THE DISERIBUTION OF STRESS-STRAIN RESULTANTS IN PRESTRESSED CONCRETE PORTAL FRAMES

by

Ashit Kumar Chatterji

A thesis submitted for the Degree of
Doctor of Philosophy
in the
Faculty of Engineering of the

University of London

Imperial College of Science and Technology, London

$$
\text { Septeribcr, } 1968
$$

ABSTRACT.

The earlier part of this thesis deals with the testing of ten post-tensioned prestressed concrete I beams, according to an international testing programme of the European Concrete Committee. Under this scheme, the behaviour of ten simply supported beams were studied, under central point loads, to investigate the effects of the variation of the following parameters:-

1) the neutral axis depth,
2) the prestressing force
3) the spacing of binders.

The inelastic rotations observed in overreinforced I beams, made it possible for the author to visualize that adequate inelastic rotations could be expected at highly overreinforced critical sections to justify full redistribution of moments in a prestressed frame, provided that these sections were reinforced with an adequate quantity of binders.

The later part of this thesis deals with tests continued on post-tensioned prestressed columns and portal frames. Experimental evidence has been obtained to demonstrate the following points:-
I) An over-reinforced prestressed I-section is highly brittle; it is more brittle than a rectancular section having the same overall dimensions and the same quantity of reinforcement. It may prematurely fail by web buckling, before a frame attains the state of a complete collapse nechanism.
2) However, with an adequate quantity of binders, not only members having overreinforced critical I-sections, but also heavily loaded columns, exhibit enough ductility to justify full redistribution of moments in a frame.

The use of the effective '蚆' concept, in a non-linear analysis of prestressed concrete structures, has been discussed in Chapter V.

The possibility of a quick and effecient method for adjusting ' $\theta_{p i}$ ' values as reguined in Baker's Limit design method, has been discussed in Chapter 7. A method of analgaing two span continuous prestressed beams, usins Wacchi's Imposed Rotation coefficient has been discussed in this chapter. Three continuous beans tested in the Cement and Concrete Association were analyzed by this method.

ACKNOWLEDGEHENTS.

The author wishes to thank Professor A.I.I. Baker for his invaluable supervision and guidance and encouragement.

He expresses gratitude to Dr. A.D.Edwards, for his assistance and sound advice, in planning the experiments and compiling the thesis.

He is grateful to D_{r}. C.W. Yu for his immense help in carrying out the test programme. He is also grateful to Mr. K. Newman for his assistance in the design of mixes and to Mr. R.W.Loveday for his suggestions in the design of the testing dovices. He wishes to thank his friends and technicians in the laboratory for their co-operation and help.

He wishes to thank the Cement and Concrete Association for their valuable assistance and permission to use the 'Serius' computer installed in their premises. He is personally obliged to Dr. Cranston for his verbal communications, assistance and for lending his 'in-P- $0-\theta$ programme to the author.

Finally, he is grateful to the Govt. of U.P., India, for the award of a loan and extension of leave to stay in this country, which made it possible for the author to complete this project.
1.I Behaviour of a structure beyond the elastic limit 12
1.2 Collapse load method for stecl structures 12

1. 3 A plastic design method for concrete structures 13
1.4 Idealization in prestressed concrete 13
1.5 The compatibility problem in plastic analysis 14
1.6 Baker's method of analysis. 15
1.7 Difficulties of the simplified Limit design method
1.8 Synopsis of author's work 17

Chaptcr 2 Inelasticity in simple members 20
2.I Influence of stecl \& concrete in the non-
Inear behaviour of structural concrete
2.2 Moment curvature relationship-its difficulties 20
2.3 Moment rotation characteristics of structural
members 23
2.4 C.E.B. programe-author's task in the schedule 24
2.5 Development of equations for calculating idealized Limits
2.6 Advantages of a bilinear idealization 29
2.7 Calculation of limits $I_{1} I_{2}$ in a moment $\quad 31$
2.8 Idealized linits in the moment rotation
curve of a prestressed concrete member
2.9 Computational difficulties of the trilinear 36
2.10 Use of a moment rotation characteristic in
structural anelysis

Chapter 3 Moment rotation characteristics of post-
tensioned prestresced concrete beams
3.1 Object

51
3.2 Beam details 52
3.3 Comerete mix 52
3.4 Batching mixing casting \& curing 54
3.5 Testing frame 55
3.6 Instrumentation 56
3.7 Testing procedure 56
3.8 Prestressing \& grouting 57
3.9 Brief summary of calculation 59
3.10 Historical development of the length C_{i} the
6.1
3.11 Discussion on the tests carried out by the
author

Chepter 4 An introduction to prestressed concrete 112
4. I History of tests on portel frames 112
4.2 A reveiw of the paper presented by Baker \&

Amarakone-- at the Institution of Structural
Engineers on 30.3.65
4.3 Details of the test proposed by the author 114
C.4 Details of the pilot project 115
4.5 Stress resultants in a portal frame by the elestic method 117
4.6 The secondary effect of the prestressing force \& the concordant cable 118
4.7 Collapse load of the proposed frames 120
4.8 Calculation of rotations at collapse \& inter-mediate stages120
Chapter 5 Analysis of prestressed concrete sections in the cracked phase 128
5.1 Introduction 128
5.2 Centroid of a cracked section
5.3 Flexibility Matrix of a cracked prestressed concrete structure 130
5.4 A computer programme to derive the moment curvature relationship of a prestressed section 132
Chapter 6 Tests on prestressed concrete portal frames with fixed fect 137
6.1 Object 137
6.2 Frame details 138
6.3 Concrete Mix 139
6.4 Design goneral details 140
6.5 Casting details 143
6.6 Test rig 14.4
6.7 Application of axial loads to columns in Frame 3 146
6.8 Instrumentation 148
6.9 Erection 150
6.10 Prestressing \& grouting 151
6.Il Test procedure 152
6.12 Test results 153
6.13 Behaviour of individual frames 153
6.14 Presentation of results 158
6.15 Discuseion of results 160
Chepter 7 The compatibility problem in the simplified Limit method of design- A method suggested to adjust rotations 200
7.1 Baker's approach 200
7.2 Modification suggested by author 201
7.3 Use of tables made from the inverse of the flexibility matrix 201
7.4 Details of the method suggested by the author 202
7.5 The design steps by the modified method 205
7.6 Bilinear idealizetion of prestressed concrete
beams continuous over two spans 205
7.7 Use of the theory of imposed rotations in calcu-lating the effect of a change in the EI value ina pert of a continuous beam206
7.8 Ultimate strength of a 2 span continuous prestressed beam 209
7.9 Anelysis of C. \& C.A. beams 210
Chapter 8 Conclusion \& suggestion for further work 251

NOTATION.

DIMENSI ONUS.
$\mathrm{x}=$ distance measured from L.H. support of a beam.
$2 l_{1}=$ length of a beam between supports
$2 L_{u}=\begin{aligned} & \text { length of uncracked part of a simply supported } \\ & \text { beam subjected to a conc. load at centre. }\end{aligned}$
$2 t_{c}=$ cracked length of a simply supported beam subjected to a conc. load at centre.
$Z=$ distance of critical section to point of contraflexure.
$b=$ breadth of a rectangular beam; flange width in I
$b^{\prime}=$ web width in I beam. (beam.
$\mathrm{d}=$ distance of the extreme fibre 2, from the C.G. of tendons

nd $=$ depth of neutral axis from fibre 2 in general
$\begin{array}{llll}n_{1} \\ n_{2} & \text { do. at the state } & I_{1} \\ n_{2} & \text { do. } & " & " \\ & & L_{2}\end{array}$
td $=$ depth of the compression flange in I beam.
$\mathrm{A}=$ gross X -sectional area.
$I=$ moment of inertia
$e_{1}=$ distance of extreme fibre $\frac{1}{2}$ from centroid.
$\mathrm{e}_{1}^{2}=\frac{I}{e_{1}} \quad Z_{2}=\frac{I}{e_{2}}$
$C_{1}=$ distance of boundary of limiting zone from centroid measured in direction fibre 1.
$C_{2}=$ do from centroid measured in direction fibre 2.
$e_{s}^{2}=$ eccentricity of cable from centroid measured positively towards fibre 2.
jd = lever arm
f nd $=$ distance of extreme fibre 2 from the centre of compression.
D = overall depth of section.
Area of steel.
As $=$ Area of steel in tension
A's = Area of steel in compression.
$p=\frac{A s}{b d} \times 100$ (in rectangular beams).
$\mathrm{p}^{\prime}=\frac{\mathrm{A}^{\prime} \mathrm{s}}{\mathrm{bd}} \times 100$

Area of steel (cont.)
$\mathrm{p}^{\prime \prime}=$ percentage of lateral binders
$=\frac{\text { volume of binders per unit length }}{\text { effective volume of concrete bound }} \times 100$

Beam properties.
$\mathrm{Ec}=$ modulus of elasticity of concrete in general
$\mathrm{ES}=$ modulus of elasticity of steel in general.
$\mathrm{E}^{\prime} \mathrm{I}^{\prime}=$ uncracked flexural rigidity
$\mathrm{EI}=$ cracked flexural rigidity at the state I_{1}
$\mathrm{~K}, \quad$ egg. in $\frac{\mathrm{K}}{\mathrm{CA}} \mathrm{S}_{\mathrm{r}} \mathrm{S}_{\mathrm{s}} \mathrm{ds}$ is a constant to account for
the fact that shear stress distribution is not uniform in a section.
$C=$ modulus of Rigidity
Strength of concrete, stresses and strains and stress block parameters.
${ }_{C}^{C}=$ standard ${ }^{\text {c }}{ }^{\prime \prime}$ " cylinder strength.
$C_{u}^{c}=$ standard $6^{\prime \prime}$ cube strength.
$\overline{\mathrm{C}}_{\mathrm{c}}=$ maximum compressive stress in concrete in flexure
as permitted in the Ankara stress block.

$e_{c p}^{c 2}=$ prestress strain in concrete at the level of C.G. of tendons after losses at comenceraent of loading.
$e_{2 c p} \& e_{1 c p}=$ strains in concrete at fibres 2 and 1 , due to prestress at commencement of loading.
$e_{c s 2}=$ increment in the strain in concrete at the level
of C.G. of tendons, from the state of zero stress and strain, at I_{2}.
(i.e., from a state prior to application of prestress).
$e^{e c s l}=$ do at the state L_{1} or 1% proof stress
$e^{s y}=$ strain in steel at yield or
$e_{\text {si }}=$ strain in steel at the state L_{1}
$e_{s 2}=$ strain in steel at the state I_{2}
$e_{\text {eu }}^{s 2}=$ maximum strain in steel at rupture.

* for under-reinforced beams

Strength of concrete tc. (cont)
$\alpha=\underset{\text { to }}{\alpha} \frac{\mathrm{C}_{c}}{}$ average compressive stress in concrete
$\gamma=$ ratio of depth of effective compressive force in concrete to neutral axis depth.

Forces and Moments.
$\mathrm{W}=$ lateral load generally
$\mathrm{m}, \mathrm{M}=$ bending moment generally
in ${ }^{*} \mathrm{~m}^{*}=$ plastic moment of resistance generally
N = axial thrust generally.
${ }^{m} m_{\text {max }}=$ max. B. attained by a critical section under test

$\mathrm{C}^{2}=$ total compressive force acting on the area of concrete in a section.
$T=$ total tension acting on the area of steel
$\mathrm{m}_{1}=\frac{\mathrm{M}_{1}}{\mathrm{C}_{\mathrm{c}} \mathrm{D}_{2}}$ \{
$m_{2}=\frac{c_{M_{2}}}{c_{c}{ }^{b d ट}}\{$ both for rectangular and I beams.
Deformations and parameters influencing inelasticity. $\mathrm{K}-\frac{1}{\mathrm{R}}$. $=$ curvature generally.
$\theta=$ total rotation in a beam between point of contraflexure and critical section
$\theta_{p}=$ permissible inelastic rotation at hinge on one side of critical section.
$\ell_{p}=$ equivalent plastic hinge length on one side of critical section
$h_{L}=$ length of beam over which inelasticity occurs, on one side of critical section.
$\begin{aligned} \beta & =\text { shape factor } \\ K_{1} & =\text { parameter for influence of steel in the }\end{aligned}$ expression for 0
$K_{3}=$ parameter for influence of concrete in the expression for O_{p}

LINTTS OF THP BILINEAR AND TRILINEAA IDQALIZATION.

TriLinear.
\(\left.\begin{array}{rl}I_{-2}= \& state of prestress only

I_{-1}= \& state of zero concrete stress adjacent

\& to the position of the resultant of\end{array}\right]\)| cable tensions. |
| :---: |

The corresponding moments at I_{-2}, L_{-1} and $L_{o p}$ are M_{-2}, M_{-1} and M_{op}.

BiLinear.

$L_{1}=$ yield state, i.e., at which cable attains . OO1 offset strain or mild steel attains yield strain, OR concrete attains . 002 direct strain at Fibre 2, whichever is carlier.
The beam is assumed to be cracked throughout in calculating rotations.
$L_{2}=$ ultimate state, at which cable attains a strain of .O1 * OR concrete attains the maximum permissible strain as discussed in the Ankara stress block, whichever is earlier.

* (In case of H.T. tendons, this is not defined and the criteria for the limiting strain in concrete has been used.)

WISCELIANEOUS.

In analysis of indetorminate structures.

$\mathrm{n}=$ number of statical indeterminacy
$s=$ total number of critical sections where hinges may develop.
$\theta_{i}=$ the total discontinuity measured in radians at the $i^{\text {th }}$ hinge, at all phases of loadins, when a structure has been made statically determinate by the insertion of n hinge releases.
$M_{i}=$ the ordinates of the diagram representing the distribution of bending moment when unit moment acts on the reduced structure at the i th hinge.
$M_{k}=-$ do - for unit momont at $k^{\text {th }}$ hinge.
$\mathrm{ds}=\mathrm{a}$ small increment of length in the direction of the frame members.
$\theta_{p j}, \theta_{p i}=$ total plastic rotations at the critical sections j and i, assumed to be concentrated at the section. (A cracked modulus of risidity $=$ EI is assumed in the rest of the structure.)
$M_{0}=$ the ordinates of the bending moment distribution when external load acts on the reduced structure.
$\overline{\mathrm{X}}_{\mathrm{k}}=$ restraint moment at the $\mathrm{k}^{\text {th }}$ hinge of the released structure.
$\theta^{\prime}{ }_{p i}=$ concentrated plastic rotation over a short length at the ith hinge when an uncracked modulus of rigidity E'I', is assumed in the rest of the structure.
$\psi^{\prime} \mathrm{pj}=$ concentrated plastic rotation over a short length at intermediate critical sections between the chosen releases, when an uncracked E'I' value is assumed.

> CHAPTERI

INTRODUCTION

1.1 Behaviour of a structure beyond the elastic limit.

An elastic analysis of any structure only ensures a factor by which the working loads may be increased before yield or inelasticity would occur at one of the critical sections of the structure. The effect of further increase in load cannot be determined by the elastic analysis. (39) The spread of inelasticity due to further increase of load causes a redistribution of moments. In other words, the bending moment at the section where yielding first occurs, rises at a much slower rate, and permits the application of further load till yielding occurs at a second point. A hinge action thus occurs at the section while the bending moment transmitted across it is practically constant. The structure finally collapses when sufficient number of hinges have developed to transform the structure into a mechanism.

1.2 Collapse load method for steel structures.

The redistribution of moments is possible only due to the existence of a nonlinear part in the constitutive relations of the material of which the structure is made. This does not create any serious problem in steel structures, because the moment curvature relationship can be idealized to an elastic-plastic behaviour (Fig. l.l).

This idealization combined with the hypothesis that a plastic hinge can undergo rotations of any magnitude, led to the development of a simple plastic method of calculating collapse loads in framed structures, by J.F. Baker and his colleagues in Cambridge.

1.3 A plastic design method for concrete structures.

- In reinforced concrete and pre-stressed concrete structures, any idealization tends to be much more approximate: And in addition, a more serious limitation exists, which is the limited rotetional capacities of the critical sections. This limitation in the ductility of concrete was recognised by Prof. A.L.L. Baker, and one of the main features of his simplified Limit design method is the checking and adjustment of rotations at the critical sections, within permissible limits.

1.4 Idealization in prestressed concrete.

A bilinear idealization of the moment curvature or the moment rotation relationship, usually deviates considerably from the true behaviour of a prestressed concrete structural member. The latter exhibits a uniform stiffness until cracking, followed by a gradual decrease in stiffness until failure occurs, A trilinear idealization has been sur jested for prestressed concrete (13) to recognize this behaviour.
1.5 The compatibility problem in plastic analysis.

The necessary conditions for analyzing a structure at the ultimate are:-

1) The conditions of statical equilibrium must be satisfied.
2) The continuity of the structure must be maintained at all points of the structure up to the point of collapse.
3) The ultimate load carrying capacity of a particular section has to be determined vis-a-vis, the stress strain characteristics of both concrete and steel; the usual assumption made in this connection is that plane sections remain plane up to the limit of collapse.

The most difficult part of the problem is to be able to comply with the rapidly changing moment deformation characteristics in the inelastic range.

In an ' n ' times statically indeterminate structure, which has been made statically determinate by introducing ' n ' hinge releases, the following equation represents the discontinuous rotation at the $i^{\text {th }}$ hinge.

$$
\theta_{i}=\int M_{i} k d s \quad 11
$$

An idealized bilinear moment curvature relation is shown in Fig; 1.2.

Sawyer (45) pointed out that the total curvature at a point, could be broken up as the sum of an elastic and a plastic effect (shown as $k_{\mathbb{E}}$ and k_{p} in this diagram):

From 1.1,

$$
\theta_{i}=\int M_{i} k_{E} d s+\int M_{i} k_{p} d s
$$

Assuming that the total plastic effect in the neighbourhood of a critical section is equivalent to a concentrated rotation at that point,
(i.e., $\theta_{p j}=\int k_{p} d s$, for values of j from $1 \cdots \cdot s$ where S is the total number of eritical sections
we obtain

$$
\theta_{i}=\int M_{i} \cdot \frac{M}{E I} d s+\sum M_{i} \theta_{p j, j=1-\cdots s}
$$

The bending moment n , at a section of the structure can be assumed to be the algebraic sum of the moment caused by the external loads acting on the reduced structure with n releases, and the moments at that section caused by the restraints at the releases.

In other words

$$
M=M_{0}+\sum \bar{X}_{K} M_{K}
$$

$\therefore \theta_{i}=\int \frac{M_{i} M_{0}}{E I} d s+\sum \bar{X}_{k} \int \frac{M_{i} M_{k}}{E I} d s+\sum M_{i} \theta_{p j, j=1-S}$
1.6 Baker's method of analysis.

Baker, in his simplified Limit design approach, suggests a method to find out a possible solution to the problem when the structure develops only ' n ' plastic hinges at the chosen releases. The plastic rotations at the remaining sn hinges, at this stage are therefore zero. The section properties of the members are chosen in such a way that hinges are likely to form at the chosen points, and not in
between them. An advantage is taken of the fact that the moment of resistance of concrete sections can be easily altered by adjusting the area of the steel, without substantially changing the flexural rigidity and therefore the elastic stress resultant distribution.

Now the value of M_{i} at the $i^{\text {th }}$ critical section is unity and at all other releases, it is zero. Also remembering that there is no plasticity excepting at the n releases, equation 1.2 reduces to

$$
\begin{aligned}
\theta_{i} & =\int_{0} \frac{M_{i} M_{0}}{E I} d s+\sum_{X_{k}} \int_{X_{i n}} \frac{M_{i} M_{k}}{E I} d s+\theta_{p i}
\end{aligned}
$$

$$
1.3
$$

An important feature of the proposed method is that \bar{X}_{1}, \bar{X}_{2} etc, can be chosen in such a way that the values of $\theta_{\text {piare }}$ within safe prescribed limits. The problem of compatibility set forth in equation 1.3 has to be satisfied at all the ' n ' hinges.

Yu, Poologasoundranayagom and Tokarski (4 ($4.1,42$) carried out a considerable work in these lines and suggested practical methods of choosing the \bar{X} values and adjusting the $\theta_{p i}$ values. The check on serviceability conditions is done by adjusting the θ_{i} values to zero. Nowhere in the structure, the elastic bending moment so found must exceed a value which may give rise to excessive cracking.

1.7 Difficulties of the Simplified Limit Design Method.

Baker seeks one of the possible solutions when the structure is still statically determinate. The

Uniqueness theorem applicable to steel structures at the state of collapse, is not applicable at this stage.

It is also not certain that a compatible solution exists at all, for the position and direction of assumed hinges. Amarakone (2) has recently shown that the influence coefficient characteristics of the assumed hinge system must satisfy certain conditions in order that the system may be suitable for inelastic compatibility analysis.

Although Baker has considerably simplified the problem, yet the fact remains that even with the above simplifications, the adjustment of rotations present a considerable difficulty which has not yet been successfully overcome. The published graphs in the Concrete Series design booklet, (42) can be used in conjunction with a particular bending moment distribution assumed in preparing these graphs. Designers have to draw their own curves if they want to improve upon the bending moment distribution. The difficulty lies in the fact that the rotation at a particular section can only be adjusted by altering the bending moment distribution which in turn, affects the rotations at other hinges. Further to check on the serviceability condition, it is necessary to adjust the rotations approximately to zero. This itself is a difficult task and amounts to solving a number of simultaneous equations by trial and error.

Synopsis of author's work.

1.8 The author in his investigations has made an attempt to find out the extent to which the ductility of concrete can be improved, under adverse conditions
by the use of closely spaced binders. He has also suggested a method which would reduce the adjustment of rotations from a trial and error procedure to a systematic direct method, in those cases where a standard pattern of building construction is followed.

Brief summary of next chapter.

1.9 In the next chapter, the basic iceas of a limit design have been discussed in greater detail and the necessity of a correlated result obtained frum a large number of tests carried out on simple beams, as suggested by C.E.B. has been explained. Computation charts for calculating the idealized limits, obtained with the help of a digital computer, have been presented.

Fig 1.1
Moment Curvature idealization (steel structure)

FIG 1.2
Possible bilinear idealization in Reinforced concrete

CHAPTER 2.

INELASTICITY IN SIMPLE WEMBERS.

2.1. Influence of steel and concrete in the non linear behaviour of structurin concrete.

When a stress resultant, such as bendinj moment, at a critical section is plotted against the corresponding strain resultant such as 'curvature' at the section or the rotation of the member as a whole, we observe that at a particular stage the curve becones non-linear with decreasing stiffness, with increasing moment. This inelastic behaviour is primarily due to the non-linear part of the stress strain curve of the material of which the section is composed. (Figs.2.1 and 2.2.) Thus, the stress-strain curves of both steel and concrete have their influences. The underreinforced beam develops large curvatures due to the yielding of the steel, and in case of mild steel, the moment rotation curve of such a beam can be idealized to an elasto plastic behaviour. The load deformation characteristic of an over-reinforced member, however, follows more closely the pattern of the stress strain relation of concrete, which does not have a sharp yield point.
2.2 Moment curvature relationship - its difficulties.

The knowledge of a moment curvature pattern which can be applied to all the sections of a member, is necessary if the load deformation characteristics of the structure are required. Assuming that the stress-strain curves of concrete and steel are given, a section of known properties, must have a unique position of neutral axis for a given bending moment, so that the following basic requirements are fulfilled.

1) The strain in the extreme fibre in concrete and the strain in steel* are proportional to their distances from the neutral axis.
2) Total tension = Total compression.
3) Moment of all the internal forces about the centroid $=$ applied moment.

The curvature can thereafter be calculated from the relation

$$
\begin{equation*}
\frac{1}{\mathrm{R}}=K=\frac{e_{c}}{\mathrm{nd}} \tag{2.1}
\end{equation*}
$$

A theoretical moment curvature relation therefore exists satisfying the above criteria. Unfortunately the moment curvature relationship actually followed by a section of a loaded member is influenced by other factors not included in this criteria and the theoretical relation so obtained may not be of significant practical value.

A considerable amount of work on the stressstrain curve of concrete under flexure has been done, the most significant being that due to Hognestad and that due to kusch. These curves give a very good estimate of the plastic moment, but usually they do not give a correct picture of the neutral axis and the strain in the extreme fibre, in the neighbourhood of the ultimate load. Baker and Amarakone suggested an improvement in this respect in a paper presented to the Hyperstatic symposium of the E.C.C. at Ankara in Sept. 64, which was also

In case of prestressed structures, the increment of strain in concrete at the level of the steel, from a condition of zero strain, must be considered.
discussed in the Institute of Structural Engineers, London, on 30th March 1965.(11) The stress block recommended in this paper gives a fair estimate of the ultimate strain, but the estimate of the position of the neutral axis is still poor. Further. research has recently been completed at the $I_{m} p e r i a l$ College in this direction. (47)

We observe that the prediction of a correct moment curvature relationship, based on theory alone has not yet been possible. The situation is much worsened by the fact that all the sections of a frame member do not obey the same moment curvature relationship. This is due to bond slip, local concentration of cracks, suspected arch action, or any other cause, which is not fully understood. In a series of tests on reinforced concrete beams, subjected to a central point load, Edwards observed that sections which were away from the critical section, yielded at a bending moment lower than the yield moment at the critical section (25) A tied arch action (Fig.2.3) may be one of the causes responsible for an increase in steel stresses towards the supports, causing yielding of the steel earlier than anticipated. Edwards has further pointed out that if the moment curvature relation has a droopins portion, it is not possible for other sections near the critical, to follow the same route, unless reductions are noticed in the curvatures at those points with a consequent total reduction in the deflection, when a beam is sustaining a lower load after the peak value.

In the case of prestressed concrete beams, it was found by the author that the sections which are slightly away from the critical section, are actually stiffer. This was due to a tendency of concentration of cracks at the critical section. Increased curvatures near the cracks in prostressed concrete have been observed by others. Bennet pointed out in the 2nd Congress of the Federation Internationale held in Amsterdam in August and September 55, that it appeared probable that the deformation of a prestressed beam was brought out mainly by severe curvatures in the vicinity of cracks, rather than uniform curvature (19)

An analysis made on the basis of an experimental moment curvature relation has therefore to be used with caution. Ferhaps an upper and a lower bound can be fixed for the purpose of analysis, based on a considerable number of tests.

2.3. Moment Rotation characteristics of structural

 members.As seen above, the relation between the applied moment and the curvature attained, is not a function of the section properties only. It has been realized by the C.E.B. that the moment rotation relationship, which gives an integrated deformation diagram of the member as a whole, is much more useful. Guyon also suggested the investigation of a moment rotation relationship of a plastic hinge. (29) A rotation between the end supports, obtained from a test conducted on a simply supported beam, takes
into account the effect of the variation in the flexural rigidity throughout the member and evaluates the expression $\frac{M}{E I}$ ds alon $\begin{gathered}\text { n the length }\end{gathered}$ of the beam. It is possible to use this intesrated rotation in the analysis of a frame, a member of which is subjected to a similer bending moment distribution between points of contraflexure. The moment rotation curves also directly give an idea of the amount of the plastic rotation possible at the critical section of a particular member.

2.4 C.E.B Programme - author's task in the schedule.

The C.E.B. planned an atensive programme of testing a large number of beams so that safe empirical values of the available hinge rotations were obtained from sufficient statistical data. Bemner ${ }^{(14)}$ first observed that the most influential parameter in determining the value of the plastic rotation, is the depth of the neutral axis at ultimate. In the first five I beams tested by the author, which are described in the next chapter, an attempt was made to stuay the influence of the neutral axis in case of prestressed beams. This was achieved by changing the amount of reinforcement. The next five beams were devoted to the study of the influence of the prestressing force, and lateral binding in the compression flange.

2.5 Development of equations for calculating Idealized limits.
 The stress block in concrete under compression. The distribution of stress in a cross-section under a flexural effect, has been the subject of

extensive research. As the distance of the point of observation, measured from the neutrel axis increases, the strain increases linearly, but not the stress. Assuming that all the concrete fibres obey the same stress-strain law, (which is not true due to a difference in the rate of straining at the level of each fibre) the distribution of stress can be plotted against the distance from the neutral axis from a typical stress-strain curve of concrete. This distribution is known as the stress-block.

The stress block suggested by Hognested, Fig. 2.4, gives an estimate of the ultimate moment for unbound concrete. In fact the moment at the ultimate is very little affected by the assumed shape of the stress block, because a change in the stress block is accompanied by a compensating change in the lever arm. However, a refinement to the above was felt necessary, to permit more correct evaluation of the strain values, and the position of the neutral axis at ultimate. The stress block suggested by Baker at Ankara, Fig. 2.5, is a considerable improvement in this respect and has been adopted by the author in all computations in this thesis.

Derivation of expressions for \propto and γ at I_{2}

The Ankara stress block mainly differs from the previous blocks in the respect that it permits the use of strains in concrete higher than. . OO35, according to the formula
$\mathrm{e}_{2}=.0015\left(1+1.5 \mathrm{p}^{\prime \prime}+\left(0.7-0.1 \mathrm{p}^{\prime \prime}\right) \frac{1}{\mathrm{n}_{2}}\right) \ldots .2 .2$
e_{2} therefore depends on the neutral axis and the percentage of lateral binding.

It also permits a little reduction in the maximum flexural stress for large values of the neutral axis, according to the formula

$$
\frac{\overline{\mathrm{C}}_{c}}{\mathrm{C}_{\mathrm{c}}}=0.8+\frac{0.1}{\mathrm{n}_{2}}
$$

(An upper limit of 1.00 is operative for small values of n_{2}).

Let gd be that part of the neutral axis in which a strain of .002 is attained. (Fig. 2.6) The stress block is parabolic up to this point.

$$
\begin{aligned}
& \mathrm{q}=\frac{.002}{e_{c}} \cdot \mathrm{n}, \text { if } \mathrm{k}=\frac{.002}{e_{\mathrm{c}}}, \mathrm{q}=\mathrm{kn} \\
& \mathrm{~s}=\mathrm{n}-\mathrm{q}=\mathrm{n}(1-\mathrm{k})
\end{aligned}
$$

Now $\alpha=\frac{23, q_{+} s}{n}=\frac{2 q+3 s}{3 n}=\frac{2 k n+3 n-3 k n}{3 n}=1-\frac{k}{3}--2.3$

$$
\begin{aligned}
\gamma= & \frac{\frac{s}{2}^{2}+\frac{2}{3} q(s+3 / 8 q)}{n}=\frac{(1-k)^{2} / 2+2 / 3 k(1-k+3 / 3 k)}{1-k / 3} \\
= & \frac{6+6 k^{2}-12 k+8 k-5 k^{2}}{12-4 k}=\frac{k^{2}-4 k+6}{12-4 k} \ldots \ldots \ldots 2.4 \\
& \alpha \text { and } \gamma \text { at } I_{1}
\end{aligned}
$$

For over-reinforced sections, when $e_{c 1}$ is limited to $.002, \alpha=2 / 3$ and $\gamma=3 / 8$
For an under-reinforced section, the state of L_{1} will be reached when the steel attains an offset strain of .001 ($e_{c 1}<.002$) Bremner ${ }^{(14)}$ has shown that \mathcal{C} and γ, are given by the following expressions for $e_{c l}<.002$

$$
\begin{align*}
& \infty=\frac{e_{c 1}}{.002}-\frac{1}{3}\left(\frac{e_{c 1}}{.002}\right)^{2} \ldots \ldots \ldots \ldots \ldots .2 .5 \\
& \gamma=4-\frac{e_{c 1} / .002}{12\left(1-\frac{e_{c 1}}{3 x .002}\right)^{2}} \ldots \ldots \ldots \ldots \ldots .2 .6
\end{align*}
$$

Equations for strain compatibility (in prestressed concrete.)
Strain Compatibility at L_{2}
Let e_{p} be the resultant strain in steel due to prestress after losses, at the time when the application of external moment has to commence. Fig 2.7 (a and b).

