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Abstract. 

The behaviour of the coefficients of poly- 

nomials pn(z) = z + a2z2  + 	+ anzn and 

µn(z) = + biz + 	+ bnzn  univalent in Izi < 1, 

0 < Izi < 1 respectively, has received surprisingly 

little attention. After a survey of those significant 

facts known about pn  and µn, bounds are established 

for an, bn, an-1'  bn_i; several interesting results 

are obtained for special types of univalent polynomials 

when an and bn are maximal. The correct order of 

growth with n of alp  (for fixed k), where the 

Bieberbach conjecture is assumed to hold for k, is 

established. The coefficient regions for p3, p4,  µ2, µ3  

are then studied, with complete results for p3. 

We conclude with the proof of a special case of 

a conjecture of L. Ilieff, some results from the theory 

of apolar polynomials, and several examples connected 

with a theorem of S. Bernstein. 

All published papers with significant results on 

univalent polynomials appear in the list of references, 

markee. 
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1. 

Chapter 1. 	Preliminaries. 

'A day's work - getting started'. 

- Gaelic proverb 

1. 	Introduction. 

The class of polynomials univalent in lz I < 1 

has been studied relatively little, and surprisingly 

few significant results are known concerning them. 

Let us, first of all, introduce some of the 

notation which we shall use. 

Definition 1.1.1. A function f z is  univalent in a 

domain D if it is regular, sin le-valued and does not 

take any value more  than once in D. 

Definition 1.1.2. A function f(z) is said to belong  

to the class S if it is of the form: 

co  

f(z) = z + l anzn  

n . 2 

and is regular and univalent in zt < 1. 

Definition 1.1.3. A function f(z) is said to belong 

     

     

to the class )  if it is of the form: 

f(z) = 
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and is regular and univalent in 0 < lz I< 1. 

Definition 1.1.4. A polynomial pn(z) of the form: 

ion(z) = z + a2z2 + 	anz
n 

which is univalent in Id < 1 is said to belong to the 

class P. The Pn+1 contains Pn, since pn(z) is not 

necessaIlLY91MMIE....2YQL1111- 

Definition 1.1.5. A function µn(z) of the form: 

µn(z) = 1 — + a1z + 	 + a zn  

which is univalent in 0 < 1z  < 1 is said to be a 

meromorphic univalent polynomial of degree n, belonging  

to the class N. . 

The following two theorems give important results 

concerning infinite sequences of polynomials in Pn and 

Mn  respectively. 
orp 

Theorem 1.1.1[21] Let (in(z)) 1  be a uniformly  

convergent sequence of functions regular and univalent  

in a domain DJ  and let f(z) be the limit function of  

the sequence. Then f(z) is either constant or univalent 

in D. 

Proof. By the Weierstrass Limit Theorem, f(z) is 

regular in D. If f(z) is not univalent in D, there 

are two points z1 and z2 at which w = f(z) takes the 
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same value w0. Describe, with z1  and z2  as centres, 

two circles which lie in D, do not overlap, and such 

that f(z) - w0 does not vanish on either circumference 

(this is possible unless f(z) is a constant). 

	

Let m be the lower bound of I
f(z) 	w 	

on the 

two circumferences. Then we can choose n so large that 

i
f(z) - fn(z) # < m on the two circumferences. Hence, 

by Rouche's theorem, the function: 

f (z) - w0 = (f(z) - wo  ) + (f n(z) - f(z) 

	

has as many zeros in the circles as f(z) 	wo1  i.e. at 

least two. Hence fn(z) is not univalent, contrary to 

hypothesis. This proves the theorem. 

In a similar way, we may prove: 
OD 

Theorem 1.1.2. Let (in(z))1 
 be a sequence of 

functions of  the  form: 

CD 

fn(z) = ÷ 

 

1 anzn 

     

O 

regular and univalent in 0 < 1 z 1 < 1, and uniformly 

convergent to a function f(z) in any compact subset 

of 0 < 1z 1 < 1. Then f(z) is regular and univalent  

in 0 < lz 1 < 1. 

In view of Theorem 1.1.1, any function univalent 
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in lz i< 1 may be approximated arbitrarily closely by a 

sequence of polynomials univalent in Izi < 1 (for 

example, renormalisations of partial sums of the original 

function). Consequently, it might be expected that many 

important results for the class S could be obtained as 

the limiting cases of the corresponding results for Pn. 

By Theorem 1.1.2, a similar relation holds between 	I  

and N. 

Unfortunately, few of the usual techniques for 

dealing with univalent functions are of any value when 

we consider polynomials in Pn  or Mn. For example, the 

application of the bilinear transformation to a poly-

nomial in Pn  or Mn does not generally yield another 

such polynomial. In addition, if pn(z) 	Pn  and 

1-1.1,1(z)E Mn, then pn(z2)2  and µn(z2)2  do not generally 

belong to the classes Pn  and Mn. 

However, if pn(z) and µn(z) are odd polynomials 

in Pn  and Mn, then pn(z-)-e: Pn  and 

µ (z) 
µn(22)2  - 2 [ 	 - 1- ] 	E Mn . No other z 	z2  z=0 

really useful variation for Pn or Mn is known at 

present. 

Furthermore, in dealing with S it is often help- 

ful to guess that the Koebe function --I-- may be 
(1-z)2 
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extremal for whatever property we are investigating. 

Unfortunately, there are no such convenient 'possible 

extremals' known in Pn.  

Consequently, it is necessary to develop new 

techniques for dealing with the classes Pn  and Mn  

in order to obtain other than the simplest results. 

Thus the consideration of the special subclasses 

Pn  of S and Mn  of 	does not appear to simplify 

the task of establishing such things as, for example, 

coefficients and maximum modulus estimates, but only 

makes it more difficult. This means that, in general, 

we do not expect to solve problems for S or ) 	by 

using the solutions of the corresponding problems for 

Pn  or Mn. As a result, we will study the classes Pn 

and M11   mainly for their own independent interest. 

2. 	The Dieudonne  Criterion. 

A fundamental result concerning univalent 

functions may be expressed in the following form: 

Theorem 1.2.1.[21] A function w= f z regular on a 

domain containing a simple  closed rectifiable curve C  

and its interior Dy  is univalent on D if it is univalent  

on C. 



Proof. The curve C corresponds to a curve C° in the 

w-plane. C° is closed, since f(z) is single-valued; 

and it has no double points, since f(z) does not take 

any value twice on C. Let DI be the region enclosed by 

at .  

Clearly f(z) takes in D values other than those 

on C, say at zo. Then if 6,0  denotes the variation 

round C, 

1 
27c c  arg 	f(z) 	f(zo) ] 

is equal to the number of zeros of f(z) 	f(zo) 

in D, by the Argument Principle. It is therefore a 

positive integer, since there is at least one such zero. 

But it is also equal to: 

C2 arg (w 	w0) 

where wo = f(z0); and this is either 0, if wo 
is outside 

02 , or +1, if wo  is inside C 2 , the sign depending on 

the direction in which C 2  is described. Hence it is 

equal to 1. Hence wo  lies inside C', C' is described 

in the positive direction, and f(z) takes the value 

wo just once in D. Thus D is mapped univalently onto DI. 

Let us consider the radius of univalency R of 

polynomials: 

tic 
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pn(z) = z + a2z
2 	anz

n . 

Then R is characterised, in view of Theorem 1.2.1, by 

the fact that, on the circumference C a [ f z 1= It], 

the polynomial pn(z) assumes the same value a (say) 

at at least two points, distinct or coincident, and 

that no concentric circumference of smaller radius 

possesses this property. 

The second part of this remark is obvious. To 

establish the first, it is sufficient to notice that, 

if for each point z1  on C, the root z2  of the equation 

pn(z) - pn(zi) = 0 nearest to C always remains exterior 

to C, the same is true for the circumference Izi = R + E 

(by continuity arguments) for a sufficiently small 

positive number E . Thus pn(z) is then univalent 

in f z f <R+E,which contradicts the definition of R. 

Let x be the midpoint of the smaller arc on C 

between the points z1  and z2, and let z, and z2  subtend 

an angle 29 at the origin. Then if, without loss of 

generality, we put z1  = xe 	z2  = xe-z9  we may write 

the equation pn(zi) = pn(z2) in the form: 

pgx,8) = 1 + a2x sin2Q  -6=u- + a3x sin38  + 	+ anxn-1 si nnG  sin8 sinQ 

= 0. 
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This equation in x is the associated equation of the 

polynomial pn(z). 

We have, in fact, established the following: 

Theorem 1.2.2. (Dieudonn'e Criterion).[5] The radius 

of univalency of the polynomial pn(z) = z + a2z2  + 

+ anz
n  is equal to the radius of the largest circle, 

centre the origin, which contains no root of the associ-

ated equation of pn(z): 

g si 	sinnQ
n  (x,Q) = 1 + a2x sinQ

n2Q 	. .. 	anx  n-1 	= 0 sin 

as 8 varies  from 0 to 2 . 

n(z)'S Pn Consequently, P 	iff no root of the 

associated equation has modulus less than one for any 

such Q. 

We can, similarly, establish the following: 

Theorem 1.2.3. (Dieudonne Criterion). The radius  of 

1 univalency of the",olynomial µn(z) = 7  + alz + 	+ anzn 

is equal to the radius of the largest circle centre the  

origin, which contains no root of the associated equation 

of µn(z): 

. a  x 	
sing 

n+1 sinnQ 	xn sin(n-1)Q  pgx,Q) 	+ an-1 	sing 	+ a x2 - 1 = 0 1 , 

7C 

as Q varies from 0 to 2 . 



Consequently, µn(z) E Mn  iff no root of the 

associated equation has modulus less than one for any 

such Q. 

Note. It is sufficient to consider almost all Q in 

[0, 	for if id(x,Q) = 0 has no zeros in I x  I < 1  

outside a set of Q of measure zero (for example), 

it has no zeros in 'xi< 1 for any Q in [0, i] 

since the zeros of a polynomial are continuous functions 

of its coefficients. 

3. 	A miscellany  of results concerning  
polynomials. 

First of all, we wish to establish a special 

case of the well-known Cohn Rule [14], which plays 

a fundamental role in most of our work. 

Theorem 1.3.1. Suppose that IC01 > 0n I 	Then the 

polynomial: 

f(x) = Co + Clx + ....... + Cnx
n 

(of degree n) has no zeros in lx l< 1 iff neither  

has the  221,1.122.r12121: 

fl(x) = 70(C0+Cix + . . + Cnxn)- lx-n+7/1-1x  + . 	... + Uo  xn) ' 

n-1  

(3.1) 	= 	 ,(U )
k=0 ° 

Ck - cn 7n-k)xk 
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(of degree n-11. 

Proof. Let us associate with f(x) the polynomial: 

fNx) = xn  f (i) = Coxn u  xn-1 	+ 7n 

= o 

whose zeros are the inverses of the zeros of f(x) in 

the circle I x I = 1. Thus any zero of f(x) on 

I x I= 1 is also a zero of f3(x); and if f(x) has 

p zeros in x > 1, then I (x) has p zeros in 

I
x l< 1. Also: 

n  

	

f-lc-(ei'g) = Uo 	I 	I (e1Q  - liii) 
j=1 

n  

	

Co 	eing(-1)n  = 	
1 	

( -ing 
71 72 — 711 j=1 

= einQ 	/ -iON f e 	9 

and so: 

1 I

f(eig ) 

 

Consequently: 

I
Cn  e(x) I < J Co  f(x) 1 _(on x I = 1). 
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Hence, by Rouches theorem, Co  f(x) has as many zeros 

in Ix! < 1 as has Co  f(x) - Cnf3c'(x) = fl(x). Thus 

the theorem is proved. 

Theorem 1.3.1. appears to be the most powerful 

available method for extracting information concerning 

Pn and Mn  from the Dieudonne-  Criterion, as we shall 

see in Chapters 2 and 3. 

Finally, we give a new proof of the well-known 

Bernstein Theorem for polynomials in the unit circle 

This depends one co 
' Lemma.[21] Let F(z) =/\ ,akzk  be regular in I z < 1, 

k=0 
n-1 

Sn(z) akz
k9  and a-(z) = 2-- > 	sk(z) . 

k- 	k=0 	 n 	n 

then I F(z) 1 <M in lz i < 1 iff 1 ail(z) 	<M 

for all n and Id .‘ 1. 	zl  
Theorem 1.3.3[3] Let p() = ) 	j akzk  . Then: 

k----0 

(3.9) M(l, pill, < n M(l, pn) 

with equality iff p(z) = anzn. 

Proof. Let q( z) = znp(1/z) = 	an_kz 

k=0 

Then M(l,p) = M(1,q). We now apply the lemma to 

the (Fejer) means a-  of q(z). Clearly: 
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n-1  
n-k 	 zk (3n-1(z) = 	a 	 n n-k 

k=0 

1 n 
= H pi(1/z)9 

and so: M(1,p1 ) = n Iv1(1,on_i) 

Applying the lemma, we obtain: 

M(1,130 ) < n M(l,q) 

n M(1,p). 

It is easy to determine the unique extremal p(z); 
is 

for equality holds in the lemma iff 

4. 	Starlike  and close-to-convex functions.  

We will find it convenient to discuss two special 

subclasses of S and 	consisting of functions 

which satisfy certain analytic and geometric conditions. 

Definition 1.4.1.[8] A domain D in the w-plane is 

said to be starlike with respect to a fixed point 0  

in D,  if for any point P in D  the straight line  

segment OP also lies in D. 

If f(z) E S, and maps 1z I< 1 onto a starlike 

domain with respect to w = 0, we shall call f(z) 

starlike univalent. It is not difficult to establish 



the following: 
CD  

Theorem 1.4.1.[8]. Let f(z) = z + ) 	akzk. Then 
	 k-2 	 

f(z) is starlike univalent in lz l< 1 iff: 

Re (zf'(z)/f(z)) > 0 	(Izi<l). 

co 

Theorem 1.4.2.[8]. Let f(z) = z + 57-11 akz
k  be 

k=2 

starlike univalent in lz I < 1. Then 18..1 < n (n > 2), 
z  

with equality iff f (,z) = (i_az  2 where lal = 1. 

We now define a class of functions which con- 

tains starlike functions as a special subclass. 
co 

Definition 1.4.2.[12]. Let f(z) = z + 	akz
k. Then 

f(z) is a  close-to-convex function in  
k=2 
Izi < 1 iff it 

maps each circle 1z 1= r < 1 (z = reig) onto a simple  

closed curve whose unit tan•ent vector T either 

rotates in an anticlockwise direction so g  increases, 

or else rotates clockwise in such a manner that the  

variation of arg T over all arcs of  I z 1= r exceeds  

-7c, as g increases. 

