On univalent polynomials and related c¢lasses of functions.

David Alexander Brannan.



Chapter Index.

Preliminaries
Univalent polynomials of any degree

Univalent polynomials of small
degree

A conjecture of Ilieff
Composition of coefficients
The theorem of Bernstein

References

28

63
82
90
94
99

ii.



iii.

The behaviour of the coefficients of poly-
nomials pn(z) =z + agza Foees + anzn and
un(z) = % + bz ..+ bnzn univalent in ‘z' < 1,
0 < ]z{ < 1 respectively, has received surprisingly
little attention. After a survey of those significant
facts known about P, and (N bounds are established
for B9 bn’ By bn—l; several interesting results
are obtained for special types of univalent polynomials
when a, and bn are maximal. The correct order of
growth with n of ay (for fixed k), where the
Bieberbach conjecture is assumed to hold for k, is
established. The coefficient regions for p3, p4, Hos u3
are then studied, with complete results for P

We conclude with the proof of a special case of
a conjecture of L. Ilieff, some results from the theory
of apolar polynomials, and several examples connected
with a theorem of 5. Bernstein,

All published papers with significant results on

univalent polynomials appear in the list of references,

marked*.



iv,

Acknowledgements.

I would 1like to thank Professor J.G. Clunie for
introducing me to the analytic theory of polynomials
and univalent functions. This thesis could never have
reached completion without his unfailing help and
encouragement over a long pericd. It is impossible
to pick out anything in which his hand cannot be seen
clearly, but results marked % gre due in large measure
to Professor Clunie.

Finally T wish to thank Professor W.K. Hayman,
AW, Norton, M.B. Zaturska, and D. Hornblower, all of
whom have assisted in the birth of the concepts which

I have used.



Chapter 1. Preliminaries.

‘A day's work - getting started?.

- Gaelic prnverd

1. Introduction.

The class of polynomials univalent in lz, <1
has been studied relatively little, and surprisingly
few significant results are known concerning them.

Let us, first of all, introduce some of the
notation which we shall use.

Definition 1.1.1. A function f(z) is univalent in a

domain D if it is regular, single-vaglued, and does not

take any value more than once in D.

Definition 1.1.2. A function f(z) is said to belong

to the clags 8§ if it is of the form:

f(z) = z + E anzn

and is regular and univalent in |zl < 1.

Definition 1.1.3. A function f(z) is said to belong

to the class E:: if it is of the form:

f(z) = % + E anzn




and is regular and univalent in O < ‘z ‘( 1.

Definition 1.1.4. A polynomial pn(z) of the form:

- 2 n
pn(z) = 2z 4 8,z + ...+ 2z

which is univalent in ‘z‘ < 1 is said to belong to the

class Pn' The Pn+1 contains Pn’ since pn(z) is not

necessarily of proper degree n.

Definition 1.1.5. A function un(z) of the form:

-1 n
lJ—n(Z) - Z+alz+--ooo+anz

which is univalent in 0 < {z| < 1 is said 10 be a

meromorphic univalent polynomial of degree n, belonging

to the class Mn’

The following two theorems give important results
concerning infinite sequences of polynomials in Pn and

Mh respectively.

o0
Theorem 1.1.1[21] Let (fn(z)> , Dbe a uniformly

convergent sequence of functions regular and univalent

in a domain D, and let f{z) be the limit function of

the sequence. Then f(z) is either constant or univalent

in D.

Proof. By the Weierstrass Limit Theorem, f£(z) is
regular in D. If f(z) is not univalent in D, there

are two points z; and z, at which w = f(z) takes the



same value W Describe, with Zq and Z, as centres,
two circles which lie in D, do not overlap, and such
that f£(z) - Vo does not vanish on either circumference
(this is possible unless f(z) is a constant).

Let m be the lower bound of |f(z) - w, | on the
two circumferences. Then we can choose n so large that

f(z) - fn(z) i < m on the two circumferences. Hence,

by Rouche's theorem, the function:
fn(z) - W, = (f(z) - v, ) + (?n(z) - f(zi)

has as many zeros in the circles as f(z) - W i.e. at
least two. Hence fn(z) is not univalent, contrary to
hypothesis. This proves the theorem.

In a similar way, we may prove:

co
Theorem 1.1.2. Let <ﬁn(z)> 1 be a sequence of

functions of the form:

_ 1 ; : n

o
regular and univalent in O < ]z] < 1, and uniformly

convergent to a function f(z) in any compact subset

of 0 < Izl < 1. Then £(2) is regular and univalent

in 0 < |3z ‘ < 1,

In view of Theorem 1.1.1, any function univalent



in Iz |< 1 may be approximated arbitrarily closely by a
sequence of polynomials univalent in lz‘ <1 (for
example, renormalisations of partial sums of the original
function). Consequently, it might be expected that many
important results for the class S could be obtained as
the limiting cases of the corresponding results for Bn'
By Theorem 1.1.2, a similar relation holds between.'E:]
and Mn'

Unfortunately, few of the usual techniques for
dealing with univalent functions are of any value when
we consider polynomials in Pn or Mh. For example, the
application of the bilinear transformation to a poly-
nomial in Pn or Mh does not generally yield another
such polynomial. In addition, if pn(z)<e P, and
un(z)ts M, then pn(zz)é1~ and un(zz)% do not generally
belong to the classes Pn and Mn'

However, if pn(z) and un(z) are odd polynomials

kS
in P, and M , then pn(z‘*)“e: P, and

i w (z)
uﬂ(zg)z - 2 [ ~Eeme - L ] & Mn . No other
Z z?  z=0

really useful variation for Pn or Mﬁ is known at
present.

Furthermore, in dealing with S it is often help-
Z
(1-2)%

ful to guess that the Koebe function may be



extremal for whatever property we are investigating.
Unfortunately, there are no such convenient 'possible
extremals' known in P .

Consequently, it is necessary to develop new
techniques for dealing with the classes Pn and Mn
in order to obtain other than the simplest results.

Thus the consideration of the special subclasses
Pn nf S and Mh nf E::I does not appear to simplify
the task of establishing such things as, for example,
coefficients and maximum modulus estimates, but only
makes it more difficult. This means that, in general,
we do not expect to solve problems for S or 2:3 by
using the solutions of the corresponding problems for

P or Mn‘ As 2 result, we will study the classes P

n n

and Mn mainly for their own independent interest.

2. The Dieudonné Critericn.

A fundamental result concerning univalent
functions may be expressed in the following form:

Theorem 1,2.1.[21] A function w = f(z), regular on a

domain containing a simple closed rectifiable curve C

and its interior D, is univalent on D if it is univalent

on C.




(o)}
.

Proof. The curve C corresponds to a curve C' in the
w-plane. C' is closed, since f(z) is single-valued;
and it has no double points, since f(z) does not take
any value twice on C. Let D' be the region enclosed by
ct.

Clearly f(z) takes in D values other than those

on C, say at 2z Then if 430 denotes the variation

Oﬁ
round C,

%ﬁ zfsc arg [ £(z) - f(zo) ]

is equal to the number of zeros of f(z) - f(zo)
in D, by the Argument Principle. It is therefore a
positive integer, since there is at least one such zero.

But it is also equal to:

-]2;7-{ JAN g1 arg (w - wo)

where w, = f(zo); and this is either 0, if w, 1s outside

C'y or +1, if w_ is inside C', the sign depending on

o
the direction in which C! is described. Hence it is
equal to 1. Hence Vg lies inside C', C!' is described

in the positive direction, and f(z) takes the value

W just once in D. Thus D is mapped univalently onto D'.

Let us consider the radius of univalency R of

polynomials:



- 2 n
pn(z) = 2+ a,z® + ...+ a8z .

Then R is characterised, in view of Theorem 1.2.1, by
the fact that, on the circumference C [ ,z lz R],
the polynomial pn(z) assumes the same value o (say)
at at least two points, distinct or coincident, and
that no concentric circumference of smaller radius
possesses this property.

The second part of this remark is obvious. To
establish the first, it is sufficient to notice that,
if for each pnint Z on C, the root Zo of the equation
pn(z) - pn(zl) = 0 nearest t0 C always remains exterior
to C, the same ig true for the circumference !z‘ =R + €
(by continuity arguments) for a sufficiently small
positive number &€ . Thus pn(z) is then univalent
in Iz[ <R + £, which contradicts the definition of R.

Let x be the midpoint of the smaller arc on C
between the points 24 and Zos and let Zq and Zo subtend
an angle 20 at the origin. Then if, without loss of

io

generality, we put Zy = XeT, Z, = xe~ 18

, Ve may write

the equation pn(zl) = pn(zz) in the form:

_ Sin2e sz 8in3%06 n-l sinn®
#d(x,8) =1 + 85X SThg- t asX SIgpg- toree f BX ETTo

= 0.



This equation in x is the associated equation of the

polynomial pn(z).
We have, in fact,; established the following:

Theorem 1.2.2. (Dieudonné Criterion).[S] The radius

of univaleney of the polynomial pn(z) =7 + azzg + ...

+ anzn is equal to the radius of the largest circle,

centre the origin, which contains no root of the associ-

ated equation of pn(z):

_ g8in2e n-1l sinne _
ﬁ(x!@) =1 + a2X Sino + ... + anx -S-i?l-é-— = s
x

as © varies from 0O +to 2 .

Consequently, pn(z)es Pn iff no root of the

associa ted equation has modulus less than one for any

4

such o.
We can, similarly, establish the following:

Theorem 1.2.3., (Dieudonné Criterion). The radius of

univalency of the polynomial un(z) = % +aqz + .. anzn

is equal to the radius of the largest circle, centre the

origin, which contains no root of the associated equation

of un(z):

_ n+l sinne n sin(n-1)6 2 -
#(x,0) = a X St an X =5 cor +agx® ~ 1 =

T
as © wvaries from 0O 1o 2 .
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Consequently, un(z)eg M, 1ff no root of the
associated equation has modulus less than one for any
such ©.

Note. It is sufficient to consider almost all © in
Lo, %]; for if #(x,8) = 0 has no zeros in ’x ‘< 1
outside a set of © of measure zero (for example),
it has no zeros in IX t< 1 for any © in [0, %]

since the zeros of a polynomial are continuous functions

of its coefficients.

3. A miscellany of results concerning
polynomials.

First of all, we wish to establish a special
case of the well-known Cohn Rule [14], which plays

a fundamental role in most of our work.

Theorem 1.3.1. Suppose that ‘Col > ’Cn !. Then the
polynomial ¢
f(x) = €. +CiX + vecenan + o x?
0 1 n

(of degree n) has no zeros in |X ]< 1 iff neither

has the polynomial:

f1(x) = T (6 +Cyx + «.o + C x )=C (T +C 4% + ... + T x7)
n-1

(CT. ¢
%=0 ©°

k

i

(3.1) x ~ n Cn-k)X
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(of degree n-1).

Proof. Let us associate with f(x) the polynomiagl:

_.n= /1y _ = _n = n-1 -
F(x) = x* F (E) = T x + Cqx F oe.. + Cn
n
- ] i' 1
"‘ao ! (X" /-K-:])’
J=1

whose zeros are the inverses of the zeros of f(x) in
the circle |xl = 1. Thus any zero of f(x) on

ix l= 1 is also a zero of f7(x); and if f£(x) has

p zeros in ]xl > 1, then f£%(x) has p zeros in

'x 4( 1. Also:

f}’-..(ei@) - -60 l | t (ei@ _ 1/-}53)

inG n n
C e (-1) i
— —O — — (e—ll’lg - EJ)
Xl X2 o > e 0 Kn j=

— ein@ -f- (e-—ig)

and so:
lfx(eig)‘ = 'f(eig) l .
Consequently:

lcn fx(x)‘ < ’ 50 f(x) l (on|x|=1).
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Hence, by Rouchés theorem, 50 f(x) has as many zeros
in !X |< 1 as has ﬁo f(x) - Cnfx(x) = fl(X). Thus
the theorem is proved.

Theorem 1.3.1. appears to be the most powerful
available method for extracting information concerning

Pn and Mh from the Dieudonné Criterion, as we shall

o

see in Chapters 2 and 3.

Finally, we give a new proof of the well-known
Bernstein Theorem for polynomials in the unit circle.
This depends on:

@
Lemma.[21] Tet P(z) = _ az" be regular in |z|< 1,
= X=0

n n-1L
_ Z : k _ 1 z i
Sn(z) = = 8,z » and ca(z) ~ 5 L Sk(z)

then |P(z)] <M i |z|<1 iff |o(z)| <H

for all n and |zl L 1. 0
Theorem 1.3.3%3] Tet p(z) = E :akzk. Then:
. k=0

(3.9) M(1, Pﬁ) < n M(1, Pn)

with equality iff »p(z) = anzn.

n
Proof. Let g(z) = an(l/z) = E an_kzk .
k=0

Then M(1,p) = M(1,q). Ve now apply the lemma to

the (Pejer) means o of q(z). Clearly:
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n-1
_ n-I k
On—l(z) - 7 dn-Xk?
k=0
1
= 7 Zn pi(l/z>9
and so: M(1,p!') = =n M(l,on_l).

Applying the lemma, we obtain:

M(1,p') < n M(1,q)

n M(1l,p).

It is easy to determine the unique extremal p(z);

ia

for equality holds in the lemma iff TF(z) =e M.

4. Starlike and close-to-~convex functions.

We will find it convenient to discuss two special
subclasses of S and E , consisting of functions
which satisfy certain analytic and geometric conditions.

Definition 1.4.1.[8] A domain D in the w-plane is

said to be starlike with respect to a fixed point O

in D, if for any point P in D +the straight line

segment OP also lies in D.

