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ABSTRACT  

The aim of this .thesis is to give a unified 

presentation of mathematical programming techniques; 

and to show, by means of examples, how far these techniques 

can be used to solve power system optimization problems. 

Part 1 is concerned with the theoretical 

foundations underlying the principal optimization methods 

in current use; including the simplex method and its 

variants, logarithmic potential method, integer programming, 

dynamic programming, maximum principle, geometric programming, 

and several sequential unconstrained methods for solving 

non-linear programming problems. 

The sequential methods rely heavily on uncon-

strained optimization techniques. Consequently, the 

latter, including gradient, modified gradient and non-

gradient methods are also discussed with regard to their 

merits and limitations. 

Some decomposition techniques are examined. 

Several of these have been successfully applied to solve 

large linear programming problems. Others e.g. diakoptics 

or decomposition by dynamic programming are still in the 

early development stage; and further research work is 

required before these can be used with confidence. 



Part II aims to show that a number of power 

system problems can be handled by mathematical programming 

methods. Examples include: utilization of hydro-electric 

resources over a given period of time, a variable-head 

hydro-electric-thermal scheduling problem (non-linear 

programming), the balance between power and other uses 

of water resources (non-ainear programming), electrical 

transmission network design (linear and non-linear programming) 

generation expansion - plant mix - problem (dynamic programming). 

Several suggestions for further work, both in 

the development (and refinement) of the programming 

techniques; and in the application of the methods in 

the power systems field, are indicated. 
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CHAPTER 1 

INTRODUCTION 

1.0 	Aims 

Mathematical Programming was born in the late 

1940's. Since then it has witnessed a phenomenal growth. 
n Research in the field has received an eviable stimulus 

and has attracted some very fine brains, drawn from many 

disciplines, including mathematics, physical sciences, 

engineering and economics. The number of papers 

published has been impressive, both in quality and 

quantity. 

However, the literature has been scattered in 

a large variety of journals, many of which are concerned 

with disciplines other than engineering. Consequently 

many engineers are completely ignorant of the existence 

of these publications. 

Moreover, much of the work has concentrated 

only on specific aspects of the Mathematical Programming 

techniques, thus tending to blur the existence of the 

many ideas common to the techniques. 

Furthermore, the literature on Mathematical 

Programming has acquired a very high degree of mathematical 

sophistication and abstraction: a fact which has tended 

to obscure the conceptual foundations underlying the 

techniques. 	-13- 



A need, therefore, exists for a more unified 

presentation of the Mathematical Programming techniques. 

This should highlight the major, developments in the 

field and should emphasize the concepts underlying the 

various procedures and the relationships that exist 

amongst the procedures, together with their inherent 

limitations. 

The aim of the thesis is twofold. 	First, 

to fulfil the need stated above. 	Second, to investigate 

the feasibility of applying some of the techniques to 

the study of Power System Planning, Design and Operating 

problems. 

In general, Mathematical Programming concerns 

analysis of problems of the type: Find the minimum 

(maximum) of a function (called the ''objective function'') 

when the variables are subject to inequality or equality 

constraints. 

Special forms of Mathematical Programming include 

Linear- and Quadratic- programming.  In Linear programming, 
the objective function is a linear combination of the 

variables and the constraints are linear. Quadratic 

programming refers to the case where the objective 

function is a second degree form in the variables; the 

constraints are linear. 
- 14 



One Of the major advances in the field has 

been the development of dynamic programming. This is 

based on the concept of multi-stage  decision processes. 

At each stage, a decision is made, following which the 

next stage is reached. 	The successive stages are 

related by known transformation rules. One set of 

the said decision sequence constitutes the 'best' series ; 

i.e., Optimizes the given function. 

1.1. 	Systems Approaoh22,23,56  

Over the years, the systems we deal with have 

become increasing large and complex. This has necess-

itated the evolution of a systematic design approach so 

as to integrate the many system components while at the 

same time paying due attention to the inter-relationship 

between the components. 

This new approach is finding wider and wider 

application in a large variety of situations. It is 

generally referred to as the "Systems Approach"  or 

"Systems Design". 

Systems Approach may, therefore, be loosely 

defined as an organized plan in the process of decision-

making in any design (or analysis) context. As is 

illustrated in Fig. 1. it involves complementary practice 

- 15 - 



of both natural and human sciences, together with systems 

ergonomics and systems engineering. 

The study 	 Factors)  

has received a significant impetus over the past 20 

years. This has resulted in genuine improvement in the 

design of complex systems of which human beings are 

components. A good account of the development is 

contained in C 73]. 	Most of the discussions to 

follow, therefore focus on Systems Engineering aspects 

of the Systems Approach. 

The Systems Engineering method, too, recognizes 

the fact that each system is an integrated whole even 

though it is made up of diverse sub-systems (structures). 

It further recognizes that each system may have a number 

of objectives; and that the balance between these 

objectives may differ widely from system to system. 

In essence, the method seeks to optimize 

the over-all system's functions according to specified 

objectives and to achieve the best compatibility of its 

parts. 

Hence, design optimization of any kind forms 

an integral part of the Systems approach.-,  

- 16 
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1.1.0 	Methodology of. Systems Design: 

The methodology of systems design involves, 

in very broad terms, the following related steps: 

a) Problem statement; 

b) Problem formulation; 

c) Design Realization. 

(a) Problem Statement: 

This involves in very general terms, identif-

ication of the objectives, which are given in rather 

imprecise terms. Further clarification of the internal 

structure of the problem is, therefore, required, before 

any solution can be contemplated. 

For example, the task may be to improve the 

yield in a chemical plant; or to design a distribution 

network, an electrical machine or a communications 

system. 

The statement at this stage is idealized in 

that it sets forth the goals to be reached without making 

reference to the problems encountered in the implementation 

of the corresponding system in the real world. 

(b) Problem Formulation 

During the transitional step, the objectives 

are clarified and given greater precision. 	System 

18 



elements, together with their interaction between each 

other, are clearly defined,. 

Moreover, the boundary conditions of the 

systems and sub-systems are investigated: i.e., identified 

and their degree of importance assessed and indicated. 

For example, matters relating to physical capability 

of the system parts (thermal and / or stability limit 

of, say, electrical lines), reliability, system cost, 

etc., All this information is required in order to 

establish the internal structure of the problem. 

For a general example of problem formulation, 

take a case where the task is to minimize design cost, 

or to maximize the reliability of a system: the formu- 

lation stage goes through the following steps:-- 

i) determination of the characteristics of the 

system variables and the relationship that 

exists between them; 

ii) definition of the objective(s) or index of 

performance (in terms of the system variables); 

iii) specification of certain (equality or inequality) 

constraints in the system variables. 

The problem is then: Given (i), Optimize (ii) 

subject to (iii). 

- 19 



Another important procedure carried out during 

this stage is that of simulating (constructing a simplified 

representation of) the actual system. We examine the 

process of simulation in greater detail in section (1.1.1). 

(c) 	Design Realization: 

Having formulated the design problem in the 

form of, say, a mathematical model, the object is then 

to seek the design which represents the solution to the 

mathematical version of the design problem. 

Simulation of the mathematical relationships 

on a computer (digital, analogue or hybrid) often plays 

a crucial role in the search for an acceptable solution. 

After completing the mathematical design and 

evaluating it through simulation and experimentation, 

the engineer builds a prototype. The prototype is then 

tested to establish whether or not the requirements are 

met and the constraints satisfied. 	If the prototype 

operates satisfactorily, the work of the engineer is 

essentially complete. 

1.1.1. 	Modelling  

Problem Formulation is also concerned with the 

construction of a simplified representation of the system 

- 20 - 



called a model. By working with a properly constructed 

model, the engineer is able to make useful inferences 

about the proposed real system from experiments conducted 

with the model. 

Either physical or mathematical models may be 

employed. 

1.1.1a. 	Physical Models: 

Physical modelling involves establishing a system 

analogue of the one being studied. The essential point 

is that the behaviour of one should closely approximate 

that of the other (at least for the phenomena being 

investigated). 

The alternative system may be a scale model, 

which is more convenient to experiment with than the 

actual system; e.g. the use of scale models in wind 

tunnels for the design of an aircraft. 

Other types of physical models rely upon the 

analogy between the system being studied and some physical 

system of a different nature, but which is easier to build 

and manipulate. Elements of the actual system can be 

identified with those of the model. Moreover the 

relationships between the elements of the actual system, 

- 21 - 



and between those of the model are governed by the same 

physical laws. 	For example, electrical networks (analogue 

computers) can be used to study problems of mechanical 

vibrations because of the similarity between the equations 

depicting the performance of electrical circuits and 

mechanical systems. 

1.1.1b. 	Mathematical Models. 

The actual system may also be represented in a 

more flexible manner in the form of mathematical equations. 

In setting up a mathematical model, the following points 

are considered:- 

i) what are the mathematical relations between 

the relevant attributes of each of the system 
elements? 

ii) what are the mathematical relations between 

the attributes of different elements in the 

system; i.e. what are the mathematical 

relations representing the interactions 

between the elements in the system? 

Experienced judgement is needed in order to 

simplify the equations to a point where they are amenable 

to mathematical analysis without destroying some essential 

feature of the actual process. 	This requires that all 

the assumptions must be made explicit. 

22 



1.1.1c. 	Problems involved in setting up a Mathematical  

Model. 

When formulating a mathematical model we are 

invariably faced with a number of very difficult problems, 

some of which are listed below: 

i) we are required to have an accurate quantitative 

knowledge of how the system variables interact. This is 

a formidable (if not impossible) task. For, in many cases, 

the nature of the physical characteristics of the system's 

elements may not be fully understood. Furthermore, there 

may be a measure of uncertainty with regard to the 

external disturbances acting on the system. 	Consequently, 

some degree of idealization is inevitable. The question 

which immediately arises is: how much idealization can 

we allow and still obtain satisfactory results? 

There is no cut and dried answer to this question; 

however, experience and skill in dealing with problems of 

the same nature may prove quite useful. It must be 

emphasized, though, that the nature of idealization 

permissible is, by and large, determined by the specific 

problem and depends both on the properties of the system 

considered and on just which questions we want answered. 

ii) In principle, when formulating a model, 

we want to take into account only those factors which 

govern the sets of behaviour of the systems that are of 

- 23 



interest to us. 	It is quite unnecessary (in fact, 

practically impossible) to consider all the properties 

without exception. 

But even if we should succeed in accounting 

for only the relevant parts of the properties, the 

resulting system may be so complicated that its solution 

(computational) would be extremely tedious at best. 

Further approximations and /or reduction in the number of 

variables to be considered must then be undertaken. 

This may, however, give rise to a model that does not 

sufficiently represent the actual system. 

iii) 	One important requirement is that of the 

determination of a measure of effectiveness (i.e. per-

formance index, or objective function) that is expressible 

in terms of the system variables. This too, is an 

insuperable task. A realistic performance index 

(i.e. an index which represents most of the design 

requirements of the problem) is extremely difficult to 

define. 	For, in practice, any of the relevant criteria 

is rarely explicit enough to allow for a clear mathematical 

representation. 	And, quite often, it is very difficult 

to express the performance index in terms of some very 

important system variables; e.g. the reliability of a 

transformer in terms of the length of an electrical 

transmission line. 
- 24 



Even if a realistic criterion has been defined, 
o.f 

it is frequently found that the basic conceptAthe particular 

performance index is too restrictive. 

1.1.1d. 	Words of Caution on the Use of a Model. 

When involved in any investigation that requires 

the use of a model, the following factors must always be 

kept in mind: 

a) the model is, in fact, different from the 

prototype system that the former is designed to describe. 

Consequently, not all that is true of the model need be 

true of the prototype. 

b) the model is usually formulated in such a 

way as to permit examination methods not applicable to 

the original system. 	Therefore, not all that is either 

logically necessary or inferable from the model need be 

a logical inference with regard to the actual system. 

Failure to appreciate the above points may 

result in wrong conclusions being drawn about the actual 

system. 

- 25 - 
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CHAPTER 2  

MATHEMATICAL PROGRAMMING PROBLEMS. 

2.0. 	Optimization and Mathematical Programming Problems  

Optimal use of available resources is an implicit 

goal of every human endeavour. 	Consequently, optimization 

problems have long been of interest to mathematicians, 

physical scientists and engineers. 

Since the middle of the eighteenth century, 

methods of differential calculus and calculus of variations 

have been utilized to solve certain types of optimization 

problems in geometry and physics. But, except for very 

simple problems, the tedious computations that were 

required hindered a wide-spread application of these 

methods. 

However, developments in high-speed, automatic 

computers over the past 20 years have facilitated the 

application of most of these older methods. 	Furthermore, 

much new research has been directed on the type of Optim-

ization problems that are usually not amenable to solutions 

by the classical methods of Calculus. 	These new types 

of optimization problems take into account inequality 

constrains and are often referred to as Mathematical 

Programming problems. 

- 27. - 



2.1. 	The General Programming Problem: 

The general programming problem can be formulated 

as follows: Select the values of a number of variables 

so that an objective function (which has already been 

defined) is minimized (maximized) among all choices of 

values that satisfy a set of inequality (and/or equality) 

constraints on the variables and their function(s). 

Mathematically, the problem may be formulated 

as: 

Minimize F(7) ; 	(2.1.a) 

subject to* 	< , 	0 2 

(2.1.b) 
0 

where x is an (nxl) column matrix of n components and 

G(x) represents a column vector of m functions; 

i.e. 

ONO 

x 

Xn  
and 	

G1  (7) -  

G2(X) 

G(x) = 

* Some constraints may be of the strict equality type: 

	

e.g.Gi  .(R) > 0 	i = 1, ...,K 

	

Gi(R) = 0 	i = 

- 28 - 



2.2.1. 	The Linear Programming Problem: 

This is a special case of the general programming 

problem in which F(x) is a linear combination of the 

variables; and G(x) is a linear transformation. 	The 

problem thus becomes: 

-- Minimize 	F(x) = c x 

with 	a(x) = AR 	> 	b 

x > 

T- where c 	= [ci,c2,...,cn  ] is the transpose of an 

(nxl) column matrix c and E is an (mxl) column matrix -

usually referred to as the requirement vector - denoted by: 

bl  
b2 

• 

b  _ m 

A is an (mxn) transformation matrix given by 

a11 a12 ▪ aln 
a21 a22 	a2n 

aml am2 • amn 

and m < n . 

2.2.2. Integer Linear Programming  

An integer linear programming problem is a 
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linear programming problem for which it is further 

required that the variables must take integer values. 

The field is divided into "all (pure) integer programming" 

when all the variables must be integers; and "mixed 

integer programming" if only certain specified variables 

must be integers. 

In the most general terms, the problem may be 

represented: 

Minimize F(x) = 6TX 	(2.2.c) 

subject to 6(x) = 	Ax > b 
(2.2.d) x > 

xi an integer i E  T 

(2.2.e) 

If T contains all i , the problem is all integer; 

and if some of the i (i=1,...,n) then we have a mixed 

integer problem. 	Note that if T is empty, then the 

problem reduces to the normal linear programming problem. 

2.2.3. 	Parametric Linear Programming Problem: 

This may be considered as the most general form 

of the linear programming problem in that either the 

requirement vector or the coefficients of the objective 

function, (or both), is allowed to change. 

A simple case of such change occurs when each 

of the coefficients of the objective function is a linear 

- 30 - 



function of a parameter, of  ; or when each element of the 

requirement vector is a linear function of a parameter, 

Xf. For example: 

a) Parametric objective function  

Minimize F(X) 	(C' 4- f)TR 	(2.2.f) 

subject to Ax 	> 	G 

x > 0 	(2.2.g) 

b) Parametric Requirement vector: 

Minimize F(x) = c -T-x  (2.2.h) 

with 	RR _ > rp  + 5:13Ta 	(2.2.i) 
• 0 

c) Parametric objective function and  
Requirement vector: 

Minimize P(x- ) = 	(C. 	Xf)TR 

subject to Ax > 	b xja 
(2.2.j) 

(2.2.k) 

 

0 

 

2.3.1. 	Quadratic Programming Problem: 

A quadratic programming problem is the simplest 

form of the non-linear programming problem: the objective 

function is a second degree form in the variables, while 

the constraints are linear. 	It is thus somewhat more 

general than the linear programming problem; and is 

denoted by: 

Minimize 	F(;) 	= 	(1) ;1115; 	c -T- 

	

x 	(2.3.a) 
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subject to ATE 	> 
(2.3.b) 

0 
ONO 

where Q is an (nxn) matrix. For the general formulation 

given above, it is required that Q be positive semi- 

definite (i.e. > 0). 	Clearly, if Q = 0, then the first 

term of equation (2.3.a) vanishes and we are left with a 

linear programming problem. For a strictly quadratic 

form, therefore, Q must be positive definite (a > 0)' 

2.3.2. 	Integer Quadratic Programming Problem: 

As with the integer linear programming, it may 
be required that some or the whole of the solution 

variables take only integer values; e.g. 

Minimize 	F(X) 	(i) xTQx 

subject to 	Ax 

> 0 

+ c -T-x  (2.3.e) 

x has integral components (2.3.d) 

2.3.3. 	Parametric Quadratic Programming: 

A parametric quadratic programming problem also 

concerns cases where the quadratic objective function, or 

the requirement vector or a combination of the two is 

allowed to vary; for example: 

a) Minimize 	F(X) = (i)RTU + (j + Af)TR 

(2.3.e) 
- 32 



subject to 	liTc 

0 

-- b) Minimize F(i) = ()RTU 	cTx +   

subject to Ax > E  X Ta 

(2.3.f) 

(2.3.g) 

(2.3.h) 
> 

NAM 

or 	c) Minimize F(R) = 	+ (C + Xf)TTc 

(2.3.i) 

ba 
(2.3.j) 

X > 0 

Comment: 

A large number of problems can be formulated in 

terms of these two special cases (linear-and-quadratic) 

of mathematical programming by means of appropriate 

approximation of an otherwise complex function. 	Once a 

problem has been formulated in either of the two forms 

one can obtain its optimal solution in a finite number 

of iterative steps: there are now available many powerful 

computational techniques (e.g. the "Simplex method") for 

obtaining such a solution. 

This is a very important factor; for with the 

general non-linear programming problem, an exact solution 

can never be obtained in a finite number of steps - although 

convergence may be quite rapid. 
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2.4. 	The Lagrangian Problem: 

The Lagrangian problem is a general problem of 

the calculus of variations and has found extensive 

application in many fields of science and engineering. 

Other general problems of calculus of variations 

include the problems of Bolza and Mayer. Theoretically, 

all the three are equivalent in that any one of them can 

be transformed to the other by a change of coordinates. 

(a) Lagrange Multipliers: 

Consider a mathematical programming problem in 

which all the constraints are in the form of strict 

equality, or whose inequality constraints have been 

transformed to equality by the introduction of appropriate 

slack or surplus variables  

Minimize 	F(x) 	(2.4.a) 

(2.4.b) with 	0a) 	0 

Following the Lagrange multiplier rule, we 

obtain an augmented function by multiplying each constraint 

function, Gi(x) by a factor, and adding the result to the 

objective function: 

(R,X) 	= 	F(x) - A -T0-(x ) 	(2.4.c) 

where *(R,X) is the unconstrained augmented function, 

called the Lagrangian Function, whose minimum has to be 

found; and X is a vector representing the .Lagrange  

multipliers. 	
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At the minimum of the Lagrangian function, the 

following conditions must hold: 

ava,X) 
a Xj. 

a0(7c,;) 
Dxj  

where aF(76 

5(7c) 	= 	0 	(2.4.d) 

,1‘()c)-XTDG(R) = 0 	(2.4.e) 

is the gradient of the objective function 

and 3a(R) is the differential of a(x). 

Note that in the above discussions it has been 

assumed that both F(x) and a(x) have continuous derivatives. 

An example: 

A linear programming problem can also be 

formulated as a Lagrangian problem and solved by the 

method of Lagrange multipliers. 

Consider a standard general linear programming 

problem: 
n 

Minimize F(x) = E 
JJ  
c.x. 	(2.4.f) 

J  
subject to 	xi 	> 0 

un 	 (2.4.g) 
n 
E a.. x. = b. 	i= 1,...sm 

i=1 l'i  J 	1 
(2.4.h) 

The first step is to replace the non-negative 

condition (x.
J 
 > 0) by 

x. - u.2 = 0 	j = 1,...,n 	(2.4.i) 

Following the Lagrange multiplier rule, a new unconstrained 

minimum is determined: 
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E 
J=1 

c.x- 
j 

( 	E a 	 x. 1 	i j j 
J=1 

-b ) 1 

n 
A ( E ax. 

J- 
m 	riJ J 

 

[ A m+1 (
x1 -u1  2)+ 	+ m+n xn-un2) 

 

 

(2.4. j ) 

or 

p(x,A) 	Aibi, 	(c1 	.E A.a.11  - Am+n)x1 i=1 	1=1 

 

 

+ 	+(cn  - E A.a. - Am+n)xn i,1  1 in 

n 
+ E. 1 m+1 U. 

 

i=1 

(2.4.k) 

For tp(x2A) to be a minimum, the follOwing conditions must 

be met: 

a) the coefficient of )c. vanish; 

b) the coefficient of u.2 are non-negative; 

c) the partial derivative with respect to u. 
vanish. 

2.5. 	Generalized Lagrangian Problem: 

The generalization of the Lagrange problem to 

handle both equality and inequality constraints is largely 

due to H.W. Kuhn and A.W. Tucker 51 

Consider a general programming problem: 

Maximize 	F(x) 

subject to Gi  .60 > 0 i = 

Gi(x) = 0 	i = 	(2.5.a) 
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As in the previous section, an augmented function 

1PG(3727') • F(R) + E A.G.(R) 	(2.5.b) 
1=1 1 1  

is formed. 
_ 

If *G*(17*I*) = F(x- *) + E A* G.(x ) 
i=1 i 1  

is an optimal solution to (2.5.b) the following relations 

must be satisfied: 

_*.0 

	

vx  tpG 	, (x 	A ) 	o 	 (2.5.c.1) 

x 

	

-*O (x  
T 	_* d-* ) 

	= 	0 	(2.5.0.2) G i.  
- _ 

	

VX  IPG  (x*2 * A ) 	0 	 (2.5.c.3) > _ 
-oT -* -* 

	

A i*G(x , A ) 	: 	0 	(2.5.c.4) 

-* 
x 	> 0 	 (2.5.c.5) 
-* 

	

> 0 	 (2.5.c.6) 
where V x  *G  (x/I) is the vector (aW 1 	" ax-,.. 	) 

ax alpn 
and 	VX*G(RIX) is the vector (3*a/aX1,.. 	) 

aAm  

Note, however, that the above relations consitute 

the necessary conditions for optimality to problem (2.5.b) 

only if the following hypothesis (known as constraint  

qualification property)  holds: 

Constraint qualification property: 

Let xt 	0 	i = 1,2,...,K 

	

xt > 0 	i = (K+1),...,n 

(i.e. the values of some optimal variables are identically 

zero). 
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We also observe (from 2.5.a) that some of the 

constraints are strict equalities (Gi(;) = 0, i = 

The feasible region is such that if for any x 

on the boundary defined above the following conditions 

hold: 

i) E(3Gi(x)/n_.)dxi  > 0 j 

ii)dx1 	> 	0 	i = 1,...1K 

then the direction dx12 dx22.*., dxn  is tangential to 

some arc from x into the interior. 

If 1.1(x()) is the optimum of tp (x) then 

E(aF(7°)/3xi)dxi  < 0 

for all directions into the interior, and hence for all 

the directions described above. 	Consequently we have: 

aF67°) m 0 -0 E X aG.(X  ) 	z. xi 	j=1 	?xi  
0 (2.5.d.1) 

	

j = 1,2,...,m 	(2.5.d.2) 

	

= 1,2,...,n 
	

(2.5.d.3) 

	

with z.o 
	

= 	0 	for i = (k+1),...,n 
	

(2.5.d.4) 

	

and A. o 
	
: 	0 	for j = (.: , 1),...se 

	
(2.5.d.5) 

We see, therefore, (from 2.5.c.2) that 

7coT9 	xo‘ 	xz? 
x 4"G" 	' 	1=1 1 1 

	0 
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since either x° or zo  . is zero. 	Furthermore, relation 1 	1m 

	

(2.5.c.4) means that 	E 	G.(2°) A? = 0. 
j=1 

In the above discussions, it has been assumed 

that the functions F(2) and a(2) are concave (convex) 

and are differentiable. Furthermore, the objective 

function P(2) is assumed to be bounded. 

In an earlier work F.John" 	had also dealt 
e 

with analogous generalizations. He consider,
da non-linear 

programming problem: Find R such that F(x) is minimized 

(maximized) subject to 660 > 0; and gave the following 

general theorem: 

If the functions F(x), G1(2), (i=1, ...,m), are 

continuously differentiable, then a necessary condition 

that x must be a local minimum to the above problem is that 

there exist scalars: X0,X1,..., m  not all zero such that 

the following inequalities and equalities are satisfied: 

G.(2) 	> 	0 	i = 	(2.5.e.2) 
-* 	m 	-* AoV F(x ) - E A. V G.(x ) = 0 	(2.5.e.3) 

1=1 1 1 

A.G.(x
* 
 ) 	= 	0 	i = 1,...lm 	(2.5.e.4) 

A. 	> 	0 	= 1,...,m 	(2.5.e.5) 1 

Note that conditions (2.5.e.2),(2.5.e.3),(2.5.e.4) and 
_* 

(2.5.e.5) are necessary for x to be an optimal 

solution without any additional hypotheses. 
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Since the original work of Kuhn and Tucker 

further theoretical research has been directed at the 

question of constraint qualification property. 	This 

has given rise to the regularity condition - by Arrow, 

Uzawa and Hurwiczl- which incorporates cases where x 

ranges over more general spaces and is subjected to more 

general constraints. The regularity condition is 

actually a sufficient criterion for a certain weaker 

form of the Kuhn-Tucker constraint qualification property. 

2.6. 	Equivalent Formulations: Duality  

Associated with any mathematical programming 

problem (usually called the primal) is another, called 

the dual. The objective of the dual is to maximize while 

that of the primal is to minimize - and vice versa. 

For the linear programming problem the pair of 

(primal and dual) programs are represented: 

Primal Problem: 

Minimize 	F(x) = c -T- x (2.6.a) 

subject to 	Ax > b 
(2.6.b) 

0 

Dual Problem 

Maximize 	DF(R) = T- b y (2.6.c) 
T-- subject to 	A y 

(2.6.d) 
y > 0 
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where Y 	(71a2"."Ym) is an mxl matrix and b, A, 

and c are the same for the primal problem (see also section 

2.2.1). 	Observe that the 'dual' of the dual problem is 

the original primal problem. 

Corresponding programmes for the quadratic and 

the general convex programming problem can also be 

formulated: 
18 

Primal Quadratic Programme: 

	

c- 	
T- 	 - Minimize F(x)3T QxK = 	+ cKxK + ctxt  (2.6.e) 

subject to_ _ 
AKxK  + X :""c 	> k  

	

XK > 0, :7 	
(2.6.1) 

k > 0  

Dual Quadratic Programme: 

Maximize DF(2) 

subject to  

-T--1-.  
= -1Y0 YK 

-T- b yt  (2.6.g) 

(2.6.h) 

T- AKyk - vK  < K - 
-T- Akyk ck  

52, 	0; yK unrestricted 
24 

Primal Convex Programming Problem: 

Minimize F(;) 

subject to 	C(R) 	> 	0 

Dual Problem: 

Maximize DF(2:3;) = F(;) - 57'13(x) 

subject to  
VxF(x) = 	

7.Tv x5(x) 

y > 0 

- 



The range of possible values of DF(7c) and F(x) 

(for a general convex problem, linear or non-linear) is 

illustrated in Fig. 4. It is assumed that both the primal 

and the dual are feasible. 

DF(x)-RANGE 
OR FINITE 	MAX. OF+ 

DUAL PRIMAL 

E---F(x)-RANGE 
+MIN F OR FINITE 

CO + co 

Fig. 4. Range of possible values of the Primal & Dual  
Prograrrmes 

Fig. 4. can be summarized by the Duality Theorem: 

If solutions to the primal and the dual problems 
exist, the value, F(R) of the objective function 
corresponding to any feasible solution of the 
primal is greater than or equal to the value 

DF(X) of the objective corresponding to any 
feasible solution of the dual (i.e. F(x) > DF(x)) 
Furthermore, an optimal solution exists for both 

problems and Max. DF(R) = Min. F(R). 

The above theorem is utilized in a number of math- 

ematical programming techniques in deciding when to stop 
24,55 

a minimization (maximization) process. The programmes 

solve the primal optimization problem in such a way that 

a set of points are dual feasible. The computational 

process stops when the difference between the primal 

feasible and the dual feasible values fall within a__Ic-1 

specified limit. 
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The principle of duality has also led to the 

development of many new and useful programming techniques: 

for example, geometric programming (chapter 5), dual-simplex 

and primal dual methods, for handling parametric linear 

programming, dual quadratic programming etc., 

Moreover, the reciprocal nature of the primal-

dual constraints can find use in the generation of a two 

level decomposition and coordination process, thus 

enabling the solution of several medium size convex 

programming problems, which together might comprise a 

prohibitively large integrated problem. 62 

Comment: 

The principle of duality is also manifest in a 

number of physical, economic and mathematical problems: 

e.g. a) physical; in electric circuit theory, 

duality exists between series and parallel 

circuits. 

b) economics; the problem of determining 

the prices of foods produced by one economy 

may be considered as the dual of determining 

the quality to be produced. 
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CHAPTER 3  

TECHNIQUES FOR SOLVING THE LINEAR PROGRAMMING PROBLEM. 

3.0 

As we have indicated in Chapter 2, linear programming 

is a special form of the general mathematical programming 

problem, in which both the objective function and the 

constraints are linear. 

Methods for solving linear programming-type problems 

have been studied extensively as far back as 1947. 	Of these, 

the most successful and most widely used is the Simplex  

algorithm, developed by G. Dantzig.15  Much of the chapter 

will be concerned with a brief discussion of the Simplex 

method and its variants. We shall also examine the log-

arithmic potential method developed by R. Frisch.=
3t r 

3.1. 	Some definitions: 

In the course of our discussions, a number of 

terms will be encountered on many occasions. Some of 

these are defined below. 

Theorem 3.1. 

If a given set of m simultaneous equations in 

n unknowns(n>m) 

Ax = 

has a solution, and if the rank of A, r(A) = m; then 

can be expressed as a linear combination of m linearly 
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independent columns of A. 

Theorem 3.1 is based on the assumption that 

r(A) = r(A - ) where Ab  is the augmented matrix 

Ab = (A,b) 
	

(3.1.2) 

Let n > m then (3.1) contains at most m linearly 

independent equations. A solution can be obtained by 

assigning arbitrary values to the (n-m) variables, not 

associated with the non-singular (mxm) matrix, A. 

The remaining m variables are uniquely determined 

by the (n-m) variables. 	If all the (n-m) variables 

are set equal to zero, the solution to the resulting 

system of equations is called a basic solution. 

The m variables (some of which may be zero) 

are called basic variables; while the other (n-m) are 

referred to as non-basic variables. 

A basic solution that obeys the set of constraints 

(2.2.b) i.e. xi  > 0 is a basic feasible solution. 	Any 

basic feasible solution that minimizes (maximizes) an 

objective function, F(1) is a basic optimal feasible solution. 

A basic solution to Ax = b is degenerate if one 

or more of the basic variables is equal to zero. 

3.2. 	The Structure of the Solution: 

A basic feature of a linear programming problem 

is that the feasible (admissible) region is convex; 
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i.e. if (x1',x2° 1...xm') and (x 1 
 ",x

2 
 ",...,xm") are any 

two points on the feasible region, any point (xl,x2,...,xm) 

situated on the straight line joining the above two points 

will also belons to the feasible region. 	This fact is of 

great help for computational purposes. 

The optimum point set, x 	(i.e. the set of 

points in the feasible region which minimizes the objective 

function, F(7)) must always lie on the boundary of the 

feasible region. 	This means that at least one of the n 

variables must be equal to zero at the minimum. 

The number of degrees of freedom (En-m) - called 

the dimensionality - of the point set, may be one of the 

numbers 6g = 0,1,...,(n-m-1). 6g = 0. means that there 

is only one well-defined corner on the boundary of the 

feasible region where F(R) is a minimum; while the case 

6g = 1 means that the minimum is reached along an edge  

that connects two corners, and so on. 	Fig. 3.1 illustrates 

the cases (n-m) = 3 and 6g = 0,1,2. 

Whatever the dimensionality of the optimum point 

set, there exists at least one corner with optimal properties 

i.e. at least one optimal point such that at this point 

at least (n-m) of the variables are equal to zero. 

If the simplex method (Section 3.3) is used, 

the procedure consists of essentially in first seeking 

some corner on the feasible region. This is followed 
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by systematic moves along edges from corner to corner 

until an optimal corner is reached. 

