A Thesis submitted to the University of London (Imperial College of Science and Technology)

for the degree of
Doctor of Philosophy in the Faculty of Engineering

by
Ahmad Faisal Asfari B.Sc.(Eng.)

ABSTRACT

In this study on secondary flows in river bends, experimental investigations were carried out in three 180° open channel bends of rectangular cross-sections, but of different curvatures, in order to examine the main features of the flow. The breadth : depth ratios, between 24 and 3, are thought to be larger than have previously been reported in laboratory experiments.

The characteristics of the secondary currents were measured, both by finding velocity distributions, and also by finding the bed shear stress distribution. The measured velocity distributions in turbulent flow are then compared with those calculated by solving the general equations of motion by the method of finite differences.

Velocities were determined in laminar flow by photographing particles of neutral density, and in turbulent flow by using a miniature current meter. The spiral motions in a cross-section were observed photographically. The distribution of shear stress in both the radial and tangential direations on the bed were mapped, and a correlation between velocity and bed shear is suggested.

The regions susceptible to the most serious effects
of the stream curvature are identified from the consideration of bed shear distribution, and these locations are related to channel curvature. These regions were further investigated by studying flows over loose beds, which were prepared by covering the rigid beds with an industrial sand.

The energy losses in curved flows, additional to the usual bed friction, are compared to the straight channel friction factors at the same Reynolds number.

ACKNOWLEDGEMENT

The research work presented in this thesis was carried out in the Hydraulics Laboratory of the Civil Engineering Department, Imperial College of Science and Technology, under the supervision of Professor J.K.D. Francis, M.Sc.,M.I.C.E., H.I.W.E. The author is very grateful to him for his invaluable suggestions and advice throughout the period of this work.

The author also wishes to thank Professor (Emeritus) C.M. White for suggesting the problem and for his guidance in the design of the apparatus.

Thanks are also due to the members of staff of the Hydraulics Section, the author's colleagues, and all those in the Department who offered assistance.

The author gratefully acknowledges the leave of absence granted by the University of Aleppo, Syrian firab Republic, the generous scholarship awarded to him by the Ministry of Overseas Development, United Kingdom, and the hospitality extended through the British Council.

All gratitude is due to the author's wife for her care and patience throughout the course of this study.

CONTENTS

Page
ABSTRACT $2-3$
RCKNOWLELGEMENT 4
NOTATIONS8-9
CHAPTER I REVIEV OF LITERAKTURE 10
I-1. Secondary currents around the bend $10-16$
I-2. Velocity distribution around bends $16-17$
I-3. Bed shear stress distribution $17-18$
I-4. Flow over erodible beds 18-20
I-5. Resistance factor in curved flow 20-21
CHAPTER II THEORETICAL CONSIDERATIONS 22
II-1. Basic equations of fluid motion through a curved passage $-4-25$
II-2. Simplification of the general equations in the case of two-dimensional flow in a long circular bend of a wide stream 25-30
II-3. Influence of inertia forces due to secondary currents 30-31
II-4. Side walls effects 31-32
II-5. Approximate solution in the case of three-dimensional flow-modification of forward velocity around the bend due to secondary flow 32-34
CHaPTER III THE EXPERIMENTAL APPARATUS aild FLOW MESSUREUENT TECFINIGUES 35
III-A. The apparatus $35-42$
III-B. Flow control and flow measurenent techniques 42
III-B-1. Flow control 42-43
Page
III-B-2. Discharge measurement 43-45
III-B-3. Depth measurements 45-48
III-B-4. Velocity measurements 48-55
III-B-5. Bed shear stress measure- ments 55
III-B-6. Bed and flow angles neasurements 55-58
III-B-7. Secondary currents investigration 55-59
CHAPTER IV VELOCITY DISTRIBUHION AROUND THE BEND 60
IV-1. Velocity distribution in laninar flow 60-67
IV-2. Turbulent flow 67-7:
Discussion of results 73-90
CHAPTER V CHARACTERISTICS OF SECOMDARY CURRENTS IN CURVED OPEIV CHANGEL FLOW 91
V-1. Superelevation of the water surface in the radial dircction 93-98
V-2. Helical motion in curved channel flow 98-124
CHAPTER VI BED SHEAR STRESS DISTRIBUTION AROUND A BEMD 125
The experimental procedure 125-130
The experinental findings 130
i) Longitudinal shear stress 130-137
ii) Radial shear stress 137-138
Discussion and conclusions 138-139
CHAPPIER VII FLOW AROUND ACURVED CHANIVLS WITH ERODIBLE BEDS 140
The experimental procedure $140-143$
Page
The experinental findings 143-150
Discussion and conclusions 150-151
CONCLUSIOITS AND SUGGESTIONS FOR FURTHER
RiS EARCH 152-156
APPENDIX A RESISTATCE TO FLON IN CURVED chaintel.s $157-164$
APPE a B COMPUTER PRO MES 165-170
APPENDIX C NUMERICAL TABLES 171-182
REFERENCES 183-184

A

C
d
$x, y, z ; r, \theta, z$
$u, v, w ; \bar{u}, \bar{v}, \bar{w} ; u^{\prime}, v^{\prime}, w^{\prime}$

r_{r}, r_{z}, r_{z}
X, Y, Z
r_{i}, r_{c}, r_{o}
b
h

ρ

$$
\mathrm{i} / \mathrm{s}, \mathrm{o} / \mathrm{s}
$$

$\overline{\mathrm{m}}$
$\nu=M / P, \nu_{T}=A / P$
$\mathrm{v}_{\theta \mathrm{m}}$

Turbulent or eddy viscosity of the fluid

Chezy coefficient, or a constant, according to the context
diameter of a circular pipe
Cartesian coordinates
Gylindrical soordinates
instantaneous, temporal mean and fluctuating components of relocity in x, y, z respectively, designated in the text as the temporal mean values of velocity in r, θ, z coordinates components of body force (gravity) in x, y, z directions
inner side radius, centreline radius and outer side radius of the channel bend
width of the fross-section depth of the cross-section
molecular viscosity of the fluid
density of the fluid
inner side and outer side respectively
hydraulic radius
kinematic coefficient of molecular and eddy viscosity respectively
mean forward velocity along the flow depth

MEANING
mean velocity over the cross-section

Reynolds number
Froude number
mean value of bed shear stress in straight uniform flow
radial and tangential components of bed shear stress
radial and tangential rlcre7 of water surface
height of a point above the channel bed
relative depth of a point
in the cross-section
Karman constant
Friction velocity
slope of channel bed in uniform flow, or of energy line generally
roughness height, or a constant, according to the context
bed angles
flow angles
strength of secondary currents
specific weight of fluids
channel curvature
aspect ratio
acceleration due to gravity

REVIEN OF LITERATURE

The Iiterature reviewed herein has been selected for its direct application to the present work.

It was as early as 1876 that the phenomenon of secondary flow was first observed by Thomson. From his experiments on curved ducts, Thomson noted that a stream flowing into a curve has an increased velocity along the inner side and a diminished velocity along the outer side; the water surface has, therefore, a transverse inclination rising towards the outer side. The movement of water near the surface is directed outward and that near the botton is directed inward.

Subsequently, many other investigators have carried out analytical as well as experimental work on this problem. I-1. Secondary currents around the bend

Shukry (1950) carried out experiments on a 180° open channel bend of 30 cm . width and $r_{c} / b=1$. He stated that the superposition of the secondary flow on the main flow gives a kind of spiral (or helical) motion along the bend and even to some distance downstream of the bend. The strength ($S_{r z}$) of this spiral motion was defined by him as the percentage ratio
of the mean kinetic energy of the lateral motion to the total kinetic energy of the flow :

$$
S_{r z}=\frac{\left(v_{z z}^{2} / 2 g\right)_{m}}{\left(v^{2} / 2 g\right)_{m}}
$$

He also stated that the proportions of ${\underset{F}{i z}}$ occurring in the first half of the bend is twice that in the second half, and that $S_{Y Z}$ decreases with increasing Reynolds number and with the radius-breadth ratio.

Hawthorne (1951) concluded, from inviscid flow theory, that the secondary flow is not spiral but oscillatory lengthwise. His theoretical development showed that the secondary circulation remained unchanged when streamlines were geodesics on the surfaces of constant total pressure. His experiments were carried out on a 90° bend of circular pipe, as well as 90° and 180° bends of rectangular ducts (with $r_{c} / \mathrm{b}=3$).

In rivers with erodible boundaries, and in all flow passages with transported sediments, the helical motion is of great importance. Once a bend is formed in a natural stream, by some geological or other cause, the helical motion created there will continue downstream of the bend exit and consequently act as the disturbance at the entry into another region. Prus-Chacinski and Francis (1952) emphasized the importance of entry conditions in the meandering process and concluded from their experiments that it is possible to change the flow
pattern in a bend, and downstream, by changing the conditions of motion at the bend entry.

In a later study, Einstein and Harder (1954) referred the circulation in bends to the unbalance between the centrifugal and the tranverse pressure forces. They also revealed the existence, near the outer direction to that of the
 main vortex; they attributed its existence to friction, and claimed that the early erosion in this region of the outer bank is due to this small vortex. Their experiments were carried out on a 180° bend of 0.4 m . width, 0.10 m . depth, with $\mathrm{r}_{\mathrm{C}} / \mathrm{b}=7.4$.

From experiments on a meandering channel of five opposite bends, Prus-Chacinski (1955) reaffirmed the importance of flow conditions at the entry and proved that by introducing a certain artificial secondary flow at the beginning of a natural stream bend, the pattern of secondary flow in the bend can be altered (as illustrated overleaf) and the phenomena of erosion and deposition can be governed.

Patterns of spiral flow in
a rigid channel bad

The strength of secondary flow was defined by Malouf (1956) as the deviation (α_{0}) of the flow at the bed from the tancential diroction. Frow his axperisonts on $=90^{\circ}$ bend ho juveloped the fol"owing equation :

$$
\tan \alpha_{0}=23.4\left(\mathrm{~h} / \mathrm{r}_{\mathrm{c}}\right)^{\frac{1}{2}} R \mathrm{e}^{-\frac{1}{4}}
$$

where h is the depth of flow and r_{c} the central radius of the bend.

Wadekar (1956), from his experiments on a 180° bend of an open channel $\left(b=15 \mathrm{~cm} ., r_{c}=100 \mathrm{~cm}.\right)$, suggested the
following equation for $\tan \chi_{0}$:

$$
\tan \alpha_{0}=25.4\left(h / r_{c}\right)^{\frac{1}{2}} R e^{-\frac{1}{4}}-c
$$

in which C is constant. He also confirmed the existence of the small vortex near the outer side as originally revealed by Einstein and Harder.

In Rozovskii's work (1957) on laboratory as well as river bends of different proportions, the following equation was suggested :

$$
\tan \alpha_{o}=11 \mathrm{~h} / \mathrm{r}
$$

He also stated that helical motion depends only a little on the channel roughness, whereas water surface topography is greatly affected by the roughness of the boundaries. From his measurements on bends in the Desna river, he emphasized the existence of unilateral transverse circulation in the crosssection of a bend.

Regarding the transverse water surface profile, Leopold et al (1960) stated that, although the transverse profile varies in shape according to the different laws of radial distribution of tangential velocity, the overall bank-to-bank superdlevation is remarkably independent of the law applied. 2hey suggested that an equation for the total superelevation of the form

$$
\Delta R=\frac{\overrightarrow{\underline{v}}^{2} b}{g r_{c}}
$$

in which $\overline{\mathrm{V}}$ is the mean velocity of the flow, b is the width of the cross-section and $A h_{\text {is }}$ the total superelevation, will give values near to those measured in rivers.

From measurements on a 60° trapezoidal channel bend of 0.6 m . bottom width and 1.52 m . central radius of curvature, Ippen et al (1962) concluded that superelevation is essentially independent of the frictional aspects and the velocity distribution of the flow, and is controlled primarily by the boundary geometry, in contradiction to Rozovskii's findings.

From his experiments on several trapezoidal bends of natural canals (Horsetooth Feeder Canal and Poudre Supply Canal, Colorado) with curves ranging between 28° and 115°, and $2.78<\mathrm{r}_{\mathrm{c}} / \mathrm{b}<23.93,3.4<\mathrm{r}_{\mathrm{c}} / \mathrm{h}<7.7$, Ali (1964) concluded that in the middle section of the bends the maximum velocities are close to the centreline of the channel. He also concluded that the radial distribution of tangential velocities from the centreline towards the inner and outer sides can be represented as forced and free vortices respectively. ficcordingly, the superelevation takes the value :

$$
\Delta R=\frac{v_{\max }^{2}}{2 g}\left[2-\left(\frac{r_{i}}{r_{c}}\right)^{2}+\left(\frac{r_{c}}{r_{0}}\right)^{2}\right]
$$

Through his recent studies, Prus-Chacinski (1967) demonstrated the advantage of secondary currents created by the construction of a series of short bends as a convenient
means of separating the heavily polluted sewage in storm scwase overflows.

I-2. Velocity distribution around bends
In experiments on a 180° open channel bend, Shukry (1950) measured the magnitudes of the velocity components around the bend, using a pitot sphere to give the components of velocity simultaneously in three perpendicular directions. He concluded that the radial distribution of tangential velocity conforms to the free vortex law (vr = constant).

Later, Ananyan (1957) used the same device for velocity measurements, and stated that in long bends a shift of maximum tangential velocity from the inner side region takes place towards the outer side region of the bend as a result of transverse circulation.

In the same year, Rozovskii published his extensive study on curved open channel flow. He derived analytically the equations for velocity distributions around bends of different proportions of $r_{c} / b, b / h$, etc., and for different velocity profiles along the depth of flow at the entry: i.e., Iogarithmic, parabolic and elliptic profiles. He obtained good agreements between his calculations and measurements in the cases of both smooth and rough beds oi long bends.

In a recent study by Fox and Ball (1968) on a 180°
open channel bend 30 cm . wide and $\mathrm{r}_{\mathrm{c}} / \mathrm{b}=3.5$, the behaviour of secondary currents in the bend was analysed, and its effects on the main flow explored, by calculating, in finite difference procedure, the distribution of foward velocity around the bend, toking into consideration the effect of the transversal flow. A comparison was then made between the calculated and the measured isovels and a good egreecont botwogit the two was obtained. This study also confirmed the shift of the high velocity region towards the outer side and below the water surface as a result of the secondary flow, and concluded
a gradual development of
a low velocity region near the inner side of the bend starting at about 30° from the bend entry.

I-3. Bed shear stress distribution

Owing to the secondary currents, the flow velocity and hence the shear stress very near the channel bed are directed inward at an angle α_{0}. Wadekar (1956) stated that tan α_{0}, which represents the ratio of the radial to the circumferential velocity very near the bed, is also equal to the ratio of the shear stress components in these two directions,

$$
\tan \alpha_{0}=\frac{v_{r}}{v_{\theta}}=\frac{\tau_{o r}}{\tau_{0}}
$$

To measure the local bed shear stress around the bend of a trapezoidal channel (Paragraph I-1), Ippen et al (1960) used
a round surface pitot tube, similar to that originally developed by Preston (1954). They plotted the local shear stress around the bend non-dimensionally, considering only the tangential components of bed shear stress, and estimated that the error due to the neglect of the radial component of shear was proportional to ($1-\cos \alpha_{0}$). From their experiments they concluded that localized shear stresses in curved flow exceed in intensity the normal mean shear for uniform flow, as measured before the bend entry, by as much as 100% depending only on the stream geometry.

I-4. Flow over erodible beds.
The most important effects of secondary currents, and the resulting helical motion, are exhibited in natural streams with erodible boundaries. Many studies have been carried out in both straight and curved open channels. Both the movement of sediments and the configuration of beds of rivers are intimately interrelated to the secondary currents in the flow. Even in straight channels of non-circular cross-sections, the secondary currents due to turbulence in the flow have a dominant role in the configuration of the channel crosssections; it is believed that thase secondary currents are the cause of keeping sediments in suspension. One of the most systematic studies carried out in this field was that of

Vanoni (1946).

Flow patterns in straight channels (from Vanoni)

In a study on flow about struts and airfoils of different shapes, Hawthorne (1954) measured the configuration of sand surrounding different struts under flowing water. He

concluded that the sand around a bicusped strut is markedly less disturbed than that around an elliptical strut, due to
the more gradual change in curvature in flow lines in the former case than in the latter.

Rozovskii (1957) suggested that the non-erosive velocity at the exit from the bend is about 78% of that in a struight uniform channel of the same rate of flow.

I-5. Resistance factor in curved flow

One of the characteristics of flow around bends is the additional losses of energy due to helical motion. In experiments carried out by White (1929) on resistance to flow in coiled pipes of circular cross-section, the value of critical Reynolds number was found to increase with increasing curvature, i.e., decrease with the mean radius of coil; for curvature of $1 / 50, \operatorname{Re}_{\mathrm{cr}}(=\overline{\mathrm{v}} \cdot \mathrm{d} / \nu)$ was equal to 9000 . The ratio of resistance coefficient in a curved pipe to that in a straight one, in which R_{e} is the same, was found to increase when the criterion $R_{e}(d / D)^{\frac{1}{2}}$, in which d is the pipe diameter and D is the mean radius of coil, increases.

Raju (1937) found that the coefficient of energy dissipation in a bend of an open channel $\Gamma=\frac{H_{b}}{v_{n}^{2} / 2 g}$, in which v_{n} is the average velocity for normal flow and H_{b} is the head loss due to curvature only, decreases nearly asymptotically to the value $\frac{2}{3}$ as h / b increases.

The coefficient λ_{c} of bend resistence, as given by Wadekar (1956), is a function of the following dimensionless parameters :

$$
\left(\operatorname{Re}, \theta, h / r_{c}, b / h, k / h\right)
$$

in which θ is the angle of turn, h is the depth of flow and K is the height of roughness. He also stated that the energy loss which arises from the transition regions between the straight approaches and the bend is more than that arising from direct actions of the curved walls.

According to a statenent by Allen and Shahwan (1954), in bends the excess in energy loss/ may be greater than that of the normal loss due to friction; from their experiments they concluded that bends and changes of channel geometry, as distinct from textural roughness, account for $47-76 \%$ of the total resistance.

A brief study has been carried out in this field and can be seen in Appendix A.

CHAPTER II

THEORETICAL CONSIDERATIONS

The equations of motion of continuous incompressible medium have often been written as (Schlichting) :

$$
\left.\begin{array}{l}
P \frac{D u}{D t}=x+\left(\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+\frac{\partial \tau_{x z}}{\partial z}\right) \\
P \frac{D v}{D t}=y+\left(\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial_{y}}{\partial y}+\frac{\partial \tau_{y z}}{\partial z}\right) \\
P \frac{D w}{D t}=z+\left(\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \sigma_{z}}{\partial z}\right)
\end{array}\right\}
$$

where u, v and w are the instantaneous velocity components in the x, y and z directions respectively; X, Y and Z are the respective components of the body force, i.e., gravity;
σ_{x}, σ_{y} and σ_{z} are the respective components of the normal stresses, or pressure, caused by the surface forces; $\tau_{\mathrm{xy}}, \tau_{\mathrm{yz}}$ and τ_{xz} are the respective components of the shearing stresses, or friction, caused by the surface forces.

Applying Stokes' law of friction in the case of fluid flow, where the stresses σ and \mathcal{T} are proportional to the time rate of change of strain, with proportionality factor μ the molecular viscosity of the fluid, and considering the continuity of flow, the above equations (II-1) become the Navier-Stokes equations.

On the other hand, the instantaneous components of velocity and stresses, u, v, w, σ and τ can be substituted by the sum of their temporal mean values and fluctuating ones :

in which $\overline{u^{\prime 2}}, \overline{u^{\prime}}, \ldots$ are the turbulent or apparent stresses of the flow.

Substituting these values into Eqs. (II-1), the Reynolds' equations are obtained.

Again, it is assumed that there exists a linear relationship between the turbulent stresses and the rate of change of strain of the fluid, with proportionality fuctor A. The stresses in Eq. (II-2) then become :

$$
\left.\begin{array}{l}
\sigma_{x}=-\bar{p}+2 \mu \frac{\partial \bar{u}}{\partial x}+2 A \frac{\partial \bar{u}}{\partial x} ; \sigma_{y}=\cdots ; \sigma_{z}=\cdots \\
\tau_{x y}=\mu\left(\frac{\partial \bar{u}}{\partial y}+\frac{\partial \bar{u}}{\partial x}\right)+A\left(\frac{\partial \bar{u}}{\partial y}+\frac{\partial \bar{u}}{\partial x}\right): \tau_{y z}=\cdots ; \tau_{z z}=\cdots
\end{array}\right\}(\text { II-3) }
$$

The factor A, of ten called the coefficient of turbulent, or eddy, viscosity, is, unlike μ, dependent on the point coordinates in the flow.

In what follows, the derivation of the equations of motion in curved open channels is mainly quoted from Rozovskii (1957).

II - 1. Basic equations of fluid motion through a curved passage

In the study of flow in curved passages, particularly in circular bends, it is more convenient to write the equations of motion in cylindrical coordinates r, θ, z.