Assuming perfect bond, the net cangge in the strain in concrete at the level of steel, due to applied moment since commencement of loading at stage I_{2},

$$
=e_{c s 2}-\left(-e_{c p}\right)=e_{c s 2}+e_{c p}
$$

The final strain in steel at ultimate is given by $e_{s 2}=e_{p}+$ change in strain in concrete at the same level.

$$
=e_{p}+e_{c p}+e_{c s 2} \ldots \ldots \ldots \ldots
$$

Fig. 2.7 (b), represents changes in the concrete strain due to applied load, from a datum which is the state of zero stress and strain in the section (i.e., from an unloaded state, when prestress was absent).

Now $\frac{e_{\operatorname{cs2}}}{e_{c 2}}=\frac{1-n}{n}$
Equation 2.7 therefore reduces to

$$
e_{s 2}=e_{p}+e_{c p}+e_{c 2}(1-n) / n \ldots \ldots . .2 .8
$$

$\underline{\text { Strain Compatibility at } \mathrm{I}_{1}}$
In the state I_{1}, the strain in concrete at top fibre is given by the equation

$$
e_{c l}=\left(e_{s y}-e_{p}-e_{c p}\right) \frac{n}{1-n} \ldots \ldots \ldots \ldots . .2 .9
$$

Where $e_{s y}$ is the strain in steel if it reaches 0.001 proof stress before concrete reaches .002.

The Equilibrium Equations.

In a cracked section it is not possible to consider the effects of prestress and the applied moment separately, and add their effects to get the final distribution of stresses. T_{h} is is because the section properties assume new values in the cracked state, i.e., the concrete no more takes any tension and the condition of a constant flexural rigidity does not exist. The principle of superposition no longer applies, because the linearity of the relationship between an applied force and the deformation, is destroyed. The applied bending moment and thrust have to be considered simultaneously with the cable forces in the equilibrium equations, which are as follows:

1) In case of pure bending, $F i g$ 2.8(a)

$$
C=T^{*}
$$

i.e., the total compression in the area of concrete $=$ total force in cables.
2) In case of bending + axial thrust, Fig 2.8(b).

In this case the total compression is a sum
of the components,
i) that caused by the tonsion in the cables and
ii) that due to the external load.

Fig 2.9 (a and b) shows the cross-sections of a rectangular and and I-beam. The position of the neutral axis and the stress-block are also shown.

The total compression in a rectangular section is given by the equation

* In case of reinforcement in the conpression zone, suitable modification in the value of C has to be done.

In case of an I-section, if C_{1} be the total compression in the rectangular area of width 'b' and depth 'nd', and C_{2} be the compression in the shaded area

$$
\begin{align*}
c & =c_{1}-c_{2} \\
& =\propto \bar{C}_{c} \text { bnd }-\alpha^{\prime} \bar{c}_{c}\left(b-b^{\prime}\right)(n-t) d
\end{align*}
$$

where \propto corresponds to the stress block of depth nd and α^{\prime} betweon the neutral axis and the bottom flange.
2.6 Advantages of a bilinear idealization.
xeinforced concrete
Consider a simply supported Kbeam subjected to a point load at the centre. Let the moment curvature relation of the critical section be as shown in Fig 2.10(a), in which the actual behaviour is replaced by an idealized bilinear relation $\mathrm{OI}_{1} \mathrm{I}_{2}$. Now, assuming for the sake of argument that this \mathbb{M} / K relation holds good for all sections, a curvature distribution along the length of the beam can be arrived at, due to the linear variation of the moment, as shown in Fig $2.10(\mathrm{~b})$, when the moment I_{2} is reached by the critical section. This curvature distribution can be replaced by two straisht lines $C D$ and $D A$, corresponding to $O L_{1}$ and $I_{1} L_{2}$ respectively.

Imagine an isolated span $A B$ of length 'l' of a continuous beam (Fig 2.11). It can be shown that the end slopes φ_{A} and φ_{B} are given by the expressions ${ }^{(14)}$

$$
\begin{aligned}
& \left.\varphi_{\mathrm{A}}=\int_{\mathrm{B}}=\int_{\sqrt{1-x}}^{1} \frac{1}{1}\right) \mathrm{kdx} \ldots \ldots \ldots \ldots \ldots 2.14 \\
& \varphi_{\mathrm{B}}=\ldots \ldots \ldots \ldots
\end{aligned}
$$

The conditions of compatibility at supports of the continuous beam will be satisfied if ' \emptyset_{B} of span 'i' is equal and opposite to ' Q_{A} ' of the adjacent span 'i + 1'.

The assumption of an idealized moment curvature characteristic, tremendously facilitates the celculation of the angles ' φ_{A} ' and \emptyset^{\prime} '.

Take the case of the simply supported beam Fig. 2lO (a and b). The rotation in half of the beam can be deduced from the area of the curvature diagram which now consists of two triangles BCE and AED.

In ? continuous bear \oint_{A} and \oint_{B} in the $i^{\text {th }}$ span, can be determined by obtaining the moment of all such triangular areas about the supports, winich is in fact a method to evaluate the interrals riven by equations 2.14 and 2.15. In reinforced concrete beams, the points D and E are usually close enough to justify a further simplification to the effect that the plastic rotation represented by the area of the triangle $A E D$ is concentrated at the critical section.

The Bilinear idealization in such a case has a horizontal ceiling and represents an elasto-plastic behaviour. An elasto-plastic framed structure with such an idealization, can be analyzed in the intermediate phases between the structure being completely elastic and the structure being completely plastic, by using the elastic equations, to determine the concentrated hinge rotations, provided the value of the flexural rigidity used is that attained by the member at the State I_{1} (equation 1.3). ${ }^{*}$

Baker recommends that the flexural rigidity of a member at L_{1} be calculated at the potential hinge in betwecn the chosen ones ${ }^{(5)}$.

2.7 Calculation of limits $\mathrm{I}_{1} \boldsymbol{L}_{2}$ in a moment rotation curve.

It has been stated that it is more practical to obtain a moment rotation curve from an experiment rather than the corresponding moment Curvature r ation.

The calculation and plotting of the theoretical idealized limits at L_{1} and L_{2} will now be discussed with respect to a moment rotation curve. The simplfied bilinear idealization proposed by Baker for R.C.C. members, is shown in Fig.2.12. Fis. 2.14 shows the possible bilinear and trilinear idealization in prestressed nembers (discussed in detail in 2.8).

$$
\text { Limits } I_{l} \text { and } I_{l p}\left(I_{1 p}\right. \text { in trilinear idealization }
$$

A critical section attains this state when
either of the following cosditions is satisfied.
i) The steel reaches the gield point. In case of cold worked steel and hirh tensile tendons, when no sharp yield point exists, the steel is assumed to yield at an offset strain of .OOl.
ii) A strain of .002 is achieved at the extreme fibre of the concrete.

$$
\begin{array}{r}
\text { Moment at } I_{l}-\mathbb{M}_{1} \text { (and at } I_{l p} \text { in case of trilinear } \\
\text { idealization. }
\end{array}
$$

The method of calculating \mathbb{M}_{1} is one of trial and error and the steps adopted are as follows:1) Assume a depth of neutral axis and calculate $e_{c l}$ from a known value of steel strain. In case of prestressed concrete use equation 2.9. Check that $e_{c .4}$ is less than .002. Find α and γ from equations 2.5 and 2.6.
2) Calculate the total compression in concrete using equations 2.12 or 2.13 . Check that the equilibrium is satisfied, according to equations 2.10 and 2.11. If not, alter the value of N.A. and repeat.
3) If the final value of the nautral axis obtained by the above process is such that e_{c} exceeds .002, then use the value of .002 as the guiding factor for e_{c}, and calculate the forces in the tendons in each trial. (Use of an idealized stress-strain curve for the steel is recommended.) (lO)
4) M_{1} is then found by taking moments of all the forces about a convenient point.

Rotation at I_{1} (Bilinear idealization).

The rotation at L_{1} is obtained by dividing the area of the moment diagram by the flexural rigidity calculated at the limit L_{1}. (i.e. beam is assumed to be cracked throughout.)

Consider again the simply supported reinforced concrete beam subjected to a point load at the centre. The curvature distribution in its half span is shown in Fig. 2.13.

The rotation at $L_{1}=1 / 2 \times \frac{{ }^{\frac{1}{1}}}{E I} \times I$

$$
=1 / 2 \frac{e_{c_{1}}}{n_{1}} \cdot 1
$$

It may be noticed that the calculated rotation at L_{I} represented by the triangle $A B C$, is greater than the actual rotation obtained from the
that an equivalent EI value should be used and an ordinate $B A^{\prime}$ be calculated, such that the area $A B C$ bounded by lu cored li of the triangle A 'BC is equal to the area If this is done, the point L_{1} shall lie on the actual moment rotation curve in Fig. 2.12. This is not of sufficient importance in R.C.C. but in prestressed concrete members, the disparity between the actual curve and the point L_{1} is significant. This has been taken care of in the suggested frilinear idealization ${ }^{(13)}$.

Moment at $L_{2}-M_{2}$ (and at $L_{2 p}$ in trilinear idealization).
The method is basically the same and the steps are:-

1) Assume a tentative value of neutral axis. Calculate the ultimate strain from equation 2.2 .
2) Calculate the values of α and γ from equations 2.3 and 2.4.
3) Calculate the total compression from equations 2.12 or 2.13 .
4) Calculate the force in the tendons using equation 2.8 and an idealized stress-strain relation. Check whether the equilibrium equation 2.10 or 2.11 is satisfied. If not repeat with another value of the neutral axis.
5) Finally, calculate M_{2} by taking moments of all forces about the centroid.

Rotation at I_{2} (Bilinear idealization).
The total rotation at L_{2} is the sum of the rotation at L_{1} and the inelastic rotation which in the case of simply supported beams is $2 \theta_{p}$ where θ_{p} is given by the following equation:-

$$
\theta_{p}=0.8\left(e_{c 2}-e_{c 1}\right) k_{1} k_{3}\left(\frac{z}{d}\right) \stackrel{(11)}{\ldots \ldots \ldots 2.16}
$$

$\mathrm{k}_{1} \cdot \mathrm{k}_{3}$ is usually taken as. 5
A set of computation curves for use in the design of rectangular beams, have been prepared by the author, vide graphs 2.1 to 2.7, to calculate the limits at L_{1} and L_{2}. Effects of various parameters such as type of steel, the degree of prestressing force and the quantity of laterial binders, have been considered. The digital computer was used and a typical flow diagram will be found in appendix 1.

2.8 Idealized limits in the moment rotation curve of a prestressed concrete member.

Baker has suggested a trilinear relation for prestressed members, $(10 \& 13)$ in addition to the usual bilinear idealization, Fig.2.14. The limits of this idealization are calculated as follows. Limit I_{-2}

This is the state before any external moment is applied. The point O^{\prime} is the origin of reference, if it is desired to find the resultant bending moment at the critical section, in the uncracked state، The ordinate 00 ' represents the bending moment due to the prestressing force in the tendons, which is opposing the applied moment. The length OL_{-2} is the negative rotation between supports due to the prestressing force.
Limit In-1 $^{\text {I }}$
This linit corresponds to an applied moment, when the concrete at the level of the resultant of tendon forces, attains a zero stress. $S_{u} c h$ a state
will not usually be attained in the uncracked stage, in beams designed to be tested in the laboratory, due to the difficulty in keeping the centre of gravity of the tendons at a low level. This state is therefore of not sufficient importance in present context.

In drawing Fig. 2.14, it has been assumed that a simply supported prestressed concrete beam having uniform cable eccentricity, is subjected to a central point load. The bending moment diagram due to the prestress is a rectangle, while the applied moment diagram is triangular. At a stage when the applied moment at the critical section is equal to $0 O^{\prime}$, the corresponding rotation caused by the external force is only half of OL_{-2}. This accounts for a steep, slope of $\mathrm{I}_{-2} \mathrm{~L}_{-1}$.

Limit $L_{o p}$.

At this stage, concrete fibre l is just going to crack under flexural tension. The method of calculating the cracking moment has been explnined in section 3.9 .

Limit $I_{l p}$
The moment at this limit is the same as at L_{1}. The rotation however, has to be calculatod with due regard to the cracked and uncracked values of the flexural rigidity in different parts of the beam, as shown in Fig. 2.14. The author has suggested a satisfactory method of doing this in section 3.11.

Limit $L_{2 p}$

The moment at $I_{2 p}$ is the same as at L_{2} and the rotation is the sum of the calculated rotation at $I_{l p}$ and the inelastic rotation $2 \theta_{\text {pobtained }} \because$ from equation 2.16.

2.9 Computational difficulties of the trilinear Idealization.

For the sake of simplicity, consider a 3 span continuous kinforced concrete,\ldots, beam subjected to point loads shown in Fig 2.15(b), in which a trilinear moment curvature relation as in Fig 2.15(a), is applicable at all sections, for analysing the beam. The inelastic rotations shown by the sheded areas, now considerably extend away from the critical sections and can no longer be assumed to be concentrated at the hinges. The calculation of $~_{A}$ ' and ' φ_{B} ' involve the determination of the moment of the shaded areas about the supports.

It is evident that this is much more difficult and includes many more triangular areas, than when the idealization is bilinear. For each trial value of the distribution of moments satisfying equilibrium conditions, an enormous work has to be done before the incompatibilities at the supports can be determined. If there are e number of spans, a computer is required.

In prestressed concrete nembers, where in addition to this, the deformations of the structure due to cable forces have also to be taken into account, a trilinear idealization is hardly of any use to the practical designer.

2.10 Use of a moment rotation characteristic in structural analysis.

In the 'Report by Research Committee' on 'Ultimate load design of concrete structures'(49), published in the proceedings of the Institute of Civil Engineers, Feb. 62, a method has been suggested
regarding the use of the moment rotation characteristics of a short inelastic length at a critical section of an R.C.C. member, (shown in Fig. 2.16).

The author has to point out that it may be necessary in a rigorous analysis to omit the simplified assumption that hinge rotations are concentrated at critical sections. In such a case it is not easily seen how the moment rotation characteristics measured between the points of supports of simply supported beams, give sufficient information to solve the compatibility problem in a frame.

The author feels that attempts to obtain a moment curvature relationship which could be used in a rigorous analysis yieldinc realistic results, need not be given up at this stage.

It is true that in most cases, the experimental curvatures obtained from strain gauge readings, when integrated over a length of the beam, do not fully account for the difference in slopes at the ends of this length. It is also true thit the moment curvature relationship has its numerous difficulties, as discussed in 2.2 .

An investigation to solve these difficulties may be useful in understanding the basic behaviour of the structure. On the other hand, an attempt to use a moment rotation characteristic in a rigorous analysis, may not give results up to expectations. 2.11.

The results of the ten beans, tested by the author in connection with the C.E.B. proframe, which form the basis of the further work in this thesis, are discussed in the next chapter.

FIG 2.1
Stress strain curve - mild steel

Stress strain curve - concrete
in flexural Compression

FIG $2 \cdot 3$
Suspected Truss or tied arch action in a beam

FIG 2.4
stress block - Hognestad.

Stress distribution

$$
\text { FIG } 2.6
$$

FIG 2.5
Stress block - 'Ankara'

STRAIN DISTRIBUTION A section under flexural compression

FIG $2.7 a$
STRAIN DISTRIBUTION DUE TO prestress at commencement of Loading

FIG $2.7 b$
STRAIN DISTRIBUTION AT L_{2}

FIG $2.9 a$
Stress block in a Rectangular X-section

FIG 296

Stress block in a I-Section

' a ' shows M / K relation for critical section

an isolated span of a continuous beam

aplified bilinear idealization for Rec. Curvature distribution at L_{1}

- Linear and Trilinear idealizations proposed for prestressed concrete

Fig $2.15 a$
trilinear moment curvature relation

three span continuous beam subjected to point loads

Moment rotation characteristics of a short length which is plastified

INTEGRATION OF AN
average MOMENT CURVATURE RELATION

CHAPTER 3.

HOUENT ROTATION CHARACTERISTICS OF POST-TENSIONED PRESTRESSED CONCRETE BEAMIS.

3.1 Object

The discussion in this chapter relates to ten simply supported beams sub.jected to central point loads, and tested in accordance with the C.ت.B. programme. In the first five beams labelled as 1 to 5 , the percentage of steel was varied from .173 to .865 calculated on the rectangular area represented by bxd. Thus a wide range between a highly under-reinforced and a fairly over-reinforced case was covered. In beams 6 and 7, the prestressing forces were 40% and 33% of the ultimate value. The percentage of steel was the same as for Beam No. 3 in which the prestressing force was 50% of the ultimate. Beams 3, 6 and 7 therefore form a set in which the effect of various degrees of prestressing force on the ultimate load and the rntations was studied. Bears 8, 9 and 10 had the same percentage of steel as the over-reinforced beam No. 5 , but were provided with various percentages of lateral binders in the compression flange. This series was chosen to study the effect of binders, after it was noticed that Beam No. 5 had a sudden brittle failure in the neighbourhood of the ultimate load, without undergoing any appreciable plastic rotation. The properties of the beams are summarized in Table 3.l.

3.2 Beam details.

All beams were of I-section having 6" flange width and $8^{\prime \prime}$ overall depth. The span between the centres of end supports was 82 ". The reinforcement details are given jnfig. 3.1. The ecéentricity was kept constant throughout the length of the beams in all the cases. The main reinforcement consisted of hiگh tensile wires of $.276^{\prime \prime}$ diameter, manufactured in Great Britain by Richard Johnson and Ne phew Ltd. Two \therefore —, as indicated in Table 3.1. Each had slightly different characteristics. The corresponding load extension saphs were supplied by the firm and were verified in the laboratory. (figs 3.2 to 3.4)

2 NOS $1 / 4$ diam. mild steel bars were used for holding stirrups in all the beans. The corresponding stress-strain curve (supplied by J.G.C. Chinvah) ${ }^{(18)}$ is shown in fig. 3.5.

Ordinary portland cement vas used throughout. The course aggregate was irresular Thames River gravel of ${ }^{3} /{ }^{\prime \prime}$ maximum size and the fine acgregate was also from the same source. For the sake of convenience, the fine aggregate was separated into two different sizes in the leboratory viz $\frac{3}{16}-25$ and 25 down.

The absorption capacity and sieve analysis of aggregates were determined in co-operation with J.G.C. Chinwah and are shown in Tables 3.2 and 3.3.

3.3. Concrete Mix.

The desired $6^{\prime \prime}$ cube strength at 28 days, was

6,000 lbs/square inch. The design was based on Road Note No. 4. ${ }^{(50)}$ It was noticed that for a given W/C ratio, the experimental strengths obtained by previous workers were higher than that indicated by Road Note No. 4 as shown below.

6" cube strength

W/C	As per R.note No. 4	$\begin{gathered} \text { practical } \\ \text { values. } \end{gathered}$	Factor Factor.
Bremner ${ }^{(14)}$			
	4900 (28 day strength)	6700	1.37
. 56	4500	5800	1.30 (neglect)
. 59	4100	5500	1.341 .35
Dastur (24)			
. 45	4400 (12 day strength)	6000	1.37
. 64	2640 "	4000	1.50 (neglect)

The target strength of $6000 \mathrm{lbs} / \mathrm{square}$ inch was divided by a factor of 1.35 before using the Zables of R. note No.4. The following proportions were found to be satisfactory for combinin; the C.A. and the F.A. This gave an overall grading which was close to $N o .3$ of the Road Note 4.
Course aggregate $=60 \mathrm{lbs}$.
Fine aggregate $=40 \mathrm{lbs}$ (consisting of 28 lbs . of

$$
3 / 16^{\prime \prime}-25 \text {, and } 12 \text { lbs: of }
$$

$$
25 \text { down). }
$$

The grading of the combined aggregate when mixed in the above proportions is shown in Figs. 3.6 to 3.8 .

The aggregate cement ratio was 6.00 and the effective water cement ratio was . 55. A summary of the mix design shall be found in Appendix 2.

3.4 Batching, mixing, casting and curing.

The olume of the beam and the control specimens dictated that the casting of each beam be done in two batches. To avoid segregation, the order in which the constituents of each mix was weighed in a 200 kg weigh batcher , is as follows:

Fine aggregate $25-3 / 16$
Fine aggregate 25 down.
Cement
Course aggregate.
The water was weighed separately on a weighing balance. A horizontal pan mixer was used. Dry mixing was usually carried on for two minutes before water was added, and the mixing continued thereafter for further three minutes.

The following control specimens were cast with each beam.
6" cubes
$6^{\prime \prime} \times 12^{\prime \prime}$ cylinders

$4^{\prime \prime} \times 4^{\prime \prime} \times 20^{\prime \prime}$| flexural |
| :--- |
| beams. |

Mix 1	Mix 2	Total
2	4	6
1	2	3
3	0	3

The aim of the above arrangement was to obtain more specimens for compression tests from the second batch of mix, which wes used in the top of the beam, and specimens for flexural tests from the first batch.

The shuttering used was of steel with timber insets to reduce the thickness of the web. The shuttering permitted the use of two 'kango' hammers, one on each side of the shuttering for vibration. The control specinens were vibrated on a vibrating bench.

After the casting, the beam and the control specimens were cured under wet hessian and polythene for 24 hours. Thereafter the side shuttering was stripped off and they were cured for a further period of six days under the same conditions. The beam and the specimens were then cured in air under the controlled conditions of the laboratory until testing. The constant temperature and the humidity maintained were $68^{\circ} \mathrm{F}$ and 60% respectively.

3.5 Testing Frame.

The beams were tested in a 50 ton testing frame (Figs. 3.9 and 3.10). The bearings at the supports were located on two concrete pedestals. In the first five beams, the bearing at one end did not permit lateral movement and the loading was done via a proving ring having hingos at its points of contact with the jack and the bean. This permitted tilting of the proving ring while lateral movement took place at the free roller end. The arrangement was unsatisfactory as it induced secondary lateral forces in one half of the beam, which in its turn influenced the pattern of the shear cracks to a considerable extent. The loading arrangement was therefore altered in testing the remaining beams. The load was transmitted vertically through a load cell, rigidly screwed onto the ram of the jack. A spherical ball seating was provided where the load cell came into contact with the loading platten which in its turn was holding the beam by friction. The beam was provided with rocker cum rollor bearings at both the ends and was free fron all lateral restrairts. This arrangement considerably improved the pattern of cracks
in subsequent beams. No instability was encountered.

In all the beams, oil was pumped into the jack by means of an electric pump and hence the rate of loading at the different stages, could be controlled.

3.6 Instrumentation.

The method adopted for measuring rotations and recording strains was precisely the same as initiated by Bremner. Clinometers consistins of a . OOO1 micrometer head and a 10 second level tube, were mounted on the top of the beams at several places including the supports, to record the changes in the slopes. $4^{\prime \prime}$ demountable Demec gauges were used throughout to record strains. The layout of the Demec points was so arranged that differences in strains could be recorded every l" apart near the critical section. The deflected profiles of the beams were also obtained by using . OOl" dial gauges underneath the beam. The layout of the clinometers, Demec points and the dial gauges are shown in Fig. 3.11 to 13.

3.7 Testing Procedure.

The loading procedure recommended by the comaittee XI of the C.E.B., states that an increase from zero load be made up to 60% of ultimate in steps of 15% and thereafter the ultimate loa be attained in steps of 5%. Near the ultimate the strain at the extreme fibre is not allowed to exceed•0007 for each step. The time for each step is 15 minutes, 5 minutes for applying the load and 10 minutes for taking readings.

Now, during the time taken for recording readings, there are two alternatives. Either the load or the deformation may be kept constant. The former is difficult to achieve and would mean the application of a constant oil pressure against a falling resistance due to creep. Edwards achieved this by balancing the oil pressure by dead weight. An Amsler machine with a constant load maintaining device was available in the laboratory at a later date. The measurement of rapidy changing strains in the plastic phase is a problem in this system.

The second alternative is very nearly attained by shutting the oil supply as close as possible to the jack. The jack ram is thereby locked and provided the falling backward pressure of the deflected beam does not alter the deformstion of the loading device appreciably, and provided the testing frame is sufficiently rigid to cause an inappreciable amount of flow of energy from the frame to the beam during this period, the deflection at the point of application of the load may be assumed to remain constant. The load cell used in Beams 6-10, is better suited for this method and the increase in the deflection of the beam during the time when the valve was kept shut in these beams, was much less noticeable than in the case of beams where a proving ring was used.

3.8 Prestressing and Grouting.

The C.C.L. single wire system vas used for prestressing. Usually after 14 days of casting, the tendons were post tensioned using a Mark I C.C.L.
jack at one end. In beams 1 to 5 , the tendons vere left within the duct tubes at the time of casting, with the leads of the electrical strain gauges partia lly embedded in concrete. Later on, all tendons were introduced in the duct holes at the time of prestressing, and the strain gauge leads were taken out of the beam, through vents provided for grouting near the supports. The latter was accomplished by usins wire hooks (see Fig. 3.14). As strain gauges were only used to measure the prestressing level, by using the lrad extension graphs, there was no particular disadvantage in using them near the ends in case of beams. An attempt was made to use two tendons in the central duct tube, in case of beams 2, 4 and 5. This was unsatisfactory from the point of view of friction and it also led to the rupture of the gauges in some cases, whence the degree of prestress was assessed by noting the oil pressure at the pump and measuring the extension.

Grouting pas carried out soon after prestressing, by means of a high pressure hand pump. In case of Beams 1 to 5 the grout was injected through holes built in the end plates (Fig. 3.15). In beams 6-10, special vents provided access to the duct tubes for grouting. Both arransements were satisfactory. High alumina cement was used for the grout and the water cement ratio was .375. Aluminium powder (CaibCO Grout Additive) was used to nullify the shrinkage of grout, according to the maker's specifications.

The dates of casting, prestressing, grouting and testing are given in Table 3.5. Laboratory conditions did not permit a strict uniformity to be observed in all cases. Due regard was taken of this fact in calculating shrinkage and creep losses.
$V_{u}=$ ultimate shear force
$V_{e}=$ cracking shear force
$A_{V}=X$-sectional area of shear slíe
$d=$ effective depth of section
$S=$ spacing of shear reinforcement fy = permissitle stress in shear reinforcement in lousion

3.9 Brief Sumnary of Calculations.

(a) Shear reinforcement.

The shear reinforcement was calculated
according to the formula

$$
v_{u}-V_{c}=5 / 4 A_{v} \frac{d}{s} \cdot f_{y} \cdots \cdots \cdots \cdots \cdots \cdot 3.1
$$

This empirical formula was sugrested by Hernandez (30), who tested a number of simply supported prestressed beams subjected to a system of two point loading. This formula wes found to be satisfactory for all the beans tested by the author. The cracking moment and the corresponding shear force V_{c} was calculated by a process of successive iteration, taking into account the increase in the force in the tendons at the time of cracking (vide appendix 3). The permissible flexural tensile stress in the extreme fibre was taken as $500 \mathrm{lbs} /$ square inch in these calculations, as found from tests on flexural beam specimens. The cracking moment calculated according to the following formula suggested in Illinois Bulletin iVo. 452 , was very close to the results obtained by the above method.

$$
\begin{aligned}
M_{c}= & f_{t} b d^{2} \sqrt{b^{\prime}} \quad\left(1+\frac{F_{s c}}{A_{c} f_{t}}\right) \ldots3 .2 \\
M_{c}= & \text { cracking moment } \\
f_{t}= & \text { permissible tensile stress in concrete in } \\
& \text { extreme fibre under fle xure. } \\
b= & \text { top flange width. } \\
b^{\prime}= & \text { web thickness. } \\
A_{c}= & \text { area of X-section } \\
F_{s c}= & \text { prestrassing force. }
\end{aligned}
$$

(b) Stresses in Anchor zone.

The stresses were assessed according to the procedure suģasted by Y. Guyon (28) in conjunction with the published tables on page 516 of his book. The effect of each tendon was first calculated at various heights and depths of the zone. The total effect of all the tendons was then taken into account and a reasonable average stress was assuned to find out the area of the mild steel which was provided in the shape of a cage (Vide appendix 4).

The calculation of the bearing pressure on the end plate was done according to the following formula suggested by Guyon, based on the French Code of Practice (B.A. 45 formula).
\quad Allowable pressure $=0.4$ Cuk $\left[4-5 \sqrt{2 / 4}+2 \frac{a}{A}\right] \ldots 3.3$ where $\mathrm{Cu}=$ cube strength
k = increment factor for hoop reinforcement (takon as l)

(c) Losses in prestressing force.

The force in the tendons at the time of testing
is less then to which they ar initially stressed at the jack end, before transfer. The causes for this reduction are:-
l. slip at anchorage during transfer
2. friction due to curves and bends in the tendons
3. creep and relaxation of stecl.
4. elastic losses - which occur in all tendons which are subject to the effect of subsequent tensioning of one or more wires
5. losses due to shrinkage
6. losses due to creep.

The loss due to the anchorage slip depends on the personal factor of the man who does the hammering. Consistent results are obtained only after experience. An allowance of 1000 lbs. was found to be satisfactory for a . $276^{\prime \prime}$ tendon. As the tendons were straight, no allowance was made for loss due to friction.

The loss due to creep and relaxation of steel was minimized by keeping the wires under tension for 5 mins. before locking off.

The losses due to elasticity, creep and shrinkage were calculated in accordance with the formulae suggested by Evans \& Bennett (26).

The calculated values are given in Table 3.6. Typical calculations will be found in Appendix 5.
(d) Rotations and moments at limits $L_{1}, L_{2}, L_{l p}$ and $L_{2 p}$.
Typical calculations for Beam No. 4 will be found in Appendix 6. It may be noted that the tendons were initially stressed before transfer to a state which is beyond the initial straight portion of the stress-strain curve. Further, the wires were maintained at that load for some time. The resultant stress in the tendon after transfer was therefore found fron strain values in con.junction with a path not obtained by retracing the load extension curve originally followed, but by unloading along a straight line parallel to the initial part of the forward journey.

3.10 Historical development of the leneth of the

 plastic hinge.Figure 3.16 (a and b) represents a simply sunnorted R.C.C. beam with a concentratod load
at the centre. The bending moment distribution is shown by the triangle $A B C$. AEOFC represents the curvature distribution on some scale. I and F are points on the curvature diagram, corresponding to the moment M_{l} at which significant inelasticity occurs. There is a sharp rise in the curvature of the beam in the zone between $\mathbb{E} \& F$. The length $\mathbb{E P}$ is the inelastic zone.

