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ABSTRACT.  

The earlier part of this thesis deals with 

the testing of ten post-tensioned prestressed 

concrete I beams, according to an international 

testing programme of the European Concrete Committee. 

Under this scheme, the behaviour of ten simply 

supported beams were studied, under central point 

loads, to investigate the effects of the variation 
of the following parameters:- 

1)  the neutral axis depth, 

2)  the prestressing force 
3)  the spacing of binders. 

The inelastic rotations observed in over-
reinforced I beams, made it possible for the 

author to visualize that adequate inelastic 

rotations could be expected at highly over-

reinforced critical sections to justify full 

redistribution of moments in a prestressed frame 

provided that these sections were reinforced with 

an adequate quantity of binders. 

The later part of this thesis deals with 

tests continued on post-tensioned prestressed 

columns and portal frames, Experimental evidence 

has been obtained to demonstrate the following 

points:- 

1) An over-reinforced prestressed I-section is 

highly brittle; it is more brittle than a 

rectangular section having the same overall 

dimensions and the same quantity of reinforce-

ment. It may prematurely fail by web buckling, 

before a frame attains the state of a complete 

collapse mechanism. 



2) However, with an adequate quantity of 

binders, not only members having over-

reinforced critical I-sections, but 

also heavily loaded columns, exhibit 

enough ductility to justify full re-

distribution of moments in a frame. 

The use of the effective 'EP concept, in 

a non-linear analysis of prestressed concrete 

structures, has been discussed in Chapter V. 

The possibility of a quick and effecient 

method for adjusting pi  values as required 

in Baker's Limit design method, has been 

discussed in Chapter 7. A method of analyzing 

two span continuous prestressed beams, usins 

Macchi's Imposed Rotation coefficient has been 

discussed in this chapter. 	Three continuous 

beams tested in the Cement and Concrete Association 

were analyzed by this !nethod.. 
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NOTATION.  
DImENSIONS. 
x 	= distance measured from L.H. support of a beam. 
A = length of a beam between supports 

2eu  = length of untracked part of a simply supported 
beam subjected to a conc. load at centre. 

2tb  = cracked length of a simply supported beam 
subjected to a cone. load at centre. 

Z = distance of critical section to point of contra-
flexure. 

I)  breadth of a rectangular beam; flange width in I 
bl  = web width in I beam. (beam. 
d = distance of the extreme fibre 2, from the C.G. 

nd = depth of neutral axis from fibre 2 in general 
= 	do. 	at the state L1 n1d n2d = 	do. 	Il 	It 	11 	L2 

td = depth of the compression flange in I beam. 
A 	= gross X-sectional area. 
I 	= moment of inertia 
e1 = distance of extreme fibre 1 from centroid. 

II 	11 	 TI 	 II 	2 	T1 	I1 e2 . Ii 	I Z1 = el 	Z2 = J2 
C1 = distance of boundary of limiting zone from 

centroid measured in direction fibre 1. 
C2 = 	do from centroid measured in direction fibre 2. 
es = eccentricity of cable from centroid measured 

positively towards fibre 2. 
jd . lever arm 

-pd = distance of extreme fibre 2 from the centre of 
compression. 

D 	= overall depth of section. 

Area of steel. 
As = Area of steel in tension 
A's = Area of steel in compression. 

As 177  x 100 (in rectangular beams). 



* for under-reinforced beams f
sl = fsy 
sl = esv 
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Area of steel (cont.) 

percentage of lateral binders 
volume of binders per unit length - x 100 effective volume of concrete bound 

63= As fia(If the idealized stress strain curve of ) 
bd'C (steel is used 	= As. -45.0 	) c ( 

	

bd Cc' 	) 
Beam properties. 

. 
Ec = modulus of elasticity of concrete in general 
Es = modulus of elasticity of steel in general. 
E'I'= untracked flexural rigidity 
EI = cracked flexural rigidity at the state L1 
K ) 	e.g. in K

A.1 
r Sr  Ssds is a constant to account for C  

the fact tht shear stress distribution is not 
uniform in a section. 

C 	= modulus of Rigidity 

Strength of concrete, stresses and strains and stress  
block parameters.  

C 	standard 12" cylinder strength. 

CuP- = standard 6" cube strength. 

Cc  = maximum compressive stress in concrete in flexure as permitted in the Ankara stress block. 
fNc  = 	do 	in Hognestad's stress block. 
f 	= compressive stress in a concrete fibre in general 
fc = stress in tension reinforcement in general 
fs1 = stress in tension reinforcement at L1 fsi . 	If 	u 	” 	ft " L 
fs2 	u 	u 	u 	ti 	if at2yielding or sy 

1% offset strain* 
f 	= 	il 	" 	H 	at rupture 

eau 	
max." 

e 	= compressive strain in concrete in fibre 2 in gen. 
ec 	u 	u 	II 	ft 	u 	" . " at L1 ecl 	u 	H 	u 	u 	if 	H = 	 " " L 
e0 prestress strain in concrete at the level of 2 

p 
C.G. of tendons after losses at commencement 
of loading. 

= strains in concrete at fibres 2 and 1, due e2cp & elcp to prestress at commencement of loading. 
ecs2 . increment in the strain in concrete at the level 

of C.G. of tendons, from the state of zero 
stress and strain, at I.J. 
(i.e., from a state pri6r to application of 
prestress). 

ecsl = 	do 	at the state Li  
e 	= strain in steel at yield or 1% proof stress 
es /y * . strain in steel at the state L1 s es2  = strain in steel at the state Ii 
esu = maximum strain in steel at rupture. 

pll 	= 



Strength of concreteEtc.(cont) 

= ratio of average compressive stress in concrete 
to Cc 

ratio of depth of effective compressive force 
in concrete to neutral axis depth. 

Forces and Moments.  

W 	= lateral load generally 
m,1VI = bending moment generally 
ki',nii= plastic moment of resistance generally 

-= axial thrust generally, 
M 	max. B.M. attained by a critical section under test M ax_ calculated B.M. at L1 M 	= 	" Lo  
C2  = total compressive foce acting on the area of 

concrete in a section. 
total tension acting on the area of steel 
M 1 M

1 
 = 

CCcbd 

m2 	M2 	) 
both for rectangular and I beams. 

Ccbc1.2.  ) 

Deformations and parameters influencing inelasticity. 

1 = curvature generally. 

0 	= total rotation in a beam between point of 
contraflexure and critical section 

9ID = permissible inelastic rotation at hinge on 
one side of critical section. 

p 
 . equivalent plastic hinge length on one side 

of critical section 
hL  = length of beam over which inelasticity occurs, 

on one side of critical section. 
c) = shape factor 
K1 . parameter for influence of steel in the expression for 0, 
K
3 
 = parameter for influYnce of concrete in the 

expression for Op 

= 

.1 	 1 "r 
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LIIAITS OF THE 3I1JINEAR AJND  TRILINEAd IDEALIZATION. 

TriLine ar  

L-2 	state of prestress only 

L-1 	state of zero concrete stress adjacent 
to the position of the resultant of 
cable tensions. 

Lop 	state of ultimate concrete tensile stress 
at Fibre 1. 

L1p = 	yield state, the same as L1  in bilinear idealization, excepting that cracked 
and untracked flexural rigidity are 
accounted for in calculating rotations. 

L2p = ultimate state, the same as L2  in bilinear 
idealization (the rotation at this stage 
is derived from the rotation at L1p). 

The corresponding moments at L_2, 	and Lop  
are M 2, ILI  and Mop. 

Bilinear: 

L1 	yield state, i.e., at which cable attains 
.001 offset strain or mild steel 
attains yield strain, OR concrete 
attains .002 direct strain at Fibre 2, 
whichever is earlier. 

The beam is assumed to be cracked 
throughout in calculating rotations. 

L2 	ultimate state, at which cable attains a 
strain of .01 * OR concrete attains 
the maximum permissible strain as 
discussed in the Ankara stress block, 
whichever is earlier. 

* (In case of H.T. tendons, this is not 
defined and the criteria for the 
limiting strain in concrete has been 
used.) 
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MISCELLANEOUS  
In analysis of indeterminate structures. 

number of statical indeterminacy 

s 	= total number of critical sections where hinges 
may develop. 

0i  = the total discontinuity measured in radians 
at the ith hinge, at all phases of loading, 
when a structure has been made statically 
determinate by the insertion of n hinge 
releases. 

M. 	the ordinates of the diagram representing the 
distribution of bending moment when unit 

moment acts on the reduced structure at 
the ith hinge. 

Mk 	- do - for unit moment at kth hinge. 

ds = a small increment of length in the direction 
of the frame members. 

total plastic rotations at the critical P3' dpi 	sections j and i, assumed to be concen-
trated at the section. (A cracked 
modulus of rigidity = EI is assumed 
in the rest of the structure.) 

Mo 	the ordinates of the bending moment distribution 
when external load acts on 	reduced 
structure. 

7k 	restraint moment at the kth  hinge of the 
released structure. 

0' = concentrated plastic rotation over a short 
length at the ith hinge when an untracked 
modulus of rigidity E'I', is assumed in 
the rest of the structure, 

concentrated plastic rotation over ,=1 short 
length at intermediate critical sections 
between the chosen releases, when an 
uncracked E'I' value is assumed. 

pi 
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CHAPTER1 

INTRODUCTION  

1.1 Behaviour of a structure beyond the elastic  
limit. 

An elastic analysis of any structure only 

ensures a factor by which the working loads may be 

increased before yield or inelasticity would occur 

at one of the critical sections of the structure. 

The effect of further increase in load cannot be 

determined by the elastic analysis.(39) The spread 

of inelasticity due to further increase of load 

causes a redistribution of moments. 	In other words, 

the bending moment at the section where yielding 
first occurs, rises at a much slower rate, and 

permits the application of further load till 

yielding occurs at a second point. A hinge action 
thus occurs at the section while the bending moment 

transmitted across it is practically constant. The 

structure finally collapses when sufficient number 

of hinges have developed to transform the structure 
into a mechanism. 

1.2 Collapse load method for steel structures. 

The redistribution of moments is possible only 
due to the existence of a nonlinear part in the 

constitutive relations of the material of which the 
structure is made. 	This does not create any serious 
problem in steel structures, because the moment 

curvature relationship can be idealized to an 

elastic—plastic behaviour (Fig. 1.1). 
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This idealization combined with the hypothesis 

that a plastic hinge can undergo rotations of any 

magnitude, led to the development of a simple plastic 

method of calculating collapse loads in framed 

structures, by J.F. Baker and his colleagues in 

Cambridge. (39)  

1.3 	A plastic design method• for concrete structures. 

In reinforced concrete and pre-stressed concrete 

structures, any idealization tends to be much more 

approximate; And in addition, a more serious 

limitation exists, which is the limited rotational 

capacities of the critical sections.- 	This limit-

ation in the ductility of concrete was recognised by 

Prof. A.L.L.Baker, and one of the main features of 

his simplified Limit design method is the checking 

and adjustment of rotations at the critical sections, 

within permissible limits. (6)  

1.4 Idealization in prestressed concrete. 

A bilinear idealization of the moment curvature 

or the moment rotation relationship, usually deviates 

considerably from the true behaviour of a prestressed 

concrete structural member. 	The latter exhibits a 
uniform stiffness until cracking, followed. by a 

gradual decrease in stiffness until failure occurs, 

A trilinear idealization has been susested for 
(13) prestressed concrete 	to recognize this behaviour. 
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1.5 The compatibility problem in plastic analysis. 

The necessary conditions for analyzing a 

structure at the ultimate are:- 

1) The conditions of statical equilibrium must be 

satisfied. 
2) The continuity of the structure must be maintained 

at all points of the structure up to the point of 
collapse. 

3) The ultimate load carrying capacity of a par-

ticular section has to be determined vis-a-vis, 

the stress strain characteristics of both 

concrete and steel; the usual assumption made in 

this connection is that plane sections remain 

plane up to the limit of collapse. 

The most difficult part of the probled is to be 

able to comply with the rapidly changing moment 

deformation characteristics in the inelastic range. 

In an 'n' times statically indeterminate 

structure, which has been made statically determinate 

by introducing 'n' hinge releases, the following 
equation represents the discontinuous rotation at 
the ith hinge. 

gti -- 	kci4 	1'1 

An idealized bilinear moment curvature relation 

is shown in Fig. 1.2. 

Sawyer (45)  pointed out that the total curvature 

at a point, could be broken up as the sum of an elastic 

and a plastic effect (shown as kE and k in this 
diagram). 
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From 1.1, 

Qt JM-Li<Ed4 4- fivii-Khd6  
Assuming that the total plastic effect in the 

neighbourhood of a critical section is equivalent 

to a concentrated rotation at that point, 

• Is jk 	valus 	frorn 1--  -- S *) Pi 	P 
(A)lote 	•ae 	 oroi">6:cai sett-672s 
we obtain 

KJ- 
The bending moment M, at a section of the 

structure can be assumed to be the algebraic sum 

of the moment caused by the external loads acting 

on the reduced structure with n releases, and the 

moments at that section caused by the restraints at 

the releases. 

In other words 

M 	Mo + X i, Mk  

f 	OtS 2 
Fr 	

X k  f m"4A d/s +2 Pc, igpj) , 

1.6 
	

Baker's method of analysis. 	 12  
Baker, in his simplified Limit desisn approach,(6) 

suggests a method to find out a possible solution to 

the problem when the structure develops only 'n' 

plastic hinges at the chosen releases. 	The plastic 
rotations at the remaining s-n hinges, at this stage 
are therefore zero. 	The section properties of the 

members are chosen in such a way that hinges are 

likely to form at the chosen points, and not in 
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between them. 	An advantage is taken of the fact 

that the moment of resistance of concrete sections 

can be easily altered by adjusting the area of the 

steel, without substantially changing the flexural 

rigidity and therefore the elastic stress resultant 
distribution. 

Nowthevalueoff.at the ith  critical section di 
is unity and at all other releases, it is zero. 

Also remembering that there is no plasticity excepting 

at the n releases, equation 1.2 reduces to 

61; 	 f Mi Pio ds 45 5< t ": els q= d 	 K - 	P - 	
1.3 

EIS0 c on tA" rtuA4 EI 
An important feature of the proposed method is 

that I1'  I2  etc, can be chosen in such a way that /1 
the values of CIFIbiare within safe prescribed limits. 
The problem of compatibility set forth in equation 

1.3 has to be satisfied at all the 'n' hinges. 
Yu, Poologasoundranayagom and Tokarski (4,1,42)  

carried out a considerable work in these lines and 

suggested practical methods of choosing the 57 values 
and adjusting the Bpi  values. The check on service-
ability conditions is done by adjusting the $i  Values 
to zero. Nowhere in the structure, the elastic 

bending moment so found must exceed a value which 

may give rise to excessive cracking. 

1.7 	Difficulties of the Simplified Limit Design  
Method. 

Baker seeks one of the possible solutions when 

the structure is still statically determinate. The 
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Uniqueness theorem applicable to steel structures 

at the state of collapse, is not applicable at 

this stage. 

It is also not certain that a compatible 

solution exists at all, for the position and 

direction of assumed hinges. Amarakone (2)  has 

recently shown that the influence coefficient 

characteristics of the assumed hinge system must 

satisfy certain conditions in order that the system 

may be suitable for inelastic compatibility analysis. 

Although Baker has considerably simplified the 

problem, yet the fact remains that even with the 

above simplifiations, the adjustment of rotations 

present a considerable difficulty which has not yet 

been successfully overcome. 	The published graphs 

in the Concrete Series design booklet, (42)  can be 

used in conjunction with a particular bending 

moment distribution assumed in preparing these 

graphs. 	Designers have to draw their own curves 

if they want to improve upon the bending moment 

distribution. 	The difficulty lies in the fact 

that the rotation at a particular section can only 

be adjusted by altering; the bending moment distri-

bution which in turn, affects the rotations at 

other hinges. 	Further to check on the serviceability 

condition, it is necessary to adjust the rotations 

approximately to zero. 	This itself is a difficult 

task and amounts to solving a number of simultaneous 

equations by trial and error. 

Synopsis of author's work. 

1.8 The author in his investigations has made an 

attempt to find out the extent to which the ductility 

of concrete can be improved, under adverse conditions 



by the use of closely spaced binders. 	He has 

also suggested a method which would reduce the 

adjustment of rotations from a trial and error 

procedure to a systematic direct method, in those 

cases where a standard pattern of building con-

struction is followed. 

Brief summary of next chapter. 

1.9 	In the next chapter, the basic ideas of a 

limit design have been discussed in greater detail 

and the necessity of a correlated result obtained 

frkdm a large number of tests carried out on simple 

beams, as suggested by C.E.B. has been exilained. 

Computation charts for calculating the idealized 

lidits, obtained with the help of a digital 

computer, have been presented. 

18 
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CHAPTER 2.  

INELASTICITY IN SIMPTF MEMBERS. 

2.1. Influence of steel and concrete in the 

non linear behaviour of structurl concrete.  

When a stress resultant, such as bending moment, 

at a critical section is plOtted against the corresp-

onding strain resultant such as 'curvature' at the 

section or the rotation of the member as a whole, we 

observe that at a particular stage the curve becomes 

non-linear with decreasing stiffness, with increasing 

moment. This inelastic behaviour is primarily due to 

the non-linear part of the stress strain curve of the 

material of which the section is composed. (Figs.2.l 

and 2.2.) Thus, the stress-strain curves of both 

steel and concrete have their influences. The under-

reinforced beam develops large curvatures due to the 

yielding of the steel, and in case of mild steel, 

the moment rotation curve of such a beam can be 

idealized to an elasto plastic behaviour. The load 

deformation characteristic of an over-reinforced 

member, however, follows more closely the pattern 

of the stress strain relation of concrete, which 

does not have a sharp yield point. 

2.2 Moment curvature relationship - its difficulties. 

The knowledge of a moment curvature pattern 

which can be applied to all the sections of a member, 

is necessary if the load deformation characteristics 

of the structure are required. 	Assuming that the 

stress-strain curves of concrete and steel are given, 

a section of known properties, must have a unique 

position of neutral axis for a given bending moment, 

so that the following basic requirements are fulfilled. 
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1) The strain in the extreme fibre in concrete 

and the strain in steel* are proportional to 

their distances from the neutral axis. 

2) Total tension = Total compression. 

3) Moment of all the internal forces about the 

centroid 	= applied moment. 

The curvature can thereafter be calculated 

from the relation 

1 = K R 

A theoretical moment curvature relation 

therefore exists satisfying the above criteria. 

Unfortunately the moment curvature relationship 

actually followed by a section of a loaded member 

is influenced by other factors not included in this 

criteria and the theoretical relation so obtained 

may not be of significant practical value. 

A considerable amount of work on the stress-

strain curve of concrete under flexure has been done 

the most significant being that due to Hognestad 

and that due to Rusch. 	These curves give a very 

good estimate of the plastic moment, but usually 

they do not give a correct picture of the neutral 

axis and the strain in the extreme fibre, in the 

neighbourhood of the ultimate load. 	Baker and 

Amarakone suggested an improvement in this respect 

in a paper presented to the Hyperstatic symposium 

of the E.C.C. at Ankara in Sept. 64, which was also 

In case of prestressed structures, the increment 
of strain in concrete at the level of the steel, 
from a condition of zero strain, must be considered. 

ec 
nd 

 

(2.1) 
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discussed in the Institute of Structural Engineers, 

London, on 30th March 1965(11). 	The stress block 

recommended in this paper gives a fair estimate of 

the ultimate strain, but the estimate of the position 

of the neutral axis is still poor. Further research 

has recently been completed at the Imperial College 

in this direction.(47)  

We observe that the prediction of a correct 

moment curvature relationship, based on theory alone 

has not yet been possible. 	T-he situation is much 

worsened by the fact that all the sections of a frame 

member do not obey the same moment curvature relation- 

ship. 	This is due to bond slip, local concentration 

of cracks, suspected arch action, or any other cause, 
which is not fully understood. 	In a series of tests 

on reinforced concrete beams, subjected to a central 

point load, Edwards observed that sections which were 

away from the critical section, yielded at a bending 

moment lower than the yield moment at the critical 

,section.(25)  A tied arch action (Fig.2.3) may be one 

of the causes responsible for an increase in steel 

stresses towards the supports, causing yielding of 

the steel earlier than anticipaLed. 	Edwards has 

further pointed out that if the moment curvature 

relation has a drooping portion, it is not possible 

for other sections near the critical, to follow the 

same route, unless reductions are noticed in the 

curvatures at those points with a consequent total 

reduction in the deflection, when a beam is sustaining 

a lower load after the peak value. 
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In the case of prestressed concrete beams, 

it was found by the author that the sections which 

are slightly away from the critical section, are 

actually stiffer. 	This was due to a tendency of 

concentration of cracks at the critical section. 

Increased curvatures near the cracks in prestressed 

concrete have been observed by others. Bennet 

pointed out in the 2nd Congress of the Federation 

Internationale held in Amsterdam in August and 

September 55, that it appeared probable that the 

deformation of a prestressed beam was brought out 

mainly by severe curvatures in the vicinity of cracks, 

rather than uniform curvature.(19)  

An analysis made on the basis of an experimental 

moment curvature relation has therefore to be used 

with caution. Perhaps an upper and a lower bound 

can be fixed for the purpose of analysis, based on 

a considerable number of tests. 

2.3 Moment Rotation characteristics of structural 

members. 

As seen above, the relation between the applied 

moment and the curvature attained, is not a function 

of the section properties only. 	It has been 

realized by the C.E.B. th-tt the moment rotation 

relationship, which gives an integrated deformation 

diagram of the member as a whole, is much more useful. 

Guyon also suggested the investigation of a moment 

rotation relationship of a plastic hinge.(29) 	A  
rotation between the end supports, obtained from 

a test conducted on a simply supported beam, takes 
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into account the effect of the variation in the 

flexural rigidity throtighout the member and 

evaluates the expression El  ds along the length 

of the beam. 	It is possible to use this interated 

rotation in the analysis of a frame, a member of 

which is subjected to a similar bending moment 

distribution between points of contraflexure. 

The moment rotation curves also directly give an 

idea of the amount of the plastic rotation possible 

at the critical section of a particular member. 

2.4 C.E.B Programme - author's task in the schedule. 

The C.E.B. planned an ectensive programme of 

testing a large number of beams so that safe empirical 

values of the available hinge rotations were obtained 

from sufficient statistical data. Brener(14) first 

observed that the most influential parameter in 

determining the value of the plastic rotation, is 

the depth of the neutral axis at ultimate. In the 

first five I beams tested by the author, which are 

described in the next chapter, an attempt was made 

to study the influence of the neutral axis in case 

of prestressed beams. This was achieved by changing 

the amount of reinforcement. The next five beams 

were devoted to the study of the influence of the 

prestressing force, and lateral binding in the 

compression flange. 

2.5 Development of equations for calculating  

Idealized limits. 

The stress  block in concrete under comp.ression. 

The distribution of stress in a cross-section 

under a flexural effect, has been the subject of 
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extensive research. As the distance of the point 

of observation, measured from the neutral axis 

increases, the strain increases lineerly, but not 

the stress. Assuming that all the concrete fibres 

obey the same stress-strain law, (which is not 

true due to a difference in the rate of straining 

at the level of each fibre) the distribution of 

stress can be plotted against the distance from 

the neutral axis from a typical stress-strain 

curve of concrete. This distribution is known as 

the stress-block. 

The stress block suggested by Hognestad, 

Fig. 2.4, gives an estimate of the ultimate moment 

for unbound concrete. In fact the moment at the 

ultimate is very little affected by the assumed 

shape of the stress block, because a change in the 

stress block is accompanied by a compensating change 

in the lever aim. However, a refinement to the above 

was felt necessary, to permit more correct evaluation 

of the strain values, and the position of the neutral 

axis at ultimate. The stress block suggested by 

Baker at Ankara, Fig. 2.5, is a considerable improve-

ment in this respect and has been adopted by the 

author in all computations in this thesis. 

Derivation of expressions for OC..  and 1r at L2-  

The Ankara stress block mainly differs from the 

previous blocks in the respect that it permits the 

use of strains in concrete higher than .0035, 

according to the formula 

e2  = .0015 (1 + 1.5p" + (0.7 - 0.1p") 1  ) 	 2.2 n2  
e2 therefore depends on the neutral axis and the 

percentage of lateral binding. 



. q =002 .n 7 ec 
if k = 002  e q = kn 

It also permits a little reduction in the 

maximum flexural stress for large values of the 

neutral axis, according to the formula 

c 	0.1 

c c 	0.8 + 
2 

(An upper limit of 1.00 is operative for small 

values of n2). 

Let qd be that part of the neutral axis in which 

a strain of .002 is attained. (Fig. 2.6) 	The 

stress block is parabolic up to this point. 
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s = n - q = n(1-k) 

Nowoc= 2/3:14 s  = 2q + 3s = 2kn+3n-3kn  = 	---2.3 
n 	3n 	3n 

2 s 
0= 7 2 /3

q (sl*q) (1-k)2/2+ 2/3( 1-k+5hk) 

      

n 

6+6k2-12k+8k-5k2 k2 -4k+6  ...... ....2.4 12-4k 	12-4k 

CC and W at L1 

For over-reinforced sections, when eel is limited 

to .002, 0C = 2/3  and 
	

6 = 

For an under-reinforced section, the state of L1 
will be reached when the steel attains an offset 

strain of .001' (ecl. 	.002) 

Bremner(14) has shown that (X., and )", are given by 

the following expressions for ecl  4. .002 

= Cle 	, 1 (ecl 2 
.002 - 3 '.002' 	2  5  

15 4  eci/.002 

12(1 - ecl 
3x.00) 

1-k/3  

2  6 
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Equations for strain compatibility (in prestressed  

concrete.) 

Strain Compatibility at L2  

Let e be the resultant strain in steel due 

to prestress after losses, at tie time when the 

application of external moment has to commence. 

Fig 2.7 (a and b). 

Assuming perfect bond, the net caange in the 

strain in concrete at the level of steel, due to 

applied moment since commencement of loading at 

stage L2, 

+ ecp 
= ecs2 	(-ecp) = ecs2.  

The final strain in steel at ultimate is given 

by es2 = e 	+ change in strain in concrete at the 

same level. 

	

e
p + e   2.7 cp + ecs2 

Fig. 2.7 (b), represents changes in the concrete 

strain due to applied load, from a datum which is 

the state of zero stress and strain in the section 

(i.e., from an unloaded state, when prestress was 

absent). 

Now 
	ecs2 	1-n 

ec2 

Equation 2.7 therefore reduces to 

es2 = e 	+ ecp  + ec2(1-n)/n 	 2.8 

Strain Compatibility at L1  

In the state L1,the strain in concrete at top 

fibre is given by the equation 

2.9 ecl = (e sy - ep  - ecp) 1!n 	 

Where esy  is the strain in steel if it reaches 0.001 

proof stress before concrete reaches .002. 
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The Equilibrium Equations. 

In a cracked section it is not possible to 

consider the effects of prestress and the applied 

moment separately, and add their effects to get 

the final distribution of stresses. Ti,is is 

because the section properties assume new values 

in the cracked state, i.e., the concrete no more 

takes any tension and the condition of a constant 

flexural rigidity does not exist. 	The principle 

of superposition no longer applies, because the 

linearity of the relationship between an applied 

force and the deformation, is destroyed. The 

applied bending moment and thrust have to be 

considered simultaneously with the cable forces in 

the equilibrium equations, which are as follows: 

1) In case of pure bending, Fig 2.8(a) 

C = T* 	  2.10 

i.e., the total compression in the area 

of concrete = total force in cables. 

2) In case of bending + axial thrust, Fig 2.8(b). 

C = T + N* 	  2.11 

In this case the total compression is a sum 

of the components, 

I) that caused by the tension in the cables and 

ii) that due to the external load. 

Fig 2.9 (a- 	and b) shows the cross-sections 

of a rectangular and and I-beam. The position of 

the neutral axis and the stress-block are also shown. 

The total compression in a rectangular section 

is given by the equation 

C = 010<,Uc bnd 	 2.12 

* In case of reinforcement in the conpression zone, 
suitable modification in the value of C has to be 
done. 



29 

In case of an I-section, if C1  be the total 

compression in the rectangular area of width 'b' and 

depth 'nd', and C2 be the compression in the shaded 

area 

C = C1 - C2 

=.-OCUe  bnd -CeOc(b-b')(n-t)d 	 2.13 

where oc corresponds to the stress block of depth nd 

and ce 	n t, n n I, it n 6--t)ct) 

between the neutral axis and the bottom flange. 

2.6 Advantages of a bilinear idealization. 
itmoecL Co71 Ct e 

Consider a simply supported' :J%.beam subjected 

to a point load at the centre. 	Let the moment 

curvature relation of the critical section be as 

shown in Fig 2.10(a), in which the actual behaviour 

is replaced by an idealized bilinear relation 0L1L2. 

Now, assuming for the sake of argument that this M/K 

relation holds good for all sections, a curvature 

distribution along the length of the beam can be 

arrived at, due to the linear variation of the 

moment, as shown in Fig 2.10(b), when the moment L2  

is reached by the critical section. 	This curvature 

distribution can be replaced by two straight lines 

CD and DA, corresponding to OL1  and L1L2  respectively. 

Imagine an isolated span AB of length '1' of 

a continuous beam (Fig 2.11). It can be shown that 

the end slopes PA  and B  are given by the expressions 

	

A 	
= 	j(Y) kdx 	 2.14 

= 	x 

	

xkd   2.15 

	

.9°B 	j 1 

The conditions of compatibility at supports of 

the continuous beam will be satisfied if iDB  of 

span 'i' is equal and opposite to 9.A.' of the 

adjacent span 'i + 1'. 

(ILO 
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The assumption of an idealized moment curvature 

characteristic, tremendously facilitates the cal-

culation of the angles 9A,  and 9B1. 
Take the case of the simply supported beam 

Fig. 2.l0(a &nd b). The rotation in half of the 

beam can be deduced from the area of the curvature 

diagram which now consists of two triangles BCE and 

AED. 

In a continuous beall„  and th. in the I 	span, 

can be deteildined by obtaining the moment of all 

such triangular areas about the supports, which is 

in fact a method to evaluate the intoi;rals given 

by equations 2.14 and 2.15. In reinforced concrete 

beams, the points D and E are usually close enough 

to justify a further simplification to the effect 

that the plastic rotation represented by the area 

of the triangle AED is concentrated at the critical 

section. 

The Bilinear idealization in such a case has 

a horizontal ceiling ,and represents an elasto-plastic 

behaviour. An elasto-plastic framed structure with 

such an idealization, can be analyzed in the 

intermediate phases between the structure being 

completely elastic -1(3. the structure being completely 

plastic, by using the elastic equations, to determine 

the concentrated hinge rotations, provided the value 

of the flexural rigidity used is that attained by 

the member at the State L1 (equation 1.3). 

Baker recommends that the flexural rigidity 

of a member at L1 be calculated at the potential 

hinge in between the chosen ones(5) 



31 

2.7 Calculation of limits L„ L,  in a moment  

rotation curve. 