By introducing the set of equations (II-3) into Eqs. (II-1), and after transforming from Cartesian into cylindrical co-
 ordinates, the basic general equations of steady motion of
a heavy incompressible fluid become (Schlichting and Rozovskii) :

$$
\begin{aligned}
& \bar{v}_{r} \frac{\partial \bar{v}_{r}}{\partial r}+\frac{\overline{v_{\theta}}}{r} \frac{\partial \bar{v}_{r}}{\partial \theta}+\bar{v}_{z} \frac{\partial \bar{v}_{r}}{\partial z}-\frac{\bar{v}_{\theta}^{2}}{r}=-\frac{1}{r} \frac{\partial \bar{n}}{\partial r}+ \\
& +\left(\frac{\mu-A}{r^{\prime}}\right)\left(\frac{\partial^{2} \vec{v}_{r}}{\partial r^{2}}+\frac{1}{r} \frac{\bar{v}_{r}}{\partial_{r}}-\frac{\bar{r}_{r}}{r^{2}}+\frac{1}{r^{2}} \frac{\bar{\theta}^{2} \bar{x}_{r}}{\partial \theta^{2}}-\frac{2}{r^{2}} \frac{\partial \bar{v}_{\theta}}{\partial \theta}+\frac{\partial^{2} \bar{v}_{r}}{\partial \partial^{2}}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \bar{v}_{r} \frac{\partial \bar{v}_{\theta}}{\partial r}+\frac{\bar{v}_{v}}{r} \frac{\partial \bar{v}_{\theta}}{\partial \theta}+v_{z} \frac{\partial \bar{v}_{B}}{\partial z}+\frac{\bar{v}_{r} \bar{v}_{v}}{\partial \bar{v}^{2}}=-\frac{1}{p} \frac{\partial \vec{p}}{r \partial \theta}+
\end{aligned}
$$

$$
\begin{aligned}
& \bar{v} \frac{\partial \bar{v}_{2}}{\partial r}+\frac{\overline{r_{p}}}{r} \frac{\partial v_{z}}{v_{0}}+\bar{v}_{z} \frac{\partial \bar{v}_{z}}{\partial z}=-g+\frac{1}{r} \frac{\bar{r}}{\partial z}+ \\
& +\left(\frac{\mu+A}{r}\right)\left(\frac{\partial^{2} \bar{v}_{z}}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} \bar{v}_{z}^{2}}{\partial \theta^{2}}+\frac{\hat{e}^{2} \overline{v_{z}}}{\partial z^{2}}+\frac{1}{\gamma} \frac{\partial \overline{v_{z}}}{\partial r}\right)+ \\
& +\frac{\partial(A / \theta)}{\partial r}\left(\frac{\partial^{z}}{\partial r}+\frac{\partial \bar{v}_{r}}{\partial z}\right)+\frac{\partial(A / \rho)}{r \partial \theta}\left(\frac{\partial \bar{v}}{\partial z}+\frac{\partial v_{z}}{r \partial \theta}\right)+2 \frac{\partial(A / \theta)}{\partial z} \frac{\partial \overline{v_{z}}}{\partial z}
\end{aligned}
$$

The continuity equation is :

$$
\begin{equation*}
\frac{\partial \overline{v_{r}}}{\partial r}+\frac{\overline{v_{r}}}{r}+\frac{\partial \overline{v_{\theta}}}{r \partial \theta}+\frac{\partial \bar{v}_{z}}{r z}=0 \tag{II-5}
\end{equation*}
$$

By solving the above equations for particular boundary conditions, the relations between $\overline{\mathrm{v}}_{\mathrm{r}}, \overline{\mathrm{v}}_{\theta}$ and $\overline{\mathrm{v}}_{\mathrm{z}}$ can be obtained.

In laninar flow, and in the laminar sub-layer of turbulent flow, all the terms containing the factor A_{2} can be dropped from Eqg. (II-4), and the Navier-Stokes equations are then obtained.

In turbulent flow away from the boundaries, on the other hand, all the terms containing μ, being of rolatively very small magnitude compared to A, can be dropped from Eqs. (II-4).

Henceforth, the bars over velocities and pressures in the basic equations (II-4) and (II-5) will be omitted for the sake of simplicity.

II - 2. Simplification of the general equations in the case of two-dimensional flow in a long circular bend of a wide stream away from the side walls

The following investigation is limited to turbulent flow.
In a long bend (gentle curvature where $b / r_{c} \ll 1$, where b is the width of the stream and r_{c} is the central radius of curvature), the flow at some distance from the bend entry reaches a fully developed state in which the flow pattern and the velocity distribution do not change fron section to section, and all the
derivatives with respect to θ, except that of the pressure where $\frac{\partial p}{r \partial \theta}=$ constant, become equal to zero.

Moreover, it was found from experimental observations, Ben-Chie Yen (1965), that in a wide stream in which $h / 6 \mathbb{K}$ and $h / r \ll 1$, where h is the depth of the flow, the order of magnitude of the ratio $\frac{v_{r}}{v_{\mathcal{E}}}$ is of the order of h / r, and that of $\frac{v_{z}}{v_{\mathcal{E}}}$ is of the order of $(h / r)(h / b)$ except at regions near the side walls, where the order of magnitude of v_{z} approaches that of v_{r}.

As regards the turbulent stresses, Eqs. (II-2), it is also assumed that the pressure fluctuations $\overline{u^{2}}, \overrightarrow{\mathcal{V N}^{2}}$ and $P \overline{w^{2}}$ are all of the same order of magnitude and found, from experimental observations, to be of the order of magnitude of $(h / r)\left(\underline{V_{r}}\right)$, or $(h / r)^{2}$. The Reynolds shear stresses $\left(\overline{u^{\prime} y^{\prime}}, \overline{u^{\prime} w^{\prime}}\right.$ and $\hat{v^{\prime}} \overline{u^{\prime} x^{\prime}}$ are also found to be of the order of magnitude of $(h / r)^{2}$, (BenChie Yen).

With the aforesaid orders of magnitudes of the different terms in Eqs. (II-4), and considering a first approximation $/$, the third equation of this set reduces, in the case of a long bend $\left(\frac{\partial v}{\partial \theta}=0\right)$, to :

$$
\begin{equation*}
g+\frac{1}{p} \frac{\partial p}{z z}=0 \tag{II-6}
\end{equation*}
$$

meaning a hydrostatic pressure distribution along the flow dopth.

Integrating Eq.(II-6), and then differentiating the result with respect to r and θ respectively, one obtains :

$$
\begin{align*}
& \frac{\partial p}{\partial r}=p g \frac{\partial z}{\partial r}=\rho g I_{r} \tag{II-7}\\
& \frac{\partial r}{\partial \theta}=p g r \frac{\partial z_{0}}{\partial \theta}=-p g I_{e} r \tag{II-8}
\end{align*}
$$

in which I_{r} and I_{θ} are the radial and tangential slopes of the free surface respectively.

Substituting Eqs.(II-7) and (II-8) into the first and second equations of (II-4), and considering the orders of magnitudes mentioned above, (the $\frac{\text { first }}{\cong}$) and second equations for turbulent flow in a long bend of a wide stream reduce to:

$$
\begin{align*}
& -\frac{v_{\theta}^{2}}{r}=-g I_{r}+\frac{\partial}{\partial z}\left(\frac{A}{p} \frac{\partial v_{r}}{\partial z}\right) \tag{II-9}\\
& v_{r} \frac{\partial v_{\theta}}{\partial r}+v_{z} \frac{\partial v_{\theta}}{\partial z}+\frac{v_{r} v_{g}}{r}=g I_{\theta}+\frac{\partial}{\partial z}\left(\frac{A}{p} \frac{\partial v_{B}}{\partial z}\right) \tag{II-10}
\end{align*}
$$

and the continuity equation to :

$$
\begin{equation*}
\frac{\partial v_{r}}{\partial r}+\frac{v_{r}}{r}+\frac{\partial v_{z}}{\partial z}=0 \tag{II-11}
\end{equation*}
$$

As the coefficient of eddy viscosity $A=\nu_{T} f$ (in which ν_{T} is called the kinematic coefficient of eddy viscosity) changes from point to point in the flow, its distribution should be determined, and the distribution of v_{θ} should be known in order to solve v_{r} and v_{z} in Eqs. (II-9) and (II-10).

Regarding the distribution of the forward velocity v_{ρ} for the present work, the logarithmic distribution, as suggested by Prandtl and Von Karman, is found to be very close to the
experimental distribution at the bend entry (see Chapter IV). It was also conclucied, by Rozovskii, that the logarithmic distribution (assumed to hold true in both the straight and curved sections) gives values of v_{r} and v_{z} in the bend close to their measured values. Referring by $\eta=z / h$ (when z is the height of the considered point from the channel bed) to the relative depth of a point from the channel bed, and $v_{\neq}=\sqrt{\tau_{\sigma} / \rho}$ to the friction velocity in which τ_{0} is the shearing stress at the bed, the logarithmic profile is written as :

$$
\begin{equation*}
v_{e}=v_{\theta \max }+\frac{1}{x} v_{*} \ln \eta \tag{II-12}
\end{equation*}
$$

in which X is the Karman constant and v_{θ} max is at the water surface.

Alternatively, Equation (II-12) can be written in terms of the average velocity over the depth of the flow $v m$ as :

$$
\begin{equation*}
v_{\theta}=v_{g m}\left[1+\frac{\sqrt{g}}{x c}\left(1+i_{n} \eta\right)\right] \tag{II-13}
\end{equation*}
$$

in which C is the Chezy coefficient.

On the assumption of a logarithmic velocity profile and linear distribution of frictional stresses $\left(\mathcal{T}_{0}\right.$ at bottom, zero at the free surface), the analysis of turbulent flow over a flat plate ($\mathrm{v}_{\mathrm{r}}=\mathrm{v}_{\mathrm{z}}=0$) produces the following distribution, slong the depth, of the kinematic coefficient of eddy viscosity $\nu_{T}:$

$$
\begin{equation*}
\nu_{T}=x k \gamma_{\theta \text { m }}^{c} \eta(1-\eta) \tag{II-14}
\end{equation*}
$$

in which h is the depth of flow, ${\underset{g}{m}}^{m}$ is the average velocity over the flow depth and $\eta=z / h$.

Equation (II-9) can be written, in terms of ($\eta=z / h)$, as :

$$
\begin{equation*}
-\frac{v_{0}^{2}}{r}+g I_{r}=\frac{1}{q_{2}^{2}} \frac{\partial}{\partial \eta}\left(\nu_{T} \frac{\partial^{2}}{\partial \eta}\right) \tag{II-15}
\end{equation*}
$$

To determine v_{r} from this last equation, the first term on the left-hand side can be known from Eq. (II-13), ν_{T} can be known from Eq. (II-14); the radial slope I_{r} of the free surface can be calculated io a first apmoximation solution from:

$$
\begin{equation*}
I_{r} \approx \alpha_{0} \frac{v_{\theta m}^{2}}{g r_{c}} \tag{II-16}
\end{equation*}
$$

with $\alpha_{0} \simeq 1$

Equation (II-15), with only v_{r} unknown, was integrated by Rozovskii, and the following formula resulted :

$$
\begin{equation*}
v_{r}=\frac{1}{x^{2}} v_{\theta_{r}} \frac{R}{r}\left[F_{1}(\eta)-\frac{\sqrt{g}}{x c} F_{2}(\eta)\right] \tag{II-17}
\end{equation*}
$$

with

$$
\left.\begin{array}{l}
F_{1}(\eta)=\int \frac{2 \ln \eta}{1-1} d \eta \tag{II-18}\\
F_{7}(\eta)=\int \frac{e^{2} d d \eta}{t-1}
\end{array}\right\}
$$

The functions $F_{1}(\eta)$ and $F_{2}(\eta)$ are given graphically in the following figure.

II - 3. Influence of inertia forces due to secondary currents

In deriving Eq. (II-17), no account was given to the inertia terms of the form $v_{r} \frac{\partial v_{r}}{\partial r}+v_{z} \frac{\partial v_{r}}{\partial z}$, and the argument was based on the assumption that flow in a bend follows circular trajectories of constant radii along the depth of the flow. In actual fact, however, the curvature of flow lines changes. continuously around the bend and also along the flow depth. Due to velocity changes from bottom to top, the bottom trajectories are of higher curvature $(1 / r)$ than that of the bend, whereas the top trajectories are of smaller curvature than that of the bend. Consideration of this is particularly important in a bend of sharp curvature where b / r_{c} is not much less than one, as in the case of Channel I. However, Equation (II-9) has been re-integrated by Rozovskii after considering these inertia terms, and Eq. (II-17) is modified to the following formit in
$v_{r}=\frac{1}{x^{2}} v_{0} \frac{b}{r}\left[F_{1}(\eta)-\frac{\sqrt{a}}{x c} F_{2}(\eta)+\frac{2.2 s}{x^{3}} \frac{c}{\sqrt{g}}\left(\frac{L^{2}}{r}\right)^{i}\left(\eta-\eta+\frac{1}{6}\right)\right](I I-17-a)$
The additional term (the last on the right-hand side) in Eq. (II-17-a) exhibits its effect when h / r is not much less than one, and its effect diminishes rapidly othertise.

II - 4. Side walls effects

Hs mentioned above, Eq. (II-17) was derived by assuming the flow to be unaffected by the side walls, due to the large width of the cross-section compared with the flow depth. The effect of the side walls, in these cases, is suggested by Rozovskii to extend over a narrow strip of about twice the depth of the flow from each bank. However, near the side walls of a wide stream and in a flow in a narrow channel, $b / h \leqslant 4$, the turbulent stresses $P \overline{u^{\prime 2}}, \ldots$ and $\overline{e u^{\prime} w^{\prime}, \ldots . ., ~ n e g l e c t e d ~ i n ~ t h e ~}$ previous derivation, are no longer negligible. Corresponding terms, considering the changes of v_{r} and v_{z} along r and z must, therefore, be introduced back into the simplified equations (II-6) and (II-9), bringing them to the forms :

$$
\begin{align*}
& g+\frac{1}{p} \frac{\partial p}{\partial z} \nu_{T}\left(\frac{\partial^{2} v_{2}}{\partial r^{2}}+\frac{\partial^{2} v_{z}}{\partial z^{2}}\right) \tag{II-6-a}\\
& -\frac{\Delta r}{t}=-\frac{1}{p} \frac{\partial p^{2}}{\partial r}+\nu_{T}\left(\frac{\partial^{2} \nu_{r}}{\partial r^{2}}+\frac{\partial^{2}}{\partial z}\right) \tag{II-9-a}
\end{align*}
$$

These two equations have been solved by inanyan/, and a distribution of v_{r}. across the width of the channel was obtained for various aspect ratios b / h, as shown in the figure overleaf.

In Chapter IV, the radial velocity components were calculated on the basis of Eq . (II-17-a), and corrections in the regions under the effect of the side walls were introduced by interpolation from the figure alongside for the two channels, $I(b / h=8)$
and $\operatorname{III}(b / h=3.3)$.

The corresponding
vertical component v_{z} was then calculated from continuity.

II - 5. Approximate solution in the case of three-dimensional flow. - Modification of forward velocity around the bend due to secondary flow

Due to the secondary components of velocity mentioned in the above investigation, the fluid particles travelling along the bend suffer vertical as well us radial displacements. Owing to these displacements, an exchange of momentum between the separate currents takes place, and this alters the distribution of forward velocity uround the bend. Unless the bend is very long, which is rarely the case in practice, no stable state of flow in curved channels, where it is justifiable to put $\frac{\partial \pi}{\partial \theta}=0$, is maintained anywhere around the bend.

Such an assumption is only used as a first step in an approximate solution.

The modified value of v_{θ}, at any cross-section in the bend, can be calculated by adding the momentums in the main flow direction, due to the transversal flow, to the momentum due to the original forward velocity v_{θ}. The resultant value of momentum so calculated gives the new modified value of forward velocity. The solution ξ in the case of a wide stream under no effect of side walls $\$$ can be obtained by considering Eq. (II-10), adding back into it the term $\frac{\alpha_{s}}{r} \frac{\partial^{2} \theta}{\partial \theta}$ and substituting τ_{θ} for $\left(\frac{\partial v_{\theta}}{\partial z}\right)$, so that it becomes :
$v_{r} \frac{\partial v_{\theta}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta}+v_{z} \frac{\partial v_{\theta}}{\partial z}+\frac{v_{r} v_{\theta}}{r}=g I_{\theta}+\frac{i}{\rho} \frac{\partial \tau_{\theta}}{\partial z}$
This last equation was integrated by Rozovskii over the flow depth with the boundary conditions
$\left(v_{z}\right)_{z=0}=\left(v_{z}\right)_{z=x}=\left(\tau_{\theta}\right)_{z=0}=0$
for logarithmic distribution of v, Eq. (II-13), and v_{r} as taken from Eq. (II-17). The integration of Eq. (II-19) yields for these conditions :
$0.75 \frac{\sqrt{g}}{x^{3} C} \frac{1}{-5} \frac{\partial}{\partial r}\left(1-k^{2} v_{\theta m}^{2}\right)+\frac{\partial}{\partial \theta}\left(v_{\theta m}^{2} G\right)=-\frac{g}{c^{2}} r v_{\theta m}^{2}+g r I_{\theta} f_{0}(I I-20)$
Equation (II-20) gives the solution for the change around the bend of the average velocity over the depth of the flow. It is applied in Chapter I: after transforming it into a finite difference equation, and solved by a digital computer. The
solution was based on the measured averages of ${ }^{v_{\theta}}$ at the bend entry, and a comparison between the measured and calculated values at several cross-sections around the bend is performed.

However, to solve the distribution of formard velocity around the bend, at several points along the depth and across the width of the cross-sections (not only the average values over the depth), the seco. d equation of motion (Eq.II-19), together with continuity considerations, was applied at 65 points in Channel I and 30 points in Channel III, at crosssections every 15°. The results were computed by the method of finite differences on the basis of $E q_{1}$. (II-17-a) at regions away from the side walls. In the side-wall regions, corrections were introduced to the values of v_{r} and v_{z}. A comparison between the calculated values of volocity \boldsymbol{v}_{θ} with the measured values at these cross-sections was then made. A detailed investigation of this solution, and of the approximations adopted for it, is given in Chapter IX.

CHAPTER III

III.A - The Apparatus

To identify and investigate the features of water flow in bends, an open channel of rectangular cross-section, consisting of a 180° semicircular bend and two straight approach sections, was built of reinforced concrete.

The dimensions of this channel were :-
Width of the cross-section 0.61 m .
Depth of the cross-section 0..28. n.
Length of upstream straight portion 3.36 m.
Radius on central line of semicircular bend 1.83 m .
Length of downstream straight portion 4.48 m.
Slope of the channel bed horizontal

The aim of constructing such a big apparatus of heavy material was :
(i) To adapt to natural river proportions of width to depth ratios : it is possible to study, in this model, a 2 cm . flowdepth (and even less), making the aspect ratio, width to depth, equal to $\frac{61}{2} \cong 30$. A simplified solution of the equations of motion in such cases can be adopted.
(ii) To avoid possible twist and distortion which nay occur
in time to wide cross-sections of thin steel or perspex sheets; creep in concrete is very small and can be significant only after a very long period of time.
(iii) To reduce to a minimum the effect of vibration due to working pumps and mechanical appliances in the laboratory, an advantage particularly useful for research in low-speed flows.
(iv) To enable heavy additional equipment to be fitted safely on to the apparatus, or the experimentation with dense materials (sand, etc.)

After finishing the experiments on the full width of the channel, it was divided into two smaller channels, each 0.255 m . wide, by fitting a wooden barrier 10 cm . wide along the centre line of the original channel.

When experimenting on one of these two small channels, the other one was tightly blocked at each end. To avoid possible leakage through the barrier during the flow, the blocked channel was filled with water so that, when the flow was steady, a balance in static pressures of the moving and still water in the two channels took place, and leakage effects could no longer occur.

The three channels studied were of the following dimensions :-

Channel	$\frac{\text { Width of the cross-section }}{(\mathrm{b}),(\mathrm{m})}$	$\frac{\text { Central radius of }}{\text { bend }\left(r_{\mathrm{c}}\right),(\mathrm{m})}$	
I	$\frac{\mathrm{b} / \mathrm{r}_{\mathrm{c}}}{}$		
II	0.61	1.83	0.333
III	0.255	1.65	0.154
	0.255	2.02	0.127

Figure (III-1) represents a general layout of the apparatus; and Plates (III-1) and (III-2) show the model after construction.

The nost practical way of constructing the reinforced concrete channel (Channel I) was to pre-cast elevein small sections, seven of which were straicht and 1.12 m . in length; the remaining four were 45° curved sections. These pre-cast sections were finally assembled in their perinanent locations on reinforced concrete frames fixed to the laboratory floor; 0.63 cm . steel sheets were interposed on top of these franes to distributc the channel load uniformly. Three of the seven straight sections were fitted upstrean of the bend, and the other four were fitted downstrean of it.

For the purposes of flow visualization and measurements, transparent glass windows, 10 cm . wide, were provided every 1.12 m . in each side of the straight portions; in the curved section of the channel the windows were enlarged in width to 30 cm . to facilitate the photographing

Plate III-1, General wiew of Channel I, with photo ranhic arrangements

plate III-2, General vien of Channels II and III
of secondary currents. These windows were situated at both sides of cross-sections $\theta=30^{\circ}, 60^{\circ}, 120^{\circ}$ and 150° along the bend of Chamel I.

For levelling the channel bed, the constituent sections were raised a littlo above the supporting frames by means of adjustable steel jacks over which they temporarily rested. Using a sensitive surveying level, the bed was made horizontal, and the pre-cast sections were then assembled together by steel bolts passing through holes designed for this purpose in the channel sides. The joints between the sections and the gaps between the channel and the supporting franes were then sealed by injecting SBD Certite, a compound prepared into a workable paste which hardoned very rigidly and watertight within 40 minutes.

The heaviness of the structuro (approxinately 300 kg . for cach pre-cast section), and the proceduro of its assembly, called for a step-by-step technique for its Ievelling, since any levelled section would subsequently be affected by the neighbouring sections. In spite of the careful procedure of levelling, there was, after asscmbly, about 2.5 mm . of drop towards one of the downstroan straight sections, and this was corrected by using thin stecl sheots underneath the chancl bottom for shiming up.

The final maxinum randon differences in the bed Ievel over the whole chanel were within $\pm 0.6 \mathrm{~mm}$.

The practical and easy procedure of correcting the bed levol at any time anywhere in the channel, and the possibility of re-forming tho bend into different shapes (90°, S-whape, etc.), is a great advantage of using pre-cast sections in the construction of the present apparatus.