We may express this analytically in the following 

form: 

Theorem 1.4.3.[12]. Let f(z) = z + 	akz
k. Then 

	 k=2 
f(z) is close-to-convex in Izi < 1 iff there exists  
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a function g(z) starlike univalent in E z l < 1 such 

that: 

Re (zf'(z)/g(z)) > 0 
	(1z <1). 

Note. If f(z) is close-to-convex in 1z I <1, and 

g(z) is a starlike univalent function in Izl <1 such 

that Re(zf'(z)/g(z)) > 0, we shall say that 

f(z) E.; OTC(g(z)). 

5. 	Previous results concerning univalent  
polynomials. 

In this section we will give a rapid survey 

of those known results concerning Pn  which will not 

be proved in the following chapters. In view of the 

simplicity of the criterion in Theorem 1.4.1, many 

of these results deal with univalent starlike poly- 

co 

Theorem 1.5.1[1]. Let f(z) = z + ) 	anz
n. Then 

f(z) is starlike univalent in 	zl < 1 if 
co 

n=2 
	:nlan I < 1. 

Proof. It is sufficient to establish that arg -f(relQ) 

is a non-decreasing function of Q, for 0 < r < 1. 

Here: 

nomials. 

n=2 



O 
ag arg f(reig) 

a 
a8 

a)  

arg (Feig  + 	lan rn  e ing)  
n=2 

15. 

> G  arg(reig) - - OG 

co  
> 1 	 n Ian' 

n=2 

la 	() n  arg/rnein  

> 0 . 

Hence the theorem is proved. 

We now give three theorems for univalent poly-

nomials, which are easily generalised to multivalent 

polynomials. The method gives best possible results, 

and is of very wide application. 	n  

)Theorem 1.5.2.[16]. Let f(z) = z + 	 akZkg+1  
	 k-1 	 

and let  a. (1 < i < n) be the zeros of the polynomial: 

(5.1) 
n  

+ 	 akz
k 0 

k=1 
• 

Let S be the smallest positive zero of fo 1(x), where: 

(5.2) 	fo(x) = x(xq 	fai l ) 	(xq - !an t ). 



arg f(z) 

_ p2  - p cos r‘ 
p cos*- 1 yd 	p2  -2p cos 	+ 1 

tan - p sin. 	d 

16. 

Then the polynomial f(z) is starlike univalent in 

tz I < S. 

Proof. Let us put: 

n 
f  (5-3) 	= arg an  + 8 + > i  arg(zcl - a,k), 

k=1 
iQ where z = re 	(r < S) and study the variation of 

1 as G increases from 0 to 21c. We also put: 

q_ Z - CLk  U , u = pei/ 

 

= arg (u-1) . 

   

Consequently: 

arg(zq  - a,k ) = argak  + arg(u-1), and: 

= qg 	argak 	dgc = qd8 . 

It is easy to show that: 

and so: 

A < d+ < p 
1-p - d 	- l+p • 

Hence, for 	< r 	rk = 1 ak  I , we have: 

(5.4) < 
q. - r rk- 

4-g  [arg(zq-ak)] < qr  
-rk+rq  
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If also rq < min rk in (5.3) and (5.4), we may at 
k 

once deduce that: 

    

qrq 

rk- 
1 

   

 

k=1 

 

  

n  
	 171:1 
k=1 rk-rq 

= r 1 
r 

  

   

rfo'(r) > 
fo(r) 	

0 9 

 

for r < S. Hence 	is an increasing function of g 

for r < S. 

Now suppose that lal < S. Then arg[f(z) - f(a)] 

increases from 0 to 27c as 8 increases from 0 to 

arc. Consequently f(z) - f(a) has only one zero z=a 

in the circle lz I < S. Thus we have proved that f(z) 

is starlike univalent in lz I< S. 

Using arguments similar to the above, we may 

establish: 

Theorem 1.5.3[17]. Let: 

f(z) = z(z-al) 	....(z-an)
P,"
( 	" 1 	) m  'z-61' ' 	m 9 

where p. and -11 are both positive, rk  = aki (1<k<n), 

I (l<s<m), and g = min (rk,ts). Let S be the 
k,s 	  

is 
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smallest positive zero of fo t(x), where: 

fo(x) = x(x-r1 )
111  ...(x-rn) 	(x+t1) 	...(x+tm)

111 . 

Then f(z) is starlike univalent in Id < min(g,S). 

As an application of this theorem, we may deduce: 

Theorem 1.5.4. Let f(z) = z/(z-51)(z-32), where 

rr 
 1321= 1. Then f(z) is starlike univalent 

in I 	I< 1. 

Furthermore, similar arguments may be used to 

establish the following two well-known theorems. 

Theorem 1.5.5.[2]. Let p(z) be a polynomial of 

degree n with no zeros in I 1< 1. If a is 

real and non-zero, then the function 	f(z) = z[p(z)]a/n  

= 1; 

is starlike univalentiz I< 1 	if 	-2 S a < 0, 

and in 	IzI < 
1 	1 

	

Il+at 	otherwise. 	If 	-2 < a < 0, 

f(z) 	has the minimum radius of starlikeness and 

univalent 	iff 	-D z) 	has at least one zero on 	lz 

otherwise the minimum is attained iff all zeros of 

p(z) lie atone point on lz I = 1. 

Theorem  l.5.6.[2]. Let p(z) be a polynomial of degree 

(m + n), mn / 0, and let f(z) 	m 

zeros of_21.z) lie in the annulus 0 < d < lz 4 < D, 

and the remaining n zeros  in I zI  D, the minimum 

M2121-i•- of starlikeness and 	 leric 
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, where Yo is the greater root of the equation: 

     

n(d-D)y2  + (d(1-n) - D(l+m))y - d = 0. 

This minimum is attained iff m zeros of p(z lie at 

one point on  z=d,a toneoint2nLzd_-T.J2, 

where  the concentration points are collinear with the 

origin, and  on the same  side  of it. 

Most of the significant results concerning the 

coefficients of polynomials in Pn  are consequences 

of the work of DieudonnL The estimates established 

in his thesis have not been improved in the last thirty 

years, and so it is of value to quote them in full. 
n 

Theorem 1.5.7.[5]. 

pn(z) is starlike univalent in Izi < R, where R 

is the positive root of the equation: 

1 	k=2 ak xk-1 0 . 

This follows at once from Theorem 1.2.2 and Pellet's 

Theorem. 

As an application of the Dieudonne criterion which 

we have already established (Theorem 1.2.2) and a well-

known criterion of Schur [20] that a polynomial has no 

zeros in the unit disc, Dieudonn‘ established: 

	

Theorem 1.5.8.[5]. Let pn(z) = z + ) 	:akzk  E Pn  . 
k=2 -------- 

Let pn(z) = z + 	Then ik_21akzk  . 



rn+li 
Then, if L. 2 	<m<n, 

n- lan l-  + 	+ mlami2  

Consequently Ian' < 1/n , la 

Can-2 1 < 1-98/(n-2). 
yommicalomastimalKs• 

20. 

- (m-1) 2 1am_ I 
	... -1 < 0. 

< W17/(n-1), and 

Using standard inequalities for the coefficients 

of non-negative trigonometric polynomials [7], and the 
Dieudonne criterion, it is easy to establish: 

Theorem 1.5.9.[5]. Let pn(z) = z + 	l ak  zk  4E n 
k=2 

where the 	ak 	are real. 	Then (a2(  < 	2 	< 2, cos(ii7) 

la3  - 11 < 2, and lak  - a1_2  I < 2 	for 	k > 4. 	In 

particular, Zak 	k (2 < k < n). 

Since the last estimate is independent of n, 

we deduce that the well-known Bieberbach conjecture 

holds for functions in S with real coefficients, 

by letting n 	co . 

P2n+1(z)  =   b2k+1 z k-1
2k+1  Theorem 1.5.10.[5]. Let 

Then lb2k+1 J < 2' and  

lb 2k+11 	l b  2k-11 5_ 2 (2 < k < n). 

Using the Dieudonng criterion, and lengthy geometric 

arguments, we may also establish: 

Theorem 1.5.11.[5]. The radius of univalenoy of the 

EF Pn, where the bk  are real. 



a zk  be a 
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trinomial f(z,a) = z + zP + azn  (n>_p) is at most 
-1 

p P-1  if (p-i) does  not divide   and 

1 

Esin(i)/sin(P]P-1  if n - 1 = h(p - 1). The maximum 

is attained in the first case (with a = 0), and in  the 

second case when h is above a certain integer  

h (p) < 12. 

It is clear that polynomials in Pn  are bounded 

functions in lz 1 < 1, and so we might expect to find 

a useful relationship between the classes of bounded 

functions and Pn. In this direction, we have Theorem 

2.3.1., and the following: 

Theorem 1.5.12.[5]. Let f(z) = z + 

re ulcer function in 	z < i, bounded by M. Then f(z) 

is starlike univalent in: 

I z I < PT - IN -11 	. 

Finally, let us state the well-known " area 

principle*,  for functions in 	 . Since Mn  is a 

subset of 22 and lim Mn = 71 , this gives 

us some idea of the magnitude of the coefficients of 

polynomials in Mn  (by Theorem 1.1.1). 
co  

Theorem 1.5.13.[8]. Let f(z) = 	+ 	/ a zn  E 	 	 n  
n=1 



co  

Then 	 n Ian  2  < 1, with equality iff 
n=1 

an  = 0(n>1). 

6. 	Sections of Power Series. 

It is natural to consider whether renormalisa-

tions of sections of some of the standard power series 

in univalent function theory are extremal polynomials 

in Pn 
in any sense. Consequently we consider the 

radii of starlikeness and univalency of sections of 

22. 

= 1, 

z 
1-z and and some associated polynomials. 

1-zn  
Theorem 1.6.1. The partial sums sn(z) = z 177 

of the function 1----z are starlike univalent in 

Izi < 1 	 (1 + o(1)). In general  the coefficient 

of logn 
n cannot be replaced by any smaller constant. 

 

ftwar:Octs1P.6•—  

  

    

Proof. Clearly: 

 

    

z sn'(z) 

FIT sn  

 

(n+l)zn  + nzn+1  

 

(1-z)(1-zn) 

and so, if CA = (z Iz I = 1 Alogn)  
n we have: 

z sn'(z) 

sn (FT 
1 + 0(n1-A) 
1 z on C , and: 

P 
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on CA • 

is starlike univalent 

and sufficiently 

large n. The last part of the result follows since 

snt(z) is real for Imz = 0, sn4(0) = 1, snl(-1 + 1 E-11) < 0 

for sufficiently large n ; consequently snl(z) = 0 at 

some point inside C1  for sufficiently large n. 

In a similar way we may establish: 
n  Theorem 1.6.2. The polynomial z(-117-E- -z ) 	is  sta121.11E 

univalent in Izi < 1 - 2 n 	(1 + o(1)). The constant 

2 cannot be replaced by  any  smaller constant. 

Theorem 1.6.3. The partial sums: 

sn(z) = z + 2z2  + 	+ nzn  = 

 

n+2)zn+2 + (n+l)z  

(1 - z)2  

 

  

of the function --- are  starlike univalent in 
(1-z)' 

loFn 1z I < 1 - 3 	(1 + o(1)). The constant 3 cannot  

be replaced by any smaller constant. 

Proof. The result may be established as in Theorem 1.6.1. 

However we also give a new method of establishing the 

radius of univalency of such polynomials using the 

Dieudonne Criterion. Now: 

z + 2z2  + 	+ nzn  = 	(n+2)zn+2 
	(n+l)zn-1-3  

(1 - z 

Hence, 

inside 

Re
] [ z sn' (z) 

1.4.1, 

CA 	for all 

) 

sn(z) 

A > 1 

sn ( z) 

by Theorem 

and on 
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If we now suppose that x is real, and z = xeig1  we 

have: 

(6.1) x sin g + 2x2  sin 29 + 	+ nxn  sin ng 

= Im 
z-xeig  

xeig-(n+2)xn+2ei(n+2)g+(n+1)xn+3e
i(n+3)g 

(1-xe )' ig p 

  

  

)x e  n+2i(n+2)G 	n+3 . 7  im [xelQ  -(n+2 	+(n+1)xei(n+3)g-1. 

[1-xe-ig-j2  

(1-x2)sin G 	(n+2)sin(n+2)g xn+1 
 

• 

+ (n+l)sin(n+3)g xn+2 + 2(n+2)sin(n+l)g x
n+2 

- (n+2)sin nG xn+3 - 2(n+l)sin(n+2)Q xn+3 

+ (n+l)sin(n+l)g xn+4 

s
ing [(1-x2) + g(x,n,g)], say, where 

F = 11-xeig 14. 

Since (6.1) and (6.2) are identical for real x, they 

are identical also for complex x. Then, by the 

Dieudonne Criterion, the radius of univalency of sn(z) 

is the modulus of the smallest zero of: 

1 + 2x sin 28  	 + nxn-1 sin ng  sing 	sing 
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and so of: (1-x2) + g(x,n,G). 

If C= (x: Fx I= 1 _ 3  lgn),  

- x2  > 
logn 

 
(l+o(1)) and Ig(x,n,8) < 8(1+0(1)) 

for x 4; C. Hence, by Rouchs theorem, (1-10)+g(Xin,G) 
has the same number of zeros in C as (1-x2); i.e. none, 

for sufficiently large n. Finally, it is easy to shoW 

19E 4  for  that sn'(z) has a zero inside (z (= 
1  - A 

 n 
any A < 3 and sufficiently large n, and so the theorem 

is proved. 

We may apply both the above methods to establish: 

Theorem 1.6.4. The polynomial ) 	" 
	11, n-k z1 is star- , 
k=1 
o like univalent in Izi < 1 	2 ln
gn (1 	0(1)) . The 

constant 2 cannot be replaced by any smaller constant, 

The preceding four theorems may be compared with: 

Theorem 1.6.5.[19]. Let sn(z) be the nth  partial 

sum of the function z + akz
k which is starlike  

  

k=2 
univalent in Izi < 1. Then sn(z) is starlike uni- 

valent in Izt < 1 - 3 ipn (1 + o(1)). 

  

Finally, we mention: 

Theorem 1.6.6. The nth partial sum of the function 
1+z has positive  real fart in z j < 1 - 12E1  for 
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lggn  
sufficiently large n. The coefficient of n cannot  

be replaced by any smaller constant. 

This may be proved by the CA-method of Theorem 

1.6.1, and replaces the circle of radius (1 	2  logn)  

of Robertson [19]. 

7. 	Apolar Polynomials. 

( 
Definition 1.7.1. Two polynomials f(z) = ) ti(n) akz 
	  k-O 	 

and g(z) = > 	bkz
k are said to be apolar if: 

k=0 
n 	
(nk) ak bn-k  (-1)k  = 0. '  

k=0 

The importance of apolar polynomials stems from: 

Theorem 1.7.1. (Grace's Theorem)[14]. If f(z) and 

are apolar 1 omials and if one of them has 

all its zeros in a circular region C, then the other 

will have at least one zero in C. 

