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ABSTRACT 

Several models are constructed to describe the pattern 

of purchases of non-durable consumer goods such as cocoa, 

margarine and soap powder. 

The first model is based on the Negative Binomial 

Distribution (NBD) but certain systematic discrepancies 

from this model lead to an examination of other models, 

and in particular to a model based on the logarithmic 

series distribution (LSD). 

The section on the Logarithmic distribution shows 

that within this model the distribution of the number of 

purchases made in any time-period can be completely des-

cribed by just one statistic, namely, the rate of buying 

per buyer, where buyer refers to a member of the popula-

tion who buys at least one unit in the time-period in 

question. 

Prediction formulae are derived for both the Negative 

Binomial and Logarithmic models so that given data for 

some time period it is possible to make forecasts about 

the way the sample will behave in subsequent time-periods. 

Finally a model based on the Beta-Binomial distribu-

tion is proposed to describe the distribution of the number 

of weeks in a time-period in which members of the popula-

tion buy at least one packet. This model gives some 

insight into the reason for the discrepancies from the 

previous models. 
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CHAPTER 1 

THE NEGATIVE BINOMIAL MODEL 

1.1. Introduction. This thesis is concerned with the 

purchases of non-durable consumer goods such as breakfast 

cereals, cocoa, detergents, margarines and soups. The 

most common technique for gathering data about such pur- 

chases is to have a large sample of housewives who keep 

a record every week of what they buy. This sample is 

called a continuous consumer panel. 

Most analyses are made over periods of 1, 4, 12, 13, 

24 or 25 weeks. For any such period of time we know how many 

consumers in the sample bought 0, 1,2 or in general r 

units or packets of the given product. We also know the 

number of occasions and the number of weeks in which each 

member of the sample bought at least one such packet. 

Given this data we would like to be able to predict 

the way in which this sample will behave in subsequent 

periods. Thus we shall attempt to construct a model which 

adequately describes the buying behaviour of the popula- 

tion. 

The model will be constructed to apply when the data 

is stationary; that is without any overall trend from 

one period to the next. However the model can also be 

used as a yardstick when the data is non-stationary. 

The model will usually deal with one brand at a time 

so that no account will be taken of whether or not a 



consumer has also bought one or more other brands in the 

same product-field. 

A more technical restriction for the distribution 

of packets is that the brand must be bought as multiples 

of a single unit pack-size. This restriction ensures 

that the resulting frequency distributions are integral 

valued. Thus if a brand is marketed in two or more pack-

sizes, the distribution of packets for each pack-size is 

analysed separately. 

1.2.  The Negative Binomial model 

The major portion of this thesis will be concerned 

with the distribution of packets or purchases. The dis-

tributions of occasions and 'weeks' will not be considered 

until Chapter 10. Ehrenberg (1959) noted the application 

of the Negative Binomial distribution to the analysis of 

stationary consumer purchasing over successive equal time-

periods. He postulated the following compound Poisson 

model:- 

(i) Purchases of a given consumer in successive 

time-periods are independent and follow a Poisson 

distribution with a constant mean 

(ii) The average long-run rates of buying of diff-

erent consumers should differ, the distribution 

being a Gamma distribution (strictly 



speaking a Pearson type III distribution). 

This model is best illustrated diagrammatically. 
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NBD is used here (and throughout the thesis) as an abbre-

viation for Negative Binomial Distribution. 

If this model is applicable, the distribution of 

purchases in one time-period will follow a NBD. Note 

that the converse of this statement is not true. 

1.3 The Negative Binomial Distribution 

The Negative Binomial distribution is a 2-parameter 

discrete distribution which has many useful applications. 

The probability of observing any non-negative integer 

r is given by 
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(1  111)-k e (k+1  
m

m 
kl 	r! ri(k ‘+k1

r  

The two parameters are the mean  m and the exponent  

k. It is also common to refer to m as the scale  parameter 

and k as the shape  parameter. 

It is often convenient to use instead of m the 

parameter a = m/k. 

Then F = (1+a)-k  r4  ck+1  ( a 	1 r 
r 	r: 144(k 	`l+a )  

The distribution has one mode, which is at zero for 

the fairly small values of m and k which occur with 

consumer purchasing data, and then the distribution is 

reverse J-shaped. 

The variance of the distribution is 

m(1 + m/k) = m(l+a). 

The NBD can be fitted to an observed consumer pur-

chasing distribution by equating theoretical and observed 

means and proportion of zeros. 
A 
M = sample mean = x 
w. 
k is the root of 

(1 + m/k)-k  = 1 - b where b is the observed propor- 

tion of buyers in the particular 

time-period. 

= f
o/N where N is sample size, and fo  

is the number of non-buyers. 

The NBD was fitted to a large number of consumer 



purchasing distributions and a good fit was obtained in 

most cases. A typical fit is shown in Table lb. 

Table lb  

A typical example of the fit of a NBD 

Number 
of 

Units 
Bought 

Frequencies Number Frequencies 

Observed Theoretical 
of 

Units 
Bought 

Observed Theoretical 

0 1612 1612 10 6 4.8 

1 164 156.9 11 3 3.8 

2 71 74.0 12 3 2.9 

3 47 44.2 13 5 2.3 

4 28 29.2 14 0 1.8 

5 17 20.3 15-18 2 4.4 

6 12 14.7 19-22 3 1.8 

7 12 10.7 23-26 3 0.8 

8 5 8.2 27+ 0 0.9 

9 7 6.2 

m = 0.636 	k . 0.115 	a . 5.53 

s = 2.12 	,/m(l+a) = 2.04 

The data were taken from a 2000 household sample over 

26 weeks. 

The sample standard deviation was compared with the 

theoretical value ,/m(l+a) to test goodness of fit. For 

most distributions there is good agreement. 
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1.4 Other developments  

In two later papers (1963, 1964) Ehrenberg deals 

with the prediction of the proportion of buyers over a 

longer period and also with repeat buying. 

Suppose that we have detailed sales data for some 

time-period. We need only 2 statistics from this infor- 

mation to fit a NBD, namely, 

b = proportion of buyers in that period 

m = mean rate of purchasing in that period per 

informant. 

Estimate m = observed mean 

Estimate k by solving 

(1 + m/k)-k  = 1 - b. 

Buying over a longer period. We will define the market 

penetration to be the proportion of buyers in the rele-

vant time-period. Given information about a unit time-

period the stochastic model enables us to predict what 

will happen in a time-period c times as long. In parti-

cular it is easy to predict what the market penetration 

will be in the longer period. 

Under stationary conditions the average quantity 

bought in the longer period is given by 

m = cm 

The shape parameter k remains constant so that 

kc =k. 



This parameter k is an intrinsic property of the 

population sampled. When the time period changes the 

mean of the underlying Gamma distribution changes prop-

ortionately but the second parameter k does not change. 

The penetration be  in the longer period is given 

by 
m 	-k 

1 - be 
= (a. 	c/

kc
) c 

(1 + F)-k  

The predicted values of be  were compared with 

the observed values for a variety of brands over diff-

erent time-periods and good agreement was found under 

stationary conditions. 

Repeat-Buying. If we consider buying activity over 

two successive, equal periods of time, the population 

can be divided into the 4 sub-groups set out in Table 

lc. 

TABLE is  

Buying  activity in two successive time-periods  

Definition 	1st Period 	2nd Period 

Lost Buyers 	 0 

Repeat Buyers 

New Buyers 	0 

Non-Buyers 	0 	0 

A 	indicates the purchase of at least one unit. 



- 

We will use small letters to denote quantities in 

the first period and capital letters to denote quantities 

in the combined period which is twice as long. 

In this longer period we also have an NBD with K = k 

M = 2m A = 2a. 

\-M/A Also B 	1 - (1+A) 

= 1 - (1+2a)-m/a  

Denote the proportions of repeat, lost and new 

buyers by bR, bL, and bN  respectively. 

B = bR + bL + bN 

b = bR  + bL. 

On the stationarity assumption bL  = bN. 

bL bN = B b 

(1+a)-k 	(1+2a)-k  

bR = 2b -B 

= 1 - 2(1+a)-k  + (1+2a)-k  

Good agreement was found between the observed and pre-

dieted values of bR, bL. 
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1.5 General Theory of the NBD  

As the NBD will appear throughout the thesis we 

present an account of the relevant aspects of its theory. 

The NBD has a long history. According to 1. Tod-

hunter's 'history' the earliest general statement of 

the NBD was given by Montmort in 1714. This is at al-

most exactly the same time as the first known derivation 

of the binomial distribution which is ascribed to Jakob 

Bernoulli - 'ArsConjectandi' (1713). Other pioneers 

in the investigation of the NBD were Yule (1910), 

McKendrick (1914) and Polya(1923). 

Reviews of the distribution are given by BartMo 

(1961) and Gurland (1959). 

The NBD can be obtained by expanding the function 

( 	)k r ,
I 	

m 1-k 
`m+k 	L - m+ki 	- (1 	r1-2)-k  [1 	m  m+k 

Thus the p.g.f. is (1 + 111)-k  [1 - mt  j-k  m+k 

t 

	

The m.g.f. is (1 + 	[1 - 1219-1-k  m+k 

Thus the c.g.f. is -k log (1+ 	-k log[l - 

= 4k log k k log [m+k - met] 

met  

m+kJ 

= -k log [1 - /t - ,N.  
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Then the first 4 cumulants are 

k1 = m 

k2 	m(1 + 

k
3 	

m(1 + i) (1 + 2m) 

m k = m(1 + V) (1 4.  6k.  + 6m2)  

Notice that k2 > k1 whereas for the ordinary Binomial 

k
2 
 < k

1 
 and for the Poisson k

2 
= k

1. 

1.6 Models for the NBD 

The NBD can be derived from several different models, 

only two of which will concern us. 

(1) Compound Poisson If the mean X of a Poisson dis- 

tribution varies randomly according to some probability 

distribution then a compound Poisson distribution results. 

The NBD results if N has a Pearson type III (Gamma) 

distribution. (Greenwood and Yule (1920)). 

The need for such a compound Poisson distribution 

first arose in connection with accident figures. Thus 

Kendall and Stuart (p.129) give some accident figures 

for which the Poisson distribution gives a bad fit 

but the NBD gives a good fit. A plausible reason for 

this is that liability to accident varies from person 

to person, and this leads naturally to the concept of 

k2  
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accident proneness. 

We will derive the NBD in the context of consumer 

purchasing. 

We suppose that each consumer makes Poisson purchases 

in successive (equal) time periods with an average rate 

of buying X. We will also suppose that 2 varies from 

person to person and is distributed as 

dF - 1  dX e-?/a Xk-1 	0 < X < aD 
ak  r-1(k) 

a > 0 

[Note: The Pearson type III distribution is obtained 

from the Gamma distribution dF 	1  e-x xk-1  dx 

by putting x = x/a]. 

Thus in a particIar time period the proportion of 

people buying'r units is given by 

co 

1 	X 	e 	 e-X/a k-1 -X  

0 
k 	 -.-r 
a 1-4(k) 

(1+ark 
k)
r4  	

`
(k+j)  ( 

l+' 
 )j 

4(  This is the NBD 

where a = m/k. 

(2) Generalised Poisson Quenouille (1949), following 

Luders (1934), has given another derivation which will 

be discussed more fully later on in the thesis. 

If the number of bacterial colonies per field 

follows a Poisson distribution and the number of bac-

teria per colony follows a logarithmic distribution, 
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then the distribution of bacteria per field follows a 

NBD. 

Let the number of colonies per field follow a Poisson 

distribution mean µ. Then its probability generating 

function is given by 

G (t) = exp -{p..(t-1)} 

Let the number of bacteria per colony follow a Log- 

arithmic distribution with parameter q. (This distribution 

1 	qr) is obtained by expanding -1n(1-q). Thus Pr ln(1-q) r 

Its p.g.f. is given by 
ln G2(t) - 1171 
(
711U7 

Then it can be shown (e.g. Feller) that the number 

of bacteria per field has the compound generating function 

G1(G2
(t)) = G3

(t) 

Putting k = -µ/ln(1-q) 

a = q/(1-q). 

we get G3(t) = (1+a)-k  [1. 	1+a 1 - 
	
t]
-k which is the p.g.f. 

of the NBD. 

There are two other well-established models which 

have not been considered in this thesis. Inverse Binomial 

sampling, which is the most widely known model, was dis-

cussed by Yule (1910). Most textbooks include an account 

of this model (e.g. Kendall and Stuart p.130) but it does 

not appear to be relevant. 



The NBD can also be derived from a model of population 

growth in which there are constant rates of birth and 

death per individual and a constant rate of immigration. 

Williamson and Bretherton (1964) give a good precis of 

Kendall's original paper (1949). A similar model was 

considered by Yule (1924), Furry (1939) and McKendrick 

(1914). 

1.7. Methods of estimating  the NBD parameters 

The maximum likelihood estimates of m,k were derived 

by Fisher (1941). 
A 
M = sample mean = x 

k is the root of 
co 	r-1 

N log (1 + M/k) = > 	f 	1 
r 	k+i 

r=1 	i=o 

Anscombe (1950) gives the variances of these estimate' 

for large samples as 
A 

Var m = (m + m2/k)/N = m(l+a)/N 

Var k 
t

k(k+1)  

N(TiTic)2  

00 1 j- • 
(-1-  ) (-11-) j=2 j+1 m+k  
( jk+-1) 

Cov (m,k) 	0. 

Because the maximum likelihood equation for k is 

hard to solve several other methods of estimation have 

been proposed. 

(1) Method of moments. Estimate m,k by equating 
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observed and theoretical means and variances. 

A  
M = X 1(a. + A—) = S2 

(2) Zero frequency. Estimate k from the observed 

proportion of zeros. 
A 

-k 
Po = fo/N = (1+ —h,)  

k 

This equation can easily be solved by iteration 

especially if written as a - c log(l+a) = 0 

where c = -m/log Po. 

A suitable starting value for the iteration is given by 

k = fl/fo • 

Evans (1953) has prepared a graph in which 	a is 

plotted against log c and hence values of a can be ob-

tained directly. 

Anscombe (1950) gives a table showing the efficiency 

of these two methods for various values of m,k. Generally 

speaking, if the distribution is reverse J-shaped with 

more zeros than ones (as for consumer purchase distribu-

tions) then the zeros method will be very efficient. But 

if the distribution is more symmetric with less zeros 

than ones, then the method of moments has a higher effi-

ciency. 

There is an additional compelling reason for choosing 

the zeros method. For a particular sample, size n, denote 
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the probability that the ith person will buy at least 

once in a specific time-period by pi. Then the expected 

proportion of the sample who buy in this time-period is 

given by 
n 

1=1 

 

P 

 

n 

But for each person the statistic 

T. = 
1 

1 if person buys 

0 if person does not buy 

is an unbiased estimate of pi. 

Thus for the sum of n independent Binomial variates 

we have that 
E T. 
=  the proportion of buyers in the sample = b — 1 1  

is an unbiased estimate of P. Thus b is an unbiased 

estimate of the proportion in the sample who will buy 

in a succeeding equal time-period. 

Thus when we want to makeh 
 predictions about a parti-

cular sample we will fit the NBD by zeros. But if we 

wanted to make predictions about the whole population 

then predictions based on maximum likelihood estimates 

will have a smaller variance and the extra effort in 

fitting the distribution might be worthwhile. We will 

only be concerned with predictions for a particular 

sample. 
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1.8 Special Cases of the NBD  

(1) Geometric The recurrence relationship for the NBD 

is 
F

Nf a ) (1 	
ar) 

a-m 
Pr-1.  r 	`l+al  ` 

When a = m (k = 1) 

a 
Pr 1+a r-15  

so that Pr 
1 ( a )r 
1+a `1+al  r > O. 

This is a Geometric distribution with mean a, and 

variance a(l+a). 

(2) Poisson Pr
a  

= (117.0 (1 - a-m) ar r-1 

keep m fixed and let k > OD so that a —> 0. 

	

Then Pr 	P
r-1 

which is the recurrence relation- 

ship for a Poisson distribution. 

	

Pr 	e-m  mr/r! 

Then variance = m(l+a) —> m. 

x (3) Logarithmic P 	(1 a - ar)Pr-1 

Let both m,k tend to zero in such a way that their 

ratio a stays finite. 

1+a 
r1
r "Fr-1 Then P -  --> 	for r > 2. 

But P1 	0 Po. 
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In other words all the probability is concentrated 

in the zero class. Thus we are led to consider the 

conditional distribution of positive integers with the 

zero class missing. Then we find that the relative 

NBD probabilities of observing a positive (non-zero) 

integer tend to the Logarithmic probabilities 

P - 	 ( 	)r 
loge(1+a) '1+al  

1.9 Tabulation of the NBD  

The tabulation of the NBD presents problems because 

the cumulative distribution function cannot be expressed 

as a simple function. However it can be evaluated from 

Pearson's tables of the incomplete Beta function. 

Thus 

OD 
	 m+k 

x=r 
P  x B(k,r+1) 

	
c uk-1(1-u)r  du 

where Px  = (1 + m\-k f-'(k+x) ( m Ix 
ki 	x! r'(k) 

A full account is given by Patil (1960) following 

Pearson and Fieller (1933). 

In addition, Williamson and Bretherton (1964) 

have published tables of the NBD. However Steck (1965) 

in reviewing these tables points out that Pearson's 

tables are more useful. 



CHAPTER 2. Repeat-Buying 

2.1. Amounts bought by repeat  and lost buyers 

We have already derived formulae for the proportions 

of repeat, lost and new buyers in 2 successive equal time- 

periods. We shall now obtain formulae for the amounts 

bought by repeat and lost buyers. 

It seems reasonable to expect the repeat buyers to 

buy at a different (higher) rate than the lost buyers. 

Now the NBD model assumes that the mean rate (A) at 

which people purchase follows a Pearson type III distribution 

k  1 	-Va k-1 dF 	e 	T 	/r(k) 	dA 	0 < A < cm . 

and that the purchases of an individual in successive equal 

time-periods follow a Poisson distribution. 

Consider those people who bought j units in the 

,lst period. The distribution of the mean rates of purchasing 

,r  this subgroup is altered once we know they have bought 
j units. 

Posterior distribution a Prior distribution x Likelihood. 

Likelihood of a person buying j units when he has a 

mean rate of purchasing A a e"-?\  
J. 
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Therefore posterior distribution is given by 

(1)k e-X/a xk-1,oce-X Xi dx  

dF - a 	J.  
oo 	1 

*lc e-X(1 +-) a xj+k-1411  

0 

-X(1+1) a xj+k-1 (1.1.  1)j+k dx  

1-4  (j+k) 

It is interesting to notice that this is also .a 

Pearson type III distribution. In other words the con-

ditional frequency distribution of purchases in any 

period for the subgroup who bought j units in the first 

period is also a NBD. This valuable property of the NBD 

is considered in more detail by Chatfield, Ehrenberg and 

Goodhardt (1966). 

Now the prob (0 units in 2nd periodlj units in 1st 

period) 

-x(1+1) 00 e 	a  XJ+k-1  (1+-1")j+k e  -X  dX a  X  

0 < X < oo 

dX 



(1 + i)J-Fk ri(j 	k)  
= 	 

(2 + 	r' (j  

(1+a )j+k 	P (0 
= '1+2a' 

and P(j) = Prob (j units in 1st period) 

x-k r-4(k+1) = (1+a) 	j: r..qk) 	( 

Thus the mean quantity bought by lost buyers (in the 

1st period) 

111, = 
	 P(01j) P(j) j 

j>1 

(  1  \lc 
- '1+2a' 

00 

E ( 1:2a ! )j rj-t(j+k)  r-4(k) • 
j=1 

j) 
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k _a_ 
= (I1)  1+2a 

 

ak 

(1+a)  k+1 
	

(1+a)  k+1 

This quantity can also be obtained in the following 

easier manner. 

Consider those people who bought 0 units in the first 

period. This subgroup consists of non-buyers in both 

periods and new buyers who buy in the second period but 

not in the first. 

But the purchases in successive time periods are 

independent Poisson variates so that a person whose 

average rate of buying is A will buy A units on 

average in the second period regardless of the fact that 

he bought 0 units in the first period. 

Thus the mean of the quantity bought by this subgroup 

which is also the mean of the quantity bought by the new 

buyers is given by 

mN =  mL 
00 

0 

k 
) e

-A/a A  k-1 -A xe A dA 

 

( k ) 

 

proportion of population who buy 1 unit 

(1+a)R;I 
	

• 



So rate of buying per lost buyer = WL  = mL/bL  

ak(l+a)-(k+1) = 	• 

(1+a) -k  - (1+2a)-k  

ak 
k 

1+2a 

Mean of the quantity bought by repeat buyers in 

1st period - mR  = m - mL  

m [1 - (1+a) (k+11  

Rate of buying per repeat buyer = wR 	N/bR  

m____(1_1  (1+a)-(k+1)) 

1 - 2(1+a)-k  + (1+2a)-k 

Example 	Date from table lb. 

m = 0.636 	b = 0.19/: 	k = 0.115 	a = 5.5D 

0.636  w = rate of buying per buyer - 	3.28 
0.194 



- 29 - 

= 
0.636  

6.53 Li - 	) 0.1151 
 
12.06 

= 1.43 

0.636 1 - 6.53-1.115) = 4.0 
1 - 2 x 6.53-0.115 + 12.06-0.115 

bL  = 6.53-0.115 - 12.06-0.115 = 0.055 

5 bR 	1 - 2 x 6.53-0.115 + 12.06-0.11 	
=  

0.139 

CHECK mL  + mR  = wLbL + WRbR 

= 0.635 	= m as required. 