All tho joints between the constituent sections were made as flush with the channel bod as possible, and, in the final stage of preparation, the channel was painted with a whitc, chlorinated rubber undercoat paint, EVODYNE, supnliod by EVODE LIMIPDD; three coats of this paint over the finished concrete chanmel, bed and sidos, gave it a smooth surface and effectively served as a scaling acent, so that, out of 32 different bed and side joints, no Ioakage of water was noticed throughout the tine the experiments toolk place.
III. B- Flow Control and Plow Measuroment Techniques III.B.1-FIoH control. The water supply from an overhead tan: discharged frecly through a well-rounded circular nozzlc at the end of a 15 cm . pipe. Two nozzles, of dianeters 1.75 and 3.75 cm . respectively, were used
interchanceably to give a wide range of discharges. The flow in the 15 ch . supply pipe was controlled through a 5.1 cm . by-pass and a small valve for small changes in discharges. The puap which suppliod tho overhead tank was kept running throughout the exporiments to maintain constant head. Water was freely discharged out of the noz\%le into an entry tanis 1.52 m . long by 0.9 m . wide, which, together with a 15 cn . thickness of hairlock and centle elliptical convergences, provided efficient stilling and smooth flow before entry into the flume. Aftor leaving the channel, tho water was directed into a $1.34 \times 0.9 \mathrm{~m}$. cxit tank fron which it was drained over an adjustable 15 cn.diameter vertical tail well to tho laboratory sump.
III.B. 2 - Discharce measurenents. For small discharses $\left(0.14 \times 10^{-3} \rightarrow 1 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{scc}.\right)$, the 1.75 nozzle was usod. It was calibrated by weighing the issuing water on a scale with a capacity of 500 Kg . Readincs of corresponding heads were taken from a vortical, open-top water manoneter connected to tho pressure tapping of the nozele and resting on a millimetric scale supplied with verniers. By the use of a $1 / 10 \mathrm{scc}$. stop-watch, a calibration curve betweon head on the manometer and corrosponding discharee was obtained, Fig.(III-2). In the prosent range of small discharees, the head in the manometor was steady enough

to give an accuracy of readings of 1 mm .
For the high discharges $\left(0.86 \times 10^{-3} \rightarrow 5 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}.\right)$, the larger nozzle, 3.75 cm . diameter, replaced the small one, and, for calibration, the water discharged from the tank exit was diverted, temporarily, through a 15 cm . rubber hose to an underground measuring tank of plan area $10.85 \mathrm{~m}^{2}$. it depth gauge, fitted on an inch scale with verniers, and read by an electrically-connected magic eye, enabled the reading of the water depths in the measuring tank; timing was of an accuracy of $1 / 10$ second, and depth accuracy, on the gauge, was 0.01 inch (0.25 mm.$)$. A calibration curve, between head and discharge, for this nozzle, was also drawn, Fig. (III-3). In this range of discharges, the readings on the manometer occasionally fluctuated to within a range of 1 cm , and the averages were considered.
III.B. 3 - Depth measurements. The vertical adjustable tail well, 15 cm . in diameter, towards the end of the exit tank, over which the water discharged (referred to in III.B.1), provided an easy and efficient way of depth control, possible of exact depth resetting, whenever needed, to within 0.1 mm . of depth.

Because the flow in bends is substantially non-uniform, it was necessary to measure the depths of water at several locations in the bend and in the straight channels. Due to

the curvature, it was difficult to construct the conventional depth gauge device which moves on rails fixed on top of the channel; static pressure holes, therefore, of 0.6 cm . dianeter were provided along the centre line of the channel bed. The distances between these tappings along the straight portions were 56 cm . In the bend, on the other hand, five tapping points were provided equidistantly, about every 10 cm ., at each of the cross-sections $\theta=30^{\circ}, 60^{\circ}, 120^{\circ}$ and 150°, for measuring transversal water surface profiles. Readings of depths were obtained by connecting these tapping points through 0.6 cm . polythene tubes to a battery of six independent depth gauges supplied with verniers and supported on a vertical board at the middle of the bend, (Fig.ITI-I)

The connections between the tapping points and the depth gauges were in the following order :-
upstream straight channel connected to depth gauge 1 (6 tappings)
conss-section $\theta=30^{\circ} \quad$........ connected to depth gauge 2 (5 tappings, designated from inner side to outer side as $I, I I, I I I, I V, V)$
cross-section $\theta=60^{\circ} \quad \ldots \ldots \ldots$ connected to depth gauge 3 (5 tappings, as in $\theta=30^{\circ}$)
cross-section $\theta=120^{\circ} \quad \ldots \ldots \ldots$ connected to depth gauge 4 (5 tappings, as in $\theta=30^{\circ}$)
cross-section $\theta=150^{\circ}$........ connected to depth gauge 5
(5 tappings, as in $\theta=30^{\circ}$)
downstream straight glennel....... connected to depth gauge 6 (8 tappings)

All these depth gauges could read water depths to 0.025 mm . When reading at a particular point, the other tappings connected to that particular depth gauge were disconnected by means of locking clips.

In calculating mean velocities, Reynolds numbers and hydraulic mean radii, the depths of flow were calculated by taking the difference on the depth gauge between the corresponding readings of water surface and channel bed. For water surface configuration and energy gradient measurements (i.e., relative drop in water surface), on the other hand, all the depth gauges were referred to a still-water-level in the channel, and any flow surface was then defined, through these gauges, by the drop, or rise, from that still-water-level. This procedure was adopted since the small random differences in the channel bed, $\pm 0.6 \mathrm{~mm} .$, would only negligibly affect \bar{V}, Re, m, but would considerably affect i (the slope of the energy line) and the water surface configuration, particularly in low-speed flow, where i has but a small value. This will be numerically illustrated in Chepter V and Hppendix f .
III.B. 4 - Velocity measurements. The range of local velocities measured in this work extends from about $0.0025 \mathrm{~m} / \mathrm{sec}$. in laminar flow near the bed to about $0.177 \mathrm{~m} / \mathrm{sec}$. in turbulent flow at high velocity regions. This range necessitated two different techniques according to the speed of the flow :-
(i) Only Channel I was experimented upon for low-speed flow (laminar flow state), and a photographic technique was adopted for velocity measurements; the principle was to track and record the pathlines of well-distributed tiny neutrallybuoyant reflective tracer particles fed into the flow near the channel entry.

Under the steady laminar flow state, photographing a particular section at a time would give the distribution of local velocities at that section. To ensure identical pathlines between the tracer particles and the flow without introducing these particles, they should be of small size and neutral density.

The tracer agent used in these studies was a plastic powder, called Telson, of specific gravity of 0.95 with mean particle size $0.1-0.2 \mathrm{~mm}$.

The camera used was a Praktica VF reflex, for $24 \times 36 \mathrm{~mm}$. pictures. It is fitted with extension rings to take close photographs; the aperture ratio was: 5.6 with exposure time depending on the speed of the flow.

Due to existing
secondary currents in the bend, the particles'
pathlines deviated
radially, with different

intensities along the flow depth, fron the illuminated circumferential sections at which velocities were recorded, and, therefore, their projected images on a sensitive film do not really represent the flow velocities there. In order to measure the velocities, therefore, a small chopper was fitted on a small synchronised motor, Plate(III-3), of known constant speed of rotation, and the pathlines' images were then chopped into short dashes, as shown in Plate (IV-1). By photographing a scale at a particular section and then projecting the images on to a graphed sheet, the flow velocities were measured.

Two stations were chosen to record the three components of velocities: these were at $\theta=30^{\circ}$ and $\theta=150^{\circ}$. ht each cross-section, measurements were taken at six locations over the width of the channel to record V_{θ} and V_{z} components, with the

light projected from
the top through a 1 cm . slit of 15 cm . long, and the camera mounted on a tripod perpendicular to the illuninated section; the chopper was introduced between the camera and the photo-

VELOCITY MEASUREMENTS (photographically)

VELOCITY MEASUREMENTS (current meter)

FLOW MEASURING EQUIPMENT PLATE (III- 3)

graphed section.

For ψ_{r} measurements, the light was laterally projected through a 0.2 cn . slit, 15 cm . long, to illuminate the full width of the channel, and the camera and chopper were mounted at the top;
 sections parallel to the bed, at every 1.25 cm . from the bed upwards, were photographed. Owing
 to the very low speed of
flow in this range, the secondary current components were of extremely small magnitudes, and could not, therefore, be measured very correctly due to the imperfect neutrality of the tracer material.

The photogruphic technique applied to the 22 sections mentioned above was, of course, tedious and time-consuming, and can only be recommended, therefore, when a very limited number of sections are to be studied and where there is no other alternative at hand to measure such very low-speed flow.
(ii) In high-speed flow (turbulent flow state), the photographic technique, using a different chopper and a motor of higher speed, was also applied at the same cross-sections for measuring the local rean tangential velocifios.

However, due to turbulence effects, it was necessary to take many photographs at each section in order to know the local temporal mean values of velocities, an impracticability which led to discarding the technique in this state of flow and adopting a current meter method; the latter method enabled, moreover, the measurement of the v_{e} distribution at many cross-sections around the bend where photography could not be applied. To this end, a miniature current meter, consisting of a small propeller of about 0.6 cm . diameter having five small rotating blades, was used; attached to an electronic counter unit, Dekatron, as shown in Plate (III-3), the number of rotations of the propeller during a particular period of time can be known. A calibration curve, Fig. (III-4), of this meter, giving the velocity of flow against the number of rotations in every 10 seconds, enabled the measurement of velocities down to $2 \mathrm{~cm} / \mathrm{sec}$. Obviously, due to turbulence there will be some differences in the number of rotations for repeated measurement at a point; the average of two readings at every point was considered, and the maximum deviation from the mean readings in this work did not exceed 3% at any point.

This technique was applied to study v_{θ} distribution along the depth and across the width of 15 cross-sections in both ChannelsI and III, starting from $0,50 \mathrm{~m}$. before the bend entry and ending at 0.50 m . after the bend exit, at consecutive

CALIBRATION CURVE FOR THE MINIATURE CURRE NT METER
FlGII. 4
sections evory 15° around the bend.
III.B. 5 - Bed shear stress measurements. The distribution of bed shear stress around the bend was obtained by measuring the speed of small glass spheres, about 2 mm , in dimeter, rolling on the bed. This simple technique has the advantage of enabling both longitudinal and radial bed shear stresses in the bend to be known. The glass spheres were calibrated first in a straight smooth flume, 0.56 m . wide and 12 m . long, in the laboratory. Uniform flow was maintained during calibration, and the velocity of the rolling grains, recorded over 1.8 m . distance at the mid-section of the flume, was plotted against the corresponding average bed shear stress in uniform flow, calculated as $\tau_{0}=\gamma R_{u}$.

At every point in both the calibration flume and the two curved channels (Channels I and III), readings were repeated five times and the averages were considered. It is believed that no misleading results occur due to applying the calibration obtained from a straight flume to calculate bed shear in a curved one. The bed shear in the curved channel will have, due to the effect of secondary flow, a component in each of the tangential and radial directions.
III.B. 6 - Bed-and-flow-angles measurements. The horizontal obliquity of the flow at any point in the bend relative to the
circumferential direction gives an estimation of the intensity of secondary currents. This will be dealt with further in Chapter V.

The angles of deviations at the bed (bed angles) were measured around the bend in the three channels, and for different discharges and depths of flow. In laminar flow, the bed angles were visualized using crystals of Potassium Permanganate, and the resulting dye-streaks made angles α_{0} with the circumferential directions. Bed angles were measured by using a perspex pointer, 2.5 cm . thick, Plate (III-4), on the polished top and bottom faces of which two sharp lines were drawn on a vertical plane. The pointer was connected through a thin tube to a small indicator rotating on a horizontal protractor marked to 0.5 degree of arc. A reading of α_{0} at a point was recorded when the vertical plane passing through the two lines on the pointer passed tangential to the dyestreak at the bed. The Potassium Permanganate was chosen here because it is readily soluble and was therefore convenient in the present range of low-speed flow; on the other hand, it had the disadvantage of developing wide streaks on the bed, sometimes of 2 cm . width, and the location of the tangent to the dye-streak could only be estimated with an accuracy not higher than $\pm 1^{\circ}$.

In the case of turbulent flow, Process Black, another,

BED ANGLES MEASUREMENTS

ELOW ANGLES MEASUREMENTS

PLATE (III - 4)
FLOW MEASURING EQUIPMENT
denser, dye, was chosen, and the resulting dye-streaks were fairly sharp, giving an accuracy of reading of $\pm 0.5^{\circ}$.

Flow angles (i.e., horizontal angles between real flow and circumferential directions along the depth in the main body of flow) were also measured around the bend in the three channels, but only in turbulent flow, by using a very thin tube, 1 mm . in diameter, to the lower end of which a thin black cotton thread of about 5 cm . length was attached. The horizontal deviation of the thread from the circumferential direction was read as in the previous bed angles measurements, Plate (III-4). Due to turbulence in the flow, the thread fluctuated within a range depending on the depth of the measured point, and average readings were considered with an accuracy ranging between $\pm 0.5^{\circ} \rightarrow \pm 1^{\circ}$.
III.B.7-Secondary currents visualization. The patterns of secondary flow at $\theta=30^{\circ}$ and $\theta=150^{\circ}$ in the bend of Channels I and III only were recorded by photographing in a direction perpendicular to the cross-section concerned, illuminated tracer particles being fed in at the channel entry. It was not possible to photograph secondary currents in Channel II as the side windows were in a concave wall; the cross-sections were illuminated by a 1500 w. Phillips Lino-Lite lamp through about 2.5 cm . slit. The projection of pathlines of the illuminated particles on the plane of the cross-section gives the pattern
of secondary flow. To define the direction of the secondary flow at every point, the rear (upstream) half of the slit width was covered with a strip of unexposed developed film, so that the brighter half of a particle pathline image on the picture showed the secondary flow direction at that point.

The same tracer (Telcon) was used for secondary currents measurements. In a trial to improve the quality of the pictures, another tracer was used, consisting of droplets of a mixture of 10 cc . of Nitrobenzene, 22 cc . of olive oil, and 15 cc . of water to bring the specific gravity to 1. Further details are given in Chapter V.

CHAPTER IV

VELOCITY DISTRIBUTION AROUND THE BEND

As was mentioned in Chapter III, the range of experimental values of local mean forward velocities in this study necessitated the use of two different techniques for measurements. These were: a photographic technique in laminar flow, and a miniature current meter in turbulent flow.

The following study, therefore, deals with these two states of flow separately.

IV - 1. Velocity distribution in laminar flow

The procedure for measuring the velocity distribution is described in Chapter III. At cross-sections $\theta=30^{\circ}$ and $\theta=150^{\circ}$ in Channel I (the only channel in which measurements in this state of flow were taken), measured profiles of forward velocity distributions are shown in Figs. (IV-1) and (IV-2) respectively. One value of flow depth equal to 7.6 cm . at $\theta=30^{\circ}$ was studied for the three following values of Reynolds number :

$$
\operatorname{Re}=\frac{\overline{\mathrm{v}} \cdot \mathrm{~m}}{\nu}=246, \quad 422, \quad 545
$$

Examining these two figures, two main observations can be stated :
(I/S) inner side

LONGITUDINALVELOCITY PROFILES AT $\theta=30^{\circ}$ (channel I) FIG IV_1
($1 / 5$)

LONGITUDINAL VELOCITY PROFILES AT $\Theta=150^{\circ}$ (channel 1)

1) The maximum forward velocity occurs near the outer-side of the channel in the two cross-sections, $\theta=30^{\circ}$ and $\theta=150^{\circ}$.
2) The maximum forward velocity occurs below the water surface (and at some regions far below the water surface, almost at the mid-depth of the flow).

As regards the first observation (which contradicts observations for turbulent flow in the early region of the bend, as will be shown later), the location of maximum velocity near the outer-side at $\theta=30^{\circ}$ can be attributed to the effects of viscosity, which has the dominant role in this flow state. Contrary to the case of potential flow in bends, where free vortex phenomenon is a characteristic, the viscous flow in long bends is expected to behave as a forced vortex - with increasing velocity at increased radius. On the other hand, the momentum exchange due to secondary currents in bends, which is responsible in all cases for shifting the high velocity region towards the outer-side in curved flows, is stronger in laminar than in turbulent flow. It is shown in Chapter V that the relative magnitudes of secondary currents $\frac{v_{r}}{v_{\theta}}$ and $\frac{v_{z}}{v_{\theta}}$ are higher in the case of laminar than of turbulent flow. The forward acceleration which always takes place near the inner-

side when the flow enters a bend is not capable of overpowering the effect of outward flow due to centrifugal forces at the water surface, and the maximum forward velocity, originally at the centreline of the channel, will be shifted outwards.

However, such analysis as is proposed here needs to be checked by further experiments on several cross-sections in the early region of the bend.

Regarding the second observation, the depression of maximum velocity below the water surface can also be attributed to the exchange of monentum by secondary currents. Photographs to prove this second observation were taken in both laminar and turbulent flow states, and are reproduced in Plate (IV-1).

A trial was made to measure the secondary components of velocity v_{r} and v_{z} with this photographic technique. Plates (IV-1) and (IV-2) can be used to determine v_{θ}, v_{z} and v_{θ}, v_{r} respectively (see Chapter III). However, these plates show the extreme difficulty in measuring the secondary components because the latter are basically of very small magnitudes; in adaition, the tracer (Telcon, with specific gravity about 0.95) used for velocity measurements was not exactly a neutral one. Another difficulty was encountered in illuminating parallel horizontal sections at short distances apart for measurement of v_{r} (see Chapter III).

The difficulties mentioned above led to discarding the

$$
\theta=30^{\circ} \quad \begin{aligned}
& 15 \mathrm{~cm} \text { from } 0 / \mathrm{s} \\
& \text { laminar flow }
\end{aligned} \quad Q=0.2 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec} .
$$

$\begin{array}{cc}\theta=150 & \text { Centreline } \\ \text { turbulent flow } & Q=4.2 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec} \\ \text { chippir II }\end{array}$

VELOCITY DISTRIBUTION IN CHANNEL I ($\mathrm{rc} / \mathrm{b}=3$) $\quad \mathrm{V}_{\theta}$
$d=7.6 \mathrm{~cm}$. (flow from left to right)
30°
PLATE(IV_1)

AT 1.25 cm DEPTH ABOVE THE BED
cnepper i

AT THE WATER SURFACE
Chuppur II

VELOCITY DISTRIBUTION IN CHANNELI $\left(r_{c} / b=3\right)$
$d_{3}=7.6 \mathrm{~cm}$. (flow from bottom to top)
$\Theta^{36}=150^{\circ} \quad Q=0.34 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}$
Pictures enben frem the tep.
measurements of the secondary components v_{r} and v_{z} in this flow state. However, with improvements in lighting and the use of a tracer of neutral specific gravity, future research in this field seems worthrhile.

IV - 2. Turbuient flow

For the range of local velocities in this case (0.02$0.18 \mathrm{~m} / \mathrm{sec}$.), a miniature current meter was used to measure ${ }_{\theta}{ }_{\theta}$ distribution around the bend of the two channels (I and III). Details of this instrument and its use are given in Chapter III.

The flow conditions in the two channels were :-

| Channel $Q\left(\mathrm{~m}^{3} / \mathrm{sec}\right)$ | $h \theta=30^{\circ}(\mathrm{m}) \quad \begin{array}{l}\overline{\mathrm{V}}=30^{\circ}(\mathrm{m} / \mathrm{sec})\end{array} \quad \mathrm{T}\left(\mathrm{C}^{\circ}\right) \quad \mathrm{Re}=\frac{\overline{\mathrm{V}} \cdot \mathrm{m}}{\nu}$ |
| :--- | :--- | :--- | :--- | :--- |

I	4.4×10^{-3}	0.076	0.0945	18.4	5460
III	2.75×10^{-3}	0.076	0.1450	18.7	6630

The measurements of temporal mean values of $v_{\mathcal{O}}$ were taken at 15 cross-sections in each channel: in the bend, 13 cross-sections were chosen 15° apart starting from the bend entry; one cross-section at 0.5 m . before and beyond each end of the bend was also chosen in the straight sections. Measurements of velocity in each cross-section were made over a total of 65 points in Channel I and 30 points in Channel III.

Along each vertical, measurements were taken, in the two channels, every 1.25 cm . Across the width, the verticals
were located 5 cm . apart except nearest to the side walls, where the verticals were located at 1.25 cm . from each wall. Fig. (IV-3-frepresents a sketch of grid networks surrounding the points where measurements were taken.

To find the effects of secondary flow on the primary flow around the bend, a finite difference procedure was applied for solving the equations of motion in these two channels. An with Fortran $\overline{I V}$ as longenage IBM 7094 computer/was used for the calculations and the steps taken were as follows :-

1) On the assumption of constancy of velocities along a small arc, $r \Delta \theta$, of the bend, and based on order of magnitude considerations (studied in Chapter II), the radial velocity components v_{r} were calculated from Eq. (II-17-a). The value of $\Delta \theta$ was chosen equal to 15°. In the two channels, the distribution of v_{θ} along the depth at several verticals chosen across the channel width/ $\begin{aligned} & \text { at } \theta=0\end{aligned}$ as given by Von Karman, Eq.(II-13). Assuming the roughness coefficient n for the channel smooth surface equal to 0.011 , for the range of depths tested in Channels I and III, an average value of Chezy's C equal to 70 (metric units) is assumed for calculations. Taking $X=0.5$, then Eq. (II-13) transforms to :

$$
\begin{equation*}
\frac{v_{s}}{v_{\mathrm{m}}}=1+\frac{9.8}{0.5 \times 70}\left(1+l_{\mathrm{ri}} \eta\right) \tag{IV-1}
\end{equation*}
$$

\uparrow

number of $k \uparrow$ rows

Channel III
I number of

$$
F / G \cdot(I V-3-1)
$$

Sketch representing the exact proportions of grid. net works in channels I and III x Locations where 7θ was measured.