This may be applied in one direction to give: 

Theorem 1.7.2.[14]. Let A(z'1,z'2, 	z'n) be a 

linear symmetric function in the variables zil,z'2, 

...,Z'  n, and let C be a circular region containing 

the points zl,z2,... 

 

Thenin C there exists at 
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least one point z such that 	 " A(z,z,...,z)=A(zilz-*e 	zn  ). 

Applying Grace,s Theorem in a different direction, 

we may establish: 

Theorem 1.7.3. (SzegO Convolution Theorem).[14] 

f(z) = 	 (1];c) akzk, g(z) = k=0 1  ( ) bk 	and , 

k=0 	  

h(z) = 	akbkzk. If all the zeros of f(z) lie 

k=0 

circular region C, then every zero H of h(z) has  

the form H  = - cG, where c is a suitable point in 

C and G is a zero of g(z). 

This has the following simple corollary: 

Theorem 1.7.4.[14]. Let f(z), g(z), h(z) be  defined, 

   

as in Theorem 1.7.3. If all the zeros of f(z), g(z)  

lie in lz I> R1,R2  respectively, then all zeros of 

h(z) lie in 

A lengthy and complicated application of Theorem 

1.7.3, using polar derivatives, yields: 
n  I Theorem 1.7.5.[14]. Let f(z) = > akz

k 
, 

	J 

k=0 

	

m 1 	, 	n  

g(z) = > 1  bkz-K, and h(z) = >
lc=0

1  ai 	'  .g(k)zk. 
	 k-O 	 

If r1-11 the zeros of f(z), g(z) lie in Izl > R, 
Villail..101171A/MMINI•61 

Re z > 2 respectively, then all the zeros of h(z) lie 
	/maaimanzeillefai 

Let 

n 

in. a 

> R1R2' 
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Chapter 2. Univalent polynomials of arbitrary degree  

'Because it is there' 

- G.E. Mallory. 

1. 	A particular subclass of Pn  and M. 

If the polynomial Pn(z) = 

n  

z 	 zk E P 
k=2' k 

pn'(z) cannot vanish in lz j< 1 (an elementary con-

sequence of univalency). Consequently Ian  1 

Similarly, if µn(z) = +
k E mn, then 

k=l 

I
b'n  I < n. In this section we will consider polynomials 

in Pn  and Mn  where the coefficient of zn  is n. 

Apart from the intrinsic interest of the results which 

we will obtain for such polynomials, we will indicate, 

in the next section, another reason for the importance 

of this particular subclass of Pn and 

n-1 

If 	pn( z ) = z + 	lairzk 	1  + 	zn  E Pn, it is 
k=2 

natural to wonder what conditions on the coefficients 

ak are either necessary or sufficient for the univalency, 

close-to-convexity, or the starlikeness in I z I< 1 of 

Dn(z). By elementary methods, it is clear that the 
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polynomial z + zn  is univalent and starlike in 

l
z I < 1. Some idea of the situation can be obtained 

from the following: 

Theorem 2.1.1. Let pn(z) 	+ 	+ a -l
zn-1  = z + a2z

2 	+ 1  -zn  . 

(a) If pn(z)EE Pn, then: 

(n-k)an_k  = (k+1)7k+1  (0 < k < n-1). 

(b) If (n-k)an_k  = (k+1)&+1, and ak+1 	is 

pn(z)ePn. 

Proof (a) 1  If pn(z)e Pn, and an  = H  , then 

-1 
pn i(z) = 1 + 

 

kakzk-1 Zn-1 must have all its 

   

k=2 

zeros on lzi= 1. Since the zeros of pnl(z) are 

then inverse in lz I = 1, the required condition 

on the coefficients must certainly be satisfied. 

(b) 	The polynomial pn(z)E-7;Pn  iff; 

n-2  
1 + sin(k+1)0 xk 	sin rig x  n-1 = 0 	1 a 	+ k+1 sin 0 	n sin 0 

k=1 

has no roots in lx l< 1, for 0 < G < 7c/2. 

Applying Cohn's Rule to this equation, since 

'sin nG/n sin 0 I < 1 for 0 < 0 < 	, we see 

sufficiently small, 1 < k < n-1, then 
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that pn(z) E Pn  iff: 

0 = 1 
n-2  

(sin.ng)2  \ 	1  ksin(k+l)g  
+ 	x (a  k+1 sing n-k 
k=1 

sinngsin(n-k)9)  
n sin2g 

n-2  
= 1 	(silIng)2 	ik  (sin(k+l)g k+1 sinngsinCn=  

ns ing 	x ak+1 	sing 	n-k* 	sine® k=1 

has no roots in I x < 1 for 0 < 9 < 

Now each coefficient of xr(0 < r < n-2) has a double 

zero at 0=0, and the constant is always positive other- 

wise. Consequently, if all the coefficients of xr  

(1 < r < n-2) are chosen sufficiently small, then 

(by Rouchet theorem) this equation has the same number 

of roots in lx l< 1 as has 1 - (sinn9/nsin9)2  = 0, 

i.e. none. Hence pn(z) e Pn. 

A similar result holds for Mn: 
1 Theorem 2.1.2. Let 1.111(z) = T  + alz + 	+ an_lzn-1 + 1  zn. 

(a) If µn  G. Mn  , then 

(n-k)an_k  = -(k-1)7k_i  (1 < k < n). 

In particular an- = 0. 

(b) If (n-k)an_k  = - (k-1)7k_i  (1 < k < n), and  

ak is chosen sufficiently small (1 < k < n-2)„ then 
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µn(z) 	Yin. 

In addition, it is easy to show that 

is starlike in 0 < I z I < 1, 

In 1915, Alexander [1] showed that the polynomials 

) 	zk  zk  and 	 
k=0 .21777. were both univalent in 

k=1 

lz I < 1. We put this result in a more general setting 

in the following: 

I  Theorem 2.1.3. Let pn(z) = z +>   akzk  and 
	 k=2 	 

n  
Ib2k+1z

2k+1 
q2n+1(z) = z + k=1 

(a) If kale decreases as k increases, then 

pn(z) E CTC (TZE) . 

(b) If (2k+1)b2k+1 decreases as k increases, then 

g2n+1(E CTC 
(--a_). 
1-z- 

Proof We have that: 

n 

Pn  1(z) = 1 + 	i kakz
k-1 , and so: 

k=2 
n-1  

(1-z) pni(z) 	= 1 + (1-2a2)z + > f 
 

i [kak-(k+l)ak+1]zk  

k=2 - nanz . 
n 

n 
(
1 z 

-17)  
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Consequently, since kak is decreasing, we see that: 

n-1  

Re 	((1-z)pn'(z)) > 1 - (1-2a2) 	i[kak  - (k+l)ak+11 
z < 1 	 k=2 

- nan 

= 0. 

This may be written in the form: 

Re 
z p_t(z) 
" 	 z/(1-z) ' 

0 	in 	< 1. 

Consequently, by Theorem 1.4.3, the polynomial pn(z)E CTC 

Similarly qn(z)(E CTC (7E7). 

n  zk 
Corollary. The polynomials) ' E— and 

n2k+1 

)k=0I z  
	 2k+1 

   

k=1 

   

are both univalent and close-to-convex in 1z I < 1. 

This is an immediate deduction from Theorem 2.1.3. 

In spite of Theorems 2.1.1 and 2.1.3, and in 

spite of what might be regarded as a reasonable ex- 

tension of Theorem 2.1.3, the following astounding 

result holds for starlike polynomials in 	Pn 	with 

an = 1/n. 

Theorem 2.1.e. 	Let 	pn(z) = z + a z2 	... + an-1zn-1 
zn
n  + 

EE  Pn. 	Then 	pn(z) is starlike in lz 	l< 1 	if f 
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ak = 0 (2 < k < n-1) 

Proof. If a2  = a3  = 	= an-1 = 0, it is easy to 

show that pn(z) is, in fact, starlike in I z < 1. 

We therefore assume that pn(z) is starlike in 

1z I < 1, and then show that this implies that ak  = 0 

(2 < k < n-1). 

Suppose pn(z) is starlike in Izi < 1. Then, 

by Theorem 1.4.1, we have that 

1 + 2a2z + 	 + z
11_1 

 zpn l(z) 

7 77-  

h 
pnt( 	p (z) 

(h(z) = (z
z)  
) 

1 + a2z + 	
1 + zn-1  

has positive real part in iz 1< 1. Since pn(z)E Pn, 

we have that (k+l)ak+1  = (n-k)En_k  (1 < k < n-2) 

by Theorem 2.1.1. Consequently, on Iz I = 1 with 

z = eiG, we may define 

ct,(G) 
p t(z2) 

(z = eig) 

 

zn-1 

2a2 = ( 
zn-1  
1 	+ zn -1) + 

zn 	
+ 2a2  zn-3 ) + -) 

= 2Ecos(n-1)8 + 2 a2  cos((n-3)Q42) + ....3 

where sdk  = arg ak  (2 < k < 	Furthermore, on 

z 1 = 1 with z = eiG we may define 3(8) and y(Q) 
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as follows: 

pnl(z2) 	pn1(z2) (z  = eig) 
h (z2) 21-1 // zn-1 

a(Q) 
r(e) + ie(G) 

= 	a(9) 3(9) - im(Q)?(Q)  
(e) + e(g) 

No difficulty arises from the denominator, since the 

univalency of pn(z) in f z I < 1 ensures that: 

32 (Q) 
	

(g) 
	

ih(e2iQ)12 = Ipri(e2i'g)1 

> 0 (0 < Q < 2). 

We now show that a(Q) can have only simple 

zeros for 0 < Q < 2n. Let g( be a zero of m(Q). 

Now, with z = eiQ, we have that: 

a4 (e) 
pnl(z2) 

zn-1 I 

iz d r  pril(z2  
dz n-1 z  ] 

p 2z pn" (z2) iz [ 	n-1 	(n-1) 	
n'(z2) 

zn z  

Now m(i) = 0, so that pni(z2) = 0 when z = e10'. 
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Hence if a'(f/f) is also zero, we see that pn" (z2 	is 

zero at z = e 	as well. But then pn"(z) = 0 at 

z = e2ipf.  This, however, is impossible, since the 

existence of a double zero of pnl(z) on lz 1= 1 

is ruled out by the univalency of pn(z) in Iz I < 1. 

Now, the condition Re(zpni(z)/pn(z)) > 0 in 

z l < I may be written in the form: 

a(G) 3(Q) > 0 , 	(0 < e < 2't). 

in view of (1.1). Since the zeros of a(Q) are simple, 

this in turn shows that, whenever a(Q) = 0, necessarily 

3(Q) = 0. Now all of its 2(n-1) zeros lie in 0 < Q < 

(corresponding to the (n-1) zeros of pn'(z) all on 

Iz1 = 1) in the case of m(G), and hence the same must 

be true of gQ) since it is also a trigonometric poly-

nomial of degree (n-1). Since a polynomial which has its 

maximum number of zeros is determined by these zeros to 

within a constant factor, it follows that, for some 

constant 1,, we must have: 

a(G) = T, P(e) 	or: 

Pni(z2) 	p 
Re ( 	on I zn-1 	 n-1 

(z2) 	
zI = 1. :  

This may be written in the form: 



+ Z2n-2 1 + 2a 9z2  + 	+ (n-1 	z2n-4 

zn-1 
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(1.2) 

Re( 
1 + a 	+ • • • 

1 
+ an-1z

2n-4 + 1.7z2n-2 

	 ). 
zn-1 

   

Equating the highest terms on both sides, with z = eig 

we find that: 

	

2 cos (n-1)9 = 	+ -17)cos(n-1)9 

and so: 	= 	
2n 

 n + 1 • 

Suppose that ak  is the first non-zero coefficient, 

with k , 2(n-1), so that k < (n-1). Comparing the 

terms on both sides of (1.2) of degree (n - 2k + 1), 

we find that: 2k lak 	 cosI 	((n-2k+1)Q 
	

lk) 

= dak I (1 EriTT)cos((n-2k+1)Q - gfk). 

Since ak / 0, and 'k 
2n  , we n + 1 deduce that: 

2k = 2n  n-k+1 

2n  
--En+3) (since k < 2(n-1)) 

4n 	< % 4 9 n + 3 

or: 	k < 2. But 2 < k < En-1), and so ak must 

have been zero after all. 

Now suppose that ak  / 0, k = 2(n-1). Then, 

comparing coefficients on both sides of (1.2) we find 
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that: 	ak = 7. ak 
since ak  = a1(n_1)  must be real. But 741, and so we 

have again arrived at an impossible situation. 

Thus the assumption that pn(z) is starlike 

in l z  1 < 1 implies that ak  = 0 (2 < k < n-1). This 

completes the proof of the theorem. 

Similarly we may establish the following: 

n-1 zn 1 Theorem 2.1.5. Let µ (z) = 	+ a1z + 	+ a -1z 	+ - z 

Mn. Then µn(z) is starlike in 0 < 
	

< 1 iff 

ak = 0 (1 < k < n-1). 

2. 	Some coefficient bounds for Pn  and M. 

In this section we will consider bounds for the 

(n-1)th  coefficients of polynomials in Pn and Mn, 

and for the middle coefficient of a particular family 

of trinomials in P2n+1 and  M2n+1. 
Theorem 2.2.1. The polynomial: 

P2n+1(z) =z+azn+1 
	

P2n+1 iff  

2n+1 

a is real, and: 

( 2 .1) 	I a 
sin(2/1+1)9  

minqc 
(1 + (2n+l)singl r 	, 

Lot7J --777117TITUT 
s ine -1 
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Note. By Theorem 2.1.1, a necessary condition for 

P2n+1(z)  E  22n+1 is that a is real. Also, since 
n+1 z2n+1 

P2n+1(z)  P2n+1 iff z az   2n+1 E P2n+1' it  

is sufficient to prove the theorem for a > 0. 

We will use the following: 

Lemma. Let C and D be real, and -1 < D < 1. 

Then the equation: 

(2.2) 	1 +Cy+Dy2  =0 

has no roots i 
	y I < 1 iff: 

(2.3) 	1 + D > 	o 

Proof. Since C and D are both real, both roots of 

the equation have the same modulus; hence both lie in 

1y < 1, or else both lie in ly I > 1. Applying Cohn's 

Rule to equation (2.2), it has the same number of zeros 

in I yl < 1 as has the equation: 

(1-D2) + Cy(1-D) = 0. 

Consequently, (2.2) has no roots in I y I 
	

1 iff: 

101(1-D) < 1 - D2  , 

i.e. 	101<1 + D 

since -1 < D < 1. Hence the lemma is proved. 

