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ABSTRACT

Several models are constructed to describe the pattern
of purchases of non-durable consumer goods such as cocoa,
margarine and soap powder,

The first model is based on the Negative Binomial
Distribution (NBD) but certain systematic discrepancies
from this model lead to an examination of other models,
and in particular to a model based on the logarithmic
series distribution (ISD).

The séction on the Logarithmic distribution shows
that within this model the distribution of the number of
purchases made in any time-period can be completely des-
‘cribed by just one statistic, namely, the rate of buying
per buyer, where buyer refers to a member of the popula-
tion who buys at least one unit in the time-period in
question.

Prediction formulae are derived for both the Negative
Binomial and Logarithmic models so that given data for
some time period 1t is possible to make forecasts about
the way the sample will behave in subsequent time-periods.

Finally a model based on the Beta-Binomial distribu-
ﬁion is proposed to describe the distribution of the number
of weeks in a time-period in which members of the popula-
tion buy at least one packet. This model gives some
insight into the reason for the discrepancies from the

previous models,
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CHAPTER 1

THE NEGATIVE BINOMIAL MODEL

1.1, Introduction. This thesis is concerned with the

purchases of non-durable consumer goods such as breakfast
cereals,’cocoa, detergents, margarines and soups. The
most common technigue for gathering data about suech pur-
chases is to have a large sample of housewives who keep
a record every week of what they buy. This sample is
called a continuous consumer panel.

Most analyses are made over periods of 1, 4, 12, 13,
24 or 25 weeks. For any such period of time we know how many
consumers in the sample bougﬁt 0, 1,2 or in general r
units or packets of the given product. We also know the
number of occasions and the number of weeks in which each
member of the sample bought at least one such packet.

Given this data we would like to be able to predict
the way in which this sample will behave in subsequent
periods. Thus we shall attempt to construct a model which
adequately describes the buying behaviour of the popula-
tion.

The model will be constructed to apply when the data

is stationary:; that is without any overall trend from

one period to the next., However the model can also be
used as a yardstick when the data is non-stationary.
The model will usually deal with one brand at a time

sO0 that no account will be taken of whether or not a
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consumer has also bought one or more other brands in the
same product-field.

A more technical restriction for the distribution
of packets is that the brand must be bought as multiples
of a single unit pack-size. This restriction ensurés
that the resulting frequency distributions are integral
valued, Thus if a brand is marketed in two or more pack-
sizes, the distribution of packets for each>pack~size is

analysed separately.

1.2. The Negative Binomlal model

The major portion of this thesis will be concerned
with the distribution of packets or purchases. The dls-
tributions of occasions and 'weeks' wiil not be consildered
until Chapter 10. Ehrenberg (1959) noted the application
of the Negative Binomial distribution to the analysis of
stationary consumer purchasing over successive equal time-
periods. He postulated the following compound Poisson
model:-

| (i) Purchases of a'given consumer in Successive
time-periods are independent and follow a Polsson
distribution with a constant mean

(1i) The average long-run rates of buying of diff-
erent consumers should differ, the distribution

being a Gamma distribution (strictly
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speaking a Pearson type III distribution).
This model is best illustrated diagrammatically.

Table la

Long run Distributions

Periods of time

Averages Horizontally

Consumer I II IIT Iv

A X x X bd My Poisson
B X X X X bg v
C X X X X e '
D X X X b Hp vt
Mean m m m m m
Distribu-
tions NBD NBD NBD NBD Type III

Vertically

NBD is used here (and throughout the thesis) as an abbre-

viation for Negative Binomial Distribution.

If this model is applicable, the distribution of
purchases in one time-period will follow a NBD. Note

that the converse of this statement is not true.

1.3 The Negative Binomial Distribution

The Negative Binomial distribution is a 2-parameter

discrete distribution which has many useful applications.
The probability of observing any non-negative integer

r is given by
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o my-k  (k+r) m \r
B=0+)7 o) G

The two parameters are the mean m and the exponent
k. It is also common to refer to m as the scale parameter
and k as the sghape parametér°

It is often convenient to use instead of m the

parameter a = m/k.

. -k = (kir) A _\r
Then El" = (l+a) I‘:’ﬁ(m (l+a)

The distribution has one mode, which is at zero for
the fairly small values of m and k which occur with
consumer purchasing data, and then the distribution is
reverse J-shaped.

The variance of the distribution is

m(l + m/k) = m(1l+a).

The NBD can be fitted to an observed consumer pur-
chasing distribution by equating theoretical and observed
means and proportion of zeros.

= sample mean = X

> 2>

k is the root of

(1 + m/k)_k =1 - b where b is the observed propor-
tion of buyers in the particular
time-period.

= fO/N where N is sample size, and fo
is the number of non-buyers.

The NBD was fitted to a large number of consumer
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purchasing distributions and a good fit was obtained in

most cases. A typical fit is shown in Table 1b.

Table 1b

A typical example of the fit of a NBD

Number " Frequencies Number Frequencies
Ungis Observed Theoretical Ungis Observed Theorétical
Bought Bought

0 1612 1612 10 6 4.8

1 164 156.9 11 3 3.8

2 71 T4.0 12 3 2.9

3 47 hy,2 13 5 2.3

4 28 29.2 14 0 1.8

5 17 20.3 15-18 2 4.y

6 12 14,7 19-22 3 1.8

7 12 10.7 2%-26 3 0.8

8 5 8.2 27+ 0 0.9

9 7 6.2

m=0.636 k= 0.115 a = 5.53

s = 2.12 Jm(l+a) = 2.04

The data were taken from a 2000 household sample over

26 weeks.

The sample standard deviation was compared with the
theoretical value Jm(1+a) to test goodness of fit. For

most distributions there is good agreement.
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1.4 Other developments

In two later papers (1963, 1964) Ehrenberg deals
with the prediction of the proportiam of buyers over a
longer period and also with repeat buying.

Suppose that we have detailed sales data for some
time-period. We need only 2 statisties from this infor-
mation to fit a NBD, namely,

b = proportion of buyers in that period

m = mean rate of purchasing in that period per

informant.
Estimate m = observed mean
Estimate k by solving
)-k

(1 + m/k =1 - D,

Buying over a longer period. We will define the market

penetration to be the proportion of buyers in the rele-
vant time-period. Given information about a unit time-
period the stochastic model enables us to predict what
will happen in a time-period ¢ times as long. In parti-
cular it is easy to predlct what the market penetration
will be in the longer period.

Under stationary conditions the average quantity
bought in the longer period is given by

m, = cm

The shape parameter k remains constant so that

kc = k.
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This parameter k is an intrinsic property of the
population sampled. When the time period changes the
mean of the underlying Gamma distribution changes prop-
ortionately but the second parameter k does not change.

The penetration bc in the longer period is given
by

m -k

1 -b =(1+ c/ko) ¢

)—k

em
(1 + ”

The predicted values of bc were compared with
the observed values for a variety of brands over diff-
erent time-periods and good agreement was found under

stationary conditions.

. Repeat-Buying. If we consider buying activity over

two successive, equal periods of time, the population

can be divided into the 4 sub-groups set out in Table

ile.
TABLE 1c
Buying activity in two successive time-periods

Definition 1st Period 2nd Period

Lost Buyers + 0

Repeat Buyers + ' +

New Buyers 0 +
Non-Buyers 0 0

A + indicates the purchase of at least one unit.
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We will ﬁse small letters to denote quantities in
the first period and capital letters to denote quantities
in the combined periocd which is twice as long.

In this longér period we also have an NBD with K = k

M=2m A = 2a.
_M/A
Also B = 1 -~ (1+A)

1 - (1+2a)_m/a

Denote the proportions of repeat, lost and new

buyers by bR’ bL, and bN respectively.

9¢)
i

bR + bL + bN

b = bR + bL'

On the stationarity assumption bL = bN'

b, = b, =B -Db

L N
= (1+2)7% - (1+2a)7K
bR = 2b - B
=1 - 2(1+a) ¥ 4+ (1422)7F

——

Good agreement was found between the observed and pre-

dicted values of bR’ bL.
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1.5 General Theory of the NBD

As the NBD will appear throughout the thesis we
present an acooﬁnt of the relevant aspects of itsntheory.

The NBD has a long history. According to I. Tod-
hunter's 'history' the earliest general statement of
the NBD was given by Montmort in 1714. This is at al-
most exactly the same time as the first known derivation
of the binomial distribution which 1is ascribed to Jakob
Bernoulli - 'Ars Conjectandi’ (1713). Other pioneers
in the investigation of the NBD were Yule (1910),
McKendrick (1914) and Polya(1923).

Reviews of the distribution are given by BartKo
(1961) and Gurland (1959).

The NBD can be obtained by expanding the function

k 1k m -k my-k m -k
- £ .-
Thus the p.g.f. is (1 + %) K [1 - %;EJ k
my~-k . met -k
The m.g.f. is (1 + E) (1 - EIE]

Thus th f. is -k log (1+ 2) -k log[l - me”
us the c.g.f. is -k log K o8 mtk
¢k log k ~ k log [mtk - met]

it

= -k log [1 - (et - 1)].

~1s
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Then the first 4 cumulants are

kl = m

k, = m(1 + %)

ky = m(1+ F) (1 + &0

ke, = m(1+ 3) (1+% + om0y

~
i)

Notice that k2 > kl whereas for the ordinary Binomial

k2 < kl and for the Poisson k2 = kl.

1.6 Models for the NBD

The NBD can be derived from several different models,
only two of which will concern us.

(1) Compound Poisson If the mean A of a Poisson dis-

tribution varies randomly according to some probability
distribution then a compound Poisson distribution results.
The NBD results if A has a Pearson type III (Gamma)
distribution. (Greenwood and Yule (1920)).

The need for éuch a compound Poisson distribution
first arose in connection with accident figures. Thus
Kendall and Stuart (p.129) give some accident figures
for which the Poisson distribution gives a bad fit
but the NBD gives a good fit. A plausible reason for
this is that liability to accident varies from person

to person, and this leads naturally to the concept of
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accident proneness.

We will derive the‘NBD in the context of consumer
purchasing. |

We suppose that each consumermakes Polsson purchases
in successive (equal) time pericds with an average rate
of buying A, We will also supbose that A varies from
person to person and is distributed as

4F = —L o Ma

a¥ (k)

=l gn  0< A< o

a > 0
[(Note: The Pearson type III distribution is obtained
: 1 -x _k-1
from the Gamma distribution dF = B0k e X dx
by putting x = A/a].

Thus in a particlar time period the proportion of

people buying r units is given by
@®

_ 1o a4
f "'1;—1—— e?\/ahkle}\l}_‘_d}\
a (k) I
o
-k . s
_ (Ha)ﬁ(kg" JQ;H:I) (+22) This is the NBD

where a = m/k.

(2) Generalised Poisson Quenouille (1949), following

Thders (1934), has given another derivation which will
be discussed more fully later on in the thesis.

If the number of bacterial colonies per field
follows a Poisson distribution and the number of bac-

teria per colony follows a logarithmic distribution,
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then the distribution of bacteria per fleld follows a
NBD.

Let the number of colonies per field follow a Poisson
distribution mean w. Then its probability generating

function is given by

¢, (t) = exp{u(t—l)}

Let the number of bacteria per colony follow a Log-

arithmic distribution with parameter gq. (This distribution

T
. . . _ _ _ . 1 aq )
is obtained by expanding -1n(l-q). Thus P mia) T

Its p.g.f. is gilven by

Gy (%) = %ﬁf%%fﬁ§%

Then it can be shown (e.g. Feller) that the number

of bacteria per field has the compound generating function

6,(0,(8)) = G(t)

-1/1n(1-q)
a/(1-q).

Putting k

1

@
1

-k a -k . .
we get GB(t) = (1+a) [:1 - Tva é} which is the p.g.f.

of the NBD.

There are two other well-established models which
have not been considered in this thesis. Inverse Binomial
sampling, which is the most widely known model, was dis-
cussed by Yule (1910). Most textbooks include an account
of this model (e.g. Kendall and Stuart p.130) but it does

not appear to be relevant,
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The NBD can also be derived from a model of population
growth 1in which there are constant rates of birth and
death per individual and a constant rate of immigration.
W1111amson and Bretherton (1964) give a good precls of
Kendall's original paper (1949) A similar model was
considered by Yule (1924), Furry (1939) and McKendrick
(1914).

1.7. Methods of estimating the NBD parameters

The maximum likelihood estimates of m,k were derived
by Fisher (19041).

A -—

m = sample mean = Xx

PaY
k is the root of

o r-1
1
N log (1 + i/k) = e WY
r=1 i=0

Anscombe (1950) gives the variances of these estimate-
for large samples as

Var m = (m + m3/k)/N = m(1+a)/N

00
Var X 22{?515ill /_{1+2 Ezé(]+ii§m+k
| N (i) (j—l'

Cov (ﬁz,%) ~ O.

Because the maximum likelihood equation for Kk is
hard to solve several other methods of estimation have
been proposed.

(1) Method of moments. Estimate m,k by equating
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observed and theoretical means and variances.

A _ _ —_
ms=x . X(l-i—-}-(—)-:.sz

f

(2) Zero frequency. Estimate k from the observed
proportion of zeros.
':—-12
P = T /N = (1 + £y
k

This equation can easily be solved by iteration
especially if written as a - ¢ log(l+a) = O

where ¢ = -m/log P
A suitable starting value for the iteration is given by
k= T1/r .

Evans (1953) has prepared a graph in which 3/a is
plotted against log ¢ and hence values of a can be Ob-
tained directly.

Anscombe (1950) gives a table showing the efficlency
of these twb methods for various values of m,k. Generally
speaking, if the distribution is reverse J-shaped with
more zeros than ones (as for consumer purchase distribu-
tions) then the zeros method will be very efficient. But
if the distribution is more symmetric with less zeros
than ones, then the method of moments has a higher effi-
»ciency.

There is an additional compelling reason for choosing

the zeros method. For a particular sample, size n, denote
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the probability that the ith person will buy at least
once in a specific time-period by py- Then the expected
proportion of the sample who buy in this time-period is
given by
n
2. P,
i=1
n

But for each person the statistic

T = 1 1if person buys
; =

O if person does not buy
is an unbiased estimate of P, -

Thus for the sum of n independent Binomial variates

we have that §§T
T,
i=1 -

the proportion of buyers in the sample = b = o
is an unbiased estimate of P. Thus b is an unbiased
estimate of the proportion in the sample who will buy
in a succeeding equal time-periocd.

wiblased.

Thus when we want to makehpredictions about a parti-
cular sample we will fit the NBD by zeros. But if we
wanted to make predictions about the whole population
then predictions based on maximum likelihood estimates
will have a smaller variance and the extra effort in
fitting the distribution might be worthwhile, We will
only be concerned with predictions for a particular

sample.



1.8 Special Cases of the NBD

(l) Geometriec The recurrence relationship for the NBD
is

a a-m
Fp = (l+a) (1 - ar) r-1°

When a = m (k = 1)

a
Py = 1+a Pr~1’
so that P = (——~)r r >0
T 1+a 1+a - 7

This is a Geometric distribution with mean a, and

variance a(l+a).

- _ 8 _ a-m
(2) Poisson P, l+a) (1 ar) a1

keep m fixed and let k = o so that a — 0,

m . . .
Then Pr —> b Pr—1 which is the recurrence relation-

ship for a Poisson distribution.

-m T
Pr = e m /r!

Then variance = m(l+a) —> m.

. . P a~-m
(3) Logarithmic = (&) (1 - e Pr~1

1+w

Let both m,k tend to zero in such a way that their

ratio a stays finite.

Then Pf > 2 r-1 P

1va o tr-1 for r > 2.

But P. — 0 P .
1 o]
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In other words all the probability is concentrated
in the zero class. Thus we are led to consider the
~conditional distribution of positive integers with the
zero class missing. Then we find that the relative
NBD probabilities of observing a positive (non-zero)
integer tend to the Logarithmic probabilities

_ 1 a \r ..
5 = Tog_(1+a) (335) /r

1.9 Tabulation of the NBD

The tabulation of the NBD presents problems because
the cumilative distribution function cannot be expressed
as a simple function. However it can be evaluated from
Pearson's tables of the incomplete Beta function.

Thus K
+k

8
=

< - 1 4 k-1l,, 37
A Px Blk,r+1) j u (1-u)” au
X=r Pe)
my-k T {k+x) , m \x
where Poo= (1 + ) " s (g

A full account is given by Patil (1960) following

Pearson and Fieller (1933),

In addition, Williamson and Bretherton (1964)
have published tables of the NBD., However Steck (1965)
in reviewing these tables points out that Pearson's

tables are more useful,
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CHAPTER 2. Repeat-Buying

2.1. Amounts bought by repeat and lost buyers

We have already derived formulae for the proportions
of repeat, lost and new buyers in 2 successive equal time-
periods; We shall now obtain formulae for the amounts
bought by repeat and lost buyers.

It seems reasonable to expect the repeat buyers to
buy at a different (higher) rate than the lost buyers.

Now the NBD model assumes that the mean rate () at

which people purchase follows a Pearson type III distribution

k
M2l ) o 0dA< .

aF = (3)
and that the purchases of an individual in successive equal
fime-periods follow a Poisson distribution.

Consider those people who bought J units in the
~ .1st period. The distribution of the mean rates of purchasing
“gflthis subgroup is altered once we know they have bought
J .units.

Posterior distribution a Prior distribufion x Likelihood.

Likelihood of a person buying j units when he has a

mean rate of purchasing A a e ‘AJ/ja
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Therefore posterior distribution is given by

~ B N J
(%)k o N a xk :1.xe A %T an

- . - 0
Yo L M) e ShES
‘f (g) e AY /. aa
o
1
~A(14+=)
_e a x3+k—1 (1+ %)J+k aA
r (j+k)

Jt is interesting to notice that this is also a
Pearson type III distribution. In other words the con-
ditional frequency distribution of purchases in any
period for the subgroup who bought j units in the first
period is also a NBD. This valuable property of the NBD
is considered in more detail by Chatfield, Ehrenberg and
Goodhardt (1966).

Now the prob (O units in 2nd peridd’j units in 1lst
period)

1
-A(1+=) .

oo e
B j - (3+k)
o}
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S+ DTG k)
= 0 +%)j+k \'~4(J + k)

_¢lta Itk ral s
- 8 )~ (o)

and P(j) = Prob (Jj units in 1st period)
_ ST j
= (1+a) JU Tk 1+a)

Thus the mean quantity bought by lost buyers (in the

1st period)

cm = 2_ ®(0]5) B(5) 3

21

1 S '
= (ii§§)k: EZ: (1+2a Jf(gj%i) C
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k k a a —(k+l)
= i) i [P - i::'éa]
- LBk _ —m__
(l‘]‘a)l{+l (l+a)k+l

This guantity can also be obtained in the following
easlier manner,

Consldexr those people who bought 0 units in the first
period. This subgroup consists of non~buyers in both
periods and new buyers who duy in the second period but
not in the rirst.

But the purchases in successive time periods are
independent Poisson variates so that a person whose
average rate of buying is A will buy A units on
average 1n the second period regardless of the fact that
he bought O units in the first period.

Thus the mean of the guantity bought by this subgroup
which is also the mean of the gquantity bought by'the new
buyers is given by

joo (%a-)k A dr
m = m = . .

O

e-—?x/a 7\k-l" e—')\

= proportion of population who buy 1 unit
m

[ U ——"

(1+a)k+l
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So rate of buying per lost buyer = wp =

_oax(aea)”D
(1+a)"k - (1+2a)"k
ak
—4 - L&""‘.‘"
(142) |1 - (&2 }
1+2a

/b

L

Mean of the guantity bought by repeat buyers‘in

1st period =

i T

- (1 - (14a) ()]

Rate of buying per repeat buyer =

m (1 - (1a)~UerD))
) -k

1 - 2(1+2a) ¥ + (142a)7K

Example Date from table 1b.

m =

0.636

W rate of buying per buyer

b = 0.194 k =

mR/bR
a = 5.53
= 3,28



E 0.636 ,
v, = . fes OITEy T 1.43
6.53 |1 - (223 |
12,06 T
y 0.636 1 - 6.5371-115) _ u.0
R n - =
1 -2 x 6.5390115 15 0670115
by = 6.5370°H2 _ 100670115 _ 0,055
bp = 1 -2x6.550 4 10,0670-115 = 0,139
CHECK m + mp = wr Py + Wpbp
= 0.635 = m as required.