Figure (IV-4midrepresents a plot of the measured values of v_{θ} along several verticals at the entry cross-section ($\theta=0^{\circ}$) of both channels. Also plotted on the same figure (IV-4ㄱㅇ is the profile for Eq. (IV-1); a good agreement between the measured profiles and that represented by Eq. (IV-1) can be seen. This led to considering Eq. (II-17-a) in the calculation of v_{r}. $\quad \therefore$
2) In the side wall regions, the radial velocities v_{r}, after being calculated by Eq. (II-17-a), were reduced as follows (see Paragraph II-4) :-

Values of v_{r} elsewhere in the cross-section were not considered under the effect of the side walls.
3) The vertical components of velocity v_{z} were calculated on the basis of continuity of flow :

$$
\left(v_{\mathrm{r} 2}-\mathrm{v}_{\mathrm{r} 1}\right) \times a+\left(\mathrm{v}_{\mathrm{z} 2}-\mathrm{v}_{\mathrm{z} 1}\right) \times \mathrm{b}=0 \quad(\mathrm{IV}-2)
$$

At the side walls, $\mathrm{v}_{\mathrm{r}}=0$, and at the channel bed and water surface; $v_{z}=0$. Starting from the chanel bod $v_{z 1}=0$ so that $v_{z 2}$ can be knorm.

VELOCITY PROFILES AT THE BEND ENTRY

FIG IV-4-1
channel(1) $\left[\begin{array}{lll}x & \text { at } 10 \mathrm{~cm} . & \text { is. } \\ + & 30 \\ 0 & & 50\end{array}\right.$
channel(III) $\left[\begin{array}{lllll}4 & \text { et } & 10 & \mathrm{~cm} & \mathrm{i} / \mathrm{s} \\ \nabla & " 15 & \text {. }\end{array}\right.$

Hence, correspondingfomponente of v_{z} at the centres of the grids can be known from

$$
\begin{equation*}
v_{z}=\left(v_{z 1}+v_{z 2}\right) / 2 \tag{IV-3}
\end{equation*}
$$

4) Due to the calculated v_{r} and v_{z}, the tangential velocity component ${ }^{v_{\theta}}$ (assumed in a first step to be constant over $(\boldsymbol{A} \theta)$ is actually modified as a result of momentum exchange.

To calculate the modified value of v_{θ} at the end of the arc $r \Delta \theta$, the calculated values of v_{r} and v_{z} were substituted into the second equation of motion, Eq. (II-19). In the steady state of flow, a balance between the frictional forces and gravity forces exists and the right-hand side of Eq. (II-19) becomes zero on the assumption of a linear distribution of shear str.ss along the flo: dapth,(rough approxination). In torms of finite differenoos, the Iast oquation bocomos:

$$
\mathrm{v}_{\mathrm{r}} \frac{\Delta \mathrm{v}_{\theta}}{\Delta \mathrm{r}}+\frac{\mathrm{v}_{\theta}}{r} \frac{\Delta \mathrm{v}_{\theta}}{\Delta \theta}+\mathrm{v}_{z} \frac{\Delta^{v_{\theta}}}{\Delta \mathrm{z}}+\frac{\mathrm{v}_{\mathbf{r}} \mathrm{v}_{\theta}}{\mathbf{r}}=0 \quad(\text { IV-4) }
$$

This leads to :

$$
\begin{equation*}
\Delta v_{\theta}=-\frac{r \Delta \theta}{v_{\theta}}\left[v_{r} \frac{\Delta v_{\theta}}{\Delta r}+v_{z} \frac{\Delta v_{\theta}}{\Delta z}+\frac{v_{r} v_{\theta}}{r}\right] \tag{IV-5}
\end{equation*}
$$

Equation (IV-5) was solved for $\Delta \theta=15^{\circ}$ over the whole of the grid networks of the two channels, I and III. The right-hand side of Eq. (IV-5) being known gives the value Δv_{θ}, and the new value of forward velocity in each grid at the end of step
$r \Delta \theta$ is:

$$
\begin{equation*}
v_{\theta}^{\prime}=v_{\theta}+\Delta v_{\theta} \tag{IV-6}
\end{equation*}
$$

The values $\mathrm{v}_{\theta}^{\prime}$ are considered for calculating v_{r} and v_{z} in the next $\Delta \theta$ step, then v_{θ} is calculated, and so on.

To solve for the average we along the flow depth, Eq. (II-20) was used. In steady ilo aron gentle bends, it reduces to:

$$
\begin{equation*}
\frac{\partial v_{\theta m}}{\partial \theta}+\frac{0.75 \sqrt{g}}{X^{3} c} h \frac{\partial v_{\theta m}}{\partial r}+\frac{0.75 \sqrt{g}}{x^{3} c} v_{\theta m} \frac{\partial h}{\partial r}=0 \tag{IV-7}
\end{equation*}
$$

Substituting $\frac{\partial h}{\partial r}$ with $\frac{v_{\theta}{ }^{2} m}{r}$, Eq. (I V-7) can be put in a finite difference form as :

$$
\Delta v_{\theta}=-\Delta \theta\left[\frac{0.75 \sqrt{E}}{x^{3} c} h \frac{\Delta^{v_{\theta m}}}{\Delta r}+\frac{0.75 \sqrt{g}}{x^{3} c} \frac{v_{\theta}^{3} m}{r}\right] \text { (Iv-8) }
$$

For a value of $\Delta \theta$ equal to 15°, the last equation was also solved around the bend by feeding into the computer the data from measurements at cross-section $\theta=0^{\circ}$, and the new values of $v_{\Theta m}$ are : $v_{\Theta m}^{\prime}=v_{\Theta m}+\Delta v_{\theta}$ (IV-9)

Comparisons between measured and calculated values of v_{θ} in
 rospoctivoly; those for tho average value s ven in channels I and III are given in Figs. (IV-5-a) and (IV-5-b) respectively.

Frogrannes for the solutions of we and vel in both channels are given in Appendix. B.

Discussion of results

Regarding the measured distribution of v_{θ} it can be seen

Figues in $\mathrm{cm} / \mathrm{sec}$.

FIG. IV_3-a

DESTRIBUTION OF TANGENTIAL VELOCITY(V ${ }_{\theta}$) IN CHANNELI ($\mathrm{C} / \mathrm{D}=3$)
$Q=4.4 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}$ $\mathrm{n}=7.6 \mathrm{~cm}$

FIG IV_3-b

$\theta=4.5^{\circ} \quad 0 / S$												
	$\begin{aligned} & 5.83 \\ & 8.20 \end{aligned}$	$\begin{array}{r} 8.46 \\ 2.09 \\ \hline \end{array}$	$\begin{array}{r} 7.91 \\ 807 \\ \hline \end{array}$	$\begin{aligned} & 7.88 \\ & 8.67 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.65 \\ & 8.57 \end{aligned}$	$\begin{aligned} & 7.66 \\ & 8.16 \end{aligned}$	$\begin{array}{r} 7.42 \\ 7.86 \\ \hline \end{array}$	$\begin{aligned} & 6.07 \\ & 7.88 \end{aligned}$	$\begin{aligned} & 5.23 \\ & 8.09 \end{aligned}$	5.58 7.24	5.96 5.64	8.55 4.82
39	0.18	10.15	\cdots	9.	$\underline{1015}$	9.95			8.38	7.77	7.10	. 83
$3 \cdot 9$. 78	8.57	${ }^{9} .0190$	0) 9.04	0.4	8.27	8.03	Tin	8.40	6.89	. 33
5.08 3.33	(3.38	9.7 9.02	8.00		8.98 9.64	9.25 8.95	$\sqrt[8 / 11]{8.36}$	8.12 7.34	$\begin{aligned} & 8.09 \\ & 8.20 \end{aligned}$	8.12 46	7.37 .78	4.51
$\begin{aligned} & \hline 5.73 \\ & 3.48 \end{aligned}$		$\begin{array}{r} 8.39 \\ \hline \end{array}$	$\begin{array}{r} 8.59 \\ 8.75 \\ \hline \end{array}$		9.13		$\frac{8.09}{8.10}$	$\begin{aligned} & 8.35 \\ & 7.736 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.38 \\ 18.67 \\ \hline \end{array}$	$\begin{aligned} & 8.75 \\ & 8.50 \end{aligned}$		5. 58
$\begin{aligned} & 2.10 \\ & 3.15 \end{aligned}$	$\begin{array}{r} ? .10 \\ 8.59 \end{array}$	6.59 9	6.12 8.70	6.30	6.19 8.7	${ }_{0.12}^{6.44}$	55) ${ }_{7}^{6.00}$	5.59 7	6.08	$\begin{array}{r} 7.06 \\ 8.01 \\ \hline \end{array}$		$\begin{gathered} 5.23 \\ 5.13 \end{gathered}$

$\theta=60^{\circ}$

3.20 3.32	5.08 8.01	8.75 7.52	8.55 7.71	8.80 8.29	$\begin{aligned} & 8.50 \\ & 8.22 \end{aligned}$	$\begin{aligned} & 8.46 \\ & 7.83 \end{aligned}$	$\begin{aligned} & 8.85 \\ & 7.55 \end{aligned}$	8.63 7.60	7.88 7.80	$\begin{aligned} & 7.35 \\ & 6.96 \end{aligned}$	6.11 5.49	+.86 +.76
5.94	5.29	7.35	8.50	8.09	8.22	8.46	8.18	7.86	7.35	6.83	5.42	4.62
3.91	8.81	8.61	8.40	8.85	8.87	8.58		7.89	8.32	8.26	6.81	0.30
		7.40	8.12	8.16	7.35	. 3	7.40	7.	6.89	6.09	6.09	4.62
8.4	8.	9.02	8.70	9.10	9.63	. 94	8.35		8.19	8.45		4.67
8.45	7.61 8.88	0.32			. 51	$\begin{aligned} & 8.06 \\ & 9.59 \end{aligned}$	8.1	7.40 7.87	$\begin{aligned} & 7.35 \\ & 8.81 \end{aligned}$	$\begin{aligned} & ? .10 \\ & 8.73 \end{aligned}$		$\begin{array}{r} 5.90 \\ 4.83 \end{array}$
					(7.6							
08	6.71	7.10	6.50	6.89	6.80	5.53	6.40	6.60	6.60	6.4	6.04	5.30
2	8.86	9.89	8.88	9.70	9.30	8.79	8.30	7.6716 .3	5)8.29		6.74	5.18

FIG IV_3_c

$1 / 8$											
2.68 $\$.17$ 3.19 17.75	5.58 7.13	$\left\lvert\, \begin{aligned} & 7.78 \\ & 7.36\end{aligned}\right.$	8.58 7.92	$\begin{array}{r} 8.72 \\ 7.86 \\ \hline \end{array} 8.9$	8.58 7.49	$\begin{aligned} & 8.38 \\ & 7.25 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.32 \end{aligned}$	$\begin{aligned} & 8.42 \\ & 7.50 \end{aligned}$	$\begin{aligned} & 8.11 \\ & 6.68 \end{aligned}$	6.20 5.34	4.32 4.71
3.71 6.41 3.8 8.69	$\begin{aligned} & 6.65 \\ & 8.43 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.16 \\ & 8 / 23 \end{aligned}$	$\begin{aligned} & 8.72 \\ & 8.67 \end{aligned}$	$\begin{aligned} & 8.96 \\ & 8.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.58 \\ & 8.42 \end{aligned}$	$\begin{aligned} & 8.42 \\ & 7.93 \end{aligned}$	$\begin{aligned} & 8.46 \\ & 7.76 \end{aligned}$	$\begin{aligned} & 8.42 \\ & 8.18 \end{aligned}$	$\begin{aligned} & 8.46 \\ & 8.13 \end{aligned}$	$\begin{aligned} & 6.83 \\ & 6.74 \end{aligned}$	$\begin{array}{\|l\|} 5.78 \\ 5.28 \\ \hline \end{array}$
$\begin{array}{\|l\|l} \hline 7.52 & 7.10 \\ 3.34 & 8.39 \\ \hline \end{array}$	$\begin{array}{r} 7.6 \\ 2 \end{array}$	8.21	8.46 9.10	8.42 0.62	$\begin{aligned} & 8.46 \\ & 8.93 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.46 \\ & 8.35 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.38 \\ & 7.37 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.32 \\ 8.18 \\ \hline \end{array}$	2.80	6.88 7.77	$\begin{array}{r} 6.08 \\ 4.66 \end{array}$
$\begin{array}{l\|l} 5.58 & 7.15 \\ 9.97 & 9.91 \\ \hline \end{array}$	7.00 9.88	7.88 9.12	7.46 9.97	$\begin{array}{r}8.46 \\ 8.70 \\ \hline\end{array}$	8.46 9.76	8.38 8.48	8.07 8.07	$\begin{aligned} & 8.15 \\ & 8.96 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.86 \\ & 8.87 \end{aligned}$	$\begin{aligned} & 7.13 \\ & 7.23 \\ & \hline \end{aligned}$	6. 43
$\begin{array}{\|} 5.58 \\ 8.43 \end{array} \quad \begin{aligned} & 7.15 \\ & 9.13 \end{aligned}$	10.	7.78	$\begin{array}{r} 17.6 \\ 7.35 \\ 10.09 \end{array}$	$\begin{array}{r} 7.35 \\ -68 \\ \hline \end{array}$	$\begin{array}{r} 7.53 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 6.95 \\ 8.62 \\ \hline \end{array}$	$\begin{aligned} & 7.10 \\ & 7.061 \end{aligned}$	6.80	$\begin{aligned} & 6.80 \\ & 8.81 \end{aligned}$	$\begin{aligned} & 5.83 \\ & 6.90 \end{aligned}$	6.12 5.24

$\theta=90^{\circ}$

FIGIV_3_d

$\theta=120^{\circ}$

$\theta=150^{\circ}$

FIG IV_3_f
$\theta=165^{\circ}$

$\theta=180^{\circ}$

FIG IV_3_g

FIGIV_3_h

Figures in $\mathrm{Cm} / \mathrm{sec}$.
FIG IV_4-a DISTRIBUTION OF TANGENTIAL VELOCITY (V) $\quad a=275 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}$ IN CHANNEL III ($r_{c} / \mathrm{b}=7.9$)

FIGIV_4_b

FIG IV_4-c

FIG IV_4-d

from Figs. (IV-3-a) to (IV-3-h) for Channel I that the maximum velocity region prevails near the inner-side from the bend entry down to $\theta=45^{\circ}$, after which it gradually shifts towards the outer-side with increasing magnitude. The overall maximum local velocity is found to be near the outer-side and below the water surface at cross-section 0.5 m . downstream of the bend exit. In the case of Channel III, Figs. (IV-4-a) to (IV-4-d) reveal that the maximum velocity location at the channel entry is close to the centreline and does not approach the inner-side at any section around the bend. It starts shifting to the outer-side in the region $\theta=15^{\circ}-30^{\circ}$ with increased magnitude of velocity. The overall maximum v_{θ} is also found very near the outer side, at cross-section +0.5 m . downstream of the bend exit.

For the sake of comparison between calculated and measured v_{θ} distribution around the bend, the numerical values of $v_{0} / \mathrm{in} / \mathrm{Auc}$. θ o Channels I and III are written in each gris rectangle, Figs. (I V-3-a) to (IV-3-h) and Figs. (IV-4-a) to (I V-4-d). The top each
values in grid represents the measured value and the bottom one represents the calculated value.

Examining these figures, it can be seen that some agreement (ing places, very good agreement, with discrepancies less than 5%) exists between the two values.

The most serious limitations in the present calculation
can be summed up as follows:

1) The grid network on the vertical section is large and irregular. When approaching the boundaries at which steep gradients of velocities occur in reality, and where discrepancies between measured and calculated values grow much higher, the size of the grid should be much smaller than that for the remainder of the flow.
2) The increment $\Delta \theta$ along the length should be reduced, ir order to obtain bettor approximation.
3) Discrepancies can also be attributed to the non-uniformity of velocity distribution across the width of the entry crosssection. This is particularly noticeable in Channel I.
4) Derivation of Eq.(II-17-a) was also based on a gentle curvature, i.e., b / r_{c} is much smaller than one. In Channel I, where the discrepancies are higher than in Channel III, the value $b / r_{c}=0.33$ is not much smaller than unity. It is believed that all the discrepancies mentioned above could be greatly reduced if such limitations were removed. Since the present calculation represents a trial in applying a finite difference procedure for a numerical solution of the equations of motion, much scope is available in elaborating this technique to obtain closer results in the light of the suggestions outlined above. Moreover, since the primary interest has been concerned with the application of computer programming
to solve numerically the equations of motion in curved channel flow, no regard was given to factors affecting the flow other than the channel curvature and velocity distribution at the bend entry.

CHAPTER V

CHARACTERISTICS OF SECONDARY CURRENTS

IN CURVED OPEN CHANNEL FIOW

The onset of secondary currents when a stream enters a channel bend depends only upon the interaction between the radial gradient of pressure across the stream and the variation of centrifugal force from bottom to top of the cross-section. The pressure excess is constant at all levels, so that near the bottom there is a net inward force (and so, a flow) and at the top an outward force (and hence, a flow), as represented in Fig. (V-1) below.

Fig. (V-I)

The secondary flow, so developed, combines with the primary, or main flow, to result in a helical, or spiral, type of motion around the bend. This spiral motion persists, in most cases,
for some distance downstream of the bend exit depending on the flow conditions.

In all practical cases of spiral motions around channel bends, no steady fully developed state of flow can be reached except, perhaps, when the bend is a very long one, i.e., $r_{c} / b \geqslant 1$. Therefore, the spiral motion undergoes, in reality, two consecutive stages :- a gradual development, then a gradual decay. To date, this very complicated nature of the flow has been analysed by methods of successive approximations or finite difference techniques based on simplified equations of motion around the bend (vide Kozovskii, Ananyan, otc.) \perp, (.)

The characteristics of flow in curved channels can be summarized in the following main features :

1) Superelevations of the water surface due to centrifugal force and the reaction of the side walls.
2) Helical motion as a result of the combination of secondary and main flows.
3) Kedistribution of velocities around the bend and across the channel widith.
4) Flow separation from the sides in bends of sharp curvature, and the development of surface waves in supercritical flow.
5) ndditional energy losses due to the helical motion above those occurring in straight channel flow.

The third feature has been examined in Chapter IV. The
fourth feature, i.e., flow separation and the development of surface waves, is excluded from the present study due to the relatively mild curvature and low speed of the investigated flow. The fifth feature, i.e., additional energy losses, is interpreted in terms of an increase in friction factor C_{f} (presented originally by Darcy-Weisbach for straight flow) in curved flow above that in straight flow with the same conditions. This is briefly studied and reported in sppendix A.

The first and second features are examined in the following discussion.

V-1. Superelevation of the water surface in the radial direction

The radial slope of the water surface I_{r} in the crosssection can be culculated from the first equation of motion, Eq. (II-9), if the other terms are known. The total superelevation over the channcl width can be given as :

$$
\begin{equation*}
\Delta h=\int_{r_{i}}^{r_{0}} \frac{v_{\theta}^{2}}{g r} d r \tag{V-1}
\end{equation*}
$$

Leopold et al (1960) stated that the value of Δh for a particular bend is independent of the radial distribution of v_{θ}. This is particularly true when the channel curvature is $\operatorname{small}\left(i . c ., r_{i} \cong r_{o}\right.$).

Radial us well as longitudinal water suriace profiles were measured in Channel I only, through the static pressure tappings
at the bed referred to a still water level. Accuracy of measurement was 0.0025 mm . (see Chapter III).

Figures (V-2) and (V-3) represent the longitudinal and radial water surface profiles respectively, as taken for different flows under almost the same depth.

To check the independence of the total superelevation Δh upon the radial distribution of v_{θ} the following three cases were examined :
(c)
a) A free vortex distribution $v_{Q} r=$ constant; substituting this in Eq. (V-1) gives :

$$
\begin{equation*}
\Delta h=\frac{1}{g} \int_{r_{i}}^{r_{o}} \frac{c^{2}}{r^{3}} d r=\frac{C^{2}}{2 g}\left[-\frac{1}{2 r^{2}}\right]_{r_{i}}^{r_{o}}=\frac{C^{2}}{2 g}\left(\frac{1}{r_{i}^{2}}-\frac{1}{r_{o}^{2}}\right) \tag{v-2}
\end{equation*}
$$

The constant C was calculated by Ippen et al (1960), on the assumption of irrotational flow in which the specific head $H=y+\frac{v_{\theta}^{2}}{2 g}$ is constant. They concluded the value of C as :

$$
C=\bar{v}_{\theta} \sqrt{r_{0} r_{i}}
$$

in which \bar{v}_{θ} is the velocity corresponding to the mean depth of flow \bar{y} in the cross-section.
b) A forced vortex distribution $\frac{v_{\theta}}{r}=$ constant/: Equation (V-1) gives :

$$
\begin{equation*}
\Delta h=\frac{1}{g} \int_{r_{i}}^{r_{0}} c^{2} r d r=\frac{c^{2}}{g}\left[\frac{r^{2}}{2}\right]_{r_{i}}^{r_{0}}=\frac{c^{2}}{2 g}\left(r_{0}^{2}-r_{i}^{2}\right) \tag{v-3}
\end{equation*}
$$

The value of C was also calculated by Ippen et al (1960)

and found to be :

$$
c=\left[\frac{3 \bar{v}_{\theta}^{2}}{r_{0}^{2}+r_{0} r_{i}+r_{i}^{2}}\right]^{\frac{1}{2}}
$$

c) One-dimensional analysis where $v_{\theta}=$ constant everywhere with constant $r\left(=r_{c}\right)$:
Equation ($\mathrm{V}-1$) gives :

$$
\begin{equation*}
h=\frac{\bar{v}_{\theta}^{2}\left(r_{0}-r_{i}\right)}{E r_{c}} \tag{v-4}
\end{equation*}
$$

Substituting into Eqs. (V-2), (V-3) and (V-4) the values of g, r_{c}, r_{o}, r_{i} and C (in metric units) of Channel I, the following equations can be obtained :
a-1) Free vortex : $\quad h=0.034 \bar{v}_{\theta}^{2}$
$b-1)$ Forced vortex : $\quad h=0.032 \overline{\mathrm{v}}_{\theta}^{2}$
$c-1)$ Constant v_{θ} and $r=r_{c}: \quad h=\# .0030 \bar{v}_{\theta}^{2}$

In Figure ($V-3$) the values of Δh in calculated from Eqs. (V-5) and (V-6) are plotted, assuming the rise at the outer side over the mean fiow depth (assumed to be at the centreline) to be equal to the drop at the inner side from the mean flow depth. The values of $\overline{\mathrm{v}}_{\theta}$ (in $\mathrm{m} / \mathrm{sec}$.) were calculated on the basis of meusured mean depths of flow at the centreline for the cross-sections $\theta=30^{\circ}, 60^{\circ}, 120^{\circ}$ and 150°. The mean depths were taken from the longitudinal water surface profiles as represented in Fig.(V-2).