If f(z) € 85, and maps lz] <1 onto a starlike
domain with respect to w = 0, we shall call £f(z)

starlike univalent. It is not difficult to establish



1.

the following:

®
Theorem 1.4.1.[8). Tet £(z) =z + E :ayzk, Then
k=2 =

£(z) is starlike univalent in |z } < 1 iff:

Re (zf'(z)/f(z)) > O (1z}<1).

®
Theorem 1.4.2.[8]. Tet f(z) =2 + z :akzk be
k=2

starlike univalent in |z | <1. Then Iant <n(n>2)),

Z
with equality iff £(z) = (7_ v where |af =1.

We now define a class of functions which con-

tains starlike functions as a special subclass.

[e0]
Definition 1.4.2.[12]. Tet f(z2) =2 +9 :akzk. Then
=2

f(z) is a close-to-convex function in 1zl < 1 iff it

maps each circle Jzl=1r <1 (g = relg) onto a simple

closed curve whose unit tangent vector T either

rotates in an anticlockwise direction 8o 6 increases,

or elge rotates clockwise in such a manner that the

veriation of arg T over all arcs of |z | = r exceeds

-Ky, a8 O increases.

We may express this analytically in the following

form:
[o0]

Theorem 1.4.3.[12]. Tet £(z) = z + 2 :akzk. Then
k=2
f(z) is close-to-convex in |z | < 1 iff there exists
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a function g(z) starlike univalent in |21 <1 such

that:

Re (zf'(z)/g(z)) > O (lz | <0).
Note. If £(z) 1is close-to-convex in ’zl <1, and
g(z) 1is a starlike univalent function in |z| {1 such
that Re(zf'(z)/g(=z)) > 0, we shall say that
f(z) € cTc(gl(z)).

5. Previous results concerning univalent
polynomials.,

In this section we will give a rapid survey
of those known results concerning Pn which will not
be proved in the following chapters. In view of the
simplicity of the criterion in Theorem 1.4.1l, many
of these results deal with univalent starlike poly-
nomials.

fos)
Theorem 1.5.1[1]. Iet f(z) = z + E anzn. Then
n=

f(z) is starlike univalent in |z | < 1 if
o)

E::jnWan’ < 1.

n==2

Proof. It is sufficient to establish that arg f(re ®)
is a non-decreasing function of 8, for 0 < r < 1.

Here:
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®
o i9y _ ¢ i n in
=5 arg f(re™~) = =5 arg (re™ + 2 a,r € ?)
[
% Al ¢
> =5 arg(re ") ‘—- Z;;;j a, =5 arg(xre
o
> 1 - z : n 'an'
n=2
> 0 .,

Hence the theorem is proved.

We now give three theorems for univalent poly-
nomials, which are easily generalised to multivalent
polynomials. The method gives best possible results,
and is of very wide agpplication.

n
Theorem 1.5.2.[16]. Let f(z) =z + z :akqu+l ’

k=]l —————

and let o (1 < i <n) be the zeros of the polynomial:
(5.1) 1 o+ E:::: 2,z = 0.

Let S be the smallest positive zero of fo'(x), where:

(5.2) fo(x) = x(x4 - §a1§ Y oee.. (%9 - [an] ).
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Then the polynomial f(z) is starlike univalent in
lz |<s.
Proof. Let us put:

s

[

1

arg f£(z)
arg a, + 0 + E :arg(z* - o
ie

where 2z = re (r < 8) and study the variation of

i

(5.3)

e s

P as 6 increases from O to 2x. Ve also put:

bt

=a. u , u-= peiﬂ ,ﬁ+'= arg(u-1).
Consequently:
arg(z% - a, ) = argo, + arg(u-1), and:
4 = q0 - argoy ad = qdo

It is easy to show that:

: , 2
tan __p s%n45 dd- _p® - p cos d
\}, P cosy- 1" dg 02 -2p cos g +1 ’

and so:
P d
-5 Ty ST
Hence, for rd < T 'ak' , We have:
(5.4) - a4 [arg(z%a, )] < _ar®
) @ - db . "k = o o4rd
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If also 2 < min r in (5.3) and (5.4), we may at

k
once deduce that:
A 0 .
%21_2:'_&_«
k=1 rk—rq
n
q-1
=r51:_ gr_
k=1 rk--r(1
rfo'(r)

for r < 3. Henoe'EEjis an increasing function of ©
for r < 8.

Now suppose that ta‘ < 3. Then arglf(z) - f(a)]
increases from O to 2x as © increases from O to
ox. Consequently f(z) - f(a) has only one zero z=a
in the circle |z} < S. Thus we have proved that f(z)
igs starlike univalent in lz | < s.

Using arguments similar to the above, we may
egstablish:

Theorem 1.5.3[17], Let:s

f(z) = z(z-al)ul....(z—an)un(z—Bl)vl...(z—?m)vm 5

where ¢ and -1)Y are both positive, T = ‘akl (1§k§n),

Ty = ‘Ssl (1<s<m), and g = ﬁig (rk,ts). Let S ©be the
b
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smallest positive zero of fo'(x), where:

fo(X) = X(X—-rl)lvtl...(X—-J:'n)pt'n(xﬂ;l)vl...(X+Jﬁm)vm .

Then f(z) is starlike univalent in Alzl < min(g,8).

As an application of this theorem, we may deduce:

Theorem 1.5.4. Let f(z) = z/(z—Bl)(z—Bz), where

Iﬁlj = isz’ = 1. Then f(z) is starlike univalent

in l Z l< L.

Purthermore, similar asrguments may be used to
establish the following two well-known theorems.

Theorem 1.5.5.[2). Let p(z) be a polynomial of

degree mn with no zeros in Iz f<1. If a is

real snd non-zero, then the function f(z) = z[p(z)]a/n

is starlike univalent in ]z 4( 1 if =2 £ a < 0Oy

1
and in lzl < ll+a" otherwise, If -2 < a < 0,

f(z) has the minimum radius of starlikeness and

univalency iff p(z) has at least one zero on |z | = 1;

otherwise the minimum is attained iff all zeros of

p(z) lie at one point on Iz} =1.

Theorem 1.5.6.[2]. TLet p(z) be a polynomial of degree

(m + n), mm #Z 0, and let Ff(z) = zp(z). Then, if m

zeros of p(z) lie in the annulus 0 < 4 < tzj < D,

and the remaining n 2zeros in | z | > Dy the minimum

rsdii of starlikeness and univalency of f(z) are
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._yo D
l—yo

s Where Yo is the greater root of the equation:

n(d-D)y*® + (d(1-n) - D(1+m))y - 4 = O.

This minimum is attained iff m zeros of 7p(z) 1lie at

one point on |z| =d, and n at one point on }zl = D,

where the concentration points are collinear with the

origin, and on the same side of it.

Most of the significant results concerning the
coefficients of polynomials in P, are consequences
of the work of Dieudonné. The estimates established
in his thesis have not been improved in the last thirty
years, and so it is of value to quote them in full.
Theorem 1.5.7.[5). Tet p,(z) = z + E;%;:akzk. Then

pn(z) is starlike univalent in ‘zf < R, where R

is the positive root of the eguation:

n

1= =2:k | 2 | 1 - o

This follows at once from Theorem 1.2.2 and Pellet's
Theorem.

As an application of the Dieudonné criterion which
we have already established (Theorem 1.2.2) and a well-
known criterion of Schur [20] that a polynomial has no

. . . . s .
zeros in the uni+t disc, Dieudonne established:

n
Theorem 1.5.8.[5]. TLet p (z2) =2 + 7 'akzk e P,
' k=2
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(25
Then, if 2 {m<n,

nﬁianiﬁ T CT L ¢ DLl E L L

Consequently lanl < Tra o, ,anrl ' <N17/(n-1), and

la,_o ] < 798/ (n-2).

Using standard inequalities for the coefficients

of non-negative trigonometric polynomigls [7], and the

Dieudonné criterion, it is easy to establish:

n
Theorem 1.5.9.[5]. TLet pn(z) =2 + z :akzke P,
=2

7
where the 8, are real. Then }azl <2 oos(ﬁ:?) < 2,

las - 1] <2, and fay - o, | <2 for k> 4. In

particular, a1 l <k (2 <k <n).

Since the last estimate is independent of n,
we deduce that the well-known Bieberbach conjecture
holds for funections in S with real coefficgients,

by letting n —> o . n

_ 2k+1
Theorem 1.5.10.[5]. Let Popep(2) =2 + é;::b2k+1 z

< Pn, where the bk are real. Then ’b2k+1‘ < 2, and

|b2k+1‘ * lb2k—1‘ <2 (2 <k <.

Using the Dieudonné criterion, and lengthy geometric

arguments, we may also establish:

Theorem 1.5.11.[5]. The radius of univalency of the
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trinomial f(z,a) = z + z° + az® (ndp) is at most
=
p Pt ir (p-1) does not divide (n-1), and
A
[sin(%)/sin(%%)]p_l if n-1=nh(p - 1). The maximum

is attained in the first case (with a = 0), and in the

second case when h 1s above a certain integer

h (p) < 12.

It is clear that polynomials in Pn are bounded
functions in ‘z‘ < 1, and so we might expect to find
a useful relationship between the classes of bounded
functions and Pn. In this direction, we have Theorem

2.3.1.; and the following:
@

Theorem 1.5.12.[5]. Tet f£(z) = z + % :akzk be a
- (:

B )

regular function in |z | < 1, bounded by M. Then f£(z)

is starlike univalent in:

~

lz ] < wm-e1 .

Finally, let us state the well-known ' area
principle’ for functions in 2 : . Since Mﬁ is a
subset of z : sy and lim Mﬁ = E : s this gives
us some idea of the magnitude of the coefficients of

polynomials in M, (by Theorem 1.1.1).

@D
Theorem 1.5.13.[8]. TLet £(z) =2 + Y et €} .
=
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03]
2 . . : -
Therfmznzl: n lan‘ < 1, with equality iff |a;| = 1,
8y = Otr>1)
6. Sections of Power 3Series.

Tt is natural to consider whether renormalisa-
tions of sections of some of the standard power series
in univalent function theory are extremal polynomials
in Pn in any sense. Consequently we consider the

radii of starlikeness and univalency of sections of
z

?—mw7? and some associated polynomials.
1l-2z)"~

z
=% and

Theorem 1.6.1. The partial sums sn(z) =z j—

of the function T%? are starlike univalent in

|z| <1 - l%gg (1 + o(1)). In general the coefficient

of i%ﬁg cannot be replaced by any smaller constant.

Proof. Clearly:

11
Z Sy (Z>, _ 1 - (n+l)z” 4 naB+L
Sn (z) (1-2) (1-2")
and so, if C, = (z : {z\ =1 - él%gg), we have:
z s.'(2) 1-A
_ 1+ 0(m ) .
5 ET T TTTC: on CA , ands
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z s._"(z)
n 1 1-A
Re[ - —(_ZT:’ > & + 0(n } on Cy

n
Hence, by Theorem 1.4.1, sn(z} is starlike univalent
inside and on CA for all A > 1 and sufficiently
large n. The last part of the result follows since
sn’(z) is real for Imz = O, sn‘(O) =1, sn‘(—l + l%gﬂ) <0
for sufficiently large n ; consequently sn'(z) =0 at
some point inside Cl for sufficiently large n.

In a similar way we may establish:

bed

~

n
Theorem 1.6.2. The polynomial z(%ﬁgm) is starlike

univalent in &z] <1~ 2 ;%gg (L + o(1)). The constant

2 cannot be replaced by any smaller constant.

Theorem 1.6.35. The partial sums:

n+2 n+3

n_z- (n+2)z + (n+l)z
(1 - 2)?

sn(z) =3z + 2z° + ... + nz

of the function are starlike univalent in

(1-2)"

'z‘ <1 -3 1%52 (1 + o(1)). The constant 3 cannot

be replaced by any smaller constant.

Proof. The result may be established as in Theorem 1.6.1.
However we also give a new method of establishing the
radius of univalency of such polynomials using the

. 7 . .
Dieudonne Criterion. Now:

n_ 7 - (n+2)zn+2 + (n+1)zn+3

Z o+ 22° + ... + 0z = -
(1 - 2z)°




If we now suppose that x

have:

(6.1) x sin 6 + 2x® sin 20 +

xelg—(n+2)xn+

is real,

n
. + nx

and 2

sin no

n+aei(n+3)9

2ei(n+2)9+(n+1)x

Im

(

Z-Xe

1

n+2 i
T e

Im [Xeig—(n+2)x

g

].—J(:eig)‘2

(n+2)0 n+3€i(n+3)91.

+(n+l)x
[]_--Xe"ig}‘3

ik

n+2

(1-x?)sin 8 - (n+2)sin(n+2)0 x

n+1

n+2

+ (n+1l)sin(n+3)6 x

- (n+2)sin no 43

+ (n+1l)sin(n+l)6 x

b

_ X singo
I
19‘4

g

[(1-x?) +

P = ‘l—xe

+ 2(n+2)sin(n+l)0 x

- 2(n+l)sin(n+2)0 i +3

n+4

(x,n,0)], say, where

Since (6.1) and (6.2) are identical for real x, they

are identical also for complex X.

Then, by the

Dieudonng Criterion, the radius of univalency of sn(z)

is the modulus of the smallest zeroc of:

n-1l sin no

sin 29
sino

Sin0 + nx

1 + 2x +
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and so of: (1-x°) + g(x,n;@).
If ¢ = (x: |x|=1 -3 1288,

>

(o)

ll - x7? 1%53 (1+0(1)) and 'g(x,ng@)i < %(1+o(1))

for x & C. Hence, by Rouchfs theorem, (1-x2?)+g(%;n,0)
has the same number of zeros in C as (1-x?), i.e. none,
for sufficiently large n. Finally, it ig easy to show
that sn'(z) has a zero inside iz |= 1 -4 l%gﬁ for
any A < 3 and sufficiently large n, and so the theorem
is proved.