2.2 Deductions from the repeat buying formulae

An inspection of the repeat buying formulae yields
several simple deductions. 1In pafticular we shall be
interested to see what happens to the formulae as the time
period changes.

Thus given data for 1 time-period we can calculate
m, a, kK as before. This enables us to predict repeat-

buying in this and the following equal period.
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Also for a time period ¢ times as long the

distribution will theoretically have parameters m,, 2,

ke where

m = C

o m
a = C

c a
k = k

c

This enables us to predict repeat-buying in this

longer period and the following egual longer period.

—_— - m -
We have WL = T T
(1+a) |1 - (32 }
L 1+2a

wp o was computed for a range of values of a, k
Table 2a. Rate of buying/lost buyer
0.01 0.1 0.5
@ 1. 485 1.50 1.72
10 1.k 1.45 1.65
a 5 1.39 1.41 1.59
3 1.34 1.37 1.53

1 1.22 1.22 1.41



This table covers the range of values found in practice.
The following points can be noted:-

1. w, increases with the length of time-period (that is

L
with a) for all values of k.

2. For Lk < 0.1 is always less than 1.5.

Y,

3. PFor short time periods W decreases towards 1.

*. However for a > 3, Y1, is always within 10 per cent

of the value

l im WL = ———n. e s e .

a-—>w k ,
1

Thus this quantity, although it has no practical meaning,

is useful as a good approximation for Wy for values of a

greater than 3.

S SU
, . X
Table 2b. -
0.01 1.45
0.1 1.5
0.5 1L.72
1 2.0
2 2.66
5 5.1
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In practice k 1is rarely greater than 0.15.

For very small k we find

lim  eem—m = A o 1y,
k-0 1 k fn2
1 - (3)

2

Thus Wy is usually within 10 per cent of a quantity

which ranges from 1.44 to 1.5.

Thus W= 1.4 1is a useful approximation for all
distributions.

Rate of buying/repeat buyer

We will now consider repeat buyers.

m El - (1+a)ﬁ,‘(k+lﬁ )
) -k

W.

R
-k

1 - 2(1+a) + (1+2a

It is easy to show fthat Wp —> 00 as a —> co. In other

words wp increases monotonically with the length of time

period. (This is intuitively obvious.)
Let us look at the rate of increase of WR comnared

with the rate of increase of w as the time period increases.

'k“] 1. (1+a‘)‘kl
ko (l+2a)'k

W
Now R/T = < RV
W l - 2 (

This ratio was computed for various values of a, k.
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Table gg. _R(w i
k
0.01 0.1 0.5

10 1.22 1.21 1.08

5 1.26 1.24 1.14

a 3 1.29 1.24 1.16

1 1.25 1.24 1.1%
e

For given k, / is virtually constant. 1In other

W
words Wr and w 1increase at the same rate compared with

the rate of increase of time-period.

For k < 0.1, WR/W is virtually constant at 1.25.

w(2) w__in double period

Now
(1) w in single period

=

2 {1 - (1va)7]
1 - (l~1-2a)—k

This function which always lies between 1 and 2 has

been tabulated for various values of a, k.

W(Q)/
Table 2d. )
k
0.01 0.1 70.5
10 1.58 1.64 1.8
a 5 1.5 1.h2 1.7
1 1.24 1,28 g



The rate of increase of w (and hence WR) varies
~with the value of a. However, in the range of k valid
for consumer purchase data, that is k < 0.15, it is always
frue that Wp will increase at a slower rate than the

inerease in time period.

Proportion of lost buyers

We will now look at the proportion of lost buyers.

b

K
Now L/ )

(l+a)"k - (1+2a
1 - (1+a)_k

b

For a fixed b (20 per cent) and various values of m
(and hence w = m/b) we can compute a, k in the usual way

b
from m and b. Then we can calculate ?L/b for various values

of w. bL
Table 2e. __Zb The proportion of lost buyers
bL/ decreases monotonically as w
il B increases. This result is
1 71 per cent
intuitively obvious if we remember
1.5 52
that a higher value of w mecans
2 42
‘ that a'smaller proportion of
10 o buyers: buy a low number of units and
LO :
thnt 1t 1s these people who are more
20 13.5

likely to be lost buyers.
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2.3, Practical results

The repeat-buying formulae were found to hold for
a wide vériety of brands over different time—periods even
where a variance discrepancy occurs. Thus over 100 dis-
tributions in product field X were considered (see Aske
Research (1964». Some small discrepancles were observed
in the predictions. TFor example, the observed value of
wr, averaged out at 1.5, as compared to the theoretical
value of 1.4. This is probably due to some inevitable
non-stationarity, and in any case the difference is fairly
small. The other formulae give good predictions. For
example the mean deviation between observed and theoretical
values of bB was 10 per cent of bR for bR ranging from
l% per cent to 25 per cent. These predictions were un-
biased. Similarly the mean deviation between observed
and ftheoretical values of me was 5 per cent of me for
My ranging from ,01 to over 1.

Overall the results were very encouraging, and show

.that the NBD model is a powerful aid to description and

prediction.
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2.4 Repeat buying formulac by considering interpurchase

times.

We will now show how the repeat-buying formulae can be
derived by considering interpurchase times rather than
rates of buying.

The NBD model assumes that the average rate of buying
A varies from person to person and follows a Pearson type III
distribution.
L Mankel g 0<N< .
This means that the mean time between purchases follows

a distribution given by

1

dF = . e Y& y_k_l dy where y = %‘.

a¥ (k)
Suppose the population make Poisson purchases in any
1 time period. Then the waiting time £ill the 1lst purchase
for any consumer 1s exponential.
Thus for a person whose mean time between purchases 1is
v, let time until next purchase be t'.

Therefore P(t™ > t)

It

P((No. of purchases by time t) = 0)

e-t/y.
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Thus time till next purchase has a cumulative dis-

tribution function given by 1 - e—t/y.
ot/

Therefore prob-
ability density function = §

Thus distribution of the times to lst purchase 1is

given by
. CD .-.1;.
dF= ‘5 e e TRy a2 e %Y ay | at
a” I (k) y
e
00 1
' ~(=+t)A
_ _El___ ‘ S e 2 AE an 1 at (putting A==)
a® M(x) 2 Y
i (% ¢ g~ (kF1) Mae+1)  as
= X
2 [ (k)
1 - (k+1)
B k(a + t) at
= %
a

Consider 2 time-periods (0,t), (t, 2t).
Then b = Proportion of buyers who buy in the period we
are considering, which is (0,t)
= Proportion of people who buy for the first time 1n
(0,t)
by = b= proportion of buyers who buy for the first time

in (t,2t).



ot
g(b ) f K(-;-+ g~ (1) g

t

Thus 4 (Ig) = 7%
J K(—i— + ) (k1) koat

(0]

Standardise times so that t = 1

on £ (o) _ (i +2a)F o (14 a)K
£ (®) (1+a)™ -1

-k

Th

But ‘E(b) =1 - (142

CL Gy = ¢ (by) = (1+a)7¥ - (1+22) 7%

as obtained previously.

Then b proportion of buyers who buy in both

=]
]

(0,t) and (t,2t)

=b"bL

1 - 2(1+8) ¥ & (142a)7¥
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Consider a person whose mean time is y.

Then Prob (j purchases in (0, t))

t
- ($)
ot

- as he makes Polsson »nurchases.
3 .

Thus P(j purchases in (0, t) and 0 purchases in (%, 2t))

&’
L4 4 v oty
Joe
mL = my = mean amount bought by lost buyers

a
{ Z (s ena ofv) J] P(y) ay
O

321

_ J
*® Z e~2t/y (%) J ]
= j 551 - P(y) dy
Z 3.
o
@ _ 1
_ J e-zt/y et/y % _1 o va gk-lgg
o a (k)
oo _(é+t)
. J e 7 g y k-2 dy
aK[A(k) o)
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1
_ kt E)ew('é- +t)7\
a” (k) 5

7\kd7\ (putting A=

=
St

£ (2 + gy~ (L) ()

R =T _—

But m mean amount bought by all buyers

i

«© .
{ [Z P(i|¥) J'] P(y)ay

521

-Aa .k ) 1
e A% an (puttlng A = 37-)

fl
O\-""\8 o
o

xd‘

1
5
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Standardise times so that ¢t = 1
Then mp = m(l+a)”(k+l) as obtained previously.

4o Possom
it eanieeare

New and Lost Buyers. The consideration of 3

QEQiP also enables us to prove a relationship which has
so far been assumed without proof, namely that
2 E’(new buyers) ] = E [P(lost buyers}]
not only for the whole population, but also for any sample.
Consider 2 time periods (0,t)(t,2t) and a person
whose mean interpurchase time is y. Then because he makes
Poisson purchases

P(0,0) = Prob (he buys O units in 1lst and 2nd periods)
-2t/y
e .

P(0,1)

Prob (O units in 1st period, at least 1 in 2nd

period)

- e-t/Y (1 - e~t/Y)

= p(1,0).
Let the actual sample be such that the mean time between
purchases has a distribution given by

dF = f(y)ay

Then g_[P(lost buyers )]

.ge-t/y(l_e—t/y)f(y)dy

gé[?(new buyersi]

Thus the proportion of new and lost buyers is expected

It

to be the same whatever the sample and whatever the
underlying distribution provided that the consumers make

Poisson purchases,
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2.5. The Bivariate NBD

G. Goodhardt(1965) has pointed out that the repeat
buying formulae can be derived in yet another way by
considering the bivariate NBD.

The multivariate NBD has been considered by Arbous
and Kerrich (1951) and Bates and Neyman (1952). It
possesses some remarkable properties similar to those of
the multivariate normal distribution. In particular,
it yields another multivariate NBD if 'cut' in a number
of ways. For example we have already seen that The
conditional distribution in some time period for those
people who bought r units in some previous equal time
period is itself a NBD with mean (k+r) Ti%ET and expon-
ent (k+r). Here a,k are the NBD parameters in the
previous time-period. It is of interest to notice that
this conditional mean can be rewritten as m + (r-m) 11%57
in which case it can be seen that the regression curve

of the conditional mean on the amount bought is linear.
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Before considering the bivariate NBD we will obtain
some general results for the generating functions of
multivariate distributions.

Consider a time period T. Let X be the random
variable denoting the number of purchases in time T.

Suppose T 1is subdivided into { shorted time periocds
6.0t (X, =T). Let [xl...x{,] be the purchases in
sach of the sub-periods S X, = X .

We consider the case where the conditional distribution

3

of {:Xl-..Xg' given X = r 1s a multincmial distribution
i

i e

with P, = 1/

This is certainly <truec for the stationary compoﬁﬁd
Poisson model of consumer purchase,
Lemma 1. If X has p.g.f. g(u; T) then [Xl...Xe] 1s
a multivariate distribution with p.g.f.

h(ulvg...u{y 5ty tg"'tf )

Sou. b,
= z( L= T). (For proof see Feller
T (1957)) .
We will only consider the case { = 2 and in particular
Case 1. tl = 1, t2 = T - 1.
u, + (T-1)u
h(ulugg 1, T - 1) = g( 1 . 2 ;s T) - (i)
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Case 2. tl = 1, tg = 1
u.+u
. 2 .
h(ujuys 1, 1) = g el D) - (:)

Lemma 2. If the random variable [?1 Xé] has p.zg.f.
h(ul ug) then the conditional distribution of X, given

X, =0 has p.g.f.

2
h(u-., 0)
12 :
((ulxy, = 0) = ——io— - 3.
h(1l; 0)
Lemma 3. The marginal distribution of Xl has

p.g.T. h(ul, 1).

Now for case 1 the marginal disftribufion of Xl is
the distribuftion of purchases in unit time and its p.g.Tf.
can be denoted by g(ul, 1)

and g(ule 1) = h(ul, 1 ; 1, T-1)

u,+1T-1
ERA @

I
0
T

o

i
“

3
1

BivaViate NED. We now sunpose that buying in a certain time

period can be represented by a NBD.
The NBD is given by

gluy T) = (1 + ap - aTu)'k .
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From (g}

glu, 1)

]

- aT - =K
Ll + agp - T“(ul + T-lﬂ

- ) =k
= L1+;E' - :_a% ul]

It

. -k . _
{l +a; - a8y ul] since agp = Ta.
All the repeat buying formulae follow from

.
h(u;, ) s(z 5 2)
Clalx =0 - h(lliO) i ._Qi_._,__...
T g(sz ;5 2)
(1 + 2a

- a.u )—k
1 171

(i + al)-k

For example, the cumulant generating function of X1
given X2 =

0 1is given by
u =k
(1 + 2a; - aje 1)
-k
(1 + al)
u? -k
1
) (1+2a1 - al(l+ul+§T + ))
(1 + al)-K
a u? -k
-k 1 1 N
(1+ay) [l " 1¥a; (v +zr+ e )
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Then the mean of X is the coefficient of u

1 1
_ kA
1 + al
Now the mean of X, = ?EMMM_:E
(l+al)

where m. = mean of quantity bought by lost buyers

(1 + al)'k= proportion of people for whom X, = 0.
Alse k a, = m = mean of full distribution,

' ny, 1
therefore -~ = ————d———_— as previously obtained.

1
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CHAPTER 3

Problems Arising

3.1 Introduction

We have seen that the NBD model generally gives
a good it and enables us to make useful bredictions.
However it soon became apparent that thouéh the NBD
fits well in most respects there are certain systematic
discrepancies. The first such discrepancy is the one
which was the starting point for much of the work in

this thesis. It is the ‘'variance discrepancy'.

3.2 The Variance discrepancy

As already indicated, the sample standard devia-
tion can be compared with the theoretical value J/m(1l+a)
as one measure of the goodness of fit. The fit is
generally good for standard deviations up to about 2,
but for larger values of the standard deviation the
theoretical value is generally higher than the observed
one. An investigation of 150 varied cases is summarised
in the graph taken from Ehrenberg (1959).

Note that because the scales are logarithmic the
discrepancy is worse than it appears from the graph.

It seems immaterial as to whether we call this discrep-
ancy a 'standard deviation discrepancy’ or a 'Variance

discrepancy'. We choose the latter as it is shorter.
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Fro. 1. Comparison of ‘theoretical’” and ‘observed’ values for the standard deviation
; of the frequency distributions of eonsimer purchases.

""A high standard deviation is associated with a
high rate of buying. In other words, the variance
discrepancy seems to be connected with heavy buying.

A detailed investigation of a large number of distribu-
tions revealed that another factor was involved. The
variance discrepancy occurs for particular classes of
goods, like margarines and soap powders, over any time
period and hence for any rate of buying.

A table was constructed to show for various time-
periods the corresponding values of w above which a

variance discrepancy greater than 200/0 always occurred.



- 49 -

Table 3b

Table showing values of w above which a variance dis-

o
crepancy »20 /o occurs

Time Period (weeks) W
4 1.8
8 2.5

13 4

24 7

Thus the existence of a varlance discrepancy depends
not only on the rate of buying per buyer but also on the
time-period. The table enables us to quantify the notion
of‘heavy buyingt For example, we can decide torgall a

product 'heavily bought' if the rate of buying per buyer

(w) 1s greater than the value shown in table 3b.

3.%. DBunching

One feature of consumer purchasing data which gives
rise to discrepancies between the observed and theoreti-
cal distributions is a tendency for purchase frequencies
to cluster or 'bunch' at or near the number of units

equal to the number of weeks in the analysis period.
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In the 26-weekly data of table 1b for example, there
is a small amount of bunching at 25 and 26 units. There
is also some bunching at 13 units, that is, half the
number of weeks in the period.

Bﬁnching occurs because a number of consumers report
very regular purchasing habits, usually buying 1 unit
every week. In Chapter ten we shall see how these
regular purchases can be «<escrited by considering the

distribution of ‘weeks'.

3.4, Shelving

Another and more important feature of the freguency
distributions, which is very noticeable in ‘heavy buying'
data is something which can be called shelving. It is
related to bunching but seems to be present throughout
the distribution. Shelf-like discontinuities occur at
multiples of the time-period in weeks., Instead of the
fregquencies of purchases decreasing more or less steadily
with the increasing size of purchase, they tend to remain
more or less steady over a range of several units and
then drop suddenly to a lower level just above multiples
of the time-period in weeks.

A typical example of this shelving effect is provided
by brand P, over 12 weeks. The effect is illustrated

3
graphically (diagram 3c).
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In this particular example the 'shelf' extends from
7 to 12 units.

It is not immediately obvious how to measure the
size of the shelving phenomenon. However it can be noted
that the variance discrepancy and the shelving effect
occur together and that a high varlance discrepancy is
associated with a 'large' shelving effect., Thus the
variance discrepancy is in some sense a measure of the
shelving effect.

The cause of the shelving effect 1s not apparent
at this stage, but like fthe bunching effect we shall see
in Chapter ten how it can be explained by considering

the distribution of 'weeks'.

23.5. . The Variance as a measure of fit

The variance discrepancy is, as yet, the only way
the shelving effect can be quantified. Thus it is
important to investigate the variance discrepancy more
closely.

The first feature to notice is that it is, in a
sense, rather artificial. Thus the distribution could
have beeh fitted by the second method given in section

1.7, namely to estimate m,k from the flrst two moments.
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In this case the theoretical and observed variances are,
of course, equal. Instead there would be a systematic
difference between the theoretical and observed number
of non-buyers. In other words we would have a 'zeros
discrepancy'.

But there are several gcod reasons for estimating
m,k from the mean and the proportion of non-buyers.
Firstly this method is statistically efficient for
reverse J-shaped distributions (see Anscombe (1950)).
Secondly, in order to make repeat buying predictions
for the sample it is essential to have the theoretical
and observed number of non-buyers equal. Otherwlise we
have seen that the predictions will be biased. Thirdly
the bunching and shelving effects mean that most of the
discrepancy occurs in the tail of the distribution and
the variance statistic is very sensitive to changes in
the tail. Thus consider the distribution of brand P3
over 4 weeks (see appendix). The shelving effect is
clearly visible with more people buying 4 units than
% units and hardly anyone buying more than 4 units. 1In
fact no one buys more than 6 units. This shelving
effect produces a 'tail' to the fitted NBD of 3.9 buyers

for r = 7+.



. B4 -

The variance effect of this tail is

>—-—&,—_ﬂr——'—= 0.40

Thus 40/0 of the buyers account for more than
26°/0 of the theoretical variance. |
On the other hand when the full NBD gives a good
fit, as in table 1lb, the variance effect of the 'tail'
is negligible.
As we know this effect exists, it secems sensible
to use an estimation procedure, which will not be affected

by the 'tail'.
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CHAPTER 4

Alternative ways to fit the data

4,1 Introduction

In the previous chapter we discussed the bunching
and shelving effects and the variance discrepancy. These
all indicate that a general systematic deviation from
the NBD model exists. ,

Various alternative methods of fitting the data
were tried To see if an alternative model could be
developed which was 'better' than the NBD model.

Any such model must be judged on several counts.

(1) Simple. The NBD model describes the data in
terms of two parameters. Fitting can usually be improved
by increasing the number of descriptive parameters
(though not necessarily). But this will probably lead
to a more complicated model. In a field such as market
research where results must be used in many cases by
amateur statisticians, simplicity is of éonsiderable
importance; |

(ii) General. The NBD model holds (with certain
systematic discrepancies) for a wide variety of brands,
over different periods and for different populations.

Preferably any alternative model should also hold under

these general conditions, though it may be necessary to
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have one model for one type of data, and a second model
for a second type of data. But this latter situation can
only be justified by a big improvement in fit and in the
predictions which result..

(iii) Useful. The NBD gives useful prediction (for
example repeat-buying predictions). Any alternative
model should also give such predictions.

(iv) Descriptive. Any model must describe the data

reasonably. For example it is useful to have good agree-
ment between the observed and theoretical frequency dis-
tributions, although this feature can be (and often is)
overemphasised. |

There are three main types of alternative models.
(1) Those formed by adjusting the NBD model.
(2) Those obtained from other frequency distributions.