From the present experiments it can be seen that the radial water surface profiles conform to neither of the previous formulae when the flow is small. The profiles, in this case, show a hump on each side of the centreline; the cause of this peculiar shape can be attributed to the effect of secondary currents which presumably constitute two cells of secondaries in the cross-section. This has also been observed by Ali (1964) in field measurements. When the flow speed increases, the radial profiles gradually take the shape of a straight line.

Regarding the longitudinal water surface profiles, Figure (V-2) shows, in all flows investigated, a constant rise in the water surface at tapping point 0.8 m . before the bend entry. This rise in water surface before the bend can be ascribed to the existence of the bend itself, which acts as an obstacle to the flow with a backwater effect. (The present experiments were all in the sub-critical flow condition and the Froud number $F=\frac{\overrightarrow{\mathrm{V}}}{\sqrt{\xi h}}$ was far less than 1). An M1 curve of the water surface is expected to develope upstream of the bend. This was not checked, due to the rather short straight approach section of the bend. With increasing flow velocities, this rise before the bend decreases, and the longitudinal gradient of the water surface in the bend and downstream of it increases.

V-2. Helical motion in curved channel flow
The helical motion around channel bends is primarily
dependent on the intensity of secondary currents; therefore, the characteristics of these currents are investigated, as a first step, in order to assist the understanding of the nature of the problem.

It is convenient to interpret the intensity of secondary currents in terms of the deviation of the flow from the circumferential direction around the bend. Because the vertical deviation from this direction is basically of a negligible magnitude except near the side walls, the intensity of secondary flow, which produces the helical motion, can be represented, in the case of a wide stream, by the horizontal deviation of the pathlines from the circumferential direction. At the channel bed, the deviation of the pathlines from the circumferential direction is represented by an angle \propto_{0}, designated the bed angle, whereas at the remainder of the stream it is represented by an angle \propto and designated the flow angle. Measuring devices for \propto_{0} and \propto are described in Chapter III. i) Bed angles. At six points across the width of Channel I, the bed angles were measured for different depths of flow and the same discharge at $\theta=60^{\circ}$ and 120°, Fig. (V-4). It can be seen from this figure that maximum α_{0} for a particular flow depth occurs near the centreline. The same figure (V-4) shows that α_{0} increases with decreasing aspect ratio b / h (see Table 6 in Hppendix C for numerical values).

BED ANGIES ACROSS THE WID TH FOR DIFFERENT FIG V-4 DEPTHS OF FLOW (channe I I; $Q=4.3 .3 .3^{-3} \mathrm{~m} / \mathrm{sec}$.

The effect of channel curvature on the bed angles is revealed by measuring \propto_{o} in the three channels at $\theta=60^{\circ}$ and $\theta=120^{\circ}$ under the following flow conditions :

Channel	b / r_{c}	$\mathrm{h}(\mathrm{cm})$	Q $\times 10^{3} \mathrm{~m}^{3} / \mathrm{sec}$
I	0.333	$3-12(7)$	4.3
II	0.154	"	$2.72 \rightarrow$ g
III	0.127	"	2.72 J same Re

The measurements as plotted in Fig. (V-5), in terms of $\tan \alpha_{0}$ vs. h / r_{c}, show a straight line distribution. A relation of the form :

$$
\tan \alpha_{0}=K \cdot h / r_{c}
$$

is obtained, in which K is a factor whose numerical magnitude and cross-section location depends on the channel curvature. From the present measurements, K is given as :

Channel	$\frac{\text { cross-section }}{\text { I }}$	60°
I	120°	11.6
II,III	60°	10
II, III	120°	7.5
I		6.5

Field as well as laboratory measurements on different bends by Rozovskii (1957) gave the factor K as between $10-12$.

These measurements confirm the previous conclusion that \propto_{0} increases with h (or with decreasing aspect ratio), and

FIG $V_{-} 5$
TAN $\alpha_{0}=k\left(h / r_{C}\right)$
0
BED ANGLES VS: d/r AT CENTREIINE
(turbulent flow)
from them it can be concluded that increasing curvature b / r_{c} incrases \propto_{0}. The factor K, however, is not a universal one, as suggested by Rozovskii, for all bends and all cross-sections around the bend, but is expected to change finth theso is paramotors.

The effect of Reynolds number on the magnitude of α_{0} is revealed by measuring the bed angle in the three channels at the centreline of several crossmsections around the bends. Examining Fig. (V-6) confirms the previous result that \mathcal{X}_{0} increases with increasing curvature b / r_{c}, and gives the conclusion that the maximum α_{0} occurs at the early region of the bend when curvature is high (in Channel $I, \alpha_{0 \text { max }}$ occurs at $\theta=30^{\circ} \rightarrow 60^{\circ}$) and moves towards the middle region of the bend for decreasing curvature. From the same figure (V-6), it can also be concluded that α_{0} decreases with increasing Reynolds number, whatever the channel curvature is (see Table 7 in Appendix C).

The strength of secondary flow was defined by Malouf (1950) as the magnitude of $\tan \alpha_{0}$, and he correlated this to $\left(h / r_{c}\right)^{\frac{1}{2}}\left(R_{e}\right)^{-\frac{1}{4}}$ as h and Re are the most effective factors governing $\propto{ }_{0}$. In the present experiments a similar correlation was plotted in Fig. $(V-7)$, which shows that

$$
\begin{equation*}
\tan x_{0}=A \quad \cdot\left(h / r_{c}\right)^{\frac{1}{2}}(\operatorname{Re})^{-\frac{1}{4}}-C \tag{V-9}
\end{equation*}
$$

The value of A as obtained by Malouf (1950) on a 90° bend was

BED ANGLES AROUND THE BEND FOR

FIG V-6 DIFFERENT REYNOLDS NOS.

FIGV-7 BED ANGLES VS. (h/ $/ \mathrm{C})^{1 / 2}(\operatorname{Re})^{-1 / 4}$ AT CENTRELINE
equal to 23.4 , whereas that obtained by Wadekar (1956) was equal to 25.4 (see Chapter I). In the present experiments in the three channels, the factor A is seen to change around the bend and also for different channel curvatures (Wadekar and Malouf each experimented on one bend). It is interesting to find that the value of C in $\mathrm{Eq} .(\mathrm{V}-9)$ is constant for the three channels. From the present experiments, the factors A and C can be given as (Fig. $(V-7)$ and Table 8, Appendix C) :

Channel	cross-section		A
I	60°		C
I	120°	30.0	0.0065
II	60°	25.5	11
II	120°	21.0	11
III	60°	18.5	11
III	120°	20.0	11

To confirm the previous conclusion, particularly the effect of depth and curvature, photographs were taken at several crosssections in the three channels for different depths of flow. These are reproduced in Plates (V-1) to (V-5), and show the increase in x_{0} with increased depth, increased curvature and decreased Regnolds numbers.

Occasionally, measurements near the inner-side of the bed angles of the regions $30^{\circ}<\theta<60^{\circ}$ of Channel I exhibited a reverse direction of α_{0}, i.e., towards the outer-side. Such

\qquad

,

BED ANGLES IN CHANNEL I ($\mathrm{r}_{\mathrm{d}} \mathrm{b}=3$) $\mathrm{d}=2.5 \mathrm{~cm} . \quad \mathrm{Re}=653$

PLATE(V_1)

BED ANGLES IN CHANNELI ($\mathrm{rc} / \mathrm{b}=3$) $\mathrm{d}=5 \mathrm{~cm} . \quad \mathrm{Re}=615$

$\frac{\text { BED ANGLES IN CHANNEL } \quad\left(\quad r_{c} / b=3\right)}{d=7.6 \mathrm{~cm} . \quad \operatorname{Re}=580}$
PLATE (V_3)

$\theta=30^{\circ}$

a deviation was often of the order of 10° to 15°; the slower the flow or higher the depth, the higher the deviation.

Flow disturbances could not be considered as a sufficient reason, for, in some instances, this reversed deviation of α_{0}, though variable in magnitude, persisted even after three hours from the commencement of the experiment. It was then thought that differences in temperature across this wide channel could be a probable reason. To check this possibility further, the water in the inner region of the channel was cooled/with crushed -side
ice at the four inner $/$ windows around the bend. Five minutes later, photographs were taken of the flow-lines, with the aid of potassium permanganate streaks. These photographs are reproduced in Plate ($V-6$) The outward deviation of the bed angles can be seen, much intensified. At 5 cm . from the innerside at $\theta=60^{\circ}, \propto_{0}$ was measured and found to be equal to about 65° outward. The temperature at $\theta=60^{\circ}$ was immediately measured after measuring χ_{0} and was as follows :

$$
\begin{array}{lll}
\text { near the } \mathrm{i} / \mathrm{s} & - & T=17.4^{\circ} \mathrm{C} . \\
\text { near the } 0 / \mathrm{s}
\end{array} \quad-\quad T=18.5^{\circ} \mathrm{C} .
$$

which shows that a small difference in the water temperature causes a considerable change in the flow pattern. After removing the crushed ice from the inner side windows, the outward deviation slowly decreased over a short period of time. This could then be one of the reasons for the development of

$\theta=120^{\circ}$

$\theta=150^{\circ}$

BED ANGLES WITH ICE AT THE INNER SIDE WINDOWS channell(rc/b=3) $\quad d=7.6 \mathrm{~cm} . Q=0.36 \times 1 \sigma^{-3} \mathrm{~m} / \mathrm{sec}$.

PLATE (V_6)
multi-cell spiral flow around river bends. This last fact is investigated again later in this chapter.
ii) Flow angles. it several cross-sections around the three channel bends, the flow angles at five points along the depth were measured at three verticals in each cross-section. These were :

5 cm . from i/s Centreline C.L. 5 cm . from o / s
Conditions of flow were :

Channel	$\frac{h(\mathrm{~cm})}{\text { I }}$	$\frac{Q \times 10^{3} \mathrm{~m}^{3} / \mathrm{sec}}{}$		
II	7.6	4.3		
III	11	2.72		
	1	2.72	$\rightarrow \rightarrow$	giving
:---				
same Re				

Figures (V-8), (V-9) and (V-10) represent the distribution of α around the three channels at the vertical 5 cm froni i/s, C.L. and 5 cm from o/s respectively. The effect of channel curvature on α is clearly seen :- increased curvature increases α.

At the vertical 5 cm . from $\% / \mathrm{s}$, the existence of a small reversed vortex at the top corner, as first revealed by Einstein and Harder (1954), is also detected in these experiments ; Fig(V-10). In Channel I, this small vortex starts developing at sections as early as 15° from the bend entry; for decreasing curvature it is not detected before the cross-section $\theta=75^{\circ}$ from the bend entry. In all three channels, this small reversed vortex

 FIG V_9

persists for some distance downstream of the bend exit, at distances 1 to 3 times the channel width. The lower photograph on Plate (IV-2) shows one such reversed vortex at the outer-side at $\theta=15^{\circ}$ of Channel I.

To explore the pattern of helical motion in Channels I and III for two depths of flow $h=7.5 \mathrm{~cm}$. and $h=3.75 \mathrm{~cm}$. pathlines of tracer particles of a density very close to that of water (Telcon s.g. $=0.95$, see Chapter III) were photographed perpendicularly to the flow cross-section. Slightly improved photographs were later obtained using a mixture of kitrobenzene, olive oil and water at suitable proportions (s.g. = 1) as a flor: tracur. , (see Chapter III) Plates (V-9) and (V-8) were taken with Telcon, whereas Plates (V-9) to (V-11) were taken with droplets of the other tracer mentioned above. These photographs do not exactly represent the full width of the channel, due to the limitations of the windows; it was not possible to photograph the region about 5 cm . near the outer side. At cross-section $\theta=30^{\circ}$, the left-hand side of the plate represents the outer side of the bend, wheareas the right-hand side represents the inner side; at $\theta=150^{\circ}$, the opposite situation is the case. The difficulties in exploring the helical motion were too great to obtain better photographic records of this, although, examining these photographs, a general trend of the flow towards the outer side at the water surface can be seen. The multi-cell pattern of the secondary

On the plates opposite, the left-hand side is the outer side of the bend.

channel I $\quad \mathrm{Re}=246$

SECONDARY CURRENTS AT $\theta=30^{\circ}$
 flow depth $=7.5 \mathrm{~cm}$

$$
\text { PLATE }\left(V_{-} 7\right)
$$

On the plates opposite, the right-hand side is the outer side of the bend.

SECONDARY CURRENTS AT $\theta=150^{\circ}$ flow depth $=7.5 \mathrm{~cm}$
 PLATE(V_8)

$$
\operatorname{Re}=6160
$$

7500

SECONDARY CURRENTS AT $\theta=150^{\circ}$

(channelI) flow depth $=7.5 \mathrm{~cm}$
PLATE(V_9)

On the plates opposite, the right-hand side is the outer side of the bend.

SECONDARY CURRENTS AT $\theta=150^{\circ}$
 (channel I) flow depth $=7.5 \mathrm{~cm}$
 PLATE (V_10)

On the plates opposite, the rigint-hund side is the outer side of the bend.

$$
\operatorname{Re}=6500
$$

SECONDARY CURRENTS AT $\theta=150^{\circ}$
(channel I) flow depth $=3.75 \mathrm{~cm}$
Plate ($\mathrm{V}_{-} 11$)
flow is also revealed. When the depth is small ($\mathrm{h}=3.75 \mathrm{~cm}$. , $\mathrm{b} / \mathrm{h}=13.8$), the helical motion is further complicated by a rather random system of vortices. Better photographs could probably be obtained by trying altered widths of the illuminated slit and exposure time.

It may be concluded broadly that, in rivers or natural streams of wide cross-sections, the helical motion consists of several cells at any cross-section, though a main cell predominates. Changes in density of the flow, due to changes in the concentration of suspended sediments across the river bend, together with irregularities of the river boundaries, further contribute to the complexities of spiral motion around river bends.

CHAPTER VI

BED SHEAR STRESS DISMRIBUTION AROUND A BEND

The acceleration and docolcration of flow due to the redistribution of velocities around the bend is likcly to affect the distribution of bed shear stress. As is mentioned in Chapter IV, the monentum exchange due to secondary currents causes high velocity region, and so stcep velocity gradients, to occur near the outer side and below the water surface in the downstream half of the bend.
lioreover, unlike straight open channel flows, the volocity and the resultant shear stress very near the bed are generally dirceted towerds the inner side of the channcl, making an ancle χ_{0} with the circunferential direction. For this reason, both the longitudinal and the radial components ofi bed shoar stress can be rocognized and need to be known, in order to assess how considerable is the effect of secondary flow on the distribution of bed shear stress.

The exporimental procedure

A simple method of measuring the two components
of bed shear around the bend was applied: the shear stress components were deduced by measuring the speed and dircction of pre-calibrated small glass spheres (2 mm. diameter) rolline on the channel bed. These glass spheres were first calibrated in a smooth rectangular straight channel (56 cm. wide, 12 m. long) in the laboratory. Uniforin flow in each run was established in the straight channcl by neans of an adjustable tail sate. Tho speod of the rolling spheres on the bod of the straight channel was averaged over a section 1.8 m . long at the mid-longth of the channcl. The corresponding value of the average shear stress in each run was calculated from

$$
\tau_{0}=\gamma \rho_{s}
$$

in which $/ / /$ is the depth of flow, s is the slope of the channel bod. Readines of the spoeds at each run wero repoated five tines, and the mean values of theso wero plotted arainst r_{0} for different runs, as shown in FiE. (IV-1-I)

The ascumptions made in adopting this acthod of moasurenent were :

1) The velocity distribution of the flow near the bed is not afrected by the moving grain.
2) The circulation around the rolline sphere is negligible.

©-1-1 τ_{0} VS. GRAIN VELOCITY Vp IN STRAIGHT UNIFORM FLOW
FIG 1 Hz
3) The sphere trajoctory is the samc as that of tho flow it repleoes.
4) The size and shape of all the rolling spheres aro the same.

The rosulting calibration curve was used in evaluatine the shoar stress in the two curvod channels I and III (Channel I: $r_{c} / b=3$; Channcl III: $r_{c} / b=7.9$). Measurenents in these two channels werc carried out at the following cross-sections: 1.4 m . and 0.28 m . upstream of the bend entrance, $0^{\circ}, 30^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}, 150^{\circ}, 130^{\circ}$, 0.23 m . and 1.4 m . downstrean of tho bend exit. At each cross-section, shear stress was measured at six points, 10 cm . apart, in Channel I, and at four points, 5 cn. apart, in Channel III, Fig. (VI-1).

The speeds of the rolling grains in both channels were averaged over 0.30 m . distance, except at $\theta=0^{\circ}$, the bend entrance, where the averaging was over 0.15 m . distance. Readings at each point were repeated five times, and the mean values were considered.

In experiments on the curved channels, water was running for one hour before the measurements were taken. In the straight channel, the length of time was half-an-hour before each run.

The experimental conditions in the two curved channels were :

	$Q\left(\mathrm{~m}^{3} / \mathrm{sec}\right)$	$\begin{aligned} & d_{4}(1.4 \mathrm{~m} . \mathrm{u} / \mathrm{s} \\ & \text { the bend }) \mathrm{m} \text {. } \end{aligned}$	$\underline{\bar{V}_{4}(\mathrm{~m} / \mathrm{sec})}$	$\underline{m}(\mathrm{~m})$	$\mathrm{T}\left(\mathrm{C}^{\circ}\right)$	$\underline{R e}=\underline{\nu}$
Channel I	0.0040	0.038	0.173	0.033	18.3	5500
Channel III	0.0025	0.041	0.236	0.030	17.2	6680

The pathlines of the rolling spheres on the bed were resolved into longitudinal (tangential) and transversal (radial) components. In doing this, the pathlines of the spheres were assumed to be straight over the 0.30 m . distance at each point; the difference between the assumed and the actual pathline was negligible, Fig.(VI-1).

Contour lines of both components of shear stress around the bend, Figs. (VI-2) to (VI-5), were then constructed for the two curved channels (I and III) in terms of the
dimensionless ratio of local shear at each point in the bend to the mean value over cross-section $1(1.4 \mathrm{~m} . \mathrm{u} / \mathrm{s}$ the bend entrance) :

$$
\tau_{o Q e i} / \bar{\tau}_{01} \quad ; \quad \tau_{o r \theta i} / \bar{\tau}_{o i}
$$

in which $\tau_{\rho \theta \theta i}$ is the longitudinal component $\tau_{o \theta}$ of shear at cross-section θ and at a point $i\left(\mathcal{K}_{i}=6\right.$ in Channel I and 4 in Channel III), $\mathcal{T}_{\text {ormi }}$ is the radial component $\tau_{\text {or }}$ of shear at the same point i and cross-section θ, and $\bar{\chi}_{a,}$ is the average of $\tau_{\text {oi }}$ values at cross-section 1.

Also plotted, in Figs. (VI-6) and (VI-7), are the transversal profiles of bed shear at several cross-sections around the bend.

The experimental findings

i) Longitudinal shear stresses. It is seen from Fig. (VI-2), corresponding to Channel I, $r_{c} / b=3$, that high intensity of longitudinal shear occurs near the inner side between $\theta=30^{\circ}$ and $\theta=120^{\circ}$, after which it gradually shifts to predominate near the outer side with increasing intensity; it attains a maximum value at the outer side very near the bend exit and continues along this side for a distance nearly twice the channel width downstream of the bend exit. On the other hand, in Channel III, $r_{c} / b=7.9$, which is of less relative curvature b / r_{c}, the maximum longitudinal shear

DISTRIBUTION OF BED SHEAR STRESS AT
SEVERAL CROSS -SECTIONS IN CHANNEL I
FIG VI_6 $\left(r_{c} / b=3\right), Q=0.004 \mathrm{~m}^{3} / \mathrm{sec}, \quad h_{(1)}=3.8 \mathrm{~cm}$.

$$
\left.\frac{\stackrel{\rightharpoonup}{\dot{A}}}{3}\right|_{k-2} ^{1 / S}
$$

DISTRIBUTION OF BED SHEAR STRESS AT SEVERAL CROSS-SECTIONS IN CHANNEL III $\left(r_{c} / b=7.9\right)$, $Q=0.0025 \mathrm{~m} / \mathrm{sec}, \quad h(1)=4.1 \mathrm{~cm}$.
FIG VI_7
near the outer side, Fig. (VI-3), starts about $\theta=120^{\circ}$.
At some points in the two channels, the local values of longitudinal shear stresses are seen to exceed the mean shear stress in the approach channels by as much as 100% :

In Channel $I, r_{c} / b=3:$ at $\theta=60^{\circ}$ and at 15 cm . from $\mathrm{i} / \mathrm{s}: \tau_{\partial \theta} / \bar{\tau}_{0,}=2.09$ at $\theta=180^{\circ}$ and at 5 cm . from $0 / \mathrm{s}: \tau_{o \theta} / \bar{\tau}_{o t}=1.96$
In Channel III, $\mathrm{r}_{\mathrm{c}} / \mathrm{b}=7.9$:
at $\theta=30^{\circ}$ and at 10 cm . from $\mathrm{i} / \mathrm{s}: \tau_{o 6} / \bar{\tau}_{0,}=1.75$ at $\theta=150^{\circ} \rightarrow 180^{\circ}$ and at 5 cm . from o/s :

$$
\tau_{\partial \theta} / \bar{\tau}_{o t}=1.86
$$

Ippen et al (1960), using a Preston tube for measuring the longitudinal components only of bed shear stress around a 60° curved trapezoidal channel of 60 cm . bottom width and 1.52 m . central radius of curvature (a relatively short bend 060°), found that the maximum relative shear was 2.4 , occurring near the outside downstream of the bend exit.
ii) Radial shear strese. From Figs.(VI-4) and (VI-5), it may be seen that the maximum intensity of radial shear at any cross-section occurs near the middle of its width. The local values of this component, relative to the mean longitudinal value at cross-section $1\left(\tau_{o r \in i} / \bar{\tau}_{0 t}\right)$, increases with incroasing carveture.