3.3. 	The Simplex Method 

Consider a standard form of the linear programming 

problem (i.e. one for which the inequalities have been 

reduced to equalities by the introduction of appropriate 

slack variables): 41 

 

n 
Minimize F(37) = £ c.x. 

1=1 1 1  
(3.3.1) 

a11x1 a12x2 	alnxn 
a21x1 a22x2 	a2nxn 

• • 	 • 
• • 	 • 
• • 	 A 

with 

   

 

b1  
b2 
• 
• • (3.3.2) 

   

amlx1 am2x2 	amnxn = bm 
and 	x1  > 0 

Solutions to (3.3.2) have the following important 

characteristics: 

Theorem 3.2 

a) Let the rank of (3.3.2) be equal to m, then 

if there exists a feasible solution to (3.3.2) - 

not necessarily optimal - there is at least one 

basic feasible solution to (3.3.2) (i.e. with at 

least (n-m) variables equal to zero). 

b) If in addition a lower bound to the objective 

function, F(x), (3.3.1) exists, then an optimal  

47 
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basic feasible solution to (3.3.2) exists. 

The simplex method makes use of the above 

characteristics. 

Suppose that we have a basic feasible solution 

for which the objective function is not necessarily a minimum. 

The simplex method proceeds by eliminating each of the m 

basic variables from all but one of the (m) equations by 

choosing a pivot term in a manner similar to the ordinary 

elimination for solving m equations in m unknowns. 

At the end of each elimination process, a simple 

test is applied in order to determine whether or not the 

solution is optimal. 	If not, a corrective procedure is 

applied which substitutes one of the non-basic variables 

for one of the basic variables. The procedure is 

repeated (in a finite number of times) until the optimum 

is reached - if one exists. 

The net effect of an elimination process is that 

the original system of basic equations is replaced by an 

equivalent system of equations called the canonical system. 

The elimination process is, therefore, sometimes referred 

to as a reduction to canonical form. 15  

If x1°x2'xm are the variables selected for 

elimination, the canonical system takes the form: 
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x1 	+ a1 m+1 xm+1 	+ alnxn 

	

x2 + 	+ a2nxn + a2 m+1 xm+1 

. 	. 	. 	• 	• 	• 	• 	• 	• 	• 

xm + am 	xm+1  + 	+ mnx 	= Emn  
+... + Enxn -F(x)+ cm+1 m+1xm+1 

(3.3.3) 
where a..„ E.j  and P 	are constants. 	Equation (3.3.3) 

is equivalent to (3.3.2). 	In the discussions that follow, 

we shall assume that the system of equations are in the 

canonical form. 

3.3.1. 	Test for Optimal Basic Feasible Solution  

The optimal solution is established by the following 

theorems: 

Theorem 3.3  

If in the canonical form, the values of bi  

and .c"j  are non-negative, the basic solution is optimal. 

Theorem 3.4  

If in the canonical system, the basic solution is 

feasible and E. > 0 for all nonbasic variables, the solution 

is the unique feasible optimal solution. 

Corollary. 

If in the canonical system the basic solution is 

feasible and E.
.3 
 > 0 for all j, then no other feasible 

solutions can also be optimal unless the values of x. = 0 
IMP 

whenever c. > O. 
- 50 
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3.3.2. 	Improving a Non-optimal Basic Feasible Solution. 

An important property of the standard simplex 

method is that it works only with basic solutions which are 

feasible (i.e. E.a.  > 0). 

Consider the canonical form (3.3.3). 	If all the 

Gi  > 0 and at least one g. < 0, then a new basic feasible 

solution can be constructed by increasing the corresponding 

non-basic variables whose gj  < 0 (while keeping the other 

non-basic variables at value zero) and adjusting the values 

of the basic variables accordingly. The new value of the 

objective function will generally be lower than 

F(;) = Po in (3.3.3). 

An empirical rule for choosing one of the non-basic 

variables, xs, is 

s 	mingj  . < 0 	(3.3.4) 

This rule usually leads to fewer iterations than just 

choosing any gj  < 0. 

Using the canonical form (3.3.3) we construct a 

new solution in which xs assumes some positive value. 	The 

values of the other non-basic variables are still equal to 

zero while the values of the basic variables, including F(x), 

are adjusted to account for the increase in xs; 

xi 	a. E. - a. sx s 	= 1,...,m 	(3.3.5) 

F(x) = 	Po 	s s 	(3.3.6) 

Since gs has been chosen negative, it follows 
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that the value of xs should be made as large as possible in 

order to make F(x) as small as possible (for a minimization 

problem). 	In fact, if all ais  < 0, xs  can be made 

arbitrarily large, establishing the following: 

Theorem 3.5. 

If in the canonical system, for some xs, all 

ais < 0 and es  < 0, then a class of feasible solutions can — 
be constructed whose F(x) values have no lower bound. 

If, on the other hand, at least one ais  > 0, then 

there is a limit on the largest value that xs  can attain. 

For example, beyond the value of xs  = (Ei/gis), the value 

ofxi  . (the basic variables in (3.3.5)) becomes negative. 

If ais > 0 for several i , then the smallest 

of such ratios, denoted by i = r, will determine the largest 

valueofxsp"siblessuchthatallvaluesof 
xi  in  (3.3.5) 

remain non-negative. 

Suppose xs  = max x_ possible; then 

* 	br .. min (bi i  > , (3.3.7) 

	

Xs  = 	- 	_ u 
a 	i a >0(a. rs 	s 	is 

	

with ars  > O. 	In case of a tie, r may be chosen arbitrarily; 

e.g. choose amongst the tied variables, the one with the 

smallest subscript; or choose one of the tied variables 

at random. 

If the solution is. degenerate (i.e. one or more 

E. = 0), then it is clear by (3.3.7) that for some ais >0, 
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the corresponding value of 17i  of the basic variable is 

zero; so that no increase in xs is possible that will 

maintain the values of the basic variables non-negative. 

Hence there will be no decrease in F(K). 	Special methods 

for handling degenerate cases are, therefore, required. 

Several approaches have been proposed. 	One is 

the perturbation method of Charnes. The other scheme 

involves lexicographical ordering of vectors. 	A detailed 

discussion of those methods can be found in 41 

However, if the solution is non-degenerate, we 

have the following result: 

Theorem 3.6  
Olt 

If for some s, cs  < 0 and at least one a.ls  > 0 

then from a non-degenerate basic feasible solution a new 

basic feasible solution can be constructed with a lower 

value of 10(7). 

The new basic feasible solution is then tested for 

optimality. 	If it fails, new variables (non-basic) are 

chosen by criterion (3.3.4). 	The process is repeated 

until (after a finite number of iterations) it terminates 

in either: 

(a) a class of feasible solutions for which 

F(7) 	- 	: (Unbounded solutions); 

or 	(b) an optimal basic feasible solution (all C'j>0). 
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3.3.3. 	First Feasible Solution: 

In practice, a number of problems often have a starting 

feasible canonical form. 	For other problems, however, this 

is not the case; e.g. when the model does not have slack 

variables for some equations, or when the coefficients of 

some slack variables are negative. 	In the latter situation, 

a set of artificial variables are introduced into the 

standard form of the linear programming model: 

N 	N+M 
.E a x +  
Jmi ij j 	ipimN+14xj i = 1,...,m 	(3.3.8) 

xj  2.0 j = 11...,N+M; where (xN4.1)  xx+2,...,xN4.14) are 

the artificial variables. The resulting auxilliary model 

(3.3.8) is in canonical form, and the simplex method can 

now be employed. 

The method of providing an initial feasible solution 

is usually referred to as Phase I. 

Note, however, that any solution to the new problem 

(3.3.8) is not a solution to the original problem (3.3.1) and 

(3.3.2), unless all the artificial variables are zero. 	Since 

all the artificial variables must be non-negative, it is 

sufficient to make their sum equal to zero. 

The calculations are, therefore, started by 

minimizing the sum of the artificial variables:
55 

N+M 
E 	x. 	 (3.3.9) 

j=N+1 

subject to 	x. > 0 
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N 

In practice, the equivalent form of (3.3.9): 

N 	Al 
w = E d.x. + E b. 

j=1 J 	j=1 
(3.3.10) 

is minimized, where d. = 	E a.. i = 1,. ..2111  
j=l 	(3.3.10b) 

Equation (3.3.9) is called the sum of infeasibilities. 

If this sum is reduced to zero, then there is a genuine 

first feasible solution to the original problem; and the 

original objective function can be improved by applying the 

simplex steps. 	This then is the Phase II of the algorithm. 

If at the end of Phase I, the sum of infeasibilities 

is positive, the original problem is infeasible. 

A detailed procedure involved in both Phase I and 

Phase II is given in Ref15  

3.4. 	Revised Simplex Method: x,15.  

In the simplex method, a large number of computations 

are done and recorded in the tableau. 	Some of this infor-

mation is not required: in fact only the modified cost row, 

the modified requirement vector (b1) and the column corres-

ponding to the variable entering the basic set play any 

role in the decision process. 

The essence of the revised simplex method is to 

use simplex multipliers and the inverse of the basis to 

determine, directly from the original equations, all the 

necessary information for the decision at hand. 
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Definition: 

Multipliers ni, i = 1,...,m are called simplex  

multipliers relative to the F(x) equation, if multiplying 

the first equation of (3.3.8) by IT2  the second equation by 

7r22•••, the mth equation by IT m, and subtracting their sum 

from the F(x) equation eliminates the basic variables. 

A set of multipliers relative to the auxilliary 

equation, w, is denoted by Off denoted by 11...,m. 

The multipliers display the following characteristics: 

Theorem 3.7. 

The simplex multipliers are unique and are equal 

to the negative of the coefficients of the artificial 

variables of the F(x) and w-equation of the canonical form 

(3.4.1 ). 

Consider the following system of equations (-74.3.8) 

after cycle 0. 

a11x1 + a12x2 + 	+ alnxn + xn+1 	= b1 
a21x1 + a22x2 + 	+ a2nxn =  b2 +Xn+2 

amlx1 + am2x2 + ... + amnxn =  bm +Xn+m 

c x 	+ c x 	+ 	+ (3.4.1")l1 	22 	... c x 	-F = 0 n n  

d1x1
-//,=-w

o + c2x2 	+ ... + dnxn 
where Tarnis given by  equation 

(3.3.9)  and di 
 by  (3.3.10b) 

wo = 	b.. 
i=1 
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The problem is to find x.
J 
 > 0 j = 1,...„n 

satisfying (3.4.1.) such that w = 0 and F is minimized. 

For the standard simplex method, after the Kth cycle, the 

basic variables may be: v. 	... 
"nl.

1 
 "2

t 
 3...2."'

1,- 
M

1 
 3 

-F,-w with the 

basic feasible solution Given by Is "--; 1 	l's x2t42""'Xm'45m;  
X.
J 
 = 0 otherwise : 

Admissible variables Artificial variables 	Constant 

	

basic 	 terms 

	

var. 	x1 	xn Xn+11 Xn+22°. xn+m 

xl' 

	

	• E1 all a" als "• aln aln+1$ "" aln+m 
, 	 . 

x 	 : 
2' 	

. 	 . • . 
• . _ 

• arl 	... am 	3rn+1 ... 	= 	Er ... ars 	arn+m .. . 	. 	 . . 
xn' 	amt 606 ams  0 0 6  amn 	amn+1 6 6 0 amn+m 	

= 	Em 
-F 	c1 ... es  ... en 	cn+1 	... cn+m 

-w 	= 41
o 

-w 	a1 ... as  • • . an 	an+1 	660 an+m -w 

 = -w
o 

(3.4. 2) 

For the revised simplex method, however the only 

recorded information from the tableau are the coefficients 

of artificial variables, the constant terms 13i  and the names 

of the corresponding basic variables. 	During the cycle, part 

of the missing data from the tableau.is generated as required 

directly from cycle 0 (3,4+.1.). 	These involve values of 

ai  j = 1,...In and the values of the column j = s. 
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Since the first m equations of (3.4.1.) are in 

canonical form with respect to xn+1,xn+2,...,xn+m,-Fs-w 

and the system of equations (3.4. 2) is in canonical form 

with respect to 	it follows that: 

If the basis 5 is the coefficient matrix of 

in (3.4.1.) then its inverse, Et is the 

coefficient matrix of x n+11xn+21...xn+111,-F,-w in (3.4..2). 

An element in a given row and column of (3.4..2) 

can, therefore, be generated from (3.4.1 ) by forming a scalar 

product of the corresponding row in the inverse and corres- 

ponding column of (3.14.1 ). 	Thus aij  can be generated for 

say j = s by forming the scalar product of the ith row of 

the inverse g-1  by the jth column of (3.4.1 ): 

a.. = 81lalj 	61.2a2j 	1". 	f31mamj 	(3.4. 3) 

where 8 'ij are the elements of B and are given by 

0 ij  = ai,n+j 	(i,j = 1,...m) 	(3.4. 4) 
The -c", and aj  are generated by the scalar product 

of the F and w row of the inverse, B with the jth column of 

(3.4.1 ): 
- 
cj  = c.

J 
 - (nialj  + n2a2j  + ... 

a.
J 	

= d. - (a1 alj  + a2 a23  . + ... J  

where nK = - cn+K 	K = 1,...m 

and 	aK = - ari-I-K 

+ nmamj) (3.4. 5)  

+ amamj) (3.4. 6)  

(3.4. 7)  

(3. 4. e) 
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(i.e. 3.4. 7 Try and aK  are coefficients of artificial 

variables in the F and w equations of 3.4..2). 

Finally, Gi, Po  and 

relation 

El_ 	= 	0.1)1  + a.12  b2  a. 

P0 	= 	n1b1 + 'ff2b2 

Tvo 	
= 	a1b1 + a2b2 

+ 

+ 

+ 

can be generated by the 

... 	
a 

+ 0. m  b M 	(3.4. 	9) 

... 	+ 	ir bm 	(3.4.10) m  

... 	+ 	ambm 	(3.4.11) 

3.4.1. 	Advantages of the Revised Simplex Method  

1) In the standard method, the complete problem has to 

be up-dated. 	This involves (m+l)(n-m+l) operations. 

In the revised simplex method the up-dating involves 

(m+l)(m+l) operations. 	This can result in considerable 

savings in both time and storage capacity, especially for 

situations where n is much greater than m and A is a sparse 

matrix- which is usually the case in practice. 

2) The revised simplex method is more flexible; 

e.g. one does not have to complete the pricing operation, 

for every iteration: instead one can use multiple-column-

selection techniques in which one uses the pricing operation 

to select a number of the most promising columns, up-date 

them and then do a few steps of the standard method on the 

resulting small sub-problem. 

, 
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3.4.2. 	Product Form of the Revised Simplex Method:  

With the product form, the inverse of the original 
-f 

matrix, 13 is not recorded explicitly; rather, it is 

represented as a product of elementary matrices. Each of 

these matrices represents the effect of a single pivotal 

operation. 

The effect of pivoting in the rth row is to 

premultiply E-1  by a matrix that is unit except for the rth 

column, which is computed from the up-dated pivotal column 

in the tableau. Such an elementary matrix is generally 

referred to as an E-matrix. 

Instead of recording the entire E matrix, one 

simply records the column number, r, and the non-zero 

elements in it; the remaining unit columns being understood. 

These unit matrices are so taken for granted that the 

elementary matrices are often referred to as vectors, 

specifically n-vectors. 

The above operation is equivalent to storing the 

entire inverse of the matrix. 	It clearly reduces computer 

storage requirement, and is, in fact, the version that is 

largely used for digital computations. 

3.5. 	Variants of the Simplex Method  
15 

This section contains a summary of certain modifications 

to the simplex method that were developed in order to take 

advantage of situations where an infeasible basic solution to 
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the primal problem is available. Examples include cases 

where a set of problems differ from one another only with 

regard to their requirement vectors or the cost factors. 

In such situations, it may be convenient to omit Phase 

(if this were possible) and to use the optimal solution 

of one problem as the initial solution of the other. 

Some of these methods are discussed below. 

3.5.1. 	Dual-Simplex Method  

The method was developed to handle a class 

parametric linear programming problem; i.e. cases where 

a new problem differs from the original one in the values 

of the requirement vector (Si) only. The optimal basis 

of the original problem still prices-out optimally 

(cj  > 0) for the second problem. 	However, the associated 

solution may not be feasible. 

However, the said optimal pricing out implies 

that the solution to the dual problem is feasible. For 

this situation Lemke
15 

developed the Dual-Simplex method, 

as a variant of the standard simplex algorithm. 	It operates 

with the same tableau as the primal method; however the 

e. J > 0 from iteration to iteration (instead of bi  > 0). 

If all the B. > 0, then the associated problem 

is optimal as well as feasible. 	If not, a pivot row, r, 

is chosen such that 

1-3r = Min Bi  > 0 	(3.5.1) 
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and the pivot column, s, is chosen such that 

es, -
rs 	

4 
/-a 	Mined/-arj 	(a rj < 0) 	(3.5.2) 

Clearly if all arj > 0, then the primal has no feasible 

solution. 

When the Dual-Simplex method is viewed in terms 

of the primal variables, one decides first which basic 

variables to drop, and then decides which non-basic 

variables to introduce. 

3.5.2. 	The Primal Dual Method  

Apart from the Dual-Simplex method, several other 

computationally similar variants of the standard primal 

simplex algorithm have been developed; for example, the 

method of Leading Variables, Parametric Linear Programming 

and the Primal-Dual methods. 

The Primal-Dual method, developed by Ford and 

Fulkerson for solving transportation problems and later 

extended to handle the general linear programming problem 

will be discussed in this section. 	Our discussion will 

concentrate on the generalized form of the method rather 

than the original algorithm of Ford and Fulkerson. 

Any feasible solution to the original problem 

may be used to initiate the method, which is based on the 

fact that corresponding to any dual solution is an 

associated restricted primal requiring optimization. 
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When the solution to the restricted problem has 

been found, an improved solution to the dual system can be 

obtained. 	This in turn gives rise to a restricted primal 

problem which has to be optimized. 	The process is 

continued until, after a finite number of improvements, 

an optimal solution to the original unrestriced problem 

is obtained. 

As with the Dual-Simplex method, the entire process 

may be considered as a way of staffing an infeasible basic 

solution and using a feasible solution to the dual already 

at hand to decrease the infeasibility form of the primal 

in such a manner that when a feasible solution is found, it 

will already be optimal. 

The initial canonical form of the Primal-Dual 

method is the same as for Phase I of the standard simplex 

(3.3.11). 	It is assumed that a feasible solution to the 

dual is available; and that by applying the associated 

multipliers and summing, the cj  have been adjusted before 

augmentation by artificial variables. 	So that now 

c. > 0 	(j = 10...,n) (3.5.3) 

The problem is to find x.
J 
 > 0, w = 0 and Min. F(x) 

satisfying (3.3.11). 	Suppose that after cycle t the tableau 

is as shown on page 57. Artificial variables not in the 

basic set are dropped from the system. 
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Theorem 3.8.. 

If tiro = 0 then the basic solution is optimal. 

We note that when wo = 0 the artificial variables all have 

zero values in the basic solution. 	When these are dropped, 

the feasible solution has g, = 0 for x. > 0, which fulfils 

the condition of optimality. 

Cycle t: 	Tableau of the Primal-Dual Algorithm 

basis 

X1'.. Xq  Xq+1 	Xm  xriria 	110134.1 	xr1.4.(4 	Tr a 

• •a1 m+1...al m+p 	n+q bi> 0 Tri  al  

1 

.am n+q bOvMam am m+1".am m+p ' 

1 

1 

0 ... 0 	0 	... 0 dm+1 " dm+p dm+p+1 	dn+q w=wo 

	

0 ...' 0 cm413.1.1 	gn+q  F-Fo  

artifical 

 

c = 0 

 

g. > 0 

	-e 

    

    

restricted primal 

Step 1. 	Minimizing Infeasibilities in the Restricted Primal  

It is assumed that at cycle t there are one or 

more. with c. = 0. 	These x. together with the basic xj  

variables constitute the restricted primal problem. 
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Using only these variables for first choice, the 

simplex method is applied to minimize w. 	The artificial 

variables which have become non-basic are usually dropped 

from the system. 

Step 2. The process is terminated when either (a) w = 0 in 

which case the solution is optimal; or (b) if w > 0 and 

all a.
J 
 > 0 (j = 1,...,n) thus implying the non-existence of 

a feasible solution. 	If, on the other hand, w> 0 and one 

or more a. < 0 then proceed to step 3. 

Step 3.  Improving the Dual Solution: 

This is achieved by means of new multipliers: 

* w. +. Kai  

which generate non-negative cost factors 
_ * 
C. 	= 	c + Kd. 

where K is positive and is defined by: 

(3.5.4) 

(3.5.5) 

K = c5/(-as) = ffln cig-aj) > 0 	(3.5.6) 
d•<0 

The new restricted primal is obtained using all 

the basic variables and all the non-basic variables whose 
_ * 

cost factors c. = O. 

For further discussions on the Primal-Dual method 

see k42c. 1 6 • 

3.5.3. 	Other Variations  

In contrast to the above algorithms Gass and 

Saaty have developed a method for solving problems with 
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32 
constant requirement vector but varying coefficients. 	This 

method, too, relies heavily on the standard simplex algorithm. 

It has been used Quite extensively for the solution of 

parametric linear problems with varying cost coefficients. 

Details of the algorithm are contained in reference 32 

In some cases the problems may differ by more 

than just the constant terms. 	Consequently, the old 

basis may not price out optimally. 	This may lead to 

neither the basic solution nor the dual solution generated 

by its multipliers remaining feasible. 	In such a situation 

a composite algorithm of which the Self-Dual algorithm 

15  is an example is employed. 

3.6. 	Logarithmic Potential Method: 
30 

This was developed with special emphasis on 

macroeconomic planning. 	The main motivation was to 

develop a method that would involve less work than the 

simplex method* 

As we have indicated (Section 4.2), the simplex 

method first seeks some corner on the feasible region, and 

then moves systematically along the edges from corner to 

corner, until the optimal corner is reached. 

A major difficulty with the simplex procedure 

is that in the course of the elimination process, one 

Generally, with regard to desk computation. Most of this 
was done in early 1950's when the high speed large storage 
digital computer had not been firmly established. 
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may, from time to time, reach a multiply determined corner 
(i.e. obtain a degenerate solution). 	Possibly an optimal 

solution may itself be degenerate; still further laborious 
test would be required to ascertain whether it is actually 

optimal or not. 

The logarithmic potential method, however, works 

systematically in the interior of the feasible region. 

It uses a logarithmic potential as a means of ensuring 

that the solution process is always within the feasible 

region. 

The following is a brief summary of the method. 

Define the potential 

m 	n 
PF(x1'x2' xm) = E logexK + E log x. K=i,... 	j=m+1 e  

(3.6.1) 
In other words, the potential is the sum of the logarithms 

of all the variables (Basic and non-basic). 	The potential 

is continuous with continuous first derivatives anywhere 

in the feasible region; but as any point in the boundary 

is approached, the potential tends towards - cc. 

The potential can be viewed as a function of the 

basic variables with partial derivatives 
DPF 	1 VPF 	= 	+ E 	a.v/x.° 	= 1,...,m axK 	xK j=m+1 '3" ° 

(3.6.2) 

where VPF is the gradient, of the potential. 
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Consider also the gradient of the objective 

function VFK  where FK = clxl + c2x2 +...+cm xrn  (x.=0 for 

i = m+l, m+2,...,n). 

These two gradients define two different directions 

along which one can move in the iteration process. 	In order 

to increase the objective function, it is desirable to move 

in the direction +VFK  ; but in order to steer away from the 

boundary, one should move along the direction VPFK. 

The optimal solution is obtained through a compromise 

between the two directions. A detailed procedure of obtaining 

the compromise is contained in30 	. 

For desk machine computations, logarithmic potential 

method seems to have been quite successful. 	However, with 

the advent of high-speed, large-storage digital computers, 

the simplex method (in the inverse product form) has so 

far proved to be the most efficient method for solving 

linear programming problems. 

The importance of the logarithmic potential method 

lies in its modification and generalization to handnon- 

linear programming problems. 	This aspect has been 

considered in some detail in Chapter-5. 
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CHAPTER 4  

INTEGER PROGRAMMING METHODS  

4.0. 	For many practical problems, the solution variables 

are required to be integers. 	In situations where the 

variables are sufficiently large, the resulting solution 

may very well be rounded off to the nearest integers 

satisfying the constraints. 	However, there is a host of 

problems for which the integer solutions must be very small 

numbers: often 0, 1 or 2. 	Any round off may, therefore, 

give solutions which are far removed from the optimum. 

Integer programming is the name given to solving 

linear programming problems when the variables must take 

integer values. 	The methods are classified into pure 

integer programming when all the variables must be integer; 

and mixed integer programming when only certain specified 

variables must be integers. 

4.1. 	The General Integer Programming Problem: 

The general integer programming problem may be 

statedasfollows:Finclxv...ocil with.integer valued 

for some specific set of indices ieJ such that 

n 
F(7) 	.E 	c.x. 

11 
is minimized subject to 

n 

	

E 	a..x. 	b 
j=1 1J 

(4.1.1) 

i = 1,...,m (4.1.2) 
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F(R) = aoo  + 	E 	aoj 	j 
.(-x.) 

j=1 
n 
E a..x. < a. 

j=1 13  — i,o 
= 1,0003M 

An equivalent formulation is: Find x...,x
n with 

x. integer valued for some specific set of indices i J such 

that 

We shall use the latter formulation in the 

discussions which follow. 

It is clear that if J spans the entire xj  range 

j = 11...,n, (i.e. J=JT) then we have a pure integer 

programming problem; while if J spans only part of the 

range (i.e. J=Jm) then the problem is of mixed integer 

programming type. 	If , on the other hand, the integer 

requirement is dropped (i.e. J=J0) the problem reduces 

to a linear programming problem. 

4.2. 	Methods of Solution  

Several practical methods for solving integer 

programming problems have been developed. 	Some of these 

will be briefly discussed here. 	A more detailed exposition 

can be found in the survey paper by Balanski.2  

The methods will be discussed along the following 

general classifications: 

a) Cutting-plane methods 

- 70 - 



b) Primal methods. 

c) Mutual Primal-Dual methods. 

d) Branch and Bound methods. 

e) Dynamic programming algorithms. 

a) 	Cutting-Plane methods  

Much of the work in this field has been done by 

R.E. Gomory. 	The underlying approach of the cutting-plane 

methods may be viewed as a process of convexification*. 

That is, the process of solving (4.1.3) and (4.1.4) isolates 

a feasible point with the required integer property by 

making it an extreme point of a new polyhedral convex 

constraint set at which the linear form (4.1.3) is 

minimized (maximized). 	This is achieved by devising new 

constraints in such a way that a finite number guarantees 

finding a linear programme whose solution has the required 

integer property. 

The basic tool for the cutting-plane (or the 

new constraints generation) methods is a dual Simplex 

method (chapter 3 ). 	Many different cutting-plane methods 

are possible, depending on how the new constraints are 

generated. 	Several of these are discussed below. 

(i) 	Pure integer Programming I. 

Consider a linear programming problem whose 

solution variables are required to be all integers. 	Let 

* 	For other possible points of view see Ref. 2. 
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the variables be expressed in terms of the non-basic 

(independent) variables. 	A typical equation of the 

linear programme then becomes: 

xi  a 	+ E a(-x) lo ij j j=1   (4.2.1) 

Anewnon-negativeintegervariable,x.'can 

Inow be defined. 	Let T = 	J where [1 I is 

the integer part of ; and 0 < 	< 1. 	Let Tr > 0. 

Define 

a..ij PI-jiff-ill 	E  /Tr 	= 	j/ir 	
0 <r 

J 

j = 0,1,...,n 	(4.2.2.) 

Then, after dividing through by 11-  (4.2.1) may be 

written 

xi/Tr + (1/ 	E 	) 1 I .j )cj  = { [aioini + Efaii/Taif-yl 

(4.2.3) 

Now, the left-hand-side of (4.2.3) is non-negative; 

so does the right-hand-side. 	However, by definition (4.2.Z) 

(Coin) < 1 and the expression inside {} in (4.2.3) is integer. 

Therefore the term inside {} must be non-negative as well 

as integer; i.e., 

xj hrj 
.1 	

P1  .0/1.1 I + 
E  E-,

i  pj
_x) > 0 	(4.2.4)  — 

is a new constraint. 	The above type of constraint was 

developed by R.E. Gomory and is applicable to pure integer 

programming problems  
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(ii) 	Pure Integer Programming II  

Let m = 1. 	Then(4.2.) can be rearranged to 

give 

EJ j  1.—q la-o1] 4* Era.](-x.) 	1 
x.} 	E

o J  

(4.2.5) 

Again the left-hand-side of (4.2.5) is non-negative and hence 

the right-hand-side; but E0  < 1 and the term inside {} 

is integer. 	Therefore 

- o 

- o 	E (- j)(-xj) > 0 	(4.2.6)  

is a new constraint. 	This is the constraint developed 

in Gomory's first cutting-plane method.
2  

(iii) 	r'lixed integer programming  

Suppose that in problem (4.1.3) and (4.1.4) only 

xi  for i J are constrained to be integers. 	Consider a 

topical equation (4.1.4) of the linear programme corresponding 

to a variable which is integer constrained. Then, making 

the substitution (4.2.2) for j=0 and j Jm  and letting 

n=1, equation (4.2.1) can be rewritten: 

E.x. 	a..x. = {Ea. 
	

aij  (-xj)-xi  } 

Jm

}

m 	
44.j 	1J J 	10 	j 

J m 	E m  

Eo 	 (4.2.7) 

The term inside {1  is integer and is either (a) greater 

than or equal to zero or (b) less than or equal to -1. 

Thus in case (a) 
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E g.x. + E a..xj  > F_ 141#, -, 	
(4.2.8) 

jej 	J J 	.1," 	lj 
o m  

and hence 
E E.x. + E 	a..x

j 
 > D _ (4.2.9) 

jeJm " 	(i6Jralaij  > ID) lj   

In case (b) 

E 	E-I, 	E 	< -1 + o 	(4.2.10) .;eT 	0...i 	+ 	a..x. jeJm  ij j 4 "III 
  

and hence 
Ea..x. 

	

> 	sc) - 1 	(4.2.11) 
(iv , a.. <0) 13  - 3 

m 1J 
or 

( o/(1-E 	--)x. > E (Wm, a. <0) 	0)(-a 	J 	o 	(4.2.12) 

Since the coefficients of all the variables 

in the last inequalities of (4.2.81) and (4.2.10) are 

non-negative, we have: 

x1' = -E0  + jeJ 
 (-E

i
.)*(-x

J  
.) + (jeJ 	

(-a143
..)(-xj) 

.. 
m 	m,a 13<0)  

+ E 	(o  a../(l- 0))(-xj) 	> 0 
(jeJmlaij<0) 	

iJ 

(4.2.13) 

where x.' is a new constraint; also developed by Gomory. 2 

Using the above new constraints Gomory proposed 

two algorithms, two for the pure problem and one fdr the 

mixed problem. 	Details of these may be found'in 

and also in 2 

The algorithms converge to an optimal solution With 

the required integer property in a finite number of steps - 

if such a solution exists. 	Unfortunately, however, the 
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codes have proved erratic in performance: sometimes 

solving large problems (e.g. a thousand variables in 100 

constraints), while at others breaking down for no apparant 

reason. 

Several new codes now perform much better; 

e.g. the one by Haldi and Isaacson. -40 

(b) Primal Methods  

As we have mentioned above, cutting-plane methods 

solve the integer programming problem by the dual simplex 

method. 	Primal methods have also been developed for 

solving pure integer programming problems along the lines 

developed above. 

The tableau is kept integral by pivoting only on 

the unit elements. 	The variable to be introduced in the 

basis is chosen as one with a negative reduced cost 

(Chapter 3). 	If however, the variables have a non-unit 

coefficient in the row in which one would naturally pivot, 

then the following transformation is introduced: if the 

natural pivotal row is: 

xi  = a. 	+ E a..1J(-x.J) 	(4.2.14) 10  
and if 

a. 	
= 1J 	
Dld I + i.i 0 f Eij  < 7 > 1 

n 	7 	7 
a 	1 	 (4.2.15) .. 

where, as in the case above, -41  is the integral part 

of aii/7. 	The above transformation gives rise to a new 
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integral and non-negative variable. 

I [a. 
E FL-

j._1I
(-x.) io x.' = 	+ i 	I. Tr  J 	3  (4.2.16) 

satisfying the constraint that xi' > 0. 

With the new conditions (4.1.2 and x.a.'>0) 

satisfied, it becomes possible to generate a suitable 

pivotal row for any Tr such that 

Max {ais/2' 1 a.0/ [(a.10/is 	— a ) + 1] }< 	< a. is 

(4.2.17) 

where xs  is the variable being made basic and (aio/ais) 

is the value of xs at the next trial solution. 