Proof of Theorem 2.2.1. We assume that a>0. Then, 
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by the Dieudonng criterion for univalency (Theorem 

1.2.2), D2n+1(z) 	22n+1 iff the equation: - e   

a sin(n+l)g  xn 1 + 	sing 
sin(2n+1)0 ,2n 

+ 727Thsing = 0, 

and, also, the equation: 

(2.4) 	1 + a  sIa(a±1/9 	sin 2n+l)9 
sing 	 sing 

have no roots in 
	

1yI = Ixn  l< 1, for 0 < 9 < 

Now Isin(2n+1)v^/(2n4.1)singl < 1 for 

0 < g < V2. Hence, by the preceding lemma, (2.4) has 

no roots in I y f < 1 iff: 

1§1112in±Q,!at 	sin(2n+1)Q\  < 	sin(2n+l)g )2  a sing (1 (2n+l)sing ) 	(2n+l)sing l  or: 

a 

for 0 < G < TV2 , and so for 0 < 9 < gc/2. Hence the 

result of the theorem follows immediately. 

Similarly, we may establish: 

Theorem 2.2.2. The polynomials 

1 	n z2n+1 
112n+1(z)  = z — + aiz + 2n + 1 

€7: 
	

r12 n+1 iff a  is renl, and: 



(2.5) la I 

As 

40. 

sin(2n+1)8 1 + 
/ 	 (2n+l)sin9) < 	Minim

[0] 	
( 

 Isinngl 

an immediate application Theorems 2.2.1 of 

Isin g 

and 2.2.2, it is easy to establish the following: 
3 

Corollary 1. The polynomials p3(z) = z + az-  + 3 

and p5(z) = z + bz3  + z5  -- belong to 5 P3 and P 

respectively iff a and b are real, and -T7Ti; 

b 1 <  
Z3 

3 Corollary 2. The polynomials µ3(z) = + aiz + -- 
5 z and µ5(z) = 1 + biz2 	5 + — belong to M3 and M5 

respectively iff a and b are real, and 
	.2 

8 
25 • 
We now establish the asymptotic values, for 

large n, of the bounds for the central coefficients 

given by (2.1) and (2.5). 

Lemma. Let A = Min 	f (g), where: n  0<ge: 	  - -2 

   

fn(g) = 2n+1 sing 
sin n+1 g 

sin Q 
. Then: 

An  = 	[1 + 0(1)], for sufficiently large n. 

Proof. When Q > 2n+1 , we have: 

I b I 
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2n+1 )G
> 	

-1  
sin -47 (2n+l)sin(7471T) 

> 
41 

[1 + o(1)] , and so: 

fn(Q) 	> [1 -  4-  + o(1)] • sin(n4-7:77 
sin g  

(2.6) 	> [1 - 47  + o(1)].  (---- 2,11)  

sin(---) 2n+1  > 2 	
" ' 	

ZE- (1 + o(1)). s4 _((+1)7c) 	2n+1 
' 2n+1 

2 fn (2n+1E--) > 2 An 

Consequently, if An = fn(8n) , then 0_<9n  < 4t  
2n+1 

for sufficiently large n. Suppose that, at least on a 

sequence of n, (2n+1)8n 	> a as n —> co ; 

here 0 < a < 4x. 

Suppose, first, that a / 0 . Then: 

An 	= 
'n 

(a 
 2n+1  
+ o(1). ) (for sufficiently large n) 

s ina 1 + 
(2.7) 	a a 	. (1 + o(1)). 

I
sin(21)1 	2n+1 

In view of (2.7), consider the function: 

1 + sin2x —-- 
g(x) = 	

77
. x sinx 

(2.8) 

 

cos x 	(0 < x < 290. sin x 

sin 



42. 

Clearly g(x) is non—zero, and becomes infinite when 

x = t, 2x. Consequently the minimum of Ig(x)1 , in 

which we are interested in view of (2.7), is attained 

at some point where g'(x) = 0. This occurs when 

cos x = 0 or 2x = sin 2x and so: 

Min 
0<x<2-c Ig(x)1 = Min (g(0), g (i) 2  

/ 	ic 
7 	

3gc, = Min ( 2 , 	, -) 

. '/2 . 

Returning to (2.7), this implies that a r-t 
	 and: 

(z.9) 

An  = yiw7TT [1 + 0(1)] 

= 	El + o(1) 1. 4n 

If, in fact, a were zero, then we would have; 

A= 	[1 + 0(1)] 

> 4n [1 	0(1)]. 

Hence a cannot be zero, and the result of the lemma 

follows at once. 

Combining the lemma and Theorem 2.2.1, we deduce 

the following 

Theorem 2.2.3. The  polynomial: 
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(z) = z + azn+1 	z2n+1 
P2n+1 	2n+1 

E 22n+1 iff a is real, and 'al < An, where 

gc 
n An 	— 4 for large n. 

In a similar way, we can establish: 

Theorem 2.2.4.  The  polynomial: 

2n+1(z)  
1 
z + aizn  + z

2n+1 
2n+1 

N2n+1 iff a  is real, and lal < Bn, where 

Bn  4n  forlarge n. 

Let us now turn to the estimation of the (n-1)th 

coefficient of polynomials in Pn  and Mn  

Theorem 2.2.5. Let pn(z) = z + a2z2  + 	+ anzn Pn. 

Then: 

(2.10) 	(n-1) lan-1  1 < 1 + 2 1 a2I inlanl- n2lanu  12 i 	1  

< 4. 

1 	l a2 1 2  
21a2 1 

Proof. By the Dieudonn4 criterion, since 

the equation:  

, if lad < 1. 

, if la21 > 1. 

Pn(z) e Pn, 

In particular,  (n-l)lan_11 

n-1  

) 	I  i ak+1 
sii=  x 1)8  k 1 	= 0 

k=1 
has no roots in I xl < 1 for 0 < 8 < gc/2 , and lan 
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Applying the Cohn Rule, we deduce that the equation: 

n-2  
sin 	sin(k+1)Q  

1 - lanI2(3.n
L10 2 	k )x(ak+1 sing 

k=1 
sinnQsin(n-1)8. ) = 0 

sin20 

has no zeros in Ix I < 1 for 0 < 8 < 7c/2 , and so for 

0 < 9 < 7c/2. Consequently: 

    

1 	la + 2 ( sin n8
)  2 

 
1 nf 	sing an-1 

sin(n-1)8 	 7  sinngsin29  a
n2 sing 	sin20 

 

    

    

 

lan
a2 

sillnGsin2G1 
sin% 

sin(n-1)8  
an-1 sinG 

 

  

for 0 < 8 < 7c/2. Substituting 8 = 0 , we obtain: 

1 - n2 lanI 2  > (n-1)lan_11 - nlan1.12a21, or: 

(2.11) (n-1)lan_11 < 1 + 2Ia21.n Ian' - n2 ian i2  . 

(a) Since pn(z)6 S 	la2 1 < 2 [8]. Thus: 

(n-1) lan_1 
i < 1 + 4+

11 1 - n2  lani2  

< 4 (since nlanl < 1). 

(b) Now let f(y) = 1 + 2Ia2ly - y2. Then 

19(Y) 
 = 2Ia2 ( - 2y = 0 when y = la2 1 ; also f(y) is 

an increasing function of y for y < ia2 1 , and a 

decreasing function of y for y > la21 . 

Suppose, first, that la21 < 1. Then 
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max 	f(y) = f( 1a21) = 1 + 1a2 t ' 1 2. and so, by (2.11), 
[0,1] 
we obtain (n-l)lan_l i < 1 + la21 2. 

Suppose, next, that 1a21 > 1. Then max 	f(y) 
[0,1] 

= f(1) = 21a21; and so, by (2.11), we obtain 

(n-1) (an_i  I < 21a2 1. 

Corollary. Let pn(z) = z + a z2  + 	+ anzn  052 Pn. 

(a) If a2  = 0, then (n-1)la 	I < 1 - n2 	1 2  

1-n2 1a 
(b) If an_i  = 0, then 	  nlanln 

	This is __ 

an immediate consequence of equation (2.11). 

We now establish the following result, which will 

put Theorem 2.2.5 in its proper perspective. 

Theorem 2.2.6. Let p (z) = z + a z2 
 + 	+ anzn 	P 

and let _11. Then: An_l = max 
	 Pn 	 

2 (2.12) — cos n1 < A n+1 - n-1 
, 4 
n-1 • 

Proof. The right hand inequality of (2.12) follows 

from Theorem 2.2.5. We now construct a close-to-convex 

polynomial in P whose (n-1) th  coefficient is 

2 171. cos (nil); all its coefficients will be real. 

Consequently the left hand inequality of (2.12) will 

follow. 



(2.13) q(z) 	= 
z 

1 + tn+1 

- + 1 	2cos(RTT)t 0 

Clearly q(z) 	is regular in 	z 	< 1. 

deduce, immediately, that: 

(1 - 2 cos(n+1--L-nz + 	= z')q,(z) 1 

dt. 
t2  

From (2.13), we 

+ zn+1 

Consider the function: 

46 . 

n 	2m+1 

(2.14) 
	 = I 1(1 - ze n+1  ) 

m=0 

This latter product contains the factor: 

(1 - ze 114-1)(1 - ze 717) = 1 - 2 cos(177)z + z2  , 

and so q(z) is, in fact, a polynomial in z of degree 

n. In addition: 

Re ( zq'(z)/ 

	

	= Re(1 + zn+1) 
1 - 2cos ETT  z+z- 

> 0 in Izi < 1. 

By Theorem 1.5.4, the function s(z) = z/(1-2cos(Rit)z + z2) 

is starlike in lz I < 1. Consequently, pn(z) E CTC(s(z)), 

and so pn(z) E F. 

Suppose that q(z) = z + a2z2  + 	
+ anzn. 

Then, by (2.14), 

1 + zn+1 = (1-2cos(aT)z+z2)(1+2a2z+...+(n-l)an_lz
n-2+ 

+na zn-1) 
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Equating coefficients on both sides, we obtain an = 1 

2 and an-1  = 17,77 cos(-2E-) n+1 ° 

This completes the proof of the theorem. 

Using the Dieudonne criterion for Mn  and arguments 

similar to those of Theorem 2.2.5, we may establish the 

following: 

Theorem 2.2.7. Let µn(z) = 1 + alz + 	+ anz
n e n 

Then lan 	n < 
1 
, and: 

(2.15) 	(n-1) Ian-11 < 1 - n2 lanr . 

3. 	The second  coefficient problem. 

In this section we establish estimates for the 

coefficients a2 and b3 
of the polynomials 

pn(z) = z + a2z2  + 	+ anzn Pn  and P2n+1(z) 

= z + b3z3  + b5z
5 + 	+ b2n+1

z2n+1 . Upper bounds 

for these have been known for a long time [15]; we will 

show that, surprisingly enough, these give the correct 

order of magnitudes of supla2 1 and suplb3 l. 
Pn  2n+1 

co  
Theorem 2.3.1.[15] Let f(z) = z +\ 	

is-  
E S, and 

	 / 	I 
k=2 

If(z) I < M in I z I < 1. Then: 

(3.1) 
	

1a2  1 < 2(1 - 



Lemma l.[8] 

18.3 1 < 3 , 

Let 	f(z) = z + a2zz' 	+ 

and la4  I 	5.  4 	; also ian  
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Proof. If M=1, f(z) Es z, and there is nothing to 

prove. Thus we suppose M>1. 

Since f(z)e S , clearly: 

(3.2) F(z) EEE [1 - P-Wt f(z)] 
	(0<a<25-0. 

= 	(z + a z' + ...)(1 + 	eia  (z + ...)) 

z + (a2 + TZ eta) z`'' + 	EH S. 

Thus, by a well-known theorem of Bieberbach [8], 

4. eia la2 	< 2 for all a EF[0,27c], and so: 

1a2
I 

< 2 (1 - 13,71). 

Thus our theorem is proved. 

We now state, in the following sequence of 

lemmas, a number of well-known results which form the 

background to our present discussion. 

EE S. Then 

< en for all 

n>4. If all the coefficients of  f(z) are real, 

then Ian' < n for all n>1. 

Lemma 2.[8] The function f( )€ S if f( 	GS; 

and if g(z) is an odd function in 	then _g(z2.1:Le  S. 

In particular, if ci2n+1(z)  is an odd polynomial in 
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E2n+1' then a .2n+1(z2)2EE 22n+1* 

In view of the importance of this lemma, we 

make the following definition. 

Definition 2.3.1. A polynomial D '211-1-1(Z) is said to 

belong to the class P°2n+1 iff it belongs to the class 

2n+1 and contains only odd powers of z. 

Lemma 3. If pN(z) = z + a2z2  + 	+ aNzN EE PN, then: 

max 	lak I 	max 	I ak  I 	(2 <k<n N) . 
Pn n+l 

Similarly, if  q2N+1(z) = z + b3z3  + 

then: E P°2N1+1' 

P 
0 
max 	l b2k+1 I < max 1 b2k+1 	(1<k<n IN,j) 
2n+1 202/14.3 

Prom Lemma 1 and Theorem 2.3.1, we deduce: 

Theorem 2.3.2. Let pn(z) = z + a2z2  + 	+ anznE P. 

(a) 
	

If all the coefficients are real, or if ion(z) is 

close-to-convex in lzI < 1 	then: 

I
ak  I < k(1 - 4141) 	(2<k<n-1) 

where A(k) is a constant depending on k, but not on  n. 

If the well-known Bieberbach hypothesis[8]were true, 

this bound would be valid for all pn(z)€ Pn.  

+ b2N+1z
2N+1 
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(b) In general, !a3 1 	3 (1 - 
n2  

and 1a4 I 5- 4  • 

 

    

(1 - 22-), where A and B are absolute constants. 2 

The proof follows from the fact that if  Pn(z)4E Pn 9  

then 1 pn(z)1 < izI + / 	lakz-1 < 1 + ) 	ek < en2 
k=2 	k=2 

for 	z I < 1. 

Similarly we may establish: 

Theorem 2.3.3. Let 	= z + b z8  + 	+ b P2n+1(z) 	3 	2n+lz2n+1 

F  2n+1' Then lb I < 1 - A- where A is an 
3 	n2 	 

absolute constant. 

We now state a striking result, which will be a 

fundamental tool in what follows. 

Lemma 4.  (Fejer Representation Theorem)[7] Suppose: 

\ 	 
g(g)  = / 1.7'1c coskQ + 

k=01  

n 

 1 
k=1

1  sinkg . 

Then g(Q)  is a non-ne•ative tri onometric 	1 nomial 

for 0 < 9 < 2t iff it is of the form g(Q) = lh(eiQ) 2 

where h(z) = xo + x1z + 	+ xnzn. Then: 
•••••••••••••111. 