We may apply both the above methods to establish:

n
Theorem 1.6.4. The polynomial E :k %E% zk

k=1

ig star-

like univalent in |z]< 1 - 2 2282 (1 + o(1)). Ihe

constant 2 cannot be replaced by any smaller constant.

The preceding four theorems may be compared with:

th

Theorem 1.6.5.[19]. TLet s,(z) be the n"" partial

sum of the function =z + akzk which is starlike

=2
univalent in |z| <1, Then sn(z) is starlike uni-

valent in lzl <1 -3 l%gﬂ (1 + o(1)).

Finally, we mention:

Theorem 1.6.6. The nth

1+z
1-%

partial sum of the function

has positive real part in ‘zl <1- l%%ﬁ for
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1o
sufficiently large n. The coefficient of n cannot

be replaced by any smaller constant.

This may be proved by the CA—method of Theorem
1.6.1, and replaces the circle of radius (1 -2 1%52)

of Robertson [19].

7. Apolar Polyrnomials.

n
Definition 1.7.1. Two polynomials f£(z) = z :(E) akzk
k=0 =—————

n
and g(z) = ; (2) bkzk are said to be apolar if:
k=0
n
n N
2 :(k) akbn-k("l) = 0.
k=0

The importance of apolar polynomials stems from:

Theorem 1.7.1. (Grace's Theorem)[14]. If f(z) and

g(z) are apolar polynomials, and if one of them has

all its zeros in a circular region C, then the other

will have at least one zero in C.

This may be applied in one direction to give:

Theorenm 1.7.2,[14]. Let A(z’l,z‘z, eeey 2% ) Dbe a

Il

linear symmetric function in the variables z‘l,z'g,

veeg2? and let C be a circular region containing

n’

the points Zq3Zps oy Therin C +there exists at
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least one point 2z such that A(z,z,...,z)=A(zl,zz,...,zn)°

Applying Grace¥s Theorem in a different direction,
we may establish:

Theorem 1.7.3. (Szegd Convolution Theorem).[14] Let

n 4}
k k
£(z) = E:: () 8z > &(z) = ; O:(ﬁ) bz, and

h(z) = } :( a5 by .. If all the zeros of f(z) 1lie
k=0
in a circular region G, then every zeroc H of h(z) has

the form H = - ¢G, where ¢ 1is a suitable point in

C and G is a zero of g(z)

This has the following simple corollary:

Theorem 1.7.4.[14]. Iet f(z), e(z), h(z) be defined

as in Theorem 1.7.3. If all the zeros of f(z), g(z)

lie in lz }Z Rl’RZ respectively, then all zeros of

h(z) lie in |z |2 RyR,.

A lengthy and complicated application of Theorenm

1.7.3, using polar derivatives, yields:

n
Theorem 1.7.5.[14]. Let f(z) = 5 akzk 5

Iz=0

n
glz) = % : b, z , and h(z) % é akg(k)zk.
—— k= (=0 =

If all the zeros of f£(z), g(z) 1lie in 'z‘ > R,

Re z > % respectively, then all the zeros of h(z) 1lie

in |z |> R,
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Chapter 2. Univalent polynomials of arbitrary degree

'Because 1t dig theret?

- G.IL. Mallory.

1. A particular subclass of Pn and Mn.

n
If the polynomial p (2) =2z + }:3 akzke Py o0
1=2

pn‘(z) cannot vanish in ‘z | <1 (an elementary con-

sequence of univalency). Consequently tan‘ S %.
. . 1 B, ok :
Similarly, if un(z) =Z* D b, z" & M, then
k=1
lbh] < %. In this section we will consider polynomials
. _ - noo.., ok
in Pn and Mﬁ wherc the coefficient of 2z is 5

Apart from the intrinsic interest of the results which
we will obtain for such polynomials, we will indicate,
in the next section, another reason for the importance

of this particular subclass of Pn and Mh.

n-1

If pn(z) =z + a.kzk + ﬁl- zne P, it is

k=2
natural to wonder what conditions on the coefficients
8, are either necessary or sufficient for the univalency,
closec-to-convexity, or the starlikeness in ]z !< 1 of

p,(2z). By elementary methods, it is clear that the
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polynomial =z + % z% is univalent and stariike in
!zl < 1. Some idea of the situation can be obtained

from the following:

- 2 n-1
Theorem 2.1.1. Let pn(z) =2 + a,z” + ... ta, 1B

(a) If Pn(Z)QE P, Then:

(n-X)a, ;. = (k+l)z, ., (0 <k < n-1).

(b) If (n-k)a, ;. = (k+l)a,_;, and a5 is

sufficiently small, 1 < k < n-1, then pn(z)gg'Pn.

Proof (a) If pn(z)e; Py and a = % , then

n-1
pn'(z) =1 + E kakzk—l + 221 pust have all its
k=2

Zeros on ’Z i= l. Since the zeros of pn‘(z) are
then inverse in lz’ = 1, the required condition
on the coefficients must certainly be satisfied.

(b) The polynomial pn(z)égiPn iff:

n-2

_ sin(k+1)8 _k sin n6  _n-1 _
o+ j;:;jak+1 sing6 ¥ t gEme* =0

has no roots in tx ;< 1, for 0 < @ < =/2.
Applying Cohn's Rule to this equation, since
‘sin ne/n sin o l < 1 for 0< 0K % , we see
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that pn(z)éz P iff:

n

n-2

_ sinn@, s k sin(k+1)8 -
0 =1 - (3550 +§ :X (e 41 5300 T 8n-x
k=
sinn@sin(n—k)g)
n sin®e

n-2
_ (81nn9 . g (sin(k+l)9 k+1 sinn@sin(n-k)&
- n31n@ k+1 siné n-k°* 2g ’

= sin®

has no roots in ‘X‘ <1 for 0< 0 <=/2.

Now each coefficient of =x*(0 < r < n-2) has a double
zero at ©=0, and the constant is always positive other-
wise. Consequently, if all the coefficients of xT

(1 < r < n-2) are chosen sufficiently small, then

(by Rouché% theorem) this equation has the same number
of roots in [X |< 1 as has 1 - (sinn8/nsind)® = 0,
i.e. none. Hence pn(z)egiRn

A similar result holds for Mn:

1 -1 1
Theorem 2.1.2. TLet pn(z) ==+ a2 + ... an_lzn + = z,
(a) If p,e M, , then:
(n—k)an_ = —(k- l)ak 1 (1 <k <mn).
In particular -1 = 0.
(b) If (n-k)a, , = -(k-1)a, 5 (1 <k <n), and

a;. is chosen sufficiently small (1 <k < n-2), then
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un(z)egﬂkn .

In addition, it is easy to show that (% + %“)

is starlike in O < |z{ < 1,

In 1915, Alexander [1] showed that the polynomials
n

1
k
z i 1k E z . .
= 7 and wim—=  were both univalent in
=T I =0 2k+1

izl < 1. We put this result in a more general setting
in the following: n
Theorem 2.1.5. Let pn(z) =z +§ : akzk , and

k=2

n
. E : 2k+1
Apy,(2) = 2 + Do ” .

(a) It kak decreases as k increases, then
LN

p,(z) & CIC (555)

(b) If (2k+1)b decreases as X increases, then

2k+1

Z }.

Uonsy € OTC

o

l—z=

Proof We have that:

n
pn'(z) = 1 + E kakzk_l , and so:
k=2
n-—-1
k

(1-2) pn‘(z) = 1 + (1—2a2)z + E [kak—(k+l)ak+l}z

k=2 n

- na_z

n



. Consequently, since kak is decreasing, we see that:

n-1
Re <kl—z)pn’(z)> > 1 - (l~2a2) - E [kak - (k+l)ak+l]
z <1 =
- na,

= 0.

This may be written in the form:

( z p,'(2)

m) > 0 in iZlSl.

Consequently, by Theorem 1.4.%, the polynomial pn(z)eg CTC

Re

(%5 -

similarly q,(z)e CIC ( Zz).

1-2
ol Zk n Z2k+1
Corollary. The polynomials 5 'E" and. 5 : SRT

are both univalent and close-to-convex in lz Lﬂ 1.

This is an immediate deduction from Theorem 2.1.3.

In spite of Theorems 2.1.1 and 2.1.3, and in
spite of what might be regarded as a reasonable ex-
tension of Theorem 2.1.3%, the following astounding
result holds for starlike polynomials in Pn with
8, = 1/h.

Theorem 2.1.4%. Let p, (2) = z + a,2° n-1

+ ... + &

& P,. Then p (z) 1is starlike in |z |<1 iff




a,, =0 (2 <k <n-1)
Proof. If a, = Az = e = 8y 4 = 0, it is easy to

show that pn(z) is, in fact, starlike in ‘z ‘< 1.
We therefore assume that pn(z) is starlike in

0

|1

]z ’( 1, and then show that this implies that 8y
(2 <k < n-1).
Suppose p,(z) is starlike in |z¥ < 1. Then,

by Theorem 1.4.1, we have that:

-1
1+ 22,2 + ooues + g an'(z)
1 + BpZ * aeoon + % zn:1 pn[z:

p,'(z)

1Y
= RE (h(z) = nz )

has positive real part in iz ‘( 1. Since pn(z)eg P

we have that (k+l)ak+1 = (n——k)an_k (L <k < n-2)

by Theorem 2.1.1. Consequently, on ‘z! =1 with

z = elg, we may define:s

p, ' (z%)

(@) = Fpme—  (z =)
Z
2a
1 n-1 2 - n-3
= (zn—l + Z ) + (;E:? + 2&2 Z ) + .

= 2[cos(n-1)6 + 2 2, cos((n—B)O—%z) e

where dk = arg a (2 <k < %(n-1)). Purthermore, on
lz]|=1 with z = ¢'®, we may define 3(6) =and y (6)
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a8 follows:
p, ' (2%) p,'(z°) n(z?) i
—-———--—-——h ( 22 ) = —-T__-zn— zn"l (Z = e )

a(8)
3(0) + 1y(Q)

a(0)3(8) ~ 1@(9)53(9)
3% (9) + (Q)

No difficulty arises from the denominator, since the

univalency of pn(z) in ’z ‘< 1 ensures that:

Ih(eZiQ)'g

37(0) + 32 (9) = |0, (7))

> 0 (0<0 < 2n).

We now show that «(0) can have only simple
zeros for 0 < © < 2x. Let ¢ be a zero of a(0).

Now, with =z = eig, we have that:

at(e) = %5 [ ""E"T“"]
A

dez zn—l ]
2z p. ' (27) p_1(z?)
- n n
= iz T - (n-1) = ]
Z Z

Now a(g) = 0, so that pn'(zz) =0 when 2 = eid.
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Hence if a'(d) is also zero, we see that pn"(ze)b is

zero at z = eid as well. But then pn“(z) =0 at

7 = ezm/° This, however, is impossible, since the

existénce of a double zefo of pn'(z) on lz | =1

is ruled out by the univalency of pn(z) in [z] < 1.
Now, the condition Re(zpn'(z)/pn(z)) >0 1n

Iz I( 1 may be written in the form:
a(e) 3(e) >0, (0<6<2xr).

in view of (1.1). Since the zeros of a(8) are simple,
this in turn shows that, whenever a(@) = 0, necessarily
3(6) = 0. Now all of its 2(n-1) zeros lie in 0 € 0 < 2x
(corresponding to the (n-1) szeros of pn‘(z) all on

Iz] = 1) in the case of a(6), and hence the same must

be true of B(6) since it is also a trigonometric poly-
nomial of degree (n-1). Since a polynomial which has its
maximum number of zeros is determined by these zeros to
within a constant factor, it follows that, for some

constant N, we must have:

a(0) = 8(8) , or:

p, ' (2%) p, (2%)
_;ﬁ:im_ = A Re ( —»H:Tu) on lzl =1,
z

This may be written in the form:
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2 2n-4 2n—-2
1+ 22,27 + ... (n—l)an_lz + z
: Zn—l
1.2) 1
[ 2n-4 = 2n-2
L+ as2” + .00 +a, 17 + Nz

n-1
7

Equating the highest terms on both sides, with 2z = e
we find that:
2 cos (n-1)6

A1+ %)cos(n~l)@ R

N~ 2n

and so0: no= I

Suppose that 8y is the first non-zero coefficient,
with k # $(n-1), so that %k < #(n-1). Comparing the
terms on both sides of (1.2) of degree (n - 2k + 1),
we find that: 2k lak icos ({(n-2k+1)0 - ﬂk)

o X
= A’ak‘ (1 + ==)cos((n-2k+1)0 - 4,).

s we deduce that:

Since ay # 0, and W\ =

o} = SN

or: k <2, But 2 < k < 3(n-1), and so ;. must
have been zero after all.
Now suppose that a, Z0, k = 3(n-1). Then,

comparing coefficients on both sides of (1.2) we find



37.

that: 8, = kak »
since ay = 81 (n-1) must be real. But Agl, and so we
have again arrived at an impossible situation.
Thus the assumption that pn(z) is starlike
|z <1 implies that a, =0 (2 <k <n-1). This
completes the proof of the theorem.

Similarly we may establish the following:

Theorem 2.1.5. ILet un(z) = % + a7+ ..t an_lzn_l +

1%

& M. Then u (z) is starlike in 0 < |z|< 1 iff

a, =0 (1 <k <n-1).