Note that the above approach is essentially similar 

to the "cutting-plane" methods, except that the computation 

algorithm is the primal simplex method rather than the dual 

42 simplex method. L.M. Isaacson has written a computer code 

for the special case when it = 1. 	The code uses the "revised 

Simplex" method or the inverse method for carrying out 

computations. 	The code can handle up to 300 variables 

in 120 constraints. 	It has achieved successes on a number 

of test problems; and is, in fact, the code used for 

solving a network design problem in Chapter 10. 

The author's computation experience with this method is 

that its performance is also erratic. 
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(c) Mutual Primal-Dual Methods: 

These methods were developed by M.L. Balanski and 

3  R.E. Gomory and independently by G.W. Graves.
38 
 Grave's 

version was specifically developed for the application to 

the general mixed integer programming problems. 

The essential features of both methods are the 

elimination of "artificial variables" for the initial 

feasible solutions and the use of a nested sequence of 

contracting alternate primal and dual problems to cope 

with degeneracy. 

In addition to the above common features, Graves 

algorithm provides explicitly a unified treatment of mixed 

systems containing both positive and free (non-restricted) 

variables as well as both inequalities and equations. 

Furthermore, the algorithm tends quickly to dispose of 

free variables and of equations thus effectively reducing 

the size of the problem under consideration. 

The author has only recently learned of the 

algorithm and has, therefore, been unable to programme 

and apply it to any specific problems. 	But its comp-

utational efficacy seems to be very promising. 

(d) Branch and Bound Methods. 

In 1963 Little et a1.54developed a method which 

they successfully applied to solve travelling salesman- 
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type problems. 	They called it a 'branch and bound' 

algorithm. 

Three years earlier, a similar method had been 

proposed by Lang and Doing ias suitable for solving both 

pure and mixed integer programming problems. 

The procedure involves the solution of a series 

of linear programming problems in which upper and lower 

bounds are imposed on all integer variables. 	Initially 

the bounds are placed far enough apart to be sure to include 

the optimal solution (with integer variables). 	In the 

course of the enumeration of each sub-problem, a current 

best known solution is stored. 	The process is continued 

until all the possibilities have been exhausted. 	One of 

theee solutions is an optimal solution. 

A detailed account of the general procedure, together 

with Lang and Doing's version may be found in reference 2 

So far no computational experience with Lang and Doing's 

method has been reported. 

Several variations of the general branch and bound 

procedures have since been proposed and successfully used 

to solve a variety of problems.2,5 	In this section, we 

shall consider the special versions due to Glover and 

Balas . 	Their version falls under the general sub- 

classification of Partial Enumeration methods, 	By this 

method one considers only trial solutions where all 
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variables must be integers, but in which the constraints 

may not all be satisfied. 

A major advantage of the method is that not all 

solutions are explicitly enumerated; rather they are 

implicitly enumerated by considering groups of solutions 

together. 	Consequently, substantial saving in storage 

requirements is assured. 

Definition 4.1.: 	A partial solution, S, is an assignment 

of binary values (0 or 1) to a subset of n variables. 

Any variables not assigned a value of S is called 

free. 	In the discussions that ensue the following 

notational convention will be adopted: the symbol j denotes 

that. = 1 and -j denotes that x. = 0. 	For example, xj  

if n = 5 and S = {3,5-2} then x3  = 1, x5  = 1, x2  = 0 while 

x1 and x4 are free. 	The order in which the elements of 

S are written represents the order in which the elements 

are generated. 

Definition 4.2:  A completion of a partial solution, S 

is a solution that is determined by S together with the 

binary specification of the values of the free variables. 

Thus in the above example there are four possible 

completions of S: (0,0,110,1),(020,121,1)(1,0,12021) and 

(1,0,1,1,1). 	It is clear from the above definition 

that a partial solution S with s elements, say, determines 
IMO 

a group of 2n-s different completions or solutions. 	For 
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the special case when there are no free variables, there 

is only one completion of S: the trivial one determined 

by S itself. 

Implicit enumeration involves generating a sequence 

of partial solutions and simultaneously considering all 

completions of each. 

As the calculations proceed, feasible solutions 

are discovered from time to time. 	The best one yet is 

stored as an incumbent. 

It may happen that for a given partial solution 

S„ a best feasible completion of S can be determined. 

If such a solution is better than the best known feasible 

solution, then it replaces the latter in store. 

On the other hand, it may be established that 

S has no feasible completion which is better than the 

incumbent. 

In either case, we say that we can fathom S. 

All completions of a fathomed S have been implicitly 

enumberated in the sense that they can be excluded from 

further consideration, the only exception being a best 

feasible completion of S that unseats the incumbent. 

Definition 4.3: A partial solution for which no completion 

in the sequence ever duplicates a completion of the previous 

partial solution that was fathomed is called a non-redundant  

partial solution. 
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The main steps for generating a non-redundant 

sequence sv are illustrated in Fig. 4..33 The scheme 
terminates only after all 2n  solutions have been (implicitly) 

enumerated. 	The question of how to fathom a given S is 

answered by the illustration in Fig. 4.2. 	This is the 

version due to Balas. 

For Fig. 4,1. we start with S0  = 0 , indicating an 

empty set. 	If S° can be fathomed, the process is terminated: 

Either there is no feasible solution or there is one and 

the best feasible solution can be found. 

If S°  cannot be fathomed, it is augmented by 

specifying a binary value for the additional free variables 

at a time, each trying to fathom the resulting partial 

solution until, at some trial K1, S
Kl 
 is fathomed. 

In order to be sure of having enough information 

in the future so as to enable us to know when all 2n  

solutions have been accounted for, S
K, 
 is stored. 	Further-

more, to he sure of having non-redundant sequence Sv  

starting from v = K1  1 on, we must have in all future 

at least one element complementary to S. . 

has been stored, the condition for non-redundancy of S
K11.1 

K1+1 
may be accounted for by taking S 	to exactly SK1  with 

the latter's element multiplied by -1 and underlined. 
K1+1 If S 	can be fathomed, then all completions 

K1 
of S , without its last element, can be enumerated; so 
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Ki 	K1+1 that we can 'forget' the fathoming of S -L  and S 	and 

'remember' that only SK1  with its last element has been 

fathomed. 	For example if K1  = 3 and S3 =  {3,5,-2} is 

fathomed and then S = 0,5,21 is fathomed, then all 

completions of {3,5} have been accounted for. 	So that 

fathoming S3 and S is equivalent to fathoming {5,5} . 

Such procedures lead to economies in the storage requirements. 

By the same token, SK1+2 is chosen as SK1  less 

the latter's last element with its next to last element 

multiplied by -1 and underlined. 	In the above example 

S5 = {3,-5} . 
Ki+1 

If on the other hand S 	cannot be fathomed, 

then it is augmented by a binary value for one additional 

free variable at a time, each time trying to fathom the 

resulting partial solution until at some latter trial 

K2, sK2 is fathomed. 
K2 

When S has been fathomed it too (in addition 

to SK1 ) must be stored. 	Consequently, every succeeding 

Sv  contains elements that are complements to SKI and SK2 

respectively. 
K2+1 	K Thereafter S 	is taken as S 2 with the latter's 

last element complement and underlined; e.g. if, say, S 

could not be fathomed and S5 were taken as {3,5,2,1} ; 

i.e. K2  = 5; then S6 , {325,2,-1} . 	The procedure is 

repeated until an optimal solution is found - if one exists. 
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A particularization of the above procedure, based 

on Balab algorithm is illustrated in Fig. 4.2, where the 

details of the mechanisms of Steps 1 and 2 of Fig. 4.1. 

are also derived. 

Beginning with Step 1, the task is to fathom the 

current partial solution, S. 	This can be done by doing 

either of the following: 

a) finding the best feasible completion of S. 

b) determining that no feasible completion of S 

has a lower value of the objective function than 

the incumbent. 

Definition 4.4: A bounded solution is one for which arbakriper 

bouhd vr—as' available for eabh:Akariable. 

The general strategy of fathoming S involves quite 

simple computations. 	Associated with S is a best completion 

xs of S. 	Such a completion is arrived at by selecting xs 

equal to either 0 or 1, depending on whether c.J  > 0 or 

c.< 0. 

Let c, < 0; then xs = 0. 	If x8  is feasible 

then x5  is a best feasible completion of S and S is 

thereby fathomed. 

As a first substep of Step 1 (Fig. 4.1) the 

feasibility of x8  is tested. 	As the computations proceed, 
_* 

the incumbent feasible solution gives an upper bound z 

on the optimal value of the objective function (4.1.3). 



{ Y1
$  

8. 
. 
1 111i11 .+ 	. 1=1 1j,0 

an algebraic maximum. 

m 
(4.2.21) 

_ 
Initially z is taken equal to co. 

If the best completion xg  is not feasible, an 

attempt is made to establish that no feasible completion 

of S is better than the incumbent. 	If this is the case, 

then it must be impossible to complete S so as to eliminate 

all the infeasibilities of xE and at the same time improve 
-* 

on z . 

The said impossibility may be demonstrated along 

the following lines: consider non-zero binary values only 

for the variables in 

-* 
Ts E {j free: cxg  + 	 j c.

J 
 < z . and ai  > 0 

forsomei. Yl < 0  1 	 (4.2.19) g 

_*g 	- 
where y 	= Ax + b . 	So that if Ts  is empty (i.e. 

Ts - T E 0) then there is no feasible completion of S that is 

better than the incumbent, and S is fathomed. 	The same 

conclusion holds if 

y. + E 	Max {0,aip < 0 	(4.2.20) 
j TS 

for some i 3 0 < 0. 
1 

For the augmentation of Step 2. (Fig. 4.1), one 

choice is to augment S by the variable from Ts  which leaves 

the least amount of total infeasiblity in the next xg  in 

the sense of making 
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Augment S 

1 

Start 

I  
Attempt to fathom 

s°  = 0.  Is the 	Yes ;ITerminate 

attempt successfuln 

 

2 

  

III II 

Attempt to fathom 
3. Is the attempt 
successful? 

—Yes— 

 

If the best feasible 
completion of S has 
been found and it is 
better than the incum-
bent solution, store it 
as the new incumbent. 

 

  

  

Augment S.  

al 	 No 

-I 

 Replace the last element 
of S by its underlined 
complement. 

3a 

Last element of S 
underlined? 

Yes 

3c 

All elements of S 
underlined? 

No 	 

1 

3d 
Replace the last non-
underlined element of S 
by its underlined 
complement and drop all 
terms to its right. 

Yes 

Terminate 

Fig. 4.1, 	Flow Chart of a General Enumerative Procedure 
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3. v 

> 0? 	yes 

INo 

= 0? 	Yes 

g + E _ Max {0,a..}< 0 
Yi j Ts 

for some i such that 

Yi < 0?  

No 

2 	Augment S by j Ts  which 
maximizes T Min {0 + a.. 

i-1 	1 	13,0 
over al j 	Ts  

le 

la 

lb 

Locate the rightmost element 
of S which is not underlined. 
If none exists, terminate. 
Otherwise, replace the element 
by its underlined complement 
and drop all elements to the 
right. 

If cxs 	put 
-* z = cxs and 

= xg 

Fig. 4.2. 	Flow Chart of a Particularization of Fig. 4.1. 
Based on Bala's Algorithm. 
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The above details have been incorporated into the 

procedure of Fig. 4.1. and Fig. 4.2. although the logic 

of Fig.41. has been arranged so as to give a more compact 

presentation, the logics of Figs. 4.1, and 4.2. are in 

fact equivalent. 

e. Dynamic Programming Algorithms: 

The work in this field was initiated by R.E. Gomory.36  

He showed that if a linear programming problem has been 

solved, it is relatively easy to solve the corresponding 

pure integer programming problem, so long as the requirement 
vorto bles 

that the basicA be non-negative is ignored. 

This is done by dynamic programming (Chapter 6). 

The non-basic variables are considered in turn and the 

state-space (Chapter 6) consists of the finite group of 

possible combinations of non-integral parts in the values 

of the basic variables. 

The computational experience so far indicates 

that the method will not necessarily give the answer to 

the integer programming problem unless the original values 

of the basic variables were fairly large 

,The remaining part of the section is devoted to 

a very brief discussion of Gomory's method of transforming 

a given linear integer programming problem into a related 

group of optimization problems, which can then be solved 

by dynamic programming. The concept behind this procedure 
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is that an optimal solution to the group problem from which 
optima( -for the it-1 (-Q0er prO9 rcitvl rnin3 prO b (QM 

it is derived,if the solution is feasible. 

Consider an integer programming problem in canonical 

form: (See Chapter 3) 

minimize (maximize) F(X) = cTX 	(4.2.22) 

subject to 	AX 	b 	(4.2.23) 

x > 0, x integers 

Gomory's transformation is as follows: relations 

(4.2.22) and (4.2.23) are written as 

	

minimize 	F(x) = C T- 	C5XB 
T- 	(4.2.24) RXR  

	

subject to 	RXR 	BR 	= b 	(4.2.25) 

x112xB are non-negative integers. 

and E is the optimal basis for the Linear Programming Problem 

(4.2.22) in which some of the solution variables are non-

integer i.e: 

a) B is an mxm matrix 

b) B-1  b > 0 

c) c. 	cB B-laij 	0 (j = 1s2s...,m+n) 
(4.2.26) 

- 

	

Condition (c) implies that cTB  xB 	
T < c x for any non-negative 

_ 
vector X. 	such that Ax = b. 	B is found by the Simplex 

Method. 

Solving for i and substituting into the objective 

function gives 
Minimize F(R) = cR XR  1E-1  P; R) (4.2.27) 
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subject to 	x8  = 5-1(G - RXR) 
	

(4.2.28) 

XP, xB 	integer. 

For the sake of simplicity in mathematical 

argument (and without loss of generality), let the constant 

c .5-1G be deleted from the objective function (4.2.27). 

Let us define 

R 	°Ft 

	

- cBB-1b 
	

(4.2.29) 

then (4.2.27) and (4.2.28) become 

	

Minimize F(i) = cRxR 	(4.2.30) 
-- subject to 	x

B 	
=B 1bB-1 RxR 	(4.2.31) 

XR and RB have non-negative integer elements 

It is now possible to eliminate XB  from (4.2.31). 

First, the explicit non-negative. condition on XB  = B-1G 

-1-- - B RxR  is removed. 	Second, xB  is an integer vector 

in (4.2.31) if and only if 5-1G and B-15XR  differ by an 

integer vector. 	Hence the constraint equation 

R = 17-1; - 5-15XR can be replaced by 5-1G = 5-15XR  (modulo 1) "  

The vector 5-1G and the columns of 5-15 can be replaced 

by their fractional parts - without loss of generality - 

since the contribution of their integer parts is 0 (modulo 1). 

All the fractions are cleared by multiplying both 

sides of the constraint equation by D = Wet. B1 and at the 

same time replacing modulo 1 by modulo B. 	The net result 

is 
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Minimise F(X) 	 e.x. 	(4.2.32) 

En  subject to 	E 	a.x. = ab (modulo D)(4.2.33) j=1 	J 0 

with x, a non negative integer j = 1,...,n, where 

-1 	
[11-11;] I 	(4.3.34) 

ab 	- 	D {Ab - 	} 

j  L  rrlajiI1 a.
J 
 = D {A-1a 	(4.2.35) 

j= 1,...,n. 

and CaJI  is an integer of part a. 
... 

Since c. > 0, (4.2.32) and (4.2.33) have a solution 
J — 

denoted by 

511 = (Y1"'"Yn) 
	(4.2.36) 

Observe that (YR, B-1(17 
	

1131."R ) 
	

is an optimal 

solution to (4.2.22) and (4.2.23) if it is feasible. 

The above transformations were used by Gomory 

to obtain a solution to the original integer programming 

Problem. But as we have already indicated, although the 

optimal solution yR  to the modified problem does have 

integer values, there is no way of systematically guaranteeing 

that all the elements of Tril  will be non-negative (thus 

satisfying the feasibility conditions of the original problems). 

Here is an area open for further research work. 

J.F. Shapiro71  has also derived sufficient conditions #lti 

can be incorporated into an efficient algorithm for solving 

the group optimization problem. 	His algorithm is based on 

the renewal and knapsack algorithms of reference. /, 
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In a subsequent paper Shapiro extends the method to 

an algorithm for solving pure integer programming 

problems. 
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CHAPTER 5  

NON-LINEAR PROGRAMMING METHODS  

5.0. 	In practice, we are quite often faced with optimization 

problems for which the objective function and/or the sat 

of constraints is non-linear. 	Computational developments 

for such types of problems have not reached the degree of 

efficiency enjoyed by such methods as the "Simplex method" 

for handling linear and quadratic programming problems. 

However, considerable progress in tackling non-

linear programming problems has been made: many new 

techniques have been developed and several old ones modified 

and perfected. 

This chapter discusses the theoretical foundations 

of some of the major mathematical programming techniques 

that have been developed to solve a large variety of non-

linear optimization problems. 

Emphasis is placed on the general concepts underlying 

each method; and, wherever possible, the unity that exists 

amongst the seemingly completely different approaches is 

highlighted. 	Relative merits and limitations of some of 

the methods are discussed at length. 

5.1. 	Direct and Indirect Methods: 

Broadly speaking, optimization methods can be 

divided into two classes: direct and indirect methods. 
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Direct methods start at an arbitrary point and proceed 

stepwise towards the optimum through direct comparison of 

the values of the function at two or more points. 	The 

point which gives an improved value of the function is 

chosen; and the search is continued until there is little 

or no further improvement in the value of the function, 

indicating that the optimum point has been reached. 	Most 

of this chapter is devoted to direct methods. 

Indirect methods, on the other hand, are concerned with the 

knowledge of the function characteristics at or near the 

optimum. 	The necessary and sufficient conditions for 

optimality are first established; if the conditions are 

satisfied, the optimal policy (values of the independent 

variables at the optimum) is then determined. 	This 

ultimately involves solving a set of (linear or non-linear) 

equations rather than searching for an optimum. 

For analytical solutions, the indirect methods 

are generally used; but when numerical results are sought, 
53 

the direct methods are often preferred, T.N. Edelbaum has 

presented a very good summary of the advantages and 

disadvantages of both the direct and indirect methods. 

5.2. 	Indirect Methods: 

As we have indicated above, most of this 

Chapter will be devoted to direct methods; and the indirect 

methods will be considered very, very briefly. 	These 
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include the 'differential method' and geometric programming. 

A. Differential  

This is one of the oldest optimization techniques. 
_ 

It is based on the fact that for x to be saddle point 

of Fa), the gradient of the latter must vanish at that 

points i.e. 

VF(xF*) = 0 	 (5.2.1.) 

Relation (5.2.1.) is a necessary condition. 

Condition (5.2.1) results in a set of non-linear 

(or linear) simultaneous partial differential equations 

Which can then be solved by methods such as Newton-Raphson 

or Quasi-Newton methods. 

At the saddle point, x*, the following expression 

is obtained by means of Taylor series expansion: 

i(aR)T  e ax 	(5.2.2) 

where H is a Hessian matrix (i.e. the matrix of second 

order derivatives). 
-* 

A sufficient condition for x to be a local minimum 
* 

is that H be positive definite (EH > 0). 

Constraints: 

The method adopted for handling constraints will 

depend on the type of constraints in question. 	For example, 

strict equality constraints give rise to Langrange-type 

problems considered in Chapter 2. 	Similarly, if there 

are both equality and inequality constraints, we have the 
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generalized Lagrange Problem (Chapter 2). 

Another important indirect method for handling 

mixed constraints - called the Maximum Principle - will 

be discussed briefly in Chapter 6. 

B. Geometric Programming: 

This is a relatively new method: it was first 

proposed in 1961.4'3  The essential concept of the technique 

is that instead of seeking the optimal values of the 

independent variables first, geometric programming determines 

the optimal way to distribute the total cost amongst the 

various terms of the objective function. 

Once these optimal allocations are obtained, 

the optimal cost can be found by routine calculations, 

Which in some cases may involve solving a set of non- 

linear equations. 

The name geometric programming is derived from 

the fact that the development of the technique relies on 

the dual relationship which exists between the arithmetic 

and geometric means of a certain type of functions 

considered. 

A detailed exposition and discussion of the 

method may be found in 77 	and 	83: 

Remarks: 

Geometric programming has received considerably 

little attention but its potentialities are apparent, 
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especially for problems or functions that can be formulated 

in the general polynomial* form, 

J N aji 
F(x) = jE1 j c 	x. 	; =  

e.g: 

i.e., 

a) optimal reliability problems, 

b) efficiency of cascaded governor, turbine, 
and generator combinations, 

0) optimal design of electrical equipment 

whose cost functions can be expressed 

as products of the design variables. 

A major advantage is that the method can handle 

very highly non-linear functions (both in the objective 

and constraints). And for certain small size problems 

the optimal value of the function can be obtained by 

inspection 

The author has only recently heard of the method, 

and has, therefore been unable to present solutions to 

specific power system problems. 

5.3. 	DIRECT METHODS  

5.3.1. 	Unconstrained Problems  

Although practically all mathematical programming 

problems involve a variety of constraints it is essential 

to study problems with no constraints. 	For a large number 

of techniques that handle constrained problems rely on the 

* See for example, reference 77, 	for a definition 
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procedures for solving the unconstrained problems; all 

that is needed is to make appropriate modifications in the 

function to take into account the constraints. 

As has been indicated (section 5.1) the direct 

methods for function optimization are iterative in nature: 

thus, starting with arbitrary values of the variables, a 

direction for the next step; and the step-length are 

chosen. 	The process is repeated until the desired degree 

of accuracy has been attained. 

Mathematically, this is represented as: 

-K+1 	-K K K = 	x + t .Ax 	(5.3.1) 

where AlcK  is the direction, and tK  the step-length to be 

determined; and K is the number of iterations. 

5.3.1.A. Choice of Step: 

The step length tK  is usually chosen as the value 

of t > 0 which minimizes the function 

K 	 K F(x 	+ t Ax K) 

The "best" value of tK 
(5.3.2) 

is obtained by means of 

either cubic interpolation or by quadratic interpolation.*  

However, in many instances, t is chosen to be identically 

equal to one, or to any other arbitrary value. 	This value 

can then be arbitrarily changed in the course of the comp-

utational steps in such a manner as to increase the rate 

of convergence. 

* See Appendix A5 
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5.3.1.B. Choice of Direction ( RK)  

Two general methods are widely used for this 

purpose: 

a) In the direction of the first partial 

derivatives of the function 	VF(R). 	These are the 

"grandient methods". 

b) In a direction dependent on VF(R), but 

intended to improve on that direction - often referred to 

as "modified gradient" techniques. 

(i) Gradient Method: 

This is alternatively called the "method of steepest 

ascent (descent). 	It chooses 

K 	K 	 K 
Ax 	= -t (VF(x )) (5.3.2) 

i.e. in the direction in which F(R) has the steepest 

slope. 	The method is one of the most widely used, and has 

received a great deal of study. A major disadvantage of 

the method is that of slow convergence; furthermore, the 

method is susceptible to oscillations in x. 26  

(ii) Modified Gradient Techniques  

A large number of methods fall into this category; 

notably: Newton's method, conjugate directions, conjugate 

gradients, projection methods, and partan' (method of 

parallel tangents). 

The essential feature of the methods is that the 

gradient of the function is modified so as to give a better 



direction of motion in the iterative step: 

-K 	K r 
Ax = -t 	GH(XK)] -1 

	-K VF(x ) 	(5.3.3) 

where the function GH(X) differs according to which method 

is used. 

Note that the gradient method can be viewed as 

a special form of (5.3.3) for which 	GH(x) -1 = 1.  

Necessary and Sufficient Conditions for a Local Optimum. 

The process (5.3.3) continues until a stationary 

point, x°  has been found (if one exists) i.e., until the 

point for which the following relation holds: 

	

VF(X°) = 0 	(5.3.4) 

has been reached. 
o- Necessary conditions that a point x be a local 

minimum (maximum) to F(X) are that 

GH(X°) > 0 (5.3.5) 

VF(X°) = 0 (5.3.6) 

Sufficient conditions that a point X°  be a 

local minimum (maximum) to F(x) are that 

GH(X°) > 0 (5.3.7) 
VF(R°) = 0 (5.3.8) 

Note that for a convex function: (i.e. a function 

for which the following relation holds 

F(y) > F(x) + (y-x)T  VF(x) 	(5.3.9) 

for all y and x) the local minimum is also the global  

minimum. 
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Methods of Conjugate Directions: 

Consider a general quadratic function 

F(R) = a 4.  zT7c 	1RTQR 	(5.3.10) 
where Q is an nzn positive definite symmetric matrix: 

a and c.are constants. 

A set of vectors s. ( i=1,...,n), s. # 0 with 

the property that 

siQ sj 	0 	i 	j 	(5.3.11) 

is said to be orthogonal (conjugate) with respect to Q. 

Any procedure for obtaining the minimum value of 

a function F(R) - starting from an arbitrary point, R°  - 

, that by generating a sequence of steps (tKsK xK+1_xK)  

are Q conjugate is called a conjugate direction algorithm. 

The vectors tK sK K = 1,...,n are linearly 

in.dependent and form a basis in the n-space. 

So far, methods of conjugate directions have 

proved to be the most efficient for function optimization. 

For quadratic functions, covergence to an optimum in 

at most n( E number of variables) is assured. 

However, the methods can handle any convex non-quadrati 

functions. This is so because in the neighbourhood of 
_* 

the optimum point x , the function is nearly quadratic and 

can thus be approximated: 

F(x) = F(R*) 	L(R-R*)T  H(2-R*) + higher terms (5.3.12) 
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where H is a Hessian matrix; is symmetric and positive 

definite. 	The higher orders are negligible. 

Several conjugate direction methods are briefly 

discussed below. 

Method 1  

a) 	Given an initial point X-1, the subsequent 

direction is given by 

Ax. = t.g. 	(5.3.13) 

where the initial direction is given by 

s1 	-VF(xi) 	(5.3.14) 

and VFT . VF. 
s 	= -VF. + ( 	IT 

). 

1 	1 	si-1 VF. .VF. 1-1 1-1 

i = 2,3,...,n 	(5.3.15) 

Where t. > 0 is selected by a one-dimensional search 

for the minimum of the function F(R) versus t along the 

line determined by the direction of the vector si  - (5.3.1). 

The process is continued until the optimum has 

been obtained - within the desired degree of accuracy. 

(b) 	This is essentially the same as (a) except for 

the fact that, the approximation of the quadratic function 

is reassessed after every n straight-line minimization 

searches. 

Thus after the (n)th  iteration, X1  is replaced by 

n x and the process continued until no further improvement 
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s. = -VF1(x) [A 	TA(V 	(;)) xi., 	Fi-1 

T Lloc. 	g.0c)) 1-1 VF1.1 

in the objective function is observed. 	With this 

modification, it may be possible to obtain a rapid 

convergence. 

Method 2  

In the previous method, F(37) was assumed to be 

quadratic. 	In the following method, a minimum amount of 

knowledge about the quadratic nature of the function is 

assumed. 

Given as initial starting point x1, subsequent 

directions are pursued according. to 

A 7'. 

s1 

Si 

-VF1(I) 

-VFi (X) 

- 
i-1 
E 

j=1 

i = 

(5.3.16) 

(5.3.17) 

	

ax. 	A(VF .(5E))17  

	

J 	
3 

.V.P(x) 3. 
Ax.  -T A(VF.(i)) 

J 	J 	- 

2,3,...,n 	(5.3.18) 

Method 3  

The first two steps are identical to those of 

Method 2 (5.3.16) and (5.3.17). 	However, si  is chosen 

according to the following rule: 

i = 2,3,...,n (5.3.19) 

- 102 - 



Method 4  

Starting at point x1  1  subsequent directions are 

obtained by applying the following rules: 

	

Ai. 	= 	t. 1. 

	

E1 	-VFW) 	

(5.3.20) 

(5.3.21) 

s. VF1  1  

	

i-1 	VFT()VP. ,(7)-UT(R)VF.(X) 

	

=1 	
~T a. s. VF.(;) a.  

. VF.1 	i = 

(5.3.22) 

At the expense of a certain amount of complexity in 

the computed programme, especially for higher ordersystems 

methods 2 through to 4 inclusive, may increase the rate of 

convergence. The device of restarting the conjugate gradient 

process for methods 2 and 3 (as with method 1) further 

increases the rate of convergence. 

Methods 1 through to 4 are different versions of 

conjugate gradients. 	If F(x) is quadratic and there are no 
46 

round-off errors, the four methods become identical. 

Method 5  

The conjugate directions are given by 

Ax-1  

	

= t. R.a.  VF.(R) 	(5.3.23) 

where Hi  is defined by 

AA% 1  A 	1 1-1 	fl.-1a(vF. (7))A(VF1.(1)15R.  
Hi 	" n 

-1 	-1 	-  
i-1 -  

AiE1. 71,607F.1 07)),6,(60)TR. A(VF. (TO) -1 	-1 	VF. 	1 _, 	-1 	1-1 
i = 2,3,... (5.3.24) 
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H1 is an arbitrarily specified positive definite matrix, 

and is usually given as an identity matrix. 

Method 5 is the variable matrix algorithm developed 

by Davidson and a variation of which was examined by Fletcher 

and PowelL.29 

The updating process of Hi  is such that its value 

approaches that of V2F(x)-1 at the optimum point. 

Recently Kelley and Myers have suggested a 

modification to Davidson's method along the following 

lines: 46  

mv 	(50)A07 	(R))T  111_1  

m • (To)T 1-1 Fi_i A(V 	(X)) 

> 2, i V mn + 1 

mn 	A7c.ATc.T  
nmn + 1 

	

	
.3  

j=mn-n+1 A;,.. La (VFWTA.7,1"./  

H1 is the same as above. 

(5.3.25) 

(5.3.26) 

Here the matrix H is reduced in rank by one at 

each up-date and, after the rank has been reduced to zero, 

is replaced by the estimate of A2F(R) given by (5.3.26). 

The estimate is exact for a quadratic function with no round- 

off errors and for which conjugate steps are taken. 	The 

authors report quite reasonable convergence for the modified 

version. 
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The above conjugate direction methods represent 

iterative processes requiring a linear search, for a one-

dimensional minimum at each iteration. All exhibit 

theoretical n-step convergence for a quadratic function. 

The choice of which method to use will depend upon the 

complexity of the problem, computer storage requirements, 

departure from the quadratic character of the function 

being optimized and acceptable maximum round-off errors. 

Methods 1,3,4 and 5 retain their descent properties 

for the general non-quadratic functions. 	Method 2 does 

not. 	For its descent properties depend on the conjugacy 

of the previous steps in the sense of equation (5.3.11) 

i.e. conjugacy with respect to some positive definite 

matrix for all i # j. 	Such a restriction is realized 

only for a quadratic function, in which the extra number 

of the sum (5.3.18) vanish so that the method reduces to 

method 3. 

Computational experience seems to indicate that 

Davidson's variable metric minimization technique has 

better convergence then any of the other methods of 

conjugate directions. 	The variable metric method, 

especially in double precision format, is also much less 

susceptible to round-off errors than any of the other 

methods. 	This property is largely due to the fact that 

there is continuous compensation for errors from the one- 
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dimensional minima in the directions previously searched, 

whether caused by propagation of round-off errors or by 

departure from quadratic functional form. 

However, for certain ill-conditioned problems; 

or for situations where the computations are performed 

with eight or less significant figures (single precision); 

or if there is a large number of truncation or round-off 

in the particular problem being tackled; e.g. if the 

gradient is being obtained by approximation, then the H 

matrix and/or VF(R) may be singular thus causing a 

break-down of Davidson's method. 	The other conjugate 

gradient methods do not share this limitation. 

Another advantage of the methods of conjugate 

gradients is that they require less computer storage. 

With the variable metric method, the entire matrix H has 

to be stored and updated at each iteration. 	This limits 

the size of the problems that can be handled, especially 

in the case of double precision arithmetic which is quite 

often necessary in the variable metric scheme. 

In addition, the sheer simplicity of the conjugate 

gradient algorithms is itself quite attractive. 

Other versions of Conjugate Direction Algorithms 

There are many other versions of the methods of 

conjugate directions. 	A detailed discussion of these 

may be found in the review paper by R. Fletcher.26  These 
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include the generalized Newton's method; the method of 

parallel subspaces (which can be used with or without the 

knowledge of the gradient of the function; the method of 

parallel tan8eni,... ("P,rtan"), which may be considered as 

a modified form of the method of parallel subspaces; and 

several projection methods; etc. 

Another projection method which was proposed by 

Zontendijk has been applied by Pearson and McCormick 
'3 

The method seems to have reasonably good convergence. 

Non-gradient Methods  

Minimization methods which require no evaluation 

of derivatives have been studied by a number of authors. 