It has been stated that it is more practical 

to obtain a moment rotation curve from an experiment 

rather than the corresponding moment Curvature 

r ation. 

The calculation and plotting of the theoretical 

idealized limits at L1  and L2 will now be discussed 
with respect to a moment rotation curve. The 

simplfied bilinear idealization proposed by Baker 

for R.C.C. members, is shown in Fig.2.12. Fi. 2.14 

shows the possible bilinear and trilinear idealisation 

in prestressed ,nembers (discussed in detail in 2.8). 

Limits  L1 and 1, 	(L(1,1, in trilinear idealization 
Fig.2.14) 

A critical section attains this state when 

either of the following coeditions is satisfied. 

i) The steel reaches the yield point. In case of 

cold worked steel and hi7h tensile tendons, when 

no sharp yield point exists, the steel is assumed 

to yield at an offset strain of .001. 

ii) A strain of .002 is achieved at the extreme fibre 

of the concrete. 

Moment at L1  - M1 (and at L1p in case of trilinear 

The method of calculating M1  is one of trial 

and error and the steps adopted are as follows:- 

1) Assume a depth of neutral axis and calculate e
cl 

from a known value of steel strain. In case of 

prestressed concrete use equation 2.9. Check 

that e I  is less than .002. Find G4 and 
from equations 2.5 and 2.6. 
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2) Calculate the total compression in concrete 

using equations 2.12 or 2.13. Check that the 

equilibrium is satisfied according to 

equations 2.10 and 2.11. If not, alter the 

value of N.A. and repeat. 

3) If the final value of the nautral axis 

obtained by the above process is such that 

ec exceeds .002, then use the value of .002 

as the guiding factor for ec  , and calculate 

the forces in the tendons in each trial. 

(Use of an idealized stress-strain curve 

for the steel is recoramended.)(10) 

4) M1  is then found by taking moments of all the 

forces about a convenient point. 

Rotation at L1 	(Bilinear idealization). 

The rotation at L1 is obtained by dividing 

the area of the moment diagram by the flexural 

rigidity calculated at the limit L1. (i.e. beam 

is assumed to be cracked throughout.) 

Consider again the simply supported reinforced 

concrete beam subjected to a point load at the 

centre. The curvature distribution in its half 

span is shown in Fig. 2.13. 

M1 The rotation at L1  = x IT  x 1 
ec 

' n 1 
1d 
__L 

• 

It may be noticed that the calculated rotation 

at L1 represented by the triangle ABC, is greater 

than the actual rotation obtained from the c-adod 
iltsi4u/2i b VA CLOW 	('i area. 	Burnett 	objected to this and suggested 

32. 
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that an equivalent EI value should be used and 

an ordinate BA' be calculated, such that the area 
ABC 	LIT%14,c(IL 6y (L avtirot Z4 L 

of the triangle A' BC is equal to the ohaded area 

If t4is is done, the point L1  shall lie on the 

actual moment rotation curve in Fig. 2.12. This 

is not of sufficient importance in R.C.C. but in 

prestressed concrete members, the disparity between 

the actual curve and the point L1  is significant. 

This has been taken care of in the suggested tri-

linear idealization(13) 

Moment at L2 - M2  (and at L2p 
in trilinear idealization). 

The method is basically the same and the steps 

are 

Assume a tentative value of neutral axis. 

Calculate the ultimate strain from equation 2.2. 

2) Calculate the values of OCand 	from equations 

2.3 and 2.4. 

3) Calculate the total compression from equations 

2.12 or 2.13. 

4) Calculate the force in the tendons using 

equation 2.8 and an idealized stress-strain 

relation. Check whether the equilibrium equation 

2.10 or 2.11 is satisfied. If not repeat with 

another value of the neutral axis. 

5) Finally, calculate M2  by taking moments of all 

forces about the centroidi 

Rotation at L2 (Bilinear idealization). 

The total rotation at L2 is the sum of the 

rotation at L1 and the inelastic rotation which in 

the case of simply supported beams is 2 8 

where e is given by the following equation:- 
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(11) 

0.8 (ec2  - ecl  )k1 k3d  (-) 	 2.16 

k13 .k- is usually taken as .5 

A set of computation curves for use in the 

design of rectangular beams, have been prepared 

by the author, vide graphs 2.1 to 2.7, to calculate 

the limits at L1  and L2. Effects of various 

parameters such as type of steel, the degree of 

prestressing force and the quantity of laterial 

binders, have been considered. The digital computer 

was used and a typical flow diagram will be found 

in appendix 1. 

2.8 Idealized limits in the moment rotation curve  

of a prestressed concrete member.  

Baker has suggested a trilinear relation for 

prestressed members,(10 8` 13) in addition to the 

usual bilinear idealization, Fig.2.14. 	The limits 

of this idealization are calculated as follows. 

Limit L-2 
This is the state before any external moment 

is applied. The point 0' is the origin of reference, 

if it is desired to find the resultant bending moment 

at the critical section, in the untracked states 

The ordinate 00' represents the bending moment due 

to the prestressing force in the tendons, which is 

opposing the applied moment. 	The length OL..2  is 

the negative rotation between supports due to the 

prestressing force. 

Limit L-1 
This limit corresponds to an applied moment, 

when the concrete at the level of the resultant of 

tendon forces, attains a zero stress. Such a state 
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will not usually be attained in the uncracked 

stage, in beams designed to be tested in the 

laboratory, due to the difficulty in keeping 

the centre of gravity of the tendons at a low 

level. This state is therefore of not sufficient 

importance in present context. 

In drawing Fig. 2.14, it has been assumed 

that a simply supported prestressed concrete 

beam having uniform cable eccentricity, is sub— 

jected to a central point load. 	The bending 

moment diagram due to the prestress is a rectangle, 

while the applied moment diagram is triangular. 

At a stage when the applied moment at the critical 

section is equal to 00', the corresponding rotation 

caused by the external force is only half of OL_2. 
er 

This accounts for a steep,slope of L_2L_1. 

Limit Lop. 

At this stage, concrete fibre 1 is just going 

to crack under flexural tension. The method of 

calculating the cracking moment has been explained 

in section 3.9. 

Limit L1p 
The moment at this limit is the same as at L1. 

The rotation however, has to be calculated with due 

regard to the cracked and uncracked values of the 

flexural rigidity in different parts of the beam, 

as shown in Fig. 2.14. The author has suggested a 

satisfactory method of doing this in section 3.11. 

Limit L2p 
The moment at L2p is the same as at L2 and the 

rotation is the sum of the calculated rotation at 

L1p and the inelastic rotationg..epobtained ytal 

equation 2.16. 
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2.9 Computational difficulties  of the trilinear  

Idealization.  

For the sake of simplicity, consider a 3 span 
le&. foyced., concrete 

continuous '! .,.Abeam subjected to point loads 

shown in Fig 2.15(b), in which a trilinear moment 

curvature relation as in Fig 2.15(a), is applicable 

at all sections, for analysing the beam. The 

inelastic rotations shown by the shaded areas, now 

considerably extend away from the critical sections 

and can no longer be assumed to be concentrated at 

the hinges. 	The calculation of A ' and spB 
involve the determination of the moaent of the 

shaded areas about the supports. 

It is evident that this is much more difficult 

and includes many more triangular areas, than when 

the idealization is bilinear. For each trial 

value of the distribution of moments satisfying 

equilibrium conditions, an enormous work has to 

be done before the incompatibilities at the supports 

can be determined. If there are e, number of spans, 

a computer is required. 

In prestressed concrete members, where in 

addition to this, the deformations of the structure 

due to cable forces have also to be taken into 

account, a trilinear idealization is hardly of any 

use to the practical designer. 

2.10 Use of a moment rotation characteristic in  

structural analysis.  

In the 'Report by Research Committee' on 

'Ultimate load design of concrete structures'(4 9), 

published in the proceedings of the Institute of 

Civil Engineers, Feb. 62, a method has been suggested 
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regarding the use of the moment rotation 

characteristics of a short inelastic length at 

a critical section of an R.C.C. member, (shown 

in Fig. 2.16). 

The author has to point out that it may be 

necessary in a rigorous analysis to omit the 

simplified assumption that hinge rotations are 

concentrated at critical sections. 	In such 

a case it is not easily seen how the moment 

rotation characteristics measured between the 

points of supports of simply supported beams, 

give sufficient information to solve the com- 

patibility problem in a frame. 

The author feels that attempts to obtain a 

moment curvature relationship which could be used 

in a rigorous analysis yielding realistic results, 

need not be given up at this stage. 

It is true that in most cases, the experimental 

curvatures obtained from strain gauge readings, 

when integrated over a length of the beam, do not 

fully account for the difference in slopes at the 

ends of this length. It is also true tht the 

moment curvature relationship has its numerous 

difficulties, as discussed in 2.2. 

An investigation to solve these difficulties 

may be useful in understanding the basic behaviour 

of the structure. On the other hand, an attempt 

to use a moment rotation characteristic in a rigorous 

analysis, may not give results up to expectations. 

2.11. 
The results of the ten beams, tested by the 

author in connection with the C.E.B. pro;ramme, 

which form the basis of the further work in this 

thesis, are discussed in the next chapter. 



   

38 

fi 

tow Wit RATIO 

 

    

STRAIN 

FIG 

STRESS STRAIN CURVE — MILD mei 

F 1G 2.2 

STeess STRAIN CURVE - CONCRETE 

IN FLEXURAL COMPRESSION 

FLOW OF SIReSSE5 

 

  

FIG 2:3 

SusrEcTED 	TRUSS OR. TIED ARCH ACTION its) A BEAM 



R LIMIT 

Cc  

Cc
ejna  

= '0015 [ I+ 1%5 + (07- ol 0+41 
UppeR LIMIT 

L2 
./ N 

IY 
Of 
I-
In 

t 

Km 0135 

Ic.Cc  0415 fC 

STRA. 114 
	 '002 
	

'0038 	
STRAIN •oo2 

	
eC2,  

F IG 2-4 
	

FIG 2.5 

STRESS Block 	. HOGNESTAD. 	 STRESS BLOCK - ANKARA" 

STRESS DISTRIBUTION 
	

STRAIN DISTR1BuTioN 

F R 	2.6 

DISTRIBUTION OF STRESS AND STRAIN ACROSS 

A 5ECTioN UNDER FLEXURAL COMPRESSION 



  

40 

c OF 
TeNDows 

 

FIG 	2'7 a. 	 FIG 2.7 b 

STRAIN D ISTRIBUTioN DuE To 
	 STRAIN DISTRIBUTION AT 12 

pRE STRESS AT COmMENcEMENT Of 

10ADIN 

FIG 2.8 CL 
	

FIG 2:8 b 
fo ace s 	To BE CONSIDERED T02 EQUILIBRIUM 

(0-) SIMPLE FLEXURAL BENDING 	(b) BENDING AND Axiikl THRUST 



FIG 29 1, 

      

44 

T 

oce,,,,,a. 

 

      

FIG 2.9 a. 

STRESS Bi ocic 	uJ At REcTANGUAR X-secTtoNi 

(CI-c 0 

Where CI  is the 
Corn pression  tin le 

T 	
recta.-.9te '6 x -nd 
It 

C 2 	IS the Corn presciem 14 
Ite Shades' area 

STRESS 	BLOCK 	I ht 
	

A 	I - SECTION 

as cc a 
1-4 

a 
U 

1 

CURVATURE 

e 0.: 

FIG 2-10 

SHOWS MiK RE i ATION FOR 
CRITICAL SECTION 

r  I; 	SHOWS 	CURVATURE 	DtsTRIBuTioki 
ALONG HALF LENGTH OF A S-SUppoRTED BEAM 

c 
Q. 



BEAM 

42 

FIG 211 
AN ISOLATED SPAN OF A CONTINUOUS BEAM 

I— 	 td a 2 	 z 
2 	

1... 
> 

0 	 ci 
X 	 3 

B 
ROTATI ON 	 cErwrze. BEA M 

ipLIFIED 

4it. 
• 

i 

BIL INEAR  

11541s 
1„.1 .  

4 112.4/1 I--- lir 	tugs 

ACTUAL N. ••• 

IDEaLinv 

/It 

FIG 2- 1Z 

IDEALIZATIoN FoR. 	 C.C.R 	CURVATURE 

FIG 	Z• 13 

DISTRIBUTION AT Li 

BENDING MOMENTS LIMIT 

L., 

Lop 

I. 	p 

LIP 

L I  

24_77-12_ 
, 

/ 

/ 

/ M 

I 	I 

....... let : -1- 

1. Z 

a 

Li 

tvi z 
M 

1 

M.2 

Mop 
L 

i 
I 

14-2 
J. L 	° -2 TcyrAl ROTA-1'10AI IM RADIANS FIG 214 

-nrirogreit4po07,00'" 

''LINEAR AND TRILIME6,f2 iDE AL 12 ATIoNS pRoposf D FOR PRESTRESSED CONCRETE 



c11 	
SUppoRT 

FIG 2.17 

1NTE.4 RATION OF AN AVERAGE 
MOMENT CURVATURE RELATION 

Ce MAE 

t•-• 

0 

43 

FIG 2'15 a 	
CURVATURE

, 
-TRI Li NEAR MOMENT CURVATURE RELATION 

F iG 2.15 .6 

THREE spAr4 CoNTINUOUS BE AM SUBJECTED To poiNLT LOADS 

Slope CoR.efs pomDiNg To 
UMcQACKED FLEXURAL Ric:Duty EY 

O 
X 

ROTATION 

Fic 2. 16 

MOMENT ROTATiOm C14 ACTERI ST% CS 
Of A 511oRT' LENGTH WHICH IS plAsTIFIED 



'3 

'2, 

WO 

TYPE 

PROPERTIES 

DIAM. 

OF STEEL 

LOAD 	AT '001 P.S. LOAD AT Roma. 

1 .2:16°  11460 	,bs 13600 Lis 

2 '20d 6740 1 bs 7750 Lbs 

3 '276"  11840 lips 13,860 tips 

GRAPH 2.1 ti, vs CO 

PARAMETER Type of sTeEL 
Typf i '0043 

VALUES OF Op Typt2 '0041 
Ty pg3 -0043 

i 	 I 	 I 

	

1 	
1 	 I I  

	

'1 	 '3 	 'i 
(a 

J. 

ORM 



et, = V03 

GRAPH Z.2, n vs CO 

PARAMETER. PRESTRESSING 
STEEL 'POE 5 

FORCE 

2 
.3 	  



1 

MM. 

2. 

f 
•1 

GRAPH Z.3 In, vs r, 

PARAMETER PRESTRESSING FORCE 

ST E E L TYPE 3 

'4 
A . ...........1010 n, 



TYPE 3  

..--"* ..-TYPE.  

Typa 

GR-AP1-1 2.4 ms  s o..) 
PARAvirreR Type OF STEEL 

. 	 '4 



I i i 1  
'4 

GRAPH 2.5 ma ys (.43 

PARAMETER pREsIeessikIG FORCE 

Mei Type 3 , bINDERS NIL 

I 



GRAPH 2.6 rnivs cA.) 

PARAMETER PERCENTAGE or LATERAL BINDERS 
*TEEL TYPE 3 



15X 4 
BINDERS 2.5% 

Himouts NIL 

GRAPH 7 7 .—. , trt2  vs "t12.  

PARAMETER pectceinAGE OF LATEeAL BINDERS 

511[i 'Fyn 3 

t I 1 1 i 
lz 



51 

CHAPTER 3. 

MOMENT ROTATION CHARACTERISTICS OF  

POST-TENSIONED PRESTRESSED CONCRETE BEAMS.  

3.1 Object  

The discussion in this chapter relates to ten 

simply supported beams subjected to central point 

loads, and tested in accordance with the C.E.B. 

programme. 	In the first five beams labelled as 

1 to 5, the percentage :of steel was varied from 

.173 to .865 calculated on the rectangular area 

represented by bxd. 	Thus a wide range between a 

highly under-reinforced and a fairly over-reinforced 

case was covered. 	In beams 6 and 7, the pre-

stressing forces were 40% and 33% of the ultimate 
value. 	The percentage of steel was the same as 

for Beam No, 3 in which the prestressing force was 
50% of the ultimate. 	Beams 3, 6 and 7 therefore 
fora a set in which the effect of various degrees ' 

of prestressing force on the ultimate load and the 

rotations was studied. 	Beams 8, 9 and 10 had the 
same percentage of steel as the over-reinforced 

beam No.5, but were provided with various percentages 

of lateral binders in the compression flange. This 

series was chosen to study the effect of binders, 

after it was noticed that Beam No. 5 had a sudden 
brittle failure in the neighbourhood of the ultimate 
load, without undergoing any appreciable plastic 

rotation. 	The properties of the beams are summar-

ized in Talde 3.1. 
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3.2 	Beam details. 

All beams were of I-section having 6" flange 

width and 8" overall depth. 	The span between the 

centres of end supports was 82". 	The reinforcement 

details are given in fig. 3.1. The eccentricity 

was kept constant throughout the length of the 

beams in all the cases. 	The main reinforcement 

consisted of high tensile wires of .276" diameter, 

manufactured in Great Brftain by Richard Johnson 
d 6figrent- consignmenis  

and Ne phew Ltd. Two 	were used 

	 , as indicated in Table 3.1. Each had 

slightly different characteristics. The corresponding 

load extension sT.aphs 	 were supplied by 

the firm and were verified in the laboratory. 

(figs 3.2 to 3.4) 

2 NOS 	diem. mild steel bars were used for 

holding stirrups in all the beams. The corresponding 

stress-strain curve (supplied by J.G.C. Chinwah)(18) 

is shown in fig. 3.5. 
Ordinary port _and cement uas used throughout, 

The course aggregate was irregular Thames River 

gravel of 4-Yi maximum size and the fine aggregate 

was also from the same source. For the sake of 

convenience, the fine aggregate was separated into 

two different sizes in the laboratory viz 3 "  - 25 
and 25 down. 

The absorption capacity and sieve analysis of 

aggregates were determined in co-operation with 

J.G.C. Chinwah and are shown in Tables 3.2 and 3.3. 

3.3. Concrete Mix. 

The desired 6" cube strength at 28 days, was 



W/C As per R.note No.4 

Bremner(147- 

practical 	Av. Factor values. 	Factor. 
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6,000 lbs/square inch. The design was based on 

Road Note No. 4. C50)  It was noticed that for a 

given W/C ratio, the experimental strengths obtained 

by previous workers were higher than that indicated 

by Road Note No.4 as shown below. 

6" cube strength 

.53 4900 (28 day strength) 	6700 	1.37 

.56 4500 	5800 	1.30 (neglect) 

.59 4100 	5500 1.34 	1.35 

Dastur (24)  

,45 4400 (12 day strength) 	6000 	1.37 
.64 2640 	4000 • 	1.50 (neglect) 

The target strength of 6000 lbs/square inch was 

divided by a factor of 1.35 before using the tables 

of B4 note No.4. The following proportions were 

found to be satisfactory for combining the C.A. and 

the F.A. This gave an overall grading which was 

close to No,3 of the Road Note 4. 

Course aggregate = 60 lbs. 

Fine aggregate = 40 lbs (consisting of 28 lbs. of 

3/16" -25, and 12 lbs. of 

25 down). 

The grading of the combined aggregate when mixed in 

the above proportions is shown in Figs.• 3.6 to 3.8. 
The aggregate cement ratio was 6.00 and the 

effective water cement ratio was .55. 	A summary 
of the mix design shall be found in Appendix 2. 
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3.4 Batching, mixing, casting and curing. 

The 'volume of the beam and the control specimens 

dictated that the casting of each beam be done in two 

batches. To avoid segregation, the order in which 

the constituents of each mix was weighed in a 200 kg 

weigh batcher , is as follows: 

Fine aggregate 25 — 3/ n 16 
Fine aggregate 25 down. 

Cement 

Course aggregate. 

The water was weighed separately on a weighing 

balance. A horizontal pan mixer was used. Dry 

mixing was usually carried on for two minutes before 

water was added, and the mixing continued thereafter 

for further three minutes. 

The following control specimens were cast with 

each beam. 

Mix 1 Mix 2 Total 

6" cubes 2 4 6 

6" x 12" cylinders 1 2 3 
4" x 4" x 20" flexural 

beams. 3 0 3 
The aim of the above arrangement was to obtain 

more specimens for compression tests from the second 

batch of mix, which was used in the top of the beam, 

and specimens for flexural tests from the first 

batch. 

The shuttering used was of steel with timber 

insets to reduce the thickness of the web. The 

shuttering permitted the use of two 'kango' hammers, 

one on each side of the shuttering for vibration. 

The control specimens were vibrated on a vibrating 

bench . 
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After the casting, the beam and the control 

specimens were cured under wet hessian and polythene 

for 24 hours. Thereafter the side shuttering was 

stripped off and they were cured for a further 

period of six days under the same conditions. 

The beam and the specimens were then cured in air 

under the controlled conditions of the laboratory 

until testing. 	The constant temperature and the 

humidity maintained were 68°F and 60% respectively. 

3.5 	Testing Frame. 

The beams were tested in a 50 ton testing 

frame (Figs. 3.9 and 3.10). The bearings at the 
supports were located on two concrete pedestals. 

In the first five beams, the bearing at one end 

did not permit lateral movement and the loading 

was done via a proving ring having hinges at its 

points of contact with the jack and the beam. 

This permitted tilting of the proving ring while 

lateral movement took place at the free roller end. 

The arrangement was unsatisfactory as it induced 

secondary lateral forces in one half of the beam, 

which in its turn influenced the pattern of the 

shear cracks to a considerable extent. The loading 

arrangement was therefore altered in testing the 

remaining beams. 	The load was transmitted 

vertically through a load cell, rigidly screwed 

onto the ram of the jack. 	A spherical ball seating 

was provided where the load cell came into contact 

with the loadtg platten which in its turn was holding 

the beam by friction. 	The beam was provided with 

rocker cum roller bearings at both the ends and 

was free from all lateral restrailf. 	This arrange- 

ment considerably improved the pattern of cracks 
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in subsequent beams. 	No instability was 

encountered. 

In all the beams, oil was pumped into the jack 
by means of an electtic pump and hence the rate of 

loading at the different stages, could be controlled. 

3.6 Instrumentation. 

The method adopted for measuring rotations and 

recording strains was precisely the same as initiated 

by Bremner. 	Clinometers consisting of a .0001 

micrometer head and a 10 second level tube, were 

mounted on the top of the beams at several places 

including the supports, to record the changes in the 

slopes. 4" demountable Demec gauges were used 

throughout to record strains. 	The layout of the 

Demec points was so arranged that differences in 

strains could be recorded every 1" apart near the 

critical section. The deflected profiles of the 

beams were also obtained by using .001 dial gauges 

underneath the beam. The layout of the clinometers, 

Demec points and the dial gauges are shown in 

Fig. 3.11 to 13. 

3.7 Testing Procedure. 

The loadhg procedure recommended by the committee 

XI of the 0.E.B., states that an increase from zero 

load be made up to 60% of ultimate in steps of 15% 

and thereafter the ultimate lad be attained_ in steps 

of 5"-0. 	Near the ultimate the strain at the extreme 

fibre is not allowed to exceed'0007 for each step. 

The time for each step is 15 minutes, 5 minutes for 

applying the load and 10 minutes for taking readings. 
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Now, during the time taken for recording 

readings, there are two alternatives. Either the 

load or the deformation may be kept constant. 

The former is difficult to achieve and would mean 

the application of a constant oil pressure against 

a falling resistance due to creep. Edwards (16)  

achieved this by balancing the oil pressure by dead 

weight. 	An Amster machine with a constant load 

maintaining device was available in the laboratory 

at a later date. 	The measurement of rapidly 

changing strains in the plastic phase is a problem 

in this system. 

The second alternative is very nearly attained 

by shutting the oil supply as close as possible to 

the jack. 	The jack ram is thereby locked and 

Provided the falling backward pressure of the 

deflected beam does not alter the deformation of 

the loading device appreciably, and provided the 

testing frame is sufficiently rigid to cause an 

inappreciable amount of flow of energy from the 

frame to the beam during this period, the deflection 

at the point of application of the load may be 

assumed to remain constant. 	The load cell used in 

Beams 6 - 10, is better suited for this method and 

the increase in the deflection of the beam during 

the time when the valve was kept shut in these beams 

was much less noticeable than in the case of beams 

where a proving ring was used. 

3.8 	Prestressing and Grouting. 

The C.C.L. single wire systemvns used for pre-

stressing. Usually after 14 days of casting, the 

tendons were post tensioned using a Mark I C,C.L. 
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jack at one end. 	In beams 1 to 5, the tendons 

were left within the duct tubes at the time of 

casting, with the leads of the electrical strain 

gauges partially embedded in concrete. 	Later on, 

all tendons were introduced in the duct holes at 

the time of prestressing, and the strain gauge 

leads were taken out of the beam, through vents 

provided for grouting near the supports. The latter 

was accomplished by usins wire hooks (see Fig. 3.14). 

As strain gauges were only used to measure the pre-

stressing level, by using the lead extension graphs, 

there was no particular disadvantage in using them 

near the ends in case of beams. 	An attempt was 

made to use two tendons in the central duct tube, 

in case of beams 2, 4 and 5. 	This was unsatisfactory 

from the point of view of friction and it also led 

to the rupture of the gauges in some cases, whence 

the degree of prestress was assessed by noting the 

oil pressure at the pump and measuring the extension. 

Grouting was carried out soon after prestressing, 

by means of a high pressure hand pump. In case of 

Beams 1 to 5 the grout was injected through holes 
built in the and plates (Fig. 5.15). In beams 6-10, 

special vents provided access to the duct tubes for 

grouting. Both arrangements were satisfactory. 

High alumina cement was used for the grout and the 

water cement ratio was .375. Aluminium powder 

(CABCO Grout Additive) was used to nullify the 

shrinkage of grout, according to the maker's speci-

fications. 

The dates of casting, prestressing, grouting 

and testing are given in Table 3.5. Laboratory 

conditions did not permit a strict uniformity to be 

observed in all cases. Due regard was taken of this 

fact in calculating shrinkage and creep losses. 
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3.9 Brief Summary of Calculations. 

(a) Shear reinforcement. 

The shear reinforcement was calculated 

according to the formula 

Vu - Vc = 5/4  Av s — . f 	 

This empirical formula was sugested by 

Hernandez(30), who tested a number of simply 

supported prestressed beams subjected to a system 

of two point loading. 	This formula was found to 

be satisfactory for all the beams tested by the 

author. 	The cracking moment and the corresponding 

shear force Vc was calculated by a process of 

successive iteration, taking into account the 

increase in the force in the tendons at the time 

of cracking (vide appendix 3). The permissible 

flexural tensile stress in the extreme fibre was 

taken as 500 lbs/ square inch in these calculations, 

as found from tests on flexural beam specimens. 

The cracking moment calculated according to 

the following formula suggested in Illinois Bulletin 

No. 452, was very close to the results obtained by 

the above method. 

St  bd2 Acft 
M = 

	

c 	(1 + 	) 	 3.2 

	

Mc 	cracking moment 

	

ft 	permissible tensile stress in concrete in 

extreme fibre under fbxure. 
b = top flange width. 

b'= web thickness. 

Ac = area of X-section 

= prestrdssing force. Fsc 
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3.1 
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(b) Stresses in Anchor zone. 

The stresses were assessed according to the 

procedure suggested by Y. Guyon(28)  in conjunction 

with the published tables on page 516 of his book. 

The effect of each tendon was first calculated at 

various heights and depths of the zone. The total 

effect of all the tendons was then taken into account 

and a reasonable average stress was assumed to find 

out the area of the mild steel which was provided 

in the shape of a cage (Vide appendix 4). 

The calculation of the bearing pressure on the 

end plate was done according to the following formula 

suggested by Guyon, based on the French Code of 

Practice (B.A.45 formula). 

Allowable pressure = 0.4 Cu k 4-5 	 /41  

cvhere 	Cu = cube strength 

k = increment factor for hoop reinforcement 

(taken as 1) 

= Area of bearing plate / a fictitious 
distribution area 

centred upon the 

bering. 

(c) 	Losses in prestressing force. 

The force in the tendons at the time of testing 

is less than to which they are initially stressed at 

the jack end, before transfer. The causes for this 

reduction are:- 

1. slip at anchorage during transfer 

2. friction due to curves and bends in the tendons 

3. creep and relaxation of steel. 

4. elastic losses - which occur in all tendons which 

are subject to the effect of subsequent tensioning 

of one or more wires 

5. losses due to shrinkage 

6. losses due to creep. 

a/A 
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The loss due to the anchorage slip depends 

on the personal factor of the man who does the 

hammering. Consistent results are obtained only 

after experience. 	An allowance of 1000 lbs. was 

found to be satisfactory for a .276" tendon. 

As the tendons were straight, no allowance 

was made for loss due to friction. 

The loss due to creep and relaxation of steel 

was minimized by keeping the wires under tension 

for 5 mins. before locking off. 
The losses due to elasticity, creep and 

shrinkage were calculated in accordance with the 

formulae suggested by Evans & Bennett (26)  

The calculated values are given in Table 3.6. 

Typical calculations will be found in Appendix 5. 

(d) Rotations and moments at limits L1,  L2, L1p 
and L2p 
Typical calculations for Beam No. 4 will be 

found in Appendix 6. It may be noted that the 

tendons were initially stressed before transfer to 

a state which is beyond the initial straight portion 

of the stress—strain curve. Further, the wires were 

maintained at that load for some time. The resultant 

stress in the tendon after transfer was therefore 

found fro@ strain values in conjunction with a path 

not obtained by retracing the load extension curve 

originally followed, but by unloading along a straight 
line parallel to the initial part of the forward 

journey. 

3.10 Historical development of the lenth of the 

plastic hinge. 

Figure 3,16 (a and b) represents a simply 

sunnorted R.C.C. beam with a concentrated load 



A further simplification is achieved by assuming that 
M1 	(14) n2d = nld x M2 

p = 1p n2d 

eC2 - OC1 
3.5 
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at the centre. The bending moment distribution 

is shown by the triangle ABC. AEOFC represents the 

curvature distribution on some scale. E and F are 

points on the curvature diagram, correspondLng to 

the moment 1b71 at which significant inelasticity occurs. 

There is a sharp rise in the curvature of the beam 

in the zone between E & F. The length EF is the 

inelastic zone. 

If it is assumed that the same moment curvature 

relation holds good at all points of the beam, we get 

half of the plastic 

1 

7  
1 • 

- 
R1 

2 
 	3.4 77.- 

M1 
where ( is a shape factor. 

W.W.L. Chan obtained this expression in his 

thesis(17)  in a slightly different form. 

C.E.B., proposed to replace the term 

(3 	
1 , by an equivalent plastic  - 

M 

2 
having a constant curvature as shown in fiure 3.17. 

• . 	e 
p 

c2  
= 1 p (n2d 

ec 	M2 
n1d M1  

the following expression for 

rotation 

=A
Lo 

p 
M2-1 

M1 

length '1 p  

and we get the following expression 

C.E.B. recommended that 1 may be obtained e-qpirically 

and proposed the formula 

1/4. -2  - k k k 	(d-) 	 3.6 d 	1 2 3  
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where k1 is a parameter which depends on the quality of steel. 
k2 	

” 	on axial load. 

k
3 	

it 	on concrete. 