2. Some coefficient bounds for Pn and Mn.

In this section we will consider bounds for the

(n—l)th

coefficients of polynomials in Pn and Mn’
and for the middle coefficient of a particular family
of trinomials in P2n+1 and M2n+1'

Theorem 2.2.1. The polynomial:

n+l 2n+l _
Pops1(2) =2 + 2 2" + Zom & By o AEE
a 1is real, and:
1 4 sinf2n+1)0

(2.1) !a < Min (Pn+l)sind )

Lo, ﬁ] ( *s1n(n+12

sing
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Note. By Theorem 2.1.1, a necessary condition for

D (z) = P ig that a is real. Also, since
2n+1 2n+l . - z2n+l .
Pon41(2) € Popq 1T 2 - a2 4 spm— &€ Py gy it

is sufficient to prove the theorem for a > 0.
e will use the following:

Lemma, Let C and D be regl, and -1 < D < 1,

Then the equation:

(2.2) 1+Cy+Dy* =0

has no roots in |y | < 1 iff:

(2.3) 1+D > |of

Proof. BSince C and D are both real, both roots of
the equation have the same modulus; hence both lie in

|y| < 1, or else both lie in |y1 > 1. Applying Cohn's
Rule to equation (2.2), it has the same nﬁmber of zeros

in Iy |< 1 as has the equation:
(1-27%) + cy(1-D) = 0.
Consequently, (2.2) has no roots in ]yl <1 iff:

joj(1-p) <1 - p?,
i.e. lc{<1+D,
since -1 < D < 1. Hence the lemma is proved.

Proof of Theorem 2.2.1. We assume that a>0. Then,
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by the Dieudonné criterion for univalency (Theorem

1.2.2), p2n+l(z)'5 Ppy.y 1ff the equation:

1 4 2 sin{n+l1)9 _n sin(2n+1)0 20

5ing X"+ THayT)sing =0
and, also, the equation:
a sin(n+1)0 sin(?2n+l1)8 o _
(2.4) 1+ =535 * oagT)sme J = 9
have no roots in ]y' = ‘Xn '< 1, for 0 < 6 £ wm/2.

Now Isin(2n+lxy42n+l)singl <1 for
0<o < =/2. Hence, by the preceding lemma, (2.4) has

no roots in Iy’ <1 iffs

. |sin(n+1)6}

. . 2
inin (1 - 31n(2n+1)®) <1 - ( 31n(2n+1)9)

(2n+l)sin® (2n+1)sineG » OT:

1+ sin{2n+1)8
(2n+l )sing

& |singn+1Q® ’

8in®

for 0 <0 <=®/2 , and so for O £ © < ®n/2. Hence the
result of the theorem follows immediately.
Similarly, we may establish:

Theorem 2.2.2. The polynomial:

2n+1
1 . n Z
“2n+1<z) = 7 talz 4 5Ty

< M2n+1 iff a is real, and:
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(2.5) i ) _ 14 sin(2n+;)@
. a| < Mn_ ( AL2n+1)31nG)
[0,7 'sinn@
sin ©

As an immediate application of Theorems 2.2.1

and 2.2.2, it is easy to establish the followings:
3
Corollary 1. The polynomials pB(Z) = 7z 4+ az® + %T

5
- 3 ki
and p5(z) =z + bz® + % belong to P, and Py

respectively iff a and b are real, and lal < /877

HEER 3
Corollary 2. The polynomials u3(z) = % + alz + %T

5
and  pg(z) = Z 4+ biz® + %~ belong to My and Mg

respectively iff a and b are real, and lal 5‘%:,

o] < A2 .

>
We now establish the asymptotic values, for

large n, of the bounds for the central coefficients
given by (2.1) and (2.5).

Temma. Let A = Min_ fn(Q), where:

A
0<e<%

1 4 sin{(2n+1)9
(2n+1)sin®

fn(g) = lsin§n+1)9

sin ©

Then:

A, = %ﬁ [1 + 0(1)], for sufficiently large n.

Proof. VWhen © > ?%éT , we have:
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sin(2n+1)6 N -1
(Z2n+l)sin® (2n+l)sin( 47C

> 4A L1 +0(1)], and so:

1 sin ©
£, (0) > [1 - It o(1)]. STE(RTIT Ol
1
(2.6) > [1- 2=+ oM. (557
. T
sin(m——=)
n+l _
> 2 n+12¢ - 2n+1 (1 +0(1)).
31n( 2n+l
= (2n+1 > 2h,

. _ 4%
Consequently, if A = fn(Qn) , then 0_<6 < =iy

for sufficiently large n. Suppose that, at least on a
sequence of n, (2n+1)9n —> o 85 n —> © 3
here 0 < a £ 4=%.

Suppose, first, that o # 0 . Then:

A, = £, (2§§:91ll) (for sufficiently large n)
1 4 sina
(2.7) = e 2 (14 0(1)).
'sin(E) 2n+l

In view of (2.7), consider the function:

sin2x
1 + ==—
g(x) = £X X
Sinx
(2.8) = = 4+ COS X (0 < x < 2x).

sin X - -



Clearly g(x) is non-zero, and becomes infinite when
X =%, 2%. Consequently the minimum of tg(x)’ y in
which we are interested in view of (2.7), is attained
at some point where gf(x) = 0. This occurs when

cog X =0 or 2Xx = sin 2Xx ;, and so:

win (g(0), g(%), |2 | )

1l

Osgégﬂ 'g(x)*

yie 3712 \

5

= Min (2, 5, %

= */2 .

Returning to (2.7), this implies that a = =w, and:

by = wrmmy (1 + o(1)]
(2.9) = =1+

If, in fact, o were zero, then we would have:
A = =2=1{1+0(1)]
' n+l

> % [1 +0(1)].

Hence a cannot be zero, and the result of the lemma
follows at once.

Combining the lemma and Theorem 2.2.1, we deduce
the following:

Theorem 2.2.3. The polynomial:
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2n+1
_ n+l
p2n+1(z) =z + az 2n+1

& P2n+1 iff a is real, and ]a ’5 An’ where

A~ 5= for large n.

In a similar way, we can establish:

Theorem 2.2.4. The polynomial:

1 o 2n+1
bop,1(2) = 5 + alz” + ?E?T‘

& M2n+l iff a2 1is real, and |a| < Bn’ where

T
Bn’”’Zﬁ for large n.

Let us now turn to the estimation of the (n-—l)th

coefficient of polynomials in Pn and Mn’
— 2 n
Theorem 2.2.5. Let pn(z) =z +ayz® + ... +a,z € Py

Then:

(2.20) (n-1) ey 3| & 1+ 2|ag|nfay|- n?|ay|?
< 4.
In particular, (n—l)’an_l| S E N LS EN RS
2|ag| » if Jay| > 1.

Proof. By the Dieudonné criterion, since pn(z) € P,

the equation:

81n k+l 8 k = 0
E : x4+l sin®g .

has no roots in ‘x | <1 for 0<6 <=x/2, and lan‘ < %
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Applying the Cohn Rule, we deduce that the equation:

n-2
sin n@ k sin(k+1)8 -
1- lanl ( sing ) '+§:::1X (ak+1 sin® = 8Bk
k=1

sinn@sin(n—l)g) -0

sin® 9
has no zeros in |X '( 1 for 0< 6 <=%n/2, and so for

0 < 6 <w/2. Consequently:

z(sin n@ sin(n-1)6 — s5inn@sin29 |
lanl (Sime ) 2 |8n-1 T5ind = 8p8o e
sin~o
s 1a sin(n-1)6 { _ sinnBsin?o
- n-l1 sin® sin?0

for 0 < 6 < ®/2. Substituting © = 0 , we obtain:
1 - nglanlz > (n"l)lan—l‘ - n’an!42azp or:
(2.11) (n—l)‘an_li < 1+ 2{32‘.nlanl -~ nz'aniz
(a) Since pn(z)es S, lazl < 2 [8]. Thus:

(n—l)la < 1+ 4n‘an‘ - nzianiz

n—lt

[N

4 (since n‘anl <1).

(b) Now let f(y) =1 + Ziazly - y®. Then
£ (y) = Z‘azl -2y =0 when y = ‘az‘ ; also f(y) is
an increasing function of y for y < lazl , and a
decreasing function of y for ¥y > [azi

Suppose, first, that |a2i < 1. Then
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?8?1] £(y) = £(|ap}) =1 + |ay|®s and so, by (2.11),

we obtain (n—l)'an_li <1+ |a,]®.

Suppose, next, that lazl > 1. Then %ax ] £(y)
0,1

= f(1) = 2‘&2‘; and so, by (2.11), we obtain

(n~1)|an~1‘ < 2|a2|.

_ 2 n
Corollary. Let pn(z) =2 + 3,2° + ...+ a7 & P -

() If a, =0, then {n-1)|a, ;| <1 - n"|a |”.

(b) If a, y =0, then 2|a2| < . This is

an immediate consequence of equation (2.11).
Ve now establish the following result, which will
put Theorem 2.2.5 in its proper perspective.

— 2 n
Theorem 2.2.6. Let pn(z) =2+ 8,2° t+ ...t & P, »

and let Ay ; =mex la o |. Then:
n

2 7 A

Proof. The right hand inequality of (2.12) follows
from Theorem 2.2.5. e now construct a close-to-convex
polynomial in P whose (n—l)th coefficient is

E%T cos (z3); all its coefficients will be real.

Consequently the left hand inequality of (2.12) will
follow.
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Consider the function:

4

n+l
(2.13) a(z) iJﬁ 1L+t dt.
1
e}

- QCOS(E:T t + t°

Clearly aq(z) is regular in ’z [( 1. PFrom (2.13), we

deduce, immediately, that:

(1 -2 cos(n+l)z + z)q(z) =1 + z

2m+1

1“‘T(1 - e Al "~ )

This latter product contains the factor:

(2.14)

L o

n+l n+l 2
(1 - ze (1 - ze Yy =1 ~ 2 cos(n+1)z + z%
and so q(z) is, in fact, a polynomial in =z of degree

n. In addition:

I

n+1)

Re ( zq'(z)/ z ) = Re(l + z

1 - ZOOS<H§T)Z+ZE

>0 in |z] < 1.

By Theorem 1.5.4, the function s(z) = z/(l-ZCOS(ﬁ%T)z + z2)
is starlike in |z ]< 1. Consequently, pn(z)fe-CTC(S(Z)>s
and so pn(z) € P,

Suppose that q(z) = 2z + 3222 + ve. + 2z
Then, by (2.14),
1+ g2t = (1- 2003( 1)z+z )(1+2322+...+(n—1)an_1z aar?

n-1
+na, z ).
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Equating coefficients on both sides, we obtain 8, = % ’
_ 2 i
and  an_y = 5T COS(n+1

This completes the proof of the theorem.
Using the Dieudonné criterion for Mn and arguments

similar to those of Theorem 2.2.5, we may establish the

following:
_ 1 n
Theorem 2.2.7. Let p.n(z) ==+ agz + ... +ays e M.
Then Ianl < % y and:
2 2
(2.15) (n-1) lan_ll { 1-n Ian, .
3. The second coefficient problem.

In this section we establish estimates for the
coefficients ao and b3 of the polynomials

— 2 n —
pn(z) =z + a,z” + ... a7 & Fy and p2n+1(z) =

_ 3 5 2n+1
=z + bSZ + b5z + ... + bzn+1z

for these have been known for a long time [15]; we will

Upper bounds

show that, surprisingly enough, these give the correct

d f itud f d boi.
order of magnitudes o suglazl an s%p‘ 3[

n 2n-+1
- @D
Theorem 2.3.1.[15] Tet £(z) =z +Y 'akzk e S, and
|
k=5

|£(z) | ¢M in |z |< 1. Tnen:

(3.1) |2, | < 21 - ).
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Proof. If M=l, f(z)== z, and there is nothing to
prove. Thus we suppose M1.

Since f(z)e& S , clearly:

(3.2) F(z) = f§§> (0<ag2x) .

[1 - Eﬁ“ £(z) 1”
= (z2+2a,2° +...)(1L+5 %z 4+ ...))

_ 2 _da, _»
—_— Z + (a2 +ﬁe )Z + * e 0 eS.
Thus, by a well-known theorem of Bieberbach [8],
‘a2 + % e1? { < 2 for all a & [0,2x], and so:
1
la2l S 2 (1—ﬁ)n
Thus our theorem is proved.
Ye now state, in the following sequence of
lemmas, a number of well-known results which form the

background to our present discussion.

Lemma 1.[8] Iet f£(z) =z + ay,2® + ... & 5. Then

oo

{aB‘ <3, and !a4‘ < 4 3 also ‘anl < en for all

n>4. If all the coefficients of f(z) are real,

then |a, | < n for all n>1.

1
Lemma 2.[8] The fumction f(z)e 5 if f(z°)% & 5;

1
and if g(z) dis an odd function in S, then g(z%)° & 8.

In particular, if q2n+1(z) is an odd polynomial in
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1
2\ 2
Popsp? then (12n+1(Z ) & Popyy-

In view of the importance of this lemma, we

make the following definition.

Definition 2.3.1. A polynomial p2n+1(z) is said to

belong to the class P02n+1 iff it belongs to the class

P and contains only odd powers of z.

2n+1

Lemma 3. If py(z) =z + ayz® + ... + aNzNgg Pys then:

max I <  max- (2 <k<n< N).
%n i ‘ 13n+1 Iaki

Similgrly, if q2N+1(Z) =z + b323 + ea. + b2N+122N+1

o)
e P oL’ then:

mex |og < pax | boer | (kS <)
2n+1 2n+3

From Lemma 1 and Theorem 2.3.1, we deduce:

- 2 n
Theorem 2.3.2. Let pn(z) =2 + 8,2° + ... +aF &€ Py

(a) If all the coefficients are real, or if pn(z) is

close-to—convex in |z | < 1 , then:

!ak‘ < k(l-%ﬁ‘l) (2<k<n-1)

where A(k) is a constant depending on k, but not on n.