If it is assumed that the same moment curvature relation holds good at all points of the beam, we get the following expression for half of the plastic rotation

$$
\theta_{p}=\beta \frac{1}{2}\left[1-\frac{M_{1}}{M_{2}}\right]\left[\begin{array}{lll}
\frac{1}{R_{2}} & -\frac{1}{N_{1}} \cdot \frac{M_{2}}{M_{I}}
\end{array}\right]
$$

where β is a shape factor.
W.W.L. Chan obtained this expression in his
thesis ${ }^{(17)}$ in a slightly different form.
C.E.B., proposed to replace the term
' $\beta \frac{1}{2}\left(1-\frac{M_{1}}{M_{2}}\right)^{\prime}$ by an equivalent plastic length ' l_{p} ' having a constant curvature as shown in fissure 3.17.
$\therefore \theta_{p}=I_{p}\left(\frac{\epsilon c_{2}}{n_{2} d^{\prime}}-\frac{\epsilon c_{1}}{n_{1} d} \cdot \frac{M_{2}}{M_{1}}\right)$
A further simplification is achieved by assuming that

$$
\begin{equation*}
n_{2} d=n_{1} d x \frac{i_{1}}{i n_{1}} \tag{14}
\end{equation*}
$$

and we get the following expression

$$
\theta_{p}=l_{p} \times \frac{e c_{2}-e c_{1}}{n_{2}^{d}}
$$

C.E.B. recommended that l_{p} may be obtained empirically and proposed the formula
where k_{1} is a parameter which depends on the quality
k_{2} " " " " on axial load. k_{3} " " " " on concrete.
Z is the distance between the point of contraflexture and the point of maximum moment. Bremner ${ }^{(14)}$ found that the length of the plastic hinge ' l_{p} ' did not remain constant with varying percentages of one particular type of steel, but it was primarily a function of the neutral axis. He attributed this to a decrease of the shape factor. (Vide discussion on beams 1, 2, 5 - chapter IX of his thesis.)

The omission of n_{2} in the denominator in the expression for θ_{p} as suggested by Baker at Ankara vide equation 2.16 , is a recognition of the fact that the length ' l_{p} ' is primarily a function of the neutral axis depth.

Amarakone (1) suggested that in the underreinforced beams, the presence of a steeper strain gradient across the section, between the neutral axis and fibre 2, was responsible for the higher strains noticed in the extreme fibre in such cases. The higher strains in their turn, cause higher localized rotations, which tend to decrease the total length of the hinge. Soliman (47) has further confirmed that the presence of a steep horizontal gradient corresponding to a low value of $\frac{Z}{d}$, causes larger concentrated rotations at the hinge. indastic This is quite contrary to the expectation that λ - otations would be smaller if the plastified langth of the beam is reduced by shortening the value of 'Z', as indicated by equations 3.5 and 3.6 .

According to So iman θ_{p} in case of pure bending is given by the following expression:-

$$
\theta_{p}=0.0125 \lambda-0.005
$$

where $\lambda=1+0.8 q^{\prime \prime}+\frac{1-n_{2}}{0.5+n_{2}}+\frac{4 d}{\left(1+n_{2}\right) z}$
and $q^{\prime \prime}$ (a factor which determines the properties of transverse binders)

$$
=\left(1.4 \frac{A_{b}}{A_{c}}-0.45\right) \quad \frac{A_{S}^{\prime \prime}\left(S_{0}-S\right)}{A_{S}^{\prime \prime} \cdot S+0.0028 B^{2}}
$$

note: $A_{S}^{\prime \prime}=X$-sectional area of binders.
$B=$ breadth OR. $7 \times$ depth of the bound CONCRETE, WHICHEVER IS THE GREATER

$$
\begin{aligned}
S= & \text { spacing of binders, } S_{o}=10 \prime \\
A_{b} / A_{c}= & \text { ratio between bound area and the total } \\
& \text { area under compression. }
\end{aligned}
$$

3.11 Discussion on the tests carried out by the author.

Moment rotation curves in respect of the ten beams tested by the author are presented in graphs 3.1 to 3.10. These curves have been plotted according to the method surgested by Baker (ll) and as explained in Chapter 2. The effect of the uncrecked modul. s of flexural rigidity was taken into account as explained in 3.11. The state of I_{-1} was found to be above the cracking limit $L_{o p}$ and has been omitted in the graphs. Curvatures plotted along the length of the beams 1 to 5 are shown in graphs 3.12 to 3.14. They exhibit a general spread of the plastic length as the percentage of steel is increased. This is in accordance with Brember's observations.

The deflection profiles of Beams 1 to 5 will
be found in graphs 3.15 and 3.16
Crack patterns are shown in plates 3.1 to 3.5

Beams 1, 2, 3, 6 and 7 are under-reinforced. Beam 4 is nearly balanced.
Beams 5, 8, 9 and 10 are over-reinforced. The following observations were made by the author.
(a) Effect of the uncracked modulus of flexural

rigidity.

Rotations calculated at the limit I_{1} are far in excess of the experimental values of the corresponding point.

The calculated rotations at $\mathrm{I}_{1 p}$, by the method suggested below, are fairly close to the experimental values and are adequate for the purpose of a Trilinear idealization.

The method used to take into account the stiffness of the uncracked length, when calculating rotations at $I_{l_{p}}$ is as follows. The method is approximate in view of the fact that it assumes a uniform 'El' value in the cracked bone i

Fig.3.18 shows the distribution of bending moments at I_{1}, which is typical for simply supported beams uniformly prestressed by tendons at constant eccentricity, and subjected to a central point load.

Let the uniform moment due to prestress be M_{p} $\frac{a_{0}}{b}=\frac{M_{p}}{M_{c}-M_{p}}$ from which $a=l_{u} \cdot \frac{M_{p}}{M_{c}} \quad \& \quad b=l_{u}\left(1-\frac{M_{p}}{M_{c}}\right)$ Now $l_{u}=\frac{l}{2} \times \frac{M_{c}}{M_{1}}, \therefore a=\frac{l}{2} \cdot \frac{M_{b}}{M_{1}}$ and $b=\frac{l}{2} \cdot \frac{M_{c}-M_{p}}{M_{1}}$

Rotation between A and B (taking uncracked flexural rigidity as E'I')

$$
\begin{aligned}
& =\frac{1}{2} \ell_{u} \times \frac{M_{c}}{E^{\prime} I^{\prime}}-\frac{\ell_{u} M_{p}}{E^{\prime} I^{\prime}}=\frac{\ell}{2} E_{E^{\prime}} \cdot \frac{M_{c}}{M_{1}}\left(\frac{M_{c}}{2}-M_{p}\right) \\
& =\frac{\ell}{E^{\prime} I^{\prime}}\left(\frac{M_{c}^{2}-2 M_{c} M_{p}}{4 M_{1}}\right)
\end{aligned}
$$

Rotations between B \& C (assuming a uniform cracked flexural rigidity of EI calculated from the state L_{1} at the critical section).

$$
\begin{aligned}
& =\left(\frac{\ell}{2}-l_{u}\right) \frac{M_{1}+M_{c}}{2 E I} \\
& =\frac{\ell}{2}\left(1-\frac{M_{c}}{M_{1}}\right) \frac{M_{1}+M_{c}}{2 M_{1} R_{1}}=\frac{\ell}{4 R_{1}}\left(1-\frac{M_{c}^{2}}{M_{1}^{2}}\right)
\end{aligned}
$$

The total rotation between the end supports

$$
\begin{aligned}
& =2\left[\frac{\ell}{4 R_{1}}\left(1-\frac{M_{c}^{2}}{M_{1}^{2}}\right)+\frac{l}{E^{\prime} I^{\prime}} \frac{\left(M_{e}^{2}-2 M_{c} M_{p}\right)}{4 M_{1}}\right] \\
& =\frac{l}{2 R_{1}}\left(1-\frac{M_{c}^{2}}{M_{1}^{2}}\right)+\frac{\ell}{2 E^{\prime} I^{\prime} M_{1}}\left(M_{c}^{2}-2 M_{c} M_{p}\right)-3.8
\end{aligned}
$$

inf second term may be only 5% of the total rotation and may be neglected in some cases.

If we compare equation 3.8 with the expression $\frac{L}{2 R}$ which is the rotation obtained by assuming a $\overline{2 R}_{1}$ cracked EI value throughout the beam, for the limit I_{1}, in a bilinear idealization, we observe that an approximate value of the increased stiffness at $\mathrm{I}_{1 p}$ is obtained by dividing the cracked EI value at L_{1} by the factor $\left(1-\frac{M_{c}}{M_{1}^{2}}\right)$, provided M_{c} is small compared to M_{1}.

All rotations calculated for plotting $L_{\text {lp }}$ in graphs 3.1 to 3.10 are in accordance with equation 3.8 .
(b) Effect of lateral binders.

The danger of an unbound over-reinforced section is obvious from graph No. 3.5. The beam has a brittle failure even before the rotation at the limit I_{1} is attained. The maximum bending moment is also less than
that the calculated value at I_{1}. Practically no plastic rotation is available. A considerable improvement is gained in the values of rotations as well as the maximum moment, by the use of a small amount of binders (compare graphs 3.5 and 3.8). With a closer spacing of binders such as used in Beam No. 10, the rotation characteristic is highly ductile and resembles an under-reinforced member. In fact the limitation in the permissible extension of the jack prevented sufficient deformation to be applied to Beam No. lo, to be able to plot the falling part of the curve. The availabse rotation in this case is about $21 / 2$ times the calculated value.

In prestressed concrete structures, a critical section may becorie undesirably over-reinforced, due to linear transformation. Guyon ${ }^{(28)}$ recognised the fact that the efficiency of redistribution of moments may depend on the way in which a linear transformation is effected. According to him 'Transformations which cause the cable to be very close to the compression surface will reduce the efficiency'. The use of lateral binders will be advantageous where it is necessary to leave arsection overreinforced after such a transformation.

In the discussions which took place in the meeting held in the Institute of Structural Engineers, in March 65, when the 'Ankara' paper was presented by Baker and Amarakone, it was pointed out that an approach similar to the limit design method of steel structures, might also be applicable in case of R.C. structures, provided recognition was given to the falling part of the moment rotation curves.

Lagrange (32) has also commented that better redistribution would take place in prestressed members under similar circumstances. Pietrzykowski (40) however, observed that heavily loaded columns were highiy brittle and exhibited a tendency to sudden failure with a sharp fall in their moment carrying capacity. The results obtained by the author in case of over-reinforced beams, indicated that perhaps highly brittle columns might also be made to behave as ductile members, by the use of binders. The later part of this thesis is devoted to this problem.
(c) Crack pattern and moment curvature relationship near the critical section.

The pattern of cracks in all the beams shows that there is a tendency of the formation of a large crack near the critical section. This is very much pronounced in the under-reinforced beans. Perhaps bond slip is a major factor. Although the complete investigation into the causes of this behaviour is beyond the scope of this thesis, it may be pointed out that Raina (43) obtained similar results in case of pretensioned beams which did not have any untensioned mild steel reinforcement.

The moment curvature curves for sections which are slightly away from the critical section, were plotted in case of beams 3,4 and 5 vide graph 3.11. The nature of these curves imply an increase of stiffness towards the supports. The formation of a large crack in the centre may be directly responsible for this. The method of plotting these curves from the curvature distribution diagrams, is explained in Appendix 7.
(d) Comparison of the true moment rotation curves as experimentally obtained, with the theoretical idealizations according to the recommendations of the Ankara paper.

In comparing the actual results with the idealized limits, it is necessary to assess a point on the actual curve which corresponds to the actual yielding behaviour of the beam. This has been done as follows:-

1) Where the maximum moment attained by the beam is not widely different from the calculated moment at I_{2}, the actual yielding behaviour of the beam has been assessed from the state when a moment equal to that calculated at L_{1} is attained by the beam. The observed θ_{p} has been assessed from this point.
2) Where the maximum moment attained by the beam is appreciably different from this calculated moment at L_{2} (Beam No.5), the actual θ_{p} has been measured from the state when a strain of . 002 was attained by the extreme fibre of concrete in compression.

It will be found from graph 3.5 that the expression suggested by Baker at Ankara for calculating θ_{p} is not satisfactory in case of an overreinforced beam without binders and is it recommended that the use of the above formula may be permitted in conjunction with a minimum specified percentage of lateral binders in all over-reinforced cases. The minimum quantity recommended is $.75 \%$.

It was also observed that this expression only partially accounts for the increase in rotations that is possible by the use of binders.

The following modification based on empirical results is suggested to take a better advantage of the use of binders.

$$
\begin{gathered}
\theta_{p}=.4\left(e_{c 2}-\epsilon_{c 1}\right) \frac{Z}{d}\left(1-.1 \frac{p_{1}^{\prime \prime}}{p_{\min }^{\prime \prime}}+.1\left(\frac{p_{1}^{\prime \prime}}{p_{m i n}^{\prime \prime}}\right)^{2}\right) \ldots 3.9 \\
\text { where } p_{\min }^{\prime \prime}=.75 \\
p^{\prime \prime}=\text { actual percentage of binders. }
\end{gathered}
$$

Finally it was also observed that although the Ankara stress block gave a fair estimate of the ultimate strains, it failed to assess the position of the neutral axis with a fair degree of accuracy. Table 3.7 gives the actual values of the neutral axis and strain attained in Beams 1-10, against the calculated values. Further research has been done recently in this respect. (47)

(e) Effect of altering the prestressing force.

The comparison of graphs $3.3,3.6$ and 3.7 shows that a wide variation in the prestressing force (from 50% to 30% of ultimate) does not materially alter the moment of resistance of the beam, but a lower prestressing force considerably increases the plastic rotations. The cracking moment also drops significantly by lowering the prestress.
3.12. The next chapter is an introduction to portal frames which 45 the main subject of study in this thesis. Moment rotation characteristics of column members with high axial loads have $21 s 0$ been discussed.

TABLE 3.1

SHOWING CGARACTERISTICS OF 10 PRESTRESSSD AIND POST TENSIONED BEAMS.

Pre-
$\begin{array}{ll}\text { Ultimate } & \text { stressing } \\ \text { stress } & \text { ates; } \\ \text { in } & \text { tendons. }\end{array}$

BEAM NO.	b	b^{\prime}	d	D	$\begin{gathered} C_{c} \\ \text { p.s.i. } \end{gathered}$	fsu	$\begin{gathered} \mathrm{fp} \\ \text { k.s.i. } \end{gathered}$	0	
1	6 '	$2.25{ }^{\prime \prime}$	5.75"	$8.00^{\prime \prime}$	4775	\|228.0		117.5	. 0825
2	"	"	"	"	5360	"	121.5	. 1470	
3	"	"	"	"	4640	"	114.0	. 2550	
4	"	"	"	"	5040	! "	127.5	. 3120	
5	"	"	"	"	4960	"	127.0	. 3970	
6	"	"	"	"	5360	"	91.5	. 2550	
7	"	"	"	"	5200	"	75.3	. 2550	
8	"	"	"	"	5450	-232.5	126.0	1.3680	
9	.	"	"	"	5450	! "	126.0	"	
10	"	"	"	"	5450	"	126.0	"	

	$\begin{aligned} & 2 \theta_{1} \\ & \text { Calcu- } \\ & \text { lated } \end{aligned}$		$\frac{m_{1}(a c t)}{m_{1}(c a l)}$	$\frac{m_{2}(a c t)}{m_{2}(c a 1)}$	$\begin{aligned} & \theta_{p}(\text { act }) \\ & \theta_{p}(c a I) \end{aligned}$
1 - . 098	. 0303	. 026	. 95	1.03	1.8
$2-157$. 0305	. 018	1.00	$\begin{aligned} & 1.095 \\ & \text { if } \\ & \text { cou } \\ & .95 \end{aligned}$	$\begin{array}{r} 3.00 \text { a } \\ \text { rotation } \\ \text { nted up } \\ n_{\text {max }} \end{array}$
$3-.216$. 0345	. 0118	. 91	1.035	1.35
$4-262$. 0323	. 0077	. 96	. 99	. 65 !
$5-.276$. 0288	. 0057	. 94	. 885	. 875
$6-175$. 0416	. 0123	. 92	. 95	1.30
7 - 182	. 0470	. 0118	. 92	. 967	1.67
8..625** 319	1.0328	. 0100	1.05	1.04	1.00
9 1.25i.333	. 0328	. 0142	1.10	1.12	1.65
10 2.5:.344	. 0328	. 0185	1.07	1.10	3.00

TABLE 3.2

ABSORPTION CAPACITY.

(c) $3 / 4^{11}$ down C.A.

Weight of sample 3000 gms.

SIEVE NO.	Wt. retained.(gms)	passing $($ gms $)$	\% passing.
$3 / 411$	30	2970	99.0
$3 / 8^{\prime \prime}$	2940	30	1.0
$3 / 16$	30	0	0
	3000		

N.B. In each case, the weight retained is the average of three readings.

TABLE 3.4

STRENGTH OF CONTROL SPECIMENS.

BEAM	(1) Av. Cube Av. (2) Strength. Strength.	Ratio $2 / 1$	Av.Strength in flexural fension.	
1	5970	4200	.7	528
2	6700	4275	.635	535
3	5800	4275	.74	500
4	6300	4440	.7	495
5	6200	3970	.64	500
6	6700	4690	.7	530
7	6500	4550	.7	500
8	6800	4760	.7	520
9	6800	4760	.7	520
10	6800	4760	.7	520

Note: Av. cylinder is rather low due to capping difficulties.

TABLE 3.5
SCHEDULE OF CASTING PKESTRESSING AND GROUTING
AND TESTING.

TABLE 3.6
SUINMARY OF LOSSES.

RELIARKS.

1) The number shown in the sketch also indicate the sequence of prestressing.
2) The following data was taken from Concrete Research Magazine No. 40 Vol. 14.

TABLiE 3.6 REwARKS cont.
a) Specific creep factor for Beams 1, 2 and 3, which were tested after_gbout 20 days of prestressing $=140-\times 10^{-9}$. Ditto for Beams
4 and $5=110 \times 10^{-9}$. 4 and $5=110 \times 10^{-9}$.
b) For calculating shrinkage losses, the difference between shrinkage strains at 14 th and 34 th day was taken for Beams 1 to 3, and the difference between the 26 th and 36 th day was taken for Beams 4 and 5.
3) Losses in Beams 6 and 7 were mainly derived from Beam No.3, by altering the prestressing force.
4) An average loss of 1000 lbs. per wire was estimated in Beams, 7, 8 and 9, as derived from Beam 5 .

TABLE 3.7

Actual Values of $e_{c 2}$ and n_{2} against calculated values using the Ankara stress block.

$\begin{aligned} & \text { BEAM } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \mathrm{n}_{2} \\ \text { Calculated } \end{gathered}$	$\begin{gathered} \mathrm{n}_{2} \\ \text { Observed. } \end{gathered}$	$\begin{gathered} { }^{e} c 2 \\ \text { Calculated } \end{gathered}$	${ }^{\mathrm{e}} \mathrm{c} 2$ Observed.
1	. 115	*.088 at L.S.11	. 01	*.0039 at LS 11
2	. 155	*.12 at L.S.12	. 0075	*.0048 at LS. 12
3	. 245	. 16	. 0057	. 0092
4	. 335	. 25	. 0045	. 0057
5	. 445	.386 at I.S. 12 just before brittle failure.	. 004	. 0041 at LS. 12
6	. 21	*. 18 at L.S. 12	. 0060	*.O1 at L.S. 12
7	. 215	*. 18 at L.S. 12	. 0060	. 011 at LS. 12
8	. 3675	. 35	. 0055	. 0069
9	. 361	. 33	. 0070	. 0081
10	- . 356	*.33 at L.S. 15	. 0085	*.O1 at L.S. 15
REMA	KS.		-	!

* Observation could not be recorded in these cases at the ultimate stage, due to spalling.

CROSS-SECTON BEAMS 10,928 gemerml hayout

Fig 3.1

Details of Reinforcement in Beams 1 to 10

Prestressed Post tensioneo beams tisted in Imperal College (groutid) Beams 1 To 10

Stress Strain Curve of Mild Steel bars

FIG 3.6
Combining the fine Aggregate

FIG 3.7
Combining the fa with CA

FIG 3.8

FIG $3.16 a$
DISTRIBUTION OF BENDING MOMENT in S-SUPPORTED BEaM
KITH CONGENTRATED LOAD AT CEMTRE

FIG $3 \cdot 17$

Shoxing equivalent plastic hinge lengry I_{p} having uniporm curvature

FIG $3 \cdot 18$
showing Zones of Cracked and uncracked flexural rigidity in a prestressed concrete beam having cables at constant eccentricity AND SUBJECTED TO A PORT LOND AT CENTRE

$$
\begin{gathered}
\text { NOTE } \mathfrak{L}_{L} \text { denotes zours of uncracked es' } \\
\\
2 \mathfrak{l}_{C} \text { is the zone of cracked ai }
\end{gathered}
$$

Legend as in graph 3.1.

GRAPH No 3.2
Moment Rotation Characteristics Beam no 2

GRAPH 3.15
DEFLECTION OF BEAMS

Graph 3.16
deflections Beam no 5

Plate 3.1 Beams 1 \& 2 after failure

BEAM № 3 SED

$$
\text { Plate } 3.2 \text { Beams } 3 \text { \& } 4 \text { after failure }
$$

$$
\text { Plate } 3.3 \text { Beams } 5 \text { \& } 6 \text { after failure }
$$

Plate 3.4 Beams 7 \& 8 after failure

$$
\text { Plate } 3.5 \text { Beams } 9 \text { \& } 10 \text { after failure }
$$

Plate 3.6 Test arrangement for beams 1 to 5 with Proving ring

Plate 3.7 Close up veiw of Beam 5 side B after crushing

CHAPTER 4.

AN INTROUUCTION TO PRESTRESSED CONCRETE PORTAL FRAMES.

4.1. History of Tests on Portal Frames.

Prestressed portal frames have not been tested as widely as prestressed continuous beans. Out of the few tests performed, those done by La Grange (32) and Pietrzykowski ${ }^{(40)}$ are notable.* La Grange concluded from his tests in the Cambridge University, that better redistribution of moments could be achieved if recognition was given to the flling branch of a load deformstion characteristic. Pietrzykowski carried out tests on three prestressed concrete ring portals, in the University of Southhampton. He concluded that the condition of full redistribution did not, in general, occur in prestressed concrete structures. In his fremes, the columns were heavily loaded to simulate conditions similar to those which occur in the lower storey of a building frame.

The incomplete redistribution in Pietrzykowski's frame could be attributed to the brittleness of the heavily loaded columns. All over-reinforced members are also brittle. The author has found that a brittle failure can be successfully overcome by the use of closely spaced binders. The ductility introduced by properly spaced binders is so effective that full redistribution may be ensured in the true sense (i.e. without any reduction of moments at the plastic hinges), and the necessity of the usc of falling branches for better redistribution, may be dispensed with.
*Recently more research has been done on prestressed nortal frames (ว5 and 27$)$

Three fixed footed portal frames were tested by the author to demonstrate the use of binders to obtain full redistribution. The first two frames had over-reinforced members and they were identical, except for the act that one of them had closely spaced binders at critical sections, while the other had no binders. The third frame had heavy axial loads on both columns. It was similar to Pietraykowski's frame but it was reinforced with closely spaced binders throughout the length of its members. The results of the tests are discussed in Chapter 6.

4.2 A review of the paper presented by Baker and Amarakone, at a joint meeting of the Coment and Concrete Assoeiation, The Institute of Civil Engineers, The Institute of Structural Engincers and the Reinforced Concrete Association, held on 30.3 .65.

The contents of this paper were similar to those presented by the authors at the Ankara meeting of the C.F.B., held in September 1964.

The philosophy of limitins plastic rotations in concrete structures, as propounded by Baker, was severely criticized by many. Jones thousht that experiments on moment rotation characteristics were not carried far enough. He said that if one tested steel beams with a very flat plastic curve, depending on where people stopped the test, there would be a very wide distribution of results. As regards continuous concrete structures, he thought that many of the hinges would be on the falling branches of the rotation curves, which should be taken into account.

Cranston agreed that there would be some cases where one would have to check rotations. He pointed out that if a reduction of moment of 10% could be tolerated, the rotations would be doubled. He further said that one of the alternatives to avoid brittle failures, was to let a part of the structure remain below the limit L_{1}, even under the ultimate loads (for example, at hinges of columns subjected to heavy axial loads). Such an approach, he said, had been advocated for the design of columns in multi-storeyed steel frames where a plastic design was used to proportion the beams.

The work taken up by the author has to be viewed in the light of the above discussion. The author has to point out that it is not necessary to consider the falling branches in order to increase rotations in brittle members, provided binders are used at a suitable spacing.* The use of binders can be extended to heavily loaded columns, provided the expense of using binders throughout the full length of the columns (see page 116) is justified. However, if it is preferable not to permit rotations in column hinges and to keep part of the structure elastic, for the sake of economy, the author has pointed out a method in Chapter 7 of doing so, by adjusting ' \hat{p}_{i} ' values to zero, at hinges where plastic rotations are undesirable.

l. 3 Details of the tests proposed by the author.

As already stated, threc fixed footed portals were the main subject of study by the author. The aim of the investigation was a study of the distribution of stress and strain resultants in the
In fact it is extreaely doubtful whether the falling branch technique will really help in obtaining a higher load factor, in really brittle cases.
portals in the neighbourhood of the ultimate load to demonstrate the effectiveness of lateral binders.

Before testing the frames, it was considered necessary to investigate the moment rotation characteristics of prestressed members subject to axial loads. A pilot project was initiated to determine the moment rotation characteristics of members similar to those to be incorporated in the frames.

4.4 Details of the Pilot pro.ject.

Two members representing the columns of Frame No. 3, were tested in a rig devised by Soliman (47). The dimensions, the reinforcement, the properties of the mix and other details of these columns were kept as close as possible to those proposed for the two columns of the actual frame.

In the tests an attempt was also made to keep the distribution of moments in the colurns similar to that which would occur at ultimate load of Frame No. 3, assuming conplete redistribution of moments. The position where the tie bar was connected to the brackets clanped at the end of the specimens (plate 4.1) was altered, so that the value of 'Z' was different in the two specimens. This was done so thet the actual distribution of moments in the two columns of Frame 3 might not be exactly identicsl.

It may be noted thet under conditions of equal moment being applied at both the ends of the specimen, the plastic rotation is concentrated at the weaker end of the two. (The other end remains
at the state L_{1}.) The difference in the readings between the clinometers fixed to the top and the bottom brackets is the desired plastic rotation. The rotation between the hinge and the point of contraflexure was also measured by recording the change in the slope of a mirror fixed as near as possible to the point of zero moment. The change in the slope of the mirror was recorded by observing the change in the readings of an illuminated scale as seen through a fixed telescope, and using the principle that the rotation of the mirror is half of the angle of turning of a ray of light reflected by the mirror.

Additional moments caused by the change in the geometry of the specimen were also accounted for. The displaced position of the critical section was assessed by noting the rotation at the end of the specimen, and assuming that the specimen was rigid between the point of application of the vertical load and the critical section. This was a reasonable assumption because the specimens were of considerably higher stiffness at the ends and there was a sharp change in the section of the specimen, where the critical section was situated. The results are presented in Graphs 4.1 and 4.2 and Fig. 4.1. A slight increase in plastic rotation was observed in Col. l, in which the slope of the bending moment diagram was steeper than that in Col. 2. Similar observations were made by Mattock (20) and Soliman (47). It was concluded from the graphs that closely spaced binders did increase plastic rotations considerably, in heavily loaded columns, provided binders were continued in their entire lengths, to prevent a brittle failure
in between the critical sections, induced by additional moments due to change in the geometry of the structure. The fact that the use of binders in the entire length of a column is expensivn, cannot be ignored and perhaps the advantage gained by designing fully plastic, heavily loaded columns, is in most cases, more than offset by the increased cost. The use of binders is, however, a useful device to avoid brittle failure in cases where rotations in column hinges cannot be avoided.

4.5 Stress resultants in a portal frame by the elastic theory.

Any statically indeterminate structure can be analyzed by either assuming the forces or the displacements, as the unknowns. The solution is obtained by solving the resulting linear algebraic equations. In the discussions which follow in this thesis, the method of analysis and the notation used, are the same as used by morice (36). In case of fixed footed portals, there are three unknowns and the linear equations are of the following form:-
which can also be expressed as $F \mathrm{x}=-\mathrm{U}$, in abbreviated notation
where F is known as the flexibility Matrix.

In order to follow a step by step analysis involving the successive formation of plastic hinges, it is more convenient to choose the unknowns as moments at critical sections, where plastic hinges are expected to form. The elements $\mathrm{f}_{11}, \mathrm{f}_{12}, \mathrm{f}_{13}$, represent rotations at hinge No.l, due to unit moments applied respectively at hinges 1, 2 and 3. These elements have been derived by different authors, by different methods. For our discussions we shall restrict ourselves to the principle of virtual work as used by Baker. 10 and 4) The derivation of the stress result ants will be found in Appendix 8.

4.6 The secondary effect of the prestressing force and the concordant cable.

The act of prestressing a structure causes each section to undergo deformation (in the case under consideration, axial deformation anqbending deformation). If these deformations are considered to be acting on a statically determinate form of the structure, then discontinuities are created at, and corresponding to the releases.

The chosen profile of the tendons in a structure is said to be concordant, if the discontinuities at releases caused by the prestressing forces are nil. In such a case no secondary reactions are induced in the structure, because no forces are required at the releases to restore continuity in the structure. The centroid of the resultant thrust at all sections, therefore, lie at the centroid of the applied force in the tendons.

Let $U^{p}{ }_{I}, U_{2}^{p}, U_{3}^{p}$, denote the hinge deformations in the fixed footed portals under discussion, due to the prestress alone. $\mathrm{U}_{1,2,3}^{\mathrm{p}}$ are product
integrals taken all round the structure and are given by the following expressions
$U^{p}{ }_{I}=\int \frac{m_{1} m_{p}}{E I} d s+\int \frac{n_{1} n_{p}}{E A} d s+k \frac{s_{1} s_{p}}{S_{A}} d s \quad \begin{aligned} & \text { (this term is } \\ & \text { sinall and may } \\ & \text { be neglected.) }\end{aligned}$
etc. for 2 and 3 .
where m_{1}, n_{1}, s_{1} are the ordinates of the moment, thrust and shear diagrams all round the structure, due to unit moment at hinge No. 1 and m_{p}, n_{p} and s_{p} are similar ordinates due to the prestress.
The conditions for concordancy are given by ${ }_{U^{p}} 1,2,3=0$.

In a fixed footed portal, subjected to a system of loads as proposed for the author's tests, there are 5 critical sections where suitable values of eccentricities have to be assigned, (assuming that at the corners, the column and the transom have the same eccentricity.). Having satisfied the above 3 conditions to attain concordancy, enough scope is usually left in the choice of eccentricities to satisfy the requirements of the ultimate moment of resistance required at the critical sections.

In Frames 2 and 3, the ultimate monents of resistances at the bottom of the left foot, had to be increased by the use of mild steel bars, in spite of the above freedom of choice.

Calculations for finding the concordant cable will be found in Appendix 9.

4.7 Collapse load of the proposed frames.

An estimate of the collapse load can be made by the rigid plastic theory. Just before collapse, the structure is still statically determinate, but id about to change to a mechanism. At an intermediate stage of loading, when the structure is statically indeterminate, but has a degree of indeterminacy less than the initial value, the distribution of stress resultants can be conveniently determined, if it is assumed that the 'EI' value of the members having a uniform X-Section, remain constant between the hinges. Such calculations for intermediate stages are given in appendix 10 .