The efficiency of some of these methods was evaluated by 
27 

R. Fletcher in a review paper. 	These included the 

method of Davies, Swann and Campey, the method of Powell 

and a modification of the method by Smith. 	The first one 

of these (Davies et al) is in fact a modification of 

Rosenbrock's method so as to include linear minimizations. 

Fletcher's conclusions were as follows: the 

modified Smith's method is not as good as the others both 

in terms of the number of linear minimizations and the number 

of function evaluations required. 	Compared to the method 

of Davies et al in terms of function evaluations, Powell's 

method is the more superior; however both methods stand 

on about equal footing in terms of the number of linear 
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minimizations required, with the former method somewhat 

more efficient at point removed from the optimum. 	Powell's 

method has quadratic convergence properties; the method 

of Davies et al does not. 	Consequently, in the neighbourhood 

of the minimum the quadratic convergence of Powell's method 

asserts itself and the final eenvergenee to the minimum is 

more rapid. 	With the increase in the number of variables, 

however, the advantages enjoyed by Powell's method vanish. 

In a recent paper, Zangwill8 c
1 
 laims to have found a 

flaw in the theory underlying Powell's method. This flaw 

seems to be the major cause of the convergence difficulties 

encountered by Powell's method for cases when a function 

has many variables (usually 5 or more). 	Zangwill has 

suggested simplifications and improvements to overcome 

the said difficulties. 	However, to the best of the 

author's knowledge, no results are available to confirm 

this. 	Zangwill has also proposed a method, based on 

Powell's theorems, which has theoretical convergence for 

a strictly convex differentiable function. 	The method 

has since been programmed* and has shown a reasonable 

convergence rate - at least for the simple problems 

tested. 
741. 

In another recent paper, Stewart III has proposed 

a modification of Davidson's variable metric algorithm 

* by Mr. J.N. Ray of Imperial College. 
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that would enable one to approximate the gradient vector 

by differences. 	He reports adequate convergence for a 

number of test problems, and shows that for some of the 

problems considered, his method does better than Powell's. 

However, the steps of the proposed methods are rather 

complicated and time-consuming;  thus counter-balancing 

any of the advantages that it might enjoy. 

5.3.2. 	Constrained Problems: 

These fall into three general classifications; 

namely: 

(a) Those which are direct extensions of the 

simplex method (the simplex method is discussed in Chapter 3). 

(b) Methods of feasible directions, which work 

with linear sub-problems while at the same time making use 

of techniques originally developed for unconstrained problems; 

(c) Penalty-function techniques, which involve 

a sequence of unconstrained optimization procedures. 

Extensions of the Simplex Method  

Many of these have been amply discussed by a number 
84 

of authors.' They include reduced gradient, cutting-plane, 

method of approximation programming, and separable prog-

ramming. 

The reduced-gradient method uses the gradient of 

the objective function to determine the desired direction 
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of motion. 	It works only with linear constraints 

(and non-linear or linear objective functions). 	Its 

computational basis is that of the simplex method (Chapter 3). 

The method has been shown to converge to a 

solution for a non-linear objective function; and to 

terminate for the linear objective function for the case 

where the objective is bounded and the constraints of the 

problem are non-degenerate. 	In situations where the 

rate of convergence is slow, acceleration methods: 

e.g. modifying the direction of motion may result in some 

improvement. 

Separable programming method was first formulated 

by Miller.53  It provides a simple technique for handling 

arbitrary non-linear functions of single arguments in 

either constraints or objective functions of an otherwise 

linear programming problem. 	Furthermore, the method can 

readily be adapted to handle product terms. 

It is called separable programming because it 

assumes that all the non-linear expressions in the given 

problem can be separated into sums and differences of 

non-linear functions of single arguments. 	A detailed 

discussion of the method may be obtained in.58  

A major disadvantage of the separable programming 

method is that it imposes a severe restriction on the type 
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of non-linearities that can be handled. Moreover, 

although it can handle product terms, this is only 

applicable to small problem (several variables). 

The cutting-plane method was developed by 
46 	 84 Kelly and independently by Hartley and Hocking. 

The method is based on the idea that the constraint set 

can be represented as the intersection of a sufficiently 

numerous set of half-spaces which contains it. 

An essential point of the procedure is that 

the non-linear function (or constraint) is replaced by 

a first-order Taylor series approximation; e.g. for 

the constraint functions: 

G.(x) = G.(xK) + VG. 6.-cKNoc  - TiK) 	0  
1` I  (5.3.27) 

where the expansion is carried out about the point 

Note that if G1(x) is convex then the approximation (5.3.27) 

will never be greater than Gi(x). 

Once the linearization has been accomplished the 

linear programming problem is solved along the lines 

described in 78 

Convergence is assured if both the objective 

function and the constraints are convex. 	However, the 

method does not work for non-convex problems. 	This is 

a serious limitation since most of the problems encountered 

in practice are non-convex. 



It also suffers from other drawbacks: convergence 

is ratherslow, especially if the optimum is not in a 

vertex and the linear approximations are subject to 

serious round-off errors, especially if the optimum is 

not in a vertex. 

Wolfe has proposed an acceleratin6 method suitable 

for problems with linear constraints but there is, as yet, 

no computational result to confirm the efficacy of the 

acceleration procedure. 

A major advantage of the cutting-plane methods 

is that they are efficient for convex problems which are 

nearly linear. 	Furthermore, the algorithms involve 

relatively little work per step and the computer programmes 

are quite simple. 

The Method of Approximation Programming has 

some relation to the cutting-plane methods. 	The only 

differences are: 37  

(a) for this method, the initial point, x°. has 

to be feasible. 

(b) a complete relinearization takes place at 

each step; 

(c) the gradient step-size is a predetermined 

small value. 

The computational procedure is as follows: 

For a given initial point X°  
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Maximize 	/7(a) = F(TcK) 	VF(R - 7(K) (5.3.28) 

(IK) 	vGiaK)(17 - subject to Gi A ) < n  

K = 1, i = 1,...,m(5.3.29) 

-K Ix. - x11 	< 	K 	(5.3.30) 

The process is repeated for K = 2,... with 

decreasing values of step-size, ex  > 0, until the improve-

ment in the value of the objective function becomes 

- sufficiently small and the infeasibility in x is 

acceptable. 

The method has been successfully applied to solve 

a large number of problems, both convex and non-convex, 

with a reasonably high degree of accuracy. 

However, because many small steps are needed, 

and because linearization is undertaken at each step, 

convergence is quite slow. 

Methods of Feasible Directions: 

These use the same general approach as the methods 

of unconstrained optimization. 	However, they have been 

modified to deal with inequality constraints. 	A great 

number of techniques described in 85. 	belong to this 

class. 

The guiding concepts are as follows: an initial 

feasible point is determined. 	Thereafter, the solution 

process moves along a direction in such a way that 
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no constraint is violated while at the same time the 

objective function is improved. 	The process is repeated, 

until a point is reached from which no improvement of the 

objective function is possible without violating at least 

one of the constraints. 	In general, such a point is a 

constrained local optimum and not necessarily a global 

optimum for the entire region of interest. 

A direction along which a small move can be made 

without violating any constraints is called a feasible  

direction; while a feasible direction which improves 

the objective function is called a usuable feasible  

direction. 	Because there are many ways of choosing such 

directions, there are many different methods of feasible 

directions. 

In this section we shall discuss a method due 
68 

to Zoutendijk and Rosen's Gradient-Projection method. 

Modifications and extensions of Rosen's method by 
60 

Goldfard-Lapidus 
35

and Murtagh-Sargent will also be 

discussed. 

(i) 	Zoutendijk's Method of Feasible Directions: 85  

Consider the optimisation problem given by 

equations (5.3.43) and (5.3.44). 	A typical method of 

feasible direction proceeds,; according to the following 

rules. 
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(a) We start with an initial feasible point, 
o 	o -1 	 -1 x . 	Suppose that x sx 1...„x 	have already been 

calculated. 

(b) at current point, RK-1, a usable feasible 

direction is determined: i.e. a direction, pK-1  with the 

property that a t > 0 exists such that for all t, 

0 < t < 

-K-1K-1 e St 
	 (5.3.31) 

F(RK-1  +tapK-1) > F(RK-1) 	(5.3.32) 

(c) the step-length tK-1  is determined by 

solving the one dimensional maximum problem in t 

	

Max F(xK-1  +tipK-1) 	(5.3.33) 

subject to xK-1  t.pK-1 e 	(5.3.34) n  

(d) the new usable feasible direction is then 

computed. 	The direction finding problem is easy to 

formulate in the case of linear constraints (G1(x) < 0 

EAR < 17). 	Suppose the present solution is R, then the 

following problem is solved: 

Maximize VF(R)T.p 	(5.3.35) 

subject to 	Ap < 0 (EAR = 6) 	(5.3.36) 

p
T
p < 1* 	(5.3.37) 

In the case of non-linear constraints for 

which G.(R) .4  0 we have the problem: 

* other alternative normalization constraints include: 
K -1 < p

j 
 < 1 for all j or Elpj — < 1 or ix.-1  - p,I < 1 

J 
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Maximize: 
	 (5.3.38) 

subject to 	VGi(7c)Tp + TiE 
	< 0 
	

(5.3.39) 

""'VF(R)T5 + E 	<0 
	

(5.3.40) 

P P 
	<1 
	(5.3.41) 

where Ti = 0 if Gi(x) is linear and Ti > 0 if Gi(x) is 

non-linear. 

In either linear or non-linear case, the process 

is repeated until either (a) pi  E 0 or (b) the decrease 

in the objective function is sufficiently small. 

Zoutendijk has shown that this process will converge 

in a finite number of iterations. 	A general procedure 

is illustrated in Fig. 5.3.1. 

The methods are applicable to non-convex problems, 

and fast convergence can be expected, especially if Ti  

are properly chosen. 	In the linear case, if a linear 

normalization procedure is used, the technique reduces 

to an efficient linear programming method. 	Generally, 

quite accurate results can be expected, especially if 

the maximum does not lie on the vertex. 

The main drawbacks are that the determination 

of step-length results in more work required per iteration; 

and the entire computer programme is rather complicated. 

68 
(ii) 	Rosen's Gradient Projection Method: 

Another drawback with Zoutendijk's method of 

feasible directions is that an optimization problem 
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(Max E or Max VF(x).p) must be solved to find a direction 

in which to move. 	This procedure can be quite time 

consuming. 	Rosen has developed a method that gets 

over this difficulty: the gradient projection method. 

According to Rosen's procedure, a usable feasible direction 

is found without solving the optimization sub-problem -

although the ensuing direction may not be locally 'best'. 

It utilizes the Kuhn-Tucker conditions, both to generate 

new directions, and to stop the solution process. 

The procedure is illustrated in Fig. 5.3.3. for 

the case of linear constraints; (i.e. AR > 17) the 

constraint set is a convex polyhedron, with the boundaries 

determined by AR = E. 	A typical example with linear 

constraints is illustrated in Fig. 5.3.2. 	The points x3  

and R4  in the diagram have been obtained by minimizing 

- along the directions x2 x3 and x3, R4 respectively. 

In the gradient projection procedure, a lot of 

effort goes into the computation of the various projections. 

The projection of a vector a into a given vector-tn space 0 

is another vector b, the latter being obtained by multiplying 

a by a projection matrix p. 

For the linear constraint case, the appropriate 

projection matrix is 
A 

p I - 616*171)-1MT  (5.3.42) 
A A 

where N is a pxn matrix corresponding to p rows of A; 
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p is the intersection of the boundaries for which 

AR = G. 	P is recomputed each time the set of constraint 

changes, thus making the procedure quite cumbersome when 

one constraint uei differs from the next radically. 

(iii) 	Modifications and Extensions of the Gradient  
Projection  Method. 

As we have seen above, Rosen's gradient projection 

method, is based on the steepest descent(ascent) method 

for optimization coupled with orthogonal projection of 

the gradient into a linear manifold, which approximates 

the original constraints. 
35 

Goldfarb and Lapidus have developed a method 

that is based on the use of conjugate direction with 

special modifications to handle constraints. 	Specifically, 

they have combined Rosen's orthogonal projection procedure 

with Fletcher and Powell's (modification of Davidson's) 

method, in such a manner as to take into account linear 

constraints. 	Th3y .1—:port that their method requires much 

fewer functional evaluations than Rosen's - (at least for 

the test programme considered) and that it is more efficient 

with regards to highly non-linear problems. 

However, the Goldgarb-Lapidus method suffers 

from several computational difficulties. 	The Fletcher-

Powell method generates successive approximations to the 

Hessian matrix, H, of the function to be optimized, by 
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Fig. 5.3;1. Constra::11ed 1.1ini2ization with usable Feasible 

Directions. The starting point is xo. 
-/ 

'minimum is at x
3" 

The desired 
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Fig. 5.3.2. Gradient Projection Search Procedure. 
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seeking the optimum of the function along successive 

search directions. 	The procedure is based on the fact 

that at the end of each step, the function gradient is 

orthogonal to the direction of search; and that H is 

symmetric so that the search directions are mutually 

conjugate with respect to it. 

The above procedure is inconveient for use with 

the gradient-projection method. 	For, in general, the 

gradient is not orthogonal to the search direction at a. 

point where a constraint is encountered. 	Consequently, 

a new conjugate direction cannot be set up. 	Moreover, 

the inverse of the Hessian Matrix cannot be up-dated at 

such a point. 	Hence a new sequence of conjugate directions 

must be started each time an active constraint is changed. 

Furthermore, the Goldfarb-Lapidus method involves 
-1 

orthogonal projection of H into the current constraint 

set, with the result that all accumulated information 

orthogonal to this set is lost. 

In a recent paper Murtagh and Sargent have proposed 

a class of methods which makes it possible to up-date 
60 

H-1 for steps of arbitrary length and direction. 	This 

makes them particularly useful for use with gradient 

projection. 	They give examples with two methods for 

the test programs, one apparently has better convergence 

than the Goldfarb-Lapidus algorithm, while the other one 
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does not fair so well. 	The Murtagh-Sargent methods 

are still in their development stage and further comp-

utational experience is awaited. 

Penalty i'unction Methods 

These involve transforming a given constrained 

problem into a sequence of unconstrained problems, which 

are then solved by the unconstrained optimization 

techniques which have already been discussed in this 

chapter. 

Consider the following mathematical programming 

problem with inequality constraints: 

Minimize F(R) 	 (5.3.43) 

subject to Gi(x) > 0 	i = 1,m 	(5.3.44) 

The above problem is transformed into an 

unconstrained one containing a 'penalty function'. 	The 

new problem is denoted by: 

P(X.) = F(R) + E 	[Gi(R)] 	(5.3.45) 
i=1 

where .[Gi(703 is a 'penalty function' corresponding to 

a particular constraint, Gi(x). 

Several different ways of choosing a penalty 

function have been proposed. 	Some of these, including 

Fiacco and McCormick's modification and extension of Carroll's 

"Created Response Surface Technique", Lootsma's generalization 

of Frisch's "Logarithmic Potential Method", and Zangwill's 

method will be discussed briefly. 
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11,52 
Created Response Technique  

Carroll proposed the following penalty function: 

E r.).. 	Ga. x 1/ .()r1 0 i = 1,21...,m 1 	>  

(5.3.46) 

	

where r1  is a 'weighting faCtor'. 	Consequently, the new 

unconstrained problem becomes 

P(23  r.) F(2) 1/G.(x)] = 	E r. (5.3.47) 

Relation (5.3.46) is sometimes called the 'boundary 

repulsion term'; its function is to prevent an unconstrained 

optimization technique from obtaining a point outside 

the feasible region. 

Equation 5.3.47 was later modified by Fiacco and 

McCormic.52  Instead they proposed defining a function. 

P(2,r) = F(2) 	r E.1/Gi(x) 	(5.3.48) 

with r > 0. 	The computational steps are then as follows. 

We choose r = r1,(r1 > 0). 	A point x°  is next 
- chosensuchthat. Gi(xo  ) > 0 (i.e. within the feasible region) 

o- 	- for all i. We then proceed from x to x1  approximating, 

the minimum of P(x1,  r1)in a feasible region. 	A new function 

with r = r2 (r2<r1) is next formed; and the minimum of 

P(x1r2) approximated from 21  to 22. 

The process is repeated with monotonically 

decreasing values rK, K = 3,4,... so that a sequence of 

points X(rK) is generated, that approximate the minima of P070-) 
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The essential point about the procedure is that 

the sequence of P(r,x) minima converges to the optimum 

of the original programming problem (5.3.43; 5.3.44) as 

rK -+ 0: i.e. P(r,R), F(2) + F(R) as rK 4- 0. 

An important feature of this technique is that 

the optimization of P(x,r) yields a feasible solution 

x(r) as well as a feasible solution to the dual problem 

of 5.3.43. 	If F(R) and Gi(R) are convex, then the two:.  
-* 

values which bound F(x ) can be found; namely: 

F 2(r) 
m _ 

+ r E I/G. x(r) < F(x*) < F((r)) 
i=1 1  

(5.3.49) 

Relation (5.3.49) gives a convenient criterion for terminating 

the computational procedure. 	An extension of the method 

to problems having equality constraints has been proposed 

and successfully applied. 	If, in addition to the 

inequality constraints Gi(R) > 0, i = 1,...,k, we have a 

number of equations Gi(R) = 0, i = k+l,...,m then the 

sequence of unconstrained problems to be solved becomes: 
K 	 m 

 P(x,r) = F(X) + r E 1/G.(x) - 1. 	E 	{ Gi(x )}2 

i =1 	1  r i=K+1 

(5.3.50) 
Logarithmic Potential Method 55 

This works on essentially the same principle as 

the Fiacco and McCormick's method. 	The boundary repulsion 

factor is m 
-r E In G.(R) 

1=1 
(5.3.51) 
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consequently a sequence of the unconstrained function 

P(ii,r)=F00 - rEllaG.(x) 	(5.3.52) 

	

1=1 	1 

is optimized for monotonically decreasing values of 

r, i.e. r1  > r2  > ...>rK  .4- 0 

A method of logarithmic potentials for solving 

linear programming problems was originally proposed by 
30.  

R. Frisch. 	The above generalization (5.3.51) is due to 

Lootsma. 55  
_*  

As with equation (5.3.149), the optimum F(x ) is 

bound by 

m 
F X(r) 

	

	r E In G1(x) < F(R*)< F (R(r)) (5.3.53) 
i=1 

m 
where r E In G.(X) is the error term. 

i=1 

An outstanding feature of the logarithmic potential 

method is that the error term can be made arbitrarily small. 

Lootsma has shown that the error term can be approximated 

by 
m 

mr = r 	E In IG(X) 	(5.3.54) 
i=1 	1 

where m is the number of constraints. 	Relation (5.3.53) 

enables one to choose a value of r in such a way that 
_* i 

F(x ) s approximated with a prescribed accuracy. 

Like the method of Fiacco and McCormick, this 

method can also be extended to deal with equality 
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constraints. 	So that corresponding to equation (5.3.51) 

we have 

K 	 m 
10(7,1„),F(7)-1,EInG.(i) 	E 	{ .60}2  

i=1 	i=K+1 G1  

(5.3.55) 

A highly desirable feature of both methods (due 

to Fiacco et al and Lootsma) is that the necessity of 

coping separately with the boundary of the feasible region 

is avoided; that is, the new function, P(x,r) couples 

the objective function and the constraints in such a way 

that motion along the constraint boundary is avoided. 

For such motion is very cumbersono when the constraint 

surface is non-linear. 

The main advantage of the methods is their 

ability to handle highly non-linear problems. However, 

they both suffer from the limitation that the starting 

point for the minimization process must be within the 

feasible region. 	Such a point may be difficult to 

obtain especially for large problems. 

Zangwill's Method:80  

Zangwill has proposed a penalty function procedure 

which is slightly different in concept to the above two. 

The major difference is that, a penalty is imposed only 

when a constraint is violated. 
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Consider a general mathematical programming 

problem with both equality and inequality constraints. 

flinimize 	F(R) 

subject to Gi(R) 

Gi(R) 

= 

> — 

0 

0 

i 

i 

= 

= 

1,...,m1  

m'+1,...,m 

(5.3.56) 

(5.3.57) 

(5.3.58) 

Zangwill suggested transforming the above 

problem into 
m' 

P(R„r) = F(R) 	r E 	+ r E 	(gi)2 
i=1 	i=mt+1 

(5.3.59) 

where 
o if c4.60 = 0 

= 
oi(x) if G.(7) 	0 i=1,... ,m'  

(5.3.60) 

and 

 

0 if G1(x) = 0 

.(R) if Gi(R) < 0 i = 

 

gi 
In t +1,0001M 

     

(5.3.61) 

This method has the advantage that the initial 

minimization point is not required to be within the 

feasible region; so that the time that would otherwise 

be spent in driving all points into the constraint region 

(as the case for the above two methods) is saved. 

Furthermore, the method is well suited for problems 

with large constraints. 	At any point in the minimization 

process, P(x,r) depends only on the unsatisfied constraints. 

•12-8 



Consequently, when calculating the derivatives of P(5i,r) 

only the derivatives of the unsatisfied constraints need 

be considered. 	This clearly results in a definite 

saving in the computer storage requirement. 

In general, the development and application of 

'penalty functions! methods are receiving greater and 

greater attention. 	The methods have met with encouraging 

success; but there are still a number of computational 

problems that require further investigation. 	For example: 

(i) what constitutes a good penalty function? 

(ii) if a penalty function of the type considered 

above is chosen, how should the initial value of 

r be determined? 

(iii) how should the value of r be reduced at each 

minimization step? Should the reduction be in 

specified steps or in a continuous fashion? 

(iv) what unconstrained optimization technique 

should be used to solve the transformed successive 

unconstrained problems? 

(v) for the interior penalty function methods 

( Fiacco et al and Lootsma ) what is the most 

effective way of ensuring that the initial 

minimization point is within the feasible region? 

(vi) to what extent can the rate of convergence 

be speeded up by some form of acceleration 

techniques? 

(vii) what is the best way of handling linear 

constraints? 
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CHAPTER 6  

DYNAMIC PROGRAMMING AND MAXIMUM PRINCIPLE. 

6.0. 	In early 1950's R. Hellman and his co-workers 

developed a new general method for solving variational 
6 

problems and called it dynamic programming. The method 

has since been applied to a wide class of problems in 

optimal control and general optimal sequential processes. 

As a result oftheir work in the solution of optimal 

control problems in the mid-1950's Pontryagin and his 

6-57 pupils discovered the maximum principle. 	Starting about 

1956, the maximum principle was substantiated as a necessary 

and sufficient test for opf-,imal processes in linear systems; 

and a necessary test for optimal processes in non-linear 

systems. 

This chapter contains a brief discussion of the 

above methods. 

6.1. 	DYNAMIC PROGRAMMING  

Dynamic programming falls under the general class 

of sequential decision processes, and has been used widely 

for solving a certain class of optimization problems. 

It is based on the concept of multi-stage decision  process: 

at each stage a choice (decision) is made, following which 

the next stage is reached. 
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The successive stages are related by known 

transformation rules. 	The values associated with the 

process depend both on the number of stages considered, 

and on the decisions made (per stage, and from one stage 

to another). 	For a given number of stages (with several 

possible states each) one set of decision sequence 

constitutes the "best" sequence; i.e. optimizes the 

given function. 

The main elements of dynamic programming may 

be identified as: (a) states and state variables; 

(b) transformations; (c) decisions; (d) functional  

relations (recurrence relations); (e) Markovian-type  

processes and (f) principle of optimality. 

In what follows, the above concepts will be 

defined precisely; and the inter-relationship amongst 

them established. 

6.1.a. 	Markovian Type Process: 

This is a very useful mathematical concept. 

A function, F(xilx2,...0xn) is Harkovian if after a 

number of decisions, say m, the effect of the remaining 

(n-m) decisions upon the total return depends only upon 

the state of the sytem after the mth decision and  

subsequent decisions; and not on the history of the 

decisions that preceeded the mth decision. 
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6.1.b. 	State and State Variables: 

The state variables of a system (process) are 

those whose values completely specify the instantaneous 

situation of the system. 	So that the values of these 

variables tell all that need be known about the system for 

the purpose of making decisions. 

We usually speak of state variables as specifying 

the state of the system. 	Thus the system will be in a 

particular state depending on the values taken by the 

state variables. 

More generally, we speak of the state space as 
** 

a set , 	comprising all the possible states that the 

system may occupy. 	An element XG1 is the state and may 

be interpreted as one of the situations in which the 

process may exist. 

6.1.c. Decisions  

The concept of decision may be viewed as the 

opportunity to change state variables - and hence the 

state of the system. 	For example, a decision to run a 

certain type of generator and stop another - in a generation 

scheduling problem - would lead to a change in the state 

variables. 

In a more general context we may speak of 

dX(dXEDX) as representing one of the choices available 

when the system is in state X. 

** See, for example, references7 or
23 for a good 

account of the concept of a set. 

- 132 - 



6.1.d. 	Transformations  

In dynamic programming, the process passes through 

the states in P in response to the decisions made at the 

various states. 	Thus when the process is in state X, 

selection of a decision, ds  determines a set T(X,dx) of 

states to which the process moves or might move from 

state X. 

If a process is moved to a particular state with 

certainty, the set T(X,dx) would contain exactly one 

element. 	The set T(X,dx) would contain several elements 

in the case that two or more states result with certainty. 

The set function T(X,dx) is called the transition function 

(or transformation function) and it governs the evolution 

of the process. 

In some states a particular decision will cause 

the process to terminate. 	If dX is such a terminating 

decision at state X, then T(X,dx) = 	, the null set and 

no further transitions are possible. 

If T(X,dx) = 4 for every dIctDx  then X is called 

a termal state for the process. 

6.1.e. Policy  

In general the return obtained from a process 

depends on combinations of decisions, rather than on a 

single decision. 
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A policy, 6, may be considered as an ordered 

collection of decisions containing one decision for each 

state in 52. 	The policy space,  PX' is the collection of 

all such policies. 	The . policy (Se PX prescribes a 

particular decision for each and every state Xect; and 

the policy space consists of all possible combinations of 

decisions at the various states; i.e. PX = X.DX X45-2 

The policy space is defined in such a way that 

the decision selected for a particular states does not 

restrict the decisions available at the other states 

(though it may rule out transitions to certain states). 

This property is important in that it limits the class 

of problems to which dynamic programming can be applied 

effectively. 

A policy which optimizes a prescribed return 

(objective) function is called an optimal policy. 

6.1.f. 	Functional Equations  

Let us define a real valued return function, 

F6(X), for each policy, 6, where F6(X) represents the 

return that would accrue if the process were started in 
ar.d 

state X Aappropriate decisions in 6 were applied at each 

of the states through which the process evolves. 

We consider the return function to be of a 

simple additive form in which the total return function 
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is taken to be the sum of a set of immediate returns 

associated with each of the status transversed by the 

process. 

Suppose the immediate stage return is r(X,dx); 

then the total return 

F6(X) = sum of all immediate returns r(s,ds) 

(6.1.1.) 

The sum is taken for all states traversed by 

the process starting from state X and evolving through 

states, s, in accordance with the corresponding decisions 

ds in the policy 6. 

So that the value of the additive return function 

(6.1.1) may alternatively be computed recurvsively from 

the relation 

r(Y,dx) 	if T(X,dx) = ¢ 	(6.1.2a) 
F
6
(X) = 

r(X,dx) + F6(s) if T(X,dx) = {s} 

(6.1.2b) 

The recurrent relations (6.1.2a) and (6.1.2b) indicate 

that the total return from state X using policy 6 is the 

sum of: 

a) the immediate stage return, r(Xldx) from 

stage X using decision dx; 

b) the total return, F (s), under policy 6 

from the state, s, which retults from choosing 

decision, dx, while at state X. 
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6.1.g. 	Optimal Return. Function  

The optimal return from X is denoted by F(X) and 

is defined by 

F(X) = Min FS(X) 	(6.1.3) 
SEP 

where the existence of a minimum is assumed. 
es 

For process whichevolve probabilistically, we 

speak of expected returns. 	So that the return, FS(s) 

from each state, seT(X,dx), is weighted by the probability 

p(s;X,dX) that the transition will occur to state s. 	This 

probability depends on X and dX2  but not on the other 

decisions in S. 	The weighted returns are summed and 

added to the expected immediate return, yielding 

FS(X) = r(X,dx) + E 	p(s:X„dx) FS(s) (6.1.4) 
seT(X,dx) 

6.1.h. 	Principle of Optimality  

Relations (6.1.3) and (6.1.4) have been arrived at 

via the application of a general technique called the 

Principle of Optimality which states: 6  

"An optimal policy has the property that whatever 

the initial state and initial decisions, the remaining 

decisions must constitute an optimal policy with regard to 

the state resulting from the first decision". 

The whole theory of dynamic programming relies 

very heavily on the Principle of Optimality. 	For, 
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utilization of the latter guarantees that the decision 

made at each stage is the best decision in the light of 

the entire process. 

6.1.i. 	Computational Aspects  

Dynamic programming problems are often solved 

by numerical means rather than by strict analytical 

solutions. 

A common method of solving dynamic programming 

problems is to set up a grid in the variables. 	Each 

node of the grid represents a set of numerical values 

for the variables. 	The various nodes are then explored 

to find the optimum node. 

The above technique can readily be programmed 

for a computer. 	The approach makes it quite easy to 

test for ineauality constraints; for example, if a node 

on the grid causes a constraint violation, the offending 

node is rejected. 	Adjacent nodes are then tested in 

order to establish the feasible region of the grid. 

A detailed example of the general computation process 

may be found in reference 67 . 	Appendix A7 of the 

thesis contains a few diagrams of the dynamic programming 

routine for solving a. generation planning problem. 

A major advantage of the dynamic programming 

procedure is that it effectively reduces the quantity of 

computation. 	Instead of solving the entire problem at 
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one go, it proceeds in a step by step fashion. 	For 

example, in an N-stage process where there are dx  possible 

decisions, the combinational approach requires considering 

dX possibilities. 	With dynamic programming, however, 

only dX decisions are required at each stage; consequently 

only NdX possibilities are considered for the entire problem. 

This naturally leads to substantial savings in computer time; 

as a matter of fact, for large dx  and/or large N the time 

requirement for the combinational approach becomes 

prohibitive. 

The main disadvantage of dynamic programming is 

that for high-dimensional problems (usually greater than 

four) and/or fine grid representation, the computer storage 

capacity and computation time become extremely large. 

This limits the size of the problems that can be handled 

by present-day computers. 

Fortunately, however a number of devices are 

currently used to side-step the dimensionality problem. 

Some of these are listed below: 6267  

(a) Linearizing the problem and using a Linear 

programming method of solution. 

(b) Approximating the non-linear problem and 

solving by a quadratic programming algorithm. 

(c) Employing a Lagrangian multiplier 

(d) Employing polynomial approximations; • 
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(e) Restricting the range over which the 

variables may vary from stage to stage 

(f) Developing a variable grid system, 
rather than a fixed grid system. 

6.2. 	MAXIMUM PRINCIPLE  

This section contains a very brief account of 

the salient features of Pontryagni's Maximum Principle. 

First the conditions of optimality for a system described 

by ordinary differential equations are derived. This is 

followed by general discussions based on the extensions 

to the Maximum Principle to handle discrete cases as 

developed by Butkovskii 8. Some relationship between 

the basic theorems of mathematical programming and Maximum 

Principle is also established. 

Much of the theoretical development and application 

of Maximum Principle has been in the realm of optimal 

control processes. Consequently some of the notation used 

here will be of the type found in optimal control literature. 

6.2.1. 	The Continuous Case  

Given a performance index 
n 

F = E c.x.(t ) i,1  1 1 n (6.2.1.a) 
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the problem is to find a set of admissible controlsul  . 

which transfers a given system from an initial state, 

x(to), to a final state, x(tn) in such a way that 6.2.1. 

is minimized. 

That is: 
n 

Min F = 	E 	c.x.(t ) i=1 a. n 

subject to R = P(R071) ; x(to ) = x(o) 	(6.2.2) 

Re a 	 (6.2.3) 

u e U 	 (6.2.4) 

i.e. both x and u are bounded. 

where (6.2.2) portrays the set of differential equations 

which characterize the dynamics of the system; 

x = (x0,x1,...xn) is a vector representing the state 

variables of the system and a = (til,u2,...,um) the control 

vector. f(x,a) is assumed to be continuous in bothxi  . 

and. 1.11  and is continuously differentiable with respect to 

_ = 1,...,n, xi  

The above system (6.2.1.b) is adjoined by a set 

of differential equations 

• ar. 
(R • - z 	(t),a(t)). 4).(t) 

j=0 dt 
(6.2..5) 

Systems (6.2.1.b) and (6.2.5) can then be 

combined by introducing the Hamiltonian,  H, having the 

property th
at:65 

(6.2.1.h) 
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H027csa) = E 0.f.(71,7) 
j=0 

where H is a function of 2n+m+1 variables: 

(6.2.6) 

x s...sx ; 1 	n 

00,4)11..-.011); and u1'u2'...um' 

From (6.2.6) equations (6.2.1.b) and (6.2.5) can 

now be expressed in the form: 

4) 

aH 

a4i 

aH 
ax. 