In Channel I, $r_{c} / b=3$

$$
\text { at } \theta=90^{\circ} \text { and at } 36 \mathrm{~cm} . \mathrm{i} / \mathrm{s}: \tau_{0 r} /{\overline{\zeta_{01}}}^{\circ}=0.40
$$

In Channel III, $r_{c} / b=0.19$
at $\theta=60^{\circ}$ and at 15 cm . $i / \mathrm{s}: \tau_{\text {or }} / \overline{Z_{01}}=0.19$

Discussion and conclusions

From the present experinents, it can be seen that in channels of lower curvature, Channel III relative to Channel I, the regions of naximum relative longitudinal shear move in the upstrean direction, and the magnitude of maximum relative shear decreases with decreasing curvature. The same effect is also revealed in the case of radial component of shear. On the other hand, by comparinf Channel $I, b / r_{c}=0.33$, $\theta=180^{\circ}$, with that of Ippen et al (1960), which was of very close value of relative curvature $\left(b / r_{c}=0.39\right)$ but of shorter curve $\left(\theta=60^{\circ}\right)$, it can also be seen that for shorter bends of the same curvature, the maxirnum relative shear near the outside noves downstrean of the bend exit.

It can be concluded fron the present study that :

1) Shorter bends (small θ) of higher curvatures (big b / r_{c}) increare the difference between the maximum Iongitudinal conponent of shear in the bend or downstrean of its exit, and the mean value of shear in the straight approach channel; these bends cause the former component to nove downstrean of the bend. Whey also increase the difference between focal values in the
same cross-section. The maximum local value of shear stress in the bend may be double the mean value in the straight channel. Sharpor bonds also cause the increase of magnitude of the maximum relative radial shear component in the bend, occurring downstr eam at the mid-width, and cause it to move
2) The locations of high longitudinal shear stress are associated with the course of the filament of high velocity (Chapter IV).

FIOW AROUND CURVED CHANTELS HITE ERODIBLE BEDS

The movenent of bed load in channels and rivers is governed by many factors, the rolative effects of which differ in every casc. The geometry of river boundaries and the bed load movoment at a bend and downstream of it, as distinct from straight flow, are dependent on the secondary currents duc to stream curvature. In sone regions, the bed configuration is much influenced by these secondary rather than the main currents of the strean, and in some extreme cases the irrigation or naviçation purposes of the river may be seriously affectod.

Tho following study : is mainly directed to finding the effects of sccondary currents in the bend on the configuration of the loose bod, and to locating the regions of high scour and deposition.

The experimontal procedure
Due to the relatively small discharges in the experiments, an artificial plastic sand (Bakelite) of soocific gravity about (1.3) was used. This sand was soalsed in water before being spread over the channel bed.

Experiments werc carried out in Channel I $\left(r_{c} / b=3\right.$, $\mathrm{b}=0.61 \mathrm{~m}$.$\left.) , and in Channcl III (\mathrm{r}_{\mathrm{c}} / \mathrm{b}=7.9, \mathrm{~b}=0.255 \mathrm{~m}.\right)$ The average thickness of the sand layers over the bed of Channcl I was about $3.85 \mathrm{~cm} .$, and that of Channcl III was about 5 cm . The sand layers in both channels wore levelled to an accuracy of about 2.5 mri . (this was checled by drawing contour lines of the sand layer before the commenconent of the experiments). These layers extended from about 0.6 m . upstream of the bend entrance to 1.80 m . downstream of the bend exit. A smooth entry and exit for the sand layers was maintained by fitting a wooden piece, shaped to a quadrant of an ellipse, at each end, and the recions in the

imadiate vicinity to these were filled with natural sand in order to reduce scour due to possible local disturbances. It was found that the oraission of these procautions at both ends caused great scour of the sand laycr, particularly at the downstream end; this scour proceoded upstrear and seriously affected the bed form throughout the bend in a very short time.

To reduce sudden scour over the sand layers due to
any sudden acceleration of the flow at its commencement, the two end tanks were filled with water before the runs were started, and the flow was then gradually increased to the experimental value.

To establish the recurrence of the bed configuration under the sane flow conditions, the experiment was repeated once in Channel I and three times in Channel III. Photographs were taken of the regions where considerable changes in bed form developed, and contour lines were constructed after one experiment in Channel I.

The experimental conditions of the runs in tho two channels were as follows :-

Channel I
$Q=4.63 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}$.
depth of water over the sand layer at $\theta=30^{\circ}: \quad \hat{A}=4.60$ corresponding mean velocity at $\theta=30^{\circ}: \quad \bar{v}_{G}=0.166 \mathrm{~m} / \mathrm{sec}$ corresponding hydraulic radius (m) : $\quad \mathrm{m}=3.95 \mathrm{~cm}$.
average temperature :
Reynolds number at cross-section $\theta=30^{\circ}$ $T=18 \cdot 6^{\circ} \mathrm{C}$. Reynolds number at cross-section $\theta=30^{\circ}$ $\operatorname{Re}=\frac{v \cdot m}{y}=6280$ sand thickness : 3.85 cm .
time for experiments : 2 hr .40 min .
Channel III
$Q=3.05 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}$.
depth of water over the sand layer at $\theta=30^{\circ}: A=3.65 \mathrm{~cm}$.
corresponding mean velocity at $\theta=30^{\circ}: \quad \bar{v}_{\theta}=0.33 \mathrm{~m} / \mathrm{sec}$ corresponding hydraulic radius (in) :
$m=0.10$
average temperature:
$T=\frac{17.3^{\circ}}{\mathrm{V}} \mathrm{C}$
Reynolds number at cross-section $\theta=30^{\circ}$
sand thicleness :
$R c=\frac{\nu}{\nu}=7330$
5 cm.
tine for experiments : 2 hr .

The experimental findings
Despite minor differences, the bed forms of repeated experiments have tho following common features :-
i) Channel I :- Sec Figs.(VII-1-I), (VII-1),(VII-2) and Plates (VII-1) and (VII-3)

1. A classical type of rippled bed, as usually found

TRANSVERSEBED PROFILES (channell $r_{d}(b=3)$ FIG VII_2 $\left.Q=4.85 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec} ; ~^{\mathrm{h} D}\right)^{=4.6 \mathrm{cmi}} \mathrm{V}_{(0)}=16.3 \mathrm{~cm} / \mathrm{sec}$.

in straisht broad channel flow, occured in the region $\theta=0^{\circ}$ and $\theta=45^{\circ}$. In addition to this, however, a deep hollow was observed near the inner-side at $\theta=30^{\circ}$.
2. Deep isolated hollows, reachinc down to the fixed bed and directed inward at an angle from the circumferential direction, were observed at the centrelinc of crosssection $\theta=60^{\circ}$.
3. A high sand bar near the inner-side, starting from $\theta=45^{\circ}$ and continuing downstrean to about $\theta=105^{\circ}$.
4. Rendom distinct local scour and deposition over the rogion $\theta=135^{\circ} \rightarrow 150^{\circ}$.
5. A long ditch reaching down to the fixed bed very near the outer-side, starting from the bend exit and continuing downstream over a distance of about double the chanmel width.
6. Random scour and deposition, as in 4, but more intense, covering tho region downstrean of the bend exit. ii) Channel III :- See Plate (VII-2)

1. Scour down to the fixed bed appeared near the outside, starting from $\theta=45^{\circ}$ and continuing to about double the channcl width downstream of the bend exit.
2. A high sand bar developed near the inner-side between $\theta=30^{\circ}$ and $\theta=180^{\circ}$.
3. Small irregularitfes downstrean of the bend exit.

$\theta=45^{\circ} \rightarrow 65^{\circ}$

$150^{\circ} \rightarrow 180^{\circ}$

$170^{\circ} \rightarrow+1.5 \mathrm{ft} .(46 \mathrm{~cm})$

$180^{\circ} \rightarrow+2.5 \mathrm{ft}(75 \mathrm{~cm})$

Discussion and conclusions

The experimental observations can be analysed in the following :-
A. In the transitional region from straight to curved flow $\theta=0^{\circ} \rightarrow 20^{\circ}$, the main (tangential) flow has the predominent effect, and the bed form is similar to that in straight channcl flow.
B. The intense longitudinal scour near the outer-side occurs at regions of high gradients of longitudinal velocities. These regions rove in the upstrean direction for longer bends or bends of milder curvature (starting at $\theta=180^{\circ}$ in Channel I, $\theta=45^{\circ}$ in Channel III). C. The sand bar near the inner-side, being a result of deposition of sedinents coming froa upstrean under the effect of helical motion, occurs at regions of low gradients of longitudinal velocities. These regions also move upstroam for longer bonds of milder curvature (startine at $\theta=\frac{30^{\circ}}{40}$ in Channcl III and $\theta=\frac{35^{\circ}}{45^{\circ}}$ in Channel I).
D. The deep individual hollows near the middle of the channel width are the results of high intensity of radial shear stress in the bend, (Chapter VI).
E. The randon bed form at the bend exit is due to the
alteration in flow patterm in this transitional region, where currents change again from curved to straight channel flow.

From the above discussion, the following conclusions can be drawn :-
(1) The region under the most serious effect of stream curvature is that near the outer-side of the bend, where intense scour exists.
(2) In bends of high curvature (Channel $I, b / r_{c}=0.33$), the region mentioned in (1) lies in the straight section of the channel downstream of the bend and starts just at the bend exit; it moves upstream into the bend when the curvature decreases (Channel III, $b / r_{c}=0.126$).
(3) The developnent of a sand bar near the inner-side of a channel bend is the result of deposition in this region of low velocities of sediments carried from upstream under the effect of helical motion.
(4) The bed configuration, as found by experiments, can be analysed on the basis of velocity or shear distribution around the bend (Chapters IV and VI).

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

1) In a streak curved in plan, the maximum tangential velocity in any cross-section does not occur at the water surface. In the downstrean half of a bend, the maximua tangential velocity occurs far below the water surface. This is attributable to the effect of secondary currents and is confiraed in both laminar and turbulent flow states.
2) The maxinus tangential velocity of any cross-section and for any depth in a curved turbulent flow occurs near the inner side at the early region of the bend, and gradually shifts towards the outer side (crossing the centrelinc at locetions depending on the channel curvature) as a result of monentum exchange. In the range of channel curvature studied $\left(0.127 \leqslant \mathrm{~b} / \mathrm{r}_{\mathrm{c}} \leqslant 0.333\right)$, the maximun forward (tangential) velocity was found to be very close to the outer side at the bend exit and persisted at such maximun value (which evon increases with higher curvature) for a distance between 1-3 times the channel width downstreain frori the bend exit, depending on the curvature of the bend.

In the laninar flow state, however, the shift of high forward velocity towards the outer side occurs even in the very early region of the bend $\left(\theta=30^{\circ}\right)$. This is
atributable to the stronger relative secondary currents ($\frac{\mathrm{V}_{\mathrm{r}_{z}}}{\mathrm{v}_{\theta}}$) compared with those in turbulent flow. Following around the bend, this maxinum velocity keeps near the outer side, becouing steadily larger.
3) Flow around channel bends, although of a threcdimensional nature, is anenable to an approxinate numerical solution by a nethod of finite differences. The effect of the approximations and simplifying assunptions on the accuracy of the results, as compared with the neasured values, depends primarily on the degree of channel curvature $\mathrm{b} / \mathrm{r}_{\mathrm{c}}$ and on the aspect ratio b / la of the flow. When $\left.\left.r_{c} / b\right\rangle p / h\right\rangle 1$, a good deal of accuracy of nwaerical solution based on a two-dinensional flow analysis can be obtained. In the regions of the side walls of a wide strean, however, this nethod fails to give satisfactory results, and greater accuracy can be obtained only if the size of the grid network is decreased in these regions.
4) Radial profiles of water surface around the bend have a rather peculiar shape when the flow velocity is very low, and do not conform to any sinple formula of velocity distribution across the channel width; a depression of the water surface at the centreline in these cases was consistently observed and can be attributed to the existence of maxinum velocity at the middle of the cross-
section.
5) Longitudinal water surface profiles exhibit a consistent rise of water surface before the bend entry. As all the flow conditions studied were in the sub-critical state $\left(F=\frac{v}{\sqrt{g d}}(1)\right.$, (i.e., slow flow), it is expected that the existence of the bend inflicts a back-water effect on the flow in the straight approach channel upstrean of the bend. Increasing the flow velocity decreascs this rise in water surface.
6) Tho bed angles α_{0} (representing the strength of secondary flow) were found to increase with increasine curvature b / r_{c}, or when the aspect ratio b / h decreases. Observations in Channel I (a wide chamel) showed a reversed deviation of α_{0} (i.e., outward) in the region near the inner side. A possible cause of this could be changes in flow tomperature (and so, density) across this wide channel. Photographs of the secondary currents in two cross-sections ($\theta=30^{\circ}$ and 150°) in both Channels I and III showed complicated patterns of spiral motions. It is reasonable, therefore, to expect a nulti-cell spiral notion around bends of wide rivers and natural streams; in these cases, differences in concentrations of suspended sedinents across the river, and irregularities in its boundaries, contribute to the breakdow of a theoretical single spiral over the
cross-section.
7) Flow angles in the remainder of the strean showed similar trends as those of α_{0} as regards the effect of channel curvature and aspect ratios. The existence of a small reversed vortex at the top corner near the outer side (as originally revealed by Einstein and Hardor) was also detected.

Future extensive neasurenents of flow angles over many points in the cross-section may help towards a better understanding of the nature of the spiral notion.

Photographs taken of the sarne flows and locations but at different times showed sone difference in the distribution of spirals over the croso-section. Although the number of photographs talien at the same place was limited to two, this recalls the suggestion that spiral motion around bends is never steady but changes slightly with tine. Further study in this field secms desirable.
8) Longitudinal components of bed shear stress ($\mathcal{Z}_{o \theta}$) around the bend conformed with the distribution of forward velocity, and radial components of bed shear stress ($\tau_{\text {or }}$) conformed with the distribution of bed angles, out of which the radial velocity component can be measured. $\left(\tau_{0 \theta}\right)_{\text {nax }}$ was always found near the outer side at the bend exit. In higher curvatures it even noves downstream
of the bend exit. $\left(\tau_{\text {or }}\right)_{\max }$ was always found near the centreline of the channel in the region $\theta=30^{\circ} \rightarrow 120^{\circ}$. milder In curvatures, the region of $\left(\tau_{\text {or }}\right)_{\text {rax }}$ concentrates in a shorter region, starting fron $\theta=30^{\circ}$.
9) Studies on flows over loose beds in Channels I and III confirmed the results obtained fron bed shear and velocity measurements. In all the cases investigated, the region under the maximun longitudinal scour was found near the outer side at the bend exit. In addition to this, Channel III, which had a smaller curvature, scoured near the outer side in the upstream half of the bend. This also conformed to velocity measuroments in this channel.

Radial scour was detected in Channel I at the centreline of the region $\theta=45^{\circ} \rightarrow 60^{\circ}$, and this was ascrived to the effect of radial shear stress, which has raximum intensity in this region.

The development of a sand bar near the imer side of the two channels (I and III) was also detected. Its cause is ascribed to the helical notion which carries bed sedinents from upstreas towards the innor side of the bend. After a long period of tine, this sand bar of deposited sedinents eneres above the water surface, and this is possibly the cause of river braiding and the development of river islands.

APPENDIX A

RESISTANCE TO FLOW IN CURVED CHANNELS

In curved channels it is usually found that there are additional energy losses above those in straight channel flows. The following phenomena might be concerned in developing these additional losses :-

1) Distortion in velocity distribution in all three dimensions of the flow and the resulting alteration in shear stress distribution;
2) Secondary currents in the bend, causing an increased momentum exchange;
3) Possible separation of the flow from the curved walls and consequent development of eddy zones.

The proportional contribution of each of these causes depends upon the flow conditions and channel geometry.

However, in a bend situated between two long straight approaches, the additional energy loss due to the local deceleration and acceleration of the curved flow probably extends over a relatively short stretch of the channel, including the bend and parts of the straight approaches, beyond which the energy line has its otherwise uniform slope. In other words, the local additional energy losses inherent to curved
flow are always accompanied by fewer energy losses upstream or downstrean of the bend; thus the average energy loss over the whole stretch is the same as that in a straight part of the channel.

In all flow states, the curved section of the channel acts as an obstacle (:Chor; 1959)".. , causing the flow first to decelerate and then to accelerate. In subcritical flow ($\mathcal{R}) R_{C}$), the deceleration imposes a backwater effect similar to that of a dam (M1 curve), on the upstream side (this has been measured and discussed in Chapter V); the rise of water surface towards the bend entrance requires, from the specific energy curve Fig. (A-1), a corresponding rise in the specific energy line. It is this rise in the specific
 content at the bend entrance which is dissipated in the bend and at sone distance downstream of it, through acceleration of the flow, thereby bringing the flow depth to its uniform value and the energy gradient back to its uniform slope. In supercritical flow ($d<d_{c}$) the decelerated water due to the bend can only be found downstream of the bend entrance, i.e., within the bend; from Fig. $(A-1)$, a rise in water surface requires, in this case, a corresponding drop in energy line after which the flow is accelerated back, bringing the energy gradient to its
uniform slope. If the decelerating flow should cause the water surface to rise up higher than the critical depth, a hydraulic jump will occur, after which the flow will behave as in the first case (subcritical flow).

Friction coefficient for curved open channel flow
It is not only because curved open channel flow is principally non-uniform, but also owing to the existing secondary currents, that the friction factor C_{f} in bends (defined in the same way as in flow over a flat plate, i.e., $c_{f}=\tau_{0} / f \frac{\overrightarrow{\vec{v}}^{2}}{2}$ or alternatively as $C_{f}=\frac{2 g m s}{\vec{v}^{2}}$) is a function of several additional parameters. In addition to those in wriform straight channels, where $C_{f}=\phi\left(\operatorname{Re}, k / \tilde{L}, \ell_{0} / b\right)$, one can add, in the 180° semicircular bend, $\mathrm{r}_{\mathrm{c}} / \mathrm{b}$ and $\frac{\theta}{180}$, so that :

$$
c_{f(\text { bend })}=\phi_{1}\left(\operatorname{Re}, \mathrm{k} / \dot{\mathrm{K}}, \mathrm{~K} / \mathrm{b}, \mathrm{r}_{\mathrm{c}} / \mathrm{b}, \theta / 180\right) \quad(\mathrm{A}-1)
$$

in which ϕ_{1} is a function to be determined, $\operatorname{Re}=\frac{\overline{\mathrm{v}} \cdot \mathrm{m}}{\mathrm{V}}$. is Reynolds number, $\mathrm{k} / \hat{\mathrm{h}}$ is relative roughness, $\hat{\phi} / \mathrm{b}$ is the inverse of aspect ratio of the cross-section, r_{c} / b is the inverse of degree of curvature, and $\frac{\theta}{180}$ describes the cross-section concerned in the bend.

Experiments have, therefore, been carried out in the three channel bends (Channelai, II and III) to define the function given in Eq. $(A-1)$. The middle section of the bend, $\theta=90^{\circ}$, was considered in this investigation. The depth of water was kept very close to 2.5 cm . in the three curved
channels so that a relation between C_{f} and R_{e} (for small/. b in the three channels) was of the form

$$
\begin{equation*}
c_{f}=\phi_{2}\left(R_{e}, r_{c} / b\right) \tag{A-2}
\end{equation*}
$$

A comparison was made between the obtained results of $C_{f}-R_{e}$ (using a digital computer with a programme shown in Appendix B) with r_{c} / b as a parameter, and those obtained in a long straight smooth channel 30 cm . wide and about 10 m . long by Memon (1967). To detect the effect of the parameterh/ b , some of the results obtained by Allen and Ullah (1967), in a very deep channel $f:=10 \mathrm{~cm}$. and $b=2.5 \mathrm{~cm}$. , are also quoted. To calculate the slope of the energy line at $\theta=90^{\circ}$, the heads at two sections $\theta=60^{\circ}$ and $\theta=120^{\circ}$ were measured, so that S is very approximately given by

$$
S=\frac{H_{60^{\circ}}-H_{120^{\circ}}}{L^{\circ}\left(60^{\circ}-120^{\circ}\right)}
$$

All depth measurements were read through the static pressure tapping points at the bed and referred to a still water level (see Chapter III), and the difference in bed level (equal to 0.25 mm), between sections $\theta=60^{\circ}$ and $\theta=120^{\circ}$, was also taken into consideration. The energy gradient in the straight channel (Memon, 1967) was taken as the slope of the channel bed, as uniform flow was established there.

In laminar flow in straight broad rectangular channels, C_{f} is a function only of R_{e}. Its value was derived by Allen
and U1lah (1967), as :

$$
\begin{equation*}
c_{f}=6 / R_{e} \tag{A-3}
\end{equation*}
$$

This equation, together with the experimental results for the bends, was plotted in Fig.(A-2), and the following conclusions can be drawn :-

1) It is certain that C_{f} in curved/flow is higher than that in straight flow, whatever the aspect ratio of the flow. 2) The transition from laminar to turbulent flow is less marked in curved than in straight flow. This was also observed by Eustic (1911) for flow in curved pipes.
2) No conclusive results can as yet be drawn in regard to the turbulent flow region due to the limited number of measurements, with maximum experimented Re about 3000 .

