which can give a step by step procedure towards the 

final product. The advent of such a procedure would be especially 

welcome to manufacturers of integrated oscillator circuits. In order 

to arrive at a new approach it is necessary to have a better under-

standing of the oscillation menhnnism in transistor circuits. 

It has been stated in Section 1.1 that for self-sustained 

oscillation to exist, the system must possess some arbitrary stable 

limit cycle. The linear theory of transistor oscillator design, 

uses small signal parameters of the transistor. Therefore it cannot 

predict the properties of the final stationary state. A method which 

can be applied to the nonlinear (large signal level) region of opera-

tion, has to be found. An unwelcome feature of the earlier linear 

theory is the requirement of selecting a feedback path. In fact the 

theory was carried over from the linear feedback amplifier. The 

transistor is a three terminal device. To describe it by two-port 

parameters, leads to some confusion in "classifying" the numerous 

oscillator circuit configurations. Cote3°01, Brodie32  and Pritchard33  

had discussed this problem. An approach which does not require the 

identification of any feedback path will be desirable. Finally there 
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are the properties and factors governing the performance of the 

oscillator. Thomas9 discussed these for the vacuum tube. However 

these factors have to be re-examined for transistor circuits. 

The difficulties met with in transistor oscillator design, 

are due to the nonrational frequency and amplitude dependence of the 

transistor parameters. This makes it impossible to write down the 

differential equation which describes the dynamic behaviour of the 

circuit, Therefore the classical methods of nonlinear theory are 

not applicable here. But nevertheless self-sustained oscillations 

in electrical circuits are manifestations of nonlinear actions. 

The existence of nonlinear action is easily demonstrated by altering 

any one of the oscillator circuit parametarS. Both the amplitude 

and frequency of oscillation change in order to maintain oscillation. 

Two things are evident from the above discussions. These 

are:- (1) It will be very unlikely that a general design theory can 

stem from the analytical methods of classical nonlinear theory.(2) The 

old design theory based on transistor small signal parameters is found 

to be inadequate. A. new approach has to be found. There is the need.  

to overcome the noncompatibility of the design theory which is linear-

ized and the physical theory which is nonlinear. Until this is done 

there can be little hope to find quantitative answers to questions like 

the ones listed below:- 

(1) Which is the circuit parameter responsible for amplitude limiting? 

(2) Can the transistor oscillator be loaded between any two terminals, 
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and how will loading affect its performance? 

(3) What is the effect of sma71 variations of circuit parameters 

on the frequency and amplitude of oscillation? 

(4) How can the frequency of oscillation be stabilized most 

efficiently? 

These questions form the guide line of the research carried out for 

this thesis. 

1.4 Layout of the Thesis  

The main aim of this thesis is to find a reliable procedure 

for the design of transistor oscillators. The proposed theory is 

a union of linear network theory and nonlinear system theory. 

It is felt that the best introduction to the physics behind the 

transistor oscillator is in fact to examine an idealised model. In 

Chapter 2 the Ebers Mnll model of the transistor is used to build up 

a physical model of the system. This reveals certain features which 

are important for later mathematical formulations. Chapter 3 is 

concerned with a discussion of the mathematical techniques useful 

to the proposed theory. Chapter 2 and Chapter 3 form the basis of 

a quantitative design theory proposed in Chapter 4. This theory relies 

heavily on harmonic linearization and the exploitation of symmetrical 

circuit representation. Chapter 5 is connected with the experimental 
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verification of the proposed theory by means of design examples. 

The final conclusion and suggestions for further research are given 

in Chapter 6. 
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1.5 Statement of Originality 

An initial survey of design methods for transistor harmonic 

oscillators has revealed short comings of the linear theory based on 

small signal transistor parameters. Classical nonlinear theory 

cannot be applied because of the complicated nonlinear action in the 

transistor oscillator. An additional complication is the nonrational 

dependence of the transistor parameters on frequency. To overcome 

these difficulties, two well tried techniques are used. These 

are: (1) Symmetrical Representation; (2) Linearization. 	On 

applying these techniques, the behaviour of the oscillatory solutions 

of the transistor oscillator can be studied in terms of circuit 

elements directly. The following results are found: 

(1) The controlling variable for the nonlinear action in the 

transistor oscillator is the port voltage veb• 

(2) The transistor can be characterized for nonlinear operation by 

the large signal "Y" parameters. 

(3) The use of large signal "Y" parameters is in fact the Describing 

unction Method. The justification for using this method 

is that Aizerman's Filter Hypothesis can always be made to hold. 

(4) The large signal "Y" parameters can be measured on a trans-

former ratio-arm bridge for the specified signal level veb  

and frequency f0. 

(5) A geometrical model for the condition of steady state oscillation 

has been constructed. 
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(6) Points on the locus of steady state oscillation correspond to 

oscillator configurations. 

(7) Depending on its position in the "geometry", the oscillator 

configuration can either belong to the basic Colpitts or 

Hartley configuration. 

(8) Only those configurations, which satisfy the criterion for 

steady state stability and the criterion for soft excitation, 

correspond to useful circuit configurations. 

(9) Methods of testing for these criteria are suggested. 

(10) The effect of loading the oscillator with dissipative elements 

is to alter the "geometry". For any given state S(a0, wo) 

there exist a maximum load and an unique embedding network 

associated with it. 

(11) If the locus of steady state oscillation is a closed one, then 

there exist bounds on the lossless embedding elements. 

(12) Ekpressions for amplitude and frequency sensitivity have been 

derived. 

(13) The mechanism of achieving high frequency stability is found to 

be connected with the high frequency gradient of the maximum load 

of the given device. (Note: The maximum load is related to 

the unilateral gain factor U of the device; 

e.g. G+0  = 	(U-1)/U 3 [(Go + B:)/(Gb  + Ge  )1 

(14) Expressions for efficiency of operation have been derived. 

For a heavily loaded transistor, the efficiency of converting 

d.c. to a.c. power is found to be very small. 	To obtain 
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reasonable output power and preserve stability it is the 

author's opinion that the best way is to use a buffer stage 

and an amplifier in conjunction with the oscil3ator. 

To the best knowledge of the author, the results presented in this 

thesis are original. 



31 

1,6 References  

1. 	A. Lindstedt, Mem. de l'Ac. Impen de St. Petersburg, 31, 1883. 

2, 	H. Poincare, J. des Math., (3), 7, 1881. 

3. H. Helmholtz, "Sensation of tone", Longmans, Green, (London):  

1895. 

4. M. A. Liapunov, Ann. de Toulouse,. Paris„ Vol. 9, 1907. 

5. van d. Pols  "The triode as a generator of oscillations", Radio 

Rev., Vol. 1, pp.701-754, 1920. "On relaxation oscillations", 

Phil. Mag., Vol. 2, pp.978-992, 1926. 

6. A. Lienard, Rev. Gen. de 1'Electricite 23, 1928. 

7. N. Krylov and N. Bogolinbov, "Introduction to nonlinear mechanics", 

Ann. of Math. Studies, No. 11, Princeton, 1947. 

8. A. Andronov and A. Witt, Arch. ftir Elektrotech., 24, 1930. 

9. H. A. Thomas, "Theory and design of valve oscillators", Chapman 

and Hall Book Co., 1951. 

10. Le Corbeiller P., "The nonlinear theory of maintenance of 

oscillation", J. Inst., Electra Engrs., Vol. 79, P1).361-3780  1936. 

11. J. Groszkowski, "Frequency of self oscillations", Pergamon Press, 

1964. 

12. G. W. Pierce, "Piezo-electric crystal resonator and crystal 

oscillations applied to the precision calibration of wave-

meters", Proc. Amer. Acad. Arts. Sci., 59, p.81, 1923. 

13. P. Vigoureux, "Quartz Vibrators and their Applications", His 

Majesty's Stationery Office, 1950. 



32 

14. Hartley, see ref. 9. 

15. Colpitts, see ref. 9. 

16. Miller, see ref. 9. 

17. Lqmpkin, see ref, 9. 

18. F. B. Llewellyn, "Some fundamental properties of transmission 

systems", Proc. IRE, Vol. 40, No. 3, pp.271-283, Mardh:  1952. 

19. S. J. Mason, "Power gain in feedback amplifiers", IRE Trans. 

on Ct. Th., Vol. 	CT-1, No.2, pp.20-25, June, 1954. 

20. S. J. Mason*  "Some properties of three-terminal devices', IRE 

Trans. on Ct. Th., Vol. CT-4, No.4, PP.330-532, Dec.  1957. 

21. C. C. Cheng, "Neutralization and unileterization", IRE Trans. 

on Ct. Th., Vol. Ct. Th., Vol. CT-2, No. 2, pp.138-145, 

June 1955. 

22. A. P. Stern, "Stability and power gain of tuned transistor 

amplifiers", Proc. IRE, Vol. 45, No. 3, PP,335-343, March 1957. 

23. D. F. Page and A. R. Boothroyd, "Instability in two port active 

networks", IRE Trans. on Ct. Th., Vol. CT-5, No. 2, pp.133-139. 

June 1958. 

24. R. Spence, "A theory of maximally loaded oscillators", Trans. 

IEEE on Ct. Th., Vol. CN130  p.58, March 1966. 

25. S. Venkateswaran and Boothroyd, "Power gain of bandwidth of tuned 

transistor amplifier stages", Proc. IEE*  Vol. 106 B, Suppi. 15, 

pp. 518-529,  May 1959. 

26. I. Bendixson, Acta Math. 24, 1901. 



33 

27. H. Nyquist, "Regeneration theory", Bell System Technical 

Journal, Vol. 11, 1932, pp.126-147. 

28. H. W. Bode, "Network analysis and feedback amplifier design", 

D. van Nostrand Book Co., 1959. 

29. E. Hafner, "Analysis and design of crystal oscillators", 

Technical Report, U.S. Army Electronics Laboratories, Fort 

Monmouth, New Jersey, May 1964. 

30. A. J. Cote, "Matrix analysis of oscillator and transistor 

applications", IRE Trans. on Ct. Th., CT-5, September 1958. 

31. A. J. Cote, "Matrix analysis of RL and RC oscilintors", 

IRE Trans. on Ct. Th., CT-6, pp. 232-233, June 1959. 

32. J. H. Brodie, "Matrix analysis of oscillators", IRE Trans. 

on Ct. Th., CT-7, 1, March 1960. 

33. R. L. Pritchard, "Discussion of Matrix Analysis of Transistor 

Oscillators", IRE Trans. on Ct. Th., CT-8, 2, June 1961. 



34 

(a) Colpitts oscillator 
	

(b) Hartley oscillator 
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(c) Clapp oscillator 
	

(d) Pierce oscillator 

(e) Miller oscillator 
	

(f) Lampkin oscillator 

Fig, 1.1 The diversity of oscillator configurations  



STABLE U N STABLE SE M I-STA BL E 

Fig. 1.2 Types of limit cycles  
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Fig. 1.3 (a) Stable limit , cycle with unstable focus point  

(b) semi-stable limit cycle with stable focus point  



XAt 
	 sdt 	

HO) 
	 Yott) 

Itts) 

notations: 

complex frequency 

H(s) 	transfer function of amplifier 

K(s) 	transfer function of feedback network 

xi(t) 	input signal , yo(t) 	output signal 

definitions 

G(s) = 1 - H(s)K(s) 	, return difference of system, 

The critical point for the system is (1, JO). 

Fig. 1.5 Example of a Nyquist plot  
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Fig. . 1.4 Return difference  
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Y21 	 '22 

Y1Y2 - Y12Y21 G(s) = 	Al 

4-34 Y21 	Y1Y2 

Y1 = Y 4.  Y1 1 

Y2 = YL Y22 

Fig 	1.6 Return difference of a terminated two wort  
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Chapter 2 

An Idealized Model of the Transistor Oscillator  

2,1 Introduction  

A well designed oscillator would be one which produces stable 

oscillation within limits of the specified performances. The complexity 

of the equations encountered with oscillator circuits and the diffi-

culty of characterizing the transistor (at high frequencies and large 

signal operation) prevent analysis for the general case. Hafner1 

has pointed out that the success of any analysis of the transistor 

oscillator depends on the judicious selection of the approximation 

that have to be made to keep the problem tractable and upon the proper 

formulation of the analytical expressions in such a manner that they 

are most susceptible to interpretation. On one hand the designer 

is faced with the difficulties due to the nonlinear action and on the 

other hand it is well recognized that only nonlinear theory can provide 

a conceptual basis for solution of the problem. It is therefore of 

prime importance to overcome the above mentioned difficulties set by 

the presence of complicated nonlinearities. 
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2,2 Ebers Moll Model of the  Tralisistor is a Useful Aid for the 

Present Investigation 

The use of equivalent circuits is only justified if they simplify 

the analysis and produce acceptable agreement in the subsequent cal-

culations. An equivalent circuit which can reproduce the great 

number of transistor properties will be extremely complicated and 

would not help in simplifying the already elusive problem of transistor 

oscillator design. In view of the complexity, it would be instructive 

to study a low frequency model of the transistor oscillator, Any 

salient features revealed in such a study will help to form a strategy 

to solving the general problem. ,For this purpose, the set of d.c. 

characteristics provided by the Ebers Moll2 equations are employed. 

These are:- 

(For pap transistors in common base configuration) 

IE  = IEBS [exp(qVEB/kT)-1]  - ariCBS [exP(c1116/kT)-1 	(2.la) 

IC  = ICBS [exp ( qVcaAT )-1 3 - alIEB [exp(ciVEBAT)-3.1 	(2.1b) 

where, 

afar = common base forward or reverse current gain 

respectively 

IospIEBs = saturation currents with open collector or open 

emitter respectively 

VED 	emitter-base voltage 

VCB 	collector-base voltage. 
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The general shape of Ebers Moll curves and the model on which they 

are based are shown in Fig. 2,1 and Fig, 2.2. 

The first step towards utilizing the transistor in any operational 

circuit is to fix its quiscent point. In doing this the maximum 

ratings and the state of operation must be taken into consideration. 

Fig. 2.3 shows the different regions of operation for the common-

emitter configuration. Nonlinear effects will only set in appreciably 

if the a.c. operation reaches out into either the saturation or the cut 

off region. The effect of saturation is a severe distortion of 

collector voltage waveform, while that of cut-off is a severe distor-

tion of the collector current. 

2.3 Self Ad4ustment of the D.C. Conditions when Operating at Large  

Signal Level,  

The transistor nonlinearity which contributes towards amplitude 

limiting and stability of oscillation is asymmetric. This means that 

the d.c. bias of the transistor readjust itself to large signal levgls. 

Consider now the biasing network, shown in Fig. 2.4. Ebers Moll 

equations can be rewritten in the form below 

EBO ..m.rICBO exp6(Eee-IeRe417eb)/kT] -1 

ex144(Ecc-  Icile+vcb)/k1 -1 

(2.2) 

IE 	1 
IC 
	1-a far 

"lfIEBO CB0 
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where, 

I 	ICB0  = leakage currents with open collector or open EBO  

emitter respectively. 

Ie 	10  = d.c. components of Is  and 1c  respectively. 

vvcb = excitation voltages shown in Fig. 2.4. 

The d.c. component of the distorted current is equal to the first tem_ 

of the Fourier series expansion for the exponential terms. The new 

d.c. currents at large signal operation are:- 

	

f 	

I EBO I e = 4. 1  -1E22- 	exp(q(Eee-IeRe+veb)/kT)dt - -om T 1. 	 1-mmer  

I 	26 	 m.I rCBO  Jr  exp(q(E -I R +v )/kT)dt 	r CB0 
1-ufai l17cc c c cb 	1-afar 

(2.3) 

fiEBO 1 r EBO Ic = 	exp(q(Eee-IeRe+v)/kT)dt + 3.-c,far  rr 	 1-m,a f r 

I 

1 	
jr exp(q(E -I R +vcb  )/kT)dt 	1-mA

CEO un 

 far 	1" 	
cc c c 	far 

(2.4) 
where t is the period of oscillation. 

Assume that the transistor has been designed to produce sinusoidal 

voltages; vob  = void cos mt and vob  = cb 1 cos wt. Since the 

collector is normally well biased into the reverse region, (E00.-I0Rc) 

is negative and exp(q(Eoo-IoRo)/kT) is very small. The second and 

fourth terms contribute negligibly to the d.c. currents. 	Therefore 



expressions (2.3) and (2.4) can be rewritten as 

Ie 1-im 
IEBO I o(x) ext(q(Eee -IeRe)/kT) fat  

where, 

x 	= q I veb  I AcT 

/0(x) = 	exp(q veb/kT)dt 

Ic 	of Ie 
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(2:5) 

(2.6) 

The d.c. bias condition of the transistor can be obtained by constructing 

the load line for the family of curves represented by equation (2.5) 

and (2.6). These have the form shown in Fig. 2.5. 

2.4 	The Current Waveforms at Steady State Oscillation  

The bias points of the transistor oscillator will readjust them-

selves to different amplitudes of the steady state oscillation. The 

new quiscent voltages will be given by VET  = (Eee  - IeRe) and 

VCBQ = (Ecc w  c R c). The a.c. component of IE and I are obtained 

from relationship (2.2), 

IEBO 	cc, I 
ie 	= 1-m 	exp [ q( VEBcf-sreb  )/kT 	r CBO 

er 	1-cter exlil(Iragveb)/k4 

(2.7) 



f 

	

-aTEBO 	r 	Irmn 
expr(VEB(veb)/k23 	

exp[q(V Cal+v  cb 

	

-aer 	1 -aray  

(2.8) 

The components of ie  and is  can be examined separately as functions of 

veb and  vob. The components of ie are shown in Fig. 2464 It is 

noticed that the component of ie  due to the excitation voltage v cb 

can be very smn11  if I/0Q  is well in the negative region. 

At steady state oscillation vob and veb are related by the circuit 

matrix. Therefore the waveform of ie will be determined on fixing 

Voce  VEBQ  and veb. It will similarly be the case for the waveform 

of i. There are four possible combinations of the components of ie 

or ic; each giving a distinctly different waveform. These are shown 

in Fig. 2.7. Case (a) in Fig. 2.7 is the linear operation mode of the 

transistor. If instability does occur in case (a), the oscillation 

will grow until it either reaches a steady state or a self modulation 

state known as squegging. 

Kontorovich3, Bazhan4  and Kaptsov5  have analyzed the current wave-

form of transistor oscillators. The general procedure is to separate 

the distorted current into a part which can be expressed by a sinusoid 

through part of its period and the other part by a "discontinuity". 

By writing down the differential equations for the two separate parts 

of one total period and then fitting them at their common boundary, 

the above mentioned authors were able to obtain satisfactory agreement 

with observed waveforms. Since these investigations are rather 

restricted in their applications, their methods are not adopted here. 

k3 
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2.5 Classical Methods Used in the Analysis of Vacuum Tube  

Oscillators are not Suitable for the Transistor Oscillator  

In classical nonlinear theory it has been pointed out that self 

excited oscillations can only occur in nonlinear systemsi With 

vacuum tube oscillators the nonlinearity is easily traced to the 

plate current being a nonlinear function of the grid voltage. The 

nonlinear theory of vacuum tube oscillators has been'worked out very 

thoroughly. A number of analytical and graphical methods for the 

analysis of such circuit exist. The methods of slowly changing 

amplitudes proposed by van der Pol6 and the method of small parameters 

proposed by Andronov7 are two examples of available methods. 

Although transistor oscillator circuit configurations resemble 

those employing vacuum tubes, nevertheless the above methods for the 

analysis cannot be applied easily. 	This is because the specific 

properties of the transistor as determined by the physical process 

in the device are quite different from those found in the vacuum tube. 

A number of important differences exist between the vacuum tube and 

the transistor. The chief of these are:- 

(a) Transistors show considerably greater high frequency effects. 

(b) They have s  All  er input and sometimes output resistance which 

are further more dependent on the operating conditions. 

(c) They possess internal feedback. 

(d) The emitter and collector junction capacitances have appreciable 

value and have to be taken into consideration in the design 

procedure. 
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The complete description of all the properties of the transistor can 

be obtained only by the solution of the diffusion equations for the 

charge carriers, taking into account the geometry of the device and 

the boundary conditions. It is not possible to obtain a simple 

solution to their equations& Therefore the substitute of some 

equivalent model can only be an approximation. 	At high frequencies 

and large signal levels, there are no equivalent circuits of the 

transistor, which correspond well to the actual physical processes 

governing transistor action. If consideratiOn is limited to sma31  

signal operation, then a suitable equivalent circuit may be sub-

stituted for analysis. The designer has to be aware of these 

complications. Any approach to transistor oscillator design would 

have to take these properties of the transistor into consideration. 

2.6 	The Describing Function  

2.6.1 Filtered nonlinear systems and the describing function  

It should be pointed out that the linear theory of transistor 

harmonic oscillator design manages to survive in spite of its short-

comings. One reason for this is because there is no way of writing 

down the system of nonlinear differential equations describing the 

oscillator system, The second reason is due to the frequency domain 
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analysis which the linear theory employs. This is very close to 

the line of thought of the practical designer. He can think in 

terms of immittance functions and relate the external circuit 

elements to the parameters of the transistor directly. A similar 

situation arose when the theoretical basis for norltnear control 

system design was formulated. While second order systems lend them-

selves to a simple analysis in the phase plane, the majority of non-

linear systems are of a higher order and are not amenable to phase 

plane analysis. Workers in this field of study turned to the concept 

of a filtered nonlinear system, in which the harmonics (except the 

first) generated by the norlirearities may be neglected. It is then 

possible to define a complex transmission ratio between an input and 

an output signal. However, in contrast to linear systems, this 

transmission ratio is a function, not only of the frequency of the 

input signal but also of its amplitude. Contributors to the 

development of these ideas include Nichols8, Goldfarb9 Lechtman10 

Oppeltil, Dutilh120  Loeb' and Kochenburger14. 	In this section 

the basis for the describing function method as treated in Naslints15  

book is reviewed briefly and then adapted to the problem of transistor 

oscillator design. 
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2.6.2 The describing function as used in nonlinear control systems  

Consider an element, the input and output variables of which are 

related by a time invariant nonlinear relationship, y = f(x). This 

relationship may be one-valued or two-valued. In the latter case, 

y assumes different valued for increasing and decreasing values of 

x. Also y may exhibit an odd or even symmetry, or may be asymmetric) 

Fig. 2.8 shows a number of nonlinear characteristics which are fre-

quently met with in practice. 

If x is a sinusoidal function of time, x = X sin(wot) = X ainn 

where a ot. Then y will be a periodic function with the same 
angular frequency w as x. The period of y( C) will be 2n. For a 

given value of X, y(1.) is readily obtained by means of a graphical 

construction. Fig. 2.9 shows such a construction for the system 

which exhibits a hysteresis effect. The phase shift due to the 

hysteresis effect is clearly visible. 

In general, a function y(a) of period 2n can always be 

represented by a Fourier series expansion of the form 

co 
7(a) = Yo  E (An  sintna Bn  cos(nQ) ) 	(2.9) 

n=o 

The mean value Yo and the coefficients A and Bn are:- 

Yo 
2n 41c 

1 	y(a) 

An 	 Y(a) 
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y(n)cos(nn.)dn. 	 (2.10.) 