(3) Those obtained from mixtures of distributions.

4,2 Adjustments

Four types of adjustment will be considered. These
are spreading peaks, removing peaks, curtailment of the
NBD at the upper end and truncation at the lower end.

a) Spreading Peaks. One of the basic assumptions in the

NBD stochastic model is that each member of the population
makes Poisson purchases in successive periods of time.
But it is known that many members of the population

actually buy at a much steadier rate, which is often
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1 unit/week. This will reduce the observed variance
compared with the theoretical NBD variance. We will
spread out these steady buyers and see What effect this
has on the theoretical variance.

Consider the disﬁribution for brand P2 over 12 weeks.
(see Appendix). There is a bump at r = 12 of 7 people
who buy regularly at 1 unit/week. If these 7 buyers
had iﬁstead made Poisson purchases with mean 12 then
this spreading out would increase the observed variance
by Zﬁ# = 0.18. [Sample size = 474]. This is insigni-
ficant compared with the observed variance of 12.2, so
that there is still a large difference from the theoretical
variance of 20.7.

This method was tried on several distributions with
a peak of steady buyers and similar results were obtained.
Thus spreading the peaks seems to have little effect on
the observed distributions and is not the answer to the
problem,

b) Removing Peaks. A second adjustment is to remove

any peaks from the data and see if the rest of the distri-
bution is more closely NBD. Thus the distribution for
5 OVer 12 weeks was altered by reducing f12 from

7 to 3 to see how sensitive the distribution was to such

brand P

changes. The variance ratio (theoretical/observed)

changed from 1.69 to 1.58. This change is in the right
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direction but is nowhere near big enough, Further
examples were tried and even more of thé distribution
was removed but it was still not possible to gain agree-

ment between theoretical and observed variances.

¢) Curtailment of the NBD

A third approach is to curtail (or truncate) the
theoretical NBD at some upper point, U, say. I shall
only use the term 'truncate' to refer to removing data
from tﬁe lower end of the distribution., This curtall-
ment can be done in several ways.

Firstly the tail can be spread over the whole dis-

tribution to give

. (1+a)” r“(k+r)(l+a) /1 (x) x r! r LU
=

jz: (1+a) ~k rd(k+ )(l+a) /T k) x r!
Pf = 0 r > U

Secondly the tail can be spread over the positive

part of the distribution to give

0 = (1+a)
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[ ¥aY
=
P2

(1+a) 7% ;:OH-Z 1+a) [1- (1+a)1{] 1.
k

P =

r - x M(ker)
- + a
2 (wa) r*(k)il (=)
Pr-=0 r > U

Thirdly we can curtail the distribution at r = U

and put all the tail into Pu' Thus we have

-k rﬂ£k+r) (2 )r

Pe= (1) mhovt Gws 0<r<U-l
co - ‘
-k (k+r) a
P = 1+a
Y 2 () ™ (c)r! (1+a)
r=y
P =0 _ r > U,
r
- Maximum Likelihood estimation of U
Given sample size N, éonsisting of fo’fl”°°’fs

where s 1is thé largest number of units bought, we want

to estimate U,

< £ £
Likelihood (U] sample) = P(0) %....P(s) °

We know U > s. Then likelihood is maximised when P(0O),
P(1),...,P(s) are as large as possible, which is when

U=S.
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This method of estimation emphasises the arti-
ficiality of all the methods of cutailment. Given
several distributions.over similar time periods for
a particular product the value of the highest obser-
vation, s, will vary considerably, so that there is
no real upper limit to the distribution. In addition
trouble arises when we try to extend these curtailed
distributions over time-periods of different lengths,
for we do not know how the uﬁper limit, U, will
change. |

To consider a curtailed distribution which is
not artificial, we must look at a different distribution,
namely the distribution_of the number of weeks in
which at least one purchase was made. In a time
period of n weeks, no one can buy on more than n
weeks, so that the distribution vanishes for values
larger than n. An examination of the distribution

of 'weeks' will be made in Chapter ten.
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d) Truncation of the NBD

A fourth method is to truncate the distribution
at the lower end; that i1s remove the non-buyers.
Then a truncated NBD can be fitted to the positive
part of fthe distribution.

A possible model to justify this action is to
assume that the population is split into 2 groups.
Firstly people who never buy the product and secondly
potential buyers whose purchases follow a NBED. The
problem then is to estimate the NBD parameters from
the truncated distribution. This will give an esti-
mate of the potential buyefs who are part of the NBD
but who bought O units in the-period in question.

Since our model is a mixture of 'never-buyers'
and a NBD, truncation will be considered later on

in the chapter as a mixture in section 4.5,
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4,3 Other frequency distributions

A variety of other frequency distributions =S con-
sidered. Anscombe (1950} gives a general review of 2-
parameter distributions, and Gurland (1959) and Feller
(1943) give a good account of contagious distributions.

There are two types of contagious distributions and
i1t is important to understand the distinction between
them.

a) Compound distributions. Whenever the population para-

meter of some distribution itself varies according to some
known distribution then a compound distribution arises.
For example, the NBD can be derived from a Poisson distri--
bution in which the Poisson parameter A has a Gamma dis-
tribution with parameters a,k. It is then called a compound
Poisson distribution and can be written as

Poisson « Gamma (a,k)

b) Generalised distributions. In contrast we have seen

that the NBD can also be derived as follows:~ If the
number of bacterial colonies per field follows a Poilsson
distribution and the number of bacteria per colony follows
a logarithmic distribution, then the distribution of bac-
teria per field follows a NBD. The NBD is then called a
generalised Poisson distribution and can be written as
Poisson (A) x Logarithmié¢ (©), Note that the parameters

of the Poisson and Logarithmic distributions stay fixed.
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We will consider generalised distributions first.

i) NBD. It has been assumed that the NBD was derived
from a compound Poisson model. However one can also postu-
late a generalised Polsson model. Thus if the number of
purchasing occasions in a particular time-period follows
a Poisson distribution mean P and the number of units
bought per purchasing occasion follows a Logarithmic dis-
fribution with parameter q, then the number of purchases
in this particular time-period follows a NBD with parameters
given by

k

‘—u/loge(l-q)

a = aq/(1-q).

In a time-period T times as long the Logarithmic
parameter g qill stay constant but the Poisson parameter
will change to Tu. Thus according to this generalised
model the NBD parameter a should remain constant wifh
changes in time-period but the parameter k will change
proportionately with the time-period.

However this 1s exactly the opposite of what occurs
in practice. The parameter k is found to be invariant
under changes of time-period whereas the parameter a changes
proportionately with the time-pericd.

Thus this generalised model is inapplicable.

ii) Any generalised Poisson. A similar type of argu-

ment can be used to disprove any generalised Poisson model.
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\

We suppose as before that the number of purchasing occasions
in a particular time-period follows a Poisson distribution
with mean @ and that the number of ﬁnits bought per pur-
" chasing occasion follows some unspecified distribution
with p.g.f. Gg(t). [In the previous section this unspeci-
fied distribution was the Logarithmic distribution. ]

4 The p.g.f. of the Poisson distribution is given by
exp w(t-1) .

Then we have already seen in Section 1.6 that the

p.g.f. of the generalised Poisson distribution is given

exp{u(Gg(t) - l)} .

Thus the m.g.f. is given by

exp-{u(Gg(et) - 1{}

so that the c.g.f. is given by

by

£
U(Gg(e ) - l)'
But Gz(et) is the m.g.f. of the distribution of the

number of unifts bought per purchasing occasion.

T;" L, ©
Thus Gz(et) = 1 + < —%T——
151

where ui = ith moment of fthis distribuftion.
Thus the c.g.f. of the generalised Poisson distribu-

tion is given by

p, tt
n (-Z: ).

i>1
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Thus fthe variance is given by p. “g“

Now in a time-period ¢ times as long the mean of the
Poisson distribution will become ¢y but the other distribu-
tion will still be specified by Ge(t).

Thus the variance of the generalised Poisson distri-

bution will become cu x “2°

But in practice we observe that the variance of con-
sumer purchase distributiohs is proportional to the sdquare
of the length of time-period. Thus no generalised Poisson
model can be applicable.

Other distributions. Anscombe (1950) compares the NBD

with several other distributions. He tabulates the third
and fourth cumuiants to form a seguence of distributions
with increasing skewness and tail length.

The variance discrepancy indicates that we should
seek a distribution with a shorter tail and this led to
consideration of the Polya-Aeppli distribution, which is
immediately above the NBD in Anscombe's table. Unfortunately,
although this sometimes gi&es a good fit for heavy-buying
déta, it is a generalised Poisson distribution which we
have already shown to be inapplicable.

The rémaining distributions above the NBD are too

complicated to be of any practical use.
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4.4, Mixtures.

Two mixtures will be considered. The first is a
mixture of a Geometric and a Poisson distribution and the
second a very much more general model.

a) Mixture of Geometric and Poisson distribution. The

comparatively good fit of the‘Polya—Aeppli distribution
which is Poisson (A) x Geometric (t) led us to consider
the following model:- ILet us suppose that the observed
distribution consists of a mixture of a Geometric and a
Poisson distribution (both are special cases of the NBD).

Let the observed sample (size N) consist of a propor-
tion p of people from the Geometric distribution (parameter
1) and a proportion (1l-p) = g from the Poisson distribution
(parameter A).

Then the probability distribution is given by

-\

PO = Qg €

r-1

r
P a e~ K/rl + p(l-7) =

r for r > 1.
The system is a 3-parameter situation.
We have to estimate i) A
‘ii) T
iii) p.
As PO is large, A will be small, so that for r > 3
(roughly speaking) the distribution will depend almost

entirely on the geometric part. For example, if, say,

PO = 0,8 then A =~ 0.2 and the Poisson part for r > 3 is



less than 0.0009,

r-1 for r > 3,

Thus Pr - p(l-1) = |
Then we can estimate 7 from the tail of the distribu-
tion which is virtuvally all from the Geometric part.
Such an estimating procedure will be inefficient as it
is only using part of the distribution. However the pro-

ceudre is quick and so can be carried out on a large number

of distributions. This in part will overcome the ineffi-

ciency.
)
M-1
Now 5~ Pr ~prT
r=NM

0.8
ﬁ; (> ) =0Np o

r=M

£ (5) = Wp(a-1) M

So an estimate of 7 can be obtained from

£ A
_._..__I.Vl_.__.zl__rr
(0]
2 f
r
r=M
fm
This ratio, namely, ——— , is sometimes known as
2. f
MILL's ratio. r>M ©

N
It is possible to reduce the variance of T by using

a smoothed value for fM'
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Ty Iy
M 5

A f

1 + £+ r f
Thus f =

M7t el Tge

The choice of 5 terms is arbitrary and was obtained
by balancing the arithmetic involved against the reduction
in variance.

The use of equal weights to obtain the smoothed value

of f,, actually introduces a small blasing factor which is

M
(1-1)%. Thus when © = 0.9 for example, the bias is lo/o.
But in view of the approximations involved in the whole

method there is no virtue in seeking an optimal choice of

weighting factors.

A
A suitable value for M is 6, since £ will then include
terms down to f4 which 1s the lower limit for the Geometric

part;

However, instead of finding just one value for Mill's
ratio it is better to plot it against 1/M. The ratio
should converge to a constant which can be used to esti-

mate T.

Having estimated T we can estimate p from fr=NpTM_1n
r>M

Now people who buy no units all come from the Poisson
distribution.
So we can estimate A by equating

-\
fo = Nqe .
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The theoretical distribution is easy to calculate as
successive terms of the Poisson and Geometric series are
caleculated by multiplying respectively by AMr and 7.

Example. Data Brand Py over 24 weeks. N = 474,

(o0}
:Zf f = 84,
r
=6
8
Estimate f from :gi £./5 = 46/5.
=

Hence 1 by eguating

46
T~ = 1
» A
giving 7 = 0.89

© ‘
2 £, =8k =N 01
r=6A =N . 0.89°
giving p = 0.317
q = 0.683

Thus f_ = 285 = Na e_x

~
giving A = 0.13.

We can now generate the thecoretical distribution.
Several heavy-buying distributions were fitted by this
~\

mixture and in each case the fit (as measured by the variancc

improved.
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TABLE l4a
Theoretical Observed Mixture Poisson Geometric
NBD Component Component

0 285 285 285 285 -

1 47.6 53 53.5 37 16.5

2 26.4 19 17.5 2.5 15

3 18.1 12 13 - 13

4 13.6 12 11.5 11.5

5 10.7 9 10 10

6 8.7 12 9.5 9.5

7 7.2 7 8.3 8.3

3 6.1 6 7.4 T.b

9 5.3 5 6.6 6.6
10 4.6 1 5.9 5.9
11-12 7.5 8 9.8 9.8
13-14 5.8 7 7.7 7.7
15-16 4.6 5 6.2 6.2
17-20 6.8 17 8.9 8.9
21-24 5.0 14 5.6 5.6
25+ 11.6 2 9.0 9.0

Mean (mixture) = qi + p/(l-1) = M,

Variance (mixture) = q(A+A%) + P(1+T)(1—T)2 - mp®
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TABLE 4b
Observed mixture NED
Mean 2,96 2,96 2.96
Variance 35.5 40,2 ~52.3

The model which could be set up to account for the
mix®ture would be as follows:-

The population consists of regular buyers who always
buy something, who make purchases according to a Geometric
distribution and irregular buyers who all have the same
(very small) rate of buying. Thus the irregular buyers
form a Poisson distribution. It is very easy to derive
repeat-buying formulae because only the irregular buyers

are possible lost buyers in the second egual time-period.

— T
Thus by = ;i q,e—A A r! oA ]
>0
= q e~2A [eh—l].

r
:E: q e~ A A/rf x T x e"A.

Similarly my

r>o0
Wy = mL/bL = Aigh
e "'l L3

In the above example with A = 0.13 we get w, = 1.2,
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This is a serious underestimate as we have already found
that the NBD formula (WL ' 1.4) gives good predictions

for all data. The repeat-buying predictions were generally
found to be inaccurate.

A second drawback is that although the variance dis-
crepancy has been reduced, the mixture does not describe
the shelving effect any better than the NBD. (The shelving
effect is clearly visible between r = 17 to 24.)v

A third drawback is that the method of estimating
which has been suggested requires a distribution with a
long tail. Thus it would be no good for distributions
in short time-periods.

Thus this mixture compared badly with the NBD model,
particularly with regard td predictions, and was rejected

as a possible alternative model.

We will now consider a much more general model, derived
from a simple mixture, which includes the simple NBD model

as a special case.

4.5 General Model

Let us postulate a more general model for consumer

purchases.

Firstly we suppose that there is a proportion q of
'never«buyars’, i.¢., people in the population who never

buy.
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Secondly we suppose that there is a proportion p of
potential buyers whose average long run rates of buying
follow a distribution whose p.d.f. is f{A). This distri-
bution is truncated at the lower end at some point 1/T

where T is a very long time interval

Non-
B 5/f\ P
uyers \\

Average long~run rates of purchase

Thus the cumulative distribution function for the

average long run rates of purchase is given by

F(x) = g 0<x < 1/T
X
{ 1
F(x) =g+ p Jl f{(N)daA x 25
T

Thirdly, as in the NBD model, we assume that the
purchases of any one consumer in successive time-periods
follow a Poisson distribution and are independent.

Intuitive justification. Intuitively this model is at least

as good as the NBD model for it seems more plausible to

hypothesise a group in the population who will never buy
the commodity in gquestion than to hypothesise infinitesi-
mally low buying-rates. For in the NBD model everyone is

a potential buyer. The truncation point is also plausible.
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AN

Thus we could take T to be the life-time of the product.

Repeat buying formulae
” As before we are concerned with buying behaviour in
two successive equal time-periods.

Note that throughout the following derivation we
shall use the term average rate of buying to indicate the
guantity bought by some subgroup averaged over that sub-
group, but we shall use the term mean to indicate the
quantity bought by a subgroup averaged'over the whole
population and not just averaged over the subgroup.

Now the probability that a person buys j units in

some time-period is given by

(0 0] .
_ J
P(j) = p 51’(7\)6}\%\—‘-01?\
1 o
T

But the purchases in successive time-periods are
independent so that a person whose average rate of buying
is A will buy A units on average in the second period
regardless of the fact that he bought, say, j units in the
first period. |

Thus if we consider the subgroup of people who bought
J units in the first period, their average rate of buying

in the second period is given by



@ .
2 d
o §orove™ A aan
1 J-
T
a
p jf()\)eh)\z\-rd?\
_]_-_ °
T

Thus the mean of the quantity of this subgroup expressed
as an average over the whole population is given by

(j+1) P(j+1)

In particular if we consider those people who bought
O units in the first period then this subgroup consists of
the non-buyers in both periods and new buyers who buy in
the second period but not in the first.

The mean of the quantity bought by this subgroup
in the second period is the same as the mean of the quan-
tity bought by the new buyers in the second period and

from the previous result is given by

my = 1. P(1)

= P(1).
Thus the mean of the quantity bought by repeat buyers
is given by

My = m - P(1)

where m = mean of the distribution

(00]
p f f(A) AdA.
1

T
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These results depend mainly on the Poisson assumption
but £(A) must be chosen to give good agrecment between the
observed and theoretical values of P(j).

The proportion of buyers, b, 1is given by
@

b=p J £(n)(1-eMar
1
T

The proportion of new buyers is given by

o
R A
by = P 51 £f(A) e (L-e"™)dAr

T o8}

This expression includes the guantity S f(A)e—ede

—

which is not immediately meaningful. T

Similarly the proportion of repeat buyers is given

by @
by = b SL £(n) (1-e"M)2aa.
T
= b - by.

We can also consider the subgroup who bought in the
first pericd.
In the second period the mean of the quantity bought

by this subgroup is given by

(o0}
p | () (1-e"MK an
%
= N - P(l) = m
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However the rate of buying of this subgroup in the
second period is E:%Lll = W - Ei%l . In other words
ﬁhis subgroup buys at a lower rate in the second period.

The other subgroup, the non-buyers in the first
period, will buy at a correspondingly higher rate in the
second period because of the effect of the new buyers.

Thus far we have made no assumptions about the dis-
tribution of the average long-run rates of buying.

First we consider the Beta distribution given by
_ 1 p-1 _a~1
dF-—m(l-X) X ax O_S_X(l.»

dr_more generally

Ayp-1 (Ayg-1 dA
g T @7 g ogrga

1
dF = 1-
B(p.q) (
Note that we have taken T = o, s0 that the distri-
bution is defined for A > O, The distribution has three

parameters p,q and d.

Then d ]

. 1 AMp-1 ,Aya-1 ~A AY
ts) = - = = - dA
»P(j units) P Sm (1 d) (d) x € 3T ,

(o]
d -
- 2 S (1- %)p'l SIS T
3:B(p,qla” 2

which can only be evaluated as the sum of a series of
Gamma or Beta functions, which is very difficult to

+handle,
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The F distribution is an associated distribution
whieh is defined on (0, ). It is obtained from the Beta
distribution by the transformation X/(1-X), but the inte-
grals which result prove to be equally difficult.

The only integrals which give workable results are
those resulting from a distribution based on a power of

- QA

A or a power of Axe .

The first of these possibilities glves a distribution,

given by
aF = 2L 2% ax 0<A<d
d
I 3
A atl aa —A A
giving P(J units) = j T A 3T da

o d

This is an incomplete Gamma integral and can be
evaluated from the tables once d and a have been estimated.
However the problems of estimating 4 have already been
mentioned in section 4.2 when the curtailment of the NBD
was considered. Similar problems arise here, Thus we are

led to consider a distribution of the form

aF =ce™®™ x AP lercw

where C is a constant depending on o, B and T.
This distribution is very similar to the distribution
used to derive the NBD from a compound Poisson model. It

is a truncated Gamma distribution.



- 79 -

4.6. The model based on the truncated Gamma distribution

We assume that the proportion p of potential buyers
'has\average long run rates of buying which follow a ftrun-
cated Gamma distribution. The truncation is at the lower
end at some point 1/T where T is a very long time interval.