= 0,...,11 

i = 0,...,11 

For fixed values of (I) and xs  H is a function of 

u only. Suppose that the upper bound of the values of H 

is denoted by 

M(T,R) = Sup H($,$,11) 	(6.2.9) usU 
So that if H assumes its upper bound in U, then R(T22) 

is the maximum values H for fixed (7; and x. 

A necessary condition for optimality states: 

Theorem 6.2.1. 

Let a(t)eU and let R(t) 	be the corresponding 

trajectory for equation (6.2.1.b). 	In order that a(t) 

and x(t) be optimal it is necessary that there exist a 

non-zero vector function $(t) corresponding to u(t) and 

R(t) such that 
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(a) for every t (to  < t < tn) the function 

H(T(t), R(t), it) of variables aU attains its maximum 

at u = u(t) i.e. 

H(i(t), R(t), u(t)) = 171(T(t), ;(0) (6.2.10) 

(b) at the terminal time, tn, the relations 

cl)o  (tn  ) < 0 	(6.2.11) 

R(i).(tn), R(tn)) = 0 	(6.2.12) 

are satisfied. 	Note however that if cli(t), 7c(t) and 

u(t) satisfy (6.2.7), (6.2.8) and (a) then T(t) and 

Ma(t),R(t)) are constant; so that conditions 6.2.11 

and 6.2.12 may be verified at any time t„ to  < t < tn. 

The principle content of the above theorem is 

equation (6.2.10) and is called the Maximum Principle. 

The essential point about the principle is summarized 

by the following: 

Theorem 6.2.2. 
* - 

If u (t) is the optimal control in that it 

minimizes the performance criterion, F , then it satisfies 

the maximum condition of the Hamiltonian, H, (i.e, maxi- 

mizing H is a necessary condition for optimal control). 
_* 

In many problems, the uniqueness of u (t) can be shown; 

so that the above condition is also sufficient. 

Theorem 6.2.3. 
52,69 

For a linear system of equations of the type 

x = A(t);e.  + B(t)71. 
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and free right-end conditions (ie. the final values of 

the state variables are not bounded) the necessary and 

sufficient conditions for optimal control u(t) is the 

fulfilment of the maximum condition on the Hamiltonian, 

H. 

A detailed proof of the Maximum Principle, toftether 

with extensions of the Principle are discussed in Re%
65
'
69 

6.2.2. 	Discrete Maximum Principle  

Since its original formulation, the maximum 

principle has been generalized to the case of minimizing 

an integral and to the case of bounded coordinates. 

By about 1959 Rozonoer 
69 

 had established the connection 

between maximum principle and dynamic programming. He 

also proved the validity of the maximum principle for 

linear discrete-time systems. 

More recently, a number of authors have tackled 

and advanced the theory of discrete maximum principle. 

The version by Butkovskii8  will be discussed here. 	He 

obtained an analogous form of maximum principle which 

gives both necessary and sufficient conditions for 

optimality of systems described by difference equations. 

We now consider the following problem: 

Minimize (Maximize) - - F = c .x(N) (6.2.13) 
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subject to 	R(k+1) = ra(k),:(k)) 16. = 0,...,N-1 

x(o) = a 
	(6.2.14) 

R(C)e 
	

(6.2.15) 

Tiooeu 	 (6.2.16) 

where x(k) is an nxl matrix u(k) an mxl matrix, a an 

nxl matrix and r(R(k),U(k.)) an nxl matrix. 

The states of the system are described by x(k) 

at discrete time instants K = 0,1,...,N and u(k) corresponds 

to the controls at k = 0,1,...,N-1. 	The function 

Pia(k)171(k)) i = 1,...n is assumed to be continuous in 

ui 	
= 1,...,m and have first partial derivatives in 

x. i _ = 1,...„n. 

As in the previous section, we introduce an 

adjoint system of equations CI;(k) and discrete Hamiltonian 

function Ha(k),:(k), T(r,..)) such that 

H Ci(k),71(k),T(10) 	c5(k)T.T (7i(k),ii(k)) (6.2.17) 

= 0,1,2,...,N-1 

For a fixed R(k) and TCO, H670,02:( 1),(11(10) is 

defined to attain a local maximum at a point 171(K)eU if 

H (R(k),T(k)sii* ,10) > H(37(k),T(k),a(k)) 
	

(6.2.18) 

for any point u(k) in the neighbourhood 6GU f the 
_* 

point u (k). 

The elements d T(k) are defined to satisfy 

the relation 
05.(k-1) = (7c(k),71(k),$(k))  

axi(k) 
- 144 - 

(6.2.19) 



for i = 1,...In and k = 0,1 	A necessary condition 

for optimality then states$ 

• e  

Theorem 6.2.4  

Let the optimum control 71*(k), 

exist and let the corresponding optimum trajectory 
* 
x - (k),(k=0,1,...,N) exist with the initial condition, 

x(0) = 
_* 	 _ 

x
* 

Then for u = u (k), k = 021,...,N and x = 	(k) 

k 	10...,N there exists a solution 	= 0 (k) 

satisfying equation (6.2.19) and with the final condition 

*(N-1) = ;(34 	(6.2.20) 
- 	* 

such that for a fixed 	x
* 	- 

= 	(k) and = 4) the function 
/- 	-  

H 	
* 	* 
(k), (1) (k)su

* 
 (10) > H (x

* 
 00, 0 00, 1-100)(6.2.21) 

k = 0,...,N-1, for any u(k) in the neighbourhood of the 
/- 

point a*(1). 	When 	(x*(  N-1), N-1 the function H tx (N-1), 

Cr(N-1),-ti ) of a for a = u (N-1) attains absolute maximum 

in the region U; i.e., 

- 	
[-*(-1),cb 

-* 
(N-1), x 	i] x* (N-1),

* 
 (N-1),u

* 
 (N-1)1 

(6.2.22) 

for any aeu. Proof of the theorem is contained in 8  

It should be noted that although theorem 6.2.4 

is quite similar to Pontryagnits maximum principle 

(theorem 6.2.1) for control systems described by ordinary 
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differential equations, it is not an exact analogue of the 

latter. 	For the Hamiltonian in theorem 6.2.4. assumes a 

local minimum or stationary value on the optimal control 

trajectory rather than a global maximum. However, if the 

controls ui  enter the system linearly, the local maximum 

principle becomes the global maximum principle. 

6.2.2.2. Extended Maximum Principle  

Theorem 6.2.5. 
Consider a function RH [ Ijc(k)sii(k)] defined by 

RH [k,R00,a(k)] = T(k)T.? (Roo,a(k))4(k-1)Tr R(c-1),a(k-1) 

Hb(.,),4;(k),Ti(k)] -14ii(k-1);5(k-1),a(k-1)] 

k = 1,...,N-1 such that 	(6.2.23) 

RH [-l2X(-1),a(-1)] = 0 	(6.2.24) 
* _ 

If u (k) and ;(k), k = 1,...,N-I are such that 

RH {kIX*(k),ii*(k)3 = Max RH Cks7c(k),a(k)3(6.2.25) 

ii(k)6U 

7c(k)6s2 
* _ 

then u (k), is the optimal control and x (k) the optimal 

trajectory: i.e. F = -c*T.;(N) is (Maximized). 

6.2.2.3. Necessary and Sufficient Conditions  

By combining theorems 6.2.4 and 6.2.5. one is able 

to formulate the result which expresses the necessary and 

sufficient conditions for optimality in the case of a linear 
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system of equations defined by: 

R(k+1) = A(k)R(k) + E(k)a(k) 	(6.2.26) 

k = 0...,N-1 

where A(k) is an nxn matrix and E(k) an nxm matrix. Then 
-* 

in order that u (k), k = 0,...,N-1, be an optimal control 

it is necessary and sufficient that 

c7(k).E(1).11*(k) = Max (T(k)E(k)U(k) 	(6.2.27) 
u(k)€U 

k = 

Just as the continuous maximum principle has 

found increasing use in system design, it is hoped that 

the discrete version will form a strong foundation upon 

which the optimal design of sampled-data systems will be 

based. 

6.2.3. 	Relationship Between the. Basic Theorems of 

Mathematical Programming and the Maximum Principle. 

Let us consider a discrete dynamic system 

described by difference equation 

l(k+1) = R(L)  + fk( ;(k),U(k)) 	(6.2.28) 

k = 0,...,N-1 where X(k),a(k) and ? R(k),;(k) 	have 

the same dimensions as those of section 6.2.2. 

For a fixed initial state, x(o), the problem 

is to select controls aeu k = 1,...,N-1, such a 

performance index 

F = c-xk 

	

	 (6.2.29) 
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is maximized. 

In the above subsections we have considered the 

posed problem as that of optimal control theory. 	In the 

following discussions, we shall consider it as a problem 

of mathematical programming. 	Consequently, the conditions 

of optimality shall be established by means of Kuhn and 
51 

Tucker theorems together with the extensions due to Karlin 

and others.44 

We introduce a Lagrange function 

*ai-1  s270 = ZR(N) + E A(k)(R(k+1)-x(k)-1 (37(k),u(k))) 
N-1 

K=0 
(6.2.30) 

where 1-(k) is an nxl matrix. 

Theorem 6.2.6. 
A A 

If 7c 27.1 25t.  is the saddle point of the Lagrange 

function; i.e., 
A A A 	 A 	.. 

	

Ip(R s u l A) < gx,u,A) < tp(x2u,5) 	 (6.2.31) 

for any R, a and 71.(104EU, thenu is the optimal control. 

Proof: Using (6.2.30) the right-hand pair of the inequalities 

of (6.2.31) can be represented:
64. 

 
A 
	

N-1 a  T (A 	A 	 A 	A 
e (N) E X(k) R(k+1)-R(k)-f(x(k),a(k))) 

K=0 

a cT x(N) + E A(k) x(k+1)-x(k)-fa(k)sa(k))) 
N-1 _ T 	A 	A 	A 

K=0 

Since the inequality must hold for any X(k), it follows 

that x0q,u(k) satisfy the system of equations (6.2.28). 
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And for any R(k) and a( k) satisfying (6.2.28) we have, on 

the basis of left-hand pair of inequalities 
T- 	 Ta x( k) < c x( k) 	Q.E.D. 

If we assume that the function fKIR(W /0.1(10 

is differentiable with respect to x(k); then for 2,E,K 

to a saddle point to Ip(Tc,11,3,), it is necessary that the 

following conditions be 

gradA* 	= 0 1 

fulfilled. 
a 	a 

for R = x, 	I = X 	and 

gradx* = 0 u = u 	(6.2.32) 

a a - 4 
Ip(x2u2A) = 	max 	40(usx,A) 	(6.2.33) 

71(k)EU 

The first condition of (6.2.32) is equivalent to 

the requirement that x(k) and u(k) satisfy (6.2.28). 	While 

the second condition is equivalent to the difference 

equation, linear with respect to X(k): 
_ T 

X(K-1)4(k)-(grad A(k)f(k))T 	0 	(6.2.34) 
x(k) 

k= 02...2N-1 

From condition (6.2.32) after differentiation of 

the Lagrange function (6.2.30) with respect to R(N), it 

follows that 

X14-1 = -; 	 (6.2.35) 

Let us introduce now, the Hamiltonian function 

Hk  [R(k)311(k),X(k)] = XT(k).?k(R(k)111(k)) (6.2.36) 

Equations (6.2.28) and (6.2.34) may then be written in 
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terms of the Hamiltonian function 

7c(k+1) - X(k) = gradx(k)H(k) 
	

(6.2.37) 

T(k) 	= 	gradx(k)H(R) 
	

(6.2.38) 

with corresponding boundary conditions on R(o) and 

T(N-1). 
Condition (6.2.33) may be replaced by dropping 

the components which do not depend on u,- the requirements 

that Ti would supply the maximum of the sum 

N-1 , T 
- E x(k)f, x(k),11(k)..) 

.k=0 

which in turn may be replaced by the requirement of 

maximizatioa oj 

- ),(k)fk  [X(10„u()j 

Using equation (6.2.36.), the following conclusion 

is arrived at: 

Theorem 6.2.7. 
A A a  

For the point x, u, X to a saddle point of the 

function tp(R,a,K), it is necessary that the following 

conditions be fulfilled: 
a 	A 

(i) the sequences x(k), X, k = 0,...,N be 

solutions to the Hamiltonian system (6.2.37.) and (6.2.38). 
OW .1 NM 

(ii) at each time, k the function Hk(xsu,A) 

reaches a maximum for u- (k) = u(k). 
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If all the functions f 
k 
 are linear, then the 

A A 

saddle point always exists.
44 Consequently x, u, supplies 

the optimum for the initial problem. 	Furthermore, for 

linear discrete system, the conditions for theorem 6.2.7, 

equivalent to the maximum principle are necessary for 

optimality.
69 Kuhn and Tucker have shown that conditions 

of theorem 6.2.7, and consequently, the maximum principle, 

are also sufficient.
51 

The relationship between maximum principle and 

Kuhn-Tucker conditions has also been derived by A.I. Propoi 
66 

Mangasarian and Fromovitz,
57
have, on the other hand used 

the generalized Fritz John necessary optimality criteria 

to establish between maximum principle and mathematical 

programming. 

6.2.3.1. A General Formulation  

In this section, we assume a similar approach 

for the establishment of a theorem of the type of maximum 

principle, but in the presence of additional constraints 

on the phase coordinates and on the selection of controls 

at each time depending on the values the phase coordinates 

have reached at the times in question. 	The function to 

be maximized is also of a more general nature. 

Consider the problem: 
N-1 

Max 	F = 	E 	ek 	(k ) (k ) 	+ 1)* (x(N)) 
k=0 (6.2.39) 
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subject to 	R(,c+1) 	31(k) 	[Roo:ti(:k)] (6.2.40) 

k = 0 1,...,N-10  x(o)=g 

G k 	(.1t)] > 0 	k = 0,...,N 	(6.2.41) 

where e(k) is assumed to be concave 

1,37(k),i3(k)) = 0 k = 0,...,N-1 

(6.2.42) 

ii(k)EU 	k = 0,...,N-1 	(6.2.43) 

The following Lagrange function is introduced: 
N-1 r  

11,(x211,X)11,P) = 	E 	LX(k),71(4-i + eN(x(N) 
k=0 
N-1 

+ 	E 	71: (R(1:+1)-7c(k)-f ka(k),11(k)) 
K=0 

1   
+ 	E 	iik.Gicii(k)j+ N E1 pktIcP.(k),:(k) 
k=0 	k=0 

(6.2.44) 

It has been shown that the existence of a saddle 

point to the above Lagrange function, is guaranteed if 

fK is linear; and that at least one trajectory exists 

for which GK(x(k)) > 0. 15,44.  

The necessary and sufficient conditions for 
A A A A A 

x,u,A,p,p to be a saddle point may be formulated in the 

form: 

gradA 	= grad it = gradx V = 0 

U > 0; p grad
p 	

= 0; grad 	> 0 
A A A 	 A A A A A 

1P(x,u,A,p,p) = Max 	tp(x,u,X,p,p) 
u(k)CU 
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where all the derivatives are calculated at the point 
et a a a 

XsUdt,p,p. 

Condition (6.2.47) is equivalent to the requirement 

that the controls, u(k) supply the minimum to the 

Hamiltonian 

Hk = T1/4(k)T.I'k(Tc(k),ii(k))- ek(Tc(k),u(10) 

73(k)TLk  01(k),a(k)) 	(6.2.48) 

among all a(k), k = 

We see, therefore, that the assumption of the 

existence of a relationship between the saddle point of 

a Lagrange function and the maximum achieved in the initial 

problem similar to theorem 6.2.6. remains in force, even 

for the general case considered above. 	This observation 

leads to the following theorem: 

Theorem 6.2.8. 

For optimality of control u and trajectory x 

in the problem (6.2.28), (6.2.29) with a(1,c)613, (6.2.41) 

and (6.2.42) it is necessary that they, together with the 

Lagrange factors X,p,p satisfy the following relations: 

Tc(k+1) - x(k) = gradx(k)H1: 	o 	x(o) 
(6.2.49) 

A 
Xem.g(k.1) = 	gradx( k)  Hk  + p(k) grad Gk

(R(k)) 

(6.2.50) 

5:N-1 	= - grad IPH(x(10) 	(6.2.51) 
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Ti (k) 	> 	0 
	

(6i2.52) 

TICOPk(x(k)) = 0 
	

(6.2.53) 

G1  (k))> 0 
	

(6.2.54) 

If the .above conditions are satisfied, then 

the controls u(k) supply the minimum to the Hamiltonian 

H
k for a(k)01.1 k = 0,...,N-1, 

• 64 
A,A. Pervozranskiy has extended the above 

observations to formulate optimality conditions for 

His main conclusions 
. 

here are analogous to those• 	obtained by Dubovitskiy and 

Milyutin for the continuous case. 
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CHAPTER 7 

DECOMPOSITION 

7.0. 	Many practical mathematical programming problems 

are made up of almost independent sub-problems tied together 

with a common objective function and one or two sets of 

common constraints. 	Some of these problems are quite 

large, thus making heavy demand on computation time. 

A possible way of handling such large problems 

is to "decompose" them into the almost independent "sub- 

problems" and the 'master' problem which ties together the 

sub-problems. 	The sub-problems on the one hand, and the 

'master' problem on the other hand, are then solved in a 

way that takes into account the interaction between the 

two. 	After a finite number of iterative steps an 

optimal solution to the original problem is found (if one 

exists). 

The decomposition principle was inspired by 

Ford and Fulkenson for solving multi-stage commodity 

network problems; and developed by Dantzig and Wolfe 

to solve a certain type of large linear programming 

problems.
15 

Since then, other techniques for solving both 

linear and non-linear convex (and non-convex) programmes 

have been proposed. 	A number of these will be discussed 

here. 
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7.1. Dantzig-Wolfe Decomposition Principle  5'15  

Consider a general linear programming problem 

of the form 
r 

Maximize 	F(x) 	= 	E 	c.x. 
1=1 	J 

subject to 

(7.1.1) 

A ...  A 	... A 	A 	... 

A1x1  A2x2+ ...+ A.x.+...+A r  x r  b  0 

A1x1 = 171 
Ft23{2 = 17

2 u 

A.J X.J  = I
J

s. 
A r  xr  = 17r  (7.1.2) 

x. > 	0 (7.1.3) 
where b and 17j  are m-component vectors; A. (the common 

rows) and A. are m..n. matrices. 
J J 

Dantzig and Wolfe have shown how the above 

problem can be decomposed into a number of linear sub-

programmes, each of which is of a much smaller size than 

the original. 	The sub-programmes are coupled together 

by the first equation of 7.1.2 

The set of points 3i?0 which satisfy KiRj  = Ei  

is a closed convex set with only a finite number of extreme 

points. 	If the set is strictly bounded, it is a polyhedron; 

so that any point on the convex set can be represented as 

a convex combination of the extreme points. 

The extreme points of the convex set are 

denotedby11cj , k=1,.... ,h), j= 1,...r. 	Then any 

feasible solution, xj  to 	can be written 
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r 	h- 
= 	E 	EJ 	c.R. 

j=1 k=1 
p 	I  
ki 	gkj 

= 	1, 	j 	= 	1,...,r 

0 	j 	= 	1,...,r 

(7.1.7) 

(7.1.8) 

(7.1.9) 

(7.1.10) 

k: . 
Maximize F(pxj) 

subject to 	r 	h- 
E p 

j=1 k=1 

lEljP 
k=1 k. 

P ki > 

h. 
r 
, 

x. = E4 	k. xk. 	 (7.1.4) J 	k=1 	J - J 
• D

k. 
hj  i 	= 1 	 (7.1.5) E  k1 j 

e k. 	> 0 	k =-1,...phj 	(7.1.6) 
..7 - 

lience,anysolution. RJ , j= 1,...,r solving 

(7.1.1) through to (7.1.3) can be re-expressed in terms of 

The new (equivalent) problem is called the 

full master problem,  while p, 	are referred to as proposals  

from the sub-problem to the master problem. 	The set of 
hi 

constraints 	E.-., 
	

= 1 is sometimes referred to as 
k=1 -j 

convexity constraint  for the sub-problems. 

The set of constraints (7.1.8) through to (7.1.10) 

is eqUivalent to the constraints (7.1.2) and (7.1.3). 

Every feasible solution to (7.1.1) through to (7.1.3) 

determines a set of Pk. > 0 which satisfy (7.1.8), (7.1.9) 
J 

and (7.1.10); and vice versa. 	Note however that a set 

of Pk. > 0 satisfying (7.1.8),(7.1.9) and (7.1.10), 
3 

uniquely determines a set of Ri  satisfying (7.1.2) and (7.1.3); 
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whereas a set of x. which satisfy (7.1.2) and (7.1.3) may 

not uniquely determine pk  > 0 satisfying (7.1.8), (7.1.9) 

and (7.1.10). 	There will be at least one such p,.. 

If the optimal solution to (7.1.7), (7.1.8) 

(7.1.9) and (7.1.10) is p* , k = 1,...,h.• j = 1,...,r 
k;  

then optimal solution to tide original problem is 

EJ  p * xkj 	j = 1,...lr. (7.1.11) 
k=1 k. 

 

In general, the new linear programming problem 

(7.1.7 - 7.1.10) has the advantage of possessing fewer 

constraints than the original problem. 	Ho'ever, it (the 

new problem) usually has more variables; for the number 

of extreme points of the convex set of feasible solutions 

to A.R. = E. is bound to be greater than the number of 
J J 

components in x.. 

The main advantage of the new formulation 

(7.1.7 - 7.1.10) is that it is not necessary to generate 

every extreme point xk, before the problem is solved; _ j  

rather, these are generated when needed in the course of 

the solution. 

The extreme points are generated as follows: 

Let the constraints (7.1.8) and (7.1.9) be written as 
r hj  
E 	p .  J=1 k=1 k. k. (7.1.12) 

J 
we see that 

q kj  = [A.c T  and II= P,11] T  
j 
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where ej  is the jth unit vector j = 1,...,r, and 1' 

is the sum vector having r components. 

Suppose that an initial basis, B, for (7.1.12) 

	

exists, where S is an (m+r) matrix. 	Let b  denote the 

vector containing basic variables and cb  a vector containing 

prices in the basis. 

- - - 	 - Let a = al'a2 T where a1 contains the first 

m components of a and a2  contains the last r components. 

Then the relative cost is 

	

j J 
	

= A 	"'1... 	 A 

c B qk3  - cx 

	

k. 	-b 	. 	j k. 
J 

A 

	

(a- lAj 	ej)21k. 	a2j 	(7.1.13) 

where j2j  is the jth component of a2. 

To test whether the given basic feasible solution 

is optimal, min ck  must be computed over all 11,j; i.e. 
- j  

min ck 	= min min(ak  ), min(ct  )...min(ck  ) (7.1.14) 

	

k 	1 	k 	2 	k --r 

If (7.1.14) is non-negative, the given solution 

is optimal, otherwise more iterations are made. 

Observe (from 7.1.13) that for a given j, min(ck.) 
k J 

occurs at the extreme point of the convex set of feasible 

solutions to AjRj  = Ej. 	Consequently, since each extreme 

point x. is a basic feasible solution to TjRj  = Gj, 

mink(e_ ) is a2j  plus the optimal value of the objective 

function for the linear programming problem 
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Min 	fj  = 	;.
J 
 )7c

J
. 

Subject to = E. 
J 	J 

x.
J 
 > 0 	 (7.1.15) 

Moreover, an optimal basic solution to (7.1.15) 

gives an extreme point x i, for which the corresponding 
-3 

c k, has the smallest value over 1. 	This x.k  can then be --. 
A 

used to generate the corresponding Ailv  ci% and q- .k.  

Problem (7.1.15) is the sub-problem.  There 

are r such sub-Problems for.the 'general case considered. 

To determine min (c k,) over all k,j,r linear 

programming sub-problems of the form (7.1.15) are solved. 

Let f* be the optimal value of f. for the jth such sub-

problem. Then 

Min (c if.) 	= Min (1.14  + (717 2j)  
all 14: ...- 2j 	j 	3  

= f* + a2s 	(7.1.16) 
J 

Let xrs  be an optimal extreme point of (7.1.15) 

for j = s; then qrs = EA'sxrs'es] enters the basis at the 

next iteration, and the price associated with qrs- 	
is 

A 
c sx rs. 	Thus a vector to enter the basis has been generated. 

- - We now return to the master problem; new values of B a 

and b- are obtained. 	These are then used to obtain a new 

set of objective functions for the r sub-problems of the 

type (7.1.15). 	The solution to the r sub-problems give 

the next vector to enter the basis in the master problem 
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(7.1.7 through to 7.1.10). 	This process is continued 

until an optimal solution is obtained. 

Note that from the start, we do not have to 

store the full master programme (7.1.7 - 7.1.10). 	Rather, 

all the columns are dropped, except those in the basis and 

the new columns 	qrs) added in the course of the 

iterations. 	A programme thus obtained is called the 

restricted master programme. 

The theory of the simplex method guarantees that 

an optimal solution will be obtained in a finite number 

of steps. 	Either the standard or the revised simplex 

method can be used to solve both the master and the sub-

problems. 

Dantzig and Wolfe used the revised simplex 

algorithm. 	This algorithm has been used successfully 

for solving a large variety of large linear programming 

problems, especially for the case with very few common 

rows. 

However, as the number of common rows increases, 

the problem becomes more difficult; and no systematic 

rules are available for tackling such problems. 	Here 

is an area where further research work is needed. 
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7.2. 	Other Methods for Decomposing Linear Programming 

Problems: 

Apart from the Dantzig-Wolfe "decomposition 

principle" several other methods have been developed. 

Some of these are briefly considered here. 	They include 

Beale's 'pseudo-basic' variable method, Abadie-Williams 

'dual and parametric' method, decomposition by dynamic 

programming and Kron's method of diakoptics. 

(a) 	Beale's pseudo-basic variable method:
39 

Whereas the Dantzig-Wolfe algorithm solves the 

primal problem, Beale's algorithm is designed for a dual 

problem of a more specialized structure. 

The essential idea of Beale's method is that the 

linking variables are regarded as parameters. These 

parameters are assigned specific values, which then change 

after each pivotal operation. 

The method of solution is essentially simplex, 

except for the following modification. 	When, after a 

number of iterations, one of the basic variables becomes 

zero, the basic variable is not made non-basic in place 

of the parameter, as this would spoil the special structure 

of the problem. 	Instead a transformation of the parameter 

(which would have otherwise entered the basis) is made 

whereby if one of the other parameters is changed, the 

zero-valued basic variable is not changed (i.e. not 
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removed from the basis). 

The zero-valued basic variable is referred to 

as "pseudo-basic": hence the name of the algorithm. 

Not much computational experience with the 

method has been reported, although Beale claims that it 

would be more efficient than the Dantzig-Wolfe method 

for certain specially structured problems. 

(b) The Dual and Parametric Method: 39  

Abadie and Williams have also proposed a dual 

decomposition algorithm. 	It differs from the Dantzig- 

Wolfe method in the manner of choosing the vector to 

introduce into the basis. 	The latter does the selection 

at the sub-problem level, while the Abadie-Williams method 

employs a selection procedure which does not require the 

vectors (to be selected) to be explicit. 	Here lies 

the advantage of the Abadie-Williams technique; for it 

allows certain parametric linear programmes to be solved 

by decomposition. 	A detailed exposition of the method 

may be found in 3.9  

61 
(c) Decomposition by Dynamic Programming: 

G.L. Nemhauser has proposed a decomposition 

scheme derived by a dynamic programming approach. This 

results in a series of parametric linear programmes whose 

recursive solution yields the solution to the original 
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programming problem. 	It has the advantage that each 

sub-programme need be solved only once. 

Consider a parametric linear programme of the 

original problem: 
r-1 

Max: F (Y 1) r-1 r- 	E c.x. 
j=1 J  J 

(7.2.1) 

subject to 

A1x1 + 
^ _ 

+ 	+ A.x. + ....+Ar_lxr_i  = Y 
J J 	r-1 

A1x1 

A2x2 	 b2 

TjRi  

•Vb 

Ar-1xr-1 = br 

(7.2.2) 

J — 

	

> 	 (7.2.3) 

From the theory of parametric linear programming 

it cm be established that Fr-1 is a piecewise linear, 

	

concave functionof Yr_i. 	The points at which Fr-1 
changes slope correspond to the values of Yr-1 at which 

there is a change in the basis required to maintain primal 

feasibility. 

Suppose that Fr-1 were known for all values of 

Yr-1 which satisfy 
A 

... 

Arxr + Yr-1 = B 	(7.2.4) 

	

Ar  xr 	= Er 	(7.2.5) 

	

xr 	> 0 	 (7.2.6) _ 
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Then from the dynamic programming principle of 

optimality (Chapter 6) it follows that 

Fr  = Max 	crxr  + Fr-1(Yr-1) 	(7.2.7)  

subject to (7.2.4),(7.2.5) and (7.2.6). 	The solution 

of equation (7.2.7.) requires the maximization of a 

pricewise linear constraints. TO solve (7.2.7) as a linear 

programme, the pricewise lint.:x functions are replaced by 

smooth linear functions. 

The sub-programme from which Fr-1(Yr-1) is 

determined can be decomposed in the same way as the original 

problem. 	Applying this decomposition scheme r times, the 

following recursion relations are obtained. 

F.(Y.) = Max 
x. Y. J-1 

c.x. 
J J 

+ F.J-13 (Y.-1 ) 

subject to 
_ 

A. x. + Y. 	= Y. 
J J 	J-1 	J 

A 
J  . R 

J  . 	
= 7  

J
u. 

x. 	> 0 	j = 1„...r 	(7.2.8) 

where Fo  = 0, Yo  = 0 and Yr  = b 

Each of the r successive linear programmes 

(exceptthefirst)have(n.+m)variablesand(m.+m) 

constraints. 	In each sub-problem, however, additional 

variables and constraints are reauired to take care of 

the piecewise linear portions of the objective functions. 
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The first problem (i.e. j=1) contains ni  

variables and (mi+m) constraints; and there are no 

piecewise linear functions. 

For j = 	Yj  are parameters, so 

parametric linear programming algorithm must be used. 

However, since Yr  = b, the last optimization need not be 

parametric unless a sensitivity analysis or b is desired. 

A major advantage of this method is its theoretical 

simplicity. 	Similar schemes for decomposing quadratic 

and convex programming problems are possible extensions. 

However, no experience with this method on large 

programmes is available, since the method has only been 

proposed quite recently; and it is hoped thtt further 

research in the field will be forthcoming. 

(d) 	Of some particular interest to electrical 

engineers in a decomposition procedure proposed by 

G. Kron 
50 
. 	This is based on Kronts extensive work on 

the application of tensor methods to piecewise solution 

of large electrical networks: the interconnected system 

is first 'torn' into small subdivisions, each of which 

is solved as if the other ones did not exist. 	The 

solutions to the subdivisions are then combined in a 

systematic manner and modified to take the interconnections 

into account. 
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Kron has developed the idea of meshes and 

junction pairs, which together give rise to the coneept 

of orthogonal networks. 

The decomposition procedure proposed by Kron 

is based on the topological analogue between the concept 

of orthogonal networks and the general equations of the 

linear programming problem (at least for the transportation 

or assignment type problems); and on the equivalence between 

the Simplex method and the process of orthogonal trans- 

formations. 

Kron has applied the procedure to obtain a 
0 

solution to a simple transportation problem 
5 
 . 	But as 

he himself admits, a lot of research effort is still 

required before his procedure can be systematized to a 

worthwhile algorithm capable of handling a linear prog-

ramming problem of a meaningful size. 

7.3. 	Decomposition of Non-Linear Programmes  

Decomposition of non-linear programmes is receiving 

more attention, now that efficient methods of solving 

non-linear programming problems are available (Chapter 5). 

Notable contributions in this field are due to Rosen, 

Fromovitz and Zangwill.
82 

Rosen has successfully applied his method of 

'gradient projection' (Chapter 5) to 'partition' a 
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non-linear convex problem in linear constraints 

He has also proposed a way of optimizing a general 

convex programming in convex constraints39. 

In a recent study Fromovitz shows that a 

'randomized strategy'; e.g. a procedure whereby one chooses 

a mixture of different solutions with specified probabilities 

may be better, on the average, than any non-randomized 

strategy, especially if some constraints need not he 

satisfied for each individual component of the strategy 

provided they are satisfied on the average31. 

According to this approachx 
of 
decomposition the 

common row constraints are treated as ones that need only 

be satisfied on the average. 	On the other hand, the 

constraints within the sub-problems must be satisfied for 

each component of the strategy. 

Fromovitz's work is of theoretical interest, 

especially for cases involving decomposible, non-convex, 

non-linear programming problems. 	But it is hoped that some 

of these ideas will soon be incorporated into an effective 

computational algorithm. 