Consider now the system shown in Fig. 2.10. This comprises a non-

linear element described by the relationship y = f(C-1) and a linear 

element of transmittance L(jul) = G exp(j0)4 The amplitudes and 

phases of the various harmonic Components, as well as the mean value 

Yop are functions of the amplitude X of the input signal but are 

independent of the excitation frequency Co.. After passing through 

the linear transmittance L(jm), each harmonic component of y(f) under-

goes a change of amplitude and phase. Therefore the expression for 

the signal z(t) is:- 

z(t) = G(o) I + 7.3 G(nco6)ril  sin Inwt + 	(no)o)1 	(201) 
° n=0 

If a filter action is present in the system to suppress all harmonics 

with frequency above the fundamental frequency, then equation (2.11) 

can be simplified to 

z(t) = G(o)Y0  + G(coo)Y, sin [mot 	(%) 

The output-input amplitude ratio and the phase shift 

(2.12) 

may be 
combined to give a complex equivalent gain function N(X) 

N(X) 
Y (X) 
1--- 	

exP E (1)).(x)] (2.13) 

This function is generally known as the describing function. 	The 

Bn 
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amplitude and phase relationships between x and z are given by the 

generalized transmittance N(X) L(jw0), which is a function of both 

the amplitude X and the angular frequency we of the input. For a 

one valued characteristic, exhibiting no hysteresis effect, N(X) is 

always a real function. 

2.6.3 Characterizing the transistor at large signal operation with  

a describing function  

The above ideas can be applied to the transistor when sinusoidal 

driving voltages appear at the input and output port. Consider the 

system in Fig. 2.11. To ellaY,acterize the transistor for a.c. 

operation, we need four parameters ie, vela, is  and veb. These 

are two more than those required for the system shown in Fig. 2.10. 

It has been pointed out in Section 2.3 that for a normally biased 

common base transistor, the emitter and collector currents are given 

by the expressions 

I 
IE = 	EEO 

1f i
e 	exp Ilq(1/Eme- veb)/lai 	(2.14a) 

IC 	= 	-umf  IE 	 (2.14b) 

Expanding the expression (2.14a) in Fourier series and keeping the d.c. 
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and the first harmonic terms we get, 

IE 
/EBO 	exp [7(vEBQ vebIher] dt 3.-ct,far  1- 17   

—EEL'cos(w t) ft4exPPIrEB4i. vebl4er] cos(coot)dt 
far 

(2.15) 

It is noticed that because of the exponential function, the first 

harmonic comprises only the term involving the copfsine function. 

Expression (2.15) consists of two component terms: 

d.c. component term 

Ie  EBO 11 
1-cf,exP(ci VEBQAcT)/0(q i veb I AcT)  

f r 
(2.16) 

1st harmonic component term 

Ie
IMO  cos(coet)exp(q IrmecT)Ii(q. I veb( /142 ) 	(2.17) 1-1yr  

where Io and Il  are the modified Bessel functions of zero and first 

order respectively. 	These are given by the respective integrals in 

expression (2.15). 

For reasons which will be clear later, it is desirable to separate 

the nonlinear active port from the linear part of the system. 
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The nonlinear active part can now be characterized by the following 

quantities. 

V EBQ 	V CBQ 	Ived 	I e'  i  e/  I  o  and i
s 

 

It is noticed that yliB  and yaB  of the transistor admittance matrix 

are in fact given by, 

1 	
EB0 

exp(q V'EBIVkT)1(q Iva! /kT) 

(2.18) 

y23.  =- of  f (2.19) 

Expression (2.18) is the describing function of the transistor for 

operation at large signal level and it is a real function. 	The 

quantities Tel  Ic  = af  Ie  yil  and ya  = af  y can now be used 

as design parameters for the transistor oscillator. 

2.6.4 The describing function applied to transistor oscillator 

des31gn and the effects of higher harmonics  

Having characterized the transistor for operation at large signal 

levels, the task of oscillator design can now be considered, The 

mechanism behind the steady state oscillation in the transistor 

oscillator is explained in steps below: 

Yu 	
veb I 	

1-afar 
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STEP 1 

Fig. 2.12 shows the ideal case when the biased transistor is 

subjected to purely sinusoidal excitation. The currents IE  and Ic  

which result from the quiscent bias voltages VQ, Vag  and the 

sinusoidal voltages veb  and veb$  are composed of d.c. and harmonic 

components. 

IE  

Ie 

ie  

= 

= 

Ie  + ie(wo) + e(2 ) e(3wo) 

IEBO 

(2.20) 

(2.21a) 

(2.21b) 

1 	
exp(XEQ)k 	 rexp(xe)dt 

"mfar 

EBO fjxp(xe)cos(nwet)dt cos(nwet)exT(CEQ) 

where XEiq = q VEB/kT and xe = q 11/ b I  /kT. 

n 	= 1$  2$  3. 

wo 	angular frequency of the 1st harmonic. 

It should be pointed out that the integrals are in fact the modified 

Besse' functions 1 (xe  ) and n(xe). 

1 — 

11, 

exp(xe  )dt 	= 	I0(xe) 

exp(20cos(nwet)dt = In(Xe) 

(2.22) 

(2.23) 

The relative content of the harmonic components for any given value of 

Iveb1 will be decided. by the relative values of Il(xe), 12(1%), I3(xe) • • • 

etc. These values vary in a manner shown in Fig. 2.13. 
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STEP 2 

In order to maintain the currents IE  and Ic  in Pig. 2.12, the 

network has to be completed by the use of external embedding, This 

is shown in F1g2.14. It should be pointed out that once the embedding 

is used, the a.c. exciting voltages cannot be sinusoidal any longer. 

The existence of higher harmonic components in /E  and Ic, would 

necessarily mean that the a.c. port voltages contain harmonics too. 

However, the content of higher harmonics in the port voltages can be 

made small by using an embedding with a good filtering characteristic; 

Fig. 2.15 shows the transistor oscillator represented in the form of a 

close-loop system. At the steady state, the harmonic voltages 

developed across the ports of the embedding network will be fixed. 

Since the embedding network is linear and passive, we can investigate 

its port current-voltage relationships for individual harmonic com-

ponents. In order to do this we need to obtain the equivalent two- 

port impedance matrix for 

+ 	+ 
z11 	z12  11 	12  

the embedding network. 

+ + 	+ + 
5r2246 	

- y32/.6,  

(2.24) + + 	+ - 	 Yu/iei 21 

+ ++ + 
y1!22 y12y21 

z21 	z22 
L 

where, 

The harmonic components of the port voltages can be written in terms 

of the "z+" parameters. 

The nth. harmonic components are:- 

veb(n410) 	z 	- af z12e(hwo) (2.25) 
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vcb (nw ) = [z
+ - f z22e(nw ) 21 

From expression (2.25) we can obtain the ratio 

 

(2.26) 

Iveb(11%)1/1  veb(wOl = k I ie(nwo)/ie(%) 1 , where k is a 

 

property of the embedding network. Therefore the excitation 

voltage veb  can be very close to a sinusoid if a proper embedding 

network is chosen. 

STEP 3  

In the design of transistor harmonic oscillators, one of the 
abwos.11  

demandSis to haveA  sinusoidal port voltages. This requires the choice 

of an embedding network which possesses good filtering characteristic. 

Higher harmonic voltages will then be attenuated rapidly by the 

embedding network, whatever the harmonic content of the port currents 

might be. We require to be a minimum at the frequency of 

the first harmonic and to have large values for frequencies over the 

rest of the frequency spectrum. The desired frequency characteristics 

+ of the quantities Lzu  - mf z12  I and L z21  - a,f  z221 are of the 

form shown in Fig. 2.16. 

STEP 4 

The physical mechanism behind the transistor oscillator (when 

based on Ebers Moll equations) has been discussed. For the case of 

the harmonic oscillator, veb  and vob  are nearly sinusoidal in waveforms. 

It is then valid to use the method of describing functions. 	In 
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Section 2.6.3 it is shown that the parameter yil  of the transistor is 

in fact a describing function. 	The rest of the two-port parameters 

are: Y21 = '-mfY11; 	0; y22 N  0. The addition of an embedding 

network to the transistor is to modify the circuit matrix. For 

steady state oscillAtion to occur, the modified circuit matrix is 

required to be singular. However to ensure subsequent oscillation, 

the conditions for instability of the initial state and stability 

of the steady state must also be satisfied. 

2.7 	Stability of Steady State Oscillation  

The d.c. component of the emitter current, Ie  is dependent on 

the amplitude of the a.c. excitation voltage veb. In the transient 

state, when the oscillatory current varies in amplitude, the d,c. 

component le  must also vary accordingly. 	Thus in principle, the 

stability of oscillation in the transistor can be predicted by 

examining the set of dynamic equations governing the variation of the 

d.c. bias points. Consider the circuit shown in Fig. 2.17. 	The 

d.c. currents are:- 

Eee - V'ebo  Iso = 	 (2.27a) Ri  

cc 
- Itcbo 	

(2.28a) I 	= 
co 	

E 

 2'2 



The relationships for any incremental changes in ieo  and 
'Co  are 
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V
eb C 

d2 die 	- 1 
d 	

V" 	
2 

- c A--  3 	2 (Veb - VCb) dt 	dt 	1 
d 2 dt 

- 1 	deb d2VOID 	d2 = 	- C 	C 2 dt 	dt2 	3 dt2 

dic 
dt (v

eb 
- V

Cb
) 

(2.29a) 

(2.29b)N  

One of the voltages can be eliminated from the set of equations 

givesn by (2.29a) and (2.29b). On doing so we obtain a fourth order 

differential equation in one of the voltage variables. This new 

equation involves the time differential of I. In Section 2.6.3. 

it has been shown that Ie can be expressed in terms of the modified 

Bessel function o(x). However at large signal operation any change 

in amplitude of oscillation will also involve a change in frequency. 

This means that die/dt has to be evaluated taking into consideration 

frequency variation as well: 

di 	die 	)ve.of e = 	e do) 
dt 	al  vebl 	dt 	aw 	dt (2.30) 

An accurate treatment of the problem is beyond reach for the present 

moment. Clarkel6  gave an approximate treatment of the problem. 

Sato17 presented a brief correspondence along the same line.- It is 

felt here that, this line of study will not lead to a useful design 

criterion. A different approach is taken in this thesis. 

x 
The voltage drop across L2  is assumed to be negligibly smnii.  
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Consider the condition of oscillation for the transistor 

oscillator. 	We obtain this by setting the 

Yll 	Yll 	Y12 

circuit determinant to 

zero. 

= 0 (2.31) 

Y22 

where, 	- aryl].  = y21  and y12, - y22  are both negligible. 

Let us represent the real and imaginary part of A by M and N 

respectively, 	Then condition (2.31) becomes 

M 	+ 	jN. = 	0 (2.32) 

veb

Just as we have borrowed the concept of immittance to give a physical 

meaning to the describing function of the transistors  we are now to 

borrow the idea of a limit  cycle from phase plane analysis. Condition 

(2.32) can be interpreted as the algebraic form of a limit  cycle, 

associated with the steady state oscillation veb  = Ivebt cos w t. 

This oscillAtion can be written simply as veb  = ebI exp(j mot). 

To investigate its stability, it is necessary to consider the effect 

of small perturbations on the limit cycle. We do this by replacing 

ao exp (j wt) with a function of time differing slightly from = 

it by 6 a in amplitude, j A w in frequency and which is slightly 
perturbed by  the increment v . Thus we find 

veb(disturbed) = (a + 	a) exp j(mfA.m j O" )t 
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The incremental quantities "a", w and Cr must satisfy the condition, 

M(u +Aw + j a- , ao +Aa) + jN(w +,&co + jo , ao +4a) =0 

(2.33) 

If equation (2.33) is limited to the first term of its Taylor expansion 

and if the real and imaginary parts are separately equated to zero, 

we obtain 

aalla/ Aa+ 1-M 	aN 0 Aw— 

E 	 aN 	am A a 	A + yco- a + aw  cr aa 

Whence by eliminating Aw, we obtain 

	

= 0 	(2.34) 

	

0 	 (2.35) 

aN 
1 ( 	ro )

2

1 {am aN _ 8M aN 
8a aw aw 89. a 	(2.36) 

The condition for the limit cycle to be stable is that the disturbed 

function should increase wait -tonte (7).0)_ if its amplitude is smaller than 

ao and decrease wgtk fo;le 61-40) if its amplitude is larger than a0, i.e. 

am aN 	8M aN 
as Z; 	aw as (2.37) 

The above condition for the stability of the steady state oscillation 

was obtained by Loeb in France and Popov in the Soviet Union. This 

condition can also be derived geometrically by extending the graphical 

methods of Nyquist and Mikhailov. 
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2.8 Soft Excitation - Unstable Focus Point  

The oscillator designer is not only interested in synthesizing 

a stable limit cycle, he must ensure that soft excitation takes 

place in the circuit. It is known experimentally that the oscillo-

graph of the "build-gip" of oscillation is of the general form shown 

in Fig. 2.18. On examining this pictures  we noticed that there 

are three stages through which the oscillation passes. Initially 

the transistor is operated essentially in a linear domain. In this 

first stage, oscillation grows exponentially. Once the critical 

amplitude a
c is reached (see Fig. 2.19), nonlinear action sets in and 

there will be a damping down of the amplitude growth. In this second 

stage, both the growth decrement and frequency change continuously 

until the final steady state is reached. A more detail discussion 

of the stability of the initial state is given in Section 4.14. 

2.9 Conclusion for Chapter 2  

The Ebers Moll equations were used to investigate the physical 

mechanism of self oscillation in low frequency transistor oscillators. 

This study has revealed some salient features of such oscillator systems. 

These are:- 

(i) At normal biasing conditions, only yil  and ya  of the common- 
B 
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base transistor parameters, have appreciable values. yl, 
B 

and y22  are very small quantities. B   

(2) The controlling voltage of the nonlinear system is found 

to be v 

(3) and y21  are in fact the describing functions of the 
'"B 
transistor. 

(4) Provided a strong filter action exists in the system, we can 

use the large signal "y" parameters as design parameters. 

The oscillator dealt with in Chapter 2 is an idealized model, and 

yet its analysis present many difficulties. It is a general feature 

of nonlinear system that there is no sure way of establishing a soft 

excited stable limit cycle. Andronov and Chailt 8  compared it to 

a game of chess:- 

"The present status of the theory for establishing 

the existence of limit cycles can best be compared 

to the game of chess. There exists no theory by 

means of which a game can be won. There do exist, 

however alternatives which enable a skilled partner 

to win a game starting from a given configuration 

on the chess board". 

In face of these difficulties, the circuit designer must take a new 

approach. The method of frequency analysis developed for nonlinear 
• 

control systems, is found to be a suitable basis for a new design 

strategy. In this new approach, the transistor is characterized 

by its large signal "y" parameters. 
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Fig. 2.1 General shape of Ebers Moll curves for the 

common-base configuration  

C 

Fig. 2.2 Ebers Moll model of the transistor for the  

common-base configuration  
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Fig. 2, Common-emitter characteristics showing regions of  

operation and maximum ratings  

Ig 
	IC 

Fig. 2.4 D,C, bias of the transistor and large signal  

excitation by voltage veb 
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Fig. 2.5 Load line construction for determining Ie 
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Fig. 2.6.a. The component of ie  due to -yob 
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Fig. 2.6.b. The component of ie  due to veb 
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Fig. 2.7.a. 

' t 
 • lb- la  

Fig. 2.7.b. 
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Fig. 2.7.0. 

Fig. 2.7.d. 

Fig. 2.7 The four distinctive types of current waveform  

for ie 
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Fig. 2.8 (a) and (b) 

Fig. 2.8 (c) and (d) 
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Fig. (e) and (f) 

Fig. 2.8 Common types of nonlinearity 

Fig. 2,9 Sinusoidal excitation of a nonlinearity 
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Fig. 2.10 A separable filtered nonlinear system  
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Fla. 2.11 Transistor cascaded with linear passive feedback  

network 
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V = V EB 	EBQ + vebl 
VCS  = Vcril  +1 yob' 

cos I coot 

cos ( wot 

Fig. 2.12 The transistor driven by voltages VEB  and Vm  

at the input and output ports  

Fig. 2.13 The relative values of In(x) for given values of 
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is 
4 Y12 

Y+  22 

+ 
5,11 

Y+  

Fig. 2.14 A transistor embedded with external circuit  

elements to oscillate at a steady state, (a) a particular 

embedding (b) and (c) unspecified embeddings  

Fig. 2.15 The close-loop system representation of the transis-

tor oscillator  
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Fig. 2.16 Desired frequency characteristic of z11  - tlf
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Fig: 2.17 A simple transistor oscillator circuit  
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Fig. 2.18 The "build-up" of oscillation  
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 - - - 

1 1 / 
Figs. 2,19 The three stages of oscillation  

"bui ld -up" 
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Chapter 3 

Approximation Methods  

3.1 Progress in the Study of Self Oscillation  

In this section a survey of the available methods, which have 

been developed for the study of nonlinear systems and of self 

oscination is presented. The object of such an exercise will be 

to relate the studies made in this thesis to the general development 

of the methods used for analysing and synthesizing nonlinear systems. 

By having an overall picture of the subject, the investigator can 

become more aware of both the limitations and the merits of his 

proposed approach, and thereby be more likely to steer his research 

in the correct direction. 

The relationships between the different methods are given in 

Table 3.1. Poincare1 is looked upon as a forerunner of modern non-

linear mechanics. He opened two major avenues of approach to the 

solution of problems of nonlinear mechanics. 

(1) 	The topological methods of qualitative integration. 

(2). 	The quantitative methods of approximations by expansion 

in terms of suitable parameters. 

These methods were developed originally for the solution of problems 

in celestial mechanics. Barkhausen2'3 was among the first scientists 

engaged in the study of oscillation in vacuum tube circuits, His 

doctorate thesis written on the above subject was published in 1907. 
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These problems 'drew the attention of van der Poi,415'6 whose work 

has brought -!;osether the phenomena of harmonic oscillation, relaxation 

oscillation and the synchronization of oscillation under one common 

treatment. He invented the van der Pol equation, which has wide 

applications in the investigation of nonlinear systems. In their 

search for analytical methods to deal with nonlinear phenomena, 

Andronov and Witt7 8 made use of the general theories worked out by 

Poincare and van der Pol. In their method, the oscillatory solution 

of van der Polls equation is transformed into corresponding singular 

points and the criteria of Poincare are applied to study the stability 

of these points. The question of stability is an important aspect 

in nonlinear mechanics. 	The fundamental theorems connected with 

stability are due to Liapunov9. In nonlinear mechanics these 

theorems play a role similar to the Ruth-Hurwitz10 theorem for linear 

systems. This direct nonlinear approach is limited to the study of 

Certain systems. Its inability to cope with self oscillation is due 

to the absence of any developments leading to the establishment of 

topological concepts in the phase space. The phenomenon of self 

oscillation inevitably implies the existence of some stable limit 

cycles in phase space. Poincare was the originator of the concept 

of the limit cycle and he also invented the method called "Indices 

of Poincare" to infer indirectly the existence of limit cycles. A 

very useful graphical construction was invented by Lienardll  for the 

study of phase trajectories associated with a nonlinear system. This 

is uswilly known as the method of isoclines. The trajectory representing 
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the solution to the nonlinear differential equation is constructed 

directly on the phase plane. If the trajectory eventually describes 

a closed path, then a limit cycle exists. If the limit cycle is 

stable, oscillatory solution will be realizable. The importance of 

the topological methods is that they provide a picture of the overall 

behaviour of the nonlinear system. However if one is only interested 

in nearly sinusoidal solutions, then the approximate methods of van 

der Pol and Krylov-Bogoluibov12  will be more convenient. The method 

of equivalent linearization of Krylov-Bogoluibov led to the develop-

ment of operational methods. These operational methods are commonly 

used in the study of self oscillations in nonlinear control systems. 

Popov13 and Aizerman14 are two important contributors to the study of 

self oscillation. Using the work of Krylov-Bogoluibov as a basis, 

they were able to build up a general theory of self oscillation. 

The works of the last four mentioned contributors are directly 

relevant to the study made in this thesis. 

3.2 Popovts Classification of Nonlinear Systems  

In the last Chapter, a simple resistive nonlinear system has been 

examined. This system is characterized by the 

	

f(x1) 	kl 

	

k3f(x1) 	k2  

set of equations 

1 (3.1) 

••• 

Yl  

Y2 
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where yl  and y2  are the current variables, xi  and x2  are the voltage 

variables and the "kns are constants. The above system is the two—

port equivalent of the relationShip„ 

3'1 = f(x 
1
) 
	

(3.2) 

Unlike the electronic circuit designer, who is basically Interested 

in the interrelation between the current and the voltage variables in 

a circuit, the control system engineer is interested in the relationships 

between output and input variables of a system. Frequently in the 

study of nonlinear control systems, it is possible to separate the 

nonlinear element such that the output variable x2 is related to the 

input variable xi  simply by 

x2 = F(xl) 
	

(3.3) 

Ekpressions (3.2) and (3.3) are similar in form. 	There is a strong 

parallel between the problems found in transistor oscillator design 

and those arising from harmonic oscillations in nonlinear control 

systems. A close examination of the problems faced by the designer 

along the lines taken by control system engineers will be instructive. 

This may produce a correct approach to transistor oscillator design. 

Many authors have suggested schemes for classifying nonlinear 

systems. Among these is Popov13  who divided all nonlinear control 

systems and servomechanisms into three large classes: 

(1) 	Nonlinear systems of the first class  

The equation of the nonlinear element in these systems reduces to 
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any of the forms below, 

x2 	
F(x1) 
	

(3.3) 

r(312, x2) 
	

el xl , 	F1(52, x2) + F2(x2)  = Glxl 
(3.4) 

x2 = F(xi„ *i) 	x2  = Fi(x1) F2(311.) 

In this class only the output variable (and its derivatives) or only 

the input variable (and its derivatives) enters into the nonlinear 

function. The block diagrams of such a class of system are shown 

in Fig. 3.1, 

(2) Nonlinear systems of the second class  

The second class of novlinear systems includes such elements in 

which both the input and output variables enter into the nonlinear 

functional relationship. Examples of these relationships are:- 

F2(2, x2) = Fi(x) ; F3(*2) F2(x2) = Fi(xl) 
	(3.5) 

F(12„ x2, 	= 0 ; F2(x2) F1(x2, 	= 0 
	(3.6) 

The block diagrams of such systems will be of the forms shown in 

Fig. 3.1. 

(3) Nonlinear systems of the third class  

The third class systems are composed of two or more nonlinear 

elements separated from each other by linear parts. The blOdk diagrams 

for these systems are shown in Fig.3.2. 

We have seen in Chapter 2, that under normal biasing conditions, 

the common-base transistor parameters have the following features: 
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Y12; Y22  

Complex quantities; very low value for both the real and imaginary 

parts; varies negligibly with changes in signal amplitudes and 

signal frequency, 

Yll; Y21  

Complex quantities; the values of the real and imaginary parts are 

much larger than those of yi2  and y22; values vary with the signP1 

amplitude 1 veb i and signal frequency. 

These features are found to be preserved even at high frequency 

operation. Since yil  and y21  are functions of both signal amplitUde 

and frequency, the simpler relationship (3.1) is no longer valid. 