Z is the distance between the point of contra- 

flexture and the point of maximum moment. 

Bremner(14) found that the length of the plastic 

hinge 'l p' did not remain constant with varying 

percentages of one particular type of steel, but 

it was primarily a function of the neutral axis. 

He attributed this to a decrease of the shape factor. 

(Vide discussion on beams 1, 2, 5 - chapter IX of 
his thesis.) 

The omission of n2 in the denominator in tho 

expression for Ap  as suggested by Baker at Ankara 
vide equation 2.16, is a recognition of the fact 

that the length '1 ' is primarily a function of the 

neutral axis depth. 

Amarakone(1) suggested that in the under-

reinforced beams, the presence of a steeper strain 

gradient across the section, between the neutral 

axis and fibre 2, was responsible for the higher 

strains noticed in the extreme fibre in such cases. 

The higher strains in their turn, cause higher 

localized rotations, which tend to decrease the total 

length of the hinge. 	Soliman(47) has further con-

firmed that the presence of a steep horizontal 
gradient corresponding to a low value of 7, causes 
larger concentrated rotations at the hinP;e. 	This 

is quite contrary to the expectation that xfotations 

would be smaller if the plestified length of the 

beam is reduced by shortening the value of 'Z', as 

indicated by equations 3.5 and 3.6. 
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According to SoTiman 0
P 
 in case of pure bending 

is given by the following expression:- 

Ap  . 0.0125X - 0.005   3.7 

whereX = 1 + 0.8 q" + 1-n2 	4 4d  
(l+n2)Z 757n2  

and q" (a factor which determines the properties of 

transverse binders) 
A 	A" (So-S) 

(1.4 -b.. - 0.45)  Ac 
	As-Tr- + 07728 BS2 

note: A" = X-sectional area of binders. 

B = breadth OPL.7 X  depth of the bound 
CONCRETE ,WHICH EVER ViTHECAEATER 

spading of binders ; So  = 10" 

Ab/Ac 	ratio between bound area and the total 

area under compression. 

3.11 Discussion on the tests carried out  by the 

author. 

Moment rotation curves in respect of the ten 

beams tested by the author are presented in graphs 

3.1 to 310. These curves have been plotted according 

to the method suggested by Baker(11) and as explained 

in Chapter 2. 	The effect of the uncrocked modul. s 

of flexural rigidity was taken into account as ex- 

plained in 3.11. The state of 	was found to be 

above the cracking limit Lop  and has been omitted 
in the graphs. Curvatures plotted along the length 

of the beams 1 to 5 are shown in graphs 3.12 to 3.14. 
They exhibit a general spread of the plastic length 

as the percentage of steel is increased. 	This is 
in accordance with Brember's observations. 

The deflection profiles of Beams 1 to 5 will 

be found in graphs 3.15 and 3.16 

Crack patterns are shown in plates 3.1 to 3'5 
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Beams 1, 2, 3, 6 and 7 are under-reinforced. 

Beam 4 is nearly balanced. 

Beams 5, 8, 9 and 10 are over-reinforced. 
The following observations were made by the 

author. 
(a) Effect of the uncracked modulus of flexural 

rigidity. 
Rotations calculated at the limit L1 are far 

in excess of the experimental values of the 

corresponding point. 
The calculated rotations at Llp, by the method 

suggested below, are fairly close to the experimental 

values and are adequate for the purpose of a Trilinear 

idealization. 
The method used to take into account the stiffness 

of the uncracked length, when calculating rotations 

at L1p is as follows. The method is approximate in 

view of the fact that it assumes a uniform 'El' value 

in the cra1cked aonei 
Fig.3.18 shows the distribution of bending 

moments at L1, which is typical for simply supported 

beams uniformly prestressed by tendons at constant 
eccentricity, and subjected to a central point loads 

Let the uniform moment due to prestress be M, 

frail karieL 	= ELL_ . 	4,6 - i76 
. t_4_4) 	I.- 1E 

Rotation between A and B (taking uncracked flexural 

SLY 
p 

140w t c= 

rigidity as E'I') 

P_ w 7- 
E I/ 	

s i1,  

(141a2L-- ti cre  
/I1 	4mi 
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Rotations between B & C (assuming a uniform 

cracked flexural rigidity of EI calculated from 

the state L1 at the critical section). 

(I:  ._1 xi 
E  

= 
Pitt/ 2.t4 , 

Mac (I  MCA) 
ta,t/ 

The total rotation between the end supports 

cMP 
2it'kt 	"blj 	4 

(Mc2"- -M 
tAi

'2-  

___ MS .  4- 	CM 	MO 	3.8 
221 	t112/ 	2 CI' I1 

Tile second term may be only 5% of the total 
rotation and may be neglected in some cases. 

If we compare equation 3.8 with the expression 

L 	which is the rotation obtained by assuming a 

7E1 	cracked EI value throughout the beam, for the 

limit L1, in a bilinear idealization, we observe 

that an approximate value of the increased stiffness 

at L1p is obtained by dividiag the cracked EI value - at L1  by the factor (1 M2  ), provided Mc  is 

small compared to M1. 

All rotations calculated for plotting Llp  in 

graphs 3.1 to 3.10 are in accordance with equation 3.8. 

(b) Effect of lateral binders. 

The danger of an unbound over-reinforced section 

is obvious from graph No. 3.5. The beam has a brittle 

failure even before the rotation at the limit L1 is 

attained. The maximum bending moment is also less 016,1t. 
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that the calculated value at L1. Practically no 

plastic rotation is available. A considerable 

improvement is gained in the values of rotations 

as well as the maximum moment, by the use of a 

small amount of binders (compare graphs 3.5 and 3.8). 
With a closer spacing of binders such as used in 

Beam No. 10, the rotation characteristic is highly 

ductile and resembles an under-reinforced member. 

In fact the limitation in the permissible extension 

of the jack prevented sufficient deformation to be 

applied to Beam No. 10, to be able to plot the 

falling part of the curve. The available rotation 

in this case is about 2,h times the calculated value. 

In prestressed concrete structures, a critical 

section may become undesirably over-reinforced, due 

to linear transformation. Guyon(28) recognised the 

fact that the efficiency 

may depend ma the way in 

is effected. 	According 

which cause the cable to 

compression surface will  

of redistribution of moments 

which a linear transformation 

to him 'Transformations 

be very close to the 

reduce the efficiency'. 

The use of lateral binders will be advantageous 

where it is necessary to leave absection over-

reinforced after such a transformation. 

In the discussions which took place in the 

meeting held in the Institute of Structural Engineers, 

in March 65, when the 'Ankara' paper was presented by 

Baker and Amarakone, it was pointed out that an 

approach similar to the limit design method of steel 

structures, might also be applicable in case of R.C. 

structures, provided recognition was given to the 

falling part of the moment rotation curves. 
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Lagrange(32) has also commented that better 

redistribution would take place in prestressed 

members under similar circumstances. Pietrzykowski(40)  

however, observed that heavily loaded columns were 

highly brittle and exhibited a tendency to sudden 

failure with a sharp fall in their moment carrying 

capacity. The results obtained by the author in 

case of over-reinforced beams, indicated that perhaps 

highly brittle columns might also be made to behave 

as ductile members, by the use of binders. The 

later part of this thesis is devoted to this problem. 

(c) Crack pattern and moment curvature relationship 

near the critical section. 

The pattern of cracks in all the beams shows 

that there is a tendency of the formation of a large 

crack near the critical section. This is very much 

pronounced in the under-reinforced beams. Perhaps 

bond slip is a major factor. Although the complete 

investigation into the causes of this behaviour is 

beyond the scope of this the.sis, it may be pointed 

out that Raina(43) obtained similar results in case 

of pretensioned beams which did not have any un-

tensioned mild steel reinforcement. 

The moment curvature curves for sections which 

are slightly away from the critical section, were 

plotted in case of beams 3, 4 and 5 vide graph 3.11. 

The nature of these curves imply an increase of 

stiffness towards the supports. 	The formation of a 

large crack in the centre may be directly responsible 

for this. The method of plotting these curves from 

the curvature distribution diagrams, is explained 

in Appendix 7. 
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(d) Comparison of the true moment rotation 

curves as experimentally obtained, with  

the theoretical idealizations according  

to the recommendations of the Ankara paper. 

In comparing the actual results with the 

idealized limits, it is necessary to assess a 

point on the actual curve which corresponds to 

the actual yielding behaviour of the beam. This 

has been done as follows:- 

1) Where the maximum moment attained by the beam 

is not widely different from the calculated 

moment at L2, the actual yielding behaviour 

of the beam has been assessed from the state 

when a moment equal to that calculated at L1  

is attained by the beam. The observed 0 has 

been assessed from this point. 

2) Where the maximum moment attained by the beam 

is appreciably different from this calculated 

moment at L2 (Beam No.5), the actual e has 

been measured from the state when a strain of 

.002 was attained by the extr2me fibre of concrete 

in compression. 

It will be found from graph 3.5 that the 
expression suggested by Baker at Ankara for calculating 

0
Pi 	 is not satisfactory in case of an over-

reinforced beam without binders and is it recommended 

that the use of the above formula may be permitted in 

conjunction with a minimum specified percentage of 

lateral binders in all over-reinforced cases. The 

minimum quantity recommended is .75%.  

It was also observed that this expression only 

partially accounts for the increase in rotations 

that is possible by the use of binders. 
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The following modification based on empirical 

results is suggested to take a better advantage of 

the use of binders. 

Z 
P 	c, e.c1 ) T 

where Am" in  = .75 

) 
(1 - .1 	+ .1(2"! 	)- 

) Amin gin  

P r? 	 actual percentage of binders. 

Finally it was also observed that although 

the Ankara stress block gave a fair estimate of the 

ultimate strains, it failed to assess the position 

of the neutral axis with a fair degree of accuracy. 

Table 3.7 gives the actual values of the neutral 
axis and strain attained in Beams 1-10, against 

the calculated values. Further research has been 

done recently in this respect.(47) 

(e) Effect of altering the prestressing force. 

The comparison of graphs 3.3, 3.6 and 3.7 
shows that a wide variation in the prestressing 

force (from 50% to 30% of ultimate) does not 

materially alter the moment of resistance of the 

beam, but a lower prestressing force considerably 

increases the plastic rotations. The cracking 

moment also drops significantly by lowering the 

prestress. 

3.12. The next chapter is an introduction to portal 

frames which k3 	the main subject' of study in this 

thesis. Moment rotation characteristics of column 

members with high axial loads have also been 

discussed. 
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TABLE 3.1 

SHOViING CHARACTERISTICS OF 10 PRESTR3SSED AND  

POST TEIISIONED BEAdS. 	 Pre- 
Ultimate stressing 
stress 
in 	tendons. 
tendons 

,.„6,,,/yl ima, 2 91 	el, 	i ml(act);m2(act)0 (act) BEAM 
NO.. p'I__ )  Calcu-Calefu- 7771) ETFFT)le, cal) 

d-' lated lated.' 	t 
4  $ 

	

- 1.098 	.0303 .026 	.95 	1.03 	1.8 
- 1.157 	.0305 .018 ; 1.00 

I 

1 8 
9 

110 

,625i .319 
!1.25i .333 
2.5 .344 

.0345 .0118 .91 

.0323 .0077 .96 

.0288 .0057 .94 

.0416 .0123 .92 

.0470 .0118 .92 

.0328 .0100 1.05 

.0328 .0142 1.10 

.0328 ;.0185 , 1.07 

1.095 .  3.00 approx. 
if rotations are 
counted up to 

695 Mmax. 

	

1.035 	' 1.35 

	

.99 	.65 

	

.885 	.875 

	

.95 	1.30 

	

.967 	1.67 

	

1.04 	1.00 

	

1.12 	1.65 

	

1.10 	3.00 
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TABLE 3.2  

ABSORPTION CAPACITY. 

COARSE AGGREGATE FINE AGGREGATE 

SPECIFIC GRAVITY 	2.65 2.65 
ABSORPTION 1.20 	 1.00 

TABLP, 3.3 
SIEVE ANALYSIS OF AGGREGATES 

(a) SAND 25 downwards 	Weight of sample 1000 gms. 

Sieve No. 	Wt. retained;Wt. passing i % passing 
(gms.) 	(9;ms.)  

	

7 	 1 	999 	99.9 

	

14 	 5 	994 	99.4 

	

25 	j 	11 	983 	98.3 

	

52 	 771 	f 	212 , 	i 	21.2 

	

100 	 186 	 26 	2.6 

	

PAN 	 26 	 0 	0 

1000 	 i 1 
	1 , 

(b) SAND 3/16" to 25 

	

	 ; 
i Weight of sample 1000 gms'. 

.1••••• 

3 16 
7 

14 
25 
52 

100 
PAN 

4 
223 
319 
269 
163 

20 
2 

996 

773 
454 
185 

22 
2 
0 

99.6 

77.3 
45.4 
18.5 
2.2 
.2 

0 

1000 

continual. 
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TABLE 3.3  

(c) Yi!' down C.A. 	Weight of sample 3000 gms. 

Wt. retained. i  Wt. passing 
(gms) 	j 	(gms) 

3/411 30 2970 99.0 
3/8" 2940 

t 
30 1.0 

3 
/16 

30 0 0 

3000 

N.B. In each case,the weight retained is the average 
of three readings. 

TABLE 3.4 

STRENGTH OF CJINTROL SEECImENS. 

  

   

   

(1) 	(2) 	Av . Strength , 
6A1Vi ! Av. Cube iAv.Cylinder-  Ratio 2/1 in flexural 
NO. Strengthj StrenTtfr. 	tension. 

1 5970  4200 .7 528 

2 6700 4275' .635 535 

3 5800 4275 .74 i 500 

4 6300 4440 ! .7 495 

5 6200 3970 .64 500 

6 6700 4690 I .7 530 

7 6500 4550 .7 i 500 

8 6800 4760 :7 520 

9 6800 4760 , .7 520 

10 6800 4760 .7 520 

Note: Av. cylinder is rather low due to capping 

difficulties. 

1

SIEVE NO. 

r 

passing. 



Date of ;Prestressing  : 	Testing  
pperiod,Groutingt.p  Period Period BEAM Casting .Date : 
after 	ateafter ;after 
casting' pre- 

stressing Icasting 

1 	, 3. 6.64 !18.6.64 ! 15 	19.6.64 7.7.64  19 

	

2 12. 6.64 26.6.64 14 	8.7.64 15.7.64 19 

	

3 26.6. 64 10.7,64! 14 	20.7.64 1.8.64 r 22 
4 	9. 7.641 5.8.64 i 27 	7.8.64 14.8.64 	9 

	

5 24. 7.64'19.864! 26 	24.8.64 !29.8.64 10 

	

6 26.11.64!22.2.641 26 	22;2.64i 1.2.65 41 

	

7 ; 2.12.64 i29;2.64; 27 	30.12.64 ! 8.2.65 1 41 

	

8 19.12.64 i13.1.65.i  35 	13.1.65 43.2.65  31 

0 
47.12.64!19.1.65; 33 i 20.1.65 p1.2.65 33 

i1  

	

1 8. 1.64'10.2.65 33 	10.2.65 6.3.65 24 

34 

36
33  

36 
36 
67 
68 
66 
66 
57 

SKETCH& 

t Z 

• 
• 2. O 3 

t2 
• • 
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TABLE 3.5  

SCHEDULE OF CASTING PiiESTRESSING AND GROUTING  

AND TESTING.  

TABLE 3.6 
SUMMARY OF LOSSES. 

BEAM KRA 
NO.! 

Losses in lbs. due to 
Elas- ,Shrink- Creep ;Creep 
ticit5i; 	age. 	of 	of 

iconcrettisteel 

1 

2 

3 

4 

5 

REMARKS. 

1 
( 	1 
( 2 
( 	1 
( 2 
( 	3 
( 	1 
( 	2 
( 	3 
( 4 
( 	1 
( 	2 
( 	3 
( 4 
( 	5 

	

0 	50 

	

110 	50 

	

0 	50 

	

200 	50 

	

120 	50 

	

0 	50 

	

320 	25 

	

210 	
2 

	

115 	25 

	

0 	25 

	

415 	25 

	

330 	25 

	

300 	1 i 	
25 

	

125 	25 

	

0 	25 

80 
160 
160 
200 
200 
310 
240 
230 
350 
360 
255 
255 
365 
450 

, 450 

300 
300 
305 
320 
250 
320 
325 
320 
335 
340 
330 
330 
335 
335 

, 330 

i 
• 	•  

.3 
.4. 	5• 

1) The number shown in the sketch also indicate the 
sequence of prestressing. 

2) The following data was taken from Concrete Research 
Magazine No. 40 Vol.14. 

cont... 
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TABLE 3.6 	REidARKS cont. 

a) Specific creep factor for Beams 1, 2 and 3,, 
which were tested after about 20 days of 
prestressing = 140 	10- 	Ditto for Beams 
4 and 5 = 110 x 10J. 

b) For calculating shrinkage losses, the difference 
between shrinkage strains at 14th and 34th day 
was taken for Beams 1 to 3, and the difference 
between the 26th and 36th day was taken for 
Beams 4 and 5. 

3) Losses in Beams 6 and 7 were mainly derived 
from Beam No.3, by altering the prestressing 
force. 

4) An average loss of 1000 lbs. per wire was 
estimated in Beams, 7, 8 and 9, as derived 
from Beam 5. 

TABLE 3.7 

Actual Values of ec2 and n2  against calculated values 

using the Ankara stress block. 

n2 	n2 	ec2 	ec2 
Calculated Observed. 	Calculated; Observed. 

! * 	i 
.115 	. .088 at L.S.11, 	.01 	1 .0039 at LS 11 

: 	 l .155 	
* 	 *  .12 at L.S.12 	.0075 i .0048 at LS.12 

.245 	1  .16 	.0057 1  .0092 , 

.335 	.25 	.0045 ! .0057 

.445 	i .386 at L.S.121 	.004 i .0041 at LS.12 1 just before 	! 
brittle failui+. 	i 

IBEAivI  
I N 0 .  

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

, * 
.21 	1 .18 at L.S.12 	.0060 1* i .01 at L.S.12 

I 
.215 	1 .18 at L.S.12 	.0060 !*.O11 at LS.12 

.3675 I .35 	.0055 1 .0069 

.361 	1 . 3 3 . 	 .0070 i 	, .0081 	' 

.356 	j.33  at L.S.1 	I * .0085 1 .01 at L.S.15 1 
1 	, 

REIAARKS.  

* Observation could not be recorded in these cases 
at the ultimate stage, due to spilling. • 
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Plate 3.1 Beams 1 & 2 after failure 



Plate 3.2 Beams 3 & 4 after failure 

4 
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Plate 3.3 Beems 5 & 6 after failure 



BEAM N27 
	

SIDE-B 

Plate 3.4 Beams 7 & 8 after failure 
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Plate 3.5 Beams 9 & 10 after failure 
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Plate 3.6 Test arrangement for beams 1 to 5 with Proving ring 



Plate 3.7 Close up veiw of Beam 5 side B after crushing 
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CHAPTER 4.  

AN INTRODUCTION TO PRESTRESSED CONCRETE  

PORTAL FRAMES, 

4.1. History of Tests on Portal Frames. 

Prestressed portal frames have not been tested 

as widely as prestressed continuous beams. Out of 

the few tests performed, these done by La Grange(32) 

and Pietrzykowski( 4)  are notable.* La Grange con-

cluded from his tests in the Cambridge University, 

that better redistribution of moments could be 

achieved if recognition was given to the filling 

branch of a load deformation characteristic. 

Pietrzykowski carried out tests on three prestressed 

concrete ring portals, in the University of South-

hampton. He concluded that the condition of full 

redistribution did not, in general, occur in pre-

stressed concrete structures. In his f=mes, the 

columns were heavily loaded to simulate conditions 

similar to those which occur in the lower storey of 

a building frame. 

The incomplete redistribution in Pietrzykowski's 

frame could be attributed to the brittleness of the 

heavily loaded columns. All over-reinforced members 

are also brittle. The author has found that a 

brittle failure can be successfully overcome by the 

use of closely spaced binders. The ductility intro-

duced by properly spaced binders is so effective 

that full redistribution may be ensured in the true 

sense (i.e. without any reduction of moments at the 

plastic hinges), and the necessity of the use of 

falling branches for better redistribution, may be 

dispensed with. 

*
Recently more research has been done on prestressed 
nortal frames (Pq 	Prn 
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Three fixed footed portal frames were 

tested by the author to demonstrate the use of 

binders to obtain full redistribution. The first 

two frames had over-reinforced members and they 

were identical, except for the het that one of them 

had closely spaced binders at critical sections, 

while the other had no binders. 	The third frame 

had heavy axial loads on both columns. It was 

similar to Pietrzykowski's frame but it was re-

inforced with closely spaced binders throughout 

the length of its members. The results of the 

tests are discussed in Chapter 6. 

4.2 A review of the paper presented by Baker and  

Amarakone, at a joint meeting of the Cement  

and Concrete Asso6iation, The Institute of  

Civil Engineers, The Institute of Structural  

Engineers and the Reinforced Concrete Associa-

tion, held on 30.3.6Lt  

The contents of this paper were similar to those 

presented by the authors at the Ankara meeting of 

the C.E.B., held in September 1964. 

The philosophy of limiting plastic rotations 

in concrete structures, as propounded by Baker, was 

severely criticized by many. Jones thought that 

experiments on moment rotation characteristics were 

not carried far enough. He said that if one tested 

steel beams with a very flat plastic curve, depending 

on where people stopped the test, there would be a 

very wide distribution of results. As regards 

continuous concrete structures, he thought that 

many of the hinges would be on the falling branches 

of the rotation curves, which should be taken into 

account. 
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Cranston agreed that there would be some 

cases where one would have• to check rotations. 

He pointed out that if a reduction of moment of 

10% could be tolerated, the rotations would be 

doubled. He further said that one of the alter-

natives to avoid brittle failures, was to let a 

part of the structure remain below the limit L1, 
even under the ultimate loads (for example, at 

hinges of columns subjected to heavy axial loads). 

Such an approach, he said, had been advocated for 

the design of columns in multi-storeyed steel 

frames where a plastic design was used to pro- 

portion the beams. 

The work taken up by the author has to be 

viewed in the light of the above discussion. The 

author has to point out that it is not necessary 

to consider the falling branches in order to 

increase rotations in brittle members, provided 

binders are used at a suitable spacing.* The use 

of binders can be extended to heavily loaded columns, 

provided the expense of using binders throughout the 

full length of the columns (see page 116 ) is justified. 

However, if it is preferable not to permit rotations 

in column hinges and to keep part of the structure 

elastic, for the sake of economy, the author has 

pointed out a method in Chapter 7 of doing so, by 

adjusting 'V values to zero, at hinges where plastic 

rotations are undesirable. 

L.3 Details of the tests proposed by the author. 

As already stated, three fixed footed portals 

were the main subject of study by the autkor. The 

aim of the investigation was a study of the distri-

bution of stress and strain resultants in the 

In fact it is extremely doubtful whether the falling 
branch technique will really help in obtaining a higher 
load factor, in really brittle cases. 
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portals in the neighbourhood of the ultimate load 

to demonstrate the effectiveness of lateral 

binders. 

Before testing the frames, it was con— 

sidered necessary to investigate the moment 

rotation characteristics of prestressed members 

subject to axial loads. A pilot project was 

initiated to determine'the moment rotation 

characteristics of members similar to those to 

be incorporated in the frames. 

4.4 Details of the Pilot project. 

Two members representing the columns of 

Frame No. 3, were tested in a rig devised by 

Soliman(47). The dimensions, the reinforcement, 

the properties of the mix and other details of 

these colimns were kept as close as possible to 

those proposed for the two columns of the actual 

frame. 

In the tests an attempt was also made to 

keep the distribution of moments in the columns 

similar to that which would occur at ultimate load 

of Frame No. 3, assuming complete redistribution 

of moments. The position where the tie bar was 

connected to the brackets clamped at the end of 

the specimens (plate 4.1) was altered, so that 

the value of 'Z' was different in the to specimens. 

This was done ce that the actual distribution of 

moments in the two columns of Frame 3 might not 

be exactly identical. 

It may be noted that under conditions of 

equal moment being applied at both the ends of the 

specimen, the plastic rotation is concentrated at 

the weaker end of the two. (The other end remains 
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at the state Lr) The difference in the readings 
between the clinometers fixed to the top and the 
bottom brackets is the desired plastic rotation. 
The rotation between the hinge and the point of 
contraflexure was also measured by recording the 
change in the slope of a mirror fixed as near as 
possible to the point of zero moment. The change 
in the slope of the mirror was recorded by observing 
the change in the readings of an illuminated scale 
as seen through a fixed telescope, and using the 
principle that the rotation of the mirror is half 
of the angle of turning of a ray of light reflected 
by the mirror. 

Additional moments caused by the change in 
the geometry of the specimen were also accounted 
for. 	The displaced position of the critical 
section was assessed by noting the rotation at the 
end of the specimen, and assuming that the specimen 
was rigid between the point of application of the 
vertical load and the critical section. This was 
a reasonable assumption because the specimens were 
of considerably higher stiffness at the ends and 
there was a sharp change in the section of the 
specimen, where the critical section was situated. 

The results are presented in Graphs 4.1 and 
4.2 and Fig. 4.1. A slight increase in plastic 
rotation was observed in Col. 1, in which the slope 
of the bending moment diagram was steeper than that 
in Col. 2. Similar observations were made by 
Mattock(20) and Soliman(47). It was concluded 
from the graphs that closely spaced binders did 
increase plastic rotations considerably, in heavily 
loaded columns, provided binders were continued in 
their entire lengths, to prevent a brittle failure 
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in between the critical sections, induced by 

additional moments due to change in the geometry 

of the structure. The fact that the use of 

binders in the entire length of a column is 

expensive, cannot be ignored and perhaps the 

advantage gained by designing fully plastic, 

heavily loaded columns, is in most cases, more 

than offset by the increased cost. The use of 

binders is, however, a useful device to avoid 

brittle failure in cases where rotations in 

column hinges cannot be avoided. 

4.5 Stress resultants in a portal frame by  the 

elastic theory. 

Any statically indeterminate structure can 

be analyzed by either assuming the forces or the 

displacements, as the unknowns. The solution is 

obtained by solving the resulting linear algebraic 

equations. In the discussions which follow in this 

thesis, the method of analysis and the notation 

used, are the same as used by Morice(36). In case 
of fixed footed portals, there are three unknowns 

and the linear equations are of the following form:- 

f 11 xl ▪ fl2x2 ▪ fl3x3 = 
	

1 

f21 x1 + f22x2 + f23x3 = - U 	
.... 4.1 

f31 x1 + f32x2 + f33
x
3 

= - u
3 

which can also be expressed as F x = -U in 

abbreviated notation 

where F is known as the flexibility Matrix. 
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In order to follow a step by step analysis 
involving the successive formation of plastic 
hinges, it is more convenient to choose the un-
knowns as moments at critical sections, where 
plastic hinges are expected to form. The elements 
f11' f12' f13' represent rotations at hinge No.1, 
due to unit moments applied respectively at hinges 
l i  2 and 3. These elements have been derived by 
different authors, by different methods. For our 
discussions we shall restrict ourselves to the 

(10 principle of virtual work as used by Baker. 	and 4)  
The derivation of the stress resultants will 

be found in Appendix 8. 

4.6 The secondary effect of the prestressing  
force and the concordant cable. 

The act of prestressing a structure causes 
each section to undergo deformation (in the case 
under consideration, axial deformation anObending 
deformation). If these deformations are considered 
to be acting on a statically determinate form of 
the structure, then discontinuities are created at, 
and corresponding to the releases. 

The chosen profile of the tendons in a structure 
is said to be concordant, if the discontinuities at 
releases caused by the prestressing forces are nil. 
In such a case no secondary reactions are induced 
in the structure, because no forces are required 
at the releases to restore continuity in the structure. 
The centroid of the resultant thrust at all sections, 
therefore, lie at the centroid of the applied force 
in the tendons, 

Let UPl' UP2' UP
3' 

denote the hinge deforma- 
tions in the fixed footed portals under discussion, 
due to the prestress alone. UP1,2,3  are product 
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given by the following expressions 
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UP = SL-22  ds 1 	EI 
S 

(this term is 
small and may 
be neglected.) 

etc. for 2 and 3. 

where ml, n1, sI are the ordinates of the moment, 
thrust and shear diagrams all round the structure, 

due to unit moment at hinge No. 1 

and mp, np  and sp  are similar ordinates due to the 

prestress. 

The conditions for concordancy are given by 

UP1,2,3 = O. 

In a fixed footed portal, subjected to a 

system of loads as proposed for the author's 

tests, there are 5 critical sections where suitable 

values of eccentricities have to be assigned, 

(assuming that at the corners, the column and the 

transom have the same eccentricity.). Having 

satisfied the above 3 conditions to attain con-

cordancy, enough scope is usually left in the 

choice of eccentricities to satisfy the requirements 

of the ultimate moment of resistance required at the 

critical sections. 

In Frames 2 and 3, the ultimate moments of 

resistances at the bottom of the left foot, had 

to be increased by the use of mild steel bars, in 

spite of the above freedom of choice. 

Calculations for finding the concordant cable 

will be found in Appendix 9. 
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4.7 Collapse load of  the proposed frames. 

An estimate of the collapse load can be made 

by the rigid plastic theory. Just before collapse, 

the structure is still statically determinate, but 

about to change to a mechanism. At an intermediate 

stage of loading, when the structure is statically 

indeterminate, but has a degree of indeterminacy 

less than the initial value, the distribution of 

stress resultants can be conveniently determined, 

if it is assumed that the 'El' value of the members 

having a uniform X-Section, remain constant between 

the hinges. Such calculations for intermediate 

stages are given in appendix 10. 

The ratio of the vertical and the sway loads 
40 

in all the frames was ao- 1:1. It was chosen,,that 

the collapse would occur under a combined mechanism 

except in frame 3, where an over complete mechanism 

failure was contemplated. Pietrzytowski's frames 

also failed by an over complete mechanism, see 

details in appendix 11. 

4.8 Calculation of rotations at collapse and 

intermediate staffs. 

The rotation at a hinge, at any stage of 

loading, can be obtained by calcuThting the 

integral of the products of the ordinates of the 

bending moment diagram under the given _Loads, and 

the bending moment diagram obtained by the appli-

cation of a unit moment at the hinge, taken all 

round the structure, provided no closing of hinges 

has taken place andsubject to the conditions 

explained in the next paragraph. These integrations 
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can be conveniently carried out, if a unifolm 

'EI' value is assumed to exist between the hinges. 

The calculated rotations are then the angular 

discontinuities at the hinges. 	Care must, 

however, be exercised in choosing the release 

hinges so that just before collapse,when the 

structure is still statically determinate, the 

calculated rotations are of the .correct sign to 

correspond with the induced redistribution moments. 

An example of the above conditions not being 

satisfied, has been given in appendix 12. In this 

case the last hinge to form vas first established 

by a step by step analysis. The principle of 

contragredient relations was used to obtain zero 

rotation at the last hinge, in the manner set out 
by 1vMunro.(38)  

4.9 Summary of analysis of portal frames by  

Linear methods. 