Zangwill, in his recent paper, has proposed two 

algorithms that may be useful in solving very large non- 

linear programming problems. 	Instead of solving the given 

problem, several small non-linear programming sub-problems 

are solved. 
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An important feature of the algorithms is that, 

under moderate regularity conditions, if the original 

problem has an optimal solution, only a finite number of 

sub-problems need be solved. 

These are essentially large-step algorithms 

(methods of feasible directions - Chapter 5). 	However, 

the constraints are classified into 'tight' or 'slack' 

ones. 	Given any feasible point x, if for some j, 

Gi(R) = 0 then the constraint is said to be 'tight', 

on the other hand if G.(37) 	0 the constraint is said to 

be black'. 

Let a constant € > 0 be defined; then any 

slackconstraintsuchthatG.(7c) <6 is said to be 'close'. 

Using the above classification of the constraints 

a general procedure of the algorithms is as follows: 

Using the method of feasible directions, a sequence 

-   of feasible points x1 	2 , x 	k 
if:3 generated. 	At xk  

the constraints are checked to see which ones are tight 

and which ones are close. 

The sub-problem of optimizing the original objective 

function but subject to only those constraints that are tight 

or close at x -k are solved. 	An optimal point to the sub- 

problem is thus obtained. 	Point Xkl-1  is then generated 

for the original problem and the process of sub-problem 

optimization repeated. 	The process converges after 
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solution of a finite number of sub-problems. 

Although no large scale problems have been tried, 

this method appears to be quite promising. 	But as is 

the case with many other methods of feasible directions, 

convergence may be hampered by 'jamming'. 	This may 

occur when the algorithm repeatedly leaves a boundary, 

almost immediately bumps into another boundary, and then 

returns to the first boundary. 	Alternatively, the same 

sub-problem may be solved over and over again. Further-

more, jamming may result any time when, in determining 

the direction of move, the boundaries in the immediate 

neighbourhood are neglected. 

Several techniques of avoiding jamming have been 

proposed. 	The E  -perturbation is such an approach: the 

boundaries in an g > 0 neighbourhood of the point are 

considered when determining the next direction to move. 

Consequently, a path for at least a distance of 6  from 

the boundary is assured. Any path with a distance less 

than E  from the boundary is thus avoided. 
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PART 	II 

Applications  
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CHAPTER 8  

OPTIMAL OPERATING POLICIES OF WATER RESOURCES 

In general water resources from a reservoir 

can be used in many different ways for different beneficial 

purposes: e.g. hydro-electric energy generation, irrigation, 

flood control and protection, and improvement of navigation. 

With all these uses in mind, it becomes necessary to 

determine the 'best' method of operating the reservoir in 

such a manner as to derive the maximum overall benefit 

(economic and/or social) subject to the physical or 

operating limitations of the reservoir in question. 

In this chapter, simple mathematical models 

for digital computer studies are developed to elucidate 

the relations between the variables pertaining to 

irrigation and hydro-electric energy uses. The models 

incorporate some of the chief factors affecting the 

efficiency of a multi-purpose operation for hydro- 

electric energy generation and increasing agricultural 

productions. 

A method of 'feasible directions' (Chapter 5) 

is used for the solution of the models. The application 

of a dynamic programming algorithm (Chapter 6) to the 

problem is also discussed. 

In the last sections of the chapter some 

modifications and elaborations to the model considered 
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are discussed, including extensions to account for 

stochastic streamflow, storage capacity and draft from 

the reservoir. 

8.2. 	Statement of the Problem  

Three simple models will be used to illustrate 

"complementarity" between hydro-power production and 

agriculture water supply. 

The objective here is to determine a satisfactory 

compromise between electricity and agricultural production 

based on economic and hydrological analysis of the costs 

and benefits associated with each demand. 

The degree of complementarity attainable will, 

of course, depend upon topographic, hydrological and 

meteorological conditions together with the economic 

factors prevailing in the particular country or region 

considered. 	Some of these include the size and shape 

of the reservoir; the magnitude of the natural inflow and 

how this varies from season to season, and from year to 

year. Furthermore maximum agricultural productivity is 

possible only if the plants are watered at a rate which 

nearly approximates the rate of evaporation; the rate 

of evaporation is in turn determined by the meteorological 

and climatic conditions which again vary from season to 

season. 	Electrical energy production is, on the other 
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hand, determined primarily by economic considerations: 

e.g. the type of industries; and the degree of industrial 

development of the country or part of the country in question; 

and the prevalence of other forms of primary source of 

energy (oil or gas). 

In most cases9  electrical energy demand is 

unform throughout the year. 

In general, full cornpiementarity between 

agricultural and power generation is not attainable because 

the seasonal water demand patterns for both uses are 

different. 

For the models considered the following conditions 

prevail. During the warm period when crop growing 

conditions are favourable, evaporation rates are high; 

consequently, irrigation water requirements are large. 

The demand of electricity, on the other hand, does not 

change appreciably from season to season. 

In addition to the above difference in demand 

patterns, the distribution of river flow is non-uniform 

throughout the year. Thus in a typical year about two- 

thirds of the annual flow occurs in August, September 

and October. 	In the April, through to July period, 

when conditions for crop growth are favourable, the 

natural river flow is low. 	Table8-1 illustrates 

percentage river-flow distributions, together with 
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demand patterns for electric energy production and 

irrigation respectively. 

8.2.1. 	Model 1: 

(a) Essential Structure: The model considered here 

is a very simple one with a single reservoir. 	Stored water 

passes through the turbines and releases electrical energy. 

The water then flows downstream and is diverted through 

the headgates of the irrigation system. 	A schematic 

diagram is given in Fig. 8.1. 

(b) Assumptions: The model has been formulated 

with the following assumptions in mind: 

(i) Quantity of irrigation water is preassigned• 

(ii) Demand for electricity is uniform throughout 

the year. 

(iii) Natural inflows into the reservoir are known 

for the entire period of study. 

(iv) The reservoir storage and natural inflows 

are such that the demand for both electricity and irrigation 

can be met throughout the period of study. 

(v) Depletion of water through evaporation is 

accounted for. 

(vi) The objective function is a quadratic function. 

(vii) The average head on the turbines is a known 

preassigned value. 
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(viii) Effect of head variations is neglected. 

(ix) The volume of water released during any 

period is less than or equal to the contents of the 

reservoir at t1-2-: beginning of the period plus the flow 

into the reservoir during the period. 

(x) The contents of the reservoir at the beginning 

of any period is less than or equal to the amount left 

over from the previous period. 

(c) Constraints: Several physical and 

operational constraints are applicable to each period of 

study. 	These include: 

(i) The volume of water released from the reservoir 

must be sufficient to meet the period's irrigation demand, 

where the latter is a proportion, at, of the annual 

irrigation demand - values of at  are given in Table 8.2. 

(ii) The amount of electricity generated at 

each period, t, must be at least a specified proportion, 

St, of the annual energy output E, where the latter is 

expressed in terms of units of river flow. 	The twelve 

values of f3t are given in Table 8.2. 

(iii) The sum of the volume of water released 

from the reservoir for each of the periods must be 

equal to a preassigned value, this being the total volume 

of water allowable for the entire period of study. 

(iv) Volume of water released at any period 

must take non-negative values only. 
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(d) Problem Formulation: With the above 

assumptions and constraints in mind the mathematical 

programming problem may be stated as 

Maximize : K1E 	K2E
2 	 (8.2.1) 

subject to : 	x. > a1A 	 (8.2.2) 

x.1 	> 	1 (K1  E -4,K2E
2) 	(8.2.3) -  

Ex.1  = 80 	 (8.2.4) 

x.1  > 0 	i = 1,...,12 	(8.2.5) 

where E is the total electric energy demand for the year; 

A is the level agriculture required; xi  the release during 

month i; ai  and Si  represent distribution coefficients of 

demand for irrigation and po-er demand respectively; Kl  

and K2•_ areconversion factors which transform power demand 
56 

in kilowatt-hours into units of river-flow. 

Seven levels of A were used ranging from 50 m.c.m. 

to 80 m.c.m* 

It should be emphasized that the numerical values 

of a. and Si, i = 1,2,...,12 are only rough estimates of 

the demand patterns. 	These would naturally vary depending 

on the type of model considered. 

8.2.2. 	Model 2:  

Model 2 is essentially similar to Model 1 except 

that in the former the objective function has been expanded 

* milliards of cubic meters. Values refer to those of 

Aswan Dam, Egypt. 
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TABLE 3.1.  

Seasonal Distribution of Inflows to the Reservoir and  
Water Demands for Irrigation and Power Generation for the  
Vlodels investigated*  

Season 	Inflow to 	Hydro-power Irrigation 

	

reservoir. 	demand 	demand 

January-March 9 28 15 

April-June 3 25 34 

July-September 53 22 35 

October-December 35 25 16 

* Figures represent percentage of annual supply and 
demand. 
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TABLE 8.2.  

Distribution Coefficients of Water Demand for Irrigation 

and for Electric Energy: (values of 13t  and at). 

Period 
	

Irrigation Coeff. 	Elec. Energy 

Coeff. 

1 .027 .093 

2 .033 .094 

3 .066 .093 

4 .101 .089 

5 .149 .083 

6 .138 .078 

7 .114 .074 

8 .101 .072 

9 .094 .073 

10 .081 .078 

11 .046 .084 

12 .026 .089 
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Irrigation Requirements 
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Hydro-power 
Demand 

Generating Plants 

vFlow Downstream 

Fig. 8.1. Schematic Outline of the System for Models 
1 and 2. 
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to include a performance index of the benefit which 

accrues from agricultural production. 	The problem can 

then be formulated as: 

, Maximize 	paA + pe(KiE + K2E2  ) 	(8.2.6) 

subject to 	
i 

)c.1  > c4A 	(8.2.7) 

xi 	> 0(K atic2  BO
2  

1 1 	(8.2.8) 

x.1  = 80 i = 1,2,...,12 	(8.2.9) 

where pa  and pe  are preference coefficients for agriculture 

and hydro-power respectively. 	Several numerical values 

of pa  and pe  have been used. 	Here again, it must be 

emphasized that these values are not definitive: rather 

they are used to illustrate the technique of analysis. 

The preference coefficients pa  and pe  are 

proportional to the benefits arising from unit increment 

in agricultural and power production respectively. 	Clearly 

very many variations of pa and pe 
may be used depending 

on the relative importance attached to either agriculture 

or electrical energy production. 	For example, several 

different values are used and the implication of any 

particular choice is examined. 

8.2.3. 	Model 3:  

This model is essentially more complicated than 

the above two. The assumptions and constraints discussed 

in section 8.2.1. still hold - together with several 

other constraints to be discussed below. 
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The object here is to investigate the feasibility 

of increasing the complementarity between agricultural and 

power production by means of a down-stream storage. 	A 

portion of this storage could be used to regulate the flow 

released from the main reservoir. 	Thus in this example 

water released during the winter months to meet peak power 

demand can be stored (probably underground) and then pumped 

during spring and summer when needed for crops. 

Fig. 8.2. is a schematic illustration of the 

new model. 	represent flow routed from the main 

reservoir, through the generators, to the down-stream 

storage during period i; ri  is the volume released from 

the down-stream storage for irrigation during period 

i;x. is the volume released from the main reservoir and 

routed (via the power plant) straight for irrigation. 

(a). Further constraints: 

Apart from the set of constraints outlined in 

section 8.2.1.c, the following restrictions are imposed. 

(i) the total flow through the generating plant 

during period i is xi  + 

(ii) the total volume of water for irrigation 

is x. + r.. 1 

With all the above factors in mind, the task is 

to determine, for a given set of benefit and cost 

coefficients, irrigation and power output, and routing 
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schemes that optimize the net benefits. 	From the 

corresponding values of Ei  and r., the approximate 

capacity of the down-stream storage can be determined. 

The mathematical programming formulation is as 

follows: 

Maximize Pa  A 1-  PeE - Pw  Lri 	(8.2.10) 

subject to 	xi  + r. > 0 a.1A 	(8.2.11) i —  

xi  + 	> 0 	OE i=1,..112 

12 	12 	(3.2.12) 

E 	i - E ri = 0 	(8.2.13) 
1=1 	i=1 

12 	12 
E x. + 	E E •i  = 80 	0.2.14) 

1=1 1 	i=1 

j..., r1., x. 	> 0 i = 1,...,12 	(8.2.15) 1 — 

where E = k1E + k2E
2  . 	A range of possibilities is 

examined by varying the cost and benefit coefficients. 

The coefficient pw  is the unit cost of wells, pumps and 

any other item associated with supplemental storage. 

8.3. 	Method of Solution  

All the three models were solved by a method of 

feasible directions. A general version of the method is 

discussed in Chapter 5, section 5.3.2.10. A common feature 

of the three models is that all the constraints are 

linear. 	Although a quadratic cost function has been used 

for the present discussions, a more ncn-linear function 

- 183 - 



Inflows 

Main Reservoir 

Generating plants 

E 1,, 

E 

(312E,) 

Irrigation 

Requirement 

2 Ile 

a A 
a1A 

al2A  2 -4. 
• 
• 
• 

l2 

Hydro-electric 
Power Demand 

Loss 

Possible 
1 Down-stream 1.  Storage 

rlsr2* 	12 ..r 

Return Flow Downriver 

= kiE k2E2  
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may be used without loss of generality. 

The pertinent features of the method are summarized 

in the flow-chart in Appendix A2. This version handles only 

linear constraints, and is based on the survey paper by Dorn.20  

An initial feasible solution may either be provided, or may 

be computed by the programme. 

Like many other non-linear programming techniques, 

this method will only compute a local minimum (maximum). 

Of course, if the function to be optimized is convex (concave), 

then the local optimum is also the global optimum. 

All the inequality constraints are transformed 

into equality ones by the addition of appropriate 'slack' 

variables. 

The programme has been written in Fortran IV code,. 

and successfully run on the IBM 7090, 7094 and 360 digital 

computers. 

8.4. 	Results: 

Optimal operating policies of Model 1 are given 

in Table 3. Values of irrigation target, A, ranging from 

50 to 80 m.c.m. have been used. 	The results are also 

sketched in Fig. 8.3. 
A 

The values of E in Table 3 all fall on the segmen- 

ted line BC...LM in Fig. 8.3. 	The vertices of this line 

intersect lines from the origin with slopes cti/ i. 	Any 
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point on the segmented line may be viewed as representing 

a feasible and optimal mix of electric power and agricultural 

production. 	For example, point J represents an optimal 

operating scheme in whichA= 54.4 m.c.m. andE= 76 	 m.c.m.8 

Any point falling below and to the left of the 

segmented line represents a feasible but non-optimal policy: 

whereas any point above and to the right of the line is 

outside the feasible region. 

Point B represents a single-purpose agricultural 

production with hydro-electric power generation treated as 

supplementary; on the other hand point M indicates a 

single-purpose hydro-electric energy generation with 

agriculture treated as residual. 

Optimal operating policies for Model 2: with various 

values of preference coefficients are given in Table 4. 

In Fig. 8.3. point M' represents the operating 

policy that maximizes the function F = 2 x A + 10 x n; 

point 	for F = 4 x A + 10 x E; point H' for F = 5(A + E) 

and F = 6.86 x A + 5.85 x E; and point J for F = 6.8 x A + 

9.85 x E. 

The dashed lines Fig. 3.3. have negative slopes 

for the five values of Pa/Pe. 	Lines parallel (to the dashed 

lines) are tangent to the segmented line at points M', K, 

H' and J respectively. 	A desirable feature about Fig. 8.3. 

is that for any values of pa and pe, the point of tangency 
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of a straight line (parallel to the negative slope of 

p /pe  ) with the segmented line indicates the optimal values 

of A and E that maximizes the preference function 

F = paA + ceE. 	This provides a convenient method of 

investigating the implication of implementing any particular 

economic objective. 	Thus if pa/pe  is near zero, points 

near M will be indicated; whereas if pa/pe  approaches a large 

positive value, points near B are indicated. 

The figure (8.3) has been constructed along the 
75 

lines indicated by H.A. Thomas et al. - 

We see that for Model 2 with the preference 

function 6.8 x A + 9.85 x E , the total benefit in multi-

purpose operation is proportional to 

6.8(54.388) + 9.35(76.872) = 1126.998 

If, however, there had been full complementarny,the full 

potential of the water resource system for both electrical 

energy and agriculture would be realized; and the total 

benefit in multipurpose operation would be proportional to 

6.8(80) + 9.85(30) = 1432 

So that the actual degree of complementarity is 1126.938/1432 = 

78.5% for this particular preference function. 

Optimal schemes for Model 3 are given in Table 5. 

For small p s  the objective function is maximized for both 

irrigation target, A and hydro-power generation equal to 

80 m.c.m. - point Q on Fig. 8.3. 	With all the other 
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TABLE 3 

Monthly Releases at Various Levels of Irrigation  

Requirements to Maximize Electric Energy Production. 

Month x(mcm) A*=50 55 60 65 70 75 80 

Jan x1 7.334 7.081 6.635 6.038 5.240 4.316 2.822 

Feb x2 7.413 7.158 6.706 6.103 5.300 4.362 2.997 

Mar x3  7.366 7.112 6.663 6.164 5.263 4.950 5.280 

Apr. x4 7.013 6.776 6.849 6.565 7.070 7.575 8.080 

May x5 7.450 8.195 8.940 9.86510 43011.17531.920 

June x6 6.900 7.590 8.280 8.970 9.60010.35031.040 

July x7 5.842 6.270 6.840 7.410 7.980 8.550 9.120 

Aug. x8  5.667 5.554 6.060 6.565 7.070 7.575 8.080 

Sept. x9 5.255 5.170 5.640 6.110 6.580 7.050 7.520 

Oct. x10 6.140 5.930 5.555 5.265 5.670 6.075 6.480 

Nov. x11 6.614 6.387 5.984 5.446 4.726 3.687 3.680 

Dec. x12 7.013 6.776 6.349 5.780 5.014 3.924 2.837 

± xi  79.999 79.999 80.01180.00179.93379.53979.836 

K1E + K2E2 79.030 76.309 71. 1493 65.06756.146745.78927.55 

* Irrigation Requirement is in milliards of cubic metres 
per year. 
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TABLE 4  

Optimal Cutputs for Irrigation and Hydro-power and 
Schedule of Flow Releases  

Economic Objective 

Optimal value of 

Optimal value of 

Benefit 	A 
F =paA + peE 

pa  = 	2 

pe = 	10 

A = 45.393 

E = 80.001 

897.000 

4 
10 

50.893 

78.721 

990.784 

5 
5 

61.547 

70.003 

657.75 

6.8 
9.85 

54.383 

76.872 

1126.998 

6.36 

5.85 

61.547 

70.003 

831.731 

Month Flow 
 Release 

Jan. x1  7.482 7.305 6.496 7.134 6.496 

Feb. x2 7.562 7.384 6.566 7.211 6.566 

Mar. x3 7.514 7.337 6.524 7.165 6.524 

Apr. x4  7.159 6.990 6.216 6.826 6.216 

May x5  6.764 7.583 9.171 8.103 9.171 

June x6 6.264 7.023 3.494 7.505 8.494 

July x7 5.942 5.802 7.016 6.200 7.016 

Aug. x8  5.781 5.644 6.216 5.512 6.216 

Sept. x
9 

5.361 5.235 5.735 5.112 5.735 

Oct. x10 6.264 6.112 5.439 5.973 5.439 

Nov. x11 6.748 6.590 5.859 6.434 5.859 

Dec. x12 7.159 6.990 6.216 6.826 6.216 

Annual Ex. 80.0 79.995 79.998 80.001 79.996 
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TABLE 5 

Optimal Operating Schemes for Regulation of Flow  

pw 

Month 

0;  2; 8 q' 	9 	5 9.7; 	TO: 10.5 
xi r. 1 i  x . 1 r. 1 x. r

ii  i r. 1 x. 1 . 1 ...1, 
Jan- 2.580 4.970 7,040 .298 7.550 6.496 
Feb- 3,060 4,660 2.520 5.020 7,620 6,566 
March 5,600 2.00 5,010 2.380 5.350 2.280 6,524 
April 7.200 1.170 7.040 .660 7.150 6.216 

say. 6,750 5,550 6,410 4.760 6.560 3.820 9.171 
June 6.450 5.120 6,270 4.360 6,140 3,530 8.494 
July 6,070 3,480 5,880 2.860 5.920 2.150 7.016 

Aug' 5.900 2,500 5.810 2,010 5.820 1,345 6.216 
Sept. 6.040 1.830 5,910 1.365 5.350 .712 5.785 
Oct. 6.460 .420 6,290 5.760 .555 5.439 
NOV. 4.100 2.700 3.560 3.120 3.360 3.950 5.859 
Dec, 2,240 5.040 2,160 5.200 1.860 5.300 6.216 
Annual 60.18 19,800 19.840 63.930 16.018 16.015 68.420 11 11.557 79.996 0 0 	. 
6,, 
b 80. 80 80 70.003 

A 	• 80. 76.8 70.05 61,547 

P 	' 1016.8 958,8 851 111111 843 842 	1.4 R3,4 _45 R31-732 

Pa  = 6.86 
	

Pe  = 5.85 

F = 	pa A+ Peg - Pw  Er. 
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coefficients (pa  and pe) kept constant increase in the value 

of pw  up 8 has no effect on the values of xi, 	and ri. 

The value of the objective function is, of course, reduced 

(see equation 8.2.10). 

For values of pw  = 9.0 and 9.5 respectively the 

optimal operating point is R; while for values of 9.7 and 

10 respectively, the operating point is S. 	For values of 

p = 10.5 and above 	 / E.1  r. = 0, i = 1,...12 and the operating 

point falls on the segmented line BC...LM. 

From Table 5 we note that the months in which ri  

is positive are consecutive. 	So that Eri  represents both 

the volume of water to be released from storage and the 

total volume required for regulation. 	As pw  is increased 

the volume of water required for storage decreases from 

19.184 x 103  cubic metres (at point Q) to 16.015 x 103  cubic 

metres (point R) then to 11.557 x 103  cubic metres and finally 

to zero. 

The above simple computational examples indicate 

how mathematical programming, and especially the method of 

feasible directions, may be usefully employed as an aid in 

determining the best operating policy of a reservoir for 

electrical energy and agricultural production. 	Although 

the models considered are simple, this approach can provide 

quite useful first approximations to the actual operating 

conditions. 
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The assumption that stream flows can be predicted 

with certainty is a very strong one; and is in fact never 

realized in practice. 	The inclusion of the desirable 

degree of uncertainty will, of necessity, complicate the 

objective function and/or the constraints, especially for 

large problems. 	In the next section a formulation that 

takes into account the said uncertainty is suggested. 	The 

model represented is suitable for solution by the method of 

dynamic programming discussed in Chapter 6. 

Further refinements towards a more realistic 

model should also include probability relationships for 

storage of water in the reservoir(s) and for drafts; 

introduction of head on the turbines as a variable; 

introduction of flood protection and control as a purpose 

with economic benefits. 	These will naturally result in 

a non-linear objective function with non-linear constraints. 

Many new variables will be introduced and the number of 

constraints increased. 	The problem may then be solved by 

any of the non-linear programming problems discussed in 

Chapter 5 or by a version of the method of feasible 

directions that incorporates non-linear constraints. 

8.5. 	A Possible Solution by Dynamic Programming  

The objective here is to indicate - qualitatively - 

how a model similar to Model 3 may be formulated and solved 
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by the method of dynamic programming. 

A schematic diagram of the model is shown in 

Fig. 8. 4 . It is slightly more complicated than Model 3: 

the time lag between the time when water is released from 

reservoir 1 and the time when the water 18 available for 

utilization in the lower reservoir is taken into account. 

Furthermore, there is a second stream flow (qi) into 

reservoir 2. 	In addition, the quantities of water in 

both the reservoirs enter into the computations directly. 

8.5.1. 	Problem Formulation: 

The two reservoirs are connected in series, with 

yi  m.c.m. entering reservoir 1 at time interval i. 	The 

capacity of reservoir 1 is S1  and sil  (m.c.m) (0 < sil  < S1) 

is stored at the beginning of period i. 

The capacity of reservoir 2 is S2 and the corres- 

ponding volume of water stored is sit  m.c.m. 	In addition 

reservoir 2 is replenished by m.c.m./season, part of which 

isreleasedfromreservoir1(C.)and the other part (q1) 

by natural flow. 	The time lag effect is allowed for by 

assuming that ai  m.c.m.. of water will be available for use 

at the (i+l)th sub-interval. 

As with the previous models (1,2 and 3) the purpose 

of this particular one is twofold: to generate electricity, 

and to supply water for irrigation. The net benefit from 
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both purposes is to be maximized. 

The vector describing the state of the system has 

the following components: 

(i) amount of water stored in reservoir S1  

(ii) amount of water stored in reservoir S2 

(iii) amount of water in transit 

Our task is then to establish an optimal policy 

of the system during a long period of time, starting in 

any state of the reservoirs and the replenishment capacity. 

This policy involves three decisions to be taken into account 

at the beginning of the interval: xi, E.a.  and n.. 

8.5.2. 	Dynamic Programming Formulation  

The method of dynamic programming has been discussed 

in Chapter 6. 	We wish to show how the method may be used 

to formulate the above problem. 

In this problem the three decisions xi, 	and ni  

constitute a policy vector 6=(x,E,7r). 	The policy vector 

is constrained to be within a set of all admissible policies: 

(x,C,n) e P6 

Since time lag is allowed for in the transit of 

water from the up- to the down- stream reservoir, the 

returns derived for process of duration N = 1 is 

(D(x1E,n) = (1)A(xw) 4. E(x g n) 	(8.5.1) 

where (DA(xn) is the return from irrigation and 

cDE(x,,n) = 00.(x10 	(D E2(n) is the return from hydro- 
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power utilization. 

Hence the expected optimal return from the first 

stage process (N=1) is 

Fi(xl ,n) = 	Max 	O
f-
(xor) + 0E1(x10 + 

(x„E„ TOEP6  

Following the operation of the system for one 

stage, the system is transformed from state 

(s  i ss 2,a) , 	 (8.5.3) 

to state S = 	(sl,s2,(1). 	 (8.5.4) 

This transition is due to transformation 

T = T(R, 	7r,Y,a) 	 (8.5.5) 

Observe that the transformation vector T is composed, 

in part, of certain elements which are at our discretion: 

x, 17; and in part of certain elements which are stochastic: 

5 and El. 

For this example it is assumed that the variability 

in the flow of y during the period of study is quite marked; 

and that the variability of the flow of El is so small that the 

flow can be reasonably represented by an average value. 

Consequently the new state S is denoted by: 

s2+a-7, Eq-ci)h(y)dy 	(8.5.6) 

where h(y) is the probability distribution function of the 

inflow into reservoir 1. 
wistove 

Let usAthat the operating stages correspond to 

45E2 (70  (8.5.2) 

 

Co 

Co 
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monthly periods. 	Hence the return from the second stage 

is denoted by 

F2(sl s2 c) = 	Max 	{(1)(x,E,n) + 1(sl+y-x-E,s2+a-7r,+q)h(y)d 
(xasTr)ePS 

(8.5.7) 

So that, in general, following the Principle of Optimality 

(Chapter 6), the following equation is derived: 

FN(ss
2,a) = 	Max {(“x,E,70+ J FN_1(sl+y-x-P",s

2+a-ir, 
(x,E0n)EPd 

+q)h(y)dy} 	 (8,5.'8) 

We observe that the state vector of the functional 

equation is composed of three elements, thus giving rise 

to a three-dimensional problem. 

Existing digital computing facilities can now 

handle three-dimensions) dynamic programming problems of the 

type formulated above. 	And it is hoped that in future 

some research effort will be directed at programmes that 

are capable of achieving such solutions. 

In order to facilitate a programme of the type 

suggested, the following steps have to be taken: 

(i) the integral is replaced by a summation; 

i.e. the continuous distribution function is discretized, 

thus giving rise to 

FN(x,E,c) = Max 	10(x,7)+ E Xj  FN
_1(sl+srj—x—, 

(xscsw)fim 	J=1 

s2+a-71  + q)} 
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with A. > 0 
J — 

EA = 1 

(ii) The set, P6, of admissible solutions is 

specified. For this example, constraints of the type 

0 < x + C < si 

0 < Tr < 	S
2 

0 < q < 

0 < sl < specified number 

0 < s2 < specified number 

0 < a < specified number 

A programme that solves a problem of the type discussed 

above would yield a long-run optimal operating procedure. 

The benefit function could take any general form, 

either linear or non-linear. 
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CHAPTER 9  

OPTIMAL OPERATION OF A HYDROTHERMAL ELECTRIC SYSTEM 

In this chapter we consider the solution of a 

scheduling problem involving a system that has both hydro- 

electric and thermal units. 	First the general case is 

formulated; and then a sample model with two hydro-electric 

and one thermal unit is solved to minimize an annual cost 

index. 	The solution is obtained by means of a two 

sequential unconstrained optimization techniques. 

9.1. 	The General Problem 

The object here is to formulate a general problem 

consisting of any (finite) number of fixed head hydro-

electric stations and any number (finite) of thermal 

stations. 

(a) Variables of the Problem  

For a specified set of natural river flow, the 

power generated at a hydro-electric plant at any instant 

of time is a function of the quantity of water stored in 

the reservoir and the rates of change of storage at the 

plant under consideration and all the up-stream plants. 

Moreover, for any given system load, the energy 

which has to be supplied by the thermal plants, and the 

cost thereof, are functions of the reservoir storages. 

and rates of change of the storages. 	Consequently, the 
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storage draw-down 	curves of the various reservoirs 

in the system may be treated as variables of the problem. 

(b) Assumptions  

In the course of the formulation of the general 

model, several assumptions are made. 	Some of these are 

listed below. 

(i) the cost of water for generating electricity 

is negligible; 

(ii) there is no depletion of water supply through 

evaporation; 

(iii) water flowing into the reservoir during the 

ith sub-interval is not available for electricity generation 

until the next sub-interval. 

(iv) the function, F(Sik) of the thermal units is 

strictly convex and is differentiable. 
7 

(v) thermal generation is required throughout the 

study period. 	 . 

(c) Constraints  

Broadly speaking, these fall into: physical 

and operating restrictions. 	The physical constraints will 

vary according to the problem in question. 	Some of the 

common ones are: 

(i) maximum plant (turbine) discharge for any 

given sub-interval. 
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(ii) minimum plant discharge for a given 

sub-interval; 

(iii) maximum and minimum storage capacity for 

each reservoir at any sub-interval;  

(iv) maximum and minimum output of thermal plants 

during any sub-interval of time. 

The main operating restriction is that of supplying 

the electric energy demand (allowing for losses) at any 

given interval of time. 	For some systems, in order to 

ensure continuous operation for the hydro-electric plants, 

it may be necessary to specify bounds on the quantity of 

water that may be used for electricity generation over a 

period of time (i.e. a day, week, month or year). 

(d) Statement of the Problem: 

With the above points in mind, the problem of 

determining the optimum system schedule may be stated 

as follows: 

Determine the average thermal output per sub-

interval: Stji  t = 1,...,T; j = 1„...,M; i = 1,...„N; 

and the average plant discharge, Qt,t  , t = 1,...,T; 

Q = 1,...,L for which the total thermal cost over a 

specified period: 

T N M 
E E E t 	j  Ftij ..(Stjl tsk, RtQ,  Rtk) 

is a minimum, subject to the constraints: 

(9.1.1) 
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z S 	E H (Q ) > D P 
N 	L 
11 tj Z=1 tit t,t 	t Lt (9.1.2) 

T 
tEl Q 
	Vt 	= 	(9.1.3) 

Qt min < Qtt  < Qt  max 	Q = 1,...,L 	(9.1.4) 

Rt min < Rtt  < Rt  max —  

I 
S.. min < Stji  < Sji  max 

= 
i = 

t 
where Qtt is the average discharge through a hydro-electric 

station 2, during the sub-interval t; t = 11...T. 	HtR,  is the 

hydro-generation corresponding to Qtt  . 	is daily or 

weekly allotment of water at hydro-station t. 	Rtt is the 

storage capacity of reservoir St during sub-interval t. 

Dt is the average system demand during sub-interval t and 

PLt the average system loss during the sub-interval t, and is 

a 	specified function of Htz  and 
Stji • 

For generality, other terms are usually added to the 

cost function (in the form of penalty functions). The 

penalties are for violation of operating constraints; 

e.g. a penalty for not meeting the required demand or for 

producing much more electricity than is required for any 

given sub-interval of time. 
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Various forms of penalty functions may be used; 

e.g. for failing to meet the demand, the following penalty 

may be imposed: 

{ 

0 if all the demand is met. 

kflxt - xatI n  when energy supplied is 
less than that demanded 

(9.1.7) 

where (xt-xat)  is the degree of violation, at any sub-

interval t; and k
f 

and n are constants chosen to produce 

high penalty cost when a violation occurs. 