The relationships of the system variables are:- 

Yl  fi(xis k1) 	kl xl 

(3.7) 
Y2 fc) 	k2 _12(xl,  x2  

•••• .0" 

A system of the form given by.relationships (3.7) is classified as a 

first class second order nonlinear system under the Popov scheme. It 

is second order because there are two nonlinear elements and it is 

of the first class because they are controlled by the same variable. 

Equation (3.7) is the two-port equivalent of the two terminal case 

expressed by 

2 = 	x1) k xl 
	(3.8) 

The simplest system containing the element f(x2lc) and capable of 

producing harmonic oscinntion will be a second order differential 
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equation of the form 

if 	F(x.  *) = 0 
	 (3.9) 

Krylov and Bogoluibov established the method of "Equivalent Lineariza-

tion", for solving second order nonlinear equations approximately. 

Most of the subsequent approximation methods developed for the study 

of nonlinear systems, including the design theory for harmonic 

oscillators proposed in this thesim derive their basis from the work 

of Krylov and Bogoluibov. Because of its wide application and because 

it is fundamental to other approximate methods in nonlinear theory. 

The method of "Equivalent Linearization" is reviewed below. 

3.3 	The Method of Equivalent Linearization 

Krylov and Bogoluibov were interested in seeking a solution to 

equation (3.9) in the form of 

	

a sin (wot 	0) 	(3.10a) 

	

awocos (ot 	0) 	(3.10b) 

where a and 0 are slowly varying functions of time, 

a = a(t) ; 	0 = 0(t) 	(3.11) 

In order to solve equation (3.9), the nonlinear function F(x,*) is 

written in the form 

F(x, 	= wo2x + µ f(x, 1) 	 (3.12) 



da 
	

1 
dt 
	

atwo 

1 = - 
dt 	2 a nwo  

F(a sin u, a wocos u)cos u du (3.15) 

F(a sin us  a wOcos u)sin u du (3.16) 

f 

wox 
2 = 

fat 

0 
f(x,*)sin u du x 
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Equation (3.9) becomes 

+ wo
2  x + f(x, 	0 
	

(3.13) 

For p = 0, equation (3.9) reduces to a simple equation whose solution 

is 

x = a sin (coot 0); I = a w cos(wot + 0) 
	(3.14) 

For a quasi-linear equation when p 0 but is small 	11  it appears 

logical to retain the form of solutions (3.12), provided "a" and 0 

are considered to be slowly functions of time. Krylov and Bogoluibov 

have been able to find these functions. They take the farm 

where u = wt 0 

Krylov and Bogoluibov then went on to introduce the method of equiva-

lent linearization, whereby they showed that equation (3.13) can be 

linearized to the form 

AMP 
1 
coo 	eta f(xsi)coa u du + 0(p2) (3.17) 



q = 	
gra 	

f(xii) sin u du 	(3.19) 
T M 

 

0 

where, 
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Comparing equation (3.17) to equation (3.13) one sees that the non-

linear function mf(x,1) has been linearized to the form 

41'(xk) = q x 	(q140)k 
	

(3.18) 

 

2s  0 

 

q1 Aa f(x,*) cos u du 	(3.20) 

  

Owing to the presence of the residue 0(µ), relationship (3.18) 1.6  
satisfied up to an order of accuracy m2 	The interested reader should 

refer to references 12 and 13. 

3.4 	Popov's Generalization of the Method of Equivalent Linearization 

to the Frequency Analysis of Nonlinear Systems  

Krylov and Bogoluibov have established relationship (3.18) by 

analytical methods and have pointed out that even for more complicated 

higher order systems, the method of equivalent linearization can be 

effective. Popov has followed this recommendation and went on to 

formulate the very powerful method of harmonic linearization, Popov 

was more interested in substituting the nonlinearity in a system with a 

linearized expression. He pointed out that the nonlinear function 

m(x, *) can be linearized directly without referring to the method of 
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averaging used by Krylov and Bogoluibov. 

Let there be given some nonlinear function 

x2 = F(x, A) 	 (3.21) 

where, x = a sin (coot + 0) 

then expression (3.21) becomes 

x2 = F(a sin u, a wc) cos u) 	(3.22) 

where, u = wot + 

Expanding the right hand side of the relationship (3.22), we obtain 
2it 

x2 - 	F(x, A) du + 2n 
0 

r 	2It  
PltJ 	

5,(„ A) sin u du 	sin wt 
o   

sac 
1.1 
A 	F(x, 1) cos u du 	cos wt 

+ 	higher harmonics 	(3.23) 

The first integral in this expansion is a constant (d.c.) quantity. 

If the higher harmonics and the d.c. term are neglected and if the 

relationships 

sin (coot + 0) = x/a ; cos(ot+0)=xfa wo 

are used, then expression (3.23) may be rewritten as 

x2  = q (a, wo) + [ qi(a, coywol 

0 
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where q and ql  are quantities identical to those derived by Krylov 

and Bogoluibov. 

Consider the simple system shown in Fig. 3.3. The transfer 

junction of the linear part is W(p) = R(p)/S(p). We have the 

relationship 

= y - WF 
	

(3.24) 

Sit the onset of self oscillation, y = 0 and consequently x = 

Equation (3.24) becomes 

S(p)x 	R(p) 11(x, 	= 0 	(3.25) 

If the linear part filters out the higher harmonics present in the 

function F, then the solution to a first approximation is 

x = a sin u 	u = coot 
	

(3.26) 

If in addition no constant component is present, 

F(a sin u„ a w cos u)du = 0 	(3.27)  

0 
then the condition for self-oscillation by the method of harmonic 

linearization is 

8(p) + R(p) t q 	72-" ci  p 1 = 	(3.28) 
wo 

Where, q and ql  are given by expressions (3.19) and (3.20) respectively. 

For steady state operation p = joy 	On separating the real, and 
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imaginary parts of L , we obtain 
Re A (q,  c112  wo) = 0 
	

(3.29) 
Im A(q) q1, wo) = 0 

The relationships (3.29) determine the amplitude "a" and the 

frequency w of the periodic solution in terms of the coefficients of 

the characteristic equation, and therefore in terms of the parameters 

of the system considered. Thus it is possible to construct graphs 

of relationships a(k) and w(k), where k is any one of the parameters 

of the system. 	From these graphs one may select the parameters 

of the system (or the range of possible parameters) which will give 

the required values of amplitude "a" and frequency w of the self 

oscillation. 

Any self oscillation observed in a-system is in fact the stable 

periodic solution of the mathematical equations describing the system. 

If two or more periodic solutions are obtained (or one, without there 

being any assurance that the system will sustain stable oscillation), 

then it will be necessary to determine the stability of the periodic 

solution, using some stability criterion, e.g. 

(aM/aa) (aN/aw) 	(am/aw) (awaa) > o 

This criterion was discussed in Section 2,7. 

For systems with asymmetrical nonlinearity, there exists a 

slowly changing mean signal besides the self—oscillation. Consider 

the system shown in Fig. 3.3. 	The condition for self-oscillation 



q = 1 
lta 
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becomes 

S(p)x =—R(p) F(x, 

(3.30) 
x = y - Z 

The variables x and z now have d.c. components 	and zap  upon which 

there will be superimposed the oscillations, 

x = xc  + a sin wet ; z = zc .1- azsin (wot + 0) 
	

(3.31) 

The harmonic linearization for asymmetric nonlinearity is 

2n 

F(xo  + a sincip  a wa  cos fl) sincadn. 
0 	 (3.32a) 
2n 

q1 = na 
1 	F(x

c 
+ a sin  a p  a wocosc) ) cos O. dQ 

0 	 (3.32b) 

1 	27t  
F . 2n 	F(xa  a sin Cl a %cos°. ) 	(3.32c) 

0 

where 	of  

The nonlinear function can be replaced by the expression 

F(x' 1)  = 	4' 
r q x 	(ql/wo)xlm] 

	
(3.33) 

where, 

x 	= a sin (wot) ; z = az sin (wot + 0) 

Substituting expression (3.33) into relationships (3.30), we get 
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S(p) X = -R(p) Fo  tq 	(qi/toc)xj 

 

   

(3.34) 
x + 	=z - a zit 

These may be separated into equations for the periodic components due 

to self oscillation, 

S(p) zn  = R(p) [q 	(qi/too)xx  

(3.35) = zn  

and equations for the slowly changing mean components, 

S(p) zc  = R(p) Fc  

zc 
(3.36) 

From conditions (3.35) we obtain the characteristic equation for deter-

mining the periodic solution as, 

= s(p) R(p)  [q (qi/wo)P I = (3.37) 

This equation is similar to the one obtained for a system with 

symmetrical nonlinearity (see equation (3.28)). The nonlinearities 

in the transistor are known to be asymmetrical junctions. 	The 

mechanism of self-oscillation in the transistor oscillator will there-

fore be similar to that expressed by the conditions (3.35) and (3.36). 

The harmonic linearization of a nonlinear function is a general 

method of obtaining the describing function for more complex nonlinear 

systems. In this sense the discussions in Chapter 2 can be embraced 

into Popov1s work. Minorsky15  regards Popov's work as a large scale 
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attempt to codify the known facts of nonlinear systems with a view 

to form a comprehensive theory, intended for the analysis and 

synthesis of nonlinear control systems. 	However, codification 

of facts is one thing, implementation of the comprehensive theory 

is quite another. The nonlinearity present in the contHefe 

charactervato"- of 	the transistor is far too complex to be written 

down as an explicit function of current and voltage variables. 

Inevitably one is led to the conclusion that in principle a satis-

factory design theory for the transistor oscillator is possible, just 

as Popov and Paltovl6  have managed to formulate a comprehensive theory 

for describing self oscillation in control systems. However the 

elusive nature of the nonlinearity in the transistor oscillator has 

forced the investigator to look for a departure from established 

methods. The main requirement from such a departure is that 

neither the shape nor the explicit function of the nonlinearity is 

necessary in formulating the design procedure. At this point the 

investigator has to fall back on his intuition and to re-examine 

what the essentials for the design basis res-ny are. It is desirable 

to leave out bits of information which when present, cloud the whole 

picture and yet can be neglected without jeopardizing the physical 

mechanism, responsible for the phenomenon of self oscillation. 	In 

this connection, the work of Aizerman is extremely relevant. His 

heuristic treatment of self oscillation provides a surprising depth 

of insight into the nature of quasi-linear oscillations. 



z 

xi  

92 

'.5 The Filter Hypothesis of Aizermaq 

Nonlinear systems often appear in the form, 

aiixj  + 	 (3.38a) 

aijx4 	 (3.38b) 

When the nonlinearity appears only in one equation of the system. 

Setting y = 	and assuming that this is a well behaved (i.e. 

continuous with a certain number of derivatives) nonlinear function, 

one can eliminate all variables in equations (3.38a); (3.38b) except 

y and x = 

op
n + 

where p 

Consequently one obtains, 

n-1 + 	k )x =opm + dipm-1 + dm)y 	(3.39) 

_ d 
dt 

The transfer function of the system is, 

W(p) = K(p)/D(p) 	(3.40) 

where, 

D(p) = dopri + dlp + 	+ dm  

K(p) = kopn  + 144-1  + 	+ kr  

After applying harmonic linearization on y, we obtain 

W(p) = K(p)/S(p) 	(3.41) 
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where, 

S(p) = s pn+1  + s pn  + 	+ s 1 	n+1 

K(p) = k pm + k
1 
pmr1,1  + 	+ k 

The characteristic amplitude A = K(jw)/S(j0)), where p has been 

replaced by jw, permits determination of the ratio in which the 

various harmonics are present at the input and output of the non-

linearity. 

According to Aizerman14 there are two ways in which quasi-

harmonic self-oscillations can occur in such systems: 

(1) The linear part of the system may exhibit the property 

of a filter. Harmonics other than the required frequency 

of oscillation are suppressed. 

(2) The form of oscillation (both at the input ad output of the 

nonlinearity) does not differ much from the sinusoidal 

waveform. 

Aizerman distinguishes the two cases, calling the systems satisfying 

the first case "filtered systems" and those satisfying the second 

case "auto-resonance systems". He maintains that these two hypothesis 

have different physical significance: 

(1) 	The idea of the filter is in fact the method of harmonic 

balance of Krylov and Bogoluibov, which replaces the 

Fourier spectrum by the fundamental component. 	The 

justification for this is that work done by the hidler 

harmonics during the period of the fundamental is always 
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zero. The existence of the filter properties will 

substantiate the justification of Krylov ad Bogoluibovts 

method. 

(2) In the method of "auto-resonance", the solution is soot 

in the form x = a sin [(co + 8co)t] ; where "a" and 80 are 

the quantities to be determined. The methods of Poincare 

and van der Pol belong to this latter approach. 

Aizerman stressed the difference between the concepts of the "filtered 

system" and that of the "auto resonance" system. 	He insisted on 

the point that in control systems, one has nearly always conditions 

for a "filter" action and very seldom those of an "auto-resonance" 

action. It should be pointed out that in transistor oscillator 

circuits, the passive embedding network acts precisely like the 

"filter" discussed in Aizermants hypothesis. 

A Short Summary of Discussions in Previous Sections  

In Chapter 2, the nature of the transistor oscillator has been 

discussed. The low frequency Ebers Moll model was used because, 

under high signal level and high frequency operation conditions, the 

problem of transistor modelling is still unsatisfactory. 	It cannot 

be emphasised too strongly that the high frequency transistor oscillator 

is a complicated nonlinear system. With the available analytical 
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techniques it is not possible to give a complete solution to the 

behaviour of the system. The previous sections in this Chapter 

have however given indication that approximation methods can be used 

beneficially. On the other hand the designer should be aware of 

the limitations imposed on such methods.. He must also be sure 

that, all the relevant factors governing the behaviour of the system, 

are taken into consideration in the approximation method. Finally 

he should recognize that his interest is in the steady state solution 

of the set of nonlinear differential equations describing his system. 

A subsequent study of the structure of this steady state solution 

as a function of various constant parameters of the system will reveal 

the behaviour of the oscillator under different environmental in-

fluences. Having established the nature of the transistor oscillator 

and reviewed the available techniques for nonlinear system analysis, 

it is now possible to dwell properly on the new approach to harmonic 

oscillator design, proposed in this thesis. 

The Mathematical Interpretation of Large Signal Transistor, 

intif Parameters  

In earlier sections, it has been shown that after harmonic 

linearization, the transistor can be characterized by a two-port 

admittance matrix. 	If the Ebers Moll equations are employed as the 
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physical model, then the common base two-port equations will be of 

the form, 

Yl2B(w)  Y11Btaw) 

(3.42) 
ie y22B(w) Y21B(a'co) 

Ale/ 

where  YllB and  Y21B are the describing functicmsdiscussed 

in Chapter two. 

The matrix elements y 	and y 	are small quantities and they vary 

negligibly with signal level. 	At high frequencies, the matrix 

elements are no longer real quantities but complex. Measurements 

have shown that y 	and y22B  vary little with changes in frequency 

and signal level. On the other hand yilB  and Y21B  vary appreciably 

with both frequency and signal level. 

The measurement of transistor "y" parameters is normally carried 

out at small signal levels. Since the proposed procedure is based 

on these "y" parameters, it will be desirable to examine their 

derivation a little closer. It has been shown that starting from 

the Ebers Moll equations, one can go through the process of harmonic 

linearization and obtain algebraic relationships between the two-port 

variables. The "y" parameters so obtained, vary with signal levels. 

Over a limited region at small signal level, these parameters remain 

constant. These are the small signal parameters of the transistor. 

This region of operation is essentially linear. 

The relationships between the two-port variables can be derived 

in a more general manner. Consider the two-port shown in Fig. 3.4. 

ie e 

vc 
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Each of the current variables can be written as general functions 

of the other three remaining variables. 

i = 1" vI'  VII) 
	

(3.42a) 

G(In, v1, vii) 
	

(3.42h) 

In principle it is always possible to substitute (3.42b) into (3.42a) 

and thus eliminate III; or vice versa for the elimination of Il  from 

the functionnl relationships. This means that, it is only necessary 

to consider the simplified relationships. 

II = f(v
1,  vII); III = g(visviI) 
	

(3.43) 

It should be pointed out that VI  and v/1  may have constant components. 

vi(t) ; vli  = V2  + v2(t) 	(3.44) 

V1 and V2 are the constant components and vi(t)4 v2(t) are assumed 

to be the small excitation signals.. The constant terms Vi 
and V

2 

define an operation point given by 

I1  = f(V10. V2  ; ) 	12  = g(V1, v2) 
	

(3.45) 

as shown in Fig. 3.5. The small signal swings about this operation 

point will produce excursions in iI  and 	about their corresponding 

operation points. The magnitude of these swings can be estimated 

by assuming that the actual surfaces "f" and "g" can be adequately 

represented by their tangent planes at the points I].  = f(V1, V2) and 

12 = g(V1, V2) respectively. 	This is the case of the small signal 

approximation. 
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The mathematical expressions of these geometrical ideas are 

contained in the Taylor's expansion of a function of two variables. 

iz  = for 1,  / av 	(vI*11)+  i ivI'v21 	[:II v.21v11  (vn-112) 

hi.54444'Ver terms 	 (3.46a) 

a II (V . V
2  

= g 	)1- 	 (v2 -V1)+ 11  -71 v10v2 
av II IV V 2' 1 J

(vII -V2)  

high order terms 	 (3.46b) 

If operation is confined to low signal levels, the higher order terms 

canbEwneglected. Separating the constant and time varying terms of 

equation (3.46) we get, 

= I1  +(t) ; II = 22 + i2(t) 	(3.47) 

I1 = f(V1,V2) 	; I2 = g(V1,V2) 
	

(3.48) 

and also, 

I1(t) = {kg— a 	1 v1  (t)+ PL. — v 	 v2 	
(3.49a) 

I 1 V1' V2 	II I V VI 	(t)  2' 1 

i2(t) = {-t— 	1 v
l- 
 (t )+ 

au  
, 

vii v 	1 
v2(t) 	(3.49b) av1 I v1°  v2 i  2' v 1 

The derivatives of f and g with respect to voltage have the dimensions 

of admittance. We can now define a set of admittance or "y" para- 
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of 

	

Yu 	av i/v
2 

Aa_ 

	

21 	av XVi°
q  

y12  

y22  

of 
aviz lvv 

av v
2'
v  

Equation (3.49) can be written in the matrix form, 

Yi2 	v11 

Y22 

The geometrical representation of Fig. 3.5 describes a system 

with resistive nonlinearity. It has been shown that under normal 

bias conditions, the nonlinear action appears across the base-emitter 

junction. Therefore the controlling variable of the nonlinear 

device is VI  = Veb. It has also been pointed out that because 

of the reverse biasing of the base-collector junction, the values 

of yi2B  and y 	are very small. 

In practice, one has to take the high frequency effect of the 

transistor into account. In order to do this, it is necessary 

to examine the device characterization a little closer. Let it be 

assumed that the excitation signal be merely periodic and not necessary 

sinusoidal. The "high frequency effect" can be taken into account 

by including the time derivatives of the excitation variables into 

the functional relationships. The relationships (3.42) are now 

  

1 

i2 y21 
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generalized to 

iI 	= F(vI' fI' V • • • • 
	

VII,  •II, V) 

iII = G(vI' f 
	

P viii int  Vii "" ) 
	

(3.50) 

The quantities iI  and iIIcan  be treated as hyper-surfaces in n-

dimension space. The number "n" depends on the number of derivatives 

involved in the relationships. Under linear operation conditions 

(small signal levels), the Superposition Principle can be used. 

Employing Fourier Jnalyais techniques, the excitation waveforms 

can be broken up into their harmonic components and the action of 

individual component on the device can be treated independently. 

Therefore it is only necessary to consider the general sinusoidal 

excitations, v1  = V1  + lvil exp(jwt) and v11  = V2  + 1v21 exp(jwt + a). 

In the Ebers Moll equations there are no interaction between the two 

voltage variables. For general purposes, it is assumed that any 

interaction between the pert variables are negligibly small* This 

assumption is supported by experimental evidence and makes it possible 

to represent the transistor by a two-port. On this assumption relation-

ships (3.50) can be rewritten as, 

i = F(vI'  f1, V1  . ) + F (v 	f 	VII II0  II 

iII iII = G(vI' fI* V "' ) G (v 	f 	 ) 2 II' 	II 	• 
(3.51) 

The functions F1, F2, G1  and G2  can now be treated separately. It 

is noticed that dnvi/dtn  = 	vl ul exp (jwt) 	and 
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dnvIIldtn = ( v2 lquf exp(jwt + o). 	This being the case, it will 

be sufficient to have V1, V2, Iv4 iv21 and w as the functional 

variables. The port-currents and port-voltages are related through 

these functional variables, 

iI = 	vli 
	

F2(V22  vat # W) 

i 	Gi(V10  I vil w) + G2(V2, 1 v21 $ w) 

	(3.52) 

For the linear  case, relationships (3.52) can be rewritten as 

= yil(Visto)vi  + yi2(V20w)v2 + f(V1,V2) 

(3.53) 
= 	Y21(Vi$(4)v1 + y22(V2,w)v2 + g(V1$ 

V2  ) 

where f(V1,V2) and g(V1,V2) are the d.c. components. 

For a particular nonlinear case, relationships (3.52) can be rewritten 

as 

iI = Yll(V1$ v1A)v1 Y12(V2$(4)v2 f(V1020 

yaI, vils , + in= (V 	w)vY22(V2*(4v2 g(Vi0V2, Iva. I ) 
(3.54) 

It Should be pointed out that the system represented by relationships 

(3.54) belongs to Popov's first clans and second order. 	The 

controlling voltage is vi. Under norm1 d.c. bias conditions, the 

transistor can be represented by such a system. 
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Filter Action of the External Embedding Network  

It has already been shown that the port currents of the tran-

sistor are nonlinear functions of the excitation voltages. For 

harmonic oscillators, the port voltages are required to be nearly 

sinusoidnl*  The requirement of maintaining sinusoidal voltages 

at the ports of the embedding network in the presence of non-

sinusoidn1 port currents, sets certain constraints on the embedding. 

There are some embedding networks which will keep port voltages more 

sinusoidn1 than others. What then are the features that characterize 

these preferred embedding networks? In order to answer this question, 

it is necessary to refer to Fig. 3.6(b). The two-port equations 

for the embedding network shown in the figure are:- 

I+ 
	Yl2v2 
	(3.55a) 

iII = 12 721v1 	722v2 
	(3.55b) 

On confining considerations to the oscillatory components and using 

the twe7-port impedance matrix, we obtain 

Ir1 

v2 

= zll i1 
+ 
z21  -a.  

+ 

+ 

+ 	. 
z12 12 
+ 
z22 12 

(3.56a) 

(3.56b) 

Since the embedding network is passive and linear, the principle of 

superposition can be used. Relationships (3.56a) and (3.56b) can be 

separated into their harmonic components* For the ideal case when 

v1  and v2 are sinusoidal voltages, we get 
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vl(wol z+ 11(w o) z12(wo) 

72(o) 	2l(  o)z22(wo), 	i2(%) 
(3.57a) 

 

4*. 

  

  

z
+
11 (nwo  ) 42(nwo) 

z22(no) z22(law) 

 

i1(nwo) 

i2(nwo) 

(3.57b) 

    

    

where n = 2, 3, 4, 5 	 etc. 