Thus the distribution is given by
L)k o~Ma yk-1 ar

F oo _2 L .
d (T, a,%) TLxL© .
¢ 9] .
where I(T,a,k) = § (D) e M2 k1 gy
1
T

Thus we now have a model which has four parameters,
namely, p,T,a,k. In fact we will show later that the
model is insensitive to T, provided that it is very large,

so that there are really only three parameters.

Special cases

(i) When T = co and k > O the distribution of purch-
ases in a particular time-period is simply a mixture of
zeros and a NBD.

For then I(c,a,k) = (k) (k > 0)
so that the c.d.f. of the average long run rate of buying

is given by
F(X) =g X = 0
X

F(X) a+p 2 =] (k) x>0

I
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(ii) PFor T < oo and k = O we shall see in Chapter
7 that we get a mixture of zeros and a Logar-
ithmic distribution,

(1iii1) For T < o and k >‘O we shall see that,
provided T 1s very large, the same prediction
formulae result as in case (i) when T = <.
The parameter T is only introduced so that
case (ii) éan be dealt with.

Lemma I(T,f(a),i+k) = ['(j+k). |
for 5> 1, k >0, f(a) > 0 and T very large.

Proor e M @) ¢ 1 fora s 0

AT ¢ 1 for 3> 1, k>0, and 0 < A < 1.

t

, {?(a)] j+k e~hf(a) Aj+k_l ax

o Mgl

< [f(a)] Stk o % [for %—, < 1‘3

-~ 0 as T — oo

@
But r’(j+k) _ j’ [f(a)l J+k e-—?\f(a) 7\J'+k-l an
. . 0 1 ’

T
= I(T,f(a), j+k) + S [}(a)l Itk e_xf(a) RARSEEIN
O .
for j > 1, k > O,
I(T,f(a), j+k) = V' (j+k) as T — o .
We will use this lemma repeatedly in the following

derivations particularly in the form



I(T:fl(a)aj+k) = I(T:fg(a):j'l'k)

for any fl(a), fg(a).

The lemma is of course 'obvious' when f(a) = a.

Repeat buying formulae. Throughout the following deriva-

tion it will be assumed that if T is finite then k > O,
but if T = @ then k is strictly greater than 0, for we
have I(co, a,k) = [ (k) only exists for k > O.

Note that the Gamma distribution is spécified in terms
of a and k. The parameter m is used as before to denote
the mean of the whole population, but it is no longer
equal to a o k as it is in the simple NBD.

The probability that a person buys j units in some

ftime-~period is given by

Qo .
; 1 o ad
P(J‘)=p5 (%)ke}‘/axklekgrdx for j > O
1 - |

T

I(T,a,k) J.

Then the mean of the quantity bought by new buyers

(or by lost buyers) is given by

my P(1)

i

p(2)*(20) 9 M (1)
(T, 5,%)
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But the mean of the quantity bought by all buyers is

given by
QO (_];)k e—?\/a }\k

_ S Y aAa
m=rod I(T,a,k)
T
= pa Tk+1)
I(T,a,k)
11k a (k+1
@t
N - a
k+1 ) .
= 1/(1+a) as obtained for the simple .
NBD model.

In particular

l o ———
mN/m = Tia when k = 0O,

We also have "R/m = 1 - "™N/m

where My = mean of quantity bought by repeat buyers.

The proportion of buyers b is given by

-

©
p { (%)k e-A/a AE-1 (l-e-k) dA

_ T
b = (T, 2, %)
‘l k a 1k a
_ p[I(T:ask) - ("a") (m) I(T:m}k)]
- I(T,a,k)
~ -~k
>~ p[l - (1+a) ) for k > O.

The proportion of new buyers is giVen by
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503 (%)k e-?\/a }\k—l e-}\ (l_e—?\)dh
=P J (T, 2.%)
T
-k a 1.k a k a
B pl (1+a) I(T’1+a’k) - (a) (ii§a) I(T, 55555 k)]
a I(T,a,k)
o pl(1+a)”¥ - (1+22)¥]  for k > ©
o b -k -k
Thus EE = BL = (1+a) — (ltia) when k > O
1 - (1+a)

as obtained for the simple NBD model

But when k = 0 we have

@® e-?\/a % (1—e~h)dk
b=p Si I(T,a,0)
T

5a)e"x/a(1 - A2l + AR/3! - Aé/4l+...)i}
I(T,a,0)

b

Hl=

R

—~— . i . .
p ;i_ ad J%éﬂl (-1)3+1 (for T large)

J21

I(T,a,0)

loge(1+a)
= P 7T1(T,=a,0)

When k¥ = 0 we also have

O

“Aa 1 =N 4=\
by = P j' e = e (1-e™™)an
1
T

I(T,a,0)
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(¢ 9] —7\(l+']'"') A 7\2
Sl e a (l—- -2- 3—3 oouon)»
T

y +
I(T,a,0)

L op 2 (gad Tl (g)im
- I(T,a,0)

a
_ p log(l + Tia

I(T,a,0)

1+2
log ($22)

log(1l+a)

Thus bN/b = = bL/b

We also have bR/b =1 - bN/b =1 - bL/b

where bR = proportion of repeat buyers.

Prediction over a longer period

Over one time-period we have a frequency distribution
specified by p, T, a, k. Over a time-period a times aé long
the mean of the distribution and hence the mean of the under-
lying truncated Gamma distribution will also multiply by c,
(under stationary;conditions).

We will show that the frequency distribution over the
longer period is specified by p,T,ca,k.

The mean of the truncated Gamma distribution is given

by
(L) o7ME 3ke1 gy

0
P -3 (T, 8, K)
T
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In a time-period c times as long k will remain constant.
We will alsé assume That T remains constant. Let a increase
to become A,

The mean of the new ftruncated Gamma distribution is
given by

}
New mean pé g,g—:&

= ¢ « mean of single perilod

_ ¢cpa Ii+1)
- I(T,a,k)

ca I(T,A,k)
I(T,a,k)

4>
(l (%)k e MA k-1 4y

I(TzAzk% _ )7
Now I(T,a,k) ~ 00
f1

T

0

S o™X xK-1 4x

Thus A =

(%)k e-?x/a AL g

8 1Al

S e ¥ LK1 dx

o
H

Case (1): If T=w®and k > O
)

then I(w ,A,k) = I{w,a,k) = (k).

A = ¢ a.

Case (2): If T < oo and k > 0O
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X K1 gx r{(k) as T = o

ey
b 3(

ml»——»
+3

S e X Kl g 50 as T => oo

bll-—»
H

I(T,A,k) —> I(T,a,k) as T —> ®

A = ca

Case (3): If T is finite and k = O.

1
al .
Consider -g e 7 /x dx
1
AT
e ¥ <1 forx<i1
1 1 1
% S AT for 7 <X S OT
i
aT
-X 1
Sl e 7/x dx < AT =T o= A/a.
AT
®

But g e X/dx = © as ¢ — O
c

1

aT

S e */x ax

1

AT .

0 —> 0 as T —> @
g e /% dx

o
e
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I(T,A,k) = I(T,a,k) for T large

A ~ ca.

Now when k > O the rate of buying per buyer over 1

time-period is given by
v /b Ia%f;kzl L
75 pl1-(1+a) ]

& ak
[1 - (xa)7¥]

as obtained for the simple NBD model.
Thus in a time-period ¢ times as long
Wo = cak —

1 - (1+ca)

"o e[l - (1+a)7¥]
or — = Xk
[1 - (l+ca) 7]

EE _1- (l+ca)~k
by L (14a)7E

We also have

But when k = 0 we have

w = m/b

_pat(1) _I(T,a,0)
= I(T,a,0) p loge(l+a)

a

= Tog(i+a)

Then in a time-period ¢ times as long

ca

%o T Tog(1+ca)
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_ ¢ log(l+a)
~  log(l+ca)

Similarly —< = igg ii;a

Insensivity to T. When T is finite all the formulae which

Thus

o' SIOS

(v

have been derived are approximations. But provided T is
"very large' the approximations are all very close even
for the case k = 0. Thus provided T is indeed very large
the formulae are insensitive to small changes in T. In
fact we never need to know what T is, nor do we need to
estimate it to calculate any of the above predictions.

T is introduced to describe our intuitive knowledge
that there is some very small rate of buying below which
people are effectively 'never-buyers'. As a by-product
it enables us to obtain predictions for the special case
k = 0.

Thus, although the model apparently has four parameters,

it really has only three which matter, namely p,k,a.



CHAPTER 5. Fitting the truncated NBD.

5.1 Introduction

We will consider a special case of the general model
proposed in the previous chapter, by putting T = o aﬁd
k > 0. Thus we now have a 3Z-parameter model which is
simply a mixture of zeros and a NBD.

Estimation of Parameters.

The problem is tackled by noting that the truncated
part of the distribution (that is the distribution without
the zeros) should be a truncated NBD under our model. So
the problem reduces to estimating the NBD parameters a, k
from the fruncated distribution. This will give an
estimate of the potential buyers who are included in the
zeros, but are part of the NBD. This will give an estimate
of p.

Intuitive Motivation.

For some classes of goods it is not clear what the
population total (and hence the number of non-buyers) is.
Thus the potential market for a brand of tipped cigarettes
may be all adults, all smokers, or merely all smokers of

Tipped cigarettes.
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If it is found that the ftruncated distribution really
is NBD then we will have a revised population total which
may have the above-mentioned meaning; namely the poten-

tial market for the brand under consideratioh.

Methods

Various ways of estimating the parameters of a
truncated NBD are considered. Methods from the literature
‘are reviewed and then some new methods are given. The
methods are compared in fterms of efficiency and simpli-
city.

'The maximum likelihood method, though fully effi-
cient, is very laborious to perform, but is probably
worth adopting by the statistician if a computer is
available. But in market research this is sometimes not
S0 and a simpler method is to be preferred.

Eventually, Brass's first method is selected as
being the 'best' (by balancing efficlency and simplicity)

and is tried on a large number of distributions.

Notation

fr = Number of people who buy r units in a certain time-
period

f}{

o = Ad justed number of non—buyers,vestimated from the.

truncated distribution.



The NBD is given by

} r
P, = (usa) HIlETL 155
ri{ (k)
= Probability of observing r.
Let m = a.k

= mean of the NBD part of the total distribution.

Note that m is not the mean of the observed distribution.

Thus m is the mean of the distribution (fﬁ, £15 f55 fyees
The tTruncated NBD is given by
r
P, o= (1+a)7 Cler) e ryl
rit (k) 1-(1+a)
_ =
FO = L fr Fl = :Zj rfr
r>l r>l
e .
F, = £- rfr, Py = Z. v
r>l r>l
In all the methods our sample consists of fl, fg, f3°"

We want to estimate the parameters a, k of the

distribution and also fi



5.2 Methods from the Literature.

The truncated NBD was discussed by David and Johns%on
(1952). They give the maximum Likelihood method for
estimating the parameteré which is unfortunately very
cumbersome. They also give a method which involves the
ratios of the first 3 product moments. This method,while
providing explicit solutions, is very inefficient because
of the use of the Jrd moment which is very sensitive to
outlylng values.

The equations are

F_F, - F2
A
Fl(F2 - Fl)
2 W -
N 2F5 - laf FoF)

2 2
F}Fl - F2F1 + F1 - F2

Sampford (1955) gives iterative methods for finding
the moment and maximum Likelihood estimates. These are
rather complicated.

Brass (1958) gives 2 much simpler methods. The first
gives explicit solutions for the parameters in terms of the

first 2 product moments and fl.
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The eguations are

A 1
W= 133

£
/
1/F,

= -~ . S

A é Pi/p -
and k o
1 -w
This method is more than 60 per cent efficient over
a wide range of parameter values.

Brass’'s second method is a modification of the
maximum Likelihood method. This, while more efficient,
is still rather laborious.

Hartley (1958) also considers the maximum Likelihood
method. He suggests guessing the missing zero value,
fitting by maximum Likelihood, re-estimating the zero value
and iterating. Unfortunately, the maximum Likelihood

method is still very cumbersome even for the full

distribution.

The best of these methods seems to be Brass's first
method. But various new methods were considered to see if

a better one could be found.



- 94 -

f
r . 1
5.3 A graph of /fr—l against

The recurrence relationship for the NBED is

-k
Pl" = (I‘_%’é‘) (1 ) P =1

So, theoretically, plotting fr/f against %

r-1
should give a straight line which intercepts the Pr/P

r-1
axis at Tigsj'and has a gradient of E%%égl

In practice the ratios are very variable with
successive readings highly negatively correlated. This -
correlation is less thannw% for all r. A typical series
of ratios is shown for brand C over 26 weeks, which had a

sample size of 2000 (see g#pZaéex) Even for this sample
size the ratios were much too variable to fit a line

satisfactorily. Thus, this method is too inefficient.

]

I

Taple 5a. r/f

r-1
38
.64
.75

e,
.88

a7

71

.20
3.0

W)CD\]O\U‘I—P—“UT\)‘W

o
~ O
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5.4 Geometric Prediction for a.

The recurrence relationship for the NBD is

- (B 1-ky
P.o= (35%) (1 -7 E-‘ - -,

As r gets large 355 —> 0

3 & -
so that Pr —_ ey Pr—l . ‘

Thus for r large the tail of the distribution tends
fo a GEOMETRIC distribution.

Thus we can estimate a by a similar method to that
proposed in secticn 4.4 when the model comprising a mixture
of a Geometric and a Poisson distribution was considered.

That is, we consider Mill's ratio = y,

= 5
J2r
which for r large tends to TT%ET .
As before we can find this for 1 particular value for

r by calculating a smoothed value

Nad 5
£, = fro + e R fzjl + #Ei?
5
. ?1”/ p
Then == = . .
1+a _ >r J

Fiftecen is a suitable value for r as Mill's ratio is
roughly constant for the observed distributions for values

of r greater than 12.



Alternatively, we can plot Mill's ratio agailnst %.
It should converge to a constant which can be found by
taking the intercept of the graph when %— is zero.

Having determined a, we can now use an iterative
method to find the mean m (= a,k) of the NBD part of the

distribution and the adjusted number of zeros.

Guess an initial value for the adjusted number of
(1) _ . (1) _ .
Zeros - fo . The choice fo = 2f1 - f2 is a

convenient starting point.

Then N(l) = guessed sample size
= PF_+ f(l)
0 0
MEDR. akll) - Fl/N(l) .
- (1)
Hence féd) = N(l)(l+a)—k

In general this will be different from the guessed
number of zeros.
Calculate a 2nd iteration using féE) as the starting
point.
.th | . .
In general the i iteration is
(1) _ o(1)
N = FO + fo
m(l) = a k(l) = Fl/N(l)

fgi+l)= N (14 a)"k(i) .
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Example
Brand P, over 24 weeks. (See table 6a)-
Now EZ £ = 28
r>15 J
Eu _ fl§,+ f14 + fl5 + fl6 + fl? _ 2
ey - - -
15 - 5
o)
A j _
Therefore 1 + a = 28 x § = 15.5
N
a = 14.5.
F, = 2 £, = 103
r>l
Fl = ‘l rfv = 1040.
r>1
(1) _ _ _
Choose fo = 2fl f2 = 37,

Then the iteration proceeds as follows.

£ N m m/a = k Table 5b
37 140 7.42 512

3.5 137.5  T7.57 .522

32,8

The process converges to a value

K
i

fZ = 32 with m=7.65 and a = 14.5.

O
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Criticlsm.

The trouble with this method is that 1t can only be
used for frequency distributlons with a long tail. In
particular we need a substantial number of people to buy
more than 15 units in order to be able to estimate a. But
we are looking for a method which is suitable for all
consumer purchase distributions, which means that the
above method is not general enough. There are, of course,
cases wherce different methods of estimation are used for
different tynes of series, but if we can find an
estimation method which is at least as good for longer
Time-periods and which is also suitable for shorter time-

periods then it will be preferred to the above method,

5.5 Estimation from the mean and fl

s bt dmt s 8

Another method of estimating the parameters of the
ftruncated NBD is to use w and q.
Equates the observed and theoretical values of these

gquantities. Thus we have

F
W o= - ak - = Fé = rate of buying/buyer
1 - (1+a) o
Fo(l—i-a)“k ak
£, = =< \ ¥ ~—-- = number of pcople who
1 - (a)® M puy 1 unit,
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These 2 equations can be solved iteratively for a, k.
The easiest method of iteration is accomplished, as before,
by completing the distribution with a guessed number of
Zeros - fél). For consumer research data the observed
number of non-buyers is a convenient starting point. The
reason for choosing a different starting point to that
used in the previous method is simply that for consumer
research data the estimates of fi obtained by this

method are consistently higher.

We have N'1) - F_ + fél).
Then m(l) a k(l)
- Fald),

Then estimate a from the guessed proportion of zeros,

that is, from the equation
o1 w(D () e,

This equation can be solved iteratively in the usual

way.

————

)-k m
1l+a

Put z; = Iy - N(l) (1+a

difference between observed and theoretical

buyers of 1 unit.
The value of the 2nd guess of the number of zeros

(fég)) depends on the sign of Zq -
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Ir Zl > 0 choose f(g) = 2f(l)
o] v o)

If 2z, € 0 choose f(g) = X f(l).

1 o} 270
Repeat the process and calculate Z, where

_ -k m (2)
22 = fl - ( l+a) ey N
and m, a avre new estimates calculated from fég).

We can now 1lnterpolate linearly for z3 = 0.

This will give a value for féE) and hence an

estimate of fo » a and k.

Example

Brand P, over 2 weeks. (see ‘oble Go. ?m") .

F, = 103 F; = 1040 £, = 25.

Choose fgl) = 371 = observed number of non-buyers.

Then m(L) 2.19. N

Zl = -1,
(2) _ 1.(1) _

As z; < 0, choose £ = &L = 185,

Then m'?) = 3.61 22 = o7,

Z, = 3.8.

Interpolating linearly for 2z = 0 we get

(3) _ 136
fo = 27l - /4.8

= 332.
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This gives estimates as follows: -

X '
£ = 330

m = 2.40

a =  30.5,.

Comments p

There are 2 snags connected with tﬂis me thod.

Firstly, this method will often increase the adjusted
‘number of non-buyers above the observed number. Then it
will be impossible to give any physical meaning (e.g. the
potential market) to the recvised population total.

Full NBD's were fitted in the normal way to
19 observed '‘heavy-buying' distributions, which included
the observed number of non-buyers and the ratio

Theoretical value of f

¥y = - was calculated.
Observed value of £,

The average value of y was 1.02 and 14 of the
ratios were in the range (0.8, 1.2). Thus despite the
variance discrepancy, fl seems to fit gquite well. Thus for
these distributions the above method will give a theoretical
distribution similar to the original NBD. Other values of
'y were as far apart as 0.73 and 1.69 so that for these
distributions the theoretical distribution would change

gquite a bit.
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Low values of y (< 1) 1lead us to the 2nd snag, for
if the observed value of fl is bigger than some value
have a solution. As we shall see in a later chapter a
Logarithmic distribution can be fitted to the truncated
distribution. Then if fl > theoretical value of f; 1in
the Logarithmic distribution then this method will not

have a solution.

—QL

> F 28 where w =

(that is irf fl °
log,(1-q) (1~q)log,(1-q)

We need an estimation procedure which always gives a
solution for heavy-buying distributions, so that this

method is ﬁnapplicable.

5.6. Moment Method.

Another method of estimation is to use the first 2
moments of the truncated distribution. This method has
already been considered by Sampford (1955), but his method
is rather complicated. A much simpler method has been
derived.

The technique 1s similar to that of Hartley (1958).
After guessing the missing zero value, the full distribution

is fitted by the method of moments. Then we re-estimate



- 103 -

the zero value and iterate. With interpolation » steps
usually gives good enough accuracy. We must have
agreement between theoretical and adjusted zeros so that
there is agreement between the theoretical and observed

moments of the truncated distribution.

First we guess a sulitable initial zero value - fél).

A convenient starting point is given by
(1) o
fo = 21l - f2.
We then calculate the 2 parameters m( = a.k) and a

by the method of moments.