2.2 Deductions from the  repeat buying formulae 

An inspection of the repeat buying formulae yields 

several simple deductions. In particular we shall be 

interested to see what happens to the formulae as the time 

period changes. 

Thus given data for 1 time-period we can calculate 

m, a, k as before. This enables us to predict repeat-

buying in this and the following equal period. 
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Also for a time period c times as long the 

distribution will theoretically have parameters m , ac, 

Ice  where 

me = cm 

ca 

kc = k 

This enables us to predict repeat-buying in this 

longer period and the following equal longer period. 

Rate  of buying/lost buyer 

We have wL 

 

m 

1+a k  (l+a) r 1 - (----) 
1+2a 

wL 	was 

Table 2a. 

computed for a range of values of 	a, k 

Rate of buying/lost buyer 

0.01 0.1 0.5 

op 1.455-  1.50 1.72 

10 1.42 1.45 1.65 

a 5 1.39 1.41 1.59 

3 1.34 1.37 1.53 

1 1.22 1.22 1.41 
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This table covers the range of values found in practice. 

The following points can be noted:- 

1. wL increases with the length of time-period (that is 

with a) for all values of k. 

2. For k < 0.1 wL is always less than 1.5. 

3. For short time periods
L 
 decreases towards 1. 

4. However for a > 3, TQ 
L is always within 10 per cent 

of the value 

lim 	w 
a-4-0D 

1 - 

Thus this quantity, 

is useful as a good approximation 

greater than 3. 

Table 2b. 

1 k  

although it has no practical meaning, 

for wL 	for values of 	a 

1 k  1 - 

0.01 1.45 

0.1 1.5 

0.5 1.72 

1 2.0 

2 2.66 

5 5.1 



In practice k is rarely greater than 0.15. 

For very small k we find 

  

1 = 
fn 2 

1.44. 
k-►o 1 - (;) 

Thus vaL  is usually within 10 per cent of a quantity 

which ranges from 1.44 to 1.5. 

Thus w = 1.4 is a useful approximation for all 

distributions. 

Rate of buying/repeat buyer 

We will now consider repeat 

m 	Cl - (1+a)-(k+1)]  

buyers. 

wR 
1 - 2(1+a) -k  + (1+2a)-k  

It is easy to show that wR —4. 00 	as a In other CD. 

words Wk  increases monotonically with the length of time 

period. (This is intuitively obvious.) 

Let us look at the rate of increase of wR  compared 

with the rate of increase'of w as the time period increases. 

(1+a)-k+1] 	- (1A-a) -kJ 
1 - 2 (1+a)-k  + (1+2a)-k  

This ratio was computed for various values of a, k. 

Now 
wR/  



Table 2c. lw 
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0.01 	0.1 	0.5 

	

10 	1.22 	1.21 	1.08 

	

5 	1.26 	1.24 	1.14 

a 	3 	1.29 	1.24 	1.16 

	

1 	1.25 	1.2/1 	1.13 

For given k, 
wR  is virtually constant. /w  In other 

words wR and w increase at the same rate compared with 

the rate of increase of time-period. 

For k < 0.1, wR/w is virtually constant at 1.25. 

Now w(2) 	w in double period 

w(1) 	w in single period 

2 Cl - (1+a)-1 

1 - (1+2a)-k  

This function which always lies between 1 and 2 has 

been tabulated for various values of a, k. 

Table 2d. --------- 

w(2)/  

w(1) 

k 

	

0.01 	0.1 	0.5 

	

10 	1.58 	1.64 	1.8 

a 	5 	1.5 	1.52 	1.7 

	

1 	1.24 	1.28 	1.4 



Table 2e. 

of w. 

	

1 	71 per cent 

1.5 	52 

	

2 	42 

	

5 	211.5 

	

10 	18 

	

20 	13.5 

b
L/ 

b L
/b 	The proportion of lost buyers 

decreases monotonically as 

increases. This result is 

intuitively obvious if we remember 

that a higher value of w Means 

that a:smaller proportion of 

buyers:buy a low number of units and 

that it is these people who are more 

likely to be lost buyers. 

The rate of increase of w (and hence wR) varies 

with the value of a. However, in the range of k valid 

for consumer purchase data, that is k < 0.15, it is always 

true that wR will increase at a slower rate than the 

increase in time period. 

Proportion of lost buyers 

We will now look at the proportion of lost buyers. 

Now (1+a)-k - (1+2a) 

1 - (1+a) -k 

For a fixed b (20 per cent) and various values of m 

(and hence w = m/b) we can compute a, k in the usual way bi. 
from m and b. Then we can calculate ''''/b for various values 
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2.3.  Practical results 

The repeat-buying formulae were found to hold for 

a wide variety of brands over different time-periods even 

where a variance discrepancy occurs. Thus over 100 dis-

tributions in product field X were considered (see Aske 

Research (1964. Some small discrepancies were observed 

in the predictions. For example, the observed value of 

wL averaged out at 1.5, as compared to the theoretical 

value of 1.4. This is probably due to some inevitable 

non-stationarity, and in any case the difference is fairly 

small. The other formulae give good predictions. For 

example the mean deviation between observed and theoretical 

values of bR was 10 per cent of bR for bR 
ranging from 

12 per cent to 25 per cent. These predictions were un-

biased. Similarly the mean deviation between observed 

and theoretical values of mR  was 5 per cent of ma  for 
mR  ranging from .01 to over 1. 

Overall the results were very encouraging, and show 

.that the NBD model is a powerful aid to description and 

prediction. 
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2.4 Repeat buying formulae by considering interpurchase 

times. 

We will now show how the repeat-buying formulae can be 

derived by considering interpurchase times rather than 

rates of buying. 

The NBD model assumes that the average rate of buying 

A varies from person to person and follows a Pearson type III 

distribution. 

1 	-A/a k-1 dF 	e 	A 	dA 	0 <A < 	. 

ak r-1(k) 

This means that the mean time between purchases follows 

a distribution given by 

dF = 

 

- 
ya 	-k-1  dy 	where y = 	. 

 

ak (k) 

Suppose the population make Poisson purchases in any 

1 time period. Then the waiting time till the 1st purchase 

for any consumer is exponential. 

Thus for a person whose mean time between purchases is 

y, let time until next purchase be t'. 

Therefore P(t:  > t) = P((No. of purchases by time t) = 0) 

e-t/y.  
=  
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Thus time till next purchase has a cumulative 'dis-

tribution function given by 1 - e-t/y.  Therefore prob- 

ability density function = 1  e-t/Y 

Thus distribution of the times to 1st purchase is 

given by 
00 	1 

ya 
y
-k-1 x 1 e-t/y dy  

ak  ri(k) 

1 	 dt y 
-.o 

°° -( +0X 1 	e  `a. k dX 	dt (putting X=1) 
a k 1-100  

(i + t)-(k+1)  F-1(k+1) 	dt 

a k  ri(k) 

+ t)-(k+1) 	dt 

ak 

Consider 2 time-periods (0,t), (t, 2t). 

Then b = Proportion of buyers who buy in the period we 

are considering, which is (0,t) 

Proportion of people who buy for the first time in 

(0,t) 

bL = bN= proportion of buyers who buy for the first time 

in (t,2t). 

dF= 
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Thus 

2t 

S k + )
-(k+1)

/ak dt 
t  

) a— 
ir  K(t,  + t) k 1/ 
	dt 

0 

Tt 

t 

[(1-  + t) i t 

Standardise times so that t = 1 

Then (bN) (1 + 2a)-k  - (1 + ark  

But 	(b) = 1 - (1-ta)-k  

t(bN) = .:(bL) 	(1+a)-k  - (1+2a)-k  

as obtained previously. 

Then bR proportion of buyers who buy in both 

(0,t) and (t,2t) 

b bL 

1 	2(1+a)-k  + (1+2a)-k 

2  (b) 	(1 + a) 	- 1 
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Consider a person whose mean time is y. 

Then Prob (j purchases in (0, t)) 

t 
e 
-thr ( y ) 

= as he makes Poisson purchases. 

Thus P(j purchases in (0, t) and 0 purchases in (t, 2t)) 

t 
-t/y 	e

-t y 

m
L  = mm  = mean amount bought by lost buyers 

0 

	
Ej>1 
	P( j and Of y) J7 	P(y) dy 

00 -e 2t/y (t)3  
—7yr  

j: 

1 
P(y) dy 

OD 	 1 

	

e-2t/y et/y t 	ya 

	

'Si' 	
e- 	y-k-1  y. 

o 	 a'r(k) 

co 
	-(Ja-:+t) 

1 	e y t  y-k-2 dy 

a r4(k) 0 
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co 	1 +t)X 
akt  ii(k) 	e a 	X dX putting X = Y )  

t (-6:1  + t)-(k+1 	r4 (k+i) 
= --ak ri(k)) 

But m = mean amount bought by all buyers 

	

E P(jly) J 	P(y)dy 
0 

co 	 1 

S 
= t  1  

Y  ak  r(k) 
e_ ya 

Y
-k-1 dy 

o 

op 

i 	
t  

ak  r (k) 
e-X/a Xk dX (putting X = 0 

o 

a.t  1-4 (k+i)  
1.4(k) 

mL/m = 	+ t)-k+1) 

a 

(14-8.0-(k+1) 

0 



Standardise times so that t = 1 

Then mL  = m(l+a (k+1) - 	as obtained previously. 

tsse-- 
New and Lost Buyers. The consideration of imisempmemismise 
Ufteip also enables us to prove a relationship which has 

so far been assumed without proof, namely that 

ti
qnew buyers) 3 _ 	[P (lost buyers-).1 

not only for the whole population, but also for any sample. 

Consider 2 time periods (0,t)(t,2t) and a person 

whose mean interpurchase time is y. Then because he makes 

Poisson purchases 

P(0,0) = Prob (he buys 0 units in 1st and 2nd periods) 
-2t/y 

= e 

P(0,1) = Prob (0 units in 1st period, at least 1 in 2nd 

period) 

e
-t/y 

(1 e
-t/y 

p(1,0). 

Let the actual sample be such that the mean time between 

purchases has a distribution given by 

dF = f(y)dy 

Then cliqlost buyers 	
= fe-t/y(l_e-t/y)f(y)dy 

= tti2(new buyers)] 

Thus the proportion of new and lost buyers is expected 

to be the same whatever the sample and whatever the 

Underlying distribution provided that the consumers make 

Poisson purchases, 
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2.5. The Bivariate NBD 

G. Goodhardt(1965) has pointed out that the repeat 

buying formulae can be derived in yet another way by 

considering the bivariate NBD. 

The multivariate NBD has been considered by Arbous 

and Kerrich (1951) and Bates and Neyman (1952). It 

possesses some remarkable properties similar to those of 

the multivariate normal distribution. In particular, 

it yields another multivariate NBD if 'cut' in a number 

of ways. For example we have already seen that the 

conditional distribution in some time period for those 

people who bought r units in some previous equal time 

period is itself a NBD with mean (k+r) (1+a) and expon-

ent (k+r). Here a,k are the NBD parameters in the 

previous time-period. It is of interest to notice that 

this conditional mean can be rewritten as m + (r-m) (1+a) 

in which case it can be seen that the regression curve 

of the conditional mean on the amount bought is linear. 

a 
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Before considering the bivariate NBD we will obtain 

some general results for the generating functions of 

multivariate distributions. 

Consider a time period T. Let X be the random 

variable denoting the number of purchases in time T. 

Suppose T is subdivided into 	shorted time periods 

t1—V t,,  ( 2:ti  = T). Let [Xi —X(1 be the purchases in 

each of the sub-periods Ca: Xi  = Xil . 

We consider the case where the conditional distribution 

of LXl ' ..X,I)  I given X = r is a multinc*ial distribution 
., with Pi = t 1/ T' 

This is certainly truefor the stationary compound 

Poisson model of consumer purchase, 

Lemma 1. If X has p.g.f. g(u; T) then [X,...X ] 	is 

a multivariate distribution with p.g.f. 

h(uly2...ut  ; tl, 	) 

quit.  
.5( 

	1 T). 	(For proof see Feller 
T 	

(1957)). 

We will only consider the case 	= 2 and in particular 

Case 1. 	t1 	1, t2  = T 	1. 

u, + (T-1)u2  
h(u1u2; 1, T 	1) = g( 

T 
T) 
	

GD 
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Case 2. 	t1 	1, 	= 1 

h(ulu2; 1, 1) 
ul+u2  

2 
2) 

Lemma 2. 	If the random variable [X1 X2'1 has p.g.f. 

h(ul  u2) then the conditional distribution of X1  given 

X2 = 0 has p.g.f. 

h(ul , 0) 
((111(X2  = 0) = 	---- 

h(1, 0) 

Lemma 3. 	The marginal distribution of X1  has 

p.g.f. h(ul, 1). 

Now for case 1 the marginal distribution of X1 is 

the distribution of purchases in unit time and its p.g.f. 

can be denoted by g(ul, 1) 

and 	g(ul!  1) = h(ul, 1 ; 1, T-1) 

= 
	ul+T-1 	

T) 

Bivariate_ NBD. We now suppose that buying in a certain time 

period can be represented by a NBD. 

The NBD is given by 

\-k g(u; T) = (1 + aT  - aTu) 



- 	- 

 

(-0 

 

= 
aT 	-k 

+ aT  - 	1 + T-11I From g(u, 1) 

  

aT 	aT + T- u1] 

= 	+ a - a1  u1] 
 -k since aT  = T. 

All the repeat buying formulae follow from 

u, 
h(u 	0) 	g(71-L.  ; 2) 

11(1, 0) ; 2) 

(1 + 2a1  - 

(1 + ai) -k 

For example, the cumulant generating function of X1 

given X2 = 0 is given by 	-k 

(1 + 2a1  - a1e 1) 
-k 

( 1 + al) 

ul 	-k 
(1+2a1  - a1(1+111+-ffT  + 	)) 

(1 + ai)-k  

(1+al)-k  1:
a1  

- " 71173: 

u2  
+ 2--r + 

1 + al) -k 

C (u x2 = 0) 
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Then the mean of X1 is the coefficient of u1 

k a1 

1 + a1 

mL Now the mean of Y 1 
= ------27  (I+a1) 

where 	= mean of quantity bought by lost buyers 

(1 + a1)-k=  proportion of people for whom X2  = 0. 

Also k al = m = mean of full distribution, 

therefore m
L 	1 	as previously obtained. 
m 	(1 + al)k+1  
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CHAPTER 3 

Problems Arising 

3.1 Introduction 

We have seen that the NBD model generally gives 

a good fit and enables us to make useful predictions. 

However it soon became apparent that though the NBD 

fits well in most respects there are certain systematic 

discrepancies. The first such discrepancy is the one 

which was the starting point for much of the work in 

this thesis. It is the 'variance discrepancy'. 

3.2 The Variance  discrepancy 

As already indicated, the sample standard devia-

tion can be compared with the theoretical value jm(l+a) 

as one measure of the goodness of fit. The fit is 

generally good for standard deviations up to about 2, 

but for larger values of the standard deviation the 

theoretical value is generally higher than the observed 

one. An investigation of 150 varied cases is summarised 

in the graph taken from Ehrenberg (1959). 

Note that because the scales are logarithmic the 

discrepancy is worse than it appears from the graph. 

It seems immaterial as to whether we call this discrep-

ancy a 'standard deviation discrepancy' or a 'Variance 

discrepancy'. We choose the latter as it is shorter. 



-48— 

I 	• 
OBSERVED vm.urs 

Fro. 1. Comparison of 'theoretical' and 'observed' values for the standard deviation 
of the frequency distributionl of cr.r.tner. 	purchases. 

A high standard deviation is associated with a 

high rate of buying. In other words, the variance 

discrepancy seems to be connected with heavy buying. 

A detailed investigation of a large number of distribu-

tions revealed that another factor was involved. The 

variance discrepancy occurs for particular classes of 

goods, like margarines and soap powders, over any time 

period and hence for any rate of buying. 

A table was constructed to show for various time-

periods the corresponding values of w above which a 

variance discrepancy greater than 20°/o always occurred. 

1105 
io &OS OA 
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Table 3b 

Table showing values  of w above which a variance dis- 

crepancy >20
0 
 /o occurs 

Time Period (weeks) 

	

4 	1.8 

	

8 	2.5 

	

13 	4 

	

24 	7 

Thus the existence of a variance discrepancy depends 

not only on the rate of buying per buyer but also on the 

time-period. The table enables us to quantify the notion 
4 

of heavy buying. For example, we can decide to 'all a 

product 'heavily bought' if the rate of buying per buyer 

(w) is greater than the value shown in table 3b. 

3.3. Bunching 

One feature of consumer purchasing data which gives 

rise to discrepancies between the observed and theoreti-

cal distributions is a tendency for purchase frequencies 

to cluster or 'bunch' at or near the number of units 

equal to the number of weeks in the analysis period. 
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In the 26-weekly data of table lb for example, there 

is a small amount of bunching at 25 and 26 units. There 

is also some bunching at 13 units, that is, half the 

number of weeks in the period. 

Bunching occurs because a number of consumers report 

very regular purchasing habits, usually buying 1 unit 

every week. In Chapter ten we shall see how these 

regular purchases can be c:escribed by considering the 

distribution of 'weeks'. 

1,.A. Shelving 

Another and more important feature of the frequency 

distributions, which is very noticeable in 'heavy buying' 

data is something which can be called shelving. It is 

related to bunching but seems to be present throughout 

the distribution. Shelf-like discontinuities occur at 

multiples of the time-period in weeks. Instead of the 

frequencies of purchases decreasing more or less steadily 

with the increasing size of purchase, they tend to remain 

more or less steady over a range of several units and 

then drop suddenly to a lower level just above multiples 

of the time-period in weeks. 

A typical example of this shelving effect is provided 

by brand P
3 

over 12 weeks. The effect is illustrated 

graphically (diagram 3c). 



Observed distribution 

Diagram 3c: The Shelving Effect' 

--- Theoretical NBD 

41,1=.1•Er 

to 1-1 

r  

5 

No. of 

buyers of 

r units 390, 

2 ' 

104  

'lb  

No. of units bought in the time-period of 12 weeks 
Brand P3 



- 52 - 

In this particular example the 'shelf' extends from 

7 to 12 units. 

It is not immediately obvious how to measure the 

size of the shelving phenomenon. However it can be noted 

that the variance discrepancy and the shelving effect 

occur together and that a high variance discrepancy is 

associated with a 'large' shelving effect. Thus the 

variance discrepancy is in some sense a measure of the 

shelving effect. 

The cause of the shelving effect is not apparent 

at this stage, but like the bunching effect we shall see 

in Chapter ten how it can be explained by considering 

the distribution of 'weeks'. 

.1.5. The Variance as a measure of fit 

The variance discrepancy is, as yet, the only way 

the shelving effect can be quantified. Thus it is 

important to investigate the variance discrepancy more 

closely. 

The first feature to notice is that it is, in a 

sense, rather artificial. Thus the distribution could 

have been fitted by the second method given in section 

1,7, namely to estimate m,k from the first two moments. 
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In this case the theoretical and observed variances are, 

of course, equal. Instead there would be a systematic 

difference between the theoretical and observed number 

of non-buyers. In other words we would have a 'zeros 

discrepancy'. 

But there are several good reasons for estimating 

m,k from the mean and the proportion of non-buyers. 

Firstly this method is statistically efficient for 

reverse J-shaped distributions (see Anscombe (1950)). 

Secondly, in order to make repeat buying predictions 

for the sample it is essential to have the theoretical 

and observed number of non-buyers equal. Otherwise we 

have seen that the predictions will be biased. Thirdly 

the bunching and shelving effects mean that most of the 

discrepancy occurs in the tail of the distribution and 

the variance statistic is very sensitive to changes in 

the tail. Thus consider the distribution of brand P
3 

over 4 weeks (see appendix). The shelving effect is 

clearly visible with more people buying 4 units than 

3 units and hardly anyone buying more than 4 units. In 

fact no one buys more than 6 units. This shelving 

effect produces a 'tail' to the fitted NBD of 3.9 buyers 

for r = 7+. 
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The variance effect of this tail is 

3.9 x 72  - 0.40 
474 

Thus 4°/o of the buyers account for more than 

260/0 of the theoretical variance. 

On the other hand when the full NBD gives a good 

fit, as in table lb, the variance effect of the 'tail' 

is negligible. 

As we know this effect exists, it seems sensible 

to use an estimation procedure, which will not be affected 

by the 
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CHAPiER 4 

Alternative ways to fit the data 

4.1 Introduction  

In the previous chapter we discussed the bunching 

and shelving effects and the variance discrepancy. These 

all indicate that a general systematic deviation from 

the NBD model exists. 

Various alternative methods of fitting the data 

were tried to see if an alternative model could be 

developed which was 'better' than the NBD model. 

Any such model must be judged on several counts. 

(i) Simple. The NBD model describes the data in 

terms of two parameters. Fitting can usually be improved 

by increasing the number of descriptive parameters 

(though not necessarily). But this will probably lead 

to a more complicated model. In a field such as market 

research where results must be used in many cases by 

amateur statisticians, simplicity is of considerable 

importance. 

(ii) General. The NBD model holds (with certain 

systematic discrepancies) for a wide variety of brands, 

over different periods and for different populations. 

Preferably any alternative model should also hold under 

these general conditions, though it may be necessary to 
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have one model for one type of data, and a second model 

for a second type of data. But this latter situation can 

only be justified by a big improvement in fit and in the 

predictions which result. 

(iii) Useful. The NBD gives useful prediction (for 

example repeat-buying predictions). Any alternative 

model should also give such predictions. 