Equation (3.57a) gives the relationships between the fundamental port 

currents and voltages. Equation (3.57b) applies to higher harmonic 

components of the current variables, when the port voltages are 

required to be zero value. In the practical case vi(nw) and v2(nw) 

cannot be made to vanish completely, for this would imply the z para-

meters to be zero valued at these higher harmonic frequencies. How-

ever their values can be made insignificantly small by the correct 

choice of embedding networks. One of the requirements is that the 

absolute values of the "z+" parameters decrease rapidly with frequency 

above the fundamental. This filter action is indicated in Fig. 3o7.• 

However in the filter action, it is not sufficient to know the 

4.2' frequency spectra of i1411' 4241 ilz21 and i2222  alone. Since 

v1  (nw) and v2(nw) are vector sums of the nth. harmonic components 

of these quantities in pairs, it is also essential to know their 

relative phase angles. 

In order to examine the influence of the phase angles on the 

filter action, it is necessary to refer to Fig. 3.6. The overall 
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oscillator system is shown in Fig, 3.6a. This can be separated 

into a linear part and a nonlinear part. The current and voltage 

relationships at the ports of the linear part can be treated by 

the Principle of Superposition. The relative phase angles between 

port currents and voltages would depend on the mode of operation of 

the system. This is in turn determined by the state of excitation 

of the nonlinearity. Therefore one is inevitably forced to identify 

the controlling variable first of all, and thereafter have the phase 

angles of other variables referred to it. The controlling variable 

has already been identified as v1  (v1 represents veb).  We can now 

"measure" the phases of the other variables against vr 	On fixing 

the amplitude and frequency of vIs  the phase angles of iI  and in  

with reference to v1, will be determined by the embedding network. 

The phase relationships between vl  and the harmonic components of 

and its are shown pictorially in Fig. 3.8. Multiplication of the 

impedance and the current can be interpreted geometricnlly in the 

complex plane. The current ii(w) is described by a vector rotating 

in the anti-clockwise direction with angular frequency w. The 
+ , 

impedance function z11(w) = pli(w) + j xii(w) can be thought of as an 

operator function. Its operation on you) is to transform the vector 

i1(w) into a new one. This new vector rotates in the same direction 

and the same angular frequency, but with a new amplitude given by 

I ii(w). zIl(w) 	and having a phase difference from il(w) of VI 

given by tan-1 The vector sum, 11 	. 	 z12(w)3-2((u) 
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is shown in Fig. 3.8k. Similar diagrams can be drawn for each of 

the higher harmonic components of vl. It should be pointed out that 

the phase angles 01  and 02  in Fig. 3.8j and Fig. 3.8k are given by 

01(w) = el(w) 4. tan-1  [ xii(u)1211(w)] 

562(') = 82(03) + tan -1  [ x12(6.)/r2.2(0,) 

, 
The phase angles for ii(nwo  izi (ncoo) and i2(nalo)z12(nwi) will be of 

the same form as those given by relationships (308), except that 

the relevant quantities are calculated for the frequency of the higher 

harmonic frequency concerned. In order for the higher harmonic 

voltages to be small, it is desirable to have the sum 01(nco)+ 02(nwo) 

to be as close to it as possible. However the requirement on the 

frequency characteristic of the "z+Ils is more important. If all the 

nz" parameters have frequency characteristics similar to that shown 

in Fig. 3.7, then the moduli of vectors ii(nwo)4.1(nwo) and 

, 
i2(nwo)z12(nwo) will be very small compared to those for the funda- 

mental. Therefore the resultant higher harmonic voltages will also 

be very small compared to that of the fundamental. Provided the 

existence of a strong filter action is ensured, the effect of the 

phase angles on the harmonic content will be secondary. 	In 

conclusion the designer's attention should be directed firstly to 

realizing a good filter action. Correction due to phase angle effects 

can be considered as an unimportant refinement. 

(3.58) 
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Further Implications of the Filter Action  

Aizerman14 introduced the filter hypothesis to distinguish 

between the "filtered system" and the "auto-resonance system"..  

In the "auto-resonance system", the input and output waveforms of 

the active device are nearly sinusoidal.. The embedding network 

need only perform the function of providing "feedback" paths for 

the oscillatory signal. In the "filtered system", the controlling 

variable at the input has to be maintained in nearly sinusoidal 

form. The embedding network in this case performs the function of 

a filter besides providing the required "feedback" paths. Aizerman 

discussed the filter hypothesis in terms of control systems, where 

attention was directed to the study of transfer functions. 	In 

circuit theory one is just as interested  in the current variable as 

the voltage variable. Instead of dealing with transfer functions, 

the designer looks into the circuit transformation matrix. 

There are further implications of the filter action which 

Aizerman had omitted. A strong filter action will not only make 

possible the production of nearly sinusoidal oscillation in the 

presence of a strong nonlinear action, but also governs the whole 

qualitative aspect of the oscillatory solution irrespective of the 

type of nonlinear element involved. This important aspect is 

examined briefly below and in more detail later in Section 4.14. 
At small signals the transistor parameters are essentia)ly 

linear. The stability of the initial state of the oscillator 

circuit can be investigated by studying the roots of the characteristic 
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equation. The condition for soft excitation to occur is to have 

at least one pair of characteristic roots possessing a positive 

real part. On the other hand, a higher order system may have more 

than one pair of characteristic roots having positive real parts. 

Does the presence of a strong filter action prevent the establiah-

ment of other limit cycles other than the one for the preferred 

frequency? It is possible to answer this question by a deductive 

argument. Since the current and voltage variables are related by 

a fixed immittance matrix, it will be sufficient to solve the 

characteristic equation for one variable. Let us assume that 

solutions for the current variable are first found., Those for the 

voltage variable are obtained by using the impedance matrix trans-

formation. At the initial stages of oscillation "build-up", the 

current variable it will in general be a sum of complex functions, 

it  = 	 exp (cr; Jcsa)t 	(3.59) 

It should be pointed out that the phases are left out. This does 

not impair the generality of the argument. If the impedance matrix 

presents a strong filter action, then only the voltage component of 

the preferred frequency will be allowed to grow into a stable limit 

cycle. Since the higher harmonic voltages are suppressed it will 

require a much higher current level to bring the controllir% voltage 

at the higher harmonics into the nonlinear region. As the generative 

power of the transistor is limited it is unlikely that the controlling 

voltage can reach into the nonlinear region at frequencies other than 
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the fundamental. Therefore a strong filter action selects a single 

steady state oscillation while suppressing other characteristic roots. 

The presence of a strong filter action provides the designer 

with justification to focus attention on the excitation frequency 

of interest. In such a system, the pair of dominant roots will be 

of the form exp (O + kwot). Characteristic roots having other 

complex frequencies will always decay with time. Therefore we should 

be able to specify this filtered system at a "point" frequency we 

If the dominant frequency wo  is known;  it would even be possible to 

derive a criterion for the initial state to be an unstable focus 

point. This means that we can avoid constructing the characteristic 

equation and examining all its roots. Since it requires more 

quantitative formulation to obtain this criterion, the derivation 

is given in Section 4.14. 

To summarize the qualitative aspects of the filtered system, a 

pictorial history of the system dynamics are given in Fig. 3.9 and Fig. 

3.10, The dynamics of the voltage variable can be decomposed into 

a dominant root and other roots which exist only for a short period 

of time after excitation. The time duration of the initial linear 

state will be symbolized by 1:.L;  for later reference. There is also 

another characteristic time interval, starting from when the non-

linear action becomes effective and lasting until the steady state of 

the dominant root has been reached. This time interval is symbolized 

by 1:N. During the interval TL, the dominant root growSexponentially. 

If the filter action is strong, other excited roots are expected to 
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decay away rapidly; well within the time interval 	These 

roots are named here as recessive roots. We can thus mark out a 

linear region (shaded area in Fig. 3.9 and Fig. 3.10) in the phase 
planes, within which any excitation will induce "appearance" of 

roots with complex frequencies. These are the natural frequencies 

of the system. The number of natural frequencies present will 

depend on the order of the differential equation involved. It is 

important to design for all natural frequencies except the dominnut 

pair to decay away with time. In such a case, the initial oscilla-

tion will appear as a great profusion of natural frequencies. 

After the time interval L  1 only the dominant pair survived, 

These have then reached the steady state. The dynamical behaviour 

of all the four circuit variables v1,  v2' i1 and i2 will be of the 

same form, except that the limit cycles for the current variables 

may not be as symmetrical as those for the voltage variables. This 

is due to the distorted shapes of the current waveforms. 
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j.10 Conclusion for Chapter, 

In this Chapter, the task of decomposing the problem into its 

bare essentials has been carried out. The exercise has revealed 

the basic nature of the transistor harmonic oscillator. 

The Problem as it appeared before  

The designer is faced with a complicated nonlinear system, 

whose nonlinearities are unknown functions of system variables. 

He is required to synthesize a steady state solution and to examine 

the subsequent behaviour of the solution with respect to changes 

in system environment, 

The Problem as it appears now 

The transistor oscillator is a higher order nonlinear differ—

ential equation belonging to the first class systems under Popov's 

classification scheme. The presence of a strong filter action in 

the system suppresses all other natural frequencies except the 

dominant pair. Therefore the filtered system can be treated as a 

equivalent second order nonlinear equation. In such a case it will 

be sufficient to design for steady state oscillation at a "point" 

frequency and to ensure that soft excitation takes place for the 

synthesized circuit. 	The important parameters for synthesis have 

been identified. 

The method of synthesis for such systems is discussed in 

Chapter 4. 
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Fig, 3.1 First and second class nonlinear systems  
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Fig. 3.2 Third class nonlinear systems  

Fig. 3,3 A simple nonlinear feedback system  
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Fjc. 3.4 Two-port network with the port variables  
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Fig. 3.3 Geometrical illustration of the two-port  

relationships  
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Fig. 3.6.a. Nonlinear active device embedded to produce  

oscillation 
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Fig. 3.6.b. 	 Fig. 3.6.c. 

Fig. 3.6.b. Currents and voltages at the ports of the  

embedding network 

Fix. 2.6.c. Currents and voltages at the ports of the  

nonlinear active device  
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Fig. 3.7.c. Frequency spectrum of 
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Fig. 3,8_.b.  
complex plane description of vi 
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oscillograph of 

Fig. 3o8 41 (14,  Fig. 3.8.e.  
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complex plane description of 
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Chapter 4 

Quantitative Formulation of the Design Theory 

4.1 Introduction  

The initial state of the system can be described by a poly-

nomial equation (see Fig. 3.9 and 3.10). To construct such an 

equation is very time consuming. Besides, there is the disadvantage 

of having to use equivalent circuits, the accuracy of which one 

cannot be sure. 	A more reasonable way to treat the problem, is 

to discard the recessive roots (since they decay) and focus attention 

on the pair of dominant roots. These latter roots have complex 

frequencies with positive real parts. They will appear as growing 

oscillations at the ports of the active device. If the imaginary 

part of the complex frequency is known, then the operation of the 

device will be determined by the set of small signal transistor 

parameters. 	Given the set of small signal parameters, their fre-

quency characteristic around the expected frequency of oscillation 

and the embedding network, one should be able to determine the 

stability of the initial state of the system. A criterion for 

initial instability (soft excitation) is given in Section 4.4. 
In this chapter we are concerned with the new design procedure 

proposed for transistor harmonic oscillators. 

The design procedure starts off with the determination of 

sets of embedding elements, which satisfy the condition of oscillation 
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for a given frequency and given eontrollins The final volimes veb. 

choice of a particular embedding network will be made on the basis 

of two considerations: (1) To achieve a strong filter action in 

the system. (2) To ensure initial instability or soft excitation, 

these two considerations are basic in the operation of the transis—

tor oscillator. The first consideration will contribute towards 

suppressing the unwanted natural frequencies. Requirements on 

the perfortance of tb oscillator will narrow the choice of 

embedding elements even further. In order to ehPmeterize the 

transistor for such a design procedure, we need two sets of measure—

ments: (1) small signal parameters and (2) large signal parameters. 

The measurements of the transistor parameters and the actual 

construction of the oscillntor circuits are discussed in Chapter 

5. In the present chapter, it is assumed that the means of 

measuring the required quantities are available. 

4.2 The Condition for Steady State Osclalatiog 

In Section 1.2 it has been pointed out that the criterion 

for oscillation in the earlier design theories is, 

A (Jo) = o 	 (4.1) 

where A represents the circuit determinant. Equation (4.1) caa 
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mean only one thing  i.e. the condition for sustaining steady state 

oscillation in a given electrical network. This interpretation 

of the above equation can be explained with the aid of Fig. 4.1. 

The transistor is embedded with admittances Yb, Ye and Ye. 	The 

subscript indicates the position of the admittance e.g. Yb  means the 

embedding element opposite the base terminal. In order to fas-

cilitate discussion, the network is redrawn in the form of a two-

port with a direct feedback path from 'output' port to 'input' port. 

In the initial linear region of operation the oscillation is a growing 

sinusoid (ignoring the effects of the recessive roots). This applies 

to all the four port variables. No single one of them can be looked 

upon as the control variable and thus it is impossible to distinguish 

between an input and an output port. 	Therefore the three possible 

feedback paths shown in Fig. 4.1 are equally valid. In fact the 

best description of such a system is to write down the relevant 

mathematical expressions in symmetrical form. More will be said 

about symmetry later. Meanwhile, Fig. 4.1(a) is referred to for 

the following discussion. 	The subscript 'b' indicating common 

base configuration is dropped, on the understanding that such a 

configuration is considered. 	The termination of the two-port 

4- with admittances Ye  and Ye, will modify the originAl two-port 

admittance matrix to, 

712 

rY) (4.2) 
Y21 72241e 



( a ) 
Cz is  

Vis  Y+b 

Fig. 4.1 	Sustaining steady state oscillation in a transistor 

circuit  
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( c ) 

Yitc Yi2c 

If= Ync 



z11S z12S 

21S z22S 
v2  1 

v 

Transforming this to impedance form one gets, 

130 

(4.3) 
••• 

40' 

(Y22+7:)/2is (-312)/As 

(-Y2.1.)/At (5rn+Y+0)/068 

= (7221:)(722410 )  - 712721. 

On terminating tZ 18  with the impedance 1/4, a new overall impedance 

matrix is obtained, 

(y224-Y,,)/A s 	(-732)/A a  

Cs is 
(-721)/0 s 	(Y11+Y:)/ s)+( ri4;)  

(4.4) 

Expression (4.4) refers to the overall system marked out by the broken 

outline in Fig. 4.1(a). The relationships between the port currents 

and voltages are given below, 

where 

(4.5) 
2 

IL 

When steady state oscillation is reached one has i1  =-i2  and vi  = v2. 

Using these conditions in relationships (4.5), one gets 

(z11S + z22S  ) - (z12S + z21S) = 0 	(4.6) 

Expression (4.4) can be used to rewrite condition (4.6) in terms of 
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YlltYt+ Y: Y12-, 

0-1 
 Y2rY-ti; X22416 +4 
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the original y parameters. The reformulated condition is, 

(711 + 722 + 732 + 721 Y: + Y:)-1) + As = 	(4.7)  

condition (4.7) is in fact equivalent to having a singular admittance 

matrix for the overall network. This singular matrix can be 

obtained by inspecting Fig. 4.2. 

Fig. 4.2 Overall admittance matrix of the embedded transistor 

On setting the determinant to zero we get, 

= (3ru+ 722+  Y3.2+ Ya+ + Y+c)Y+b + As  = 0 	(4.8) 

Condition (4.8) and (4.7) are identical. Therefore 	= 0 means 

the condition for sustaining steady state oscillation. It should be 

pointed out that there is an anomaly in the above discussion. 	In 
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earlier chapters, it has been emphasized that stable steady state 

oscillation can only occur in nonlinear systems. How can one 

discuss self sustained steady state oscillation of a linear system? 

In linear design theories, condition (4.8) is interpreted incorrectly 

as the condition for initial oscillation. This cannot be the case 

because this would require examination of the system in the complex 

frequency domain, whereas quantities involved in the above equation 

are measured on the jw axis of the complex plane. 	Therefore it 

is not surprising that earlier design theories, which use condition 

(4.8) as the design basis have not been very successful. A simple 

way out of this difficulty is to employ the large signal transistor 

parameters. These are measured at the chosen signal level of the 

control voltage veb. In this case, it is valid to use condition 

(4.8) as a condition for sustaining steady state oscillation. 

In this chapter the upper case "Y"s will be used to represent 

large signal "y" parameters and the lower case "y"s for the small 

signal ones. To be correct according to this notation, condition 

(4.8) should be written as, 

(Y224' Y22+ 12 Y21 Y 	Y)Y 	= o 	(4.9) 

where 
	

(Y3.37 eo)(Y22+ Y+e) Y12Y21- 
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4.3 Symmetry and the Complex Gyrator Representation  

One very marked feature of the transistor oscillator is its 

symmetry with respect to the terminals of the transistor, Provided 

that the sinusoidal form of the controlling voltage vol  is assured*  

the transistor can be characterized by a set of measured parameters. 

Using the three sets of parameters (common base*  common emitter or 

common collector)*  three basic feedback systems can be formed, 

However these are just three different ways of representing the same 

three terminals oscillator. Why then do we not use a single re-

presentation which avoid the need to identify any feedback path? 

Another argument for doing so is that symmetry schemes always throw 

up invariant quantities of special significance. 

The basis for such a symmetric representation is the 

indefinite admittance matrix proposed by Tellegeni  and Shekel2. 

The three sets of two-port admittance matrices are combined into 

a single 31C15indefinite admittance matrix. In Fig. 4.5, is shown 

how the three basic sets of two-port matrices can be extracted 

from the more embracing indefinite admittance matrix. 	An 

important property of the indefinite matrix is that all the columns 

and rows add up to zero value. Therefore knowing any four of its 

elements*  the whole matrix can be constructed. 
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Yl2b 

{ Y21b Y22b 

400  

Ylle Yi2e 

Y2le Y22e 

b e c 

b Y 11 Y 12 Y 
13 

e Y21  Y 22  T23 

0 Y31 Y32 133 

is• 

Yllc Yl2c 

T21c Y220 

P.R. 4.5 Extracting, the two-port matrices from the  

indefinite matrix  

The indefinite 

a symmetric part and 

(4.10). 

admittance matrix can always be partitioned into 

a skew symmetric part as shown in relationship 

Yll 

Y 21 

Y31 

Y12 

Y 22 

Y32 

Y13 

Y23 

Y33 • 

= 

Yll 	242  Y21+Y32) i(1•31+1•13) 

2Y214-Y12) 	
Y22 	1(Y +Y ) 2 32 23 

2 k Y 31+Y  13)  2 1(Y  32 23 - +Y ) 	Y33 ..., 

0 	41214Y12) --( 31 13 Y -Y  ) 2  

(4.1o) 
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The symmetric matrix can be realized by a 41 network. This is 

shown in Fig. 4.6. 

Ye+X -Yc  Ye 
(ekYb 

Y17+Ye) 

Fig. 4,6 A 	network and its indefinite matrix 

On comparing this matrix with the symmetric matrix in relationship 

(4.10), one gets 

Y 

Yb 

Ye 

= 

= 

= 21  

72 

- 
131  2 

-y 
32 

+ Y12  ) 

) 
23 

y 	) 
 13 

(4.11a) 

The skew symmetriv matrix cannot be realized in simple form. It 

will simply be represented by the circuit element called "GYRATOR". 

Using the property of the indefinite matrix it is easy to show that 
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The quantities inside the brackets will be defined as Yo, 

y 	. (731_  yi3) = .(y 	y
12 

 ) -(y
32 

y
23
)  

21  (4.ub) 

One can now characterize the gyrator by Y0. However a sign con-

vention is needed to indicate the order of permutation of the y 

parameters. This is indicated by an arrow drawn onto the gyrator 

symbol (see Fig. 4.7). In network synthesis, the gyrator considered 

has always been real i.e. Yo  is a real quantity. Here Yo  is a 

complex quantity: YeGepo. Yo  will be called the "GYRATANCE" 

in this thesis, Go  and Bo  are normally known as the gyration 

conductance and gyration susceptance respectively. 

ro -Y0 Yo 

Y0 D -̀0  

Ya  Yo o 

C 

Fig., 4.7 The gyrator and its gyration matrix 

Thus the transistor can be represented by a gyrator embedded in 

network as shown in Fig. 4.8. Its indefinite admittance matrix, 



expressed in terms-of the new circuit elements is also shown in 

Fig. 4.8. 

Yc 
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7:Yb 	-Y0-/.b. 

	

Y0-Yb 	Yb+Ye 

 

 

Y -Y 0 c 

Y0- Ye 

 

    

    

Fig. 4.8 Symmetrical representation of the three terminal  

device 

4,4 	The Geometrical. Repregentation of the Condition for Steady 

State Oscillation  

In this section a geometrical model of the condition for steady 

state oserAtion is constructed. In order to do this, condition 

(4.9) is first rewritten in terms of the gyrator representation. 

Fig. 4.2 is redrawn in the symmetrical form shown in Fig. 4.9. It 

should be pointed out that the external embedding elements can be 

lumped with the A network of the gyrator representation conveniently 

On setting the determinant of the two-port matrix given in Fig. 4.9 to 



 

b 

YE + YG 

Y Y 0 	C 

e 
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b -y y 
0 C 

Y + Y C B 

 

    

    

C 

Fig. 4.9 The embedded three terminal active device  

zero one obtains 

YBYE +YEYc +YCYB 	0+ Y2  = 
	(4.12) 

This new formulation is symmetrical in form, and as one expects no 

feedbadk path needs to be identified. Before proceeding farther, 

the reader is reminded that the admittances consist of real parts 

and imaginary parts e.g. Y=G+JB. Equating the real and imaginary 

parts of equation (4.12) separately, the following equations are 

obtained: 

%BE  + ye  + BOB  = GBGE  + GEG0  + GOB  + G2 0 - B2 (4.13a) 0  

(GE+Gc)BB+(Gc+GB)BE+0E+GE)Bc  = -2G B 0 0 	(4.13b) 

These two equations can be interpreted geometrically. In order to do 

this, the quantities BB, BE  and BC  are alloted values x, V and z 
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respectively along the axes of a rectangular coordinate system. 

The above equations may now be rewritten as: 

xy + yz + zx = P 

ax + by +- cz = p 

where P = GBGE  + GEGC  + GCGB 0 + G2 - B2 0 

p = -2G0B0  

(4.14a) 

(4.14b) 

(4.15) 

a 	= G +G 	= G +G 	= G +G E Co 	C B' 	B E 

The condition for steady state oscillation requires equations (4.14a) 

and (4.14b) to be satisfied simultaneously. 

Equation (4.14a) represents a hyperboloid system. If P is positive, 

we have the hyperboloid of two sheets and if P is negative we have 

the hyperboloid of one sheet. The axis of these hyperboloids is 

given by a line, equally inclined to the three co-ordinate axes. Any 

plane perpendicular to this line and cutting the hyperboloid will 

produce a circular locus of intersection. For the hyperboloid of 

two sheets, the two nearest points of its surface to the origin are 

given by the co-ordinates, (07c, 0373-", 077 ) and 

(-VP73, -0773 0  -075 ). This system of hyperboloids is fixed 

in a rectangular co-ordinate system as shown in Fig. 4.10a. 