If the well-known Bieberbach hypothesis[8Jwere true,

this bound would be valid for all p,(z) & P,.
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(b) In general, 133 ‘ <3 (1 - i;), and ‘a4 l < 4,

(1 - E;), where A and B are absolute constants.
n®

The proof follows from the fact that if pn(z)éz P s
n n
then lpn(z)l < !z li—Az 'lakzki <1 + z :.ek < en®
k=2 - k=2

for lz‘ < 1.

Similarly we may establish:

- 2n+1
- 3
Theorem 2.3.3. Let Ps 1(z) = Z + bBZ + ee. + b2 12

€ P, .q- Then [by| <1 -2 where 4 is an
"

absolute constant.

We now state a striking result, which will be a

fundamental tool in what follows.

Temma 4. (Fejer Representation Theorem)[7] Suppose:

n n

g(e) = E Ay coske + E by sinke .
k=0 k=

Then g(©) is a non-negative trigonometric polynomial

’

for 0 < 0 < 2r iff it is of the form g(@) = |n(e*®)|?

n

where h(z) = Xy ot KqZ ot ...l o+ X7 Then:
_n
hoo= E :i X IB , and
0 =5 )
(3.3)
n-3y/
A, Hip, = 2 E Xy X (1<wv<n).
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First of 2ll, in order to illustrate the methods
we will use, without introducing too many complications,
we will establish the following:

Theorem 2.3.4., (a) The polynomial:

n+l
2k+1
~ e(k+l)y 2z
a(z) =z +E :(2k+1 - S ) TR
k=1
2n Z2k+1
(3.4) + E (x® - (41’l+3)k+2(n+2)(n+1))2(n+l)(2k+l)
k=n+2
dn+1
C 4D 2 °
= 2 + == z% + ...+ (H+1) (dn+1) = 4n+l

(b) The polynomial:

q(z%)‘a

1 2
= g 4 2 em= 7
n+l

i

p(z)

dn+1
+ ... + Z

P .
(n+1)% (4n+1)? S Z4n+),

Then, as an immediate consequence., we will have

egstablished:
Theorem 2.3.5.(a) Let pn(z) = gz + a2z2 + e + anzn
& P,. Then:
2(1 - % + o(l/n)) < max ’azl < 2(1 - L)
P, en®
— 3 2n+1 0
(b) Tet qn(z) =2 + b32% + ...+ Dy 93 E P opn -
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Then:

(1 - % + o(%)) < max thI 1 - O(l/ng).
9
Proof. The theorem follows, at once, from Theorems

2.5.1 and 2.%.4, and Lemma 1.
Proof of Theorem 2.3.4. Ve will apply Lemma 4 to the

polynomials:
(3.6) h(z) = 3 [1+zz+...+z2n - 22n+2(1+zz+...+z2n)]
2{n+1)
n+2 !
= i X, 7T s say.
r=0

Here h(z) is an even polynomial of degree (4n+2),
n-+2

normalised so that X =1,
T=

Now let us put:

|n(et®)]? £(8)

= Rei@ (t(Z)) ’

Z=e
and examine the precise form of the coefficients of
2n+1
t(z) = E By z°% . Obviously we then have g(0)
k=0

2n+1

of the form g(0) = E 8, COS 2k6. Then, by (3.%),
k=0 .
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we obtain:

2n-1

- _ 2n—4
8, =1y ap =2 5555 0 3y

=2 5577 0
6

and: a,,.0 T BRT5 0 Byn T HID ? Yn-2 T Tndz ?

2 (1 - 52=) if 1 <k < n+l,
In general, then: By = 2n+2
2 (gt - 1) if 142 < k < 2041,
Thus:
n+l 2n+l
E 2k E : X 2k
(3.7) t(z) =1+ 2 (1 - 2n+ Yzt 4 2 (Eﬁiﬁ ~1)z¥,

k=n+2

We have, in fact, constructed t(z) in such a way that:

5% 1) = gd) = |nt )]?

Thus t(z) has a factor (1-2z?), and also Ret(z) > 0
in lz IS 1.
We now determine the polynomial
2n

q(z) = z + E b2k+122k+1 such that:
k=1

1l

t(z) = (1-2z%)q'(2)

zq'(z)/(

1-z

is a starlike

Z_), since 2

Thus q(z) & CTC¢(
1-2° 1-z7
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function in lz |< 1. Then we have:

n+1 2n+1
2k 2k
1+ 2 E f(l - )z + 2 E (2n+2
k=1 k=n+2

= t(z)
= (1-z®)q'(z)
=1 + (3bg-1)2" + (5b5—3b3)z4 Foaa

ceve. + [(4n+1)b (4n-1)b, - 1z%" - (4n+1),

An+l 4n-1
Idn+2

b41n+lZ

Comparing coefficients in this equation, we obtain:

(5.8) (2k+l)byy ;= | (2k+l) - 2853, 121 < k < n4l.

k?-(an+3)k+(4n+2) (n+1) 3¢ pyock<onsl
STn4L) ==

Consequently the polynomial q(z) , given by (3.4), is
the polynomial given by (3.8), and the first part of the
theorem is proved.

The second part follows at once, by Lemma 2.
Note. ALl the coefficients of the polynomials (3.4) and
(3.5) are real and positive.

N
Corollary. Let pN(z) =z + 3222 + ... + ayZ & Py. Then:

(3.9) (~ log 2)?N?[1+0(1)] < max M(1l;py)_<3 LeN?[1+0(1)].
Py
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Proof. The second inequality in (3.9) follows at
once from Lemma 1, and we will use the polynomial
p(z) of Theorem 2.3.4 to prove the first inequality
of (3.9) when N ==1 (mod 4). Then by Lemma 3, the
corollary will have been proved.

Since the coefficients of the polynomizl p(z)

in P of Theorem 2.3.4 are positive,

in-+1

(3.10) M(1;p) = M(13q9)% = q(1)®, where:

n+1l ( )

— 3k(k+1 1

(3.11) q(1) =1 + E (2k+1 - AEES) ) ST

k=1

on
+ 5 (k2 —-(4n+3)k+2(n+1) (2n+1))
k=n+2

/2kn+1)(2k+1).

Let us denote the two summations by E :1 and E ;2
respectively. We estimate both of these to within an

error term o(n). Now:
n+1

_ 3k(k+1) .
z::jl = E (1 - T o
k=1
n+1l
= ntl - o CE L k1 )
2(n+1) 2 2( 2K+1)
k=
n+l
= n+l - ET%:TT o % (n+l)(n+2) - §T%¢TT E O(l)
k=1

= % n+ o(n) .
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Examining the terms iniz:jz separately, we have:

en - 2n
k _ k
‘ T T E :( 5+ 0(1) )
k=n+2 k=n+2
on n+1
= %—) k-%é k + 0(n)
k=1 k=1
= % n?® + 0(n) , and
2n 2n en 1
k - 1 E : 1 s
ReT - B 1l -3 2k+1
k=n+2 k=n+2 k=n-+2
= +n + 0(1), and:
n an
1 _ 1 1
5 k4 T E T o(1)
k=n+2 k=n+2

= $(log(2n) - log n) + o(1)

= % log 2 +0(1).

Combining these estimates, we see that:

E~L22&P_n.€l}ﬁi
, = - i - A =l log 2 + o(n)

1l

(log 2 - %) n + o{n), and so by (3.10) and



57.

(3.11), M(1,p) log®2 n® + o(n?)

= —g log® 2 N® (1+0(1)), putting
= 4in+l. This completes the proof of the corollary.
-We now proceed to give a slightly more sophis-
ticated application of the Fejer Representation Theorem,
which will give lower estimates fpr max laz’

max l 3' max ‘a4i and max IE?‘. The

0
Py Proms1
correspondlng upper estimates have been known for a long

time, but no lower estimates existed previously apart
from those connected with sections of power series
(as in Theorem 1.6.5).

Theorem 2.%.5. There exists a sequence of polynomials:

pN(Z) = 7 + a222 + 0. + aNzN & Py for all N with

¥-3 =1 (mod 2) such that:
PR T

(3.12) a > 8 - Alk) (2 < s < k+1),
N® -

“

where A(k) is a positive constant depending on k,

but not on M.

Proof. ‘e will apply Lemma 4 to the polynomial:s

n
h(z) = C E sin (%%% ﬁ)zgkr (1+z2+...+22k'2)(1—zzkn+2k+4).
r=0
4kn+2k+4

= X%, say.
=0
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Here h(z) is an even polynomial of degree (4kn+4k+2) ,
normalised so that §f_J sz = 1 by the choice:

2 = ox E 31nP( ) = k(n+2)

Now let us put:

[n(et®) ]z = g(e)

I

Re. (t(z)>’
z=elg
and examine the precise form of the coefficients of

2kn+2k

t(z) = 1 + E dogpp z28te Obviously we then
g=0 2kn+2k
have g(©) of the form g(8) =1 + E Gogip cos(2s+2)0.
s=0
Then, by (3.3), we obtain:
n n-1
? . + . 42
dy = 2¢? [2(k—1)§ 81np( ) + 2 81n(§:%ﬂ)81n(£+2 )]
r=0 r=
2
= ¥ @7o) [(k-1)(n+2) + (n+2) cos (n+2 ) ]
= [k 1 + cos (n+2 ], and:
n-1
_ r+1 r+1 r+2
d4 = [2(k—2)% sin® ( n + 2 31n(n*2 )31n(n+2 5x) ]
=0

= {k-2 + 2 cos ( 2)]
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It is easy to verify, furthermore, that:

dog = % [k - s + s cos (n+2 )], if 1 < s < k.
Als0, Ay ano = -207 sin® (35p)
= E%%:?) sin® (ET?) Thus :
k
t(z) =1 +féjz:::[k~s+scos(5%§)]zzs + ...
s=1

) T 4kn+4k+2
aaaaaaaaaaa R sin® ( 2)

e have, in fact, constructed +t(z) in such a way that:

52 1) = g()) = |t 1)]® =o0.
Thus t(z) has a factor (1-z7), and also Re t(z) > O

in |z <1, 2km+2k
We now determine the polynomial q(z) = z +
2 5. 5=
boo,q 2 St1 such that: +t(z) = (1-2%)q!(z)
= zq'(z)/(—"=).
1-z7
Thus q(z) & C7C¢ ( Zﬁ), since zr‘_s is a starlike
l-z* 1-gz?
function in Iz' < 1. Then we have:
k
2 2s
1+ E [k-s+s cos (n+2 ) 12°° + “Tﬁi—)Sln (n+2‘
s=1 o Ak +4k+2
= %(3z)
= (1-27)q"(z)
=1+ (3D3-1)27 + (5bg=3bg)a® + ........
,,,,,,,,,,,, ~(4kn+4k+1) b Akn+4k+l

4kn+4k+1
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Comparing coefficients in this equation, we obtain:

(25+1)D 1 = % [xs - 3s(s+1) (1-cosyis)] for

2s+1
1 <s <k, and also:

7 — s N B __ZE___ \
(4kn + 4% + 1L)v = 2 sin (n+2)/k(n+2).

4kn+4k+1
Conseouently, the polynomial:
E t s+1 25+1
2510 () A+ 4+
oo k(n+2 (4kn+4k+1)
& CIC ( , and so & P° where N = 4kn + 4k + 1.
1-27

It is clear that all coefficients of q(z) are positive,

and that: b =1 - Ay (1L +0(1)) for 1< s <k,
Nn-«

2s+1
and sufficiently large N. In particular,
_ 2 2 w')—\.”.&
b3 =1 - %E . 2 8in (ml))
=1 - - (L + o(1))
3k n?
=1 - 2 (14 0(1)).
3N

Applying Lemma 2 to the polynomial q(z) , we find
that for a fixed k, and arbitrarily large ¥ of the form

= 4kn + 4k + 1, there is a polynomizl in PN of the

form: N-1
pN(z) =z + 2 [1 - 3%vsin? (WT%?T*)]ZC + E arzr
4 =3
. 4 sin (n+2 LAkl

k“’(n+2)3(4lcn+4k+1}g
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Furthermore, the coefficients ag satisfy the condition:

ag > s - Ai%l
il
for 2 < s <k, as required. Hence the theorem has
been proved.
From Theorem 2.3.5 we may deduce immediately the

following two theorems.

N
Theorem 2.%.6. Let q2N+l(z) = g + E lb28+lzzs+l
s=1
A

2
e P02 l. Then: l — l@-—(l_}_o(l)) S mnax !'b S l =
It 37 9 3 -
2N+1

for arbitrarily large N, and some absolute constant A.

Proof. The left inequality follows from the construction
in Theorem 2.3.5, and the right inequality from Theorem
2.3.3. n
Theorem 2.3.7. Let p,(z) =z + E :akzkeg P, -

k=2

(a) Then, for arbitarily large n,

on® B T X
- g;gu [1+0(1)] < max 'az‘ < ZCOS(ﬁﬁj), if all By
Py real.
2 -~ ~£-, otherwise.
n en®
(b) Also, for arbitrarily largze n,
A (k) A (k)
1 2
n® - n - n-

where k = 3% and 4, and Al(k} and Az(k) are
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constants depending on k but not on n .

(¢) TFor a fixed value of k, and arbitrarily larse n,

max | a l > K - él%) y where A(k) is a
Pp n®

constant depending on k but not on n .

Proof. The left inequalities in (a) and (b), and also
(¢), follow from the construction in Theorem 2.3%.5.
The right inequalities in (a) and (b) follow from
Theorems 2.3.1 and 2.3.2, together with Theorem 1.5.9.
Notice that (a) and (b) settle the correct order

of magnitude of (k - max Iakl ) for large n,
Pn

k = 2,3;4. The estimate in (b) clearly also gives the

correct order of magnitude of k - max ‘akl for any
Pn

value of k for which the Bieberbach hypothesis is
satisfied; for example, in the class of polynomials of

degree n having real coefficients.