_ (1) _ . :
Nl = FO + fo = sSample size.
m; = mean of adjusted distribution
= Fl/Nl
m(1l+a) = Variance of adjusted distribution
— - 2
= F2/Nl m= .
Therefore a; = F2/Fl -m -1
_om
k, = l/al .

Then we can find a new estimate of the number of non-

-k
buyers, namely Nl(l+al) 1
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We could use this new estimate as the starting point
for a 2nd iteration. DBut simple iteration in this way
may require up to 20 steps. The process can usually be
shortened to 3 steps by interpolation.

)

Scores z; are computed from trial values of fél

in the eguation

. -k
(1) i
z, = I - Ni(l+§i) .

The first score, Zl’ is computed with the 1lst trial
value, fgl). The 2nd frial value depends on the sign of |
2q - If Zq is positive then choose féQ) < fgl) 3 if
negative, choose fgg) > fgl). Whichever it is choose fg2)
far enough from fél) preferably to give opposite signs
to z4 and Zg - This can usually be achieved by putting

: 3
fég) = fél’/E or fég) = Efgl) according as to whether

z, >0 or z, < 0. The 3rd trial value féB) is

1 1

obtained by linear interpolation for =z = 0. This 3rd

trial value is adjudged to be sufficiently accurate if we
)

find zj/ngI < 0.02, a condition which is nearly always

satisfied in practice.
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Existence and convergence problems.

The iteration procedure is equivalent to

. -k,
(1+l) _ i
s = Ni(l+ai)
where N, = F_ + f(l)
i o o
_F
m; = l/Ni
F
a; = 2/F1 - m -1
_ m,
ki = 1/ai
Thus fél+l) = g(fél)) where g is the above function.

%

1

Thus our estimate of fé is the root of the following
eguation in x.

x = g(x).

This equation will not always have a solution.

It is easy to show that g(x) > x when x =0 for
all distributions. But distributions also exist where
g(x) > x for all x. A trivial example occurs when all the
buyers buy the same number of units. A more important
example occurs for a class of reverse J-shaped distributions.

F

If 2/Fl is greater than a certain value which

depends on W then no solution will exist. As we shall
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see later, a Logarithmic distribution can be fitted to the
truncated distribution. In this case the theoretical

value of F2/Fl is 1/(l—q) where the parameter q is

estimated from w = If the observed

" -
(I-9)Tog (I-q) °
r

value of "2/F. is bigger than l/(l—q) then this moment

1
method will not have a soluftion. In consumer purchase

distributions this only occurs when a full NBD 1is fitted
to an observed distribution by the méan and zeros and the
observed variance is higher than the theoretical variance,
The reverse is usually true, particularly for heavy-buying
data, when the variance discrepancy occurs and the
theoretical variance is consistently higher than the

observed value. In such casss as these a solution will

exist.

We will show that g(x) is continuous and
monotonically increasing, so that, if a solution exists,
the iterative procedure must converge to one of the roots.

. i . C .
Now if fg ) is monotonic increasing

my is monotonic decreasing

Therefore a; is monotonic increasing

But 1og(l+ai)/ai is monotonic decreasing

m. m.
-"i/a. -"i/a, log(l+a.)
But (l#ai) + = e + +
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—mi/ai
Hence (l+ai) is monotonic increasing.
Also N = I _ -+ f(l) is monotoEic increasing
° © M/,
Therefore ,fél+l) = N(1 + ay) *  is monotonic
increasing.
Consider z = x - g(x).

z 1is a continuous function for x > 0.

The monotonic property means that the iterative
procedure must converge to one of the roots of z = 0,
provided, of course, that a root exists. (We have already
seen that this is not necessarily so.) Note that if g(x) .
was not monotonic then the process would not necessarily

converge .

This is best illustrated graphiecally.

Diagram 1.

fgl+l) hs de%;ee line This diagram

g(f(i)s shows the situation
o)
if there 1s exactly
1l root. 2 typical

iterative rothtes

|
' are shown, starting
i
!

. at %, ¥

/’///. t
/ |
4L 3
~ R
X X ALY ’3 respectively. The

! 2 Q
root of the equation occurs when g(fél)) cuts the 45 degree

L -

x

line; that is, when fél+l) _ g(féi)).
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Diagram 2.

f(i+l)
0

g(fél)) This diagram show
the uncommon case
when the root is not

unigque. The iterative

procedure will still

L)
g converge to one of

[+ R
the roots.

Some distributions do give 3 roots. Thus for the
distribution taken from Bliss (1953) (p.186) consisting of
128 ones, 37 twos, 18 threes, 3 fours and 1 five, we find
roots at x = 235, x = 250 and x = 25%. However, in the
3 examples where this was found to occur, the roots were
relatively close together; that is, within 15 per cent of
each other.

Worked Example

Our ftruncated distribution is taken from brand Pl over
(see agperdie
24 weekspp When a full NBD was fitted, the variance
discrepancy occurred, indicating that the method of moments

would have a solution.
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The calculation proceeds as follows.

(1) F, =36 F =347 F, = 9139

(11) Choose fgl) _ (2x9) -4 = 14,
(iii) This gives N, o= 36 + 14 = 50
m = 347/50 = 6.94 -
a = 91%9/347 - 6.94 -1 = 18.46
k= T/, = 0.37
N(l+a) ¥ = 17.1
Therefore 24 = 14 - 17.1 = -3.1
iv) As z; < O take fgg) -2 x 14 = 28.
This gives Z, = -C.2,

%o/ (2)
As fo /' this wvalue of fo is sufficiently accurate.

However, to complete the example we find linear interpolation

gives

féB) = 14 + 3.9 x 28-14

2.7
= 29,
Hence 2z, - +0.1.
>

The calculation of z5 also gives

m = 5,32 a = 20.1 k = 0.265.
Therefore fi = 29,

Estimated NBD population total 29 + 36
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Efficiency

Sampford (1955), who also considers the method of
moments, but gives a more laborious method, derives formulae
for the variances of the estimates which will also be
applicable to my iterative method. They indicate that the
method is more than 60 per cent efficient over a wide range
of parameter values.

Criticism

This method seems to satisfy most of the criteria for
a suitable estimation procedure. It is reasonably quick to
carry out, 1s fairly efficient and will give solutions in all
the distributions likely to be considered. Unfortunately,
If compares badly with Brass's first method. Brass's
method 1s quicker since 1t gives explicit estimates. It is
also more efficient. The efficiency of a method of
estimating two parameters is found by calculating the
determinant of the variance-coveriance matrix of the
estimates and comparing it with the corresponding determinant
of the maximum Likelihood estimates. Brass gives a table
which shows that the efficiency is greater than 60 per cent
over a wide range of parameter values. In particular Brass
shows that the efficiency is always better than that of
the method of moments in the range of parameter values that

we require.
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Table 5b. Ratio of efficiency of estimation by Brass's

methodvto the method  of moments

m
0.5 1 2 5 10 ®
0.5 1.13 1.18 1.22 1,27 1.28 1.00
1 1.07 1.10 1,14 1.17 1,18 1,00
Thus Brass's method of estimation seems to be the

best available.

5.7. Brass's method

The estimates of a,k are given by

2
-l B ekt W
F1 (FO- fiT
A F1 - (1+g) £q
k =
aF
(o]
fx= FO
(1+§3i -1

As with.the moment and maximum likelihood methods,
it is quite easy to find distfibutions which will not
give acceptable solutions. (An acceptable solution is
a >0, k> 0). In particular a similar restriction
applies to reverse J-shaped distributions as for the

method of moments.
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However, for distributions of the 'heavy-buying' type
where the variance discrepancy exists, solutions will
exist.

Brass's method was used to fit a large number of
distributions from the X-product field. As we shall sce
in the next chapter the resulting fit was not satisfactory

in a number of important ways.
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CHAPTER 6

The it of the Truncated NBD

6.1, Results of fitting the truncated NBD

A large number of distributions from product field X
was fitted by Brass's method and the resulting fit was
compared with that obtained by fitting a full NBD. All
aspects of the fit were considered, and not just the fit
of the frequency distribution. Certain systematic features
were observed.

Firstly the adjusted number of nonfbuyers, féx, was
considerably less than the observed number of non-buyers,
fo. In most cases we found

*x
£ < fo/lo.

Secondly fruncation causes a considerable increase
in the value of the parameter k. In long time-periods
k increases to about 0.5 but over shorter time-periods
k increases to as much as 4. The other parameter a decreases
but in such a way that the mean of the adjusted distribution
(m = a . k) increases,

There are also systematic changes in the theoretical
frequency distribution. The theoretical values of fl and
f2 are reduced as are the frequencies in the tail. This

latter effect removes the variance discrepancy. Other

frequencies are correspondingly increased,
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The table shows a typical distribution from product-
field X which has been fitted by a full NBD and also by

Brass's method.

TABLE 6a
Full Observed Truncated
r NBD  Distribution NBD

0 371 371 48.0

1 25.5 25 18.7

2 13.2 13 o 12.3

3 8.8 7 9.3
y 6.6 2 7.5
5-8 - 16.0 12 19.9
9-12 8.8 12 11.9
1%-16 5.8 8 7.6
17-20 4.0 9 5.4
21-24 3.0 9 3.8
25+ 11.3 6 6.6

On an 'overall' basis, the fit of the truncated dis-
tribution is improved by fittihg a truncated NBD by Brass's
method. For example, thé value of X2, calculated for the
cells shown in the above table, is reduced from 27.2 to
19.5. Another way of seeing if the fit has improved is
to look at the likelihood function.

" We recall that our model is a mixture of zeros and

a NBD. Thus the distribution is given by



...]_15..

g + p(1+a)~k

-
i

P
r

rd(k+r) (=8)T

-k
p(1+a) " ymSng (s

for r > 1.

Split the observed number of non-buyers, fo,’into 2
parts A and B where A are 'never-buyers' and B are part of
the NBD., Then we can work out the likelihood of the sample

for various values of A and B. When the likelihood is
maximised, the value of B is the maximum likelihood esti-
mation of fox. This estimating procedure was mentioned
in the previqus chapter but was not adopted because it is
too laborious.

For a particular value of A, and hence of B, we
estimate

q = A/N where N = population total

m Fl/(B+FO) = mean of NBD part.
Estimate k is the maximum likelihood estimator = of
the NBD part.

Thus k is the root of

') r-1
| m < < 1
(B+FO) log(l + k) = 2 £ ;Z PrE]
»r=l i=o
L
Likelihood (sample 1B) = 1 Pr .
r

The likelihood when A is zero is taken as standard.
Then the likelihood was calculated for various values of

B. A computer program was written to do the necessary



calculations. The table shows the likelihood of the dis-

tribution for brand P

B. (See appendix). ’
TABLE 6b

B Likelihood
387 1.00
348 1.46
309 1.81
270 2.33
232 3,17
193 4,57
154 6.95
116 10.67
96 12.56
7 13.25
58 10.90
38 5.26
19 0.79

Thus, in an overall way,

over 4 weeks for various values of

)
1l

observed number
of non-buyers

= 3.87

The likelihood of the
sample 1s maximised
when about 77 of the
non-buyers are assumed

to be in the NED.

the fit of the frequency dis-

tribution is improved when we reduce the number of zeros

and fit the truncated NBD.

‘6.2.' Appraisal of the truncated NBD

In Chapter 4 we mentioned 4 criteria by which any

model should be judged, namely, simplieity, generality,



- 117 -

usefulness and descriptiveness.
The better fit of the frequency distribution is just

one aspect of this last criterion, namely, d.Scriptiveness.

We now consider other descriptive aspects of the truncated
NBD..

Mirstly let us consider the shelving effect which is
visible in the example given in Table 6a. We have already
noted that the full NBD does not describe tﬁis property.
We now note that the truncated NBD does not describe it
any better.

Secondly let us consider the adjusted number of non-
buyers. If the revised population total is to have some
meaning such as the potential market of the brand in ques-
tion then this adjusted tctal should be roughly constant
for a particular brand in different time-periods. In fact
it increases steadily as the time-period increases. The
ad justed population total is often less than the total
number of buyers over a longer period. Thus it cannot
be an estimate of the potential market for the brand in
question.

Thirdly truncation caused a systematic reduction in
the ftheoretical value of fl. But we have already seen that
the full NBD gives an unbiased estimate of fl. So the

truncated NBD will systematically underestimate fl. This

discrepancy is particularly serious as the people who buy
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oniy one unit form a large proportion of lost buyers and
so this bias willl seriously affect the repeat-buying for-
milae.

This brings us to another criterion, by which the

model can be judged, namely usefulness. The most important
aspect of this is the ability of the model to give useful
predictions.

As mentioned in Chapter 2, a whole range of repeat-
buying formulae have been developed. When a full NBD is
fitted we have seen that these formulae give good predictions
even when the variance discrepancy occurs. In particular |
the predictions are unbiased, However when the truncated

NBD is fitted, f isbunderestimated and the estimate of k

1
increases so that the repeat-buying predictions change.

For example‘the predicted number of lost buyers 1s con-
siderably reduced. Thus the predictions will now be bilased.
Similarly predictions over different time-periods (for
example market penetration) will also be biased. Thus,
judged by its usefulness, the truncated NBD model 1s worse
than the full NBED.

The third criterion which we will consider is that

of simplicity. The full NBD model has two parameters but

the truncated NBD model has three parameters, so that in
this respect the latter model is not as simple as the full

NBD model. Now the addition of a third parameter, with a



_119...

consequent reduction in simplicity, can only be justificd
if it means that the model is better in other respects.
But we have already seen that in a purely descriptive
capacity the model, while 1lmproving the overall fit of
the frequency distribution, leads to certain systematic
discrepancies which decrease the usefulness of the model.

Thus the addition of a third parameter cannot be justified.

6.%. Summary of position

Certaln systematic discrepancies from the NBD model,
notably shelving, bunching and the variance discrepancy,
led us to consider a variety of alternative models, none of
which was judged to be better than the NBD model.

This 1s perhaps not too surprising. .For we have seen
that the NBD model gives good predictions for a wide variety
of brands over different time-periods even when systematic
discrepancies occur in the frequency distribution. And from
the market research point of view it is these predictions
which are of the prime importance, provided that they are
general and reasonably simple. The descriptive .aspect,

while important, is secondary.

6.4. The shelving phenomenon

It seems appropriate at this point to have a closer
look at the shelving effect which is at the heart of the
discrepancy from the NBD model., What is the cause of this

effect?
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First let us look at the assumption in the NBD model
that the average long run rates of buying of different
consumers follows a Gamma distribution. If this is in-
correct then there may be some other compound Poisson dis-
tribution which will describe the data adequately. The
observed frequency distributions contain a definite dis-
continuity which is usually very sharp indeed. Thus we
require that the distribution of the average long run
rates of buying should also have a definite discontinuity.
As an example we will consider a 12 week period and assume
that the average long run rates of buying follow a distri-
bution which has a discontinuity between 12 and 13 units.
A suitable distribution is the uniform distribution on
(0,12). Then we expect a fairly sharp drop in the resul-

fing frequency distribution from 12 to 13 units.

12 .
- Jd
Now P(j purchases) = %5 _j e~ %T da
N o
2
o { e Al an
13 _1 o
P N~ 12
12 j e—ﬂ KlQ an
0

= 6¢%% = 0.T74 (from X tables)

However the observed drop is usually much more drastie

than this and is of the order
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;-léso,l
12

Thus a compound Poisson distribution is too smooth
to give such a discontinuity.

Another way to show that no compound Poisson distri-
bution could give this shelving effect is to consider the
result given in Section 4.5 that the average rate of buying
over the subgroup who bouzht J units in the first of two
succesSsive equal time-periods is given by

(j+1) PP'gl in the second period;

But if there is a sudden discontinuity at j units so
that E%%%%l is small, this would mean that this subgroup
should buy at a very low rate in the second period.

For example if j = 12 and E%%g%l = 0.1, then the
average rate of buying of the subgroup is 1.3 in the second
period after buying at an average rate of 12 in the first
period. This situation is contrary to our marketing know-
ledge.

This must mean that the other basic assumption in the
NBD model, namely that the pufchases of any one consumer
in successive time-periods are independent Poisson variates
must be incorrect. An investigation of the buying habits
of a large number of consumers revealed that while most
consumers follow the Poisson assumption reasonably well,

a few consumers are too regular in their buying habits.
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‘Thus we must accept the fact that the NBD model
is nothihg more than a useful approximation to'the
real situation, and that certain systematic discrepan-
cies will 6ccur. Further light will be shed on the
‘shelving effect in Chapter ten, when we examine the

distributions of 'weeks' and occasions.
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Number of Frequencies
units bought Observed Fitted NBD
0 376 375.9
1 40 50.3
2 24 21.1
3 14 10.9
4 17 6.1
5 1 3.6
6 2 2.2
7+ 0 3.9
Variance 1.13 1.54
N = 474 m = 0.45
a = 2.39

k = 0.19
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CHAPTER 7

The L.SD Model

7.1. Zeros and the NBD

We will investigate the effect of altering the number
of zeros of a distribution which is already well fitted
by a simple NBD,
Example: Consider the distribution given in Table 1lb

N = sample size = 2000 fo = number of non-buyers
= 1612,
m = mean = 0.636 k = 0.05

standard deviation = 2.12,

Keep the positive part of the sample the same and let
N range from 750 to 20,000. Thus we make fo range from
%62 to 19,612. In each case a NBD is fitted and the two
parameters m,k are estimated from the mean of the new dis-
tribution and from the new number of buyers. This gives
2 theoretical distribution which can be compared with the
observed distribution. -

Apart from the lowest value, the‘fit of fl and the
standard deviation (s.d.) is good over a wide range of N
(and fo). In fact the positive part of the fitted NBD is
hardly changing at all. We will show that as fo VAN RR

the positive terms tend to a well-known series called the

LOGARITHMIC Series distribution.
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TABLE Ta
Obs. NBD Obs. Theoretical
N fo Po fl fl s.d. S.d. k a

750 362 485 164 136 3.2 2.76 0.48 3.50

1000 612 .612 164 145 2.86 2.6 0.29 4.3}4

1500 1112 .740 164 153 2.42 2.29 0.16 5.14

2000 1612 .806 164 156 2.12 2.04 0.11 5.53%

5000 4612 .922 164 162 1.38 1.3%6 0.04 6.23

10000 9612 .961 164 164 .98 .97 0.02 6.45

20000 19612 .981 164 165 .70 .69 0.01 6.57
Theorem. Consider any distribution fl’fe"”fj' Then for

any fo’ estimate the two parameters of the NBD from the
mean and the proportion of zeros. Then as fo Ao, k = 0,
and the positive part of the resultant theoretical distri-
_bution tends to a LOGARITHMIC series. (Hereafter the
Logarithmic series distribution will be abbreviated to LSD).

Proof, Calculate Fo = E fr
r>l

Fl = j{? rfr
r>1

For any fo’ N = FO + fo = total sample size.

. A . . .
The estimate m of m is given by

A
m = Fl/N
~ _
The estimate k of k is given by
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(1 + m/k)7¥ = £ /N

Assume that k + 0 as fo,z 00
Then as k 1s positive, k > c¢ for some positive con-
sfant C.
1 .

Then E] N, such that e 1s small.

A _ L
Then (1 + m/k) ko (1 + F1/Nk) k

. B
~—>1 - "1/N, as N2

N -
But (1 + m/k)"K

fO/N
(N-F,)/N
1 - FO/N

Hence Fl —_ Fo which is not true.

.k —0asf Ao.
Now the recurrence relationship for the NBD is given

by
P, = ~Q—) (l B ;ig Pr—l

r 1+a

a_ r-1
Thus P, —>707 7 Proy

as fo;ﬂcn.
In other words, PO —> 1 and Pr —> 0 for r > 1.

We will only consider the positive distribution,
when we note that the recurrence relationship is that of

the Logarithmic series distribution. This distribution is

given by

1 a)r_l_

r In(l+a) ‘l+a for r = 1,2,3,....

P

= Probability of observing a positive integer.
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The parameter a changes as N AAoco. We will show
that it tends to a positive quantity given by TE%TIET =W =
rate of buying per buyer.

a is estimated from the equation

Pz

(1+a) =1 - b where b is proportion of buyers
Va¥
g In(l+a) = -1n(1-b)

b+ b2/2 + 02/ 3+....