(iv) Descriptive. Any model must describe the data 

reasonably. For example it is useful to have good agree-

ment between the observed and theoretical frequency dis-

tributions, although this feature can be (and often is) 

overemphasised. 

There are three main types of alternative models. 

(1) Those formed by adjusting the NBD model. 

(2) Those obtained from other frequency distributions. 

(3) Those obtained from mixtures of distributions. 

4.2 Adjustments  

Four types of adjustment will be considered. These 

are spreading peaks, removing peaks, curtailment of the 

NBD at the upper end and truncation at the lower end. 

a) Spreading Peaks. One of the basic assumptions in the 

NBD stochastic model is that each member of the population 

makes Poisson purchases in successive periods of time. 

But it is known that many members of the population 

actually buy at a much steadier rate, which is often 
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1 unit/week. This will reduce the observed variance 

compared with the theoretical NBD variance. We will 

spread out these steady buyers and see what effect this 

has on the theoretical variance. 

Consider the distribution for brand P2 over 12 weeks. 

(see Appendix). There is a bump at r — 12 of 7 people 

who buy regularly at 1 unit/week. If these 7 buyers 

had instead made Poisson purchases with mean 12 then 

this spreading out would increase the observed variance 

747121 by 	
= 0.18. [Sample size = 474j. This is insigni- 

ficant compared with the observed variance of 12.2, so 

that there is still a large difference from the theoretical 

variance of 20.7. 

This method was tried on several distributions with 

a peak of steady buyers and similar results were obtained. 

Thus spreading the peaks seems to have little effect on 

the observed distributions and is not the answer to the 

problem. 

b) Removing Peaks. A second adjustment is to remove 

any peaks from the data and see if the rest of the distri- 

bution is more closely NBD. Thus the distribution for 

brand P2 over 12 weeks was altered by reducing f12  from  

7 to 3 to see how sensitive the distribution was to such 

changes. The variance ratio (theoretical/observed) 

changed from 1.69 to 1.58. This change is in the right 
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direction but is nowhere near big enough. Further 

examples were tried and even more of the distribution 

was removed but it was still not possible to gain agree-

ment between theoretical and observed variances. 

) Curtailment of the NBD 

A third approach is to curtail (or truncate) the 

theoretical NBD at some upper point, U, say. I shall 

only use the term 'truncate' to refer to removing data 

from the lower end of the distribution. This curtail-

ment can be done in several ways. 

Firstly the tail can be spread over the whole dis-

tribution to give 

(1-I-a) k 1-4(k+r)(1+a )r/ ri(k) x 

(1+a )-k  r4(k+r) (3.÷a)r/ (k) x 

r=o 

r < U 

= 0 	r > U 

Secondly the tail can be spread over the positive 

part of the distribution to give 

Po = (1+a)- -k 
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(1+a) -k 1-1(k+r)  
___17111.1,0  r  . 14-a  

r 	u 

1F-  (1 ark  j:IM-117,  

111 - (1+a) 1 < r < U 

      

      

r=1 

= 0 	 r > U 

Thirdly we can curtail the distribution at r = U 

and put all the tail into P . Thus we have 

= (1+a )-k 1(k+r)  / a Nr  
A •-•-• / ro kir.i l  1+a 0 < r < U-1 

(14.a.)—k f(k+r)  
r" (k)r: 

r=u 

r  ( a 
‘1+al  

Pr = 0 
	r > 

• 

Maximum Likelihood estimation  of U 

Given sample size N, consisting of fo,f1,...,fs  

where s is the largest number of units bought, we want 

to estimate U. 

Likelihood (JI sample) = P(0) °....P(s) s  

We know U > s. Then likelihood is maximised when P(0), 

P(1),...,P(s) are as large as possible, which is when 

U = s. 
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This method of estimation emphasises the arti- 

ficiality of all the methods of cutailment. Given 

several distributions.over similar time periods for 

a particular product the value of the highest obser- 

vation, s, will vary considerably, so that there is 

no real upper limit to the distribution. In addition 

trouble arises when we try to extend these curtailed 

distributions over time-periods of different lengths, 

for we do not know how the upper limit, U, will 

change. 

To consider a curtailed distribution which is 

not artificial, we must look at a different distribution, 

namely the distribution of the number of weeks in 

which at least one purchase was made. In a time 

period of n weeks, no one can buy on more than n 

weeks, so that the distribution vanishes for values 

larger than n. An examination of the distribution 

of 'weeks' will be made in Chapter ten. 



d) Truncation of the NBD 

A fourth method is to truncate the distribution 

at the lower end; that is remove the non-buyers. 

Then a truncated NBD can be fitted to the positive 

part of the distribution. 

A possible model to justify this action is to 

assume that the population is split into 2 groups. 

Firstly people who never buy the product and secondly 

potential buyers whose purchases follow a NBD. The 

problem then is to estimate the NBD parameters from 

the truncated distribution. This will give an esti-

mate of the potential buyers who are part of the NBD 

but who bought 0 units in the period in question. 

Since our model is a mixture of 'never-buyers' 

and a NBD, truncation will be considered later on 

in the chapter as a mixture in section 4.5. 
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4.3 Other frequency distributions  

A variety of other frequency distributions :T—E's con-

sidered. Anscombe (1950) gives a general review of 2-

parameter distributions, and Gurland (1959) and Feller 

(1943) give a good account of contagious distributions. 

There are two types of contagious distributions and 

it is important to understand the distinction between 

them. 

a) Compound distributions. Whenever the population para-

meter of some distribution itself varies according to some 

known distribution then a compound distribution arises. 

For example, the NBD can be derived from a Poisson distri-

bution in which the Poisson parameter A. has a Gamma dis-

tribution with parameters a,k. It is then called a compound 

Poisson distribution and can be written as 

Poisson . Gamma (a,k) 

b) Generalised distributions. In contrast we have seen 

that the NBD can also be derived as follows:- If the 

number of bacterial colonies per field follows a Poisson 

distribution and the number of bacteria per colony follows 

a logarithmic distribution, then the distribution of bac-

teria per field follows a NBD. The NBD is then called a 

generalised Poisson distribution and can be written as 

Poisson (x) x Logarithmic (g). Note that the parameters 

of the Poisson and Logarithmic distributions stay fixed. 
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We will consider generalised distributions first. 

i) NBD. It has been assumed that the NBD was derived 

from a compound Poisson model. However one can also postu-

late a generalised Poisson model. Thus if the number of 

purchasing occasions in a particular time-period follows 

a Poisson distribution mean µ and the number of units 

bought per purchasing occasion follows a Logarithmic dis-

tribution with parameter q, then the number of purchases 

in this particular time-period follows a NBD with parameters 

given by 

k = -µ/loge(1-q) 

a = q/(1-q). 

In a time-period T times as long the Logarithmic 

parameter q gill stay constant but the Poisson parameter 

will change to Tµ. Thus according to this generalised 

model the NBD parameter a should remain constant with 

changes in time-period but the parameter k will change 

proportionately with the time-period. 

However this is exactly the opposite of what occurs 

in practice. The parameter k is found to be invariant 

under changes of time-period whereas the parameter a changes 

proportionately with the time-period. 

Thus this generalised model is inapplicable. 

ii) Any generalised Poisson. A similar type of argu-

ment can be used to disprove any generalised Poisson model. 
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We suppose as before that the number of purchasing occasions 

in a particular time-period follows a Poisson distribution 

with mean µ and that the number of units bought per pur- 

chasing occasion follows some unspecified distribution 

with p.g.f. G2(t). [In the previous section this unspeci- 

fied distribution was the Logarithmic distribution.] 

The p.g.f. of the Poisson distribution is given by 

exp µ(t-1) 

Then we have already seen in Section 1.6 that the 

p.g.f. of the generalised Poisson distribution is given 

by 

exp{µ(G2(t) - 1) 

Thus the m.g.f. is 

expl.µ(G2(et) 

so that the c.g.f. 

given by 

is given by 

µ(G2(et) - 1). 

But G2(et
) is the m.g.f. of the distribution of the 

number of units bought per purchasing occasion. 

Thus G2(et
) = 1 + 

4. t 
1 

1)1 

where L. = ith moment of this distribution. 

Thus the c.g.f. of the generalised Poisson distribu- 

tion is given by 

ti  
). 

i>1 
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Thus the variance is given by 4. 42. 

Now in a time-period c times as long the mean of the 

Poisson distribution will become c4 but the other distribu-

tion will still be specified by G2(t). 

Thus the variance of the generalised Poisson distri-

bution will become c4 A 42. 

But in practice we observe that the variance of con-

sumer purchase distributions is proportional to the square 

of the length of time-period. Thus no generalised Poisson 

model can be applicable. 

Other distributions. Anscombe (1950) compares the NBD 

  

with several other distributions. He tabulates the third 

and fourth cumulants to form a sequence of distributions 

with increasing skewness and tail length. 

The variance discrepancy indicates that we should 

seek a distribution with a shorter tail and this led to 

consideration of the Polya-Aeppli distribution, which is 

immediately above the NBD in Anscombe's table. Unfortunately, 

although this sometimes gives a good fit for heavy-buying 

data, it is a generalised Poisson distribution which we 

have already shown to be inapplicable. 

The remaining distributions above the NBD are too 

complicated to be of any practical use. 
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4.4. Mixtures. 

Two mixtures will be considered. The first is a 

mixture of a Geometric and a Poisson distribution and the 

second a very much more general model. 

a) Mixture of Geometric and Poisson distribution. The 

comparatively good fit of the Polya-Aeppli distribution 

which is Poisson (X) x Geometric (ti) led us to consider 

the following model:- Let us suppose that the observed 

distribution consists of a mixture of a Geometric and a 

Poisson distribution (both are special cases of the NBD). 

Let the observed sample (size N) consist of a propor-

tion p of people from the Geometric distribution (parameter 

T) and a proportion (l-p) = q from the Poisson distribution 

(parameter X). 

Then the probability distribution is given by 

Po = q e 
 -x 

P
r 

q e-X X/r! + p(1-T) Tr-1  for r 

The system is a 3-parameter situation. 

We have to estimate 	i) X 

ii)  

iii) p. 

As Po 
is large, X will be small, so that for r > 3 

(roughly speaking) the distribution will depend almost 

entirely on the geometric part. For example, if, say, 

Po 	0.8 then X cf0.2 and the Poisson part for r ) 3 is 



fm This ratio, namely, 

MILL's ratio. 
5-  f 
r>M r  

67 

less than 0.0009. 

Thus P
r 	

p(1-T) Tr-1 
	

for r '3° 

Then we can estimate T from the tail of the distribu-

tion which is virtually all from the Geometric part. 

Such an estimating procedure will be inefficient as it 

is only using part of the distribution. However the pro-

ceudre is quick and so can be carried out on a large number 

of distributions. This in part will overcome the ineffi-

ciency. 
OD M-1 

00 

fr)  = NP M-1  
r=M 

(fm) = Np(1-T) TM-1  

So an estimate of T can be obtained from 

A - 1 - 
op 

f  r  
r=M 

, is sometimes known as 

It is possible to reduce the variance of T by using 

a smoothed value for f . 

Now Z Pr — 

r=M 

fM  
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A 
Thus f 

f 	+ 	+f+f 	+ f M-2 M-1 M M+1 M+2  
5 

The choice of 5 terms is arbitrary and was obtained 

by balancing the arithmetic involved against the reduction 

in variance. 

The use of equal weights to obtain the smoothed value 

of f actually introduces a small biasing factor which is 

(1-T)2. Thus when T = 0.9 for example, the bias is 1°/0. 

But in view of the approximations involved in the whole 

method there is no virtue in seeking an optimal choice of 

weighting factors. 

A 
A suitable value for M is 6, since fm will then include 

terms down to 4 
which is the lower limit for the Geometric 

part: 

However, instead of finding just one value for Mill's 

ratio it is better to plot it against 1/M. The ratio 

should converge to a constant which can be used to esti-

mate T. 

Having estimated T we can estimate p from 	fr=NpTM-lo  

r>M 

Now people who buy no units all come from the Poisson 

distribution. 

So we can estimate X by equating 

f =Nqe-X 
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The theoretical distribution is easy to calculate as 

successive terms of the Poisson and Geometric series are 

calculated by multiplying respectively by X/r and T. 

Example. Data Brand P
3 

over 24 weeks. N = 474. 

co 

fr  = 84 . 
r=6 

8 
Estimate f

6 from y fr/5 = 46/5. 
r=4 

Hence T by equating 

T 

giving T = 0.89 

op 

2— fr = 84  = 
r=6 

= 
giving p = 0.317 

A 
q = 0.683 

N T6-1 

N
P 
 . 0.895 

Thus fo 285 = Nn e
-X  

giving X = 0.13. 

We can now generate the theoretical distribution. 

Several heavy-buying distributions were fitted by this 

mixture and in each case the fit (as measured by the variance; 

improved. 
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Theoretical 
NBD 

TABLE 4a 

Mixture Poisson 	Geometric 
Component Component 

Observed 

0 285 285 285 285 - 

1 47.6 53 53.5 37 16.5 

n e_ 26.4 19 17.5 2.5 15 

3 18.1 12 13 13 

4 13.6 12 11.5 11.5 

5 10.7 9 10 10 

6 8.7 12 9.5 9.5 

7 7.2 7 8.3 8.3 

8 6.1 6 0 7.4 7.4 

9 5.3 5 6.6 6.6 

10 4.6 1 5.9 5.9 

11-12 7.5 8 9.8 9.8 

13-14 5.8 7 7.7 7.7 

15-16 4.6 5 6.2 6.2 

17-20 6.8 17 8.9 8.9 

21-24 5.0 14 5.6 5.6 

25+ 11.6 2 9.0 9.0 

Mean (mixture) = qA + p/(1-T) = mT  

Variance (mixture) = q(X+X2) + P(14-'9"(1-T)2 	mT2 
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TABLE  

Observed mixture NBD 

Mean 	2.96 	2.96 	2.96 

Variance 	35.5 	40.2 	52.3 

The model which could be set up to account for the 

mixture would be as follows:- 

The population consists of regular buyers who always 

buy something, who make purchases according to a Geometric 

distribution and irregular buyers who all have the same 

(very small) rate of buying. Thus the irregular buyers 

form a Poisson distribution. It is very easy to derive 

repeat-buying formulae because only the irregular buyers 

are possible lost buyers in the second equal time-period. 

r 
q e / 

	

Thus bL = 	
-X X r. 	e-X  

r>o 

= q e--2A [e
X
-1j. 

,r 

	

Similarly L  = 	q e
_ A A

/rix r A e-X,  

r>o 

qX 

m
L/b W 	Xe2X = L 	L eX-1 

In the above example with X = 0.13 we get WL  = 1.2. 
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This is a serious underestimate as we have already found 

that the NBD formula (wi,  "2":1.4) gives good predictions 

for all data. The repeat-buying predictions were generally 

found to be inaccurate. 

A second drawback is that although the variance dis-

crepancy has been reduced, the mixture does not describe 

the shelving effect any better than the NBD. (The shelving 

effect is clearly visible between r = 17 to 24.) 

A third drawback is that the method of estimating 

which has been suggested requires a distribution with a 

long tail. Thus it would be no good for distributions 

in short time-periods. 

Thus this mixture compared badly with the NBD model, 

particularly with regard to predictions, and was rejected 

as a possible alternative model. 

We will now consider a much more general model, derived 

from a simple mixture, which includes the simple NBD model 

as a special case. 

4.5 General Model  

Let us postulate a more general model for consumer 

purchases. 

Firstly we suppose that there is a proportion q of 

`never-buyorst, i.c., people in the population who never 

buy. 
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Secondly we suppose that there is a proportion p of 

potential buyers whose average long run rates of buying 

follow a distribution whose p.d.f. is f(?). This distri-

bution is truncated at the lower end at some point 1/T 

where T is a very long time interval 

, q  

Non-

Buyers 

  

-17-
o T 

  

Average long-run rates of purchase 

Thus the cumulative distribution function for the 

average long run rates of purchase is given by 

F(x) = q 	0 < X < 1/T 

x 

F(x) = q 	p J f(X)Ca. 	x > 1 
1 
T 

Thirdly, as in the NBD model, we assume that the 

purchases of any one consumer in successive time-periods 

follow a Poisson distribution and are independent. 

Intuitive justification. Intuitively this model is at least 

as good as the NBD model for it seems more plausible to 

hypothesise a group in the population who will never buy 

the commodity in question than to hypothesise infinitesi-

mally low buying-rates. For in the NBD model everyone is 

a potential buyer. The truncation point is also plausible. 
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Thus we could take T to be the life-time of the product. 

Repeat buying formulae  

As before we are concerned with buying behaviour in 

two successive equal time-periods. 

Note that throughout the following derivation we 

shall use the term average rate of buying to indicate the 

quantity bought by some subgroup averaged over that sub-

group, but we shall use the term mean to indicate the 

quantity bought by a subgroup averaged over the whole, 

population and not just averaged over the subgroup. 

Now the probability that a person buys j units in 

some time-period is given by 

co 

P(j) = p j f(X) e-X X dX 

1 

But the purchases in successive time-periods are 

independent so that a person whose average rate of buying 

is X will buy X units on average in the second period 

regardless of the fact that he bought, say, j units in the 

first period. 

Thus if we consider the subgroup of people who bought 

j units in the first period, their average rate of buying 

in the second period is given by 
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• f 	f(X)e - Xj XdX 

	

1 	J. 

co 

• S f(X)e-X 	dh 
J, 

T 

= 0+1) P(.1+1)  
P(j) 

Thus the mean of the quantity of this subgroup expressed 

as an average over the whole population is given by 

(j+1) P(j+1) 

In particular if we consider those people who bought 

0 units in the first period then this subgroup consists of 

the non-buyers in both periods and new buyers who buy in 

the second period but not in the first. 

The mean of the quantity bought by this subgroup 

in the second period is the same as the mean of the quan-

tity bought by the new buyers in the second period and 

from the previous result is given by 

mN  = 1. P(1) 

P(1). 

Thus the mean of the quantity bought by repeat buyers 

is given by 

mR = m  - P(l) 

where m = mean of the distribution 
OD 

= p S f(X) Ndh. 
1 
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These results depend mainly on the Poisson assumption 

but f(X) must be chosen to give good agreement between the 

observed and theoretical values of P(j). 

The proportion of buyers, b, is given by 

co 

b = p S f(X)(1-e-X)dX 
1 
7 

The proportion of new buyers is given by 

OD 
bN  = p I f(20 e-X  (1-e-X)dA. 

T 

This expression includes the quantity S f(X)e-2NdX 
1 

which is not immediately meaningful. 

Similarly the proportion of repeat buyers is given 

by 	GD 
bR 	p 11  f(70(1-e-X)2dX. 

T 

b - bN. 

We can also consider the subgroup who bought in the 

first period. 

In the second period the mean of the quantity bought 

by this subgroup is given by 
oo 

f f(h) (1-e-X)>{  dX 

	

m - P(1) 	= mR. 
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However the rate of buying of this subgroup in the 
(1 1 

second period is m-  b  P 	- w P(1).  In other words 

this subgroup buys at a lower rate in the second period. 

The other subgroup, the non-buyers in the first 

period, will buy at a correspondingly higher rate in the 

second period because of the effect of the new buyers. 

Thus far we have made no assumptions about the dis-

tribution of the average long-run rates of buying. 

First we consider the Beta distribution given by 

dF = 	1 	(1-x )P-1  xcl-1  dx 	0 < x < 1. 
B(p,q) ` 

or more generally 

dF 	 
B(p,q) (1- d 	-d--  -2‘-')P-1 (X)q-1 dX 0 5 x < d 

Note that we have taken T = a), so that the distri- 

bution is defined for X > 0. The distribution has three 

parameters p,q and d. 

Then 

P(j units) = p 

d 
C  1  
B(p,q) ` 	d' 	(1) 	x  

(1_ X)p-1 ,X\q-1 
e 
 -X Nj  

)  
dX 

0 

d 
p 	 (1- 	P- 	q-1 e-X dX. 

j:B(p,q)dcl 	
21' 

 5.0  

which can only be evaluated as the sum of a series of 

Gamma or Beta functions, which is very difficult to 

.handle. 
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The F distribution is an associated distribution 

which is defined on (00010). It is obtained from the Beta 

distribution by the transformation V(1-301  but the inte-

grals which result prove to be equally difficult. 

The only integrals which give workable results are 

those resulting from a distribution based on a power of 

X or a power of Xxe-aX 

The first of these possibilities gives a distribution. 

given by 
a 	A. dF - 
d
a+1 X

a d  

giving P(j units = p  

0< X < d 

d 
f a+1 	

e A 
,a -X Xj dX 

0 
d
a+1 	

3. 

This is an incomplete Gamma integral and can be 

evaluated from the tables once d and a have been estimated. 

However the problems of estimating d have already been 

mentioned in section 4.2 when the curtailment of the NBD 

was considered. Similar problems arise here. Thus we are 

led to consider a distribution of the form 

-alt p 1 dF 	Ce 	x X 	< X 1 oo 

where C is a constant depending on a, D and T. 

This distribution is very similar to the distribution 

used to derive the NBD from a compound Poisson model. It 

is a truncated Gamma distribution. 
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4.6. The model based on the truncated Gamma distribution  

We assume that the proportion p of potential buyers 

has average long run rates of buying which follow a trun-

cated Gamma distribution. The truncation is at the lower 

end at some point 1/T where T is a very long time interval. 