Equation 4.14b represents a plane in three dimensional space. 

It is inclined to each of the three co-ordinate axes, intersecting 

them at the points X(p/a, 0,0), Y(0,p/b,0) and Z(0,01p/c). We shall 

call this the "ASSOCIATED PLANE" (see Fig. 4.11b). 



Fig. 4.10 (a) the hyperboloid (b) the associated plane 

Fig. 4.11 The hyperboloid of one sheet cut by its associated 

plane 
	 140 
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Fpt, 4.12 (a) the associated plane not touching the hyperboloid  

(b) the associated plane cutting the hyperboloid  
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The condition for steady state oscillation will be satisfied 

by points along the intersection of the hyperboloid and its 

associated plant. (see Fig. 4.11). For the hyperboloid of one 

het a lossless embedding can always be found such that the 

associated plane cuts the hyperboloid. However with the hyper-

boloid of two sheets, this is not the case. Fig. 4.12a shows the 

associated plane lying between the twobverboloids, but not actually 

cutting any of the surfaces. To obtain oscillation (limit cycle), 

it is necessary to make the hyperboloid touch or cut its associated 

plane. 	Given the conductances GB, GE,  Gc  and the gyratance Yo  

of the transistor, the locus of intersection between the hyperboloid 

and its associated plane is fixed in space. Each point along this 

locus will define an embedding necessary to bring about oscilla-

tion. This is so because the co-ordinates of these points are 

specified by the three values BB, BE  and B. 	Subsequently the 

embedding elements lit, Be and B: can be calculated from the 

relationships Blo  = BB  Bb  etc, The effect of loading the 

transistor with any dissipative elements e.g. conductances is to 

move the hyperboloid along its axis and also to tilt the associated 

plane. We can also alter the system from a hyperboloid of one 

Sheet to that of two sheets by loading« Lastly, it should be pointed 

out that not every point on the locus will give stable oscillation. 

The question of stability is discussed in a later section. 
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4.5 Btheddingjor the Maximally Loaded Oscillator  

In equation (4.14a), if. P is negative, we will be dealing 

with the hyperboloid of one sheet. The hyperboloid will always 

be cut by its associated plane. But if P is positive, there will 

be a boundary case. The associated plane  will be tangential to 

the hyperboloid at only one point, This special case is that of 

the maximum load. 

Consider a load e added to the active devise so that the 

expression for P is modified. 

2 	2 P = (GbGe+ GeG0+ GC%) + Go  - Bo  + Ge+  (Glo  + Ge) (4.16) 

This has the effect of moving the hyperboloid up or down the axis of 

rotation depending on whether the sign of G:(Gla  + Ge) is positive 

or negative. The tip of the hyperboloid is given by the co- 

ordinates 

x = y = z = 

 

(4.17) 

Provided Gb  + Ge is positive, increasing the load conductance will 

move this point away from the origin. The maximum value of Gd 

for which the condition of oscillation can still be satisfied will 

be that for which the hyperboloid just touches its associated plane. 

Using three dimensional co-ordinate geometry, the point of tangency 

can be found. This point fixes the values of BB, BE  and BG  and gives 
A+ 

the expression for the maximum load conductance, Gc . The "cap" 

placed on top of the symbol is meant to indicate maximum value. The 
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design expressions are derived in Appendix 1. They are presented 

below: 

tt 	2 = (Bo  -• E Goey(Gb  + Ge) . 
.b  (a) c = -(Go/B0)Gb  Bb  

B+(e) = -(Go/B0)Ge  - Be  e c 

13+(nt) = -(G030)(d: Gc) B c 

(4.18) 

where, rG.cGe  = G.Ge 
+GeGc  +G 

c
G. 

10.  

B:(64.c) etc. indicate external susceptances, associated 

with t+  G 

If the load is placed in one of the other two ports, the expressions 

will be of the same form and can be written down accordingly using 

symmetry. 

A special note is required here. Since large signal para-

meters are used throughout the discussion, the maximum load actually 

means that calculated to sustain oscillation at the measured 

amplitude of the control voltage veb. The genuine maximum load is 

one calculated from the transistor parameters which are measured a 

signal level just above the upper bound for small signal measurements' 

Only in this case will the oscillation die down on increasing the 

load above its maximum value. In the other cases an increase in the 

load will cause readjustment of both the amplitude and frequency of 

oscillation. 
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4,6 Bounds of the Lossless EhbeddiassRecuired to Sustain  

Oscillation  

The locus of intersection between the hyperboloid and its 

associated plane will be fixed given the transistor parameters and 

the external load. By considering the points at which the locus 

of intersection touches planes parallel to xoy, yoz and zox, it 

Should be possible to find the extreme values of zo  x and y 

respectively (see Fig. 4.13). Hence the upper and lower bounds 

on the values of the lossless elements Bb, Be and Bc  can be cal-

culated. The derivation is given in Appendix 2. The derived 

expressions are given below: 

v 	GoBoGd.427W4)(4-1E00E)TGEGeGg) 
B or BCC   

ZGBGE 
(4.19a) 

Where the "cap" and the "inverted-cap" over the symbol 

indicate upper and lower bound values respectively. 

The external embedding elements can be calculated using the relation-

ships B:=Bc-Bc  etc. In association with each of the above boundary 
values are the values of the other two co-ord4nntes. Expressions 

for these are given below: 

B8(110 

BEed 

(-G0 B0CGE  )/(GE  +GC  ) 

IkV „ 
(-GoBo+BeGB)/cGc-I-GB) 

(4.19b) 

Design expressions for the other two pairs of variables are of the same 
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Fig. 4.13 Bounds on the locus of intersection  
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form and can be written down accordingly using symmetry. 

4.7 .Stability 

4.7.1 Introduction  

In chapter 3, it has already been pointed out that two stability 

criteria are required in the proposed design theory, The first 

criterion is connected with the stability of the limit cycle, Only 

when a stable limit cycle exists for the system, will there be any 

steady state oscillation. Unstable limit cycles have no physical 

interpretation. The second criterion is connected with initial 

instability, which is necessary for soft excitation. 	The transis-

tor which we aim to synthesize must have the following properties: 

(1) Criterion 1 is satisfied. 

(2) Criterion 2 is satisfied. 

(3) A strong filter action exists. 

(4) Only one controlling variable exists. 

Such a system is equivalent to a second order nonlinear differential 

equation. Oscillation will grow from the unstable centre and 

eventually asymptote into the stable limit cycle. 
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4.7.2 The design for a particular stable limit cycle  

Investigations discussed in earlier sections have revealed 

the basic nature of the higher order differential equation system, 

which we know as the transistor harmonic oscillator. Therefore the 

design of a transistor oscillator when translated into mathematical 

terms, means the construction of a higher order system with a stable 

elliptical limit cycle for the controlling variable veb. 	The 

geomiatrical model of the condition for oscillation provides a means 

of synthesizing the embedding network. However the oscillation 

condition (4.12) is only a necessary condition. By it alone 

steady state oscillation cannot be guaranteed to appear. An 

additional requirement is that the synthesized system should possess 

a stable cycle. 	This is criterion 1 mentioned in section 4.7.1. and 

in fact this has already been derived earlier in section 2.7. It 

only remains to elaborate the derivation a little. In the vicinity 

of the stable limit cycle, the phase trajectory spirals into its 

final orbit. In the time domain this means that the amplitude of 

oscillation approaches steady state. If the trajectory approaches 

its final orbit slowly as shown in Fig. 4.14, then it is valid to 

approximate the oscillation by the complex frequency Cr + jw. The 

real part CT is simply the decrement 6 derived in section 2.7. Its 

expression is 

Cr - 
r (awea),awato)—(awact)catvaa) A a 

(4.2o) 
(am/a(D)a 	(aN/aco)2  
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( a ) 

( b ) 

Fig. 4.14 Small perturbation of the stable limit cycle  
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where M =2:132E-4-2:GBy4 

N = (GeGG)BB+(GeGB)Be(GB1-GE)Bc+2G0130  

From expression (4.20) we notice that the a-posteri condition for 

the complex frequency approximation to be valid is for both the 

quantities (aMiaw) 2  and (oN/am)2  to be large. This is automatically 

satisfied in the presence of a strong filter action. Therefore 

the stability criterion derived earlier is indeed applicable to the 

transistor oscillator, which complies to the properties stated in 

section 4.7.1. This criterion for a stable limit cycle (1r 

criterion 1) is re-stated below: 

(am/aa)(alaw) (am/803)(a10a) 	o 	(4.21) 

Thus the designer is required to measure the transistor parameters 

for a small range of frequency and amplitude variation about the 

steady state operation point. 

4.7.3 The design for initial instability or soft excitation  

The geometrical model together with criterion 1 provide a means 

of synthesizing systems with stable limit cycles. The next obvious 

question is, how to find a set of embedding elements that will ensure 

initial instability. 	The geometrical model discussed above can be 

modified for this purpose by replacing all admittance functions 
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involved e.g. Y(apjw) with linear admittance functions expressed 

in terms of the complex frequency variable (00-+ jw) e.g. 

Y(Cr+ jw)=S(Cr+ jw)+jb(Cr* JO. We obtain:  

bBbE+ bEbc  + bcbB  = 2:gBge- gg - bg 
	

(4.22a) 

(gE+ gc)bB+ (gc+ gB)bE  + (gB+- gE)bc  = -2g0b0 
	(4.22b) 

The real and imaginary parts of the admittance functions g(Cr+ jw), 

b(0+ jw) can be obtained directly from y(jw) and its frequency 

characteristic about the designed frequency: 

g(cr+ jw) = g(jw) + (dg/e& CY 

b(cr+ jw) = b(jw) + (ab/aor) 

It should be pointed out that the above relationships are only 

valid forinf< w. Using the Cauchy-Rieman relationships we get 

8g/ao- = ab/aw; ablacr = —ag/aw 

Therefore 	g(CF+ jw) = g(jw) + (ab/aw)cr' 

b(a+ jw) = b(jw) (ag/aw)ef 

Thus a set of small signal measurements are sufficient to define the 

geometry represented by the equations (4.22a) and (4.22b). 	They 

represent the intersection of a hyperboloid with its associated plane. 

The locus so obtained will be called the "generative locus". 

Both a and w of the growing oscillation exp(Cr+ jw)t are 

determined uniquely by equation (4.22a) and (4.22b). The basis of 
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choosing a point on the "generative locus" to represent the set of 

desired embedding elements is given in section 4.10. Meanwhile 

the procedure for constructing the locus is given: the first step 

is to fix a as a fraction of w (27t/w 	period of oscillation). 

Let 0 = kw. Take for an example a growing oscillation which takes 

ten periods to double its amplitude. This means exp(207tk)=2 or 

k:fr0.011. It is seen that k is normally a small fraction. Next 

it is necessary to find the set of transistor parameters expressed 

in terms of complex frequency. Measurements have shown that for 

the common base configuration, only yin  and yab  varies appreciably 

with frequencies. Therefore we find, 

(1) Yllb(Cr+  jw)  = gllb(CF+  jw) Jbllb(Cr+ jw)  

	

gllb(jw) b/aw)kw 	j bilb(jw) (ag b/aWkw ll 

(2) Y21b(C7+ jw)  = g21b(7+  Jo) 
 Sbab(ci, jw) 

	

gab(jw) (abab/aw)kw 	j bab(jw) (agab/aw)ka)  

(3) yii(C+ jw) Yub(iO3), 	Yl2b(Cr+ jw)  '-44712b(Jw) 

(4) The required set of two-port parameters is 

	

Yllb (a+ jw) 	712b(jw)  

	

Y21b (Cr+ jw) 	Y22b(jW)  - 

From this set of parameters we can construct the "generative" locus 
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and thus relate the lossless embedding elements to the condition 

for soft excitation' 

4.8 Power Dissi-pation in the Transistor Oscillator  

In oscillator design we are exploiting the circuit properties 

of an active device. One of the important aspects of active network 

theory is the derivation of power formulae; so that given a device 

we know its output power available to the load. A convenient approach 

to investigate power dissipation in the oscillator is to partition 

the circuit representation of the transistor into two constituent states. 

GB 	 JBg 

Fig. 4.15 The two constituent energy states of the oscillator 
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It is well known in circuit theory that the real gyrator comprising 

GOF is a lossless element and that the imaginary gyrator comprising 

B0  is a dissipative element. Therefore in the above partitioning, 

we have separated the embedded transistor into a "conductive state" 

and a "susceptive state". We shall symbolize these by 

Sg(GB,GE)Gc4B0) and Sil(JBB,JBE,JBc,G0) respectively. During 

steady state oscillation, energy equilibrium is reached. Therefore 

the total power dissipation in both states must be zero. 

Power dissipation is an additive quantity. The total power 

dissipation in Sg  can be written as the sum of dissipation in the 

separate elements. 

P(Sg) = P(GB) + P(GE) + P(GC) + P(jB0) 	(4.23) 

Terms P(GB)*  P(GE) and P(GC) can either be positive or negative 

depending on the sign of GB*  GE  and GC  respectively. The term 

P(jB0) can either be positive or negative depending on the relative 

phases of its port voltages. In order to derive an expression for 

P(JB0) it is necessary to 

P(JB0) 	= 

In matrix notation, (4.24) 

P(jB0) 

refer to Fig. 

veil  + v:i2  

becomes 

[.v3; 	
v 

4.16. 

0 

JB0  

We have 

-Jl 

0 

ve  

ve 

(4.24) 

(4.25) 

On evaluating the quadratic form of expression (4.25) we get 
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Fig. 4.16 The port currents and  voltages of the _gyrator 
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Fig, 4,17 The two-Fort matrix of the embedded transistor  
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P(jB0) = 2B0  Im(vcv:) 
	 (4.26) 

The next step is to find ve  in terms of the controlling voltage vc. 

Once the embedding network is chosen for steady state oscillation, 

the ratios between the port voltages vb, ve  and vc will be deter-

mined. For example in the case of the common base configuration 

shown in Fig. 4.17 we have 

iin = (Y0 YS)vc (-Y0 - Yldve = 

lout = (Y0 - YB)vc 
+ ( YS + YE)ve = 0 

Therefore 

ve/V0  . (Y0+ Yd/(Ye YB) = (Yo- rB)/(YBi. YE) 	(4.27a) 

Similarly the other ratios are: 

vc/vb = (Y13+ YE)/(Y0+ YE)  = 	YE)/(Ye YO) 
	

(4.27b) 

vb/ve = Cre Yd/(Ye YO) 	-(Yo- 7.0)/(Ye YB) 
	

(4.27c) 

Using relationship (4.27b) in expression (4.26) we obtain 

(4.28) 
The expressions for P(GB), P(GE) and P(GO) are 

P(GO) = GC Ivor 	 (4.29a) 



P (GB  ) 

 

a-  I Ye+  YB 2 
7E Ye Y 

    

     

     

    

    

     

     

     

pa examiniag expresePA2 (4.28) and (4.29) the following properties 

are noticed: 

(1)  

P(jB0) can either be dissipative (positive value) or generative 

(negative value) depending on the relative phases of the port 

voltages. These are fixed by the embedding network. 

(2)  

P(GB), P(GE) and P(G0) can either be dissipative or generative 

depending on whether the corresponding values of GB, GE and Gc  are 

positive or negative. 

Given any set of embedding elements, the available power can be 

calculated by evalwiting the expressions of (4.28) and (4.29). 

Normally one would expect P(jB0) and possibly one of the expressions 

of (4.29) say P(GC) to be negative. The generative power of the 

system is then given by 

Pgea  = P(jB0) 	P(Gc) 	(4.30) 

The power dissipated will be 

Pas  = P(Gb) 	P(Ge) 	(4.31) 

157 
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Attention is drawn to the lower case letters used for subscripts of the 

'G's to indicate the absence of external embedding. Consider the 

case when the external load is Gee then equation (4.31) becomes 

Pdis = P(Gb) 	
P(Ge) + PKG+e) 	(4.32) 

For energy equilibrium we must have 

Pgen = p dis 

The efficiency of d.c. to a.c. power conversion is 

Tic = Pgen(Pd.c. 

where P, 	= e(d.c.)Ve(d.c.)4. c(d.c.)V(d.c.) 

The efficiency of operation is 

(4.33) 

 

P(e)/P e gen (4.34) 

 

   

In terms of economics it is desirable to have high efficiencies. 

However other considerations like actual power available to the load 

and frequency sensitivity of the system must also be taken into 

account. These different demands on the system might require 

different embedd4Tig networks to fulfil. A unified treatment of 

these demands is not attempted in this thesis. 
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4.9 Power Dissipation of a Maximally Loaded Oscillator  

Consider the case of a maximally loaded oscillator. 	From 

Section 4.5 we have the following data: 

Quantities characterizing the transistor, 

Gb, Ge, .Gcs  Go  

Bb' 
Be, Be, B0 

Quantities making up the embedding network, 

t: = (Bg -EGI;)Ge)/(Go  Gb) 

= - mGb  -Bb  

B:(e:) = m(Ge+G:)-Be 	where 	 A m=G(.7_ -0 

B+(e) = mG -B c e 	c c and 	c eft ect 

The synthesized system will have arm conductances iven by, 

GB  = Gb, 	BB  -mGb  

GE  = Ge  4-C1eP 	BE  = -m(Ge+G:) 

GC  = G0, 	B = -mGc 

It is noticed that 

(1) BIB/Gb = BEN = Bo/Bo  = -m 
2 (2) 274GBGE  - Bo  = 0 B  BE 	0 - G2  = 0 

The two constituent states of the oscillator ash given in Fig. 4.18. 
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Fi1j.4.18_ The constituent states of the maximally loaded  

transistor  

On substituting the arm admittances into relationship (4.27) we get, 

velve  = (GC+ Gb)/(JE0+ Gb) = -(BBD Gb)/(Gb+ GE) (4.35a) 

'*10/Vb = (Gb+ GE)/(jBO+ GE)  = -(jB0- GE)/(Ge Ge)  (4.35b) 

v/Ve = (GE+ Gc)/(j130+ Go) = -(3B0-GC)/(G0+ Gb) (4.35c) 

Substituting the relevant voltage ratios into expressions (4.28) and 

(4.29) we obtain 

P(3B0) = 1-24/(Gb+ GE)] I vor = 	2zGbGi(Gb+ GE)] 
1  v

oi (4.36) 

(Gw+G )2  
P(Gb) = Gb  vel2 	- Gb  Iv012 (GeGe)  

GE + BO 	
Gb+GE  

(4.37a) 
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P(GE)= GE  Iv012  
(Go+Gb)2  	 = 	12 
G_2 + B

o 
2 	2 	 I c  

(Go+Gb) 

(Gb+GE) 

(%-1-GE)  
(GeGE) 

P(Gc) = Ge l ve12 	 G vor  

(4.37b) 

(4.37c) 

It should be pointed out that in deriving the relationships given 

by (4.37), the identities below were used 

Bg 	zGbGE  and GE 417,GbGE  = (010+ %Rae Go) 

The total power dissipation in the arm conductances is: 

P(Gb) 	P(GE) 	P(Go) = 	2TpbGEAGb+ GE)] 1 volt 	(4.38) 

From expression (4.37b) we find the power dissipated in the maximum 

load to be 

(Go+ Gb) 

P(G+e) 	e v  12 	 e c (Gb+Ge+G,o) 
(4.39) 

The maximany loaded oscillator is a particular configuration. As 

a result of its unique position in the "geometry" of the oscillation 

coadition, design expressions derived for this special case appear 

in simple forms. 
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4.10 Frequency and Amplitude Sensitivity with Respect to Small  

Parameter Variations  

Oscillators are often used in electronic equipment as frequency 

references. As such they are called "clocks" or "master oscillators". 

In such operations, constancy of frequency is demanded. Temperature 

and mechanical agitation are two environmental factors which can 

induce frequency changes. The study of frequency sensitivity with 

respect to a general environmental variation is beyond the scope 

of this thesis. Instead, attention is focussed on how the amplitude 

and frequency vary when there is an incremental change in a pre-

selected circuit element. Such a study should reveal the circuit 

parameters which are important in controlling the frequency of 

oscillation, and thus pave the way for a broader study later. 

At present the following problem is considered: 

Given data  

A transistor is embedded to oscillate. 

Amplitude of the control variable: ve  = a0  ; (note: veb = vc). 

Frequency of steady state oscillation: w = co 0 

Transistor parameters: 

Ybb 	Ybe 	Ybe 

Yeb Yeb Yec 

Yob Yee Y cc 
+ + 

Embedding elements: 
plc)„ 

 jB
e 	c 

and load G. 

Problem 

What is the change in frequency or amplitude of ve„ if say pe 
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has undergone an incremental change of j4B+e? j/N B: is assumed 

to be due to 4Ce 

Approach to problem  

In terms of the geometrical model*  the set of embedding 

elements together with the transistor parameters, are represented 

by a point Pi  on the locus of steady state oscillation as shown 

in Fig. 4.19(a). On altering jB: to j(B: Be), the operation of 

the oscillator can assume one of the following new states: 

Cl) 
	

No oscillation 

(2) Squegging or self oscillation 

(3) A new steady state, (a0+ a) exp(j(wo+ A 03)0 

Which of these new states the oscillator assumes, will depend on the 

stability of the operation point P1. In a well designed oscillator 

PI represents a well stabilized limit cycle. Points in the vicinity 

of P1 will lie on other loci of oscillation. Each of these other 

loci is the result of the intersection of a new hyperboloid with its 

new associated plane. The actual positions of these loci depends 

on the incremental changes ISta and Am. As iSk Be is small, 6  a 

and Aco are expected to be smn11. Therefore the new operation point 

P2 resulting from the addition of 4pi4., is expected to be in the 

vicinity of P1. 

The criterion of stability for a limit cycle is 

K = (814/8a)(8N/am) - (aN/aw)(aM/aa) > 0 

where expressions for M and N are given in Section 4.7.2. Since 
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(a) Pi  and P2  are close to each other and (b) the incremental change 

e does not change the frequency characteristic of the embedding 

network significantly, we expect K1  and K2  calculated for P1  and P2  

to differ only slightly. We have 

K
2 = Ki + 8K 

Since P1  is well stab41tved, K1  is a significant positive quantity 

and also since 8K is small, we expect 

K2 > 0 

This means that for a well designed oscillator, a small variation 

in the circuit environment will cause the system to oscillate at a 

new steady state (aedNa) exp(j(weAco)t). We can disregard the 

other two possibilities of "no oscillation" and "squegging". 