(3.3) 
o = )=0 	

xvi 2  , and 
V 
n-1) 

V 	
xr  7c fr  +iµv  = 2 	(1<11<n). 

r=0 
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First of all, 

we will use, without 

we will establish 

Theorem 2.3.4. 

the 

(a) 

in order to illustrate the 

introducing too many complications, 

following: 

The polynomial: 

methods 

z2k+1 

n+l 
3k 	z2k+1 q(z) 	= z (2k+1 2 n+1/ 	2k+1 

- (4n+3)k+2(n+2)(n+1)) 

k=1 

2n 

(3.4) 	+ i 	(k2  
ti 2(n+1)(2k+1) 

k=n+2 

z4n+1 n 
z

3 	 DO 
= 	n+1 + " (n+1)(4n+1) 	4n+1 

(b) The polynomial: 

p(z) = q(z1)2  

n 2 

(n+l)2(4n+1)2 	 F4n.+1 • = z + 2 --- z + 	+ 	 n+1 

Then, as an immediate consequence., we will have 

established: 

Theorem 2.3.5.(a) LetPn(z) 	z 	a z2  . • • + anz
n 

E.:77 Pn. Then: 
1•11.0011111•10 	 limmoslimmo 

-- 2(1 - 	+ 0(1/n)) < max 1a2 < 2(1 - 1
en2) Pn 

	

(b) Let qn(z) = z + b3z3  + 	+ b2n+1z2n+1, 2n+1 

z4n+1 
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Then: 

(1 - 	n 
2 + o(1)) < max 1b31 <l - 0(1/n2). 

gn 
Proof. The theorem follows, at once, from 	Theorems 

2.3.1 and 2.3.4, and Lemma 1. 

Proof of Theorem 2.3.4. We will apply Lemma 4 to the 

polynomial: 

(3.6) h(z) - 1 	+...+z2n  - 2n+2  (1+z2+...+z2n)] r 
(12(n+1 	

p+z2 

n+2 
r  zr  , say. 

r= 

Here h(z) is an even polynomial of degree (4n+2), 

normalised so that 

Now let us put: 

Ih(eig)1 2  = g(Q) 

xr2  = 1. 

Re (t(z)) 

and examine the precise form of the coefficients of 
2n+1  

t(z) = 	la2k z
2k . Obviously we then have g(Q) 	t   

k=0 2n+1  

)
of the form g(Q) = 	 a2k cos 2kQ. Then, by (3.3), 

k=0 



Thus q(z) ECTC(--E), since 
1-z2 	1-z2  

z is a starlike 

53. 

we obtain: 

ao 	1, a
2 = 2  

' 

2n-1 
' 	a4 

2n+2
-4  

2n-4 2 • • 	• 	• 

2n+2 ' 

2n+2 

a4n 

a2k = 

= 	2n+2 

' a4n-2 

3k (1 - ----) 

and: a4n+2 = 2n+2 

In general, then: 

Thus: 

•••• 

2 

2  

. 	• 	0 

if 1 < k < n+1 • 

if n+2 < k < 2n+1. 

2n+2 

1) '2n+2 

n+1
1 	2n+1  

(3.7) t(z) = 1 + 2) 	1
(1 	2n+2)' 

3k  ,2k + 2 	1 f k k 	N 2k ---- -1)z . / I 2n+2 
k=1 	k=n+2 

Vie have, in fact, constructed t(z) in such a way that: 

t(t 1) = g()d = 1h(f 1)12  = O. 

Thus t(z) has a factor (1-z2), and also Ret(z) > 0 

in 	lz (< 1. 

We now determine the polynomial 
2n  

q(z) = z +) 2k+1z
2k+1 such that: 

k=1 

t(z) = (1-z2)qt(z) 

= zql(z)/(---&—). 
1 -z2  
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function in I z I < 1. Then we have: 

n+l 	2n+1  

1 + 2) 11(1 	211)z2k 	
:(747 i)z2k 

k=1 	k=n+2 

t(z) 
= (1-z2)qf(z) 
1 + (3b3-1)z2  + (5b5-3b3)z4  + 

	 + [(4n+1)b4n4.1  - (4n-1)b4n...1 ]z4n 

b4n+1
z41142  . 

- (4n+1). 

Comparing coefficients in this equation, we obtain: 

(3.8) (2k+1)b2kia 	(2k+1) - 3k , if 1 <k < n+1. 2 

k2-(4n+3)k+(4n+2 (n+1)9  if n+2<k<2n+1. 2(n+l) 

Consequently the polynomifl q(z) , given by (3.4), is 

the polynomial given by (3.8), and the first part of the 

theorem is proved. 

The second part follows at once, by Lemma 2. 

Note. All the coefficients of the polynomials (3.4) an.d 

(3.5) are real and positive. 

Corollary. Let pn(z) = z + a2z2  + 	+ aNz
N 	PN. Then: 

(3.9) (24 log 2)2N2[1+o(1)] < max M(1;pN)_<2eN2[1+o(1)]. 

PN 



M(lip) = M(1;q)2  = q(1)2, where: 

4+14  
(2k+1 	3k(k+1,1  

2(n+17 ) 211+1 
k=1 

q(1) 
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Proof. The second inequality in (3.9) follows at 

once from Lemma 1, and we will use the polynomial 

P(z) of Theorem 2.3.4 to prove the first inequality 

of (3.9) when N 	l (mod 4). Then by Lemma 3, the 

corollary will have been proved. 

Since the coefficients of the polynomial p(z) 

in P4n+1 of Theorem 2.3.4 are positive, 

2n  

+ 4(k2-(4n+3)k+2(n+1)(2n+1)) 

k=n+2 
/2(n+1)(2k+1). 

Let us denote the two summations by )1 and ) "2 
respectively. We estimate both of these to within an 

error term o(n). Now: 

n+1  
t(1 	23k k+1) 

2k+1 
k=1 

xn+134 k  
n+1 - 2(n+1) I 	I(  2 	2(-2k+1)) 

k=1 
n+1 

3 	3 	) n+1 2(n+1)  . 	(n+1)(n+2) 	2(n+1) 	 0(1) 
. 5 	 k= 

, + o(n) . 
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-27-717 

k=n+2 
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\ I 
Examining the terms in./ 12  separately, we have: 

2n 	2n  
t k2 

> 
1 

>  2k+f = 	( t  
k=n+2 	k=n+2 

2 + 0(1) ) 

2n 	n+1  
2 ) 	1 k - 	) 	l k + 0(n) 

k=1 	k=1 

3 2 n + 0(n) , and: 

2n 	2n  
1 k 	i 
	 2k+1 .  ) 2 	

II 
 1 

k=n+2 	k=n+2 

n + 0(1), and: 

2n 	2n  
1 1 

2k+1 
i 1 k  + o(1) 

k=n+2 	k=n+2 

2(log(2n) - log n) + o(1) 

i log 2 + o(1). 

Combining these estimates, we see that: 

) 	  ' 1 	3 2 	
2n 
4n n 4n2  . 7  + 717- . -ff. log 2 + o(n) = 	. 

= (log 2 - 	n + o(n), and so by (3.10) and 
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(3.11), M(1,p) = log22 n2  + o(n2) 

= 177  log2  2 N2  (1+0(1)), putting 

4n+1. This completes the proof of the corollary. 

We now proceed to give a slightly more sophis- 

ticated application of the Fejer Representation Theorem, 

which will give lower estimates for max 12.21 , 
PN 

max 	max la41 9 and max 	11,*3  1. The 
PN 	PN 	

p0 
2N+1 

corresponding upper estimates have been known for a long 

time, but no lower estimates existed previously apart 

from those connected with sections of power series 

(as in Theorem 1.6.5). 

Theorem 2.3.5. There exists a sequence of polynomials: 

pN(z) = z + a2z2  + 	+ aNzN 	PN  for all  N with 

N-3 aeal (mod 2) such that: 
2K 

= 

(3.12) a C,  

A(k)  

N2  
(2 < s < k+1), 

where A(h) is a positive constant de ending on k, 

but not on N. 

Proof. We will apply Lemma 4 to the polynomial: 
n 

)(i_z2kn+2k+4\ C ) 	 sin rr+1 	2kr / h(z) = 	 a+z2+...4.z2k-2 )e  

r=0 	

kiiTy g.)z 

4kn+2k+4  
ixrzr  , say. 4 

r=0 
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Here h(z) is an even polynomial of degree (4kn+4k+2) 

1  normalised so that 	, xr  = 1 by the choice: 

9 

n  

) I  C-2 = 2k 	
4
sin2( 

 r+1
rid-ff  -R) = k(n+2) . 

r=0 

Now let us put: 

ih(eig)12 = 

Re 	(t(z)), 
z=eig  

and examine the precise form of the coefficients of 
2kn+2k  

2s+2 t(z) = 1 +) 	t d2s+2 z 	Obviously we then 

s=0 	2kn+2k 

have g(Q) of the form g(Q) = 1 + 	d 
1 
 2s+2 cos(2s+2)8. 

s=0 

Then, by (3.3), we obtain: 
n 	n-1 

1 	r+1 	sin(I±1,0 . (11 d2 = 2c2  [2(k-1)) 	sin2(---,T) + 2 n+2 	'n+2118111'n+g"' 
r=0 

= litaq2)[(k-1)(n+2) + (n+2) cos (n+2-1.--)] 

n+2 ' 
n 	n-1  

d4 	
. = 2c2  [2(k-2)) 	/ 	+ 2 sin(L+2-1-1  m )sin(n+2r+2410] r+1 

n+2 
r=0 	r=0 

[k-2 + 2 cos (-a-)]. = k 	n+2 

2 r Oc-1 + co s k and: 
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It is easy to verify, furthermore, that: 

d2s = 	
ri 

S +2) 3  ' S cosCOS ( 7C. 	if 1 < s < k. 

= -202  sin-  (ii-72) Also, d4kn+4k+2 

_72 = 
kCx-i7.F2) sin  (n+2)'  Thus: 

t(z) = 1 + k2)[k-s+scos(n+2-a-)]z2s + 
s=1 

--2 sin' "......." 7 777)  (n.7-2) z4kn+4k+2 

We have, in fact, constructed t(z) in such a way that: 

t(± 1) = g()d = ih(t 1)1 2  = 0. 

Thus t(z) has a factor (1-z2), and also Re t(z) > 0 

in 1z1 < 1. 	 2kn+2k  
We now determine the polynomial q(z) = z + 

b2s+1 
z2s+1 such that: t(z) = (1-z2)q 1(z) 

	s=1 

= zqt(z)/( 	). 
1-z2  

Thus q(z) EE OTC (--;7), since 	z is a starlike 
1-z' 	1-z'2  

function in Izi < 1. Then we have: 
k 

2)  1r, 	( 9-c \ --i z2s  1 + IF 	 LK—s+s COS 	+ ... k(n+2)sin2(-2-) 'n+2" 	n+2 • 
s=1 	 z4kn+4k+2 

= t(z) 

= (1-z2)V(z) 

= 1 + (3b3-1)z2  + (5b5-3b3)z4  + 000000000 

(4kn+4k+1)13,4kn+4k+1 
,4kn+4k+1 
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Comparing coefficients in this equation, we obtain: 

2 	\ (2s+1)b2s+1 - 1 = 	[ks 	( 1)(1  k for n+2 

1 < s < k, and also: 

(4kn + 4k + 1)b4k
n+4k+1 = 2 sine  (---21-)/k(n+2). n+2 

Consequently, the polynomial: 
k  

ss+1) (1 - cos ii 2)]z  q(z) = z +\> 1 [1 - ( 2s+1 + 
c2s+-1 -)k: 

s=1 
2sin2(21.--n+2) 

k(=TC4kn-114k+1) 
z4kn+4k+1 

E OTC 	and so E  P°N where N = 4kn + 4k + 1. 
1-z2  

It is clear that all coefficients of q(z) are positive, 

and that: b2s+1 = 1 - 	(1 	0(1)) for 1 < s < k, 
N2 	 - 

and sufficiently large N. In particular, 

b3  . 2 	sin'` (261:-.411)) 

= 1 (1 + o(1)). 
3k n2  

= 1 - 16k (1 + o(1)). 
3N2  

Applying Lemma 2 to the polynomial q(z) , we find 

that for a fixed k, and arbitrarily large N of the form 

N = 4kn + 4k + 1, there is a polynomial in PN of the 

N-1  

- 4 s in' (--TE--)]z2  -1->azr  201+1) 	1 r  
r=3 

4 sin4(-21-) n+2 	4kn+4k+1 

form: 

PN(z) = z + 2 [1 

• 

k'(n+2)3(4kn+4k+l)' 
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Furthermore, the coefficients as satisfy the condition: 

A(k)  as > s N2  

for 2 < s < k as required. Hence the theorem has 

been proved. 

From Theorem 2.3.5 we may deduce immediately the 

N  
2s+1 

-2N+1(z) = z + / 	 b2s+lz Theorem 2.3.6. Let o 
s-1 

 

16gc2   Then: 1 - ---(1+o(1)) < max lb 1 < 1 3 - 
.a•toOMON.a• 	 3N2 	po 	N2  2N+1 

S12rarbitrarily lame N, 	 soluan -Le2alstantA. 

Proof. The left inequality follows from the construction 

in Theorem 2.3.5, and the right inequality from Theorem 

2.3.3. 

i  Theorem 2.3.7. Let pn( z ) = z + 	l akzkE Pn  
	k=2 	 

(a) Then, for arbitarily large n, 

2 - 22E [1+0(1)] < max la21 
3n2 	Pn  

2 - 4 , otherwise. 
en2  

(b) Also, for arbitrarily large n, 

	

A1(k) 	lk,(k)  
--4---- 

	

k- ----- 	max I ak  I < k- 
_n2  2 

where k = 3 and 4, and A1(k)  and A2(k)  are 

following two theorems. 

E 
	0 

2N+1' 

2cos(), if all ak n+) 	 
real. 
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constants de ending  on k but not on n . 

(c) For a fixed value of k. and arbitrarily large n, 

max lak  I 	A(k) K - 	where A(k) is a pn n- 

constant depending on k but not on n . 

Proof. The left inequalities in (a) and (b), and also 

(c), follow from the construction in Theorem 2.3.5. 

The right inequalities in (a) and (b) follow from 

Theorems 2.3.1 and 2.3.2, together with Theorem 1.5.9. 

Notice that (a) and (b) settle the correct order 

of magnitude of (k - max I ak I ) for large n, 
pn 

k = 2,3,4. The estimate in (b) clearly also gives the 

correct order of magnitude of k - max lak l for any 

pn 

value of k for which the Bieberbach hypothesis is 

satisfied; for example, in the class of polynomials of 

degree n having real coefficients. 
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Chapter 3. Coefficient re ions for univalent  
polynomials of small degree. 

'L'amore tanto piu fervente quanto la 

cognitione e piu certa' 

- Leonardo da Vinci. 