The ratio of the vertical and the sway loads in all the frames was l:l. It was chosen n^{n} that the collapse would occur under a combined mechanism except in frame 3, where an over complete mechanism failure was contemplated. Pietrzytowski's frames also failed by an over complete mechanism, see details in appendix 11.

4.8 Calculation of rotations at collapse and intermediate stages.

The rotation at a hinge, at any stage of loading, can be obtained by calculating the integral of the products of the ordinates of the bending monent diagram under the given $10 a d s$, and the bendincs moment diagram obtained by the application of a unit moment at the hinge, taken all round the structure, provided no closing of hinges has taken place andsubject to the conditions explained in the next paragraph. These integrations
can be conveniently carried out, if a uniform 'EI' value is assumed to exist between the hinges. The calculated rotations are then the angular discontinuities at the hinges. Care must, however, be exercised in choosing the release hinges so that just before collapse, when the structure is still statically determinate, the calculated rotations are of the correct sign to correspond with the induced redistribution moments.

An example of the above conditions not being satisfied, has been siven in appendix 12 . In this case the last hinge to form was first established by a step by step analysis. The principlc of contragredient relations was used to obtain zero rotation at the last hinge, in the manner set out by Wunro(38)

4.9 Summary of anglysis of portal frames by Linear methods.

Three portal frames were analyzed by the author prior to the actual tests. The results of such an analysis by the linenr theory, including the distribution of stress resultants in the elastic phase, and also their distribution in the reduced elastic phase, assuming a constant 'EI' value between the hinges and an elastic-plastic monent curvature relationship with angular discontinuities at hinges, have been deterrined. Rotations at the state of collapse and intermediate stages have been calculated. It was ensured that the chosen release hinges were the ones where plastic hinges would form.

An attempt has been made in the next chapter to analyze prestressed concrete sections in the cracked phase.

LEGEND
Figs in circle are load stages Figs without circle are curvaturexio 0^{4} vomits AT LS (15) $M=M_{\text {max }}$ AT LS (10) $M=\cdot 75 M_{\text {max }}$

FiG 4.1

distribution of curvature in col 1
scale ICM to 6"
lCM REPRESENTS 20×10^{4} UNITs of curvature ($1 / 1 \mathrm{WCH}$)

Plate 4.1 Test apparatus for columns under heavy axial load

Plate 4.2 Hinge at the bottom of column 1

[^0]
ChAPTER 5.

AINALYSIS OF PRESTRESSED CONCRETE SECTIUNS IN THE CRACKED PHASE.

5.1 INTRODUCTION.

An analysis of a structure depends on the proper knowledge of the behaviour of its sections. A cracked prestressed concrete section beheves in a manner similar to that for reinforced coincrete. Edwards ${ }^{(25)}$ has discussed in detail the path of the moment curvaturo relationship of a prestressed section in various phases of loading, unloading and reloadins. The object of this chapter is to study how the flexibility matrix method of annlysis can be applied to cracked prestressed sections. A coaputer progranme for deriving the theoretical monent curvature relationship has also been developed.

5.2 Centroid of a cracked section.

Before proceeding further, it is necessary that a suitable definition be given to the centroid of a cracked section in the inelastic phase. Certainly the geonetric centroid of the entire area of the section is not a satisfactory substitute for the point through which the true axis of the nember to which the above section belongs, may be assumed to pass. The internal geometry of the entire structure is governed by the position of centroids at the critical sections in the neighbourhood of the ultimate load. Edwards ${ }^{(25)}$ has shown thet the
effect of the change in the internal geometry is significant. From an analogy drawn from the methods used in elastic analysis, an effective centroid of the suction may be defined to be the point where the axial load nay be increased by an infinitely small amount, without causing a change in the curvature of the section.

The curvature depends on the properties of the section and the stress-strain curves of its elements. It is also a function of the applied moment, the axial load and its line of action. Fer a particular section, the section properties and the stress-strain curves are constant. The curvature can then be expressed by the following equation:-

where K is the curvature
M is the applied moment
N is the axial thrust
x is the distance of the line of action of N from the extreme fibre (see Fig: 5.1).

If the axial load in, passes through the effective centroid,

$$
\frac{\partial K}{\partial N}=0
$$

The value of 'x' is therefore determined from the equation

The author has not attempted an analytical solution of equation 5.2 for a prestressed section. Instead, he hes shown in Appendix 13, by a computer analysis, using Cranston's $M-P-\phi-\theta$ Programme (22), \& the Serius Computer of the Cement \& Concrete Association that a real value of ${ }^{\prime}{ }^{\prime}$ ' exists for a section in a
reinforced concrete member, which satisfies the above equation.

5.3 Elexibility matrix of a cracked prestressed concrete structure.

In para. 4.5 of chapter 4 , it was stated that the equations governing the continuity of a structure at the releases, can be expressed as:-

$$
F X=-U
$$

'U' is a colunn matrix, the elements of which are obtained by integrating the sum of the products of ordinates of the stress resultant diagrams due to the applied loads on the released structure, and ordinates of diagrans due to unit restraints at the releases. In prostressed structures ' J ' must include similar integrals in respect of the stressresultant diagraras obtained by treating the prestressing forces as oxternal loads. It was further shown in Chapter 4, that if the cable were concordant, these additional terms due to the prestressing forces, are zero.

The distribution of stress resultants in the structure is given by the following set of equations (assuming that there are only 3 unknowns).

$$
\begin{aligned}
& m_{t}=m_{0}+n_{1} X_{1}+m_{2} X_{2}+m_{3} X_{3} \\
& s_{t}=s_{0}+s_{1} X_{1}+s_{2} X_{2}+s_{3} x_{3} \\
& n_{t}=n_{0}+n_{1} X_{1}+n_{2} X_{2}+n_{3} X_{3}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{m}_{\mathrm{t}}, s_{t}, \mathrm{n}_{\mathrm{t}} & \text { are the total moment, sherr and } \\
& \text { thrust, acting at a section which } \\
& \text { are to be resisted by intemal } \\
& \text { forces including those set up by } \\
& \text { the prestressing force in the tendons. }
\end{aligned}
$$

n_{0}, s_{0}, n_{0} are the stress resultants at the section, due to external loads on the released structure (prestressing forces are not considered here as external forces).
${ }^{m} 1,2,3, s_{1,2,3},{ }_{1}, 2,3$, are the stress resultants at the section due to unit restraints acting at releases 1, 2 and 3 ,
and $\bar{X}_{1} ; 2,3$, are the actual restraints at releases l, 2, 3 and include parasitic reactions.

The above set of equations can be expressed as
where $H=\left(\begin{array}{lll}m_{1} & m_{2} & m_{3} \\ s_{1} & s_{2} & s_{3} \\ n_{1} & n_{2} & n_{3}\end{array}\right)$
$x_{t}=\left(\begin{array}{l}m_{t} \\ s_{t} \\ n_{t}\end{array}\right) \quad x_{0}=\left(\begin{array}{l}n_{0} \\ s_{0} \\ n_{0}\end{array}\right)$ and $X=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$
In order to determine X, the stiffness of the sections must be known at all points of the structure. Baker has suggested that an equivalent 'EI' value given by tan \varnothing in Fig. 5. Z , which is compatible with the value of ' m_{t}^{\prime} may be used in the cracked zones of the structure. The integrals $\int \frac{m_{p} m_{k}}{E I}$ as has then no significance in the cracked zones and must be omitted in the evaluation of the matrix ' U_{K}^{\prime} ', for the $k^{\text {th }}$ release.

Similarly if the value of 'EA' as susgested b.y the author in Appendix 14 , is used in the analysis, the integral $\int \frac{n^{p_{k}}}{E A} d s$ must also be omitted in the cracked zone.

Thus the equivalent 'EI' approach may be used for a non-linear numerical analysis of a structure by the flexibility method. In this case, when the structure has been loaded into the non linear phase, a simulated elastic structure can be established in which the secant 'EI' values are so defined that under the total required load the correct deformation characteristics are obtained.
5.4 A computer orograme to derive the nonent curvature relationship of a prestressed section.
Cranston (22) has produced a refined coaputer programe to find the moment curvature ralationship of a cross-section. The section is broken up into small strips and different stress-strain rel tions can be assigned to each strip. These strips are small enough to make the assumption valid that they are uniformly stressed. The programe can deal with an axial load acting at any specified point of the X-section.

The calculation involves an initial proposed value of strain in the axis of the load. Corresponding to a given value of curvature, the strain distribution across the section is then deternined. The compressions and tensions are calculated in the strips and if their algebraic sum differs frol the axial load by a quantity which is smaller than that specified, the value of the monents is calculated curresponding to the given value of curvature.

The method seeks values of moments for given values of the curvature. Since the curvature continually increases even for decreasing values of the moment after the peak has been reached, it is possible to trace the falling branches of $\mathrm{m}-K$ relations. (Two values of moment are impossible for one value of curvature.) Local dips ne also faithfully recorded.
N. Somes (46) has produced a programe for prestressed concrete members, in which the real root of a cubical equation is sought by the programme.

The programe produced by the author is based on a systematic trial and error method in which a technique sometines called the Artillery Technique, has been used. The position of the neutral axis is gradually raised fron the bottom fibre towards fibre 2. For each position of the neutral axis proposed, the strain value at the top fibre is continuously increased from a nil value, till the compression in the concrete calculated according to the stress block presented by Baker at Ankara, is nearly equal to the sum of the tension in the tendons, (taking into account changes in tension, caused by changes in concrete strmins at the level of tendons) and the axial thrust, if any. This method is particularly suitable for prestressed concrete where the tendons have a tension to start with. Both moment and curvature are calculated when the above condition is satisfied. Calculation of such values for a range of values of the neutral axis, enables the 'M-K' relation to be traced out.

The programie can also calculate the curvature for a given value of moment. In this case the calculated moment is compared with the given volue, for continually decreasing values of the neutral axis, and the curvature is calculated when both the values of the monents are nearly equal.

The Artillery technique is used at each stage when a change is proposed, either in the position of the neutral axis, or in the value of stroin at the top fibre. In other words, the area under preview is first scanned by the computer in larger intervals. The computer then enters into a finer mesh by retreating backwards when it finds that the desired condition has been satisfied in the larger strides.

The only condition to be satisfied at each chosen position of the neutral axis is that the compression is greater than the sum of the tension and the axial thrust. The accuracy of the calculated moment has been ensured by entering into finer meshes, such that the position of the neutral axis is detcrmined correctly up to three decimal places. The disagreement between the forces across the section fron the point of viow of equilibrium, is then negligible.

One of the advantages of this technigue is that there are no conversence difficulties. The prograrme is, however, not designed to doal with falling branches. It was thought that the necossity to deal with a falling branch would not arise in the franes in which all plastic hinges were ductile. The Flow diagran of the programe is shown in Appendix 15.

The programme has been used to evaluato M- relations at critical sections of Frare No. 2 . An attempt has been mado in the concludins chapter, to calculate discontinuous rotations at hinges, by using a Trilinear idealization derived from these results.

Fig 5.1

FIG. 5.2

CHAFTER 6.

TESTS ON PRESTRESSED CONCRETE PORTAL FEAMES

WITH FIXED FEET.

6.1. Object.

The object of these tests was to establish the following:-

1) Laterally unbound concrete is highly brittle. In cases where the rotational capacity oi hinges depends on the ductility of concrete (e.g., over-reinforced beams), a failure may sudaenly occur in, a framed structure without warning, at a load considerably lower than the rigid plastic failure load of the frame.
2) Properly spaced lateral binders inprove ductility in concrete adequately, to ensure full redistribution of moments in a framed structure by formation of plastic ninges, even in heavily loaded columns. Pietrzykowski (40) has shown that the condition of full re-distribution does not exist in similar frames with unbound concrete.

A continuous beam was not chosen as a field of study to establish the possibility of a brittle failure, because the amount of rotation needed for full redistribution is rather low in a continuous beam. This is illustrated in Fig. 6.1. Consider a system of point loads being applied to a continuous beam or a portal frame having equal moments of resistance (m) at all critical sections.

A two span beam which is the worst case for redistribution of moments amongst continuous beams subjected to central point loads, needs a rotation of $\frac{\mathrm{ml}}{12 \mathrm{FI}}$ at the support hinge, while a portal frame in an extreme case, subjected to a vertical and sway load as shown in Fig. 6.1 , needs a rotation of $\frac{\mathrm{ml}}{\mathrm{EI}}$ at hinge $\mathbb{N} 0.1$.
6.2 Frame details.

General details are given in Fig. 6.2. The transom span and the column height of the frames were 9^{\prime} and $41 / 22^{\prime}$ respectively, allowing for the tolerance which was necessary to permit repeated use of the shuttering. Frames I and II were identical, exceptins for details of shear reinforcement and lateral binders. The transom in these two frames was of $6^{\prime \prime} \times 4^{\prime \prime}$ I section with a $11 / 4^{\prime \prime}$ wide web, while the columns were of rectangular section, $53^{\prime \prime} \times 4^{\prime \prime}$ in size. This facilitated the placing of concordant cables with varying eccentricities. The moments of inertia of the transom and the columns were the same.

In Frame No. 3, the X-section of all mernbers was rectangular, and of dimensions $6^{\prime \prime} \times 4{ }^{\prime \prime}$. This frame closely resembled Pietrzykowski's Ring portal No. GK ${ }^{(f)}$.

Indented tendons of $.276^{\prime \prime}$ and . $2^{\prime \prime}$ dieneters were used for prestressing. The tendons of .276" diameter were of the same type as used in Beams 8-10, described in Chapter 3. The idealized load extension characteristics of $.2^{\prime \prime}$ diameter tendon used in the columns of Frame 3, are shown in Fig.6.3.

6.3 Concrete inix.

The concrete mix was the same as used in the design of a prestressed concrete pressure vessel tested in the Imperial College and in the investigation of creep properties associated with it (3). The mix had a high workability of 2" - 3" slump, but the shrinkage and creep properties aimed at, was representative of normal concrete.

The coarse aggregate was Thames river gravel of $3_{8}^{\prime \prime}$ max. size. The aggregate cement ratio was greater than 3.0 to minimize creep and shrinkage and the sand content was restricted to a ratio of 30% by weight of total concrete.

The details of the mix used are as follows:

Aggregate cement ratio
Sand percentage by weight Water cement ratio
3.75
30% of total aggregate.
.564 (total),
. 500 (effective).

The grading of the aggregate is given in the following table:-

Percentage passing.

Size of Sieve.	$3 / 6$	$3 / 16$	7	14	25	52	100
River gravel $3 / 3-3 / 16^{\prime \prime}$	99	2	0	0	0	0	0
Sand $3 / 16 "-$ 100	100	100	91	75	54	13	2

6.4 Design - general details.

As discussed in 4.7 , all the three frames were designed to fail under the combination of an equal vertical and a horizontal load. In frame No. 3, the position of the vertical load was, however, a quarter span away from the centre of the transom towards the right hand column, (i.e. $3 / 4^{\text {th }}$ span away from the point of apolication of the sway load). Excepting for the sway load, this arrantement was the sane as followed by Pietrsykowski (40), in his frame Mo. GK. The necessity of the sway load has been explained later on.

In frames 1 and 2, in which the position of the tendons varied from point to point, it was necessary to find an envelope of maximum moments of resistance, to ensure that a premature development of hinges would not occur at a wrong place. This was done by writing a computer programme. The envelope as applicable to Frame 2, is shown in Fig. 6.4. It takes into account the contribution of mild steel in calculating the moment of resistance where necessary. A cracking moment envelope which takes into account the effect of increase in the prestressing force and which is based on 2 flexural tensile strength of $500 \mathrm{lbs} / \mathrm{sq}$.inch, was also calculated by the computer programme and is shown in this diagram. It was ensured that during prestressing, a tensile stress of more than 200 lbs/ sq. inch was not exceeded anywhere in the frames.

A preliminary calculation of moments at I_{1} and I_{2}, in which the effect or the axial loads are
neglected, show that all critical sections in Frames 1 and 2 are over-reinforced - vide Table 6.l. Plastic rotations predicted by Baker's theory and those required for full redistribution are also shown in this table. It can be easily seen from this table that Frame No. l was designed to fail at the root of the right hand column for want of ductility at that point.

Frame No. 3 Vs Pietrzykowski's frame GK.

The properties of the X -sections of the two frames have been compared in Table 6.2. The necessity of an additional side sway load in the author's Frame No. 3 is explained below.

Practical considerations dia not permit the use of jacks beyond 30 ton capacity, and these were planned to operate almost at their maximum capacity. The axial loads in the columns were in the region where a lower monent of resistance would be obtained by incressing the axial loeds. During the experiment, it was therefore not possible to ensure, by increasing the axisl loads, that hinges would form in the columns. The side sway load was introduced to force at least two hinges at the feet of the columns, before collapse. If only a vertical load were applied at the guarter point as was done by Pietrzykowski, foilure might have taken place by a beam mechanism with sill the three hinges in the beam itself. The vurpose of the experiment would then have been defoated.

The side sway load also increased the amount of rotation needed at the top of the right-hand column for full redistribution of moment. A. step by step analysis shows that the rotation required at this point at the time of failure by the beam mechanism under a vertical load only, would have been $\frac{1.156 \mathrm{mh}}{\mathrm{EI}}$, against a value $\frac{3}{2} \frac{\mathrm{mh}}{\mathrm{EI}}$ required under the combined mechanism of failure proposed by the author. Ho:vever, in the actual experinent, an advantage of this fact could not be taken to demonstrate the rreater ductility of columns, as the hinge did form in the besn itself.

An attempt was made to have equal noments of resistances in all the frames at all critical sections.

Shear Reinforcement.

Shear reinforcement was provided in all the frames, according to the recommendations of Le onhardt (33).

In Frame 1 the shear reinforcement was in the shape of bars bent in a zig-zag fashion, lying in the plane passing throush the longitudinal axis of the members* In this way the presence of any transverse reinforcement which might have an influence on the confinement of concrete was avoided. In Frame 2, two legsed stirrups were used in the conventional way, in conjunction with lateral binders at $l^{\prime \prime}$ spacing. In case of the transom, these binders were in the compression flange. (See Fig. 6.5 for details.)

A system introduced by Edwards.

The pedestals of the frame.

An extra care was taken to design the reinforcement in the pedestals. Four legged stirrups of $3 / 3^{\prime \prime}$ cold worked bars were used at $21 / 2^{\prime \prime}$ spacins in the pedestal of Frane io. 3, to take care of the heavy shear caused by the self equilibrating system of axial loads acting on it.

6.5 Castiny details.

The frames were cast in one piece in a timber mould lying on the floor. The level of the floor had a maximum deviation of .l". To minimize the possibility of alterstions in dimensions due to the repeated use of the formwork, the vertical shuttering on the inner side was braced by ansle iron struts - (plate 6.1). In addition to this, a short piece of a hollow square tubing of 1 " width, was partially introduced into each pedestal through holes left in the Side shutterins, at the time of casting. The protruding ends of the tubings were then connected together by two angle irons introluced between them. A strut parallel to the transom was thus formed between the pedestals which helped the feet to remain at a fixed distance until the time of the testing, when the connecting angle irons were disengaged.

The front faces of the pedestals (which were horizontal and facing upwards at the time of casting) vere also connected together by a $5^{\prime \prime} \times 3^{\prime \prime}$ angle iron. Necessary bolts for this purpose were lightly tapped into the concrete when it was still wet, after the castins was over. This prevented
the twisting of the feet during transport and lifting. Nine, $6^{\prime \prime}$ control cubes were cast and cured as far as possible under the same conditions as existed for the main specimen.

The frames were partially prestressed up to 75% of the desired final values to toke up handing stresses during lifting and trnsporting. The prestressing was done while the frome was still lying on the floor on its bottom shuttering. In frames 1 and 2 , in which the transom was of I section, foam polystrene was used in short lengths at each end of the bottom shuttering under the transom, to form the projection which was needed to give the desired shape of an I section. This prevented the sticking of the bottom shuttering to the specimen, at the time of prestressing. The prestressing was done systematically in two stages, covering all the members so thet excassive stresses and cracking was avoided at all stages. Enough length of bars were left at the stressing ends to enable the operation of restressing to be taken up at a later date. The prestressing force was measured by using a tiny load cell of 5 tons capacity at the rear of the jack. (i.e. between the body of the jacir and the grip used behind the jack.)

6.6 Test Rig.

The general arrangement of the testing frame is shown in Fig. 6.6. The rig was first developed by Eawards. Later on, the reaction measuring dynamometers (described in 6.8), to which the
pedestals were clamped, were developed by Gupta (27). The vertical load was applied through a jack of 4 tons capacitv and vas measured by load cell screwed into the jack. The load was transmitted to the transom through a ball and socket joint on the top of $a 1 / k^{\prime \prime}$ wide loading platten. The sway load was applied through a jack of 10 tons capacity and the lond was measured by a similar load cell. In this case, the loading platten rested on tiny rollers designed to move in vertical grooves cut onto the face of a mild stecl bridge, which covered the end anchorage.

The vertical load almays remained at the centre of the transon due to an ingenious hydraulic system devised by Edwards.

The movement of the transom was transmitted through a duramy jack, touching the right-hand corner of the portal frame, to an exactly similar jack clamped to the test rig on the left-hand side of the point of application of the vertical load, by the displacement of oil in the hydraulic system connecting the two jacks. When the system was sealed against leakages after carefully bleeding out air pockets, the movement of the rams of both the jacks were equal to the movement of the transom. The jack at the left-hand side of the test rig, was mechanically coupled to a horizontal plate holding the main vertical jack. This plate was capable of sliding forward, due to the presence of in set of rollers introduced between itself and a bearing plate welded to the rig. The vertical jack therefore, always moved by an amount equal to the movement of the transom, and remained at its centre.

Great care was taken in aligning and fixing the pedestals to the reaction measuring dynamometers. The base plates of the dynamometers were firmly fixed to the floor.

A tubular scaffolding independently connected to the floor, provided a frmewort to which transaucors* were connected, for the purpose of recordins deflections.

Another independent platiorm wes provided for watching cracks without disturbing the potentiometers.

6.7 Apolication of axial londs to columns in

Frame 3.
It was an implied condition of introducing a sway load in this frame, that the jacks used for applying the axial loads, must also move freely with the frame. It was impossibla to provide this novement by the method that was adopted for the jack used for applying a point load to the transom. Not only was there not enough space in the test rig, but also such ? system would have overloaded the reaction measuring dynamometers at the base of the pedestals. A self-equilibrating system was therefore chosen, such that the reaction was absorbed by the pedestals. Four mild steel bars of $1 /{ }^{\prime \prime}$ diemeter were chosen to provide the necessary tension and adequate stability in the system. Each bar was connected to a hinge both at the top and the bottom. Full details are shown in Figs. 6.8 \& 6

A transducer is very similar to a potentiometer.

Holl-o-Ram jacks of 30 tons capacity were used for applying the axial loads. A $21 / 4$ thick plate was screwed onto threads specially cut on the outer circumference of the jacks. Knife edge bearings which gave the necessary freedom of rotation to the top of the tension bors, were fixed on this plate. Similar bearings vere provided underneath rectangular cross pieces, which passed through grooves provided in the pedestals at the time of casting. Each jack rested on a cylindrical hinge attached to a base plate at the top of the column. The latter also acted as the end plate for the anchors of the prestressing cables and was thus fixed in position.

Both jacks were fed by the same hydralic system. It was originally contemplated that the load in the jacks would be maintained by an Amsler Cabinet having a load maintonance device. Unfortunstely, a cabinet capable of delivering an oil pressure of about $8500 \mathrm{lbs} / \mathrm{sq}$.in. and suitable leads to take this pressure, necessary to develop the required lond in the jacks, wes not available. A hand pump was used instead, with leads of steel tubing, except for short lengths of rubber tubing, needed to provide flexibility at suitable points. These rubber tubings were guaranteed for 2 pressure of $5000 \mathrm{lbs} / \mathrm{sq}$.inch, but they behaved satisfactorily under the required pressure.

The loads transmitted by the jacks were primarily controlled by an oil pressura zauge attached to tho pump. Any fall in the oil pressure was recouped from time to time. The exact load
acting on each column was, however, recorded by four strain gouges fixed at the centre of each tension bar, as if each bar were a load cell. Although it was not practical to use these eight load cells to control the loads on the two columns, yet they provided an accurate method of measuring the actual loads. The axial lond nimed at was 62500 lbs. The readings of the strain gsuge fixed to the vertical bars indicated tiat the actual load in the column was 60000 ± 1500 lbs.

Each tension bar was connected to the housing containing the knife edges, by means of threads which were clockwise at one end and anti-clockwise at the other. A nut was welded to the bar to permit the use of a spanner, which could under the above arransement, either shorten or lengthen the bar, by turning it one way or the other. To ensure a uniform stress on the column, arartial load was first applied and the tension bars were then tightened or loosened by a systematic trial and error, to give equal strain readings on all the four faces of the columns, as recorded by a 4" demountable Demec ;auge. It was then checked that on the application of the full lond, the strains on opposite faces did not differ by more than 10%. If this was not attained, the column was unloaded and the process was repeated.

6.8 Instrumentation.

Fig. 6.7 shows the position of electrical stroin gauges and clinometers. In all, 66 , ues were used on each face of the frame. Strons were recorded by the Solartron data logger, which could
record strains at the rate of two channels per second and could deal with a maximum of 200 channels. Deflections were also recorded by this instrument. There was a change in the. solartron reading when a deflection occurred, due to the correspandins change of resistance in the transducer. A correlation between the readings of the solartron, and standard changes in length occurring at the tip of the transducers, was first obtained by using a micrometer screw gauge.

Only clinometer readings were recorded manually. The clinometers were the same as prewiously used for measuring rotations in beams and columns.

The readings of the load cells fixed to jacks and the readings derived from the strain gauges fixed to the legs of each reaction dynamometer, were also recorded by the 'Solartron'.

Brief description of the reaction measuring Dynamometers:

The dynamometers which were used under the * pedestals to measure the stress resultants at the foot of the columns, consisted of three tripods under each pedestal. Each tripod had three sensitive legs. On each of these legs, electrical strain gauges were attached to form the four arms of a wheatstone bridge. The layout of the tripods under the pedestals is shown in Fig.6.7 The top plate of a dynamometer was connected to the three tripods underneath it by a ball and socket system at the top of each , The vertical and
horizontal load acting at the centre of this hinge above each tripod is given by the equation:-

$$
\binom{\mathrm{v}}{\mathrm{H}}=\left(\begin{array}{ll}
\mathrm{K}_{11} & \mathrm{~K}_{12} \\
\mathrm{~K}_{13} & \mathrm{~K}_{14}
\end{array}\right) \quad\binom{\xi_{1}}{\xi_{2}}
$$

where 1) V and H are the vertical and the horizontal loads.
2) $\left(\begin{array}{ll}K_{11} & K_{12} \\ \mathrm{~K}_{13} & \mathrm{~K}_{14}\end{array}\right)$ is the calibration matrix.
3) ε_{1} is the increment in readings) in leg 1 and $\varepsilon_{s_{2}}$ is the average increment $\{$ load. in legs 2 and 3.

A typical calibration matrix was of the order

$$
\left(\begin{array}{cc}
.5 & 1 \\
-.37 & .37
\end{array}\right)
$$

If it is assumed that \mathcal{E}_{1} and \mathcal{E}_{2} can be assessed to 1 division on the solartron, the vertical load at the top of each tripod has a sensitivity of 1.5 lbs ;
6.9 Erection.

The frames were lifted in the partially prestressed stage and transported to the Test Rig by the laboratory crane. Finally, they were lowered on the top plates of the dynamometers. The frames were then carefully centered no the pedestals were firmly clamped to the dynamometers
by means of steel plates running across the top of the pedestals and holding down bolts on both sides, connecting these plates with the top plate of the dynamometers.
6.10. Prestressing and grouting.

Table 6.3 shows the date of casting, the dates of application of full prestress and grouting and tho average cubc strength attained on the day of testing.

The frames were first of all partially destressed, so as to retain approximately 25% of the final prestressing force in each member. This was done in a systematic and controlled sequence so that the danger of cracking was avoided at all stages. Complete destressing might have resulted in shrinkage cracis. Uinfortunately the frames were tested after wore than a year from the date of casting ind such a possibility existed.

After recording the readings of the legs of the dynamometers, the tendons were fully restressed with the help of a re-stressing stool. The XL grips were released and relocked in position after removing the shims which were used in the first instance when stressing was done in several stages.

Grouting was done immediately after full prestressing. When this was not possible, the first available opportunity was taken to complete this operation. Columns were grouted from bottom upwards. The grout was of the same consistency as
used in the beams and columns previously described. Groutins was successfully done through holes provided in the end anchorage plates.

6.11. Test procedure.

The rigid plastic collapse load of the frame was recalculated, using the crushing strength of $6^{\prime \prime}$ cubes, found one day before the test. Incremental loads in intervals of 10% were applied, using the load maintaining device of the Amsler Cabinets. After attaining about 80% of the collapse load, or as soon as the formation of the second hinge was noticed, the load maintaining device was abandoned. Thereafter the frame was allowed to deflect under specified deflections measured both vertically and horizontally. An atterpt was made to proceed in increments of 10% of the values of deflections attained at the time when the constant load maintaining device was abendoned. An excellent control could be exercised on the behaviour of the frame by following this method, because both the increments in loads and deflections could be observed in the penel of the data logger by the person who was controlling the experiment. It was possible to follow the pl?stic behaviour of the frame in this way in 15 to 20 stages. A constant ratio of the loads of course, could not be maintained. In fact, in order to minimize the effect of creep and to keep the deflections at a fairly constant level, one or both of the loads had to be decressed at some stages.

6.12 Test Results.

The punch encoder of the solartron gave the output in the form of a five hole punched tape. A computer programme was written to read and process this information and to print out the extreme fibre strain, the curvature and the neutral axis depth at chosen points of the structure, followed by values of the applied loads, deflections of the structure, and the moment and renctions at the foot of the columns, as deduced from the readings of the reaction dynamometers.

6.13 Behaviour of individual frames.

Frame 1.

This was the first frame tested by the author. As already discussed, it had all the potentialities of a brittle failure.

Cracks first appeared in the risht hend column under the transom and also immediately above the joint with the pedestal when both \mathbb{W}_{V} and W_{H} were about 2300 lbs. Pimpling of concrete appeared on the compression surface corresponding to these cracks, when W_{V} and W_{H} reached the values of 3704 and 3654 lbs.

Beyond this stage the load maintaining devices in the Amsler loading cabinets were abandoned and an attempt was made to let the frame deform under controlled deflections. A vertical deflection of . $6^{\prime \prime}$ and a horizontal deflection of .7 " was recorded up to this stage. In the next load stage, an increment in the deflections by about 10% was aimed at. An increase in the vertical load at
this stage exhibited signs of immediate collapse (i.e. more pimpling, accompanied by a creaking noise). The side sway load W_{H} was therefore first increased, whence it was found necessary to simultaneously decrease the vertical load slightly. The vertical and the horizontal loads recorded at the end of this operation were 3524 its and $36944_{n}^{\text {ris }}$ respectively, while the vertical and the horizontal deflections were $.66^{\prime \prime}$ and .76".