Fig, 4.19 Properties of the embedding space around a well 

stabilized limit circle represents by P1 
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Solution to the problem 

Associated with the limit cycle P1  we have 

11(a0  Job) 	*Ka°, jw0) = o 	(4.40) 

and associated with the limit  cycle P2  

M t(E10+ A a) i(ob+ co) (Be+ A Be  )] 	{( ao+ A a), j (coth4JCBe+LIBei 

(4.41) 

Limiting the Taylor expansion of M and N in expression (4.41) to the 

first order terms and then using relationship (4.40), we get 

(aMiaa)Atia taMfaco)40) (atopE)/1E: = 0 	
(4.42) 

(aN/aa)Aa (.aNia(4)06w,  (ON/aBE) „B: = 0 

On evaluating (all/43%), (aN/aBE) and substituting their expressions 

into relationship (4.42) we obtain 

(aM/aa)21a (aM/aw)4lw = -(Be BB)) 04 

(aN/aa) a + (aWaw)403 = -(Gc+ GB)ABE 
	(4.43) 

	

Solving these simultaneous equations for kta and 	w we get 

--1-(3c-EBB)(awaw)-(Go+GB)(awaw) J 41 Be 

a 
	

(aM/aa)(aNhaw)-04/600(eN/aa) 

w 
	L-(BeBB)(aN/aa)-(Gb+GB)(aM/aa)] 	Be 

(040a)(aN/80-(aM/aw)(aNAta) 

It should be pointed out that the quantities above are calculated at wo 

(4.44a) 

(4.44b) 
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and ao, Therefore knowing the amplitude and frequency Character-

istics of the transistor parameters about the original steady state 

values (a0, w0/  ) the amplitude and frequency sensitivity of the 

oscillator can be predicted, These are normally defined as 

Eva0)A4B+E/B: 	,4w,/coo  )/( AB+E/B+e) 

respectively. 

Evaluation of the expressions (4,44a) and (4,40)  

These expressions are derived on the basis of local linear-

ization, The partial differential terms are carried out at a=a0  

and ww°. A direct approach will be to differentiate the con-

stituent terms of M and N individually and in places where the 

terms involve transistor parameters, we use the slope of the tangent 

to the characteristic curves, obtained by measurements, This 

approach is very time consuming. A more reasonable approach is 

as follows: 

At the steady state, (ao,jwo) we have M+111=0, M and N are the 

real and imaginary parts of the circuit determinant 

+ + 
Yilb+ Ye 	Y12b Yb 

Y21b- Yb 	Y22b Ye Yb 

As an approximation let us assume that the characteristic curves of 

the transistor parameters are linear for increments up to 5 .5 from 

the point of reference (a00(00). This is illustrated in Fig. 4.20, 
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tg 

wo 80 

Fig. 4.20 Local linearization at the steady state (aesjob) 

We can now measure the transistor parameters at a=a0+ j a and 

w=w0  +A.w. The embedding network is recalculated for the new fre-

quency (keeping amplitude constant) or for the new amplitude (keeping 

frequency constant) e.g. 

3B:=3(wb+Aw)0: ; jBe=jB4  Il(w0+4,w),,a01 keeping "ao" constant 

3B:=J(w0)ec  jB=pe  UtkeLia),,woj keeping "w0" constant 

Anew circuit determinant can be constructed for the state 

(a0+  aP we)  
+ 

YIlib c + Y
+ r+ Y b 1  

+I  - 21b Y  b 

yt 	7+1  12b b 

+ 
Y122b e + Y

+ 1
+ Y b I  

JI = 

The real and imaginary parts of this new circuit determinant will not 
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be zero value in general. They are:— 

mf = 

NI = A N 

Since these increments are due to the increments in "a", we have the 

relationships 

aM/da = 4,Maka la
loP,013 	

M f/0.005a0  

dIVaa = AN/Aalaceb  = N1/0.00,a0  

The values of all/aw and aN/aa can be evaluated in a similar way. As 

expressions (4.44a) and (4.44b) are of an approximate nature (relying 

on the validity of local linearization), the proposed method of 

approximation is compatible to the degree of accuracy required. 

Substituting these values of the partial differential terms into 

expressions (4.44a) and (1.44b), we will be able to find numerical 

values for the amplitude and frequency sensitivity of the oscillator. 

4,11 A High IT Oscillator  

Consider the case when one of the external arm admittance is 

given by the series connection shown in Fig.' 4.21a, where "r" is very 

small compared to (061, or 1410C. 



(41) 

0----ininp-mm-41 	0 
WO  w irE 	= WO/ 
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G 

B 

G 

( b) 

(s) 

Fig. 4.21 A series--resonant arm and its frequency 

characteristics 

We have Y = G.1-jB where 

r2+ Ta-(z'w012  

1/WC - 

r2+ [WL-(1/wC212  

The frequency characteristics of G and B are given in Figs. 4.221) 

and 4.22c respectively. At the resonant frequency we get G=1/r 

and B = 0. Differentiating B with respect to w and assuming 

r 	WIJI  we find 

Bmax  = 1/2r 	Bmia  = -1/2r 

wl = w0[(1-1/281 w2 = 414-(1/241)] 
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In the vicinity of u=wo, G can be rewritten as 

G 	

r [ 1 + (q Ea)2  
(4.45a) 

where q = 2Q/coo  

We can now move the origin of the co-ordinate system to w=wo  and 

let the frequency variable be 8w=w-w0  i.e. considering only small 

	

variations of frequency about w=wb. 	On differentiating G with 

respect to 8m, we obtain 

6G 	aG 	1 	gesw - (4.45b) St57 	dw 	r 	[1+(q ,5(0)2.12  

Similarly we find 

1 (4.46a) [ Q8) 
r 14,(00)2  

an = 1 [1-(0w.)2  (4.46b) aw 	r 	tit(00)12 

From expressions (4.45b) and (4.46b), we find 

µ = (Wacc),(Wow) -2(00
, (4.47) 

1 - COW 

Let the resonance arm be inserted in the port opposite the emitter 

terminal as shown in Fig. 4.22. 

For a high "Q" oscillator e.g. crystal oscillator, the frequency of 

oscillation w=o0e8w is known to deviate only slightly from the resonant 

frequency wo* 8u40  is of the same order of magnitude as Q. Consider 



Transistor osc3,11ator having a high "Q" reponant  

aym admittance 

the simplest example, when the frequency of operation is in fact 

the resonant frequency too. We find 

aM/aw = (BB+ BE)(aB:/ow) = -1,(q/i)(BE  BE) 	(4.48) 

Waw = (GE+ GE)(aB:/aw) = +(q/r)(GE+ GE) 	(4.49) 

Using these relationships in expressions (4.44a) and (4.44b) we find 

Qom..  
413+  

l-S► w  
AB+  

(Bc+ BE)(GEP-GE)-(Ge G)(V BE) 

(aM/aa)(GE+ GE) - (alsliaa)(BE+ BE) 

(Gct GE)(514/8a)-(Be BE)(610a) 

(GB+ GE)(ati/aa)-(BE+ BE)(aN/aa) 

In practice it is not possible to have things perfect and the fre- 

quency of oscillation will be slightly different from cub. 	This 

171 
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deviation from the resonant frequency is often known as frequency 

pulling. In this more general case we find 

Waw = (BB+ BE) + µ (GE+ GE) (aB:/aco) 	(4.50a) 

WOW = (GB+ GE) 	(EiBe* BE) (6:/aW) 
	

(4.50b) 

where (aB:/aw) is given by expression (4.46b). It is seen that in 

these new relationships the frequency deviation 8w plays a part. It 

should also be remembered that it is an experimental fact that 

8w/w0  is the same order of magnitude as Q for high Q oscillators. 

Further operations directed to the evaluation of the sensitivity 

expressions are best done numerically. 

4.12 Crystal Oscillator Design  

The high "Q" external admittance can be realized by a quartz 

crystal. The design of crystal oscillator is considered to an art 

by established workers3°45t6  in the field. A survey of the 
available literature indicates that there is yet no single well 

defined procedure for crystal oscillator design. The design theory 

proposed in this thesis provides a straight forward method, which is 

an improvement over the earlier treatments of crystal oscillator 

design. 

The typical equivalent circuit of a quartz crystal is given in 

Fig. 4.23. 
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77s2 

a 2 MHZ 	G. r 260000. 

Fig. 4.23 Equivalent circuit of a typical quartz crystal. 

. Discussions in Section 4.11 has 

Shown that frequency sensitivity is lowest when the resonance arm 

is operated at its resonant frequency, coo. At the resonant fre- 

quency the admittance of the crystal is given by Yr
+ 	n
es = 	Jajres 

where 

G
+ 
re s 

res 
= 00 

(4.51) 

(4.52) 

• 
The dissipative conductance Gr

+  
es  must be mss than the maximum load 

calculated for the port to which the crystal is inserted. 

• 
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At this stage the question of selecting the amplitude of 

operation for the controlling voltage v0 arises. To be'able to 

answer this questions  it is necessary to know the nature of the 

nonIinearity goverrire the operation of the system. It has already 

been shown in chapter two that an analytical treatment of the noni-

linearity can only be carried out for very idealized eases. In face 

of the elusive nature of the nonlinearitiess  the above question cannot 

yet be answered categorically. However we are helped in our choice 

by the following considerations: 

(1)- 	The amplitude f v.0  should be large enough to 

tolerate small swings of amplitude without being 

forced into the linear region. Let the critical 

amplitude be lv crits then we must ensure 

I vc 1 4. 61 vci < I vol crit• For practical reasons the 

allowable swing is 10 per cent. 

(2) 	The amplitude should not be larger than sufficient. 

This is to avoid other unexpected nonlinear effects. 

1/ 

'Waco 

Fig. 4.24 Auxiliary susceptance added to crystal arm 
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Using these two considerations as a guide, the amplitude chosen is 

Ivel = 1.2 Iv eritl 	where vcrit  is the critical voltage at which 

nonlinear action begins. Another consideration is the rate of change 

of parameters with respect to variations in ive( 4, This has to be 

considered individually for individual devices... 

Given the amplitude Ivo' and the frequency wo, the transistor 

can now be measured and the indefinite admittance matrix for the 

device constructed. Knowing the load GTes together with any other, 

load say Ge and the transistor parameters, we can construct the locus 

of steady state oscillation. The insertion of the crystal susceptance 

B
res = w G fixes one co-ordinate of the operation point in the geometry. 0 0 

The other two co-ordinates can be calculated. We thus have a straight 

forward procedure of synthesizing the crystal oscillator. 

An improvement can be made by the addition of either an 

auxiliary capacitance or an auxiliary inductance to the resonant 

circuits  as shown in Fig. 4.24; 

• Since 1/r << w C00  the new arm admittance is given by 
44 	44 	44 
es = Gres 	r + jB,es  where r  

el  = 1/i res 	 (4.53) 

B
+t 	2+ 
res = I/ Baux 	 (4.54)  

t 
B
+
aux  is either w0 a C

+
ux or -1/wLaux. The modified susceptance 

of the resonant arm gives the designer an additional degree of freedom 

by making the value of B 
 
es controllable. Since the Iv value of. r 

B+ 	is much smaller than that for the series resonant arm of the crystals  aux 

where 
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Fig. 4.25 The possible positions for inserting the crystal  
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the values of abi/aw and Waw will not be modifiad by the additional 

susceptance. The same procedure described earlier can then be used 

to find the necessary embedding network for steady state oscilla-

tion. The question now arises as where to insert the crystal: 

This depends on three considerations:- 

(1) Crystal is inserted at the port where power dissipation 

in the crystal is lowest. 

(2) Crystal is inserted at the port whereby the resulting 

limit cycle for the system so produced will be most 

stable. 

(3) Crystal is inserted at the port where as a result the 

embedding elements required are most easily re 	 _limed. 

It is therefore necessary to calculate the performances of all three 

possible cases and then on the basis of the above considerations 

choose the most suitable port for insertion. 

4.13 The "Y" and "Z" Oscillator  

In the earlier sections, the embedding network of the transistor 

was always transformed into a network comprising three admittances, 
+ + 

Y
bi 

1
e 

and Y
. 

Transistors amenable to such an analysis shah be 

called a ffr" oscillator. The dual to this configuration is the "Z" 

oscillator. In the "Z" oscillator case it is more convenient to 
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1111•61.11•1 
SWIM. 

(b) 

Fig. 4.26 Construction of the "Z" mode oscillator  
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transform the embedding network into a star' network comprising three 

impedances, Zb, Ze+  and Ze. Instead of the indefinite admittance 

matrix, the indefinite impednrce matrix of the transistor is used, 

The design expressions derived for the "Z" oscillator will be 

of the same form as those derived for the "Int oscillator, with the 

admittances being replaced by the corresponding impedances of the 

network. The conmtruction of the "Z" oscillator model is shown 

in Fig. 4.26. The condition for oscillation is:- 

zBzE ZEZO  + ZoZt  + Zo2  = 0 
	

(4.55) 

All the discussions presented earlier in connection with the "Y" 

oscillator will hold for the "Z" oscillator if we make the necessary 

translation of circuit parameters. 

4.14 Soft Excitation and the Suppression of Unwanted Natural  

Preeuenciap  

In Section 3.4 it was indicated that in the linear region of 

operation, the oscillator can be looked upon as a higher order 

linear differential equation. In order to solve for the character-

istic roots (or natural frequencies of such a system, it is necessary 

to construct the circuit determinant for the network, As an example 

consider the CR oscillator shown in Fig. 4.27. 



No, 

-sC 	0 	732(s) 

C4+2s0 	-0 	0 

-sC 	g+2s0 	-sC 

0 	-so Y.22(8)+G.I.sc v4 

v1 

v2 

v
3 
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Fig. 4.27a Schematic diagram of a CR oscillator  

In the initial linear region of operation (see Section 3.4) the 

circuit matrix for the above network is:- 

(4.56) 

The subscripts of the current variables indicate the relevant nodes of 

the network, and the subscripts of the voltage variables refer to the 

voltage between the relevant node and the common node 5. In order to 

solve equation (4.56) for its natural frequencies, it is necessary to 

know the polynomial functions yil, y12, y21  and y22  explicitly in terms 
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of the complex frequency variable "s". This in turn requires 

knowledge of the transistor equivalent circuit. A simple transis-

tor equivalent circuit is shown in Fig. 4.27b. The circuit matrix 

for this equivalent circuit is:- 

it  ge -ge 0 v1 

i6 -ge+ age  ge+gb-age+sCe  -sCe  v6  (4.57) 

i4 "mge -sCc+age sCc 

The circuit matrix for the embedded transistor circuit as shown in 

Fig. 4.27c is:- 

• 

it g +se e 	c -sC 0 	0 	-ge v1 

i2 -80c G+2sC -BC 	0 	0 v2 

i3 0 -Sc G+-2s0 	-80 	0 

i4 -1-ge 0 -sCc 	c  8C +G+sC -sC0+age v
4 

16 -ge+age 0 0 	-se 	-sC e v6  
••••• 	e" s.4  •••• 

(4.58) 

Cu setting the determinant of the circuit matrix to zero, we obtain a 

polynomial equation in "s". The roots of this polynomial will define 

the initial stability of the system. 

It is important for the oscillator to have only one pair of 

characteristic roots which will eventually grow into a stable limit  

cycle. In a well designed oscillator, all other roots decay away 



Fig. 4.27,b. Transistor equivalent circuit  

Fig. 4.27.c. Network representation of a CR oscillator in 

the linear region of operation 
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after a short time of their excitation. As an example assume the 

characteristic polynomial to be of 5th. order. The desired zero 

pattern of the determinant in the complex frequency plane is as shown 

in Fig. 4.28. 

Fig. 4.28 A desired "complex frequency portrait" of the  

oscillator 

As indicated in Section 2.8 there exist established methods for 

investigating the stability of linear systems. Mcamples of these 

are: (1) the algebraic methods offirou01 and Hurwitz (2) The graphical 

methods of Nyquist and Mikhailov. However it is not easy to apply 

these methods to the design of transistor oscillators. An intuitive 

approach to stability investigation is presented in this section. 

Consider the simple transistor oscillator shown in Fig. 4.29a. 
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Fig. 4.29 Driving mint admittance of the embedded trannistor 

as "seen" by the element Cb  

Lot us extract the capacitor 	from the rest of the network. 	The 

condition of oscillation is:- 

(Ybb + jwC+)(YE  +YC) +YEYC O+ Y ' 0 
	

(4.59) 

Relationship (4.58) can be rewritten as 

Jwc,o+ 
••••• 
•••••• 

YY+yy+yy+y2  
bE EC CB 0  

YE + YC 
(4.60) 

The quantity on the right hand side of equation (4.60) is in fact the 

driving point admittance Yee  of the network as "seen' by the capacitor 
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Cb 

Yec = Gea.1- jBec  
YY+YY+YY+ Y2  bE EC CB0  

YE YC 

(4.61) 

The instantaneous power dissipation in the capacitor is:- 

P(C11;) = (JWC)(11,02/2)(1.-Cos(2(d) ) 	(4.62) 

The instantaneous power dissipation in the rest of the network is:- 

P(Gec+ j8ee) = -(icodid( I vb 2/2)(1-cos(axt) ) 
	

(4.63) 

From expressions (4.62), (4.63) and relationship (4.60) we find that 

the total instantaneous power of the oscillator is zero value, 

PT(jw) = 0. In the case of the network oscillating with complex 

frequency s= cr+jco, we get 

sCb = 
	Gec(8)+pec(s) 
	

(4.64) 

The instantaneous power dissipated in the capacitor Cb and the rest 

of the network are respectively:- 

p(sdid = (4)(ivie/2)exp(2at)(1-00s(2wt) ) 
	

(4.65) 

p000(s)-1-jBec(s)) = [(Geo(s)+Pec(s))(tvb1 2/2)exp(2(70] x 

(l-cos(2wt)) 
	

(4.66) 

The total instantaneous power of the network is again zero value. In 

the case of exponentially growing oscillation, the "generative" 

elements in the transistor will have to generate excess power so that 

energy in the storage elements (capacitances or inductances) can be 
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maintained at a constant exponential growth rate. It is found that 

energy consideration does not lead to a convenient criterion for soft 

excitation. 

Consider now a passive CR embedding network, whose character-

istic equation is a 4th order polynomial in "s". The circuit 

determinant A can be written in terms of its characteristic roots. 

A+  =1-(-0.0+No)] [ 	 I 
(4.67) 

The "zeros" pattern of this network is shown in Fig. 4.30. 	The 

A 
modulus 141

+ 
 will vary with frequency in a manner shown in Yig. 4.31. 

It is seen that the network exhibitra frequency selective effect. 

Its characteristic frequency is ob. In principle this passive network 

can always be transformed into a A or a star network at a given 

frequency. In order to shift the "zeros" to the right half plane 

and thus produce oscillation, a transistor is embedded into the 

passive network. On examiving equation (4.58), it is seen that 

the transistor introduces an additional fifth root into the modified 

Characteristic equation. One of this characteristic roots always 

lieson - the negative a axis. This is because of the following 

reason. The original d.c. bias point of the transistor is stable 

i.e. power generated by the active elements is not sufficient to 

produce a "build up" of stored d.c. energy in the capacitance of the 

transistor equivalent circuit. If more dissipative and storage 

elements are connected to the transistor, it will require even more 
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Fig. 4.30 The "zeros pattern of a CR embedding_ network 

Fig. LL.31 The frequency characteristic of ILI 
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energy from the active device to sustain a "build up" of d.c. stored 

energy. Therefore the single root must always be on the negative 

It is only necessary to focus attention on the pairs of 

complex roots. In order to avoid the possibility of moving more 

than one pair of complex roots into the right half plane, it is 

desirable to have a pair of complex roots very near the jw axis and the 

other roots to be both far away from the point jab and from the jw 

axis itself. This means that a notch filter effect is a desirable 

characteristic of the CR embedding network. Since the activity 

of the transistor increases with decreasing frequencies, it is most 

important to have roots with frequencies lower than w0, to be far 

off the jw axis. This will lessen the chance of producing unwanted 

natural frequencies with positive real parts. Also since the 

transistor parameters are known to be monotonic functions of fre-

quency, the embedded transistor will preserve the same notch effect 

of the CR embedding. This means that the roots (-(Totjwo) undergoes 

insignificant modification of its real frequency and any movement 

of its position will be along a line parallel to the line jwjwcr 

As the pair of roots (-(3otjw) are near to the jw axis, they will 

be easily moved into the right half plane by the addition of 

generative elements. The hypothetical movement of the "zeros" are 

Shown in Fig. 4.32. 

Let 1471,jn be the evaluated value of the circuit determinant for 

the embedded transistor. (note: lower case letters are used for "m" 

and "n" to indicate linear operation). 



(d) 

389 

ta) 

(C) 

Fig. 4.12 	The "zeros" pattern of the C} network 

embedded with a transistor. The progressive movement 

of a pair of roots into the right half plane is shown. 
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The condition for the existence of a pair of characteristic roots at 

frequency wo  can be written as 

2_2.1 
aw 

am n aw 

where 	a- 44 

From these expressions we obtain 

= 	m/(antaw) 

0., 	= 	0 

= 	o 

wo 

= n/(am/aw) 

(4.68a) 

(4.68b) 

(4.69) 

Given any embedding network and knowing the real frequency of the 

Characteristic root of interest, expression (4.69) can be used to 

predict initial instability. A more accurate approach will be the 

calculation of -m/(an/aw) and n/(am/aw) for a small range of fre-

quencies around opwo. On plotting these quantities against frequency, 

we should obtain two intersecting curves as shown in 4g. 4.33.. The 

frequency wi  at which the two curves intersect will, be slightly 

different from coon, the characteristic frequency of the passive em-

bedding network. Thus the problem of CR oscillator design, is 

simply one of filter synthesis. The designer is required to realize 

a passive network with the required "zero" pattern and then embed a 

transistor of sufficient activity into the passive network. 	A 

general synthesis method is beyond the scope of this thesis. It 

Should be stated that the aim of this section is to clarify 
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amplitude  

Fig. 433 The locating of a pair of characteristic roots  

slightlx.off the ACO axis in the right half plane  

the mechanism underlying the soft excitation of a selected frequency. 

The strong filter action as a means of suppressing unwanted natural 

frequencies, follows from the discussion in this section. 

4.5 Conclusion  

In this chapter the condition for oscillation was examined. A 

geometrical model was constructed for the oscillation condition, Design 

expressions were derived for the maximally loaded oscillator. For the 

more general case the embedding network was found to be not unique. There 
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will be a choice of possible embedding networks. The choice is 

narrowed down by the requirements for good performance. 	These 

requirements are:— 

(1) The criterion for' stability of the steady 

oscillation to be satisfied (see Section 4.7a). 
(2) The criterion for soft ,zwrAtation to be 

satisfied (see Section 4.13). 

(3) The presence of a strong filter action to be 

ensured. 

The expressions for frequency and amplitude sensitivity of a given 

oscillator were derived. The mechanism of frequency control 

in a crystal oscillator was discussed. The expressions for power 

dissipation of an oscillator were derived. 
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Chapter 5 

Experimental Verification of the Proposed Design Theory 

5.1 Measurements on the Transistor  

In the proposed theory, the transistor is characterized by two 

sets of parameters. For the "Y" configuration, these are the small  

signal "y" parameters and the large signal "Y" parameters. We shall 

denote the initial state (focus point) by S(ws) and the steady state 

by S(aolAwb). In order to predict the instability of S(ws) and the 

stability of S(a0,w0), it is necessary to know the changes in transis-

tor parameters with respect to small variations of frequency and 

amplitude about S(ws) and S(a0*0).  Since we are dealing with small 

variations, the method of local linearization which was discussed in 

Section 4.10 can be used. Therefore the measured quantities 

characterizing the transistor are: 

(1) For S(ws) 

[Yij(ws)1 

(2) For S(a0,p0) 

[7ij(a0* 

yij(tos -1- 	co).] 

kj(a0„wdf..- 46(0)] Y (a0 	* -I. Aa 0/1 ij  

The square brahkets above indicate the transistor indefinite admittance 

matrix. yij  or Yii  indicates the element in the ith. row and jth. 

column. 
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5.2 The Transformer Ratio-Arm Bridge  

The small signal two-port parameters of the transistor can be 

measured on a standard transformer ratio-arm bridge. By monitoring 

the applied signal, the large signal parameters can also be measured. 