As fo.77oo, bNO
g in(l+a) = 1 + /2 + b3/3 +....

Thus 1im a is given by
fo—boo

a

Tnl(ita) - "

7.2. The ILSD model

FPisher (1943) derives the LSD by letting the popula-
tion size tend To infinity and m,k tend to zero in such a
way that their ratio a = m/k stays finite. But this limi-
ting process is meaningless as applied to the distribution
of consumer purchases.

Instead we will derive the LSD as a special case of
the general model proposed in Section 4.5.

We suppose that the population contains a proportion
(1-p) of 'never-buyers' and a proportion p of buyers whose

mean rates of buying follows a truncated Gamma distribution.
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Thus F(x) = 1-p 0<x< % |
X
p.}; e-}\/a % dA
P(x) = (1-p) + —Frag— TLXL®

In other words we consider the special case k = O,
with T finite.

This model is intuiltively acceptablé as one feels
that there certainly are some people in the population
who will never buy. Also cne feels that there is a certain
maximum time-period in which one is interested. (e.g. the
life of the product).

As before we assume that each member of the popula-

tion makes Poisson purchases in successive time-periods.

® .
- oy ad
Then phex/a%exg%dh
. 7 .
Prob(j purchases) = T(T.5.0)
/s 1y-]
~ MG/t 1+ )7 .
- I(T,a,O) for J _>_ 1.
o (2 _J_ ;
Thus P, = 75 5T Py for j > 2.

This is the recurrence relationship for the LSD.
Thus ﬁhe people who actually make a purchase form a

distribution given by

1 a a_\2 _a 3
1n(1+€f{1+a, e /2, (TR, L }

Thus for any time-period the populaticne consists of
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a block of non-buyers (some of whom are potential buyers)
and those members of the poﬁulation who make one or more

purchases in the time-period considered. The latter form
“a LSD.

The parameter a. It is important to realise that the

estlmates of a obtained by fitting an NBD and an LSD model
- will be different.

It can be shown that the maximum likelihood estimation
of a for the LSD is given by equating observed and theore-
tical means. Let q; be the estimate from the LSD model.
Then ar, is obtained from the eguation

ar,

V=710 1+qy,

be the estimate of a obtained from tne‘NBD

Let aN

model.
(1 + ay

%E 1n(1+aN) = -1n(1 - b)

=1-b

e

b+ b2/2 + bO/3 ...

ols

= iﬁ?%IEET (1 +b/2+1v2/3+ ....]

For b small enough, the two equations, and hence the

two estimates, willl be virtually the same.
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7.3 The Logarithmic distribution

We will now present the main properties of the Log-
arithmic distribution which are relevant to the investiga-
tion of consumer purchasing.

The LSD is usually written

_ 1 r r=1,2,3....
PL = - Tn(ioqy ¢/%
0< g« 1.
= Probability of observing a positive
integer r.

Thusq:i-i-é-.

Some authors use © instead of q.
It is customary to put o = {%%T:ET.

The Probability generating function is given by

A(t) = -a In(1 - qt)

The moment generating function is given by
t
g(e”)

= -a 1n{l - qe

M(t)

£y

Hence mean = aq/(1 - q).

Variance= aq(l - ag)/(1 - q)2.

Reviews of the LSD are given by Williamson and
Bretherton (1964) and Patil et al (1964).
Models. Fisher (1943) derived the LSD in connection with
some work by Corbet and Williams on the distribution of

species of butterflies caught in a light trap in a given
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period. As already mentioned, he obtained it as the limit
of 'a NBD by letting k —> 0 and removing the zero class.

C. B. Williams (1944, 1947) published a series of
papers on bioclogical applications of the distribution.

He uses the notation

fr = No. of species with r individuals

a q¥/r [This is a different a

Th:n S = total number of species

-a 1ln(1l - a).

N = total number of individuals inspected

= 2
=19 °

He estimates o and q from S and N giving the impres-
sion that there are‘two paramecters.

He calls o the index of diversity and found that this
was constant over differcnt time periods.

Comparing purchasing results with the biological

derivation we note

w <—> N/S
Fo .
- lETi:GT > index of diversity where
Fo = Number of buyers.

Thus Fo/ln(l-q) should be constant over ranging time;
periods.

Three distributions from product field X were examined
to see if this quantity was constant for purchase distribu-

tions.
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TABLE 7b
Time-Period (weeks) P, P5 Py
oY 28.5 58 28.5
12 25 58
8 22.5 60 21.5
4 S 27 67 20.3
2 4y oL 51

Apart from the 2-week period, the statistic is reas-
onably constant.

Estimation

Maximum likelihood estimator of g

This is found by equating theoretical and observed

means.

wo= - 73 ~ &
(1-a) 1n(1l-q)

This cannot be solved explicitly for g but a solution

can be found iteratively from

_=w. 1n (1-qg)
q = 1-w.1ln(1-q)

or directly from a table given by Williamson and Bretherton
(1964)., A graph plotting (1-q) against w is given in the
appendix.

The variance of this estimate is given by

lqe _ _q®
- CONp,
NW(TI:ET w) 2
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Other methods of estimating q have been given by
Anscombe (1950) and Patil (1962).

These include |
(1) a=1-"um

This is a fairly efficient method. The efficiency

> 74°%/0 for g < 0.9.

(2) q = 2f2/fl.

This is a useful quick quess,.

Tables of the Logarithmic distribution

Williamson and Bretherton (1964) have published
tables of the LSD for values of the mean as follows

mean = w = 1.1 (0.1) 2.0 (0.5) 5.0 (1.0) 10.0.

However as q,or w, 1is a continuous variable it will
usually be necessary to interpolate to fit a particular
distribution, in which case it will probably be quicker
to work out the distribution from scratch rather than use

these tables.

7.4, The fit of the LSD

A large number of distributions was fitted by an LSD
and also by an NBD. Those distributions whichAare already
well fitted by an NBD give an equally good fit to the LSD.
This can be seen either by visual inspection or by calcula-
ting a statistic such as X2 or the likelihood. Sometimes

this statistic will indicate that the NBD gives a better
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fit and sometimes that the iSD gives a better fit.

When systematic discrepancies from the NBD occur
(such as for 'heavy-buying' data), systematic discrepan-
cies from the LSD will also occur. Again there seems to
be little difference in the goodness of fié.

Four examples are given of the fit of the LSD.

The variance of the LSD is

-g [1 + o/In(1-g)]
In(1 - q) (1-q)2

=w(l +a, + w].
KN}

From this we can calculate the theoretical LSD vari-
ance of the whole distribution by combining the block of
zeros and the LSD.

This variance is given for comparison.

The values of the parameter a, calculated from the
NBD and from the LSD are also given.

Discussion. The investigation of the zeros. led to the

discovery that for data which is already well fitted by
a simple NBD the LSD gives an equally good fit. In other
words the distribution consists of a block of non-buyers
together with the positive part of the distribution which
is well fitted by the l-parameter LSD.

This is quite reasonable as the method of estimating
the parameters of the NBD is bound to give a positive (i.e.
non-zero) k regardless of whether the truncated distribu-

tion is LSD or not. In practice fitting a NBD always
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gives a very small k (< 0.15) and in many cases k is so
small as to be indistinguishable from zero.

Thus the data can be described by the one-parameter
I.SD together with one other parameter, the proportion of
buyers, b, or the proportion of non-buyers. But whereas
the NBD model mixes its two parameters with relatively
complex formulae, for example b = 1 - (l+a)"k, the LSD
model gives two parameters which are in the main indepen-
dent and which are immediately meaningful. Thus the ILSD
parameter a is linked simply with w by the relation

w = rate of buying per buyer

il

mean of ILSD

a

= In(1+a)



TABLE Tc

Data from Table 1lb

Number of Observed 18D NED

units bought fr

0 1612 1612 1612
1 164 165.5 156.9
2 71 72 T4
3 47 hi.7 4y 2
4 28 27.4 29.2
5 17 19.1 20.3
6 12 14 14,7
7 12 10.4 10.8
8 5 7.9 8.2
9 7 5.6 6.2
10 6 4.y 4.8
11-12 6 6.2 6.7
13-14 5 4.1 4.1
15-16 0 2.7 2.7
17-20 3 3.1 2.8
o4+ 5 3.9 2.4
Mean 0.63%6 0.63%6 0.63%6
Variance  4.50 4,53 4,18

Parameters q =0.869 k=0.115
aL=6.62 aN=5.53
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TABLE 74
Brand Cy 26 Weeks
Number of Observed Logarithmic NED
units bought fr distribution

0 1568 1568 1568

1 182 175 163.6

2 69 78 79.5

3 Ly 46 48.8

b 33 31 33.1

5 24 22 23.7

6 21 14.6 17.5

7 15 11.2 13.3

8 7 8.7 10.3

S 5 7.0 8.1

10 1 5.6 - 6.4

11-12 6 8.2 9.2

13-14 4 5.5 6.0

- 15-16 6 3.7 k.o

17-18 4 2.6 2.7

19-20 > 1.8 1.8

24+ 8 8.1 4.3
Mean 0.79 0.7S 0.79
Variance 6.63 6.57 6.01
Parameters g =0.89 ay =6,59

a. =8.1 k =0.12

‘L
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TABLE Te
Brand @ 1% weeks
r Observed | ISD NED
r
0 1886 1886 1886
1 53 53 51.6
2 18 o2 22,2
3 11 12.2 12.5
4 9 7.6 7.9
5 7 5.1 5.3
6 2 3.5 3.7
7 4 2.5 2.7
8 4 1.9 1.9
9 4 1.4 1.4
10 1 1.0 1.1
11+ 1 3.8 3.7
Mean 0.16 0.16 0.16
Variance 0.85 0.98 0.98

Parameters g=0.835 k=0.

O O
0 W

aL=5-05 aN=L|-.

The estimate of k for the NBD is so small that the

two theoretical distributions are virtually identical.
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TABLE T7f
Brand P, 8 weeks
This is an example of a 'heavy-buying' distribution.
The variance discrepancy does get slightly worse for the

LSD but otherwise there is again virtually no difference

between the two distributions

r Observed I.SD NED
r
0 396 396 396
1 o2 28.7  27.3
2 9 1%.2 13.3
3 8 8.1 8.4
4 7 5.6 5.9
5 5 4.2 4.3
6 7 2.2 3.3
(4 7 2.5 2.6
8 7 2.1 2.1
9-10 0 2.9 3.1
11-12 1 2.0 2.2
13-14 0 1.5 1.5
15-16 il 1.1 1.1
17+ 1 2.9 2.7
Mean 0.75 0.75 0.75
Variance 5,47 8.45 8.18

Parameters gq=0.918 k =0.08.
a - =
N 11.2 qW' 9.89.
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CHAPTER 8

Prediction Formulae for the LSD Model

8.1 Introduction

The LSD model is a special case of the general model
proposed in Section 4.6, with k = O and T finite. Thus
we already have a whole range of prediction formulae
which, as we have already seen, do not involve the para-
meters p or T of the general model.

Thus given only the average rate of buying per buyer,
w, and the proportion of buyers, b, we can calculate all
the repeat buying formulaes. We shall see that the predic-
tions which result are very close to those obtained by
fitting a NBD.

The only snag of the LSD model is that the LSD para-
meter, q or a, cannot be expressed explicitly in terms of
w. DBut tables for g are readily available. 1In any case
the NBD also involves the estimation of a paratmer, a or
k, which cannot be obtained explicitly and for which

tables aré not available.

8.2. Repeat-buying formulae

These have all been derived in Section 4.6. The LSD
model is the special case when T is finite and k = O.

As before we divide the population into % subgroups,
namely, repeat buyers,‘lost buyers (lapsed buyers), new

buyers and non-buyers.
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Then we have
b, = Proportion of repeat buyers
1n(1+2a.)

o tl4a 7
In(1l+a)

= b[1 + %%%%%%%]

b, = Proportion of lost buyers

= b[l -

1+2a
lrl(l+a )

In(l+a)

In{l+
~b lngl—q;

Both the quantities bR/b and bL/b are functions of

il

g (or a) only and hence functions of w only.

TABLE 8a
w  Pr/b br /b
2 0.57 0.4%
Y 0.7% 0.27
&  0.77 0.23
8 0.8 0.20
10 0.81 0.19

15 0.84 0.16

We also have
- m, = mean of quantity bought by lost buyers

oo
1+a

m(l - q)

where m = mean of whole distribution.
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m, = mean of guantity bought by repeat buyers

ma
1+a

=mq

Thus wy = rate of buying/lost buyer

m
- L/bL

m(l - q)
= b 1n(1+g;
In{l-qg

1 a

To{TraY

rate of buying/repeat buyer

Wy,

=
]

m
= "R/by

qm
11’1(1+ )]
In{l-q

b1+

B qw
- In(l+
1+ 1n§1-q§
m m ‘
Thus L/m, R/m, Wps W

hence functions of w only.

are all functions of q only and
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TABLE 8b

2 2.53 1.33
4 4,95 1.40
6 7.39 1.42
8 10.3 1.425
10 12,0  1.43

15 17.5 1.435

Example of predictions The repeat buying prediction for

the data given in Table 1b were made by fitting both a
NBD and a ILSD.
TABLE 8¢
b W b b W w

L R L R
NBD 0.194 3.3 .055 .13%9 1.43 4.0

ILSD 0.194% 3.3 .058 .13 1.42 4.1

The predictions are within 5°/o0 of each other.

8.3. Predictions over a longer periocd

Assume that we know the values of w and b in a
certain time-period. Then in a time-period ¢ times as

long we have the following results from Section 4.6.

Yo _ cln(l+a
w  1In(l+ca)

where W, = rate of buying per buyer in the longer period.
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Py 1n(1tca)

c-—
and b~ In(l+a)

where bC = market penetration in the longer period.

Procedure. Given w for a particular period, look up the
corresponding value of g in the tables. Hence

a = q/(1l-q).

Henoe w = weln(1+a)
: c In{i+ca
CWh
w

o]

Hence bC

Note that this is much simpler than the corresponding
method for the NBD,

Example of predictions. These predictions are made for

the data given in Table 1b by both the NBD and LSD

methods. Predictions are made for 52 and 104 weeks.
TABLE 8d

LSD NBD LSD NBD
Time Period

W 1 b b
26 weeks 3.3 3.3 0,194 0.194
52 weeks 5.0 5.25 0.256 0.244
104 weeks 8.1 8.5 0.316 0.302

Even over a time-period four times as long the

predictions still differ by less than 5%/0.
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Practical results. We have already seen in Section 2.3

that the repeat-buying prédictions for the NBD model
generally give good unbiased results. As the LSD predic-
tions are so similar we expect them to give equally good

results and this in fact proves to be the case.

8.4, Investigation of lost buyers

This investigation was carried out to see 1f the
repeat-buying formulae work, even when the variance dis-
crepancy occurs, because nearly all the lost buyers buy
only one or two units in the first periocd. Thus if
nearly all the other buyers are repeat buyers, so long
as the frequency distribution gives a good fit for the
1's and 2's any other discrepancy will not affect the
repeat-buying formulae.

We first consider the conditional distribution of
purchases in period II for peoplée who bought r units
in period I. This is a NBD with mean (k+r)/?3%g) and
exponent (k+r).

We consider the LSD case with k = O and(i%g) = q.
Our population is the buyers in the first period.

(1+q)~"

i

Thus Prob(0 units in IT ir units in I)

f(r) say.

TABLE 8e

W q £(1) £(2) £(3)

2 0.71 0.58 0.34 0.20
10 0.97 0.51 0.25 0.13
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But Prob (r units in I) = - IE%TTET a /.

P(O units in II and r units in I)

P(0 1r) P(r)

-r r 1
(14q)”" q /r . - Ta(1=g)

= g(r) say.
TABLE 8f

W a g(1) g(2) g(3)

2 0.71 0.33 0.07 0.019
5 0.93 0.18 0.044 0.014

10 0.97 0.142 0.035 0.012

Now bN/b = - %ﬁ%%%%%
When w = 10 PN/b = 0.194

But g(1) + g(2) = 0.177.

Thus 910/0 of the lost buyers bought 1 or 2 units
(when w = 10).

But it is not true to suppose that the remaining
90/0 of the lost buyers have a negligible effect, for
we find that the average . rate of buying for g(1) and g(2)
is given by

142 + 235
145 ¥ 35 = 1:2

The average rate of buying for all lost buyers is
much higher, namely, 1.43. Thus the remaining 9°/0

account for 240/0 of the purchases by lost buyers.
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The average rate of buying for g(1), g(2) and g(3)

142 + 2635 + 3 k12
152 + 35 + 12

is = 1,31

Thus although 1t is mosf important that the fre-
quency distribution should fit the 1's and 2's it should
also fit the next few values reasonably well. But for
values of r above about 4 any discrepancies in the fit
will have a negligible effect on the repeat-buying

formulae.

Approximation to the distribuftion of lost buyers

A useful approximation to the distribution of lost
buyers can be obtained from the equation
Prob(0 units in IT r units in I) = (1+q)” ¥
IFFor reasonably large values of w, g is close to 1

and then

(1+q)7T > (;)r as w A @
2

TABLE 8el

L
1+qg

. 582

. 525
.514

oo O &=

. 509
10 . 507

15 - 503
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T%E is close to % for value; of w bigger than about
4. Then a good approximation to the distribution of
lost (or new) buyers can be obtained by taking a propor-
tion (%)r of the people who bought r units in the first
of two equal periods to be lost buyers. (r = 1,2,....).

Conversely a proportion 1 - (%)r of the people who
bought r units in the first of two equal time-periods
also buys at least one unit in the second period.

For small values of w, the proportion of repeat

buyers is somewhat smaller.

8.5. Cumulative tables

The LSD model also allows us to calculate the propor-
tion of units which are purchased by people who buy j or

more units.

©
N ; . _ o0
This proportion = EL_ rf, s . y
r=] ro
©
ST p = Q- /r
Z- " In(1-q)
_ _r=]
=N
< - r
‘%;i r in(1-q) q /r
= qY/(1-q)
a/(1-q)
j-1
== q"]

This is a very useful formula. For example, it is
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known thaf a few heavy purchasers often account for a
high proportion of purchases. But it had previously not
been possible to guantify this fact. It also enables us,
for example, to calculate the 50o/o point &, that is the
vélue of j above which half the purchases are made. This

will vary with g and hence with w.

We have q‘]"l ='%
ln%
J:m*‘l

Thus we can calculate j for various values of w.

TABLE Sg
Table of 50?/0 points

J a W

2 0.5 1.44
% 0.707 1.96
4 0.793 2.41
5 0.841 2.87
6 0.87 3.28
8 0.917 4.5
10 0.933 5.1
20 0.966 8.4
30 0.977 11.5

Example of a cumulative freguency distribution

The table compares the proportion of purchases which

are made by people who buy {(r+l) or more units and qr.
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Qmeawulk).

The data is for brand k over 24 weeksh Some typical

values for r are shown.

TABLE 8h

ro s O

1 - 0.937 0.93%2
2 0,859 0.869
3 0.804 0.310
4 0.757 0.755
6 0.658 0.656
8 0.565 0.570
12 0.440 0.430
16 0.3%20 ‘ 0.325
24 0,199 0.185
32 0.115 0.105
48 0.051 0.03%4

The fit of this cumulative frequency distribution
is very good indeed,

When systematic discrepancies occur as in 'heavy-
buying' data then they will show up clearly in the cumu-
lative table. One cannot of course expect the cumulative
table to fit this kind of data.

Lastly it is worth pointing out that explicit
cunulative formulae cannot be obtained for the NBD model
as it is not possible to express the necessary summations

in a closed form.
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\

8.6. The standard error of w

We often wish to compare rates of buying in two
different time-periods in order, for example, to see 1if
the purchasing behaviour is stationary.

Let w Wy be the rates of buylng per buyer in two

l}
successive equal time-~periods. If the same panel of

consumers is used then the two rates of buying will be
correlated.