An attempt to repeat the process to achieve a further increment of 10% in deflections, resulted in a violent brittle compression failure (see plate; 6.25) and the experiment had to be abandoned. There was no shear distress. It will be seen that the maximum lond at the time of failure was about 75% of the rigid plastic collapse load (4800 lbs. neglecting axial londs.). No cracking or pimpling was noticed at the foot of the lefthand column.

Frame No. 2.

This frame was identical to Frame INo. l, except for the fact that it had lateral binders on either side of the critical sections, which extended up to a point where the maximum moment was half of the maximum moment at the critical section.

The first crack appeared at the toe of the right-hand column, when both W_{V} and W_{H} attained a value of about 2200 lbs. As the load was increased the hinge in the transom exhibited a distinct ductility and when W_{V} and W_{H} were
approximately 3500 lbs. each, the tensile crack at this hinge was growing without apparently showing any signs of pimpling at the top. Pimpling of concrete was first noticed at the foot of the right-hand column when both W_{V} and W_{H} were 3840 lbs. (approx.) In the transom hinge, pimpling was noticed when W_{V} and W_{H} were 4400 lbs. each. By this time a plastic hinge had developed at the foot of the left-hand column. The frame was entering the stage of a collapse mechanism. The load maintaining devices in the loading cabinets were shut off and the frame was allowed to move further under controlled deflections.

As the transon hinge exhibited sonewh less ductility than the other hingos, it was again the sway load which was first manipulated to obtain the desired increments of deflections. This resulted in W_{H} attaining sonewh at nigher values than W_{V}. The latter remained constant for ? while, followed by a reduction in its value. e.g. WH was 4608 lbs. when W_{V} was 4432 lbs. and thereafter W_{H} was 5800 Ibs when W_{V} was reduced to 4037 Ibs.

Finally, the frame collapsed at $W_{H}=6093 \mathrm{lbs}$ and $W_{V}=3622 \mathrm{lbs}$, by forming a $5^{\text {th }}$ hinge in the transom at a distance of approximately a quatter of the transom span from the left-hand column. At this point, the moment of resistance of the transom was not enough to cope with the applied moment due to termination of binders in the top flange and the termination of if. b. bars at the bottom. The failure was obviously due to the fact that the frame was not designed for such a combination of loads.

The deflections at the time of collapse were 1.39" under the vertical lond and 2.44" measured horizontally at the point of application of the sway load, (approximately twice the vertical deflection and three times the horizontal deflection obtained in Frame 1.)

The ductility resulting from the use of
the bindersin the flange of the I beam is clearly demonstrated in this experiment. (See plates 6.3-7-8-9)

Frame 3.

This frame represented a lower storey frame of a tall building. An incremental load on the columns was unnecessary because in an actunl building the forces due to the wind load would came into play in the columns of a lower storey, when they were already under heavy loads du: to the dead load alone.

Before starting the main test, both the columns were fully loaded. The resulting direct stress was about 2600 lbs/sq.inch. The frame was then subjected to an incremental vertical lond, accompanied by an equal incremental sway lond. The axial loading device was perfectly stable. A compensation was made at each load stage to account for the fact that the inclination of the axial load continually changed. This was done by increasing the side load by an amount equal to

$$
\begin{aligned}
\frac{P \frac{\delta_{H}}{\ell}}{\text { where }} & P
\end{aligned} \quad=\text { axial load } \quad \begin{aligned}
& =\text { horizontal deflection } \\
\ell & =\text { length of column }
\end{aligned}
$$

note:- $\frac{\delta_{H}}{l}$ was assumed to be equal to the incli-

Cracking was first observed as anticipated at the top of the transom near the right-hand corner of the frame.

Crushing of concrete was first observed at the toe of the right-hand column when W_{V} was 4378 lbs. and W_{H} was 4746 lbs. This was the indication of the fact that the first plastic hinge had formed at this point. Tensile cracks also appeared under the vertical lond at this stage.

Crushing of concrete was noticed et the bottom of the transom at the right-hand corner of the frame when W_{V} was 4690 lbs. and $W_{F i}$ was 5117 lbs. This was the second hinge to form and it was in the beam and not in the column.

The third hinge formed at the foot of the left-hand column when W_{V} was 5622 lbs. and W_{H} was 6077 lbs.

The $4^{\text {th }}$ and the last hinge needed to transform the frame into a mechanism, formed under the vertical load at the load stage when ${ }_{V}{ }_{V}$ was 6328 lbs. and V_{H} was 6529 lbs. It was possible in this frame to continue with the load maintaining device up to this stage. The order of formntion of the hinges was the same as predicted by the step by step analysis.

After this stage the loads continued to rise apparently due to a strain hardening behaviour, while the frame continued to deform under specified deflections, until W_{V} and W_{H} attained the values of 7370 lbs . and 7160 lbs . respectively. Thereafter a gradual reduction in the loads whs observed. The experiment was terminated when the sideways
deflection attained the value of $2.36^{\prime \prime}$ and the values of W_{V} and W_{H} were 6770 lbs and 6300 lbs . i.e. still within 10% of the maximum values attained and higher than the calculated rigid collapse load of 6000 lbs. The testing rig did not have much room for any appreciable amount of further side sway. A gradunl unloading was done at this stage, to trace the path of unloading.

The first and the third hinges to form in the final mechanism, were at the foot of the right and left-hand columns rospectively. These columns exhibited sufficient ductility to onde the final mechenism to form.

The deflections noticed at the end of the experiment, accompanied by a continual increase in the loads, more than adequetely demonstrate the erficiency of the binders.
6.14 Presentation of results.

Idads V / s deflection.
The most convenient way of presenting the overall ductility of a structure, is to plot deflections against the applied londs. Graphs 6.1 to 6.3 show horizontal snd verticsl deflections plotted against W_{V} and W_{H} in respect of/frames l to 3.

Hinge moments V/S applied load and distribution of monents at collapse.

The growth of bendins moments in the fromes at the critical sections is shown in Graphs 6.4
to 6.6. Comparison has been made with the theoretical development that would have taken place, had the frames been ideally elastoplastic with a constant flexural rigidity in between the hinges throughout the frames, ind also if the ratio of the vertical and the horizontal load had not changed during the experiment.

It will be seen that secondary moments existed in the frames before the commencement of the test. The author is of the opinion that this was due to the lack of fit introduced at the time of casting. Table 6.4 gives the relation between stress resultants and lack of fit at the f ot of the right-hand column. It may be seen that considerable stresses can be caused by 2 small angular difference between the pedestals of the two columns.

The distribution of moments in the frames at the time of collapse is shown in Figs. 6.10

Moments VS rotation.
The moment rotation curves in respect of hinges at the top and bottom of the right-hand column, are shown in Graphs 6.7 to 6.9.

Distribution of curvature at critical sections.
The distribution of curvature at critic l sections at the \& time of collapse, have been shown in ${ }_{\text {FIG }} \mathbf{A}$ 6.11 $A \quad 6.12$ in respect of Frames $1 \& 2$.

6.15 Discussion of Results.

Frames 1 and 2.
The brittle failure in Frame l due to the insufficient rotational capacity of the transom hinge, shows thet Baker's theory overestimates plastic rotations in over-riinforced I-sections.

The following questions, however, do arise when Table 6.1 is exmmed. Why did not failure occur at the foot of the right-hand column where the available rotation predicted by Baker was too small, or why did not the hinge at the top of tho right-hand column have a brittle ficilure, inspite of the fact that the rotation needed at this hinge for full redistribution, was twice that needed at the other two hinges?

A solution is that rectangular sections have a greater capacity of rotation than predicted by Baker, even if such sections are over-reinforced. The author is of the opinion thet the opposite is the case in I-sections. Unbound concrete in the flange of an over-reinforced I-section has less confin ament in space than the corresponding areas under compression in rectaņular beams. They have in additional degree of freedom of novement under compression forces, due to the presence of the exposed surface underneath the flanee.

Baker's predictions of rotations in overreinforced I-sections are therefore on the unsafe side and a suggested reduction factor is .5. This is also borne out from the moment rotation characteristics of simply supported I-sections obtained by the author.

Lateral binders, however, provide considerable ductility and permit the calculation of collapse loads by the rigid plastic theory. The load deflection nd moment V / S load curves pertaining to Frame 2, amply prove this point.

The failure of Frame 2, which took place by the formation of a $5^{\text {th }}$ hinge is, however, a warning that lateral binders have to be used with caution after considering all possible combinations of loads that may occur in the structure.

Frame 3.

The experimental failure load (if failure be defined to be the point of maximum lond and a study of the development of moments at hinces, amply justify the assumption of a full redistribution of moments in this case.

The risid plastic collapse load shown in Graph 6.6 has been calculated, using the formula proposed by Baker at Ankar?, to take into nccount the effect of binders. It can be seen that each of the critical sections exceeds the predicted value.

An abnormal enhancement of about 30% in the plastic moment was slso noticed in the pilot tests on columns described in Chapter 4. (Compare actual moments with Boker's predictions in Grphs 4.1 and 4.2.) The recent work done by Soliman ${ }^{(47)}$ does not indicatc the possibility of this tremendous increase. The author thinks that the $1 / z^{\prime \prime}$ duct $x^{\text {in }}$ in conjunction with closely
spaced binders was responsible for this increase. Chan (17) observed a considerable increase in strength when compression reinforcement was used in conjunction with binders.

An attempt has not been made to compare the behaviour of the frame with Baker's predictions which are far too inaccurate in this case. The object of the test was to show the efficiency of the binders, compared with results obtained by Pietrzykowski.

6.16 Summary.

Results of tests on three portal frames have been described in this chapter. It has been concluded that checking of rotations canot be dispensed with, at least in cases of I-sections in which Baker's predictions are on the unsafe side.

In the next chapter a theoretical discussion has been entered into, regarding the design of multi-storeyed frome. A nethod has been suggested to deal with adjustment of rotations.

TABLE 6.1

MOMENTS AND ROTATIONS AT L_{1} AND L_{2} IN FRAMES 1 \& 2.
(Neglecting thrust).

HINGE
NO.
d
$e_{c l} \quad n_{1}{ }^{d} \quad M_{1}$
${ }^{e}{ }_{c 2}$
$\mathrm{n}_{2}{ }^{\mathrm{d}}$
M_{2}
$14.1115 \quad .002 \quad 1.7679000\left(\begin{array}{llll}.004 & 1.6 & 88200 & \mathrm{Fl} \\ .0085 & 1.45 & 88500 & \mathrm{~F} 2\end{array}\right.$
$24.075 .0021 .7578000\left(\begin{array}{llll}.004 & 1.6 & 87250 & \mathrm{Fl} \\ (.0085 & 1.45 & 87500 & \mathrm{~F} 2\end{array}\right.$
$34.04 \quad .002 \quad 1.8575500\left(\begin{array}{llll}.004 & 1.65 & 86000 & \mathrm{Fl} \\ .0085 & 1.50 & 87200 & \mathrm{~F} 2\end{array}\right.$

TABLE 6.2.

PROPERTIES OF X-SECTION OF AUTHOR'S FRAVE 32 CO:PARED TO THE PROPERTIES OF X-SECIION OF PIETRZYKOMSKI'S FRAIE GK.

FKande NO.	SIZE	COHCRETE STRPNGTH	REINFORCEWENT.	AXIAL DEPTH OF LOADS NEUTRAL AXIS AT ULTIIIATE LOAD.
Author's Frame 3.	6" $\times 4$ "	$\begin{gathered} 5000 \\ 1 \mathrm{bs} / \mathrm{sq}^{\prime \prime} \end{gathered}$		Required nd $=4.5$ lodd on in ie $\mathrm{n}=1$ T.HC $=1$ 56500 lbs. Required load on RHC $=$ 62500 lbs Actual load $=$ 60000 t ly00 on both coluans.
Pietrzykowski's Frame GK	$61 / 21 \times 3^{\prime \prime}$	$\begin{aligned} & \text { 4"cube } \\ & \text { strenoth } \\ & \text { =8000ib/ } \\ & \text { sq"which } \\ & \text { may be } \\ & \text { taken as } \\ & \text { equiva- } \\ & \text { lent to } \\ & \text { a 6" cube } \\ & \text { strenzith } \\ & \text { of } 7700 \\ & \text { lbs/sq" } \end{aligned}$	$\begin{aligned} & 2 \text { Nos. } 2^{\prime \prime} \\ & \emptyset \text { at a } \\ & \text { distance of } \\ & \text { lin on } \\ & \text { either side } \\ & \text { of centr } \\ & \text { line } \end{aligned}$	

Table 6.3

Frame No	Date of casting	Date of application of full pre- stress	Date of testing	Average cube strength
1	17.12 .65	$\frac{22.9 .67}{23}$	9.10 .67	7000 lbs per sq"
2	21.1 .66	19.10 .67	30.10 .67	7500 lbs per sq"
3	25.3 .66	15.11 .67	14.12 .67	$7000 \mathrm{lbs}^{\text {per } \mathrm{sq}^{\prime \prime}}$

TABLE 6.4.
SHOWING STRESS RESUIRAHTS UNDER UNIT VERTICAL, HORIZONTAL AND ROTATIONAL MOVEMENT AT THE FOOT OF THE RIGFT-HAND COLUMN.

Note: The above has been obtained from the following release system d

$\left.\underset{\mathrm{F}^{-1}}{\substack{A P_{2}=1 \\ P_{1}=1 \\ P_{2}=1}} \left\lvert\, \begin{array}{ccc}\frac{5}{40} & 0 & -\frac{5}{3 h^{2}} \\ 0 & \frac{32}{3 h^{3}} & \frac{8}{h^{2}} \\ \frac{-5}{3 h^{2}} & \frac{8}{h^{2}} & \frac{79}{9 h}\end{array}\right.\right\}$

bending moment distrieution at collapse

LEGEND

$$
\begin{aligned}
& \text { Plastic hinges } \\
& \text { RELEASE "" }
\end{aligned}
$$

bending monent distribution at collapse

unit restrant at hinge 1
note - 1 . hinges haye seen nanbered in the same sequamce as B They occur
2. PLASTIC MOMENT OF RESISTAMCE is Equal to 'm' at all critical sECTIONS
Plastic rotation at hinge 1 , is the produt integral of $A^{\prime} \alpha^{\prime} \dot{B}^{\prime}=-\frac{m 1}{12 E}$
2 span continuous beam, LengTh of span $=1$

B
plastic rotation at himge 1 , is the prodoct integral of'Áa'Bo $=-\frac{m l}{E 1}$
FIXED FOOTED PORTAL FRAME, SPAN: 212 HEIGHT $=1$

Showing plastic rotations needed in a continuous beam Compared to rotations needed in a portal frame for

FULL REDISTRIBUTION OF MOMENTS

FIC 6.4 a
MAXIMUM MOMENT \& CRACKING MOMENT ENYELOPES
in Transom
of frame no 2.

frame 2
Detalls of stirrups, binders a m.s. bars.

SHEAR RENFORCEMEITI IN frame 1
2 LAYERS Of $\frac{1}{8 \prime} \Phi$ MSBARS in transon (ONE ON EARH SIDE OF DUCT TUBE) AND 1 Layer of $\frac{1}{4}$ "a colo morres) bar in the columns, bent in the above shape

FRAME 3
DETAILS of STIRRUPS \& M.S. BARS

FIG 6.6
showing Test Rig-General dejails

FIG 6.9
SHOWING DETALLS OF KNIFEEOGE HOUSNG

Fig 6.10
DISTRIBUTION OF MOMENTS at failure
note- in frame 3 the distribution is when W_{v} \& $W_{\text {h }}$ are max.

$$
\text { FIG } 6.11 .
$$

distribution of curvature in frame 1

Plate 6.1 Formwork for Frame no 3

Plate 6.2 General veiw of Frame no. I after test

Plate 6.3 General veiw of Frame no. 2 after test

Transom hinge after collapse in Frame no. I

Plate 6.5

Hinge at the right hand corner of Frame no. I

Hinge at the bottom of right hand column of Frame 1 Plate 6.6

Transom hinge in Frame no. 2

$$
\text { Plate } 6.7
$$

Hinge at the right hand corner of Frame 2

Hinge at the bottom of right hand column of Frame 2 Plate 6.8

Hinge at the bottom of left hand column of Frame 2

Fifth hinge in the transom of Frame 2

$$
\text { Plate } 6.9
$$

Hinge at the right hand corner of Frame 3

Plate 6.10 showing hinges in the transom of Frame 3 \& details of axial loading device

Hinge at the bottom of left hand column of Frame 3 Plate 6.11

CHAPTER 7.

THE COAPATIBILITY PROBLEM IN THE SLMPLIFIED LIMIT WETHOD OF DESIGN - A METHOD SUGGEETED TO ADJUST

ROTATIONS.

7.1 Baker's approach.

Baker's approach to the compatibility problem in a multistoreyed concrete frame, is summarized below. The desigh procedure is carried out on an idealized frame, the members of which are assumed to be elastic between the hinges. Inelastic rotations are assumed to be concentrated at hinges. (5) The steps of the procedure are as under.

1) A release system is chosen with n hinges, to make the structure statically determinate.
2) Plastic moment values are then chosen according to rules recommended in the concrete series design booklet by Tokarski and Poologasundrana(42) to obtain an economic distribution of bending moment. It is ensured that the chosen bending moment distribution is in equilibrium with the factorised loads.
3) The rotations at the n hinges are then calculated with the help of graphs published in the above booklet. It may be remembered that these grphs can be used only for the particular recomended bending moment distribution. Designers have to draw their own curves, if they wish to improve on the distributions assumed in the published curves.
4) The plastic rotations given by ' $\mathrm{ppi}_{\mathrm{pi}}$ ' in equation 1.3 , are then adjusted by trial and error to positive values, which are within permissible limits.
5) Finally, an approximate elastic solution is obtained by adjusting the rotations to zero, to check on the serviceability condition. The bending moment at any critical section under the working load (load factor $=1$), under the approximate elastic distribution as found above, must not exceed the y^{\prime}.eld moment (moment at L_{1}) of the section, siving rise to a large crack or an excessive deflection.

7.2 Modification susgested by author.

Adjustment of rotations is a tedious step in the above procedure. The author suggests thet the inverse of the flexibility matrix of the structure be used, for adjusting rotations and obtaining an approximate elastic solution. The designer will not be required to invert the matrix himself, because the flexibility matrix as well as its inverse, in the case of multi-storeyed buildings, belong to a family of standard patterns. Tables pertaining to different types of buildings likely to he met in a design office, can be kept ready for use. The potentialities of these tables are discussed below.

7.3 Use of tables made from the inverse of the Flexibility matrix.

The following are the possible use of the above tables:-

1) The designer may use these tables as a powerful tool by means of which he can choose and adjust the rotation at any hinge, without affecting the rotations at other hinges. In fact all the objectionable rotations can be adjusted to permissible values in one single step.
2) The approximate elastic solution may be found in one single step by adjusting all hinge rotations to zero.
7.4 Details of the method suggested by the author.

The proposed method is based on the following equation:-

which when expanded, gives

$$
\left(\begin{array}{cccc}
f_{11} & f_{12} & f_{13} & \cdots f_{1 n} \\
f_{21} & f_{22} & f_{23} & \cdots f_{2 n} \\
\cdot & & & \\
\cdot & & & \\
\cdot & & & \\
f_{n 1} & f_{n 2} & f_{n 3} & \cdots f_{n i 3}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right)=-\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
U_{n}
\end{array}\right)
$$

where F is the flexibility matrix of the structure (made determinate by introcucinct hinge releases.)
X is the vector representing the unknown moments at the hinge releases.
U is the vector representing discontinuous rotations at the hinges due to external load.

or $X=-\mathrm{FU}$
where $P=F^{-1}$
The above equation gives a set of values of ' X^{\prime}, (in this particular case a set of moments at hinge releases), which nullify the discontinuities at the releases given by the vector $\left\{U_{1} \ldots \ldots U_{n}\right\}$. In other words the values of ' X ' thus obtained is the elastic distribution of moments.

Baker's method allows certain discontinuities at the release hinges which have to be adjusted within permissible values. A knowledge of ' X ' values which nullify a unit rotation at each release by tum, will be extremely useful in fnllowing his method.

It is immediately seen that if in the vector U, U_{1}, equals -1 , and all the other elements are zero, then the first column of P i.e., $\left\{\begin{array}{lll}p_{11} & p_{21} p_{n 1}\end{array}\right\}$ represents a set of 'x' values which cuse a unit rotation of positive sign at Release No. I, in order that U_{1} is nullified and continuity is maintained at this release. It follows that the bending moment distribution which will cancel out a rotation of $-\propto_{1}$ at release No. l, is given by the vector:

$$
\propto_{1}\left\{\begin{array}{llll}
p_{11} & p_{21} & \ldots & p_{n 1}
\end{array}\right\}
$$

place by nullifying $-\mathcal{C}_{1}$, will not alter rotations at other hinges.

Similarly, the second column of P, represents a set of 'X' values which causes a positive unit rotation at Release No. 2 and so on. The reader can now identify the columns of P, with Wacchi's imposed rotation co-efficients ${ }^{(34)}$.

The pattern of the matrix P has been studied by the author by altering the following parameters in a series of multi-storeyed frames. All bays have been assumed to be of equal length, and each of the bays is complete.

1) The stiffness of columns and beams, as explained under
Let $I_{r}=$ length of each bay in $r^{\text {th }}$ storey $h_{r}=$ height of $r^{\text {th }}$ storey $I_{r}=$ moment of inertia of beams in $r^{\text {th }}$ storey $J_{r}=$ - ditto - of columns in $r^{\text {th }}$ storey
$y=\frac{h_{r}}{J_{r}} / \frac{l_{r}}{I_{r}}=\frac{h_{r+1}}{J_{r+1}} / \frac{I_{r+1}}{I_{r+1}}=\frac{I h}{J I} \begin{gathered}\text { in general } \\ \text { in all the } \\ \text { storeys.) }\end{gathered}$
$s=\frac{h_{r}}{J_{r}} / \frac{h_{r+i}}{J_{r+!}}=\frac{l_{r}}{I_{r}} / \frac{l_{r+1}}{I_{r+1}}$
Values of I and J are the same in all beams and columns in the same storey. Y has the same value in all the storeys. The volue of s has been varied between the limits . 66 and 1 and the value of y has been varied from 4 to 12
2) The number of bays has been varied from 3 to 5 , for a constant number of storeys equal to 3 .
3) The number of storeys has been varied from 3 to 5 , for a constant number of bays equal to 3 .

The results are presented in tables 7.1

The elements of the flexibility matrix were taken from Poolagasoundranayasam's thesis (41).
7.5 The design steps by the modified method.

1) Choose the same release system as in Baker's approach to make the structure statically determinate.
2) Calculate the discontinuous rotations at all hinges due to the applied loads only, acting on the reduced structure, and adjust them to zero with the help of co-efficients in the nearest table appropriate to the particular building under design. The approximate elastic bending moment distribution is thus known.
3) Choose plastic moment values and calculate rotations at the releases as in Baker's approach.
4) Adjust all objectionable rotations in one single step to positive values within perinssible limits by using the appropriate table.
7.6. Bilinear idealization of prestressed concrete beams continuous over two spans.

Baker's assumption that the modulus of flexural rigidity, in the cracked stage, is constant between the hinge releases, no longer holds good in case of prestressed concrete nembers. Linear transformation may cause considerable variation in the effective depth of cables at different critical sections.

The cracked ET value at the state LI, depends to a large extent on the effective depth and consequently varies considerably from one critical section to another. In the next paragraph, the author has susgested that a modified application of Macchi's method of imposed rotations, may be used to analyse a two span prestressed concrete continuous beam.

The distribution of bending moments corresponding to the first phase of a bilinear idealization, when the structure has different 'EI' values at the critical section, has to be found. A method has been suggested in 7.7. The redistributing effect of permissible rotations at the hinges may then be found out by the normal method suggested by Macchi, provided tho imposed rotation co-efficionts are also calculated for the idealized structure.
7.7. Use of the theory of irposed rotation in calculating the effect of a change in the 'EI' value in a part of a continuous beam.
Consider the elastic solution of two spon continuous beam of constant X-section with two equal point loads at the centre of each span (Fig. 7.1).

Let the $E I$ value increase from $E I$ to $\mathbb{E}_{1} I_{1}$ in the length $B D$, such that $E I=\mathrm{KE}_{1} I_{I}$ where $K<1$. Fig. 7.2 shows the bending moment diagram when a unit rotation is imposed in the indicated direction at C on the bean having a constont EI throughout its length. This diagram is also the influence line of the bending moment at the support, due to a unit rotation traversing the structure (34).

The bending moment at support caused by a unit rotation at the element 'dx', is therefore given by the ordinate ' y '.

As a first approximation, let us assume that this bending moment di agram for a unit rotation imposed at the support, also holds good for the changed structure with different 'EI' values.
$T_{h} e$ change in the EI value in a small length 'dx' causes a rotation of the magnitude

$$
\left(\frac{m}{E I}-\frac{m}{E_{I} I_{l}}\right) d x=\frac{m}{E I}(1-k) d x
$$

where 'm' is the ordinate corresponding to the length 'dx' in Fig. 7.l.

The corresponding change in the BII at the support

$$
=\frac{m}{E I}(1-k) y d x
$$

The total change in the support moment

$$
\begin{aligned}
& =\frac{(1-k)}{E I} \int_{\text {in the length } 2 B C} m y d x \\
& =\frac{2(1-k)}{E I} \text { (sum of the product of } \\
& \text { and BB'OC in Figs } 7.1 \text { and 7.2) } \\
& =\frac{2(1-k)}{E I} \times \frac{3 I}{66}\left(\frac{6}{32}\left(3+\frac{12}{11}\right)\right) \frac{E I}{I} \cdot w L . \\
& =.07(1-k) w 1 \text {................................ } 7.3
\end{aligned}
$$

The change in the support moment found by equation 7.3 , is however, approximate, ${ }^{*}$ neglects the change in the position of the point of contraflexure. This would have been more correctly evaluated if the correct imposed rotation coefficients were employed in the above diagram integration.

It is also observed that Fig. 7.2 is a bending moment digram and it can be corrected to a first degree of approximation by integrating BB'OC with itself. The correction in the imposed rotation co-efficient at the support is therefore:

$$
\begin{aligned}
& 2 x\left(\frac{1-k}{E I}\right) x \frac{3}{66} I\left[\frac{12}{11}\left(\frac{24}{11}+\frac{3}{2}\right)+\frac{3}{2}\left(3+\frac{12}{1 I}\right)\right]\left(\frac{E I}{1}\right)^{2} \\
= & (1-k) \frac{3}{2} x .615 \frac{E I}{I}=\frac{3}{2} p \frac{\text { EI }}{1} \text { where } p=.515(1-k)
\end{aligned}
$$

The ordinate of the Fig.7.2 at the support is therefore $\frac{3}{2}(1+p) \frac{E I}{L}$. If this process is repeated, the ordinate is given by the expression
$\frac{3}{2} \frac{E I}{I}\left(i+p+p^{2}+p^{3}+\ldots \ldots\right)$
using this in equation 7.3, we get the change in bending moment as

$$
\begin{aligned}
& .07(1-k)\left(1+p+p^{2}+p^{3} \ldots .\right) \text { WL......7.4 } \\
= & .07(1-k) /(1-p)] \text { WL as } p<1
\end{aligned}
$$

If the $E I$ value increases in the region $A B$ from $E I$ to $E_{1} I_{1}$, instead of in the region $B C$, the change in the moment at support, is given by
-. $07(1-\mathrm{k})\left(1+\mathrm{p}_{1}+\mathrm{p}_{1}^{2}+\mathrm{p}_{1}^{3}+\ldots\right)$ WL when $\mathrm{k}=\frac{\mathrm{EI}}{\mathrm{E}_{1} \mathrm{I}_{1}}$ as before.

$$
=-.07\left[(1-\mathrm{k}) /\left(1-p_{1}\right)\right]{ }_{U} \ldots . .7 .5 \text { and } p_{1}=(1-k) x .385
$$

The necessity of forming a new flexibility matrix and inverting the same is avoided by this ite? a tive process.

7.8 Ultinate strensth of 2 span continuous prestressed beams.

The following steps are suggested in checking the ultimate strength of 2 span continuous prestressed beams.

1) Calculate moments at L_{1} and L_{2} at all critical sections, by using graphs. (Those in chapter 2 cover a wide range.) Also find n_{1} and $\varepsilon_{c 1}$ at these sections.
2) Calculate the cracked nodulus of flexural rigidity at L_{1} at all the hinges from the formula

$$
\mathrm{BI}=\frac{\mathrm{M}_{1} \mathrm{n}_{1} \mathrm{~d}}{e_{\mathrm{c} 1}}
$$

3) Assume in the first trial, that the calculated monents at L_{2} are attained by the bean at all the critical sections i.e., in other words there is complete redistribution of moments. The points of contraflexure, accordins to this bending moment diagram, may be established.
4) The bean may then be assumed to have different 'EI' values in the different zones between points of contraflexure. The 'eI' value in each zone is assumed to remain constont and is equal to the cracked 'EI' value at L_{1} as found for the critical section contained in that zone.
Calculato the new distribution of elastic moments due to these alterations in 'eI' values as suggested in 7.7.
5) Fron 4), the ratio of the support to span moments for the elastic distribution of bending monents in the idealized structure is known. The ratio of the moment M_{2} at the support to M_{2} at the span is also known. The first hinge to form can therefore be established as well as the bending moment distribution which occurs at this stage.
6) The solution of the problem now lies in finding out the maximum possible redistribution of moments that can be obtained by imposing rotations at the critical sections up to the maximum permissible values.

Three beams tested by Morice and Iowis in the Cement and Concrete Association , have been analysed by the author in 7.9 and 7.10 by the above procedure, using the method susgested in 7.7 to calculate the distribution of elastic moments in the structure, having modified values of EI . Results have been coaparod with those found by Guyon.

7.9. Analysis of C and CoAn beams.

Morice and Lewis tested 28 two sp:n beams to failure load in the Cement and Concrete Association ${ }^{(29)}$. The spans were $7^{\prime} 6^{\prime \prime}$ long and the beans had a constant rectangular section of $6^{\prime \prime}$ depth by $4^{\prime \prime}$ wiath. The cables were of the Freyssinet type, cach having eight wires of $0.2^{\prime \prime}$ diameter. The nominal prestressing force was 30,000 lbs. The high tensile steel had a tensile strength of 105.5 tons/ins ${ }^{2}$, the ultimate force in the cable being about 59,000 lbs.

Beam Nos. 12,13 and 14 were chosen for analysis and dicussion, because they fell within the ranfe of the values of and n_{2}, for which calculstions of moments at L_{1} and L_{2} were done by the author, as described in chapter 2 of this thesis. Further, reactions were measured in these beans and the analyzed results could be compared with the experimental.
7.10 The properties of the C \& CA beails are summarized bolow.