The essential features of a transformer ratio-arm bridge are shown 

in Fig. 5.1. The two halves of the secondary side of the input 

transformer are closed coupled, with equal voltages across them which 

are independent of loads. Balance is achieved by adjusting the 

current through Ys  (which usually consists of a parallel combination 

of variable resistance and capacitance) such that it cancels out the 

current through the unknown entering the detecting transformer at "D". 

When cancellation is complete, null voltage appears across the detecting 

transformer.. The bridge used for the measurements in this thesis 

is the WAYNE KERR B601. For more detailed descriptions of this 

bridge, two monographs can be consulted, these are: 

(1) "The transformer ratio-arm bridge", by R. Calvert, WAYNE KERR 

MONOGRAPH No. 1. 

(2) "Semiconductor parameter measurements using transformer ratio- 

arm bridge", by B. Rogal, WAYNE KERR REPRINT, 

In Section 2.3, it was shown that the d.c. bias point of the 

transistor readjust itself to large signal operation. This means that 

the biasing resistors of the transistor has to be taken into considera-

tion. The simplest solution to this problem is to measure the parameters 

of the transistor together with its biasing resistors.- These same biasing 

resistors are then used in the oscil3ator circuit. In this way any 
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change in the measured "Y" parameters due to readjustment of the d.c. 

bias point will be automatically taken care of and we shall have an 

accurate set of design parameters for large signal operation. The 

level of the controlling voltage vc  is monitored on a valVe voltmeter. 

There will be a critical value of 1 vc i above which nonlinear action 

becomes appreciable. 	This value is called 1 vcicrit for later 

reference. For values of I vc such that Ivel 	vcicrit, the 

transistor parameters are essentially linear. These are the small 

signal "y" parameters. For vc ) >ivci Icrit/ the transistor para- 

meters are nonlinear. These are the large signal "Y" parameters. 

In order to construct the indefinite admittance matrix of the 

transistor, it is necessary to measure at least four of the matrix 

elements. The ones measured are shown in the "skeleton" matrix 

below: 

b e 	c 
1••••01, 

 

 

X23 
 

Y32 Y
33 

 

  

From these four parameters the rest of the parameters are calculated 

using the property of "indefiniteness" of the matrix i.e. all rows and 

all columns add up to zero value. The schematic diagrams of the 

arrangements for measuring these four parameters are shown in Fig. 5.2. 

A word of caution should be made in connection with large signal 

"Y" parameter measurements. It was explained in Chapter 2, that the 
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describing function method can be used in oscillator design, provided 

the excitation voltage is nearly sinusoidal. As the level of the 

applied voltage vo  is increased, the emitter current becomes 

increasingly nonbinusoidal: This current flows through the input 

transformer of the bridge, producing the excitation voltage, 	The 

bridge is basically designed for small signal parameter measurements*  

thus the impedance function of the input transformer is not designed 

for the suppression of unwanted higher harmonics. Because of this 

difficulty, the operation level of 1 va  1 is chosen to be around 

1.2 Ivelcrie For values of lvd much higher than this, special 

arrangements would have to be made for the measurements. The design 

of a special bridge, having an input transformer with a frequency 

selective impedance function will be very welcome. This will aid 

further investigations of harmonic oscillators operating at very high 

emitter current levels. Such investigations are beyond the scope 

of this thesis. Finally the voltage ve  can be monitored on an 

oscilloscope to ensure nearly sinusoidal waveform during measurements. 

5.3 	The Scale of the Geometrical Model for Steady State Oscillation  

In Chapter 4, the construction of a geometrical model for the 

oscillation condition was presented. Such a model provides a means of 

studying the limit cycle of the nonlinear process in terms of circuit 

parameters. 	By evaluating the values of the characteristic quantities 
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governing the form of the "geometry", we can see more clearly what 

sort of scale is involved. For this purpose a Germanium pup 

transistor (OO 44) is chosen. It should be pointed out that no two 

transistorScan have exadtly the same set of parameters. Therefore 

the examples presented in this chapter are valid only for the 

individual transistor, whose parameters are used. A study of the 

spread in performance for different transistors using the same 

embedding network has not been undertaken in this thesis. 

From a set of four measured "Y" parameters, the indefinite 

admittance matrix of the transistor can be constructed. The gyrator 

representation of the transistor can be constructed from the elements 

of the indefinite admittance matrix in turn. A set of typical values 

for the elements of the gyrator representation is shown in Fig. 5.3 

and Fig. 5.4. These are calculated from "Y" parameters of an OC 44 

transistor operated at Vcb  = 5v, Io  = 5 mA, ao  = !Vol = 100 mV (r.m.s.) 

and w
o = 4%10

6 rad/s. 

The circuit representation is shown in Fig. 5.5. from these 

values the characteristic quantities of the "geometry" can be 

calculated. They are: 

G + G2 - B2 e 	0 	0 = - 228.69 

p = 	- 2 G0B0 	= 136.20 

	

a = pAG
e 

Go) 	= 17.73 	(5.1) 

P = 	p/(Ge  + Gb) 	= 7.96 

	

p/(Gb  Ge) 	= 243.21 

(all values are in mt.; or related units). 
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The "geometry" is shown in Fig. 546a. Since P is a negative quantity, 

the hyperboloid involved in the "geometry" is the hyperboloid of one 

sheet. The three intercepts of the associated plane are widely 

different in their Values.. In order to avoid the uncertainty of any 

dissipation that might be present in high frequency chokes these are 

not used in the experimental circuits. Instead the transistor is 

biased through two biasing resistors (each of 3.3 ka ). The values 

of the biasing resistors can be lumped onto the appropriate arm of the 

gyrator representation. The modified design parameters of the biased 

transistor are given in Fig. 5.5b. The modified characteristic 

quantities are: 

P 	- 223.30 

136.20 

	

16.45 	(5.2) 

P 	7.82 

158.37 

It is noticed that the inclination of the associated plane is changed 

by the introduction of the biasing resistors. The "geometry" is shown 

in Rig. 5.6b. 
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The condition for steady state oscillation is: 

 

BBBE  + BEBo  + BOB  

 

(5.3) 
Gc)BB  (GC Gb)BE  (G107 Gc)Bc  = p 	(5.4) 

For the biased transistor shown in Fig. 5.5b, we have 

BBBE  + BEBC  + BeBE  = 223,30 	(5.5) 

(Ge+ Ge)BB  + (Ge+ Gb)BE  + (Gb+ Ge)Bc  = 136,20 
	(5.6) 

The intersection of the plane (5.6) with the hyperboloid (5.5) produces 

the locus of steady state oscillation. 	The locus of intersection 

can take the form of a closed curve, "quasi ellipse" or an open ended 

curve, "quasi hyperbola". The qualifying adjective "quasi" is used 

because the locus is not a perfect ellipse or a perfect hyperbola. The 

modification is due to the surface being not a cone but a hyperboloid. 

Which of these two forms, the locus takes will be dependent on the 

inclination of the associated plane. The case of a "quasi hyperbolic" 

locus is shown in Fig, 5.7 and that of a "quasi elliptical" locus is 
shown in Fig. 5.8, We shall now define the asymptote angle of the 

hyperboloid. Consider the "associated" right angle cone of the hyper-

boloid surface as shown in Fig. 5.9. The circulsY* cross section 

A E D F is made by a plane of equal inclination cutting the cone, E 0 F 

is a right angle triangle with OE = OF. OE = OF = OD. OC is the 

median of triangle EOF, Produce OC to the point B. Raise a 

perpendicular at point B to intersect the cone at point A. Angle AOB 
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will be defined as the asymptote angle 8H of the hyperboloid surface, 

associated with the condition of oscillation. e,a  is found to be: 

tan-1(2Vri 5) = tan-1  0.56 	(5.7) 

Similarly the angles of inclination OB, OE  and Oc  of the associated 

plane can be defined. The associated plane is shown in Fig. 5.10. 

It intersects the three axes at points a, p and y. OM is the median 

of the triangle Oyp. The angle of inclination to the B axis is 

called Oc. The other two angles of inclination OB  and OE  are 

similarly defined. 

We find 

(5:: 

0B 	tan 1  2cdp2  + ya 	(5.8a) 

0E = tan-1  23//y2 	(5.8b) 

• = tan-1  2y//m2  + p2  

In order to produce a "quasi elliptical" locus of steady state 

oscillation, all these three angles must be larger than la. Failing 

this we will have the case of a "quasi hyperbolic" locus of steady state 

oscillation. The angles of inclination eB* 0E and 0 for the set of 

values given in (5.2) are:- 

- 1 613 tan 0.21 
- tan.1  0.10 

Oc 	= tan 11.7.39 

(5.9) 

Comparing these angles with 0/10  we find that the criterion for the 

existence of a "quasi elliptical" locus is not satisfied. It is 

noticed that the associated plane can be tilted by the addition of a 
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conductive load to any of the "arms" of the gyrator representation. 

Consider the addition of Ge = 12 	to the "arm" Ye of the gyrator 

representation shown in Pig. 5:5b. 
parameters: 

Y
b = 5.00 - j15.09 

YE  = 7.86 j15.33 

Yc = 12.42 - j12.86 

Y0 = 4.46 - j15.27  

We obtain a new set of design 

(5.10) 

The angles of inclination OBo  OE  and Oc  for this modified set of 

values are: 

B = tan
-1 1.02 

0E = tan
-1 

1.25 

8 	= 	tan -1  2.05 

(5.11) 

The criterion for a close locus is satisfied for this modified system. 

The extreme values of the co-ordinates contained in the locus are given 

by expressions of the form (see Section 4.6), 

B - C  
G0B0G0 	(i.GbGE+ G:) (BB -2A9t)(2AGE  

iclbGE 

 

(5.12) 

  

On evaluating the expressions for BB' BE and B we obtain 

13'13 = 4.79 BB  = 8.21 
11E  = - 4.33 BE  = 9.71 

B = 12.41 B = 3.92 

(all quantities are in m U units) 
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Knowing the bounds on the locus and the pair of simultaneous equations 

(5.5) and  (5.6) we can calculate the points constituting the whole 

locus. This is dope by setting a value for one of the co-ordinates 

and then soltig the pair of simultaneous equations for the other two. 

On doing this for the set of design paraneters (5.10), we obtain the 

locus shown in Fig. 5.11. It is noticed that the whole locus lies 

(1) to right hand side of the ordinate Bb  = 15.07 m1:1 

(or BB 	Bb) 

(2) to the left hand side of the ordinate Be = 15.33 mt./ 

(or BE  4 Be) 
A 

(3) to the right hand side of the ordinate Bc = -12.86 m11.7 

(or BC 	Be). 
+ 

Therefore any set of external embedding (B130  Be, Be), 
 

which satisfies 

the condition for steady state oscillation, must always comprise one 

negative susceptance and two positive susceptances. In this case, 

B
b 
and B

b have to be capacitive and Be inductive. This means that 

for the "conductive state" given by the real parts of the admittances 

in data (5.10), the oscillator circuit assumes the Colpitts con-

figuration. However, this need not always be the case. For other 

"conductive states" we may well have the following geometrical feature: 
V 

(1) BB 	Bb 

(B
b being negative) 

/N 
(2) BE 4  Be 

(Be being positive) 

(3) BC > Bc  > BC 
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In this case we find: (a) Those points of the locus, which lie between 

BC  and Bc, will have B
+ 
capacitive; Be inductive and Be capacitive. 

These points will correspond to embeddings belonging to the basic 

Co4itts configuration. (b) Those points of the locus which lie 

between 330  and Be, will have Bb  capacitive; Be  inductive and Be  

inductive*  These points will correspond to embeddings belonging 

to the basic Hartley configuration. For the case of the "quasi 

hyperbolic" locus, there will be less restriction on the values of 

the co-ordinates corresponding to points on the locus. Therefore 

the types of configurations possible are also increased. However, 

not all points on the locus (either "quasi hyperbolic" or "quasi 

elliptical") will represent systems with stable oscillation. The 

criteria of stability (see Section 4.7.2 and Section 4.14) can be used 

to investigate individual cases of embeddings. 

5.5 A Test Oscillator  

5.5.1 Synthesis of an oscillator circuit which corresponds to a  

selected point on the locus of steady state oscillation  

Given the "conductance state" of the biased and conductively 

loaded transistor, the embedding network required to produce steady 

state oscillation will correspond to any point on the locus of 

oscillation (see Fig. 11.), which satisfy the stability criteria 
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(see Section 4.7,2 and Section 4.14), In this section we shpil  

consider a simple delta embedding network. Each of the arms of the 

delta network comprises of a single circuit element; either a capacitor 

or an inductor. 

In the discussions on the filter action of the embedding network, it 

was stated that aftrong filter action enhances stability of the steady 

state oscillation and that it is also a prerequisite for the Describing 

Function Method, It has been stated that a necessary condition for 
I 41 

the existence of a strong filter action, is to havei2S1 (the circuit 

determinant of the embedding network) to be a minimum and very close 

to zero value at the frequency of oscillation. Any point on the locus 

of Fig, 5.11 will be determined by the co-ordinates (BB, BE, BC). 

Knowing the "susceptance state" of the transistor i.e. the values of 

Bb, Be, Be  and B0, we can calculate the embedding elements corresponding 

to the point (BB, BE, B0) on the locus of oscillation. We find: 

Bb = BB  Bb  

Be 	BE - De 	 (5.13) 

Bc = BC Bc 

The determinant of the lossless embedding is: 

Li+ = 	+ + + + + 
bbBe + BeBC + BcBb. 

In Fig, 5.120  A+  is plotted against the co-ordinates 

(5.14) 

of points lying 

on the locus of Fig. 5.11. It is seen that Itt reaches a minimum modaus 

near the point Pi where BB  = 0m 7J , BE  = 8.97 m1:7 y B0  = -1.59 



The set of embedding elements is found to be B
b = 15.07 m717, 

Be =-6.36mL7,111.27 m 	4 The corresponding circuit 

elements are: 

c+ = 1199 g 

13 0 

c
+ 	

897 PF 
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(5.15) 

The synthesized oscillator circuit corresponding to the set of 

embedcliTT values (5.15) is shown in Fig. 5.13. The calculated and 

the measured performances are given in Table 5.1a. 

TABLE  

Quantities 	Designed Performance 	Measured Performance 

	

vc 	100.00mV (r.m.s.) 	95.00 mV (r.m,s.) 

	

v0 	97,00mV (r.m.s.) 	100.00 mV (rem's.) 

	

fo 	2.00 MHz 	1.92 MHz 

	

42 % 	unable to measure 

	

rt? 	
0.7 0/0 	directly 

(The expressions for Ive l , rt. and r c are given in Section 4.8). 

Three important features of this circuit are noticed. They are: 

(1) 71 c  (i.e. the d.c. to a.c. conversion efficiency) is very small. 

(2) rio  (i.e. the efficiency of channelling the a.c. energy generated 
in the system to the load), is only 42% 	The rest of the 
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energy is dissipated in the transistor itself. 

(3) 	On Setting e = 00  we find the resonant frequency of the 

icissiess embedding tip be fa = 4/2% = 1.96 MHz.; In this 

case f
+
0  is very close to the actual frequency of oscillation 

(designed to be fo  = 2.0 MHz). 

In order to complete the table of performances  it is necessary 

to have some indications of the frequency and amplitude sensitivity 

of the steady state oscillation with respect to small variations in 

circuit parameters. To fascilitate experimental investigation we 

shall consider the effect of the small changes Ae = 50 pFs  

AC = 50 pF and AG+  = 0.1 mt.).  respectively. The corresponding 
A 4. 	A 4- 

susceptances will be given by 2203b  = wokL C:s 	. woaCc. The 
expressions for the incremental changes in amplitude and frequency 

are given in Section 4.10. In the case where the change in performance 

is due to a small change in arm conductances  we find expressions of the 

form, 

Aa 

Au) 

[(BeBB)(aM/aw)-(GeGB)(aN/aw)j ZS. G: 

(aMila)(aNiaw)-(awa co aNAra ) 
_E (Bc+BD )(am/Ne a)-(Go+GB)(all/aa)] AG: 

(aWaa)(aN/aw)-(aMjawf(aWaa) 

 

(5.16) 

(5.17) 

 

 

As recommended in. Section 4.10, we shall evaluate the quantities 

a(A a, Ad:) = ( a/a ),/( G+/G+) ) Scc°4(A w, 4iee) = (tW/(0),/(G:/G:) etc. 

from three sets of design parameters. These are: 

(1) 	design parameters for the steady state S(a0, wo); Where a0=100 mV, 

wo = 4%10
6  rad./s. 
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(2) design parameters for the adjascent state S(ao+Aai  w0); 

where 	a = - 5mV, , 

(3) design parameters for the adjascent state S(aoi w0+44w); 

where AO) = -0.05 wo = L 0.63 x 10
6  radii's. For the set of embedding 

elements given in data (15.15) and the loaded transistor characterized 

by data (5.10), we obtain the following design data: (all admittances 

are in ratj units). 

Design parameters for S(ao, wb) 

YB = 5.00 j 0.00 

YE  = 7.86 j 8.97 

Yc = 12.42 j 1.59 

Yo = 4.46 — j15.27 

Design parameters for S(a0  +A% wo) 

(5.18) 

YB  = 4.90 j 0.13 

YE  = 7.91 j 9.40 

YO = 12.34 - j 1.73 

Y = 4.38 - j15.40 

(5.19) 

Design parameters for S(ao:  wo  +60w) 

  

YB  = 5,50 - j 0,97 

: 	1 E = :::57 

Y0  = 4.92 —.j15.51 

The circuit determinant .21, for the set of values (5.18) is 

(5.20) 
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= M + Ssi = O. The circuit determinant for the set of values (5.19) 

i84  = MR  gee  = - 3.88 + j 2.37. Therefore, 

aM/aa = (-3.88)/(-5.00) = 0.78 [mtIj2  [mV171 	(5.21a) 

aN/aa = 2.37/0.5,00) = -0.47 113012  10.1-1 	(5.21h) 

The circuit determinant for the set of values (5-20) is 	= MI + jNt = 

- 39.52 - j 32.39. Therefore, 

aM/aw = (-39.52)1(0.63 x 106) = 65.87 x 1076  impf rraddeq -1  (5.22a) 

aN/aw = (-32,301(0.63 x 106) = 53,98 x 1076  19tir frad.A.]-1  (5.22b) 

From data (5.21) and (5.22) we obtain, 

(aMiaa)(8N/aw).4aM/aw)(aN/aa) = 67.47 x 1076  (mV 3[radds..171  

(5.23) 

Expression (5.23) is a positive quantity, therefore the limit cycle 

corresponding to the steady state S(a0,w,0) is stable (see Section 4.7.2)* 

From data (5.18), (5.21), (5.23) and the relevant expressions (5.16), 

(5.17) etc., we obtain the calculated values given in Table 5,1b, The 

measured values are obtained by monitoring lye} on. a valve voltmeter 

and measuring the frequency on a Hewlett Packard Electronic Counter 

(model 524c) connected to the output of the Marconi Valve Voltmeter 

(TF 2600). Knowing the small  additional circuit element, which 

induce the change in performance we can obtain the measured sensitivity 
a w ratios SG, SG etc. On comparing these measured ratios to the 

calculated ones, we find that they agree reasonably well. There are 

two factors, which make close agreement difficult. 	These are: 
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(1) In the computation we have to deal with differences of pairs of 
nearly equal quantities. 

(2) The method of local linearization used, is an approximate method. 

TABLE 5.1b  

Quantities Calculated Measured 

S;1 04a,44:6) 2.09 2.75 

Saa(4 a, LG:) -1.86 -3.00 

SBa(A a, 	) 0.61 1.78 

4)(A w, 	) —0.33 —0.44 

q3)(4 co, 	) 

sB̀°(4 (0, AB: ) 
—0.10 
—0.19 

-0.:: 
—0.24  

As the accuracy of the method is not very good, the calculated 

sensitivity measures should be treated as an order of magnitude 

measure rather than an absolute measure. The values in the above 

table should be rounded up to the nearest significant figure. 

5.5.2 Soft excitation in the test oscillator, 

The test oscillator considered in this section is designed to 

sustain steady state oscillation at a specific frequency fo. If the 

initial state is unstable, then the frequency of initial oscillation 

fis is expected to be close to f0. Therefore we can apply the method 
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discussed in Section 4.14, to investigate if soft excitation occurs. 

The small signal "y" parameters of the transistor were measured 

over a small interval of frequencies centred round fo. The set of 

embedding elements is given in data (5.15). From these quantities, the 

set of design parameters e.g. yB(w) = yb(w) w Cb  etc. were calculated 

for frequencies within the interval of measurements. From the set 

of design parameters yB(w), yE(w), yo(w) and y0(a), the corresponding 

circuit determinant 4k(w) = yByeyeeyoyeyg = m jn was evaluated. 

The frequency plots of 	m and n are shown in Fig. 5.14. From 

these curves, the values for -m/(811/8w) and ni(Om/aw) were evaluated. 

Their frequency plots are shown in Fig. 5.15. From Fig. 5.15 it is 

found that the natural frequency of the test oscillator responsible 

for soft excitation is (Ti  + jui, where 0" 	0.1 x 106 neperds. 

andcodan= 1.98 MHz. These values indicate that soft excitation 

occurs and that the frequency of initial oscillation is close to the 

design frequency of fo  = 2.0 MHz. 

In order for the circuit to sustain steady state oscillation, 

it must have a stable limit cycle. It is therefore more important 

to test for stability of the steady state oscillation. When there is 

any doubt on the occurrence of soft excitation or if the knowledge 

of 0  is required, then the method discussed above can be used 

to investigate the initial state, otherwise the designed embedding 

network can be constructed and the circuit tested experimentally. 
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.6 The Performance of Two Synthesized Oscillator Configurations  

Two other points P2 and P3  on the locus of Fig. 5.11 have been 

investigated. Both these points correspond to realizable oscillator 

circuits generating stable osdillations, The designed values and.  

measured values are listed below: 

Point P2: 	BB = 2.00 m-0 E  = -2.78 4, BC  = 11e18  mtY 

Designed values: 	C+ = 1,35711 •39 illi, be
+ 

 

Experimental values: 0b = l350pF„ Le
+  
= 4.40 pH, 

Designed performance: ve  = 100 mV, 

Measured performance: va  = 93 mir, 

Point 	BB  =-2.00 mC3 BE  = 1.01 mt.7 BC  = 12.35 iVsr 
••••••••••...••••••dge 

Designed 'values: Cb = 1039pF, Le = 5.55 	Co  = 2005pF 

Experimental values: C: = 1040pF, L: = 5.20 pH, 0: = 2050pF 

Designed performance: ve  = 100 mV, ve  = 103 er, 1'0  = 2.00 MHz 

Measured performance: ve  = 93 mV, ve  = 105 mV„ fe  = 1.94 MHz 

The experimental values listed are measured on the Wayne Kerr B601 

bridge. It is seen that the agreement between designed values and measured 

values is reasonably good, 

C = 1919pY 

= 191OpF 

e = 134 mit, fo  = 2.00 EHZ 

e = 125 mV, fe  = 1.93 MHz 
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Experimental Verification of the Maximum Loads  

The expressions for the maximum load and its associated lossless 

embedding elements are given in expressions (4.18). For the calculations 

of these expressions the small signal transistor parameters are used. 