Let my, My be the mean rates of buying in the two
m, + m
periods over the whole sample and let m = —l~§—~g

Let b.,, b, be the proportion of buyers in the two

1 e b, + b,
periods and let b = ———

m m
Then w, = 1/bl W, = 2/b2
Let w = m/b.
Now the same panel of consumers is used and the
purchases of any consumer in the two time-periods are

indeperdent Poisson variates.

//m +m S
Thus standard error (ml—mg) = y/
where n = sample size.

We also have
Standard error (b 2) = standard error (bL— N}
/b +Db

L "N
o

where bL proportion of lost buyers

b

N proportion of new buyers

I
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In addition we require the covariance of (m1 - m2)

and (bl - b,) for the same panel.

5)
Now as the same panel of consumers is used we know
that any change in the number of buyers 1s caused by new or
lost buyers whose average rates of buying we denote by Wy

and Wy respectively.
Given a change (bl - bg) in the proportion of buyers
we have

-m. = Db WL + bR le - bN WN - bR WR2

where bR = proportion repeat buyers
Wpy = rate of buying per repeat buyer in first period
Woo = rate of buying per repeat buyer in second period.

Then if b1 > bg

) + (b w. + b

- my = bp(w by) wp + by (wp-vy)

My 2 "R17"R2
[The proof is exactly the same 1if 52 > b1 except that Wy
replaces wy in the second term on the right]

Then g(m - (b - bg)

{!

é;[bR(le—ng) + (bl—bg)wL + by (w )J(b bg)

= éé(bl - by)%wp

as (w WR1~ RE) and (wL—wN) are uncorrelated with (bl-bg)‘

In addition Wy, is uncorrelated with bl—b2 and

é; (bl—bg) = 0.
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Thus
E;(nﬁ-mz)(bl—bz) = wL.Var(bl-b ).

Let Pub be the correlation coefficient between
(ml—mL) and (bl—bz) for the same panel.

Then p_, » S.E. (ml—mg) x S.E.(bl—bg)

= Cov (ml—mL)(bl—bg)

|

é%(ml’mz)(bl‘bz)
. _ W Var(bl—bg)
mb S.E.(ml-mz},S,E.(bl—bg)

_ . Pty
- 'L 2n.

We now replace WL’bL and bN by the estimates obtained

from the LSD model. Thus the resulting correlation is

obtained by averaging over fixed panels.

—2b log(1
V/ log(lgg)mﬂiI

SoqT . -
=‘/£%ETZEE) since w = m/b =(1—q?log(l—QT

The table shows the correlation coefficient for various

p . =7
mb log(1l+q)

values of w.

These figures are intuitively acceptable as one ex-

pects the correlation to decrease as the number of purchases

by loyal buyers, and hence w, increases.



TABLE 81
W Pb
2 0.61
4 0.37
6 0.28
8 0.21

10 0.19

15 0.15

Consider the variance of m/b:

If mx,bX are true values of m,b we have

m/b = o /o% 4 (m-n®) I + (p-p®) I
b b2

+ higher order terms.

var(m/) = ¥ (@ - £(@)e

w8 - o

O!Var(m) N Var(b)m™2 _ 2Cov(m,b)m:
pre pEr pE>

For the same sample of consumers

Var(m) = % Var(ml—mg) = m/n
Var(b) = % Var(b,-b,) = "L/n.
Cov(m,b) = E (m-m™) (b=-b™)

1 ®, X kS
= 1 & (g -nenomy) (b, -bReE o)

[As §;(ml—mx)(b*-b2) =0 ='€i(mx—m2)(b2~bx)
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L Cov(m,-m,){(b,-b.)

2 1 2 1 72

bL"WL
n

. ® X
The sample estimates of m ,b are m,b.

b. m2 b, w.m
var(@) = -+ — - 2 LR
b n bn b"n

Let N = nb = Average number of buyers.

w9 Pra Prp YL W
Then Var(w) = = + -2 T—

N N

Hence standard error of (wl—wg) is

\// 2w + 2w? PL/b - 4 PrL/b YL 7

N

This expression was calculated for various values
of w. Note that bL/b‘and wy have already been calculated

for various values of w.

TABLE 8]
W S.E. of (wl—we))é/ﬁ
2 1.7
4 3.2
6 h,5
8 5.9
10 6.9

15 9.4
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8.7 Alternative ways of deriving the repeat-buying formulae

As for the NBD model, the repeat-buying formulae can
be derived in two completely different ways from the method
used in Section 4.5. The first method uses the bivariate
LSD and the second method considers the problem in terms

of interpurchase times.

£5% The bivariate LSD

The repeat-buying formulae can be derived in a similar
way to that given in Section 2.5 for the bivariate NBD.
We again note that the conditional distribution in a cer-
tain time-period for those people who bought r units in a
previous equal time-period is NBD with mean ra/(l+a) and
exponent r (since k = 0). For the particular case when
r = 0, the people who buy for the first time in the second
period form an LSD in this second period (since the expon-
ent r will be zero). In other words the new and lost
buyers form an LSD in their respective time-periods
Consider the buyers in some period T. We use the

lemmas given in Section 2.5.
B . | ln(l-un)
For the LSD g(ujT) = —IHTE:EET

in(1- 9o/ (u +T-1))
g(ul’l) = ln(l—qT)

in(1-97/T - Op = O ul/T)
ln(l—qT)
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=a ln (1 - o1 3o ) + B
= Qp(1-T)+T

where a,pB do not contain uy -

This is the marginal distribution of Xl in a unit

time-period (excluding any non-buyers). It is LSD with
o _
-T

parameter q, = — .
1 qTZl T)+T
Putting a, = ql/(lfql) and 8 = qp/(1-qg)

= Ta

we have & 1

T
Then the conditional distribution of buyers in

period T given that X, = O has p.g.f.

2
u
a (-2-l 52)

(w X, = 0) = me—
Qe = = T

u
In(1l - qegi) In(1-q,)
In{l-95) 7 95(1-9/2)
q
2
In(1- 5 ul)

1in(1- qe/ul)

Thus the lost buyers follow an LSD with parameter

Q®“ 4

2 1+EI
Let us consider the proportion, B, of people who
buy in at least one of two successive equal period. The
bivarlate distribution of purchases in the two periods

is given by
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u.+u
In(l - q, } 2)
h@ﬁ_u2,1,1)= T qgf
Then bL = Proportion of lost buyers in whole population

o0
= B kz_ coeff. of u r

1
r=1
®  q
S 2y 1
;i~. (if) ™
ln ( 1"Q.2 )
a
2
_ In (1 - Er)
ln(lfqg)

But B=b + b

b + by In(1 - q2)

bL ln(; - q2/2)
n{(l + q.) 2q
- - 1 . R
giving br/b = In(1l =~ ql) sinee qs = 1+aq

Now we have Jjust seen that the lost buyers follow
an LSD with parameter q1/(1+ql).

Thus the mean of the distribution of lost buyers

ql/(l+ql)
il

1
l+q1 ln(l+ql)

9,

T In(T+q]) T L

A1l the other formulae follow from this result.
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- £3%  Interpurchase times

These formulae can be derived in a similar way to
that given in Section 2.%4.

The LSD model assumes that the population is split
into 'never-buyers' and potential buyers whose long-run
average rates of buying A, follow the truncated Gamma

distribution.

Thus the mean times, y, between purchases follow

the distribution given by
1

- —

dF=keay—§';dy 0K y<T

[put y = %]

We suppose that the population makes Poisson pur-
chases in any one time-period. Thus the waiting time
till the first purchase is exponential. Hence, as in
Section 2.4, it can be shown that the distribution of
times to first purchases is given by

L+t
- @l

e
(2 + 1)

k dt 0<Ct<T

Consider two time-periods (0,t) (t,2t).
b

Proportion of buyers

Proportion of people who buy for the first time

in (0,%)



Thus

[APut

£

i

il

br)
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Proportion of lost buyers
Proportion of new buyers
Proportion of people who buy for the first

time in (%t,2%t)
14t
t - (

T
1
- (Ere)

+

(
Ew @
;+

t

at

2 )
xs

t

t

i
™
I

2%+ =

dz “ for T large

G
N |

ot
+
m |

[0

W |

dz

N |




Standardise times so that ¢t = 1

1+2a
ln(l+a )

b . .
Then L/b = ~Talira)" as obtained previously.

Consider a person whose mean time between purchases

Then P(j purchases in (O,t»:: i

T

Je
P(j purchases in (0,t) and O purchases in(t,?t))

_ o2ty (§)3/3:

-2 £y J
| e~28/¥(&y3
P(j 0)j = -
2: (3 and 0) (5-1)7
21
_t -ty
y
mL = mean amount bought by lost buyers

mean amount bought by new buyers

T
- j Y 2 P(j and ofy)xjgxP(y)dy
o) ﬁ J>1 -
T 1
= g % e'"t/y ke 2Y 4% dy.
O
Ty
Similarly m = j )kZ P(jly) « j} P(y)day
o) j>1
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®

1,
giving o= when T is large
v

+

1
a
Standardise times so that ¢t = 1.

Then "L/m = as obtained previously.

1+a

Prediction over longer periods

Consider the two periods (0,%t), (0,ct).
Let b, = Proportion of buyers in (0,ct)
= Proportion of people who buy for the first time
in (0,ct).
1
t (a+t)

T
dat

- (2 +t)

e
Then bc/b = g
J
o

for T large

n
N

Put = + ¢ ~
a

dt

If
o,
]
O [l e
N Ji
Q,
N
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Standardise times so that ¢ = 1.

Po/o = %EE% : 23) as previously obtained.

Let wc be the average rate of buying over the longer
period. In this period ¢ times as many units are bought
as in the unit period.

W, bc = cwb

W 7 _ ¢ In(1+a
C/W—-Cb/bc—-m—-'-%

l+ca



o~
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CHAPTER O

An Application to a non-Stationary Situation

2.1 Introduction

As an example of the effectiveness of the LSD model,
we shall examine a case study in which a household product
experienced a large increase in sales from one period to
the following egqual period. This increase was not shared
by other brands in the same field so that the sales increase
was not a seasonal phenomenon. In fact the increase was
associated with a sales promotion campaign which was
offered to consumers of that particular brand in the second
period. The data is taken from Goodhaé@ and Ehrenberg
(1966) who analyse it by using the bivariate NBD. We shall
see that the LSD repeat buying formulae give the results
mich more simply.

The following information was taken from a represen-
tative sample of the population:-

a) which consumers bought the brand in each period
b) how much each consumer bought in each period.

We shall see if the increase in sales has been caused
by repeat-buyers buying more, by getting more new buyers
than expected or by a combination of both effects.

The repeat buying formulae which have developed in
the previous chapter give us a 'norm' by which to judge

the sales data. For one of the problems of analysing data
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is that even when the average rate of buying is constant
and the data is stationary, there are still substantial
changes from one period to the next. Some buyers buy
only invthe first period (lost buyers), and some only in

the second period (new buyers).

9.2. The data

The following data was available from a sample size
1000,

Period I. 78 buyers bought 320 packets giving

rate of buying per buyer = w = 4.1

Also proportion of buyers = b = .078.

Fit a LSD to the frequency distribution of purchases
in the usual way by equating observed and tTheoretical
means. This gives g = 0.906.

Period II. 'The sales show the effect of the promotion
campaign.

146 buyers bought 570 packets giving

rate of buying per buyer = 3.9.

These buyers can be splif info two groups: new and
repeat buyers.

80 buyers bought for the first time in the second
period so that bN = .080. The number of packets bought
by new buyers = 188 so that wy = 2.3.

66 buyers bought in both periods so that by = . 066 .

The number of packets bought by the repeat buyers in the
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second period was 382 so that the fate of buying per

repeat buyers in the second period = 5.8.

9.%3. Repeat buying predictions

Under stationary conditions we can make the following
predictions about what would have happened without the
sales campaign. This will enable us to see how the sales
campaign has affected the different classes of buyers.

All the repeat buying predictions are simple functions

of w or q (see Section 8.2).

Thus
wr = rate of buying per repeat buyer = 5.2
wy = rate of buying per new buyer = 1.4

bp = proportion of repeat buyers = .056

'bN = proportion of new buyers = .022,

Thus the predicted number of packets bought by repeat
buyers = WR bR 1000
= 290
The predicted number of packets bought by new buyers

b 1000

= Wy Py

= 30

9.4, Results

The four quantities by, Wy, by and WR are all higher

than predicted. The results are given in Table Q.1.
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TABLE 9.1
Number of packets
Buyers bought in second period
1lst period lst period
Observed
0 + 0 +
2nd 0 842 12 0 0
period + 80 66 188 382
Predicted
2nd 0 900 22 0 0
period + 22 56 30 290

The difference between the observed and predicted number
of packets bought by new buyers
188 - 30

= 158
The difference between the observed and predicted number
of packets bought by repeat buyers

= 382 - 290

= 92
The total increase in sales = 250 packets.
Thus the trend among repeat buyers accounts for 360/0 of
the total sales effect of this particular promotion camp-

algn.
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CHAPTER 10

THE DISTRIBUTION OF OCCASIONS AND 'WEEKS'

10,1, The distribution of Occasions

In this chapter we will investigate two new models
for consumer purchasing behaviour by considering the
distribution of occasions and 'weeks', rather than the
distribution of packets or purchases.

The marketing man is interested not only in how
much a consumer buys but also on how many occasions these
purchases are made. For example he may want to know if
his product is habitually bought at a rate of just one
packet per purchasing occasion or if a substantial amount
is.bought at more than one packet per occasion.

In addition there are some products, of which petrol
is the obvious example, which give data of a different
type from that previously considered. Petrol is bought
in any amount with 4 gallons a particularly popular choice.
But it -is also possible to buy £1 worth, which means
that it is not possible to construct a frequency distri-
bution in the usual way by recording the number of people
who bought 0,1,2,.... gallons in a particular time-pericd.

Instead we can construct the frequency distribution
of the number of people who bought petrol on exactly

0,1,2,.... Occasions in a particular time-period. The
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NBD was fitted to several petrol distributions of this
type and a reasonable fit was obtained in all cases.

A typical fit for brand S is shown in table 10a. In

this particular case there is a variance discrepancy of
240/0 and over all the petrol distributions there was

an average variance discrepancy of about 200/0. The
existence of a variance discrepancy is typical of heavily
bought products. However the diserepancy was muchb
smaller than might have been expected for such a heavily
bought prodﬁct.

Thus the possibility arose that a better fit might
be obtained with other brands by fitting the NBD to
occasions rather than packets. This did not prove to
be the case.

For example for brand P, over 24 weeks (see table

3
10b) the distribution of packets gave a variance dis-
crepancy of 480/0 while the distribution of occasions
gave a variance discrepancy of 500/0. The two distri-~
butions are very similar indeed and the shelving effect
occurs in both. This similarity means that there 1s no
advantage in fitting the NBD to occasions rather than
packets. However we have obtained the useful information

that most purchases are made at the rate of just one

packet per purchasing occasion,
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Table 10a

Brand: S, Distribution of Occasions

Time Period: U4 weeks

Number of Occasions Frequencies
on which a purchase
was made Observed NBD
0 493 ho2.9
1 100 110.4
2 55 57.2
3 29 35.2
4 2 23.4
5 15 16.2
6 20 11.6
7 11 8.4
8 10 6.2
8-~-12 11 12.7
13-16 2 4.3
17+ 1 2.5
Variance 5,06 6.27
N = 781 m = 1,186
a = 4,29

k = 0,276
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Table 10D

Brand: P3

Time-Period : 24 weeks

Frequencies
Packets Occasions
No Observed NBD Observed NED
0 285 284.9 285 285.0
1 53 47.6 52 48.1
2 19 26.4 21 26.7
3 12 18.1 13 18.2
) 12 13,6 11 13.7
5 9 10.7 10 10.7
6 12 8.7 10 8.7
7 7.2 8 T3
8 6.1 7 6.1
9-12 a1 17.4 12 17.3
13-16 12 10.4 12 10.4
17-20 17 6.8 17 6.6
21-24 14 4,6 16 4.6
25+ 2 11.6 0 10.9
Variance 35.61 52,71 33,04 4o,54
m= 2,97 m= 2.89
a = 16.77 a = 16.1%4
k = 0;18 k = 0,179
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10.2. The distribution of 'Weeks'

In the distribution of occasions for brand P3 over
24 weeks (see table 10b), we notice that no one buys on
more than 24 occasions and the possibility arose that
all such distributions vanish for values above the length
of the time-period in weeks. If this were so then we
could try to fit a new type of distribution, which would
vanish naturally above this point, unlike the artifi-
cially curtailed NBD which was considered in Chapter 4._
Unfortunately the distribution of brand P over 24 weeks
(see table 10c) shows that some people do buy some pro-
ducts on more than one occasion per weék on average.
Thus the distribution must be modified further to enable
a distribution defined on a finite set of integers to be
fitted. Because of this attention was drawn to the
distribution of 'weeks'.

In a time-period of, say, n weeks we can construct
the frequency distribution

fo’ fl,...,fn

where f.‘r = number.of people 1n the sample who buy
at least one packet in r out of n weeks.
An example of such a distribution for brand P is
given in table 10c where it can be compared with the
distributions of occasions and packets for the same

product. The distribution of 'weeks' is of course only
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TABLE 10c¢

Brand: P all sizes combined

Time Period: 24 weeks

Observed frequencies

No Packets Occasions Weeks
0 202 202 . 202
1 45 48 48
2 22 23 24
3 15 14 15
L 16 14 14
5 11 12 10
6 13 11 12
7 10 13 13
8 8 7 7
9 10 11 11

10 3 5 L

11-12 11 10 10

13-14 11 9 11

15-16 11 12 12

17-18 13 14 15

19-20 11 13 14

21-22 19 15 16
23-24 24 31 36
25-28 6 >
29-32 3 L
33-36 1 2
37-40 0 0
hi-4y 5 1
45+ 4 0
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defined for integers less than or equal to the number
of weeks in the time-period.

It is worth emphasizing that the distribution of
'weeks' is of no direct interest to the marketing man,
so far as is known. Our interest in the subject is
motivated by a deslre to gain insight into the discre-

pancies from the NBD model which is of prime importance.

10,%3. The Beta Binomial model

We now look for a model which will describe consumer
purchasing behaviour in terms of the distribution of
'weeks'. We cannot of course consider the NBD model
as the NBD is defined for all positive integers.

The NBD model depends on the Poisson and Gamma
distributions. It is well known that the Poisson dis-
tribution can be obtained as the limit of the Binomial
distribution, by letting p —> O and n - oo, Similarly
the Gamma distribution can be obtained as the limit of
the Beta distribution. The Beta distribution can be

expressed as

a-1 -
dF P (_l‘p)b . dp 0
B(a,Db)

Il

i
o
S

-

221 (1 - B%T b=l 4y
= 0<z< (b-1)

(b-1)% B(a,Db)

(putting 2z = p(b-1))



a-1 -z
> z € as b = oo
(b‘l)aB(a;b)
1
b
B(a,b) = S p?t (1-p)°"t ap

Thus the Binomial and Beta distributions are the
discrete analogues of the Poisson and Gamma distributions,
sO we will consider the following compound Binomial model
for the distribution of 'weeks':-

(i) The probability that a given consumer will

buy in a particular week is a constant, p,
which is independent of previous purchases.
Thus in a time-period of n weeks, the number
of weeks in which the consumer buys at least
one packet will follow a Binomial distribution
with parameters n,p.

(ii) The probability, p, varies from consumer to
to consumer, the distribution being a Beta

distribution given by

£(p) = ﬁ%jy p*t (1-p)°7* 0O<pgl
a > 0. b>O0,
Then the overall distribution of 'weeks' will follow
the Beta-Binomial distribution where
P(r) = proportion of population who buy on exactly

r out of n weeks.
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1
= j (2) p° (1-p)"7F £(p)ap
(8]

_ B(a+r,ntb-r)
~ (n+1) B(a,b) B(afl,n+l-r)

The Beta-Binomial distribution

The properties of the Beta-Binomial distribution
(hereafter called the BB distribution) have been discussed
by Raiffa and Schlaifer (1961) and Ishii and Hayakawa
(1960). It is interesting to note that the BB distri-
bution can also be derived from an inverse sampling model
in a similar way to the NBD, by considering inverse
sampling from a finite population. In this case the
BB distribution is called the Negative Hypergeometric
distribution.