Chapter %, Coefficient regions for univalent
polynomials of small degree.

. .
"L'amore e tanto piu fervente quanto la
> 3 \ .
cognitione e piu certat

-~ Leonardo da Vinci.

1. Coefficient regions for P2 and PB'

The polynomial p3(z) = z+a222+3323 < P3 iffs

5in29 sin3e _o _
1+ 8 stn o * 7 83 51n © x* =0
i,e. 1 + 2a,c X + a (4c”-1)x® = 0
has no roots in |x ] <1 for 0¢< 6 % s 0 £ ¢c =cos6 {1,

; and then, by Cohn's

Wi EA

by Theorem 1.2.2. Thus 333 l <
Rule, p3€‘:'-_'-IP3 iff:

1 - ‘33‘2(402-1)ax(2320-252033(403-1)) =0
has no roots in ‘ X ’< 1, and so iff:

(1.1) 1 - ‘a #(4c”-1)% > 2¢ ia2—§2a3(402—1)

5|
for 0 <e¢c <1, with <l33| < /3
Now suppose that sz is real; and let us use the

substitutions 8z = Ty a8, = X + iy, where Xx,y,t are

real numbers. Then (1.1) is equivalent to the inequality:
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(1.2) 1-t?(4c®-1)% > 2c¢| x(1-t(4c®-1))+iy(1+t(4c?-1))
which may be rewritten as:
(1.3) [1-%7(4c?-1)71% > 4c®[x®(1-(4c?-1))%+y® (1+%(4c?-1))" ]

for all 0 < c <1, for points belonging to the co-
efficient body (Reaz, Ima,, a3). Clearly it is suf-
ficient to consider the coefficient body in the first
octant, due to its symmetry properties (as seen in (1.2)).

Suppose that t=0. Then (1.2) reduces to:

1 > Zc

X+1iy l = 20‘a2'
for a1l 0 < ¢ < 1. Thus 2!a2‘ < 1, and we have:

\ . i
Theorem 3.1.1 pZ(Z) =z + 3222€E:P2 1ff ia2 !S =

(This is, of course, not difficult to prove directly).
Suppose, next, that y=0. Then (1.2) implies that:
1 - t°%(4c?-1)% > 2¢ (1 - t(4c¢?-1))x, or:

(1.24) 2x

PN

L1 4+ t(4e-1)) , 0 < ¢ < 1.
[&] - -

It is easily verified that the right hand side of (1.4)

attains its minimum when c¢c® = (1-%t)/4t if i <t < 1 s

5
and when ¢ =1 if O < t ¢ % . Hence:
. 1
1 =
(1.5) a, £ 2(1+3a5) if 0 {az <& &
ATy ir b 1
Thus if az = O, %, % s then ap < %, % sy 18/9 respectively.
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Suppose, next, that x = 0. Then, from (1.3), we
obtain: 1-1%*(4c?-1)% > 2yc (1 + t(4cP-1)) , or:
(1.6) 2y < = (1 - $(4c”-1)), 0 < < 1.

The right hand side attains its minimum when c¢c = 1,

and sos
(1.7) Ima, < #(1-3t)

We next consider sections of the coefficient
body with a fixed value of t. Then, by (1.3), the
point (x,y) satisfies the inequality:

(1.8) 1 > (1+4d) [—Fe + —X_

- (1+td)? (1-ta)?
where d = 4¢® - 1, -1 < & < 3. Hence the point (x,y)
belongs to the closed interior of all ellipses with
centre the origin, major axis a(d) = %%%% , and

minor axis b(d) = %%%% -1 < d < 3). Let us denote

the interior and boundary of the ellipse
= ) ? 2 :
1= () [ (s5gp)? + ($p)?] by By -

Now b(d) is a strictly decreasing function of 4d

for 0 £t X 1/3. However %% is zero when 4 = 1;2t ,
which lies in the range -1 < d < 3 only when
% <t <Y/3. In addition, a(d) decreases if d < EF

and a(d) increases if d > 2L,
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Consequently, if 0 < t £ % , a(d) and b(d) are

both decreasing, and so /n) Ed = E3 . Thus
-1<a<3

points in the coefficient body satisfy the inequality:

X 2 ¥ 2
(1.9) 1> Ml (g3e)? + (=57
However, if % <t < % , the minimum value of

a(d) is a(l Zt = 2/T(1-%t)'. Then, as above, points

(x,v) in the coefficient body belong to {f\ Ly s over
a
125 ¢ a < 3. It is clear that, for = < t < 1/3, the

cross - section is not a single ellipse.

Moreover, if 0 < t < % , the circle:
(1.10) x4 y? = (55207

lies in the coefficient body; and if % <t < 1/3,
so does the ellipses:
4y°®

(1.11) 1 = m-_g) + (—mg .

< %, the maximum value of (x2+y?)

Also, if O < 1 5
occurs when y=0, x = 5(1+3t); and for % <t < 1 ’
the maximum value of (x’+y®) occurs when y=0,

x = 2/[FT(I=%t). Accordingly, for all + we see that

‘ag ‘S /879, with equality only for t = 1/3  and real

azt
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Vle have now proved:

Theorem 3.1.2. Suppose p3(z) =z + azzz + a3z3 where

az is real and positive, and a, = X + iy. Then

(a) For 0O (£ as < % , p3(z)5£jP3 iff:

1 X > y
72 ()t o)’
If % < 8z < % ’ pa(z)é:_.zP3 iff the inequality (1.8)

is satisfied for all & such that (1-2a3)/az; < d < 3;

in particular, p3(z)€5 P3 if:

2 2
1> X + __.fﬂ.._m..
= Zaz(I-a5) (1-3a5)"

(v) When a, 1is real, p3(z)€P3 iff:

|a2‘ < %(l+333) for 0 < 8- <

(St

1 1
2da3ZI~a3T for 7 < a < z .

(e) If p3(z)€§IP3 then ’aQ’ < 48/9 with equality

only for pB(Z) = 7 T .'_f% 72 4 %; 73

Note. Many of the results in this section have been
established recently [4], under a different normalisation
of p3(z). This other method, however, fails to give

the results of the sections to follow.
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2. Coefficient Regions for a subclass of P4.

Due to the complexity of the situation, we
restrict ourselves to the polynomials in P4 having

a4 % , since this is the most interesting subclass

of P, .
4
Hence, by Theorem 2.1.1, we consider polynomials of the

form:
4
_ 2 . 2 %8 4 2.
p4(z) =z + az® + 3 az® + 7

This polynomial & P4 iff the equation:

sine2e 2 = sin’e o sindQ _ s _
1 + a 550 X + 3 a I X + I51n0 x° = 0, or
2_

1 + 2acx + 5 7 (4¢”-1)x® + c(2¢”-1)x® =0

(2.1)

i

has no roots in ]X |< 1 for 0 <@eX % y 0 < ¢ =cos0 <1,
by Theorem 1.2.2. Then, by Cohn's Rule, a necessary and
sufficient condition for p4(z)e§ P, is that ﬁl(x,o)

has no zeros in ‘X ‘( 1, where:

1 - 2acx + (4c?-1)x"

7 (x,c) %—5
~c(2c?-1)[c(2cR-1) + %a(4cz—1)x + 2zcx? ]

(1-c®) (1+4c4) + Zac(l+4c®)x

a(6c®-1)x"? R

O Ol
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or, alternatively, that:

(2.2) dz(x,c) = (1+4ch) + %uc(1+4cz)x + %5(602-1)x3

has no zeros in {x [< 1 for 0<c¢c <1 . In that case:
4
2 1+4c¢ 21__
Slel ¢ Jag 0ot )

1]

lf(cg)l , Say .

A%R 41
bx-1

in the range O < x < 1. Hence:

Il

Now if f(x) then f'(x) = 0 when x = %(1¥f10)

%‘la | < win(|£(0) |, |21 |, If(l—%g) )
=Min( 1, 1, —S-(l + /10))

(1 + :710) , and so:

(1 + 10).

oo

(2.3) fal <

Now let us return to (2.2), assuming that ’a IS % (1 +:110),
and suppose that dz(x,c) has no zeros in *X ’< 1 for
0<e <1, c?# liélg . Applying Cohnt's Rule again

to dz(x,c) , we find that:
dB(X,c) = (1+4ch)?® - la}®(6c?-1)?

+

W O

0(402+1)X[a(4c4+1) - %52(602-1)]

can have no zeros in lx l( 1 for O"<c < 1. Thus:
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(2.4) (4c*42)% - &[a|?(607-1)% 3 & o(40®+1) |alses1) -

uing ke

S

for 0 < c <1, Substituting c? = % in (2.4), we
obtain that:

(2.5) la| < 372
< F(1+10).

Consequently, the polynomial p4(z)65 P4 iff:

(4o4+1)z - 4]&] (6cR-1)"
(2.6) Min 1.

0<c<l £ c(40?+1) |a(scts1) - £52 (607 _1ﬂ

and, in particular, if arg(a) is a multiple of % ,

(2.6) becomes:

l+4c4+% a(6c?-1)

(2.7) Min

0¢e<l | % a c (4c”+1)

e now consider the implications of (2.7) for real

> 1.

a. Suppose, first, that a 1is positive. Then
p4(z)e§ P4 iff: 1 + 4et + % a(6c®-1) > % ac(4c?+1)
for 0 { ¢ <1, i.e. % a(4c+l)(2c?~2¢+1) < (1+2¢?)® - (2¢)7,
or:

2

= f(e) , 0 <c <1,

since (4c+l) and (2c®-2c+l) are positive for

0 < ¢ <1. Now we can easily show that f'(c) =0 in
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our range of ¢ only when ¢ = % (:/'5-1). Thus we
require that:
2 ¢ mn(£(o), f(l), f(f5 1))
= Min( 1, 1, Z (+/5+1))
= %(J5+1), or:

(2.9) & £ & (f5+1) % 1.2145.

Suppose, next, that a is negative, and let b = -a > 0.

Then p4(z)€£ P, iff:

1 + 404 - % b(6c?-1) 4 be{4c®+1)

v
N,

i.e. % b(4c-1)(2c®+2c+1) (2cR+2c+1)(2c?-2c+1),

LIPAN

for 0 < ¢ <1, and so iff:

24
(2.20) 5 ¢ 2ZEL gor <o <1,
= g(c) , say,

since if 0 < ¢ < % the condition is always satisfied.

Now we can easily show that g'(c) =0 in % <c <1

only when ¢ % (:/5+41). Thus we require that:

% b < Min (£(X 5+1 , £(1))
Min (Jézl) ’ ?), or:
(2.11) b < % (1/5-1),

Combining (2.9) and (2.11), we have:
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4
Theorem 3.2.1. Let p4(z) =z + a2z2 + a3zB + %f

where a, and a, are real. Then p4(z)E§P4 iffe

85 = % a, » and: - % (:75-1) < ap < g (:/541).

4
Remark. It is clear that if p,(z) = z + az?® + %gzs + %f
&« P4 then so do p4(zezﬂi/3)e"'2ﬂi/3 and p4(ze4ni/3)‘

e-¢ﬁi/3.

Now suppose that, for all ga satisfying la 'S Vs

) _ 2

p4(z)€g P4. We show that y =g (:/5-1). By (2.6), we
have, for all 0 < ¢ < 1 , that:

4ie 4 2 2 2 4 2 4 2 .2 2
(1+4c™)® ~ 5 y7(6c%-1)% > = c(4c®+1)[y(1+4c™) + 5 y°(6c7-1)]
for % < c? <1, since, for any such ¢ , we can choose
a, with 'al =y , such that:

a(l+4c?) - 2 32(602-1) | = y(1+4c?) + & y?(602-1).
3 3

Thus:
4__2_ 2 _ 4 2 1 2 MhSa A
1l+4c 5y (6e®-1) > # yo (4c®+1), 2 < c® <1 . This is

equivalent to the condition:

2—
(2.12) £y ¢ 2R, 2 <1,

(as in our previous calculations); and so, as before, we
have that: y < g (/5-1) (since #(34/5) > £). Clearly

the value 'a ;= %(JB—l) is maximal only for

al‘ga=%,ﬁ,'~5§t-

Similarly, if O < e® < % , we have, from (2.6), that:

£ y® (6c?~1) ]

(l+4c4)2 - % y2(6c®-1)7 > % c(4cg+1)[y(l+4c4) -3
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i.e. 1+4o4 % y(6c?-1) > % v c(4c®+1)
. 2 2c®+2c+1 2 1
i.e. z Y < o for 0 £ e~ (£ z -
)
The minimum of 25-f28*L ¢ sttained in (o, l/f6) when

4e+l
c = % (/5-1) , and is % (:/541). Thus: y < % ((/5+1) .

Consequently, we have proved:

Theorem 3.2.2. If |a |< (/5-1) , then

p,(z) = 2 + az® + % az® + E— €2y

The constant % (J5—1) is exact, and gives the

maximum possible value of ]al iff arg a = % s T %? .

We now find an estimate for the maximum value A
of Ial for which a polynomial p4(z) of the above form
e P4. We require, by (2.6), that:

(1+4ch)? - ~|at (6c%-1)% o

(2.1%) T > (1+4c )~ a (6c®-1)
?falc(4c +1)

for 0 < c 1. Let us denote the left and right hand
sides of (2.13) by L and R , respectively, Then,
L(r5-1), L =& (15-375) + g (3/5-5)3%/a.

when ¢
If a = % (:/'541) , we have strict inequality in (2.13)
c

unless = % (/5-1) , in which case equality occurs.