Similarly excessive over-supply may be penalized: 
0 if the excess supply is within a specified 

Cpt 	acceptable limit. 

ks Ixs,t-xtI m when the specified limit is 
exceeded. 

(9.1.8) 

The final cost function to be minimized is then: 

T N 
EEE p 	+ E cf + E clot 	(9.1.9) 
t i j 4-tij t=1 pt 	t=1 

subject to constraints 9.1.2 through to 9.1.6. 

9.2. 	The Particular Model Investigated: 

The system investigated is illustrated in Fig. 9.1. 

It consists of two hydro-electric plants and one thermal 

plant. 	The plants are arranged in a parallel series 

stream inter-connection. 	Consequently, discharge at 

the upstream plant affects the downstream plant. 

Cf pt 
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In Fig. 9.2. the variations in the value of the 

natu.‘,1 stream flow for reservoirs 1 (upstream) and 2 

are plotted. A graph of variations in peak demand is 

also included in the figure. 

(a) Assumptions  

For the system considered, we shall assume the 

following) 

(i) no charge is made on the cost of water for 

generating electricity. 

(ii) penalty cost for violating the operating 

constraints is not included in the cost function. 	The 

thermal units have sufficient capacity to meet the defecit 

that cannot be met by the hydro-electric units. 

(iii) all the thermal units are represented by an 

equivalent unit St, t = 1,...,T. 

(iv) the cost function is quadratic: of the form 

F(S,H) = .5 	2 x St + 0.006 x S
2 	/sub-interval. 

(v) No transmission losses are included, these 

being assumed negligible. 

(vi) the thermal units are in service when 

required. 	The start-up and shut-down costs are reflected 

in the operating cost expression. 

(b) Plant Characteristics  

The following functional relationships and constraints 

were used for the model in question. 	They are essentially, 
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13 
similar to those used by Cypser ; and were obtained by 

fitting curves to portions of tabulated data. 

(i) Forebay 

Y1  ,t = - 7.59077 x 10
-5x S2  + .25965S1,t  + lt 

3343.24584 	(9.2.1.) 

Y2,t = .01666 x S2t + 2883 	(9.2.2) ,  

(ii) Total Plant Discharge: 

Qlt = r1 t - 1,t (9.2.3) 

Q2 	r. r2,t - l,t 
- 2,t 	(9.2.4) 

(iii) Tail-water elevation  

Y1T,t = 3072. + 1.5012*Qit  - 0.03404 x 1t 

(9.2.5) 
Y2T,t = 2697. + .5687*Q2,t- '00359 x Q2

2 
 t 
(9.2.6) 

(iv) Effective head: 

h1 ,t 	Y1 ,t - Y1T,t 	(9.2.7) 

h2,t =  Y2 ,t - Y2T,t 	(9.2.8) 

(v) Purer Generated:  

1-11,t(Q1,t) = .06436 x Qilt(hi,t-20 + 38.107 x Qi,t  

- 2.863 x q.,t) 	(9.2.9) 

H2,t(Q2,t) = 0.076 x Q2,t(h2,t-5 + 2.885 x C22,t 

- 0.013 x q,t) 	(9.2.10) 
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Constraints:  

The physical and operating constraints imposed 

included: 
(i) minimum plant discharge: 

1,t min 	0 	(9.2.11) 

	

Q2st min = 0 	(9.2.12) 

(ii) minimum storage: 

	

R
1 ,t min = 0 	(9.2.13)  

	

R2t min = 0 	(9.2.14) ,  

(iii) maximum plant discharge: 

(A) As a function of effective head: 

ll 	, t max = 0.034327 x hit  - 3.32696 

if hilt <387.9883 	(9.2.15) 

1,t 	max = 18.07152 - .020825 x h1 t if h1 t  >337.9833 , (9.2.16) 

2t max  2 0.036636 x h2 t 	6 + 3.28796 if h, t <188.14659 „ 	, , (9.2.17) 

Q2t max = 19.79267 - 0.05108 x h2,t if h 	>188.14659 , 21t— 	(9.2.18) 

(B) As a function of reservoir storage  

1t max = 22.0 + .005 x Rllt if R1  ,t < 750 	(9.2.19) 

max = 28.0 - .003 x R1t if 750 < R1 t < 1360.5(9.2.20) Qlst 	 —  

1t 
max = 23.9185 + .375(R,,t  - 1360.5) if Ri2t  > 1360.5 

(9.2.21) 

Constraint (iii)(A) was used for the present 

problem 
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(iv) Operating 

  

H1,t + H2 1t + St > Dt t = 1,...,T 

The period considered was one year, divided 

into 10 sub-intervals of 5 weeks each and the re 
h&YAQ
levant 

sub-interval of 2 weeks. 	All these led to 99 constraints 

in 33 unknowns. 	The operating cost was based on hourly 

production cost which was then multiplied by the approp-

riate factor to obtain the total cost for the entire year. 

9.3. 	Method of Solution  

Two related methods of non-linear programming 

have been used to solve the above problems. 	These are 

the sequential unconstrained minimization technique 

developed by Fiacco and McCormick and the logarithmic 

potential method developed by Lootsma. 	As we have 

indicated in Chapter 5 both methods employ penalty function 

as a means of staying within the feasible region. 

Of the two, the version by Fiacco and McCormick 

has been the more extensively used, Lootsma's version being 

relatively less known. 	In the power-systems domain Mitter 

and Liacco have used Fiacco and McCormick's method to 

obtain solutions for reliable operation of a power system 

under different operating condition09 Sasson has 

used both methods to solve load-flow problems!
0 
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A common feature of both the methods is the 

transformation of a constrained into an unconstrained 

problem. 	In the above example we have 
11 

	

F(7)=E(.5 .1. 2.3(. 1- 0.006.xl- 2) 	(9.3.1) 
1=1 	1  

subject to 

G.(x.J ) > 0 	i = 1, 99 	(9.3.2) 

j = 1, 33 

This is transformed into an unconstrained function 
99 

P(r,x) = F(37) 	r E 1/Gi(Tc) 	(9.3.3) 
1=1 

99 
P(r,x) = F(37) 	r E In. Gi(Tc) 	(9.3.4) 

i=1 

Equation (9.3.3) 	is due to Fiacco and McCormick and 

Equation 9.3.4. is Lootsma's Logarithmic potential method. 

Both methods have been discussed in Chapter 5. 	Appendix 

A3 illustrates in very general terms, the pertinent steps 

of the algorithm of each of the methods. 

In each case, the sequence of unconstrained minim-

ization of P(rksT) is carried out by Fletcher and Powell's 

modified version of Davidon's variable metric algorithm 

(Chapter 5). 	A flow chart of Fletcher and Powell's method 

is given in Appendix A4. 

9.4. Results 

The optimal operating policy for one year is given 

in Table 9.2. 	Table 9.1. gives the initial (feasible) 
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solution. 	The variations in load deficit correspond to 

the variations in stream flows and system load shown in 

Fig. 9.1. 	After about the 44th week, the hydro-units together 

produce power in excess of the system demand. 	For an 

integrated system this would mean exporting the excess 

power generated. 	For an isolated system, on the other 

hand, the turbine discharge would have to be limited to 

supplying only the system demand; so that some volume 

of water has to be spilled over. 

It must be emphasized that the total costs for 

the period will depend upon the specified state of the 

reservoirs at the beginning and end of the planning period. 

For each set of specified conditions, there will be a 

different policy and the above results refer to only one 

such conditions. 

A more realistic formulation should have allowed 

for the uncertainty related to the stream flow and load 

estimates. 	The manner of handling such forms of uncertainty 

will, of course, depend on the statistic on record and the 

method of evaluating these. 	This is a field in which further 

research work could be pursued. 

The same initial solution was used for both methods 

(Logarithmic potential method and the method due to Fiacco 

and McCormick); and both methods gave practically 

identical optimal solutions. 	A noticeable advantage of 
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TABLE 9.1. 

INPUT DATA AND INITIAL SOLUTION 

Period End of Period Storage Natural Stream Flows Generated Power Load Deficit 

(Weeks) Kilo-sec-ft-days) 

Res.1, 	Res, 2. 

Fl r2 G 
lk 

(NW) 

G 
2k 

(MW) 
(MW) (MW) 

0 1380. 600. 4,0 10, 160.972 158,381 335. 15.647 

5 1350, 550, .8 3.5 59.241 33.966 337. 243.793 

lo 1345. 550. .8 2.5 37.215 26.856 348. 283.429 

15 1350. 525. .9 3.5 55.843 27.433 352. 268.724 

20 1340. 550, .9 3.5 49,442 31.643 367, 285.915 

25 1335. 545. .8 2,5 37.837 26.826 382. 317.337 

3o 1350, 5Y5. .8 2.5 37.199 21.314 372. 313.487 

35 135o. 55o. .9 3.5 52,042 28,841 358, 277.117 

40 1350. 545, 3.5 3. 126.987 126.421 350. 96.592 

45 1345, 550. 11.8 34,0 650.905 383.978 342. 0 

50 1350. 545. 6.2 28.0 519.376 232,298 338. 0 

52 1335. 545, 4.o 10. 160.972 158,831 335. 15.647 

Cost = £12,785.704 / hour-week. 



TABLE 9.2. 

Optimal Solution 

Period End-Period Storage Gen. Power Load Deficit 

(Kilo-sec ft.dys) Glk 
(Weeks) Res.l 	Res.2 	(MW) 

G2k 
(1171) (MW) (MW)  

0 1380. 600. 125.408 80.969 335 128.623 

5 1350. 550. 59.241 33.966 337 243.793 

10 1200. 500. 43.440 68.698 348 235.862 

15 1130. 430. 61.255 47.700 352 243.045 

1020. 330. 58.398 58.240 367 250.362 

25 900. 300. 46.494 56.059 382 279.447 

3o 800. 23o. 44.954 49.009 372 278.037 

35 700. 150. 61.085 50.676 358 246.239 

4o 630. 90. 129.941 128.980 350 91.079 

45 1100. 300. 602.243 285.198 342 0 

5o 1300. 500. 480.993 167.102 338 0 

52 1380. 600. 125.408 80.969 335 123.623 

Cost n1,191.148/ hour-week. 



the Logarithmic potential algorithm over the Fiacco-

McCormick one is the former's better convergence to the 

solution - at least for the example considered. 

Another advantage of the Logarithmic potential 

method is that the error function 

e(ri,x) = r. L In Gi(x) 	(9.4.1) 
i=1 

can be approximated by a constant 

( Se  = m.rj 	 9.4.2)  

where m is the number of constraints. 	So that by 

specifying the value. of Se, a value of ri  can be obtained 

such that the optimal value of F(i) is found within a 

prescribed accuracy in one minimization process. 	For 

subsequent minimisation procedures, Se  is reduced by a 

specified factor - (E10 for the above example). 	This is 

an advantage which the Fiacco-McCormick method fails to 

offer; i.e. in their method, there is no way of 

approximating the error function 

e'(r.,x) = r. 	E 1/G.(R) 	(9.4.3) 
1=1 

In the original Fiacco-McCormick algorithm 

(AppendixA3) a method of obtaining an initial value of 

r (i.e. r = r1) is suggested. 	However the author has 

experienced some computational difficulty in applying the 

same procedure. 	First negative values of r are obtained; 

and by the time a corrective procedure has been invoked 
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to give a positive value of r it is invariably found that 

one or more constraints are being violated. 	Consequently, 

an arbitrary initial value of r (E0.11 x F(2)) has been 

chosen. 

Furthermore, an acceleration by extrapolation suggested 

by Fiacco and McCormick52  is found to lead to repeated 

violations of a number of constraints and the time reauired 

to drive the latter back to the feasible region counterbalanced 

the net increase in the rate of convergence. 	As a result, 

the acceleration subroutine has been discarded. 	Similar 

computational difficulties have also been experience by 

Sasson.
70 

A major weakness of the Fiacco-McCormick method and 

the logarithmic potential method is that the initial 

solution must be feasible. For a large problem with 

many constraints, a lot of time has, therefore, to be 

spent in obtaining such a solution. 

Moreover, as we have indicated in Chapter 5, both 

the above methods employ 'boundary repulsion factor'; 

the Fletcher-Powell unconstrained minimization algorithm 

used in both cases, however, proceeds by taking successive sfees 

(specified) along the generated conjugate directions 

(Chapter 5). 	Quite often, if the current point is close 

to the feasible boundary, the direction generated may be 

such that the minimization step will give a point outside 

- 216 - 



the constrained region. 	A corrective procedure incor-

porated in the programme for handling such a situation, 

is to reduce the step length by a prescribed factor, 

until a point which lies in the constrained region has 

been obtained. 	For a large problem with 'tight' constraints, 

much time may2  therefore, have to be spent in merely trying 

to keep within the constraint region, rather than carrying 

out the actual minimization process. 
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CHAPTER 10 

ELECTRIC TRANSMISSION SYSTEM DESIGN 

10.0 	This chapter is concerned with investigations 

into the feasability of applying several mathematical 

techniques to the design of a transmission network. The 

methods considered include the Simplex algorithm and the 

modifications to handle integer linear programming 

problems; and two sequential unconstrained optimization' 

techniques (already applied in Chapter 9). 

In the following sections, assumptions are 

made about cost factors, demand of electrical energy, 

limitations of the power transfer capacities of the 

transmission lines and the reliability of operation of 

the lines. From these assumptions and the inherent 

restrictions (to be discussed) salient features of the 

most economical design are obtained. 

Notable contributions in the application of 

mathematical programming method to electrical design are 
47,48,49 

due to U.G. Knight 	Recently Burstall has proposed 

a heuristic method of solving linear programming problem 
9 

of a network model of the type considered by Knight. 

The approach followed in this chapter differs in concept 

to either of the two mentioned. 
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10.1 	Problem Statement: General: 

In general, the design problem is that of 

finding the total costs of a power system network subject 

to given constraints. The total costs include capital as 

well as operating costs; while the constraints may refer 

to the physical capability of the equipment in use and 

also to the design practice. For the present discussions, 

the above factors may be summarized as follows: 

Find the minimum of: 

(a) (Transmission line cost) + (b) (Switchgear 

cost) + (c) (transformer cost) + (d) (cost of reactive 

generation and control equipment) + (f) (Operating and 

maintenance costs of (a), (b), (c) and (d) + (g) cost 

of transmission active and reactive power loss; 

Subject to: 

(1) given reliability factor at substation 

being met; 

(ii) power (mown) demand at each substation 

being met; 

(iii) reactive power (m.v.a.r.) at each 

substation being met; 

(iv) thermal limit of each equipment not to 

be exceeded; 

(vi) power transfer capacity of each line should 

not exceed the stability loading limit of the line in question; 
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(vii) total power generated and/or imported must 

be sufficient to supply the total demand at given time. 

The above list is by no means exhaustive: 

there are many more constraints that the designer could 

impose. Some of the above constraints are interrelated; 

some are severe and have decisive influence on the mode 

of operation and economic choice of the system to be 

designed, while others are mild and have negligible 

influence. The designer is particularly concerned with 

the severe and decisive constraints. The problem then 

becomes that of determining the degree of importance of 

the constraints. There are no systematic rules for 

achieving this; and here is where the designer's 

experience, skill and judgment plays an important rol0 

threated at 

In addition, sensitivity analysis may provide a useful 

way of establishing the relative importance of the 

constraints considered; and also of checking the validity 

main generating station and five load centers. The load 

demand at each center is indicated. Table 10.1 lists 

the distances between the stations. 

The following assumptions are made: 

of the model. 
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(vii) total power generated and/or imported must 

be sufficient to supply the total demand at given time. 

The above list is by no means exhaustive: 

there are many more constraints that the designer could 

impose. Some of the above constraints are interrelated; 

some are severe and have decisive influence on the mode 

of operation and economic choice of the system to be 

designed, while others are mild and have negligible 

influence. The designer is particularly concerned with 

the severe and decisive constraints. The problem then 

becomes that of determining the degree of importance of 

the constraints. There are no systematic rules for 

achieving this; and here is where the designerTs 

experience, skill and judgment plays an important role:N 

Some of the difficulties involved have been treated at 

length in Chapter 1. 

10.2 	Linear Programming Model: 

For an example, we shall investigate the 

simple system shown in Fig. 10.1. It consists of a 

main generating station and five load centers. The load 

demand at each center is indicated. Table 10.1 lists 

the distances between the stations. 

The following assumptions are made: 
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Fig. 10.1. System  for the 

Linear Programming  Model 
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Table 10.1 Distances between Load Centers. 	(Linear 

Path 

Programming Model) 

Length 	Path 

(miles) 

Length 

(miles) 

G-h 115 L1-L5 197 

G--L2 122 L2-L3 94 

G-L3 214 L2.h4 77 

G-14 54 L2-L5 130 

G-L5 137 L3-L4 165 

L12 78 L3-L5 158 

L1-h3 153 L4-L5 113 

L1-L4 102 

Table 10.2 	Distances between Load Centers (Nonlinear 

Programming Model 

Path Length LILL111 

1-2 140 

1-3 164 

1-4 130 

2-3 144 

2-4 260 

3-4 144 
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(a) The generating capacity is sufficient to meet the 

current load demand;: 

(b) costs considered (objective function) are 

proportional to the length of the line; and to the 

number of lines in any given path; 

(c) only transmission costs are consideredi 

(d) there is sufficient reactive power equipment for 

supply and control as required. 

10.2.1 	Problem Formulation: 

The main constraints are based on the security 

requirement at each substation and also on a modified 

block transfer requirement to a group of substations. 

For example it may be required that the number of lines 

supplying substation 	must be greater than a specified 

value. 

The exact value specified will be based on the 

degree of reliability envisaged; on the power demand 

at each substation; on the thermal limit of each line; 

and on the transfer capacity limitof each line 

If constraints specifying all the possible 

combinations were imposed, the resulting model would be 

extremely large even for a small size problem. For this 

example, the method used for imposing constraints 
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incorporates an adaptive approach: the smallest number 

constraints possible is introduced. This results in a 

linear programming model, which is then solved by the 

Simplex algorithm. The solution is then examined; if 

the resulting network configuration, does not appear 

'reasonable% a selected number of constraints is added. 

The process is repeated until the desired configuration 

has been obtained.  

For the system shown in Fig. 10.1, the 

following linear programming model was eventually 

arrived at:
It 

 

* Note that some of these constraints arose from 

solutions - in the course 
process 

	

	 of the adaptive 
described above. 

the load centers should be at least four; 

(b 	there should be at least one line between 

the generating center and load center one (L1)  ; 

(c) there should be at least two lines 

between the generator and load center 2 (h2) , load 

center 4 (La) and lead center 5 (L5) respectively. 

refer to the lines: e.g. line between 

generator and load center one (101 ' ''10 ' xl) 
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incorporates an adaptive approach: the smallest number 

constraints possible is introduced. This results in a 

linear programming model, which is then solved by the 

Simplex algorithm. The solution is then examined; if 

the resulting network configuration, does not appear 

'reasonable', a selected number of constraints is added. 

The process is repeated until the desired configuration 

has been obtained. 

For the system shown in Fig. 10.1, the 

following linear programming model was eventually 

arrived at :'t 

15 

Minimize F(H) = 	0.. a. a. 
i=1 

(10.2.1) 

Subject to: 

(a) the number of lines entering each of 

the load centers should be at least four; 

(b 	there should be at least one line between 

the generating center and load center one(i1) ° ' 

(c) there should be at least two lines 

between the generator and load center 2 (112) , load 

center 4 (L4) and lcad center 5 (L5) respectively. 

refer to the lines: e.g. line between 

generator and load center one (fol a 110 ' xl) 
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The above formulation results in a set of ten 

inequalities in fifteen unknowns. 

There are several advantages to this approach. 

First, the number of constraints and hence the size of 

the problem matrix is reduced considerably! in this 

example by up to a factor of 4 or more This makes it 

possible to handle large problems which would otherwise 

be toobig for the existing computer capacities. Secondly, 

the process is similar to the one that a design engineer 

would follow in practice; and hence should have more 

appeal. Thirdly (related to the second point) the 

designer has virtual control over the design process; 

furthermore, by changing or modifying the constraints, 

the designer is, in effect, engaged in sensitivity 

analysis of the relative importance of the constraints. 

10.3 	Hethod of Solution  

An integer linear programming subroutine 

from im SHARE Library was used. The subroutine uses 

the revised simplex method (Chapter 4) and is capable 

of handling problems not exceeding 120 constraints in 

300 unknowns. 

The solution process is as follows: first an 

optimal solution to the linear programming problem is 
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obtained; c check is ne=t made to determine whether or 

not the solution is all-integer. If not, a IGomory 

:Jonstraint' is generated for a particular non-integer 

variable and added to the problem (Chapter 4). The 

program then seeks an optimal solution satisfying all 

the constraints (including the Gomory Constraints), 

The cycle is repeated until all the solution variables 

are integer. 

The limit on the size of the problem (120 

constraints in 300 unknowns) is to allow for the 

additional 'Gomory Constraints' and artificial variables 

(Chay)ter 3) to be generated by the program. The version 

used was written in Fortran II code; and the computation 

time is about 0.4 minutes, including compiling time 

(for a binary deck). 

10,4 	Results: 

Fig. 10.2.a shows a network configuration 

resulting from an otimal linear programming solution. 

The dashed lines refer to 1/2  line solution, Fig. 10.2.b. 

shows the configuration of an all integer solution to 

the same problem. 

The imposition of the requirement for an all- 

integer solution to a linear programming problem tends 
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to increase the total cost of the design, as is clearly 

indicated by comparing the total costs for configurations 

10.2.a and 10.2.b. (cf. 0_08.745 x 106  and 1109.41 x 106) 

If for the problem considered it was required 

that the number of lines entering load center 3 (L3) 

be three while all the other constraints remained the 

same, the resulting optimal solution (both linear 

programming and integer linear programming) would be 

as shown in Fig. 10.3. 

The requirement that the number of lines 

entering load centers 1, 2, 3, 4, 5 be 4, 4, 3, and 4 

respectively for the load demands indicated may be too 

conservative. For with the present reactive power 

regulation capabilities, lines are capable of carrying 
12 

much larger loads 	o In which case the requirement 

should be that the number of lines entering load centers 

1, 2, 3, and 5 should be 3, 3, 2 and 3 respectively. 

With these latter constraints, together with the added 

restraints that there should be at least a line each 

between the generating station and load centers 1, 2, 4 

and 5 respectively, a model is obtained whose optimal 

solution is shown in Fig. 10.4. 
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Some General Comments: 

The above example has shown that a power system 

design problem can be formulated as a linear programming 

problem and solved. However, it must be emphasized that 

there are definite limitations to this approach. 

Firstly, the essence of linear programming 

is the existence of linear relations, both in the 

objective function, and amongst the variables themselves. 

In the above example we have assumed that the cost of 

lines is linearly related to both the length of the 

line and the length of lines per given path. Su(Al an 

assumption is very idealistic; for in some situations, 

loc:.l conditions may be such as to make a short line more 

expensive to construct and operate than a relatively 

longer line. Noreover, the cost of two lines between, 

say A and B is usually less than double the cost of one 

line between the same. 

Secondly, linear programming - and especially 

integer linear programming - solutions tend to act in an 

all--or•=-nothing discrete fashion; and not in a continuous 

fashion. Consequently, a small change in the coefficient 

of the variables may either change nothing or effect 

quite a large change, Due account should be taken of 

this fact when interpreting the results, 
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However, apart from the above limitations, it 

is felt that, linear or integer linear programming 

solutions to design problems of the type considered above 

forms a very useful guide to the type of configuration 

that the system might eventually attain. This, of 

course, refers to the case of designing a system where 

none existed before; or more likely, to the situation 

where a higher voltage system is to be superimposed on 

the existing lower voltage one: for example, in Great 

Britain, the development of the 275 kv system to 

reinforce the existing 132 kv one or the current 

development of the 400 kv system. 

10.5 	A Nonlinear Prorrramlikodel: 

A much simpler model shown in Fig, 10.5 is 

next investigated. Table 10.2 shows the distances between 

the substations. 

The objective function (the cost of transmission 

lines) is still assumed to be linear; but the constraints 

now bear nonlinear relations. As in the previous 

section, the main constraints are based on the security 

requirement at each substation. The major constraints 

are: 

(i) total power requirement at each substation 
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Total cost 251. 45x106  

1 

 

90 NW 

1 142• ..-Load -Centres 
G2,G3 	Generating 

2 L2 	 Stations. 

102 MW 

2 

4 
100 new 

3 
G, .) 	' 1200 MW 

Fig; 10.5: System for Solution by  Non-linear Programming. 
Methods  

Fig. 10.:6: Optimal Linear Progl'arminEz Solution to the System 
Shown in Fig. 10.5. 
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Table 10.3 	OaLimal Solution to the Nonlinear -Programminrf 

Model 

Path Number of lines 

1-2 .579 

1.367 

1-4 C,0011 

2-3 1.613 

2-4 .380 

3-4 1.599 

Total (Jost =1 60.79J x 106 

Table 10.4 Optimal  Solution of the Linear Progyammin.p.  

Model b Means-  of the Loo-arithinic Potential 

Method: 

G-1, 1 .996 
_r 1-.± .004 

G L2  1.994 L2-L3 1.490 

G-L3 .001 L2- 4 
.003 

G-1'4 1.999 112-jj5 .003 

G-L5 1.993 h3
-L
4 

.003 

L1- L2 .500 L. -L5 .003 

1 	63 2.491 14-L5  1.935 

1-L4 .006 

Total Cost = g109.404 x 106 
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1„) 	 5x(kv 

should be able to meet the demand at the particular 

sub-station. The actual formulation is based on the 

relation between power transfer capacity and the length 
12 

of a given line 

_t/ 	,2 kv) 
= 	.5 	in z7, ir, 	(10.5.1) 

where 	is the distance in miles 

use that the actual constraints are: 

> specified demand di station 
	

(10.5.2) 

Fi2 
	It 

	
tr 	 2 	

(10.5.3) 

4 

	

IIIt 
	

(10 5.4) 

i = 1, 4 

(ii) for each line j , the power transferred 

must be less that a specified value-governed by the 

stability limit of the line in question: 

< specified value  (10.5.5) 

j = 1, . . , 4 	= 	, 

These, together with the requirement that 

j = 1, ..., 6 constitute the set of constraints: 22 

constraints in 6 unknowns, 
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A logarithmic potential method (Chapters 5 

and 9) was used to obtain a solution to the above problem. 

As has been explained, this is a nonlinear programming 

technique which transforms the constrained problem into 

a series of unconstrained problems, which are then 

solved by means of unconstrained optimization techniques. 

The result is shown in Table 1G3. A similar 

result is obtained when in addition to the above 

constraints, a set of reliability constraints is added. 

This may be due to the fact that the constraints 

(reliability) are not tight enough. Or alternatively, 

that in a design problem of the type considered, the 

particular set of reliability constraints are of 

relatively less importance than the other ones. 

The method employed in generating reliability 

constraints is given in Appendix A6. It is based on 

estimating the length of time during which a substation 

should operate without power interruption to the 

consumer, for a given year; 	for example, if it is 

assumed that 2 lines are required to supply load center 

one; then during a fault the following possibilities may 

obtain: 

(i) no line is affected; 

(ii) line one is out of service; 
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(iii) line two is out of service; 

(iv) both lines are out of service. 

If it is further assumed that the transfer 

capacity of each line is such that by itself, it can 

supply the demand of the particular substation, the 

interruption of service to the consumer occurs only 

when both lines go out of service. This fact is used to 

estimate the expected time during which no interruption 

should occur at the particular sub-station. The 

design requirement is then that the cost should be 

minimized subject to the expected un-interrupted running 

time beilla ctreater_than the estimated value- EA : 

for each substation we have 

n Pr _ 	
-1 	7  n 	specified 

(i,j)6FS kiEl ik 	01 Mik 	> value 

Ugisi) 	
itg 

where: 1Ilk'  11(i,j), g, U, and D are as defined in Appendix A6. 

present glaring limitation of the nonlinear programming 

techniques in - current use. There is as yet no known 

way of ensuring that the solution be all integer.. 

However, it is encouraging to learn that some seriow 

research effort is being directed at this problem 

(integer nonlinear programming) and it is hoped that 

some useful algorithm will be forthcoming. 
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(iii) line two is out of service; 

(iv) both lines are out of service. 

If it is further assumed that the transfer 

capacity of each line is such that by itself, it can 

supply the demand of the particular substation, the 

interruption of service to the consumer occurs only 

when both lines go out of service. This fact is used to 

estimate the expected time during which no interruption 

should occur at the particular sub-station. The 

design requirement is then that the cost should be 

minimized subject to the expected un-interrupted running 

time being greater than the estimated value. 

For the simple problem considered the intro-

duction of reliability requirements led to the addition 

of 26 more constraints. 

:n important feature of the results is that 

the solution variables are non-integer. This is the 

present glaring limitation of the nonlinear programming 

techniques in current use, There is as yet no known 

way of ensuring that the solution be all integer.. 

However, it is encouracing to learn that some seriow 

research effort is being directed at this problem 

(integer nonlinear programming) and it is hoped that 

some useful algorithm will be forthcoming. 
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A linear programming solution of the. same 

problem (Pig. 10.5) is shown in Fig. 10.6. The method 

of formulation is similar to the one discussed in 

Sections 10,2 and 10.5. This is clearly a much better 

solution than the one by nonlinear programming technique 

11,0 0, matter of general interest, the logarithmic 

potential method was used to solve the linear programming 

model discussed in sections 10.2 and 10.3 and whose 

optimal solution is shown on Pigs. 10.2a and 10.2.b. 

Table 10.4 shows the final solution after 10 functional 

evaluations (minimization cycles) and 6 minutes of comiouter 

time, The rate of convergence was extremely slow, and 

the final value of the objective function 	still far 

from the exact minimum. The linear programming result 

(Simplex method) on the other hand, was obtained after 

0.4 minutes of computer time (including compilation 

time); the result is shown in Fig. 10.2.a. This confirms 

my observation in Chapter 2 that for a linear programming 

model, the simplex algorithm is the most efficient 

method of solution 
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C,HAPTa1 11 

GENEILATION PLANNING 

11.0 

Practically all power utilities face the 

necessity of having to decide upon the increase in the 

generating capacity to meet the growing; load demand. 

Generation planning does, -in fact, involve 

the investment of a large amount of money. It is, 

therefore, imperative that a careful analysis be carried 

out to ensure that the most efficient and economic combi 

nation of the units is added into the system. 

311.ch analysis requires a thorough evaluation 

of a large number of factors bearing on the problem: 

for example 

(.a) prediction of load demand; 

(b) estimation of the load duration curve; 

(c) reserve capacity requirements; 

(d) availability of the installed capacity; 

(e) inter-connection of utility systems; 

(f) expected (or estimated) maximum unit size 

in the latter stages of the planning 

period; 

(g) expected development in the methods of 

electricity generation (conventional or 

otherwise); 
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(h) location of the units and topography to 

the terrain; 

(i) expected transmission system development; 

(j) capital and operating costs of different 

sizes and types of units etc., 

Evaluation of all or most of the above factors 

so as to arrive at an optimum choice is quite a difficult 

task, especially if planning studies are carried out 

over long periods of time, For there is a large number 

of possible alternatives to choose from.. 

First, there are many different types of 

Generating units that could be added to a system. These 

include different types and sizes of thermal and/or 

hydro-electric units or nuclear units. The units may 

be for base of peak loads. The choice may also be 

between installing only units having the best available 

fuel rates (at high capital costs) or for a mixture 

of high and low fuel rates. Still another possibility 

may be to consider the use of only very large units; or 

a mixture of large and small units. 

The final choice should only be made after 

considering a large fraction of all the possible alterna-

tives. 
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Iuch research effort has been directed at the 

problem of determining the 'best' combination of the 

generating units to add - with regard to both capital 

and operating costs over long periods of time. In this 

chapter the possibility of applying the methods of 

dynamic programming; and sequential unconstrained 

optimization techniques are suggested and discussed. 