12	4830	3.6	: 85	$.78$	$\begin{aligned} & .367 \times 13 \times 10^{7} \\ & M_{1} \\ & = \\ & 92200 \end{aligned}$	
13	4780	3.5	. 885		$\begin{array}{cc} .374 \% & 12.35 \mathrm{x} \\ M_{1} & 10^{7} \\ = \\ 88000 & \end{array}$	$\begin{aligned} & .383 \\ & \mu_{2} \\ & =90000 \end{aligned}$
14	4690	3.4	. 93		$\begin{array}{ll} .381 & 11.7 \\ \mu_{1} & \times 10^{7} \\ == \\ 82750 & \end{array}$	$\begin{aligned} & .387 \\ & \mathrm{M}_{2} \\ & = \\ & 84000 \end{aligned}$

cont....

> SUPPORT

Beam No.	d	ω	n_{1}	m_{1}	$\begin{gathered} \stackrel{\mathrm{EI}}{=} \\ \frac{\mathrm{m}_{1} \mathrm{n}_{1} \mathrm{~d}}{} \\ \mathrm{e}_{\mathrm{c} 1} \end{gathered}$	m_{2}
12	4.2	.73	. 7	$\begin{gathered} .344 \text { 时 }_{1} \\ M_{1} \\ = \\ 117500 \end{gathered}$	$\begin{array}{r} 17.3 \\ \times 10^{7} \end{array}$	$\begin{gathered} .366 \sum_{2} \\ \mathrm{H}_{2}=125000 \end{gathered}$
13	5.1	. 605	. 615		$\begin{aligned} & 24.7 \\ & \times 10^{7} \end{aligned}$	$\begin{gathered} -35 \text { 地 } 2 . \\ M_{2}=174000 \end{gathered}$
14	5.1	.62	. 625	$\begin{gathered} .319 e_{n} \\ \stackrel{M_{1}}{=} \\ 156000 \end{gathered}$	$\begin{aligned} & 24.8 \\ & \times 10^{7} \end{aligned}$	$\begin{gathered} .352 \\ M_{2} \\ = \\ 172000 \end{gathered}$

NOTE - 1) All the above beams are highly overreinforced (limiting value of $\mathrm{c}_{\mathrm{c}}=.002$, has been assumed at L_{1}).
2) The computed values of $, m_{1}, n_{2}$, etc. are given in Table 7.30. (These results are not shown in the graphs plotted in Chapter 2.)

Beam No. 12 .
$F_{i g} .7 .3$ shows the distribution of monents in beam 12 if full redistribution takes place. It will be observed that the change in the length $B C$ is small. The point of contraflexure dividing the regions of different $E I$ values have therefore been assumed to be the same as in the elastic case. The correction in the bending monent distribution is obtained from
equation 7.4.

$$
\begin{aligned}
& \mathrm{k}=\text { ratio of flexural regidities }=13 / 17.3=.75 \\
& \mathrm{p}=(1-\mathrm{k}) \cdot 615=.154
\end{aligned}
$$

The correction in the bending moment

$$
=\frac{.07(1-.75)}{(1.154)} \mathrm{WL}=.02 \mathrm{WL}
$$

The Bin at support is (.1875 + .02) WL = . 2075 WL and the mid span moment $=(.25-.1037) \mathrm{WL}=.1463 \mathrm{WL}$ Calculation of cracking moments.

If e_{1} is the eccentricity at midspan and e_{2} is the eccentricity st the support, the condition for concordancy is given by

$$
3 e_{1}=2.5 e_{2}
$$

If the cable is not concordant, the secondary moments are as under:-
i) At support $=\frac{P}{4}\left(2.5 e_{2}-3 e_{1}\right)$ where $F=$ pretstressing force.
ii) At midspan $=\frac{F}{8}\left(2.5 \mathrm{e}_{2}-3 \mathrm{e}_{1}\right)$.

The tensile strength in flexure has been assumed to be 12% of the permissible compressive stress, (same as assumed by Guyon). The cracking moments on the basis of the above data, after accounting for the secondary moments, but neglecting the increase in prestress, are
i) At support $=70900$ in 1 bs.
ii) At mid $\operatorname{span}=66900$ in lbs.

The ratio of the moments at support and midspan, under the elastic distribution is 6:5.
Obviously the support is the critical section to crack first.

Distribution of moments at ultimate.
If it is assumed that the moment $H_{2}(125000$ in lbs.) is first attained by the support, then the corresponding mid span moment $=\frac{125000 \mathrm{x} \cdot 1463}{.2075}=88000$
in 1 bs.

The increase of further moment at the mid span due to the plastic rotation at the support, is calculated as follows.

$$
e_{\mathrm{c} 2}=.0030 \quad(\text { for }(\mathrm{r})=.73 \text { from the table). }
$$

The permissible rotation according to equation 2.16

$$
=2 \times .4(.0030-.0020) \times \frac{51}{4.2}=.0097
$$

Subtract from this the elastic rotation between I_{1} and I_{2}, because the intine phase of ch elation is assumed to hold good until the moment M_{2} is reached.
\therefore The plastic rotation $=.0097-\frac{125000-117500}{17.3 \times 10^{7}} \times 25.5$

$$
=.0086
$$

The possible redistribution of moment at the support due to th .s rotation

$$
\begin{aligned}
& =.0086 \times \frac{13 \times 10^{7}}{90} \times \frac{3}{2} \times \frac{1}{(1-.154)} \\
& =22000 \text { in lbs. }
\end{aligned}
$$

At mid span, the corresponding redistribution is 11000 in lbs.

If the elastic distribution before the plastic rotation takes place, is as follows:-

1) At support $=-147000$
2) At mid $\operatorname{span}=147000 \mathrm{x} \frac{.1453}{.2075}=10360$

Then after redistribution the moments will be

1) At support $=-125000(-147000+22000)$
2) At mid $\operatorname{span}=114600(103600+11000)$

Since the moment at mid span cannot exceed the value M_{2}, we observe that after full redistribution, the moment at mid span at failure is expected to be 95500 in lbs. only.

Beam No. 13.

Fig. 7.4 shows the BM distribution in Beam 13 if ultimate moments are attained both at the support and mid point. The ratio of the support and the mid span moment is approx. 2:1. Fig.7.5 shows the elastic distribution of bendix moments under a constant modulus of flexural rigidity. It also shows the two regions in which different EI values are applicable after cracking. A significant change takes place in the point of contraflexure, the effect of which has been taken into account. The EI values are in the ratio $2: 1$. The correction to a first order of degree in the imposed rotation coefficient for the support, is obtained by integrating the diagram (Fig.7.5) with itself in the length RS.
If the value of this correction is $\frac{3}{2} \frac{\mathrm{BI}}{\mathrm{L}} \cdot \mathrm{p}$, then the correct unposed moment at support is $\ddot{\ddot{L}} \frac{\mathrm{EI}}{\mathrm{L}(1-p)} \because \quad$ (see equation 7.4).
In this case the value of p is
$\frac{2}{3} \times 2 \times(1-k) \times \frac{1}{6 \times 3}\left[1\left(2+\frac{3}{2}\right)+\frac{3}{2}(3+1)\right]=.35\left(\begin{array}{l}(\text { putting } \\ k=.5)\end{array}\right.$
Hence the correct imposed moment

$$
=\frac{3}{2 \times .65} \times \frac{\mathrm{El}}{\mathrm{~L}}=\frac{3}{2} \frac{\mathrm{EI}}{\mathrm{~L}} \times 1.54 \ldots \ldots \ldots 7.8
$$

The correction in the elastic bending moment distribution is obtained by integrating the portion $P_{\text {g }}$ of Fig 7.5 with the portion RS of Fig 7.5 and then multiplying by the factor 1.54. The value of this change 2(1-k) X

$$
\left[\frac{.27}{6}\left\{.1875\left(3+\frac{12}{11}\right)\right\}-\frac{.06}{6}\left\{.0417\left(2+\frac{12}{11}\right)\right\}\right]
$$

The support moment is therefore($1875+.05)_{\wedge}^{\mathrm{WL}}=\underset{\text { aWL }}{.2375 \mathrm{WL}}$ and the mid span moment $=(.25-.1187) W L=.131_{\wedge} \times \mathrm{WL}$. .

Cracking moments.

Similar calculations as in Beam No. 12, reveal that the cracking moments are as follows:-

At support $=741,000$ in lbs.
At mid point $=708000$ in lbs.
(Ratio is 1.04 against elastic moment ratio of le). Cracking has therefore to commence at the support.

Distribution of bonding moments at the ultigate.
Assuming that the moment M_{2} is reached at the support, the corresponding point at the aid span is $\frac{.131}{.2375} \times 174000=96000$
Since this is more than the moment at I_{2} at the mid span, we will therefore assume that the moment M_{2} is first reached at the mid span and the moment at the support will depend on the amount of redistribution available from rotation at mid span.
Let the clastic moment at mid span before
redistribution $=90000 \mathrm{los}$.
The corresponding elastic moment at support
before redistribution $=\frac{90000 \times .2375}{.131}$

- 163500 in lbs.
$e_{c 2}$ at mid span $=.0028$
The porinissible rotation at mid span hinge

$$
=2 \times .4(.0028-.002) \times \frac{60}{3.5}=.0100
$$

Subtract the elastic rotation between L_{1} and L_{2}
which is $\left(\frac{90000-88000}{12.35} \frac{x_{10}}{\mathrm{x}_{10}} \times \frac{60}{2}=.0005\right.$
The permissible rotation is therefore $=.0095$

The redistribution moment at support due to this rotation $=1 / 2 \times .0095 \times \frac{12.35 \times 10^{7}}{90} \times \frac{3}{2} \times 1.54$
$=15000$ in lbs.
Since these are two spans, the total redistribution moment at support $=30000$ in 2 bs and consequently the corresponding redistribution at the mid span shall be 15000 in lbs.
If the moment at mid span before redistribution is increased to 105000, the corresponding moment at support $=105000 \times \frac{.2375}{.131}=190000$.
The moments after redistribution are:

$$
\begin{array}{ll}
\text { At mid span } 105000-15000=90000 \text { in lbs. } \\
\text { at support } & 190000+30000=220000 \text { in lbs. }, \\
& \text { but its maximum value is } 174000
\end{array}
$$

In Beam 13 again we get a condition of full redistribution and the maximum values of monents are reached both at support and mid span.

Beani 14.
In this case, the bending moment distribution and the rate of $\mathbb{R I}$ values ot the ultimati, are similar to those for Bean No. 13. The condition of full redistribution applies to this beam also.

The results of the analysis are summarised bolow.

	PROPERTIES OF SECTION.			FROPERTIES OF STRUCTURE.			
$\begin{aligned} & (1) \\ & \text { BEAN } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { (2) } \\ \text { Ultimate } \\ \text { Moment } \\ \text { Analyzed } \\ \text { by } \\ \text { computer } \end{gathered}$	(3) Ultimate moment calculated by Guyon.	Noment failur calcul by aut sugges in Bak analys for co patibi	$\begin{aligned} & \text {) } \\ & \text { at } \\ & \text { e } \\ & \text { ated } \\ & \text { hor's } \\ & \text { tion } \\ & \text { er's } \\ & \text { is } \\ & \text { ri- } \\ & \text { lity. } \end{aligned}$	5) Woment a failure culated Guyon wi his adontion coeffici		$\begin{gathered} \text { (6) } \\ \text { Actual } \\ \text { moment } \\ \text { at } \\ \text { failure. } \end{gathered}$
		D SPAiv				$\begin{aligned} & \text { finct. } \\ & \text { of } \\ & \text { act } \\ & \text { ual. } \end{aligned}$	
12	95500	108700	95500	. 845	102500	. 906	113000
13	90000	101300	90000	1.03	98500	1.13	87000
14	84000	96000	84000	. 91	93250	1.01	92500
	SUPFORT						
12	125000	137200	125000	1.0	137200	1.1	125000
13	174000	182000	174000	1.01	182000	$1.05{ }^{\text {! }}$	173000
14	172000	184000	172000	11.13	184000	1.21	157000

Table 7.1
3 Storeys \& 3 Bays- Unit Rotation at Hinge 13b

Hinge Case 1 Case 2 Case 3 Case 4 Case 5 Noments $X=\frac{5}{3}, Y=4: X=\frac{5}{6}, Y=4: X=1, Y=4: X=\frac{3}{3}, Y=8 ; X=\frac{2}{2}, \quad Y=12$

X13b	1.7975	1.7967	1.7960	1.7056	1.6721
X23b	-.4671	-.4670	-.4668	-.4377	-.4262
X33b	-.0582	-.0579	-.0577	-.0296	-.0197
X23a	.2949	.2935	.2922	.1579	.1079
X33a	-.2120	-.2113	-.2107	-.1163	-.0802
X23c	.0788	.0764	.0740	.0457	.0322
X33c	-.1584	-.1562	-.1541	-.0864	-.0595
X43c	-.0857	-.0346	-.0836	-.0445	-.0300
X12b	.0449	.0438	.0427	.0282	.0204
X22b	-.0479	-.0474	-.0469	-.0272	-.0190
X32b	-.0791	-.0781	-.0772	-.0430	-.0293
X22a	-.0170	-.0166	-.0161	--	--
X32a	.0146	.0143	.0140	--	--

3 Storeys \& 3 Bays- Unit Rotation at Hinge 230
Finge Case 1 Case 2 Case 3 Case 4 Case 5
Foments $X=\frac{2}{3}, \mathrm{Y}=4: \mathrm{X}=\frac{5}{6}, \mathrm{Y}=4: \mathrm{X}=1, \mathrm{Y}=4: \mathrm{X}=\frac{3}{3}, \mathrm{Y}=8: \quad \mathrm{X}=\frac{2}{3}, \mathrm{Y}=12$

X13b	-.4671	-.4670	-.4669	-.4377	-.4262
X23b	1.8795	1.8778	1.8763	1.7562	1.7085
X33b	-.2358	-.2345	-.0333	-.1373	-.0968
X23a	.0613	.0606	.0600	.0328	.0224
X33a	. .3769	.3746	.3725	.2484	.1443
X13c	-.0856	-.0839	-.0823	-.0454	-.0308
X33c	. .1381	.1339	.1301	.0825	.0588
X43c	-.1370	-.1327	-.1287	-.0800	-.0567
X12b	-.0460	-.0452	-.0444	-.0266	-.0187
X22b	.0899	.0873	.0847	.0600	.0444
X32b	-.1060	-.1028	-.0999	-.0695	-.0515
X32a	-.0294	-.0284	-.0275	--	--
X32c	-.0166	-.0158	-.0151	---	-

Teble 7.3
3 Storeys ic 3 Bass-- Unit Rotation at Hinge 33b Hinge Case 1 Case 2 Case 3 Case 4 Gase5 Moments $X=\frac{?}{3}, Y=A: X=\frac{6}{3}, Y=4: X=1, Y=4: \quad X=?, Y=8: \quad X=?, Y=12$ $\begin{array}{llllll}\mathrm{Xl} 3 \mathrm{~b} & -.0582 & -.0579 & -.0577 & -.0296 & -.0197\end{array}$ $\begin{array}{llllll}\mathrm{X} 23 b & -.2358 & -.2345 & -.2333 & -.1373 & -.0197 \\ \mathrm{X} 33 \mathrm{~b} & .6264 & .6234 & .0968\end{array}$
 $\begin{array}{llllll}\mathrm{X} 332 & -.1025 & -.1693 & -.1688 & -.0098 & -.0609 \\ \mathrm{X} 13 \mathrm{c} & -.1372 & -.1341 & -.1007 & -.0683 & -.0504 \\ \mathrm{X} 23 c & -.1661 & -.1649 & -.1312 & -.0783 & -.0551\end{array}$
$\begin{array}{lccccc}\text { X33c } & -.1247 & -.1649 & -.1637 & -.0886 & -.0603 \\ \text { X43c } & .2030 & . .1961 & -.1192 & -.0745 & -.0532 \\ \text { X12b } & -.0809 & -.0803 & -.0797 & . .0436 & .0883 \\ \text { X22b } & -.0196 & -.0172 & -.1050 & -.0707 & -.0297 \\ \text { X32b } & .1534 & .1483 & .1435 & .1060 & .0521 \\ \text { X22a } & .0068 & .0068 & .0069 & -. & -\end{array}$
$\begin{array}{rrrrrr}\text { X32a } & .0213 & .0204 & .0195 & .0079 & .0040 \\ \mathrm{X12c} & .0096 & .0089 & .0083 & .0036 & .0019 \\ \mathrm{X} 32 \mathrm{c} & .0038 & .0081 & .0075 & .0036 & .0019 \\ \mathrm{X} 42 \mathrm{c} & -.0227 & -.0214 & -.0202 & -.0080 & -.0041 \\ \mathrm{X} 21 \mathrm{~b} & .0079 & .0074 & .0069 & .0034 & .0018 \\ \text { X31b } & -.0175 & -.0165 & -.0156 & -.0069 & -.0037\end{array}$

3 Storeys \& 3 Beys-- Unit Rotation at Hinge 230 Hinge Case 1 Case 2 Case 3 Case 4 Case 5 Foments $X=\frac{3}{3}, Y=4: \quad \bar{X}=\frac{3}{6}, Y=4: \quad X=1, Y=4: \quad X=\frac{3}{\hat{4}}, Y=8: \quad X=\frac{今}{3}, Y=12$

$$
\begin{array}{cccccc}
X 13 b & .2949 & .2935 & .2922 & .1579 & .1079 \\
X 23 b & .0613 & .0606 & .0599 & .0328 & .0224 \\
X 33 b & -.1698 & -.1693 & -.1688 & -.0898 & -.0609 \\
X 23 a & .6718 & .6682 & .6647 & .3663 & .2522 \\
X 33 a & -.1507 & -.1507 & -.1507 & -.0835 & -.0609 \\
X 13 c & -.1298 & -.1255 & -.1214 & -.0758 & -.0538 \\
X 23 c & .2170 & .2104 & .2041 & .1283 & .0910 \\
X 33 c & -.1647 & -.1630 & -.1613 & -.0873 & -.0595 \\
X 43 c & -.1712 & -.1685 & -.1659 & -.0893 & -.0609 \\
X 12 b & .0636 & .0620 & .0605 & .0411 & .0299 \\
X 22 b & -.0116 & -.0123 & -.0129 & - & - \\
X 32 b & -.1539 & -.1515 & -.1492 & -.0854 & -.0589 \\
X 22 a & -.0465 & -.0450 & -.0436 & -.0150 & -.0073 \\
X 32 a & .0112 & .0110 & .0108 & .0034 & -- \\
X 12 c & .0091 & .0083 & .0076 & .0036 & -- \\
X 22 c & -.0264 & -.0252 & -.0241 & -.0086 & -.0042 \\
X 11 b & -.0086 & -.0083 & -.0080 & -- & --
\end{array}
$$

3 Storeys \& 3 Bays-- Unit Rotation at Hinge $33 a$ Hinge Case 1 Case 2 Case 3 Case 4 Case 5 Foments $X=\frac{3}{2}, Y=4: X=\frac{5}{6}, Y=4: X=1, Y=4: X=\frac{2}{3}, Y=8: X=\frac{2}{i}, Y=12$

Table 7.6
3 Storeys of 3 Bays--Minit Rotation at Hinge $13 c$ $\begin{array}{cc}\text { Moments } & X=\frac{2}{3}, Y=4: \quad X=\frac{5}{6}, Y=4: \quad X=1, Y=4: \quad X=\frac{2}{3}, Y=8: \quad X=\frac{2}{3}, Y=12 \\ X 13\end{array}$

3 Storeyes \& 3 Bays-... Unit Rotation at Hinge 23 c Hinge Case 1 Case 2. Case 3 Case 4 Case 5 Moments $X=\frac{2}{3}, Y=4: X=\frac{5}{6}, Y=4: X=1, Y=4: X=\frac{2}{3}, Y=8: \quad X=\frac{2}{3}, Y=12$ XI3b . $0789.0764 \quad .0740 \quad .0457 \quad .0322$ $\begin{array}{lllll}\mathrm{X} 33 \mathrm{~b} & -.1661 & -.1649 & -.1637 & -.0886\end{array}-.0322$ $\begin{array}{lrrrrr}\text { X33a } & -.1647 & -.1629 & -.1613 & -.0873 & -.0595 \\ \text { X13c } & -.1294 & -.1213 & -.1138 & -.0753 & -.0535 \\ \text { X23c } & . .7066 & .6919 & .6778 & .3753 & .2562 \\ \text { X33c } & -.1649 & -.1603 & -.1559 & -.0872 & -.0594 \\ X 43 c & -.1737 & -.1708 & -.1680 & -.0906 & -.0612 \\ X 12 b & .2708 & . .2665 & .2624 & .1506 & .1044\end{array}$

X22b	.0559	.0665	.02624	.1506	.1044
X32b	-.1570	-.1540	.0546	.0312	.0217
X22a	-.1030	-.0999	-.0969	-.0867	-.0596
X32a	.0317	.0309	.0301	.0093	-.0146
X12c	.0244	.0226	.0209	.0084	.0044
X22c	-.0495	-.0471	-.0448	-.0154	-.0042
X32c	.0122	.0117	.0112	--	-
X11b	-.0154	-.0148	-.0142	-.0050	-
X21a	.0086	.0081	.0077	-	-

3 Storeys \& 3 Bays - Unit Rotation at Hinge 33c Hinge Case 1 Case 2 Case 3 Case 4 Case 5 Moments $X=\frac{2}{2}, Y=4: X=\frac{5}{6}, Y=4: X=1, Y=4: X=\frac{2}{3}, Y=8: \quad X=\frac{2}{3}, Y=12$ XI Ib -. $1584-.1562 \quad-.1541 \quad-.0864 \quad-.0595$ X23b . 1381 .1340 . 1300 . 0825 -. 059

3 Storeys \& 3 Bays-- Unit Rotation at Hinge 43c Moments $X=\frac{2}{3}, Y=4: \quad X=\frac{5}{6}, Y=4 ; \quad X=1, Y=4: \quad X=\frac{2}{3}, Y=8: \quad X=\frac{2}{3}, Y=12$ $\begin{array}{llllll}X 13 b & -.0857 & -.0846 & -.0836 & -.0445 & -.0300\end{array}$ $\begin{array}{lrrrrr}\text { X23b } & -.1370 & -.1327 & -.1287 & -.0445 & -.0300 \\ \text { X33b } & .2030 & . .1961 & .1896 & .1831 & -.0567 \\ \text { X23a } & -.1712 & -.1685 & -.1659 & -.0899 & -.0883 \\ \text { X33a } & -.1292 & -.1255 & -.1214 & -.0758 & -.0538 \\ \text { X13c } & -.1444 & -.1392 & -.1343 & -.0801 & -.0558 \\ \text { X23c } & -.1737 & -.1708 & -.1680 & -.0906 & -.0612 \\ \text { X33c } & -.1294 & -.1213 & . .1138 & -.0753 & -.0535 \\ \text { X43c } & .6828 & .6634 & .6451 & .3670 & .2521 \\ \text { X12b } & -.0558 & -.0552 & -.0546 & -.0293 & -.0197 \\ \text { X22b } & -.1950 & -.1881 & -.1817 & -.1231 & -.0897 \\ \text { X32b } & .5432 & .5287 & .5150 & .3240 & .2314 \\ \text { X22a } & .0170 & .0170 & .0170 & .0039 & -. \\ \text { X32a } & .0614 & .0587 & .0562 & .0192 & .0097 \\ \text { X12c } & .0249 & .0234 & .0220 & .0082 & .0041 \\ \text { X22c } & .0168 & .0166 & .0164 & .0044 & -. \\ \text { X32c } & .0349 & .0323 & .0308 & .0115 & .0057 \\ \text { X42c } & -.0550 & -.0516 & -.0484 & -.0179 & -.0088 \\ \text { X21b } & .0267 & .0251 & .0237 & .0096 & .0049 \\ \text { X31b } & -.0415 & -.0389 & . .0365 & -.0154 & -.0079 \\ \text { X31a } & -.0076 & -.0071 & -.0066 & -. & -.\end{array}$

3 Storeys \& 3 Bays -... Unit Rotation at Finge 12 b Hinge Case 1 Case 2 Case 3 Case 4 Case 5

3 Storeys \& 3 Bays ---Unit Rotation at Hinge 22b Hinge Case 1 Case 2 Case 3 Case 4 Case 5 Moments $X=\frac{?}{3}, \quad Y=4: X=\frac{5}{6}, Y=4 ; \quad X=1 ; Y=4: \quad X=\frac{2}{3} ; Y=8 ; X=\frac{2}{3}, Y=12$

3 Storeys \& 3 Bays--- Unit Rotation at Hinge 32 b Hinge Case 1 Case 2 Case 3 Corse 4 Case 5 X13b-.0791-.0781 -.0772

3 Storeys \& 3 Bays--- Unit Rotation at Hinge 22a Hinge Case 1 Case 2 Case 3 Case 4 Case 5 Wonents $X=\frac{3}{3}, Y=4: X=\frac{5}{6}, Y=4: X=1, Y=4: X=\frac{2}{3}, Y=8: X=\frac{2}{3}, Y=12$
XI3B -.0171

3 Storeys \& 3 Bays- Unit Rotation at Hinge 32a Hinge Case 1 Case 2 Case 3 Case 4 Case 5 Moments $X=\frac{?}{3}, Y=4: \quad X=\frac{5}{6}, Y=4: \quad X=1, Y=4: \quad X=\frac{2}{3}, Y=8: \quad X=\frac{2}{3}, Y=12$ XI Bb .O146 .0143 .0140

3 Storeys \& 3 Beys-- Unit Rotation at Hinge $12 c$ Hinge Case 1 Case 2 Case 3 Case A_{r} Case 5 Moments $X=\frac{2}{3}, Y=4: \quad X=\frac{5}{6}, Y=4: \quad X=1, Y=4: \quad X=\frac{2}{3}, Y=8: \quad X=\frac{2}{3}, Y=12$

$$
\begin{aligned}
& \begin{array}{lccccc}
\mathrm{XI} 3 \mathrm{c} & -.0550 & -.0516 & -.0484 & -.0179 & -.0088 \\
\mathrm{X} 23 \mathrm{c} & .0244 & .0226 & .0209 & .0084 & .0042 \\
\mathrm{X} 43 \mathrm{c} & .0249 & .0234 & .0220 & .0082 & .0041
\end{array} \\
& \begin{array}{llllll}
\mathrm{X} 22 \mathrm{~b} & -.1241 & -.0965 & -.0783 & -.0057 & .0041 \\
\mathrm{X} 32 \mathrm{~b} & -.1873 & -.1435 & -.1147 & -.1105 & -.0459 \\
\mathrm{X} 22 a & -.2015 & -.1569 & -.1274 & -.1150 & -.0789 \\
\mathrm{X} 32 \mathrm{a} & -.2556 & -.2012 & -.1650 & -.1346 & -.0812
\end{array} \\
& \begin{array}{rrrrrr}
\mathrm{X12c} & 1.0304 & . .8019 & -.1650 & -.1346 & -.0912 \\
\text { X22c } & -.1980 & -.1491 & -.1171 & .5517 & .3785
\end{array} \\
& \begin{array}{llllll}
\mathrm{X} 32 \mathrm{c} & -.2603 & -. .1491 & -.1171 & -.1137 & -.0805
\end{array} \\
& \text { X4.20-.2201 } \\
& \text { XIIb } \\
& \text { X21b-. } 151 \\
& \text { X3Ib - }-1577 \\
& \text { X21a . } 0961 \\
& \text { X31a . } 0255 \\
& \text { XIIc - } \\
& \text { X21c } \\
& \begin{array}{lr}
\text { X31c } & .0599 \\
\text { X41c } & .0246
\end{array}
\end{aligned}
$$

3 Storeys \& 3 Bays-... Unit Rotation at Hinge 22c $\begin{array}{ccc}\text { Moments } X=\frac{2}{3}, Y=4: & X=\frac{5}{6}, Y=4: X=1, Y=4: \quad X=\frac{3}{3}, Y=8: \quad X=\frac{?}{3}, Y=12 \\ \text { XI Sb }- & -.0094 \quad-.0090\end{array}$

3 Storeys \& 3 Bays-- Unit Rotation at Hinge 32c Hinge Case 1 Case 2 Case 3 Case 4 Case 5 $\begin{array}{lrrrrr}\text { X33a } & -.0264 & -.0158 & -.0151 & \ldots & -.025 \\ \text { X13c } & .0168 & .0166 & .0241 & -.0086 & -.0042 \\ \text { X23c } & .0123 & .0117 & .0112 & -\ldots & - \\ \text { X33c } & -.0495 & -.0471 & -.0448 & -.0154 & -.0075 \\ \text { X43c } & .0349 & .0328 & .0308 & .0115 & .0057 \\ \text { X12b } & -.2213 & -.1718 & -.1390 & -.1245 & -.0867 \\ \text { X22b } & .1794 & .1345 & .1051 & .1140 & .0832 \\ \text { X32b } & -.1613 & -.1221 & -.0965 & -.1019 & -.0747 \\ \text { X22a } & -.2484 & -.1969 & -.1625 & -.1312 & -.0893 \\ \text { X32a } & .3352 & .2616 & .2128 & .1941 & .1370 \\ \text { X12c } & -.2603 & -.2048 & -.1679 & -.1358 & -.0918 \\ \text { X22c } & -.2474 & -.1924 & -.1559 & -.1308 & -.0891 \\ \text { X32c } & 1.0655 & .8355 & .6828 & .5639 & .3846 \\ \text { X42c } & -.1980 & -.1491 & -.1171 & -.1137 & -.0805 \\ \text { X11b } & -.2834 & -.2213 & -.1801 & -.1636 & -.1150 \\ \text { X21b } & .4999 & .3911 & .3190 & .2910 & .2058 \\ \text { X31b } & -.1027 & -.0756 & -.0580 & -.0834 & -.0657 \\ \text { X21a } & .0484 & .0378 & .0308 & .0141 & .0066 \\ \text { X31a } & -.1593 & -.1243 & -.1011 & -.0470 & -.0222 \\ \text { X21c } & .0208 & .0164 & .0134 & .0058 & -- \\ \text { X31c } & -.0830 & -.0647 & -.0525 & -.0246 & -.0117 \\ \text { X41c } & .0442 & .0342 & .0275 & .0140 & .0068\end{array}$

3 Storeys \& 3 Bays -- Unit Rotation at Hinge 42c Hinge Case 1 Case 2 Case 3 Case 4 Case 5 Noments $X=\frac{2}{5}, Y=4: X=\frac{5}{6}, Y=4: X=1, Y=4: \quad X=\frac{2}{5}, Y=8: \quad X=\frac{2}{3}, Y=12$
 $\begin{array}{llllll}\text { X23b } & .0107 & .0099 & .0093 & -\ldots & \\ \text { X33b } & -.0227 & -.0214 & -0202 & \end{array}$

3 Storeys 3 Bays ---U Unit Rotation at Hinge lIb Hinge Case 1 Case 2 Cess 3 Case 4 Case 5 $\begin{array}{cl}\text { Moments } & X=\frac{2}{3}, Y=4: X=\frac{5}{6}, Y=4: X=1, Y=4: \quad X=\frac{3}{3}, Y=8: \quad X=?, Y=12\end{array}$

Table 7.20

3 Storeys \& 3 Bays---- Unit Rotation at Finge2lb Hinge Case 1 Case 2 Cose 3 Case 4 Case 5 Moments $X=\frac{3}{3}, Y=4: X=\frac{5}{6}, Y=4: X=1, Y=4: X=\frac{2}{3}, Y=8: X=\frac{2}{3}, Y=12$