Three portal frames were analyzed by the 

author prior to the actual tests. The results 

of such an analysis by the liner theory, including 

the distribution of stress resultants in the elastic 

phase, and also their distribution in the reduced 

elastic phase, assuming a constant 'EI' value 

between the hinges and an elastic—plastic moment 

curvature relationship with angular discontinuities 

at hinges, have been determined. 	Rotations at 

the state of collapse and intermediate stages have 

been calculated. It was ensured that the chosen 

release hinges were the ones where plastic hinges 
would form. 

An attempt has been made in the next chapter 

to analyze prestressed concrete sections in the 
cracked phase. 
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Plate 4.1 Test apparatus for columns under heavy axial load 



Plate 4.2 Hinge at the bottom of column 1 



Plate 4.3 Hinge t the top of column 2 
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CHAP ER 5.  

ANALYSIS OF PRESTRESSED CONCRETE SECTIWS IJN THE  

CRACKED PHASE.  

5.1 INTRODUCTION. 

An analysis of a structure depends on the 

proper knowledge of the behaviour of its sections. 

A cracked prestressed concrete section behaves in 

a manner similar to that for reinforced concrete. 

Edwards(25) has discussed in detail the path of 

the moment curvature relationship of a prestressed 

section in various phases of loading, unloading 

and reloading. 	The object of this chapter is to 

study how the flexibility matrix method of analysis 

can be applied to cracked prestressed sections. 

A computer programme for deriving the theoretical 

moment curvature relationship has also been 

developed. 

5.2 Centroid of a cracked section. 

Before proceeding further, it is necessary 

that a suitable definition be given to the centroid 

of a cracked section in the inelastic phase. 

Certainly the geometric centroid of the entire area 

of the section is not a satisfactory substitute for 

the point through which the true axis of the member 

to which the above section belongs, .1a,y be assumed 

to pass. The internal geometry of the entire 

structure is governed by the position of centroids 

at the critical sections in the neighbourhood of 

the ultimate load. Edwards(25)  has shown the.t the 
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effect of the change in the internal geometry is 

significant. From an analogy drawn fro71 the 

methods used in elastic analysis, an effective 

centroid of the section may be defined to be the 

point where the axial load may be increased by 

an infinitely small amount, without causing a 

change in the curvature of the section. 

The curvature depends on the properties of 

the section and the stress-strain curves of its 

elements. It is also a function of the applied 

moment, the axial load and its line of action. 

Per a particular section, the section properties 

and the stress-strain curves are constant. The 

curvature can then be expressed by the following 

equation:- 

K 	;(M,  N, x) 	 5.1 

where K is the curvature 

M is the applied moment 

N is the axial thrust 

x is the distance of the line of action of N 

from the extreme fibre (see Fig; 5.1). 

If the axial load N, passes through tnu 
effective centroid, 

K 

The value of 'x' is therefore determined from 
the equation 

N, x) 	0 	 5 2  
N 

The author has not attempted an analytical 

solution of equation 5.2 for a prestressed section. 
Instead, he has shown in Appendix 13, by a computer 
analysis, using Cranston's M-P-0-Q0 Programme (22), & 
the Serius Computer of the Cement & Concrete Association 
that a real value of 'x4  exists for a section in a 
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reinforced concrete member, which satisfies the 
above equation. 
5.3 Flexibility matrix of a cracked prestressed  

concrete structure. 

In para. 4.5 of chapter 41  it was stated that 

the equations governing the continuity of a, structure 

at the releases, can be expressed as:- 

FX = -U 

'U' is a column matrix, the elements of which 

are obtained by integrating the sum of the products 

of ordinates of the stress resultant diagrams due 

to the applied loads on the released structure, and 

ordinates of diagrams due to unit restraints at the 

releases. 	In prestressed structures 'U' must 

include similar integrals in respect of the stress-

resultant diagrams obtained by treating the pre-

stressing forces as external loads. It was further 

shown in Chapter 4, that if the cable were concordant, 

these additional terms due to the prestressing 

forces, are zero. 

The distribution of stress resultants in the 

structure is given by the following set of equations 

(assuming that there are only 3 unknowns). 

rat = mo  + r21X1 "2X2 +m3X3 

st = S0  + s1X1  + s2X2  + s3X3  

nt = no + n1X1 + n2X2  + n3X3  

where 

Mt' st 7 nt are the total moment, shear and 

thrust, acting at a section_ which 

are to be resisted by internal 

forces including those set up by 

the prestressing force in the tendons. 
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so' no are the stress result ants at the section, 

due to external loads on the released 

structure (prestressing forces are not 

considered here as external forces). 

1,2131  s1,2,3, n1,2,3, are the stress resultants 
at the section due to unit 

restraints acting at releases 

li  2 and 3., 
and X1 2 3 	are the actual restraints 2.t releases 

1, 2, 3 end include parasitic 
reactionsi 

The above set of equations can be expressed as 

xt = xo + HX     5.3 

where H = m1 m2 m3\ 

(s1 s2 s3 
n1 n2 n3'/ 

xt t 	xo and ( o) 
st o 
nt) no 

In order to determine X, the stiffness of the 

sections must be known at all points of tiie structure. 

Baker has suggested that an equivalent 'EI' value 

given by tan 0 in Fig. 	which is compatible with 
the value of 	may be used in the cracked zones of 

the structure. 	The integrals 	m m 	has then no 
P k d 
EI s  

significance in the cracked zones and must be omitted 

in the evaluation of the matrix 'U Atyy 	tetectse. 
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Similarly if the value of 'EA' as suggested 

by the author in Appendix 14, is used in the 

analysis, the integral 	n n 	must also be 

EP -E-a ds 
omitted in the cracked zone. 

Thus the equivalent 'El' approach may be 

used for a non-linear numerical analysis of a 
structure by the flexibility method. 	In this case 

when the structure has been loaded into the non 

linear phase, a simulated elastic structure can be 

established in which the secant 'EI' values are 

so defined that under the total required load the 

correct deformation characteristics are obtained. 

5.4 A computer proc;ramme to derive the  -moment  

curvature relationship of a prestressed section. 

Cranston(22) has produced a refined computer 

programme to find the moment curvature relationship 
of e. cross-section. The section is broken up into 

small strips and different stress-strain reletions 

can be assigned to each strip. These strips are 

small enough to make the asswaption valid that they 

are uniformly stressed. 	The programme can deal 

with an axial load acting at any specified point 

of the X-section. 

The calculation involves an initial proposed 

value of strain in the axis of the load. Corres-

ponding to a given value of curvature, the strain 

distribution across the section is then determined. 

The compressions and tensions are calculated in the 

strips and if their algebraic sum differs from the 

axial load by a quantity which is smaller than 

that specified, the value of the moments is cal-

culated corresponding to the given value of curvature.  
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The method seeks values of moments for given 

values of the curvature. Since the curvature 

continually increases even for decreasing values 

of the moment after the peak has been reached, it 

is possible to trace the falling branches of h—K. 

relations. (Two values of moment are impossible 

for one value of curvature.) Local dips :are also 

faithfully recorded. 

N. Somes (46)  has produced a programme for 

prestressed concrete members, in which the real 

root of a cubical equation is sought by the programme. 

The programme produced by the author is based 

on a systematic trial and error method in which. a 

technique sometimes called the Artillery Technique, 

has been used. The position of the neutral axis 

is gradually raised from the bottom fibre towards 

fibre 2. For each position of the neutral axis 

proposed, the strain value at the top fibre is 

continuously increased from a nil value, till the 

compression in the concrete calculated according 

to the stress block presented by Baker at Ankara, 

is nearly equal to the sum of the tension in the 

tendons, (taking into account changes in tension, 

caused by changes in concrete strains at the level 

of tendons) and the axial thrust, if any. 	This 
method is particularly suitable for prestressed 

concrete where the tendons have a tension to start 
with. 	Both moment and curvature are calculated 

when the above condition is satisfied. Calculation 
of such values for a range of values of the neutral 

axis, enables the 'M—K' relation to be traced out. 
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The programme can also calculate the curvature 

for a given value of moment. 	In this case the 

calculated moment is compared with the given value, 

for continually decreasing values of the neutral 

axis, and the curvature is calculated when both 

the values of the moments are nearly equal. 

The Artillery technique is used at each stage 

when a change is proposed, either in the position 

of the neutral axis, or in the value of strain at 

the top fibre. 	In other words, the area under 

preview is first scanned by the computer in larger 

intervals. The computer then enters into a finer 

mesh by retreating backwards when it finds that the 

desired condition has been satisfied in the larger 

strides. 

The only condition to be satisfied at each 

chosen position of the neutral axis is that the 

compression is greater than the sum of the tension 

and the axial thrust. 	The accuracy of the cal-

culated moment has been ensured by entering into 

finer meshes, such that the position of the neutral 

axis is determined correctly up to three decimal 

places. 	The disagreement between the forces 

across the section from the point of view of 

equilibrium, is then negligible. 

One of the advantages of this technique is 

that there are no convergence difficulties. The 

programme is, however, not designed to deal with 

falling branches. It was thought that the necessity 

to deal with a falling branch would not arise in 

the frames in which all plastic hinges were ductile. 

The Flow diagram of the programme is shown in 

Appendix 15. 



135 

Th3 program-le has been used to evaluate 

relations at critical sections of Frame N0.2. 

An attempt has been made in the concludin'; chpter, 

to calculate discontinuous rotations at hinvs, by 

using a Trilinear idealization derived from these 

results. 
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F iG 5.1 

FIG.. 5.2 
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CHAPTER 6.  

TESTS Oiv PRESTRESSED CONCRETE PORTAL FRAMES  

WITH FIXED FEET. 

6.1. Ob,ect 

The object of these tests was to establish 

the following:- 

1) Laterally unbound concrete is highly brittle. 

In cases where the rotational capacity of hinges 

depends on the ductility of concrete (e.g., 

over-reinforced beams), a failure may suddenly 

occur in,a framed structure without warning, 

at a load considerably lower than the rigid 

plastic failure load of the frame. 

2 
	

Properly spaced lateral binders improve 

ductility in concrete adequately, to ensure 

full redistribution of moments in a framed 

structure by formation of plastic hinges, even 

in heavily loaded columns. Pietrzykowski(0)  
has shown that the condition of full re-

distribution does not exist in similar frames 

with unbound concrete. 

A continuous beam was not chosen as a field 

of study to establish the possibility of a brittle 

failure, because the amount of rotation needed for 

full redistribution is rather low in a continuous 

beam. This is illustrated in Fig. 6.1. Consider 

a system of point loads being applied to a con-

tinuous beam or a portal frame having equal moments 

of resistance (m) at all critical sections. 
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A two span beam which is the worst case for 

redistribution of moments amongst continuous 

beams subjected to central point loads, needs 
ml  a rotation of 12E1  at the support hinge, while 

a portal frame in an extreme case, subjected to a 

vertical and sway load as shown in Fig.6.l, needs 

a rotation of TT  at hinge No. 1. 

6.2 Frame details. 

General details are given in Fig. 6.2. 

The transom span and the column height of the 

frames were 9' and 41/2' respectively, allowing for 

the tolerance which was necessary to'permit 

repeated use of the shuttering. 	Frames I and II 

were identical, excepting for details of shear 

reinforcement and lateral binders. The transom 

in these two frames was of 6" x 4" I section with 

a l'/" wide web, ohne the columns were of rect-

angular section, 5V1 x 4" in size. This facilitated 

the placing of concordant cables with varying 

eccentricities. The moments of inertia of the 

transom and the columns were the same. 

In Frame No. 3, the X-section of all members 

was rectangular, and of dimensions 6" x 4". This 

frame closely resembled Pietrzykowski's Ring 

portal No. GK 

Indented tendons of .276" and .2" diameters 

were used for prestressing. The tendons of .276" 

diameter were of the same type as used in Beams 

8-10, described in Chapter 3. The idealized load 

extension characteristics of .2" diameter tendon 

used in the columns of Frame 3, are shown in 

Fig.6.3. 
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6.3 Concrete Mix. 

The concrete mix was the same as used in 

the design of a prestressed concrete pressure 

vessel tested in the Imperial College and in 

the investigation of creep properties associated 

with it (3). The mix had a high workability of 

2" — 3" slump, but the shrinkage and creep pro—
perties aimed at, was representative of normal 

concrete. 

The coarse aggregate was Thames river gravel 

of s" max. size. The aggregate cement ratio was 

greater than 3.0 to minimize creep and shrinkage 

and the sand content was restricted to a ratio of 

30% by weight of total concrete. 

The details of the mix used are as follows: 

Aggregate cement ratio 	3.75 
Sand percentage by weight 	30% of total aggregate.  

Water cement ratio 	.564 (total), 

.500 (effective). 

The grading of the aggregate is given in the 

following table :— 

Percentage passing. 

Size of 
Sieve. 

3/ 3/16 7 14 25 52 100 

River 
gravel 
0,-3/16" 

99 2 0 0 0 0 0 

Sand 
3/16"— 
100 

100 100 91 75 54 13 2 
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6.4 Design - general details. 

As discussed in 4.7, all the three frames 

were designed to fail under the combination of 

an equal vertical and a horizontal load. In 

frame No. 3, the position of the vertical load 

was, however, a quarter span away from the centre 

of the transom towards the right hand column, 

(i.e. th span away from the point of arrlication 

of the sway load). Excepting for the syL:ly load, 

this arrangement was the same as followed by 

Pietrsykowski(40) in his frame No. GK. The 

necessity of the sway load has been explained 

later on. 

In frames 1 and 2, in which the position of 

the tendons varied from point to point, it was 

necessary to find an envelope of maximum moments 

of resistance, to ensure that a premature develop- 

ment of hinges would not occur at a wrong place. 

This was done by writing a computer programme. 

The envelope as applicable to Frame 2, is shown 

in Fig. 6.4. It takes into account the contribution 

of mild steel in calculating the moment of resistance 

where necessary. 	A cracking moment envelope which 

takes into account the effect of increase in the 

prestressing force and which is based on a flex-

ural tensile strength of 500 lbs/sq.inch, was also 

calculated by the computer programme and is shown 

in this diagram. It was ensured that during 

stressing, a tensile stress of more than 200 lbs/ 

sq. inch was not exceeded anywhere in the frames. 

A preliminary calculation of moments at Li  

and L2, in which the effect of the axial loads are 
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neglected, show that all critical sections in 

Frames 1 and 2 are over-reinforced - vide 

Table 6.1. Plastic rotations predicted by 

Baker's theory and those required for full 

redistribution are also shown in this table. 

It can be easily seen from this table that 

Frame No. 1 was designed to fail at the foot 

of the right hand column for want of ductility 

at that point. 

Frame No. 3 Vs Pietrzykowski's frame GK. 

The properties of the X-sections of the 

two frames have been compared in Table 6.2. The 

necessity of an additional side sway load in the 

author's Frame No. 3 is explained below. 

Practical considerations did not permit the 

use of jacks beyond 30 ton capacity, and these 

were planned to operate almost at their maximum 

capacity. The axial loads in the columns were 

in the region where a lower moment of resistance 

would be obtained by increasing the axial leads. 

During the experiment, it was therefore not 

possible to ensure, by increasing the axial loads, 

that hinges would form in the columns. The side 

sway load was introduced to force at least two 

hinges at the feet of the columns, before collapse. 

If only a vertical load were applied at the quarter 

point as was done by Pietrzykowski, failure might 

have taken place by a beam mechanism with all the 

three hinges in the beam itself. The purpose of 

the experiment would then have been defeated. 
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The side sway load also increased the amount 

of rotation needed at the top of the right-hand 

column for full redistribution of moment. 	A 

step by step analysis shows that the rotation 

required at this point at the time of failure 

by the beam mechanism under a vertical load only, 

would have been 1.166mh, against a value 3 mh 
EI 	7 EI 

required under the combined mechanism of failure 

proposed by the author. Ho',Jever, in the actual 

experiment, an advantage of this fact could not 

be taken to demonstrate the greater ductility of 

columns, as the hinge did form in the beam itself. 

An attempt was made to have equal moments 

of resistances in all the frames at all critical 

sections. 

Shear Reinforcement. 

Shear reinforcement was provided in all the 

frames, according to the recommendat;ions of 

Leonhardt(33)  

In Frame 1 the shear reinforce-

ment was in the shape of bars bent in a zig-zag 

fashion, lying in the plane passing through the 

longitudinal axis of the members 	In this way 

the presence of any transverse reinforcement 

which might have an influence on the confinement 

of concrete was avoided. 	In Frame 2, two legged 

stirrups were used in the conventional day, in 

conjunction with lateral binders at 1" spacing. 

In case of the transom, these binders acre in the 

compression flange. (See Fig. 6.5 for details.) 

A system introduced by Edwards. 
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The pedestals of the frame. 

An extra care was taken to design the 

reinforcement in the pedestals. 	Four legged 

stirrups of 3/3" 	cold worked bars were used at 

21/2" spacing in the pedestal of Frame No. 3, to 

take care of the heavy shear caused by the self 

equilibrating system of axial loads acting on it. 

6.5 	Cast ins; details. 

The frames were cast in one piece in a timber 

mould lying on the floor. The level of the floor 

had a maximum deviation of .1". To minimize the 

possibility of alterations in dimensions due to 

the repeated use of the formwork, the vertical 

shuttering on the inner side was braced by angle 

iron struts - (plate 6.1). In addition to this, 

a short piece of a hollow square tubing of 1" 

width, was partially introduced into each pedestal 

through holes left in the Side shutterine;„ at the 

time of casting. The protruding ends of the 

tubings were then connected together by two angle 

irons introduced between them. 	A strut parallel 

to the transom was thus formed between the pedestals 

which helped the feet to remain at a fixed distance 

until the time of the testing, when the connecting 

angle irons were disengaged. 

The front faces of the pedestals (hick were 

horizontal and facing upwards at the time of 

casting) were also connected together by a 5" x 3" 

angle iron. Necessary bolts for this purpose were 

lightly tapped into the concrete when it was still 

wet, after the casting.  was over. 	This Tprevented 
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the twisting of the feet during transport and 

lifting. Nine, 6" control cubes were cast and 

cured as far as possible under the same conditions 

as existed for the main specimen. 

The frames were partially prestressed up to 

75% of the desired final values to take up 

handling stresses during lifting and transporting. 

The prestressing was done while the frame was 

still lying on the floor on its bottom shuttering. 

In frames 1 and 2, in which the transom was of I 

section, foam polystrene was used in short lengths 

at each end of the bottom shuttering under the 

transom, to form the projection which was needed 

to give the desired shape of an I section. This 

prevented the sticking of the bottom shuttering 

to the specimen, at the time of prestressing. 

The prestressing was done systematically in two 

stages, covering all the members so thet excessive 

stresses and cracking was avoided at all stages. 

Enough length of bars were left at the stressing 

ends to enable the operation of restressing to be 

taken up at a later date. 	The prestressing force 

was measured by using a tiny load cell of 5 tons 

capacity at the rear of the jack. (i.e. between 

the body of the jac.-  and the grip used behind the 

jack.) 

6.6 Test Rig.  

The general arrangement of the testing frame 

is shown in Fig. 6.6. The rig was first developed 

by Edwards. Later on, the reaction measuring 

dynamometers (described in 6.8), to which the 
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pedestals were clamped, were developed by 

Gupta(27). The vertical load was applied 

through a jack: of 4 tons capacity and was 

measured by a load cell screwed into the jack. 

The load was transmitted to the transom through 

a ball and socket joint on the top of a 1/2' 

wide loading platten. The sway load was applied 

through a jack of 10 tons capacity and the load 

was measured. by a similar load cell. In this 

case, the loading platten rested on tiny rollers 

designed to move in vertical grooves cut onto the 

face of a mild steel bridge, which covered the 

end anchorage. 

The vertical load always remained at the 

centre of the transom due to an ingenious hydraulic 

system devised by Edwards. 

The movement of the transom was transmitted 

through a dummy jack, touching the right -hand 

corner of the portal frame, to an exactly similar 

jack clamped to the test rig on the left-hand side 

of the point of application of the vertical load, 

by the displacement of oil in the hydraulic system 

connecting the two jacks. 	When the system was 

sealed against leakages after carefully bleeding 

out air pockets, the movement of the rams of both 

the jacks were equal to the movement of the transom. 

The jack at the left-hand side of the test rig, was 

mechanically coupled to a horizontal plate holding 

the main vertical jack. 	This plate was capable 

of sliding forward, due to the presence of a set 

of rollers introduced between itself and a bearing 

plate welded to the rig. The vertical jack there-

fore, always moved by an amount equal to the 

movement of the transom, and remained at its centre. 
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Great care was taken in aligning and 

fixing.  the pedestals to the reaction measuring 

dynamometers. 	The base plates of the dyna-

mometers were firmly fixed to the floor. 

A tubular scaffolding independently 

connected to the floor, provided a framework 

to which transducers were connected, for the 

purpose of recording, deflections. 

Another independent platform was provided 

for watching cracks without disturbing the 

potentiometers. 

6.7 Application of axial loads to  columns in 

Frame 3.  
It was an implied condition of introducing 

a sway load in this frame, that the jacks used 

for applying the axial loads, must also move 

freely with the frame. It was impossible to 

provide this -aovement by the method that was 

adopted for the jack used for applying a point 

load to the transom. Not only was there not 

enough space in the test rig, but also such a 

system would have overloaded the reaction 

measuring dynamometers at the base of the pedestals. 

A self-equilibrating system was therefore chosen, 

such that the reaction was absorbed by the 

pedestals. Four mild steel bars of 1" diameter 

were chosen to provide the necessary tension and 

adequate stability in the system. Each bar was 

connected to a hinge both at the top -end the 

bottom. 	Full details are shown in Fig5.6.8 
'\ - 

A transducer is very similar to 	potentio-

meter. 
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Holl-o-Ram jacks of 30 tons capacity were used 

for applying the axial loads. A 21/=4" thick 

plate was screwed onto threads specially cut 

on the outer circumference of the jacks. Knife 

edge bearings which gave the necessary freedom 

of rotation to the top of the tension bars, were 

fixed on this plate. 	Similar bearings acre 

provided underneath rectangular cross pieces, 

which passed through grooves provided in the 

pedestals at the time of casting. 	Each jack 

rested on a cylindrical hin,-;e attached to a base 

plate at the top of the column. The latter also 

acted as the end plate for the anchors of the 

prestressing cables and was thus fixed in position: 

Both jacks were fed by the same hydraulic 

system. 	It was originally contemplated that the 

load in the jacks would be maintained by an 

Amsler Cabinet having a load maintenance device. 

Unfortunately, a cabinet capable of delivering 

an oil pressure of about 8500 lbs/sq.in. and 

suitable leads to take this pressure, necessary 

to develop the required load in the jacks, was 

not available. 	A hand pump was used instead, 

with leads of steel tubing, except for short 

lengths of rubber tubing, needed to provide flexi-

bility at suitable points. These rubber tubings 

were guaranteed for a pressure of 5000 lbs/sq.inch, 

but they behaved satisfactorily under the required 

pressure. 

The loads transmitted by the jacks were 

primarily controlled by an oil pressur 

attached to the pump. 	Any fall in the oil pressure 

was recouped from time to time. The exact load 
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acting on each column was, however, recorded by 

four strain gouges fixed at the centre of each 

tension bar, as if each bar were a load cell. 

Although it was not practical to use these eight 

load cells to control the loads on the two columns, 

yet they provided an accurate method of measuring 

the actual loads. The axial load aimed at was 

62500 lbs. The readings of the strain gnuse fixed 

to the vertical bars indicated that the actual 

load in the column was 60000 + 1500 lbs. 

Each tension bar was connected to the housing 

containing the knife edges, by means of threads 

which were clockwise at one end and anti—clockwise 

at the other. 	A nut was welded to the bar to 

permit the use of a spanner, which could under 

the above arrangement, either shorten or lengthen 

the bar, by turning it one way or the other. 

To ensure a uniform stress on the column, 	Partial 

load was first applied and the tension bars were 

then tightened or loosened by a systematic trial 

and error, to give equal strain readings on all the 

four faces of the columns, as recorded by a. 4" 

demountable Demec - auge. 	It was then checked 

that on the application of the full load, the 

strains on opposite faces did not differ by more 

than 10%. 	If this was not attained, the column 

was unloaded and the process was repented. 

6.8 Instrumentation. 

Fig. 6.7 shows the position of electrical 

strain gauges and clinometers. In all, 66 .0 es 
were used on each face of the frame. Strains were 

recorded by the Solartron data logger, which could 
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record strains at the rate of two channels per 

second and could deal with a maximum of 200 

channels. Deflections were also recorded by 

this instrument. There was a change in the, 

solartron reading when a deflection occurred, 

due to the corresponding change of resistance in 

the transducer. A correlation between the 

readings of the solartron, and standard changes 

in length occurring at the tip of the transducers, 

was first obtained by using a micrometer screw 

gauge. 

Only clinometer readings were recorded 

manually. The clinometers were the same as 

previously used for measuring rotations in beams 

and columns. 

The readings of the load cells fixed to jacks 

and the readings derived from the strain gauges 

fixed to the legs of each reaction dynamometer, 

were also recorded by the 'Solartrons.. 

Brief description of the reaction measuring  

Dynamometers,  

The dynamometers which were used under the 

A- pedestals to measure the stress resultants at the 

'filot of the columns, consisted of three tripods 

under each pedestal. Each tripod had three 

sensitive legs. On each of these legs, electrical 

strain gauges were attached to form the four arms 

of a wheatstone bridge. The layout of the tripods 

under the pedestals is shown in Fig.6.7 The top 

plate of a dynamometer was connected to the three 

tripods underneath it by a ball and socket system 

at the top of each 	. The vertical and 
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horizontal load acting at the centre of this hinge 

above each tripod is given by the equation:— 

v  

	

' —11 	K 121 	

(ES 
= 

K 

	

13 	141 	C.32)  

where 1) V and H are the vertical and the 

horizontal loads. 

2) 

 (

K11 K12 

	

K13 K14 

	is the calibration matrix. 

	

3) 
	

is 	the increment in readings) 

	

in leg 1 	 ) per  ) unit 
and Est  is the average increment ) load. 

in legs 2 and 3. 

A typical calibration matrix was of the order 

( .5 	1 

	

-;37 	.37 

If it is assumed that es  and es 2 can. be  
assessed to 1 division on the solartron, the vertical 

load at the top of each tripod has a sensitivity of 

1.5 lbs, 

6.9 Erection.  

The frames were lifted in the partially 

prestressed stage and transported to the Test Rig 

by the laboratory, crane. Finally, they were 

lowered on the top plates of the dynamometers. 

The frames were then carefully centered md the 

pedestals were firmly clamped to the dynamometers 



by means of steel plates running across the top 

of the pedestals and holding down bolts on both 
sides, connecting these plates with the top 

plate of the dynamometers. 

6.10. Prestressing and grouting. 

Table 6.3 shows the date of casting, the 

dates of application of full prestress and 

grouting and the average cube strength attained 

on the day of testing. 

The frames were first of all partially 

destressed, so as to retain approximately 25% of 

the final prestressing force in each member.. 
This was done in a systematic and controlled 
sequence so that the danger of cracking was 

avoided at all stages. 	Complete destressing 

might have resulted in shrinkage cracks. Un-

fortunately the frames were tested aftar qc.re 

than a year from the date of casting and such a 

possibility existed. 
After recording the readings of the legs of 

the dynamometers, the tendons were fully re-

stressed with the help of a re-stressing stool. 

The XL grips were released and relocked in 

position after removing the shims which ware used 

in the first instance when stressing was done in 

several stages. 

Grouting was done immediately after full 

prestressing. When this was not possible, the 

first available opportunity was taken to complete 

this operation. Columns were grouted from bottom 

upwards. The grout was of the same consistency as 

151 
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used in the beams and columns previously 

described. Grouting was successfully done 

through holes provided in the end anchorage 

plates. 

6.11. Test procedure. 

The rigid plastic collapse load of the 

frame was recalculated, using the crushing 

strength of 6" cubes, found one day before 

the test. Incremental loads in intervals of 

10% were applied, using the load maintaining 

device of the Amster Cabinets. After attaining 

about 80% of the collapse load, or as soon as 

the formation of the second hinge was noticed, 

the load maintaining device was abandoned. 

Thereafter the frame was allowed to deflect 

under specified deflections measured both 

vertically and horizontally. An attempt w'as 

made to proceed in increments of 10 of the 

values of deflections attained at the time when 

the constant load maintaining device was abn-

doned. An excellent control could be exercised 

on the behaviour of the frame by following this 

method, because both the increments in loads and 

deflections could be observed in the panel of the 

data logger by the person who was controlling the 

experiment. It was possible to follow the plastic 

behaviour of the frame in this way in 15 to 20 

stages. A constant ratio of the loads of course, 

could not be maintained. In fact, in order to 

minimize the effect of creep and to keep the 

deflections at a fairly constant level, one or 

both of the loads had to be decreased at some 

stages. 
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6.12 Test Results.  

The punch encoder of the solartron gave the 

output in the form of a five hole punched tape. 

A computer programme was written to read and 

process this information and to p'fint out the 

extreme fibre strain, the curvature and the neutral 

axis depth at chosen points of the structure, 

followed by values of the applied loads, deflec-

tions of the structure, and the moment and reactions 

at the foot of the columns, as deduced from the 

readings of the reaction dynamometers. 

6.13 Behaviour of individual frames.  

Frame 1. 

This was the first frame tested by the author. 

As already discussed, it had all the potentialities 
of a brittle failure. 

Cracks first appeared in the ri:.,;bt hand 

column under the transom and also immediately 

above the joint with the pedestal when both WV  
and WH were about 2300 lbs. Pimpling of concrete 

appeared on the compression surface corresponding 

to these cracks, when 	and WH  reached the values 

of 3704 and 3654 lbs. 

Beyond this stage the load maintaining devices 

in the Amster loading cabinets were abandoned and 
an attempt was made to let the frame deform under 
controlled deflections. A vertical deflection of 

.6" and a horizontal deflection of .7" was recorded 
up to this stage. In the next load stage, an 

increment in the deflections by about 103/4  was 

aimed at. 	An increase in the vertical load at 
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this stage exhibited signs of immediate collapse 

(i.e. more pimpling, accompanied by a creaking 

noise). The side sway load WH  was therefore 

first increased, whence it was found necessary 

to simultaneously decrease the vertical load 

slightly. The vertical and the horizontal loads 

recorded at the end of this operation were 35241v, 
11.5 

and 3694Arespectively, while the vertical and the 

horizontal deflections were .66" and .76". 

An attempt to repeat the process to achieve 

a further increment of 10% in deflections, resulted 

in a violent brittle compression failure (see 

plate, &2-5) and the experiment had to be abandoned. 
There was no shear distress. 	It will be seen 

that the maximum load at the time of failure was 

about 75% of the rigid plastic collapse load 
(4800 lbs. neglecting axial loads.). No cracking 

or pimpling was noticed at the foot of the left-

hand column. 

Frame No. 2.  