Thus the distribution is given by 
(.1)k e-X 	d  /a xk-1 , 
\a/ 	'` 1 dF 

I(T,a,k) 	T < x < OD . 

where I(T,a,k) 
OD 

fiNk e-X/a xk-1 ax  
a. `al  

Thus we now have a model which has four parameters, 

namely, p,T,a,k. In fact we will show later that the 

model is insensitive to T, provided that it is very large, 

so that there are really only three parameters. 

Special cases 

(i) When T = oo and k 0 the distribution of purch-

ases in a particulartime-period is simply a mixture of 

zeros and a NBD. 

For then i(oo,a,k) 	r-'00 (k 	0) 

so that the c.d.f. of the average long run rate of buying 

is given by 

F(x) = q 

F(x) = q + p 

x = 0 

r 1)k e-X/axk-1 dx  

1-4  (k) 
0 
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For T < oo and k = 0 we shall see in Chapter 

7 that we get a mixture of zeros and a Logar-

ithmic distribution. 

(iii) For T < oo and k > 0 we shall see that, 

provided T is very large, the same prediction 

formulae result as in case (i) when T = cc. 

The parameter T is only introduced so that 

case (ii) can be dealt with. 

Lemma I(T,f(a),j+k).:le (j+k). 

for j > 1, k > 0, f(a) > 0 and T very large. 

-2..f(a) Proof 	< 1 for X > 0 

j+k-1 < 1 for j > 1, k > 0, and 0 < X < 1. 

1 

S(a)1 j+k e-Xf(a) xj+k-1 dX 

< {f(a 	j+k  

--> 0 as T —> co 
co 

But ri( j+k) = 1r U(a).1 j+k e-Xf(a) Xj+k-1 dX
o 	1 

I(T,f(a),j+k) + f [f (a) j+k e-Xf() xj+k-1 dx1 

for j > 1, kl 0. 

I(T,f(a),j+k) —> 71(j+k) as T —> OD 

We will use this lemma repeatedly in the following 

derivations particularly in the form 

x 	[for T < 1 
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I(T,f1(a),j+k) = I(T,f2(a),j+k) 

for any f (a), f2(a). 

The lemma is of course 'obvious' when f(a) = a. 

Repeat buying formulae. Throughout the following deriva- 

tion it will be assumed that if T is finite then k > 0, 

but if T = co then k is strictly greater than 0, for we 

have I(oo, a,k) = 14(k) only exists for k > 0. 

Note that the Gamma distribution is specified in terms 

of a and k. The parameter m is used as before to denote 

the mean of the whole population, but it is no longer 

equal to a . k as it is in the simple NBD. 

The probability that a person buys j units in some 

time-period is given by 

oo 

P(j) = p ( ka) 	A 
e-Va ,k-1 e —T -X Xj  ) 	 dX 

	

J 	
for j > 1   

T 

I(T,a,k) 

v\li)Pk  k (1:a)j+k  ri(j+k)  es..  
I(T,a,k) j! by lemma 

Then the mean of the quantity bought by new buyers 

(or by lost buyers) is given by 

mN  P(1) 

,(1al 
)k( 

 1+a1  
a k+1 rn(k+1) lj̀   
I(T,a,k) 



But the mean of the quantity bought by all buyers is 

given by 

m = p 

00 (1)k 
S 	

e-X/ak dX  
I(T,a,k) 1 

p a 1-4(k4.1)  
I(T,a,k) 

(10k (1:a)k 1 

a 

= 1/(1+a)k+1  as obtained for the simple 

NBD model. 

In particular 

u/N/m = 
1 1+a when k = O. 

We also have mR/m = 1 - mN/m 

where mR  = mean of quantity bought by repeat buyers. 

The proportion of buyers b is given by 

OD 
S (1)k e-X/a 

X
k-1 (1-e X) dX 

b - 	I(T,a,k) 

p[I(T,a,k) -(a)k(2i0k  I(T,i+a,k)] 

I(T,a,k) 

p[l - (1+a)-k] 	for k > O. 

The proportion of new buyers is given by 



oo ()k e-X/a Xk-1 e-X (1-e-X)dA, ; 

1 
	I(T,a,k) bN =p 
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‘ p[(1+ark  I(T,14.a,k) 	(lk) 
I(T,a,k) 

'1t +2a/  '  1k T(T'1%a'k)]  

 

p[(1+a)-k  - (1+2a)-k] 	for k > 0 

—1\--1 	
b L _ (1+a) 	) - (1+2a  b 	N-k 	N-k 

Thus b 	= b - 	1 - (1+a)-k 

as obtained for the simple NBD model 

But when k = 0 we have 

b = p 
cap  e-X/a X  (1-e-X)dX 

1 

on 
e-X/a(1 - X/2! + X2/3! - X3/4!+...)44 

1 	I(T,a,0) 

--- p 	aj 11j) (_1)j+1  

j>1 
(for T large) 

 

I(T,a,0) 

 

loge(l+a) 
= p 

 

When k = 0 we also have 
oo f e-X/a 1 e-X (1-e-X)dX bN  = p  1 	I(T,a,Or 

when k > 0 

= p 
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-X(1+1) 
e 	a  (1- + 2: 	3!  

I(T,a,0) 

1+a' 
)j 
 j. 	` 
E411 (..1)j+1 

I(T,a,0) 

p log(l + -17v 

I(T,a,O) 

log (W 	
= bL/b

)  
Thus bN/b = 	 log(l+a) 

We also have bR/b = 1 - bN/b = 1 - bL/b 

where bR  = proportion- of repeat buyers. 

Prediction over a longer period  

Over one time-period we have a frequency distribution 

specified by p, T, a, k. Over a time-period a times as long 

the mean of the distribution and hence the mean of the under-

lying truncated Gamma distribution will also multiply by c, 

(under stationary conditions). 

We will show that the frequency distribution over the 

longer period is specified by p,T,ca,k. 

The mean of the truncated Gamma distribution is given 

by 	
?coi 	e-X/a xic-1 xdx  

P 
1 

^, pa (k+1  
I T,a,k 

p 

I(T,a,k) 
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In a time-period c times as long k will remain constant. 

We will also assume that T remains constant. Let a increase 

to become A. 

The mean of the new truncated Gamma distribution is 

given by 
p New mean 	Arl(k+1  
I(T,A,k 

= c a mean of single period 

c a 	k+1 
I T,a,k 

Thus A ___ ca I(T,A,k)  I(T,a,k) 

op 
( (1\k _-X/A k-1 X dX 'A' 

Now I(T,A,k1  I(T,a,k 	no 
(1‘k e-X/a k-1 dT. (1  'a' 

T 

ro 

S1 
e-x xk-1 dx 

AT 
OD 

e-x xk-1 dx 
1 
aT 

Case (1) 	If T = a) and k > 0 

then I(co,A,k) = I(co,a,k) = ri(k). 

A = c a. 

Case (2): If T < oo and k > 0 
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oo 

-x k-1  e 	x 	dx 	t"--1  (k) as T 	co 
1 
aT 

1 
aT 

e-x xk-1 dx 	0 as T —> 00 
1 
AT 

I(T,A,k) —> I(T,a,k) as T —> op 

A = ca 

Case (3): If T is finite and k = 0. 

1 
aT _x  

Consider S 	e /x dx 
1 
AT 

-x e 	< 1 for x < 1 

1 	1  < AT for -- < x < -- x 	AT — — aT 

1 
aT 

S e x/x dx < AT 1 A/a. 

AT 
OD 

-x But 	e /dx > op as c 	0 

1 
aT _x  

e /x dx 
1 
AT 

--> 0 as T —> op oo 

f
e x/x dx 

1 
aT 
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I(T,A,k) ':.=-1-I(T,a,k) for T large 

A 	ca. 

Now when k > 0 the rate of buying per buyer over 1 

time-period is given by 

w = m/b a [1 k+1 	1  
T,a,k p[1-(1+a) k] 

ak  
[1 	(ka)-k] 

as obtained for the simple NBD model. 

Thus in a time-period c times as long 

we = 	cak 	 

or 
T 
	

[1 - (l+ca)-k] 

k  We also have 	- 	 I - (l+ca) be 	.-k 1 - (1+a) 

But when k = 0 we have 

w = m/b 

121:111 
- I(T,a,0) 

a  
- log(l+a) 

I(T,a,0)  
p loge(l+a) 

Then in a time-period c times as long 

w - 	ca  
c log(l+ca) 

1 - (l+ca)-k 

c[l - (1+a)-k]  
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wc 	c lo (1+a 

Thus -- — w 	log 

b 
Similarly be  

Insensivity to T. When T is finite all the formulae which 

have been derived are approximations. But provided T is 

very large' the approximations are all very close even 

for the case k = 0. Thus provided T is indeed very large 

the formulae are insensitive to small changes in T. In 

fact we never need to know what T is, nor do we need to 

estimate it to calculate any of the above predictions. 

T is introduced to describe our intuitive knowledge 

that there is some very small rate of buying below which 

people are effectively 'never-buyers'. As a by-product 

it enables us to obtain predictions for the special case 

k= 0. 

Thus, although the model apparently has four parameters, 

it really has only three which matter, namely p,k,a. 

lo 
log 
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CHAPTER  5. Fitting the truncated NBD. 

5.1 Introduction 

We will consider a special case of the general model 

proposed in the previous chapter, by putting T = co and 

k > 0. Thus we now have a 3-parameter model which is 

simply a mixture of zeros and a NBD. 

Estimation of Parameters. 

The problem is tackled by noting that the truncated 

part of the distribution (that is the distribution without 

the zeros) should be a truncated NBD under our model. So 

the problem reduces to estimating the NBD parameters a, k 

from the truncated distribution. This will give an 

estimate of the potential buyers who are included in the 

zeros, but are part of the NBD. This will give an estimate 

of p. 

Intuitive Motivation. 

For some classes of goods it is not clear what the 

population total (and hence the number of non-buyers) is. 

Thus the potential market for a brand of tipped cigarettes 

may be all adults, all smokers, or merely all smokers of 

tipped cigarettes. 
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If it is found that the truncated distribution really 

is NBD then we will have a revised population total which 

may have the above-mentioned meaning; namely the poten-

tial market for the brand under consideration. 

Methods 

Various ways of estimating the parameters of a 

truncated NBD are considered. Methods from the literature 

are reviewed and then some new methods are given. The 

methods are compared in terms of efficiency and simpli-

city. 

The maximum likelihood method, though fully effi-

cient, is very laborious to perform, but is probably 

worth adopting by the statistician if a computer is 

available. But in market research this is sometimes not 

so and a simpler method is to be preferred. 

Eventually, Brass's first method is selected as 

being the 'best' (by balancing efficiency and simplicity) 

and is tried on a large number of distributions. 

Notation 

fr 
 = Number of people who buy r units in a certain time- 

period 

fo = Adjusted number of non-buyers, estimated from the 

truncated distribution. 
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The NBD is given by 

(-4 

= (1+a)-ki (k+r p
r 	

_ 	
• (lit) r; (k) 

Probability of observing r. 

Let m = a.k 

mean of the NBD part of the total distribution. 

Note that m is not the mean of the observed distribution. 

Thus m is the mean of the distribution ( fo, fl, f2' 
f3
... 

The truncated NBD is given by 

P r (1+a) 1--/(k+r) 

r:1-1(k) 

r  
(Ura)  1-(1+a)- 

r .z > 1 

F- 	= / f r 	F l 	rf 
r>1 	r>1 .„ 

F2 rF
3 

= 4_ -'fr* r2fr  r>1 	r>1 

In all the methods our sample consists of fa , f2, f3... 

We want to estimate the parameters a, k of the 

distribution and also CH-  . 
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5.2 Methods from  the Literature. 

The truncated NBD was discussed by David and Johnston 

(1952). They give the maximum Likelihood method for 

estimating the parameters which is unfortunately very 

cumbersome. They also give a method which involves the 

ratios of the first 3 product moments. This method,while 

providing explicit solutions, is very inefficient because 

of the use of the 3rd moment which is very sensitive to 

outlying values. 

The equations are 

F F 	F2  _3 1 	2 1 + a 
F1(F2 - F1) 

A 	2F22  - F2  F1  - F3  F1  

F F - F F + F2  - F2  31 	2 1 	1 	2 

Sampford (1955) gives iterative methods for finding 

the moment and maximum Likelihood estimates. These are 

rather complicated. 

Brass (1958) gives 2 much simpler methods. The first 

gives explicit solutions for the parameters in terms of the 

first 2 product moments and fl. 
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The equations are 

^1 w = 1+a 

F1  

F2 - 7Fo  

f., 
(1 - i/F  ) 

4  F 
w 	1/Fo - f1/Fo and k = 

1 - w 

This method is more than 60 per cent efficient over 

a wide range of parameter values. 

Brass's second method is a modification of the 

maximum Likelihood method. This, while more efficient, 

is still rather laborious. 

Hartley (1958) also considers the maximum Likelihood 

method. He suggests guessing the missing zero value, 

fitting by maximum Likelihood, re-estimating the zero value 

and iterating. Unfortunately, the maximum Likelihood 

method is still very cumbersome even for the full 

distribution. 

The best of these methods seems to be Brass's first 

method. But various new methods were considered to see if 

a better one could be found. 
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f 
 5.3 A graph of r/fr-1 against 2  

The recurrence relationship for the WBD is 

Pr 	
a 	

r-1 
1-k
) F = '14a/ (1  

So, theoretically, plotting fr/fr-1  against 

should give a straight line which intercepts the Pr/Pr-1 
(1-  axis at 	and has a gradient of a
1+a

k) 
 ' 

In practice the ratios are very variable with 

successive readings highly negatively correlated. This-

correlation is less than-7 for all r. A typical series 

of ratios is shown for brand C1 over 26 weeks, which had a 

sample size of 2000 (see Mmdim). Even for this sample 

size the ratios were much too variable to fit a line 

satisfactorily. 	Thus, 

Table 5a. 	r 

this method is too inefficient. 

fr/fr-1 
2 ,38 

3 ,64 
4 .75 
5 .73 
6 .88 

7 .71 
8 .47 

9 .71 
10 .20 

11 3.0 

1 
r 
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5.4 Geometric Prediction for a. 

The recurrence relationship for the NBD is 

Pr 	r—i - (1W (1 
 - 1-k P 

As r gets large 4 	0 

a so that P
r 

 P.  

Thus for r large the tail of the distribution tends 

to a GEOMETRIC distribution. 

Thus we can estimate a by a similar method to that 

proposed in section 4.4 when the model comprising a mixture 
of a Geometric and a Poisson distribution was considered. 

That is, we consider Mill's ratio = fr 

j>r j 

which for r large tends to 	1  kT7T7 

As before we can find this for 1 particular value for 

r by calculating a smoothed value 

fr-2 + fr-1 + fr + fr+1 + fr+2 

5 
f 

Then --- = r/Z 
 f  

1+a 	j>r 3  

Fifteen is a suitable value for r as Mill's ratio is 

roughly constant for the observed distributions for values 

of r greater than 12. 

fr  



Alternatively, we can plot Mill's ratio against 	 . 

It should converge to a constant which can be found by 

taking the intercept of the graph when T1  is zero. 

Having determined a, we can now use an iterative 

method to find the mean m (= ask) of the NBD part of the 

distribution and the adjusted number of zeros. 

Guess an initial value for the adjusted number of 

zeros - f(1). The choice fat) 
 = 2f1 - f2 is a ( 

convenient starting point. 

Then N 	= guessed sample size 

F0 + f(l)  

m
(1) 

= ak(1) = F1/N(1) 

-k(1)  

	

Hence f(2) 	N(1)(1+a) 

In general this will be different from the guessed 

number of zeros. 

Calculate a 2nd iteration using f(2) as the starting 

point. 

In general the ith  iteration is 

N(i) = F + f(i) o 	o 

(1) 

	

m 	a k(i) 	Fl/N(1)  

a)"k(i)  f(i+1). N(i) (1  4_ 
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Example 

Brand P2 over 24 weeks. (See table 6a) .  

Now 	C. 	28 
r>15 

	

f14 	+ f + f16 + f17  1 	15 . 9 f15 	 5 

Therefore 1 + a = 28 x 	= 15.5 
A 
a = 14.5. 

Fo 

	

	fr  = 103 r>)_ 

F1  = — rf'J 	1040. : 
r>1 r  

= 2f1 - f2 = 37. Choose f(I) 

Then the iteration proceeds as follows. 

f o 	 m/a k 

 

Table 5b 

37 	140 	7.42 	.512 

	

34.5 137.5 7.57 	.522 

32.8 

The process converges to a value 

  

f-  = 32 with m = 7.65 and a = 14.5. 



ak 	 w 
1 - (1+a) k̀  

Fo(l+a) -k 

1 - (1+a)-k  

= rate of buying/buyer 

number of people who 

buy 1 unit. 

F1  
F 
0 

ak 
$  

1+a 
f1  
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Criticism. 

The trouble with this method is that it can only be 

used for frequency distributions with a long tail. In 

particular we need a substantial number of people to buy 

more than 15 units in order to be able to estimate a. But 

we are looking for a method which is suitable for all 

consumer purchase distributions, which means that the 

above method is not general enough. There are, of course, 

cases where different methods of estimation are used for 

different types of series, but if we can find an 

estimation method which is at least as good for longer 

time-periods and which is also suitable for shorter time-

periods then it will be preferred to the above method. 

5.5 	Estimation from the mean and f 1 

Another method of estimating the parameters of the 

truncated NBD is to use w and f. 

Equates the observed and theoretical values of these 

quantities. Thus we have 
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These 2 equations can be solved iteratively for a, k. 

The easiest method of iteration is accomplished, as before, 

by completing the distribution with a guessed number of 

zeros - f(1). For consumer research data the observed 

number of non-buyers is a convenient starting point. The 

reason for choosing a different starting point to that 

used in the previous method is simply that for consumer 

research data the estimates of fiE  obtained by this 

method are consistently higher. 

We have N(1) = Fo 	o + f()  • 

Then m(1) = a k(1) 

F
1/N

(1)
. 

Then estimate a from the guessed proportion of zeros, 

that is, from the equation 

f(1) = N(1) (1+a)-m/a. 

This equation can be solved iteratively in the usual 

way. 

Put z1 = f1  - N
(I) (1+a)-  l+a 

= difference between observed and theoretical 

buyers of 1 unit. 

The value of the 2nd guess of the number of zeros 

(2) (fo ) depends on the sign of zl. 
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If z1  > > 	f 0 choose .(2) o 2f(1) 

If z1 < 0 choose(2) 
	1 ,(1) 

f
o 	'- i  o 

Repeat the process and calculate z2 where 

z2  - fi - (1+a)-k 
	ma  N(2)  

and m, a are new estimates calculated from f(2).  

We can now interpolate linearly for z
3 

= 0. 

This will give a value for f(3)  and hence an 

estimate of fo , a and k. 

Example  

Brand P2 over 24 weeks. csee -k-oNate  (7e,. 0110 

Fo = 103 	F1  = 1040 	f1  = 25. 

(1) Choose f 	= 371 = observed number of non-buyers. 

03 Then m 	. 2.19. 	a(1)  = 30.5 

z1 . -1. 

f(2) . 1.f(1) = 185. As z1 < 0, choose o '2 
Then m(2)  = 3.61 	a(2)  = 27.3. 

z2  = 3.8. 

Interpolating linearly for z = 0 we get 
f(3) = 371  1867  
o /1.8 

= 332. 
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This gives estimates as follows:- 

fo
x  = 332 

m . 2.40 

a = 30.5. 

Comments 

There are 2 snags connected with this method. 

Firstly, this method will often increase the adjusted 

number of non-buyers above the observed number. Then it 

will be impossible to give any physical meaning (e.g. the 

potential market) to the revised population total. 

Full NBD's were fitted in the normal way to 

19 observed 'heavy-buying' distributions, which included 

the observed number of non-buyers and the ratio 

Theoretical value of f1 was calculated. 
Observed value of f1 

The average value of y was 1.02 and 14 of the 

ratios were in the range (0.8, 1.2). Thus despite the 

variance discrepancy, fl  seems to fit quite well. Thus for 

these distributions the above method will give a theoretical 

distribution similar to the original NBD. Other values of 

y were as far apart as 0.73 and 1.69 so that for these 

distributions the theoretical distribution would change 

quite a bit. 
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Low values of y (< 1) lead us to the 2nd snag, for 

if the observed value of f1 is bigger than some value 

which depends on w and F, then this method will not 

have a solution. As we shall see in a later chapter a 

Logarithmic distribution can be fitted to the truncated 

distribution. Then if f1 > theoretical value of f1  in 

the Logarithmic distribution then this method will not 

have a solution. 

(that is if f, > Fo 	
-q 	where w - 	-0 

	 ). 
loge(1-q) 	(1-q)loge(1-q) 

We need an estimation procedure which always gives a 

solution for heavy-buying distributions, so that this 

method is viapplicable. 

5.6. Moment  Method. 

Another method of estimation is to use the first 2 

moments of the truncated distribution. This method has 

already been considered by Sampford (1955), but his method 

is rather complicated. A much simpler method has been 

derived. 

The technique is similar to that of Hartley (1958). 

After guessing the missing zero value, the full distribution 

is fitted by the method of moments. Then we re-estimate 
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the zero value and iterate. With interpolation 3 steps 

usually gives good enough accuracy. We must have 

agreement between theoretical and adjusted zeros so that 

there is agreement between the theoretical and observed 

moments of the truncated distribution. 

First we guess a suitable initial zero value - f(1). 

A convenient starting point is given by 

f(1) = 	2f1 - f2. 

We then calculate the 2 parameters m( = a.k) and a 

by the method of moments. 