For the calculations carried out in this section, the "y" parameters 

measured at J vc i = 80 mV, f = 2.00 MHz were used. The elements 

of the gyrator representation corresponding to these "y" parameters 

are shown in Fig. 5.4(a), (b), (c) and (d). 

The schematic diagram for the experimental verification of the 

maximum load is shown in Fig. 5.16. The transistor was embedded with 

the lossless circuit elements associated with the maximum load. 	A 

load resistance Bb  + rb was inserted into the port opposite the base 

terminal. The trimming resistor rb was varied until oscillation just 

ceased. The value of rb  at which this happened is recorded as rib. 

The frequency of the last detectable oscillation was recorded. 
+ 

Rb  + rb  was measured on the Wayne Kerr Bridge. Similar measurements 

+, 
were made on the maximum load conductances Ge = l/(B: + re) and 

Gc = 1/(R + r.0). 

The results of these experiments are: 

(1) Maximum load Gila.  

Designed Quantities: 

l/d: = 71.07 , C: = 1332 pF, 	Le = 6.1 ta, 	Cc = 1339 g 

Embedding used in test circuit: 

Cb = 1300 pF, 	Le = 6.3 pH, Cc = 1340 pF 

See I 6:1i • below 90 inV we j.eb 	41:7144/ "sr" paranig0r valued. 
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Measured values: 

781-1 1 
	f = 1.92 MHz. 

(2) Maximum load Gc 

Designed Quantities: 

1/d: = 3442n. b Cl+)  = 1332 pp, Le = 4.74 pH, d: = 7621 pF 

Embedding used: 

= 1300 pF, Le = 4.9 1.0, Cc = 7600 pF 

Measured values: 

3.3 
	

4.7 	f = 1.93 MHz 

(3) Maximum load GC 

Designed Quantities: 

1/G+  = 55.271/ 
	

c = 1944 g, Le = 4.74 " Cc  = 1338 pF 

Embedding used: 

Cb = 1940 pF, Le = 4.9 pH, Cc = 1525 

Measured values: 

vG;,* = 35 a. 	f = 2.03 MHz. 

This set of experimental results shows that the measured values 

agree very reasonably with those calculated from the design expressions. 
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5.8 The Design of a High "Q" Oscillator 

In this section we shall consider the design of a three terminal 

oscillator, using a series resonant circuit as an embedding admittance. 

The resonant arm consists of a silver mica capacitor of 50 pF and a 

Marconi calibrated inductor of 100 pH. The measured frequency 

characteristics of its conductance and susceptance are shown. in Fig 5.17. 

On examir'ing Fig. 5.17, it is noticed that the frequency characteristic 

of the resonant arm can be separated into four distinct regions. 

These are: 

(1) Region A: G is positive; B is positivef (Waco) 

is positive; (4/434) is positive. 

(2) Region B: G is positive; B is positive; (aG/aco) 

is positive; (aB/aw) is negative. 

(3) Region C: G is positive; B is negative; (Waw) 

is negative; (0/8w) is negative. 

(4) Region D: G is positive; B is negative; (awaw) 

is negative; (ali/Ow) is positive. 

Since the stability of the steady state oscillation involves the fre-

quency characteristic of the circuit parameters, stable oscillation can 

only occur in a region where the stability criterion given by condition 

(4.21) is satisfied. This is the reason for the observed frequency 

pulling effect in oscillator circuits using resonant circuits. With 

such circuits the frequency of oscillation is always found to be slightly 

different from the actual resonant frequency. 

Stability investigation of each of the four regions would mean 
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prescribing an arbitrary embedding network to operate in each of the 

regiontand then evaluating the inequality of (4.21). This is very 

time consuming. An alternative way is to make preliminary experiments 

to ascertain which region of operation is best for a given transistor. 

For the OC 44 transistor, it was found that using the resonant arm 

as Ye made it easy to obtain stable oscillation: 	From previous 

investigations, oscillation at 1 ve  = 100 mV, f0  = 2.00 MHz and 

with large C: requires Be to be negative. ThUs we require the resonant 

arm to operate in region B or D. 

An unwelcome feature of the series resonant circuit is that the 

dissipation increases as we approach the resonant frequency. This is 

clearly indicated by the sharp rise of G in Fig. 5.17. (It should be 

pointed out that the dotted lines in Fig. 5.17 are extrapolations. 

To obtain, satisfactory measurements very close to the resonant fre-

quency, a frequency synthesizer giving small frequency increments is 

required). The gain of a single transistor is normally not sufficient 

to cover the large d: .ipation in region C. Thus we are left to 

operate the oscillator in region D. 

Design  

Data 

Transistor OC 44, Vcb = 5V, le = 5 mA. 

Design parameters given in Fig. 5.5b. 
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Ob'ect 

To design an oscillator employing 00 44 and the resonant arm. Require 

low sensitivity. 

Method 

In previous discussions, it has been pointed out that for a low 

frequency - sensitive oscillator, we require a frequency controlling 

element having a large frequency gradient. This means that we are 

required to operate as far up the G curve in Fig. 5.17 as possible. 

Therefore the maximum load configuration 1.:3 most suitable. 	The 

operation point on the G curve will be determined by the "maxirmule 

load calculated for the given design parameters. Using expressions 

(4.18), the values for the maximum load and its associated lossless 

embedding susceptances are: 

G
e 
+ 	+ 

13.96 mt7 

Bio(Ge) = 16.32 mCr (1297 pF) 

/3
e 	e
(G) = -12.48 mU 
+
(
e) c 	e 16.46 mCY (1308 pF) 

G = 14 mt:r on the G curve corresponds to a frequency of 2.06 MHz, 

and the associated resonant arm susceptance is -36 mtj . If the 

resonant arm is to act as Y
e of the maximum load configuration, an 

auxilliary susceptance R:ux  = 23.52 m 	must be added in parallel to 

the resonant arm. The constructed oscillator circuit is shown in 

Fig. 5.18. 

The "maximum" load here is calculated from large signal "Y" parameters. 
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It is instructive to see what difference a frequency controlling  

element (one with large frequency gradient) makes to the evaluation 

of the sensitivity expressions. From Fig. 5.16 we find (aG/aw) = 

-484 x 10-6  (in U.  { rad./sI-1  and (aB/aw) = 484 x 10-6  14q1}{raci./s.}-1  . 

With Cb  = 1297 pF and Cc  = 1308 pF, we find (8114/aw) = 

1.3 x 10-6  Crat5j[rad./s] -1  and (4513:/aw) = 1.3 x 10-6  fmlijirad./!] -1. 

Thus for small changes of frequency (within 1-4 of f0), all circuit 

parameters remain substantially constant except for G and B. There-

fore in the expressions for (aM/aw) and (aN/aw) it is only necessary 

to consider the terms containing aB/aw)and aG/bco. 	We obtain 

814/aw = (Go  + GB)(a0/8w)-(Bo+BB)(aBAaw) 

= -10778 x 10-6  {m1 {rad./s} -1  

ON/aw) = (G0  + GB)(aB/aw) + (Bc+BB)(aG/aw) 

6084 x -6  {mtj12  [rad./S:1"1  

The design parameters for the two adjacent states 

S(ao, w0) and S(a0  +Aa, w0) are: 

= 5.00 + j 1.25 yB 
Y = 9.78 + j 2.85 

Yc =12.42 + j 3.60 

Yo = 4.46 - j15.27 



sa 
B( A a, AB.:) 

saB( ha,ABA) 

8( Aw, 4,1341;) 
s (L1w, AB+c) 

- 0.86 
- 0.63 

-4 3.3 x 10 	4.7 x 10-4 

2.5 x 10-4  2.3 x 10 

- 1.97 
- 1.31 

Quantities 	Calculated 	Measured 
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S(a0+ 4a, coo) 

YB  = 4.90 + j 1.12 

E = 9.90 + j 2:92 

Yc = 12.34+j 3.46  j  

YO = 4438  - J15.40 

(all admittances are is rntr units)a 

From these design parameters, aM/aa and aN/aa can be obtained. They are: 

am/aa = 0.79 [iltr.i2  ral -1 	 (5.25a) 

SN/da = 1.69 {rat)] 2  imv] -1 	
(5.25b) 

From data (5.24) and (5.25) we find 

(aM/aa)(aMiato) (6M/aw)(aN/aa) = 23021.18 x 10-6  tnalljrrad./sg-i  
(5.26) 

The sensitivity measures SB and S: for this circuit can be calculated 

in a manner similar to that in Section 5.5a. The comparison between 

the calculated and measured values are given in Table 5.2. 

TABLE 5.2 
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The calculated and measured values in Table 5.2 agree in order of 

magnitude. The difficulty of obtainirg close agreement is due to the 

same reasons as those pointed out in connection with Table 5.1b: 

It is noticed that the frequency sensitivity has improved by a factor 

of 10-3 over that in Table 5.1b. 

The introduction of a frequency controlling element into the 

circuit, simplifies the frequency sensitivity expressions. Consider 

for example S. We have 

(BeBc)(ON/aa)-(GeGo)(aM/aa) 
(am/aa)(aNiaw) (am/aw)(aN/aa) 

B-14; ( 5 . 27 ) 

   

aM/aw = a(,GBGE- ZBBBE+Go2  - 13)/45o) (5.28) 

aVaw =f3E(GE+Gc)13B+(Gc+GB)SE+(GB+GE)B0+2G0Boj/aw  (5.29) 

assuming that the frequency controlling element is G: + 3B:. In 

Section 4.11, it has been pointed out that near, the resonant frequency, 

aG:/aw and aBe/bw can be expressed as linear functions of the quality 

factor Q of the resonant arm. let eGepw = kiQ and 0:/aw = k2Q where 

11:14.1 Q and k2  4 Q. Since all other circuit parameters remain 

constant for small frequency changes, we get 

aM/aw = (Gd+GB)(a(1:/aw)-(Bc+BB)(0:/aw) 	(5.30) 

aNAw = (GeGB)(aB:/aw)+(seBB)(aG:/aw) 	 (5.31) 
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11..om expressions (5.27), (5.30) and (5.31) we obtain 

St1 (4°4 ABb+)  
i*  (H.1.13

0  )(aN/aa) 	
- 	Oaea.)(aM4a) 

	

CI 	E( % )k2+ (13o+BB 	E *Vaal todtGBAci-(BeBB)k)raisvaaj 

(5432) 

From expression (5:32) it is noticed that the frequency sensitivity of the 

-high "Q" oscillator is governed in the first instance by the quality 

factor of its frequency controlling element. However its actual value 

will depend on the oscillator configuration and the nonlinearity present 

in the system. 

	

5.9 	Conclusion for Chapter 5 

In this Chapter, the geometrical model of the oscillation 

mechanism is verified experimentally. Starting with the design para-

meters (these are constructed from the indefinite admittance matrix of 

the transistor) of three adjacent states S(a0,w0), S(a0+4.a,w0) and 

S(ao, wo  + 4 w), it is possible to investigate the steady state 

oscillation of the system. Oscillators corresponding to points on 

the locus of steady state oscillation have been constructed and their 

performance found to agree with calculations. The effect of loading the 

oscillator is to shrink the locus of steady state oscillations  thereby 

narrowing the number of possible configurations realizable for any given 
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state S(aos  w0). Calculations have been made on the sensitivity 

awaw measures Sas  Sas  SG, SB  etc, These agree in order of magnitude with 

measured values. If the oscillator is deliberately designed to 

be selective for a particular frequency fos  the stability of the 

initial state can be investigated in a manner similar to that carried 

out in Section 5.5a. The mechanism of frequency stability has been 

investigated with a high "Q" oscillator. The greatest obstacle to 

achieving high frequency stability (i.e. low frequency sensitivity) is 

due to dissipation in the frequency controlling element. The 

generali,,ed "maximum" load configuration (calculated using large 

signal "Y" parameters) is suggested as the best configuration for 

achieving high frequency stability in conjjanction with a frequency 

controlling element, Reasonable agreement between calculations and 

measurements has been found. 
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Chapter 6 

CONCLUSIONS 

6,L General Conclusions  

In this thesis the transistor harmonic oscillator is analyzed so 

that a better understanding of the mechanism behind the steady state 

oscillation may be gained. In the course of this work, it has been 

found that a purely linear theory based on the deliberate design of 

potential instability is inadequate. On the other hand classical non-

linear theory requires a knowledge of the nonlinear element present 

in the system. Two factors combine to make a design theory for 

transistor harmonic oscillitor elusive: the nonlinear action of the 

oscillator and the nonrational dependence of the transistor parameters 

upon frequency. In order to find a guide line to a new approach, the 

idealized transistor oscillator based on the Ebers Moll model has been 

examined. The controlling variable responsible for the nonlinear 

action in the transistor oscillator is identified as the port voltage 

vela' The describing function method is used to characterize the tran-

sistor for subsequent design. It is found that Aizermanls filter 

hypothesis justifies the describing function method and that the 

existence of a strong filter action in the oscillator can be designed 

deliberately. Measurements and experiments have shown that the 

describing function method can be used even at higher frequencies. 

The transistor can be characterized by large signal "Y" parameters. These 
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are measured directly on a transformer ratio-arm bridge. 

In order to relate circuit parameters to the nonlinear action, 

a geometrical model of the steady state oscillation is constructed 

using the large signal "Y" parameters. Points on the locus of steady 

state oscillation in this model, can be interpreted as algebraic limit

cycles. Each of these points correspond to a single nonlinear dynamic 

system whose stability has to be investigated individually. Therefore 

the construction of the geometrical model is in fact a method of finding 

steady state solutions of dynamic systems comprising the transistor and 

possible embedding networks. The adjacent states in the neighbourhood 

of a well stabilized steady state are also stable, this means that 

a small change in circuit environment will induce the oscillator to 

operate in one of its adjacent states. Sensitivity expressions have 

been derived. These agree reasonably with experimental measurements. 

The mechanism of stabilizing the frequency of oscillation with a single 

frequency controlling element has been investigated. It is found that 

the obstacle to achieving high frequency stability in a Clapp oscillator, 

is the large dissipation in the resonant arm at frequencies close to 

resonance. The actual operation of such a high "Q" oscillator depends 

on the activity of the transistor. A transistor with a large gain 

will be able to tolerate large losses and thus operate at a more 

advantageous point on the frequency characteristic of the resonant arm. 

In connection with providing active power the generalized "maximum" 

load configuration turns out to be useful, 

The work carried out for this thesis, has led to a better 
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understanding of the transistor oscillator. A new design theory 

based on synthesizing points on the locus of steady state oscillation 

is proposed. 

6.2 Future Research  

(1) Design for large output power 

The experiments carried out in this thesis involve circuits 

generating very low output power.. To increase the output power of 

the circuit, its "conductance state" has to be optimized. 	For 

example, it might be more efficient to operate the oscillator on a 

"hyperbolic" locus of steady state oscillation rather than on an rr 

"elliptical" locus. However it is the author's opinion that not 

much can be gained by such optimisation. If this is the case, then 

the designer will have to contend with designing a well stabili%ed 

circuit and amplifying the generated signal subsequently. 

(2) Design for a variable frequency oscillator with a large  

frequency band  

This is the reverse of designing for good frequency stability. 

The requirements here are (1) high frequency sensitivity together with 

(2) a large cluster of stable states in the geometrical model. 	The 

investigation will involve examining different points on the locus of 

steady state oscillation and comparing their stability and their 
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frequency sensitivity. 

(3) Design of CR oscillators 

It is expected that the dissipation in a CR embedding network 

will be large. Investigation should be made into the design of 

oscillators involving more than one transistor. The object should be 

to have one transistor contributing to the nonlinear action and the 

others providing additional generative power. 

(4) Sensitivity of performance to transistor parameter variations  

The spread in performance in using different transistor with the 

same embedding network should be examined. This might lead to finding 

the best transistor characteristics of the transistor for oscillntor 

construction, 



xy 	Yz + zx rs P 

Equation of the associated plane is: 

ax + by + cz = p 
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Appendix 1 

Design. Expressions for the Maximum Load 

The maximum load configuration corresponds to the point at which 

the associated plane touches the hyperboloidi 

Equation of the hyperboloid is: 

(see relationships 4.150  for expressions of P, p, a, b and c). 

Consider a straight line passing through the point P(a, (3, y) and 

intersecting the hyperboloid at points 0 and Q. Let the directional 

cosines of the straight line be 1, m and n. Let the distance between 

P and 0 be r. Then the co-ordinrtes of 0 will be given by 

0( Om + 	(p + mr), 	+ nxh. This point lies on the hyperboloid 

(A.1), therefore we obtain, 

(a, + ir )(P. + mr)+ CP mr)(Y nr)+(Y 332') (a. + 1r) = P 	(A.3) 

Rewriting this we get, 

a3 + Py + 	+ r(lf3 + m + my + nr3 + n(z + ly) 

+ r2(lm + mn + n1) = P 
	CA.4) 

If m(3 (3y + ym = P, then the point P010  p, 	lies on the hyperboloid. 

This is because one of the roots of r will be zero. If in addition 



229 

we have 

m(m + n) p(n + 1) + y(1 + m) = 0 	(AO) 

then the other root must also be zero/ i.e. 1'(a, pi y), 0 and Q must 

all be the same point or P(m, p, y) must be the point of tangency. 

The equation of the tangent plane at P(mo Oo y)  can be obtained by 

eliminating the quantities 1, in, n in equation (A.5). This can be 

done by using the relationship for the directional cosines: 

(x - a)/i = (y 13)/m = (z eir)/n 	(A.6) 

Equation of the tangent plane is 

x(m + p) y(p + y) + z(y. + a) = 2(ap 	yo.) 	(A.7) 

If the condition for oscillation is to be satisfied, equation (A.7) 

must also represent the associated prone given by equation (A.2). If 

the two planes are to be identical, they must be parallel and their 

perpendicrlAr distances from the origin must be the same. Equating 

the squared perpendicular distances, we obtain 

(GO + 13y + Ya,)2  

(3 	p)24.(p 	,r)24. (y aj2 
G2  n2  0 + '0 

(GE+ Gc)+(Ge GB)2+(Ge GE)2  

(A.8) 

On equating the directional cosines of the planes represented by 

equation (A.7) and (A.2) we get 

(I 13)/ki = (GE GG)/k2 
(P 4-015.  = (Gc  GB)/K2  

a)/ki  = (GB Gd/k2 

(A.9) 



where, 

Ki 	,1(0,  p)24.  (p y)2 	(y c)2] 

K2 	
[(GE+ G0)2  + (Go+ GB)2  + (GB+ GE)2  

In order to satisfy equations (A.8) and (A.9) we must have 

-(G0 30)GB  

-(G0/130)GE  

_(GCS' B0)Go 

Substituting values (A.10) into (A.8) and rearranging, we get 

23 0 

GOE  + GEGo  + GGGB  = Bo 	 (A.23.) 

Assuming that equation (A.11) is achieved by a single additional 

external load Gb, then equation (11.11) becomes 

214Gbebec 	0 G + G..kG + G ) = B2  
, 	 (A.12) 

where 

gGbGe  GbGe  GeGe  + GeGb  

This gives 

= (BD 2,GbGe)/(Ge  Ge) 

Similarly we find 

Ge = (Bg EGbGe)/(Gc  Gb) 
	(A.13) 

G+2  = 	GbGe)/(Gb  + Ge) 

Expressions (A.13) and (A.10) are the expressions for the maximum loads 

and their "associated" susceptances. 
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Appendix 2 

The Bounds on the Lossless Embedding Elements  

The locus of steady state oscillation will be fixed by the 

frequency of operation and the external load& If the locus is a closed 

one, then there must be bounds on co-ordinates of points on the locus. 

By considering the points at which the locus touches the three reference 

planes xoy, yoz and zox„ we can calculate the upper and lower bounds 

placed on the values of the elements of the lossless embedding 

(see Fig. 4.13). 

Consider the equation for the hyperboloid (A.1) and the associated 

plane (A.2). On eliminating y from these equations we get 

-ax2  + x:ip-z(c + a - b)] pz - cz2  pb = 0 	(A.14) 

At the upper and lower bound of z, there will be correspondingly only 

one value of x. Using this constraint and the property of a quadratic 

we obtain 

-z2(ZGBGB)-z(2GeBeGc)+G4-(21GBIGgi-Gg)(21GBGz-Bg + 	= 0 	(A.15) 

The roots of z are given by 

A2  = BC  

G B G 4- /(ZG G +G2)(B2-23G G )(I7G G 90C— BECO BEZ4BE0  

gGBGE (ft.a.6) 

The associated value of x is found from equation (A.14) to be: 

AV tai 	/V 
= BB  = (-G0  B0  + BC GE)/(GE  + GC) (A.17) 
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Similsrly we find 

AV AV 
Y 

Nt 
( -G0  BO 	C

,
B GB  )/(GC  GB) (A.18) 

Ekpression (A.16) gives the boundary values of BC  along the z axis. 
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Fig, 5.1 The transformer ratio-arm bridge  
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Fig. 3.2 Schematic diagrams of arrangements for measuring 

"Y" parameters  
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a0 = 	ve = 100 mV (r.m.s.) 

= w0/2% = 2.0 MHz.. 

yb = 5.00 j 15,07 	„MU 

Ye = - 4.44 + j 15.33 	. a, 

Ye  = 12.12 	j 12.86 	4 

Yo = 	4.46 — J 15.27 

Yb 

 

Fig. 5.5.a. Gyrator representation of the transistor for 

the operational state S(a
o  w) 

a = 

fo = 

Yb = 

ve  = 

Ye - 

Yo  

vc = 100 mV (r.m.s. 

wo/2% = 2.0 MHz. 

5.00 - j 15.07 mU 

4.14 + j 15.33 

12.42 — j 12.86 

4.46 — j 15.27 

Fig. 5.5.b. Gyrator representation of the transistor whose  

biasing resistors are lumped into the arm conductance  



Fig, 516.a. The hyperboloid and its "associated" plane for 
the gyrator representation given in Pig. 5.5.a.  

Fig. 5.6.b. The hyperboloid and its associated plane for 

the gyrator representation given in Pig. 5.5,b.  
240 
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Fib 5.7 The locus of steady state oscillation assuming 

the form of a "quasi hyperbole._ 

Fig. 5.8 The locus of steady: state oscillation 

assuming the form of a "quasi ellipse"  



Pig. 5.9 The "associated" right angle cone of. 

the hyperboloid surface. 
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Fig, 5.10 The angles of inclination of the  

associated planek e3  and ec  are shown. 9E,.1.2.  

defined similarly.  
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Fig. 5.11 The locus of steady state oscillation for a 

particular conductance state  
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Fig. 3.13 Schematic diagram of the synthesized 

oscillator  
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Fig. 5.14 Frequency plots of m o  np and t/ m2 + n2 
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Fig. 5.16 Experimental verification of the maximum  

A+ 
load Gb 
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Fig. 5.17 Frequency characteristics of e and e 
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5,18 Experimental verification of the design for  

a Clapp oscillator 
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