X43c	-	--	.0237	-	--
X12b	-.0663	-.0516	-.0419	--	--
X22b	.1168	.0876	.0686	.0830	.0630
X32b	-.1430	-.1085	-.0859	-.0975	-.0735
X32a	.1644	.1279	.1038	.1091	.0808
X12c	-.1511	-.1181	-.0962	-.0859	-.0598
X22c	.0844	.0668	.0551	.0469	.0326
X32c	.4999	.3912	.3191	.2910	.2058
X42c	-.2923	-.2256	-.1815	-.1846	-.1345
X11b	-1.1205	-.7263	-.5103	-1.0313	-.9934
X21b	4.5429	2.9493	2.0759	4.1507	3.9896
X31b	-.7555	-.5110	-.3725	-.4705	-.3409
X21a	.1374	.0868	.0595	.0737	.0504
X31a	.7071	.4921	.3340	.4491	.3149
X11c	-.2019	-.1281	-.0882	-.1051	-.0708
X31c	.3074	.1903	.1280	.1845	.1316
X41c	-.3177	-.1984	-.1346	-.1830	-.1290

3 Storeys \& 3 Bays --- Unit Rotation At Hinge BIb Hinge Case 1 Case 2 Case 3 Case 4 Case 5 $\begin{gathered}\text { Moments } \\ \text { XI }\end{gathered} \quad X=\frac{2}{3}, Y=4: X=\frac{5}{6}, Y=4: \quad X=1, Y=4: \quad X=\frac{2}{3}, Y=8: \quad X=\frac{3}{3}, Y=12$

3 Storeys \& 3 Bays--- Unit Rotation at Hinge $21 a$ Hinge Case 1 Case 2 Case 3 Case 4 Case 5 Monents $X=\frac{7}{3}, Y=4: \quad X=\frac{5}{6}, Y=4: \quad X=1, Y=4: X=\frac{2}{3}, Y=8: \quad X=?, Y=12$

X23c		6	$\mathrm{X}=1, \mathrm{Y}=$	$\frac{2}{3}$,	$X=?$
XI2b	-. 0241		. 0077	--	
X22a	-. 0241	-. 0185	-. 0148	--	
X32a	-. 0732	-. 0572	-.0467	-. 0239	-. 0171
XI2e	. 0175	. 0138	. 0114	. 023	-. 0111
X220	.0961	. 0741	. 0596	. 0305	
$\times 220$	-. 1593	-. 1243	-. 1017		9
X320	. 048 a	. 0379		$-.0470$	-. 0222
X42c	. 0255		. 0308	. 0141	. 0066
XIIb	. 6317		. 0170	--	--
X21b	. 1374	. 0868	. 2717	. 3457	. 2382
X3Ib	-. 3597	. 0868	. 0596	. 0737	. 0504
X21a	1.5781	01	-. 1540	-. 1967	-. 1347
X31a	-. 3470	1.0141	. 7069	. 8417	. 5754
XIIc	-. 3509		-. 1558	-. 1894	-. 1305
X21c	. 5728		-. 1581	-. 1891	-. 1301
X3Ic	-. 3897	- 3689	. 2577	. 3136	. 2165
X4Ic	-. 4.088	-. 2498	-. 1737	-. 2020	-. 1365
		-	-. 1813	-. 2085	-. 1398

3 Storeys \& 3 Bays -- Unit Rotation at Hinge $31 a$ Hinge Case 1 Case 2 Case 3 Case 4 Case 5 Moments $X=\frac{2}{3}, \mathrm{Y}=4: \mathrm{X}=\frac{5}{6}, \mathrm{Y}=A_{r}: \mathrm{X}=1, \mathrm{Y}=4: \quad \mathrm{X}=\frac{2}{3}, \mathrm{Y}=8: \quad \mathrm{X}=\frac{2}{3}, \mathrm{Y}=12$

3 Storeys \& 3 Bays --- Unit Rotation llc
Hinge Case 1 Case 2 Case 3 Case 4 Case 5 Moments $X=\frac{2}{3}, Y=4: X=\frac{5}{6}, Y=4: X=1, Y=4: X=\frac{2}{3}, Y=8: \quad X=\frac{2}{3}, Y=12$

X32b	.0144	.0107	.0083	-	-
X22a	.0177	.0137	.0111	--	-
X12c	-.0960	-.0745	-.0603	-.0294	-.0141
X22c	.0442	.0342	.0276	.0140	.0068
X42c	.0432	.0334	.0270	.0135	.0065
X21b	-.2019	-.1281	-.0882	-.1051	-.0708
X31b	-.3097	-.1939	-.1318	-.1764	-.1240
X21a	-.3509	-.2262	-.1581	-.1891	-.1301
X31a	-.4088	-.2613	-.1813	-.2086	-.1398
X11c	1.7518	1.1226	. .7805	.8914	.5986
X21c	-.3870	-.2486	-.1732	-.2000	-.1353
X31c	-.4160	-.2662	-.1848	-.2097	-.1401
X41c	-.3880	-.2492	-.1736	$-.2004_{r}$	-.1355

3 Storeys \& 3 Bays-- Unit Rotation at Hinge 2lc Hinge Case 1 Case 2 Case 3 Case 4 Case 5 Moments $X=\frac{2}{3}, Y=4: X=\frac{5}{6}, Y=4: X=1, Y=4: X=\frac{2}{3}, Y=8: \quad X=\frac{2}{3}, Y=12$

X12b	-	--	-.0092	--	--
X22a	-.0443	-.0347	-.0283	-.0137	-.0066
X12c	.0599	.0464	.0374	.0187	.0091
X22c	-.0830	-.0647	-.0525	-.0247	-.0117
X32c	.0208	.0164	.0134	--	--
X42c	.0247	.0195	.0161	.-	-
X11b	.1825	.1139	.0771	.1044	.0731
X21b	-.0175	-.0123	-.0093	--	--
X31b	-.3605	-.2272	-.1554	-.1951	-.1336
X21a	.5728	. .3689	.2577	.3136	.2165
X31a	-.3897	-.2498	-.1737	-.2020	-.1365
X11c	-.3870	-.2486	-.1732	-.2000	-.1353
X21c	1.7505	1.1216	.7798	.8916	. .5988
X31c	-.4182	-.2677	-.1859	-.2100	-.1402
X41c	-.4160	-.2661	-.1848	-.2097	-.1401

Table 7.26
3 Storeys \& 3 Bays-- Unit Rotation at Hinge 3lc Hinge Case 1 Case 2 Case 3 Case 4 Case 5 Moments $X=\frac{2}{3}, Y=4: \quad X=\frac{5}{6}, Y=4: X=1, Y=4: X=\frac{2}{3}, Y=8: \quad X=\frac{3}{3}, Y=12$

X22b	-.0248	-.0188	-.0149	-	-
X32a	-.0443	-.0347	-.0283	-.0137	-.0066
X12c	.0247	.0195	.0161	-	-
X22c	.0208	.0164	.0134	-	-
X32c	-.0830	-.0647	-.0526	-.0247	-.0117
X42c	.0600	.0464	.0374	.0187	.0091
X11b	-.3514	-.2211	-.1510	-.1930	-.1332
X21b	.3074	. .1903	.1279	.1845	.1316
X31b	-.2673	-.1652	-.1109	-.1633	-.1177
X21a	-.3898	-.2498	-.1737	-.2020	-.1365
X31a	.5728	.3689	.2577	.3136	.2165
X11c	-.4160	-.2662	-.1848	-.2097	-.1401
X21c	-.4182	-.2677	-.1859	-.2100	-.1402
X31c	1.7505	1.1216	.7798	.8916	.5988
X41c	-.3870	-.2486	-.1732	-.2000	-.1353

3 Storeys \& 3 Bays --. Unit Rotation at Hinge 41 c Hinge Case 1 Case 2 Case 3 Case 4 Case 5 Noments $X=\frac{2}{3}, Y=4: X=\frac{5}{6}, Y=4: X=1, Y=4: X=\frac{2}{3}, Y=8: \quad X=\frac{2}{3}, Y=12$

X22b	-	.0123	.0096	--	-
X32b	-.0340	-.0256	-.0201	-.0120	-.0061
X32a	.0177	.0137	.0111	-	.-
X12c	.0432	.0334	.0270	.0135	.0065
X32c	.0442	.0342	.0276	.0140	.0068
X42c	-.0960	-.0745	-.0603	-.0294	-.0141
X11b	-.1979	-.1259	-.0868	-.1018	-.0683
X21b	-.3177	-.1984	-.1346	-.1830	-.1290
X31b	.4558	. .2817	.1891	.2768	. .1986
X21a	-.4088	-.2613	-.1813	-.2086	-.1398
X31a	-.3509	-.2262	-.1581	-.1891	-.1301
X11c	-.3880	-.2492	-.1736	-.2004	-.1355
X21c	-.4160	-.2662	-.1848	-.2097	-.1401
X31c	-.3870	-.2486	-.1732	-.2000	-.1353
X41c	1.7518	1.1226	.7805	.8914	. .5986

Taiole 7.28
Unit Rotation at Hinge 22 b
Effect of increasing No, of Storeys
Hinge $\quad 3$ storeys 4 Storeys 5 Storeys

Moments
3 Bays
3 Bays
3 Bays
X13b - $00479 \quad-.0479 \quad-.0479$
X23b
.0899
.0899
.0899
X33b
-. 1096
-.1096 -. 1096
.1068 . 1068
X33a
.1068
-. 1008 -. 1008
X13c
-. 1008
.0558
.0558
$\times 230$
$\times 33 \mathrm{c}$
.0558
.3328
.3328
X43c
... 1950
$\begin{array}{ll}-.7950 & -.1950 \\ -.7464 & -.7464\end{array}$
XI2b
-. 7464
3.0181
3.0181

X32b	-.4959	-.4958	-.4958
X22a	.0871	.0871	.0871
X32a	.5109	.5108	.5108
X12c	-.1241	-.1241	-.1241
X32c	$.1794_{r}$.1793	.1793
X42c	-.1851	-.1850	-.1850
X11b	-.0663	-.0664	-.0664
X21b	.1168	.1175	.1175
X31b	-.1430	-.1438	-.1438
X31a	-.0404	-.0394	-.0394

Note that the effect of increasing the no. of storeys is not significant

Tabie 7.29
Unit Rotation at Hinge 22b Effect of increasing No. of Bays Hinge $X 13 b$
$X 23 b$
$X 33 b$
$X 43 b$
$X 53 b$
$X 23 a$
$X 33 a$
$X 43 a$
$X 53 a$
$X 13 c$
$X 23 c$
$X 33 c$
$X 43 c$
$X 53 c$
$X 63 c$
$X 12 b$
$X 22 b$
$X 32 h$
$X 42 b$
$X 52 b$
$X 22 a$
$X 32 a$
$X 42 a$
$X 52 a$
$X 12 c$
$X 22 c$
$X 32 c$
$X 42 c$
X
 3 Storey
3 Bays
-. 0479
3 Storeys
4 Bays
-

Table 7.30
Properties of over-reinforced rectangular beams

FIG 7.1

FIG 7.2

FIG 7.4

FIG 7.5

FIG 7.6

CHAPTER 8.

CONCLUSION AND SUGGESTION FOR FULTHER WORK.

8.1 It is concluded from the behaviour of Frame 1 (Chapter 6), that over-reinforced I-sections, in a prestressed concrete frame can have a brittle type failure and such a failure may occur without significant warning and before sufficient hinges are developed to form a mechanism.

It is also observei that an I-section is less ductile than a corresponding rectangular section. The author is of opinion that this is due to the buckling of the flange.

Pietrzykowski ${ }^{(40)}$ observed that full re-distribution of moments did not necessarily take place in a frame in which the columns are heavily loaded.

The author has concluded from the test results of Frames 2 and 3, that adequate rotations to enable the frame to attain a state of full redistribution of moments may be obtained in a prestressed concrete frame, irrespective of the fact that the critical sections be over-reinforced or may be subjected to high axial loads, provided the frame is reinforced with an adequate amount of binders.

An attempt has been made in appendix 16 to calculate the discontinuous rotations at hinges that would occur, if a Trilinear Idealization of moment curvature relationships is adopted at the critical sections of Frame 2. A significant difference is not noticed between the results obtained and those derived from a bilinear idealization.

This is due to the low cracking moment at the critical section at the foot of the left-hand column.

The presence of internal stresses in a frame can appreciably modify the hinge rotations. Calculations in respect of frame 2 are presented in appendix 17. Conclusions of this thesis are however, not affected. Not only are small secondary stresses unavoidable in an actual structure, but also it may be pointed out that a more severe demand on hinge rotations may arise in an actual structure as the sway load is decreased.

8.2 A suggestion for a future design method.

Let us assume that depending on further research and evidence a design method is found to be suitable for applicability to reinforced concrete or prestressed concrete framed skeletal structures when a complete collapse mechanism is about to form, i.e., in which $n+1$ critical sections attain their moments of resistance under the factorized loads, but at all other critical sections, the moment is less than their respective moments of resistance.

Let us also assume that at the end of the above stage rotations have been calculated in the correct sense at the $n+1$ hinges (including zero rotation at the last hinge). These rotations are unique, provided the problem of opening and closing of hinges has not arisen, and it is not possible to adjust their values.

The final problem is therefore to ensure that these rotations do take place by the adequate provision of binders where necessary. Suitable graphs showing the rotational capacities of hinges for different depths of neutral axis and different quantities of binders with more realistic values than presented in
(ll) will be useful for this purpose.

In an actual structure, if it is assumed that the moments of resistance m^{*} and the ' $\mathbb{I I}$ ' value at the state of L_{1} is the same at all critical sections, the rotation at a hinge will be found to be riven by the expression

$$
\frac{\mathrm{Km} * \ell}{E I}
$$

where K is a parameter which ietermines the position of the hinge and \mathcal{Q} is a constant depending on the dimensions of the frane.

$$
\text { putting } E I=\frac{\mathrm{mil}_{1}}{\mathrm{e}_{\mathrm{cq}} / \mathrm{n}_{1} \mathrm{~d}}
$$

the rotation is

If the permissible rotation is obtained from equation 2.16 and provided the value of ' 2 ' is the same on both sides of the critical section, the following inequality must hold good.
$2 \times .8\left(e_{c 2}-e_{c 1}\right) K_{1} K_{2} \frac{Z}{a}>\frac{K_{m} \ell}{M_{1}} . \quad \frac{e_{c 1}}{n_{1} d}$ putting $Z=c \ell$
$e_{c 2}-e_{c 1}>{ }^{\mathrm{km}_{1}}{ }^{*} \cdot \frac{1}{1.6} K_{1} K_{2} \cdot \frac{e_{c 1}}{n_{1}}$
or $\frac{e_{c 2}}{e_{c 1}}>1+K \cdot \frac{m^{*}}{M_{1}} . \quad \frac{1}{1.60 K_{1} K_{2} n_{1}}$

If the following values are assumed to hold geod

$$
\begin{aligned}
& \mathrm{m}^{*}=\Omega_{\mathrm{H}} \mathrm{M}_{\mathrm{I}} \\
& \mathrm{~K}=.2 \\
& \mathrm{C}=.25 \\
& \mathrm{~K}_{1} K_{2}=.5 \\
& \mathrm{~A}_{1}=.5 \\
& \frac{e_{\mathrm{c} 2}}{e_{c_{1}}>1}>+\frac{.2}{1.6 \times .25 \times .5 \times .5} \\
& \text { i.e., }>3
\end{aligned}
$$

In simple cases, the problem reduces to a checking of the ratio $\frac{e_{c 2}}{e_{c 1}}$. Thereafter $e_{c 2}$ can be altered by providing the necessary quantity of binders.
8.3 Suggestions for future work.

The author has already pointed out that a state of full redistribution of moments may be achieved in a continuous beam without sreat difficulty, provided support moments are reduced with a corresponding increase in span moments.

However, if the overall economy of a continuous beam subjected to a uniformly distributed load plus live load, depends on a minimum volume of steel, it may be necessary to redistribute moments in the opposite direction i.e., a reduction of span moments may be necessary, accompanied by an increase in support moments.

It has been shown in appendix if that the hinge rotations needed at mid span hinges are comparatively higher. Thus Tests on 3 span continuous beams with over-reinforced I-sections should be carried out.

The author has discussed in Chapter 5, the behaviour of a cracked prestressed section. A computer programme for a non-linear analysis of frames, using the flexibility matrix and the equivalent 'EI' method proposed by the author, which takes into account the rib shortening effect by using the appropriate 'EA' value, and the change in the internal geometry by the 'effective' centroid method, also susgested by the author, and which also includes the effect of the change in the external geometry, will be extremely useful for further studies of frame behaviour.

Flow Diagram for calculating (i) m_{2} vs ω

APPENDIX - 2

SULiWARY OF MIX DESIGN

1) Required strength of $6^{\prime \prime}$ cubes $=\frac{6000}{1.35}=4450$ p.s.i. corresponding strength of $4^{\prime \prime}$ cubes $=4450 \times 1.04$

$$
=4620 \text { p.s.i. }
$$

(Road note No.4, is based on $4^{\prime \prime}$ cube strength).
2) The water cement ratio for the above strength is .55 .
3) For irregular aggregate $3 / 4$ " down and low workability, the Aggregate cement ratio using curve $N_{0} .3$ is 6.00:1.
4) The proportioning by weight of all the constituents for each eft. of concrete is carried out as follows. The volume of one beam \& control specimens $=4 \mathrm{cft}$.

An addition of. 5% was made in col. 4 , to make up for wastage.

The above mix was found to be too wet and the aggregate cement ratio actually used was 6.10:1.

APFENDIX - 3

CAECULATION OR CKACKING WONENT IN BEAM NO. 5

Section Properties

	A	I	Z_{1}	Z_{2}	e_{1}	e_{2}
Grouted condition	35.93	250.67	63.8	61.2	3.92	4.08
Ungrouted condition	32.66	234.47	57.0	60.0	4.10	3.90

Average prestressing force (after losses) in each wire $=7560 \mathrm{lbs}$.
The stresses due to prestress and dead load, in ungrouted condition are as under.
$f_{\text {max }}$ at fibre $1=$
$\frac{5 \times 7560}{32.66}+\frac{5 \times 7560 \times(5.75-3.90)}{57}-\frac{2400}{57}=2350$
(a)
(b)
(c)
$f_{\text {min }}$ at fibre $2=a-b+c=30$
As a first approximation assume that the combined stresses due to prestress, dead load and live load are as follows.

Due to the applied load, the prestressing force will increase, the assessment of which has been made as under.

The revised stresses due to prestress, dead load \& those due to applied load to cause cracking by inducing a resultant tension of $500 \mathrm{Ibs} /$.sq . in. at fibre I, are shown in the following diagram.

An improved value of cracking moment is therefore $=2988 \times 63.8+2400$ (dead load moment)
$=193400$ in Ibs.
The cracking moment according to Illinois bulletin
No. 452, is given by the expression
$f_{t} \overline{b d} \cdot \sqrt{\frac{b}{B}}\left(1+\frac{F_{s t}}{A_{c} f_{t}}\right)$
Where $I_{t}=500 \mathrm{lbs} . / \mathrm{sq}$. in.
$F_{\mathrm{se}}=37800 \mathrm{Ibs}$.
$b^{\prime \prime}=2.25^{\prime \prime}$
$b=6^{\prime \prime}$
$A_{c}=34 \mathrm{sq}$. in. (approx)
On substuting the above values, the cracking moment will be found to be 195000 in lbs., which is close to the value obtained above.

APPENDIX - 4

CALCULATION OF STRESSES IN ANCHORAGE ZONE.

elevation

Calculation of stresses along $A B$
Average stress in the X-section due to each tend on $=\frac{7560}{48}=157$ lbs./sq.in.

The coefficients for calcul ting stresses at various levels of z, for $y=3 / 4 a$, as taken from Table 1 on page 516 of Guyon's 'Prestressed concrete' Vol. 1 ; are as under.

Tendon Value of d at $z=0$ at $z=a / 6$ at $z=a / 3$ at $z=a / 2$ No.

$4 \& 5$	$3 / 4 a$	-2.079	-1.389	-.737	-.262
3	$1 / 2 a($ approx $)$	-1.258	.580	-.227	-.425
$1 \& 2$	$1 / 4 a($ approx $)$	-.865	-.387	-.486	-.364

The worst case is at $\mathrm{z}=0$, where the net tensile stress $=-2.079 \times 314-1.258 \times 157-.865 \times 314$

$$
\begin{gathered}
=-1120 \text { lbs./sq.in. (Negative sign stands for } \\
\text { tension.) }
\end{gathered}
$$

Similarly tensile stresses were calculated along $C D$ and EF.

An average value of $400 \mathrm{lbs} . / \mathrm{sq}$.in. was assumed. Total tensile force in a length of $4^{\prime \prime}$ along z is then $=400 \times 6 \times 4=9600$ lbs. Required area of mild steel $=\frac{9600}{20000}=.48 \mathrm{sq}$. in. Area actually provided $=.392$ sq. in. (8 No. $1 / 41$ in.S. Bars)

APPENDIX - 5 .

CALCULATION OF LOSSES INV PRESTRESS

(a) Losses due to elasticity of concrete (as applicable to post-tensioned beams, with straight cable which are consecutively tensioned).

If the beam has a total proportion of steel = 'p' in ' n ' cables, area of each cable $=\frac{p A}{n}$ where $A=$ total area. of concrete.

Let $e_{s l}, e_{s 2}, \ldots . e_{s n}$, be the respective eccentricities.
Stress in concrete at the level of $e^{\text {th }}$ cable due to stress P_{i} in $y^{\text {th }}$ cable $=p_{i} \cdot \frac{p}{n}\left(1+\frac{e^{s x} \cdot{ }^{e} s \cdot y}{r^{2}}\right)$, where $r=$ radius of gyration about x axis. The corresponding loss in prestress in $x^{\text {th }}$ cable $=p_{i} \frac{p m}{n}\left(1+\frac{e_{s x} e^{e} s y}{r^{2}}\right)$ where $\mathrm{m}=$ modular ratio.

The total loss of stress when all the cables have been tensioned, where both vertical and horizontal eccentricities are present

(where $r^{\prime \prime}$ is the radius of gyration bout y axis)

$\begin{aligned} m=\frac{30}{5}=. & \text { say, }\end{aligned}$
Net effective area $=32.659 \mathrm{sa}^{\circ}$
moment of inertia about yy $=76.57 \mathrm{in}^{4}$

$$
r^{\prime \prime}=2.35
$$

moment of inertia about $\mathrm{xx}=234.47 \mathrm{in}^{4}$

$$
r^{2}=7.17
$$

Let tendons 1 to 5/consecutively tensioned and let the desired force in each tendon after transfer from jack be 8000 lbs.

Loss in list wire.
$=\frac{8000 \times 6 \times .0596}{32.659}\left(4+\frac{.6(.6+1.85+3.1+3.1)}{7.17}\right)$
$=415 \mathrm{lbs}$.
(b) Losses due to shrinkage.

After post tensioning, the beams were soon grouted. The effect of shrinkage after this stage in the beam, is as if they were pretensioned.

The total shrinkage strain does not cause an equal amount of loss of strain in steel because of elastic recovery in concrete.
Loss cf strain in steel = shrinkage strain - elastic recovery of concrete.
If loss of steel stress is denoted by \quad posh and
σ denotes the shrinkage strain, then
$L_{p s h}=\sigma E_{G}-m \delta_{f}$
where δ_{f} is change in concrete stress at the level of wire.
Compare this with the following equation which is applicable in case of a pre-tensioned beam, to find the loss of stress in steel after transfer.

$$
\begin{equation*}
p_{t}=p_{i}-m \cdot f \tag{B}
\end{equation*}
$$

where p_{t} is the final stress in a wire p_{i} " " initial " before transfer. f is the concrete stress at the level of wire after transfer

where $e_{s}=$ distance of $C . G$ of wires from centroid. $r_{S}=$ radius of gyration of wires only.
Loss of steel stress is found by substituting σ Es in the above formula in place of p_{i}.

Take the case of Beam No. 5
$A=35.93$ (grouted condition), $m p=\frac{6 \times 5 \times .0596}{35.93}=.0498$
$I=250.67$

$$
r^{2}=7.15 \quad m^{2} p^{2}=.0025
$$

$\begin{aligned} r_{s}{ }^{2}=\frac{\left(2 x .42^{2}+2 x .92^{2}+1.67^{2}\right)}{5}=4.05 \quad e_{s} & =1.67, e_{s}{ }^{2}=2.78 \\ e & =.42\end{aligned}$
-. Loss in list and nd wire

$$
\begin{aligned}
& =\sigma \times 30.4 \times 10^{6} \frac{(7.15+0.5(4.05-.42 \times 1.67)\}}{7.15+.05 \times 11.2+.0025(4.05-2.78)} \\
& =28.8 \times \sigma \times 10^{6}
\end{aligned}
$$

The value of σ has been taken $x 15 \times 10^{-6}$ (44)
\therefore loss of stress $=430 \mathrm{lbs} / \mathrm{sq} . i n$. (Difference between the 26 th and 36 th
Loss of force $=430 \times .0596$ day).
(c) Loss due to creep of concrete

Creep is proportional to the final stress in the concrete. The stress in each tendon immediately after post tensioning is not the same. An approximate expression for calculating the loss due to creep is however, obtained as follows, by neglecting this difference.
If $p_{\text {ti }}^{\prime}$. is the stress after creep loss has taken place in wire no. 1 and p_{t} is the stress in each wire immediately after transfer
then $P_{t 1}^{\prime}=P_{t}-E_{s} \gamma_{f_{1}}+m \delta f_{1}$ (neglect the last item, which represents elastic recovery.)
where f_{1} is the final concrete stress adjacent to wire and γ is the creep strain per $1 b$ per $s q$. inch.

$$
\text { or } p_{t 1}^{\prime}=p_{t}-m E_{c} \gamma f_{1}
$$

Compare this with equation (B) for pretensioned beams.
Also loss of stress ' δt ' in a wire is given by the expression

$$
\begin{equation*}
\delta t=\frac{e_{i} m p\left\{r^{2}+m p\left(r_{s}^{2}-e_{s}^{2}\right)+e \cdot e_{s}\right\}}{r^{2}+m p\left(r^{2}+r_{s}^{2}\right)+m^{2} p^{2}\left(r_{s}^{2}-e_{s}^{2}\right)} . \tag{D}
\end{equation*}
$$

\therefore Loss due to creep ${ }^{\prime} I_{p c}$ is obtained by substituting $\mathrm{mE}_{c} \gamma$ in place of m^{\prime} and p_{t} in place of p_{i}
$\therefore L_{p c}=\frac{p_{t} m p \gamma E_{c}\left\{\gamma^{2}+m p \gamma E_{c}\left(\gamma_{s}^{2}-e_{s}^{2}\right)+e \cdot e_{s}\right\}}{\gamma^{2}+m p \gamma E_{c}\left(\gamma^{2}+\gamma_{s}^{2}\right)+m^{2} p^{2} \gamma^{2} E_{c}^{2}\left(\gamma_{s}^{2}-e_{s}^{2}\right)}$
Take the case of Beam 5
The specific creep factor (at the end of 10 days) has been taken as 110×10^{-9}, from graphs published for similar type of concrete in magazine of Concrete Research Vo. 14 , No. $40^{(44)}$
$\mathrm{mp}=.05 \quad \mathrm{~m}^{2} \mathrm{p}^{2}=.0025$
$\begin{aligned} X \underset{S}{E} & =110 \times 10^{-9} \times 5 \times 10^{6}=.55 \\ r_{s} & =4.05 \quad, \quad r^{2}=7.15\end{aligned}$
$e_{s}=1.67, \quad e_{s}{ }^{2}=2.78$
$\mathrm{e}=.42$
$I_{p c}$ in list and ind wire.
$=P_{t} \frac{.05 \times .55(7.15+.0275(4.05-2.78)+.4 ? \times 1.67)}{7.15+.0275(7.15+4.05)+.00075(4.05-2.78)}$
$=P_{t} \quad x \frac{.217}{7.46}$
$=.029 P_{t}$ say $.03 P_{t}$
$=255$ lbs. $\left(P_{t}=8500\right)$.

APPENDIX - 6 .
CALCULATIOIVS OF MOMENTS AND ROTATIONS AT
I_{1} and I_{2} in BeAin NO. 4.
Calculations at L_{1}
(a) $\overline{\mathrm{C}}_{\mathrm{c}}=.8 \mathrm{C}_{\mathrm{u}}=.8 \times 6300=5040 \mathrm{Lb} \cdot / \mathrm{s} q^{\prime \prime}$
(b) Value of e_{p} in Wire No. 1.

Strain attained by wire before locking off
$=5860$ micro strains..................................(A)
The corresponding force from stress-strain curve $=10250$ (Fig 3.2). Note that the attained force is beyond the initial straight po:-tion of the s-s curve.

Strain attained by wire after release of jack $=4900$

The corresponding force as read on a st. line which is parallel to the initial slope of the s-s curve and passes through the point on the s-s curve corresponding to the strain at 'A' $=8500$ 2bs
Losses due to

1) elasticity - 320 Lbs
2) shrinkage $=25 \mathrm{iks}^{2}$
3) creep of concrete $=220 \mathrm{~K}$
4) creep in steel $=.04(8500-320)=328$ in

Total $=893$ say 900 , b:
Net force at the time of testing the beam $=7600$ corresponding strain i.e., $e_{p}=.0044$
(c) Values of e and ep at different levels.

These values are tabulated below. Values of e $e_{c p}$ have been calculated from an average prestressing force after losses and taking the value of E_{c} as 5×10^{6}.

(d) Calculation of Strains.

The beam is under-reinforced and the state of I_{1} will be attained when a tensile strain of .00735 (value of $e_{p}+e_{c p}$ at C.G. of tendons l) is attained by the concrete at the level of C.G. of the tendons. (The strain of . 00735 corresponds to 1% proof stress in steel.)

$$
\begin{aligned}
\text { Assume } \mathrm{n}_{1} & =.41 \\
\mathrm{n}_{1} \mathrm{~d} & =2.36 \\
\mathrm{~d}-\mathrm{n}_{1} \mathrm{~d} & =3.39
\end{aligned}
$$

Values of strain.

1) At top flange $=\frac{.00267}{3.39} \times 2.36=.00186$ corresponding values of \propto and γ are, .645 and .371 .
2) At the level of wiS. Bar in compression
$=\frac{.00267}{3.39} \times 1.61=.00127$
3) At bottom of flange $=\frac{.00267}{3.39} \mathrm{x} .36=.000284$, \propto and γ at this level are .132 and .336 .