This frame was identical to Frame No. 1, 

except for the fact that it had lateral binders 

on either side of the critical sections, which 

extended up to a point where the maximum moment 

was half of the maximum moment at the critical 

section. 

The first crack appeared at the toe of the 

right-hand column, when both WV  and WH  attained 

a value of about 2200 lbs. As the load was 

increased the hinge in the transom exhibited a 

distinct ductility and when W. and WH  were 
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approximately 3500 lbs. each, the tensile crack 

at this hinge was growing without apparently 

showing any signs of pimpling at the top. 

Pimpling of concrete was first noticed at the 

foot of the right-hand column when both WV  and 
WH were 3840 lbs. (approx.) 	In the transom 

hinge, pimpling was noticed when WV  and WF  were 

4400 lbs. each. 	By this time a plastic hinge 

had developed at the foot of the left-hand column. 

The frame was entering the stage of a collapse 

mechanism. The load maintaining devices in the 

loading cabinets were shut off and the frame was 

allowed to move further under controlled deflec-
tions. 

As the transom hinge exhibited somewhat less 

ductility than the other hinges, it was again the 

sway load which was first manipulated to obtain 

the desired increments of deflections. 	This 
resulted in WH  attaining somewhat higher values 
than WV. The latter remained constant for a while, 

followed by a reduction in its value. e.g. WH  was 
4608 lbs. when WV  was 4432 lbs. and thereafter WH  
was 5800 lbs when WV  was reduced to 4037 lbs. 

Finally, the frame collapsed at WH  = 6093 lbs 
and WV  = 3622 lbs, by forming a 5

th hinge in the 
transom at a distance of approximately a quarter 

of the transom span from the left-hand column. 

At this point, the moment of resistance of the 

transom was not enough to cope with the applied 

moment due to termination of binders in the top 

flange and. the termination of M.S. bars at the 

bottom. The failure was obviously due to the 

fact that the frame was not designed for such a 

combination of loads. 



156 

The deflections at the time of collapse 

were 1.39" under the vertical load and 2.111' 

measured horizontally at the point of applica- 

tion of the sway load, (approximately twice the 

vertical deflection and three times the hori- 

zontal deflection obtained in Frame 1.) 

The ductility resulting from the use of 

the binder in the flange of the I beam is clearly 

demonstrated in this experiment. (See plates 6:34-8-9) 

Frame 3. 

This frame represented a lower storey frame 

of a tall builahg. An incremental load on the 

columns was unnecessary because in an actual 

building the forces due to the wind load would 

came into play in the columns of a lower storey, 

when they were already under heavy loadidue to 

the dead load alone. 

Before starting the main test, both the 

columns were fully loaded. 	The resulting direct 

stress was about 2600 lbs/sq.inch. The fra nc was 
then subjected to an incremental vertical load, 

accompanied by an equal incremental sway load. 

The axial loaahg device was perfectly stable. 

A compensation was made at each load stage to 

account for the fact that the inclination of the 

axial load continually changed. 	This was done 

by increasing the side load by an amount equal 
to 	P Sh 

where 	P = axial load 

SH = horizontal deflection 

= length of column 

note:- S4 was assumed to be equal to the incli- 

nation of the tie bars. 
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at the top of 

corner of the 

Crushing 

at the toe of 

4378 lbs. and 

indication of  

the transom near the right-hand 

frame. 

of concrete was first observed 

the right-hand column when WV  was 

was 4746 lbs. This was the 

the fact that the first plastic 

hinge had formed at this point. Tensile cracks 

also appeared under the vertical load at this 

stage. 

Crushing of concrete was noticed at the 

bottom of the transom at the right-hand corner 

of the frame when WV  was 4690 lbs. and WH  was 

5117 lbs. This was the second hinge to form and 

it was in the beam and not in the column. 

The third hinge formed at the foot of the 

left-hand column when W was 5622 lbs. and w v - 
was 6077 lbs. 

The 4th and the last hinge needed to trans- 

form the frame into a mechanism, formed under 

the vertical load at the load stage when WV  was 

6328 lbs. and Wa, was 6529 lbs. It was possible 

in this frame to continue with the load maintaining 

device up to this stage. The order of formation 

of the hinges was the same as predicted by the 

step by step analysis. 

After this stage the loads continued to rise 

apparently due to a strain hardening behaviour, 

while the frame continued to deform under specified 

deflections , until WV  and 	attained the values 

of 7370 lbs. and 7160 lbs. respectively. There-
after a gradual reduction in the loads was observed. 

The experiment was terminated when the sideways 
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deflection attained the value of 2.36" and the 

values of WV  and W
11 were 6770 lbs and 6300 lbs. 

i.e. still within 10% of the maximum values 

attained and higher than the calculated 

collapse load of 6000 lbs. 	The testing rig 

did not have much room for any appreciable :amount 

of further side sway. A gradual unloading was 

done at this stage, to trace the path of un-

loading. 

The first and the third hinges to form in 

the final mechanism, were at the foot of the 

right and left-hand columns respectively. 	These 

columns exhibited sufficient ductility to en:Ible 

the final mechanism to form. 

The deflections noticed at the end of the 

experiment, accompanied by a continual increase 

in the loads, more than adequately demonstrate 

the efficiency of the binders. 

6,14 Presentation of results. 

L4ads V/s deflection. 

The most convenient way of presenting the 

overall ductility of a structure, is to plot 

deflections against the applied loads. 	Graphs 
6.1 to 6.3 show horizontal and vertical deflections 

plotted against V and WH  in respect of/frames 1 to 

3- 

Hinge moments V/S apPlied load end distribution 

of moments at collapse.  

The growth of bending moments in the frames 

at the critical sections is shown in Graphs 6.4 
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to 6.6. Comparison has been made with the 

theoretical development that would have taken 

place, had the frames been ideally elasto-

plastic with a constant flexural rigidity in 

between the hines throughout the frames, and 

also if the ratio of the vertical and the hori-

zontal load had not changed during the experiment. 

It will be seen that secondary moments 

existed in the frames before the commencement 

of the test. The author is of the opinion that 

this was due to the lack of fit introduced at 

the time of casting. Table 6.4 gives the reltion 

between stress resultants and lack of fit at the 

fiOt of the right-hand column. It may be seen 

that considerable stresses can be caused by a 

small angular difference between the pedestals 

of the two columns. 

The distribution of moments in the frames 

at the time of collapse is shown in Figs. 6.10 

Moments VS rotation.  

The moment rotation curves in respect of 

hinges at the top and bottom of the right-hand 

column, are shown in Graphs 6.7 to 6.9. 

Distribution of curvature at critical sections.  

The distribution of curvature at critict 

sections at the time of collapse, have been shown 
FPS 

in 	6.11 A  6.12 4.n vespecE (4, PeAmEs 



160 

6.15 Discussion of Results. 

Frames 1 and 2.  

The brittle failure in Frame 1 due to 

the insufficient rotational capacity of the 

transom hinge, shows that Baker's theory over- 

estimates plastic rotations in over-reinforced 

I-sections. 

The following questions, however, do arise 

when Table 6.1 is examined. Why did not failure 

occur at the foot of the right-hand column where 

the available rotation predicted by Baker was 

too small, or why did not the hinge at the top 

of the right-hand column have a brittle failure, 

inspite of the fact that the rotation needed at 

this hinge for full redistribution, was twice 

that needed at the other two hinges? 

A solution is that rectangular sections 

have a greater capacity of rotation than predicted 

by Baker, even if such sections are over-reinforced. 

The author is of the opinion that the opposite is 

the case in I-sections. Unbound concrete in the 

flange of nn over-reinforced I-section has less 

confin ement in space than the corresponding areas 

under compression in rectanular beams. 	They 

have an additional degree of freedom of i.ovement 

under compression forces, due to the presence 

of the exposed surface underneath the flange. 

Baker's predictions of rotations in over-

reinforced I-sections are therefore on the unsafe 

side and a suggested reduction factor is .5. This 

is also borne out from the moment rotation 

characteristics of simply supported I-sections 

obtained by the author. 
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Lateral binders, however, provide con-

siderable ductility and permit the calculation 

of collapse loads by the rigid plastic theory. 

The load deflection and moment V/S load curves 

pertaining to Frame 2, amply prove this point. 

The failure of Frame 2, which took place 

by the formation of a  5th hinge is, however, a 

warning that lateral binders have to be used 

with caution after considering all possible 

combinations of loads that may occur in the 

structure. 

Frame 3. 

The experimental failure load (if failure 

be defined to be the point of maximum load) and 

a study of the development of moments at hinges, 
amply justify the assumption of a full re-

distribution of moments in this case. 

The rigid plastic collapse load shown in 

Graph 6.6 has been calculated, using the formula 

proposed by Baker at Ankara, to take into account 

the effect of binders. It can be seen that each 

of the critical sections exceeds the predicted 
value. 

An abnormal enhancement of about 30% in 

the plastic moment was also noticed in the pilot 

tests on columns described in Chapter 4. 

(Compare actual moments with Baker's predictions 

in Grvhs 4.1 and 4.2.) 	The recent work doe. by 
Soliman(47) does not indicate the possibility of 
this tremendous increase. The author thinks 
that the W duct. 	in conjunction with closely 
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spaced binders was responsible for this increase. 
0  :Alan(17)  observed a considerable increase in 

strength when compression reinforcement was used 

in conjunction with binders. 

An attempt has not been made to compare the 

behaviour of the frame with Baker's predictions 

which are far too inaccurate in this case. 	The 

object of the test was to show the efficiency of 

the binders, compared with results obtained by 

Pietrzykowski. 

6.16 Summary. 

Results of tests on three portal frames 

have been described in this chapter. 	It has 

been concluded that checking of rotations cannot 

be dispensed with, at least in cases of I-sections 

in which Baker's predictions are on the unsafe side. 
In the next chapter a theoretical discussion 

has been entered into, regarding the design of 

multi-storeyed frame. 	A method has been suggested 

to deal with adjustment of rotations. 
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TABLR 6.1  

MOMENTS AND ROTATIONS AT L1  AND L2 IN FRAMES 1 & 2. 

(Neglecting thrust). 

HINGE 
NO. d ec2 n2d M2 ecl n1d M1  

(.004 1.6 88200 Fl 
1 4.1E5 .002 1.76 79000 ( 

('
0085 1.45 88500 F2 

(.004 1.6 87250 Fl 
2 4.075 .002 1.75 78000 ( 

(.0085 1.45 87500 F2 

(.004 1.65 86000 Fl 
3 4.04 .002 1.85 75500 ( 

(.0085 1.50 87200 F2 

HINGE NO. 

permissible 
rotation in 
Radians. 

EI value 
= M1n1d 

Required 9. 
for full  Remark:' redistribution 
in Radians. ecl 

1 .00525 

.0171 
69.5x106 .01135 

----Frame 1, 
p" - 0 

----Frame 2, 
p" 	= 2.5 

.0106 ) ----Frame 1, 
2 ) 68.2x106 .0227 p" = 0 

.0344 ) ----Frame 2, 
p" 	= 2.5 

3 .016 
) 70 x 106 
)----Frame 

.01135 
1, 

p" = 0 
.052 ) ----Frame 2, 

p" 	= 2.5 

 

*these figs are 
slightly higher 
due to a higher 
value of z/d 
when compared 
with hinges 
1 and 2. 

Note: These 
figs. are 
based on an 
average 31 
value of , 
69.2 x 10°. 

 



Author's 
Frame 3. 

6" x 4" 6000 
lbs/sq" 

2 Nos. .2" 0 
tendons at a 
distance of 
11Q1  and 2 Nos 
.2" 0 tendons 
at a distance 
of 0" from 
fibre 2. 

load on nd=4.5  
LHC = 	ie n=1 
56500 lbs. 
Required 
load on 
RHC = 
62500 lbs 
Actual 
load = 
60000 
4- 1500 
7.11 both 
columns. 

Required 
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TABLE 6.2.  

PROPERTIES OF X-SECTI0i4 OF AUTHOR'S FRAAIE 3,  
CO , PARED TO THE PROPERTIES OF X-SECTION OF  

PIETRZYKOWSKI'S FRAIAE GK.  

FRAIiE NO. 	SIZE CONCRETE REINFORCE- 
STRENGTH. AIENT. 	LOADS 

DEPTH OF 
NEUTRAL 
AXIS AT 
ULTIA1ATE 
LOAD. 

Pietrzy- 
kowski's 
Frame GK 

61/2" x 3" 4"cube 
strength 
=80001b/ 
sq"which 
may be 
taken as 
equiva-
lent to 
a 6" cube 
strength 
of 7700 
lbs/sq" 

2 Nos. .2" 
0 at a 
distance of 
13/4" on 
either side 
of C .n 1=1".! 

4 X P, 	nd=5" 
where P is, 
=16(+mb) n=1 

3 
=12750 lbs 
...Desired 
axial load 
= 51000 
lbs. 
mc=8.72 x 

10 in lbs. 
mh=12.75x 

10 in.lbs. 
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Table 6.3  

Frame No Date of Date of 	Date of Average 
casting application testing cube 

of full pre— 	strength 
stress 

1 17.12.65 22.9.67 9.10.67 
77 

2. 21.1.66 19.10.67 30.10.67 

3 25.3.66 15.11.67 14.12.67' 

7000 lbs 
per sq" 

75 00 lbs 
per sq" 
7000 lbs 
per sq" 



0 Reaction 7 h3 
(upwards) 

X1 Verticah -3 EI 3 EI 
8 

- 3h3  4h2  

3 	2 i ,h -3h 

- 3h2 4h 

3h2 

32 	8 

3h3 

0 	5  
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TAB1R 6.4. 

SHOWING STRESS RESULTANTS UNDER UNIT VERTICAL, 

HORIZONTAL AND ROTATIONAL .10VEMEAT AT THE FOOT  

OF THE RIGHT-HAND COLUMN. 

Stress 	Unit 	Unit 	Unit 
Resultants 	Vertical 	Horizontal 	Rotation 

Movement 	Movement 	(clockwise) 
(down) 	(Towards 

the right) 

X2 horizontal 	0 
thrust 
(towards 
left.) 

moment 	3 EI 
anti- 	8 h2 clockwise 

12 EI _ 
5 h3 

9 EI 
- 5 ;7 

9 RI 
-5 --7h 

79 EI 
40 h 

Note: The above has been obtained from the following 

release systems 20 ,3 
I3 - 3h 

4h2  

3h3  

0 

-5  
\\ 3h2  

n/ 

1 
- EI 

t?„,.1  
2  

P1=1  

F-1 9E1 40 

	

8 	22 

	

-7 	9h 
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SPAN CONTINUOUS BAUM LENGT{4 OF 5?"  

pLASIIC FIINC,ES --•• • 

RELEASE I. --IP 0 

No11-1.14iRcES NAVE SEER NUMBERED 
lI THE Ase st4o1ucE AS 

Pity OCCUR 
2. PLASTIC MOMERT Or RE.SiSTAKE 

IS EiQUAL 	rrl'  AT ALL CRITICAL 
SEcTIoNS 

• • 
PLASTIC ROTATION AT Hotcle 	Tge PRODUCT INTE4DALorAitor-212 

zi 
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Plate 6.1 Formwork for Frame no 3 



Plate 6.2 General veiw of 'r=e no. 1 after test 



ArdirKr! 

Plate 6.3 General veiw of Frame no. 2 after test 
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Transom hinge after collapse in Frame no. 1 

Plate 6.5 

Hinge at the right hand corner of Frame no. 1 



Hinge at the bottom of right hand column of Frrme 1 

Plate 6.6 

Showing foot of the left hand column of Frame 1 



• 

Transom hinge in Frame no. 2 

Plate 6.7 

Hinge at the right hand corner of Frame 2 



Hinge at the bottom of right hand column of Frame 2 

Plate 6.8 

Hinge at the bottom of left hrnd column of frame 2 
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Fifth hinge in the transom of Frame 2 

Plate 6.9 

Hinge at the right hand corner of FrEe 



Plate 6.10 showing hinges in the transom of Frame 3 & details 
of axial loading device 



Hinge at the bottom of left hand column of Frame 3 

Plate 6.11 

Hinge at the bottom of right hand column of Frame 3 
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CHA±T_ER 7.  

THE COPATIBIIJITY PROBLEm IN  THE SIMPLIFIED LIMIT  

METHOD OF DESIGN - A METHOD SUGGESTED  TO ADJUST  

ROTATIONS. 

7.1 Baker's approach. 

Baker's approach to the compatibility problem 

in a multistoreyed concrete frame, is summarized 

b&iow. The desigh procedure is carried out on an 

idealized frame the members of which are assumed 

to be elastic between the hinges. 	Inelastic 

rotations are assumed to be concentrated at hinges.(5)  

The steps of the procedure are as under. 

1) A release system is chosen with n hinges, to 

make the structure statically determinate. 

2) Plastic moment values are then cnosen according 

to rules recommended in the concrete series 

design booklet by Tokarski and Poologasundrana- 

yagam, 	to obtain an economic distribution of 

bending moment. It is ensured that the chosen 

bending moment distribution is in equilibrium 

with the factorised loads. 

3) The rotations at the n hinges are then calcu-

lated with the help of graphs published in the 

above booklet. It may be remembered that these 

grphs can be used only for the particular 

recommended bending moment distribution. 

Designers have to draw their own curves, if 

they wish to improve on the distributions 

assumed in the published curves. 
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4) The plastic rotations given by '6pi'  in 

equation 1.3, are then adjusted by trial and 

error to positive values, which are within 

permissible limits. 

5) Finally, an approximate elastic solution is 

obtained by adjusting the rotations to zero, 

to check on the serviceability condition. 

The bending moment at any critical section 

under the working load (load factor = 1), 

under the approximate elastic distribution as 

found above, must not exceed the yeld moment 

(moment at L1) of the section, giving rise to 

a large crack or an excessive deflection. 

7.2 Modification  suggested by author.  

Adjustment of rotations is a tedious step in 

the above procedure. T),e author suggests that the 

inverse of the flexibility matrix of the structure 

be used, for adjusting rotations and obtaining an 

approximate elastic solution. The designer will 

not be required to invert the matrix himself, 

because the flexibility matrix as well as its 

inverse, in the case of multi-storeyed buildings, 

belong to a family of standard patterns. Tables 

pertaining to different types of buildings likely 

to he met in a design office, can be kept ready 

for use. The potentialities of these tables are 

discussed below. 

7.3 Use of tables made from the inverse of the  

Flexibility matrix.  

The following are the possible use of the above 

tables:- 
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1) The designer may use these tables as a 

powerful tool by means of which he can choose 

and adjust the rotation at any hinge, without 

affecting the rotations at other hinges. In 

fact all the objectionable rotations can be 

adjusted to permissible values in one single 

step. 

2) The approximate elastic solution may be found 

in one single step by adjusting all hinge 

rotations to zero. 

7.4 Details of the method suggested by the author. 

The proposed method is based on the following 

equation:- 

FX = -U (36) 	  7.1 

expanded, gives 

f1213 
f22 	f23 

which when 

• fll 

1 f21 

• 

nl fn2 fn3 ...f nn 

X1 
(u  1 

   

x2 

 

U2 
• 

Un Xn 

 

   

where F is the flexibility matrix of the, structure 
(made determinate by introducincf>inge 
releases.) 

X is the vector representing the unknown 

moments at the hinge releases. 

U is the vector representing discontinuous 

rotations at the hinges due to external load. 



 

Pln 

P2n 

   

   

Pnn 	Un 
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set of values of 

'X', (in this particular case a set of moments at 

hinge releases), which nullify the discontinuities 

at the releases given by the vector U1 	Un1. 

In other words the values of 'X' thus obtained 

is the elastic distribution of moments. 

Baker's method allows certain discontinuities 

at the release hinges which have to be adjusted 

within permissible values. A knowledge of 'X' 

values which nullify a unit rotation at each 

release by turn, will be extremely useful in 

fmllowing his method. 

It is immediately seen that if in the vector U, 
UV  equals -1, and all the other elements are zero, 

then the first column of P i.e. 
' (P11 p21""Pnl 

represents a set of 'X' values which muse a unit 

rotation of positive sign at Release No. 1, in 

order that U1 is nullified and continuity is 

maintained at this release. 	It follows that the 

bending moment distribution which will cancel out 

a rotation of - 0C1  at release No. 1, is given by 
the vector: 

CX, 
1 ( P 
	P 11 	21 	Pnll 

The redistribution of moments which takes 

Xn 

or 	X 	= 

	

Pll 	p12 

	

P21 	p22 

• 

	

Pnl 	Pn2 

	

PU 	 

where 	P 	= 	F-1 

The above equation gives a 



Let 1r = length of each bay in r
th storey 

hr = height of r
th storey 

Ir = moment of inertia of beams in r
th storey 

Jr = 	- ditto - 	of columns in rth storey 
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place by nullifying -40Cl' 
will not alter rotations 

at other hinges. 

Similarly, the second column of P, represents 

a set of 'X' values which causes a positive unit 

rotation at Release No. 2 and so on. 	The reader 

can now identify the columns of P, with Macchi's 

imposed rotation co-efficients(34) 

The pattern of the matrix P has been studied 

by the author by altering the folloing parameters 

in a series of multi-storeyed frames. All bays 

have been assumed to be of equal length, and each 

of the bays is complete. 

1) The stiffness of columns and beams, as explained 

under 

hr 	1r  	 1 	Ih (in general 

Jr 
/ 	7--- 	- -1: in all the 

	

r 	r+1 	r4-1 	storeys.) 

S = 
hr h 1 r4-1 	r  
7-  / 7" Ir  r 

Values of I and J are the same in all beams and 

columns in the same storey. Y has the same 

value in all the storeys. The value of s has 

been varied between the limits .66 and 1 and 

the value of y has been varied from 4 to 12 

2) The number of bays has been varied from 3 to 5, 
for a constant number of storeys equal to 3. 

3) The number of storeys has been varied from 

3 to 5, for a constant number of bays equal 
to 3. 
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The results are presented in tables 7.1 

to 729 

The elements of the flexibility matrix 

7.5 The design steps by the modified method. 

1) Choose the- same release system as in Baker's 

approach to make the structure statically 

determinate. 

2) Calculate the discontinuous rotations at all 

hinges due to the applied loads only, acting 

on the reduced structure, and adjust them to 

zero with the help of co-efficients in the 

nearest table appropriate to the particular 

building under design. The approximate elastic 

bending moment distribution is thus known. 

3) Choose plastic moment values and calculate 

rotations at the releases as in Baker's 

approach. 

4) Adjust all objectionable rotations in one 

single step to positive values within permissible 

limits by using the appropriate table. 

7.6. Bilinear idealization of prestressed concrete  

beams continuous over two spans. 

Baker's assumption that the modulus of flexural 

rigidity, in the cracked stage, is constant between 

the hinge releases, no longer holds good in case of 

prestressed concrete members. Linear transfornation 

may cause considerable variation in the effective 

depth of cables at different critical sections. 

were taken from Poolagasoundranayagam's th.esis(41)  
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The cracked TI' value at the state Ll, depends to 
a large extent on the effective depth and con- 

sequently varies considerably from one critical 

section to another. In the next paragraph, the 

author has suggested that a modified application 

of Macchi's method of imposed rotations, may be 

used to analyse a two span prestressed concrete 

continuous beam. 

The distribution of bending moments corres- 

ponding to the first phase of a bilinear idealization, 

when the structure has different 'EP values at the 

critical section, has to be found. A method has 

been suggested in 7.7. The redistributing effect 

of permissible rotations at the hinges may then be 

found out by the normal method suggested by Macchi, 

provided the imposed rotation co-efficients are 

also calculated for the idealized structure. 

7.7. Use of the theory of unposed rotation in 

calculating the effect of a change in the 

'EI' value in a part of a continuous beam. 

Consider the elastic solution 	two span n. 
continuous beam of constant X-section with two 

equal point loads at the centre of each span 

(Fig. 7.1). 

Let the EI value increase from ET to E1I1 in 

the length BD, such that EI = KE1I, where K K 1. 

Fig. 7.2 shows the bending moment diagram when 

a unit rotation is imposed in the indicated direction 

at C on the beam having a constant EI throughout its 

length. This diagram is also the influence line of 

the bending moment at the support, due to a unit 
(34).  rotation traversing the structure 
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The bending moment at support caused by a unit 

rotation at the element 'dx', is therefore given 

by the ordinate 'y'. 
As a first approximation, let us assume that 

this bending moment diagram for a unit rotation 

imposed at the support, also holds good for the 

changed structure with different 'EP values. 

The change in the EI value in a small length 

'dx' causes a rotation of the magnitude 

(ET - ) dx = EI  (1-k) dx 

where 'm' is the ordinate corresponding to the 

length 'dx' in Fig. 7.1. 

The corresponding change in the BM at the 

support 

The total change in the support moment 

(1-k) my dx EI 
in the length 2 BC 

2(1-k)  (sum of the product of 
- EI 	ordinates of diagraa BOC 

and BB'OC in Figs 7.1 and 7.2) 

2(1-k)  x 	' 
32 

( 6 	12)  ')EI 
- EI 	66 	"

3  +111 	L • wi. 

.07 (1-k)wl, 	 7  3 

The change in the support moment found by 

equation 7.3, is however, approximate„neglect5 
the change in the position of the point of contra-

flexure. This would have been more correctly 

evaluated if the correct imposed rotation co-

efficients were employed in the above diagram 

integration. 

EI (1-k)y dx =  
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It is also observed that Fig. 7.2 is a 

bending moment degram and it can be corrected 

to a first degree of approximation by integrating 

BB' 0C with itself. 	The correction in the imposed 

rotation co-efficient at the support is therefore: 

1 

	

12 (..21 ) 	(z  12) (EI)2 
0  ,(1-k)x  3 L ,--- 11 '11+2' + ; -Elli  ` L' 
" ' EI 66 

= (1-k). 	EI, = 	P1, x .615 	where p = .615(1-k) 

The ordinate of the Fig.7.2 at the support is 
3 	EI 17  therefore 7(1+p) 	. If this process is repeated, 

the ordinate is given by the expression 

3 EI (1 + p + p2 + p3 + L  
using this in equation 7.3, we get the change in 
bending moment as 

	

.07 (1-k)(1 + p + p2  + p3 	)WIJ 	7  4 

.041-k)/(1-p)1WL as p < 1 

If the EI value increases in the region AB 

from EI to E1I1, instead of in the region BC, the 

change in the moment at support, is given by 

- .07(1-k)(1+pl+pl2  +pl3  +...)WI when k = 	as before. EEI11 

= - .07[1-k)/(1 -plin 	 7.5 and p1= (1-k)x .385. 

The necessity of forming a new flexibility 

matrix and inverting the same is avoided by this 

ite] a tive process. 



7.8 Ultimate strength of 2 span continuous  

prestressed beams.  

The following steps are suggested in checking 

the ultimate strength of 2 span continuous pre—

stressed beams. 

1) Calculate moments at L1 and L2  at all critical 

sections, by using graphs. (Those in chapter 2 

cover a wide range.) Also find n1 and oc1 at 

these sections. 

2) Calculate the cracked modulus of flexural 

rigidity at L1  at all the hinges from the 

formula 	M1n1d EI ec1 

3) Assume in the first trial, that the calculated 

moments at L2  are attained by the beam at all 

the critical sections i.e., in other words 

there is complete redistribution of moments. 

The points of contraflexure, according to this 

bending moment diagram, may be established. 

4) The beam may then be assumed to have different 

'EP values in the different zones between 

points of contraflexure. THe 'EP value in 

each zone is assumed to remain constant and 

is equal to the cracked 'EI' value at Li  as 

found for the critical section contained in 

that zone. 

Calculate the new distribution of elastic 

moments due to these alterations in 'ET' values 

as suggested in 7.7. 

209 
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5) From 4), the ratio of the support to span 

moments for the elastic distribution of bending 

moments in the idealized structure is known. 

The ratio of the moment M2  at the support to 

M2  at the span is also known. The first hinge 

to form can therefore be established as well 

as the bending moment distribution which 

occurs at this stage. 

6) The solution of the problem now lies in finding 

out the maximum possible redistribution of 

moments that can be obtained by imposing 

rotations at the critical sections up to the 

maximum permissible values. 

Three beams tested by Morice and Lewis in 

the Cement and Concrete Association 	, have 

been analysed by the author in 7.9 and 7.10 by 
the above procedure, using the method suggested 

in 7.7 to calculate the distribution of elastic 
moments in the structure, having modified values 

of EI. Results have been compared with those 

found by Guyon. 

7.9. Analysis of C and C.A.  beams. 

Morice and Lewis ' tested 28 two span 

beams to failure load in the Cement and Concrete 

Association(29) The spans were 7'6" long and 

the beams had a constant rectangular section of 

6" depth by 4" width. The cables were of the 

Freyssinet type, each having eight wires of 0.2" 

diameter. The nominal prestressing force was 

30,000 lbs. The high tensile steel had a tensile 

strength of 105.5 tons/ins2, the ultimate force 

in the cable being about 59,D00 lbs. 
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Beam Nos. 12, 13 and 14 were chosen for 
analysis and diCussion, because they fell within 
the ran-;e of the values of .,)and n2' for which 
calculations of moments at L1 and L2 were done 
by the author, as described in chapter 2 of this 
thesis. Further, reactions were measured in these 

beams and the analyzed results could b3 co spared 
with the experimental. 

7.10 The properties of the C & CA beams are 
summarized below. 

M I D S P A N 
max. 	depth 

Beam flex. 	Af 
No4 	strength cable. 

f"c. 

Cs) 

=At - fs2  * 

EI 
n1 	ml Mlnld 1712 bd —r— 

c  eci 
eci'4502 

12 4830 3.6 :85 .3671 13x107  .3802. 
NI t42., 

92200 95500 

13 4780 3.5 .885 .80 	.37412.35x .383'*1. 
Mt = 	167 1.12._ 

88000 90000  

14 4690 3.4 .93 .83 	.3810,, 11.7 .38701  
III 	x107 	(4, 

.,_ 
82750 	84000 

cont.... 



d CO n1 m1 EI 

M1n1d 

cl 

4.2 .?3 .7 .34401 17.3 
til 
= ' x107 

117500 

5.1 .605 .615 .315A 24.7 
Mi x107 

157000 

5.1 462 .625 .319A 24.8 
MI x107 

Beam 
No. 

12 

13 

14 

m2 

.3662.. 
N,-125000 

di_=174000 

.352%4 
Mx_ 

156000 	172000 

cont.... 
212 

SUPPORT 

NOTE; - 1) All the above beams are highly over- 

reinforced (limiting value of e
CI - .002) 

- 
 

has been assumed at L1). 

2) The computed values of , ml, ,112, eta. 

are given in Table/30. (These results 

are not shown in the graphs plotted in 

Chapter 2.) 

N0.12.  
Fig. 7.3 shows the distribution of ,ac.11ents in 

beam 12 if full redistribution takes place. It will 

be observed that the change in the length BC is small. 