1. 	Coefficient regions for P2  and P3. 

The polynomial p3(z) = z+a2z2+a3z3  E P3  iff: 

sin2Q sin3Q 1+ a2 sin g x + a3 sin Q -,--- x-  = 0 

i.e. 1 	+ 2a2c x + a3 (4c2-1)x2  = 0 

has no roots .in 'xi< 1 for 0 <1g 9i.,0 < c = cosQ < 1, 

by Theorem 1.2.2. Thus l
ad 51

3; and then, by Cohn's 

Rule, p3  (E P3  iff: 

1 - la31 2(4c2-1(2a2c-272ca3(4c2-1)) = 0 

has no roots in lx 1 < 1 , and so iff: 

(1.1) 1 - la31 2(4c2-1)2  > 2c 
l a2-72a3(42-1)1 

for 0 <c<11with I 
a3 I 5 

 1/3  . 

Now suppose that a3  is real; and let us use the 

substitutions a3  = t, a2  = x + iy, where x,y,t are 

real numbers. Then (1.1) is equivalent to the inequality: 
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(1.2) 1-t2(4c2-1)2  > 201 x(1-t(4c2-1))+iy(l+t(42-1))1 

which may be rewritten as: 

(1.3) [1-t2(4c2-1)232  > 4c2[x2(1-t(4c2-1))2V2(1+t(4c2-1))2] 

for all 0 <c < 1 , for points belonging to the  co- 

efficient body (Real, Ima2, a3). Clearly it is suf- 

ficient to consider the coefficient body in the first 

octant, due to its symmetry properties (as seen in (1.2)). 

Suppose that t=0. Then (1.2) reduces to: 

1 > 2c lx+iy I = 2+2 1 

for all 0 < c < 1. Thus 21a2 I < 1, and we have; 
Theorem 3.1.1 p2(z) = z + a2z2 	

-1). 
'2 iff a2 	• 

(This is, of course, not difficult to prove directly). 

Suppose, next, that y=0. Then (1.2) implies that: 

1 - t2(4c2-1)2  > 2c (1 - t(402-1))x, or: 

(1.4} 2x < 	(1 + t(4c-1)) , 0 < c < 1. - c 

It is easily verified that the right hand side of (1.4) 
1 	1 attains its minimum when c2  = (1-t)/4t if 5  < t 7  , 

	

4 and when c = 1 if 0 < t < 	. Hence: 
-- 
i(1+3a3)

1  (1.5) 	a2 < 	if 0 < a3 	5  

1 	1 

	

ara3(1-a3Y 	5  if 	a3   5  . 

1 I 7  Thus if a3 = 0, 5y 	, then a2  < J8/9 respectively. 2 -1.-'  5  1  ,  ' 
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suppose, next, that x = 0. Then, from (1.3), we 

obtain: 1-t2(4c2-1)2  > 2yc (1 + t(4c2-1)) , or: 

(1.6) 	2y < 	(1 - t(402-1)), 0 < c < 1. 

The right hand side attains its minimum when c = 1, 

and sot 

( 1 . 7 ) Ima2  < 1-(1-3t) 2  

We next consider sections of the coefficient 

body with a fixed value of t. Then, by (1.3), the 

point (x,y) satisfies the inequality: 

(1.8) 1 > (l+d) [ 	X2 	Y2 	 ] 

(l+td)2 	(1-td)2  

where d = 4c2  - 1, -1 < d < 3. Hence the point (x,y) 

belongs to the closed interior of all ellipses with 

centre the origin, major axis a(d) = 4"1-11 	and 
l+d 

1-td  minor axis b(d) = ;7 3.-7--Fd  (-1 < d < 3). Let us denote 

the interior and boundary of the ellipse 

1 = (l+d )[(1:7(702 	(7377)23 by Ed • 

Now b(d) is a strictly decreasing function of d 

1-2t for 0 < t < 1/3. However 17 is zero when d = 	, 

which lies in the range -1 < d < 3 only when 

1 < t </3. In addition, a(d) decreases if d 

and a(d) increases if d > 1;2t . 

1 -2t 
t ' 
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Consequently, if 0 < t < -15-  , a(d) and b(d) are 

both decreasing, and so 	() 	Ed  = E3  . Thus 
_1<d<3 

points in the coefficient body satisfy the inequality: 

(1.9) 1 > 

1 < t < However, if 7   

(1-;t 	)2]  

, the minimum value of 

a(d) is all-2t) = 	Then, as above, points 

(x,y) in the coefficient body belong to 	Ed , over 

12t 1 
5 5  

	

d < 3. It is clear that, for 	< t < 1/3, the 

cros.s- section is not a single ellipse. 

1 Moreover, if 0 < t < 7  , the circle: 

(1.10) 	x2 	y2 = (41L)2 

1 lies in the coefficient body; and if 7  < t < 1/3, 

so does the ellipse: 

x2 	4v2  (1.11) 	1 - 	+ 4t(1-t) 	(1- 	. 3t)2  

Also, if 0 < t <' the maximum value of (x2+y2) 
- -  

1 occurs when y=0, x = *(1+3t); and for 7 < t < 5  , 

the maximum value of (x2+y2) occurs when y=0, 

x = 2:rt(1-t)`. Accordingly, for all t we see that 

l
a2  15 t18/9, with equality only for t = 1/3  and real 

a2  • 
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Vie have now proved: 

Theorem 3.1.2. Suppose p3(z) = z + a2z
2 	a3

z3 where 

a3 
is real and positive, and a2 = x + iy. Then: 

(a) 1  For 0 	a3 	7  , p3(z)c..7. P3  iff: 

1 	X 

W 	
(

3 
)2 + 'I-5a3' 

If 1 — < a 
5  

a
3 3 , P3(z)P iff the inequality (1.8) 

is satisfied for all d such that (1 -2a3 )/a3  < d < 3; 

in particular, p3(z)(E P3  if: 

x2 	4 2 
1 > 4a3(1-8,3)  

(1-5a3)
2 

 

(b) When a2  is real, p3(z)  E P3  iff: 

1 2(1+5a3) for 0 < a3 	7  . 

1 2tra3(1-a3 ) for  a3  < 1 2 

    

(c) If p3(z) 	P3  then I a2 J  < f/8/9'  with equality 

8 	I only for p3(z) = z 	4-- 9  z-,-,  + 5  z3 

Note. Many of the results in this section have been 

established recently [4], under a different normalisation 

of p3(z). This other method, however, fails to give 

the results of the sections to follow. 
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2. 	Coefficient Regions for a subclass of P4. 

Due to the complexity of the situation, we 

restrict ourselves to the polynomials in P4  having 

1 a4 7  , since this is the most interesting subclass 

of P4. 

Hence, by Theorem 2.1.1, we consider polynomials of the 

form: 

4 
p4(z) = z + az2  + 	7z3  + 

This polynomial (E  P4  iff the equation: 

1 + a sin29 	2 	sin39 2 . sin4q x3  = 0,  Fra-u  x + 5  a gya-ig X + Tgyo 

1 + 2acx + 	67 (42_1)x2 	.(2c2_1)x3 = 0 
(2.1) 

or: 

7c 
has no roots in ix l< 1 for 0 < G < 7  , 0 < c = cosQ < 1, 

by Theorem 1.2.2. Then, by Cohn's Rule, a necessary and 

sufficient condition for p4(z) E  P4  is that rli(x,c) 

has no zeros in ixl < 1, where: 

= 1 - 2acx + 7 (4c2-1)x2  

—c(2c2-1)[c(2c2-1) + 4a(4c2-1)x + 27cx2] 

 

= (1-c2) (1+4c4) + 4ac(1+4c2)x 

+ 7.(6c2-1)x2 
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or, alternatively, that: 

(2.2) /2(x,c) = (1+4c4) + 4ac(1+4c2)x + 4a'(6c2-1)x2  

has no zeros ink i< 1 for 0 < c < 1 . In that case: 

< ___--- 1+4c4  4ia 1 	 (0 < c < 1, 024) 
1602-11 

= If(02)  I 	
say . 

Now if f(x) = 4x6x-1 ' 2+1 	then f' (x) = 0 when x = 6(144F10) 

in the range 0 < x < 1. Hence: 

If(1412)1) 

= Min( 1 , 1 , 9-(1 + J10)) 
2 = 	(1 + J10) , and so: 

< 7  (1 + trio). (2.3 ) 	
l a  

2 I a  15.  Min(lf(o)1 1  if(1)1, 

Now let us return to (2.2), assuming that la I< 4 (1 + ,f-10), 

and suppose that $2(x,c) has no zeros in Ix! < 1 for 
2 / 1T0 . 

0 < c < 1 , 0 	 Applying Cohn's Rule again 

to /2(x,c) , we find that: 

/3(x,c) = (1+404)2  - 9la12(6c2-1)2  

+ 3 c(4c2+1)x[a(404+1) - 4a2(6c2-1)] 

can have no zeros in x l< 1 for 0-<c < 1. Thus: 



for 0 < c < 1. Substituting 

obtain that: 

— - — a2(6c2-1) 

C2 = in (2.4), we 
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(2.4) (404+1)2  - 	12  (6c2-1) 2 > 7 4  c(4c2+1) 
la 
 c4+1) 

 

a 

 

(2.5) < ,r57 

<(1-0-10) 7 	• 

  

Consequently, the polynomial P4(z)E P4 iff: 

(2.6) Min 
0<c<1 

(404+1)2  - 4Ia12(6c2-1)2  

c(4c2+1)1a(4c4+1) 4 72(6c2- 1)1 	1.  

and, in particular, if arg(a) is a multiple of 'Jt 
' 

(2.6) becomes: 

1+4c4 a(6c2-1) 
(2.7) Min   > 1 . 

0<c<1 	4 a c (402+1) 

Ue now consider the implications of (2.7) for real 

a. Suppose, first, that a is positive. Then 

P4(z)E P4  iff: 1 + 4c4  + 	a(6c2-1) > 4 ac(42+1) , 

for 0 < c < 1, i.e. 4 a(4c+1)(202-20+1) < (1+2c2)2  - (2c)2  

or: 

(2.8) 	< 202  
3 a 	4c + 

+ 2c 
 1
+ 1 = f(c) , 0 <c < 1 , 

since_ (4c+1) and (2c2-2c+1) are positive for 

0 < c < 1. Now we can easily show that ft(c) = 0 in 
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our range of c only when c = U5-1). Thus we 

require that: 

	

2 a 	< 	Min(f(o), f(1), f(L.74:1))) 

Min( 1, 1, 1  V5+1)) 

• 4(:f5+1), or: 
(2.9) 	a 	4 	(r:15+1) 	1.2145. 

Suppose, next, that a is negative, and let b = -a > 0. 

Then p4(z)EE P4  iff; 

4 1 + 4c4  - 	b(6c2-1) > 7  bc(4c2+1) 

2 i.e. 7  b(40-1)(2c2+2c+1) < (2c2+2c+1)(2c2-2c+1), 

for 0 < c < 1, and so iff: 

2c2-2c+1 	1 (2.10) 7  b 4c1 	4 - 	
for — < c < 1 , 

• g(c) , say, 

1 since if 0 < c 	T.  the condition is always satisfied. 
1 

Now we can easily show that g4 (c) = 0 in 7  < c < 1 
1 only when c = T  (d-5+1). Thus we require that: 

3 2 b b < Min (f(L41) , f(1)) 

• Min (TY) 4), or: 

(2.11) b < (rr5-1), 

Combining (2.9) and (2.11), we have: 
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4 
Theorem 3.2.1. Let p4(z) = z + a2z2 	a3z3  + E 4 
where a2 and a3 are real. Then p4(z)EE P4  iff: 

2 	 3 u 	3 a3  = -7  a2  , and: - 	(,T5-1) 	a2 	7  (if5-1-1). 

3
2- 	,.., Remark. It is clear that if p4(z) = z + az2 + -az3  +  4 

, 
E 	P4  then so do p4kze2 i/3)e-2W3and  p4 ( ze4'xi/3) • 
e-49ti/3  

Now suppose that, for all a satisfying la l< y, 

p4(z) (E P4 . We show that y = 8- (;15-1). By (2.6), we 

have, for all 0 < c < 1 , that: 

(1+4c4)2  - 	y2 (6c2-1)2  > 4 c(4c2+1)[Y(1+44) + 	Y2 (6c2-1)] 
1 for z- < c2  < 1 , since, for any such c , we can choose 

a, with la I = y , such that: 
2 la(1+4c4) - 	72(6c2_1) 1. y(1+4c4 	5  ) + 	y2  (6c2  -1). 

Thus: 

1+4c4 	y (6c2-1) > 4 yc (4.2+1), 	< c2 < 1 . This is 

equivalent to the condition: 

(2.12) 	y 2c2-2c+1 	1 
4c-1 ' 7 < c2  < 1 , 

(as in our previous calculations); and so, as before, we 

have that: y < 3 (15-1) (since 1(3+15) > 1). Clearly 8 
the value 'al= 4(rT5-1) is maximal only for 

59t arg a = 7  , 	-3— . 

Similarly, if 0 < c2  < 	, we have, from (2.6), that: 
(14.44)2 - 

	y2(6c2-1)2 > 
4  c(42+1)[y(1+44)  — y2(6.2_1)] 
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i.e. 1+4c4  + -.- y(6c2-1) > -45:- y c(4c2+1) 

2 	, 2c2  
3 	

+2c   i.e. 	' Y 1 	4c+1+1 for  0 < c2  < - 	- 7 • 

The minimum of 2024c+1
+20+1  is attained in (0, 1/T6) when 

= 1 (J-5_1) , and is  (tr5+1). Thus: y < 4 (t15+1). 
Consequently, we have proved: 

Theorem 3.2.2. If I a  I < 4 (1-53-  ) , then 
2 -- n 	,4 

p4(z) = z + azp  + -5  az-  + 	c.  P4  . 
The constant 38  (t15-1) is exact, and gives the 

maximum possible value of la I iff arg a = 	% _ 7  . 

	

We now find an estimate for the maximum value 	A 

of lal for which a polynomial p4(z) of the above form 

E P4. We require, by (2.6), that: 

(1+404)2  - 4I a12(6c2-1)2  
(2.13)   > 1 	3a(1+4c4)- 	(6c2-1) 

41a10(4c2+1) 

for 0 < c < 1. Let us denote the left and right hand 

sides of (2.13) by L and R respectively, Then, 

when c = 24(t.r5-1), L = 	(15-3,15) + 	(3tT5-5)72/a. 

If a = 	(:r5+1) , we have strict inequality in (2.13) 

4 unless c = 	(:r5-1) , in which case equality occurs. 

Suppose that L > (1+ E) R in (2.13) for 

1 ( 1c- 7 ('15-1)  I > 40. 	0 < 	< 1 ) for some fixed c  

positive E . We will vary a so slightly that always 

L > (1 + f) R in (2.13), for 0 < 0 < 1 , lc - 3-4V5-1)1 

4.0 
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Now let arg a vary slightly, so that a ---> a' , 
3 

a  I = l at 	"ET (lf5+1) 	Then, for lc - 1  (1.5-1)  I < 100 Y  
R is decreased, and L is unaltered. Thus (2.13), 

with a' in place of a , holds with strict inequality. 