The stress in concrete at this level

$$
=5040\left(1-\left(1-\frac{.000284}{.0020}\right)^{2}\right)=1310
$$

4) At mid height of fillet $=\frac{.00267}{3.39} \times .235=.000185$ The stress in concrete at this level $=850$
5) At the level of tendons 1 and 2 $=\frac{.00267}{3.39} \times 2.14=.00168$.
Total strain $=.00630$, total force using the idealized curve Fig. $3.4=2 \times 10050 \mathrm{lbs}$.
6) At the level of tendons 3 and 4
$=\frac{.00267}{3.39} \times 4.64=.00366$.
Total strain $=.00840$, total force using the idealized curve $=2 \times 12500$ lbs.
7) At the level of ind. Bar at bottom
$=\frac{.00267}{3.39} \times 4.89=.00385$
The strain exceeds the yield point,
. . force $.049 \times 47000=2300 \mathrm{lbs}$.
(e) Total Tension $=20100+25000+2300=47400$ lit.
(f) Total Compression $=d^{645 \times 6 \times 2.36 \times 5040=46000}$ Deduct for reduced with below flange

$$
(-) .132 \times 3.75 \times .36 \times 5040=-900
$$

by Simpson's rule, force in fillet

$$
=\frac{1}{6 x^{4}}\left(3.75 \times 1310+4 \times \frac{3.75}{2} \times 850\right)=+470
$$

$$
\text { Force in M.S. Bar }=.049 \times 30 \times 10^{5} \times .00127=1900
$$

$$
\text { Total }=474702 \mathrm{bs}
$$

(g) Moment at L_{1} (Take moments about the C.G. of

Due to concrete under compression tendons.)
$46000(5.75-.371 \times 2.36)=2240000$
$(-) 900(3.75-.336 \times .36)=(-) 3270$
470 (5.75-2.08) $=1725 \begin{aligned} & \text { (assume C.G. of } \\ & \text { fillet force at }\end{aligned}$ $2.08^{\prime \prime}$ below top of beam.)
due to M.S. Bar in compression
$1900 \times 5=9500$
due to M.S. Bar in tension
$2300 \times 1.5=3450$
due to difference of tensions in H.T. bars $4900 \times 1.25=6100$
$\therefore M_{1} \quad=\overline{241505}$

$$
\frac{M_{1}}{M_{\max }}=\frac{241500}{262300}=.92
$$

(h) Rotation at I_{1}

$$
=\frac{41 x .00186}{2.36}=.0323
$$

CALCULATIONS AT L_{2}
STRESS - BLOCK USED IS THAT PRESENTED BY 'BAKER' AT ANKARA. FOR DETAILS REFER TO CHAPTER 2.

Anticipated $\mathrm{n}_{2}=.35$.
Ultimate strain at top fibre $=.0015\left(1.0+\frac{0.7}{.35}\right)=.0045$

$$
k_{2}=.443, \quad \alpha=.852
$$

$$
k^{2}=.197
$$

$$
\gamma=\frac{5.197-4 \times .443}{12-4 \times .443}=.442
$$

(a) $\frac{\text { Values of strain }}{n_{2} d}=1.93, \quad \mathrm{a}-\mathrm{n}_{2} \mathrm{~d}=3.82 \mathrm{n}=+335$

1) at level of M.S.Bar in compression
$=\frac{1.18}{1.93} \times .0045=.00275$ (above yield point)
force in in.s. Bar $=2300$
2) At the level of tindons 1 and 2
$=\frac{2.57}{1.93} \times .0045=.0060$
Total strain $=.01062$, the force in the two tendons, using the idealized s-s curve $=25000$
3) Similarly force in tendons 3 and $4=25000$
4) Force in M.S. Bar in tension $=2300$
(b) Total tension $=52300$ lbs.
(c) Total compression

Due to concrete under compression

$$
=.852 \times 6 \times 1.93 \times 5040=497000
$$

Due to wis. Bar under compression
$=2300$
Total 52000 lbs.
neglect the small difference between tension and compression.
Also neglect the difference between anticipated n_{2} and calculated value of n_{2}.
A revision of calculation by changing the stress block is not necessary.
The revised value of $e_{c 2}$ will be found to be .0046 .
(d) Moment at I_{2}

Due t. Cenciet, $497000(5.75-.442 \times 1.93)=245000$
Due to M.S.B ar in conpression $2300 \times 5=11500$
Due to M.S. " " tension $2300 \times 1.5=3450$
$\frac{M_{2}}{M_{\text {max }}}=\frac{260000}{262300}=1$ say. \quad say $\frac{\frac{\overline{259950}}{260000}}{260}$
(e) Rotation at L_{2}

$$
=.0323+2 \times .8(.0046-.00186) \times .5 \times \frac{41}{5.75}
$$

(where . 0046 is the value of $e_{c 2}$ recalculated for finding the rotation only.)
$=.0479$ RADIANS

APPANDIX - 7 .

MOVENT CURVATURE RELATIONS FROM CURVATURE

DISTRIBUTION DIAGRAMS.

Moment curvature relations at the centres of 6 gauges near the critical section, has been plotted in case of Beams 3, 4 and 5 (vide graph 3.11). The dimensionless parameters $M_{M_{\text {max }}}$ and $K / K_{\max }$ have been graphically connected in the following way.

Take the example of Beam No. 3 .
The ordinate $O Y$ represents half the length of the beam between the support and the critical section at centre. The dotted curves represent the curvature distribution at various stages of loading. The ordinate $O Y$ has been divided into 10 equal parts and it also represents the various fractions of the parameter $M / M_{\text {max }}$.
The line $Y Z$ shows the fractions of the parameter $\frac{K}{K_{\max }}$, which have been used for plotting the curvature distribution as well as the relation between M and $\frac{\mathrm{K}}{\overline{\bar{m}_{\max }}}$.

XO shows the various load stages as a fraction of the final load stage (which is L.S.14). $O X$ is of the same length as $O Y$ and $Y Z$.
The centres of gauges 1 to 6 are plotted at their respective position on $O Y$ and connected with X by straight lines which are partly shown terminated by letters $G_{I}, G_{2}-G_{6}$ etc.
Let it be required to plot the relevant point on the $M_{/} \mathbb{M}_{\max } \mathrm{v}_{\mathrm{S}} \mathrm{K}_{/ K_{\text {max }}}$ curve for gauge N_{O}. 3 at L.S.IO.

Let the horizontal through the point corresponding to gauge No. 3, on OY, meet the curvature distribution curve for L.S. 10 at the point P. The vertical $P Q$ through P must pass through the desired point.

Let a vertical line be drawn through the point representing L.S.No. 10 on $X O$ and let it cut the sloped line joining gauge No. 3 at S . The horizontal RS through S then gives the required fraction on the ordinate oy representing $M / M_{\text {max }}$.

The required point is the intersection of $P Q$ and RS , and is shown by a triangle. All points relating to the curve for gauge No. 3, for different load stages are shown by small triangles.

Appendix 8
elastic analysis of Frames 1283

APPENDIX 9
CALCULATIONS FOR CONCORDANCY

APPENDIX 10

STEP BY STEP ANALYSIS OF FRAMES

APPENDIX 11

COLLAPSE LOAD UNDER DIFFERENT MECHANISMS
FRAME 3

$$
\text { wing }=4 \mathrm{~m} \theta
$$

$$
W=\frac{8 m}{i^{2}}
$$

PUTTING T=1 W= $\frac{10.67}{\tau} \mathrm{~m}$ FOR MECH 1 $W=\frac{8 m}{i}$ FOR BOTH MESH 223
IF WIW', FAILURE WILL OCCUR UNDER A COMBILATION OF MECR $2 \& 3$ (OUER COMPlETE MERN)
PIETRZYKOWSKI'S FRAME
WECH 1^{40} W. $\frac{31}{4} . \theta=\frac{m_{c}(\theta+3 \theta)+m_{b} \cdot 4 \theta}{32}$

$$
W \cdot \frac{31}{4} \theta=m_{c} .6 \theta+m_{b} \cdot 4 \theta
$$

$$
w=\frac{24\left(m_{c}+m_{b}\right)}{3 L}
$$

FAILURE WIL OCcUR UNDER A COMBINATION of MECH $1 \& 2$ i.e, All 6 HINGES WILL fORM

PUTIINGTII W= $\frac{8 m}{7}$ FOR MECH 12.3 $2 W=\frac{6 m}{2}$ FOR MECH 2
IF W W:W', FAILURE will OCCUR UNDER Mech 2

APPENDIX 12

calculation of rotations at collapse

	FRAMES 182	FRAME 3	CORRECT ROTATIONS In frame 3
CHOSEN RELEASE SYSTEM \& COMPLEMENTARY FUNCTION MOMENT DIACRAMS			rotation at release 1 must be 0. the transformation matrix to CONVERT A ROTATION OF $\frac{23}{6} \frac{m_{h}}{E I}$ at Q, TO O IS GIVEN BY $d v=k d u$ $\binom{d v_{1}}{d v_{2}}=\binom{k_{1}}{k_{2}} d u$ WHERE $d u=-\frac{23}{6} \frac{m h}{\overline{51}}$
DISTRIBUTION OF BENDING MOMENT AT COLLAPSE			k_{1}, k_{2}, k_{3} ARE THE ORDINATES OF BENDING MOMENT DIAGRAMS AT Q,FOR UNIT MOMENT ACTING AT L,RES (I.F., THE POINTS WHERE HINGES DO FORM PRIOR TO COLLAPSE)
ROTATIONS AT HINGES OBTAINED BY INTEGRATING M_{c} DIAGRAM WITH m_{123} dIAGRAMS	ROTATION OF PLASTIC HINGE AT RELEASE NO $1=-\frac{m h}{6 E 1}$ do at release $2=-\frac{m h}{3 E 1}$ do at release $3=-\frac{m h}{6 E I}$	ROTATION OF PLASTIC hinges AT RELEASE NO $1=\frac{23}{6} \frac{\mathrm{mb}}{\mathrm{EI}}$ AT RELEASE NO $2=\frac{7}{3} \frac{m h}{E I}$ at release no $3=0$ note-the chosen release system includes one last hinge, (releasel) and hinge rotations at releases 122 are not of correct sign	FROM ABOVE DIAGRAMS $k_{1}=1 / 4, k_{2}=1, k_{3}=1 / 4$ \therefore CORRECT ROTATIONS PRIORTO COLLAPSE ARE AT R, $\left(\frac{7}{3}-\frac{23}{6}\right)^{\frac{m h}{E 1}}=-\frac{3}{2} \frac{m h}{E i}$ AT $S,\left(0-\frac{23}{6} \times \frac{1}{4}\right) \frac{m h}{E I}=-\frac{23}{24} \frac{m h}{E I}$ AT $Q_{1}\left(\frac{23}{6}-\frac{23}{6}\right) \frac{m h}{E 1}=0$

APFENDIX 13.

EFFECTIVE CENTROID OF A SECTIUN SUBJECTED TO
PLASTICITY.

DATA:- Concrete cube strength $=5000 \mathrm{lbs} / \mathrm{sq} . \mathrm{C}$. Assumed cylinder " = $4000 \mathrm{lbs} / \mathrm{sq} . "$. Yield stress of $\mathrm{H} . \mathrm{S}$. Bars $=47000 \mathrm{lbs} / \mathrm{sq} .{ }^{\prime \prime}$. E for M.S. Bars $\quad=30.5 \times 10^{6} \mathrm{lbs} / \mathrm{sq} . "$.

FIG 1

STRAIN \rightarrow
Fig 2

The section shown in Fig.l, was analyzed by the author, with the aid of the computer of the Cement and Concrat. Ancociation, using Cranston's M-P-D.- Θ programme. Concrete which was outside the zone bound by stirrus was treated as unbound and was assumed to have a different stress-strain characteristic, as shown in Fig. 2.

Three cases were investigated in which the values of N varied from 0 to 40 and the values of x were $.75^{\prime \prime}, 1.5^{\prime \prime}$ and $3^{\prime \prime}$. The $M-K$ curves are presented in Figs 3 to 5. It can be noticed that in Fig 3, the $M-K$ curve for $N=0$ is at the top and the curve for $\mathbb{N}=40$ is at the bottom. The opposite is true in Fig 5. In Figg 4, when $\mathrm{x}=1.5^{\prime \prime}$, a crowding of the curves is noticeable in the inelastic zone. In fact a crossing over of the curves can be seen, the curve for $\mathrm{i}=30$ being within the envelopes for $\mathrm{N}=10$ and $\mathrm{N}=20$.

If N is plotted against K as shown in Figs 6,7 and 8 , it may be seen that when $x=1.5^{\prime \prime}$ (. Fig,7), there is a minimum value of curvature, i.e. $\frac{d K}{d N}=0$, for at. Least one case in the neighbourhood of the ultimate.

The value of 'x' found above (which is 1.5') satisfies the condition of being the effective centroid for $N=22$, and $\mathrm{N}=90$.

We observe from Fig 4, that a wide range of axial loads, the values of moments are within a close range, for the same value of k.

The author thinks that in a practical case, the value of 'x' if assessed by calculating the position of the neutral axis at the ultimate moment, when $\mathrm{N}=0$, is sufficiently accurate. Further verification is however necessary. In the particular case investigated, it is true that the depth of the neutral axis is $1.5^{\prime \prime}$ when $N=0$ and $M=86$ units, (which is approximately the ultimate moment with $N=0$).

APPENDIX 14.

RIB SHORTENING IN SECTIONS SUBJECTED TO

PLASTICITY.

Let $A B C D$ be an element of a member, having a length equal to unity, along the axis of the member. Let 'x' be the distance of the effective centroid from the face $A D$ as defined earlier. Let the face CD assume a position C'D' by a rotation = \varnothing and a translation $=f$, under the combined action of M and N acting at a distance of 'x'; from $A D$. As the element is of unit thickness, $D D^{\prime}=e_{c}$ and $\tan \varnothing=\frac{{ }^{\theta} \mathrm{c}}{\mathrm{nd}}=K$

The 'EI' value which is compatible with 4 \& N is $\frac{M}{\tan \varnothing}$
" The 'EA' " " " " $\frac{N}{\epsilon}$ "
where

$$
t=e_{c}\left(1-\frac{x}{n \bar{d}}\right)
$$

It is possible to plot t against N for different values of M as shown in Fig.2. The 'EA' value is then equal to $\tan \propto$. In a rigorous analysis, this value of 'EA' should be used in integrals such as $\int \frac{n_{i} n_{4}}{\frac{E A}{t}} d s$, when deformations due to axial thrusts in cracked zones have to be taken into account.

APPENDIX - 15

Flow Diagram for calculating Moment vs Curvature

ROUTINE 1

calculates stress in h.T STEEL, for a Given strain

ROUTINE 2

calculates stress in M.Steel for a given strain
Routine 3
Calculates \bar{C}_{c} for a Given value of ' n_{z}^{\prime}
ROUTINE 4
calculates $\alpha \& \gamma$ for a given value of ' e_{c}^{\prime} '

Routine 5
calculates 'e' for given values of p " $\approx n_{2}$

Routine 6
Calculates extreme fibre stresses due to prestress \&also 'ecp

ROUTINE 7

calculates total compression in concrete, total tension in tendons and moment of ail forces including axial loads about fibre 2 - in rectangular beams
it assumes that $\overline{\mathrm{C}}_{c}$, nd, \& e_{c} are known
IT USES ROUTINES $1,2,4 \approx 6$

ROUTINE 10

Calculates moment for a given value of 'nd'. usfs routimes 788

```
ROUTINE II
CALCULATES CURVATURE FOR A GIVEN VALUE OF MOMENT
USES ROUTINE IO
```

main procramme

Flow Diagram of routine 11

APPENDIX 16.

Let the moments at all releases and at L, be the same and be equal to M_{u} at collapse (See Fig.l). Let the rotations represented by the shaded areas be A, B, C etc.

$$
\begin{aligned}
& A=\frac{a}{2 M_{u} h_{c}}\left(\Theta_{u} \cdot M_{c}-\rho_{c} \cdot m_{u}\right)\left(M_{u}-M_{c}\right), \\
& \left.B=\frac{b}{2 \pi u_{u} i n} \quad \varphi_{u} \cdot H_{c}-\varphi_{c} \cdot H_{u}\right)\left(M_{u}-M_{c}\right)
\end{aligned}
$$

Let $a_{1} \quad b_{1} \quad c_{1} \quad d_{1} \quad e_{1} \quad f_{1}$ be the ordinates of the unit moment diagram at Release 1 , corresponding to the position of CoGs of A, B, C, D, E, F, and so on, then:

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=\frac{a}{3 h} \frac{u^{-i n} c}{m_{u i}} \\
& b_{1}=0 \\
& b_{2}=1-\frac{b}{3 h} \frac{u_{u}-m_{c}}{M_{u}} \\
& a_{3}=1-\frac{a}{3 n} \frac{\mathrm{Wi}_{u^{-}}-\mathrm{N}_{c}}{\mathrm{M}_{\mathrm{u}}} \\
& c_{2}=1-\frac{c}{3 h} \frac{M_{u}-i H_{c}}{H_{u}} \\
& c_{3}=0 \\
& c_{1}=\frac{c}{3 h} \frac{\left(i_{u}-i_{i} i_{c}\right)}{i_{u}} \\
& d_{2}=\frac{d}{3 h} \frac{M_{u}-i_{c}}{M_{u}} \\
& d_{3}=0 \\
& e_{1}=1+\frac{e}{3 h}\left(\frac{{ }^{\left(i_{u}\right.}-{ }^{-k i} c}{M_{u}}\right) \quad e_{2}=\frac{e}{3 h} \frac{\mathbb{N}_{u}-\mathbb{M}_{c}}{M_{u}} \\
& e_{3}=0 \\
& \mathrm{f}_{1}=2 \\
& f_{2}=2-\frac{f}{3 h} \frac{i_{u}^{u}-M_{c}}{M_{u}} \\
& f_{3}=1-\frac{f}{3 h} \frac{\mathrm{H}_{u}-\mathrm{n}_{\mathrm{c}}}{\mathrm{n}_{\mathrm{u}}}
\end{aligned}
$$

Discontinuities caused by shaded areas are given by:

$$
\left\{\begin{array}{l}
\text { At Release } 1=-C c_{1}+D d_{1}+E e_{1}-E f_{1} \\
" \quad " \quad 2=-\mathrm{Aa}_{2}+\mathrm{Bb}_{2}+\mathrm{Cc}_{2}-\mathrm{Dd}_{2}+\mathrm{Ee}_{2}-\mathrm{Ff} 2 \\
" \quad 4 \quad 3=\mathrm{Aa}_{3}-\mathrm{Bb}_{3}-\mathrm{Ff}_{3}
\end{array}\right.
$$

For the structure assume $M_{u}=91000$ (average),

$$
\rho_{\mathrm{u}}=131 \text { units of } 10^{-5}
$$

For releases 1,2 and 3, assume $M_{c}=55000$,
For the last hinge at I, assume $\begin{aligned} Q_{c} & =11 \text { (units) of } 10^{-5} \\ H_{c}^{\prime} & =30000,\end{aligned}$

$$
\rho_{c}^{\prime}=10 \text { (units) of } 10^{-5}
$$

Note: above assumptions are based on $m-k$ relations derived from a computer analysis described in Chapter 5.

$$
\begin{aligned}
\mathrm{A}=\mathrm{B}=\mathrm{C}=\mathrm{D} & =\frac{27}{2} \times \frac{36000}{91000 \times 55000} \times \frac{(131 \times 55000-11 \times 91000)}{10^{5}}=.006 \\
E & =.012 \\
\mathrm{~F} & =\frac{54}{2} \times \frac{61000}{91000 \times 30000} \times \frac{(131 \times 30000-10 \times 91000)}{10^{5}}=.018
\end{aligned}
$$

$a_{1}=0$
$a_{2}=.066$
$a_{3}=.934$
$b_{1}=0$
$b_{2}=.934$
$b_{3}=.066$
$c_{1}=.066$
$c_{2}=.934$
$c_{3}=0$
$d_{1}=.934$
$d_{2}=.066$
$\mathrm{d}_{3}=0$
$e_{1}=1.132$
$e_{2}=.132$
$e_{3}=0$
$\mathrm{f}_{1}=2$
$\mathrm{f}_{2}=1.776$
$\mathrm{f}_{3}=.776$

From above we obtain Rotation at Release $1=-.017$

$"$	$"$	$"$	$2=-.02$
$"$	$"$	$"$	$3=-.0088$

compare with rotations obtained by bilinear idealization which were:

$$
\begin{array}{ccc}
\text { For release } & 1=-.01135 \\
" & " & 2=-.0227 \\
" & " & 3=-.01135
\end{array}
$$

Note that the difference is not significant.

UnIt MOMENT AT release 1

unit moment
at release 2

unit moment
at release 3

FIG 1

APPENDIX 17.

EFFECT OF INTERNAL STRESSES ON ROTATIONS IN FRAVE 2.

Let the distribution of moments in the structure, before it is loaded, be as shown as under

Structure \& applied Loads
Stage 1. - At this stage, the first hinge forms at the fast of the right-hand column. The applied load W_{I} is given by

$$
.4125 W_{1} h=\frac{5}{6} m^{*} \quad \text { or } \quad W_{1}=\frac{2.02 m^{*}}{h}
$$

The bending moment at the end of this stage is as under

Stage 2. - At this stage, the second hinge forms at the top of the right-hand column. The additional load W_{2} is given by

$$
\frac{67}{158} W_{2} h=(1-.783) m^{*} \text { from which } W_{2}=\frac{.512^{m^{*}}}{h}
$$

Total load at the end of this stage is $\frac{2.532 m *}{h}$

The distribution of moment at the end of this stage is as under:-

Stage 3. - At this stage, the third hinge forms at the centre of the transom. The additional load W_{3} is given by

$$
\begin{aligned}
\frac{23}{40} W_{3} h=(1-.781) \mathrm{m}^{*} \text { or } W_{3} & =.381 \mathrm{~m}^{*} \\
\text { Total load } & =2.913 \frac{\mathrm{~m}^{*}}{\mathrm{~h}}
\end{aligned}
$$

The bending moment distribution at the end of stage 3 is as under:-

Stage 4. - At this stage the 4th hinge forms at the foot of the left-hand column. The additional load W_{4} is given by

$$
\begin{aligned}
& 2 W_{4} h=(1-.826) \mathrm{m}^{*} \text { or } W_{4}=.087 \frac{\mathrm{~m}^{*}}{\mathrm{~h}} \\
& \text { Total load }=3.000 \frac{\mathrm{~m}^{*}}{\mathrm{~h}}
\end{aligned}
$$

Calculation of Rotations.

Rotations between any two stages are calculated by integrating the bending moment diagram cue to a unit moment at the chosen release, and the change in the bending moment diagram due to the additional load acting.

This is shown below:-

$3 e$ tween
2 and 3
$\left(-\frac{5}{5}+1 x \cdot 575\right) \cdot \frac{381 m * h}{E I}$
$\left.\left(-\frac{8}{3}+\frac{11}{3} x \cdot 575\right) \cdot \frac{381 \mathrm{~m}^{*} \mathrm{~h}}{\mathrm{EI}}\right)$
$=-.26 x . \frac{381 \mathrm{~m} * \mathrm{~h}}{\mathrm{EI}}=-.56 \mathrm{x} .381 \frac{\mathrm{~m}_{\mathrm{E}}^{*}}{*}$
$=-\frac{.099 \mathrm{~m}^{*} \mathrm{~h}}{\mathrm{EI}} \quad=-. \frac{.214 \mathrm{~m} * \mathrm{~h}}{\mathrm{EI}}$

$$
\begin{array}{rlr}
\text { Total } & =-\frac{.278 m^{2} h}{E I} & -. \frac{.446 m * h}{E I} \\
& \rightarrow-\frac{166 \mathrm{~m} * \mathrm{~h}}{E I} & -. \frac{33 \mathrm{~m} * \mathrm{~h}}{\mathrm{EI}}
\end{array}
$$

Compare with rotations)
when internal moments are nil.

APPENDIX 18.

In modern structures, redistribution may be necessary from the central span towards the supports, to economize on total quantity of steel. Take a continuous beam over three spans, with ends fixed (to simulate conditions existing in a multispan structure.)

Let it be required to reduce $\frac{5}{9} \mathrm{~W}$ by 30%.
Apply unit moment at the centre of middle span on the released structure and we get a bending moment distribution shown in diagram 1 of Fig .2 .

FIG 2

2

Integrate diagram 1 with the distribution plastic moment shown in diagram 2.
we obtain $\frac{P V}{4 E 1}+\frac{P l}{E I}+\frac{P l}{4 E 1}=\frac{3}{2} \frac{P l}{E I}$

Hence required rotation $=\frac{3}{2} \cdot \frac{1.5}{9} \cdot \frac{4}{M} \cdot \frac{9}{5} \cdot \frac{e_{c}}{n d}$

$$
\begin{aligned}
& \text { assuming } n=.5 \\
& \text { and } d=\frac{1}{25} \\
&=\frac{3}{2} \times .3 \times \frac{.002}{.5} \times 25
\end{aligned}
$$

$$
=.045 \text { radians which is fairly }
$$ high.

Note:- It will be difficult to attain this value when $n=.5$, without the use of binders.

LIST OF REFERENCES.

1. Amarakone A.M.N. 'Deformation characteristics of reinforced concrete columns subjected to bending' M.Sc. Thesis (London) 1963.
2. do. 'Limit design of Reinforced Concrete skeletal structures' Ph.D., Thesis (London) 1966
3. Arthanari S. Sundarasan 'Influence of temperature and Bi-axial stresses on creep in concrete', Fh.D., Thesis (London) 1966.
4. Baker A.I.I. 'Reinforced Concrete', Concrete Publications 1949.
5. do 'Ultimate load theory appliec to the design of reinforced concrete and prestressed concrete frames'. Concrete Publications 1956.
6. do 'Recent research in Reinforced Concrete and its application to design' journal of the I.C.E. Vo.35, structural paper No. 26 (Feb.51).
7. do. 'Further Research in Reinforced Comerete and its application to ultimate load design.' Journal of the I.C.E. Vol.2 part III, Aug 53.
8. Baker A.L.I. 'A general equation for frame analysis'. - Concrete and Constructional Engineering - March 61.
9. do. 'Proposed co-ordination on inelastic deformation' C.E.B. Bulletin No. 30 .
10. do. 'The inelastic space frame' - a Concrete Publicotions Ltd. 1967
11. Baker and Amarakone 'Inelastic Hyperstatical frames - Analysis and application of International correlated tests, originally presented to the Hyperstatic Symposium of E.C.C. an Ankara in Sept. 64 and presented for disucssion at the Institute of Structural Enjineers on 30.3.65.
12. Discussions on 'll' at the meeting attended by the author.
13. Baker's letter No. CVE/ALLB dated 10.3.65, to all E.C.C. prestressed members - regarding Trilinear Idealization of prestressed members. (Now incorporated in '10).
14. Bremner T.W. 'Influence of reinforcement on the elastic and inelastic properties of reinforced concrete members' M.Sc. Thesis (London) 1963.
15. $B_{\text {urnett }}$ E.F.P. 'The ultimate load design of statically indeterminate concrete structures'. M.Sc: Thesis (London) 1963.
16. Burns Ned H., Chester P, Seiss F., 'Plastic Hinging in reinforced concrete.' Journal of the Structural Division proceedings of the A.S.C.E., Oct. 66.
17. Chan W.W.L. 'An investigation into characteristics of plastic hinges in reinforced concrete'. Ph.D., Thesis (Lond on) 1954.
18. Chinwah. 'The strength and deformation characteristics of eccentrically loaded reinforced concrete columns'. in. Sc. Thesis (London 1965.
19. Cooke Nigel. 'The redistribution of bending moments in continuous prestressed concrete beams'. Ph.D., Thesis (Leeds) 1965.
20. Corley W. Gene. 'Rotational capacity of reinforced concrete beams.' Journal of the Structural Division Proceedings of the A.S.C.E. October 1966.
21. Cranston W.B. 'A computer method for inelastic analysis of plane frames.' Warch 1965. TRA/386 Cement and Concrete Assn.
22. Cranston W.B. 'Determination of moment axial load, curvature relations for structural members' TRA/395 June 1966, Cement and Concrete Association.
23. do. University of Newcastle, Department of Civil Engineering, International Symposium, July 1966. 'The use of Electronic digital computers in structural engineering'. Paper livo. 4. 'A computer method of inelastic analysis of plane frames.'
24. Dastur 'An analytical and experimental investigation of the 'EI' values of prestressed and reinforced concrete beams'. M.sc. Thesis, Lond on 1960.
25. Edwards A.D. 'The elastic behaviour and ultimate strength of reinforced and prestressed concrete frames' Ph.D., Thesis, London 1965.
26. Evans and Benett. 'Prestressed Concrete'. Chapman \& Hall Ltd., 1958.
27. Gupta, B.K., 'The ultimate strength of statically indeterminate prestressed concrete structures'. Ph.D., Thesis (London) 1967.
28. Guyon Y. 'Prestressed Concrete' Vol. I.

> 29. do. 'Prestressed Concrete' Vol. II.
30. Hernandez G. 'Strength of prestressed concrete beams with web reinforcement', Ph.D. Thesis, University of Illinois, May 1958.
31. Horne \& Merchant. 'Stability of Frames'.
32. La Grange L.E. 'Moment redistribution in prestressed concrete beams and frames', Ph.D.Thesis ($\mathrm{C}_{\text {a mbridge }}$) June 1961.
33. Leonhardt F. 'Prestressed concrete design and construction', Wilhelm Ernst \& Sohn, second edition.
34. Macchi G. 'Proposed method of analysis based on the theory of imposed rotation'. C.E.B. Bulletin No. 21, January 1960.
35. Mullick S.K. 'Redistribution of moments in 2-span prestressed concrete beams', Magazine of concrete research Vo. 14, No. 42 - Noverber 1962.
36. Morris P.B. 'Linear structural analysis', Thames and Hudson, 1958.
37. Moss-Morris A.L. 'An investigation of the factors affecting the collapse loads of reinforced concrete frames', Ph.D., Thesis (L_{0} ndon).
38. Munro J. 'The elastic and limit analysis of planar skeletal structures', Civil Engineers and Public Works Review, May 1965.
39. Neal B.G. 'The plastic methods of structural analysis', Chapman and Hall (London) 1963.
40. Pietrzykowski J. 'The elastic plastic behaviour of prestressed concrete frames' Magazine of Concrete Research, Vol.16, No. 48, September 1964.
41. Poologasoundranayagam, K. 'An analytical and experimental investigation of the formation and behaviour of plastic hinges in prestressed and reinforced concrete frames', Ph.D., Thesis, Lond on 1960.
42. Poologasoundranayagam K and Tokarski E. W. 'The analysis of multi-storey frames by the plastic hinge method', Concrete publications.
43. Raina V.K. 'Ultimate moment distribution in continuous prestressed concrete beams', Ph.D., Thesis (Iondon) 1966.
44. England \& Ross 'Reinforced concrete under thermal gradients', Magazine of Concrete Research. Vol. 14, No. 40, March, 1962.
45. Sawyer, H.A. 'Elasti-plastic design of single span beams and frames' - Proceedings A.S.C.E., December 1955.
46. Somes U.F. 'Moment rotation characteristics of prestressed concrete members Stage I', Rectangular Section. from his Ph.D. Thesis (London) 1966
47. Soliman M.T., 'Ultimate strength and plastic rotation capacity of reinforced concrete members ', Ph.D.Thesis (Iondon) 1966.
48. Yu, C.W., 'An analytical investigation of the ultimate load design of reinforced concrete framed structures', Ph.D., Thesis, (Lond on) 1954.
49. Report by Research Committee "Ultimate load design of concrete structures" proceedings I.C.E., February 1962.
50. Road Note No. 4, Department of Scientific and Industrial Research, Road Research Laboratory.

[^0]: Plate 4.3 Hinge at the top of column 2