The point of contraflexure dividing the regions of 

different EI values have therefore been ;ssued to 

be the same as in theelastic case. The correction 

in the bending moment distribution is obtained from 

Beam 



213 

equation 7.4. 

k = ratio of flexural regidities 

p = (1-k) .615 = .154 

The correction in the bending moment 

= 	.02 WL 
(1-%l54) 

The BM at support is (.1875 + .02) WL = .2075 WL 

and the mid span moment = (.25 - .1037)WL = .1463 WL 

Calculation of cracking moments. 

If el  is the eccentricity at midspan and e2  is 

the eccentricity at the support, the condition for 

concordancy is given by 

3 el = 2.5  e2 
If the cable is not concordant, the secondary 

moments are as under:_ 

i) At support = 7 (2.5 e2  - 3 e1) There F = pre-
stresFin-, force. 

ii) kt midspan = 7  (2.5 e2  1)* 

The tensile strength in flexure has been assumed 

to be 12% of the permissible compressive stress, 

(same as assumed by Guyon). The cracking . Lo.flents 

on the basis of the above data, after accounting 

for the secondary moments, but neglecting the 

increase in prestress, are 

i) At support = 70900 in lbs. 

ii) At mid span = 66900 in lbs. 

The ratio of the moments at support and mids721n, 

under the elastic distribution is 6:5. 

Obviously the support is the critical section to 

crack first. 

13/17.3 .75  



214 

Distribution of moments at ultimate. 

If it is assumed that the moment 2(125000 in 
lbs.) is first attained by the support, then the 

x corresponding mid span moment 	125000 
.2075

.1463 
	88000 

in lbs. 
The increase of further moment at the mid span 

due to the plastic rotation at the support, is 

calculated as follows. 

ec2 	= .000 (for `r) = .73 from the table). 

The permissible rotation according to equation 2.16 

= 2 x .4 (.0030 - .0020) x 	- .0097 

Subtract from this the elastic rotation between 
4i2.9/4kae/Azx 

L1 and L2,  because the bilinear relation is assumed 
to hold Ood until the moment M2  is reached. 

I * 
125000 - The plastic rotation = .0097 	17.3 x 

117500_25.5  

107 

= .0086 

The possible redistribution of moment at the 

support due to th_rotation 

= .0086x 13 x 107 	3x 	
1 	 

90 	7 7.1-.154) 

= 22000 in lbs. 

At mid span, the corresponding redistribution is 
11000 in lbs. 

If the elastic distribution before the plastic 

rotation takes place, is as follows:- 

1) At support = - 147000 
1463 2) At mid span = 	147000 x . 	- 10360 .2075 

Then after redistribution the moments will be 
1) At support = - 125000 	(-147000 + 22000) 
2) At mid span = 114600 	(103600 + 11000) 
Since the moment at mid span cannot exceed tae value 
M2, we observe that after full redistribution, the 

moment at mid span at failure is expected to be 
95500 in lbs. only. 
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Beam No.13.  

Fig. 7.4 shows the BM distribution in Beam 13 

if ultimate moments are attained both at the 

support and mid point. The ratio of the support 

and the mid span moment is approx. 2:1. Fig.7.5 

shows the elastic distribution of bendb3 moments 

under a constant modulus of flexural rigidity. 

It also shows the two regions in which different 

EI values are applicable after cracking. A 

significant change takes place in the point of 

contraflexure, the effect of which has been taken 

into account. The EI values are in the ratio 2:1. 

The correction to 	first order of degree in 

the imposed rotation coefficient for the support, 

is obtained by integrating the diagram (Fig.7.6) 

with itself in the length RS. 
EI If the value of this correction is 7  Emp, then 

the correct unposed moment at support is 

2 EI (see equation 7.4). 
L(1-0 

In this case the value. of p is 

7 (putting 

	

1 	3 x 2 x (1-k) x ;73- 	1(2+7) + 2(3+1)7' = .35 k = .5) 

Hence the correct imposed moment 
3 	El 	3 
2 x .65 x 	= 7 El x 1.54 	 7.8 

The correction in the elastic bending; moment 

distribution is obtained by integrating the portion 

P4 of Fig 7.5 with the portion RS of Fig 7.6 and 

then multiplying by the factor 1.54. The value of 
this change 

2(1-k) )( [ 	.06f.0417(2+ 42  t.1875(34) 
6 	11 

x 1.54 VyL 
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xWL 	xivL 
= (1-k) (.07-.0023) x 1.5 	0.05,say. 

WL 
The support moment is therefore(1875 + .0t= .2375WL 

wL 
and the mid span moment = (.25 - .1187)14=• .131:t7ay. 

Cracking moments. 

Similar calculations as in Beam No. 12, 

reveal that the cracking moments are as follows:- 

At support = 741,000 in lbs. 

At mid point = 708000 in lbs. 

(Ratio is 1.04 against elastic moment ratio of 1-.2). 

Cracking has therefore to commence at the.oupport. 

Distribution of bending moments at the ulti:late. • 

Assuming that the moment M2  is reached at the 

support, the corresponding point at the aid sun 

is .131  x 174000 = 96000 .2375 
Since this is more than the moment at L2  at the mid 

span, we will therefore assume that the moment M2 
is first reached at the mid span and the :moment at 

the support will depend on the amount of redistri- 

bution available from rotation at mid span. 

Let the elastic moment at mid span before 

redistribution = 90000 lbs. 

The corresponding elastic moment at support 

before redistribution = 90000 x .2375  
.131 

- 163500 in lbs. 
at mid span = .0028 

ec2 
The permissible rotation at mid span hinge 

60 
5 

	

= 2 x .4 (.0028 - .002) x 	.0100 37 
Subtract the elastic rotation between L1 	L -- L2 
which is 	(90000788000) x 60 12.35 x107 	2 = .0005 

The permissible rotation is therefore = .0095 
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The redistribution moment at support due to this 

rotation 	12.:3(30  x 107x  3 1/2  x .0095x 2 x1.54 

= 15000 in lbs. 

Since there are two spans, the total redistribution 

moment at support 	= 	30000 41 1.65 
and consequently the corresponding redistribution 

at the mid span shall be 15000 in lbs. 

If the moment at mid span before redistribution is 

increased to 105000, the corresponding moment at 
5 237 .  support = 105000 x . 	= 190000. 131 

The moments after redistribution are: 

At mid span 105000 - 15000 = 90000 in lbs. 
at support 190000 + 30000 = 220000 in lbs., 

but its maximum value is 174000 

In Beam 13 again we get a condition of full re-

distribution and the maximum values of moments are 

reached both at support and mid span. 

Beam 14.  

In this case, the banding moment distribution and 

the rate of EI values at the ultimata: , are similar 

to those for Beam No. 13. T}le condition of full 

redistribution applies to this bean also. 
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The results of the analysis are summarised below. 

PROPERTIES OF SECTION. PROPERTIES OF STRUCTURE. 

  

(1) 
BEAM 
°. 

(2) 
Ultimate 
Moment 
Analyzed 

by 
computer. 

(3) 
Ultimate 
moment 
calcul- 
ated by 
Guyon. 

(4) 
Moment at 
failure 
calculated 
by author's 
suggestion 
in Baker's 
analysis 
for com-
patibility. 

(5) 
Moment at 
failure cal- 
ulted by 

Guyon with 
his 

adoption 
coefficients. 

(6) 
ctual 
o ment 
at  ailure.  

MID 	SPAN fro.* 
of 

1 	act 
ual. 

.._ct. 
of 
ct- 

ual. 
12 95500 108700 95500 	.84 102500 .906 113000 

13 90000 	101300 90000 	1.03 98500 1.13 	87000 

14 84000 	96000 84000 	1 	.91 93250 1.01 	92500 

SUPPORT -1 

12 12 5000 	i137200 12 5000 	1.0 137200 1.1 125000 

13 174000 	!182000 
4- 

174000 	',1.01 182000 1.05 173000 

114 
1 

172000 	1184000 
I 

172000 	11.13 184000 1.21 157000 
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3 Storeys & 3 Bays- Unit Rotation at Hinge 13b 

Hinge Case 1 	Case 2 Case 3 Case 4 Case 	5 

Moments Y=4:X=.5_,Y=4: X=1,Y=4: X=-,Y=8;  X.-!, 	Y=12 
6 

X131j 1.7975 1.7967 1.7960 1.7056 1.6721 

X23b -.4671 -.4670 -.4668 -.4377 -.4262 

X33b -.0582 -.0579 -.0577 -.0296 -.0197 
X23a .2949 .2935 .2922 .1579 .1079 

X33a -.2120 -.2113 -.2107 -.1163 -.0802 

X23c .0788 .0764 .0740 .0457 .0322 

X33c -.1584 -.1562 -.1541 -.0864 -.0595 

X43c -.0857 -.0846 -.0836 -.0445 -.0300 

X12b .0,149 .0438 .0427 .0282 .0204 

X22b -.0479 -.0474 -.0469 -.0272 -.0190 

X32b -.0791 -.0781 -.0772 -.0430 -.0293 

X22a -.0170 -.0166 -.0161 0.16.10 

X32a .0146 .0143 .0140 
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3 Storeys & 3 Bays- Unit Rotation at Hinge 23h 

Hinge 

Moments 

Case 1 

X=t7,-,Y=4: 

Case 2 

X=%,,Y=4: 

Case 3 

X=1,Y=4! 

Case 4 Case 5 

X=-,Y=12 

X13b -.4671 -.4670 -.4669 -.4377 -.4262 

X23b 1.8795 1.8778 1.8763 1.7562 1.7085 

X33b -.2358 -.2345 -.2333 -.1373 -.0968 

X23a .0613 .0606 .0600 .0328 .0224 

X33a .3769 .3746 .3725 .2484 .1443 
Xl3c ,-.0856 -.0839 -.0823 -.0454 -.0308 

X33c .1381 .1339 .1301 .0825 .0588 

X43c -.1370 -.1327 -.1287 -.0800 -.0567 

Xl2b -.0460 -.0452 -.0444 -.0266 -.0187 

X22b .0899 .0873 .0847 .0600 .0444 

X32b -.1060 -.1023 -.0999 -.0695 -.0515 

X32a -.0294 -.0284 -.0275 
X32c -.0166 -.0158 -.0151 



Moments 

X13b -.0582 

X23b -.2358 
X33b 	.6264 
123a -.1698 
X33a -.1025 

X13c -.1372 

X23c -.1661 

X33c -.1247 
X43c 	.2030 
X12b -.0809 

X22b -.0196 
X32b 	.1534 
X22a .0068 

X32a .0213 
X120 	.0096 
X32c 	.0088 
X420 -.0227 

X21b .0079 

X31b -.0175 

Hinge 

Table 7.3 
3 Storeys & 3 Days-- Unit Rotation 

Case 1 	Case 2 	Case 3 

221 
at Hinge 33b 

Case 4 
X=t,Y=4: 

-.0579 	-.0296 -.0577 

-.2345 -.2333 -.1373 
.6234 	.6207 	.3524 
-.1693 -.1683 

-.1016 -.1007 -.0683 

-.1341 -.1312 -.0783 

-.1649 -.1637 -.0886 

-.1219 -.1192 -.0745 
.1961 	.1896 	.1231 
-.0803 -.0797 -.0436 

-.0172 -.1050 -.0707 
.1483 	.1435 	.1060 

.0069 

	

.0195 	.0079 	.0040 

	

.0083 	.0036 	.0019 

	

.0075 	.0036 	.0019 
-.0202 -.0080 -.0041 

	

.0069 	.0034 	.0018 
-.0156 -.0069 -.0037 

.0068 

.0204 

.0089 

.0081 
-.0214 

.0074 
-.0165 

Case5 

X= 9Y=12 

-.0197 

-.0966 

.2455 
-.0609 

-.0504 

-.0551 

-.0603 
-.0532 

.0883 

-.0297 
-.0521 

.0797 



Table 7.4 	222 
3 Storeys & 3 Bays-- Unit Rotation at range 23a 
Hinge 	Case 1 	Case 2 	Case 3 	Case 4 	Case 5 Lcments 

X=.17J,Y=12 

.1079 

.0224 

-.0609 

.2522 

-.0609 
-.0538 

.0910 

-.0595 

-.0609 

.0299 

-.0589 

-.0073 

-.0042 

X13b 	.2949 
X23b 	.0613 
X33b 	-.1698  

X23a 	.6718 
X33 a 	-.1507 
X13c 	-.1298 

	

X23c 	.2170 

	

X330 	-.1647 

	

X430 	-.1712 

	

X

X12b 	.0636 
22b 	-.0116  

X32b 	-.1539 
X22a 	- .0465 
X32a 	.0112 
X120 	.0091 
X220 	-.0264  
Xllb 	-.0086 

6.7 

.2935 

.0606 

-.1693 

.6682 

-.1507 

-.1255 

.2104 

-.1630 

-.1685 

.0620 

-.0123 

-.1515 

-.0450 

.0110 

.0083 

-.0252 

-.0083 

	

.2922 	. 1579 
• 

	

.0599 	.0328 
-.1688 	-.0898 

	

.6647 	.3663 
-.1507 	-.0835 
-.1214-.0758 
.2041 	.1283 

	

-.1613 	-.0873 

	

-.1659 	-.0899 

• .0605 	.0411 
-.0129 

	

-.1492 	-.0854 

	

-.0436 	-.0150 

	

.0108 	.0034 
• 

	

.0076 	.0036 

	

-.0241 	- 0036 

	

-.0080 	e•N 



Table 7.5 223 
3 Storeyes & 3 Bays-- Unit 
Hinge 	Case 1 	Case 2 
Moments X=§,Y....4: 

X13b -.2120 -.2113 

X23b .3769 .3746 
X33b -.1025 -.1016 

X235 -.1507 -.1507 
X33a .6718 .6682 

Xl3c -.1712 -.1685 

X230 -.1647 -.1629 

X330 .2170 .2104 

X430 -.1298 -.1255 

Xl2b -.1419 -.1397 

X22b .1068 .1033 

X32b -.0979 -.0948 -. 
X22a .0112 .0110 

X32a -.0465 -.0450 

X320 -.0264 -.0252 

X420 .0091 .0083 

X21b -.0138 -.0131 

on at Hinge33a 

Case 4 	Case5 
4: X4,Y=8: X=f-4Y=12 

-.1163 -.0802 

	

.2084 	.1443 
-.0683 -.0503 

-.0835 -.0578 

	

.6647 	.3663 
-.0899 -.0609 

-.0873 -.0595 

	

.1283 	.0910 
-.0758 -.0538 

-.0813 -.0571 

	

.0722 	.0537 
-.0648 -.0438 

-.0150 -.0073 

-.0086 -.0042 
.0037 

Rotati 

Case 3 
X;1, ŷ   

-.2107 

.3725 
-.1007 

-.1507 

.6646 

-.1659 

-.1613 

.2041 

-.1214 
-.1375 

.1000 

0920 

0108 

0436 

0241 

0076 

-.0125 -40050 -.0026 



at Hinge 

Case 4 
x=g, 

224 
13e 

Case 5 

Table 7.6 

Days---Unit Rotation 
1 	Case 2 	Case 3 

X=1,Y=4 
.0073 

-.0839 

-.1341 

-.1255 

-.1685 

.6634 
-.1213 

-.1708 

-.1392 

.1255 

-.09,-6 

-.1014 

.0537 

.0170 

-.0516 

.0328 

.0166 

.0234 

.0102 

.0181 

3 Storeys & 3 
Hinge 	Case 
Moments X=3,Y=4: 

X13b .0072 
X23h -.0855 

X3310 -.1372 

X23a -.1293 
X33a -.1712 
X130 .6829 
X230 -.1294 
X330 -.1737 
X430 -.1444 
X12b .1270 
X22b -.1008 
X32b -.1049 
X22a .0614 
X32a . .0170 
X120 -.0550 
X220 .0349 
X320 .0168 
X420 .0249 
X21b ,0105 
X31b .0192 
X21a -,0076 

.0073 
-.0823 

-.1312 

-.1214 

-.1659 

.0042 

-.0454 

-.0783 

'-.0758 
-.0899 

.6451 .3670 
-.1138 -.0753 
-.1680 -.0906 
-.1343 -.0801 
.1240 .0676 
-.0964 -.0573 
-.0982 -.0671 
.0562 0198 
.0170 #.0039 

-.0484 -.0179 
.0308 0115 
.0164 40044 
.0220 .0082 
.0100 

.0171 .0071 
-.0071 -.0066 

.0029 
-.0308 

-.0551 

-.0538 
-.0609 

.2521 
-.0535 

-.0612 

-.0553 
.0459 

-.0399 
-.0494 
.0097 

-.0008 
.0057 

.0041 

.0037 



Table 
3 Storeyes & 3 Bays----- Un 
Hinge 	Case 1 Case 2 
Moments X4,Y=4: X=1, Y=4 
X13b .0789 .0764 

X33b -.1661 -.1649 

X23a .2170 .2104 

X33a -.1647 -.1629 

X13c -.1294 -.1213 

X23c .7066 .6919 
X330 -.1649 -.1603 
X430 -.1737 -.1708 
X12b .2708 .2665 
X22b .0559 .0552 
X32b -.1570 -.1540 
X22a -.1030 -.0999 
X32a .0317 .0309 

X120 .0244 .0226 

X22c -.0495 -.0471 -. 
X32c .0122 .0117 . 
Xllb -0154 -.0148 -. 
X21e .0086 .0081 

225 

••••••I Om. 

7.7 

it Rotation at Hinge 23c 
Case 3 	Case 4 	Case 5 

X=31Y=8: X.--LY=12 

	

.0740 	.0457 	.0322 
-.1637 -.0886 -.0603 

	

.2041 	.1283 	.0910 
-.1613 -.0873 -.0595 

-.1138 -.0753 -.0535 
.6778 	.3753 	.2562 
-.1559 -.0872 -.0594 
-.1680 -.0906 -.0612 

.2624 .1506 .1044 

	

.0546 	.0312 	.0217 
-.1512 -.0867 -.0596 
...0969 -.0307 -.0146 

	

.0301 	.0093 	.0044 

.0209 	,0084 	.0042 
0448 -.0154 -0075 
0112 

0142 -.0050 
.0077 



Table 7.8 	226  
3 Storeys & 3 Bays--- Unit Rot 	Hine Hin 	 ration at Hie 33c 

	

ge 	Case 1 	Case 2 	Case 3 	Case 4 	Case 5 Moments X=i,Y=4: 	X=1,Y=.4: 	X=I,  Y=.12 Xl3b -.1584 -.1562 -.1541 -.0664 -.0595 
X23b .1381 .1340 .1300 .0825 .0588 
X33b -.1247 -.1219 

	

X23a 	-.1192 -.0745 -.0532 
-.1647 -.1629 -.1613 

	

X33a 	 -.0873 ....0595 
.2170 .2104 .2040 ..1283 .0909 

X13c -.1737 -.1708 -.1680 -.0906 -.0612 
X23c -.1649 -.1603 -.1558 
X33c .7066 	-.0872 -.0594 .6919 	.6778 	.3753 	.2562 X43c -.1294 -.1213 
X12b 	-.1138 -.0753 -.0535 

-.1890 -.1846 -.1803 -.1091 -.0767 
X22b .3328 .3255 .3185 .1939 
X32b -.0683 -.0628 	

.1371 
 -.0577 -.0555 -.0438 X22a .0317 .0309 

	

X32 	.0301 	.0093 	.0043 
a -.1030 -.0998 -.0969 -.0307 -.0146 

X22c .0123 .0117 .0112 .0036 

X320 -.0494 -.0471-40448 -0154 -40075 

Xll 
X42c .0244 .0226 ,0209 .0084 .0042 
b $0129 .0124 .0119 .0042 

X21b -.0255 -.0241 +.0228 -.0089 -.0045 
X31b .0169 .0156 

	

X31a 	.0144 	.0069 	.0037 .0086 	.0081 	.0077 



Table 7.9 	227  
3 Storeys & 3 Bays--- Unit Rotation at Hin 
Hinge 	Case 1 	 ge 43c Case 2 	Case 	3 Moments X--=*,Y,,,4: 6Y= 4. X-1, 

X23b - 
Xl3b -.0857 -.0846 -.0836 

.1370 -.1327 -.1287 
X33b .2030 .1961 .1896 
X23a -.1712 

-.1685 -.1659 
X33a -.1292 -.1255 -.1214 
X1-3c -.1444 -.1392 - 
X23c - 	.1343 

.1737 -.1708 -.1680 
X33c 

-.1294 -.1213 -.1138 
X430 .6828 .6634 
X12b - 	.6451 
X22b .0558 -.0552 -.0546 

-.1950 -.1881 -.1817 
132b .5432 

X420 -.0550 
X21b .0267 
X31b -.0415 
X3la -.0076 

	

.5287 	.5150 
122a .0170 .0170 .0170 
X3 2a 	.0614 	

• 

	

.0587 	.0562 
X12c .0249 .0234 .0220 

. X220 .0168 .0166 0164 
X32c .0349 .0328 

.0308 
-.0516 -.0484 
.0251 	.0237 
-.0389 4.0365 
-.0071 -.0066 

Case 4 	Case 5 
. X=7„;-„Y=8: 
-.0445 -.0300 
-.0800 -.0567 
.1831 .0883 
-.0899 -.0609 
-.0758 - .0538 
-.0801 -.0558 
-.0906 -.0612 
-.0753 -.0535  
.3670 .2521 
-.0293 -.0197 
-.1231 -.0897 
.3240 .2314 
.0039 

.0192 40097 

. 0082 .0041 

.0044 •••••••• 

.0115 .0057 
-.0179 -.0088 
.0096 .0049 
-.0154 -.0079 

em•-•••• 



Ba 
Hinge 	Case 1 
Moments X,---4,Y=-.4 
Xl3b .0449 

X23b -.0460 
1.33b -.0809 

X23a .0637 

X33a -.1419 
X13c .1270 

X23c .2707 
X33c -.1890 

X43c -.0558 
X12b 2.8577 

X22b -.7464 
X32b -.1403 

X22a .4126 
X32a -.2867 

X22c .1062 

X32c -.2213 

X420 -.1252 -. 
Xllb .0599 

X21b -.0663 -. 

X31b -.1150 -. 

3 Storeys & 3 
Table 7.10 

ys --- Unit Rotation at Fringe 12b 
Case 2 	Case 3 	Case 4 	Case 5 
x=ity=4: x=lty=4: x=4,y=8: 
.0438 	.0427 	.0282 	.0204 
-.0452 -.0444 -.0266 -.0187 

-.0803 -.0797 -.0436 -.0297 
.0620 	.0605 	.0411 	.0299 
-.1397 -.1375 -.0813 -.0571 
.1255 	.1240 	

• 

	

.0676 	.0459 .2665 	.2624 	.1506 	.1044 
-.1846 -.1803 -.1091 -.0767 

-.0552 -.0546 -.0293 -.0197 

2.3150 1.9525 2d6532 2.5751 
-.6047 -.5099 -.6872 -.6621 

-.1219 -.1094 -.0735 -.0494 
.3231 	.2637 	.2276 	.1574 
-.2231 -.1809 -.1646 -.1155 
.0801 	,0629 	i0646 	.0463 
-.1718 -.1390 -.1245 
0982 	

-.0867 
-.0802 -.0662 .0448 

0454 	.0358 	.0398 	,0293 
0516 -.0419 -.0388 -..0275 

0901 -.0735 -.0637 -.0438 

228 



Table 7.11 

3 Storeys & 3 Bays---Unit Rotation at Hinge22b 
Hinge 	Case 1 Case 2 	Case 3 	Case 4 M oments 	

X=1;Y=4: X=i;Y=8; I13b -.0479 

X33a 
Xl3c 

X23c 
X33c 

X43 c 
Xl2b 

X22b 
X32b 

X22a 

X32a 

Xl2c 

X32c 

X42c 
Xllb 
X21b 
X31b 

X31a 

X23b .0899 	
-.0272 

 
-.0474 
.0872 
-.1072 

.1033 
-.0986 

.0552 

.3255 
-.1881 
-.6047 

2.4479 
-.4186 

.0680 

.3970 
-.0966 

.1345 
-.1402 

0516 
.0876 
-.1085 

-.0306  

-.0469 

	

.0847 	.0600 	.0444 
-.1050 -.0707 -,0521 

	

.1000 	.0722 	.0537 
-.0964 -.0573 -.0399 

	

.0545 	.0312 	.0217 

	

.3185 	.1939 	.1371 
-.1817 -.1231 -.0897 
-.5099 -.6872 -.6621 

2.0664 2.7633 2.6578 
-.3658 -.3103 -.2255 
.0554 	.0477 	.0329 
.3215 	.2944 	.2073 
-.0783 -.0671 -.0459 
41051 	.1140 	.0832 

-.1109 -.1124 -.0811 

-.0419 -.0388 -.0275 
.0686 	.0830 	.0630 
-.0859 -.0975 -.0735 
-.0242 

229 

Case 5 

X=*,Y=12 

X33b -.1096 

.1068 
-.1008 
.0558 

.3328 
-.1950 

-.7464 
3.0182 

-.4959 
.0871 

.5109 
-.1241 

41794 
-.1851 
-40663 

.1168 
-.1430 
-.0404 

••••••••• 



Table 7.12 	230  
3 Storeys & 3 Bays--- Unit Rotation at Hin 
Hinge 	Case 1 	 32b Case 2 	

ge 
Case 3 	C- se 4 	Case 5 

X13b 
Moments Z---12.-?,Y=4: 	

X=*, 
 

Y=8: 	Y=1') 
X23b -.1060 

-. 791 	-.0781 	-.0772 	-.0430 -.0292 
-.1028 -.1000 -.0695 -.0514 

X33b .1534 .1483 .1435 .1060 
X23a 	 .0797 
X33a -.0979 - 

-.1539 -.1515 -.1492 -.0854 -.0589 
.0948 -.0920 -.0648 

X130 -.1049 -.1014 	
-.0483 

X23c 	-.0982 -.0671 -.0494 
-.1570 -.1540 -.1512 

X330 -.0683 	-.0867 -.0596 
-.0628 -.0577 -.0555 -.0438 

X43c .5432 .5288 .5150 .3241 .2314 
Xl2b -.1403 -.1219 
X22b 	-.1094 -.0735 -.0493 

-.4958 -.4186 -.3658 -.3103 -.2255 

X22a X32b 1.3743 1.1721 1.0344 .8152 .5808 
-.2367 -.1853 -.1511 

X32a 	 -.1303 -.0895 
-.1096 -.0796 -.0602 -.0857 X120 - 	 -.0669 

X220 	• 

	

.1873 	-.1435 	-. 1147 	-.1105 	- 0790 -.2335 -.1825 -.1486 - 
X320 	 .1286 -.0885 -.1613 -.1221 X-.0965 	-.1019 	-. 0 747 420  

	

.2623 	,1958 	1525 	.1691 	.1244 Xllb -.1 	
. 

150 -.0905 -0735 -.0635 -.0438 
X21b -.1430 -.1085 -.0859 -.0975 -.0735 
X31b .1963 .1463 
X31a 	.1138 	.1453 	.1122 

	

.0276 	,0203 	.0157 	.0108 	40057 X110 	.0144 	.0107 	•••• ••• 	
ft•• X410 -.0340 	-.0256 	-.0201 	-.0120 	

am• /ma 

- .0061 



Table 7.13 	231  
3 Storeys & 3 Bays--- Unit Rotation at Hinge 22a 
Hinge 	Case 1 Case 2 	Case 3 Case 4 	Case 5 Moments X.--4,Y=4: X4 

	

X13 	
,Y=4: X=1,Y=4: 	X4, y=12 b -.0171 -.0166 -.0161 

•••• X23a -
.0465 -.0450 -.0436 -.0150 -.0073 

X33a .0112 .0110 .0108 

X130 .0614 .0587.0562 .0198 .0097 
X230 -.1030 -.0999 -.0969 -.0307 -.0146 

X330 .0317 .0309 .0301 .0093 .0044 
X43c .0170 	.0170 	.0170 
X12b .4126 .3231 

	

X22b 	
.2637 	.2276 	.1574 .0871 	• 

	

.0680 	.0554 	.0477 	.0329 
X32b -.2367 -.1853 -.1511 -.1303 -.0895 
X22a 1.0265 	.8199 .6822 
X32a -.2314 	.5527 .3794 

-.1860 	
• 

-.1556 -.1262 -.0869 
X12c -.2015 -.1569 -.1274 -.1150 -.0812 
X22c .3352 .2616 
X32c 	

.2128 	.1941 	.1370 
X420 -.2484 -.1969 -.1625 -.1312 -.0893 

-.2556 -.2012 -.1650 -.1346 -.0912 
Xllb .0976 10764 .0624 .0620 .0450 
X21b -.0168 -.0142 -10124 

X31b -.2301 -1811-.1486 -.1279
- 	 -0883 X21a .0731 -.0572 -.0467 	

. 
 -.0230 -.0111 

X31a ,0175 .0138 .0114 
Xl1c .0177 	

• 
.0137 	.0111 

X210 	 .0063 
,.0443 -.0347 -.0283 -.0137 -.0066 



Xl3b 

X23b 
X33b 
X23a 

X33a 
Xl3c 

X23c 
X330 

X430 
Xl2b 

X22b 

X32b 
X22a 

X32a 

X120 

X22c 

X32c 

X42c 
Xllb 

X21b 
X31b 

X2la 
X3la 

X31c 

X41c 

Table 7.14 
3 Storeys & 3 Bays-- Unit Rotation at 
Hinge 	Case 1 	Hinge 32a 

Case 2 	Case 3 	Case 4 Moments =4 o 	
X-='., Y=8 .0146 	.0143 	.0140 

-.0284 
.0204 

.0109 
-.0450 

.0170 

.0309 
-.0999 
.0587 

-.2231 

.3969 
-.0796 
-.1860 

.8199 
-.2012 
-.1968 

.2616 
-.1569 

-.1688 

.1280 
-.1173 

;0138 

-.0347 
-.0347 

.0137 

-.0294 

.0213 

.0112 
-.0465 

.0170 

.0317 
-.1030 

.0614 
-.2867 

.5109 
-.1096 
-.2314 

1.0265 

-.2556 

-.2484 

.3352 
-.2015 

-.2141 

.1644 
-.1506 

.0175 
-.0732 

-.0443 

.0177 

-.0274 
.0195 
.0180 
-.0436 

.0170 

.0301 
-.0969 

.0562 
-.1809 

.3215 
-.0602 

-.1556 

.6822 
-.1650 

-.1625 

.2128 

-.1274 
-.1386 

.1038 

-.0952 

.0114 
-.0283 
-.0283 

.0110 

-.0137 

-.0137 
.0063 

"' • 

.0093 
-.0307 

.0199 
-.1646 

.2944 
-.0857 
-.1262 

.5527 
-.1346 

-.1312 

.1941 
-.1150 

-.1222 

.1091 
0980 

-.0149 

-.0097 
.0079 

•••••••• 

-.0066 
-.0066 

.0044 
-.0146 

.0097 
-.1155 

.2073 
-.0669 

-.0869 

.3794 
-.0912 
-.0893 

.1370 

-.0812 
-.0857 

.0808 

-.0727 

-.0073 

-.0048 

.0040 

•••• •••• 

Case 5 

X=LY.---12 

•••• •••• 

232 



Table 7.15 
3 Storeys & 3 Bays--- Unit Rotation 
Hinge 	Case 1 Case 2 Case 3 
MomentsX-=-7,Y=4: X-4,Y=4: X=1 
X13 X130 -.0550 -.0516 -.0484 
X230 .0244 .0226 .0209 
X43c .0249 .0234 .0220 
X12b 

X22b -.1241 -.0965 -.0783 
X32b -.1873 -.1435 -.1147 
X22a -.2015 -.1569 -.1274 
X32a -.2556 -.2012 -.1650 

X120 1.0304 .8019 .6505 

X220 -.1980 -.1491 -.1171 - 

X320 -.2603 -.2048 -.1679 -. 