11,1 	Problem formulation: A General Case: 

In very general terms, the planning problem 

may be formulated as follows: 

Let load duration curves be given for each 

year of the entire planning period; this information is 

obtained from the expected load curves. A typical load 

duration curve is shown in Pig. 11.1. The objective is 

then to minimize the total capital and operating cost 

over the period of study subject to the following 

constraints: 

(a) maximum demand in each year must be met; 

(b) there should be adequate reserve capacity; 

(c) allowance for planned outage of the installed 

generators for repair; 

(d) energy output from the units must be 

sufficient to meet the demand in each 
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time interval of the load duration 

curve for each period of time considered; 

(e) maximum allowable capacity of the unit to 

be installed not to exceed a specified 

limit (for each year of the study period); 

(f) maximum available energy ou-bpu-b for each 

type of plant for each time period should 

be within certain_ specified:  

The above points may be Summarized in the 

following compact mathematical programming formulation: 

I 	T 

-1(2it' Eitm, Eetrn)  = 	°it Pit 
i t 

I 	T 	N 

Ei 	01ttm 	 t 
	Eetin 0e (11.1. 

i=1 t=0 ,11=1 	e=l t=0 m-1 

Subject to: 

I 	T 	N 	T 

Pit 	E Pet .1  Ptm 
i=1 t=1 	e=1 t=0 

I 	 N 
Eitm +  £ 	 Etm 

1=1 	e=1 

(11.1.2) 

(11.1.3) 

Pit 
	

Pit 
	(11.1.4) 
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< aim P. Eitm 	m it 

Eetm 	< gem Pet 

Ei 	E 	Pi  P 	> 0 tm' etm' t' et  

where Pit  refers to the capacity of plant of type 

to be added in period t ;Eitm  represents energy 

output of plant of type i in the interval m of 

period t ; Pet refers to capacity of the existing 

plant, type e 	in period t 	 B : 	etm represents energy '  
output of plant of type e in the interval .m of 

period t ; Cit 	Cit and  Cit  are cost coefficients 

and ai  and ae  are availability factors for the plants 

to be installed and the existing plants respectively 

andPit is a specified value, 

requirements (b) and (e) are allowed for in 

equations (11.1.2) and (11.1.3) respectively, Thus Ptm 

is increased by the required reserve capacity; similarly 

-Litrn is increased by the amount corresponding to the 

energy output of the planned output for the period and 

time intervals considered. 

Note that the above formulation does not 

include transmission and geographical constraints. These 
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can, however, be incorporated without loss of generality, 

as has, indeed, been done by U.G. Knight in his formulation 

of the linear programming model 

11.2 	Possible Solution by Nonlinear Programming Methods: 

As has been pointed out in Chapter 5, methods 

for solving nonlinear programming problems are still in 

their infancy and have not yet acquired the degree of 

efficiency enjoyed by the 'Simplex' Method for solving 

linear programming problems. One of the areas that require 

further investigation is the size (number of variables 

and/or constraints) and complexity of the problems that 

the existing nonlinear programming methods can handle. 

Such information is clearly of immense interest 

to planning engineers. For formulations of the type 

given above would involve several hundreds of constraints 

and about the same number of variables - if the planning 

study is to be meaningful. 

Once the information is forthcoming, the methods 

could become very useful tools in the search for the 

'best' plan. For example, the above problem could be 

solved (11.1.1 through to 11.1.7) by one of the 

sequential unconstrained optimization techniques (e.g. 

the Logarithmic PotentialMethod). In which case the 
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problem is transformed to: 

FP(r,Pit,E.,m  
T '2etm)  = F(Pit'Eitm'Eetm)  

r 	Pit  + 	Pet - p'  ) + in 	Etm ' ) it 	e t 	tm 	itm 	A  E. 	+ 	Eetm ..  

+ in -.P' 	+ in (a. 	E! 	) + in (aeet - E' Pit 	it) 	1 El 	1 	itm 	e n 

+ in (E// 	in 	etm  )+ ln(P et   ) ,' u )  

Subject to no constraints.. Where P'tm' 

(11,2.1) 

Nip' Pit' Eilm' 

`etm 	are equal to P 	1 
tm+e.,, Etm-:E - '2' 	Eitm l-E4 

and Eetm,4 respectively:ei  i = 1,...„4 is a small 

constant greater than zero, 

Alternatively the original problem could be 

solved by Zangwill's method of 'Penalty Functions' 

(Chapter 5). Thus the unconstrained optimization 

problem would be: 

Minimize FP 	= F + 	 (G1) 

	
2 + (G ) 
	

G4)2  

(G5 ) 2 	(G6 )2  + (G7 )2 (G8) 23 (11.2.2) 
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(11.2.4) 

h,  ) if 11.1.3 is tm 

violated 

where 

G  

( 2 	p 
t it 	e t et 

otherwise 

Pi ) if 11.1.2 is tm 

violated (11.2.3) 

similarly 

and so on for the rest of the constraints. 

It is hoped that some research effort into the 

applicability of these methods to power system planning 

(as suggested above) will be forthcoming. 

11.3 	Possible solution bypallanAc Programming 

The generation planning problem can also be 

formulated by means of the direct application of the 

principles of dynamic programming.1:9 	However, a 

major limitation of the dynamic programming approach 

(Chapter 6) is the computational difficulty involved in 

handling problems with greater than four constraints. 

So that with the planning models of the type envisaged 

(with hundreds of constraints) such direct application of 
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dynamic programming is strictly out of the question. 

In a recent article Dale has suggested a 

dynamic programming method for the selection and timing 

of generation plant additions.14 	His approach is 

based on the selection of several basic types and sizes 

of the units which are then combined in a large number 

of ways for each of the time intervals in the entire 

planning period. teach of these combinations will result 

in different costs; and at least one of the;:A will give 

the least-cost plan. 

The main weakness of Dale's method is that 

the shape of the load duration curve is not taken into 

account. As a possible improvement on his approach the 

author makes the following suggestions, which effectively 

take into account the shape of the load duration curve: 

The load duration curve for each year should 

be divided into three (or more) sections, comarising 

base load, 'medium' load and peak load. See fig 11,2 

for an illustration. In general the base load for a 

given system will increase by a certain percentage from 

year to year. 3o will the medium and the peak loads 

respectively Consequently, three sets of curves can 

be drawn for the predicted growth in the base, medium 

and peak curves respectively (Figs. 11.3.a, 11.3.b and 

11.3.c). 
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With the above information available, Dale's 

approach can now be applied to obtain the 'best' plan 

fur each of the diviSions. For example, suppose that, 

for the base load division we have three possible 

patterns At, Bb  and Gb  of developments' for high-load-

factor, high capital cost units. For each pattern, 

say Ab  , we may have several different types (and 

sizes) of units e.g. nuclear, coal fired, oil-fired or 

hydroelectric; this will give rise to numerous 

combinations for the entire planning period as 

illustrated in Pig. 11.4. As the stage (year) of 

study increases, so does the number of possible 

combinatioils of the units. For a given stage, not all 

the possible number of combinations need be considered: 

the number may be reduced by allowing only for the most 

likely combinations, - This would, of course, depend on 

the policy,of.the partibular electric utility and may 

be influenced by whether or not the system under 

investigation is an isolated one; or is part of a 

larger integrated system. 

A dynamic programming algorithm can then be 

used to obtain the most economic plan for pattern Ab 

By the same approach economic plans for patterns Bb 

and Gb are obtained. One of the three results gives 
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Fig. 11.3.a  Predicted Load-growth for base load 
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the lowest cost plan for the base load expansion 

program. 

A similar selection method is applied to the 

medium-load factor units (the medium load division); 

and then to the low-load fact, low efficiency units for 

peaking purposes. 

buppose that for the base load program pattern 

lb gives the lowest cost; for medium load program 

pattern Dm gives the lowest cost; and for peaking 

units pattern A gives the lowest cost. Then the 

overall lowest cost expansion program is the sum: 

(1 1 -1-BMp) 
 

Appendix 47 gives a typical flow diagram of 

a dynamic programming algorithm that may be used to 

 	obtain solutions along the lines suggested above. ?(i
fk  

"vt  As a further refinement, the 'base', 'medium' and 

'peaking' load divisions (Fig. 11.2) may be shifted 

('up' or 'down') and a new set of predicted load growth 

curves - similar to Figs. 11.3.a, 11.3.b. and 11.3.c -

obtained; and another overall lowest cost programme 

(AL + B1'11  + AI' calculated. 	If (AL + B' + A') is less 

than (Ab  + Bm  + A p) then the former is taken as the 

best plan. 
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the lowest cost plan for the base load expansion 

program. 

A similar selection method is applied to the 

medium-load factor units (the medium load division); 

and then to the low-load fact, low-efficiency units for 

peaking purposes. 

Suppose that for the base load program pattern 

Ab gives the lowest cost; for medium load program 

pattern BM gives the lowest cost; and for peaking 

units pattern A gives the lowest cost. Then the 

overall lowest cost expansion program is the sum: 

(A,-1-13 	p)  y° p ° 

Appendix A7 gives a typical flow diagram of 

a dynamic programming algorithm that may be used to 

obtain solutions along the lines suggested above. 

It must be emphasized that the above discussions 

are only suggestions and that no actual results are 

available to confirm their validity. 

Xthe subscripts refer to the divisions e.g Ab  E pattern 

A in the base load division; Dm  E plan .B in the 

'medium' load division and Pp n plan A in the peak 

load division, 
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CHRPTER 12 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK  

12.0. 	"Systems Approach" is finding wider application in 

a large variety of situations. 	An essential property of 

the Approach is that of seeking to optimize the overall 

systems functions according to specified objectives, and 

to achieve the best compatibility of its parts. 

Systems Engineering forms one of the major 

components of the Systems Approach. An important step 

in the systems engineering methodology involves either 

mathematical or physical modelling. 

Formulation of models is a very difficult task requiring 

quantitative knowledge of how the system variables 

interact and the relative importance of the constraints. 

Further difficulties involved in modelling include: 

finding a suitable way of expressing the objective 

function in terms of the variables; limiting the number 

of constraints; and deciding on how much idealization is 

allowable and still obtain satisfactory results. 

12.1. 	Part I  

Mathematical programming has witnessed a phenomenal 

rate of growth over the last decade; and the fast growth-

rate is likely to be maintained for a long time to come. 
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Lagrange multipliers in one form or another have 

played an important role in the recent development of 

mathematical programming theory. 	One of the most important 

theoretical results in this field is the work due to Kuhn 

and Tucker, which is an extension of the classical Lagrange 

multipliers rule in its most general form (that encompasses 

both equality and inequality constraints). 

Associated with each linear and non-linear programme 

is the dual programme. 	The concept of duality has led to 

the development of a number of very useful computational 

techniques in both linear and non-linear programming fields; 

and is currently being successfully applied in the generation 

of a two-level decomposition technique. 

One of the most efficient and widely used 

algorithms is the simplex method developed by Dantzig for 

solving linear programming problems. 	Several variants 

of the simplex method, including the dual-simplex, primal-

dual and self-dual algorithms, have since been developed; 

and are finding useful application especially for para-

metric problems. 

Several algorithms have also been developed for 

solving integer linear programming problems. 	Some of 

these: e.g. the cutting-plane, primal and mutual-primal, 

methods employ the principles of the simplex method (or 

variants of this). 	In general the cutting-plane and 
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primal methods have proved erratic: sometimes performing 

well and at others giving no solutions. 	One of the most 

promising developments is that of the branch and bound 

algorithms - especially the version of Bala's partial 

enumeration algorithm which requires less storage capacity 

and computation time and which is now being extended to 

handle non-linear integer programming problems. 

Non-linear programming techniques may be broadly 

classified into direct and indirect methods. 	Of the 

indirect methods one of the latest techniques is the method 

of geometric programming, which has definite potentialities 

in a variety of fields. 

Much of the discussions have been concerned with 

the direct methods, which may be further grouped into the 

unconstrained and the constrained optimization techniques. 

Of the unconstrained methods, the modified-gradient ones 

especially the Fletcher-Powell algorithm has, by far, the 

best convergence properties. 	However, the algorithm 

suffers from the fact that the positive definite matrix, 

H, required may be quite large for large problems, thus 

limiting the size of problems to consider. 	Another 

modified gradient technique: the method of conjugate 

gradients, excels in its simplicity. 	However, it does 

not converge as fast as the Fletcher-Powell method. 
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The constrained non-linear optimization techniques 

may be divided into: those which are extensions of the 

simplex method e.g. reduced gradient methods or methods 

of approximation programming; methods of feasible directions; 

and sequential unconstrained optimization methods. 

The essential feature of the first division (e.g. 

reduced gradient method) is the approximation of the non-

linear function by a linear one through the use of Taylor 

Series expansions. 	Some of these methods exhibit reasonably 

fast convergence properties; others are quite slow while 

others are only capable of solving convex problems. 

There are many versions of the method of feasible 

directions. 	These use the same general approach as the 

methods of unconstrained optimization. 	So far the versions 

due to Zontendijt, Rosen and Goldfarb have performed quite 

satisfactorily, especially for non-linear programming 

problems with linear constraints. 

The sequential unconstrained optimization methods 

(also known as "penalty function methods") transform a given 

constrained problem into a sequence of unconstrained problems, 

which are then solved by unconstrained optimization techniques 

(e.g. modified gradient methods). 	They exhibit good 

convergence and are capable of handling highly non-linear 

problems. 	Of these, both the Logarithmic potential method 

and the Fiacco-McCormick method require an initial feasible 
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solution - a procedure that may be time-consuming, especially 

for large problems. 	With Zangwill's method, however, the 

initial solution is chosen arbitrarily, and a penalty is 

imposed only on the constraints that are violated. 	This 

makes the method capable of handling large problems. 

All the three penalty function methods suffer from 

one major weakness: their inability to distinguish between 

non-linear and strictly linear constraints. 	If special 

subroutines for handling linear constraints could be 

incorporated into the algorithm the methods would become 

more efficient. 	Further research work is also required 

to establish the following: a) computationally the most 

efficient way of solving the unconstrained problems; 

b) the best way of choosing the initial value of r; 

and c) the best way of decreasing r. 

Dynamic programming is a very efficient method for 

solving multi-stage decision processes. 	The problems can 

be linear or non-linear. 	However, as the dimension of the 

problem increases, storage capacity requirements multiplies 

manifold. 	Consequently, only small dimension multi-stage 

decision problems can be solved by the existing class of 

computers. 

Although not as versatile as dynamic programming, 

the Maximum Principle is beginning to find increasing 

applications in a large variety of problems. 	The concepts 
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have further been extended to the discrete case and should 

now find some applications in the field of power systems 

engineering. 	Close similarities exist between the funda- 

mental concepts of the Maximum Principle and those of 

Mathematical Programming in general. 

several successful decomposition techniques for 

solving large linear programming problems have been developed. 

The basis of these algorithms is similar to the 'simplex' 

method. 	Others, including decomposition by dynamic 

programming and Kron's method of 'diakoptics' are still at 

the development stage. 	Current research effort is now 

directed at decomposition techniques for non-linear 

programming problems and it is hoped that efficient algorithms 

will be forthcoming. 

12.2. 	Part II  

The method of feasible directions may be usefully 

employed as an aid in determining the best operating policy 

of a reservoir for electrical energy and agricultural 

production. 	Although the models considered are simple 

(with only up to36 variables in 26 idea 	this approach 

provides very useful first approximations to the actual 

operating conditions. 	The models developed and solved 

were all deterministic. 	Further refinements towards a 

more realistic model should allow for uncertainty in the 
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stream flows, storage of water in the reservoirs and 

drafts respectively. A dynamic programming formulation 

a three-dimensional model and which allows for uncertainty 

in stream flows has been presented and it is hoped that 

programmes capable of solving such problems (three-

dimensional or more) will be developed soon. 

The economical use of reservoir water in the 

generation of electrical energy is becoming an important 

consideration in any system with both hydro-electric and 

thermal units. 	Optimal operating policies obtained 

(Chapter 9) show clearly that non-linear programming methods, 

especially the sequential unconstrained optimization 

techniques (Logarithmic potential and the Fiacco-McCormick 

algorithm) provide very useful guide-lines with regard to 

the economics of such combined operations. 	The model 

considered comprises two variable-head hydro-units. 	A 

larger problem would probably require decomposition along 

the lines suggested by Zangwill (Chapter 7). 

For electric transmission system design, the 

'adaptive' approach followed in the formulation of a linear 

programming model results in substantial reductions in the 

number of constraints, thus making it possible to tackle 

relatively larger problems. 	The approach also enables 

the designer to assess the relative importance of the 

constraints. 	The resulting configuration could form a 
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useful first step in the design of the actual system. 

Solutions by non-linear programming method are inadequate: 

in all cases the solutions are non-integral. 	The inability 

to give integer solutions is a serious limitation of the 

existing non-linear programming methods; and it is hoped 

that more research effort will be devoted to the development 

of algorithms that can give integer solutions. 

Generation planning involves the investment of large 

amounts of money. 	Such vast expenditure warrants thorough 

analysis to evaluate the effect of the numerous factors 

bearing on the problem. 	Mathematical programming could 

prove an extremely useful tool to the planning engineer, 

provided that suitable methods for solving large problems 

of the type involved can be developed. 	Non-linear 

programming and dynamic programming formulations have 

been presented and possible solutions suggested. 

12.3. 	Suggestions for Further Work  

The subject matter of this thesis has been wide and 

varied. 	Consequently there are many areas which require 

further investigation. 	Some of these have been discussed 

in the main body of the thesis; for example: 

(a) Application of geometric programming to the 

solution of power system problems whose objective functions 

are expressible as products of the design variables; 
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(b) establishment of an efficient algorithm for 

the decomposition of large linear programming problems by 

dynamic programming; 

(c) development of a method of feasible directions 

that is capable of handling non-linear constraints; 

(d) formulation of models for multi-purpose 

operation of water reservoirs in such a way that uncertain-

ties in stream flow, reservoir storage and drafts, 

respectively, are allowed for. 

(e) development of a dynamic algorithm to solve 

the model given in Chapter 8; 

(f) Application of the decomposition method suggested 

by Zangwill for the solution of large hydro-thermal operation 

problems; 

(g) further investigations into the capability 

of the existing unconstrained optimization techniques with 

regard to large systems involving several hundred variables 

and constraints. 

In addition to the above suggestions, the author 

feels that further research work should be devoted to the 

task of establishing fundamental factors pertaining to 

the validity of a given (mathematical) model. 

Furthermore, it is hoped that Zangwill?s method 

of "Penalty Function" (Chapter 5) will soon be used for 

the solution of non-linear problems of the type considered 
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in this thesis, and that a nonlinear version of the branch 

and bound algorithm (Chapter 4) will soon be developed and 

used to solve generation planning problems of the type 

discussed in Chapter 11. 

Contributions of the the Thesis: 

Major original contributions of this thesis are 

summarized below: 

(1) A thorough and critical survey of mathematical 

programming techniques from both theoretical and computational 

points of view; also, a more unified presentation of the 

mathematical programming methods than is at present 

available. 

(2) Clarification of the difficulties encountered 

in the, formulation of a mathematical model. 

(3) Clarification of the idea of the Systems 

Design Approach and its relevance to systems optimization 

in general. 

(4) Application of a method of feasible directions 

to determine the best policy fora reservoir for electrical 

energy production and irrigation. Also, formulation of a 

three-dimensional model suitable for solution by a dynamic 

programming algorithm. 

(5) Application of two sequential unconstrained 

minimization techniques to obtain optimal operating policies 
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for a variable-head hydrothermal electrical system. 

(6) A general formulation of a transmission 

system design problem. Also, the introduction of an 

adaptive method of imposing constraints - in the formulation 

of a linear programming model of a transmission network 

design problem; this results in a sizeable reduction in 

the number of constraints. 

(7) Formulation of nonlinear programming models 

of a transmission network design problem and solution of 

the resulting models by means of a sequential unconstrained 

optimization technique. Indication of the inability of 

existing nonlinear programming methods to give integer 

solutions. 

(8) Suggestion of a possible way through which 

Dalels dynamic programming method for generation planning 

may be extended so as to take account of the shape of the 

load duration curve. Also formulation of nonlinear 

programming models suitable for solution by the existing 

sequential unconstrained optimization techniques once 

the latter have been modified to handle large problems 

of the type encountered in power system planning. 
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APPENDIX A.2. 

A METHOD OF FEASIBLE DIRECTIONS: 

Hethods of feasible directions (in conjunction with 

other methods of non-linear programming) have been discussed 

in Chapter 5. 	D3tailed steps of the version used to 

solve the problem discussed in Chapter 8 are given here. 

Only linear constraints are considered. 

Consider the problem: 

Minimize:a convex function, F(X) 	(A2.1) 

subject to n 
1  a..x. > b. i = 112,...m 	(A2.2) 

x. > 0 	j = 1,...,n 	(A2.3) 
J — 

The computational rules are as follows: 

(i) An initial feasible solution R? is chosen: 

i.e. a point satisfying (A2.2) and (A2.3). 

(ii) A step-length t (t>O) is chosen such that 
x j  = Tcc.)  + ti. (A2.4) 

satisfies (A2.2) and (A2.3) and such that 

n 
a..s. > 0 i = j=1 lj j 

> 0 j = J — 
-1 < s. < 1 j = m+1,...,n 

— J 

(A2.5) 

(A2.6) 

(A2.7) 

(iii) In order to obtain the largest decrease in 

F(Z.1 ) we 

Minimize n aF, 	0%  
.E 	kx .xn )sj 
J=1 ax. 
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subject to (A2.5)-(A2.7). 	This is a linear prorramming, 

problem; and the solution s o  i. s a feasible direction. 

The point. given by A2.4 yields a smaller value of F(X.), xj  

provided that t is sufficiently small. 

o =_ If the solution s, 	0, then x. is the solution to 

the problem (i.e. minimizes (A2.1) over the given constraint 

set). 

If hwever,sj  1 0, the parameter t is chosen in 

the following way: 

(a) 
(b.-.E110 j a..x.)/.E1  a..s

o for .E a..s.<0 ij j 	j=1 ij j 
t = Min { 

o o - x./s. 	for s. < 0 	(A2.9) J 3 
A 

If t < t then 

constraints. 

(b) Consider 

real variable, t,  

x in (A2.4) satisfies the original 

the following function of a single 

j x.+ts. o o 
J 	J 

n 1P(t) 	.E ,0 DE' 
J=1 -j ax  0 	(A2.10) 

Since F(xl' x2'.• .' xn  ) is convex, (A2.10) has at 

most one real solution. 	Suppose such a solution exists 

and is denoted by t*. 	If t < t* then F(X.) will decrease 

for increasing t. 
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(c) the optimum choice of t is then 

tm r. Min (t,t*) 

and the new feasible solution is given by 

;(1) 	-o x. 	t s. M j 
The process is iterated until either: 

(i) E 0 	or 

(ii) the decrease in the function is sufficiently 

small. 

(A2.11) 
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APPENDIX A.3. 

(a) The Fiacco-McCormick Method: 

Given a mathematical programming problem: 

Minimize F(x) 	 (A3.1) 

subject to 	Gi(Tc) 	i = 1,...,m 	(A3.2) 

the problem is transformed into an unconstrained one: 

m 
Minimize 	+ r E 1VG4 C30 

1=1 	J- 

subject to no constraints. 	A3.3 is then solved as 

indicated in the flow-diagram below (Fig. A3.1): 

(A3.3) 

1.  

2.  

3.  

Start: 
Select an initial feasible 
point xo  
Set i=1; select r, > 0 

Minimize P(x3r.), starting from 
xi-1  and subject to no constraints 

9 
Is the error: r1E /Gk(x) less than 

a specified value? 

No 	 Put: 

= 1+1 

Reduceri  . by a specified factor 

Fig. A3.1. 	The Fiacco-McCormick Method.  
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The actual minimization (Step 2) is carried out 

by a suitable unconstrained optimization method: e.fr,. the 

Fletcher-Powell algorithm given in Appendix A4. 

into: 

(b) Lootsma's Logarithmic Potential Method: 

In this case problem A3.1 and A3.2 is transformed.  

Minimize P(R,ri) = F(7) - r iEl  In. Gi(x) (A3.') 

The computational steps are similar to those of the 

Fiacco-McCormick method. 	The only essential difference 

is that the initial value of r is estimated by 

d 
ri  = 	e/m 	i = 1 	(A3.5) 

where 6e is the estimate of the error term: 

6e 	r E In G.(70 	 (A3.6) 

and m is the number of constraints (See Chapter 5 for a 

more detailed discussion). 
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the stop criterion 
satisfied? 

Compute: 

H. 	= 1+1 	-a. 

Compute: 

44.;.NYTM. = 	3.J 
-T 	- y. H. y. 

STOP  
ik 
Yes 

No 

Fet i = 

Compute: 

Ai  - = a. al'  

T - a. y. 

Compute: 

yi  = VF(R3+1)-VFai  

Compute: new value 

of x1.+1 : 1+1 x. =x.+t.g. 

APPENDIX A.4.  

1. 	Start: 

Choose a positive definite 

matrix Ho  (usually an iden- 

tity matrix); 
Select an initial point 2 

2. 

3 

4. 

Compute the direction' 

6 

= 1  VT(37 ) 

Choose a step length 

ti to minimize 

F(R. + tigi). 	See 

Quadratic or cubic 

interpolation: Appendix 

A5. 

Compute: 
G. = t.;. 1 	1 1 

8 

7 

Fig. A4. The Fletcher-Powell Unconstrained Optimization Method  

- 279 - 



APPENDIX A.5.  

CUBIC AND QUADRATIC INTERPOLATIONS  

As we have seen in Chapter 5, the direct optimization 

methods proceed - from a given arbitrary point - by choosing 

a direction for the next step, and the step-length. 

The step-length t is usually chosen as the value of 

t > 0 which minimizes the function 

g(t) =.xi  + ts) 	(A5.1) 

A minimum value, tri, which minimizes A5.1 is obtained 

by the cubic interpolation procedure outlined in Fig. A5.1. 

Ifderivativesof re not available or are 

difficult to compute, the quadratic interpolation procedure 

can be used to determine the value of t which minimizes 

A5.1. 
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APPENDIX A.G.  

A METHOD OF PREDICTING THE RELIABILITY OF CONTINUOUSLY  

OPERATING SYSTEMS ** 

In Chapter 10 we discussed how reliability 

constraints can be generated for use in the formulation of 

transmission system mathematical programming model. 	Details 

of the method of generating the desired reliability constraints 

are given in this section. 

The main features of the method are as follows. 

The state of a complex system (designed for continuous 

operation) is defined by identifying the sub-systems which are 

functioning and those which are undergoing repair. The 

system is described as UP whenever it is in one of the 

arbitrarily selected set of system states. 

It is assumed that maintainance facilities are always 

adequate. 	The formulae derived give the mean durations of 

system UP-times and DOWN-times in terms of the corresponding 

quantities for the sub-systems. 

A6.1. 	A General Statement of the Problem  

Consider a system S composed of n sub-systems 

At any given time each of the sub-systems is 13""Sn' 

either UP (in working order) or DOWN (for repair). 	The 

** Based on the paper by M.- Plotkin and S. Einhorn. 
I.E.E.E. Journal on Reliability, March 1965, pp.15-22. 
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system j is UP or DOWN depending on whether the set of 

sub-systems does or does not at the given instant include 

one of certain prescribed combinations of the sub-systems. 

The mean duration U. of UP-time and the mean 

duration D. of DOWN-time for the sub-system S. are known 

j=1,...,n. 	The problem is to compute the mean duration U 

UP-times and the mean duration D DOWN-times for system S. 

In our example (Chapter 10) the sub-system, S., 

refers to single transmission line entering a given sub-

station; and S is represented by the total number of lines 

that would be required to maintain adequate security of 

supply. 

A6.2. 	Definitions  

The following notations are used in the discussions: 

▪ 
{ Uk if sub-system Sk  is UP in system state i 

Dk if sub-system Sk  is DOWN in system state i 

FS • the set of all pairs of subscripts (i,j) 
such that the system is UP in state i but 
the failure of a single sub-system, Sk put 
the system into state j, which is a DOWN 
state. 

the subscript of the sub-system whose 
transforms the system from state i to 

failure 
state j. 

• the set of all subscripts identifying system 
UP states. 

U 
	

• 	mean duration of system UP-tine 

D 	= 	mean duration of system DOWN-time. 
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A6.3. 	Transition Rates  

The passage of one system state to another is called 

transition. 	If the transition from system state i to system 

state j requires a failure in sub-system St(i,j), then 

Mit(i'i) 	Ut(i,j) 	(A6.1) 

Mit(i,j) 	= 	D (i' j) (A6.2) 

M 	Djk, k t ik 	 (A6.3) I  

The above equations also express what happens in the 

transition from system state j to system state i. 	The system 

states i and j are, in fact, adjacent, differing only in the 

condition of a single sub-system St. 

The sum 

CR 	= Dt + U 	 (A6.4) 

is the mean duration of a cycle, consisting of a DOWN-time 

followd by an UP-time for sub-system St. 	There are, on the 

average 

1/CRt 
	1

/(D)2, + U) 	(A6.5) 

cycles in sub-system St  per unit time. 	If we assume that 

the failure and repair in sub-system St  are independent of the 

events in the other sub-systems, then the exnected number of 

transitions per unit time from system state i to system state 

j is 

N..13 - 

Probability that remaining 

1 	n-1 sub-systems are each in 
{the state required by system} 

D (i1j)+Uk(i,j) state i. 

 

(A6.6) 
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i.e. 

N.. 	= 1 	TI 
D(11J)+U24J)x  kWpk+Uk' 

(A6.7) 

where use has been made of the fact that 

Uk  /(Dk 
 +U 
k
) and Dk/(Dk+Uk) 

are respectively the probabilities that sub-system Sk  is 

UP and DOWN. 	The probability that sub-system Sk  is in a 

state required by sub-system state i is therefore 

Mik/(Dk+Uk)  

Equation (A6.7) may be written 
n 1 	lik  

N 111 / 
k=1 Dk+Uk 
n 	N. 1 	3.k  

Uk(i,j) k=1 Dk+ Uk  

A6.4. 	Mean UP-time Duration:  

The mean 'system' UP-time duration is computed as 

follows. 	Equation (A6.8) is evaluated for all transitions 

from i (system UP) to j (system DOWN). 	The sum 

	

N.. 	 (A6.9) 
(i3j),c FS 	13  

is the expected number of system UP to system DOWN transitions 

per unit time and its reciprocal 

E N. 	-1  
(i3.j )E.FS (A6.10) 
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-1 
TI D = k=1 	+ 	-1 ) 	(A6.16) 

iEg 

is the mean time for the system cycle, consisting of one 

system DOWN-period followed by a system UP-period. 

-1 

[ 

	Nij 

 
(i,i)€FS 	

(A6.11) U + D 	

E 
From (A6.7) and (A6.8) we note that the probability 

that the system is in state i at any given instant is 

P(Si) = 	{  Iik  
k=1 	Dk + Uk 

(A6.12) 

Hence the probability that the system is in an UP- 

condition is 
U 

E 
ifg 

n 

k=1 { 	 Dk+Uk}  (A6.13) 

 

U+D 

Combining (A6.11) and (A6.13) gives 

I-1 	n M., 
U = 	E 	N.. x r  n r  im. k=1 1pi+u  } (A6.14) 3.j 	

ifg (i'i )EFs 
n 
II 1 	-1 	

c. k 

k=1Lik 	n 
= 1 . 	E 	, 	1 . k=lnik (A6.16) (3..,j )IFS IT5(i,j) 	lEg 

A6.5. 	Mean DOWN-time Duration  

This is obtained from equations (A6.13) and (A6.15) 

and is denoted by 
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APPENDIX A o 7  

2PLINCI2AL STEPS OP THE SUGGE8'..ED DYNAMIC PROGP.A.IINING. 

Procedure 

In Chapter 11, a possible way of applying 

the principles of dynamic programming was suggested 

A flow diagram of the main steps of the algorithm are 

included here - Pig. 	The diagram is essentially 

similar to that of Dale3! 

1Lei. 14 in the thesis. 
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Trace back to stage 0 the 
path which ended in state 

kmi .n  for stage Sy 

Print out Optimum state 
in each stage, total costs 
etc. and STOP. 

Read in all NK 
Possible states to 
be considered in 

e S 
c, pro uc ion cos s 

for each state, k. 
Enter the values in 
Cost (k) 

For each possible path to State 
ke , find km  , the value of k 
for which the sum: Cost1(k) + 

Build (k) is a minimum. 

)tStage S 3et cost1(k) = 0 

for k = 1, N 

Calculate Capital" Costs 
for any Units included 
in state ke which wer 
not included in state 
k (the previous state. 
Enter the values of 
Build (k) 

No 

Yes 	 
S < Sy = S-1 

or each1177store 
corresponding km  in 
memory 

Set Cost3  (ke) = Cost2(k 

Cost (km) + Build (km) 

Set Cost1  (k) = Cost, (k) for 

k = 1, ..., Nk(S). ke < Nk(S)?1 	 

IYes 

Adjust Cost3(k) o< 	 

meet end of study 	 
effects. ii

Find kmin' that value of k 

for which Cost3(k) is a Min. 

4...mose,ete 	 

Pig. A.7. A DynamicPa....__ninin Procedure. 
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Cost (k) = Total cumulative cost following the Optimum 

path from the beginning of the stage (0) to 

the end of state k in the previous stage. 

Cost2(k) = Total production costs during the stage for 

the particular make up of existing and new 

units included in state k 

Build (k) = Cost of any new units that would have to be 

installed at the beginning of stage, s , 

in order to go from state k in the previous 

stage to state (ke) during the current 

stage. 

Cost3  (k) = Total cumulative cost following the optimum 

path from the beginning of stage 0 to 

end of state '(ke).. 
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