The total head loss (ΔH) over the whole length of the curve was calculated for different Reynolds numbers from measurements at the bend entrance and exit in Channel II (r_{c} / b $=6.5)$. This result was compared with that in straight channels (Memon, 1967) of the same length and width. The only difference between the two cases was that the depth of the straight channel was much less than that of the curved channel: in the straight channel \mathcal{F} / b was between 0.016 and 0.151 , whereas in the curved one it was very close to 0.100 .

The results are plotted in Fig. ($\mathrm{A}-3$) as (head loss $\times \mathrm{l} / \mathrm{b}$) vs. R_{e}. Also plotted in Fig. (A-3), the ratio of head loss

FIGA_2
FRICTION FACTOR IN CURVED OPEN CHANNEL FLOW

FIGA_3 COMPARISON BETWEEN HEAD LOSSES IN CURVED AND STRAIGHT CHANNELS OF EQUAL LENGTHS
along a curved channel to that in a straight channel vs. R_{e}.
It can be concluded, from the last figure, that the aspect ratio has considerable effect on the total loss in low speed flows of shallow depths; also that the ratio of bend to straight flow losses increases almost linearly with Reynolds number.

APPENDIX B

Notations used in the progrannes *
 (v_{Θ} distribution)

* when solving for Channel III, $I=7$

```
            PROGRNT TO FTND VELOCITY DISTRIBU'IION IN CURVED CHANNEL FLOW
            DIVENS IOIG C(7,15,13),R(15),CR(7,15,13),CZ(7,15,13),B(16),F(15),CRA
        1AF(15),CX}(7,15,13),\textrm{CZA}(7,15,13),CX(7,15,13),CY(7,15,13),H(6),C
    2,7,15,13),CRG(7,15,13),CZU(7,15,13),CZD(7,15,13)
RF( DO 3 K=2,6
    READ (5,2) (C(K,I,1),I=2,14)
    2 FORMAT (13F5.2)
    3 CONTITUE
    READ (5,4) (R(I),I\not=2,14)
    4 \text { FORHAT (13F5.1)}
    DO 5 K=2,6
    DO }6\textrm{I}=2,1
    CR(K,I,1)=0.0
    CZ(K,I,1)=0.0
    6 COITINGL
    5 Conqlivue
    DO 50 I=3,13
    B(I)=2.0
    50 COnTIMuE
    DO 28 K=3,5
    H(K)=0.5
    23 comqumue
    H(2)=0.75
    H(6)=0.75
    B(2)=1.0
    B(14)=1.0
    DO }80\textrm{M}=2,1
    DO 10 I=2,14
    F(I)=C(2,I,I-1)
    DO 11 K=3,6
    F(I)=F(I)+C(K,I,M-1)
    1 1 \text { CONTINUE}
    10 CONTINUE
    DO 31 I=2,14
    CR(2,I,M)=12.0*(-0.191*F(I)/R(I)+20.5*T(I)/R(I)**3)
    IF(I.EQ.2.OR.I.EQ.14)CR(2,I,M)=0.33*CR(2,I,M)
    IF(I.EQ.3.OR.I.EQ.13)CR(2,I,M)=0.66*CR(2,I,M)
    CR(3,I,M)=12.0*(-0.030*F(I)/R(I)-43.2*F(I)/R(I)**3)
    IF(I.EQ.2.OR.I.EQ.14)CR(3,I,Ii)=0.33*CR(3,I,Mi)
    IF(I.EQ.3.0R.I.EQ.13)CR(3,I,Wi)=0.66*CR(3,I,M)
    CR(4,I,M)=0*(0.016*T(I)/R(I)-64.8*F(I)/R(I)**3)
    IF(I.EQ2.QR.I.EQ.14)CR(4,I,M)=0.33*CR(4,I,N)
    IF(I,EQ.3.OR.I.EQ.13)CR(4,I,Ni)=O.66*CR(4,I,Ni)
    CR(5,I,M)=12.0*(0.094*F(I)/R(I)-50.4*F(I)/R(I)**3)
    IF(I.EQ.2.OR.I.EQ.14)CR(5,I,M)=0.33*CR(5,I,M)
    IF(I.EQ.3.OR.I.ER.13)CR(5,I,M)=0.66*CR(5,I,M)
    CR(6,I,M)=12.0*(0.173*F(I)/R(I)+14.4*F(I)/R**3)
    IF(I.ER)2.OR.I.EQ.14)CR(6,I,M)=0.33*CR(G,I,M)
    IF(I.EQ.3.OR.I.EQ.13)CR(6,I,Ni)=O.66*CR(6,I,M)
```

$\operatorname{IF}(\mathrm{I} . \mathrm{ER} \cdot 3.0 \mathrm{R} . \mathrm{I} . \mathrm{EQ} .13) \mathrm{CR}(6, \mathrm{I}, \mathrm{M})=0.66 * \mathrm{CR}(6, \mathrm{I}, \mathrm{M})$
31 conitinue
DO $34 I=2,14$
$C Z(1, T, M)=0.0$
$C Z(7, I, M)=0.0$
34 cominime
DO 19, K=2,6
$\operatorname{CR}(\mathrm{K}, 1, \mathrm{M})=0.0$
$\mathrm{CR}(\mathrm{K}, 15, \mathrm{MO}=0.0$
19 CONTINUE
DO $39 \mathrm{I}=2,14$
Do $59 \mathrm{~K}=2,6$
$\operatorname{CRF}(\mathrm{K}, \mathrm{I}, \mathrm{Mi})=(\operatorname{CR}(\mathrm{K}, \mathrm{I}, \mathrm{M})+\mathrm{CR}(\mathrm{K}, \mathrm{I}-1, \mathrm{H}) / 2.0$
$\operatorname{CRG}(\mathrm{K}, \mathrm{I}, \mathrm{M})=(\mathrm{CR}(\mathrm{K}, \mathrm{I}, \mathrm{M})+\mathrm{CR}(\mathrm{K}, \mathrm{I}+1, \mathrm{M}) \geqslant 2.0$
$\operatorname{IF}(\mathrm{I} . \mathrm{Eq} .14) \mathrm{CRG}(\mathrm{K}, 14, \mathrm{H})=0.0$
$\operatorname{CRA}(K, I, M)=\operatorname{CRG}(K, I, M)-\operatorname{CRF}(K, I, W)$
$\mathrm{CZA}(\mathrm{K}, \mathrm{I}, \mathrm{M})=-\mathrm{CRA}(\mathrm{K}, \mathrm{I}, \mathrm{M}) * \mathrm{II}(\mathrm{K}) / \mathrm{B}(\mathrm{I})$
59 continue
39 conttnue
DO $48 \mathrm{I}=2,14$
$\operatorname{CZD}(2, I, \mathrm{H})=0.0$
$\operatorname{CZU}(2, I, M)=\operatorname{CZD}(2, I, M)+C Z A(2, I, M)$
$\operatorname{CZD}(3, I, M)=\operatorname{CZU}(2, I, M)$
$\operatorname{CZU}(3, I, M)=\operatorname{CZD}(3, I, M)+\operatorname{CZA}(3, I, I)$
$\operatorname{CZD}(4, I, M)=\operatorname{CZU}(3, I, M) \quad \operatorname{CZU}(4, I, M)=\operatorname{CZD}(4, I, M)+C Z A(4, I, M)$
$\operatorname{CZD}(5, I, \mathrm{H})=\operatorname{CZU}(4, I, \mathrm{M})$
$\operatorname{CZU}(5, I, \mathrm{I})=\operatorname{CZD}(5, I, \mathrm{M})+\mathrm{CZA}(5, \mathrm{I}, \mathrm{H})$
$\operatorname{CZD}(6, I, M)=\operatorname{CZU}(5, I, M)$
$\operatorname{CZU}(6, I, M)=\operatorname{CZD}(6, I, \mathrm{II})+\mathrm{CZA}(6, I, \mathrm{II})$
$\operatorname{CZU}(6, I, M)=0.0$
48 COITITME
DO $96 I=2,14$
DO $97 \mathrm{~K}=2,6$
$C Z(K, I, M)=(C Z D(K, I, M)+C Z U(K, I, M)) / 2.0$
97 CONTINUS
96 Coitrinue
$\mathrm{CX}(\mathrm{K}, \mathrm{I}, \mathrm{M})=\mathrm{C}(\mathrm{K}, \mathrm{I}+1, \mathrm{M}-1)-\mathrm{C}(\mathrm{K}, \mathrm{I}, \mathrm{M}-1)$
$\mathrm{CY}(\mathrm{K}, \mathrm{I}, \mathrm{M})=\mathrm{C}(\mathrm{K}+1, \mathrm{I}, \mathrm{M}-1)-\mathrm{C}(\mathrm{K}, \mathrm{I}, \mathrm{M})$
DO $44 I=2,14$
Do $45 \mathrm{~K}=2,6$
$\operatorname{IF}(\mathrm{I} . \mathrm{EQ} .14) \mathrm{CX}(\mathrm{K}, 14, \mathrm{Hi})=\mathrm{CX}(\mathrm{K}, 13, \mathrm{M})$
$\operatorname{IF}(\mathrm{K} . \mathrm{EQ} .6) \mathrm{CY}(6, \mathrm{I}, \mathrm{M})=\mathrm{CY}(5, \mathrm{I}, \mathrm{M})$
$\mathrm{CV}(\mathrm{K}, \mathrm{I}, \mathrm{M})=-\mathrm{R}(\mathrm{I}) * 0.262 / \mathrm{C}(\mathrm{K}, \mathrm{I}, \mathrm{M}-1) *(\mathrm{CR}(\mathrm{K}, \mathrm{I}, \mathrm{M}) * \mathrm{CX}(\mathrm{K}, \mathrm{I}, \mathrm{M}) / \mathrm{B}(\mathrm{I})+\mathrm{CZ}(\mathrm{K}, \mathrm{I}$,
$1 \mathrm{E}, \mathrm{M}) * \mathrm{CY}(\mathrm{K}, \mathrm{I}, \mathrm{M}) / \mathrm{H}(\mathrm{K})+\mathrm{CR}(\mathrm{K}, \mathrm{I}, \mathrm{M}) * \mathrm{C}(\mathrm{K}, \mathrm{I}, \mathrm{M}-1) / \mathrm{R}(\mathrm{I}))$
$C(K, I, M)=(C(K, I, M-1)+C V(K, I, M)) * 2.54$
45 conminue
44 COMTINUE
WRITE $(6,100)((I, K, M, C R(K, I, H), C Z(K, I, M), C(K, I, M), C V(K, I, M), I=2,1$
14), $\mathrm{K}=2,6)$

80 CONTINUE
STOP
END
$\nRightarrow D A T A$
\&EOF

Programme tho solve for the distribution of $v_{0 m}$

Exporimental notations	Computer notations
r, θ	I, li
$\mathrm{v} \theta$	Cl
r	R
$\mathrm{V}_{\text {¢m }}$	CMA

When solving for Channcl III , $I=7$

Dimonsion $C(7,15,13), R(15), B(15), C A(15,13), C \operatorname{CiA}(15,13), C B(15,13), C$
1A(15,13); CAF(15:13)
DO $3 \mathrm{k}=2$,6
$\operatorname{READ}(5,2)(C .(K, I, I), I=2,14$
2 format (13F5.2)
3 CONTIMUS
$\operatorname{RBAD}(5,4)(R(I), I=2,14)$
4 FORIEAT (13F5.1)
$B(2)=1.0$
$B(14)=1.0$
DO $10 \mathrm{I}=3,13$
$B(I)=R(I+1)-R(I)$
10 OONTINUE
DO $15 \mathrm{I}=2,14$
$\operatorname{CM}(I, 1)=C(2, I, 1)$
DO $11 \mathrm{~K}=3,6$
$\operatorname{CH}(I, I)=\operatorname{CH}(I, I)+C(K, I, I)$
11 CONTMUE
$\mathrm{CMA}(I, I)=\operatorname{CM}(I, I) / 5.0$
15 CONTINUR
DO $80 \mathrm{M}=2 ; 13$
DO $30 \quad I=2,13$
$\mathrm{CB}(\mathrm{I}, \mathrm{M})=\mathrm{ClH}(\mathrm{I}+\mathrm{I}, \mathrm{M}-1)-\mathrm{CMA}(\mathrm{I}, \mathrm{M}-1)$
30 CONTINUE
DO $61 \mathrm{I}=2,14$
$C A(I, M)=-0.262 \pi(0.067 \times C B(I ; M) / B(I) \div 0.00006 \times M A(I, M-1) \times 3 / R(I))$
$\operatorname{IF}(\mathrm{I} . \mathrm{BQ} .14) \mathrm{CA}(14, \mathrm{~m})=\mathrm{CA}(13, \mathrm{M})$
$\operatorname{CMA}(I, M)=\operatorname{CMA}(I, M-1)+12.0 x C A(I, M)$
$\operatorname{CMF}(I$, II $)=\operatorname{CHA}(I, M) / 3.71$
61 CONTINUB.
TRITE $(6,100)(I, M, C A(I, M), C M A(I, I H), C M P(I, I N), I=2,14)$
ICO FORNAT (1X,2I5, T9.5,3X, $\mathrm{F} 9.2,3 \mathrm{X}, \mathrm{F9} 9.2$)
80 CONTIIUE
SIOP
IND

Programme to find the friction factor
Exporimontal notations Computor notations

Run number	
b	J
a	B

Q	Q
$h_{\theta=60}$	$D I$

$h_{\theta=120 \quad D 2}^{\theta}$
s HI
$T(c)$ $\times 10^{6}$
$\stackrel{1}{\mathrm{~F}}$

c_{f}

C
DIMETSION $J(50), B(50), D 1(50), D 2(50), \mathrm{HI}(50), T(50), \mathrm{F}(50), \mathrm{H}(50)$ $1, R(50), C(50)$ DO $10 \mathrm{I}=1,40$
$\mathrm{READ}(5, I O 0) J(I), B(I), Q(I), D I(I), D 2(I), H 1(I) ; T(I) ; F(I)$
I)
IT(I.GT. 20) GO TO 55
$H(I)=(D 1(I) / 12.0+(Q(I) \neq 2 /(64.4 \times(0.83 \times D 1(I) / 12.0) \neq 2)))-(0.034 / 12$.

GO TO 56
$55 \mathrm{H}(\mathrm{I})=(\mathrm{DI}(\mathrm{I}) / 12.0+(\mathrm{Q}(\mathrm{I}) \neq 23964.4 \times(0.83 \times D I(I) / 12.0) \times \approx 2):(0.029 / 12$.

$56 R(I)=(12.0 \times Q(I) \times 10.0 \times 5) /(F(I) \times(12.0 \times B(I)+D I(I)+D 2(I)))$

$2.0 \div \mathrm{D} 2(-1 / 12.0) \times \mathrm{T}(\mathrm{I}))$
URITE $(6,200) \cdot J(I), R(I), C(I), H(I)$
$\cdots \mathrm{OORAMT}(1 \mathrm{~K}, \mathrm{I} 2,2 \mathrm{X}, \mathrm{F7} .1,2 \mathrm{~K}, \mathrm{~F} 6.4,2 \mathrm{X}, \mathrm{F} 6.4)$
\therefore COHTIMUE
STOP
MID
$\not \approx D A T A$
\& BEF

APPEHDIX C

EXPERIMEHTAL DATA
 $z=$ depth above bed, $v_{\theta} \mathrm{ca} / \mathrm{sec} . \theta=30$

(incmpsec) (nicm)
Table 2. $v_{Q} / \mathrm{ve} 2 /$ Larainar flow.

$$
\begin{aligned}
& Q=0.33 \times 10^{-3} \mathrm{n} / \mathrm{sec} \\
& R e=422 \\
& R=7.5 \mathrm{~cm} . \\
& \theta=30
\end{aligned}
$$

Table 4. $\frac{v_{\text {em }}}{\overline{\mathrm{v}}_{\mathrm{O}}}$ around the bend.

$$
\overline{\mathrm{v}}_{0}=9.45 \mathrm{~cm} / \mathrm{sec} .
$$

Channel I (turbulent flow)
top values measured bottom values calculated

θ	$\begin{gathered} 5 \mathrm{~cm} \\ \text { from i/s } \end{gathered}$	15 cm	25 cm	35 cm	45 cm	55 cm
15°	$\begin{aligned} & 1.05 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 0.98 \\ & 0.90 \end{aligned}$	$\begin{array}{\|l} 11.02 \\ 0.97 \end{array}$	$\begin{aligned} & 0,88 \\ & 0.87 \end{aligned}$	$\begin{aligned} & 0.87 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 0.74 \\ & 0.75 \end{aligned}$
30°	0.90 0.90	$\begin{aligned} & 0.83 \\ & 0.89 \end{aligned}$	$\begin{aligned} & 0.83 \\ & 0.97 \end{aligned}$	$\begin{aligned} & 0.73 \\ & 0.87 \end{aligned}$	$\begin{aligned} & 0.68 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.78 \end{aligned}$
45°	$\begin{aligned} & 0.79 \\ & 0.89 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 0.88 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.90 \\ 0.97 \end{array}$	$\begin{aligned} & 0.81 \\ & 0.88 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.77 \\ 0.88 \\ \hline \end{array}$	$\begin{aligned} & 0.61 \\ & 0.80 \end{aligned}$
60°	$\begin{aligned} & 0.66 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 0.84 \\ & 0.87 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.83 \\ 0.98 \end{array}$	$\begin{aligned} & 0.83 \\ & 0.89 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.77 \\ 0.88 \end{array}$	$\begin{aligned} & 0.66 \\ & 0.83 \end{aligned}$
75°	$\begin{aligned} & 0.70 \\ & 0.87 \end{aligned}$	$\begin{aligned} & 0.85 \\ & 0.86 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.89 \\ 0.98 \end{array}$	$\begin{aligned} & 0.87 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 0.85 \\ & 0.87 \end{aligned}$	$\begin{aligned} & 0.70 \\ & 0.86 \end{aligned}$
90°	$\begin{aligned} & 0.74 \\ & 0.86 \end{aligned}$	$\begin{aligned} & 0.84 \\ & 0.85 \end{aligned}$	$\begin{aligned} & \hline 0.92 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 0.93 \\ & 0.91 \end{aligned}$	$\begin{aligned} & 0.96 \\ & 0.87 \end{aligned}$	$\begin{aligned} & 0.92 \\ & 0.89 \end{aligned}$
105°	$\begin{aligned} & 0.79 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.84 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.97 \\ 0.98 \\ \hline \end{array}$	$\begin{aligned} & 1.02 \\ & 0.93 \end{aligned}$	$\begin{aligned} & 1.03 \\ & 0.86 \end{aligned}$	$\begin{aligned} & 0.94 \\ & 0.91 \end{aligned}$
120°	$\begin{aligned} & 0.81 \\ & 0.83 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 0.98 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 1.02 \\ & 0.95 \end{aligned}$	$\begin{array}{\|l} 1.04 \\ 0.85 \end{array}$	$\begin{aligned} & 0.96 \\ & 0.94 \end{aligned}$
135°	$\begin{aligned} & 0.78 \\ & 0.81 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.81 \end{aligned}$	$\begin{aligned} & 0.96 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 1.01 \\ & 0.97 \end{aligned}$	$\begin{aligned} & 1.04 \\ & 0.84 \end{aligned}$	$\begin{aligned} & 0.99 \\ & 0.97 \end{aligned}$
150°	$\begin{aligned} & 0.82 \\ & 0.79 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.79 \end{aligned}$	$\begin{aligned} & 0.97 \\ & 0.99 \end{aligned}$	$\begin{aligned} & 1.01 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 0.83 \end{aligned}$	$\begin{aligned} & 0.99 \\ & 1.00 \end{aligned}$
165°	$\begin{aligned} & 0.79 \\ & 0.76 \end{aligned}$	$\begin{aligned} & 0.92 \\ & 0.78 \end{aligned}$	$\begin{aligned} & 0.96 \\ & 0.99 \end{aligned}$	$\begin{aligned} & 1.02 \\ & 1.03 \end{aligned}$	$\begin{aligned} & 1.08 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 1.03 \\ & 1.02 \end{aligned}$
180°	$\begin{aligned} & 0.73 \\ & 0.72 \end{aligned}$	$\begin{aligned} & 0.91 \\ & 0.76 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.99 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.06 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 0.81 \end{aligned}$	$\begin{aligned} & 1.11 \\ & 1.05 \end{aligned}$

Table 5. $\frac{\mathrm{v}_{\text {gm }}}{\overline{\mathrm{v}}_{0}}$ around the bend. $\bar{v}_{0}=14.5 \mathrm{~cm} / \mathrm{sec}$.

Channel III (turbulent flow)
top values measured bottom values calculated

θ	$\underset{\text { from } i / \mathrm{s}}{5 \mathrm{~cm}}$	10 cm	15 cm	20 cm
15°	$\begin{aligned} & 1.04 \\ & 0.97 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.06 \end{aligned}$	$\begin{aligned} & 1.01 \\ & 0.99 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 1.07 \end{aligned}$
30°	$\begin{aligned} & 1.01 \\ & 0.96 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 1.07 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 1.08 \end{aligned}$
45°	$\begin{aligned} & 0.92 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 1.08 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 0.97 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 1.09 \end{aligned}$
60°	$\begin{aligned} & 0.93 \\ & 0.94 \end{aligned}$	$\begin{aligned} & 1.04 \\ & 1.09 \end{aligned}$	$\begin{aligned} & 1.11 \\ & 0.96 \end{aligned}$	$\begin{aligned} & 1.08 \\ & 1.11 \end{aligned}$
75°	$\begin{aligned} & 0.93 \\ & 0.92 \end{aligned}$	$\begin{aligned} & 1.02 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 0.94 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.12 \end{aligned}$
90°	$\begin{aligned} & 0.88 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 0.98 \\ & 1.12 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 0.93 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 1.13 \end{aligned}$
105°	$\begin{aligned} & 0.90 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 0.91 \end{aligned}$	$\begin{aligned} & 1.11 \\ & 1.14 \end{aligned}$
120°	$\begin{aligned} & 0.88 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.99 \\ & 1.16 \end{aligned}$	$\begin{aligned} & 1.08 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 1.11 \\ & 1.15 \end{aligned}$
135°	$\begin{aligned} & 0.85 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 1.01 \\ & 1.19 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.17 \end{aligned}$
150°	$\begin{aligned} & 0.86 \\ & 0.78 \end{aligned}$	$\begin{aligned} & 1.02 \\ & 1.22 \end{aligned}$	$\begin{aligned} & 1.11 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.18 \end{aligned}$
165°	$\begin{aligned} & 0.89 \\ & 0.74 \end{aligned}$	$\begin{aligned} & 1.03 \\ & 1.27 \end{aligned}$	$\begin{aligned} & 1.11 \\ & 0.78 \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1.19 \end{aligned}$
180°	$\begin{aligned} & 0.85 \\ & 0.68 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.32 \end{aligned}$	$\begin{aligned} & 1.11 \\ & 0.74 \end{aligned}$	$\begin{aligned} & 1.18 \\ & 1.20 \end{aligned}$

Table 6. Bed angles in turbulent flow across the width for different flow depths at $\theta=60^{\circ}$ and $\theta=120^{\circ}$.
Channel I : $\quad Q=4.3 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}$.