X420 -.2201 -.1703 -.1373 -. 
Xllb .1905 .1506 .1240 
X21b -.1511 -.1181 
X31b 	-.0962 -. 

-.1577 -.1220 -.0985 -. 
X21a .0961 .0741 .0597 

X3la .0255 .0204 .0170 

Xl1c -.0960 -.0745 -.0603 -. 

X210 .0599 .0464 .0374 

X31c .0246 .0195 .0161 .0 

X410 .0432 .0334 .0270 .0 

233 
nge 12c 
4 	Case 5 
=8: X=;•,Y=12 

-.0088 

.0042 

.0041 

.0041 

-.0459 
-.0789 
-.0812 
-.0912 

.3785 
-.0805 

-.0918 
-.0840 

.0688 

-.0598 
-.0741 

.0148 

-.0141 

.0091 

.0065 

at Hi 

Case 

X=LY 
-.0179 

.0084 

.0082 

.0057 

.0671 

.1105 

.1150 

.1346 

.5517 

.1137 
1359 
1208 

.1014 
0859 

1008 

0305 

0058 

0294 
0187 

064 

135 



	

Table 7.16 	234 3 Storeys & 3 Bays--- 	• 
Unit Rotation at Hinge 22c Hinge 	Case 1 	Case 2 	Case 3 	Case 4 	Case 5 Moments X4Y.--

-4: X4,Y=4: 1,Y=4: X13b 	
-.0094 -.0090 X23a 	 -- 

-.0264 -.0252-.0241 -.0086 -.0042 
Xl3c .0349 .0328 .0308 .0115 

X33c 
X230 -.0495 - 	 .0057 

-.0075 
.0471 -.0448 -.0154 

.0123 .0117 .0112 

	

X430 .0168 .0166 .0164 
	

•••••• 

••••••• 

X12b .1062 .0801 .0629 
X22b 	 .0646 	.0463 -.0148 
X32b 	

-.0133 -.0122 	
- 	&m.o.* X22a -.2334 	-.1825 	-. 1485 	-.1286 	-.0885 .3352 	.2616 	

.2128.1941 	.1370 X32a -.2484 	•
-.1968 J...1625 -.1312 

X120 -.1978 -.1491 - 	
-.0893 

1171 -.1137 -.0805 X22c 1.0655 	
. 

.8355 	.6828 	.5639 X320 -.2474 -.1924 - 	
.3846 

.1559 -.1308 -.0891 
X420 -.2603 -.2048 -.1679 .1358 -.0918 

Xllb .4063 .3200 .2625 -.2258 41566 

X21b .0844 .0668 .0551 .0469 .0326 
X31b -.2357 -.1851 
X2la 	-.1514 -.1301 -.0894 

-.1593 -.1243 -.1011 -.0469 -.0222 

.01 

	

X31a .0484 .0379 .0308 	40 .0066 X11c .0442 .0342 
X210 - 	.0275 .0/40 .0068 .0830 -.0646 
X310 .0208 	-.0525 -.0246 -.0117 

.0164 	.0134 	.0058 



Table 7.17 	235  
3 Storeys & 3 Ba 
Hinge 	ys-- Unit Rotation at Hinge 32c 

Ca se 1 	Case 2 	CXase 3 	Case 4 Moments X=LY=4 	 Case 5 

123b -.0166 -.0158 -.0151 

X330 -.0264 -.0252 -.0241 -.0086 
X130 .0168 .0166 .0164 -.0042 

X230 .0123 .0117 .0112 

X330 -.0495 -.0471 -.0448 -.0154 -.0075 
X430 .0349 .0328 .0308 .0115 
X12b -.2213 	-.1718 	- . 	

.0057 
X22b 	1390 -.1245 -.0867 .1794 	

• 

	

.1345 	.1051 X32b - 	 .1140 .0832 
. X220 	
•.1613 -.1221 -0965 -.1019 -.0747 

-.2484 -.1969 -.1625 -.1312 -.0893 
X'320 .3352 .2616 .2128 .1941 
Xl2c -.2603 	 .1370 -.2048 	 • 

-.1679 -.1358 X220 -.2 	 -.0918 
474 -.1924 -.1559 -.1308 -.0891 X320 1.0655 	

.8355 .6828 .5639 .3846 
X420 -.1980 -.1491 -.1171 -.1137 -.0805 

Xllb -.2834 -.2213 -.1801 -.1636 -.1150 
X21b .4999 .3911 .3190 ,;2910 

. 	 .2058 
X31b -1027 -.0756 -.0580 -.0834 -.0657 
X2la .0484 .0378 .0308 .0141 
X31a -.1593 	 .0066 

-.1243 -.1011 -.0470 -.0222 
X210 .0208 .0164 .0134 .0058 

X310 -.0830 -.0647 -.0525 -.0246 -. 
X41c .0442 .0342 .0275 .0140 0117

.0068 



	

Table 7.18 	236  
3 Storeys ez.3 Bays --- Unit Rotation at Hinge 42c 
Hinge 	Case 1 Case 2 
Voment 	Case 3 Case 4 Ca s 	 se 5 

04.••••• 

X=1,Y=4: X=#,  Y=8: 

133b 
X23b .0107 .0099 .0093 

••• -.0227 	
• 

-.0214 -.0202 -.0080 -.0041 
X13c .0249 .0234 .0220 .0082 .0041 

X33c .0244 .0226 .0209 .0084 .0042 

X43 -.0550 -.0516 -.0484 -.0179 -.0088 
b -.1252 -.0981 -.0802 -.0662 -.0449 

X22b -.1851 -.1402 -.1109 -.1124 -.0811 

X32b .2623 .1958 .1525 .1691 .1244 
1220 -.2556 -.2012 -.1650 -.1346 -.0912 
X32a -.2015 -.1569 -.12 
X12c - 	74 -.1150 -.0812 

.2201 -.1703 -.1374 -.1208 
X220 	 -.0840 

-.2603 -.2048 -.1679 -.1358 -.0918 
X32c -.1980 -.1491 -.1171 -.1137 -.0805 
X42c 1.0304 .8018 .6505 

	.5517 .3785 fib -.0837 	• 
-.0663 -.0547 -.0440 -.0296 X21b -.2923 -.2256 

X31b 	-.1815 -.1846 -.1345 .8145 	.6342 	.5148 	.4860 	.3470 
X210 .0255 .0204 .0170 .0058 .0024 

X310 .0961 .0741 ;0596 .0305 .0149 

Xllc .0432 .0334 .0270 .0135 .0065 

	

X21c .0247 .0195 .0161 .0063 
	•••• 

X31c .0550 .0464 .0374 .018 
- 	 7 	.0091 

X41c .0960 .....0745 -.0602 -.0294 -.0141 



3 Storeys 3 Bays---- Unit 
Hinge 

Moments 
Xl2b 
X22b 
X32b 
X22a 
X32a 
X120 
122 

Table 7.19 

Rotation 

Case 3 

X=1,Y=4: 
.0358 
-.0419 
-.0735 

.0624 
-.1386 
.1240 
.2625 

2.37 

-.0663 
-.1150 
.0976 

-.2141 

.1905 

.4063 
X32e -.2834 
142c -;0837 

Xllb 4.2940 
X21b -1.1205 
X31b -.2128 
X21a 	.6317 
X31a -.4360 
X21c 	.1825 
X31c -.3514 
X410 -.1979 

-.2213 -.1801 
-.0663 -.0547 
2.7837 1.9571 
-.7262 -.5102 
-.1481 -.1109 

	

.3977 	.2718 
-.2722 -.1845 

	

.1138 	.0771 
-.2211 -.1510 
-.1259 -.0868  

at Hinge 

Case 4 
X=*,Y=8: 
.0399 
-.0388 
-.0637 
.0620 
-.1222 
.  1014.

.2259 
-.1636 
-.0440 
3.9821 
-1.0313 
-.1108 

.3457 
-.2491 

.1044 
-.1929 
-.1018 

Case 1 	Case 2 
X-4,Y=4: 

.0600 	.0454 
-.0516 

-.0901 

.0764 
-.1688 
.1506 

.3200 

3 

-,0 

llb 

Case 5 
7==12 

-.0275 
-.0438 

-41g 

.0689 

.1566 
-.1150 
-.0296 

.8639 
9934 
0742 
2382 
1744 
0731 
1332 
683 
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Table 7.20 

3 Storeys & 3 Bays--- Unit Rotation at Hinge2lb 

Hinge Case 1 Case 2 Ccse 3 Case 4 Case 5 

Moments X=S,Y=4: X=7, Y=4: X=1,Y=4: X=-2-,Y=8: 

X43c Owe.* 
•••• 0.0 .0237 ••••••••• 

X12b -.0663 -.0516 -.0419 Imar 0.1111 

X22b .1168 .0876 .0686 .0830 .0630 

X32b -.1430 -.1085 -.0859 -.0975 -.0735 

X32a .1644 .1279 .1038 .1091 .0808 

X12c -.1511 -.1181 -.0962 -.0859 -.0598 

X22c .0844 .0668 .0551 .0469 .0326 

X32c .4999 .3912 .3191 .2910 .2058 

X42c -.2923 -.2256 -.1815 -.1846 -.1345 

Xllb -1.1205 -.7263 -.5103 -1.0313 -.9934 

X21b 4.5429 2.9493 2.0759 4.1507 3.9896 

X31b -.7555 -.5110 -.3725 -.4705 -.3409 

X21a .1374 .0868 .0595 .0737 .0504 

X31a .7371 44921 .3340 .4491 .3149 

Xllc -.2019 -.1281 -.0882 -.1051 -.0708 

X31c .3074 .1903 .1280 .1845 .1316 

X410 -.3177 -.1984 -.1346 -.1830 -.1290 



Table 7.21 	239 
3 Storeys & 3 Bays- Unit Rotation At Hin 
Hinge 	Case 1 Case 	

ge 31b 
 2 

Momet 	
Case 3 	Case 4 	Case 5 

X33b 
ns X.- 	

.,Y=4: X-4,Y=4: X:=1,Y=4: X:=4,Y=8: 

-.0165 -.0156 X130 	.0181 	.0171 X330 	.0156 	.0143 
X43c -.0415 -.0389-.0366 -.0154 
X12b -.1150 -.0901 -.0735 - 

	

X2 	 .0637 -.0438 
2b -.1430 -.1085 -.0859 -.0975 -.0735 

X32b .1963 .1463 
X220 	.1138 	.1453 	.1122 -.2301 -.1811 -.1486 
X32a 	 -.1279 -.0883 

-.1506 -.1173 -.0952 -.0980 -.0727 
X12c -.1577 	-.1220 	-.0985 	-.1008 - 0741 

X320 	

. 
X220 -.2357 -.1851 -.1514 -.1301 -.0894 

-.1027 -.0756 -.0580 -.0834 -.0657 
X42c .8145 .6342 .5142 
Xllb 	 .4861 	.3470 

-.2128 -.1481 -.1109 -.1108 -.0742 

X21b -.7555 -.5110 -.3725 -.4705 -.3410 
X31b 2.0673 1.4260 1.0497 1.2332 .8767 
X2la -.3597 -.2260 

	

X310 	-.1540 -41967 -.1347 
7.1732 -.1019 -40650 -.1331 -.1029 

Xlle -.3097 -.1939 -.1318 -.1764 - 
- 	 .1240 

	

X21c .3605 -.2272 -.1554 	
• 

-.1951 -.1336 X310 -.2672 -.1652 

	

X410 	-.1109 -.1633 -.1177 .4557 	.2817 	.1891 	.2768 	.1986 



Table 7.22 	240  
3 Storeys & 3 Bays--- Unit Rotation at Hinge 21a 
Hinge 	Case 1 	Case 2 	Case 3 	Case Moments 4 	Case 5 
X230 

	X=-g-,Y=4: 	X4,  Y=4: X=1,Y=4: X4,Y=8: X=f-,Y=12 
Im• 	 .0077 

Mt. ••pm Xl2b 	-.0241 	-.0185 	-.0148 	AM= •.0 
0.Nr •••• X22a 	-.0732 	-.0572 	-= 	-.0239 	-.0111 X32a 	.0175 	.0138 

Xl2c 	.0961 	.0741.0596 	.0305 	.0149 X220 	-.1593 	-.1243 	-.1011 	-.0470 	-.0222 X32c 	.0484 	.0379 	.0308 	.0141 	.0066 X420 	.0255 	.0204 . 
••• •••0 

or& •.• Xllb 	
. 0170 

.6317 	• 
.3977 	.2717 	.3457 	.2382 X21b 	.1374 	.0868.05 

X31b 	 96 	.0737 	.0504 

	

-.3597 	-.2260 	-.1540 	-.1967 	-.1347 X21a 	1.5781 	1.0141 	.7069 	.8417 	.5754 X3la 	-.3470 	-.2232 	-.1558 	-.1894 	-.1305 Xlle 	-.3509 	-.2262 	-.1581 	-.1891 	-.1301 X21c 	.5728 	.3689 	.2577 	.3136 X310 	-.3897 	- 	 .2165 

	

.2498 	-.1737 	-.2020 	-.1365 X410 	-.4088 	-.2613 	-.1813 	-.2085 	-.1398 



3 Sto 

Hinge 

Momen 

X33c 

Xl2b 

X22b 

X32b 

X22a 

X32a 

Xl2c 

X220 

X32c 
• X42c 

Xllb 

X21b 

X31b 

X21a 

X3la 

Xl1c 

X21c 

X31c 

X410 

Table 7.23 

revs & 3 Bays --- Unit Rotation 

is X=75,Y=4: 

.0077 

.0123 
-.0242 

.0157 

.0114 

-.0466 

.0170 

.0308 

-.1011 

.0596 

-.1845 

.3340 
-.0650 

-.1558 

.7069 

-.1813 

.0201 

-.0404 
.0276 

.0175 
-.0732 

.0255 

.0484 
-.1593 
.0961 

-.4360 

.7871 

-.1732 

.3470 
1.5781 
-.4088 

-.3898 

.5728 

-.3509 

-.2498 -.1737 -.2020 
.3689 	.2577 	.3135 
-.2262 -.1581 -.1891 

.0154 
-.0306 

.0203 

.0138 

-.0572 

.0204 

.0379 

-.1243 

.0741 

-.2722 

.4921 

-.1019 

-.2232 

1.0141 

-.2613 

Case 1 	Case 3 Case 2 
x 5 

	

.0141 	.0066 
-.0469 -.0222 

	

.0305 	.0149 
-.2491 -.1744 

	

.4491 	.3149 
-.1331 -.1029 

-.1894 -.1305 

	

.8417 	.5754 
-.2086 -.1398 

-.1365 

.'2165 

-.0230 -.0111 

-.0138 -.0069 
.0108 

at Hinge 31a 

Case 4 	Case 5 
X4,Y=8: 

••••• Wt.& 

••••••••• 
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Table 7.24 
	242 

3 Storeys & 3 Bays--- Unit Rotation llc 

Hinge Case 1 Case 2 Case 3 Case 4 Case 5 

Moments X= ,Y=4: X4,Y=4: X=1,Y=4: X=*,Y=8: X=*,Y=12 

X32b .0144 	.0107 .0083 •••• Sam,. 

X22a .0177 .0137 .0111 4.0 OEM 

X120 -.0960 -.0745 -.0603 -.0294 -.0141 

X22c .0442 .0342 .0276 .0140 .0068 

X42c .0432 .0334 .0270 .0135 .0065 

X21b -.2019 -.1281 -.0882 -.1051 -.0708 

X31b -.3097 -.1939 -.1318 -.1764 -.1240 

X21a -.3509 -.2262 -.1581 -.1891 -.1301 

X31a -.4088 -.2613 -.1813 -.2086 -.1398 

Xllc 1.7518 1.1226 .7805 .8914 .5986 

X21c -.3870 -.2486 -.1732 -.2000 -.1353 

X31c -.4160 -.2662 -.1848 -.2097 -.1401 

X41c -.3880 -.2492 -.1736 -.2004 -.1355 



Table 7.25 
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3 Storeys & 3 Bays--- Unit Rotation at Hinge 21c 

Hinge 

Moments 

Case 1 	Case 2 	Case 3 	Case 4 	Case 5 

X4,Y=4: X4,Y=4: X=1,Y=4: X=E-,T=8: X4, Y=12 

X12b •••• •••• 	 •••• •••• 
	 -.0092 	

a.* 	 Uwe .011 

X22a -.0443 -.0347 -.0283 -.0137 -.0066 

X12c .0599 .0464 .0374 .0187 .0091 

X22c -.0830 -.0647 -.0525 -.0247 -.0117 

X32c .0208 .0164 .0134 Amil, ONO mmill 

X42c .0247 .0195 .0161 IMO IMO ••• =NM 

Xllb .1825 .1139 .0771 .1044 .0731 

X21b -.0175 -.0123 -.0093 •••• I•••• 040 .•11.0 

X31b -.3605 -.2272 -.1554 -.1951 -.1336 

X21a .5728 .3689 .2577 .3136 .2165 

X31a -.3897 -.2498 -.1737 -.2020 -.1365 

X110 -.3870 -.2486 -.1732 -.2000 -.1353 

X210 1.7505 1.1216 .7798 .8916 .5988 

X31c -.4182 -.2677 -.1859 -.2100 -.1402 

X41c -.4160 -.2661 -.1848 -.2097 -.1401 



3 Storeys & 3 
Hinge 	Case 
Moments X=*, 

X22b -.024 

X32a -.044 
Xl2c .024 
X22c .0208 
X320 -.0830 
X42c .0600 
Xllb -.3514 
X21b .3074 
X31b -.2673 
X21a -.3898 
X31a .5728 
Xilc -.4160 

X21c -.4182 
X310 1.7505 
X41c -.3870 

Table 7.26 	
A 

t Rotation at Hinge 31c 
Case 3 
	

Case 4 	Case 5 
X=4,Y=8: X-4-,Y=12 

-.0149 	
.1011 11•••• 

-.0283 -.0137 -.0066 
.0161 

DOM .111m. 

.0134 

-.0526 -.0247 -.0117 

	

.0374 	.0187 	.0091 
-.1510 -.1930 -.1332 

	

.1279 	.1845 	.1316.  
-.1109 -.1633 -.1177 
-.1737 -.2020 -.1365 

	

.2577 	.3136 	.2165 
-.1848 -.2097 -.1401 
-.1859 -.2100 -.1402 

	

.7798 	.8916 	.5988 
-.1732 -.2000 -.1353 

Bays--_ Uni 

1 Case 2 
Y:=4: X4,Y=4 
8 -.0188 

3 -.0347 
7 	.0195 

.0164 
-.0647 
.0464 
-.2211 

.1903 
-.1652 
-.2498 
.3689 
-.2662 
-.2677 
1.1216 
-.2486 



Table 7.27 	245 

3 Storeys & 3 Bays --- Unit Rotation at Hinge 41c 

Hinge Case 1 Case 2 Case 3 Case 4 Case 5 

Moments X.4,Y=4: X4,Y=4: X=1,Y=4: X.§,Y=8: X=4,Y=12 

X22b .0123 	.0096 ilimr•••• 1..1 INN, 

X32b -.0340 -.0256 -.0201 -.0120 -.0061 

X32a .0177 .0137 .0111 On. rima. W. fel. 

X12c .0432 .0334 .0270 .0135 .0065 

X32c .0442 .0342 .0276 .0140 .0068 

X42c -.0960 -.0745 -.0603 -.0294 -.0141 

Xllb -.1979 -.1259 -.0868 -.1018 -.0683 

X21b -.3177 -.1984 -.1346 -.1830 -.1290- 

X31b .4558 .2817 .1891 .2768 .1986 

X21a -.4088 -.2613 -.1813 -.2086 -.1398 

X31a -.3509 -.2262 -.1581 -.1891 -.1301 

X110 -.3880 -.2492 -.1736 -.2004 -.1355 

X21c -.4160 -.2662 -.1848 -.2097 -.1401 

X31c -.3870 -.2486 -.1732 -.2000 -.1353 

X41c 1.7518 1.1226 .7805 .8914 .5986 
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Table 7.28 

Unit Rotation at Hinge 	22b 

Effect of increasing No. of Storeys 
Hinge 	3 Storeys 	4 Storeys 	5 Storeys 
Moments 	3 Bays 	3 Bays 	3 Bays 

X13b 	-.0479 	-.0479 	-.0479 

X23b .0899 .0899 .0899 

X33b -.1096 -.1096 -.1096 

X33a .1068 .1068 .1068 

X13c -.1008 -.1008 -.1008 

X23c .0558 .0558 .0558 

X33c .3328 .3328 .3328 

X43c -.1950 -.1950 -.1950 

X12b -.7464 -.7464 -.7464 
X22b 3.0182 3.0181 3.0181 

X32b -.4959 -.4958 -.4958 
X22a .0871 .0871 .0871 

X32a .5109 .5108 .5108 

X12c -.1241 -.1241 -.1241 

X32c .1794 .1793 .1793 

X42c -.1851 -.1850 -.1850 

Xllb -.0663 -.0664 -.0664 

X21b .1168 .1175 .1175 

X31b -.1430 -.1438 -.1438 

X31a -.0404 -.0394 -.0394 

Note that the effect of increasing the no. of storeys 
is not significant 



Table 7.29 
Unit Rotation at Hinge 22b 

Effect of increasing No. of Bays 
Hinge 	3 Storeys 	3 Storeys Moments 	3 Bays 	4 Bays X13b 	0479 	-.0379 X23b 	. 0899 	.0720 

X43b 
X33b 	-.1096 

	

X53b 	 -• 0477 
X23a 

	

X33a 	.1068 

	

X43a 	 .1126 
-.1032 X53a 

	

X130 	--.1008 	-. 0971 

	

X230 	.0558 	.0629 

	

X330 	.3328 	.3303 X430 	1950 	-.1539 X530 
X63c 
X12b 	7464- 7522 X22b 	3.0182 	3.•0795 X321-,  -. X42b 	 7412  -. X52b 	 0577  

X22a 	.0871 	.0958 X32a 	. 5109 X42a 	 . 5026 
-. 2341 X52a 

X120 	-.1241 	-. 1198 X220 
X320 

	

.1794 	.1816 X420 	--.1851 	-.1628 X520 -. 0713 X620 
Xlib 	-.0663 	--.0549 X21b 	.1168 	.0972 X31b 	-.1430 X41b 	 -. 0411 

-. 0697 

man 

X5 1 1) 	 •••• •••• X21a 
X31a 	-.0404 X41a 

247 

3 Storeys 
5 Bays 
-. 0315 
.0785 

MM. ••11111 

. 0462 

.1254 
-. 0866 
-. 0497 
-. 0867 
. 0768 
.3421 

-.1353 -.0364  
-. 0483 

7335 
3.1013 
-.7526 

. 	. 0892 
-.1228 
.1168 
.5206 

-. 2061 
-. 0523 
-.1016 
. 2014 

-.1377 
-. 0716 
-. 0749 
-.0432 
.1066 

-. 0331 
-.0437 
-.0632 

,14.1,111110 

X5la 	 10•1114... 
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Table 7.30 

Properties of over-reinforced rectangular beams 

.75 .8074 .3594 .74 .806 .375 `00292. 

.76 .8226 .3623 .822 .376 •00210 

.77 .8377 .3651 .76 .837 .378 .002as 

.78 .8529 .3679 .77 .852 .380 •002e6 

.79 .8682 .3706 .78 .867 .381 •ooz85 

.80 
.81 

.8834 

.8986 
.3733 
.3760 

.79 

.80 
.883 
.898 

.383 

.384 
00283 
.002 8 I 

.82 .9138 .3786 .81 .913 .385 "002.80 

.83 .9291 .3811 .82 .928 .387 •00278 

.84 .9443 .3836 .83 .942 .388 •oo 271 

.85 .9595 .3860 .84 .957 .389 '002-75 

.0 '5977 '3136 '6o '515 '347 •0032.5 

*62. '612.4 ''b172 '61 -6o8 - 35o -60322 

'63 '6. 7z ';2-08 -b z. 'Cza -352 •00319 

.44 • 6420 '32-13 • 63 .637 .354 '06317 

_ 	.65 _ '65C`i '32-77 	'64 
.651 •556 

--.3AW. -00314 lid- 

-66 '6718 '3311 	'65 •66C - 358 '00312 

	___-_67 '68GS '13111i •C‘ .6e1 ,36o .00307 

q.8 '70(7 .3377 •47 '697 '362 '00367 

'69 °7149 .3916 '68 '712 '36-1 '00304 

.76 •7312 '3442 •69 '722 - 366 '00302. 

.7) '7169 '31f73 '70 '368 - -oosoc) 

'72 '762o '3504 '71 '7co '370 •00 098 
75 •7771 .-5.34 '72 '775 .371 '06296

______ 

------- 
*74 '74122 '3561 .73 •-icti '373 002 99 
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CHAPTER 8.  

COhCLUSIOil AND SUGGESTION FOR FULITHER WORK. 

8.1 It is concluded from the behaviour of Prame 1 

(Chapter 6), that over-reinforced I-sections, in a 

prestressed concrete frame can have a brittle type 

failure and such a failure may occur without 

significant warning and before sufficient hinges 

are developed to form a mechanism. 

It is also observed that an I-section is less 

ductile than a corresponding rectangular section. 

The author is of opinion that this is due to the 

buckling of the flange. 

Pietrzykowski(40) observed that full re- 

distribution of moments did not necessarily take 

place in a frame in which the columns are heavily 

loaded. 
The author has concluded from the test results 

of Frames 2 and 3, that adequate rotations to 

enable the frame to attain a state of full re- 

distribution of moments may be obtained in a 

prestressed concrete frame, irrespective of the 

fact that the critical sections be over-reinforced 

or may be subjected to high axial loads, provided 

the frame is reinforced with an adequate amount of 

binders. 

An attempt has been made in appendix 16 to 

calculate the discontinuous rotations at hinges 

that would occur, if a Trilinear Idealization of 

moment curvature relationships is adopted at the 

critical sections of Frame 2. A significant 

difference is not noticed between the results 

obtained and those derived from a bilinear idealization. 



This is due to the low cracking moment at the 

critical section at the foot of the left—hand 

column. 

The presence of internal stresses in a 

frame can appreciably modify the hinge rotations. 

Calculations in respect of frame 2 are presented 

in appendix 17. 	Conclusions of this thesis 

are however, not affected. 	Not only are small 

secondary stresses unavoidable in an actual 

structure, but also it may be pointed out that 

a more severe demand on hinge rotations may 

arise in an actual structure as the sway load is 

decreased. 

8.2 A suggestion for a future design  method. 

Let us assume that depending on further 

research and evidence a design method is found 

to be suitable for applicability to reinforced 

concrete or prestressed concrete framed skeletal 

structures when a complete collapse mechanism is 

about to form, i.e., in which n + 1 critical 

sections attain their moments of resistance under 

the factorized loads, but at all other critical 

sections, the moment is less than their respective 

moments of resistance. 

Let us also assume that at the end of the 

above stage rotations have been calculated in the 

correct sense at the n + 1 hinges (including zero 

rotation at the last hinge). These rotations are 

unique, provided the problem of opening and closing 

of hinges has not arisenl and it is not possible 

to adjust their values. 
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The final problem is therefore to ensure 

that these rotations do take place by the 

adequate provision of binders where necessary. 

Suitable graphs showing the rotational 

capacities of hing.es for different depths 

of neutral axis and different quantities of 

binders with more realistic values than 

presented in (11)  will be useful for this 

purpose. 

In an actual structure, if it is assumed 
* 

that the moments of resistance m and the 'EP 

value at the state of L
1 is the same at all 

critical sections, the rotation at a hinge 

will be found to be -riven by the expression 

Km *L 
EI 

where K is a parameter which determines the 

position of the hinge and 	is a constant 

depending on the dimensions of the frame. 

253 

vi 
putting EI 

the rotation is  

1 
e0 /n1d 

Km*  
M1 	

n 	id 

If the permissible rotation is obtained from 

equationZ.16and provided the value of 'V is the 
same on both sides of the critical section, 

the following inequality must hold good. 



2 x .8 (ea - eci) K1K2 	
1•.••••-.• 

M1 • n1d 
Km*g 	cl 

putting Z = c 

ec2 	e- Ci 	km* . 1 	ecl 
.re

1 	1.6 K1K2 	n1 

m* 	1 	 1 + K. rr- 177-  cg2n1  

If the following values are assumed to 
hold mod 

ni* 	M 

K - .2 

C 	.25 

K1K2  = 5 

+5 

ec2 	62  ecl 	1 1.6 x .25 x . 5 x . 5 

i.e., /- 3 
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6r 
ec2 
e 
c 



In simple cases, the problem reduces to 

a checking of the ratio ec2  . 	Thereafter ec2  
ci 

can be altered by providing the necessary 

quantity of binders. 

8.3 	Suggestions for future work. 

The author has already pointed out that 

a state of full redistribution of moments 

may be achieved in a continuous beam without 

great difficulty, provided support moments are 

reduced with a corresponding increase in span 
moments. 

However, if the overall economy of a 

continuous beam subjected to a uniformly 

distributed load plus live load, depends on a 

minimum volume of steel, it may be necessary 

to redistribute moments in the opposite direction 

i.e., a reduction of span moments may be 

necessary, accompanied by an increase in 

support moments. 

	

It has been shown in appendix 	tnat the 

hinge rotations needed at mid span hinges are 

comparatively higher. Thus Tests on 	3 span 

continuous beams with over-reinforced I-sections 

should be carried out. 
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The author has discussed in Chapter 5, 

the behaviour of a cracked prestressed section. 

A computer programme for a non—linear analysis 

of frames, using the flexibility matrix and 

the equivalent 'EI' method proposed by the 

author, which takes into account the rib 

shortening effect by using the appropriate 'EA' 

value, and the change in the internal geometry 

by the 'effective' centroid method, also sugested 

by the author, and which also includes the effect 

of the change in the external geometry, will be 

extremely useful for further studies of frame 

behaviour. 
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APPENDIX - 2  

SUi;IMARY OF MIX DESIGN  

000 1) Required strength of 6" cubes = 6 1.35  = 4450 p.s.i. 

corresponding strength of 4" cubes = 4450 x 1.04 
4620 p.s.i. 

(Road note No.4, is based on 4" cube strength). 

2) The water cement ratio for the above strength is .55. 

3) For irregular aggregate )0 down and low workability, 

the Aggregate cement ratio using curve N0.3 is 

6.00:1. 

4) The proportioning by weight of all the constituents 
for each cft. of concrete is carried out as follows. 

The volume of one beam & control specimens = 4 oft. 