Then for fixed arg a' 	we may increase 12.'1 to IbIl 

arg lot = arg at , so that (2.13) again holds, and we 

have equality in it for some c (with b' in place of 

a in (2.13)). 

Thus there exists some p4(z) E  P4  having 

lal > 	(T5+1) , i.e. A > 	(Pf5+1). Clearly we can, 

in a similar way to the above, always increase lal in 

p4(z) , unless equality occurs in (2.13) when one of 

the following conditions is satisfied: 

(a) 72/a  is real and negative, c2 1 r  • 
(b) 7.2/a  is real and positive, c2 .., 1 > 	• 

(c) C2  = 
1 (d) Equality occurs in (2.13) for some c2 < 7  , and 

(2.14) 

_ 	
-L. for some c2 > 7 , for the same value of a , lal = A. 

The maximum value of jai is attained in one of these 

cases, and gives equality in (2.13) for some value of c. 
1 (a) 	If 7.2/a  is real  and negative, c2  < r  , then, 

by (2.13), with 18.1= A, 

(1+404)2  - 
9 

 A2 (602-1)2  > -3 A0(4c2+1)[4c4+14(602-1)], 
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9 or A < 3 

2 • 
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i.e. 1+4c4  - 	A(6c2-1) > -4  Ac(4c2+1), 3 

2 	2c2  - 2c + 1 i.e. 	7  A 	 4c - 1 < 	= g(c), say, 

for 7  1 	1 41-6  ;  c < 	and equality occurs for some such / 

value of c. lie can easily show that, in this range of c, 

g(c) is a decreasing function of c, and so: 

2 A  < r  2c2  — 2c + 
c 1/,T6 

Thus we cannot have equality in (2.13) in the range of 

c given by (a), and so this case does not arise. 

(b.) 	If 72/a  is real and positive , c2  > 	, then, 

by (2.13), with la l = A, 

(1+4c4)2  - 	A2(6c2-1)2  > 	Ac(4c2+1)[1+4c4  - 	A(6c2-1)]. 

i.e. 1+4c4  + A(6c2-1) > 	Ac(4c2+i) 

2 	2c2  + 2c + 1  i.e. 	-5  A 	4c + 1 	- g(c) , say, 

for -- < c < 1 , and equality occurs for some such 

value of c. We can easily show that g(c) is an in-

creasing function of c in [4 1] , and so, as before, 

we require A <V-  ; ; also the case cannot occur since we 

cannot have equR1 1  ity in ]  
1 (c) 	If c2  = 7  when equality occurs in (2.13), then: 

1+4c4 = 7 4 	1 A c(4c2+1), c2  = 7  , 
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i.e. 

10 _ 4 
9 - 3 

A = 

A 5 	1 
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We now show that A < - 3 , and so case (c) 

cannot occur. Then we will have shown that: 

lies between 1.213 and 1.224 approx. The ex-

case in (2.14) is then (d). 
2 	1 The polynomial p4(z) = z + az2  + 7  az3  + 7 z4  

or A 

tremal 

Lemma. 

P4  if I a I= .4 • 

a = J 3  e-j-Q/3  . Then, by (2.13), 2 

(1+44)2  - #18-12(6c2-1)2 > 41a1c(4c2+1)11+4c4  - 4 . 11(6c2-1 a 

where 0 < c < 1. Putting x = c2  , 0 < x < 1 , and 

squaring both sides, we obtain: 

(1+4x2)4  - 4 (14.4x2)(6x....1)2 + 4 (6x-1)4 

8 
> 7  x(4x+1)2  (4X24.1)2 -1-34. X(4X-1-1)(6X-1)2 

16 - 77 117.x(4x+1)2(4x2+1)(6x-1)cosQ . 

This may be rewritten as: 

(2.15) (1+4x2)2[(1+4x2)2  - 3x(4x+1)2]
r x(4x+1)2, 

(4x2+1)(6x-1)cos8 

> (6x-1)2  [ 	x(4x+1)2 	9 (6x-1)2 	4 (1+4x2)] 

Proof. Suppose 

P4 E E4 iff:  

cannot belong to 
••••1111..••••••••••••• 
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Let us denote the left hand side of (2.15) by 

1 
Both sides of (2.15) have a zero at x = 1/6  . 

Since the right hand side has a double zero at x = 1/6  , 

and is positive near x = 1/6  , L1  must also have a 

double zero at x = 1/6  . It is easy to check that 

7 •r 3  7  . 

Substituting this value into Ll  , we find that: 

Li  = 47(4x2+1)(6x-1)2(48x4-112x3+232x2+140x+27). 

Consequently, we can take a factor (6x-1)2  out of 

(2.15); and so (2.15) holds iff: 

44x2+1)(48x4-112x3+232x2+140x+27) 7 
> 9x (4x+1)2 	# (6x-1)2 	4 (1+4x2), a 

which may be rewritten as: 

(4x2+1)(48x4-112x3+232x2+140x-9) 

> 48x (4x+1)2  - 12(6x-1)2  

12 [64x3  - 4x2  + 16x -1] 

12 (t6x-1)(4x2+1) , or as: 

(2.16) 48x4  — 112x3  + 232x2  - 52x + 3 > 0 

for 0 < x < 1 . 

But when x = 1 , the left hand side of (2.16) is 

easily shown to be negative. Thus (2.16) does not hold. 

Consequently p4(z) It P4 , 
and the lemma is proved. 

• 

the necessary condition for this is that cos8 = 
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We have now established: 

Theorem 3.2.3. Let p4(z) = z + az2  + 	76:z3 	 z4(E P44 	' 

and A = max  al 	Then: 

p4 

8  
3 - (J5 + 1) < A < ' 3 '  

3. 	Coefficient Regions for M1  and M2. 

It is obvious from Theorem 1.2.3 that pa(z) =i+az 1 

1v11 iff  1 al I 	1.  
1 Suppose that 112(z) = 7  + a1z + a2 - z2  4M2' By 

Theorem 2.1.1, al  = 0 if I a2 1 _ - 2. We now assume 

0 < a2  < 2 , and put c = cosQ. Then µ2 E M2  , by 

Theorem 1.2.3, iff: 
singe X3  a2 sin G 	a1x2 - 1 	= 	0 , or: 

(3.1) 2 ca2  x3 	+ a1x2 - 1 	= 	0 

has no roots in ( x l< 1 , for 0 < c = cosQ < 1 . 

Then, by Cohn's Rule, the same holds for pf(x08) = 0 

where: 

fgx,Q) -i'EE1 - a1x2  - 2ca2x3  + 2ca2(-2ca2  - F1x+x3) 

(3.2) = (1 - 4c2a22) - 2ca271x - alx2  . 

Thus I al 
< 1 - 4c2a22  , for 0 < c < 1 , and so: 

(3.3) 	Ia1 j < 1 - 4a22  . 
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Applying Cohn's Rule to fl(x,G) , we find that the 

polynomial: 

(l-402a22)[1-4c2a22-2ca2glx]+a,[-71-2ca2alx] 

has no zeros in I xl < 1 , and so: 

(l-4c2a22)2  - tail2 	I- 2ca9g1(1-4c2a22) 	2ca12a2 

(3.4) 	= 2a2cla1I. 11+a1(
al 

 /g1) - 4c2a22 
 

1 , 
for 0 < c < 1 . Hence: 

(1+Ia I-4c2a22)(1-la I-4c2a 
(3.5) 2a2lai1c < 	a 	

(0<c<1). 

I 1 + al( "l "/"g..1  ) 
4c2a22 I 

Suppose this holds for all tai l = y = y(a2) . Then 

2a2yc < 1 	y - 4c2a22  , or y < l-2ca2  for 0 < c < 1. 

Thus: 

(3.6) 	y < 	2a2  

Suppose, next, that A = max lad for a 
/12 

fixed value of real a2. We prove that A = 1 - 4a22  , 

by showing that p,2(z) = 1 + z(1-4a22)ei'°  + a2z2  M2  

This satisfies (3.3); and the result follows if it satis- 

fies (3.5). This is so if:- 

2 a2  'ail c 	< 	1+ 	 l -  4c2a22  

i.e. (2a2c-1)1all < 	1 - 4c2a22  0 

which is certainly true. Thus 112(z)  EE 112 , and  

A = 1 - 4a22  . 



Combining the above results, we have: 
1 Theorem 3.3.1. Let p2(z) = 7  + alz + a2z2 

(a) If µ2(z)(E M2  , then lal l < 1-41a2  

this estimate is exact. 

(b) If lad < 2 I and lad 	1-21a2 1, then 

l'2(z) E M2 • 

4. 	Coefficient Regions for M3. 

Again, owing to the complexity of the situation, 

we consider only polynomials in M3  of the form: 

113(z) = 1 + alz + a3z3, where a3  is real and posi- 

tive. By Theorem 1.2.3, IJ.3(z)EE M3  iff: 

a3 sin x4 + a1x2  - 1 = 0, and so: 
sin3G 

0 

(4.1) a3(4c2-1)x2  + a1x - 1 = 0 

have no roots in Ix l< 1, where 0 < Q < 

0 < c = cosig < 1. Clearly, from (4.1), we must have: 

(4.2) I a3  I 1 
3 

Applying Cohn's Rule to (4.1), we see that: 

a3(4c2-1)[a3(4c2-1)+71x] + [alx-1] = 0, 

i.e. a32.(4c2-1)?-1 + x[al+a371(4c2-1)] = 0 

has no roots in Ix 1 < 1, and so: 

2 

80. 

and 
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1 - a32  (4c2-1)"> 

  

al  + a3T1(4c2-1)I 
7 

al1.1 + a,(— ) al)(4c2-1), 
1 

( 4 .3 ) I 

for 0 < c < 1. Suppose, first, that (4.3) holds for 

all lad = y = y(a2). Then, from (4.3), we have that: 

(4.4) y < 1 - a3(4c2-1) 

and so: y < 1 - 3a3 	. 

for -1- < c < 1, 

We next find max lal
J 
 for a fixed positive a3. 

P,3 

By (4.3), this occurs when a1 is imaginary, and so when: 

l
a, i< 1 + a3(4c2-1), 0 < c < 1, or: 

(4.5) 	tai l< 1 - a3  . 

It is easily verified, using (4.3),that: 
1 µ3(z) = 7  + (1-a3)iz + a3z3 € M3  , and so the estimate 

(4.5) cannot be improved. 

We have now established: 

Theorem 3.4.1. 1  Let µ3(z) = 7  + alz + a3z3  

(a) If la3I < 1 - ' and la1  I < 1 - 30,31 , then µ3(z) 3 	- 	 

M3 ' 

(b) If 113(z)E M3  , then tai l 	1 - la3 1 , and this 

estimate is exact. 



82. 

Chapter 4. 	A Conjecture of Ilieff. 

'Every man has a right to utter what he thinks 

truth, and every other man has a right to knock him 

down for it' 

- Samuel Johnson. 

We will here prove the following special case of 

an (unpublished) conjecture of L. Ilieff for a poly-

nomial of degree n: 

Theorem 4.1. If all zeros of the cubic polynomial  

p3(z) lie in lz 1 < 1 , then at least one zero of 

p31(z) lies in or on the boundary of a circle of 

radius unity around each zero of p3(z) . 

The form of the conjecture for a polynomial of 

degree n is clear if we replace p3(z) by pn(z) in 

Theorem 4.1. We will give two proofs of the theorem, 

one depending on the Cohn Rule alone, and one which 

uses the theory of apolar polynomials. 

1. 	First proof of the theorem. 

This proof depends essentially on: 

Lemma 1. If f(S) = T + US + VS2  is non-zero in 
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S 5.  1 , then 

(1) I T 1 	V I , and 

(2) 1T12 
	1v12 	ITU-VU I. 

This is a very simple case of the well-known Cohn 

Rule (Theorem 1.3.1). 

Lemma 2. If Theorem 4.1 is false there exists a 

cubic polynomial having all its zeros on Izj = 1 

which the theorem is false. 

Proof. Suppose there exists a cubic polynomial p3(z) 

for which the theorem is false, which has its zeros 

zl, z2, z3  not all on 1z I= 1. 

(a) Then the smallest circle containing z1,  z2, 

z3  may have zi, z2, z3  on its boundary; suppose it 

has centre p ( p < 1) and radius R (R < 1). Then 

the cubic polynomial q3(z) = p3(%42) has all its 

zeros on lz f = 1, and the distances between zeros of 

the polynomial and its derivative have been magnified 

by a factor 1/R. Thus the theorem is false for q3(z) , 

which gives the required result. 

(b) Alternatively, the smallest circle containing 

z1, z2, z3 may have z1 and z2 (say) at opposite 

ends of a diameter, and z3 
inside the circle. 

for 
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As above, we may assume Izi l = 1z2 1 = 1 , 
I z3 < 1  

and, in fact, z1  = 1, z2  = -1. Then p3(z) = (z2-1)(z-a) 

does not satisfy the result of the theorem for some a 

with 'al < 1. Hence Lemma 2 will be proved once we 

have established: 

Lemma 3. Suppose  p(S) = S(S-2)(S-1-a) for iaI < 1. 

Then the theorem holds for p(S)  

Proof. We have: 

p'(S) = 3S2 	2(3+a)S + 2(1+a). 

Suppose that for some a, lal < 1 , p'(S) has no zeros 

in ISI < 1. Then, applying Lemma 1 with T = 2(1+a), 

U = -2(3 + a), V = 3, we deduce from (1) that 211+ai> 3. 

Hence certainly Re a > 0. Substituting in (2), we obtain: 

411+a12  - 9 > 12(1+7)2(3+a) - 3.2(3+71 

411+a1.13+a I - 613+a 1, 

and so 211+a1+ 3 > 213+al, since 211+a1- 3 > 0. 

Using the previous bound for 114a (, 6 > 213+4 which 

is impossible for 	Re a > 0. 

Also p'(S) 	has no zero in 	1S-1-al <1 	iff 

q(t) = 3t2  + 2t(1+2a-a2 ) + (a2-1) 	has none in 	Iti < 1 9 

which is not the case. Hence Lemma 3 is proved. 

Proof of the theorem. As discussed above, we may, without 

loss of generality, consider the polynomial: 
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(3) p(S) = S[1 + Aeil(l+S) + e211(1+S)2] 

with all its zeros on II+S I = 1 	where 0 < A < 2 , 

0 < X < 	. Thus: 

pt(S) = (1+Ae1d+e2ilf) + 2Seil(A+2e4) + 3e2141(  S2  

This has a zero in IS j< 1 iff: 

(4) pt(e-i S) = (1+Ae1 +e2j1) + 2(A+2e1 )S + 3S2  

also has a zero in IS l< 1. 