N1 = Fo + f(1) = sample size. 

m1 • mean of adjusted distribution 

• F
1
/N
1 

m(l+a) 	= Variance of adjusted distribution 

• F2/N1 - m2. 

Therefore a1 = F2/F1  - ml  - 1 

k
1 

= Ml/a
1 

Then we can find a new estimate of the number of non- 
-k1 buyers, namely N1(1+al) 
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We could use this new estimate as the starting point 

for a 2nd iteration. But simple iteration in this way 

may require up to 20 steps. The process can usually be 

shortened to 3 steps by interpolation. 

	

Scores zi 	 o are computed from trial values of f(i) 

in the equation 

z1  1o
(i) 	

-ki 

	

= 	- Ni' (1+ai  ) 	
. 

The first score, zl, is computed with the 1st trial 

1) (. value, f 	The 2nd trial value depends on the sign of o 
( . if z1. If z1 	 o is positive then choose f  (2) < f  o1) ' 

2) ( 	> f(1). 	 ( negative, choose f 	Whichever it is choose f 02) fog)  > 
 

1) ( far enough from f 	preferably to give opposite signs o 

to 	and z2. This can usually be achieved by putting 

f(2)' = f(1)/2 or fog) = 2fo(1) according as to whether o o  

z1  > 0 or z1  < 0. The 3rd trial value f
(3)  is 

obtained by linear interpolation for z = 0. This 3rd 

trial value is adjudged to be sufficiently accurate if we 

find z3 0  /f(3)  < 0.02, a condition which is nearly always 

satisfied in practice. 
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Existence and convergence problems. 

The iteration procedure is equivalent to 

-k. 
f(i+1) Ni 1(1+a.) 1  

where N. = Fo + f
(i) 

m.1 =  Fl/N. 

a. = 
F
2/F1 - m. 1 1 	1 

k.
1  = mi/ai  . 

(i+1) 	(i) Thus fo 	= g(fo ) where g is the above function. 

Thus our estimate of fo is the root of the following 

equation in x. 

This equation will not always have a solution. 

It is easy to show that g(x) > x when x = 0 for 

all distrbutions. But distributions also exist where 

g(x) > x for all x. A trivial example occurs when all the 

buyers buy the same number of units. A more important 

example occurs for a class of reverse J-shaped distributions. 

If F2/F1 is greater than a certain value which 

depends on w then no solution will exist. As we shall 



- 106 - 

see later, a Logarithmic distribution can be fitted to the 

truncated distribution. In this case the theoretical 

value of F2/F1 
is 1/(1..g)  where the parameter q is 

estimated from w 0 lqgeTl.:4T 
	If the observed 

TI7 o  

value of F2/F1  is bigger than 1/(1-6  then this moment 

method will not have a solution. In consumer purchase 

distributions this only occurs when a full NBD is fitted 

to an observed distribution by the mean and zeros and the 

observed variance is higher than the theoretical variance, 

The reverse is usually true, particularly for heavy-buying 

data, when the variance discrepancy occurs and the 

theoretical variance is consistently higher than the 

observed value. In such cases as these a solution will 

exist. 

We will show that g(x) is continuous and 

monotonically increasing, so that, if a solution exists, 

the iterative procedure must converge to one of the roots. 

Now if f(1)  is monotonic increasing 

mi 	is monotonic decreasing 

Therefore 	ai 	is monotonic increasing 

But 	log(l+ai 
 )/a. is monotonic decreasing 

m. 
- 2./a. 1/al  . log(lia.) 

But (1+ai) 



( 
g(fi)o ) 

line; that is, when f(i+1)  - 6ki  -14-'o )(1) . 

>c X2 333X. 

equation occurs when root of the 
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m. - i/ai Hence (1+ .al) 	is monotonic increasing. 

Also N = F + f(1)  is monotonic increasing 
o -mi/ a. (i+1) 	i Therefore f a = N(1 + .) 	is monotonic o l 

increasing. 

Consider z = x - g(x). 

z is a. continuous function for x > 0. 

The monotonic property means that the iterative 

procedure must converge to one of the roots of z = 0, 

provided, of course, that a root exists. (We have already 

seen that this is not necessarily so.) Note that if g(x) 

was not monotonic then the process would not necessarily 

converge. 

This is best illustrated graphically. 

Diagram 1. 

This diagram 

shows the situation 

if there is exactly 

1 root. 2 typical 

iterative roaes 

are shown, starting 

at x1, Yi 

respectively. The 

cuts the 45 degree 
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Diagram 2. 

g(f(i)) This diagram show 

the uncommon ease 

when the root is not 

unique. The iterative 

procedure will still 

converge to one of 

the roots. 

Some distributions do give 3 roots. Thus for the 

distribution taken from Bliss (1953) (p.186) consisting of 

128 ones, 37 twos, 18 threes, 3 fours and 1 five, we find 

roots at x = 235, x = 250 and x = 255. However, in the 

3 examples where this was found to occur, the roots were 

relatively close together; that is, within 15 per cent of 

each other. 

Worked Example 

Our truncated distribution is taken from brand P1 over 
(see aftenii.v-) 

24 weeks When a full )BD was fitted, the variance 

discrepancy occurred, indicating that the method of moments 

would have a solution. 
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The calculation proceeds as follows. 

(i) Fe  = 36 F1  = 347 F2  = 9139 

(ii) Choose f(01)  . (2 x 9) - 4 . 14. 

(iii) This gives N1  = 36 + 14 = 50 

m - 347/50 = 6.94 - 

a = 9139/347 - 6.94 - 1 = 18.46 

k = m/a = 0.37 

N(l+a)-k  = 17.1 

Therefore 	z1 	= 14 - 17.1 = -3.1 

iv) As z1 	fo < 0 take 	(2) = 2 x 14 = 28. 

This gives z2 	-0.2. 

z2/ (21  , 
As 	) Gills value of fo is sufficiently accurate. 

However, to complete the example we find linear interpolation 

gives 

f(3) = 14 + 3.9 x 28-14 
0 

3.7 

= 29. 

Hencez3  = +0.1. 

The calculation of z3  also gives 

5.32 	a = 20.1 k = 0.265. 
= 

Therefore f 	29. 

Estimated NBD population total = 29 + 36 

65. 
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Efficiency 

Sampford (1955), who also considers the method of 

moments, but gives a more laborious method, derives formulae 

for the variances of the estimates which will also be 

applicable to my iterative method. They indicate that the 

method is more than 60 per cent efficient over a wide range 

of parameter values. 

Criticism 

This method seems to satisfy most of the criteria for 

a suitable estimation procedure. It is reasonably quick to 

carry out, is fairly efficient and will give solutions in all 

the distributions likely to be considered. Unfortunately, 

If compares badly with Brass's first method. Brass's 

method is quicker since it gives explicit estimates. It is 

also more efficient. The efficiency of a method of 

estimating two parameters is found by calculating the 

determinant of the variance-covariance matrix of the 

estimates and comparing it with the corresponding determinant 

of the maximum Likelihood estimates. Brass gives a table 

which shows that the efficiency is greater than 60 per cent 

over a wide range of parameter values. In particular Brass 

shows that the efficiency is always better than that of 

the method of moments in the range of parameter values that 

we require. 



f
x 	Fo o  

(14)i' - 1 

Table 5b. Ratio of efficiency of estimation by Brass's  

method to the method of moments  

m 

0.5 1 2 5 10 OD 

0.5 1.13 1.18 1.22 1.27 1.28 1.00 

1 1.07 1.10 1.14 1.17 1.18 1.00 

Thus Brass's method of estimation seems to be the 

best available. 

5.7. Brass's method  

The estimates of a,k are given by 

F2 o  F F2 -r a. 1 	= F _ f11  `  

A 	F1 - (1+a) fl  
k- 	Fo 

As with the moment and maximum likelihood methods, 

it is quite easy to find distributions which will not 

give acceptable solutions. (An acceptable solution is 

a > 0, k > 0). In particular a similar restriction 

applies to reverse J-shaped distributions as for the 

method of moments. 
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However, for distributions of the 'heavy-buying' type 

where the variance discrepancy exists, solutions will 

exist. 

Brass's method was used to fit a large number of 

distributions from the X-product field. As we shall see 

in the next chapter the resulting fit was not satisfactory 

in a number of important ways. 
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CHAPTER 6 

The it of the Truncated NBD 

6.1. Results of fitting the truncated NBD  

A large number of distributions from product field X 

was fitted by Brass's method and the resulting fit was 

compared with that obtained by fitting a full NBD. All 

aspects of the fit were considered, and not just the fit 

of the frequency distribution. Certain systematic features 

were observed. 

Firstly the adjusted number of non-buyers, fo , was 

considerably less than the observed number of non-buyers, 

fo.  In most cases we found 

foX  < fo/10. 

Secondly truncation causes a 

in the value of the parameter k. 

k increases to about 0.5 but over 

k increases to as much as 4. The 

considerable increase 

In long time-periods 

shorter time-periods 

other parameter a decreases 

but in such a way that the mean of the adjusted distribution 

(m = a . k) increases. 

There are also systematic changes in the theoretical 

frequency distribution. The theoretical values of f1 and 

f2 are reduced as are the frequencies in the tail. This 

latter effect removes the variance discrepancy. Other 

frequencies are correspondingly increased. 
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The table shows a typical distribution from product-

field X which has been fitted by a full NBD and also by 

Brass's method. 

TABLR 6a 

Full Observed 	Truncated 

r NBD Distribution NBD 

0 371 371 48.o 

1 25.5 25 18.7 

2 13.2 13 12.3 

3 8.8 7 9.3 

4 6.6 2 7.5 

5-8 	16.0 	12 	19.9 

	

9-12 	8.8 	12 	11.9 

	

13-16 	5.8 	8 	7.6 

	

17-20 	4.0 	9 	5.4 

	

21-24 	3.o 	9 	3.8 

25+ 	11.3 	6 	6.6 

On an 'overall' basis, the fit of the truncated dis-

tribution is improved by fitting a truncated NBD by Brass's 

method. For example, the value of .X2, calculated for the 

cells shown in the above table, is reduced from 27.2 to 

19.5. Another way of seeing if the fit has improved is 

to look at the likelihood function. 

We recall that our model is a mixture of zeros and 

a NBD. Thus the distribution is given by 



1 
k+i 

r-1 

  

Likelihood (sample 12) 

r=1 
	i=0 

-n- p fr.  
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. 
P
o 	

q + p(l+a)
-k 

 

P = P(l+a)k ) 

 (k+1 	a \r,  
r.

t 
 1-1(k 	(1+a1  for r > 1. 

Split the observed number of non-buyers, fo, into 2 

parts A and B where A are 'never-buyers' and B are part of 

the NBD. Then we can work out the likelihood of the sample 

for various values of A and B. When the likelihood is 

maximised, the value of B is the maximum likelihood esti-

mation of fo
x
. This estimating procedure was mentioned 

in the previous chapter but was not adopted because it is 

too laborious. 

For a particular value of A, and hence of B, we 

estimate 

q = A/N 	where N = population total,  

m = 
F
1/(B+Po) = mean of NBD part. 

Estimate k is the maximum likelihood estimator of 

the NBD part. 

Thus k is the root of 

(B+F0) log(1 + 

The likelihood when A is zero is taken as standard. 

Then the likelihood was calculated for various values of 

B. A computer program was written to do the necessary 
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calculations. The table shows the likelihood of the dis-

tribution for brand P
3 

over 4 weeks for various values of 

B. 	(See appendix). 

B 

TABLE 6b 

Likelihood 

387 1.00 

348 1.46 

309 1.81 

270 2.33 

232 3.17 

193 4.57 

154 6.95 

116 10.67 

96 12.56 

77 13.25 

58 10.90 

38 5.26 

19 0.79 

f
o = observed number 

of non-buyers 

=3.87 

The likelihood of the 

sample is maximised 

when about 77 of the 

non-buyers are assumed 

to be in the NBD. 

Thus, in an overall way, the fit of the frequency dis-

tribution is improved when we reduce the number of zeros 

and fit the truncated NBD. 

6.2. Appraisal of the truncated NBD 

In Chapter 4 we mentioned 4 criteria by which any 

model should be judged, namely, simplicity, generality, 
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usefulness and descriptiveness. 

The better fit of the frequency distribution is just 

one aspect of this last criterion, namely, d scriptiveness.  

We now consider other descriptive aspects of the truncated 

NBD, 

Firstly let us consider the shelving effect which is 

visible in the example given in Table 6a. We have already 

noted that the full NBD does not describe this property. 

We now note that the truncated NBD does not describe it 

any better. 

Secondly let us consider the adjusted number of non-

buyers. If the revised population total is to have some 

meaning such as the potential market of the brand in ques-

tion then this adjusted total should be roughly constant 

for a particular brand in different time-periods. In fact 

it increases steadily as the time-period increases. The 

adjusted population total is often less than the total 

number of buyers over a longer period. Thus it cannot 

be an estimate of the potential market for the brand in 

question. 

Thirdly truncation caused a systematic reduction in 

the theoretical value of fl. But we have already seen that 

the full NBD gives an unbiased estimate of fl. So the 

truncated NBD will systematically underestimate 1'1. This 

discrepancy is particularly serious as the people who buy 
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only one unit form a large proportion of lost buyers and 

so this bias will seriously affect the repeat-buying for-

mulae. 

This brings us to another criterion, by which the 

model can be judged, namely usefulness. The most important 

aspect of this is the ability of the model to give useful 

predictions. 

As mentioned in Chapter 2, a whole range of repeat-

buying formulae have been developed. When a full NBD is 

fitted we have seen that these formulae give good predictions 

even when the variance discrepancy occurs. In particular 

the predictions are unbiased. However when the truncated 

NBD is fitted, fl  is underestimated and the estimate of k 

increases so that the repeat-buying predictions change. 

For example the predicted number of lost buyers is con-

siderably reduced. Thus the predictions will now be biased. 

Similarly predictions over different time-periods (for 

example market penetration) will also be biased. Thus, 

judged by its usefulness, the truncated NBD model is worse 

than the full NBD. 

The third criterion which we will consider is that 

of simplicity. The full NBD model has two parameters but 

the truncated NBD model has three parameters, so that in 

this respect the latter model is not as simple as the full 

NBD model. Now the addition of a third parameter, with a 
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consequent reduction in simplicity, can only be justified 

if it means that the model is better in other respects. 

But we have already seen that in a purely descriptive 

capacity the model, while improving the overall fit of 

the frequency distribution, leads to certain systematic 

discrepancies which decrease the usefulness of the model. 

Thus the addition of a third parameter cannot be justified. 

6.3. Summary of position  

Certain systematic discrepancies from the NBD model, 

notably shelving, bunching and the variance discrepancy, 

led us to consider a variety of alternative models, none of 

which was judged to be better than the NBD model. 

This is perhaps not too surprising. For we have seen 

that the NBD model gives good predictions for a wide variety 

of brands over different time-periods even when systematic 

discrepancies occur in the frequency distribution. And from 

the market research point of view it is these predictions 

which are of the prime importance, provided that they are 

general and reasonably simple. The descriptive.aspect, 

while important, is secondary. 

6.4. The shelving phenomenon  

It seems appropriate at this point to have a closer 

look at the shelving effect which is at the heart of the 

discrepancy from the NBD model. What is the cause of this 

effect? 
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First let us look at the assumption in the NBD model 

that the average long run rates of buying of different 

consumers follows a Gamma distribution. If this is in-

correct then there may be some other compound Poisson dis-

tribution which will describe the data adequately. The 

observed frequency distributions contain a definite dis-

continuity which is usually very sharp indeed, Thus we 

require that the distribution of the average long run 

rates of buying should also have a definite discontinuity. 

As an example we will consider a 12 week period and assume 

that the average long run rates of buying follow a distri-

bution which has a discontinuity between 12 and 13 units. 

A suitable distribution is the uniform distribution on 

(0,12). Then we expect a fairly sharp drop in the resul-

ting frequency distribution from 12 to 13 units. 

12 
1 

	

Now P(j purchases) = 12 	e-N J dX 

0 
12 

e

-X X13 dX P13 1  
P12 - 12 12 ( 

) e-N 
N12 dX 

1 r2411,....12_1_ 
- 12 1-4  13,12 

- 0:45 	° 

	

- 0 74 	(from X2  tables) -  

However the observed drop is usually much more drastic 

than this and is of the order 
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P13 0.1 

Thus a compound Poisson distribution is too smooth 

to give such a discontinuity. 

Another way to show that no compound Poisson distri-

bution could give this shelving effect is to consider the 

result given in Section 4.5 that the average rate of buying 

over the subgroup who bought j units in the first of two 

successive equal time-periods is given by 

(j+1) P(j+ ) in the second period. 

But if there is a sudden discontinuity at j units so 

that PO)  is small, this would mean that this subgroup 

should buy at a very low rate in the second period. 

For example if j = 12 and PTY - 0.1, then the j 

average rate of buying of the subgroup is 1.3 in the second 

period after buying at an average rate of 12 in the first 

period. This situation is contrary to our marketing know-

ledge. 

This must mean that the other basic assumption in the 

NBD model, namely that the purchases of any one consumer 

in successive time-periods are independent Poisson variates 

must be incorrect. An investigation of the buying habits 

of a large number of consumers revealed that while most 

consumers follow the Poisson assumption reasonably well, 

a few consumers are too regular in their buying habits. 
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Thus we must accept the fact that the NBD model 

is nothing more than a useful approximation to the 

real situation, and that certain systematic discrepan-

cies will occur. Further light will be shed on the 

shelving effect in Chapter ten, when we examine the 

distributions of 'weeks' and occasions. 
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Brand.i33  

Time period,4 weeks 

Number of 

units bought 

Frequencies 

Observed Fitted NBD 

0 376 375.9 
1 40 50.3 

2 24 21.1 

3 14 10.9 

4 17 6.1 

5 1 3.6 

6 2 2.2 

7+ 0 3.9 

Variance 	1.13 	1.54 

N.474 
	

m = 0.45 

a = 2.39 

k = 0.19 
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CHAPTER 7 

The LSD Model 

7.1. Zeros and the NBD 

We will investigate the effect of altering the number 

of zeros of a distribution which is already well fitted 

by a simple NBD. 

Example: Consider the distribution given in Table lb 

N = sample size = 2000 
	

f
o 
 = number of non-buyers 

. 1612. 

m = mean = 0.636 	k = 0.05 

standal.d deviation = 2.12. 

Keep the positive part of the sample the same and let 

N range from 750 to 20,000. Thus we make fo range from 

362 to 19,612. In each case a NBD is fitted and the two 

parameters m,k are estimated from the mean of the new dis-

tribution and from the new number of buyers. This gives 

a theoretical distribution which can be compared with the 

observed distribution. 

Apart from the lowest value, the fit of f1  and the 

standard deviation (s.d.) is good over a wide range of N 

(and f). In fact the positive part of the fitted NBD is 

hardly changing at all. We will show that as fo 	GD, 

the poSitive terms tend to a well-known series called the 

LOGARITHMIC Series distribution. 
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TABLE 7a 

N fo  Po 
Obs. 
fl 

NBD Obs. 
fl 	s.d. 

Theoretical 
s.d. a 

750 362 .485 164 136 3.2 2.76 0.48 3.50 

1000 612 .612 164 145 2.86 2.6 0.29 4.34 

1500 1112 .740 164 153 2.42 2.29 0.16 5.14 

2000 1612 .806 164 156 2.12 2.04 0.11 5.53 

5000 4612 .922 164 162 1.38 1.36 0.04 6.23 

10000 9612 .961 164 164 .98 .97 0.02 6.45 

20000 19612 .981 164 165 .70 .69 0.01 6.57 

Theorem. Consider any distribution f1,f2....fj. Then for 

any fo, estimate the two parameters of the NBD from the 

mean and the proportion of zeros. Then as fo  7m, k --> 0, 
and the positive part of the resultant theoretical distri-

bution tends to a LOGARITHMIC series. (Hereafter the 

Logarithmic series distribution will be abbreviated to LSD). 

Proof. Calculate Fo L- Cr 
ril 

F
1 
= 	rf 

r>1 

For any fo, N = Fo  + fo  = total sample size. 
A 

The estimate m of m is given by 
A F , 
m 1/N 
A 

The estimate k of k is given by 
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Assume that k 1-> 0 as f
o ,A oo 

Then as k is positive, k > c for some positive con- 

stant c. 

Then 3 N, such that 1- is small. Nk 

Then (1 + M/k)-k  = (1 + Fl/Nk)-k  

1 - F1/N, as NA co 

But (1 + riti7k)-k 
 
= fo/N 
(N-F0)/N 

= 1 - 

Hence F1 	
Fo which is not true. 

• 
k ->0 as fo 	co . 

Now the recurrence relationship for the NBD is given 

by 

Pr 	(1%) (1 	1-1C P  ri  r-1 

a Thus Pr   ->— 1+a r-1rr-1 	co as fo 	. 

In other words, Po 	1 and Pr --> 0 for r > 1. 

We will only consider the positive distribution, 

when we note that the recurrence relationship is that of 

the Logarithmic series distribution. This distribution is 

given by 

1  P - 	( a )r 1 
r 	ln(l+a) \l+al  r 	

for r 
 

= Probability of observing a positive integer. 
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The parameter a changes as N ',co. We will show 

that it tends to a positive quantity given by 	 - w = ln(l+a) 

rate of buying per buyer. 

a is estimated from the equation 
A 
m 

(1+a) a  = 1 b where b is proportion of buyers 
A 

2  ln(l+a) a 

As fo 	OD, b 	0 

211  ln(l+a) = 1 + b/2 + b2/3  +.... 