Suppose that L > (1+¢€) R in (2.13) for

( lc - % (:/5-1) ‘ > T%@ y 0 c <1l) for some fixed

positive & , Ve will vary a so slightly that always

L > (L+5 R in(2.13), for 0<e <1, |~ 3/5-1)
1

TN

~ 10
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Now let arg a vary slightly, so that a —> at ,
|a|=lat| =5 (/541). mhen, tor |c - 3 (15-1) | < gdy
R is decreased, and L is unaltered. Thus (2.13),
with a' in place of a , holds with strict inequality.
Then for fixed arg a' , we may increase ‘a'l to lb’l ’
arg b' = arg at , so that (2.13) again holds, and we
have equality in it for some c¢ (with b' in place of
a in (2.13)).

Thus there exists some p4(z)g§IP4 havi ng
la| > 2 (/541) , i.e. A > 2 (541). Clearly we can,
in a similar way to the above, always increase Ia' in

p4(z) s unless equality occurs in (2.13) when one of

the following conditions is satisfied:

(a) a®/a is real and negative, c®

N oI

<
(b) a®/a is real and positive, c® >
(2.14) s 1
(C) c —-g.

(a) Equality occurs in (2.13) for some c® < % , and

for some c® > % y, for the same value of a , }a! = A,
The maximum value of ‘al is attained in one of these
cases, and gives equality in (2.13) for some value of c.
(a) If a®/a is real and negative, c? < % , then,
vy (2.13), with ’a | = 4,

4yz 4 2 2 2 4 2 4 - .2 2
(1+40™)% — 5 A%(6c7-1)% > = Ac(4c®+1)[4c™+1450(607-1)],
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i.e. 1+4.c4 - % A(6c”-1) > % Ac(4c”+1),
; 2 2egR .
i.e. ?A _<_ < TS fcl"‘ 1 - g(C), say,

for % < e X lﬁf6 ; and equality occurs for some such

value of c. Ve can easily show that, in this range of c,

g(c) 1is a decreasing function of ¢, and so:

5

I

[ 20° —~ 2¢ 4+ 1]
c

4c - 1 = l/rf6

of % s or A < % .

il

Thus we cannot have equality in (2.13) in the range of
¢ given by (a), and so this case does not arise.

(b) If &a°/a is real and positive , c® > % , then,
by (2.13), with |a| = 4,

(1+4c4)2 - % AR(6cR-1)% > % Ao(402+1)[1+4c4 - % A(6c2-1)].
i.e, 1+4c4 + % A(6c?-1) > % Ac(4c®+1)

2
2, ¢ EErerl | o), sy,

for %@ <c <1, and equality occurs for some such
value of c. We can easily show that g(c) is an in-
creasing function of ¢ in [%E y l] s and so, as before,
we require A < % i also the case cannot occur since we

cannot have equality in ] -]7'-3 » 1] .

Il

(c) If c® % when equality occurs in (2.,13), then:

i

1+4c4 % A c(4c®+1), c® = % ,
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- 0 _ 4, 5.1
i1.€. 9 - 3.A. .'3' -;Tg' 9
i.e. A = f %

We now show that A < % , and so case (c)

cannot occur. Then we will have shown thats

2 (:f541) < A <o 3
or A 1lies between 1.213%3 gnd 1.224 approx. The ex-
tremal case in (2.14) is then (4).

Lemma. The polynomial p4(z) = 7 + az® + % az® + % z

3 .

Proof. Suppose a = % e*ig/3 .  Then, by (2.13),
p4€P4 iffs | _
(1+4c4)z - %]a|2(602—1)2 > %|a|0(402+1)'1+4c4 - % . %r(602—1*

cannot belong to P4 if 'a‘

where 0 < c < 1. Putting x =¢® , 0 {x <1, and
squaring both sides, we obtain:

(1+4x®)% - % (1+4x®) (6x-1)% + % (6x-1)%

> % x(4x+1)% (4x7+1)° + %? x(4x+1)" (6x-1)?

- %é J%.x(4x+1)2(4x2+1)(6x~1)cosQ .

This may be rewritten as:

(2.15) (1+4x®)2[ (1+4xR)® - %x(4x+1)2] + %?n%.x(4x+1)?
(4x*+1) (6%x-1)cos®

> (6x-1)% [ 16 X(4x+1)% - 4 (6x-1)% + 4 (1+4x%) ]
< 3 9 3
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Let us denote the left hand side of (2.15) by
Ll‘

Both sides of (2.15) have a zero at x = 1/6
Since the right hand side has a double zero at x = 1/6 ,
and is positive near x = 1/6 » L, must also have a
double zero at x = 1/6 . It is easy to check that
the necessary condition for this is that cos6 = % I % .
Substituting this value into Ll s» we find that:
Ly = 5o(4%°41) (6x-1)? (48x-112%° +232x3 +140x+427) .
Consequently, we can take a factor (6x-1)® out of
(2.15); and so (2.15) holds iff:
5%(4x2+1)(48x4-112x8+232x2+140x+27)

> %? x (4x+1)% - % (6x-1)% + % (1+4%%),
which may be rewritten as:
(4x? +1) (48x%-112%%+232%x? +140%~9)

> 48x (4x+41)7 - 12(6x-1)7

= 12 [64x® - 4x® + 16x -1]

12 (6x-1)(4x®*+1) , or as:

(2.16) 48x% - 112x3 + 232%® - 52x + 3 > O

But when x = % , the left hand side of (2.16) is
easily shown to be negative. Thus (2.16) does not hold.

Consequently p4(z) & P, » and the lemma is proved.
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We have now established:

- 2] _2_"':3 _];4- :
Theorem 3.2.3. Let p4(z) =z +az® +382° + 327 Py s
and A = max |al . Then:
Py
2 ¢ N
8 (‘!—5 + l) < .A. < D 2 .
3. Coefficient Regions for Ml and M2.

It is obvious from Theorem 1.2.3 that pl(z) = % + a2

€ M iff e | < 1.

_ 1 2
Suppose that ug(z) = = + a2 + ayz” & Ns. By

Theorem 2.1.1, a =0 if ]azl = 4. We now assume
0 < ay < % 5 and put ¢ = cos6. Then u, &M, , by

Theorem 1.2.3, iff:

8in2e a [~}
2 55in 0 ¥ = -1

+ 8.1

0,0I’:
(3.1) 2 ca, x° + ax” -1 = 0

has no roots in |x |< 1, for 0 < ¢ =cos0 £ 1.
Then, by Cohn's Rule, the same holds for #(x,0) =0 ,
where:

= - 2 _ 3 _ _ 3
d(x,0) =1 aq X 2ca x® + 2oa2( 2ca, - a;X+X )

—_ b3 2 - 2
(3.2) = (1 - 4c®a,®) - 2cayaqx - a x° .

Thus ‘all <1~ 402a22 s, for 0 ¢ <1, and so:

(3.3) l all < 1 - 48,7
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Applying Cohn's Rule to #(x,0) , we find that the
polynomial :
2, 2 2. 2 - -
(1-4c 8n )[1-40 8o —20a2alx]+a1[—a1—20a2a1x]
has no zeros in |X I <1, and so:

(1-4c®ay?)? - |ap]”

v

‘— 2ca2§1(1—402a22) - anlzazi

H

1+a (al/é ) 4c?a,®
1 17 7 2

(3.4) = 2a2c*al|.
for 0 < ¢ <1 . Hence:

— —

(1+fali—4cza22)(1—lal‘-402a22)

(3.5) 2a2‘a1|0 < (0<e<1) .

2 - 2. 2
1+ al( /a,1 ) - 4c”a,

Suppose this holds for all Ial| =y = y(az) . Then
2a,yc {1 -y - 4c®a® , or y < 1l-2ca, for 0 <c < 1.
Thus:

(3.6) y & 1-2a,.

Suppose, next, that A = max lal‘ for a
Ho

fixed value of real a,. We prove that A =1 - 4a23 ,
by showing that uz(z) = % + z(1—4a22)eiﬂ/3 + a2 €N, .
This satisfies (3.3); and the result follows if it satis-
fies (3.5). This is so if:-

2 a, |a1i c < 1+ lall - 4cfa® ,
i.e. (2a20~1)|a1‘ < 1~ 402a22 R

which is certainly true. Thus M2(2)653M2 , and
— 2
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Combining the above results, we have:

Theorem 3.3.1, Let uz(z) = % + a;z + azzz.

(a) If py(z)g M, , then |ap| < 1-4]ay|® , and

this estimate is exact.
(b) If |32| <%, and lall < 1—2'&2', then

wo(z) € M,

4. Coefficient Regions for MS’

Again, owing to the complexity of the situation,
we consider only polynomials in M3 of the form:
uB(z) = % + aq3 + aBZS, where az is real and posi-
tive. By Theorem 1.2.3, pS(z)gE My 1ff:

sin36 _4 +

&3 Ssin O

alxz - 1 =20, and soz:

(4.1) a3(402_1)x2 + a-Xx =1 =0

1

have no roots in |x | <1, where 0 <0 % y

0 <c=coso <1l. Clarly, from (4.1), we must have:
1

(4.2) IaBI S -—5- .

Applying Cohn's Rule to (4.1), we see that:

33(402—1)[33(402—1)+§1X] + [alx—13 = 0,

i.e. 332.(402—1)2~1 + X[al+a3§i(402—l)] =0,

has no roots in Ix |< 1l, and so:
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1 - a32(4c2-1)2

v

ey + 3351(431‘1)1

2y ” |
(4.3) |2y |-|1 + a3(§;)(4c -1) |,

for 0 < ¢ < 1, Suppose, first, that (4.3) holds for
all ‘ali =y = y(az). Then, from (4.%), we have that:

(4.4) y £ 1 -az(4c®-1) for F<c <1,

and so: y < 1- 3a3 .

We next find max ’al ' for a fixed positive a

U'B 5

By (4.3), this occurs when a) is imaginary, and so when:

=1 |

(4.5) ‘all < 1-ag

A

1+ a3(409~1), 0<c<1l, or:

It is easily verified, using (4.3),that:
u3(z) = % + (1—a3)iz + a3zse§ M3 , and so the estimate
(4.5) cannot be improved.

We have now established:

Theorem 3.4.1. ILet u3(z) = % + ayz + a3Z3.

(a) If ‘aB! < % , and all <1- B{aB‘ , ‘then u3(z)

c My
(b)  If py(s) & My, then [a;]| <1 - |es|, eand this

estimate i1s exact.
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Chapter 4. A Conjecture of Ilieff.

'Tvery man has a right to utter what he thinks
truth, and every other man has a right to knock him
down for itt?

-~ Samuel Johnson.

We will here prove the following special case of
an (unpublished) conjecture of L. Ilieff for a poly-
nomial of degree n:

Theorem 4.1. If all zeros of the cubic polynomiagl

pB(Z) lie in {z *5 1 , then at least one zero of

pB'(z) lies in or on the boundary of a circle of

radius unity around each zero of pS(Z)

The form of the conjecture for a polynomial of
degree n is clear if we replace ps(z) by pn(z) in
Theorem 4.1. We will give two proofs of the theorem,
one depending on the Cohn Rule alone, and one which

uses the theory of apolar polynomials.

1. First proof of the theorem.

This proof depends essentially on:

Temma 1. If f£(S) =T + US + VS® is non-zero in
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iS IS 1 , then:

(1) o] > ‘V{ , and
(2) |efe - v > tTU—Vﬁ',
This is a very simple case of the well-known Cohn

Rule (Theorem 1.3.1).

Lemma 2. If Theorem 4.1 is false, there exists a

cubic polynomial having all its zeros on |z}l =1 for

which the theorem is falgse,

Proof. Suppose there exists a cubic polynomial pB(z)
for which the theorem is false, which has its zeros
215 Zgs 23 not all on lz '= 1.

(a) Then the smallest circle containing Zqs Zpo
Z5 WAy have 21s Zps Zz On its boundary; suppose it
has centre p ( p < 1) and radius R (R < 1). Then
the cubic polynomial qB(z) = pB(Eﬁﬁ) has all its
zeros on 'z *: 1, and the distances between zeros of
the polynomial and its derivative have been magnified
by a factor l/R. Thus the theorem is false for q3(z) ,
which gives the required result.

(b) Alternatively, the smallest circle containing
1y Zpy Zz may have 2z, and 1z, (say) at opposite

ends of a diameter, and z5 inside the circle.
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As above, we may assume ‘le = |z2t_= 1, lz3 {< 1

and, in fact, zy =1, z, = -1. Then p3(z) = (z%-1)(z-a)
does not satisfy the result of the theorem for some a
with |o | < 1. Hence Lemma 2 will be proved once we

have established:

Temma 3. Suppose 1p(S) = s(5-2)(8-1-a) for jal< 1.

Then the theorem holds for p(S)

Proof. We have:

p'(8S) = 387 - 2(3+a)S + 2(1l+a).
Suppose that for some a, lal <1, p'(S) has no zeros
in |$|< 1. Then, applying Lemma 1 with T = 2(1l+a),
U=-2(3 +a), V=73, we deduce from (1) that 2‘l+a |> 3.
Hence certainly Re a > 0. Substituting in (2), we obtain:

4l1+al® -9 > I2(1+€)2(3+a) - 3.2(3#3){

> 4ll+a|.13+a‘ - 6l3+a f,
and so 2|1+@|+ 3> 2|3+al, since 2'1+a$— 3> 0.
Using the previous bound for |1+a l, 6 > 2|3+a|, which
is impossible for Re a > 0.
Also p'(S) has no zero in |S-l-a| <1 iff
a(t) = 3t? + 24(1+2a-a®) + (a®-1) has none in |t | < 1,
which is not the case. Hence Lemma 3 is proved.