Note that if we were to consider Beta Binomial models
for shorter time-periods such as days, we would find :
that the Beta Binomial model tends to the NBD model as
the time-period tends to zero. Thus the BB distribution
is the discrete analogue of the NBD.

However while we suspect that purchases in succes-
sive weeks may be independent to a close approximation,
it is reasonable to expect that purchases in succes-
sive days will be negatively correlated as once a purchase
has been made the consumer is unlikely to reguire any

more of that product for several days. This latter
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argument may be the reason for the discrepancies from
the NBD model which have been noted and which have led
us to consider the Beta-Binomial model.

For durable goods, such as furniture, it would
probably be necessary to consider a much longer time-
period as the unit to ensure that purchases in successive
periods are approximately independent. However in this
thesis we are only conqerned with non-durable goods.

The mean of the BB distribution is given by
na/(a+b) and the variance by nab (n+a+b)/(a+b)® (1+a+b).
A general discussion of methods of fitting the compound
Binomial distribution is given by Wetherill (1957) follow-
ing Vagholkar.

The standard method of estimating a and b is by the

method of moments. This gives

A _zm (% - m(n-m))
nsZ - m{(n-m)
_ A
- m
where m = observed mean
s® = observed variance.

Shenton (1950) shows that the method of moments has

high efficiency.



Fitting by zeros and mean

Another method of fitting the BB distribution is
to use the mean and the proportion of zeros. This is
analogous to the standard method of fitting the NED.

Find initial estimates of a and b (say 2, bl) by
the method of moments. Then compare

b, (b;+1)... (b +n-1)

P.(0) = :
1 (a1+bi)... (a1+b1+n—1)

with the observed proportion of zeros, hamely fo/N.
If Pl(O) > fo/N"chen increase a and b in such a
Way that their ratio stays constant. A suitable increase

is obtained by putting a, = 1.la1 and b2 = 1‘lb1'

aqy (n-m)
Then if b, = —
1 m
a, (n-m)
we have b2 =

so that theoretical and observed means are still equal.

P, b1 '
Moreover we have =
an + b2 al + bl
b2 + k bl + k ( )
but < : fOl" k = 1,2,-0.0 n"l
a2+b2+ k a1+bl+ k

so that PQ(O) < Pl(o)

Thus the change in a,b has altered P(0) in the
desired direction.

Conversely if P_.(0) < fb/N then decrease a and b

1 (

so that a, = O.9a1 and b

5 = O.9b1.

2
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Put Z

L = P (0) - Lo/m

. v . ¢
and_ ‘22 = P'Q(O) - o/N,

Interpolate linearly for 23 = 0 to find a3, b3 i.e.

z. (a,-a.)
choose ay = 2 + '%Z “g }1
1 ™2
a, b
Hence b, = 21
3 aq

These estimates of a and b will usually be suffi-

ciently accurate.

The fit of the BB distribution

A large ﬁumber of distributions was fitted by a BB
distribution and a good fit was obﬁained in all cases,
whether the distribution was fitted by moments or by
zeros, When the distribution was fitted by zeros the
variance is a convenient measure of the goodness of fit.
No systematic variance discrepancy was found for heavily
bought products. Not many distributions were available
for products which were not heavily bought, but the BB
distribution seemed to fit equally well.

The estimates of the parameter a were always less
than 1 and often close to zero. The value of the para-
meter b, on the other hand, varied considerably from
about 0.2 to over 10. However for the same brand oOver

different time-periods the estimates were reasonably
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constant as required by the model, for under staionary
conditions the Beta distribution for p is the same for
all time-periods. Thus for brand P over 24 weeks we find
a = 0,19 and b = 0.59. This time-period was divided into
six lY-week periods and estimates of a and be were found
for each of these periods. The estimates of a varied

| between 0.123 and 0.185 with an average of 0,152 while
the estimates for b varied between 0.436 and 0.519 with
an average of 0.45,

The distributions can be divided into two categories.
Firstly those which give a fitted BB distribution, which
decreases monotonically with the number of weeks (as in
table 10d) and secondly those which give a fitted BB
distribution which is U-shaped (as in table 10e). The
significant point is that the BB distribution fits both
Ltypes of distribution,

The two types of distribution can be distinguished
by the value of the parameter b,

For we have

P(r+1) _ (at+r) (n-r)
P(r) =~ {(n+b-r-1)(1+r)

so that when r = n-1 we have

P(n) _ (a+n-1)
P(n-1)  bxn °

Now a is always less than 1 so that for reasonably

large n we find
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Thus a U-shaped distribution with P(n) > P(n-1)
must have b < 1. Conversely those distributions which

are monotonically decreasing will have b > 1,

If the distribution is U-shaped, with O < a < 1,

and 0 < b < 1, then the smallest value in the distribu-

tion can be found by considering Pér;ll as a continuous

function of r.
P(r +1)

' 0
If we set = 1
Plro)

. _ b-1
we find ro =n + E:E

Thus the smallest value in the distribution occurs

when r is the smallest integer greater than L

Compound Binomial distributions in readership analysis

Hyett (1958) and Metheringham (1964) have noted the
application of the BB distribution to readership studies.
If an advertisement is inserted in several issues of the
same publication, then the total number of people who
will see the advertisement will be considerably greater
than the number of people who see just one issue of the
publication. One method of describing this situation is
to suppose that the proportion of people who see exactly
r out of n issues will follow a BB distribution.

A related compound Binomial model, which is also
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Table 10d

Distribution of 'weeks'
Brand: all brands in product field Y combined

Time Period: 24 weeks.

Frequencies
No, of BB fitted BB fitted
Weeks Qoserved by zeros by moments
0 278 278.1 308.1
1 112 124.8 120.3
2 ol 87.6 81.7
3 65 68.9 63.2
4 70 56.9 51.9
5 59 48.4 41
6 51 41.8 38.2
7 - 40 36.5 33.5
8 33 32,1 29.7
9 32 28.4 26.5
10 18 25.2 23.7
11-12 26 42,0 4o, 4
13-14 18 32.7 32.6
15-16 19 25.0 26,0
17-18 16 18.4 20,2
19-20 11 12.6 14,9
21-p2 9 7.6 10.0
23-24 19 3.0 4.8
Variance 30.3 27.6 30.3
a = 0,468 a = 0,403
b = 2,034 b = 1.749
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Table 10e

Distribution of ‘'Weeks'
Brand: P.all sizes combined

Time Period: 4 weeks

Frequencies
No. of BB fitted
weeks : Observed by zeros
0 291 291.0
1 52 54.5
2 45 37.8
3 29 35.9
4 57 54.8
Variance 2.04 2.03%
a = 0,165
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applicable to readership’analysis, has been considered
by Quenouille (1964). He assumes that the underlying
distribution of p is given by '

£(p) = (1-b)(a+1)p® 0<p<1

a > -1,
Prob (p=1) = b

where p is the probability that a member of the popula-
tion will see a particular issue of the publication, and
b is the proportion of regular readers. This model gives
somewhat similar results to those derived from a BB model

where the BB parameter, b, is less than 1.

10,4, Predictions from the BB model

Proportion of buyers in a longer period

The BB model, like the NBD model, enables us to make
predictions about how the sample willlbehave in a longer
time-period. Under stationary conditions, the Beta dis-
tribution of p is the same for all time periods, so that
the parameters a,b stay constant.

Let b = proportion of buyers in the sampled period

of n weeks

and B

proportion of buyers in a longer period of
kn weeks
where k is some constant.

B (a, n + b)

Now b = 1 = 103 B(a,b) B(1,n+1)

B (a, kn + b)
~ {kn+1) B(a,b) B(1,kn+1).

B=1
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B(a,n+b){kn+b-1)... {n+b)
But B(a,kn+b) = (knta+b-1)... (nt+a+tb)
and B(1,kn+1) = B(l’n?ig+§?f%?”%g;é5 (n+1)
1 - b (kn+tatb-1)... (n+a+b)
1 -B " (kn + b-1)... (n+b)

Hence a prediction of B can be made.

Repeat buying formulae

;n addition we can also derive repeat-buying formulae
for the BB model. In two successive egual time-~periods
of n weeks, the population can be divided into 4 sub-
groups; namely lost, new, repeat and non-buyers.

TLet B = proportion of buyers in the combined period

Then b,, = B - Db

N
(1-b) {1 (2n + b-1)... (n + D) ]

I

- (2n+atb-1)... (ntatb)

Hence a prediction of bN or bL can be made.

We can also calculate guantities such as the mean
number of weeks in which a purchase was made by a lost
buyer averaged over the whole population. This will
correspond to my, Or My in the NBD model and will be de-
noted by mLX. We expect mLX to be slightly smaller than
my .

A person who buys with probability p during any one

week will buy on np weeks on average in the second of
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the two periods, regardless of the fact that he bought
on séy J weeks in the first period, because the number
of weeks in which an individual buys in 2 successive
time-periods are independent Binomial variates,

In particular if we consider thosevpeople who did

not buy in the first period we obtain

1
mLx = .5 f(p) (1-p)" np dp
’ O

a (l_p)b+n—l dp

1

- n 1

- { Bla,b) P
O

_ n B(at+l, ntb)
B(a,b)

_ n B(a+l, n+b-1) (nt+b-1)
- B(a,b) - (nt+a+tb)

B 1, ~1
But P(1) = (n£?§3(a?z?3(%,n)

B(a+l, ntb-1) x n
B(a,b)

% _ (n+b-1) P(1)
(n+atb)

For n large and a < 1 we notice that

x [ad —
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10.5. The connection between the BB distribution and

the NBD

The position now is that whereas the distribution
of ‘'weeks' is always well fitted by a BB distribution,
we also know that there may be a discrepancy from the
NBD for the distribution of packets. Given the distri-
bution of 'weeks' in a time-period of c¢ weeks, we would
iike to find the conditions on the BB parameters such
that the frequency distribution of packets will be well
fitted by a NBD.

Suppose that a member of the population has prob-
ability, p, of buying in one week, and that he buys A
packets on average in the time-period. Then p and A

are related by
_ e—A/o

e—}\/o d

p:

O

dp A

Thus the underlying distributlon for p which is

given by

_ 1 a-1 b-1
dF = 5135y P (1-p) dp

transforms to give the following underlying distribution

for A:- , Ab
1 ~A/cya-1 T ¢ 1
dFl = B(a,b) (1-e ) e o dA.

We can compare this with the underlying Gamma
distribution for A which is postulated to derive the

NBD. This is
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-A
aF = (}_)k e /aN 7\.1{—1

di
2 ay r_.(k)

The parameter a of the NBD is given the suffix N
to distinguish it from the BB parameter.

For A small we have

-Ae

1l -e ~ Aec
that df‘ P — (A)a‘—l i %9 aA
50 & 1~ e¢.B(a,b) ‘c € :

Thus the part of the distribution where A is small
is of Gamma type and as a large proportion of the popu-
lation usually has a small value of A it 1s reasonable
to compare the coefficients of A and e ™ in dF, and dF,.

We find (k-1) corresponds to (a-1)

and (l—) corresponds to b/c.

This correspondence is borne out in practice for
we find that botg k and a are usually close to zero,
and we also know that ay and ¢ are directly proportional
to the length of.the time-period.

For A large we have

-A/c

—> 1 as A = @
-Ab/c

1 - e

and dF., is dominated by e

1
Thus dFl will no longer be of the same Gamma type,

and presuming that dFl and dF2 are similar for small
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values Of A, then the relative difference between them

-Ab/c tends to zero

will increase with A. However if e
fairly rapidly with A, then only a very small part of
the distribution will be affected by this difference and
the two distributions will be in close agreement. On

the other hand if emhb/c

tends to zero rather slowly
with A, then the discrepancy will become important.

For a fixed value of ¢, the larger b is, the quicker
e_}‘"b/C will tend to zero. Thus for 'large' values of
b we expect the NBD to fit the distribution of packets
reasonably well, but for 'small' vaiues of b we expect
to find a discrepancy. The value of b below which a
discrepancy occurs can be found by an inspection of
distributions with values of b over a wide range. The
value turns out to be somewhere between 1 and 2.

This result is intuitively acceptable because it
appears harder to stretch out a U-shaped distribution
into a NBD than a monotonically decreasing distribution.

For example products.D and P are heavily bought but
the BB distribution gives a good fit to the distribution
of 'weeks' (see tables 10e, f, g), and we find b < 1 for
both products indicating a U-shaped distribution.

For 6 distributions of 'weeks' each over a 4-week
period we find

Brand D - average b = 0,70

Brand P - average b = 0.45,
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Because b is small we are not surprised that the
NBD does not give a good fit to the corresponding dis-
tribution of packets. A large variance discrepancy occurs
for both brands and brand P, which has the smaller value
of b, also has the larger variance discrepancy.

The NBD variance discrepancy is not confined to
products with a U-shaped distribution of 'weeks', though
these give the largest discrepancies, for a value of b
which is slightly greater than 1 may still be associated

with a small NBD variance discrepancy.

10.6. The shelving effect

One important result of the analysis of the distri-
bution of 'weeks' was a deeper understanding of the
shelving effect.

We have already seen several distributions of
'weeks' in which a similar effect is evident. For ex-
ample in table 10 d the observed frequencies are rela-
tively steady between 11 and 24 weeks, the latter period
being the upper limit of the distribution.

It is easy to choose the BB parameters so that the
BB distribution is fairly constant over a high proportion
of the distribution. For example if b = 1 we have

P(x+1 _ (at+x) (n-x)
P(x) = (n-x) (1+x)

a+x
1+x

T 1 for a < 1 and x fairly large.
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TABLE 107
Distribution of ‘'weelks'

Brand: D, all sizes combined

Time Period: 4 weeks.

Period 1
Frequencies
No, of BB fitted
Weeks Observed by moments by zeros
0 390 390.2 390.0
1 38 37.8 %8.1
2 21 20.7 20.7
3 14 14.3 14,3
4 11 10.9 10.9
Variance O0.77 0.77 0.77
a = 0,097 a = 0,098
b = 1,014 b = 1.023
Period II
Frequencies
No., of BB fitted
Weeks Observed by moments by zeros
0 399 403.6 399.0
1 36 26.3 31.0
2 14 15.8 17.7
3 6 13.1 13.5
4 19 15.2 12.7
Variance 0.84 0.84 0.79
a = 0,060 a = 0,074

b = 0,655 b = 0.815
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Table 10g

Distribution of weeks
Brand: D.all sizes combined

Time Period: 24 weeks

Frequencies
No. of BB fitted
weeks Observed by moments by zeros
0 » L 350.7 342.,0
1 23 26.4 29.4
2 25 14.3 16.0
> 15 10,0 11.2
h 11 T.7 8.6
5-6 13 11.8 13.1
7-8 1 9.1 10.0
9-10 o 7.4 8.0
11-12 3 6.4 6.8
13-14 10 . 5.7 6.0
15-16 5 5.1 5.3
17-18 1 4.9 4.9
19-20 2 4.6 4.5
21-22 8 b7 4,2
23-24 6 5.4 4.2
Variance 24.18 24,18 22.7
a = 0,075 a = 0.086
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Thus if n = 12 and a = 0.5 we have

P(12)

?éTl—)_ = 0.9
P(6) _
E) = o_.92

so that the distribution is fairly steady between X = 5
and x = 12. This effect is similar to the shelving effect
described in Chapter 3.

Alternatively it is easy to choose the BB parameters
so that the distribution is U-shaped and has a peak at the
number of weeks in the time-period. This effect is simi-
lar to the bunching effect described in Chapter 3,

The importance of these two effects, which are very
like the shelving and bunching effects, was realised when
further analysis showed that the distribution of-'weeks’
and packets was very similar. In other words few people
- buy more than one packet in any one week.

An example is given in Table 10c¢ for brand P over
24 weeks, where the two distributions look very similar.
This is confirmed by calculating

Grand total of packets bought = 3271

Grand total of weeks in which a purchase was

made = 2784,
The difference is 18°/o.
For brand D, which is not so heavily bought, the

similarity is even more striking, and we find a difference
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of only 130/0 over a 24 week period. Brands which give
b > 1 will have an even smaller difference.

Thus when the distribution of 'weeks' exhibits a
shelving effect, the distribution of packets, being very
similar, will also exhilbit a shelving effect. As the
distribution of 'weeks' is always well fitted by a BB
distribution it follows that the BB model 1s more exact
than the NBD model. Thus the average long-run rates of
buying would better be described by the distribution

derived in section 10.5, namely
Ab

aFy = grapy (1 - e“}‘/c)a_l e © 2 an.

However it was not practical to use this distribu-
tion to build a model to describe the distribution of
packets, because the integrals which resulted could not
be evaluated 1in a workable form,

Thus, as we are primarily interested in the distri-
bution of packets, we will continue to use the NBD (or
LSD) model as an aid to description and prediction. At
the same time we must recognize that 1t is only a useful
approximation and that the shelving effect will oceur
when the corresponding distribution of 'weeks' gives a

BB distribution with a value of b less than or slightly

greater than 1.
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APPENDIX

o hn e B At s s

Tables of freguency distributions

Brand: Pl

Time Period: 24 weeks

Frequencies
Number of R -
i Fitted
Units bought
\ Observed NED
0 438 438.0
1 9 9.6
e o 4.7
5 L 3.1
4 2 2.%
be 3 5.4
9.2 > 3.0
1%-16 3 1.8
17-2 o) 1.3
20~2 4 b 0.9
25+ - 2 3.9
Variance 18.8 ol .6
N = 74 m=0.73
a = 32.53

k = 0.02
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Brand: Pg
Time Period: 12 weeks.
Number of Frequenciles

Units Bought Observed Fitted
NBD

0 395 395.0

1 21 23.3

o 7 11.7

> 5 7.6

4 4 5.5

5 1 b2

5 7 3.4

7 2 2.8

8 7 2.3

S z 2.0

10 & 1.7

12 7 1.3
1%-16 2 3.8
17-20 0 2.4
21l-24 5 1.6
25+ 1 k.0
Variance 12.21 20.66

N = 474 m= 1.10
a = 17.72

k

0.06
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Brand: P
h
Time Period: 8 weeks.
Number of Frequencieg
. Fitted
Units Bought Observed NED
0 435 4325.0
1 19 17.7
2 5 \ 7.7
> > 4.3
4 2 2.7
5 2 1.8
6 3 1.%
7 4 0.9
8 1 0.7
O+ 0 2.0
Variance 1.04 1.32
N = 474 m = 0.23
a = 4,70

k = 0.05



Brand: P

Time Period:

24 weeks.

- 208 -

Number of Frequencies
Units Bought Obser;;a Fi;ggd )
0 403 403.0
1 = - 24,9
2 11 | 12.1
3 2 7.6
B 3 5.%
5-8 S 11.1
9-12 ! 4.8
13-15 2 2.3
17-20 4 1.3
21-24 2 0.7
25+ 0 1.1
Variance 7.55 7.0
N = 474 m = 0.67
a = 9.90
k = 0.07
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Brand: P
ran 3

Time Period: 4 weeks

No., of Frequencies
Units bought  Observed NBD
0 387 387.0
1 31 b2
2 26 18.5
> 13 9.6
. 14 5.5
2 2 3.3
6 0 2.1
7 0 1.3
8 1 0.9
o+ 0 1.7
Variance 1.08 1.50
m= 0.41
a = 2.62

kK = 0.16
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Brand: k

Time Pericd: 24 weeks

Frequencies
Number of
Units bought Observed ISD NED
0 1501 1500,9 1501,0
1 80 86.3 82.5
2 50 4o.2 4O .4
3 2% 25.0 25.6
4 15 17.5 18,1
5-6 24 23.1 24,2
7-8 | 16 4.7 15.4
9-12 15 17.3 18.1
13-16 11 9.4 9.7
17-20 6 - 5.5 5.6
21-24 2 3.4 3.4
25+ 7 6.5 6.0
Variance 10.62 10.18 9.63
N = 1750 ' g = 0.932 m= 0,73
ar= 13.72  k = 0,059

ay = 12.24
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