Thus lim a is given by 
fo 

a  
ln(l+a) 

7.2. The LSD model  

Fisher (1943) derives the LSD by letting the popula-

tion size tend to infinity and m,k tend to zero in such a 

way that their ratio a = m/k stays finite. But this limi-

ting process is meaningless as applied to the distribution 

of consumer purchases. 

Instead we will derive the LSD as a special case of 

the general model proposed in Section 4.5. 

We suppose that the population contains a proportion 

(1-p) of 'never-buyer& and a proportion p of buyers whose 

mean rates of buying follows a truncated Gamma distribution. 

= -1n(1-b) 

b + b2/2  + b3/3+.... 
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Thus F(x) = 1-p 
	o < x < T  

p 	1 e-X/a  d X X 
F(x) = (1-p) + 	TI(T,a,0) 

1 
< X < 0 D 

In other words we consider the special case k = 0, 

with T finite. 

This model is intuitively acceptable as one feels 

that there certainly are some people in the population 

who will never buy. Also one feels that there is a certain 

maximum time-period in which one is interested. (e.g. the 

life of the product). 

As before we assume that each member of the popula- 

tion makes Poisson purchases in successive time-periods. 
(CD 

Then 	p )1 e-X/a 1 e-X X3  x 	dX 

Prob(j purchases) I(T,a,OT 

P ri(i)/i! (1 + 
for j > 1. 

 

I(T,a,0) 

Thus Pj  = 1+a j-1 	j- -70:— 	1 
P. for j > 2. 

This is the recurrence relationship for the LSD. 

Thus the people who actually make a purchase 

distribution given by 

ln(1+a)1+a , ‘1+a1
\ 
 / 

1 	{ a 	( 	2 /2 
, 

( 
1+a/  / 
 \ /3  

form a 

Thus for any time-period the population( consists of 
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a block of non-buyers (some of whom are potential buyers) 

and those members of the population who make one or more 

purchases in the time-period considered. The latter form 

a LSD. 

The parameter a. It is important to realise that the 

estimates of a obtained by fitting an NBD and an LSD model 

will be different. 

It can be shown that the maximum likelihood estimation 

of a for the LSD is given by equating observed and theore-

tical means. Let 411,  be the estimate from the LSD model. 

Then ar is obtained from the equation 

aL  
w  ln(l+k) 

Let aN be the estimate of a obtained from the NBD 

model. 
-m/ 

(1 + aN) 
	

1 - b 

4
N ln(l+aN) = -1/1(1 - b) 

b + b2/2  + b3/3  

w 
a 

 
b 	In (1+ 	 [1 + b/2 + y b2/3  + 0 • 	• 

For b small enough, the two equations, and hence the 

two estimates, will be virtually the same. 
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7.3 The Logarithmic distribution  

We will now present the main properties of the Log-

arithmic distribution which are relevant to the investiga-

tion of consumer purchasing. 

The LSD is usually written 

r 	1,2,3.... P
r ln(1-q) qr/r  

0 < q < 1. 

- Probability of observing a positive 

integer r. 

Thus q 	a 
_ 1+a • 

Some authors use Q instead of q. 

It is customary to put a - --1  

The Probability generating function is given by 

/(t) = -a ln(1 - qt) 

The moment generating function is given by 

M(t) 
	s(et)  

-a ln(1 - get) 

Hence mean = aq/(1 - q). 

Variance= aq(1 - aq)/(1 - q) 2 . 

Reviews of the LSD are given by Williamson and 

Bretherton (1964) and Patil et al (1964). 

Models. Fisher (1943) derived the LSD in connection with 

some work by Corbet and Williams on the distribution of 

species of butterflies caught in a light trap in a given 



- 131 - 

period. As already mentioned, he obtained it as the limit 

of a NBD by letting k > 0 and removing the zero class. 

C. B. Williams (1944, 1947) published a series of 

papers on biological applications of the distribution. 

He uses the notation 

fr  = No. of species with r individuals 

= a qr/r [This is a different a] 

Th n S = total number of species 

= -a ln(1 - q). 

N = total number of individuals inspected 

aa_ 
1-q 

He estimates a and q from S and N giving the impres- 

sion that there are two parameters. 

He calls a the index of diversity and found that this 

was constant over different time periods. 

Comparing purchasing results with the biological 

derivation we note 

w <—> N/S 

F index of diversity where ln(1-q) 
Fo Number of buyers. 

Thus Fo/1n(1-q) should be constant over ranging time-

periods. 

Three distributions from product field X were examined 

to see if this quantity was constant for purchase distribu-

tions. 
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TABLE 7b  

Time-Period(weeks) P2 P3 P4 

24 28.5 58 28.5 

12 25 58 

8 22.5 60 21.5 

4 27 67 20.3 

2 44 94 51 

Apart from the 2-week period, the statistic is reas- 

onably constant. 

Estimation  

Maximum likelihood estimator of q 

This is found by equating theoretical and observed 

means. 

1  
W = 	

1-q 	ln(1-q) 

This cannot be solved explicitly for q but a solution 

can be found iteratively from 

-w In  
_ 1-w.ln 1-41 

or directly from a table given by Williamson and Bretherton 

(1964). A graph plotting (1-q) against w is given in the 

appendix. 

The variance of this estimate is given by 

	 _ af_ 
q2 

/  Nak7777 - 1AT) Nµ2  
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Other methods of estimating q have been given by 

Anscombe (1950) and Patil (1962). 

These include 
A 

(1) q = 1 - 
f
1/F1  

This is a fairly efficient method. The efficiency 

> 74°/o for q < 0.9. 

(2) q = 2f2/f1 ° 

This is a useful quick guess. 

Tables of the Logarithmic distribution  

Williamson and Bretherton (1964) have published 

tables of the LSD for values of the mean as follows 

mean = w = 1.1 (0.1) 2.0 (0.5) 5.0 (1.0) 10.0. 

However as q,or w, is a continuous variable it will 

usually be necessary to interpolate to fit a particular 

distribution, in which case it will probably be quicker 

to work out the distribution from scratch rather than use 

these tables. 

7.4. The fit of the LSD  

A large number of distributions was fitted by an LSD 

and also by an NBD. Those distributions which are already 

well fitted by an NBD give an equally good fit to the LSD. 

This can be seen either by visual inspection or by calcula-

ting a statistic such as X2  or the likelihood. Sometimes 

this statistic will indicate that the NBD gives a better 
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fit and sometimes that the LSD gives a better fit. 

When systematic discrepancies from the NBD occur 

(such as for 'heavy-buying' data), systematic discrepan- 

cies from the LSD will also occur. Again there seems to 

be little difference in the goodness of fit. 

Four examples are given of the fit of the LSD. 

The variance of the LSD is 

-q 	[1  + q/ln(1-q)]  
ln(1 - q) 	(1-q)2 

w[l + a, + w]. 

From this we can calculate the theoretical LSD vari-

ance of the whole distribution by combining the block of 

zeros and the LSD. 

This variance is given for comparison. 

The values of the parameter a, calculated from the 

NBD and from the LSD are also given. 

Discussion..  The investigation of the zeros_ led to the 

discovery that for data which is already well fitted by 

a simple NBD the LSD gives an equally good fit. In other 

words the distribution consists of a block of non-buyers 

together with the positive part of the distribution which 

is well fitted by the 1-parameter LSD. 

This is quite reasonable as the method of estimating 

the parameters of the NBD is bound to give a positive (i.e. 

non-zero) k regardless of whether the truncated distribu-

tion is LSD or not. In practice fitting a NBD always 
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gives a very small k (< 0.15) and in many cases k is so 

small as to be indistinguishable from zero. 

Thus the data can be described by the one-parameter 

LSD together with one other parameter, the proportion of 

buyers, b, or the proportion of non-buyers. But whereas 

the NBD model mixes its two parameters with relatively 

complex formulae, for example b = 1 - (1+a)-k, the LSD 

model gives two parameters which are in the main indepen-

dent and which are immediately meaningful. Thus the LSD 

parameter a is linked simply with w by the relation 

w = rate of buying per buyer 

= mean of LSD 

a 
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TABLE 7c  

Data from Table lb 

Number of 	Observed 	LSD 	NBD 
units bought f r 

0 1612 1612 1612 

1 164 165.5 156.9 

2 71 72 74 

3 47 41.7 44.2 

4 28 27.4 29.2 

5 17 19.1 20.3 

6 12 14 14.7 

7 12 10.4 10.8 

8 5 7.9 8.2 

9 7 5.6 6.2 

10 6 4.4 4.8 

11-12 6 6.2 6.7 

13-14 5 4.1 4.1 

15-16 0 2.7 2.7 

17-20 3 3.1 2.8 

24+ 5 3.9 2.4 

Mean 0.636 0.636 0.636 

Variance 4.50 4.53 4.18 

Parameters q =0.869 k=0.115 
a L=6.62 a.N=S•53 
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TABLE 3d 

Brand C1 	26 Weeks 

Number of 	Observed 	Logarithmic 
units bought 	fr 	distribution 

NBD 

0 1568 1568 1568 

1 182 175 163.6 

2 69 78 79.5 

3 44 46 48.8 

4 33 31 33.1 

5 24 22 23.7 

6 21 14.6 17.5 

7 15 11.2 13.3 

8 7 8.7 10.3 

9 5 7.o 8.1 

10 1 5.6 6.4 

11-12 6 8.2 9.2 

13-14 4 5.5 6,0 

15-16 6 3.7 4.o 

17-18 4 2.6 2.7 

19-20 3 1.8 1.8 

21+ 8 8.1 4.3 

Mean 	0.79 0.79 0.79 
Variance 6.63 6.57 6.01 

Parameters q .0.89 	aff  =6.59 
al,  =8.1 
	

k =0.12 
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TABTR 7e 

Brand Q 	13 weeks 

NED Observed r fr 
LSD 

0 	1886 1886 1886 

1 	53 53 51.6 

2 	18 22 22.2 

3 	11 12.2 12.5 

4 	9 7.6 7.9 

5 	7 5.1 5.3 

6 	2 3.5 3.7 

7 	4 2.5 2.7 

8 	4 1.9 1.9 

9 	4 1.4 1.4 

10 	1 1.0 1.1 

11+ 	1 3.8 3.7 

Mean 	0.16 0.16 0.16 

Variance 0.85 0.98 0,98 

Parameters q=0.835 k=0.03 

at=5.05 ae4.98 

The estimate of k for the NBD is so small that the 

two theoretical distributions, are virtually identical. 
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TABLE 7f  

Brand P2 8 weeks 

This is an example of a ? heavy-buying' distribution. 

The variance discrepancy does get slightly worse for the 

LSD but otherwise there is again virtually no difference 

between the two distributions 

r Observed 
fr 

LSD NBD 

0 396 396 396 
1 22 28.7 27.3 
2 9 13.2 13.3 
3 8 8.1 8.4 
4 7 5.6 5.9 
5 5 4.2 4.3 
6 7 3.2 3.3 
7 7 2.5 2.6 
8 7 2.1 2.1 
9-10 0 2.9 3.1 

11-12 1 2.0 2.2 

13-14 0 1.5 1.5 

15-16 4 1.1 1.1 
17+ 1 2.9 2.7 

Mean 	0.75 	0.75 	0.75 

	

Variance 5.47 	8.45 8.18 

Parameters q=0.918 k =0.08 

= 11.2 ctli  =9.89 



CHAPTER 8 

Prediction Formulae for the LSD Model  

8.1 Introduction 

The LSD model is a special case of the general model 

proposed in Section 4.6, with k = 0 and T finite. Thus 

we already have a whole range of prediction formulae 

which, as we have already seen, do not involve the para-

meters p or T of the general model. 

Thus given only the average rate of buying per buyer, 

w, and the proportion of buyers, b, we can calculate all 

the repeat buying formulae. We shall see that the predic-

tions which result are very close to those obtained by 

fitting a NBD. 

The only snag of the LSD. model is that the LSD para-

meter, q or a, cannot be expressed explicitly in terms of 

w. But tables for q are readily available. In any case 

the NBD also'involves the estimation of a paratmer, a or 

k, which cannot be obtained explicitly and for which 

tables are not available. 

8.2. Repeat-buying formulae  

These have all been derived in Section 4.6. The LSD 

model is the special case when T is finite and k = 0. 

As before we divide the population into 4 subgroups, 

namely, repeat buyers, lost buyers (lapsed buyers), new 

buyers and non-buyers. 



Then we have 

bR Proportion of repeat buyers 

= 

b[1 

bL = Proportion of lost buyers 

ln(l±?2) 
b,1+a  
ln(l+a) 

In 
In 1-q 

Both the quantities bR/b and bL/b are functions of 

q (or a) only and hence functions of w only. 

TABTE 8a  

w 
b
R/b bL/b 

2 0.57 0.43 

4 0.73 0.27 

6 0.77 0.23 

8 0.80 0.20 

10 0.81 0.19 

15 0.84 0.16 

We also have 

mL  = mean of quantity bought by lost buyers 

   

where m = mean of whole distribution. 1+a 

= m(1 - q) 
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mR = mean of quantity bought by repeat buyers 

ma 
- l+a 

mq 
Thus wL  = rate of buying/lost buyer 

m
L/bL 

But m = wb = - 1  ln(1-q) 

wL feaTTIT 

wR = rate of buying/repeat buyer 

mR/b
R 

qm  
13[1+ 

ln  
11:1(1±ail 
(-1-q)j  

Thus mL/m, mR/m, WL, wR  are all functions of q only and 

hence functions of w only. 

1-q 
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TABLE 8b 

R wL 

2 2.53 1.33 

4 4.95 1.40 

6 7.39 1.42 

8 10.3 1.425 

10 12.0 1.43 

15 17.5 1.435 

Example of predictions The repeat buying prediction for 

the data given in Table lb were made by fitting both a 

NBD and a LSD. 

TABL7 8c 

b w bL  b
R wL wR 

NBD 0.194 3.3 .055 .139 1.43 4.0 

LSD 0.194 3.3 .058 .136 1.42 4.1 

The predictions are within 50/0 of each other. 

8.3. Predictions over a longer period 

Assume that we know the values of w and b in a 

certain time-period. Then in a time-period c times as 

long we have the following results from Section 4.6. 

C 	cln(l+a)  
w 	ln(l+ca) 

where w = rate of buying per buyer in the longer period. 
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be 
	ln(l+ca)  and 	- b 	ln(l+a) 

where be = market penetration in the longer period. 

Procedure. Given w for a particular period, look up the 

corresponding value of q in the tables. Hence 

a = q/(1-q). 

weln(l+a)  Hence c - ln(l+ca) 

Hence bc - 
c 

Note that this is much simpler than the corresponding 

method for the NBD. 

Example of predictions. These predictions are made for 

the data given in Table lb by both the NBD and LSD 

methods. Predictions are made for 52 and 104 weeks. 

TABLP 8d 

Time Period 
LSD 

w 

NBD 

w 
LSD 

b 
NBD 

b 

26 weeks 3.3 3.3 0.194 0.194 

52 weeks 5.0 5.25 0.256 0.244 

104 weeks 8.1 8.5 0.316 0.302 

Even over a time-period four times as long the 

predictions still differ by less than 50/0. 

cwb 
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Practical results. We have already seen in Section 2.3 

that the repeat-buying predictions for the NBD model 

generally give good unbiased results. As the LSD predic-

tions are so similar we expect them to give equally good 

results and this in fact proves to be the case. 

8.4. Investigation of lost buyers 

This investigation was carried out to see if the 

repeat-buying formulae work, even when the variance dis-

crepancy occurs, because nearly all the lost buyers buy 

only one or two units in the first period. Thus if 

nearly all the other buyers are repeat buyers, so long 

as the frequency distribution gives a good fit for the 

l's and 2's any other discrepancy will not affect the 

repeat-buying formulae. 

We first consider the conditional distribution of 

purchases in period II for peoplb who bought r units 

in period I. This is a NBD with mean (k+r)/( 1%)  and 

exponent (k+r). 

We consider the LSD case with k = 0 and(lTa) = q. 

Our population is the buyers in the first period. 

Thus Prob(0 units in II it units in I) = (1+q)-r  

= f(r) say. 

TABU'.  8e 

w q f(1) f(2) f(3) 

2 0.71 0.58 0.34 0.20 

10 0.97 0.51 0.25 0.13 
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r. But Prob (r units in I) 	- 	 q /r. 1n(1-q) 

P(0 units in II and r units in I) 

P(0 1r) P(r) 

_ (1.4.0-r qr/r 	1  
1n(1-q) 

= g(r) say. 

TABLE 8f 

g(2) g(3) g(1) 

2 0.71 0.33 0.07 0.019 

5 0.93 0.18 0.044 0.014 

10 0.97 0.142 0.035 0.012 

Now bN/b 	lnC1+1  lna-6 

When w = 10 bN/b = 0.194 

But g(1) + g(2) = 0.177. 

Thus 91°/o of the lost buyers bought 1 or 2 units 

(when w = 10). 

But it is not true to suppose that the remaining 

90/0 of the lost buyers have a negligible effect, for 

we find that the average. rate of buying for g(1) and g(2) 

is given by 

142 + 35 - 1.2  

The average rate of buying for all lost buyers is 

much higher, namely, 1.43. Thus the remaining 90/o 

account for 24°/o of the purchases by lost buyers. 

142 + 2x35 
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The average rate of buying for g(1), g(2) and g(3) 
142 + 2%35 + 3 x12  is 	- 1.31 142 + 35 + 12 

Thus although it is most important that the fre-

quency distribution should fit the l's and 2's it should 

also fit the next few values reasonably well. But for 

values of r above about 4 any discrepancies in the fit 

will have a negligible effect on the repeat-buying 

formulae. 

Approximation to the distribution of lost buyers  

A useful approximation to the distribution of lost 

buyers can be obtained from the equation 

Prob(0 units in II r units in I) = (1+q)-r  

For reasonably large values of w, q is close to 1 

and then 

(1+q)-r 	()r  as w .7f0D 2 

	 8e1 

W 
1 

1+q 

2 .582 

4 .525 

6 .514 

8 .509 

10 .507 

15 .503 
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1+q 	7 1 is close to for values of w bigger than about 

4. Then a good approximation to the distribution of 

lost (or new) buyers can be obtained by taking a propor- 

tion (2)r  of the people who bought r units in the first 

of two equal periods to be lost buyers. (r = 1,2,....). 

Conversely a proportion 1 - (2)r  of the people who 

bought r units in the first of two equal time-periods 

also buys at least one unit in the second period. 

For small values of w, the proportion of repeat 

buyers is somewhat smaller. 

8.5. Cumulative tables 

The LSD model also allows us to calculate the propor- 

tion of units which are purchased by people who buy j or 

more units. 

on 

This proportion = ›.....- _ rf 
1-0///i! r r=j 	r7.1 

OD 
- 1  

r  ln(1-q) qrir  
r=j 
cc 
:7 r  — 1 	, r /r  

ln(1-q) / 

This is a very useful formula. For example, it is 

r=1 
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known that a few heavy purchasers often account for a 

high proportion of purchases. But it had previously not 

been possible to quantify this fact. It also enables us, 

for example, to calculate the 500/0 point 4, that is the 

value of j above which half the purchases are made. This 

will vary with q and hence with w. 

We have qj-1 .1 

1 
2 

— 1 nq 

Thus we can calculate j for various values of w. 

TABLE 8g  

Table of 50°/o points  

q w 

2 0.5 1.44 

3 0.707 1.96 

4 0.793 2.41 

5 0.841 2.87 

6 0.87 3.28 

8 0.917 4.5 

10 0.933 5.1 

20 0.966 8.4 

30 0.977 11.5 

Example of a cumulative frequency distribution  

The table compares the proportion of purchases which 

are made by people who buy (r+1) or more units and qr. 
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hweaffeALIO. 
The data is for brand k over 24 weeks,

P 
 Sothe typical 

values for r are shown. 

TABU',  8h  

r Observed 
proportion 

1 0.937 0.932 

2 0.859 0.869 

3 0.804 0.810 

4 0.757 0.755 

6 0.658 0.656 

8 0.565 0.570 

12 0.440 0.430 

16 0.320 0.325 

24 0.199 0.185 

32 0.115 0.105 

48 0.051 0.034 

The fit of this cumulative frequency distribution 

is very good indeed. 

When systematic discrepancies occur as in 'heavy-

buying' data then they will show up clearly in the cumu- 

lative table. 	One cannot of course expect the cumulative 

table to fit this kind of data. 

Lastly it is worth pointing out that explicit 

cumulative formulae cannot be obtained for the NBD model 

as it is not possible to express the necessary summations 

in a closed form. 



b
1 	
+ b

2 periods and let b 2 

Let b1, b2 be the proportion of buyers in the two 
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8.6. The standard error of w  

We often wish to compare rates of buying in two 

different time-periods in order, for example, to see if 

the purchasing behaviour is stationary. 

Let w1, w2 be the rates of buying per buyer in two 

successive equal time-periods. If the same panel of 

consumers is used then the two rates of buying will be 

correlated. 

Let ml, m2 be the mean rates of buying in the two 

periods over the whole sample and let m - 
m1 m2  

2 

Then wl  = ml/b, 	w2 = m2/b2.  

Let w = m/b. 

Now the same panel of consumers is used and the 

purchases of any consumer in the two time-periods are 

indepamient Poisson variates. 

j 
Thus standard error (m1-m2

) 4/m11- 
2

1112 	2 
n
m 
 

where n = sample size. 

We also have 

Standard error (bl-b2) = standard error (bL-bN) 

//bL+bN ‘/  

where bL  = proportion of lost buyers 

bN  = proportion of new buyers 
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In addition we require the covariance of (m1 - m2 )  
and (b1 	b2) for the same panel. 