1 2 3 4 

weight 
in lbs 

spsgr, volume weight of material 
per cft. in lbsi 

---.0.....--.. 
F,a. 240 2.65 1.45 48 
cement 100 3.12 .51 20 

C.A. 360 2,65 2.17 72 

water 55 1,00 .88 11 

5.01 

Say 5.00 cft, 

An addition of. 5% was made in col. 4, to make up 
for wastage. 

The above mix was found to be too wet and the 
aggregate cement ratio actually used was 6.10:1. 
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APFENDIX - 3  

CALCULATION OF CRACKING MW ENT IN BEAg NO. 5 

Section Properties 

A I Z1 Z2 e1 e2 

Grouted 
condition 35.93 250.67 63.8 61.2 3.92 4.08 

Ungrouted 
condition 32.66 234.47 57.0 60.0 4.10 3.90 

FIBRE 1 	Zi 
Avera,;e prestressing force (after losses)in each 

wire = 7560 lbs. 

The stresses due to prestress and dead load, in 

ungrouted condition are as under. 

fmax at fibre 1 = 

x 2 L.2 	5 x 7560 x (5.75-3.90) 	2400 
57 	57 

(a) 	(b) 	(c) 

= 2350 

f min at fibre 2 = a - b + c = 30 

As a first approximation assume that the combined 

stresses due to prestress, dead load and live load 

are as follows. 
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A 
Din TO perbIRBS ADJ.. 	Due TO AppliEb LOAD(4vorrED) 	kesuLTANT 

Due to the applied load, the prestressing force 
will increase, the assessment of which has been made 
as under. 

.4110.611.111•• 	••••••••••••JY.4111.0.- 

Level 1 Level 2 Level 3 
1111.1.0.11•ft.•••.. 

change in stress 305 1213 2120 
change in strain .000061 .000242 .000424 

(Assume E= 5x10 in lb units) 

The resultant force in each tendon is given in the 
following table 

Tendon No. Level Initial strain New strain 	New
force 

1.:8c 2 1 .00435 .00441 
• .•••••••=-••• 

2x7700 
3 2 .00435 .00459 8000 
4 3 .00430 .00472 8300 
5 3 .004275 .00470 8300 

The revised stresses due to prestress, dead load 
& those due to applied load to cause cracking by in—
ducing a resultant tension of 500 lbs./sq. in. at 
fibre 1, are shown in the following diagram. 
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3122 3120 

248 	9s 	 soo 
An improved value of cracking moment is therefore 

= 2988 x 63.8 + 2400 (dead load moment) 
=193400 in lbs. 

The cracking moment according to Illinois bulletin. 
No. 452, is given by the expression 

f tbd./ 9  ( 1 + Fst 4 b 
A f c t 

where f t= 500 lbs./sq. in. 
Fse = 37800 lbs. 

- 

bl = 2.25" 
b = 6" 
Ac = 34 sq. in. (approx) 

On substuting the above values, the cracking 
moment will be found to be 195000 in lbs., which is 
close to the value obtained above. 
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ARE6NDIX -  

CALCILATION OF STRESSES IN ANCHORAGE ZONE. 

  

fi • 5 

 

0 0 

2 2a, 

IlEvATioN 	 x LsecTioN 

Calculation of stresses along AB 

Average stress in the X-section due to each tendon 

242 	157 lbs./sq.in. 

The coefficients for calcul: tins stresses at 

various levels of z, for y = Y4a, as taken from 

Table 1 on page 516 of Guyon's 'Prestressed concrete' 
Vol. 1, are as under, 

Tendon Value of d at z-C1 at z=a/6 at z=a/3 at z=a/2 
No. 

4 & 5 Y4a -2.079 -1.389 -.737 -.262 
3 Y2a(approx) -1.258 .580 -.227 ..425 

1 & 2 1/4a(approx) - .865 . -.387 .,486 -.364  

The worst case is at z=0, where the net tensile 
stress = .2,079 x 314 	1.258 x 157 - .865 x 314 

= .1120 lbs./sq.in. (Negative sign stands for 

tension,) 
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Similarly tensile stresses were calculated 

along CD and EF. 

An average value of 400 lbs./sq.in. was assumed. 

Total tensile force in a length of 4" along z is 

then = 400 x 6 x 4 = 9600 lbs. 

Required area of mild steel = 9600  = .48 sq. in. 20000 

Area actually provided = .392 sq. in. (8 No.'/," 0 M.S. 
Bars) 
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APPENDIX - 5. 

CALCULATION OF LOSSES IN PRESTRESS 

(a) Losses due to elasticity of concrete (as 
applicable to post-tensioned beams, with straight 

cable which are consecutively tensioned). 
If the beam has a total proportion of steel = 'p 

in 'n' cables, area of each cable = 4 where A = 

total area.of concrete. 

Let esl' es2' 	esn' be the respective 

eccentricities. 
Stress in concrete at the level ofex

th
ecable due to 

stress P. in yth cable = pi.p1(1 + sx sy, ) where .   
r2 - 

r = radius of gyration about x axis. The corresponding 
e 

lossinprestressilaxthcable=. 	(1 	
e sx.

2 
 sy  
' r  

where m = modular ratio. 

The total loss of stress when all the cables 
have been tensioned, where both vertical and horizontal 

eccentricities are present 

Li-x.  	+ 
esx   

14 

(where r" is the radius of gyration:  out y axis) 

m 	-6  say, /-'rea of each tendon 30 
5 	.0596 

Net effective area = 32.659'31, 

x moment of inertia about yy ,... 76.67.  
"2 r 	= 2.35. 

moment of inertia about xx = 234.47 
rs2 = 7.17. 

Let tendons 1 
the 

jack be 8000 lbs. 

be 
to 5/consecutively tensioned and let 

A 
desired force in each tendon after transfer from 
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Loss in 1st wire. 

8000 x 6 x .0596 (4 	 ) 
32.659 	( 	

.6(.6 + 1.85 + 3.1 + 3.1) ) 
7.17 

= 415 lbs. 

(b) Losses due to shrinkage. 

After post tensioning, the beams were soon 

grouted. The effect of shrinkage after this Cage 

in the beam, is as if theyvere pretensioned. 

The total shrinkage strain does not cause an 

equal amount of loss of strain in steel because of 

elastic recovery in concrete. 

Loss cf strain in steel = shrinkage train - elastic 

recovery of concrete. 

If loss of steel stress is denoted by 	Lpsh and 

denotes the shrinkage strain, then 

L- of 
where 	

of 
where Sf is change in concrete stress at the level 

of wire. 

Compare this with the following equation which is 

applicable in case of a pre-tensioned beam, to find 

the loss of stress in steel after transfer. 
= pi  - rad 	  

where pt  is the final stress in a wire 

Pi “ 	" initial " 	before transfer. 

f is the concrete stress at the level of wire 

after transfer 

Also 	b 	
t 	

't1-) 	- e  es) 
1.1"/  (rif '1.1) + 	es-4) 

	

where es 	distance of C.a of wires from centroid. 

	

rs 	radius of gyration of wires only. 

Loss of steel stress is found by substituting f Es 
in the above formula in place of pi. 

Pt (B) 

- (c) 



6x5x.0596 
35.93 

- .0498 
say .05 

mp - 

266 

Take the case of Beam No. 5 

A = 35.93 (grouted condition), 
I = 250.67 

r2 	7.15 

rs
2 = (2x.422+2x.922+1.672) 

2 2 m p 

= 4.05 

= .0025 

es  = 1.67, es2=2.78 

e = .42 

. ▪ . Loss in 1st and 2nd wire 

• r x 30.4 x 106  7.15 + 0.5(4.05- .42 x 1.67) 
7.15 + .05 x 11.2+.0025(4.05-2.78) 

• 28.8 x 	x 106 

The value of r has been taken 15 x 10 -6 (44)  

. • . loss of stress = 430 lbs/sq.in. 	(Difference between 

the 26th and 36th 

Loss of force = 430 x .0596 	day). 

say 25 lbs. 

(c) Loss due to creep of concrete  

Creep is proportional to the final stress in 
the concrete. 	The stress in each tendon immediately 

after post tensioning is not the same. An approximate 

expression for calculating the loss due to creep is 

however, obtained as follows, by neglecting this 
difference. 

If pft.  is the stress after creep loss has taken 

place in wire no. 1 and p, is the stress in each 
wire immediately after transfer 

then 

where 

and 

1-Jti  ' 	+ Sf, (neglect the last item 
which represents elastic 

recovery.) 

fl  is the final concrete stress adjacent to wire 
No.1 

is the creep strain per lb per sq. inch. 

or pt  - Tr) 
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Compare this with equation (B) for pretenioned 

beams. 

Also loss of stress 'F)t' in a wire is given by the 

expression 

+-e.es1 
	 4,0 ) 

	

„ 	• -rr Cr 	 + Trii—  Ts  
.°. Loss due to creep 'L

Pc 
 is obtained by substitu- 

ting mE/j in place of'ri and p in place of P  . cI  

/ 
.•. L 	piS.  tr m  OCE-, (s- 	+ e. 

2- + )11 ‘6-  Ec ('c2-4- T.57) + r 	(Y.52:" e) 

Take the case  of Beam 5 
'The specific creep factor at the end of 10 days) 
has been taken as 110 x 10-9, from graphs published 

for similar type of concrete in magazine of Concrete 
Research Vo. 14, No. 40(44) 

mp = .05 	m2p2 . .0025 

	

m = 1.11; x 10-9  x 5 x 106 	.55 
rs
2' 	4,05 	r2 = 7.15 

es 	1.67 	es
2  = 2.78 

0 = ,42 

LPc in 1st and 2nd wire. 

.05 x .55 7.15 +.0275(4.05-2.78)+ .42 x 1.67)  

7.15 + .0275(7.15 + 4.05) + .00075(4.05.2.78)- 
Pt  

Pt x LUZ 
7.46 

.029 t  
255 lbs. 

say .03 Pt  

(Pt  = 8500). 
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APPENDIX - 6. 

CALCULATIONS OF MOMENTS AND ROTATIONS AT  

L and L2  in BEAM NO. 4.  

Calculations at L1 

(a) 	6c 	.8 Cu  = .8 x 6300 = 5040 Ilyt.-:<CI  

(b) Value of e in Wire No. 1. 

Strain attained by wire before locking off 

= 5860 micro strains 	 (A) 

The corresponding force from stress-strain curve 

= 10250 (Fig 3.2). Note that the attained force is 

beyond the initial straight peltion of the s-s curve. 

Strain attained by wire after release of jack 

= 4900 

The corresponding force as read on a st. line 

which is parallel to the initial slope of the s-s curve 

and passes through the point on the s-s curve corres- 

ponding to the strain at 'A' 	= 	8500 US 
Losses due to 

1) elasticity - 320 165  
2) shrinkage 	= 25 110  
3) creep of concrete = 220 4 

4) creep in steel = .04 (8500 - 320) = 328'1J 

Total = 893 say 900, 

Net force at the time of testing the beam = 7600 

corresponding strain i.e.
, 
ep  = .0044 

(c) Values of ep  and ecp  at different levels. 

have been calculated 	pr,0?"-z. 	an average pre- 

These values are tabulated below. Values of e cp 

stressing force after losses and taking the value of 
Ec as 5 x 106. 



WIRE NO. 	 TR VEL e 
P e cp 

1 1 .0044g .00022 
2 1 .00430. .00022 

3 2.0044)n .00034 
4 2 .00451 .00034 
AT CG of lkv.e, = .00028 

tendons 	1-1  .0044 

pal of 

+
v
e 

u p 	
4 "5  
e 

'AVE L OF 	OE TZNDONS 

cp 

.00462 

.00462 

.00474 

.00474 

.00468 
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e and ecp  at various levels. 

Values of strain. 

1) At top flange 

(d) Calculation of Strains.  

The beam is under-reinforced and the state of 
L1 will be attained when a tensile strain of .00735 - Say •602.67 
(value of e + ecp  at C.G. of tendons)) is attained 
by the concrete at the level of C.G. of the tendons. 

(The strain of .00735 corresponds to 1% proof stress 
in steel.) 

Assume n1 = .41 

n1d = 2.36 

d - n1d = 3.39 

.00267 x 2.36 = .00186 
3.37 

corresponding values of O. and I are .645 and .371. 

2) At the level of M.S. Bar in compression 
.00267  
3.39 	1.61 - .00127 

3) At bottom of flange 
. 3.39 
00267  x .36 = .000284, 

C O and 11 at this level are .132 and .336. 

The stress in concrete at this level 

.000284 2 ) 5040 (1 - (1 	.0020 ) ) = 1310 
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4)
00267 At mid height of fillet = 	3.39  x .235 = .000185 

The stress in concrete at this • level = 850 

5) At the level of tendons 1 and 2 

= .00267 x 2.14 = .00168. 
3.39 

Total strain = .00630, total force using the 

idealized curve Fig. 3.4 = 2 x 10050 lbs. 

6) At the level of tendons 3 and 4 

.00267 _  3.39 	x 4.64 = .00366. 

Total strain = .00840, total force usin the 

idealized curve = 2 x 12500 lbs. 

At the level of M.S. Bar at bottom 

'0 267 x 4.89 = .00385 
-5,39 

The strain exceeds the yield point, 

.'. force .049 x 47000 = 2300 lbs. 

Total Tension = 20100 + 25000 + 2300 = 47400 LYE 

Total Compression 	.645 x 6 x 2.36 x 5040 = 46000 

Deduct for reduced with below flange 
A 

(-) .132 x 3.75 x .36 x 5040 	= -900 

by Simpson's rule, force in fillet 
- 727  1 	(3.75 x 1310 + 4 x 12  x 850) 	+470 

Force in M.S.Bar . .049 x 30 x 105x.00127 = 1900 

Total = 47470 1,6s 



Due to concrete under compression 	tendons.)  
2240000 

(-) 3270 
1725 (assume C.G.of  fillet force at 

2.08"below top 

46000 (5.75 - .371 x 2.36) = 

(-) 900 (3.75 - .336 x .36) 
470 (5.75 - 2.08) = 

due to M.S. Bar in compression 	of beam.) 
1900 x 5 	= 	9500 

due to M.S. Bar in tension 
2300 x 1.5 	3450 

due to difference of tensions in H.T. bars 
4900 x 1.25 	= 	6100 
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(g) Moment at L1 (Ta. V.2-2. moments about the C.G. of 

M1 	241505 

241500  - .92 mmax 	262300 

(h) Rotation at L1  

41 x .00186 	= .0323 
2.36 

CALCULATIO.NS AT L2 
STRESS - BLOCK USED IS THAT PRESENTED BY 'BAKER' AT 
ANKARA. FOR DETAILS REFER TO CHAPTER 2. 

Anticipated n2  = .35. 
Ultimate strain at top fibre = .0015(1.0 

.443 , 	cy6= .852 
k2 = .197 
-)( 	6.197 - 4 x .443  - 

	

	= .442 12 - 4 x .443 

2.!2)_ 
.35 - 

.0045 
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<a) Values of strain at trial value of n2  = 4.335 

n2d = 1.93, d n2d = 3.82 

1) at level of M.S.Bar in compression 

1.18 x .0045 	.00275 (above yield point) = 1.93 

force in M.S. Bar = 2300 

2) At the level of tendons 1 and 2 

T: 3  x .0045 = .0060 

Total strain = .01062, the force in the two 

tendons, using the idealized s-s curve = 25000 

3) Similarly force in tendons 3 and 4 	= 25000 

4) Force in M.S. Bar in tension 	= 2300 

(b) Total tension = 52300 lbs. 

(c) Total compression  

Due to concrete under compression 

= .852 x 6 x 1.93 x 5040 = 497000 

Due to MaSi Bar under compression 

= 	2300 

Total 	52000 	lbs. 

neglect the small difference between tension 

and compression. 

Also neglect the difference between anticipated 

n2  and calculated value of n2. 

A revision of calculation by 	changing the 

stress blocirL is not necessary. 

The revised value of ec2 will be found to be .0046. 

(d) Moment at L2  

uQe..4Cfnciet=.497000 (5.75 — .442 x 1.93) = 245000 

Due to M.S.B ar in coapression 2300x5 = 	11500 

262300 = 

Due to M.S. 

iV12 	260000 
1VImax  

tl tension 	2300x1.5 = 3450 

259950  
1 say, 	say 260000 
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(e) Rotation at L2  

= .0323 + 2 x .8 (.0045 — .00186) x .5 x 41 
5.75 

(where .0046 is the value of ec2 recalculated for 
finding the rotation only.) 

.0479 R/NDAMS. 
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APPENDIX - 7. 

MOMENT CURVATURE RELATIONS FROM CURVATURE  
DISTRIBUTION DIAGRAMS. 

Moment curvature relations at the centres of 

6 gauges near the critical section, has been plotted 

in case of Beams 3, 4 and 5 (vide graph 3.11). 
The dimensionless parameters M/M 	and K/K max 	max 

have been graphically connected in the following way. 

Take the example of Beam No.3. 

The ordinate0Yrepresents half the length of 

the beam between the support and the critical section 

at centre. The dotted curves represent the curvature 

distribution at various stages of loading. 

The ordinaiz0Yhas been divided into 10 equal parts 

and it also represents the various fractions of the 

parameter M/
Mmax 

The line `p shows the fractions of the parameter 	 
max 

which have been used for plotting the curvature 

distribution as well as the relation between M 

and K 	 Mmax  
Kmax. 

XO shows the various load stages as a fraction of the 

final load stage (which is L.S.14). OX is of the 

same length as (/and \CZ. 

The centres of gauges 1 to 6 are plotted at their 

respective position on Oyand connected with Xby 

straight lines which are partly shown terminated by 

letters G1, G2 - G6 etc. 

Let it be required to plot the relevant point on the 

M
/Mmax vs 

I( /Kmax curve for gauge No. 3 at L.S.10. 
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Let the horizontal through the point corresponding 

to gauge No. 3, on OY, meet the curvature distri-

bution curve for L.S.10 at the point P. The 

vertical F. through P must pass through the desired 

point. 
Let a vertical line be drawn through the point 

representing L.S.No.10 on X0 and let it cut the 

sloped line joining gauge No. 3 at S. The horizontal 

RS through S then gives the required fraction on the 

ordinate oy representing M/m  

The required point is the intersection of Pq, 

and RS, and is shown by a triangle. All points 

relating to the curve for gauge No. 3, for different 

load stages are shown by small triangles. 

max 
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APPENDIX 9 

CALCULATIONS FOR CONCORDANCy 
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APPENDIX 10 
STEP BY STEP ANALYSIS OF FRAMES 
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FRAMES 18.2. 

XL a 	RELEASE' 

2 
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ROTATION oF PLASTIC HINGE 
AT RELEASE NO 1 = - "h 

6E1 
mh 
3E1 
111 
6E1 

ROTATION OF PLASTIC HINGES 
AT RELEASE NO t = 
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NOTE-THE CHOSEN RELEASE SYSTEM 
INCLUDES ONE LAST HINIGE,(RELEAsE1) 
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APPENDIX 12 

CALCULATION OF ROTATIONS AT COUApSE 
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APPENDIX 13.  

EFFECTIVE  CENTROID OF A SECTION SUBJECTED TO 

PLASTICITY. 

DATA:- Concrete cube strength = 5000 lbs/sq.". 

Assumed cylinder 11 	4000 lbs/sq.". 

Yield stress of M.S.Bars. 47000 lbs/sq.". 
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'002 '003S '00S 

STRAIN 

UNBOUND CONCRETE 
	

PIG 
IN COVER 

= 30.5 x 100  lbs/sq.".  

x 

4 	
 4 

FIG I 

4 3.4 

-/ 
102 	 wim .01 

STRAIN-4. 
BOUND CONCRETE 
WITHIN STIRzups 

The section shown in Fig.1, was analyzed by 

the author, with the aid of the computer of the 

Cement and Concrete, Accociation, using Cranston's 

M-P-0-0 programme. Concrete which was outside 

the zone bound by stirrups as treated as unbound 

and was assumed to have a different stress-strain 

characteristic, as shown in Fig.2. 
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Three cases were investigated in which the 

values of N varied from 0 to 40 and the values 

of x were .75", 1.5" and 3". The M-K curves are 
presented in Figs 3 to 5. It can be noticed that 

in Fig 3, the M-K curve for N=0 is at the top 

and the curve for N=40 is at the bottom. 	The 

opposite is true in Fig 5. In Fig 4, when 

x = 1.5", a crowding of the curves is noticeable 

in the inelastic zone. In fact a crossing over of 

the curves can be seen, the curve for N = 30 being 

within the envelopes for N = 10 and N = 20. 

If N is plotted against K as shown in Figs 

6, 7 and 8, it may be seen that when x = 1.5" 

(. Fig 7), there isa a minimum value of curvature, 
'Least one rase 

" P * dN " = 0, for : 	in the neighbourhood of -  
the ultimate. 

The value of 'x' found above (which is 1.5") 

satisfies the condition of being the effective 

centroid for N = 22, and ltd = 90. 

We observe from Fig 4, that 	for 
a wide range of axial loads., 	the values of moments 
are 	within a close range,f0Y lie Sc:one value of K. 

The author thinks that in a practical case, 

the value of 'x'passessed by calculating the position 

of the neutral axis at the ultimate moment, when 

N = 0, is sufficiently accurate. 	Further verification 

is however necessary. In the particular case investi-

gated, it is true that the depth of the neutral axis 

is 1.5" when N = 0 and M = 86 units,(which is 

approximately the ultimate moment with N = 0). 
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APPENDIX 14.  

RIB SHORTENING IN SECTIONS  SUBJECTED TO 

PLASTICITY.  

289 

M 
/4 

  

FiG 2 

  

Let ABCD be an element of a member, having 

a length equal to unity, along the axis of the 

member. Let 'x' be the distance of the effective 

centroid from the face AD as defined earlier. Let 

the face CD assume a position C'D' by a rotation = 0 
and a translation = -E , under the combined action 

of M and N acting at a distance of 	from AD. 

As the element is of unit thickness, DD' = ec 

and tan 0 = e 	= K 
nd 

'EI' value which is compatible with 
lvi  
tan 0 

'EA' 

N ec (1 - nd )  

The 

M & N is 

The 
It 
	

is 

where 



It is possible to plot E. against N for 

different values of M as shown in Fig.2. The 

'EA' value is then equal to tan OG . 	In a 

rigorous analysis, this value of 'EA' should be 

used in integrals such as 	ds , when 
41  EA 

deformations due to axial thrusts in cracked 

zones have to be taken into account. 
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APPENDIX -15  

Flow DIAGRAM FOR CALCULATING MOmEmT VS CURVATURE  

ROUTINE 
CALCULATES STRESS Iu II.TsTEEL , FOR AGIvEN STRAIN 

ROUTINE 2 
cAlco LATEs STRESS IN M.STEEI TOR A GIVEN STRAW 

RouTiNE 3 
CALcutATES 	FOR A GIVEN VALUE OF 51: 

ROUTINE 4 
CALCULATES OC a6 FOR A GIVEN 'VALUE OF ec. 

ROUTINE 5 
CALCULATES 'eel. FOR coveN VALUES Or plist fl 

ROUTINE 6 
CALCULATES EXTR E ME FIBRE STRESSES DOE TO PRESTRESS & ALSO tec; 

ROUTINE 7 
CALCULATES TOTAL COMPRESSION IN CONCRETE ;TOTAL TENSIOI IN 
TENDONS AND MOMENT of ALL FORCES INCLUDING AO( IAL LOADS ABOUT 
FIBRE 2 — IN RECTAN4ULAR BEAMS 
IT ASSUMES THAT 	& ec  ARE KNOWN 
IT USES ROUTINES 1,2,4 ar- 6 

ROUTINE 8 
AS Iti ROUTINE 7 BUT FOR I SECTIONS 
IT USES ROUTINES 1,2,4,6 s. 7 

RouTtNe 9 
CALCULATES ULTIMATE MOMENT OF ANY SECTION (RECTANQULAE 
AO U5E5 ROUTINES 3,5,7L8  

CONTINUED • 
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A - 2M M u 

- 2M M 	e .Mc  u c 
)(M - Mc) 

a . 	- 0 .Mu  ) (M - 	) , 

APPENDIX 16. 

Let the moments at all releases and at L, be the 

same and be equal to Mu  at collapse (See Fig.1). 

Let the rotations represented by the shaded areas 

be A, B, C etc. 
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Let al  ID, c1  di 	ft  be the ordinates of the unit 

moment diagram at Release 1, correspondins to the 

position of C.Gs of A, B, C, D, E, F, and so on, 

then: 
a M -M u c 	a 	M -41 a1 . 0 = 1 	u c a2 = 3h 	Mu. 	a

3 	5.E. 	M M -Mc 	M u 	a b = 0 	b2 = 1- 
b 	-- = b 	u-  c  1 3h Mu b3 3h Mu  

= 
0 

= 0 

= 0 

IV -IV f M - 
u
M
c  f lu ic  f f1  = 2 	2 = 2-  

3h Mu 	
f
3  = 

1 3h Mu 

Discontinuities caused by shaded areas are given by: 

1 	M-M C 	.11- -C 	c2  = _L-31-1-. 	u 
4u  e 
	c

3 c1 - 3h Mu  

d (Mu-Mc) 	d Mu-Mc  d1 = 1 	d2  - 3h 	Mu 	
d
3  3h Mu  

e (Mu-Mc) e Mu-Mc  
e
1 
 . 1+

3h Mu 	e2 - 3h 	M 	
e

u 	3 

( At Release 
to 

If 	 • 	It 

1 

2 

3 

= -Cc1  + Dd + Ee1 - Ff 1 	1 

=-Aa2+Bb2+Pc2 	2 -Dd+Ee2.-Ff2 

Aa3  - Bb3  - Ff3  
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For the structure assume M = 91000 (average), 

u = 131 units of 10-5  
For releases 1, 2 and 3, assume Mc = 55000, 

c = 11 (units) of 
For the last hinge at L, assume M' = 30000, 

= 10 (units) of 

Note: above assumptions are based on m-k relations 

derived from a computer analysis described in 
Chapter 5. 

2 	36000 	(131x55000-11x91000) A.B.C.D- x  91000 x 55000x 	105 	- .006  

E= .012 
54 	61000 	(131x30000-10x91000) F- 	 -018 2 x  91000 x 30000 x  105 	.  

al = 0 	a2  = .066 	a3  = .934 

b1  = 0 	 b2  = .934 	b3 = .066 

ci  = .066 	c2 = .934 	c3  = 0 

di  = .934 	d2  = .066 	d3  = 0 

e1  =1.132 	 e2 = .132 	e3  = 0 

f1  =2 	f2 .1.776 	f3  = .776 

From above we obtain Rotation at Release 1 = -.017 
It 	II 	2 = -.02 
11 	n 	3 = -.0088 

compare with rotations obtained by bilinear idealization 
which were: 

For release 1 = - .01135 

2 = - .0227 

3 = - .01135 

Note that the difference is not significant. 

10-5  

10-5  
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APPENDIX 12. 

EFFECT OF INTERNAL STRESSES ON ROTATIONS IN FRAME 2. 

Let the distribution of moments in the structure, 

before it is loaded, be as shown as under 

6 

Stage 1. - At this stage, the first hinge forms 

at the fAit of the right-hand column. The applied 

lad W1  is given by 

.4125W1h 	m* sr W = 2.02m* 
1 

The bending moment at the end of this stage is as 

under 

Stage 2. . At this stage, the second hinge forms 

at the top of the right-hand column. The additional 

load W2  is given by 

.512m*  
W2h 	(1  - .783)m* from which W2 	h 

Total load at the end of this stage is 2.532m*  

7711r 

STRUCTVRE 

wry 
& AppliEP LOADS 

L l  
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The distribution of moment at the end of this 

stage is as under:- 

Stage 3. - At this stage, the third hinge forms 

at the centre of the transom. The additonal load 

W
3 

is given by 

40 V13h 
_ 
- (1-:781)m* nr W3  = .381m* 

h 

Total load = 2.913 m* 

The bending moment distribution at the end of -

stage 3 is as under:- 

Stage 4. - At this stage the 4th hinge forms at the 

foot of the left-hand column. The additional load 

W4 is given by 

2W4h =.(1- .826)m* or 114  = .08721  

Total load = 3.000 m* 
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Calculation of Rotations. 

Rotations between any two stages are calculated 
by integrating the bending moent diagram clue to a 
unit moment at the chosen release, and the change 
in the bending moment diagram due to the additional 
load acting. 

This is shown below:- 

Rotations 
at 	Release 3 	RQlease 2 

	
Release 1 

sta'es  
Between 
1 and 2 

  

(4+1x.342+4x.424). 

,512m*h  
El 

OW& 

=-.21 x 2.21rh 

Er =-.107- m*Er 

2 
Be

and3 ' 	3
tween (..i+lx.575).381m*h (-IF14x.575).381m*h 

EI 	 a- 
= -.26x.381m*h 	= -.56x.381v1q4i,  

EI 	b 
' -.099m*h 	= -.214m*h 

Et 	EI 

 

6 
--77
871 6 0 1-.0725m*h 

EI 
Total = -.278m*h 

Er— 

 

Between 
3 and 4 

m' ii -8  -x.087=
i 
 -.232m*h -Llx 087h;ck 3 	,, 	EI 	6 • 	-EA 

-.446m*h 	=-.334m4h  
E 

	

EI 	I  

-.16
2
rh 	-.33m 	-.1(6m*h 

EI 	EI 
Compare with rotations) 
when internal moments 
are nil. 

. 
ASt" 

STRO C TO RE 
E 	t3 



FIG 

Felt 5m. P1A(.10.T1 

APPENDIX 18.  

In modern structures, redistribution may 

be necessary from the central span towards the 

supports, to economize on total quantity of 

steel. Take a continuous beam over three spans, 

with ends fixed (to simulate conditions existing 

in a multispan structure.) 
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36 

to? 
7 Z 

1 	  1. 
COMTINUOU5 BUM OVER 3 SpituS.ENDS EucAsTEirED. 

U.D.L. iN ce•41RE 3pAta 

Let it be required to reduce 7M by 30%. 

Apply unit moment at the centre of !Diddle s7= 

on the released structure and we get a bendins 

moment distribution shown in diagram 1 of Fig. 2. 

t 

z 
FIQ 

P 
2 

PED0TRIOuTt0u momEr47 pcpeug oki T14! SnucTuee 

2 
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Integrate diagram 1 with the distribution 

plastic moment shown in diagram 2. 

P, 	P, 	P. 	3 Pt 
4t‘ ±  EI + 4E1 = 7 Y 

If P is 30% of i'll, then required rotation 
_ 3 1.5th.  Q, 	0, 
7' 9 TT = 4E1 

	

now EI = mnd1 in this case 'fla' = .M 	5 
so EI= 7 wind  nd ec 	 9 	:,  

_ 1.5 m 	
ec Hence required rotation - . 9  • 7/  • 5. nd— 

assuming n = .5 

d and =  

0 =fix .3x '502  -- x25 

= .045 radians which is fairly 
high. 

Note:- It will be difficult to attain this vrlue 

when n = .5, without the use of binders. 

we obtain 
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