Suppose the theorem is false. Then there exist 

some A, g(  such that p' (e-11S) has no zero in I S < 1. 

Thus, applying Lemma 1 to the polynomial (4) with 

T = 1 + AeiX + e 	, U = 2(A+2e1X), V=3 , we deduce 

from (1) that: 

(5) A + 2 cos X > 3. 

	

Clearly this implies 1 < A < 2 	2 
< cos fl < I. 

Now let us use the following notation: 

(6) c = cos X 	d = 2c + A , where: 

(7) 3 < d < 4,* < c < 1,1 < d - 2c < 2 . 

Substituting in (2) and simplifying both sides, we obtain: 

-.12--(d2- 9) >jd2  - 3dc + (6c2-6) + i sin 0'  (6c-d)I. 

Squaring, expanding out the terms on the right, and 

rearranging, we have: 

(8) f(c,d) < 0 , where: 



86. 

f(c,d) = (i d4 	;22  d2  + §-471) + 6cd(4-d2) + 4c'(5d2-9)-24c3d. 

d) (c f - d
1  
) 	, Now we define g(c,d) = 	f(1, 	if c / 1 y 
- C 

ac f(1 d) - if c = 1 . 

  

Then, for those (c,d) satisfying (7), we have: 

(9) g(c,d) = 6d(4-d2) + 4(1+c)(5d2-9) - 24d(l+c+c2). 

It is easily verified that 77  g(c,d) is zero 

only when c = (5d2-6d-9)/12d and that this point does 

not satisfy the last condition in (7). Let V be the 

region of variability of the point (c,d) subject to (7). 

In V, 4-z. is non-zero, and so has the same sign as cc 

4 (1,4) = -4. Thus g(c,d) is a strictly decreasing 
function of c for fixed d , and so is always strictly 

less than its value when 1 = d - 2c (from (7)); hence 

in V: g(c,d) < 	max 	g(c, 1+2c) 
< c < 1 

= 	max 	[-4(1+c)(1-2c)2] = 0 . 
< c < 1 

Consequently g(c,d) < 0 in V , and f(1,d) < f(c,d) 

for c / 1; so if (8) is satisfied anywhere in V, it 

is satisfied when c=1. However: 

f(1,d) = 	d4  - 6d3  + 21  d2 -4
1  

 is easily shown to 

be a strictly increasing function of d, and so 

f(1,d) > f(1,3) = 0 for d satisfying (7). Therefore 
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f(c0) > 0 on V , which is a contradiction. Hence 

Theorem 4.1 is proved. 

Note 1. An application of Cohn's Rule similar to 

Lemma 1 shows that if p(S) is given by (3), then 

p'(S) is non-zero in (S I < 1 only for that poly-

nomial p(S) corresponding to the point (c=1,d=3) 

namely p(S) = (1+S)3  - 1. 

Note 2. The second proof, using results from the 

theory of apolar polynomials, is much shorter. The 

first proof, on the other hand, depends only on Lemma 1 

(which is a simple deduction from Rouche's theorem), 

and so is of independent interest. 

2. 	Second proof of  the theorem [9]. 

This proof depends on Theorem 1.7.2, which we 

restate as: 

Lemma 4. Let zl, z2, • • • y zn be a system of numbers 

which satisfy the convolution  equation: 

A(zi, .. • 9 Zn) 	ao  So  + a1 s1 + 	+ an sn = 0 

associated with the polynomial: 

A(z) 	ao + ( 
n 
1 a1z + 	+ anz

n 

where so  = 1, s1 = z1 + z2 + 	+ zn 



s2  = ziz2  + zlz3  + 	+ zn_lzn, 	sn  = ziz2  

Then A(z) has at least one zero in each circular domain 

K which contains all the points zl, z2, 	zn  . 

We now proceed to the second: 

Proof of Theorem  4.1. Let p(z) = (z-wi)(z-w2)(z-w3) 

be a polynomial with all its zeros in lz 
 l< 1. The 

result will follow if we can show that the equation: 

A(z)r,aap'(z + w1) 

E453z2  + 2z(2w1-w2-w3) 	(wl-w2)(wl-w3) 

= 0 

has at least one root in Iz J < 1 . The convolution 

equation associated with A(z) is: 

A(z1, z2 ) 	3z1z2 
	(zi+z2)(2w1-w2-w3) 

	
( wl-w2 )( w1-w3 )  

= 0 . 

If 1, 	v-  are the roots of the equation z3-1=0 

then the numbers zi,z2  defined by: 

zi  = - 	(w1  +8w2  + vp2w3), 

1 z2  = - 7  (w1,+v2w2  +(e3) 

satisfy the equation A(zi,z2) = 0 , and I z11 < 1, 

l

z2  15.  1 . Hence A(z) has at least one zero inside 

the unit circle. 

Hence Theo rem 4.1 is again proved. 

88. 

• • • zn 
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Note. The Ilieff conjecture is trivially true when 

n=2. However nothing is known about its validity for 

n > 4. 



Theorem 5.2.118] Let ±(z) = akz  E S. 
k=1 

90. 

Chapter 5. 	Composition of Coefficients. 

'If the Romans had been obliged to learn Latin, 

they would never have found time to conquer the world' 

- Heine. 

Using the Grace Apolarity Theorem (1.7.1) and 

the Dieudonng Criterion, we may easily obtain: 

Theorem 5.1.[5] Let f(z) = z 	:akzk(s Pn  

k=2 

and g(z) = 1 + > n-1
) k z

k-1  be non-zero in 
k=2 	 

Iz I < 1. Then h(z) = z + a 	k 	
pn  	 ki9kz  (==. ' 

-- — 
The only other such theorem known is: 

Then f(z) is starlike univalent in lz 1 < 1 iff 

n  
1 	T n k  Vn(z) 	cn.) / 	4k

( 
 n+k) akz 	is starlike 

k=l 

univalent in 1 < 1 for all n. Vn  (z 	is the 

 

de la Vallee Poussin  mean of f(z). 

We will establish a number of composition 

theorems where the coefficients are generally 

larger than those produced by the above two theorems. 

One of our main results is: 
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Theorem 5.3. Let = Z 

   

ak  z
k c Pn  , 

  

k=2 

 

        

and all the zeros of g( z ) = 1 +/ 	bk  zk  lie in 
k=1 

Re z > En-1) . Then 
n  

z + 	ak  g(k-1)zk E Pn  
k=2 

 

Proof. By the Dieudonne Criterion, since Pn( z)  e Pn 
n-1  

sin(k+1)8 xk lie in all zeros of 1 + 	 a 
k=1' k+1 sin@ 

I x > 1 for any 8 E [0, 	. Then, by Theorem 1.7.5, 

4 	sin all zeros of 1 +)
n-1 

l ak+1 sinQ
k+1)  g(k)xk  lie in 

k=1 

I x > 1 , and so z + 	g(k-1)zk  E  Pn  
k=2 

Note. By applying Theorem 1.7.3, we may show that if 

pn i(z) has a zero on I z  = 1, so has the derivative 
n.  

of z + i akg(k-1)zk . 
k=2 

As a direct application of Theorem 5.3, we deduce: 

Theorem 5.4. Let pn(z) = 	14 akzk C Pn (al = 1) . 
k=1 

Then the following polynomials also belong to Pn  

n
n+1-2k k 

n
n-k k si ak(1 - —k.;1)zk  n-1 	"k`'   11771. akz  /  

k=1 	 k=1 	 k=1 

where Re v > 2(n-1). 

iife now establish the well-known theorem of 

n. 
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Kakeya: 

Theorem 5.5.[11,15] Let pn(z) = z + 

lz l< r If pnt(z) has no zeros in 

zk  
k=2 
then pn(z) 

is univalent in 

Proof. Suppose: 

f(z) = pnl(z) 	j(k+l)ak4azk 

k=0 

which has no zeros in I z < r , and: 
n-1  

z 	--)k=0 ( 
n
Tc ) 
1 sin k+1)9 k 

sin() 	(0 < 	< g( ) 	 i) 

Then g(z) has no zeros in Iz l< R , where R is 

the radius of univalency of: 
n-1 zk+1 (ni-c1) k+1 

	
1 H  (( l+z)n  - 1 

';;; 
A direct application of Definition 1.1.1 yields 

R = sin (a) . Hence, by Theorem 1.7.4, there are no 

zeros in lz I < r sin (i) of the function: 
n-1 sin(k+1)9  zk ak+1 sinG 
k=0 

and the result follows by the Dieudonne Criterion. 

Note. It is easy to show that r sin (a) is the radius 

of univalency only for pn(z) of the form: 

pn(z) = E1r  - n 	E.- ((1 + rz)n  - 1) 	(1E1= 1) • 

Similarly we may prove: 

) 	• 
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Theorem 5.6.[15] Let pn(z) = 
n  

z + kzk  . 
k=2  
< r, pn(z) is 

   

If z-1 pn(z) has no zeros in 

univalent in lz l< 	. 

Finally, we note that by a simple application 

of Theorem 1.7.3, we may also obtain 

Theorem 5.7. Let ) n i akzk G Pn  (al  = 1) 	Then 
k=1 

is univalent in z < 1 7  , where d(> 1) 

is the modulus of the smallest root of the equation 

(x - 1)n-1  = (LI : 1)xN-1  . 

akzk 

k=1 
kN 



1
= 1 , where 6  k =  N-k . Then: 

Chapter 6. The Theorem of Bernstein. 

'Much may be made of a Scotchman, if he be 

caught young' 

- Samuel Johnson. 

We now return to discuss Theorem 1.3.3 for 

special types of polynomials, especially in view 

of: 

Theorem 6.1.[13] Let p(z) be a polynomial of 

94. 

degree N with  all its zeros on 

M(l, p') = 	N M(1, p). 

From this we may easily deduce: 

Corollary. Let p(z) = ) 	 Ckz 	E 
k=0 

1 . Then: 

E N  1 9  

M(l, p') = 2 N.M(1, p). 

[Note. For conciseness, let us denote M(l, p') by 

M' , and M(1, p) by M .] 

Consequently it is of interest to find upper 

and lower bounds for Mt/NM for polynomials with 

coefficients of modulus unity, or simply ± 1. 

Theorem 6.2! Given any a > 0 , there is an integer N 
and polynomials of degree N with coefficients ± 1  
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such that (a) M'/NM < 	+ 

	

(b) MI/NM > 	 - 

Proof. Consider the polynomial: 

p(z) 1-zn  = 
1-z 

n 1-zan  z  1+z 

of degree N = n(l+a) - 1 , where an is an even 

integer. The terms in p(z) attain their maximum 

moduli n and an at z=1, z=-1 , and are 0(1) when 

Re z < 0 , Re z > 0 respectively (1z 1= 1). Hence: 

(6.1) M(1, p) = [n+0(1) ] max (1,a). 

Further: 

d 1-zR  
P'(z) = 77 [ frr + nzn-1  [  -zall  

l+z + z n d [ 1-za  
n 

dz 1+z 

The terms in p'(z) attain their maximum moduli 

2n2  [1+0(1)] , an2, ia2n -2  [1+0(1)] at z=1, z=-1 

z=-1 , and are 0(n) in Re z < 0 , Re z > 0 

Re z > 0 respectively (1z1 = 1). Hence: 

(6.2) 	M(1, 

Choosing 

obtain: 

p') 	= 2n2  

a 	such that 

[1+o(1) 

an = 

max (1, a2  

2[2(12-1)n] 

2a). 

, we 

ml1 7m  = - 777  + 0(1) 
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from (6.1) and (6.2); and, choosing a=1 and n 

even, we obtain: 

M' _ 3 
NM — 4 + o(1) • 

We may contrast Theorem 6.2 and the unique 

extremal polynominl in Theorem 1.3.3 with: 

Theorem 6.3. Gtreaa any 	> 0 	there is an integer 

H2E2221yEaaLals of degree  N with coefficients of 

modulus unity such that (a) MI/NM < 6  

(b) MI/NM > 1- a . 

Lemma. Let p(z)  be a polynomial of degree N , and  

aLi7L22111. Then M(1,10) = M(l,q) = M , and: 

M(1,p1 ) + M(1,q1 ) > NM . 	m-1  
Proof of Theorem 6.3. (a) Consider p(z) 	ilDr(z) 

r=0 
where° 

pr(Z) = Z a(r,n) 1-z. 
3(r'  n) , w = exp (2ti/m), 

 

1 - wrz 
(6.3) 

a(r,n) = m[nt[r/m], gr,n) = a(r+1,n) - a(r,n) 

Then p(z) is a polynomial of degree N = m[ntim] - 1 

with coefficients of modulus unity. We choose: 

(6.4) n = 25x M = 2X  p 

where x is a large positive integer. Consequently 
N  = 26x - 1 , a(r,n) = 25x,rr [l+o(1)], :3(r,  n) = 25x-1. 

[1+o(1)]/Jr for sufficiently large x. 



Firstly, we notice that; 
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(6.5) M 	Ip(1)1 	1130 (1)1 = 25x  

We now consider p' (z) , and so: 

a(r,n)zgr'n)-1(1-z (r'n))  
Pre(z) 	1 - wrz 

1 - z'  3(r n) 

(1 - wrz)2  

Then: 	M(1,pr') = 1Pr'(w-r)  I 

+ w rz  a(r,n) 

a(r,n)+3(r,n)-1 

a(r,n)p(r,n) + igr,n)D(r,n) - 1 

(6.6) 
	

210x-1 [2. + 0(1)] 

for large x, and: 

pi(z) 	O[a(r,n) + 3(r,n)]  
1 - wrz 	(1-w z)2rz)2  

0(25x,r.r) 
	0(1)  

1-wrz 	(1-wrz)2  

for arg(wrz) > 21c/M . Consequently: 

M(1, p '(w-reig)) 	0(25xq-r) 	0(1)  . 	+ 
r 	=  s/m 	(s/m)2  0<21r.s/M<G<27E(s+1)/m<qc 

(6.7) 	= 27x  0(ir)/s . 

From (6.6) and (6.7) we deduce that: 
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m-1.  
M' 27x 00m-I-r)/r < 2M(1, p'm-1) + 2) j   

r=1 
m-11  

. [210x + 27x ) 	i  0(log m . .rua)][1+0(1)] 
r=1 

= 210x [1 + o(1)] , and so: 

1/6  
MI/NM < 2-x  [1 + o(1)] = N 	[1 + o(1)] • 

This proves the first part of the theorem. 

(b) 	By the lemma, the polynomial zNp(1/z) satisfies 

the second part of the theorem. 
k-1  1 - zn  Note. The polynomial ) 	zrn 

1 	1 - w(k-1)11z 
also 

r=0 

satisfies the condition Ml/NM > 1 - o(1) , where 

w = exp (2zi/k) and k divides n . 
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