Now as the same panel of consumers is used we know 

that any change in the number of buyers is caused by new or 

lost buyers whose average rates of buying we denote by wN  

and w
L respectively. 

Given a change (b1  - b2) in the proportion of buyers 

we have 

ml - m2 = bL wL bR wR1 bN wN bR wR2 

where bR  = proportion repeat buyers 

wR1 = rate of buying per repeat buyer in first period 

w
R2 	rate of buying per repeat buyer in second period. 

Then if b1 > b2 

ml 
- m

2 bR(wR1-wR2) + (b1-b2) wL + bN (wL-wN) 

[The proof is exactly the same if b2 > b1 except that wN 

replaces wL  in the second term on the right] 

Then 	(m1  - m2)(bi 	b2) 

	

)-- HDR(wR1-wR2) 	(bl-b2)wL + bN(wL-wN)j(b1-b2)  

- b2)2wL  

as( wR1-wR2)  and (wL-wN) are uncorrelated with (b1-b2) 

In addition wL is uncorrelated with b1-b2 and 

(bl-b2 ) = O. 



Then Pmb 

Cov 

= ( (ml-m2)(bl-b2)  

w
L 	Var(b1-b2) 

Pmb 	S.E.(mi-m2).S.E.(bi-b2) 

S.E. (nil-m2) KS.E.(bl-b2) 

(ml-mL)(b1-132)  
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Thus 

f,(ml-m2)(bi-b2) = wL.Var(bl-b2). 
Let pmb  be the correlation coefficient between 

(ml-mL) and (b1-b2) for the same panel. 

A-517c 
wL 1  2n. 

We now replace wii,b1,  and bN  by the estimates obtained 

from the LSD model. Thus the resulting correlation is 

obtained by averaging over fixed panels. 

-2b log(l+q)  
Pmb 	log ITTIT 	log(1-q)m 

= log 1+q) 
	

since w = m/b —(1_010g(1-q) 

The table shows the correlation coefficient for various 

values of w. 

These figures are intuitively acceptable as one ex-

pects the correlation to decrease as the number of purchases 

by loyal buyers, and hence w, increases. 



	

1 	f 

	

= 2 	k -m3i+mli-m2)(b1-b;'+b-b2) 

mx-m2)(b2-bli) 
-mx)(bx-b2) = 0 = 
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TABLE  8i 

	

va 	Pmb 

	

2 	0.61 

	

4 	0.37 

	

6 	0.28 

	

8 	0.21 

	

10 	0.19 

	

15 	0.15 

Consider the variance of m/b: 
X. If m ,b are true values of it,b we have 

	

1 	X -11;L  
M/b = m3 /̀by 	(M-MK)

b 
	

(b-b ) 

bH2  

+ higher order terms. 

Var(m/b) = 	- E(b))2 

eg (ri 
- m 

/bx
) 2 

Var(m) Var(b)mH2 2COV(M_JZ)MX  or 
bX2 	b

H4 bH3 

For the same sample of consumers 

Var(m) = 1 Var(mi-m2) = m/n 

Var(b) = 1 	b Var(bl-b2) = L/n. 

Cov(m,b) 
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2 Cov(m1-m2)(b1-b2) 

bLg wL 
n 

The sample estimates of m,bif are m,b. 

bL wLm Vare — m b
L  
 

m2 
- 2 b2 + —7-- 

n b n 	b3n 

Let N = nb = Average number of buyers. 

w2 	bL/b wL w w 	bL/b  Then Var(w) 	+ 	N  

Hence standard error of (w1-w2) is 

2w + 2w2 bL/b - 4 bL/b wL w  
N 

This expression was calculated for various values 

of w. Note that bL/b and wL have already been calculated 

for various values of w. 

w 

TABLE 8j 

S.E. of (141-w2)i/R 

2 1.7 

4 3.2 

6 4.5 

8 5.9 

10 6.9 

15 9.4 
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8.7 Alternative ways of deriving the repeat-buying formulae  

As for the NBD model, the repeat-buying formulae can 

be derived in two completely different ways from the method 

used in Section 4.5. The first method uses the bivariate 

LSD and the second method considers the problem in terms 

of interpurchase times. 

IA The bivariate LSD 

The repeat-buying formulae can be derived in a similar 

way to that given in Section 2.5 for the bivariate NBD. 

We again note that the conditional distribution in a cer-

tain time-period for those people who bought r units in a 

previous equal time-period is NBD with mean ra/(1+a) and 

exponent r (since k = 0). For the particular case when 

r = 0, the people who buy for the first time in the second 

period form an LSD in this second period (since the expon-

ent r will be zero). In other words the new and lost 

buyers form an LSD in their respective time-periods 

Consider the buyers in some period T. We use the 

lemmas given in Section 2.5. 
ln(1-qTu) 

F8r the LSD g(uT) - 	 ln(1-qT) 

ln(1- qT/T (u1+T-1)) 
ln(1-qT) 

ln(1-qT/T - qT  - qT  ul/T) 
ln(1-qT) 

g(ua.  1 ) 
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. a In (1 - u
i  qT 

 qm(1-T)+T) 	13  

where a,P do not contain ul. 

This is the marginal distribution of Xi  in a unit 

time-period (excluding any non-buyers). It is LSD with 
o 
-T  parameter q1 - qT(1-T)+T • 

Putting al  = qi/(1-q1) and aT  qT  /(1-qT) 

we have 	= Tar.  

Then the conditional distribution of buyers in 

period 	given that X2  = 0 has p.g.f. 

g \ 
( 
2 
 1 .2)  

0) - 	 
g02--  ; 2) 

ln(1 - c12211)  
ln(1-q2) 

q2 ln(1- 	ul) 

ln(1-q2) 

ln(1-q2/2) 

ln(1- q2/u1) 

 

Thus the lost buyers follow an LSD with parameter 

q2 	ql 
2 - 1+qi  

Let us consider the proportion, B, of people who 

buy in at least one of two successive equal period. The 

bivariate distribution of purchases in the two periods 

is given by 



giving bL/b - 	 ln(1 

bL 	- ln(l - q2/2) 

ln(1 + qi) 

- 158- 

h(u1  

ul+u2\  
ln(1 - q2  u • 191) = 	  ln(1 - 

Then bL Proportion of lost buyers in whole population 
00 

coeff. of u1
r 

r=1 

oo 
(.Ialr -1L, 	r  

B ln(1-o2  ) - 

In (1 - 22) 
= B 

But B b + bL 
b + bL 	ln(1 - q ) 

since q2 = 1+q1 
2q1 

Now we have just seen that the lost buyers follow 

an LSD with parameter ql/(1+q1). 

Thus the mean of the distribution of lost buyers 

/, -1/(l+q1) 

-1-- ln( 	1  ) 1+q1 	1+q1  

	 = W
L  ln(1+q,) 

ql 

All the other formulae follow from this result. 

ln(1-q2) 
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Interpurchase times  

These formulae can be derived in a similar way to 

that given in Section 2.4. 

The LSD model assumes that the population is split 

into 'never-buyers' and potential buyers whose long-run 

average rates of buying X, follow the truncated Gamma 

distribution. 

dF = k e-X/a 1 	1 dX T  < x < OD. 

Thus the mean times, y, between purchases follow 

the distribution given by 
1 

dF = k e ay 1 dy  0 < y < T 

[put y 

We suppose that the population makes Poisson pur-

chases in any one time-period. Thus the waiting time 

till the first purchase is exponential. Hence, as in 

Section 2.4, it can be shown that the distribution of 

times to first purchases is given by 

(a + t)T    

	 dt 
-(11 + t) 

Consider two time-periods (0,t) (t,2t). 

b = Proportion of buyers 

= Proportion of people who buy for the first time 

in (0,t) 

e 
0 < t < T 
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Thus 

bL Proportion of lost buyers 

= Proportion of new buyers 

Proportion of people who buy for the first 

time in (t,2t) 

+t) 
2t2t 

k e 	dt -(-7--) 
t  -(--t) 

dt 
0 

[Put a  + t 

dt = dz  

2t a 

) 
t+  t — a 

e- z/T/z dz 

e-z/T/z dz 

t+— a 

1 
a 

2t+ 1  ( a 

t+ a 

2, dz 
z for T large 

t+ r  a 

3 	
1 
z 

 
a 

dz 

2t+ 1  
In ( 	) 

t + a 
t + 

In ( 	 
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Standardise times so that t = 1 

Then 
b
L/b = 

ln(tr_je) 

ln(l+a) as obtained previously. 

Consider a person whose mean time between purchases 

is y. 

Then P(j purchases in (OA- 
e-t/y f t N  j 

) 

 

P(j purchases in (0,t) and 0 purchases in(t,2t)) 

= e-2t/y (y)j/j! 

P(i and 0)j = e

-2t/y0.)j 

0-1)! Y  
j>1 

= e
-t/y 

mL 
 = mean amount bought by lost buyers 

= mean amount bought by new buyers 

( 

P(j and Oly)A j 	P(y)dy 

o 	j>1 

- 

1 

7 
r 	t

e 
 -t/yk e  ay .  dy.  

0 

Similarly m 
	21 	ly) 

	
P(y)dy 

0 
	j>1 

1 
k e aY t/y dy 
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1 

giving 
mL 	a 
 - , m 	-L-L  + t a 

when T is large 

Standardise times so that t = 1. 

, Then m L'm l+a as obtained previously. 

Prediction over longer periods  

Consider the two periods (0,t), (0,ct). 

Let b
e = Proportion of buyers in (0,ct) 

. Proportion of people who buy for the first time 

in (0,ct). 

 

ct 

1 
0  
k 

  

+ t) 

   

  

e 

   

dt 
Then be/b  

  

 

(a t) 
T 

dt (1  t)   

 

ct+- 1 

	

S1 	z a 1 dz 

Put 1-  + t = z a  
a 

t+1  a dt = dz 

	

) 	. dz 
1 

2 
z 

a 

ct + 1  
a) 

1 

t + 1  
in ( 	a ) 

In 

for T large 
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Standardise times so that t = 1. 

b
c/b 	

ln(1 + ac)  
ln(1 + a) as previously obtained. 

Let w
e be the average rate of buying over the longer 

period. In this period c times as many units are bought 

as in the unit period. 

w b = cwb 
C C 

w 	c 
e w = c b/b - c 	in (1+ea) 
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CHAPTER 9 

An Application to a non-Stationary Situation 

9.1 Introduction  

As an example of the effectiveness of the LSD model, 

we shall examine a case study in which a household product 

experienced a large increase in sales from one period to 

the following equal period. This increase was not shared 

by other brands in the same field so that the sales increase 

was not a seasonal phenomenon. In fact the increase was 

associated with a sales promotion campaign which was 

offered to consumers of that particular brand in the second 

period. The data is taken from Goodhar̂t and Ehrenberg 

(1966) who analyse it by using the bivariate NBD, We shall 

see that the LSD repeat buying formulae give the results 

much more simply. 

The following information was taken from a represen-

tative sample of the population:- 

a) which consumers bought the brand in each period 

b) how much each consumer bought in each period. 

We shall see if the increase in sales has been caused 

by repeat-buyers buying more, by getting more new buyers 

than expected or by a combination of both effects. 

The repeat buying formulae which have developed in 

the previous chapter give us a 'norm' by which to judge 

the sales- data. For one of the problems of analysing data 
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is that even when the average rate of buying is constant 

and the data is stationary, there are still substantial 

changes from one period to the next. Some buyers buy 

only in the first period (lost buyers), and some only in 

the second period (new buyers). 

9.2. The data 

The following data was available from a sample size 

1000. 

Period I. 78 buyers bought 320'packets giving 

rate of buying per buyer = w = 4.1 

Also proportion of buyers = b = .078. 

Fit a LSD to the frequency distribution of purchases 

in the usual way by equating observed and theoretical 

means. This gives q = 0.906. 

Period II. The sales show the effect of the promotion 

campaign. 

146 buyers bought 570 packets giving 

rate of buying per buyer = 3.9. 

These buyers can be split into two groups: new and 

repeat buyers. 

80 buyers bought for the first time in the second 

period so that bN = .080. The number of packets bought 

by new buyers = 188 so that wN  = 2.3. 

66 buyers bought in both periods so that bR  = .066. 

The number of packets bought by the repeat buyers in the 
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second period was 382 so that the rate of buying per 

repeat buyers in the second period = 5.8. 

9.3. Repeat buying predictions  

Under stationary conditions we can make the following 

predictions about what would have happened without the 

sales campaign. This will enable us to see how the sales 

campaign has affected the different classes of buyers. 

All the repeat buying predictions are simple functions 

of w or q (see Section 8.2). 

Thus 

wR = rate of buying per repeat buyer = 5.2 

WN  = rate of buying per new buyer = 1.4 

bR = proportion of repeat buyers = .056 

bN = proportion of new buyers = .022. 

Thus the predicted number of packets bought by repeat 

buyers = wR bR 1000 

= 290 

The predicted number of packets bought by new buyers 

= WN bN 1000 

= 30 

9.4. Results  

The four quantities bN, wN, bR  and wR are all higher 

than predicted. The results are given in Table 9.1. 



- 167 - 

TABLE 9.1 

Number of packets 
Buyers 	bought in second period 

1st period 	1st period 
Observed 

0 + 

2nd 

period 

0 

+ 

842 
8o 

12 

66 
0 

188 
0 

382 

Predicted 

2nd 

period 

0 

+ 

900 

22 

22 

56 

0 

30 

0 

290 

The difference between the observed and predicted number 

of packets bought by new buyers 

= 188 - 3o 

158 

The difference between the observed and predicted number 

of packets bought by repeat buyers 

= 382 - 290 

92 

The total increase in sales = 250 packets. 

Thus the trend among repeat buyers accounts for 360/0 of 

the total sales effect of this particular promotion camp- 

aign. 
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CHAPTER 10 

THE DISTRIBUTION OF OCCASIONS AND 'WEEKS'  

10.1. The distribution of Occasions  

In this chapter we will investigate two new models 

for consumer purchasing behaviour by considering the 

distribution of occasions and 'weeks', rather than the 

distribution of packets or purchases. 

The marketing man is interested not only in how 

much a consumer buys but also on how many occasions these 

purchases are made. For example he may want to know if 

his product is habitually bought at a rate of just one 

packet per purchasing occasion or if a substantial amount 

is bought at more than one packet per occasion. 

In addition there are some products, of which petrol 

is the obvious example, which give data of a different 

type from that previously considered. Petrol is bought 

in any amount with 4 gallons a particularly popular choice. 

But it is also possible to buy El worth, which means 

that it is not possible to construct a frequency distri-

bution in the usual way by recording the number of people 

who bought 0,1,2,.... gallons in a particular time-period. 

Instead we can construct the frequency distribution 

of the number of people who bought petrol on exactly 

0,1,2,.... occasions in a particular time-period. The 
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NBD was fitted to several petrol distributions of this 

type and a reasonable fit was obtained in all cases. 

A typical fit for brand S is shown in table 10a. In 

this particular case there is a variance discrepancy of 

24°/o and over all the petrol distributions there was 

an average variance discrepancy of about 200/0. The 

existence of a variance discrepancy is typical of heavily 

bought products. However the discrepancy was much 

smaller than might have been expected for such a heavily 

bought product. 

Thus the possibility arose that a better fit might 

be obtained with other brands by fitting the NBD to 

occasions rather than packets. This did not prove to 

be the case. 

For example for brand P
3 

over 24 weeks (see table 

lob) the distribution of packets gave a variance dis-

crepancy of 480/0 while the distribution of occasions 

gave a variance discrepancy of 500/0. The two distri-

butions are very similar indeed and the shelving effect 

occurs in both. This similarity means that there is no 

advantage in fitting the NBD to occasions rather than 

packets. However we have obtained the useful information 

that most purchases are made at the rate of just one 

packet per purchasing occasion. 
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Table 10a  

Brand: S. Distribution of Occasions 

Time Period: 4 weeks 

Number of Occasions 

on which a purchase 

Frequencies 

 

was made Observed NBD 

0 493 492.9 

1 100 110.4 

2 55 57.2 

3 39 35.2 

4 24 23.4 

5 15 16.2 

6 20 11.6 

7 11 8.4 

8 lo 6.2 

9-12 11 12.7 

13-16 2 4.3 

17+ 1 2.5 

Variance 5.06 6.27 

N = 781 	m = 1.186 

a = 4.29 

k = 0.276 
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Table 10b 

Brand: P
3 

Time-Period : 24 weeks 

No. 

Frequencies 

Packets Occasions 

Observed 	NBD Observed NBD 

0 285 284.9 285 285.0 

1 53 47.6 52 48.1 

2 19 26.4 21 26.7 

3 12 18.1 13 18.2 

4 12 13.6 11 13.7 

5 9 10.7 10 10.7 

6 12 8.7 10 8.7 

7 7 7.2 8 7.3 

8 6 6.1 7 6.1 

9-12 14 17.4 12 17.3 

13-16 12 10.4 12 10.4 

17-20 17 6.8 17 6.6 

21-24 14 4.6 16 4.6 

25+ 2 11.6 0 10.9 

Variance 	35.61 	52.71 33.04 	49.54 

m = 2.97 m = 2.89 

a = 16.77 a=16.14 

k = 0.18 k = 0.179 
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10.2. The distribution of 'Weeks' 

In the distribution of occasions for brand P
3 

over 

24 weeks (see table 10b), we notice that no one buys on 

more than 24 occasions and the possibility arose that 

all such distributions vanish for values above the length 

of the time-period in weeks. If this were so then we 

could try to fit a new type of distribution, which would 

vanish naturally above this point, unlike the artifi-

cially curtailed NBD which was considered in Chapter 4. 

Unfortunately the distribution of brand P over 24 weeks 

(see table 10c) shows that some people do buy some pro-

ducts on more than one occasion per week on average. 

Thus the distribution must be modified further to enable 

a distribution defined on a finite set of integers to be 

fitted. Because of this attention was drawn to the 

distribution of 'weeks'. 

In a time-period of, say, n weeks we can construct 

the frequency distribution 

fo, fl—fn 
where fr 

= number of people in the sample who buy 

at least one packet in r out of n weeks. 

An example of such a distribution for brand P is 

given in table 10c where it can be compared with the 

distributions of occasions and packets for the same 

product. The distribution of 'weeks' is of course only 
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TABLE 10c 

Brand: P all sizes combined 

Time Period: 24 weeks 

No. 

Observed frequencies 

Packets Occasions Weeks 

0 202 202 202 
1 45 48 48 

2 22 23 24 

3 15 14 15 
4 16 14 14 

5 11 12 10 

6 13 11 12 

7 10 13 13 
8 8 7 7 

9 10 11 11 
10 3 5 4 

11-12 11 10 10 

13-14 11 9 11 
15-16 11 12 12 

17-18 13 14 15 
19-20 11 13 14 

21-22 19 15 16 
23-24 24 31 36 

25-28 6 3 
29-32 3 4 

33-36 1 2 
37-40 0 0 

41-44 5 1 
45+ 4 0 
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defined for integers less than or equal to the number 

of weeks in the time-period. 

It is worth emphasizing that the distribution of 

weeks' is of no direct interest to the marketing man, 

so far as is known. Our interest in the subject is 

motivated by a desire to gain insight into the discre-

pancies from the NBD model which is of prime importance. 

10.3. The Beta Binomial model 

We now look for a model which will describe consumer 

purchasing behaviour in terms of the distribution of 

weeks'. We cannot of course consider the NBD model 

as the NBD is defined for all positive integers. 

The NBD model depends on the Poisson and Gamma 

distributions. It is well known that the Poisson dis-

tribution can be obtained as the limit of the Binomial 

distribution, by letting p --> 0 and n —> OD. Similarly 

the Gamma distribution can be obtained as the limit of 

the Beta distribution. The Beta distribution can be 

_ P
a-1 

(1-p)
b_1 

 dp dF  

	

	0 < p < 1 B(a,b) 

za-1 (1 	z l 	
dz

b-1 
	b-li 	 _ 	0 < z < (b-1) 

(b-1)a  B(a,b) 

(putting z = p(b-1)) 

expressed as 
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a-1 -z z 	e  as b > oo 
(b-1)aB(a,b) 

1 
B(a,b) = pa-1 (1_10)b-1 dp  

0 

Thus the Binomial and Beta distributions are the 

discrete analogues of the Poisson and Gamma distributions, 

so we will consider the following compound Binomial model 

for the distribution of 'weeks':- 

(1) The probability that a given consumer will 

buy in a particular week is a constant, p, 

which is independent of previous purchases. 

Thus in a time-period of n weeks, the number 

of weeks in which the consumer buys at least 

one packet will follow a Binomial distribution 

with parameters n,p. 

(ii) The probability, p, varies from consumer to 

to consumer, the distribution being a Beta 

distribution given by 

f(p) 	B(a1,b) P
a-1 (1-

P
)b-1 	0 < p < 1 

a > 0. b > 0. 

Then the overall distribution of 'weeks' will follow 

the Beta-Binomial distribution where 

P(r) = proportion of population who buy on exactly 

r out of n weeks. 
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S
(r1,1) pr (1..p)n-r f(p)dp 

0 

B(a+r,n+b-r)  
(n+1) B(a,b) B(a+1,n+l-r) r = 0,1,...,n. 

The Beta-Binomial  distribution  

The properties of the Beta-Binomial distribution 

(hereafter called the BB distribution) have been discussed 

by Raiffa and Schlaifer (1961) and Ishii and Hayakawa 

(1960). It is interesting to note that the BB distri-

bution can also be derived from an inverse sampling model 

in a similar way to the NBD, by considering inverse 

sampling from a finite population. In this case the 

BB distribution is called the Negative Hypergeometric 

distribution. 