Proof of the theorem. As discussed above, we may, without

loss of generality, consider the polynomial:
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(3)  p(s) = s[1 + et (148) + o2 (145)2]

with all its gzeros on |1+S| =1, where 0 < A K 2,
0 <& < 2t . Thus:

p'(8) = (1+Aei¢+e2iﬁ) + QSeiﬁ(A+Qe§d) +‘3e21¢ s®
This has a zero in |S 'S 1 iff:

(4) p’(e'iﬁs) = (1+Aeiﬁ+e2i¢) + 2(A+2ei¢)s + 33°

also has a zero in IS ‘5 1.

Suppose the theorem is false. Then there exist
some A,# such that p‘(e_iﬁs) has no zero in IS !5 1.
Phus, applying Lemma 1 to the polynomial (4) with
T =1+ Aeiﬁ + ezi% , U = 2(A+2eiﬁ), V=3 , we deduce
from (1) that:

(5) A+ 2 cos &> 3.

Clearly this implies 1 < A <2, % <cos 4 < 1.

Now let us use the following notation:
(6) c =cos g s d =2¢c + A , where:

(7) 3<¢da<4,%5<c<l,1<da~-2¢2

Substituting in (2) and simplifying both sides, we obtain:
£(a%-9) >[a® - 3dc + (6c%-6) + 1 sin ¢ (6c-a)|.
Squaring, expanding out the terms on the right, and

rearranging, we have:

(8) f{c,d) < 0 , where:
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f(ec,d) = (% a4 - %2 ac + 92) + 6cd(4-d%) + 4c®(5d4%-9)-24c34.

4
Now we define g(c,d) = f(lld{ — g(c,d) if ¢ #1,
¢ . -
== £(1,4) if c=1

Then, for those (c,d) satisfying (7), we have:
(9) g(c,d) = 6d(4-d%) + 4(1+c)(5d%-9) - 24d(l+c+c?).

It is easily verified that == g(c,d) is zero
only when c¢ = (5d°-64-9)/12d , and that this point does
not satisfy the last condition in (7). TLet V be the
region of variability of the point (c,d) subject to (7).
In V, %% is non-zero, and so has the same sign as
%5 (1,4) = -4. Thus g(c,d) is a strictly decreasing
function of ¢ for fixed d , and so is always strictly
less than its value when 1 =d - 2¢ (from (7)); hence

in V: g(e,d) < max g(c, 1+2c)
L <e <l

=  max [-4(14c)(1-2¢)?]) =0
<c <1

ol

Consequently g(c,d) <0 in V , and £(2,d) < f(c,d)
for ¢ £ 1; so if (8) is satisfied anywhere in V, it

is satisfied when c=1. However:

£(1,0) =2 a* - 6a® + gL o - L

be a strictly increasing function of d, and so

is easily shown to

£(1,a) > £(1,3) = 0 for 4 satisfying (7). Therefore
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f(cyd) > 0 on V , which is a contradiction. Hence
Theorem 4.1 is proved.

Note 1. An application of Cohn's Rule similar to
Lemma 1 shows that if p(S) is given vy (3), then
p'(S) is non-zero in 'S {< 1 only for that poly-
nomial p(S) corresponding to the point (e=1,d=3) ,
namely p(S) = (1+5)° - 1.

Note 2. The second proof, using results from the
theory of apolar polynomials, is much shorter. The
first proof, on the other hand, depends only on Lemma 1
(which is a simple deduction from Rouche's theorem),

and so is of independent interest.

2. Second proof of the theorem [a].

This proof depends on Theorem 1.7.2, which we
restate as:

Lemma 4. ©Let ey Z be a system of numbers

Zl, Z2’ » e n

which satisfy the convolution equation:

A(zl, vy Z. )= 2_ s _ + 8y Sq * ... +a, 8, = 0

associated with the polynomial:

A(z) = a

where s = 1, S = 29 *+ 2, + ... + Z_
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82 = lez + 21Z3 + .0 + Zn_lzn’ * s 0 ) Sn = lez e a9 Zn .

Then A(z) has at least one zero in each circular domain

K which contains all the points Z1y Zoy ey By oo

We now proceed to the second:

Proof of Theorem 4.1. Let p(z) = (z-wl)(z-wz)(z—WB)
be a polynomial with all its zeros in lz 'S 1. The

result will follow if we can show that the equation:

Alz)=spi(z + wy )
=32° + 22(2w1-w2-w3) + (wl"WZ)(Wl-WB)

= 0
has at least one root in |z ls 1 . The convolution
equation associated with A(z) is:

PS— - - A -
A(zl, 2,) == 32,2, + (z1+z2)(2wl-w2 w3) + (wl wz,(w:L w3)

= 0
If 1, Y s E{Q are the roots of the equation 2%-1=0 ,
then the numbers 7125 defined by:
— 1
2y = - 3 (W:L +Y Wiy +koﬂw3),
- _ 1 2
2, = - % (wl<+ YWy +%§w3)
satisfy the equation A(Zl’ZQ) =0 , and l zll <1,
‘22 ’5 1 . Hence A(z) has at least one zero inside
the unit circle.

Hence Theo rem 4.1 is again proved.
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Note. The Ilieff conjecture is trivially true when
‘n=2. However nothing is known about its validity for

n 2> 4.
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Chapter 5. Composition of Coefficients.

"If the Romans had been obliged to learn Latin,
they would never have found time to conquer the world!'

- Heine,

Using the Grace Apolarity Theorem (1.7.1) and

the Dieudonné Criterion, we may easily obtain:

n
Theorem 5,1.[5] Let f(z) =z + E akzkeg Pn 9
k=2

and g(z) =1 + E (ﬁ:%)bk ¥ 1 pe non-zero in
k=2 7

| _ n
lz! < 1. Then h(z) =2z + E akbkzkég P, -
k=2
The only other such theorem known is:
Theorem 5.2.[18] Let f(z2) = i :akikeg 5.
k=]
Then f(z) is starlike univalent in |z | < 1 iff

n

- 1 2n k. .
Vn(Z) = TQET E n+k) a, 2z 1is starlike
k=1

univalent in |z | <1 for all n. ¥ (z) is the

de 1la Vallée Poussin mean of £(z).

e will establish a number of composition
theorems where the coefficients are generally
larger than those produced by the above two theorems.

One of our main results is:
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_ k
Theorem 5.3, Let‘ pn(z) =z + z : oz Py o

and all the zeros of g =1 + E :b lie in
k=1

n
Re z > 3(n-1) . Then =z + § 8y g(k—l)zkePn .

Proof. By the Dieudommé Criterion, since r, (2} € P, »

n-1
all zeros of 1 +2 : 8111 Sln.k+l)g xk lie in
k=1

sing
lx ' > 1 for any Qé Lo, 3’-] Then, by Theorem 1.7.5,

sin(k+1)e k. .
all zeros of 1 +§ : K+l —SinD g(k)x™ 1lie in

lx’}_ 1, and so 2z + E : akg(k—l)zkePn .
k=2
Note. By applying Theorem 1.7.3, we may show that if

p,'(z) has a zero on lz j= 1, so has the derivative

n

sk

of z + E akg(k-l)z
k=2

As a2 direct application of Theorem 5.3, we deduce:

n
Theorem 5.4. Let pn(z) = E :a‘kzké Pn (al = 1),
' k=1 '
Then the following polynomials also belong to Pn :
n n n
k-1, k n+l1-2k k n-k
S LD W= i BT s
k= k=1 k=1

where Re v > 2(n-1).

e now establish the well-known theorem of
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Kakeya:

Theorem 5.5.[11,15] ILet p. (2) =z + § :akzk
1 k=2

If pn'(z) has no zercs in Iz l< r , then pn(z)

is univalent in !z’ < r sin (%) .

Proof. Suppose:
n-1

£(z) = p,'(2) = ;o (k+l)ak+1zk ’

which has no zeros in lz ’< r , ands

n-1
sla) =L (%) BAFRS < (0 <o <)

Then g(z) has no zeros in lz '< R , where R is

the radius of univalency of:
n-~1 Zk+1

% (nil) TS % ((1+z)® - 1) .

A direct application of Definition 1.1.1 yields
R = sin (%) . Hence, by Theorem 1.7.4, there are no

zeros in lz {< r sin (%) of the function:

n-l o _ sin(k+l)e  k
k+1 sine ?
k=0

and the result follows by the Dieudonné Criterion.
Note. It is easy to show that r sin (%) is the radius
of univalency only for pn(z) of the form:
p(2) = = (L +ern)®-1)  (le]=1)
Similarly we may prove:
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n
Theorem 5.6.[15] ILet pn(z) =g + E :akzk .

Ir 21 pn(z) has no zeros in ’z |< T, pn(z) is

univalent in ‘z |< % .

Pinally, we note that by a simple application
of Theorem 1.7.3, we may also obtain:

n
Theorem 5.7. Let a 2K~ P (as = 1) . Then
k n 1
k=1

e k 1
5 ' a2 is univalent in ‘z I( 5 » where ac> 1)
k=1

k#

is the modulus of the smallest root of the equation

(x - D™ = G I
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Chapter 6. The Theorem of Bernstein.

tMuch may be made of a Scotchman, if he be
caught young!

- Samuel Johnson.

We now return to discuss Theorem 1.3.3 for
special types of polynomials, especially in view
of:

Theorem 6.1.[13] et ©p(z) be a polynomial of

degree N with all its zeros on |zl =1 . Then:

M(1, p*') = %N M(1, p).
From this we may easily deduce:

N
Corollary. Let p(z) = z : Ekzk R Eo = EN =1,
k=0

Ek:1= 1, where €, =& . . Then:

M(L, p') = % N.M(1, p).
[Note. For conciseness, let us denote M(1, p') by
M' , and M(1, p) by M .]

Consequently it is of interest to find upper
and lower bounds for N'/NM for polynomial$ with
coefficients of modulus unity, or simply b 1.

Theorem 6.2.° Given any € > 0 , there is an integer

and polynomials of degree N with coefficients i
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such that (a) MY/NM < 5%5 + &,

(b) M'/NM > -2'-- £ .

Proof. Consider the polynomial:

n an
- 1=z n l-z
pz) = 15~ + 7z i3

of degree N = n(l+a) - 1 , where an 1is an even

integer. The terms in p(z) attain their maximum
moduli n and an at z=l, z=-1 , and are O0(1) when

Re z < 0, Re 2z > 0 respectively (|z |= 1). Hence:
(6.1) M(1, p) = [n+0(1) ] max (1l,a).

Further:

an an

n
o) = LED ) e nt (BT 2

[
[\

1+

]

[\

The terms in p'(z) attain their maximum moduli
#n® [1+o(1)] , an®, %a”n® [l+o(l)] at z=1l, z=-1,
z=-1 , and are O(n) in Re z < 0 , Re z > 0 ,

Re z > O respectively (|z]=1). Hence:
(6.2) M(1, p') = %n® [1+o(l)] max (1, a® + 2a).

Choosing o such that on = 2[%(/2-1)n] , we

obtain:

1
T = =+ o(1)
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from (6.1) and (6.2); and, choosing a=1 and =n
even, we obtain:

1
%ﬁ = % + 0(1)

We may contrast Theorem 6.2 and the unique

extremal polynomial in Theorem 1.3.3 with:

Theorem 6.3. Given any &> 0 , there is an integer

N and polvnomials of degree N with coefficients of

modulus unity such that (a) M'/IM < £ ,

(b) M'/IM > 1- €.

Temma. Let p(z) be a polynomial of degree N , and

a(z) = 2~ p(1/z). Then M(1,p) = M(1,q) =M , ond:

M(1,p') + M(1,q') > NI . Y
Proof of Theorem 6.3. (a) Consider p(z) = E :pr(z) ,
r=0

where:

8(r,
ipr(Z) = (rm) izg;i;—fl y w = exp (2xi/m),
l - waz
(6.3)
a(r,n) = m{n/r/m}, 3(r,n) = a(r+l,n) - a(r,n) .

Then p(z) is a polynomial of degree N = m[n//m] -1

with coefficients of modulus unity. We choose:

29X o= %

(6.4) n =

where x 1is a large positive integer. Consequently

No=2%% 1, a(r,n) = 258 [140(1)], 3(r,n) = 2°%°1

[1+0(1)]/ifr for sufficiently large X.
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Firstly, we notice that:
(6.5) M > lp(l)i = tpo(l)i S

We now consider p'(z) , and so:
a(rym)-10y_,2(rm)y _ 5(p ) 0(zm)+3(r,m)-1

p.t(z) = wr,n)z

1-vw'z
+wrza,(r,n) 1_25(.‘0,1’1)
(1 - w'z)?
then: (1,3, = [p,t D]
= a(r,n)p(r,n) + 23(r,n)[3(r,n) - 1]
(6.6) o p10x=1 19 4 (1]

for large x, and:

p,t(2) = O[@(rin) ;rB(r,n)] . og%z ,
- 2 (1-w 2)

_o(2®re) . _0(1)

1-w'z (1-wFz)?
for arg(wrz) > 2r/m . Consequently:
M(1, p,'(w Fel®)) _ o2y, _0(1)
T 2
0<2xs/m<0<2n (s+1)/m<n s/m (s/m)

(6.7) = oT¥ o(lr)/s .

From (6.6) and (6.7) we deduce that:
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m-1
Mt < 2M(1, p'y ;) + 2 Y | 2T® o(fETTE)
r=1

10x [1 + 0o(1)] , end so:

-1

m-1
[210% | 7%} _ 0(log m . /m)][1+0(1)]
Ir=

M/iM & 275 [1 +o0(1)] =N ° [1 +0(1)] .

This proves the first part of the theorem.
(b) By the lemma, the polynomial sz(l/z)

the second part of the theorem.

k-1 n
Note. The polynomial } : g Lo %k T
5 1 -y bT,
Ir=

satisfies the condition M'/NM > 1 - o(1) ,

w = exp (2%i/k) and k divides =n .

satisfies

also

where
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