θ	h	$\begin{gathered} 5 \mathrm{~cm} \\ \text { from } 0 / \mathrm{s} \end{gathered}$	15 cm	25 cm	35 cm	45 cm	55 cm
60°		α_{0} van α_{0}	$\alpha_{0} \tan \alpha_{0}$	$\alpha_{0} \tan \alpha_{0}$	$\alpha_{0} \tan k_{0}$	$<_{0}{\tan \alpha_{0}}^{0}$	$\alpha_{0} \tan \alpha_{0}$
	3.59	$12 \quad 0.21$	$13 \quad 0.23$	150.27	15.50 .28	120.21	8.50 .15
	4.93	$15 \quad 0.27$	19.50 .35	$19 \quad 0.34$	$19 \quad 0.34$	$19 \quad 0.34$	$14 \quad 0.25$
	6.13	15.50 .28	20.50 .37	23.50 .43	$22 \quad 0.40$	$22 \quad 0.40$	$17 \quad 0.31$
	7.57	$19 \quad 0.34$	$25 \quad 0.47$	28.50 .54	26.50 .50	23.50 .43	$20 \quad 0.36$
	8.92	$21 \quad 0.38$	$28 \quad 0.53$	$30 \quad 0.58$	29.50 .57	$27 \quad 0.51$	$21 \quad 0.38$
	10.01	21.50 .39	$28 \quad 0.53$	33.50 .66	320.62	28.50 .54	$22 \quad 0.40$
	11.41	22.50 .41	27.50 .52	34.50 .69	$35 \quad 0.70$	$33 \quad 0.65$	23.50 .43
120°	3.40	13.50 .24	$14 \quad 0.25$	13.50 .24	$14 \quad 0.25$	$16 \quad 0.29$	$14 \quad 0.25$
	5.20	16.50 .30	20.50 .37	$20 \quad 0.36$	$18 \quad 0.32$	$18 \quad 0.32$	$16 \quad 0.29$
	6.08	17.50 .32	20.50 .37	20.50 .37	$21 \quad 0.38$	$20 \quad 0.36$	18.50 .33
	7.5	20.50 .37	20.50 .37	$22 \quad 0.40$	$23 \quad 0.42$	20.50 .37	$19 \quad 0.34$
	9.08	220.40	$24 \quad 0.44$	27.50 .52	26.50 .50	22.50 .41	19.50 .35
	10.22	$23 \quad 0.42$	$28 \quad 0.47$	28.50 .54	27.50 .52	22.50 .41	21.50 .39
	11.42	23.50 .43	25.50 .48	29.50 .57	$30 \quad 0.58$	24.50 .46	21.50 .39

Table 7. Bed angles at the centreline around the bend vs. Reynolds numbers (Three channels)
depth measured at $1.4 \mathrm{~m} . \mathrm{u} / \mathrm{s}$ the bend entry
Channel I

$\mathrm{h}(\mathrm{cm})$	Re	-0.6m	-0.08m	30	60	50	120	150․	180	+0.6m	+1.2m
5	445	2	20	33	30	31	28	26	18	7	0
5.1	860	2	12	29	27	26.5	24	24	18	9	3
3.42	5880	0.5	7.5	14	12.5	13.5	11.5	11	5	3.5	3
Channel II											
5	494	1	6	24	21	24	24	22	17	7	3
5	1080	2	6	21	20	24	22	20	16	6	2
5	6700	0	1	18	15	18.5	18	18	10	6	2
Channel III											
5	470	1	3	23	20	21	20	22	18.5	6	2.5
5	1025	1.5	2	19	19.5	18.5	18	20	15	5	4
5	6500	0	2	15	10	11	15	13	10	3	1

Table 8.
$\tan \alpha_{0}$ vs. $\boldsymbol{h} / \mathrm{r}_{\mathrm{c}}$ and $\tan \alpha_{0}$ vs. $\left(\boldsymbol{\ell} / \mathrm{r}_{\mathrm{c}}\right)^{\frac{1}{2}}(\mathrm{Re})^{-\frac{1}{4}}$ $\theta=60^{\circ}$ and $\theta=120^{\circ}$ at centreline (Three channels)

Table 9. Flow angles along the depth in the three channels top reading at $5 \mathrm{~cm} \mathrm{o} / \mathrm{s} \quad \mathrm{h}$ at $1.4 \mathrm{u} / \mathrm{s}$ the bend $=7.6 \mathrm{~cm}$ middle " " centreline bottom " " " $5 \mathrm{~cm} \mathrm{i} / \mathrm{s}$
$Q(I)=4.3 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec} \mathrm{m}^{3} / \mathrm{sec}$
$Q(I I \& I I I)=3.1 \times 10^{-3} \mathrm{~m}^{2} \mathrm{sec}$

Table 9. (Continued)

Table 10. Bed shear stress distribution around the bend (Channels I \& top value : $\tau_{o d} \bar{\tau}_{o l}$ bottom value $: \tau_{o r} / \bar{\tau}_{o t_{3}} \quad$ III) $Q(I)=4 \times 10^{-3} \mathrm{~m} / \mathrm{sec}, \hat{p}_{(1)}(\mathcal{B})=3.8 \mathrm{~cm} ; Q($ III $)=2.5 \times 10^{-3_{\mathrm{m}}} 3 / \mathrm{sec}, \quad$,
(i)

e^{*}	$\begin{gathered} 5 \mathrm{~cm} \\ \text { from } 0 / \mathrm{s} \\ \hline \end{gathered}$	10 cm	15 cm	20 cm	25 cm	35 cm	45 cm	55 cm
	I III	III	I III	III	I	I	I	I
-1.4m	$\begin{array}{cc} 0.98 & 1.10 \\ 0 & 0 \end{array}$	$\begin{gathered} 1.08 \\ 0 \end{gathered}$	$\begin{array}{cc} 0.91 & 1.08 \\ 0 & 0 \end{array}$	$\begin{gathered} 0.74 \\ 0 \end{gathered}$	$\begin{gathered} 0.97 \\ 0 \end{gathered}$	$\begin{gathered} 1.27 \\ 0 \end{gathered}$	$\begin{gathered} 0.91 \\ 0 \end{gathered}$	$\begin{gathered} 1.10 \\ 0 \end{gathered}$
-0.28	$\begin{array}{cc}0.93 & 1.15 \\ 0 & 0\end{array}$	$\begin{gathered} 1.17 \\ 0 \end{gathered}$	$\begin{array}{cc} 1.18 & 1.15 \\ 0 & 0 \end{array}$	$\begin{gathered} 1.02 \\ 0 \end{gathered}$	$\begin{gathered} 1.18 \\ 0 \end{gathered}$	$\begin{gathered} 1.10 \\ 0 \end{gathered}$	$\begin{gathered} 1.05 \\ 0 \end{gathered}$	$\begin{gathered} 0.95 \\ 0 \end{gathered}$
0	$\begin{array}{cc} \hline 0.68 & 1.02 \\ 0 & 0 \\ \hline \end{array}$	$\begin{aligned} & 1.15 \\ & 0.02 \end{aligned}$	$\begin{array}{cc} 0.70 & 1.11 \\ 0 & 0 \end{array}$	$\begin{aligned} & 1.04 \\ & 0.02 \end{aligned}$	$\begin{gathered} 0.78 \\ 0 \end{gathered}$	$\begin{gathered} 0.91 \\ 0 \end{gathered}$	$\begin{gathered} 0.91 \\ 0 \end{gathered}$	$\begin{gathered} 0.91 \\ 0 \end{gathered}$
30	$\begin{array}{ll} 0.94 & 1.45 \\ 0.21 & 0.10 \end{array}$	$\begin{aligned} & 1.34 \\ & 0.18 \end{aligned}$	$\begin{array}{ll} 0.98 & 1.75 \\ 0.17 & 0.11 \end{array}$	$\begin{aligned} & 1.36 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 1.14 \\ & 0.32 \end{aligned}$	$\begin{aligned} & 1.35 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 1.77 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 1.48 \\ & 0.23 \end{aligned}$
60	$\begin{array}{ll} 1.08 & 1.68 \\ 0.30 & 0.10 \end{array}$	$\begin{aligned} & 1.53 \\ & 0.19 \end{aligned}$	$\begin{array}{ll} 1.08 & 1.42 \\ 0.23 & 0.18 \end{array}$	$\begin{aligned} & 1.10 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 1.24 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 1.62 \\ & 0.22 \end{aligned}$	$\begin{aligned} & 2.09 \\ & 0.22 \end{aligned}$	$\begin{aligned} & 1.57 \\ & 0.13 \end{aligned}$
90	$\begin{array}{ll} 1.23 & 1.46 \\ 0.15 & 0.04 \end{array}$	$\begin{aligned} & 1.38 \\ & 0.17 \end{aligned}$	$\begin{array}{ll} 1.05 & 1.02 \\ 0.23 & 0.07 \end{array}$	$\begin{aligned} & 0.75 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 1.48 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 1.48 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 1.70 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 1.31 \\ & 0.19 \end{aligned}$
120	$\begin{array}{\|ll} 1.2^{t_{+}} & 1.58 \\ 0.23 & 0.11 \end{array}$	$\begin{aligned} & 1.46 \\ & 0.12 \end{aligned}$	$\begin{array}{ll} 1.14 & 1.34 \\ 0.26 & 0.07 \end{array}$	$\begin{aligned} & 0.80 \\ & 0.07 \end{aligned}$	$\begin{array}{\|l\|} \hline 1.29 \\ 0.19 \end{array}$	$\begin{aligned} & 1.16 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 1.75 \\ & 0.41 \end{aligned}$	$\begin{aligned} & 1.05 \\ & 0.15 \end{aligned}$
150	$\begin{array}{ll} 0.87 & 1.86 \\ 0.12 & 0.15 \end{array}$	$\begin{aligned} & 1.73 \\ & 0.20 \end{aligned}$	$\begin{array}{ll} 1.10 & 1.36 \\ 0.26 & 0.11 \end{array}$	$\begin{aligned} & 0.94 \\ & 0.07 \end{aligned}$	$\begin{aligned} & 1.16 \\ & 0.27 \end{aligned}$	$\begin{aligned} & 1.22 \\ & 0.27 \end{aligned}$	$\begin{aligned} & 1.05 \\ & 0.27 \end{aligned}$	$\begin{aligned} & 1.31 \\ & 0.26 \end{aligned}$
180	$\begin{array}{ll} 1.96 & 1.86 \\ 0.11 & 0.15 \end{array}$	$\begin{aligned} & 1.25 \\ & 0.12 \end{aligned}$	$\begin{array}{ll} 1.50 & 1.07 \\ 0.15 & 0.12 \end{array}$	$\begin{aligned} & 0.75 \\ & 0.07 \end{aligned}$	$\begin{aligned} & 1.51 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 1.52 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 1.22 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.09 \end{aligned}$
+0.28	$\begin{array}{ll} 1.96 & 1.60 \\ 0.01 & 0.06 \end{array}$	$\begin{aligned} & 1.16 \\ & 0.11 \end{aligned}$	$\begin{array}{ll} 1.19 & 1.11 \\ 0.10 & 0.07 \end{array}$	$\begin{aligned} & 0.75 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.19 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 1.51 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.01 \end{aligned}$
+1.4m	$\begin{array}{cc} 1.65 & 1.65 \\ 8 & 0 \end{array}$	$\begin{gathered} 1.34 \\ 0 \end{gathered}$	$\begin{array}{cc} 1.35 & 1.08 \\ 0 & 0 \end{array}$	$\begin{gathered} 0.09 \\ 0 \end{gathered}$	$\begin{gathered} 1.29 \\ 0 \end{gathered}$	$\begin{gathered} 1.39 \\ 0 \end{gathered}$	$\begin{gathered} 1.52 \\ 0 \end{gathered}$	$\begin{gathered} 0.72 \\ 0 \end{gathered}$

Table 11. Friction factor (C) in curved open channel flow
H.

Run	$b(\mathrm{n})$	Qx10 ${ }^{3} \mathrm{~m}^{3} / \mathrm{sec}$	$\mathrm{h}_{0}=60(\mathrm{~cm})$	$h_{0}=120(\mathrm{~cm})$	$\mathrm{T}^{\circ}(\mathrm{C})$	$\mathrm{Re}=\frac{\overline{\mathrm{V}}_{0} \overline{\mathrm{~m}}}{\nu}$	$\begin{aligned} & \mathrm{ch}=\frac{2 \mathrm{gins}}{\mathrm{v}^{2}} \\ & \hline \end{aligned}$
1	0.61	0.19	2.430	2.410	20.6	303	0.0645
2	\%	0.37	2.390	2.355	11	577	0.0205
3	if	0.40	2.445	2.395	11	624	0.0150
4	i	0.49	2.380	2.355	11	760	0.0143
5	"	0.54	2.445	2.410	11	841	0.0084
6	18	0.59	2.420	2.370	17	920	0.0101
7	11	0.64	2.420	2.390	"	993	0.0087
8	"	0.68	2.410	2.360	"	1059	0.0124
9	"	0.72	2,420	2.390	11	1123	0.0089
10	11	0.76	2.395	2.345	11	1185	0.0116
11	11	0.80	2.380	2.340	11	1251	0.0120
12	"	0.84	2.385	2.345	11	1312	0.0110
13	"	0.88	2.295	2.350	11	1368	0.0116
14	11	0.91	2.375	2.325	11	1421	0.0091
15	"	0.94	2.390	2.330	11	1473	0.0123
16	11	0.97	2.375	2.320	1	1521	0.0078
1	0.25	0.19	2.730	2.645	16.8	609	0.0312
2	11	0.21	2.735	2.650	"	651	0.0201
3	11	0.24	2.745	2.660	11	743	0.0111
4	11	0.26	2.760	2.690	\square	801	0.0100
5	11	0.29	2.760	2.680	11	886	0.0121
6	11	0.31	2.760	2.680	11	954	0.0139
7	11	0.33	2.710	2.610	\%	1017	0.0115
8	17	0.36	2.690	2.610	11	1103	0.0098
9	18	0.39	2.710	2.645	11	1185	0.0108
10	11	0.41	2.740	2.660	8	1268	0.0115
11	"	0.47	2.745	2.645	"	1463	0.0088
12	:	0.50	2.710	2.640	11	1548	0.0102
13	11	0.52	2.690	2.610	11	1594	0.0094
14	n	0.55	2.690	2.615	"	1670	0.0077
15	11	0.55	2.695	2.605	11	1713	0.0064
16	11	0.58	2.700	2.620	11	1763	0.0078
17	11	0.61	2.715	2.135	11	1838	0.0081
18	1	0.63	2.695	2.615	"	1916	0.0075
19	1	0.66	2.670	2.595	"	2012	0.0068
20	11	0.69	2.680	2.510	"	2130	0.0061
21	11	0.77	2.685	2. 510	11	2205 2304	0.0069 0.0074
22 23	11	0.75 0.80	2.710 2.720	2.540 2.545	'1	2304 2438	0.0074 0.0068
23 24 24	"	0.80 0.86	2.720 2.735	2.345 2.365		2637	0.0068
25		0.91	2.735	2.560	11	2763	0.0059
26	11	0.94	2.740	2.655	"	2831	0.0063
27	11	0.94	2.760	2.695	11	2895	0.0058
28	13	0.97	2.735	2.690	"	2981	0.0058
29	"	0.99	2.735	2,700	11	3026	0.0062

Table 11. (Continued)

Run	$b(m)$	$2 \times 10^{3} \mathrm{~m}^{3} / \mathrm{sec}$	$D_{\theta}=60(\mathrm{~cm})$	$R_{\theta}=120(\mathrm{~cm})$	$\mathrm{T}^{\circ}(\mathrm{C})$	$\operatorname{Re}=\frac{\bar{v} \cdot \mathrm{~m}}{\mathcal{V}}$	$\mathrm{CR}=\frac{2 \mathrm{gms}}{\mathrm{v}^{2}}$
1	0.25	0.26	2.845	2.735	16.2	761	0.0132
2	"	0.27	2.860	2.770	"	801	0.0084
3	'	0.29	2.870	2.800	"	866	0.0074
4	11	0.31	2.800	2.720	"	921	0.0089
5	"	0.35	2.802	2.720	"	1036	0.0072
6	"	0.37	2.830	2.745	II	1118	0.0064
7	"	0.41	2.770	2.700	"	1221	0.0098
8	11	0.43	2.815	2.730	I'	1292	0.0063
9	"	0.46	2.690	2.620	"	1378	0.0062
10	"	0.52	2.565	2.505	"	2429	0.0059
11	"	0.60	2.540	2.480	II	1574	0.0067
12	"	0.67	2.545	2.505	11	1813	0.0063 ,
13	"	0.71	2.560	2.525	11	2037	0.0059
14	1	0.75	2.610	2.540	"	2145	0.0062
15	"	0.81	2.640	2.585	1	2265	0.0062
16	"	0.84	2.670	2.615	"	2532	0.0056
17	"	0.89	2.710	2.665	"	2667	0.0053
18	"	0.92	2.745	2.705	1	2760	0.0059
19	1	0.95	2.745	2.695	"	2861	0.0051
20	"	0.99	2.770	2.730	"	2962	0.0054

REFEREES

1. Ali, K. (1964) Flow dynamics in trapezoidal open channel bends. Colorado State University, Pho. Thesis.
2. Allen, J. and Shahwan, A. (1954) the resistance to flow of water along a tortuous stretch of the River Irwell (Lancashire) - an investigation with the aid of scalemodel experiments. Proc.,Inst.C.E.,Vol.3, Part III, 1954.1967) Proc. 1.C.E Fete- Paper Ni 6946
2A. Allen, J. and ullah (1967) Proc. I.C.E Feb. Paper Ni 6946
3. Ananyan, A. K . (1957) Fluid flow in bonds of conduits. Published by A.S.(USSR), Erevan-1957
4. Chow, V.T. (1959) Open-chanel hydraulics. McGraw-Hill.
5. Einstein, $\mathrm{H} . \mathrm{A}$. and Harder, J.A. (1954) Velocity distribution and the boundary layers at channel bends. Ir ans. Am. Geoplz. Union, Vol. 35, 1964.
6. Fox, J.A. and Ball, D.J. (1968) The analysis of secondary flow in bends of open channels. Proc.Inst.C.E., Vol. 39, March 1960.
7. Hawthorne, W.R. (1951) Secondary circulation in fluid flow. Proc.Roy.Soc. Vol. 206
8. Hawthorine, W.R. (1954) The secondary flow about struts and airfoils. J.iero.Sci. Vol.21, 1954
9. Imper, inT. et al (1960) The distribution of boundary shear stresses in curved trapezoidal channels. M.I.T. IIydrodynanics Lab. T.R. 43, Oct. 1960
10. Ippen, A.T. et al (1962) Stream dynamics and boundary shear distribution for curved trapezoidal channels. H.I.T.Hydrodynanics Lab. T.R.47, Jan. 1962.
11. Leopold, L.B. et al (1960) Flow resistance in sinuous or irregular channels. U.S.Geol.Survey. Prof. paper 282-D.
12. Memon, H.M. (1967) Resistance to flow in open channels. Imperial College, London. Ph.D.Thesis.
13. Vialouf, K.M. (1950) The movement of detritus around models of river and channel bends. Imperial College, London. Ph.D.Thesis.
14. Prus-Chacinski, T.M. and Francis, J.R.D. (1952) Discussion to paper "On the origin of river meanders", by F.W. Werner. Trans. Am.Geoph. Union. Vol.33, 1952
15. Prus-Chacinski, T.M. (1955) The secondary flow in a neandering channel. Inperial College, London. D.I.C.Dissertation
16. Prus-Chacinski, T.N. (1967) Secondary notions applied to storn sewage overflows. Proc.Inst.C.E. Vol. 37 , May 1967.
17. Raju, S.P. (1937) Bxperiments on the resistance to flow in curved open channels. Munich Flydraulic Institute. Ph.D.Thesis.
18. Rozovskii, I.I. (1957) Flow of watcr in bends of open channels. Published by A.S. (USSR), Kicv-1957
19. Schlichting, H. (1968) Boundary layer thoory. McGrawHill.
20. Shulry, A. (1950) Flow around bends in an open flume. Trans.A.S.C.E. Vol.115. Paper no. 2411
21. Thonson, J. (1076) On the origin of winding in rivers in alluvial plains, with remarks on the flow of water around bends in pipes. Proc. Roy.Soc. Vol. 25.
22. Varioni, V. (1946) Transportation of suspended sedinent by water. Trans. A.S.C.E., Vol. 111. Paper no. 2267
23. Wadekar, G.T. (1956) Secondary flow in curved channels. Imperial College, London. Pli.D.Thesis.
24. White, C.w. (1929) Streanline flow through curved pipes. Proc.Roy.Soc. Vol. 123 A
25. Yen, Ben-Chie (1965) Charactoristics of subcritical flow in a zeandering channel. Inst.Hydraulic Rescarch, University of Iowa.