Note that if we were to consider Beta Binomial models 

for shorter time-periods such as days, we would find 

that the Beta Binomial model tends to the NBD model as 

the time-period tends to zero. Thus the BB distribution 

is the discrete analogue of the NBD. 

However while we suspect that purchases in succes-

sive weeks may be independent to a close approximation, 

it is reasonable to expect that 	purchases in succes-

sive days will be negatively correlated as once a purchase 

has been made the consumer is unlikely to require any 

more of that product for several days. This latter 
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argument may be the reason for the discrepancies from 

the NBD model which have been noted and which have led 

us to consider the Beta-Binomial model. 

For durable goods, such as furniture, it would 

probably be necessary to consider a much longer time- 

period as the unit to ensure that purchases in successive 

periods are approximately independent. However in this 

thesis we are only concerned with non-durable goods. 

The mean of the BB distribution is given by 

na/(a+b) and the variance by nab (n+a+b)/(a+b)2  (1+a+b). 

A general discussion of methods of fitting the compound 

Binomial distribution is given by Wetherill (1957) follow- 

ing Vagholkar. 

The standard method of estimating a and b is by the 

method of moments. This gives 

A 	-m (S2  - m(n-m)) a = 
ns2  - m(n-m) 

A 	A 
(n-m) a and b = 

where m = observed mean 

s2 = observed variance. 

Shenton (1950) shows that the method of moments has 

high efficiency. 

m 
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Fitting by zeros and  mean 

Another method of fitting the BB distribution is 

to use the mean and the proportion of zeros. This is 

analogous to the standard method of fitting the NBD. 

Find initial estimates of a and b (say al, bl) by 

the method of moments. Then compare 

bi  (b1+1)... (bi+n-1) 

P1(0)  = Ta7b1)... (al+bi+n-1) 

with the observed proportion of zeros, namely 
f0/N. 

If P1(0) > 
foin then increase a and b in such a 

way that their ratio stays constant. A suitable increase 

is obtained by putting a2  = 1.1a1  and b2 
= 1.1b1. 

a1 (n-m) Then if b
1 
= 

a2 
(n-m) 

we have b2 

so that theoretical and observed means are still equal. 
b2 	

b1  
a2 + b2 a1 + b1 

Moreover we have 

but 
b2 + k 

a2+b2
+ k 

b1  + k 

a
1
+b1

+ k for k = 1,2,....(n-1) 

so that P2(0) < P1
(0) 

Thus the change in a,b has altered P(0) in the 

desired direction. 

Conversely if P1
(0) < fo/N then decrease a and b 

so that a2  = 0.9a1  and b2  = 0.9b1. 
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Put z1 = P (0) - fo/N 

and
2 	

P
2  (0) - fo/N. 

Interpolate linearly for z3  = 0 to find a3, b3  i.e. 
z1  (a2-a1) choose a3  a1  + - - 	(E-Iz ) 

1 2 

a, b 
Hence b 	1 

3 	al  

These estimates of a and b will usually be suffi-

ciently accurate. 

The fit of the BB distribution 

A large number of distributions was fitted by a BB 

distribution and a good fit was obtained in all cases, 

whether the distribution was fitted by moments or by 

zeros. When the distribution was fitted by zeros the 

variance is a convenient measure of the goodness of fit. 

No systematic variance discrepancy was found for heavily 

bought products. Not many distributions were available 

for products which were not heavily bought, but the BB 

distribution seemed to fit equally well. 

The estimates of the parameter a were always less 

than 1 and often close to zero. The value of the para-

meter b, on the other hand, varied considerably from 

about 0.2 to over 10. However for the same brand over 

different time-periods the estimates were reasonably 



- 180 - 

constant as required by the model, for under staionary 

conditions the Beta distribution for p is the same for 

all time-periods. Thus for brand P over 24 weeks we find 

a = 0.19 and b = 0.59. This time-period was divided into 

six 4-week periods and estimates of a and by were found 

for each of these periods. The estimates of a varied 

between 0.123 and 0.185 with an average of 0.152 while 

the estimates for b varied between 0.436 and 0.519 with 

an average of 0.45. 

The distributions can be divided into two categories. 

Firstly those which give a fitted BB distribution, which 

decreases monotonically with the number of weeks (as in 

table 10d) and secondly those which give a fitted BB 

distribution which is U-shaped (as in table 10e). The 

significant point is that the BB distribution fits both 

types of distribution. 

The two types of distribution can be distinguished 

by the value of the parameter b. 

For we have 

P(r+l) 	(a+r)  (n-r) 
P(r) Tn+b-r-M1+r) 

so that when r = n-1 we have 

P(n)  _ (a+n-1j 
P(n-1) 	b x n 

Now a is always less than 1 so that for reasonably 

large n we find 
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P(n) 	1 
P(n-1) 

Thus a U-shaped distribution with P(n) > P(n-1) 

must have b < 1. Conversely those distributions which 

are monotonically decreasing will have b > 1. 

If the distribution is U-shaped, with 0 < a < 1, 

and 0 < b < 1, then the smallest value in the distribu- 

tion P(r+1) can be found by considering 	as a continuous P(r) 

function of r. 
P(ro+1) If we set P(r) 	1  o  

we find ro n + b-1 
-a 

Thus the smallest value in the distribution occurs 

when r is the smallest integer greater than ro. 

Compound Binomial distributions in readership analysis 

Hyett (1958) and Metheringham (1964) have noted the 

application of the BB distribution to readership studies. 

If an advertisement is inserted in several issues of the 

same publication, then the total number of people who 

will see the advertisement will be considerably greater 

than the number of people who see just one issue of the 

publication. One method of describing this situation is 

to suppose that the proportion of people who see exactly 

r out of n issues will follow a BB distribution. 

A related compound Binomial model, which is also 
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Table 10d 

Distribution of 'weeks' 

Brand: all brands in product field Y combined 

Time Period: 24 weeks. 

No. of 

Weeks 

Frequencies 

Observed 

BB fitted 

by zeros 

BB fitted 

by moments 

0 278 278.1 308.1 
1 112 124.8 120.3 
2 94 87.6 81.7 

3 65 68.9 63.2 
4 7o 56.9 51.9 

5 59 48.4 44.1 
6 51 41.8 38.2 
7 40 36.5 33.5 
8 33 32.1 29.7 

9 32 28.4 26.5 
10 18 25.2 23.7 
11-12 26 42.0 40.4 
13-14 18 32.7 32.6 
15-16 19 25.0 26.0 
17-18 16 18.4 20.2 
19-20 11 12.6 14.9 
21-22 9 7.6 10.0 
23-24 19 3.o 4.8 

Variance 30.3 27.6 30.3 

a = 0.468 a = 0.403 

b = 2.034 b = 1.749 
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Table 10e 

Distribution of 'Weeks' 

Brand: P. all sizes combined 

Time Period: 4 weeks 

Frequencies 

No. of 

weeks Observed 

BB fitted 

by zeros 

0 291 291.0 

1 52 54.5 

2 45 37.8 

3 29 35.9 

4 57 54.8 

Variance 	2.04 	2.03 

a . 0.165 

b = 0.519 
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applicable to readership analysis, has been considered 

by Quenouille (1964). He assumes that the underlying 

distribution of p is given by 

f(p) 	(1-b)(a+1)pa 	0 < p < 1 

a > -1. 

Prob (p=1) = b 

where p is the probability that a member of the popula-

tion will see a particular issue of the publication, and 

b is the proportion of regular readers. This model gives 

somewhat similar results to those derived from a BB model 

where the BB parameter, b, is less than 1. 

10.4. Predictions from the BB model 

Proportion of buyers in a longer period  

The BB model, like the NBD model, enables us to make 

predictions about how the sample will behave in a longer 

time-period. Under stationary conditions, the Beta dis-

tribution of p is the same for all time periods, so that 

the parameters a,b stay constant. 

Let b = proportion of buyers in the sampled period 

of n weeks 

and B = proportion of buyers in a longer period of 

kn weeks 

where k is some constant. 

Now b= 1 	B (a, n + b)  
(n+l) B(a,bi B(1,n+17 

B= 1 B (a, kn + b)  - (kn+1) B(a,b) B(1,kn+1 
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% But B(a,kn+b) - B(kn+a+b
a,n+b)(kn+b-1) . ()+b) 

k  

and B(1,kn+1) % - B(1,n+1) kn(kn-1)... (n+1)  (kn+1)... (n+2) 

1 b 	(kn+a+b-1)...  (n+a+b) 
1 - B 	(kn + 

Hence a prediction of B can be made. 

Repeat buying formulae 

In addition we can also derive repeat-buying formulae 

for the BB model. In two successive equal time-periods 

of n weeks, the population can be divided into 4 sub-

groups; namely lost, new, repeat and non-buyers. 

Let B = proportion of buyers in the combined period 

Then bN B - b 

(1-b) [ (2n + b-1)... (n + b) 
(2n+a+b-1)... (n+a+b) 

Hence a prediction of bN  or bL  can be made. 

We can also calculate quantities such as the mean 

number of weeks in which a purchase was made by a lost 

buyer averaged over the whole population. This will 

correspond to mL  or mN  in the NBD model and will be de-

noted by mL
x 

We expect mL
x to be slightly smaller than 

mL. 

A person who buys with probability p during any one 

week will buy on np weeks on average in the second of 
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the two periods, regardless of the fact that he bought 

on say j weeks in the first period, because the number 

of weeks in which an individual buys in 2 successive 

time-periods are independent Binomial variates. 

In particular if we consider those people who did 

not buy in the first period we obtain 

1 

mL 	f(p) (1-p)n  np dp 

0 

1 
	 pa (i_p)b+n-1 n 	 dp 

0 

n B(a+1, n+b) 
B(a,b) 

n B(a+1, n+b-1) (n+b-1) 
BTa,b) 	--(n+a+br 

But P(1) B(a+1, n+b--1)  
= 7171-dB(a,b)B(2,n) 

B(a+1, n+b-1) x n 
B(a,b) 

m 	_ (n+b-1)  P(1) (n+a+b) 

For n large and a < 1 we notice that 

mL 	P(1) = mL. 
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10.5. The connection between the BB distribution  and 

the NBD 

The position now is that whereas the distribution 

of 'weeks' is always well fitted by a BB distribution, 

we also know that there may be a discrepancy from the 

NBD for the distribution of packets. Given the distri-

bution of 'weeks' in a time-period of c weeks, we would 

like to find the conditions on the BB parameters such 

that the frequency distribution of packets will be well 

fitted by a NBD. 

Suppose that a member of the population has prob-

ability, p, of buying in one week, and that he buys X 

packets on average in the time-period. Then p and X 

are related by 

p = 1 - e-A/c 

dp = e-X/c  dX. 

Thus the underlying distribution for p which is 

given by 

dF = B(a 1 ,b) 
 ,a-1 (1_p)b-1 dp  

transforms to give the following underlying distribution 

for X:- 

(1-e-/c a-1 dF1 - B(a
1  
,b) 	) e c  dX. 

We can compare this with the underlying Gamma 

distribution for X which is postulated to derive the 

NBD. This is 
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fl k -N/aN 
dF2  = v--) 	

exk 	dX aN 	(k) 

The parameter a of the NBD is given the suffix N 

to distinguish it from the BB parameter. 

For X small we have 

1 e-X/c A/c 

1  a-1 - 
c  
-- b 

/ so that dF1 	c.B(a,b) va/XI e 	dX. 

Thus the part of the distribution where X is small 

is of Gamma type and as a large proportion of the popu- 

lation usually has a small value of X it is reasonable 

to compare the coefficients of X and e-X  in dF1  and dF2. 

We find (k-1) corresponds to (a-1) 

/1 and k---) corresponds to b/c. aN  

This correspondence is borne out in practice for 

we find that both k and a are usually close to zero, 

and we also know that aN  and c are directly proportional_  

to the length of the time-period. 

For X large we have 

1 - e-X/c 1 as A > OD 

and dF1 is dominated by e
-Xb/c 

• 

Thus dF1  will no longer be of the same Gamma type, 

and presuming that dEll  and dF2  are similar for small 
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values of X, then the relative difference between them 

will increase with X. However if 
e-Xb/c 

tends to zero 

fairly rapidly with X, then only a very small part of 

the distribution will be affected by this difference and 

the two distributions will be in close agreement. On 

the other hand if e-Nb/c  tends to zero rather slowly 

with X, then the discrepancy will become important. 

For a fixed value of c, the larger b is, the quicker 

e-Xb/c will tend to zero. Thus for 'large' values of 

b we expect the NBD to fit the distribution of packets 

reasonably well, but for 'small' values of b we expect 

to find a discrepancy. The value of b below which a 

discrepancy occurs can be found by an inspection of 

distributions with values of b over a wide range. The 

value turns out to be somewhere between 1 and 2. 

This result is intuitively acceptable because it 

appears harder to stretch out a U-shaped distribution 

into a NBD than a monotonically decreasing distribution. 

For example products D and P are heavily bought but 

the BB distribution gives a good fit to the distribution 

of 'weeks' (see tables 10e, f, g), and we find b < 1 for 

both products indicating a U-shaped distribution. 

For 6 distributions of 'weeks' each over a 4-week 

period we find 

Brand D - average b = 0.70 

Brand P - average b = 0.45. 
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Because b is small we are not surprised that the 

NBD does not give a good fit to the corresponding dis-

tribution of packets. A large variance discrepancy occurs 

for both brands and ID/and P, which has the smaller value 

of b, also has the larger variance discrepancy. 

The NBD variance discrepancy is not confined to 

products with a U-shaped distribution of 'weeks', though 

these give the largest discrepancies, for a value of b 

which is slightly greater than 1 may still be associated 

with a small NBD variance discrepancy. 

10.6. The shelving effect  

One important result of the analysis of the distri-

bution of 'weeks' was a deeper understanding of the 

shelving effect. 

We have already seen several distributions of 

weeks' in which a similar effect is evident. For ex-

ample in table 10 d the observed frequencies are rela-

tively steady between 11 and 24 weeks, the latter period 

being the upper limit of the distribution. 

It is easy to choose the BB parameters so that the 

BB distribution is fairly constant over a high proportion 

of the distribution. For example if b = 1 we have 

	

P(x+l 	(a+x)  (n-x)  

	

P(x) 	(n-x) (1+x) 

a+x 
l+x 
, 1 for a < 1 and x fairly large. 
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TABLE 10f 

Distribution of 'weeks' 

Brand: D, all sizes combined 

Time Period: 4 weeks. 

Period 1 

Frequencies 

No. of 

Weeks Observed 

BB fitted 

by moments by zeros 

0 390 390.2 390.0 

1 38 37.8 38.1 
2 21 20.7 20.7 

3 14 14.3 14.3 
4 11 10.9 10.9 

Variance 0.77 0.77 0.77 

a = 0.097 	a = 0.098 
b = 1.014 
	

b = 1.023 

Period II  

Frequencies 

No. of 	BB fitted 

Weeks 	Observed 	by moments 	by zeros 

0 399 403.6 399.0 
1 36 26.3 31.0 
2 14 15.8 17.7 

3 6 13.1 13.5 
4 19 15.2 12.7 

Variance 0.84 
	

0.84 	0.79 

a = 0.060 
	a = 0.074 

b = 0.655 
	

b = 0.815 
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Table 10  

Distribution of weeks 

Brand: D.all sizes combined 

Time Period: 24 weeks 

No. of 

weeks 

Frequencies 

Observed 

BB fitted 

by moments by zeros 

0 342 350.7 342.0 

1 23 26.4 29.4 

2 25 14.3 16.0 

3 15 10.0 11.2 
4 11 7.7 8.6 

5-6 13 11.8 13.1 

7-8 1 9.1 10.0 

9-10 9 7.4 8.0 

11-12 3 6.4 6.8 

13-14 10 5.7 6.0 

15-16 5 5.1 5.3 
17-18 1 4.9 4.9 

19-20 2 4.6 4.5 
21-22 8 4.7 4.2 

23-24 6 5.4 4.2 

Variance 	24.18 	24.18 	22.7 

a = 0.075 	a = 0.086 

b = 0.819 
	

b = 0.941 
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Thus if n = 12 and a = 0.5 we have 

112) 	0.96 11) - 

P(6)  - 0.92 
P(5) -  

so that the distribution is fairly steady between x = 5 

and x = 12. This effect is similar to the shelving effect 

described in Chapter 3. 

Alternatively it is easy to choose the BB parameters 

so that the distribution is U-shaped and has a peak at the 

number of weeks in the time-period. This effect is simi-

lar to the bunching effect described in Chapter 3. 

The importance of these two effects, which are very 

like the shelving and bunching effects, was realised when 

further analysis showed that the distribution of 'weeks' 

and packets was very similar. In other words few people 

buy more than one packet in any one week. 

An example is given in Table 10c for brand P over 

24 weeks, where the two distributions look very similar. 

This is confirmed by calculating 

Grand total of packets bought = 3271 

Grand total of weeks in which a purchase was 

made = 2784. 

The difference is le/o. 

For brand D, which is not so heavily bought, the 

similarity is even more striking, and we find a difference 
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of only 13°/c over a 24 week period. Brands which give 

b y 1 will have an even smaller difference. 

Thus when the distribution of 'weeks' exhibits a 

shelving effect, the distribution of packets, being very 

similar, will also exhibit a shelving effect. As the 

distribution of 'weeks' is always well fitted by a BB 

distribution it follows that the BB model is more exact 

than the NBD model. Thus the average long-run rates of 

buying would better be described by the distribution 

derived in section 10.5, namely 

a-i 	_ XID 

dF1 	B(a
1 
 ,b) - 	(1 	e-X/c) 	c 	dx  

• 

However it was not practical to use this distribu-

tion to build a model to describe the distribution of 

packets, because the integrals which resulted could not 

be evaluated in a workable form. 

Thus, as we are primarily interested in the distri-

bution of packets, we will continue to use the NBD (or 

LSD) model as an aid to description and prediction. At 

the same time we must recognize that it is only a useful 

approximation and that the shelving effect will occur 

when the corresponding distribution of 'weeks' gives a 

BB distribution with a value of b less than or slightly 

greater than 1. 
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APPENDIX 

Tables  of frequency distributions 

Brand: P1  

Time Period: 24 weeks 
Frequencies 

Number of 

Units bought 

   

Observed 
Fitted 

NBD 

 

0 	438 	438.0 

1 	 9 	9.6 

2 

3 4 3.1 

4 2 2.3 
,.. 

57-  3 5.4 

9-12 3 3.0 

13-16 3 1.8 

17-20 2 1.3 

20-24 4 0.9 

25+ 	- 2 , 3.9 

Variance 	18.8 	24.6 

N = 474 
	

m = 0.73 

a = 32.53 

k = 0.02 



Brand: P2 

Time Period: 12 weeks. 

Number of Frequencies 

Units Bought Observed 

395 
21 

7 
6 

4 

7 
2 

7 

3 

7 

0 
1 

12.21 

N = 474 

Fitted 
NBD 

395.o 
23.3 

11.7 

7.6 

5.5 
4.2 

3.4 

2.8 

2.3 

2.0 

1.7 
1.5 

1.3 

3.8 

2.4 

1.6 

4.o 

20.66 

m = 1.10 

a = 17.72 
k = 0.06 

0 

1 

2 

3 

5 
6 

7 

9 
10 

11 

12 

13-16 

17-20 

21-24 

25+ 

Variance 
.-• 



Brand: P 

Time Period: 	8 weeks. 

Number of 

Units Bought 

Frequencies 

Observed Fitted 
NBD 

0 435 435.0 

1 19 17.7 

2 5 7.7 

3 3 4.3 

4 2 2.7 

5 2 1.8 

6 3 1.3 

7 4 0.9 

8 1 0.7 

9+ 0 2.0 

Variance 	1.04 	1.32 

N = 474 
	

m = 0.23 

a = 4.70 

k = 0.05 
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Brand: Pk  

Time Period: 24 weeks. 

Number of 

Units Bought 

Frequencies 
Fitted 

Observed NBD 

0 403 403.0 

1 34 24.9 

2 11 12.1 

3 7.6 

3 5.3 

5-8 11.1 

9-12 9 4.8 

13-16 2.3 

17-20 

2 

 1.3 

21-24 2 0.7 

25+ 0 1.1 

Variance 7.55 7.34 

N = 474 	m = 0.67 

a - 9.90 

k = 0.07 
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Brand: P3 
Time Period: 4 weeks 

No. of 

Units bought 

Frequencies 

Observed 	NBD 

0 387 387.0 

1 31 44.2 

2 26 18.5 

3 13 9.6 

4 14 5.5 

5 2 3.3 

6 0 2.1 

7 0 1.3 

8 1 0.9 

9+ 0 1.7 

Variance 	1.08 	 1.50 

m = 0.41 

a = 2.62 

k = 0.16 
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Brand: k 

Time Period: 24 weeks 

Number of 
Units bought 

Frequencies 

Observed LSD NBD 

0 1501 1500.9 1501.0 

1 8o 86.3 82.5 

2 50 40.2 40.4 

3 23 25.0 25.6 

4 15 17.5 18.1 

5-6 24 23.1 24.2 

7--8 16 14.7 15.4 

9-12 15 17.3 18.1 

13-16 11 9.4 9.7 

17-20 6 5.5 5.6 

21-24 2 3.4 3.4 

25+ 7 6.5 6.0 

Variance 10.62 10.18 9.63 

N = 1750 	q = 0.932 m = 0.73 

a = 13.72 k = 0.059 

aN  = 12.24 
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